
MIT/ICS/:l'R-233 

A11IG1ATIC EXTENSIOO' OF AN AI.XHNrED 

· .: · TRANSITICl:'J NEn'DRK ·GIWM\R FOR K>RSE 

CXDE <XHTERSATIQS 

Gail E. Kaiser 

- : -- _, -···-···---- -----· -.~L-

( 



This blank page was inserted to presenie pagination. 



Automatic Extension of an 
Augmented Transition Network Grammar 

for Morse Code Conversations 

Gail E. Kaiser 
March 1980 

Copyright (C) 1980 Massachusetts Institute of Technology. All rights reserved. 

This research was supported by the Advanced Research Projects Agency of the 
Department of Defense and 111Ghitored by the Office of Naval Research under 
contract number N00014-75-C-0881. 

Massachusetts Institute of Technology 
Laboratory for Computer Science 
Cambridge, Massachu~38 

-- ----- -----------



This empty page was substih1ted for a 
blank page in the original document. 



-1-

Table of Contents 
Abstract 

Acknowledgements 

List of lllust rations 

· 1. Introduction 

1.1 Motivation 
1.2 Organization 

2. An ATN with Semantic Categories 

2.1 Machine Recognition of Hand-sent Morse Code 
2.2 An A TN Parser for Morse Code Conversations 
2.3 The Syntax of Chatter 
2.4 The Semantic Structure of Chatter Conversations 

3. Grammatical Inference of ATNs 

a 1 The Grammatical-Inference Problem 
3.2 Grammatical Inference and MAGE 
3.3 Hypothesis Formation and Selection 
3.4 A Unique Evaluation Measure 

4. Acquisition of Language and Grammatical Extension 

4.1 A Model of Language Acquisition 
4.2 The 'Universal Grammar' of MAGE 
4.3 Hypothesis Formation and Evaluation 

5. MAGE: A Learning System 

5.1 A Model for Leaming Systems . 
5.2 MAGE Components 

5.2.1 Instance Selector and Blackboard 
5.2.2 World Model 
5.2.3 Performance Element 
5.2.4 Critic and Learning Element 

5.3 Implementation Details 

6. Conclusions 

6.1 Capabilities and Limitations 
6.2 Suggestions for Future Research 

References 

I. A Morse Code Conversation 

II. A Learning Session with MAGE 

Ill. The Core Grammar of MAGE 

3 
4 

5 

6 

6 
9 

12 

12 
14 
16 
20 

22 

22 
26 
28 
40 

44 

44 
48 

. 50 

52 
52 
53 
53 
54 
55 
56 
57 

58 

58 
63 

66 
69 
71 

86 



This empty page was substih1ted for a 
blank page in the original document. 



.3. 

Abstract · 

This . report describes a 'learning program' that acquires much of the · 

knowledge required by a parsing system that processes conversations in a 'natural' 

language akin to ham-radio jargon. The learning. program derives information from 

example sentences taken from transcripts of actual conversations, and uses this 

knowledge to extend the 'core' augmented transition network (ATN) grammar. The 

parser can use the extended grammar to process the examP4e sentences, plus a 

large number of syntactically and semantically related sentences. 

The learning program uses a set -0f heuristics to. determine the difference 

between the existing vert»ion <?f .the grammar and a superset that could process the 

example sentence. A set of models act as templates to produce possiblei)Xtensions 

to the grammar. An evaluation .measure selects one of the.exte.nsions and adds it to 

the grammar. This extension is henceforth an integral component of Ula knowledge 

base and may be used by the parser ~to process ·conversations and by the learning 

program to extend the grammar further. 

This report relates the mechanisms used by the ·learning program to 

grammatical inference of context-sem~itive languages, which include the natural 

languages, and some proposed linguistic models. of human language acquisition. 

These models describe language acquisition as a process of developing hypotheses 

according to the constraints of innate universal rules, and acceptance of those 

hypotheses that make it possible for the child to understand new sentences. 

Similarly, the learning program developS its hypothe&es within the constraints of 

certain 'universal' models and accepts only those hypotheses that enable the parser 

to process the motivating example. 
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1. Introduction 

1.1 Motivation 

As computer technOlogy advances, computers are being applied to/ more 

complex tasks that require increasingly greater 'domain-specific' knowl~ge. One of 
. -,. 

the pressing goa~s of computer science and engineering is to determine how to 

incorporate this knowledge into computer systems in attefficienHNay. 

There are two major approaches in current use 1hatt ··attempt to solve this 

problem. One approach in current use is the dev~t pf varjoos 'tools' 

specifically tailored for installing · the domain-~ . knqWledge, lneluding 

very-high-level languages and special-purpose editors. A~_ approach, which 
. . 

has met with considerably less success, is to tet the COfNJMlQC dO most of the work of 

acquiring the information. This report describes a computer pr:ograffl' that acquires 

much of the knowledge necessary to perform its task. 

The task in this case is parsing human conversati<>O,,$. in a very limited domain. 

' . 
The conversations take place between operators on Moise ·cbde radio-networks in a 

simple 'natural' language akin to ham-radio jargon, wheN ;flle po$8ible topics of 

conversation are limited by radio netwOrk protocol to: such· thioga.as e$d>Uahing 

contact, discussing and sending messages, re-sending garbled parts of the 

messages, and ending contact. In tandem with ·a transcription system, the parser 

processes the hand-sent Morse c~ to produce a human-readable transcript and 

information summary. The domain-specific knowledge. r0quired by the parser 

consists of the discourse structure and the syntax and semantics of the language, 

and this knowledge is organized as an augmented transition network (ATN). 
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However, the programmer who developed the original parser was not able to 

incorporate enough qomain-specific knowledge into the system to .parse all, or even 

most, of the actual conversations that occur . in this domain, simply because this 

information is not available in its totality. However, on& can e>epeet that as the parser 

performs its task, transcripts of,corwersationsthat it can notprocess adequately with 

its current· knowledge base will become available. lt was desirable to develop a 

mechanism by which the system could extend its knowledge base, given the new 

transcripts, in a way ·that enab1e8 it to ·.correctly_ process eaeh o.f the new 

transmissions (or sentences) in these example eonversations, plus a tar~ number of 

similar transmissions. 

A computer program with these abilities WOUid inc~orate a high degree of 

learning ability. Winston [23) describes the levels of learning abifity as a shift of 

effort from the teacher to the· student. His0 four .levels !nclude learning by being 

programmed, learning by being told, learning by example, and learning by diseovery. 

The original domain-specific knowledge. incilrporated by the programmer into the 

system deScribeei in this report is an example of 'learning by.being programmed'. A 

system that was explicitly guided by some teacher in its acqrnsition of knowledge, 

with the instructioos of the teacher phrased in the langvage of t!Je domain rather 

than some programming language, would be 'learning by being told'. The program 

desoribedhere at times must 'learn·by being told't torthe,prograrnmust sometimes 

ask questions of the human supplying examples and ·the human r~nds in the , 

language of the domain. However, lor' the most part this program 'learns by 

example': the program derives the ability to parse new sentences -and phrases ~rom 

the examples of sentences and phrases presented to it. 
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One approach to d9veloping a computer program that could ~ire such 

knowledge, or 'team', from-examptes,i8 to.borroW1lront taeories about the teaming , 

processes of humans, the most SU¢cemlul ~machines' to date..~' lhe. 

human learning processes ·are incompletely Uriderstood.. Qumtnt, theQries .. suggest 

that they consist in part of.forming geftelaliatiolla fr;()fttdabu1ndderMnQ rules from 

them. The correct application of these rutes'ilV tbe teamer .demonstrates. that 

something has, indeed, been laamad. 

One weH-known example of human Jeaming: that $88f11$,, oo the surtat;e,. very 

simi1ar to the problem at hand ·is the &CQUisitioR d 'ianQuage bw-· ehildren. Humans 

acquire their first language almost entirely by hearing it~ Tht.;~ 

of data fOMows very quiCldy as childfen laam topalduce.~~ with 

no formal instruction in the grammar of their native~; ttl8Y infer,~ ,.... Qf 

their grammar from the Sentences they hear speloen (18}~ 

Some linguistic models propoaef.t .by Chomsky (A<,.5}'make the ~ 

proposition that a child . may know about certain aspects of fang~ $e>me 

knowledge is innate and 1he child need· noMeam· tbeae.aspects in the usual sense. -

These ·innate aspects of language are called· lhe:unltlerwtoteflHJtBr and1 aooOIQing 

to these models, form the.basis for forming·geneRldiatiQn& &fld.deriving rules r.., 

the utterances that the child hears spoken. 

The system described nere borrows aome . ...,.,_ of these linguistic mo®l8 

· that seem·particulalty appropriate for»extension of lhe grmnmar __. by the parsing 

program, and incorporalesthem in.a~ leamioCt prograa 1hat-inctude$.U 1)9 

domain infbrmation of the original- pmw Md -can. operate on bl same ~· 

This does not mean that the resulting coqJUtar' program-_models human language 
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acquisition in any psychologically reatistic sense. However, the research described 

here demonstrates that theories tnat attempt ~ exptain·:human learning processes 

are also useful for devetoping computer programs that.acquire,knowledge. 

Previous work in this area has concentrated.on the devetopment of algorithms 

for the inference of format grammars from very large.sets of·eKamples~ The problem 

of inferring an exact grammar for an arbitrary (but constrained),language has been 

solved for the regular languages [3, 12, 14J; and some very restricted subsets of the 

context-free languages [6, 7, 8, 17, 22]. However, there has been very litt!eprogress 

toward the development of a general- and pracUcal .Jmechanism · tor deriving 

grammars for the more powe.rful oontext-senSitive languages, which include all 

natural languages.· This research represents a atep.tt>Wafdihla goal. 

1.2 Organization 

The result of this research is a learning program call~ MAGE (Morse 

Automatic Grammar Extension system). MAGE uses a 'domain model' that includes 
. . 

. ·~. 

information about the simple language and the environment in which it is used, a 

small 'core' grammar organized as an A TN, and some knowledge about what type of 

result it is expected to produce. MAGE is designed to receive individual examples of 

sentences from the language and extend the grammar so that it can parse each 

example, plus a large number of similar sentences. An arbitrary number of examples 

may be provided to produce an arbitrarily large grammar. 

MAGE uses a set of heuristics to determine the difference between the 

grammar and a superset of the grammar that would be able to process the example 
',,• < 1' 

sentence. It uses a set of models as templates to 'enumerate', or list, a set of possible 
. 

ext~nsions to the grammar that might bridge this difference. A unique 'evaluation 
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measure' guides the enumeration process, to keep the list of po88ible extensions 

workably short, and selects one of these exteasion8, ,Mlieh is then added to the 

grammar. The evaluation measure is based on the·abilib' of the grammar to $dract 

important information from . conversations:. an. eKtenaion. is enumerated . only if it 

provides a mechanism for parsing the new· phJ~ without considering the context, 

and an extension is selected only if it makes . it possibj& .for cthe entire example 

containing the new phrase to be parsed by the standard ATN parsing algorithm that 

is used as a tester. · 

The process outlined above is analogous, in some. 8(H)8Cts, . to· ·linguistic 

models· developed by Chomsky (4, 5} and Dale{9}of the learning mechanisms used 

by children when acquiring a native language .. -According to,fhese models; the child 

has innate knowledge of a universal grammar that provides a mold In which· the child 

develops the grammar for her own language; and the child uses a set of universal 

rules that prescribe the ways she can organize the ·utterances She hears and 

evaluate the hypotheses she ·forms according to whether or not they help her to 

understand the utterance. These component$ of the language acquisition models 

are similar to the domain model, hypothesis-formation models, and evaluation 

measure of MAGE, respectively. 

Although MAGE borrows from linguistic models, this author does not 

necessarily endorse any of these models nor support these or any other linguistic 

theories. The augmented transition network mechanism discussed in this report is 

not related to these linguistic models, nor does this author claim that the A TN is a 

realistic model of human language coms:>rehension. What this report does say ~t 

these theories of language acquisition is .that some aspects of the models can be 
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implemented as a comput~r program operating on a d~.struc;ture representing an 

ATN grammar. 

The rest of this report is organized as fottows: 

• Chapter 2 presents MAGE's domain model and the particular aspects 
that make possible.the evaluation measure. 

• Chapter 3 states the general gr~mmatical inference problem, and 
presents the hypothesis·-tormation algorithm and evaluation measure 
used by MAGE in its partial solution to the related probfem of 
grammatical extension. 

•Chapter 4 discusses further the domain model, hypothesis-formation 
·models, and evaluation measure in the conteXt of language acquisition 
. by children. 

• Chapter 5 describes the design and implemef}4\tion of MAGE. 

• Chapter 6 contains a summary and condusion& 
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2. An ATN with Semantic Categories 

2.1 Machine Recognition of Hand-sent Morse ,Code 

The research was motivated by the -r~·WQrld problem . of automating, the 

recognition and understanding of hand-sent Morse code·, 1n an amateur-radio 

network envirotm~nt. Morse code consiSI& of ffVe elements: dots, dashes, mark 

spaces, letter spaces, and word spaces. · The·. English · alphabet, digits, and 

punctuation are encoded as groups of one to six marks (dots or dashes) separated 

by mark spaces. The$e groups are seP&r~ tr~. each 'other by letter ,$Paces 

(ideally, three times as long as a mark space) and combined into words, Which are 

separated from each ·other by ·word spaces (idealtf·98YGh'tlmes·· a& ibng as ·a mark 

space). For example, "SOS" is traASmitted a:"dotmsdotmadotls daSh ms dash 

ms dash Is dot ms dot ms dot ws", where "S" is encoded as " ... ", "O" as "--~ ", "ms" 

means mark space, "Is" letter space, and "ws" word space. Morse code Is 

transmitted over radio by short signal$ (dots) and long signals (dashes), with the 

pauses in between signals serving as spaces. 

It is desirable to automate the reception of these signals and the transcription 

of the marks and spaces back into ch8racter text, to produce a readable output 

However, there are many aspects of manual Morse code- that make transcription 

difficult, not only for a machine but also for a human operator. Many errors are 

introduced by radio attributes like. transmitter chirp and atmospheric interference, 

and by sender irregularities including spacing errors (e.g: a letter space that is 

shorter than a nearby mark space), mark errors (e.g. sending a dash instead of two 

dots) and spelling errors. The result is analogous to speech that is slurred or broken 
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by arbitrary pauses and includes a few .mispronounced WQrds, 

Research in m~chine transcription of. manual Morse QOde began in the 1950's 

and included the development of MAUDE CMf>f88 AUtorneti:c DEcoder).(11) at M.l.T.'s 

Lincoln Laboratory. MAUDE and other earty transcribers were. based on a small set 

of statistical and linguistic rules;. no attempt was made to take advantage of the 

constraints provided by radio network protocol or the Wormational content of the 

transmissions. 

Recently, a system called COMC0-1 (COmputerized·Morse Code Operator) 

[21) has been developed at M.l.T.'s Laboratory for.Com~ter Science .. Jt involves a 

new perspective on the manual Morse code problem: it utiliies extensive knowledge 

of the peculiarities of hand-sent Morse coda and amateur-radio network protocol, 

and attempts to 'understand' the Morse code conversatkm. 

