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Abstract

This thesis is concerned with-the problem of controlling concurrent access to shared
data. A language construct is proposed to enforce such control; a specification language
is defined to describe the formal requirements of such control; and verification
techniques are given to prove that instances of the construct satisfy their specifications.
The techniques are justified in terms of the definition of the construct and the
definition of the specification language. Results are given for a program that
implements a number of the techniques, illustrated by verifying several versions of the
readers-writers problem. Interactions between instances of the construct are discussed
in the context of a simple file system.
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I. Introduction

This thesis is concerned with the problem of controlling concurrent access 10
shared resources. In systems where several processes may “aftempt to concurrently -
access the same resource, there is a need to impose some order on those accesses. If
certain orders arc not enforced, certain classes of access td the résource may conflict and *
cause erroneous results, Other classes of fccéss to the ‘sam¢’ resource- may proceed
concurrently without conflict. This is true whether the resource is a data base, a printér
spooler, a file system, or a communications network, although the definition of the

classes of access may be specific to the resource.

Given this framework, we can informally define a few terms. Two-accesses are
concurrent. if both accesses have started, yet neither - has completed. Typieally,
concurrent access is controlled through exclusion, where a progess executing one - class .
of access prevents the initistion of another access from:any of a set-of classes. When -
onc access excludes another, the latter must ‘wait- for the former-to complete. - If one -
4CCeSS 1S w.uung for anothcr Wthh is wamng for the ﬁrst to compku, then no progress
can be.made on cither, WhICh is Cd"Ld dmdlock If two proccs‘scb are rmdy o initiate
accesses, yet one access excludes the other, thén the'process'that proceeds s said to'have
priority over the other. A process. that is geady. to. prcaccgq, yet is cunlim:;_;jl}g denied

progress, suflers from starvation.

We wish to ensure that programs executing: concuerently on shared resources
obtain correct results, where correctaess is defined in terms of programs mecting their

specifications. We wish to show, for properly designed programs, that certain-accesses
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exclude others, that the proper accesses are granted priority, that appropriate access
may proceed concurrently, that there is no deadlock, and that there is no starvation. We
limit this concern to the issues that are specific to concurrency, and not those that apply
to determining whether the access, executed by itself, has the correct effect on the
resource or returns the .correct information. Also, we are not concerncd with
concurrency issues unrelated to accessing resources, such as process creation and

deletion.

1.1 Initial decisions

Our first decision is that it is desirable to have a. separate programming
language construct to realize reliable control. of concurrent access.  We believe it
insufficient to simply propose a construct and present: some examples of its use. A
language designer Slxould also provide tools that increase the utility and reliability of a

language construct, Consequcntly, this thesis presents:
* A language construct to control concurrent accesses 1o shared resources.
* A definition of the semantics of the construct.

* A specification language to describe properties of concurrency control
that arc to be realized through this construct.

* A verification methodology that is used to prove that instances of the
construct satisfy their specifications. : :



* The design of a program to make use of this methodology and perform
verification.

‘One of the contributions of this thesis is that all of these elements are presented

together for a single construct.

Our approach to concurrency control is: heavily influenccd by by the monitor
construet of {Brinch- Hansen 72} and [Hoare 74, and the programming languages CLU
[Liskov et. al. 77, Liskov 79a] and Alphard [Wulf 78], which-in turn:awe much to Simula
[Dahl 72} In these languapes, access to-data objéets is achieved through.a limited set-of
operations, which are generally implemented-as procedures. -Just as: CLU:and -Alphard
scparate implementation details from the abstract appearance of data objeets,: our
objective is to separate concurrency control from access to data objects. The monitor
construct has a similar goal, although a slightly different view of data. The connecton
between concurrency cbntrol and data abstraction is a key issue in defining our

construct and in our verification techniques.

Verification does not prove that programs operate correctly, in the sense thata
verified program performs exactly as desired. There.is often .no reason to believe that
the specifications are better than the program: text, for dcscribing‘:tbic desired vbcha‘viibr
for the program. Verification performs the tagk of taking two different descriptions of a.
problem solution and showing that the. descriptions. agree,; in..the scnse that every
bchavior that the program exhibits is allowed by the specifications. The two
descriptions are quite,dim:rcntin kind: the cudus ;_pvg\ zﬂgﬁ’ﬁﬁ;pk description, and the

specifications describe the effects of exeeuting the code: ‘Ihe confirmation of afriving at
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the same answer through two different methods ought to increase:-confidence in the

solution.

.

We wish our techniques to be vzilid whether there is truc‘concurrency, using
multiple processors, or simulated concurrency, using a multiﬁlex;:d Singlc processor, or
a mixture of the two. To accomodate this range of behavior, we have described accesses
as being concurrent if both accesses start before gither ends.. This definition may. seem
_overly broad, since two accesses are considered to be concurrent if one access occurs as
part. of the other. We choose to make a conservative decision:: two accesses are
potentially concurrent if the start of either access can occur between the start and finish

of the other.

1.2 Modularity

- Large programs are usually difficult to under;tand »;m_d modify not bccausé of‘
their size, but because of their complexity. This cdmplexily is far more often Vduc to
interactions between parts of programs than it is to inherent complexity in the task
being performed. The notion of modularity is widely accepted as a means of limiting
these mteractions, although lhq term is defined in various:ways. "This principle is usclul
in constructing programs, in modifying programs, and in verifying -programs.

Modularity in verification has also been called the-independence principle:

The proof of a routine may only depend upon its own specifications and
implementation, and upon the external specifications of the routines 1o’
which it textually refers. [Good, Cohen and Keeton-Williams 79, p.45]
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We propose to make use of the following kinds of modularity:

* Data absiraction is the organization of data into dlstmct objects, where
each object belongs to a distinct data l;ype and dmct access to the objects
of any type is limited to the operations of the type. This definition of data
abstraction follows the lcad of the CLU programming language.

* Concurrency control is separated from data access. The implementation
of concurrency control is kept distinct from the implementation-of. data. .
access, although the external interface of the two implementations may be
similar.

* Specifications of concurrency control are separated from. specifications:of .
other properties of a program. Further, these specxﬁcatlons are meant to
~be independent of any implementation. - : . , 2 '

* Verification of concurrency control is separated from other program
verification- techmiques. - in. particular, -the. verification . of access to a
resource and the verification of the concurrency control for such access
are independent, although each -may assume the §pecifications of the
other (we will assume an absence of circularity, since it is a separable
issue).

It is possible to find fault with modularity, since the kinds of separation we

have described may make it more difficult to acheive other desirable properties.

* The principle of modularity can be misapplied: the wrong kind. of
separation prevents necessary data from being comimunicated from one
place 1o another. We hope 1o show twough the-use of examples that the
kinds of mudulamy we propose to use do not prohlblt necessary
informition from being in the appropriate places, s
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* Modularity can be inefficient: the mechanism for transferring from one
context to another, as in a procedure call or process switch, can be
expensive. Further, by limiting access to certain data, certain
computations may be redundant. We will not’ address this issue directly
in this thesis, but will return to this objection in our conclusions.

1.3 Related work

Much of the initial work on the construct we propose was done in conjunction
with Carl Hvewitt [Hewitt and Atkinson 79). Since then, there has been a divergence in
our efforts; this thesis explores issues of automatic. verification of .concurrency control,
while Hewitt has concentrated on more pnmmve control of concurrency in a context
where programs communicate by passing messag(s. Some of this work can be found in

[Hewitt, Attardi, and Lieberman 79).

Below we briefly discuss related work on language constructs, concurrency

specifications, semantic models, and some differences in our approach from other work.

1.3.1 Related language constructs

Most authors in lhlS area note the importance of hmmn;, the interactions
between concurrent processes through the use of hnguagc constructs spcmhc.ully
designed for this purposc. We have a s:mﬂar apprp.xh in this thesis, with the-addition

that we attempt to relate concurrency control to abstract (uscr-dcl'mcd) data typcs.



We have alrcady noted the intellectual debt owed to the monitors of Brinch
Hansen and Hoare For now, we charactcme the momtor approach by noting that
concurrency is controlled by only allowmg one proccss ata tlme to exccute an opcratlon
that bclongs to a monitor, Grvun that lmtml cxclusnon further executlon orders may be
1mposcd by the monitor operatrons We will prescnt a more detalled companson of our

constr uct wrth monitors in Chapter 2

Another-line of thought in concurrency control is to-fimit parallel processes to
communicating through the passing of messages. Various athors have proposed such
an approach among thr,m [Good, Cohm and Kceton-erhams 79, Hoare 78,
Fleman 79]. Concurrcm actrons only procec.d when a process that is scnt a mcssage
chooscs to receive it. Exclusron for a class of access denves from a r«.fusal to acc«.pt a
message of thet class. This approach is particularly well suited to distributed systems,

where different processes may reside on widely separated processors.

These two approaches are not as different as they might initially appear.
Although our presentation will follow the first approach, we will arguc in this thesis that

our technigues are valid for the sccond approach as well,
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1.3.2 Concurrency specifications

Our work on specifications is strongly inﬂuéﬁced by Greif [Gréif 75]). In this
approach, certain events related to an access are identified: access réduést. access start,
and access finish. .Speciﬁcaticns are given by iﬁdicacihg whichv orders of these eveh.ts
arc required. Fdr eximple, suppose that the executicn of one kind of; access (call lt X)I
prevents another kind of access (call it Y) from startmg We can sp‘ec‘ify; this
requirement by stating that Ro Y. access start event can occur. betwecn any X access start

event and the corresponding X access finish event.

A similar approach to speuﬁcatnons appears in [Laventhal 78] in whlch such

(

specnﬁcauons are used to synthesm. im plementatnons 10 reahze concurrency control

1.3.3 Related semantic models

Vanous modcls have been used to dcscnbc concurn.nt cxccuuon of prol,r'lms

In the models we discuss here, a program procceds fmm st.lle lo smtc by alomlc .1ct|ons

* In [Howard 76, Good, Cohen and Keeton-Williants 79], and in our work,
actions that take place are recorded in sequences called Jistories, and
program semantics are described by giving predicates that must be
satisficd for historics.

*In [Greif 75], actions are rclated by partial orders called  behaviors.
Program behavior is given by predicates on these partial orders.



* In temporal logic (a survey-level explanation of this 'model appears in .-
[Lamport 80]) the model uses sequences of states, rather than actions.

_ Predicates that describe program behavior may be apphed to sequences
of states, for a linear time theory, or to all sequences of states with a

- common sequence of states as a prefix, for a branching time theory.

*Anothér related modet, ‘based on “trées’ ‘of states, is presented’ in
[Owicki 75]. . Given an initial state and a program, the behavior of the
program is characterized by a tree of states, where the arcs represent
execution of an action-that leads. to the next state. 7

All of the above models use some structure to.relate either states or actions, and

describe program behavior by giving predicates on:sych structures, .

It is poss:ble to dISCUSS statcs in terms of equwalence classes of h|stones (or

behaviors). For example

\

[There] is a correspondence between states and behavior that allows one ta.
define the stales of a sysiem as an equivalence relation over the possible
behaviors. [Greif 75, p. 72}

We believe it better to think of predicates on historics rather than to attempt to regard
states as equivalence classes. The distinction lies in our doncern: with certain propertics

of objects at any particular time, rather than-the entire state of the object.
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1.3.4 Differences in our work

We approach concurrencyvcontrol th' _pust by déﬁning a Ignguage construct,
but also by providing spccification and verification ‘methods for the construct. Further,
these methods are actually demonstrated in a simple automatic verifier. By providing a
wide range of support for a relatively narrow constmct W_e ‘hog‘g{ to Vi’llustrate the benefits

of a unificd approach to controlling concurrent access io resources.

We have attempted a greater use of modularity ‘than is commonly found in
other works. In particular, we couple:controt of concurrent access to the prinéiples of
data abstraction with strong typing, while maintaining separation of concurrency

control specification and verification from data access specification and verification.

1.4 Plan of thesis

Chapter 2 introduces the serializer language éonstruct,' which is a method for
controlling. concurrent access. An informal preseatation is made of the syntax -and
scmantics of the construct. An cxample, based on the readers-writers problem, is.
discussed in detail. A simplification.of the scrializer construct is:dcfined for use in later
chapters. A translation of scrializers into clusters and scmaphores is given as a possible

implementation strategy.

Chapter 3 presents a simple semantic model that supports concurrency, and
uses it to define more precisely the simplified serializer construct. A definition

language based on first-order predicate calculus is used to describe serializers as
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enforcing limitations on the execution order of programs.

Chapter 4 discusses the four kinds of concurrency control specifications used
in this thesis. A simple specification language for concurrency control is defined.
Specifications are given for the readers-writers problem, with several variations, and the

bounded buffer problem.

Chapter 5 presents aﬁd justifies rules that are used to verify that serializers
meet their specifications. Although the definition of serializer semantics and the
definition of the specification language are sufficient to allow us to verify serializers, it
would be difficult to write an automatic verifier that directly uses these definitions.
Therefore we define and prove a number of inference rules that allow us to infer
sp'eciﬁcmio}n clauses given the assumption (or proof) of other specification clauses,. An

example is given of how the rules allow verification in a simplc mechanical fashion.

Chapter 6 describes a program that uses the verification rules to establish that
a scrializer meets its specifications. We first describe how the structure of the program
incorporates the verification rules, and then present examples of proofs that the

program has performed.

Chapter 7 discusses issues related to interaction of serializers, and presents an
extended example of serializer usage: a simple hicrarchical filing system. Guidcelines
arc given for providing scrializers for- data types that are originally used in a

singlc-process environment.
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Chapter 8 contains a discussion of how the work in the previous chapters can

be extended to cover more complex problems and more complex serializers.

Several examples of serializers are presented in the appendices, and are
referred to from time to time in the body of the thesis. The last appendix presents a

table showing where the various definitions and rules used in this thesis are defined.
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2. Serializers

This chapter introduces the serializer construct, which is intended to provide a
modular method of concurrent access to:shared: data: objects. Related programming
language constructs are monitors [Brinch Hansen 72, Hoare 74] path exprcss:ons

[Campbell.and H: 1bermann 74] and commumcaung sg:q uenttal processes [Hoare 78]

language [Liskov ct. al. 77, Liskov 79a]. However, the baSIC nduas behmd senallzers g0
beyond -amy particular programmmg languagc Earher vusmns of the serializer
construct were presented in [Hewitt and‘Atkm‘soﬁf"mf_aﬁd-{ngnttand Atkinson 79]

using a significantly different language.

In this chapter we describe the rationale for ;he design of Lhe serializer
construct, mformally dd’me the syntax and mahttcs af seﬁahzers and prescnt an
-example of a serializer. Then we describe thc hmncd Mel&oaﬂf swalmus that we wil
be using in-the remaining chapters, give a p(.)gsi_Qh‘iqlpvlcmcgtt_;du:io‘q of scrializcrs in

terms of semaphores; and compare the serializer and monitorconstruéts. -

T TR
[ SRR
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2.1 Serializer design issues

We believe that a language construct for cohtroll'tng concufrent access to

shared objects should have the following qualities:

* The shared objects should be separated into ldenuﬁable sets of objects,
cach set being a resource. ‘A resource should also- be treated as an object,
allowing resources to be composed from other resources. Each resource
can only be directly accessed through a set of operanons associated with
the resource.

* The construct should scparate control of concurrency from the algorithms
that access the resource. This separation simplifies both the concurrency
control and the resource -access.  Some concuzrency -may be lost by
requiring complete separation, since it is likely to be difficult to pamally
overlap operations, However, we believe that the wdeémmplwlw is well
worth the reduced concurrency.

*To aid reliability and verifiability, the shared ‘resource should not be
accessed except through an object that controls access. to the. resource.
The concurrency control construct should cnforce this restriction, since
relying on programmers to follow coriventions‘is not satisfactory.

* To casc the writing of programs that access resources, operations that
access the object controlling the resource should.appear to be,.as nearly as
practical, the same as the operations that access the resource. That is, the
construct that controls-concurrency should have the same appearance o
the user as the construct used for the resource.

-21-



Based on these criteria, we designed the serializer construct to have the

following characteristics:

* Like the cluster construct of CLU, the serializer construct is used to
define data types by defining a set of operations for. each type. The
objects of a data type defined by the serializer construct are called
serializer objects. Each serializer object is used to control a separate
resource object. The operations of the data type are serializer operations.
For the sake of modularity, serializer objoets «can enlry -be »accessed
through the appropriate serializer operations. ‘

* The execution of protected parts of a serializer operation for a particular
serializer object precludes the simultaneous exccution of protected parts
of any serializer opcration on the same scrializer object. 'The process

- executing a protcctcd part of an operatlon lS s.nd to havc possesszon of the
smahzcr object.

*During the execution of a serializer operation, possession of the serializer
object can be released ‘and regained. 1t’is particutarly uscful to release
possession while accessing the resource, thereby permitting concurrent
activity involving the scrializer object. After the resource access,
possession is regained to indicate that the aceess is complete. This
temporary release of possession permits external procedures to be
invoked from a sertalizer ‘operation while ‘allawing: other serializer
operations (o continue. :

* During the execution of a serializer operation, i€ may become necessary to
suspend exccution 0 wait for some condition to become true.  For
examiple, if some operation needs exclusive access to the résotree, it must
wait until no other resource accesses are in progress. During this pause,
possession of the scrializer object is released o allow other requests to
proceed concurrently as far as they are able. '

- -



Figure . A picture of a serializer object

Serializer object

| |
| |
| |
| ittt + | i
| : | I
Request --> (Pause) Request'--> | |
| | |
| | Resource | |
- ' 1 i1
Reply <--- (Pause) Reply'<--- | |
| , | I |
] e + |
| |
g +

A graphical description of how the serializer cdﬁétfuct iS‘ iised 'iS’shC)wn in
Figure 1. A Request is thc start of an oper'mon, and a Reply ils termmalnon (possmly
on the requests and replies as lhey are tra‘nsmi‘tted-‘bétweén 'th‘e resource ‘md the
requesters. The (Pause) is optlon& based on wht.ther the respuree access- requcsted
can be performed m:mdmtdy whm the wqucst cnters the. &.nalm.r In most cases, a
serializer opceration passes the information it receives “from the c';illcr'*lo the
corresponding: resource operation, and. pam the mﬁ)cmatum it receives from the

resource opcrallon to the caller.



2.2 Serializer syntax and mechanism

This section gives a bricf syntax for the scria}izer construct and the statements
uscd only by serializers. We also give an informal description of what each form is used

for and how it works.

The syntax used for a serializer is similar to the syntax used for a CLU cluster.
The header names the serializer and Tists the externally available operations. ‘Then the
representation type for the serializer is given, which determines the names to be used
for the components ‘of ;,t,he s_eriali}zeir“(_})bjgct;, f[hen the operations are given as
procedures. The form of a scrializer is:
name = serializer is operation_name_list
rep = represenialion_ lype | |
operation_name = proc ( forma[ argumenls )
optional_returr_list = -
optional_exception_ Ilsl

procedure_body
end operalion_name

. % other operations
~end name

We have used italics to informally indicate synlachc qlmnutles

As with clusters, the scrializer construct defines a new:data:type, where the
type is denoted by name. Certain of the operations ‘are. used 10 create: new serializer
objects of the named type, while other operations are- used-to- access the serializer.
OhjLLlS Opecrations named in the npemlmu_fwmc list- .ok the c,m'mqllv availahle

s

opc ations, and may be used by code ()ULSIdL uf &hc b&.mh/u Opualmns not nanu.d in
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the operation_name_list may only be used internally. Starting the execution of any
externally available operation that directly uses the serializer object requires that the
executing process gain possession of the serializer objéct (starting exccution is shown as
Request in Figure 1). Termination of an bpérétio’n that has possession releases
possession (termination is shown as Reply in Figure 1). To reduce the likelihood of
deadlock, an operation that has possession of a serializer object is prohibited from

directly calling another opcration that requires possession of the_ same serializer object.1

We have also added two new kinds of statements that can only be used in a
serializer. The enqueue statement is used to suspend execution (zind release possession)
until some condition is satisfied (shown M'(Pausej'gin:"ﬁgum 1). The stattment has the
form:

enqueue gqueue_expression until booleqn__expréssion |
The queue_expression denotes a queué thatls used tgi impose a [irst-in-first-out
disciplinc on processes waiting for conditions.” The bbolmnfxpression denotes the
condition that is required to be true before a process can continue execution. Such a
condition is called a guarantee. When a process is waiting for the condition to be true,
we say that the process is waiting in thc quuuu. smce some ldmu ﬁcmon of the process
“is stored in the queuc. ‘When a process wallmg ina quuu. is alk)wo.d o proceed, it
regains posscssion of the serializer object, the process identification is remaved from the

queuc, and the enqueuc statement terminates..

L In practice. it may pot be possible o detoet when this oceurs. -This does not affect our objective;
which is to reduce the chances for errors. We do not believe that it is pu\sxhlc for a language restriction 10
completely climinate this kind of crror-without unduly affécting the cxpréssive power of the language.
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The queues used in scrializers are first-in-first-out unless otherwise speciﬁed:2
If some process starts execution of> an enqueue statement before another process starts
execution of an enqueue statement for the same quete, the first process will complete
execution of the enqueue statement before the second process, provided.that either

statement terminates.

The join statement is used to perform some body of statements that should be
executed while not in possession of the sérializer object. The statement has the form:
" join crowd_expression o
body_of_statements
end . ‘ ; viloC R U S PR : -

A crowd_expression denotes a set used to identify the processes that have started
exccuting a join statement but not completed it There may be several such sets, called
crowds, so that different classes of access can be distiﬁguishegi.? 'Fhe join statement
starts by placing some identification of the exécuﬁr@ process into:the speciied crowd
and rcleasing possession (shown as Request ' in Figure 1). Aflgr possession is released,
the body_of statements is executed.: Finally, possession is regained (shown as Reply®.in
Figure 1), the process -identification .is” remaved. from. the ceowd, and  exccution
continues after the-end of the join statement. : Typically..a join inside of an vperation is

performed to invoke the corresponding operation of the resource.

. An cx.unpk of the use of priority gucucs appears in Appendin-1.-
‘The join statement is so called because the provess executing the statement Joins a (.mwd nf snml.lr
pmecs\cs 1t nit be comfused wuh fork and join: primitives-used: for progess creation and termimation in

ulhm languages.
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A process attempting to start or continue exccution of an oper#tion on a
serializer object must wait until there is no other process that has possession of the
serializer object. If the process is waiting for some condition to be. satisfied, it does so in
an explicitly named queuc of an enqueue statement. If the process is waiting to gain
possession at the start of an operation or at the end of a join statement, it does so in an

implicit queue called the external queue, which is serviced in first-in-first-out order.?

Possession of the serializer object is released at the start of an enqueue
statement (after the process is placed on the queue), the start of 41..jo,in statement (after
the process is placed i_n the crowd), and at the end of an bberatidn. Whenever.
possession is released, the explicit serializer-queues are examined to determine whether
any queue has a process at its head with a'true guarantee.: If any of the guatantees are
true, then one of those associuted waiting procestes will get.possession of the serializer,
and be removed from its queue. Then the process can pm:wd with the execution of
the operation. In evaluating the guarantecs, there is no assurance-that the guarantees
will be evaluated in any particular order, or-that they will -all be cvaluated .unless all
cvaluate to false. If afl guarantees are false, then the process.on the external queue that

has waited the longest (if ary) is removed rom: the-gueue and gains possession.

4. Wc have chosen to use a single external queue for simplicity of explanation.  Using a single oxternal
queugc is a valid implementation, although it is not the only valid implementation. »
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2.3 An cxample: the readers-writers problem

The general readers-wu'itefs' problem [Courtois, Heymans and Parnas71]
presents a simple resource that is to be acggsggq by ggncgtrcht processes. There are two
operations on the resource, read and write, A process performing a read operation is
called a reader; while a process performing a. write opt,rauon is called a writer. In
keeping with the serializer methodology, we have spht the problem into writing a
cluster to implement the resource and construeting a senah-zer that encapsulates such a
resource. The basic constraint on conlcm"r;eﬁc‘j: is thatrgacfus 'should not access the
resource concurrently with writers, and wutu:sshould not access the resource
concurrently with other writers. The general readers-writess. problem imposes no

further requirement on the order of processing for operations. - -

S

The exampl¢ we present in ‘Figure 2 has the t‘éduifém&nf that if a read
operation on the serializer slu‘rt's before a write 6pe‘rzit"ior‘\°oﬁ :tli’e"Sériiili‘Zer the reader
will access the resource beforc, that wnter and that thlS ﬁmt—m -first-out (FIFO)
ordering is also imposcd on writers wnh r«,spuct to ruadcrs, zmd on Wl‘llu’b with respect

to other writers. This variant of the rcadus-wnlc problc,m is dlSClISbt.d in [Gruf 75].

In the FIFO scrializer, there are three operations, .one to create a new
scrializer object (and new resource), one to-read a v‘rmnimmmcd wuh a key in the
resource, one o write a value associated with a key in the resonrce. Only- the serializer

opcerations that access the representation (rep) of a serializer object argument need 1o
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Figure 2. FIFO serializer

% The following serializer is a first-in-first-out solution to the
% readers-writers problem. ,

FIFO = serializer is - V _

' create, % Create a new serialized resource object
read, % Read a value from the resource given a key
write % Write a value to the resource given a key

% Each serializer object has the follouang:rnpresentation -
rep = record [rc: crowd, % readers' crowd

wc: crowd, - % writers®' crowd

Xxg: queue, ’ % common queue

res: resource] % unserialized resaurce

create = proc () returns (cvt)
return (rep${rc: crowdScreate (),
wc: crowd$create (),
xq: queueScredte (;"" s
res: resource$create () })
end create ' - S SR

read = proc (x: cvt, k: key) returns (value).

% Wait until there are no active writers
- enqueue x.xq until crowdSempty (x,wc).

% Become an active reader & perform the read

join x.¢c
return (resourceSread (x res. k))
end: : . :

end read
write = proc (x: cvt, k: key, v: Qélue)

% Wait until there are no active writers or readers
enqueue x.xq until crowdSempty (x.rc) & crowd$empty (x.wc)

7 Become an active writer & perform the write
join x.wc

resourcedwrite (x.res, k, v)

end
end write

end FIFO



gain possession of the scrializer objectu5 vTh’e use of ’evt' as a type declaration for
arguments to operations indicates which arguments are serializer objects viewed as their
representations. The use of cvt follows the CLU usage, in that it represents a type
conversion between abstract type and representation type that is performed at the
interface of an opemtlon Each senahzer operatlon is llmlted to one cvt argument since
there is no provnsnon for gaining simultaneous possessnon of multnple senahzer objects
There is no restnctlon on the use of cvt used as a return type (even xf we allow mulnple

scrializer objects to be returned).

In the read operation of the F!FO ‘se‘ri‘al‘iner., xhe fléemmn,tee is
crowdSempty(x.wc). Therefore, no readers w1llbegm to read {from the resdmee until
there are no writers accessitig the Tesoufte. Smﬁlarty m the write operation, the
guarantee is crowdSempty(x.rc) & crowd$empty(x. wc) Wthh prevenls a writer from

proceeding until neither ’readers nor writefs are accéssitg the resource.

The importance of havmg sole possession of the sermhzer object can be
lHll%ll’dlLd by cxamining Figure 2 and consldermg the conscqlunces of nol having such
a restriction.  For example, if a wnler dld not have sole p(msslon of lhe scrializer
object aﬂer it performed its enqueue, am)lhef wnu.r c«mld .,lcccss 1he resouru. bt,lween

the first wrner s execution of the enqueue swlemem znnfl tﬁe}om sl;ltemcn't: This would

5. The create operation. ducs not need 10 gain possession, sinee po; pmu:sus uthu than the process
exceuting the create operation could access the object, .

6. Note that as an argument type duulpllun (‘Vl ,rcqmres a mn\ crsmu lmm .lhslr.u.! ()] repr('\enmtmn
type. and as a return type description, the conversion is from uprcsem.limn W abstract lv;ae
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allow simultancous access to the resource by two writers, which violates our initial

requirements for the serializer.

