An Abstrast Implementaiion

© Masachusetts Institute of Tochnelegy

February 1980

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

Acknowledgments

I am gratefully indebted to my thesis supervisor, Professor Jack Dennis, for his
guidance when most needed and for the freedom of research throughout this work. Without
his encouragement and patience, this document would not be possible. Thanks are due to the
assistance provided by the thesis readers: Professor Peter Elias in the preparation of the thesis,
and Professor Stephen Ward for many interestmg discussions and suggestions for
improvements. . :

The friendly environment of the Computation Structures Group has bred many ideas
and provided warmth when the going is rough. I thank Clement Leung for being a critique on
many drafts of the thesis and a friend throughout the years, and his wife, Enid, for
innumerable warm meals. Sheldon and Sandy Borkin have generously offered me invaluable
friendship in many ways. I wish to thank Dean Brock for pmviding me insights into
nondeterminate computations, and for invitations to the camfombk home that his wife Ruth
has made. 1 feel a sense of indebtedness to David Misunas with whom -many nights were spent
on discussions. Randy Bryant and Andy Boughton have been patlem when we discussed
technical subjects. Bill Ackerman has opened my interest in the Packet Memory.

I thank my wife, Michelle Hoshi, for her understanding during the dlffiqxlt years of
being a student’s wife. I owe much to my brother Sam Weng for being a responsible son to my
parents who have supported me both financially and emotionally.

Table of Contenta

ADSITAC ...ttt eea e e s sasaseeseanasassssanassasenssesssrnssanntn 2
Acknowledgments ettt e et a e agas st sas st ennensnenree
Table of CONLENIScooovviiieiceceeerss e cerens veresneresrsseranneansans epenne 4
Chapter 1. INtrodUuCionoiciiiiiiniiiieiieeimniinetiiseesesectuesiorerassosssesrasssasonsssos 7
L COnCurrent systemscccoveereviinnseinin. rreeenns rreereeennaeenteeenareaan 9

12. Concurrent programming hnguages cereerersrrensenssnessesessessesesseseneesssassine 1

13. Data flow 0ONCEPtooooooiiniiiiiiiiiiiiiiiiiiiiiricnieinr e s s aaanaes 13

4. Scope of the thesis.................. R eveseiessaieaatiinab e eraaaes n”

BB, Synopsisccceeviiiivieniinnneins eeeeeirreeneannes ST S 2

Chapter 2. Data Flow Schemas eeeeesreenteneessessseseeensnesresresrasiaene 2B
21 Recursivedataﬂowschemas......_.............................; creereeenaees 2

22. Well formed dataﬂowschemn vt bttt s sttt aebesanesasesa s et anas 29

23 Applyactors s vt et aeenees 29

. 24, Data StUCtUTesc..coocevrerennee e 3

25, DISCUSSIONoorvooreemreeeeesrssnesssnesssssanssaneres ettt 3

‘Chapter 3. A Textual Languagecccccocevciniiiinnnenne e RRDRT e ceee 45
31 A value-oriented languageocociiiiiiiininnne e 45

32. Correspondence between the language and data flow schemas 51

33, DISCUSSIONooeiiniiiiiiiiiiiiiiiricei e e et e s s s aaa e 59

Chapter 4 Implementation of data flow schemas in a data flow processor 63
41 Data flow Processorccccceeeiriiiiiinnisisssissiiennernies e naes 63

42 Procedure structures and activation recordscccoeeiiiiiniiniennnnins 66

43. Procedure activationsicceiiiiniiiiiiniiiininiennie e e 7

4.4. Tail procedure apphCAtIONscc.cruveerreersesereesesnsssssasseseessenees 8

45, DISCUSSIONooooiiiiiiiiiiiiiniiirr s e e 85

Chapter 5.
51.

52.
53.
54.

55.

Chapter 6.
6.1

6.2.
6.3.

Chapter 7.

Bibliography

Appendix A ..

Streams, Nondeterminacy, and Forallcc..ccoovviiiiiiiinnniie 87
SETERMSooviiuiiiienticteietenseseesreeseetesasaseessessseesseesssnessseesasmseneees 87
Implementation of streamsccooomiiiiiiiiiiiinir e 90
Forall ... e 105
Nondeterminate merge of Streamsccooeiiiiiiiiiiirnneeeiiinnenieenenns 14
DiscUSSION ..o e in
Supporting Data Structures and Activation Recordsc......cooooiet 123
Packet MEMOTY ...ttt rirrre et a s e e s ae e 123
Activation records and holescccoooeiiiiiiiiiiiiniiiiinniic s 132
ReMATKS ...coovniiiiiiiiiiiiiiiicii e s e e s e 136
Conclusionooiiiiiiiiiiiiii e e s s 139
... 145
.. 151

This page intentionally left blank.

Chapter 1. Introduction

In this thesis we are concerned with issues arising from the need to achieve
concurrency of operation within a computation on a large scale. Several factors contribute
toward increasing interest in systems capable of exploitmg the ooncurrency of computation.
Concurrency provides the potentlal for performance improvement through concurrent operation
of hardware components such as processors and memory modules. This results in better
utilization of total resources and in faster response if a computation has a high level of
concurrency. The dramatic progress of technology has made ooncurrent systems more
attractive as an alternative for high performance systems ln particular. systems that have many
replicated hardware modules can take advantage of the projected potential of the processing
capability of a single chip device which can be very wonomieally produoed Such systems may
further offer better fauit—tolerance capability and extendability of system performance

So far, concurrent programmrng has not been adequately dealt with in con.ventional
'programmmg languages. It is our belief that future systems must depart from the prevalent
view of sequential computation both at the programming language level and at the machine
organization level if a substantial progress is to be made toward practical large concurrent
systems.

The goal of this thesis is to demonstrate that an adequate cornputation model can
provide a basis both for a good programmmg language and for an architecture that can fully
exploit the inherent concurrency in algonthms expresnd in the language 'l'o this end we show
how a value-onented language can be implemented based on a model of ooncurrent
computation known as data flow schemas [Denl-'o'm and how this implementation can guide the
design of an archrtecture that achieves a high level of concurrent operations

The model -of computation is based on the notion of data driven computation, in the

sense that an operation in a computition is executed as soon a3 all of the required operands
become available. Thus, there is no notlon of nquenml control of executlon Data flow
schemas allow many concurrent subcomputations to take place without cmtlng side-effects.
The lack of side-effects is essential for several reasons. ‘First, the existeme of slde-effects among
concurrent processes may cause the outcome of the cotmutatlon m be dependent on the order in
which the processes are executed -~ that is. the compmatksn ls nondeterminate. In most
applications, it is desnrable to achieve concurrent opentlen while preserving the uniqueness of
the result of the cornputatnon From the semantlc potnt of view a language that is free of
side-effects is easily formalized usmg denotatlom! semantics [Stoym Furthermore when a'
-computatlon is expressed in a slde-effect free language, oonwrtency tn the oomputatton is uslly
recognized as subcomputatuons which do not depmd on results of mher subcomputaﬂons - and
this data dependency is mamfest in the program structure

We introduce a slmple value-oriented ‘ hnguage that has two important features:
streams which are sequences of values oommunlctted between oompumions. md forall
constructs in which one can express concurrent operauons on eompomms of data structures. A
computation expressed in this language is guaranteed determinate unless explicit forms of
nondetermmacy are used. In this thesis, we consider a hmited form of nondetermimcy that
merges two sequences of values in a nondetermimte manner. We dlscuss ltmltations of the
language in Sectton H | |

The architecture presented in thls thests is based on a form of data flow proceuor
proposed by Dennis and Misunas [DenMi?S Mlsun'n]. We show how the hnguage can be
effectlvely lmplemented on thls architecture such that mcurrmcy of 2 cumputatlon can be
explonted The main extension indudes suggestions fOI' the des!gn of the mge of‘ a hrge
number of activations of prooedures and data structures such that conwntiom in accesslng data

structures can be alleviated.

In the next two sections, we give a brief discussion of computer systems designed for
achieving highly concurrent operations and programming language for expressing concurrent

computations. Section 1.3 explains the data flow concept.

11 Concurrent Systems

Many computing systems [Kuck7, YauFu71, Enslo77] have departed from conventional
computer 6rganizations to improve the capability for concurrent execution. A class of such
processors belong to tﬁe category of SIMD (Single Instruction Multiple Data) machines
[Flynn72). For instance, there are array processors represented by the ILLIAC IV [Barn«68],
associative procéssors like the STARAN [Batch74], and vector processors such as the CDC
STAR 100 [Hintz72]. These processors perform well only when the computation can be
expressed in program and data structures which are easily mapped onto the particular machine
_structures. Array processors require that data structures be mapped onto a fixed structure
imposed by the physical arrangement of the processors, such as a two. dimensional array.
Associative processors require that data structures be linear fists of words so that associative
operations on parts of these words can be efficient. For vector processors, data structures must
be in the form of one-dimensional arrays to aliow pipelining of operations ofi successive array
elements. Furthermore, programs must exhibit a high degree of Io::aﬁtf of reference such that a
~ significant amount of data structure mVelﬁent is not necessary during the execution. This
dependence on locality of reference arises because the performance is achieved by short
instruction executien delays and by special pipelined execution units or by many tightly
synchronized independent execution units. | |

Unfortunately, the class of corbputatiom having these properties is rather limited;
hence, much effort has been devoted to transforming programs -- either by the application

programmer or by compilers -- so that efficient execution can be achieved {Lampo74, Kuck77}.

In fact, even in the limited domain of numerical computations for which these processors are
~ designed (or intended), there is a high degree of irregularity in. computations 50 that these
processors can not easily achieve their potential pa'fem\mee.l

The strong dependence on locality of reference and special features such as vector
instructions inevitably tempts the programmers-to be exp!iclily aware of the hardware features
of the procesﬁors. This awareness often leads to programming errors due to concern with the
optimization bf programs. In this sense, these processors share the common problems that the
programming issues are neglected and that the peri«'mﬁce.can neither be readily extended by |
introducing more execution units nor by moving from a processor of one configuration to
anéther without a substantial amount of effort in pmgnm.,mve;mz

There are concurrent processors that belong to category of MIMD (Mukiple Instruction
Muttiple Data) machines. A typical realization of this form of machines is based onmukmle
processor and shared multiple memory organization. Examples of such processors are Pluribus
[Orns:75), C.mmp (WulBeT2), and CMe [SwFuSTII> The predominant problem of these
processors is that the system performance is based on the assumption of locality of reference
achieved by programmers’ explicit partitioning of a computation. Furthermore, because the
semantics. of the languages supported by these systems are based on the notion of sequential
execution and operations which have side-effects, concurrency. is- achieved through careful
analysis of programs to prevent possible deadlocks-and bottlenecks in memory references.

I. We refer the reader to [KisRu75] for an example of how program mixtures have affected
the performance of one of these processors. It is interesting to note that the CRAY computer
[RamLi77] is designed with more recognition of this-fact-than: prévious vector computers by
improving operations on vectors of short length.

2. Note, however, that the difficulty of transporting soRware among ‘different systems is a
pervasive problem of existing systems as well.

3. We refer readers to [EnsloT7] for a more detailed discussion on machines based on multiple
processor organizations. ,

1.2 Concurrent Programming Languages

Yet, what is a good concurrent programming language? There are two essential
properties of a program: correctness and performance. The metivation behind structured
programming is a consequence of the concern over the difficulty. of establishing correctness of
programs and of impraving the productivity of the programming task. The task of concurrent
programming, however, is much more difficult than that of sequential programming because
the existence of concurrency makes any interaction between concurrent processes nontrivial. It
svhould. therefore, be an essential design objective of a concurrent programming language to
have the property that unnecessary programming difficulty is not introduced to improve the
concurrency exhibited by p'rograms.

There are several concepts which are unique to concurrent computations. In the
execution of many concurrent processes, it is possible that the order in which the operations are
performed affects the ouktcome of the computation. Such computations are said to be
nondeterminate. Conversely, a computation whose result are guaranteed to be the same when
the set of concurrent subprocesses are executed in any allowable order is said to be determinatel
Since many concurrently running processes may depend on the results of or synchronization by
other processes, it is possible that a set of processes may become simultaneausly dependent on
the results of each other. If none of the processes can proceed further, then the set of processes
are said to be in deadlock. Deadlocks occur in many forms depending on the possible situations
which can arise to prevent a process from being able to proceed. The purest form of deadlock
is. th'at the computation itself can run into deadlock even if the amount of computational

resources is infinite. In this case, what causes deadlocks is the semantics of the computation

1. A computation which contains nondeterminate subcomputations may itself be determinate.
Thus, the class of computations expressible with operations which cannot introduce
nondeterminacy is strictly contained by the class of determinate computations.

-12-

rather than the manner in which resources are allocated.

We now give a historical perspective of the problems of various approaches to
concurrent programming, then outline in Section 13 an approach we feel may alleviate these
problems and is followed in this thesis.

A natural development of concurrent programming has been to extend the existing
semantic basis to inchude explicit process control primitives. An example is the introduction of
call and wait primitives of PL/l which provide ‘explicit control over the creation and
resumption of processes. The coordimtion of concufrent processes is achieved by additional
control primitives which interrupt and resume the control of ain process with explicitly specified
signals and with conditions which dictate when the comrolofaprm may be influenced by
signals from other processes. Another approach uses mechanisms suich as semaphores and P
and V primitives to coordinate these processes {Dijks68).

These forms of concurrent programming-are at too jow a level of abstraction to be
good programming constructs in several ways.

It is often the case that a given computation when expressed in different sets of
primitives resufts in quite different program structures. These differences arise not from the
conceptual scheme of the computation but rather from the explicit controk mechanisms that must
be used.

Another consequence fs.that programmers tend to become very aware of the efficiency
of the mechanisms. For instance, the cost of creatiig and controfling a process is often
- prohibitively high due to the inherent complexity of the semantics of these programming
languages. The programming task is, therefore, further impeded because users often create
processes with explicit concerns over resource management. ‘(This. in a sense, is analogous to
the situation when programmers had to be exphciﬂytware of thememory management in
writing large programs before use of automatic memory management and becamemmn

13-

practice.)

In many situations, one finds tﬁat the computation is inherently determinate, but the
program expressed in these forms is non-determinate in the presence of programming errors.
Thus, there is no way to ensure determinacy when it is desirable. - Tests-or proofs for the
program behavior are, therefore, unnecessarily compléx; since the possible “outcome of a
computation is a set whose size depends greatly on- the number ‘of interacting processes.
Furthermore, even in the presence of desired nondeterminacy, none of the individual
subprograms can be validated independently. This deficiency for independent validation is
attributable not only to the semantics of these primitives but also to the use of global variables
that many concurrent processes can access and modify.

More recent approaches for concurrent programming emphasize the ease of validation
of correctness for concurrent programs. Examples of ian‘guhgé ‘constructs using these
approaches are monitors [Hoared), path expressions fLauCa78}, and guarded commands
[Dijks75). Note that these constructs are defined in conjuriction with restricted use of variables
and the flow of control. These represent steps toward a more structured and higher level of
“concurrent programming. A common feature of these approaches, however, is that concurrency
is created explicitly with constructs such as the cobegin block or the guarded command blocks.
Thus, the concurrency expressed is at the fevel of processes’ father than at the level of

operations where a substantial amount of concarrency also exists.

1.3 Data Flow Concept

Developments in the theory of parallel computation have motivated a computation
model called data flow schemas [DenFo73l This model is ane of many models [Fosse72, Keosin73,
ArvGoT7] based on the data :ﬂow concept. The model represents acomputatton only in terms of

data dependencies between instructions, and reveals inherent parallelism without unnecessary

constraints on instruction sequencing imposed by the conventional machine level

representations.

13! Data Flow Languages .

Because the data flow model is graphical in nature, pumerous studies [Denns74,
ArGoPT], Rumba75, Kosin73, Weng75] have attempted to define textual programming
languages based on these models. While it is possible to define an algorithm that transforms
programs written in existing. @mthl programming, languages into.data flow schemas, such .an
algorithm is complex because of the semantics of the Wh.l‘fpmgnmming languages.
Furthermore, the inherent concurrency of a onmpumm is often hidden from the translator
because there are additional constraints that are buikin in the g;@msivm_ of sequential
programming langunges.l We believe that high level data ﬁowmummg languages will
atlow algorithms for concurrent computation to be easily explwibh

Programming languages based on the data flow concept are sufficiently expressive .to |
encompass conventiimalprggx;;mmh:g language constructs such as iterations, Hhih-hop;.
conditionals, procedures, and data types such as data structures and procedure values. These
constructs, however, are embedded in a semantics which. is free of both side-effects and the
sequential control of execution. The distinctive lack of control transfer primitives such as
GOTO's and operations which introduce side-ffects allows compilers to easily detect data
dependencies between operations in a program. Languages with these characteristics have been
shown to have simple denotational formal semantics [Stoy™, Brock78} . |

I. This phenomenon is a well known fact among researchers working on optimizing compilers
both for sequential processors and concurrent pracessors. For example, use of array indexing
and common variables in large Fortran programs makes many eptknium difficult If not

impossible.

-15-

Additional features such as fggg!i constructs, primitives for stream values, and
constructs for nondeterminate computations are found to be Ratural extensions to these
languages. The forall constructs allow programmers to specify concurrent operations on all
components of a data structure. The notion of stream: provides an alternative to the use of
coroutines and synchronization primitives for expressing computations passing sequences of
values among their component-modules.

A very important characteristic of these- languages is that the determinacy of a
computation is guaranteed when the computation is expressed not using primitives or features
explicitly provided for situations where non-determinacy-is pequired. . In conventional
languages, nondeterminate computations are-expressed. using semaphors primitives, call and
wait primitives, and monitors. The semantics of these: primitives, however, are not consistent
with the semantics of data -flow Ianguages.f‘-mm«e are sigaificant applications where
noneleterminacy is necessary, the formal semantics of languages. with non-determinate. primitives
is still an active area of research [Plotk76, Milne?9, KelleTl. . In this thesis, we have chosen a
very primitive form of nondetermlmy'which seems essential .as a basis for ‘higher level

constructs for nondeterminate computations.

13.2 Data Flow Processors

Data flow schemas are not only a suitable vehicle for representing concurrent
compubtations but also provide a simple operational semantics which has sugge;ted several new
computer architecture designs. Another characteristic of the model which is not often cited is

‘that data flow graphs are very flexible bases for machine level representations. These
representations are applicable to a wide class of computer architectures, including architectures
extended from conventional piocessor and memory organlzatlohs. A |

The common ch;racterlstic of all dataﬂoupmcesm B,tﬁc use of some macﬁlng level

representation of data flow graphs. Assuming that a data flow program already resides in a
processor, its execution requires mechanisms for
| (1) detection of conditions for an Instruction to be execitable,
(2) execution of the instruction, and
(3) transmission of the result to the instructions requiring it a3-un operand.

The »processof proposed by Mis and Misunas {Denns?s, Misun75] consists of five
sections: Instruction Memory, Arbitration Memory, Functtonal tnit, Distridution Network, and
Packet Memory. The Instruction Memery stores the taching level represétution of a dats flow
graph so-that enabled instructions unhhdepndﬁar detectad- ind Sént 10 the: Arbitration

Network as operation packets. Theé -Arbitration and: Ditribution - Néetwerks are packet
switching networks. The: Functional Unit: processss: speratidn patkens-in a pipelined: fashion.
The Packet Memory performs data structure operations snd: MW The mest
distinguishing characteristic of the processer is that: its perfortmance is not derived: from any
assumption about the locality of a}locitiuﬁ of ﬂnpmgm thins, the program execation is not
dependent on ‘where each ‘instriiction resides. - Différent wusuwprions about the Socality of
computations result in great differences in the archWﬁmmmﬁh
often the case that a computation exhibits locality of reference.) it has not been demonstrated
that concurrent processors taking advantages of this fact are not lubju:t w tigutﬂcant
* performance degradation when this 'assu?nﬁ;idil is viciated by parts of a computation.

