CLU Relerence Manual

Barbara Liskov
Russ Atkinson
Toby Bloom
Eliot Moss
Craig Schaffert
Bob Scheifler
Alan Snyder

October 1979

This work was supported in part by the Advanced Research Projects Agency of the Department of
Defense, monitored by the Office of Naval Research under contract N00O14-75-C-0661, and in part
by the National Science Foundation under grant MCS74-21892 A0l.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge Massachusetts 02139



This empty page was substituted for a
blank page in the original document.



History of CLU

- The development of CLU began in January 1974. By the summer of 1975, the first version of
the language had been completed. Over the next two years, the entire language design was
reviewed and two implementations were proﬁuced. Based on this review, and on the experience
gained in using CLU, a second version of the language was designed in the fall of 1977, and a new
implementation is now complete. A preliminary version of this manual appeared in July 1978.
Since that time, an additional statement for exception handling, an own variable mechanism, and
three new basic type generators have been added to the language, and a number of minor changes

have been made to the 1/0 facilities.

Guide to the Manual

This document serves both as an introduction to CLU and as a language reference manual.
Sections 1 through 4 present an overview of the language. These sections highlight the essential
features of CLU, and discuss how CLU differs from other, more conventional, languages. Sections
5 through 13 form the reference manual proper. These sections describe each aspect of CLU in
detail, and discuss the proper use of various features. Appendices. I through III provide concise
summaries of CLU's syntax, data types, and 1/O facilities. Appendix 1V contains example
programs.

Those readers wanting an introduction to CLU should read Sections 1 through 13 in order,
concentrating on Sections 1 through 4, 8, 9, and 13. (A brief introduction may be found in
[Liskov77]) Appendix IV should also be of interest. After becoming familiar with CLU, specific
questions can be answered by consulting Sections 5 through 13 and Appendices I through 111

We would greatly appreciate receiving comments on both the language and this manual.
Comments should be sent to Barbara Liskov, Laboratory for Computer Science, Massachusetts

Institute of Technology, 545 Technology Square, Cambridge, MA 02139.

{Liskov77] Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. Abstraction Mechanisms in
CLU. Comm. ACM 20, 8 (Aug 1977, 564-576.

Keywords: programming languages, data abstractions, strong type checking, modularity, exception

handling, iteration abstractions, CLU



CONTENTS

Overview
1. Modules ... 6
LI Procedures .............ocoiiiiiiiiiiiiiiiiini i et st se e s s e nn s asees 6
L2 Tterators ...........ccooiiiiiiiiiiiiiin i e rr s s en e 6
13  Clusters .................... PP PP 7
1.4 Parameterized Modules ................cooiirimimninniiiiinienininienenii e 8
L5 Program Structure ..ot snanees 9
2. DataTypes ...t sessssteresenees 9
21 Built-in Types ..ot s e s s arseses 9
22 User-Defined Types .............ccoeriiimiimiiiiiiiiiininnniiennnsiinserenesenssee n
23  Comparison of User-Defined and Built-In Types ..............cooceerieennneenee. i
8. SBemantics ... 12
3.1 Objects and Variables ..............ccciiiiiiiiiiiiiiiiiiniineiiiinenineeincnninn, 13
3.2 Assignment and IRVOcation ..........ccccoviiiiriiiiiiiiiiriniienincnineane, 14
33 Type-Correctness ..........ccocoovvemiiimimiimmiiniieiiiniiirneerenesassinessnsesensncsss 16

4. TheLIbrary ... seeeesessanees 17



b.
6.

6.1
6.2
6.3
6.4
6.5
6.6

7.

71
12
73
7.4
5
7.6
.7
7.8
79
710
711
712
713
714
7.15

8.
8.1
8.2
83

9.
9.1

9.2
9.3

Detailed Description

Notation ... 20
Lexical Considerations ............cccoooiviiiiniiiniinniiiiiiiinis 21
Reserved Words .........cc.ocouiiiiiiiiiiiiiniimiiiiii e reenin e 21
Identifiers ...........coooiviiiiiiiiiiiiii e 21
LIterals .....ooooiiiiiiiiiiiiii v s s e s as b e 22
Operators and Punctuation Symbols ...............ccovvviiiimmiiiiiiniiininnn. 22
Comments and Other Separators ............cccoovvvviiviiicniiiniiiiininiinn.e. 22
Semicolons ..........oiiiiiiiiiii e 22
Types, Type Generators, and Type SBpecifications ..... 23
NUll oo e s e s e e e 23
BOOl ... e 24
It e e e e 24
Real s 24
Char . e s s s s r e e e 25
R LT T 25
AMY L s s s b st e e anae 26
ATTAY TYPES ..ooviiiiiniiiiiiiiiiiniiiei ittt eree st esasesesssasssasesnsssssnseassranss 27
Sequence TYPes ..........ccooiiiiiiiiiiiiiiiiiiiiii et rai s e 28
Record Types ..........ocoovviviiviinniinnnnns S PP 29
Structure TYPeS .........cooiiiiriiimiiiiiriiiiiiit it sraeessenseasearernseressnens 30
Oneof TYPes ......cooovvvviiiiiiiiiieiniee i csiietreeeseeseeeeneneens prrerereeneereaas 31
Variant TYpes ....c....oviiiiiiiiiiiiiniiereireirriees st sern e s nae s anasaans 32
Procedure and Iterator Types ..........cooooiiiriiiiiiiiiniiiniininienreea 32
Other Type Specifications .............ccceveiiiiiuiiiriiiiiiininniieniceaeenn 33
Scopes, Declarations, and Equates ..............ccccoeenniennenn. 34
Scoping Units ... e 34
Variables ............cooiiiiiiiii s e 35
Equates and Constants ...............ccoeviiiviiiiiiniiiiiiiiniinn e 37
Assignment and Invocation ... 39
Type Inclusion ...........oooiiiiimiiiiiii e e 40
ASSIERIMENE ... ..ot e e 40

| 1 0o 14 1T 4?2



10. Expressions ..., 43
BOUL  LHterals .ooocirininiiiiiiiiiiicirieieirererietesetrenncasssressessssnesannsasassncnssssonsa 44
102 Variables ... iiriiie e i ras it cnserasaneseesssssasnrontansernns 44
10.3 Procedure and Iterator Names .............cccciuieiviiiirninniieneresesersssessnsonss 44
104 Procedure INVOCAtIONS ...........c.iiveiniiiiiiiiiricereieensacnsrcesnsetossasescnsaares 45
10.5 Selection Operations .............ccooviviiiiiiiiiiiiiiniiiniienieenereraeaeaen, 45
106 CONSIIUCIONS ... oieiniiiiiiiiiiiieiiceernrienrraneenrasacaseracsconnrnsnsessasasonnassasen 47
10.7  Prefix and Infix Operators .............c.ccevviiiiiiirimniiiintiiniieenniniesoeenenn 49
108 Cand and Cor .....c.ooeiniiiiiii v ceiiecre et sntaresaecsesasensnsessossanes 51
10.9  PrecedenCe .......oivuuiiiiinnieeiireisnieeeseeresssesesssssssssnsersnsssssrsessnsenssnssnns 51
1010 Up and DOWN ...t crsisesenrasenasensnasnns 52
JOIE FOPCe oot iiiirti e et eerreinensabaresarensearenssrtacnesnnsesesronsnsenn 52

11. Statements .......cc.ocooovvivireiiiiriinierecneens tereeeesesereertesarnrreeernns 53
11.1  Procedure INVOCALION .......ccouvvuvieiiiiiieriniiieetverseneniioveessssnsnesararsrsasans 54
112 Update Statements ..............orvueieiiiiiiiminiiiniciiieiicirie e canesns 54
IL3  Block Statement ......cocuieiiiiiiiiiiiiiiiiiieniirerensierssietrentnsacassseencasnsssns 56
11.4 Conditional Statement ........ e tetenratatererareesteterarsetiesnretenesonrenseniansnates 56
11.5 Loop Statements ...............cccooiriiiiiiiiiiiimiiiin e san 56
116 Tagcase Statement ..........cccooviiiiiinininiiii e eensaene 58
17 Return STatemMent .......cc.oivviiiiiiienniiiiiiierneerisieresereneeessrsesssecassensesnsss 60
TL8  Yield Statement .........ccooiviiiiiiiiiiiiiiiirrieriireesreesescresssesnssnsessassasass 60

12. Exception Handling and Exits ..........cccccvvviviirccccncnnnnnn, 60
12.1  Signal Statement ..........c.oiiiiiiiiiiiiiiiii s s seas 61
122 Except Statement .............ccevviiiiiiiiiiiiiiciieiiinniesieisssiinsiessensiseraessanes 62
123  Resignal Statement ..............cccoeviiiiiiimmiiiiiiininniniinissicsnssnensesnanse . 64
124 ExXit Statement ..........ccciviiiiiiiiiiiirirenienirrsceersrsesesrnosssonrons cersacansans 65
125 EXamPIe oo cnii e s tsnnesranessnenesaessnassenossnsanns 65

13. Modules ........oooooeviiiiieiieeeeceeeeereeeeeeans peverereeorenees teereerrentenene 68
13.1 Procedures ...........cooenrenvrneriniennne Cetteteeneretnernrettrenttosararntaneniseseransars 68
13.2 Lerators .........ccccvvrvieiieniruerrnreenrencsesensensenns rresraessesanenses ceeracaseeceran . 70
b2 I 04 (1T (. R 72
13.4 Parameterized Modules .............ccoeuiriiriiiieieniiniioriienirscsssenrnsecssasessnes .. 81
135 Own Variables ..................... reeesuseetestacnttareesneresararaererasntrencestsnransnre 88



I.

111
11.2
I3
11.4
115
11.6
11.7
1.8
11.9
11.10
1111
112
1113
11.14

III.

ITLt
1112
1113
1.4
ITL5
I11.6
L7
11 R}
HIL9

IV.
Iv.i

Iv.2
Iv.3

Appendices

BYNEAX e s s e s s s 9
Built-in Types and Type Generators .........c.ccccoeeuneenne. 99
NUTE Lt e s e e s e 100
Bool ... s s e e e 100
3 O U e 101
Real ..o e re e s 102
Char .o e sh e s e s aaae 105
SEENE oo e s e 105
ArTay TYPeOS ..ooveiiiiiiiin i e s s a e aee 108
Sequence TYPes ......cooviiiiiiiiiiiiiiiiiiiii i b ee s e e s 11t
Record TYPes .......oovmiiiiiiiiiiiiiiiiirri st re e s e s e r s beasanes 114
Structure Types ..o 116
Oneof TYPes ....ccovviiiiiiiiiiiiiireiini et e e ebs et s s s ees 117
Variant Types ...t crsa e s s e s ea 19
Procedure and Iterator Types ...........ccooeiniiiiiiniiiiieiiiiiniiniciennenaeee. 120
AMY o e s e e s b s a e s e e aans 120
Input/Output .......oooiiiiiiie e 121
Files oo S 121
File NaMES ...ttt inaerrre e siseas e cc et earan s susnnanas 122
A File Type? .ot seeee et s s e e s 124
SErEAMS .ot s s sa s e s s s e e en 125
String /O .o e s 129
IStreams . ....ooiiiiiiiiiiiiiiiii i e r e s e e b e b r s e s ees 129
Terminal /O ..o 132
Miscellaneous Procedures ..........c.co.cceiivniiriiiniiiiiniiiiioniirerrronnreninnnan. 133
Dates ..o e s an e 135
EXamples ...t aeeean s s e s e 137
Priority Queue Cluster .............ocovrmmeiiiriiruciiiriinriinnerriiieenneneeeneens 137
Text Formatter ............coooovvuivriiniinniiiininneniinnee, werresssnseserrusrintecantonns 140

Text Substitution Program ...........ccccevviininiiiiiiininiiiiniiiinninen. 154



6 Modules 51

1. Modules

A CLU program consists of a group of modules. Three kinds of modules are provided, one
for each kind of abstraction that we have found to be useful in program construction. Procedures
support procedural abstraction, iterators support control abstraction, and clusters support data

abstraction.
1.1 Procedures

A procedure performs an action on zero or more argument ob jects, and terminates returning
zero or more result ob jects. All communication between a procedure and its invoker generally takes
place through these arguments and results; a procedure has no global variables unless it is defined
in a cluster that has own variables. A procedure may retain objects from one invocation to the
next through the use of local own variables.

A procedure may terminate in one of a number of conditions. One of these is the normal
condition; the others are exceptional conditions. Differing numbers and types of results may be
returned in different conditions. All information about the names of conditions and the number
and types of arguments and results is described in the procedure heading. For example,

square_root = proc (x: real returns (real signals (no_real_result)
is- the heading of a square_root procedure, which takes a single real argument. Square_root
terminates either in the normal condition (returning the square root of x) or in the no_real_result

condition (returning no results).
1.2 Iterators

An iterator computes a sequence of items based on its input arguments. These items are
provided to its invoker one at a time. Each item consists of zero or more ob jects.

An iterator is invoked by a for statement. The iterator provides each item by yielding it. The
ob jects in the item are assigned to the loop variables of the for statement, and the body of the for
statement is executed. Then control is returned to the iterator so it can yield the next item in the
sequence. The for loop is terminated when the iterator terminates, or the for loop body may

explicitly terminate itself and the iterator.



§1.2 Iterators 7

Just like a procedure, an iterator has no global variables unless it is defined in a cluster that
has own variables. An iterator may retain ob jects from one invocation to the next through the use
of local own variables. An iterator may also terminate in one of a number of conditions. In the
normal condition, no results can be returned, but different numbers and types of results can be
returned in the exceptional conditions. All information about the names of conditions, and the
number and types of arguments and results is described in the iterator heading. For example,

leaves = iter (t: tree} yields (node)
is the heading for an iterator that produces all leaf nodes of a tree object. This iterator might be
used in a for statement as follows:

for leaf: node in leaves(x) do
... examinelleaf) ...
end

1.3 Clusters

A cluster implements a data abstraction, which is a set of objects and a set of primitive
operations to create and manipulate those objects. The operations can be either procedural or
control abstractions. The cluster heading states what operations are available, eg.,

int_set = cluster is create, insert, elements
states that the operations of int_set are create, insert, and elements.

A cluster is used to implement a distinct data type, different from all others. Users of this type
are constrained to treat ob jects of the type abstractly. That is, the ob jects may be manipulated only
via the primitive operations. This means that information about how the objects are actually
represented in storage may not be used.

Inside the cluster, a concrete representation (in terms of some other type) is chosen for the
objects, and the operations are implemented in terms of this representation. Each operation is
implemented by a routine (a procedure or iterator); these routines are exactly like those not
contained in clusters, except that they can treat the objects being defined by the cluster both
abstractly and in terms of the concrete representation. (The ability to treat objects abstractly is
useful when defining recursive data structures, where the concrete representation makes use of the
new type.) A cluster may contain additional procedures and iterators, which are purely for local
use; these routines do not define operations of the type. The routines in a cluster are not

considered to be separate modules; they are simply part of the cluster module.



8 Clusters §1.3

A cluster may also contain own variables, whose lifetimes are independent of routine
activations. These variables are globally available to all routines in the cluster, but are not

available from outside the cluster.
1.4 Parameterized Modules

Procedures, iterators, and clusters can all be parameterized. Parameterization provides the
ability to define a class of related abstractions by means of a single module. Parameters are limited
to the following types: int, real, bool, char, string, null, and type. The most interesting and
useful of these are the type parameters.

When a module is parameterized by a type parameter, this implies that the module was written
without knowledge of what the actual parameter type would be. Nevertheless, if the module is to
do anything with ob jects of the parameter type, certain operations must be provided by any actual
type. Information about required operations is described in a where clause, which is part of the
heading of a parameterized modute. For example,

set = cluster [t: type) is create, insert, elements
where t has equal: proctype (t, t) returns (bool

is the heading of a parameterized cluster defining a generalized set abstraction. Sets of many
different element types can be obtained from this cluster, but the where clause states that the
element type is constrained to provide an equal operation.

To use a parameterized module, actual values for the parameters must be provided, using the
general form

module_name [ parameter_values ]

Parameter values must be computable at the time they are compiled. Providing actual parameters
selects one abstraction out of the class of related abstractions defined by the parameterized module;
since the values are known at compile-time, the compiler can do the selection and can check that
the where clause restrictions are satisfied. The result of the selection, in the case of a
parameterized cluster, is a type, which can then be used in declarations; in the case of
parameterized procedures or iterators, a procedure or iterator is obtained, which is then available
for invocation. For example, setlint] is a use of the set abstraction shown above, and is legal

because int does have an equal operation.



§1.4 Parameterized Modules 9

A parameterized cluster, procedure, or iterator is said to implement a type generator, procedure

generator, or iterator generator, respectively.
1.6 Program Structure

As was mentioned before, a program consists of a group of modules. Each module defines
either a single abstraction or, if parameterized, a class of related abstractions. Modules are never
embedded in other modules. Rather, the program is a single level structure, with all modules
potentially usable by all other modules in the program. Type-checking of inter-module references
is carried out using information in the module headings, augmented, in the case of clusters, by the
headings of the procedures and iterators that implement the operations.

Each module is a separate textual unit, and is compiled independently of other modules.

Compilation and program construction are discussed in Section 4.

2. Data Types

One of the primary goals of CLU was to provide, through clusters, a type extension
mechanism that permits user-defined types to be treated as similarly as possible to built-in types.
This goal has been achieved to a large extent. Both built-in and user-defined types are viewed as
providing sets of primitive operations, with access to the real ‘representation information limited to
just these operations'. The ways in which built-in types differ from user-defined types will be

discussed in Section 2.3 below.
2.1 Built-in Types

CLU provides a rich set of built-in types and type generators. The built-in types are int, real,
bool, char, string, null, and any. Int and real provide the usual arithmetic and relational
operations on integers and real numbers, and bool provides the standard boolean operations.
Char is the full ASCII character set; the usual relational operators are provided, along with
conversion to and from integers. Strings are (possibly empty) sequences of characters; usual string
operations like selecting the ith character, and concatenation are provided. However, strings are
somewhat unusual in that string objects cannot be modified. For example, it is not possible to

change a character in a string; instead, a new string, differing from the original in that position,



10 Buik-in Types §2.1

may be created.

Null is a type containing one ob ject, nil. Null is used primarily in con junction with the tagged
union type discussed below.

Any is provided to permit an escape from compile-time type-checking. The type any
introduces no new ob jects, but instead may be used as the type of a variable when the programmer
wishes to assign ob jects of different types to that variable, or does not know what kind of ob ject
will be assigned to the variable. CLU provides a built-in procedure generator, force, which
permits a run-time examination of the type of ob ject named bj a variable of type any.

The built-in type generators are: array, sequence, record, struct, oneof, variant,
proctype, and itertype. Arrays are one-dimensional. The type of element contained in the array
is specified by a type parameter, eg., arraylintl and arraylarraylintl). (The latter example
shows how a two-dimensional array might be handled.) CLU arrays are unusual in that they can
grow dynamically. An array is often empty when first created, but there is also a special array
constructor for specifying initial elements. Array operations can grow and shrink the array at
either end, query the current size and low and high bounds of the array, and access and replace
elements within the current bounds.

Sequences are immutable arrays, in that the size of a sequence can not be changed dynamlcﬁlly,
and new elements cannot be stored into a sequence. New sequences can be constructed from
existing sequences in much the same way as new strings are created. Sequence operations are culled
from both string and array operations, and there is a special sequence constructor, which is
syntactically similar to the array constructor form.

CLU records are heterogeneous collections of component ob jects; each component is accessed by
a selector name. Records must be explicitly constructed by means of a special record constructor.
The constructor requires that an object be provided for each component of the record; this
_ requirement ensures that no component of the record is undefined in the sense of naming no
object. Record operations permit selection of component objects and replacement of components
with new ob jects.

Structures are immutable records, in that the components of a structure cannot be replaced with
new ob jects. Structures are constructed by means of a structure constructor, which is syntactically

identical to the record constructor form.



§2.1 Built-in Types 1

A oneof type is a tagged, discriminated union. The objects of a oneof type each consist of a
tag (an identifier) and a component ob ject; oneof objects with different tags may have component
ob jects of different types. A oneof object..once created, cannot be changed. Thus, oneof types
provide a capability similar to that provided by variant records in Pascal. Operations are
provided for creating oneof objects. Oneof objects are usually decomposed through the tagcase
statement. -

Variants are mutable oneofs. The tag and component object of a variant can be replaced
simultaneously with new values. Like oneofs, variants are usually decomposed through the
tagcase statement.

Procedure and iterator types provide procedures and iterators as first—class ob jects; i.e., routines
(including those in clusters) can be assigned to variables and can occur as components of other
objects. These types are parameterized by all the information appearing in a procedure or iterator
heading, with the exception of the formal argument names.

In addition to all the built-in types and type generators mentioned above, CLU programs may
also make use of the type type. The use of type values is limited to parameters of parameterized
modules; there are no arguments or variables of type type.

Finally, CLU provides a number of types and procedures to support 1/0. These types are not
considered to be built-in types of CLU, but they must be available in the library. These types are
described in Appendix IIL

2.2 User-Defined Types

Users may define new types by providing clusters that implement them. The cluster may
implement a single type, or, in the case of a parameterized cluster, a group of related types. The
type or types defined by a cluster are distinct from all built-in types and from all types defined by

other clusters.

2.3 Comparison of User-Defined and Built-In Types

Little distinction is made between user-defined types and buift-in types. Either can be used
freely to declare the arguments, variables, and results of routines. In addition, in either case there
is a set of primitive operations associated with the type, and the same syntax is used to invoke these

operations. The ordinary syntax to name an operation is



12 Comparison of User-Defined and Built-In Types ) §2.3

type $ op_name
Since different types will often have operations of the same name (e.g., create), this compound form
is used to avoid ambiguity.

For many operations there is also a customary abbreviated form of invocation, which can be
used for user-defined types as well as for built-in types. There is a standard translation from each
abbreviated form to the ordinary form of invocation. For example, an addition operation is
usually invoked using the infix notation "x + y=; this is translated into "T$add(x, y)", where T is
the type of x. Extending notation to user-defined types in this way is sometimes called operator
overloading. We permit almost all special syntax to be overloaded; there are always constraints on
the overloading definition (e.g., add must have two input arguments and one result), but they are
quite minimal.

Nevertheless, there are t‘hree main distinctions between built-in types and user-defined types:

1. Built-in type and type generator names cannot be redefined. (This is
why we always show them in boldface in this document.)

2. Some built-in types, eg., int, real, etc, have literals. There is no
mechanism for defining literals for user-defined types.

3. Some built-in types are related to certain other constructs of CLU. For
example, the tagcase statement is a control construct especially
provided to permit discrimination on oneof and variant objects. In
addition, in places where compile-time constants are required, e.g., as
actual parameters to parameterized modules, the expressions that may
appear are limited to a subset of the built-in types and their operations.
One reason for this limitation is that the permitted types are known to
contain only immutable ob jects (see Section 3.1).

3. Semantics

All languages present their users with some model of computation. This section describes those
aspects of CLU semantics that differ from the common ALGOL-like model. In particular, we
discuss the notions of objects and variables, and the definitions of assignment and argument

passing that follow from these notions. We also discuss type-correctness.



§3.1 Objects and Variables 13

3.1 Objects and Variables

The basic elements of CLU semantics are objects and variables. Ob jects are the data entities
that are created and manipulated by programs. Variables are just the names used in a program to
refer to ob jects.

Each object has a type, which characterizes its behavior. A type defines a set of primitive
operations to create and manipulate objects of that type. An object may be created and
manipulated only via the operations of its type.

An ob ject may refer to objects. For example, a record ob ject refers to the ob jects that are the
components of the record. This notion is one of logical, not physical, containment. In particular, it
is possible for two distinct record ob jects to refer to (or skare) the same component object. In the
case of a cyclic data structure, it is even possible for an object to “contain” itself. Thus, it is
possible to have recursive data structure definitions and shared data objects without explicit
reference types.

Objects exist independently of procedure and iterator activations. Space for objects is
allocated from a dynamic storage area as the result of invoking constructor operations of certain
primitive CLU types, such as records and arrays. In theory, all objects continue to exist forever.
In practice, the space used by an object may be reclaimed (via garbage collection) when that ob ject
is no longer accessible. (An ob ject is accessible if it is denoted by a variable of an active routine or
an own variable of any cluster or routine, or is a component of an accessible ob ject.)

Ob jects may be divided into two categories. Some objects exhibit time-varying behavior.
Such an object, called a mutable object, has a state that may be modified by certain operations
without changing the identity of the object. Records and arrays are examples of mutable ob jects.
For example, replacing the ith element of any array a causes the state of a to change (to contain a
different ob ject as the ith element).

If a mutable object m is shared by two other objects x and 9, then a modification to m made
via x will be visible when m is examined via y. Communication through shared mutable ob jects is
most beneficial in the context of procedure invocation, described below.

Ob jects that do not exhibit time-varying behavior are called immutable ob jects. Examples of
immutable ob jects are integers, booleans, characters, and strings. The properties of an immutable
object do not change with time. These properties generally do not include the properties of any

component objects. For example, a sequence is immutable even though its elements may be



14 ' Ob jects and Variables §3.1

mutable.

Variables are names used in programs to denote particular ob jects at execution time. Unlike
variables in many common programming languages, which are containers for values, CLU
variables are simply names that the programmer uses to refer to objects. As such, it is possible for
two variables to denote (or share) the same object. CLU variables are much like those in LISP,
and are similar to pointer variables in other languages. However, CLU variables are not ob jects;
they cannot be denoted by other variables or referred to by objects. Thus, variables declared

within one routine cannot be accessed or modified by any other routine.
3.2 Assignment and Invocation

The basic actions in CLU are assignment and invocation. The assignment primitive x := E,
where x is a variable and E is an expression, causes x to denote the ob ject resulting from the
evaluation of E. For example, if E is a simple variable §, then the assignment x := y causes x to
denote the object denoted by y. The ob ject is not copied; after the assignment is performed, the
ob ject will be shared by x and y. Assignment does not affect the state of any ob ject.

Figure 1 illustrates these notions of ob ject, variable, and assignment. Here we show variables
in a stack, and ob jects in a heap (free storage area), an obvious \&ay to implement CLU. Figure la
contains three objects: &, §, and ¥. a is an integer (in fact, 3) and is denoted by variable x, while 8
and ¥ are of type setlint] and are denoted by variables y and z, respectively. Figure 1b shows the
result of executing

yi=12
Now y and z both refer to, or share, the same object, ¥; 8 is no longer accessible, and so can be
garbage collected.

Invocation involves passing argument objects from the caller to the called routine and
returning result ob jects from the routine to the caller. The ob jects returned by the procedure, or
yielded by an iterator, may be assigned to variables in the caller. Argument passing is defined in
terms of assignment; the formal arguments of a routine are considered to be local variables of the
routine and are initialized, by assignment, to the objects resulting from the evaluation of the
argument expressions. We call the argument passing technique call by sharing, because the
argument objects are shared between the caller and the called routine. The technique does not
correspond to most traditional argument passing techniques (it is similar to argument passing in

LISP). In particular it is not call by value because mutations of arguments performed by the called



3.2 Assignment and Invocation 15

Fig. 1. Assignment

Fig 1a.

z — : setlint]

Fig 1b,

routine will be visible to the caller. And it is not call by reference because access is not given to the
variables of the caller, but merely to certain ob jects.

Figure 2 illustrates invocation and object mutation. Figure 2a continues from the situation
shown in Figure 1b, and illustrates the situation immediately after invocation of

setlint]$insert(y, x)

(but before executing the body of insert). Insert has two formal arguments; the first, s, denotes the
set, and the second, v, denotes the integer to be inserted into s. Note that the variables of the caller
(x, y and, 2) are not accessible to insert. Figure 2b illustrates the situation after insert returns. Note
that object ¥ has been modified and now refers to a (the set 4 now contains 3), and since ¥ is
shared by both y and z, the modification of ¥ is visible through both these variables.

Procedure invocations may be used directly as statements; those that return exactly one ob ject
may also be used as expressions. Iterators may be invoked only through the for statement.

Arbitrary recursion among procedures and iterators is permitted.



16 Type-Correctness 3.3

Fig. 2. Invocation and ob ject mutation

X —

y —

z -~

s [ setlint]

v =
Fig 2a.

[

X e 3 )int

Y [ e

z .

} ) setlint]

Fig 2b.

3.3 Type-Correctness

The declaration of a variable specifies the type of the ob jects which the variable may denote.
In an assignment, the object denoted by the right-hand side must have the same type as the
variable on the left-hand side: there are no implicit type conversions. (The type of ob ject denoted
by an expression is the return type of the outermost procedure invoked in that expression, or, if the
expression is a variable or literal, the type of that variable or literal) There is one special case; a
variable declared to be of type any may be assigned the value of any expression.

Argument passing is defined in terms of assignment; for an invocation to be legal, it must be
possible to assign the actual arguments (the ob jects) to the formal arguments (the variables) listed
in the heading of the routine to be invoked. Furthermore, a return (or yleld) statement is legal
only if the result objects could be legally assigned to variables having the types stated in the

routine heading.



133 Type-Correctness 17

CLU is a type-safe language, in that it is not possible to treat an ob ject of type T as if it were
an ob ject of some other type S; in particular, one cannot assign an object of type T to a variable of
type S (unless S is any). The type any provides an escape from compile-time type determination,
and a built-in procedure generator force tan be used query the type of an object at run-time.
However, any and force are defined in such a way that the type-safety of the language is not
undermined. The type-safety of CLU, plus the restriction that only the code in a cluster may
convert between the abstract type and the concrete representation, insure that the behavior of an

ob ject is indeed characterized completely by the operations of its type.

4. The Library

As was mentioned earlier, it is intended that the modules making up a program all be separate
- compilation units. A fundamental requirement of any CLU implementation is that it support
separate compilation, with type-checking of inter-module references. This checking can be done
either at compile-time or at load-time (when a group of separately compiled modules are combined
together to form a program). A second fundamental requirement is that the implementation
support top-down programming. The definition of CLU does not Specif y how an implementation
should meet these requirements. However, in this section we describe the current CLU
implementation, which may serve as a model for others.

Our implementation makes use of the CLU library, which plays a central role in supporting
inter-module references. The library contains information about all abstractions. It supports
incremental program development, one abstraction at a time, and, in addition, makes abstractions
that are defined during the construction of one program available as a basis for subsequent
program development. The information in the library permits the separate compilation of single
modules, with complete type-checking at compile-time of all external references (such as procedure
names).

The library provides a hierarchical name space for retrieving information about abstractions.
The leaf nodes of the library are description units (DUs), one for each abstraction. Figure 3

illustrates the structure of the library.



