MIT/ICS/TR-230 - - \

. 1
e § 4
s ¢
: o
i . J
O “)/
o f4 4
o 3 ['vg([~~.\’ #
Ny ;

THE COMPLEXITY OF THE MAXIMUM NETWORK FLOW PROBLEM

AL

v

Alan Edward Baratz

THE COMPLEXITY OF THE MAXIMUM NETWORK FLOW PROBLEM

Alan Edward Baratz

March 1388

This report was prepared with the support of the National Science
Foundation research grant MCS78-85849.

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge Massachusetts 02139

THE COMPLEXITY OF THE MAXIMUM NETWORK FLOW PROBLEM

by

Alan Eduard Baratz

Submitted to the Department of Electrical Engineering
and Computer Science on May 21, 1979 in partial fulfiliment
of the requirements for the Degree of

Master of Science

Abstract: This thesis deals with the computational complexity of the
maximum network flow problem. MWe first introduce the basic concepts and
fundamental theorems upon uwhich the study of "max-flow" has been built. UWe
then trace the development of max-flow algorithms from the original
“labeling algorithm" of Ford and Fulkerson, through a recent O(VfblOQZV)
algorithm due to Galil and Naamad., We inciude a description of each of
these algorithms, along wWith a proof of correctness and proof of running
time for most of them. Finally we turn our attention to the problem of
establishing lower bounds on the complexity of max-flow. MWe shou that a
straightforward application of the polyhedral lower bound technique
developed by Yao, Avis and Rivest fails to produce a non-linear |ouer bound
on max-flow. In the process, however, ue prove several interesting results
concerning the facial structure of a class of polyhedra very closely
related to the maximum network flou problem.

Key words: computational complexity, geometric complexity, network flou,
poliyhedral decision problem

Thesis Supervisor: Ronald L. Rivest

Title: Associate Professor of Electrical Engineering and Computer Science

ACKNOWLEDGEMENTS

I am deeply indebted to my thesis supervisor, Professor Ronald
Rivest, for first introducing me to the maximum network.flow problem and
for his continued support and guidance. | believe that my association with
him has been the single most important factor in my graduate education.

I would also like to thank Jeffrey Jaffe and Michael Loui for
numerous enlightening discussions. [am especially grateful for their
constructive criticism of my uork.

Finally, 1 would very much like to thank my mother Adele, my uncle
Charles, and my fiancee Raquel for their constant love and support. They
atuays seem to be availabie when | need them. | am especially grateful to
Raquel for her faith and understanding through these past few months. This

thesis is, in spirit, as much hers as it is mine.

Abstract

TABLE OF CONTENTS

ACknoulEdgementS e s s e se0s 0 L A R A N N R R N N N N N NN NN NN EE NN RN

1. Introduction

1.1 An Overvieu of the Thesis secesesecesessrtsnsstovtans o ns

1.2 Basic Definitions and Concepts vveeeveiiscnssnsccsssssscnsens

1-3 Fundamental Theorems LR R R A N N N N N N NN RN NN NEE NN

2. Upper Bounds on Max-Flou

2.1 Introduction .ieeesevesersoseasessosaesorsssossassosssssnsassas

2.2 Ford and FUIKErSON tevesesssceronssesssssssnssssssssscsnsasnsae

2.3 EdMONAS @Nd KBFD +uesversnrensssennsesnsnssssessssnsnssssssscs

2-4 DiniC L A R I I A N I R A A A A A I I B B B IR I B U B DR I B R O

2.5 Karzanov L N I I I R I I I A B A A A A A I A IR S I R I U B A O A B O A B 4

2.6 Further Improvements .eeeeeeeesecsvacas teesesesssrenrasessnese

3. Lower Bounds on Max-Flou

301 IntFOdUCtion L R R N I AR I A B A R AR S AR A A I I A I L I L B L N R 4

3.2 The Model of Computation seveeececsssesescrsorsassnsasencsssns

3.3 Polyhedral Decision Problems .ceeeessecesscsssssssoscasssesses

3.4 Applications to Max-Flom cieveeecorossorsssoassscccenvesssonns

3o5 COHC'USiOnS L A A I A A O I B B B AN B O B B B BN Y BRI BN BN AN B A I B R R I 2 IR 2 L N

References ..

24
29
32
41

66
67

CHAPTER 1 - INTRODUCTION

1.1 An Overvieu of the Thesis

The problem of determining a maximum steady state flow from one
point to another in a network with edge capacity constraints, has come to
be knouwn as the maximum network flow problem {"max-flouw" in short). L.R.
Ford and D.R. Fulkerson [3]) were the first to study max-flow as a
computational probiem. They developed the first max-flou algorithm in the
mid 1958’s and laid the grounduork for much of the research that was to
follow. Since that time max-flow has been widely studied and has developed.
great practical application, especially in the analysis of transportation
and communication netuorks. This thesis will be concerned uwith the
computational complexity of the maximum network flow problem, investigating
both upper and louer bounds on the problem.

The remainder of this chapter will be devoted to a development of
the foundation necessary for any coherent study of the maximum network flou
problem. We will begin by presenting the basic definitions and concepts
that have become standard in the max-flow literature. We shall then
introduce the fundamenta! theorems upon which the study of max-flow has
been built. These theorems, due originaily to Ford and Fulkerson [9], are
knoun as the Augmenting Path Theorem, the Integral Flow Theorem and the
Max-Flou Min-Cut Theorem,

The second chapter in this thesis will deal with upper bounds on
the complexity of the maximum network flou problem. The long and

intriguing history of the search for such bounds is summarized below in

Table 1.1.
Upper Bounds on Max-Flow
1) Ford and Fulkerson (1956) Unbounded
2) Edmonds and Karp (1969) 0(VE2)
3) Dinic (1979) 0(V2E)
4) Karzanov (1973) 0v3)
5) Cherkasky (1976) : 0(v2gl/2)
B) Galil (1978) 0(v5/3g2/3)
7} Malhotra, Kumar and Maheshwari (1978) U(V3)
8) Galil and Naamad (1978) 0(VE-10g2V)

Table 1.1

Each of these bounds has been demonstrated by the construction of a max-
flow algorithm which has the specified worst case running time. Chapter 2
Wwill consist of a survey of each of these algorithms. We note here that
the algorithm developed by Malhotra, Kumar and Maheshwari [1B], which we
Hill call the MKM algorithm, does not result in an asymptotic improvement
over the previous three algorithms. Houwever, this algorithm is very simple
and is probably the best algorithm to use on dense netuorks (Exvz).

The determination of louwer bounds on the computational complexity
of the maximum netuwork flouw prob|eﬁ has thus far received little attention
in the Iiteratuée. In Chapter 3, houever, we shall investigate one
particular approach to establishing a non-linear lower bound on the
complexity of max-flow. The technique we shall deal with is the poluhedral
technique developed in 1377 by A.C. Yao, D.M. Avis and R.L. Rivest [21].

We will show that a straightforward application of this technique fails to

produce a non-linear louwer bound on max-flow. In the process, houever, ue
shall ansuer several questions concerning the facial structure of a class

of polyhedra very closely related to the max-flou problem.

1.2 Basic Definitions and Concepts
This section will be devoted to a presentation of the basic

definitions and concepts that have become standard in the study of max-

flou. We uwill begin by defining a netuwork and a legal flouw function on a
netuwork. These concepts will then be used to develop a formal definition
of the maximum network flow problem. Finally we will introduce the basic

notions of a cut and a flow augmenting path,

Definition 1.1:

A netuork M = (G,s,t,c) is a 4-tuple with the properties:

1) G = (V,E) is a finite directed graph composed of a
set of vertices, V, and a set of edges, E.

2) Tuo distinct vertices seV and teV are specified as
the source and sink respectively.

3) Each edge eet is assigned a non-negative real number
cle), called the capacity of edge e.

For any vertex veV, In(v) denotes the set of all edges incoming to
v and Out(v) denotes the set of all edges outgoing from v. An edge e,
directed from a vertex u to a vertex v in a network I, will often be

denoted by the ordered pair e={u,v).

Example 1.1: (Network na)

V = [s,a,b,c,d, t}
E = {(s,2), (s,b}, (a,c), (a,d),

(b,d), (c,t), (d, t)}
cle) = 10 [for all ecE s.t. exla,d)]
cla,d) =1
Intt) = {(c,t), (d,)}

Out(s) = {(s,al, (s,b)}

Definition 1.2:

A legal flou function f on a netuwork Tl associates with each edge

eeE a real number fl(e) satisfying the conditions:
C1) Bsflelscle), for each edge e€E

C2) Z fle) - Z fle) = 8, for each vertex veV-{s,t}.
eeln(v) e€lut (v)

The value of a legal fiou function f is defined to be:

(1.1) vif) = D fle) - D fle.
eein(t) eelut (t)

Informally we say f is a steady state flouw from 8 to t and fle) is
the steady state flow through edge e. Thus, condition Cl1 telis us that the
steady state flow through any edge must be non-negative and not exceed the
capacity of that edge. Further, condition C2 states that any steady state
flow from s to t must have the property that flow is conserved at every

vertex other than the source and the sink.

Definition 1.3:

An edge e, incident upon vertices u and v in a network I, is said

to be useful from vertex u to vertex v With respect to 2 legal flou

function f defined on I, if either:

1} e=(u,v) and f(e)<cle)
or
2} e=(v,u) and f(e)>8.

Example 1.2:

The following legal flow function fa is defined on network 778 from
Example 1.1: .

10,4
.fgls,a) =5 / fgls,b) = 8
fg(a.C) = 4 fa(a,d) =1
fa(b,d) = 8 fa(c,t) = 4
fa(d.t) = 1
V(fa) = fa(c,t) + fa(d,t) -8 =44]1 = 5

Note - (s,b) is useful from s to b but not useful from b to s
(a,d) is useful from d to a but not useful from a to d
(a,c) is useful from a to c and from ¢ to a

Let us nouw consider a legal flow function, defined on a network T,
whose value is maximum over the set of values of all legal flow functions
defined on 1. Such a flou fﬁnction is said to be maximum uwith respect to
. Notice that the existence of a maximum flow function on a network is
not open to question since a network is composed of only finite capacity
edges. Further, notice that there may exist more than one distinct maximum

flou function on a network.

ODefinition 1.4: (Max-Flow)

The maximum network flow problem is defined as the problem of

10

computing a maximum flow function on a network given as input.

We nouw turn our attention to the basic concepts underlying the
theory on which the study of the maximum network flouw problem has been
built. In particular, uwe present the notions of a cut and a flou

augmentihg path.

