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Abstract

This .report describes a ‘learning program’ that acquires much of the -
knowledge required by a parsing system that processes conversations in a ‘natural’
language akin to ham-radio jargon. The learning program derives information from
example sentences taken from transcripts of actual conversations, and uses this
knowledge to extend the ‘core’ augmented transition network (ATN) grammar. The
parser can use the extended grammar to process the example séntences, plus a
large number of syntactically and semantically related sentences.

The learning pfogram uses a ‘sei of heuristics to. determine the difference
betv\)een the existing version qf.the grammar and a superset that could process the
éxample sentence. A set of models act as templates to produce poss'rble_axtensions
to the grammar. An evaluation measura selects one of the extensions and adds it to
the grammar. This extension is hencéfori;h' an integral component of the knowledge
base and may be used by the parser to process-conversations and by the learning -
program to extend ‘the grammar further.

This report relates the. mechanisms used by the ilearning program to
grammatical inference of context-sensitive languages, which include the natural
languages, and some proposed linguistic mbdels-of human language acquisition.
These models describe language acquisition as a process of developing hypotheses
according to the constraints of innate universél rules, and Aacceptance of those
hypotheses that 'make it possible for the chnld to understan& new sentences.
Similarly, the learning program develops its hypotheses. within the constraints of
certain ‘universal’ models and accepts only those hypotheses that enable the parser

to process the motivating example.
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1. Introduction

1.1 Motivation

As computer technology advances, computers are being applied tq/more
complex tasks that require increasingly greater ;demain-specific' knowledge. One of
the pressing goals of computer science and engineering is to dete@ﬁ% ﬁow to
incorporate this knowledge into computer systems in anaﬁiciam way |

There are two major approaches in current use that - attempt to solve this
problem. One approach in current use is the development of vaneus “ools’
specifically tailored for installing "the domain-mcifg:‘ knovﬂedge, inéludingi
very-high-level languages and epecial-purpose editors. Ano‘ther approach, which
has met with considerably less success, is to let the ggmm demost of the wcrk of
acqumng the information. Thns report describes a ce!mumr progmnmthat acquires
much of the knowledge necessary to perform its mk | ‘

The task in this case is parsing human conversatnone ih a vefy limited domain.
The conversations take place between operators on Morsa code radi'o netwerks ina
‘ simple ‘natural’ language akin to ham-radio jargon, whene the pewubie topics of
conversation are limited by radio network protocol w sueh thmgs as mmg
contact, discussing and sending messages, re-sending garbled parts of the
messages, and ending contact. In tandem with a transcription system, the parser
processes the hand-sent Morse code to produce a human-reedable transcript and
information summary. The domain-specific knowledge required by the parser
consists of the discourse structure and the syntax and semantics of the language,
and this knowledge is organized as an augmented transition network (ATN).




However, the programmer who developed the original parser was not able to
incorporate enough domain-specific knowledge into the system to parse all, or even
most, of the actual conversations that occur in this domain, simply ‘because thié
information is not available in its totality. Howewver, one-canexpect that as the parsef
performs its task, transcripts 6f:converSations Ahat it can not-process adequately with
its current-knowledge base will become available. it was desirable to develop a
mechanism by which the system éould extend its knowledge base, given the new
transcripts, in a way that enables it to correctly process each of the new
transmissions (or sentences) in these example conversations, plus alarge nurﬁbet of
similar transmissions.

A computer program with these abilities would incémorate a high degree of
learning ability. Winston [23] describes the levels of learning ability as a shift of
effort from the teaéher to the student. His four levels include learning by being
programmed, lea‘rning by being told, learning by example, and learning by discovel_'y.
The original domain-specific knowledge. incorporated by the prograrﬁmer into the
system described in this report is an example of ‘learning by.being programmed’. A
system that was explicitly. guided by some teacher in its acquisition of knowledge,
with the instructions of the teacher phrased in the Janguage of the domain rather
than some programming language, would be ‘learning by being told’. The program'
described here at times must ‘learn by being told', for the program must sometirﬁes
ask questions of the human supplying examples and the human responds in the -
language of the. domain. However, for:the most: part this program ‘learns by
example”: the program derives the ability to parse new sentences and phrases from

the examples of sentences and phrases presented to it.
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One approach to developing a computer program that could acquire such
knowledge, or ‘learn’, from exampies.is to borrow from: theories about the leaming
processes of humans, the most successtul ‘Yearning machines’ to date. However, the .
 human learning processes are incompletsly uniderstood. Current thearies suggest

them. The correct application of these rules-by the leamer demonstrates that
something has, indeed, been leamed. |
One well-known example of human ieaming that seems,.on the surlace, very
similar to the problem at hand is the acquisition of language by. children. Humans
acquire their first language almost entirely by hearing it spoken. The.generalization
of data follows very quickly as children leam to peaduce grammatical sentences with
no formal insstruction in the grammar of their native language; they infer the rules of

that they consist in part of forming generalizati

their grammar from the sentences they hear spoken [13}.

Some linguistic models proposed .by Chomsky [4, 5] make the controversial
proposition that a child may know about certain aspects of language: some
knowledge is innate and the child need not leam these aspects in the usual sense.’
These innate aspects of language are called the universal.grammar and, according
to these models, form the basis for forming generalizations and deriving rules from
the utterances that the chiid hears spoken.

The system described here borrows some aspecis of these linguistic models
' that seem particularly appropriate for-extension of the grammar used by the parsing
program, andmcorpormsﬂm ina saparae leaming program that-includes all the
domain information of the original parser and can. operats on he same grammar.
This does not mean that the resulting Wmmodels human ianguage




acquisition in any psychologically realistic sense. However, the research described
| here demonstrates that theories that attempt to exptain-human learning processea' .
are also useful for developing computer programs that acquire knowledge.

Previous work in this area has concentrated.on the development of algortthms
for the inference of formal grammars from very largessets of examples. The problem
of inferring an exact gr‘amfmar for an arbitrary (but constrained).language has been
solved for the regutlar languages [3, 12, 14], and some very'restrlcted subsets of the
context-free languages [6, 7, 8, 17, 22]. However, there has been very little progress
toward the development of a general and practical :mechanism - for deriving
grammars for the more powe'rtul oontext-sensitive languages, which include all

natural languages. This research represents a step-toward this goal.

1.2 Organization

The result of this research is a learnmg program called MAGE (Morse
Automatic Grammar Extension system) MAGE uses a ‘domarn model' that mcludes
mformatlon about the simple language and the envrronment in thCh it is used a
small ‘core’ grammar orgamzed as an ATN and some knowledge about what type of
| result it is expected to produce MAGE is desrgned to recerve mdwrdual examples of-
sentences from the language and extend the grammar so that it can parse each
example, plus a large number of srmrlar sentences An arbltrary number of examples
may be provrded to produce an arbltranly Iarge grammar

MAGE uses a set of heunstrcs to determrne the drfference between the
grammar and a superset of the grammar that would be able to process the example
sentence lt uses a set of models as templates to enumerate or I|st a set of possrble

extensions to the grammar that might brrdge thls drfference A unlque evaluatlon
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measure’ guides the enumeration process, 10 keap the list of possible extensions
workably short, and selects one of these extensions, which is then.added to the
grammar. The evaluation measure is based on the- abdtty of the grammar to extract
important information from. conversatm an extension is enumerated. only if it
provides a mechanism for parsing the new phrase, without considering the context,

and an extension is selected only if it makes it possible .for the entire example

containing the new phrase to be parsed by the standard ATN parsing algorithm that
is used as a tester. o

The process outlined above is analogous, in some aspects, to 'ﬁnguistic
models developed by Chomsky [4, 5] and Dale {9} of the learning mechanisms used
by children when acquiring a native Ianguege".— -According tethese models; the child
has innate knowledge of a universal grammar that provides a mold in which the chitd
develops the grammar for her own Ianguage and the child uses a set of umversal
rules that prescnbe the ways she can orgamze the utterances she hears and
evaluate the hypotheses she forms accordmg to whether or not they help her to
understand the utterance These components of the language acquisition models
are similar to the domain model, hypothesrs formatron models, and evaluation
measure of MAGE respectively. | .

Although MAGE borrows trom linguistic modets this author does not
necessarily endorse any of these models nor support these or any other Imgutstic
theories. The augmented transmon network mechanism drscussed in this report is
not related to these Imgutstrc models nor do& this author claim that the ATN is a
realistic mode! of human language comprehensron What this report does say about

' these theories of tanguage acqunsmon is that some aspects of the models can be
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implemented as a computer program operating an a data structure representing an
ATN grammar.
The rest of this report is organized as follows:

« Chapter 2 presents MAGE's domain model and the particular aspects
that make possible the evaluation measure. '

e Chapter 3 states the general grammatical inference problem, and
presents the hypothesis-formation algorithm and evaluation measure
used by MAGE in its partial solution to the related problem of
grammatical extension.

o Chapter 4 discusses further the domain model, hypothesis-formation
models, and evaluation measure in the context of language acquisition

by children. |

« Chapter 5 describes the design and implementation of MAGE.

¢ Chapter 6 contains a summary and conclusions.
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2. An ATN with Semantic Categories

2.1 Machine Recognition of Hand-sent Morse Code

The research was motivated by the real-world problem of automating the
recognition and understanding of hand-sent“ Morse code in an amateur-radio
network environment. Morse code consmof ﬂve e!ements. dots, dash&é mark
spaces, letter spaces, and word spaces. The Enghsh alphabet d;gﬁs, and
punctuation are encoded as groups of one to six marks (dots or dashes) separated
by mark spaces. ‘These groups are separatgd frcm aacb other by letter spaces
(ideally, three times as long as a mark space) and combined into words, which are
separated from each other by word spaces (ideally-seven times as ibng as a mark
space). For example, "SOS" is transmitted as: "det-ms dot ms dat Is dash ms dash
ms dash Is dot ms dot ms dot ws", where "S" is encoded as "...", "O" as "---", "ms"
means mark space, "is" letter space, and "ws" word space. Morse code is
transmitted over radio by short signals (dots) and long signals (dashes), with the
pauses in between signals serving as spaoes.'

It is desirable to automate the reception of these signals and the transcription
of the marks and spaces back into character text, to produce a readable output.
However, there are many aspects of manual Mome code that make transcription
difficult, not only for a machine but also for a human operator. Many errors are
introduced by radio attributes like transmitter chirp and atmosplwnc interference,
and by sender irregularities including spacing errors (e.g. a letter sbace that is
shorter than a nearby mark space), mark errors (e.g. sending a dash instead of two

' dofs) and spelling errors. The result is analogous to speech that is slurred or broken
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by arbitrary pauses and includes a few mispronounced words. |

‘Research in machine transcription of manual Morse code began in the 1950’s
and included the development of MAUDE (Morse AUtomatic DECW) [11] at M.I.T.’S
Lincoln Laboratory. MAUDE and other early transcribers were based on a small sét
of statistical and linguistic rﬁles;. no attempt was made to take advantagé of the
constraints provided by radio network protocol or the informational content of the
transmissions. |

Recently, a system called COMCO-1 (COmputérizedMorse Code Operator)

[21] has been developed at M.L.T.'s Laboratery for Computer Science. It involves a
new perspective on the manual Morse code problem: it utilizes extensive knowledge
of the peculiarities of hand-sent Morse code and amateur-radio network protocol,
-and attempts to ‘understand’ the Morse code conversatian. |

COMCO-1 consists of three components: a signal-processing system, a
Morse-code-to-character-text transcriber, and a text understander, or parser. The
signal-processing system produces a file of mack-rand;spaeedurations:based on its
analysis of radio signals.

The transcriber, a software system called COMDEC (COmputerized Morse
DECoder), converts marks and spaces to character text using a set.of modules, each
of which is an ‘expert’ on one aspect of transcription. Each module corrects certain
types of errors and makes additions to a set of suggested transcriptions, where eéch
transcription consists of a list of vocabulary eloments. COMDEC is aided by

dictionaries of ham-radio jargon and the English language.
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2.2 An ATN Parser for Morse Code Conversations

The parser, called CATNIP (Comco-1 Augmented Transition Network

Interfaced Parser) [16], uses an augmented transition network (ATN) grammar to
 evaluate the transcriptions suggested by COMDEC with respect to their syx/\tactic
and semantic coherence and selects one that matches a path through the ATN. The
grammar includes a transition network that represents the syntactic/semantic
structure of a Morse code conversation, and a set of registers, and functions that
operate on them, designed to store information extracted from a conversation. Both
' COMDEC and CATNIP are written mostly in MDL 15}, a-high-level programming
fanguage of the LISP family.

