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Abstract 

This thesis is concerned with the problem of controlling concurrent access to shared 
data A language construct is proposed to enforce such control; a specification language 
is defined to describe the formal requirements of such control; and verification 
techniques are given to prove that instances of the construct satisfy their specifications. 
The· techniques are justified in terms of the definition of the construct and the 
definition of the specification language. Results are given for a program that 
implements a number of the techniques. illustrated by verifying several versions of the 
readers-writers problem. Interactions between instances of the construct are discussed 
in the context of a simple file system. 
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I. Introduction 

This thesis is concerned with the problem of ctmtmlling, concurrent access to 

shared resources. In systems where several processes rrtay··attempt to concurrently 

access the same resource, there is a need td impose some order on those ac~. If 

ce1tain orders arc not enforced, certain classes of access td tlre resot.rtce may conflict and, 

cause erroneous results. Other classes' of tlcc:eSs tO" the 'satne'rt!Sottrte':tftity proceed 

concurrently without connict. This is true whether the resource is a data base, a printer 

spooler; a file system, or a communications network, although the definition of the 

classes of access may be sped fie to the resource. 

Given this framework, we can informally define a fewtenns.-Two ace~~ are 

concurrent if both accesses have· starred, yet ooitlle~ has completed. Typ~llY.: 

concurrent access is cdntrolfed through exelusion, ·where a J.'1'0¢CSS executing one-class 

of access prevents the initiation of another access from:any 0i.a ,set: of cJas&-s: W'1en 

one access excludes another, the lalter must :waif- lbr the' former-to comrfete .. lf ,one -

access is-w"iling lbr another~ which is waiting for the first to complete, then no progress 

can be made on either, which is called deadlock. If two proct.~'S· arc ·ready to initiate 

acces..o.;cs, yet one access excludes the other. then the'pnn"SS1tltat 11roccl.>ds is said tnhi1ve 

priority over the other. A.rmxcss t.b,at is J;~adf, ito.procccd, y~t is continua,Uy d"micd 

progrcs..,, sutlers from starm1io11. 

We wish to ensure that progrnms exec.utingiamcurrently· on. ~uucd rt.•sourccs 

obtain correct results, wh1.:rc corrcclnt.-ss is defined in tcrms of programs meeting their 

spccilications. We wish to show, fi.lr properly designed progrmns, that ccrtHin acccs..-,cs 
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exclude others, that the proper accesses are granted prirnity, that appropriate access 

may proceed concurrently. that there is no deadlock, and that there is no starvation. We 

limit this concern to the is.5ues that are specific to concurrency. and not those that apply 

to determining whether the access, executed by itself, has the correct effect on the 

resource or. returns the .corr~t information. Also, we are not concerned with 

concurrency iswes unrelated to accessing resources.. such as prpcess creation and 

deletion. 

1.1 Initial decisions 

Our first decision is that it is desirable to ·have a separate programming 

language constmct to realize reliable control J~f co~rrent access. We believe it 

insufficient to simply propose a constnact and a)r.:se11l1 .$0~ exnmpl~ of its use. A 

languat,te designer should also provide tools that ~rease the "tility and reliability of a 

langouge construct Consequently~ this thesis prQSents: 

• A language construct to control concurrent ace~ to shared resources. 

• A definition of the semantics of the construct 

*A specification hangu&1gc to dt..-scribc pfll(lertit.-s of tonc:mrrcncy control 
that arc to be realized through this constmct. 

• A vcri lication methodology that is used to prove that instances of the 
l"OOStruct satisfy their sp..'Cifications. 
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* The design of a program to make use of .tttis n,cU\QCk1logy and perform 
verification. 

One of the contributions of this thesis is that all of these elements are presented 

together for a single construct. 

Our approach to concurrency; control is heavily· influenced by by the monitor 

construct off Brineh· Hansen 72] and [Hoare 741.· and ,{he programming· languages CLU 

[Liskov et. al. 77, Liskov 79a) and Alphard (Wulf.,S). wtudfin turn, owe· much to Simula 

[Dahl 72}. In these languages, aCte$ to·data objids is nchieved thrnugh:a1iimited~t-Qf 

opcmtions, which are generally implementcd·asprocedures. ·Just as,CLUmnd 'MphMd 

separate implementation details from the abstract appearance of data objeets,. ou·r 

objective is to separate concurrency control from access to data objects. The monitor 

construct has a similar goal, although a slightly different view of data. Th~ ~onne~ti.on 

between concurrency control and data abstmction ts a key issue in defining our 

construct and in our verification techniques. 

Verification docs not prove that progrnms,opcrate ~orrcctly, in the sense that a 

verified progrum performs exactly as desired. 'lbcn;.is:oftc1,1 :no re"~n to bdicvc t~al 

the spccificutions arc hctlctr than the program \~l for dt..-scri)>ipgJb,c d.~1iircd bchav.ior 

for the progr~un. Verification performs the la~k of taking two.JiijT~n:Q,t d\.-sc:riptions of a, 

problem solution and .showing that the d~ripli~ns'. agrec~1 in .. tl1c, ~nsc lhal every 

behavior that the program exhibits is allowed by the specifications. ll1e two 

descriptions arc quite diflcrent in kind: the Mc. is ~m lifgorHllfuk description. and the 
. . .. , ,., ' 

specifications dcScribe the effects of executing the dldc. The confimmtiun ofaniving at 
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the same answer through two different methods ought to increase confidence in the 

solution. 

We wish our techniques to be valid whether there is true concurrency, using 

multiple processors, or simulated concurrency, using a multiplexed single processor, or 

a mixture of the two. To accomodate this range of behavior, we have described accesses 

as being concurrent if both acce~ start before Qither ends .. This -Oetinition may. seem 

. overly broad, since two accesses are considered to be concurrent if one access occurs as 

part of the other. We choose to make a conservative decision:· two accesses are 

potentially concurnmt if the start of either access can occur between the start. and finish 

of the other. 

1.2 Modularit) 

Large progrnms arc usually ditlicult to understand and modify not because or 
their size, but because of their complexity. This complexity is far more often due to 

interactions between pm1s· of progrnms than it is to inherent complexity in the tnsk 

being performed. 'Ille notion of modt1!t1ri1y is widely accepted as a means of limiting 

these interactions, although the tenn is defined in various ways. This principle is useful 

in constri1cling programs. in modifying programs, and n1 vcrify1ng programs. 

Modularity in verification has also hccn culled the i11depe1uk11ce pri11ciple: 

nu· pr0<{ of a mwim.' may 011f1· dcp<'nd upon ils own specifications and 
imple111c111a1io11. and upon th<' exlermal sp,•ciflca1io11s of tit<· mutines 10; 
whid1 it textual!)' refers. [Gt.x>d. Cohen au(,I Keeton-Williams 79, p.45) 
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We propose to make use of the following kinds of modularity: 

* Data abs1rac1ion is the organization of data into distinct objects. where 
each object belongs to a distinct datatype. and dJrect~cess to the objects 
of any type is limited to the operations ot the type. fliiS ·aennition· of data 
abstraction follows the lead of the CLU programming language. 

* Concurrency control is separated from data access. The implementation 
of concurrency control is kept distinct from the implementatio1t"'6f d~: 
access. although the external interface of the two implementations may be 
similar. 

* Specifications of ooncurreooy coqtrol ~ ~r~tl¥1 f~QW:~ecification&:of 
other properties of a program. Further, these specifications are meant to 
be indept.~ent-of-any-implemerttation; 1 • · 

*Verification of concurrency control is se'parated from other program 
verificatio1tc techniques. 1ln_ particular, ,dlt,--wrj_ fictttioo of access to a 

- -- t 

resource and the verification of the concurrency control for such access 
are independent, although each -may assume· -the speclftcatkms' of the 
other (we will assume an absence of circularity, since it is a separable 
issue). 

It is possible to find fault with modularity. since the kinds of separation we 

have described may make it more dimcull to achcive other dt---sirable propcrtit.'S. _ 
. . . . ; ... . ' ' ~' ' ~ ;, .- ·' -, 

* lbc principle of modularity can be misapplied: the wrong kind. of 
scparntion prevents ncccssmy data rrom being 'col11i1hl11'ic~id:f 'f'rrnn llne 
(ltJCC lo another. We .. hope ltl slJl~ ~-l~ ~-u~;~(~xpfnplt.-s th~at the 
kinds of moduhtrily WC propose to llsC do not prohibit llCCCS..liafY 

irtfr}rtnifritin rton1 being ill·~ uf)propriatcplaces, i-i 
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* Modulmity can be inefficient: the mechanism for transferring from one 
context to another, as in a procedure call or process switch, can be 
expensive. Further, by limiting access to certain data, certain 
computations may be redundant. We wilt nofaddr~ this issue directly 
in this thesis, but will return to this Objection in our c:Opdusions. 

l.3 Related work 

Much of the initial work on the construct we propose was done iri conjunction 

with Carl Hewitt [Hewitt und Atkinson 79). Since then. there has·been a divergence in 

our efforts; this thesis explores issues of automuuc, verifacntion of;~ncurrency control, 

while Hewitt has concentrated on more primitive control of concurrency in a context 

where programs communicatc·by passing messages. Some ofdris.work coo be found in 

(Hewitt, Attardi, and Liebc1man 79). 

Below we bricny discuss related work on language constructs. concurrency 

specifications. semantic models. and some differences in our approach from other work. 

1-1. I Related language constructs 

Most authors in this area 'note the import~mcc of limiting the interactions 

between concurrent proc~~cs through the use of h\nguage constructs Sfl\.'Cilically 

designed for this purpose. We have a similar Mllf~>aeh in this thcsi8. with thc~1ddition 

that we attempt to relate concurrency control toahstrncl (user-defined) data types. 

- 13 -



We have already noted the intellectual debt owed to the monitors of Brinch 

Hansen and Hoare. f-<or now, we characterize the monitor approach by noting that 

concurrency is controlled by only allowing one process at a time to execute an operation 

that belongs to a monitor. Given that initial exclusion, further execution orders may be 

imposed by the monitor operations. We will present a more detailed comparison of our 

construct with monitors in Chapter 2. 

Anothedinc oFthought in concurrency control is;t<>timit,parallel processes to 

communicating through the passing of messagtS. Various authors have proposed such 

an approach, among them [Good, Cohen and Keeton-Williams 79, Hoare 78, 

Feldman 79). Concurrent actions only proceed when a process that is sent a message 
. ,.j '_; • 

chooses to receive it. Exdusion for a class of access derives from a refusal to accept a 

message of thr.t class. This approach is pmticularly well suited to distributed systems, 

where different processes may reside on widely separated processors." 

111csc two approacht..'S arc not as different as they 1riight initially appear. 

Although our presentation will fhllow the first approach, we will ·argue in this thesis that 

our techniques arc valid for lhc second approacl~ as well. 
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1.3.2 Concurrency specif1eations 

Our work on specifications is strongly influenced by Greif [Greif75]. In this 

approach. certain events related to an access are identified: access request. access start. 

and access finish. Specilications are given by indicating which orders of these events 

arc required. For example, suppose that the execution of one kind of access (call it X) 

prevents another kind of access (call it Y) from starting. We can specify this 

requirement by stating that RO Y access start event can ~Cllf ~ween any X accesS start 

event and the corre5ponding X access finish event 

A similar approach to specifications appears in [Laventhal 78], in which such 
f: .... · .. ::· 

specifications are used to synthesize implementations to realize concurrency control. 

1.3.3 Related semantic models 

Various models have been used to describe concurrent execution of programs. 
! .. 

In the models we discuss here. a program proceeds front st~ale lo state by atomic actions. 
' } . . 

*In [Howard 76, Good. Cohen and' Kcctbn-Wmian1S79), ahd in our work. 
actions th.it lake place arc recorded in Sl..'lJUCOCL'S called histories. and 
program semantics arc described by giving prcdicall.'S th&1l must be 
satisfied lhr histories. 

* In [Greif 75). actions •arc related by partiul orders called hchm1iors. 
Program belrnvior is given by prcdicalL'S on these partial orders. 
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* In temporal logic (a survey-level explanation of this 'modef appears in 
[Lamport 80]) the model uses sequences of stales, rather than actions. 
Predicates that describe pros.r,~~ behavior m~~ ~,app.lied.to sequences 
of states, for a linear time tneory, or tcS ·an sl..->qtierices of states with a 
common sequence of states~ ,a, prie{iJC, tor u br(4(lching lin,t t.h,eory. 

*Another related mddet~· based; on ·:tt~ :or states, is presented:'m 
[Owicki 75). Given an initial state and a program, the beh~vior of the 
program . is characterized by a tree of states, Where the ares represent 
execution of an ~i<;ln-thatleads;to the next.state,. 

All of the above models use some· structure to,, relate either states or actions, and 

describe program behavior by giving predicates.on;$Uehstrwctu••; 

rt is possible to discuss states in terms of equivalence classes of histories (or 
' ~· , 'i 

behaviors). For example: 

[fhere] is a correspondence be1wee11 states and behavior that allows, q11e IQ. 
define the states of a syslem as a11 equivalence relation over the possible 
behaviors. [Grcif75, p. 72) 

We believe it better to think of predicates on histories rather1hnn kl attcntpLto regard 

slates as equivalence du~,-s. 'nk distinction lies in our ooncbm, With cc11uin properties 

of objects ut any partictflar1itne. mther lhanthe~ntirestule mlheobjcct. 
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1.3.4 Diff crences in our work 

We approach concurrency control not j~st by defining a l~nguage construct, 

but also by providing specification and veritkotiort,methOOs forlheronstruct Further, 

these me:thods are actually demonstrated in a simple uutQJllatic verifier. By providing a 

wide range of support for a relatively narrow conSt~~ We 'hope. to illustrate the benefits 

of a uni ficd approach to controlling coocurrent ace~ to resources. 

We have attempted a greater use of modularity than is commonly found in 

other works. In particu4ar~ we'col~ple«:omrot'of concurrent access to the principles of 

data abstraction with strong typing, while maintaining separation of concurrency 

control specification and verilication from data access specification and verification. 

1.4 Plan of thesis 

Chapter 2 introduct..'S the serializer language construct, which is a method tor 

controlling concurrent access. An infhrmal pn.-scntation uLmade of lhc syntax nnd 

semantics of the ctmstruct. An cxmnplc,. based on the rcu4crs-writcrs problem, is. 

discus.~d in detail. A .simpl.ilication of the scri~1lizcr construct !s,dcfined fc.lf use in later 

chapters. A translation of scrializcrs into clusters and semaphores is given as a pos.~ible 

implementation strntcgy. 

Chapter 3 presents a simple semantic model that supports concurrency, and 

USl.'S it to define more precisely the sim11lificd scrializer construct. A definition 

language based on first-order predicate calculus is used to describe scrializcrs as 
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enforcing limitations on the execution order of programs. 

Chapter 4 discusses the four kinds of concurrency control specifications used 

m this thesis. A simple specification language for concurrency control is defined. 

Specificat.ions are given for the readers-writers problem~ with ~veral variations, and the 

bounded buffer problem. 

Chapter 5 presents and justifies rules that are used to verify that serializers 

meet their specifications. Although the definition of serializer semantics and the 

definition of the specification language are sufficient to allow us to verify serializers, it 

would be difficult to write an automatic verifier that directly uses these definitions. 

Therefore we define and prove a number of inference rules that a11ow us to infer 

specification clauses given the assumption (or proof) of other specification clauses,. An 

example is given of how the rules allow verification in a simple mechanical fashion. 

Chapter 6 describes a program that uses the verification rules to establish that 

a scrializer meets its specifications. We first describe how the structure of the program 

incorporates the verification mies. and then present examples of proof..;; that the 

program has performed. 

Chapter 7 discusses issues related to interaction of scrializcrs, and Jlresents an 

extended example of scrializer usage: a simple hierarchical filing system. Guidelines 

arc given for providing scrializers frlf data types that arc originally used in a 

single-process environment. 
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Chapter 8 contains a discussion of how the work in the previous chapters can 

he extended to cover more complex problems and more complex serializers. 

Several examples of serializers are presented in the appendices, and are 

referred to from time to time in the body of the thesis. The last appendix presents a 

table showing where the various definitions and rules used in this thesis are defined. 
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2. Serializers 

This chapter introduces the serializer construqt, which is' intended to provide a 

modular method of concurrent access to, shared' data'. objects. Related programming 

language constructs are monitors [Brinch Hansen 72, Hoare 74), path expre~ions 

[Campbell.and H~\Qemumo 74), and com.mun~ting ~qll:cn,tiai prCX:esses (Hoare 78). 

We treat the serializer construct as ari extension t6"the CLU programming 

language [Liskov et. al. 77, Liskov 79a]. However, the basic ideas behind scrializers go 
~ r ~· 

beyond. any particular p,rogramming language., '~lie( . vcl~ipns of the serializer 
. ~ ,1~ -- . . ,: • ' '' .· . .. 

construct were presented in [Hewitt and Atkfosori'77) afid (Hewitt and Atkinson 79) 

using a sign ifrcantly different tanguage. 
' ; ~ : . 

In tt. is chapter we describe the. ration,;il~ for ~h,.e de&ign .. of the scrializer 

construct, informally define the syntax and setftlimtics llf sennlizers, and prt.1SCnt an 

example of a scriatizer~ ·Then we describe the limited .v.¢~;0.f;~-ia,ii.c~lhat we will 

be using in. the remaining chapters, give a possible implementation. of scrializcrs in 
· - -., ,. ~; · ; r r~ , , · ~ 

terms of semaphores~ and com pure the scriuliz.ct und monitot.:tttmstrotts. , · 
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2.1 Serializer design i~ues 

We believe that a language construct for oontrolling concurrent access to 

shared objects should have the following qualities-: 

*The shared objects should be separated into iden.tifiable sets of objects, 
each set being a resource. A resource should 'afso,be treated as ·an object, 
allowing resources to be composed from other resources. Each resource 
can only be directly accessed through a set of operations associated with 
the resource. 

* The construct should separate control of concurrency from the algorithms 
that access the resource. This separation simpltnes bOth the con'currency 
control and the Tl.'SOUrce ·ace~ ~~ con~ncy . may be lost by 
requiring complete separation, since it iS likely to' be difTtcult to partially 
overlap operations. However, we believe tbaltheadde&simplicicy is well 
worth the reduced concurrency. 

*To aid reliability and verifiability, the shared yresoorce should not be 
accessed except through an ol)jcct that controls ace~. to the resource. 
The concurrency control construct should enforce this restriction, since 
relying on programMCFS· to follow tonvemionsfis not sotisfartory. 

*To case the writing of programs that ace~ n.'SOtfrccs, ope'mlions that 
access the object cunlrolling the resource ~u-,uld.a~aflo bed~ Ol+lrly as 
practical. the same as the opcmtions thal accc~ the n..•sourcc. llmt is, the 
construct that controls concurrency should have the same appearance to 
the user <1s the construct used fc.>r the rl.·sourcc. 
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Based on these criteria, we designed the seriaHier construct to have the 

following characteristics: 

* Like the cluster construct of CLU, the scrializer construct is used to 
define data types by defining a set of operations for: each type. The 
objects of a data type defil)ed by the seriaJizer consttuct·;nre called 
serializer objetls . .. Each serializer object is used to control a separate 
resource object. The operations of the data type are serja/izcr operations. 
For the sake of modl!larity, seriatizer objoots <:an only .:ho ,,accessed 
through the appropriate serializer operations. 

*The execution of protected parts of a scrializer operation for a particular 
serializcr object prccludt...>s the simultaneous execution of protected parts 
oT any seriatizer operation on the same scriatizer object. 'Fbe process 
ex,ecuting µ protected part of an operation is said to have possess(on of the 
scriulizer object . . . . . . . . 

*·During the execution of a scrializer operation, pos..<it..~ion of the serializcr 
object can be released and regained. tt;iS ~nicutarly useful to release 
possession whilc."ccessing ~he resource, thereby permitting .concurrent 
activity involving· the scrializer object. ·After the resc.)Lirce access, 
possession is regained to indicate tJwt t~ a~ess,, js complete. This 
temporary release of possession permits external procedui·cs to be 
invoked from a scliunzcr ·'operatiml' ·""'tte:jaflt1wmg fiJt~ .seriulizer 
operations to continue. 

*During the execution ofa scrializer op£(ation. it ll\aY ~come neq .. ~ry to 
suspend execution to wait for some condition to become true. For 
example, if some operation needs exclusive acct...'Ss to the tL•sot.frtt~ 'it must 
wail until no other resource acce~'St.'S arc in progrcs.'i. During this pm1sc, 
possession uf the scrializer object is released to allow other requests to 
proceed concurrently as for as they arc able. 
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Figure I. A picture or a serializcr object 

+-------------------------------------+ 
I 
I 
I 
I 
I 

Request --> 
I 
I 
I 

I 
Serializer object I 

I 
+------------+ I 
I I I 

(Pause) Reques~·~-> I I 
I I I 
I Resource I I 
I t · I 

Reply <---: (Pau~~) Reply'<--~ I I 
I 
I 
I 

I l I 
+------------+ I 

I 
+-------------------------------------+ 

A graphical description of how the ·scrializer construct is' used ·is shown in 
•<··· -

Figure 1. A Request is the start of an operation. and a Reply its termination {possibly 
. . . 

p~ing buck ir.formation). The iotcncjedelT~Qftl;le ~r,iaJizer is to i,Jnpose.an ordering 
--- ... - ·' _,. "·. - _, ' 

on the requests and replies as they arc transinitted:berween th~· resotfrce tind the 

requesters. The (Pause) is optionat. based on whuther the '.resource access rcqm,>sted .. 
' _,, 

can be pcrfonned immcdialcly:wh~11:;d1c l\Xl~r9oters tbe.~riqli~r. ln.1J1ost <;USl.'S. a 

scrializcr operation passes the information it rcccivcS ''rmrn the ctdlcf to the 

corresponding· n,•sourcc operation. and. ~'the ·inlhtmntion it rccciv4.!S from the 

rL·sourcc opcmtion to the c-Jllcr. 
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2.2 Serializer syntax and mechanism 

This section gives a brief syntax for the serialiier construct and the statements 

used only by serializers. We also give an informal description of what eac~ form is used 

for and how it works. 

The syntax used for a serializer is similar t~'ihe Syncix used for a CLU duster. 

ll1c header names the serializcr and rists the externally ava11ab1e operatioris. Then the 

representation type for the serializer is given. which determines the names to be used 
. ' . ' ; ~,j ~ ' . - . 

ror the components of. ~he scrializer, object Then tile operations are given as 

procedures. 'Ille form of a scrializer is: 

name = serial i z er is operalio11_name_lisl 

rep = representa1ion_1ype 

operation_name = p roe ( formal_arguments ) 
op1io11al_returtf__lisl' ; 
opt ional_excepl io11_1is1 

procedure_body · 
end operalion_name 

. % other operations 

end name 

We have used italics to informally indicate syntactic quantities. 

As with clusters, the scrializcr construct defines a new date." type .. where the 

type is denoted by lllll11C. Certain or the op.cr-..ttions :arc u8£fl ilO <;fCal~' 1\~-W SltfiaJizcr 

objects of the named type, white other operntions are- us00--tH- aCCl.'SS the- scrializcr 

objects; Opcrnlions named in the open11iouJv1mf .:..li.-..k ur~,, the, e,\-,frnqlly av.ai/ahle 
,;· J}: 

operations, and may be u.'l\!d by code out"tidc uflhc ~1ializcr. Operations not nmncd in 
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the operalion_name_list may on1y be used internally. Starting the execution of any 

externally available operation that directly uses the serializer object requires that the 

executing process gain possession of the serializer object (starti·ng execution is shown as 

Request in Figure 1). Termination of an operation that has possession re1eases 

possession (termination is shown as Reply in Figure 1). To reduce the likelihood of 

dead1ock. an operation that has possession of a seria1izer object is prohibited from 

directly calling another operation that requires ~ion of the same serializer object 1 
' ···. 

We have also added two new kinds of statements that can onty be used in a 

scrializer. The enqueue statement is used to suspend executio·n (and tetea'se ~ion) 

until some condition is satisfied (shown as·(Pausefin.·Figure 1). The statbment has the 

form: 

enqueue queue_expression unt i 1 boolean_expression 

The queue_expression denotes a queue that' is .. used to impose a first-in-first-out 

discipline on proce~s waiting for conditions.· The boolean_expression denotes the 

condition that is required to be true before a process can rontfoue cxt.-cution. Such a 

condition is called a guara111ee. When a process is waiting for the condition to be true. 

we say that the process is waiting in the queue. since some identification of the process 

· is stored in the queue. When a prc.X:l.'SS waiting in a queue is :.allowed to proceed, it 

rcgui ns pc.~'SSion of the Sl.'fia lizcr objca. the flroa.-g identification is removed from the 

qtk.'ltc. and the ellfl&leue statement tcnniruatcs.. 

I. In Jlfik.1kc. it may not ~ 1l4lSSihlc lo tletct.1 when thiHlll1tilS. :1nis dtll'N not am.-.:1 our ohjccti¥c. 
which is tu reduce the ch;mcl'S for errors. We <lo not hclicve that it is llllS."iblc fi.•r" l.mguage R'Stric.:tion to 
compk.'tt·ty dimin<itc this tff1t1 of l'R'ur w1thottt unehtly atfft·tinglttw ·ClPr~ IJ(.wer of the languag¢. 
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The queues used in scrializers are first-in-first-out unless otherwise specified:2 

If some process starts execution of an enqueue statement before anOther process starts 

execution of an enqueue statement for the same quet1e, the first .process-wilt complete 

execution of the enqueue statement before the second process, provided that either 

statement tcnninates. 

The join statement is used to perform some body of statements that should be 

executed while not in possession of the serialt~erobjectt/'fbe:stQtement hasthe form: 

join crowd_ expression 
body ...,.of_slatements 
end ·· 

A crowd_expression denotes a set used to identify the processes that have started 

executing a join stutement but not campleted i~ There m&y be scv~ra1 such sets. called 

crowds,· so tha~ different classes ·Of accdS can be disting~ish,e(l.3 'f;h~ join statement 

starts by placing some identification of the executing proet.~ iQtothc specified crowd 

und releasing ~on(shown ~as Request'. in Figu(e U. hsl'Wr pos..wssion is relea.~cd9 

the body..;.of;_stalemems is cxccutl.-d.: :Finally,. possession is.rqttiQed (.sh~wn as Rep 1 y • in 

Figure l), the proet.~·,idcnlifimt.ioo .Js,., r1,.'QlUYcd: fn1m. ~;,~wp. ~u1d execution 

continues t•Jicr thc,end of the join statement.: Twiodw., ... ~ ·i~i~~pfJtn op~mlion ~s 

performed lo invoke the corresponding operation of the resource. 

2. An example oflhc 11Sl' of'priorily queues appears in Ap1lC'ndR-l.-
l The join statement is so calkd lx'l:ausc the llflll'l'S.'> l.'Xl.'Cuting the slalcmcnl joins a crowd of similar 
prut~'SCS. It fllll hecunflt~-J.with.fotk and·joitl'flritniliVWUf'iCd.W flfllJ.;~'$-i-Crcalion and lCr.tllill<lliuJl iO 
other languagl'S. 
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A process attempting to start or continue excctµion of an operation on a 

serializcr object must wait until there is . nq ,ot.ber pr~ that has possession of the 

serializer object. If the process is .waiting fQr som,e conditipa to b~.~tisfied. it does so in 

an explicitly named queue of an ~nqueue statement. If tl\e J?r~ is waiting to gain 

possession at the start of an operation or at the end of a join stateme11t..it does so in an 

implicit queue called the external queue. which is serviced in first-in-first-out order.4 

POSSCS$ion of the serializer object is rel~d ,at the start of an enqueue 

statement (after the process is placed on the queue). the startQfJ\jOin statement (after 

the process is placed in the crowd), and at the end of an . operation. Whenever 

possession is released, the explicit serializer··queues an e1amined to determine whether 

any queue has a process at its head with a true guarantee.;· tr any of the guar:antees are 

true. then one of those associuted waiting proces:es will gct,possession of the serializer, 

and be removed from its queue. Then the process can proceed with the cxt.-cutio" of 

the opcrntion. In evaluating the guarantees. there is no .asst1ri1ncc·.that the guarantees 

will be evaluated in any particular order. or-that they :wiU an be 'Cvaluatc4 u11less all 

cvalualc lo false. If atl guaranlcl.'8 arc folse~ then the p~.on ,100 external queue.that 

h:.is waited the longest(ir my) is removed fmm tluH1neuc:and ~nibs Jl(ntil.~ioo. 

4. Wl' he1vc l'hoscn to use a sin~k l'Xlcrnal lllll'UC ft•r simtllicity ufexplnnalAim. ll~iug a single cxt~rnal 
queue is a valid implementation. allhough il is not lhl' only \'<iliJ implementation. 
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2.3 An example: the rcadcrs·writcrs problem 

The general readers-writers problem [Courtois, Heymons and Parnas 71] 

presents a simple resource that is to be acc~sseq by CQQCL~rrcitt processes. There are two 
: '· ,, \ : : .' r , 

operations on the resourc;e, rf.IJd and wrlte. "i\ prote~ performing a read operation is 

called a reader, wnile a process pcrfom1ing a. write opcrqtjon js called a writer. In 

keeping with the ~erializer m~thodology, we have split the problem into writing a 

cluster to implement the resource and constructing u serializer that encapsulates such a 

resource. The basic constraint on conq1rrerky is that ~defers should not access the 
; . .- : ··, ;·· .:;. . . 

resource concurrently with writers~ and wi:itc~·, ·.sho(tld not access the resource 

concurrenlly with other writers. The gencraf reade..S-writeTS problem imposes no 
/ 

further requirement on the twder·of procc~ng.ttir operations.· 

'The example we present irt 'Figute'· 2 has the requirement lhat if a read 

operation on the serializer starts before a. write operation on 'ili,e ~tj~iFzcr. the reader 

will access the resource before· that writer, a~d th~t . this: 't.1-St~in-first-out (Fl FO) 
~~-

ordering is also imposed on writers with respect to readers, and on writers with respect 
\, ; 

to other writers. This vnriant of the readers·w~iters probl~m is discussed in [Greif 75]. 

In the Fl FO scrializer, there arc lhr~ upcmtkms. . one to create a new 
,, :; 

serializer object (and new resource). one to tead a. va~:t•ssociittcd with a key in the 

resource. one to write a value associated with a key in the resource. Ottly the scrializer 

operations that access the representation (rep) of a scrializcr object urgmfl~ need to 
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Figure 2. Fl FO serializer 

% The following serializer is a first-in-first-out solution to the 
% readers-writers problem. 

FIFO = serializer is 
create, % C~eate a new -serial fzed re,source object 
read, % Read a valµe from the resource given a key 
write % Write a valui''to the r&S'Ou~•·9iveft ~ key 

% Each serializer object 
rep = record (re: crowd, 

we: crowd, 

has the fol low<'iAg :r.epresentat ion -
'%. readers' crowd 
'X writ•rs·' cre11.-

xq: queue, 
res: resourc~] 

% comnt0n queue 
'X unsariali.ied resource . ,. . _-' . i: 

create = proc {} returns (cvt) 
return ( repS(rc: crowdScreate (), 

we: crowd$cre.ate O, .. 
xq: queoeStreate f) t·' 
res: resourceScreate () }) 

end create 

read = proc (x: cvt, k: key) rstvrn$ ('lalue),; 

~ Wait until there are no active writers 
enqueue x.xq un,iil crowd.Se.,pt_r,;(~~~-c;J. 

, ·:.c { ': ,,.·, • 

%,Become an active reader & perform the read 
jo1n x.rc 

return (resourceSread (x.res, k)) 
end 

end read 

write = proc (x: cvt, k: key, v: value) 

% Wait until there are no active writers .or readers 
enqueue x.xq until crowdSempty (x.rc) & crowdSempty (x.wc) 

% Become an active writer Ir perf':ont the write 
join x.wc 

resourceSwrite (~.res, k~ v') 
end 

encl write 

end FIFO 
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gam possession of the scrializer object5 The use of cvt as a type declaration for 

arguments to operations indicates which arguments are seriallzcr objects viewed as their 

representations. The use of cvt follows the CLU usage, in that it represents a type 

conversion between abstract type and representation type that is perfonned at the 

interface of an operation. Each serializer operation is limited to one cvt argument, since 

there is no provision for gaining simultaneous possession of multiple serializer objects. 

There is no restriction on the use of cvt used as a return tylle6 (~~en if we allow multiple 

scrializcr objects to be returned). 

In the read operation of the· PIF01 &erialir.er. . th~ guarantee is 

crowd$empty( x. WC). Therefore. no readers will begin to' readfrom the resourc'e until 

there are no writers acc~mg the resoutce. Siadlar~ ,''"ft\, the write operation, the 

guarantee is crowd$empty(x. re) & crowd$empt)(x.wc). which prevents a writer from 

proceeding until .neither readers nor wrifots are atcessi~the·resouree. 
. ' . ~':,.:.. ~ . -

The importance of having sole poSSt..~ion of the serializer object can be 

illustrated by examining Figure 2 and considering the conSt..~ocnccs hr not havitig such 

a restriction. For example, if a writer did not have sole possession of the scrializcr 
'· 

object nflcr it pcrfomu..'d its enqueue, anolh~r ·Wfik:r (;._~14'~~ the resource tJi.!twcen 

the first ~ritcr's execution of the cnqueue·s1atemci1.t ilnd ttV~'.Joill slhtcmcnr: "11tis would 
· · · · · , 1 t :.r: 

5. ·111c create opcrnlimuJucs not need lo gain pos.'\l.-s.~1m. si1wc ~'U?D~~s other than the process 
cxci:uling the create (JflCra1it1n ~0111tl.ac<.:l'SS the objl~l, . . 
6. Nole llliil ill\ <!11 <1rgt11ncnt Lype lJcSl:ri11tion. cvt rcquifl'S a co~1n•ffii(!n from ahslract to representation 
type. and as a return lYlll' deSt:ription. Lhc conversion is frilm1\•pt(:s('nti1ti~m lo ahstracl type. 
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allow simultaneous access to the resource by two writers. which. violates our initial 

requirements for the serializer. 