18 The Library L}

Flg. 3. A sketch of the library structure showing a DU with pathname B.Y

A DU contains all system-maintained information about its abstraction. A sketch of the
structure of a DU is shown in Figure 4. For purposes of program development and module
compilation, two pieces of information must be included in the DU: implémentation information,
describing zero or more modules that implement the abstraction, and the interface specification.
The interface specification is that information needed to type-check uses of the abstraction. For
procedural and control abstractions, this information consists of the number and types of
parameters, arguments, and results, the names of exceptional conditions and the number and types
of results returned in each case, plus any constraints on type parameters (i.e., the where clause, as

described in Section 1.4). For data abstractions, it includes the number and types of parametefs, '

Fig. 4. A sketch showing the structure of a DU

(o)

interface abstractions implementations other
specification used in ' information
interface

source  object abstractions other
code code used in information
implementation



4 The Library 19

constraints on type parameters, and the name and interface specification of each operation.

An abstraction is entered in the library by submitting the interface specification; no
implementations are required. In fact, a module can be compiled before any implementations have
been provided for the abstractions that it uses; it is necessary only that interface specifications have
been given for those abstractions. Ultimately, there can be many implementations of an
abstraction; each implementation is required to satisfy the interface specification of the abstraction.
Because all uses and implementations of an abstraction are checked against the interface
specification, the actual selection of an implementation can be delayed until just before (or perhaps
during) execution. We imagine a process of binding together modules into programs, prior to
execution, at which time this selection would be made.

An important detail is the method by which modules refer to abstractions. To avoid the
problems of name cc;nf licts that can arise in large systems, the names used by a module to refer to
abstractions can be chosen to suit the programmer’s convenience. When a module is submitted for
compilation, its external references must be bound to DUs so that type—checking can be performed.
The binding is accomplished by constructing a compilation environment (CE), mapping names to
DUs and constants, which is passed to the compiler along with the source code when compiling the
module. A copy of the CE is stored by the compiler in the library as-part of the module. A similar
process is involved in entering interface spe'cifications of abstractions, since these interfaces can
include references to other (data) abstractions.

When the compiler type-checks a module, it uses the compilation environment to map the
external names in the module to constants and DUs, and then uses the interface specifications in
the referenced DUs to check that the abstractions are used correctly. The type-correctness of the
module thus depends upon the binding of external references and the interface specifications of all
referenced DUs, and could be invalidated if changes to the binding or the interface specifications
were subsequently made. For this reason, the process of compilation permanently binds a module to
the abstractions it uses, and the interface specification of an abstraction, once defined, is not
allowed to change. Of course, a new DU can be created to describe a modified abstraction.
Furthermore, during design (before any implementing modules have been entered into the system)
it is reasonable to permit abstraction interfaces to change.

Typically a small to medium sized project will use only one CE, thereby establishing a
consistent vocabulary for use by all programmers. Larger projects might have a number of

(possibly "overlapping™ CEs, each specialized for some subpro ject.



20 The Library §4

The library and DU structure described above can be used for purposes other than compiling
and loading programs. In each case, additional information can be stored in the DU; the “other”
fields shown in Figure 4 are intended to illustrate such additional information. For example, the
library provides a good basis for program verification. Here the “other” information in the DU
would contain a formal specification of the abstraction, and possibly some theorems that had been
proved about the abstraction, while for each implementation that had been verified, an outline of
the correctness proof might be retained. Additional uses of the library include retention of
debugging and optimization information.

B. Notation

We use an extended BNF grammar to define the syntax. The general form of a production is:

nonterminal = akernative
| akernative

| akernative
The following extensions are used:
a,.. a list of one or more a’s separated by commas: "a" or "2, 2" or
a,2,2a et
{a} a sequence of zero or more ¢’s: " "or "a" or "a a” etc.

[a] an optional a: “ " or "2". A
Nonterminal symbols appear in normal face. Reserved words appear in bold face. All other
terminal symbols are non-alphabetic, and appear in normal face. |
Full productions are not always shown in the body of this manualk often alkternatives are
presented and explained individually. Appendix | contains the complete syntax.



6 Lexical Considerations 21

8. Lexical Considerations

A module is written as a sequence of tokens and separators. A foken is a sequence of “printing”
ASCII characters (octal value 40 thru 176) representing a reserved word, an identifier, a literal, an
operator, or a punctuation symbol. A separator is a "blank” character (space, vertical tab, horizontal
tab, carriage return, newline, form feed) or a comment. In general, any number of separators may

appear between tokens. Tokens and separators are described in more detail in the sections below.

6.1 Reserved Words

The following character sequences are reserved words:

any cvt force oneof returns true
array do has others sequence type
begin down if own signal up

bool else in proc signals variant
break elseif int proctype string when
cand end is real struct where
char except iter record tag while
cluster exit itertype rep tagcase yield
continue false nil resignal then yields
cor for null return

Upper and lower case letters are not distinguished in reserved words. For example, 'end’, 'TEND’,

and 'eNd’ are all the same reserved word. Reserved words appear in bold face in this document.

6.2 Identifiers

An identifier is a sequence of letters, digits, and underscores that begins with a letter or
underscore, and that is not a reserved word. As in reserved words, upper and lower case letters are
not distinguished in identifiers.

In the syntax there are two diflferent nonterminals for identifiers. The nonterminal idn is used
when the identifier has scope (see Section 8.1); idns are used for variables, parameters, module
names, and as abbreviations for constants. The nonterminal name is used when the identifier is
not sub ject to scope rules; names are used for record and structure selectors, oneof and variant tags,

operation names, and exceptional condition names.



22 Literals §6.3

6.3 Literals

There are literals for naming objects of the built-in types null, bool, int, real, char, and

string. Their forms are dis‘cussed in Section 7.
6.4 Operators and Punctuation Symbols

The following character sequences are used as operators and punctuation symbols:

( : <= ~gm - s

) . - ~n ] / /
. >= adsm / &

[ s > ~> |

] = _ ~

: < ~< + ]

6.6 Comments and Other Separators

A comment is a sequence of characters that begins with a percent sign (X), ends with a newline
character, and contains only printing ASCII characters and horizontal tabs in between. For
example:

z := ali] + X a comment in an expression
blil

A separator is a blank character (space, vertical tab, horizontal tab, carriage return, newline,
form feed) or a comment. Zero or more separators may appear between any two tokens, except that
at least one separator is required between any two ad jacent non-self-terminating tokens: reserved
words, identifiers, integer literals, and real literals. This rule is necessary to avoid lexical

ambiguities.
6.6 Semiocolons

The use of semicolons (;) to terminate statements and various phrases is permitted in CLU, but
semicolons are completely optional and their use is discouraged. Placement of semicolons is not

shown in the body of this manual; refer to the complete syntax in Appendix 1.



7 Types, Type Generators, and Type Specifications 23

7. Types, Type Generators, and Type Specifications

A type consists of a set of objects together with a set of operations to manipulate the ob jects.
As discussed in Section 3.1, types can be classified according to whether their ob jects are mutable or
immutable. An immutable object (e.g, an integer) has a value that never varies, while the value
(state) of a mutable ob ject can vary over time.

A type generator is a parameterized type definition, representing a (usually infinite) set of
related types. A particular type is obtained from a type generator by writing the generator name
along with specific values for the parameters; for every distinct set of legal values, a distinct type is
obtained. For example, the array type generator has a single parameter that determines the
element type; arraylint], arraylreall, and arraylarraylintl] are three distinct types defined by
the array type generator. Types obtained from type generators are called parameterized types;
others are called simple types. -

Within a program, a type is specified by a syntactic construct called a type_spec. The type
specification for a simple type is just the identifier (or reserved word) naming the type. For
parameterized types, the type specification consists of the identifier (or reserved word) naming the
type generator, together with the parameter values.

This section gives an informal introduction to the built-in types and type generators provided
by CLU; many details (such as error conditions) are not discussed. Complete and precise
definitions are given in Appendix Il. Sections 7.1 to 7.7 describe the ob jects, literals, and some of
the operations for each of the built-in types, while Sections 7.8 to 7.14 describe the ob jects,'type
specifications, and interesting operations of types obtained from the built-in type generators. A
number of operations can be invoked using infix and prefix operators; as the various operation
names are introduced, the corresponding operator, if any, will follow in parentheses.

In addition, we describe type specifications for user-defined types, and other special type
specifications in Section 7.15. The mechanism by which new types and type generators are

implemented is presented in Section 13.
7.1 Null

The type null has exactly one immutable ob ject, represented by the literal nil. The type null is

generally used as a kind of “place filler” in a oneof or variant type (see Sections 7.12 and 7.13).



24 Bool §7.2

7.2 Bool

The two immutable ob jects of type bool, with literals true and false, represent logical truth
values. The binary operations equal (-_), and (&), and or (1), are provided, as well as unary not (~).

7.3 1Int

The type int models (a range of) the mathematical integers. The exact range is not part of the
language definition, and can vary somewhat from implementation to implementation (see
Appendix 11, Section 3). Integers are immutable, and are written as a sequence of one or more
decimal digits. The binary operations add (+), sub (-), mul (s), div {/), mod (//), and power (s4) are
provided, as well as unary minus (-). There are binary comparison operations it (<), le (<=), equal
(=), ge (>=), and gt (5). In addition, there are two operations, from_to and from_to_by. for iterating
over a sequence of integers. For example, one can iterate over the odd numbers between 1 and 100
with _

for i: int in intSfrom_to_by(l, 100, 2) do ..compute... end

74 Real

The type real models (a subset of) the mathematical real numbers. The exact subset is not
part of the language definition, although certain constraints are imposed (see Appendix I,
Section 4). Reals are immutable, and are written as a mantissa with an (optional) exponent. A
mantissa is either a sequence of one or more decimal digits, or two sequences (one of which may be
empty) joined by a period. The mantissa must contain at least one digit. An exponent is ’E’ or '¢’,
optionally followed by "+’ or ’-’, followed by one or more decimal digits. An exponent is required if
the mantissa does not contain a period. As is usual, mEx = ms10*. Examples of real literals are:

3.14 3.14E0 314e-2 0314E+2 3 14

As with integers, the operations add (+), sub (), mul (s), div (/}, mod (//), power (s2), minus (-),
It (<), le (<=), equal (=), ge (>=), and gt (>), are provided. It is important to note that there is no
form of implicit conversion between types. So, for example, the various binary operators cannot
have one integer and one real argument. The i2r operation converts an integer to a real, r2i

rounds a real to an integer, and frunc truncates a real to an integer.



§75 Char : 25

7.6 Char

The type char provides the alphabet for text manipulation. Characters are immutable, and
form an ordered set. Every implementation must provide at least 128, but no more than 512,
characters; the first 128 characters are the ASCII characters in their standard order.

Printing ASCII characters (octal 40 thru octal 176), other than single quote or backslash, can be
written as that character enclosed in single quotes. Any character can be written by enclosing one

of the following escape sequences in single quotes:

escape sequence character

\' *  (single quote)

\* " (double quote)

N\ \ (backslash)

\n NL (newline)

\t HT (horizontal tab)

\p FF (form feed, newpage)
\b BS (backspace)

\r - CR (carriage return)

\v s VT (vertical tab)

\#ss S specified by octal value (exactly three octal digits)

’I"he escape sequences may be written using upper case letters. Examples of character literals are:
T a’ - \" \" \B' 7T
There are two operations, i2c and c2i, for converting between integers and characters: the
smallest character corresponds to zero, and the characters are numbered sequentially. Binary
comparison operations exist for characters based on this numerical ordering: It (<), le (<=), equal (=),

ge (>=), and gt (>).
7.6 String

The type string is used for representing text. A string is an immutable sequence of zero or
more characters. Strings are lexicographically ordered, based on the ordering for characters. A
string is written as a sequence of zero or more character representations, enclosed in double quotes.
Within a string literal, a printing ASCII character other than double quote or backslash is
represented by itself. Any character can be represented by using the escape sequences listed above.
Examples of string literals are:

"Item\tCost” “altmode (\033) = \\038" - "



26 String _ §16

The characters of a string are indexed seqﬁentially starting from one, and there are a number
of operations that deal with these indexes: fetch, substr, rest, indexc, and indexs. The fetch
operation is used to obtain a character by index. Invocations of fetcA can be written using a special
syntax (fully described in Section 105.1): '

stil % get the character at index i of s
Substr returns a string given a string, a starting index, and a length:
stringSsubstr{"abcde”, 2, 3) = "bed”
Rest, given a string and a starting index, returns the rest of the string:
string$rest{“abede”, 3) = “cde”
Indexc computes the least index at which a character occurs in a string, and indexs does the same
for a string; the result is zero if the character or ﬂﬁng does not occur:

stringSindexc('d’, "abede™ = 4
stringSindexs("cd”, "abede™ = 8
string$indexs(“abcde”, "cd” = 0

Two strings can be concatenated together with concat M, and a single character can be
appended to the end of a string with append. Note that stringSconcat(“abc”, "de™ and
stringSappend(“abcd”, ‘e produce the same string as writing "abcde”. C2s converts a character to
a single-character string. The size of a string can be determined with size. Chars iterates over the _
characters of a string, from the first to the last character. There are also the usual lexicographic
corparison operations: it (<), le (<=), equal (=), ge (>=), and gt (>).

7.7 Any

A type specification is used to restrict the class of objects that a variable can denote, a
procedure or iterator can take as arguments, a procedure can return, etc. There are times when no
restrictions are desired, when any object is acceptable. At such times, the type specification any is
used. For example, one might wish to implement a table mapping strings to arbitrary ob jects, with
the intention that different strings could map to objects of different types. The lookup operation,
used to get the object corresponding to a string, would have its resuk declared to be of typ_é any.

The type any is the unior of all possible types, and it is the only true union type in CLU; all
other types are base types. Every object is of type any, as well as being of some base type. The
type any has no operations; however, the base type of an object can be tested at run-time (see
Section 10.1D). -



§7.8 Array Types 27

7.8 Array Types

Arrays are one-dimensional, and are mutable. Arrays are unconventional because the number
of elements in an array can vary dynamically. Furthermore, there is no notion of an “uninitialized”
element.

The state of an array consists of an integer called the low bound, and a sequence of ob jects
called the elements. The elements of an array are indexed sequentially, starting from the low
bound. All of the elements must be of the same type; this type is specified in the array type
specification, which has the form

array [ type_spec ]
Examples of array type specifications are

arraylint]
arrayl arrayl string)]

There are a number of ways to create a new array, of which only two are mentioned here.
The create operation takes an argument specifying the low bound, and creates a new array with
that low bound and no elements. An array constructor can be used to create an array with an
arbitrary number of initial elements. For example,

arraylint] $[5:1,2,3, 4]
creates an integer array with low bound 5, and four elements, while

arraylbool] $ [true, faise)
creates a boolean array with low bound 1 (the default), and two elements. Array constructors are
discussed fully in Section 10.6.1.

An array type specification states nothing about the bounds of an array. This is because
arrays can grow and shrink dynamically. Addk adds an additional element to the end of the array,
with index one greater than the previous last element. Add! adds an additional element to the
beginning of the array, and decrements the low bound by one, so that the new first element has an
index one less than the previous first element. Remh removes the last element; rem! removes the
first element and increments the low bound. Note that all of these operations preserve the indexes
of the other elements. Also note that these operations do not create holes; they merely add to or
remove from the ends of the array.

As an example, if a remh were performed on the integer array

arraylintl $[5: 1, 2, 3, 4]

the element 4 would disappear, and the new last element would be 3, still with index 7. If a O were



28 Array Types §7.8

added using add!, it would become the new first element, with index 4.

The fetch operation extracts an element by index, and the store operation replaces an element
by index; an index is illegal if no element with that index exists. Invocations of these operations
can be written using special forms (covered fully in Sections 10.5.1 and 11.2.1):

alil X fetch the element at index i of a
ali) := 3 % store 3 at index i of a (not really assignment)

The top and bottom operations return the element with the highest and lowest index,
respectively. The Aigh and low operations return the highest and lowest indexes, respectively. The
elements iterator yields the elements from bottom to top, and the indexes iterator yields the indexes
from low to high. There is also a size operation that returns the number of elements.

Every newly created array has an identity that is distinct from all other arrays; two arrays can
have the same elements without being the same array object. The identity of arrays can be
distinguished with the equal (=) operation. The similar] operation tests if two arrays have the
same state, using the equal operation of the element type. Similar tests if two arrays have similar
states, using the similar operation of the element type. For example, writing

aisl3: 1, 2, 3]
(where "ai" is equated to arraylint)) in different places produces arrays that are similarl and
similar (but not equal), while the following produces arrays that are similar, but not similarl (or -
equal:

arrayfail $ [1: ai$create(]))

7.9 Sequence Types

Sequences are immutable arrays. Although an individual sequence can have any length, that
length cannot vary dynamically, and the elements of the sequence cannot be replaced. The elements
of a sequence are indexed sequentially, starting from one. A sequence type specification has the
form

sequence [ type__spéc ]

The new operation returns an empty sequence. A sequence constructor, which is syntactically

similar to the array constructor, can be used to create a sequence with an arbitrary number of

elements. Sequence constructors are discussed fully in Section 10.6.2.



§1.9 Sequence Types 29

Although a sequence, once created, cannot be changed, new sequences can be constructed from
existing ones. Addh creates a new sequence with an additional element at the end (with index one
greater than the last element of the old sequence). Addl creates a new sequence with an additional
element at the beginning, with index one, so that every other element has an index one greater
than its index in the old sequence. Remh creates a new sequence with the last element removed;
reml creates a new sequence with the first element removed. Note that, for each of these operations,
element ob jects are shared between the old and new sequences.

The fetch operation extracts an element by index, and the replace operation creates a new
sequence with a new element at a given index; an index is illegal if no element with that index
exists. Invocations of the fetch operation can be written using a special form (covered fully in
Section 10.5.1): |

qlil % fetch the element at index i of q

The top and bottom operations return the element with the highest and lowest index,
respectively. The size operation returns the number of elements. The elements iterator yields the
elements from bottom to top, and the indexes iterator yields the indexes in increasing order, starting
from one. Two sequences can be concatenated together with concat (Il to produce a new sequence,
and subseg extracts a subsequence of a sequence.

Two sequences with the same elements are the same sequence. The equal (=) operation tests if
two sequences have the same elements, using the equal operation of the element type. Similar tests
if two sequences have similar elements, using the similar operation of the element type. For
example, writing

sequencel arraylintll${arraylintis(1}]

in different places produces sequences that are similar but not equal.
7.10 Record Types

A record is a mutable collection of one or more named objects. The names are called selectors,
and the ob jects are called components. Different components may have different types. A record
type specification has the form

record [ field_spec, ... ]
where
field_spec := name, ... : type_spec

Selectors must be unique within a specification, but the ordering and grouping of selectors is



30 Record Types §7.10

unimportant. For example, all the of the following name the same type:

recordlast, first, middle: string, age: int]
record(first, middle, last: string, age: int]
recordllast: string, age: int, first, middle: string)

A record is created using a record constructor. For example:
info $ {last: "Jones”, first: "John", age: 32, middle: "].”}
(assuming that "info™ has been equated to one of the above type specifications; see Section 8.3). An
expression must be given for each selector, but the order and grouping of selectors need not
resemble the corresponding type specification. Record constructors are discussed fully in
Section 10.6.3.

For each selector “sel”, there is an operation get_sel to extract the named component, and an
operation sef_sel to replace the named component with some other object. For example, there are
get_middle and set_middle operations for the type specified above. Invocations of these operation$
can be written in a special form (discussed fully in Sections 10.5.2 and 11.2.2):

r.middle % get the ‘'middle’ component of r
rage := 33 % set the 'age’ component of r to 33 (not really assignment)

As with arrays, every newly created record has an identity that is distinct from all other
records; two records can have the same components without being the same record object. The
identity of records can be distinguished with the equal (=) operation. The similarl operation tests '
if two records have the same components, using the equal operations of the component types.
Similar tests if two records have similar components, using the similar operations of the component

types.

7.11 Structure Types

A structure is an immutable record. A structure type specification has the form
struct ( field_spec, ... ]
where (as for records)
field_spec := name, ... : type_spec
A structure is created using a structure constructor, which syntactically is identical to a record
constructor. Structure constructors are discussed fully in Section 10.6.4.
For each selector "sel”, there is an operation get_sel to extract the named component, and an
operation replace_sel to create a new structure with the named component replaced with some other

ob ject. Invocations of the get operations can be written in a special form (discussed fully in



{711 Structure Types 31

Section 10.5.2):
st.seldom % get the 'seldom’ component of st
As with sequences, two structures with the same components are in fact the same object. The
equal (=) operation tests if two structures. have the same components, using the equal operations of
the component types. Similar tests if two structures have similar components, using the similar

operations of the component types.
7.12 Oneof Types

A oneof type is a tagged discriminated union. A oneof is an immutable labeled ob ject, to be
thought of as “one of" a set of alternatives. The label is called the tag, and the ob ject is called the
value. A oneof type specification has the form

oneof { field_spec, ... ]
where (as for records)
field_spec := name, ... : type_spec
Tags must be unique within a specification, but the ordering and grouping of tags is unimportant.

As an example of a oneof type, the representation type for an immutable linked list of integers,

int_list, might be written '

oneof{empty: null,
pair: structicar: int, cdr: int_list]]

As another example, the contents of a "number container” might be specified by

oneoflempty: nuil,
integer: int,
real_num: real,

complex_num: complex)

For each tag "t" of a oneof type, there is a make_t operation which takes an ob ject of the type

associated with the tag, and returns the ob ject (as a oneof) labeled with tag "t". For exarﬁple,
number$make_real_num(1.37)

creates a oneof object with tag "real_num" (assuming "number” has been equated to the "number
container” type specif ication above; see Section 8.3). '

The equal (=) operation tests if two oneofs have the same tag, and if so, tests if the two value
components are the same, using the equal operation of the value type. Similar tests if two oneofs
have the same tag, and if so, tests if the two value components are similar, using the similar

operation of the value type.



32 Oneof Types §7.12

To determine the tag and value of a oneof ob ject, one normally uses the tagcase statement,

discussed in Section 11.6.
7.13 Variant Types

A variant is a mutable oneof. A variant type specification has the form

variant [ field_spec, ... ]
where (as for records)

field_spec := name, ... : type_spec
The state of a variant is a pair consisting of a label called the tag and an object called the value.
For each tag "t” of a variant type, there is a make_t operation which takes an ob ject of the type
associated with the tag, and returns the ob ject (as a variant) labeled with tag "t". In addition, there
is a change_t operation, which takes an existing variant and an ob ject of the type associated with
"t", and changes the state of the variant to be the pair consisting of the tag "t” and the given
ob ject.

Every newly created variant has an identity that is distinct from all other variants; two
variants can have the same state without being the same variant object. The identity of variants
can be distinguished using the equal (<) operation. The similar] operation tests if two variants
have the same tag, and if so, tests if the two value components are equal, using the equal operation
of the value type. Similar tests if two variants have the same tag, and if so, tests if the two value
components are similar, using the similar operation of the value type.

To determine the tag and value of a variant ob ject, one normally uses the tagcase statement,

as discussed in Section 11.6.
7.14 Procedure and Iterator Types

Procedures and iterators are objects created by the CLU system (see Section 3.1). The type
specification for a procedure or iterator contains most of the information stated in a procedure or
iterator heading; a procedure type specification has the form

proctype ( [ type_spec, ... ]) [ returns ] [ signals]
and an iterator type specification has the form
itertype ( [ type_spec , ... ] ) [ yields ] [ signals]

where



§7.14 Procedure and Iterator Types 33

returns = returns ( type_spec, ... )
yields = yields ( type_spec, ... )
signals = signals ( exception , ...)

exception := name [ ( type_spec o} ]

The first list of type specifications describes the number, types, and order of arguments. The
returns or ylelds clause gives the number, types, and order of the objects to be returned or
yielded. The signals clause lists the exceptions raised by the procedure or iterator; for each
exception name, the number, types, and order of the ob jects to be returned is also given. All names
used in a signals clause must be unique, and cannot be failure, which has a standard meaning in
CLU (see Section 12.1). The ordering of exceptions is not important. For example, both of the
following type specifications name the procedure type for string$substr:

proctype (string. int, int) returns (string) signals (bounds, negative_size)
proctype (string, int, int) returns (string) signals (negative_size, bounds)

String$chars has the following iterator type:
itertype (string) yields (char)
Procedure and iterator types have an equal (=) operation. Invocation is not an operation, but a

primitive action of CLU semantics (see Section 9.3).
7.16 Other Type Specifications

The type specification for a user-defined type has the form
idn [ [ constant , ... ] ]
where each constant must be computable at compile-time (see Section 8.3). The identifier must be
bound to a data abstraction (see Section 4). If the referenced abstraction is parameterized,
constants of the appropriate types and number must be supplied. The order of parameters always
matters in user-defined types.

There are three special type specifications that are used when implementing new abstractions:
rep, cvt, and type. These forms are discussed in Sections 133 and 134. Within an
implementation of an abstraction, formal parameters declared with type can be used as type
specifications. |

In addition, identifiers which have been equated to type specifications can also be used as type

specifications. Equates are discussed in Section 8.3.



34 Scopes, Declarations, and Equates 8

8. Scopes, Declarations, and Equates

We now describe how to introduce and use constants and variables, and the scope of constant
and variable names. Scoping units are described first, followed by a discussion of variables, and

finally constants.
8.1 Scoping Units

Scoping units follow the nesting structure of statements. Generally, a scoping unit is a body
and an associated "heading”. The scoping units are (refer also to Appendix I:
1. From the start of a module to its end.
2. From a cluster, proc, or iter to the matching end.
3. From a for, do, or begin to the matching end.
4

. From a then or else in an If statement to the end of the corresponding
body. '

5. From a tag or others in a tagcase statement to the end of the
corresponding body.

6. From a when or others in an except statement to the end of the
corresponding body. '

7. From the start of a type_set to its end.
The last case above, the scope in a type_set, is a special case that will be discussed in Section 13.4.
Whatever we say about scopes in the remainder of this section refers only to cases 1 through 6.

The structure of scoping units is such that if one scoping unit overlaps another scoping unit
(textually), then one is fully contained in the other. The contained scope is called a nested scope,
and the containing scope is called a surrounding scope.

New constant and variable names may be introduced in a scoping unit. Names for constants
are introduced by equates, which are syntactically restricted to appear grouped together at or near
the beginning of scoping units. For example, equates may appear at the beginning of a body, but
not after any statements in the body.

In contrast, declarations, which introduce new variables, are allowed wherever statements are
allowed, and hence may appear throughout a scoping unit. Equates and declarations are discussed

in more detail in the following two sections.



§8.1 Scoping _Units 35

In the syntax there are two distinct nonterminals for identifiers: idn and name. Any identifier
introduced by an equate or declaration is an idn, as is the name of the module being defined, and
any operations it has. An idn names a specific type or object. The other kind of identifier is a
name. A name is used to refer to a subpiece of something, and is always used in context; for
example, names are used as record selectors. The scope rules apply only to idns.

The scope rules are very simple:

1. An idn may not be redefined in its scope.

2. Any idn that is used as an external reference in a module may not be
used for any other purpose in that module.

Unlike other "block-structured” languages, CLU prohibits the redefinition of an identifier in a
nested scope. An identifier used as an external reference names a module or constant; the reference

is resolved using the compilation environment (see Section 4).
8.2 Variables

Objects are the fundamental “things™ in the CLU universe; variables are a mechanism for
denoting (i.e, naming) objects. This underlying model is discussed in detail in Section 3. A
variable has two properties: its type, and the ob ject that it currently denotes (if any). A variable is
said to be uninitialized if it does not denote any ob ject. |

There are only three things that can be done with variables:

1. New variables can be introduced. Declarations perform this function,
and are described below.

2. An object may be assigned to a variable. After an assignment the
variable denotes the object assigned. Assignment is discussed in
Section 9.2.

3. A variable may be used as an expression. The value of such an
expression (ie., the result of evaluating i) is the object that the
variable denotes at the time the expression is evaluated. Expressions
and their evaluation are described in Section 10.

8.2.1 Declarations

Declarations introduce new variables. The scope of a variable is from its declaration to the
end of the smallest scoping unit containing its declaration; hence, variables must be declared before

use.



36 ‘ Declarations §8.2.1

There are two sorts of declarations: those with initialization, and those without. Simple
declarations (those without initialization) take the form
decl == idn, ... : type_spec )
A simple declaration introduces a list of variables, all having the type given by the type_spec. This
type determines the types of ob jects that can be assigned to the variable. Some examples of simple

declarations are:

i: Int % declare i to be an integer variable

i, j. k: char X declare i, j, and k to be character variables

X, y: complex % declare x and y to be of type complex

z: any % declare z to be of type any; thus, z may denote any ob ject

The variables introduced in a simple declaration initially denote no objects, i, they are
uninitialized. Attempts to use uninitialized variables (if not detected at compile-time) cause the
run-time exception |

failure("uninitialized variable”

(Exceptions are discussed in Section 12)
8.2.2 Declarations with Initialization

A declaration with initialization combines declarations and assignments into a single statement. .
A declaration with initialization is entirely equivalent to one or more simple declarations followed
by an assignment statement. The two forms of declaration with initialization are:
idn : type_spec := expression
and
decly, ..., decl, := invocation
These are equivalent to (respectively):

idn : type_spec
idn := expression

and
decl ... decl,, % declaring idn, ... idng,
idnl, idnm := jnvocation
In the second form, the order of the idns in the assignment statement is the same as in the original

declaration with initialization. (The invocation must return m ob jects; see Section 9.2.2)



§18.2.2 Declarations with Initialization 37

Some examples of declarations with initialization are:
astr: arraylstring] := arrayl stringl$create(l)
% declare astr to be an array variable and initialize it to an empty array

first, last: string, balance: int := acct$querylacct_no)
X declare first and last to be string variables, balance an integer variable,
% and initialize them to the results of a bank account query

The above two statements are equivalent to the following sequences of statements:
astr: arraylstring)

astr := arrayl stringlg$create(l)

first, fast: string
balance: int
first, last, balance := acct$query(acct_no)

8.3 Equates and Constants

An equate allows a single identifier to be used as an abbreviation for a constant that may have
a lengthy textual representation. We use the term constant in a very narrow sense here: constants,
in addition to being immutable, must be computable at compile-time. Constants are either types
(built-in or user-defined), or objects that are the results of evaluating constant expressions.
(Constant expressions are defined below.)

The syntax of equates is:

equate := idn = constant
| idn = type_set
constant := type_spec
| expression
This section describes only the first form of equate; discussion of type_sets is deferred to
Section 13.4.

An equated identifier may be used as an expression. The value of such an expression is the
constant to which the identifier is equated. An equated identifier may not be used as the target of
an assignment.