COMC0-1 consists of three component$; a ·signal-processing system, a 

Morse-code-to-character-text transcriber, and· a text understander, or parser. The 

signal-processing system produces a file of merit and.spaoe-duretions based on its 

analysis of radio signals. 

The transcriber, a software system called COMOEC (COmputerized Morse 

DECoder), converts marks and spaces to character text u&iAQ a set_,of modules, each 

of which is an 'expert' on one aspect of transcription. Each module corrects certain 

types of errors and makes additions to a set of .wggested· transcriptipns, where each 

transcription consists of a· list of vocabulary elements. COMOEC is aided by 

dictionaries of ham-radio jargon and the English-language, 
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2.2 An ATN Parser for Morse Code Conversations 

The parser, called CATNIP (Comco.1 Augmented Transition Network 

Interfaced Parser) (16], uses an augmented transition network (ATN) grammar to 
/ 

evaluate the transcriptions suggested by COMDEC with respect to their syntactic 

and semantic coherence and selects one that matches a path through the ATN. The 

grammar includes a transition network that represents the sYAtactio/semantic 

structure of a Morse code conversation, and a set of registers, and functions that 

operate on them, designed to store information extracted front a conversation. Both 

COMDEC and CATNIP are written mostly in MOL{15}, a:high·level programming 

language of the USP family-. 

The conversations largely consist of a shorthand language called chatter. 

Network protocol and the limited vocabulary of chatter constrain the_ possible topics 

of conversation to the statement and -query: of operator identifica~ signal 

characteristics, rendezvous information, message. traffic information, and so for;th. 

The conversations are -task oriented, and a·paraer· can 'comprehend' the dialogue 

because both the topic of conversation and the movement from :tOPic to topic is· 

severely limited.1 No formal definition or tanguaoe .- generator exists _ for this 

natural-language-like jargon, so the -grammar was derived from several hours of 

tianscriptS. 

ThiS grammar follows the ATN formalism described by Woods (24]: An 

augmented tranSition network consists of two components: a transition network 

(TN), and a set of registers with associat~ functions. Airansition network is a set of 
1 

An example of a short but typical conversation that can be parsed by CATNIP is given in A~ix 
I. . 
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'named' finite state machines,- or subnetworks, where a transition e}'mbol, may be the 

name·· of another (or the same) subnetwork. ~hen the name of· .'tome subnetwork . 

appears as one of the symbols of ·a transition. it tndicat'8 a 'push' to that 

subnetwork, in the sense of calling a subroutine. ·A,term1naf;state indicates a 'pop' to 

the 'calling' transition, which may then be foffowed to-the state it-d~nates. When 

other words appear as transition symbofs, the, parser operates:the subnetwork as a 

finite state machine, attempting to 'accept~ the inpwt-sequenoe. 

An A TN also includes a set of registers designed to .hotd contextual 

information, a set of tests that determine the vatidity of a word in a given context, and 

a set of actions to change the contents of the registers as the context shifts. A 

possibly empty set of tests and actions is associated with each transition. When a 

transition symbol has been matched by one of the mechanisms described above, the 
. . 

transition may be followed only if each of the tests can be passed. 

After the parser has been determined that a tra~sition may be followed, each 

of the associated actions is applied before the parser continues processing from the 

next state. Actions are often used to build and connect parts of parse trees, which 

are saved in the registers until completed at the end of the parse, but this ability is 

not used by CATNIP. Augmented with registers, tests, and actions, a transition 

network has the power of a Turing machine. A more detailed discussion of 

augmented transition networks is given by Ritchie. (19]. 

CATNIP's grammar conforms very closely to Woods' definition of an ATN, with 
~· ~,., ' 

two exceptions. The first is that CA TNIP's registers, and the tests and actions that 

act on them, were designed to manipulate the particular informational items that are 

expected to appear in chatter conversations, rather than to build parse trees for 
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legal sentences. These items include .call-signs (names) and locations of operators; 

time and date; ratings of strength, ,clarity, etc.1Dt· si9na18; traffie information like 

message number, length of message, and the message body; and . conversation 

history like pending questions and requesla. ·, 

This exception iffustrates one of the most.pcwerfut features of the augmented 

transition network model: the possibiHty elCisl:s -Of adding to.-the model whatever 

facifity is needed and seems natural to do· the .job. _ . An addition requires only a 

relaxation of the restrictlons on the tYpes of testsand actions but no reformulation of 

the basic model. 

2.3 The Syntax of Chatter 

The second exception to the standard ATN is the unusual organization of 

CA TNIP's grammar into topical categories. Each of the nineteen subnetworks is 

designed to process a particular set of semantically related substrings. A TN 
<:: 

knowledge bases· for language processing are usually organized into subnetworks 

that process syntactic structures, such as 'noun phrase' and 'verb phrase' in 

English. A subnetwork begins processing a substring when it is referenced by a 

'push specification' (i.e. the name of the subnetwork) on a transition of a higher-level 

subnetwork. The push specification performs the dual role of expressing a top-down. 

prediction that some particular kind of item is needed at that point in the input 

stream, and indicating which subnetwork is to be used to process the item. The 

suitability of a particular type of category (for example, 'noun phrase' is a syntactic 

category) depends both on the ways that grammatical predictions can be phrased 
' ' 

and on the classes of items that can be processed in a similar fashion (i.e. by the 

same subnetwork). 

--------
------------ --
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It has been suggested by Ritchie [19) that this . 'subroutine' mechanism 

presupposes a syntactic organizati~ of the grammar into subnetworks and that a 

semantic organization could not be vJabte, "•e semantic categories are not the 

appropriate organizaUonal units for an .a~ted transition netwprk grammar." 

However, I have found that tt~e adclition of meaning·based ct;itegories is not only 

justified, but aJso superior to using only syntactic categories for embedded structure 

processing in the Morse code radio network domain. 

The chatter language· is sufficiently limited, little·syntax exists, and what does 

exist is either weak or can be described in more· .revealing terms as a result of 

semantic-considerations. The language consist$of only four generic types of words: 

q-signs, pro-signs, call-signs, and abbfeviations.[2]. 4)-signs are internationally 

agreed-on abbreviations which were devise(i for nlpi~raph use. Each q-sign 

represents a complete thought; e.g. "QSK" · m~ "I can hear you between my 

signars; break in on my transmission" and "QTQ.?" means "Can you communi~te 

with my station by. means of the International Code of Signals?" The first letter jn 

every q-sign is 'O'. Pro-signs, or proceduresig{la".,alsQJiaV(t.precise definitions but 

do .not express complete thoughts and are cloeety rela\e(t t9 network protocol; for 

example, "AS" means "wait" or "stand by", and. "AR"~ "end .of transmission". 

Call-signs are station identifiers and serve as names of radio operat~.The final 

category consists largely of simple abbreviations of. comgionly .used English words 

and phrases; for exampie: "GA'! means "go ahead", '!NR" means "number", "OK" 

means "okay" and "PSE" means "please" .. The frequency of these English 

abbreviations is so low that an English· like &ynta¥,model CCi)Uld not.be.develo~ for 

chatter. 
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There are two types of syntactic rules. The first is. characterized by the 
. . 

following example: if either of, the cons~ ••cattsign DE · callsign" ("Station . 

<calf-sign 1 >. this is station <call-si!Jf'l2>") 'Or "DE caRslgn" ("This is station 

<call-sign>")2 occurs in ·a transmission,· it ~rs ·near the beginning of that 

transmission. A 'transmis8t0t1' is equivalenftt>& 'teltence' in spoken conversation, 

and it does not necessarily include· everything' traA8Alttted· by a Qingle operator 

between signals from other operators. 

The sec6nd type of syntactic rule is the order of the 'arguments' that follow 

almost all q-signs and many othet·words, e~g,;-"«QSl MSG NR 3 ?" ("Can you 

acknowledge receipt of messaQe number three?")and "QRZ ROCK 3500" ("You are 

being called by Rock on frequency · 3.500 kHz-"). The definition of each q-sign 

inctades a set of informatfOnaf 'sfots' thatsheuld befitlec:tby·the q•sign'sarguments 

(for example, "QRZ.. alone nleans "You are being called· by ....; - :... on frequency 

- - - kHz"). However, "QRZ 3500 ROCK" is just as Meaningful as "ORZ Rcx:t< 

3500", and the phrase may be'transmitted both waysr so order isn't really ver.y 

important here. It is clear from· these example&tf:lat thecWieyntaciic rules can easity 

be refonnulated in terms df the underlying setnantics. The only syntax rule that 

seems very strong is the fact that argufnents alWaYs'fofkM·the word ofiwhich tbey 

are arguments. 

The first two constructs discussed aboYe ar.e dlferem ways of identifying a 

new operator as she begins transmlSsion. Effher can OCooJ, in any· position where 

self-identification of an operator is de8iredi lo01Caltf tf\iS:fs at·the beginning of, a 

2CATNfP's grammar uses the conventit:m that any Wold· in 1oWer.:oue-·1ettera is a generic token, 
which is replaced by an appropriate chatter word at parse-time. 
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transmission by that operator~ The syntactic rule is replaced by a more intuitive 

semantic rule that gr9\1PS the two· phrases m~the topical category. "·Identification· of 

Operators", denoted ID-OP in the grammar. 

The number, type, and ordering of the argument words not only depend on the 
.. 

lexical features of the particular word of which they are arguments but also are a 

function of the context. For example, in the phrase· "NA 1 GR 200 OTA 1500" 

("[message] number 1, with 200 groups, at 1500 hours"), "GR" is followed by the 

number of English words or code-groups in the next message. However, in a 

transmission like "PSE APT GR 10, 20, 30 OK? K" ("Please repeat .code-groups 

10, 20, and 30. Okay? Over"), the argument$ of "GR" are one or more numbers 

separated by delimiters, referring to the previously sent code-groups in positions 

<number1 >, <number2>, ... , <numberN>. Thus the syntax of a word's arguments 

depends on the current topic of discussion. 

The potential of syntactic rules is further weakened by the spoken-language 

aspects of chatter conversations, for example, the existence of noise words. These 

include chatter words from both the pro-sign and abbreviation categories -- such as 

"R" ("roger"), a pro-sign, and "NW" ("now"), an abbreviation -- that an operator 

often sends as 'filler' while she is deciding what to say next. So _another syntactic 

rule might be that a noise word can appear anywhere in a transmission, except as 

the last word in that transmission. However, most potential noise words can also 

appear as meaningful words in various contexts, for example "R" might be the 

response to "ORO?" ("Shall I increase transmitter power?"). 

Noise words can appear at any time, because they are meaningless; thi~ is a 

semantic rather than syntactic consideration, so this rule may be reformulated as a 
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semantic rule that allows meaningless words to appear in any context and requires . 

them to be disregarded by the informatlon-accumulating'.machanisma,of the parser. 

2.4 The Semantic Structure of Chatter Conversations 

Although the syntax of chatter is weak, there is a strong semantic structure 

imposed on Morse code conversations by radio network protoe.ol. First, the 

operators involved must establish contact with each other, and this is represented by 

the CONTACT subnetwork in the ATN. Next, one operator prepares to send some 

· message, and then sends it, either as code-groups or English text; this Is 

represented by the TRAFFIC subnetwork. 

Immediately following the sending of traffic, the receiver may ask to have 

several words repeated and eventually acknowledges receipt of the message. This 

process is modeled by the REQ-INFO subnetwork. The TRAFFIC and REQ-INFO 

subnetworks are repeated until all operators have sent all their prepared messages. 

Then the operators begin signing off, which usually involves negotiations regarding 

re-establishment of contact at some future time: this is represented by the 

END-CNCT subnetwork. At this point, the conversation may terminate, or one of the 

operators may continue by trying to establish contact with a new operator. 

With one major exception, these four topics are the only possibilities for 

discussion and they always occur in this rigid order. The exception is the 'Interrupt 

Subnetwork', denoted INTRUPT in CATNIP'S grammar, which can be pushed to 

(called) from ~ state and represents an interruption in the smooth flow of 

transmission. The possible types of interruptions include a third operator suddenly 

breaking in on a conversation; sudden static on the air waves, which must be dealt 

with by changes in transmitter characteristics or frequency; and so on. These 
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interruptions are very difficult to parse since the context is made invalid by the break, 

and this presents an interesting problem for th~ parser desigf1er. ·However, to make 

the problem addressed in this report more tractabte, I have ignored the 'interruption 

problem'. 

The four main areas of discourse are broken down into additional subnetworks 

based · on topical· categories. For example, CONT A CT has transitions indicating 

pushing to (calling) the lower-leve1 subnetworks ID-OP (identification of operators), 

NET -RELA V (relay of operator identification through the network controller), and 

QUAL-CNCT (discussion of signal characteristics). It is only within these 

lowest-level subnetworks that ·syntactic structure shows up, for example, in the 

ordering of q•sign arguments, but, as discussed above, this structure results from 

semantic as well as syntactic considerations. 

The semantic category of a push (call) specification fulfills its role as a 

top-down prediction that a particular topic wm · be discussed at that point in the 

conversation, and of course it indicates which subnetwork is to be used to process 

phrases discussing that topic. Semantic categortes are more suitable for this 

application than syntactic categories due to the limited syntax of chatter and the 

strong protocol constraints on the discourse structure of a conversation. 

The semantic organization of this A TN grammar not only is very unusual but 

also plays a unique role in the partial and limited solution to the grammatical 

inference problem discussed in the next chapter. 
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3. Grammaticar Inference of ATNs 

3.1 The Grammatical-Inference Problem 

Scientists have been using formal linguistics for modeling natural and 

programming languages for over ~enty years [14]. Gramm~rs have been employed 

to describe the syntax of languages ,like chatter and ca'.'. be used· to characterize a 

syntactic source that generates au the sentences in a language. It would be useful if 

the grammar could be directly inferred from a set of sample sente11ces in the 
- ~ . . 

language in question. The process of deriving a grammar from a set of examples Is 

called grammaticalinference. 

The general grammatical-inference problem is $imp~y stated. Assume the 

existence of a source that generates strings of the form~ = a1a2 ... a0 , where xis a 
• - '?: • • > 

sentence .in a language L and each 8i is a word in the lexicon of L. L is assumed to 

possess some unique structural features that can be modeled by a grammar G. The 

grammatical-inference machine is given a finite set S + ()f sentences that are in L, 
• • • ' '~ < ; 

ar:tcf possibly another finite set s· of sentences that are not in L. Using this 

information, the machine mu~t infer tl;le syntactic ru.les of the unknown grammar G. 

The first difflculty encountered is the nec8$Sity of. QQ,aining extra information 

in 9rder to find an appropriate set s·. Although the set S + .can be obtained from the · 

source, the set s· can be defined only if an external teach$', who knows something 

about the properties of G, is Jl¥ailab~. Unfot:tu~~~' without s·, the 
' - .; ' • ' ~ - :, ;·:~ .. ____ -- ·' ' !j < 

grammatical-inference problem is unsolvable except for a small number of highly 

constrained grammars [8]. The chatter language has this problem, because, with no 

formal definition, there is also no algorithmic means for determining that a given 

~-------~----- ----
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string of chatter words is not Hkely to be transmitted over·Morse code networks, or 

even for deciding whether a given word (that is not a q-sign)Js· in ·the chatter 

vocabulary. 