The conversations largely consist of a shorthand language called chatter.
Network protocol and the limited vocabutary of chatier constrain the possible topics
of conversation to the statement and query of operator tdenttﬁcauon, signal
characteristics, rendezvous information, message. traffic information, and so forth.
The conversations are task oriented, and a parser can ‘comprehend’ the dialogue
because both the topic of conversation and the movement from topic to tbpic is
severely limited.! No formal definition or language generator exists for this
natural-language-like jargon, so the grammar was derived from: several hours of
transcripts.

- This grammar follows the ATN formalism described by Woods[24]. An
augmented transition network consists of two components: ‘a transition network

(TN), and a set of registers with associated functions. A transition network is a set of

1An example of a short but typical conversation that can be parsed by CATNIP is given in Appendix
. . ' :
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‘named’ fin ite state machines,- or subnetworks, where a transition symbol may be the

name of another (or the same) subnetwork. - When the name of some subnetwork .

appears as one of the symbols of ‘a transition, it indicates a ‘push’ to that
subnetwork, in the sense of calling a subrouting. A terminal state indicates a ‘pop’ ﬂt/o
the ‘calling’ transition, which may then be tettowsdsto»the state it-designates. When
other words appear as transition symboils, thepmser operates the subnetwork as a
finite state machine, attempting to ‘accept’ the inpmsequenos.

An ATN also includes a set of registers designed to hold contextual
information, a set of tests that determine the validity of a word in a given.context, and
a set of actions to change th'e contents of the registers as the context shifts. A
possibly empty set of tests and actions is associated wrth each transition. When a
transition symbol has been matched by one of the mechamsms descnbed above, the
transition may be followed only if each of the tests can be passed

After the parser has been determrned that a transmon may be followed, each
of the associated actions is apphed before the pamer contmues processing from the
next state Actions are often used to burld and connect parts of parse trees, whrch
. are saved in the reglsters until completed at the end of the parse, but this. abrhty is
not used by CATNIP Augmented wnth regtsters, tests, and actrons, a transntion
network has the power of a Turing machrne. A more detailed drscussron of

augmented transition networks is given by Ritchie [19].

CATNIP‘s grammar conforms very closely to Woods definition of an ATN, with

two exceptions. The flrst is that CATNIP’s regrsters and the tests and actnons that
act on them, were designed to mampulate the parttcular mformatronal |tems that are

expected to appear in chatter conversatrons, rather than to burld parse trees for
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legal sentences. These items include call-signs (names) and locations of operators;
time and date; ratings of strength, clarity, etc.of signals; traffic information like
message number, length of message, and the message body; andvconvefsaﬁctn
history like pending questions and requests. - ’

This exception rttustratesone of the most powerful features of the augmented
transition network model: the possibility exists of adding to the model whatever
facility is needed and seemsnaturat to de the job. : An addition requires only a
relaxation of the restrictions on the types of tests:and actions but no reformulation of
the basic model. |

2.3 The Syntax of Chatter

The second exceptlon to the standard ATN is the unusual orgamzatlon of
CATNIP’s grammar into toptcal categones Each ot the nmeteen subnetworks is
designed to process a parttcu!ar set of semantlcally related substrmgs ATN
knowledge bases for language processmg are usually orgamzed into subnetworks
that process syntactic structures, such as ‘noun phrase and ‘verb phrase’ in
Englrsh A subnetwork begins processing a substnng when it is referenced by a

‘push specification’ (i.e. the name of the subnetwork) ona transmon of a hlgher -level

subnetwork. The push specmcatlon performs the dual role of expressmg a top-down.

prednctlon that some particular klnd of item is needed at that pomt in the mput
stream and mdrcatmg which subnetwork is to be used to process the item. The
suitability of a particular type of category (for example, noun phrase’ is a syntactic
category) depends both on the ways that grammatncal predtctlons can be phrmd
and on the classes of items that can be processed in a snmilar fashlon (n e. by the

same subnetwork).
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It has been suggested by Ritchie [19] that this ‘subroutine’ mechanism
presupposes a syntactic organization of the grammar into subnetworks and that a
semantic organization could not be viable, "since semantic categories are not the
| appropriate organizational units for an augmented transition network grammar."
However, | have found that the a’ddjtionf of meaning-based categories is not only
justified, but also superior to using only syntactic categories for embedded structure
processing in the Morse code radio network domain. '

The chatter language-is sufficiently limited, little syntax exists, and what does
| exist is either weak or can be described in more revealing terms as a resuit of
semantic-considerations. The language consists of only four generic types of words:
q-signs, pro-signs, call-signs, and abhreviations.[2]. Q-signs are internationally
agreed-on-abbreviations which were devised for radiotelegraph use. Each g-sign
represents a complete thought; e.g.  "QSK" means "| can hear you 'between my
signals; break in on my transmission" and "QTQ ?" means "Can you communicate
with my station by means of the International Code of Signals?" The first letter in
every g-sign is ‘Q". Pro-signs, or procedure signals, also have precise definitions but
do not express complete thoughts and are closely related. to network protocol; for
example, "AS" means "wait" or "stand by, and."AR" means "end of tran_sm,ission".
Call-signs are station identifiers and serve as names of radio operators. . The final
category consists largely. of simple abbreviations of commonly used English words
and phrases; for example: "GA" means "go ahead", "NR" means "number", "OK"
means "okay" and "PSE" means "pleas;é"; The frequency of these English
abbreviations is so low that an. Eng{ish,.— like syntax:model c@uldinot,b,e.developgd_tbr

chatter.
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There‘ are two types of syntactic rules. The first is_characterized by the

following example: if either of the constructs  "cafisign DE - callsign” (".Station" .

<call-sign1>, this is station <cali-sign2>") ‘6r *DE callsign® ("This is station
<call-sign>")? otcurs in a transmission, it occurs near the beginning of that

transmission. A ‘transmission’ is equivaléntto-a ‘sentence’ in spoken conversation,

and it does not necessarily include everything transmitted by a single operator

between signals from other operators.

The second type of syntactic rule is the order of the ‘arguments’ that follow
almost all g-signs and many other ;wonjs, e.g-""QSL MSG NR 3 ?" ("Can you
acknowlédge receipt of messwe nurﬁber three?") and "QRZ ROCK 3500" ("You are
being called by Rock on fre;mency '3.500 kHz"). The definition of each g-sign
includes a set of inforrational ‘stots’ that sheuld be filled by the qssign'siargumedts

(for example, "QRZ" alofe means "You are being called by - - - on frequency

- — — kHz"). However, "QRZ 3500 ROCK" is just as meaningful as "QRZ ROCK

3500", and the phrase May-be:'trahsmitted:'beﬁ% ways, so order isn't really very

important here. It is clear frony these examples Hat these syntactic rules can easily
. be reformulated in terms of the underlying semantics. The only syntax rule that
seems very strong is the fact that arguments always follow the word of which they
are arguments. | |

~ The first two constructs discuésed above are different ways of identifying a
new operator as she begins transmission. Either can occur-in any: position where
self-identification of an operator is desired: logically thlsis at;th‘e beginning of a

2CATNIP's grammar uses the convention that any word in lower-case-letters is a generic token,
which is replaced by an appropriate chatter word at parse-time.
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transmission by that operator. The syntactic rule is replaced by a more intuitive
semantic rule that groups the two phrases in:the topical category "ldentification of
Operators™, denoted ID-OP in the grammar | ' |

The number, type, and ordenng of the argument words not only depend on the
lexical features of the particular word of whuch they are arguments but also are a
function of the context. For example, in the ,phrase' "NR 1 GR 200 QTR 1500"
("[message] number 1, with 200 groups, at 1500 hours"),' "GR" is followed by the
number of English words or code-groups in the next message However, in a
transmission luke "PSE RPT GR 10, 20, 30 OK ? K" ("Please repeat code- groups
10, 20, and 30. Okay? Over"), the arguments of "GR" are one or more numbers
separated by delimiters, referring to the previously sent code-groups in positions
<number1>, <number2>, ..., <numberN>. Thus the}s’yntak of a word’s arguments
depends on the currenttopic of discussion. |

The potentual of syntactic rules is further weakened by the spoken- Ianguage
aspects of chatter conversations, for example, the exnstence of noise words These
include chatter words from both the pro-sign and abbreyratlon categones -- such as
"R" ("roger"), a pro-sign, and "NW" ("now"), an abbreviation -- that an operator
often sends as ‘filler’ while she is deciding what to say next. So another syntactic
rule might be that a noise word can appear anywhere in a transmission, except as
the last word in that transmission. However, most potential”nOise words can also
appear as meaningful words in various contexts, for example "R" might be the
response to "QRO ™ ("Sha'lrltl increase transmitter power?").

Noise words can appear at any time, because they are meamngless, this is a

semantic rather than syntactic consrderatlon, S0 th|s rule may be reformulated as a




semantic rule that allows meaningless words to appear in any context and requires
them to be disregarded by the information-accumulating mechanisms. of the parser.

. 2.4 The Semantic Structure of Chatter Conue rsations

Although the syntax of chatter is v)eak, there‘:is' a'strong semantic structure
imposed on Morse code co'nversations by r’adlo neMork »protoc,ol. 'First, | the
operators invoived must‘ establlsh contact with each other, and this is represented by
the CONTACT subnetwork in the ATN. Next, one operator prepares to send some
-message, and then sends it, either as code-groups or | English text; this is
represented by the TRAF_F IC su bnetwork. |

Iimmediately following the sending of traffic, the receiver may ask to h’al:e
several words repeated and eventually acknowledges receipt of the message. This
process is modeled by the REQ-INFO subnetwork. The TRAFFIC and REQ-INFO
subnetworks are repeated until all operators l\ave sent all t'heir prepared messages
Then the operators begin signing off whlch usually mvolves negotlatlons regardmg
re-establishment of contact at some future tume thls is represented by the_
END-CNCT subnetwork. At this point, the conversatlon may terminate, or one of the
operators may continue by trying to establish contact with a new operator.

With one major exception, these four topics are the only possibllitiee for
discussion and they always occur in this rlgld order. The exception is the ‘Interrupt
Subnetwork’, denoted INTRUPT in CATNIP’s grammar, which can be pushed to
(called) from any state and represents an mterruptlon in the smooth flow of
transmission. The possnble types of mterruptlons mclude a third operator suddenly
breaking in on a conversation; sudden static on the air waves, whlch must be dealt

with by changes in transmitter charactenstlcs or lrequency, and so on. These
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interruptions are very difficult to parse since the context is made invalid by the break,
and this presents an intéresting problem for the parser designer.. However, to make .
the problem addressed in this report more tractabile, | have ignored the ‘interruption
problem’. /

The four main areas of discourse are broken'down into additional subnetworks
based on topical categories. For example, CONTACT has transitions indicating
pushing to (calling) the lower-level subnetworks ID-OP (ideniificatio'n of operators),
NET-RELAY (relay of operator identification through the network controller), and
QUAL-CNCT (discussion of signél characteristics). It is only within these
lowest-level subnetworks that 's_yntaétic structure shows up, for example, in the
ordering of g-sign arguments,.but', as discussed above, this structure results from
semantic as well as syntéctic co_nsiderati‘ons. | |

The semantic category of a push (call) specification fulfills its role as a
top-down prediction that a particular topic will be discussed at that point in the
conversation, and of course it indicaiés which subnetwork is to be used to process
phrases discussing that topic. Semantic categori‘e‘s are more suitable for this
. application than syntactic categories due to the limited syntax of chatter and the
strong protocol constraints on the discoﬁrse structure of a conversation.

The semantic organization of this ATN grammar not>on|y is very unusual but
also plays a unique role in the paﬁial and limited solution to the grammatical

inference probiem discussed in the next chapter.




3. Grammatical Inference of ATNs

3.1 The Grammatical-inference Problem

Scientists have been using formal linguistics for modeling natural and
programming languages for over twenty years t1 4]. Grammars have been employed
to describe the syntax of languages like ch;atter‘_an‘d »capv,t)ev usgd ‘to characterize a
syntacﬂc source that generates all the sentences ina Iang_uage. It would be useful if
the grammar could be directly inferred from a set of sample sentences in the
language in question. The process of deriving a grammar from a set of examples is
called grammatical inference. |

The general grammatical-inference problem is ,simp!y,stated. Assume the
existence of a source that generates strings of the form x = a,a,...a,, where x is a
sentence in a language L. and each g, is a‘word in the Iex@con of L.L is»assumed to
possess some unique structural features that can be modeled by a grammar G. The
grammatical-interénce machine is given a finite set‘S+ of sentences that are in AL,
and possibly another finite set S of sentences that are not in L.Using this
information, the maching must infer the syntactic rules of the unknown grammar G.