2.4 Sio1plC serializers 
,t 

It is in feasible to present definition, specification. and· ve'rit1cation techniques 

for general serializers in this thesis. Therefore. we will re8triCt our attention to a limited 

version called simple serializers. A simple serializer has the following restriCtions: 

*The representation object (of tyf.?_e rep) for a simple serializer is a record 
that may only contain a single :resource object 'llftd a faxed number of 
statically named queues and crowds. 

* AH queue· and crowd exp~io~ . arc limited to selection of 
representation components. 

* The guarantees on the e.nqt.1~ .. ~ statemcn~ ~n only t,est fQ~ queu~Sempty. 
- - •• ~ ' < - - - • ,' ~ .- - -- ' • ~- ~ ' • ,. 

crowd$empty, the logi'Caf a11d (x &. y) of guarantt!Cs. and the logical or 
(x I y) of guarantees. 

·*Only enqueue and join statements mi•Y be c~ecutcd while in ~"SSion of 
the scriulizer object. 

' ~ : . ' 

* Each scrializcr operntions must corrt.'Spond cxuctly in number. nmnc, and 
interface to a corrt.~'fKmding R.."itlt1rc-0'0pcmt#m.YH<.1.statct1'ents nmy be 
executed inside a lo.i

1
1,1, !ili.tlcmcnt ex~c.~t, to invoke the, corn..'Spc.>ncJing 

resource opcrntion, returning its rt.'sufts ·rr111crc arc any. 'TITis n.~1riction 
also prccludt.'S the h4mdling of exceptions. 

* Inside of a simple scrializcr opcmtion. the return statement dc.x.'S 1101 
immediately return an objt;'Ct from the opcratitlll~' •dt woukl in~ nonnal 
operation. lnstcud, it is used to indicate the tlbjl-.Ct'k¥'hc retllfRed 0when 
the scriulizcr opcmtion lcnninall.'S. This n..>Slrittion is prt.~nt to simplify 
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the semantic model in the next chapter. 

While the above restrictions may seem severe, they atlow us to keep our 

presentation of details not associated with concurrency control to a reQsonable level. 

Simple scrializers are sufficient to scitve the readers-writers problem. ·as well as some 

more involved examples. 

Jn several places throughout the t~is we will indicate. how extensions to 

simple scrializers can be handled. These extensions include cases where more 

complicated computation must occur to detcrmifle the ortleLof processing requests, 

where the interface to the serializer differs from; thatof the "i~nded,y.ing resource, and 

where the scrializer and the resource are implemented together. 

2.5 Using semaphores to implement serializers 

In this section we present a possible implementation oFsimpte·seriatizers using 

fair semaphores and clusters. We do this fbr two reasonsi 
-: ,_ 

1: To show that the scria1izcr mcchanis1i1 is realizable. 
'!· - ' ' • • 

2: To give Further insight into the semantics of scrializers by g1v1ng a 
translation ~nto a more comnwnly lmdcrst~xxt 1hcchanism. 

ll1c semaphores that we use can be freely created, and obey a Fl FO disci1lline when 

multiple processes rcqlll.'St the same semaphore. We also describe the operations on the 

queue and crowd d~tta types used in this implementation of scrializcrs. 
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We assume that the semaphore data type has the following operations: 

create ( ) returns (semaphore) 
returns a new semaphore with count ~ 0. 

P (S: semaphore) 
Atomically tests and sets the count of itJe giv~'1. semaphore. If count 
> 0, the count is decremented and the operation completes. If count 
= 0, then it stays 0 and the proct.'SS performing the P- q>eration does 
not proceed until the count becomes positive. Once the count 
becomes positive, the process waiting the longest decrements the 
count and completes the'P operation. · 

V (S: semaphore) 
Atomically increments the count Note ,that a P opemtion on an 
initially, created semaphore must wait for a corresponding V 
operation. 

We assume that the queue data type has the following operations: 

create ()returns (queue) 
creates a new, empty, queue. 

cnq (Q: queue, T: semaphore, G: guar) 
adds the T, G pair to the queue. making the queue non-empty. 'fl1c 
type of G. the guanmtcc cxpr~ion. i~ a~umcd to be .a predicate to 
indicate whether the guaram~.C fs'frUe> ·'', ; · : ·"" · 1 

• · • ; ·• • • 

dcq (Q: queue) signals (empty) . 
removes the head pair if the queue is not el1lpty, otherwise sigmds 
empty. 
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empty (Q: queue) returns (bool) 
returns true if the queue is empty, false.otherwise. 

get_guar (Q: queue) returns (guar) signals (empty) 
returns the guarantee evaluation procedure at the head of the queue 
ir the queue is not empty, otherwise signals empty. Note that 
queue$get_guar(Q) can also be written as Q.guar. 

get_sem (Q: queue) returns (scmaphore)signals (empty) 
returns the semaphore at the head of the queue if the queue is not 
empty, other~ sl&naJs empty. ~eJb_~t queueSgeLsem(Q) can 
also be written as Q.sem. 

We assume that the crowd data type ha$ lhc fc;>llmving operations: 

create ( ) returns (crowd) 
returns a m .. 'W, empty, crowd. 

insert (C: crowd, T: semaphore) 
inserts a semaphore into a crowd. 

remove (C: crowd.I: semaphore) sigmtls,(~bscnt) 
. removes a semaphore from a. crowd . if pr~seot. pC)1crwise signals 

ubscnl · · .· · ' · ' , · . 

empty (C: crowd) returns (bcx>I) 
returns true if the crowd is empty. false othcrw18e. 

.. 

lmplcmentrng a scrializer as a cluster that uses St.'fllaphoh .. ~ is u translation that 
!, • 

. ··.f! .. i . ' ~ ; 

has the ti1llowingcases: 
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1: The serializer becomes a cluster. and the' reprcsent.ntion object is 
extended to include a scm component, which,is·of type semaphore; and 
an eva/ component. which is of type scquencc[queue]. 1l1e sem 
component is called the ex1ernal semaphore; and the not e<>Mponent is 
C'Jlled the queue /isl. 

2: The create operation initializes the externalsemaphore tOa newly-created 
semaphore, and performs scmaphore$V on it The queue list X.eval is 
initially the sequence of all queues in thel'eJ)feSentatioa .. 

3: Each operation that requires possession· is given-the folloWing protog: 
semaphoreSP(X.sem} 
T: semaphore := semaphoreSnew( ) 

where X is the name of the cvt argument. and T is a unique local variable 
used to hold a newly created semaphore for the transaction. T is used to 
represent the process in queueS Mid crowds. . 

4: A return statement is translated into an assig1m~el)t to a temporary 
variable (or a multiple assignment if mukipk;.retw;q. va~~ are, present). 
This requires such variablt."S to be declared in the'prolog, and their values 
returned in the epilog. 

5: Each operation that requires possl."SSion is given the folJOwing epilOg: 
Eval(X) . . . . . 1 __ . _ •. 

where the Eval ,procedute is nri: internal o)jttiitiotf fiSt."-tl'fu'~lcct tbe next 
process to pr~&. and wilt be dctuilcd bClow. · · · 

6: F.ach statement of the fhrm: 
enqueue Q until, G 

is translated into: 
queueSenq(Q, T, G') X place self in queue 
Eval(X) % release possession 
semaphoreSP(Q.sem) % regain possession 
queue-Sdeq(Ot.. _, '.% f.e-..>A•• 1JeJnl~•-~a 

where Q is the queue to use in the expn .. ~on. T is the kical semaphore 
vuriablc introduced in the prolog, and G' is a pnK..'CdUrC'1~bed' ~ . 
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type guar) used to evaluate G.7 

7: Each statement of the fonn: 
join C 

Body 
end 

is translated into: 
crowdSinsert(C, T) . % place self in crowd 
Eval(X) % release possession 
Body % execute body 
semaphore$P(X.sem) % regain possession 
crowd$removlt(C, T) 1' ,rellOW; se:~f. ,fr<W .orowd 

where c is the crowd ID' join~ and Boiy is the body of statements to 
execute while not in possession. 

The Eval procedure selects the next'f)nlaeSS to receive possession. It first 

checks (in some unspecified order) the non-empty queues to determine whether the 

guarantee at the head of the queue is true. The first non-empty queue found with a true 

guarantee has V performed on its head semaphore, and Eval returns. If no non-empty 
.. 

queues are found with true guarantees, V is performed on the external semaphore. Eval 

can be written as: 

7. /\ reader familiar with Cl .U may notice that we h&ivc taken some 1ihcrtk-s in using a·. and have not 
fully delined the type 1!,Uar. In general. it is fll't.:1..'Ssary to use a closure of procedure and dat;1 to properly 
ddi111..• G'. We h;1ve avoidl'U 1111..~ issu1..•s for the sake of simtllidty; they do not am.'Ct our approach to 
concurrency l:Onlrol. 
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Ev al = p roe ( X : rep) 

% examine all queues for true guarantees 
for q: queue in sequence[queue]Selemen,t,s{X.9!'f4l) do 

if queueSempty(q) then % if queue· is e11pty 
continue % then examine next queue 
end ,. 

if q.guar(X) then % if guarantee is·true 

end 

semaphoreSV(q.sem) % then allow that proce$s 
return 'X. to cont iJ11,t&, c•x•cu.t.ion 
end 

% no non-empty· queues have t;rue guaranta.t• . 
semapbcreSV( X. s•m) .. X •e:r~a ffl\&, •x·terMl q"eue 

end Eval 

The above version of Eval always checks the queues in some particular order. It would 

be equally valid to checl ,the queuesjn ·•ny, QfdU.: ewell1iJ.n9fl*~nninjstic. 

An example of how a serializer is implemented using clusters and semaphores 

is shown in Figure 3. We have omitted the write operation, since there is li!tle 

difference from the read operation; and the Eval operation, since it was shown above. 
:··· ,-3 

':; 

2.6 A comparison or scrializers with monitors 

·111e unrestricted scrializcr construct has many similarilk-s to the monitor 

construct (Brinch Hansen 72. Hoare 74]. Both scrializers and monitors deal with 

synchronization by encapsulating details of concurrency control within a set of 

procedures. We pn.'SCnt a brief comparison of the scrializer and monitor constructs 



Figure 3. Semaphore implementation or FIFO 

FIFO = cluster is create, read, write 

elist 
rep = 

= sequence[queue] 
record [re: crowd, 

we: crowd, 
xq: queue, 
res: resource, 
eval: elist, 
sem: sem.aphore] 

create = proc () returns (cvt) 

% readers' crowd 
% write rs • c roJlfd 
% co11111on queue 
'X U,fl$&r~•l,izttd .l,'esource 
% the queue 1 is t 
% . tile ex tern~ 1 semaph.o re 

""-~ 

E: semaphore :~ ~emaphoreScteate() 
semaphoreSV(E) 
Q: queue : .; queueSc rea ie ( ) 
return ( repS{rc: crowdScreate (). 

we : c rowdSi:: reate ( ) • 
xq: Q, 
res: r~source~creat,J (). 
eval: elistS[Q]. 
sem: E } ) 

end create 

read = proc (x: cvt, k: key} return* (value) 

% Prolog 
semaphore$p(x.sem) 
T: semaphore : = s.emaphoreiScreata() 
v: value 

% enqueue x.xq until crowdSempty (x.wc) 
queueSenq(x.xq, T, crowdSempty) 
Eval(x) 
semaphore$P{x.xq.sem) 
queueSdeq(x.xq) ' 

% join x.rc; return (resourceSread (x.res, k)); end 
crowdSfnsert(x.rc, T) 
Eval(x) 
v := resourceSread(x.res, k} 
semaphoreSP(x.sem) 
crowdSreftJQve(x.rc, T) 

% Epilog 
Eval(x) 
return (v) 
end read 

'X. Tlte write ope rat ion is not sbo.wn. 

end FIFO 
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below.8 Except where noted. prope11ies of the monitor construct are taken from 

[Hoare 74]. 

A serializer abstraction is intended to have. the same interface as the protected 

resource, while the monitor appears to be a lock on access to the resource. The 

serializer construct has the expre~ive power to be ltsed as a tock. but the monitor does 

not have the expre~ive· power to mimic the resource (without serious Jo~ of 

concurrency).9 The serializer and monitor .constr~. both protect the underlying 

resource by controlling concurrent ace~ to i4 providing,that the only access is through 

the serializer or monitor. The Serializer :oonstruct fifrther protects the underlying 
! 

resource by allowing the programmer to prevent acccSS'to the .resource except through 

the serializer. This protection can be ~hieved -.yith monitors by having a data 

abstraction encapsulating a monitor, such that bJth the resource and the monitor can 
• - ~-. < - ~ 

only be accessed through the data abstraaion. Our preference is to provide this 

appearance through a single construct 

The serializer construct allows posses.'iioi1 of llfo ~ri4-1q?cr 9f)jecf to be released 
}- ,- ·- ' •. 

• , ' I , . -· 

and regained in a controlled manner within a scrii11iicr opcr~iqn. In the monitors 
.. 

presented in (Hrnlrc 74] there is no such provision. . J.11 an. extension lo monitors 
; - : 

[Lampson and-Redell 79] it is possible to write operations thautn:tmt require pos..q~'Sion 

8. A comparison of an earlier version of Sl'rialtJ.C'fs with moniltw :lflflCal'S in flkwitl and Atkinson 79). 
An cvalu<tlion of scrializ"·rs. 111011 ii ors. and path cx.prcs.-;iuns appears in I Hloom 7'>1. 
9. Extensions which allc\'ialc this 1uohlcm haw fx'\•n made lhr the monitors rucscntcd in 

11.mnpson •mJ RcJc1179i 
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of the monitor. This allows an operation to be written that ·tequircs ~ion of the 

monitor only for parts of the operation. These protected pm1s are required to be 

invocations of monitor operations that require possession. 111is solution is slightly more 

complicated to use than the serializer join statement, but is otherwise similar. 

Serializers use explicit guarantees at the point in the procedlffe: where . .a 
process waits on a queue. That guarantee is true when the process proceeds (providing 

that removing the process from the queue diQ; nQ1 changtHhe guaraot~). Monitors also 

have first-in-first-out q~~eucs (called condilions), but the expressions that determine 

which queues:are tobe~rviced next aredist~dttoughoutthe various procedures 
_/ 

of the monitor, which complicates the verification task. 

As mentioned briefly above. there .is a.~~~,,.diff~rence ~ use, ,of queues in 

monitors and serializers'", Processes in the ~~c queue in scrializers can be waiting f~r 

different guarantees. Althaugh the same cflect caq bc,acl\U,~ed in mon~ors,)t usuaUy 

requires extra code to do so, and is difficult to \Vflte ~d,~<Jeqitand. ·. 

.. 

The scrializcr construct, like the CLU cluster construct, supports sets of 

objects belonging to an abstract type. 'Ille monitors proposed in [Hoare 74) tend to 
t' ' 

supprn1 one-of-a-kind cnrnpsulation. 'l11is dilTercncc is more a rcllccti(m or the base 
;, ;- ;'" '! ~ 

langm1ge used than a basic diITcrcnce between scrializcrs and monitors. We mention 

this difference because WC believe that supporting sets or objects is a better choice to 
' i . ' ~ 

make, since there is more potential concui-rcncy in a system where data is partitioned 

into separate objects. 
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2. 7 Opportunities for optimization 

One objection that might be raised to serializers is that they are inherently 

inefficient: at every release of possession the queues must·be checked to determine 

whether the condition at the head of each queue is satisfied.16 For this objection we 

have two answers: 

1: It is unlikely that the evaluation of such conditions will be expensive 
compared to the execution' of resottl'CC operations. 

2: In the event of the guarantee checking being· a Significant cost in a 
. program. optimiz.atioo techuiques are especiall}NtpplQble: in this. limited 
context 

As an example of how we might optimize the checking of guarantees. consider 

the FIFO example. When a writer leaves the writd's cmwd. it? is~)' to l'fOVe that both 

the· readers and writers crowds arc empty. This knowledge allows an optimizing 

compiler lo immediately dequeue the next transaction in,the.qirctlc (if any) wh<.."flevcr a. 

writer completes. In such a case. no guarantee evaluation takes place. When a reader 

leaves the readers crowd it is eusy to prove that the -writcr.i crowd is still empty, whid1 

idlows the compiler lo ~imply chcd the hc&1d of the queue fhr a reader-. thus avoiding 
; . 

any more complex evaluation. Whenever a writer joins the wrilcr.i crowd all guarantet..'S , 

arc known to be false, and do not need to be dll"Ckcd at all. In short. we h~avc shown 

that intermediate steps of the verification program can lead to sufficient information to· 

10. /\similar ohjl'Clion is &ll"tu.al1y mi~·d in fl luarc 74. p. SSftt 

-41-



perform optimizations that can significantly reduce overhead for checking guarantees. 

We have advocated designing, verifying, and implementing serializers and 

data abstractions independently. This independence can lead (especially in CLU) to 

many levels of procedure calls, where each procedure performs an extremely small part 

of the computation. When the overhead for procedure calls costs on the same order as 

the rest of the computation, it becomes desirable to substitute the bodies of procedures 

for their invocations [Atkinson 76, Scheitler 77). For serializers in the style we have 

advocated, it is generally both simple and beneficial to perform this substitution. We 

note that the simplicity of the substitution is greatly aided by our initial requirement 

that the serializer present the same interface as the underlying resource. 
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3. Semantic Model 

In this chapter we· present an abbreviated ~Mc model for concurrent 

execution of programs. and use-it to define scriali"r semantKts. ln the next chapter, we 

use the model to define a small specification language for serializers. 

The semantic model we use to define serializers is intended to be embedded . 

within a larger semantic model, just as the serializer construct is .embedded in a larger 

programming language; We will not be concerned initially with which larger model is 

used, ulthough we will return to the issue later. Whatever larger model is used, there 

must be support for shared objects, side-effects. and concurrency. 

We wilt first give an overview of the semantic model for serializers, assuming a 

particular larger semantic model. Then we discuss the various components of ~he 

model in detail. Then we give the meaning of the serializcr construct by giving 

predicates that all scrializcrs must satisfy. Finally, we disc~ the role of induction in 

the scrializcr model, and outline how the model might be embedded in a different 

larger semantic model based on mcssagc-pa~ing betwa-n processes. ~ 
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3.1 ()ycrview of scrializer semantics 

Informally, the text of a scrializcr is a set of statements that describe what 

happens when serializer operations are executed in a system with concurrent processes. 

To give the semantics of the serializer construct, we require a definition of "seriatizer 

operations", a defiiJition of ''excclitiQn'~, o ~finition of "pr,.ocess", .. a,nd a definition of 

"what happens". 

The model we choose can be viewed as an interpreter: Each procedure is 

represented by a graph composed of basic instmctions that indicate which actions to 

perform and arcs between the instructions to indicate the order of execution. There is a 

global stute,~consisting of a set of shared objeats·!t~-? set ;0f processt.~. Each process has 

a local state, which includes a set oflocal GQ.jects, a stad of procedure activations, and a 

program counter that indicates the instruction t.hatthe pr~ is to execute next. Each 

instruction represents some basic actio11. Ex~i~g un ifl;itruction mo?ifi~ the glopal 

or local state. The exccuticm ofan instr~tiQJlialwnys.•ndw~'&Jhe next instruction. in 

the pmcessby modifyi11g the r>mgram~couftkr. A Pfve4'"SS where the 11cxtinstruclion is 

pcmiittcd tooecur is·cuUudac~ive. ~xceutillft£1Jr1a~.n in~JJ~Ct~(,)llS may muse ~l pnx;css l.Q 

become inactive until certain conditions hold. ~·· ' 

For simple scrializers, the only components of the global stale modelled arc 

the slate of the quem .. 'S and crowds IC.1r the scrializer object. and the stale of scrializer 

possession. ·111e only component of the local state modelled is the program counter 

within a scrializcr operation. 
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The interpreter proceeds by choosing an active ~. and executing the 

instruction indicated by the program counter of that process. Although the choice of 

process is non-deterministic, no process that is active may be indefinitely denied 

execution. We call the sequence of instructions executed by the interpreter a history. 

We can give the semantics of this informal' modet through a predicate that 

takes a history, an initial gfobal memory state, an initial set of processes (and their local 

states), and a set of graphs representing the procedures in the system, and returns a 

boolean indicating whether the history could be produced ht' the interpreter we have 

described. We will call this predicate the globallegalitypredicate. 

In this thesis we are discussing a singte·tonguage constnact. In ·this context. 

presenting a complete definition for a language would occupy more space and attention 

than it merits. The semantics of a language construct can be defined through.a partial 

legali1y predicate that partially. determines the global legality predicate. For the 

scrializcr construct, this .predic-Jte 'is i1lse ·ror 'histories that .are prohibited due to 

scrializcr semantics. and· true tor others. We wm not .pn..-senta: defmition. of a larger 

language. nor ll)ffllalty state the internctions bl."lw~n. thc .. serializcr construct. and the 

ulh\.'1' language featun.>s. 
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3.2 Nodes 

In defining what is meant by "execution of scrializcr operations", we first need 

to define a representation for an operation and its associated data. Since we are dealing 

with only one serializer object at a time. it is convenient to regard the serializer 

operations and the scrializer object as being inextricably bound together into a single 

unit. For brevity in this chapt~r. we' will use the term serializer object to refer to this 

unit 

Each scrializer operation (bound' to an a~ated seriatizer object) is 

composed of nades. A node is just (informally speaking) an instruction at some location 

in a program with its associated data. A node g~aph is used to represent a serializer 

operation, where· the arcs in the graph represent sequential execution. For simple 

serializers, the node graph is degenerate, since there is a linear order to the nodes. We 

have used the tenn grap/ttD case the disctfssiollofexiensionstothis model. 

The following kinds of nodes are involved with synchronization in a simple 

scrializer. At such a node.· f'Osst,~ion of the SCfiialif.er object: may be gained or released. 

enter (ope rat io11_11amc.(fon1.1ql.....a1g11mc1!ls)): Thi\i. JJ~ .. .rcpwsc•~~. the 
initial entry to an operation that requires possession of .the scrializcr 
object. After this node, is cx~cutcd! th~ ext."C~l~ing process has 
posst..'SSIOn. 

. ,. 

~ ) . 
' : . ,.; . . ~ ' / ,,: ' 

exit: This node represents the cpilog to an opcrntion that requires 
possession. Executing this node releases ptlSSl.'SSion. 
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enqueue (queue, guarantee): This node represents the first part of an 
enqueue statement. Executing this node places the process in the 
specified queue with the specified guarantee and releases posSt.'Ssion. 

dequeue (queue, guaranlce): This node represents the, second part of the 
enqueue statement. Executing this node regains possession and 
removes the executing proct.'SS from the queue. 

join (crowd): This node represents the start of the join statement 
Executing this. node places· the process. in the crowd and Jcleases 
possession. 

leave (crowd): This node represents the end of the jein statement 
Executing this .node regains~ through the external queue 
and removes the process from the crowd. · 

The following kinds of nodes are used. for other primitive actions that can 

occur in a simrle serializer. 

invoke (invocation): This node representsthc.t.crminationof execution of 
the specified invocation. For simple scrializers it .will only appear 
once, and must appeur in the body of a.join ~atcmet:it 

, . - / - '- ' - l ' . 

return (i11voca1io11): As with the ia¥oke-nod~ d\e relMl'~dlOd~ represents 
the termination of execution of the specified invocation. Executing 
the return node also· ck.'Signatcs the objl.-cl to be returned when the 
scriatfrcr. opcrution tcm1intth .. 'S.at ttleexlNwode~ ' · r , ·'., 

~ ,- . ~ 

The USC of invoke and retiarn notk"!S in simpfo Scrialitt.~ is lifuitcd' tp showing where the 

opcrations·orthc underlying n.·sourcc arc call\.-d. 
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Each node N has the following structure: 

* N.kind - an identifier (one of enter, exit, enqueue, dequeue, join, leave, 
invoke, return) indicating the kind of node. 

* N.next - empty for exit nodes; otherwise the next node in the execution 
sequence. Note that the next node for any return node is an leave node if 
the return is performed while in a join statement, otherwise the next node 
is a leave node. 

* N.mob - for enqueue and dequeue nodes, the queue used; for join and 
leave nodes, the crowd used; otherwise empty. 

* N.expr - for enqueue and dequeue nodes, the condition to guarantee; for 
return and invoke nodes, the expression to evaluate; for an enter node, 
the operation name and its formal arguments; otherwise empty. Note 
that for an invoke or return node the information about which procedure 
is executed and which arguments are used is contained in the expression. 

* N.match - for an enqueue node, the corresponding dequeue node; for a 
join node, the corresponding leave node; otherwise empty. 

ll1e transformation of a serializer operation to nodes will be given by example. 

Suppose we have the fi1llowing operation in a scrializer: 

change = proc (x: cvt, d: data) returns (value) 
enqueue x.q until crowd$empty(x.c) 
join x.c 

return (resource$change(x.r, d)) 
end 

end change 
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The node graph for the above operation can be represented_~= 

Nt: enter (change(x, d)) 
N2: enqueue (x.q. crowdSempty(x.c)) 
N3: dequeue (x.q, crowdSempty(x.c)) 
N4: join ( x. c) 
N5: return (resourceSchange(x.r, d)) 
N6 : leave ( x • c) 
N7: exit 

• 

In the above graph, NI.next = N2, N2.next = NJ, and so on, N7.next is 

empty. The queues, crowds, and expr~ions are indicated. 

N2.mob 

N4.mob 

N2.expr 

NJ.mob - x.q 

N6.mob x.c 

N3.expr crowdlempty(x.c) 

The reader should be cautioned that the description we have given for norles 

and node graphs is incomplete. We have not discu~d conditional statements, 

assignment, exceptions, or iteration. In later chapters, we will describe how extended 

node graphs would be handled. 
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3.3 Events 

Informally, an event is the completion of execution of a node in a process. For 

our purposes, the important features of an event are: 

*An event is atomic. An event takes no time to occur, although the 
amount of time between events is always positive and finite. 

* An event is associated with a single node of a serializer. 

* An event is associated with a single "process". We assume that the reader 
has some intuitive idea of process. We will introduce a more exact 
definition of a specialization of the process notion in the next section. 

It has been proposed [Greif75] that an event is a state transition. The state of 

a simple seria'.izer consists of the state of the serializcr queues (not including the 

external queue), the state of the scrializer crowds, and the state of the scrializcr 

possession. Only the simple serializer events (enter, exit, enqueue, dequeue, join, leave) 

change the state of possession. Changes in possession that do not alter internal queues 

or crowds result from enter and leave events. Changes to internal queues result from 

enc1ueue and dequeue events. Changes to crowds result lhlm join and leave events. We 

will return to this point in a later chapter. 

In a full semantic model we would have to show where an invocation started 

and where it terminated. For simplicity, we have chosen to not represent the event that 

marks the start of an invocation. 'll1c invoke and return events arc sufficient to indicate 

where the resource operations arc called, which is all that we need at this point in our 
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discussion. 

A dequeue event marks a change in state of the indicated queue, and a change 

in the poSSt.'SSion of the serializer. A dequeue event for some proe5 will not occur until 

aner the corresponding enqueue event, and not until that proc~ is at the head of its 

queue and the guarnntec evaluatt.'S to true. The evaluation of gllarantees takes place 

immediately prior to every event that releases possession (enqueue, join, and exit events 

release possession). For any event E that releases poSscSSion, we will OS$Jme that 

evaluation of the guarantees takes place between E and the seriali2r event immediately 

preceding E For simple seriaJizers. where the guarantees ;.are limited.to side-effect free 

evaluation of cxpn.-ssions involving the scrializer state, no further events need to be 

introduced to repn..-scnt the evaluation of guarantees. If more involved expr~ions are 

allowed. events representing such evaluation muft be introduced. . 

3.4 Transactiom 

For a seriulizcr. a 1ra11soction is a Sl.'Qucncc of scrializcr events that occur for 

~me procl.'SS in the exl.-cution of a scrializcr opcnation IOr Slftlc scrializcr ob~'CL 'l11c 

order of events in a tmnsaction is the same ~~. the order in, which those cvcllls occur in 

the execution of the scrializcr opcmtion. Each enter cvt.""llt for some scrializer oh,i\..'Ct is 

the first event in ~>me tnmsaction. and each fXit cvcn,t is the last event in some 

tr.ansaaitm. We ~gn a unique 1ransac1ion kl<•ntife•r.al the_ c.~cu~ncc of an enter 

event. 
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A transaction may also be viewed as a segment of a process. There may be 

many transactions involving a serializer object for any particular process, but a 

transaction can only belong to a single process. 'The intent of transactions is to capture 

only the amount of detail about a process necessary to define scrializer semantics. 

Where we formerly used the term process, we will now use the term transaction. 

Now that we have identified events as being associated with transactions and 

nodes, it is notationally convenient to give events a structure. Each event E has several 

components: 

* E.trans - the transaction identifier for the event. 

* E.node - the node associated with the event. 

* E.kind - the same as E.node.kind. 

We can associate possession of the serializer object with a transaction by 

noting that if there have been more gaining than releasing events for some transaction 

in some finite history (the difference can only be 0 or 1), then the transaction has 

possession of the serializer from the last releasing event l'br that transaction up to the 

last event in that history. 
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3.5 Histories 

For a serializer, a history is a sequence (possibly infinite) of events that 

represents all events that occur for a particular serializer object. For a given serializer 
~ ; 

object, there are infinitely many possible histories, depending on the requests sent to 

that scrializer object and on the arbitrary choices ~ible in selecting dequeue events 

when several queues are ready. 

A history can be viewed as being same interleaving of the transactions 

involving a serializer object. Every event in a history also belongs to some tran8action. 

The reverse is not true, our modct includes hi*>rics wit~ incomplete transactions. 

Scrializer semantics is defined by stating 'Whieh·hiStories·c-Jrt be produced for 

any given ser;alizer object. We define a predica~ .~at. gj:v~~. ~ r~prcscntatign of 

serializer code and a scrializer history, will be true if and only if the history could be 

produced by the scrializer. A history that sqti~fit..-s that. predicate is called a legal history 
' ' - ' - ,' - i' .,< t -.:.C:-''' :-- ~ ; -~' : ~ ' ; . 

for that scrializer code. A more complete definition of a legal l:listory occurs later in this 
. - , .· ~ '. ' " ' 

chapter. 

We assume ihal the fbllowing. fm1ctions arc dci'ilicd on ·~rializer histotit..-s: 

Finih .. '(H) 
is true if the history is linite; otherwise false. 

Size (U) 
returns the number of clements in 1-1 if 1-1 is finite: otherwise is 
undefined. 

- 53 -



lndex_set (H) 
if H is infinite, returns the set of positive integers; otherwise returns 
the set of integers {NI l < = N < = Size(H)}. 

Nth (H, N) 
returns the Nth element of H if NE lndex_sct(H); otherwise is 
undefined. 

Head (H, N) 
returns a prefix of H that is the first N elements of H, provided that 
N E lndex_set(H); i·eturns the empty sequence if N is O; otherwise is 
undefined. 

For simplicity, we have chosen to model only those operations that accept a 

serializer object as an argument. We assume that the serializcr object is initially in some 

initial state, such as that obtained by executing its create operation: the resource object 

is in its initial state, no transaction has possession, and all queues and crowds are empty. 

The model we have presented is only sufficient to represent operations where 

possession of the serializer object is gained. For example, the Fl FO serializer presented 

in the previous chapter has three operations; the model we have presented is only 

sufficient to represent two of them: read and write. 
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3.6 Definitions 

Predicates will be defined in a dialect 'or -first-ordh predicate calculus. 

Functions are defined using a similar syntax, but avoid the use of quantifiers. We call 

this language the definition language, and will refer to it as su~h in k\ter .chapters. 

Many of the following definitions are more easily expr\llSCd if we have a 
; -!· . 

notation for conditional expressions. The expression "if x l:hea¥ ~~ z·~ is taken to be 

y if x is true (even if z is undefined), and z if x is false (even if y is' undefined). and 

undefined if X is undefined. We also use the "elseif' extension to this notation. as in 

CLU, to allow convenient syntax for multiple cases.' In t:'mieSwhere lhe:ttetse" clause is 

omitted. "else true .. is assumed (which implieS that only boofdlil conditional expression 

may omit the "else" clause). 

Many of the functions and predicates given below anr de lined only for finite 

histories. In_ our definitions. these functions and p~dicatcs are never applied to infinite 

hislori~ so there is no need to define them for those cases. 
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Event E occurs in history H if there is some integer index N such that Eis the 

Nth event of H. Event El precedes event E2 in history H if both El and E2 occur in H, 

and the index where El occurs is less than the index where F2 occurs. 

Occurs (E, H) = 
3 I E lndex_set(H): E = Nth(H, I) 

Precedes (El, E2, H) = 
3 I, J E lndex_set(H): 

I< J & El = Nth(H, I) & E2 = Nth(H, J) 

Note that we have assumed that an event can only .occur once in a history. This is 

implied by later definitions. 

As a notational convenience, we iniroduce. the predi~te Same_trans(H. I. J), 

which is true if the Ith and Jth events in history H are from the same:trtmsaction. The 

predicate is undefined if the integers I or J do notbelong to lndex_sct(H). 