~ 1. In particular, Swan has observed that references to the codes of procedures represent a large

portion of memory references and exhibit figh degfee of locality of reference [Swan781

- 1.4 Scope of the thesis

In this thesis we present an implementation of a programming language on an
extended form of the Dennis-Misunas architecture. The ex’mns& includes storage of procedure
activations, stream values, and data structures in the Packet Memory and we suggest a way to
perform memory management for copies of data structures. .

We chose a well defined programming language as the basis for extending the '
capability of the processor. This language has features which allow concurrency to be
expressed in two forms and still guirantees that the - c&ﬁéﬂﬁtim is determinate and
deadlock-free regardless of programming errors. The first form is based on procedure
activations which automatically create concurrently executablé procedure ‘instances: this is the
most familiar form of concurrency. The second form is based on the notion of stream
computations (or, pipeline computations in some sense): this form 6f_sdonwr;r‘en¢:y‘ is frequently
seen in large software such as compilers or in nﬁmy operating system functions such as
input/output which are often expressed either in the form of ‘coroutines or in the form of
coordinated processes [Conwa63, Mclir68, Hoare78].

Based on the notion of stream computations we_prdviée' a primitive for expressing
nondeterminate computations by merging fwo streams of values in ‘a first-in-first-out manner.
Though this is a very primitive language construct, we feel it is an essential low level iiﬂmltive
for implementing other forms of nohdeterh\inate‘ constructs.

There are‘two ways in which some reader may consider our language limited. The
language does not provide any construct-for expressing a set of concurrent processes whose
communication path forms a cyclic structure. This limitation is due to the general belief that
the deadlock property for such a set of processes is not decidable in general at compile time.
The second limitation is that we have not included procedures as values. This is because we

have not found a satisfactory solution to its implementation. The data structures in the

language do not include any.cycﬁc data structures such as doubly linked Hats or cyclic graphs.
The extension of the language to include such: structures can be based on the notion of
immutable objects which contain cyclic structures such that the ssmantics of the data structures
is free of side-effects [Hende?5] This is an interesting issue d‘ﬁhvpndcﬂ»md theoretical
importance that we have not been able bmthﬂuhmbm this:thesis.

141 Related Work
- The model of data flow computation propased by Arvind and Gostelow [ArvGo77} is
based on an interpreter that is qgme different in_philos

y from data flow schemas. The
model does not introduce the notion of arcs of finite buffgtggg on. which data flow schemas are
based, and results in an architecture different from the Dguals-uimm architecture. Other
data flow research include the DDM!I model by Davis [Davis?8l, the model by Kosinskl
(Kosin73], the graph model introduced at UCLA [BaBoE?O]. the LAU system {SyCoH77), Gurd
- and Watson [GurWa77), and Treleaven (r rebm AThis list is by ng.means complete))

-the Mlg of thg data. flow
concept within languages which have side—effect—fm Semantics such. as Reduction language

[Berki7s] and FFP systems [Backu?s), and LISP based systems (FriWis, KePaL78)! These

More recently, many workers have begun to inte

hnguaggs ‘have a_different approach toward concurren and may "3"-

_ intcrpreters whose operations are highly concurrent due to the Mea-fm nature of the

languages. o
- In amalyzing the structures of data flow processors, we can. define two classes of
processor arganizations in the broad spectrum of possible structures that bave been proposed.

l. The Actor semantics [Hewit76] based on the mesnge paning style of progumming also
provide an basis for concurrent computation. .

The first class con;ists of processors that have a large set of homogeneous modules
connected by a network. Each module has a- functional unit and 2 local- memory, and all
executable instructions are performed within the module. Processors of the second class do not
have uniformly identical modules, and each module is spectalized to perform a particular
function, such as detection of executable instructions, execution of scaiar operations, or switching.
of packets comaining instructions or data. The types of networks for both classes range from
simple bus structures to routing networks for handling packets-of varying lengths. These '
networks are not intended for performing communications over a. very long distance and
therefore may not directly imply that the processors maturally extend to geographically
distributed systems.) _

The processors proposed by Davis, Syre, and Arvind and Gostelow can be considered
to belong in the first class, and the second class is represented by .tlw.ptmpmposed by
Dennis and Misunas. |

Davis has proposed a hierarchical processor structure similar to a ﬁu in which each
processor module is allowed to communicate with its parent and a fixed number of child
modules. Each module is capable of storing large segments of data flow programsv and of
partitioning a segment into subsegments which are sent to' child processors as concurrently
executable subcomputations. Because of its tree-like structure, this processor has the potential
problem of unbalanced utilization of modules. - The partitioning of a computation can also
resuit in communication problems, since communication between child moedules is mde through
parent modules. It has been proposed that these difficulties may be overcome by additional

connections between leaf nodes of the tree.

1. The problems of detection and recovery from faulty communication links aor processors, and
those of resource managements are but some of the issues that are high!y emphash.ed in
distributed systems.

Syre proposes a bus-oriented network conhecting a. set of madules, each-of which has a
special control mechanism for detecting executable instructions. The allocation: of -processes to
the modules is partly performed by tmmM«memw dividing it
into segments for easy allocation of resources at run time:: mmm for compﬂe
* time allocation mmppheébythemnm mmmﬂwspmgmn. The bus
network is adeqmte for. connecting a limited number of m:butis not extendable to a
much larger numbers of modudes. '

Arvind ‘and Gostelow-prepose a.ring metwork containing & sumber of ring interfaces
. each of which connects:to a set of modules through a bus. Each-set of these modules afso share
a memory controller which provides accesses and movements of data between a modile-and: the
ﬁrge memory. - |

The main differences between our processor and these processors are the: Packet
Memory which is needed for general purpose computations and the assumption about the
regumnmts— of the networks. It is not clear ‘how sireamns and foraifs can be effectively
implemmndm these processors.

£4.2 Hard problems
It remains untested whether programming languages based on the notion of data flow.
or the notion of side-effect-free semantics are m&mm -counterparts of
conventional operating system functions and to various techiiques. of -heuristic: programming '
found in the area of artificial intelligence. |
For any system that is capable of creating a large pumber dmmmaawm there
are several inherently hard problems that need be solved. The most critical problem is the
resource mmwwhkhmmmtybeemdmﬁrlmamm abo provide
mechanisms for controlling concurrent activities so the sym is not averwhdmed by an

--

excessive number of activities. For. systems that intend to support a wide range of applications,
it may be necessary to provide mechanisms for aborting a computation which might never
terminate or whose results are known not to be needed. For sequential computers, these
mechanisms are supported by controlling the process states in the process queue of the system;
but, for a highly concurrent system where activities may spread 6ver a farge number of
hardware resources, it is not clear how these functions can be supported without degrading the
performance promised by concurrency. For programming languages whi;:h can. express
computations that may result in deadlocks due to mutual data dependencies among processes, it
is also necessary to have the above mentioned mecharisms.

It is important to realize that the limited nature of the scope of this thesis is due to our
lack of understanding of the above pmbiems amd lack of simple solutions to-them. It should be
of great in.terest to readers to examine various proposed systems which exhibit a high degree of
concurrency, whether they are based on the data flow concept or not, with awareness of these
problems. ' | |

- 1.5 Synopsis

In Chapter 2, we present data flow schemas for completeness. This chapter also |
includes a short introduction to data structures. We have e#cluded data flow schemas which
correspond to Ianguage'constiucts such as while-loops, and instéad. we ﬁse recursions as an
equivalent form of such constructs.

Chapter 3 introduces a simple programming language which is value-oriented. This
language demonstrates that a clean programming language dn be defined and translated into
data flow schehas presented in Chapter 2. The procedure names in the language are globally
defined. We include a discussion on issues related to extendhg the language for defining local

procedures and hanflling procedure values.

Chapter 4 shows how an encoding of data flow schemas can be defined. We give a
short introduction to the structure of the data flow processor and how the representation of
encoded data flow schemas can be used to implement procedure activations. N

Chapter 5 mtmduw the data flow operators .that allow .expression of stream
computations in a natural manner. The straightforward implementation of streams based on
these operators is very inefficient, therefore, we show 3 implementation of streams that is based
on the notion of Aoles. We abo introduce a primitive that. nondeterminately merges two
streams. We describes how several. limited forms of. forall constructs can be translated into
recursive forms which exploit the concurrency in a aaamlm |

' éhqmr 6 shows how resources for storing procedure.activations can be allocated and -
supported. We show how simultaneous accesses.10 dta. structires .can be handled in a
multi-port and muki-cache memory organiation. while implementing reference count memory
management. », '

Conchxaing remarks and directions of further research are in Chapter 1

-93-

Chapter 2. Data Flow Schemas

In this chapter we introduce an operational model for concurrent computation that has
evolved from many similar graphical operational models used for studying the properties of
concurrent computation. The earliest models were pioneere& by Adams, Karp and Miller, and
Rodriguez [Adams68, KarMi66, Rodri69). These models were intended for investigating the
decidability of properties of concurrent computations such as deadlocks, nondeterminacy,
equivalences of program graphs, and comparative power for expressing concurrent computaﬂon

Later works [Denns74, Kosin73; ArvGoT7] are more oriented toward defining
operational models as a basis for programming concurrent computations, and as a basis for
investigating the degree of concurrency achievable. We are interested in the Data Flow Schema
proposed by Dennis and Fosseen [DenFo73], because this model has evolved to the point that
we are able to express naturally most language features found in existing high level
programming languages. Furthermore, this model guarantees that computations expressed in
the model are determinate while exhibiting a high degree of concurrency. We present a'slightiy
modified version of the data flow schemas that does not have qg}:lic‘schemas and allows.

recursions.

21 Recursive data flow schemas

The data flow schema is an operational model of computation and consists of a graph
representation and an interpreter which operates on the representation. A data flow schema is
a directed graph whose nodes are actors connected by directed arcs. An arc pointing to an actor

. is called an input arc of the actor, and an output arc is an arc emanating from the actor. Each
actor has an ordered set of input arcs and output arcs. There are five types of actors: link,

operator, switch, merge and sink. The five types of actors are shown in Figure 21. An (m, n)

-924 -

(D) link (4) merge
(2) operator (5) sink

(3) switch

data input

T F >

\ control input

Figure 21. Data Flow Actors

data flow schema must have m link’s which do not have input arcs, and n link’s not having
output arcs. These link's are respectively called internal input link's and internal output link’s
of the (m, n) schema. Further, we require that the schema must be proper in the sense that all
other actors must have the arcs required of each type and each arc must be connected at both
ends.

Descriptioh of the operational semantics of data flow schemas requires additional
concepts: availability of data at the inputs and firing mEs that define how a computation
proceeds. A configuration of a data flow schema is the graph of the schema together with an
assigﬁment of labeled tokens to some arcs of the graph. An assignment of a token to an arc is
represented by the presence of a solid disk on an arc. The label denotes the value carried by
the token and may be omitted when the value is irrelevant to our presentation. Informally, the
presence of a token on an arc means that a value is made available to the actor to which the

arc points. In this thesis, we shall assume that the tokens carry values of types integer, real,

boolean, or structure.

To descriﬁe a computation of an application of an-(m, n) schema to some input values,
we introduce the notion of snapshots: a snapshot consists of a configuration connected to a set of
input and output arcs as shown in Figure 2.2. The computation of a data flow schema when
applied to a set of input v;lues is described by a sequence of snapshots. The initial snapshot
consists of the graph shown in Figure 2.2 and an initial configuration which only has tokens on
the input arcs as inputs to the computat_idn. The computation advances fron’\fone ;napshbt to
the next through the firing of some actolr that is enabled in the previous sﬁa’pihotﬁ The
condition under which an actor is enabled is depicted in Figure 23. It should be noted that a

necessary condition for any actor to be enabled is that each output arc does not hold a token.

-2 -

(a) Initial Snapshot

An (m, n) Schema
with no enabled actors

(b) Final Snapshot

/

o
3

BN

m

An (m, n) Schema
with no enabled actors

Un

Figure 22. Snapshots

-97-

(1) link (2) operator
AV }C(vm
. VA v « ‘ I.ll » un
(3) switch
| ' if vo = true if vo = false
v
) .Vy_v
M|

(4) merge

Y-y
o

(5) sink |
\%gnal

Figure 23. Firing Rules

Firing Rules

A typical actor is enabled by presence of a token on each input arc - with the exception
of a merge. The firing of an actor absorbs tokens from its input arcs and places a token on
each of the selected output arcs. The valﬁgs of the output tokens are-functionally related to the
values of the inpht tokens. A link simply replicates the valué received and distributes it to the
destination actors - actors to which an output arc is connected. The effect of the firing of an
operator ‘is to apply to the inputs V1..Vm the function associated with the operation name
- written inside the operator to yield the outputs Ul,..Un. We generaily require that fabels be
used to identify the type of the values carried by each arc, but will omit them when their types
are clear from the context. The S__W_I_t_t_:_h and ”‘m’igg'are used for contwmngtﬁe flow of tokens. A
switch requires a data input and a control input &M value from the set {trye, false}. The
firing of a switch replicates the input token on one of the output arcs according to the boolean
control value The arrival of a token on either input arc enables a merge, and upmmm;-;
token of the same value is placed upon the output. The behavior of a merge Is tﬂheremly
nondeterminate when two mput tokens reside on the input arcs; neither token ls lost, but the
. firing rule does not specnfy in which order the output tokem will bcgmmd' A sink absorbs
the input v;’okens upon firing and places a special token sgjgnal on the output arc. The purpose
~of a sink :actor is to absorb unwanted .values; the m output token is necessary for the
implementation of schema application is described in Chapter 4. . |

The set of functions commonly associated with an operator actor iududes the scalar

arithmetic operations and constant functions.

. We choose the merge instead of the determinate merge of [DenFo73), because in recursive
data flow schemas the chosen nondeterminate merge can safely replace the detetminate merge
and its use results in less complicated graphs.

2.2 Well formed data flow schemas

Unrestricted use of switch and merge is undesirable since arbitrary connection of these
actors may form schemas which deadlock or are nmdetmﬁinate. Because these properties are
undesirable for reliable programming, we choose a subclass of such schemas which will satisfy
the needs of programming. |

An (m, n) well farmed data flow schema is an (m, ﬁ) data flow schema formed by any
acyclic composition of component data flow schemas, where each component is either a link, a
sink, an operator, or a conditional subschema. We'#mctutg of a conditional subschema is
shown in Figure 24, where the heavily darkened ;rcs are;ﬁbele:d by letters denoting the
number of arcs they represent. If P is an (m, nl) subschema, Q is an (m, n) subschema and D is
an (k, 1) subschema whose output is of type boolean, then the conditional subschema is an (m, n)
subschema. Constructing a conditional schema from subschemas of different arity can be done

by patching sink actors within each subschema.

23 Apply actors

The class of well formed data flow schemas as deﬁnect"énnot express program features
such as procedures, procedure applications, and iteratitins. We introduce an operator apply
whose symbol is shown in Figure 25. The first input to an apply actor is a token carrying a
name uniquely associated with an (m, n) well formed data flow schema which may also contain
apply actors. An apply actor is enabled when a token resides on each input arc.‘ The effect of

firing an apply operator is to modify the snapshot by replacing the actor with the (m, n) schema

~ L. This enabling condition is actually a very restricted form of procedure application, and does
not satisfy some requirements of models which -have the property of referential transparency
[Stoy77). Furthermore, this form of firing rule reduces asynchrony of the computation. We will
discuss this in greater detail in Section 25.

Figure 24. A Conditional Schema

(a) Notation for apply -

u U

(b) Firing Rule
M Ym
Uy Up

-9 -

F is an (m, n)
schema

Figure 25. The Apply Actor

designated by the name as shown in Figure 25. This replacement connects the input arcs
carrying values Vy,. .., Vo to the m input link’s of the schema and the n output ink’s to the
output arcs Uy, ..., Uy, of the apply actor. Notice that the synbolof an apply operator allows
one to define a data flow schema which involves recursive lppﬁclthm of the mne schema by
naming each data flow schemas. In this model, then, there is a gbbﬂ name lplo! in which all
schemas are defined a unique name.

An example of the use of apply actors is shown in Figme 2.6 kisa (3.2) schema that
is recursively defined, and computes the factorial of an integer w than one.. The ﬂnt link
actor labeled trigger is an input link whose function is to trigger constant actors for. gmunﬂg
constants. The second link labeled is for carrying the mame d the pfomduu to the first input
of the apply actor that ummnammummmﬁmm The merge
actor labeled signal is to allow a proper construction of a conditional Mﬂuﬁ‘my contain

subschemas which uses sink actors. (Noticc that the apply actor has 2 spagial on!put arc \vblcll
carries a signal value. This is a convention that we have adopted Mnn be optimized in
many situations.)

We have not included the class of data flow schemas which corresponds to language
constructs such as while loops in Algol 60 or Do statements in Fm or PL/L Such data flow
schemas [DenFo73] are constructed by cyclic connections of data flow actors, thus, the firing rule
of actors that require the output arcs to be empty for their mbm must be observed. To
implement this firing rule faithfully would require each actor to receive an acknowledge signal
from -each of its destination actors in addition to input wkens! In addltion; the merge actor
musf be a determinate merge actor [DenFo73] which requires a control input to determine which
input tokens to be passed to the output arc. The use of acknowledge signals, however, can be -

l We refer the reader to [Misun75] for an example illustrating this point.

f: (3, 2) schema

trigger f X

..I\ | T2 | T3

@ <

signal \/ \/ result
1 2

Figure 26. Recursive data flow schema for factorial
f(x) =if x =<1 then x else xef{x-1) end

eliminated when the schemas are free of cyclic connections. This has the advantage that the
firing of each actor is not delayed by waiting. for acknwiedgé signals from its destinations.
Furthermore, there is no need to encode into instructions the information required for returning
acknowledge signals. This leads to a simpler mechanism for implementing procedure
activations if the class of data flow schema is restricted only td acyclic schemas.

For these reasons, we choose. td implement these Iangua.ge features in their equivalent
form of self recursive application of data flow schemas. This has the desirable property that,
without any compile time analysis, the mharyisév for procedure activation allows simultaneous
execution of differentﬁinstances of the data ﬂowschem wjllcbwrupu!d to different iterations
of 2 While-loop. | |

24 p_gt_a'strugtures

in this thesis, we are interested in an interpretation of data flow schemas which
requires the types integer, real, boolean, character gm_ngl and gm We will assume that
the set of operations defined on the data types other than data stmctllres is well understood.
We now define notation for dafa structures and the set of aflowable operations. (The material
presented here is based on {Denns72, EHis74]) - |

The strict definition of the semantics of data structures must include all data flow
actors which have at least one input or output arc for carrying data structures. Thus, the set of

actors would include link, switch, merge, sink, and operator. The function ol‘ switch and merge

1. We restrict ourselves to character_string of bounded length which can be treated as a scalar
value. For character string of variable length, the implementation will be quite different.
Furthermore, if selector names of a data structure operation is of variable length,

implementation of data structure operations depend on how variable length character string is
implemented. .

is purely for controlling the flow of values and is naturally extendable to data structures. The
function of create, append, select, link and sink determines the number of the instances of data
structure values that exists in the system. These actors, therefore, are related to the function of
resource management of storage for data structures. Semantically, the function of the link and
sink actors are the same as defined previously. The primary type of actors that we define here
will be the class of 6perators which perform operations on data structures.