24 Simple serializers

It is infeasible to prescnt definition, specification, and verification techniques
for general serializers in this thesis. Therefore, we will restrict our attention to a limited

version called simple serializers. A simple serializer has the following restrictions:

* The representation object (of type rep) for a simple serializer is a record
that may only contain a single resotrce object -and a fixed number of
statically named queues and crowds.

*All queue and crowd expressions arc limited to sclection of
representation components

* The guarantees on the enqueue statements can only test for queuc&.mpty,
crowd$empty, the logical and (x & y) of guarantees, ‘and the logical -or
(x]y)of guarantc&s.

“* Only enqueue and join statements may be LXCClIlLd whlk in posscsslon of
the serializer object.

* Each scrializer operations must correspond cxactly in number, name, and
interface to a corresponding resource operationNo statements may: be
exceuted inside a pm statement except to. invoke the corresponding
resource operation, teturning its results if there are any. ‘This restriction
also precludes the handling of exceptions.

* Inside of a simple serializer operation, the return statement docs not
immediately return an object from the operation; as it would ina normal |
operation.  Instead, it is used to indicite the object o be returned ‘when
the serializer operation terminates. "This restriction is present to simplify
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the semantic model in the next chapter.

While the above restrictions may seem severe, they allow us to keep our
presentation of details not associated with concurrency control to a reasonable level.
Simple serializers are sufficient to solve the readers-writers problem, as well as some

more involved examples.

In several places throughou{ the the;sisr'We will i,n‘dic.atef how extensions to
simple serializers can be handled. These extensions include cases where more
complicated comput.mon ‘must occur to determine the m’der of processmg requests,
where the interface to [hL serializer dllTels from that of the lmdcrlymg resource, and

where the serializer and the resource are implemented together.

2.5 Using semaphores to implement serializers

[n this section we present a possible implententation of simple serializers using

fair semaphores and clusters. We do this for two reasons:

S

1: To show that the serializer mechanism is realizable.

2: To give further insight into the semantics of scrializers by gwmb a
translation into a mor¢ commonly undu\u)od muhamsm

The semaphores that we use can be freely created, and obey a FIFO discipline when
multiple processes request the same semaphore. We also describe the operations on the

qucue and crowd data types used in this implementation of serializers.
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We assume that the semaphore data type has the following operations:

create () returns (scmaphore)
returns a new semaphore with count = 0.

P (S: semaphore)
Atomically tests and sets the count of the given semaphore If count
> 0, the count is decremented and the operation completes. If count
= (), then it stays 0 and the process performing the P @peration does
not procecd until the count becomes positive. Once the count
becomes positive, the process waltmg the longest decrements the
count and completes the'P operation. =

V (S: semaphore)
Atomically increments the count. Note that a P -operation on an
initially created semaphore must wau for a correspondmg \'

operation.

We assume that the queue data type has the following operations:

create () returns (queuc)
creates a new, emply, queue,

enq (Q: queue, T: semaphore, G: guar) RS :
adds the T, G pair to the queue, making the gucue non- mely l1u.
type of G. the guarantee prrcs'alun |§ assumed lo bt, a predlculc to
indicate whether the guarantee is e o

deq (Q: queue) signals'v(empty) ) S
removes the head pair if the queuc is not empty, otherwise signals
empty.



empty (Q: queue) returns (bool)
rcturns true if the queue is empty, false otherwise.

get_guar (Q: queue) returns (guar) signals (empty)
rcturns the guarantee evaluation procedure at the head of the queue
if the queuc is not empty, otherwise signals empty. Note that
queuedget_guar(Q) can also be written as Q.guar.

get_sem (Q: qucue) returns (scmphore)mgnals (empty)
returns the semaphore at the head of the queue if the queue is not
empty, otherwise signals empty. Note. that queueSgeLsem(Q) can
also be wnucn as Q.sem.

We assume that the crowd data type has the followinig operations:

create () returns (crowd)
returns a new, empty, crowd.

insert (C: crowd, T: semaphore)
inserts a semaphore into a crowd.

remove (C: crowd, T: semaphore) signals (absent)
" removes a semaphore from a crowd if present, othuwusc. slgnals
absent,

empty (C: crowd) returns (bool)
returns truc if the crowd is empty, false otherwise,

Impk,mmtmg a smalm,r asa clustt,r lhdl uses scmaphom ss a lr’mslatnon that

has the followm;,cases. : -



1: The serializer becomes a cluster, and the representation object is
extended to include a semn component; which is of type semaphore; and
an eval component, which is of type scquence[fqueue} The sem
component is called the external senmphore. and the eval companent is
called the queue list. :

2: The create operation initializes the external semaphore to-a newly created
semaphore, and performs semaphore$V on it. The queue list X.eval is
mmally the sequence of all queues in the represemwoa,

3: Each operation that requires possession is gwen the R)Iiowing prolog

semaphore$P(X.sem)
T: semaphore := semaphore$new( ) ]
where X is the name of the cvt argument, and T is a unique local variable

used to hold a newly created semaphore for the transactnon T is used to
represent the process in queues and crowds. v L

4: A return statcment is translated into an assignment to a temporary
variable (or a multiple assignment if multiple, return. valuts are _present).
This requircs such variables to be declared in the’ prolog, and their values
rcturned in the epilog.

S: Each operation that requires possession. is giveﬁ ‘the ffolki)wli‘ng épildg:
Eval(X)
where the Eval proccdure is an intermal upemtion used tt°sefect the next
process 10 procecd, and will be detiled below.

6: Each statement of the form:
enqueue Q unt11 G
is translated into: '
queueSenqg(Q, T, G') % place self in queue

Eval(X) % release posseassion
semaphore$P(Q. sem) % regain possession
queua“eq(m "% resiove self from queve

where Q is the queue to use in lhe expression, T is the local sumphort.
variable introduced in the prolog, and G’ is a procedure describedias



type guar) used to evaluate G

7. Each statement of the form:

join C

Body

end

is translated into: i o

crowd$insert(C, T) . % place self in crowd
Eval(X) % release possession
Body % execute body
semaphore$P(X.sem) % regain possession
crowdSremove(c T) X remove: self from crowd

where C is the crowd to- join, and Body is the body of- statements to
execute while not in possession.

The Eval procedure selects the next process (0 receive possession. It first
checks (in some unspecified order) the non- empty queues to determine whether the
guarantee at the head of the queue is true. The ﬁrst non- empty quwe found wnh a true
guarantee has V performed on its head sem'rphore and Eval returns If no non- empty
queues are found with true guarantees, Vi is performed on the external semaphore. Eval

can be written as:

7. A reader familiar with CELU may notice that we have taken some liberties in using G, and have not
fully defined the type guar. In general, it is necessary to use a closure of procedure and data (o properly
define GG, We have avoided these issues tor the sake of simplicity; they do not affect our approach to
concurrency control,



Eval = proc (X: rep)

% examine all queues for true guarantees
for q: queue in sequence[queue]$elemenis(X.eval) do
if queueSempty(q) then % if queue is empty

continue % then examine next queue
end SR
if q.guar(X) then % if guarantee is true
semaphore$V(q.sem) % then allow that process
return %  to continue .execulion
end R
end

% no non~empty'queues,havd.twua guarantees .
semaphore$V(X.sem) ~ - .% serve the.axternal queue

end Eval

The above version of Eval always checks the queues in some particular order. [t would

be equally valid-to check the quenes.in any order, evenif non-gdeteeministic.

An example of how a serlahzer is 1mp|emented usmg cIusters and semaphores
is shown in Figure 3. We have omltted the wnte operatton smce there is li‘tle

dlﬁ‘eanCL from thc rcad operation,; and the Eval operallon smce lt was shown above

ELAE

2.6 A comparison of serializers with monitors

The unrestricted serializer construct has many similaritics to the monitor
construct [Brinch Hansen 72, Hoare 74).  Both serializers- and monitors deal with
synchronization by cncapsulating details of concurrency control within a set of

procedures. We present a bricf comparison of the serializer and monitor constructs:



Iigure 3. Semaphore implementation of FIFO

FIFO = cluster is create, read, write

elist = sequence[queue]

rep = record [rc: crowd, % readers' crowd
wc: crowd, % writers'. crowd
X(q: queue, % common queue
res: resource, % unserialized resource
eval: elist, % the queue list

sem: semgphore],z the external semaphore

create = proc () returns (cvt)

E: semaphore := semaphore$create()

semaphoreSV(E)

Q: queue := queueS$create() -

return ( rep${rc crowdScreate 0,
wC: crowdScreate (),
xq: Q,
res: resourcefcreate (),
eval: elist$[Q],
sem: £ } )

end create

read = proc (x: cvt, k: key) returns (value)

% Prolog
semaphore$p(x.sem)
T: semaphore := semaphoreS$create()
v: value

% enqueue x.xq until crowd$empty (x.wc)
queueSenq(x.xq, T, crowdSempty)
Eval(x)
semaphore$P(x.xq.sem)
queuvelSdeq(x.xq)

% join x.rc; return (resource$read (x res, k)): end
crowd$insert(x.rc, T) ‘
Eval(x)

v := resource$read(x.res, k)
semaphore$P(x.sem)
crowd$remove(x.rc, T)

% Epilog
Eval(x)
return (v)
end read

% The write operation is not shown,

end FIFO



below.? Except where noted, properties of the monitor construct are taken from

[Hoare 74]}.

A serializer abstractlon is mtended to have. the same interface as the protected
resource, whlle the monitor appems to be a lock on access to the resource. The
serializer construct has the expressive power to be used as a lock, but the monitor does
not have the expressive: power (o mimic the resource (w‘itﬁout serious loss’of
concurrency).? The serializer and momtor constru(;ts both protuct the underlying
resource by controlling concurrent access to tt, psrowdmg that the only access is through
the serializer or monitor. The senahzer comtmct further protects the underlying
resource by allowing the programmer to prevent 'wccss*to the resource except through
;h,e serializer. This protection can be achieved with momtots by having a data
abstraction encapsulating a monitor, such that both the resource and the monitor can
only be accessed through the data abstraction.. Our prcferencels to provide this

appearance through a single construct.

The serializer construct allows possession of tﬁc sgnalucr object to be relcased
and regained in a controlled manner within a serializer opcml,i(m In the monitors
presented in [Hoare 74] there is no such pmvnsmm l-ﬂ an. um.nsmn to monitors

[Lampson and-Redell 79] it is possible to write operations !ha& &ﬁmt feqmrc poussession

8. A comparison of an carlicr version of serialiZers with: moniters appears in jHewitt ard Atkinson 79].
An evaluation of serializers, monitors, and path expressions appears in |Bloom 79|

9. Extensions which alleviate this problem have heen made for the monitors  presented in
|Lampson and Redell 79)



of the monitor. This allows an operation to be written that requires possession of the
monitor only for patts of the operatlon These protected parts are required to be
mvocatrons of monitor operatrons that requrre possesslon This soluuon IS shghtly more

complicated to use than the serlahzer jom statement but is otherwrse srmtlar

Serializers use explicit guarantees at the point in the procedure: where a
process walts ona queue That guarantee is true when the process proceeds (provrdmg
that removmg the process from the. queue did not change the guarantee) Momtors also
have ﬁrst—m ﬁrst-out queucs (called condmans) but the expressrons that determine
which queues are o be serviced next are dastribttwmwgheut the various procedures

of the monitor, which complicatcs the verification task.

As mentioned briefly above, there is a. basic. difference the use. of queues in
- monitors and serializers... Processes in. the same queue in scrializers can be waiting for
different guarantees. Altheugh the same cffect.can be achigved in monitors, it usually

requires extra code to do so, and is difficult to write and understand. -

I"he SLI‘I.lllILI construct, like the Ll U cluslcr consutut suppurts sets of
()b_]LCls bt.lun;,mg {0 an ubstmct type lhe mumtura proposo.d in [Huarc 74] tend to
suppon onc-of-a klnd encapsuhruon l‘hrs d| I'ﬁ,rence is more a rcﬂettum ol‘ the base
I.m;,ua;,e used tlmn a hasu dlffcunce bctweut sumh/ers and momtors We rmntmn

a ', .

this dtﬂerence because we beheve that supportmg, sets ol‘ Objt.Clb is a better chorce o

make, since there is more potumal Concuuency ina sybtem wherc ddld is pdltlll()m.d

into separate objects.



2.7 Opportunities for optimization

One objection that might be raised to serializers is that they are inherently
inefficient: at every release of possession the queues must be checked to determine
whether the condition at the head of each ‘queue is satisfied.1 For this objection we

have two answers:

1: 1t is unlikely that the evaluation of such conditions will be expenswe
compared to the execution of resource operations. :

2: In the event of the guarantee checking being a significant cost in a
. program, optimization. tecbnuwes are especially: wphca&e in this limited.
context.

As an example of how we might optimize the chécking of guarantees, consider
the FIFO example. When a writer leaves the writérs erowd, it is casy to prove that both
the readers and writers crowds are empty. This knowledge allows an optimizing
compiler to immediately dequéne the next transaction in-the quene (if any) whenevera .
' writc’r compldcs. In such a case, no guarantee cval_uatioq takes place. When a reader
leaves the rcaders crowd it is casy Lo prove that tt;c '-wrilérs ‘cmwd 1:. sﬁll cmpty, which
- allows the compiler to simply chu.k lhc hcad of th«, quwu for a rc.tdu lhus .wmdmg
any more complex cvaluation. thncvcr a wnlu juma thc wmus crowd all Ummmws
arc known (o be false, and do not nu.d to be chcckcd at all. In shnr( we have shown

that intermediate steps of the fvcnﬁcuuon program c;m fead to sufﬁmcm information to -

10. A similar objection is actually raised in {Hoare 74, p. 556].
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perform optimizations that can significantly reduce overhead for checking guarantees.

We have advocated designing, verifying, and implementing serializers and
data abstractions independently. This independence can lcad (especially in CLU) to
many levels of procedure calls, where each procedure performs an extremely small part
of the computation. When the overhead for procedure calls costs on the same order as
the rest of the computation, it becomes desirable to substitute the bodies of procedures
for their invocations [Atkinson 76, Scheifler 77]. For serializers in the style we have
advocated, it is generally both simple and beneficial to perform this substitution. We
note that the simplicity of the substitution is greatly aided by our initial requirement

that the scrializer present the same interface as the underlying resource.
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3. Semantic Model

In this chapter we: present an abbreviated semantic. model for concurrent
execution of programs, and use.it to define serializer semantics. In the next chapter, we

use the model to define a small specification language for serializers.

The semantic model we use to define serializers is intended to be embedded .
within a larger semantic rrrodel, just as ;ﬁe seﬁalizer corlstruci is ‘émbeddéd irra larger -
programming language. We will not be concer-néd in’iTtially wi;h'\ivﬁiéh iarger model is
used, although we will return to the issue later. Whyétever Izrrger model is used, there

must be sdpport for shared objects, side-effects, and concurrency "

We will first give an overview of the semantircmodel for serializers, assuminga
particular larger semantic model. Then we discuss the various components of he
model in detail. Then we give the meaning of the serializér construct by giving
predicates that all scrializers must satisfy. Finally, we discuss the role of inductidn in
the serializer model, and outline how the model might be embedded in a different

larger semantic model based on message-passing between processes. -



3.1 Overview of serializer semantics

Informally, the text of a ‘scrializcr is a set of stzrtements that describe ‘what
happens when serializer opemtrons are executed ina system wrth concurrent processes '
To give the semantics of the serlalrzer construct, we requrre a deﬁmtron of 'serializer
operations”, a definition of "execution”, a definition of "pgocess”, and a deﬁnition of

"what happens".

The modet we choose can be viewed as an irrterpreter‘ Each proccdtlre is
represented by a graph composcd of basic mstrucuons that mdlcate whrch actrons to
perform and arcs between the mstrucuons to mdrcate the order of execution. Thcre isa
globat state;consisting of a set of shared objects.and.a set of processes. Each process has
a local state, which includes a set of local objects, a stack of procedure activations, and a
program counter that indicates the instruction that-the process is to execute next. Each
instruction represents some basic action. Executing an instruction modifics the global
or.local state. The execution of an instruction always indicates the next instruction in
the process by modifying the program:counter. A process where the next instruction is
pernisted tooecur is called active. - Executing.certain instructions may cause a progess 1o-

become inactive until certain conditions hold.

For simple scrializers, the only components of the global state modelled are
the state of the queues and crowds for the serializer object, and the state of serializer
possession. The only component of the local state modelled is the program counter

within a serializer operation.



The interpreter proceeds by choosing an active process, and executing the
instruction indicated by the program counter of that process. Although the choice of
process is non-deterministic, no process that is active may be indefinitely denied

execution, We call the sequence of instructions executed by the interpreter a history.

“We can give the semantics of this informal modet through a predicate that
takes a history, an initial global memory state, an initial set of processes (and their local
~states), and a set of graphs representing the procedures in ‘the system and returns a
boolean indicating whether the history could be produced bg the. mterpreter we have

described. We will call this pn,dlcate the global legality predlcale

In this thesis we are discussing a single fanguage construct. - in this context,
presenting a complete definition for a language would occupy more space and attention
than it merits. The semantics of a language construct can be defined through-a partial
legality predicate that partially. determines the global -legality predicate. For the
scrializer construct, this predicate 'is. false for ‘Historiés that are prohibited due to
serializer semantics, and truc for others. 'We will not present a definition: of a larger.
language, nor formally state the. interactions between: the serializer construct and the

other kinguage features.



3.2 Nodes

In defining what is meant by "execution of scrializer operations”, we first need
to define a representation for an operation and its assocmed data. Since we are dealing
with only one serializer object at a time, it is convenient‘. toregard the seria_lizer
operationsrand the scrializer object as being inextricably bound together into a single
unit. For brevity in this chapter, we:will use the term serializer object to refer to this

unit.

Each serializer' operation (bound to an- assmated serializer ObjLCt) is
composed of nodes. A node is just (mformally spc,akmg) an mstructlon at some location
in a program with |ts qssocmted data. A node graph is uscd to represcnt a serializer
operation, where the arcs in tht, gmph reprcsent sequentlal exccution. For simple
serializers, the node graph is degenerate, since there is a hnear mdu to the nodes We

have used the term graph to case the discussion. of extensions to this model.

The following kinds of nodes are involved with synchronization in a simple

scerializer. Atsuch a node, possession of the serfalizer object: may be gained or released.

enter (operation_name(formal_arguments)). 'This  nade - represents - the
initial entry to an operation that requires possession of the serializer
object.  After this nod«. is ucgculud lhg, cxccuunt, procuss has
possession. ‘

exit: This node represents the cpilog to an operation that requires
possession. Executing this node releases posscssion.



enqueue (queue, guaraniee). This node represents the first part of an
enqueue statement. Executing this node places the process in the
specified queue with the specified guarantee and releases possession.

dequeue (queue, guaranice): This node represents the:second part of the
enqueue statement.  Executing this node regains possessmn and
removes the executing process from the queue.

join (crowd): This node represents the start of the join statement.
Executing this node places the process.in the crowd and releases
possession.

leave (crowd):. ‘This node represents the end of the jein statement.
Executing this node regains possession through the external queue
and removes the process from the crowd. :

The following kinds of nodes are used for other primitive actions that can
occur in a simple serializer. |
invoke (invocation): This node represents: the termination of cxecution of

the specificd invocation. For simple serializers it will only appear
once, and must appear in the body of a join statcment.

return (invocation): As with the invoke node, the return pode represents

~ the termination of exccution of the specified invocation.  Exccuting

the return node also- designates the object to bL n.lumcd when the
 seriufizer opu‘ulmn 1cmnmﬁeszﬂ lhcexlt‘mde RS

The use of invoke and return nodes in‘Simpfc scrializers is limited to showing where the

opcrations of the underlying resource are called.



Each node N has the following structure:

* N.kind - an identifier (one of enter, exit, enqueue, dequeue, join, leave,
invoke, return) indicating the kind of node.

* N.next - empty for exit nodes; otherwise the next node in the execution
sequence. Note that the next node for any return node is an leave node if
the return is performed while in a join statement, otherwise the next node
is a leave node.

* N.mob - for enqueue and dequeue nodes, the queue used; for join and
leave nodes, the crowd used; otherwise empty.

* N.expr - for enqueue and dequeue nodes, the condition to guarantee; for
return and invoke nodes, the expression to evaluate; for an enter node,
the operation name and its formal arguments; otherwise empty. Note
that for an invoke or return node the information about which procedure
is executed and which arguments are used is contained in the expression.

* N.match - for an enqueue node, the corresponding dequeue node; for a
join node, the corresponding leave node; otherwise empty.

The transformation of a serializer operation to nodes will be given by example.
Supposc we have the following operation in a scrializer:

change = proc (x: cvt, d: data) returns (value)
enqueue x.q until crowd$empty(x.c)
join x.c
return (resource$change(x.r, d))
end
end change
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The node graph for the above operation can be represented as:.

N1:
N2:
N3:
N4 :
N5:
NG:
N7:

enter (change(x, d))

enqueue (x.q, crowdSempty(x.c))
deqlleue (x.q, crowdSempty(x.c))
join (x.c)

return (resource$change(x.r, d))
leave (x.c)

exit

In the above graph, Nl.next = N2, N2.next = N3, and so on; N7.next is

empty. The queues, crowds, and expressions are indicated.

N2.mob = N3Imob = xgq

Ndmob = N6mob = xc

N2expr = N3expr = crowdSempiyx.c)

The reader should be cautioned that the ‘des)éription we have given for nodes

and node graphs 'is mcomplute We have not dISCU$€d condmonal statements,

assignment, exceptions, or iteration. In later chaptefs we wnll describe how extended

node graphs would be handled.
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3.3 Events

Informally, an event is the completion of exccution of a node in a process. For

our purposes, the important features of an event are:

* An event is atomic. An event takes no time to occur, although the
amount of time between events is always positive and finite.

* An event is associated with a single node of a serializer.

* An event is associated with a single "process”. We assume that the reader
has some intuitive idea of process. We will introduce a more exact
definition of a specialization of the process notion in the next section.

[t has been proposcd [Greif 75] that an event is a state transition. The state of
a simple seria'izer consists of the state of the scrializer queues (not including the
external queuce), the state of the serializer crowds, and the state of the serializer
possession. Only the simple serializer events (enter, exit, enqueue, dequeue, join, leave)
change the state of possession. Changes in possession that do not alter internal queues
or crowds result from enter and leave ¢vents. Changes to internal queues result from
enqueue and dequeue cvents. Changes to crowds result from join and leave cvents. We

will return to this point in a later chapter.

In a full semantic model we would have to show where an invocation started
and where it terminated.  For simplicity, we have chosen to not represent the event that
marks the start of an invocation. 'F'he invoke and return cvents are sufficient to indicate

where the resource operations are called, which is all that we need at this point in our
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discussion,

A dequeue cvent marks a change in state of the indicated queue, and a change
in the possession of the serializer. A dequeue event for some process will not occur until
after the corresponding enqueue event, and not until that process is at the head of its
queue and the guarantec evaluates to true. The evaiuatlon of guarnmees takes place
immediately prior to every event that releases posessmn (enqueue join, and exit events
release possession). For any event E that releases posscssion, we will assume that
evaluation of the guarantces takes place between E and the serializer event immediately
preceding E. For simplc serializers, where the guaramec;_i are ,l.imitgd’iq,‘sidéreffect free
evaluation of expressions involving the scrializer state, no furthef events need to be
introduced to represent the cvaluatlon of guarantces. If more mvolved exprcasuons are

allowed events represcmmg such evaluatlon muv‘ be mtroduced.

14 Transactions

For a serializer, a transaction is a sequence of 'serializcr events that occur for
some process in the execution of a serializer operation for some scrializer object. ‘The
order of events in a transaction is the same as the order in which those ¢vents occur in
the excecution of the serializer operation. Fach enter cvent for some serializer object is
the rﬁrst cvent in some transaction, and cach exit event is lh«. kst cvent in some
transaction. We assign a unique rransaction identifier at the occurrence of an enfer -

cvent,



A transaction may also be viewed as a segment of a process. There may be
many transactions involving a scrializer object for any particular process, but a
transaction can only belong to a single process. The intent of transactions is to capture
only the amount of dctail about a process necessary to define serializer semantics.

Where we formerly used the term process, we will now use the term transaction.

Now that we have identified events as being associated with transactions and
nodes, it is notationally convenient to give events a structure. Each event E has several

components:
* E.trans - the transaction identifier for the event.

* E.node - the node associated with the event.

* E.kind - the same as E.node.kind.

We can associate posscssion of the serializer object with a transaction by
noting that if there have been more gaining than releasing events for some transaction
in some finite history (the difference can only be 0 or 1), then the transaction has
possession of the scrializer from the last releasing cvent for that transaction up to the

last event in that history.
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3.5 Histories

For a sermhzer‘ a history is a sequence (poss:bly infinite) of events that
represents all events that occur for a partlcular serlahzer object For a given serializer
object, there are mf nitely many p0551ble hlstones dependmg on the requests sent to
that senahzer objcct and on the arbltrary choices poslble in selectmg dequeue events

when several queues are ready.

A history can be viewed as being some interleaving of the transactions
involving a serializer object. Every event in a history also beloth to some transaction.

The reverse is not true, our model includes histories with incomplete transactions. -

Scrializer scmantics is defined by stating which' histories-can be produced for
any given serializer object. We define a predicate that, given a representation of
serializer code and a serializer history, will be true i and only if the history could be
produced by the seri;nlizer. A hismry:that 59“%!‘_“?,‘59‘_3(‘3‘,“9?59 i:s ealleq a legal history
for that scrializer code. A more complete deﬁnitioﬁ kof>aileg‘z.|l :}bi‘su()‘r_y Qcc;urs‘ later in this

chapter.
We assume that the following functions are defined on 'scrializer histories:

Finite(H)
is true if the history is finite; olhermsc false.

Size (H)
returns the number of clements in H if H is finite; otherwise .is
undelined. '



Index_set (H)
if H is infinite, returns the set of positive integers; otherwise returns
the set of integers {N | 1 <= N <= Size(H)}.

Nth (H, N)
returns the Nth element of H if N € Index_set(H); otherwise is
undefined.

Head (H, N)
returns a prefix of H that is the first N elements of H, provided that
N € Index_set(H); returns the empty sequence if N is 0; otherwise is
undefined.

For simplicity, we have chosen to model only those operations that accept a
serializer object as an argument. We assume that the serializer object is initially in some
initial state, such as that obtained by cxccutingvits create operation: the resource object
is in its initial state, no transaction has possession, and all queues and crowds are empty.
The model we have presented is only sufficient to represent operations where
possession of the scrializer object is gained. For example, the FIFO serializer presented
in the previous chapter has three operations; the model we have presented is only

sufficient to represent two of them: read and write.



3.6 Definitions

Predicates will be defined in a dialect of first-order predicate calculus.
Functions are defined using a similar syntax, but avoid the use of quantifiers. We call

this language the definition language, and will refer to it as such in latcr gchapters.

‘Many of the fqllowing definitions are m(()’ryegqsily ¢xpressed:if we have a
notation for conditional expressions. The expressm “if X thenY } eisc:Z" is taken to be
Y if X is true (even if Z is undefined), and Z if X is false (even if YIS undefined), and
undefined if X is undefined. We also use the "elseif" extension to this notation,‘ as in
CLU, to allow convenient syntax for multiple cases. 1n cases where the “else” clause is
omitted, "else true” is assurited (which implies that only boolean conditional expression

may omit the “else” clause).

~Many of the functions and predicates given below are defined only for finite
histories. 1n our definitions, these functions and predicates are never applied to in finite

histories, so there is no need to define them for those cases.
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Event E occurs in history H if there is some integer index N such that E is the
Nth event of H. Event E1 precedes event E2 in history H if both E1 and E2 occur in H,

and the.index where E1 occurs is less than the index where E2 occurs.