Same_trans (H, I. J) = 
Nth(H, l).trans = Nth(H. J).trans 
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We often need to express the idea that a particulaf even~ .or all events for a 

given node, cannot occur between two given events. 

Excludes (El, E2, E, H) = 
Precedes(E, El, H) I Prccedes(E2, E. H) IE= El IE= E2 

Excludes_node (El, F1, N, H) = 
v I E lndex._set(H): 

if Nth(H. l).node = N 

then Excludes(El, F1. Nth(H, I), H) 

A slightly more complicated predicate will be needed to specify a more 

general exclusion predicate (to be used in lllter· chapters). 

Nodc_excludes_nodc (NI. N2, N, H) is true ifT no event for a given node N can occur 

betwt.-en any two events El and E2. where El:node ± NI. El.node= N2, and 

El.trans= E2;trnns. 

Nodc_excludcs_node (NI, N2, N. H) =. 
v IJ € lndex_sct(H): 

if ( Nth(H. l).node = Nl 
& Nth(H. J).node = N2 

& Smnc_tnms(H. I. J)) 

then Exdud4..--s_nock(Nth(H. I). Nth(H. J). N, H) 

Intuitively, Nodc_exdudcs"""nock(NI. N2. N, H}cxpr~'S the restriction that no event 

generated by node N occurs between events generated by .nodes N l and N2. where the 

events from N 1 and N2 belong to th~ smnc tmnsaction. 
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We are often interested in the last event of a finite history, or in a history that 

lacks only the last event of a given finite history. The functions Last and Front are used 

for notational convenience. 

Last (H) = Nth(H, Sizc(H)) 

Front (H) = Head(H, Size(H) - 1) 

Certain events gain exclusive possession of the serializer, while other events 

release possession of the serializer. Still other events do not change possession. 

Gains(E) is true only if the event E gains possession, while Rclcases(E) is true only if E 

releases possession. 

Gains (E) = 
E.kind = enter I E.kind = leave I E.kind = dequeue 

Releases (E) = 
E.kind = exit I E.kind =join I E.kind = enqueue 
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A finite serializer history is busy if its Jast event gained possession of the 

serializer. or if its last event did not release the serializer and the history before that 

event was busy. 

Busy (H) = 
if Size(H) = 0 then false 

elscif Releases(Last(H)) then false 

else Gains(L1st(H)) I Busy(Front(H)) 

The functions Qsize and Csize return the number of transactions using a 

queue or crowd given the queue or crowd and a finite history. 

Qsizc (Q, H) = 
ifSize(H) = 0 then 0 

elseif Last(H).kind =enqueue & Last(H).rnob = Q 
then Qsize(Front(H)) + I 
clscif Last(H).kind = dequeue & Last(H).rnob = Q 
then Qsiz~'(Front(H)) - I 

else Qsi~'(Front(H)) 

Csize (C, 1-0 = 
irSizc(H) = 0 then 0 

elscif l.ast(ll).kind =join & l..asl(H).mob = C 

Chen Csiz~'(Fronl(H)) + 1 

clscif Last(H).kind = lea\lf & Last(H).mob = C 

then Csize(Fronl(H))- 1 

else Csiz~'(Front(H)) 
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In certain serializcr specifications, the rank of an event is important The rank 

of an event E is an integer that represents the order of E relative to other events 
. i •• .. ' 

occurring at E.node. The first event to occur at a node has rank 1, the second has rank 

. 2, and so on. The rank of an event that does not occur in a history is 0. 

Rank (H. E):: 

if Occurs(H, E) 

then 1 + Rank_scan(H, E, 1) 

elseO 

In defining Rank. we made use of Rank_scari(H. E, I), which returns the 

number of events occurring in H at or after event Nth(H, I) and before E with the same 

node as E. 

Rank_scan (H, E. I) = 
if Nth(H, I) = Ethen 0 

clscif Nth(H, !).node = E.node 

then 1 + Rank_scan(H. E. I+ l) 

else Rank_scan(H, E, I+ 1) 
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3.6.1 Evaluation of guarantees 

Whenever a serializer is released, the guarantees of the non-empty queues are 

evaluated. The following functions define such evaluation given a finite history and an 

expression to be evaluated. The notation {G} is used to represent the expression G 

occurring in serializer code, and distinguishes the expression from our definition 

notation, since the syntax for expressions and definitions is often similar. 

Eval is defined by cases, each case being based on the syntax for boolean 

expressions. For simple serializers, Eva! returns a boolean value, since guarantees are 

limited to boolean expressions involving tests on the emptiness of queues and crowds. 

Eval (H, {Gl & G2}) = Eval(H, {G 1}) & Eval(H, {02}) 

Eva) (H, {Gl I G2}) = Eval(H, {GI}) I Eval(H, {G2}) 

Eva! (H, {- G}) = -Eval(H, {G}) 

Eva) (H, {crowd$cmpty(C)}) = Csize(Var( {C}). H) = 0 

Eva! (H, {queuc$empty(Q)}) = Qsize(Var({Q}), H) = 0 

Eva I (H, {false}) = folse 

Eval (H, {trueJ) = lruc 

The Var function (in Var({QJ) and Vm~{C})) is a mapping from syntaclic 

expressions for queues and crowds to some semantic representation for queues and 

crowds. We require that the mapping produced by Var is the same mapping that is 
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used to produce the N.mob component of any node N in the history H. 

The above definition of Eval is tailored to Jhe needs of defining the semantics 

of simple serializcrs. There is no provision for local variables, which would be 

transaction specific. There is no provision for guarantees with side effects, exceptions, 

or non-termination, which would require the use of events to rnark the state transitions. 

Fmther, such provisions would.also complicate the definition of the Var function. 

3.6.2 Legal histories 

A history is legal if it can be produced by some execution of a serializer. 

Legal(H. S) takes a history and a set of nodes that represent the code for a serializer, 

and returns true iF the history could have been prodt1ced 'ffom the seriafizer code. A 

legal history must be composed of legal steps. That is~ each prefix of the history can 

only be followed by an event that represents a permitted state Jransi~ion of the 

serializer. 

For a finite history H to be legally followed by the event r.: the following rules 

must be satisfied: 

* For E to gain possession of the scrializcr, then there can be no trnnsactio11 
in possession of the scrializer ( .... Busy( H)). · 

* If there is a transaction in possessnlh t1ftf1c sctitr1rzer. theWE mt~'t'bclong 
to that transaction. 
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* If E is a dequeue event, its transaction must be at the .head of its queue 
and the guarantee must be true. 

* If E is an enter or leave event, there may be no queue8 stlCh that the front 
transaction in the queue has a true guarantee.,. . , 

*All events from a single transaction must occur in the order dictated by 
legal execution of the code for the operation_ exec.uted Q)' that transaction. 
In particular, an enter event must be the fi..St event in Its transaction. . 

Note that there are no restrictions explicitly involving join and exit events. The only 

restrictions that we impose for these events are expr~d by the requirement for "l~~l 
, • - - - • -·: • < -'", ~ 

execution" of the node graph. 

The above «;onditions lead to the . following definitions of. Legal and 

Legal_stcp, where H is a history. and S is the set. of eater nodes. for the operations.of the 

serializer that require ~-

Legal (H. S) a 

v N. E lndex_set(H): Lcgal_step(Head(H. N-1). Nth(H9 N), S) 

l.eJOl_Slcp (H ... ~ S) s 

( (ifGains(E) then -Busy(H)) 

&. (if Rusy(H) thcn·l.ast(H}.tmns ~ f_trans) 

&. (Ekind = ..__ ::>·l.A.--gal_dt.-q1act1t.'(H •. f.)). 

IL (if Ekind = enter 1 .. :tmd. = tea~.-l~~ None_rcady(H)l 
.. 

&. IA.~_trnnsaction_stcp(H. E} 

at,(f_kiad = '91ln ::> t-:.s.~ E: ~~S))). .. · 
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TI1e event Eis a legal dequeue event aller the end of history H if the guarantee 

is true, and the corresponding enqueue event is is at the head of its queue in history H. 

Legal_dequeue (H, E) = 
( Eval(H, E.expr) 

& 3 I E lndex_set(H): 

( Nth(H, l).node.next = E.node 

& Nth(H, l).trans = E.trans 

& Head...:.enqueue(H, I))) 

The transaction for the enqueue event Nth(H. I) is_ at the head of its ,queue if 

Nth(H, I) is the last event in H for the transaction. and evel)' other enqueue event 

occurring in H before Nth(H, l) has a corresponding dequeue event. 

Head_enqucue (H, I) = 
( ln_queuc(H, I) 

& v J E I ndex_set(H): 

if J < l then - I n.;...same_qucue(H. l, J)) 

ln_queuc(H, I) is true only if Nth(H, I) is an enqueue event that is the last event in H 

for its transaction. 

ln_qucuc (H. I)= 

( Nlh(H. l).kind = enqueue 

& v J E lndex_sct(H): 

if J > I then -Same_trnns(H. I, J)) 

- 64 -



ln_samc_qucue(H, I, J) is true iff Nth(H, I) and Nth{H, J) arc enqueue events that are 

the last events in their transactions and the transactions are in the same queue. 

ln_same_queue {H, I, J) = 
( ln_queue(H, I) 

& ln_queue(H, J) 

& Nth(H, l).nodc.mob = Nth(H, J).node.mob) 

None_ready(H) is true if for a particular finite history there is no explicit 

serializer queue such that the front transaction in the queue has a guarantee that 

evaluates to true. This predicate is used to define the priority of explicit queues over 

the single external queue of a scrializer. 

None_ready (H) = 
v I E lrdex_sct(H): 

if Head_cnqueue(H, I) 

then .... Eval(H, Nth(H, l).nodc.expr) 

An event E can be a legal step after some history 1-1 only if it can be produced 

by sequential execution of some trunsaction. There must not be an event in H with the 

same trnnsaction and the same node as E: and if E is not an enter node, then there must 

be an event in H from the same transaction as E that n.'Sults from executing a node fc.1r 

which E.nodc is the next node. 
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Legal_transaction_step (H, E) = 
( 'tJ I E lndex_sct(H): 

(if E.trans = Nth(H, l).trans 

then E.node * Nth(H, l).node) 

& if E.kind * enter 

then 3 I € lndex_set(H): 

( E.trans = Nth(H, l).trans 

& E.node = Nth(H, 1).node.next}) 

3.6.3 Complete histories 

The set of legitl histmies for a serializer iudµd~s hi~or~ w~ere tran&'lCtions 

have been started but not completed. Any finite legal history where the seriafizet state 
'," - _-i .-

requires further events to occur is termed i11complete. · AU ·othet legal historit..-s are 

comp/ere. A complete finite history is one where no further events are required to 

occur. Events are required to occur according to the following rules: 

The serializcr specification language will be interpreted as defining 

spccij/ca1io11 predicarcs on complete historit..'S. Serializcr code is s.tid to meet its 

spcci lications if the speci lication predicates arc true for every compl~te ~J~lory of that 

code. 
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For a complete history, all events that are required to occur in the history must 

occur. 

*Whenever a releasing event occurs and there are ready queues, a dequeue 
event from one of those queues is required. Therefore, if H is finite, and 
the last event in H released possession, then H is only complete if no 
queues are ready. 

* For every event that gains possession of the serializer, a corresponding 
event that releases the scrializcr is required. For simple serializers, every 
gaining event will be followed by a releasing event. Note that this 
condition implies that if H is finite and not empty, then Last(H) was a 
releasing event. 

* For every join event, a corresponding leave event is required. We assume 
that every operation of the underlying resource used in a join statement 
will terminate. Such an assumption is part of a modular proof of 
termination for programs involving serializers. 

lnese conditions lead to the following definition for Complete, where H is a history for 

some serializcr, and S is the set of enter nodes for operations of that serializer that 

require possession. 

Complete (H, S) = 
( Lcgal(H, S) 

& (if Finitc(H) then Nonc_ready(H)) 

& Gain_complctc(H) 

& .loin_complctc(H)) 
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Gain_complete(H) is true if for every gaining event there is a corresponding 

releasing event that occurs after the gaining event. 

Gain_complete (H) = 
v I E lndex_set(H): 

if Gains(Nth(H, l)) 

then 3 J E lndex_set(H): 

Corresponding_release(H, I, J) 

Corresponding_releasc (H, 1, J) is true if Nth(H, J) is the releasing event that 

corresponds to the gaining event at Nth(H, I). A releasing event corresponds to a 

gaining event if both events arc in the same transaction, and there are no intervening 

releasing events for the same transaction. 

CorrcspoP.ding_rclease (H, I, J) = 
( Release_follows(H, I, J) 

& v KE lndcx_sct(H): 

if K < J then ""Relcase_fiJtlows(H, I, K)) 

Relcase_follows (H, I, .I) is true iff Nth(H, .I) is a releasing event that follows 

the event Nth(H, I); and belongs to the same transaction as Nth(H, I). 

Rclcase_follows (H, I, .I)= 

I< J & Samc_trans(H, I, .I) & Rcleascs(Nth(H, J)) 
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Join .... complcte(H) is true if every join event has a oorrcsponding,lcave event. 

A leave event corresponds to a join event itT it·belon~ to0 the same'. ttaosaction as the 

join event and there are no intervening leave events for the same transaction. 

Join_complete (H) = 
v 1 E lndex_set(H): 

if Nth(H. I). kind = join 

then 3 J E l~dex_set(H): 

( Leave_follows(H, I. J) 

&. v K € lndex_set(H); 

if K < J 

'· 

then -Leave_follows(H. I. K)) 

Leave_follows (H. I, J) is true ifT Nth(H; J) is a leave event th3t folrows the 

event Nth(H, I), and belongs to the same transaction as ~fb(H" 1).. 

Leave_follows (H. I. J) = 
I< J & Same_trans(H, I.)) & Nlh(H.J)~kind p leave 

' ~ . . . ,: . ' 

3.7 Serialiwr Induction 

In CLU. n cluster that implements a data type dot.,; so by providing operations 

that manipulate objL-cts of a representation ty~ .. J-'or. cvccy ~abstract object. tJ1crc is a 

representation object. In dl-signing and vcrirying clusters. it has lx.'Cn found to be 

useful to make use of a n·prrsc111a1io11 invarialll [Guttag. Horowitz and Mu~er 78] that 

must hold for i.&11 objects supported by the cluster. ll1is repn.'SCntation invariant should 

be true whenever a rl'pl"l.'SCnlation objl.-ct is crc<1tcd. and it should be maintained by all 



operations. 

To prove that the representation invariant holds, we need to use induction on 

the sequence of operations performed. The induction principle we use is that if P is 

true at the start of the abstract object's lifetime, and assuming P for an object at the start 

of an operation implies that P is true at the end of the operation, then P is true of that 

object before and after every <?Peration. As in (Guttag, Horowitz and Musser 78), we 

will call this data type induction.11 

To show the soundness of data type inauction, we need to show that if P is 

true of an object after any operation of the cluswf. tQ~ll P j!i true of the object before 
• :, '··. • -I i • - ' ' ~ ' ' 

any other operation of the cluster, provided that there were no intervening operations 

of the cluster. Informally, to use data type induction using some predicate P, it should 

not be possible for actions of other programs to:tnaik~· P in,Yaljd. It is possible in CLU to 

write clusters such that data type induction can be used to prove reasonable predicates 

about their objects. A duster with this pmpcrty is Strid to-have art irofated representation 

[Atkinson 76]. While the cluster con~ttuct is mlt stridty 'neeL~ry if one wishes lt:tuse, 

duta type induction. it facilitates the determination of an isolated representation. 
!• 

As presented h1 this thesis, the scriafizcr'cti11sthict is quite similar to the cluster 

construct. Both can implement abstract types, andbot'h do so by manipuhiting objects 

of a representation type through opcnitions that can have sole aCCl.'SS to the 

11. Also know as gcncra/or induclion in (Wcghrcit and Spittcn 76]. 
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representation objects. Since scrializers provide the same kind of representation 

protection as clusters do, we can use data type induction, in part, to verify serializers. 

We call the application of data type induction to histories serializer induction. 

For any compJctc history H, seriaJizer induction can be expressed as: 

if 

( P(Head(H, 0)) 

& v l,J E lndex_set(H): 

(if (Gains(H, I) 

& Corresponding_releasc(H, 1, J) 

& P(Head(H, 1-1)) 

then P(Hcad(H, J)))) 

then 

v K E h1dex_set(H): 

if Gains(Nth(H, K)) then P(Hcad(H, K· l)) 

The predicate P is intended to be defined on finite historit.>s where no transaction is in 

possession of the scriulizer al the end of the history. 

History induction is applicable for any serializer where the predicate P will 

hold from the event where possession is released to the next event where possession is 

g~1incd. We can express this condition as: 
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v l,J E lndex_set(H): 

if( Gains(Nth(H, I)) 

& Relcases(Nth(H, J)) 

& Nth(H, J).node.next = Nth(H, l).node 

& P(Heaq(H, J-1))) 

then P(Head(H, I)) 

We call this the isolation condition. Just as the cluster construct facilitates but does not 

fully enforce an isolated representation, the serializer construct does not necessarily 

enforce the isolation condition. 

The serializers we will be specifying and proving' .satisfy the .. isolation 

condition. In view of this, there is no provision in the histories for events that occur 

external to serializers. Wehavenot provided rorsittJationsthatweilmvebeen.unable to 

prohibit in the programming language, but believe· to be bad practice; 

An example of scrializer induction is the use of a representation invariant for 

the FIFO readers-writers problem presented in the .Pr~vipus chapter. A simple 

invariant for an object X of type rep ft>r any finite history His: 

Csize(X.rc, H) = 0 I Csizt..'(X.wc, H) = 0 

While this invariant is not the strongest we can prove, it is a usdt11 properly that can be 

proven simply. 
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As a reminder, the code for the read operation is (briefly): 

enqueue x.q until crowd$empty(x.wc) 
join x. re; ... end 

while the code for the write operation is: 

enqueue x.q until crowdSempty(x.wc) & crowdSempty(x.rc') 
join x • we ; . . . end 

lnforma11y, we can prove the invariant by cases. First. suppose that we have 

Cl = Csize(H, X.rc) > 0 :J Csize(H, X.wc) = 0, 

C2 = Csize(H, X.wc) > 0 :J Csize(H, X.rc) = 0, 

where the history prefix is understood. Since Csite ·always; results in a non-negative 

integer, the condition Cl & C2 implies the iftvQriant. lni:tially.j 1b0th <U'Owds are empt)'. 

!n• the invariant is tfiv.iallyitrue. To prove Cl., •H1sswne,tJaat.Cl is trUe immediately 

prior to some gaining event, and show tllat, it: is maintaioe<l :immediately after t.ny 

releasing event. An examination of the code shows that the only sequence of events 
. .. . ' ·*· ·-. '·' , . . 

that can increase Csize(X. we) is where some writer dequeues and joins the writer crowd. 

Therefore, the only w~y that Cl could be false is to alfuw s0me writer to dequeue when 
. . • . . • ' ~~ 7 ~ . 

CsizL'(X.rc) > 0. However, the guarantee lbr the writer transaction prohibits the event 

from occurring until Csizc(X.rc) = 0. Thercrore, Cl is maintait'tcd. Condition C2 is 

proved similarly. 'l11crcfi.lfc the invariant is maint&Uncd. , . . ~-
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3.8 Comments on enter and lc;nc events 

One simplification made in the model is based on the use of enter and leave 

events. A reasonable requirement on enter events is that they will occur if they have 

been requested. The only requirement ·that we hav~ on~~ve eve~tS is that they will 

eventually occur if the corresponding join has. oq;:ur:red. Yet after completing the 

resource operation, the lcal'e ev.ent must be r~~~t,ed. since ~me other transaction may 

be in possession. The simplification we have made.isnqt.to rq>rescnt requests for 1enter 
.- . ' . . : ) . . ' 

or leave events as separate events. 

One requirement that this places on serializers is that code executed while a 
- . : ' ' . ;.. . :' t '~ :. '. : {'' - ~ . '' . . , 

transaction has possession of the serializer must terminate. since othe'rw1se a request for 
"··· . " . . . . 

possession could not be satisfied. Termination while in posses8ion Is· trivially satisfied 

for simple serializers. 

We have also assumed that there. is sorri~ seh~duling discipline on requests f()r 

possession of the scrializcr so that a 'request for an enter ~r .• e~ve event will not be 

forever delayed by other such requests. A Fl FO diseiplfoc on all such requests may be 

overly strict in some systems. and we do not require it. Any disdpJinc that guar~mtecs 

service to requests for possession will be satisfactory. w~· n1~tke m;·~tUetnpt to prove this 

requirement in general. 

Adding specific evenlc; to the model toindicatc when enter and leave events 

have been , reque~tcd is only neCCS..'ii.lfY to represent undesirable cases SllCh US 

non-termination while in possession. or a pathological scheduler. Flll1hcr, it is not 
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reasonable to include such events in the speciflidltions,or proof techniques, since their 

order of occurrence is not affected by possession of the serializer object. 

3.9 Message passing semanti~s 

The model we have presented in :this chapter has ·been deliberately 

incomplete. The larger semantic model we have· asmmed' uses procedure cans and 

processes, and is well-suited for describing the use 'of serializers in a system where 

multiple processes communicate through shared memory. While· having a certain 

intuitive appeal, particula.rly to those familiar with monitors. the techniques we· have 

used (and will use) are applicable when a larger programming language and larger 

semantic model arc used. 

In this section we will sketch a model based on message passing. Such a model 

has been proposed by various people (Grcif:and Hewitt 75, Hewitt and _Baker 77, 
.. ;,' 

Good, Cohen and Keeton-Williams 7.9). A similar model is used to describe distributed 
. ' • ~ ' - ! '• ·' ' ;_ . ' ' 

systems [Svobodova, l.iskov an~ Clark 79, Liskov 79). We. believe that the stmcturc of 

scrializcrs is quite useful in organizing proJ?rnm~ in these distributed systems, and will 
; : •. : J l: .- .·· -

address some further implications of scrfolizers in such an environment in our 

conclusions. 

In the mcssage-pas.'iing model, scp•1rate entilic..-s communirntc by passmg 

mcssagc..-s mlher lh•tn by sharing memory mm.mg many pn.lCc..'SSl.'S. Of course. when the 

sume physic<1I entity recciVl.'S lllt..'SSagc..'S from V<1rious sourct..'S, the c0cct of a shared 

memory is achieved. We can think of a scrializer object as one such entity, the resource 
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object as another entity. and the originators of m~ges to the seriulizer as other 

entities. In such a model. scrializer objects are message ~witchers: They affect when a 

message gets passed to~· resource, but not the mess~ge itself, nor its reply. 

We.imagine that scrializers are used in a programming htnguage that supports 

a logical network, where there are logical .sites, each of whjch q~ its.own. local objects. 

Each site can communicate wi.th another site only by sending mt..'SSUges to that other 

site. We assume that each site can send messages to any ather site without regard to 

physical connections. UnJike. physical sites in a net~prk. logical sites can be freely 

created at relatively low cost, up to the limitations of the'· implementation. 

Ill such a logical network, each serialjzer;:~t is' a sepjlrate site .. Further, 

each resource object is a separate: site. Instead 'otsaying that'a process is executing 
<' 

scrializer code. however, we say that a site ·executes cot:tei fot seme transact-ion. Local 
:} 

variables are associated with· ·the tr;aostet~ and reprC$elltation components are 

associated with the site. 

'Ilic fhUowing description of the St.'f1tdi20r coostnmt in a message passing 

model gives an outline of an ;.1bstrnct ,4nplcmc11tation .JOr scria~i~~· At serializcr object 

creation, the representation object is initialized, and the scrializcr site waits for external 

messages to arrive. We ck.~1ibc the scrializer C\'ents us follows: 

*enter - An entl>r event represents the acceptance of an initfal request 
message k>r service at the scrializer site. At this OCCt.1lfancc,, a unique 
transaction identifier is gcnernled to name the transaction that this event 
starts. The request mL•ssagc idc'ritiflc~r· fh~ 'l'>~cnrtuin to' ~xccute, the 
arguments to that opcrntion, and the dcstinati()n ''(or the reply. A 
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destination is a site name and a transaction identifier relative to that site. 

*enqueue - 111c enqueue event represents the completion of a series of 
actions. . First, the transn~tiqn identifier, the guarante~. and the 
continuation point are placed in the named queue. then the guarantees 
at the head of the internal queues are evaluated to determine the next 
transaction ,to seryice. If there are ready queues. the serializer ~te selects 
one of them as the next to proce~ and releases possession. If there arc no 
ready quettes, the seriatizer site releases ·possd6io1f mkf accepts' tile next 
external message. .· :; . 

*dequeue· After the dequeu~ event. po~n·hasbeen regained by the : ; 
transaction, the enqueued information has been removed from the queue, 
and the serinlizersite witt continue tfrexecute rotle'fotthattransrlcdon at ' 
the given continuation point 

*join - The join event also represents completion of a series of actions. ·. 
First, the transaction identifier- and the contia.uolioft Point are placed iin 
the named crowd. Then a message is· sent to the. resource site, 12 

rcquest:ng the operation and arguments desired: The message sent to the 
rt.~arce site indicates the scriuJizer site aslhe destination. and also nwJtes 
the transaction being proc~d. Finally, as for the enqueue event, the 
guarantees arc exumint~ and possl.~ion isNlcasedC· ·.' 

* leal'e - A leal'e event repn.-sents an acccptunce of a reply mt.-ssage from 
the resource site. PoSSl.'SSion is regained by the transaction named in the 
reply. 'lhc infonnation associated- with that tnu~tiun in the named 
crowd is removed from that crowd. The scrializcr site continues to 
execute code fc.lrthc transaction at the continoatiorfpoint. 

*exit - An exit event represents the completion of a series of actions. First. 
a reply mcs.liage is sent· to the ck..-stination given in· the enter event. For 
simple scri<1lizcrs. the infornmtion in this reply is taken from the reply 
received ut the leave event. 'lllcn the guarantet'S arc cvuluatcd and 

12. For simplicily, we will <L"isumc lllill the only code &hat can ~1ppcar in the houy of a join s!Atlcmcnt will 
he an invocation of a resource operation. · 

- 77 -



possession released, as for the enqueue and join events. 

The above discussion has presented a very simple view of serializers in a 

distributed system. However, we believe that extensions to this model will not greatly 

affect our description of serializer events. For example, we have assumed that there is 

no more than one request outstanding at a time, so that the site name and transaction 

identifier are sufficient to specify a destination. A natural extension would be to allow 

several. requests to be outstanding. In such a case, a request number relative to the 

transaction can be included in the destination. 

3.10 Infinite histories revisited 

We noted in our introduction that states can be regarded as equivalence 

classes of histories, a view advocated in [Greif 75) (although Greif discusses partial 

orders of events rather than sequences of events). However, this approoch docs not 

easily deal with infinite histories, since the stale predicates (such as Csizc and Qsize) are 

not defined on infinite historit.'S. It would be convenient if we could avoid introducing 

infinite histories, hut we have not yet discovered a method that docs not require them. 

We introduced infinite historil.'S to model what happens to a scrit11izcr object over its 

cntire lifetime. Some scrializcr objects arc intended to have unbounded lilctimcs, even 

though any physically realizable system must have a finite lifetime. 
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If we reject the use of infinite histories, then we consider the specification 

clauses to be requirements that all finite complete histories must satisfy. Unfortunately, 

this leads to difficulties with showing that the "starving" readers-writers solution could 

not satisfy the guaranteed service specifications, since the counterexamples involve · 

infinite histories where ce1tain events are not required to occur. If the only histories 

considered to be complete are finite histories where after the last event all crowds are 

empty and no queues are ready, then the starving readers-writers solution can be 

proven to guarantee service. The system designer who relied on this proof would be 

unpleasantly surprised to discover that starvation actually occurred under heavy loads. 

- 79 -



4. Specification language 

One method of specifying a programming language is to provide rules for 

translating programs written in that language into functions on some mathematical 

domain. This method-can also be applied to specification :languages. Tue specification 

language for serializers is composed of clauses in which certain relations between 

serializer events imply other relations between serilllizer events. The meaning of 

specification clauses is given ~ stating rules for transforming the clauses into 

specification predicates on histories: 

Serializer code is said to meet its.-specificutions if every complete history that 

can be legally generated by the senalizer code (accordi,og to the partial legality predicate 

discussed in the previous chapter) satisfies all of the specification predicates that result 

from the specification dau~ JOr that serializer~ .. 

It is not our intention to require that the spt!cilication language have sullicient 
. . 

power to define abstract data types. We are·. mty :Iaoocernod .··with specifying 

concurrency control. We believe that the difficulty of arriving at good specification 

methods dictates that we attack a tractable problem. and integrate the various 

approaches as they arc sufficiently well understood. 

In this chapter we discuss the kinds of scrialit.cr specifications supported. and 

present the syntax and semantics of the spccificutim1 language. 'TI1en we give •t tldl 

Spt.'Ci lication for the Fl 1--U rcaacrs-writcrs scria~w:. sdmc: specifications for vari<ttions 

on the readers-writers problem. and •.a partial spt.'Cilication · f<>r tJ1c boundt..xl buffer 
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problem. 

4.l Kinds or serializer specifications 

The specification language is a notation for requiring a serializer ab&raction to 

have certain. properties. These properties are clasmfied as: 

• Exclusion - where one kind of ace~ excludes another, such as readers 
excluding writers in a simple· data baSC. 11fiS ti1'd of specification is 
necessary to prevent concurrent requests frQJ11 •nterfering with each 
other. 

•Priority - . where one transaction is served. preferentially over another. 
This may occur because of the order of enter everats. the kind of 
transaction, or other reasons or combtnatiorts of reasons. 

•Concurrency - where some accesses are required to be served 
concurrently. The pn.-sence of·concurrem. prOcessing ·for tequest'S often · 
affects the pcrfonnuncc of system. aoo may even affectthe correctn~. 

• Service - where some (or all) accesses are required to run to completion 
(analogous to requiring terminatio& f0r sequential progmms}. 

We make no claim that all interesting synchronization. propcrtit..-s fall into the above 

rntcgorics, although many do. We also make no claim lh&1l &_111 properties in the above 

classes can be expn.~d in the specification language, or that the spl.'Cifications arc 

especially concise in .our language. The cl~ we have chosen are not m .. -ccssarily 

distinct; some prupcrlit.-s may be an.sick'fed to be in more thun one das.~. We arc more 

intcrt.-stcd in making the specificaltim language usable. by both programmers and 

verification systems than attaining some kind of ft>mtal compk..1cm .. 'SS~ 
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The specification language has nothing to say about performance, either for 

real time, computation time or storage. Although performance ~haracteristics can be 

inferred from some of our specifications, specifications and proofs of performance are 

beyond the scope of this thesis. 

The simple form of the specification larigllage doe5-not deal ·witlfthe values 

passed· to or· from serializer operations. This simplification has been made to avoid 

discussing what the exact meaning of "value" is in the language. The fonn of the 
iii· 

specification language in this chapter has events, nod~. boolean and integer values. We 

also include limited predicates on these values, and simple arithmetic expressions as 

functions on integers. It is po~ible to extend the specification language that the user 

sees to include further values and functions, but such extensions involve more of the 

semantics of the complete programming language than we wish to handle in this the'iis. 

In the next chapter. certain extensions are mudc 41 lhe spccificatio.n :l*'.nguage to support 

our verification techniques. but these extensioos;,,atf¢, siiH: qYit~. limited. and do not 

support user-dcfint-'d vaiues and functions. 



4.2 Specification language 

The specification language is defined by specifying a mapping from 

specification clauses to unbound specification predicates. Each unbound specification 
:---

predicate takes a symbol map and a history into a boolean that indicates whether the 

specification clause is satisfied for that symbol map and that-history •. 

A symbol map is a function from event symbols to events, and from node 

symbols to nodes. lt provides an interpretation in our semantic model of the symbols in 

the specification clause. A valid symbol map provides a consistent interpretation of 

symbols for a given history. and will be·discussed further later in this chapter. The 

symbol map is an important distinction between the specification language and the 
' ... -

definition language. 

Each specification clause defines · a spccifacation predicate. which maps 

historiL-s to boolean values: tme if the clause is satisfted for that history, and false if it is 

not. The spt..'Cification predicate for a clause is the value :of ihe ·unbound specification 

predicate fc.Jr that clause taken over every valid symbol map thr a given history. 

- 83 -



4.2.1 Syntax of specification language 

The specification language has a simple syntax. The specifications for 

serializcr code are expres.5ed :as a set-of clauses, each clause being expr~ed as an 

implication. The syntax of the specification language is given informally below, issues 

of parenthesization and precedence being neglected. 

Clause = Clause "::>" Clause 
I Orclering_cla~se 
I Clause "&" Clause 
I Clause "I" Clause 
I "-" Clause 
t "GX" "(" Event_symbol 
t "GX" "(" Event_sy1tbol "," 
I "@• Event_symbol 

I Expr Order _Op -fcqJr . 

Event_sy111bol "," Rode_:.symbol ")" 

Event:_syllbo-1 "," Event.:...;.symbo 1 ")" 

Ordering_clause = Event_symbol "<" Ev~nt_symbol 

I Event_symbol "<" Ordering_clause. 

Order _op = "<" I ">" I "~"· I ">" "=." .. l ":ft" 

Expr = literal 
I Ex pr " -" Ex pr 
I Expr .. +" Ex pr 
I Expr "•" Ex pr 
I Expr "I" Ex pr 

I "#" Event_symbol 

An event symbol (Event_symbol above) is written by writing a trallsactimt 

symbol followed by the event kind followed by optional information indicating other 

components of the event (with optional digits fi.lr further disambiguation). A 

transaction symbol is written by giving the first letter of Lhc operation name (or enough 

letters to be unambiguous) li.>llowcd by optional digits if more than one transaction for 
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that operation is needed in the clause. Examples of'; event 'symbols for an operation 

whose name starts with ·x· are: 

• X-enter: This symbol denotes an enter, event for transaction X. By 
convention,_ if there is only one transacti9~ appeatjng in a specification 
dause for the operation, no c.figits are n~cy- in th~ fransadion symbol. 
There can be only one enter event for any trqn~. -. 