A data structure can be either a nil structure which has no component or a structure
having n component structures dl....dn whose selector names are respectively sl,...sn as shown in
Figure 27(a). The selectors are either character strings or integers and each selector name must
be different from all others in fhe same data structure. Furthermore, these selectors are assumed
to be ordered lexicographically. An alternative linear notation for the structure is

(st:dl,...,sn:dn)

Thev set of data structure operations are defined below, where d and d’ are data structures, s is a
selector name, and c is an object of any type:
(1) create ()
The create operation causes a nil data structure to be returned as the result. (Figure
2.(bX1))
(2) append (d, s, ¢)
The operation returns a data structure d’ which is identical to d except that the s
component is ¢ regardless of whether d aiready has a component with the selector
name s. (Figure 2.7(bX2)) -

(3 delete (d, 9

The result of the operation is a data structufe d’ which does not have an s
component. (Figure 2b)X3)) |

" (4) select (d, 5)

-6 -

Figure 2.7(a).

A Data Structure

-37-

(1) create

(@) =

(2) append

Figure 27(b) Effects of data structure operations

If d has an s component, the result is the object ¢ associated with that component.
Otherwise, the result is the value undefined. (Figure 2XbX4))
(5) nil_structure (d)
This is a predicate whose value is true if d is pil, otherwise its value is false.
Examples of the effect of these operations are illustrated in Figure 27Nc). Notice that the effects
o :
delete (d, s), and
append (d, s, niD)
are different, since the the delete operation would remove the ﬂple (s,d') while the append
operation would replace-it with (s, nil). In general, ttupnsslble to dlsﬂugulsh between these
two data structures using the select operation, since it returns the pil structure for one while
retﬁrning undefined for___they other. It shouki be mentioned tl;at an array is simply a data
structure whose selector ﬁames are all integers. _ '
The set of operations together with the link actors and sink actors provides a q)mplete
set of operations on data structures] These operations allows one to create dynamic data
structures of arbitrary size as opposed to data structures which are -dechred to be .of fixed
structure and mapped into linear represéntations at the compile time. The function of storage
allocation- for the data structure operations is implicit in these operations, while conventional
programming languages which allow this form of dynamic dat; stmctures oﬂm use explicit
storage allocation primitives.
This form of data strﬁctures can represent sparse arrays in a very efficient manner.
Since selector names can be character strings, it is possible to implement ilgorithms on data

structures without having to explicitly encode the character strings into other forms such as

1 Comp!eté in the sense that the set of data structures is closed under the operations.

-19-

(4) select if ¢ is a structure

——
Q.
—
~

———
(-
—
———
~ —

Figure 27(c) Effects of data structure operations

integers used as wbmipu into an array. les. the user need not be aware ot‘ the particuhr
structureoftheintemairepmnuon. mmdmmwwmmm
ubovehfmdsﬁrdfeagbmuadaummmﬁnpmlmdah
umnmmmmwmmedummﬁmm Thus, the
oomputationisfreeofsidm WeMM(&mM”Muus
Tmmmnmnf&nmuhhndmh”ﬁnm An item is
asukagenodethath'ammdwhawm(nu)aimm-mdmpmof
theform(s,c)whgrecheﬁherauﬂdamhrimwlmwnla.mdslsthe
selector of the component. Thus,adataWhMbyaMo&m in the
definition of data mmm(mumwmmw-
data ummmmnmnymmammmm-tMMdm@mmn.
lnthulmhmuumddmmmmmwumwaWanuhrvﬂue_
ormnplytheuidofunm«ammt ’ﬂumdmme
however, must maintain the side-effect free praperty of these operations. The resuk of
- append (@, 3,2) - ’ -
| lstheuidofanitemconémimmdmw&dmm«mmmm(mn
Usingitems .nmwmmummnlmnwmmm
_amutdmphsanddmmmunmﬁnmdmdmw Thus, the
implementation allows many component structures to be shared physically while maintaining
the'slde-effectﬁumud‘thcop«am |
TMammymmmMuﬁenﬂnMydeau
structure operations. |
| Flr&mmuwﬂemmhmmm Thuemcmmmun
allocateitetmandmndmimwhenﬂnw:mbem The fatter must be:
dependemonthcbebavhrornnpmgmnmdmMdmmmmy.pmvm

-4]-

additional information for the resource manager. In traditional systems using dynamic resource
allocation and automatic resource management, this information is obtained by maintaining a
root node from which all nodes accessible by the computation are traceable.
| We choose a different approach to the garbage collection problem. This approach is
pos'sible only because the semaﬁtics of the data structure operations allows an implementation
that always producés an acyclic structure of items. For each item we include a reference count
which indicates how many references (instances of its uid in the system) to that item exist. Each
data structure operation modifies the reference count of the items. The set of operations that
affect the referencelcount must include alt actors which carry tokens carrying data structure
values; for example, the link actor which copies the uid of a data structure must increment the
reference count of the item, and the sink actor must decrement its reference count. Thus, there is
an overhead associated with each data structure.operation for maintaining the reference counts.}
The other concern is that of the size of the pode for storing the tuples. Since the
allocation of a variable size node is quite difficult, we have only seen proposals that use fixed
size nodes. This restriction raises the problem of how to represent a variable size node with
fixed size nodes. An approach is to require that selectors have the property that each can be
considered as a sequence of symbols from a fixed size alphabet. Then a variable node might be
implemented as a tree of fixed size nodes such that each path from a root node to a leaf node

represents a selector name. We refer readers to further readings [Rumba75, Acker77] on this

1. It has been argued that the overhead associated with reference count storage management
scheme may be higher than that of garbage collection schemes on cyclic structures. This
inefficiency argument against the reference count scheme is not valid when we adopt a scheme
called split reference count: a uid to a data strocture is conceptually a tuple (uid,
reference_weight), a link of two output arcs that receives («, n) fires by producing two tokens
carrying (o, ny) and («, no) such that n = nj + ny. We should mention that this is an alternative

form of managing items and its feasibility needs further investigation.

- 42 -

subject.

Another important characteristic of the operations is that the form of data structures
created using these operations is always an acyclic graph. This is quite different from
conventional programming hnguagés which allow one to create arbitrary structures constructed
by manipulating pointers. We have explicitly disallowed such operations for several reasons.

The creation of cycles is a programming techmique which has proved effective in
sequential programming. It is not clear, however, that such techmiques are suitable in a
programming language which does not allow side-effects. - The programming technique can
indeed be simulated in a language not having cyclic structures by introducing procedures which
intérpret the acyclic counter part of the cyclic structure. It is desirable that we can provide a

~comparison of programming task of the two approaches. Unfortunately, we have neither seen
nor found good cases against or for either approach. - While we do know that semantics based
on immutable cycles is a possible approach [(Hende75], it remains to be shown that cycles are
indeed an essential form of data structures.

The other reason for disatlowing cycles is based on a resource management argument.
For systems such as.the LISP interpreter, the existence of cyclic data structures results in the
need for garbage caﬂectm schemes which mark all of the accessible data structures and
deailocate those that are left unmarked. This has the undeﬂnbk effect that a compuuuon is
interrupted during the process of garbage collection. Some recent works [Baker?8, Bisho77]
have reduced this effect by introducing garbage collection schemes which allow computations to
be running concurrently during the gArbage collection. In a system which does not create cyclic

structures, the garbage collection scheme can be based on uferm counts and need nat resort
| to the elaborate schemes that have been &eveloped. |
In this thesis, we ha;le restricted ourselves to acyclic data structures because the

implementation of procedure activations and streams are orthogona} to this issue. Therefore,

-43-
we leave this as an area that can be investigated by others.

2.5 Discussion

The apply actor presented in Section 2.2 requires that all input values to be present on
the input arcs to become enabled. This has two implications.

First, the Iénguage definable based on the apply actor must define its semantics based
on “call by value”, that is, a procedure (or, interchangeably, schema) application is well defined
only for the case when the computations producing inputs to the procedure terminate. This can
be contrasted with the more general form of procedure applications which allows a procedure
application to take place even when the computation of some of the inputs does not terminate.
The more general form of procedure application has a desirable semantic property which is
often referred to as referential transparency or the property of substitution [Stoy77). Let f and g
be two procedures such that f appears as an application inside of-g; and let g’ be the procedure
obtained from g by substituting the text of f in place of the application. In the fanguage that is
referentially transparent the specification of the functional for g will not depend on any
specification of the termination property of f, thus, the functional for g and g' will be
equivalent. In the language whose procedure applications must depend on the termination of

 the procedure f, the procedure g and g’ would be of different functionals. This is because the
substituted procedure allows the computation to proceed without waiting for all inputs to be
available. The difficulty with designing a system which supports a referentially transparent
language is that it needs mechanisms that detect when the result of a subcomputation is not
‘required for further computation and prevent the nonterminating subcomputation from wasting
computing resources.

The second implication is if the operation of the apply actor is implemented in a

straightforward manner, the degree of synchrony of the computation is reduced. Because, in

most cases, there are parts of the computation that can proceed as soon as some of the input
values become available and need not be cﬁmnined to wait for the arrival of other inputs.
For a referentially transparent language, this asynchrony is achievable, while for the language
with call-by-value - semantics this asynchrony is constrained unless one knows that all
computations terminate. |

A oonsequence of side-effect-free data structure opelm: is that some operations
which seems rather simple to perform in existing languages become more complicated.

-Consider a data structure A from which a data structure A’ is to be constructed which is
identical to A except for the component | | '

select select(A,."2"), "),

To construct A’, we need the following operations when po language level sugaring is provided: -
append(A, "a", ('
append(select(A, "a"), °¢", C)). _
Th.uss from the criteria of ease of expression, some additional higher level operations.need to be
defined.

There are many issues that require further study to understand -fully the implication of
the side-effect free semantics. We have already touched briefly on the issues.on cyclic structures.
Another lntérestﬁ:g issue relates to the computational complexity of many algorithms that have

“been found to be efficient but-have not been-shown to. be equally. efficient using side-effect free
operations. Examples of such algorithms are heap sort and mesge sort [AWHOUS1 Thus, the
 criteria’ fbr ‘choesing appropriate -algarithms for applications may be significantly different
dcpendlng on whether modifications are aliowed on existing data structures. Stifl another area

|
is the semantics of nondeterminate computations.

-45-

Chapter 8. A Textual Langhage

lﬁ this chapter we introduce a programming language based on the model of data flow
schemas described in Chapter 2. The language departs from conventional sequential languages
in many ways. We have removed the notion of sequential control flow of a computation by
introducing value-oriented semantics. There are no ‘explidt lafiguage primitives for introducing
parallelism. The concurrency of a computation is determined by the data dependency within
the program rather than by explicit creation of concurrent processes. Whiile it is possible that -
compile time analysis can be perfor’n‘nd‘m sequential programs to produce an equivalent
program of greater émcurrency, this does not help programmm to express computations in a
form which exhibits high level of concurrency. Furthermore, no compile time analysis has been
able to extract the inherent concurrency from a program containing uMq constnlnis
which are the result of language features based on the assumption of sequential computer
organization.

The language does not have the notion of memory locations or variables commonly
found in conventional sequential programming languages; instead we introduce the notion of
naming for identifying a value in a computation in very much the sam? way mathematical |
notations would use names. With the value oriented semantics, we expect programs now can
exhibit the inherent concurrency of an algorithm, and may even provide additional motivation”

for designing new algorithms of greater concurrency.

31 A value-oriented language
The language is value-oriented in the sense that each syntactic unit corresponds to a
function whose evaluation produce a set of values. The computation associated with a syntactic

unit called an expression does not interact with the computtthn of other expressions in the

program. While the purest form of value-oriented language does not use names for defining
values, we introduce names for defining procedures and for convenience of programming since
ﬁaming is a useful mechanism for identifying vakses of expressions.

In this thesis we will not be concerned about many language design issues that arise in
making the syntax and the semantics of the language rich enough for a user to program in}
The language is intended only to demonstrate the existence of a reasonable syntax and to
facilitate the discussions in later chapters. The set. of .data types consists of jnteger, real
boolean, character_string, and w We shall call these data typgs'siuplc data types. The
set of operations defined on integer, feal, boolean, and character string are the usual operations
seen in many languages. The operations mAswfg:g the set of data structure operations

given in Chapter 2. |
The syntax of the language is given in Figure 31 l},procedu,re definition consists of a

list of procedure definitions followed by an expression. A procedure definition is of the form:

P = procedure (a;Tj,... am T Yields (Rl..».R")
- a Hst of procedure definitions ...
<expression>;

end P;
- This defines a procedure P that requires m input values a,..ay, of types Ty, Ty, respectively.
The names aj,...a,, must be distinct and can appear in <expression>. The evaluation of the

. The language described here can be regarded as a subset of the hnguage called VAL in
development at MIT [AckDe78]

-47-

Notation: {<E>}* means <E>|<E> {<E>}
’ {<E>} means <empty>|{<£>}’ ‘

< program > := program { < procedure def > } < expression > end

. < procedure def > := <mname > = procedure (< input list >)
yields < output list >;
{ < procedure def > }; < expression >
end < name >

< input list > == { < type declaration > }

< type declaration > == < name >: < type >

< output list > == { < type > }

< expression > = < primitive expression >

| { < expression > }*

| < let-block expression >

| < conditional expression >

| < application >
< let-block expression > ::=

let { < type declaration > }; { < name def > }; in < expression > end
< name def > := { < name > } = < expression >

| < name def >; { < name > } = < expression >

| < empty >

< conditional expression > =
if < expression > then < expression > else < expression > end

< application > := < name > (< expression >)
< primitive expression > ::=
< expression > < primitive operation > < expression >
| < primitive operation > (< expression >)
| <name > | < constant > ,

< simple data type > := integer | real | boolean | character-string | structure
< type > = < simple data type > | stream of < simple data type >

Figure 31. Syntax of a value-oriented language

- 48 -

procedure yields an ordered set of oufput values of types Ry..R,, resulting from the eum&h
of <expression>. ‘While each procedure in the list of procedure ’de'ﬁnnm may itself contain
procedure definitions, we adopt for simplicity the scope rule that all procedure names are
globally deﬁne& - that is, no two proeeduman hue;_thg,m namein thc entire program.

An expressmn has several attributes arlty and ordering. Each expression yields an
ordered sequence of values. The arity of an expmﬂon is.the size of the sequence of va!ues it
yields. We give a recursive definition of the arity, A(E),\of each of theﬁx tfpesaf expi‘&ions

as follows:

A(<primitive expressio;1>) =1,

A(<expp>, . . . <expy>) = A(<expp>) + .. + A <expy>), :

A(<let-block expression>) = A(let <definitions> in «xp> M)
= A(<exp>), '

A(<conditional expression>) = A(if <exp> then then’ eexpt> gk;«xyp end)
-A(<expt>)(andmusteq0ﬂA(¢XPf>»' o

A(<application>) = the number of resukts listed in the m clause. of the procedure

definition.

For a procedure to be well defined the arity of the expression of a procedure must match the
number of result types declared in the yiclds clause. Names appearing in an expression must be
defined either in the input list of the procedure wb&«pmlidurem B |

In many situations it is convenient to mtroduce a hame for an expression because it is
a common subexpression of a larger expression or beuuse it is necessary to build a new
expression whose values are permtatiom of anothﬂ‘ The ht*bbek expression is used for
introducmg names each standing for an exprenion of ,uay one. A lebbhck expression, is of the

form:

~ 49 -

let { <type declaration> }

<name-list> = <exp;>;

<name-listy > = <€Xpy>;

in <exp> end;

Where the names in <type declaration> of a let block are temporary names meaningful only
~ within the block, and any reference to these names outside of the block is not defined. These
names must be distinct from each other and may appear in the expressions <expy>,.,<expy>,
and <exp>. Since they may conflict with names for inputs of the procedure or names defined in
outer let-blocks the scope rule is that innermest definitions take precedence over the outer
definitions. Type declaration of names is in the form:

name, : typey, . .., namey : typey;
where typey,.., typey are one of the allowable types.

We require that the number of names in a name-list be equal to the arity of the
expression on the right side of the equality sign. The value of a name in a name-list i# the
value of the corresponding expression appearing on the right hand side of the equal sign, and
the value must be of the type specified by the type declaration of the name. The value of a
let-block expression is the value of <exp> enclosed by in and end.

A conditional .expresslon is of the form:

if <expp> then <expo> else <expq> end;
The expression “xPi’ must be a boolean value of arity one. The expressions <expo> and
<expa> must have the same arity and the corresponding value in each expression must be of
the same type. The value of a conditional expression is: <expo> If <exp> evaluates to the

boolean value true; <expy> if <exp;> evaluates to false; otherwise, m&ec_l.‘ ‘
A procedure application expression is of the form: o
P(<exp>);
where the arity of the expression <exp> is the number of input values required by procedure P
and the type of each value must match that of the input speciflcauon The result of the
procedure application is a sequence of values of size and typésrgpeciﬂed bi the yield clause of
the procedure heading.

A primitive expression is an expression that uses the set of primitive operations
defined on the data types. For historical reasons we introduce two forms of primitive
expressions: infix and prefix. An infix expression is of a form: |

<expy> operation <eXPo>;
where the operation must be a binary operation, and <expp> and <expg> must be of arity one
and of compatible type with the operation. A prefix primitive expression.is of the form:
operation (<exp>); , o o
where the expression must be of arity and type compatible with the opergtion. -

. We will assume that, most data flow actors produce the value undefined, if some raquiied
input value is undefined.

-5 -

An example
We give a procedure that defines a parallel factorial computation below:

Factorial = procedure (n : integer) yields integer;

Product = procedure h| : integer, ny : integer) yields integer;
~if ny>=no then ny

else let middle : integer; ;
middle = (n; + ng) quotient 2;
[+ this is an ihteger division ¢/
in Product(n;, middle) « Product(middle+l, ng) end
- end
end Product;

if n < 0 then error else Product(l, n) end;
end Factorial '

32 Correspondence between the language and data flow schemas

A procedure of m inputs and n outputs corresponds to an (m+l, n+l) data flow schema.
The m input links corresponds to the m inputs of the procedure. The data flow schema has an
additional input link called the trigger link whose purpose i# to send trigger values to constant
actors in the schema. The additional output liﬁk is for passing signal values from sink actors.
As a convention, we require a trigger input link and the signal output link be there whether
constant actors and sink actors are used in the procedure or not. Internal actors of the data
flow schema evaluate the expression of the procedure.

The translation of a program in the language into data flow schemas is quite simple
due to the value-oriented semantics of the language. We give an informal and recursive
translation procedure below. In this translation procedure each expression is translated into an

(m, n) schema S whose input links are labeled by names. We shall use the notation In(S) to

-52.

denote the set of names used as labels for the input links of the schema S. The notation Size(«
) defines the number of distinct names in the set «; (a U 8) defines the union of two sets « and ;

(a - B) defines the set that contains the elements in o which are not in £.

Given a procedure P, it contains a set of procedure definitions { P, } and an expression E.

(1) Translate each procedure P; into an (m;, ny) MW #dd the name P; to the giobal
name space of the program. Since: pmcedm names are unmeiy defined , there is no

conﬂnct of names In the name space.

(2) The translation of an expression is defined by cases according toithe syntactic structure
of the expression.
(a) E = < primitive expression > -
If E is a name, then it is translated into a single link actor labeled by that mame. If
E is a constant, it is translated into a constant actor whose input arc is connected
from a link actor labe'ledmm whose: oulpat arc is'connected to @ link. If E is
- a primitive expression,
<primitive operator> (E;),
then the resuking schema S for E is an (m, n) schema where m= m| assuming E; is
translated into an (my, n}) schema S; The connection between the input arcs of the
~ primitive operator and the output links of schema 'S, is hnpndtty defined by the
ordering of the expression E; as ihown in’ Figure 32(x) ‘The input links of S
become the input links of S. The output ascs of the primitive aperator are connected
to the output IinksofSandanexmogtguﬂmkiscruMlnd fabeled signal if the
schema S contains an output link labeled signal Thul. nis elther equal to the
output arity of the primitive operator oris hrgu' than it by ane.