Occurs (E, H) =
31 € Index_set(H): E = Nth(H, I)

Precedes (E1, E2, H) =
31, J € Index_set(H):
I <J & El = Nth(H, I) & E2 = Nth(H, J)

Note that we have assumed that an event can only occur once in a history. This is

implicd by later definitions.

As a notational convenience, we introduce. the predicate Same_trans(H, [, J),
which is true if the Ith and Jth events in history H are from the same transaction. The

predicate is undefined if the integers | or J do not belong to Index_sct(H).

Same_trans(H, 1, ) =
- Nth(H, I).trans = Nth(H, J).trans
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We often nced to express the idea that a particular event, or all events for a

given node, cannot occur between two given events.

Excludes (El, E2, E, H) =
Precedes(E, E1, H) | Precedes(E2, E,H) |E = E1 |E = E2

Excludes_node (E1, E2, N, H) =
v | € Index_set(H):
~if Nth(H, I).node = N
then Excludes(E1, E2, Nth(H, 1), H)

A slightly more complicated predicate will be needed to specify a more
general  exclusion predicate  (to  be | uéed - in la;er- | chaptérs).
Node_excludes_node (N1, N2, N, H) is true iff no event for a given node N can occur
between any two -events El and E2, where Elinode = N1, E.node = N2, and

El.trans = E2.trans.

Node_excludes_node (N1, N2, N.H)=-
v L) € Index_set(H):
if ( Nth(H, D.node = N1
& Nth(H, J).node = N2
& Same_trans(H, 1, J))
then Excludes_node(Nth(H, 1), Nth(H, J), N, H)

Intuitively, Node_excludes_node(N1, N2, N, H) expreosses the restriction that no event
generated by node N occurs between events generated by nodes N1 and N2, where the

cvents from N1 and N2 belong o the same transaction.
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We are often interested in the last event of a finite history, or in a history that
lacks only the last event of a given finite history. The functions Last and Front are used

for notational convenience.

Last (H) = Nth(H, Size(H))

Front (H) = Head(H, Size(H) - 1)

Certain events gain exclusive possession of the serializer, while other events
release possession of the serializer. Still other events do not change possession.
Gains(E) is true only if the cvent E gains possession, while Relcases(E) is true only if E
releascs possession,

Gains (E) =
E.kind = enter | E.kind = leave | Ekind = dequeue

Releases (E) =
E.kind = exit | E.kind = join | E.kind = enqueue
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A finite serializer history is busy if its last event gaincd posscssion of the
serializer, or if its last event did not release the serializer and the history before that

event was busy.

Busy (H) =
if Size(H) = 0 then false
elscif Relcases(Last(H)) then false
else Gains(Last(H)) | Busy(Front(H))

The functions Qsize and Csize return the number of transactions using a

queuc or crowd given the queue or crowd and a finite history.

Qsize (Q,H) =
if Size(H) = 0 then 0 ,
elseif Last(H).kind = enqueue & Last(H).mob = Q
then Qsize(Froni(H)) + 1 o
clseif Last(H).kind = dequeue & Last(H).mob = Q
then Qsize(Froni(H)) - 1
else Qsize(Fron(H))

Gsize (C,H) =
if Size(H) = 0then 0
clseil Last(H).kind = join & Last(H).mob = C
then Csize(Front(H)) + 1
clseifl Last(H).kind = leave & LasttH).mob =C - - -
then Gsize(Front(H)) - 1
else Csize(Front(H))
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In certain serializer specifications, the rank of an event is ‘important. The rank
of an event E is an integer that represents the order of E relative to other events
occurring at E.node. The first event to occur ata node has rank 1, the second has rank

-2, and so on. The rank of an event that does not occur in a h:story is 0.

Rank (H, E) =
if Occurs(H, E)
then 1 + Rank_scan(H, E, 1)
else 0

In defining Rank, we made use of Rank_scan(H, E, ), which returns the
number of events occurring in H at or after event Nth(H, 1) and before E with the same |

node as E.

Rank_scan(H,E, I) =
if Nth(H, I) = Ethen 0
clscif Nth(H, 1).node = E.node
then 1 + Rank_scan(H, E, 1+ 1)
clse Rank_scan(H, E, 1+1)
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3.6.1 Evaluation of guarantees

Whenever a serializer is released, the guarantees of the non-empty queues are
cvaluated. The following functions define such evaluation given a finite history and an
expression to be evaluated. The notation {G} is used to represent the expression G
occurring in serializer code, and distinguishes the expression from our definition

notation, since the syntax for expressions and definitions is often similar.

Eval is defined by cases, each case being based on the syntax for boolean
expressions. For simple serializers, Eval returns a boolean value, since guarantees are

limited to boolean expressions involving tests on the emptiness of queues and crowds.
Eval (H, {G1 & G2}) = Eval(H, {G1}) & Eval(H, {G2})
Eval (H, {G1| G2}) = Eval(H, {G1}) | Eval(H, {G2})
Eval (H, {~ G}) = ~Eval(H, {G})
Eval (H, {crowd$empty(C)}) = Csize(Var({C}), H) = 0
Eval (H, {queucSempty(Q)}) = Qsize(Var({Q}). H) = 0
Eval (H, {falsc}) = false
Eval (H, {truc}) = true
The Var function (in Var({Q}) and Var({C})) is a mapping from syntactic

expressions for queues and crowds to some semantic representation for queues and

crowds. We require that the mapping produced by Var is the same mapping that is
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used to produce the N.mob component of any nede N in the history H.

The above definition of Eval is tailored to the needs of defining the semantics
of simple serializers. There is no provision for local variables, which would be
transaction specific. There is no provision for guarantees with side effects, exceptions,
or non-termination, which would require the use of events to mark the state transitions.

Further, such provisions would also complicate the definition of the Var function.

3.6.2 Legal histories

A history is legal if it can be produced by some execution of a serializer.
Legal(H, S) takes a history and a set of nodes that represe’ﬁt the code for a serializer,
and returns true if the history could have been produced from the serializer code. A
legal history must be composed of legal steps. That is; each prefix of the history can
only be followed by an event thatA represents a permitted state _tra,nsitjon of the

serializer.
For a finite history H to be legally followed by the event E; the followiag rules

must be satisfied:

* For E to gain possession of the scrializer, then there can be no transaction
in possession of the serializer (~Busy(H)).. '

* If there is a transaction in possession of the setinlizer, théit' E must'belong
10 that transaction,
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*If E is a dequeue event, its transaction must: be at the head of its queue
and the guarantee must be true.

* If E is an enter or leave‘event, there may be no queue§ stich that the front
transaction in the queue has a true guarantee, . :

* All events from a single transaction must occur in the order dictated by
legal execution of the code for the operation executed by that transaction.
In pamcular an enter event must be the first event in its transaction.

Note that there are no restrictions explicitly involving join and exit events. The only
restrictions that we impose for these events are expressed by the requirement for "legal

execution” of the node graph.

The above conditions lead to the . fo_l»l{owing definitions of Legal and
Legal_step, where H is a history, and S is 1he~se;pf enter nodes _for the operations.of the -

serializer that require possession.

legal(H,S) =
v N.({ Index_set(H): Legal_step(Head(H, N-1), Nth(H, N), S)

Lepal_step(H.E, S) =
( (if Gains(E) then ~Busy(H))
& (il Busy(H) then-Last(H).trans = E.trans)
& (F.kind = dequeue D-ng,nl degueuc(H, E)) .
& (if EXind = enter | EXind. = Iéavc lhcn None rcady(H))
& Legal_tramsaction_step(H,E) o :
& (F-kind = enter D E.node € Nodes(S)) ) . -



The event E is a legal dequeue event afier the end of history H if the guarantee

is true, and the corresponding enqueue event is is at the head of its queue in history H.

Legal_dequeue (H, E) =
( Eval(H, E.expr)
& 31 € Index_set(H):
( Nth(H, 1).node.next = E.node
& Nth(H, I).trans = E.trans
& Head_enqueue(H, 1) ))

The transaction for the enqueue event Nth(H, 1) is at the head of its queue if
Nth(H, I) is the last event in H for the transaction, and every other enqueue event

occurring in H before Nth(H, 1) has a corresponding dequeue event.

Head_enqueue (H, ) =
( In_queue(H, 1)
& v J € Index_set(H):
if J <1 then ~In_same_qucue(H, [, J))

In_queue(H, ) is truc only if Nth(H, 1).is an enqueue event that is the last event in H

for its transaction.

In_queue (H, 1) =
( Nth(H, D.kind = enqucue
& v J € Index_sct(H):
if 1> I then ~Same_trans(H, 1, J))



In_same_queue(H, I, J) is true iff Nth(H, I) and Nth(H, J) arc enqueue cvents that are

the last events in their transactions and the transactions are in the same queue.

In_same_queue (H, 1, J) =
( In_queue(H, 1)
& In_queue(H, J)
& Nth(H, 1).node.mob = Nth(H, J).node.mob )

None_ready(H) is true if for a particular finite history therc is no explicit
serializer queue such that the front transaction in the queue has a guarantee that
evaluates to true. This predicate is used to define the priority of explicit queues over
the single external queue of a serializer.

None_ready (H) =
v | € Index_sct(H):

if Head_enqueue(H, 1)
then ~Eval(H, Nth(H, 1).node.expr)

An event E can be a legal step after some history H only if it can be produced
by scquential execution of some transaction. There must not be an event in H with the
same transaction and the same node as E; and if E is not an enter node, then there must
be an cvent in H from the same transaction as E that results from exccuting a nodce for

which E.node is the next node.
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Legal_transaction_step (H, E) =
(v | € Index_sct(H):
(if E.trans = Nth(H, ).trans
then E.node # Nth(H, I).node)
& ifEkind = enter
then 3 1 € Index_set(H):
( E.trans = Nth(H, I).trans
& E.node = Nth(H, I).node.next) )

3.6.3 Complete histories

The set of legal histories for a serializer includes historics where transactions
have been staned but not completed. Any finite legal hist’o‘fyr;w‘here the seriatizer state
requircs further events to occur is termed incomplete. - Aﬂ‘é‘othcr :Iegalr hfsterics are
complete. A complete finite history is one where no further events are required to

occur. Events are required to occur according to the following rules:

The serializer specification language will be interpreted as defining
specification predicates on complete histories.  Scrializer code is said to mect its
specifications if the specification predicates are true for every complete history of that

code.
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For a complete history, all events that are required to occur in the history must

occur.

* Whenever a releasing event occurs and there are ready queues, a dequeue
event from one of those queues is required. Therefore, if H is finite, and
the last event in H released possession, then H is only complete if no
queues are ready.

* For every event that gains possession of the serializer, a corresponding
event that releascs the serializer is required. For simple serializers, every
gaining event will be followed by a releasing event. Note that this
condition implies that if H is finite and not empty, then Last(H) was a
releasing event.

-

* For every join event, a corresponding leave event is required. We assume
that cvery operation of the underlying resource used in a join statement
will terminate. Such an assumption is part of a modular proof of
termination for programs involving serializers.

These conditions lead to the following definition for Complete, where H is a history for
some scrializer, and S is the set of enter nodes for operations of that scrializer that

require possession.,

Complete (H, S) =
( Legal(H, S)
& (if Finite(H) then None_ready(H))
& Gain_complete(H)
& loin_complete(H) )
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Gain_complete(H) is true if for every gaining event there is a corresponding

releasing event that occurs after the gaining event.

Gain_complete (H) =
v | € Index_sct(H):
if Gains(Nth(H, 1))
then 3 J € Index_sct(H):
Corresponding_release(H, 1, 1)

Corresponding_release (H, 1, J) is true if Nth(H, J) is the releasing event that
corresponds to the gaining event at Nth(H, I). A releasing event corresponds to a
gaining event if both cvents are in the same transaction, and there are no intervening
relcasing events for the same transaction.

Corresponding_releasc (H, 1, J) =
( Release_follows(H, 1, 1)

& v K € Index_sct(H):
if K <J then ~Release_follows(H, 1, K) )

Release_follows (H, 1, 1) is truc ifT Nth(H, J) is a releasing event that follows

the event Nth(H, 1); and belongs to the same transaction as Nth(H, 1).

Release_follows (H, 1, ) =
[ <J & Same_trans(H, 1, J) & Releases(Nth(H, J))
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~Join_complete(H) is true if every join event has a corresponding -leave event.
A leave event corresponds to a join event iff it-belongs to: the same: transaction as the

join event and there are no intervening leave events for the same transaction.

Join_complete (H) =
v I € Index_set(H):
if Nth(H, I).kind = join
then 3J € Index_set(H): Y
( Leave_follows(H, 1, J)
& v K € Index_set(H):
ifK<J
then ~Leave follows(H L K))

Leave_follows (H, 1, J) is true iff Nth(H,J) is a feiﬂé’cvent'that’ foltows the
cvent Nth(H, 1), and belongs to the same transaction as Ntb(H, l_)_.A_

Leave_follows (H, 1, ) =
I < J & Same_trans(H, l .l) & Nth(H, J). kmd Ieave

3.7 Serializer Induction

In CLU, acluster that implements a data type docs so by provndmg opcmlums
that manipulate objects of a representation type. for. chry .tbstmcl objcct lhurc is a
representation object. In designing and verifying clusters, it has been found to be
usclul to make use of a representation invariant [Guttag, Horowitz and Musscer 78] that
must hold for all objects supported by the cluster. This representation invariant should

be true whencever a representation object is created, and it should be maintained by all
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operations.

To prove that the representation invariant holds, we need to use induction oh
the sequence of operations performed. The induction principle we use is that if P is
true at the start of the abstract object’s lifetime, and assuming P for an object at the start
of an operation implies t-hai P is true at the end of the operation, then P is true of that
object before and after every operation. As in [Guttag, Horowitz and Musser 78], we

will call this dara type induction!

To show the soundness of data type induction, we need to show that if P is
true of an iject after any operation of the clust;e;:'g.a tben P;strue of the object before
any other operation of the cluster, provided that tﬁcre were no intervening operations
of the cluster. Informally, to use data type induction using some predicate P, it should
not be possible for actions of other programs to-make P invalid. It ls poésible in CLU to
write clusters such that data type induction can be used to prove recasonable predicates
about their objects. A cluster with this property is suid to have an isofated representation
[Atkinson 76]. While the cluster construet is mot strictly ‘necssary if one wishes to-use -

dida type induction, it facilitates the determination of an isolated representation.

As presented in this thesis; the serializer conétiuct is quite similar to the cluster
construct. Both can implement abstract types, and both do so By'manipulziting objects

of a rcpresentation type through operations that can have sole access to the

11. Also know as generator induction in [Wegbreit and Spitzen 76).

-0 -



representation objects. Since serializers provide the same kind of representation

protection as clusters do, we can use data type induction, in part, to verify serializers.

We call the application of data type induction to histories serializer induction.

For any complete history H, serializer induction can be expressed as:

if
( P(Head(H, 0))
& v 1} € Index_set(H):
(if (Gains(H, 1)

& Corresponding_release(H, 1, J)
& P(Head(H, I-1))
then P(Head(H, J))))

then

v K € Index_set(H):
if Gains(Nth(H, K)) then P(Head(H, K-1))

The predicate P is intended o be defined on finite histories where no transaction is in

possession of the scrializer at the end of the history.

History induction is applicable for any serializer where the predicate P owill
hold from the event where possession is released to the next event where possession is

gained. We can express this condition as:
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v I,J € Index_set(H):
if ( Gains(Nth(H, 1))
& Releases(Nth(H, J))
& Nth(H, J).node.next = Nth(H, 1).node
& P(Head(H, J-1)))
then P(Head(H, 1))

We call this the isolation condition. Just as the cluster construct facilitates but does not
fully enforce an isolated representation, the serializer construct does not necessarily

enforce the isolation condition.

The serializers we will be specifying and proving satisfy the -isolation
condition. In view of this, there is no provision in the histaries for events that occur
external to serializers. We have not provided for situations that we have been.unable to

prohibit in the programming fanguage, but believe to be bad practice.

An example of serializer induction is the use of a reprcsenta_;ion invari;mt fqr
the FIFO readers-writers problem presented in the p\rgvigus chap_ter.' A simple
invariant for an object X of type rep for any finite history H is:

Gsize(X.re, H) = 0] Csize(X.we, H) = 0

While this invariant is not the strongest we can prove, it is a useful property that can be

proven simply.
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As a reminder, the code for the read operation is (briefly):

enqueue x.q until crowdSempty(x.wc)
join x.rc; ... end

while the code for the write operation is:

enqueue x.q until crowdSempty(x.wc) & crowdSempty(x rc)
join x.wec: ... end ,

Informally, we can prove the invariant by cases. First, suppose that we have

C1 = Gsize(H, X.rc) > 0 D Csize(H, X.wc) =
C2 = Csize(H, X.wc) > 0 D Csize(H, X.rc) =

where the history prefix is. understood. Since Csize always: resulis in a non-negative
integer, the condition C1 & C2 implies the invariant. Initially, ‘both erowds are empty,
so: the invariant is trivially:true. To prove Cl, we-assume that €l is true immediately
prior to some gaining event, and show that-it js- maintained. immediately after any
releasing event. An examination of the code shows that the only sequence of events
that cﬁh ihéréziSé “Csize('X we) is whefe';()me wnter ;dc,q'uéu:cs and pms >the writer crowd.
Therefore, the only way that Cl could be false is to d“OW some wnter to dequeue when
Gsize(X.rc) > 0. However, the guaramu, for the wﬁtcr transactmn prohibits the event
from occurring until Csize(X.rc) = 0. 'Thercfore, Cl1 is-.-maima'mcd. Condition C2 is

proved similarly. Therefore the invariant is maintined. . -
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3.8 Comments on enter and leave events

One simplification made in the model is based oh the use of enter and leave
events. A reasonable requirement on enter events is that they will occur if they have
been requested. The only requirement that we have on leave events is :th'at':they‘ will
eventually occur if the corresponding join has occurred. Yet after completing the
resource operation, the leave event must be requested, since some other transaction may
be in possession. The simplification we have made is not to represent requests fo;_'enter

or leave events as separate events.

One requirement that this places on serializers is that code executed while a

transaction has possession of the serializer must terminate, since otherwise a request for
A R T

possession could not be satisfied. Termination while in possession is trivially satisfied

for simple serializers.

We have also assumed that there is some schcdulmg dlsmplme on requests for
possession of the serializer so thal a rcqucst for an enfer or leave «.vcnt will not be
forever dclaycd by olhc.r such requests. A HFO dm:plme on .nll such requcsts may be
overly strict in some sysluns and we do not rcqum |t Any dl&ClplInL that g,uamntu.s
service to qulILbls for possu»slon wﬂl b«. SdlledClOl’y WL makt, no atlcmpt (0 provu this

requircment in general.

Adding specific events to the model to indicate when enter and leave events
have been requested is only necessary to represent undesirable cases such as

non-termination while in possession, or a pathological scheduler. Further, it is not
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reasonable to include such events in the specifications-or proof techniques, since their

order of occurrence is not affected by possession of the serializer object.

[

3.9 Message passing semantics

The model we have presented in ‘this chapter has been deliberately
incomplete. The larger semantic model we have assumed uses procedure cafls and
processes, and is well-suited for describing the use of serfalizers in a system where
multiple processes communicate through shared memory. While “having a certain
intuitive appeal, particularly to those familiar wnth moni;ors, the techniques we-have
uscd (and will use) are appvlic‘able when a v‘larg:er‘p‘rogrétvnming »lianguage and larger

semantic model arc used.

In this section we will sketch a model based on message passing. Such a model
- has been proposed by vanous peop!e [Greif and HLWItt 75 Hewitt and Baker 77,
Good, Cohen and Kecton- Wllhams 79] A mmllar modcl is uscd to descnbc distributed
systems [Svobodova, | lSkOV and Clark 79 | lskov 79] WL behcvc lhal the structurc of
serializers is quite uscful in or; ;,amzmg progams m lhw, dlsmbutcd 3ystum .md will
address some furthu implications of scrmh/us in smh an mvnmmmnl in our

conclusions.

ln the mcssagc-pa%mg modd %pamu c.nullcs commumcalu by passing
messages rather lh.m by sharmg memory among nmny pfoccsscs OI course, whm (Iu
same physical entity rucuvcs MICSSages frnm various sourccs, lh«. uﬁut of a shan,d

memory is achicved. We can think of a scn.m/cr nbjut as one such entity, the resource
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object as another entity, and the originators of messages to the serializer as other
entities. In such a model, serializer objects are message switchers: They affect when a

message gets passed to a resource, but not the message itself, nor its reply.

- We.imagine that scnahzers are used in ar programmmg }anguage that supports
a logical network, where there are logical sites, each of wluch has |ts own local objects
Each site can communicate with another site only by sending ni'e'ssziges to that other
site. We assume that each site can send messages to any ether site without regard to
physical connectiéns. ; Unlike physical sites. in a nctwarklogncalsucs can: be freely

created at retatively low cost, up to the limitations of thé' implementation.

“In such a 'légical n,etwork;‘eac‘h’ semhzernlmc; ts:a st_paratesue Further,
cach resource object is a séparat.g site, Instcad ‘of" saymg th’:itwil process is executing
serializer code however, we say that a site executes code! fm! smm transacnon Local
variables are zmsocnau,d with-. the tmnsactm and reyrcseﬂtauon components are:

associated with the site.

I‘Iu l‘ollowmg descnplmn of the seriglizer coastruct: in-a message passing
model gives an outlmc of an abatmct m;plumunmtmn for scnallzus. Al serializer ubject
creation, lhc representation object is mltmthd and llu. scnaluu sm. wmlb I'or cxtt.rnal

messages to arrive. We describe the scrmluer evems as {olbws

L

* enter - An enfer event represents the acceptance of an initial request
message for service at the serializer site. At this -acceptance, o unique
transaction identifier is bLnu'dlLd to name the transaction that this cvent

“starts. The request message identifics” the ()b(,mtwn to execute, the
arguments o that operation, and the destination ‘for the reply. A
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destination is a sitc name and a»transaction identifier relative to that site.

* enqueue - The enqueue event represents the completion of a series of
actions. First, the transaction identifier, the guarantee, and the
continuation point are placed in the named qucue. Then the guarantees
at the head of the internal queues are evaluated to determine the next
transaction to service.  |f there are ready queues, the serializer site selects
one of them as the next to process and releases possession. If there are no
ready qureues, the serializer site releases  possession and accepts the next'
external message. TR

* dequeue - After the dequeue event, possession has been regained by the
transaction, the enqueued information has been removed from the queue,
and the serializer site will continue to-execute code for that transaction at
the given continuation point. :

* join - The join event also represents completion of a series of actions. -
First, the transaction identifier and the continuation point are placedin
the named crowd. Then a message is sent to the resource site, 12
requesting the operation and arguments desired. The message sent to the
resource site indicates the serializer site as the destination, and also names
the transaction being processed. Finally, as for the enqueue event, the
guarantees arc examined and possession is released:’ -~ :

* leave - A leave cvent represents an acceptance of a reply message from
the resource site. Possession is regained by the transaction named in the
reply. The information associated- with that: transaction in the named
crowd is removed from that crowd. The scrializer site contmucs o
cxecute code for the transaction at the continaation potnt.

* exit - An exit cvent represents the completion of a series of actions.  First,
a reply message is sent 1o the destination given in the enter cvent. For
simple serializers, the information in this reply is taken from the reply
received at the leave event. ‘Then the guarantees are evaluated and

12. For simplicity, we will assume l]ml the only code that L.m appc.lr in the body of a join sl.uuncnt will
be an invocation of a resource operation.
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- possession released, as for the enqueue and join events.

The above discussion has presented a very simple view of serializers in a
distributed system. However, we believe that exténsions to this model will not greatly
affect our description of serializer evénts. For example, we have assumed that there }is
no more than one request outstanding at a time, so that the site name and transaction
identifier are sufTicient to specffy a destination. /A natural extension would be to allow
several requests to be outstanding. Iﬁ such a case, a request number relative to the

transaction can be included in the destination.

3.10 Infinite histories revisited

We noted in our introduction that states can be regarded as equivalence
classes of histories, a view advocated in [Greif 75] (although Greif discusses partial
orders of events rather than sequences of events). However, this approach does not
casily deal with infinite histories, since the state predicates (such as Csize and Qsize) are
not defined on infinite histories. 1t would be convenient if we could avoid introducing
infinite histories, but we have not yet discovered a method that does not require ;hem.
We introduced infinite histories to model what happens to a serializer object over its
entire lifetime. Some scrializer objects are intended to have unboundcd lifetimes, évcn

though any physically realizable system must have a finite lifetime,
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If we reject the use of infinite histories, then we consider the specification
clauses to be requirements that all finite complete histories must satisfy. Unfortunately,
this leads to difficultics with showing that the “starving” readers-writers solution could
not satisfy the guaranteed service specifications, since the counterexamples involve -
infinite histories where certain events are not required to occur. If the only histories
considered to be complete are finite histories where after the last event all crowds are
empty and no queues are ready, then the starving readers-writers solution can be
proven to guarantee service. The system designer who relied on this proof would be

unpleasantly surprised to discover that starvation actually occurred under heavy loads.
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4. Specification language

One method of specifying a programming language is to provide rules for
translating programs written in that language into‘ fdnctidns on some mathematical
domain. This method can also be applied to specification languages. The specification
language for serializers is composed - of clauses in which certain relations between
serializer events imply other relations between serializer events. The meaning of
specification clauses is given by ‘stating rules 'fo‘r tfans_fofming the kclaus,es into

specification predicates on histories.

Senahzer code is said to meet its- spc.c:ﬁa\atlons if every-complete hlstery that
can be Iegally gencrated by the serializer code (accordmg to the pamal legality predlcate
discussed in the plewous chapter) SdlISﬁt.S all of thc specnﬁcatlon pledlcales that result

from the specnﬁcatlon clausus l?or that smahzer eode

It is not our intention to require that the specmcatlon Ian;,uage have su fMicient
power to deﬁnc abstract data types. We -are only : cemerncd -with spemfymg
concurrency control. We bLlILVL that the d|fﬁcully of ar rwmg at good qpccn[' cauon
mc,thods dncmlcs that we attack a tmcmblc problun, zmd mlq,mu llu. virious

dpprmchcs as thLy are su mcu,mly well undcrstood

In this chapter we discuss the kinds of serializer specifications supported, and
present the syntax and semantics of the specification: language. Then we give a full
specification for the FIFO readers-writers serializer, some: specifications for variations

on the rcaders-writers problem, and a partial spectfication for - the bounded buffer
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problem,

4.1 Kinds of serializer specifications

The specification language is a notatien for requiring a serializer abstraction to

have certm’n-pmperties. These properties are classified as:

* Exclusion - where one kind of access excludes another, such as readers
excluding writers in a simple data base. THis kind of ‘specification is
necessary to prevent concurrent requests from mterfenng with each
other,

* Priority - where one transaction is served : preferentially over another.
This may occur because of the order of enter events, the kind of‘

transactlon or other rcasons or combmanons Of I'Bam

* Concurrency - where some  accesses are required to be served
concurrently. The presence of concurrent processing for requests often -
affects the performance of system, and may even affect the correctness.

* Service - where some (or all) accesses are required to run to completion
(analogous to requiring termination for sequential programs). =

Wc make no claim that all mtucstmg synchrommmn propcrm:s fall mm lhe above
categories, although many do. Wc also. makc no clmm lh.ul all pmpmlcs m lhe abovu
classes can be expressed in the spucnﬁcauon ngu.nbc or that the bpccn' ications are -
especially concise in our language. The classes we have chosen are not necessarily
distinct; some praopertics may be considered to be in more than»onf: class. We are more
interested in making the specification knguage usable by both progrummers and

verification systems than attaining some kind of formal completencss.
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The specification language has nothing to say about performance, either for
real time, comput'mon time or storage. Although performance characterlstrcs can be
inferred from some of our specrﬁcatrons specrﬁcattons and proofs of performance are

beyond the scope of this thesis.

