
MIT/LCS/TR-229

AU'I'C1'1ATIC VERIFICATION OF SERIALIZERS

RUSSELL RCGER ATKINSON

This blank page was inserted to presenie pagination.

Automatic Verification of Serializers

Russell Roger Atkinson

Copyright Massachusetts Institute of Technology 1980

March 1980

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research un~er contract
N00014 .. 75-C-0661, and in part by the National Science ... oundation under grant
MCS 74-21892 AOl.

Cambridge

Massachusetts Institute of Technology
Laboratory for (~omputer Science

Massachusctts02139

This empty page was substih1ted for a
blank page in the original document.

Automatic Verification or &!rializcrs

Russell Roger Atkinson

Abstract

This thesis is concerned with the problem of controlling concurrent access to shared
data A language construct is proposed to enforce such control; a specification language
is defined to describe the formal requirements of such control; and verification
techniques are given to prove that instances of the construct satisfy their specifications.
The· techniques are justified in terms of the definition of the construct and the
definition of the specification language. Results are given for a program that
implements a number of the techniques. illustrated by verifying several versions of the
readers-writers problem. Interactions between instances of the construct are discussed
in the context of a simple file system.

Thesis Supervisor: Barbara H. Liskov
Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: verification. concurrency. monitors. seri~lizers, specification

-2-

This empty page was substih1ted for a
blank page in the original document.

Acknowledgements

I would like to especially thank my advisor, Professor Barbara Liskov, for her
help and encouragement during the past six and a half years of graduate study, and in
particular for her wqrk in supervising this thesis.

My readers, Professor John Guttag and Professor Carl Hewitt, also deserve
,much credit. John is largely responsible for whatever respectability the mathematics in
this thesis may contain (the omissions are, of course, my own). Carl is responsible for
the basic theme of this research. He proved to be an excellent listener during my first
tentative steps toward a topic. -

Deepak Kapur and Craig Schaffert deserve credit for many useful suggestions
during the course of this work.

The verification program described in this thesis is the descendent of the
earliest work that l performed in this area. I especialJy credit Barbara Liskov. the CLU
programming language, and the LCS computing facilities for providing fertile ground
for this research. My thanks, also, to the people who were dragged over to watch the
program work (or fail to work).

I chose to use "we" rather than "I" in the remainder of this thesis in part to
recognize that most of the ideas in this thesis are a result of effort by many people in the
Computer Science community at large. My apologies to those who might consider their
ideas misrepresented; my thanks to those who contributed.

- 3 -

This empty page was substih1ted for a
blank page in the original document.

CONTENTS.

1. Introduction ... ~··· ,.,,,._ ••••••.• .,~.·~·· ... ··~·······-··· .. ··-·· 8

1.1 Initial decisions .. 9
1.2 ·Modularity : .. ~ ... : ... ::.~~~:.::.~~ ... '.~; ; ·· 11
1.3 Related work•.•... ~ , .• 9:'-,••o!,_!'"'···---·-······'····-·-·~······'9~······

" ' ... : . ' .. ., : . ; .. ·' . ; . ' ~ '. ~ ; "'
1.4 Plan of th.esis,, ~················•,~ •• ~._ ... ,~,:.,, : ~ -.. ' . ,' . ' . ~ - ~ '

2. Serializers ~··_ _ •••••• _ ••••••••••• ,!:T'~f,•"!-~~r~·~j····.,.•~··,,._, •• ~···· .. ~··~······

13
17

20

2.1 Serializer design issues ····························~···--······································ 21
2.2 Serializer syntax and mechanism u - •• : ~................ 24
2.3 An ·example: the readeTS--vlrlters probfe.m · 28
2.4 Simple seria1izers ~~ : ' ~J ••••••••••••• ·.:.: •••••••••••••••••••••••••••• ~- 3i
2.5 Using semaphores to implement ser;atizers ,,. 32
2.6 A compa'.ri$ori'of"seriafiiefSWtttrmonitbrs'.! 37
2.7 Opportunities for optimil.ation ~~·············· .. •··· 41

3. Semantic Model
·································~·~··~··· .. ····~···~~1~~~~-,~···~··4!·~········~·· . 43

. · ' ~· . -. . .- .

3.4 Trans8.ctions ~·.:.·· ~ · , ~-.. ~· .. ~· ~.~

- 4-

4. Specification language ... 8()

4.1 Kinds of serializcr specifications ... 81
4.2 Specification language ... 83
4.3 The symbol map ... ~
4.4 Readers-writers specifications ... 92
4.5 Variations of the readers-writers problem 95
4.6 BoundedBufTerSpeeifications ; ... '17

5. Verification Rules ... 101

5.1 Proving in the specification language ... 102
5.2 Extensions to the specification language ~: ;............ 103
5.3 Some simple inference rules .. 106
5.4 Evaluation Of gUa.ratttees •.•.••••••••••••••••••••••••••••.•••••••••..••••••...••.....••••• 118
5.5 Priority of dequeue over enter and leave•.................................. 121
5.6 A method for proving service ·m·····~········ .. ~·········:.......................... 124
5.7 Rule-based proving of FIFO priority specification 126
5.8 Comments on the verification rules .. 128

6. Automatic Serializer Prover· ~.~ ••• ~.~-.. -·~···"4'.9 ... -...... _.................. 130

6.1 Overview of ASP ~..................................... ... 130
6.2 Static analysis phase ... 132
6.3 Verification· phase ~·-···-································-······················· 133
6.4 Evaluation of guarantees and anony1,11ous transactions ··~············· 135
6.5 Checking for ready queues : .. :... 137

6.6 Prov.i ng by caSes ···~~···········~· 138
6. 7 Proving guaranteed service .. ~ _. 139
6.8 A sample verification ... 142

6.9 Performance results ··-············· 144
6.10 Summary of methods used ;~·-·······················-· 149

- . . .
7. -Interaction of Serializers - _ ... ·~-~-~~ •. ~ ~·······,·~···· . ISl

7 .1 The fite· system .. · 152
7 .2 File and di rectory serialize rs 159
7.3 Specifications for file and directory serializers 168
7.4 Guidelines for addition of scrializers ... 172
7.5 Higher-level transactions ... 176

- 5 -

8. Conclusions ... 179

8.1 Verification of serializer extensions .. 180
8.2 Closing remarks ···~······································ 187

Bibliography ... 189

Appendix I. Bounded buffer serializer __ _._. -~............... 195

Appendix II. Combined bounded buffef serializel ..--..-.................. "°... 198

Appendix III. Disk head scheduler _,_. _...,.-io<-~-··............. 199

Appendix IV. Table of definitions ... ~·····.. 201

-6-

FIGURFS

Figure 1. A pictu.re of a serializer object ·-·-····· .. ••·•••• .. •••••••••····••••••••··• 23
Figure 2. FIFO serializer ..•.......................... 29
Figure 3. Semaphore implementation of FIFO ~ ~ 38
Figure 4. A sample verifteation by ASP ~ ... 143
Figure 5. Rea.dCl'!-Writers tests :fbr ASP•..•...•.......... ~.......................... 144
Figure 6. Cod.e for test serializers ... '.'~~···-···............ 147
Figure 7. CPU times for ASP tests :....................... 148
Figure 8. File interface ... 154
Figure 9. Direc:tory interface ... 156
Figure 10. File ~rializer .. 16()

Figure 11. Directory- serialize~ ··-························· 163
Figure 12. Update operation ... 178

-7-

I. Introduction

This thesis is concerned with the problem of ctmtmlling, concurrent access to

shared resources. In systems where several processes rrtay··attempt to concurrently

access the same resource, there is a need td impose some order on those ac~. If

ce1tain orders arc not enforced, certain classes of access td tlre resot.rtce may conflict and,

cause erroneous results. Other classes' of tlcc:eSs tO" the 'satne'rt!Sottrte':tftity proceed

concurrently without connict. This is true whether the resource is a data base, a printer

spooler; a file system, or a communications network, although the definition of the

classes of access may be sped fie to the resource.

Given this framework, we can informally define a fewtenns.-Two ace~~ are

concurrent if both accesses have· starred, yet ooitlle~ has completed. Typ~llY.:

concurrent access is cdntrolfed through exelusion, ·where a J.'1'0¢CSS executing one-class

of access prevents the initiation of another access from:any 0i.a ,set: of cJas&-s: W'1en

one access excludes another, the lalter must :waif- lbr the' former-to comrfete .. lf ,one -

access is-w"iling lbr another~ which is waiting for the first to complete, then no progress

can be made on either, which is called deadlock. If two proct.~'S· arc ·ready to initiate

acces..o.;cs, yet one access excludes the other. then the'pnn"SS1tltat 11roccl.>ds is said tnhi1ve

priority over the other. A.rmxcss t.b,at is J;~adf, ito.procccd, y~t is continua,Uy d"micd

progrcs..,, sutlers from starm1io11.

We wish to ensure that progrnms exec.utingiamcurrently· on. ~uucd rt.•sourccs

obtain correct results, wh1.:rc corrcclnt.-ss is defined in tcrms of programs meeting their

spccilications. We wish to show, fi.lr properly designed progrmns, that ccrtHin acccs..-,cs

- 8 -

exclude others, that the proper accesses are granted prirnity, that appropriate access

may proceed concurrently. that there is no deadlock, and that there is no starvation. We

limit this concern to the is.5ues that are specific to concurrency. and not those that apply

to determining whether the access, executed by itself, has the correct effect on the

resource or. returns the .corr~t information. Also, we are not concerned with

concurrency iswes unrelated to accessing resources.. such as prpcess creation and

deletion.

1.1 Initial decisions

Our first decision is that it is desirable to ·have a separate programming

language constmct to realize reliable control J~f co~rrent access. We believe it

insufficient to simply propose a constnact and a)r.:se11l1 .$0~ exnmpl~ of its use. A

languat,te designer should also provide tools that ~rease the "tility and reliability of a

langouge construct Consequently~ this thesis prQSents:

• A language construct to control concurrent ace~ to shared resources.

• A definition of the semantics of the construct

*A specification hangu&1gc to dt..-scribc pfll(lertit.-s of tonc:mrrcncy control
that arc to be realized through this constmct.

• A vcri lication methodology that is used to prove that instances of the
l"OOStruct satisfy their sp..'Cifications.

-9-

* The design of a program to make use of .tttis n,cU\QCk1logy and perform
verification.

One of the contributions of this thesis is that all of these elements are presented

together for a single construct.

Our approach to concurrency; control is heavily· influenced by by the monitor

construct off Brineh· Hansen 72] and [Hoare 741.· and ,{he programming· languages CLU

[Liskov et. al. 77, Liskov 79a) and Alphard (Wulf.,S). wtudfin turn, owe· much to Simula

[Dahl 72}. In these languages, aCte$ to·data objids is nchieved thrnugh:a1iimited~t-Qf

opcmtions, which are generally implementcd·asprocedures. ·Just as,CLUmnd 'MphMd

separate implementation details from the abstract appearance of data objeets,. ou·r

objective is to separate concurrency control from access to data objects. The monitor

construct has a similar goal, although a slightly different view of data. Th~ ~onne~ti.on

between concurrency control and data abstmction ts a key issue in defining our

construct and in our verification techniques.

Verification docs not prove that progrnms,opcrate ~orrcctly, in the sense that a

verified progrum performs exactly as desired. 'lbcn;.is:oftc1,1 :no re"~n to bdicvc t~al

the spccificutions arc hctlctr than the program \~l for dt..-scri)>ipgJb,c d.~1iircd bchav.ior

for the progr~un. Verification performs the la~k of taking two.JiijT~n:Q,t d\.-sc:riptions of a,

problem solution and .showing that the d~ripli~ns'. agrec~1 in .. tl1c, ~nsc lhal every

behavior that the program exhibits is allowed by the specifications. ll1e two

descriptions arc quite diflcrent in kind: the Mc. is ~m lifgorHllfuk description. and the
. . .. , ,., '

specifications dcScribe the effects of executing the dldc. The confimmtiun ofaniving at

- 10 -

the same answer through two different methods ought to increase confidence in the

solution.

We wish our techniques to be valid whether there is true concurrency, using

multiple processors, or simulated concurrency, using a multiplexed single processor, or

a mixture of the two. To accomodate this range of behavior, we have described accesses

as being concurrent if both acce~ start before Qither ends .. This -Oetinition may. seem

. overly broad, since two accesses are considered to be concurrent if one access occurs as

part of the other. We choose to make a conservative decision:· two accesses are

potentially concurnmt if the start of either access can occur between the start. and finish

of the other.

1.2 Modularit)

Large progrnms arc usually ditlicult to understand and modify not because or
their size, but because of their complexity. This complexity is far more often due to

interactions between pm1s· of progrnms than it is to inherent complexity in the tnsk

being performed. 'Ille notion of modt1!t1ri1y is widely accepted as a means of limiting

these interactions, although the tenn is defined in various ways. This principle is useful

in constri1cling programs. in modifying programs, and n1 vcrify1ng programs.

Modularity in verification has also hccn culled the i11depe1uk11ce pri11ciple:

nu· pr0<{ of a mwim.' may 011f1· dcp<'nd upon ils own specifications and
imple111c111a1io11. and upon th<' exlermal sp,•ciflca1io11s of tit<· mutines 10;
whid1 it textual!)' refers. [Gt.x>d. Cohen au(,I Keeton-Williams 79, p.45)

- 11 -

We propose to make use of the following kinds of modularity:

* Data abs1rac1ion is the organization of data into distinct objects. where
each object belongs to a distinct datatype. and dJrect~cess to the objects
of any type is limited to the operations ot the type. fliiS ·aennition· of data
abstraction follows the lead of the CLU programming language.

* Concurrency control is separated from data access. The implementation
of concurrency control is kept distinct from the implementatio1t"'6f d~:
access. although the external interface of the two implementations may be
similar.

* Specifications of ooncurreooy coqtrol ~ ~r~tl¥1 f~QW:~ecification&:of
other properties of a program. Further, these specifications are meant to
be indept.~ent-of-any-implemerttation; 1 • ·

*Verification of concurrency control is se'parated from other program
verificatio1tc techniques. 1ln_ particular, ,dlt,--wrj_ fictttioo of access to a

- -- t

resource and the verification of the concurrency control for such access
are independent, although each -may assume· -the speclftcatkms' of the
other (we will assume an absence of circularity, since it is a separable
issue).

It is possible to find fault with modularity. since the kinds of separation we

have described may make it more dimcull to achcive other dt---sirable propcrtit.'S. _
. . . . ; ' ' ~' ' ~ ;, .- ·' -,

* lbc principle of modularity can be misapplied: the wrong kind. of
scparntion prevents ncccssmy data rrom being 'col11i1hl11'ic~id:f 'f'rrnn llne
(ltJCC lo another. We .. hope ltl slJl~ ~-l~ ~-u~;~(~xpfnplt.-s th~at the
kinds of moduhtrily WC propose to llsC do not prohibit llCCCS..liafY

irtfr}rtnifritin rton1 being ill·~ uf)propriatcplaces, i-i

- 12 -

* Modulmity can be inefficient: the mechanism for transferring from one
context to another, as in a procedure call or process switch, can be
expensive. Further, by limiting access to certain data, certain
computations may be redundant. We wilt nofaddr~ this issue directly
in this thesis, but will return to this Objection in our c:Opdusions.

l.3 Related work

Much of the initial work on the construct we propose was done iri conjunction

with Carl Hewitt [Hewitt und Atkinson 79). Since then. there has·been a divergence in

our efforts; this thesis explores issues of automuuc, verifacntion of;~ncurrency control,

while Hewitt has concentrated on more primitive control of concurrency in a context

where programs communicatc·by passing messages. Some ofdris.work coo be found in

(Hewitt, Attardi, and Liebc1man 79).

Below we bricny discuss related work on language constructs. concurrency

specifications. semantic models. and some differences in our approach from other work.

1-1. I Related language constructs

Most authors in this area 'note the import~mcc of limiting the interactions

between concurrent proc~~cs through the use of h\nguage constructs Sfl\.'Cilically

designed for this purpose. We have a similar Mllf~>aeh in this thcsi8. with thc~1ddition

that we attempt to relate concurrency control toahstrncl (user-defined) data types.

- 13 -

We have already noted the intellectual debt owed to the monitors of Brinch

Hansen and Hoare. f-<or now, we characterize the monitor approach by noting that

concurrency is controlled by only allowing one process at a time to execute an operation

that belongs to a monitor. Given that initial exclusion, further execution orders may be

imposed by the monitor operations. We will present a more detailed comparison of our

construct with monitors in Chapter 2.

Anothedinc oFthought in concurrency control is;t<>timit,parallel processes to

communicating through the passing of messagtS. Various authors have proposed such

an approach, among them [Good, Cohen and Keeton-Williams 79, Hoare 78,

Feldman 79). Concurrent actions only proceed when a process that is sent a message
. ,.j '_; •

chooses to receive it. Exdusion for a class of access derives from a refusal to accept a

message of thr.t class. This approach is pmticularly well suited to distributed systems,

where different processes may reside on widely separated processors."

111csc two approacht..'S arc not as different as they 1riight initially appear.

Although our presentation will fhllow the first approach, we will ·argue in this thesis that

our techniques arc valid for lhc second approacl~ as well.

- 141-

1.3.2 Concurrency specif1eations

Our work on specifications is strongly influenced by Greif [Greif75]. In this

approach. certain events related to an access are identified: access request. access start.

and access finish. Specilications are given by indicating which orders of these events

arc required. For example, suppose that the execution of one kind of access (call it X)

prevents another kind of access (call it Y) from starting. We can specify this

requirement by stating that RO Y access start event can ~Cllf ~ween any X accesS start

event and the corre5ponding X access finish event

A similar approach to specifications appears in [Laventhal 78], in which such
f: · .. ::·

specifications are used to synthesize implementations to realize concurrency control.

1.3.3 Related semantic models

Various models have been used to describe concurrent execution of programs.
! ..

In the models we discuss here. a program proceeds front st~ale lo state by atomic actions.
' } . .

*In [Howard 76, Good. Cohen and' Kcctbn-Wmian1S79), ahd in our work.
actions th.it lake place arc recorded in Sl..'lJUCOCL'S called histories. and
program semantics arc described by giving prcdicall.'S th&1l must be
satisfied lhr histories.

* In [Greif 75). actions •arc related by partiul orders called hchm1iors.
Program belrnvior is given by prcdicalL'S on these partial orders.

- IS -

* In temporal logic (a survey-level explanation of this 'modef appears in
[Lamport 80]) the model uses sequences of stales, rather than actions.
Predicates that describe pros.r,~~ behavior m~~ ~,app.lied.to sequences
of states, for a linear time tneory, or tcS ·an sl..->qtierices of states with a
common sequence of states~ ,a, prie{iJC, tor u br(4(lching lin,t t.h,eory.

*Another related mddet~· based; on ·:tt~ :or states, is presented:'m
[Owicki 75). Given an initial state and a program, the beh~vior of the
program . is characterized by a tree of states, Where the ares represent
execution of an ~i<;ln-thatleads;to the next.state,.

All of the above models use some· structure to,, relate either states or actions, and

describe program behavior by giving predicates.on;$Uehstrwctu••;

rt is possible to discuss states in terms of equivalence classes of histories (or
' ~· , 'i

behaviors). For example:

[fhere] is a correspondence be1wee11 states and behavior that allows, q11e IQ.
define the states of a syslem as a11 equivalence relation over the possible
behaviors. [Grcif75, p. 72)

We believe it better to think of predicates on histories rather1hnn kl attcntpLto regard

slates as equivalence du~,-s. 'nk distinction lies in our ooncbm, With cc11uin properties

of objects ut any partictflar1itne. mther lhanthe~ntirestule mlheobjcct.

- 16-

1.3.4 Diff crences in our work

We approach concurrency control not j~st by defining a l~nguage construct,

but also by providing specification and veritkotiort,methOOs forlheronstruct Further,

these me:thods are actually demonstrated in a simple uutQJllatic verifier. By providing a

wide range of support for a relatively narrow conSt~~ We 'hope. to illustrate the benefits

of a uni ficd approach to controlling coocurrent ace~ to resources.

We have attempted a greater use of modularity than is commonly found in

other works. In particu4ar~ we'col~ple«:omrot'of concurrent access to the principles of

data abstraction with strong typing, while maintaining separation of concurrency

control specification and verilication from data access specification and verification.

1.4 Plan of thesis

Chapter 2 introduct..'S the serializer language construct, which is a method tor

controlling concurrent access. An infhrmal pn.-scntation uLmade of lhc syntax nnd

semantics of the ctmstruct. An cxmnplc,. based on the rcu4crs-writcrs problem, is.

discus.~d in detail. A .simpl.ilication of the scri~1lizcr construct !s,dcfined fc.lf use in later

chapters. A translation of scrializcrs into clusters and semaphores is given as a pos.~ible

implementation strntcgy.

Chapter 3 presents a simple semantic model that supports concurrency, and

USl.'S it to define more precisely the sim11lificd scrializer construct. A definition

language based on first-order predicate calculus is used to describe scrializcrs as

- 17 -

enforcing limitations on the execution order of programs.

Chapter 4 discusses the four kinds of concurrency control specifications used

m this thesis. A simple specification language for concurrency control is defined.

Specificat.ions are given for the readers-writers problem~ with ~veral variations, and the

bounded buffer problem.

Chapter 5 presents and justifies rules that are used to verify that serializers

meet their specifications. Although the definition of serializer semantics and the

definition of the specification language are sufficient to allow us to verify serializers, it

would be difficult to write an automatic verifier that directly uses these definitions.

Therefore we define and prove a number of inference rules that a11ow us to infer

specification clauses given the assumption (or proof) of other specification clauses,. An

example is given of how the rules allow verification in a simple mechanical fashion.

Chapter 6 describes a program that uses the verification rules to establish that

a scrializer meets its specifications. We first describe how the structure of the program

incorporates the verification mies. and then present examples of proof..;; that the

program has performed.

Chapter 7 discusses issues related to interaction of scrializcrs, and Jlresents an

extended example of scrializer usage: a simple hierarchical filing system. Guidelines

arc given for providing scrializers frlf data types that arc originally used in a

single-process environment.

- 18 -

Chapter 8 contains a discussion of how the work in the previous chapters can

he extended to cover more complex problems and more complex serializers.

Several examples of serializers are presented in the appendices, and are

referred to from time to time in the body of the thesis. The last appendix presents a

table showing where the various definitions and rules used in this thesis are defined.

- 19 -

2. Serializers

This chapter introduces the serializer construqt, which is' intended to provide a

modular method of concurrent access to, shared' data'. objects. Related programming

language constructs are monitors [Brinch Hansen 72, Hoare 74), path expre~ions

[Campbell.and H~\Qemumo 74), and com.mun~ting ~qll:cn,tiai prCX:esses (Hoare 78).

We treat the serializer construct as ari extension t6"the CLU programming

language [Liskov et. al. 77, Liskov 79a]. However, the basic ideas behind scrializers go
~ r ~·

beyond. any particular p,rogramming language., '~lie(. vcl~ipns of the serializer
. ~ ,1~ -- . . ,: • ' '' .· . ..

construct were presented in [Hewitt and Atkfosori'77) afid (Hewitt and Atkinson 79)

using a sign ifrcantly different tanguage.
' ; ~ : .

In tt. is chapter we describe the. ration,;il~ for ~h,.e de&ign .. of the scrializer

construct, informally define the syntax and setftlimtics llf sennlizers, and prt.1SCnt an

example of a scriatizer~ ·Then we describe the limited .v.¢~;0.f;~-ia,ii.c~lhat we will

be using in. the remaining chapters, give a possible implementation. of scrializcrs in
· - -., ,. ~; · ; r r~ , , · ~

terms of semaphores~ and com pure the scriuliz.ct und monitot.:tttmstrotts. , ·

- 2(f-

2.1 Serializer design i~ues

We believe that a language construct for oontrolling concurrent access to

shared objects should have the following qualities-:

*The shared objects should be separated into iden.tifiable sets of objects,
each set being a resource. A resource should 'afso,be treated as ·an object,
allowing resources to be composed from other resources. Each resource
can only be directly accessed through a set of operations associated with
the resource.

* The construct should separate control of concurrency from the algorithms
that access the resource. This separation simpltnes bOth the con'currency
control and the Tl.'SOUrce ·ace~ ~~ con~ncy . may be lost by
requiring complete separation, since it iS likely to' be difTtcult to partially
overlap operations. However, we believe tbaltheadde&simplicicy is well
worth the reduced concurrency.

*To aid reliability and verifiability, the shared yresoorce should not be
accessed except through an ol)jcct that controls ace~. to the resource.
The concurrency control construct should enforce this restriction, since
relying on programMCFS· to follow tonvemionsfis not sotisfartory.

*To case the writing of programs that ace~ n.'SOtfrccs, ope'mlions that
access the object cunlrolling the resource ~u-,uld.a~aflo bed~ Ol+lrly as
practical. the same as the opcmtions thal accc~ the n..•sourcc. llmt is, the
construct that controls concurrency should have the same appearance to
the user <1s the construct used fc.>r the rl.·sourcc.

- 21 -

Based on these criteria, we designed the seriaHier construct to have the

following characteristics:

* Like the cluster construct of CLU, the scrializer construct is used to
define data types by defining a set of operations for: each type. The
objects of a data type defil)ed by the seriaJizer consttuct·;nre called
serializer objetls . .. Each serializer object is used to control a separate
resource object. The operations of the data type are serja/izcr operations.
For the sake of modl!larity, seriatizer objoots <:an only .:ho ,,accessed
through the appropriate serializer operations.

*The execution of protected parts of a scrializer operation for a particular
serializcr object prccludt...>s the simultaneous execution of protected parts
oT any seriatizer operation on the same scriatizer object. 'Fbe process
ex,ecuting µ protected part of an operation is said to have possess(on of the
scriulizer object

*·During the execution of a scrializer operation, pos..<it..~ion of the serializcr
object can be released and regained. tt;iS ~nicutarly useful to release
possession whilc."ccessing ~he resource, thereby permitting .concurrent
activity involving· the scrializer object. ·After the resc.)Lirce access,
possession is regained to indicate tJwt t~ a~ess,, js complete. This
temporary release of possession permits external procedui·cs to be
invoked from a scliunzcr ·'operatiml' ·""'tte:jaflt1wmg fiJt~ .seriulizer
operations to continue.

*During the execution ofa scrializer op£(ation. it ll\aY ~come neq .. ~ry to
suspend execution to wait for some condition to become true. For
example, if some operation needs exclusive acct...'Ss to the tL•sot.frtt~ 'it must
wail until no other resource acce~'St.'S arc in progrcs.'i. During this pm1sc,
possession uf the scrializer object is released to allow other requests to
proceed concurrently as for as they arc able.

- 22 -

Figure I. A picture or a serializcr object

+-------------------------------------+
I
I
I
I
I

Request -->
I
I
I

I
Serializer object I

I
+------------+ I
I I I

(Pause) Reques~·~-> I I
I I I
I Resource I I
I t · I

Reply <---: (Pau~~) Reply'<--~ I I
I
I
I

I l I
+------------+ I

I
+-------------------------------------+

A graphical description of how the ·scrializer construct is' used ·is shown in
•<··· -

Figure 1. A Request is the start of an operation. and a Reply its termination {possibly
. . .

p~ing buck ir.formation). The iotcncjedelT~Qftl;le ~r,iaJizer is to i,Jnpose.an ordering
--- ... - ·' _,. "·. - _, '

on the requests and replies as they arc transinitted:berween th~· resotfrce tind the

requesters. The (Pause) is optionat. based on whuther the '.resource access rcqm,>sted ..
' _,,

can be pcrfonned immcdialcly:wh~11:;d1c l\Xl~r9oters tbe.~riqli~r. ln.1J1ost <;USl.'S. a

scrializcr operation passes the information it rcccivcS ''rmrn the ctdlcf to the

corresponding· n,•sourcc operation. and. ~'the ·inlhtmntion it rccciv4.!S from the

rL·sourcc opcmtion to the c-Jllcr.

-2J-

2.2 Serializer syntax and mechanism

This section gives a brief syntax for the serialiier construct and the statements

used only by serializers. We also give an informal description of what eac~ form is used

for and how it works.

The syntax used for a serializer is similar t~'ihe Syncix used for a CLU duster.

ll1c header names the serializcr and rists the externally ava11ab1e operatioris. Then the

representation type for the serializer is given. which determines the names to be used
. ' . ' ; ~,j ~ ' . - .

ror the components of. ~he scrializer, object Then tile operations are given as

procedures. 'Ille form of a scrializer is:

name = serial i z er is operalio11_name_lisl

rep = representa1ion_1ype

operation_name = p roe (formal_arguments)
op1io11al_returtf__lisl' ;
opt ional_excepl io11_1is1

procedure_body ·
end operalion_name

. % other operations

end name

We have used italics to informally indicate syntactic quantities.

As with clusters, the scrializcr construct defines a new date." type .. where the

type is denoted by lllll11C. Certain or the op.cr-..ttions :arc u8£fl ilO <;fCal~' 1\~-W SltfiaJizcr

objects of the named type, white other operntions are- us00--tH- aCCl.'SS the- scrializcr

objects; Opcrnlions named in the open11iouJv1mf .:..li.-..k ur~,, the, e,\-,frnqlly av.ai/ahle
,;· J}:

operations, and may be u.'l\!d by code out"tidc uflhc ~1ializcr. Operations not nmncd in

- 24 -

the operalion_name_list may on1y be used internally. Starting the execution of any

externally available operation that directly uses the serializer object requires that the

executing process gain possession of the serializer object (starti·ng execution is shown as

Request in Figure 1). Termination of an operation that has possession re1eases

possession (termination is shown as Reply in Figure 1). To reduce the likelihood of

dead1ock. an operation that has possession of a seria1izer object is prohibited from

directly calling another operation that requires ~ion of the same serializer object 1
' ···.

We have also added two new kinds of statements that can onty be used in a

scrializer. The enqueue statement is used to suspend executio·n (and tetea'se ~ion)

until some condition is satisfied (shown as·(Pausefin.·Figure 1). The statbment has the

form:

enqueue queue_expression unt i 1 boolean_expression

The queue_expression denotes a queue that' is .. used to impose a first-in-first-out

discipline on proce~s waiting for conditions.· The boolean_expression denotes the

condition that is required to be true before a process can rontfoue cxt.-cution. Such a

condition is called a guara111ee. When a process is waiting for the condition to be true.

we say that the process is waiting in the queue. since some identification of the process

· is stored in the queue. When a prc.X:l.'SS waiting in a queue is :.allowed to proceed, it

rcgui ns pc.~'SSion of the Sl.'fia lizcr objca. the flroa.-g identification is removed from the

qtk.'ltc. and the ellfl&leue statement tcnniruatcs..

I. In Jlfik.1kc. it may not ~ 1l4lSSihlc lo tletct.1 when thiHlll1tilS. :1nis dtll'N not am.-.:1 our ohjccti¥c.
which is tu reduce the ch;mcl'S for errors. We <lo not hclicve that it is llllS."iblc fi.•r" l.mguage R'Stric.:tion to
compk.'tt·ty dimin<itc this tff1t1 of l'R'ur w1thottt unehtly atfft·tinglttw ·ClPr~ IJ(.wer of the languag¢.

- 2S-

The queues used in scrializers are first-in-first-out unless otherwise specified:2

If some process starts execution of an enqueue statement before anOther process starts

execution of an enqueue statement for the same quet1e, the first .process-wilt complete

execution of the enqueue statement before the second process, provided that either

statement tcnninates.

The join statement is used to perform some body of statements that should be

executed while not in possession of the serialt~erobjectt/'fbe:stQtement hasthe form:

join crowd_ expression
body ...,.of_slatements
end ··

A crowd_expression denotes a set used to identify the processes that have started

executing a join stutement but not campleted i~ There m&y be scv~ra1 such sets. called

crowds,· so tha~ different classes ·Of accdS can be disting~ish,e(l.3 'f;h~ join statement

starts by placing some identification of the executing proet.~ iQtothc specified crowd

und releasing ~on(shown ~as Request'. in Figu(e U. hsl'Wr pos..wssion is relea.~cd9

the body..;.of;_stalemems is cxccutl.-d.: :Finally,. possession is.rqttiQed (.sh~wn as Rep 1 y • in

Figure l), the proet.~·,idcnlifimt.ioo .Js,., r1,.'QlUYcd: fn1m. ~;,~wp. ~u1d execution

continues t•Jicr thc,end of the join statement.: Twiodw., ... ~ ·i~i~~pfJtn op~mlion ~s

performed lo invoke the corresponding operation of the resource.

2. An example oflhc 11Sl' of'priorily queues appears in Ap1lC'ndR-l.-
l The join statement is so calkd lx'l:ausc the llflll'l'S.'> l.'Xl.'Cuting the slalcmcnl joins a crowd of similar
prut~'SCS. It fllll hecunflt~-J.with.fotk and·joitl'flritniliVWUf'iCd.W flfllJ.;~'$-i-Crcalion and lCr.tllill<lliuJl iO
other languagl'S.

- 26 -

A process attempting to start or continue excctµion of an operation on a

serializcr object must wait until there is . nq ,ot.ber pr~ that has possession of the

serializer object. If the process is .waiting fQr som,e conditipa to b~.~tisfied. it does so in

an explicitly named queue of an ~nqueue statement. If tl\e J?r~ is waiting to gain

possession at the start of an operation or at the end of a join stateme11t..it does so in an

implicit queue called the external queue. which is serviced in first-in-first-out order.4

POSSCS$ion of the serializer object is rel~d ,at the start of an enqueue

statement (after the process is placed on the queue). the startQfJ\jOin statement (after

the process is placed in the crowd), and at the end of an . operation. Whenever

possession is released, the explicit serializer··queues an e1amined to determine whether

any queue has a process at its head with a true guarantee.;· tr any of the guar:antees are

true. then one of those associuted waiting proces:es will gct,possession of the serializer,

and be removed from its queue. Then the process can proceed with the cxt.-cutio" of

the opcrntion. In evaluating the guarantees. there is no .asst1ri1ncc·.that the guarantees

will be evaluated in any particular order. or-that they :wiU an be 'Cvaluatc4 u11less all

cvalualc lo false. If atl guaranlcl.'8 arc folse~ then the p~.on ,100 external queue.that

h:.is waited the longest(ir my) is removed fmm tluH1neuc:and ~nibs Jl(ntil.~ioo.

4. Wl' he1vc l'hoscn to use a sin~k l'Xlcrnal lllll'UC ft•r simtllicity ufexplnnalAim. ll~iug a single cxt~rnal
queue is a valid implementation. allhough il is not lhl' only \'<iliJ implementation.