Even though it is impossible for a grammatical-inference machine to find 

exactly one grammar for most ~nguages without this negative information, it is often 

possible to enumerate a large .set of possibJe grammars and then narrow down the 

solution in some way to a single grammar. A grammar 1s 'possible' ·in this sense if it 

accepts the sample. The probfem of narrowing down the ~tate-space to one 

grammar has ·been solved for regular languages, the very simple languages that can 

be generated by regular expressions and accepted by finite state machines (FSMs). 

The limited case of regular languages is solvable -because two finite state 

machine grammars that generate the same language are equivalent. Since an of the 

accurately enumerated grammars are equivalent,·onty one need be constructed, and 

it is the cdrrect solution. Feldman et al. discuss the concepts involved {12], and t~ 

algorithms are presented by Biermann and Feldman [3]. 

However, these algorithms cannot be utiUzed to extend the grammar for· 

chatter, since the nesting - feature&· of natural language are not adequately 

represented by finite state machine grammars. Chatter can be consider~ a natural 

language, because its representation requires nested structures, which are 

represented by the subnetworks of the ATN knowledge .base, 3 ancM>ecause it is an 

evolving, 'spoken' Janguage.4 

· 3Section 2.4 

4rhe similarities between chatter and naturat·· tanguages liM• EOQ.lish are diScussed further. in 
Section 4.3. · 
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The context-free languages are more J>Q_werfut than regular languages, 

because they can model the self-embedding and nesting ~ies of natural and 

programming languages. They cart be represented by grammars whose pr-Oduction 

rules are of the form A --> a, where A is a single nonterminal aymbol and a is a string 

of terminal symbols and nonterminal symboJs ( 1 ).- A-terminal. symbol is an element 

from the language being modeled. Since the left-hend side of the rule contains a, 

single symbol~ no context is necessary to determine th&--dertvation ·of a sentence. 

Context-free languages are accepted by transition-network.a (TNs). 

It is considerably more difficult to derive grammars for i:ontext-free languages 

than for regular languages, because an infinite number of posetible gr~mar$ can be 

enumerated for any -set- of data. No algorithm exi&ts tnat ··ean decide whether two 

arbitrary context-free grammar~ accept the: same~,~ -rnechani,$m is 

rtf;eded that limits the number of grammars.produced to1a~ ~ ~el and t~ 

setects one of them that- is 'best'. Such a mechanism- is termed an -- '~aluation 

measure'. 

One approach to solving this probtem·iaiO look for a r~nably gooµ,tit, with 

. some sultable definition of 'reasonable', rather, llllilf1l :trying to find a gr~~ that 

generates exactly the input sample~ Cook state& (7} tt!\at an:Qinite .languag$, i.e. any 

language that includes an 1ntinite number of aentenees, ,888\Jres -~discrepancy 

between a grammar. inferred troma ftnite'sampie and the•~ fo~ the.~ 

He used a cost function measuring- the tradeoff between~~ in (X)IQf>lex~ .and 

increase in discrepancy to bound his machine's search-space. Th,e mact:Mne 

deseribed by Wharton {22] uses ,3 similar. ·evaluatiorto'mea&Uf.e, but it_r~ves its 

examples via a multi-step method rather than all at once; this methodology tends to 
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increase the efficiency of enumeration but cannot guarantee minimum complexity in 

the ultimate result. 

Another approach is to require a humar:\ •teacher' ·.to guide the grammatical 

inference machine as it enumerates possible grammars and select the 'best' 

grammar according to some subjective measure. ln th~ scenario developed by 

Knobe and Knobe [17}, th& teacher is a knowledge~le person who provides 

individual examples in optimal order with OPlimaJ variety,, and who can recognize 

grammatical and ungrammatical strings wUhout knowing.the formal grammar for the 

language. The machine enumerates first genera& and then m~re specific 

productions, and each production is tested by the. teacher as it. is enumerated. The 

machine retains the most general rule that does not produce any strings ruled illegal 

by the teacher. This scenario places a heavy burden on:the teacher. to present an 

adequate 'course'. 

A third approach, described by Crespi-Reghizzi (8], attaches structural 

descriptions to the example$. This limits · the number · .of .hypotheses that are 

compatible with the data and thus reduces the enumeration problem. The extra 

information, although similar to the type of information rE;)Quired by the 

complexity/discrepancy measure and the teacher's judgements_ above, must be 

justified, since it departs from the standard model. of grammar acquisition .. 

Crespi-Reghizzi explains that this structural information is similar to the stress and 
. . . 

intonational information available to a child acquiring a natural language, and that 

the widespread belief that there must be a partiallY semantic basis for the acquisition 

of syntax impUes the availability of· some struCtural information to the learner. of a. 

language. Of course, the availability of .structure vastly reduces the number of 
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alternative possible grammars and assures that the .acquired grammar generates 

sentences with structures consistent with their meaning. 

The grammaticat--inference machtnee ~ above are att successful for 

subsets of the conteXNree languages; Howev~, ·ther&J&as yet no algorithm that can 

infer the complete set of reV!'fiting rules from a positive sample of an arbitrary 

context-free language [6]. It is not sul'J)rising that no general mechanism has been 

developed for grammatical inference Of supeAaeta of the context-tree languages, 

particularly the context-sensitive~' which<include,aft natural languages. 

Now, the context~sensltive are even· more powerful, than the context-free 

·1anguages. They can be represented by grammars with..production rules of .the form 

a --> b, where both a and b consist of any number of terminal and oon1emlinal 

symbols; the length of a must t>e tee& than or equaa,t<>thEJtength,of bf1]. Since-the 

left-hand side of a rule may include more than one symbol, context is necessary to 

determine the derivation of a sentenc~ ·The ··COl'tW><t-sensitive languages Eµ'e 

accepted by augmented transition networt'8 (ATNs). ;Ail natural tanguagea are 

members of the set of context-serlsitive languages:, contextual information is· 

necessary to parse constructs such as'tefle>riYes and f'8lative d\MJSe& in English. 

3.2 Grammatical Inference and MAGE 

This report describes a grammatical-extension machine for an augmented 
.. . 

transition network grammar for a very limited 'natural' language. Since augmented 
- . . . 

transition networks represent and are equivalent to the context-sensitive grammar, 
c"' • ' - • - : • ;. • > ~ :-" • " 

~ . ' . : ~ : ' - -. ~. ~ 

the development. of MAGE is a small. step toward a general solution to the very 
L .. 

difficult problem of inference for context-sensitive grammars. 
< ; ~ 

There are three ways in which this machine's model · · of the 
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grammatical-inference problem diverges from the standard model <liscussed in the 

first section of trns chapter. The first is that ~GE's grammar is not inferred from 

scratch· but builds on a core grammar, which iflctudes a small transition network1 a 

set of pre-coded functions for the tests and actions,' and a dictionary of q-signs (but 

not other chatter words). 

The second difference is that the grammar-is extended incrementally; ihat is, 

each example is successfuHy learned before the next -example ·is provided. This 

makes the inference problem more -difficult than usual, because ·MAGE cannot 

exploit structurat sirmlarities between examples' when determining the embedded 

structure of the grammar. The. incremental te ••••>is necessary in the Morse code 

domain, because a structurally complete sample is required in order to derive a 

complete grammar for any language [6); a positive sample of a language is 

structurally complete if each rewriting rule of the .grammar is used at least once in 

the generation of the sample. It is impossible to generate a structurally complete 
. ' " ~ . ~ 

sample of chatter, because no formal grammar exists, and the language is 
" . 

continuously evolving. In other words, since the grammar can never be complete, 

the extension mechanism must always be ready to add one more example to the 

grammar. 

The third difference is a result of the second: the extension procedure is not 

expected to result in an exact grammar for the language that is equivalent to some 

known formal definition. The best that the system can do, given the constraints of the 
. 

domain, is to generate an extended grammar that understands alt sentences It 

received as examples;·plus a large number of similar sentences. 

Keeping in mind these deviations from the standard grammatical-inference 
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modet, the computer program the author has developed is successful at what it tries 

to do: extend an aug~ted transitierr network grammar for lhe limited Morse-code 

domain. MAGE is an enumerative procedure iR the senae that it •consider$ many· 

potential additions to the grammar for each·~xampte it is suppHed •. How(wer, the 

evaluation measure guides the . enumeration of possible extension&, and·· :each 

enumerated extension is selected ·or rejected· before the next extension is 

postulated. As soon as one extension has been appr<>*I, the enumeration process 

halts. Thus au but the ultimate re8u1t are rejected. before any data structure Is 

generated. Since only one ~physical' grammar ·eo<.ists at ,any point .in time, and 

extensions result in physical alterations ot·thiSctata structurev·the :pJogr:am may be 

considered a constructive model. 

3.3 Hypothesis Formation and Selection 

There are two phases to the hypothesis-formation/hypothesis-evaluation 

process. The first· is the selec~ion of a structural extension to the transition network, 

to result in a grammar that can accept the current example. The second is the 

specification of a set of tests and actions to be attached to the transition network, to 

enable the parser to understand the current example. These processes are 

independent and sequential, and they are presented here separateiy. 

MAGE opefates on a transition network grammar (it ignores the tests and 
' . . '· . . 

actions during this phase) consisting of thirteen topically categorized subnetworks. 5 

Given an example transmission, or an example conversation containing one or more 

5rhe 'Interrupt Subnetwork' and the five related ~orks of CATNIP's grammar are not part of 
MAGE's core grammar, because the current veraian of MAGE doell ®t 4'taf with ~ ~ problem. . . < • . • • 
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speaker changes, 6 the program first determines if ttw example f8 already accepted 

by the grammar, by attempting_ to parse it. ·MAGE tries to match the example to the 

grammar using a standard 1ransition netwof!k- pan;ing algorithm, ·with one deviation: 

rather than requiring a single start-state, the parser performs a depth-first search 

from several potentia• start·~~ .tnclUding" ell ·sUlte& that can precede the 

beginning of a transmission. An example should ·not begin in mid-transmission, 

atthough the program' can handte this ill .SO.OO· 4-taooes. T~ parse . is 

nondeterministic, i.e., conceptually it follows many,~ .in· paraflet.W!lthough. it 

actually uses a depth-first search), because 1he;gr-aRV1Dar mavc0>ntain more than one 

subnetwork representing the same subeequen.~ of toheP8 or words, as do many TN 

and ATN grammars. 

If the example is ·already accepted by the,1)farmnar,_ the program prints an 

appropriate message and. asks for another example. ff U.Jirst ·word Qr words of the 

example are accepted by one or more subnetworks, hut the fQllowiAg word does-~t 

match any transition leaving the· tast .state of· any of the&e partial· paths,· the 

nypothesis-formation procedure .·. takes . control with p0inters to the· 

'fast-matched-states' and tlTe next word in the.e~. The same sequence of 

words may be accepted by more than ooe subnetwork, because· the parse has 

multiple, start-states and- the grammar i& ~ oondeterminfstic. lf the first word 

of an example is not accepted by any transiti•~leavjng "1lY,SUU1·etatet the set of 

'last~matched-states" · in· this cas& consists . of the possible &Ulft·states discussed 

above, and the next WOfd in the example. is lhe first one. 
6 

A 'speaker change'· occurs ina Mof'SEH:Ode con~n wt¥tn ooe operator ceases transmitt~g 
Morse code and another begins. · 
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At some point in the example, marking the end of the new phrase, the words of 

the example resume matching the symf>ols. ~ the transitions of the TN. This may 

happen at more than one state, for the reasons stated above. If th& new phrase is at 

the end of the example, it matches any tem1inal state in the transition network by 

default. The state{s) containing the transition(s~ where the path resumes and the 

terminal state(s) matched by default are called the·•end-of".phrase' states. The task· 

now is to add some structura~ representation of .~·words be~ these matches 

(the new phrase) to lhe transition network compOAant:oftlle grammar. MAGE uses 

the models presented below to accomplish this objective. 

The set of models repreSerits an single•transition extensions to the general 

three-state finite state machine shown in Figure 1, with several exceptions: it is 

undesirable to return to a start-state from somecother state in thesubnelwork except 

in a small number of prescribed circumstances; it is preferable for a $Ubnetwork to 

contain a terminat state, and then repeat the- entire subnetwork, rather than return 

from that state to the start-state. A single subAefwork without tests and actions is an 

FSM. Model O (Figure.1) represents the original status of a subnetwork: the circle 

containing S is a start-state; the circle with the dark&Aedarea is a termioatstate; the 

single intermediate state represents tf!le· arbitrarily cemplex web of states ·and 

transitions between the start-state and a terminal state in an actual subnetwork. 

Each of· the models mustrated in Figures 2 .throUgb 8 represents a general 

one-transition extension to modet o. All ~that are possible, considering the 

chatter domain, are included in this set.· Any of:the three circtes 1ntheee .mOOelathat 

correspond to the original circles in Model O may represent a 'last·matched·state' 

and any terminal state may represent the 'end-of-phrase', depending on the 
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particular model and circumstances; a circle other than the original three always 

represents a new ci~cle added to the subnetwork as part of the extension. Since 

each example is expected to : include only mw new phrase, only one type of 

extension is actually used for each example. However, the new phrase generally 

consists of more than the single w.ord that cafl be attached to a single transition. The 

transition can be viewed as modeling a string of transition/next-state pairs, with the 
.... < ~--

first transition in this,string leaving, a state in.~ or~~~ as shown in the 

model, and the final transitio~·connected to the next':'stat~ shown in the particular 

model. 

[MODEL 0 l 

Figure 1: Madel 0 
General subnetwork 

[MODEL ll 

Figure 2: Model 1 
'Last-matched-state' becomes terminal state 
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CMODEL 2 l 

Figure 3: Model 2 
A terminal state 1hatis also a 'tast-matohed·state' 

becomes a possible int~iate state 

C MODEL 31 

Figure 4a: Model 3 
State(s) inserted parallel to transition between adjacent states, 

which are 'last-matched-state' and 'end-of-phrase' 
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[ MODEL 31 

Figure 4b: A special caee of Model 3 . . ~-

C MODEL 4 l 

Figtl(e 5~ Mo<f94' 
Transition loops to same ·state, which is both 

'last-matched-state' Sod 'end-of-phrase' 

). 