• X-join: This symbol denotes a join event for transaction X. For simple 
serializers, this join event is associated with perfomilngthecortesponding 
operation on the resource. Also, for·simple·serializeif/'we -«re fimit~d-to 
having one join event for any given transaction. ,, ;.: 1.; ~ 1 

'.::> .: . ' · · · 
'~ . ( ' , . 
,_\ ' 

• Xl-exit: This s.ymbt>J denotes an exit event (Qf;l.f~Jl5;Jct-ioQ XI. Note the 
use of the digit ·1 • to indicmte a transa'7tion·thutjs.~~n~t trom· X (or X2). 
By convention. we give different transactionsc4i(ferem digits· in 
specification clauses where more than one transadiortiOran operation is 
mentioned. 

• X2-cnqueuc(s.q): This symbol denotes· a· enqueue event for tran8action 
X2, where the queue denoted by .$q isused. 

A node symbol (Node_symbol above) is written by giving the fiat letter(s) of 

the transaction name. followed by a "*". fotlowcd by the event kind. For t..--xamplc, the 
. . . 

enter node for operation X is written as X*-cnter. Any further infom1ation given is the 

same as the corresponding event . 
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4.2.2 Semantics of spccincalion language 

We first must describe the domains over which the specification language is 

defined.13 The syntax given aoove menti0ns event and node symbols. but does not 

explicitly demand that the symbols apply to 8 single serialiZer. Therefore, we need to 

limit ourselves to nodes and events chosen from sdmepartieular~serinlizer, S. We name 

these domains (and representative elements) by: 

n E NS -- node symbols for S 

e E Es -- event symbols for S 

c E Cs -- specificationdatJSt'.S for s. · 

x E Xs -- expr~ions i:>r S 

Note that we have provided. single chanacter names. fot.~mpJe eJ~ments of the domains. 

We wiH follm. the leading character conventi911 used in naming events for naming 

clements of these domains in the later equations. including i•~g trailing digits where 

more than one clement is desired. 

The semantic domaim are those domains described in the previous chapter on 

the semantic model. 

n E Ns -- nodes for S 

e E Es -- events for S 

Lt Although the <knot<1tional method uS('d in lhmthesis td dcfinc·dtc sp«itlcntion language owes much 
to work hy &otl and Strachcy IS1.:0U •md Strachcy 71. Stn11.:hcy and Wadsworth 74). the domains we use 
arc simply sets. not latti1.:cs. 
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h E Hs -- complete histories for S 

(H8: Int-> Es> 

In specifying the meaning of the specif~ .language it is necessary to 

provide a symbol map that takes node.and ev~tsyrµbol~into their meanings. We wm 
discuss this function at greater length below. 

p E P8: maps symbols to events or nodes 

<Ps: Ns u Es-> <Ns u Es» 

The following functions take syntactic vatues· into semantic -values. We say 

that they define the meaning of the syntactic construC1$~tbe specification language. 

We have avoided parsing. andprecedence.issues-tomcre·dearty.present these·fu.nctions. 

Note that the braces"{ J" are used to brackel'syntadic:co11structs.amJ:distinguish them 

from the semantic expr~ons. 

-f({eJ.p) -- event corresponding toe in map p 

-
N({nJ.p) -- node corresponding ton in map p 

N: (Ns. Ps>-> Ns 

C({cJ.p.h) -- validity of spccificution clmtsc c in map p. history h 

(true if c is satisfied. fitlse if not) 

C: (Cs· Ps. Hs)-> Bool 

X(txl.p.h) -- value of cxprL~ion x in map p. histocy.h. 

(<m integer value) 
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X: (Xs, Ps, Hs) ->Int 

O({op},p) -- binary predicate corresponding to op 

(Op={<.>.<.>.=, :;t:}) 

O: Op-> ((Int, Int)-> Boot) 

The definition ofC({C},p,h) for specification clause C is.giv.~n below by cases. 

C({cl :::> c2},p,h) 

C({el < e2},p,h) 

C({cl & c2},p,h) 

C({cl I c2},p,h) 

C( { -c} ,p,h) 

= <:;({cl},p,h) ::> C({c2}.p,h) - .... 
= Prccedcs(f({el},p), f({e2},p), h) 

= C({cl},p,h) &C({c2},'p,h) 

= C( {c 1 }.p,h)f C({ c2} ,p,h)" 

= -C({c},p,h) 
,,..,,, ,... ,.,,. ,._ ,,,,_ #fltl 

C({GX(el, e2, n)},p,h) = Excludes_node(f({el },p), f({e2}.p), N({n},p), h) 
,,..,,, ,,,,_ ,,.._ ,..., ,,,,, ,... 

C({GX(el, e2, e)},p,h) = Excludes(f(fel}.JY),f({e2},p). f({el.p), h) 
.... -

C({@e},p.h) = Occurs(f({el}.p). h) 

C({xl opx2},p,h) = O({opJ,pXC({xl},p,h), C({x2},p,h)) 



The definition of X({x},p,h) is given below by caSt.'S: 

X({xl + x2},p,h) 

X({xl - x2},p,h) 

X({xl * x2},p,h) 

X({xl I x2},p,h) 

X( {literal} ,p,h) 

X({xl},p,h) + X({x2},p,h) 

X({x l},p,h)-X({x2},p,h) 

X({x 1 },p,h) * X({x2},p,h) 

X({xl},p,h) I X({x2},p,h) 

constant 
.... -X({ #e},p,h) Rank(h. f({e},p)) 

As a notational conven.ience, ~e clause_ ~'f'.! < E2 < E3" is equivalCAt to 

"El< E2 & E2 < E3". Longer clauses of the same form are defined similarly .. 

Some examples of specification clauses follow: 

Xl-join < X2-join :J XI-leave< X2-join 

This clause mentions two ttansattions. Xl and X2. The intention is 
to specify that having transaction XI µcc~ the resource prohibits X2 
from accessing the resource. 

@)X-cntcr :J @X-exit 

This clause is a specification of service fOr transaction X. The 
occurrence of the X-entcr event implil'S thnt the X "'.exit event occurs 
in any complete history. 

(l_ilG-cnter & ( #G-enter < #P-cntcr) :J ~11G-exit 

If the enter event for transaction G occurs. and the rank ofG-entcr is 
not greater than the rank of the enter event fi.>r trnnsaction P, then 
the exit event for transaction G must occur. In (slight1y) more 
intuitive terms. a transaction fc.lr operation G is only required to 
receive service if there arc <tl least as many transactions for operation 
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P as transactions for operation G. 

4.3 The symbol map 

Mapping symbols in the specification clauses m· matheruatical entities is a 

necessary part of translating specification clauses into functions on histories. It is 

necessary. to map event symbols into events,,n<Mk symbols, into nodes. and syntactic 

expressions into their value domains. 

The meaning of a specification clause is taken to be a predicate that, given a 

history. returns true if a history satisfies the specification, and false if it docs not. 

Setializcr code is said to satisfy a specification clause if, for every complete history and 

every valid symbol map for that history. the 'spt!dficatron pr«ficate' defined by that 

clause is true for the nistory. 

A valid symbol map for seriallzer S must satisfy the following restrictions: 

* Distinct event symbols must map to distinct cvt..-nts, ;and distinct node 
symbols must map to distinct nodes. 

* Event symbols must be consistent with no<lc1symhols. For example. the 
event symbol "R-enter" must map to an event that is consistent with the 
node symbol "R *-enter". 

* Event and node symbols map to events and nodes that arc consistent in 
kind to the symbol kinds. For example, the node symbol "R *-enter" 
must map to a node that is an enter node in the scri~1lizcr S. 
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• Event and node symbols map to events and nodl."S thal are consistent in 
transactions lo the transaction symbols. fl>r example, the event symbols 
"RI-enter" and "RI-exit" must map to events with the same transaction. 

• Event symbols mentioned in ordering clauses (El< E2) and GX clauses 
(GX(El, E2, E)) must map to events that actually occur inc~the'h'istory; · 
Event symbols mentioned in rank expre~ions ( # E) and occurrence 
clauses (@6).net!Q not occur in the.kistory. 

The last restriction on symbol maps needs .further explanation. The 

motivation for introducing it is to. keep specifications of order si:parate . from 

specifications of service. For example, suppose that we are attempting to specify a 

readers-writers serializer where writers are given priority over other writers solely on the 

basis of when enter events occurred. To do this, we use the following specification: 

WI-enter< W2-cnter :J WI-exit< W2-exit 

However, if the last restriction docs not hold, and we therefore' albw .symbol maps 

where the events corrcspond1ng to WI-enter and W2-enter occur in the given order for . 

some history, but either ~>f the events Cl~rresponding to Wl·cxit or W2-exit have not 

occurred, then the sp1.>cilication clause w~JI have a much different meaning. If the event 

occurrence is optional IOr the symbol 1m1p, then a scriulizcr wilt satisfy the clause if the 

given order holds. am/the scrializcr guarantees service to wrih!t"S. but 1101 if writers can 

starve. In this rather surprising way, a priority spccilicatio~ has implied a service. 

spcci fication. 
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We believe that keeping the specification of order separate from the 

specification of service sirnplifies both specifications nnd proofs. 'Therefore, we have 

required that a s.ymbol map is vnlid for some history only., if an event symbol in an 

ordering or GX clause maps to an event thatactually <>mJrs in the history. 

4.4 Readers-writers specifications 

Our first examples deal with the readt.'fS·writers problem. In this problem, a 

serializer abstraction should allow concurrent access .t9 H simple data b~se for 

transactions that simply read from the data base, but should _not allow transactions that 

write to the data base to overlap, since thal could destroy the integrity of the data. 

The same exclusion specifications apply to all versions of the readers-writers 

problem. 

* Readers exclude Writers - A reader accessing the resource prevents a 
writer from accessing the resource. 

R-join < W-join ::::> R-leave < W-join 

*Writers exclude Readers - A writer accessing the resource prevents a. 
reader from accessing the resource. 

W-join < R-join ::::> W-leave < R-join 

* Writers exclude Writers - A writer acccssmg the resource prevents 
another writer from accessing the resource. 

WI-join< W2-join :>WI-leave< W2-join 
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For the FlFO readers-writers serializer shown in Chapter 2.- the priority given 

to a transaction is based on when it arrived with, respect to. other transactions. We 

expect strict Fl FO ordering between readers and' writers, and between writers and 

writers. Strict priority between readers is notreq~ because readers may access the 

resource concurrently. 1l1erefore, we have the following priority specifications: 

• Readers not pre-e~pted by writers. 

R-enter< W-entcr :::> R-join < W-join 

• Writers not pre-empted by readers. 

W-enter< R-enter :::> W-join ( R-join 

•Writers not pre-empted by other writers. 

Wl-enter < W2-enter :::> Wl-join < W2-join 

The abov~ priority specifications only rcquire,lhe <Kder ~1f R!Qll~ -to be preserved 

from enter events to join events. not from lca~e events lo exit events. If the order of 

service matters after the resource operation is pcrfi.mncd, tht.11 we wotHd inctudc the 

fc.>llowing dauSt..'S: 

R-cnter < W-cntcr :::> R-cxit < W-cxit 

W-cntcr< R-cntcr :::> W-cxit < R-cxit 

WI-enter< W2-entcr :::>WI-exit< W2-cxit 
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ln the readers-writers case, we specify concurrency for . readers by the 

following specification: 

GX(Rl-enter, R2-enter, W*-enter) & R2-enter <RI-leave 

:::> R2-join < Rl-leave 

This clause is interpreted as requiring that for any two readers, Rl and R2, that enter 

the resource without a writer entering the resource between RI and R2, if R2 enters 

before RI has completed accessing the resottln\'tWm Rl:.WilJ begin. to access the 

resource before R l completes its access .. 

We cannot require that two readers are actually concurrently executing 

resource operations, since actual concurrency may depend on the scheduling policy 

followed on a multi-processed machine, or on the relative speeds of two processors if 

the requests are executed by separate machines, or 1>.f, tt1fther roncttrre~ty limitations 

imposed by the resource. The kind ofspecification:thnt we mustsetJle for is to require 

that both requests are sent to the -resource (in join events) before citl1er reply from the 

resource is acknowledged ·(in leave even-ts). >.:c.·onctlJliellcy/specifiin1tion only requires 

the opportunity for concurrent cxccutio""' unhiadered by the serializcr. 

The spccilications of service for readers and writers arc simply that for every 

enter event there should be a corresponding exit ,4:vent. and that this should hold for 

both readers and writers. ·n1c spcci fication clauses are: 

(Ct)R-entcr :::> @R-cxit 

(C11W-enter :::> ~~)W-cxit 



4.5 Variations of the readers-writers problem 

Other versions of the readers-writers problem exist [Courtois, Heymans 

and Parnas 71, Greif75). Aside from differences based on the ·programming language 

used, the versions differ mostly because of the kinds of priority they give to readers or 

writers and the presence or absence of starvation. 

The simplest priority specifications often conflict with .other specifications. 

For example, suppose that the person specifyingJne :SeriaJizet wants. to give writers·. 

priority. The intention might be: "whenever a writer enters a serializer before a reader 
·' 

· has been serviced, the writer should be serviced before the reader." This specification 

can be written as: 

W-enter< R-join :J W-join < R~join 

Further. we can write scrinlizcr code·that wilt realize this specification. Unfortunately. 

if writers arrive at the scriu1izcr at a su llkiendy. high~rate~c.with ·respect to the length of 

· . time the resource$write takes. readers .can. be indeflnitcly .prohibited; from joinjng the 

n .. -sourcc. This would con met .with thc,.guarantccd scrN1cc rcquircm\.·nt given above. 

since there can be no specification that prohibits writers from arriving at the n .. ·source. 

A inorc. reusonablc spccificat1on of writer's-priority is to require "if a reader 

and a writer enter the scrializer while a particular other writer- is being scrvic\.'Cf, then the 

writer will be serviced before the reader." This specification can be written as: 
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(WI-join< W2-enter < W1-lcave & WI-join< R-enter< WI-leave) 
::::>WI-join< R-join 

This specification does not conflict with our service specifications. Regardl~ of the 

number of writers that enter while resource$wtite is being performed for Wl, the 

readers that entered in that period need not be delayed· for any writers arriving after 

that period. 

The guaranteed concurrency specificati()l1$ may also .differ from serial~er to 

serializer. We may wish to require for the read~rs~priprity~~!~fJhat f\\l:~ea9ersthat 

enter white a writer is ,accessing the resource wiH be ~lk>;we~JA~r~ently ac~ the 

resource. This specification can be written as: 

(W-join <RI-enter< W-leave & W-join < ~2-enter < W-leave) 
::::> (R2-join < R 1-lcave & RI-join < R2-leave} 

ll1is clause requires that for every pair of readers, RI an~ R2, entering the serializer 
~ . . 

while a writer is acces.'iing the resource, that both readers begin to access the rcsou~ce 
·ft·, >i'.') l~L lHJ ~~:_,j;. 

before either reply is acknowledged. 
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4.6 Bounded Buffer Specifications 

The bounded buffer problem 14 is. based on operating system 1/0 buffering! 

We assume that there is a producer of information. and a consumer of information. 

The producer issues put requests to ~e system to pass the infonnation to the consumer. 
,': . - ,, .. ·' -

and the consumer issues get requests to obtain the items of information from the 

system. In order to allow l?oth producer and consumer to operate in parallel, the system 

p~ovides a bounded buffer of length N to store items of informatiOn that the producer 

has delivered to the system before the consumer hld requested 'fhCm: The producer can 

proceed as long as it is no more than N items ahead of the COhSllmer. 

We have somewhat generalized the problem by allowing multiple consumer 

and producer proceSSt..'S for each bounded buffer. If the producer consists of several 

processes, then each process can proceed until it performs a put request where the 
>, .,, • 

rcqm.>st is made on a full buffer. Similarly, each consl1mer process can proceed until it 

performs a get request on an empty buffer. 

We assume that the resource acts as a .bounded Sl.'tJUCnce of information . . 
items.15 where the sequence cannot be more than N itt."1ns long. The put operation 

appends an item to the head of the sequence. while get opemtion rcmovl.'S an item From 

the tt1il of the sequence. 

14. A monitor approach to this problem appears in (1lowcird76). Scrializcr code for this problem 
appears in l1ll' appendix lo tJ1is thl.'Sis. and is discus.-;cd in our conclusions. 
15. Although Lhis kind ol'scqul'llcc is also known as a queue. we avoid the use of the tenn tu distinguish 

hctwel'll the qucm.'S USl'<l hy tJ1e serializcr l'Ode lilr scheduling. and the queue used for the data. 

- 97-



The following specifications are conditional servace specifications for the 

bounded buffer problem. 

((#G-enter + N > #P-enter) &@P-enter) :::>@P-exit 

((#P-enter > #G-enter) &.@G-enter) :::> @G-exit 

The G-enter event is the initial event of some get transaction, and the P-enter event is 

the initial event of some put transaction. We require that the P transaction complete if 

there have been enough G transactions to use the data, or if there is sufficient room in 

the buffer to store the data. If the G-enter event is the i-th event using the G*-enter 

node, and the P-enter event is the j-th event using the P*-enter node, then P must 

complete if j < i+ N. Similarly, we require that a G transaction complete if there have 

been enough P transactions started to supply. the data. ThcretOre, · G · wili oomprete if 

i < j. 

Note that the above specifications n~d to u~~ @>(J:ente,r and ·@P·entcr 

because we only automatically require events appearing in o~dcring specifications to 
: ' -·· 

occur in the histories. This choice was made based on the convenience of writing 

ceruiin examples. To illU!ilntte, if lhc USI.! of #G-enter rQquired @JG-enter, then the 

srccification of service for P transactions ubovc would have be.en written as two clauses: 

( .... ~!iG-entcr. & ( # P-cntcr ~ N)) :::> @P-cxit 

( #G-cntcr + N > # P-cntcr) :::> @)P-exit · 
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Another specification of the bounded buffer problem is that the order of get 

requests and put requests cannot be interchanged. either in forwarding the request to 

the resource, or in returning the result. These specifications are similar to the FIFO 
. - ,. i 

readers-writers priority specifications. 

GI-enter< 02-enter :::>(GI-join< G2-join & GI-exit< 02-exit) 

Pl-enter < Pl-enter ::l. (Pl-join < P2-join & P:I:-exit < P2-~xit) 

We have chosen the exclusion specifications to be quite simple: acc~ing the 

resource is exclusive. The exclusion specifications are expressed by the following four 

dauses. 

GI-join< G2-join :> Gl·leave < G2·join 

G-join < P-join ::l G-leave < P-join 

Pl·join< P2-join :::>Pl-leave< P2-join 

P-join < G-join ::l P-leave < G-join 

we· have said lhat the scrializer opcrations·Shoukt. us fur t.S pnactical. have the 

s.1mc effect as the n.·source operations, In the bc.nn1d00 bllff'cr :prubfem.' lhe St.--riuli1.cr 

operations have the same efTect as the cluster operations prpy_idcd that the cluster 

operations return normally. In executing a put opcmtion for the scrializer. if there is no 

room in the bounded buncr fc.>r the item, the op~mtion p&tuSl.'S. until there is room. In 

executing a get operntion, the opcrntion will not proceed until an item is avail<thle. For 

·the opcrntions of the resource. however. an exception is signalled if there is no room in 
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the buffer when executing a put operation, or if no item is present whert executing a get 

operation. The signals of the resource operations have become the non-terminations of 

the serializer operations. This raises the question' of how well we have separated 

concurrency control from data access. 'we will discuss this question in the conclusions. 

We have presented the bounded buffet·t>roblem;as an illustration of the 

specification language and as l.lt1 example of a serializer that is slightly beyond simple 

serializers. We will return to iliis example to iffustrate' how we cafi perform extensions 

in the program proving domain as wen. 
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S. Verifiration Rules 

.,)'. 

In previous chapters we have used a .definition. l~nguage based on first-order 
' :~:· ') .. -t ,~; .... ,..-:•L; t ~fl-· '.\- ·:. : ;: ' . :: 

predicate calculus to give the meaning Qf l?oth the serializcr snnstm:µft and the serializer 
· · , .·,; ~·, j'{-.t __,,,...._.c.-'J~: · ·.s : Ff,· ~ :·. · ··: -

specification language. In theory. we need nothing else to verify that a scrializer meets 

its specifications. In· practice. aeeftaill nmotmt;.of;intemi«liale; wort is netessary. 

-:• ' 

We have chosen .to build' a v,erifier that, <>p~~t~ i~ a res~r~~ted .. ~Qmain. The 
. . '· . • .J I .. > i • ' •• ~ -· • ~· 

verifier applies rules that are specific to this doma;11 to data it has describing a seriali,zer 
~; .,;_: ;.,t~ ;:;;:.{~·;::T:L; .,t·· :·· . ,; ·:.:: -; , :: ~-

and specifications for that serializer. This chapter states and proves those rules. Our 

choice of rules is based on their utility in verifying a number of variations of the 

readers-writers problem (these examples are presented in the next chapter). No claims 

will be made for their completeness. Other classes of problems would most likely lead 

to different sets of mies. although we would expect most such rule sets. to have 

substantial intersections with the set we have chosen. 

In this chapter, we first argue that proofs can ·be reasonably performed in an 

extended specification hmguagc. We then state and·prove a number of verification. 

ruk.'S cxpr~d in the extended specification language. 1l1csc rules arc used in ·~~, 
'·i.: 

program that performs automatic verification of scrializers. to be discus."iCd in. the nc~ 
. :;;t,~ 

chapter. A method fc:Jr proving service specific-Jtions is then presented that is partiattr 
_:;'\ 

based on these rules. and its correctness argued. To illustmte the use of the verification 

mies. •Ill example of a mlc-bascd proof is given. Finally. certain weakm .. >sscs of our 

methods urc examined. 
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5.1 Proving in tile specification language 

In proving that a serializer meets its specifications we start with the text for a 

serializer and a number of specification clauses. In proving that serializer code meets its 

specifications we need to state intermediate propositions about the serializcr code and 

the specifications. To do so we need a language to state the propositions and rules of 

inference that can be used for tbe language. 

One candidate for such a language is the dialect of predicate ca1cuh.1s that we 

used to define serializer semantics. If we used this definition language as the proof 

language of the verification program, then we would be faced-.with the following ms~s: 

translating specifications into their meanings. reasoning in the definition language 

about propositions expressed in the definition Jangunge, and translating the results into 

some humanly readable form. The translation from specification language into 

definition language is relatively easy: we have already dt."SCribed it in the previous 

chapter. 'Ille translation from definition language into specification language is more 

dinicull 

We considered it to be preferable to carry out our reasoning, as fitr as 

practical, in the spcci lication 1'mguage. It is the language that the user is most likely lo 

understand. Further. we find that most of the inference rules arc easier lo st<ate and 

1m111ipulatc in the specification language than in the definition language. 
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The verification program can be simply viewed as a data base. about the 

serializer code, a set of algorithms that are used to examine and modify the data base, 

and a set of specification clauses to prove about the serializer. The data base can be 

exprc&<1ed as a set of node graphs representing the scrializer operations, and a set of 

assertions about the serializer, expr~cd as specification clauses. The algorithms are 

largely rule-driven, where a rule is used to infer a specification clause from known 

clauses. The rules we present in this chapter are treated as axioms by the verification 

program; this chapter states and proves the rules. 

5.2 Extensions to the specification language 

As it stands, the specification language presented in the previous chapter is 

oriented towards describing external properties of serializers. It has no constructs for 

describing the internal structure of a scrializer. The rules we define in this chapter 

require a means for describing the node grnphs for the operations. and relating events 

to the node graphs. 'J'hcrcforc, we propose extensions to the specification language. 
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5.2.1 New symbols and clauses 

The extensions to the specification language pose· no sp~cial, problems. They 

extend the domain of discoum! for the language to indude symbols that can represent 

any everit (or node)f and to include components ofevents and nodes. For the sake of 

simplicity, we will not formally define these extensions, although we could do so. 

*general .event·,'Symbols - E, El;·~. . . are event symbols'. that can be 
associated with any scrializer event through the symbol map. . . . 

* general node symbols - N. N 1. N2 •... are node symb01s that can be 
associated with any scrializer node in the node graphs. 

!; "', 

* extended expressions - E.trans. E.node. E.kind ~~added. as expressions 
that represent the components of events. N.kfod. ·N.ncx( N.'expr, and 
N.mob expressions are also added. An extension to the domain of 
expreh'S!on, values-. to' include eNents;;;t~n-;, ~tifi~~"'· aodes. 
syntactic expressions. and node kinds is necessary. We also include 
litehlts for nbde:kihdS; ' · ·. ·• i •. 

* GX (Guarantee Exclusion) specification extensions 
GX(N<>dc. Nodt!. Node) is .added as a. symoctic fonn.>The function 
N<.Jdc_cxcludcs"'."mxlc is used as its meanin&- GX(N 1, N2. N3) expresses 
tli'c rcstrietiOn' 'thar·no trartsactiotf::ttri{'hxl~tlcl"1J1 :whlfe' sfffrie other 
trnnsaclion is executing bctw~un N l nnd ,N2 (in~lusive) ... 

* PX (Possession Ex<;lusion) stlCci-ficntion · da\18l.."S' We use 
PX(Node, Nod\!) clm1sl."S lo rcrrcscnt 110SSt..-ssion exclusion. PX(Nl, N2) 
cxprc~es the rl..Striction that n(> tmnsuctfbn etltf ci~i.1te any;nc.~'While 
some other transaction is executing between Nl and N2 (inclusive). We 
will dclinc U1c n\caning of PXdaµ~'$1}4.;kJ~~' , , . 
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5.2.2 Marked and unmarked events 

In defining the verification ru~Ja:::this·chapter we have occasionally found it 

necessary to write ordering clauses where one or more of the events .appearing in those 

clause are not required to occur, To achieve this; we im~tbe,notation 

!E 

to indicate a marked event symbol in the speciftcaoon clause~ .We then modify the 
ii?tL . - . . ' _ · ,: · , ·. 

definition of a valid symbol map to require that all unmarked event symools appearing 

in ordering clauses and GX clauses must map ttJ.·events 1hat,occur·in the ·complete 

history for which the map is defined. In all other respects, a marked event symbol is the 

same as an unmarked event symbol. 

The alternative to introducing the !E octation is to,nO/ require a valid S)'mbol 
, ' , :; 

map ror some history to take event symbols appearing in on:l.:tjn,sand OX.clauses into 

events that must occur in the histo . We would then explicitly require the use of @E 

to require event occurrence in clatlSeS·whcre-such.<lCCui-rence;.was.importnnt We have 

previously rcjl.'Ct~d su~h, an approoc,h becaµ~ it l~ds to. surp.rising implications for 

some specifications. We believe that it is still thc'rightchoicc: we prefer to have some 

additional comptication in· tbc language klf <I£ lining the vurification mies so we can 

retain some simplicity in the spl.'Cification language at.the user Jcvel 

We note here that the Precedes preditatc·u~d to give the mt.-aning ofordering 

clauses is well-defined even when the events do not occur in the historil..'S. Note that the 

clause 
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!El< !E2 

can only be true for some history if both events denoted occur in that history. This can 

be stated as the clause: 

!El< !E2 :::>@El & @E2 

Also note that if an ordering clause mentioning two events that need not ,occur is false, 
• - ! "_;, : ~ ..: .. ~ ~ >. '. 

it could be due to either the opposite <lrderhaldjng,,-Oftt tw91~y~n~ being the same. or 

non-occurrence of either event, as is expr~d by: 

""(!El< !E2) :::> (!E2 <!El) f -@El I -@E2 

5.3 Some simple inference rules 

In this section WC present proofs for several ~nferenee rules stated in the 

specification language. These rules are presented a~ sp~~itication clauSt.-s where one 
• > ~ 

. . ~ ' ' ' 

sub-clause implies another. Note that the mies are actually rule generators: free 

variables are permitted to appear to denote nodes;and events., lbc free node symbols 

arc chosen from the ~t { N, N l, N2, ... }. ancf the free event syhl'bols·•trc chosen from the 

set {E, El, E2, ... }. 
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5.3.1 Transaction order 

Events belonging to the same transaction must occur in the order prcsc1ibcd 
'· 

by the node graph for that transaction. We can write this restriction as an inference 

rule: 

Transaction order rule: 

El.node.next = fl.node & E,l.trans = Fl.trans 

:::>El< E2 

Proof: For every valid symbol map p and complete history h-\ .since El and E2 are 

mentioned in an ordering clause~ p maps El and E2 to events that occur in h. 

Therefore. there must be events el and e2-(with indices I and J). such that the 

above rule is equivalent to: 

(el = Nth(h. I) = f({El },p) 

& ei = Nth(h. J) ~ E({E2}.p) 

& Same_trans(I. J, h) 

& el.node.next = e2.node ) 

::>I< J 

Since an enter node can not be the next component of any noclc. c2.kind ~enter. 

-Therefore, by the_ definition of I A-gal_tmnsaction_stcp, there musl be some index 

KE lndcx_scl(h) such that 

( K < J 

& Nth(h, K).nodc.ncxt = e2.node 

& Nth(h. K).trans = c2.trnns) 

Further. K = I by Lcgal_transaction_stcp. which proves that I< J. 
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5.3.2 Transitivity 

The event ordermg is transitive; This can be expressed by-the fol towing rule: 

Transitivity rule: 

(El < E2 & f-::2 < E3) :::> El < E3 

Proof:_ By the definitions given in chapt~J. the above specification clause is defined to 
be equivalent to: 

( Precedes(f({El},p), f({E2},p), h) . 

& Precedcs(E({E2J,p), £({e3J.p), h)) .. · 
:::> Precedes(f({El},p), f({E3},p), h)·' , · 

.'1 l' 

- ,: :~ -'~ - ! " '. __ :. ~- ~ ~ .... ·~~ ·i -~ .- - - - - - ' 
where p is any vatid symbol map for the coifil'J1fae histdiy 'h. By the definition of a 

valid symbol map, there must be three distinct events (el. e2, e3) that occur in h, 

which implies that there are three distinct in.dices (I, J, K) such that the above rule 

is equivalcntto: 

(el = Nth(h, f') = f(lEl},p) 

& el·.;:=: Nth(h.-Ja -;= f({E2},p,). 

& e3 = Nth(h. K) = f({E3},p) 

. . 

& Precedcs(el. e2. h)& Precedes(e2, e3, h)) 
:::> Prcccdcs(cl, eJ, h) 

-, 

By the definition of Precedes and the existence of. the indices I and J, 
Precedes( cl, e2, h) is equivalent to I< J. 'Ille other Precedes ~xplt.~ions' have 

similur simplifications. 'll1erdi>re, the specification clause is equiC.1lent to 
. r : 

(I < J & J < K) :>(I< K) 

which is true by the axioms of integer ordering. 'll1ercf<.~rf9'Jh~spe~i)1cation clause 
is a true statement 
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~~; 
- -~·: 

5.3.3 PX clauses 

A PX· clause is .used to specify possessjon ~M!l~QPi· The meaning of a PX 

clause is given by: 

,.,,. ,.._ ,,_ ..,,. 
C({P~tl}},p,h) = PX_def(N({n1},p),N({n2}.p), h) 

where,-

PX_def{Nl •. N2~ H) s: 

v l,J.K € lndex ... ~t(H): _ . . . 
if(Nth(H. l).node = Nl'&~Ntfl(H. J)~node' N2·. 

& Same_trans(H, I. J})' 1 
' • • -- '. 

then .fJlcl~des(N~H. I) •. Nth(H~ ))., Nth(H.; K)) 

The clause PX(Nl. N2) specifies that a, transaction executing nodes NI and 
' .,'.. ~ : 

N2 has po~ion (of the scrializcr containing N 1 .-nd IQ) 1\~r ~x~ting N l ,and up to 

the completion of ex~"Cuting N2. and that NI.nett =t- Nt · Nce.fhat'iWhi1e a transaction 
~ .·, ' .; ,, :_ ' >~ -. 

has ~ion no events from another transaction may occurt There are two rules used 
. • j , . ~ - • r. - ' ' '. • , ~ . , , ~ 

to imply PX clauses: 

1•x rrom gain rule: 
(NI.next = N2 

&. (NI.kind = enter 

I NI.kind ~ ck.aqueue 
I Nl.tind = leaYe)) 

::l PX(Nl. N2) 
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PX from PX rule: 

{ PX{Nl. N2) 

& N2.next = N3 

& N2.kind -:1: join 

& N2.kind ~ enqueue ) 

:::> PX(N2. NJ) 

Proof: By contradiction. For the first mle, suppose that the precondition implies 

-PX{N2, N3). By the definition of1 a:valiit',~OOJ :nmp.;~ rrtt1st be three 

distinct events (el. e2. e3) that occur·Irr~i1~'·~pttteifiiktty·ft1 Whidt implies that 
·."> : '!. t · ; ~ ·n, .1.:,; , : , • ·. . 

there are three distinct indices {I, J, K) &Udt~~-.· . . · ' . . · , · 
~,; ; ' '.' - ;:--::t~ ·.·! - : r; t " .. s. 

el = Nth(h, I) & e2 = Nth{h. J) & el k'Ndl(h-, IQ 
& e 1. node = N( { N 1} ,p) & e2. nodt G ·Mr~it ,pJ· ·~ :q ·· 
& el.trans = e2.trans & el.node.next= e2.node 
& {el.kind = ~~t~il et.k'iricl = deq~e~~-fbtiirid' r~ie~~~1.r 1 

· ·
1 ~"'·"; · •• 

• " ' J '· . : , •• . - ~ : _: 'j : - ;: ,, t : -; t ,;- ;f •• - f ; i 
& -Exdudes(el, e2. e3, h) . . · · · · ·-·' · · · 

At the finite history Head(h, ,;·which i~ the s~~IJ~~t·.~~~flx ~f ~.that contains el, 
•: '" : ' l '· \ ·\ ... { ! " ' .... ' :/'. . . l ' • 

we know that Legal_step{Head(h, I). e2. S) is','fr~1c. (where 'S'is the sel of node 

graphs for the scrializer operations). Furthef, :~Lk 's\tsy(ftb,d(h. ']));is true (by 

the definition of Busy and Gains), e2 is ·th~ iJn1~ ·e~tn{1 thht is a ·fegal step. 