- 27 -

2.3 An example: the rcadcrs·writcrs problem

The general readers-writers problem [Courtois, Heymons and Parnas 71]

presents a simple resource that is to be acc~sseq by CQQCL~rrcitt processes. There are two
: '· ,, \ : : .' r ,

operations on the resourc;e, rf.IJd and wrlte. "i\ prote~ performing a read operation is

called a reader, wnile a process pcrfom1ing a. write opcrqtjon js called a writer. In

keeping with the ~erializer m~thodology, we have split the problem into writing a

cluster to implement the resource and constructing u serializer that encapsulates such a

resource. The basic constraint on conq1rrerky is that ~defers should not access the
; . .- : ··, ;·· .:;. . .

resource concurrently with writers~ and wi:itc~·, ·.sho(tld not access the resource

concurrenlly with other writers. The gencraf reade..S-writeTS problem imposes no
/

further requirement on the twder·of procc~ng.ttir operations.·

'The example we present irt 'Figute'· 2 has the requirement lhat if a read

operation on the serializer starts before a. write operation on 'ili,e ~tj~iFzcr. the reader

will access the resource before· that writer, a~d th~t . this: 't.1-St~in-first-out (Fl FO)
~~-

ordering is also imposed on writers with respect to readers, and on writers with respect
\, ;

to other writers. This vnriant of the readers·w~iters probl~m is discussed in [Greif 75].

In the Fl FO scrializer, there arc lhr~ upcmtkms. . one to create a new
,, :;

serializer object (and new resource). one to tead a. va~:t•ssociittcd with a key in the

resource. one to write a value associated with a key in the resource. Ottly the scrializer

operations that access the representation (rep) of a scrializcr object urgmfl~ need to

- 28 -

Figure 2. Fl FO serializer

% The following serializer is a first-in-first-out solution to the
% readers-writers problem.

FIFO = serializer is
create, % C~eate a new -serial fzed re,source object
read, % Read a valµe from the resource given a key
write % Write a valui''to the r&S'Ou~•·9iveft ~ key

% Each serializer object
rep = record (re: crowd,

we: crowd,

has the fol low<'iAg :r.epresentat ion -
'%. readers' crowd
'X writ•rs·' cre11.-

xq: queue,
res: resourc~]

% comnt0n queue
'X unsariali.ied resource . ,. . _-' . i:

create = proc {} returns (cvt)
return (repS(rc: crowdScreate (),

we: crowd$cre.ate O, ..
xq: queoeStreate f) t·'
res: resourceScreate () })

end create

read = proc (x: cvt, k: key) rstvrn$ ('lalue),;

~ Wait until there are no active writers
enqueue x.xq un,iil crowd.Se.,pt_r,;(~~~-c;J.

, ·:.c { ': ,,.·, •

%,Become an active reader & perform the read
jo1n x.rc

return (resourceSread (x.res, k))
end

end read

write = proc (x: cvt, k: key, v: value)

% Wait until there are no active writers .or readers
enqueue x.xq until crowdSempty (x.rc) & crowdSempty (x.wc)

% Become an active writer Ir perf':ont the write
join x.wc

resourceSwrite (~.res, k~ v')
end

encl write

end FIFO

- 29 -

gam possession of the scrializer object5 The use of cvt as a type declaration for

arguments to operations indicates which arguments are seriallzcr objects viewed as their

representations. The use of cvt follows the CLU usage, in that it represents a type

conversion between abstract type and representation type that is perfonned at the

interface of an operation. Each serializer operation is limited to one cvt argument, since

there is no provision for gaining simultaneous possession of multiple serializer objects.

There is no restriction on the use of cvt used as a return tylle6 (~~en if we allow multiple

scrializcr objects to be returned).

In the read operation of the· PIF01 &erialir.er. . th~ guarantee is

crowd$empty(x. WC). Therefore. no readers will begin to' readfrom the resourc'e until

there are no writers acc~mg the resoutce. Siadlar~ ,''"ft\, the write operation, the

guarantee is crowd$empty(x. re) & crowd$empt)(x.wc). which prevents a writer from

proceeding until .neither readers nor wrifots are atcessi~the·resouree.
. ' . ~':,.:.. ~ . -

The importance of having sole poSSt..~ion of the serializer object can be

illustrated by examining Figure 2 and considering the conSt..~ocnccs hr not havitig such

a restriction. For example, if a writer did not have sole possession of the scrializcr
'·

object nflcr it pcrfomu..'d its enqueue, anolh~r ·Wfik:r (;._~14'~~ the resource tJi.!twcen

the first ~ritcr's execution of the cnqueue·s1atemci1.t ilnd ttV~'.Joill slhtcmcnr: "11tis would
· · · · · , 1 t :.r:

5. ·111c create opcrnlimuJucs not need lo gain pos.'\l.-s.~1m. si1wc ~'U?D~~s other than the process
cxci:uling the create (JflCra1it1n ~0111tl.ac<.:l'SS the objl~l, . .
6. Nole llliil ill\ <!11 <1rgt11ncnt Lype lJcSl:ri11tion. cvt rcquifl'S a co~1n•ffii(!n from ahslract to representation
type. and as a return lYlll' deSt:ription. Lhc conversion is frilm1\•pt(:s('nti1ti~m lo ahstracl type.

- 30 -

allow simultaneous access to the resource by two writers. which. violates our initial

requirements for the serializer.

2.4 Sio1plC serializers
,t

It is in feasible to present definition, specification. and· ve'rit1cation techniques

for general serializers in this thesis. Therefore. we will re8triCt our attention to a limited

version called simple serializers. A simple serializer has the following restriCtions:

*The representation object (of tyf.?_e rep) for a simple serializer is a record
that may only contain a single :resource object 'llftd a faxed number of
statically named queues and crowds.

* AH queue· and crowd exp~io~ . arc limited to selection of
representation components.

* The guarantees on the e.nqt.1~ .. ~ statemcn~ ~n only t,est fQ~ queu~Sempty.
- - •• ~ ' < - - - • ,' ~ .- - -- ' • ~- ~ ' • ,.

crowd$empty, the logi'Caf a11d (x &. y) of guarantt!Cs. and the logical or
(x I y) of guarantees.

·*Only enqueue and join statements mi•Y be c~ecutcd while in ~"SSion of
the scriulizer object.

' ~ : . '

* Each scrializcr operntions must corrt.'Spond cxuctly in number. nmnc, and
interface to a corrt.~'fKmding R.."itlt1rc-0'0pcmt#m.YH<.1.statct1'ents nmy be
executed inside a lo.i

1
1,1, !ili.tlcmcnt ex~c.~t, to invoke the, corn..'Spc.>ncJing

resource opcrntion, returning its rt.'sufts ·rr111crc arc any. 'TITis n.~1riction
also prccludt.'S the h4mdling of exceptions.

* Inside of a simple scrializcr opcmtion. the return statement dc.x.'S 1101
immediately return an objt;'Ct from the opcratitlll~' •dt woukl in~ nonnal
operation. lnstcud, it is used to indicate the tlbjl-.Ct'k¥'hc retllfRed 0when
the scriulizcr opcmtion lcnninall.'S. This n..>Slrittion is prt.~nt to simplify

- 31 -

the semantic model in the next chapter.

While the above restrictions may seem severe, they atlow us to keep our

presentation of details not associated with concurrency control to a reQsonable level.

Simple scrializers are sufficient to scitve the readers-writers problem. ·as well as some

more involved examples.

Jn several places throughout the t~is we will indicate. how extensions to

simple scrializers can be handled. These extensions include cases where more

complicated computation must occur to detcrmifle the ortleLof processing requests,

where the interface to the serializer differs from; thatof the "i~nded,y.ing resource, and

where the scrializer and the resource are implemented together.

2.5 Using semaphores to implement serializers

In this section we present a possible implementation oFsimpte·seriatizers using

fair semaphores and clusters. We do this fbr two reasonsi
-: ,_

1: To show that the scria1izcr mcchanis1i1 is realizable.
'!· - ' ' • •

2: To give Further insight into the semantics of scrializers by g1v1ng a
translation ~nto a more comnwnly lmdcrst~xxt 1hcchanism.

ll1c semaphores that we use can be freely created, and obey a Fl FO disci1lline when

multiple processes rcqlll.'St the same semaphore. We also describe the operations on the

queue and crowd d~tta types used in this implementation of scrializcrs.

- 32 -

We assume that the semaphore data type has the following operations:

create () returns (semaphore)
returns a new semaphore with count ~ 0.

P (S: semaphore)
Atomically tests and sets the count of itJe giv~'1. semaphore. If count
> 0, the count is decremented and the operation completes. If count
= 0, then it stays 0 and the proct.'SS performing the P- q>eration does
not proceed until the count becomes positive. Once the count
becomes positive, the process waiting the longest decrements the
count and completes the'P operation. ·

V (S: semaphore)
Atomically increments the count Note ,that a P opemtion on an
initially, created semaphore must wait for a corresponding V
operation.

We assume that the queue data type has the following operations:

create ()returns (queue)
creates a new, empty, queue.

cnq (Q: queue, T: semaphore, G: guar)
adds the T, G pair to the queue. making the queue non-empty. 'fl1c
type of G. the guanmtcc cxpr~ion. i~ a~umcd to be .a predicate to
indicate whether the guaram~.C fs'frUe> ·'', ; · : ·"" · 1

• · • ; ·• • •

dcq (Q: queue) signals (empty) .
removes the head pair if the queue is not el1lpty, otherwise sigmds
empty.

- 33 -

empty (Q: queue) returns (bool)
returns true if the queue is empty, false.otherwise.

get_guar (Q: queue) returns (guar) signals (empty)
returns the guarantee evaluation procedure at the head of the queue
ir the queue is not empty, otherwise signals empty. Note that
queue$get_guar(Q) can also be written as Q.guar.

get_sem (Q: queue) returns (scmaphore)signals (empty)
returns the semaphore at the head of the queue if the queue is not
empty, other~ sl&naJs empty. ~eJb_~t queueSgeLsem(Q) can
also be written as Q.sem.

We assume that the crowd data type ha$ lhc fc;>llmving operations:

create () returns (crowd)
returns a m .. 'W, empty, crowd.

insert (C: crowd, T: semaphore)
inserts a semaphore into a crowd.

remove (C: crowd.I: semaphore) sigmtls,(~bscnt)
. removes a semaphore from a. crowd . if pr~seot. pC)1crwise signals

ubscnl · · .· · ' · ' , · .

empty (C: crowd) returns (bcx>I)
returns true if the crowd is empty. false othcrw18e.

..

lmplcmentrng a scrializer as a cluster that uses St.'fllaphoh .. ~ is u translation that
!, •

. ··.f! .. i . ' ~ ;

has the ti1llowingcases:

- 34 -

1: The serializer becomes a cluster. and the' reprcsent.ntion object is
extended to include a scm component, which,is·of type semaphore; and
an eva/ component. which is of type scquencc[queue]. 1l1e sem
component is called the ex1ernal semaphore; and the not e<>Mponent is
C'Jlled the queue /isl.

2: The create operation initializes the externalsemaphore tOa newly-created
semaphore, and performs scmaphore$V on it The queue list X.eval is
initially the sequence of all queues in thel'eJ)feSentatioa ..

3: Each operation that requires possession· is given-the folloWing protog:
semaphoreSP(X.sem}
T: semaphore := semaphoreSnew()

where X is the name of the cvt argument. and T is a unique local variable
used to hold a newly created semaphore for the transaction. T is used to
represent the process in queueS Mid crowds. .

4: A return statement is translated into an assig1m~el)t to a temporary
variable (or a multiple assignment if mukipk;.retw;q. va~~ are, present).
This requires such variablt."S to be declared in the'prolog, and their values
returned in the epilog.

5: Each operation that requires possl."SSion is given the folJOwing epilOg:
Eval(X) 1 __ . _ •.

where the Eval ,procedute is nri: internal o)jttiitiotf fiSt."-tl'fu'~lcct tbe next
process to pr~&. and wilt be dctuilcd bClow. · · ·

6: F.ach statement of the fhrm:
enqueue Q until, G

is translated into:
queueSenq(Q, T, G') X place self in queue
Eval(X) % release possession
semaphoreSP(Q.sem) % regain possession
queue-Sdeq(Ot.. _, '.% f.e-..>A•• 1JeJnl~•-~a

where Q is the queue to use in the expn .. ~on. T is the kical semaphore
vuriablc introduced in the prolog, and G' is a pnK..'CdUrC'1~bed' ~ .

- 35 -

type guar) used to evaluate G.7

7: Each statement of the fonn:
join C

Body
end

is translated into:
crowdSinsert(C, T) . % place self in crowd
Eval(X) % release possession
Body % execute body
semaphore$P(X.sem) % regain possession
crowd$removlt(C, T) 1' ,rellOW; se:~f. ,fr<W .orowd

where c is the crowd ID' join~ and Boiy is the body of statements to
execute while not in possession.

The Eval procedure selects the next'f)nlaeSS to receive possession. It first

checks (in some unspecified order) the non-empty queues to determine whether the

guarantee at the head of the queue is true. The first non-empty queue found with a true

guarantee has V performed on its head semaphore, and Eval returns. If no non-empty
..

queues are found with true guarantees, V is performed on the external semaphore. Eval

can be written as:

7. /\ reader familiar with Cl .U may notice that we h&ivc taken some 1ihcrtk-s in using a·. and have not
fully delined the type 1!,Uar. In general. it is fll't.:1..'Ssary to use a closure of procedure and dat;1 to properly
ddi111..• G'. We h;1ve avoidl'U 1111..~ issu1..•s for the sake of simtllidty; they do not am.'Ct our approach to
concurrency l:Onlrol.

- 36-

Ev al = p roe (X : rep)

% examine all queues for true guarantees
for q: queue in sequence[queue]Selemen,t,s{X.9!'f4l) do

if queueSempty(q) then % if queue· is e11pty
continue % then examine next queue
end ,.

if q.guar(X) then % if guarantee is·true

end

semaphoreSV(q.sem) % then allow that proce$s
return 'X. to cont iJ11,t&, c•x•cu.t.ion
end

% no non-empty· queues have t;rue guaranta.t• .
semapbcreSV(X. s•m) .. X •e:r~a ffl\&, •x·terMl q"eue

end Eval

The above version of Eval always checks the queues in some particular order. It would

be equally valid to checl ,the queuesjn ·•ny, QfdU.: ewell1iJ.n9fl*~nninjstic.

An example of how a serializer is implemented using clusters and semaphores

is shown in Figure 3. We have omitted the write operation, since there is li!tle

difference from the read operation; and the Eval operation, since it was shown above.
:··· ,-3

':;

2.6 A comparison or scrializers with monitors

·111e unrestricted scrializcr construct has many similarilk-s to the monitor

construct (Brinch Hansen 72. Hoare 74]. Both scrializers and monitors deal with

synchronization by encapsulating details of concurrency control within a set of

procedures. We pn.'SCnt a brief comparison of the scrializer and monitor constructs

Figure 3. Semaphore implementation or FIFO

FIFO = cluster is create, read, write

elist
rep =

= sequence[queue]
record [re: crowd,

we: crowd,
xq: queue,
res: resource,
eval: elist,
sem: sem.aphore]

create = proc () returns (cvt)

% readers' crowd
% write rs • c roJlfd
% co11111on queue
'X U,fl$&r~•l,izttd .l,'esource
% the queue 1 is t
% . tile ex tern~ 1 semaph.o re

""-~

E: semaphore :~ ~emaphoreScteate()
semaphoreSV(E)
Q: queue : .; queueSc rea ie ()
return (repS{rc: crowdScreate ().

we : c rowdSi:: reate () •
xq: Q,
res: r~source~creat,J ().
eval: elistS[Q].
sem: E })

end create

read = proc (x: cvt, k: key} return* (value)

% Prolog
semaphore$p(x.sem)
T: semaphore : = s.emaphoreiScreata()
v: value

% enqueue x.xq until crowdSempty (x.wc)
queueSenq(x.xq, T, crowdSempty)
Eval(x)
semaphore$P{x.xq.sem)
queueSdeq(x.xq) '

% join x.rc; return (resourceSread (x.res, k)); end
crowdSfnsert(x.rc, T)
Eval(x)
v := resourceSread(x.res, k}
semaphoreSP(x.sem)
crowdSreftJQve(x.rc, T)

% Epilog
Eval(x)
return (v)
end read

'X. Tlte write ope rat ion is not sbo.wn.

end FIFO

- 38 -

below.8 Except where noted. prope11ies of the monitor construct are taken from

[Hoare 74].

A serializer abstraction is intended to have. the same interface as the protected

resource, while the monitor appears to be a lock on access to the resource. The

serializer construct has the expre~ive power to be ltsed as a tock. but the monitor does

not have the expre~ive· power to mimic the resource (without serious Jo~ of

concurrency).9 The serializer and monitor .constr~. both protect the underlying

resource by controlling concurrent ace~ to i4 providing,that the only access is through

the serializer or monitor. The Serializer :oonstruct fifrther protects the underlying
!

resource by allowing the programmer to prevent acccSS'to the .resource except through

the serializer. This protection can be ~hieved -.yith monitors by having a data

abstraction encapsulating a monitor, such that bJth the resource and the monitor can
• - ~-. < - ~

only be accessed through the data abstraaion. Our preference is to provide this

appearance through a single construct

The serializer construct allows posses.'iioi1 of llfo ~ri4-1q?cr 9f)jecf to be released
}- ,- ·- ' •.

• , ' I , . -·

and regained in a controlled manner within a scrii11iicr opcr~iqn. In the monitors
..

presented in (Hrnlrc 74] there is no such provision. . J.11 an. extension lo monitors
; - :

[Lampson and-Redell 79] it is possible to write operations thautn:tmt require pos..q~'Sion

8. A comparison of an earlier version of Sl'rialtJ.C'fs with moniltw :lflflCal'S in flkwitl and Atkinson 79).
An cvalu<tlion of scrializ"·rs. 111011 ii ors. and path cx.prcs.-;iuns appears in I Hloom 7'>1.
9. Extensions which allc\'ialc this 1uohlcm haw fx'\•n made lhr the monitors rucscntcd in

11.mnpson •mJ RcJc1179i

- 39-

of the monitor. This allows an operation to be written that ·tequircs ~ion of the

monitor only for parts of the operation. These protected pm1s are required to be

invocations of monitor operations that require possession. 111is solution is slightly more

complicated to use than the serializer join statement, but is otherwise similar.

Serializers use explicit guarantees at the point in the procedlffe: where . .a
process waits on a queue. That guarantee is true when the process proceeds (providing

that removing the process from the queue diQ; nQ1 changtHhe guaraot~). Monitors also

have first-in-first-out q~~eucs (called condilions), but the expressions that determine

which queues:are tobe~rviced next aredist~dttoughoutthe various procedures
_/

of the monitor, which complicates the verification task.

As mentioned briefly above. there .is a.~~~,,.diff~rence ~ use, ,of queues in

monitors and serializers'", Processes in the ~~c queue in scrializers can be waiting f~r

different guarantees. Althaugh the same cflect caq bc,acl\U,~ed in mon~ors,)t usuaUy

requires extra code to do so, and is difficult to \Vflte ~d,~<Jeqitand. ·.

..

The scrializcr construct, like the CLU cluster construct, supports sets of

objects belonging to an abstract type. 'Ille monitors proposed in [Hoare 74) tend to
t' '

supprn1 one-of-a-kind cnrnpsulation. 'l11is dilTercncc is more a rcllccti(m or the base
;, ;- ;'" '! ~

langm1ge used than a basic diITcrcnce between scrializcrs and monitors. We mention

this difference because WC believe that supporting sets or objects is a better choice to
' i . ' ~

make, since there is more potential concui-rcncy in a system where data is partitioned

into separate objects.

-40 -

2. 7 Opportunities for optimization

One objection that might be raised to serializers is that they are inherently

inefficient: at every release of possession the queues must·be checked to determine

whether the condition at the head of each queue is satisfied.16 For this objection we

have two answers:

1: It is unlikely that the evaluation of such conditions will be expensive
compared to the execution' of resottl'CC operations.

2: In the event of the guarantee checking being· a Significant cost in a
. program. optimiz.atioo techuiques are especiall}NtpplQble: in this. limited
context

As an example of how we might optimize the checking of guarantees. consider

the FIFO example. When a writer leaves the writd's cmwd. it? is~)' to l'fOVe that both

the· readers and writers crowds arc empty. This knowledge allows an optimizing

compiler lo immediately dequeue the next transaction in,the.qirctlc (if any) wh<.."flevcr a.

writer completes. In such a case. no guarantee evaluation takes place. When a reader

leaves the readers crowd it is eusy to prove that the -writcr.i crowd is still empty, whid1

idlows the compiler lo ~imply chcd the hc&1d of the queue fhr a reader-. thus avoiding
; .

any more complex evaluation. Whenever a writer joins the wrilcr.i crowd all guarantet..'S ,

arc known to be false, and do not need to be dll"Ckcd at all. In short. we h~avc shown

that intermediate steps of the verification program can lead to sufficient information to·

10. /\similar ohjl'Clion is &ll"tu.al1y mi~·d in fl luarc 74. p. SSftt

-41-

perform optimizations that can significantly reduce overhead for checking guarantees.

We have advocated designing, verifying, and implementing serializers and

data abstractions independently. This independence can lead (especially in CLU) to

many levels of procedure calls, where each procedure performs an extremely small part

of the computation. When the overhead for procedure calls costs on the same order as

the rest of the computation, it becomes desirable to substitute the bodies of procedures

for their invocations [Atkinson 76, Scheitler 77). For serializers in the style we have

advocated, it is generally both simple and beneficial to perform this substitution. We

note that the simplicity of the substitution is greatly aided by our initial requirement

that the serializer present the same interface as the underlying resource.

- 42 -

3. Semantic Model

In this chapter we· present an abbreviated ~Mc model for concurrent

execution of programs. and use-it to define scriali"r semantKts. ln the next chapter, we

use the model to define a small specification language for serializers.

The semantic model we use to define serializers is intended to be embedded .

within a larger semantic model, just as the serializer construct is .embedded in a larger

programming language; We will not be concerned initially with which larger model is

used, ulthough we will return to the issue later. Whatever larger model is used, there

must be support for shared objects, side-effects. and concurrency.

We wilt first give an overview of the semantic model for serializers, assuming a

particular larger semantic model. Then we discuss the various components of ~he

model in detail. Then we give the meaning of the serializcr construct by giving

predicates that all scrializcrs must satisfy. Finally, we disc~ the role of induction in

the scrializcr model, and outline how the model might be embedded in a different

larger semantic model based on mcssagc-pa~ing betwa-n processes. ~

-43-

3.1 ()ycrview of scrializer semantics

Informally, the text of a scrializcr is a set of statements that describe what

happens when serializer operations are executed in a system with concurrent processes.

To give the semantics of the serializer construct, we require a definition of "seriatizer

operations", a defiiJition of ''excclitiQn'~, o ~finition of "pr,.ocess", .. a,nd a definition of

"what happens".

The model we choose can be viewed as an interpreter: Each procedure is

represented by a graph composed of basic instmctions that indicate which actions to

perform and arcs between the instructions to indicate the order of execution. There is a

global stute,~consisting of a set of shared objeats·!t~-? set ;0f processt.~. Each process has

a local state, which includes a set oflocal GQ.jects, a stad of procedure activations, and a

program counter that indicates the instruction t.hatthe pr~ is to execute next. Each

instruction represents some basic actio11. Ex~i~g un ifl;itruction mo?ifi~ the glopal

or local state. The exccuticm ofan instr~tiQJlialwnys.•ndw~'&Jhe next instruction. in

the pmcessby modifyi11g the r>mgram~couftkr. A Pfve4'"SS where the 11cxtinstruclion is

pcmiittcd tooecur is·cuUudac~ive. ~xceutillft£1Jr1a~.n in~JJ~Ct~(,)llS may muse ~l pnx;css l.Q

become inactive until certain conditions hold. ~·· '

For simple scrializers, the only components of the global stale modelled arc

the slate of the quem .. 'S and crowds IC.1r the scrializer object. and the stale of scrializer

possession. ·111e only component of the local state modelled is the program counter

within a scrializcr operation.

- 44-

The interpreter proceeds by choosing an active ~. and executing the

instruction indicated by the program counter of that process. Although the choice of

process is non-deterministic, no process that is active may be indefinitely denied

execution. We call the sequence of instructions executed by the interpreter a history.

We can give the semantics of this informal' modet through a predicate that

takes a history, an initial gfobal memory state, an initial set of processes (and their local

states), and a set of graphs representing the procedures in the system, and returns a

boolean indicating whether the history could be produced ht' the interpreter we have

described. We will call this predicate the globallegalitypredicate.

In this thesis we are discussing a singte·tonguage constnact. In ·this context.

presenting a complete definition for a language would occupy more space and attention

than it merits. The semantics of a language construct can be defined through.a partial

legali1y predicate that partially. determines the global legality predicate. For the

scrializcr construct, this .predic-Jte 'is i1lse ·ror 'histories that .are prohibited due to

scrializcr semantics. and· true tor others. We wm not .pn..-senta: defmition. of a larger

language. nor ll)ffllalty state the internctions bl."lw~n. thc .. serializcr construct. and the

ulh\.'1' language featun.>s.

• 4S·

3.2 Nodes

In defining what is meant by "execution of scrializcr operations", we first need

to define a representation for an operation and its associated data. Since we are dealing

with only one serializer object at a time. it is convenient to regard the serializer

operations and the scrializer object as being inextricably bound together into a single

unit. For brevity in this chapt~r. we' will use the term serializer object to refer to this

unit

Each scrializer operation (bound' to an a~ated seriatizer object) is

composed of nades. A node is just (informally speaking) an instruction at some location

in a program with its associated data. A node g~aph is used to represent a serializer

operation, where· the arcs in the graph represent sequential execution. For simple

serializers, the node graph is degenerate, since there is a linear order to the nodes. We

have used the tenn grap/ttD case the disctfssiollofexiensionstothis model.

The following kinds of nodes are involved with synchronization in a simple

scrializer. At such a node.· f'Osst,~ion of the SCfiialif.er object: may be gained or released.

enter (ope rat io11_11amc.(fon1.1ql.....a1g11mc1!ls)): Thi\i. JJ~ .. .rcpwsc•~~. the
initial entry to an operation that requires possession of .the scrializcr
object. After this node, is cx~cutcd! th~ ext."C~l~ing process has
posst..'SSIOn.

. ,.

~) .
' : . ,.; . . ~ ' / ,,: '

exit: This node represents the cpilog to an opcrntion that requires
possession. Executing this node releases ptlSSl.'SSion.

- 4()t.-

enqueue (queue, guarantee): This node represents the first part of an
enqueue statement. Executing this node places the process in the
specified queue with the specified guarantee and releases posSt.'Ssion.

dequeue (queue, guaranlce): This node represents the, second part of the
enqueue statement. Executing this node regains possession and
removes the executing proct.'SS from the queue.

join (crowd): This node represents the start of the join statement
Executing this. node places· the process. in the crowd and Jcleases
possession.

leave (crowd): This node represents the end of the jein statement
Executing this .node regains~ through the external queue
and removes the process from the crowd. ·

The following kinds of nodes are used. for other primitive actions that can

occur in a simrle serializer.

invoke (invocation): This node representsthc.t.crminationof execution of
the specified invocation. For simple scrializers it .will only appear
once, and must appeur in the body of a.join ~atcmet:it

, . - / - '- ' - l ' .

return (i11voca1io11): As with the ia¥oke-nod~ d\e relMl'~dlOd~ represents
the termination of execution of the specified invocation. Executing
the return node also· ck.'Signatcs the objl.-cl to be returned when the
scriatfrcr. opcrution tcm1intth .. 'S.at ttleexlNwode~ ' · r , ·'.,

~ ,- . ~

The USC of invoke and retiarn notk"!S in simpfo Scrialitt.~ is lifuitcd' tp showing where the

opcrations·orthc underlying n.·sourcc arc call\.-d.

-41-

Each node N has the following structure:

* N.kind - an identifier (one of enter, exit, enqueue, dequeue, join, leave,
invoke, return) indicating the kind of node.

* N.next - empty for exit nodes; otherwise the next node in the execution
sequence. Note that the next node for any return node is an leave node if
the return is performed while in a join statement, otherwise the next node
is a leave node.

* N.mob - for enqueue and dequeue nodes, the queue used; for join and
leave nodes, the crowd used; otherwise empty.

* N.expr - for enqueue and dequeue nodes, the condition to guarantee; for
return and invoke nodes, the expression to evaluate; for an enter node,
the operation name and its formal arguments; otherwise empty. Note
that for an invoke or return node the information about which procedure
is executed and which arguments are used is contained in the expression.

* N.match - for an enqueue node, the corresponding dequeue node; for a
join node, the corresponding leave node; otherwise empty.

ll1e transformation of a serializer operation to nodes will be given by example.

Suppose we have the fi1llowing operation in a scrializer:

change = proc (x: cvt, d: data) returns (value)
enqueue x.q until crowd$empty(x.c)
join x.c

return (resource$change(x.r, d))
end

end change

- 48 -

The node graph for the above operation can be represented_~=

Nt: enter (change(x, d))
N2: enqueue (x.q. crowdSempty(x.c))
N3: dequeue (x.q, crowdSempty(x.c))
N4: join (x. c)
N5: return (resourceSchange(x.r, d))
N6 : leave (x • c)
N7: exit

•

In the above graph, NI.next = N2, N2.next = NJ, and so on, N7.next is

empty. The queues, crowds, and expr~ions are indicated.

N2.mob

N4.mob

N2.expr

NJ.mob - x.q

N6.mob x.c

N3.expr crowdlempty(x.c)

The reader should be cautioned that the description we have given for norles

and node graphs is incomplete. We have not discu~d conditional statements,

assignment, exceptions, or iteration. In later chapters, we will describe how extended

node graphs would be handled.

- 49-

3.3 Events

Informally, an event is the completion of execution of a node in a process. For

our purposes, the important features of an event are:

*An event is atomic. An event takes no time to occur, although the
amount of time between events is always positive and finite.

* An event is associated with a single node of a serializer.

* An event is associated with a single "process". We assume that the reader
has some intuitive idea of process. We will introduce a more exact
definition of a specialization of the process notion in the next section.

It has been proposed [Greif75] that an event is a state transition. The state of

a simple seria'.izer consists of the state of the serializcr queues (not including the

external queue), the state of the scrializer crowds, and the state of the scrializcr

possession. Only the simple serializer events (enter, exit, enqueue, dequeue, join, leave)

change the state of possession. Changes in possession that do not alter internal queues

or crowds result from enter and leave events. Changes to internal queues result from

enc1ueue and dequeue events. Changes to crowds result lhlm join and leave events. We

will return to this point in a later chapter.

In a full semantic model we would have to show where an invocation started

and where it terminated. For simplicity, we have chosen to not represent the event that

marks the start of an invocation. 'll1c invoke and return events arc sufficient to indicate

where the resource operations arc called, which is all that we need at this point in our

- 50 -

discussion.

A dequeue event marks a change in state of the indicated queue, and a change

in the poSSt.'SSion of the serializer. A dequeue event for some proe5 will not occur until

aner the corresponding enqueue event, and not until that proc~ is at the head of its

queue and the guarnntec evaluatt.'S to true. The evaluation of gllarantees takes place

immediately prior to every event that releases possession (enqueue, join, and exit events

release possession). For any event E that releases poSscSSion, we will OS$Jme that

evaluation of the guarantees takes place between E and the seriali2r event immediately

preceding E For simple seriaJizers. where the guarantees ;.are limited.to side-effect free

evaluation of cxpn.-ssions involving the scrializer state, no further events need to be

introduced to repn..-scnt the evaluation of guarantees. If more involved expr~ions are

allowed. events representing such evaluation muft be introduced. .

3.4 Transactiom

For a seriulizcr. a 1ra11soction is a Sl.'Qucncc of scrializcr events that occur for

~me procl.'SS in the exl.-cution of a scrializcr opcnation IOr Slftlc scrializcr ob~'CL 'l11c

order of events in a tmnsaction is the same ~~. the order in, which those cvcllls occur in

the execution of the scrializcr opcmtion. Each enter cvt.""llt for some scrializer oh,i\..'Ct is

the first event in ~>me tnmsaction. and each fXit cvcn,t is the last event in some

tr.ansaaitm. We ~gn a unique 1ransac1ion kl<•ntife•r.al the_ c.~cu~ncc of an enter

event.

- SI •

A transaction may also be viewed as a segment of a process. There may be

many transactions involving a serializer object for any particular process, but a

transaction can only belong to a single process. 'The intent of transactions is to capture

only the amount of detail about a process necessary to define scrializer semantics.

Where we formerly used the term process, we will now use the term transaction.

Now that we have identified events as being associated with transactions and

nodes, it is notationally convenient to give events a structure. Each event E has several

components:

* E.trans - the transaction identifier for the event.

* E.node - the node associated with the event.

* E.kind - the same as E.node.kind.

We can associate possession of the serializer object with a transaction by

noting that if there have been more gaining than releasing events for some transaction

in some finite history (the difference can only be 0 or 1), then the transaction has

possession of the serializer from the last releasing event l'br that transaction up to the

last event in that history.

- 52 -

3.5 Histories

For a serializer, a history is a sequence (possibly infinite) of events that

represents all events that occur for a particular serializer object. For a given serializer
~ ;

object, there are infinitely many possible histories, depending on the requests sent to

that scrializer object and on the arbitrary choices ~ible in selecting dequeue events

when several queues are ready.

A history can be viewed as being same interleaving of the transactions

involving a serializer object. Every event in a history also belongs to some tran8action.

The reverse is not true, our modct includes hi*>rics wit~ incomplete transactions.

Scrializer semantics is defined by stating 'Whieh·hiStories·c-Jrt be produced for

any given ser;alizer object. We define a predica~ .~at. gj:v~~. ~ r~prcscntatign of

serializer code and a scrializer history, will be true if and only if the history could be

produced by the scrializer. A history that sqti~fit..-s that. predicate is called a legal history
' ' - ' - ,' - i' .,< t -.:.C:-''' :-- ~ ; -~' : ~ ' ; .

for that scrializer code. A more complete definition of a legal l:listory occurs later in this
. - , .· ~ '. ' " '

chapter.

We assume ihal the fbllowing. fm1ctions arc dci'ilicd on ·~rializer histotit..-s:

Finih .. '(H)
is true if the history is linite; otherwise false.

Size (U)
returns the number of clements in 1-1 if 1-1 is finite: otherwise is
undefined.

- 53 -

lndex_set (H)
if H is infinite, returns the set of positive integers; otherwise returns
the set of integers {NI l < = N < = Size(H)}.

Nth (H, N)
returns the Nth element of H if NE lndex_sct(H); otherwise is
undefined.

Head (H, N)
returns a prefix of H that is the first N elements of H, provided that
N E lndex_set(H); i·eturns the empty sequence if N is O; otherwise is
undefined.

For simplicity, we have chosen to model only those operations that accept a

serializer object as an argument. We assume that the serializcr object is initially in some

initial state, such as that obtained by executing its create operation: the resource object

is in its initial state, no transaction has possession, and all queues and crowds are empty.

The model we have presented is only sufficient to represent operations where

possession of the serializer object is gained. For example, the Fl FO serializer presented

in the previous chapter has three operations; the model we have presented is only

sufficient to represent two of them: read and write.

- 54 -

3.6 Definitions

Predicates will be defined in a dialect 'or -first-ordh predicate calculus.

Functions are defined using a similar syntax, but avoid the use of quantifiers. We call

this language the definition language, and will refer to it as su~h in k\ter .chapters.