~ _-

[MODEL 5 l 

Figure 6a: Model 5 
Transition returns from 'last-matched-state' 

to previously visited state 
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[MODEL 5] 

Figure 6b: A special case of Model 5 

[MODEL 6J 

Figure ?a: Model 6 
Completely new path is formed in subnetwork 



-35-

[MODEL 61 

Figure 7b: A special case of Model 6 

[MODEL 71 

Figure ·a: Model 7 
New transition added between 'last-matched-state' 

and new terminal state 

MAGE compares each model to each last-matched-state/end-of-phrase pair. 
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The hypothesis-formatiorr procedure enumerates a set of model/pair combinations 

called 'templates', matching particular sta~ ~.the model to the last-matched-state 

and end-of-example of the pair. The firSt ·c0mPQnent of the evaluation measure 

guides this process, restricting it t6 enumerati~g onlf ,those models that provide a 
•, 

means for accepting the new phrase in the finite state macfri<te sense: the first word 

in the phrase match'l@ some·symbol attached toatransitioo.Jeaving the start-state of 
.:' 

the extension derived from the model, the secofld word matches some transition 

leaving the state pointed to by the transition for the first word, and so on. The state 

pointed to by the transition rpatcning ~~e l8$t ~~d in the new phrase must either be 

a terminal state or contain a transition that matches the first word in the rest of the 

example, which follows the new phrase. 

If there is,only a single last-matched-state, and only one of the above models 
·'- . 

provides a mechanism fOT~ accepting ·the new phrase, then this model is subjected 

immediately to the second component of the evaluation procedure. If this model 
·-~""- . 

..... . 

also provides a mechanism for acc0l>t&Qg the new phrase in the context of the 

current example, i.e., the entire example would be acceplea by the core grammar 
,-· ·"··· 

plus this extension, then the eval';Jatfon is said to 'succeed', and the extension is 

physically added to the data structure representing the transition network 

component of .···the . grammar. In this case, the te,sVaction phase of the 

hypothesis-formation mechanism begins operation. If the evaluation fails, the · 

example is rejected as unlearnable, 7 

If the structure of the example matches one of the above models, but there are 

7The author has notfeund any actuat transmissionathateontaln phtatesthatcause MAGE to fail, 
with the exception of transmissions containiAg one of the-interruptions discussed in Section 2.4. 
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several last-matched-states, then the evaluation measure selects the first of these 

states that passes i~s criteria. This selection is justified, because in nearly all 

instances the first passing state is the only one: conflicts are prevented by a strict 

ordering of the start-states via the subnetwork in which each appears. 

There are several situations in which more than one model is represented in 

the templates produced by the hypothesis-formation process, and in these cases the 

evaluation measure must select a model as well as a particular state pair. Consider 

the example "QSA 5 NW QTC K" ("The strength of your signals is excellent now. I 

have messages for you") diagrammed below, and assume that "QS~ 5 OTC K" 

("The strength of your signals is excellent. I have messages for you") is already 

accepted by the grammar. It is not clear during the hypothesis-formation stage 

whether to apply model 2 (Figure 9a) or model 3 (Figure 9b). Therefore, both of 

these possibilities are passed to the evaluation measure, which chooses between 

them on the basis of which transmission 'makes sense'. · 

10SA I # 1
NW

1 

[EXAMPLE] 

Figure 9a: Model 2 applied to example 
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1
QTC

1 'K'· 

(EXAMPLE l 

Figure 9b: Model 3 applied to example 

In this case, model 2 wins, because the evaluation me&sura·decides that 0 NW" 

refers to "OSA" rather than to "OTC". "QSA 5 NW'' ("Ttae'strength of your signals 

is excellent now") is a plausible update.to an earlier transmission like'rQSA 1" ("The 

strength of your signals is very poor").8 Howev~, · "~ OTC" ("Now· I Have 

messages for you"} would not make sense unless the operator had previously 

transmitted something like "Wait. I will have messages for you soon": this statement 

cannot be mad&.with the phrases contained in the.core gfsmmar. Of course, the 

extended grammar still accepts "QSA 5 OTC K" because the terminal state following 

the generic token "#" is not deleted. In fact, nothing is ever deleted from the core 

grammar; the only alterations performed by MAGE are additions. 

After a specific structural h}ipothesis hM. been.· ~ed by the evaluation 

measure, the machine enters its second hypothesis-formation phase and 

81t "QSA 5" is accepted by the core grammar, "QSA 1" is also, since the generic token '#'. 
matches any number. · 
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enumerates a set of potential test and action specifioatU.Jor each transition of t~ 

new extension. If the symbot.·on ·a new transilen is a· qt Sign., those aetione associated 

with Q·Slgns are enumerated; none of ,-the prepared t_. 8houtd be associated with 

transitions•whose symbolsare.q-signs. The q•aign acttons pt.JI information,con~ 

by q-signs and theJrargumenta.in certainreuister«-

< quality-of -cpntact> 
<pending-questions> 
<expected-actions> 
<general-situation-description>. 

- : T:.:;-.r .-. ' 
If the transition symbol is some other type of word, but not a 'noise' word, the 

entire set of non-q-sign actions is enu.:nerated. :These actions put information In . . 

other registers, including: 

<inforl11ation-aboui~teceiving-operator> 
<info1,mation-about:§t1t1,di119'."pperator>: 
<id-number-of-message) -· 

< nutnber"'ONMoJC:llHfldn~OS> · . . . . 
<number-of-words-received-so-far,;,in-mes.sage> 
and others described in Appendix Ill. 

If the symboUs a gEmedc token, i.e. !'caUsign" ,J!any", -. # ", "delir'Jt'', or ·~.toc:ation", 

-the entire set ·ot tests is passed to~lhe.evatuation:meaeure. "fhese t8$te eerve:• 

filters to ensure that the dater werd thatmatcbes a genertc tokeo is reasoqable:-in 

context, to ·prevent every randem word from.:matchiftg '!:any'h if~ ex~, alnee this 

symbol is intendec:t-.to:match only code!'groupa« Engtishworda in:~messa9'tbodY· 

The tests and actions to be associated with the new transition(~) are now selected by 

the-evaluatiorrmeaaure. --
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3.4 A Unique Evaluation Measure . 

The evaluati0t1 component of MAGE js ·rather unusual in that it does not 

incorporate a cost function or other comptexity-retated. aaneideration to select tM 

'best' from among the set of PoSSible ~ral -extensions or test/action 

specifications, nor does it use some subjeefive measure:_produced by .a human 

teacher. Instead, the evaluation measure Is based on the semantic organization of 

the augmented transition network grammar.9 

The criterion for selecting a structural extension is simply: "Will this structural 

extension place the new phrase in the correct topical context?". ~imilarly, the 

criterion for augmenting a transition with a particular test or set of tests is: "Will this 

test or set of tests ensure that all words accepted by thi$ trar;'sition ar~ meaningful in 

the current context?". An action or set of acttohs 1s ·Sppf~ foratransltion ff those 

actions will select and save the important inforri\atkwn.:ontaine6in the phrase and 

ignore any meaningless words. 

The fir.st criterion is fairly simple to implement for, phrases ,containinc> at Jeast 

·one q-sign, because atl q-signs are associated a priori with appropriate topics 

represented by subnetworks. There are usually two or h'tee aibnetworks in which. a 

particular q-sign might make sense, but thei·conten of the r~t of the example 

provides enough information to uniquety determine the topical category of the 

phrase. 

Those phrases that contain neither q-signs. nor other words that are known to 

be synonymous with a particular q-sign (e.g. "APT" ("repeat") is synonymous with 

9Sectlon 2.4 
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"OSM" ("Please repeat ..:. - -·")), are 0more difficult to evaluate. When an example 

contains an unknown word, MAGE asks the user if.itJs a~nym of any known word 

and, if so, which one.10 Either the new word has a known synonym, orQneor more of 

the other words ·in the phrase have known meafljrlgS u.J C8fl. be UseQ to c;letermine 

the meaning and topic of unk~own words; this topicalf~lioo .is .used to place tf)e 

new phrase in the appropriate subnetwork (i~e., eQflt&xt). 

The selection of tests and action$ .proceeds-~ :~ijar line$~ Most tests ar~ 

attached only to transitions with a generic ~mbol; most action$ .are. attached to 

transitions with the symbol ''new-speaker .. (denoting ~ ~-~Qe), ~ ~erJp 

symbOI, or a q-sign. In addition, the evaluation;~e A\aY attaph action,s 1Q most 

symbols in the REQ-RPT subnetwork (request for so~ing,;lq \t>e repeated and 

response to request) even though they .. W8l'9 ·n• ~ate?- .dur.ing the 

hypothesis.formation phasef it is desirable to 6t~:$1Y r~t r~..,est until it h~ 
' ~ . ' . ' " <' 

been answered, regardless of how the rec1t1est,~ ptlf~~·. This is one of the m~Y 

semantic considerationsooalt with b~.the· eva~ 'lM]tasw~ 

The likely. flumber and·1ype of arg~Etnt& 1$' .. ~Ql;I q-sign are .part of the· 

machine's domain model, and they can be l<><*ed.·up. ifl;~-~e. Tllis kQ.OwleQ~ is 

used to attactr actions to the·transitkJna:af ~·sign~~ ttta~. c~vey information 

that $hOUtd be stored· in.some retgi&ter. UJ~C8M@1 ~ver.-.,a q)'sign may.~ 
r • - ~-- ' ••" - •, / -

with a ·tota11y··unexpected ~ ·ot arguments, ,and ~· ~rwiate actions .must be 

inferred,· from knowledge cabout the .:arguments ~~ves~ T~ ,.generic tokens 

''call-sign" and "any" appear in-"omy ~~~-Qt oontex~ (the ~D:'\OP.$1d 

10user-machine interaction is discussed further·tn Sectto9 52.1. 



NET -RELAY subnetworks and as q-sign arguments, and the MESS AG and 

REQ-RPT subnetworks, respectively), so thei~ tests and actions can be effectively 

pre-programmed. 

The major difficulty is with the generic token '' ·# ", which can appear in almost 

any context and almost atways has some important meaning. Fortunately, "#" is 

often preceded by some other Word ·with associated test/action· information that-OM 

be transferred to its argument. But in many cases· there is· no 'way Of obtaining this 

information except to compare the particular taSe of . .., # " with its appearance 

elsewhere in the grammar, and to· borrow the acttona associated with the closest fit. 

Ttlts method is actually vety sUccesstut·-at·selecting tt.aame set of actions that I 

W<>uld have selected by· hand. 

After this component of the evaluation measure- ha& approved a set . of . . 

test/ action specifications for each transttton in the previously selected structural 

extension, the specifications are attaofted. to" the extensieft;and:lhe data .structure 

representing the ATN grammar is ~1 attered.·e-:include· the:oompteted 

extension. The addition is permanent 'in the $8tW9\1h8t it can now. aid in a future 

bootstrap process as described above. 

The use of semantiC information by MAGE'a;evaluation.-measure ·is similar.~ 

Crespi-Reghizzi's use of structural inm.mation·f81· tor the infenince. of context-free 

grammars.11 The major difference is ._.i.i~ini inoAades a · COIJtpte\e 

structural description with ·mdt · of . Wis &Mamptes., ·'-·MA~ requires anelogoua 

information; however, 81t semantic/syntactie 81Neture~lslpre-programmed intoJhe 

11 Discussed in the second section of tttis chapter. 
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domain model of MAGE, and lhe program itself selects the structural information, 

which includes mea11ing and topic in this context, that should be associated with 

each example. 

The use of semantics to construct and evaluate extensions to a grammar is 

also related to some proposed linguistic models of human language acquisition. The 

viewpoint that considers MAGE an implementation of these models is discussed in 

the next chapter. A sample learning session with MAGE is given in Appendix II. 
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4. Acquisition of Language and Grammatical 
- Extension 

4.1 A Model of Language Acqui$ition 

There has always been consider~le debate among_ lingl:Jists about the 

process by which children ac~uire their native JaOQU~~·, Most models represent 

language learning as an active prQCess of hypothesis-formation and 

hypothesis-testing: the child continually formulates hypotheses about the language 

-she hears and tests them by attempting to use them to understand speech and to 

construct her own sentences. The child is not initially presented with the entire 

language but with a small subset of the vocabulary and syntax which gradually 

expands as her competence increases [22]. 

According to a model discussed by Dale [9], a hypothesis is confirmed if it 

-accounts for the data already available and successfully predicts future sentences; 

otherwise it fails. However, a verdict of success or failure is according to the child's 

perceptions of language, not an adult's. A grammar that generates the sentence. 

"Shoes on" would be unacceptable to an adult, yet it is considered successful by the 

two-year-old child who hears "Put your shoes on" as "Shoes on". Hypotheses thus 

confirmed become part of the evolving grammar used by the child. ThiS grammar is 

descriptively adequate, which means it makes 'accurate' predictions about the 

correctness or deviance of sentences that the child has never heard before, as well 

as being observationally adequate, which means it accounts for all the sentences 

that have already been heard. 

According to a similar model developed by Chomsky [4, 5], not only does the 

---- --- -~-- -----
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observattonalty adequate grammar account for. the observed sentences in the sense 

of recognizing their structuraf organiZation, bui atso ttrnll•s it,_possible-for the child 

to understand the meaning of these senteneee. :LikeWise. the descriptively adequate 

grammar is capabte of underStandihg infinitelymany;Mntences thatthe child has 

never heard. 

This model makes the controversial 0propdsiti(jn,thath child may know about 

certain aspects of tanguage: some knowledge is-mnate,' 8l1Cll tti.e dliid;oeed not team 

these aspects in the usual sense. These innate aspects of;tanguageare catledthe 

universal grammar and, according to the mode1, form-~the basis for hypothesis 

tormatiOn and evatuatk>n. 

Chcimsky•s- model is founded. in ·me ,raric)frdat:iSdt®t ;-of tingmstie_ thought, 

which states that the structure of language: i& tO-ia bOftSkterabte degree speclied 

btologicaHy, and' the function of eM~ ia,tottclvate:tto&irtrtate«>&J>adty and 

turn it into -ttr\Qtri$tic competence [4); The•tati0na1ist~ claims tbat a great deal Of 

psychological structure IS innate and tttat:tifletf!ftJMan ehlldtlasa specific, and strong, 

capacity for language. These ideas are, supported Wf'-fthe ~Ifie and 

species-uniform attributes of 1angliag&,: ke.·- a1t · human& 24lnd cO,Py "humans use 

language, and by the surprisingly smart degree of dllieUtty~ a dlild bas. with the 

general mechanisms of langtita(Je: th&nofioA:Ofa;-MMl!IMt:ep:the•eBtabtist1ment·of 

word classes and rules fbr conlbimng them, and s0 forth.- r 

The rationalist theOty P<>Stutates the ttcietenee o1,a1umersat gt:"ammar, such 

that a successful model Of-a unNef"sal.grat'nmarwou1d·inc1ude~exactlythose features 

of language that children do not have to 1e8rn arid would exciude alt the unique 

features of their particular languages that ehifdrsnq"fwst'«QUire from_ the speech 
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they hear. It is a system of-principles -that categorizes the class of possible grammars 

by specifying how p~rticular grammars are Of~, how the different rules of 

these components are constructed, and how they interact. 

The theory proposes two types of univerealJ~lwlt8:.substantive and formal. 