Definition 1.5:

A cut in a netuwork Tt is a set of vertices X with the properties:
1) Xev.
2) seX.
3) teX where X = V-X.
The set of all edges e€E uwhich are directed from a vertex in X to a vertex
in X is denoted by (X;X). The capacity of a cut X is defined to be:

(1.2) CX) = X clel.
ec(X;X)

Example 1.3:

The following cut XG isrdefined on network na from Exampie 1.1:
i

'18
' c 18

10

XQ = {S. a, d}

Ra = {b,C. t}
18

C(Xa) = cis,b) + cla,c) + cld,t) = 19+160+18 = 30

11

BDefinition 1.6:

A path p, from vertex vy to vertex v in a network NI, is a

n

sequence of distinct vertices and edges p = viejvoey oo VvV, 184 1V (n22)

such that v,eV (for each i=l,...,n), eieE {for each i=1,...,n-1} and

either e; = (vi.vi+1). in which case e, is said to be a forward edge in p,
or e, = (Vi+1'vi)' in Wwhich case e; is said to be a reverse edge in p, for

each i=1,...,n-1. Any path composed of only foruard edges is called a

chain. Note that a path is defined to be acyclic.

- Definition 1.7:

A flouw augmenting path, with respect to a legal flow function f on

a network I, is a path p’ with the property that each edge eiep’ is useful
from vertex v,ep’ to vertex vi+1ep’. A flow augmenting path from the
source to the sink is called an s-t flow augmenting path. We shall see in
the next section that an s-t flow augmenting path is a path along which f

can be augmented (i.e. the value of f can be increased).

Example 1.4:

The follouwing s-t flow augmenting path Pg is defined with respect

to the legal flow function fg from Exampie 1.2:
Pg = s(s,blb(b,d)d(a,d)ala,clclc, t}t

Note - (s,b), (b,d}, {a,c) and (c,t) are all forward edges along Pg
(a,d) is a reverse edge along Pg

12

1.3 Fundamental Theorems

The study of the maximum network flow problem has been based on
three fundamental theorems first proven by Ford and Fulkerson [39] in the
mid 1958's. These theorems are known as the Augmenting Path Theorem, the
Integral Flow Theorem and the Max-Flow Min-Cut Theorem. This section will
be used to develop formal proofs of each of these theorems. We will begin
by proving the following principle lemma uhich‘ue alluded to at the end of

the last section.

Lemma 1.1:
[f there exists an s-t flow augmenting path p’, with respect to a
legal flow function f on a netuwork 1, then there exists a legal flou

function f7 on N such that v(f’)>v(f).

Proof:

Let p’=v1e1v2e2...vn_1en_lvn {n22) be an s-t fliow augmenting path
with respect to a legal flow function f on a network 11, Define the sets
Eg. Eq and E, as follous:

Eg = {ecE | e is not an edge in p’}

Ey = {ecE | e is a foruard edge in p’}

E; = {ecE | e is a reverse edge in p}.
Note that E{UE, is the set of all edges in p’ and that EBUEIUEZ is the set
of all edges in 1l (i.e. EgUEUE, = E).

Since p” is an s-t flow augmenting path, it follows from Definition
1.7 that v1=s, vn=t and e, is useful from v: to Visl for each i=1,...,n-1.

More explicitly, applying Definition 1.3 yields:

13

(1.3) flel<cle) = cle)-fle)>8, for each edge‘eeEl
and
(1.4) f{e)>8, for each edge eeEz.

Now construct the function 7 as follous:

(1.5) g(e)«c(e)—f(e), for each eek
(1.6) cledefle), for each eeE,
8 « min cle)
eek, UE,
(1.7) f’(e)efle), for each ecEy
(1.8) f7(e)efle)+d, for each eef;
(1.9 f7(e)efle)-8, for each eeE,.

It must now be shoun that f° is a legal flow function on Tl and that
v(f’)>v(f). (Notice that f” is defined on all edges e€E.)

To shouw that f° is a legal flow function on I, we must simply
prove that f” satisfies both condition C1 and condition C2 of Definition
1.2. Let us first consider condition Cl. Since f is a legal flow function
onIl, it follows from Definition 1,2 that:

(1.18) B<fle)<cle), for ali eek.
Thus, applying (1.7) yielids:
(1.11) B<f’(e)scle), for all eeky.
We now notice, from (1.3) and (1.4), that cle)>8 for all eeEjUE, and thus
8>8. Combining this with (1.8) and (1.9), we have:
(1.12) f’(e)>fle), for all eeE;
and

(1.13) f’ el <fle), for all eeEz.

14

We can nou apply (1.18) and (1.12) to (1.8) to obtain:
(1.14) B<f”le)scle), for all eeE;.
Similarly, we can apply (1.18) and (1.13) to (1.9) to obtain:
(1.15) B<f’(el<cle), for all eeE,.
Therefore, combining (1.11), (1.14) and (1.15), we have:
Bsf (e)<cle), for all e€E

and thus f” satisfies condition Cl of Definition 1.2.

We must now prove that f” satisfies condition C2 of Definition 1.2.
This is accomplished by considering any vertex v’eV-{s,t}. Since f is a
legal flow function on 1, it follous from Definition 1.2 that:

(1.16) D fle) - Y fle) = 8.
eeln(v’) eelut (v”)

Further, if v’ is not a vertex along the path p”, then all of the edges
incident upon v’ must be contained in the set Eg. Thus, combining {(1.7) and
(1.16) yields:
D tle) - X fle) = 2 fle) - D fle) = 8.
eeln(v’) eclut(v’) eelniv’) eclut(v”)

(for all v’eV-{s,t} and v ¢p’)

If, houever, v’ is a vertex along the path p’, then let i be the index of

’

v’ along p” li.e. v’ = v.ep’). Since p” is acyclic and v’¢ls, t}, there
must be exactly tuwo distinct edges incident upon v’ which are contained in

p”, namely e;_1 and e All other edges incident upon v’ are therefore

i-
contained in the set EB' We must now consider each of the following four

possible cases:

’

15

1} e;_j€E; and e, ek,
2) e;_€k and e; €k,
3) e;_jeE; and e; ek
4) e;_j€E; and e; ek,
For case 1, we combine (1.7), (1.8) and (1.16) to obtain:

2 e - D fle) [(Z f(e)) + 8] - [(Z f(e)) + 8]

eeln(v’) eeclut(v’) eeln(v”’ eclut(v’)
@) - Tte) + 8 -8
eeln(v’) ecOut(v’)

= D fle) - X fle) = 8.

eeln(v’) eelut(v’)
The same result is proven for cases 2, 3 and & similarly. We therefore

have that:

D fte) - D (e} = B, for all v'eV-{s,t}
eeln{v’) eelut(v’)

and thus f” satisfies condition C2 of Definition 1.2.

To show that v{f“)>v(f), ue first notice that there is exactly one
edge incident upon t which is contained in the path p’, namely en_1° At
other edges incident upon t are therefore contained in the set EB' We must
now consider each of the following two possible cases:

1) en-leEl
2) e,_j€kp.
For case 1, we can simply combine (1.1) of Definition 1.2, (1.7) and {1.8)

to obtain:

viE) = X e - 3 £ le)

eeln(t) eelut (t)

[(}E f(e)) + 6] - D fle

eelin(t) eelut (t)

16
- D fle) - X fle) + 8
eeln(t) eelut (t)
= vif) +8 > vif). (since 8>8)

The same result is proven for case 2 similariy. MWe therefore have that

v(if?) > vif).

The proof of Lemma 1.1 reveals a fairly simple procedure for
augmenting an existing legal flow function on a network, given a
corresponding s-t flouw augmenting path. The procedure consists of
determining the "excess capacity" along each edge in the flow augmenting
path, as defined by (1.5) and (1.6), and then increasing the flow along all
foruard edges and decreasing the flow along all reverse edges in the path.
The amount by uwhich flouw is increased or decreased along each edge is
simpiy the minimum excess capacitg over all edges in the flow augmenting
path.

Ue nou present a lemma which uwill be useful in demonstrating a
relationship betueen the capacity of a cut and the value of a legal flou

function on a netuork.

Lemma 1.2:

Given any cut X and any legal flou function f on a netuork I,

vif) = 2 fle) - X flel.

ee(X;X) ee(X;X)

Proof:

Let X be any cut and f be any legal flow function on a network M.

17

Then by condition C2 of Definition 1.2 and the fact that s ¢ X, we have:

(1.17) > (X tter - X fter) = e

veX-{t] eeln(v) e€lut (v)

Combining (1.1) of Definition 1.2 and (1.17) yieids:

1.18) vif) = Tt - Dt + 2 (T s - 3).

ecln(t) eelut (t} veX-(t} eelniv) ec0ut (v)

Simplifying (1.18) we obtain:

vin = Y (Tee - 3 te)

veX eeln(v) eelut (v)
= > Xl - X X tfle).
veX eelnlv) veX eelutlv)

Thus, ue have that the value of f is equal to the sum of the flou along all
edges directed into a vertex in X minus the sum of the flow along all edges
directed out of a vertex in X. If we now consider separately those edges
directed from a vertex in X to a vertex in X and those edges directed from

a vertex in X to a vertex in X, we obtain:

vid = (T + Tie) - (e + I i)

ee(X;X) ee(X:X) ee(X;X) ee(X;X)

= D fle) - 2 flel,

ee(X;X) ee(X;X)

Corollary 1.1:

I[f the value of a legal flow function f’ is equal to the capacity
of some cut X’ on a network T, then f’ is maximum on M and X’ has minimum

capacity over all cuts on I,

Proof:

Let X be any cut and f be any legal flouw function on the network

18

It. Then by Lemma 1.2 we have that:

vif) = D fle) - D flel.

ec(X;X) ee(X;X)
Applying condition Cl of Definition 1.2 we obtain:

vif) < }S cle)
ec(X;X)

and thus by (1.2) of Definition 1.5:

(1.13) vif) < C(X).

Therefore, if (1.19) holds by equality for some legal flow function f° and
some cut X7 on the network I, then f’ must be maximum on JU and X’ must

have minimum capacity over all cuts on I

We are now ready to present the three fundamental theorems upon

which the study of max-flow has been built.

Theorem 1.1: (AugmentingvPath Theorem)
A legal flou function f on a network 1 is maximum if and only if

there exists no s-t flow augmenting path with respect to f on Il

Ciearly, if there exists an s-t flow augmenting path uith respect
to a legal flow ?unction f on a network 1, then by Lemma 1.1 f is not
maximum on Tl. Assume now that there is no s-t flow augmenting path with

respect to f on T and define the set S as follous:

S = {veV | 3 an s-v flow augmenting path with respect to f on 1Y u {s}.