Many of the following definitions are more easily expr\llSCd if we have a
; -!· .

notation for conditional expressions. The expression "if x l:hea¥ ~~ z·~ is taken to be

y if x is true (even if z is undefined), and z if x is false (even if y is' undefined). and

undefined if X is undefined. We also use the "elseif' extension to this notation. as in

CLU, to allow convenient syntax for multiple cases.' In t:'mieSwhere lhe:ttetse" clause is

omitted. "else true .. is assumed (which implieS that only boofdlil conditional expression

may omit the "else" clause).

Many of the functions and predicates given below anr de lined only for finite

histories. In_ our definitions. these functions and p~dicatcs are never applied to infinite

hislori~ so there is no need to define them for those cases.

- 55 -

Event E occurs in history H if there is some integer index N such that Eis the

Nth event of H. Event El precedes event E2 in history H if both El and E2 occur in H,

and the index where El occurs is less than the index where F2 occurs.

Occurs (E, H) =
3 I E lndex_set(H): E = Nth(H, I)

Precedes (El, E2, H) =
3 I, J E lndex_set(H):

I< J & El = Nth(H, I) & E2 = Nth(H, J)

Note that we have assumed that an event can only .occur once in a history. This is

implied by later definitions.

As a notational convenience, we iniroduce. the predi~te Same_trans(H. I. J),

which is true if the Ith and Jth events in history H are from the same:trtmsaction. The

predicate is undefined if the integers I or J do notbelong to lndex_sct(H).

Same_trans (H, I. J) =
Nth(H, l).trans = Nth(H. J).trans

- 5() -

We often need to express the idea that a particulaf even~ .or all events for a

given node, cannot occur between two given events.

Excludes (El, E2, E, H) =
Precedes(E, El, H) I Prccedes(E2, E. H) IE= El IE= E2

Excludes_node (El, F1, N, H) =
v I E lndex._set(H):

if Nth(H. l).node = N

then Excludes(El, F1. Nth(H, I), H)

A slightly more complicated predicate will be needed to specify a more

general exclusion predicate (to be used in lllter· chapters).

Nodc_excludes_nodc (NI. N2, N, H) is true ifT no event for a given node N can occur

betwt.-en any two events El and E2. where El:node ± NI. El.node= N2, and

El.trans= E2;trnns.

Nodc_excludcs_node (NI, N2, N. H) =.
v IJ € lndex_sct(H):

if (Nth(H. l).node = Nl
& Nth(H. J).node = N2

& Smnc_tnms(H. I. J))

then Exdud4..--s_nock(Nth(H. I). Nth(H. J). N, H)

Intuitively, Nodc_exdudcs"""nock(NI. N2. N, H}cxpr~'S the restriction that no event

generated by node N occurs between events generated by .nodes N l and N2. where the

events from N 1 and N2 belong to th~ smnc tmnsaction.

- 51 -

We are often interested in the last event of a finite history, or in a history that

lacks only the last event of a given finite history. The functions Last and Front are used

for notational convenience.

Last (H) = Nth(H, Sizc(H))

Front (H) = Head(H, Size(H) - 1)

Certain events gain exclusive possession of the serializer, while other events

release possession of the serializer. Still other events do not change possession.

Gains(E) is true only if the event E gains possession, while Rclcases(E) is true only if E

releases possession.

Gains (E) =
E.kind = enter I E.kind = leave I E.kind = dequeue

Releases (E) =
E.kind = exit I E.kind =join I E.kind = enqueue

- 58 -

A finite serializer history is busy if its Jast event gained possession of the

serializer. or if its last event did not release the serializer and the history before that

event was busy.

Busy (H) =
if Size(H) = 0 then false

elscif Releases(Last(H)) then false

else Gains(L1st(H)) I Busy(Front(H))

The functions Qsize and Csize return the number of transactions using a

queue or crowd given the queue or crowd and a finite history.

Qsizc (Q, H) =
ifSize(H) = 0 then 0

elseif Last(H).kind =enqueue & Last(H).rnob = Q
then Qsize(Front(H)) + I
clscif Last(H).kind = dequeue & Last(H).rnob = Q
then Qsiz~'(Front(H)) - I

else Qsi~'(Front(H))

Csize (C, 1-0 =
irSizc(H) = 0 then 0

elscif l.ast(ll).kind =join & l..asl(H).mob = C

Chen Csiz~'(Fronl(H)) + 1

clscif Last(H).kind = lea\lf & Last(H).mob = C

then Csize(Fronl(H))- 1

else Csiz~'(Front(H))

- 59-

In certain serializcr specifications, the rank of an event is important The rank

of an event E is an integer that represents the order of E relative to other events
. i •• .. '

occurring at E.node. The first event to occur at a node has rank 1, the second has rank

. 2, and so on. The rank of an event that does not occur in a history is 0.

Rank (H. E)::

if Occurs(H, E)

then 1 + Rank_scan(H, E, 1)

elseO

In defining Rank. we made use of Rank_scari(H. E, I), which returns the

number of events occurring in H at or after event Nth(H, I) and before E with the same

node as E.

Rank_scan (H, E. I) =
if Nth(H, I) = Ethen 0

clscif Nth(H, !).node = E.node

then 1 + Rank_scan(H. E. I+ l)

else Rank_scan(H, E, I+ 1)

- 60-

3.6.1 Evaluation of guarantees

Whenever a serializer is released, the guarantees of the non-empty queues are

evaluated. The following functions define such evaluation given a finite history and an

expression to be evaluated. The notation {G} is used to represent the expression G

occurring in serializer code, and distinguishes the expression from our definition

notation, since the syntax for expressions and definitions is often similar.

Eval is defined by cases, each case being based on the syntax for boolean

expressions. For simple serializers, Eva! returns a boolean value, since guarantees are

limited to boolean expressions involving tests on the emptiness of queues and crowds.

Eval (H, {Gl & G2}) = Eval(H, {G 1}) & Eval(H, {02})

Eva) (H, {Gl I G2}) = Eval(H, {GI}) I Eval(H, {G2})

Eva! (H, {- G}) = -Eval(H, {G})

Eva) (H, {crowd$cmpty(C)}) = Csize(Var({C}). H) = 0

Eva! (H, {queuc$empty(Q)}) = Qsize(Var({Q}), H) = 0

Eva I (H, {false}) = folse

Eval (H, {trueJ) = lruc

The Var function (in Var({QJ) and Vm~{C})) is a mapping from syntaclic

expressions for queues and crowds to some semantic representation for queues and

crowds. We require that the mapping produced by Var is the same mapping that is

- 61 -

used to produce the N.mob component of any node N in the history H.

The above definition of Eval is tailored to Jhe needs of defining the semantics

of simple serializcrs. There is no provision for local variables, which would be

transaction specific. There is no provision for guarantees with side effects, exceptions,

or non-termination, which would require the use of events to rnark the state transitions.

Fmther, such provisions would.also complicate the definition of the Var function.

3.6.2 Legal histories

A history is legal if it can be produced by some execution of a serializer.

Legal(H. S) takes a history and a set of nodes that represent the code for a serializer,

and returns true iF the history could have been prodt1ced 'ffom the seriafizer code. A

legal history must be composed of legal steps. That is~ each prefix of the history can

only be followed by an event that represents a permitted state Jransi~ion of the

serializer.

For a finite history H to be legally followed by the event r.: the following rules

must be satisfied:

* For E to gain possession of the scrializcr, then there can be no trnnsactio11
in possession of the scrializer (.... Busy(H)). ·

* If there is a transaction in possessnlh t1ftf1c sctitr1rzer. theWE mt~'t'bclong
to that transaction.

- 62.

* If E is a dequeue event, its transaction must be at the .head of its queue
and the guarantee must be true.

* If E is an enter or leave event, there may be no queue8 stlCh that the front
transaction in the queue has a true guarantee.,. . ,

*All events from a single transaction must occur in the order dictated by
legal execution of the code for the operation_ exec.uted Q)' that transaction.
In particular, an enter event must be the fi..St event in Its transaction. .

Note that there are no restrictions explicitly involving join and exit events. The only

restrictions that we impose for these events are expr~d by the requirement for "l~~l
, • - - - • -·: • < -'", ~

execution" of the node graph.

The above «;onditions lead to the . following definitions of. Legal and

Legal_stcp, where H is a history. and S is the set. of eater nodes. for the operations.of the

serializer that require ~-

Legal (H. S) a

v N. E lndex_set(H): Lcgal_step(Head(H. N-1). Nth(H9 N), S)

l.eJOl_Slcp (H ... ~ S) s

((ifGains(E) then -Busy(H))

&. (if Rusy(H) thcn·l.ast(H}.tmns ~ f_trans)

&. (Ekind = ..__ ::>·l.A.--gal_dt.-q1act1t.'(H •. f.)).

IL (if Ekind = enter 1 .. :tmd. = tea~.-l~~ None_rcady(H)l
..

&. IA.~_trnnsaction_stcp(H. E}

at,(f_kiad = '91ln ::> t-:.s.~ E: ~~S))). .. ·

- 63 -

TI1e event Eis a legal dequeue event aller the end of history H if the guarantee

is true, and the corresponding enqueue event is is at the head of its queue in history H.

Legal_dequeue (H, E) =
(Eval(H, E.expr)

& 3 I E lndex_set(H):

(Nth(H, l).node.next = E.node

& Nth(H, l).trans = E.trans

& Head...:.enqueue(H, I)))

The transaction for the enqueue event Nth(H. I) is_ at the head of its ,queue if

Nth(H, I) is the last event in H for the transaction. and evel)' other enqueue event

occurring in H before Nth(H, l) has a corresponding dequeue event.

Head_enqucue (H, I) =
(ln_queuc(H, I)

& v J E I ndex_set(H):

if J < l then - I n.;...same_qucue(H. l, J))

ln_queuc(H, I) is true only if Nth(H, I) is an enqueue event that is the last event in H

for its transaction.

ln_qucuc (H. I)=

(Nlh(H. l).kind = enqueue

& v J E lndex_sct(H):

if J > I then -Same_trnns(H. I, J))

- 64 -

ln_samc_qucue(H, I, J) is true iff Nth(H, I) and Nth{H, J) arc enqueue events that are

the last events in their transactions and the transactions are in the same queue.

ln_same_queue {H, I, J) =
(ln_queue(H, I)

& ln_queue(H, J)

& Nth(H, l).nodc.mob = Nth(H, J).node.mob)

None_ready(H) is true if for a particular finite history there is no explicit

serializer queue such that the front transaction in the queue has a guarantee that

evaluates to true. This predicate is used to define the priority of explicit queues over

the single external queue of a scrializer.

None_ready (H) =
v I E lrdex_sct(H):

if Head_cnqueue(H, I)

then Eval(H, Nth(H, l).nodc.expr)

An event E can be a legal step after some history 1-1 only if it can be produced

by sequential execution of some trunsaction. There must not be an event in H with the

same trnnsaction and the same node as E: and if E is not an enter node, then there must

be an event in H from the same transaction as E that n.'Sults from executing a node fc.1r

which E.nodc is the next node.

-65-

Legal_transaction_step (H, E) =
('tJ I E lndex_sct(H):

(if E.trans = Nth(H, l).trans

then E.node * Nth(H, l).node)

& if E.kind * enter

then 3 I € lndex_set(H):

(E.trans = Nth(H, l).trans

& E.node = Nth(H, 1).node.next})

3.6.3 Complete histories

The set of legitl histmies for a serializer iudµd~s hi~or~ w~ere tran&'lCtions

have been started but not completed. Any finite legal history where the seriafizet state
'," - _-i .-

requires further events to occur is termed i11complete. · AU ·othet legal historit..-s are

comp/ere. A complete finite history is one where no further events are required to

occur. Events are required to occur according to the following rules:

The serializcr specification language will be interpreted as defining

spccij/ca1io11 predicarcs on complete historit..'S. Serializcr code is s.tid to meet its

spcci lications if the speci lication predicates arc true for every compl~te ~J~lory of that

code.

- 66 -

For a complete history, all events that are required to occur in the history must

occur.

*Whenever a releasing event occurs and there are ready queues, a dequeue
event from one of those queues is required. Therefore, if H is finite, and
the last event in H released possession, then H is only complete if no
queues are ready.

* For every event that gains possession of the serializer, a corresponding
event that releases the scrializcr is required. For simple serializers, every
gaining event will be followed by a releasing event. Note that this
condition implies that if H is finite and not empty, then Last(H) was a
releasing event.

* For every join event, a corresponding leave event is required. We assume
that every operation of the underlying resource used in a join statement
will terminate. Such an assumption is part of a modular proof of
termination for programs involving serializers.

lnese conditions lead to the following definition for Complete, where H is a history for

some serializcr, and S is the set of enter nodes for operations of that serializer that

require possession.

Complete (H, S) =
(Lcgal(H, S)

& (if Finitc(H) then Nonc_ready(H))

& Gain_complctc(H)

& .loin_complctc(H))

- 67 -

Gain_complete(H) is true if for every gaining event there is a corresponding

releasing event that occurs after the gaining event.

Gain_complete (H) =
v I E lndex_set(H):

if Gains(Nth(H, l))

then 3 J E lndex_set(H):

Corresponding_release(H, I, J)

Corresponding_releasc (H, 1, J) is true if Nth(H, J) is the releasing event that

corresponds to the gaining event at Nth(H, I). A releasing event corresponds to a

gaining event if both events arc in the same transaction, and there are no intervening

releasing events for the same transaction.

CorrcspoP.ding_rclease (H, I, J) =
(Release_follows(H, I, J)

& v KE lndcx_sct(H):

if K < J then ""Relcase_fiJtlows(H, I, K))

Relcase_follows (H, I, .I) is true iff Nth(H, .I) is a releasing event that follows

the event Nth(H, I); and belongs to the same transaction as Nth(H, I).

Rclcase_follows (H, I, .I)=

I< J & Samc_trans(H, I, .I) & Rcleascs(Nth(H, J))

- 68 -

Join complcte(H) is true if every join event has a oorrcsponding,lcave event.

A leave event corresponds to a join event itT it·belon~ to0 the same'. ttaosaction as the

join event and there are no intervening leave events for the same transaction.

Join_complete (H) =
v 1 E lndex_set(H):

if Nth(H. I). kind = join

then 3 J E l~dex_set(H):

(Leave_follows(H, I. J)

&. v K € lndex_set(H);

if K < J

'·

then -Leave_follows(H. I. K))

Leave_follows (H. I, J) is true ifT Nth(H; J) is a leave event th3t folrows the

event Nth(H, I), and belongs to the same transaction as ~fb(H" 1)..

Leave_follows (H. I. J) =
I< J & Same_trans(H, I.)) & Nlh(H.J)~kind p leave

' ~ . . . ,: . '

3.7 Serialiwr Induction

In CLU. n cluster that implements a data type dot.,; so by providing operations

that manipulate objL-cts of a representation ty~ .. J-'or. cvccy ~abstract object. tJ1crc is a

representation object. In dl-signing and vcrirying clusters. it has lx.'Cn found to be

useful to make use of a n·prrsc111a1io11 invarialll [Guttag. Horowitz and Mu~er 78] that

must hold for i.&11 objects supported by the cluster. ll1is repn.'SCntation invariant should

be true whenever a rl'pl"l.'SCnlation objl.-ct is crc<1tcd. and it should be maintained by all

operations.

To prove that the representation invariant holds, we need to use induction on

the sequence of operations performed. The induction principle we use is that if P is

true at the start of the abstract object's lifetime, and assuming P for an object at the start

of an operation implies that P is true at the end of the operation, then P is true of that

object before and after every <?Peration. As in (Guttag, Horowitz and Musser 78), we

will call this data type induction.11

To show the soundness of data type inauction, we need to show that if P is

true of an object after any operation of the cluswf. tQ~ll P j!i true of the object before
• :, '··. • -I i • - ' ' ~ ' '

any other operation of the cluster, provided that there were no intervening operations

of the cluster. Informally, to use data type induction using some predicate P, it should

not be possible for actions of other programs to:tnaik~· P in,Yaljd. It is possible in CLU to

write clusters such that data type induction can be used to prove reasonable predicates

about their objects. A duster with this pmpcrty is Strid to-have art irofated representation

[Atkinson 76]. While the cluster con~ttuct is mlt stridty 'neeL~ry if one wishes lt:tuse,

duta type induction. it facilitates the determination of an isolated representation.
!•

As presented h1 this thesis, the scriafizcr'cti11sthict is quite similar to the cluster

construct. Both can implement abstract types, andbot'h do so by manipuhiting objects

of a representation type through opcnitions that can have sole aCCl.'SS to the

11. Also know as gcncra/or induclion in (Wcghrcit and Spittcn 76].

- 70-

representation objects. Since scrializers provide the same kind of representation

protection as clusters do, we can use data type induction, in part, to verify serializers.

We call the application of data type induction to histories serializer induction.

For any compJctc history H, seriaJizer induction can be expressed as:

if

(P(Head(H, 0))

& v l,J E lndex_set(H):

(if (Gains(H, I)

& Corresponding_releasc(H, 1, J)

& P(Head(H, 1-1))

then P(Hcad(H, J))))

then

v K E h1dex_set(H):

if Gains(Nth(H, K)) then P(Hcad(H, K· l))

The predicate P is intended to be defined on finite historit.>s where no transaction is in

possession of the scriulizer al the end of the history.

History induction is applicable for any serializer where the predicate P will

hold from the event where possession is released to the next event where possession is

g~1incd. We can express this condition as:

- 71 -

v l,J E lndex_set(H):

if(Gains(Nth(H, I))

& Relcases(Nth(H, J))

& Nth(H, J).node.next = Nth(H, l).node

& P(Heaq(H, J-1)))

then P(Head(H, I))

We call this the isolation condition. Just as the cluster construct facilitates but does not

fully enforce an isolated representation, the serializer construct does not necessarily

enforce the isolation condition.

The serializers we will be specifying and proving' .satisfy the .. isolation

condition. In view of this, there is no provision in the histories for events that occur

external to serializers. Wehavenot provided rorsittJationsthatweilmvebeen.unable to

prohibit in the programming language, but believe· to be bad practice;

An example of scrializer induction is the use of a representation invariant for

the FIFO readers-writers problem presented in the .Pr~vipus chapter. A simple

invariant for an object X of type rep ft>r any finite history His:

Csize(X.rc, H) = 0 I Csizt..'(X.wc, H) = 0

While this invariant is not the strongest we can prove, it is a usdt11 properly that can be

proven simply.

- 72 -

As a reminder, the code for the read operation is (briefly):

enqueue x.q until crowd$empty(x.wc)
join x. re; ... end

while the code for the write operation is:

enqueue x.q until crowdSempty(x.wc) & crowdSempty(x.rc')
join x • we ; . . . end

lnforma11y, we can prove the invariant by cases. First. suppose that we have

Cl = Csize(H, X.rc) > 0 :J Csize(H, X.wc) = 0,

C2 = Csize(H, X.wc) > 0 :J Csize(H, X.rc) = 0,

where the history prefix is understood. Since Csite ·always; results in a non-negative

integer, the condition Cl & C2 implies the iftvQriant. lni:tially.j 1b0th <U'Owds are empt)'.

!n• the invariant is tfiv.iallyitrue. To prove Cl., •H1sswne,tJaat.Cl is trUe immediately

prior to some gaining event, and show tllat, it: is maintaioe<l :immediately after t.ny

releasing event. An examination of the code shows that the only sequence of events
. .. . ' ·*· ·-. '·' , . .

that can increase Csize(X. we) is where some writer dequeues and joins the writer crowd.

Therefore, the only w~y that Cl could be false is to alfuw s0me writer to dequeue when
. . • . . • ' ~~ 7 ~ .

CsizL'(X.rc) > 0. However, the guarantee lbr the writer transaction prohibits the event

from occurring until Csizc(X.rc) = 0. Thercrore, Cl is maintait'tcd. Condition C2 is

proved similarly. 'l11crcfi.lfc the invariant is maint&Uncd. , . . ~-

- 73 -

3.8 Comments on enter and lc;nc events

One simplification made in the model is based on the use of enter and leave

events. A reasonable requirement on enter events is that they will occur if they have

been requested. The only requirement ·that we hav~ on~~ve eve~tS is that they will

eventually occur if the corresponding join has. oq;:ur:red. Yet after completing the

resource operation, the lcal'e ev.ent must be r~~~t,ed. since ~me other transaction may

be in possession. The simplification we have made.isnqt.to rq>rescnt requests for 1enter
.- . ' . . :) . . '

or leave events as separate events.

One requirement that this places on serializers is that code executed while a
- . : ' ' . ;.. . :' t '~ :. '. : {'' - ~ . '' . . ,

transaction has possession of the serializer must terminate. since othe'rw1se a request for
"··· . "

possession could not be satisfied. Termination while in posses8ion Is· trivially satisfied

for simple serializers.

We have also assumed that there. is sorri~ seh~duling discipline on requests f()r

possession of the scrializcr so that a 'request for an enter ~r .• e~ve event will not be

forever delayed by other such requests. A Fl FO diseiplfoc on all such requests may be

overly strict in some systems. and we do not require it. Any disdpJinc that guar~mtecs

service to requests for possession will be satisfactory. w~· n1~tke m;·~tUetnpt to prove this

requirement in general.

Adding specific evenlc; to the model toindicatc when enter and leave events

have been , reque~tcd is only neCCS..'ii.lfY to represent undesirable cases SllCh US

non-termination while in possession. or a pathological scheduler. Flll1hcr, it is not

- 74 -

reasonable to include such events in the speciflidltions,or proof techniques, since their

order of occurrence is not affected by possession of the serializer object.

3.9 Message passing semanti~s

The model we have presented in :this chapter has ·been deliberately

incomplete. The larger semantic model we have· asmmed' uses procedure cans and

processes, and is well-suited for describing the use 'of serializers in a system where

multiple processes communicate through shared memory. While· having a certain

intuitive appeal, particula.rly to those familiar with monitors. the techniques we· have

used (and will use) are applicable when a larger programming language and larger

semantic model arc used.

In this section we will sketch a model based on message passing. Such a model

has been proposed by various people (Grcif:and Hewitt 75, Hewitt and _Baker 77,
.. ;,'

Good, Cohen and Keeton-Williams 7.9). A similar model is used to describe distributed
. ' • ~ ' - ! '• ·' ' ;_ . ' '

systems [Svobodova, l.iskov an~ Clark 79, Liskov 79). We. believe that the stmcturc of

scrializcrs is quite useful in organizing proJ?rnm~ in these distributed systems, and will
; : •. : J l: .- .·· -

address some further implications of scrfolizers in such an environment in our

conclusions.

In the mcssage-pas.'iing model, scp•1rate entilic..-s communirntc by passmg

mcssagc..-s mlher lh•tn by sharing memory mm.mg many pn.lCc..'SSl.'S. Of course. when the

sume physic<1I entity recciVl.'S lllt..'SSagc..'S from V<1rious sourct..'S, the c0cct of a shared

memory is achieved. We can think of a scrializer object as one such entity, the resource

- 15 -

object as another entity. and the originators of m~ges to the seriulizer as other

entities. In such a model. scrializer objects are message ~witchers: They affect when a

message gets passed to~· resource, but not the mess~ge itself, nor its reply.

We.imagine that scrializers are used in a programming htnguage that supports

a logical network, where there are logical .sites, each of whjch q~ its.own. local objects.

Each site can communicate wi.th another site only by sending mt..'SSUges to that other

site. We assume that each site can send messages to any ather site without regard to

physical connections. UnJike. physical sites in a net~prk. logical sites can be freely

created at relatively low cost, up to the limitations of the'· implementation.

Ill such a logical network, each serialjzer;:~t is' a sepjlrate site .. Further,

each resource object is a separate: site. Instead 'otsaying that'a process is executing
<'

scrializer code. however, we say that a site ·executes cot:tei fot seme transact-ion. Local
:}

variables are associated with· ·the tr;aostet~ and reprC$elltation components are

associated with the site.

'Ilic fhUowing description of the St.'f1tdi20r coostnmt in a message passing

model gives an outline of an ;.1bstrnct ,4nplcmc11tation .JOr scria~i~~· At serializcr object

creation, the representation object is initialized, and the scrializcr site waits for external

messages to arrive. We ck.~1ibc the scrializer C\'ents us follows:

*enter - An entl>r event represents the acceptance of an initfal request
message k>r service at the scrializer site. At this OCCt.1lfancc,, a unique
transaction identifier is gcnernled to name the transaction that this event
starts. The request mL•ssagc idc'ritiflc~r· fh~ 'l'>~cnrtuin to' ~xccute, the
arguments to that opcrntion, and the dcstinati()n ''(or the reply. A

- 76 -

destination is a site name and a transaction identifier relative to that site.

*enqueue - 111c enqueue event represents the completion of a series of
actions. . First, the transn~tiqn identifier, the guarante~. and the
continuation point are placed in the named queue. then the guarantees
at the head of the internal queues are evaluated to determine the next
transaction ,to seryice. If there are ready queues. the serializer ~te selects
one of them as the next to proce~ and releases possession. If there arc no
ready quettes, the seriatizer site releases ·possd6io1f mkf accepts' tile next
external message. .· :; .

*dequeue· After the dequeu~ event. po~n·hasbeen regained by the : ;
transaction, the enqueued information has been removed from the queue,
and the serinlizersite witt continue tfrexecute rotle'fotthattransrlcdon at '
the given continuation point

*join - The join event also represents completion of a series of actions. ·.
First, the transaction identifier- and the contia.uolioft Point are placed iin
the named crowd. Then a message is· sent to the. resource site, 12

rcquest:ng the operation and arguments desired: The message sent to the
rt.~arce site indicates the scriuJizer site aslhe destination. and also nwJtes
the transaction being proc~d. Finally, as for the enqueue event, the
guarantees arc exumint~ and possl.~ion isNlcasedC· ·.'

* leal'e - A leal'e event repn.-sents an acccptunce of a reply mt.-ssage from
the resource site. PoSSl.'SSion is regained by the transaction named in the
reply. 'lhc infonnation associated- with that tnu~tiun in the named
crowd is removed from that crowd. The scrializcr site continues to
execute code fc.lrthc transaction at the continoatiorfpoint.

*exit - An exit event represents the completion of a series of actions. First.
a reply mcs.liage is sent· to the ck..-stination given in· the enter event. For
simple scri<1lizcrs. the infornmtion in this reply is taken from the reply
received ut the leave event. 'lllcn the guarantet'S arc cvuluatcd and

12. For simplicily, we will <L"isumc lllill the only code &hat can ~1ppcar in the houy of a join s!Atlcmcnt will
he an invocation of a resource operation. ·

- 77 -

possession released, as for the enqueue and join events.

The above discussion has presented a very simple view of serializers in a

distributed system. However, we believe that extensions to this model will not greatly

affect our description of serializer events. For example, we have assumed that there is

no more than one request outstanding at a time, so that the site name and transaction

identifier are sufficient to specify a destination. A natural extension would be to allow

several. requests to be outstanding. In such a case, a request number relative to the

transaction can be included in the destination.

3.10 Infinite histories revisited

We noted in our introduction that states can be regarded as equivalence

classes of histories, a view advocated in [Greif 75) (although Greif discusses partial

orders of events rather than sequences of events). However, this approoch docs not

easily deal with infinite histories, since the stale predicates (such as Csizc and Qsize) are

not defined on infinite historit.'S. It would be convenient if we could avoid introducing

infinite histories, hut we have not yet discovered a method that docs not require them.

We introduced infinite historil.'S to model what happens to a scrit11izcr object over its

cntire lifetime. Some scrializcr objects arc intended to have unbounded lilctimcs, even

though any physically realizable system must have a finite lifetime.

- 78 -

If we reject the use of infinite histories, then we consider the specification

clauses to be requirements that all finite complete histories must satisfy. Unfortunately,

this leads to difficulties with showing that the "starving" readers-writers solution could

not satisfy the guaranteed service specifications, since the counterexamples involve ·

infinite histories where ce1tain events are not required to occur. If the only histories

considered to be complete are finite histories where after the last event all crowds are

empty and no queues are ready, then the starving readers-writers solution can be

proven to guarantee service. The system designer who relied on this proof would be

unpleasantly surprised to discover that starvation actually occurred under heavy loads.

- 79 -

4. Specification language

One method of specifying a programming language is to provide rules for

translating programs written in that language into functions on some mathematical

domain. This method-can also be applied to specification :languages. Tue specification

language for serializers is composed of clauses in which certain relations between

serializer events imply other relations between serilllizer events. The meaning of

specification clauses is given ~ stating rules for transforming the clauses into

specification predicates on histories:

Serializer code is said to meet its.-specificutions if every complete history that

can be legally generated by the senalizer code (accordi,og to the partial legality predicate

discussed in the previous chapter) satisfies all of the specification predicates that result

from the specification dau~ JOr that serializer~ ..

It is not our intention to require that the spt!cilication language have sullicient
. .

power to define abstract data types. We are·. mty :Iaoocernod .··with specifying

concurrency control. We believe that the difficulty of arriving at good specification

methods dictates that we attack a tractable problem. and integrate the various

approaches as they arc sufficiently well understood.

In this chapter we discuss the kinds of scrialit.cr specifications supported. and

present the syntax and semantics of the spccificutim1 language. 'TI1en we give •t tldl

Spt.'Ci lication for the Fl 1--U rcaacrs-writcrs scria~w:. sdmc: specifications for vari<ttions

on the readers-writers problem. and •.a partial spt.'Cilication · f<>r tJ1c boundt..xl buffer

- 80 -

problem.

4.l Kinds or serializer specifications

The specification language is a notation for requiring a serializer ab&raction to

have certain. properties. These properties are clasmfied as:

• Exclusion - where one kind of ace~ excludes another, such as readers
excluding writers in a simple· data baSC. 11fiS ti1'd of specification is
necessary to prevent concurrent requests frQJ11 •nterfering with each
other.

•Priority - . where one transaction is served. preferentially over another.
This may occur because of the order of enter everats. the kind of
transaction, or other reasons or combtnatiorts of reasons.

•Concurrency - where some accesses are required to be served
concurrently. The pn.-sence of·concurrem. prOcessing ·for tequest'S often ·
affects the pcrfonnuncc of system. aoo may even affectthe correctn~.

• Service - where some (or all) accesses are required to run to completion
(analogous to requiring terminatio& f0r sequential progmms}.

We make no claim that all interesting synchronization. propcrtit..-s fall into the above

rntcgorics, although many do. We also make no claim lh&1l &_111 properties in the above

classes can be expn.~d in the specification language, or that the spl.'Cifications arc

especially concise in .our language. The cl~ we have chosen are not m .. -ccssarily

distinct; some prupcrlit.-s may be an.sick'fed to be in more thun one das.~. We arc more

intcrt.-stcd in making the specificaltim language usable. by both programmers and

verification systems than attaining some kind of ft>mtal compk..1cm .. 'SS~

- 81 -

The specification language has nothing to say about performance, either for

real time, computation time or storage. Although performance ~haracteristics can be

inferred from some of our specifications, specifications and proofs of performance are

beyond the scope of this thesis.

The simple form of the specification larigllage doe5-not deal ·witlfthe values

passed· to or· from serializer operations. This simplification has been made to avoid

discussing what the exact meaning of "value" is in the language. The fonn of the
iii·

specification language in this chapter has events, nod~. boolean and integer values. We

also include limited predicates on these values, and simple arithmetic expressions as

functions on integers. It is po~ible to extend the specification language that the user

sees to include further values and functions, but such extensions involve more of the

semantics of the complete programming language than we wish to handle in this the'iis.

In the next chapter. certain extensions are mudc 41 lhe spccificatio.n :l*'.nguage to support

our verification techniques. but these extensioos;,,atf¢, siiH: qYit~. limited. and do not

support user-dcfint-'d vaiues and functions.

4.2 Specification language

The specification language is defined by specifying a mapping from

specification clauses to unbound specification predicates. Each unbound specification
:---

predicate takes a symbol map and a history into a boolean that indicates whether the

specification clause is satisfied for that symbol map and that-history •.

A symbol map is a function from event symbols to events, and from node

symbols to nodes. lt provides an interpretation in our semantic model of the symbols in

the specification clause. A valid symbol map provides a consistent interpretation of

symbols for a given history. and will be·discussed further later in this chapter. The

symbol map is an important distinction between the specification language and the
' ... -

definition language.

Each specification clause defines · a spccifacation predicate. which maps

historiL-s to boolean values: tme if the clause is satisfted for that history, and false if it is

not. The spt..'Cification predicate for a clause is the value :of ihe ·unbound specification

predicate fc.Jr that clause taken over every valid symbol map thr a given history.

- 83 -

4.2.1 Syntax of specification language

The specification language has a simple syntax. The specifications for

serializcr code are expres.5ed :as a set-of clauses, each clause being expr~ed as an

implication. The syntax of the specification language is given informally below, issues

of parenthesization and precedence being neglected.

Clause = Clause "::>" Clause
I Orclering_cla~se
I Clause "&" Clause
I Clause "I" Clause
I "-" Clause
t "GX" "(" Event_symbol
t "GX" "(" Event_sy1tbol ","
I "@• Event_symbol

I Expr Order _Op -fcqJr .

Event_sy111bol "," Rode_:.symbol ")"

Event:_syllbo-1 "," Event.:...;.symbo 1 ")"

Ordering_clause = Event_symbol "<" Ev~nt_symbol

I Event_symbol "<" Ordering_clause.

Order _op = "<" I ">" I "~"· I ">" "=." .. l ":ft"

Expr = literal
I Ex pr " -" Ex pr
I Expr .. +" Ex pr
I Expr "•" Ex pr
I Expr "I" Ex pr

I "#" Event_symbol

An event symbol (Event_symbol above) is written by writing a trallsactimt

symbol followed by the event kind followed by optional information indicating other

components of the event (with optional digits fi.lr further disambiguation). A

transaction symbol is written by giving the first letter of Lhc operation name (or enough

letters to be unambiguous) li.>llowcd by optional digits if more than one transaction for

- 84 ..

that operation is needed in the clause. Examples of'; event 'symbols for an operation

whose name starts with ·x· are:

• X-enter: This symbol denotes an enter, event for transaction X. By
convention,_ if there is only one transacti9~ appeatjng in a specification
dause for the operation, no c.figits are n~cy- in th~ fransadion symbol.
There can be only one enter event for any trqn~. -.

• X-join: This symbol denotes a join event for transaction X. For simple
serializers, this join event is associated with perfomilngthecortesponding
operation on the resource. Also, for·simple·serializeif/'we -«re fimit~d-to
having one join event for any given transaction. ,, ;.: 1.; ~ 1

'.::> .: . ' · · ·
'~ . (' , .
,_\ '

• Xl-exit: This s.ymbt>J denotes an exit event (Qf;l.f~Jl5;Jct-ioQ XI. Note the
use of the digit ·1 • to indicmte a transa'7tion·thutjs.~~n~t trom· X (or X2).
By convention. we give different transactionsc4i(ferem digits· in
specification clauses where more than one transadiortiOran operation is
mentioned.

• X2-cnqueuc(s.q): This symbol denotes· a· enqueue event for tran8action
X2, where the queue denoted by .$q isused.

A node symbol (Node_symbol above) is written by giving the fiat letter(s) of

the transaction name. followed by a "*". fotlowcd by the event kind. For t..--xamplc, the
. . .

enter node for operation X is written as X*-cnter. Any further infom1ation given is the

same as the corresponding event .