The scope of an equated identifier is the smallest scoping unit surrounding the equate defining
it; here we mean the entire scoping unit, not just the portion after the equate. All the equates in a
scoping unit must appear near the beginning of the scoping unit. The exact placement of equates

depends on the containing syntactic construct; usually equates appear at the beginnings of bodies.



38 Equates and Constants §8.3

Equates may be in any order within the group. Thus, forward references among equates in
the same scoping unit are allowed, but cyclic dependencies are illegal. For example,

X=y

y=1
1=3

is a legal sequence of equates, but

X =y
y=1
=X

is not. Since equates introduce idns, the scoping restrictions on idns apply (i.e., the idns may not be

defined more than once).
8.3.1 Abbreviations for Types

Identifiers may be equated to type specifications, thus giving abbreviations for type names.

For example:

at = arraylint]

ot = oneofl(there: rt, none: nulll

rt = recordla: foo, b: bar]

pt = proctype (int, int) returns (int) signals (overfiow)
it = itertype (int, int, Int ylelds (int) signals (bounds)
istack = stack{int]

mt = mark_table

Notice that since equates may not have cyclic dependencies, directly recursive type specifications
cannot be written. However, this does not prevent the definition of recursive types: clusters allow

them to be written (see Section 13).
8.3.2 Constant Expressions

Here we define the subset of objects that equated identifiers may denote, by stating which
expressions are constant expressions. (Expressions are discussed in detail in Section 10) A constant
- expression is an expression that can be evaluated at compile-time to produce an immutable ob ject
of a built-in type. Specifically this includes:

1. Literals.

2. Identifiers equated to constants.



§8.3.2 Constant Expressions 39

3. Procedure and iterator names (see Section 10.3), including forcel?] for
any type t.

4. Invocations of procedure operations of the built-in constant types,
provided that all operands and all results are constant expressions.
However, we explicitly forbid the use of formal parameters as operands
to invocations in constant expressions, since the values of formal
parameters are not known at compile-time.

5. Formal parameters (see Section 13.4).
For completeness, the list of the built-in constant types is: null, int, real, bool, char, string,
sequence types, oneof types, structure types, procedure types, and iterator types.
Some examples of equates involving expressions are:

hash_modulus = 29

pi = 3.14159265

win = true

control_c = "\003'
prompt_string = “Input:

nl = string$c2s("\n"

prompt = nl Il prompt_string
prompt_len = string$size{prompt)
quarter = pi / 2.0

ftb = intsfrom_to_by

ot = oneof{cell: cell, none: nulll
cell = record(first, second: int]
nilptr = ot$make_none(nil

- Note that the following equate is illegal because it uses a record constructor, which is not a constant
expression:
cell_1_2 = ot$make_cell(cell${first: 1, second: 2})
Any invocation in a constant expression must terminate normally; a program is illegal if
evaluation of any constant expression would signal an exception. (Exceptions are discussed in

Section 12)) Illegal programs will not be executed.

9. Assignment and Invocation

Two fundamental actions of CLU are assignment of computed objects to variables, and
invocation of procedures (and iterators) to compute ob jects. Other actions are composed from these
two by using various control flow mechanisms. Since the correctness of assignments and

invocations depends on a type-checking rule, we describe that rule first, then assignment, and



40 Assignment and Invocation 9

finally invocation.
8.1 Type Inclusion

CLU is designed to allow compile-time type-checking. The type of each variable is known by
the compiler. Furthermore, the type of objects that could result from the evaluation of any
expression (invocation) is known at compile-time. Hence, every assignment can be checked at
compile-time to make sure that the variable is only assigned ob jects of its declared type. The rule
is that an assignment v := E is legal only if the set of ob jects defined by the type of E (loosely, the
set of all ob jects that could possibly result from evaluating the expression) is included in the set of
all ob jects that could be denoted by v.

Instead of speaking of the set of objects defined by a type, we generally speak of the type and
say that the type of the expression must be included in the type of the variable. If it were not for
the type any, the inclusion rule would be an equality rule. This leads to a simple interpretation of
the type inclusion rule:

The type of a variable being assigned an expression must be either the type of the
expression, or any. :

9.2 Assignment

Assignment is the means of causing a variable to denote an object. Some assignments are
implicit, i.e, performed as part of the execution of various mechanisms of the language (most
notably procedure invocation, iterator invocation, exception handling, and the tagcase statement).
All assignments, whether implicit or explicit, are sub ject to the type inclusion rule. The remainder
of this section discusses explicit assignments.

The assignment symbol ":=" is used in two other syntactic forms that are not true assignments,
but rather abbreviations for certain invocations. These forms are used for updating collections

such as records and arrays (see Section 11.2).
9.2.1 Simple Assignment

The simplest form of assignment is:
idn := expression

In this case the expression is evaluated, and the resulting ob ject is assigned to the variable. The



§9.21 Simple Assignment , 11

expression must return a single object (whose type must be included in that of the variable).

Examples of simple assignments are:

X:=1 % X's type must include ing, i.e., it must be Int or any
y := string$substr(s, 5, n) % y's type must include string

a := arraylintl$new() % a's type must include arraylint]

p := arraylinti$create(3) % p's type must include arraylint)

1 := (foo = bar) % 2's type must include bool

It is also possible to declare a variable and assign to it in a single statement; this is called a

declaration with initialization, and was discussed in Section 8.2.2.
9.2.2 Multiple Assignment

There are two forms of assignment that assign to mdre than one variable at once:
Cidn, .. = expression , ... |
and '
idn, ... := invocation

The first form of multiple assignment is a generalization of the simple assignment. The first
variable is assigned the first expression, the second variable the second expression, and so on. The
expressions are all evaluated (from left to right) before any assignments are performed. The
number of variables in the list must equal the number of expressions, no variable may occur more
than once, and the type of each variable must include the type of the corresponding expression.

This form of multiple assignment allows easy permutation of the objects denoted by several

variables:
X, V:=Y, X
i, jok:=j ki

and similar simultaneous assignments of variables that would otherwise require temporary

variables:

a,b:=(a+b)@a-b
quotient, remainder :=(u / v), (u // v)

There is no form of this statement with declarations.

The second form of multiple assignment allows one to retain the objects resulting from an
invocation returning two or more objects. The first variable is assigned the first ob ject, the second
variable the second object, and so on. The order of the objects is the same as in the return
statement of the invoked routine. The number of variables must equal the number of ob jects

returned, no variable may occur more than once, and the type of each variable must include the



42 Multiple Assignment §9.2.2

corresponding return type of the invoked procedure. Note that the right-hand side is syntactically
restricted to simple invocations (see Section 10.4); sugared invocations (see Sections 10.5, 10.7 are not
allowed.

Two examples of this farm of assignment are:

first, last, balance := acct$query(acct_no)
X, ¥, 2 := vectorScomponents(v)

9.8 Invoocation

Invocation is the other fundamental action of CLU. In this section we discuss procedure
invocation; iterator invocation is discussed in Section 11.52. However, up to and including passing
of arguments, the two are the same.

 Invocations take the form:
primary ( [ expression , ... ])
A primary is a slightly restricted form of expression, which includes variables and routine names,
among other things. (See the next section.)

The sequence of activities in performing an invocation are as follows:

L. The primary is evaluated. It must evaluate to a procedure or iterator.
2. The expressions are evaluated, from left to right.

3. New variables are introduced corresponding to the formal arguments
of the routine being invoked (i.e, a new environment is created for the
invoked routine to execute in).

4. The objects resulting from evaluating the expressions (the actual
arguments) are assigned to the corresponding new variables (the formal
arguments). The first formal is assigned the first actual, the second

- formal the second actual, and 50 on. The type of each expression must
be included in the type of the corresponding formal argument.

5. Control is transferred to the routine at the start of its body.
An invocation is considered legal in exactly those situations where all the (implicit) assignments
involved in its execution are legal. ’

It is permissible for a routine to assign an object to a formal argument variable; the effect is
Just as if that ob ject were assigned to any other variable. From the point of view of the invoked
routine, the only difference between its formal argument variables and its other local variables is
that the formals are initialized by its caller.



§9.3 Invocation 43

Procedures can terminate in two ways: they can terminate normally, returning zero or more
ob jects, or they can terminate exceptionally, signalling an exceptional condition. When a procedure
terminates normally, the result ob jects become available to the caller, and will (usually) be assigned
to variables or passed as arguments to other routines. When a procedure terminates exceptionally,
the flow of control will not go to the point of return of the invocation, but rather will go elsewhere
as described in Section 12.

Some examples of invocations are:

p0 % invoking a procedure taking no arguments
arraylintl$create(-D % invoking an operation of a type
routine_tablelindex1(input) % invoking a procedure fetched from an array

10. Expressions

An expression evaluates to an object in the CLU universe. This object is said to be the result
or value of the expression. Expressions are used to name the object to which they evaluate. The
simplest forms of expressions are literals, variables, and routine names. These forms directly name
their result object. More complex expressions are generally built up out of nested procedure
invocations. The result of such an expression is the value returned by the outermost invocation.

Like many other languages, CLU has prefix and infix operators for the common arithmetic
and comparison operations, and uses the familiar syntax for array indexing and record component
selection (e.g., alil and r.5). However, in CLU these notations are considered to be abbreviations
for procedure calls. This allows built-in types and user-defined types to be treated as uniformly as
possible, and also allows the programmer to use familiar notation when appropriate.

In addition to invocation, four other forms are used to build complex expressions out of
simpler ones. These are the conditional operators cand and cor (see Section 10.8), and the type
conversion operations up and down (see Section 10.10).

There is a syntactically restricted form of expression called a primary. A primary is any
expression that does not have a prefix or infix operator, or parentheses, at the top level. In certain
places, the syntax requires a primary rather than a general expression. This has been done to

increase the readability of the resulting programs.



14 Expressions §10

As a general rule, procedures with side effects should not be used in expressions, and programs
should not depend on the order in which expressions are evaluated. However, to avoid surprises,
the subexpressions of any expression are evaluated from left to right.

The various forms of expressions are explained below.

10.1 Literals

Integer, real, character, string, boolean and null literals are expressions. The syntax for literals
is given in Sections 7.1 to 7.6. The type of a literal expression is the type of the ob ject named by

the literal. For example, true is of type bool, "abc” is of type string, etc.
10.2 Variables

Variables are identifiers that name objects of a given type. The type of a variable is the type
given in the declaration of that variable, and determines which objects may be named by the

variable.
10.3 Procedure and Iterator Names

Procedures and iterators may be defined either as separate modules, or within a cluster. Those -
defined as separate modules are named by expressions of the form:
idn [ [ constant, ... ] ]
The optional constants are the parameters of the procedure or iterator abstraction. (Constants were
discussed in Section 8.3 '
When a procedure or iterator is defined as an operation of a type, that type must be part of
the name of the routine. The form for naming an operation of a type is: |
type_spec $ name [ [ constant , ... ] ]
The type of a procedure or iterator name is just the type of the named routine. Some
examples of procedure ana iterator names are: .

primes

sortlint]

intsadd

array{ booll$elements



§10.4 Procedure Invocations 15

10.4 Procedure Invocations

Procedure invocations have the form
primary ( [ expression , ... ] )
The primary is evaluated to obtain a procedure ob ject, and then the expressions are evaluated left-
to-right to obtain the argument objects. The procedure is invoked with these arguments, and the
ob ject returned is the result of the entire expression. For more discussion see Section 9.3.
The following expressions are invocations:

p{x)
intgadd(a, b)
within{3.2)(7.1, .003e7)

Any procedure invocation P(Ej, ... E_) must satisfy two constraints: the type of P must be of
the form |
proctype (T}, .. T,)) returns (R) signals (..)
and the type of each expression E; must be included in the corresponding type T;. The type of the
entire invocation expression is given by R.

Procedures can also be invoked as statements (see Section 11.1).
10.6 Selection Operations

Arrays, sequences, records, and structures are collections of objects. Selection operations
provide access to the individual elements or components of the collection. Simple notations are
provided for invoking the fetck and store operations of array types, the fetch operation of sequence
types, the get and set operations of record types, and the get operations of structure types. In
addition, these “syntactic sugarings” for selection operations may be used for user-defined types

with the appropriate properties.
10.6.1 Element Selection

An element selection expression has the form:
primary [ expression ]
This form is just syntactic sugar for an invocation of a fetch operation, and is completely
equivalent to:

Tsfetch(primary, expression)



16 Element Selection §10.5.1

where T is the type of primary. For example, if a is an array of integers, then
al27
is completely equivalent to the invocation
arraylintlsfetch(a, 27
When primary is an array(S] or sequencelS] for some type S, expression must be an int, and
the result has type S. However, the element selection expression is not restricted to arrays and
sequences. The expression is legal whenever the corresponding invocation is legal. In other words,
T (the type of primary) must provide a procedure operation named fetch, which takes two
arguments whose types include the types of primary and expression, and which returns a single
result.
The use of fetch for user-defined types should be restricted to types with array-like behavior.
Ob jects of such types will contain (along with other information) a collectibn of ob jects, where the
collection can be indexed in some way. For example, it might make sense for an
associative_memory type to provide a fetch operation to access the value associated with a key.
Fetch operations are intended for use in expressions; thus they should never have side-effects.

Array-like types may also provide a store operation (see Section 11.2.1).
10.6.2 Component Selection

The component selection expression has the form:
primary . name
This form is just syntactic sugar for an invocation of a get_name operation, and is completely
equivalent to:
TS$get_namelprimary)
where T is the type of primary. For example, if x has type recordfirst: int, second: reafl, then
x.first
is completely equivalent to
record(first: int, second: reall$get_first(x)

When T is a record or structure type, then T must have a selector called name, and the type of
the result will be the type of the component named by that selector. However, the component
selection expression is not restricted to records and structures. The statement is legal whenever the
corresponding invocation is legal. In other words, T (the type of primary) must provide a

procedure operation named get_name, which takes one argument whose type includes the type of



§10.5.2 Component Selection 17

primary, and which returns a single result.

The use of ger operations for user-defined types should be restricted to types with record-like
behavior. Objects of such types will contain (along with other information) one or more named
objects. For example, it might make sense for a file type to provide a get_author operation, which
returns the name of a file’s creator. Get operations are intended for use in expressions; thus they
should never have side-effects.

Types with named components may also provide sef operations (see Section 11.2.2).
10.6 Constructors

Constructors are expressions that enable users to create and initialize arrays, sequences, records,

and structures. Constructors are not provided for user-defined types.
10.6.1 Array Constructors

An array constructor has the form:
type_spec $ { [ expression: ] [ expression , ... ] )
The type specification must name an array type: arraylT). This is the type of the constructed
array. The expression preceding the ":" must evaluate to an integer, iand becomes the low bound of
the constructed array. If this expression is omitted, the low bound is 1. The expressions following
the ™" are evaluated to obtain the elements of the array. They correspond (left to right) to the
indexes low_bound, low_bound+), low_bound+2, ... For an array of type arraylT}, the type of each
element expression in the constructor must be included in T.
For example, the expression
array{bool] $ [79: true, false)
constructs a new boolean array with two elements: true (at index 79), and false (at index 80). The
expression
arraylail $ (ai$(], ais(]]
(where ai is equated to arraylint]) creates two distinct integer arrays, both empty, and creates a
third array to hold them. The low bound of each array is 1.
An array constructor is computationally equivalent to an array create operation, followed by a
number of array addh operations. However, such a sequence of operations cannot be written as an

expression.



48 Sequence Constructors §10.6.2

10.6.2 Sequence Constructors

A sequence constructor has the form:
type_spec $ [ [ expression , ... ]]

The type specification must name a sequence type: sequencelT]l. This is the type of the
_constructed sequence. The expressions are evaluated to obtain the elements of the sequence. They
correspond (left to right) to the indexes 1,2, 3, ... For a sequence of type sequencelT), the type of
each element expression in the constructor must be included in T.

A sequence constructor is computationally equivalent to a sequence new operation, followed by a
number of sequence addA operations. '

10.6.3 Record Constructors

‘A record constructor has the form:
type_spec $ { field , ... }
where
field ::= name, ... : expression ,
Whenever a field has more than one name, it is equivalent to a sequence of fields, one for each
name. Thus, the following two constructors are equivalent: '

R = recordl a: int, b: int, c: int )
Rs{a, b: 7, ¢c: 9}
R${a: 7,b: 7, ¢c: 9}

In a record constructor, the type specification must name a record type:
record [S;:Ty, .., S,:T,). This will be the type of the constructed record. The component names
in the field list must be exactly the names Sy, .., S, akhough these names may appear in any
order. The expressions are evaluated left to right, and there is one evaluation per component
name even if several component names are grouped with the same expression. The type of the
expression for component S; must be included in T;. The results of these evaluations form the
components of a newly constructed record. This record is the vale of the entire constructor
expression.

As an example, consider the following record constructor:

AS = arrayl string]
RT = recordlistl, list2: AS, item: int)
RTs{item: 2, listl, list2: AS$["Susan”, "George", "Jan"}}



§106.3 Record Constructors 19

This produces a record that contains an integer and two distinct (but similarl) arrays. The arrays
are distinct because the array constructor expression is evaluated twice, once for list! and once for
list2.

A record constructor is computationally equivalent to a record create operation (see

Appendix I}, but that operation is not available to the user.
10.6.4 Structure Constructors

A structure constructor has the form:
type_spec $ { field , ... }
where (as for records)
_ field = name, ... : expression _
Whenever a field has more than one name, it is equivalent to a sequence of fields, one for each
name.

In a structure constructor, the type specification must name a structure type:
struct [S;:T), .., S;:T,,J. This will be the type of the constructed structure. The component
names in the field list must be exactly the names Sl- s Sy although these names may appear in
any order. The expressions are evaluated left to right, and there is one evaluation per component
name even if several component names are grouped with the same expression. The type of the
expression for component S; must be included in T,. The results of these evaluations form the
components of a newly constructed structure. This structure is the value of the entire constructor
expression.

A structure constructor -is computationally equivalent to a structure create operation (see

Appendix II), but that operation is not available to the user.
10.7 Prefix and Infix Operators

CLU allows infix and prefix notation to be used as a shorthand for the following operations.
The table shows the shorthand form and the equivalent expanded form for each operation. For

each operation, the type T is the type of the first operand.



Shorthand form

expry s expro
expry // exprg
expr; / expry
expry s expro
expry il exprg
expry + expr2
expry - exproy
expry < exprg
expry <= expro
expry = expro
expry >= expro
expry > expry
expry ~< expro
expry ~<= expro
expry ~= exprg
expry ~>= expro
€xpry ~> expro
expry & exprg
expry | exprg

- expr

~ expr

Prefix and Infix Operators

Expansion
TSpower(expry, expro)
Tsmod(expry, expro)-
Tsdiv(expry, exprg)
Tsmullexpr), expro)
T$concat(expr), expry)
Tsadd(expry, expro)
Tssublexpr), expro)
Tsitlexpr,, expro)
T$lelexpry, exprg)
Tsequalexpr), exprg)
T$gelexpry, expro)
ngt(exprl. expr'2)

~ (expry < exprg)

~ (expry <= expro}

~ (expry = expro)

~ (expr) >= expro)

~ {expry > expro)
Tsand(expr,, expro)
TSorlexpr), expro)
TSminus(expr)
Tsnotlexpr)

§10.7

Operator notation is used most heavily for the buik-in types, but may be used for

user-defined types as well. When these operations are provided for user-defined types, they
should aiways be side-effect free, and they shoukd mean roughly the same thing as they do for the
buik-in types. For example, the comparison operations should only be used for types that have a
natural partial or total order. Usually, the comparison operations (It le, equal, ge, g1} will be of type

proctype (T, T) returns (boold

the other binary operations (e.g., add, sub) will be of type
proctype (T, T) returns (T) signais (..)

and the unary operations will be of type
proctype (T) returns (T) signals (..)



§10.8 Cand and Cor 51

10.8 Cand and Cor

Two additional binary operators are provided. These are the conditional and operator, cand,
and the conditional or operator, cor.
expression; cand expressiono
is the boolean and of expression; and expressiong. However, if expression) is false, expressiong is
never evaluated.
expression) cor expressiong
is the boolean or of expression| and expressiong, but expressiony is not evaluated unless
expression, is false. For both cand and cor, expression; and expressiong must have type bool.
Conditional expressions can be used to avoid run-time errors. For example, the following
boolean expressions can be used without fear of "bounds” or "zero_divide" errors:

(low_bound <= i} cand (i <= high_bound) cand (Ali] ~= 0}
(n =0 cor (1000//n = 0)

Because of the conditional expression evaluation involved, uses of cand and cor are not

equivalent to any procedure invocation.
10.9 Precedence

When an expression is not fully parenthesized, the proper nesting of subexpressions might be
ambiguous. The following precedence rules are used to resolve such ambiguity. The precedence
of each infix operator is given in the table below. Higher precedence operations are performed
first. Prefix operators always have precedence over infix operators.

The precedence for infix operators is as follows:

Precedence  Operators

5 £t

4 * / //

3 « - |

2 < <= - >= >
~L = ~m ~= ~>

1 & cand



52 Precedence : §10.9

The order of evaluation for operators of the same precedence is left to right, except for ss,
which is right to left.

The following examples illustrate the precedence rules.

Expression ' Equivalent Form
a+b//c : a+tb//0a
a+b-c ' @+b)-c
a+bsrcsesd a+{bss(cssd)
a=blc=d (@=b)l(c=d
-asb (-a)s+ b

10.10 Up and Down

There are no implicit type conversions in CLU. Two forms of expression exist for explicit
conversions. These are:

up ( expression )
down ( expression )

Up and down may be used only within the body of a cluster operation. Up changes the type
of the expression from the representation type of the cluster to the abstract type. Down converts
the type of the expression from the abstract type to the representation type. These conversions will

. be explained further in Section 133,
10.11 Force

CLU has a single built-in procedure generator called force. Force takes one type parameter,
and is written
force [ type_spec ]
The procedure forcelT] has type
proctype (any) returns (T) signals (wrong_type)
If forcelT] is applied to an object that is included in type T, then it returns that object. If
forcelT] is applied to an object that is not in type T, then it signals "wrong_type” (see Section 12).
Force is a necessary companion to the type any. The type any allows programs to pass
around ob jects of arbitrary type. However, to do anything substantive with an ob ject, one must

use the primitive operations of that object's type. This raises a conflict with compile-time



§10.11 Force ' 53

type-checking, since an operation can be applied only when the arguments are known to be of the
correct types. This conflict is resolved by using force. ForcelT] allows a program to check, at
run-time, that a particular ob ject is actually of type T. If this check succeeds, then the ob ject can
be used in all the ways appropriate for ob jects of type T.

For example, the procedure force{T] allows us to legally write the following code:

X: any:=3
y: int := forcelint)(x)

while the following is illegal:

X: any :=3
y:int:=x

because the type of y (ind does not include the type of the expression x (any).

11. Statements

In this section, we describe most of the statements of CLU. We omit discussion of the signal,
exit, and except statements, which are used for signalling and handling exceptions, as described
in Section 12. _

CLU is a statement-oriented language, i.e., statements are executed for their side-effects and
do not return any values. Most statements are control statements that permit the programmer to
define how control flows through the program. The real work is done by the simple statements:
assighment and invocation. Assignment has already been discussed in Section 9; the invocation
statement is discussed in Section 111 below. Two special statements that look like assignments but
are really invocations are discussed in Section 11.2.

The syntax of CLU is defined to permit a control statement to control a group of equates,
declarations, and statements rather than just a single statement. Such a group is called a body, and
has the form

body := {equate}
{.statement } % statements include declarations
Scope rules for bodies were discussed in Section 8.1. No special terminator is needed to signify the
end of a body; reserved words used in the various compound statements serve to delimit the bodies.
Occasionally it is necessary to explicitly indicate that a group of statements should be treated like a

single statement; this is done by the block statement, discussed in Section 11.3.



54 Statements 1l

The conditional statement is discussed in Section 11.4. Loop statements are discussed in
Section 11.5, as are some special statements that control termination of a single iteration or a single
loop. The tagcase statement is discussed in Section 11.6. Finally, the return statement is
discussed in Section 11.7, and the yleld statement in Section 11.8.

11.1 Procedure Invocation

An invocation statement invokes a procedure. Its form is the same as an invocation
expression: .
primary ( [ expression , ... ])
The primary must evaluate to a procedure ob ject, and the type of each expression must be included
in the type of the corresponding formal argument for that procedure. The procedure may or may
not return results; if it does return results, they are discarded.
For example, the statement
array{intl$remh(a)
will remove the top element of a (assuming a is an array(intl). Remh also returns the top element,

but it is discarded in this case.

11.2 Update Statements

Two special statements are provided for updating components of records and arrays. In
addition they may be used with user-defined types with the appropriate properties. These

statements resemble assignments syntactically, but are really invocations.
11.2.1 Element Update

The element update statement has the form
primary [ expression; ] := expressiong
This form is merely syntactic sugar for an invocation of a store operation, and is completely
equivalent to the invocation statement
Tsstore(primary, expression), expressiono)
where T is the type of primary. For example, if a is an array of integers,
al27 =3

is completely equivalent to the invocation statement



§11.2.1 Element Update 55

arraylinti$store(a, 27, 3)

The element update statement is not restricted to arrays. The statement is legal if the
corresponding: invocation statement is legal. In other words, T (the type of primary) must provide
a procedure operation named store, which-takes three arguments whose types include those of
primary, expression 5, and expression ,, respectively. In case primary is an array(S] for some type S,
expression; must be an integer, and expression, must be included in S.

We recommend that the use of store for user-defined types be restricted to types with
array-like behavior, i.e., types whose ob jects contain mutable collections of indexable elements. For
example, it might make sense for an associative_memory type to provide a store operation for
changing the value associated with a key. Such types may also provide a fetchk operation (see

Section 10.5.1).
11.2.2 Component Update

The component update statement has the form
primary . name := expression
This form is merely syntactic sugar for an invocation of a sef_name operation, and is completely
equivalent to the invocation statement .
T$set_name(primary, expression)
where T is the type of primary. For example, if x has type record(first: int, second: reatl], then
x.first := 6
is completely equivalent to
record(first: int, second: reall$set_first(x, 6)

The component update statement is not restricted to records. The statement is legal if the
corresponding invocation statement is legal. In other words, T (the type of primary) must provide
a procedure operation called set_name, which takes two arguments whose types include the types of
primary and expression, respectively. When T is a record type, then T must have a selector called
name, and the type of expression must be included in the type of the component named by that
selector.

We recommend that set operations be provided for user-defined types only if record-like
behavior is desired, i.e, it is meaningful to permit some parts of the abstract ob ject to be modified
by selector name. In general, set operations should not perform any substantial computation, except

possibly checking that the arguments satisfy certain constraints. For example, in a bank account



56 Component Update §11.2.2

type. there might be a set_min_balance operation to set what the minimum balance in the account
must be. However, deposit and withdraw operations make more sense than a set_balance operation,
even though the set_balance operation could compute the amount deposited or withdrawn and
enforce semantic constraints.

In our experience, t);pes with set operations occur less frequently than types with get operations
(see Section 10.5.2).

11.3 Block Statement

The block statement permits a sequence of statements to be grouped together into a single
statement. Its form is
begin body end
Since the syntax already permits bodies inside control statements, the main use of the block

statement is to group statements together for use with the except statement; see Section 12.
11.4 Conditional Statement

The form of the conditional statement is
it expression then body
{ elseif expression then body }

[ e‘:s.e body ]

The expressions must be of type bool. They are evaluated successively until one is found to be
true. The body corresponding to the first true expression is executed, and the execution of the if
statement then terminates. If none of the expressions is true, then the body in the else clause is
executed (if the else clause exists). The elseif form provides a convenient way to write a

multi-way branch.
11.6 Loop Statements

There are two forms of loop statements: the while statement and the for statement. Also
provided are a continue statement, to terminate the current cycle of a loop, and a break statement,

to terminate the innermost loop. These are discussed below.



§11.5.1 While Statement 57

11.6.1 While Statement

The while statement has the form:
while expression do body end
Its effect is to repeatedly execute the body a.s long as the expression remains true. The expression
must be of type bool. If the value of the expression is true, the body is executed, and then the
entire while statement is executed again. When the expression evaluates to false, execution of the

while statement terminates.
11.6.2 For Statement

The only way an iterator (see Section 13.2) can be invoked is by use of a for statement. The
iterator produces a sequence of items (where an item is a group of zero or more ob jects) one item at
a time; the body of the for statement is executed for each item in the sequence.

The for statement has the form:

for [ idn, ... ] in invocation do body end
or

for [ dedl , ... ] in invocation do body end
The invocation must be an iterator invocation. The idn form uses previously declared variables to
serve as the loop variables, while the dec! form introduces new variables, local to the for statement,
for this purpose. In either case, the type of each variable must include the corresponding yield
type of the invoked iterator.

Execution of the for statement proceeds as follows. First the iterator is invoiced. and it either
yields an item or terminates. If the iterator yields an item, its execution is temporarily suspended,
the ob jects in the item are assigned to the loop variables, the body of the for statement is executed,
and then execution of the iterator is resumed (from the point of suspension). Whenever the
iterator terminates, the entire for statement terminates.

An example of a for statement is

a: arraylint]
su;n: int:=0
for x: int in arraylintlelements(a) do

sum := sum + x
end

which will compute the sum of all the integers in an array of integers. This example makes use of



58 For Statement §11.5.2

the elements iterator on arrays, which yields the elements of the array one by one.
11.6.3 Continue Statement

The continue statement has the form
continue
Its effect is to terminate execution of the body of the smallest loop statement in which it appears,
and to start the next cycle of that loop (if any). '

11.5.4 Break Statement

The break statement has the form
break
Its effect is to terminate execution of the smallest loop statement in which it appears. Execution
continues with the statement following that loop.
For example,

sum: int:=0
for x: int in arraylintl$elements(a) do
sum := sum + X
if sum >= 100
then sum := 100 break end
end

computes the minimum of 100 and the sum of the integers in a. Note that execution of the break

statement will terminate both the iterator and the for loop, continuing with the statement following

the for loop.

11.8 Tagcase Statement

The tagcase statement is a special statement provided for decomposing oneof and variant
ob jects. Recall that a oneof or variant type is a discriminated union, and each ob ject contains a tag
and some other ob jéct called the value (see Sections 7.12 and 7.13). The tagcase statement permits
the selection of a body to perform based on the tag of the ob ject.

The form of the tagcase statement is



§11.6 Tagcase Statement 59

tagcase expression
tag_arm { tag_arm }

[ others : body ]
end

where

tag_arm := tag name, ... [ ( idn: type_spec ) ] : body
The expression must evaluate to a oneof or variant object. The tag of this ob ject is then matched
against the names on the tag_arms. When a match is found, if a declaration (idn: type_spec) exists,
the value component of the ob ject is assigned to the local variable idn. The matching body is then
executed; idn is defined only in that body. If no match is found, the body in the others arm is
executed.