19

Since there is no s-t flouw augmenting path with respect to f on I, it can
easily be seen from Definition 1.5 that S forms a cut in 1. Further, from
Definition 1.3 and Definition 1.7 we have that f(e)=c(e) for each edge
e€(5;5) and f(e) = B for each edge ee(5;S). We can nou apply Lemma 1.2 to

obtain:

viF) = D fle) - X fle)

e€(5;5) ec(5;S)

= :S cle)

e€(5;5)
= C(S).

Thus, by Corollary 1.2 we have that f is maximum on T

Theorem 1.2: (Integral Fiow Theorem)
There exists an integral valued maximum flow function on any

netuork defined by an integral valued capacity function.

Let T be any netuwork defined by an integral valued capacity
function and let f¢ be the zero flow function on 11, defined by f¢(e)-0 for
each edge eeE {(Notice that such a flow function will be a legal flou
function on any network). We can now compute a maximum flow function on 11
as follous:

while there exists an s-t flou augmenting path
uith respect to f¢ on T
do augment f¢ as outlined in

the proof of Lemma 1.1,

20

An examination of (1.5) through (1.9) reveals that the iegal flow function
generated at each iteration of this procedure uwiil be integral valued.
Thus by Lemma 1.1, the value of each successive legal flow function
generated must be at least one integral unit greater than the vailue of the
previous legal flow function. Combining this fact with {1,139} and Theorem
1.1, we nou have that our procedure must halt within a finite number of

steps, yielding an integral valued maximum flow function on I,

Theorem 1.3: (Max-Flouw Min-Cut Theorem)
The value of any maximum flow function on a netuwork 1T is equal to

the minimum cut capacity over all cuts on 1L

Let f be any maximum flow function defined on a netuork Tl
Applying Theorem 1.1 ue have that there is no s-t flow augmenting path with
respect to f on M. It nou follows immediately from the proof of Theorem
1.1 that there exists a cut S on M such that:

vif) = C(S}.
Further, by Corollary 1.2 we have that the cut S must have minimum capacity
over all cuts on Tl Thus, the value of any maximum flow function on T is

equal to the minimum cut capacity over all cuts on I,

We shall see in Chapter 2 houw the previous three theorems form the

basis for all the max-flow algorithms that have thus far been developed.

21

In fact, we uwill see that each algorithm is actuaily a variation of the

procedure given in the proof of Theorem 1.2.

22

CHAPTER 2 - UPPER BOUNDS ON MAX-FLOW

2.1 Introduction

The formal definition of the maximum network fiow problem, as
presented in Section 1.2, can be explicitly stated as follous. Given any
netuork Il as input, compute values of the variables Xe [for each eeE) so

as to maximize the objective function

X X - X X

eeln(t) eelut(t)

subject to the constraints

Xe > 0, for each eet

X < cle), for each e€E

e
> Xe - > Xe = @, for each veV-{s,t}.
eelnlyv) eelut (v)

Thus the maximum network flow problem can be viewed as an optimization
problem in uhich a |inear function must be maximized subject to a system of
linear equations and linear inequalities. G.B. Dantzig [4] developed an
algorithm in the early 1958's, knoun as the simplex method, which could be
used to solve such linear programming problems. Although it would not be
incorrect to consider the simplex method to be the first max-flou
algorithm, it is usuaily not treated as such, The simplex method is a very
general algorithm which has an unbounded worst case running time. HWe have
included it here only for the sake of completeness.

L.R. Fora and D.R. Fulkerson [3] uere the first to produce
significant research results concerning, specifically, the maximum network

flouw problem. In the mid 1958’s they proved the .Augmenting Path Theorem,

23

the Integral Flow Theorem, and the Max-Fiow Min-Cut Theorem. These
fundamental results led directiy to their development of the labeling
algorithm for solving the maximum network flow probltem. The labeling
algorithm is a straightforward algorithm which simpiy augments an existing
legal flow function along some s-t flow augmenting path in a network. This
proéess is then repeated until there no longer exist any s-t floy
augmenting paths in the network. The labeling algorithm, although it also
has an unbounded worst case running time, remained in successful use for
almost 15 years.

In 1969, J. Edmonds and R.M. Karp [7] developed a variation of the
labeling algorithm which utilized a Breadth First Search in picking out the
s-t flow augmenting paths in order.of increasing length., This resulted in
a much more efficient algorithm with a bounded D(|V|1E|2) worst case
running time. Independently and a short time later, E.A. Dinic (5]
developed an improved version of Edmonds and Karp's algorithm. Dinic also
utilized the technique of Breadth First Search but he developed an
algorithm with time complexity 0(|V|24El).

A.V. Karzanov (14] modified Dinic’s aigorithm in 1973 to obtain an
D(|V|3) max-flow algorithm. Karzanov's algorithm was unique in that it
simul taneously augmented an existing legal flow function along several s-t
flow augmenting paths. [n 1976, B.V. Cherkasky [18] shoued hou to combine
Dinic's algorithm with Karzanov's algorithm to produce a new and very
comp |l ex U(IV|24E|1/2) max-flow algorithm. Two years iater, Zvi Galil [18]
improved Cherkasky's algorithm to 0(|V|5/31E|2/3) by developing a

technique for retaining useful information about the structure of the

24

network,

In 1978 V.M. Malhotra, M. Pramodh Kumar and S.N. Maheshwari [16]
discovered a very simple D(|V|3) max-flow algorithm which ue shall call the
MKM algorithm. Their algorithm, similar to Karzanov’'s algorithm in that it
simul taneously augments along several s-t flou augmenting paths, requires
very little ovérhead. Although the MKM algorithm does not result in an
asymptotic improvement over the previous three algorithms, its simplicity
makes it perhaps the best algorithm to use on very dense networks (EzVZ).

Finally, Galil and A. Naamad [12] have recently developed a
modification to the original Dinic algorithm which results in an algorithm
With time complexity O(|V|-|E|-log?|V|). Their modification of Dinic’s
algorithm is similar to Galil's modification of Cherkasky's algorithm.
Once again a technique is developed for retaining useful information about
the structure of the network,

The remainder of this chapter will be devoted to a closer

examination of each of the maximum network flou algorithms.

2.2 Ford and Fulkerson

Ford and Fulkerson [3) developed the first maximum network flou
algorithm, knoun as the labeling algorithm, in 1956, Their algorithm simply
augments, along some s-t flow augmenting path, the existing legal flou
function on a neéuork. This augmentation is then repeated until there no
longer exist any s-t flow augmenting paths on the network. In practice the
zero flow function {i.e. fle)=0 for all edges e) is used as the initial

existing legal flouw function.

25

The labeling algorithm is composed of two basic routines which are
iterated until a maximum flow function is computed. The first routine
essentially searches in a systematic way for an s-t flow augmenting path on
the network. The second routine then augments the existing legal flowu
function along this flow augmenting path. The actual flow augmentation is
per formed exactly as outlined in the proof of Lemma 1.1, The following

explanation of the labeling algorithm is taken from [13):

Step 1. Labeling Process.

Every vertex is aluays in one of three states, labeled and scanned,
labeled and unscanned, or unlabeled. A vertex is labeled and scanned if it
has a label and we have inspected all vertices adjacent to it. A vertex is
labeled and unscanned if it has a label but not all vertices adjacent to it
have been inspected. A vertex is uniabeled if it has no label.

Initially, all vertices are unlabeled, A label for a vertex v
aluays has tuwo parts. The first part is the index of a vertex v,, uhich
indicates that ue can send flow from vi to vj. and the second part is a
number uhich indicates the maximum amount of flow we can send from the
source to v; without violating the capacity constraints. MWe first assign
the label [s*,els)=w] to the source, v,. The first label simply says that
we can send flow from the source to itself; the number «» indicates that
there is no upper- bound on how much can be sent. The source is nou labeled
and unscanned and all other vertices are uniabeled. In general, select a
ver tex vj which is labeled and unscanned. Assume ¥ has a label of the

form [i*,e(j)) or [i7,e(j)]. For all adjacent vertices vk Which are

unlabeled, adjacent to Vi via an edge directed from vj to Vi and for uwhich

26

the edge e=(vj,vk) is useful from v; to vy (i.e. f(vj.vk)<c(vj.vk)). assign
the label [j*, e(k)] to Vi» where:
elk) = minle(j), c(vj,vk)-f(vj.vk)].
For ail adjacent vertices Vi uhich are unlabeled, adjacent to vj via an
edge directed from v to Vi and for which the edge es(vk,vj) is useful
from v to v (i.e. f(vk,vj)>0). assign the label [j ,e(k)] to Vs Hhere:
e(k) = minle(j), f(vk.vj)].

The + and the - signs in the labels indicate uhether the
corresponding edges appear as forward or reverse edges in the s-t flowm
augmenting path. Now all the vertices adjacent to Vi have labels; Vi is
considered to be labeled and scanned and may be disregarded during the rest
of this step. (If one inspects all the vertices adjacent to Vi and cannot
label all these vertices, then v. is also considered to be a labeled and

J
scanned vertex.) All the vertices v are now labeled and unscanned.
Continue to assign labels to vertices adjacent to labeled and
unscanned vertices until either the sink is labeled or no more labels can
be assigned and the sink is uniabeled. [f the sink cannot be labeled, no
s-t flou augmenting path exists and, hence, the existing flouw function is

maximum., If the sink is labeled, an s-t flow augmenting path has been

found and the flow augmentation can be performed using step 2.

Step 2. Flou Change.

Assume that the sink is labeled [k*,e(t)). Let
f(vk,vt)«f(vk.vt)+e(t) and turn to v,. If v is labeled [j+,e(k)], let
f(vj,vk)ﬁf(vj.vk)+e(t) and turn to vie If v, is labeled [j7,e(k)l, let

f(vk,vj)ef(vk.vj)-e(t) and turn to vj. Continue until the source is

27
reached. Erase the labels on all the vertices and go back to step 1.

When the labeling algorithm terminates, the set of all labeled
vertices clearly forms a cut in the network. Further, applying Lemma 1.2
reveals that the capacity of this cut must be equal to the value of the
existing legal flow function on the network. Thus by Corollary 1.1, the
existing legal flow function must be maximum. It now remains to be shoun
that the labeling algorithm will always terminate within a finite number of
steps.

Let us first consider the case in which the network is defined by
an integral valued capacity function. By the same argument as that used in
the proof of Theorem 1.2, it can easily be seen that the labeling algorithm
will terminate after at most v(f_) iterations, where v(f .) is the
finite value of a maximum flow function on the netuwork. Further, each
iteration uwill require at most 0(|E|) operations since each edge is
examined at most tuwice in the labeling procedure and at most once in the
augmenting procedure. Thus we have that the labeling algorithm will
correctly compute, in time O(IEIN(fmax)). a maximum flouw function on any
netuork defined by an integral valued capacity function. It can also be
shoun, houever, that there actually exist netuworks which force the labeling
algorithm to perform V(fmax) iterations. Consider for example the netuork

nl in Figure 2.1.-

28

Ne tuwork nl

Figure 2.1

If the labeling algorithm,‘beginning with the zero flow function on 771.
augments only along the paths sl(s,alala,clclc,f)f(f,hlh(h,t)t and
s{s,blb(b,d)d(d, f) f(c,flclc,elele,glglg,t}t in aliternating order, then 2N
= v(fmax) flow augmentations will be required. Thus the algorithm will
iterate V(fmax) times. Notice that the inefficiency in this example is
based on the fact that the labeling algorithm permits the augmentation, at
each iteration, along any one of several existing s-t flow augmenting
paths.