- 85.

4.2.2 Semantics of spccincalion language

We first must describe the domains over which the specification language is

defined.13 The syntax given aoove menti0ns event and node symbols. but does not

explicitly demand that the symbols apply to 8 single serialiZer. Therefore, we need to

limit ourselves to nodes and events chosen from sdmepartieular~serinlizer, S. We name

these domains (and representative elements) by:

n E NS -- node symbols for S

e E Es -- event symbols for S

c E Cs -- specificationdatJSt'.S for s. ·

x E Xs -- expr~ions i:>r S

Note that we have provided. single chanacter names. fot.~mpJe eJ~ments of the domains.

We wiH follm. the leading character conventi911 used in naming events for naming

clements of these domains in the later equations. including i•~g trailing digits where

more than one clement is desired.

The semantic domaim are those domains described in the previous chapter on

the semantic model.

n E Ns -- nodes for S

e E Es -- events for S

Lt Although the <knot<1tional method uS('d in lhmthesis td dcfinc·dtc sp«itlcntion language owes much
to work hy &otl and Strachcy IS1.:0U •md Strachcy 71. Stn11.:hcy and Wadsworth 74). the domains we use
arc simply sets. not latti1.:cs.

- 86 -

h E Hs -- complete histories for S

(H8: Int-> Es>

In specifying the meaning of the specif~ .language it is necessary to

provide a symbol map that takes node.and ev~tsyrµbol~into their meanings. We wm
discuss this function at greater length below.

p E P8: maps symbols to events or nodes

<Ps: Ns u Es-> <Ns u Es»

The following functions take syntactic vatues· into semantic -values. We say

that they define the meaning of the syntactic construC1$~tbe specification language.

We have avoided parsing. andprecedence.issues-tomcre·dearty.present these·fu.nctions.

Note that the braces"{ J" are used to brackel'syntadic:co11structs.amJ:distinguish them

from the semantic expr~ons.

-f({eJ.p) -- event corresponding toe in map p

-
N({nJ.p) -- node corresponding ton in map p

N: (Ns. Ps>-> Ns

C({cJ.p.h) -- validity of spccificution clmtsc c in map p. history h

(true if c is satisfied. fitlse if not)

C: (Cs· Ps. Hs)-> Bool

X(txl.p.h) -- value of cxprL~ion x in map p. histocy.h.

(<m integer value)

- 87 -

X: (Xs, Ps, Hs) ->Int

O({op},p) -- binary predicate corresponding to op

(Op={<.>.<.>.=, :;t:})

O: Op-> ((Int, Int)-> Boot)

The definition ofC({C},p,h) for specification clause C is.giv.~n below by cases.

C({cl :::> c2},p,h)

C({el < e2},p,h)

C({cl & c2},p,h)

C({cl I c2},p,h)

C({ -c} ,p,h)

= <:;({cl},p,h) ::> C({c2}.p,h) -
= Prccedcs(f({el},p), f({e2},p), h)

= C({cl},p,h) &C({c2},'p,h)

= C({c 1 }.p,h)f C({ c2} ,p,h)"

= -C({c},p,h)
,,..,,, ,... ,.,,. ,._ ,,,,_ #fltl

C({GX(el, e2, n)},p,h) = Excludes_node(f({el },p), f({e2}.p), N({n},p), h)
,,..,,, ,,,,_ ,,.._ ,..., ,,,,, ,...

C({GX(el, e2, e)},p,h) = Excludes(f(fel}.JY),f({e2},p). f({el.p), h)
.... -

C({@e},p.h) = Occurs(f({el}.p). h)

C({xl opx2},p,h) = O({opJ,pXC({xl},p,h), C({x2},p,h))

The definition of X({x},p,h) is given below by caSt.'S:

X({xl + x2},p,h)

X({xl - x2},p,h)

X({xl * x2},p,h)

X({xl I x2},p,h)

X({literal} ,p,h)

X({xl},p,h) + X({x2},p,h)

X({x l},p,h)-X({x2},p,h)

X({x 1 },p,h) * X({x2},p,h)

X({xl},p,h) I X({x2},p,h)

constant
.... -X({ #e},p,h) Rank(h. f({e},p))

As a notational conven.ience, ~e clause_ ~'f'.! < E2 < E3" is equivalCAt to

"El< E2 & E2 < E3". Longer clauses of the same form are defined similarly ..

Some examples of specification clauses follow:

Xl-join < X2-join :J XI-leave< X2-join

This clause mentions two ttansattions. Xl and X2. The intention is
to specify that having transaction XI µcc~ the resource prohibits X2
from accessing the resource.

@)X-cntcr :J @X-exit

This clause is a specification of service fOr transaction X. The
occurrence of the X-entcr event implil'S thnt the X "'.exit event occurs
in any complete history.

(l_ilG-cnter & (#G-enter < #P-cntcr) :J ~11G-exit

If the enter event for transaction G occurs. and the rank ofG-entcr is
not greater than the rank of the enter event fi.>r trnnsaction P, then
the exit event for transaction G must occur. In (slight1y) more
intuitive terms. a transaction fc.lr operation G is only required to
receive service if there arc <tl least as many transactions for operation

- 89-

·~ ;. -. '

P as transactions for operation G.

4.3 The symbol map

Mapping symbols in the specification clauses m· matheruatical entities is a

necessary part of translating specification clauses into functions on histories. It is

necessary. to map event symbols into events,,n<Mk symbols, into nodes. and syntactic

expressions into their value domains.

The meaning of a specification clause is taken to be a predicate that, given a

history. returns true if a history satisfies the specification, and false if it docs not.

Setializcr code is said to satisfy a specification clause if, for every complete history and

every valid symbol map for that history. the 'spt!dficatron pr«ficate' defined by that

clause is true for the nistory.

A valid symbol map for seriallzer S must satisfy the following restrictions:

* Distinct event symbols must map to distinct cvt..-nts, ;and distinct node
symbols must map to distinct nodes.

* Event symbols must be consistent with no<lc1symhols. For example. the
event symbol "R-enter" must map to an event that is consistent with the
node symbol "R *-enter".

* Event and node symbols map to events and nodes that arc consistent in
kind to the symbol kinds. For example, the node symbol "R *-enter"
must map to a node that is an enter node in the scri~1lizcr S.

- 90-

• Event and node symbols map to events and nodl."S thal are consistent in
transactions lo the transaction symbols. fl>r example, the event symbols
"RI-enter" and "RI-exit" must map to events with the same transaction.

• Event symbols mentioned in ordering clauses (El< E2) and GX clauses
(GX(El, E2, E)) must map to events that actually occur inc~the'h'istory; ·
Event symbols mentioned in rank expre~ions (# E) and occurrence
clauses (@6).net!Q not occur in the.kistory.

The last restriction on symbol maps needs .further explanation. The

motivation for introducing it is to. keep specifications of order si:parate . from

specifications of service. For example, suppose that we are attempting to specify a

readers-writers serializer where writers are given priority over other writers solely on the

basis of when enter events occurred. To do this, we use the following specification:

WI-enter< W2-cnter :J WI-exit< W2-exit

However, if the last restriction docs not hold, and we therefore' albw .symbol maps

where the events corrcspond1ng to WI-enter and W2-enter occur in the given order for .

some history, but either ~>f the events Cl~rresponding to Wl·cxit or W2-exit have not

occurred, then the sp1.>cilication clause w~JI have a much different meaning. If the event

occurrence is optional IOr the symbol 1m1p, then a scriulizcr wilt satisfy the clause if the

given order holds. am/the scrializcr guarantees service to wrih!t"S. but 1101 if writers can

starve. In this rather surprising way, a priority spccilicatio~ has implied a service.

spcci fication.

- 91 -

We believe that keeping the specification of order separate from the

specification of service sirnplifies both specifications nnd proofs. 'Therefore, we have

required that a s.ymbol map is vnlid for some history only., if an event symbol in an

ordering or GX clause maps to an event thatactually <>mJrs in the history.

4.4 Readers-writers specifications

Our first examples deal with the readt.'fS·writers problem. In this problem, a

serializer abstraction should allow concurrent access .t9 H simple data b~se for

transactions that simply read from the data base, but should _not allow transactions that

write to the data base to overlap, since thal could destroy the integrity of the data.

The same exclusion specifications apply to all versions of the readers-writers

problem.

* Readers exclude Writers - A reader accessing the resource prevents a
writer from accessing the resource.

R-join < W-join ::::> R-leave < W-join

*Writers exclude Readers - A writer accessing the resource prevents a.
reader from accessing the resource.

W-join < R-join ::::> W-leave < R-join

* Writers exclude Writers - A writer acccssmg the resource prevents
another writer from accessing the resource.

WI-join< W2-join :>WI-leave< W2-join

- 92 -

For the FlFO readers-writers serializer shown in Chapter 2.- the priority given

to a transaction is based on when it arrived with, respect to. other transactions. We

expect strict Fl FO ordering between readers and' writers, and between writers and

writers. Strict priority between readers is notreq~ because readers may access the

resource concurrently. 1l1erefore, we have the following priority specifications:

• Readers not pre-e~pted by writers.

R-enter< W-entcr :::> R-join < W-join

• Writers not pre-empted by readers.

W-enter< R-enter :::> W-join (R-join

•Writers not pre-empted by other writers.

Wl-enter < W2-enter :::> Wl-join < W2-join

The abov~ priority specifications only rcquire,lhe <Kder ~1f R!Qll~ -to be preserved

from enter events to join events. not from lca~e events lo exit events. If the order of

service matters after the resource operation is pcrfi.mncd, tht.11 we wotHd inctudc the

fc.>llowing dauSt..'S:

R-cnter < W-cntcr :::> R-cxit < W-cxit

W-cntcr< R-cntcr :::> W-cxit < R-cxit

WI-enter< W2-entcr :::>WI-exit< W2-cxit

- 93 -

ln the readers-writers case, we specify concurrency for . readers by the

following specification:

GX(Rl-enter, R2-enter, W*-enter) & R2-enter <RI-leave

:::> R2-join < Rl-leave

This clause is interpreted as requiring that for any two readers, Rl and R2, that enter

the resource without a writer entering the resource between RI and R2, if R2 enters

before RI has completed accessing the resottln\'tWm Rl:.WilJ begin. to access the

resource before R l completes its access ..

We cannot require that two readers are actually concurrently executing

resource operations, since actual concurrency may depend on the scheduling policy

followed on a multi-processed machine, or on the relative speeds of two processors if

the requests are executed by separate machines, or 1>.f, tt1fther roncttrre~ty limitations

imposed by the resource. The kind ofspecification:thnt we mustsetJle for is to require

that both requests are sent to the -resource (in join events) before citl1er reply from the

resource is acknowledged ·(in leave even-ts). >.:c.·onctlJliellcy/specifiin1tion only requires

the opportunity for concurrent cxccutio""' unhiadered by the serializcr.

The spccilications of service for readers and writers arc simply that for every

enter event there should be a corresponding exit ,4:vent. and that this should hold for

both readers and writers. ·n1c spcci fication clauses are:

(Ct)R-entcr :::> @R-cxit

(C11W-enter :::> ~~)W-cxit

4.5 Variations of the readers-writers problem

Other versions of the readers-writers problem exist [Courtois, Heymans

and Parnas 71, Greif75). Aside from differences based on the ·programming language

used, the versions differ mostly because of the kinds of priority they give to readers or

writers and the presence or absence of starvation.

The simplest priority specifications often conflict with .other specifications.

For example, suppose that the person specifyingJne :SeriaJizet wants. to give writers·.

priority. The intention might be: "whenever a writer enters a serializer before a reader
·'

· has been serviced, the writer should be serviced before the reader." This specification

can be written as:

W-enter< R-join :J W-join < R~join

Further. we can write scrinlizcr code·that wilt realize this specification. Unfortunately.

if writers arrive at the scriu1izcr at a su llkiendy. high~rate~c.with ·respect to the length of

· . time the resource$write takes. readers .can. be indeflnitcly .prohibited; from joinjng the

n .. -sourcc. This would con met .with thc,.guarantccd scrN1cc rcquircm\.·nt given above.

since there can be no specification that prohibits writers from arriving at the n .. ·source.

A inorc. reusonablc spccificat1on of writer's-priority is to require "if a reader

and a writer enter the scrializer while a particular other writer- is being scrvic\.'Cf, then the

writer will be serviced before the reader." This specification can be written as:

- 95 -
,•

(WI-join< W2-enter < W1-lcave & WI-join< R-enter< WI-leave)
::::>WI-join< R-join

This specification does not conflict with our service specifications. Regardl~ of the

number of writers that enter while resource$wtite is being performed for Wl, the

readers that entered in that period need not be delayed· for any writers arriving after

that period.

The guaranteed concurrency specificati()l1$ may also .differ from serial~er to

serializer. We may wish to require for the read~rs~priprity~~!~fJhat f\\l:~ea9ersthat

enter white a writer is ,accessing the resource wiH be ~lk>;we~JA~r~ently ac~ the

resource. This specification can be written as:

(W-join <RI-enter< W-leave & W-join < ~2-enter < W-leave)
::::> (R2-join < R 1-lcave & RI-join < R2-leave}

ll1is clause requires that for every pair of readers, RI an~ R2, entering the serializer
~ . .

while a writer is acces.'iing the resource, that both readers begin to access the rcsou~ce
·ft·, >i'.') l~L lHJ ~~:_,j;.

before either reply is acknowledged.

- <)(., -

4.6 Bounded Buffer Specifications

The bounded buffer problem 14 is. based on operating system 1/0 buffering!

We assume that there is a producer of information. and a consumer of information.

The producer issues put requests to ~e system to pass the infonnation to the consumer.
,': . - ,, .. ·' -

and the consumer issues get requests to obtain the items of information from the

system. In order to allow l?oth producer and consumer to operate in parallel, the system

p~ovides a bounded buffer of length N to store items of informatiOn that the producer

has delivered to the system before the consumer hld requested 'fhCm: The producer can

proceed as long as it is no more than N items ahead of the COhSllmer.

We have somewhat generalized the problem by allowing multiple consumer

and producer proceSSt..'S for each bounded buffer. If the producer consists of several

processes, then each process can proceed until it performs a put request where the
>, .,, •

rcqm.>st is made on a full buffer. Similarly, each consl1mer process can proceed until it

performs a get request on an empty buffer.

We assume that the resource acts as a .bounded Sl.'tJUCnce of information . .
items.15 where the sequence cannot be more than N itt."1ns long. The put operation

appends an item to the head of the sequence. while get opemtion rcmovl.'S an item From

the tt1il of the sequence.

14. A monitor approach to this problem appears in (1lowcird76). Scrializcr code for this problem
appears in l1ll' appendix lo tJ1is thl.'Sis. and is discus.-;cd in our conclusions.
15. Although Lhis kind ol'scqul'llcc is also known as a queue. we avoid the use of the tenn tu distinguish

hctwel'll the qucm.'S USl'<l hy tJ1e serializcr l'Ode lilr scheduling. and the queue used for the data.

- 97-

The following specifications are conditional servace specifications for the

bounded buffer problem.

((#G-enter + N > #P-enter) &@P-enter) :::>@P-exit

((#P-enter > #G-enter) &.@G-enter) :::> @G-exit

The G-enter event is the initial event of some get transaction, and the P-enter event is

the initial event of some put transaction. We require that the P transaction complete if

there have been enough G transactions to use the data, or if there is sufficient room in

the buffer to store the data. If the G-enter event is the i-th event using the G*-enter

node, and the P-enter event is the j-th event using the P*-enter node, then P must

complete if j < i+ N. Similarly, we require that a G transaction complete if there have

been enough P transactions started to supply. the data. ThcretOre, · G · wili oomprete if

i < j.

Note that the above specifications n~d to u~~ @>(J:ente,r and ·@P·entcr

because we only automatically require events appearing in o~dcring specifications to
: ' -··

occur in the histories. This choice was made based on the convenience of writing

ceruiin examples. To illU!ilntte, if lhc USI.! of #G-enter rQquired @JG-enter, then the

srccification of service for P transactions ubovc would have be.en written as two clauses:

(.... ~!iG-entcr. & (# P-cntcr ~ N)) :::> @P-cxit

(#G-cntcr + N > # P-cntcr) :::> @)P-exit ·

- 98 -

Another specification of the bounded buffer problem is that the order of get

requests and put requests cannot be interchanged. either in forwarding the request to

the resource, or in returning the result. These specifications are similar to the FIFO
. - ,. i

readers-writers priority specifications.

GI-enter< 02-enter :::>(GI-join< G2-join & GI-exit< 02-exit)

Pl-enter < Pl-enter ::l. (Pl-join < P2-join & P:I:-exit < P2-~xit)

We have chosen the exclusion specifications to be quite simple: acc~ing the

resource is exclusive. The exclusion specifications are expressed by the following four

dauses.

GI-join< G2-join :> Gl·leave < G2·join

G-join < P-join ::l G-leave < P-join

Pl·join< P2-join :::>Pl-leave< P2-join

P-join < G-join ::l P-leave < G-join

we· have said lhat the scrializer opcrations·Shoukt. us fur t.S pnactical. have the

s.1mc effect as the n.·source operations, In the bc.nn1d00 bllff'cr :prubfem.' lhe St.--riuli1.cr

operations have the same efTect as the cluster operations prpy_idcd that the cluster

operations return normally. In executing a put opcmtion for the scrializer. if there is no

room in the bounded buncr fc.>r the item, the op~mtion p&tuSl.'S. until there is room. In

executing a get operntion, the opcrntion will not proceed until an item is avail<thle. For

·the opcrntions of the resource. however. an exception is signalled if there is no room in

- 99-

the buffer when executing a put operation, or if no item is present whert executing a get

operation. The signals of the resource operations have become the non-terminations of

the serializer operations. This raises the question' of how well we have separated

concurrency control from data access. 'we will discuss this question in the conclusions.

We have presented the bounded buffet·t>roblem;as an illustration of the

specification language and as l.lt1 example of a serializer that is slightly beyond simple

serializers. We will return to iliis example to iffustrate' how we cafi perform extensions

in the program proving domain as wen.

- 100 :-

S. Verifiration Rules

.,)'.

In previous chapters we have used a .definition. l~nguage based on first-order
' :~:· ') .. -t ,~; ,..-:•L; t ~fl-· '.\- ·:. : ;: ' . ::

predicate calculus to give the meaning Qf l?oth the serializcr snnstm:µft and the serializer
· · , .·,; ~·, j'{-.t __,,,...._.c.-'J~: · ·.s : Ff,· ~ :·. · ··: -

specification language. In theory. we need nothing else to verify that a scrializer meets

its specifications. In· practice. aeeftaill nmotmt;.of;intemi«liale; wort is netessary.

-:• '

We have chosen .to build' a v,erifier that, <>p~~t~ i~ a res~r~~ted .. ~Qmain. The
. . '· . • .J I .. > i • ' •• ~ -· • ~·

verifier applies rules that are specific to this doma;11 to data it has describing a seriali,zer
~; .,;_: ;.,t~ ;:;;:.{~·;::T:L; .,t·· :·· . ,; ·:.:: -; , :: ~-

and specifications for that serializer. This chapter states and proves those rules. Our

choice of rules is based on their utility in verifying a number of variations of the

readers-writers problem (these examples are presented in the next chapter). No claims

will be made for their completeness. Other classes of problems would most likely lead

to different sets of mies. although we would expect most such rule sets. to have

substantial intersections with the set we have chosen.

In this chapter, we first argue that proofs can ·be reasonably performed in an

extended specification hmguagc. We then state and·prove a number of verification.

ruk.'S cxpr~d in the extended specification language. 1l1csc rules arc used in ·~~,
'·i.:

program that performs automatic verification of scrializers. to be discus."iCd in. the nc~
. :;;t,~

chapter. A method fc:Jr proving service specific-Jtions is then presented that is partiattr
_:;'\

based on these rules. and its correctness argued. To illustmte the use of the verification

mies. •Ill example of a mlc-bascd proof is given. Finally. certain weakm .. >sscs of our

methods urc examined.

- l(}l-

5.1 Proving in tile specification language

In proving that a serializer meets its specifications we start with the text for a

serializer and a number of specification clauses. In proving that serializer code meets its

specifications we need to state intermediate propositions about the serializcr code and

the specifications. To do so we need a language to state the propositions and rules of

inference that can be used for tbe language.

One candidate for such a language is the dialect of predicate ca1cuh.1s that we

used to define serializer semantics. If we used this definition language as the proof

language of the verification program, then we would be faced-.with the following ms~s:

translating specifications into their meanings. reasoning in the definition language

about propositions expressed in the definition Jangunge, and translating the results into

some humanly readable form. The translation from specification language into

definition language is relatively easy: we have already dt."SCribed it in the previous

chapter. 'Ille translation from definition language into specification language is more

dinicull

We considered it to be preferable to carry out our reasoning, as fitr as

practical, in the spcci lication 1'mguage. It is the language that the user is most likely lo

understand. Further. we find that most of the inference rules arc easier lo st<ate and

1m111ipulatc in the specification language than in the definition language.

- 102 -

The verification program can be simply viewed as a data base. about the

serializer code, a set of algorithms that are used to examine and modify the data base,

and a set of specification clauses to prove about the serializer. The data base can be

exprc&<1ed as a set of node graphs representing the scrializer operations, and a set of

assertions about the serializer, expr~cd as specification clauses. The algorithms are

largely rule-driven, where a rule is used to infer a specification clause from known

clauses. The rules we present in this chapter are treated as axioms by the verification

program; this chapter states and proves the rules.

5.2 Extensions to the specification language

As it stands, the specification language presented in the previous chapter is

oriented towards describing external properties of serializers. It has no constructs for

describing the internal structure of a scrializer. The rules we define in this chapter

require a means for describing the node grnphs for the operations. and relating events

to the node graphs. 'J'hcrcforc, we propose extensions to the specification language.

- IOJ-

5.2.1 New symbols and clauses

The extensions to the specification language pose· no sp~cial, problems. They

extend the domain of discoum! for the language to indude symbols that can represent

any everit (or node)f and to include components ofevents and nodes. For the sake of

simplicity, we will not formally define these extensions, although we could do so.

*general .event·,'Symbols - E, El;·~. . . are event symbols'. that can be
associated with any scrializer event through the symbol map. . . .

* general node symbols - N. N 1. N2 •... are node symb01s that can be
associated with any scrializer node in the node graphs.

!; "',

* extended expressions - E.trans. E.node. E.kind ~~added. as expressions
that represent the components of events. N.kfod. ·N.ncx(N.'expr, and
N.mob expressions are also added. An extension to the domain of
expreh'S!on, values-. to' include eNents;;;t~n-;, ~tifi~~"'· aodes.
syntactic expressions. and node kinds is necessary. We also include
litehlts for nbde:kihdS; ' · ·. ·• i •.

* GX (Guarantee Exclusion) specification extensions
GX(N<>dc. Nodt!. Node) is .added as a. symoctic fonn.>The function
N<.Jdc_cxcludcs"'."mxlc is used as its meanin&- GX(N 1, N2. N3) expresses
tli'c rcstrietiOn' 'thar·no trartsactiotf::ttri{'hxl~tlcl"1J1 :whlfe' sfffrie other
trnnsaclion is executing bctw~un N l nnd ,N2 (in~lusive) ...

* PX (Possession Ex<;lusion) stlCci-ficntion · da\18l.."S' We use
PX(Node, Nod\!) clm1sl."S lo rcrrcscnt 110SSt..-ssion exclusion. PX(Nl, N2)
cxprc~es the rl..Striction that n(> tmnsuctfbn etltf ci~i.1te any;nc.~'While
some other transaction is executing between Nl and N2 (inclusive). We
will dclinc U1c n\caning of PXdaµ~'$1}4.;kJ~~' , , .

- 104 -

5.2.2 Marked and unmarked events

In defining the verification ru~Ja:::this·chapter we have occasionally found it

necessary to write ordering clauses where one or more of the events .appearing in those

clause are not required to occur, To achieve this; we im~tbe,notation

!E

to indicate a marked event symbol in the speciftcaoon clause~ .We then modify the
ii?tL . - . . ' _ · ,: · , ·.

definition of a valid symbol map to require that all unmarked event symools appearing

in ordering clauses and GX clauses must map ttJ.·events 1hat,occur·in the ·complete

history for which the map is defined. In all other respects, a marked event symbol is the

same as an unmarked event symbol.

The alternative to introducing the !E octation is to,nO/ require a valid S)'mbol
, ' , :;

map ror some history to take event symbols appearing in on:l.:tjn,sand OX.clauses into

events that must occur in the histo . We would then explicitly require the use of @E

to require event occurrence in clatlSeS·whcre-such.<lCCui-rence;.was.importnnt We have

previously rcjl.'Ct~d su~h, an approoc,h becaµ~ it l~ds to. surp.rising implications for

some specifications. We believe that it is still thc'rightchoicc: we prefer to have some

additional comptication in· tbc language klf <I£ lining the vurification mies so we can

retain some simplicity in the spl.'Cification language at.the user Jcvel

We note here that the Precedes preditatc·u~d to give the mt.-aning ofordering

clauses is well-defined even when the events do not occur in the historil..'S. Note that the

clause

- 105 -

!El< !E2

can only be true for some history if both events denoted occur in that history. This can

be stated as the clause:

!El< !E2 :::>@El & @E2

Also note that if an ordering clause mentioning two events that need not ,occur is false,
• - ! "_;, : ~ ..: .. ~ ~ >. '.

it could be due to either the opposite <lrderhaldjng,,-Oftt tw91~y~n~ being the same. or

non-occurrence of either event, as is expr~d by:

""(!El< !E2) :::> (!E2 <!El) f -@El I -@E2

5.3 Some simple inference rules

In this section WC present proofs for several ~nferenee rules stated in the

specification language. These rules are presented a~ sp~~itication clauSt.-s where one
• > ~

. . ~ ' ' '

sub-clause implies another. Note that the mies are actually rule generators: free

variables are permitted to appear to denote nodes;and events., lbc free node symbols

arc chosen from the ~t { N, N l, N2, ... }. ancf the free event syhl'bols·•trc chosen from the

set {E, El, E2, ... }.

- 106 -

5.3.1 Transaction order

Events belonging to the same transaction must occur in the order prcsc1ibcd
'·

by the node graph for that transaction. We can write this restriction as an inference

rule:

Transaction order rule:

El.node.next = fl.node & E,l.trans = Fl.trans

:::>El< E2

Proof: For every valid symbol map p and complete history h-\ .since El and E2 are

mentioned in an ordering clause~ p maps El and E2 to events that occur in h.

Therefore. there must be events el and e2-(with indices I and J). such that the

above rule is equivalent to:

(el = Nth(h. I) = f({El },p)

& ei = Nth(h. J) ~ E({E2}.p)

& Same_trans(I. J, h)

& el.node.next = e2.node)

::>I< J

Since an enter node can not be the next component of any noclc. c2.kind ~enter.

-Therefore, by the_ definition of I A-gal_tmnsaction_stcp, there musl be some index

KE lndcx_scl(h) such that

(K < J

& Nth(h, K).nodc.ncxt = e2.node

& Nth(h. K).trans = c2.trnns)

Further. K = I by Lcgal_transaction_stcp. which proves that I< J.

- 107 -

5.3.2 Transitivity

The event ordermg is transitive; This can be expressed by-the fol towing rule:

Transitivity rule:

(El < E2 & f-::2 < E3) :::> El < E3

Proof:_ By the definitions given in chapt~J. the above specification clause is defined to
be equivalent to:

(Precedes(f({El},p), f({E2},p), h) .

& Precedcs(E({E2J,p), £({e3J.p), h)) .. ·
:::> Precedes(f({El},p), f({E3},p), h)·' , ·

.'1 l'

- ,: :~ -'~ - ! " '. __ :. ~- ~ ~ ·~~ ·i -~ .- - - - - - '
where p is any vatid symbol map for the coifil'J1fae histdiy 'h. By the definition of a

valid symbol map, there must be three distinct events (el. e2, e3) that occur in h,

which implies that there are three distinct in.dices (I, J, K) such that the above rule

is equivalcntto:

(el = Nth(h, f') = f(lEl},p)

& el·.;:=: Nth(h.-Ja -;= f({E2},p,).

& e3 = Nth(h. K) = f({E3},p)

. .

& Precedcs(el. e2. h)& Precedes(e2, e3, h))
:::> Prcccdcs(cl, eJ, h)

-,

By the definition of Precedes and the existence of. the indices I and J,
Precedes(cl, e2, h) is equivalent to I< J. 'Ille other Precedes ~xplt.~ions' have

similur simplifications. 'll1erdi>re, the specification clause is equiC.1lent to
. r :

(I < J & J < K) :>(I< K)

which is true by the axioms of integer ordering. 'll1ercf<.~rf9'Jh~spe~i)1cation clause
is a true statement

- 108 -

~~;
- -~·:

5.3.3 PX clauses

A PX· clause is .used to specify possessjon ~M!l~QPi· The meaning of a PX

clause is given by:

,.,,. ,.._ ,,_ ..,,.
C({P~tl}},p,h) = PX_def(N({n1},p),N({n2}.p), h)

where,-

PX_def{Nl •. N2~ H) s:

v l,J.K € lndex ... ~t(H): _ . . .
if(Nth(H. l).node = Nl'&~Ntfl(H. J)~node' N2·.

& Same_trans(H, I. J})' 1
' • • -- '.

then .fJlcl~des(N~H. I) •. Nth(H~))., Nth(H.; K))

The clause PX(Nl. N2) specifies that a, transaction executing nodes NI and
' .,'.. ~ :

N2 has po~ion (of the scrializcr containing N 1 .-nd IQ) 1\~r ~x~ting N l ,and up to

the completion of ex~"Cuting N2. and that NI.nett =t- Nt · Nce.fhat'iWhi1e a transaction
~ .·, ' .; ,, :_ ' >~ -.

has ~ion no events from another transaction may occurt There are two rules used
. • j , . ~ - • r. - ' ' '. • , ~ . , , ~

to imply PX clauses:

1•x rrom gain rule:
(NI.next = N2

&. (NI.kind = enter

I NI.kind ~ ck.aqueue
I Nl.tind = leaYe))

::l PX(Nl. N2)

- 109-

PX from PX rule:

{ PX{Nl. N2)

& N2.next = N3

& N2.kind -:1: join

& N2.kind ~ enqueue)

:::> PX(N2. NJ)

Proof: By contradiction. For the first mle, suppose that the precondition implies

-PX{N2, N3). By the definition of1 a:valiit',~OOJ :nmp.;~ rrtt1st be three

distinct events (el. e2. e3) that occur·Irr~i1~'·~pttteifiiktty·ft1 Whidt implies that
·."> : '!. t · ; ~ ·n, .1.:,; , : , • ·. .

there are three distinct indices {I, J, K) &Udt~~-.· . . · ' . . · , ·
~,; ; ' '.' - ;:--::t~ ·.·! - : r; t " .. s.

el = Nth(h, I) & e2 = Nth{h. J) & el k'Ndl(h-, IQ
& e 1. node = N({ N 1} ,p) & e2. nodt G ·Mr~it ,pJ· ·~ :q ··
& el.trans = e2.trans & el.node.next= e2.node
& {el.kind = ~~t~il et.k'iricl = deq~e~~-fbtiirid' r~ie~~~1.r 1

· ·
1 ~"'·"; · ••

• " ' J '· . : , •• . - ~ : _: 'j : - ;: ,, t : -; t ,;- ;f •• - f ; i
& -Exdudes(el, e2. e3, h) . . · · · · ·-·' · · ·

At the finite history Head(h, ,;·which i~ the s~~IJ~~t·.~~~flx ~f ~.that contains el,
•: '" : ' l '· \ ·\ ... { ! " ' ' :/'. . . l ' •

we know that Legal_step{Head(h, I). e2. S) is','fr~1c. (where 'S'is the sel of node

graphs for the scrializer operations). Furthef, :~Lk 's\tsy(ftb,d(h. ']));is true (by

the definition of Busy and Gains), e2 is ·th~ iJn1~ ·e~tn{1 thht is a ·fegal step.

'n1erefore. no events can occur between el ririd~~·'e1.J·~·wfirc'h'' tontradicts
~ ' {~,.,l •.,. '; . ._-t,; ~

-Excludcs(el. e2. c3, h). 'll1crcfore, the PX from gain nilc Is frfre'.''A similar proof
holds for the PX from· PX tt1le. f' ·· ".i

The PX clauses arc useful as inlcrmcdiale steps that imply event ordering.

'Ilic following rule is used to imply an event ordering from a PX rule and other

preconditions.

- llO ..

/

Event before PX rule:

(PX(Nl, N2) & E < E2 & El.trans= E2.trans

& El.node = NI & E2.node = N2)

:::> E <El

Proof: The above clause is equivalent to the following (for every va1id symbol map p

and complete history h):

(PX_det{N({Nl},p). N({N2}.p),rh)
· & Prece~({fi}.p).~£W}.p).h)
& f({ El },p).trans - E(tE2J~p).tral)s
&f({El},p).node = N(fNt}.p)
& f({E2},p).node :;:t:~{N2t,J>)c),

:::> Precedes(f({E},p).E{{El}.p). I\)
•'· . -

Because E. El, ;md .. E2 are mentioned in or~eri'ng ~ause8, there must be three
" • , , < • ! - , .·" ~ • - ' ' < '--:.::. .. - •

distinct events(~(e2, e) that occur in h, ~hich itnpifo~ ihat'Qlere are three distinct
indices (I. J, K) such that. by the definition of PX~def: . . .

(el = Nth(h, I)= f({ElJ,p)

& e2 . , Nth(h, J) .= ~({E2J.p)
& e = Nth(h. K) = f({E}.p)

& Precedes(e. e2. h)

& Excludcs(cl. c2. c. h))

which implies Prcccdcs(c, cl. h). whichimpliL-s th.atlhe ode istrne.

- 11 l •

The other PX mle is quite similar, and can be stated as:

Event after PX rule:
· (PX(Nl, N2) & El < E & El.trans = E2.trans.

& El.node= NI & E2.node = N2)

:::> E2 < E

Proof: Similar to proof for Event ·before PX.

5.3.4 GRE clauses

. . .
. • ' . ' . ~J ;·. '·.: _. ' . ' ', -

The qRE (Guarantee Requires Empty) clause is an intermediate step used to

infer GX (Guaranteed Exclusion) clauses. The definition or'the GRE dause is:
' - ' : . ' { ~]"

C({GRE(Nl, N2)},p,h) = GRE_deflN({Nl },p), N({N2},p), h)

where

GRE_det{nl, n2, h) s

v l,J,K € lndex~sct(h):

if (Nth(h, l).node = n2

& Nth(h, J).node = n2.match

&l<K<J
& Samc_trnns(h, I, J))

then -Eval(Head(h. K), nl.cxpr)

'l11c intuitive meaning of GRE(Nl, N2) is that the queue or crowd denoted by N2.mob

must be empty in order for the cxprc~ion N l.cxpr lo be true.