(B E - Ep.., E
Translate Ey, ..., E, into Sy, ..., S}, where eath 8 1s an(my, n;) schema. The schema

(a) E = < primitive expression >

E = <name > E = < constant > E = < primitive operation > (E;)
trigger
@ ¢ o o o =]
e name (S

signal

signal

Figure 3.2(a), (b) Translation Rules

S is an (m, n) schema such that

m = Size(ISP u...uIn(Sy))

n = ng = the sum of n, for i =1, ... , k, ifnoneoftheoutput |inksofsl are

labeled signal; otherwise '

n =1 + ng - (the number of output links labeled signal).
The coﬁstruction of ff&n Sy's is by connecting the set of m input links to the input
links of each §; according to the labels of their input finks and by connecting all
output links of Sy, ..., Sy to the n output links n the order defined by the expression
such that all output links labeled signal are ootgtected to the only output llnk of §
labeled signal. { (Re!‘er to Flgure 3.2b).)

(C)Esl_elT,N@kio@

The type definition T only provides information for compile time type checking; N.is
the list of name definitions containing k names; and Eg is an expression. The
translation of expressions in N yields an (m;, n;) schema S; where nj = k or ksl
depending on the existence of an maput link labeled signal. These k output lin.ks
are labeled with names in N iecord"ing_ to the definition. The transtation of Eq yields
an (mg, np) schema Sy, » ‘ :

The (m, n) schema § is constructed by cascading Sy and Sy such that the set of
input links in Sq labeled with the names in N are connected to the output links of Sy
The set of m input links are labeled with names in the set (In(Sy) u (In(Sg) - N)) and
are connected to input links of S; and Sg according to the labels. The output links
of S includes the ng output links of $g and may “cﬁn;aln an output link labeled signal
if one of the following three conditions is true: .

(i) Sq or Sy contains an output link hbekd‘s_iggﬂ. In this case simply connects
all such output links to that of §.

(i) The set (N - In(Sp)) is not empty. This implies that the set of names
defined in N are not all used in the expression Eq; and, therefore, must be
discarded using sink actors which are then connected to the output arc labeled

signal.

The resulting schema is shown in Figure 3.2(c).

(d) E = if E; then Eo else E4 end

Let S, Sg, and Sq be (m, y), (m2, n2) and (m3. n3) schemas translated from E;, Eo,
and E4 respectively. For a well formed conditional statement, note that no differs
from ny at most by one. The S is an (m, n) coﬁditionai schema such that m = Size(
In(Sp) u In(So) u In(S5)). This conditional schema contains m' switch actors, where

m' = Size(In(S) U In(Sq)). (Netice that m’ may be less than m4 becuase some inputs
are used only in the predicate of the conditional schema) It contains n3 merge
actors, where nq = maximum(n;, no). The true branch of the conditional schema is
obtained by modifying So by adding additional sink actors if m' > mo; the false
branch is similarly constructed. This construction results in a schema S shown in
Figure 3.2(d).

(e) E = < procedure application > = P (E)

Let P be the name of a precedure which is defined to have m input values and
yields n output values. The translation of the expression E; produces an (my, ny)
schema. The schema $ for E is constructed using a constant actor of .value "P" and
an apply actor of m+2 inputs and n+! outputs as shown in Figure 3.2(e). The apply
actor requires m+2 inputs because the first input is-for the name of the procedure
and the m+! inputs and n+l outputs are for the (msl, n+1) schema translated from the
procedure P. | 7

(3) The application of the translation rule to the expression E yields an (m’+k, n’) schema
S, where m’ = m, or m+l and n’ = n, or n4l, if the prbcedui'e P is defined to have m input
values and n output values. The extra k input arcs are due to the procedure names used
in the expression E, and m’ and n’ depend on whether a trigger input link and a signal
output link is produced during the translation. We obtain the final (m+l, n+l) schema for
P by adding constant actors whose values are k procedure names and by adding a trigger

-57 -

(d) E =if E| then Eo eise E5 end

trigger

Figure 32 (d) Translation rules

trigger

Figure 3.2(e) Translation rules

and a signal link if necessary.

This concludes the translation procedure. The result of the translation procedure on the

- procedure definition for computing the factorial of an_infeger is shown in Figure 33.

3.3 Discussion
We have not introduced data type declarations for arrays or records. It is desirable to
introduce additional declaration mechanisms for defining data structures of specific forms such

as array, record and union types, because such declarations provide effective compile time

checking which would otherwise be costly at execution time of a program. These are regarded
as extensions not of our primary concern in this thesis.

The implementation of procedures as values (or, procedure-values) is a very subtle
issue that involves both the representﬁtion of procedures and the manner in which procedural .
values are used. In this simple language, we have ﬁnly allowed application of procedures that
are defined at compile time. The use of a global name space for procedure names is overly
restrictive in that there are many situations where definitions of local procedures are desirable
without regard to use of names. The use of a global name space also violate; principles of
programming methodology which emphasize the importance of modular program structures
and language structures which guard against the prqpigation of unintended or malicious
side-effects.

In a more general programming lgnguage. we i\vould like to be able to dynamically
?reate procedures by compiling a procedure definition or By tombining existing procedures to
yield another érocedure whose function is the result of composition of others. To implement
these operations on procedure-values iﬁ an operation model that is free of side-effects presents

several problems.

F : (2, 2) schema

trigger

1 -2

Figure33. A example of translation rules on the procedure F:
F - procedure { x ; integer) yields integer
' if x=<l then x s X ¢F(x-1) end
end F

The creation of procedures cannot simply cause updates to the global name space, since
this would create side-effects for the processes having references to it. Another problem relates
to the construction of recursive procedure definitions. In Henderson’s binding model [HendeT5},
the construction of recursive procedures is cast in an operational model that allows data
structures containing cycles. In the language presented here, we have been able to allow
recursive deﬁnitioﬁ of procedures by introducing a global name space such that no cycles are
created. While it is possible to extend this scheme for constructing recursive pl:ocedurcs
dynamically, it seems premature to define any implementation of procedural values without

further conclusions regarding the desirability of data structures containing cycles.

-62 -

This page intentionally left blank

-63-

Chapter 4. Implementation of Data Flow Schemas in a Data Flow

Processor

The data flow schema model presented in Chapter 2 is based on the graphical
representation and a data flow interpreter that implemeﬁts its operational sémantics. In this
chapter we present the structure of the data flow processor and an implementation of the
interpreter. Section 4.1 introduces the structure of the data flow processor, and the rémalnlng
sections describes the representatiqn of a schema as a data structure and that of an activation of
a schema. In Section 4.3, we present édditional modifications on data flow schemas for

implementing the semantics of procedure activations.

4.1 Data Flow Processor

" The structure of a data flow processor fof supporting the execution of recursive data
flow schemas is shown Figure 41 It consists of six }skubsfstems:‘ Functional Units, Structure
Controller, Execution -Controfler, the Arbitration and Distribution Networks and the Packet
Memory. The processor is based on. a packet communication deslg_n.prin;:iple that has been
advocated by Dennis [Denns75]. The arcs between subsystems reéresent channels through

“which packets of the specified t}pes are sent. Two major subsystems of interest to us are the
Packet Memory and the Execution Controller. |
h The Packet Memory holds data structures as collections of storage nodes, called items,
~each of which represents a tuple of a one-level-data structure. An item may have scalar values
and unique identifiers of other items as its components each identified by its selector. Thus, a
collection of items can represent an acyclic directed graph where each arc corresponds to a |

unique identifier co‘rﬁponent of the item representing its origin node. The Packet Memory

maintains a reference count for each item and reclaims physical storage space when items

result
packet

N

('data structure h
: command S

instruction fetch
command

result
packet

Network

activation record
response

_

T

Distribution | |

Execution
Controller

-e

Structure —
Controller ﬂ
. item
(Data Structure) - data structure
operation packet
Packet Memory .
| (Procedure Stru;iure) ’

instruction

Arbitration
Network

Y

(Activation Record)

Packet Memory

Functkmzl

—

b activation record

Units

| Figure 41. Data Flow Processor

-65-

become inaccessible.
Structures held in the Packet Memory have three roles in the execution of data flow
schemas: |

(1) as aoperands for the data structure operations implemented by the Structure
Controller;
(2) as pfocedure structures that represent data flow graphs and have as compoﬁents

_instructions of a data flow procedure which are encodings of actors and their output
arcs in a data flow schema; and
(3) as activation records which hold operand values, i.e. tokens arrived at an actor, for
each actor instance while waiting for their enabling condition to be satisfied.

The concept of a Packet Memory System was introduced by Dennis, and the design
issues for these systems and the Structure Controlier have been studied [D&lns'l&. Acker76] In
Chapter 6, we discuss in greater detail the properties of the Packet Memory that must be
satisfied to support these structures effectively. |

The Execution Controller fetches instructions from a procedure structure and operands
from an activation record that are stored in the Packet Memory and forms them into operation
packets. Each operation packet is passed to the Arbitration Network for transmission to an
appropriate Functional Unit if a scalar operation is called for, or to the Structure/Controller for
the data structure operations. Instruction execution in the Structure Controller and Functional
Units generates result packets which are sent through the Distribution thwork to the
Execution Controller where they will join with other operands to activate their target
instruction.

The Arbitration an'd Distribution networks are both store and forward networks and

can forward a packet from any one of the input ports to any one of the output pem.l Itis
importaﬁt to realize that the delay of packet traversal through the networks is subject to
varjatioﬁs due to the resolution of contention for buffers among packets in the networks. Thus,
the ‘Execution Controller has to store the result packets as operands and detect the enabling
configuration of an actor regardless of the order of arrival of these packets. That this can be
implememed‘.‘correctly will be seen later whien we give detailed representations of procedure
structures and activation records.

Although the Execution Controller, Structure Controller and the: Packet Memory are
shown -in.l Figure H as single units, each is in. fact a collection of my identical units. For
example, tﬁc‘ Packet Memory subsystem would consist of separate: systems; each ‘hokiing all items
whose unique- identifiers belong to a welt defined partition: of the: address-space of unique
identifiers. The Execution Controller subsystem corisists of idemtical modules each of which
would serve a distinct subset of procedure activations.

4.2 Procedure Strixctures and Activation Records

This section’ presents several alternatives to the repmentatlm of procedm'e structures
and activatlon records Section 421 presents a mnpk representation’ and fmay incur unnecessary
delays in instruction execution. Section 4.22 gives two other akernatives. In the rest of the
thesis, however, we will assume that the simple representation prua'mdin Section 4.21 is used.

L We refer readers to [Bough78] for further readings on a possible approach to the design of
such networks.

-61-

4.2.1 Procedure Structures and Activation Records

A data flow schema is represented in the machine by a kind of data structure called a
procedure structure. A procedure structure corresponding to a data flow schema of n actors is a
data structure having n components with integer selector names from | to n assigned to the
actors. Each component, called an instruction, is an encoding of an actor and its output arcs.

An actor ﬁaving n output arcs is encoded as a data structure shown in Figure 42. We
shall call the components fields of an instruction. The Operation field defines the function
performed by the actor, the destination fields DI, .., Dn define n output arcs. Each destination
field has three subcomponents: the Inst component is the integer selector name of the
destination; the Input-Arc component is an integer designation of an input arc of the
destination; and the count component is the number of result packets expected by the
destination.

Since multiple instances of the same schema may be concurrently active in a
computation, each activation (an instance of a procedure execution) is represented as a separate
activation record whose representation is shown in Figure 43. Each actor in an activation is
uniquely identified by the tuple (A, i), where A is a uid of the root node for the activation
record and i is the integer assigned to the actor in the procedure structure. A token of value v
on the k-th input arc of an actor (A, i) corresponds to a result packet that carries the
information (A, i, k, v, count), where count indicates the_’\ number of tokens (or operands)
required for the enahling of the actor.

An actor is enabled when the number of result packets having arrived at the operand

record -- the i component of the activation record A - is the same as the count in the result

- 68 -

(a) procedure structure

1 2 Ld . . n
s JRRN //‘L—\\ P
(instruction) () (
_ // S _- <

(b) instruction

- O
o

operation

| L A

7 ~
Ve
(destination) (
N - 7 N ~ -
{c) destination
D.
I]
Inst Input-Arc Count

S

Figure 42. Procedure Structures

- 69 -

{a) activation record

I A
1 . . . n "text”
- - —JF —— ~
“operand\ (\) Procedure \
~yecord N _ — ‘Sructure

(b) operand record

1 . K o o o m “arrived”
- W A / ERERN
(/ N k-th \ {/ \\ number of\
N) \operand/ \ p arrived .)
~7 ~N_7 - — operands /

N _ -

Figure 43. Activation Records

packet. ! The detection of enabling is a function of the Execution Controfler that processes
activation records. Upon enabling of an actor instance (A, i), the instruction of the actor is
fetched from the i component of the procedure structure. ‘

An activation record shown in Figure 43 has ‘components with integer selectors for
operand records and an additional "text” component that is the procedure ‘structure for the
activation. (In our implementation, this component may be shared by other activations of the
same schema)) An operand record may'have as many integer suboompohems as input arcs of
an actor, and also contains an- amved subcomponent indicating thm of arrived result
packets. Since an activation record stores values of arrived re:uk par.kets in its components,
operations on an activation record modify its components. The operations on activation records
are defined below:

(1) create-activation{ P)

This returns a new activation record with P as its “text” component and with no
other components.

(@) insert(A5, v) |
The operation' adds to A an camponent with value v. The selector s is of the
compound forn; ik where k denotes the k-th input arc of éue instruction i. The
operation increments the i."arrived” compomnt by one and r!tums the incremented

value. If the i."arrived” component is und M thexa!ue is taken as zero since it

1. With the exception of the merge actor, the enabling condition is easily implemented by test
of equality. Under the restricted use of merge actors in well formed data flow schemas, a merge
actor is enabled when it receives one input token.

2. We have treated each operand record as a structure with selector names. This should be
considered an abstraction that can be implemented in-an optimized form. A practical
implementation of the operand record would be based on some mapping of the fields into
~operand records of a fixed size.

indicates that the field is non-existent.

(3) remove(A, i)

This operation deletes the i component of A; and is performed by the Execution
Controller upon the delivery of the operation packet for the actor instance (A, 1). .
() free(A) | |
The oﬁeration deletes -the entire activation record A. The section on the

implementation of procedure activations gives an example of its use.
\

The Execution émtrdkr consists of independent modules that provide dching of
activation records. For each arriving result packet containing (A, i, k, v, count), the Execution
Controller. performs the operation insert(A, i.‘k.} v) and: tests the value of the “arrived”
component against the count cémpanmt of the result packet. If the values are equal, the
instruction is fetched. Upon the arrival ofthe instruction: packet at the Execution Controfler,
' an operation packet containing the information (A, instruction, operands) is sent to the
Arbitration Network containing the instruction and operands from the activation record. The i
component of activation record A is then deleted by the Execution Controller.

The fetch command issued to Packet Memory is of the form: ‘

< fetch, P, Inst, A >.

This packet causes the instruction structure of the Inst component of the procedure structure P

to be brought into the Inst component of the activation record A.

4.2.2 Two other alternative representations

In this section we present two alternative representations of procedure structures and
activation records that have some advantages over the one presented.

The procedure structure of the first scheme is the same as that of Figure 4.2, but the

-72-

activation records now have a "text” component for each operand record as shown in Figure
4.4. This component is supplied by result packets destined for the operand record. For each
enabled instruction, the Execution Controller can, therefore, directly use the uid contained in
“text” component of the operand record to fetch the instruction without having to obtain the
uid of the procedure structure from the activation record p&umd in the previous scheme. In
this scheme a resul packet must, therefore, carry the information (A, 1, k; v, count, P), where P
is the uid of the procedure structure.

The second scheme is a further optimization of the first. This scheme eliminates the
redundant information, the “"count” and “text” component, carried by all resuk packets for each
operand record. The procedure structure is shown in Figure 45, wherethe “tag™ component of
the destination field is a boolean value of either true or faise and slgniﬂé that tl\e values for
the “count™ and the “text” component of the destination: operand record are to be sent if it is
true, otherwise, only the operand value is contained in the resuk packet. The boolean value for
the "tag” component of each destination structare must be assigned-by the compiler such that a
true tag is associated with one and only input arc of an actor. A schematic jHustration of an
example of this assignment is given in Figure 46, where the broken arc represents the
destination field to which we have assigned the value true. In this figure, we have chosen the
assignment rule that assigns true to the rightmost input arc of an actor. Note that a merge
actor has two broken: input arcs, this is because only one branda of a conditional schema is
~executed.

The content of a result packet is the tuple (A, i, k, v, count, P) if the tag for the
destination (A, i) is true; otherwise, it is (A, i, k, v).. The structure of an'op'ennd remrd is
shown in Figure 47. Initially, the two components “arrived” and “count” are nil. For each
result packet the "arrived” component is incremented by one and the resulllng value is tested

(a) activation record

-1

A
I n
TN J‘*\
[operand\ \
\' record /
~ N —_ S
' (b) operand record
(A, i)
] . k "arrived” "text"
Ve ‘L ~N ~ 7 - ~ 7 N
{ \ / k-th \ number of\ [procedure\
\\ Y, ‘\operand/) \ zn'rivedd) \structure/
~ ~ - g \operan Sy ~

~—

Figure 44. Activation Records

-74 -

(a) procedure structure

IP
l 2] - . n
/mstructlon/ (\)
~ \ —__ ’ ~N__ 7
(b) instruction
I i
operation D, L D,
l - l -~ —
' /destinatior}) (/ : N
AN - _ }
—_—— ~N__7
(c) destination
D
Inst Input-Arc Count “tag”
| | L
//t_!'_‘ﬁ \
\ or)
\false//

Figure 45. Procedure Structures

F : (2, 2) schema

trigger

Figure 46. An example of tag assignments to the schema shown in Figure 3.3

-6 -

(a) activation record

I A
1 e e n
/L N /L
/ operand) e N\
\ record] ’\)
AN
N -_ "
(b) operand record
(A, 1)
“count” 1 . k. . . m "arrived” "text”
Py y. - 'S - o /‘.‘
// N\ /L-th \\ // \\ 4umber ot\ /procedure\
\ \ [operand/ \ / arrived } structure)
\// N N~ \iperands/ _//

—

Figure 47. Activation Records

against the "count” component.l In addition, for a result packet of the form (A, i, k, v, count, P),
the "count” component is written with the value count and the “text” component is written with
the uid P. An instruction is enabled when the values of "count™ and ’;rrived'.are equal.

Notice that in all of the schemes presented, the instruction for an enabled actor is
fetched only when it becomes enabled. Thus, there is an added delay between the enabling of
an actor and the delivery of an operation packet. A further elaboration of the instruction
execution scheme can be based on use of the “tag™ field and can allow the instrhction of an
actor be to fetched before the actor becbmes enabled2 This is achieved by requiring each
subsystem that processes an operation packet to issue to the Packet Memory an instruction fetch
for the destination operand record as it awaits for the arrival of other operands.?‘

These two schemes introduce additional changes to the iplementation of procedure
activations, since the input links and output links serve Qs the interface between procedure
activations and must conform to the schemes described. We will not detail such changes, and

will present the rest of the thesis based on the scheme described in Section 4.2.1.

4.3 Procedure activations

The problem of implementing procedure activations has been investigated by
[Misun78, Miran77), we present here a scheme that is consistent with our representation of
procedures. To implement application of schemas, we introduce four additional actors: linkage,

make-ret, distribute and extract-uid. The symbols for these actors are shown in Figure 48. For

1. if the "arrived” component is nil, it is assumed to be zero.