In a syntactically correct tagcase statement, the following constraints are satisfied. The type
of the expression must be some oneof or variant type, T. The tags named in the tag_arms must be
a subset of the tags of T, and no tag may occur more than once. If all tags of T are present, there
is no others arm; otherwise an others arm must be present. Finally, on any tag_arm containing a
declaration (idn: type_spec), type_spec must equal the type specified as corresponding in T to the
tag or tags named in the tag_arm.

An example of a tagcase statement is

pair = structicar: int, cdr: int_list}

x: oneoflpair: pair, empty: null]

while true do
tagcase x
tag empty: return(faise)
tag pair (p: pair): if p.car =i
then return(true)
eise x := down(p.cdr)
end
end
end

This statement might be used in a list (of integers) operation that determines whether some given

integer (i) is on the list.



60 Return Statement §11.7

11.7 Return Statement

The form of the return statement is:
return [ ( expression , ... ) ] _
The return statement terminates execution of the containing procedure or iterator. If the return
statement is in a procedure, the type of each expression must be included in the corresponding
return type of the procedure. The expressions (if any) are evaluated from left to right, and the
ob jects obtained become the results of the procedure. If the return statement occurs in an iterator
no results can be returned.
For example, inside a procedure p with type
proctype (...) returns (int, char)
the statement
return(3, 'a")

is legal and returns the two result ob jects 3 and ‘a’.
11.8 Yield Statement

Yield statements may occur only in the body of an iterator. The form of a yield statement is:
yleld [ ( expression , ... ) ] |
It has the effect of suspending operation of the iterator, and returning control to the invoking for
statement. The values obtained by evaluating the expressions (left to right) are passed to the for
statement to be assigned to the corresponding list of identifiers. The type of each expression must

be included in the corresponding yield type of the iterator.

12. Exception Handling and Exits

A routine is designed to perform a certain task. However, in some cases that task may be
impossible to perform. In such a case, instead of returning normally (which would imply successful
performance of the intended task), the routine should notify its caller by signalling an exception,

consisting of a descriptive name and zero or more result ob jects.



2 Exception Handling and Exits 61

For example, the procedure string$fetch takes a string and an integer index and returns the
character of the string with the given index. However, if the integer is not a legal index into the
string, the exception bounds is signalled instead. The type specification of a routine contains a
description of the exceptions it may signal; for example, string$fetch is of type

proctype (string, int) returns (char) signals (bounds)

The exception handling mechanism consists of two parts, the signalling of exceptions and the
handling of exceptions. Signalling is the way_a routine notifies its caller of an exceptional
condition; handling.is the way the caller responds to such notification. A signalled exception
always goes to the immediate taller, and the exception must be handled in that caller. When a
routine signals an exception, the current activation of that routine terminates and the
corresponding invocation (in the caller) is said to raise the exception. When an invocation raises
an exception, control immediately transfers to the closest applicable handler. Handlers are attached
to statements; when execution of the handler completes, control passes to the statement following
the one to which the handler is attached.

The exception failure serves as a general catch-all error indication. When raised, it implies
that some lower-level abstraction has failed in an unexpected (and possibly catastrophic) way.
Failure is accompanied by a string result explaining the reason for-the failure. All routines can
potentially signal failure. Failure is implicitly part of all routine headings and routine types; a

signals clause must not list failure explicitly.
12.1 Signal Statement

An exception is signalled with a signal statement, which has the form:
signal name [ ( expression , ... ) ]
A signal statement may appear anywhere in the body of a routine. The execution of a signal
statement begins with evaluation of the expressions (if any), from left to right, to produce a list of
exception results. The activation of the routine is then terminated. Execution continues in the
caller as described in Section 12.2 below.
The exception name must be either one of the exception names listed in the routine heading,
or failure. If the corresponding exception specification in the heading has the form
name(Ty, ..., T}
then there must be exactly n expressions in the signal statement, and the type of the ith expression

must be included in T,. If the name is failure, then there must be exactly one expression present,



62 Signal Statement §12.1

of type string.
The following useless procedure contains a number of examples of signal statements:

signaller = proc (i: int) returns (int) signals (zero, negative(int)
if i <0 then signal negative(-i)
elseif i > 0 then returnti)
elseif i = 0 then signal zero
else signal failure("unreachable statement executed!”)
end
end signaller

12.2 Except Statement

When a routine activation terminates by signalling an exception, the corresponding invocation
(the text of the call is said to raise that exception. By attaching handlers to statements, the caller
can specify the action to be taken when an exception is raised.

A statement with handlers attached is called an except statement, and has the form:

statement except { when_handier }
[ others_handler ]
end
where

when_handler

When name, ... [ (ded, ... )]:body

| whenname,... ( +) : body

others_handler := others [ (idn : type_spec) ]: body

Let S be the statement to which the handlers are attached, and let X be the entire except
“statement. Each when_handler specifies one or more exception names and a body. The body is
executed if an exception with one of those names is raised by an invocation in S. All of the names
listed in the when_handlers must be distinct. The optional others_handler is used to handle all
exceptions not explicitly named in the when_handlers. The statement S can be any form of
statement, and can even be another except statement.

If, during the execution of §, some invocation in § raises an exception E, control immediately
transfers to the closest applicable handler; i.e., the closest handler for E that is attached to a
statement containing the invocation. When execution of the handler completes, control passes to
the statement following the one to which the handler is attached. Thus if the closest handler is

attached to §, the statement following X is executed next. If execution of § completes without



§12.2 Except Statement 63

raising an exception, the attached handlers are not executed.

An exception raised inside a handler is treated the same as any other exception: control passes
to the closest handler for that exception. Note that an exception raised in some handler attached to
§ cannot be handled by any handler attached to §; either the exception is handled within the
handler, or it is handled by some handler attached to a statement containing X.

We now consider the forms of handlers in more detail. The form

when name,, ... [ (dedl,...) ] : body
is used to handle exceptions with the given names when the exception results are of interest. The
optional declared variables, which are local to the handler, are assigned the exception results before
the body is executed. Every exception potentially handled by this form must have the same
number of resuits as there are declared variables, and the types of the results must equal the types
of the variables. The form

when name, ... ( £ ) : body
handles all exceptions with the given names, regardless of whether or not there are exception
results; any actual results are discarded. Hence exceptions with differing numbers and types of
results can be handled together.

The form

others [ (idn : type_spec ) ] : body
is optional, and must appear last in a handler list. This form handles any exception not handled
by other handlers in the list. If a variable is declared, it must be of type string. The variable,
which is local to the handler, is assigned a lower case string representing the actual exception name;
any results are discarded. '

Note that exception results are ignored when matching exceptions to handlers; only the names
of exceptions are used. Thus the following is illegal, in that int$div signals zero_divide without

any results, but the closest handler has a declared variable:

begin
y: int:=0 :
x:int:=3/y >
except when zero_divide (2: int): return end
end

except when zero_divide: return end
An invocation need not be surrounded by except statements that handle all potential
exceptions. This policy was adopted because in many cases the programmer can prove that a

particular exception will not arise. For example, the invocation intsdiv(x, 7 will never signal



64 Except Statement §12.2

zero_divide. However, this policy does lead to the possibility that some invocation may raise an
exception for which there is no handler. To avoid this situation, every routine body is contained
implicitly in an except statement of the form

begin routine_body end
except when failure (s: string): signal failure(s)
others (s: string): signal failure("'unhandled exception: " i s)
end

Failure exceptions are propagated unchanged; an exception named name becomes

failure("unhandled exception: name")
12.3 Resignal Statement

A resignal statement is a syntactically abbreviated form of exception handling:
statement resignal name, ...
Each name listed must be distinct, and each must be either one of the condition names listed in the
routine heading, or failure. The resignal statement acts like an except statement containing a
handler for each condition named, where each handler simply signals that exception with exactly
the same results. Thus, if the resignal clause names an exception specification in the routine
heading of the form
name(Ty, ..., Tp)
then effectively there is a handler of the form
wh-en name (x;: Ty cees Xy Tn): signal name(xl, xn)
As for an explicit handler of this form, every exception potentially handled by this implicit handler
must have the same number of results as declared in the exception specification, al_rd the types of
the resuits must equal the types listed in the exception specification.
As a simple example, if a routine has a signals t;.lause of the form
signals (underfliow, overflow)
then

X: real := 3.14.159 y-a Y
resignal underflow, overfiow

is equivalent to



1123 Resignal Statement 65

x:real:=314150 s ys y
except when underflow: signal underflow
when overflow: signal overflow
end

12.4 Exit Statement

A local transfer of control can be effected by using an exit statement, which has the form:

exit name [ ( expression , ... ) ]
An exit statement is similar to a signal statement except that where the signal statement signals
an exception to the calling routine, the exit statement raises the exception directly in the current
routine. An exception raised by an exit statement must be handled (explicitly) by a containing
except statement with a handler of the form

when name, ... [ ( decl, ...) ] : body
As usual, the types of the expressions in the exit statement must equal the types of the variables
declared in the handler. The handler must be an explicit one, i.e., exits to the implicit handlers of
resignal statements or to the implicit failure handler enclosing a routine body are illegal.

The exit statement and the signal statement mesh nicely to form a uniform mechanism. The
signal statement can be viewed simply as terminating a routine activation; an exit is then
performed at the point of invocation in the caller. (Because this exit is implicit, it is not sub ject to
the restrictions on exits listed above.)

The following is a simple example of the use of exits in search loops:

elt: T
begin
for elt in array{ T1$elements(x) do
it special(elt) then exit found end
end
elt := make_new_one(..) % Didn't find one, so make one up
end except when found: end
% At this point we have an ob ject and we don'’t care how we got it

12.6 Example

We now present an example demonstrating the use of exception handlers. We will write a
procedure, sum_stream, which reads a sequence of signed decimal integers from a character stream
and returns the sum of those integers. The stream is viewed as containing a sequence of fields

separated by spaces; each field must consist of a non-empty sequence of digits, optionally preceded



66 Example §12.5

by a single minus sign. Sum_stream has the form
sum_stream = proc (s: stream) returns (int) signals (overflow,
unrepresentable_integer{string),
bad_format(string))
;nd sum_stream

Sum_stream signals overflow if the sum of the numbers or an intermediate sum is outside the

implemented range of integers. Unrepresentable_integer is signalled if the stream contains an

individual number that is outside the implemented range of integers. Bad_format is signalled if

the stream contains a field that is not an integer.

We will use the getc operation of the stream data type (see Appendix III), whose type is

proctype (stream) returns (char) signals (end_of _file, not_possible(string)}
This operation returns the next character from the stream, unless the stream is empty, in which
case end_of _file is signalled. Not_possible is signalled if the operation cannot be performed on the
given stream (eg., it is an output stream, or does not allow character operations, etc) We will
assume that we are given a stream for which getc is always possible.

The following procedure is used to convert character strings to integers:

s2i = proc (s: string) returns (int) signals (invalid_chayacteﬂchar),
bad_format,
unrepresentable_integer)
:nd $2i
$2i signals invalid_character if its string argument contains a character other than a digit or a
minus sign. Bad_format is signalled if the string contains a minus signh following a digit, more
than one minus sign, or no digits. Unrepresentable_integer is signalled if the string represents an
integer that is outside the implemented range of integers.

An implementation of sum_stream is presented in Figure5. There are two loops within an
infinite loop: one to skip spaces, and one to accumulate digits for conversion to a number. Naotice
the placement of the inner end_of_file handler. If end_of file is raised in the second inner loop,
then the sum is computed correctly, and the first invocation of stream$getc will again raise
end_of file. This time, however, the infinite loop is terminated and execution transfers to the
other end_of_file handler, which then returns the accumulated sum.

We have placed the remaining exception handlers outside of the infinite loop to avoid
cluttering up the main part of the algorithm. Each of these exception handlers could also have

been placed after the particular statement containing the invocation that signalled the



§12.5 Example 67

Fig. 5. The sum_stream procedure.
sum_stream = proc {s: stream) returns (int) signals (overflow,
unrepresentable_integer(string),
bad_format(string))
sum: int:=0
num: string
while true do
% skip over spaces between values; sum is valid, num is meaningless
c: char := stream$getc(s)
whilec ="'’ do
¢ := stream$getc(s)
end
% read a value; num accumulates new number, sum becomes previous sum
num :=""
whilec ~='"' do
num := string$append(num, c
C := stream$getc(s)
end
except when end_of file: end
% restore sum to validity
sum := sum + s2i(num)
end
except when end_of _file: return(sum)
when unrepresentable_integer: signal unrepresentable_integer(num)
when bad_format, invalid_character (s): signal bad_format(num)
when overflow: signal overfiow
end
end sum_stream

corresponding exception. The (#) form is used in the handler for the bad_format and
invalid_character exceptions since the exception results are not used. Note that the overflow
handler catches exceptions signalled by the int$add procedure, which is invoked using the infix +
notation. Note also that in this example all of the exceptions raised by sum_stream originate as
exceptions signalled by lower-level modules. Sum_stream simply reflects these exceptions upwards
in terms that are meaningful to its callers. Although some of the names may be unchanged, the
meanings of the exceptions (and even the number of results) are different in the two levels.

As mentioned above, we have assumed stream$getc never signals not_possible; if it does, then
sum_stream will terminate, raising the exception

failure("'unhandled exception: not_possible™



68 Modules §13

13. Modules

A CLU program consists of a group of modules. Three kinds of modules are provided, one
for each kind of abstraction we have found to be useful in program construction:

module ::= { equate } procedure

| { equate } iterator

| { equa'te } cluster
Procedures support procedural abstraction, iterators support control abstraction, and clusters
support data abstraction. |

A module defines a new scope. The identifiers introduced in the equates (if any) and the
identifier naming the abstraction (the module name) are local to that scope (and therefore may not
be redefined in an inner scope). Abstractions implemented by other modules are referred to by
using non-local identifiers. The system will provide some means of determining what abstractions
are meant by these non-local identifiers; one such mechanism is defined in Section 4.

The existence of an externally established meaning for an identifier does not preclude a local
definition for that identifier. Within a module, any identifier may be used in a purely local
fashion or in a purely non-local fashion, but no identifier may be used in both ways.

Example programs appear in Appendix 1V.

13.1 Procedures

A procedure performs an action on zero or more arguments, and terminates returning zero or
more results. A procedure supports a procedural abstraction: a mapping from a set of input
objects to a set of result objects, with possible modification of some of the input objects. A
procedure may terminate in one of a number of conditions; one of these is the normal condition,
while others are exceptional conditions. Differing numbers and types of results may be returned in
the different conditions.

The form of a procedure is

idn = proc [ parms ] args [ returns ] [ signals] [ where ]

routine_body
end idn

where



§i3.1 Procedures ' 69

args um ( [ decl, ... ])
returns = returns ( type_spec, ... )
signals = signals ( exception, ... )

exception = name [ ( type_spec , ...) ]
routine_body := {equate}

{ own_var }

{ statement }

In this section we discuss non-parameterized procedures. For a non-parameterized procedure,
the parms and where clauses are missing. Parameterized modules are discussed in Section 13.4.
Own variables are discussed in Section 13.5.

The heading of a procedure describes the way in which the procedure communicates with its
caller. The args clause specifies the number, order, and types of arguments required to invoke the
procedure, while the returns clause specifies the number, order, and types of results returned when
the procedure terminates normally (by executing a return statement or reaching the end of its
body). A missing returns clause indicates that no results are returned.

The signals clause names the exceptional conditions in which the procedure can terminate,
and specifies the number, order, and types of result ob jects returned in each condition. In addition
to the. conditions explicitly named in the signals clause, any procedure can terminate in the failure
condition. The failure condition returns with one result, a string object. All names of exceptions
in the signals clause must be distinct, and none can be failure.

A procedure is an object of some procedure type. For a non-parameterized procedure, this
type is derived from the procedure heading by removing the procedure name, rewriting the formal
argument declarations with one idn per decl, deleting the names of formal arguments, and finally,
replacing proc by proctype.

As was discussed in Section 9.3, the invocation of a procedure causes the introduction of the
formal variables, and the actual arguments are assigned to these variables. Then the procedure
body is executed. Execution terminates when a return statement or a signal statement is executed,
or when the textual end of the body is reached. If a procedure that should return results reaches
the textual end of the body, the procedure terminates in the condition

failure("no return values”

At termination the result ob jects, if any, are passed back to the invoker of the procedure.



70 Procedures §18.1

The idn following the end of the procedure must be the same as the idn naming the
procedure.

Examples of procedures are given in Appendix V.
13.2 Iterators

An iterator computes a sequence of items, one item at a time, where an item is a group of zero
or more objects. In the generation of such a sequence, the computation of each item of the
sequence is usually controlled by information about what previous items have been produced. Such
information and the way it controls the production of items is local to the iterator. The user of the
iterator is not concerned with how the items are produced, but simply uses them (through the for
statement) as they are produced. Thus the iterator abstracts from the details of how the production
of the items is controlled; for this reason, we consider an iterator to implement a control abstraction.
Iterators are particularly useful as operations of data abstractions that are collections of ob jects
(e.g., sets), since they may produce the ob jects in a coliection without revealing how the coflection is
represented.

An iterator has the form

idn = iter [ parms ] args [ yields ] [ signals ] [ where ]
routine_body
end idn

where
yields := ylelds ( type_spec,...)
In this section we discuss non-parameterized iterators, in which the parms and where clauses are
missing. Parameterized modules are discussed in Section 13.4. Own variables are discussed in
Section 13.5.
The form of an iterator is very similar to the form of a procedure. There are only two
differences:

1. An iterator has a yields clause in its heading in place of the returns
clause of a procedure. The yields clause specifies the number, order,
and types of objects yielded each time the iterator produces the next
item in the sequence. If zero ob jects are yielded, then the yields clause
is omitted.

2. Within the iterator body, the yield statement is used to present the next
item in the sequence. An iterator terminates in the same manner as a
procedure (note that it may not return any resuits).



§13.2 ' Iterators n

An iterator is an object of some iterator type. Its type can be derived from its heading by
removing the iterator name, rewriting the formal argument declarations with one idn per decl,
deleting the formal argument names, and finally, replaciﬁg iter by itertype.

An iterator can be invoked only by a for statement. The execution of iterators is described in
Section 11.5.2.

An example of an iterator is

splits = iter (s: string) ylelds (string, string)
for i: int in Int$from_tol0, string$size(s)) do
yield(stringSsubstr(s, 1, i), stringSrest(s,i + 1))
-end
end splits

Additional examples of iterators are given in the next section.

Remarks

Iterators provide a useful mechanism for abstracting from the details of control. Furthermore,
they permit for statements to iterate over the objects of interest, rather than requiring a mapping
from the integers to those ob jects.

It is important to realize that the argument ob jects passed to the iterator are also accessible in
the body of the for loop controlled by the iterator. If some argument object is mutable, and the
iterator modifies it, the change can affect the behavior of the for loop body, and vice-versa. Such
changes can be the cause of program errors.

As a general principle, an iterator should not modify its argument objects. There are some
examples, however, where modification is appropriate. For example, an iterator that produces the
characters from an input stream would advance the stream “window™ (the currently accessible
character) on each iteration.

Also as a general principle, the for loop body should not modify the iterator’s argument
ob jects. Again, occasional examples exist where modification is desirable. In programming such
examples, the programmer must ensure that the iterator will still behave correctly in spite of the

modifications.



72 .Clusters §13.3

13.3 Clusters

A cluster is used to implement a new data type, distinct from any other built-in or user-defined
data type. A data type (or data abstraction) consists of a set of objects and a set of primitive
operations. The primitive operations provide the most basic ways of manipulating the ob jects;
ultimately every action that can be performed on the objects must be expressed in terms of the
primitive operations. Thus the primitive operations define the lowest level of observable ob ject
behavior. |

The form of a cluster is

idn = cluster [ parms ] is idn , ... ['where]

cluster_body
end idn

where
{ equate } rep = type_spec { equate }

{'own_var }

routine { routine }

cluster_body ::

routine 1= procedure
| iterator

In this section we discuss non-parameterized clusters, in which the parms and where clauses are
missing. Parameterized modules are discussed in Section 13.4. Own variables are discussed in
Section 13.5.

The primitive operations are named by the list of idns following the reserved word is. All of
the idns in this list must be distinct.

To define a new data type, it is necessary to choose a concrete representation for the ob jects of
the type. The special equate

rep = type_spec

within the cluster body identifies type_spec as the concrete representation. Within the cluster, rep
may be used as an abbreviation for rype_spec. v

The identifier naming the cluster is available for use in the cluster body. Use of this
identifier within the cluster body permits the definition of recursive types (an example is given
below).



§133 Clusters n

In addition to specifying the representation of ob jects, the cluster must implement the primitive
operations of the type. The operations may be either procedural or control abstractions; they are
implemented by procedures and iterators, respectively. Most of the routines in the cluster body
define the primitive operations (those whose names are listed in the cluster heading). Any
additional routines are hidden: they are private to the cluster and may not be invoked by users of
the abstract type. All the routines must be named by distinct identifiers; the scope of these
identifiers is the entire cluster.

Outside the cluster, the type’s ob jects may only be treated abstractly (i.e,, manipulated by using
the primitive operations). To implement the operations, however, it is usually necessary to
manipulate the ob jects in terms of their concrete representation. It is also convenient sometimes to
manipulate the objects abstractly. Therefore, inside the cluster it is possible to view the type’s
objects either abstractly or in terms of their representation. The syntax is defined to specify
unambiguously, for each variable that refers to one of the type’s ob jects, which view is being taken.
Thus, inside a cluster named T, a declaration

v: T
indicates that the ob ject referred to by v is to be treated abstractly, while a declaration

w: rep
indicates that the ob ject referred to by w is to be treated concretely. Two primitives, up and down,
are évailable for converting between these two points of view. The use of up permits a type rep
ob ject to be viewed abstractly, while down permits an abstract ob ject to be viewed concretely. For
example, given the declarations above, the following two assignments are legal:

v := up{w)
w = down(v)

Only routines inside a cluster may use up and down. Note that up and down are used merely to
inform the compiler that the ob ject is going to be viewed abstractly or concretely, respectively.

A common place where the view of an object changes is at the interface to one of the type's
operations: the user, of course, views the ob ject abstractly, while inside the operation, the ob ject is
viewed concretely. To facilitate this usage, a special type specification, cvt, is provided. The use
of cvtis restricted to the args, returns, yields and signals clauses of routines inside a cluster, and
may be used at the top level only (e.g., arraylcvt] is illegal). When used inside the args clause, it
means that the view of the argument ob ject changes from abstract to concrete when it is assigned

to the formal argument variable. When cvt is used in the returns, ylelds, or signals clause, it



T4 Clusters §13.3

means the view of the result object changes from concrete to abstract as it is returned (or yielded)
to the caller. Thus cvt means abstract outside, concrete inside: when constructing the type of a
routine, evt is equivalent to the abstract type, but when type-checking the body of a routine, cvt is
equivalent to the representation type.

The cvt form does not introduce any new ability over what is provided by up and down. It
is merely a shorthand for a common case. In its absence, the heading of each routine would have
to be written using the abstract type in place of cvt. Then inside the routine, additional variables
of type rep would be declared, the argument ob jects assigned to these variables using down, and
each return, yield, or signal statement would use up explicitly. The use of cvt simply causes the
appropriate up or down to be performed automatica“y, and avoids the declaration of additional
variables. _

The type of each routine is derived from its heading in the usual manner, except that each
occurrence of cvt is replaced by the abstract type.

Inside the cluster, it is not necessary to use the compound form (type_specsop_name) for
naming locally defined routines. Furthermore, the compound form cannot be used for invoking
hidden routines.

The identifier following the end must match the identifier naming the cluster. _

Some examples of clusters are shown in Figure 6. The first example implements (part of) a
complex number data type. This data type may be implemented using either x and y coordinates,
or rho and theta coordinates; the cluster shown uses x and y coordinates. Note that the create,
get_x, and get_y operations might signal an exception if rho/theta coordinates were used; therefore
these exceptions are listed in the headings, even though in this implementation the exceptions will
not be signalled. The coordinates of a complex number can be queried using the get operations
explicitly, or by using the special syntax, e.g.,

a.theta
No set operations are provided, since complex numbers should be immutable like other numbers
(integers, reals, etc.). Other 6perations on complex numbers are the usual arithmetic ones (only add
is shown), and equal, similar, and copy (these are discussed in the remarks section below). (Note: we
have assumed that square_root and arctangent2 exist in the library.)

The second example cluster implements lists of integers. These lists are immutable, like pure
lists in LISP. The implementation is recursive: the representation type refers to the abstract type.

Notice the elements operation, which produces all integers in the list in order; it is an example of a



§13.3 Clusters 75

recursive iterator.

The final example is sets of integers. The sets are mutable: operations insert and delete
modify sets. Again note the elements iterator, which produces all elements of a set in some
unspecified order. Also note the use of is_in in insert; since is_in requires an abstract ob ject as its

argument, up is used to provide one.

Remarks ,

The main reason CLU was developed was to support the use of data abstractions. Use of data
abstractions leads to an ob ject-oriented style of programming, in which concerns about data are
primary and serve to organize program structure. It requires some effort to learn to program in
this style, but the effort is worthwhile because the resulting programs are more modular, and easier
to modify and maintain.

A cluster permits all knowledge abdut how a data abstraction is being implemented to be kept
local to the cluster. This localization permits the correctness of an implementation to be established
by examining the cluster alone. Part of such a correctness proof involves showing that only legal
representations are generated by the cluster. For example, in the inf_set cluster above, not all
arrays are legal inf_set representations; only those without duplicate elements are legal.
Information about what constitutes a legal representation is described during program verification
by stating the concrete invariant. Each operation must preserve this invariant for each ob ject that
it manipulates of the abstract type. This requirement applies at all return and signal statements
in operations, and also at yield statements in iterator operations.

When defining a new data type, it is important to provide a set of primitive operations
sufficient to permit all interesting manipulations of the objects. There is no reason to attempt to
define a minimal set, however; frequently used operations can be made operations of the cluster
even if they could be implemented in terms of other operations.

Operations that will frequently be required are copy, equal, and similar. These operations are
needed if the type being defined is intended for general use, since without these operations, the use
of the type within another type's concrete representation is somewhat limited. For example,
arrayl Tl$copy cannot be used unless T has a copy operation. In addition, most types should

provide 1/0 operations as discussed in Appendix 1L



Fig. 6. Example Clusters

complex = cluster Is create, add, get_x, get_y, get_rho, get_theta, equal, similar, copy
rep = struct(x, y: real)

create = proc (x, y: real) returns (cvd signals (overflow, underfiow)
returnirep$ix: x, y: y)
end create

add = proc (a, b: cvt) returns (cvd signals (overflow, underfliow)
returnirep$ix: a.x + b.x, y: a.y + by}
resignal overflow, underflow
end add

get_x = proc (c: cvt returns (reaD signals (overflow, underfiow)
returnic.x)
end get x

get_y = proc (c: cvt) returns (real signals (overflow, underflow)
returnicy) ~
end get_y

get_rho = proc (c: cvt) returns (real signals (overfiow, underfiow)
returnisquare_root{c.x s c.x + cy s C.y))
resignal overflow, underflow
end get_rho

get_theta = proc (c: cvt) returns (read signals (overfiow, underflow)
return(arctangent2(c.x, c.y)
resignal overflow, underflow
end get_theta

% Note that the equal operation of the rep type tests equality of corresponding real components,
% not identity of rep ob jects.

equal = proc (cl, c2: cvt) returns (bool
returnicl = c2)
end equal

similar = proc (c], c2: cv¥ returns (bool
returnicl = c2)
end similar

copy = proc (c: complex) returns (complex)
returnic)

end copy
end complex



§13.3 Clustgrs

int_list = cluster is create, cons, car, cdr, is_in, is_empty, elements, equal, similar, copy

rep = oneoflpair: pair, empty: nulll
pair = structicar: int, cdr: int_list]

create = proc () returns (cvt)
return{rep$make_empty(nil))
end create

cons = proc (i: Int, Ist: int_list) returns (cvV
return{rep$make_pair(pair${car: i, cdr: Ist}))
end cons

car = proc (Ist: cvt) returns (int signals (empty)
tagcase Ist
tag pair (p: pain): return(p.car)
tag empty: signal empty
end
end car

cdr = proc (Ist: cvt) returns (int_list) signais (empty)
tagcase Ist
tag pair (p: pair): return(p.cdr)
tag empty: signal empty
end
end cdr

is_in = proc (Ist: cvt, i: InV returns (bool
while true do
tagcase Ist
tag empty: return(faise)
tag pair (p: pair): if p.car = i
then returnitrue)
else Ist := down(p.cdr)
end
end
end
end is_in

is_empty = proc (Ist: cvt) returns (bool
return(rep$is_empty(lst)
end is_empty



78 . Clusters §13.3

elements = iter (Ist: cvV ylelds (inV
tagcase Ist
tag pair (p: pair): yleld(p.car)
for i: int in elements(p.cdr) do

yleld(})
end
tag empty:
end
end elements

%X Note that the equal operation of the rep type tests equality of mmspmding list elements, not
X identity of rep ob jects.

equal = proc(istl, Ist2: cvt) returns (bood
return(istl « ist2)
end equal

similar = proc (Ist], Ist2: evt) returns (bool
returniistl = 5t2)
end similar

copy = proc (Ist: int_list) returns (int_list)
returniist)

end copy
end int_list

int_set = cluster is create, insert, delete, is_in, size, elements, equal, simifar, copy
rep = array(int)

create = proc () returns (cvd
returnirepSnew())
end create

insert = proc (s: cvt, i: In®
it ~ is_in(up(s), ) then repsaddh(s, i) end
end insert



§13.3 Clustefs

delete = proc (s: cvt, i: Inv
for j. int in repsindexes(s) do
ifi=slf
then sl j] := rep$topl(s)
rep$remh(s)
return
end
end
end delete

~is_in = proc (s: cvt, i: int) returns (bood
for j: int in repSelements(s) do
if i = j then returnitrue) end
end
return(false)
end is_in

size = proc (s: cvt) returns (int)
return(reps$size(s))
end size

elements = iter (s: cvt) yields (int
for i: int in repselements(s) do
yield(i)
end
end elements

equal = proc (s], s2: cvt) returns (bool)
return(sl = s2)
end equal

similar = proc (sl, s2: int_set) returns {(bool
if size(s]) ~= size(s2) then return{false) end
for i: int in elements(sl) do
if ~ is_in(s2, i) then return(false) end
end
return{true)
end similar

copy = proc (s: cvt) returns (cvt
return(rep$copy(s)
end copy

end int_set



80 Clusters §13.3

In many earlier sections, we have discussed the use of special syntactic forms for invoking
operations, and have described how operations must be named and defined in order to make use of
these syntactic forms. The use of such forms is quite unconstrained: the special form is translated
to an invocation, and is legal if the invocation is legal.