- 112 -

There are two mlt.'S that can be used to infer GRE clauses:

GRE from empty rule:

Nl.expr = Empty_expr(N2.mob)

::> GRE(Nl, N2)

GRE from expression rule:

(Nl.expr = And_expr(Fmpty_expr(N2;mbb). G)

l Nl.expr = And_expr(G, Empty_expr(N2.mob)))
::> GRE(Nl, N2)

Note that we have had to add some ad hoc extensions to the specificatiatt lang&lbge .. Q

denotes a . boolean-valued expr~on, Empty_expr(N.mob) denotes either
•.; ; :. ~ , ! ! I ~ ·'

queue$empty(N.mob) or crowd$cmpty(N.mob), .as appropriate, and
"-- ' _ _., ~; ~ ' -' j :

And_cxpr(Gl. G2) denotes the exp~ion that is the conjunction of the two guarantees.

Proor: By definition of GRE_def and the Eval function. For the first mlc, suppose· that

the guarantee is crowd$empty(C). Then for11ny history that contains a join event

for that crowd but docs not contain the corresponding · leaiR e¥Cnt lhe guarantee
will evaluate to false, which proves the rule. Similar :ieQsoning.nolds for the first

mlc if the guarantee is qucuc$cmpty(Q). A similf.tr:f'llM>f;hotdS for the GRE fmm

cxpn .. ~ion mte.

- 113 -

5.3.5 Using GX clauses

GX clauses are used to indicate where events are excluded because of

guarantees being, false. For example, if a guttrantee for a queue is crowd$empty(C),
:" ..

where C is a crowd, then a dequeue event with that ~arantee -is prohibited from

occurring between a join and a leave event for any transaction for that crowd. The

fo11owi·ng rule is used to infer G.X clauses;

GX from GRE tule:·

(Nl.match· = N2 & N2 ~ N

& (Nl.kind =join I NI.kind = enqueue)

& N.kind = dequeue

& -6RE(N.expr, N2.mob))

:::> GX(Nl, N2, N)

The clause GRE(Nl, N2) used above is true it the expre~ion Ntexpr requires the

queue or crowd N2.mob to be empty fdr the cxfJf~~belrue.

Proof: By contradiction. Suppose that GX(Nl, N2, N) is not true, yet the

.preconditions arc met. By Ulc dctinitio.o, of a_ vali~ symbol map, there must be
{' . ' • ' '1'.:' ; . - ' ;\

three di,Stirn:t events (el. c2, e) that ~)(,cur in any compl~tc history h. which implit.'S
J - ~ . , . '

that there are three distinct indices (I, J, K) such that:

- 114 -

(el = Nth(h, I) = f({ Nl }.p)

& e2 = Nth(h, J) = f({N2},p)

. & e = Nth(h, K) = f({N}~P)

& el.node.match = e2.node

& (el.kind =join I cl.kind = enqueue)

& e.lcind = dequeue

& Precedes(e1,e, h)& Precedes(e,e2. h))

Further, from the GRE clause we know th~J!t~,imv~pteeJpr.evcnt ,e, must~~ false
' • - • - • • • • ~· • ~ '<:. • I

for any prefix ofh that contains cl but does not contain e2. Since e occurs after el,

we have a contradiction (due to Legal_dequeue). since e is a ~~eae_ event trnit
~ .~ ., ~ 'I' • ~ •

occurs when its guarantee is false. Therefore, the G,X fr0tp ~RE rule ~Jrue.

GX clauses are a useful intennediate step that can be used to infer event
: ; . ., ~ ~ .' . ;

orderings.

Event before GX rule:

(GX(Nl, N2. N) & E< E2 &El.trans ==fl.trans

& E.node = N & El.node = NI & E2.node = N2)

:J E <El

Proof: Because E. El. and E2 ·are· mentioned in ordering'clatfSl.~. for any valid symbol

map p and complete history .h. there must be events 1e t e2. c) occurring at distinct

indices (I, J, K) such that:

- 115 -

(el ·. Nth(h, I)= f({El},p)

& e2 = Nth(h, J) = f({E2},p)

& e.= Nth(h, K) = f({E},p)

& e.node = N({N},p)

& cl.node = N({Nl},p)

& e2.node = N({N2},p)

& Precedes(e, e2, h) .

& Same_trans(h, 1 •. I)

& Node_excludes_nooc(cl.node, e2.node~ e.~;h).), .

By the definition of Node_excludes_;.node we can.infer: '

Excludes(el, e2, c) & Precedes(e, e2, h) & e -:1:- el

which implies that Precedes(e, cl, h). which implies that the clause E <El, and

therefore the rule, is true.

As with the PX clause, there is a syttmlletrkt de tn Event before GX.

Event after GX rule:

(GX(Nl, N2, N) & El< E& El.trans= t:+..tran~· ..
& E.node = N & El.node= NI & E2.node =,Np)

::J 1--:2 < E

Proof: Similar to pnxJr for Event before GX.

- 116 -

5.3.6 H FO queues

Serializer queues are served strictly first~q:first-ou~ The following rule is

used to infer event orders from the use of FIFO queues in senaliters. - ·

Event from FIFO rule:

(El < E2 & El.kind = enqueue & E2.kind = enqueue '

& El.node.mob = E2.node.mob

& E3.trans = El.trans & FA.trans = E2.trans

& E3.node = El.node.next&: E4.node = E2.nodeJnext)

::J !E3 < E4

''
l ~ '

Proof: By contradiction. First, suppose that E3 occurs (we are not required to do so by
' ' '

the clause).· As in the above proofs, El, f<.::2 and E4 are unmarked events mentioned

in ordering clauses; so they mustoccur. There must be· four events (el, e2, e3, e4)

with distinct indi£es (J9 J, K. L) such that:

(el = Nth(h, I) = f({El J,p)

& e2 = Nth(h. J) = f(lE2},p)

& e3 = Nth(h, K) = f(tE3},p)'

& e4 = Nth(h, L) = f({ E4},p)

& Prcccdcs(el, e2, h)

& el.kind = enqueue & e2.kind = enqueue

& Same_trans(I, K. h) & Same_trahs(J, Uh)

& c3.nodc = cl.node.next & c4.node = c2.nodc.next)

We need to prove that Prccedt..'S(c3, c4, h), which we do by assuming

Pn .. -ccdL'S(c4, e3, h). and finding a contradiction. By the definition of

Lcgal_transaction_stcp we know that PrccedL'S(c I. c3, h) and Prcccdcs(e2, c4, h).

Let h 1 be the largest prefix of h th~1t drn..-s not contain l.'4; We will show the

contradiction by considering the prcdkatc Lcgal_stcp(h', c4. S), where S is the set

of node graphs for the scriulizcr.

- 117 -

Since e4.kind dequeue, L.egal $tep(h l~ e4, S) requires that

Legal_dequeuc(h 1, e4) be true, which requires that Eval be true for the guarantee,

and that Head_enq ueuc(h 1, J) be true. Head_enq ueue(h 1, J) is only true if ,~v,ew.

other transaction with an enqueue evenCfPfi the1q1Jet.te'q4,.0Qde.m,ob that occurred
in hl prior to e4 has a corresponding dequeue ey:ent:·that has ocruHed jn hl.

However, we know that e3 has not occurred in hl by our ,ass~ptien of

Prccedes(e4, e3, h). Therefore, either Precedes(e3, e4, h), or e3 does notocc;ur.

The proof that e3 occurs is simple. We know that e4 occurs in h, since it is

dcnot.cd ,by an unmarked event mentioned_ in an ordering clause. Therefore, when

e4 occurs, e3 must have occurred in the history h l by the definition of
;. ·e·d ·.,

Legal_dequeue.

5.4 Evaluation of guarcmtees

In further rules we will need to expn..~ the evaluation of guarantees. The

clause EVT(G. E) is used to spediy. th~ ex.pr~ion G. always evaluates to true

immediately before event E. The clause EVF(G. E) is used to specify that expre~ion G

always evaluates to false immediately before event E. In translating from specification

language to definition language we will assume thut. if the event denoted by E occurs at

index I in history h, then

C({EVT(G, E)},p,h) = Eval(Head(h, l-1), {G})

C({EVF(G. E)l,p,h) = -Eval(Hcad(h, 1-1), {GJ)

When the event denoted by E d0t.'S not occur, tilt: EVT and EVF clauses arc undefined.

We arc careful to.only use these clauses.in contexts where such an event ,docs occur.

- ll8 -

The following rule can be used to infer·mf' clauses:

EVFrule:

((El.kind = enqueue I El.kind :::: join)

& El.node.next = ·E2.node · ·· · : ··

& El.trans = E2.trans

& El< E< E2)

:::> EVF(Empty_expr(El.mob), E)

Proof: Suppose that M is a queue. By the definition ofLcgal_transaction~step, there

can never·· be more dequeue events than eOqUeue ··:even~ for any transaction.

lltercfore, by the definition ofCsize, the queue is empty (Csizc(fvf)·; O)Jnty if all

transactions have the same number of enqueue events as dequeue events

immediately preceding E. However. the transaction El.trans has an enqueue event

(El) that has occurred without the matching dequeue~:(~} .. llle~f9ftl,·:t~"

queue must .not be empty. A similar proof holds.if M is a crowd ..

The following mle can be used to i1'fer BVfdauses:

EVT rule:

(V El,E2:

if (El.trnns = E2.trans & El.node.mob :w M · .

& El.node.match = E2.node)

then E < EI I ! E2 < E)
:::> EVr(Empty_expt1M), E)

Proof: First, we note that within the quantification the events E and El arc required to

occur, yet the event E2 is not rcql.1lrcd fo occt1r1 since it is ttmrlted. 'lhe condition ·

tlml we arc CXflrcs."1ng with the qua11ltlic<J da~ i.~ th~~ lhr every puir of events ·

denoted by El and t-1 thc event denoted by E either occurs bcfi.Jrc (or is the same

as) El, or occurs alier E2. Note that if El < E is true, then !E2 < F is false ff E2

- 119 -

does not occur. In order for Empty_expr(M) to be false when evaluated

immediately before E there must be some transaction ·thni is ,in M ·tc11mediately

before E. which means that the enqueue (or jo~event.(caM·itlr:l) occurs be(o,re E,

but the dequeue (or leave} event (call it Pl) does not occur befQre ,a .we can

express this requirement as

El< E < !E2

which is prohibited by the precondition

E <El I !E2 < E

and therefore the clauses always evaluates to true immediately before E.

The above clause uses internal quantification over aUevchts, which.is another

extension to the specification language. It is difficuit. to Lase th.e above.rule as ids in a
' : : ' ... '

verification program due to the internal quantification. The set of all events is infinite,

and cannot be enumerated. We can prove that tlie quantification clause is satisfied by
•'

contradiction: proving that there can not exist a transaction with events El and E2 (as

given above) where the clause within the quantification is not satisfied. This method

will be fu rthcr discussed in the next chapter.

'· 1

1l1e following mies can be used for guarantees that arc conjunctions or

disjunctions. ll1csc rules arc sufficiently simple that we witf ~mit the proofs.

t=VT rron1 conjunclion rule:

(G = And_cxpr(G 1. G2)

& EVT(G 1, E) & EVT(G2, E))

:) EVT(G. E)

- 120-

EVT from disjunction rule:

(G = Or_expr(Gl, 02)

&(EVT(Gl, E)f EVT(G2, E)))

:::> EVT(G, E)

EVF from conjunction rule:

(G = And_expr(Gl, G2)

& (EVF(Gl, E) I EVF(G2, E)))

:::> EVF(G, E)

EVF from disjunction rule:

(0 = Or expr(Gl, 02)
& EVF(G 1, E) & EVF(G2, E))

:::> EVF(G, E)

We have used G, Gt and G2 to denote guarantees, and And_expr and Or_expr to

denote conjunctions and disjunctions of guarantees.

5.5 Priority of dequeue over enter and leave

· If there arc queues with true guarantees when ~ion is released, a

-dequeue event for one of those qucm .. -s will occur before an enter or leave event. .•

Suppose we know that an ·enqueue event El occurs ~(core ar external .~ining

event E. To show that E must occu~afier the dequeue evcntl-:2 oom.'Sp(lnding lo El. we

must know that the guarnntcc for El is true immediatcJy prior to E. 'and that there can

be no transaction with a false guarantee that is in the queue ahe<1d of the trnnsaction for

El when E occurs.

- 12l -

Event from ready queue· rule:

((E.kind.:::;: enter I E.kind = leaw)

& El.node.next = E2 & El.trans = E2.trans

& El.kind = enqueue
& EVT(Etexpr •. E) & El < E
& v··a.EA:

if (Elkind = enqueue&. ID.mob = El.mob · ·

:J!E2<E

& E3.trans = FA.trans

& E3.node.next = E4.node
&E3<El)

,, r -· , , i

then EVT(E3.expr. E)il !E4:(E):

Proof: We wilt· outline a· proof by contradiction. Assume that the gaining event E

precedes the de'lf*JJe event E2 •. ~ch. tbat l;l .< E < f,2. '.ij)e ,q~umtjficatio~ over E3
• ~ , , • • ., • •• • c - : • ~ : , . st~'.. . , : . , · , - :

and E4 is a precondition that requires every transaction that has entered the queue
before 1:1.trnris to either have a ttuJ gLldfarttee:(irilhtedfrttelY'belbre €) or to have

.left the queue before lhe guining:e'ltrtt:E. :Tkeref;l~ UM:tf~anibei oo tran~i,qn
with a false guarantee in the queue ah~ad o(El.traQs. HQw~yer. the ga,ining even~

; . .. - . . . ~ ' '' . '_,. ~ .. i (: 1 ·' . ',; . ,·; ; ' ' i '

E cannot occur while there is a queue with ·a true guarantee, which' is true for ·

El.mob. 1nis is a contn1diction, sd We can infef ;thttf if@ oewrs. it must;occur

before E. By simHar rt!itsoning. EZ nn"st.i~4r •. ~~; 1J:~t ~, nqt occur; there '#Jill .
be a ready queue when E occurs (E must occur. since it is an unmar~,ed event).

: . . ~ •,

Note thut the above rule was cxpre::&!d as implying !E2 < E. which not only

implies an ordering between events. but also .implies thut the event denoted by E2

occurs, since any event the precedt..'S an event that occurs must also occur.

- 122 -

The above rule is admittedly lorig and complex. We can ~~d;some more ligllt

on the reasoning behind its form by considering some ·examples.

* Suppose that there are events E3 and E4 such that F.J'(El, and FA does
not occur (using E, El, E2. E3, and E4 as in the>above tule).- Then· the
precondition expr~d by the quantification must be false, which ;aieans .•

that we cannot infer E2 < E. rtllis ~ould:~ffi,.~nab~ si~ by the
FIFO queue rule we know that E4 must precede; E2 if E2 occurs, which
implies that E2 does not occur. · ;.: .

• Suppose that there are events E3 and E4 such that EVF~E3.expr, E) and
E3 < El. Then it is ~ible for El.trans~-u>I~ aLthe rb$;of ,the .queue
when E is ready to occur, which would imply that E < E4, or that E4 did,
not occur at all.

The reader may note that we have only considered a single queue in the above
''•

rule. It may be imagined that all of the precqndiLions were met for two queues. yet one -·

queue was arbitrarily- chosen to proceed, which· thea made'the head guarantee of the

other queue false, which then allowed the gaining evcnt'E to occur. Such a situation is

covered by our rul_e,. since we do ·not specify evaluation- of the guamntec at any

particular time. but rather immediately before Ille· event E in any context. Intervening

dequeue events from other queues are unimportant. since they will on1y postpone the .

occurrence of E. not change the precondition EVl'(El.cxpr, E).

- 123 -

5.6 · A ntelhod for proving service

A service specification typically states that for every complete history and

valid symbol map, the occurrence of an enter event for some transaction implies the
• • -~ •, • • > • '

occurrence of the exit event for that transaction. In proving this, we typically need to

prove that the occurrence of any event (exit events excluded) in a transaction implies

the occ~urence of the. ne~t event in the transacti()Jl. 4not,her ~ilY to state that the

occurrence of one event implies the occurrJm~ gf ano~er ~ t9:~¥,Ulat every ,~Qmplete

history that contains the first event contains the second.

For most events ,in a transaction. if an e'<~t ~urs. the succes.5or event in that

transaction must occur. For simple. serializerS, the occurrence of an event that gains

possession implies the occurrence ofa com ... 'Sf)Onding ce\fent that releases possession.

Fu rthcr, we have assumed that accesses to the resource terminate.,~ the occurrence of a

join event implies the occurrence of the eorrespclndhtg'leave ~vent. There arc only two
., ··' '. i'., ..

kinds ofevents where the occurrence of an event docs not imply the occurrence of the

successor: exit events.. bt"µIuse they have no successors; anQ-1~nqq~uc events. because

they might never have true guarantees whenever pos.~~(}n is \\!leased. or because there

might always be another queue ready whenever possession is released.

The method we propose for (lTOVing that an enqU,eue event requires a dequeue

event is to first suppose that the dequeue event docs 'not occur, then prove a

contradiction: that a complete finite history. exists w.hcrc there is a ready queue at the

end of the history.

- 124 -

Suppose that we want to prove @El :J @E2, where El and E2 betong to the

same transaction, and El precedes E2 iF both events occur (which can be written as

@El & @E2 :J !El < !E2). We need to show for every enqueue event FJ with

corresponding dequeue event E4 that iF FJ.trans = El.trans then the occurrence of FJ ·

implies the occurrence or E4 (@FJ :J @E4).

If an enqueue ev.ent occurs for some q\1eue nrid the dequeue event does not

occur. then we say that its· queue is blocked~ ff'a<)UeUC '5Meitked.· then we can infer the

·following:

• If every join event for some crowd requites a precedm1rdcqueue event
.from a blocked queue ... then the crowd. will eventually become empty.
This is true because when the queue is'f>iock'ed •. there' tan be no 'tu'rther
joia events, and every join event requires that a lfa¥e event oocur. ·.

*If every enqueue event for some queue~Q·requiresthat a·dequeue·event
for a blocked queue B mt.JSt occur (because the. epcaueue eventrnust
follow some othcr·dequeue event that iS w~itillg for ·s tO empty). th~n Q
wiH eventuaHy become either~ or tmr>'Y.. . Sinee~t00·et¥1.Ut11e event
For Q wiH not occur, then no new transactions will be added to Q. which
implies that only' decfueue evems for' Q am ~b1y,«eur. :Evemually

. either Q is empty or a tmn~ction with a false guarnntce is at· the head of
Q. . . .

• IF every occurrence oF an enqueue event for some queue implies the
occurrence of a corn.-sponding dequeue event. and the queue will
eventually become Cit her blocled . or: ' t-mp(y; then ; the · qoctre will
eventually become empty.

By saying that a condition "eventually becomes·• true. we mea~,that for every complete

history there is a event where th~ condition is true at every event after th.U event.

- 125 ~

The method is now clear: to prove the contradiction, we assume that the

dequeue event (E) docs not occur, that certain quct1es ·nnd'croWds will become empty,

and that certain queues will become either empty 9r .blocked. I(these additional

assertions are sufficient to prove that the guarantee for Eis true.' and,thatthere is no

other dequeue event with a false guarantee that is blockirtg a' then. we have found a

contradiction, and actually proved that E mustoccur.

We will not present rules for proving service. The number of supporting rules

is relatively high, and the additional material would not introduce any new concepts.

The method of proving service will be further explained in the next chapter.

5.7 Rulc·based prol'ing of FIFO priority specification

In this section we present a proof based on suceessive applications of the rules

we have presented in this chapter. As presented in the previous chapter, the FIFO

readers-writers problem lfas the following (partial) priority spccifi<;ation:

Rl-cntcr <WI-enter::> Rl-cxit < WJ-exit

A rule-based proof of the above clause takl.'S two stagl.-s: derivation of intermediate

clauses (st'1ch as PX, GRE, and GX clauses). and use of the mies that imply event

orders. Note that the lirst ~1agc need on1y be performed once for any particular

scrializer, while the second stage is usually different for every spl.--cilication clause.

- 126 -

In the first stage, we examine the node graphs and use the PX from gain rule

to derive the following PX clauses, which indicate ~ion ex.cl1:1sion: .

PX(R •-enter, R •-enqueuc(x.xq))

PX(R *·dequeue(x.xq). R *~join(x.rc))

PX(R •-Jeave(x.rc),_R •-exit)

PX(W*-enter, W*-enqueue(x.xq))

PX(W*-dequeue(x.xq), W*-join(x.wc))
PX(W*-leave(x.wc), W•-exit)

·.- . ..
We then examine the node graphs and use the GRE from empty rule and the GRE

from expres.5ion rule to derive the following GRE clauses:

GRE(R *-dequeue, W*-join)
GRE(W*-dequeue, R *-join)
GRE(W*-dequeue, W*-join)

Using the· GRE clauses and the GX from GRE rule. we derive the following GX

clauses:

GX(W*-join, W*-leavc, R *·dequeue)

GX(R *·join, R *-leave, W*·dequeue)
GX(W*-join, W*-leavc, W*-dcqueue)

In the second stage of the proof, we prove the implication by assuming the

precondition,. and deriving the consequence. We use the Transaction order rule to

derive:

- 127 -

(RI-enter< RI-enqueue< RI-dequeue

<RI-join< Rl'"'leave <RI-exit)

&
(WI-enter< WI-enqueue < WI-dequeue

< Wl-join <WI-leave< WI-exit)

Then we perform the following inferences, using the indicated rules:

Event order Rule applied

RI-enter< WI-enter Assumed

RI-enqueue< WI-enter. Event after PX

Rl-enqueue <WI-enqueue Transitivity

RI-dequeue< WI-dequeue Event from Fl FO

RI-join< WI-dequeue Event after PX

RI-leave < WI-dequeue Event after GX

R 1-ex it < WI-dequeue Event after PX

R 1-exit < WI-exit Transitivity

5.8 Comments on the· vermcation rules

While the intent of defining infcrence·mlcs in the specification language is to

simplify verification. one unfortunate side-effect has been to ttdd numerous clauses to

the specification language. Thl."SC additions have made the specification language far

closer to our definition langmage th.an we would like. As we add more extensions we

begin to lose the simplicity that prcxlfs in the spt.'Cification language have over proofs in

the definition language. Dl.-spite these misgivings. the rules do appear to work at a

higher level than could be obtained from the definition language.

- 128 -

We have added a means for avoiding the requirement that every event
.. :. ;,.

mentioned in the ordering clauses must map, (via rft11~:,S)'IJ.l~v'~),tQ an event that

occurs in the complete history on which the map is based. There is no inherent reason
~ , .._ r ; '. . . - ~ "

why this ability should not be extended to tbe~~~;',Jlti\Q\Jj_lf'~~;~v~,ch~n not_ to do
{)~ ::(J•T .i • i ,)' ~j\•'j_:·:_.; ~ <; ~- , ;' J

so. This feature· is only rarely used. and continues to have potentially surprising
.. -~ -;~· ··~ ~. ~; ; · ;>--)_-;{1~f1:;"!;;: ~~!U?/tJ~~~;~ -- · - _.'. ·

interpretations. as evidenced by the Event from ready queue rule. where the occurrence
~.)·· ~ ~!'~~ ~fi u}!.

of an event was proved without resorting to the @E notation.
J.

i: '/

,·;.,.-.·'.!"

.:· :: :

,,
! ~· -

- 129-

6. Automatic Serializcr Prover

The previous chapter presented verification mies tlmt were defined in an

extended specification language. This chapttr describes a prograrn that makes use of

those ru~ While limit«i to dealing ,with: simple ~rializer:s and, "specification clauses

that do not mention the rank of an event, ~a~y i>r the ~rlridples ~sed are applicable to

more general serializers. The program. called ASP (Automatic Serializer Prover), has

been tested on a number of versions of the rea<iei;f-w,r,~rs ~r;bl~m.

In this chapter, we discuss the structure ot ASP~ 'fim by giving an overview,
;- ·, ·- . .

then by , detaiting some of the algorithms usea.' The results for the readers-writers

examples are given, and we discuss how ASP could be extended to accommodate

various extensions to simple serializers.

6.1 Overview of ASP

The input to ASP is a description of each operation of a serializcr and the

spcci lication clauses for the scrializcr. We use ASP interactively to prt)ve that the

specification clauses arc satisfied, or to examine why they arc not. ll1c execution of

ASP hasthe following phases:

* Initialization: This phase builds reprcscntatibns of the node graphs for
the scrializcr operations given the text fo~: Qie' opcratiot1s.16 In the

16. In Lhc actual program. Lhc text must undergo an initial translation hy hand in order to he processed.
This allowl'U us to concentrate our efforts on verification r;1tJ1cr than parsing.

- 130 -

remainder of this chapter. we will make no dislinctimt betwt!CD the node
graph representations used by the program and the node graphs used in
the semantic mOdel.

* Static analysis: This phase examines the node __ gr~ps to determine
possession exclusion, represented by the PX claitses mentioned in the
previous chapter. and guanmtee· extl&io~ t\!~t•f ~ -OX lckiuses.
Note that we alsc> make . D() (i~tincti~n ~tw~n .t~e, speci,(lcation -clause
representations used by the program'antf the ~tudj clOOSes. · - - -

•Verification: In this phase we attempt to prove each specification clause
given. Typically~ a specification 'daUSt is' given as an 'implication
consisting of a precondition clause and a consequent clause. Proving suctt
a claus_e involves ~liming the precond,itioo and ~~ng ~e inference rules
described in the previous chapter -to derive -the ron5cQuerit clause. When
a consequent clause is derived. further rules,~ be~plied to derive new
clauses.

The uodc graphs. specification clauSt..'S. and other data are kept in a structure

c-.dled the data base, which is composed of the following parts:

* Node graphs: There is a node graph for each opemlion of the scrializer.
Each node has a stmcture as described in ·a.apter 3. Datr stmctun.'S
representing cxpn.-ssions (as in N.e~pr). queues and crowds (as in
N.mob). and kinds (as in N.kind) arc rcrcrtcd 't'o by the node yaphs.

*Transaction stack: ·111crc is a sb1ck of transactions that represent the
transactions mentioned in the specification clauSl."S~ -Each transaction
symbol in a spccifiCi.llion clause has a corn.-sponding trnnsaction in this
stack. Furlhcr transactions 1m1y be added to l~is stack .due lo attempted
proof by contradiction. as mentioned in the previous ch<iptcr. When such
an L1ltcmpt succeeds or fails. such a lran~action is removed from the stack.

- 131 -

*Assertion stack: There is a stac-k of specification clauses that have been
asserted and the mies used to assert the clauses. The asse1ted clauses are
those that have been assumed· to be true ·or· have been added by
application of the inference mies to tl\e clausesin the assertion stack.
This stack provides a record of which mies led to particular event
orderings, as well as an efficient mechanism for removing assertions.

* Event stack: There is a stack of the events that exist {although do not
necessarily occur) for the transactions in the transaction stack. This stack
is closely coupled to the stack of knowtt tiransactit:Jns, .since each event in
this stack must have a· known transaction. Whenever a transaction is
added to the transaction stack, arl 'event for · evety · nod& "lh~lt the
tran~ction ma.v.~xecutc is added to the event stack. W~en a transaction
is removed from'' the transactioil stack~ 'iilt" events tor that trarisaetion are
rernov~d from tl;le event stack.

*Event order matrix: There is an extensible. square· ·matrix used to
represent event orders. There is a row and a column fqf,~.~.~. ~\lent, with
the entries indicating the ordering between the eveni:S:-'"Ttie~ row and •
column index for a· particular event are identical, and the index for an
event in this matrix corresponds to the index in the event stack for the
event. The matrix is extended or retracted (in both dimensiQ.AS} ·~ the
event stack is extended or retracted.

6.2 Static analysis phase

The static analysis phase inserts PX and OX clauses into the data base

according to the node structure of the opemtions. It is pcrfonncd in advance of

examining the specification clauses. The purpose of the static analysis phase is to

perfonn steps that can be done once for a given scrializcr. and avoid performing these

steps for every clause we wish to prove.

- 132 -

The PX (Possession Exclusion) clauses me generated by examining the node

graph to determine when a transaction is in pqsscssion of the serializer. For simple

serializers only the PX· from gain mle is needed.

The GX (Guarantee Exclusion) clauses are generated by examining the

guarantees on enqueue statements during the initial p~ over the seriali:ler. They are

generated according to ~e GX from GRE rule, which depends on the GRE from

empty rule and the GRE fmm expression rule. As long;~ the guan~ntees,only involves
'

testing the emptiness of crowds or queues, or conjunctions (GI& G2) ·or tests for
. . ~ ' . ! - _; - _;, , ; ~ .

emptiness, GX clauses can be generated for the tuaramtes during 'static analysis.

Guarantees that are di.sjunctiqns (G 11 G2) or negations (-G) do not generate, GX

clause_ during Static analysis.

6.3 Verific·.ition phase

A specification clause is usually written as P :::> Q, where P and Q are

specification clauses that do not use implication clauses. Verifying that P :::> Q .is

satisfied involves assuming that the precondition clause p is true~ and shmving that the

conSt.'qllcnt clause Q is therefore true. Note that the clause P is assumed to he true for a

particular choice of complete history and v~id . symbol map. The verification

methodology allows us to prove:

v p.h: (P :::> Q)

The assumption and proof should 1101 be viewed as:

- 133 -

(V p,h: P) :::> (V p,h: Q)

When a clause not previously in the assertion stack is asserted, we say that it is

inserted into the data base. When a clause, is inserted, ASP checks certain mies to

determine whether they are immediately applicable. These rules are called insertion

rules, and are: Transitivity, Event before PX, Event after PX, Event before ax, Event
- - , , - > ~., i \ - /.' ~·: • : :'; : :

after ax. and Event from FIFO. If any are applicable, we assert the event order clauses

they imply. This, in turn, may lead to the assertion of further clauses, and so on. This

process is complete when no further insertion rules are applicable.

In asserting an event ordering, we need to have computer representations of

events. In order · to have event repr~sentations, we need transaction and node

representations. lne initialization phase built the nodes. The transactions and events
··:

are built by examining the specification clause to determine which transactions are

mentioned in the clause. These transactions. and their associated events, are added to

the data base.

For each transaction that is added du~ to bein~ explkitly_ named in the

specification clause, the Transaction order mle is used to dctcrn1ine the order of the

events that belong to the transaction. 'J11is leads to the insertion of event order clauses,

but docs not immediately lead to the application of any ru1estither·thun the transoction

order mle and the transitivity rule, since there is no known initial ordering between

events from different transactions.

- 134 -

.•

To prove an implication. we assert the preconditiomnt1d:attemptto derive the

result. The precondition for a specification clause is asserted by performing operations

on the data base to assume the various parts or the clause. For example. one

component of the specification clause may bC an event ordering. El <"E2. 'This·etause is

asserted by calling the add_order operaticm' of the data base. If this ctauSe was not

previously asserted. the insertion rules are applied by this operation~

6.4 Evaluation of guarantees and anonymous transactions

In several places in ASP it is necessary to evaluate a guarantee to determine if

a queue is ready. The EVT and EVF clauses mentioned in the previous chapter are

used to indicate the evaluation of guarantees. EV;r(G. E) -is true for some history that
;-·;: ,- : ...

contains E if the guarantee G evaluates to true ill the largest prefix of the history not
. ; l ~ ; '" . • .

containing E. EVF(G. E) is true if G evaluates to false in' that prefix. For example. if
<.' •• ·.~· . ·._ ·1,;i5;_1 ,,.:~_;<f~ _';,··,

the event E occurs between corresponding elMlftlle and dequeue events for some

transaction. as in:

X-cnqueue(Q) < E < X-dcqueue(Q)

then we can assc11 the clause

,EVT(qucue$cmpty(Q). E)

In some caSt.>s, it is· not suflicicnt to simply use the EVT and EVF mies
:· . ~ .

presented in the previous chapter. Consider lhc lt1llowing concurrency SJll.'Cification for

the FIPO rcudcrs-writers scrializer:

- 135 ~

RI-enter< R2-enter <RI-leave & GX(Rl-enter, R2-enter, w•-enter)

:J R2-join < RI-leave

In proving this specification, we need to prove

EVT({crowd$empty(x.wc)}, RI-leave)

The insertion rules are sufficient to prove that the writers crowd (x.wc) is empty when

the readers crowd (x.rc) is not. empty. However, the rules we have presented do not

immediately allow us to conclude that tlte EVT clause above is true, since we must

prove the clause for all writers.

A more general method of proof is _available to us, based on proof by

contradiction. If we assume that a writer is ih the writers crowd. and that leads td a

contradiction, then the writers· crowd must be empty. To be 'exhaustive in choosing the

writer, we have two cases:

1: The writer can be a writer that already exists in the transaction stack. To
assume ~t &>me writer W is in the wri~ cro\¥d whGfl R, 1-leave occurs,
we assert:

W-join:< RI-leave< W·lcave

und apply the insertion rules as necessary. A contradiction occurs if this
leads to E < E being asserted for any event f.: (cyclic, event orders arc
prohibited by 1.cgal_trnnsaction_step). If no contr.tion occurs..; then
we cannot prove the EVT clause. If all writer transactions in the
transaction stack cannot be in the writers crowd, it is necessary to apply
the second case.

2: If no writer in the trnnsaction stack can be a.~umcd to be in the writers
crowd, it is still possible that there is some l>tllcPwrjk.'1" that can be in ·the
crowd. 'fl1crcl(.>rc, we invent an anonymous 1ra11sac1io11 and place it in tl1c
transaction Slack, ·mt'd a~'SllmC thal'thc OCW WritL'f is •itt fhe crowd, as in the
first case. If assuming that the anonymous transaction in in the crowd

- 136-

leads to a contnulict~ then we can assume that. lite writers crowd is
• ' - • - • ·' ,; • < -

empty at RI-leave. and therefore the Evr clause is true.

The above method is easily generalized to proving any queue or crowd empty.

6.5 Checking for ready queues

The Event from· ready queue rule is diffidilt to apply. sirice there is nested

quantification. We start by examining the data base for 'dequeue events where the

guarantees are true immediately preceding enter or leave events. Consider some'.

traasaction X, where X-dequeue has a true g~.aran~ee immedjat.;1,y before some enter or
-~. - - .. -

leave event. which we will caH E. If E ~ kJ)own to qc:cu~_after:X-~nqueue. the.n the only

way that E ~1n occur before X-dequeue is for, ttiere to be aJransa<;~i9n in the same

queue. ahead of X. with a false guarantee. If such a transaction _exists. we say that it

blocks X-dequeue.

lfno known fransaction can blod X-'dt.\(Jueut.' it may mi11 be ~le that

some other transaction not mentioned in the spcrifiaatilai·damectm.·block ,X-dcqueue.

Therefore, we create an ·anonymous trnnsuctiori:Z·fi>f un llJlCt~ti()n (provided that that
'i > ~. : _.- • .:;;

transaction-can have an emttteue event-for ttie'~tmc -ctneuc as X-dequcuc), and a!)..~rt

that

Z-cnqucuc < X-cnqueuc < Z-dcqueue

where X·cnqucuc und Z-cnqucuc occur lt1r: the·samc. queue •. If the guarantee for

Z-dcqucuc is true imniediutcly before E. then .tciu1o0t block, X. Flirthcr., if asserting
; <,. ' ; ·-.: t.·.

- 137 -

that Z-dcqueue occurs after E causes a conflict, then there can be no such transaction Z.

If there is no Z, for any operation of the serializer, that can block X, then X-dequeue

must occur before E.