The set of substantive rules includes claims that items of a particular kind in any 

language must.be drawn from a fixed class of it8fnL T~ formal Jinguistic universals 

include more abstract conditions involving the character of .the rµles that appear in 

grammars, conditions imposed on these rules, and the -ways in which they are 

interconnected. For example, every· human language utilizes the . same basic 

grammatical categories (substantive) -- sentences, noun phr~a,, \lerb phr~s, etc. 

·· and 0$8$ the same grammatical relations among th.-e .categ(>l"ies (formal) .. 

subject and predicate, verb and object, etc. [18)~ 

According to these models, the task of th& child acquiring a language is to 

choose from among1ho8e grammanulllowed by the princjf)~ of \,lniversaJ grammar 

that grammar that is compatible with the tim.ited ~·imperfect ~ta available to her. 

The child is faced with a finite set of utterances. maoy of-them ungr~matical (due to 

slips of the toqgue, false. stans, memory I~, etc.), that she has heard from her 

parents and- other people in her envir()l'lfllerlt. From.~ utt~ances, she. must 

deduce the underlying rWe8 in order.to use her I~ 

The concept of a restrictive, univeisal~fl\O.fd · Jor. grammatical development is 

supported by the similarities observed by (l"9 [9.} .. l\et~ ~ ~rly speech of 

children in different cultures learning widely divergEHlt lallgu®es. According to his 

observations, a child's earliest grammar usually includes a two-.word syn~tic 

structure with two classes of words. pivot and open. The pivot class is small and 
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each word in it is used with many different words from the much larger open class. 

For example, an English-speaking child might say "bandage on", "blanket on", "fix 

on", etc. For this child on is a pivot word; it is always used in the second position and 

many other words can occur with it. Or the child might say "allgone shoe", "allgone 

lettuce", "a Ilg one outside", an_d others; here "allgone" is a pivot that always occurs 

in the first position. A pivot word may be the first or the second element in two-word 

utterances, but each pivot word has its own fixed position. 

As the child grows older and has more experience with her language, she 

begins to use three-word sentences that are simply pivot-open sentences with an 

additional word. Agent-object and agent-action constructions merge into the more 

complex but more meaningful agent-action-object construct. Eventually the child 

develops the concepts of noun phrase, verb phrase, and all the other complex 

syntactic structures of the English (or other natural) language. 

Although MAGE borrows from these theories of language acquisition and 

universal grammar, this report is not related to the controversy surrounding these 

models and rationalist theory in general. The author does not intend the analogy· 

between MAGE and these models (presented below) as an endorsement of any 

linguistic theories; the analogy is provided as a vehicle for putting in perspective the 

mechanisms used by MAGE. It may be useful to consider MAGE an implementation 

of some aspects of these models. 

Although an ATN. grammar comprises a large portion of MAGE's 'universal 

grammar', the author does not believe that the augmented transition network 

formalism is in any way related to the internal organization of the child's grammar. 

Dresher and Hornstein [10] describe the claims of some linguists that experimental 
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evidence supports the view that tl1$ ATNmodeUs a psy,chotogicalty realistic model of 

certain aspects of human linguiStic ~Oreetter:, Hornstein, and many 

other linguists disagree. This report is notrelatec:Mo'th8" debetae. . 

Throughout the rest of thi& chapter, ·the'tetm 1~cbild' relem·to the human 

language acquisition mechanisms postulated in the 't>f<>posed · lhltN.istic models 

discussed aoove. TheaulhOr d6es not claim tbetthe'~ edeneior:t process 

implemented as MAGE is in any ;Ylfr/ related·tc),··reat-~,. or the ·unkftewn. 

4.2 The 'Universal Grammar' of MAGE 
' ~ _ t,: . . 

: - ·;_ ; -r :-

Several aspects of these· models are 'implemented' as components of the 
-_ ·,-: 

grammatical extension machine: MAGE forms hypotheses that attempt to account 
.' 

for the data it receives. Th~ hYJ>ot~eses are derived from the program 'universal 
~. ~. - ; ,_; ; .. _-;j :""~-' -J - .. ~ ·, ':-,',_{ .. 

gr~mmar', which consists of knowledge of the domain and the properties of the 
·,f. {};_- ·;, - .. :. f..''.·~,.- - - ,-.. - ')~~ y,,~-~- '{-(_".:{~ --~~~·.,_"_ ~-- ! 

grammar it is extef'lding. The kinds of hypotheses ·that MAGE can formulate are 
. . .· 

constrained by the se~ of general .extension models, or 'universal rules', presented in 
r > '• ' 

$EM:tion. 3.3'. MAGE tes~ each hypothesis by det~ining whether it is adequate to 
__ )_··- -~ t -~,. -.. -

'understand' the example that motivated it. If a hypothesis is inadequate, another . . . 

"'" f- ..... - ,-
--...~. ; .. ·---. 

hypothesis is formult\ted and tested until the program has found an extension that 

enables it to parse the example.12 

The dom~in knowledge of .MAGE is very similar to the model of a .universal 
•· 

<.· 

grammar pr~nted above. Although the program might be presented with samples 
- . . -: ; , , f ·, _1 ~ : . ~:~-, __ : •. ;~~:-_.; ~_;{i C·]-f;~--'. __ :~ '·t. 

from any of a var~ of 'dialects' of chatter (e.g. ham radio, military, diplomatic, 
. ' 

12This process Is described in detail in Sections 3.3 and 3.4. . 
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shipping), the extended grammar will conform to the ooivtraflls of the radio-dom~in 

and of the augmented_transition networt<.r:epresentation·for;the grammar. 

The radio-domain universals include the ~-~'COnStf'aints such as 

networ1< protocol, which,. limittw the type&· ~·~';.,., cao, be 'said' qufipg 

conversations, and resutts in the. rigid topical breakdewn. of, .- the -A TN ·into ·the 

CONTACT, TRAFJ=tC, REQ·lNFO ··entt•. ISN.8 .. ~f,~ subnetworks and. the. 

hierarchical organization of these subnetwork& into topicatsubdivJsiooa.. Th~fples 

are analogous to the formal universe. Geeciibect iR 1seetlotr one·:of this, chapter, 

because they not only· constraint but also define,,1tae chaJacter ;of ·the gr~mmar. 

The Morse code domain.at&GJspeoilte& 'the·~otaH-~, ot~- arguments, the 

existence of 'noise' words, and-the itttematiQnaUydefioedq·aigns. Th~ r.ules are 

analogous to the substantive univensat1ndes,:M\~loclude aaser:tiorl$-·that •uc&ural 

components and· semantic elements;must:i>eliraWfl trom1>1esQFibed./c•a&N8.13 

The built-in ATN atse constitutes a·set: ef'~torrnal.Ulliversats', which constrain 

the character of rules that cao 8ppear in41"anirn8f8• 1ainc• itJt"igjdfy deliJles tb.e type.of 

grammar the program was deSigned to eJCtenct •. lhetATt·t~I prescribe& the types 

of things that can be stored in registers,what,testaand«tionscan do with regi,sters, 

and the push and pop (call and retum),mechMis-·Md·~~ O{~n ()f 

subnetworksii'lt0°8 transitiorrnetwoJ'k '1£8IBIW; ' . 'i. 

1
3rhe domain aspec~ listed here are discussed in ~th in Sections 2.3 and 2.4. 



4.3 Hypothesis Formation and Evaluation 

For each example transmission, MAGE formufatea a set of hypotheses for 

extending the syntactic/semantic structureof1he ATN,plus aset of hypotheSes for 

adding function specifications to, extract the ~aningtuh>Ontent of lhe•ample. The 

mechanisms used here are simitar to the linguistic modets described in the fir$t 

section of this chapter. According to those m~1the Nies ff>r-mulated by the child , 

must meet the universal conditions imfJ088Clf on ·the character of grammatical rule&; 

likewise, MAGE is limited to the forms provided by the set of models illustrated in 

Section 3.3. Neither the 'model child'· nor MAGE· is even capable ·of considering. 

grammatical hypotheses that do not meet their constraints. c 

The proposed Hnguiatie models predtct that the child, wiU ignore sentences 

whose structure and/ or vocabulary are too unusual;·. toe. diffetent . from what 8he 

already knows; MAGE returns a verdict· of"'unleamable' every, time it reoeivee a 

difficult example, untff tt has acquired enough vocabutary aKtcontextual structure. to 

simplify the learning of this example to tbe · matching of one new phrase to tts 

hypothesis-formaiion models. Both MAGE·and the lmodaf child' learn by a bootstrap· 

process. As MAGE is expooed to more and more example tran~issions, the 

conversations it can parse become more complex. 

The core grammar of the grammatiClaM•enaio11:1r18d\ine is similar to thepiyot 

grammar discussed by Dale (9], in that most chatter phrases revolve around·one 

'pivot' word, often a q-sign, that determines the meaning of the other words. The 

ability to associate pivot words with only_ one or two potential subnetworks, coupled 

with the ease with which most pivot words are recognized (e.g. all q-signs begin with 

the letter 'Q'), is probably the most important feature of MAGE's evaluation measure. 

---- - ---
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Without this ability, the selection mechanism would probably have to rummage 

through each of the thirteen subnetworks, possibly during several passes, to find the 

'best fit' for each example. 

The model of a hypothesis-selection mechanism proposed by Chomsky [ 4, 5] 

and discussed further by Dale [9], which would accept only those hypotheses that 

make it possible for the 'model child' to make sense of an utterance, according to 

her perception of 'sense', is analogous to the evaluation measure utilized by MAGE: 

a hypothesis is accepted only if it provides a parser with the ability to understand the 

example transmission. Extensions to the grammar are made in such a way that 

learning one new sentence actually results in the power to understand arbitrarily 

many new sentences, since many paths through the A TN may follow the new 

transitions. Thus the resulting grammar is descriptively adequate; theorists claim that 

a human grammar developed according to their models would also be descriptively 

adequate. 

MAGE does not use any of the particular universal rules postulated by linguists 

attempting to explain the very complex processes of language acquisition by 

children, nor does it copy the specific tenets of any of the theorized universal 

grammars (no one knows exactly what the universal grammar used by children 

actually consists of, or even whether it really exists). What MAGE does do is 

implement the concept of a universal grammar,· with universal rules that severely 

constrain the development of a grammar that accepts the particular dialect of 

chatter being learned. MAGE also implements the idea of selecting only those 

hypotheses that provide an accurate mechanism for 'understanding' -- or in this case 

extracting the important information from -- the motivating example(s). 
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5. MAGE: A Learning System 

5.1 A Model for Learning Systems 

The organization of the computer prpgra01 .. wSS;.~t~p.ogly influ~nced by the 
- - .... ·, - .. 

research described by Smith et at. (201~ and. MAG~ coot.~ clQsely. to their model . '. ' . . . 

of a learning system. The model details the functional components felt to be 

essential for any learning syste~ indepenc;:l~nt .of .the t~hn;q_ues used for Its 
.. -· .. - ' . - - ... -

construction and the specific environment in. which it operates. . . , 

Smith et al. define a learning, system as "any systfm) which uses information 
·.:: .r .... · > ·-.: ;' '' '' . ' 

·obtained during one interaction with it~ ~~wiron~nt .to . i_mprove its performance 
- . . ~ 

during future interactions". The performance. of MAGE COIJlplies with this definition, 
- ·( . -· _,. ~·' -

as any examples that are added to.the grammar'~_und~~ndin~-~ility are also 

used by the bootstrap process to extend the Qrammar to ~~t future examples. 
:' •• ... • J ' 

The learning system model proposed by Smith consists of six el~ts. The 

Instance Selector . selects $Uitable training instances from the envirOnfllent. The . . - . ·.. •' ' . ' ' 

P_erfOflllance Element generates an outµut.in r~se to a training_ instance. The 

Critic· analyzes the output of the performance element in.terms of some standard of 
. ,. 

performaflce. The Learning E~t makes ~iJic changes to the system in 
>, ' T , ' 

response to the analysis of the cri.tic. The ~rd c~tains SY$~ information; 

e.g. the emerging knowledge base,~ is~ gy,All func:;tional compo~nts. Finally, 
' ;:": •"-t:zv:'t..1>• ;. '- ~:;,_. ·, _ _ :. ; {_~ :,::' .. ',_ "!.-· 

the World. Model contains ·the gepGrat ~P~ $)d methQds that ~ons~aln 
- ' - ~ . . _, - . ; . -

system activity. 

My experience w.ith MA~ co11formeQ to this mQdel in one additional way: as 

designer, I viewed the. entire learning system.ea a program w~se performance 
. . . "". ' ~~ 
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needs improvement, and. I setected instances, eriticiHd•.$>8f'formancei and· made 

changes accordingly. tn other words, tt1e desifJnef·'&aothtitie~rcan be modeled by a 

system whose components are identical to tbosadeeeribed above. This. lead• to thft. 

interesting concept of layered learning systems, each higher layer. able te change 

the world model (vocabulary, ~ssumptions, etc.) of the next lower lay~r on the basis 

of criticizing its performance on a chosen set of instances. 

5.2 MAGE Components 

5.2.1 Instance Selector and Blackboard 

· The Instance Selector performs the trivial operation of accepting whatever 

example the user provides and transforming it to the proper data structure for system 

manipulation. It may request the user to answer certain questions about the current 

example. For example, if the current examptewere "VVV ROCK DE SALT QSA? K" 

("Rock, this is Salt. What is the strength of my signals? Over"), the Instance 
!~ . 

Selector would look up each word in the vocabulary list of the World·Model and find 
< - " : ;.:;~ ,: ' 

that "VVV" is an unknown word. It would .print: ·vvv· IS AN UNKNOWN WORD.· 

DOES IT HAVE A SYNONYM ON THE FOLLOWING LIST? (followed by the list). The 

operation ·of MAGE on this example is described in Appendix II. The Instance 

Selector provides half of the user-program interface. 
•· . 

The other half of the user-program interface is the Blackboard, which prints 

statements about each extension the program makes to the grammar, e.g. 
. , , : ~ - ;<, ~- • , . _...-. ~ -~-. - r '. I _.· -: .. '. ; .t 

[Adding new transition 'VVV' from state O too of ID-OP] · 

(the result of the above example). In addition, all communfoation between rnoduteS Is 

considered part of the Blackboard. Most communication takes place via standard 



passing of arguments, and use of the same variables when parts of one module are 

embedded inside another. There are also ·some global variables ·that designate what 

portions of the grammar have been altered durinQ this learning session and other 

dynamic information. 

5.2.2 World Model 

The World Model contains the universal grammar, 14 whi~h includes all 

knowledge MAGE has about the Morse code radio network domain. The. core 

grammar is considered a component of the World Model. It contains the 

subnetworks diagrammed in ~ppendix Ill, but not any alterations that have been 

f!lade during the current learning session: these belong to the Performance 

Element. The World Model has some concise, hand-gathered collections of 

informational items that are distribut~ throughout the core grammar and would be 

difficult to find without these indices, e.g. the set of all subnetworks and symbols that 

can immediately follow any terminal state in the QUAL-CNCT subnetwork. 

The World Model also inc,udes a set of specifications for the tests and actions. 

A 'specification' describes in what circumstances the test or action should be 

associated with a transition and what arguments should be passed to the pre-coded 

function that implements the test or action. 