'n1erefore. no events can occur between el ririd~~·'e1.J·~·wfirc'h'' tontradicts 
~ ..... ' {~,.,l •.,. '; . ._-t,; ~ 

-Excludcs(el. e2. c3, h). 'll1crcfore, the PX from gain nilc Is frfre'.''A similar proof 
holds for the PX from· PX tt1le. f' ·· ".i 

The PX clauses arc useful as inlcrmcdiale steps that imply event ordering. 

'Ilic following rule is used to imply an event ordering from a PX rule and other 

preconditions. 
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Event before PX rule: 

( PX(Nl, N2) & E < E2 & El.trans= E2.trans 

& El.node = NI & E2.node = N2 ) 

:::> E <El 

Proof: The above clause is equivalent to the following (for every va1id symbol map p 

and complete history h): 

( PX_det{N({Nl},p). N({N2}.p),rh) 
· & Prece~({fi}.p).~£W}.p).h) 
& f({ El },p).trans - E(tE2J~p).tral)s 
&f({El},p).node = N(fNt}.p) 
& f({E2},p).node :;:t:~{N2t,J>)c), 

:::> Precedes(f({E},p).E{{El}.p). I\) 
•'· . -

Because E. El, ;md .. E2 are mentioned in or~eri'ng ~ause8, there must be three 
" • , , < • ! - , .·" ~ • - ' ' < '--:.::. .. - • 

distinct events(~( e2, e) that occur in h, ~hich itnpifo~ ihat'Qlere are three distinct 
indices (I. J, K) such that. by the definition of PX~def: . . . 

(el = Nth(h, I)= f({ElJ,p) 

& e2 . , Nth(h, J) .= ~({E2J.p) 
& e = Nth(h. K) = f({E}.p) 

& Precedes( e. e2. h) 

& Excludcs(cl. c2. c. h)) 

which implies Prcccdcs(c, cl. h). whichimpliL-s th.atlhe ode istrne. 
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The other PX mle is quite similar, and can be stated as: 

Event after PX rule: 
· ( PX(Nl, N2) & El < E & El.trans = E2.trans. 

& El.node= NI & E2.node = N2) 

:::> E2 < E 

Proof: Similar to proof for Event ·before PX. 

5.3.4 GRE clauses 

. . . 
. • ' . ' . ~J ;·. '·.: _. ' . ' ', -

The qRE (Guarantee Requires Empty) clause is an intermediate step used to 

infer GX (Guaranteed Exclusion) clauses. The definition or'the GRE dause is: 
' - ' : . ' { ~ ]" 

C({GRE(Nl, N2)},p,h) = GRE_deflN({Nl },p), N({N2},p), h) 

where 

GRE_det{nl, n2, h) s 

v l,J,K € lndex~sct(h): 

if ( Nth(h, l).node = n2 

& Nth(h, J).node = n2.match 

&l<K<J 
& Samc_trnns(h, I, J)) 

then -Eval( Head(h. K), nl.cxpr) 

'l11c intuitive meaning of GRE(Nl, N2) is that the queue or crowd denoted by N2.mob 

must be empty in order for the cxprc~ion N l.cxpr lo be true. 
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There are two mlt.'S that can be used to infer GRE clauses: 

GRE from empty rule: 

Nl.expr = Empty_expr(N2.mob) 

::> GRE(Nl, N2) 

GRE from expression rule: 

( Nl.expr = And_expr(Fmpty_expr(N2;mbb). G) 

l Nl.expr = And_expr(G, Empty_expr(N2.mob))) 
::> GRE(Nl, N2) 

Note that we have had to add some ad hoc extensions to the specificatiatt lang&lbge .. Q 

denotes a . boolean-valued expr~on, Empty_expr(N.mob) denotes either 
•.; ; :. ~ , ! ! I ~ ·' 

queue$empty(N.mob) or crowd$cmpty(N.mob), .as appropriate, and 
"-- ' _ _., ~; ~ ' -' j : 

And_cxpr(Gl. G2) denotes the exp~ion that is the conjunction of the two guarantees. 

Proor: By definition of GRE_def and the Eval function. For the first mlc, suppose· that 

the guarantee is crowd$empty(C). Then for11ny history that contains a join event 

for that crowd but docs not contain the corresponding · leaiR e¥Cnt lhe guarantee 
will evaluate to false, which proves the rule. Similar :ieQsoning.nolds for the first 

mlc if the guarantee is qucuc$cmpty(Q). A similf.tr:f'llM>f;hotdS for the GRE fmm 

cxpn .. ~ion mte. 
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5.3.5 Using GX clauses 

GX clauses are used to indicate where events are excluded because of 

guarantees being, false. For example, if a guttrantee for a queue is crowd$empty(C), 
:" .. 

where C is a crowd, then a dequeue event with that ~arantee -is prohibited from 

occurring between a join and a leave event for any transaction for that crowd. The 

fo11owi·ng rule is used to infer G.X clauses; 

GX from GRE tule:· 

( Nl.match· = N2 & N2 ~ N 

& (Nl.kind =join I NI.kind = enqueue) 

& N.kind = dequeue 

& -6RE(N.expr, N2.mob)) 

:::> GX(Nl, N2, N) 

The clause GRE(Nl, N2) used above is true it the expre~ion Ntexpr requires the 

queue or crowd N2.mob to be empty fdr the cxfJf~~belrue. 

Proof: By contradiction. Suppose that GX(Nl, N2, N) is not true, yet the 

.preconditions arc met. By Ulc dctinitio.o, of a_ vali~ symbol map, there must be 
{' . ' • ' '1'.:' ; . - ' ;\ 

three di,Stirn:t events (el. c2, e) that ~)(,cur in any compl~tc history h. which implit.'S 
J - ~ . , . ' 

that there are three distinct indices (I, J, K) such that: 
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(el = Nth(h, I) = f({ Nl }.p) 

& e2 = Nth(h, J) = f({N2},p) 

. & e = Nth(h, K) = f({N}~P) 

& el.node.match = e2.node 

& (el.kind =join I cl.kind = enqueue) 

& e.lcind = dequeue 

& Precedes(e1,e, h)& Precedes(e,e2. h)) 

Further, from the GRE clause we know th~J!t~,imv~pteeJpr.evcnt ,e, must~~ false 
' • - • - • • • • ~· • ~ '<:. • I 

for any prefix ofh that contains cl but does not contain e2. Since e occurs after el, 

we have a contradiction (due to Legal_dequeue). since e is a ~~eae_ event trnit 
~ .~ ., ~ 'I' • ~ • 

occurs when its guarantee is false. Therefore, the G,X fr0tp ~RE rule ~Jrue. 

GX clauses are a useful intennediate step that can be used to infer event 
: ; . ., ~ ~ .' . ; 

orderings. 

Event before GX rule: 

( GX(Nl, N2. N) & E< E2 &El.trans ==fl.trans 

& E.node = N & El.node = NI & E2.node = N2) 

:J E <El 

Proof: Because E. El. and E2 ·are· mentioned in ordering'clatfSl.~. for any valid symbol 

map p and complete history .h. there must be events 1e t e2. c) occurring at distinct 

indices (I, J, K) such that: 
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(el ·. Nth(h, I)= f({El},p) 

& e2 = Nth(h, J) = f({E2},p) 

& e.= Nth(h, K) = f({E},p) 

& e.node = N({N},p) 

& cl.node = N({Nl},p) 

& e2.node = N({N2},p) 

& Precedes(e, e2, h) . 

& Same_trans(h, 1 •. I) 

& Node_excludes_nooc(cl.node, e2.node~ e.~;h).), . 

By the definition of Node_excludes_;.node we can.infer: ' 

Excludes(el, e2, c) & Precedes(e, e2, h) & e -:1:- el 

which implies that Precedes(e, cl, h). which implies that the clause E <El, and 

therefore the rule, is true. 

As with the PX clause, there is a syttmlletrkt de tn Event before GX. 

Event after GX rule: 

( GX(Nl, N2, N) & El< E& El.trans= t:+..tran~· .. 
& E.node = N & El.node= NI & E2.node =,Np) 

::J 1--:2 < E 

Proof: Similar to pnxJr for Event before GX. 
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5.3.6 H FO queues 

Serializer queues are served strictly first~q:first-ou~ The following rule is 

used to infer event orders from the use of FIFO queues in senaliters. - · 

Event from FIFO rule: 

( El < E2 & El.kind = enqueue & E2.kind = enqueue ' 

& El.node.mob = E2.node.mob 

& E3.trans = El.trans & FA.trans = E2.trans 

& E3.node = El.node.next&: E4.node = E2.nodeJnext) 

::J !E3 < E4 

'' 
l ~ ' 

Proof: By contradiction. First, suppose that E3 occurs (we are not required to do so by 
' ' ' 

the clause).· As in the above proofs, El, f<.::2 and E4 are unmarked events mentioned 

in ordering clauses; so they mustoccur. There must be· four events (el, e2, e3, e4) 

with distinct indi£es (J9 J, K. L) such that: 

(el = Nth(h, I) = f({El J,p) 

& e2 = Nth(h. J) = f(lE2},p) 

& e3 = Nth(h, K) = f(tE3},p)' 

& e4 = Nth(h, L) = f({ E4},p) 

& Prcccdcs(el, e2, h) 

& el.kind = enqueue & e2.kind = enqueue 

& Same_trans(I, K. h) & Same_trahs(J, Uh) 

& c3.nodc = cl.node.next & c4.node = c2.nodc.next ) 

We need to prove that Prccedt..'S(c3, c4, h), which we do by assuming 

Pn .. -ccdL'S(c4, e3, h). and finding a contradiction. By the definition of 

Lcgal_transaction_stcp we know that PrccedL'S(c I. c3, h) and Prcccdcs(e2, c4, h). 

Let h 1 be the largest prefix of h th~1t drn..-s not contain l.'4; We will show the 

contradiction by considering the prcdkatc Lcgal_stcp(h', c4. S), where S is the set 

of node graphs for the scriulizcr. 
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Since e4.kind dequeue, L.egal .... $tep(h l~ e4, S) requires that 

Legal_dequeuc(h 1, e4) be true, which requires that Eval be true for the guarantee, 

and that Head_enq ueuc(h 1, J) be true. Head_enq ueue(h 1, J) is only true if ,~v,ew. 

other transaction with an enqueue evenCfPfi the1q1Jet.te'q4,.0Qde.m,ob that occurred 
in hl prior to e4 has a corresponding dequeue ey:ent:·that has ocruHed jn hl. 

However, we know that e3 has not occurred in hl by our ,ass~ptien of 

Prccedes(e4, e3, h). Therefore, either Precedes(e3, e4, h), or e3 does notocc;ur. 

The proof that e3 occurs is simple. We know that e4 occurs in h, since it is 

dcnot.cd ,by an unmarked event mentioned_ in an ordering clause. Therefore, when 

e4 occurs, e3 must have occurred in the history h l by the definition of 
;. ·e·d ·., 

Legal_dequeue. 

5.4 Evaluation of guarcmtees 

In further rules we will need to expn..~ the evaluation of guarantees. The 

clause EVT(G. E) is used to spediy. th~ ex.pr~ion G. always evaluates to true 

immediately before event E. The clause EVF(G. E) is used to specify that expre~ion G 

always evaluates to false immediately before event E. In translating from specification 

language to definition language we will assume thut. if the event denoted by E occurs at 

index I in history h, then 

C({EVT(G, E)},p,h) = Eval(Head(h, l-1), {G}) 

C({EVF(G. E)l,p,h) = -Eval(Hcad(h, 1-1), {GJ) 

When the event denoted by E d0t.'S not occur, tilt: EVT and EVF clauses arc undefined. 

We arc careful to.only use these clauses.in contexts where such an event ,docs occur. 
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The following rule can be used to infer·mf' clauses: 

EVFrule: 

((El.kind = enqueue I El.kind :::: join) 

& El.node.next = ·E2.node · ·· · : ·· 

& El.trans = E2.trans 

& El< E< E2) 

:::> EVF(Empty_expr(El.mob), E) 

Proof: Suppose that M is a queue. By the definition ofLcgal_transaction~step, there 

can never·· be more dequeue events than eOqUeue ··:even~ for any transaction. 

lltercfore, by the definition ofCsize, the queue is empty (Csizc(fvf)·; O)Jnty if all 

transactions have the same number of enqueue events as dequeue events 

immediately preceding E. However. the transaction El.trans has an enqueue event 

(El) that has occurred without the matching dequeue~:(~} .. llle~f9ftl,·:t~" 

queue must .not be empty. A similar proof holds.if M is a crowd .. 

The following mle can be used to i1'fer BVfdauses: 

EVT rule: 

(V El,E2: 

if ( El.trnns = E2.trans & El.node.mob :w M · . 

& El.node.match = E2.node) 

then E < EI I ! E2 < E ) 
:::> EVr(Empty_expt1M), E) 

Proof: First, we note that within the quantification the events E and El arc required to 

occur, yet the event E2 is not rcql.1lrcd fo occt1r1 since it is ttmrlted. 'lhe condition · 

tlml we arc CXflrcs."1ng with the qua11ltlic<J da~ i.~ th~~ lhr every puir of events · 

denoted by El and t-1 thc event denoted by E either occurs bcfi.Jrc (or is the same 

as) El, or occurs alier E2. Note that if El < E is true, then !E2 < F is false ff E2 
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does not occur. In order for Empty_expr(M) to be false when evaluated 

immediately before E there must be some transaction ·thni is ,in M ·tc11mediately 

before E. which means that the enqueue (or jo~event.(caM·itlr:l) occurs be(o,re E, 

but the dequeue (or leave} event (call it Pl) does not occur befQre ,a .we can 

express this requirement as 

El< E < !E2 

which is prohibited by the precondition 

E <El I !E2 < E 

and therefore the clauses always evaluates to true immediately before E. 

The above clause uses internal quantification over aUevchts, which.is another 

extension to the specification language. It is difficuit. to Lase th.e above.rule as ids in a 
' : : ' ... ' 

verification program due to the internal quantification. The set of all events is infinite, 

and cannot be enumerated. We can prove that tlie quantification clause is satisfied by 
•' 

contradiction: proving that there can not exist a transaction with events El and E2 (as 

given above) where the clause within the quantification is not satisfied. This method 

will be fu rthcr discussed in the next chapter. 

'· 1 

1l1e following mies can be used for guarantees that arc conjunctions or 

disjunctions. ll1csc rules arc sufficiently simple that we witf ~mit the proofs. 

t=VT rron1 conjunclion rule: 

( G = And_cxpr(G 1. G2) 

& EVT(G 1, E) & EVT(G2, E)) 

:) EVT(G. E) 
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EVT from disjunction rule: 

( G = Or_expr(Gl, 02) 

&(EVT(Gl, E)f EVT(G2, E))) 

:::> EVT(G, E) 

EVF from conjunction rule: 

( G = And_expr(Gl, G2) 

& (EVF(Gl, E) I EVF(G2, E))) 

:::> EVF(G, E) 

EVF from disjunction rule: 

( 0 = Or .... expr(Gl, 02) 
& EVF(G 1, E) & EVF(G2, E)) 

:::> EVF(G, E) 

We have used G, Gt and G2 to denote guarantees, and And_expr and Or_expr to 

denote conjunctions and disjunctions of guarantees. 

5.5 Priority of dequeue over enter and leave 

· If there arc queues with true guarantees when ~ion is released, a 

-dequeue event for one of those qucm .. -s will occur before an enter or leave event. .• 

Suppose we know that an ·enqueue event El occurs ~(core ar external .~ining 

event E. To show that E must occu~afier the dequeue evcntl-:2 oom.'Sp(lnding lo El. we 

must know that the guarnntcc for El is true immediatcJy prior to E. 'and that there can 

be no transaction with a false guarantee that is in the queue ahe<1d of the trnnsaction for 

El when E occurs. 

- 12l -



Event from ready queue· rule: 

( (E.kind.:::;: enter I E.kind = leaw) 

& El.node.next = E2 & El.trans = E2.trans 

& El.kind = enqueue 
& EVT( Etexpr •. E) & El < E 
& v··a.EA: 

if (Elkind = enqueue&. ID.mob = El.mob · · 

:J!E2<E 

& E3.trans = FA.trans 

& E3.node.next = E4.node 
&E3<El) 

,, r -· , , i 

then EVT(E3.expr. E)il !E4:( E): 

Proof: We wilt· outline a· proof by contradiction. Assume that the gaining event E 

precedes the de'lf*JJe event E2 •. ~ch. tbat l;l .< E < f,2. '.ij)e ,q~umtjficatio~ over E3 
• ~ , , • • ., • •• • c - : • ~ : , . st~'.. . , : . , · , - : 

and E4 is a precondition that requires every transaction that has entered the queue 
before 1:1.trnris to either have a ttuJ gLldfarttee:(irilhtedfrttelY'belbre €) or to have 

.left the queue before lhe guining:e'ltrtt:E. :Tkeref;l~ UM:tf~anibei oo tran~i,qn 
with a false guarantee in the queue ah~ad o(El.traQs. HQw~yer. the ga,ining even~ 

; . .. - . . . ~ ' '' . '_,. ~ .. i (: 1 ·' . ',; . ,·; ; ' ' i ' 

E cannot occur while there is a queue with ·a true guarantee, which' is true for · 

El.mob. 1nis is a contn1diction, sd We can infef ;thttf if@ oewrs. it must;occur 

before E. By simHar rt!itsoning. EZ nn"st.i~4r •. ~~; 1J:~t ~, nqt occur; there '#Jill . 
be a ready queue when E occurs (E must occur. since it is an unmar~,ed event). 

: . . ~ •, 

Note thut the above rule was cxpre::&!d as implying !E2 < E. which not only 

implies an ordering between events. but also .implies thut the event denoted by E2 

occurs, since any event the precedt..'S an event that occurs must also occur. 
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The above rule is admittedly lorig and complex. We can ~~d;some more ligllt 

on the reasoning behind its form by considering some ·examples. 

* Suppose that there are events E3 and E4 such that F.J'( El, and FA does 
not occur (using E, El, E2. E3, and E4 as in the>above tule).- Then· the 
precondition expr~d by the quantification must be false, which ;aieans .• 

that we cannot infer E2 < E. rtllis ~ould:~ffi,.~nab~ si~ by the 
FIFO queue rule we know that E4 must precede; E2 if E2 occurs, which 
implies that E2 does not occur. · ;.: . 

• Suppose that there are events E3 and E4 such that EVF~E3.expr, E) and 
E3 < El. Then it is ~ible for El.trans~-u>I~ aLthe rb$;of ,the .queue 
when E is ready to occur, which would imply that E < E4, or that E4 did, 
not occur at all. 

The reader may note that we have only considered a single queue in the above 
''• 

rule. It may be imagined that all of the precqndiLions were met for two queues. yet one -· 

queue was arbitrarily- chosen to proceed, which· thea made'the head guarantee of the 

other queue false, which then allowed the gaining evcnt'E to occur. Such a situation is 

covered by our rul_e,. since we do ·not specify evaluation- of the guamntec at any 

particular time. but rather immediately before Ille· event E in any context. Intervening 

dequeue events from other queues are unimportant. since they will on1y postpone the . 

occurrence of E. not change the precondition EVl'(El.cxpr, E). 
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5.6 · A ntelhod for proving service 

A service specification typically states that for every complete history and 

valid symbol map, the occurrence of an enter event for some transaction implies the 
• • -~ •, • • > • ' 

occurrence of the exit event for that transaction. In proving this, we typically need to 

prove that the occurrence of any event (exit events excluded) in a transaction implies 

the occ~urence of the. ne~t event in the transacti()Jl. 4not,her ~ilY to state that the 

occurrence of one event implies the occurrJm~ gf ano~er ~ t9:~¥,Ulat every ,~Qmplete 

history that contains the first event contains the second. 

For most events ,in a transaction. if an e'<~t ~urs. the succes.5or event in that 

transaction must occur. For simple. serializerS, the occurrence of an event that gains 

possession implies the occurrence ofa com ... 'Sf)Onding ce\fent that releases possession. 

Fu rthcr, we have assumed that accesses to the resource terminate.,~ the occurrence of a 

join event implies the occurrence of the eorrespclndhtg'leave ~vent. There arc only two 
., ··' '. i'., .. 

kinds ofevents where the occurrence of an event docs not imply the occurrence of the 

successor: exit events.. bt"µIuse they have no successors; anQ-1~nqq~uc events. because 

they might never have true guarantees whenever pos.~~(}n is \\!leased. or because there 

might always be another queue ready whenever possession is released. 

The method we propose for (lTOVing that an enqU,eue event requires a dequeue 

event is to first suppose that the dequeue event docs 'not occur, then prove a 

contradiction: that a complete finite history. exists w.hcrc there is a ready queue at the 

end of the history. 
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Suppose that we want to prove @El :J @E2, where El and E2 betong to the 

same transaction, and El precedes E2 iF both events occur (which can be written as 

@El & @E2 :J !El < !E2). We need to show for every enqueue event FJ with 

corresponding dequeue event E4 that iF FJ.trans = El.trans then the occurrence of FJ · 

implies the occurrence or E4 (@FJ :J @E4). 

If an enqueue ev.ent occurs for some q\1eue nrid the dequeue event does not 

occur. then we say that its· queue is blocked~ ff'a<)UeUC '5Meitked.· then we can infer the 

·following: 

• If every join event for some crowd requites a precedm1rdcqueue event 
.from a blocked queue ... then the crowd. will eventually become empty. 
This is true because when the queue is'f>iock'ed •. there' tan be no 'tu'rther 
joia events, and every join event requires that a lfa¥e event oocur. ·. 

*If every enqueue event for some queue~Q·requiresthat a·dequeue·event 
for a blocked queue B mt.JSt occur (because the. epcaueue eventrnust 
follow some othcr·dequeue event that iS w~itillg for ·s tO empty). th~n Q 
wiH eventuaHy become either~ or tmr>'Y.. . Sinee~t00·et¥1.Ut11e event 
For Q wiH not occur, then no new transactions will be added to Q. which 
implies that only' decfueue evems for' Q am ~b1y,«eur. :Evemually 

. either Q is empty or a tmn~ction with a false guarnntce is at· the head of 
Q. . . . 

• IF every occurrence oF an enqueue event for some queue implies the 
occurrence of a corn.-sponding dequeue event. and the queue will 
eventually become Cit her blocled . or: ' t-mp(y; then ; the · qoctre will 
eventually become empty. 

By saying that a condition "eventually becomes·• true. we mea~,that for every complete 

history there is a event where th~ condition is true at every event after th.U event. 
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The method is now clear: to prove the contradiction, we assume that the 

dequeue event (E) docs not occur, that certain quct1es ·nnd'croWds will become empty, 

and that certain queues will become either empty 9r .blocked. I( these additional 

assertions are sufficient to prove that the guarantee for Eis true.' and,thatthere is no 

other dequeue event with a false guarantee that is blockirtg a' then. we have found a 

contradiction, and actually proved that E mustoccur. 

We will not present rules for proving service. The number of supporting rules 

is relatively high, and the additional material would not introduce any new concepts. 

The method of proving service will be further explained in the next chapter. 

5.7 Rulc·based prol'ing of FIFO priority specification 

In this section we present a proof based on suceessive applications of the rules 

we have presented in this chapter. As presented in the previous chapter, the FIFO 

readers-writers problem lfas the following (partial) priority spccifi<;ation: 

Rl-cntcr <WI-enter::> Rl-cxit < WJ-exit 

A rule-based proof of the above clause takl.'S two stagl.-s: derivation of intermediate 

clauses (st'1ch as PX, GRE, and GX clauses). and use of the mies that imply event 

orders. Note that the lirst ~1agc need on1y be performed once for any particular 

scrializer, while the second stage is usually different for every spl.--cilication clause. 
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In the first stage, we examine the node graphs and use the PX from gain rule 

to derive the following PX clauses, which indicate ~ion ex.cl1:1sion: . 

PX(R •-enter, R •-enqueuc(x.xq)) 

PX(R *·dequeue(x.xq). R *~join(x.rc)) 

PX(R •-Jeave(x.rc),_R •-exit) 

PX(W*-enter, W*-enqueue(x.xq)) 

PX(W*-dequeue(x.xq), W*-join(x.wc)) 
PX(W*-leave(x.wc), W•-exit) 

·.- . .. 
We then examine the node graphs and use the GRE from empty rule and the GRE 

from expres.5ion rule to derive the following GRE clauses: 

GRE(R *-dequeue, W*-join) 
GRE(W*-dequeue, R *-join) 
GRE(W*-dequeue, W*-join) 

Using the· GRE clauses and the GX from GRE rule. we derive the following GX 

clauses: 

GX(W*-join, W*-leavc, R *·dequeue) 

GX(R *·join, R *-leave, W*·dequeue) 
GX(W*-join, W*-leavc, W*-dcqueue) 

In the second stage of the proof, we prove the implication by assuming the 

precondition,. and deriving the consequence. We use the Transaction order rule to 

derive: 

- 127 -



(RI-enter< RI-enqueue< RI-dequeue 

<RI-join< Rl'"'leave <RI-exit) 

& 
(WI-enter< WI-enqueue < WI-dequeue 

< Wl-join <WI-leave< WI-exit) 

Then we perform the following inferences, using the indicated rules: 

Event order Rule applied 

RI-enter< WI-enter Assumed 

RI-enqueue< WI-enter. Event after PX 

Rl-enqueue <WI-enqueue Transitivity 

RI-dequeue< WI-dequeue Event from Fl FO 

RI-join< WI-dequeue Event after PX 

RI-leave < WI-dequeue Event after GX 

R 1-ex it < WI-dequeue Event after PX 

R 1-exit < WI-exit Transitivity 

5.8 Comments on the· vermcation rules 

While the intent of defining infcrence·mlcs in the specification language is to 

simplify verification. one unfortunate side-effect has been to ttdd numerous clauses to 

the specification language. Thl."SC additions have made the specification language far 

closer to our definition langmage th.an we would like. As we add more extensions we 

begin to lose the simplicity that prcxlfs in the spt.'Cification language have over proofs in 

the definition language. Dl.-spite these misgivings. the rules do appear to work at a 

higher level than could be obtained from the definition language. 
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We have added a means for avoiding the requirement that every event 
.. :. ;,. 

mentioned in the ordering clauses must map, (via rft11~:,S)'IJ.l~v'~),tQ an event that 

occurs in the complete history on which the map is based. There is no inherent reason 
~ , .._ r ; '. . . - ~ " 

why this ability should not be extended to tbe~~~;',Jlti\Q\Jj_lf'~~;~v~,ch~n not_ to do 
{)~ ::(J•T .i • i ,)' ~j\•'j_:·:_.; ~ <; ~- , ;' J 

so. This feature· is only rarely used. and continues to have potentially surprising 
.. -~ -;~· ··~ ~. ~; ; ..... · ;>--)_-;{1~f1:;"!;;: ~~!U?/tJ~~~;~ -- · - _.'. · 

interpretations. as evidenced by the Event from ready queue rule. where the occurrence 
~. )·· ~ ~!'~~ ~fi u}!. 

of an event was proved without resorting to the @E notation. 
J. 

i: '/ 

,·;.,.-.·'.!" 

.:· :: : 

,, 
! ~· -
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6. Automatic Serializcr Prover 

The previous chapter presented verification mies tlmt were defined in an 

extended specification language. This chapttr describes a prograrn that makes use of 

those ru~ While limit«i to dealing ,with: simple ~rializer:s and, "specification clauses 

that do not mention the rank of an event, ~a~y i>r the ~rlridples ~sed are applicable to 

more general serializers. The program. called ASP (Automatic Serializer Prover), has 

been tested on a number of versions of the rea<iei;f-w,r,~rs ~r;bl~m. 

In this chapter, we discuss the structure ot ASP~ 'fim by giving an overview, 
;- ·, ·- . . 

then by , detaiting some of the algorithms usea.' The results for the readers-writers 

examples are given, and we discuss how ASP could be extended to accommodate 

various extensions to simple serializers. 

6.1 Overview of ASP 

The input to ASP is a description of each operation of a serializcr and the 

spcci lication clauses for the scrializcr. We use ASP interactively to prt)ve that the 

specification clauses arc satisfied, or to examine why they arc not. ll1c execution of 

ASP hasthe following phases: 

* Initialization: This phase builds reprcscntatibns of the node graphs for 
the scrializcr operations given the text fo~: Qie' opcratiot1s.16 In the 

16. In Lhc actual program. Lhc text must undergo an initial translation hy hand in order to he processed. 
This allowl'U us to concentrate our efforts on verification r;1tJ1cr than parsing. 

- 130 -



remainder of this chapter. we will make no dislinctimt betwt!CD the node 
graph representations used by the program and the node graphs used in 
the semantic mOdel. 

* Static analysis: This phase examines the node __ gr~ps to determine 
possession exclusion, represented by the PX claitses mentioned in the 
previous chapter. and guanmtee· extl&io~ t\!~t•f ~ -OX lckiuses. 
Note that we alsc> make . D() (i~tincti~n ~tw~n .t~e, speci,(lcation -clause 
representations used by the program'antf the ~tudj clOOSes. · - - -

•Verification: In this phase we attempt to prove each specification clause 
given. Typically~ a specification 'daUSt is' given as an 'implication 
consisting of a precondition clause and a consequent clause. Proving suctt 
a claus_e involves ~liming the precond,itioo and ~~ng ~e inference rules 
described in the previous chapter -to derive -the ron5cQuerit clause. When 
a consequent clause is derived. further rules,~ be~plied to derive new 
clauses. 

The uodc graphs. specification clauSt..'S. and other data are kept in a structure 

c-.dled the data base, which is composed of the following parts: 

* Node graphs: There is a node graph for each opemlion of the scrializer. 
Each node has a stmcture as described in ·a.apter 3. Datr stmctun.'S 
representing cxpn.-ssions (as in N.e~pr). queues and crowds (as in 
N.mob ). and kinds (as in N.kind) arc rcrcrtcd 't'o by the node yaphs. 

*Transaction stack: ·111crc is a sb1ck of transactions that represent the 
transactions mentioned in the specification clauSl."S~ -Each transaction 
symbol in a spccifiCi.llion clause has a corn.-sponding trnnsaction in this 
stack. Furlhcr transactions 1m1y be added to l~is stack .due lo attempted 
proof by contradiction. as mentioned in the previous ch<iptcr. When such 
an L1ltcmpt succeeds or fails. such a lran~action is removed from the stack. 
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*Assertion stack: There is a stac-k of specification clauses that have been 
asserted and the mies used to assert the clauses. The asse1ted clauses are 
those that have been assumed· to be true ·or· have been added by 
application of the inference mies to tl\e clausesin the assertion stack. 
This stack provides a record of which mies led to particular event 
orderings, as well as an efficient mechanism for removing assertions. 

* Event stack: There is a stack of the events that exist {although do not 
necessarily occur) for the transactions in the transaction stack. This stack 
is closely coupled to the stack of knowtt tiransactit:Jns, .since each event in 
this stack must have a· known transaction. Whenever a transaction is 
added to the transaction stack, arl 'event for · evety · nod& "lh~lt the 
tran~ction ma.v.~xecutc is added to the event stack. W~en a transaction 
is removed from'' the transactioil stack~ 'iilt" events tor that trarisaetion are 
rernov~d from tl;le event stack. 

*Event order matrix: There is an extensible. square· ·matrix used to 
represent event orders. There is a row and a column fqf,~.~.~. ~\lent, with 
the entries indicating the ordering between the eveni:S:-'"Ttie~ row and • 
column index for a· particular event are identical, and the index for an 
event in this matrix corresponds to the index in the event stack for the 
event. The matrix is extended or retracted (in both dimensiQ.AS} ·~ the 
event stack is extended or retracted. 

6.2 Static analysis phase 

The static analysis phase inserts PX and OX clauses into the data base 

according to the node structure of the opemtions. It is pcrfonncd in advance of 

examining the specification clauses. The purpose of the static analysis phase is to 

perfonn steps that can be done once for a given scrializcr. and avoid performing these 

steps for every clause we wish to prove. 
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The PX (Possession Exclusion) clauses me generated by examining the node 

graph to determine when a transaction is in pqsscssion of the serializer. For simple 

serializers only the PX· from gain mle is needed. 

The GX (Guarantee Exclusion) clauses are generated by examining the 

guarantees on enqueue statements during the initial p~ over the seriali:ler. They are 

generated according to ~e GX from GRE rule, which depends on the GRE from 

empty rule and the GRE fmm expression rule. As long;~ the guan~ntees,only involves 
' 

testing the emptiness of crowds or queues, or conjunctions (GI& G2) ·or tests for 
. . ~ ' . ! - _; - _;, , ; ~ . 

emptiness, GX clauses can be generated for the tuaramtes during 'static analysis. 

Guarantees that are di.sjunctiqns (G 11 G2) or negations (-G) do not generate, GX 

clause_ during Static analysis. 