6.6 Proving by cases

One potential drawback of using the insertion rules is that some relatively

simple proofs will be unachievable because there are not enough assertions. In

pmticular, if enter events El and E2 are known to occur, yet the order of El and E2 is

unknown, we may be able to prove a clause if we assume either El< E2 or E2 < El, yet

be unable to prove the clause if no order is assumed. ASP can perform some of these

proofs by cases: where the order of El and E2 is unknown, first assume El < E2 and

perform the proof, then retract the assumpliun of El < E2, assume E2 < El, and

perform the proof. If the desired result is obtained in both cases, the proof is valid,

provided that El and E2 arc known to occur.

The concurrency specification clause given for the Fl FO serializer was overly

restrictive, since it specified that

RI-enter< R2-enter < RI-leave

and the result (R2-join < RI-leave) can be shown to be true even if R2-cntcr < RI-enter.

lne following clause is a stronger version of the concurrency specification that requires

proof by cases:

- 138 -

GX(Rl-enter, R2-entcr, W*-enter)& R2-enter'< Rf,;leave
::> R2-join <RI-leave

Note that the GX clause does not specify that Rl-enter< R2-enter, although· the GX;,

clause is trivially satisfied if R2-enter <RI-enter. Initially the precondition is asserted.

Then ASP first assumes RI-enter< R2-enter, proves the consequent ~se~~t~:the ·

assumption, then assumes R2-enter < RI-enter, and proves the consequent clause. That

R 1-enter and R2-enter occur' can be sh~wn in t~{) way~:''ffiey iie mention~cfln a GX

clause, and events subsequent to them (by Legal_transactionjtep) are mentioned in an

ordering clause.

6. 7 Proving guaranteed sen ice

In many serializers we would lite to pro~ that every transaction recei;es"

service. i.e., for every enter event there is an exit -event. The tbllowing• is ·a 'typical

service specification clause:

· @T-cnter :l @T-exit

Proving guaranteed service for a transaction is performed by pro.Vingdlat each dequeue

event that the transaction can execute is guaranteed to occur. ~i,ncc we h~vc assumed for

simple scriulizers that all other kinds of events will occur in complete histories given

their predecessors.

Proving that u dequeue event occurs is largely done by contradiction: We

~'lime that the dequeue event docs not occur, which impli'-'S that its queue is· not

empty, and that any crowds that require ck>queue events from thut queue wilt empty.

- 139 -

This is generally enough to show that the guarantee for the dequeue event is true. lbe

dequeue event must occur if no other queue is ready.

In this method, evaluating the guarantees must take place immediately prior

to some event, since that is the basis of our evaluation mechanism. But there may be no

actual event occurring, especially if no further enter events occur. Therefore, we invent

a fictitious event with certain properties. We assume that some "quiet point" event QP

occurs, such that the event QP gains possession of the serializer only when no queues

are ready, and QP occurs late enough such that every crowd or queue that must empty

has emptied. If the guarantee for the de<1ueue event in question is true at QP, and there

can be no blocking of the dequeue event, then the dequeue event must precede QP,

provided that QP does occur. We can guarantee that QP does occur if every other

queue is not r~ady at QP. At this point we have proved that QP does occur, and the

dequeue event precedes QP, but we assumed that the dequeue event does not occur.

lb is is the contradiction that proves that the dequeue event does occur.

- 140 -

For extended serializcrs. it is ~ible for a request kind to have guaranteed

service, yet the quiet-point method is t()o weak. Tp illu~trat~. suppose a serializer has
' < ~ ~ • • ' - ,' ~ • i ~ .

the following operation:

op = proc (x; cvt) •
if queueSempty(x.q)

trien x o-emt1
enqueue x.q until crowdSempty(x.c)

else ~ o~eaq2
enqueue x.q until crowd$e11pty(x.c) & #crowdSempty(x.cc)

.. end.
join x.c i 0-joinl

. end
join x.cc ~ O-join2

end
end op

For simplicity, we will suppose that op is the only~oo,of.the serializer that can get

sole ~on (usesiC.t). The QP'.event will notoccur 0uinil 1.c is empty and x.cc·is

empty. However, at QP theguamntec for Oaq2risfalse. 'Iberefore.dt seems possible

for QP to occur before 0o-enq2. so guaranteed serviceaianot be pltOven .. · · ·

One way to prove guaranteed service for the above serializer is to split the
- ' f • ' ~ ; •. - . ' ' '. • .._ ' ~ l ' .J ~

proof into two cases dependent on the test queue$emp1J(x.q) in the if statement. If the

test was true, the QP method will work. If the test is false just before 0-enq2 occurs,

then there must be at least one other tmnsoction;c-Jll it Ot that is in x.q when the

O-enq2 occurs. But then there are two more cases, b-JSCd on whether. or not

crowd$emptJ(x.c). If x.c is en1pty, then the guarantees for x.q must be true, and 0-dcq2

must occur before 01-lcavc, which must occur before QP, which guarantees service. If

x.cc is not empty, then there is yet another tmnsaction. C'JU it 02. such that x.c will be

empty at 02-join2, which implies that the guarantees for x.q will be true before

02-leavc2, which must prL'Cedc QP. Although this ~analysis by C'JSC would be expensive,

- 141 -

it would be possible to add to ASP.

The reader might object that the above example is.1quite contrived, and we

would agree. We have discovered noe01tvmcing ref&tistiC'iex~tes that .r~quire 1D0re
~-' <' ; .'

than the simple QP method, even when extensibhs td serihin~ ttre considered. For

this reason, ASP supports Q"ly the simplj! QP JQ~tl\o4: ...

6.8 A sample verification

' '

This section presents a sample verification f)erformed by ASP~ Figure 4.Qgl,lre

shows the results produced by using ASP to verify a priority clause for the FIFO

readers-writers serializer presented in Chapter 2. Input from the user is indicated by

underlining. The l:1ser starts the session 'by typing in:ilie'nhnle·'of the 'seriatrzer that

should bC used. That name is interpret~d aS a me name, wft~rf\'h~ fiTeshautd'contain a

description of the ~rianzer in the rorrr1at required by A'S~. 'Then 'the user types the

clause to be verified.

rlllc response from ASP indic~ wltt;thcr the clau~ COL1ld be proved, ~nd

shows the a~ertion slack after the insertion rules ha~ been JtppJied (the first clause
'<> ,-!f ,;

printed is the most recently asserted clause). This infQrltl4'lion is usu~Jy sullicicnt to
' - ·' · ·r > C' '/ ' • '

enumerate the steps oft.be proof. or to tWii101,straU:iwhy, the ~la,usc,o.>ul~ not be proved.

While we will not describe them in, this thesis, additional. aids arc present for more

detailed inspection of the steps that ASP ust.'S to prove clauses.

- 142 -

Figure 4. A sample verification by ASP

Name of serializer: .E!f.Q
1. 012 seccnds to setup.

Specification clau~•: RJ-tD1tr < W-1-f#i\ft1 =~ .ftltt,~it ,< Wt-txit
Proved Implies(Rt-enter <Wt-enter, · · ·

Rt~axit < Wl-exi~~

base(39: .
Rt-exit < Wt-dequeue-xq: Posse~sion exclusidh,
Rt-leave-re< Wl-dequeue-xq:'Guarantee exclusion,
Rt-join-re < Wt-dequeue-xq: Possession exclusion,
Rt-dequeue-xq < Wl-dequeue-xq: FIFO queues,
Rt-enqueue-xq < Wt-enter: Possession exclusionA
Rt-enter < Wt-enter: Assumed,
TR: Wt-enter: From clause,

. TR: Rt-enter: From clause]
1. 3"76 s~tonds;

Note in Figure 4 that not all of the rules are shown. The default used is to
~ .: _ ~ ~ - ' ~). .' ·, . ~ .,., .;-

; , '

omit showing the claLlSe!? ~rted in the static analysi~ .. phase, ~d use of the Transaction

order and Transitivity rules. Tbe not.atiqn "·ba~e(39 :" appearing in the middle of the
• , ". • - • ~ ~ : : ' : 0 ; , • ' l.' •. . , -

figure indicates that the assertion stack has 39 members. At the end of the figure the

amount of processor time needed for the proof is given. This figure includes the

processor time nt..-ccssary to·· pbtse the exph.~ .. · appty ·the verifict•tioJJ .rules, and to

print the results. The notation "TR: wr-enter: frOll -cla~~· iS·uscd to indicate I.hot

the transaction WI was added to the' transoctiotv ;~i~ ;sjnc(:f tht :trnnsad4an wos

mentioned in the spccifrctition clause (for uniforihit:y itHhC prugraui: this is treutcd as an

assc11ion).

- 143 -

6.9 Pedornaance results

In this section we present a number of verifications performed by ASP on

variation of the readers-writers problem. Each test i~ given as a specification clause to

be verified (or not verified) for different readers-writers serfatizers. Figure 5 presents

these specifications, most of which have been a'.t'entioned In previous· chapters a8

specifications of different properties for the readers-writers problem.

Figure 5. Readers-writers tests for ASP

Wpri: Writer's priority
Rt-join < Wt-enter < R2-enter < W2-enter < Rt-leave
:::> W2-join < R2-join

(NWPRI): Modified Writer's priority
Wt-enter < Rt-enter < W2-enter < Wt-leave
:::> w2join < rtjoin

Rpri: Reader's priority
Wt-enter < W2-enter < Rt-enter < Wt-join
:::> Rt-join < W2-join

(NRPRI): Modified Reader's priority
Rt-enter < Wt-enter < R2-enter < Rt-leave
:::> r2join < wtjoin

II R: Concurrency for Readers
GX(Rt-enter, R2-enter, W*-enter) & R2-enter < Rt-leave
:::> R2-join < Rt-leave

XexY: X busy excludes Y busy
X-join < Y-join :::> X-leave < Y-leave

XpoY: X not by-passed by Y
- X-enter < Y-enter :::> Xexit < Yexit

GS(X): Guaranteed service for X
@X-enter :::> @Xexit ·

- 144-

An abbreviation for each specification is given prior to cadl dause~ The Wpri .~

and Rpri clauses specify writer's and reader's priority properties. The (NWPRI) and

(NRPRI) clauses specify alternate versions of these properties to be proved for the

NWPRI and NRPRI seri~lizers (to be shown below). The XexY cJauseactually ,denotes

three clauses: RexW, WexR, and Wlex:W2. where ~wqpriate substitutions apply. The

XpoY clause also denotes three clauses, with the same substitutions.

- 145 -

Figure 6 presents the code, in abbreviated form, for each of the seven

readers-writers serializers tested. The create operations and headers have been omitted,

as is the trai.ling code after any join. The use: of crowdSempty: and qucue$empty is

implicit where empty is used. There is one FIFO serializer, two readers priority

serializers (RPRI & NRPRI), three wriftt'S'''~ prionty' serializers (WPRil, ··

WPRl2 & NWPRl),.and one serializer.tbatallow.~.~r\f~ ~TARYE). Note that the

priority specifications for RPRI and NRPRI differ, and that there are also two distinct
·\ • .._ • ;, '-.,,_ f

writers priority specifications.

The various serializers above were de_veloped at different times. In particular,
·_, .~. :, : .. :,:·· ·.- . - + ''. . ' " ·_, :. ' . '. . .~.· , > -

NRPRI and NWPRI were written· after: ASP had becom~"reiative&y reliable. We

originally attempted to. prove the Rprl sp~ifi~atio~ cla~~ for tile' NRPRI serializer.

The attempt was made much more ·difflcUU\by·;'tt pretnnteption··{due to a faUlty.
':• ,

informal proot) that the clause could be proved. After much effort to determine the

cause of the fault in the program, we finatiy 'hotfced· that the pto~nirrf was correct: not ·
~ .; ! :'} ;:· .. '1.,.l; ;·,:

only was the clause not satisfied, but the mte~~~ Sll.~folluwcdJly ASP provided a

counterexample. It was this example more than any other that convinced us of the
~ ' l . ;: ';

wort.h of automatic verification aids.

'n1e modified writers priority specification came about as a lest of the

speculation that NWPR I satisfied a priority clause that was symmetric to NWPRI, since
,··_,;J '• :~"; ,o~;.f~:·."_,..i~ ',. '~.!7:,).~ 7

the scrializcrs were (roughly) symmetric. The unmodified writers priority clause is also

satisfied by the NWPRI scrializer.

- 146 -

• Figure 6. Code for test serializers

Name Oper Code

FIFO R enqueue xq until empty(wc);; join, re
w enqueue xq unt i 1 empty(wc)&empty(re); join WC

RPR'I ft en1'ueue rq unti 1 empty(we) : jo~n re.
w enqueue wq until empty(rq)

e1tqueue rq: uni 11 etllpty(~~yfN:')l jotft. we

;

WPRI1 R enqueue rq until empty{wq)fempty(rc)
enqueue wq until empty(wc); join re

w enqueue wq until empty(rc)&empty(wc); join we

i ,,

WPRI2 R enqueue rq until empty(rcj
· epqueu• wq until ..,,ty,W:)6Mpt7(.Nft; jOiA re~

w enqueu' wq until empty(rc)&empty(wc): join WC

STARVE R enqueue rq .until empty(wc); joilLrc. ·
w enqueue wq untH empty{wc)&empty(rc); join we

NRPRI R en<we"e xq until empty{ we); jGin. re.
w enqueue xq unti 1 emptyfwe)&eapty(rc)

enqtteue· xq· until 911p1.Y'(we-}htllPtyfrc).~ · jo4n ·we·

i "

NWPRI R enqueue xq until empty{wc);
enqueue xq until empty{wc); join: h< ·

w enqueue xq until empty{wc)&empty{re): join WC

. . . ' : ' '. ~ / i .' ; ' , '. '

The results in Figure 7 were obtained on 23 August 1979. The times given are

' . ~

- 147 -

Figure 7. CPU times for ASP tests

Name Time WexR WexW RexW RpoW WpoR WpoW Wpri Rpri II R GS(R) GS(W)

FIFO 21 T

RPRI 35 T

WPRl1 47 T

WPRl2 67 T

STARVE .24. T

NRPRI 36 T

NWPRI 30 T

T

T

T

T

T
T

T

T

T

T

T

T

T

T

T

T

?

?

?

T

?

T

?

T

T

?

?

T

T

T

T

T

T

T

T

F

F

T

T

f

F

T

.f. T

T T
F ?

F 't
:7 , .. T

T T
F T

Time is given in CPU seconds.

T

T

T

't

?

T

T

T

T

T

T

?
T

T

T indicates a proved clause~ F indicates a d'isproved clause.

? indica'-es a cl aus' ra,o'{prQ;V~d,,'()r d'i_~p 1roved •
. f' / < ;; ; l' :

CPU seconds for running allofthe'tests shown:17 Th~ testtases are explaineditl detail

at the bottom of the figure. Each column after the .Time column represents a different

test, given by a. specifw;~tion.~aµse. AT repr.ese,rits;~ prov,~n.speciftcation clause. An F
' " . . - • ~ •, t 'J ; •

represents a spedticatil>n dause proven to be always false~ A? represents a Spt.'Cification

that could not proven true or false. In tlleseriaUzcrs represented· in the table below

there were no CUSt."S where the program was not capable enough to prove or disprove a

clause that was atw,ays true or false. In· general, ·if the y>rogram· can ~ot prove or

disprove a result, it is either due to a chmse that is lrAte for SOR\4; histork'S and false for

others, or it is due. to a weakness in the vcrif\cntion · mcth~xlology, an9 ASP will be
. . . ,• . , '

17. 'll1csc tests were performed on 23 August 1979 .. u~inp, a l}ct~y~cm-20<tOT. ASP ot'Cupics .about IOOK
.lCrbil words of mcmury. of whkh 41houl <iDK word11. are;"uc ~u tb,e ('I .lJ support sy~tem> No appfl'Ciablc
paging activity took place. . · . ·

- 148 -

unable to distinguish the two.

6.10 Summary ofmethods usecl

This section prpvides a concise summary of the me,thods ~e have used in ASP.

In this summary we follow lhe order of steps used in ASP, hither than·-precise1y

fo11owing the order of presentation for this chapter.

*Static analysis is pe~formed once for any given serializer code to
determine initial clauses that are derivabie '~~ly;frotiJ<ltl\e 'rib& graphs
for the serializer ciperaticins. ' The-i remainder 'of the ~st~ nre performed
for any given specification clause.

* Repr~ntations are introduced for the .t~\l~" mentioned)n, the
spcci fication clause. · , ' · · · · · : ·

. l

• For any specification clause of the form P :::> Q. the clause P is asserted.
and WC attempt to derive fJ tfitough USC of the·itt~ttiOfrfdfes. Whfch are
the mies Transitivity,-Eventbefore PX. Ev~ntaft~r P~ ~vent before GX •
. Event after GX, and Eve~t from FIFO. frthese hiiesare'nofsi'.1ffiCient to
prove Q, further methods mustbe usecL ·· ..

*The Event from ready queue mlC, whiCh rclll,>cis the priority of service
giwn to intcmaJ,- que~-s ~ver tJle .. cxtcr~LJllJ~U~~J 1\s -'~P,elied, wher~
feasible. This is known as "cht.>cking thr ready queues." 111is mle may
n.-strlt in the 1nvcntkm of aMnymous trari21aciiuns.:iwhidl are L~ntial tQ

the proof by co11trncliction that the preconditions for the mle are met.
Anony1noi1s transactions t11ay i1Tuo be liScd; iff ffi~;fNF 'rta~·;wlHch is
subsidiary to the cht..>cking for ready queut..>s.

•When the clause Q is still not proved. and the order of ccrtuin enter
events is ·not known, ahhougttthc events aro lmowrfltHJcatr..: ASP tries all
permutations c>f slich cvcntS. · tf ·Q1·t:m >if;e' pmvt..~' ft1r t..'VefY such
permutation. then P :::> Q has been proved.

- 149'-

* Proof of guaranteed service is performed by assuming that a transaction is
blocked in a queue, then proving that a ready queue must result at some
"quiet point." Although this method is limited, it can be proven to be
correct, and works for a variety of cases.

- 150 -

7. Interaction of Serializers

In previous chapters, we introd~ced tl\e serializer con;struct, ·presented a

specification language for serializers, and demonstrated some verification techniques.

Our discussion has been limited to single instances of simple serializers. Yet if we are to

reach our objective of modularity, we must examine how serializers interact

In this chapter we present an application of serializers that incorporates the

use of multiple serializers. ·We are especiaHy concerned that serializer use can be

nested, so that the techniques for modular decomposition of programs in a single

proc~ domain can be applied to a multiple process domain.

The example we have chosen is the use of serializers to control concurrent

access to a simple file system. For this example we will assume that.objects in primJTy

memory can be shared by several processes running on a single processor. This choice

is made to keep the example simple enough to be tractable, since presenting a

distributed version of a filing system involves issues well beyond the scope of this thesis.

We start this chapter with a presentation of the simple file system. including a

discussion of the abstractions involved. We then show two of the scrializcrs used to

control concurrent access to the file system, and show how the specifications arc similar

to the readers priority variant of the readers-writers problem. Further Sl.--clions concern

methods for introducing scrializcrs for abstractions that were written fbr single process

environments, and a discussion of higher-level trnnsactions.

- 151 -

7.1 The file system

The structure of the file system is,based on dire~tori~ and files. A directory is

a map from names (expressed by strin~) to.entri~ which are either filesor directories.

If directory Y is named in directory X, then Y is a child di.r~tocj o(X,:,.,and X. is the

parent directory of Y. There is a single directQi;y,, called lbe 1001 direc(ory, that has no

parent· directory. Files and child directories may .be added to, or deleted from

directories. A simple provision is ma~ for iterating over the 1~es of a directory. lt is
1 • • .

p08mble to get the number of entries in a dir«tory .. and .tQ .dct.er.Ql ine wJtlch. directory (j f
• ' y • • .~ -.·. ' l . -

any) is the parent ofa given directory. For .nu>st ,0,p~~ns.. ~ cµr.!!~to{)'. must be. open

for the user to perfonn those operatiQllS. Opening a directo~y . is accomplished by the

directory$Qpen_dir operation. The directory structure is acyclic.

A file is an array of pages, where a page is some fixed length unit of data.

Pages on primary memory may be read from or written to any existing page in a file.
~ ' .: .

Pages may be added to or removed from the end of a file. A lile may be named by only

one directory. It is ~iblelo get the number of pages in am~. and to determine which

directory names the file. As with directories, a file must be open for the user to perform

most operations. A file opened by dircctnry$open_JJrivatc can only be accessed by a

single process, while a file opened by dircctory$opc11_J1ublic can be accessed by any

number of processes (although a practical system might impose Sdme reasonable 1imit).

A file is closed by thefl/c$c/oseopcmtion.

- 152 -

At this point, some additional explanation of the open and close operations is

in order. First, we have made the open operations work on directories, since directories

are the logical means for initially accessing files ;and child< directories. We have made

the close operation work only on the object that the open ,provides. which· prevents

users froin closing a file (or directory) except when they have ·acquired that file or

directory object through an open· operation. Sea!md; we tune' two· different ,kinds of ·

open operation on tiles: open_pub/ic, for simutmfteOOs· 8ecdss;an10ftg several .processes

(or users), and open_private, for sole access. We ean associate: an -open ·count with each

fife or directory obj\!ct. This count is increased f61':emy ·Opell ~n. and:decreased .

by every close operati<?n; The directofytbpen:;:.private opeFBtion wiU only succeed when·

the count is zero, and upon successful eompletionrprevents·any increase in the count

The directory$open_dir operation opens a child directory SUth that multiple ·processes

can access it concurrently.

In presenting the file syStem example-we win· ooncentrate on showing the

interface of the file and directory data abstmdions anc:t the code· .for the file and

directory scrializers. It wilt not be necessary tO ~tlle impldmmtution of the file and

directory data abstractions, although we will dise?t.msomeofthC details as necessary ..

Figures 8 and 9 present the interface specifications fQr the directory and file

clusters. As a first approximation. these are th,e &1me interface specifications that are
, < ~ •

used for the corresponding directory and file serializers. Ea<;h opcmtion interface
' ," .' - ' '

mum .. -s the operation, the types of the t1rgumcnts. the types of the returned objl.-cts, and

the types of exceptions that can be signalled. We include some comments thut indirnte

- 153 -

Figure 8. File interface

A file may be described as an array of pages that exists on remote
storage. It can be randomly accesse·d, and CM, be .exJ.e.~ded or retracted
at one end. An open file can only be obtained thfouglf'use"'of a directory
open_pri vate or open_publ ic ope rat ion. No_ o_p_erat io!'S .can be performed on
a closed file except fpr is_~peo. ,The fo11owiilg,"(H_e operatfons are
available to the user (others will btf'dhcussed 1at4fr"in the: chapter):

get_parent (file) returns {directory) signals (file~closed)
_Get parent directory of file if file is open, otherwise signal
file_closed.

get_name (file) returns (string) signals (file_closed)
Get name of file as a string if file is open, otherwise signal
file_closed.

get_size (file)·returns (int) signals (file_closed)
Get number of pages in the file if it is open, otherwise signal
file_closed.

is_open {file) returns {bool)
Return true if file is open, false if it is not.

read~page (file, int, page) signals (file_closed. bounds)
Copy a page of information from the given location in the file i.·to
the given page in primary memory, provided that the file is open.
Signal bounds if the location is invalid (less than ~. greater than
or equal to the size). Signal file_closed if tbe file is closed.

write_page (file, int, page) signals (file_closed, bounds)
Copy a page of information from the given page in primary memory to
the given location in the file. Signal bounds if the location is
invalid, file_closed if the file is closed.

close (file) signals (file_closed)
Close file if it is open, otherwise signal file_closed.

add_page (file. page) signals (file_closed, no_room)
Add a page to end of file, signalling if the file is closed or there
is insufficient room to complete.

rem_page (file) signals (file_closed, empty)
Remove a page from the end of the file, signalling if the file is
closed or the file has no pages.

- 154-

For concurrent access, there are the following classes of operations:
Info: can overlap with any but sole access
Read: can overlap with read or info access
Write: can overlap with info access
Sole: can not overlap

The operations in each class are:
Info: get_parent, get_name, get_size, is_open
Read: read_page
Write: write_page
Sole: close, add_page, rem_page

- 155 -

Figure 9. Directory interface

A· directory fLffiCtio~;; _,as .a syqtb't>l table of .entr.i;es •..• h~re · eacll. i;tntr,y is
either a file or an<lther directory. Entri'vs 'can· ~f,'~re~+~~:· }el11l•.d or
opened using the di rectory. The following opera{fons are pub1 icly
avail able:

• jf•

roqt () ~eturns (directory) .
Get root di rectory, which iS alwa')s open (th~'~)>pe'rat iori does not
require possession).

g~t_p,.r~nt ("'.jrectory); ret~rns f~Jret~~r1> . s~u~•!~; f fibs)~,. 'di r_~cJosG,~) .
Get pa~ent di rectory'. s ignal.\ij\i',)1''?' 1 lTi~. t)1,' cS\l,e'n~: ~tr,,~t~~f: ~IS .. the
root duectory, and dH_closed 1f Ute glven clfrec~ory ti <!10i8ll •.

get_size (dir~~t.ory) ftt~rps (iQ~) siQ._•l~;.itdir,~«X6~iq>;."·,:. '.
G~t number;. of t1'.'t.r1~ . in. t~.e gJ:'~~· f,i;re~~~· .~jg!)~ll ~.n~ H the
dlrecto,ry n closed •. · '"'" :·i·. · ' · , ..

get_ name (dlrectory) 'returns (stri~g) s'ignau''' (di r _Jiot~d)
~~!se~~me1 cof the given directory, signa~lct't&,;t·ifJ;h9 director;V .is

is_open. (directory)' returns (boot) .
Return true if the gi,ven directory J(,op,en. J,a1 s.e. H it ~s. not ..

' , ,." ,_.,· ; '. ~- - - i ·- '' .,. ~ '

info (dire~toryt Uri11g) ~eturn,s (b,~~1. i~h; ~goH; ,.,
$.:tgn.~ls {non,e,, d1r. closed) ... '· · ~· .

ReturQ ~ informa~~~ a4D~ the n ... d. eq\r-Y: 'a' Jtool'ean indic4~ ing the
kind of entry (true ff entry is'a tile,''f'alse fr• not):'the size (in
pag~s i~ a file~ !}U~~r of e~ti;-ie~r;li;f, o,,"~if,ttC!8f,Y),·. a1~,d 1 a ~oo.le~p
ind1cat 1ng wheilJatt:' .the entry 1s. 01,n .. ~'CaflAT llOJJropti•~e ·errors if
they .. oc;cur. ·· .· · · · . · · · '~ .·::' ' ... ~ ,..,_. '· · "·

~ ., :1

next (di rectory, str1~g) ~eturns (string,f:"it !A?~ls.'('6,~e, di r _clefse~)
Get next entry name after named entry, using string ordering.

:..;- ; '!<.: ;,·· f
open_private (directory, string} re,tu~ns, {ffle) · , .

signals (none, op~nf<f, d,r.clo'sed).
Open named filtt· jtt gi.ve.1\-, ,,.dfre~io~i rf)r · iote
appropriate errors. if ~ey }~<;CUf.•.,. " , , :. , .· ,

', . ,

use, signalling

- 156.-

open_public {directory, string) returns (file)
signals {none, locked, dir_closed)

Open. na~d. fiJe .in given directQS:J. for shared use, signalling
appropriate errors if they occur· (1'0et•8 is· ~'ft(nal'l•d ;r entry '·is
op$n for sole US•). ' . ' . ' . . . ,,q '. ' . ' ''

open_dir (directory, string) returns (directory)
signals (none, dir_closed) .

Open, named: chtld .. irector,r in given directory, s·19nalling appropriate
errors if they' occur~ ' ' '. ,· ' ' '

close (directory) sig,l)als (dir_closect, 9pen_entrias, root)
CJose. th• ;given ~tre~to,.,;' .signatl ~·oo: Jf it ~s.,'the . 1'oat, or 1t ·19
alre«dy closed, qr -~Pt,n· entries, ·ei,-1st. - - ·

add_dir {directory, str:trJg)
~jgnaJs. r~~-:)'t>~; duplicate, . ~ad_n~ ! ~ir_clCJsed)

Add new (empty) Chflcf drtectory entry with given name. Signal if
there is insufficient room, an existing file orL Ctitectoryi of the same
name, a bad dir-.ctory .name given, or the directory is closed,

- . . . - .. -; . ' ; - . . ~ ~· ~. ' '. - . - ' '

add_file (directory.' ·string} ., " " : j

signals {no_room, duplicate, bad_name, dir_closed)
Add new (e19Pty) file entry to «Hrectory. .· Sig,nal if there is
insuffi.cient room. an exist Jn9 f 1 le 'or ·ftilrectort of ttre ;same· rr.... a
bad file nute given, or the directo·ry ts closef. ·

delete (directory, string) s1gria1s (none: oeened. dtr closed)c '
, Delete na•d en\ry in given direc~or;-;'s1gna1'1in.f'ijtpropri•te errors.

If entry is a cfi r',ec·tory. all of ns entries an ~'te'tad a-s w•ll.

There are four chs$es o.f operations requi rinq srosnsston:
Fixed info: . can O\rel-'tap wftlt any uUt 'Sola actisi ·

The

Variable info: can overlap with variable or fixed info access
Openi~g: can ove-;-lap .with fixed i~~,o ac~~'~'
Sole: cin l)Ot o~ei"lap .

operations in
Fixed info:
Var.iable info:
Opening:
Sole:

each class are:
get~parent, get_name, is~open
get size, info:, ne'Jtt
open_prf vat•.· open:_l>IJblf~, '?.,..n_di r
close, add_dir, add..:_f1te;· delete,

- 151 -

the intended effects of the operation. Aftet the operations, have been described, we

divide the operations into Cf asses based Ori Whictfoperndons maf overlap in execution

with which other operations (when executed on the same seriafizer object).

One way to des~ a syste~ that in va,lyes concum:~c¥ is Jo Aesign, it for a
' • • , , • • j - ! ' ~ . ~. • '•. " . ,. ,

single-process system first, then add multiple processes for ~aj9J;1is;9ftp~~~:thatcan be

performed concurrently, and add seria1izers to control access to shared objects. In the

file system example, however, we have assumed that the file system would be accessed
' ·;.-~,"'"·/~ ' ·_, . :~~~ :~ : . '. . ;

by multiple processes. This assumption has influenced the choice of operations.

especially in providing for opening andJdesift&'•otirfl1• Even:'SJ,' the smpe-process

model of design is useful. Concurrent execution :of operations is only permitted where

the effects on the state of the files are the same ·as mme·'ltrial e~ectttion of operations

where coneur~ent execution is prohibited. It· may not . be' possible to obtain the

maximum <:oncurrency in this fashion. since certaih qprerilt4ons could be allowed to

execute concurrently in part. But increased concurrency is purchased at the cost of

increased complexity.

One simplifying assumption has been made regarding tile objects that may

appear to be unrealistic. lliat is. a file on secondary memory has al most one lite object

in primary memory controlling acccs..., (this is also true for directories). Unfortunately,

this allows a user to open a tile once to obtain the controlling object, then ck?sc the file

several times, thereby completely closing the file to accc...-ss .by other processes. To

remedy this. in a real system. it would be desirable to httvc a second level of indirection

for files such that every successful execution of an ope11_public· operation returned a

- 158 -

unique controlling file object llle aqditiornll level or file object would be used to
, .. , ;f

create a separate file object for each Qpen_pub/ic operatic;>n. ~ch that the file l)bstraction_

presented to the user weuld only allow a ,ffle ob~ . to be dosed once. A full

presentation of both levels of file has no advantage over a presentation of a single level,

so we only diseuss the system_fUe version of mes_ -whiCh is ~ported by the fife cluster

and its ass0ciated serializer.

7.2 File and directory serializers

Figures 10 and 11 on the following l)QeS: p.-.nt. the :dir~tory and file

serializera. Note that we have added several opemaions, that are "hidden" to the

"normal" user. We would expect ac~ to these _operations to be regulated through

some library mechunism~ such that a normal user woukl see a subset of the i~rface of

an abstraction, while a "privileged" user would be allowed to access- more of that

interface. In some cases. . and in particular for ·this -file system. ~ to privileged

operations would be restricted to only allowing use by implementations of particular -

abstractions, rather than allowing access based on the identity of the person using the

systcm.18

18. Such pmtcction could <1lso be provided to some extent hy establishing a block stntcture fttr dusters
and scrializers. We have chosen to retain Cl .Li's <tpproach to modules. and as."umc that protection is
&K."Complishcd by other mc;ms.

- 159 -

Figure 10. File setializer

file = serializer is

% The following operations a~e publicall~ avi11p~l•·
get_parent, % get parent directory ..
get_name. % get name of file '
get_size, % get I o. CRage~. in fj], ..
is_open, · % test open.;.ness ot' fiiit' '· , · '" ~·
read_page, % read a page
write_page, % write a page
close, % close file
add_page, % add a page to en~·~r i~1' ~ .
rem_page, % remove a page. fr~ en~ .~f'.file ; ' · "·

% Note: delete can onJ1 ~e fill Jed fr~, djr~ctory,~1~t11
delete, % delete the contents of' a till ' • ' · .. ' . ~

% The wrap operation can only be used by the _file clus-t-91':
% to turn a _file object into:: 8 rile .~f.~j~~ ii?t_, Ob~~C.fa., t .p

wrap '(,» i'. {l ·. li.:.·:·· '; ::;, ;:· .'.·: .j. i ~cil'" '.. 'l

% The ope rat ions with cvt argum9.1\ts -C,a,n .. b,e ~pJt~ .if\\cf"{o~~ ··
% classes, depending on which opttratiohs·'can~ov8Map''in:1~'
% execution with which other operations. '' ''

% - Class -
% Info:
% Read:
% Write:
% Sole:

% - Class

-)~:'erlap - . . ,
Infb, Read. Write

. Info,. Rea~·.-· · · :., 1

Info ''- ·· ..