The simple form of the spec’iﬁeation language doés not deal with:the values
passed-to or-from serializer operatlons Thrs srmphﬁcatron has been made to avoid -
dlscussmg what the exact meamng of ' value is m the language The form ot‘ the
specification language in thls chapter has events nodes boolean and mteger values We
also mclude limited predrc'ltes on these values and srmple anthmetrc expressrons as
funcuons on mtegers It is possrble to extend the specrﬁcatlon Ianguage that the user
sces to include {urther values and functtons but such extenslons mvolve more of the
semantics of the complete programming language than we wish to handle in thrs tht“)lS.
In the next chapter, certain extensions are made to the specification language to support
our verification techniques, but these extensions. are still: quite. limited, and .do not

support user-defined values and functions,
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4.2 Specification language

The spec1ﬁcat|on language is deﬁned by speafymg a mapping from
specification clauses to unbound specification predlcales Each unbound specnﬁcatlon
predicate takes a symbol map and a history into a boolean that mdlcates whether the

specification clause is satisfied for that symbol map and that history. -

A symbol map is a Vfunction’ from eveni' symbols to‘ events, and from node
symbols to nodes. It prov1des an mlerprelauon in our semantlc modcl of the symbols in
the specification clause. A valid symbol map provndes a consxstent mterpretatlon of
symbols for a given hlstory, and will be- dlscussed further later in (hIS chapter “The
symbol map is an important d:stmctmn between the spec:ﬁcauon language and the

definition language.

Each specification clause defines - a specification predicate, which maps
- histories to boolean valucs: true if the clause is satisfied for that history, and false if it is
not. The specification predicate for a clause is the value of the unbound spexification

predicate for that clause taken over every valid symbol map for a given history.
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4.2.1 Syntax of specification language

The specification language has a simple syntax. The specifications for
serializer code are expressed :as a set-of clauses, each clause being expressed as an
implication. The syntax of the spéciﬁcation languﬁge is gi\'ieﬁ informally below, issues

of parenthesization and precedence being neglected.

Clause = Clause "D" Clause
| Ordering_ clause
Clause "&" Clause
Clause "|" Clause
"~" Clause
"GX" "(" Event_symbol "," Event_symbol "," Node _symbol )"
C"GXT (" Event_symbol ™ ," Event synbo\ " Event symbol i
"@" Event_symbol - : N
Expr Order_@p Expr . i

mme e miie m— ov— — d—

Ordering_clause = Event_symbol "<" Evont_symbol
| Event_symbol "<" Ordering_ clause

Order_op = "<" | "> | "<"|" "S> ) r=ri

Expr = 1literal

Expr "-" Expr
-Expr "+" Expr
Expe "*" Expr
Expr "/" Expr
"#" Event_symbol

An cvent symbol (Event_symt;ol above) is written by writing a transaction
symbol followed by the event kind followed by optional information indicating other
components of the event (with optional digits for further disambiguation). A
transaction symbol is written by giving the first Ictter of the operation name (or enough

letters to be unambiguous) followed by optional digits if more than one transaction for
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that operation is needed in the clause. Examples of:event- symbols for an operation

whose name starts with "X’ are:

- *X-enter: This symbol denotes an enter-event for transaction X. By
convention, if there is only one transacpon appearmg in a specification
clause for the operation, no digits are necessary in the transaction symbol.
There can be only one enter event for any transaction. . »

* X-join: This symbol denotes a join event for transaction X. For simple
serializers, this join event is associated with performing'the dm‘wpondmg
operation on the resource. Also, for simple senahzérﬁ’ We are ﬁmlted to
having one join event for any given transaction. ~°%" -

* X1-exit: This symbol denotes an exit event for trapsaction X1. Note the
use of the digit "1’ to indicate a transaction that is distinet. from- X (or X2).
By convention, we give different transactionscdifferent  digits in
specification clauses where more than one transaction for an operation is
mentioned.

* X2-enqueue(s.q): This symbol denotes'a enqueue event for transaction
X2, where the queue denoted by sgis used.

A node symbol (Node_symbol above) is written by giving the first letter(s) of
the transaction name, followed by a "*", folowed by the cveni; kind. For cxample, the
enter node for operation X is written as X*-cnter. Any further information given is the

same as the corresponding cvent.



4.2.2 Semantics of specification language

We first must describe the domains over which the specification language is
defined.!® The syntax given above mentions event' and node symbols, but does not
~ explicitly demand that the symbols apply to a single serializer. Therefore, we need to
limit ourselves to nodes and events chosen from some particular serializer, S. We name
these domains (and representative elements) by:

~

neE NS -- node symbols for S

g € ES -- event symbols for S

c€ CS - speciﬁcation clauses for S. -

x € Xg - expressions for§
Note that we have provided single character names for sample elements of the domains.
We will follov. the leading character conventien used in naming events for naming
elements of these domains in the later equations, including using trailing digits where

more than one element is desired.

The semantic domains are those domains described in the previaus chapter on

the semantic model.

neE NS -- nodes for S

e€ ES --¢events for S

13. Although the denotational method used in this thesis o define the specification. language owes much
o work by Scott and Strachey {Scott and Strachey 71, Strachey and Wadswurlh 74] the domains we use
e slmply sets, not lattices. ‘ :
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h € Hg -- complete histories for S
(Hg: Int-> Eg)

In specifying the meaning of the specification language it is necessary to
provide a symbol map that takes node and event symbols into their meanings. We will

discuss this function at greater length below.

p € Pg: maps symbols to events or nodéé

The following functions take syntactic values into semantic values. We say‘
that they define the meaning of the syntactic construétsiimﬂtespmiﬁcation language.
We have avoided parsing and precedence. issues to more clearly present these functions.
Note that the braces "{ }" are used to bracket syntactic construets and distinguish them
from the semantic éxpresions.

~

E({e}.p) -- event corresponding to e in map p
N({n},p) -- node corresponding to n in map p
C({c}.p.h) -- validity of specification clause ¢ in map p, his@ory h
(true if ¢ is satisfied, false if not) |
C: (Cs, Ps. Hs) -> Bool
-~ X({x}.p.h) -- valuc of expression x in map p, history h

(an integer value)
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X: (Xs, Ps, Hs) - Int

O({op}.p) -- binary predicate corresponding to op

Op=1{<.>.%,2. =2}

O: Op -> ((Int, Int) -> Bool )

The definition of C({C},p,h) for specification clause C is giv,;n below by cases.

C({c1 D c2},p.h)
C({el < e2}.p.h)
C({cl &c2}.,p.,h)
C({cl|c2}.p.h)
C({~c}.p.h)
CUGX(el, €2, n)}.p.h)
C{GX(el, €2, e)}.p.h)
C({@e}.ph)

C({x1 opx2}.p.h)

Cic1}p.h) D C{c2kph)

Precedes(E({e1 }.p), E({e2}.p), h)
C(ict}.ph) & C{c2ph)
C({c1}.p.h) | G2t .ph)

~Clctph) |
Excludes_node(E({e1}.p). E{2}.p). N({n}.p). h)
Excludes(E({el}.p), Efe2}.p). E(fe}.p), h)
OccursE({el}.p) h)
O({opt.pXC({x1}.p.h). C({x2}.p.h)
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The definition of X({x},p,h) is given below by cases:
X({x1 + x2},p,n) = X({x1}.p.,h) + X({x2}.p,h)
X({x1-x2}p,h) = X({x1}.p.h)- X({x2},p.h)
X({x1*x2},p,h) = X({x1},p,h) * X({x2},p,h)
X({x1/x2},p,h) = X({x1},p,h) 7 X({x2},p,h)
X({literal,p,h) = constant
X(i#ehph) = Rank(h, E(fe}p)

As a notational convenience, the clause "E1<E2<E3" is equivalent to

"E1 <E2 & E2 < E3". Longer clauses of the same form are defined similarly. -
Some examples of speci fication clauses follow:

X 1-join < X2-join O X1-leave < X2-join

This clause mentions two transactions, X1 and X2. The intention is
to specify that having transaction X1 access the resource prohibits X2
from accessing the resource.

@X-enter D @X-exit

This clause is a specification of service for transaction X. The
occurrence of the X-enter event implics that the X-exit event occurs
in any complete history.

@G-enter & (# G-enter < #P-enter) D @G-exit

If the enter ¢vent for transaction G occurs, and the rank of G-enter is
not greater than the rank of the enter event for transaction P, then
the exit event for transaction G must occur. In (slightly) more
intuitive terms, a transaction for operation G is only required to
receive service if there are at least as many transactions for operation
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P as transactions for operation G.

4.3 The symbol map

Mapping symbols in the specification clauses to ‘mathematical entities is a
necessary part of translating specification clauses into functions on histories. It is
necessary to map event symbols into events, node symbols: into nodes, and syntactic

expressions into their value domains.

The rﬁeanmg ofa speelﬁcatlon clause is taken to be a pl‘LdlCthC that glven a
history, returns true if a history satlsf' ies the spemﬂcanon and false lf' it does not.
Serializer code is said to satisfy a specﬂ' catlon clause 1f for every complete hlstory and
every valid symbol map for that history, the specification- predicate’ defined by that

clause is true for the history.
A valid symbol map for serializer S must satisfy the following restrictions:

* Distinct cvent symbols must map to distinet cvents, and distinct node
symbols must map to distinct nodes.

* Event symbols must be consistent with nodeisymbols. ‘For example, the
~ e¢vent symbol "R-enter” must map to an event that is COI]'slbant with the
nodc symbol "R*-enter”.

* Event and node symbols map to cvents and nodes that are consistent in
kind to the symbol Kkinds. For example, the node symbol "R*-enter”
must map to a node that is an enter node in the scrializer S.



* Event and node symbols map to events and nodes that are consistent in
transactions to the transaction symbols. For example, the event symbols
"R1-enter” and "R1-exit" must map to events with the same transaction.

* Event symbols mentioned in ordering clauses (E1 < E2) and GX clauses
(GX(E1, E2, E)) must map to events that actually occur in*the history.
Event symbols mentioned in rank expressions (#E) and occurrence
clauses (@E) need not occur in the history.

The last restriction on symbol maps needs -further explanation. The
motivation for introducing it is to. keep spccifications of.order - separate . from
specifications of service. For example, suppose that we are attempting to specify a
rcadéls-wl'ilers serializer where writ‘crs‘taré giveﬁ pfibril;',chf other writers solely on the

basis of when enter events occurred. To do this, we 'i:se,the_ fdllowing speciﬁcation:

Wl-enter < W2-cnter D Wl-exit < W2-exit
However, if the last restriction does not hold, and we therefore: allow .symbol maps
where the events corresponding to Wl-enter and W2-enter occur in the given order for
some history, but cither of ’lh‘e events ciirrcsponding to Wl~éxil or W2-exit have not
occurred, then the specification clause will have a much different meaning.  If the event
occurrence is optional for the symbol map, then a séfi:ulizér wilt satisfy the clause if the
givcﬁ order holds, and the serializer guarantees service to writers, but #of il writers can |
starve. In this rather surprising way, a priority spcciﬁmﬁo_n hasl rimplicd_'_ a scrvice;

specification.
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We believe that keeping the specification of order separate from the
specification of service simplifies both spccifications and proofs. Therefore, we have
required that a symbol map is valid for some history only.if an event symbol in an

ordering or GX clause maps to an event that.actually eccurs in the history.

4.4 Readers-writers specifications

Our first examples deal with the recaders-writers problem. In this problem, a
serializer abstraction should allow concurrent access to a simple data base for
transactions that simply read from the data base, but should not allow transactions that

write to the data base to overlap, since that could destroy the integrity of the data.

The same exclusion specifications apply to all versions of the readers-writers
problem.
* Readers exclude Writers - A reader ‘accessing the resource prevents a
writer from accessing the resource,
R-join < W-join D R-lcave < W-join

* Writers exclude Readers - A writer accessing the resource prevents a -
reader from accessing the resource.

W-join < R-join D W-leave < R-join
* Writers exclude Writers - A writer accessing the resource prevents
another writer from accessing the resource.,

Wl-join < W2-join D Wl-lcave < W2-join
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For the FIFO readers-writers serializer shown in Chapter 2, the priority given
to a transaction is based on when it arrived with: réspect to other transactions. We
expect strict FIFO ordering: between readers and’ writers, and between writers and
writers. Strict priority between readers is not required; because readers may- access the

resource concurrently. Therefore, we have the following priority specifications:

* Readers not pre-empted by writers.
R-enter < W-enter D R-join < W-join

* Writers not pre-empted by readers.
W-enter € R-enter 3 W—join < R-join

' Writers not pre-empted by other writers.

Wl-enter < W2-enter D Wl-join < W2-joii

‘The above priority specifications only require the order of requests -to be preserved
from enter events to join events, not from leave events to exil events. IF the order of
service matters after the resource operation is performed, theh we woulld include the
following clausces:

R-cnter < W-enter 2 R-exit < W-exit

W-cnter < R-enter D W-exit < R-exit

Wl-enter < W2-enter D W1-exit < W2-exit



In the readers-writers case, we specify concurrency for .readers by the

following specification:

GX(R1-enter, R2-enter, W*-enter) & R2-enter < R1-leave
D R2join < R1-leave |

This clause is interpreted as requiring that for any two readers R1 and R2, that enter
the resource without a writer entering the resource between R1 and R2, if R2 enters
before R1 has compteted'acces:sing the resource, then R2: will begin. to access the

resource before R1 completes its access.

We cannot requrre that two readers | are actually concurrently executing
resource operations, since actual concurrency may dcpend on the scheduhng policy
followed on a multi-processed machine, or on the relative speeds of two processors rf
the requests are executed by separate machines, or'on: fafther eoncurrercy limitations
imposed by the resource. The kind of specification:that we must settle for is to require
that both requests are sent to the resmrrcc (in join cvents) before-cithier reply from the
resource is-acknowledged (in leave events). A -concurrency.specification only rcquires

the opportunity for concurrent exccution, unhindered by the scrializer.

The specifications of service for readers and writers are simply that for every
enter cvent there should be a corresponding exit cvent, and that this should hold for
both rcaders and writers. The specification clauses are:

@R-enter D @R-exit
@W-enter D @W-exit



4.5 Variations of the readers-writers problem

Other versions of the readers-writers problem exist [Courtois, Heymans
and Parnas 71, Greif 75]. Aside from differences based on the’ programmmz, language
used, the vemrons dr ffer mostly because of the kinds of priority they glve to readers or

writers and the presence or absence of starvatlon

The simplest pribrity specifications often conflict with other specifications.
For example, suppose that the person specifying :the serializet wants to give writers:
priority. The intention might be: "whenever a writer enters a serializer before a reader
- has been serviced, the writer should be servrced before the reader T'hrs specification

can be written as:

W-enter € R-join D W-join € R-join
Further, we can write scrializer code that will realize this specification. Unfortunately,

if writers arrive at the scrializer at a sufficiently. high: rate:with- respect to the length of

- time the resource$write takes, readers can: be indefinitely prohibited- from joining the

resource. This would conflict. with the-guarantecd serviee requirement given above,

since there can be no specification that prohibits writers from arriving at the resource.

A ‘morc reasonable specification of writer's-priority is to require "if a reader
and a writer enter the serializer while a particular other writer is being serviced, then the

writer will be serviced before the reader.” "This specification can be written as:
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(Wl-join < W2-enter < Wl-leave & W1-join < R-enter < Wl-leave)

D Wl-join < R-join
This specification does not conflict with our service specifications. Regardless of the
number of writers that enter while resource$write is being performed for W1, the
readers that entered in that period fieed not be delayed for any writers arriving after

that period.

The guaranteed concurrency specifications may also differ from serializer to
serializer. We may wish to require for the readers:-priority serializer.that all.teaders that
enter while a writer is accessing the resource will be allowed, to concurrently access the

resource. This specification can be written as:

(W-join < R1-enter < W-leave & W-join < R2- -enter < Ww- Ieave)
"D (RZ‘JOIH < R1-leave & R1-join < R2- leave‘

This clause requm.s lhat for every pair of readers Rl and R2 entermg the senahzcr

while a writer is acccssmg the resource, Lhat both reddx.rs bugm to access lht. rcsource

ERRSE NN S 1 3 RS S R

before cither reply is acknowledged.
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4.6 Bounded Buffer Specifications

| The bounded buffer problem14 is based on operating system }I/O buffering,
We assume that there is a producer of information, and a consumer of information.
The producer issues put requests to the system to p,ass_the; infpgnaﬁcn» to the consuher,
and the consumer issues ger requests to obtain the items of information from the
system. In order to allow both producer and consumer to operate in parallel, the system
provides a bounded bufTer of length N to store items of information that the producer
has delivered to the system before the consumer has requested them: The producer can

proceed as long as it is no more than N items ahead of the consumer.

We have somewhat generalized the problem by allowing mulnple consumer
and producer processes for each bounded buffer lf the producer conslsts of several
processes, then each process can proceed untﬂ it performs a put request where the
request is made on a full bufl‘u Slmllarly, each consumer process can procecd unul it

performs a gel request on an empty bu ffcr

We assume that the resource acts as a bounded sequence of information -
items,® where the sequence cannot be more than N items long.- The pur operation
-appends an item to the head of the sequence, while get operation removes an item from

the tail of the sequence.

~ 14, A maonitor approach to this problem appears in [Howard 76).  Serializer code for this problem
appears in the appendix to this thesis, and is discussed in our conclusions.

15. Although this kind of sequence is also known as a queue, weavoid the use of the term to distinguish
between the queucs used by the serializer code for scheduling, and the queue used for the data,
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The following specifications are conditional service specifications for the

bounded buffer problem.
((#G:-enter + N > #P-enter) & @P-enter) D @P-éxit

((#P-enter > #G-enter) & @G-enter) D @G-exit

The G-enter event is the initial event of sofne get transactibﬁ, and the P-enter event is
the initial event of some put transaction. We require that the P transaction complete if
there have been enough G transactions to use the data, or lf there is sufficient room in
the buffer to store the data. If the G-enter event is thc i- th event usmg ‘the G"'-enter

node, and the P-enter event is the j-th event usmg the P"‘-enter node, then P must
complete if j < i+ N. Similarly, we require that a G transaction complete if there havé‘
been enough P transactions started to supply.the data. FTherefore, G wilt complete if

i1<j.

Note that the above spcciﬁcaii(ms; need to use @G-enter and @P-enter
- because we only automatically require events appc.anng in ordt.rmg spcc1ﬁcatlons to
occur in the historics. This choice was made based on U;L convenience of wrltmg
certain examples. To illustrate, if the use of #G-enter required @G-enter, then the

spectfication of service for P transactions above would have been written as two elausces:
(~@G-enter & (#P-enter < N)) D @P-exit

(#G-enter + N > #P-center) D @P-exit
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Another specification of the bounded buffer problem is that the order of get
requests and put requests cannot be interchanged, cither in forwarding the request to
the resource, or in returning the result. These specifications are similar to the FIFO

readers-writers priority specifications.
Gl-enter < G2-enter D (G1-join < G2-join & Gl-exit < G2-exit)
Pl-enter < P2-enter D (P1-join < P2-join & Pl-exit < P2-exit)
We have chosen the exclusion speciﬁchtidns to be .qhixe simple: accessing the

resource is exclusive. The exclusion specifications are expressed by the following four

elauses.

Gl-join < G2-join D Gl-leave < G2-join - -

G-join € P-join D G-leave < P-join

Pl-join < P2-join D Pl-leave < P2-join-

P-join < G-join D P-leave < G-join

We have said that the serializer operations should, us:fiir as practical, have the

same effect as the resource operations: In the bounded buffer problem, the serializer
opcrations have the same cffect as the cluster operations provided that the cluster -
operations return normally. In executing a put operation for the serializer, if there is no
room in the bounded bufler for the item, the op‘é'ﬁili{'m, pziuscs‘ until there is reom. In

executing a ger operation, the operation will not proceed until an item is available. For

“the operations of the resource, however, an exception is signalled if there is no room in
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the buffer when executing a put operation, or if no item is present when executing a gef
operation. The signals of the resource operations have become the non-terminations of
the serializer operations. This raises the question of how well we have separated

concurrency control from data access. We will discuss this question in the conclusions.

We have presented the bounded buffer problem: as: an illustration of the
specification language and as an example of a serializer that is shghtly beyond simple
serializers. We will return to this example to mustmte how we caf perform extensnons

in the program provmg domain as well,
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S. Verification Rules

ln previous chapters we have used a deﬁnmon language based on ﬁlst-order
predlcate calculus to gwe th meanmg of both Ihe sermhzcr oonstruct and the s«.nahzer

specification language. In theory, we need nothmg else to venfy that a senahzer mects

its specifications. In practice, a certain amountofintermeédiate work is necessary.

We have chosen to bunld a venf' fer that operat§s m a restrlcted domam The
. verifier apphes rules that are specnﬁc to thls domam to data |t has descnbmg a senallzer

and specifications for that senahzer Fhis chapter states and prov&s those rules. Our

choice of rules is based on their utility in verifying a number of variations of the .

readers-writers problem (these examples are presented in the next chapter). No claims
will be made for their completeness. Other classes of problems would most likely lead
to different sets of rules, although we would expect most such rule sets. to have

substantial intersections with the set we have chosen.

~In this chapter, we first argue that proofs can be reasonably performed in an

extended specification language. We then state and prove a number of verification:

rules expressed in the extended specification language. These rules are used in a

program that performs automatic verification of serializers, o be discussed in. the nekt
chapter. A method for proving service specifications is then presented that is pzmiulfy

bascd on these rules, and its correctness argued. To illustrate the use of the verification

rules, an cxample of a rule-based proof is given. Finally, certain weaknesses of our

methods are examined.
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5.1 Proving in the specification language

In proving that a serializer meets its specnﬁcatlons we start thh the text for a
senalwer and a number of specnﬁcanon clauses In provmg that senallzer code meets its
specifications we need to state mtermedlate proposmons about the serlallzer code and
the specnﬁcatlons To do so we need a language to state the proposmons and rules of

mference that can be used for the language.

One candidate for such a language is the dialect of predicate calculus that we
used to define serializer semantics. If we used this definition language as the proof
language of the verification program, then we would be faced- with the following tasks:
translating specifications into their meanings, reasoning in the definition language
about propositions expressed in the definition language, and translating the results into
some humanly teadable form. The translation from speciﬁcation language into
definition language is relatively easy: we have already described it in the previous
chapter. The translation from definition language into speclﬁcatldn language is more

difficult.

We considered it to be preferable to carry out our reasoning, as far as
practical, in the specification language. [t is the language that the user is most likely to
understand. Further, we find that most of the inference rules are casicr to state and

manipulate in the specification language than in the definition language,
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The verification program can be simply viewed as a data base. about the
serializer code, a set of algorithms that are used to examine and modify the data base,
and a set of speciﬁcatioh clauses to prove about the serializer. The data base can be
expressed as a set of node graphs representing the scﬁalizer operétions, and a set of
assertions about the serializer,.expresscd as‘s'p-e-ciﬁcatibn ’clauses. The algorithms are
largely rule-driven, where a rule is used to Vinfér a speciﬁcaiion clause from known
clauses. The rules we preéent in this chapter are treated as axidmsk by the verification

program; this chapter states-and proves the rules.

5.2 Extensions to the specification language

As ii stands, the specification Iimguage prescnted in thé previdus chapter is
oriented towards describing external properties of serializers. It has no constructs for
describing the internal structure of a serializer, The rules we define ih this chapter
require a means for describing the node graphs for the operations, and rclating evénts'

to the node graphs. Therefore, we propose extensions to the specification language.
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5.2.1 New symbols and clauses

The extensions to the specification fanguage pase no special problems. They
extend the domain of discourse for the language to include symbols that can represent
any event (or node), and to include oomponetitszof events and nodes. For the sake of

simplicity, we will not formally define these extensions, although we could do so.

* general eventsymbols - E, EI; EX. .. are event symbols: that can be
~ associated with any serializer event through the symbol map.

* gencral node symbols - N, NI, N2,... are node symbols that can be
associated with any scrializer node in the node graphs.

* extended expressions - E.trans, E.node, E.kind are added as expressnons
that represent the components of events. N.kind, N.next, N.expr, and
N.mob expressions are also added. An extension to the domain of
expression values . to include: events;: transackion:. ideatifiers, nodes,
syntactic expressions, and node kmds IS necessdry Wc, dISO mcludc
literals for nodekinds. -~ Ul S AL

*GX  (Guarantee  Exclusion)  specification  extensions -
- GX(Node, Node, Node) s added as ‘a syntactic form.:. The: function -
Node_excludes_node is used as its mc.mmgr GX(N1, N2, N3) expresses
the restriction “that no transaction” ¢t ‘exCEE I W3 whilke” semie other

transaction is exccuting between N gnd N2 (inclusive). .

*PX - (Possession ‘Fxclusion) specification - clauses - We- use
I’X(Nodu Nodx,) cLuuscs to ruprucnt msbc%mn «.xclusum PX(N] N2)

.....

some othu uanmcuon is executing bclwu.n N1 and N2 (mcluswc). We
will-define the meaning of PX clayses below, »
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5.2.2 Marked and unmarked cvents

In defining the verification mtemin this chapter we have occasionally found it
necessary to write ordering clauses where one or more of the events appearing in those

clause are not required to occur. To achieve this, we introduce the: notation

'E
to indicate a marked event symbol in the specification clause. We then modlfy the
definition of a valid symbol map to !‘equrre that all unmarked event symbols appearing
in ordering clauses and GX clauses must map to events that occurin the complete
history for which the map is defined. In all other“re'spects, a marked event symbdl is the

same as an unmarked event symbol.

" The altematwe to introducing the !E nctation is te ot nequm. a valid symbol
map for some hlstory to take event symbo!s appearmg in ordenqg and GX clauses into

events that must oceur in the histo . We would lhen exphculy rcquu‘e the use of @E

to require ¢vent occurrence in clames‘whcre such oecurrence was impor: tant. We have
previously rejected such an'upp_roagh, bccupspvn It;ads to‘ smp;:smg%l_m,phcutums for
some specifications. We believe that it is stifl the right chaice; we prefer to have some
additional complication in-the language for defining the vcriﬁcati(m rules so we can

retain some simplicity in the specification language ;jtf_th'c 113&1' level.

We note here that the Precedés predicaie used to give the micaning of ordering
clauses is well-defined cven when the events do not occur in the histories. Note that the

clause

- 105 -



'E1<E2

can only be true for some history if both events denoted occur in that history. This can

be stated as the-clause:

IE1 < 'E2 D @E1 & @E2
Also note that if an ordering clause mentioning two events that need not oceur i 1s f'tlse

it could be due to either the opposite order-helding, the two: events bemg the same, or

non-occurrence of either event, as is expressed by:

~('E1<!E2) D ('E2 < 'El) | ~@E1 | ~@E2

5.3 Some simple inference rules

In this section we present proofs for severat finfér‘enéé rules stated in the
specification language. These rules are pr(,semed as spccnﬁcatlon clauses where one
sub-clause implies another. Note that the rules are ‘actually rule generators: free
variables are peimttted to appear to denote:nodes:and events.. The free node symbols
are chosm from the su {N, Nl N2, ..} and thc ﬁ'CL w«.nt synfb()ls dare chosm {from the

sct {E, E1, E2, ...}
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5.3.1 Transaction order

Events belonging to the same transaction ‘must occur in the order prescribed
by the node graph for that transaction. We can write this restriction as an inference

rule:

Transactimi order rule:
El.node.next = E2.nede & El.trans = E2.trans
JDEICE2

Proof: For every valid symbol map p and complete history h; since El and E2 are
mentioned in an ordering clause, p maps El1 and E2 to events that occur in h.
Therefore, there must be events el and e2- (with indices 1 and J), such that the
above rule is equivalent to:

(el = Nth(h, I) = E({El}.p)
& ez = Nth(h, J) = E({E2}.p)
& Same_trans(l, 1, h)
& el.node.next = e2.node )
D143 ’

‘Since an enter node can not be the next component of any node, ¢2.kind = enter.
“Therefore, by the definition. of Legal_transaction_step, there must be some index
K € Index_sct(h) such that . o o
(K<
& Nih(h, K).node.next = e2.node
& Nth(h, K).trans = c2.trans )

Further, K = 1 by Legal_transaction_step, which proves that | < 1.