6.3 Verific·.ition phase 

A specification clause is usually written as P :::> Q, where P and Q are 

specification clauses that do not use implication clauses. Verifying that P :::> Q .is 

satisfied involves assuming that the precondition clause p is true~ and shmving that the 

conSt.'qllcnt clause Q is therefore true. Note that the clause P is assumed to he true for a 

particular choice of complete history and v~id . symbol map. The verification 

methodology allows us to prove: 

v p.h: (P :::> Q) 

The assumption and proof should 1101 be viewed as: 
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(V p,h: P) :::> (V p,h: Q) 

When a clause not previously in the assertion stack is asserted, we say that it is 

inserted into the data base. When a clause, is inserted, ASP checks certain mies to 

determine whether they are immediately applicable. These rules are called insertion 

rules, and are: Transitivity, Event before PX, Event after PX, Event before ax, Event 
- - , , - > ~., i \ - /.' ~·: • : :'; : : 

after ax. and Event from FIFO. If any are applicable, we assert the event order clauses 

they imply. This, in turn, may lead to the assertion of further clauses, and so on. This 

process is complete when no further insertion rules are applicable. 

In asserting an event ordering, we need to have computer representations of 

events. In order · to have event repr~sentations, we need transaction and node 

representations. lne initialization phase built the nodes. The transactions and events 
··: 

are built by examining the specification clause to determine which transactions are 

mentioned in the clause. These transactions. and their associated events, are added to 

the data base. 

For each transaction that is added du~ to bein~ explkitly_ named in the 

specification clause, the Transaction order mle is used to dctcrn1ine the order of the 

events that belong to the transaction. 'J11is leads to the insertion of event order clauses, 

but docs not immediately lead to the application of any ru1estither·thun the transoction 

order mle and the transitivity rule, since there is no known initial ordering between 

events from different transactions. 
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To prove an implication. we assert the preconditiomnt1d:attemptto derive the 

result. The precondition for a specification clause is asserted by performing operations 

on the data base to assume the various parts or the clause. For example. one 

component of the specification clause may bC an event ordering. El <"E2. 'This·etause is 

asserted by calling the add_order operaticm' of the data base. If this ctauSe was not 

previously asserted. the insertion rules are applied by this operation~ 

6.4 Evaluation of guarantees and anonymous transactions 

In several places in ASP it is necessary to evaluate a guarantee to determine if 

a queue is ready. The EVT and EVF clauses mentioned in the previous chapter are 

used to indicate the evaluation of guarantees. EV;r(G. E) -is true for some history that 
;-·;: ,- : ... 

contains E if the guarantee G evaluates to true ill the largest prefix of the history not 
. ; l ~ ; '" . • . 

containing E. EVF(G. E) is true if G evaluates to false in' that prefix. For example. if 
<.' •• ·.~· . ·._ ·1,;i5;_1 ,,.:~_;<f~ _';,··, 

the event E occurs between corresponding elMlftlle and dequeue events for some 

transaction. as in: 

X-cnqueue(Q) < E < X-dcqueue(Q) 

then we can assc11 the clause 

,EVT(qucue$cmpty(Q). E) 

In some caSt.>s, it is· not suflicicnt to simply use the EVT and EVF mies 
:· . ~ . 

presented in the previous chapter. Consider lhc lt1llowing concurrency SJll.'Cification for 

the FIPO rcudcrs-writers scrializer: 
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RI-enter< R2-enter <RI-leave & GX(Rl-enter, R2-enter, w•-enter) 

:J R2-join < RI-leave 

In proving this specification, we need to prove 

EVT({crowd$empty(x.wc)}, RI-leave) 

The insertion rules are sufficient to prove that the writers crowd (x.wc) is empty when 

the readers crowd (x.rc) is not. empty. However, the rules we have presented do not 

immediately allow us to conclude that tlte EVT clause above is true, since we must 

prove the clause for all writers. 

A more general method of proof is _available to us, based on proof by 

contradiction. If we assume that a writer is ih the writers crowd. and that leads td a 

contradiction, then the writers· crowd must be empty. To be 'exhaustive in choosing the 

writer, we have two cases: 

1: The writer can be a writer that already exists in the transaction stack. To 
assume ~t &>me writer W is in the wri~ cro\¥d whGfl R, 1-leave occurs, 
we assert: 

W-join:< RI-leave< W·lcave 

und apply the insertion rules as necessary. A contradiction occurs if this 
leads to E < E being asserted for any event f.: (cyclic, event orders arc 
prohibited by 1.cgal_trnnsaction_step). If no contr.tion occurs..; then 
we cannot prove the EVT clause. If all writer transactions in the 
transaction stack cannot be in the writers crowd, it is necessary to apply 
the second case. 

2: If no writer in the trnnsaction stack can be a.~umcd to be in the writers 
crowd, it is still possible that there is some l>tllcPwrjk.'1" that can be in ·the 
crowd. 'fl1crcl(.>rc, we invent an anonymous 1ra11sac1io11 and place it in tl1c 
transaction Slack, ·mt'd a~'SllmC thal'thc OCW WritL'f is •itt fhe crowd, as in the 
first case. If assuming that the anonymous transaction in in the crowd 
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leads to a contnulict~ then we can assume that. lite writers crowd is 
• ' - • - • ·' ,; • < -

empty at RI-leave. and therefore the Evr clause is true. 

The above method is easily generalized to proving any queue or crowd empty. 

6.5 Checking for ready queues 

The Event from· ready queue rule is diffidilt to apply. sirice there is nested 

quantification. We start by examining the data base for 'dequeue events where the 

guarantees are true immediately preceding enter or leave events. Consider some'. 

traasaction X, where X-dequeue has a true g~.aran~ee immedjat.;1,y before some enter or 
-~. - - .. -

leave event. which we will caH E. If E ~ kJ)own to qc:cu~_after:X-~nqueue. the.n the only 

way that E ~1n occur before X-dequeue is for, ttiere to be aJransa<;~i9n in the same 

queue. ahead of X. with a false guarantee. If such a transaction _exists. we say that it 

blocks X-dequeue. 

lfno known fransaction can blod X-'dt.\(Jueut.' it may mi11 be ~le that 

some other transaction not mentioned in the spcrifiaatilai·damectm.·block ,X-dcqueue. 

Therefore, we create an ·anonymous trnnsuctiori:Z·fi>f un llJlCt~ti()n (provided that that 
'i > ~. : _.- • .:;; 

transaction-can have an emttteue event-for ttie'~tmc -ctneuc as X-dequcuc), and a!)..~rt 

that 

Z-cnqucuc < X-cnqueuc < Z-dcqueue 

where X·cnqucuc und Z-cnqucuc occur lt1r: the·samc. queue •. If the guarantee for 

Z-dcqucuc is true imniediutcly before E. then .tciu1o0t block, X. Flirthcr., if asserting 
; <,. ' ; ·-.: t.·. 
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that Z-dcqueue occurs after E causes a conflict, then there can be no such transaction Z. 

If there is no Z, for any operation of the serializer, that can block X, then X-dequeue 

must occur before E. 

6.6 Proving by cases 

One potential drawback of using the insertion rules is that some relatively 

simple proofs will be unachievable because there are not enough assertions. In 

pmticular, if enter events El and E2 are known to occur, yet the order of El and E2 is 

unknown, we may be able to prove a clause if we assume either El< E2 or E2 < El, yet 

be unable to prove the clause if no order is assumed. ASP can perform some of these 

proofs by cases: where the order of El and E2 is unknown, first assume El < E2 and 

perform the proof, then retract the assumpliun of El < E2, assume E2 < El, and 

perform the proof. If the desired result is obtained in both cases, the proof is valid, 

provided that El and E2 arc known to occur. 

The concurrency specification clause given for the Fl FO serializer was overly 

restrictive, since it specified that 

RI-enter< R2-enter < RI-leave 

and the result (R2-join < RI-leave) can be shown to be true even if R2-cntcr < RI-enter. 

lne following clause is a stronger version of the concurrency specification that requires 

proof by cases: 
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GX(Rl-enter, R2-entcr, W*-enter)& R2-enter'< Rf,;leave 
::> R2-join <RI-leave 

Note that the GX clause does not specify that Rl-enter< R2-enter, although· the GX;, 

clause is trivially satisfied if R2-enter <RI-enter. Initially the precondition is asserted. 

Then ASP first assumes RI-enter< R2-enter, proves the consequent ~se~~t~:the · 

assumption, then assumes R2-enter < RI-enter, and proves the consequent clause. That 

R 1-enter and R2-enter occur' can be sh~wn in t~{) way~:''ffiey iie mention~cfln a GX 

clause, and events subsequent to them (by Legal_transactionjtep) are mentioned in an 

ordering clause. 

6. 7 Proving guaranteed sen ice 

In many serializers we would lite to pro~ that every transaction recei;es" 

service. i.e., for every enter event there is an exit -event. The tbllowing• is ·a 'typical 

service specification clause: 

· @T-cnter :l @T-exit 

Proving guaranteed service for a transaction is performed by pro.Vingdlat each dequeue 

event that the transaction can execute is guaranteed to occur. ~i,ncc we h~vc assumed for 

simple scriulizers that all other kinds of events will occur in complete histories given 

their predecessors. 

Proving that u dequeue event occurs is largely done by contradiction: We 

~'lime that the dequeue event docs not occur, which impli'-'S that its queue is· not 

empty, and that any crowds that require ck>queue events from thut queue wilt empty. 
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This is generally enough to show that the guarantee for the dequeue event is true. lbe 

dequeue event must occur if no other queue is ready. 

In this method, evaluating the guarantees must take place immediately prior 

to some event, since that is the basis of our evaluation mechanism. But there may be no 

actual event occurring, especially if no further enter events occur. Therefore, we invent 

a fictitious event with certain properties. We assume that some "quiet point" event QP 

occurs, such that the event QP gains possession of the serializer only when no queues 

are ready, and QP occurs late enough such that every crowd or queue that must empty 

has emptied. If the guarantee for the de<1ueue event in question is true at QP, and there 

can be no blocking of the dequeue event, then the dequeue event must precede QP, 

provided that QP does occur. We can guarantee that QP does occur if every other 

queue is not r~ady at QP. At this point we have proved that QP does occur, and the 

dequeue event precedes QP, but we assumed that the dequeue event does not occur. 

lb is is the contradiction that proves that the dequeue event does occur. 
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For extended serializcrs. it is ~ible for a request kind to have guaranteed 

service, yet the quiet-point method is t()o weak. Tp illu~trat~. suppose a serializer has 
' < ~ ~ • • ' - ,' ~ • i ~ . 

the following operation: 

op = proc (x; cvt) • 
if queueSempty(x.q) 

trien x o-emt1 
enqueue x.q until crowdSempty(x.c) 

else ~ o~eaq2 
enqueue x.q until crowd$e11pty(x.c) & #crowdSempty(x.cc) 

.. end. 
join x.c i 0-joinl 

. end 
join x.cc ~ O-join2 

end 
end op 

For simplicity, we will suppose that op is the only~oo,of.the serializer that can get 

sole ~on (usesiC.t). The QP'.event will notoccur 0uinil 1.c is empty and x.cc·is 

empty. However, at QP theguamntec for Oaq2risfalse. 'Iberefore.dt seems possible 

for QP to occur before 0o-enq2. so guaranteed serviceaianot be pltOven .. · · · 

One way to prove guaranteed service for the above serializer is to split the 
- ' f • ' ~ ; •. - . ' ' '. • .._ ' ~ l ' .J ~ 

proof into two cases dependent on the test queue$emp1J(x.q) in the if statement. If the 

test was true, the QP method will work. If the test is false just before 0-enq2 occurs, 

then there must be at least one other tmnsoction;c-Jll it Ot that is in x.q when the 

O-enq2 occurs. But then there are two more cases, b-JSCd on whether. or not 

crowd$emptJ(x.c). If x.c is en1pty, then the guarantees for x.q must be true, and 0-dcq2 

must occur before 01-lcavc, which must occur before QP, which guarantees service. If 

x.cc is not empty, then there is yet another tmnsaction. C'JU it 02. such that x.c will be 

empty at 02-join2, which implies that the guarantees for x.q will be true before 

02-leavc2, which must prL'Cedc QP. Although this ~analysis by C'JSC would be expensive, 
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it would be possible to add to ASP. 

The reader might object that the above example is.1quite contrived, and we 

would agree. We have discovered noe01tvmcing ref&tistiC'iex~tes that .r~quire 1D0re 
~-' <' ; .' 

than the simple QP method, even when extensibhs td serihin~ ttre considered. For 

this reason, ASP supports Q"ly the simplj! QP JQ~tl\o4: ... 

6.8 A sample verification 

' ' 

This section presents a sample verification f)erformed by ASP~ Figure 4.Qgl,lre 

shows the results produced by using ASP to verify a priority clause for the FIFO 

readers-writers serializer presented in Chapter 2. Input from the user is indicated by 

underlining. The l:1ser starts the session 'by typing in:ilie'nhnle·'of the 'seriatrzer that 

should bC used. That name is interpret~d aS a me name, wft~rf\'h~ fiTeshautd'contain a 

description of the ~rianzer in the rorrr1at required by A'S~. 'Then 'the user types the 

clause to be verified. 

rlllc response from ASP indic~ wltt;thcr the clau~ COL1ld be proved, ~nd 

shows the a~ertion slack after the insertion rules ha~ been JtppJied (the first clause 
'<> ,-!f ,; 

printed is the most recently asserted clause). This infQrltl4'lion is usu~Jy sullicicnt to 
' - ·' · ·r > C' '/ ' • ' 

enumerate the steps oft.be proof. or to tWii101,straU:iwhy, the ~la,usc,o.>ul~ not be proved. 

While we will not describe them in, this thesis, additional. aids arc present for more 

detailed inspection of the steps that ASP ust.'S to prove clauses. 
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Figure 4. A sample verification by ASP 

Name of serializer: .E!f.Q 
1. 012 seccnds to setup. 

Specification clau~•: RJ-tD1tr < W-1-f#i\ft1 =~ .ftltt,~it ,< Wt-txit 
Proved Implies(Rt-enter <Wt-enter, · · · 

Rt~axit < Wl-exi~~ 

base(39: . 
Rt-exit < Wt-dequeue-xq: Posse~sion exclusidh, 
Rt-leave-re< Wl-dequeue-xq:'Guarantee exclusion, 
Rt-join-re < Wt-dequeue-xq: Possession exclusion, 
Rt-dequeue-xq < Wl-dequeue-xq: FIFO queues, 
Rt-enqueue-xq < Wt-enter: Possession exclusionA 
Rt-enter < Wt-enter: Assumed, 
TR: Wt-enter: From clause, 

. TR: Rt-enter: From clause] 
1. 3"76 s~tonds; 

Note in Figure 4 that not all of the rules are shown. The default used is to 
~ .: _ ~ ~ - . . . . . ' . . ... ~ ). .' ·, . ~ .,., .;-

; , ' 

omit showing the claLlSe!? ~rted in the static analysi~ .. phase, ~d use of the Transaction 

order and Transitivity rules. Tbe not.atiqn "·ba~e(39 :" appearing in the middle of the 
• , ". • - • ~ ~ : : ' : 0 ; , • ' l.' •. . , -

figure indicates that the assertion stack has 39 members. At the end of the figure the 

amount of processor time needed for the proof is given. This figure includes the 

processor time nt..-ccssary to·· pbtse the exph.~ .. · appty ·the verifict•tioJJ .rules, and to 

print the results. The notation "TR: wr-enter: frOll -cla~~· iS·uscd to indicate I.hot 

the transaction WI was added to the' transoctiotv ;~i~ ;sjnc(:f tht :trnnsad4an wos 

mentioned in the spccifrctition clause (for uniforihit:y itHhC prugraui: this is treutcd as an 

assc11ion). 
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6.9 Pedornaance results 

In this section we present a number of verifications performed by ASP on 

variation of the readers-writers problem. Each test i~ given as a specification clause to 

be verified (or not verified) for different readers-writers serfatizers. Figure 5 presents 

these specifications, most of which have been a'.t'entioned In previous· chapters a8 

specifications of different properties for the readers-writers problem. 

Figure 5. Readers-writers tests for ASP 

Wpri: Writer's priority 
Rt-join < Wt-enter < R2-enter < W2-enter < Rt-leave 
:::> W2-join < R2-join 

(NWPRI): Modified Writer's priority 
Wt-enter < Rt-enter < W2-enter < Wt-leave 
:::> w2join < rtjoin 

Rpri: Reader's priority 
Wt-enter < W2-enter < Rt-enter < Wt-join 
:::> Rt-join < W2-join 

(NRPRI): Modified Reader's priority 
Rt-enter < Wt-enter < R2-enter < Rt-leave 
:::> r2join < wtjoin 

II R: Concurrency for Readers 
GX(Rt-enter, R2-enter, W*-enter) & R2-enter < Rt-leave 
:::> R2-join < Rt-leave 

XexY: X busy excludes Y busy 
X-join < Y-join :::> X-leave < Y-leave 

XpoY: X not by-passed by Y 
- X-enter < Y-enter :::> Xexit < Yexit 

GS(X): Guaranteed service for X 
@X-enter :::> @Xexit · 
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An abbreviation for each specification is given prior to cadl dause~ The Wpri .~ 

and Rpri clauses specify writer's and reader's priority properties. The (NWPRI) and 

(NRPRI) clauses specify alternate versions of these properties to be proved for the 

NWPRI and NRPRI seri~lizers (to be shown below). The XexY cJauseactually ,denotes 

three clauses: RexW, WexR, and Wlex:W2. where ~wqpriate substitutions apply. The 

XpoY clause also denotes three clauses, with the same substitutions. 
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Figure 6 presents the code, in abbreviated form, for each of the seven 

readers-writers serializers tested. The create operations and headers have been omitted, 

as is the trai.ling code after any join. The use: of crowdSempty: and qucue$empty is 

implicit where empty is used. There is one FIFO serializer, two readers priority 

serializers (RPRI & NRPRI), three wriftt'S'''~ prionty' serializers (WPRil, ·· 

WPRl2 & NWPRl),.and one serializer.tbatallow.~.~r\f~ ~TARYE). Note that the 

priority specifications for RPRI and NRPRI differ, and that there are also two distinct 
·\ • .._ • ;, '-.,,_ f 

writers priority specifications. 

The various serializers above were de_veloped at different times. In particular, 
·_, .~. :, : .. :,:·· ·.- . - + ''. . ' " ·_, :. ' . '. . .~.· , > -

NRPRI and NWPRI were written· after: ASP had becom~"reiative&y reliable. We 

originally attempted to. prove the Rprl sp~ifi~atio~ cla~~ for tile' NRPRI serializer. 

The attempt was made much more ·difflcUU\by·;'tt pretnnteption··{due to a faUlty. 
':• , 

informal proot) that the clause could be proved. After much effort to determine the 

cause of the fault in the program, we finatiy 'hotfced· that the pto~nirrf was correct: not · 
~ .; ..... ! :'} ;:· .. '1.,.l; ;·,: 

only was the clause not satisfied, but the mte~~~ Sll.~folluwcdJly ASP provided a 

counterexample. It was this example more than any other that convinced us of the 
~ ' l . ;: '; 

wort.h of automatic verification aids. 

'n1e modified writers priority specification came about as a lest of the 

speculation that NWPR I satisfied a priority clause that was symmetric to NWPRI, since 
,··_,;J '• :~"; . ... ,o~;.f~:·."_,..i~ ',. '~.!7:, ).~ 7 

the scrializcrs were (roughly) symmetric. The unmodified writers priority clause is also 

satisfied by the NWPRI scrializer. 
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• Figure 6. Code for test serializers 

Name Oper Code 

FIFO R enqueue xq until empty(wc);; join, re 
w enqueue xq unt i 1 empty(wc)&empty(re); join WC 

RPR'I ft en1'ueue rq unti 1 empty( we) : jo~n re. 
w enqueue wq until empty(rq) 

e1tqueue rq: uni 11 etllpty(~~yfN:')l jotft. we 

; 

WPRI1 R enqueue rq until empty{wq)fempty(rc) 
enqueue wq until empty(wc); join re 

w enqueue wq until empty(rc)&empty(wc); join we 

i ,, 

WPRI2 R enqueue rq until empty(rcj 
· epqueu• wq until ..,,ty,W: )6Mpt7(.Nft; jOiA re~ 

w enqueu' wq until empty(rc)&empty(wc): join WC 

STARVE R enqueue rq .until empty(wc); joilLrc. · 
w enqueue wq untH empty{wc)&empty(rc); join we 

NRPRI R en<we"e xq until empty{ we); jGin. re. 
w enqueue xq unti 1 emptyfwe)&eapty(rc) 

enqtteue· xq· until 911p1.Y'( we-}htllPtyfrc ).~ · jo4n ·we· 

i " 

NWPRI R enqueue xq until empty{wc); 
enqueue xq until empty{wc); join: h< · 

w enqueue xq until empty{wc)&empty{re): join WC 

. . . ' : ' '. ~ / i .' ; ' , '. ' 

The results in Figure 7 were obtained on 23 August 1979. The times given are 

' . ~ 
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Figure 7. CPU times for ASP tests 

Name Time WexR WexW RexW RpoW WpoR WpoW Wpri Rpri II R GS(R) GS(W) 

FIFO 21 T 

RPRI 35 T 

WPRl1 47 T 

WPRl2 67 T 

STARVE .24. T 

NRPRI 36 T 

NWPRI 30 T 

T 
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T 
T 

T 
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:7 , .. T 
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Time is given in CPU seconds. 

T 

T 

T 

't 

? 

T 

T 

T 

T 

T 

T 

? 
T 

T 

T indicates a proved clause~ F indicates a d'isproved clause. 

? indica'-es a cl aus' ra,o'{prQ;V~d,,'()r d'i_~p 1roved • 
. f' / < ;; ; l' : 

CPU seconds for running allofthe'tests shown:17 Th~ testtases are explaineditl detail 

at the bottom of the figure. Each column after the .Time column represents a different 

test, given by a. specifw;~tion.~aµse. AT repr.ese,rits;~ prov,~n.speciftcation clause. An F 
' " . . - • ~ •, t 'J ; • 

represents a spedticatil>n dause proven to be always false~ A? represents a Spt.'Cification 

that could not proven true or false. In tlleseriaUzcrs represented· in the table below 

there were no CUSt."S where the program was not capable enough to prove or disprove a 

clause that was atw,ays true or false. In· general, ·if the y>rogram· can ~ot prove or 

disprove a result, it is either due to a chmse that is lrAte for SOR\4; histork'S and false for 

others, or it is due. to a weakness in the vcrif\cntion · mcth~xlology, an9 ASP will be 
. . . ,• . , ' 

17. 'll1csc tests were performed on 23 August 1979 .. u~inp, a l}ct~y~cm-20<tOT. ASP ot'Cupics .about IOOK 
.lCrbil words of mcmury. of whkh 41houl <iDK word11. are;"uc ~u tb,e ('I .lJ support sy~tem> No appfl'Ciablc 
paging activity took place. . · . · 
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unable to distinguish the two. 

6.10 Summary ofmethods usecl 

This section prpvides a concise summary of the me,thods ~e have used in ASP. 

In this summary we follow lhe order of steps used in ASP, hither than·-precise1y 

fo11owing the order of presentation for this chapter. 

*Static analysis is pe~formed once for any given serializer code to 
determine initial clauses that are derivabie '~~ly;frotiJ<ltl\e 'rib& graphs 
for the serializer ciperaticins. ' The-i remainder 'of the ~st~ nre performed 
for any given specification clause. 

* Repr~ntations are introduced for the .t~\l~" mentioned )n, the 
spcci fication clause. · , ' · · · · · : · 

. l 

• For any specification clause of the form P :::> Q. the clause P is asserted. 
and WC attempt to derive fJ tfitough USC of the·itt~ttiOfrfdfes. Whfch are 
the mies Transitivity,-Eventbefore PX. Ev~ntaft~r P~ ~vent before GX • 
. Event after GX, and Eve~t from FIFO. frthese hiiesare'nofsi'.1ffiCient to 
prove Q, further methods mustbe usecL ·· .. 

*The Event from ready queue mlC, whiCh rclll,>cis the priority of service 
giwn to intcmaJ,- que~-s ~ver tJle .. cxtcr~LJllJ~U~~J 1\s -'~P,elied, wher~ 
feasible. This is known as "cht.>cking thr ready queues." 111is mle may 
n.-strlt in the 1nvcntkm of aMnymous trari21aciiuns.:iwhidl are L~ntial tQ 

the proof by co11trncliction that the preconditions for the mle are met. 
Anony1noi1s transactions t11ay i1Tuo be liScd; iff ffi~;fNF 'rta~·;wlHch is 
subsidiary to the cht..>cking for ready queut..>s. 

•When the clause Q is still not proved. and the order of ccrtuin enter 
events is ·not known, ahhougttthc events aro lmowrfltHJcatr..: ASP tries all 
permutations c>f slich cvcntS. · tf ·Q1·t:m >if;e' pmvt..~' ft1r t..'VefY such 
permutation. then P :::> Q has been proved. 
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* Proof of guaranteed service is performed by assuming that a transaction is 
blocked in a queue, then proving that a ready queue must result at some 
"quiet point." Although this method is limited, it can be proven to be 
correct, and works for a variety of cases. 
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7. Interaction of Serializers 

In previous chapters, we introd~ced tl\e serializer con;struct, ·presented a 

specification language for serializers, and demonstrated some verification techniques. 

Our discussion has been limited to single instances of simple serializers. Yet if we are to 

reach our objective of modularity, we must examine how serializers interact 

In this chapter we present an application of serializers that incorporates the 

use of multiple serializers. ·We are especiaHy concerned that serializer use can be 

nested, so that the techniques for modular decomposition of programs in a single 

proc~ domain can be applied to a multiple process domain. 

The example we have chosen is the use of serializers to control concurrent 

access to a simple file system. For this example we will assume that.objects in primJTy 

memory can be shared by several processes running on a single processor. This choice 

is made to keep the example simple enough to be tractable, since presenting a 

distributed version of a filing system involves issues well beyond the scope of this thesis. 

We start this chapter with a presentation of the simple file system. including a 

discussion of the abstractions involved. We then show two of the scrializcrs used to 

control concurrent access to the file system, and show how the specifications arc similar 

to the readers priority variant of the readers-writers problem. Further Sl.--clions concern 

methods for introducing scrializcrs for abstractions that were written fbr single process 

environments, and a discussion of higher-level trnnsactions. 
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7.1 The file system 

The structure of the file system is,based on dire~tori~ and files. A directory is 

a map from names (expressed by strin~) to.entri~ which are either filesor directories. 

If directory Y is named in directory X, then Y is a child di.r~tocj o(X,:,.,and X. is the 

parent directory of Y. There is a single directQi;y,, called lbe 1001 direc(ory, that has no 

parent· directory. Files and child directories may .be added to, or deleted from 

directories. A simple provision is ma~ for iterating over the 1~es of a directory. lt is 
1 • • . 

p08mble to get the number of entries in a dir«tory .. and .tQ .dct.er.Ql ine wJtlch. directory (j f 
• ' y • • .~ -.·. ' l . -

any) is the parent ofa given directory. For .nu>st ,0,p~~ns.. ~ cµr.!!~to{)'. must be. open 

for the user to perfonn those operatiQllS. Opening a directo~y . is accomplished by the 

directory$Qpen_dir operation. The directory structure is acyclic. 

A file is an array of pages, where a page is some fixed length unit of data. 

Pages on primary memory may be read from or written to any existing page in a file. 
~ ' .: . 

Pages may be added to or removed from the end of a file. A lile may be named by only 

one directory. It is ~iblelo get the number of pages in am~. and to determine which 

directory names the file. As with directories, a file must be open for the user to perform 

most operations. A file opened by dircctnry$open_JJrivatc can only be accessed by a 

single process, while a file opened by dircctory$opc11_J1ublic can be accessed by any 

number of processes (although a practical system might impose Sdme reasonable 1imit). 

A file is closed by thefl/c$c/oseopcmtion. 
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At this point, some additional explanation of the open and close operations is 

in order. First, we have made the open operations work on directories, since directories 

are the logical means for initially accessing files ;and child< directories. We have made 

the close operation work only on the object that the open ,provides. which· prevents 

users froin closing a file (or directory) except when they have ·acquired that file or 

directory object through an open· operation. Sea!md; we tune' two· different ,kinds of · 

open operation on tiles: open_pub/ic, for simutmfteOOs· 8ecdss;an10ftg several .processes 

(or users), and open_private, for sole access. We ean associate: an -open ·count with each 

fife or directory obj\!ct. This count is increased f61':emy ·Opell ~n. and:decreased . 

by every close operati<?n; The directofytbpen:;:.private opeFBtion wiU only succeed when· 

the count is zero, and upon successful eompletionrprevents·any increase in the count 

The directory$open_dir operation opens a child directory SUth that multiple ·processes 

can access it concurrently. 

In presenting the file syStem example-we win· ooncentrate on showing the 

interface of the file and directory data abstmdions anc:t the code· .for the file and 

directory scrializers. It wilt not be necessary tO ~tlle impldmmtution of the file and 

directory data abstractions, although we will dise?t.msomeofthC details as necessary .. 

Figures 8 and 9 present the interface specifications fQr the directory and file 

clusters. As a first approximation. these are th,e &1me interface specifications that are 
, < ~ • 

used for the corresponding directory and file serializers. Ea<;h opcmtion interface 
' ," .' - ' ' 

mum .. -s the operation, the types of the t1rgumcnts. the types of the returned objl.-cts, and 

the types of exceptions that can be signalled. We include some comments thut indirnte 
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Figure 8. File interface 

A file may be described as an array of pages that exists on remote 
storage. It can be randomly accesse·d, and CM, be .exJ.e.~ded or retracted 
at one end. An open file can only be obtained thfouglf'use"'of a directory 
open_pri vate or open_publ ic ope rat ion. No_ o_p_erat io!'S .can be performed on 
a closed file except fpr is_~peo. ,The fo11owiilg,"(H_e operatfons are 
available to the user (others will btf'dhcussed 1at4fr"in the: chapter): 

get_parent (file) returns {directory) signals (file~closed) 
_Get parent directory of file if file is open, otherwise signal 
file_closed. 

get_name (file) returns (string) signals (file_closed) 
Get name of file as a string if file is open, otherwise signal 
file_closed. 

get_size (file)·returns (int) signals (file_closed) 
Get number of pages in the file if it is open, otherwise signal 
file_closed. 

is_open {file) returns {bool) 
Return true if file is open, false if it is not. 

read~page (file, int, page) signals (file_closed. bounds) 
Copy a page of information from the given location in the file i.·to 
the given page in primary memory, provided that the file is open. 
Signal bounds if the location is invalid (less than ~. greater than 
or equal to the size). Signal file_closed if tbe file is closed. 

write_page (file, int, page) signals (file_closed, bounds) 
Copy a page of information from the given page in primary memory to 
the given location in the file. Signal bounds if the location is 
invalid, file_closed if the file is closed. 

close (file) signals (file_closed) 
Close file if it is open, otherwise signal file_closed. 

add_page (file. page) signals (file_closed, no_room) 
Add a page to end of file, signalling if the file is closed or there 
is insufficient room to complete. 

rem_page (file) signals (file_closed, empty) 
Remove a page from the end of the file, signalling if the file is 
closed or the file has no pages. 
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For concurrent access, there are the following classes of operations: 
Info: can overlap with any but sole access 
Read: can overlap with read or info access 
Write: can overlap with info access 
Sole: can not overlap 

The operations in each class are: 
Info: get_parent, get_name, get_size, is_open 
Read: read_page 
Write: write_page 
Sole: close, add_page, rem_page 
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Figure 9. Directory interface 

A· directory fLffiCtio~;; _,as .a syqtb't>l table of .entr.i;es •..• h~re · eacll. i;tntr,y is 
either a file or an<lther directory. Entri'vs 'can· ~f,'~re~+~~:· }el11l•.d or 
opened using the di rectory. The following opera{fons are pub1 icly 
avail able: 

• jf• 

roqt () ~eturns (directory) . 
Get root di rectory, which iS alwa')s open (th~'~ )>pe'rat iori does not 
require possession). 

g~t_p,.r~nt ("'.jrectory); ret~rns f~Jret~~r1> . s~u~•!~; f fibs)~,. 'di r_~cJosG,~) . 
Get pa~ent di rectory'. s ignal.\ij\i',)1''?' 1 lTi~. t)1,' cS\l,e'n~: ~tr,,~t~~f: ~IS .. the 
root duectory, and dH_closed 1f Ute glven clfrec~ory ti <!10i8ll •. 

get_size (dir~~t.ory) ftt~rps (iQ~) siQ._•l~;.itdir,~«X6~iq>;."·,:. '. 
G~t number;. of t1'.'t.r1~ . in. t~.e gJ:'~~· f,i;re~~~· .~jg!)~ll ~.n~ H the 
dlrecto,ry n closed •. · '"'" :·i·. · ' · , .. 

get_ name ( dlrectory) 'returns ( stri~g) s'ignau''' (di r _Jiot~d) 
~~!se~~me1 cof the given directory, signa~lct't&,;t·ifJ;h9 director;V .is 

is_open. (directory)' returns (boot) . 
Return true if the gi,ven directory J(,op,en. J,a1 s.e. H it ~s. not .. 

' , ,." ,_.,· ; '. ~- - - i ·- '' .,. ~ ' 

info (dire~toryt Uri11g) ~eturn,s (b,~~1. i~h; ~goH; ,., 
$.:tgn.~ls {non,e,, d1r. closed) ... '· · ~· . 