The first difficulty encountered is the\,necessity oflgt),tgining extra infomation
in order to find an appropriate set §. Although the set st can be ;)btained from the"
sowrce, the set & éan be defined only if an external teachgr, who knows something
about the properties. of G, is ~available.  Unfortunately, without S, the
grammatical-inference problem is unsolvable except for a small nurhber of highly
constrained grammars [8]. The chatter language has this problem, because, with no

formal definition, there is also no algorithmic means for determining that a given




string of chatter words is not likely to be transmitted over:Morse code networks, or
even for deciding whether a given word (that is not a q-sign}):is in the chatter
vocabulary.

Even though it is irhpossc“nte for a grammatical-inference machine to ﬁnd
exactly one grammar for most languages without this negative information, it is often
possible to enumerate a large set of possible grammars and then narrow down the
solution in some way to a single grammar. A grammar is ‘possible’ in this sense if it
accepts the sample. The problem of narrowing down the state-space to one
| grammar has been solved for regular languages, the very simple languages that can
be generated by regular expressions and accepted by finite state machines (FSMa).

The limited case of z;egular languages is solvable because two finite state
machine grammars that generate the same language are equivalent. Since all of the
accurately enumerated grammars are equivalent, only one needbe-conétructed, and
it'is the correct solution. Feldman et al. discuss the concepts involved {12], and two
algorithms are presented by Biermann and Feldman [3].

However, these algorithms cannot be utilized to extend the grammar for
chatter, since the nesting features of natural language are not adequately
represented by finite state machine grammars: Chatter can be considered a natural
language, because its representation requires nested structures, which are
represented by the subnetworks of the ATN knowledge base,’ and because it is an
evolving, ‘spoken’ language.?

' SSection 2.4

4The similarities between chatter and natural’ languages fike English are discussed further in
Section 4.3. : ,
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The c_ontext-free languages are more powerful than regular languages,
 because they can model the self-embedding and nesting properties of natural and
programming languages. They can be represented by grammars whose production .
rules are of the form A --> é, where A is a single nonterminal aymbol and a is a string

of terminal symbols and nonterminal symbols [1];7'A»teminalvsymbol is an element

from the language being modeled. Since the left-hand side of the rule contains a
single symbol, no context is necessary to dm:ni_ﬂeme‘de-rivatmn'of a sentence,

Context-free languages afe accepted by transition networks (TNs). -

It is considerably more difficult io derive grammars for context-free languages
than for regular languages, because an infinite number of poseible grammars can be
enumerated for any set of daté. No algorithm exigts Mcan decide whether two
arbitrary context-free grémmars accept the same language. Some mechamsmls
needed that limits the number of grammars produced to:a-tractable level and then
selects one of them that is ‘best’. Such a mechaniam_ is termed an ‘evaluation
measure’. -

One approach to solving this problem is-to look for a reasonably good.fit, with
. some suitable definition of ‘reasonable’, rather: than:trying to find-a grammar that
generates exactly the input sample. Caekstams [7] that aninfinite language, i.e. any
fanguage that includes an intinite number of aantenees; .assures a discrepancy
between a grammar inferved from a ﬁﬁitesﬂnple and the grammar for the language.
He used a cost function measuring the tradeoff between decrease in eomplex;ty and
increase in discrepancy to bound his machine’s searchspace The mactgr\e
described by Wharton [22] uses -a similar: evaluation ‘measure, but it receives its

examples via a multi-step method rather than all at once; this methodology tends to
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increase the efficiency of enumeration. but cannot guarantee minimum complexity in
the ultimate result.

Another approach is to require a human ‘teacher’ to guide the grammaticél
inference machine as it enumerates possible grammars and select the "best‘"
grammar according to sOmc subjective measure. In the scenario developed by
Knobe and Knobe[17], the teacher is a knowledgeable person who provides
individual examples in optimal order with optimal variety, and who can recognize
grammatical and ungfammaﬁcal strings without knowing;the formal grammar for the
language. The machine enumerates first general and then more specific
productions, and each production is tested by the teacher as it is enumerated. The
machine retains the most general rule that does not produce any strings ruled illegal
by the teacher. This scenario places a heavy burden on.the teacher to present an
adequate ‘course’.

A third approach, described by Crespi-Reghizzi[8], attaches structural
descriptions to the examples. This limits the number of hypotheses that are
compatible with the data and thus reduces the enumeration problem. The extra
information, although similar to -the type of information required by the
complexity/discrepancy measure and the teacher’s judgements above, must be
justified, since it departs from the stahliérd"' model of gfammar acquisition.
Crespi-Reghizzi expléins that this structural information is similar to the stress énd
intonational information available to a child accuirir{g' a natural language, and that
the widespread belief that there must bé/a partial& semantic‘b-a\si's for the acquisition
cf syntax implies the availability of'soﬁpe s»trucicra'l i’nfcﬁiiﬂa’ﬂcn to the learner of a.

language. Of course, the a‘vailab'ility of structure vasti§ | reduces the number of




alternative possible grammars and assures that the acquired grammar generates
sentences with structures consistent with their meaning.

The grammatical-inference machines described above are all successful for
~ subsets of the context-free languages. However; there isasyet no algornhmthat can
infer the complete set of rewriting rules from a positive sample of an arbitrary
context-free languag’e[ﬁ]l. it is not surprising that no general mechanism has been
developed for grammatical inference of supersets of the context-free languages,

particularly the context-sensitive languages, whichincluds:all natural languages.
| Now, the context-sensitive are even more powerful: than: the context-free
languages. They can be represented by grammars with_production rules of,thef_orm
a --> b, where both a and b consist of any number of terminal and. nonterminal
symbols; the length of a must be less than or equal o the length:of b{t]. Since the
left-hand side of a rule may include more than one symbol, context is neeessary to
determine the derivation of a sentence. The contdxt-sensitive languages are
accepted by augmented transition networks (ATNs). :All natural fanguages are
members of .'the'_ set of context-sensitive languages: contextual information is
necessary to parse eonstructs such asreflexives and relative clauses in Engligh.

3.2 Grammatical Inference and MAGE

This report describes a grammaticat extensron machrne for an augmented
transition network grammar for a very hmrted natural’ tanguage Slnce augmented
} transmon networks represent and are equwatent to the context sensmve grammar,
| the development of MAGE is a small step toward a general solutron to the very
| difficult problem of mference for context sensrtivegrammars / |

There are three ways in whrch this machme s model -of the




grammatical-inference problem diverges from the standard model discussed in the
first section of this chapter. The first is that MAGE's grammar is not inferred from .
scratch- but builds on a core grammar, which includes a small transition network; a
set of pre-coded functions for the tests and actions, and a dictionary of g-signs (but
not other chatter words). | |

The second difference is that the grammar-is extended incrementally; that is,
each example is successfully learned before the next »exampteis' provided. This
makes the inference problem more -difficult than usual, because MAGE cannot
exploit structural similarities vbetween examples: when determining the embedded
structure of the grammar. The Mestental feature;is necessary in the Morse code
domain, because a structuralty complete sample is required in order to derive a
complete grammar for any language [6] a pos:trve sample of a Ianguage is
structurally complete if each rewntmg rule of the grammar is used at least once in
the generation of the sample It is rmpossuble to generate a structurally complete
sample of chatter, because no formal grammar exlsts, and the language is
contmuously evolvmg In other words since the grammar can never be complete
. the extensron mechanrsm must al\r;ays be ready to add one more example to the
grammar. B |

The third difference is a result of the second the extensuon procedure is not
expected to result in an exact grammar for the Ianguage that is equwalent to some
known formal defrmtlon The best that the system can do, gwen the constraints of the
domain, is to generate an extended grammar that understands att sentences it
received as examptes,'ptusa Iarge-numberofsrmttar sentencee. o

Keeping in mind these deviations from the standard grammatical-inference




model, the computer program the author has developed is successful at what it tries
to do: extend an augmented transitiory network grammar for the limited Morse-code
domain. MAGE is an enumerative procedure in the sense that iticen.sidas many
potential additions to the grammar for each example it is supplied. However, the
evaluation measure guides -the .enumeration of possible extensions, and.each
enumerated extension is selected or rejected:-before the next extension is
postulated. As soon as one extension has been approved, the enumeration process
halts. Thus all but the ultimate result are rejected: before any data structure is
generated. Since only one ‘physical’ grammar exists at .any point in time, and
extensions result in physical alterations of this data stricturey the program may be

considered a constructive model.

3.3 Hypothesrs Formation and Selection |

There are two phases to the hypothesrs tormatron/hypothesrs -evaluation
process. The frrst is the selection of a structural extensron to the transition network
to result in a grammar that can accept the current example ‘The second is the
specmcatlon of a set of tests and actions to be attached to the transmon network to
enable the parser to understand the current example These processes are
‘independent and sequentral and they are presented here separatety

MAGE operates on a transrtron network grammar (rt |gnores the tests and
actions during this phase) consisting ot thrrteen toprcatty categonzed subnetworks 5

Given an example transmrssron or an example conversatron contammg one or more

5I'he ‘Interrupt Subnetwork' and the five retated subnetworks of CATNtP s grammar are not part of
MAGE's core grammar, because the current versaen of MAGE does not deal with the interruption
problem




speaker changes,® the program first determines if the example is already accepted
by the grammar, by attempting to pakse it. MAGE tries to match the example to the
grammar using a standard transition network-pafsing algerithm, with one deviation:
| rather than requiring a single start-state, the parser performs a depth-first search
from several potential start-states, including all- siates that can precede the
beginning of a transmission. An example should -not begin in mid-transmission,
although the program: can handle this in some. imnstances. The parse . is
nondeterministic, i.e., conceptually it follows many:paths :in- parallel: (although- it
| actually uses a depth-first search), becausethegraﬂmaf may-contain more than one
subnetwork representing the same subsequence of talsens or words, as do many TN
and ATN grammars.

If the example is already accepted by the.grammar, the program prints an
appropriate message arid.a“sks:vfor another exampie. i thefirst- word erwomis of the
example are accepted by:-one or more subnetwerks, but the following word does not
matchany transition leaving the last state of any of these partial paths, the
hypoﬂwesis-fdnnation procedure - takes . control  with  pointers to the
‘ast-matched-states’ and the next word in the example. The same sequence of
words may be accepted by more than one subnetwork, because the parse has_
multiple- start-states and-the grammar is inherently nondeterministic. If the first word
of an example is not acceptgd by any transition leaving any start-state, the set of
‘tast-matched-states’ in this case consists-of the possible start-states discussed
above, and the next word in the example istﬁeﬁtst one.

A ‘speaker change' occursin-a Morseucode conversation when one operator ceases transmutmg
Morse code and another begins.



At some point in the example, marking the end of the new phrase, the words of
| the exampie resume matching the symbols on the transitions of the TN. Ttiis may' .
happen at more than one state, for the reasons stated above. if the new phrase is at
the end of the example, it matches any terminal state in the transition network by
default. The state(s) containing the traﬁnsitien(s)ﬁwre the path resumes and the
terminal state(s) matched by default are called the ‘end-of-phrase’ states. The task-
now is to add some structural representation of the words betwsen these matches
(the new phrase} to the transition network component of the grammar. MAGE uses
the models presented below toaccorﬁpﬁsh this objective.

The set of models rebresems all single-transition extensions to the general
three-state finite state machir;e shown in Figure 1, with several exceptions: itis
undesirable o return o a start-state from some other state in the subnetwork except
in a small number of prescribed circumstances; it is preferable for a subnetwork to
-contain a terminal state, and then repeat the entire._subnetwork,f rather than retumn
frem that state to the start-state. A srngie subretwork without tests and actions is an
FSM. Model O (Figure. 1) repreéenls the original status of a subnetwork: the circle
. containing S is a start-state; the circle with the darkened area is aterminalstat‘e; the
single intermediate state represents the arbitrarily compiex web of states -and
transitions between the start-state and a terminal state in an actual subnetwork.

Each of the models smustrated» in Figures 2 through 8 represents a general
one-transition extension to model 0. All extensions that are possible, considering the
chatter domain, are included in this set. Any of the three ea’cles inxt'hesemodels,tha!
correspond to the original crrcles in Model O may mprasem a ‘last matched -state’
and any terminal state may represent the ‘end-of- phrase dependmg on the
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particular model and circumstances; a circle other than the original three always
represents a new circle added to the subnetwork as part of the extension. Since
each examplé is expected to include only one new phrase, o'n'ly: one type 6f.
extension is actually used for each example. However, the new phrase generally
consists of more than the sinéle word that cah be attached to a single transition. The
transition can be viewed as modeling a string of transition/next-state pairs, with the

as shown in the

first transition in this:string Ieaving,,,;a s{ata;iz;tg;e original-subnetwor
model, and the final transitior‘i Ac'd”nﬁéck‘t'éd té the heitiféiiété"Shown in the particular

model.