The spellings of sixty q-signs are known a priori by the system. Each q-sign Is 

associated with one or more topical subnetworks and a possible argument syntax. 

However, only five of the sixty q-signs appear on transitions in the core grammar, 

and MAGE must receive at least one example for each of the other q.signs in order 

14Section 4.2 
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to understand conversations" containing· tbat·,q-aign. A synonym, tabl.$, which 

in-eludes all q-signs _and all other vocabulary contained in the core gramrur, J$ 

maintained. 
/ 

s:.a.3 PenormanceEleraent . i 

The Performance Element consists of two componepta; a tN P.W-$8£: af:ld ·ll'Ml 

current:wrsion of the ATNigremmar; The.T~P&raetcie.b&Md »n,the.ATJt. parser of 

CATNIP.{1l>1 but It does notsave nor: U8e·Bllf1cooteJttl.latinforl'RlttlQl!l,;since it i$ onJy 

trying to accept a sentence.or CC!N!'IVersatioa:catbe' tbaft;:trving•to1-comprehend ~It 

doesn't need tests to detennine which wor:d$~blaceept&ttby;,atr~witti 

thesyrobol "any" becauseall«Jde-tRJttp&:ard:~«•writtenas "any'' in 

the exampte. There is no reason, that· MAGE rteed$ to reoo;niz.e code-grQ\Jps and 

English words as such, since this task is suceesslullyperlormed:by caMQEC [21J, 

Atthougb there: is-only e singi&data·'slRJCt018.~ting tlle_ATN grammar, 

the core grammar is said to be an element of the WorM; Model, ~ the. current 

version of the grammar (i.e. the core grammat~ettous &¥tensiQ9$.ctePendlng on 

the history of the· ourrent· teaming' &essiooJ!•ier conaidefed a· ®mpoflent ·of· the 

Perf.Ormance •Element. The' current state1of h~~-sitn ;vocabuklry ;ts also Piilrl•of 

thiS element, while the Ofigklat vocabutary.iapattelMle WC>ftd1Model. T~c~. 

to Smith's model bf a learning process as oP8ffdiAO~ooc«~~-d.lanQeS,io .the 

Perf0frAMCefHemem~ wbet.-:erUythe~~JA.lModel. · 

When ttte,Performanoe Etement isJaoelli•••i..-,;it:f'elCt'le&:oneor 

more states where none of the transitions leaving those states matc,l;les .the, next 

word in the example (unless the example is already accepted bY:-thevrammar). When 
. . 

this occurs, it passes a set of pointers to these states and a pointer to the next word 
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in the example to the portion of the Critic that· is embedded in the Performance 

Element. 

5.2.4 Critic and Learning Element 

The Critic performs three semi-irldepet'ldent. : functions: ewatua~r,, 

Diagnostician, and Therapist. 

As Evaluator, tt evaluates the Periomlanoe1Etemeftt'a abilil)' ·to P¥S$. eac.h 

example and 'tetts'·the p&rserto·hatt ·wtaHtne erttkuwatmasthathN>..- cannot 

· understand the· next phrase of the· .exampe.. T•· Evaluator is embedded in the 

Perfonnance Element. As deacrlbed above,. whtn ,the. pameri hab ·it provktes the 

Critic with the necessary state infQrmatiGR;to perloJm_.iiahypotheeia-formation tdt. 

As· DiagnosttcianJ: the Oittc tocafiZM·tbe. reaso11a for JIOOf'_: performance by 

noting at which atate(s)··the pai'88r· wa.forced= to hall:. It enumerates.a set (JI 

hypotheses based on the structuf8I mateh'~~the 8K80lpleand:-the localized 

position in the grammar.15 . 

In Therapist mode, the Critic performs the tMlluation. meaaur-e.16 lt $81ects one 

of the hypotieses formulated , whi•'~.ifl ,~ raodet. and · r-etums . to 

Diagnostician mode. The Diagnosltcian · . ......._.·<a : l8t of . te$1180\ion 

speciflcatiOns, and th& Therapist seleds80Rle at theae *taugment the tl'aA8itions in 

thenewlychoeenstRJctuftlt .. .....,, .. •If' 

The Q!ifec ~ 1he ChoW.t ~:-8f!Jd,,teetlaet\M hW>eltleses M>·the 

Leaming Element, which utttfzes.lmowledge· of implementatiofl detail9· to~lne 

15Section 3.3 

16secttons 3.4 and 4.3 



how to alter the A TN data structure to include the current e~JlSi()n. Actually. the 
. ,. ~ . ., .; 

' 

term 'Learning Element' may be a poor choice !or this module since it simply makes 

the changes suggested by the Critic; howevei; · 8ttftrr rm-~ at.1l!<JJ~- describe& the 
' 

'learning process' in as simply an addition Of afteady forrnufate<f'and setectect rules 

to permanent memory. 

5.3 Implementation Details 

The MAGE subsystem is imple1J1en~ in MDL ('Muddle') (15] and runs on a. 
. ! ' ' ~~ ,- ' ~ - - ' -. : " ' . : -

Digital Equipm~nt Corpor~ion KA-10 und$r. the. lTS.,opet:ating system. MAGE 
• ' ' •, c' ;; 

includes about 1300 Unes of MDL code, and the c9mpUect version requires abou.t 47 
• ' ' . J'. ': o·? ·, 

blocks of memory beyond the MOL interpreter. (A block.e,ontains 1024 36-bit words.) . . ~' . -· - . . -·- -.- ~ -~ . : 
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6. Conclusions· 

6. 1 Capabilities ~nd Limitations 

This report descri~ the development of a co111pu~r program, MAGE'., that 

acquires and organizes much of. the domain-specific knowledge required by the 

related system, CATNIP [16], to process conversations over Morse code radio 

networks. MAGE incorporates several of the levels of'1eaming :ability described by 

Winston [23]. On the lowest level; it· 'learns' the domain-specific knowledge 

contained in its core grammar by being programmed. Oh higher levels, it reCelves 

additional information by being told, in the tanguage of ·the domain rather than a 

programming language, and it acquires the rest of ltS doin~ln-specific knowledge via 

learning by example. It is not able to learn by discovery. 

MAGE uses the parser's ATN knowledge base as a 'core' on which it builds the 

developing grammar. The core contains a certain amount of domain knowledge that 

was readily available to the human who developed CATNIP and MAGE but could not 

~acquired by the present version of MAGE. The inclusion of a core knowledge 

base represents learning ~ beiru;l grogrammed. The core includes: 

•the discourse structure imposed on conversations by radio-network 
protocol 

• the types of information conveyed during Morse code conversations 

• the set of generic tokens and information about how to narrow down 
what should and should not be matched by these tokens 

•the spellings and meanings of the internationally defined q-signs 

• the syntax of a few basic phrases and the meanings of the words that 
appear in these phrases 
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• the knowledge that 'noise' words exist 

• how to format the various types of information for human-readable 
output 

This knowledge is reflected in the core as: 

• the top-down organizatiOn of the A TN knowlOO_ge '.b¥e into thirteen 
semantically categorized- $Ubnetworks - · · · 

• the internal structure of the core subnetwor;ks 

• the registers, tests, and actions 

•a lexicon that associates the Q-$~naand pther WQ{~s .• contained. in the 
core vocabulary with their. synonyms, if ar))';~ot1g. tt\eJ<nriwn wQfds · · · · ~ -

• the printing functions 

MAGE receives as input individo~I traiismis$k>ns, each containing either no 
<; .- • .·". • ,, ':'' 

new information or exactly one 'new phrase. m some oases where the example 

contains unknown words, MAGE must·ask th&.W18f·iQr,a:.tditiQnal,information about 

the new words, and the user r-espondsintheJ~ng~&gt,Jhe,domainrather than-by 
' - . -

additional programming: this is IQarriing ~be.tog •. . . ~-·. , - - :.. . -.. 

MAGE derives enough information·-~ ~-' ~Jjle· to exte~ the 

knowledge base to process the hew 1>h~ in the· oontext Of the t:t"8mple 
' -, ';""· l ' ".. - ; ~ 

transmission and related contexts.;The nef/tettteftsjt)ntbecomesalll'integral part of 
~ ~ 

the grammar, utilized henceforth by CATHIP -··to.seleCOhe correct transcription.o1 a 
. ~ ' . ·" 

conversation from among the many transcriptiOfl~. su.ggested ·by COMDEC and lo 

produce a human-readable summary of the ~Information conveyed during the 
- -: - · · · ,·- · r! .c ~ ·· ~ -·-;, :·, j · , i- ~,.· · : :- -~ . 

conversation ·· and by MAGE ·· t6 aid tn·ttte bobtstraJfpr~ that extends the 
·,. 

grammar. This process represents learning~ example. The procedure followed by 

MAGE is: 
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1. MAGE attempts to parse the example transmission 
using the current version of the ATN. 

a. If the example can already be parsed, get a new 
new example. 

b. Otherwise, the parse failed at some ~cular 
word.in the example 8entence; that iS, 'ft COUl(t· 
not advance any of the one or more Patse'P*itts bY. 
another transition matching_ this word. Call the 
last state in each failed patf{a .: · · · · · 
'last-matched-state'. Call the word on whictl the 
parse failed the 'next-word'. ·.·_,: '·· 

2. MAGE l~s for some Y(prd following the next-word · 
thatfollows :the end oft~ new phr•~ ·: . . 

a. This word and all words following this word in 

the example ~-b sg~e ~!l~ie<J.~.~ Qt. 
states and trans1t1ons an the Al'N that can tie 
reached-, via QX.~. tf~ilfon$;~~ qpe.or-. 
more of the last-matched-states. Call the first 
state inleaotraieh·~:an~~. 

b: Or, ttiereisno sucl\iwotchmc;f1heN\9 phf8fle 
ends at the end of the transmission: the extension 
representing the new p~d~ t;,:a~INit 
~e. also,Cfll~~t'end~Qf ·pb~'· . - . "' . ', , . . . . . : . . . " ' ~ ' 

. 3..MAGE comMres~. l~-d~tJtiH~l;lte/~.~ 
phrase pair to the set of models, where any of the 
three statesa>rrespondingtotfiarllie Madel4tmar, 
match the last-matched-state and any terminal state 
may rnatd1·t11e ena~ot·pHr&9e, ~itian4he · · 
particular mQdel and. circumstancat 

- ' 1 , -' ' ~ . ;-· " ' '- ' 

a. It fjnds one or more mode~Jpr ~eachJJ&tr that 
· : • • . • • . l H .,. . 

could be used to construct an extenslon forlhe 

·fl&W!ub.r~~~~-.-."­
combination a 'template'. 

b. It selects the best template on the basis of a 
set of heuristics and constructs the structural 
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component of an addition to the A TN, called an 
'extension'. 

4. MAGE selects a set·of. test specifioations aa4 a 
set of action specifications for each of the 
transitions in the extension . 

... -~ . •· 

a. The specifications are chosen according to a 
set of heuristic8'1hat'consitfer1he ·trimsfll*t ·.· i ·. 
symbol, the context of the rest of Jhe 
transmission, and the particular subnetwdik ta 
which the extension was made: ,, 

b. MAGE adds the specifications t~ihe;~uely: 
constructed extension and gets a new example. 

·MAGE may extend the~flOWledge ~t<>:: ~ ·~ .~tr.~Uy.large rn~mber 

of new phrases for discussing the . concept~(~\IPwed by ·.the. known discourse 
, 1;~; I. • ' • - ' • 

structure. It augments the tran$itions that process the worc;Js of these phrases with 
r · · ~ , ' ._ ,.;.·; ~;.:· <>:_:--.;., ; ): 

tests that. provrde fitt~ for' g0netic tokens ancJ>~~·tMt extract tt\•·lllformation 
' - ',·,. o' ~ >'. ~ ~-'./•/' 

from a phrase that provides temporary context and contents for the summeryJi)Utput. 

. -. ~ _7~~:-:· .• -:. ' ~. ··~- ~,,,,,.-~ .~ , . 

h~man .language acquisition.proposed .b.YA~ijPm$ky t4; ~l Th~ an~logy is very 

natural, since laQgua~ ~quisition seems · vfi!J.. _c1o~~ ,f~la.t~Kf" to grammatical 
- , -· -· -.· • • ~ ~' '.· ' < ·- • 

extension. < · 

• The domain-specific knowledge contained in the core knowledge base 
corre8pondtJ.\o the innate •omversal grammar'. · · 

• The example ttansmissfons t<>rrespond to the .·ult&rarwes heard by the 
'child'. .c 

•The models and associated ·heurista· correspond to, the 'universal 
rules'. 

• The creation of . several temp~tes ':: ~. ~sidef;~,t~on ... of pOS$ible 
test/action specifications correspolids to the· fOrmatibn 'of competing 
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hypotheses. 

• The construction of one extension that processes the example 
corresponds to the selection of one h~that adequately~ 
the data. 

Even if these models turn out to be poor descriptions of the learning processes 

actually used by children acquiri°' ,their . flative . taQQt,.1agQ, . '.this· .. reseilrch has 

demonstrated that these theories are still t)sefol in'tne d~n'dfcomputer programs 

that successfully learn by example. 

However, MAGE has many timtttltiOM: 

• It is not able to recognize changes to the discourse structure or to the 
type :()f informatlbn ·conveye<t dOnng CorNe1'88tions,:·Shouid these occur. 
In .pther words, it cannot create new subnetworks, registers, tests, or 
actions, nor discard existing ones.··· · ·' .,, ;y :,; · · 

• It includes no mechanism for automatically adding the meanings of new 
q·stgns er other ,y~Ja(y: w~ unless ~ words ar:e synonyms, of 
previously known words; however, this can b8 easitY P,.0gramined by a 
human. 

• It assumes ~ existence of an intefftgent :afld knowtedgeabl~ ~r, who 
does not simply tvpe. in compl~te new transcripts but rather edits the 
example tran8missions so thafthey eacf1 inelude'(Jfffiy'Otl&new<J)htaSei 
This means. the user should have some knowled~ of. the current 
capabilities of the knowledge base. Fottfinat&ty,''MAGE· performs 
adequately most of the time with a naive user, except where the 

'.' -~ '. - ~ i 

transcript includes a large number of 'interruptions'. 

• Most notably, the current version of MAGE -can not cj@al .with . the 
interruption problem and is able neither to extend the Interrupt 
SUbnetwork and ·. related · tower--.a ·$LJ~ AOI" .. tilter ()Ut 
interruptions from example transmissions. 

These limitations are what.separate grammatical or knowledge-base extension 

from grammatical inference. If MAGE could do all these things, it would be able to 

acquire, from transeripts, all the domain~speclfic knowledge req0ired by CATNIP. 
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That is, It could Ho b¥ dtscoyerv, .the hiQheet and hla8t underet~ form of 

learning. 