Our reason for not imposing more syntactic constraints on operator overloading is that such
constraints only capture a small part of what it means to use operator overloading correctly. For
example, to overload =" correctly, the equal operation should be an equivalence relation satisfying
the substitution property; i.e., if two objects are equal, then one can be substituted for the other
without any detectable difference in behavior. In the sections where special syntactic forms are
described, we have discussed in each case what constitutes proper usage.

Overloading operator symbols is not the only place where care must be taken to ensure that the
new definition agrees with common usage; the same care must be taken when redefining common
operation names. For example, the copy operation should provide a “copy” of its input ob ject, such
that subsequent changes made to either the old or the new object do not affect the other. In the
case of an immutable type, like complex_number above, in which sharing between two ob jects will
never be visible to the using program, copy can simply return its input ob ject. Ordinarily, however,
copy should copy its input objects, including each component (using the copy operation of the
component's type), as is done in the implementation of int_set. |

. The equal operation should return true if its two input objects are the same abstract ob ject.
This is necessary to satisf y the substitution property: if two ob jects are equal, then using one in
place of the other in a computation will not alter the computation. Thus, implementing equal

" properly requires a thorough understanding of both the abstraction being implemented and the

representation being used. Usually two mutable ob jects are equal only if they are the exact same
ob ject in the CLU universe; eg., see int_set$equal above. For immutable ob jects, the contents of
the ob ject is usually ail that matters; e.g., see complexSequal and int_list$equal above.

The similar operation should return true only if its two input ob jects (both of the same type)
have “equivalent state". This means that any query made about information in two similar ob jects
immediately after they wére determined to be similar would provide an equivalent answer for
either of the two objects (ie., the answers would be similar). Note that similar is a weaker
condition than equal: two ob jects are equal if they are the same abstract objects, and so of course
they are similar for all time. Equal and similar return different results only for mutable types,

because only mutable types have objects whose state can change. Copy and similar should be



§13.3 Clusters 81

related as follows for any type T:
VxeT [ T$similar(x, T$copy(x)) ]
With the exception of set and store operations, procedures that define operator symbols, copy,
similar, and the 1/0O operations should never modify their input objects in a way that the user of
the ob ject can detect. This rule does not prohibit "benevolent” side-effects, i.e., modifications that

speed up future operations without affecting behavior in any other way.
13.4 Parameterized Modules

Procedures, iterators, and clusters may all be parameterized. Parameterization permits a set of
related abstractions to be defined by a single module. Recall that in each module heading there is
an optional parms clause and an optional where clause. The presence of the parms clause
indicates that the module is parameterized; the where clause states certain constraints on
permissible actual values for the parameters.

The form of the parms clause is

(parm,... ]
where

parm == idn, ... : type_spec

| idn,...: type

Each parameter is declared like an argument. However, only the following types of parameters are
“legal: int, real, bool, char, string, null, and type. Parameters are limited to these types because
the actual values for parameters are required to be constants that can be computed at compile-time.
This requirement ensures that all types are known at compile-time, and permits complete
compile-time type-checking.

In a parameterized module, the scope rules permit the parameters to be used throughout the
remainder of the module. Thus they can be used in defining the types of arguments and results,
eg.,

p = proc [t: type] (x: t) returns (1)

To use a parameterized module, it is first necessary to instantiate it; that is, to provide actual,
constant values for the parameters. (The exact forms of such constants were discussed in
Section 8.3) The result of instantiation is a procedure, iterator, or type (where the parameterized
module was a procedure, iterator, or cluster, respectively) that may be used just like a

non-parameterized module of the same kind. For each distinct instantiation, (i.e., for each distinct



82 Parameterized Modules §13.4

list of actual parameters), a distinct procedure, iterator, or type is produced.

The meaning of a parameterized module is most easily understood in terms of rewriting.
When the module is instantiated, the actual parameter values are substituted for the formal
parameters throughout the module, and the parms clause and where clause are deleted. The
resulting module is a regular (non-parameterized) module. In the case of a cluster some of the
operations may have additional parameters; further rewriting will be performed when these
operations are used. ‘

In the case of a type parameter, constraints on permissible actual types can be given in the
where clause. The where clause lists a set of operations that the actual type is required to have,
and also specifies the type of each required operation. The where clause constrains the
parameterized module as well: the only primitive operations of the type parameter that can be used
are those listed in the where clause. |

The form of the where clause is

where = where restriction , ...
where

restriction ::z idn has oper_decl, ...

idn In type_set

op_name,, ... : type_spec
op_name := name [ { constant , ... ) ]

¢ oper_decl

type_set = {idnl idn has oper_decl , ... { equate} )
| idn
There are two forms of restrictions. In both forms, the initial idn must be a type parameter.
The has form lists the set of required operations directly, by means of oper_decls. The type_spec
in each oper_dec! must name a routine type. Note that if some of the type’s operations are
parameterized, particular instantiations of those operations must be given. The In form requires
that the actual type be a member of a type_set, a set of types having the required operations. The
two identifiers in the type_set must match, and the notation is read like set notation; e.g.,
{tI'thasf: ..}
means “the set of all types ¢ such that t has f...". The scope of the identifier is the type_set.
The in form is useful because an abbreviation can be given for a type_set via an equate. If it
is helpful to introduce some abbreviations in defining the type_set, these are given in the optional

equates within the type_set. The scope of these equates is the type_set.



§13.4 Parameterized Modules 83

A routine in a parameterized cluster may have a where clause in its heading, and can place
further constraints on the cluster parameters. For example, any type is permissible for the array
element type, but the array similar operation requires that the element type have a similar
operation. This means that array{T] exists for any type T, but that arrayl T1$similar exists only
when T$similar exists. Note that a routine need not include in its where clause any of the

restrictions included in the cluster where clause.

Two examples of parameterized clusters are shown in Figure 7. The first defines the set 'type
generator. This cluster is similar to inf_set, presented in the previous section. The main difference
is that everywhere .that integer elements were assumed, now the parameter ¢ is used.. The set type
generator has a where clause that requires the element type to provide an equal operation; in
addition, the similar operation imposes an additional constraint on the element type by requiring a
similar operation. Thus setlX] is legal if X has an equal operation; but setl X1$similar can be used
only if X also has a similar operation. Note the procedure is_in_sim; it is a hidden routine of this
implementation. Also note the use of the type_set sim_type.

The state of a set object is the set of abstract ob jects currently in the set. What matters is the
identity of the ob jects, not their state. This should help in understanding why equal, similar, and
copy are written as they are. Notice that we have two new operations, similarl and copyl. Similarl
returns true when two ob jects have equal state (in the abstract sense), whereas similar returns true
when they have similar state. Copyl is to similer] what copy is to similar, ie,
Tesimilarl(T$copyl(x), x) should always be true. In general, mutable type generators that behave
like collections should provide similar! and copyl to ensure that types obtained from the generator
can be used as part of the concrete representation of other types.

The second example is a list type generator, which is similar to int_list in the previous section.
List does not place any constraints in its type parameter. Therefore any element type is permissible
for lists, including type any. Note that the types generated by the list type generator are
immutable. The state of a list is considered to be the ordered set of objects in the list, where only
the identity of the ob jects matters. Lists are immutable even if the ob jects in the lists are mutable,
because the state of a list never changes.

Confusion can arise unless the designer and implementor of a data type have in mind a clear
idea of exactly what constitutes the state of the objects of the type they are defining; it must be

resolved in which cases it is only the identity of the components that matters, and in which cases



84 Parameterized Modules §i3.4

Fig. 7. More Example Clusters

set = cluster [t: typel is create, insert, delete, is_in, size,
elements, equal, similar, similarl, copy, copyl
where t has equal: proctype (t, 1) returns (bool

rep = arraylt] ‘
sim_type = {s | s has similar: proctype (t, t) returns (boob}

create = proc () returns (cvt)
return{repstnew())
end create

insert = proc (s: cvt, v: )
it ~ is_in(upls), v) then repsaddhls, v) end
end insert

delete = proc (s: cvt, v: )
‘ for j int in repSindexes(s) do
Hva=sij
then s{ ) := repStopls)
repsremhis)
return
end
end : .
end delete :

is_in = proc (s: cvt, v: t) returns (bood
" for u:t in repSelements(s) do
if u = v then returnitrue) end
end
returnifalse)
end is_in

is_in_sim = proc (s: cvt, v: ) returns (bool where t in sim_type
for u: t in repSelements(s) do
if t$similar(u, v} then returnitrue) end
end ’
returnifalse)
.and is_jn_sim

size = proc (s: cv? returns (int)
returnirep$sizels))
end size



§13.4 Parameterized Modules

elements = iter (s: cvt) yields (t)
for v: t in repselements(s) do
yleld(v)
end
end elements

equal = proc (s, s2: cvt) returns (bool
return(sl = s2)
end equal

similar = proc (s, s2: set{t]) returns (bool) where t in sim_type
if size(s]) ~= size{s2) then return(false) end
for u: t in elements(sl) do
If ~ is_in_sim(s2, u) then returni{false) end
end
return{true)
end similar

similarl = proc (s], s2: set{t]} returns (bool
if size(sl) ~= size(s2) then returni(faise) end
for u: t in elements(sl) do
if ~ is_in(s2, u) then return(false) end
end
return(true)
end similarl

copy = proc (s: cvt) returns (cvt) where t has copy: proctype (t) returns (1)
return(rep$copy(s))
end copy

copyl = proc (s: €vt) returns (cvt
return(rep$copyl(s))
end copyl

end set



86 Parameterized Modules §13.4

list = cluster (t: type] iIs create, cons, car, cdr, is_in, is_empty, elements, equal, similar, copy

rep = oneoflpair: pair, empty: null}
pair = structicar: t, cdr: list{t]]

create = proc () returns (cvt)
return{repSmake_empty(nil))
end create

cons = proc (v: t, Ist: list(t)) returns (cvt
return{rep$make_pair(pair${car: v, cdr: Ist))
end cons

car = proc (Ist: cvt) returns (t) signals (empty)
tagcase Ist
tag pair (p: pair): return(p.car)
tag empty: signal empty
end
end car

cdr = proc (Ist: cvt) returns (listt) signals (empty)
tagcase Ist
tag pair (p: pair): return(p.cdr)
tag empty: signal empty
end
end cdr

is_in = proc (Ist: cvt, v: t) returns (booD where t has equal: proctype (t, t) returns (boo?
while true do
tagcase Ist
tag empty: return(false)
tag pair (p: pair): if pcar = v
then returnitrue)
eise Ist := down(p.cdr)
end
end
end
end is_in

is_empty = proc (ist: cvd) returns (bool)
return(rep$is_empty(lst)
end is_empty



87

§13.4 Parameterized Modules

elements = iter (Ist: cvt) ylelds (t)
tagcase Ist

tag pair (p: pair): yield(p.car)
for v: t in elements(p.cdr) do

yleld(v)
end
tag empty:
end
end elements

equal = proc (Istl, Ist2: cvt) returns (bool) where t has equal: proctype (t, t) returns (boobd

return(istl = 1st2)
end equal

similar = proc (Ist], 15st2: evt) returns (bool
where t has similar: proctype (t, t) returns (bool

return(rep$similar(istl 1st2))
end similar

copy = proc (Ist: cvd returns (cvt where t has copy: proctype () returns (t)
returni{rep$copy(ist)
end copy

end list



88 Parameterized Modules §13.4

their state matters as well.

The position taken in the list type generator below is that the state of a list consists only of the
identity of the objects in the list, and does not depend on their state. Hence, these lists are
immutable. This explains why list has no similar] or copyl operations, and why equal, similar, and

copy are implemented as they are.

There are two restrictions on the kinds of constants that can be used in op_names of where
clauses and type_sets. These restrictions eliminate certain ambiguities that would otherwise arise in
type-checking. There is no need to understand or remember these restrictions, as the programs
they affect are fairly bizarre, and have never occurred in practice. The rules are included here
solely for completeness.

The first restriction is that no type parameter, and no type identifier introduced in a type_set,
can be used anywhere in an op_name constant. Thus, if ¢ is a type parameter, an op_name of the
form “computelarrayl(t]]” would be illegal. The second restriction deals with the way data
abstractions depend on each other. If, in the interface of a data abstraction A, some data
abstraction B is used in an op_name constant, we say that A is restricted in terms of” B. We
define r-uses to be the transitive closure of this refation. The second restriction, then, is that an

abstraction cannot r-use itself.
13.6 Own Variables

Occasionally it is desirable to have a module that retains information internally between
invocations. Without such an ability, the information would either have to be reconstructed at
every invocation, which can be expensive (and may even be impossible if the information depends
on previous invocations), or the information would have to be passed in through arguments, which
is undesirable because the information is then subject to uncontrolled modification in other
modules.

Procedures, iterators, and clusters may all retain information through the use of own variables.
An own variable is similar to a normal variable, except that it retains its denotation from one
routine activation to the next, including recursive activations. Syntactically, own variable
declarations must appear immediately after the equates in a routine or cluster body; they cannot

appear in bodies nested within statements. Own variable declarations have the form



§13.5 Own Variables 89

own_var == own decl
| own idn : type_spec := expression

| ownde, ... := invocation
Note that initialization is optional.

Own variables are created when a program begins execution, and they always start out
uninitialized. The own variables of a routine (including cluster operations) are initialized in
textual order as part of the first invocation of that routine, before any statements in the body of
the routine are executed. Cluster own variables are initialized in textual order as part of the first
invocation of the first cluster operation to be invoked (even if the operation does not use the own
variables). Cluster own variables are initialized before any operation own variables are initialized.

Aside from the placement of their declarations, the time of their initialization, and the lifetime
of their denotations, own variables act just like normal variables and can be used in all the same
places. As for normal variables, attempts to use uninitialized own variables (if not detected at
compile-time) cause the run-time exception

failure("uninitialized variable”

‘Own variable declarations in different modules always refer to distinct own variables, and
distinct executions of programs never share own variables (even if the same module is used in
several programs). Furthermore, own variable declarations within a parameterized module produce
distinct own variables for each instantiation of the module. For a given instantiation of a
pérameterized cluster, all instantiations of the type's operations share the same set of cluster own
variables, but distinct instantiations of parameterized operations have distinct routine own
variables. For example, in the following cluster there is a distinct x and y for every type ¢, and a

distinct z for every type-integer pair (¢, i):



90 Own Variables §13.5

C = cluster (t: typel is ...
own Xx: int := init(..) s 2

P = proc {..)
owny: ..
end P
Q = proc [i: Intl (..)
ownz: ..
end Q
end C
Own variable declarations cannot be enclosed by an except statement, so care must be
exercised when writing initialization expressions. If an exception is raised by an initialization
expression, it will be treated as an exception raised, but not handled, in the body of the routine
whose invocation caused the initialization to be attempted. This routine will then signal failure to
its caller (see Section 12.2). In the example cluster above, if procedure P were the first operation of
Clstring) to be invoked, causing initialization of x to be attempted, then an overflow exception
raised in the initialization of x would result in P signalling

failure("unhandled exception: overflow”

to its caller.

Remarks

Own variables are often useful in declaring “constants” that are either derived from
complicated computations or are otherwise illegal in equates. In almost all such cases, the
initialization can be attached directly to the declaration. For example,

own flip: complex := complex$create(0.0, 1.0)
own primes: sequencelint] := table_of _primes()

However, the data denoted by own variables may also change dynamically, and may contain history

information, as the following (fairly useless) module demonstrates:



§13.5 Own Variables 91

delayer = proc [t: type, delay: int] (x: t) returns () signals (not_yet)

at =-array(t]

own oldies: at := at$new()

at$addh(oldies, x) % add to waiting list

if at$size(oldies) > delay X if delayed long enough
then oldies.low := ] X prevent eventual overfiow

return(at$remioldies)) % remove and return oldest

eise signal not_yet
end

end delayer
When cluster own variable initialization involves lengthy computations, one own variable can
be initialized with an (internal) operation call, and the body of that operation can assign values
directly to the other own variables:
C = cluster is ...

own x: table := own_ijnit()
own y: table

own_init = proc () returns (table)

;;:tum(...)
end own_init
end C

On occasion, when a particular program is known to use exactly one object of a particular
user-defined type, it is tempting to implement the type such that the sole object is denoted by a
cluster own variable. In this way, the object need not be passed as an argument to the various
routines in the computation, many of which do not even use the object directly. This is a poor
design decision in most cases, because the ways in which the type can be used later are then
severely restricted. For example, the type cannot then be used in any program requiring several
ob jects of that type. It is usually better to design types in as general a manner as possible.

With the introduction of own variables, procedures and iterators become potentially mutable
objects. If the abstract behavior of a routine depends on history information (as does delayer
above), then care must be exercised to guarantee that the routine is used correctly in other modules.
(Ideally, a CLU system should have some method of controlling access to routines.) In general, own

variables should not be used to modify the abstract behavior of a module.



92 Syntax sI
Appendix 1 - Syntax

We use an extended BNF grammar to define the syntax. The general form of a production is:

nonterminal ::z alternative
| alkternative

| alternative

The following extensions are used:

a,.. a list of one or more a’s separated by commas: "a" or "a, a" or
"a, a, a" etc.

{a} a sequence of zero or more a’s: "~ or "a" or "a a” etc.

[a] an optional a: * " or "a".

All semicolons are optional in CLU, but for simplicity they appear in the syntax as ;" rather
than "[;]". Nonterminal symbols appear in normal face. Reserved words appear in bold face. All

other terminal symbols are non-alphabetic, and appear in normal face.

module

{ equate } procedure

{ equate } iterator

{ equate } cluster

idn - p'roc [ parms ] args [ returns ] [ signals ] [ where ] ;
routine_body
end idn ;

procedure

idn = iter [ parms ] args [ yields] [ signals ] [ where ] ;
routine_body.
end idn ;

iterator

idn = cluster [ parms ] is idn, ... [ where ];

cluster_body
~end idn ;

cluster

parms

parm

{ parm, ... ]
idn , ... : type

idn , ... : type_spec
([ dea,...

args



§i Syntax

dect := idn , ... : type_spec
returns := returns ( type_spec, ... )
yields := ylelds ( type_spec, ... )
signals := signals ( exception , )
exception = name [ ( type_spec , ... )]
where := where restriction , ...
restriction := idn has oper_dedl, ...

| idn in type_set
type_set := { idn | idn has oper_decl, ... ; { equate } }

| idn
oper_decl = op_hame, ... : type_spec
op_name = name [ [ constant , ... ] ]
constant = expression

| type_spec

routine_body = {equate}
{ own_var }

{ statement }

- cluster_body = {equate} rep = type_spec ; {equate}

{ own_var }

routine { routine }

routine = procedure
| iterator
equate == idn = constant ;
| idn = type_set ;
own_var own decl ;

own idn : type_spec := expression ;

own decl , ... := invocation ;



94 Syntax

null
bool
int
real

type_spec

char

string

any

rep

cvt

array [ type_spec )
sequence [ type_spec ]

record{ field_spec, ... ]
struct [ field_spec, ... ]
oneof [ field_spec, ... ]
variant [ field_spec, ... ]

proctype ( [ type_spec , ... ] ) [ returns ] [ signals ]
itertype ( [ type_spec, ... ]) [ yields ] [ signals]

idn [ constant , ... ]

idn

field_spec . := name, ... : type_spec



§I

statement

tag_arm

Syntax

decl ;
idn : type_spec := expression ;

decl, ... := invocation ;
idn , ... := invocation ; -

idn , ... := expression , ... ;
primary . name := expression ;
primary [ expression ] := expression ;
invocation ;
while expression do body end ;
for [ dedl, ... ] In invocation do body end ;
for[ idn , ... ] in invocation do body end ;
If expression then body

{ elseif expression then body }

[ eise body ]
end ;
tagcase expression

tag_arm { tag_arm }

[ others : body ]

end ;
return [ ( expression , ... ) ]:
yield [ (' expression , ... ) ] :
signal name [ ( expression , ) ] ;
exit name [ ( expression , ... ) ] ;

break ;
continue ;
begin body end ;

statement resignal name , ...

statement except { when_handler }

[ others_handler ]
end;

tag name, ... [ (idn : type_spec ) ] : body



96 Syntax

when_handler

when name , ... [ ( decl , ... )] : body

| whenname,... () : body

others_handler := others [ (idn : type_spec ) ] : body

body u= { equate }
{ statement }

expression primary

( expression )

~ expression X 6 (precedence)
- expression X6

expression s expression X 5

»®
i

expression // expression
expression / expression
expression s expression
expression | expression
expression + expression
expression - expression
expression < expression
expression <= expression
expression = expression
expression >= expression
expression > expression
expression ~< expression
expression ~<= expression
expression ~= expression
expression ~>= expression

N NN NNNPNDNONNN

expression ~> expression
expression & expression
expression cand expression
expression | expression
expression cor expression

M M M M I I M P M A M R M M R R R



§l

primary

invocation

field

Reserved word:

Syntax 97

nit

true

false
int_literal
real_literal
char_literal
string_literal
idn

idn [ constant , ... ]

primary . name

primary [ expression )

invocation

type_spec $ { field , ... }

type_spec $ [ [ expression : ] [ expression , ... ]l
type_spec $ name [ [ constant , ... ] ]

force [ type_spec ]
up ( expression )
down ( expression )

primary ( [ expression , ... ] )

name, ... : expression

one of the identifiers appearing in bold face in the syntax. Upper and lower

case letters are not distinguished in reserved words.

Name, idn: a sequence of letters, digits, and underscores that begins with a letter or underscore,

and that is not a reserved word. Upper and lower case letters are not distinguished in names and

idns.

Int_literal: a sequence of one or more decimal digits.

Real_literal: a mantissa with an (optional) exponent. A mantissa is either a sequence of one or

more decimal digits, or two sequences (one of which may be empty) joined by a period. The

mantissa must contain at least one digit. An exponent is 'E’ or '¢’, optionally followed by ’+’ or ',

followed by one or more decimal digits. An exponent is required if the mantissa does not contain a

period.



98 Syntax §I

Char_literal: either a printing ASCII character (octal value 40 thru 176), other than single quote
or backslash, enclosed in single quotes, or one of the following escape characters enclosed in single

quotes:

escape sequence character

\’ *  (single quote)
\" " (double quote)
\\ \ (backslash)

\n NL (newline)

\t HT (horizontal tab)
\p FF (newpage)

\b BS (backspace)

\r CR (carriage return)
\v VT (vertical tab)

\s2s : specified by octal value (exactly three octal digits)

The escape sequences may be written using upper case letters. '

String_literal: a sequence of zero or more character representations, enclosed in double quotes.
A character representation is either a printing ASCII character other than double quote or
backslash, or one of the escape sequences listed above.

Comment: a sequence of characters that begins with a percent sign, ends with a newline
character, and contains only printing ASCII characters and horizontal tabs in between.

Separator: a blank character (space, vertical tab, horizontal tab, carriage return, newline, form
feed) or a comment. Zero or more separators may appear between any two tokens, except that at
least one separator is required between any two ad jacent non-self-terminating tokens: reserved

words, identifiers, integer literals, and real literals.



SIl Built-in Types and Type Generators 99
Appendix II - Built-in Types and Type Generators

The following sections describe the built-in types and the types produced by the built-in type
generators. For each type, the ob jects of the type are characterized, and all operations of the type
are defined (with the exception of the encode and decode operations, which are defined in
Appendix I1I, Section 6).

In defining an operation, argl, arg2, etc., refer to the arguments (the ob jects, not the syntactic
expressions), and res refers to the result of the operation. If execution of an operation terminates
in an exception, we say the exception “occurs”. By convéntion, the order in which exceptions are
listed in the operation type is the order in which the various conditions are checked.

The definition of an operation consists of an interface specification and an explanation of the
relation between arguments and results. An interface specification has the form
name: type_spec side_effects

restrictions

If side_effects is null, no side-effects can occur. "PSE” (primary side-effect) indicates that the state
of argl may change. "SSE” (secondary side-effect) indicates that a state change may occur in some
ob ject that is contained in an argument.l Restrictions, if present, is either a standard where
clause, or a clause of the form

where each T, has oper_decl.
which is an abbreviation for

where T‘ has oper_decl‘, - T, has oper_decln

Arithmetic expressions and comparisons used in defining operations are to be computed over
the domain of mathematical integers or the domain of mathematical reals; the particular domain
will be clear from context.

Definitions of several of the types will involve tuples. A tuple is written <e,, ... e > e, is

e
called the i™ element. A tuple with n elements is called an n-tuple. We define the following

functions on tuples:

1. For operations of the built-in types, secondary side-effects occur when a subsidiary abstraction
performs unwanted side-effects. For example, side-effects are not expected when
arrayl T1$similar calls T$similar, but their absence cannot be guaranteed.



100

Built-in Types and Type Generators §I1

Sizel<e|, ...e>) = n

A = B = (Size(A) = Size(B) A (Vi l<i<Size(lANa, = b)
a,..b>Ne,..,d> 5 <a..,beg .., d>

Front(<a, ... b,c>) = <a,.. b>.

Taill<a, b, ..., ¢>) = <b, ..., c> ' :

Tail%A) = A and Tail™A) = TaiKTailA)
Occurs(A, B, ) = (3C,D(B = CHi Al D) A (SizelC) = i - D))

'lf Occurs(A, B, i) holds, we say that A occurs in B at index i.

Il.l.

Null

There is one immutable ob ject of type null, denoted nil.

equal:
similar:

11.2.

proctype (null, null) returns (bood
proctype (null, nuld returns (bood

Both operations always return true.

proctype (nuil returns (nuld

Copy always returns nil

Bool

There are two immutable objects of type bool, denoted true and faise. These objects

represent logical truth values.

and:
or:
not:

equal:
similar:

proctype {bool, bool returns (bood
proctype (bool, bool) returns (bool
proctype (boold returns (bool

These are the standard logical operations.

proctype (bool, bool’ returns (boobd
proctype (bool, bool) returns (boold

These two operations return true if and only if both arguments are the same ob ject.

proctype (bood returns (bool
Copy simply returns its argument.



§11.3

I1.3.

Int 101

Int

Objects of type int are immutable, and are intended to model the mathematical integers.

However, the only restriction placed on an implementation is that some closed interval

[Int_Min, Int Max] be represented, with Int_Min <0 and Int_Max > 0. An overflow exception

is signalled by an operation if the result of that operation would lie outside this interval.

add:
sub:
mul:

minus:

div:

mod:

power:

proctype.(lnt, int) returns (int) signals (overflow)
proctype (int, int) returns (int) signals (overfiow)
proctype (int, int) returns (int) signals (overfiow)

The standard integer addition, subtraction, and multiplication operations.

proctype (int) returns (int) signals (overflow)

Minus returns the negative of its argument.

proctype (int, int) returns (int) signals (zero_divide, overflow)

Div computes the integer quotient of argl! and arg2:
Ir 0 <1 <larg2) A targl = arg2eres + )
Zero_divide occurs if arg2 = 0.

proctype (int, int) returns (int) signals (zero_divide, overfiow)

Mod computes the integer remainder of dividing argl by arg2. That is,
3q UO < res < |arg2) A (argl = arg2eq + res
Zero_divide occurs if arg2 « 0.

proctype (int, int) returns (int) signals (negative_exponent, overfiow)

This operation computes argl raised to the arg2 power. Power(0,0) = 1.
Negative_exponent occurs if arg2 <0.

from_to_by: itertype (int, int, int) yields (int)

from_to:

This iterator yields, in succession, argl, argl + arg3, argl + 2+arg3, etc, as long as the
value to yield, x, satisfies x < arg2 when arg? >0, or arg2 < x when arg3 <0. The
iterator continually yields argl if arg3 =0. The iterator yields nothing when
(argl > arg2) A (arg3 > 0) or when (argl < arg2) A (arg? < 0.

itertype (int, int) yields (int)
from_tolargl, arg2) is equivalent to from_to_bylargl, arg2, 1.



102 Int §IL3

parse: proctype (string) returns (int) signals (bad_format, overflow)

This operation computes the exact value corresponding to an integer literal. The
argument must be an integer literal, with an optional leading plus or minus sign.
Bad_format occurs if the argument is not of this form.

unparse: proctype (int) returns (string

Unparse produces an integer literal such that parselunparselargh) = argl. Leading
zeros are suppressed, and no leading plus sign is added for positive integers.

It: proctype (int, int) returns (bool
le: proctype (int, int) returns (bool
ge: proctype (int, int) returns (bool
gt: proctype (int, int) returns (bool

The standard ordering relations.

equal: proctype (int, int) returns (bool
similar:  proctype (int, in¥) returns (bool

These two operations return true if and only if both arguments are the same ob ject.

copy: proctype (int) returns (int)
Copy simply returns its argument.

II.4. Real

Ob jects of type real are immutable, and are intended to model the mathematical real numbers.
However, only a subset of
D = [-Real. Max, -Real Minl U {0} U [Real._Min, Real_Max]
need be represented, where 0 < Real_Min <1 < Real. Max. Call this subset Real. We require that
both 0 and 1 be elements of Real. If the exact value of a real literal lies in D, then the value in

CLU is given by a function Approx, which satisfies the following axioms:

YreD Approx(r) € Real

Y r € Real Approx(r) =r

VreD-{0} |(Approx(r - n/d < 10!-P
YrseD r <s - Approx(r) < Approx(s)
YreD Approx{(-r) = -Approx(r)

The constant p is the precision of the approximation, and must be at least 7.
We define Max _width and Exp_width to be the smallest integers such that every non-zero
element of Real can be represented in “standard” form (exactly one digit, not zero, before the

decimal point) with no more than Max_width digits of mantissa and no more than Exp_width



IR

Real 103

digits of exponent.

add:
sub:
mul:

minus:

div:

power:

i2r:

r2i:

trunc:

proctype (real, real) returns (real) signals (overflow, underflow)

proctype (real, real returns (real signals (overflow, underflow)

proctype (real, real) returns (real) signals (overflow, underflow)

proctype (real) returns (real) -

proctype (real, real) returns (real) signals (zero_divide, overflow, underfiow)

These operations satisfy the following axioms:

D (@b20vab <0 - add(a, b) = Approx(a + b)
2 add(a,b) =1+ &Xa + b |d < 10t-P

3  adda, 0 =a '

1) add(a, b) = add(b, a)

5  a<a’ - add(a, b) < add(a’, b

6) minus(a) = -a

T subfa, b) = add(a, -b)

8  mula, b} = Approx(a s b

9) div(a, b} = Approx(a / b)

In axiom 2, the value of p is the same as that used in defining Approx. Note that the
infix and prefix expressions above are computed over the mathematical real numbers.
The axioms only hold if no exceptions occur. An exception occurs if the result of an
exact computation lies outside of D; overflow occurs if the magnitude exceeds
Real Max, and underflow occurs if the magnitude is less than Real_Min. Zero_divide
occurs if arg2 = 0.

proctype (real, real returns (real

signals (zero_divide, complex_result, overflow, underflow)
This operation computes argl raised to the arg2 power. Zero_divide occurs if
(argl = 0)'A (arg2 < 0). Complex_result occurs if argl <0 and arg2 is non-integral.
Overflow and underflow occur as explained above.
proctype (int) returns (real signals (overfliow)
I2r returns a real number corresponding to the argument: res = Approx(argD. Overflow
occurs if argl lies outside the domain D.
proctype (real returns (int) signals (overflow)

R2i rounds to the nearest integer, and toward zero in case of a tie:
(res - argl] < 1/2) A Gred <|argh + V2
Overflow occurs if the result lies outside the domain for CLU integers.

proctype (real) returns (int) signals (overflow)

Trunc truncates its argument toward zero: (res - arglf <D A (reg < |argﬂ). Overflow
occurs if the result lies outside the domain for CLU integers.