2. This is similar to the instruction fetching schemes of lookahead processors. We mention
that in this scheme the assignment of tags may be important. '

3. In this case, the enabling condition can be modified such that it treats the instruction as an
additional operand required for the enabling of the instruction. :

(1) linkage , :
activation record when constants are written into the actor
. A . i , v . - A v
signal .signal
(optional)
| (2) make-return when M are written into the ;gp_f
-~ activation record - base numberof results - activation record

A 1 K

(3) distribute (4) extract-uid
(A LK)

(A, D) (A, I+K-1)

Figure 48, Actors for implementing progedure application

brevity, we illustrate the implementation with an example. The schema shown in Figure 49 is
a translation of the schema for the factorial function shmm in Figure 13, and embodies the
additional actors,' This embodiment is based on an instruction assignment rule that assigns
integers to each actor of the augmenteﬂ schema. The modification creates an (m;2. n) schema
from an (m, n) schema translated from a texmal pngnm described in Section 32. The
instruction asslgnment rule is the following (referring to Figure 4 9)‘

(1) The '_ir_l_l_(_ actor Iabeled ret is assigned the integer one.

(2) The link actor labeled env is assigned the integer two.

(3) The remaining m input link actors m respectively assigned 3, .. and m.2.

(4) The li _g_lggg_ e actors that: supply ingut » ualues to the new activation and actors that
receive output values from it are respectively as;lgned consecutive integers. In
Figure 4.9, the actors labeled I, Il J43 are Li__g;g actors supplying input values,
and the link actors labeled j‘]ol re_ceive resuk values from a procedure activation.

(5) The assignment rule fof the femainmg actors is arbitrary.

In Figure 49, the first input link actor laheled "ret” expects a value that encodes the
destinations.to which output values will be reﬁnmed. ‘The encoding cﬁnsists of the md of the
activation record, the smallest integer assigned to chev link actors receiving output values, and
the number of output values. The distribute actor!dempose; this tuple into destinations and
' forward them to output linkage actors 6f the new activation. A linkage actor communicates
between two different activations and expects three inputs: a value v, \an instruction number 1,
and a"tjivd of another activation A. The firing of‘i linkage actor (A 1p in4an adivatlm Ay
sends to the operand record (A, i) the resulf packet (A, i;'l, v). In additlon, this l_im;_ e actor
may have a signal output arc destined for an actor \vithln the activation A,.

The second link actor expects the uid of the environment structure that contains all
procedure structures with their names as selecﬁrs. ’ |

The semantics of the apply actor is implemented by using c:feat‘e-activa‘thn‘ to allocate

an activation record. The create-activation actor- requires two inputs: a uid of a procedure

F : (4, 2) schema
ret

Tl

Figure 49. An example for the implementation of the apply actor

-8 -

structure and a signal that is generated only when all.input arguments for the activation have
been computed; and its output is a free uid A. The uid of a -.pxécedme is selected from the
environment structure using the name of the procedure. The uid-of the activation record A is
sent to the linkage actors I, .., and 1+3 which forward arguments to the activation. For these
linkage actors the instruction number of the destinations are respectively assumed to be |, .., and
4. The value encoding the return destinations for the new activation is constructed by the
const-ret actor using the output of the extract-uid actor which extracts from a result packet the
uid of the activation; and it is sent to the first input Jink of the invoked activation through the
linkage actor, L.

A free actor releases the activation record and is enabled only when all activities within
the activétion have ceased.! In Figure 4.9, notice that .the signal output arcs of the output
- linkage actors on the bottom of the figure are connecied to the free actor through a sink. Thus,
the_ free actor cannot be enabled until all output linkage actors have delivered their output
values. The uid of the activation record is returned to the pool of free uid’s managed by the
Packet Memory. |

The translation of textual programs into augmented schemas is straightforward and
can be based on the translation rules presented in Section 3.2, and we will omit further details

of the process.

4.4 Tail procedure application

In sequential programming languages, a tail procedure application is a procedure
application that occurs as the last statement in another procedure. For our value-oriented

language, a tail procedure /aﬁplication is identifiable as a procedure application in the

. This is guaranteéd by the compiler that translates textual programs into data flow schemas.

expression of the body of a procedure whose autput value is returned as the value of the entire
procedure. For languages that have iterative constructs; the transiation of an iteration loop into
its equivalent recursive form of mnpnmmum it a-tait recursive procedure. Often, some
recursive programs can be transformed into tail recursions as well! In programs with il
procedure applications; the resuk of a tail: procedure application of P2 within P1 is simply the
result of the procedure application P2. (If Pi and P2 are the ame, then they form a tail
recursive procedure) Such tail procedure applications. occur: frequently enough that the
activation record of ‘Pl shoukl be deafiocated as s00n-as possible. Without such: optimization,
the outermost procedure activation remains until all nested procedure activations are freed.
Since the subject of compiler optimization is not within the:scope of this thesis, we will

simply present an example to iHlustrate how such optimization mighbeaemmphhd with the
‘procedure application scheme introduced. -In Figure 410, we give an akernative recursive
program for the computation of the factorial function. ~In this schematic ifustration, the link
~actor labeled ret provides the necessary information hrﬂaemp!ﬁrmidd actors to form the
nécessary linkage between the deepest nested procedure activation and the outermest procedure
which invoked the factorial computation.

-~ In Figure 4, we give examples-of situstions where tail-provedure application can be
optimized. While it is possible to optimize on reasonable cases of such tail procedure
applications, it is not clear that the complexity introduced is desirable.

1. These translations are not assumed to be an important part of the task of the compiler, but
such optimization may be embedded if feasible. ' For & usés langiiage which havé’jiterition
constructs, the translation would naturaily lead to tail recursions, and thus the epportunity for
this optimization should be taken advantage of.

e ey trigger X y
| : & S CA 5

:

A A)

b A% b

*“': *ul ieq o {

G- M@‘x.v intéger) yields integer
Lifx <lthen y

else G{ x-1, (x-1)oy)

end

end G

Figure 410. An example tail procedure application

)

f is a tail recursion

in some cases of a
eqnnmkﬁnlmg_

@

fo is a tail procedure application
within f; and fo contains a tail
application of f. - o

Figure 411. Examples of tail recursions

4.5 Discussion

In this chapter, we have presented a processor that is capable of supporting the
semantics of the data flow schemas and the concurrency of operation. We have presented an
abstract view of the operation of the processor and have discussed several alternatives of the
instruction execution schemes. The choice of the execution scheme wodld depend on many
factors that need further investigation. Some of these factors are: the delay characteristics of
packet traversal through the networks, and the trade-off between the amount of storage needed
to store operand records and the delay of instruction execution.

The instruction execution schemes we have presented are all called piecewise copying
schemes, because each instruction is not fetched until the instruction is known to become an
enabled instruction. Another alternative is to fetch all instructions of a procedure structure into
an activation record at the time of creating the activation. This scheme would require that the
instructions for actors on one branch of a conditional schema be deleted when the test outcome
of the predicate for the conﬁitional schema becomes kr;own. This scheme also suffers from the
larger storage required to store the instructions at any instance of time during the activation.
Its advantage is that instructions can be fetched possibly with a single réquest to the Packet
Memory rather than with as many requests as the piecewise copying schemes; thus, it reduces
significantly the amount of packet traffic to the Packet Memory. At this level of discussion, it is
not clear that this scheme offers greater advantages. To analyse this further would require
further elaboration of the architecture and some understandingl of the behavior of piecewise
copying schemes. |

The implementation of data structures and activation records by the Packet Memory
has not been discussed in this chapter. We elaborate on this subject further in Chapter 6.

We have not detailed the translation from the Ianguage to the augmented schemas, but

the details are straightforward and present no additional difficulties once the translation rule

presented in the Section 3.2 is understood.

- 86 -

-87-

Chapter 5. Stream, Nondeterminacy, and Forall

In this chapter we introduce several extensions to the language described in Chapter 3.
These extensions are useful for expressing many forms of computation which are not
conveniently expressible in conventional programming languages. Streams are an important
abstraction for expressing computations on sequences of values. The implementation of this
abstraction does not constrain the inherent concurrency of these computations and is guaranteed
to be determinate when primitives for nondeterminacy are not used in the program. Anocther
form of concurrency arises when a proceddre is applied on all components of a data structure to
produce new data structures or scalar values. The forall construct introduced in section 53 is a
useful feature for expressing this form of concurrency.

Nondeterminate computations, computations that may depend on the timing of
execution, can be expressed by merging two streams in a nondeterminate manner. It is
important to realize that there may be computations which are not easily expressible with this
extension of the language. This limitation is due to our lack of understanding of semantics for
nondeterminate computations and of how such computations can be expressed in a

value-oriented language.

5.1 Streams

The concept of a stream is an alternative approach for expressing computations that
have conventionally been expressed as coroutines or a set of cooperating processes. For
example, the organization of a compiler is often viewed as a set of coroutines each
corresponding to a phase of the compiler, and we often view processes that perform input and
output operations as a set of concurrent processes that coordinate using process synchronization

primitives.

The significance of programming using streams has been recognized in many wquu on
formal semantics [Landi65] and on programming languages [Mclir68, Denns69, Burge?s,
FreWi78]. | N

There are many reasons for expressing omnputetions in these forms. Large
computations tend to create many Iarge intermediate data stnrctures that take up storage space.
Coroutine mechamsms are often used to ailevtate this probiem by partitioning intermediate data
structures into smaller units such that the total amount of stonge used for intermediate data
structures is reduced. The second reason is to allow tlme subcompumions to be concurrently
executable by using cxpircit synchromzanon primitives The third and subtler reason is that
program structures expressed in these forms are more modulcr in the following sense: prognm
modules can be expressed as a function over streams and their overall behavior can be
characterized as compositions of these functions using denmtionali semantics [thrﬂﬂ

Writing programs for applications that lead nattitally to these forms of computations,
however, has been difficult in sequential pregnmming languages that have explicit coroutine
mechanisms and synchronizatiorr primitives. Because these primitives require explicit
initialization of either control sequences or common synchronization variables, the correctness of
these programs is more often than not difficult to establish and prograrnrﬁing errors may result
in deadlocks or unwanted nondeterminacy. | |

Since many of these computations are inherently determinate, it is desirable to be able
to express them in a more structured manner and writhotit the;e undesirable properties. Using
streams as presented here. one can express computations of these forms such that the inherent

concurrency is not lost and the resuk of the computation is determinate and free of deadlocks. -

- 89 -

5.1.1 Stream operations

A stream is a sequence of values, all of the same type. that are passed in succession,
one-at-a-time between program modules. The operations on values of type stream of T are
defined below where s and s’ are streams, and ¢ is a value of type T.

na
The resuﬁ is the empty stream which is the sequence of length zero.
(2)cons (¢, s)
The result is a stream s’ whose first element is ¢ and whose remaining elements are
the stream s.
(3) first (s)
The result is the value ¢ which is the first element of s. . If 3 = [, the result is
undefined.
(4) rest (s) The result is the stream: let after remaving the first element of 5. If s =
(], the result is undefined.
(5) empty (s)
The result is true if s = [], and is false otherwise.
For a non-empty stream s, the following property is, satisfied:
s = cons(first(s), rest(s)). | ,

We shall use [I, 2, 3] to denote a constant of type stream of integer whose stream
elements are the integers |, 2, and 3. Using the notation we give gxamplet of operations on
stream values below:

Let x = {1, 2,3)and y = 5, then
first(x) = 1,
rest{ x) =[2,3],

cons(y, x) =0[5123]

empty(x) = false, and
empty([]) = true.

51.2 An example program

The problem of genera.ting all prime numbers less than a given in;eger n is a good
computation for illustrating how our data flow miqu,muianuprm; highly concurrent
computation using streams. The sieve of Erastosthenes [Knuth69] expressed .in. our textual
fanguage is presented in Figure 51.

The procedure “generate” produces the sequence of integers beginning with 2 which is
processed by “sieve” to remove nonprime elements. Procedure “sieve” operates: by taking the
first element of its input as a-prime and vsing: which:all ‘muktiples are removed by “delete”
before applying "sieve” recursively to the remaining elements of its input stream. .

In Figure 5.2, we show a snapshot of the-execution:of the: program prime_generator. It
can be seen that a substantial amount of concurrency exists in. the computation if each
activation of the procedure “sieve” can be executed as soon as the first: element in the input

stream is available. Section 5.2 shows: how this concurrency can be achieved.

5.2 Implementation of streams

In this section we first present a correct and- efficient implementation.of streams, and
then discuss why another alternative scheme is met :deq‘w - The akernative scheme is
presented here because it is a natural consequence of thinking in terms of tokens in- the data
flow model of computation, but it neither correctly mmym the ssmantics of the

language.

T~

prime_generator = procedure (n: integer) yields stream of integer;

generate = procedure (i, n : integer) yields g____ofl_m
ifi<nthen(] e
elnm(lgmmw(mn))
end;
end generate;

sieve = procedyre { s+ ___g___of_l_igg_)y____meamofi_t_eg,
if empty (s)then (] :
else fet «x: i.msz-ss mim
X, 59 = first (s), pest (s);
s3-deiete(x 32);
E.“_.Jd
end;

e s

delete = procedure (x : mg , § : stream of integer) yields gg__oﬂ_q;gg_,
ifempty (s)then[]
else Jet y:integer, 5o, 53 : stream of integer;
Y. 89 = fmt(:)g(:)s

sy =delete (X, 359);
in if divide (x,y)then sy
else cons (y,57)
end,
end;
end;
end delete;

sieve (generate (2,n));

end prime_generator;

Figure 51 A prime number generator using sireams

(1) prime_generator

- generate . =
n : integer stream of stream of
integer integer
This is a stream of
prime numbers < n.
(2) / e ———
generate
n
- J
N S
A stream of First activation - K-th activation
prime numbers of sieve of sieve

Figure 52. A snapshot for the prime number computation *

5.2.1 Implementation of stream operations

The implementation presented here is based on transation of each stream operation
into one or more data structure operators that indude operations on “holes". The notion of
holes used here originated in the work of Henderm B:Iende’lb] who used the term “tokens”;
and it differs from the notion of suspensions dlsctmeé bj Friedman and Wise ;[EreWi'?sll In
this implementatioh, an empty stream is represented by the nil structure, and a stream s is
répre;ented by a data structure whose “first" compenem is first(s) and whose "rest” component

is the data structure representation of rest(s).

The implementation of the stream operations (except c_on_g) l; showﬁ in Figure 53, and
is simply a replacement of a stream operation by a stmple data structure openﬁon The cons
actor is imp!emented by the actors shown in Flgur& 54, where the actors ge_ate—ho!e and
write-hole are special data structure operators deﬁned as follows:

The output of a create-hole actor is a unfllled hole H which is a uid and a tag in
{filled, unfilled]. The tag of a hole @mu its state and affects loperatlons on it: in
the unfilled state, all data structure operations on the hole are simply pooled - éxcept
the write-hole operation. Upon the completion of the write- -hole(H, v) operation, the
“hole H changes its state to filled and contains the value v; and all previously pooled

and subsequent operations are processed uithout further queuing?2

. The notion of suspension allows one to force the evaluation of some values which is
promised; and a promised value does not necessarily evaluated as soon as possilbe.

2. The implementation of the write-hole operation must, in addition to writing the value in
the address, allow the operations pooled for the hole to proceed. It should be mentioned that
the operations on holes are used in a restricted context such that only one write-hole operation
is performed on each hole; thus, there is no- possibility’ of race between several write-hole
operations on the same hole. A simple way to implement the pooling of operations is to queue
them as a list the uid of its head is stored in the hole.

(a) first
streamof T
T

(b) rest

streamof T

stréam of T

(c) empty

streamof T

Figure 53. Stream Agters (except gong)

(d) cons

stream
of T

"first” "rest”

v/
stream

Figure 5.4. Cons

@s!znﬂ

Referring to Figure 5.4, the effect of the cons acﬁ:r is to construct a data structure
whose “first” component is the value v.and whose .'reit' component is the hole H from the
output’ of .the create-hole actor. The write-hole actor receives as inputs the hole H and a data
structure representing a stream. Notiee that the implementation of the cons actor creates an
output after receiving the input vaiue v and does not wait for the completion of the write-hole
operation.' The write-hole operation has a §_lg_ngj_ output used for ensuring that the activation
is not deleted.before its operation is completed.

The first(s) actor is mnslated into a select(s, "first”), and the yest(s) actor is transiated
into a select(s, "rest”) data structure operation.’ Tnemm is transhated into the predicate
ml—structure(s). | v

Using the earlier example program for the prime number generation, we illustrate the
concurrency of operations on streams. The schems for the two procedures “sieve” and “delete”
are shown in Figbure 55 and 56. From the schema for “sieve”, it can be seen that the output of
the cons actor is generated after the first valae in the mput%trum from the "generator” is made
"available as the "first" component of the input stream. The md prime number is produced
by the second activation of the "sieve” and is not available untll the first value of the output
stream of the "delete” becomes available Figure 5.1 shows how vaﬂeus activations of schemas
may relate to each other, where we used the notation Dij to denou thQ j-th activation of "delete”

within the i-th activation of “sieve” Sl.

1. By making the “first” component a stream, the language could be extended to include stream
of < stream type >.

2. Without going further into the details of the implementation of data structures, we simply
state the requirement that operations on data structures with holes as components have the
property that once the holes are filled, they behave as normal data structures.

sieve = procedure ('s : stream of integer) yields stream of integer;
if empty (s) then [] ,
else et x : integer, sp, 53 - tream of integer;
X, g = first (s), rest (s);

$3= delete (x, 527).
in_ cons (x, sieve(35)) end; end;

end sieve;

trigger

stream
of T

delete = procedure (x : integer, s : stream of integer) yiekds stream of integer;

if empty (s) then[] .
else let y: integer, 5o, S5 : stream of integer;
Y. s = first (s), rest (s)
sy=delete(x,59)
in if divide (x, y) then s else cons (y, 53) end;
end
end delete;
trigger X 5

: |1
K/
mm S S
o IS w,o WAFOAIY PU2 |/// NS ¢o weRVMPD IS /
©-)

N

—

A snapshot for the gr/ime number computation

Figure 6.7.

522 A token passing scheme

| To illustrate the difficulty of implementing streams using "token passing”, we introduce
a sét of data flow actors fof streams [Weng751 These mm mm streams in the
sense that an arc typed stream carries a sequence of tokens of the same typé &mnmud by a
special end_of_stream (or, est) token - hence, the term Wm passing’ The notation and the
operétional sémantig:s of data flow actors for stream values are shown in Figure 58, where the
behavior of each actor is described by a set of firing rules based on the mﬂgumiou of tokens
and the state of the actor. Each actbr, except est and st-link. actors, hastvm;tates Jvst and rest,
- and is mmally in the first state. o)

‘An est actor is simply a constant function which generates the spécial ot tokm A cons
actor enters the rest state after placing a token from the first input arc on the oumt arc, and
returns to the first state upon passing from the seoondinput arc alitokens ending with an est
on its output arc. A first actor enters the rest state iﬁer ph@g a token ’from m input arc on
its output arc, and returns to the first state upon absorh!ng tﬁ temam tokens in the stream.
A rest actor enters the rest state after absoi‘bmg the ﬂrst token, and returns to the first state
upon passing all remaining tokens in the input stream: An empty actor tests if an stream is
empty. In the first state, if the arriving token is an g__s;_ token, the output is ;g_ e and the actor
returns to the first state; otherwise, the output is f_‘_sg and tt enters the rest state. The actor
returns to the first state after the remaining tgkcﬂsare absorbed An ﬁ:&'_@l actor takes a
boolean input and a stream input, tokens forming a smammpasaed n the: output arc
according to the boolean value. An st-merge simply passes the stream to the wlput.fm one of

the input arcs. We restrict the use of st-switch and st-merge actors only to the construction of

conditional schemas corresponding to the restriction imposed on switch and perge -actors
presented in Chapter 2. An st-link actor replicates a stream by copying each arriving token and

by distributing them to the output arcs. An st-sink is a sink actor for stream values and

- 101 -

(i) est (ii). cons

Figure 58(a). est, cons, first, and rest

(v) empty (vii) gt-merge
stream gmm

(vi) st-switch (Complementary action ~ ~ -(viii) st-link -
occurs when the boolean value is false) - :

stream v
of T

(ix) st-signal ..
f v r

stream

© Figure 58(b). empty, st-switch, st-mezge, st-link, and st-signe|

produces a signal to the output arc when an est token is absorbed.

