
eLH Relerence rtl unum
Barbara Lisk.av
Russ Atkinson
Toby Bloom
Eliot Moss

.Craig Schaffert
Bob Scheifler
Alan Snyder

October 1979

Tnis work. was supported in part by the Advanced Research Projects Agency of the Department of
Defense, monitored by the Office of Naval Research under contract NOOOH-75-C-0661, and in part
by the National Science Foundation under grant MCS74-21892 AOl.

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge Massachusetts 02139

This empty page was substih1ted for a
blank page in the original document.

l

History of CL U

The development of CLU began in January 197i. By the summer of 1975, the first version of

the language had been completed. Over the next two years, the entire language design was

reviewed and two implementatioi:is were produced. Based on this review, and on the experience

gained in using CLU, a second version of the language was des.igntd in the fall of 1977, and a new

implementation is now complete. A preliminary version of this manua' appeared in Ju'y 1978.

Since that time, an additional statement for exception handling, an own variab'e mechanism, and

three new basic type generators have been added to the language, and a number of minor changes

have been made to the 1/0 facilities.

Guide to the Manual

This document serves both as an introduction to CLU and as a language reference manual.

Sections 1 through 4 present an overview of the language. These sections highlight the essential

features of CLU, and discuss how CLU differs from other, more conventiona,, 'anguages. Sections

5 through 13 form the reference manual proper. These sections describe each aspect of CLU tn

detail, and discuss the proper use of various features. Appendices. I through III provide concise

summaries of CLU's syntax, data types, and 1/0 facilities. Appendix IV contains examp'e

programs.

Those readers wanting an introduction to CLU should read Sections 1 through 13 in order.

concentrating on Sections 1 through 4, 8, 9, and 13. <A brief introduction may be found tn

[Liskov77J.> Appendix IV should also be of interest. After becm:ning familiar wit~ CLU, specific

questions can be answered by consulting Sections 5 through 13 and Appendices I through III.

We would greatly appreciate receiving comments on both the language and this manual.

Comments should be sent to Barbara Liskov, Laboratory for Computer Science, Massachusetts

Institute of Technology, 545 Technology Square, Cambridge, MA 02139.

[Liskov771 Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C. Abstraction Mechanisms in

CLU. Comm. ACM 20, 8 <Aug 1977>, 564-576.

Keywords: programming languages, data abstractions, strong type checking, modu,arity, exception

handling, iteration abstractions, CLU

2

CONTENTS

Overview

1. Modules ... 6

I.I Procedures 6
1.2 Iterators 6
1.3 Clusters 7
1.4 Para1neterized Modu~s• 8
1.5 Program Structure 9

2. Data Types ... 9

2.1 Built-in Types ... 9
2.2 User-Defined Types II
2.3 Comparison of User-Defined and Built-In Types II

3. Semantics .. ~................................. 12

J.l Objects and Variables ... IS
3.2 Assignment and Invocation 14
3.5 Type-Correctness 16

4. T"1e Library 17

Detailed Description

5. Notation ... 20

6. Lexical Considerations .. 21

6.1 Reserved Words 21
6.2 ldentif iers 21
6.3 Literals 22
6.4 Operators and Punctuation Symbols .. · 22
6.S Comments and Other Separators 22
6.6 Semicolons 22

7. Types, Type Generators, and Type Bpeclfloatlons 2'

7.1 ' Null ... 2!
7.2 Boot ... 24
7.3 Int .. 24
7.4 Real 24
7.S Char .. 25
7.6 String 25
7.7 Any .:... 26
7.8 Array Types 27
7.9 Sequence Types ... ; 28
7.10 Record Types :... 29
7.11 Structure Types 30
7.12 Oneof Types ... ~................... 31
7.13 Variant Types !2
7.14 Procedure and Iterator Types !2
7.15 Other Type Specifications ... 3'

8. Scopes, Declarations, and Equates 34

8.1 Scoping Units 34
8.2 Variables 55
8.3 Equates and Constants 57

9. Assignment and Invocation .. 59

9.1 Type Inclusion .. 40
9.2 Assignment 40
9.3 Invocation 42

10. Expressions .. 4J

10.l Literals 44
10.2 Variables .. 44
10.3 Procedure and Iterator Names 44
10.4 Procedure Invocations 45
10.5 Selection Operations 45
10.6 Constructors 47
10.7 Prefix and Infix Operators.. 49
10.8 Cand and Cor 51
10.9 Precedence 51
10.10 lfp and Down 52
10.11 Force ... 52

11. Statements .. SJ

II.I Procedure Invocation .. 54
11.2 Update Statements ... 54
11.3 Block State1nent 56
11.4 Conditional Statement 56
11.5 Loop Statements .. 56
11.6 Tagcase Statement ... 58
11.7 Return Statement ... 60
11.8 Yield Statement ... 60

12. Exception Handling and Exits .. 60

12.l Signal Statement 61
12.2 Except Statement 62
12.3 Resignal Statement 64
12.4 Exit Statement 65
12.5 Example 65