104

exponent:

mantissa:

parse:

unparse:

it:

le:
ge:
gt:

equal:
similar:

copy:

Real : §il4

proctype (real returns (int) signals (undefined)

This operation returns the exponent that would be used in representing argl as a literal
in standard form: res = max{i | |argl| > 101). Undefined occurs if argl = 0.0.

proctype (real returns (real

This operation returns the mantissa of argl when represented in standard form:
res = Approxlargl / 10exponentiargl),
If r = 0.0 the result is 0.0.

proctype (string) returns (real signals (bad_format, overflow, underfliow)

This operation computes the exact value corresponding to a real or integer literal, and
then returns the result of applying Approx to that value. The argument must be a real
or integer literal, with an optional leading plus or minus sign. Bad_format occurs if the
argument is not of this form. Overflow occurs if the magnitude of the exact value of
the literal exceeds Real. Max; underflow occurs if the magnitude is less than Real_Min.

proctype (real) returns (string

Unparse produces a real literal such that parselunparse(argD) = argl. The general form
of the literal is:

[-Jpieta s_pierd[esx_fietd] |
Leading zeros in i_field and trailing zeros in f_field are suppressed. If argl is integral
and within the range of CLU integers, then f_field and the exponent are not present.
If argl can be represented by a mantissa of no more than Max_width digits and no .
exponent (i.e., -1 < exponentlargl) < Max_width), then the exponent is not present.
Otherwise, the literal is in standard form, with Exp_width digits of exponent.

proctype (real, real) returns (bool
proctype (real, real) returns (bool
proctype (real, real) returns (bool
proctype (real, real) returns (bool

The standard ordering relations.
proctype (real, real) returns (bool
proctype (real, real returns (bood

These two operations return true if and only if both arguments are the same ob ject.

proctype ( reai) returns (reaf)

Copy simply returns its argument.



§I15 Char 105

I11.6. Char

Objects of type char are immutable, and represent characters. Every implementation must
provide at least 128, but no more than 512, characters. Characters are numbered from 0 to some
Char_Top, and this numbering defines the.ordering for the type. The first 128 characters are the

ASCII characters in their standard order.

i2c: proctype (int) returns (char) signals (illegal_char)
I2c returns the character corresponding to the argument. Illegal_char occurs if the
argument is not in the range [0, Char._Topl.

c2i: proctype (char) returns (int

This operation returns the number corresponding to the argument.

It: proctype (char, char) returns (bool
le: proctype (char, char) returns (bool
ge: proctype (char, char) returns (bool
gt: proctype (char, char) returns (bool)

The ordering relations consistent with the numbering of characters.
equal: proctype (char, char) returns (bool
similar: proctype (char, char) returns (bool)

These two operations return true if and only if the two arguments are the same ob ject.

copy: ' proctype (char) returns (char)

Copy simply returns its argument.
I1.8. String

Ob jects of type string are immutable. Each string represents a tuple of characters. The i
character of the string is the i'" element of the tuple. There are an infinite number of strings, but
an implementation need only support a finite number. Attempts to construct illegal strings result in

a failure exception.

size; proctype (string) returns (int

This operation simply returns the size of the tuple represented by the argument.

empty: proctype (string) returns (bool)

This operation returns true if and only if sizelargh = 0.



106

indexs:

indexc:

c2s:

concat:

append:

fetch:

rest:

substr:

s2ac:

ac2s:

String 116

proctype (string, string) returns (int)

If argl occurs in arg2, this operation returns the least index at which arg! occurs:
res = minli | Occurstargl, arg2, i)}

Note that the result is 1 if argl is the O-tuple. The resukt is 0 if arg/ does not occur.

proctype (char, string) returns (int

If <argl> occurs in arg2, the result is the least index at which <argl> occurs:
res = minii | Occurs(<argl>, arg2, i)}

The result is 0 if <argl> does not occur.

proctype (char) returns (string

This operation returns the string representing the 1-tuple <argl>.

proctype (string, string) returns (string

Concat returns the string representing the tuple argl Il arg2.

proctype (string, char) returns (string

This operation returns the string representing the tuple argl | <arg2>.

proctype (string, int) returns (char) signals (bounds)

Fetch returns the arg2™ character of argl. Bounds occurs if arg2<1 or
arg2 > sizelargl). :

" proctype (string, int) returns (string) signals (bounds)

The result of this operation is Tail"*>!argh. Bounds occurs if arg2<1 or
arg2 > sizelargh + 1. '

proctype (string, int, int) returns (string) signals (bounds, negative_size)

If arg? < size(rest(argl, arg2)), the result is the string representing the tuple of size arg?
which occurs in argl at index arg2. Otherwise, the result is rest(argl, arg2). Bounds
occurs if arg2 <1or arg2 > sizelargh + 1. Negative_size occurs if arg? < 0.

proctype (string) returns (arraylcharl)

This operation places the characters of the argument as elements of a new array of
characters. The low bound of the array is 1, and the size of the array is sizelargD). The
i'" element of the array is the i character of the string.

proctype (arraylchar)) returns (string))

Ac2s serves as the inverse of s2ac. The result is the string with characters in the same
order as in the argument. That is, the i™ character of the result is the
(i + lowlargD - D™ element of the argument.



§I16

s2sc:

sc2s:

chars:

it:

le:
ge:
gt:

equal:
similar:

copy:

String 107

proctype (string) returns (sequencel{char])

This operation transforms a string into a sequence of characters. The size of the
sequence is sizelargl). The i** element of the sequence is the i'* character of the string.

proctype (sequencelchar)) returns (string)

Sc2s serves as the inverse of s2sc. The result is the string with characters in the same
order as in the argument. That is, the i character of the result is the i* element of the
argument. '

itertype (string) yields (char)

This iterator yields, in order, each character of the argument.

proctype (string, string) returns (bool)
proctype (string, string) returns (bool)
proctype (string, string) returns (bool
proctype (string, string) returns (boo)d

These are the usual lexicographic orderings based on the ordering for characters. The
It operation is equivalent to the following:

It = proc (x, y: string) returns (bood
size_x: int := stringssize(x)
size_y: int := string$size(y)
min: int
if size_x <= size_y
then min := size_x
else min := size_y
end

for i: int in int$from_to(l, min) do
it x(i] ~= yli] then return(x(il < y{i)) end
end

returnisize_x < size_y)

end It

proctype (string, string) returns (bool
proctype (string, string) returns (bool

These two operations return true if and only if both arguments are the same ob ject.

proctype ( strlﬁg) returns (string)
Copy simply returns its argument.



108 Array Types SIL?

I1.7. Array Types

The array type generator defines an infinite class of types. For every type T there is a type
arraylT). Arrays are mutable objects. The state! of an ob ject of type arraylT] consists of :

a) an integer Low, called the low bound, and
b) a tuple Elts of objects of type T, called the elements.

We also define Size = Size(Elts), and High = Low + Size - 1. We want to think of the elements of
Elts as being numbered from Low, so we define the array_index of the i* element to be
(i+Low-1).

For any array, Low, High, and Size must be legal integers. Any attempts to create or modify
an array in violation of this rule results in a failure exception. Note that for all array operations,
if an exception other than failure occurs, the states of all array arguments are unchanged from

those at the time of invocation.

create: proctype (int) returns (arraylT))

This operation returns a new array for which Low is argl and Elts is the O-tuple.

new: proctype () returns (array(T))

This is equivalent to create(1).

predict:  proctype (int, int) returns (array(T))

Predict is essentially the same as createlargl), in that it returns a new array for which
Low is argl and Elts is the O-tuple. However, if arg2 is greater than (less than) 0, it is
assumed that at least |arg2| addh’s (addf’s) will be performed on the array. These
subsequent operations may execute somewhat faster.

low: proctype (arraylT)) returns (int
high: proctype (arraylT)) returns (int
size: proctype (arraylT)) returns (int

These operations return Low, High, and Size, respectively.

empty: proctype (array(T)) returns (bool

This operation returns true if and only if Size = 0.

1. For an array A, we should properly write Low,, etc, to refer to the state of that particular
ob ject, but subscripts will be dropped when the association seems clear.



§IL.7

set_low:

trim:

fitl:

fill_copy:

fetch:

bottom:
top:

store:

Array Types 109

proctype (array(T), int) PSE

Set_low makes Low equal to arg2.

proctype (arraylT], int, int) signals (bounds, negative_size) PSE

This operation makes Low equal to arg2, and makes Elts equal to the tuple of size
min{arg3, High’ - arg2 + 1} which occurs in Elts’ at index arg2 - Low’ + 1! That is,
every element with array_index less than arg2, or greater than or equal to arg2 + arg3,
is removed. Bounds occurs if arg2 < Low’ or arg2 > High’ + 1. Negative_size occurs if
arg3? < 0. Note that this operation is somewhat like string$substr.

proctype (int, int, T) returns (arraylT)) signals (negative_size)

Fill creates a new array for which Low is arg! and Elts is an arg2-tuple in which every
element is arg3?. Negative_size occurs if arg2 <0.

proctype (int, int, T) returns (arraylT)) signals (negative_size) : SSE
where T has copy: proctype (T) returns (T)

This operation is equivalent to the following:

fill_copy = proc (nlow, nsize: int, eit: T) returns (at) signals (negative_size)
where T has copy: proctype (T) returns (T)

at = array(T)
if nsize < 0 then signal negative_size end
X: at := at$predict(nlow, nsize)
for i: int in int$from_to(l, nsize) do

at$addh(x, TScopy(eit)

end
return(x)
end fill_copy

proctype (arraylT], inV returns (T) signals (bounds)

Fetch returns the element of argl with array_index arg2. Bounds occurs if arg2 < Low
or arg2 > High.

proctype (arraylT)) returns (T) signals (bounds)

proctype (arraylT]) returns (T) signals (bounds)

These operations return the elements with array_lndexes Low and High, respectively.
Bounds occurs if Size = 0, :

proctype (array(T], int, T) signals (bounds) PSE

Store makes Elts a new tuple which differs from the old in that arg? is the element
with array_index arg2. Bounds occurs if arg2 < Low or arg2 > High.

1. Elts’, High', etc. refer to the state just prior to invoking the operation.



110

addh:

add!:

remh:

remi:

elements:

indexes:

equal:

Array Types SIL7

proctype (arraylT], T) _ PSE

This operation makes Elts the new tuple Eits’ § <arg2>.

proctype (array(T], T) PSE

This operation makes Low equal to Low’ - I, and makes Elts the tuple <arg2> il Eits’.
Decrementing Low keeps the array_indexes of the previous elements the same.

proctype (arraylT1) returns (T) signals (bounds) PSE

Remh makes Elts the tuple Front(Elts’), and returns the deleted element. Bounds occurs
if Size' = 0.

proctype (arraylT]) returns (T) signals (bounds) PSE

Reml makes Low equal to Low’ + 1, makes Elts the tuple TaiKEits), and returns the
deleted element. Incrementing Low keeps the array_indexes of the remaining elements
the same. Bounds occurs if Size' = 0.

itertype (arraylT] yields (T)
This iterator is equivalent to the following:

elements = iter (x: at) ylelds (T)
at = array(T)
for i: int in int$from_tolatSlow(x), atShigh(x)) do
yleld(x[i] :
end
end elements

‘itertype (array(T)) yields (int

This iterator is equivalent to int$from_to(Low’, High).

proctype (array(T], array{T)) returns (bood _
Equal returns true if and only if both arguments are the same ob ject.



§ILY Array Types m

similar:  proctype (arraylT), arraylT] returns (bool) SSE
where T has similar: proctype (T, T) returns (bool

This operation is equivalent to the following:

similar = proc (x, y: at) returns (bool
where T has similar: proctype (T, T) returns (bood
at = arraylT]
if at$low(x) ~= atslow(y) cor at$size(x) ~= at$size(y)
then returni{faise)
end
for i: int In at$indexes(x) do
if ~Tssimilar(x(i], yli]) then return(faise) end
end
return{true)
end similar

similarl: proctype (array(T), arraylT)) returns (bool " SSE
where T has equal: proctype (T, T) returns (bool)
Similarl works in the same way as similar, except that T$equal is used instead of
Tesimilar.
copyl: proctype (arraylT)) returns (array(T))
Copyl creates a new array with the same state as the argument.
copy: proctype (arraylT)) returns (array(T)) SSE
where T has copy: proctype (T) returns (T)
This operation is equivalent to the following:

copy = proc (x: at) returns (at) where T has copy: proctype (T) returns (T)
at = arraylT)
X = at$copyl(x)
for i: int in at$indexes(x) do
xLi) := T$copy(xLi
end
return(x)
end copy

I1.8. Sequence Types

The sequence type generator defines an infinite class of types. For every type T there is a
type sequencelT]. An object of type sequencelT] consists of a tuple, Elts, of ob jects of type T,
called the elements of the sequence. Sequences are immutable ob jects: a partlﬁular sequence always
represents exactly the same tuple of objects. However, if the objects in the tuple are mutable, then

the state of those ob jects may change.



112

Sequence Types SIL8

For convenience, we define Size = Size(Elts). The elements of a sequence are numbered from 1

to Size. For any sequence, Size must be a legal integer; any attempt to create a sequence that

violates this rule results in a failure exception.

new:

size:

empty:

subseq:

fill:

fill_copy:

fetch:

proctype () returns (sequencelT))

This operation returns the empty sequence.

proctype (sequencel(T)) returns (int

This operation returns Size.

proctype (sequencelT)) returns (booD
Empty returns true if and only if Size = 0.
proctype (sequencelT], int, int) returns (sequencelT))

signals (bounds, negative_size)
If arg3 < Size - arg2 + 1 then the result is the tuple of size arg? occurring in argl
starting at index arg2. Otherwise, the result is the tuple Tail*$2-'(argD. Bounds occurs
if arg2 <1or arg2 > Size + 1. Negative_size occurs if arg? < 0.
proctype (int, T) returns (sequence{T)) signals (negative_size)
Fill returns the sequence for which Elts is the argl—tuple in which every element is ¢rg2
Negative_size occurs if argl < 0.
proctype (int, T) returns (sequencelT) signals (negative_size) SSE
This bperation is equivalent to the following:

- fill_copy = proc (nsize: int, elt: T) returns (qt) signals (negative_size)

where T has copy: proctype (T) returns (T)

qt = sequencel(T)
If nsize < 0 then signal negative_size end
X: qt := qtSnew()
for i: int in int$from_tol(], nsize) do

x := qt$addhix, TScopy(elt))

end
return(x)
end fill_copy

proctype (sequencelT], int) returns (T) signals (bounds) ,
Fetch returns the arg2™ element of argl. Bounds occurs if arg2 < 1 or arg2 > Size.



§IL.8

bottom:
top:

replace:

addh:

addl:

reml:

e2s:

concat:

a2s:

s2a:

elements:

indexes:

Sequence Types m

proctype (sequencelT)) returns (T) signals (bounds)
proctype (sequencelT)) returns (T) signals (bounds)

These operations return the first and last elements of argl, respectively. Bounds occurs
if Size = 0.

proctype (sequencelT], int, T) returns (sequencelT)) signals (bounds)

This operation returns a new sequence whose argz"‘ element is arg3, but which is
otherwise the same as argl. Bounds occurs if arg2 <1 or arg2 > Size.

proctype (sequencelT], T) returns (sequence(T))

Addh returns the sequence representing the tuple Elts | <arg2>.

proctype (sequencei{T], T) returns (sequence{T))
Addl returns the sequence representing the tuple <arg2> Il Elts.

proctype (sequencelT)) returns (sequencelT)) signals (bounds)

Remh returns the sequence representing the tuple Front(Eits). Bounds occurs if
Size = 0.

proctype (sequence(T)) returns (sequence{T)) signals (bounds)

Reml returns the sequence representing the tuple TaiKElts). Bounds occurs if Size = 0.

proctype (T) returns ( sequence(T))

This operation returns the sequence representing the singleton tuple <argl>.

proctype (sequencel{T), sequence(T)) returns (sequencelT))

Concat returns the sequence representing the tuple argl It arg2.

proctype (arraylT)) returns (sequencelT))
This operation returns the tuple corresponding to the elements part of the state of argl.

proctype (sequencelT)) returns (array({T)) .
This operation returns a new array with low bound 1 and with Elts as the elements part
of the array state.

itertype (sequencelT)) yields (T)

This iterator yields, in order, each element of Elts.

itertype (sequencelT)) yields (int

This iterator is equivalent to int$from_to(l, Size).



114 Sequence Types (1R ]

equal: proctype (sequencelT), sequencelT)) returns (bood SSE
where T has equal: proctype (T, T) returns (bood

Equal is equivalent to the following:

equal = proc (x, y: ¢t) returns (bool
where T has similar: proctype (T, T) returns (bood
qt = sequencelT)
if qt$size(x) ~= gtSsizely) then returnifaise) end
for i: int in qtSindexes(x) do
if x(i] ~= yii] then returnifaise) end
end ’ :
return(true)
end equal

similar:  proctype (sequencelT], sequencelT)) returns (boob SSE
where T has similar: proctype (T, T) returns (bood
Similar works in the same way as equal, except that T$similar is used instead of
Tsequal.
copy: proctype (sequencelT)) returns (sequence{'_l‘]) : SSE
where T has copy: proctype (T) returns (T)
This operation is equivalent to the following:

copy = proc (x: q) returns (qt) where T has copy: proctype (T) returns (T)
qt = sequencelT]
Y: qt := gtSnew()
for e: T in gtSelements(x) do

y := qtSaddhly, TScopyle)
" end
return(y)
end copy

I1.0. Record Types

The record type generator defines an infinite class of types. For every tuple of name/type
pairs <(N,, T ), .., (N T )> where all the names are distinct, in lower case, and in lexicographic
order, there is a type recordN_:T,, .., N_T ). (However the user may write this type with the
pairs permuted, and may use upper case letters in names.) Records are mutable ob jects. The state
of a record of type recordN,:T,, .., N:T,] is an n-tuple; the i** element of the tuple is of type T,
The i'™* element is also cafled the N.-component.

-



§H.9

create:

getN.:
set_N.:

equal:

similar:

similarl:

copyl:

Record Types 115

proctype (T,. .~ T,) returns (recorlele. Nn:T"])

This operation returns a new record with the tuple <argl, .., argN> as its state. This

operation is not available to the user; its use is implicit in the record constructor (see

Section 10.6).

proctype (recordN:T,, .., N_T ) returns (T)

This operation returns the N-component of the argument. There is a get_N, operation

for each N,

proctype (record(N ¢ T NGTDT) | PSE

This operation makes the state of argl a new tuple which differs from the old in that

the N.-component is arg2. There is a set_N, operation for each N,

proctype (record[N':Tl, Nn:T"], recorc[NI:Tl, - Nn:Tn]) returns (bool

Equal returns true if and only if both arguments are the same ob ject.

proctype (recordIN T, .., N_T ), recordN T, .., N_T ] returns (bool) SSE
where each T, has similar: proctype (T, T) returns (bool)

Corresponding components of arg! and arg2 are compared in (lexicographic) order,
using T $similar for the N-components. (The N.-component of arg! becomes the first
argument.) If a comparison results in false, the result of the operation is false, and no
further comparisons are made. If all comparisons return true, the result is true.

proctype ( recordN T, .., N:TJ, recordN T, .., N,T D1 returns {bool SSE
where each T, has equal: proctype (T, T) returns (bood

Similarl works in the same way as similar, except that TiSequaI is used instead of

T $similar. '

proctype (recorc[leT,. N":Tn]) returns (recorc[N|:Tl. - N":T"])

Copyl returns a new record with the same state as the argument.



116

Illio.

o T ek T T TR o SR | 7T e e e ) T e T T T

Record Types 5119

proctype (recordN,:T,, .., NT ) returns (recordN T, ... N.:T_]) ’ SSE
where each T, has copy: proctype (T) returns (T)

This operation is equivalent to the following (note that the N, are in lexicographic
order):

copy = proc (x: rt) returns trt)
where ’l'l has copy: proctype (T,) returns (Tt),

T, has copy: proctype (T) returns (T)
= recordN|:T|. s N.:T.] :
X := rt$copyl(x)
x.N, := T $copy(x.N))

x.N_ = T Scopy(x.N)
return(x)
end copy

Structure Types

The struct type generator defines an infinite class of types. For every tuple of name/type
pairs <(N‘, Ty .. (N, T ))>, where all the names are distinct, in lower case, and in lexicographic
order, there is a type struc{N_:T, .., N;T ). (However the user may write this type with the
pairs permuted, and may use upper case letters in names.) Structures are immutable objects. A
structure of type structN,:T,, .., N_T,] is an n-tuple; the i® element of the tuple is of type T
The i"™ element is also called the N.-component.

create:

get N, :

replace_N, : proctype (structiN :T .., N_ T, T) returns (strucN T, .. N;T.D

s2r:

proctype (T, .., T)) returns (structN T, ... N.T ]

This operation returns the structure representing the tuple <argl, .., argN>. This
operation is not available to the user; its use is implicit in the structure constructor (see
Section 10.6).

proctype (structN :T, .., N_T ) returas (T)

This operation returns the N.-component of the argument. There is a get_N, operation
for each N,

This operation returns the tuple corresponding to argl with its N.-component replaced
by arg2. There is a replace_N, operation for each N,

proctype (struclN T, .., N_ T ) returns (recordIN :T,, .., N T ]
S2r returns a new record whose initial state is the tuple represented by the argument.



§$IL10

r2s:

equal:

similar:

copy:

Structure Types n

proctype (recordN,:T,, .., N:T ] returns (structiN,:T, .., N_:T D

R2s returns the structure representing the tuple that is the current state of the argument.

proctype (struct[N|:T|, - NST ), struct[leT'. e Nn:Tn]) returns (bool) SSE
where each Ti has equal: proctype (Tr Ti) returns (boob

Corresponding components of arg! and arg2 are compared in (lexicographic) order,
using T $equal for the N,-components. (The N.-component of argl becomes the first
argument.) If a comparison results in false, the result of the operation is false, and no
further comparisons are made. If all comparisons return true, the result is true.

proctype (struct[NI:T|. o NGT 3, struct[N,:T,, s N":Tn]) returns (bool SSE
where each T, has similar: proctype (T, T) returns (boo)d

Similar works in the same way as equal, except that T',Ssimilar is used instead of
T Sequal. -

proctype (structiN ;T , .., N.T ) returns (structN,:T,, .. N;T,} SSE
where each T, has copy: proctype (T) returns (T)

This operation is equivalent to the following (note that the N, are in lexicographic
order):

copy = proc (x: st) returns (st)
where T, has copy: proctype (Tl) returns (TI).

T, has copy: proctype (T ) returns (T )
st = struct{N,:T,, ..., N_TJ
return(st${N: T;Scopy(x.N,),

N, T Scopy(x.N))
end copy

II1.11. Oneof Types

The oneof type generator defines an infinite class of types. For every tuple of name/type

pairs <(N,, T ), ...(N,T)> where all of the names are distinct, in lower case, and in

lexicographic order, there is a type oneofiN :T, .., N:T ). (However the user may write this type

with the pairs permuted, and may use upper case letters in names.) Oneofs are immutable ob jects.

Each oneof represents a name/object pair (N, X), where X is of type T. For each object X of

type T, there is a oneof for the pair (N, X). N, is called the tag of the oneof, and X is called the

value.



118

malte_Ni :

is_N,:

value N.:

o2v:

v2o:

equal:

similar:

Oneof Types st

proctype (T) returns (oncof[N,:Tl. - N.:Tn])

This operation returns the oneof for the pair (N, argD. There is a make_N, operation
for each N,

proctype (oneof(N,.T, .., N:T )} returns (bood

This operation returns true if and only if the tag of the argument is N. There is an
is_N, operation for each N,

proctype (oneofiN:T,, .., N:T D) returns (T) signals (wrong_tag)

If the argument has tag N, the resuk is the value component of the argument.
Wrong_tag occurs if the tag is other than N. There is a vakie_N, operation for each
N. . :

proctype (oneof(N :T,, .., N:T ) returns (variantN T, .., N_TD

This operation returns a new variant with an initial state that has the same tag and

value as the argument.

proctype (varlan(N,:T,. ws NST D returns (oneof(N T, .., N.:T.))

This operation returns the oneof with the same tag and value as the current state of the

argument.

proctype (oneof(N T, .., N_:T ], oneof(N: T, ... N;T ) returns (bood SSE

' where each T, has equal: proctype (T, T) returns (boob o

If argl and arg2 have different tags, the resukt is faise. If both tags are N, the result

is that of invoking T Sequal with the two value components.

proctype (oneofiN . T, .., N_:T ], oneof(N,:T, .., N.:T']) returns (bood SSE
where each T, has similar: proctype (T, T)) returns (bool

If argl and arg2 have different tags, the result is faise. If both tags are N, the resuk

is that of invoking T $similar with the two value components.

proctype (oneof(N,:T,, .., N T }) returns (oneof{N T, .., N.T D SSE
where each T, has copy: proctype (T) returns (T)

If argl represents the pair (N, X), then the resuk is the oneof for the pair
(N, T $copy(X)).



SIL12 Variant Types 119

I1.12. Variant Types

The variant type generator defines an infinite class of types. For every tuple of name/type
pairs <«(N,,T), ., (N, T)> where all of the names are distinct, in lower case, and in
lexicographic order, there is a type variantiN:T,, .., N ;T ]. (However the user may write this
type with the pairs permuted, and may use upper case letters in names) Variants are mutable
objects. The state of a variant consists of a name/ob ject pair (N, X), where X is of type T,. For
each object X of type T, there is a state (N, X). N, is called the current tag of the variant, and X

is called the current value.

ma\ke_Ni : proctype (Ti) returns (varlaM[N|:T|, - Nn:Tnl)
This operation returns a new variant whose initial state is the pair (N, argD. There is
a make_N, operation for each N.. '

change N. : proctype'(variant[Nl:T', ey Nn:Tn], T) PSE
This operation changes the state of argl to be the pair (N, arg2). There is a change_N,

operation for each N..

is_N.: proctype (varlam{leTr - N;T ) returns (bool

This operation returns true if and only if the current tag of the argument is N. There
is an is_N; operation for each N, -
value_N, : proctype (varlant[N|:T|'. Nn:Tn]) returns (T) signals (wrong_tag)

If the current tag of the argument is N, then the current value component is returned.
Wrong_tag occurs if the current tag is other than N. There is a value_N, operation for
each N,

equal: proctype (varianiN,:T,, .., N_T ], varianl[Nl:Tl. « N:T D returns (bool
This operation returns true if and only if argl and arg2 are the same ob ject.
similar: ~ proctype (varian{N:T,, .., N_T ], varlant[leT|, «e N:T D returns (boo) SSE
where each T, has similar: proctype (Ti, Ta) returns (boobd
If argl and arg2 have different tags, the result is false. If both tags are N, the result
is that of invoking T $similar with the two value components.
similar}:  proctype (variantiN_.T,, .., N T}, variant[N,:T,, N.ET..]) returns (boo?? SSE
where each T, has equal: proctype (T, T) returns (bool)

If argl and arg2 have different tags, the result is false. If both tags are N, the resuit
is that of invoking T $equal with the two value components.



120 Variant Types §SILI2

copy: proctype (varianN 1T Nn:Tn]) returns (varlant[N|:T.. v N':T.]) SSE
where each T, has copy: proctype (T) returns (T)

If the current state of the argument is (N, X), then the resuk is a new variant whose
initial state is (N, T $copy(X).
copyl: proctype (variantiN,:T,, .., N.T ) returns (variantiN :T, ., N T D

If the current state of the argument is (N, X), then the resuk is a new variant whose
initial state is also (N, X).

I1.13. Procedure and Iterator Types

Let A,R,L,, .., L be ordered lists of types, and let N, .., N_ be distinct names in lower case
and in lexicographic order. Then there is a type
proctype (A) returns (R) signals (N,(L)),...N (L))
and a type
itertype (A) yields (R) signals (N|(L|). - N"(Ln)).
(The user may permute the N{L)’s, and may use upper case letters in names. If R is empty then
“returns (R)" is not written, "(L)" is not written if L, is empty, and “signals (..)" is not written if
n=0) .
The create operations are not available to the user; routines are created by compiling modules.
Let T be a procedure (or iterator) type in the following.
equal: proctype (T, T) returns (bool
similar:  proctype (T, T) returns (bool
These operations return true if and only if both arguments are the same
implementation of the same abstraction, with the same parameters.
copy: proctype (T) returns (T)
’ Copy simply returns its argument.

11.14. Any

The type any is the union of all types. There are no operations for the type any. Thus, for
example, no arrayl anyl$copy operation exists.



St Input/Output 121
Appendix III - Input/Output

This appendix describes a set of standard “library” data types and procedures for CLU,
provided primarily to support 1/0. We do not consider this facility to be part of the language
proper, but felt the need for a set of commoniy-used functions that have some meaning on most
systems. This facility is minimal because we wished it to be general, i.e, to be implementable, at
least in large part, under almost any operating system. The facility also provides a f ramework in
which some ather operations that are not always available can be expressed.

Some thought was given to portability of programs, and possibly even data, but we expect that
programs dealing with all but the simplest I/O will have to be written very carefully to be portable,
and might not be portable no matter how careful one is.

The following additional types are described:

stream - provides access to text files
istream -~ provides access to image files
file_name - a naming scheme for files
date - calendar date and time

No type "file™ exists, as will be explained.
III.1. Files

Our notion of file is a general one that includes not only storage files (disk files), but also
terminals and other devices (e.g. tape drives). Each file will in general support only a subset of the
operations described here.