Deadlocksl

The set of actors presented above do not implemt stream operations correctly,
because the substitution of these stream actors for stream opentiom results in a schema that
may deadlock when the predicate of a conditional substbema is an arbitrary expression on
streams. This deadlock situation is best illustrated by an example.

Consider the conditional expressnon, C:
if first(rest(rest(s)))
then s else rest(s) end;
where s has the type stream of boolean.

The translation of the conditional statement C yields a conditional -schetﬁa S shown in Figure
59. The predicate of the schema S consists of a chain of stream actors. Execution of the
schema for an input stream s = [true, true, ... , true) would deadiock because the input link
marked with the symbol « is prevented from firing by the left output arc holding a token. This
situation arises when the predicate controlling the st-switch actor requires an arbitrary number
of input tokens to produce the decision outcome. Most predlcnes. however, can be analyzed at
the compile time so that additional link actors are added between the input st-link actor and the
st-switch actors to a\;otd'daadlocks. 7

This example illustrates a very important property: the arcs of the data flow schema
are finite buffers. In a computation model that allows infinitely buffered arcs, it can be shown
that the history of tokens passing through each arc agrees with the history obtained by the
mathematical characterization proposed by Kahn [Kahn‘l'ﬂé‘j}'or computation models based on
arcs of bounded size buffers, the history observed is a pféﬂxof thﬂobmvable if arcs are

unbounded buffers. No mathematical treatment has been found which shows how to derive the

- exact history for models with finitely buffered arcs. This property of data flow schemas is |

(i) Initial configuration (i) After one firing of &

E’lﬁ

- There is no-actor enabled;
notice that the st-link labeled »
is not enabled ‘bécause the output arc
rest to the st-switch is occupied by

Figure 59. An example of a deadiock situation

- 105 -

undesirable, since the output history would depend on the amount of buffering provided by the
number of link actors in a-data flow path and cannot be characterized in a clean formal

semantics.

Inefficiency

We use the prime number computation presented in Figure 52 to illustrate the
inefficiency of implementing streams as a sequence of tokens passed along an arc. Referring to
Figure 52, if we regard each stream operation as a token passing actor, the computation is
inefficient, because stream actors form a chain that ait tokens in a stream must travel through
during the computation. For example, the prime number that is generated by §; must travel
through the chain ofl (i-1) cons actors to reach the output of the S;. In fact, the number of
firings of a data flow actor to process a stream of length-n is proportional-to n, and for a chain
of n actors it is proportional-to n? in the worst case. |

The rate at which Streams are generated -or consumed, however, is not necessarily
reduced due to this traversat because all tokens can be traversing "a chain of stream actors
simultaneously if the execution time of all stream ‘operations does not have a large variation.
The.execution delay caused by the trayersal would be much hrgerbif some stream actors in a
chain are delayed such that sections of the pipeline containing tive-stream- actors are void of

stream elements.

5.3 Forall
In many applications, operations on components of a data structure can be performed
concurrently. We present a construct for expressing concarrent computations on arrays. . First,

we define a data type array of <simple data type>.. The form of a-forall expression is:

<forall expression> == forall <range clause> <eval clause> end;
<range clause> = <name> in [<expression;>, cexpressiong>]
<eval clause> ::-; { eval operation <expression> }*

| let {<type dech>}; {<name def>} in <eval clause>;

It is required that <expression;> and <expressiong> are of arity one.and of type integer.
Furthermore, the values Ib = <expression;> and-ub » expm?m satisfy b < ub. The
expressions in the eval clause can contain: references to N, the <name> of the range clause, and
must be of arity one. The resukt of the forall expression is an expression of arity k, where k =
the number of eval’s in the eval clause. Its j-th value-is equivalent to the result of the following
expression: ‘
| l:'.j(N =ib) 0; EJ(N-- tbel-) ojr. . .,-.-ejfij&th;).

where O and Ej denote the operation and the expression in: the: jth.eval dause, and t.he
notation Ej(N =i) denotes the j-th-expression evaluated using the free variable N with the
value i. For theabove expression to be well defined, we-further require that the aperations Oj
are binary (requiring two operands) and associative. =

Consider the following example:

forall i = [5, 100]

eval + Ali] '

eval s (ALi 1+ BLiB1- i)

end;
The resulting expression- is of arity two: the first value is simply the sum of all values
A[5]...,Al100] of the array A, and the second value is the product of the expressions AliJeB{i-3H,

for i ranging from 5 to 100.

- 107 -

The construct can be easily translated into a recursive procedure as follows:

P = procedure(ib, ub, <free-list>) yield Rp... 'Rk‘
if ub < Ib then undefined, . . . , undefined

else
ifub < b
then E((N=lb),..., E.(N=lb)
else let middle : integer,
X|: Rl""’ X Rk'
Yl H Rl""’ Yk : Rk;
middle = (1o + ub)/ 2;
Xps Xy = P(Ib, middle, <free-list>);
Vi Yi = P{ middles], ub; <free-list>);
in X O ¥p ..o Xk Oy Yyii
end;
end;
end
end P;

where the <free-list> is the list of identifiers (other than the identifier N appearing in the range
clause) that are free in each expressions E.. '

J

It should be noted that the recursive procedure as defined is not the only translation
possible, since each recursion can create any fixed number of activations. The translation is
only intended to show that the construct can be supported within the framework of our
architecture without additional special functional units for dynamic creation of concurrent
computations on arrays. It is intére,sting to observe that similar types of forall expressions
cannot be easily defined on data structures that are not arrays. The problem is that we do not

have any information about the selector names of a data structure.

5.3.1 Constructing data structures

It is possible to devise a mechanism for defining a more general form of forall
expressions on data structures provided that the implementation of data structures is known.
As we have mentioned in Section 2.4, a data structure is represented by ; collection of items
* each containing a set of tuples of the form (5, c), where ¢ is eithér a scalar value or a uid of
another item. While it is possible to implement items ;apableof :s;oﬂng a variable number of
tuples, an efficient implementation can be based onsmnge nodes that can contain only a fixed
number of tuples - we shall call these nodes Prjmitlvé'iﬁﬁ;t In the latter scheme, an item may
be represented by more than one pmmtlveltem. An exm‘e of the representation of an array
with primitive items is shown in Figure 510. Each pﬁmiti!! item (pitem) consists of two tuples:

{(0":CP(1":Co)), |
where C; and Co are either scalar values, uid’s of other pitem, or nil's. The example is an
~ array A such that: |

Al4) =2,
Al2] = 3, and
Ali] = nil, for ali other i from 0 to 6.

In this representation, the traversal from the root node A to a leaf node defines an ordering
from less to more significant bits of the binary representation of the index to the array A.
Using this representation, we show two ways of constructing an array using the forall construct.

We define an associative operation construct for constmcting an array from two arrays.

" This operation is defined only when indices of non-pil elements of the two arrays are disjoint.
“This is satisfied when construct is used within the forali construct in a fashion such that the
condition for disjoint indices can be determined at oompile time. The cggg_'ly_:t_ opetatk_m is

defined recursively as:

- 109 -

This node contains the pitem
{ (°0" : uidy), ("I" : nil }

A["010"] = Al 2]

A["100" 1= Al 4]

Figure 510. An array representation

-0 -

construct = procedure(A, B) yields structure;
if nik A) then B

else if nik B) then A

else if scalar(A) and scalar(B) then error
else if scala r(A)wnigma(A.B)

The operation e is defined such that the resukofko"o' teturns s, where A is a pitem

containing {("0" : 5), (1" :)]. The resukt of make-pitemi(Cy, Co) is a pitem ~{("0" : Cph (17 : Coll.

The function of the make-hole(x) operation iﬂo create a hole H which is returned as the
“output of the construct and which is later fmed with the item x. The pmctdure migrate *(A, B)

takes a scalar value A and stores it into the leﬁmest available mmt of B whose selector is

formed by a sequence of bits "0". Figure 5H illustrates the mner in which the result of

struct(Al. Ao) is cmted 1
An exampkoftheuseofﬂmIMImt.

forall i in [5, 100]
eval o Alil+Bli]
eval construct append(nil, isl, |
ggi-Sthan[l]oAUol]
QMH} Al1]). AIM]
end; end) ‘

end;
Notice in this example that the resulting array contains mdicel in the range (6, 1011 In general,
theexpnsimforthemmthMMbemwmbupmshmw

H —«——— resulting structure of construct(A;, Ao)

|
\
~{("0": und(Ho)) (| nib}

~ the result of construct(nil, nil)
[
\

e (KOF UId(Hoo».(1" : uid((Age"0"e™T"))}

00 the result of
construct((Aj0"0")e"1", (Age™0%)e"I")

O, .
’ XL

{01, (172 2))

the result of ——-j L the result of

construct(_ construct(
((Aje"0")e"0"a"0", AR 0T,

((Aye™0")e"0")e"0") ((A5#'0"e™0"e"l")

Figure 51l An example for the working of construct

-H2-

guarantee the disjointness of the indeces;

and we leave this as an issue for language design.

In the forall construct as presented, the range clause may only be integers. This is
undesirable in cases where the range is-much larger than the number of data elements in the
array, because the number of activations created would be much larger than the number of
elements in the array. We introduce another form of specifications of the rahge clause: |

<name> in range of A, | | , | |
where <name> is an identifier that én range through all one level indices of the array A; thus,
the range clause is not usable for specifying compound selecwrs"’as the indices [i, j] of a two
dimensional array.

An example of its use in a forall is:

forall i in rangeof A
eval « Ali)+ Alid]
eval construct append(nil, i, Ali]+B{i])
end;
The above forall expression can be transhted into th&following call to the recursive procedure

P:
P(A, A, B, nil)
where
P = procedure(a, A, B, i) yields integer, array;

if nil a) then "!!!!
else if scalar(a)then A[i)+ AList} ALiT+Bli)
elie let left, left = (200", A, B, U'si)
righty, right; = P(ae’l", A B, 'I‘fi)
in leftp # righty, make-pitem(lefty, right;)

1. If the expression is an arbitrary function on i, then there is no simple compile time check for
this condition. One must define the semantics of data structures very carefully, if any
expression is allowed.

R

-H3 -

end;
end P;
The result of the expression "0"+i is a concatenation of two bit strings such that, if i="001", then

the result is "0001"! The procedure P works by "tracing” down the array A for each primitive
item a and by creatiﬁg recursive procedures for the components ae"0" and ae"l” of the primitive
item. The construction of the resulting array C by using the make-pitem is possible because the
selector in the append expression is of the simple form i; if not, the expression

make-pitem(left;, right;)
must be replaced by

construct(left), right;),
and the expression

Alil+Bli]
must be replaced by

append(nil, exp, A[i]+B[i]).
The reader can verify that the number of procedure activations created is the number of the
leaf nodes of an array representation. A further step for optimization is possible for the above
example: notice that the value of the expression Al i] equal a when the predicate scalar(a) is
true. Thus, there is a significant amount of compile time analysis involved for translating the
forall construct into the procedure P. We note that the above translation together with the
optimization can result in significantly efficient programs.

The two forall translation schemes presented provide more expressiveness for the
language but are dependent on the representation of data structures. Further extensions for

allowing the range clause to include data structures in general can be envisioned. In particular

. We will assume that the representation of such bit strings is not difficult.

-li4-

the latter form of range clause can be readily extended to data structures.

5.4 Nondetermmate merge of streams

In thls section we introduce a primitive that can be used to produce a stream by
nondeterminately merging two streams. We believe this primitive may be used successfully in
building well. structured programs. Often, nondeterminacy in a computation can be expressed
using arbitration aMg streams of values, and procedures that operates on ,thﬁ_eu,r‘esultlng'
streams. .(lt is not clear that there are not form of nondeterminite’ compuution that have only
awkward realization in terms of streams, and this is an‘ area for further research.) The
particular implementation of the nondeterminate merge of stréanﬁ is in terms of a recursive
procedure and is reasonably efficient. | |

A primitive nondeterminate merge actor, n-merge actor shown in Figure 512 has two
inputs I} and Iy, three outputs Oy, O9 and O,, and has two states first gnd;rs«ogd. In the Sirst
state, an n-merge actor can fire as soon as an input token arrives 3t etther one of the rinp‘ut arcs
Ijor 112. Upon firiﬁg, it places the input token on Oy and, on the second output arc Og, it
- places an integer i if I; is the input arc having rg;giyéd the token. After the firing, it enters the
state sécond to expect another token. In this state,the:econd mken is simply absorbed and a
signal is placed on Og and the actor returns to the first state. If two tokens arrive
Simultaneously,-then: one token is selected and ,pla,oe'd on Oy; an imegerindlcatlng this selectlon
is placed on Oy; a signal is placed on Oy; and the deq;ed wken is simply absorbed. We

show a correct implementation of the n-merge in Appendix A.'

I. Since the firing rule depends on the timing of the arrival of input tokens, an Execution

Controller must implement this critical region correctly. Furthermore, the n-merge actor
requires two firings, and the implcmentatlon must be eomistent with tbe instruction execution
scheme described in section 4.2.

-5 -

(a) Firing rules for n-merge

Sfirst

Vo Y 2 V\signal

Figure 512(a) Firing rules for n-merge

(b) Firing rules for n-merge

Figure 512(b) Firing rales for n-merge

-7 -

The recursive procedure "N-Merge” in Figure 513 defines a nondeterminate merging of
two input streams using the n-merge actor. Each activation of the recursive procedure obtains
the first elements of streams S; and So-and merges the two values nondeterminately with an
n-merge. The first arriving value is cons’ed to’the recursive call on th§ other stream and the
rest of the arriving stream. This recursive definitioh performs the merging of two streams at
the expense of some redundancy in the number of f_u_sg op'eration;sq on the streams to be merged,
since the slower of the arriving values first(S)) and first(So) at the n-merge actor is discarded
and the subsequent recursive activation also performs a first operation on the slower stream
value. Thus, the number of first operations on two input streams of length n and m is bounded
above by 2(n + m). Another problem of the recursive N-Merge is that the number of
activations is about the same as the number of operations waiting for stream values which have
not been generated.l It is possible to remove these inefficiencies by introducing a set of data
flow actors connected in a cyclic fashion (see Appendix B). Unless the inefficiency of the

recursive definition is severe, the cyclic definition is unnecessary.

5.5 Discussion

| There are a number of extensions that are convenient for writing procedures on
streams. In many situations we find. it necessary to genente a stream of values with a base
value followed by values of some constant increment. This stream value can be simply
expressed as:

[base by increment until final_value).

1. Notice, however, that the cost of keeping these activations active is relatively little, since only
a very small number of operand records would reside in the system. But this situation can be
intolerable when one of the streams is never generated or gets arbitrary behind the other.

- 118 -

N-Merge = procedure (Sy, So : stream of T') yields stream of T;

let x,i= n-merge(first(S), first(S));
yl' Y2 = r_€’5£(S]) ,r__Cf_S_t_(52)

in if 1=2
then if undefined(x) then S else cons(x, N-Merge(Sy, Yo)) end;
else if undefined(x) then Sy, else cons(x, N-Merge{ Y|, Sq)) end;

end;

end N-Merge;

Figure 513 A recursive nondeterminate merging of two streams

-119 -

Conversion between an array and a stream is also often necessary.

A more important language problem, however, is whether data types stream of <stream

type> are needed. The implementation described in Section 5.2 naturally extends to stream of
<stream type>. It is not clear, however, that such extensions are of significance to expressing
concurrent operations on streams. From the point of view of defining formal semantics for the

language, it is much cleaner to have data types stream of stream, or array of stream.

We give an example for illustrating the expressiveness of stream of stream. In

performing computations on arrays it is often useful to have the type stream of stream. The

program in Figure 5.14 is often referred to as a "hyperplane” computation on arrays. Figure 5.15
is a diagrammatic explanatlon of the manner in which the computation "Hyper" is performed.
The top horizontal array C corresponds to the stream C, and the left vertical array B’
corresponds to the stream B. ln the jower rlght quadrant bounded by the two arrays C’ and B’
the two dimensional array D' corresponds. to-the output of the procedure "Hyper™. Each point
on a row of D' is computed using the procedure "Compute” by taking the west, the north-west, -
and the north neighbors of the point. The value of rhe poinr :is computed by applying the
function "Neighbor™ on the values of its neighbor. The dotted lines show how- points of the

array D' (or the stream of stream D) are produced as the computation proceeds.

In this example, the amount of concorrericr is at most the number of elements in the
stream B, but this concurrency is not achievable if the computation is expressed with arrays.

Extensions of the langoage to include other forms of nondeterminate primitives are of
critical sighificance. Can streams be used to implement language primitives similar to the

monitor [Hoar72]? We leave this as a further research issue.

- 120 -

Hyper = procedure(B, C : stream of integer) yields stream of stream of integer;

if empty(B) then [
elselet b :integer, D:stream;

‘befis{B)
D = Compute(C,b) ,
in cons(D, Hyper(rest{ B), cons(b, D))
end;
end Hyper;

Compute = procedure(C : stream of integer, b : integer) Mmgw
else if empty(rest(C))then [J .
else let d: integer; |
d = Neighbor(b, firsi{ C), rest{ C) X
in -cons(d, Compute(-ret(C), d))

Figure 514 An example using stream of giream

- 121 -

Array C

col cm ci
[r— @- . . = ——

" | P ', B'IL)
. / / / / Compute(C’,
~

e

“BT2] ¢ o
P
/ \ Compute(D'[l,}, B'[2])

B3 ¢ /
/ K Compute(D’[2,], B'(3))

Array B’ / / /
/
P

; /
Y

Array D'lrow, column]

z

NwW

D'li, j] = Neighbor(W, NW, N)
{forall i, j}

Figure 515. An illustration of a hyperplane computation

-122 -

This page intentionally left blank.

-123 -

Chapter 8. Supporting Data Structures and Activation Records

In this chapterlwe state_several requirements for designing the Packet Memory to
support the structures used to implement the language. The Packet Memory stores three types
of objects: data struotures (including procedure structures), activation records, and holes. We
propose the implementation of all objects is l}ased on allocation of items which are of fixed size.
Based on this design decision, we show how operations on these objocts can be implemented
efficiently. -Since thé design of the Packet Memory hai.,.laeen’?pursued previously: by [Denns75,
Acker77), we will not treat the Packet Memory in great‘;detail.}' ‘What concerns us is the manner
in which the Packet Memory must be used to correctly implamat the objects. Functiona!ly. the
Packet Memory maintains a pool-of uid’s for free items. Each item contains a fixed number of
tuples (s, c), where s is a selector name of some predefined size and c is either a scalar or the uid
of an item. For brevity, we will often.use the word “item” to mean the contesit of the item
and/or its uid. | |

We discuss how these objects can be efficiently implemented in a Pakcet Meniory
organization that has multiport and mukidche memory. Of particular interest in this
organization is the cache orgahization which achieves concurrency of simultaneous access to an

item; and this organization may be applicable to other concurrent systems.

6.1 Packet Memory

The organization among the Packet Memory, Structure Lpontrol)er: and Execution
Controller is shown in Figure 6.1. The Structure Controller receives data structure operation
packets from the Arbitration network and sends result packets to the Distribution Network.
The hole -operation output port of the Structure Controller is connected to an input port of the

Arbitration Network. (This connection is not shown in Flgure 4I of Chapter 4) The function

- 124 -

——operation packet for holes
F to Arbitration Network

operation packet , A result packet
(‘ to Arbitration Network ‘ / " to Distribution Network
result packet . data structure. operation packet
from Distribution Network from Arbitration Network
- o >
o

EcM; | - « « |ECM

Isemp| - - ¢ |scM,

— -———— oe—— —‘ “‘ | - ——— “‘ , —— —— A— l‘ .'