A system that< coukt _ do aH .the' ltMAQa tilted above, W:ithout prior 

domain·~· ·knowledge. could automa~: ·. --~ Aha. . particular 

domain·specific;knowledge requiredby:atW~tem ~~I~~ CQ\Jld be 

derived ·by .. a human· from a· reasona8le amount of,.daea .taken. dire$tiy trom · the 

domain and organized as anJ1uomented . .k~ nat\'1•'.-tt ...,oukfbe,a sol\,ltion to; 

the very difftcultprobtem·of grammaticat·1~atacont~t~sltiv~ gnu:nmar. 

6.2 Suggestions for Fu tu re Research 
' - ' . 

The research described· in this report represents a small step in the 
--1• 

development of a grammatical-inference machine that could construct the 

knowledge base or grammar nece~ry to,parse a·~;t~ra(1~~,uage from scratch, i.e. 
• o~>.'o ,,.~~ ;~ -~ ~::·-~'- • '. ~- <i; i >.J : -- ' ,>"•,: ( - "<~: • 

without requiring a programmer-defined organization of subnetworks, registers, 
,. 

tests, and actions. The design of this machine would require the removal of all the 

limitations described above, which involves finding the solution to two major 
f ~ 

. - ' ' i - • '"1: .' ·{ ~ ' ~ .. 
artificial -intelligence problems. 

'; 

.~ .. ; :) 1 .~ . 

One of the problems to be solved is grammatical inference of the transition 

network component of th~· A~· from an ·1~complete set ci;~~pt"es, 'ea~h cc)ntaining 
!::~ ,~:: ,:rf _ :.,;~ :,:_;;~t> .. _.~"~ t •. 

an arbitrary amount of new information and an arbitrary amount of old information. 
>-' 

The current state of machine inference of context-free grammars, which are 
;. ~-·.'~ ~( • {-,:<'. · • .:1 .• 

equi~alent to non-augmented transition networks, assumes·a··structurally complete 
.,,., 

'-~- ~;, ~ 

sample set. However, it is impossible to pUt together a sample set using every 
.· . 

production or rule in a grammar when it has not yet been agreed what all the rules 

are. for ~ natural language: Therefore, either a new inference algorithm with 



different assumptions or a complete1y different method fqr deriving grammars·for 

natural languages wQuld have to be developed. 

· The solution to the other pr,Qbtem requires the automation of both the process 

of ·recognizing the need tor certain registers, and the Pf-QC888•.of writiACJ. algorithma, 

or abstract function desctiptlens,. for ·the test&anft,~: Onoe an alQorithm-·haS 

been generated'in .same:$fmpfe ~progl"8l'llllflhg: language' known: by the:iearnfng 

program, a human programmer COUid· code:=the'toatlkand actions· in . the actual 

language (e.g~ Pascal,; Pl/1, MOL) stdtabte,for th&particuter. 81Wkonmentt 

Both problems might be considerably more tractable if restric~ed to Morse 
, -- -:; ·: l ff. .~- : ': .. ,, ·:· -: ; ; • • " 

code or some equally simple domain, and if they could be solved indePendentfY. That 
' '' ·- . • ~-- ·.:: ,_, ~ : - l 

is, the ability to utilize the domain-specific knowledge inherent in a programmed 
• -""'<''• . ; .,,_ ~; ] ~ -

version of one of the two components may make it easier to develop an automatic 
·, 

., - : 

mechanism to perform the other function. 
> ~ • 

For example, a grammatical-inference machine might use· some domain 
- - ,; : .. :.:·;: 

knowledge, such as the topic.of q-signs or.the.type of information conveyed.during 
., ••. 1 .• 

. • . 

conversations, to develop the set of subnetworks for processing Morse code 
- - ~ : - .. 

conversations. The Morse code domain simplifies the test/ action problem by 

restricting the potential contents ~f ·~eg~; ~~- ~~rds ancf phr~ selected from 

transmissions. Tests are restricted to putting additional constraints on generic . -•, _--· 
~_,,: ~f~ 1:~.- ~- ,'· ~· 

tokens by comparing the contents of registers to the current word(s); actions are 
:.~ - '>-~- ~~ 

restricted to selecting/storing important information and deleting information that is 
'!., 

no longer desired. This knowledge might be utilized by a program that automatically 

generates registers, tests, and actions. 

Regardless of whether these problems are ever dealt with for the specific case 
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of automatic generation or the knowledge base for parsing Morse code 

conversations, it is hoped that they will someday be solved for the general case, so 

that machine acquisition of natural language will become possible. 
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I. A Morse Code Conversation 

A typical example of a goal-oriented Morse code conversation is given below, 
- > ? > (" ; 

with each transmission followed by an English transcription. 'ROCK' and 'SAL'P are 

two operators. Very little of this conversation Call be; understood bY the pl)rser using 
. ._f·. \_, -.-i -

only MAGE's core grammar, which is pteSenfed ih A:pPenifix 111, afthough aft of it can 
. /'· • ' . ,> . ; ; . . 

be parsed using the complete grammar actualiy~sed by CATNIP. However, MAGE is 
,_-·, - -

capable of extending the grammar so that the parser can 'understand' this entire 
' ~-. -

conversation. The sample learning session presentect1rt'Appelidi~ fl shows how 
. . ,, ) ( . •. ,; . . . 

MAGE extends the core grammar to_ und~ ~w transmissions; many of the 

transmissions in this conversat!on are used as exampfee. 

VVV VVV ROCK ROCK ROCK DE SALT SALT OSA ? K 

("[Hey] Rock, this is Salt. Wfl'aU&.lhe stt8f1gtQof:l1lY'8iQnala? · 
Over") 

VVV VVV ROCK OE S.Al T OSA? ORK? QSA? QRK? OTC OTC K 
- ~ - ·. · ' · ~ - . .: i 1 '·· r : , . ,,; ~ ~.:/ , , -, - ~ , · · • : 

("[Hey] Rock, this is Salt. What is the strength of my ~16? 
What is the intelligibility of my signals? [Can you hear' me?) .· · · 
I have messages for you. ~p ~\:· .·:. '"f' .,,.n,. • · 

SALT DE ROCK OSA 5 QRK 5 GA K 

("Salt, this is Rock. The strength of your signal$ fs:v&ry:.good; Tile· : ' 
intelligibility of your signals is excellent. [I can hear youl] 
Go ahead. Over") 

HR TFC HR TFC OK ? K 

("Here's some traffic. [I'm going to send a message now.] Ok~ 
Over") · 

QRVK 
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("I am ready. Over") 

NR 1 GR 200 1500 BT <1 oO code-groups> BT BT <100 code-groups> BT 
QSL?K 

("[Message] Nuf'flber one, with 200 groups, at 150Q h®rs (3 p.m.) break 
<100 code-groups> break <100 code-gtou/)$> break. 
Can you acknowledge r~jpt? ~") 

~ ·- , 

N N PSE RPT GRPS 25 , 40 , 98 K. 

("No. Please repeat groups 25, 40, and 98. Over") 

OK OK GRP 25 <cOde-group> I G~P40<code-group> I 
GRP 98<oode"grOlff)>,K ,. ' 

C'Okay. Group 25 is <code-group>. Group 40 is <code..group>. 
Group98ts<todw.;g-roUJ')>. ~l ·''_, ~:, · · · · 

TKS QSL UR MSG NR 1 NW,K 

("Thanks. I am acknowledging receipt of your message number one now. 
Over") 

QTC?K 

("I have nothing for you. When'~ yot'..1~1h~·agalri?·()ve\'M) 
QRX NXT TMW OK? K 

("I will call you again tomorrow. Okay? Ofer") 

CC SK SK 

("Okay. End of cootact") 

VA .• 

("End of contact") 
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II. A Learning Session with MAGE 

An example of MAGE's performance is given below for each of }he seven 

general models presented in SecUon 3.3. The prose in brackets is that printed by 
. -

MAGE for the given example. In each case, Figure a shows1be model selected by 

the hypothesis-formation afgo~ithln; Figure b di$1Mays the original subnetwork 

selected by the evaluation measure; and FigO're c gives the result of ·applying the 

model to the example and the ch~n subnetwqrk. Since it is difficult to show tests 

and actions in the diagrams, the selected test/action specifications are presented in 

the brief discussion below eaet4example., .. 

Example1 

ROCK DESALT PSE ANS OTC K 

[t1'ang1ng state 1 of TF-C-INFO to TERMIIAL]· 

r MOOEL I l 
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'ore' 

[ CORE . TFC - IN"FOf 

'ore' 'NR' 

[EXTENDED TFC-INFOJ 

Figur&1C* £x.....,tl'FC-INFO · 

("Rock, this is Salt. Please answer, I have~ for you. Over"} 

The phrase "ROCK DE SALT" is accepted by the ID-OP subnetwork (Figure 

19), and "PSE ANS" is accepted by the QUAL·CNCT subnetwork (Fig. 21). When a 

phrase accepted by ID-OP is followed by a phrase accepted by QUAL·CNCT, the 

two phrases together are accepted by the CONTACT subnetwork (Fig. 18). This 

su~network may be followed by the TRAFFIC subnetwork (Fig. 22), as well as by 
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another occurrence of CONTACT, as shown in the OVERALL subnetwork (Fig. 17), 

the highest level subnetwork in this ATN. "QTC" matches the symbol on the first 

transition of TFC·l~FO (Fig. 23), which ispushecHo (calted)bY th:effrst transition of 

the higher-level TRAFFIC subnetwork. However, "K" does not match the next 

transition in TFC-INFO; instead, :it matches the transition following TFC-INFO in 

TRAFFIC. This indicates that the next-state of the "QTC" transition should be a 

terminal state so it can pop (return) to TRAFFIC, So MAGE changes it. 

Since no transitions are added, it is not necessary for MAGE to consider 

adding new tests or actions. 

Examofe2 

QSL MSG NR 3? K 

[Adding new trans1t1on '?' to state 4 ef ACKIOW] 

[Also adding 1 new states to ACKNOW] 

[States: TERMINAL] 

CMODEL 2] 

Figure 11a: model 2. 
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'OSL I 'MSG' ·# 

C CORE ACK NOWl 

Figure 11b: core ~CKNOW 

'oSL I 1MS6 1 'NH' # 

CEXTENDED ACKNOW] 

Figure 11 c: extended AC KNOW 
.,, 

("Can you acknowledge receipt of message number three? OVer") 

The phrase "QSL MSG NR 3" is accepted by the ACKNOW subnetwork (Fig. 

28) and "K" matches the symbol on the transition following a (call) push to 
. '. 

ACKNOW in the higher-level REQ-INFO subnetWork (Fig. 26). Since it is known a 

priori that extensions should be made to ·lower-level rather than higher-level 
-'- ,_ -- i,.' : 

subnetworks whenever possible, MAGE adds a transition "?" to the terminal state of 

AC KNOW and creates a new termihalistate thatpdps (returns) to REQ-INFO. 

Now the action [SCRATCH input] (store input token in <scratch-pad> register, 

destroying the previous contents) is already associated with "QSL". Since "?" refers 

back to the q-sign, the action [O·PEND SCRATCH] (the token in <scratch-pad> was 

used as a question; put it in the <pending-question> register of the receiving 

------
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operator) is associated with the new transition.17 

ExamplQa 

NA 1 GR 200 OTA 1400 any BT QSL? K 

[Adding new trans1t1on 'QTR' to state 4 of HEADER] 

(Also adding 1 new states to HEADER] 

(States: I to TERMINAL] 

C MODEL 31 · 

Figure· 12~: Model 3 
"1:, 

C CORE HEAOERl 

Figuc~ 12b: CQr~ffEA QEft . 

17 Alt tests and actions are defined in Appendix Ill;· 
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[EXTENDED HEAOERJ 

Figure 12c: Extended HEADER 

("{Now sending message] flUt'.Jlber one, with 200 groups, at the time 1400 

hours. Break <code-grou~> break. Gan you acknowledge receipt? Over") 
- ~ ,. -....- • - c -- ~- "' ~ ., • 

"NR 1 GR 200" matches the first few transitions of the HEADER subnetwork 

(Fig. 24) and is followed by a transition matqhing "1400" (i.e. the symbol on this 

transition.is"#")~ "any BT QSL? K" is accepted _by the MESSAG subnetwork (Fig. 
,,·.-• I ., ~~-~;··~·:j::•. _, 

25), which follows HEADER in "the higher-level TRAFFIC subnetwork (FIQ. 22). Thus 

"QTR # " appears to be an alternate way of phrasing this last " # ", so MAGE 

creates· two new transitions "Offi•• .arld "# '\ .. ~ a new .state between them, in 

parallel with the original transition for " # ". 

Since "QTR!' is a Q-sign folio~ by an arg_ument, the action (SCRATCH input] 

is associated wjth "OTA" and the actions [Q-VAL input] and (Q-ACT SCRATCH] are 

associated with the argument. [~CH· inpOtJ =stores the input token in the 

<scratch-pad> register, destroying the previous contents; [Q-VAL input] adds the 

next input token to the <scratch-pad)·~ without-~oying the prtWious 

contents; [Q-ACT SCRATCH] removes· the q-sign and its argument(s) from 

-- --------



<scratch-pad>, determines which register to put them in, and puts them there. The 

possible registers ~nclude < expected-actlq~s>, <quality-of -contact>, 

<general-situation-description>. In addition, since "QTR #" is another way of 

phrasing the 11 # 11
, any tests or actions on the original transition must be copied to 

the new ones: therefore, [GM~ -TIME input] isalso associated with the new transition 

for 11 # 11
• The action [GMT-TIME input] puts the input token, Indicating time of 

transmission, in the <time-and-date> register. 

Example~ 

VW ROCK DE SALT QSA ? K 

'VW' IS AN UllHW WORD. DOES IT HAYE A 
SYNONYM ON THE FOLLOWING LIST? 

<list of known vocabulary words that are not q-signs or call-signs> 

N 

DOES 'VW' HAYE A QSIGN SYNONYM? 

N 

COULD 'YYY' 8£ COISIDERED A 'IOIS£' 
WORD? 
y 

[Adding new trans1t1on 'YYY' fr011 state 0 
to 0 of ID-OP] 

C MOOE L 4 l 

Fig.ure 13a: Model 4 
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cal/sign 'oE' call sign 

[CORE 10-0PJ 

Figure 13b:,pore ID-OP 

'vvv' 
cal/sign .. 'DE' 

[EXTENDED tD - OP] 

i ~ c •• 

Figure 13c: Extended ID·OP 

("(Hey] Rock, this is Salt. What is thestr,ng.th of my signals? Over") 

Since "VVV" is a new word, MAGE asks the user to supply some information 

about its meaning. Since MAGE itttokUhat ·~vvv!·.~ a ~~ ,-MfOrd,.anq it i6 followed 
' t 

by "ROCK DESALT" which is accepted by the ID-OP subnetWork (Fig. 19), MAGE 

adds a new transition "VW" as a loop on the start-state of ID-OP. 

There are no tests or actions associated with noise words. 