- 107 -



5.3.2 Transitivity
The event ordering is transitive. This can be expressed by:the following rule:

Transitivity rule:
(E1<E2& E2<E3)D EI(E3_

Proof. By the definitions glven in chapteg-3, the above specification clause is defined to
be equivalent to:

( Precedes(E({E1}.p), E({E2}.p), h)
& Precedes(E({E2},p), E({E3},P) hy )
> Precedes(E({ E1},p), E({EB} p), h)
where p is any vahd symbol map for the com'mme hrstury ‘h. By the definition of a
valid symbol map, there must be three distinct events (el, 2, €3) that occur in h,
which implies that therc are three dlstmct mdlces (I .l K) such that the above rule
is cquivalentto: o ol
(el = Nthth, ) = EqE1}lp)
- & e2.= Nihth, J) = E{E2},p) .
&e3 = Nth(h, K) = E({[:3},p)
& Precedes(el, €2, h) & Pl‘LCCdL‘b(C2 e3 h))
D Precedes(el, e3, h)
By the definition of Precedes and the existence of the indices 1 and J,
Precedes(el, ¢2, h) is cquivalent to 1<J. The other Precedes cxbﬁﬁim\s”hav'e "
similar simplifications. "Therefore, the specification clause is cquiiﬂqlcnf o
(1<J&ICK)D(I<K)
which is true by the axioms of integer ordering. Thereforg, Vlhg-spcg;i,j';cint'ion clause
IS a true statement. | : |
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5.3.3 PX clauses

A PX clause is used to spécify possessj(;n exclusion. The meaning of a PX

clause is given by:

CUPXE)}.p.h) = PX_defN({n1}.p) N({n2}p) b)
‘where

PX_defiN1,N2,H) =
v L1K € Index_séy(H): "
if (Nth(H, ).node = Nl&Nm(H f)node =}
& Same_trans(H, I, J)) ¢/ ' S
then Exclud%(NMH D, NLh(H ). Nth(H K)) :

",l‘he clause PX(N1, N2).speciﬁes ‘tha}t a. transaction executing iq@des vaand.
N2 has possession (of the scrializer containing Nl and N2) after-¢xecuting N1 and up to
the completion of exccuting N2, and that N1. na(t N2 Nm: fhat while a transaction
has possession no events from another transactlon may occur Thcre are two rulcs used

to imply PX clauses:

PX from gain rule:
(NLnext = N2
& ( Nl.kind = enter
| NLkind = dequeue
| NLkind = leave))
D PX(N1, N2)
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PX from PX rule:
(PX(N1,N2)
& N2.next = N3
& N2.kind # join
& N2.kind # enqueue)
D PX(N2, N3)

Proof: By contradiction. For the first rule, suppose that the precondition implies
~PX(N2,N3). By the definition of'a. vahdf sytﬁbal ‘g, Jtheve ntast be three
distinct events (el, €2, ¢3) that occur in ain mplete: fﬂét&ry’ﬁ whlch implies that

there are three distinct indices (I, J, K) suchthaL o

choties it
! 5

el = Nth(h, I) & €2 = Nth(h, J)&e?r = Neh(h, K)
& el.node = N({N1},p) & e2.node *JAKFNZ} p)t

&el.trans = e2. trans & el.node.next = €2.node o
&(el kind = entcr | el. kmd dcqueueld Rmd iea 43
& ~ Excludes(el €2,¢e3,h) o

At the finite hlstory Head(h I) whtch is the smaliust preﬁx of h that contams el,

graphs for the senallzcr opelallons) Funher becausc B’ilsy(HEead(h l)) |s true (by
the definition of Busy and Gains), €2 is ‘the only event {hat is a Teg'nl step.
Therefore, no events can occur between el and e'Z whxch contradlcts
~Excludes(cl, e2, d h). lhcrcforu the PX trom g'\m ruk is lrue "N snmllar proof
holds for the PX from PX rule. L e e L

The PX clauses arc uscful as intermediate steps that imply cvent ordcering.

‘The following rule is used to imply an event ordering from a PX rule and other

preconditions.
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Event before PX rule:
( PX(NI1, N2) & E<E2 & El.trans = E2.trans
& El.node = N1 & E2.node = N2)
DE<EI

Proof: The above clause is equivalent to the following (for every valid symbol map p
and complete history h):

(PX_defN({N1}.p), N({N2}.p);-h)

- & Precedes(E({ E}.p), E({E2}.p). h)

& E({E1},p).trans = E({ EZ},p) trans

& E({E1},p).node = N({N1}.p)

& E({E2}.p).node = M{N2}.p)) .
D Precedes(E({E}.p). £({EL}p). h)

Because E, El, and E2 are menuoned m ordenng cjauses there must be three

distinct events (el e2 ¢) that occur in h Whlch lmphes that there are three distinct
‘indices (., J, K) such that, by the definition of PX def o
(el = Nth(h I) = E({El},p)
&2 = Nin(h, J) = E{E2}.p)
&e= Nth(h K) E({E} p)
& Precedes(e. €2, h)
& I:xcludcs(c.l c2,¢.h))
which implies Precedes(c, ¢1, h), whlch 1mphcs that the ruk. is true.

- 111 -



The other PX rule is quite similar, and can be stated as:

Event after PX rule:
- (PX(N1, N2) & E1 < E & El.trans = E2.trans .
& El.node = N1 & E2.node = N2)
D E2<E

Proof: Similar to proof for Event before PX.

5.3.4. GRE clauses

'Ihe GRE (G uarantee Requnres Empty) clause is an mtennedlate step used to

mfer GX G uaranteed Exclusnon) clauses The deﬁmtlon of the GRE clause is:

C({GRE(N1, N2)}.p,h) = GRE_defIN({N1}.p), N({N2},p), h)

where

GRE_def(nl, n2, h) =
v LJ.K € Index_sct(h):
if ( Nehth, Hanode = n2
& Nth(h, J).node = n2, match
&l1<K<]
& Same_trans(h, 1, J))
then ~Eval( Head(h, K), nl.expr)

The intuitive meaning of GRE(N1, N2) is that the queue or crowd denoted by N2.mob

must be empty in order for the expression Nl.expr to be true,
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There are two rules that can be used to infer GRE clauses:

GRE from empty rule:
Nl.expr = Empty_expr(N2.mob)
D GRE(N1, N2)

GRE from expression rule:
( Nlexpr = And_expr(Empty_expr(N2:mob), G)
| NLexpr = And_expr(G, Empty_expr(N2.mob)) )
D GRE(N1, N2)

Note that we have had to add some ad hoc extensions to'thé specification language. G
denotes a boolean valued exprmon Empty expl(N mob) denotes ~either
queue$empty(N mob) or_ crowdScmpty(N mob) as 5 appropnate and
- And_expr(G1, G2) denotes the expressnon that is the con_;unctnoﬁ vof the two guarante&s.

Proofl: By definition of GRE_def and the Eval function. For the first rule, suppose:that
the guarantee is crowd$empty(C). Then for any history that contains a join event
for that crowd but does not contain the corresponding leawe event the guarantee
will evaluate to false, which proves the rule. Similar reasoning holds for: the first
rule if the guarantee is quuuc&.mpty(Q) A samil&rpn%éf holds for the GRE from
expression rule. At
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5.3.5 Using GX clauses

GX clauses are used to indicate where events are excluded because of
guarantecs being false. For example, if a guarantee for a queue is crowd$empty(C)
where C is a crowd, then a dequcue event with that guarantee -is prohlblted from
occurring between a join and a leave event for any transaction for that crowd. The
following rule is used to infer GX clauses.

GX from GRE rule:
(Nitmatch = N2& N2 =N
-& (N1.kind = join | N1.kind = enqueue)
& N.kind = dequeue
& GRE(N.expr, N2.mob))
D GX(N1, N2, N)
The clause GRE(N1, N2) used above is true i1 the expression Nl.expr requires the .

queue or crowd N2.mob to be empty for the expression<o be true.

Proof: By contradiction. Suppose that GX(NI,N2,N) is not true, yet the
preconditions are met. By the definition, of a valid symbol map, there must be
three distinct events (el, ¢2, ¢) that occur m any compleu. histm y h, WhICh lmphes
that there are three distinet indices (1, J, K) such that:
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(el = Nth(h, I) = E({N1},p)
& €2 = Nth(h, J) = E({N2}.p)
- & e = Nth(h, K) = E({N},p)
& el.node.match = e2.node
& (el.kind = join | el.kind = enqueue) '
& ekind = dequeue : o
& Precedes(el, e, h) & Precedes(e, €2, h)) ,
Further, from the GRE clause we know thaf the guarantee for event ¢ must be false
for any prefix of h that contains ¢ but does not contain e2. Since e occurs after el,
we have a contradiction (due to Legal_dequeue), since e is a dequeue event that.
occurs when its guarantec is false. Therefore, the GX from GRE rult:‘is,y_.rt!riue._

GX clauses are a useful intermediate step that cmhi'éb(';‘}uSed tfg’}nfér event

orderings.

Event before GX rule:
(GX(N1,N2, N) & E< E2 & El.trans = E2.traps = °
-~ & E.node = N & El.node = N1 & E2.node = N2)
S E<ElL

- Proofl: Because E, El, and E2 are mentioned in ordering clauses, for any valid symbol

map p and complete history h, there must bc wutls (el c2 ¢) occm'rmg at distinct
indices (1, J, K) such that: :
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- (el = Nth(h, 1) = E({E1}.p)
& €2 = Nth(h, J) = E({E2}.p)
& e.= Nth(h, K) = F({E}.p)

- &e.node = N({N}.p)

- & el.node = N({N1},p)

& e2.node = N({N2}.p)
& Precedes(e, €2, h) .
& Same_trans(h, [, J)
& Node_excludes_node(el.node, €2. node e.node, h))

By the definition of Node_excludes_node we caninfer: -
Excludes(el, €2, ¢) & Precedes(e, €2, h) & e = el

which implies that Precedes(e el h) Wthh 1mphes that the clause E< El and
thercfore the rule is true '

As with the PX clause, there is a symmetrie rude to. Event before GX.
Event after GX rule:
(GX(NI, N2, N) & E1<E & El.trans = EZsmﬁs

& E.node = N & El.node = N1 & E2.node = N2)
DE2<E

Proof: Similar to proofl for Event before GX.
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5.3.6 FIFO queues

Serializer queues are served strictly first-in-first-out. The following rule is

used to infer event orders from the use of FIFO queues in serfalizers. -

Event from FIFO rule:
( E1 <E2 & El.kind = enqueue & E2 kind = enqueue
& El.node.mob = E2.node.mob f
& E3.trans = El.trans & FA.trans = E2, trans '
& E3.node = El.node.ncxt & E4.node = EZnodenext)
DIE3<F4

Proof. By contradiction. Fust, suppose that E3 occurs (we are not requrred to do so by
the clause). - As in the above proofs, E1, F2 and E4 are unmarked events mentioned
in ordering clauses; so they must occur. There must be four events (el, €2, €3, e4)
with distinct indices(1, J, K, L) such that:

(el = Nth(h, I) = E({E1},p)

& €2 = Nth(h,J) = E({E2}.p)

& ¢3 = Nth(h, K) = E{E3}.p)

& e4 = Nth(h, L) = E({E4}.p)

& Precedes(el, e2, h)

& el.kind = enqueue & ¢2.kind = cnqueue

& Same_trans(l, K, h) & Same_trans{J, L h)

& ¢3.node = el.node.ncxt & e4.node = c2.node.next )

We need to prove that Precedes(e3, ¢4, ), which we do by assuming
Precedes(e4, €3,h), and finding a contradiction. By the definition of
Legal_transaction_step we know that Precedes(el, ¢3, h) and Precedes(e2, €4, h).
Let hl be the largest prefix of h that does not contain e4. We will show the
contradiction by considering the predicate Legal_step(h’, ¢4, S), where S is the set
of node graphs for the serializer.
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- Since  edkind =  dequewe, Legal step(hl,e4,S) requires that
Legal_dequeuc(hl, e4) be true, which requires that Eval be true for the guarantee,
and that Head_enqueuc(hl, J) be true. Head_enqueue(hl, J) is only true if every.
other transaction with an enqueuc event for; the: queue: ed.node.mob that occurred
in hl prior to e4 has a corresponding dequeuc event-that has occusred in hl.
However, we know that e3 has not occurred in hl by our assumption of
Precedes(e4, €3, h). Therefore, either Precedes(e3, e4, h), or €3 does not ocgur.

The proof that €3 occurs is simple. We know that ed bcéulr's in h, since it is
dLnOtt.d by an unmarked event mentioned in an ordering clause. Therefore, when
e4 occurs, €3 must ‘have occurred in the hlstory hl by the definition of
Legal_dequeue.

5.4 Evaluation of guarantees

In further rules we will need to express the evaluation of guarantees. The
clause EVT(G, E) is used to specify that expression G..always evaluates to true
immediately before event E. The clause EVF(G, E) is uscd to specify that cxprcssmn G
always evaluates to false immediately before event E. 'In translating from spccnﬁcatlon |
~language to definition language we will assume that, if the event denoted by E occurs at
index 1 in history h, then

CHEVT(G, E)}.p.h) = Eval(Head(h, I-1), {G})
C({EVF(G, E)},p.h) = ~Eval(Head(h, I-1), {G})

When the event denoted by E does not occur, the EVT and EVF clauses are undefined.

We arc carcful to.only use these clauses.in contexts where such an cvent-does occur.
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The following rule can be used to infer EVF clauses:

EVF rule:
- ((El.kind = enqueue | El.kind = jom) .
' & ELnode.next = Enode -~ = 7
& El.trans = E2.trans
& E1<E<E2)
D EVF(Empty_expl(El.mob), E)

~Proof Suppose that M is a queue By the defi nmon of chal transactlon step, there
can never-be more dequeue events than enqueue events for any tr'msactlon
Thercfore, by the definition of Csize, the queue is empty (Csuze(M) = 0) oniy if all

transactions have the same number of enqueue events as degueue events -

immediately preceding E. However, the transaction El.trans has an enqueue event -
(E1) that has occurred without the matching dequeue gvent (E2). ’Illemfcge, ithe»
queue must not be empty. A similar proof holds if M is-a crowd. .

The following rule can be used to infer EVT clauses:

EVT rule:
~ (VELEX:
if (ELtrans = E2.trans & El.node.mob = M-
& El.node.match = E2.node) |
then E<ELH'E2<CE)
D EVI(Empty_cxpr(M), E)

Prool: First, we note that within the quantification the events E and E1 are required to
| occur, yet the event F2 is riot required to occur, since it is marked. ‘The condition
that we arc expressing with the quanatified clause is that for cvery pair of cvents
denoted by El and E2 the event denoted by E cither occurs before (or is-the same
as) K1, or occurs after E2. Note that if E1<E is true, then 'E2 <E is false if E2
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does not occur. In order for Empty_expr(M) to be false. when evaluated
immediately before E there must be some transaction that is in ‘M immediately
before E, which means that the enqueue (or join) event (call-it E1) occurs before E,
but the dequeue (or leave) event (call it E2) does not occur before E. We can
express this requirement as

E1<E<!E2 -
which is prohibited by the precondition
E<El}'E2<E

and therefore the clauses always evaluates to true immediately before E.

The above clause uses internal quantlﬁcanon over alf events which'is another
extension to the specification language. It is difficult to use the above rule as it |s ina
verification program due to the mterndl qu'mtlﬁcatlon The set of all events is infinite,
and cannot be enumerated. We can prove that the quantlﬁcatlon clause is satlsﬁcd by
contradiction: proving that there can not exist a transacuon w:th events E1 and E2 (as
given above) where the clause within the quantification is not satisfied. This method

will be further discussed in the next chapter.

The following “rules can be used for guarantces that are conjunctions or
disjunctions. These rules are sulTicicntly simple that we will omit the proofs.
EVT from conjunction rule:
(G = And_cxpr(Gl, G2) R

& EVI(GL, E) & EVT(G2, E))
D EVI(G, E)
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EVT from disjunction rule:
(G = Or_expr(G1, G2)
& (EVT(G1, E)| EVT(G2,E)))
3 EVT(G, E) -

EVF from conjunction rule:
(G = And_expr(Gl, G2)
& (EVF(G1, E) | EVF(G2, E) ))
D EVF(G, E) '

EVF from disjuncﬁon rule:
(G = Or_expr(G1, G2)
& EVF(G1, E) & EVF(G2, E)) -
D EVK(G, E) "

We hav}e used G, Gl, and G2 to denotérguarantees, and And_éXpr an'd' Or_expr to

denote conjunctions and disjunctions of gilzirantees.

5.5 Priority of dequeue over enter and leave

- if tht,re are queues wnth true guaramees whcn posscssmn is rcleased, a

- dequeue event for onc of those queues er occur buforu an cntcr or Ieave evcnt

Suppose we know that an enqueue event E1 occurs before an external gaining
event E. To show that E must occur aficr the dequeue cvent E2 corresponding to El, we
must know that the guarantee for F1 is true immediately pnor to E, and that there can
be no transaction with a false guarantee that is in the queue ahead of the lrzkmys;lc‘lion for

E1 when E occurs.

- 121 -



Event from ready queuc rule:
((E kind. = enter | Ekind = leave)
& El.node.next = E2 & El.trans = E2.trans
& El.kind = enqueue
& EVT(El.expr, E) & E1 <E
& ¥ E3.E4:
if ( E3. kind = enqueue & E3 mob El rnob
& E3.rans = FAtrans
& E3.node.next = F4.node
- & E3<ELl) SRR R T
then EVT(E3 expr E) | !E4 ( E ) ‘
SIR2<E

Proof: We will outline a proof by contradiction. Assume that the gaining event E

- precedes the dequeue event E2 s,uch 1hat El <E < E2 The quanu ﬁcatlon over E3

and F4is a precondmon that rcqunres every transacuon that has entered the qucue

‘before El.trans to either have a trug’ guaraﬁtee (:mmediately before £) or to have

left the queue before: the gaining -event E. Therefore; there carl:be. no transaction
with 3 false guarantee in the queue | ahnad oL‘ Fl trans Howevur the gammg event

E cannot occur while there is a queue with a true guaramec ‘which is trie for"‘

El.mob. This is a contradiction, so we can infer that if B2 oceurs, it must oceur

before E. By similar regsoning,. E2 must occur, singe if it dogs. not occur; there will

be a ready queue when E occurs (E-must occur, since it is an unm;xrk}ed{ event). |

Note that the above rule was expressed as implying 'F2 < E, which not only

implics an ordering between cvents, but also implies that the event denoted by E2

occurs, since any cvent the precedes an event that occurs must also occur.
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The above rule is admittedly long and complex. We can shed some more light

on the reasoning behind its form by considering some examples.

* Suppose that there are events E3 and E4 such that E3’C E1, and E4 does
not occur (using E, El, E2, E3, and F4 as in the above rule).: Then the
precondition expressed by the quantification must be false, which means -
that we cannot infer. E2 < E. -‘Fhis should:seem. reasanable, since by the
FIFO queue rule we know that F4 must precede EZ if EZ occurs which
implies that E2 does not occur.

* Suppose that there are events E3 and E4 such that EVF(E3.expr, E) and
E3 <El. Then it is possible for E3.transto ibe: at-the head. of the queue
when E is ready to occur, which would imply that E < E4, or that EA. dld‘
not occur at all. '

The rcader may note that we have only co'nsidércd a si';‘:ﬂe queue in the above
rule. It may be imagined that all of the precondivions were met for two'qucues. yct one -~
queue was arbitrarily, chosen to proceed, which then made the head guarantee of the
mher qucue false, whlch lhen allowcd the g,.umng evcm E to occur Such a Sltlldtlon is
covercd by our rule, since we do- not spec:fy evaluatm of the guaramec at anyu
particular time, but rather inmediately -before the-event E in "any context. Intervening
dequeue events from other queues are unimportant, since they will only postpone the . .

occurrence of E, not change the precondition EVT(ELexpr, E).



5.6 A method for proving service

A service specification typically states 'mfat‘f"or every complete histofy and
valid symbol map, the occurrence of an enter event for some tfzmséction impliés the
occurrénce of the exit event for that transaction. In Vprc;‘v'ing thlswe typically need to
prove that the occurrence of any event (exit{t:’:Ven‘ts exélﬁaed) m a transaction implies |
the occurrence of the. next event in the transaction. Another way to state that the
occurrence of one event implies the occurrence of another is to say. that every complete

history that contains the first event contains the second.

For most events in a transaction, if an event occurs, the successor event in that
transaction must occur. For simplc’,serialize'rs, the ‘(z)!’c‘(;urr'c}ﬁt:e :otf an event that gains
possession implies the occurrence of -a corresponding zeﬁeeni‘ that releases possession.
Further, we have assumed that accesses to the resource terminate, so the occurrence of a
join event |mpth the occurrence of the corrcspdndmg ieave eVem There are only two
kinds of events where the occurrence of an event does not lmply the oceurrence of the
SUCCESSor: exu wcnts, bgcause they have no succcssors, and;cnqueue events, because
they might never have true guarantees whenever posséstion is Feleased, or because there

might always be another queue ready whenever possession is released.

The method we propose for proving that an enqueue event requires a dequeue
event is to first suppose that the dequeue event docs not occur, then prove a
contradiction: that a complete finite history exists where there is a ready queue at the

end of the history.
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Suppose that we want to prove @E1 D @E2, where El and ‘E2 belong to the
same transaction, and El precedes E2 if both events occur (Wthh can be written as
@E1 & @E2 D 'E1< 'E2) We need to show for every enqueuc event E3 with
corresponding dequcue event EA that 1f E3 trans = El trans then 1he occurrence of E3 -

1mpl|es the occurrence of E4 (@E3 D @E4)

* If an enqueue event occurs for some queue and the dequeue event does not
occur, then we say that its queue is blocked. 1fa queue is blocked, then we can infer the .

following:

~ *If every join event for some crowd requires a preceding dequeue event

- from a blocked queue, then the crowd will eventually become empty. .
~This is true because when the queue is biocked there can be no further
join events, and every join event requires that a leave event oceur..

~*If every enqueue event for some queue Q) requires that a dequeuc event
for a blocked queue B must occur. (because the enqueue event must -
follow some other dequeue event ‘that is ‘waiting for B to empty), then Q
will eventually became either blocked or empty. Since.the-cnqueue eveat:
for Q will not occur, then no new transactions-will be added to Q, which -
implies that only dequeue events for' Q can possibly-eeour. Eventually -
- ¢ither Q is empty or a transaction with a falsc guarantee is at-the head of -

Q.

* If every occurrence of an enqueue cvent for some qucue implies the

- occurrence of a corresponding dcqucue event, and the queuc will
eventually become cither blocked oF emply. then’ the -queve will -
eventually become empty.

By saying that a condition "eventually becomes™ true, we mean that for every complete

history there is a event where the condition is true at cvery event after that event,
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The method is now clear: to prove the 'mntmdiction, we assume that the
dequecue event (E) does not occur, that certain queues and’crowds will beéome empty,
and that certain queues will become either empty or blocked. [f these additional
assertions are sufficient to prove that the guarantee for E is true, and that. there is no
other dequeue event with a false guarantee that is blockmg E, Lhen we have found a

contradiction, and actually proved that E must, occur

) We w1ll not pres«.nt rules for proving service. The number of supportmg rules
is relatwcly high, and the additional matenal would not mtroduce any new concepts

The method of proving service will be further explamed in the next chapter

5.7 Rule-based proving of FIFO priority specification

In this section we present a proof based on successive applications of the rules
we have presented in this chapter. As presented in the previous chapter, the FIFO
readers-writers problem-has the following (partial) priority specification:

R1-enter < Wl-enter D R1-exit € Wl-éxit
A rule-based proof of the above clause takes two stages: derivation of intermediate
clauses (stich as PX, GRE, and GX clauses), and use of the rules that imply event
orders. Note that the first stage need only be performed once for any particular

serializer, while the second stage is usually different for every specification clause.

- 126 -



In the first stage, we examine the node graphs and. use the PX from gain rule

to derive the following PX clauses, which indicate possession exclusion: .

PX(R*-enter, R*-enqueue(x.xq))
PX(R*-dequeue(x.xg), R*-join(x.rc))
PX(R*-leave(x.rc), R*-exit)
PX(W*-enter, W*-enqueue(x.xq))
PX(W*-dequeue(x.xq), W*-join(x.wc))
PX(W*-leave(x.wc), W*-exit)

We then examine the node graphs and use the GRE(“frqtﬁn éihbty rule and the GRE
from expression rule to derive the folldwing‘GREvclauSSV: B
GRE(R*-dequeue, W*-join)

GRE(W*-dequeue, R*-join)
GRE(W*-dequeue, W*-join)

Using the GRE clauses and the GX from GRE rule, we derive the following GX

clauses:

GX(W*-join, W*-leave, R*-dequeue) -
GX(R*-join, R*-lcave, W*-dequeue)
GX(W*-join, W*-leave, W*-dequeue)

In the second stage of the proof, we prove the implication by assuming the
precondition, and deriving the conscquence.. We. use the Transaction order rule to

derive:
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(R1-enter < R1-enqueue < R1-dequeue
< R1-join < R1-feave < R1-exit)

&

(Wl-enter < W1-enqueue < Wl-dequeue
< Wl-join < Wl-leave < W1-exit)

- Then we perform the following inferences, using fhe indiéated ru.le_s:

Event order

R1l-enter < Wl-enter
R1-enqueue < Wl-enter
R1-enqueue < Wl-enqueue
R1-dequeue < Wl-dequeue
R1-join < Wl-dequeue
R1-leave < W1-dcqueue
R1-exit < Wl-dequeue
R1-exit < Wl-exit

Rulg’agplied |
Assumed
Event after PX
Transitivity
Event from FIFO
Event after PX
Event after GX
Event after PX

Transitivity

5.8 Comments on the verilication rules

While the intent of defining inference -rules in the specification language is to
simplify verification, one unfortunate side-cffect has been to add numerous clauses to
the specification language. These additions have made the specification language far
closer to our definition language than we would like. As we add more extensions we
begin to lose the simplicity that proofs in the specification language have over proofs in

the definition language. Despite these misgivings, the rules do appear to work at a

higher level than could be obtained from the definition language.

-128 -



We have added a means for avondmg the requlrement that every event

t J :

mentioned in the ordering clauses must map (vxa @e symbol mgp) to an event that

occurs in the complete history on which the map :s based. There is no inherent reason

e
¢

why this ability should not be extended to the't user, élmough we ;have‘chosen not to do

M«J‘ R

so. This feature is only rarely used and contmues to have potentlally surpnsmg _

interpretations, as evndenced by the Event fmm mady queue mle where the occurnence

£
‘féq ,iﬁ;f' ‘;;"’»s} fop

of an event was proved without resortmg to the @E notation.

‘"!f
27 ;if
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6. Automatic Serializer Prover

The previous chapter presented verification rules that were defined in an
extended spccrﬁcatron language. This chapter dwcnb&s a program that makes use of
those rules. While limited to dealing with: snmple senahzers and -specification clauses
that do not mention the rank of an eveht, 'fnan'y 'of the pﬁﬁéiﬁleé ‘used are appIiCabIe to
more general serializers. The program, called ASP (Automanc Senahzer Prover), has

been tested on a number of versions of the readcrs wrlters problem

In this chapter we dlscuss the structure of ASP ﬁrst by gwmg an overvnew
then by’ detarlmg some of the algorithms used 'ﬂre restrlts for the readcrs-wnters
examples are given, and we discuss how ASP could be extended to accommodate

various extensions to simple serializers.