ReturQ ~ informa~~~ a4D~ the n ... d. eq\r-Y: 'a' Jtool'ean indic4~ ing the 
kind of entry (true ff entry is'a tile,''f'alse fr• not):'the size (in 
pag~s i~ a file~ !}U~~r of e~ti;-ie~r;li;f, o,,"~if,ttC!8f,Y),·. a1~,d 1 a ~oo.le~p 
ind1cat 1ng wheilJatt:' .the entry 1s. 01,n .. ~'CaflAT llOJJropti•~e ·errors if 
they .. oc;cur. ·· .· · · · . · · · '~ .·::' ' ... ~ ,..,_. '· · "· 

~ ., :1 

next (di rectory, str1~g) ~eturns (string,f:"it !A?~ls.'( '6,~e, di r _clefse~) 
Get next entry name after named entry, using string ordering. 

:..;- ; '!<.: ;,·· f 
open_private (directory, string} re,tu~ns, {ffle) · , . 

signals (none, op~nf<f, d,r.clo'sed). 
Open named filtt· jtt gi.ve.1\-, ,,.dfre~io~i rf)r · iote 
appropriate errors. if ~ey }~<;CUf.•.,. " , , :. , .· , 

', . , 

use, signalling 
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open_public {directory, string) returns (file) 
signals {none, locked, dir_closed) 

Open. na~d. fiJe .in given directQS:J. for shared use, signalling 
appropriate errors if they occur· ( 1'0et•8 is· ~'ft(nal'l•d ;r entry '·is 
op$n for sole US•). ' . ' . ' . . . ,,q '. ' . ' '' 

open_dir (directory, string) returns (directory) 
signals (none, dir_closed) . 

Open, named: chtld .. irector,r in given directory, s·19nalling appropriate 
errors if they' occur~ ' ' '. ,· ' ' ' 

close (directory) sig,l)als (dir_closect, 9pen_entrias, root) 
CJose. th• ;given ~tre~to,.,;' .signatl ~·oo: Jf it ~s.,'the . 1'oat, or 1t ·19 
alre«dy closed, qr -~Pt,n· entries, ·ei,-1st. - - · 

add_dir {directory, str:trJg) 
~jgnaJs. r~~-:)'t>~; duplicate, . ~ad_n~ ! ~ir_clCJsed) 

Add new (empty) Chflcf drtectory entry with given name. Signal if 
there is insufficient room, an existing file orL Ctitectoryi of the same 
name, a bad dir-.ctory .name given, or the directory is closed, 

- . . . - .. -; . ' ; - . . ~ ~· ~. ' '. - . - ' ' 

add_file (directory.' ·string} ., " " : j 

signals {no_room, duplicate, bad_name, dir_closed) 
Add new ( e19Pty) file entry to «Hrectory. .· Sig,nal if there is 
insuffi.cient room. an exist Jn9 f 1 le 'or ·ftilrectort of ttre ;same· rr.... a 
bad file nute given, or the directo·ry ts closef. · 

delete (directory, string) s1gria1s (none: oeened. dtr closed)c ' 
, Delete na•d en\ry in given direc~or;-;'s1gna1'1in.f'ijtpropri•te errors. 

If entry is a cfi r',ec·tory. all of ns entries an ~'te'tad a-s w•ll. 

There are four chs$es o.f operations requi rinq srosnsston: 
Fixed info: . can O\rel-'tap wftlt any uUt 'Sola actisi · 

The 

Variable info: can overlap with variable or fixed info access 
Openi~g: can ove-;-lap .with fixed i~~,o ac~~'~' 
Sole: cin l)Ot o~ei"lap . 

operations in 
Fixed info: 
Var.iable info: 
Opening: 
Sole: 

each class are: 
get~parent, get_name, is~open 
get size, info:, ne'Jtt 
open_prf vat•.· open:_l>IJblf~, '?.,..n_di r 
close, add_dir, add..:_f1te;· delete, 
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the intended effects of the operation. Aftet the operations, have been described, we 

divide the operations into Cf asses based Ori Whictfoperndons maf overlap in execution 

with which other operations (when executed on the same seriafizer object). 

One way to des~ a syste~ that in va,lyes concum:~c¥ is Jo Aesign, it for a 
' • • , , • • j - ! ... . ' ~ . ~. • '•. " . ,. , 

single-process system first, then add multiple processes for ~aj9J;1is;9ftp~~~:thatcan be 

performed concurrently, and add seria1izers to control access to shared objects. In the 

file system example, however, we have assumed that the file system would be accessed 
' ·;.-~,"'"·/~ ' ·_, . :~~~ :~ : . '. . ; 

by multiple processes. This assumption has influenced the choice of operations. 

especially in providing for opening andJdesift&'•otirfl1• Even:'SJ,' the smpe-process 

model of design is useful. Concurrent execution :of operations is only permitted where 

the effects on the state of the files are the same ·as mme·'ltrial e~ectttion of operations 

where coneur~ent execution is prohibited. It· may not . be' possible to obtain the 

maximum <:oncurrency in this fashion. since certaih qprerilt4ons could be allowed to 

execute concurrently in part. But increased concurrency is purchased at the cost of 

increased complexity. 

One simplifying assumption has been made regarding tile objects that may 

appear to be unrealistic. lliat is. a file on secondary memory has al most one lite object 

in primary memory controlling acccs..., (this is also true for directories). Unfortunately, 

this allows a user to open a tile once to obtain the controlling object, then ck?sc the file 

several times, thereby completely closing the file to accc...-ss .by other processes. To 

remedy this. in a real system. it would be desirable to httvc a second level of indirection 

for files such that every successful execution of an ope11_public· operation returned a 
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unique controlling file object llle aqditiornll level or file object would be used to 
, .. , ;f 

create a separate file object for each Qpen_pub/ic operatic;>n. ~ch that the file l)bstraction_ 

presented to the user weuld only allow a ,ffle ob~ . to be dosed once. A full 

presentation of both levels of file has no advantage over a presentation of a single level, 

so we only diseuss the system_fUe version of mes_ -whiCh is ~ported by the fife cluster 

and its ass0ciated serializer. 

7.2 File and directory serializers 

Figures 10 and 11 on the following l)QeS: p.-.nt. the :dir~tory and file 

serializera. Note that we have added several opemaions, that are "hidden" to the 

"normal" user. We would expect ac~ to these _operations to be regulated through 

some library mechunism~ such that a normal user woukl see a subset of the i~rface of 

an abstraction, while a "privileged" user would be allowed to access- more of that 

interface. In some cases. . and in particular for ·this -file system. ~ to privileged 

operations would be restricted to only allowing use by implementations of particular -

abstractions, rather than allowing access based on the identity of the person using the 

systcm.18 

18. Such pmtcction could <1lso be provided to some extent hy establishing a block stntcture fttr dusters 
and scrializers. We have chosen to retain Cl .Li's <tpproach to modules. and as."umc that protection is 
&K."Complishcd by other mc;ms. 
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Figure 10. File setializer 

file = serializer is 

% The following operations a~e publicall~ avi11p~l•· 
get_parent, % get parent directory .. 
get_name. % get name of file ' 
get_size, % get I o. CRage~. in fj], .. 
is_open, · % test open.;.ness ot' fiiit' '· , · '" ~· 
read_page, % read a page 
write_page, % write a page 
close, % close file 
add_page, % add a page to en~·~r i~1' ~ . 
rem_page, % remove a page. fr~ en~ .~f'.file ; ' · "· 

% Note: delete can onJ1 ~e fill Jed fr~, djr~ctory,~1~t11 
delete, % delete the contents of' a till ' • ' · .. ' . ~ 

% The wrap operation can only be used by the _file clus-t-91': 
% to turn a _file object into:: 8 rile .~f.~j~~ ii?t_, Ob~~C.fa., t .p 

wrap '(,» i'. {l ·. li.:.·:·· '; ::;, ;:· .'.·: .j. i ~cil'" '.. 'l 

% The ope rat ions with cvt argum9.1\ts -C,a,n .. b,e ~pJt~ .if\\cf"{o~~ ·· 
% classes, depending on which opttratiohs·'can~ov8Map''in:1~' 
% execution with which other operations. '' '' 

% - Class -
% Info: 
% Read: 
% Write: 
% Sole: 

% - Class 

-)~:'erlap - . . , 
Infb, Read. Write 

. Info,. Rea~·.-· · · :., 1 

Info ''- ·· .. 

M~inbers 

;; 

• f: -

% Info: 
% Read: 
% Write: 
% Sole: 

get_parent, get_name, get_s ize J ::/s~~l~-n " 
read_page 
write_page., .... '>.-~ •·.·. } . 

close. add_p•p.~~ ,'t'efn"'"~~9~· .Prl•t~ 

rep = struct(slow_q.··.fast_q: qu~\Je~· -n- i :j f' ~- ·· '· ! 
. so1e_c. wrHe_c •. re'ad_c. fia,r~~c~ ~~~;,:. 

f: _file] · 

wrap = proc (_f: _file} returns (~vt} o'. 

return (rep${f: _f, fast_q, slow_q: queueScreate(}. 
sole_c. info_c, read_c, write_c: tr6wd$creata(}}) 

end wrap 

get_parent = proc (f: cvt) ret~rns Jdi~ectory} 
sign~ls (file_~JoJed) . 

enqueue f.fast_q until trowdSeinpty(Csole_e") 
join f.info_c · · · 
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return (_fileSget_parent(f .f)) resignal file~closed 
end 

end get_parent 

get_name = proc (f: cvt) returns (str.ing) 
signals (file_closed) · . .. . 

enqueue f .fast_q until crowdS*..Pty(f,SQle~c), 
join f. info_c " · 

return (f .f.name) resign~l ftle~~'ose,d. 
end 

end get_name 

get size = proc (f: cvt) returns (int) 
- signals (file_cl~stdf' · . · 

enqueue f.fast_q until crowdSempiy(f.sole_c) 
join f .jnfo..,c . 

return -Cf~ f. size) res1gnal ril~-~10-.ed 
end · 

end get.size 

is_open = proc (f: cvt) returns (bool) 
enqueue f.fast_q until crowdSempty(f .sole_c) 
join c illfCLC . 

return:(_ f fleS h_ open ( t. fl) 
end · 

end is_open 

read_page = proc (f: cvt. index: int. •: pag') 
signals (file_closed. bou~ds) .~ . 

enqueue f .fast~q until crowdSempty{f:sole_c) 
& crowdSempty(f.write_c) 

join f.read_c 
_fileSread(f.f. index. page) re~.19~41 file_closed, bounds ,.,,d ~r,;o,-~-

end reld_.:.page 

write_page = proc (f: cvt, index: int, p! page) 
signals (f ile_cl~sed~ bo6hds) · 

enqueue f.slow_q until queueS,napt~(fc!r.,st~q) 
enqueue f.fast_q ul'.'til crowdS(!"'pty(f.sole_c) 

& crowdSempty(f .read_c) & crowdSe1iptj(f.write_c) 
join f.write_c · · 

_fileSwrite(f.f. index. p) re~ignal file_closed. bounds 
end 

end write_page 

close = proc (f: cvt) signals (file_closed) 
enqueue f.slow_q until queueS~mpty(f.fast_q) 
enqueue f.fast_q until crowdSempty{f.so1e.;._c) 

& crowdSempty(f .info_c) & crowd$eapty(f.read_c) · 
& crowdSempty(f .write_c) 
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join f .sole_c 
_fileSclose(f .f) resignal file_closed 
end 

end close 

add_page = proc (f: cvt, p: page} 
signals (file_closed~ no_:rOOll) 

enqueue f, slow_q uatil ·queuelftmpty(f. fast....:<J} 
. enqueue f. fast_q unt i1 crowds.lpty{f. Wole_c) 

& crowdSemptr{-f ,.<tn-fo::_:c) • 'C~ty(f\ r&ad~c) 
& crowttSe•tt{'f. wr'fte_Cl · · 

jofo f. sole_c 
_fileSadd_page(f .f, p) l'Nig.nal fi1a_olend, no_~oom 
end 

end add_page 

rem_page = proc (f: cvt) 
signals {file_closed, no.:..:roOtR)· 

enqueue f.slow_q until queue$empt1(f .fast_q) 
en.queue f .f'tst..:_q until cHMtHIS'eilptY(f .'ff1e..:..cl 

Ii .. crOwtfhltpty~fH'nfo_c)''li cro.tlitapt)if.tt*d._cil 
& crowdSempty(f.write_c) · 

join f.sole_c 
_fileS:re11_pa9e(f-. f, · p} resional fHe:::_c:losed, no_r-o01t 
end- · 

end rem_page 

% Note: called by _dir$delete 

delete = proc (f: cvt) 
signals (file_open, f11e_delettdt · 

enqueue f .slow_q until queue$entptyff~fast~q1 
enqueue f.fast_q until crowdSempty(f .sole~c' 

& crowdSempty(f .info_c) & crowdSentpty(f.read_c) 
& crowd$e11pty(f .write_c) · '· 

join f.sole_c -
'%Note: use hidden _fHtiSdetate,operation 
% to delete contents of file. ' fil'eSdelete is 
% only·ttsed.;,'ly•JJtleldftlete'• .-., :;,. 
_file.Sfleflteff; I. '1~t restgttil rne_.'..epen, f ile_deleted 
end 

end delete ' u'. . 

end file 
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Figure 11. Directory serializer 

directory = serializer is 
root, 
get_parent, 
get_name, 
is_open, 
get_size, 
info, 
next, 
open_private, 
openjWblh:, 
open_di r, 
close, 
add_dir, 
add_file, 
delete, 

% get root directory 
% get parent director~, 
% get name of d.irecJ.i)ry , .... 
X test open ... ne&s of dir,ec:to-rj 
% get #: 9f entr~es: 
x, return j.flfo abot,t;t ,....,.... •-'tr1 r , , 

% get next entry RUIJ ~•fitU ·tt~ •nt.ry 
x open file for sole use · 
X. open ;fi1e f:Q-r •Jtar.i~g '· 
x open sub-directory 
'X close this directory 
X add new sub-directory entry 
X add new file entry 
'X delete named •Jttry, 

'X The wrap operation can only be- ~ff bJ fJMt _dir•ct·ory .cJ~ter 
'X to turn a _cH.recto,,-y "'"'t. 'into< J dj••ct"'Jt;u.Na:lher object. 
wrap ... , . 

'X The. os>eratioH can"be split .i.-to Jix cl .. fll. ckitfending on 
'X which ope rat ions can overlap in execution· with whicefl- ether 
'X operations. 

X - .Class -
'X Root: 
% Fixed info: 
'X Variable info: 
'X Opening: 
'X Sole: 

'X - Class -
'X Root: 
% Fixed .info: 
'X Variable info: 
'X Opening: 
x Sole;. 

- Overlap -
Root, Fixed, Variable, Opening, Sole 
Root, Fixed, Variable, Opeajag 
Root, Fjl'e!I.- Var.table 
Root, Fixed 
Reot 

- Members -
root 
get_pat"e11t,. get..:.natMH.· ia_cu~~tn. get_s ize 
info, neAt . . , . . . . 
open_privaJt•.; Ollf@.4toblic f,.,e,peq_;.cllr 

"close. ad4i~cUr-. •ctd_•n~.,;Ml•"'· 

rep = struct[slow_q, fast_q: queue. 
sole_c, open_c, var_c, fixed_c: crowd, 
dir: _directory] 

'X The wrap procedure is used by the _directory cluster 
'X to turn a _directory object into a directory serializer 
% object. This operation can only be used by the 
% _directorySroot and _directorySadd_dir operations. 

wrap = proc (d: _directory) returns (cvt) 
return (repScreate{dir: _d, 
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end wrap 

slow_q, fast_q: queueScreate(), 
sole_c, open_c, var_c, fix_c: 

ci"owdUr•ate()}) 

root = proc () returns (di rectory) 
% note: :_dfrectorySroot,uses the wra~ operation 
return (_directorySrootff) ,,,.\ ' :<: •. :<.·i;; 
end root 

get_parent = proc (d: cvt) returns (directory) 
sign,Js (none, dir_closed} 

enqueue d.fast_~ Until CrOWd$8Mpty(diS0182C) 
join d. fix_c · -:. · · , 

return (_di rectorySget parinttd~dii"H-
resignal none,·dir~tffdsfdt · :, .. 

end 
end get_parent 

get_name = proc (d: cvt) returns (string) 
signals (dir_closed) 

enqueue d.fast~q until crowdSempty(d.sole_c~ 
join d. fixer:t_q 

return (_dlrectorySget_n1111e(d; di rll r&s)gnaL di r _closed 
end · ·· · ' 

end get_name 

is_open = proc (d: cvt) returns (bool) ···''· 
enqueue d.fast_q until crowdSempty(d.sole_c) 
join d. fixelt::_'c'I :,, · ? 

return (_directorySis_closed('ct~dirt) · : , . 
end 

end is_open 

get_sfze ,,;. proc (d: cvt) returns (iiftt} · 
signals (dir,,_closed} · · 

enqueue d. fast_q untH· crowd$Mpty{d. sole_c) 
join d.var_c · ··> · 

return (_directorySget_size(d·.dirH res'.ipaJ dir closed 
end '-'. 

end get_size 

info = proc (d: cvt, name: string} 
returns (bool, int, bool) signals (none, dir-_:clos.,d) 

enqueue d.fast_q until crowdSempty(d.sole_c} 
& crowdSempty(d.open c) 

join d. var _c - c \·" ,, 

file_ nes s: 'boo·1 , 'size: ·int, op8fl _'.ne'ss-: booli · 
:= _directorySinf-o(d.di1"} r.esignal dir_clo.sed, none 

return (fHe_:_ness;·· size, op'en_'fleiss) 
end 
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end info 

next = proc (d: cvt, na11e: striAQ) returns (string) 
signals (none, dir_closed) 

enqueue d.fast_q until crowdSempty(d.sole_c) 
& crowdSempty{d.open_c) 

join d.var_c " ;·. . . , 
return (_directorySget_next(d,di~U:, 

resignal dir_closed, none'' 
end 

end next 

open_private = proc (d;.cvt. 1181181.l~~:ing) r•t.ur.n~;:(file) 
signals (none, opened; dir_closed) 

enqueue d.slow_q uaiil que11aS"""ty{.~:;:f~•t .... q) 
enqueue d.fast_q until crawftS..,tr(4.sca.1ft •• c)_. 

& crowdSe111>ty(d.open_c) · 
join d.open_c 

return (_directorySopen_private(d.dir, naae)) 
resignal di r _cloaect. none, loc;t,d, 

end 
end open_private 

open_public = proc (d: cvt, JUlll9:· strjqgt returnis 1file) 
signals (none, locked, dir_closed) 

enqueue d.slow_q until queueSempty(d.fast;.,;.q) 
enqueue d.fast_q until crowdSemptJ(d.sola_c) 

& crowdSempty(d.open_c) 
join d.open_c 

return L.directorySopen_public(d.dir, n ... )). 
resignal dir_clos.ch: none. 1~" 

end 
end open_public 

open_dir = proc (d: cvt, na•: s.tri:nt) r.elurn~. (directory_) 
signals (none, dir_closed) . . .. 

enqueue d.slow_q untU queu•~~(.d.fas.~q.) 
enqueue d. fast_q unt i1 crowdSe11Pty( d .sole_c) 

& c rowdSellpty( d .. open_ c) 
join d.open_c 

return (_directorySopen_dir(d.dir, naae)) 
resignal dir_closed, none 

end 
end open_dir 

close = proc (d: cvt} 
signals {dir_closed, open_entries) 

enqueue d. s l;ow~q unt 11 cp.a~ueSeltPty{.d. fas.t~q.) 
enqueue d.fast_q until c.rowd$emptf(d.:so.1e.-c) 

& crowd$e11pty(d.va·r;.;.c) •: crowdSetRPlJ(d.,f.b_c) 
& crowdSempty(d.open_c) 

- 165 -



join d.sole_c 
_directorySclose(d.dir) 
end 

end close 

resignal dir_closed. open_entries 

·.add dir = proc (d:·cvt, name: string; 
signals (no_room, duplicate, bad_name, ~ir_closed) 

l ne-te: _directarySadd_d4-.f< uses ·-flte .... ap ·op.e.atiea 
enqueue d. slow_q unt i1 queueSe.mpty( d. fast.,..,q) 
enqueue d.:fa~C;;..CI Udt.iiLC'~d;.;set.e..J.c): 

& crowdSempty(d.var_c) & crowdSempty(d.open_c) 
join d.sole_c 

.:...dir,cJ.oryS~dd...:,.dir(d.d,ir) , ·. 
· resignal no_room,· dupl fcate. bad_name; dir_ctosed 
end 

end add_dir 

add.:...file :. proc {d: cv.t. naM: &~rfog) ·' 
signals (no_room, duplicate, bad_name, dir_closed) 

enqueue d~.s:low:..._q .uJttH· queucr~»(A,fa'\.Ll,Qt,;~' 
enqueue d.fast_q until crowdSempty(d.sole_c) 

& cr~Sen,p~( d ;var~c) .i., ~r~~.,.,_lY(•. ••"-~ >­
join d.sole_c 

J1 irec·tor,ySadd .. ..f i le{ d. d j rJ . . 
resignal' no_roOll, (fup1 icat•~ f>a<l_nadt4f, :dir_closed 

end 
end add_f ile 

delete = proc (ct: cvt·. natne: strittg) 
signals (none, opened, dir_closed) 

en.queue d .• ,slow_.:.q unil queue..,tJ(d.•fAs\_q) 
enqueue d.fast_q until crowdSempty(d.sole_c) 

& crowdJ~W(d.v~,.~~),.fr ~'l'~-..~{d .. fb_c) 
& crowdSempty(d.open_c) 

join d.sole_c 
_directorySdelete(d.dir) resignal dfr_c10sed. open_entries 
end 

end delete 

end directory 
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To distinguish between the data abstractions and the seriOlizer,abstnctions of 
' ;.., ' ~ ~ j : ::..: . ~· :· ::). ~7 ,:j • ~ ··; \~. - > 

the same interface, we will use the names directory and file fdr' :the serializer 
'! ~ ?,"j J ~o '' 

abstractions, and _directory and _file ror~· ~ta~~ clbe·: u~r, i": A-."!:~~tiple 
• . . ., ; . ,, :,·· :' -· > . ~·. ~ .•. i '. (!'.!tl >·,· ·.::.- . • • 

process system WOJJld • ~Y ~ allowed to ~ titM. ·.QllfraPio~ oC ,~ $Crializer 
' - . .... : 

abstractions, which would ~tiljze the~die· ·~-~- '. .·, 
.. -~, " ·_; ' ... - . - ,_; ,_, t ~ .: \ ) : ·~. -~ .. t'; '.. , ,.-. 

In the above twu ~rializers, there a~ ~1 •. Jf ~na,qn(that am be strictly 
" '., ' • ·• . i ,. - ' • ". - - ~ - ; . . .. :.- • 

ordered on the basis of the execution of any operation from one:·~~· ~~ding the 

execution of any operation from anotQ~I' class. The-0rder.is: {ronl .mpst pemtismve to 
; : . i,.: ~:t '.: :.,, J < - '.; - ! ' .) : ) • ~-

least permissive, with opemtions ·Uta". retufttcw.fonhation ~mlly ~ng.· the most 
: ! ~ -'> ~· ~ ' • r, -, ! :: _: > ~ 

permissive, since they can &e · executetf-·eoric1.utently. lllis <>«tering allows us to 
! ~ ;.,; -. '""; ' " . - : l 

construct serializers t~t foJ\Qw the g~,nera,J;p1fi»· dftb~ ;~writers' J)roblem. If an 
' - . . .,. ~ t : ... '. :.. ' ' '· ~ ~ ' . ' ' • ' 

operation can '!xecute concurrently with another invocation of th~,~~ .. QJ>e,ration, it is 

considered to be a. reader: otherwise it is.ia:writcr •. ;jp ·tt\Q Al:>o\lei ~rialjzers. ,we have 
~] F . ·' ~c,, , '~" f~ "· ~ 

adopted a readers priority approach. ·wtth:1M :itdonnbtion gathaing!.ot>emtloas having 
• I 

higher priority. It would be·equatty·eor-reet io~adopf a1 Ff.FO'"~ or a ·writers 
. • ! :1 ' ---~ :·,: ':.· 

priority approach .. but different perfonnancewould ~It 
. . . - ~ 

The n.-strictions on simple serializers must be relaxed slightly ~ alk>w us to 
ii'. < ; ,-.,">: 

write the file and directory scrializcrs. The most important addition is the exception 

mechanism, which includes a signals clause in the opcmtion interface and a resign-di 

clause at the end of any statement. lbis addition docs not greatly add to the complexity 

of our model. since we only use the exception mechanism in the same manner as the 
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return statement.19 

We retain the impmtant limitation, which,~ to r~turn or signal directly after 

·invoking the operation of the data abstraction. Th~ other ~dition .is. to allow local 
. ~}' '.' . - , . 

variables, which we use.in directory$info to hold the results, o[.lql invocation that returns 
. . . ~ '"':. ! ~- J. 

multiple objects. The effect of.this addition is .. ~ n;iinor. sine~ we immediately return 
. . . - ,; 

th~ results unchanged. 

7.3 Specifications for file and llirectory serializers 

The spedficatiQns ,for the file and. <JifeCtOIJ $CriaJ~iers are simil~~ to the 

readers priority readers-writers problem. Therefore. we . will ;only present illustratjve 

examples, rather than full specifications. One 1.1seful abbreviation is to use the first 

letters of the operation classes, rather than the operations, io name. transactions. This 

gives us the fo11owing transaction names for file operation classes: 

I: an Info class transaction 

R: a Read class transaction , 

W: a Write class transaction 

S: a Sole class transaction 

For directory operation claSSt.."S, we can use the i~'11C} .~cution~ l."X.Cept .t:Atat the 

19. In Cl.U. when an operation signals an exception. the invocation tenninatcs. and the immediale 
caller is given the opportunity to hm1dle the exception. /\ cmnmon ~tf1nd hf handfmg' an cxceptiutristo 
reflect it lo yet another level via resixnal. An invocation that signals an exception is not resumed. For 
IUrthcr details. sec (I .iskov 79a}. 
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transaction symbols have the fo11owing interpretation: 

I: a Fixed Info cla~ transaction 

R: a Variable Irifo transaction 

W: an Openitig ct~·transacdon ' · 

S: a Sole cl~ transactic>n 

-;,, 

In.the remainder of this Section we use the:daSs'namesOftbe·ftle· setlaliter (Into: React 

Write, and Sole) with the understanding that the remartS:._~: applY° fu 'the1 

corresponding directory cl~. 

The most important specifications are those that relate to the exclusion of 

certain operations byottters. lfthese,:specifkations ~violatedwe-ebWlininv81id result 

vatues. The complete-exclusion specifJCations ~: · 

I-join < S-join :::> I-leave < S-join 
R-join < W-join :::> R-lcave < W-join 

R-join < S-join :::> R~leave < S-join 

W-join < R-join :::> W-leave < R-join 

WI-join< W2-join :::>WI-leave< W2-join 

W-join < S-join :::> W-leavc < S-join 
S-join < I-join :::> S-leave < I-join 
S-join < R-join :::> S-lcave < R-join 

S-join < W-join :::> S-leavc < W-join 
Sl-jOin·< S2-joitt:> Sl~ <'S!;.;join 

A number of priority specifications might be proposed. The readers priority. 

~"Citication used in Chapter 6 is: 
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Wl·enter < W2:-enter <RI-enter< ·Wl-join :> R l•join < W2-join 

The same specification ctause'.holds for the-fHe rurd.ltiredbry serlafizers. To give more 

complete priority specifications,· we introduce two new cla~. of transactions: SW, 

which contains all Sole and Write transactions; and IR, which c0ntains atl Jnfo' and 

Read transactions. Using these new classes, the priority speciticatidn t>~lties: 

SWl-enter < SW2-enter < IRl-enter < SWl-join 
:> U~l-join (: SW.Jrjoin . - , , , . , 

The following specifrq1tion specifies ~ncurrency for: Read tran~c;tions, _and is 
' ' - ' - "': ·. . ,• ~" , •' ;" 

a slight adaptation of the concurrency specification in Chapter 6: 

R 1-enter < R2-enter < RI-leave 
& GX(R 1-enter~· R2;.efttbr, Wt.:entet) 
& O*~Ril "mter., Ra-enter, S~enter). ·.: · 

:J R2-j9in < R 1-leav.e ; 

The difference lies int.Pc-addition of the exclusionp('*'J'. ev~D~frQ~ the Sol~ cl~ of 

transactions. The above specification can also be proven for Read and Info trans;ictions 

by substituting R for R 1 and I· for R2 to get one clause, and I for R 1 and R for R2 to get 

the other. Finally,; the following specification ind'icateS;wh~fe a'Wtite -transaction must 

overlap with an fnfo' transaction: 
' j 

W-cntcr < I-enter< W-leave 
& GX(W-cnter. I-enter. S*-cntcr) & GX(W-cnter, I-enter. W*-enter) 

:> l·join < W-leave 
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The service specifications are as simple as:i>f·dle readers~cit'ers prt>btem: 

each request must receive a reply •. fie service.spetj(~'-l~,~:. 

@I-enter::> @I-exit 

@R-enter ::> @R ·exit 

@W-en~er ::;,_@W-exit 
@S-enter ::> @S-exit 

We have shown that the specifications for the tile andidirectoty1eriaJiZets are 

similar to the readers priority example used in Otapter 6. This may not be surprising. 

since the problems 'and 5olutions'are' simi1a{but tbe 1 lac\"gr;stith')~'surpri8e & precisely 

one of our goals. 
,:, -

}> 

One point about the specifications ~a~ we ~ye di~~~,-ed mroJ.IJh,the:above 
' ·-· ·- ... ,,: .. - .. - ~ . · .... : ~ : . -

example is the usefulness of dividing the OJ~ion\?lntcttddstest·:aad :pttwiditlg the 

specifications for the classes rather than for the single operatio1ls: Using Cl~.;onented 

spetifieations promises to provitle more-Concise~: wfrittl retnininif the 

precision we dcsi re. 

The vcrific~tion techniques we. discu~ in Ch;tpter 5.,and, Chapter 6 ~main 
• • .-· ' - < - '\ ; , • ' " ,: ; • ;- - : 1 •. • i l . '. : ~ ~ - ·. ~ • ' : : .• - ~- ~ • -

valid for both Lhe file and directory scrializers. The only .ad~ition~ we would make 
- ~ ~ .. . - ' , . ·. . . 

would be to introduce claSSl.'S of operations into_ the verification as we have for the 

specification. When two scrializcr opcmlions are suffidl.~tl/ sifuilai it should be 
. - ~·' ,. .· 

~ible to use the proof of one in the pr<XJf of the other. as , is. t~ c~ . fpr- file 
"' ' j. f·~· ·~ ' , ' !·' ' • 

operations in the same spccific-Jlion class. We will not propose techniques for 

determining how much similarity is sullicicnt. aJthough we regard the issue as being 
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worthy of further research. 

In a system where data abstractions are used, we believe it lik~ly that some 
• J . 

library of abstractions will_ become useful, and eventually indispen~ble. Further, we 
, •. - '! ,, • 

consider it likely that· many ·of these abstractions will be initially designed for a 

single-process environment 20 If we are to use these data ~~stractions in a 

. multiple-process environment. and the corresponding objects are to be shared between 

processes, we can either rework the abstractklfts>·fi:>f that putpese. or we can· provide a 

mechanism for controlling concurtent- actess that - requi'tes' ·1*> "change to the data 

abstractions; The ·serializer construct was designtd ·aJOnt the' latter•lines. This section 

discusses how that approach could be made-largely a'Utbmatic. 

As a first approximation, we assume that each operation has exclusive use of 

the resource, then introduce serializer abstractions as replacements for data abstractions 

in order to permit concurrency while prohibiting co#flict'ahd'cleaelock. ·This is a sifuple 

strategy, and is not intended to CQVer all situations. alU\Qualt. w~ ~ieve it t<> be an 

important first step. 
' ,. 

When a serializer abstrnction is substituted fora data abstraction in a program, 

yet the data abstraction is retained as part of thedmJilemeotation 'Of the serializer 

20. Even if for no other reason than programmer inertia. 
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abstraction, we may be faced with problems that result from ha\ling·two.abstractions ia· 

the place of one. If we wish to integrate a newly serialized abstraction into a system that 

has been created with the old data abstraction, ~!Qle.4'.~ ~~ !Ql~cPa~ .~ wil~ · 

allow the operations of the serializer abstraction to be substituted for operations of the 

original abstraction in old user programs. If the interface to the serializerabstraction is 

compatible with the interface of the origfo·a1 data abstraction, and ;ooth abstractions 

have isolated representations, then this linkage mechanism allows graceful upgrading of 

programs that use the original data abstraction. 

However, the.· representation of the original data abstrac~. is exPQSed to the 

operations of that data abstraction. Here tlM; ,pJi~,W:the. .al ·abstraction is fll9re 

ditrtcull In most cases. we expect that an,,~toma\ic "rewrite" pf -tht! data abstraction 

would be easi~y made by a program. if we caU. the: type introduced by the. data 

abstraction DA, and the type . introduced by the serializer abstraction SA, then the 

following rules allow such an automatic rewrite: 

*Occurrences of DA in the cluster for Ot\ are c,hange<l,.to. &A. includ!ng 
occurrences of DA in the interface of operations of OA, provided that 
they do not result from uses of ct&: Th88, a · romponcnt of the 
representation of DA that was an object of type DA would bt.'Come an 
object of type SA. In the file system example, this would be true for the 
case of the gct_parcnt opemtion of the directory abstmction, since the 
gct;_parcnt opcrJtion of .,...directory (DA) mu$ return a directory object 
(SA). and not a _directory object (DA). This is also true of the 
open_privnte, open..;p11btk, und' open_dir opemtions. 