We shall nou consider the case in uhich the network is not defined
by an integral valued capacity function. Ford and Fulkerson [3] were able
to demonstrate the somewhat surprising result that their labeling algorithm
might fail to terminate if the network was composed of irrational edge
capacities. This result was based on interpreting the labeling process
broadly enough to permit the selection of any s-t flow augmenting path at
each iteration of the computation. Thus the labeling algorithm essentially
has an unbounded worst case running time. We remark, however, that
computers only deal with rational numbers and thus in practice we could

expect the labeling algorithm to halt and yield a correct ansuer. In fact,

29

despite its weaknesses, the labeling algorithm was successfully used for

almost 15 years.

2.3 Edmonds and Karp

In 1369 Edmonds and Karp [7] shoued hou the labeling algorithm
could be modified to obtain a bounded worst case running time. In light of
our previous remarks, it should not be surprising to learn that their
modification uas essentiallg an ordering on the selection of the s-t flou
augmenting paths. Edmonds and Karp suggested augmenting along the shortest
s-t flow augmenting path (i.e. an s-t flow augmenting path containing a
minimum number of edges) at each iteration. This can be easily
accomplished by modifying the labeling process so that the vertices are
scanned in the same order in which they receive labels (i.e. by imposing a
Breadth First Search on the labeling process). The remainder of the
labeling algorithm is unchanged. The running time bound on Edmonds and
Karp’s "first labeled, first scanned" modification of the labeling
algorithm is derived from the follouwing results (15].

Consider any network Il upon which there is defined a legal flow
function f. Let cdk) denote the minimum number of edges in an s-u flou
augmenting path after k augmentations of f. Similarly, let rék) denote the
minimum number of edges in a u-t flow augmenting path after k augmentations

of f.

Lemma 2.1:

I1f each flow augmentation of f is made along an s-t augmenting path

30

with 'a minimum number of edges, then:

(k+l) 5 (k)
’u

20,
and
f(k)

(k+1)
fu Zu

for all u,k.

Proof: (From [15])

Assume that d£k+1) < cék). for some u,k. Moreover, let:
(2.1) ctgk-!-l) = m\i,n (a,éki-l) l ’ék.’.l) < U:k) }'
Clearly cék+1) 2 1 (only c;k*ll = @), and there must be some final edge

{u,v) or (v,u)l in a shortest s-u fiou augmenting path after the (k+1) 8t

augmentation of f. Suppose this edge is (v,u), a foruward edge, uith

(k1) _ g (k1)
v

u + 1

f(v,ul<clv,u) (the proof is similar for (u,v)). Then @

and by {2.1),
(2.2) : cék*l) 2 cék) + 1.

Further, it must have been that flv,ul=c(v,u) after the kth augmentation of

, contrary to the assumption. But if

f; otheruise o'k) ¢ aék)+1 < ,£k+1)

u = b3

- flv,u)=clv,u) after the kth augmentation of f and f(v,ul<c{v,u) after the
{k+1) St augmentation of f, it follous that (v,u} was a reverse edge in the
(k+1)8 s-t flou augmenting path along which f was augmented. Since that
path contained a minimum number of edges,

cék’ - c&k) + 1.

Combining this with (2.2), however, ue obtain:

(k) (k+1)
o, 2 s 7, .
contrary to our assumption. The assumption that ddk+1) < cék) is

31

therefore false.

(k+1) (k)

The proof that T 2 7, parallels the above.

Theorem 2.1:
If each flow augmentation of f is made along an s-t augmenting path
with a minimum number of edges, then a maximum flow function is obtained

after no more than |V|-]E|/2 augmentations of f.

Proof: (From [(15])

Each time an augmentation of f is made, at least one edge in the s-
t augmenting path is "critical" in the sense that it limits the amount of
augmentation. The flouw through such an edge (u,v) is either increased to
capacity or decreased to zero. Suppose (u,v) is a critical edge in the

(k+1) 5% o_¢ augmenting path. The number of edges in the augmenting path is

(k) (k) (k) (k)

g, + T =0+ r R
The next time edge (u,v) appears in an s-t augmenting path, say the
(2+1)%Y, it will be with the opposite orientation. That is, if it was a

foruward edge in the (k+1)5t, it is a reverse edge in the (l+1)9t. and vice

)St

versa. If (u,v) was a forward edge in the (k+l s-t augmenting path (the

proof is similar for a reverse edge), then:

6$k) - v&k) +1
and (2) (£)
o, =0, +1.

. Thus We have that:

By Lemma 2.1, however, Uéﬂ) > ¢k ang f(l) R ALL

I u Tou

32

3] (£) (k) (k)
g, + T, 20+ T+ 2.

It follouws that each succeeding s-t augmenting path in which (u,v) is a
critical edge is at least tuo edges longer than the preceding one.

No flow augmenting path may contain more than |V|-1 edges.
Therefore, no edge may be a critical edge more than |V|/2 times. But each
s-t augmenting path along which f is augmented contains a critical edge.
Therefore there can be no more than [V]|:|E|/2 successive s-t flou

augmenting paths and this completes the proof.

Since Edmonds and Karp's algorithm differs from the original
labeling algorithm only in the order in which the unscanned vertices are
scanned, it follous that their algorithm will yield a maximum flouw function
if it halts and that their algorithm will require only O(|E|) operations .
per iteration. By Theorem 2.1, however, Edmonds and Karp's algorithm is
guaranteed to halt after at most |V|:|E|/2 iterations. Further, this
result is independent of the capacity function; holding for irrational
valued capacity functions as well as integral valued capacity functions.
Thus Edmonds and Karp's algorithm will correctly compute, in time

O(IVI-IEIZ). a maximum flow function on any netuork given as input.

2.4 Dinic
In 1978, E.A. Dinic (5) developed a maximum network flow algorithm
uith a bounded D(iVlzﬂEI) worst case running time. Dinic’s algorithm,

like Edmonds and Karp's algorithm, is based on successive flou

33

augmentations along s-t flow augmenting paths of minimum length. Dinic,
houever, noticed that a single breadth first search of a flou network could
be used to isolate all minimum length s-t flow augmenting paths. Based on
this observation, Dinic's max-flou algorithm is much more efficient than
the "first labeled, first scanned" algorithm of Edmonds and Karp. In order
to present Dinic’s algorithm, we must first introduce the notion of a

layered netuwork.

Definition 2.1:

A layered network LN is a network whose vertex set is partitioned

into disjoint subsets Vg,Vy,...,Vy such that Vg = {s} and v, = {t}. We say
that V; is the i'M layer in LN (for Bsisf) and that £ is the length of the
layered netuwork LN. Each edge e=(u,v) in LN has the property that if ueV,
then veVi+1 (i.e. every edge in LN is directed from one layer to the

next).

Example 2.1: (Layered Netuwork LNg)

Vg={5}- V1={a,b}. V2={c.d}. V3={t}

E={(s,a), (s,b), (a,c), (a,d),
(b,d), {c, t), (d, t)}

cle)=1 [for all eekE]

Each iteration of Dinic’s algorithm is called a phase and each
phase is divided into two procedures. The first procedure generates a

layered netuwork from the original input network, in such a way that the

34

layered network isolates all existing minimum length s-t flouw augmenting
paths. The second procedure then uses this lagered netuwork to successively
augment the existing legal flow function along these minimum length s-t
flow augmenting paths. MWe will first describe how Dinic’s algorithm
performs each of these procedures and then we uWill state the entire
algorithm.

The first task performed during each phase of Dinic’s algorithm is
the construction of the layered network. The layers composing this netuork
are created from a breadth first search of the input network. This breadth
first search begins at the source and traverses only foruard directed edges
Wwith flow less than capacity or backward directed edges with flou greater
than zero (i.e. only "useful" edges). The search terminates when either
the sink is reached or no neuw vertices can be visited and the sink has not
been reached. When the sink cannot be reached, however, the existing legal
flow function is a maximum flow function and Dinic's algorithm bhalts.
Notice that performing the search in this way assures that there exists a
flow augmenting path from the source to each vertex visited. The layers,
Vi' are finally formed by partitioning the vertices visited according to
the length of their path of discovery from the source. Every vertex veVi
will then have the property that the shortest s-v flow augmenting path,
with respect to the existing legal flow function on the input network, is
of length i. Theréfore. the tength of the layered network constructed will
be equal to the length of the shortest existing s-t flow augmenting path.

The following procedure formalizes this construction [8].

35

procedure LN(T, f):

begin
Va:={sh
. i:=03

. uwhile (iz=i+l) > @ do

. begin
. . Ti=fvev |v¢Vj for j<i and there exists a

useful edge from a vertex in V;_; to vh
if T=¢ then halt {the existing f is maximum)

. . else if tel then begin

. Bi=is
. . . Vpsith
. . o itm-l
. . end
. else V;:=T
end
end.

Once the layers have been generated, the layered network’s edge set
and capacity function are constructed. The edge set is simply constructed
from all edges in the original input netlork uwhich are useful from a vertex
in V, to a vertéx in V.. (for all B<i<f). Every edge in the layered
netuwork, houever, is directed from the ith layer to the (i+1)St {ayer,

regardless of its orientation in the input network. Any edge in the

layered netuwork whose orientation is different in the input network is said

36

to be a reverse edge in the layered network. Similarly, any edge in the
layered network whose orientation is the same in the input netuwork is said
to be a foruward edge in the layered netuwork. The capacity function g is
then created from the excess capacity along each edge in the layered
network as follous:
E(e)vc(e)-f(e). for all foruward edges in the layered netuwork
and
E(E)&f(e), for all reverse edges in the layered network,

where f is the existing legal flow function and ¢ is the capacity function
on the input network. [t should now be clear that every s-t chain in the
layered network corresponds to an existing minimum length s-t flow
augmenting path in the input network. Further, every minimum tength s-t
flow augmenting path in the input netuwork is represented by an s-t chain in
the layered network. Thus the layered netuwork constructed during each
phase of Dinic's algorithm essentially isolates all existing minimum length
s-t flow augmenting paths.