6.1 Overview of ASP

The input to ASP is a description of each operation of a serializer and the
specification clauses for the scrializer. We use. ASP interactively to prove that the
specification clauses arc satisfied, or to examine why they arc not. The execution of

ASP has the following phases:

* Initialization: This phase builds rt,prcscm.mons of the node graphs for
the scrializer opcerations given the text for th op«.ratlol’ls 16 In the

16. In the actual program, the text must undergo an initial translation by hand in order to be processed.
This allowed us to concentrate our efforts on verification rather than parsing.
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remainder of this chapter, we will make no distinction between the. node, :
graph representations used by the program and the node graphs used in
the semantic model.

* Static - analysis: This phase examines the node graphs to determine
possession exclusion, represented by the PX clauses mentioned in the
previous chapter, and guarantee exclusion; represented' by GX:iclauses.
Note that we also make no dlstmctmn between the, spemﬁcatlon clause
representations used by the program and ‘the actuai clauses. |

* Verification: In this phase we attempt to prove each specification clause
given. Typically, a specification ‘claus¢ is given as animplication -
consisting of a precondition clause and a consequent clause. Proving such
a clause involves zssummg the precondition and usmg the inference rules
described in the previous chapter to derive the consequent clause. When
a consequent clause is derived, further. rules may be: apphed to denve new
clauses.

The uode gi'aphs, specification clauses, and other data are kept.in a structure

called the data base, which is composed of the following parts:

* Node graphs: There is a node graph for cach operation of the serializer.
Each node has a structure as described in Chapter 3. Data structures
representing cxpressions (as in N.expr), qucucs: and crowds (as in
N.mob), and kinds (as in N.kind) are referred (o by the node graphs. '

* Transaction stack: There is a stack of trunsaclions that rcprcscnt the
‘transactions mentioned in the specification clauscs. * Fach transaction
symbol in a specification clause has a corresponding transaction in this
stack. Further transactions may be added to this stack .due to attempted
proof by contradiction, as mentioned in the prcwuus chapter. When such
an attempt succeeds or fails, such a transaction is removed from the stack.
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* Assertion stack: There is a stack of specification clauses that have been
asserted and the rules used to assert the clauses. The asserted clauses are
those that have been assumed to be true or have been added by
application of the inference rules to the clauses.in the assertion stack.
This stack provides a record of which rules led to particular event
orderings, as well as an efficient mechanism for removing assertions.

* Event stack: There is a stack of the events that exist (although do not
necessarily occur) for the transactions in the transaction stack. This stack
is closely coupled to the stack of known transactions, since each event in-
this stack must have a known transaction. Whenever a transaction is
added to the transaction stack, an‘'event for évery node that the
transaction may.execute is added to the event stack, When a transaction
is removed from the transaction stack, alf events for that tranisaction are |
removed from the event stack.

- *Event order matrix: There is an extensible square matrix used to
represent event orders. There is a row and a column fof each event, with
the entries indicating the ordering between the events. “The row and -
column index for a-particular event are identical, and the index for an
cvent in this matrix corresponds to the index in the event stack for the
event. The matrix is extended or retracted (in both dimensions).as the
event stack is extended or retracted.

6.2 Static analysis phase

The static analysis phase inserts PX and GX clauses into the data base
according to the node structure of the (ipcrzllic)ns;' It is'"pcrfonncd in advance of
cxamining the specification clauses. The purposc of the static analysis phase is to
perform steps that can be done once for a given serializer, and avoid performing these

steps for every clause we wish to prove,
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The PX (Possession Exclusion) clauses are generated by examining the node
graph to determine when a transaction is in possession of the serializer. For simple

serializers only the PX from gain rule is needed.

The GX (Guarantee Exclusidn) clauSes are generated by exarnining the
guarantees on enqueue statements during ,the initial pa‘ssbver the serializer. They are
generated according to the GX from GRE rule whrch depends on the GRE from
empty rule and the GRE from expression rule. As Iongas the guaram;ees only mvolves
testing the emptiness of crowds or queues. or conjunctlons (Gl &GZ) of tests for
emptiness, GX clauses can be generated for .the'guafameesﬁunng‘-static analysis.
Guarantees that are disjunctions (GIIGZ) or neganons (~G) do not generate. GX

clause durmg static analysis.

6.3 Verification phase

A specification clause is usually written as PO Q, where P and Q are
specification clauses that do not use implication clauses. Verifying that PO Q s
satisfied involves assuming that the precondition clause P is true, and sh(iWirlg that the
consequent clause Q is therefore true. Note that the cvlagrse P is assumed (o be true for a
particular choice. of complete :history and valid symbol map. The verification

methodology allows us to prove:

v p,h:A PDQ)

The assumption and proof should nor be viewed as:
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(v p,h: P) O (v p.h: Q)

- When a clause not previously in the assertion stack is asserted, we say that it is
inserted into the data base. When a clause is inserted, ASP checks ce‘rtain rules to
determine whether they are immediately applicable. These rules are called insertion
rules, and are: Transrtwrty, Event before PX, Event after PX Event before GX Event
after GX, and Event from FIFQ. If any are applicable, we assert the event order clauses
they imply. This, in turn, may lead to the assertion of further clauses and so.on. This

process is complete when no fu rther insertion rules are apphcable

In assertmg an event ordermg, we need to have computer representatrons of
events In order to have event representatlons we need transactron and node |
representatrons The mltralllatron phase burlt the nodes The transacttons and events
are built by exammmg thc specrﬁcatlon clause to determme whrch transactrons are

mentroned in the clause Thcsc transactrons and theu' assocrated events are added to

the data base.

For each transaction that is added d‘u.e‘_to: being_vexpliicitly‘ named in the
specification clause, the Transaction order rule is uscd to dctemune the order of the
events that belong to the transaction. This leads o the msertron of evcnt ordu cluuscs »;
but does not irnmcdialely lead to the application of any rules-vther than the transaction
order rule and the transitivity rule, since there is no known initial ordering between

events from different transactions.
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To prove an implication, we assert the precondition:ahd ‘attempt to derive the
result. The precondition for a specification clause is asserted by performing operations
on the data base to assume the various parts of the clausé. For example, one
component of the specification clause may be an event ordering, E1 < E2. This clause is
asserted by calling the add_order operatlen:'of the data base. If this clause was not

previously asserted, the insertion rules are applied by this operation.

6.4 Evaluation of guarantees and anonylnons‘transaetlor:s‘ |

In several places in ASP it is necessary to evaluate a guarantee to determine if
a queue is ready The EVT and EVF clauses mennoned in the prevrous chapter are
used to mdrcate the evaluatron of guarantees EV'I (G E) is true for some htstory that
contains E if the guarantee G evaluates to true in the largest preﬁx of the hlstory not
contalnmg E. EVF(G E) is true if G evaluates to false rn that preﬁx For example |f
the event E occurs bctween correspondmg enqueue and dcqueue events for some

transaction, as in:
X-enqueue(Q) € E < X-dequeue(Q) |
then we can assert the clause
EVT(queueSempty(Q), E)
In some cases, it is not sufficient to srmply use lhe PVT and EVF rules

presented in the previous chapter. Consider the l‘ollnwmg mncrrruncy specrﬁcauon for

the FIFO rcaders-writers serializer:
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R1-enter < R2-enter ¢ R1-feave & GX(R1-enter, R2-enter, W*-enter)
D R2-join < R1-leave

In proving this specification, we need to prove

EVT({crowd$empty(x.wc)}, R1-leave)

The insertion rules are sufficient to prove that the writers crowd (x.wc) is empty when
the readers crowd (x.rc) is not empty. However, the rules we have presented do not
immediately allow us to conclude that the EVT clause above is true, since we must

prove the clause for all writers.

A more general method of proof is available to us, based on proof by
contradiction. If we assume that a writer is ih the writers crowd, and that leads to a
contradiction, then the writers crowd must be empty. To be exhaustive in choosing the

writer, we have two cases:

1: The writer can be a writer that alrcady exists in the transaction stack. To
assume that some writer W is in the writers crowd when R1-leave occurs,
we assert: | ( o

W-join < R 1-lcave ¢ W-lcave
and apply the insertion rules as necessary. A contradiction occurs if this
leads to E<E being asserted for any event E (cyclic cvent orders are
prohibited by l.egal_transaction_step). I no_contradiction occurs, then
we cannot prove the EVT clause. If all writer transactions in the
transaction stack cannot be in the writers crowd, it is necessary to apply
the second case.

2: If no writer in the transaction stack can be assumed to be in the writers
crowd, it is still possible that there is some other writer- that can be in the
crowd. Therefore, we invent an anonymous transaction and place it in the
transaction stack, and assume that'the new writer is in the crowd, as in the
first case. If assuming that the anonymous transaction in in the crowd
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leads to a contradiction, -then we can assume that the writers crowd is
empty at R1-leave, and therefore the EVT clause is true

The above method is easily generalized to proving any queue or‘crowd empty.

6.5 Checking for ready queues

The Event from ready queue rule is difficult to apply, sinice there is nested
quantiﬁéatidn. We start By examining the data base ‘fOr';dequ:eué' events where the
guarantees are true immediately preceding enter or leave events. Consider some"
transaction X, where X-dequeue has a true guarantee @g}ggjjaggl_x;bqfore some enter or
leaye event, which we will call E. If E is known tg occur. gﬁeyijgnqﬁguc,. then the only
way that E can occur b_gfore X—dequeuc is f9f~@q¢ to b‘e‘a, zggansaggipn i',‘, ;he. same
queue, ahead of X, with a false guarantee. If such a transaction exists, we say that it

blocks X-dequeue.

If no known transaction can block X-deqtietre, it may still be possible that
some other transaction not mentioned in the spcriﬁeaiibwclause c‘imbléck »sX-déQUeue.
Therefore, ‘we create an anunymous lmnsacuon L fur an opt,ralron (prowdcd that that
transaction can have an enqueuc event: for (hersamu queuL as X-dcquuuc) .md a&s«.rt

that

Z- anucuc ( X anu«,m < Z- dcquwe

where X ~anuctu. and /-cnqucm occur for: the same. queue lf the guarantee for

Z- d«.quuzc is true mmudmldy belore P lhun / c;umut blockX l*urtln:r il asserting
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that Z-dequeue occurs after E causes a conflict, then there can be no such transaction Z.
If there is no Z, for any operation of the serializer, that can block X, then X-dequeue

must occur before E.

6.6 Proving by cases

One potential drawback of using the insertion rules is that some relatively
simple proofs will be unachievable because there are not enough assertions. In
particular, if enter events El1 and E2 are known to occur, yet the order of El and E2 is
unknown, we may be able to prove a clause if we assume either E1 < E2 or E2 < El, yet
be unable to prove the clause if no order is assumed. ASP can perform some of th¢se
proofs by cases: where the order of E1 and E2 is unknown, first assume E1 < E2 and
perform the proof, then retract the assumption of E1< E2, assume E2<E], and
perform the proof. If the desired result is obtained in both cases, the proof is valid,

provided that E1 and E2 are known to occur.

The concurrency specification clause given for the FIFO serializer was overly
restrictive, since it specified that
R1-enter < R2-enter < R1-leave
and the result (R2-join < R1-leave) can be shown to be true even if R2-enter < R1-enter.

The following clause is a stronger version of the concurrency specification that requires

proof by cases:



 GX(R1-enter, R2-enter, W*-enter) & R2-enter < R1-leave
D R2-join € R1-lcave S
Note that the GX clause does not specify that R1-enter < R2-enter, although the GX -
clause is trivially satisfied if R2-enter < R1-enter. Initially the precondition is asserted.
Then ASP first assumes R1-enter < R2-enter, proves the consequent clause, petracts.the -
assumption, then assumes R2-enter < R1-enter, and proves the consequent clause. That
R1-enter and R2-enter occur can be sh'o'wﬁ‘ in two waysthey are mentioned in a QX
clau;se, and events subsequent to them (b;' Lég:a]:t‘ra‘n:sé‘ét)fc’)h_"_&éb)‘are fm‘ent'iioned in an

ordering clause.

6.7 Proving guarantecd service |

In many serializers we would like to prove that every transaction feceives. -
- service, i.e., for every enter eévent there is an exit event. ?heﬁjlbwingé-is*a ‘typical

service specification clause:

- @T-enter D @T-exit
Proving guaranteed service for a transaction is performed by proving that cach dequeue
~event that the transaction can execute is guaranteed to occur, since we have assumed for
simple serializers that all other kinds of events will occur in complete historics given

their predecessors.

Proving that a dequeue cvent occurs is largely done by contradiction: We
assume that the dequeue cvent does not occur, which implics that its queue is not

empty, and that any crowds that require dequeue cvents from that queue will empty.
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This is generally cnough to show that the guarantee for the dequeue event is true. The

dequeue cvent must occur if no other queue is ready.

In this method, evaluating the guarantees must take place immediately prior
to some event, since that is the basis of our evaluation mechanism. But there may be no
actual event occurring, especially if no further enter events occur. Therefdre, we invent
a fictitious event with certain properties. We assume that some "quiet point” event QP
occurs, such that the event QP gains possession of the serializer only when no queues
are ready, and QP occurs late enough such that every crowd or queue that must empty
has emptied. Ifthe guarantee for the dequeue event in question is true at QP, and there
can be no blocking of the dequeue event, then the dequeue event must precede QP,
provided that QP does occur. We can guarantee that QP does occur if every other
queue is not rrady at QP. At this point we have proved that QP does occur, and the
dequeue cevent precedes QP, but we assumed that the dequeue event does not occur.

This is the contradiction that proves that the dequeue event does occur.
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For extended serializers, it is possible for a request kind to have guaranteed
service, yet the quiet-point method is too weak. To illustrate, suppose a serializer has
the following operation:

op = proc (x; cvt)’
if queueSempty(x. q)
" then % O-enql Co
enqueue x.q unt11 crowdSempty(x c)
glse X O-eng2
enqueus x.q until crowdSenpty(x c) & ~crowd$empty(x cc)
_end . . _ : ;
join x.c % O-joint
. end
join x.cc % 0-join2
end -
end op :

For simplicity, we will suppose that op is the only operationof the scrializer that canget
sole possession (uses cvt). The QP:event will net occur:until x.c is empty and x.cc is
empty. However, at QP the guarantee for O-enq2:is false. Therefore; it scems possible
for QP to-occur before O-enq2, 'so guaranteed service eannot be proven.

One way to prove guarantecd serwce for the above senahzer is to spht the
proof into two cases dependent on the test queueSemply(x q) in the lf statument If the’
test was true, the QP method will work. If the test is false just before O-eng2 occurs,
then there must be at least one other transaction, call it Ol, that is in x.q when the
O-eng2 occurs. But then there are two more cases, bascd on whether or not
crowd$empty(x.c). If x.c is empty, then the guarantecs for x.q must be true, and O-deq?2
must occur before Ol-leave, which must occur before QP, which guarantees service. 1f
x.cc is not empty, then there is yet another transaction, call it 02, such that x.c will be
empty at O2-join2, which implies that the guarantees for x.g will be true before

02-lcave2, which must precede QP. Although this analysis by case would be expensive,
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it would be possible to add to ASP.

The reader might object that the above examplé is:quite contrived, and we
would agree. We have discovered no- eeﬂvmcmg maitsnc exam\pies that requu'e more
“than the simple QP method, even when extensions td' senﬁh‘lérs are conSIdered For

this reason, ASP supports only the simple QP method..

6.8 A sample verification

This section presents a sample veriﬁcatibh"vﬁéfﬂ)rr‘néd by ASP Fxgure 4 figure
shows the results produced by using ASP to verify a priority clause for the FIFO
readers-writers serializer presented in Chapter 2. Input from the user is indicated by
un&crlining. The user starts the session by fypingf in"the ‘fiameof the ‘serializer that
should be used. That name is interprétéd as a file name Wﬁ%fé’ﬁ\éfﬁéz should contain a
descnptlon of the senafizu in the format requm.d "by ASP “Then ‘the usér types the

clause to be verified.

The response from ASP indicates whether. the clause could be proved, and
shows the assertion stack afier the inscrtion rules have becn applied (the first clause
printed is the most recently: asserted clause). This:information is usually suflicient to
cnumerate the steps of: the proof, or to demonstraie why the clause could not be proved.
While we will not describe them in this thesis, additional aids arc present for more.

detailed inspection of the steps that ASP uses to prove clauses.

- 142-



Figure 4. A sample verification by ASP

Name of serializer: FIFQ
1.012 seconds to setup.

Specification clause: W
Proved Implies(Rl-enter < Wi-enter,
~ Rl=exit < Wi-exit) .

base[39:
Rl-exit < Wil-dequeue- xq Possess10n exclusion,
R1-leave-rc < Wl-dequeue-xq: Guarantee exclusion,
Ri-join-rc < Wl-dequeue-xq: Possession exclusion,
R1-dequeue-xq < Wi-dequeue-xq: FIFO queues,
R1-enqueue-xq < Wi-enter: Possession exclusion, .
Rl-enter < Wl-enter: Assumed,
TR: Wl-enter: From clause,
TR: Rl-enter: From clause]

1.576 seconds: : P

Note in Figure 4 that not all of the rules are shown Thc deé:ult used is io .'
omit showing the clauses asserted in thc statlc analysm phase and use of the Transacnon\
order and Trapsitivity rules. The nomuon "baqe(sg. appearmg m the mlddle of the
figurc indicates that the assertion stack has 39 members. At the end of the ﬁgure the |
amount of processor time nceded for the proof is given. This ﬁgure includes the
processor time necessary to-parse the expression, apply the ‘verification rules, and to
print the results. The notation "TR: Wi-enter: From cYause” is uscd to indicate that
the transaction W1 was added 1o the transaction stuck ‘since” the transaction was
- mentioned in the specification clause (for uniformity in:the program this is treated as an

asscrtion).



6.9 Performance results

In this section we present a number of verifications performed by ASP on
variation of the feaders—writem problem. Each test is given as e specification clause to
be verlﬁed (or not verified) for different readers-wntets senahzers Flgure 5 presents‘”
‘these specnﬁcatlons most of whlch have been ment:oned in prevnous chapters as

specifications of dtffercnt propemes for the readers-wrltexs problem

Figure S. Readers-writers tests for ASP

Wpri: Writer's priority
Rl1-join < Wl-enter < R2-enter < W2-enter < R1-leave
J W2-join < R2-join

(NWPRI): Modified Writer's priority
Wi-enter < RI-enter < W2-enter < Wil-leave
D w2join < rljoin

Rpri: Reader's priority
Wi-enter < W2-enter < Ri-enter < Wi1-join
D R1-join < W2-join

(NRPRI): Modified Reader's priority
Ri-enter < Wl-enter < R2-enter < Rl-leave
D r2join < wljoin

Il R: Concurrency for Readers
GX{(R1-enter, R2-enter, W*-enter) & R2-enter < R1l-leave
D R2-join < Rl-leave

XexY: X busy excludes Y busy
X-join < Y-join D X-leave < Y-leave

XpoY: X not by-passed by Y
h X-enter < Y-enter D Xexit < Yexit

GS(X): Guaranteed service for X
@X-enter D @Xexit
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An abbreviation for each specification is given prior to cach ctause. The Wpri
and Rpri clauses specify writer's and readers priority propcrtles The (NWPRl) and
(NRPRI) clauses specify alternate versrons of these propcmes to be proved for the
NWPRI and NRPRI senallzers (to be shown below) The XexY clause actually denotes
three clauses: RexW, WexR, and WlexW2 where approprrate substltutrons apply The

XpoY clause also denotes three clauses, with the same SubStltljthllS. ’

- 145 -



Figure 6 presents the code, in abbreviated form, for each of the seven
readers-writers serializers tested. The create operations and headers have been omitted,
as is the trailing code after any join. The use: of crowd$empty and: queue$empty is
implicit where empty is used. There is one FIFO serialiier, two readers priority
serializers (RPRI & NRPRI), three wntets pnoﬁty ' senahzers (WPRIT1, -
'WPRI2 & NWPRI), and one serializer that albws s;arvamn @TARVE) Note that the
priority specifications for RPRI and NRPRI «dliffer,,angi that there are also two distinet

writers priority specifications.

The various serializers above were developed at dlfferent tlmes In pamcular
NRPRI and NWPR1 were written-after: Aﬂ‘ ‘had beeome relaavely reliable. We -
originally attempted to prove the Rpﬁ speciAﬁeatfoﬁ clause for the NRPRI serializer.
The attempt 'vas made much more diffictilt « by o8 preemleepaon 4due to a fauity .
informal proof) that the clause could be proved After much effort to determine the
cause of the fault in the program, we ﬁnaﬂy hottced that the p’rogfam was correct: not ‘
only was the clause not satisfied, but the mtermadlate S&.ps fouowed by ASP provided a
counterexample. It was this example more ’than aayiotghe_r that convinced us of the

worth of automatic verification aids.

l‘he modlﬁed wrllus pnonly spec:ﬁ«.allon came about as a lest of the

speculatlon that NWPRI musﬁed a prlorny clause that was symmemc to NWPRI since

the senalizers were (rou;,hly) symmelrlc l‘he unmodlf ed wnlus pnomy clause is also

satisficd by the NWPRI scrializer.

e



Figure 6. Code for test serializers

Name

FIFO

RPRI

© WPRI1

WPRI2

STARVE

NRPRI

NWPRI

Oper Code
"R enqueue
W enqueue
R enfueus
W enqueua
enqueue
R enquéue
enqueue
W enqueue
R enqueue
~ enqueue
W _enqueue
R anquaue
W ~enqueue
R enqueve
W enqueue
enqueue
R enqueue
enqueue
| enqueue

xq

xq

rq
wq

rq
wq
wq
rq
wg
wq

Fq

wq

xq

xq

xq

xq
xq
xq

uatil
until

uatil
until

S until

until
until
until

until

‘until

until

untilt
until

until
until
untit

until
until
until

empty(wc); join.rc.
empty(wc)&empty(rc); join

empty{wc); join rc. ..
empty(rq)

empLy(we)&empty(rc)s join

empty(wq)|empty(rc)
empty(wc); join rc
empty(rc)&empty(wc); join
eﬁp;y(;bf

empty(wt )sompty(rq); join

ampty(wc): join.pc -

emp;y(wc)&emp;y(rc): jéin’

empty(wc); jgin;r;'
empty(wc)&empty(rc)
ewmpty(wc)dempty{rc): join

i

empty(Qc)fu

wC

wC

P
gmpty(rc)&egp}y(yc): join "

wC

wC

empty(wc); join:rc . - -

empty(wc)&empty(rc); join

wC

- 147 -

The results in Figure 7 were obtained on 23 August 1979, The times given are



Figure 7. CPU times for ASP tests

Name Time WexR WexW RexW RpoW WpoR WpoW Wpri Rpri || R GS(R) GS(W)

FIFO 22 T 1T T 1 T T F E .1 T T
RPRI 36 T T T T ? T £ 1T T 7 T
WRI1 47 T T T ? 1T T T F 17 T T
WPRIZ 67 T T T 2 T 1T T fF ¥ 71 T
STARVE 24 T T T ? .7 T F 2. 71 ? ?
NRPRI 36 T T T T ? T F T T 1T T
NWPRI 30 T T T 7 T T T O F T T

Time is given in CPU seconds.
T 1nd1cates a proved clause. F mdicates a dlsproved clausa.

CPU seconds for running all of the tests shown.!” ‘The test cases are explamed m detail
at the bottom of the figure. Each column after the Time column represents a dlﬂ"erent
test, given by a specxfmgtxon.clﬁause,,A T represent_g;g };kagrO\‘u;ix_vl2 gpecuﬂegtnqn _clause. AnF
rep resents a specification clause proven to be ii;lway's’ﬁilse;* A 1 represents a specification
that could not proven true or false. In tlieﬂseciavlizers'represe‘ntedin the table below
there were no cases where the program was not capab!e cnough to prove or disprove a
clause that was always truc or false In genera% if the pmgmm can not pmve or
disprove a result itis uiher due toa cl.xuse that IS lrm for some hlb(Ol’ICb and ﬁnlbe for

others, or it is due 10 a weakness in the venﬁcauon methgdology,‘ and ASP will be

17. These tests were performed on 23 August 1979, using a Det‘&y:item'ZO(nO'l'. ASP occupies about 100K
3o-bit words of memory. of which about 68K words are,duc to the Cl U support system> No appreciable
paging activity took place. ‘
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unable to distinguish the two.

6.10 Summary of imclhcds used

This section provides a concise summafy of t.he meﬁthodsjwe haye used in ASP‘.
In this summary we follow the order of steps used in ASP rather than prectseiy

following the order of presentation for thls chap&er

* Static analysis is performed once for any gnven serializer code to
detcrmine initial clauses that are- denvabte solely from*the ‘node graphs
for the serializer operations. The’ rémainder of the stéps are performed
for any gwen specnﬁcatlon clause .

* Representations are introduced for the transagnon,s mentnoned m the
spccification clause.

1

* For any specification clause of the form P o Q thc clause P is asserted
and we attempt to derive Q through wse of the insértion’ rufes, which are
the rules Transitivity,-Event before PX; Event afier PX, Event before GX,
‘Event after GX, and Event from FIFO. If these tules are not sufficient to -
prove Q, further methods must be used. - ST :

* The Event from rcady qucuce rule, which reflects the priority of service
given- o internal queues over  the. external, queue,, iu» apphied wherg
feasible. This is known as chcckm;, for ready gueues.” This rule may
result in the invention of anonymous transactions, which are essential o
the proof by contradiction that the prccundmons for the rule are met.
Anonymious transactions may ilso be “tsed’ it the" BVF rile. which is
subsidiary to the checking for ready queues.

* When the clause Q is still not proved, and the order of certain enter
cvents is not known, although the events are knows to ocour; ASP tries all
permutations of - stich “events, i Qcun -be proven' for every such :
permutation, then P D Q has bu,n proved.
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* Proof of guaranteed service is performed by assuming that a transaction is
blocked in a queue, then proving that a ready queue must result at some
"quiet point.” Although this method is limited, it can be proven to be
correct, and works for a variety of cases.
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7. Interaction of Serializers

In previous chapters, we introduced the ,serijal,i:‘zérv construct, presented a
specification language for serializers, and demonstrated some verification techniques.
Our discussion has been limited to single instances of simple serializers. Yet if we are to

- reach our objective of modularity, we must examine how serializers interact.

In this chapter we present an application of serializers that incorporates the
use of multiple serializers. - We are especially concerned that serializer use can be
nested, so that the techniques for modular decomposition of programs in a single

process domain can be applied to a multiple process domain.

The example we have chosen is the use of serializers to control concurrent
access to a simple file system. For this example we will assume that objects in primary
memory can be shared by several processes running on a single processor. This choice
is made to keep the example simple enough to be tractable, since presenting a

distributed version of a filing system involves issues well beyond the scope of this thesis.

We start this chapter with a presentation of the simple file system, including a
discussion of the abstractions involved. We then show two of the scrializers used to
control concurrent access to the file system, and show how the specifications are similar
to the readers priority variant of the readers-writers problem. Further sections concern
methods for introducing scrializers for abstractions that were written for single process

environments, and a discussion of higher-level transactions.
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7.1 The file system

The structure of the file system is based on directories and files. A directory is
a map from names (expressed by strings) to entries, which are either files or directories.
If directory Y is named in directory X, then Y is a child dirgctory of X, and X is the
parent directory of Y. There is a single directory, célled- the .root direczlory,v that has no
parent - directory. Files and child directories may be added to.or deleted from
directories. A simple provision is made for iterating over the names of a directory. Itis
possible to get the number of entries in a directory, and to determine which. directory (if
any) is the parent of a given directory. Formgst{quqnjgm{p directory must be open
for the user to perform those operations. Opening a directory is accomplished by the

directory$open_dir operation. The directory structure is acyclic.

A file is an array of pages, where a page is some fixed ’Iéngth unit of data.
Pages on primary memory may be read from or written to any existing page in a file.
Pages may be added to or removed from the end of a file. A file may be named by only
one directory. It is possible to get the number of pages in a file; and to determine which
directory names the file.. As with-directories, a file must be epen for the user to perform
most operations. A file opencd by directory$open_private can only be accessed by a
single process, while a file opchcdrby directorySopen_public can be accessed by any
number of processes (although a prhcticu] system might impose some rcasonable timit).