O————@

{ MODEL 01

Figure 1: Model 0
General subnetwork

O—O—@
[ MODEL 11

Figure 2: Model 1
‘Last-matched-state’ becomes terminal state
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Figure 3: Model 2 -
A terminal state that is also a ‘last-matched-state’
becomes a possible intermediate state

- [ MODEL 31

Figure 4a: Model 3
State(s) inserted parallel to transition between adjacent states,
which are ‘last-matched-state’ and ‘end-of-phrase’




[ MODEL 31

Figure 4b: A special case of Modei 3

(D (2
o [ MODEL 41
Figure 5: Model4

Transition loops to same state, which is both
‘last-matched-state’' and ‘end-of-phrase’

I MODEL 51

Figure 6a: Model 5
Transition returns from ‘last-matched-state’
to previously visited state



[ MODEL 51

Figure 6b: A special case of Model 5

[MODEL 61

Figure 7a: Model 6
Completely new path is formed in subnetwork



[ MODEL 6]

Figure 7b: A special case of Model 8

&>

{MODEL 71

Figure 8: Model 7
New transition add_ed between ‘last-matched-state’
and new terminal state

MAGE compares each model to each last-matched-state/end-of-phrase pair.



The hypothesis-formatiorn procedure enumerates a set of model/pair combinations
called ‘templates’, matching particular states in the model to the last-matched-state .
and end-of-example of the pair. The first component of the evaluation measure
guides this process, restricting it tdénumerating onlythom models that pro;)ide a
means for accepting the new phrase in the finite .st.ate macmq_e sense: the first word
in the phrase match§ ‘SOn;aefsymbol attached to a transition Jea‘\‘d“ng the start-state of
the extension derivedr from the model, the second word métches‘ some transition
leaving the state pointed to by the transition for the first word, and so on. The state
pointed to by the transition. matching -gl}e last word in the new,phrase must either be
a terminal state or contain é transitioh that matches the ﬁrét word in the rest of the
example, which follows the ne\n; phrasé.

If there is;'pnly a sihg!e last-matched-state, and only one of the above modefs
provides a mech;hisﬁ for-accepting the new phrase, then this model is subjected
immediately to the second compogent of the evaluation procedure. If this model
also provides a mechanism for acc;ﬂtmg the new phrase in the context of the
current example, i.e., the entire example;wdg}d be accepted by thé core grammar
. plus this extension, then the evalgatfdn" is said to ‘succeed’, and the extension Is
physically added to the data structure representing the transition network
component of ‘the grammar. In this case, the @Qgction phase of the
hypothesis-forrﬁétion mechanism begins operation. If the evaluation fails, the -

example is rejected as unlearnable.’

if the structure of the example matches one of the above models, but there are

7The author has not found any actual trarsmissions that contain phrases that cause MAGE to fail,
with the exception of transmissions containing one of the-interruptions discussed in Section 2.4.
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several last-matched-states, then the evaluation measure selects the first of these
states that passes its criteria. This selection is justified, because in nearly all
instances the first passing state is the only one: conflicts are preve'nted by a stridt
ordering of the start-states via the subnetwork in which each appears. |

There are several situafions in which more than one ﬁwel is represented in
the templates produced by the hypothesis-formation process, and in these cases the
evaluation measure must select a fnodel as well as a particular state pair. Consider
the example "QSA 5 NW QTC K" ("The strength of your signals is excellent now. 1
have messages for you") diagrammed below, and assume that "QSA 5 QTC K"
("The strength of your signals is excellent. | have messages for you") is already
accepted by the grammar. It is not clear during the hypothesis-formation stage
whether to apply modell 2 (Figure 9a) or model 3 (Figure 9b). Therefore; both of
these possibilities are passed to the evaluation measure, which chooses between

them on the basis of which transmission ‘makes sense’. -

LEXAMPLE]

Figure 9a: Model 2 applied to example



CEXAMPLE]

Flgure 9b: Model 3 applied to example

in this case, model 2 wuns, because the evatuation measure ‘decides that "NW"
reters to "QSA" rather than to "QTC" "QSA 5 NW" ("The strength of your ‘signals
is excellent now")isa plausnble update toan earher transmission like "QSA 1" ("The
strength of your S|gna|s is very poor") 8 However, "NW QTC" ("Now | have
messages for you") woutd not make sense un!ess the operator had prevnousiy
transmitted something like "Wait. | witt have messages for you soon” : this statement
cannot be made-'with the phrases contained in the;cete gi‘ammar. ,;Ot course, the-
extended grammar still accepts "QSA 5 QTC K" because the terminal state following
the generic token " # " is not deleted. tn tact nothmg is ever deleted from the core
grammar; the only alterations performed by MAGE are additions.

After a specific structural hypothesis has been sélected by the evaluation

measure, the machine enters its second hypothesis-formation phase and

lt "QSA 5" is accepted by the core grammar. "QSA 1" is also, since the generic token ‘#"
matches any number.




enumerates a set of potential test and action specifications-for each transition of the
new extension. If the symbol on a new transitien is a g-sign, those actions associated |
with g-signs are enumerated; none of the prepared tests should be associated with
transitions: whose symbols are g-signs. The q—aign actions put inform&tionéeonvevéd

by q-signs and their arguments.in certain registem.

<quality-of- contact)
<{pending-questions>
<{expected-actions>

<general- situation description>

If the transutlon symbo| is some other type of word but not a ‘noise’ word, the
- enture set of non-q- srgn actlons is enumerated These actions put rnformation ln

other reglsters, lncludmg

<mformatlon-abouf-receiwng operator)
<information-about-sending-operator>.
<id-number-of-message)>

<number-of-words-in-message,) CE T i
<{number-of-words-received-so-far-in- message)
and others described in Appendix lil. e

If the symbol is a generic token; i.e. :-?'oausign"',‘;-’faay;“*,f "#", "delim", or "logation",
the entire set of tests is passed to:the evaluation measure. These tests serve as
. filters to ensure that*theohértter word that matches & generic token is reasonable-in
~ “context, to prevent every random word frommatehi;aq’iany‘%a for example, ,alnee this
symbol is intended. to match only code-groups or Enghsbwords ineg,mmsagebady.
The tests and actions to be associated with the new transition(s) are now selected by

the evaluation measure. -



3.4 A Unique Evaluation Measure -

The evaluation component of MAGE is rather unusual in that it does not
incorporate a cost function or other ccmpiexﬂy-retamcmideraticn to select Me
‘best’ from among the set of possible structural extensions or test/action
specifications, nor does it use some subjective measure: produced by a human
teacher. Instead, the evaluation measure is based on the semantic organization of
the augmented transition network ctammar 0 :

The criterion for se!ecting a structural extension is simply "wm thns structural
extension place the new phrase m the correct toplcal context?" Scmularly, the
criterion for augmenting a transition with a particular test or set of tests is "Wsll this .
test or set of tests ensure that all words accepted by this transmon are meamngful in
the current context?". An action or set of actions is appm%d tcra transitron if those
actions will select and save the |mportant mformaﬁen containedm the phme and
ignore any meaningless words. _

“The first criterion is fairly simple to implement. for:phrases ;ccnt&Nng at least
-one g-sign, because all q-signs are associated a priori with appropriate topics
represented by subnetworks. There are usually two or three subnetworks in which a
particular g-sign might make sense, but the:context of the reat of the example
provides enough information to uniquely determine the topical category of the
phrase. |

Those pﬁrases that contain neither g-signs, nor other words that are known to

be synonymous with a particular q-sign (e.g. "RPT" ("repeat") is synonymous with

9Section 2.4



-41-

"QSM" ("Please repeat - - —")), are-more difficult to evaluate. When an example
contains an unknown word, MAGE asks the user-if it is a synonym of any known word
and, if so, which one.'? Either the new word has a known synonym, or.one or more of
" the other words in the phrase have known meanings that can be used to determine
the meaning and topic of unknown words; this topical relation is used to place the
new phrase in the appropriate subnetwork (i.e: context). ' |
The selection of tests and actions proceeds along sifmilar lines. Most tests are
attached only to transitions with a generic symbol; most actions are attached to
transitions with the symbol "new-speaker” (denoting a spaaker. change), a generic.
symbol, or a g-sign. In addition, the evaluation: measure may attagh actions to most
symbols in the REQ-RPT subnetwork (request for somethmg 1o be repeated and
response to request) even though they: were net generated during the
hypothesis-formation phase, it is desirable to store.any repeat fequegﬁ,, until it has.
been answered, regardiess of how tha request was phrased.. This is one of the many
semantic considerations dealt with by the evalualion measyro. _4
The likely-number and type of arguments for.each g-sign are part of the
machine's domain model, and they can be looked: up in:a-table. This knowledge is
used to attach actions to the transitions of q-sign arguments.that convey information
that should be stored in some register. i some cases, however, a g-sign may appear
with a totally unexpected set of arguments, .and the appropriate actions must be
inferred from knowledge -about the .arguments themselves. The generic tokens
"call-sign" and “any" appear in-only asmaunumbemi contexts (ﬂ\e 1D-OP . and

10User—machine interaction is discussed further.in Section §:2.1.
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NET-RELAY subnetworks and as q-sign arguments, and the MESSAG and
REQ-RPT subnetworks, respectively), so their tests and actions can be effectively .
pre-programmed.

The major difficulty is with the generic token " # ", which can appear in almost
any context and almost always has some importantnmng Fortunately, " #" is
often preceded by some other word with assocmtsdtast/achunnﬁormatmth&can
be transterred to its argument. But in many cases there is' no way of obtaining this
information except to compare the particular use of "#" with its appearance
elsewhere in the grammar, and to‘bofrow the actions associated with the closest fit.
This method is actually ver'y successﬁﬂatse!ec&hg the same set of actions that |
would have selected by hand. | |

After this compoﬁent of the evaluation measure has ,approved a set of
test/action specifications for each transition in the previously selected stmctﬁra!
extension, the specifications are attached to: the extensien.and-the data structure
representing the ATN grammar is ‘permaneﬁty’ altered 1o include the completed
extension. The addition is permanent in the sense.that it can now.aid in a future
. bootstrap process as described above.

The use of semantic information by MAGE’afmluatiomnwurse’is similar..,td
Crespi-Reghizzi’s use of structural information {8} for thamferenoe of context-free |
grammars.'! The major difference is ‘that Crespi-Reghizzi includes a complete
structural description with each- of his examples. . MAGE requires analogous
infom\atibn;f however, alf semantic/syntactic 'Mm:i&p?e-prsg'rammed into the

Y Discussed in the second section of this chapter.



domain model of MAGE, and the program itself selects the structural information,
which includes meaning and topic in this context, that should be associated with
each example.

The use of semantics to construct and evaluate extensions to a grammar ié
also related to some proposed linguistic models of human language acquisition. The
viewpoint that considers MAGE an implementation of these models is discussed in

the next chapter. A sample learning session with MAGE is given in Appendix Il.



4. Acquisition of Language and Grammatical
* Extension | | |

" 4.1 A Model of Language Acqui_sition' ‘

There has always been considerable debate among linguists about the
process by which children ac:quire their native language. Most models represent
language learning as an active process of hmothesis-formation and
hypothesis-testing: the child continually formulates hypotheses about the language
“she hears and tests them by attempting to use them to understand speech and to
construct her own sentences. The child is not initially presented with the entire
language but with a small subset of the vocabulary and syntax which graddally
expands as her competence increases [22].