The second task performed during each phase of Dinic’s algorithm is
the flow augmentation. Starting at the sink in the neuly constructed
layered network, the algorithm follows edges backward to the source to find
an s-t flow augmenting path. (Recall that every s-t chain in the layered
network corresponds to an existing s-t flow augmenting path in the input
network.) The e#isting legal flow function is then augmented along this
path as outlined in the proof of Lemma 1.1. Notice that the excess capacity
along each edge in the flouw augmenting path is given by the layered netuwork

capacity function, 8. After augmenting along this path, the algorithm

37

adjusts the capacity function 8 to reflect the new excess capacity along
each edge in the path. It also deletes from the layered network all edges
in the path uhose excess capacity drops to zero, Finally, it deletes from
the layered netuork all vertices and their incident edges which are no
longer reachable from the source or the sink. This is accomplished by
deleting all vertices which either have no incoming edges or have no
outgoing edges, and continuing to delete such vertices until every vertex
left in the layered network has at least one incoming and one outgoing
edge. After all necessary deletions have been performed, the algorithm
searches for another flow augmenting path and the augmentation process is
repeated. This continues until there no longer exist any s-t chains in the
layered netuork.

Dinic’s complete max-flow algorithm is: (From [20]))

procedure DINIC(TV:
begin
. initialize existing legal flow function f, on input network 1, to 8;

. uhile "true" do

. . construct layered netuork, LN;

. . for each vertex v in LN do

. . . calculate indegree (v);

. . . calcutate outdegree (v):

. . . if (indegree (v)=8) or (outdegree (v)=8) then

. . . add v to nultist

38

. . end;

. -« uhile t is a vertex in LN do

. . . trace back from t to s to find an augmenting path;

. . . augment f along this path;

. . . update G With neu excess capacity along each edge in path;
. . . delete from LN all edges along path which nou have zero
. . . excess capacity (i.e. E(e)=8). updating indegrees,

. . . outdegrees, and nullist;

. . . while some vertex v is on nullist do

. . . delete v and incident edges from LN and from nullist,
. . . updating indegrees, outdegrees, and nullist

. . end

. end

end.

Recall that Dinic’s algorithm terminates when the breadth first
search performed in constructing each layered network fails to reach the
sink. When this occurs, houwever, the set of all visited vertices clearly
forms a cut in the input network. Further, applying Lemma 1.2 reveals that
the capacity of this cut must be equal to the value of the existing legal
flow function. fhus by Corollary 1.1, the existing legal flow function
must be maximum. It now remains to be shown that Dinic's algorithm will
aluays terminate uithin time 0([V|21E|). This is proven as a consequence

of the following lemma [8) which shous that the number of phases is bounded

39

by |V].
Let Ek denote the length of the layered network constructed during

the kth

phase of Dinic’s algorithm.
Lemma 2.2:

[f the (k+1)8! phase of Dinic's algorithm is not the tast, then

ber1 > -

Proof: {(From (8))
Consider any s-t chain in the layered netuwork constructed during

the (k+1)St phase of Dinic’s algorithm:

v by
8 > v > vy t.
1 +1-1

First, let us assume that all the vertices in this chain appear in
the kth layered netuwork. Let Vj be the jth layer of the kth layered
netuwork. We claim that if vaevb then a2b. This is proven by induction on
a. For a=8, (vg=s) the claim is obviously true. Nou assume v, j€V.. 1f

c<b+l the inductive step is trivial. If, however, c>b+l then the edge €241

kth

was not used in the kth phase since it uas not even in the layered

netuork, in which only edges between adjacent layers appear. But if e, ;

was not used in- the kP phase and is useful from v, to in the

a Va+l

yst in the

phase, then it was useful from v_ to

beginning of the (k+l a Vasl

beginning of the kth phase. Thus, Vael Cannot belong to Vc {(by procedure
LN). Now, in particular, t=v£k 1 and teVlk. Therefore, lk+lzlk'
+

Further, equality cannot hold because then the entire s-t chain would have

43

been in the kth layered network, and if all its edges are still useful at

the beginning of the (k+1)8t phase then we have a contradiction to the

termination of the kth phase.

1f not all the vertices in the s-t chain appear in the kth layered

e
———Qil>va+1 be the first edge such that for some b,

network then let \F

vae:Vb but v is not in the kP layered network. Thus, 8,4, Was not used

a+l
in the kth phase. Since it is useful in the beginning of the (k+1)St

kth phase. Thus

phase, houever, it was also useful in the beginning of the
the only possible reason for v, { not to belong to V., is that b+l=l, .

Further, by the argument of the previous paragraph azb., Therefore, a+121k

and so 2k+1>£k'

Corollary 2.1:

Given any network Tl as input, the number of phases performed by

Dinic’s algorithm must be less than or equali to |V].

Any layered network constructed by Dinic’s algorithm must contain
no more than |V| layers. Thus by Lemma 2.2 there can be at most |V]
phases.

O

We now notice that the time required during each phase of Dinic’s
algorithm, to construct the layered network and initialize the indegrees,
outdegrees, and nullist is bounded by O(|E|). Further, each flou

augmentation requires time 0(|V|) and there can be at most O(|E|) such

41

augmentations since each augmentation causes the deletion of at least one
edge from the layered network. Finally, the total time required during
each phase of Dinic’'s algorithm to deiete edges, delete vertices, and
update indegrees, outdegrees, and nullist is bounded by O(]EJ). This
results from the fact that each edge and each vertex can be deleted from
the layered netuork at most once. [t should now be clear that each phase
(iteration) of Dinic's algorithm has time complexity O(|V|-|E|})., Thus by
Corollary 2.1, ue have that Dinic’s algorithm will always terminate within
time O(|V|21E|). Therefore, Dinic’s algorithm will correctiy compute, in

time 0(|V|2-|E|). a maximum flow function on any netuwork given as input.

2.5 Karzanov

A.V. Karzanov (8,14] modified Dinic's algorithm in 1973 to obtain
an D(|V|3) maximum network flow algorithm. Karzanov noticed that the
layered netuwork constructed during each phase of Dinic’s algorithm could be

used to simultaneously augment along all existing minimum length s-t flou

augmenting paths. He then shoued how this simultaneous augmentation could
be performed in time 0(|V|2). Karzanov's algorithm is the result of
replacing Binic’'s O(|V|:]E|) successive flou augmentation procedure uith
this neu U(|V|2) simul tanecus flow augmentation procedure.

Karzanov's results are based on the notion of a maximal flou
function. A maxiﬁal flow function ?. on a network I, is defined to be any
legal flow function on T which has the property that every s-t chain in I
contains at least one saturated edge (i.e. at least one edge e such that

flel=cle)). From the fallowing example it can be seen that a maximal flow

42

function on a netuork need not be a maximum flow function on that netuwork.

Example 2.2:

The following maximal flow function ?0 is defined on the layered
netuork LNg from Example 2.1:

fgls,al=l Ty(s,n)=0

fgla,c)=8 Fyla,d)=l

falb,d1=8 Fylc,t)=0

fa(d, t)‘—'l

v(?a)-l is not maximum.

Karzanov noticed that the flow augmentation required during each
phase of Dinic’s algorithm could be achieved by simply augmenting the
existing legal flow function f with any maximal flow function t on the
current layered netuork. Once such a maximal flow function had been
computed, the flow modification could be performed as folloust

f’(e)kf(e)+?(e). for all forward edges in the layered netuork

and

f’(e)ef(e)—?(e). for aill reverse edges in the layered netuork.
It can easily be seen that performing the augmentation in this manner is
essentially the same as simultaneously augmenting along all existing
minimum length s-t flow augmenting paths, Wwhere each individual
augmentation is performed exactly as outlined in the proof of Lemma 1.1.
Karzanov used this clever augmentation technique to develop the follouing

modification of Dinic's algorithm,

43

procedure KARZANOV (1U):
begin
. initialize existing legal flow function f, on input network I, to 8;

. uhile "true" do

. begin
. . construct layered network, LN;
. . compute maximal flow function % on LN;
. . for each edge e in T do
. . if e is a forward edge in LN then fle):=fle)+f (e
. . else if e is a reverse edge in LN then fle)i=fle)-Fle)
. end
end.
Notice that Karzanov's algorithnm, like Dinic's algorithm,

terminates when the breadth first search performed in constructing each
layered network fails to reach the sink. By the same argument as that used
for Dinic’s algorithm, however, the existing legal flow function must be
maximum when this occurs. Therefore if Karzanov's algorithm halts, then
the existing legal flou function must be a maximum flouw function on the
input network. Next we notice that the proof of Lemma 2.2 is valid for
Karzanov's algorithm as well as Dinic’'s algorithm. Thus given any netuork
It as input, the number of phases performed by Karzanov's algorithm must be
less than or equal to |V]. It should also be clear, however, that the time
required to construct each layered network and perform each flowu
modification is bounded by O(|E|). Therefore if we let ¢t denote the time

required to compute each maximal flow function, then Karzanov's algorithm

44

is guaranteed to halt uithin time O(}V|-|E] + [V|2). WUWe uwill nou shou hou
Karzanov's algorithm computes each maximal flow function in time D(|V|2) to
yield an 0([V|3) max-flou algorithm.

Karzanov's algorithm computes each maximal flow function by
successively improving an existing illegal flow function, called a preflou
function, on the current layered network LN [8,10,14). For each vertex v
in LN, let In“(v) denote the set of all edges incoming to v in LN and let
Out’(v) denote the set of all edges outgoing from v in LN, A preflou
- function ?. on the layered network LN, associateé With each edge e in LN a

real number f(e) satisfying the conditions:

C3) B<flelscle), for each edge e in LN
C4) E ?(e) 2 Z ;(e). for each vertex v#s,t in LN.
e€ln’ (v) eelut’ (v)
Thus a preflouw function is simply a flow function which satisfies the
capacity constraint but not necessarily the conservation constraint of a
legal flow function. For each vertex vz#s,t in LN, ue define excess(v) to
be the excess flou entering v:

excess{v) = 2?(e) - E?(e).
eeln’ (v) e€lut’ {v)

I1f excess(v)>8 then v is said to be unbalanced; otheruise v is said to be
balanced. The source and the sink are always considered balanced.
Throughout the execution of Karzanov’'s maximal flow procedure,

every edge in LN is declared either open or closed. Initially all edges

are declared open. As the algorithm proceeds, however, some of the edges

45

Wwill be declared closed. Once an edge is declared closed, the flou through
it will Eemain unchanged to the end of the procedure.