A file is closed by the file$close operation.
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At this point, some additional explanation of the open and close operations is
in order. First, we have made the open operations work on directories, sinée directories
are the logical means for initially accessing files and child directories. We have made
the close operatidn work only on the object that the o;‘sbntfpmv’ides,vwhichprevéas
users from closing a file (or directory) except when they have acquired that file or -
directory dbject through an open operation. Second, we have two different kinds of -
open operaiion on files: open_public, for simultaneots decéss:among several pmcmses
(or users), and‘ open, _privaie, for sole access. We ¢an associate an gpen count with each-
file or directory object. ‘This count is increased for every open operation, and decreased
by every close operation. The directory$open: private operatm will only succeed when
the count is zero, and upon successful completion,-prevents amy increase in the count.
The directory$open_dir operation opens a éhifd‘ directory such that multiple processes

can access it concurrently.

In presenting the file system example we will concentrate on showing the .
interface of the file and directory data abstractions ané'the-“code for the file and
dircctory serializers. It wilk not be necessary to show the implefnentation of the file and

dircctory data abstractions, although we will discuss some of the details as neccssary. -

Figures 8 and 9 present the interface spcciﬁc_@i_qns_ for the directory and file
clusters. As a first approximation, these are the same »i‘ntcrfaq; spc‘ci.ﬁcatio;‘jsy that are
used for the corresponding directory and file se,’riz:nli’z:qrs: hxch opef’a:tion interfape
names the opceration, the types of the arguments, the tybes of the rciufncd objccé, aﬁd

the types of exceptions that can be signalled. We include some comments that indicate
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Figure 8. File interface

A file may be described as an array of pages that exists on remote
storage. It can be randomly accessed, and can  be axtended or retracted
at one end. An open file can only be obtained through use “6f a directory
open_private or open_public operation. No operatlous can be performed on
a closed file except for is_open. _The following ' fiIe operations are
available to the user (others will be discussed 1ater 1n the chapter):.

get_parent (file) returns (directory) signals (file_ c1osed)
Get parent directory of file if file is open, otherwise signal
file_closed.

get_name (file) returns (sfridg) signals (file_closed)
' Get name of file as a string if file is open, otherwise signal
file_closed. \

get_size (file) returns (int) signals (file_closed)
Get number of pages in the file if it 1is open, otherwise signal
file_closed. '

is_open (file) returns (bool)
Return true if file is open, false if it is not.

read_page (file, int, page) signals (file_closed, bounds)
Copy a page of information from the given location in the file i.to
the given page in primary memory, provided that the file is open,
Signal bounds if the location is invalid (less than 0, greater than
or equal to the size). Signal file_closed if the file is closed.

write_page (file, int, page) signals (file_closed, bounds)
Copy a page of information from the given page in primary memory to
the given location in the file. Signal bounds if the location is
invalid, file_closed if the file is closed. :

close (file) signals (file_closed)
Close file if it is open, otherwise signal file_closed.

add_page (file, page) signals (file_closed, no_room)
Add a page to end of file, signalling if the file is closed or there
is insufficient room to complete. :

rem_page (file) signals (file_closed, empty)

Remove a page from the end of the file, signai]ing if the file is
closed or the file has no pages. :

- 154 -



For concurrent access, there are the following classes of operations:

Info: can overlap with any but sole access
Read: can overlap with read or info access
Write: can overlap with info access

Sole: can not overlap

The operations in each class are:

Info: get _parent, get name, get_size, is_open
Read: read page

Write: write page

Sole: close, add page, rem_page



Figure 9. Directory interface

A d1rectory functtons as a symbbl tan]e of antr1es.,where each entry is
either a file or andther directory. Entries can bg creg;qd ﬂe1eted or
opened using the directory. The follow1ng operations are pub1ic1y
available: R S T S
roat () returns (directory). s S
Get root directory, which is a]ways oﬁen (this operaxion does not
require possess10n)

get_parent (d:rectory) returns (dxrectpry) signa]s (naqa dif c!osed)
Get parent directory, signa1ymn .naneg. jw ﬁfigiyen ¢freqtog¥ is_the
root directory, and dir_closed 1f the given frec gory is'clo%ad. -

get_size (directory) retupps (int) sxgnglga(digﬂ¢ze gd)
Get number of .antries. in the given 9 reqtqng sjgn&l]xng if the
. directory is closed. . : -~ o

get_name (d1rectory) “returns (string) svgnals (dir closad)
Get name of the given dlrectory, signalltnq? if the directorg is
closed. , : , . i R

is open (d1rectory) returns (bool) ‘ o
Return true if the given dlrectory 1s open. fa1se if it is not

info (directory, string) returns (bool, ist, bqol)
signals (none, dir_closed) =
Return. 1nformataon ahout the . named eq;ry a hnnfean indicgting the
kind of entry (true if entry is a Tile, faise Eid not), the size (in
pages if a file, oaumber of entrie&wif qﬂp1rec;9;y),Aand a boolean
indicating whether the entry is. opon. SigndT‘quropriate errors if
they .gccur. T L Ly L - -

ih b

next (directory, str1ng) returns (strungl sggnals (néne dir closeq)
Get next entry name after named entry, using s$tring ordering. ’

open_private (directory, string) returns (f1le)
signals (none, openqd dir closed) o ;
Open named file in glven.gﬂlrectory for so?e use, signalling
appropriate errors’ 1f they . occur.:~’ . o

SR
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open_public (directory, string) returns (file)
signals (none, locked, dir_closed)
Open named file in given directary for shared use, signalling
appropriate errors if they - occar” (1octhd 1s sfgnal%ad 1f ontry is'
open for sole usn) . - ,

open_dir (directory, string) returns (directory)
signals (none, dir_closed)
Open named child dlrectory in given diroctory. signa]ling appropriate
errors if they occur.

close (directory) signals (dir closed, open_entries, root) A
Close the given directory, sigha11iag ff it 1: the roct or 1t is
already ¢Tosed, or open’ entries ‘exist. - , RS

add_dir (directory, string) .
signals (no_room, duplicate, bad_ name , “dir_ ctcsad) :
Add new (empty) child directory entry with' givcn ‘name’, Signa] if
there is insufficient room, an existing file or  directory of the same
name, a bad directory name given, orithgxdiqchgrykis closed.

add_file (directory, string) B A
signals (no_room, duplicate, bad_name, dir _closed)
Add new (empty) file entry to directory Signal if there s
insufficient room, an existing file or- d*ractdry’of the same nawe, &
bad file name given, or the directory is closed.

delete (directory, string) signa1s (none opened d#(\cfosed)

Delete named entry in given dxrectory, sign&Tiiqg,qpprnpriate errors.
If entry is a d1rectory, all of its entries are d%1etod as well,

There are four classss of operatxons requiring po:sassfon'

Fixed info: can overTap with any but sole access’
Variable info: can overlap with variable or fixed info access
Opening: ‘can overlap with fixed info acgess ,
Sole: . can not overlap B
The operations in each class are:
Fixed info: get_parent, get name, is;Opén
Variable info: get_size, info, next - "
Opening: open_ private, open pubtic opan dir
Sole: close, add_dir, add " fite, delete, -
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the intended effects of the operation. After the operationshave been described, we
divide the operations into ¢lasses based oni which operations may overlap in execution

with which other operations (when executed on the sathe seriafizer object).

One way to design a system that involves concurrency is to design it for a
single-process system first, then add multiple processes for pomonsof tp,s;k%that_:cap be
performed concurrently, and add serializers to control access to shared objects. In the
file system example, however, we have assumed that the ﬁle system would be accessedy
by multiple processes. This assumption has mﬂuenced the chonce of operatlons,
especially in providing for opening and.clesing of files; Even-so, the single-process
model of design is useful. Concurrent execution ‘of operations-is only permitted where
the effects on the state of the files are the same -as some-serial execution of operations’
where concur-ent execution is prohibited. It may not be: possible to obtain the.
maximum concurrency in ‘this fashion, since certain operations could be allowed to
execute concurréntly in part. But increased coacurrency is purchased at:the cost of

increased complexity.

Onc simplifying assumption has been made regarding file objects thap may
appear to be unrealistic. That is, a file on secondary memory has at most one lile objéét
in primary memory controlling access (this is also true for directories). Unfortunately,
this allows a user to open a file once to obtain the controlling object, then close the file
several times, thereby completely closing the file to access by other processes. To
remedy this, in a real system it would be desirable to have a second level of indirection

for files such that every successful execution of an apen_public operation returned a
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unique controlling file object. The additional level of file object would be used to
create a separate file object for each open__public operation, such that the ﬁlve, abstraction
presented to the user would only allow a file objeet to be closed once. A full
presentation of both levels of file has no advantage over a presentation of a single level,
so we only discuss the system_file vérsion of files, which is snppom:d by the file cluster

and its associated serializer.

7.2 File and directory serializers

Figures 10 and 11 oa the following pages. present. the directory and file
serializers. Note that we have added several opemations that are "hidden” to the
"normal” user. We would expect access to-these operations to be regulated through
some library mechanism, such that a normal user would see -a subset of the interface of
an abstraction, while a "privileged" userwould be allowed to access more of that
interface. In some cases, and in particular for this file system, access to privileged
operations would be restricted to only allowing use by implementations of particular -
abstractions, rather than allowing access based on the identity of the pcrsoh using the

systcm.18

18. Such protection could also be provided to some extent by establishing a block structure for clusters
and serializers. We have chosen to rc(.un ClLU's .lpprmuh o moduk:s. and assume that protection is
accomplished by other means,
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Figure 10. File serializer

file

= seria]izer is

% The following operations are publically av&11ab]e
get_parent, % get parent directory o
get_name, % get name of file
get_size, . % get # of pages in file
is_open, % test open-ness of Tile *
read_page, % read a page
write_page, % write a page
close, % close file
add_page, % add a page to end of file -
rem_page, % remove a page.from end of fiIe

% Note: delete can only be called from_ directogy;ﬂe1ete
delete, % delete the contaents of a file

% The wrap operation can only be used by the _file tihbtﬁ?*
% to turn a _file obJect 1nto a ftle serjal1zer ob;gct

wrap s oase o

SRR S T SRR T E s b e S A R o Fod b aggeven

% The operations with cvt argumeats .can be split 1nid’fﬁur
% classes, depending on which operationhs ‘can’ overiap” ih
% execution with which other operations.

% - Class - - Overlap - 5

% Info: Info Read, Hrlte “;_

% Read: -Info, Read -~ /' T

% Write: Info '~ v v=n

% Sole: - o e

E

% - Class - - Members -~ R

% Info: get_parent, get_name, get_ size,‘1s 6Pan

% Read: read_page :

%4  MWrite: write page. e

% Sole: ¢lose, add page “r 9 g ﬂe]bte

rep = struct[slow q.~ fast _q: qaeue *“f \Eff RN
sole_c, write_c, read_c, 1ﬁfq;t;‘ch§@2_ S
f: _file) R

wrap = proc (_f: f11e) returns (cvt) :
return (rep${f: _f, fast_q, slow_q: queueScreate(),
sole_c, info c, read_c, write_c: crowdScreate()})
end wrap

get_parent = proc (f: cvt) returas (d1rectory)
signals (file_closed)
enqueue f.fast _q until crowdsempty(f soie e)
join f.info_c
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return (_file$get_parent(f.f)) resignal file cltosed
end
end get_parent

get_name = proc (f: cvt) returns (string)
signals (file_closed)
enqueue f.fast_q until crowdsempty(f sole c)
join f.info_c
return (f.f.name) res1qna1 Iile ciosad
end
end get_name

get_size = proc (f: cvt) returns (int)
signals (file_closed) :
enqueue f.fast_q until crowdSempty(f sole_c)
join f.info ¢
return (T.f.size) resignal fi1¢ closad a
end
end getusize

is_open = proc (f: cvt) returns (bool)
enqueue f.fast_q until crowdSempty(f.sole c)
join f,info_c¢ L
return_ (_ fileSis open(f f))
end
end is_open

read_page = proc (f: cvt, index: int, p"pAQQ)
signals (file_closed, bounds)
enqueue f.fast _q until crowdSempty(f sole c)
& crowdSempty(f.write_c)
join f.read_c '
f1le$raad(f f, index, page) resignal file_closed, bounds
Qnd , bz ‘ .
end read page

write_page = proc (f: cvt, index: int, p: page)
signals (file_closed, bounds)
enqueue f.slow_q until queueSemptx(f fast_q)
enqueue f.fast_q until crowdSempty(f. sole c) '
& crowdSempty(f.read c) & crowdSeﬂpty(f write c)
join f.write_c
_fileSurite(f;f. index, p) resignal file_closed, bounds
end
end write_page

close = proc (f: cvt) signals (file_closed)
enqueue f.slow_q until queueSempty(f.fast_q)
enqueue f.fast_q until crowdSempty(f.sole _c)
& crowdSempty(f.info_c) & crovdSeupty(f read_c)-
& crowdSempty(f.write_c)

- 161 -



join f.sole_c
f1le$close(f f) resignal file closed
end

end close

add_page = proc (f: cvt, p: page)
signals (file_closed, no_room) o
enqueue f,slow_gq until queueSempty(f.fast_q)
-enqueue f.fast_q until crowdSempty(f.sole_c)
& crowdSempty(¥.info'c) & crbwétehpty(f read: c)
& crowdSempty(f. write ey ,
join f.sole_c ‘ R
_fileSadd_page(f.f, p) res1gnal f11e c%bsod nozroom ;
end
end add_page

rem_page = proc (f: cvt)

signals (file_closed, no room) - :

enqueue f.slow_gq until queueSeapty(f fast q)

enqueue f.Tast-q ontil crewdSempty{f.sole ¢)

- & erowdSempty{f:¥nfo_c) & crowdSempty{T.vead_c)

& crowdSempty(f.write_c) \

join f.sole_c

f11¢8rem page(f f. p) reslgnal file caosed no room

end-

end rem_page

% Note: called by _dirSdelete

delete = proc (f: evt) A o
signals (file_open, file_deleted) -
enqueue f.slow_q until queuelempty¢f.fast g)
enqueue T.fast_q until crowdSempty(f.sole ‘¢c)
& crowdSempty(f.info_c) & crowdSempty(f read_c)
& crowdSempty(f.write_c) :
Jo1n f.sole_c
% Note: use hidden fi%ede?bfe opevatxon
% to delete contents of file. ' _fite$delete is
% -only: sseégﬂ,uﬁtl«tésleeee~::+,ﬁ*f !
_fileSdetéte(f ., ip} réstghd} THlte open, file_ delehed'
end
end delete R

end file

-162 -



Figure 11. Directory serializer

directory = serializer is

root, % get root directory

get_parent, %X get parent directory.

get_name, % get name of direciory .,

is_open, % test open-ness of directory

get_size, % get # of entries

info, % return. isfo. about namcd antry ’
next, % get next entry name after a&nﬂdAantry o
open_private, % open file for sole use Lo
open_public, % open file for sharing : - . ..

open_dir, % open sub-directory ‘

close, % close this directory

add_dir, % add new sub-directory entry

add_file, % add new file entry

delete, % delete named entry.

% The wrap operation can only. be- used by ;bg dsfectory cluster
% to turn a _directory objest into g difacterywsexﬁaiizar object.
wrap e T Y T I

% The operatioss can:be split into six classes, dependtng on
% which operations can overlap in execution with whicm pther
% operations. ) ,
%2 - Class - - Overlap -

% Root: Root, Fixed, Variable, Opening, Sole

% Fixed info: Root, Fixed, Variable, Opening

% variable info: Root, Fiugd, Varaable :

% Opening: Root, Fixed - ‘

% Sole: Root

% - Class - - Members -

% Root: root

% Fixed .info: .. get_parent, get_ na-o. is open get size
% Variable info: ~info, next. .

% Opening: open_ private>:0ﬁcu labl;c,aepen dxr

%

Sele; . - .. close, add dir: add_file, delete

rep = struct[slow_q, fast_q: queue,

%
4
y 4
%

sole_c, open_c, var_c, fixed_c: crowd,
dir: _directory]

The wrap procedure is used by the _directory cluster

to turn a _directory object into a directory serializer
object. This operation can only be used by the
_directory$root and _directory$add_dir operations.

~urap = proc (d: _directory) returns {cvt)

return (rep$Screate{dir: _d,
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slow_q, fast_q: queueScreate(),
sole_c, open_c, var_c, fix_c:
crowd$create()}) -
end wrap AR T

root = proc () returns (d1rectory) S =
% note: —directory$root uses the wrap operation
return ( directorySroét()) Bt Fuud el SR
end root ~“‘-‘:g R A

get_parent = proc (d: cvt) returns {directory)
signals (none, dir_closed)
enqueue d.fast_q nnt11 crowdSeﬁﬁGy(d sOIO c)
join d.fix_c
return ( d1rectorySget parinted.dir))
resignal none, dir’ E1osed* Clan
end e
end get_parent

get_name = proc (d: cvt) returns (string)
signals (dir_closed)
enqueue d.fast_q until crowdSempty(d.sole_c)
join d.fixed_q
return ( directorysget name(d dir)) resigna! dir_closed
end ;
end get_name
is_open = proc (d: cvt) returns (boo]) Ty
enqueue d.fast -q until crowdSempty(d sole c)
join d.fixed q
return (_directory$is closed(d dirY)
end
end is_open

get size = proc (d: cvt) returns (1ﬂt)
signals (dir_closed)
enqueue d.fast_gq unt11 crnwdSempty(d sole c)
join d.var_c e
return ( d1rectory$get sxze(d dwr)) resignal: d1r closed
end o et ,
end get_size

info = proc (d: cvt, name: str1ng)
returns (bool, int, bool) signals (none, din closed)
enqueue d.fast_q until crowdSempty(d.sole c)
& crowdSempty(d. open c) R
join d.var_c EE S oo
file_ness: ‘bool, 'size: int, opan ‘ness: bool .
1= d1rectory5info(n dir) resignal dir_closed, none
return (f1le ness, size, open _ness)
end

-164 -



end info

next = proc (d: cvt, name: string) returns (string)
signals (none, dir_closed)
enqueue d.fast_q until crowdSempty(d sole c)
& crowdSempty(d open c) e ‘
join d.var_c- i -
return ( directorySgot next(d dir))
resignal dir_closed, none
end
end next

open_private = proc (d: cvt, name:. string) returns (file)
signals (none, opened, dir_closed)
enqueue d.slow_q uatil queveSempty(d.fast q) .
enqueue d.fast_q until crogﬂ&gngty(d sole c)
& crowdSempty(d.open_c)
join d.open_c
return (_directorySopen_private(d.dir, name))
resignal dir_closed, none, locked .
end :
end open_private

open_public = proc (d: cvt, name:.string) returns (file)

signals (none, locked, dir_closed)

enqueue d.sTow_q until queueSempty(d.fast_q)

enqueue d.fast_q until crowdSempty(d.sole c)
& crowdSempty(d. open _c) .

join d.open_c '
return (-directory$open_ public(d dir. nano))

resignal dir_closed, none, lecked

end

end open_public

open_dir = proc (d: cvt, name: string) returns (directory)
signals (none, dir_closed) ,
enqueue d.slow_q until queuetenpty(d fast.q)
- enqueue d.fast_q until crowdSenpty(d sole c)
& crowd$empty(d.open_c)
join d.open_c
- return (_directorySopen_dir(d.dir, name))
resignal dir_closed, none
end
end open_dir

close = proc (d: cvt)
signals (dir_closed, open_ entries)
enqueue d.stow_q until queueSempty(d.fast_q)
enqueue d.fast_q until crowd$Sempty(d.sole c)
. & crowdSempty(d.var_c). &»croudienptx(d fix_c)
& crowdSempty(d.open_c)
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join d.sole_c
d1rectory$c1ose(d d1r) resignal d1r closed, open entries
end : : . .
end close

*add dir = proc (d:"cvt, name: string) ‘

signals (no_room, duplicate bad_name, dir_ closed)
% note: _directory$add_dir uses -the wrap operation
enqueue d.slow_q until queueiempty(d fast_q)
enqueue d.fast ¢ until crowiSemgtyfd.sole c)

& crowdSempty(d.var_c) & crowdSempty(d. open c)
join d.sole_c

dlrectorySadd dir(d. dir)

resignal no_room, dup1icate bad ‘name, dir_ closed

end ,

end add_dir

‘add._file = proc {d: cvt, name: string) :
signals (no_room, duplicate, bad name, dir closed)
enqueue d.s1ow. g Until queueSenpty(d,fassiq)
enqueue d.fast_g until crowdSempty(d.sole_c)
& crowdSempty(d.var_c) & crewdSempty(d.apen_ c)
join d.sole c
directorySadd f11e(d dir)
" resignal no_room, duplicate; ﬁad naﬁé ‘dir_closed
end
end add_file

delete = proc (d: cvt, name: string) o
signals (none, opened, dir_closed)
 enqueue d.slow q umtil queusSempty(d.fast_gq)

enqueue d.fast_q until crowdSempty(d.sole c)
& crowd$empty(d.var c). & crowdSempty(d.fix_c)
& crowd$empty(d.open_c)

join d.sole_c

d1rectory$de]ete(d d1r) resignal dir CIOSed ‘open_ entries

end

end delete

end directory'
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~

To dlstmgmsh betwecn the data abstractlons and the scmhzer abstractions of

BTG ant

the same mterface we will use the names directory and f le fdi‘ the senalnzer
abstractions, and _directory and _file for tbc data qbsg'act\qls. {,Thc user, in a multiple
process system would auly be allowed to acm ghg qﬁgmuons o£ the senahzer
abstractions, which would uulme the:opelm&e dam.abstracaons. '

In the above twa. serializers, there areclass&ofopémions jhat can be strictly
ordered on fhe basis of the execution of any operation from 6m; ;lnss excluding the -
execution of any operatlon from another class. Theforder is: ﬁ’om most pcmnss:vc to
least permlsswe with opemuans thatz retam mfommtm sznemlty bang the most
permissive, since they can be execﬁted concumently 'Fhis ordenng allows us to
construct serializers that follow the general p“!ah o{ thg madﬂs-wnters problem. If an
operation can 2xecute éoncurrently with another invoc#tion of th;sa;ngoperatnon it is
considered to be a.reader; otherwnse it lsa wnicr ln thg gbovcs senahzers .we. have.
adopted a readers priority approach wutmhe mfomaum gathu'mg opemuoas having
higher priority. 1t would be equaaly eerfect to ad@t’ ii Fim apmach or a writers

priority approach, but different perform.mcc would resylt.

The restrictions on simple serializers must be relaxed shghtly to allow us to
write the file and directory scrializers. The most important uddlll()n is llu LXCLplIOﬂ

mechanism, which includes a signals clause in the operation interface and a resignal

“clause at the end of any statcment. This addition does not greatly add to the complexity .

of our model, since we only use the exception-mechanism in the same manner as the
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return statement.19

‘We retain the important limitation, which,f;s@igo,;rgtum or signal directly after
‘invoking the operation of the data abstraction, The other addition is.to allow local
variables, which we use in directory$info to hold the results of an énvoca;ion that returns
multiple objects. The effect of this addition is also minor, since we immediately return

those results unchanged.

7.3 Specifications for file and directory serializers

The specifications for the file and. directory serializers are similar to the
readers priority readers-writers problem. Therefore, we will .only present illustrative
examples, rather than full specifications. One useful abbreviation is to use the first
letters of the operation classes, rather than the opefé{tidns, toname t‘rahsabtions.‘ This
gives us the following transaction names for file operation classes:

I:  an Info class transaction .
a Read class transaction .

a Write class transaction

w £ =

a Sole class transaction

For directory operation classes, we can use the same spegifications, except that -the

19. In CL.U, when an operation signals an exception. the invocation terminates, and the ilmncdiale
caller is given the opportunity to handle the exception. A common micthod of handfing an exception‘is to
reflect it to yet another level via resignal. An invocation that signals an exception is not resumed. For
further details, see [ .iskov 79a).
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transaction symbols have the following interpretation:

I:  aFixed Info class transaction

R: a Variable Info transaction

W: an Openifig class transaction '~~~

S:  aSole class transaction
In the remainder of this section we use thie class names of the file setializer (nfo, Read,
Write, and Sole) with the understanding that the remarks a6 ‘apply to the

corresponding directory classes.

The most important specifications are those that relate to the exclusion of
certain operations by others. If these specifications are: violted we-obtain invalid result

values. The complete exclusion specifications are:

I-join < S-join D I-leave < S-join

R-join < W-join D R-leave < W-join

R-join € S-join D R-leave  S-jain

W-join < R-join D W-leave < R-join

W1l-join < W2-join D Wl-leave < W2-join

W-join < S-join D W-leave < S-join

S-join < I-join D S-leave < I-join

S-join < R-join D S-leave < R-join

S-join < W-join D S-leave < W-join
“S10in € S2-join D Sldeave < S2join

A number of priority specifications might bc’proposvcrd. The readers priority

specification used in Chapter 6 is:
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Wi-enter < W2-enter < R1-enter < Wl-join D R1-join < W2-join
The same specification clause holds for the-file Mér;clireétary‘seﬁaﬁiers; “To give more
complete priority specifications,- we introduce two new claseg of ;ransactipns: Sw,
which contains all Sole and Write transactions; and IR, which contains-all Info' and
Read transactions. Using these new classes, the priority specnﬁcatlonbecomes o

SW1-enter ¢ SW2-enter < IR1-enter < SW1-join
2 IR1-join ¢ SWi+join. P

The following specification specifies concurrency for, Read transactions, and is

aslight adaptation of the concurrency specification in Chapter 6:

R1-enter < R2-enter < R1-leave -
& GX(R 1-enter, R2-enter, W*-enter)
& GX¢R 1-enter, R2-enter, S*-enter)
D R2-join { R1-leave . :
The difference lies in the addition of the exclusion of eater eveats from the Sole class of
transactions. The above specification can also be proven for Read and Info transgctjqns
by substituting R for R1 and I for R2 to get one clause, and | for R1 and R for R2 to get
the other. Finally, the following specification indicates wheri 1 Write transaction must
overlap with an Info transaction: - |
W-enter < I-enter < W-leave
& GX(W enter, l-enter, S*-cntu)& GX(W~Lmer I- entu W*-c.ntcr)

D I-join < W-leave
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The service specifications are as simple as:for the readers-writers problem:
each request must receive a reply. The service specifications.are:
~ @l-enter D @I-exit
@R-enter D @R-exit

@W- -enter D @W-exit
@S-enter O @S'exlt

We have shown that the specifications for the file and gdirectory serializers are
similar to the readers priority example used in Chapter 6. This may not be surpnsmg.
since the problems and solutlons are similar; but the lack of such a surpnse is precmely

one of our goals.

One point about the specifications tt}a;_wg havedlscoye[ed throughthe ;above
example is the usefulness of dividing the opmnﬁ@mwrda&s,ﬂpmwmg the
specifications for the classes rather than for the single operations. Usmg class-ofiented
1§: while' retaining’ the

specifications promises to provide moré" concise ‘specifica

precision we desire.

The ycriﬁqatipn tcchn_iqucs wedlscussedm Chapter !Sgsapd{ (,hapter 6 rg;mznir;
valid for both the file and directory serializers. The only :@gjiliong\ye would make
would be to introduce classes of operations into the verification as we have for the
specification. When two unalmr opc.rallons are suﬁ' cwmly snmﬂar it should be
possible to use the proof of one in the proof of Lhc other as. lS the case. for file
opcrations in the same specification class. We will not propose techniques for

~ determining how much similarity is sufficient, although we regard the issue as being
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worthy of further research.