Example5 

NR 2 GR 150 1600 any BT any BT QSL? K 
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(Adding new transition 'any' to stab 2 .of MiSSAG] 

(The arc has n~xt-at.at1 1] 

(MODEL 5 l 

Figure 14a: Model 5 

ony 

CCORE MESSAGJ 

Figure 14b: Cote MESSAG 

ony 

ony 'OSL' 'f' I 

(EXTENDED MESSAGl 

Figure 14c: Ext~nded MESSAG 
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("[Now sending meSsage) number two, with t50 groups, at 1600 h(>urs. Break 

<code-groups> break <code-groups> break. Can y<>Uacknowtedge receipt? Ouer") 

"NR 2 GR 150 1600" is accepted by the HEADER subnetwork (Fig. 24), which 

is followed by the MESSAG subnetwork (Fig. 25) in the higher-level TRAFFIC 

subnetwork (Fig. 22). c "any ~T" is matqhert··by·1he first·1wo transitions of t11e 

MESSAG subnetwork, but the.second "any" does not match any transitions leaving 

state 2. Rather than branch to a new path that merges with the old at "QSL", MAGE 

notes that the second "any BT" atsp matches the !irst two transitions of MESS AG . 
. ·,[<~'-···"' :-·~·,_ <.-~~ -:~:i-f 

MAGE creates a new transition that returns to state 1, so this new phrase can be 

repeated indefinitely. 

The tests and actions that are associated with the orijiinal. "any" transition 
' 

from the start-state to state 1 are copied to the new "any" transitit>n: test [GROUP? 

inputfand action [ AOO·GRoUP · i~]. ,-[GRolJP?. ·input] retums ~TRUE If the· input Is 

probably a code-group· or English word; [ADD-GROUP input] increments ~e 

<number-of-words-received-so-far-in-message> register, and puts the input token In 

the <last~word-received-in-m1SSage>,reg;ater,.~l<;h.,-ysetul for error-recovery. 

Examole6 

QRX?K 

[Adding new trana1t1on 'QRX' to state O of EID-CICl1 

(Al so Hcttng- 1 >11• ·•ff\ff to YO""CllCTJ 

[States: 7 , to TERMIIAL] 
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[MODEL 6] 

Figure 15a: Model 6 

fs\ ___ .. fi) 
\::_) 

1

SK
1

, 

1

K
1 v 

[CORE END-CNCTl 

Figure 15b: Core END"CNCT 
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'SK', 'K' 

[E XTENOEO END-CNCTl 

Figure 15c: Ex~ END-CNCT 

("When will you call me again? Over") 
-,.,, 

Here is a situation where the first word of the example doesn't match mix 

transition leaving a start-state. However, the q-sign "QRX" is semantically 

associated with the END-CNCT Stibnetwotk'(AI~: 29). Since "K" appears on a 

transition to a terminal state in END-CNCT, and the END-CNCT subnetwork can 

follow itself in the highest-level OVERALL subnetwork (Fig. 17), the new phrase 

"QRX ?" is added toEND.:.CNCT as a new-path-. - ' 

Since "QRX" is a q-sign followed. by a likely argument, it is associated with the 

action [SCRATCH input], which saves the q-sign in the <scratch-pad> register until. 

its argument(s) are collected. The argument "?" is associated with the actjon 

[Q-PEND SCA~ TCH], which notes that the q-sign found in <scratch-pad> was used 

as a question . and stores it in the <pending-question> register of the receiving 

operator. 
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Example z. 
QTC?K 

[Adding new transition '7' to state 1 of TFC-INFO] 

[Also adding 1 new states to TFC-INFO] 

[States: TERMINAL] 

[MODEL 7] 

Figure 16a: Model 7 
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'or c' 'NR' # 

[EXTENDED TFC-INFOJ 

Figure 16b: Recently extended TFC·INFO from Figure 10c 

CEXTENDEO TFC- INFOJ 

Figure 16c: TFC-INFO extended further 

("Do you have any messages for me? Over") 

In this case, another extension is made to a previously extended .subnetwork 
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(see Figure 10 above). "OTC" matches the:, firat transjtion jn the TFC--INFO 

subnetwork (Fig. 23)1 but "?" does not ~ch the trafl$itiQf1 leaving this state, nor 

does it match any transition leaving the state in the TRA;FflC s~pnetwork (Fig. 22) 

that can be popped (returned) to from this termmaJ state •. Since "?" is likely to be a 

q-sign argument, a branch is create<fin TfiC-INFO that ends in a new terminal state. 
·, ,• . .. -- ~ : "• - '. - - ' ~ 

(Actually, this terminal state is merged with the other term~nal state that has no 

transitions leaving it in order to minimize complexity.) 

Since "?" refers to a q-sign, and [SCRATCH input] is already associated with 
' . ' ' ~ : ,_ - "' 

that q-sign (and will store the token in the <scratch~p~d> regi~ter)., the action 
. ' '. : : ; ·. ~ . ~ ~ 1 ' 

[Q-PEND SCRATCH] is selected for the new transition (to retrieve the q-sig(l from the 
~- ;_ .,' . -~"-;f· 

<scratch-pad> register and puqt in the <pending-question> reg~t~r of the receiving 
' - ' ' - :. . ~ 

operator). 



Ill. The Core Grammar of MAGE 

This appendix includes a list of the chatter words, that ·appear in the core 

grammar, illustrations of the subnetWorks composing· ttte·core·grammar, a·tist d 

registers, and descriptions of the tests and· adtfons. Aflhough the registers, tests, 

and actions are the same as used by CATNIP"f16};-1hevoeabttlary and grammar of 

MAGE are considerably smarter than the grarmnar used by CAlMP. 

Vocabulary· 
'. 

? -- question mark; punctuation arid a q.:sign at11ument· 

# -- generic matched by any number 

AN$ -~ "ansWer" 

any -- matches any code-group or English' wOtd kl mess8ge 

BT -- .. break"; a pro-sign 

callsign -- generic matched by any (known) call-sign; MAGE cannot recognize 

call-signs without being told 

DE -- "this is" or "from" 

delim -- generic matching any delimiter: break or punctuation 

GR -- "There will be - - - code-groups or English words in next message" 

GAPS -- "groups" 

K -- "end of transmission"; a pro-sign 

location -- generic matched by any (known) location 

MSG •. "message" 

new-speaker -- denotes speaker change 

18Section 2.2 
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NR ·· "number" 

PSE -- "please" 

QRX -- "I will call you again at - - - hours It or, .if foUowed "?", ''When will you 
• ~, < -

call me again?"; although MAGE knows the spelling and t_Qpical associations of sixty 
. . 

q-signs, the q-signs listed here are the only ones that MA-GE knows how to use in 

context (because they appaar-as transition symbols in ~ore grammar) 

QRZ -- "You are being called by - - - (on fr~ncy - - ..:)",or "Who is 

calling me?"; parentheses indicate an optional argument 

QSA .. "The strength of your signa1s is - - - ", or "What is the strength of my 

signals?" 

QSL ... "I am acknowledging. receipt (of - - -r·, «>J "Can you acknowledge 

receipt (of - - - )?" 

OTC-· "I have - - - messages for you", or "How many messages have you 

to send?" 

APT-· "repeat" 

SK -- "end of contact"; apro-sign 

ZOH -· "There will be - - - code-groups in the next message" 

Subnetworks 

Legend: 

• States are represented by circles aQd. transitions by arro~. 
~- .!, ·: , ~ - '"\'i. i 

•A circle containing an S represents the subnetwork's start:state .. Any 
circle with a darkened area represents a terminal state.· 

• Each transition has one or more transition symbols. If a transition has 
more than one symbol, they are separated by commas. 

•A word composed of ·upper-case letters surrounded by (single) 
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quotation marks indicates that this transition a~cepts the particular 
chatter word. 

• A word composed of upper -case letters, but not surrounded by 
quotation marks, denotes a push (calO to trie named subnetwOrk. 

•"(new-speaker)" denotes a speaker change~ or switeh of receiving and 
sending operators 

• Other words composed of lower-ca&&~ ~and-,'~.# ".;·denote, generic 
tokens that are replaced by specific chatter words at parse-time (e.g., 
"catlsign" may be replaced by "ROCK" 1 anrbperator's oall•algn). 

CONTACT 

CONTACT TRAFF'/C 

CCORE OVERALL] 

( new - speaker) 

TRAFF'IC 

.i.No-CNCT 
(new - speaker) 

- -
' 

REO-INFO 
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..... 

~ 
I 

-..J 

~ 
'K' 

IO-OP IO-oii. 

).... 

~ 

~ 
~ 
I 

..... 
~ 
~ 

C CORE CONTAC Tl 

Figure 18: CONTACT subnetwork 

col/sign cal/sign 

CCORE ID-OPl 

Figure 19: 10 .. QPSUbnetwork 
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1
QRZ

1 collsiqn 

[CORE NET - RELAY 1 

Figure 20: NET-RELAY subnetwork 

[CORE OUAL -CNCTJ 

Figure 21: QUAL-CNCT subnetwork 
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T/:C-INFO 
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TFC-INFO (new - speaker l 

'BT'. 'K' 

HEADER . MESSAG 

C CORE TRAFFIC] 

Figure 22: TR A FF1C subnetwork · 

C CORE TFC - INFO] 

Figure 23: TFC-INFO subnetwork 

C CORE HEADERl 

Figure 24: HEADER subnetwork 
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CCORE MESlAGl 

Figure25: MES8ACI ~ 

REQ - RPT 

'K' 

'K' 

£ CQR,L. REQ - INFO~ 

Figure 26: REQ·INFO 8Ubnetwork 



# 

C C0R£ REO -· R fl.T.J 

Figure 27: REQ-RPT subnetwork 

, 'QSL' 1
MSG

1 

C CORE AC K N 0 W l 

F1gUre 28: ACKNOW 8'tbnetwofk · 
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fs\~--"'_...,._--..i .. r;l 
\....::_) 'SK', 'K' V 

[CORE END - CNCTl 

Figure 29; END-CNCT subnetwork 

Registers 

<information-about-receiving-operator> ·· Call·S~!)(location of station, and 

other information regardif'(l-eurren&4'~ 

<information-about-sending-operator> 

<last-word-received> ·· Useful for error-~. 

<time-and-date> 
- ~· , t,_~ -- · ·.y ~ L:. i -- i 

<scratch-pad> ·· Temporary storage for saving arguments, etc .. 

<number-of -words-in-message> 

<id-number-of-message> ... Usu~ilumbered in order of sending. 

<number-of-word8-received-so-far-,in-message> .• uaetul for: comparing with 

contents of <number-of-words-in-message> register to determine whether entire 

message has been received. 

<last-word-received~e):'-<.tleefpl fQf .-rf¥'•recovery. 

<general-situation-description> •· Description of radio-networ1< status. 

<quality-of-contact> -· Description of station status. There is one of these 

registers for ~ active operator.. . 

<expected-action> ·· Actions that an operator is expected to perform, usually 
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in response to request; this provides .a context tor .unpredictable actions. There is 

one of these registers for each operator. 

·<pending-questions> ·- Questions an operator is ·expected to answer; this 

provides a context for unpredictable phrases that might be answers ·to questions. 

There is one of these registers 'or each active eperator. 

<requests-tor-repeats> ··.Requests·for something (usually a code-group) to be 

repeated. 

Tests 

[GROUP? input] -- Returns TRUE if the argument is not a q-sign or defimiter; 

used.onlywhen transition symbol ts "any". 

[NOT? <list>]-· Returns TRUE If the input word is not a member of <list>; used 

when transition symbol is "any". The argument 1input' does not appear explicitly in 

this test specification because test and actton specifications are constrained to 

include only one argument; however, the actual"flJOCtions that implement these tests 

and actions also have access to the set of context registers and the current input 

token. 

[ ... RECEIVER? input] ·· Returns TRUE if token is o.ot (due to' ... ') the same as 

the call-sign in the <inlormation-about-receiv/ng;.operator> register; used only when 

transition symbol is "callsign". 

Actions 

·[RECEIVER input] and [SENDER input] ·-Put input token in call-sign field of 
. . 

<Information-about-receiving-operator> . or <information-about-sending-operator> 

register, respectively; symbol is "cal.tsign". 

[NSPEAK T] -- Switch contents of <information-about-receiving-operator> and 
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<information-about-sending-operator> registers, if R~; symbol is 

"new-speaker", denoting speaker change. 

[SCRATCH iriputj •• Put Input token in ttae-<acratch-pad> register, destroying 

previous contents; symbol arbitrary. 

[Q-VAL input] -- Add input token tO list of tokens irt <sc.ratch~pad> regifster 

without destroyt~,previous contents: the filStetemsnt ol tist·•·the pivot word, others 

are its arguments; symbol arbitrary. 

[Q-ACT SCRATCH] -- Get pivot word (usually q-sign) and arguments from 

<scratch-pad> register and put in · one ,of ·:-the .. <quality-of-contact>, 

<expected-actions>, or <general-situation-dllsctip_tion> regis~ depending on 

meaning of pivot word and its argument{a); aymbo1 arbitfary but always preceded 

directly or indirectly by a pivot word. · 

{Q-ACT input] -- The. par.titular f)ivotword is rn.>t likety to have arguments, so 

proceed to put it in one of the above registers; symbol usually a q..,sign. 

[Q-PEND ·SCRATCH] -- Get pivot word from the(acr-atch-pad> register and .put 

in the <pending-question> or <expected-action> register, depending on the meaning 

of pivot word; symbol is "?". 

(MSG~NUM inj>ut) -- Put token in <id-nv.mber-ot:-message> register; this is the 

identification number of the next message; symbol is " II ". 

[TFC-GR-NUM input] -- Put token in,~number-of-words-in-message> register; 

this is the number of code-groups or Englisll WOid$. to. be sent in the next message; 

symbol " # ". 

[GMT-TIME input] -- Put token in time fieki.of <~me.."'.and-date> register; thi~ is 

time of transmission of most recent message; symbol " # ". 
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[ADD-GROUP input] Put token in the <last-word-received-in-message> 

register, useful for error-recov,ry, and increment the 

<number-of-words-received-so-far-in-message> regis_ter; symbol "any". 

[LAST -GROUP n Compare contents of the 

<number-of-words-received-so-far-in-message> with contents of 

<number-of-words-in-message> register; if former~ latter, tell COMDEC to turn off its 

code-group recognition mechanism; symbol is "BT" or some other' break. 
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The learning program uses a . set of heuristics to determine the difference 

between the existing version ~f .the grammar and a superset that could process the 

example sentence. A ~t of models act as templates to produce possible extensions 

to the grammar. An evaluation .measure selects one of the extensions and adds It to 

the grammar. This extension is henceforth an integral component of the knowledge 

base and may be used by the parser ~o process conversations and by the learning 

program to exterid the grammar further. 

This report relates the mechanisms used by the teaming program to 

grammatical inference of context-~tive languages, which include,,.the natural 

languages, and some proposed linguistic models. of human language acquisition. 

These models describe language acquisition as a process of developing hypolheses 

according to the constraints of innate universal rules, and acceptance of those 

hypotheses that make it possible for the child to understand new sentences. 

Similarly, the learning program develops its hypotheses within the constraints of 

certain 'universal' models and accepts only those hypotheses that enable the parser 

•,r1cl11 .. m• 114 I Jh 
-------- -- -----~------------------