Karzanov’s maximal flow procedure alternates betuween pushing
additional flow from unbalanced vertices and balancing the unbalanced
vertices that are generated during these pushes. The pushing of flow is
achieved through repeated calls to a procedure PUSH(i), uwith increasing i
[18]. The procedure PUSH(i) considers in turn each unbalanced vertex in
layer V., attempting to pusH flow from it to vertices in layer V, ;. For
each unbalanced vertex veVi. the procedure considers in turn each open
edge in Dut”(v) and sends through it the maximum possible amount of flou.
(The two constraints that exist are the current excess of v and the amount
of flow needed to saturate the edge.)} The push from v ends when either v
becomes balanced or every edge in Out’(v) becomes either saturated (i.e.
?(e)=€(e)) or closed. For each vertex u in LN there is a stack (push-doun
store) on uhich the history of additions of incoming flow into u is
recorded. When the flow in an edge e={v,u) is incremented by an amount §,
the pair (v,8) is added to the top of the stack for vertex u. The procedure
PUSH(i) is said to be successful if flow is pushed to layer Vi+1' If
PUSH(i) is successful then PUSH(i+l) is called, and so on.

A procedure BALANCE (i) is the tool through which unbalanced
vertices become balanced. The procedure BALANCE (i) uses the stacks to
shift back flou from vertices in layer Vi to vertices in layer vi—l' It
balances in turn each of the unbalanced vertices veVi by canceling the
most recent additions of flow into v. Clearly the last canceled addition of

flow into v may only be partial. After each unbalanced vertex v is

46

balanced, all the edges in In“{v) are declared closed. The procedure
BALANCE (i) is aluways followed by a call to PUSH(i-1}.

Karzanov's complete maximal flow procedure is: (From [18])

procedure MAXIMAL (LN):
initialize existing preflow function ;. on layered netuwork LN, to 8;
empty the stacks of all vertices in LN;
i:=0;

PLOCP: PUSH (1)

. while the previous push was successful and i+l<£ do

begin
is=i+ls
PUSH (i)
end;

if there exist unbalanced vertices in LN then
begin
it=number of highest layer Vj(0<j<£) containing

unbalianced vertices;

BALANCE (i) ;
. it=i-1;
. . -goto PLOOP
end;

for each edge e in LN do fle)iafle)

47

I't should now be clear that every vertex in the layered network LN

Wwiltl be balanced uhen Karzanov's maximal flow procedure halts. Thus the
final existing preflou function f will in fact be a legal flow function on
LN. In order to shou that it will also be a maximal flow function on LN,

we must introduce the notion of a blocked vertex. A vertex v in LN is said
to be blocked with respect to the existing preflow function if every v-t
chain in LN contains at least one saturated edge. Notice that the source s
becomes blocked after the first execution of PUSH{@), since every edge in

Out’(s) becomes saturated.

Lemma 2.3:
If a vertex in LN becomes blocked at some point in the execution of
Karzanov's maximal flow procedure, then it remains blocked to the end of

the procedure. (A proof of this lemma appears in [8].)

Lemma 2.4:
Every vertex in LN is balanced at most once throughout the

execution of Karzanov's procedure. (A proof of this lemma appears in [8].)

We can nou see that the final existing preflow function on LN will
be a legal flow function which has the property that every s-t chain in LN
contains at Ieasi one saturated edge. Therefore when Karzanov's maximal
flow procedure halts, the existing preflow function ; will in fact be a
maximal flow function on the layered network LN. 1t nou remains to be

shoun that the procedure uill aluways halt within O(IVIZ) steps.

48

The total number of steps performed by Karzanov's maximal flou
procedure is clearly bounded by the total number of flow additions and flou
reductions performed. The number of flow reductions performed, however, is
bounded by the number of flow additions performed since each vertex is
balanced at most once and the history of flouw additions in the stacks is
used to perform the flow reductions. Thus it suffices to shou that the
number of flow additions performed by Karzanov’s procedure is bounded by
D(|V|2). We first notice that there can be at most one saturating flou
addition per edge in the layered network. Since the number of edges in the
layered netuwork is bounded by the number of edges in the original input
network, houwever, there can be at most O(|E|) saturating flow additions.
Next we notice that there can be at most one non-saturating flow addition
per vertex in the layered network, betueen any tuo successive calls to
BALANCE (i). (When flow is pushed from a vertex v in layer Vi, only the
last edge considered in Out’{v) does not necessarily become saturated.)
Since the number of vertices in fhe layered network is bounded by the
number of vertices in the original input netuwork, houwever, there can be at
most O(}jV}) non-saturating flow additions between any two successive calls
to BALANCE(i). From Lemma 2.4, however, there can be at most O(}V]) calls
to BALANCE(i). Thus the total number of non-saturating flow additions is
bounded by O(IVIZ) and hence the total! number of flow additions is bounded
by 0(|V|2). |

It should nouw be clear that Karzanov's maximum network flow
algorithm will correctly compute, in time O(|V|:|E| + |V|4V|2) = 0(|V|3). a

maximum flow function on any network given as input.

49

2.6 Further Improvements

We sau in the last section that.ang 0(t) algorithm for computing a
maximal flow function on a layered netuwork could be used to develop an
OCIVI-IE]l + |V]+t) maximum network flow algorithm. (Simply modify
Karzanov's max-flow algorithm by replacing his "push and balance" procedure '
Hith the new maximal flow procedure.) Notice, hauever, that any max-flou
algorithm developed through this technique can be no faster than
OCIVi-1El). Despite this fact, each of the four most recent maximum
network flouw algorithms have been based on developing neuw maximal flou
procedures. UWe shall now briefly describe each of these new maximal flouw
procedures,

In 1976 B.V. Cherkasky [18) showed hou Karzanov's D(IVIZ) push and
balance routine could be modified to run in time 0(|V|-|E|1/2).
Cherkasky's procedure partitions the layered network into blocks of
consecutive layers called superlayers. 1t then applies Karzanov'’s push and
balance techniques to these superlayers. MWithin the superl!ayers, houever,
Dinic’s flow augmentation techniques are used. The result is an
asymptotically faster but very complex maximal flow procedure.

A little over a year later, Z. Galil [18] improved Cherkasky's
routine to obtain a maximal flow procedure Wwith time complexity
O(|V|2/3-|E|2/3).A Galil’s procedure differs from Cherkasky’'s procedure in
the techniques used uithin the superlayers. Galil’s routine maintains a
special data structure containing information about the current

"usefulness" of chains within the layered network. This data structure is

58

used to expedite the push of flow through edges within the superlayers.
Like Cherkasky's routine, Galil's procedure is very compiex and requires a
great deal of overhead.

In 1378 a very simple O(IVIZ) maximal flow procedure was developed
by three Indians named V.M. Malhotra, M. Pramodh Kumar, and S.N.
Maheshuari [16]. Their procedure is based on successively augmenting an
existing legal flouw function on the layered network. The procedure begins
by determining the maximum amount of flou that can be pushed through each

vertex v in the layered network. This value is cailed the flow potential

pelv) of the vertex v. Each flow augmentation is then performed in three
steps. First a vertex uwith minimum non-zero flow potential over all
vertices in the layered network is selected as the reference vertex, r.
Next, pslr) units of flou are pushed from r to t and from s to r. The
pushing is performed essentially as outlined in Karzanov's algorithm.
Finally, the procedure updates the flow potential of each vertex through
which flow has been pushed, closing all edges which become either saturated
or unreachable from s or t. Although this procedure is not an asymptotic
improvement over Karzanov's push and balance routine, it is extremely
simple and results in perhaps the best max-flow algorithm for use on dense
networks ([EIzIVIZ).

Finallg. Galil and A. Naamad [12] have recently developed an
O(IE|-10g2|V]) maximal flow procedure. This procedure is similar to
Galil's O(|V|2/34E|2/3) maximal flow procedure in that a data structure is
maintained for processing chains within the layered network. The neu

algorithm, however, does not partition the layered netuork into

51

super l ayers.,

This concludes our discussion of algorithms for computing a maximum
flouw function on a netuork. MWe will now turn our attention to the question
of lower bounds on the c;mputational complexity of the maximum network flow

problem.

52

CHAPTER 3 - LOWER BOUNDS ON MAX-FLOW

3.1 Introduction

Chapter 2 dealt uwith the establishment of upper bounds on the
computational complexity of the maximum network flow problem. We traced
the development of max-fiow algorithms from the original labeling algorithm
of Ford and Fulkerson [9], through the recent 0(|VL|E|4092|V|) algorithm
of Galil and Naamad [12]. The very fact that the search for new max-flou
algorithms has been so fruitful leads us to nouw ask the question, "Can ue
do better?", Can we develop a max-flow algorithm uwhich is asymptotically
faster than U(IV|1E|-I092|V|)? Galil has shown [11,12] that any algorithm
which uses Dinic’s technique of dividing the problem into phases (as do all
the knouwn algorithms developed since Dinic’s algorithm) must have time
complexity at least O(|V|-]E|)}. Further, he has conjectured an R (|V}]:|E|)
lower bound on the computational complexity of the maximum network flou
problem. At this time, however, there is no known non-linear lower bound
on max-flou.

The determination of lower bounds on the computational complexity
of a problem is generally much more difficult than the establishment of
upper bounds on the problem. 1In the latter case we can simply demonstrate
an algorithm for solving the problem within the specified running time. In
the former case, Bouever. we must prove that any algorithm for solving the
problem must require at least the specified running time, regardiess of how
clever the algorithm. In order to someuwhat simplify the lower bound

problem, many authors have chosen to uork uWith restricted models of

53

computation. One such mode! uwhich has received considerable attention in
the recent literature is the linear decision tree model [6,18,21,22]. This
mode! tends to underestimate total time complexity but nevertheless enables
us to study non-trivial louwer bounds. [n this chapter we shall investigate
one particular approcach to establishing non-!inear lower bounds on the
computational complexity of the maximum network flow problem reiative to
the linear decision tree model of computation. The technique we shall deal
with is the polyhedral technique developed by A.C. Yao, D.M. Avis and R.L.
Rivest [21,22].

3.2 The Model of Computation

The linear decision tree model of computation is based on the
notion of a linear decision tree algorithm. A linear decision tree
algorithm, operating on input (xl....,xn). is gimply a finite ternary tree
with each internal node representing a test of the form "X «;x;:z" and
each leaf containing a possible output. Given any input, the algorithm
begins at the root and proceeds by moving down the tree until a leaf is
reached. At each internal node the algorithm performs the specified test
and then branches according to the result of this test (<,=,or >). Once a
leaf is reached, the information contained in that leaf i1s output as the
result of the computation and the algorithm halts. The time complexity of
any such algorithﬁ is simply defined to be the height of the corresponding
tree.

The computational complexity of any problem relative to the linear

decision tree model of computation can nou be defined as the minimum height

54

over all decision trees which solve the problem. It should be clear that
the finear decision tree model measures time complexity solely in terms of
the number of comparisons and branchings required. Thus the model tends to
underestimate the total time complexity of a probiem. Despite this fact,
the linear decision tree model has proven useful in establishing several

non-trivial louer bounds.