There are two basic kinds of files, text files and image files. The two kinds of files may be
incompatible. However, on any particular system, it may not be possible to determine what kind a
given file is.

A text file consists of a sequence of characters, and is divided into lines terminated by newline
("\n") characters. A non-empty last line might not be terminated. By convention, the start of a new
page is indicated by placing a newpage ("\p"} character at the beginﬁlng of the first line of that
page.

A text file will be stored in the (most appropriate) standard text file format of the local

operating system. As a result, certain control characters (eg. NUL, CR, FF, °C, ©“Z) may be

ignored when written. In addition, a system may limit the maximum length of lines and may add



122 Files (1IN

(remove) trailing spaces to (from) lines.

Image files are provided to allow more efficient storage of information than is provided by
text files. Unlike text files, there is no need for image files to be compatible with any local file
format; thus, image files can be defined more precisely than text files.

An image file consists of a sequence of encoded objects. Ob jects are written and read using
encode and decode operations of their types. (These in turn will call encode and decode on their
components until basic types are reached) The ob jects stored in an image file are not tagged by
the system according to their types. Thus, if a file is written by performing a specific sequence of
encode operations, then it must be read back using the corresponding sequence of decode operations

to be meaningful.
III.2. File Names

File names are immutable ob jects used to name files. The system file name format is viewed
as consisting of four string components: '

directory - specifies a file directory or device

name - the primary name of the file (e.g. "thesis”)

suffix - a name normally indicating the type of file (eg. “clu” for a
CLU source file)

other - all other components of the system file name form

The directory and other components: may have internal syntax. The name and suffix should be
short identifiers. (For example, in the TOPS-20 file name “ps:<cluser>ref.ipt.3", the directory is
“ps:<cluser>", the name is “ref", the suffix is "pt", and the other is “3°. In the UNIX path name
“/usr/snyder/doc/refman.r", the dir?cmy is "/usr/snyder/doc”, the name is “refman”, the suffix is
"r", and there is no other. .

A null component has the following interpretation:

directory - denotes the current "working™ directory. (For example, the
“connected directory” on TOPS-20 and the “current directory”
on UNIX. See also Section 8 of this appendix.)

name - may be illegal, have a unique interpretation, or be ignored.
(For example, on TOPS-20, a null name is illegal for most
directories, but for some devices, the name is ignored.

suffix - may be illegal, have a unique interpretation, or be ignored.
(For example, on TOPS-20, a null suffix is legal, as in
"<rws>foo”) -



§iIL2

File Names 123

other - should imply a reasonable default.

The operations on file names are:

create:

get_dir:
get_name:
get_suffix:
get_other:

parse:

unparse:

make_output:

proctype (string, string, string, string) returns (file_name)
. signals (bad_format)

This operation creates a file name from its components. Argl is the directory part,
arg?2 is the name part, arg3 is the suffix part, and arg4 is the other part for the new
file_name. In the process of creating a file name, the string arguments may be
transformed, e.g. by truncation or case-conversion.

proctype (file_name) returns (string)
proctype (file_name) returns (string)
proctype (file_name) returns (string)
proctype (file_name) returns (string

These operations return string forms of the components of a file name. If the file
name was created using the create operation, then the strings returned may be
different than those given as arguments to create, e.g., they may be truncated or
case-converted.

proctype (string) returns (file_name) signals (bad_format)

This operation creates a file name given a string in the system standard file name
syntax.

" proctype (file_name) returns (string’

This operation transforms a file name into the system standard file name syntax.
We require that

parse(unparse(fn)) = fn

create(fn.dir, fn.name, fn.suffix, fn.other) = fn
for all file names fn. One implication of this rule is that there can be no file name
that can be created by create but not by parse; if a system does have file names that
have no string representation in the system standard file name syntax, then create
must reject those file names as having a bad format. Alternatively, the file name
syntax must be extended so that it can express all possible file names.

proctype (file_name, string) returns (file_name) signals (bad_format

This operation is used by programs that take input from a file and write new files
whose names are based on the input file name. The operation transforms the file
name into one that is suitable for an output file. The transformation is done as
follows: (1) the suffix is set to the given suffix (arg2); (2) if the old directory is not
suitable for writing, then it is set to null; (3) the name, if null and meaningless, is set
to "output™. (Examples of directories that may not be suitable for writing are
directories that involve transferring files over a slow network.)



124 File Names §IIL.2

make_temp: proctype (string, string, string) returns (f ile_name) signals (bad_format)

This operation creates a file name appropriate for a temporary file, using the given
preferred directory name (argl), program name (arg2), and file identifier (arg3). To
be useful, both the program name and the file identifier should be short and
alphabetic. The returned file name, when used as an argument to stream$open or
istream$open to open a new file for writing, is guaranteed to create a new file, and
will not overwrite an existing file. Further file name references to the created file
should be made using the name returned by the stream or istream get_name
operation.
equal: proctype (file_name, file_name) returns (bood

Returns true if and only if the two file_names will unparse to equal strings.

similar: proctype (file_name, file_name) returns (bood

The same as the equal operation.

copy: proctype (file_name) returns (file_name)

Copy simply returns its argument.
III.3. A File Type?

Although files are the basic information-containing objects in this package, we do not
recommend that a file type be introduced. The reason for this recommendation is that few systems
provide an adequate representation for files.

On many systems, the most reliable representation of a file (accessible to the user) is a channel
(stream) to that file. However, this representation is inappropriate for a CLU file type. since
possession of a channel to a file often implies locking that file.

Another possible representation is a file name. However, file names are one level indirect from
files, via the file directory. As a result, the relationship of a file name to a file object is
time-varying. Using file names as a representation for files would imply that all file operations
could signal non_existent_file.

Therefore, operations related to file ob jects are performed by two stream clusters, stream and
istream, and operations related to the directory system are performed by procedures.

Note that two opens for read with the same file name might return streams to two different
files. We cannot guarantee anything about what may happen to a file after a program obtains a

stream to it.



§INL.4 Streams 125

II1.4. Streams

Streams provide the means to read and write text files, and to perform some other operations
on file ob jects. The operations allowed on any particular stream depend upon the access mode. In
addition, certain operations may be null in some implementations.

When an operation cannot be performed, because of an incorrect access mode, because of
implementation limitations, or because of properties of an individual file or device, then the
operation will signai not_possible (unless the description of the operation explicitly says that the
invocation will be ignored).

The PSE and SSE indicators used in the previous appendix will not be used here; in many

cases the exact form (and time) of change depends on the particular operating system.

open: proctype (file_name, string) returns (stream) signals (not_possible(string))

The possible access modes (arg2) are “read”, "write”, and “append”. If arg2 is not
one of these strings, not_possible("bad access mode™ is signalled. In those cases
where the system is able to detect that the specified pre-existing file is not a text file,
not_possible("wrong file type” is signalled.

If the mode is “read”, then the named file must exist. If the file exists, a stream is
returned upon which input operations can be performed.

If the mode is “write”, a new file is created or an old file is rewritten. A stream is
returned upon which output operations can be performed.

If the mode is "append”, then if the named file does not exist, one is created. A
stream is returned, positioned at the end of the file, upon which output operations
can be performed. Append mode to storage files should guarantee exclusive access
to the file, if possible.

primary_input: proctype () returns (stream)
This operation returns the “primary” input stream, suitable for reading. This is
usually a stream to the user’s terminal, but may be set by the operating system.
primary_output: proctype () returns (stream)
This operation returns the “primary” output stream, suitable for writing. This is
usually a stream to the user’s terminal, but may be set by the operating system.
error_output: proctype () returns (stream)

This operation returns the “primary” output stream for error messages, suitable for
writing. This is usually a stream to the user’s terminal, but may be set by the
operating system.



126

can_read:

can_write:

getc:

empty:

putc:

putc_image:

getc_image:

get_lineno:

Streams ' §ill.4

proctype (stream) returns (bool

Can_read returns true if input operations appear possible on the stream.

proctype (stream) returns (bool

Can_write returns true if output operations appear possible on the stream.

proctype (stream) returns (char) signals (end_of file, not_possible(string))

This input operation removes the next character from the stream and returns it.

proctype (stream) returns (char) signals (end_of _file, not_possible(string))

This input operation is like getc, except that the character is not removed from the
stream.

proctype (stream) returns (bool) signais (not_possible(string))

This input operation returns true if and only if there are no more characters in the
stream. It is equivalent to a call of peekc, where true is returned if peeke returns a
character and false is returned if peekc signals end_of file. Thus in the case of
terminals, for example, this operation may wait until additional characters have been
typed by the user.

proctype (stream, char) signals (not_possible(string))

This output operation appends the given character-to the stream. Writing a newline
indicates the end of the current line.

proctype (stream, char) signals (not_possible{string))

This output operation is like putc, except that an arbitrary character may be written
and the character is not interpreted by the CLU 1/0 system. (For example, the ITS
XGP program expects a text file containing certain escape sequences. An escape
sequence consists of a special character followed by a fixed number of arbitrary
characters. These characters could be the same as an end-of-line mark, but they are
recognized as data by their context. On a record-oriented system, such characters
would be part of the data. In either case, writing a newline in image mode would
not be interpreted by the CLU system as indicating an end-of-line.)

proctype (stream) returns (char) signals (end_of_file, not_possible(string))

This input operation is provided to read escape sequences in text files, as might be
written using putc_image.  Using this operation inhibits the recognition of
end-of -line marks, where used.

proctype (stream) returns (int) signals (end_of file, not_possible(string))

This input operation returns the line number of the current (being or about to be
read) line. If the system maintains explicit line numbers in the file, said line
numbers are returned. Otherwise, lines are implicitly numbered, starting with 1.



UK

set_lineno:

reset:

ftush:

Streams 127

proctype (stream, int) signals (not_possible(string))

If the system maintains explicit line numbers in the file, this output operation sets
the line number of the next (not yet started) line. Otherwise, it is ignored.

proctype (stream) signals (not_possible(string))

This operation resets the stream so that the next input or output operation will read
or write the first character in the file. The line number is reset to its initial value.
proctype (stream)

Any buffered output is written to the file, if possible. Otherwise, there is no effect.
This operation should be used for streams that record the progress of a program. It
can be used to maximize the amount of recorded status visible to the user or
available in case the program dies.

get_line_length: proctype (stream) returns (int) signals (no_limit)

If the file or device to which the stream is attached has a natural maximum line
length, then that length is returned. Otherwise, no_limit is signalled. The line
length does not include newline characters.

get_page_length: proctype (stream) returns (int) signals (no_limit)

get_date:

set_date:

get_name:

close:

If the device to which the stream is attached has a natural maximum page length,
then that length is returned. Otherwise, no_limit is signalled. Storage files will
generally not have page lengths. '

proctype (stream) returns (date) signals (not_possible(string)

This operation returns the date of the last modification of the corresponding storage
file.

proctype (stream, daté) signals (not_possible(string))

This operation sets the modification date of the corresponding storage file. (The
modification date is set automatically when a file is opened in “write” or “append”
mode.)

proctype (stream) returns (file_name) signals (not_possible(string))

This operation returns the name of the corresponding file. It may be different than
the name u;ed to open the file, in that defaults have been resolved and link
indirections have been followed.

proctype (stream)

This operation terminates 1/0 and removes the association between the stream and
the file. Further use of operations that signal not_possible will signal not_possible.



128

is_closed:

is_terminal:

getl:

putl:

gets:

puts:

pu tzero:

putleft:

putright:

putspace:

Streams SINL4

proctype (stream) returns (bool

This operation returns true iff the stream is closed.

proctype (stream) returns (bool

This operation returns true iff the stream is attached to an interactive terminal (see
below).

proctype (stream) returns (string) signals (end_of file, not_possible{string))

This input operation reads and returns (the remainder of) the current input line and
reads but does not return the terminating newline (if any). This operation signals
end_of file only if there were no characters and end-of -file was detected.
proctype (stream, string) signals (not_possible{string))
This output operation writes the characters of the string onto the stream, followed by
a newline. '
proctype (stream, string) returns (string)

signals (end_of file, not_possible(string))

This input operation reads characters until a terminating character (one in arg2) or
end-of -file is seen. The characters up to the terminator are returned; the terminator
(if any) is left in the stream. This operation signals end_of _file only if there were
no characters and end-of-file was detected.

proctype (stream, string) signals (not_possible(string))

This output operation simply writes the characters in the string using putc.
Naturally it may be somewhat more efficient than doing a series of individual putc's.
proctype (stream, string, int) signals (negative_field_width, not_possible(string))

Output the string. However, if the length of the string is less than the field width
(arg3), then also output the appropriate number of extra zeros before the first digit
or '’ in the string (or at the end, if no such characters).

proctype (stream, string, int) signals (negative_field_width, not_possible( string))
Output the string. However, if the length of the string is less than arg3, then also
output the appropriate number of extra spaces after the string.

proctype (stream, string, int) signals (negative_field_width, not_possible(string))
Output the string. However, if the length of the string is less than arg3, then also
output the appropriate number of extra spaces before the string.

proctype (stream, int) signals (negative_field_width, not_possible(string))

This operation outputs arg2 spaces.



§II1.4 Streams 129

equal: proctype (stream, stream) returns (bool)

Returns true if and only if both arguments are the same stream.

similar: proctype (stream, stream) returns (bool)

Returns true if and only both arguments are the same stream.

copy: proctype (stream) returns (stream)

Returns its argument.
III.6. String I/0

It is occasionally useful to be able to construct a stream that, rather than being connected to a
file, instead simply collects the output text into a string. Conversely, it is occasionally useful to be
able to take a string and convert it into a stream so that it can be given to a procedure that expects

a stream. The following stream operations allow these functions to be performed:

Create_input: proctype (string) returns (stream) .
An input stream is created that will return the characters in the given string. If the
string is non-empty and does not end with a newline, thert an extra terminating
newline will be appended to the stream. o

create_output: proctype () returns (stream)
An output stream is created that will collect output text in an internal buffer. The
text may be extracted using the ger_contents operation.

get_contents: proctype (stream) returns (string) signals (not_possible(string)

This operation returns the text that has so far been output to the stream. It will
signal not_possible if the stream was not created by create_output.

A stream to a string does not have a file name; a creation date, a maximum line or page

‘length, or explicit line numbers.
III.8. Istreams

Istreams provide the means to read and write image files, and to perform some other
operations on file objects. The operations allowed on any particular istream depend upon the

access mode. In addition, certain operations may be null in some implementations.



130 Istreams SIILG

When an operation cannot be performed, because of an incorrect access mode, because of
implementation limitations, or because of properties of an individual file or device, then the
operation will signal not_possible (unless the description of the operation explicitly says that the
invocation will be ignored). '

Actual reading and writing of objects is performed by encode and decode operations of the
types involved. All of the built-in CLU types, and the file_name and date types, provide these
operations. Designers of abstract types are encouraged to provide them also. The type

specifications of the encode and decode operations for a type T are:

encode: proctype (T, istream) signals (not_possible(string))

The encode operations are output operations. They write an encoding of the given
ob ject onto the istream.

decode: proctype (istream) returns (T) signals (end_of _file, not_possible(string))

The decode operations are input operations. They decode the information written by
encode operations and return an ob ject "similar” to the one encoded. If the sequence
of decode operations used to read a file do not match the sequence of encode
operations used to write it, then meaningless objects may be returned. The system
may in some cases be able to detect this condition, in which case the decode operation
will signal not_possible("bad format”). The system is not guaranteed to detect all
such errors. '

The istream operations are:

open: proctype (f ile_name.v string) returns (istream) signals (not_possible(string))

The possible access modes (arg2) are “read”, "write”, and "append”. If arg2 is not
one of these strings, not_possible("bad access mode”) is signalled. In those cases
where the system is able to detect that the specified pre-existing file is not an image
file, not_possible("wrong file type”) is signalled.

If the mode is “read”, then the named file must exist. If the file exists, an image
stream is returned upon which decode operations can be performed.

If the mode is “write", a new file is created or an old file is rewritten. An image
stream is returned upon which encode operations can be performed.

If the mode is "append”, then if the named file does not exist, one is created. An
image stream is returned, positioned at the end of the file, upon which encode
operations can be performed. Append mode to storage files should guarantee
exclusive access to the file, if possible.

can_read: proctype (istream) returns (bool)

Can_read returns true if decode operations appear possible on the istream.



SIL6

can_write:

empty:

reset:

flush:

get_date:

set_date:

get_name:

close:

is_closed:

equal:

similar:

copy:

Istreams ’ 181

proctype (istream) returns (bool

Can_write returns true if encode operations appear possible on the istream.

proctype (istream) returns (bool)

Returns true if and only if there are no more ob jects in the file.

proctype (istream) signals (not_possible(string))

This operation resets the istream so that the next input or output operation will read
or write the first item in the file. '

proctype (istream)

Any buffered output is written to the file, if possible. Otherwise, there is no effect.

proctype (istream) returns (date) signals (not_possible(string)) .

This operation returns the date of the last modification of the corresponding storage
file.

proctype (istream, date) signals (not_possible(string))

This operation sets the modification date of the corresponding storage file. (The
modification date is set automatically when a file is opened in “write” or "append”
mode.)

proctype (istream) returns (file_name)

This operation returns the name of the corresponding file. It may be different than
the name used to open the file, in that defaults have been resolved and link
indirections have been followed.

proctype (istream)

This operation terminates /O and removes the association between the istream and
the file. Further use of operations that signal not_possible will signal not_possible.
proctype (istream) returns (boo)

This operation returns true iff the istream is closed.

proctype (istream, istream) returns (bool

Returns true if and only both arguments are the same istream.

proctype (istream, istream) returns (bool

Returns true if and only both arguments are the same istream.

proctype (istream) returns (istream)

Returns its argument.



132 Istreams : L)

II1.7. Terminal 1/0

Terminal 1/0 is performed via streams attached to interactive terminals. Such a stream is
normally obtained as an argument to_the top-level procedure of a program. A terminal stream is
capable of performing both input and output operations. A number of additional operations are
possible on terminal streams, and a number of standard operations have special interpretations.

Terminal input will normally be buffered so that the user may perform editing functions, such
as deleting the last character on the current line, deleting the current line, redisplaying the current
line, and redisplaying the current line after clearing the screen. Specific characters for causing
these functions are not suggested. In addition, some means must be provided for the user to
indicate end-of -file, so that a terminal stream can be given to a program that expects an arbitrary
stream and reads it until end-of-file. The end-of-file status of a stream is cleared by the reset
operation.

Input buffering is normally provided on a line basis. When a program first asks for input
(using getc, for example) an entire line of input is read from the terminal and stored in an internal
buffer. Further input is not taken from the terminal until the existing buffered input is read.

However, new input caused to be read by the getbuf operation will be buffered as a unit.
Thus, one can read in a large amount of text and allow “editing” of the entire amount of text. In .
addition, when the internal buffer is empty, the getc_image operation will read a character directly
from the termin'al, without interpreting it or echoing it.

The user may specify a prompt string to be printed whenever a new buffer of input is
requested from the terminal; the prompt string will also be reprinted when redisplay of the current
line is requested by the user. However, if at the time that new input is requested an unfinished
line has been output to the terminal, then that unfinished line is used instead as a prompt.

The routine putc_image can be used to cause control functions, eg. \007 (bei) and "\p’
(new-page or clear-screen). We cannot guarantee the effect caused by any particular control
character, but we recommend that the standard ASCII interpretation of control characters be
supported wherever possible.

Terminal output may be buffered by the system up to one line at a time. However, the buffer

must be flushed when new input is requested from the terminal.



st Terminal 1/0 138

Terminal streams do not have modification dates. Terminal streams should have file names
and implicit line numbers.
Additional operations:
getbuf: proctype (stream, string) returns (string)
signals (end_of file, not_possible(string))
This operation is the same as gets, except that for terminals with input buffering,
the entire input read by getbuf is buffered as a unit, allowing input editing of the
entire text.
get_prompt: proctype (stream) returns (string
This operation returns the current prompt string. The prompt string is initially
empty (™). The empty string is returned for non-terminal streams.
set_prompt: proctype (stream, string
This operation sets the string to be used for prompting. If not possible, there is no
effect.
get_input_buffered: proctype (stream) returns (bool
This operation returns true iff the stream is attached to a terminal and input is
being buffered.
set_input_buffered: proctype (stream, bool) signals (not_possible(string))
This operation sets the input buffering mode.

get_output_buffered: proctype (stream) returns (bool
This operation returns true iff the stream is attached to a terminal and output is
being buffered.

set_output_buffered: proctype (stream, bool) signals (not_possible(string))

This operation sets the output buffering mode. Unbuffered output is useful for
programs that output incomplete lines as they are working to allow the user to watch
the progress of the program.

III.8. Miscellaneous Procedures
working_dir: proctype () returns (string)

This procedure returns the current working directory. A null directory in a file
name denotes the current working directory.



134

Miscellaneous Procedures SIS

set_working_dir: proctype (string) signals (bad_format, not_possible(string))

delete_file:

rename_file:

user_name:

now:

e_form:

f_form:

This procedure is used to change the working directory.

proctype (file_name) signals (not_possible(string))

This procedure deletes the specified storage file. An exception may be signalled
even if the specified file does not exist, but an exception will not be signalled solely
because the file does not exist. For example, an exception may be signalled if the
specified directory does not exist or if the user does not have access to the directory.

proctype (file_name, file_name) signals (not_possible(string))

This procedure renames the file specified by argl to have the name specified by
arg2. Renaming across directories and devices may or may not be allowed.

proctype () returns (string

This procedure returns some identification of the user who is associated with the
executing process.

proctype () returns (date)

This procedure returns the current date and time.

proctype (real, int, int) returns (string) signals (illegal_field_width)

E_form returns a real literal of the form:

[-J_netd] £ fieta]esx_pietd
where i_field is arg2 digits, f_field is arg3? digits, and x_field is Exp_width digits
(see Appendix 11, Section 4). If arg3 = 0, then the decimal point and f_field are not
present. If argl = 0.0, then the leftmost digit of i_field is not zero. If argl = 0.0,
then x_field is all zeros. lllegal_field_width occurs if arg2 <0 or arg? <0 or
arg2 + arg3 < 1. If necessary, argl may be rounded to fit the specified form.

proctype (real, int, int) returns (string) signals (illegal_field_width,
: insufficient_field_width)

F _form returns a real literal of the form:

[-Jpetdsf fiea
where f_field is arg3 digits. If arg2 >0, then i_field is at least one digit, with
leading zeros suppressed. If arg2 = 0, then i_field is not present. Illegal_field_width
occurs if arg2 <0 or arg? <0 or arg2 + arg3 <1. If necessary, argl may be rounded
to fit the specified form. Insufficient_field_width  occurs  if
reaigexponent(argl) > arg2 after any rounding.



§HI1.8

g_form:

Miscellaneous Procedures 135

proctype (real, int, int) returns (string) signals (illegal_field_width,
insufficient_field_width)

If argl =00 or -l < real$exponentlargl) <arg2, then the result returned by this
routine is f_formlargl, arg2, arg3). Otherwise, the result is
e_formlargl, 1, arg2+arg3-Exp width-3). [Illegal_field_width occurs if arg2 <0 or
arg? <0 or arg2 + arg? < 1. If necessary, argl may be rounded to fit the specified
form. Insufficient_field_width occurs if argl = 0.0 and
~-1 < real$exponentlargl) < arg2) and (arg2 + arg3? < Exp_width + 3) after any
rounding.

II1.9. Dates

Dates are

are:

create:

get_all:

get_day:
get_month:
get_year:
get_hour:
get_minute:
get_second:

unparse:

unparse_date:

unparse_time:

equal:

immutable ob jects that represent calendar dates and times. The operations for dates

proctype (int, int, int, int, int, in® returns (date) signals (bad_format)

The arguments are (in order) day, month, year, hours, minutes, and seconds.

proctype (date) returns (int, int, int, int, int, in?

Returns the components in the same order as given to create.
proctype (date) returns (int)

proctype (date) returns (int)

proctype (date) returns (int)

proctype (date) returns (int

proctype (date) returns (int)
proctype {(date) returns (int)

(1..3D, (1.12), (1.), (0..23), (0..59, (0..59), respectively.

proctype (date) returns (string)
e.g. "12 January 1978 01:36:59"

proctype (date) returns (string
e.g. “12 January 1978"

proctype (date) returns (string!
e.g. "01:36:59"

proctype (date, date) returns (bool
The obvious equal.



136

similar:

copy:

it:
le:
ge:
gt:

Dates L H K

proctype (date, date) returns (bool
Returns dateSequal (argl, arg2).

proctype (date) returns (date)

Returns argl.

proctype (date, date) returns (bool
proctype (date, date) returns (bool)
proctype (date, date} returns (bool
proctype (date, date) returns (bool

The obvious relational operations; if datel < date2, then datel occurs earlier than
date2.



s1vV Examples 137
Appendix IV - Examples

IV.1. Priority Queue Cluster .

This cluster is an implementation of priority queues. It inserts ekMts in O(logg n) time, and
removes the “best” element in Ollogy n) time, where n is the number of items in the queue, and
“best” is determined by a total ordering predicate that the queue is created with.

The queue is conceptually implemented as a binary‘tree, balanced such that every element is
"better” than ijts descendants, and such that the minimum depth of the tree differs from the
maximum depth by at most one. The tree is actually represented by keeping the elements in an
array, with the left son of ali] in alis2), and the right son in alis2+1). The root of the tree, all], is
the “best” element. V

Each insertion or deletion must rebalance the tree. Since the tree is of depth strictly less than
logg n, the number of comparisons is less than logo n for insertion and less than 2 logy n for
removal of an element. Consequently, a sort using this technique takes less than 3 n logo n
comparisons. | |

This cluster illustrates the use of a type parameter, and the use of a procedure as an ob ject.



138 Priority Queue Cluster §Iv.i

p-queue = cluster (t: typel is create, best, size, empty, insert, remove

pt = proctype (t, t) returns ﬂ:obl)
at = array(t]
rep = structfa: at, p: pt] X 1 <1 <= sizea) implies ~p(alil, ali/2])

X Create a p_queue with a particular sorting predicate. P should be a transitive, non-reflexive,
% total order. P(x, y) means that x is better than y. Each element in the p_queue should better
% than its sons. However, this may not be true if mutable elements are changed while in the
% p_queue.

create = proc (p: pt) returns (cvt)
returnireps{a: at$new(), p: p}) X Low index of array must be 1!
end create

% Return the best element.

best = proc (x: cvt) returns (t) signals (empty)
return{at$bottom(x.a))
except when bounds: signal empty end
end best

% Return the number of elements.
size = proc (x: cvt) returns (int)

return{at$size(x.a))
end size

%X Return true if there are rio elements.
empty = proc (x: cvt returns (bool

return(at$empty(x.a))
end empty



A

Priority Queue Cluster

% Insert an element of type t.

insert = proc (x: cvt, v: t)

a: at := x.a

p: pt:= X.p

at$addh(a, v)

son: int := at$high(a)

dad: int := son/2

while dad > 0 cand p(v, aldad)) do
alson] := aldad]
son, dad := dad, dad/2
end

alson] := v

end insert

X Remove the best element and return it.

remove = proc (x: cvt) returns () signals (empty)

a: at := X.a

P: pt:=xp ,
r: t ;= at$bottom(a)

except when bounds: signal empty end

v: t := at$remh(a)
max_son: Int := at$size{a)
if max_son = 0 then return(r) end
max_dad: int := max_son/2
dad: int:=1
while dad <= max_dad do

son: int := dads2

sval: t := alson]

if son < max_son

then nsval: t := alson + 1]

R A R R 2

W 3 W 2 R R

L4
X

Make room for new item
Tentative index of v

Get index of v's father
While v better than father
Move father down _
Get new son, father indexes

Insert the element into place

Save best for later return

Shrink array; save element
Last son node

If now empty, we're done

Last node with a son
Tentative index of v
While node has a son
Get the first son

If there is a second son
Find the best son

if p{nsval, sval) then son, sval := son + 1, nsval end

end
if ~p(sval, v) then break end
aldad] := sval
dad := son
end
aldad] := v
returni(r)
end remove

end p_queue

n W

e

If son doesn't beat v, we're done
Move son up
Move v down

Insert the element into place
Return the previous best element

139



140 Text Formatter ' §IV.2

IV.2. Text Formatter

The following program is a simple text formatter. The input consists of a sequence of
unformatted text lines mixed with command lines. Each line (except possibly the last) is terminated
by a newline character, and command lines begin with a period to distinguish them f rom text lines.
For example:

Justification only occurs in "fill" mode.

In "nofill" mode, each input text line is output without modification.
The .br command causes a |ine-break.

.br :

Just like this.

The program produces justified, indented, and paginated text. For example:

Justification only occurs in "fill" mode. In "nofill"™ mode,
each input text line is output without modification. The .br
command causes a |ine-break.

Just like this.

The output text is indented 10 spaces from the left margin, and is divided into pages of 50 text
lines each. Each output line has 60 characters. A header of 5 lines, including a line giving the
page number, is output at the beginning of each page.

An input text line consists of a sequence of words and word-break characters. The
word-break characters are space, tab, and newline; all other characters are constituents of words. .
Tab stops are considered to be every eight spaces.

Tabs and spaces are accumulated in the current output line along with the input words. Thus,
if two spaces occur in the input between two words and those words appear on the same output
line, then they will be separated by at least two spaces.

The formatter has two basic modes of operation. In "nofill” mode, each in'put text line is
output without modification. In “fill" mode, input is accepted until no more words can fit on the
current output line. Ncwliﬁe characters are treated essentially as spaces. The line is then justified
by adding extra spaces between words until the last word has its last character in the rightmost
position of the line. Initially the formatter is in fill mode.

Justification is performed by enlarging spaces between words, as evenly as possible. Enlarging
is performed alternately from the right and the left, starting from the right at the top of each page.
Only spaces to the right of all tabs and between words are sub ject to justification. Furthermore,
spaces preceding the first word following a tab are not subject to justification. If there are no

spaces sub ject to justification, then no justification is performed and no error message is produced.



§IV.2 Text Formatter 141

In fill mode, any input line that starts with a word-break character causes a line-break: the
current output line is neither filled nor ad justed, but is output as is. An “empty” input line (one
starting with a newline character) causes a line-break and then causes a blank line to be output.

In nofill mode, if an input line is longer than the line length, it is output as given with no
error message. In fill mode, if a word is longer than the line length, it is output as given on a line
by itself with no error message.

The formatter accepts three different commands:

br - causes a line-break
.nf - causes a line-break, and changes the mode to "nofill”
fi - causes a line-break, and changes the mode to "fill”

An unrecognized command name causes an error message and is otherwise ignored.

The program performs input and output on streams.



142 Text Formatter §IV.2

Fig. 8. Module Dependency Diagram

format

o R
do_line
do_text_line | : do_cornnk@ ’

\ N

doc

stream

Note: boxes with a double line at the top indicate clusters.