According to a model discussed by Dale [9], a hypothesis is confirmed if it
- accounts for the data aiready available and successfully predicts future sentences,
otherwise it fails. However, a verdict of success or.failure is according to the child’s
perceptions of language, not an adult's. A grammar that generates the sentence.
"Shoes on" would be unacceptable to an adult, yet it is considered successful by the
two-year-old child who hears "Put your shoes on" as "Shoes on". Hypotheses thus
confirmed become part of the evolving grammar used by the child. This grammar is
descriptively adequate, which means it makes ‘accurate’ predictions about the
correctness or deviance of sehtences :that the child has never heard before, as well
as being observationally adequate, which means it accounts for all the sentences
that have already been heard. | |

According to a similar modelbdeveloped by Chomsky [4, 5], not only does the




observationally adequate grammar account for #he observed sentences in.the senge
| of recognizing their s.trubtu‘raf organization, but also: it makes it:possible for the child .
to understand the meaning of these sentences. Likewise, the descriptively adequate
grammar is capable of underStandﬁ*g infinitely: many sentences that the child has
never heard. |
This model makes the controversial propasition.that the child may know about
certain aspects of language: some knowledge is innate; and ihe child:need not learn
these aspects in the usual sense. These innate aspects of language are called the
universal grammar and, according .to -the model, foorm:the basis for hypothesis
formation and evaluation. | | |
Chomsky's model is fodnded in the rationafist -echool .of linguistic thought,
which states tﬁat the st}ucture of language is toa cmsidarahie.degreé speeibd
biologically, and the function of experience is to- activate this innate capacity and
turn it into linguistic competence [4]. The vationalist: claims that a great deal of
psychological structure is irmate and Mmemn chikd has a specific, and strong,
capacity for language. These ideas are: supportad by the species-specific and
. species-uniform attributes of language,: ke.  alt humans -and only. ahumané use
language, and by the surprisingly small degree of difficulty.a child has with the
general mechanisms of language: —'mé%ngﬁon'~:d‘=afmmﬁ:ﬂw?mhﬁ&memaef
word classes and rules for combining them, and soforth. +
The rationatist theory postulates the existence of a:universal grammar, such
that a successful model of a universal grammar would inckxdé texacily those features
of language that children do not have to learm arid would exclude all the unique
features of their particular languages that childrerr must-acquire from_ the speech



they hear. It is a system of principles that categorizes the class of possible grammars
by specifying how particular grammars are organized, how the;difte(ent rules of
these components are constructed, and how they interact. ‘ |

The theory proposes two types of universal features: substantive and féfmal.
The set of substantive rules 'includes claims that items of a particular kind in any
language must be drawn from a fixed class éf items. The formal linguistic univefsals
include more abstract conditions iﬁvolving the character of the rules that appear in
grammars, conditions imposed on these rules, and the -ways in which they are
interconnected. For example, every: human language ulilizes the _same}' basic
grammatical categories (substantive) -- sentences, noun phrages, verb phrases, etc.
-- and uses the same grammatical relations among theseeategones (formal) --
subject and predicate, verband object, etc. [18].

According to these models, the task of the child acquiring a language_.is to
choose from among those grammars allowed by the principles of universal grammar
that grammar that is compatible with the limited and imperfect data .avéilable to her.
The child is faced with a finite set of utterances, many of them ungrammatical (due to
slips of the tongue, false starts, memory lapges, etc.), that she has heard from her
parents and other people in her environment. From these utterances, she must
deduce the underlying rules in order to use her language. |

The concept of a restrictive, universal:mold for grammatical developmeni is
supported by the similarities observed by Dalg [9] betweon the early speech of
children in diferent cultures learning widely divergent languages. According to his
observations, a child’s earliest grammar usually includes a two-word syntactic
structure with two classes of words, pivot and open. The pivot class is small and
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each word in it is used with many different words from the much larger open class.
For example, an English-speaking child might say "bandage on", "blanket on", "fix
on", etc. For this child on is a pivot word; it is always used in the second position and
| many other words can occur with it. Or the child might say “allgone shoe", "allgoné
lettuce”, "allgone outside", and others; here "allgone" is a pivot that always occurs
in the first position. A pivot word may be the first or the second element in two-word
utterances, but each pivot word has its own fixed position. |

As the child grows older and has more experience with her language, she
| begins to use three-word sentences that are simply pivot-open sentences with an
additional word. Agent-object and agent-action conétructions merge into the more
complex but more meaningful agent-action-object construct. Eventually the child
develops the concepts of noun phrase, verb phrase, and all the other complex
syntactic structures of the English‘ (or other natural) language. '

Although MAGE borrows from these theories of language acquisition and
universal grammar, this report is not related to the controversy surrounding these
models and rationalist theory in general. The author does not intend the ahalogy'
between MAGE and these models (presented below) as an endorsement of any
linguistic theories; the analogy is provided as a vehicle for putting in perspective the
mechanisms used by MAGE. It may be useful to consider MAGE an implementation
of some aspects of these models.

Although an ATN grammar comprises a large portion of MAGE’s ‘universal
grammar’, the author does not believe tﬁat the augmented transition network
formalism is in any way related to the internal organization of the child’'s grammér.

Dresher and Hornstein [10] describe the claims of some IingUists that experimental



evidence supports the view that the ATN model-is a psychologically realistic modet of

certain aspects of human linguistic com m,;t.-temstein;fand many' .

other ling‘ufstsfdtsagree. This report is not related to these debates.

Throughout the rest of this chapter, the term ‘the child’ refars to the human
language acquisition mechanisms 'po'smlmdvitt the :proposed - linguistic models
discussed above. The author does not claim that the grammatical extension process
implemented as MAGE is in any way related o real- children, of the -unknewn

4.2 The ‘Umversal Grammar of MAGE

Several aspects of these models are tmplemented’ as components of the
grammatscal extensuon machrne MAGE forms hypotheses that attempt to account
for the data it recewes The hypotheses are denved from the program umversal
grammar whlch consrsts of knowledge of the dom;m and the propertres of the
grammar it is extendmg The klnds of hypotheses that MAGE can formulate are

constrained by the set of general extensron models or unwersal rules presented in

It B0 h Vs feine
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Sectnon 3.3. MAGE tests each hypothesrs by determrnmg whether lt is adequate to
‘understand’ the example that motlvated lt lf a hypothesrs ls madequate. another
hypothesrs ls formulated and tested untrl the program has found an extensron that

enables it to parse the example 12 | | |
The domam knowledge of MAGE ls very srmllar to the model of a umversal

grammar presented above Although the program mlght be presented wath samples

P OTE, 5

from any of a vanety of ‘dlalects' of chatter (e g‘ ham radro, mrlrtary, drplomatrc

ThcsprocesslsdescrrbedmdetmlmSechonsa.aandaA




shipping), the extended grammar will conform to the universals of the 'radiadomain
and of the augmented transition network representationfor.the grammar.

The radio-domain universals include the struchural -constraints such as
network protocol, which: limits  the types of: things- thet. can - be ‘said’ dumg
conversations, and resuits m the rigid topical breakdewn .of -the ATN into-the
CONTACT, TRAFFIC, REQ-INFO and: END-CNGT.- subnetworks and the.
hierarchical organization of these subnetwafks into topical subdivisions. Thesa rules-
are analogous to the formal universals described in:sestion one-of this: chapter,
because they not only:.constrain, but also define, the character of the gra,mmar.' A

The Morse code domain.aiso speocities the ‘syotax’, of.q-sign arguments, the
existence of ‘noise’ words, and-the internationally deﬁnoé Qq-signs. ‘These rules are
analogous to the substantive universabrules, which-incluge assertions that structural
components and semantic elements must-bedrawn kommcmedclasses'a .

"~ -The built-in ATN alse constitutes a'set of “tormal.universals’, which constrain
the character of rules that can appear in grammass; since irigidly defines the type of
grammar the program was designed to extend. - Tha-ATN medel prescribes the types
of things that can be stored in registers, what tests and-actions can do with registers,
and the push and pop (call and return) mechanisme and embedded organization of
subnetworks into a transitiorrnetwork'grammar; .~ .. |

13The domain aspects listed here are discussed ih depth in Se'ctians 2.3 and 2.4.
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4.3 Hypothesis Formation and Evaluation
For each example transmission, fMAsﬁ»famuiatas a set of hypotheses for
extending the syntactic/semantic structure of the ATN, plus a set of hypotheses for
| adding function specifications to-extract the meaningful-content of meexm'apl/e.;m
mechanisms used here are simifar to the linguistic models described in the first
section of this chapter. According to those models;‘the rules formulatad by the child-
must meet the universal conditions imposed on the character of grammatical rules;
likewise, MAGE is limited to the forms provided by the set of models illustrated in
ASection 3.3. Neither the ‘mode! child’ nor MAGE is even capable of considering
grammatical hypotheses that do not meet their constraints. ‘

The proposed linguistic models predict that the child will ignore sentences
whose structure and/or vocabulary are too unusual, too different from what ghe
already knows; MAGE returns a verdict of ‘unlearnable’ every time i.t receives a
difficult example, until it has acquired enough vocabulary and contextual structure to
simplify the leaming of this exampie to the matching of one new phrase to its
hypothesis-formation models. Both MAGE and the ‘modet chikd’ leam by a bootstrap’
process. As MAGE is exposed to more -and more example uénsmissiom, the
conversations it can parse become more complex.

The core grammar of the grammatical-extension machine is similar to the pivot
grammar discussed by Dale [_9], in that most chatter phrases revolve around one
‘pivot’ word, often a g-sign, that determines the meaning of the other words. The
ability to aséociate pivot words with only one or two potential subnetworks, coupled
with the ease with which most pivot words are recognized (e.g. all g-signs begin"wiih

the letter 'Q’), is probably the most important feature of MAGE’s evaluation measure.
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Without this ability, the selection mechanism would probably have to rummage
through each of the thirteen subnetworks, possibly during several passes, to find the .
‘best fit’ for each example.

The model of a hypbthesis-selection mechani_sm proposed by Chomsky [4, 5]
and discussed further by Dale [9], which would accept only those hypotheses that
make it possible for the ‘model child’ to make sense of an utterance, according to
her perception of ‘sense’, is analogous to the evaluation measure utilized by MAGE:
a hypothesis is accepted only if it provides a parser with the ability to understand the
example transmission. Extensions tb the grammar are made in such a way that
learning one new sentencé aétually 'results in the power to understand arbitrarily
many new sentences, since many paths through the ATN may follow the new
transitions. Thus the resultlng grammar is descriptively adequate; theorists claim that
a human grammar developed according to their models would also be descriptively
adequate. |

MAGE does not use any of the p. a rticular universal rules postulated by linguists
attempting to explain the vefy complex processes of language acquisition by
. children, nor does it copy the specific tenets of any of the theorized universal
grammars (no one knows exactly what the universal grammar used by children
actually consists of, or even whether it really exists). What MAGE does do is
implement the concept of a universal grammar, with universal rules that severely
constrain the development of a grammar that accepts the particular dialect of
chatter being learned. MAGE aiso implements the idea af selécting only those
hypotheses that provide an accurate mechanism for ‘understanding’ -- or in this case

extracting the important information from -- the motivating example(s).



5. MAGE: A Learning System

51A Model for Learning Systems

“The organization of the computer program was strongly influghcaq by the
research described by Smith et al. [20], and. MAG& contorms closely to their model
of a learning system. The model details thevf,t»mctio,n_al components feit tq be
essential for any learning system, independent of the techniques used for its
construction and the specific environment in which it operates. |

Smith et al. define a learning system as "any system which uses information
‘obtained during one interaction with its environment to improve its .perforinar;ce
during future interactions". The performance of MAGE complies with this definition,
as any examples that are added to the grammarfg{und,e@gqndingfcgpability aré élso
used by the bootstrap process to extend the grammar to accept future examples. |

The learning system model proposed by Smith consists of six elemqnts. Th_e
Instance Selector ‘selects suitable training - instances from the environment. The
Performance Element generates an outgut(in response to a :trraini‘ng; instance, The
- Critic analyzes the output of the performance element infteyrns gf«_ some Standard of
performance. The Leaming Element makes specific changes to the system in

response to the analysis of the critic. The Black 4 rd contams system mformaﬂon,'

e.g. the emerging knowledge base, that is used ny all functlonal components anally,
the World Model contains the general assumptions and methods that constrain
system activity. . ‘

My experience with MAGE conformed to this model i_nVon:e additional way: as
des_igner, | viewed the entire leam‘ing. syatem as a program yvhose mdomm




needs improvement, and | selected instances, criticized: performance; and made.
changes accordingly. in other words, the designer's activities can be modeled by a
system whose components are identical to those described above. This leads to the
interesting concept of layered learning systems, each higher layer able to changé
the world model (vocabulary, assumptions, etc.) of the next lower layer on the basis

of criticiztng its performance on a chosen set of instances.
5.2 MAGE Components

5.2.1 Instance SeIector and Blackboard

| "The Instance Selector performs the tnvraI operatron of acceptmg whatever
example the user provrdes and transformrng rt to the proper data structure for system
manrpuIatron It may request the user to answer certam questrons about the current
example. For example, if the current exampte were "VVV ROCK DE SALT QSA ? K"
("Rock, thrs |s Salt. What is the strength of my s:gnaIs" Over"), the Instance
Selector wouId Iook up each word in the vocabulaw Irst of the WorId ModeI and find
that "VVV" is an unknown word It wouId pnnt ‘VVV IS AN UNKNOWN WORD'
DOES IT HAVE A SYNONYM ON THE FOLLOWING LIST'? (foIIowed by the Ilst) The
operation of MAGE on this example is descnbed rn Appendrx I. The Instance
Selector provides half of the user- program |nterface » - |

The other half of the user- program rnterface rs the BIackboard whrch prmts

statements about each extensron the program makes to the grammar, e. g
~ [Adding new transition ‘VVV’ from state 0160 of ID-OP]

(the result of the above example) In addrtron all communication between modules is

considered part of the BIackboard Most communication takes place via standard



passing of arguments, and use of the same variables when parts of one module are
 embedded inside ancther. There are aiso some global variables that designate what
portions of the grammar have been altered during this leaming éession and other
dynamic information. |

5.2.2 World Model

The World Model contains the universal grammar, ' which includes all
knowledge MAGE has about the Morse code radio network domain. The core
grammar is considered a component of the World Model. It contains the
subnetworks diagrammed in Appendix ‘III, btﬁxt”not ahy alférations that have been
made during the current iearhing session: tﬁese belbng to the Pedorhmce
Element. Thé World Model has some concisé; .:vhand-gathered collections of
informational itéms that are distributed throughobt the core grammar and would be.
difficult to find without these indices, e.g. the set of all subnetworks and symbols that
can immediétely follow any terminal state in the QUAL-CNCT subnetwork.