* Opcrnlions of DA that have cvt appearing in their_ headers must have I?A 
appear in the intcrfoce specifications where a corresponding cvt appears 
in the opcmtion header. Tlu.-sc are operatjunsJhat:.cxplicitly ucccss the 
rcpn .. -scntalion of DA. so a conversion of DA to SA is not reasonable. 

- 173 -



• 111e up and down operations convert betwee~ the representation and the 
DA type, not the SA type. Th is is consistent with the treatment of cvt. 

• We introduce an operation,, ~UtX! wrau, tq~;: ta~es a. DA object and 
returns a newly created SA object that encapgulates the DA object The 

. wrap operation is used to create a new SA object in operations that create 
new DA objects and need (due to our first transaformation) to use SA 
objects. 

If the above translation results in a type errorJhen the a~to111atic rewrite is not 

performed,, ~d a ma.nual rewrite must b~ perform~- Su~h:f,-.~· CQ~ld arise from an 

operation that accepted an argument of type DA,. tb~n .e~pli,citly used down to attempt 
• ""~_;! ;,_~~ i" • ;o. · :t;; ; ~ 

to access the representation. The transfonn~on. )~'oukJ have, ~han~d the use of DA 
~ , • , • • < ' _c 

into SA, but the down operation would only wor~ (or an ob~t of type DA. and fails 
• • - ; r 'i - - -

(due to static type checking) with an SA object 

In addition, a data abstraction may have to be rewritten if it supports cyclic 

objects. If operatiof}s of DA call operatiQns of S~. whic~ in t'-'m call operations of DA, 
.,) - . • ' • ' - - . ' ,( - '· ,;. ~ #. ~ -•• - < 

a cyclic data structure. can ca~~ dea<J.le>ek l)y.haviJu~ :acces.s ff>.:~q, object ,being blocked 

by, an incomplete access to the same ob~t qy th# sam~ ,p1:uc~. Aq:essto cyclic objects 
' . 1 '. , • ' • •. . ~ ' • . .. ' ; ; 

is discussed later in this chapter. 

ll1ere arc two reasons to bc1ieve that a rewrite of the original data abstraction 

wil1 not be a difficult procc~ even if it cannot be done autonfatka1ly. 111-s(the amou"nt 

of detail to be changed is likely to be small. Ancr ialt the intc~t of the data abstraction 

has not changed. There is only the additional distinction between scrializcr abstn1ction 

and data abstraction. Second, we believe that it will be rare that any code except for the 
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im plcmentation of the seriamer and data· abstractions :will be allowed to use· the data 
~. .~ ; .- - {. - ~ "' 

abstraction. The intention of this tran~fonnation is to ~~ke 'the rest of the system use 

the seria1izer abstraction. Therefore, the rii.nnber of'Pt~'to be changed is als0 likely 
> •• ~ ' > 0 ~ • • '-

to be small. . ' 

In the file system example, there is a case where the use of the automatic 

splitting of types may provide serializers where none are needed. In particular, if the 
< ' - -·- > ,<.- .f .-

directory infonnation is· implemented using a'fite, then 'the'serializer·for the directory 

may provide surflcient proteCtion for ilie fite'bb'~t'US'ed'to intptetnem the 'directory;· 1n. 

such a case, the transformation from DA to SA would ptOvide·an· l.mn~ry level of 

serializer. · A rewrite· of the _directory duster . would. then be desirabfe to promote· 

efficiency. This efficiency argument actually wdl'ks'in favor«)f·oor separation 6f data 

and serializer abstractions, since if they were .inextricabte·, the 6ptiinization desctihed 

could not be performed. 

The above · rewrite process has ~n apptied to the _me and _directory 

serializers. In particular. the · · operation~: i .Jltfccto..YSdf>en_private and 

_directory$open_public now tetom ·file ~j~ whicl\'1 dte''Sli'ppcirtcd by the file· 

scrializcr. Further, the operation _dircctory$open_dir reu.1rns a directory object. which 

is supported by the directory scrializer. The ~rap ppemtio11s, shown in the file and 

directory scrializers are m~ed to enclose a _file or _directory objt.'Ct in a lilc or directory 
- • ~ • ~ - ,f' • 

scrializcr. The wrap operations arc uSt.'d whenever a new _me. or _directory object is 
- ' -' :t ~ -' ; 

created. 
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Jn any reasonable implementatibn·ofthe,.._director)SrduSter there wiU be a list 

of the open files and child directories1 for ,any ..;.directory ,;objel:t . kt this case, the 

automatic rewrite we mentioned ·above Jnfol105 us of a type iconflict the list of open 

files and directories must. be fOr the file and mectm'yr objects suppo~. by, the 

7.S Htgher·level transactions 

·Suppose procedures P and Q use operations on a shan~~ dataobj~t X of type 

T. We have recommended that a serializer object should be introduced for X to ensure 

that the operations of T performed on X do not interfere with each other. However, the 

user may intend that P and Q do not overlap. The serializer for object X does not 

enforce this r~striction. One solution is to introduce a further encapsulation of X in 

order to perform operations P and Q such that they do not overlap. 

A difficulty with the introduction of further abstraction levels is that the 

designer of a system may not know how the user will be using the system, and cannot 

provide the appropriate abstractions in advance. This inability to forecast is certainly 

present in our file system example, since the user may wish to have a process perform 

several operations on a file (or on several files) such that no other process will access the 

file (or files) while those operations are being pcrfom1ed. The file system example 

provides no solution lo this problem in general, although we can attack certain special 

cases. 
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· A limited solution to the·aboVe.problem·Gfl1~'adtkwed:.Py:adding a new 

operation. upda1e, to· the •fileJ1efialimr. The text<>fthis.$mtioo. is1showa. in Figure J2. 

The update operatioa· perfomts a sequeacc~or ireaa~lJf)eimioas.onra filet:· then perf~,a 

C0ffiputati0fl supplied as a procedare by,m.:-usen~Alail supplied·:\ty: the:~, then 

performs a sequence of writes on· the SIU8e Jile~1',,Jii> oon:shlfp~e,;iOklfiqn. ·the entire 

update operation is perfonned without allowing overlapping reads or writes on the file. 

If more concurrency is de8ired, update operations that do ~~y~9vprl~~n1.se~ 9€ 

pages can be permitted to proceed in parallel, providing· that the underlying _file 

abstraction will perlnit this. 
{ i ;- . " . 

- ;~: ,,- ~ ._ 

) . . ~ 
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Figure J 2. Update operation 

% The update operation is intended to perform a sequence of 
% re:cads, an art>•tr-iry comst11ttatton:. "4 4;J•<w~tt cf(<W,_f!~;te•:­
% The entire procedure should executed without overlapping 
% other wr:it,e, °"rat tons. ·O&:\-ot.be,r, upp\e .APera:-Uons~ This 
% procedure resignals' an error on' r.88.dfog or· wr'itfng, or an 
% abo~t error fr~ -~h•, arb, JlrQ~ed~·f''·- :>.~" ~rro.r,.,~~·~- _is 

-% res1gnalled after the first wrft'e bas1>een (tnfshftctwill 
% leave the writes only partiAlly completed. 

· , : ·· J.~~·-si!;-· ~· .~~ r· 

update = proc (dt: type] , 
(f: cvt, reads~ writes: spair, a.rbi_t,p.t, datu dt) 

signals (file_closed, bounds, abort) 

pair = struct (pgnum: int, pg: page] 
spa i r = seque,nce E~tr] . _, -. , . . . • , .•. 
pt = procty.pe (dt, spair, spair) signals (abort)' 

% wait for write access to resource to be OK 
enqu1tlfe- f.stow~~ und1 rqueueuflt)tyv(f.·f.-at:...'t' 
enqueue f .fast_q until crowdSempty (f.sole_c) 

'·;tr '¢,;t°"dllillpt,Y11(if; •• ;~j~) 
& crowdSeapty (f .read_c) 

% join the crowd to show that we are going to write 
join :f .wr,1Je;,_c 

% perf~qn_ th~. ~e~~'~ in.tp tfl~.rp~ve~ ~mo-_J .• 1_. pag_e_._,~.· 
% from Ute gtve·n ·rne -pad~s · "' - · · · · 
for p: pair .in spajrSel,ements(reads) do 

_, Hesread(t'. r. 'p. pjm..:.11 pi pg) · , 
end 

% perform the arbitrary computation 
% (modifying the given memory pages) 
arb«_itat_;t,. refl#s, writes} 

% perform the 1trites fr°lll .the giv~n, memory pages 
x into the g i'ittif· fHa page's , ('; '' >''Li'·: • 
for p: pair in spair$elements(writes) do 

_:fif6SW'4+tttft ~~r, .9:1pghu.it, ~tt'•P1> 1 ~· 
end 

end resignal file_closed, bounds, abort 

end update 
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8. Conclusions 

In this thesis we have been concerned with verifiable control of concurrent 

access to resources. In this pursuit we have. presented . a .'tangunge · ·comtruct for 

controlling concurrent ~. a de~tnitio11 of .the, .senuµ1tics of this construct, a 

specification language for describing varieties' ofoonclirrency-'control for instances of 

the construct, methods· .to verify that instances of ·the construct satisfy their 

specifications, a program for perfonning this verification automatically, and a 
')-t 

discussion of some of the interactions posmble between rmsmnces {jf this construct 

In separating the control of concurrency from ,the data ~. we have 

attempted to apply this sel>aration to the programming l~nguage, the semantic model, . . 

the specifications, and the verification system. The objective has been to modularize 
.< 

the construction and verification of programs involving ooncurrency. By this 

modularization, the· problems associatea with wn$lrl.lctiPn Jlhd ·. vcrj fieation become 
. . '._- ' . ' "'· - :.• _,:;' .· 

more tractable. The results· of .our .. -th indicate that; this. modularity can be 

achieved, at ]east for the simple serializers we have discussed. 
\,_ ·." 

tn this chapter we discuss how extensions 10 seria1izcrs ll..'Quire extensions to 

our verification techniques. Most of these. cµen~~~ regµire ~gnificant further 

research. Then we present closing remarks to sum up the oontrihutions of this thesis. 
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8.1 Verification of serializer extensions 

In this section we briefly consider how extensions to serializers affect our 
- . 

semantic model and verification methods. lbis. is the area where further research is 
..,- l ' . -

most necessary and most difficult Our success in verifying- simpfo serializers' can be 

largely attributed to the limitations we have imposed. We believ~ that further success in 

verifying concurrency controH~ in selective ~1-.ation of theBe limitations. 

8.1.l Adding boolean variables and boolean expressions-_ 

To add simple boolean variables and boolean expr~ions to serializers 

requires the fol1owing changes to the semantic model: 

* The nQde graphs ll,J,Ust pe exten,cl~d 1-<> hf\n<U~ ~~c.Iaratio~ <;t11d as_sign~ent 
of boolean variables. These variables rriust '. nlrt.ner lx( Cfffiti~gi.tished as 
either local variables, which are instantiated Oft: ~~; g~;, ~ 
global variables. which are components of the scrializer representation. 

,- - ;. ~ ~ ) ~ ' ( ~~ ; ~- :t ' ~~~ ' 
* The semantic equations must be extended to handle evaluation of 

boolean exnrtlS)i~ ll1is will r~r,¢'~~i3'}J19,fo~~1 ~to~,7~·f9,f ~ 
last assignment to any boolean variable. · One of lhe most nnportaht 
changes-to cvnluattdn iscthanwattilh0r14M5tatb pt.ar!trin ;tire ronte~tof a 
transaciion.since, cxpr~ions rnay involve local variables. 

·-:' ' ' - ,,_' :· / 

•There m11st be some·.indication of the initi;il· state.Qf,a ser~a~cr.objcct 
'rnis is easily accomplished by representing the scrializcr slate as the 
rcsUlt ofsome initHtfi assignntent~no reJ)resoflt•ro.tcbnlrxments-. 
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To illustrate the kinds of serializers and .erifteations tJtat:a~ possiblewith·the,. 

addition of boolean variables, consider the case where we are limited to boolean 
:, . ; 

variables as part of the representation, and the onl1. le~l. ~l~n expr~~ns are true, 

false, and simple components of the representation. As an example, we present the 

following abbreviated serializer: 

xop = proc (x: cvt, ... ) 
enqueue x.ql until x'/lt'li crowellempt.J.(x~c) 
join x.c; ~ •. ; end 
x.b := false 
end xop 

yop = proc (x: cvt, ... ) , " '<t: 

enqueue x.q2 until -x.b & crowdSempty(x.c) 
join x.c; ... ; end 
x.b :• true 
end yop 

G· • 

Suppose that x.b is initial1y true. We would like to prove that the number of 

executiol)s of~op is equal to or one ~eater tt)Jti'th~ntmiSerbf'eiecutions of yap. This 
: ' ' • ' ~ f - ·. - · .• • :" • ,, f L .• • •• .: ,·: < ~ < .} 

specification· OOnld be written ·~ 

(#X-exit = #Y-exit) I (#X-exit = #Y-exit + 1) 

lnfonnally, suppose that the above specifrcitfiot't is: not ~tisfted~ and that it is 1 due to . . . 

;~~ -~ :;~ .'r:::-_'.:j ·-~;~.. ·:·:•; 

#X-exit > #Y-exit + 1. :rben there must;OQ;_two:e~ts-.X?l~iit<.X2~it that occur 
·- - . ·• ;t.,, 

without an intervening Y-exit. Note that the x.b is set to' 'ralSe after 'Xli~v~. and 

remains false until after· some Y-lcnve. If. no such Y-leave event occurs;. theft the 
~. _., ~ . 

guarantee remains false. and X2~dcqut.-ue ~Qn~;oc;cur •. ~~1;~re, there :g!~ be no 

such events. To prove that #Y-exit cannot exceed #X-exit, we note that the only way 

that #Y-exit could exceed #X-exit is for the initial exit event to be some Y-cxit 

However. we assumed that the variable x.b was initially true, which prohibits 
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Y "'Clequeuei from occurring. 

The addition of boolean variables provides additi~l information about the 
' . . ' ~ . ( . ~ ., 

, ".. • -· 't-~ 

past execution of operations. As the 'above informal proof shows. the semantic model 
.:j 

can capture this information as well. Extending the verification rules to handle such 
.~ .. ·" : 

situations is left as a topic for fltture researdt. 

8.1.2 Conditionals 

The addition of boolean variables and exp~ions is of limite_d 'Usefulness if 

the only teSt of a boolean exp~ion re'1ainsjlimited .t&'tlw gu~tee.-0n a queue. 

Another extension that can.bemdded at this,~ 'eondition'1lstattrments..with the 

form 

if expression 
then body_oLstatements 
else body _oLstatemenis 
end 

The ·else part is optional. In the St.~aritic rfitJdd:\Ve nt.'Cd'tointrooure a new kind.of 

node. the if node. 111e if node tests the testtfts''()f the' ~ eK.p~n '.(we ·WUI 

discuss a more gencrnl model for evaluation below). and conditionally executes the 

appropriate body of statements based on the result. The next node afier the last node of 

either the then body or the else body is the node that corresponds to the statement 

directly following the if statement By the introduction of conditionals, the 

"node graph" has become a true directed graph. 
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Although the modelling of conditionals poses no. sc;yeF~ , cliff Ku,~. the 

addition of conditionals complicates the specification language. Consider the following 

operation (we have also relax~d our requireme~t rbr ~·sind:; c6~ffdence between 

serialize~ and resource operations): 

xct = proc (x: cvt, d: data) 
enqueue x.q until crowdSempty{x.,.c;). 
if dataScond(d) 

then join x.c 
resourceSfast_xct(x.res, d) 
end 

else join x.c 

ead 
end xct 

resourceSslow_xct(x.res, d) 
end 

What .event does x.-jom. dehote?c Th«:re· are 1JC)t:entially ·two.·different events. and the. 

event to oc~ur depends on ·the data p.-ntod'to !ht..gpcmtion~:. · . 

The solution we recommend is simple: for every test in a conditional 

statemen~ assume that the test evaluates to a particular boolean value (true or false). If 
~ ' ; .~ 

the specification clause can be verified for every permull\tiOn Qf the ·rondition?I tests, 
, : : ',' ; ~ ,.. . . - . . ;-

then it is verified for the operation. In the above example, we would effectively need to 

verify two opefa:tiQns; -00e W,ber~ d~ta$Qand(d~ .. )lt'.~;lr~ ~m~_atdy after the enter 

event, and ooe whf,!re ~d(d) was fal~! 
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8.1.3 Loops in -serializer operations 

Just as·conditional statements intr~c~ a,stlQ~~ity aP<>ut which nodes can be . . . . . . . 

executed, iteration and recursion introduce ambiguity about how often a node is 

· executed. The doubt is significantly worse, however, since the number of possible 

executions of a loop is not bounded. 

When a point in a serializer operation can be:~ many times during the 

execution of a transaction, an event is not just an execution ~f. a node for that 

transaction, but a partictJlar execution of that: node. We can·· adapt, the method of 
irt:..'. ' ' 

handling conditionals.to -handling loops by '4SSttming ~~~l.tµ" numbers. of iterations 

for each loop. If the specifications can be shown to hofd· for any choice of such 

numbers, then the specifications are verified, for~the operatioa as a wllole, provided that 
:·· .{ 

all of the loops terminate. Induction can be. use() by :~urning that the 'specification 

holds for some particular number N of executions around a loop, then showing that the 

specification holds for N + 1 executions (plus a basis proof for N = 0). In order to 

prove service speci fieations, an addition~ proof that each loop terminated wou Id be 

necessary. 
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8.1.4 Arbitrary expressions and invocations 

The introducoon · of arbitrary tip~ons- fhto -set:iafi~ers' ;has :the· tbtlowing 

efTects: 

• The semantic model must include arbitrary .tY,~. an4 .. values of those 
types, including user-defined types. · · · ··· " ' · · 

*The semantic··modCt most bef>rovided:witbev~ntsto.mark both the start 
apd the end of an invocation. 

' . ~ ·~ ' 

· • The specitkation ·language .must, be meraed, :With- a •rser specifacation 
language. Values must be named and functions on those values defined. 
ConcnrrellCy speciticatiollS~ ""data a~ti001 ,,.~ificat~· · tftd 
proced~1ral speciftcations may be mut~ally_ int~r~~llt 

•The serializer veriftcation system must .be joined ui a more general 
verification system. While it is our hope that the two kinds of verifICation 
systems 'ettn'belept mOdular, We have rfd-evitknee at thiS time to support 
this hope. 

With arbitrary expr5ions and invocations. ·some of the veriftcation 

techniques we have described may be invalid for some situations, some of which ar~: 

•Some invocations may not always terminate. If we use such invocations, 
then we must be prc11arcd to prove service where applicable. If we 
cannot prove service, then we are faced with a new potential source of 
lack of service: indefinite posst..""SSion of the scrializer object In tenns of 
our current model we would be faced with a finite complete history (since 
it would be possible for no further scrializcr events to occur) where a 
transaction would be in posSt..'SSion at the end of the history. Since many 
of our verification ruk.'S depend on 110 transaction being in po~ .. 'SSion at 
the end of a finite complete history, and 110 crowds being occupied, our 
tcchniqm .. -s arc not applicable where tcnnination cannot be proved. 'Ille 
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problems of combining our techniques with proofs of termination for 
invocations remain for future research. 

* If we allow side effects in the evaluation of guarantees evaluation it 
becomes necessary to introduce events to model the beginning of such 
evaluation, and to indicate the order in which guarantee evaluation is 
performed. 

*Recursive operations provide one more problem. When we assume that 
an invocation used by ~ serializer terminates, and thereby prove service 
for the serializer operation, such a proof must not be circular. If the 
invocation termination depends on the service proof, then the service 
proof is not valid unless one can prove that the level of recursion is 
bounded. 

All of the above issues are left for further research. 

8.1.5 Priority queues 

The monitor construct presented in [Hoare 74] permits the use of priority 

queues, which obey a "first in, best out" discipline. A serializer example that makes use 

of priority queues is presented in Appendix II l. 

In using priority queues, we do not (usually) wish to allow the addition of 

requests to a queue to indefinitely postpone the progress of earlier requests. For the 

disk serializcr we can prove that the request operation guarantees service since, when we 

are serving one queue, its size decreases with every fulfilled request, and we assume that 

the resource operation terminates. 'll1erefore, the queue being served must empty, the 

direction must change, and the other queue becomes the served queue. Another proof 

of service can be based on never adding requests to a queue at a priority number less 
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even if we allow a bounded number of requests to be added at a lower or equal number 
. )". 

priority. _.·_: .. 

8.2 Closing remarks 

I . _;·-~,~g~ ~V ,.).' : ~ _,'. 

· . This theSisdms:-:presented:ia~:wid,e•,lllDIC at\i.,.,:of:!Ji·:sinlle language 

construe~· ~ludi~g:.;pr~iJ>,&. ian&"iaF:··~~'':;~~··~oi\s -.for 

programming languages, and verification techniques. We were able to cope:;\mtf1such a 

wide range because we were interested in limited ~hgiqqq·f9r a limited ronstruct, and 
, . ; ... , .:~~:.:n <~;:~1:u.~ ::~~i- 'i.~~~ ~~~~J; ~,,_>~.:.:~:; -.,.J· ~- .-1 · _: :~~_;,' 

our design philosophy emphasizes minimal interference between constructs. We 

believe that our results show that such an approach has merit 

In several places we have mentioned that it is pc:>aible to view serializer 
... : · -:~ _:,,.:·- ".- ;~:-: ,~-;"5 ~-·~i ~/jiU~::\-·:·?f ~-~~r} :2nrx·;. :::_:.· :~~--/;-_ r:- f 

operations either as procedures or as mcisage handlers. This flexibility is made ·pcmible 

through the design of the .serlalizer construe£ and th~~ ilie"~ of a se~aritk J11~l 
that is limited to describing scrializers. E~·~n;~/d~~i1s'~~Y·:~h~nge ~.'seri~li~e~ 
are embedded, ·in, a prqcedµfe-~~d ,;()( - 1 ~~~' la,n~~· the basic . 

approach to. proving ~alizeffl;~kf remain SQ\U)d, 
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We have only attempted to ~fy"~atically a number of variants of the 

readers-writers problem. Partially due to this limitation we have been able to handle 

several important specifications regarding concurrency control. Even though,. the 

specification categori~ haye bec!n chosen foi: ~ .~.ith aCcesS to resources~ 'pr0perties 

such as exclusion, priority, and termination are generally recognized as. important.~ 

dealing with roncurrent poogtams. 

We have demonstrated the feasibility of proving a form of termination th~t is 

applicable to transactions, rather than programs or objCcts. 1;hiS tet~nique is especially 

useful when resources (or objects in general) have unbounded lifetimes and the number 

of active transactions (Qr p~) is unbou~ 

Our approach to verification has not been orientedtg~ard pr~~~i~ng,eit~er a 
, i " ' - .! ~ ' ! . . : ... · ·- ~ ' 

minimal or a comp1ete set of axioms and inference:~ 'Jbther, we have idehtified 

some higher-level theorems. expr~d as inference rules. that are useful in proving 

serializers, and have justified these theorems by direct 3(?~1 to tl'le semantic model. 
.. • . ' . . 

Should. futther examples identify othcrtiscfufth~Mns. more ja~ification through the 
' ... -~ j > ·;_ ' ).. ' -

model is called for. While the study of the completeness of an axiom system is 

intersting in its own right, it is rare for a verj~er ,(eit.h,erautqui~f,jc. or lll¥nual) tcu1ppeal 

to the axioms if more general and more powerful theorem~· are 1foow·n. The test we 

value most for such a selection of theorems is their utility in verification, a ll.'St thut our 

theorems have pa~d. 
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Appendix I· Bounded bufl'er serilliler 
f""-. :,_ ./ 

A bounded buffer is intended to smooth variation'"·i~.,M>C~il,)J},~d.: 
. . . 

between a producer and a consumer of iteDtS':Of'intbrritation~ ·llf.\~ thereby .afford more 
"r > ~ • 

concurrency between the two p~es. ~2 A bounded buffer is accessed by gel and put 
'" .. • 

"-i ··..,,.\ 

opemtioatS;.where:the,.,Ntbj~.91>~~--~~ ~-cillf9omltiQ11 #Jal .tJie· ~put. 

operation deposited A bounded buffer object is constructed~ by.rc8iting; the ·create 

operation with a positive number specifying the number of items of infonnatiot\' ·to" 
. ~ . i , , ' ,t . . ~ - ; ~ .'"< · ~. . .: ~ , ~ ; . i ~ _,' ,_ ~ k .L _, ;! ~ :J / _ 

buffer. The ·buffered information' is:,11FansfefJ'eP: by:.cQ>yi91:'* ~~"ts· (via 
;.' · .• o· -~~·~~~ ,; ·; ,:,~ -, :J,o'.~} ,;• .. ·,.;;" ·j.' :f'/ 1._ 

item$move) from one item to another~· ·we ·~me;; thafthis copyillg takes some 

significant amoun~ of time.23 Parti~I specificatio~ for this probl~m appear.inChaptef' 
'· , ;•- ·.:.,;"-;- j' _: ·_, rj. ·::- ~~-..... r:~? «·.tr~\t)~-~~ c : 

4 .. ';_ 
. '•:·:. 

The bounded_buffer serializer given below uses only slight extensions over 

serializers. We as&Jme that performing a put operation on a full buffer causes an 

exception to be signalled for the data abstraction (called bbufin this example), but that 

the serializer operation simply pauses until the buffer is not full. If several pr~ 

perform get operations. there is no overlap between the operations. since a modification 

to the bu ff er is made in the data ab~1raction. and the modifications made by two 

invocations could conflict A similar conflict arises for put operations. 

22. A. solution to this problem using monitors appears in (Hoare 74). A. verification of a similar monitor 
appears in [I Inward 76). 
23. Although such copying is nonnally foreign to CLU. we have used copying in an attempt to remain 

comparnblc to the mtmitor statement of the problem. 
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The combined_bo1Jnded~buffer serializef sijown in ,A.ppend~ II comb.ines the 

function of the bounded_buffer seriaizer and the hb!JJ cluster .. The interface remains 

the same, but the implementation does not use the bbuf du~r. Besides the obvious 

savings afforded by the elimination of operation halls ffum· the senalizer to the -cluster, 

there is additional concurrency possibte'becall8e get,QP~faf~ns ai;e allowed to 'Overlap 
', __ . - . 'f· - ·' 

with other get DpeRttions, and .put operati9~s ,are. allowed to ovei;lap. with other put 

operations. 

We. have presented this problem as an ilhisttatiort ot ~h~ the modularity 
;. . -~ , \_ . 

provided by serializers allows such opti.mimtion witbo'1t c~an~ni th~ interfa~e that the 

user sees. Further, any verification of programs that u~'ilii ~<f~tT~r serializer 

remain valid, provided that they are unaffected bythe additioaal:.i00nou~y. 
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'X The bounded_buffer serial izer protects tbe'bb•f atfstf'attten. 
% against damaging concurrent access. Get and Put operations 
i may only overh19 with get..:...s ize ,operations,.·: AU cu:tJIJing, of 
x item to item is done in the bbuf cluster. 

bounded_buffer = serializer is 
c.reate, get_sbe, get. put 

rep = struct[res: bbuf. c; cro.w.d, 11ax.: int, 
gq, pq: queue] · · · · · · 

create = proc:: (n: iltt) returns ('evt)- sig1ta:ls -(bad.:_s+ze) 
return (repS{res: bbufScreate(n), 

max: n. 
c: crowdScreate(). 
gq, pq: queueScreate()}) 

. resignal bad Jiz• 
end Create · ~- -

get_s ize • proe '(-a: ~.vt) returns f'tnt) ; -
re~urn (x.res.size) 
enil: ge\c_'S·i~e · · 

get = -,roc-(x: .-0 .. t>, dl-t:, it•) 
enqueue x.gq until crowdSempty(x.c) & x.res.size > 0 
join x.c 

bbufSget(x.res, dst) 
and 

end get 

put = proc (x: cvt, src: item) 
enqueue x.pq until crowdSempty(x.c) & x.res.size <• x.max 
join x.c 

bbufSput(x.res, src) 
end 

end put 

end bounded_buf fer 
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Appendix II • Combine4 bountied buffeJ .serializer 
< , • ·' - • ' ~ "'5 .: ~-. ~-: 

% Th& comllined bou~ded buffer ,pena:its ,,~ :Ol>:'r!~bon~: t'·'°V'~;~lap with 
% other get·operat1ons, and put operat1ons to overlap w1th other put 

-x ope.rations. but get .apd put op,,r:a.tions ... -.c•pnQ\ 9i~.,rl~p,. Get~size 
% ope rat h:ms can overlap wf th either ·ge·t 'or put 'Opllrat\i\Yns-.: · 

combined_b'ounded_buf'fer = serial f:ter is 
create, get~size, g~t. put 

buf = array[item] 
rep= struct[res: buf, gc,pc: crowd, 

next, size, max: int, 
sq, gq, pq: queue] 

create = proc (n: int) returns (cvt) signals ftiad_Sfte)· 
if n < 1 then signa~ bad_size end 
re·turn ('repS{r•s: .bu1Sfi11_~opy{O. n., ftellkf'eiiteO). 

next: 1, size: 0, max: n, 
gc. pc: onnr•cnute( .. ),i ;,, , 
gq, pq, sq! queueScreate()}) 

•nd create · 

get_size • proc (x: cvt) returns (inJtj 
return (x.size) 
end get_s ize 

get = proc (x: cvt, dst: item) 
enqueue x.gq until x.size > O & crowdSempty(x.pc) 
src: item := x.res[x.next] 
x.size := x.size - 1 
x.next := (x.next+l) II x.max % take increment mod N 
join x.gc 

itemSmove(dst, src) % copy data from src to dst 
end 

end get 

put= proc (x: cvt, src: item) 
enqueue x.pq until crowdSempty(x.gc) & x.size <= x.max 
dst: item := x.res((x.next+x.size) // x.max] 
x.size := x.size + 1 
join x.pc 

itemSmove(dst, src) 
end 

end put 

end combined_bounded_buffer 
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Ht. [Hoare 7-0; th~: disk head. ~heduter problem is mscu~ ror monitors. 
, , ' F < • ', ·._ ; '::~ 1 :• - ' ' ,,_'. ,- ': j '.~ : • .·" , · .. ~ : ~ ;: '~ • •fl • • ' 

Below we ~ve a se.rjal(zer S<>fution to the))ro1)teWJ.wh;i¢V ~~the Pttori'!-<J!i.eu~~· 

A priority_queue is a queue ,where the order pf,decpaeue. ev~Jsi~Dt ~ tl,le 

priority. We will assume that the lowest numerical value of the priority is served before 

any others. Equal priorities are served FIFO.· - .; 

The algorithm ~d depen~ on .having. two. qu~µes,. 00,e . wl)icb is served in 

increasing order of fiisk., addfess, called ~..-...;.Q~ ~--~ i~rved, in, decreasing 
- . . -

'~ { ;:_ < -

order of disk address. called x.~~n...q.'·~~~un -work~~ adding requests to one 

·queue, and serving the other. We change direction whenever the GflllUe-forrdte current 

direction is empty and the other queue is not efupty~ · · · · ~ · · i • 

~ ~·-· 

-« 

b·.~ 
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disk= serializer is 
create, 
request 

rep = record[increas'lng: bool, 
up_q, down_q: priority_queul; 
disk: _disk] 

create = proc () returns (cvt) 
return (repS{increasing: true, 

up_q, 1Jown_q: priority_queueScr.-te(} .;., 
disk: _diskScreate()}) 

end create 

request = proc (d: cvt, address: int, khUl: int., p: page) 
signals (bad_address, disk_error) 

if d. increasing 
then· enqueue d.down_q 

until crowdSempty(d.c) I 
(-d. increasing I 
priority_queue$e11pty(d.up_q)) 

priority address 
d.increasing :=false 

else enqueue d.up_q 
until crowdSempty(d.c) I , 

(d. increasing I "' 
priority_queueSe11pty(d.down_q))' 

priority -address 
d.increastng :=true 

end 

join d.c 
~diskSrequest(d.disk, address, kind, p) 
end resignal bad~address, disk_error 

end request 

end disk 

;,, 

• l 

'·'" 
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Appendix IV • Table of definitions 

Page Definition or rule name 

56: Occurs 
56: Precedes 
56: Same .. Jrans ,. 

57: &eludes . ~ t . 

. ' 
57: F.xcludes_node 
57: Node:.exdudes_node ~:,_· . 

58: Last 
58: Front 
58: Gains 
58: Releases .. , . 

59: Busy 
59: Qsize 
59: Csize 
60: Rank 

\ . 

60: Rant_scan ··-
61: Eval· ! ... ~ " 

63: Legal 
63: Legal_step . ~ : 

64: Legal_ dequeue 
64: Head_ enqueue 
64: In_ queue 
65: ln_same_queue 

... ·,. ~-: 5 :i 

65: None_ready 
66: Legal_transaction_step 
67: Complete 
68: Gain_ complete 
68: Corresponding_release 
68: Rclease_follows 
69: Join_complete 
69: Leave_follows 

107: Transaction order rule 
108: Transitivity rule 
109: PX from gain rule 
110: PX from PX rule 
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111: Event before PX rule 
112: Event after PX rule 
112: ORE clause 
112: GRE_def 
113: GRE from empty rule 
113: ORE from expression rule 
114: GX from GRE rule 
115: Event before GX rule 
116: Event after OX rule 
117: Event from FIFO rule 
118: EVT and EVF meaning 
119: EVF rule 
119: EVT rule 
120: EVT from conjunction rule 
121: EVT from disjunction rule 
121: EVF from conjunction rule 
121: EVF from disjunction rule 
122: Event from ready queue rule 
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