§1V.2 Text Formatter 143

% Read the instream, processing it and placing the output on outstream and writing error messages
% on errstream.

format = proc (instream, outstream, errstream: stream) signals (bad_arg(string)
It ~stream$can_read(instream) then signal bad_arg(“input stream”)
elseif ~stream$can_write(outstream) then signal bad_arg(“output stream™)
elseif ~stream$can_write(errstream) then signal bad_arg(“error stream”)
end :
d: doc := doc$create(outstream)
line: int:= 0
while ~stream$empty(instream) do
line := line + 1
do_linelinstream, d)
except when error (why: string):
stream$putlerrstream, intSunparse(line) § “\t" il why)

end
end
doc$terminate(d)
end format

%X Process an input line. The line is processed either as a text line or as a command line,
% depending upon whether or not the first character of the line is a period. '

do_line = proc (instream: stream, d: doc) signals (error(smng))

c: char := stream$peekc(instream)
ifc="'

then do_command(instream, d)

resignal error

else do_text_linelinstream, d)

end
end do_line



144 Text Formatter §Iv.2

% Process a command line. This procedure reads up to the first space or tab in a line and
X processes the string read as a command. The remainder of the line is read and discarded.

do_command = proc (instream: stream, d: doc) signals (error(string))
stream$getclinstream) . X skip the period
n: string := stream$gets(instream, * \t\n")
except when end_of _file: n := ™ end
stream$getKinstream) % read and discard remainder of input line
except when end_of file: end R
if n = "br" then doc$break_line(d)
elseif n = *fi” then doc$set_filkd)
elseif n = “nf" then docsset_nofilkd)
eiseif n = = then signal error("missing command”)
else signal error(™ . n | ™ not a command” -
end
end do_command

% Process a text line. This procedure reads one line from instream and processes it as a text line.
% If the first character is a word-break character, then a line-break is caused. If the line is empty,
% then a blank line is output. Otherwise, the words and word-break characters in the line are
X processed in turn. ' :

do_text_line = proc (instream: stream, d: doc)
c: char := stream$getclinstream)
c="\n :
then docsskip_line(d) % empty input line
return :
elseifc="'" cor c="\t
then docsbreak_lineld) .
end
while ¢ ~= \n' do :
# c =’ then docsadd_spaceld)
elseif ¢ = \t' then docsadd_tabld)
else w: word := word$scan(c, instream)
docsadd_word(d, w) '
end
C := stream$getclinstream)
end except when end_of _file: end
docsadd_newline(d)
end do_text_line



§IV.2 Text Formatter 145

2 2 32 22 2T At 2T ¥ R

maintained.

The doc cluster implements documents, the properly indented, justified, and paginated output of
the text formatter. A document is constructed incrementally, using operations to add words,
spaces, tabs, and newlines to the end of the document. Other operations are used for the basic
formatting actions: break_line to cause a line break, skip_line to output a blank line, set_fill and
set_nofill to set the formatting mode. Rather than collecting the entire document as a sequence
of lines before outputting to a file, each line is output as it is produced. The current output line
is maintained for the purposes of performing justification. To perform pagination and the
production of headings, the current line number and the current page number are also

doc = cluster is create, add_word, add_space, add_tab, add_newline,
break_line, skip_line, set_fill, set_nofill, terminate

rep = recordlline: line, X
fill: bool, 4
r2k bool, %
lineno: int, %

%
pageno:  Int, X
outstream: stream] %X

chars_per_line = 60

lines_per_page = 50
left_margin_size = 10

The current line.

True <==> in fill mode.

True <==> justify next line right-to-left.

The number of lines output so far on this page -
(not including any header lines).

The number of the current output page.

The output stream.

X Create a doc object. The first page is number 1, there are no lines yet output on it. Fill mode is.

% in effect.

create = proc {(outstream: stream) returns (cvt

returnireps{line: lineScreate(),
filt: true,
r2k: true,
lineno: 0,
pageno: |,

outstream: outstream))



146 Text Formatter §IV.2

Process a word. This procedure adds the word W to the output document. If in nofill mode,
then the word is simply added to the end of the current line (there is no line-length checking in
nofill mode). If in fill mode, then we first check to see if there is room for the word on the
current line. If the word will not fit on the current line, we first justify and output the line and
then start a new one; justification is performed akernately from the right and the left on
successive lines. However, if the line is empty, then we just add the word to the end of the line;
if the word won't fit on an empty line, then it won't fit on any line, so we have no choice but to
put it on the current line, even if it doesn't f it.

a3 2 R R R

add_word = proc (d: cvt, w: word)
if d.fill cand ~lineSempty(d.line)
then if lineSlength(d.line) + word$width(w) > chars_per_line
then lines justify(d.line, chars_per_line, d.r2i)
d.r2l ;= adr2t
~ output_line(d)
end
end ‘
linesadd_word(d.line, w)
end add_word :

- % Process a space -- just add it to the current line.

add_space = proc (d: cvd
lineSadd_spacel(d.line)
end add_space

% Process a tab —— just add it to the current line.

add_tab = proc (d: ev®
linesadd_tab(d.line)
end add_tab

%X Process a newline. lf in nofill mode, then the current line isoutput asis. Otherwise, a newline
X is treated just like a space.

add_newline = proc (d: cvt)
" i ~d.fill
then output_line(d)
else linesadd_space(d.line)
end
end add_newline



§IvV.2 Text Formatter 147

% Cause a line break. If the line is not empty, then it is output as is. Line breaks have no effect
% on empty lines -- multiple line breaks are the same as one.

break _line = proc (d: cvt)
if ~lineSempty(d.line) then output_line(d) end
end break_line

% Cause a line break and output a blank line.

skip_line = proc (d: cvt)

break _line{up(d))

output_line(d) % line is empty
end skip_line

%X Cause a line break and enter fill mode.

set_fill = proc (d: cvt)
break_line(up(d))
d.fill := true
end set_fill

% Cause a line break and enter nofill mode.

set_nofill = proc (d: cvd
break_line(up(d))
d.fill := false
end set_nofill

% Terminate the output document.
terminate = proc (d: cvd

break_line{lup(d))
end terminate



148 Text Formatter sIVv.2

% Internal routine.

% Output line is used to kéep track of the line number and the page number and to put out the
% header at the top of each page. At the top of each page, justification is reset to start from the
%X right.

output_line = proc (d: rep)
if d.lineno = 0
then if d.pageno > |
then stream$putc(d.outstream, "\p" end
stream$puts(d.outstream, "\n\n") % print header
stream$putspace(d.outstream, left_margin_size)
stream$ puts(d.outstream, "Page ")
stream$puts(d.outstream, intSunparse(d.pageno))
stream$ puts(d.outstream, "\n\n\n")
end
d.lineno := d.lineno + 1
if ~line$empty(d.line)
then stream$ putspace(d.outstream, left_margin_size)
lineSoutput(d.line, d.outstream)
end
stream$putc(d.outstream, "\n’)
if d.lineno = lines_per_page
then d.r2l := true
d.lineno := 0
d.pageno := d.pageno + 1
end
end output_line

end doc



§siv.2 Text Formatter 149

%
%
%
%
%
%
%
%
%X

A line is a mutable sequence of words, spaces, and tabs. The length of a line is the number of
character positions that would be used if the line were output. One may output a line onto a
stream, in which case the line is made empty after printing. One may also justify a line to a
given length, which means that some spaces in the line will be enlarged to make the length of
the line equal to the desired length. .Only spaces to the right of all tabs are subject to
justification. Furthermore, spaces preceding the first word in the output line or preceding the
first word following a tab are not subject to justification. If there are no spaces sub ject to
justification or if the line is too long, then no justification is performed and no error message is
produced.

line = cluster is create, add_word, add_space, add_tab, length, empty, justify, output

token = variant{space: int, % the int is the width of the space

tab: int X the int is the width of the tab

word: word]
at = array(token)
rep = recordlength: int, X the current length of the line

stuff: at) % the contents of the line
% no two ad jacent tokens will both be spaces

max_tab_width = 8 % maximum chars per tab

% Create an empty line.

create = proc () returns (cvV

%

returnireps${length: 0,
stuff: at$new()})
end create

Add a word at the end of the line.

add_word = proc (I: cvt, w: word)

%

at$addh(l.stuff, token$make_word(w))
Llength := Liength + word$width(w)
end add_word

Add a space at the end of the line, combining it with an existing trailing space, if any.

add_space - proc ({I: cvt)

Llength := Liength + 1
tagcase atStop(Lstuff)
tag space (width: in®: tokenSchange_space(atStop(l.stuff), width + 1)
return '
others:
end except when bounds: end % Handle empty array case.
at$addh(Lstuff, token$make_space(1)
end add_space



150 Text Formatter $s1vV.2

% Add a tab at the end of the line.

add_tab = proc (I: cvd
width: int := max_tab_width - (Llength // max_tab_width)
Liength := Llength + width -
at$addh(Lstuff, token$make_tab(width))
end add_tab

% Return the current length of the line.

length = proc (I: cvt) feturns (in®
return(l.length)
end length

% Return true if the line is of length zero.

empty = proc (I: cvd) returns (bool
return(l.length = 0)
end empty

Justify the line, if possible, so that it’s length is equal to LEN. Before justification, any trailing
space is removed. If the line length at that point is greater or equal to the desired length, then
no action is taken. Otherwise, the set of justifiable spaces is found, as described above. If there
are no justifiable spaces, then no further action is taken. Otherwise, the justifiable spaces are
enlarged, as evenly as possible, to make the line length the desired length. Enlarging is
performed either from the right or the left, depending on R2L. ’

3 2 2 2t 2

justify = proc (I: cvt, len: int, r2l: bool
tagcase atStop(lstuff)
tag space (width: in®): at$remh(l.stuff)
Llength := Llength - width
others: _
end except when bounds: end % Handle empty array case.
- if Llength >= len then return end
diff: int := len - Llength
first: Int := find_first_justifiable_space(l)
except when none: return end
enlarge_spaces(l, first, diff, r20
end justify



§Iv.2 Text Formatter 151

X Output the line and reset it.

output = proc (I: cvt, outstream: stream)
for t: token In at$elements(l.stuff) do
tagcase t )
tag word (w: word): word$output(w, outstream)
tag space, tab (width: int): stream$putspace(outstream, width)
end '
end
Llength := 0
atstrim(lstuff, 1, 0
end output

»

Internal routines.

Find the first justifiable space. This space is the first space after the first word after the last
tab in the line. Return the index of the space in the array. Signal NONE if there are no
justifiable spaces. Although no two ad jacent tokens will both be words (as lines are currently
used), no such assumption is made here.

R e 2

find_first_justifiable_space = proc (I rep) returns (int) signals (none)

a: at := Lstuff '

if atSempty(a) then signal none end

lo: int := at$low(a)

hi: int := at$high(a)

i: Int:= hi

while i > lo cand ~token$is_tab(ali]) do X find last tab in the line (if any)
i=i-1
end

while i <= hi cand ~token$is_word(alil) do % find first word after it {or first in line)
i=i+1
end

while i <= hi cand ~token$is_space(alil) do % find first space after that
im=jis]
end

if i > hi then signal none end

returndi)

end find_first_justifiable_space



152 Text Formatter §IV.2

% Enlarge the spaces in the array whose indexes are at least FIRST. Add a total of DIFF extra
% character widths of space. Add spaces working from the right or the left, depending on R2L.

enlarge_spaces = proc (I: rep, first, diff: int, r2l: bool)

nspaces, last: int := count_spaces(l, first)
if nspaces = 0 then return end
by: int:= |
it r2t

then by := -1

first, last := last, first

end
neach: int := diff / nspaces % Amount to increase each space.
nextra: int := diff // nspaces % Leftovers to be distributed.
for i: int in int$from_to_by(first, last, by) do

tagcase Lstuffli)

tag space (width: in¥): width := width + neach
' if nextra >0
then width := width + |
nextra := nextra - 1

end
token$change_space(lstuff{i], width)
others:
end
end

Llength := Llength + diff
end enlarge_spaces

X - Return a count of the number of spaces in the line whose indexes in the array are at least IDX,
X and return the index of the last space counted.

count_spaces = proc (l: rep, idx: int) returns (int, int)
count: int ;= 0
for i: int in int$from_tolidx, atShigh(l.stuff) do
tagcase Lstufflil
tag space: count := count + 1
idx = i
others:
end
end
return{count, idx)
end count_spaces

end line



A Text Formatter 153

X A word is an item of text. It may be output to a stream. It has a width, which is the number of
X character positions that are taken up when the word is printed.

word = cluster is scan, width, output
rep = string

% Construct a word whose first character is C and whose remaining characters are to be removed
% from the instream.

scan = proc (c: char, instream: stream) returns (cvt)
s: string := string8$c2s(c)
s := s | stream$getstinstream, " \t\n"
except when end_of _file: end
return(s)
end scan

X Return the width of the word.

width = proc (w: cvt) returns (int)
return{strings$size(w))
end width

%X Output the word.

output = proc (w: cvt, outstream: stream)
stream$puts(outstream, w)

end output

end word



154 Text Substitution Program sIVs

IV.3. Text Substitution Program

The following (rather complex) program performs textual substitutions of one set of strings
for another throughout a file. It can be useful in expanding abbreviations, renaming variables,
correcting misspellings, etc.

Substitutions are specified by a list of rules read from a file. Each rule consists of a
left-hand-side (the string to be replaced) and a right-hand-side (the string to replace with),
separated by a '>’
substitute "BEGIN" for "begin” and "END" for “end”, the rules would be:

begin>BEGIN
end>END

character. Each rule is terminated by a newline character. For example, to

All substitutions are done simultaneously, so for example it is possible to substitute "a" for "b”
and "b" for "a". Substitution is not performed on the results of a substitution, only on the original
text. When performing substitutions, the rule with the longest left-hand-side always takes
precedence. Thus, given the two rules:

abo>x
a>y

an input of “abcab™ would be transformed to "xyb". :

Within a rule, characters can be represented with the same escape sequences allowed in string

literals. For example, the following rule replaces each newline by two newlines:
\n>\n\n
In addition, the escape sequence "™\>" can be used to represent the character ">".

The program asks for the name of a rule file, and then loops asking for pairs of input and
output file names to process using the given rules. If no input file is given, a new rule file is
'requestea. If no rule file is given, the program terminates. If no output file is given, a new input
file is requested.

The program is implemented using a pushdown transducer: a pushdown automaton extended

to produce output.



§sIv3

Fig. 9. Module Dependency Diagram

Text Substitution Program

substitute

L

—

get_stream

D

file_name

Note: boxes with a double line at the top indicate clusters.

y__ﬁ_/.

build pdt run_pdt
J -
get_rule_part pdt
add_rule |
all_states
stream state
strip

replicate

155

all_suffix_states




156 ' Text Substitution Program sIV.s

%X Ask for a rule file and build a pushdown transducer for it, and then loop asking for pairs of
%X input and output files and processing them using that pushdown transducer. When no input
%X file is given, ask for a new rule file. When no rule file is given, terminate. When no output
%X file is given, ask for a new input file.

substitute = proc ()
tyo: stream := stream$primary_output()
while true do
rst: stream := get_stream("rule file: *, “read”
except when refused: return end
m: pdt := buikd_pdt(rst) .
except when illegal (line: int, why: strlng)

stream$close{rst)
stream$putKtyo, lnttunparsc(line) ¥ “\t" N why)
continue
end
stream$close{rst)
while true do

inst: stream := get_stream("input file: °, read')
except when refused: break end

outst: stream := get_stream{ output file: ", "write”
except when refused: stream$close(inst)

: continue
end

run_pdt(inst, outst, m)

stream$close{outst)

stream$close(inst)

end

: end
_end substitute



A Text Substitution Program 157

% Read in a file_name and open the file in the given mode. Signal refused if no file_name is
X given.

get_stream = proc (prompt, mode: string) returns (stream) slgnals (refused)
tyi: stream := stream$primary_input()
tyo: stream := stream$primary_output()
tyl.input_buffered := true
while true do
stream$puts(tyo, prompt)
fs: string := stream$getltyi)
if stringSempty(fs)
then signal refused end
return(stream$open(file_name$parse(fs), mode))
except when bad_format: stream$putltyo, "bad format file name”)
when not_possible (s: string): stream$putktyo, s)
end
end except when end of _f ||e~ signal refused end
end get_stream

%X Read and parse the rules from the glven stream. Construct and return a pushdown transducer
% corresponding to those rules.

build_pdt = proc (st: stream) returns (pdt) slgnﬂs (illegal(lnt. string))
rule = struct{left, right: string)
rulelist = array{rulel
rules: rulelist := rulelist$new()
line: int := 1
while true do ‘
while stream$peekc(st) = "\n’ do
stream$getc(st)
line := line + 1
end except when end_of _file: return(pdtScreate(rules)) end
left: string := get_rule_part(st, ">\n"
if stringSempty(left)
then signal illegal(line, "missing left side of rule” end
it stream$empty(st) cor stream$getc(st) w='>'
then signal illegal(line, "missing right side of rule”) end
right: string := get_rule_part(st, "\n")
rulelistsaddh(rules, rules{left: left, right: right}
end except when illegal (why: string): signal illegakline, why) end
end build_pdt



158 Text Substitution Program §IVs

%X Parses a rule part up to but not including the given terminators. Accepts the regular escape
%X sequences, plus "\>" to represent ">"

get_rule_part = proc (st: stream, terms: string) returns (string) signals (illegalstring))
terms := string$append(terms, "\\"
part: string := ™
while true do
begin
part := part il stream$gets(st, terms)
if stream$peekc(st) ~= "\\'
then return(part) end
end except when end_of file: rctnm(pan) end
c: char := stream$getc(st)
x: int := stringSindexc(stream$peekc(st), "\"\\>mpbrv’)
itx>0
then stream$getc(st)
¢ = \\\>An\\p\b\r\vIx]
else sum: int := 0
. for i: Int in Int$from_toll, 3) do
¢ := stream$getc(st)
c<0' cor c>7
then exit illegal_char end
sum := sum s 8 + char$c2ic) - char$c2i'0)
¢ := char$i2c(sum)
end
part := stringSappend(part, c)
ond
except when end_of_me illegal char: signal illeg:l(‘hd escape sequence”)
end
end get_rule_part

%X Perform all substitutions on a file.

run_pdt = proc (inst, outst: stream, m: pdt)
' while true do
pdt$movelm, stream$getclinst)
- except when output (s: string): stream$putsioutst, s) end
end except when end_of _file: strumtplm(m. Mme!(m” end
end run_pdt



§IV3 ] Text Substitution Program 159

2 22 22 AR AR 2 2R

A pushdown transducer is a collection of states connected by transitions. A transition can also
connect a state to an output condition, with the initial state as the implicit next state. A
transition is labeled with both an input character and a set of lookahead characters; the
transition is to be followed if the current input character matches and the current lookahead
character is in the lookahead set. The basic operation of the transducer is move, which moves
according to the current input character (at the top of the pushdown list), and the current
lookahead character (given as an argument). Output is produced by signalling with a string
result.

pdt = cluster is create, move, reset

a2 2t 2 e

rep = record(first:  state, % initial state
buffer: buf, % path from initial state to current state
% plus next input char
current: state) % current state

rule = structleft, right: string)
rulelist = array{rule)
buf = arraylchar)

Two phase construction. First construct all states and transitions needed to follow any single
rule from the initial state to its output condition. Then fill in missing cross-transitions for rules
that interact with each other, in (approximately) the following manner. For each substring of a
left-hand side of a rule (a path from some state S3 to some state S2) that is also a prefix of a
left-hand side of a rule (a path from the initial state to some state S1), add all transitions out of
S1 (not conflicting with existing transitions out of S2) as transitions out of S2.

create = proc (rules: rulelist) returns (cvt) signals (illegal(string))

first: state := state$create()
tor r: rule in rulelist$elements(rules) do
add_rute(first, )
end resignal illegal
for path: string, s2: state in all_states(first) do
for sl: state in all_suffix_states(path, first) do
replicate(sl, s2)
end
end
returnirepsifirst: first, buffer: buf $new(), current: first})
end create



160 Text Substitution Program §Iv.s

Make a move with the given char as the lookahead input. If a rule is recognized (an output
condition is reached), the left side of the rule is discarded from the end of the buffered input,
and any remaining input is concatenated with the right side of the rule and returned for output.
If no rule can match the current buffered input, the entire buffered input is returned for
output.

W A A

move = proc (m: cvt, peek: char) signals (output(string))
m.current := stateSmove(m.current, bufStop(m.buffer), peek)
except when output (size: int, out: string):
buf$trim(m.buffer, 1, bufgsize(m.buffer) - size)
out := resetl(m) il out
bufsaddh(m.buffer, peek)
signal output(out)
when no_match:
out: string := resetl(m)
bufsaddh(m.buffer, peek)
signal output(out)
when bounds:
.  end
buf$addh(m.buffer, peek)
end move

% Force input termination. Returns any final output. Restores the pdt to its initial state.

reset = proc (m: cvt) returns (string)
extra: string := ™
m.current := stateSmovel(im.current, buf$top(m.buffer)
.x.copt when output (size: int, out: string):
bufs$trim(m.buffer, 1, buftsm(m.buffer) size)

extira := ot
when no_match, bounds:
. end
returnireseti(m) § extra)
end reset

~ % Internal routine.
% Return current buffered input. Reset current state to initial state.

reset] = proc (m: rep) returns (string
s: string := stringSac2s(im.buffer)
buf $trim(m.buffer, 1, 0
m.current := m.first
returnis)
ond resetl

ond pdt



§sIvas Text Substitution Program 161

%X Add a new rule. Follow existing path through pdt as far as possible, and then add new states.
X Just add states and transitions needed to follow the rule from the initial state to the output
X condition, do not add cross-transitions for interacting rules.

add_rule = proc (s: state, r: rule) signals (illegal(strlng))
rule = struct{left, right: string]
left: string := r.left
if stringSempty(left)
then signal illegal("rule has empty left side”) end
size: int := string$size(left)
i:int:=1
peeks: string := ™"
while i < size do
s := statesmovels, leftlil, leftli + 1)
im=is+l
end except when output (s): peeks := string$c2s(lefili + 1D
when no_match:
end
while i < size do
ns: state := stategcreate()
state$sadd_movels, leftli], peeks, ns)
S:=ns
i=i+l
peeks ;= ™"
end
state$add_output(s, leftlsizel, size, r.right)
except when illegal: signal illegal"conflicting rules") end
end add_rule

X Traverse depth first left to right, yielding all path-state pairs reachable from given state. Depth
% first traversal is used to satisfy the requirement that the rule with the longest left-hand side
% takes precedence.

all_states = iter (s: state) yields (string, state)
for input: char, peeks: string, next: state In stateSalI_moves(s) do
pre: string := string$c2s(input)
for path: string, ns: state in all_states(next) do
yieid(pre |l path, ns)
end
yield(pre, next)
end
end all_states



162 Text Substitution Program §Ivs

% Given a string, follow all proper suffixes (longest first) of the string as paths from the given
% state, and yield the final state reached by each legal path. The suffixes are done longest first to
X satisfy the requirement that the rule with the longest left-hand side takes precedence.

all_suffix_states = iter (path: string, first: state) ylelds (state)
size: int := string$size(path)
for i: int in int$from_to(2, size) do
s: state := first
Fint=i
while j < size do
s := stateSmovel(s, pathl jJ, pathlj + 1))
j=je+l ‘
end except others: continue end
s := stateSmovell(s, pathl j)
except others: continue end
yleld(s) :
end
end all_suffix_states

% For each input char causing a transition out of SI but not causing a tnnsltion out of S2, add a
% transition out of S2.

replicate = proc (s}, s2: state)
“for input: char, peeks: string, s: state lnstatetall_nnvcs(sl) do
state$movel(s2, input)
except when output (s): continue
when no_match:
end
statesadd_move(s2, input, peeks, 3)
except others: end "
end
for input: char, size: int, out: string In smetall_wlpudsl) do
state$add_output(s2, input, size, out)
except others: end
end

end replicate



§Iv.3 Text Substitution Program 163

%
%
%
%
%
X

A state is a collection of arcs, each labeled with the input character required to take the
transition. An arc either points to a new state, or indicates an output condition (with the initial
state as the implicit new state). For arcs to new states, a list of acceptable lookahead characters is
also present, with an empty list indicating "all others”. An output condition implicitly carries an
"all others™ lookahead list. There are operations to add new transitions, iterate over the
transitions, and move to a new state given the current input and lookahead.

state = cluster is create, all_moves, add_move, all_outputs, add_output, move, movel

rep = arrayl{trans] % a state is a set of transitions
trans = structfinput: char, % a transition is a labeled arc
next: arc]
arc = oneoflstate: pstate, X an arc is to a new state
output: output) % or to an output condition

pstate = recordpeeks: string, % empty lookahead means “all others”

state: state]
output = structisize: int, % size of left side of rule

out: string) % right side of rule

% implicit “all others” lookahead

% Create a new state with no transitions.

create = proc () returns (cvt

return(rep$new())
end create

% Yield all transitions (input, lookaheads, next state) from the given state to new states.

all_moves = Iter (s: cvt) yields (char, string, state)

for t: trans in repSelements(s) do
tagcase t.next
tag state (ps: pstate): yield(t.input, ps.peeks, ps.state)
tag output:
end
end
end all_moves



164 Text Substitution Program §SIVv.s

% Add a transition from one state to another for the given input and that subset of the given list
%X of lookahead chars not present on existing transitions for the given input. The addition is
X illegal if all of the lookaheads are already accounted for by existing transitions. An empty
% lookahead list denotes "all others not specified on other transitions for the same input”.

add_move = proc (from: cvt, input: char, peeks: string, to: state) signals (illegal
rpeeks: string := peeks
for t: trans in repSelements(from) do
If tinput = input
then tagcase t.next
tag state (ps: pstate): if stringSempty(ps.peeks)
then signal illegal
else rpeeks := strip(rpeeks, ps.peeks)
+ end
tag output: it stringSempty(peeks)
then signal illegal end
end
end
end
if stringSempty(rpeeks) cand ~stringSempty(peeks)
then signal illegal end
repsaddifrom, trans${input: input,
next: arc$make_state(pstate${peeks: peeks,
state: to})))
end add_move :

X Yield all transitions (input, size, output) from the given state to output conditions.

all_outputs = iter (s: cvt) yields (char, int, string
for t: trans in repSelements(s) do
tagcase t.next
tag state:
tag output (x: output): yleldt.input, x.size, x.out)
end
end

end all_outputs



§sIvs Text Substitution Program 165

% Add a transition from the given state to an output condition for the given input. An “all
X others” lookahead list is implicit for this transition, so the addition is illegal if a transition for
X the given input and an "all others” lookahead list already exists.

add_output = proc (from: cvt, input: char, size: int, out: string) signals (illegal
for t: trans in rep$elements(from) do
if tinput = input
then tagcase t.next
tag state (ps: pstate):

it ~stringSempty(ps.peeks)
then continue end

peeks: string := ™"

for x: trans in rep$elements(down(ps.state)) do
peeks := string$append(peeks, x.input)

end
ps.peeks := peeks
tag output:
signal illegal
end
end
end

repsaddh(from, trans${input: input,
next: arcSmake_output{output${size: size,
out: out})})

end add_output

% Return the next state for the given input and lookahead. Signal no_match if no transition is
% possible. Signal output if an output condition is reached.

move = proc (s: cvt, input, peek: char) returns (state) signals (no_match, output(int, string))
for t: trans in rep$elements(s) do
if tinput = input
then tagcase t.next
tag state (ps: pstate): ‘
it stringSempty(ps.peeks) cor string$indexc(peek, ps.peeks) > 0
then return(ps.state) end
tag output (x: output):
signal output(x_size, x.out)
end
end
end
signal no_match
end move



166 ' Text Substitution Program - SIVs

% Return the next state for the given input with no further input available. Signal no_match if
% no transition is possible. Signal output if an output condition is reached.

movel = proc (s: cvt, input: char) returns (state) signais (no_match, output(int, string))
for t: trans in repSelements(s) do
if tinput « input
then tagcase t.next
tag state (ps: pstate): if stringSempty(ps.peeks)
then return(ps.tate) end
tag output (x: output): signal outputix.size, x.out)
end :
end
end
signal no_match
end movel

end state
% Remove chars in USING from chars in FROM.

strip = proc (from, using: string) returns (string)
for c: char in stringSchars(using) do
i: int := stringSindexc(c, from)
fi>0 ,
then from := stringSsubstrifrom, 1, i - 1) § stringSrest(from, i + D) end
end : '
returnifrom)
ond strip



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

7 REPORT DOCUMENTATION PAGE BE,'},%’EDC%‘:&‘,;%T;E’"SO“
1. REFORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TR-225
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
CLU Reference Manual Interim
6. FERFORMING ORG. REPORT NUMBER
MIT/LCS/TR-225
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
N00014-75-C-0661

B.Liskgv, R.Atkinson, T.Bloom, E.Moss, C.Schaffert, MCS74-21892 A0l
B.Scheifler & A.Snyder

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT: TASK
MIT/Laboratory for Camputer Science

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS S 12. REPORT DATE
ARPA/Department of Defense Octobexr 1979
1400 wWilson Boulevard u.lgtéuaen OF PAGES

Arlington, VA 22209
14.  MONITORING AGENCY NAME & ADDRESS({f different from Controlling Office) 18. SECURITY CLASS. (of this report)

ONR/Depa#ment of the Navy /NSF/Associate Program| Unclassified
Infgmratlon Systems Program/Director, Office of
Arlington, VA 22217 /Camputing Activities [75+ DECLASSIFICATION/DOWNGRADING
/Washington, D.C. 2055(

16. DISTRIBUTION STATEMENT (of this Report)

';‘his document. has been approved for public release and sale;
its distribution is wnlimited

17.. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

| 19‘. KEY WORDS (Continue on reverse side if necessary and identily by block number)
programming languages iteration abstracitons
data abstractions CLO
strong type checking
modularity
exoception handling

20. ABSTRACT (Continue on reverse side if neceseary and identify by block number)
Thisdomxren{:servesbothasanintroductimtoCIUaﬂasalangxmgemference
manual Sections 1 through 4 present an overview of the language. These sections
highlight the essential features of CLU, and discuss how CLU differs from other,
more conventional, languages. Sections 5 through 13 form the reference manual
proper. These sections describe each aspect of CIU in detail, and discuss the
proper use of various features. Appendices 1 through III provide concise
summaries of CIU's syntax, data types, and 1/0 facilities. Appendix IV contains
exangle programs. _

DD , 5%%7: 1473  EDITION OF 1 NOV 68 is OBSOLETE

AN

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