The World erodel also incl,udeé a set of épecifiéatioh; for th\e tests and éctions.
A ‘specification’ describes in whét circumstances the test‘ or action should be
| associated with a transition and what argumenté éhww be passed to the pre-coded
function that implements the test or action.

The Spel'lings of sixty q-signs are known é pribri by the system. Each q-sign is
associated with one or more topiéal subnetw&ks and a possviblé‘argument syntax.

However, only five of the sixty g-signs appear on transitions in the core grammar,

and MAGE must receive at least one example for each of the other g-signs in order

1'4Section 4.2




to understand conversations: containing that q-sign. A synonym. table, which
includes all q signs and all other vocabulary contained in the core grammar, is

maintained.

5.2.3 Performance Element

The Performance Element consists of two components; & TN-parser and the
current version of the ATN-grammar. The TN'parser:is based on the. ATN parser of
CATNIP {16}, but it does not save nor use any.contextual-information, since it is only
trying to accept a sentence-or conversation: cather uamfryingt@eomprehend it It
doesn't need tests to determine which words:should: be-aceepted by:a transitionwith
the symbol “"any" because all code-groups and-English-words are written as "any" in |
the example. There is no reason that MAGE needs to racognize code-groups and
English words as such, since this task is successfully performed by CGMDEG [21)..

© Although there is-only @ single data structure implementing the ATN grammar,

the core grammar is said to be an element of the World Model, and the current
veréion of the grammar (i.e. the core grammat plas various extensions depending on
tt;e history of the current learning: session):is: consiiered a component -of the
Performance Element. The:current state-of the:non-g-sign vocabulary is also part.of
this element, while the original vocabulary is partot the World:Model. This:conforms
to Smith’s mode! of a learning process as opesating-on. or -making changes in the
Performance Element, where orily mw‘mér coraiter:theMorid Model. -

- When the Performance Element is: Mﬁex&m&e ltmache&one or
more states where none of the transmons leaving those states matches the. next
word in the example (unless the example is already accepted by the grammar). When

this~ occurs, it passes a set of pointers to these states and a pointer to the next word



in the example to the portion of the Critic that is embedded in the Performance
Element.

. 5.2.4 Critic and Learning Eleme‘nt. ' /
The Critic performs three semi-independent - functions: Ewvaluator,
Diagnostician, and Therapist. |
As Evaluator, it evaluates the Perfarmance Element's ability to parse each
example and ‘telis’ the parser to-halt when the Critic raalizes that the parser cannot
- understand the next phrase of the example. The Evaluator is embedded in the
Performance Element. As descrlbed above, when:the pamer: halts it provides the
Critic with the necessary state information 10 perform its hypothesis-formation task.
As -Diagnostician, the Critic iocalizes the reasons for poor performance by
noting at which state(s) the parses was forced: to hait. It enumerates a set of
hmothmbmdmmmwmmmemmwmmlm
position in the grammal' 15
In Therapist mode, the Critic performs the evaluation measure. 16 it selects one
of the hypotheses formulated : while “in :Diagnostisian
Diagnostician mode. The Diagnostician ' enumerates a  set of . test/action
specifications, and the Therapist selects some of these 10 augment the transitions in
“The Critic passes: the chosen stryatusal-and-test/action. hypotheses 0 the
Learning Element, which utilizes kaowiedm of implermentation details to-determine

--mode; and retums 1o

Secttona.a

18sections 3.4 and 4.3
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how to alter the ATN data structure to include the current gxtp;gs{pn, Actually, the
| term ‘Learning Element’}may be a poor choice for this modu\le since it éimply;m’akes;' :
the changes suggested by the Critic; however; Snifth: &t~ al:[20}- describes the
‘léar’nirig process’ in as simply an addition f&‘*&lféady'fémmmea?hﬁd selected rules

to permanent memory.

5.3 lmplementaﬁon Details . |

The MAGE subsystem is implemented in MDL (‘Muddie’) [15] and runs on a
Digital Equipment ‘Corpo@tion KA-19 qnder‘_the_f lTS ?v(gp.e,rzating | system. MAGE
ir_\cludes about 1300 lines of MDL code, and ‘ther Q_pmpﬁiﬁl:ed_. \)egsion, wrequires about 47
blocks of memory beyond the MDL iﬁterpreter. (A block contains 1024 36-bit wofds.)



6. Conclusions’

6.1 Capabilities and Limitations

This report describes the development of a computer program, MAQE, that
acquires and organizes much of the domain-épecific knowledge requ‘ired by the
related system, CATNIP [16}, to process conversations over Morse code radio
networks. MAGE incorporates several of the levels of fearning ‘ability described by
Winston [23]. On the loweét level; it ‘learns’ the ddi‘ﬁain-speciﬁc knowledge
contained in its core grammar by being programmed. On higher levels, it recelves
additional information by being told, in the 1anguagé of the domain father than a |
programming language, and it acquires the rest of its doimain-specific knowledge via
learning by example. it is not able to learn by discovery.

MAGE uses the parser’s ATN knowledge base as a ‘core’ on which it builds the
developing grammar. The core contains a certain amount of domain knowledge that
was readily available to the human who developed CATNIP and MAGE but could not
be acquired by the present version bf MAGE. The inclusion of a core knowledge

base represents learning by being programmed. The core includes:

o the discourse structure imposed on conversations by radio-network
protocol :

o the types of information conveyed during Morse code conversations

o the set of generic tokens and information about how to narrow down
what should and should not be matched by these tokens

« the spellings and meanings of the internationally defined q-signs

o the syntax of a few basic phrases and the meanings of 'the words that -
appear in these phrases




« the knowledge that ‘noise’ words exist

¢ how to format the vanous types of mformation for human readable
output ; :

- This knowledge is reflected in the core as:

o the top-down organization of the ATN knowbdge base mto thirteen
semantically categorized subnetworks :

« the internal structure of the core subnetwodrs ,
o the registers, tests, and ections

» a lexicon that associates the q-signs.and other words contained in the
core vocabulary with their synonyms, if any, among the] known words ’

o the printing functions o
MAGE receives as input mdwrdual transmrssions each contammg either no
new information or exactly one new phrase tn seme owes where the example
contains unknown words, MAGE must ask the mfﬂrmat mformwen about
the new words, and the user responds in the. langme of the domain rather than by

additional programming: thts is lﬁaﬂ:um bx bﬁtnnlﬂldg

MAGE derives enough information” ffoh &ach examrsle to extend the

knowledge base to process the new phrase in the cowtext of the example
transmission and related contexts. The WM&W an- mtegral pan of
the grammar, utilized henceforth by CATNIP -toselect;he cc(rect transcrtptton,qi a
conversation from among the many transcriptiohg suggestedby COMDEC and to
produce a human- readabte Summary of the lnformation conveyed dunng the
conversation -- and by MAGE -- to aid in' the bootstrae prwedure that extends the
grammar. This process represents _eang by g_amp}e The procedure followed by

MAGE is:



1. MAGE attempts to parse the example transmission
- using the current version of the ATN.

a. If the example can already be parsed, get a new
new example.

b. Otherwise, the parse failed at some particular
word in the example sentence; fhat is, it could’

not advance any of the one or more parsa paths by
another transition matching this word. Ca!l the

last state in each failed patha
‘last-matched-state’. Call the word on whtch tha
parse failed the ‘next-word'.

2. MAGE laoks for some word following the next- word -
that follows the end of the new phrase ' :

a. This word and all words following thiswordin ~
the example match some connected sequence of
states and transitions in the ATN that can be
reached, via exigting transitions, from one.or -
more of the last-matched-states. Call the first
state in‘each such sequence: an ‘end-of-phrase’.

b, Or, thiere is no suchyword aid the neéw phrase
ends at the end of the transmissmn the extension
representmg the new phrase mnstehd i a'terminal

-3 MAGE compares @ach last-matched-state/end-pf-
phrase pair to the set of models, where any of the

three states corresponding to those in Madel@ may - -
‘match the last-matched-state and any terminal staie
“may match the end-of-phrase, depernding’ mihe
particular model and, curcumstances. |

a. it finds one or more models for.each pair that
could be used to construct an extenslon forthe

combmatton a template

b. It selects the best temp|ate on the basis ofa
set of heuristics and constructs the structural
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component of an addition to the ATN, called an
‘extension’. '

4. MAGE selects a set of test specifications Ma

set of action specifications for each of the
transitions in the extension

a. The Specrfrcatnons are chosen according to a
. seét of heuristics that'consider'the transifony = =
symbol, the context of the rest of the ,
transmission, and the particular subnetwork to
which the extension was made. ,

b. MAGE adds the specifications to.the:previously
constructed extensoon and gets a new exampte

MAGE may extend the kﬂowledge baeerto mcluda an arbttrardy Iarge number
of new phrases for drscussmg the concepts altowed by the known drscourse
structure. It augments the transutrons that process the words of these phrases with
tests that provide frtters for’ geneﬁc tokens Macaene thatexﬁ*act thc mrmatlon
froma phrase that provides temporary context and contents for the summwy eutput

' MAGE may be considered an-implementation.el. spme linguistic models of
human language acqursrtron proposed byChomsky[4,5] This analogy is very
natural, smce Ianguaée ecquisition seemsveryclosety related to grammatical
extension. . FEER

» The domain-specific knowledge contamed in the core knowledge base
conesponds 1o the innate un‘wersal gramat‘ RS ,

o The example transmiss#ons correspond tc the meranees heard by the
‘child’. &

e The models and associated heuristics correspond to the ‘universal
rules’.

e The creation of several templates and consmter;\tron of possible
’ test/actron specmcatrons corresponds to the formation of competing



hypotheses.

e The construction of one extension that processes the example

corresponds to the selectlon of one hypomm t!hat adequawty exphns
the data.

Even if these models turn out to be poor descriptions of the learnrng processes
actually used by children acquurm therr aatwe Ianguage, th:s research has
demonstrated that these theories are still useful in the d&gn ot computer programs
that successfully learn by exarnple. s |

However, MAGE has many ﬁnﬁtatrons.

e It is not able to recognize changes to the drscourse structure or to the
type-of information conveyed: during conversations, should these occur.

In other words, it cannot create new subnetworks, regrsters, tests or -
actions, nor discard existing ones.. -~ 7Y ¢ - ‘

« It includes no mechanism for automatically adding the meanings of new
- q-signs er other.vocabulaty words, unless these words are synonyms, of
previously known words, however, thrs can be easrty programmed by a

olt assumesthe existence of an intelligent ‘and knowdedgeable user, who

does not simply type in complete new transcripts but rather edits the
example transmissions 80 that they each includé ofily one new phrase.
This means_the user should have some knowledge of the current
capabilities of the knowledge base. Fortiinately,  MAGE  performs
adequately most of the time with a naive user, except where the .
transcnpt includes a Iarge number of ‘interruptions A

o Most notably, the current ver&on of MGE can not deal wrth the
interruption problem and is able neither to extend the Interrupt .
Subrietwork and - related ' lower-level subnetworks. nor. filter out
interruptions from example transmissions.

These limitations are what separate grammatical or knowledge-base extension
from grammatical inference. If MAGE could do all these things, it would be able to

acquire, from transcripts, all the domain-specific knowledge required by CATNIP.