RSP CMND RSP CMND RSP CMND " RSP CMND .

Packet Memory Network (PMN)

- Packet Memory

Figure 6.l Orgamzauon g __(._7, __gd; PM

-198 -

of the port is explained in Section 62. Each Structure Contreller Module (SCM) and
Execution Controller Module (ECM) is connected to the Packet Memory via a° Command
(CMND) port and a Respons? (RSP) port. A Command port: receives commands on an item
specified by its uid, and the response is eventually returned to the Response port associated with
the Command port. The types of commands.include reading an item, writing an item,
requesting a free uid. and changing the reference count of an item. These commands are issued
by both ECM’s and SCM?'s, and processing of a result packet or a data structure operation
packet may require more than one commands.

The Pack& Memory consists of a Packet Memory Network (PMN) and a set of
Memory Modules (MM). The PMN is a packet routing network whose nodes may be cache
modules (CM) that have cache memory for frequently accessed items and necessary control
functions for management of the cache. One approach for generating unique identifiers is to let
a uid be an address from the physical address space formed by storage nodes of the lowest level
of the memory hierarchy of the Packet M'emery.l» ‘For example, using current technology, the
physical address space would consist-of all addresses of secondary on-line storage devices such |
as disks. Each storage module in higher levels of the hierarchy acts as a cache, and in general
each entry in such a storage module must contain both the data of the item and its full physical
address (i.e. its uid). Many technigues can be applied to the design of caches for finding an

item: for instance, searching(possibly including tree search techniques), hashing, or hardware

I. Another method for-generating unique identifiers is to use counters that are never reset, or
are reset very infrequently. Our approach is shared by Snyder's work [Synde79] on
architectures for object-oriented languages like CLU [Lisko78] The main reasons for not
“choosing the counter scheme are that it requires the lowest level memory to store both the uid of
an item and the data and that accessing an item cani be prohibitively expensive if search needs
be conducted at the lowest level of the hierarchy. We.should remark that the efficiency
arguments presented here may not be justified considering the projected technological
developments and increasing sophistication of storage devices. ,

associative matching. The criteria for placement and replacement of an item in a cache is not
‘of central issue to us here, but a possible candidate is Least Rocently Used (LRU) repiscement
algorithm that has proven attractive for demand paging memory-management. For further
study, we refer.readers to: [Acker?7] for deuils'ﬁf, a_ possible implementation of the Packet
Memory including the design of CM's; {Smith78] for-set associative memory organizatica, and
tDenng'lO] for. a general discussion on paging systems.
~ Assuming that each Memory Module stores a distingt subset of the total uid's, a basic
design consideration is the manner in which an item can be: moved or copied in PMN.
Informally, we say a caching -scheme is a "unique access™ scheme-if; for each items, the set of
reachable caches from CMND ports to 2 MM forms a linear path; otherwise, it is cafied
"multi-access” if the set forms paths containing branches. - Figure 6.3(x) ilustrates a unique
access structure where the network routes command packes: for the same item from any
“command, port to the same cache module, and Figure 62(b) and (c) tilustrate. two multi-access
structures. It-is often passible that a-mulii-access caching :structure -beha ves like a unique access
structure when used-in a restricted manner.- For example; when.commands on an item are
always presented at the same input port of the cache structure shows-in Figure 6.2(b), the only
caches reachable from the port to the MM asseciated: with the.item forms:a linear path. The
structure in Figure 6.2(c) does not have this praperty because the set-of caches on the paths
- f@ the input-port J; to the memory module MMg does not form & finear path. -

For PM&. we expect its caching structure to belong to the class exemplified by the
structure in Figure 6.b). . We classify items into two classes: restricted and uavestricted
according to how they are used. We do not mtmuy jpartition aﬂm into twa classes bea\lse
it is desirable to be able to use a free item in either manner and because the dtstributkm of
their usage is not a parameter that we can determine safely. Using this classification, we
describe the manner in which an item is handied by the cache structure of the Packet Mzmory

- 127 -

Figure 6.2(a). A unique-access Packet Memory Network

- 128 -

Figure 6.2(b). A multi-access Packet Memory Network with unique-access property

- 129 -

I I Iy
by by by
aj CM CM CM a
Iy I I
MMl B MM2 : : MM3
a cM cM —{cM |—ay
Iy Ig Ig
ay CM }— cM —CM|— a,
bl MM7 b2 ' MM8 b3 MMg

Figure 6.2(c). A multi-access Packet Memory Network

<130 -

Sinc? a restricted item is accessed only through a particular CMND pcml and all
commands result in memory references along the unique path, there is no need to have several
copies of the item. A restric;ed iém is, therefore, mo\%d along the caches on the path rather
than copied The first usé of a free réstrk:ted item is a writing command to a CMND port
which creates an instance of the item Subsequem eammnds on the item must be from the
same CMND port and may cause. the item to be mmmd inm a cache at a higher level of the
PMN hierarchy. Such items have a nice. pmperty ;hat they can be updated without the
consistency problem of multiple copies in several caches (or, the ’mﬁki-cache coherence problem).
A consequence of this propcrty is that a restﬁded item can bq gamigé Cotlected as soon as its
reference count becomes zero. As we shall see in Section 6.2, we Bse ‘this property of restricted
items to implement activation records and holes. :

For unrestricted itgms; we allow copies muist _in_several 6M’s to provide the
opportunity for alleviating content’;oﬁ over a single copy ofthc itém by storitg several instances
of the item in different caches. We st;all call suchcopies imiqa‘: of an item lnithlly. an item
must be written by a command from some CMND port. | This command must write through all
caches leading to a unique memory module MM from which all higher level caches can access
the item. The command does not acknowledge completion of the operation until this
write-through operation is completed. Subsequent commands on the item may cause instances
of the item to stored in caches of higher level and operations are performed on them. It is
evident that it is possible to have inconsistent instances if the content of an unrestricted item

can be updated. Therefore, we require that all subsequent operations on unrestricted items are

I. The particular port for accessing an item is fixed over the lifetime of an item - i.e. from its
removal from the free uid port until it is garbage collected again - but need not be the same in
different lifetimes for the cache structure shown in Figure 6.2(b).

-13 -

commands on reference counts or for reading the item. This requirement is naturally satisfied
by the semantics of the language whose data structure operations are free.of side-effects. We
now present a scheme by which an-item can:be garbage collected correctly. This garbage
collection scheme is correct only when the set of:caches reachable for. an item forms a tree-like
structure with the M.M as its root such as the structure shown in Figure 6.2(b). Furthermore, no
garbage collection fs performed on copies in the PMN.

Each instance of an unrestricted item contains a copy count indicating how many copies
have been made directly from it. Each time an item is copied from one cache to another, the
reference count and the copy coﬁnt of the new instance is set to zero, and the copy count of the
source instance are incremented by one. Upon completion of copying, commands can be
exercised on the new instance. If an instance is displaced from a cache, its reference count is
added to the reference count of the.source instance whose copy count is then decremented by
one. We require that an instance is displaced from a cache only if its copy count is zero, this
ensures that all existing instances form a properly connected tree and that only instances at the
leaf nodes are displaced. For all instances created by the initial write-through, except the one in
MM, reference counts will be zero, copy counts will be one. The instance in MM contains a
reference count of one, and a copy count of one; and possibly a tag identifying it as the root
node instance.

This scheme allows an inaccessible item to be garbage collected eventually as the result
of merging instances of inaccessible items displaced from caches. That the reference count of
the final unique instance. is correct can be seen by noticing: the correct reference count is the
sum of all reference counts, some negative, of all instances; and the strict displacement algorithm
and the tree-like access paths ensure that the copy count of the unique instance is zero if and
only if all reference counts have been accumulated. The garbage collection on an item takes

place if the reference count and the copy count of the root node instance are found to be zero.

-132-

The scheme can be very slow in reclaiming inaccessible items if some instance is not displaced
from a cache. This situation could be a problem if free items in the Packet Memory are in -
short supply and the the system is in a state suehthﬁiﬁ&nbuiafe:m;duphoed from caches
due to lack of movements: of items in the Packet Memory. This situation, however, would not

arise frequently in a well designed Packet Memory.

6.2 Activation records and holes

- We implen'\en't’ activation records and holés with restricted items because efficient
implementation of these objects requires updating the conterits -of items.- Operations on
restricted items are handled differently in implementing these ‘objects for efficiency. The
lifetime of an item is defined from its removal from a free list to the next time it is placed on a
possibly different free list. If an item is used by an ECM as'a part of an activation record, then
all subsequent commands are guaranteed to be issued by the same ECM. But if an item is used
as a hole, during its lifetime, its uid can be sent to differént ECM's or SCM’s. Thus, there must
be a way to guarantee all commands are received by the same CMND port. Conceptually, the
CMND port can be different over different lifetimes. But this is aifficlt to implentenf. since iﬂ
ECM’s and SCM’s must somehow know the different CMND ports designated to different |
lifetimes of an item. The simplest way to ensure that all ECM’s and SCM’s send commands on
an item to the same CMND port is to assign the CMND pott staticafly using some function F

“from all uid's to CMND port identifiers. We élaborate on this when we discuss an

implementation of holes.

6.2.1 Activation records

An activation record is a dynamic tree-like structure representing an array such that an

operand record for an instruction instance (A, i} can be reached from the root node item A by

-133 -

accessing a set of items using the binary bit representation of the selector i. Each item may
contain an operand record, or either one or both tuples in { ("0” : o), (1" : ap) }, where ag and
o) are uid’s. We envision that an operand record-can be stored in an-item since we can make
all actors have a small number of input and output arcs.
Initially, an activation record consists only of the root node A with a single component

"text"! The Distri-bution Network routes a résult packet (A, i, k, v, count) to an Execution
Control Module ECMyy(4) determined by some hash function H from uid's to indices of
ECM’s. The arrival of the result packet modifies the activation structure A using the bit string
representation of i by accessing all items until the operand. record is found. If the operand
record is not in the activation record, the last item on the path of access is modified to include
the necessary items by acquiring more free restricted items. Thus, the first arriving operand
always results in allocation of free items, and subsequent arrival of operands to the same
operand record simply modifies the existing operand record.

"~ We now present how refererice counts can- be used to manage items in an activation
record: |

(a) create-activation{ P)

This operation creates an activation record A whose reference count is one ind the
reference counts of items feading to the “text” component are set to one. The leaf
item has the uid of the procedure structure P.

(b) insert(A, i,v)

This ope.ration adds one to reference counts of all items deading from the root node

A to the operand record (A, i).

1. We assume that the selector "text” can be encoded as a binary bit string without conflicting
with integers used for instruction numbers.

-134 -

(c) remove(A, i)

This operation is performed by an SCM when it finds an instruction is enabled after

an insert operation. The operation decrements all reference counts of items leading

to (A, i) by the value of count. '

(d) free(A)

Th-is decrements the reference count of the root node of the activation recor‘d by one .

- thus, allowing it and the “text” compenent to-be garbage collected.
The scheme maintains the reference count of an item such that it-is equal to the number of
arrived operands in operand records which are waiting for enabling and can be reached from
the item. , |

The presentation has been made based on the assumption that a selector name used in
each item is a single binary digit "0" or "I". Tbisfmkuop«ltbmoh activation records easier
to understand, but introduces an appﬁcnt sinefficiency that many items are-required tom
the instruction number i. Since an activation: record is likely to be-sparse most of the time, it is
possible to reduce the number of items used to represent the sparse structure by using prefix
compression. An example of such a representation of is shom,.«»&..ﬁigum 63. This added
saving on usage of items results in faster instruction execution on the average. While this
representatm using prefix compmsim rgqms a raore.coraplex update operations on items, we
feel the complexlty is justified considering the cost of aceessing an items.
Similarly, we believe prefix compression can be applied profitably:te.the representation

of data structures in general.

6.2.2 Holes
The create-hole operation simply obtains and tags “unfilied” into an item; and the uid

is marked as a “hole” and returned as its resuIL If the hole !s ln the *unfitled” state. data

-135 -

(a) An activation record not using prefix compression

Figure 63. An example of prefix cgmg. ression

- 136 -

structure operations or commands! on a hole that require reading its data are simply stored as a
pool of items storing these operations. Commands such as reference count updates need not be
stored since they do not need to use the data of the hole Since a hole may occur as a
component of a data structure, a Structure Controllef'ni;y encounter a holg when prooesiing a
data structure operation packet. The hole-operatiﬁ'l output port allows a SCﬁ to send a data
structure operanon packet through the Arbitration: thwk to a specmc SCDI assocmed with
the CMNDg(,;q) port. To guarantee this, the” destgn of the Arbltration Network is much
simplified if the function F is lmplemented in the routmg algoﬂthm ‘
The reference count processing for resmcted uems uwd for holes is the same as
reference count accounting for items used in data structures. N‘otl that opentions pooled for a
hole should not change the reference count of the ltem mﬁ the hofe is m!ed This avoids the
potential problem that the reference count of a hohmy become m before these operations

are processed.

6.3 Remarks

We have informally discussed how activation reeotds md holes can be implemented
using restricted items. This is based on the assu;nptm&hat the Wbuuon Network must
route all result packets with the destination (A, i) tgrthe same ECM Thus, all operations on
restricted items used in the activation record A are gmranm to be ent %uthe same CMND
port. Using this representation, then, a natural optimization is to allocate an activation record
“close” to the procedure structure or its copies in caches. Similar optimization is possible for

data structure operations if the Arbitration Network can try to route most data structure

I. We do no mean commands only here, because holes could be used to hold part of data
structures on which we want to further perform data structure operations.

-137 -

operation packets on an item to the same SCM if the contention for the same SCM fs'not
severe. This optimization will tend to make effective use of the cache mémory bandwidth by
allowing a higher hit rate on the item.

The question of how far this optimization based on locality of data access should go
depends on the understénding of program behavior and is a challenging issue. On the other
hand, for a large brmedure. it may create more enabled instructions than a single ECM can
handle; in this case, a different approach for storing activation records may be devised that

allows an activation record to be distributed over several ECM's.

- 138 -

This page intentionally left blank.

-139 -

Chapter 7. Conclusion

Summary

The expressiveness of a programming language Xaffects not nnlyprogramming tasl;s
but also how the underlying ar.chitecture can attain nlgh'pcrformance through concurrent
operation of hardware. We feel that a language based on an applicative style of programming
is sufficiently expressive for most applications and, augmented with additional features, can
~ provide an approach for structured concurrent programming. Tha’t‘an applicative style of
programming is preferred is based on the observation that unexpected side-effects greatly
compromise the confidence in correctness. of programs. For applications requiring high
performanne systems, data flow analysis must be performed on programs to reveal the hidden
concurrency and this analysis is more complicated than necessary because of language features
based on sequential notion of execution. In this ,re'gard. APL has been suggested as a language
for vector and array processors, because it is more amenable to such analysis. APL, however, is
limited ‘in its expressiveness because data structures presented in Chapter Two of this thesis
cannot be easily mapped into arrays. Concurrency is expressed in several ways in the
value-oriented language that wé introduced. Procedure aaivanions allow many adivations to be
simultaneously executed. Streams can be used to express concurrency in computations with a
strict ordering on accessing sequences of values. The forall constructs are for explicltly
specifying concurrent operation on data structures, particularly arrays..

The implementation of streams can be readily extended to stream of stream and is
based on the notion of “holes”. Two forms of foral constructs have been defined and ¢an be
used to express computations on components of ‘data structures-using assoclative operations.
Concurrency expressed in these constructs derives from the property of associativity of

operations on components of data structures.

- 40 -

To show how concurrency in computation can be exploited, we used recursive data
flow schemas into which a program in the language can be translated. We proposed an
extended form of data flow processor that implements recursive data flow schemas using
procedure structures and activation records. These Objzc'tsbare supported by the Packet
Memory with a multiport and mukicafhe storige structure. A solution is given to the probiem
of maintainfng the consistency of reference counts used for my management; and this
aflows simultaneous accesses to multiple instances of a data structure. We suggested in Chapter
Twoa s pltt-reference—we‘ight‘ scheme of memory managemeﬁt that removes the need for reference
count updates for each data structure opention This scheme is of panicuhr interest when a
data structure is frequently copied as it is the case in fonll's (“

Data flow architectures differ from conventional concurrent systems particularly
because concurrency at primitive operation level is easily achieved; and the difficulty of process

‘switching in conventional multiprocessor organizations can be avoided.

Suggestions for further research

We first discﬁss hngﬁage issues: the genmlity.of streams and data structures whose
componems may be alf holes; cycles in data strucwres md in conmmiaﬂon paths between

processes and nondetermmacy We then discuss archiucmre Ismes\

Streams and data structures with holes

The toncept of streams can be uptmetifm terms. of lists, maad arrays which are
accessed- in a constrained manner. Streams provide a reasomable abstraction for expressing
concurrency among cooperating computations, but i requires some-deggee of adjustment to
think in terms of sequences of values. Since the manner in which acoesses to structures are

constrained may not be immediately obvious to a casual user, it may not be easy. to see when the

-4 -

notion of stream is applicable. =~ We see many computations, such as the hyperplane
computation illustrated in Chapter Five, where concurrency is substantially improved if we
expressed programs using streams. But as the reader may note, it is easier to understand the
recurrence equation for the computation than to understand thc lengthy program using stream
of stream. Should we provide a compile time tramhﬁo@ior such equations? How general can
“such translators be?

If we allow data structures which are accessible when they do not have all of its:
components, do we need streams? The author’s opinion is that streams can be defined in terms
of a recursive data type which can be accessed when some of its components may not be
’ -‘available -- using holes. But does use of such data structures cause undesirable situations to
arise? One can conceive of a sjtuation where the Packet Memory is overloaded with references
made to components which do not exist yet. How often do theses situations arise? Can one
control such situations?

Another issue relates to the general question of defining semantics of aggregates of data
values such as data structures, streams, and a list of expressions. !p,th,is thesis, we assumed‘ that
all computation terminates and errors in the constituents of an aggregate do not imply the error
of the whole aggregate. In this view it is desirable that we can define a consistent way of
dealing with nonterminating computations which supply the component values. In general, it
may be required to determine when the cutput value of a nonterminating process is not needed
s0 a computation can be forcibly terminated to avoid wasting computing resources. This can be
done either continually, periodically or only when resources become scarce. One scheme of
garbage collecting unwanted processes continually has been proposed by Baker [Baker78l Can

and should the scheme be applied to the data flow concept of computation?

- 142 -

Cyclic data structures and communication among processes

The need for cyclic data structures and cyclic communication paths between processes
are actually two separate issues. |

The need for some representation of conceptual tycles in representation of objects is
undeniable. But how are such conceptial striittures: mapped into data structures ‘wlfose
operations have no side-effects? Consider the exal;tlple of a doubly linked list L from which we
need to delete a node N. There are two ways to represent the list without side-effects: by using
immutable cyclic structures based on Hénderson's: work [Hende?5], or by using an acyclic
structure. In the scheme using immutable cycles, a deleté operation requires about the same
number of operations as the number of nodes in the list L, beciise a new: cychic structure must
be constructed to avoid side-effects. Thus the physicat mw of the immutable cyclic
structure to conceptual cycles does not imply the conceptisaf simphicity of delete operations on
" such a cycle. For the scheme using acyclic structures, om'caﬁ see'tmia delete opention now
can be performed as a data structure operation which roughly costs log(ri) operations on items,
whe.re n is the number-of nodes in the list L. This observation can be extended to operations
on graphs of other forms.