M~inbers

;;

• f: -

% Info:
% Read:
% Write:
% Sole:

get_parent, get_name, get_s ize J ::/s~~l~-n "
read_page
write_page., '>.-~ •·.·. } .

close. add_p•p.~~ ,'t'efn"'"~~9~· .Prl•t~

rep = struct(slow_q.··.fast_q: qu~\Je~· -n- i :j f' ~- ·· '· !
. so1e_c. wrHe_c •. re'ad_c. fia,r~~c~ ~~~;,:.

f: _file] ·

wrap = proc (_f: _file} returns (~vt} o'.

return (rep${f: _f, fast_q, slow_q: queueScreate(}.
sole_c. info_c, read_c, write_c: tr6wd$creata(}})

end wrap

get_parent = proc (f: cvt) ret~rns Jdi~ectory}
sign~ls (file_~JoJed) .

enqueue f.fast_q until trowdSeinpty(Csole_e")
join f.info_c · · ·

- 160-

return (_fileSget_parent(f .f)) resignal file~closed
end

end get_parent

get_name = proc (f: cvt) returns (str.ing)
signals (file_closed) ·

enqueue f .fast_q until crowdS*..Pty(f,SQle~c),
join f. info_c " ·

return (f .f.name) resign~l ftle~~'ose,d.
end

end get_name

get size = proc (f: cvt) returns (int)
- signals (file_cl~stdf' · . ·

enqueue f.fast_q until crowdSempiy(f.sole_c)
join f .jnfo..,c .

return -Cf~ f. size) res1gnal ril~-~10-.ed
end ·

end get.size

is_open = proc (f: cvt) returns (bool)
enqueue f.fast_q until crowdSempty(f .sole_c)
join c illfCLC .

return:(_ f fleS h_ open (t. fl)
end ·

end is_open

read_page = proc (f: cvt. index: int. •: pag')
signals (file_closed. bou~ds) .~ .

enqueue f .fast~q until crowdSempty{f:sole_c)
& crowdSempty(f.write_c)

join f.read_c
_fileSread(f.f. index. page) re~.19~41 file_closed, bounds ,.,,d ~r,;o,-~-

end reld_.:.page

write_page = proc (f: cvt, index: int, p! page)
signals (f ile_cl~sed~ bo6hds) ·

enqueue f.slow_q until queueS,napt~(fc!r.,st~q)
enqueue f.fast_q ul'.'til crowdS(!"'pty(f.sole_c)

& crowdSempty(f .read_c) & crowdSe1iptj(f.write_c)
join f.write_c · ·

_fileSwrite(f.f. index. p) re~ignal file_closed. bounds
end

end write_page

close = proc (f: cvt) signals (file_closed)
enqueue f.slow_q until queueS~mpty(f.fast_q)
enqueue f.fast_q until crowdSempty{f.so1e.;._c)

& crowdSempty(f .info_c) & crowd$eapty(f.read_c) ·
& crowdSempty(f .write_c)

- 161 -

join f .sole_c
_fileSclose(f .f) resignal file_closed
end

end close

add_page = proc (f: cvt, p: page}
signals (file_closed~ no_:rOOll)

enqueue f, slow_q uatil ·queuelftmpty(f. fast....:<J}
. enqueue f. fast_q unt i1 crowds.lpty{f. Wole_c)

& crowdSemptr{-f ,.<tn-fo::_:c) • 'C~ty(f\ r&ad~c)
& crowttSe•tt{'f. wr'fte_Cl · ·

jofo f. sole_c
_fileSadd_page(f .f, p) l'Nig.nal fi1a_olend, no_~oom
end

end add_page

rem_page = proc (f: cvt)
signals {file_closed, no.:..:roOtR)·

enqueue f.slow_q until queue$empt1(f .fast_q)
en.queue f .f'tst..:_q until cHMtHIS'eilptY(f .'ff1e..:..cl

Ii .. crOwtfhltpty~fH'nfo_c)''li cro.tlitapt)if.tt*d._cil
& crowdSempty(f.write_c) ·

join f.sole_c
_fileS:re11_pa9e(f-. f, · p} resional fHe:::_c:losed, no_r-o01t
end- ·

end rem_page

% Note: called by _dir$delete

delete = proc (f: cvt)
signals (file_open, f11e_delettdt ·

enqueue f .slow_q until queue$entptyff~fast~q1
enqueue f.fast_q until crowdSempty(f .sole~c'

& crowdSempty(f .info_c) & crowdSentpty(f.read_c)
& crowd$e11pty(f .write_c) · '·

join f.sole_c -
'%Note: use hidden _fHtiSdetate,operation
% to delete contents of file. ' fil'eSdelete is
% only·ttsed.;,'ly•JJtleldftlete'• .-., :;,.
file.Sfleflteff; I. '1~t restgttil rne.'..epen, f ile_deleted
end

end delete ' u'. .

end file

-162 -

Figure 11. Directory serializer

directory = serializer is
root,
get_parent,
get_name,
is_open,
get_size,
info,
next,
open_private,
openjWblh:,
open_di r,
close,
add_dir,
add_file,
delete,

% get root directory
% get parent director~,
% get name of d.irecJ.i)ry ,
X test open ... ne&s of dir,ec:to-rj
% get #: 9f entr~es:
x, return j.flfo abot,t;t ,....,.... •-'tr1 r , ,

% get next entry RUIJ ~•fitU ·tt~ •nt.ry
x open file for sole use ·
X. open ;fi1e f:Q-r •Jtar.i~g '·
x open sub-directory
'X close this directory
X add new sub-directory entry
X add new file entry
'X delete named •Jttry,

'X The wrap operation can only be- ~ff bJ fJMt _dir•ct·ory .cJ~ter
'X to turn a _cH.recto,,-y "'"'t. 'into< J dj••ct"'Jt;u.Na:lher object.
wrap ... , .

'X The. os>eratioH can"be split .i.-to Jix cl .. fll. ckitfending on
'X which ope rat ions can overlap in execution· with whicefl- ether
'X operations.

X - .Class -
'X Root:
% Fixed info:
'X Variable info:
'X Opening:
'X Sole:

'X - Class -
'X Root:
% Fixed .info:
'X Variable info:
'X Opening:
x Sole;.

- Overlap -
Root, Fixed, Variable, Opening, Sole
Root, Fixed, Variable, Opeajag
Root, Fjl'e!I.- Var.table
Root, Fixed
Reot

- Members -
root
get_pat"e11t,. get..:.natMH.· ia_cu~~tn. get_s ize
info, neAt . . ,
open_privaJt•.; Ollf@.4toblic f,.,e,peq_;.cllr

"close. ad4i~cUr-. •ctd_•n~.,;Ml•"'·

rep = struct[slow_q, fast_q: queue.
sole_c, open_c, var_c, fixed_c: crowd,
dir: _directory]

'X The wrap procedure is used by the _directory cluster
'X to turn a _directory object into a directory serializer
% object. This operation can only be used by the
% _directorySroot and _directorySadd_dir operations.

wrap = proc (d: _directory) returns (cvt)
return (repScreate{dir: _d,

- 163 -

end wrap

slow_q, fast_q: queueScreate(),
sole_c, open_c, var_c, fix_c:

ci"owdUr•ate()})

root = proc () returns (di rectory)
% note: :_dfrectorySroot,uses the wra~ operation
return (_directorySrootff) ,,,.\ ' :<: •. :<.·i;;
end root

get_parent = proc (d: cvt) returns (directory)
sign,Js (none, dir_closed}

enqueue d.fast_~ Until CrOWd$8Mpty(diS0182C)
join d. fix_c · -:. · · ,

return (_di rectorySget parinttd~dii"H-
resignal none,·dir~tffdsfdt · :, ..

end
end get_parent

get_name = proc (d: cvt) returns (string)
signals (dir_closed)

enqueue d.fast~q until crowdSempty(d.sole_c~
join d. fixer:t_q

return (_dlrectorySget_n1111e(d; di rll r&s)gnaL di r _closed
end · ·· · '

end get_name

is_open = proc (d: cvt) returns (bool) ···''·
enqueue d.fast_q until crowdSempty(d.sole_c)
join d. fixelt::_'c'I :,, · ?

return (_directorySis_closed('ct~dirt) · : , .
end

end is_open

get_sfze ,,;. proc (d: cvt) returns (iiftt} ·
signals (dir,,_closed} · ·

enqueue d. fast_q untH· crowd$Mpty{d. sole_c)
join d.var_c · ··> ·

return (_directorySget_size(d·.dirH res'.ipaJ dir closed
end '-'.

end get_size

info = proc (d: cvt, name: string}
returns (bool, int, bool) signals (none, dir-_:clos.,d)

enqueue d.fast_q until crowdSempty(d.sole_c}
& crowdSempty(d.open c)

join d. var _c - c \·" ,,

file_ nes s: 'boo·1 , 'size: ·int, op8fl _'.ne'ss-: booli ·
:= _directorySinf-o(d.di1"} r.esignal dir_clo.sed, none

return (fHe_:_ness;·· size, op'en_'fleiss)
end

-164-

end info

next = proc (d: cvt, na11e: striAQ) returns (string)
signals (none, dir_closed)

enqueue d.fast_q until crowdSempty(d.sole_c)
& crowdSempty{d.open_c)

join d.var_c " ;·. . . ,
return (_directorySget_next(d,di~U:,

resignal dir_closed, none''
end

end next

open_private = proc (d;.cvt. 1181181.l~~:ing) r•t.ur.n~;:(file)
signals (none, opened; dir_closed)

enqueue d.slow_q uaiil que11aS"""ty{.~:;:f~•t q)
enqueue d.fast_q until crawftS..,tr(4.sca.1ft •• c)_.

& crowdSe111>ty(d.open_c) ·
join d.open_c

return (_directorySopen_private(d.dir, naae))
resignal di r _cloaect. none, loc;t,d,

end
end open_private

open_public = proc (d: cvt, JUlll9:· strjqgt returnis 1file)
signals (none, locked, dir_closed)

enqueue d.slow_q until queueSempty(d.fast;.,;.q)
enqueue d.fast_q until crowdSemptJ(d.sola_c)

& crowdSempty(d.open_c)
join d.open_c

return L.directorySopen_public(d.dir, n ...)).
resignal dir_clos.ch: none. 1~"

end
end open_public

open_dir = proc (d: cvt, na•: s.tri:nt) r.elurn~. (directory_)
signals (none, dir_closed)

enqueue d.slow_q untU queu•~~(.d.fas.~q.)
enqueue d. fast_q unt i1 crowdSe11Pty(d .sole_c)

& c rowdSellpty(d .. open_ c)
join d.open_c

return (_directorySopen_dir(d.dir, naae))
resignal dir_closed, none

end
end open_dir

close = proc (d: cvt}
signals {dir_closed, open_entries)

enqueue d. s l;ow~q unt 11 cp.a~ueSeltPty{.d. fas.t~q.)
enqueue d.fast_q until c.rowd$emptf(d.:so.1e.-c)

& crowd$e11pty(d.va·r;.;.c) •: crowdSetRPlJ(d.,f.b_c)
& crowdSempty(d.open_c)

- 165 -

join d.sole_c
_directorySclose(d.dir)
end

end close

resignal dir_closed. open_entries

·.add dir = proc (d:·cvt, name: string;
signals (no_room, duplicate, bad_name, ~ir_closed)

l ne-te: _directarySadd_d4-.f< uses ·-flte ap ·op.e.atiea
enqueue d. slow_q unt i1 queueSe.mpty(d. fast.,..,q)
enqueue d.:fa~C;;..CI Udt.iiLC'~d;.;set.e..J.c):

& crowdSempty(d.var_c) & crowdSempty(d.open_c)
join d.sole_c

.:...dir,cJ.oryS~dd...:,.dir(d.d,ir) , ·.
· resignal no_room,· dupl fcate. bad_name; dir_ctosed
end

end add_dir

add.:...file :. proc {d: cv.t. naM: &~rfog) ·'
signals (no_room, duplicate, bad_name, dir_closed)

enqueue d~.s:low:..._q .uJttH· queucr~»(A,fa'\.Ll,Qt,;~'
enqueue d.fast_q until crowdSempty(d.sole_c)

& cr~Sen,p~(d ;var~c) .i., ~r~~.,.,_lY(•. ••"-~ >­
join d.sole_c

J1 irec·tor,ySaddf i le{ d. d j rJ . .
resignal' no_roOll, (fup1 icat•~ f>a<l_nadt4f, :dir_closed

end
end add_f ile

delete = proc (ct: cvt·. natne: strittg)
signals (none, opened, dir_closed)

en.queue d .• ,slow_.:.q unil queue..,tJ(d.•fAs_q)
enqueue d.fast_q until crowdSempty(d.sole_c)

& crowdJ~W(d.v~,.~~),.fr ~'l'~-..~{d .. fb_c)
& crowdSempty(d.open_c)

join d.sole_c
_directorySdelete(d.dir) resignal dfr_c10sed. open_entries
end

end delete

end directory

- 166-

To distinguish between the data abstractions and the seriOlizer,abstnctions of
' ;.., ' ~ ~ j : ::..: . ~· :· ::). ~7 ,:j • ~ ··; \~. - >

the same interface, we will use the names directory and file fdr' :the serializer
'! ~ ?,"j J ~o ''

abstractions, and _directory and _file ror~· ~ta~~ clbe·: u~r, i": A-."!:~~tiple
• . . ., ; . ,, :,·· :' -· > . ~·. ~ .•. i '. (!'.!tl >·,· ·.::.- . • •

process system WOJJld • ~Y ~ allowed to ~ titM. ·.QllfraPio~ oC ,~ $Crializer
' - :

abstractions, which would ~tiljze the~die· ·~-~- '. .·,
.. -~, " ·_; ' ... - . - ,_; ,_, t ~ .: \) : ·~. -~ .. t'; '.. , ,.-.

In the above twu ~rializers, there a~ ~1 •. Jf ~na,qn(that am be strictly
" '., ' • ·• . i ,. - ' • ". - - ~ - ; :.- •

ordered on the basis of the execution of any operation from one:·~~· ~~ding the

execution of any operation from anotQ~I' class. The-0rder.is: {ronl .mpst pemtismve to
; : . i,.: ~:t '.: :.,, J < - '.; - ! ' .) :) • ~-

least permissive, with opemtions ·Uta". retufttcw.fonhation ~mlly ~ng.· the most
: ! ~ -'> ~· ~ ' • r, -, ! :: _: > ~

permissive, since they can &e · executetf-·eoric1.utently. lllis <>«tering allows us to
! ~ ;.,; -. '""; ' " . - : l

construct serializers t~t foJ\Qw the g~,nera,J;p1fi»· dftb~ ;~writers' J)roblem. If an
' - . . .,. ~ t : ... '. :.. ' ' '· ~ ~ ' . ' ' • '

operation can '!xecute concurrently with another invocation of th~,~~ .. QJ>e,ration, it is

considered to be a. reader: otherwise it is.ia:writcr •. ;jp ·tt\Q Al:>o\lei ~rialjzers. ,we have
~] F . ·' ~c,, , '~" f~ "· ~

adopted a readers priority approach. ·wtth:1M :itdonnbtion gathaing!.ot>emtloas having
• I

higher priority. It would be·equatty·eor-reet io~adopf a1 Ff.FO'"~ or a ·writers
. • ! :1 ' ---~ :·,: ':.·

priority approach .. but different perfonnancewould ~It
. . . - ~

The n.-strictions on simple serializers must be relaxed slightly ~ alk>w us to
ii'. < ; ,-.,">:

write the file and directory scrializcrs. The most important addition is the exception

mechanism, which includes a signals clause in the opcmtion interface and a resign-di

clause at the end of any statement. lbis addition docs not greatly add to the complexity

of our model. since we only use the exception mechanism in the same manner as the

- 161,-!.

return statement.19

We retain the impmtant limitation, which,~ to r~turn or signal directly after

·invoking the operation of the data abstraction. Th~ other ~dition .is. to allow local
. ~}' '.' . - , .

variables, which we use.in directory$info to hold the results, o[.lql invocation that returns
. . . ~ '"':. ! ~- J.

multiple objects. The effect of.this addition is .. ~ n;iinor. sine~ we immediately return
. . . - ,;

th~ results unchanged.

7.3 Specifications for file and llirectory serializers

The spedficatiQns ,for the file and. <JifeCtOIJ $CriaJ~iers are simil~~ to the

readers priority readers-writers problem. Therefore. we . will ;only present illustratjve

examples, rather than full specifications. One 1.1seful abbreviation is to use the first

letters of the operation classes, rather than the operations, io name. transactions. This

gives us the fo11owing transaction names for file operation classes:

I: an Info class transaction

R: a Read class transaction ,

W: a Write class transaction

S: a Sole class transaction

For directory operation claSSt.."S, we can use the i~'11C} .~cution~ l."X.Cept .t:Atat the

19. In Cl.U. when an operation signals an exception. the invocation tenninatcs. and the immediale
caller is given the opportunity to hm1dle the exception. /\ cmnmon ~tf1nd hf handfmg' an cxceptiutristo
reflect it lo yet another level via resixnal. An invocation that signals an exception is not resumed. For
IUrthcr details. sec (I .iskov 79a}.

- 168-

transaction symbols have the fo11owing interpretation:

I: a Fixed Info cla~ transaction

R: a Variable Irifo transaction

W: an Openitig ct~·transacdon ' ·

S: a Sole cl~ transactic>n

-;,,

In.the remainder of this Section we use the:daSs'namesOftbe·ftle· setlaliter (Into: React

Write, and Sole) with the understanding that the remartS:._~: applY° fu 'the1

corresponding directory cl~.

The most important specifications are those that relate to the exclusion of

certain operations byottters. lfthese,:specifkations ~violatedwe-ebWlininv81id result

vatues. The complete-exclusion specifJCations ~: ·

I-join < S-join :::> I-leave < S-join
R-join < W-join :::> R-lcave < W-join

R-join < S-join :::> R~leave < S-join

W-join < R-join :::> W-leave < R-join

WI-join< W2-join :::>WI-leave< W2-join

W-join < S-join :::> W-leavc < S-join
S-join < I-join :::> S-leave < I-join
S-join < R-join :::> S-lcave < R-join

S-join < W-join :::> S-leavc < W-join
Sl-jOin·< S2-joitt:> Sl~ <'S!;.;join

A number of priority specifications might be proposed. The readers priority.

~"Citication used in Chapter 6 is:

- 169-

Wl·enter < W2:-enter <RI-enter< ·Wl-join :> R l•join < W2-join

The same specification ctause'.holds for the-fHe rurd.ltiredbry serlafizers. To give more

complete priority specifications,· we introduce two new cla~. of transactions: SW,

which contains all Sole and Write transactions; and IR, which c0ntains atl Jnfo' and

Read transactions. Using these new classes, the priority speciticatidn t>~lties:

SWl-enter < SW2-enter < IRl-enter < SWl-join
:> U~l-join (: SW.Jrjoin . - , , , . ,

The following specifrq1tion specifies ~ncurrency for: Read tran~c;tions, _and is
' ' - ' - "': ·. . ,• ~" , •' ;"

a slight adaptation of the concurrency specification in Chapter 6:

R 1-enter < R2-enter < RI-leave
& GX(R 1-enter~· R2;.efttbr, Wt.:entet)
& O*~Ril "mter., Ra-enter, S~enter). ·.: ·

:J R2-j9in < R 1-leav.e ;

The difference lies int.Pc-addition of the exclusionp('*'J'. ev~D~frQ~ the Sol~ cl~ of

transactions. The above specification can also be proven for Read and Info trans;ictions

by substituting R for R 1 and I· for R2 to get one clause, and I for R 1 and R for R2 to get

the other. Finally,; the following specification ind'icateS;wh~fe a'Wtite -transaction must

overlap with an fnfo' transaction:
' j

W-cntcr < I-enter< W-leave
& GX(W-cnter. I-enter. S*-cntcr) & GX(W-cnter, I-enter. W*-enter)

:> l·join < W-leave

- 170 -

The service specifications are as simple as:i>f·dle readers~cit'ers prt>btem:

each request must receive a reply •. fie service.spetj(~'-l~,~:.

@I-enter::> @I-exit

@R-enter ::> @R ·exit

@W-en~er ::;,_@W-exit
@S-enter ::> @S-exit

We have shown that the specifications for the tile andidirectoty1eriaJiZets are

similar to the readers priority example used in Otapter 6. This may not be surprising.

since the problems 'and 5olutions'are' simi1a{but tbe 1 lac\"gr;stith')~'surpri8e & precisely

one of our goals.
,:, -

}>

One point about the specifications ~a~ we ~ye di~~~,-ed mroJ.IJh,the:above
' ·-· ·- ... ,,: .. - .. - ~ . · : ~ : . -

example is the usefulness of dividing the OJ~ion\?lntcttddstest·:aad :pttwiditlg the

specifications for the classes rather than for the single operatio1ls: Using Cl~.;onented

spetifieations promises to provitle more-Concise~: wfrittl retnininif the

precision we dcsi re.

The vcrific~tion techniques we. discu~ in Ch;tpter 5.,and, Chapter 6 ~main
• • .-· ' - < - '\ ; , • ' " ,: ; • ;- - : 1 •. • i l . '. : ~ ~ - ·. ~ • ' : : .• - ~- ~ • -

valid for both Lhe file and directory scrializers. The only .ad~ition~ we would make
- ~ ~ .. . - ' , . ·. . .

would be to introduce claSSl.'S of operations into_ the verification as we have for the

specification. When two scrializcr opcmlions are suffidl.~tl/ sifuilai it should be
. - ~·' ,. .·

~ible to use the proof of one in the pr<XJf of the other. as , is. t~ c~ . fpr- file
"' ' j. f·~· ·~ ' , ' !·' ' •

operations in the same spccific-Jlion class. We will not propose techniques for

determining how much similarity is sullicicnt. aJthough we regard the issue as being

- 171 ~

worthy of further research.

In a system where data abstractions are used, we believe it lik~ly that some
• J .

library of abstractions will_ become useful, and eventually indispen~ble. Further, we
, •. - '! ,, •

consider it likely that· many ·of these abstractions will be initially designed for a

single-process environment 20 If we are to use these data ~~stractions in a

. multiple-process environment. and the corresponding objects are to be shared between

processes, we can either rework the abstractklfts>·fi:>f that putpese. or we can· provide a

mechanism for controlling concurtent- actess that - requi'tes' ·1*> "change to the data

abstractions; The ·serializer construct was designtd ·aJOnt the' latter•lines. This section

discusses how that approach could be made-largely a'Utbmatic.

As a first approximation, we assume that each operation has exclusive use of

the resource, then introduce serializer abstractions as replacements for data abstractions

in order to permit concurrency while prohibiting co#flict'ahd'cleaelock. ·This is a sifuple

strategy, and is not intended to CQVer all situations. alU\Qualt. w~ ~ieve it t<> be an

important first step.
' ,.

When a serializer abstrnction is substituted fora data abstraction in a program,

yet the data abstraction is retained as part of thedmJilemeotation 'Of the serializer

20. Even if for no other reason than programmer inertia.

- 172 -

abstraction, we may be faced with problems that result from ha\ling·two.abstractions ia·

the place of one. If we wish to integrate a newly serialized abstraction into a system that

has been created with the old data abstraction, ~!Qle.4'.~ ~~ !Ql~cPa~ .~ wil~ ·

allow the operations of the serializer abstraction to be substituted for operations of the

original abstraction in old user programs. If the interface to the serializerabstraction is

compatible with the interface of the origfo·a1 data abstraction, and ;ooth abstractions

have isolated representations, then this linkage mechanism allows graceful upgrading of

programs that use the original data abstraction.

However, the.· representation of the original data abstrac~. is exPQSed to the

operations of that data abstraction. Here tlM; ,pJi~,W:the. .al ·abstraction is fll9re

ditrtcull In most cases. we expect that an,,~toma\ic "rewrite" pf -tht! data abstraction

would be easi~y made by a program. if we caU. the: type introduced by the. data

abstraction DA, and the type . introduced by the serializer abstraction SA, then the

following rules allow such an automatic rewrite:

*Occurrences of DA in the cluster for Ot\ are c,hange<l,.to. &A. includ!ng
occurrences of DA in the interface of operations of OA, provided that
they do not result from uses of ct&: Th88, a · romponcnt of the
representation of DA that was an object of type DA would bt.'Come an
object of type SA. In the file system example, this would be true for the
case of the gct_parcnt opemtion of the directory abstmction, since the
gct;_parcnt opcrJtion of .,...directory (DA) mu$ return a directory object
(SA). and not a _directory object (DA). This is also true of the
open_privnte, open..;p11btk, und' open_dir opemtions.

* Opcrnlions of DA that have cvt appearing in their_ headers must have I?A
appear in the intcrfoce specifications where a corresponding cvt appears
in the opcmtion header. Tlu.-sc are operatjunsJhat:.cxplicitly ucccss the
rcpn .. -scntalion of DA. so a conversion of DA to SA is not reasonable.

- 173 -

• 111e up and down operations convert betwee~ the representation and the
DA type, not the SA type. Th is is consistent with the treatment of cvt.

• We introduce an operation,, ~UtX! wrau, tq~;: ta~es a. DA object and
returns a newly created SA object that encapgulates the DA object The

. wrap operation is used to create a new SA object in operations that create
new DA objects and need (due to our first transaformation) to use SA
objects.

If the above translation results in a type errorJhen the a~to111atic rewrite is not

performed,, ~d a ma.nual rewrite must b~ perform~- Su~h:f,-.~· CQ~ld arise from an

operation that accepted an argument of type DA,. tb~n .e~pli,citly used down to attempt
• ""~_;! ;,_~~ i" • ;o. · :t;; ; ~

to access the representation. The transfonn~on.)~'oukJ have, ~han~d the use of DA
~ , • , • • < ' _c

into SA, but the down operation would only wor~ (or an ob~t of type DA. and fails
• • - ; r 'i - - -

(due to static type checking) with an SA object

In addition, a data abstraction may have to be rewritten if it supports cyclic

objects. If operatiof}s of DA call operatiQns of S~. whic~ in t'-'m call operations of DA,
.,) - . • ' • ' - - . ' ,(- '· ,;. ~ #. ~ -•• - <

a cyclic data structure. can ca~~ dea<J.le>ek l)y.haviJu~ :acces.s ff>.:~q, object ,being blocked

by, an incomplete access to the same ob~t qy th# sam~ ,p1:uc~. Aq:essto cyclic objects
' . 1 '. , • ' • •. . ~ ' • . .. ' ; ;

is discussed later in this chapter.

ll1ere arc two reasons to bc1ieve that a rewrite of the original data abstraction

wil1 not be a difficult procc~ even if it cannot be done autonfatka1ly. 111-s(the amou"nt

of detail to be changed is likely to be small. Ancr ialt the intc~t of the data abstraction

has not changed. There is only the additional distinction between scrializcr abstn1ction

and data abstraction. Second, we believe that it will be rare that any code except for the

' -174,..

im plcmentation of the seriamer and data· abstractions :will be allowed to use· the data
~. .~ ; .- - {. - ~ "'

abstraction. The intention of this tran~fonnation is to ~~ke 'the rest of the system use

the seria1izer abstraction. Therefore, the rii.nnber of'Pt~'to be changed is als0 likely
> •• ~ ' > 0 ~ • • '-

to be small. . '

In the file system example, there is a case where the use of the automatic

splitting of types may provide serializers where none are needed. In particular, if the
< ' - -·- > ,<.- .f .-

directory infonnation is· implemented using a'fite, then 'the'serializer·for the directory

may provide surflcient proteCtion for ilie fite'bb'~t'US'ed'to intptetnem the 'directory;· 1n.

such a case, the transformation from DA to SA would ptOvide·an· l.mn~ry level of

serializer. · A rewrite· of the _directory duster . would. then be desirabfe to promote·

efficiency. This efficiency argument actually wdl'ks'in favor«)f·oor separation 6f data

and serializer abstractions, since if they were .inextricabte·, the 6ptiinization desctihed

could not be performed.

The above · rewrite process has ~n apptied to the _me and _directory

serializers. In particular. the · · operation~: i .Jltfccto..YSdf>en_private and

_directory$open_public now tetom ·file ~j~ whicl\'1 dte''Sli'ppcirtcd by the file·

scrializcr. Further, the operation _dircctory$open_dir reu.1rns a directory object. which

is supported by the directory scrializer. The ~rap ppemtio11s, shown in the file and

directory scrializers are m~ed to enclose a _file or _directory objt.'Ct in a lilc or directory
- • ~ • ~ - ,f' •

scrializcr. The wrap operations arc uSt.'d whenever a new _me. or _directory object is
- ' -' :t ~ -' ;

created.

- 115 -

Jn any reasonable implementatibn·ofthe,.._director)SrduSter there wiU be a list

of the open files and child directories1 for ,any ..;.directory ,;objel:t . kt this case, the

automatic rewrite we mentioned ·above Jnfol105 us of a type iconflict the list of open

files and directories must. be fOr the file and mectm'yr objects suppo~. by, the

7.S Htgher·level transactions

·Suppose procedures P and Q use operations on a shan~~ dataobj~t X of type

T. We have recommended that a serializer object should be introduced for X to ensure

that the operations of T performed on X do not interfere with each other. However, the

user may intend that P and Q do not overlap. The serializer for object X does not

enforce this r~striction. One solution is to introduce a further encapsulation of X in

order to perform operations P and Q such that they do not overlap.

A difficulty with the introduction of further abstraction levels is that the

designer of a system may not know how the user will be using the system, and cannot

provide the appropriate abstractions in advance. This inability to forecast is certainly

present in our file system example, since the user may wish to have a process perform

several operations on a file (or on several files) such that no other process will access the

file (or files) while those operations are being pcrfom1ed. The file system example

provides no solution lo this problem in general, although we can attack certain special

cases.

- 176-

· A limited solution to the·aboVe.problem·Gfl1~'adtkwed:.Py:adding a new

operation. upda1e, to· the •fileJ1efialimr. The text<>fthis.$mtioo. is1showa. in Figure J2.

The update operatioa· perfomts a sequeacc~or ireaa~lJf)eimioas.onra filet:· then perf~,a

C0ffiputati0fl supplied as a procedare by,m.:-usen~Alail supplied·:\ty: the:~, then

performs a sequence of writes on· the SIU8e Jile~1',,Jii> oon:shlfp~e,;iOklfiqn. ·the entire

update operation is perfonned without allowing overlapping reads or writes on the file.

If more concurrency is de8ired, update operations that do ~~y~9vprl~~n1.se~ 9€

pages can be permitted to proceed in parallel, providing· that the underlying _file

abstraction will perlnit this.
{ i ;- . " .

- ;~: ,,- ~ ._

) . . ~

-·J.771-

Figure J 2. Update operation

% The update operation is intended to perform a sequence of
% re:cads, an art>•tr-iry comst11ttatton:. "4 4;J•<w~tt cf(<W,_f!~;te•:­
% The entire procedure should executed without overlapping
% other wr:it,e, °"rat tons. ·O&:\-ot.be,r, upp\e .APera:-Uons~ This
% procedure resignals' an error on' r.88.dfog or· wr'itfng, or an
% abo~t error fr~ -~h•, arb, JlrQ~ed~·f''·- :>.~" ~rro.r,.,~~·~- _is

-% res1gnalled after the first wrft'e bas1>een (tnfshftctwill
% leave the writes only partiAlly completed.

· , : ·· J.~~·-si!;-· ~· .~~ r·

update = proc (dt: type] ,
(f: cvt, reads~ writes: spair, a.rbi_t,p.t, datu dt)

signals (file_closed, bounds, abort)

pair = struct (pgnum: int, pg: page]
spa i r = seque,nce E~tr] . _, -. , . . . • , .•.
pt = procty.pe (dt, spair, spair) signals (abort)'

% wait for write access to resource to be OK
enqu1tlfe- f.stow~~ und1 rqueueuflt)tyv(f.·f.-at:...'t'
enqueue f .fast_q until crowdSempty (f.sole_c)

'·;tr '¢,;t°"dllillpt,Y11(if; •• ;~j~)
& crowdSeapty (f .read_c)

% join the crowd to show that we are going to write
join :f .wr,1Je;,_c

% perf~qn_ th~. ~e~~'~ in.tp tfl~.rp~ve~ ~mo-_J .• 1_. pag_e_._,~.·
% from Ute gtve·n ·rne -pad~s · "' - · · · ·
for p: pair .in spajrSel,ements(reads) do

_, Hesread(t'. r. 'p. pjm..:.11 pi pg) · ,
end

% perform the arbitrary computation
% (modifying the given memory pages)
arb«_itat_;t,. refl#s, writes}

% perform the 1trites fr°lll .the giv~n, memory pages
x into the g i'ittif· fHa page's , ('; '' >''Li'·: •
for p: pair in spair$elements(writes) do

_:fif6SW'4+tttft ~~r, .9:1pghu.it, ~tt'•P1> 1 ~·
end

end resignal file_closed, bounds, abort

end update

- 178 -

8. Conclusions

In this thesis we have been concerned with verifiable control of concurrent

access to resources. In this pursuit we have. presented . a .'tangunge · ·comtruct for

controlling concurrent ~. a de~tnitio11 of .the, .senuµ1tics of this construct, a

specification language for describing varieties' ofoonclirrency-'control for instances of

the construct, methods· .to verify that instances of ·the construct satisfy their

specifications, a program for perfonning this verification automatically, and a
')-t

discussion of some of the interactions posmble between rmsmnces {jf this construct

In separating the control of concurrency from ,the data ~. we have

attempted to apply this sel>aration to the programming l~nguage, the semantic model, . .

the specifications, and the verification system. The objective has been to modularize
.<

the construction and verification of programs involving ooncurrency. By this

modularization, the· problems associatea with wn$lrl.lctiPn Jlhd ·. vcrj fieation become
. . '._- ' . ' "'· - :.• _,:;' .·

more tractable. The results· of .our .. -th indicate that; this. modularity can be

achieved, at]east for the simple serializers we have discussed.
\,_ ·."

tn this chapter we discuss how extensions 10 seria1izcrs ll..'Quire extensions to

our verification techniques. Most of these. cµen~~~ regµire ~gnificant further

research. Then we present closing remarks to sum up the oontrihutions of this thesis.

- 179-

8.1 Verification of serializer extensions

In this section we briefly consider how extensions to serializers affect our
- .

semantic model and verification methods. lbis. is the area where further research is
..,- l ' . -

most necessary and most difficult Our success in verifying- simpfo serializers' can be

largely attributed to the limitations we have imposed. We believ~ that further success in

verifying concurrency controH~ in selective ~1-.ation of theBe limitations.

8.1.l Adding boolean variables and boolean expressions-_

To add simple boolean variables and boolean expr~ions to serializers

requires the fol1owing changes to the semantic model:

* The nQde graphs ll,J,Ust pe exten,cl~d 1-<> hf\n<U~ ~~c.Iaratio~ <;t11d as_sign~ent
of boolean variables. These variables rriust '. nlrt.ner lx(Cfffiti~gi.tished as
either local variables, which are instantiated Oft: ~~; g~;, ~
global variables. which are components of the scrializer representation.

,- - ;. ~ ~) ~ ' (~~ ; ~- :t ' ~~~ '
* The semantic equations must be extended to handle evaluation of

boolean exnrtlS)i~ ll1is will r~r,¢'~~i3'}J19,fo~~1 ~to~,7~·f9,f ~
last assignment to any boolean variable. · One of lhe most nnportaht
changes-to cvnluattdn iscthanwattilh0r14M5tatb pt.ar!trin ;tire ronte~tof a
transaciion.since, cxpr~ions rnay involve local variables.

·-:' ' ' - ,,_' :· /

•There m11st be some·.indication of the initi;il· state.Qf,a ser~a~cr.objcct
'rnis is easily accomplished by representing the scrializcr slate as the
rcsUlt ofsome initHtfi assignntent~no reJ)resoflt•ro.tcbnlrxments-.