3.3 Polyhedral Decision Problems
Let P = {XeR" | £, (X)<8 for each i=1,2,...,m} be a set of points in

R", where Q-(xl.....xn). m is an integer and

n
Jz

for real numbers Aij' The set P is said to be a polyhedron in R, 1f d
is the dimension of the smallest subspace of R" containing P, then P is
also said to be a polyhedron of dimension d. {Notice that ue are
restricting our attention to homogeneous polyhedra, i.e. cones.) On each
subset H of the set {1,2,...,m}, we define the set of points F(P)cP as
fol lous:
FyP) = {eR" | £;(X)<B for each ieH,
li(§)=ﬂ for each ig¢H}.

The set F(P) is called a face of the poiyhedron P. If s is the dimension
of the smallest subspace of R" containing FH(P). then Fy(P) is said to be
a face of dimension s. (The empty face has dimension -1 by convention.) He
shall let FS(P) denote the set of all faces of dimension s of P. Notice

that every point in P lies on some face of P and that the intersection of

55

any two faces of P is empty.

The polyhedral decision problem B(P) can now be defined as the

problem of determining uhether an input point XeR" lies in the polyhedron
P (i.e. Given any input %eR", is XeP?). A linear decision tree algorithm
for soiving this problem will be a decision tree which contains a "yes" or

no" decision at every leaf. The computational complexity of B(P} relative
to the linear decision tree model of computation will be denoted by L(P).
In 1977 A.C. Yao, D.M. Avis and R.L. Rivest [21] proved the

following fundamental theorem relating the complexity of the polyhedral

decision problem B(P) to the facial character of the polyhedron P.

Theorem 3.1:
Let P = [| £, (X)<B for each i=1,2,...,m} be a polyhedron in R™.
Then for each s,

L(P) 2 1/2 log |F (P)].

Proof:

The proof of Theorem 3.1 can be found in {21].

This theorem states that fl(iog Fs) linear comparisons are necessary to
determine if a point lies in a polyhedron composed of Fs s-dimensional
faces. As a result, we can determine lower bounds on the computational
complexity of any polyhedral decision problem relative to the |inear
decision tree model of computation by simply examining the facial structure

of the polyhedron.

56

3.4 Applications to Max-Flou

In this section we shall consider a straightforuard application of
the concepts presented in the previous section to the problem of
establishing a non-trivial lower bound on max-flow. HWe shall first
introduce the class of polyhedral decision problems {B(Pn) | n22}, which is -
very closely related to the maximum network flow probiem. We shall then
formalize this relationship by showing that L(Pn)-n2—2 is in fact a louer
bound on L, uhere Ln is the linear decision tree complexity of the maximum
network flow problem for a complete network on n vertices. Thus any louer
bound on L{P,) will also yield a lower bound on L,- Finally we shall prove
the following three results concerning the facial structure of the
polyhedra P, (n22):

1) There exists a positive constant c such that
IFl(Pn)l > c(n-2}!, for all n22.

2) There exists a pasitive constant ¢’ such that
IFl(Pn)I < ¢”+(n-2)!, for all n22,

3) There exists a positive constant c¢c’” such that
IF (P)| < 27 tor all s and for all n22.
Based on these results, Qe can then conclude that Theorem 3.1 cannot be
directly applied to the class of problems {B(P) | n22} to obtain a non-
trivial lower bound on max-flou.

In order to formally define the class of poiyhedral decision
probiems {B(Pn) |.n22}. we must introduce some new notation. Let G, denote
the complete directed graph on n22 vertices in which the vertex v, is
specified as s and the vertex v_ is specified as t. We can represent the

n

sets of vertices and edges of Gn as fol lous:

Vo= {viovouvgeee e, v}

57

and
E = {eij | 1<i, j<n).
Notice that [V]|=n, |E|=n2 and we are defining ®ij to be the edge in Gn

directed from vertex v; to vertex vie It should be clear that any capacity
function defined on the set E uill'give rise to a complete flow network on
n vertices. Further, notice that the definition of a cut in a network can
be directly applied to the graph G,. HWe now let {Xl.Xz.....szJ} represent
the set of all cuts in G.

2
For our purposes, a vector {eR" +1 Hill be represented as

N . nZ+1
UslyjpeeeesUpprreesUntr e rUnnrYn241)» The polyhedron P in R can nou

be defined as follous:
- 2 . -2
P, = {Jer" +1 y; ;28 for all 1<i,jsn, y.o 128, £, (©)28 for all 1524},

where

The polyhedral decision probiem B(P) is to determine whether an input

2
point JeR" +1 belongs to the polyhedron Pn' If we think of the set

{Up1+--++Ynn) as defining a capacity function on the graph G (i.e.

2
c(eij)=gij). then it should be clear that a point GGR" +1 uill belong to

the polyhedron Pn if and only if the following two relations hold:

1) y; 28, for all 1<i,jsn (i.e. c(eij)-gij defines
a fegal capacity function on Gn).

2} Bsyn,1sCX ;). where X .. is any minimum
capacity cut on the netuwork defined by Gn

and c(eij)=gij.

By Theorem 1.3, however, uwe have that C(Xmin) is equal to the value of any

maximum flow function f_. on the network defined by G, and c(eij)fyij.

X

58

Therefore, it should also be clear that a point QER"2+I Wwill belong to the
polyhedron P_ if and only if‘c(eij)=yij defimes a legal capacity function
on G, and there exists some legal flou function f on the network defined by
G, and C(eij)=9ij' such that v(fl=y oy (i.e. 8=y, 4svif)). The
following lemma relates the linear decision tree complexity of B(P,) to the
linear decision tree complexity of the max-flow problem on a complete

netuwork of n vertices.

Lemma 3.1:

L, 2 L(P)-n?-2.

Before presenting the proof of Lemma 3.1, we should consider the
structure of any linear decision tree algorithm which computes a maximum
flow function on a complete network on n vertices. Such an algorithm will
be a ternary tree operating on input (gll.....gnn), where the input defines
a capacity function c(eij)=gij on the graph G . Each leaf in the tree Hill

contain a set of n2 2

linear functions [gij | 1<i, j<n} defined on the n
input variables. For any input, the algorithm will begin at the root and
proceed by moving doun the tree until a leaf is reached. Once a leaf is

reached, a maximum fiow function fmax ©on the netuwork defined by the graph

X
G, and the input (yjy,...0uq,)s will be given by fmax(eij) =
gij(gll""'gnn)' We should note that on every network there will exist a

maximum flow function that can be completely defined by a set of linear

combinations of the edge capacities on the netuork.

53

Proof of Lemma 3.1:

Let T be any optimal linear decision tree algorithm for computing a
maximum flou function on a complete network on n vertices. Clearly the
height of T must be Ln' Further, we can obtain a linear decision tree T’
for the problem B(P.) by modifying T as follows. Place the root of T belou

2

a neun sequence of n“ distinct tests of the form "Is gijze?" such that the
root of T is reached if and only if all of these new tests produce a "yes"
answer. Then replace each leaf in T with a new test of the form "Is
gn2+129?" followed by a new test of the form "Is v(fmax)—gn2+128?" (gn2+1
being a new input)., The new tree T’ shouid be constructed in such a way
that if any of the newly added tests produce a "no" ansuwer, then a leaf
containing a "no" decision is reached, Otherwise a leaf containing a "yes"
decision is reached. Since the value V(fmax) is simply a sum of the 9i;
available at each leaf in T, it should be clear that T is in fact a linear
decision tree algorithm for solving the probiem B(P_). The height of T/,

2+2 and thus we have the relation:

houever, is Ln+n
L(P,) s L _+nP42

= L, 2 L(P)-n%-2,

The problem of establishing a non-trivial lower bound on the |inear
decision tree coﬁplexitg of the maximum network flow problem has nou been
reduced to the problem of establishing a non-trivial lower bound on L(P.),
for each n22. By Theorem 3.1, however, we can establish lower bounds on

L(P,), for each n22, by simply examining the facial structure of the

60

polyhedra Pn' The remainder of this section will be devoted to proving
several l|emmas concerning the number of faces composing each of these
polyhedra. We will essentially show that each polyhedron is composed of
relatively few faces and thus Theorem 3.1 can be of no use in establishing

a non-linear lower bound (if one exists) on any L(P,).

Lemma 3.2:

There exists a positive constant c such that IFI(Pn)l 2 c(n-2)1,

for all n22.

Proof:
Consider any n22 and let p’ be an s-t chain in the graph G_.. Nou
g s G,Rn2+1

consider the point Hith the properties:

1) g{j=1 if eijep'. for all 1si, jsn

2) gfj=0 if eij¢p’. for all 1sgi, jsn

3) g;2+1=1.
Clearly the point U~ belongs to the polyhedron Pn and so there must exist
some face of P, containing g’ (since every point in a polyhedron lies on
some face of that polyhedron). Let FG’(Pn) denote the face of P, which
contains the point §’. Therefore, Fﬁ’(Pn) is the set of all points g"ePn

uhich satisfy:

(3.1) - g;}=8 iff g{j=8. for alf 1<i, jsn
(3.2) Urs,1>8
(3.3) B (3718 iff 4 (318, for all lsks2"2,

From (3.1) and (3.2) it should be clear that every point G”ngz(Pn) will

be non-zero in exactiy the same co-ordinates. Further, applying this

61

observation to (3.3) and the fact that p” is an s-t chain in G, we must

have that g{j=gé§+1 for each non-zero gf; (1<i, jsn). Thus it must be the

case that every point in the set FQ’(Pn) is simply a scalar multiple of the

point §7. It should nou be clear that the smallest subspace of

R"2+1
containing the set Fg’(Pn) has dimension 1. Thus we have that
Fg,(Pn)eFl(Pn). Finaily, notice that each distinct s-t chain in Gn will
give rise to a distinct 1-dimensional face of P. Therefore, if Z denotes
the number of distinct s-t chains in the graph G, then we must have:

(3.4)]Fl(Pn)I 2 Z.

Since Gn is a complete graph on n vertices, houever, the value Z can be

expressed by the following formula:

n-1

Z=2 (-21/0-1)! 8! = 1)
i=1

n-2

= (n-2)1- 1/i!
i=8

2 (n-2)1
Combining this expression with (3.4) we obtain:

IFy Pl 2 (n-2)!

Lemma 3.3:

There exists a positive constant ¢’ such that |F1(Pn)| < ¢+ (n-2) 1Y,

for all n22.