That is, it could learn by discovery, the highest and least understood form of
| learning. . | ' : ' |
A system that could. do ali the things listed above, : without prior
domain-specific ‘knowledge, could agtomatically. - .acquire .-the particular
domairlﬂspec*tﬁc@lenewledge«reqmra&byfm.ayswt\,mmle@e base could be
derived by a human from a reasonabie amount of-data taken directly from- the
domain and organized as an-augmented transition netwerk. it would be a solution to
the very difﬂcult:problernsotfgrammaticatz inference ot & context-sensitive grammar,

6 2 Suggestlons for Futu re Research

The research described |n thls report represents a small step in the

e

development ot a grammatlcal mference machlne that could construct the

3 E i :a\,—a,
knowledge base or grammar necessary to parse a natural language lrom scratch i e
SR
wrthout requmng a programmer deflned organrzatlon of subnetworks, registers,

tests, and actlons The desrgn of this machrne would requtre the removal of all the

%

llmltatlons described above which mvolves ﬁndmg the solutlon to two major

artnhcral mtelligence problems a
One of the problems to be solved IS grammatical mference of the transitron

network component of the ATN from an mcomplete set of examples, each contalmng

an arbltrary amount of new ml‘ormation and an arbitrary amount of old mtormation

T4 r

The current state of machme mference ol‘ context free grammars, thCh are
equwalent to non- augmented transrtlon networks, assumes a slructurally complete
sample set. However it is impossmte to put together a sample set usmg every
productuon or rule ina grammar when it has not yet been agreed what all the rules

i

are for any natural language Therefore. either a new mference algonthm with



different assumptions or'a completely different method for deriving gremmarsftor
natural languages would have to be developed.

" The solution to the other problem requires the automation of bothtbe process
of recognizing the need for certain registers, and the process:of :writimg.;eteortthlm,-
or abstract Mncttondescricﬁlons, for the tests and actions.: Once an algorithm has
been generated in some simple ‘programming language' known: by the iearning
program, a human programmer emﬁdeodethetesﬁand actions' in .the actual
language (e.g. Pascal, PL/1, MDL) sultable for the:particular eavironment, :

Both problems might be con&derably more tractable |f restncted to Morse
code or some equally srmple domain, and ll they could be solved lndependently That ,
is, the abillty to utilize the domam specmc knowledge lnherent in a programmed
versnon of one of the two components may make it easler to develop an automatlc
mechamsmtoperformtheotherfunctlon o ’ o -

For example a grammatlcal mference machme mtght use some domatn
knowledge, such as the topic of q- slgns or the type of |nformat|on conveyed dunng
conversations, to develop the set of subnetworks tor processmg Morse code
conversatlons The Morse code domam srmpllhes the test/actlon problem by
restnctmg the potentlal contents of reg:sters to words and phrases selected from
transmlssnons Tests are restncted to puttmg addatuonal constramts on generlc'
tokens by comparmg the contents ot regtsters to the current word(s), actlons are
restricted to selectmg/stonng |mportant mtormation and deletlng lnformatuon that is
no longer destred This knowledge mlght be ut:llzed by a program that automatlcally
generates registers, tests, and actlons. _ '

Regardiess of whether these problems are ever dealt with for the specific case
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of automatic generation of the knowledge base for parsing Morse code
conversations, it is hoped that they will someday be solved for the general case, so

that machine acquisition of natural language will become possible.
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1. A Morse Code Conversation -

A typical example of a goal- orrented Morse code conversatlon is glven below, '
with each transmission followed by an Engllsh transcnptron ‘ROCK’ and ‘SALT‘ are
two operators. Very little of thls conversatlon can beunderstood by the parser using
only MAGE's core grammar, which is present‘ed I Appendix i, although att of it can
be parsed using the complete grammar actualty used by CATNIP However, MAGE is
capable of extending the grammar so that the parser can understand’ this entire
conversation. The sample Ieaming sessron prwented‘*in Appendix |l shews how
MAGE extends the core grammar to understand new transmrssrons, many of the

transmrssrons in this conversatron are used as examples. -

VVV VVV ROCK ROCK ROCK DE SALT SALTQSA?K

("[Hey] Rock, this is Salt. What is the strength of my signals? -
Ovef " )

VVV VVV ROCK DESALT QSA ? QRK ? QSA ? QRK ?2QTC QTC K

("[Hey] Rock this is Salt. What is the strength of my 3}90&'8? .
- What is the intelligibility of my srgnals" [Can you hear me”]
| have messages for you. QveeY). - FoNOY e o

- SALTDEROCK QSA5QRK5GAK

("Salt, this is Rock. The strength of your signals is verygood. The. .-
intelligibility of your signals is excellent. [I| can hear youl]
Go ahead. Over")

HRTFCHR TFC OK?K

("Here’s some traffic. [I’'m going to send a message now.] Okay?
Over")

QRV K



("l am ready. Over“)

NR 1 GR 200 1500 BT < 100 code- groups) BT BT <100 code groups) BT
QsSL?K |

("[Message] Number one, with 200 groups, at 1500 hours (3 p.m. ) break
<100 code-groups> break <100 code-groupé) break.
Can you acknowledge receipt? Over”)

| NN PSE RPT GRPS 25,40, 98 K |
("No Please repeat groups 25 40, and98 Over" )

OK OK GRP 25 {code- -group) / GRP 40 (code- -group> /
GRP 98 <code- -groyp> K.

("Okay. Group 25 is <code-group> Group 40 is <code-group>
Group 98 is ¢code-group). Over) :

TKSQSLURMSGNFHWK R v
("Thar;ks | am acknowledging receipt of your message number one now,
QTC?K
("Do you have any messages for me? Over") -
QRUQRX?K
("I have nothmg for you When win you eﬁﬂ me agam’Ovefr")
QRXNXTTMWOK?K
("1 will call you again tomorrow. Okay? Gver®)
CCSKSK
("Okay. £nd of contact")
VA R
("End of contact")
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Il. A Learning Session with MAGE

An example of MAGE's performance is given below for each of the seven
‘ general models presented in Section 3.3. The prose in brackets is thai printed by
MAGE for the given example. In éach case, Figure a shows#fﬁé model selected by
the hypothesis-formation afgo}im; Figurg b dispiés}é the original subnetwork
selected by the evaluation measure; and Figﬂ?é c gives the result of. ‘applying the
model to the example and the chosen subhetwqu. Since ft is difficult to show tests
and actions in the diagrams, the selected test/action specifications are presented in
the brief discussion below ea‘chfn(amnle; r |
Exaﬁglg 1 |

ROCK DE SALT PSE ANS QTCK
[Changing state 1 of TFC-INFO to TERMINAL]:

[ MODEL 11
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 [CORE TFC - INFOT

Figure 10b: Core TFC-INFO = -

LEXTENDED TFC-INFOl

Figure 10¢: Extended ¥TFC-INFO - |
("Rock, thls is Salt. Please answer, | have messages for you. Over")
The phrase "ROCK DE SALT" is accepted by the ID-OP subnetwork (Figure
19), and "PSE ANS" is accepted ﬁy the QUAL-CNCT subnetwork (Fig. 21). When a
phrase accepted by ID-OP is followed py a phrase accepted by QUAL-CNCT, the
two phrases together are accepted by the CONTACT subnetwork (Fig. 18). This
subnetwork may be followed by the TRAFFIC subnetwork (Fig. 22), as well as by
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another occurrence of CONTACT, as shown in the OVERALL subnetwork (Fig. 17),
the highest level subnetwork in this ATN. "QTC" matches the symbol on the first
transition of TFC-INFO (Fig. 23), which is pushed. to (Caned)’ by tri‘e,,ffrst,transition df
the higher-level TRAFFIC subnetwork. However, "K" does not match the next
transition in TFC-INFO; instéad, it matches the transition following TFC-INFO in
TRAFFIC. This indicates that the next-state of the "QTC" transition should be a
terminal state so it can pop (return)to :I'RA FFIC, so MAGE changes it.

Since no transitions are added, it is not necessary for MAGE to consider
adding new tests or actions. |
Exemple2

QSL MSGNR 37K
[Adding new transition '7' to state 4 of ACKNOW]

[A1so adding 1 new states to ACKNOW] .

[States: TERMINAL]

CMODEL 21

- Figure 11a: model 2.
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[CORE ACKNOWI

- Figure 11b: core ACKNOW

DO OG0
osL’ \__/ 'MSG' VR £ 2 N

[EXTENDED ACKNOW]

Figure 11c: extended ACKNOW

("Can you acknowledge receipt of message number three? '(:)‘iler") '

The phrase "QSL MSG NR 3" is accepted by the ACKNOW subnetwork (Fig.
28) and "K" matches the symbol on the transition fQIIvaing a (call) p;;sh to
ACKNOW iri‘ the higher-levell REQ-INFO subnetwork (Fig. 26) Since it is known a
priori that extensions should be made to Iower level rather than higher-level
subnetworks whenever possible, MAGE adds a transition "?" to the terminal state of
ACKNOW and creates a new terminal state that pops (returns) to REQ-INFO.

Now the action [SCRATCH input] (store input token in (scratch-pad> register,
destroying the previous contents) is already associated with "QSL". Since "?" refers
back to the g-sign, the action [Q-PEND SCRATCH] (the token in <(scratch-pad> was

used as a question; put it in the <{pending-question> register of the receiving
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operator) is associated with the new transition.!”

Example 3

NFHGRZOQQTR 1400 any BT QSL 7K ,
[Adding new transition 'QTR' to state 4 of HEADER]

[A1so adding 1 new states to HEADER]

[States: # , to TERMINAL]

't MODEL 31~

~ Figure 12a: Model 3 |

E S

{CORE HEADERI

Figure 1zb:,0ere-H5ADER -

17 Alttests and actions are defined in Appendix Il



(EXTENDED HEADER]

qu@ 12c: Extende(j HEADER

("[Now sending message] number one, with 200 groups, at the time 1400
hours. Break}{code-groqps) break. (:,an yonacknow!edge receipt? Over")

“NR 1 GR 200" matches the first few transitions of the HEADER subnetwork
(Fig. 24) and is followed by a transition matehmg "1400" (i.e. the symbcl on this
transition.is " # ). "any BT QSL ? K" is aocepted by the MESSAG subnetwork (Fig.
25), Wthh follows HEADER in the hlgher leve! TRAFFIC subnetwork (Fig. 22). Thus
"QTR #" appears to be an alternate way of phrasing this last " # ", so MAGE
creates two new transitions "QTR" and "#", Wﬁh a new state between them, in
parallel with the ongma! transition for " # "

Since "QTR" is a q-sign fcuowed by an argument the action [SCRATCH input]
is associated with "QTR" and the actlons [Q VAL input] and [Q-ACT SCRATCH] are
associated with the argument. [SCRATCH: inpit] stores the input token in the
<scratch-pad> register, destroying the previous contents; [Q-VAL input] adds the
next input token to the <scra:ch;pad>< register withaut destroymg the préﬁdus
contents; [Q-ACT SCRATCH] removes the q-sign and its argument(s) from



<{scratch-pad>, determines which register to put them in, and puts them there. The
possible registers  include <expected-actions>, <quality-of-contact, |
<general-situation-descripu:on>. In addition, since "QTR " ;s another way of
phrasing the " # ", ahy teéts or actions on the original transition must be copied to
the new ones: therefore, [GMT-TIME input] is-also associated with the new transition
for "#". The action [GMT-TIME input] puts the input token, indicating time of
transmission, in the <time-and-date> reglster
Example 4 |

VVV ROCK DE SALT QSA ?K

'VWV' IS AN UNKNOWN WORD. DOES IT HAVE A

SYNONYM ON THE FOLLOWING LIST?

<list of known vocabulary words that are not q-signs or call-signs>
N

DOES 'VVV' HAVE A QSIGN SYNONYM?

N

COULD 'VVV' BE CONSIDERED A 'NOISE'
WORD?

Y

[Adding new transition 'VVV' from state 0
to 0 of ID-OP]

——O——@

[ MODEL 41

Figure 13a: Model 4
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callsigh

callsign

{ CORE 1D-0P}

Figure 13b: Core ID-OP

o 4N
vy G/S\Jcallsignv. ‘D€'

LEXTENDED ID - OP]

Figure 13c: Extel;déd‘l.b-OP‘ |

("[Hey] Rock, this is Salt. What is the strength of my signals? Over")

Since "VVV" is a new word, MAGE asks the user to supply some information
about its meaning. Since MAGE. is'told-that "VVV".ig a ‘noise’ word,. and it is followed
by "ROCK DE SALT" which is accepted by the ID-OP subnetwork (Fig. 19), MAGE
adds a new transition "VVV" as a loop on the start-state of I.D-O P.

There are no tests or actions associated with noise words.