- 180-

To illustrate the kinds of serializers and .erifteations tJtat:a~ possiblewith·the,.

addition of boolean variables, consider the case where we are limited to boolean
:, . ;

variables as part of the representation, and the onl1. le~l. ~l~n expr~~ns are true,

false, and simple components of the representation. As an example, we present the

following abbreviated serializer:

xop = proc (x: cvt, ...)
enqueue x.ql until x'/lt'li crowellempt.J.(x~c)
join x.c; ~ •. ; end
x.b := false
end xop

yop = proc (x: cvt, ...) , " '<t:

enqueue x.q2 until -x.b & crowdSempty(x.c)
join x.c; ... ; end
x.b :• true
end yop

G· •

Suppose that x.b is initial1y true. We would like to prove that the number of

executiol)s of~op is equal to or one ~eater tt)Jti'th~ntmiSerbf'eiecutions of yap. This
: ' ' • ' ~ f - ·. - · .• • :" • ,, f L .• • •• .: ,·: < ~ < .}

specification· OOnld be written ·~

(#X-exit = #Y-exit) I (#X-exit = #Y-exit + 1)

lnfonnally, suppose that the above specifrcitfiot't is: not ~tisfted~ and that it is 1 due to . . .

;~~ -~ :;~ .'r:::-_'.:j ·-~;~.. ·:·:•;

#X-exit > #Y-exit + 1. :rben there must;OQ;_two:e~ts-.X?l~iit<.X2~it that occur
·- - . ·• ;t.,,

without an intervening Y-exit. Note that the x.b is set to' 'ralSe after 'Xli~v~. and

remains false until after· some Y-lcnve. If. no such Y-leave event occurs;. theft the
~. _., ~ .

guarantee remains false. and X2~dcqut.-ue ~Qn~;oc;cur •. ~~1;~re, there :g!~ be no

such events. To prove that #Y-exit cannot exceed #X-exit, we note that the only way

that #Y-exit could exceed #X-exit is for the initial exit event to be some Y-cxit

However. we assumed that the variable x.b was initially true, which prohibits

- 181-

Y "'Clequeuei from occurring.

The addition of boolean variables provides additi~l information about the
' . . ' ~ . (. ~ .,

, ".. • -· 't-~

past execution of operations. As the 'above informal proof shows. the semantic model
.:j

can capture this information as well. Extending the verification rules to handle such
.~ .. ·" :

situations is left as a topic for fltture researdt.

8.1.2 Conditionals

The addition of boolean variables and exp~ions is of limite_d 'Usefulness if

the only teSt of a boolean exp~ion re'1ainsjlimited .t&'tlw gu~tee.-0n a queue.

Another extension that can.bemdded at this,~ 'eondition'1lstattrments..with the

form

if expression
then body_oLstatements
else body _oLstatemenis
end

The ·else part is optional. In the St.~aritic rfitJdd:\Ve nt.'Cd'tointrooure a new kind.of

node. the if node. 111e if node tests the testtfts''()f the' ~ eK.p~n '.(we ·WUI

discuss a more gencrnl model for evaluation below). and conditionally executes the

appropriate body of statements based on the result. The next node afier the last node of

either the then body or the else body is the node that corresponds to the statement

directly following the if statement By the introduction of conditionals, the

"node graph" has become a true directed graph.

-182 -

Although the modelling of conditionals poses no. sc;yeF~ , cliff Ku,~. the

addition of conditionals complicates the specification language. Consider the following

operation (we have also relax~d our requireme~t rbr ~·sind:; c6~ffdence between

serialize~ and resource operations):

xct = proc (x: cvt, d: data)
enqueue x.q until crowdSempty{x.,.c;).
if dataScond(d)

then join x.c
resourceSfast_xct(x.res, d)
end

else join x.c

ead
end xct

resourceSslow_xct(x.res, d)
end

What .event does x.-jom. dehote?c Th«:re· are 1JC)t:entially ·two.·different events. and the.

event to oc~ur depends on ·the data p.-ntod'to !ht..gpcmtion~:. · .

The solution we recommend is simple: for every test in a conditional

statemen~ assume that the test evaluates to a particular boolean value (true or false). If
~ ' ; .~

the specification clause can be verified for every permull\tiOn Qf the ·rondition?I tests,
, : : ',' ; ~ ,.. . . - . . ;-

then it is verified for the operation. In the above example, we would effectively need to

verify two opefa:tiQns; -00e W,ber~ d~ta$Qand(d~ ..)lt'.~;lr~ ~m~_atdy after the enter

event, and ooe whf,!re ~d(d) was fal~!

- 183 -

8.1.3 Loops in -serializer operations

Just as·conditional statements intr~c~ a,stlQ~~ity aP<>ut which nodes can be

executed, iteration and recursion introduce ambiguity about how often a node is

· executed. The doubt is significantly worse, however, since the number of possible

executions of a loop is not bounded.

When a point in a serializer operation can be:~ many times during the

execution of a transaction, an event is not just an execution ~f. a node for that

transaction, but a partictJlar execution of that: node. We can·· adapt, the method of
irt:..'. ' '

handling conditionals.to -handling loops by '4SSttming ~~~l.tµ" numbers. of iterations

for each loop. If the specifications can be shown to hofd· for any choice of such

numbers, then the specifications are verified, for~the operatioa as a wllole, provided that
:·· .{

all of the loops terminate. Induction can be. use() by :~urning that the 'specification

holds for some particular number N of executions around a loop, then showing that the

specification holds for N + 1 executions (plus a basis proof for N = 0). In order to

prove service speci fieations, an addition~ proof that each loop terminated wou Id be

necessary.

- 184-

8.1.4 Arbitrary expressions and invocations

The introducoon · of arbitrary tip~ons- fhto -set:iafi~ers' ;has :the· tbtlowing

efTects:

• The semantic model must include arbitrary .tY,~. an4 .. values of those
types, including user-defined types. · · · ··· " ' · ·

*The semantic··modCt most bef>rovided:witbev~ntsto.mark both the start
apd the end of an invocation.

' . ~ ·~ '

· • The specitkation ·language .must, be meraed, :With- a •rser specifacation
language. Values must be named and functions on those values defined.
ConcnrrellCy speciticatiollS~ ""data a~ti001 ,,.~ificat~· · tftd
proced~1ral speciftcations may be mut~ally_ int~r~~llt

•The serializer veriftcation system must .be joined ui a more general
verification system. While it is our hope that the two kinds of verifICation
systems 'ettn'belept mOdular, We have rfd-evitknee at thiS time to support
this hope.

With arbitrary expr5ions and invocations. ·some of the veriftcation

techniques we have described may be invalid for some situations, some of which ar~:

•Some invocations may not always terminate. If we use such invocations,
then we must be prc11arcd to prove service where applicable. If we
cannot prove service, then we are faced with a new potential source of
lack of service: indefinite posst..""SSion of the scrializer object In tenns of
our current model we would be faced with a finite complete history (since
it would be possible for no further scrializcr events to occur) where a
transaction would be in posSt..'SSion at the end of the history. Since many
of our verification ruk.'S depend on 110 transaction being in po~ .. 'SSion at
the end of a finite complete history, and 110 crowds being occupied, our
tcchniqm .. -s arc not applicable where tcnnination cannot be proved. 'Ille

-185 ..

problems of combining our techniques with proofs of termination for
invocations remain for future research.

* If we allow side effects in the evaluation of guarantees evaluation it
becomes necessary to introduce events to model the beginning of such
evaluation, and to indicate the order in which guarantee evaluation is
performed.

*Recursive operations provide one more problem. When we assume that
an invocation used by ~ serializer terminates, and thereby prove service
for the serializer operation, such a proof must not be circular. If the
invocation termination depends on the service proof, then the service
proof is not valid unless one can prove that the level of recursion is
bounded.

All of the above issues are left for further research.

8.1.5 Priority queues

The monitor construct presented in [Hoare 74] permits the use of priority

queues, which obey a "first in, best out" discipline. A serializer example that makes use

of priority queues is presented in Appendix II l.

In using priority queues, we do not (usually) wish to allow the addition of

requests to a queue to indefinitely postpone the progress of earlier requests. For the

disk serializcr we can prove that the request operation guarantees service since, when we

are serving one queue, its size decreases with every fulfilled request, and we assume that

the resource operation terminates. 'll1erefore, the queue being served must empty, the

direction must change, and the other queue becomes the served queue. Another proof

of service can be based on never adding requests to a queue at a priority number less

- 186 -

even if we allow a bounded number of requests to be added at a lower or equal number
.)".

priority. _.·_: ..

8.2 Closing remarks

I . _;·-~,~g~ ~V ,.).' : ~ _,'.

· . This theSisdms:-:presented:ia~:wid,e•,lllDIC at\i.,.,:of:!Ji·:sinlle language

construe~· ~ludi~g:.;pr~iJ>,&. ian&"iaF:··~~'':;~~··~oi\s -.for

programming languages, and verification techniques. We were able to cope:;\mtf1such a

wide range because we were interested in limited ~hgiqqq·f9r a limited ronstruct, and
, . ; ... , .:~~:.:n <~;:~1:u.~ ::~~i- 'i.~~~ ~~~~J; ~,,_>~.:.:~:; -.,.J· ~- .-1 · _: :~~_;,'

our design philosophy emphasizes minimal interference between constructs. We

believe that our results show that such an approach has merit

In several places we have mentioned that it is pc:>aible to view serializer
... : · -:~ _:,,.:·- ".- ;~:-: ,~-;"5 ~-·~i ~/jiU~::\-·:·?f ~-~~r} :2nrx·;. :::_:.· :~~--/;-_ r:- f

operations either as procedures or as mcisage handlers. This flexibility is made ·pcmible

through the design of the .serlalizer construe£ and th~~ ilie"~ of a se~aritk J11~l
that is limited to describing scrializers. E~·~n;~/d~~i1s'~~Y·:~h~nge ~.'seri~li~e~
are embedded, ·in, a prqcedµfe-~~d ,;()(- 1 ~~~' la,n~~· the basic .

approach to. proving ~alizeffl;~kf remain SQ\U)d,

- 187L

We have only attempted to ~fy"~atically a number of variants of the

readers-writers problem. Partially due to this limitation we have been able to handle

several important specifications regarding concurrency control. Even though,. the

specification categori~ haye bec!n chosen foi: ~ .~.ith aCcesS to resources~ 'pr0perties

such as exclusion, priority, and termination are generally recognized as. important.~

dealing with roncurrent poogtams.

We have demonstrated the feasibility of proving a form of termination th~t is

applicable to transactions, rather than programs or objCcts. 1;hiS tet~nique is especially

useful when resources (or objects in general) have unbounded lifetimes and the number

of active transactions (Qr p~) is unbou~

Our approach to verification has not been orientedtg~ard pr~~~i~ng,eit~er a
, i " ' - .! ~ ' ! . . : ... · ·- ~ '

minimal or a comp1ete set of axioms and inference:~ 'Jbther, we have idehtified

some higher-level theorems. expr~d as inference rules. that are useful in proving

serializers, and have justified these theorems by direct 3(?~1 to tl'le semantic model.
.. • . ' . .

Should. futther examples identify othcrtiscfufth~Mns. more ja~ification through the
' ... -~ j > ·;_ ').. ' -

model is called for. While the study of the completeness of an axiom system is

intersting in its own right, it is rare for a verj~er ,(eit.h,erautqui~f,jc. or lll¥nual) tcu1ppeal

to the axioms if more general and more powerful theorem~· are 1foow·n. The test we

value most for such a selection of theorems is their utility in verification, a ll.'St thut our

theorems have pa~d.

- 188.

AttinDl 76
R. Atkinson. OptimizationTechniques for a.Structured ~gramming Language.
s.M thesis, M~husetts 'Institute ofTecttnotogy~>May'l916. · ·

Baker78 .
H. Baker, Actor Systems for Real·Time Computati•k MJ,·T. Laboratoo' for - . .

Computer Science JR 197 (Ph.D. thesis). March 1978.

Bloom79
T. Bloom. Syn~hronization Mechanisms for Modulpr PrQgrarnming Languages,
S.M. 111esis, Massachusetts -Institute ofTedmOIOgy. 'Janwii)r 1979. · ·

Boyer and Moore 75
· R. Boyer. J. Moore. Proving Theorems About:YSP<Pqrams, JACM, vot.l.Z
January 1974, 129-144.

Campbell and Habermann ·74
R. Campbell. A. ·Habermann. The S~U':acati<m Qf 1~ SNn.chroniiation. by
Path Expressions. Lecture Note8 in Computer Science 16. Springer-Verla8~.i974,'
89-102.

Courtois, Heymans and Pamas 71
P. Courtois •. F. He~mans. P. t>am~ Co11curreqt Q?ntrol with Readers and
Writers. CACM 14. 10, October 1971~ 667-668. · . ·' · .·

Dahl 72
0. Dahl, Hierarchical Program Stmcturcs. Structuredi Programming, AtadenHc
Press. New York, 1972.

Deu~73
P. Deutsch, An Interactive Program Verifier, Ph.D. thesis. University of
Culifornia at Berkcly. Berkeley CA, 1973.

- 189 -

Dijkstra 68
E. Dijkstra, Cool>@fating &eque~ .-Pr~. P{agrammi~ Languages,
Academic Press, New !turk, 1968~-. . · . .,

Dijkstra 71 ,
E. 'Dijkstr~i Hicmrcllical ~<iefing of-S¢Ql!enQal fr~;;/LcQli ll)~tica. vol.
1, 1971. 115-138. . .

Dijkstra 75
E.· Dijkstra, Guarded Commands; ~~~llll~•···~d~farmal .· Oeri~ation of
Programs. CACM 18, 8,August 197~,:4SJ~S? .. · ... :

F.swaren et al. 76
· : " · K. Eswareo;· J,. (}ray, R~ Lo~J. Tm••• lb~ ~a of C.OflSi~ncy and

Predicate Locks in a DatabQse Sy*'ll.CACM:!~9~~,;~fl.lbet~76,, 624-633.

Feldman 79
1. Feldman, High Level Programming for Distributed Computing; ~M 22. 6,
.kme 1979, l53-rJ67.

Good, London and Bledsoe 75
D. Good, R. London, W. Bledsoe, An Interactive Pfog~ani V~rificat~n System,
Proceedinp of ltteJnternatiom.tJ, Conkfe~:Qll Rel~;~ftware, Los Angeles
CA, April 1975.;_482~92.

Good, Cohen and Keeton-Williams 79
D. Good, R. Cohen, J. Keeton-Williams, Principles of.,Proving Concurrent
Pmgratl.lS:,m Gypsy. Sixth Aart rSynu1m~iifl8 ooi P~~pj~ Qf Programming
Languages, San Agtonio,Jam~J979~42~S~. ··r

Greif and Hewitt 75
I. Greif. C. H¢witt. Actor Sem~of.P,~NN6R-7~J~r~diogs of ACM
SIGPLAN-SIGACf Conference, Palo Alto CA, Janua...,}975. · , ..

Greif75
I. Grcit: S¢manti~ of C.ommunicatiq ·P,~~l~ P!~:M·l~T.. ~ato~y for
Computer Science TR 154 (Ph.D. thesis), September 1975.

-190.

Guttag. Horowitz and Mu~r 78
· ' J. · Guttalg, E. Horowitz, D. Musser; Abstract Oata Types . and Software

Validation, CACM 21, 12, December 1978,1~ ... ,, ,_. -

Brinch Hansen 72 · · ~ · ,
. ·P:' 8rirtth·;Hnf1Sen;::Struct\Jfed· mu~~C)\CMliIS~- 1, JUiy 1972,

574-577. '

Brinch Hansen 78 , '
· P~ BHnCh ·Hansen, 'DistribUted ~~ A Omeurteat:progranumng Cofteept,
CACM 21, 11, November 1978,934t941:: · · ,

Hewitt and Atkinson 77
C. Hewitt, R. Attinson~ Synchmnization> -in'. Attar,, Systems, F&urth-~ACM
Symp()Sium ··~fl· Principles ef Prtlgmrn~- tart~. ~Los-An~ ':January·
1977, 267-280.

Hewitt and Baker 77
C. Hewitt. H. Baker, Actors and Continuous Functional&,;1\tf;l(f. taboraay for
Computer Science TR 194, December 1977.

Hewitt, Attardi, and Lieberman 79
C. Hewitt. G. Attardi, H. Liehe11m1n. Specifying and 'Proving· Properties of
Guardians for Distributed Systems. A. I. Memo68S~ MJ.T. Artificial
Intelligence Laboratory. June 1979.

Hewitt and Atkinson 79
- C. Hewitt, R. Atkinson. Sf)Ccification'UrtdiPt:oof'T«hniqntlsfor Seriatizc~ IEEE

Transactions on Software Engineering. JaDUllfY 1979.1 »ill~ , · · '

Hoare74
C. Hoare. Monitors: An Opt.'rnting System Structurmg -C'.oncePt, CACM 17. 10.
October 1974. 549-557~ · · '

Hoare78
C. Hoare. Commttnicating Sequential PrucesSes. CACM~ 21. t.-· Avgust ·1978,
666-677. ,: : ' , .

-191-

Howard 76
. J. Howard, Proving Monitors, CACM 19, 5, May 1976.

Ingalls 78
D. Ingalls, The SmaHtalk-76 Programming System Design and Implementation,

· Fifth ACM~ Syll\P<)Sium ·on Principk:s pf ,J>IQg(&IJlatkti: Langu~ 'Fucson,
January 1978, 9-15.

lgurashi, London, and Luckham 72
S. ·lgurashi. R. London,. D. Luckh~, ~*. Program Verification,
AIM .. 200. Stanford ArtifteW lnmlligenc~ .Pr~ ·S~f9f<J University, Stanford
CA, 1974.

lampottBO
L. Lamport, "Sometime" is sometimes ''not ~er" • On t,he temporal logic of
programs, Seventh ACM Symposium on Principles of Programming Languages,
Las Vegas, January 1980, 174·185.

Lampson and Redell 79
B. Lampson, 0. Redell, Experience with monitors and processes in Mesa,
CACM 22, 2, February 1980.

Laventhal 78
M. Laventhal, Synthesis of Synchronimti(,)11 U>4e for ·IMta Abstraction~. M.l.T .

. Laboratory for Computer Science TR 203 (Ph.D. thesis), June 1978.

Liskov et at 77
B. Liskov, A. Snyder• R. Atkinson. C. Schaffert, Abstract'°" Mechanisms in
CLU, CACM 20, 8, August 1977, 564-576.

Liskov 79
R Liskov, Primitives tbr Distributed Q>mputing, Q>mputation Structures
Group Memo 175. Massachusetts lnstit~ of T~nology Laboratory for
Computer Science. May 1979.

Liskov 79a
B. Liskov. R. Atkinson. T. Bloom. E. M~.C.iicrhuffert. B~ SclleiOer, A. Snyder,
CLU Reference Manual. M.l.T. Laborntory for Computer Scicn£c 1'R 225,
October 1979.

-192 -

Metcalfe and Boggs 76
R. Metcalfe, D Boggs, Ethernet: Distributed ;P*ket : -Switching fQr Local
Computer NetworkS, CACM 19, 7, July 1976, 395-404.

Morris74:
J. Morris, Towards More Flexible Systems, Lt)cture:N0'1§ in Computer iScience

~; 19, Springer-Verlag, 377 .. 383, 1974.

Owicki 75
S. Owicki, Axiomatic Proof Techniques for Parallel· Prognuns1 Ph~ ·D .. thesis.
Deparbnenfof cofuputer Sdeftee, ~~ty{:d:oriieH-'NY, JUiy 1975 .

. ,

Owicki and Gries 76
S. Owicki, D. Gries, Verifying Properties of Parallel Programs: An Axiomatic
·Approach. CACM· 19, 5; May 1'76, 219--28S. · .

Reed 78
D. Reed, Naming and Synchronization in a Decentralized Computer System.
M.1.T. Laboratory for Computer Science TR 205 (Ph.D. ~i$JSePtamberl973. ·

,~i,-~s.~ '..-<l.j.'' ,~

Scott and Strachey 71
D. Scott and C. Strachey, Toward . a Mathematical Semantics for Computer
Languages, Proceedin$8 of the Symposium on Computers and Automata. ·
Polytechnic tnstiftlte or Brooklyn, 19lt. · ..

Strachey and Wadsworth 74
C. Strachey and C. Wadsworth. Continuations - A Mathematical 'Semantics:itr ·
Handling Fttll'Jumps. TcchniCal Monograph PR&iH~' 0xford UnlVersity
Computing Laboratory, ProgrammiAgfiteseatthGtOOf>, 1914.:' '

Schei tler 77
R. Schcifler. An Analysis of lnline SubStimtion ror a Structttrcd Programming
Language, CACM 20. 9, St?ptemtJerl977, 641-654. ·

Suzuki74
N. Suzuki, Vc1ification of Programs by Algebraic and Logical Reduction,
AIM-255, Stanford AttiftCia1 kltt.-ttificooe·P~ :SmftfbttlUniv~ity. Stanford
CA, 1974. . " ' ,,

- 193.

Svobodova. Liskov and Clarki19 ·, :;· . . ; ,
L. Svobodova. B. Liskov, D. Clark. Distributed Computer Systems: Structure
and Semantics. M.I.T. Laboratory for Computer Science TR 215. March 1979.

Waldinger and Levitt 74 ' · · · :
R. Waldinger, I(, Levitt, Reasoning About Progrmus. Artifici~I Jntelligence 5,3,
Fall 1974, 235:. 316. . . . '

Wegbreit and Spitzen 76
B. Wegbreit, J. 'Spitzen, Proving propeFties'of compl~ structures;: }ACM 23~ 2.
April 1976, 389-396. .

Wulf78
W. Wulf, et. al.. An Informal Definition of Alphard (preliminary),

. <11rhegie-MellM tmi~ityi Computer· Science Depanment, Report
CM U-CS-78-105, Pittsburgh PA, February 1978. . -. . ~ - . . :' . '

Yonezawa 77 .· . . .··
A. Yonezawa. Specification and Verification Techniques for ParatleJ Programs
Based on Message ~ing Semantics, M.l.T. Laboratory for Computer Science
TR 203 (Ph.D. thesis), December 1977.

- 194-

Appendix I· Bounded bufl'er serilliler
f""-. :,_ ./

A bounded buffer is intended to smooth variation'"·i~.,M>C~il,)J},~d.:
. . .

between a producer and a consumer of iteDtS':Of'intbrritation~ ·llf.\~ thereby .afford more
"r > ~ •

concurrency between the two p~es. ~2 A bounded buffer is accessed by gel and put
'" .. •

"-i ··..,,.\

opemtioatS;.where:the,.,Ntbj~.91>~~--~~ ~-cillf9omltiQ11 #Jal .tJie· ~put.

operation deposited A bounded buffer object is constructed~ by.rc8iting; the ·create

operation with a positive number specifying the number of items of infonnatiot\' ·to"
. ~ . i , , ' ,t . . ~ - ; ~ .'"< · ~. . .: ~ , ~ ; . i ~ _,' ,_ ~ k .L _, ;! ~ :J / _

buffer. The ·buffered information' is:,11FansfefJ'eP: by:.cQ>yi91:'* ~~"ts· (via
;.' · .• o· -~~·~~~ ,; ·; ,:,~ -, :J,o'.~} ,;• .. ·,.;;" ·j.' :f'/ 1._

item$move) from one item to another~· ·we ·~me;; thafthis copyillg takes some

significant amoun~ of time.23 Parti~I specificatio~ for this probl~m appear.inChaptef'
'· , ;•- ·.:.,;"-;- j' _: ·_, rj. ·::- ~~-..... r:~? «·.tr~\t)~-~~ c :

4 .. ';_
. '•:·:.

The bounded_buffer serializer given below uses only slight extensions over

serializers. We as&Jme that performing a put operation on a full buffer causes an

exception to be signalled for the data abstraction (called bbufin this example), but that

the serializer operation simply pauses until the buffer is not full. If several pr~

perform get operations. there is no overlap between the operations. since a modification

to the bu ff er is made in the data ab~1raction. and the modifications made by two

invocations could conflict A similar conflict arises for put operations.

22. A. solution to this problem using monitors appears in (Hoare 74). A. verification of a similar monitor
appears in [I Inward 76).
23. Although such copying is nonnally foreign to CLU. we have used copying in an attempt to remain

comparnblc to the mtmitor statement of the problem.

-195-

The combined_bo1Jnded~buffer serializef sijown in ,A.ppend~ II comb.ines the

function of the bounded_buffer seriaizer and the hb!JJ cluster .. The interface remains

the same, but the implementation does not use the bbuf du~r. Besides the obvious

savings afforded by the elimination of operation halls ffum· the senalizer to the -cluster,

there is additional concurrency possibte'becall8e get,QP~faf~ns ai;e allowed to 'Overlap
', __ . - . 'f· - ·'

with other get DpeRttions, and .put operati9~s ,are. allowed to ovei;lap. with other put

operations.

We. have presented this problem as an ilhisttatiort ot ~h~ the modularity
;. . -~ , _ .

provided by serializers allows such opti.mimtion witbo'1t c~an~ni th~ interfa~e that the

user sees. Further, any verification of programs that u~'ilii ~<f~tT~r serializer

remain valid, provided that they are unaffected bythe additioaal:.i00nou~y.

- 196-

'X The bounded_buffer serial izer protects tbe'bb•f atfstf'attten.
% against damaging concurrent access. Get and Put operations
i may only overh19 with get..:...s ize ,operations,.·: AU cu:tJIJing, of
x item to item is done in the bbuf cluster.

bounded_buffer = serializer is
c.reate, get_sbe, get. put

rep = struct[res: bbuf. c; cro.w.d, 11ax.: int,
gq, pq: queue] · · · · · ·

create = proc:: (n: iltt) returns ('evt)- sig1ta:ls -(bad.:_s+ze)
return (repS{res: bbufScreate(n),

max: n.
c: crowdScreate().
gq, pq: queueScreate()})

. resignal bad Jiz•
end Create · ~- -

get_s ize • proe '(-a: ~.vt) returns f'tnt) ; -
re~urn (x.res.size)
enil: ge\c_'S·i~e · ·

get = -,roc-(x: .-0 .. t>, dl-t:, it•)
enqueue x.gq until crowdSempty(x.c) & x.res.size > 0
join x.c

bbufSget(x.res, dst)
and

end get

put = proc (x: cvt, src: item)
enqueue x.pq until crowdSempty(x.c) & x.res.size <• x.max
join x.c

bbufSput(x.res, src)
end

end put

end bounded_buf fer

- l9l-

Appendix II • Combine4 bountied buffeJ .serializer
< , • ·' - • ' ~ "'5 .: ~-. ~-:

% Th& comllined bou~ded buffer ,pena:its ,,~ :Ol>:'r!~bon~: t'·'°V'~;~lap with
% other get·operat1ons, and put operat1ons to overlap w1th other put

-x ope.rations. but get .apd put op,,r:a.tions ... -.c•pnQ\ 9i~.,rl~p,. Get~size
% ope rat h:ms can overlap wf th either ·ge·t 'or put 'Opllrat\i\Yns-.: ·

combined_b'ounded_buf'fer = serial f:ter is
create, get~size, g~t. put

buf = array[item]
rep= struct[res: buf, gc,pc: crowd,

next, size, max: int,
sq, gq, pq: queue]

create = proc (n: int) returns (cvt) signals ftiad_Sfte)·
if n < 1 then signa~ bad_size end
re·turn ('repS{r•s: .bu1Sfi11_~opy{O. n., ftellkf'eiiteO).

next: 1, size: 0, max: n,
gc. pc: onnr•cnute(..),i ;,, ,
gq, pq, sq! queueScreate()})

•nd create ·

get_size • proc (x: cvt) returns (inJtj
return (x.size)
end get_s ize

get = proc (x: cvt, dst: item)
enqueue x.gq until x.size > O & crowdSempty(x.pc)
src: item := x.res[x.next]
x.size := x.size - 1
x.next := (x.next+l) II x.max % take increment mod N
join x.gc

itemSmove(dst, src) % copy data from src to dst
end

end get

put= proc (x: cvt, src: item)
enqueue x.pq until crowdSempty(x.gc) & x.size <= x.max
dst: item := x.res((x.next+x.size) // x.max]
x.size := x.size + 1
join x.pc

itemSmove(dst, src)
end

end put

end combined_bounded_buffer

- 198-

Ht. [Hoare 7-0; th~: disk head. ~heduter problem is mscu~ ror monitors.
, , ' F < • ', ·._ ; '::~ 1 :• - ' ' ,,_'. ,- ': j '.~ : • .·" , · .. ~ : ~ ;: '~ • •fl • • '

Below we ~ve a se.rjal(zer S<>fution to the))ro1)teWJ.wh;i¢V ~~the Pttori'!-<J!i.eu~~·

A priority_queue is a queue ,where the order pf,decpaeue. ev~Jsi~Dt ~ tl,le

priority. We will assume that the lowest numerical value of the priority is served before

any others. Equal priorities are served FIFO.· - .;

The algorithm ~d depen~ on .having. two. qu~µes,. 00,e . wl)icb is served in

increasing order of fiisk., addfess, called ~..-...;.Q~ ~--~ i~rved, in, decreasing
- . . -

'~ { ;:_ < -

order of disk address. called x.~~n...q.'·~~~un -work~~ adding requests to one

·queue, and serving the other. We change direction whenever the GflllUe-forrdte current

direction is empty and the other queue is not efupty~ · · · · ~ · · i •

~ ~·-·

-«

b·.~

-199-

disk= serializer is
create,
request

rep = record[increas'lng: bool,
up_q, down_q: priority_queul;
disk: _disk]

create = proc () returns (cvt)
return (repS{increasing: true,

up_q, 1Jown_q: priority_queueScr.-te(} .;.,
disk: _diskScreate()})

end create

request = proc (d: cvt, address: int, khUl: int., p: page)
signals (bad_address, disk_error)

if d. increasing
then· enqueue d.down_q

until crowdSempty(d.c) I
(-d. increasing I
priority_queue$e11pty(d.up_q))

priority address
d.increasing :=false

else enqueue d.up_q
until crowdSempty(d.c) I ,

(d. increasing I "'
priority_queueSe11pty(d.down_q))'

priority -address
d.increastng :=true

end

join d.c
~diskSrequest(d.disk, address, kind, p)
end resignal bad~address, disk_error

end request

end disk

;,,

• l

'·'"

-200-

r - .

' ' i

Appendix IV • Table of definitions

Page Definition or rule name

56: Occurs
56: Precedes
56: Same .. Jrans ,.

57: &eludes . ~ t .

. '
57: F.xcludes_node
57: Node:.exdudes_node ~:,_· .

58: Last
58: Front
58: Gains
58: Releases .. , .

59: Busy
59: Qsize
59: Csize
60: Rank

\ .

60: Rant_scan ··-
61: Eval· ! ... ~ "

63: Legal
63: Legal_step . ~ :

64: Legal_ dequeue
64: Head_ enqueue
64: In_ queue
65: ln_same_queue

... ·,. ~-: 5 :i

65: None_ready
66: Legal_transaction_step
67: Complete
68: Gain_ complete
68: Corresponding_release
68: Rclease_follows
69: Join_complete
69: Leave_follows

107: Transaction order rule
108: Transitivity rule
109: PX from gain rule
110: PX from PX rule

-201-

111: Event before PX rule
112: Event after PX rule
112: ORE clause
112: GRE_def
113: GRE from empty rule
113: ORE from expression rule
114: GX from GRE rule
115: Event before GX rule
116: Event after OX rule
117: Event from FIFO rule
118: EVT and EVF meaning
119: EVF rule
119: EVT rule
120: EVT from conjunction rule
121: EVT from disjunction rule
121: EVF from conjunction rule
121: EVF from disjunction rule
122: Event from ready queue rule

- 202 -

Biograpllical Note··

Ru~U Roger Atkinson

a: was born in New Yark City in 1950.

b: was raised in Fanwood, NJ.

c: received a B.S. degree in Physics from the University of Hlinoisin.1972.:

Optimir.ation Techniques/or a St1UCturef:(i•~1,i#rr•~-
"'""' .- '!- ,· , _, ~~ _-.--~~ :• .. ~ "·or

e: received a Ph.D. degree in Computer Science from M.I.T. in 1980. thesis title:

Auto1111'tic Verification of Serializers.

t will be working at Xerox Palo Alto Research Center.

g: is interested in programming languages. optimimtion. verification. computer

architecture. and distributed systems.

h: an of the above.

Answer: h.

-203-

Ril'O#t~ATafPiG!:"<;:. · UAJ).JllSTRUC't!ONs .
,,. ~,, ; '·

,. BB•oa&.-cilliPi;ijpiG F.ORM
"T. R!PO"T NUMBE" 2. GOVT ACCESSION NO. 'S. ftl:CIPIENT'S CA'TALOG MUMliIW'

MIT/ICS/TR-229
4. TITLE (Md Subtitle) I. TYPE OF REPORT 6 PERIOD C:OVE,.ED

Autanatic Verif icatial of Serializers Ph.D. 'I'tlesis, Marcll 1980
•• .. CRf'ORMING ORG. ftEPORT MUMBER

MIT/I.CS/l'R-229
7. AU THO"(•) •• CONTRACT OR G"ANT NUMBER(•)

Russell Roger Atkinson N00014-75--C-0661
M:S 74-21892 AOl

•• PERFORMING ORGANIZATtON NAME AND ADDRESS to. PAOGl\AM E,t.•EttT, PROJECT, TASK
MIT/Laboratory for Catplter Science AREA 6 WO K UNIT NUMBE"S

545 Technology Square
Canbridge, MA 02139

11. CO~CE Nr~o ADDRiSNSf;/~i~:te-R-~ 12. REPORT DATE

ARE . . . t o ense D~~f' .. --~ March 1980 1400 Wilson 1bllevam /l .. r ' l.0$. -. Acti -' . , .. -·~·"' 11. tlU•HR OF PAGES

Arlington, VA 22209 ~i L, D. C.205~ 205
14. MONITORING AGENCY NAMC 6 ADORESS(lf dlf,.,_f ,_ ConltOll ... Olll ..) tt. SECURITY CLASS. (of thl• report)

am/Department of the Navy
Unclassified Inf olllation Systems Program

Arlington,· VA 22217 1Sa. DECf~FICATIOWDOWNGRADING
SCH LE

16. DISTRIBUTION STATEMENT (of tide Report)

'l"'fris documant has been approved for µJblic release and sale;
its distribution is tmlimited i

~

17. DISTRIBUTION STATEMENT (of Ute abetract entered In Block 20, II dlllerent lraln Report) ~

18. SUPPLEMENTARY NOTES

..

19. KEY WORDS (Continue on revere• aide II nee•••_,. .,d Identify by block n&m1ber)

verif icatioo
concurrency \.
nonitors
serializers
~~.: ,,:::.;~-"""'"'"

20. -.(aS'filfACr (C'onihiue on rever .. aide II nee• .. .,,. .. d Identity by block n&m1Nr)

'!his thesis is~ with the PJX)blem of cxntrolling oancurrent access to
shared data. A language CX>nStruct is proposed to enforce s\X!h control; a
specification language·is defined to describe the foi:mal requirenents of such
oontrol: and verification~ az-e given to prove that inBt:anoes of the
construct satisfy their specifi,cat:ials. '1be techniques az-e justified in terms I-'
of the definition of the ~ ani the definition of the specification
language. Results are given for a program that ~ts a n.tmiJer of the
·~r-ilhJStr.ud,'bu ~ ...:~ o • L1 o <->~#· _.:L '

-~...._ ~

DD FORM
1 JAN 7S 1473 EDITION OF 1 NOV II 1$ OtUOLETE

·. :'"sECUlltlTY CLASSIFICATION OF TI41S PAGE (Int- D•t• Entered)