The implementation of procedures as values is related to data stmctures with cycles
when we need a ‘mechanism to construct a procedure froni existiig ones using binding of
procedufe names to its representation [(Hende”] Using immutable‘cjcles to represent recursive
procedures seems natural in that there is no need to introduce the notion of environments in the
definition of procedural values. But the operations involving cyclic structures of procedure
representations will have the same problern as we have discussed previously.

Many forms of programs are more naturaily’ expmsed as a set of processes
communicating amongst themselves using cyclic communication paths. Examples are often seen

in various distributed message passing systems. Constructs of this form are not included in this

- 143 -

thesis, because we have not‘found one that allows deadlock property to be determined at
compile time. It may be possible, however, to provide deadlock detection mechanisms at
runtime. - If the mechanism does not introduce too much overhead for computations that do not
deadlock, such an approach may be desirable. In addition, it may also detect deadlocks due to
resource allocation. Much work has been done for deadlock detection of ;prece;sses due to
resource Vallocat'ion's. _Not much work, however, can be found in the area of detection of
proc,esses which are in deadlocks due to either synchronization or message handling. We hope
further work in this area provides additional insights to the complexity of these deadlock

detection schemes.

Nondeterminacy

In large systems such as data base systems, operating systems, real time control systems,
and point of sale systems, the function of the systems is not neoessarily determinate. Often, an
implementation of such systems must allow some degree of nmdeterminacy and possibly tolerete
‘tempbrary inconsistency in their data base to achieve a reasonable performance criteria. The
nondeterminate merge function that we have imroduoed in this ‘t‘h:esi‘s is inadequate for

expressing' many such forms of nondeterminacy.

Architecture
In the architecture we presented, the performance is derived from concurrency on a
large scale. We made no assumptions about how concurrent operations can be mapped into
Execution Controllers such that two instructions are located in some close neighborhood to
reduce communication delays -- thus improving its performance.
Is it possible that heuristics for allocating instructions close to each other can degrade
the potential performance of the processor due to bad allocation strategies? (Such prmcseors

must have functional units close to the Execution Controller Modules and the network

- 144 -

structures may be quite different) It is hard- to evaluated these suggeitions without
understanding both the behavior of programs and the technology of the hardware modules.
This issue is important because the cost of commwinication hardware ‘is determined by-
assumptions about locality of computation.

The issue of fault-tolerance must be adequately answered for a system such as our data
flow procesﬁ which has a large number of modules. We emphsize that when we are dealing
with a faulty system some additional operating system functions for handling fauks may be
needed. | | | ' |

Ideally, we hope that a system based on data flow concepts can support a community of
users with the performance that concurrent operation can provide. Such a system neoessanly
must provide a set of programming languages and various input and output ﬁmctnons In
addition, it must provide reasonable mhanlsms for contmﬂing ml actlvmes in the system
such that finite computmg resources can be used eﬂ‘ectlve!y lq‘@ygptjqn:al‘ systems these
functions are supported by software and explicit machine Ievdpﬂmitives fof comﬁiling
processors. Hﬁw these functions can be providedondau flow pfoogsm ‘:B»l very interesting

research issue.

- 145 -

Bibliography

[Acker77}
[AckDe79]

[Adams68)

[AhHoU75)
[ArGoP77]

fArvGoT1}

(ArvGoTT]

[Backu78]

- [BaBoE70]
[Bahrs74)
[BakHe77)
 [Barn«68]
[Batch74}
[Berki75)

[Bisho77]

Ackerman, W. B., "A Structure Memory for Data Flow Computers,” LCS-TR-186,
M.LT, Sept.

Ackerman, W. B,]. B. Dennis, VAL Reference Manual,” Computation Structure
Group, Lab. for Computer Science, M.1.T., Camb., Mass,, 1979.

Adams, D. A, "A Computation. Model With Data Flow Sequencing,” School of
Humanities and Sciences (Technical Report CS-1I7), Stanford University, Stanford,
Calif.,, Dec. 1968. |

Aho, Hopcroft, and Uliman, The mgg_ n and nalzgn; of Computer Algorithms,
Pub. Addison Wesley, 1975.

Arvind, K. P. Gostelow, and W. Plouffe, “Indeterminacy, Monltors, and Dataflow,”
The Sixth ACM Symposium on Operating Systems Principles, Nov. 1977.

Arvind, and K. P. Gostelow, "Some Relationships between Asynchronous
Interpreters of a Data Flow Language,” Proceedings of the IFIP Working
Conference on Formal Description of Programming. Concepts, August 1977.

Arvind, and K. P. Gostelow, "A Computer Capable of Exchanging Processors for
Time,” Proceedings of IFIP Congress 1977, August 1977,

Backus, J., "Can Programming Be Liberated from the Von Neumann Style? A
Functional Style and Its Algegra of Programming.,” Comm. of ACM, Vol. 21, No. 8,
August 1978.

Baer, J. L D. P. Bovet, and G. Estrin, "Legality and Other Properties of Graph
Models of Computations,” Journal of the. ACM, Vol. 17, No. 3, July 1970.

Bahrs, A, "Operation Patterns,” Lecture Notes in Computer Science 5,
Springer-Verlag, New York 1974.

Baker, H. G. Jr, and C. Hewitt, “The lacrenml Garbage Collection of
Processes,” ACM SIGART-SIGPLAN Symposium, Roch: N.Y., Aug. 1977.

Barnes, G, R. Brown, M. Kato, D. Kuck, D. Slotnick, and R. Stokes, “The ILLIAC
1V Computer,” IEEE Trans. on Computers, C-17-8, August 1968.

Batcher, K. E, "STARAN Paraliel Processor System Hardware,” 1974 NCC, AFIPS
Conf. Proc,, Vol. 43, pp405-410.

Berklin, K. J., "Reduction Languages for Reduction Machines,” Proceedings of the
Second Annual Sympesium. on Cemputer Architecture, Jan. 1975, ppi33-140.

Bishop, P. B, "Computer Systems with a Very Large Address Space and Garbage
Collection,” Ph.D. Thesis, Dept. of EECS, M.1.T,, also LCS-TR-178, M.1.T.

(Brock78)
[(Burge75)
[Conwa63]

[Davis78]

(Denns72)

[Denns74)

{Denns75]

[DenFo73)
[DenMi75]
' [DenWe7])

[Dijks58)

[Dijks75)

[Emsm

[Ensto77]
{Flynn72] .

[Fosse72]

- 146 -

Brock, J. D, "Operational Semantics of a Data Flow Language” TM-120
Laboratory of Computer Science, MIT, December 1978,

Burge, W. H, "Stream Processing Fonctions,* IBM jwml of Research and
Development, Vol. 19, No. |, Jan. 1975, ppi2-25.

Conway, M. E., "Design of a Separabie Tmsition—Biagram Compner Comm. of
the ACM, Vol.6,No. 7, July 1963, =

Davis, A. L, “The Architecture and System Method ‘of DDME A Recursively
Structured Data Dnven Machine,” Proc. of ‘the Fifth ‘Annual Symposium on
Computer Architecture, Computer Architecture News &‘KAprﬂ 1978), 210-215.
Dennis, J. B., mmmmsp«mmaa Zomma Blse ‘Language,”
MAC-TR-I01, 1972, MLT. S

Dennis, J. B.; "First Version of a2 Dati Flow Procedure Language.” Lecture Notes
in Qm&iena 198G Goos and] Htfﬁhnb. ﬂﬂ. Springﬂ*Vthg. N Y,
1974, pp 62-3%.

Dennis, J. B, "Packet Communication ‘Architecture,” Fmeeedhgs of the 1975
Sagamore mmnﬁm ‘

Dennis, J. B, and J. B. Fotseen, "nitvoduction ‘to Data Flow Schemas,”
Computation Structure Cm)p -Memo: %H le mﬁempum Sdence. MILT.,
Cambridge Mass., Sept. 1973. R ‘
Dennis, J. ‘B, and D. P. Misunas, A 'Preliminary Architecture for a Basic
Data-Flow Processor,” The Second Annual Symposium on Comp-nr Architecture:
Conferetice Proceedings, January 1975,

Dennis, J. B, and K.-5. Weng, "Apphication of Dats: Fwaompmation to the

‘Weather Problem,” Proceedings dﬂn%“ympalm on High SM Computer and

Algorithm Organization, April 1977,

 Dijkstra, E. W "The’ Straéture of - THE-Mkaymm. Comm. of the ACM,

Vol. il, No. 5; May 1968. -

Dijkstra, E. W, "Guarded Cemmam Nondetermimacy and le Definition of
Programms,” Cemm. of the ACM; Vol. 18, No: 8, Aug.- 075,

Eftis, D, "Semantics of Data smxmam’rm"mcera-m 1974, MLT.
Ensiow, PH. Jr, "Multiprocessor Orgm A Suney ACM Oomputmg
Suiveys, Vor. 9, No. I, March-197%. |

Flynn, M.], MWWNMEMVM IEEE

- Trans. Computers C-21,9; September 1972 = :
Fosseen,]. B., 'Repmathwofkigmvy’i{muy Paraliel Schemata S.

M. Thesis, Dept. of EECS., M1T., Camb., Mass. 1972.

[FftWi76]

(Friwi7s)
[GurwaT7]

[(Hende?5)

(Hintz72]
[(Hoare74)
{Hoare?8)

[KarMi66]
(Kelle77)
(KePal 78]

[KisRu75]
[Kosin73]
[(Kuck77]
[Lampo?4]

[LauCaT7s5)

- 47 -

Friedman, D. P, and D. S. Wise, "The Impact of Applicative Programming on
Multiprocessing,” Proc. of the 1978 International Conferefice on- Paraflel Proce'ssing.
Aug. 1976.

Friedman, D. P, and D. S. Wise, "Aspects of App!icztlve ‘Programming for
Multiprocessing,” IEEE Trans. on Comp. Vel. €-27, No. 4, April 1978.

Gurd, J., I. Watson, "A Multilayered Data Flow Computer ‘Architecture.” Proc. of
the 1977 International Conference on Parallel Processing, Aug. 1977.

Henderson, D. A, "The Binding Model: A Semantic Base for Medular
Programming Systems,” Lab. for Comp .Sei. TR-145, Feb. 1975. M.LT., Camb,
Mass.

Hintz, R. G, and D. P. Tate, "Control Data Star-100 Processor Design,”
Proceedings of CompCon - 72, IEEE Computer Society Conf. 1972, IEEE Press.
Hoare, C. A. R,, "Monitors: An Operating System Structiring Concept,” Comm. of.
the ACM, Vol. 17, Ne. 10, Oct. 1974.

Heare, C. A. R., "Communicating Sequential Processes,” Comm. of the ACM, Vol.
21, No. 8, Aug 1978.

Karp, R. M, and R. E. Miller, "Properties of a Model for Paraliet Computations:
Determinacy, Termmatron. Queuing,” SIAM]eumﬂ'of Applkd Mathematics Vol.
14, Nov. 1966.

Keller, 'R. M., "Denotational Models for Paralle!: ngrams with: Indeterminate
Operators,” Formal Description of Progssmming Cancepts, (E. ‘). ‘Newhold, Ed)),
August 1977, North-Holland Pub. Co., NY. N.Y. pp 337-366. _
Keller, R. M., S. Patil, and ‘G. Lindstrom, "An ‘Architecture for a Loosely-Coupled

Paratlel Processor (Draft),” Dept.-of Comp; Sci. (m:cs—m) Unhrersity of Utah,

Salt Lake City, Utah, July 1978. -

Kishi, T, and T. Rudy, "STAR TREK WMPCON 7, IEEE, N.Y. 1975,
pp.185-188.

Kosinski, P. R. "A Data Flow . Language for epumug Systems Programming. o
SIGPLAN Notices, No. 8, 1973. '

Kuck, D. J, "A Survey of Parallet. Mim Organmtien and Programmtng,

ACM Computing Survey, Vol. 9, No. 1, March 1877. '

Lamport, L, "The Parallel Execution of Do Loops. Comm. of the ACM, Vol. I,

‘No. 2, Feb. 1974.-

Lauer, P. E, and R. H. Campbell; Torm!ﬁmmicsofa Classolegh Level
Primitives for Coordinating Concurrent Processes,” Acta' Informatica, Vol. 5, pp
297-332, Springer-Verlag 1975.

[Mclir68)
[MilMiTQ].

[Miran77]

[(Misun75)
M isu n75)
[Misun78]

{Orns»75)

(Plotk76)
{RamLi76}
[Stoy74)
{Stoy™]

[Swan78]

[SwFus™T]

[SyCoHTN

Mcliroy, M. D, "Coroutines: Semantics in Search of a Syntax,” Oxford University
and Bell Laboratery, Inc. (Unpublisived Paper) _

Milne, G., and R. Milner, "Concurrent Processes and Their Syvmx joumal of the
ACM, Vol. 26, No. 2, April 1979, pp 302:321: ;

Miranker, G. S, "Implementation of Procedures on 2 Chss of Data Flow
Processors,” Proceedings of the IST7 Iaternational Conference on Parallel
Processing, Syracuse University; lEEE. - ’

Misunas, D. P., "Deadlock Avoidance in Data-Flow Architecture,” Proc. of the 1976
International Conf. of Paraliel Processing; Aug. 1976, -

Misunas, D. P., “Structure Processing in a Data-Flow Computer,” Proc. of the 1975
Sagamore Computer Conf. on Paraliel Computation.

Misunas, D. P, "A :Computer - Architecture far Data: Flow - Computation

< LCSHM-MLW&:CW‘SM“IT,&M ‘Mass.

Ornstein, S. M., Growth, W. R., Kraiey, M. F., Besssler, R: D Michel, A, and F. E
Heart; "Pluribus -~ A Reliable. Mwhiprocessor,” MNCQABPSW Proc.
pp551-559.

Plotkin, G., "A Powerdomain Censtruction,” SIAM]aumal efcmputmg. Vol. 5,

No. 3, 19%, pp 452-461.

Ramamoorthy, C. V., and H. F. Ll 'Plpeﬁnc Architectufe. Gemputing Surveys

- Vol. 9, No. 4, March 1977,

~Rumbaugh, J. E., A Paralle} ksym:!amsﬁmw Architecture for Data Flow

Programs;” MAC-TR-150, 197, ‘M.1.T. Cambridge, Muss. -

Stoy, J. E.. "Proof -of Correctness of Dataflow: Programs,” Compuntion Structure

Group Memo-1i0, Laboratory for Guapmsmaﬂ'l' September 1974.

Stoy.] E., Denotational Semantics: The Scott-Strache m;_g ggramming
Language Theory, MIT Peess; Cambridge lha. | '

Swan, R. J, “The Switching Structure and Addressing Architecture of an

Extensible Multiprocessor: CMs,” CMU-CS-78-138, Camegie-ucﬂon University,

Computer Science Department, August 1978, - SR

‘Swan, R. }, & R%MD,PM "CMt:aMbduhr..

MUHti-Microprocessor,” .AFIPS Conf.Proc. Vol .46, 1877, National Computer

Syre, J. C. D. Comte, and N.Hifdi, "Pipeline, Parafielism and Aspchronism in the

LAU System,” Proceedings of M Conference onh Paraflel Processing,

August 1977,

AP

[Trele77]

[Weng75) |
[(Wulf72)

[YauFu77]

- 149 -

Treleaven, P. C, "Principle Components for Data Flow Computers,” Computing
Laboratory TR-108, University of Newcastle upon Tyne, Newcastle upon Tyne,
England, July 1977.

Weng, K.-S, Stream-Oriented Computation in Recursive Data Flow Schemas,
Laboratory for Computer Science TM-68, MIT, Oct. 1975. .

Wulf, W. A, and C. G. Bell, "Cmmp - A Muki-Mini-Processor,” 1972 FJCC,
AFIPS Conf. Proc,, Vol. 41, No. 2, Apr. 1965, pp 270-271.

Yau, S. S, H. S. Fung, "Associative Processor Architecture - A Survey,” ACM
Computing Survey, Vol. 9, No. I, March 1977.

- 150 -

This page intentionally left blank.

- 15 -

Appendix A. Implementation of the n-merge actor

The implementation of n-merge actor prcsemed here requires two firings and
needs an additional inpdt value F which represents the first stat‘erof Vthe actor. For convenience,
we use a notation inﬁ:v,, 2:v9,3:F] to mean that an operand: record contains three input values

| vy at the first input arc, vy at the second input arc, and F at the third input' arc for ti\e state. If
there is no value present for an input arc we use the symbol § in its place. For example, In{L$,
2:vo, 3:8] means on'ly'mtiﬁput has arrived at the operand record. Wciuse' a similar notation
Outlk:vy, 21, 3:8] to mean that the firing of the actor produces two nutpuu vj-on the first output
arc, | on the second output arc, and no token on the third output arc.

The enabling count of the actor is defined to be two, thus, the actor is enabled

with any two of the three inputs. We describe the possible firing by cases:
(0 Inllvy, 28, 3F]
The output is Outllv;, 21, 38] and in addition a result packet containing S,
representing the second state is sent to the same operand record at the third
input. Since the only value that has not arrived is vo, the next firing will
contain In(t$, 2:vo, 3:5] and the resuk of this firing is Out{l:$, 28, 3:signal).

(2) In(1$, 2:v, 3:F]
The output is Outll:vy, 22, 38] and in addition a result packet containing S is
sent to the same operand record at the third input. Since the only value that
has not arrived is v the next firing will contain ln{!:vl, 24, 3:S) and the result
of this firing is Out{l:8, 28, 3:signall

(3) ln[l:vl, 2.y, 18]
The firing must choose one of the two possible outputs:
(3a) The output is Outltv;, 21, 38) and in addition a result packet
containing S is sent to the same operand record at the first input. Since
the only value that has not arrived is F, the next firing will contain In{LS,
28, 3:F] and the resukt of this firing is Out{l$, 2.8, 3signall

- 152 -

(3b) The output is Outflvy, 22, 381 and in sddition a result packet
containing S is sent to the same operand record at the first input. Since

~ the.only value that has not arrived is.F, the next ficing will.contain In(LS,
28, 3F) and the result of this firing is Out{1$, 28, 3signall

The firing rules above does not include the case for all three input values to be in
the operand record. This is beeause the Mmmmnpmdfmd is implemented
as a critical region that allow one insertion to take phm..gt.aﬁme%a‘nd-m operand record s
enabled as soon as two values arrive. Notice that-sach firing:will:cause an instruction fet¢h,
and this'is the consequence that we would #ike: Execufion: Controfiess to-process ail insjructions

in the same manner.

-153 - .

Appendix B. A cyclic schema for _m'ergjng two streams

The schema shown in Figure B has two inputs §;and 82 each receiving a stream
represented as a structure, and Out is the output 1 of the schema The n-mergeq actor is enabled.
as soon as one input arrives and produce two vales: the stream value arrived on the s output
arc, and a boolean value on the output A: true if it is the first input, and false if it is the second
input. The scherﬁa uses a false gate F in the model of Dehn'is and Fosseen to avoid excessive
. use of sink actors. The two actors consg and wrlte-h?g»‘;getherwfqrm the cons actor introduced
in Chapter Five. The capitalized fetters at the endon each arc implies roonﬁecﬂons between
actors to avoid confusion. ' | '

The cyclic schema works by constructing a stream using the consg and the
write-hole actor for each value of the two input@ streams. The schema recycles the arrived
stream ‘structure to the proper input s; or so determined by the boolean output B. The
* construction of output stream is rather complicat“ed,b;ecausc the whole schema must signal its
completion of operation in some manner. And this is achlcved:f;f‘ming the: gggg! output of
thé -write-hole actor. The schema terminates its opentlon when One of the input stream is

empty and thls adds additional complexity to the. dhgram

Out signal for completion

Figure B. A cyclic schema for merging two streams