Example§ |
NR 2 GR 150 1600 any BT any BT QSL 2K
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[Adding new transition ‘any' to state 2 of MESSAG]

[The arc has next-state 1]

——0—®

[ MODEL 51

Figure 14a: Model 5

[CORE MESSAG]

Figure 14b: Core MESSAG

[EXTENDED MESSAG]

Figure 14c: Extended MESSAG




("[Now sending message] number two, with 150 groups, at 1600 hours. Break
<code-groups> break (code-groups> break. Can you acknowledge receipt? Over")

"NR 2 GR 150 1600" is accepted by the HEADER subnetwork (Fig. 24), which
' is followed by the MESSAG subnetwork (Fig. 25) in the higher-level TRAFFIC
subnetwork (Fig. 22). ."any BT" is matchm by the first two transitions of the
MESSAG subnetwork, but the.second “any" does not match any transmons leaving
state 2. Rather than branch to a new path that merges with the old at "QSL", MAGE
notes that the second "any BT" alsp matchee the ﬂrst two transitions of MESSAG.
| MAGE creates a new transition that returns to state 1, so this new phrase can be
repeated indefinitely. A

The tests and actions that are associated with the origtnal "any" transition
from the start state to state 1 are copled to the new "any transiﬁon test [GROUP°
:nputFand action [ADD GROUP mput] [GROUP? iﬂput] retums TRUE i the input is
probably a code-group or English word; [ADD-GROUP input] increments the
<number-of-words-received-so-far~in-mass;ag35 rééister, and puts the input token in
the <last-word-received-in-message> register, which i yseful for error-recovery.
Example 6

QRX?K
[Addtng new transition 'QRX' to state 0 of EtD-CIﬂ]

{Mso adding 1. new stam to BID-CIGI}

[Statos T, to TERIIIIAL]
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(MODEL 61

Figure 15a: Model 6

[CORE END - CNCTI1

Figure 15b: Core END-CNCT



CEXTENDED END-CNCTI]

Figure 15¢: Ext’arxded _EﬂD-CNCT

("When will you call me again? Over”)

Here is a situation where the first word of the example doesn’t match any
transition leaving a start-state. However, the q-sign "QRX" is seniantically
associated with the END-CNCT subaetwoﬂc(m 29). Since "K" appears on a
transition to a terminal state in END-CNCT, and the END-CNCT sﬁbnetwork can
follow itself in the highest-level OVERALL subnetwork (Fig. 17), the new phrase
"QRX ?" is added téEN‘D;CNCTasa newpath, -~ - )

Since "QRX" is a g-sign foﬂowed by a hke!y argument, it is associated with the
action [SCRATCH input], which saves the q-sign in the <scratch-pad> register until
its argument(s) are collected The argument "?" s assocsated with the action
[Q-PEND SCRATCH], whtch notes that the g-sign found in (scratch-pad> was used
as a question and stores it in the <pending-question> register of the receiving

operator.



Example 7

QTC?K

[Adding new transition '?' to state 1 of TFC-INFO]
[A1so adding 1 new states to TFC-INFO]

[States: TERMINAL]

@ .

CMODEL 71

Figure 16a: Model 7



CEXTENDED TFC-iNFOl

Figure 16b: Recently extended TFC-INFO from Figure 10¢c

[EXTENDED TFC-INFO]

Figure 16c: TFC-INFO extended further
("DO you have any messages for me? Overu)

In this case, another exténsion is made to a previously extended :subnetwork



(see Figure 10 above). "QTC" matches the. first transition in the TFC-INFO
subnetwork (Fig. 23), but "?" does not match the transition leaving this state, nor
does it match any transition leaving the state in the TRAFFIC subnétwork (Fig. 22)
that can be popped (returned) to from this terminal state. Since "?" is likely to be a
g-sign argument, a branch is»;:xeated in TEC-INFO that ends in a new terminal state.
(Actually, this terminal state is merged with the other terminal state that has no
transitions leaving it in order to miﬁimize com‘plerxity.)

Since "?" refers to a q-sign, and [SCB&TCHT@put] is a!ready asspciated with
that g-sign (and will store the token in the <sc,;ratch;fp§g> rieg‘§§te‘rr)_, the éction
[Q-PEND SCRATCH] is selected for the new transition (to retrie\?(e_tvhe’q-s_-ig!;};f:rom the
(scratch-pad> register and put it in,the{pending}-queﬂigh) ygg@}gr of the-l receiving

operator).
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I1l. The Core Grammar of MAGE

This appendix includes a list of the chatter words that ‘appear in the core
~ grammar, ilustrations of the subnetworks c¢omposing the core grammar, a-list of
registers, and descriptions of the tests and actions. Afthough the registers, lests,
and actions are the same as used by CATNIPY® {16]; the vocabulary and grammar of
MAGE are considerably smaller than the grammar used by CATNIP. -

| Vocabulary’
? -- question mark; punctuatibh a‘ndﬁ qsignargument
# -- genefic matched by any number
~ ANS - "answer”

any -- matches any code-group or English' word In message

BT -- "break"; a pro-sign

callsign -- generic matched by any (knoWn) call-sign; MAGE cannot recognize
call-signs without being toH

DE -- "this is” or "from"

delim -- generic matching any delimiter: break or punctuatioh |

GR -- "There will be - - - code-groups or English words in next message"

GRPS -- "groups"

K -- "end of transmission"; a pro-sign

location -- generic matched by any (known) location

new-speaker -- denotes speaker change

Bgection 2.2
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NR -- "'number"

PSE -- "please"

QRX -- "l will call you againat - - - hours"' or, if f.qj‘.low‘e;d,l'ﬁ'?", "W‘heniWill you
call me again?"; although MAGE knows the spelling and topical associations of sixty
g-signs, the g-signs listed here are the only ones'that MAGE knows how to use in
context (because they appear-as transition symbols in the core grammar)

QRZ - "You are being called by - - - (on frequency — - <)", or "Who is

calling me?"; parentheses indicate an optional argument

QSA -- "The strength of your siQnaIs is - - =", or "What is the strength of my
signals?” o .

QSL -- "l am acknowl‘ed'ging reéeipt (of - - —=)", or "Can you acknowledge
receipt (of — — <) | ST :

QTC -- "l have - - - messageé for you", or "wa many messages have you
to send?"

RPT -- "repeat" |
SK -- "end of contact"; a‘b;o-sign
ZOH -- "There will be - - ‘code-groups in the next message"
- Sy br;etworks
Legend: |
» States are represented by cirgles anq kqngiﬁgqs; by arrows.

3

« A circle containing an S represents the subnetwork’s start-state. Any
circle with a darkened area represents a terminal state.

¢ Each transition has one or more transition symbols. If a transition has
more than one symbol, they are separated by commas.

A word composed of "upper-case letters surrounded by (éingle)




quotation marks indicates that this transition accepts the particular
chatter word.

oA word composed of upper-case letters, but not surrounded by
‘quotation marks, denotes a push (call) to the named subnetwork.

« "(new-speaker)" denotes a speaker change, or switch of receiving and
sending operators

« Other words composed of lower-case letters, and-".# ", denote generic |
tokens that are replaced by specific chatter words at parse-time (e.g.,
"calisign" may be replaced by "ROCK", an operator’s call:sign).

CONTACT REQ - INFO
(new - speaker) ( new - speaker) {new - speaker)

L REQE INFO

S
CONTACT

TRAFFIC

END - CNCT

: ST END - CNCT
[CORE OVERALL] { new - speaker)

' Figure 17: OVERALL subnetwork
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3
I/E
b N
N
3
b
s
g
2

[ CORE CONTACTI

Figure 18: CONTACT subnetwork

. callsign . DE’ . callsign .

{ CORE ID-OP]

Figure 19: 1D-OP subnetwork




. ‘ORZ’ . WR' . callsign .

[ CORE NET -RELAY]

Figure 20: NET-RELAY subnetwork

[CORE QUAL -CNCTI

Figure 21: QUAL-CNCT subnetwork
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TFC-INFO {new - speaker)

TFC - INFO

C CORE TRAFFIC]

Figure 22: TRAFFIC subnetwork -

[CORE TFC - INFO1

Figure 23: TFC-INFO subnetwork

. ‘NR' . # . ‘R’ . # . # .

LCORE HEADER]

Figure 24: HEADER subnetwork




[CORE MES$AG)

Figure 25: MESSAQ subnetwork

REQ - RPT

ECORE. REQ - INFO1

Figure 26: REQ-INFO subnetwork



delim

_delim '
any. .

[CORE REQ -RPY]

Figure 27: REQ-RPT subnetwork

[CORE ACKNOW]

' Figure 28: ACKNOW subnetwork -




@v : — I,-»:-_. _@
SK', K

CCORE END - CNCT1

Figure 29: END-CNCT subnetwork
Registers

<information-about-receiving-operator> -- Call-siqg;"’iocation of station, and
other information regarding eurrent recelver.. - |

<information-about-sending-obéra’?&f)

Clast-word-received) -- Useful for error-regovery.

{time-and-date>

<scratch-pad> -- Temb&éry étoraée; for savmgarguments, etc. .

<number-of-'words-in-mqssage)

~ <id-number-of-message) -: Usually«numbered in order of sending.

<number of-words- rece:ved-so far-in- messaga) = Useful for comparmg with
contents of <number-of-words-in-message> register to determine whether entire |
message has been received. .

<last- word-rece:ved#sdnasaage} ~Useful for errer-recovery.

<general-'situation-description) -- Description of radio-network status.

{quality-of-contact> -- Description of station status. There is one of these
registers for each active operator.. .

<{expected-action> -- Actions that an operator is expected to perform, usually



in response to request; this provides a context for unpredictable actions. There is
one of these registers for each operator.
.- {pending-questions> -- Questions an operator is expected to answer; this

. provides a context for unpredictable phrases that might be answers 10 questions.
There is one of these registers for each active operator. '

<requests-for-repeats> -- Requests-for something (usually a code-group) to be
repeated.

Tests

[GROUP? input] -- Returns TRUE if the argument is not a g-sign or delimiter;
used only when transition symbol is “any". ,

[NOT? <list>] -- Returns TRUE If the input word is nbt a member of <list>; used
when transition symbol is "any". The argument ‘input’ does not appear explicitly in
this test specification because test and action specifications are coﬁstrained to
include only one argument; however, the actual functions that implement these tests
and actions also have access to the set of context registers and the current input
token.

[~RECEIVER? input] -- Returns TRUE if token is not (due to ‘~’) the same as
the call-sign in the <information-about-receiving-operator> register; used only when
transition symbol is "calisign".

Actions

[RECEIVER input] and [SENDER input] -- Put input token in call-sign field of
<information-about-receiving-operator> . or <information-about-sendin'g-operator)
register, respectively; symbol is "callsign".

[NSPEAK T] -- Switch contents of <informati0n-abodt-receiving-operator) and




<information-about-sending-operator>  registers, if non-empty; symbol is
"new-speaker”, denotiﬁg speaker change. . .

[SCRATCH input] -- Put input token in the <scratch-pad> register, destroying

previous contents; symbol mbitrary

l [Q-VAL input] -- Add input token tohst af tokens in (scratch-pad> register
without destroying previous contents: the first element of list'is the pivot word, others
are its arguments; symbol arbitrary. |

[Q-ACT SCRATCH] -- Get pivot word (usually g-sign) and arguments from
<scratch-pad> register and : pbt in -one .of- the . .(quali:y—n!—contéct),
<{expected-actions>, or (g-enéraI-sitbation-desefimion) registers, depending on
meaning of pwot word and ats argument(s); symbol arbitrary but always pneceded
directly or indirectly by a pivot word

[Q-ACT input] -- The.pasticular pivot word is not likely to have arguments, so
proceed to put it in one of the above registers; sym;bqi usually a g-sign.

[Q-PEND SCRATCH] -- Get pivcﬂ word from the <scratch-pad> register and put
in the <pending-question> or <expected-action> register, depending on the meaning
. of pivot word; symbol is "?". |

[MSG-NUM input] -- Put token in .(id-numbe(-otdnessage> register; this is thé
identification number of the next message; symbol is " # ".

[TFC-GR-NUM input] -- Put token in.<number-of-words-in-message> register,;
this is the number of code-groups or English words to be sent in the next message;
symbol " #". | | .

[GMT-TIME input] -- Put token in time field of <time-and-date> register; this is

time of transmission of most recent message; symbol " # ",
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[ADD-GROUP input] -- Put token in the <Iast-word-received-in-mes_sage)
register, useful for error-recovery, and increment thé
<number-of-words-received-so-far-in-messai;e) register; symbol "aﬁy". |

[LAST-GROUP T] - Compare contents - of the
<number-of-words-received-éo-far-in-message> with contents of
<number-of-words-in-message> register; if former < latter, tell COMDEC to turn off its

code-group recognition mechanism; symbol is "BT" or some other break.
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