Proof:

Consider any n22 and let Fi(Pn) denote the set of all l-dimensional

62

faces of the polyhedron Pn which arise from distinct s-t chains in the
graph G, as outlined in the proof of Lemma 3.2. Now let Q denote the set
of all points g’ePn which satisfy any one of the following three
conditions:

1) §’-0

2) y/2,1=9, y{,=8 and §’ has exactly one non-zero co-ordinate

3) §” belongs to a face in the set F{(P,).
First notice that each point in O uwhich satisfies condition (2) belongs to
one of exactly n2-1 distinct (trivial) l-dimensional faces of P, . Further,

notice that none of these.n2

-1 faces belongs to the set F{(P). Thus each
point in (O, except the point 5. belongs to one of exactly IFi(Pn)|+n2-1
distinct l-dimensional faces of P, Next observe that every point in the
polyhedron Pn can be expressed as a convex combination of points in Q
{consider expressing a netuwork as a sum of distinct s-t chains and isolated
edges). Therefore, every point on a l-dimensional face of P, can be
expressed as a convex combination of points in Q. Thus we must have that

the set Q contains at least one point belonging to each l-dimensional face

of Pn and hence:

IFy Pl s IF{(P)] +n2 - 1
n-2
- (=213 17i1) + n? - 1
i=0

<3211 +n2 -1

< ¢’ (n-2)! {(for some positive constant
c’, independent of n)

o

63

Lemma 3.4:

There exists a positive constant c’’ such that |F (P)] =

7, 2
Z(C n). for all s and for ali n22.

Proof:
2

Consider any n22 and let each vector 3eR2n be represented as

By q,es o 7). A pol P: in RN detined
LS ERERL ST ERRRRY N B po ghedron n 'n can nouw be define
relative to the graph G, as follous:
2
Pr,‘ = {ﬁelen I Nijza and Eijza and Nijzaij for atl].Si,jsn.
E&(ﬁ)za and la(ﬁ)sﬂ for all 2sqsn-1,

B @28 for all 1sks2"?},
where

2L = D0y | ey elntvgd) - X (i | ey elutivy)]

and

B = Xy |y eaR)) - X [| e elnttl).
I[f we think of the set {ull.....unn} as defining a capacity function on the

graph Gn {i.e. C(eij)guij) and the set {511""'ﬁnn} as defining a flou

function on the network defined by G, and C(eij)'”ij (i.e. f(eij)-ﬁij).

2
then it should be clear that a point ﬁeRzn Wwill belong to the polyhedron

Pg if and only if the following two conditions hold:

1) C(eij)=“ij defines a legal capacity function
“on the graph Gn (i.e. cl(e)2@ for each ecE).

2) f(eij)=ai' defines a legal flou function on
the network defined by G, and C(eij)'“i

jo

Notice that the constraints Ei’(ﬁ)za are all redundant since any legal flowu

function f on a network Tl must aluays satisfy the relation v{f)<C(X_ .),

min

64

where X .. is any minimum capacity cut on M. It should now be clear that

2
we can determine whether a point ﬁeRzn belongs to the polyhedron Pé by

2

simply testing to see if il satisfies each of the first 3n“+2n-4 constraints

defining P;. Thus there exists a straightforuard |inear decision tree

algorithm of height 3n2

+2n-4 for solving the problem B(P;) and hence ue
have the reiation:

L(P}) < 3n%42n-4 < 4nZ.
Further, combining this relation with Theorem 3.1 we obtain the result:

4n > LIP/) 2 1/2 log |F (P/)], for all s

8”2 ’
(3.5) = 2 > [FgPJ) |, for all s.
If we now let F(P7) = U Fg(P;) denote the set of all faces of the

: s

polyhedron P, then by (3.5) we have:

2
IFP| s 2 280

—15352n2

A

2
= [F(P/)| s (2n242)-28"

7 .2
(3.6) = |F(p/)| < 21e7"n%)
(for some positive constant c¢’’, independent of n).

A

Turning our attention back to the polyhedron Ph let F(P,) = '
E! Fg(P,) denote the set of all faces of the bolghedron Pne The remainder
of this proof will essentially consist of constructing a 1-1 mapping ¥
from the elements of F(P) into the elements of F(Pa). We uill then have
that [F(P)| < [F(PZ)].

Let Fy(P)eF(P,) be any face of the polyhedron P . If FH(Pn)-¢
li.e. Fy(P) is the empty face) then define ¥ (F (P))=¢. 1f, houever,
Fy(P,) = then let g’em"2+1 be some point in the set F,(P_). Since

y'eFy (P YcP , we must have that c(eij)-u{j defines a legal capacity

65

function on the graph Gn and that there exists some legal flow function f°
on the network defined by G, and c(eij)-g{j, such that v(f“)=yl, ;. Nou
consider the point ﬁ’eRznz such that:
u{jsg{j. for all 1gi, jsn
and
ﬁ{j=f'(eij). for all 1<i, jsn.

Clearly G’ePa and thus there must exist some face of P; containing 7.
Call this face F3-(P;) and define Y (Fy (P 1}=F3 (P}, 1t should nou be
clear that Y maps each face in F(P)) into a face in F(P). Thus it
_ remains to be shoun only that ¥ is a 1-1 mapping. Recall, houwever, that
each face of a polyhedron is uniquely determined by the set of constraints
its elements satisfy by equality. Further, notice that the points W’ and
U’ have the follouwing relationship:

1) u{;=8 iff y{;=B, for all Isi, jsn

2) BJ7(37)=0 iff B, (3-8, for all 1sks2""2

3) 5{;=8 for ail {ij | e;;eln(t)} iff ysp,,=0.
Thus for each distinct face Fy(P_) of the polyhedron P, W(FH(Pn)) will be
a distinct face of the polyhedron P; and so ¢ is in fact a 1-1 mapping.
We can now conclude that |F(P)| < |F(P)| and thus by (3.6) we have:
(3.7) IFP)| < 2le” n?)
Finally it should be clear that IFS(Pn)l S |F(Pn)|, for all s, and so by
(3.7):

rr, 2
IFgtP)1 s 277 for all s.

66

3.5 Conclusions

In this chapter we presented the linear decision tree model of
computation [6,18,21,22], the notion of a polyhedron and a polyhedral
decision problem [21,22), and the class of polyhedral decision problems
{B(Pn) | n22} which most naturally arises when considering the maximum
netuwork flow problem. We then shouwed that the problem of establishipg a
non-linear loWer bound on the linear decision tree complexity of max-fiou
can be reduced to the problem of establishing a non-linear lower bound on
L(Pn). for each n22. Next we demonstrated matching upper and l|ower bounds
on the number of faces of dimension 1 composing each of the polyhedra P
{n22). Finally, ue established a 20(n2) upper bound on the number of
faces, of any dimension, composing each of the poliyhedra Pn' Based on our
results, uwe can now conclude that Theorem 3.1 can be of no use in
establishing a non-linear louwer bound on max-flow, through the class of
polyhedral decision probiems {B(Pn) | n22}, It remains an open question,
houever, uhether or not the polyhedral technique can in general be useful
for establishing non-linear lower bounds on max-fliow. There may, for
example, exist some more complex class of polyhedral decision problems that

can be reduced to max-flou.

(1]

{21

(3]

(4]

(5]

(6]

(7]

8]

(9]

(19]

11

(12}

(13)
[14]

67

REFERENCES

A.V. Aho, J.E. Hopcroft and J.D. Uliman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

D.M. Avis, "Some Polyhedral Cones Related to Metric Spaces,” Ph.D.

Thesis, Department of Operations Research, Stanford University,
1977.

A.E. Baratz, "Construction and Analysis of Netuwork Flouw Problem which

Forces Karzanav Algorithm to 0(nd) Running Time," M.I1.7. Laboratory
for Computer Science Technical Memo, LCS/TM-83, 1977.

G.B. Dantzig, "Maximization of a Linear Function of Variables Subject
to Linear Inequalities," in T.C. Koopmans (ed.), Activity Analysis of
Production and Allocation, John Wiley & Sons, 1351, 3339-347.

E.A. Oinic, "Algorithm for Solution of a Problem of Maximum Flow in a
Network uith Pouer Estimation,” Soviet Math, Dokl., Vol. 11, 1978,
1277-1288.

D.P. Dobkin, R.J. Lipton and S.P. Reiss, "Excursions Into Geometry,"
Yale University Research Report #71.

J. Edmonds and R.M. Karp, "Theoretical Improvements in Algorithm
Efficiency for Network Fiow Problems," JACM, Vel. 19, No. 2, 1972,
248-264.

S. Even, "The Max Flow Algorithm of Dinic and Karzanov," M.I.T.
Laboratory for Computer Science Technical Memo, LCS/TM-88, 1976.

L.R. Ford, Jr. and D.R. Fulkerson, Flous in Networks, Princeton Univ.
Press, 13962.

Z. Galil, "A New Algorithm for the Maximal Flow Problem," Proceedings
19" 1EEE Symposium on Foundations of Computer Science, 1978, 231-245.

Z. Galil, "On the Theoretica! Efficiency of Various Network Flou
Algorithms," IBM report, RC7320, 1978.

Z. Galil and A. Naamad, "Network Flow and Generalized Path Compression,”
The 11" Annual ACM Symposium on Theory of Computing, 1979, 13-26.

T.C. Hu, Integer Programming and Network Flows, Addison-Wesley, 1963.

A.V. Karzanov, "Determining the Maximal Flow in a Network by the
Method of Preflous,"” Soviet Math. Dokl., Vel. 15, 1974, 434-437.

(15]

(18]

{171

(18]

(19]

(201

(211

(221

{231

. 68

E. Lauler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, 1976.

V.M. Malhotra, M. Pramodh Kumar and S.N. Maheshwari, "“An 0(V3)
Algorithm for Finding Maximum Flows in Networks," Information
Processing Letters, Vol. 7, No. 6, 13978, 277-278.

P. McMullien and G.C. Shephard, Convex Polytopes and the Upper Bound
Conjecture, Cambridge University Press, 1971,

M.0. Rabin, "Proving Simul taneous Positivity of Linear Forms," JCSS,
Vol. B, 1972, 633-658.

R.P. Staniey, "The Upper Bound Conjecture and Cohen-Macaulay Rings,”
Studies in Applied Mathematics, Vol. 54, No. 2, 1975.

R. Tarjan, "Testing Graph Connectivity," The &' Annual ACM Symposium
on Theory of Computing, 1974, 185-193.

A.C. Yao, D.M. Avis and R.L. Rivest, "An Q(n? log n) Louer Bound to
the Shortest Paths Problem,” The 9" Annual ACM Symposium on
Theory of Computing, 1977, 11-17.

A.C. Yao and R.L. Rivest, "On The Polyhedral Decision Problem," to
appear in SIAM Journal on Computing.

N. Zadeh, "Theoretical Efficiency of the Edmonds-Karp Algorithm for
Computing Maximal Filous," JACM, Vol. 19, No. 1, 1972, 184-192.