1.4 Guidelines for addition of serializers

In a system whefe data abstractions are used, we believe it likely that some
library of abstractions}wi_ll, become useful, and eventually ipdigpensgble. Fur‘ther, we
consider it likely that- many -of these abstractions will be iﬁitiall§ designedb‘for a
single-process environment.2® If we are to use these data abstractlons in a
- multiple-process environment, and the correspondmg ob]ects are to be shared between
processes, we can either rework the abstractions for that purpese, or we can-provide a
mechanism for controlling concurrent access thet' requires no -change to the data
abstractions. The serializer construct was designed alowg the: latter-lines. - This section

discusses how that approach could be made-argely automatic.

As a first approximation, we assume that each operatioﬁ has exclusive use of
the resource, then introduce serializer abstractions as replacements for deta abstractions
in order to permit coneurrency whlle prohlbmng conflict’ and deadlock “This is a simple
strategy, and is not mtended to cover all sntuatmns. althﬂugh w;e b&hevc it to be an

important first step.

When a serializer abstraction is substituted for a data abstraction in a program,

yet the data abstraction is retained as part of- the:implementation -of the serializer

20. Evenif for no other reason than programmer inertia.
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abstraction, we may be faced with problems that result from having:two abstractions in-
the place of one. If we wish to integrate a newly serialized abstraction into a system that
has been created with the old data abstracﬁon, we.need a linking mechanism that will-
allow the operations of the serializer abstraction to be substituted for operations of the
- original abstraction in old user programs. If the interface to the serializer abstraction is
compatlb]e with  the interface of the original data abstractlon ‘and ‘both abstractions
have isolated representauons then this linkage mechanism allows graceful upgradmg of

programs that use the orlgmal data abstraction.

However, the representation of the original data abstraction is exposed to the
operations of that data abstraction. Here the splitting.of the otiginal abstraction is more
difficult. In most cases, we expect that an.automatic "rewrite” of the data abstraction
would be easi'y made by a program. If we call the. type introduced by the data
abstraction DA, and the type .introduced by the serializer abstraction SA, then the

followmg rules allow such an automatic rewrite:

* Occurrences of DA in the cluster for DA are changed.to. SA, including
occurrences of DA in the interface of operations of DA, provided that
they do not result from uses of cvt. Thus, a componcnt of the
representation of DA that was an object of type DA would become an
object of type SA. In the file system example, this would be true for the
case of the get_parent operation of the directory abstraction, since the
get_pareat operation of _directory (DA) must return a directory object
(SA), and not a _dircctory object (DA). This is also truc of the
open_private, open_public, und open_dir operations. - :

* Opcrations of DA that have evt appearing in their headers must have DA
appear in the interface specifications where a corresponding cvl appears
in the operation header. These are operations that explicitly access the
representation of DA, so a conversion of DA to SA is not reasonable.

173~



* The up and down operations convert between the representation and the
' DA type, not the SA type. This is consistent with the treatment of cvt.

* We introduce an operation, called wrap,. that. takes a. DA object and
returns a newly created SA object that encapsulates the DA object. The:

- wrap operation is used to create a new SA object in operations that create
new DA objects and need (due to our first transaformation) to use SA
objects,

[If the above translation results in a type error then the agltqmatig:‘rewrité is not
performed, and a manual rewrite must be performed. Sucha case could arise from an
operationfthat accepted an argument of type DA,thenexpltcntly };‘Sf"igdo‘:‘x';“ to attempt
to access the representation. The transformation would have changed the use of DA
into SA, but the. down operation would only work for an object of type DA, and failsr
(due to static type checking) with an SA object. |

In addition, a data abstraction may have to be rewrittén if it supports cyclic
objects. If operations of DA call operations of SA, which in turn call operations of DA,
a cyclic data structure can cause deadlock byf,,haviqgg access {0 an object being blocked
by-an incomplete access to the same object )b»y/ the same process. Access to cyclic objects

is discussed later in this chapter.

’LThére arc two reasons to believe that a rewrite of the original data abstraction
will not be a difficult process even if it cannot be done automiatically. First, the amount
of detail to be }‘c’hahgeyd is fikely to be small. After all, the intent of the data abstraction
has not changed. There is only the additional distinction between serializer abslri‘ict’ion‘

and data abstraction. Sccond, we believe that it will be rare that any code cxcept for the

-
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lmplcmentanon of the senakzer and data abstracuons will be aik)wed to use: the data
~ abstraction. The mtentxon of this transformatlon xs  to make the rest of the system use
the serializer abstraction. Therefore, the number of places® be changed is also likely

to be small.

In the file system example, there is a case where the use of the é&komatic
splitting of types may provide serializers where none are needed. - In particular, if the
directory information is implemented using a file, then the sériafizer for the directory
may provide sufficient protection for the file bbjeét tised to implement the direttory. In
such a case, the transformation from DA to SA would provide an unmecessary level of
serializer. A rewrite of thé _directory cluster would then be desirabl¢ to promote:
efficiency. This efficiency argument actually works'in favor of ‘our separation of data
and serializer abstractions, since if they were inextricable, the optimization descrived

could not be performed.

The above rewrite process has been applied to the _file ‘and _directory
scrializers.  In ~ particular,  the ' operations “_@itectory$apen_private  and
_directory$open_public now return file Objecls, which ‘“’zﬁd“e""siibp‘ﬁrtéd; by the file:
scrializer. Further, the operation _directory$open_dir returns a directory object, Which
is supported by thL dlrectury scrmhzer The wrap Oper'mom shown in the file and
dlrectory scrialuers are used o enclose a ﬁle or dlrectory abjcct ina ﬁk or dlrcctow
serializer. The wrap operations arc used whengvgr_a new _leélqor _d|(¢ct0ry object is

created.
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In any reasonable implementation of the: _ directory-eluster there will be a list
of the open files and child directories’ for any _directory object. . In this case, the
automatic rewrite we mentioned ‘above informs us of a type iconflict: the list of open
files and directories must.be for the file and disectory; objects supported : by - the
serializers, and not the _file-and _directory abjects supported by the clusters. '

7.5 Higher-level transactions

‘Suppose procedures P and Q use operations on a shggg,g zda_tapbj.eqx of :typg
T. We have recommended that a serializer object should be introduced for X to ensure
that the opérations of T performed on X do not interfere with each other. However, the
user may intend that P and Q do not overlap. The serializer for object X does not
enforce this restriction. One solution is to introduce a further encapsulation of X in

order to perform operations P and Q such that they do not overlap.

A difficulty with the introduction of further abstraction levels is that the
designer of a system may not know how the user will be using the system, and cannot
provide the appropriatc abstractions in advance. This inability to forecast is certainly
present in our file system example, since the user may wish to have a process perform
severalroperations on a file (or on several files) such that no other process will access the
file (or files) while those operations are being performed. The file system example
provides no solution 1o this problem in gencral, although we can attack certain special

Cascs.
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- A limited solution to the above problem-can be achieved by adding a new
operation, update, to-the file serializer. The textof this operation is shown in Figure 12,
The update operation performs a sequence of read operations. on:a file; then perfomms.a
computation supplied as a proceduge by the userioncdatel supplied by: the user, then
performs a sequence of writes on the same file.Ii oun:sigiple splution, the entire.
update operation is performed without allowing overlapping reads or writes on the file.
If more concurrency is desired, update operations that do not ngqyp;l@gpmg,se;s of
pages can be permitted to proceed in parallel, provndmg that the underlying _file

abstractxon will pemnt this.
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Figure 12. Update operation

N#EN&N):END\‘

The update operation is intended to perform a sequence of
reads, an arbitrary computation, and a_sdaquence of writes.
The entire procedure should executed without overlapping
other write:operations -or.otber update pperations. This
procedure resignals an error on reading or writing, or an
abort error from the arb pracedyre. - An error that is
resignalled after the first writé has been finfshed will
leave the wr1tes,on1y.partlally completed.

Ly,

update = proc [dt: type]

(f: cvt, reads, writes: spair. arb::pt, datas: dt)
s1gnals (f11e closed bounds abort)
pair = struct [pgnum 1nt pg page] ~
spair = sequence [pair]
pt = proctype (dt, spair, spa1r) signals (abort)

% wait for write access to resource to be 0K
enqueuve f.slow 4§ until: ‘queveSempty (f.fast _g)
enqueue f. fast q until crowdSempty (f.sole_c)

‘& crowdSdémpty: (iti.wrike_c)
& crowdSenpty (f read c)

% Jo1n the crowd to show that we are going to wr1te

join f.write c

% perform the reads into th g1ven memoyy pages
% from the gfvaﬁ Tile pades ~
for p: pair in spa1r$elements(reads) do
_fileSread(f.f, ‘p.pghum. ‘p.pg)
end

% perform the arbitrarj éompdi&iioﬁ
% (modifying the given memory pages)
arb(data, reads, writes)

% perform the writes from the given memory pages
% into thé given fite pages - '
. for p: pair in spa1r$elements(urites)‘do
_FilTaSwiite(t.F, p.pghul; Pupg)ia
end
end resignal file_closed, bounds, abort

end update
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8. Conclusions

In this thesns we have been eoncemed thh verlﬁable conirol of comcurrent
access to resources, In this pursuxt we have presenteé a !tmguage eonstmct for
controlling concurrent access, a defgj_unon of the ,set:r:ggn:tlcs Vof‘  this eonstruct, a
specification ianguage for describing varieties of ;et;n'ciimeneyfedn&el'fo‘r mstances of
the construct, methods to venfy that mstancu of the construct satlsfy their
specifications, a program for performmg thlS venﬁcatton automatlcally, and a

discussion of some of the mteractmns possnble between thseamef thls construct.

~ In separating the control of concurrency ﬁ'om 1he data access, we have
attempted to apply this: separatlon to the pmgmmmmg language the semantic model,
the specifications, and the venﬁcatlon system The objectwe has been to modularize
the construction and verification of programs involving concurrency By this
modularization, the problems associated with construction ﬁqpﬂ verffication become
more -tractable. The results ofv.our research mdtcate thatithls modularity can be

achieved, at least for the simple serializers we have discussed.

In this chapter we discuss how extensions to sérializers require extensions to
our verification techniques. Most of these exlensmns reguire significant further

research. Then we present closing remarks to sum up iij'\eeont;ilwtions'of this thesis. .
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8.1 Verification of serializer extensions

In this section we briefly consider how extensions to seriaiizers affect our
semantic model and kveri‘ﬁcartior'i -meth‘ods. T[h«isti’s“,tﬁé \arréa}“\f»/heférfﬁr"ther reseajrvch is
most r;ecesséry ;and mds'tvdixf;fxéijlt ‘O‘ur“ success in'vér'ifyin;g; simple serialivzers" can be
largely attributed to the limitations we have imposed. We beheve that fu rthér success m

verifying concurrency control fies in selective relaxation of these limitations.

8.1.1 Adding boolean variables and boolean expressions

To add simple boolean variables and boolean expfessions to serializers

requires the following changes to the semantic model:

SgF

* The node-graphs must be extended fo handle declaration and assignment .
of boolean variables. These variables must further be distinguished as ~~ -
either local variables, which are instantiated op. eagh- fragsaction; or
global variables, which are components of the serializer representation.

* The semantic equations must be extended to handle” evaluation of
‘boolean expressions.. This will require: examining, finite, historics for the
last assignment to any boolean variable. One of the most important
changes-to évaluation is'that evaluatibnanustoke place in the contextofa
transaction, since expressions may involve local variables.

*There must be some: indication of the initial state. of a seriakizer object.

This is casily accomplished by representing the serializer state as the
‘result of some initiaf assignments' tO represomtdtion’ components.:
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To illustrate the kinds of serializers and verifications that-are possible with-the -
addition of boolean variables, consnder the case where we are hmlted to boolean
vanables as part of the representaﬂon and the only legal boolean expres;ons are true,
false, and snmple compcments of the representanon As an example we present the'
following abbrevnated senahzer o | o

xop = proc (x: cvt, ...)
enqueve x.ql until x.b & crowdSempty{x.c)
join x.c; ...; end
x.b := false
end xop

yop = proc (x: cvt, ...) -~ LR T
enqueue x.q2 until ~x.b & croudSenpty(x c)
join x.c; ...; end
x.b 1= true - - . .
end yop

Suppose that x.b is initially true. We would like to prove that the number of
executions of x0p is equal to or one greater thaf the riumber of excoutions of yop. This

speciﬁcation" emild be Written as:'
(#X-exit = #Y -exit) | (#X exnt = #Y-exlt + 1)

Informalty, suppose that the abovc spemﬁcaﬁen is not mnsﬁed :md thai it is due to
#X-exit > #Y-exit + l T‘hcn there mast be twu evems leemt < xz-eaut that occur
without an intcrvening Y -exit. Note lhat the x.b is set to false after X1 leave, and
remains false untit after- some Y-Ieave If ‘no such Y-leave event OCClIl'S, theﬂ the
guarantee remains false, and X2~dequeue cannot .OCCUF, 'Ihgrcforc there. can be no
such events. To prove that # Y-exit cannot excecd # X-exit, we note that the only way
that #Y-exit could exceed # X-exit is for the initial exit event to be some Y-exit.

However, we assumcd that the variable x.b was initially true, which prohibits
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Y-dequeue from occurring,

The addmon of boolean v'mables provndes addmonal mformatlon about the
-past execution of operatlons As the above mformal proof shows the semantlc model
can capture this information as well. Extending the vemﬁcatlon rules to handle such

situations is left as a topic for future research.

8.1.2 Conditionals

The addition of boolean variables and expressions is of limited usefulness if
the only: test of ‘a boolean- expression. remains limited to.-the guarantee-on a queue.
Another extension that can be:added at. this. point is conditional statements, with the
form

if expression

then body_of_statements

else body_of statemenis

end
The else part is optional. In the semarnitic: Modet 'we need-to intreduce a new kind of
node, the if node. The if node tests the resnfts-of the boolea expression (we will
discuss a more general model for cvaluation below), and conditionally executes the
appropriate body of statements based on the result. The next node after the last node of
cither the then body or the else body is the node that corresponds to the statement

dircctly following the if statement. By the introduction of conditionals, the

"node graph™ has become a true directed graph.
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Although the modelling of conditionals poses no severe. ;d;ffwugt;ies,; the.
addmon of conditionals comphcates the specxﬁcanon language Consider the following
operatxon (we have also relaxed our requ1rement for a stnct com:spondence between
senahzer and resource operatlons) B e

xct = proc (x cvt d: data)
enqueue x.q until crowdSempty(x.c)
if dataScond(d)
then join x.c
raesource$fast_xct(x.res, d)
end
else join x.¢
resource$slow_xct(x.res, d)
end
end
"end xct

What event does X+join denote?- There are potentiatly two different events, and the.
event to oceur depends on-the data presented to the:opesmtion; - -

The solution we recommend is simple: for every test in a conditienal
statement, assume that the test evaluates to a particular boolean value (true or false). If
the specification clause can be verified for every permutation of the condmongl tests,
then it is verified for the operation. In the above example, we would effectively need to
verify two operations: one where dataScond(d) was true immediately after the enter
event, and one where data$cond(d) was false,
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. 8.1.3 Loops in serializer operations

- Just as-conditional statements introduce ambiguity about which nodes can be
executed, iteration and recursion introduce ambiguity about how often a node is
- executed. The doubt is significantly worse, however, since the number of possible

executions of a loop is not bounded.

When a point in a seﬁalizer operation can be passed many times during the
execution of a transaction, an event is not just ar‘\> execution of a node for that .
transaction, but a particular execuaon of that node‘ We can: adapt 'the method of
handling eondmonals to handhng Ioeps by assqmmg ganmular numbers of lteratlons
for each loop. If the specifications can be ‘shown to hold" for ahy choice of such
numbers then the specnﬁcatlons are venﬁed forthe epemnoa as a whole; provided that
all of the loops terminate. lnductxon can be used by asummg that the specnf cation
holds for some particular number N of executions around a loop, then showing that the
specification holds for N+1 executions (plus a basis proof for N = 0). In order to
prove service specifications, an additional proof that each loop terminated would be

necessary.
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8.1.4 Arbitrary expressions and invocations

‘The introduction of arbitrary expréssions iito seriatizers ‘has ‘the following

effects:

* The semantic model must include arbltrary typ&s and values of those
types, including user-defined types. ”

- * The semantic: model must be provided with events tomark both the start
and the end of an invocation.

- * The specification: language must. be merged. with. a larger specification
language. Values must be named and functions on those values defined.
Concurrency = specifications, "data abstrattion ‘specifications, and
_procedyral specifications may be mutually interdependent.

*The serializer verification- system must be joined t0 a more general
verification system. While it is our hope that the two kinds of verification

© systems ¢an'be kept modular, we have no eviderice at this time to support
this hope.

With arbitrary expressions and invocations, - some of the verification:

techniques we have described may be invalid for some situations, some of which are:

* Some invocations may not always terminate. If we use such invocations,
then we must be prepared to prove service where applicable. If we
cannot prove scrvice, then we are faced with a new potential source of
lack of service: indefinite possession of the scrializer object. In terms of
our current model we would be faced with a finite complete history (since
it would be possible for no further serializer events to occur) where a
transaction would be in possession at the end of the history. Since many
of our verification rules depend on no transaction being in possession at
the end of a finite complete history, and no crowds being occupied, our
technigues are not applicable where termination cannot be proved. The
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problems of combining our techniques with proofs of termination for
invocations remain for future research. '

*If we allow side effects in the evaluation of guarantees evaluation it
becomes necessary to introduce events to model the beginning of such
evaluation, and to indicate the order in which guarantee evaluation is
performed.

* Recursive operations provide one more problem. When we assume that
an invocation used by a serializer terminates, and thereby prove service
for the serializer operation, such a proof must not be circular. If the
invocation termination depends on the service proof, then the service
proof is not valid unless one can prove that the level of recursion is

bounded.

All of the above issues are left for further research.

8.1.5 Priority queues

The monitor construct presented in [Hoare 74} permits the use of priority
queues, which obey a "first in, best out” discipline. A serializer example that makes use

of priority queues is presented in Appendix I1l.

In using priority queues, we do not (usually) wish to allow the addition of
requests to a queue to indefinitely postpone the progress of earlier requests. For the
disk serializer we can prove that the request operation guarantees scrvice since, when we
are serving one queue, its size decrcases with every fulfilled request, and we assume that
the resource operation terminates. Therefore, the queue being served must empty, the
direction must change, and the other qucue becomes the served queue. Another proof

of service can be based on never adding requests to a queue at a priority number less
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than or equal to the lowest number request m the cug,eg We can stm prove serwce

even if we allow a bounded number of requests to be added at a lower or equal number
Pl’lOl’ity. ' o N A S A A S

8.2 Closing rematk_s

Thls thesne has presemd a mde mge &wpm ef a smsle language

construct; _ingluding. . programening. languag “design.,. formal  specifiat
programming languages, and verification techniques. We were able to oopevnﬂtsuch a
wide range because we were interested i in hmtted techmqgeg for_a hmlted construct, and_'
our design philosophy empbhasizes mmlmal mterference be;;veen constructs. We‘
believe that our results show that such an approach has merit.

ln several places we have mentloned that |t is possxble to view senahzer
i SRS ‘

RHE

operauons elther as procedures or as meéeage handlers. T'hls ﬂexnblhty is made possible

through the desngn of the senahzer oonstruct. and through lhe use of a semanuc mode]’
A z AL srg By S

that is limited to describing scrializers. Even though details may change as. serlahzers

are embedded. in. a proceduse-orignted .or &, message-passing, language, the basic

approach to proving serializersshould remain sound, -

21. Thisis the approach that Hoarp akes in [Hoarg 74}
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We have only attempted to verify atrtomatically a number of variants of the
readers-writers problem. Partially due to this limitation we have been able to handle
several lmportant specnﬁcatlons regarding concurrency control Even thmgh the
specnﬁcatron categorres have been chosen for use w,lth acwss to resources, propertles
such as exclusion, priority, and termination are generally recognized as. unportant 1n

- dealing with concurrent programs,

We have demonstrated the feasibility of proving a form of termination that is -
applicable to transactions, rather than programs or objects. This techmque is especially
useful when resources (or objects in general) have unbounded lifetimes and the number

of active transactions (or processes) is unbounded.

Our approach to verification has not been orientedtoward presenting{either a
mmlmal or a complete set of axioms and mference mlec. lka('her we have ldenuﬁed
some higher-level theorems, expressed as mference rules, that are useful in proving
serializers, and have justified these theorems by direct -agpeal.lto the semantic model.
Should further examples |dentily othcr usel‘ul theorems more Justlﬁcatron through the
model is called for. While the study of the completeness of an axiom system is
intersting in its own right, it is rare for a verifi er‘,(ert_her;autogmuc\or manual) to-appeal
to the axioms if more general and more powerful theorems are known. The test we
value most for such a selection of theorems is therr utlhty in Vt.nﬁcauon a tcst that our

theorcms have passed
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Appendix I - Bounded buffer serializer

A bounded buffer is intended to smooth variations:in .precessing. speed.
between a producer and a consumer of items-of information, and mereby .afford more
concurrency between the two processes 2 A bounded buffer is accessed by get and puti
operations,; where the ‘Nth. get operation retsieves. the: mfefmanm ;hat the Nth put:,
operation deposited. A bounded buffer object is constructéd by ‘call’in'g"the create
operatlon thh a posmve number specnfymg the number of 1tems of mformatlon* o’
buffer The buffexed mfomation is:: mnsferred by @ylag ;he wﬂtents (via
item$move) from one item to another ‘Weh assume that this copymg takes some

significant amount of Ume Pamal spemﬁcatlons fnr thns problem appear in €hapterf
4

The bounded_buffer serializer given below uses only slight extensions over
“serializers. We assume that performing a put operation on a full buffer causes an
exception to be signalled for the data abstraction (called bbuf'in this example), but that
the serializer operation simply pauses until the buffer is not full. If several processes
perform get operations, there is no overlap between the operations, since a modification
to the buffer is made in the data abstraction, and the modifications made by two

invocations could conflict. A similar conflict arises for put operations.

22. A solution to this problem using monitors appears in [Hoare 74]. A verification of a similar monitor
appears in [Howard 76).

23. Although such copying is nonnally forcign to C1L.U, we have used copying in an attempt to remain
comparable to the monitor statcment of the problem.
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The combined_bounded._ bujfer scrializer shown in Appendix 11 combmes the
function of the bounded buffer serlahzer and: the bbuf eluster The mterface remams
the same, but the implementation does not use the bbuf cluster Besudes the obvnous
savings afforded by the elimination of operation ealls ﬂ'om the senallzer to the cluster
there is additional concurrency possible because get opemﬁpns are allowed to overlap

“with other get operations, and put operations .are. allowed to overlap. with other put

operations.

We. have presented this pioblefn as an illumn of hmv the modularity
provided by serializers allows such optum,mtmn w:thout cbangmg Ihe interface that the
user sees. Further, any verification of programs that use the bwded bu?fer serializer
remain valid, provided that they are unaffccted by:the addttma%mmummy
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% The bounded buffer serializer protects the bbuf abstraction
% against damag1ng concurrent access. Get and Put operations
% may only overtap with get size operations. . All eaﬁying of
% 1tem to 1tem is done in the bbuf cluster.

bounded buffer = serializer is
create, get_size, get, put .

_rep = structfres: bbuf, c: crowd max. 1nt.
‘ 4. pq: queuel

create = pro¢ (n: int) returas (c¢vt)- signa1s ‘{bad_size)
return (rep${res: bbufS$create(n),
max: n,
c: crowdScreate(),
gq., pq: queueScreate()})
resignal bad, slze 4 S
end create

‘yet size = proe (x: cvt) returns (1nt)
~returp (x.res.size) :
- enlt got sizé’

get = proc (x: cet, dst: itewm) . . ' D
enqueue x.gq until crowdSempty(x. c) & X. res.size ) 0

join x.c
bbuf$get(x.res, dst)
end

end get

put = proc (x: cvt, src: item)
enqueue x.pq until crowdSempty(x.c) & x.res.size <= x.max

join x.c
bbuf$put(x.res, src)
end

“end put

end bounded_buffer
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Appendix 1I - Corabined bounded buffer serializer

% The combined bounded buffer permits th opcratéons to overlap with
% other get -operations, and put operations to overlap with other put
"% operations, but get .and put operations.capnot overlap. Gat size
% operations can overTap with efther get or put dperations..

combined biounded buffer = serializer is
.create, get_size, get, put

buf = array[item]
rep = struct[res: buf, gc,pc: crowd, - -
next, size, max: int,

sq, gq. Pq: queue]

create = proc (n: int) returns (cvt) signals (bad_size)
if n < 1 then signal bad_size end
return (rep${res: buf$till _copy(0,-n, itemScredte()),
next: 1, size: 0, max: n,
gc. pc: crowd§createl), - L
g9, pq, sq: queue$croate()})
end croate - , i

get_size = proc (x: cvt) returns (int;.
return (x.size) ’ '
end get_size

get = proc (x: cvt, dst: item)

) enqueue x.gq until x.size > 0 & crowdSempty(x.pc)
src: item := x.res[x.next]
x.size := x.size - 1

x.next := (x.next+1) // x.max % take increment mod N
join x.gc
item$move(dst, src) % copy data from src to dst
end
end get

put = proc (x: cvt, src: item)
.- engueue x.pq until crowdSempty(x.gc) & x.size (= x.max
dst: item := x.res[(x.next+x.size) // x.max]
x.size := x.size + 1
join x.pc
item$move(dst, src)
end
end put

end combined_bounded_buffer
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* Appendix 11 - Disk head scheduler -

Th. [Floate 74]; the disk head scheduler problem is disctssed -for- monitors
Below we give a serialjzer sorunon o ﬂxcproblem,wluch uscs the ;itibﬁt}';@éﬂeﬁpc;
A priority_queue is a queue -where the order. of, dequene events. is gependent on the
priority.  We will assume that the lowest numerical value of the pnonty is served before

any others. Equal pnormes are served FIFO

The algorithm used depends on havmg two. queues, one which is served in
increasing order of disk- addsess, mlled x.up_‘q, amkene whleh ;s.«served in, decreasmg
order of disk address, called x down_q. Olmatantﬂun work&by adding requests to one

‘queue, and serving the other. We change dnrectton whenever the queue-forthe current

[ S SRS B

direction is empty and the other queue is not empty.
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disk = serializer is
create,
request

‘rep = record[increasing: bool,
up_q, down_q: priority_queue,
disk: _disk]

create = proc () returns (cvt)
return (rep${increasing: true, :
up_q, down_q: priority_ queueScrgﬂte().
‘disk: _diskScreate()}) :
end create

request = proc (d: cvt, address: int, kind: int. p. page)
: signals (bad_address, disk_error)

if d.increasing
then enqueue d.down_q
until crowdSempty(d.c) &
(~d.increasing |
priority_queueSempty(d.up_ q))
priority address
d.increasing := false
else enqueue d.up_q
until crowd$empty(d.c) &
(d.increasing | ’ ~
priority_queueSempty(d.down q)y
priority -address
d.increasing := true

Teoat

j»

end
JOIH d.c
_disk$request(d.disk, address, kind, p)
end resignal bad_.address, disk_error
end request

end disk
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Appendix IV - Table of definitions

Definition or rule name .

Occurs

Precedes

Same_trans

Excludes
Excludes_node
Node_excludes_node =
Front

Gains

Releases

Busy

Qsize

Csize

Rank

Rank_scan

Eval ... .. -

Legal

Legal_step
Legal_dequeue
Head_enqueue
In_queue -
In_same_queue
None_ready
Legal_transaction_step
Complete
Gain_complete
Corresponding_release
Release_follows
Join_complete
Leave_follows
Transaction order rule
Transitivity rule

PX from gain rule

PX from PX rule



111:
112:
112:
112:
113:
113:
114:
115:
116:
117:
118:
119:
119:
120:
121:
121:
121:
122:

Event before PX rule
Event after PX rule

GRE clause

GRE_def

GRE from empty rule
GRE from expression rule
GX from GRE rule

Event before GX rule
Event after GX rule

Event from FIFO rule
EVT and EVF meaning
EVF rule

EVT rule

EVT from conjunction rule
EVT from disjunction rule
EVF from conjunction rule
EVF from disjunction rule
Event from ready queue rule
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