13. .. Modules ... ,............................... 68

IS.I Procedures .. 68
IS.2 Iterators ... 70
13.S Clusters 72
l!.4 Parameterized MCMlules 81
IS.5 Own Variables 88

5

Appendices

I. Syntax .. 92

II. Built-In Types and Type Generators 99

II.I Null ... 100
11.2 Bool ... 100
11.3 Int .. IOI
11.4 Real ... 102
11.5 Char .. 105
11.6 String .. 105
11.7 Array Typt>s .. 108
11.8 Sequence Types ... Ill
11.9 Record Types .. 114
11.10 Structure Types ... 116
II.II Oneof Types ... 117
11.12 Variant Types ... 119
11.13 Procedure and Iterator Types ... 120
11.14 Any ... 120

III. Input/Output ... 121

Ill.I Files ... · 121
111.2 File Names .. 122
111.3 A File Type? ... 124
111.4 Streams .. 125
111.5 String 1/0 .. 129
111.6 lstreatns ... 129
111.7 Terminal 1/0 .. 132
111.8 Miscellaneous Procedures ... 133
111.9 Dates ... 135

IV. Examples ... 137

IV.I Priority Queue Cluster .. 137
IV.2 Text Formatter .. 140
IV.3 Text Substitution Program .. 154

6 Modules §I

1. Modules

A CLU program consists of a group of modules. Three kinds of modules are provided, one

for each kind of abstraction that we have found to be useful in program construction. Procedures

support procedural abstraction, iterators support control abstraction, and clusters support data

abstraction.

1.1 Procedures

A proctdurt performs an action on zero or more argument objects, and terminates returning

zero or more result objects. All communication between a procedure and its invoker generally takes

place through these arguments and results; a procedure has no global variables unless it is defined

in a cluster that has own variables. A procedure may retain objects from one invocation to the

next through the use of local own variables.

A procedure may terminate in one of a number of conditions. One of these is the normal

condition; the others are exceptional conditions. Dlff ering numbers and types of resl_Jlts may be

returned in different conditions. All information about the names of conditions and the number

and types of arguments and results is'described in the proudure iaeading. For example,

squareJoot • proc <x: real> returns <real> signals (noJealJesult>

is· the heading of a squareJoot procedure, which takes a single real argument. SquareJoot

terminates either in the normal condition <returning the square root of x> or in the noJealJesult

condition <returning no results>.

1.2 Iterators

An iterator computes a sequence of items based on its input arguments. These items are

provided to its invoker one at a time. Each item consists of zero or more objects.

An iterator is invoked by a for statement. The iterator provides each item by 7teldlng it. The

objects in the item are assigned to the loop variables of the for statement, and the body of the for

statement is executed. The~ control is returned to the iterator so it can yield the next item in the

sequence. The for loop is terminated when the iterator terminates, or the for loop body may

explicitly terminate itself and the iterator.

§1.2 Iterators 7

Just like a procedure, an iterator has no global variables unless it Is defined in a cluster that

has own variables. An iterator may retain objects from one invocation to the next through the use

of local own variables. An iterator may also terminate in one of a number of conditions. In the

normal condition, no results can be returned, but different numbers and types of results can be

returned in the exceptional conditions. All information about the names of conditions, and the

number and types of arguments and results is described in the tltrator litadtng. For example,

leaves .. lter <t: tree> yields <node)

is the heading for an iterator that produces all leaf nodes of a tree object. This iterator might be

used in a for statement as follows:

for leaf: node In leaves<x> do
... examine<leaf) ...
end

1.3 Clusters

A cluster implements a data abstraction, which is a set of objects and a set of fJrtmlttv1

operations to create and manipulate those objects. The operations can be either procedural or

control abstractions. The cluster lieading states what operations are available, e.g.,

int_set = cluster Is create, insert, elements

states that the operations of int_set are create, tnsert, and elements.

A cluster is used to implement a distinct data t1pe, different from aU others. Users of this type

are constrained to treat objects of the type abstractly. That is, the objects may be manipulated only

via the primitive operations. This means that information about how the objects are actua11y

represented in storage may not be used.

Inside the cluster, a concrete representation <in terms of some other type) is chosen for the

objects, and the operations are implemented in terms of this representation. Each operation is

implemented by a routint (a procedure or iterator>; these routines are exactly like those not

contained in clusters, except that they can treat the objects being defined by the cluster both

abstractly and in terms of the concrete representation. <The ability to treat objects abstractly ts

useful when defining recursive data structures, where the concrete representation makes use of the

new typeJ A cluster may contain additional procedures and iterators, which are purely for local

use; these routines do not define operations of the type. The routines in a cluster are not

considered to be separate modules; they are simply part of the cluster module.

8 Clusters §1.3

A duster may also contain own variables, whose lifetimes are independent of routine

activations. These variables are globally available to all routines in the cluster, but are not

available from outside the cluster.

1.4 Parameterized Modules

Procedures, iterators, and clusters can all be paramtttriztd. Parameterization provides the

ability to define a dass of related abstractions by means of a single module. Parameters are limited

to the following types: Int. real, boot, char, string, null, and type. The most interesting and

useful of these are the type parameters.

When a module is parameterized by a type parameter, this implies that the module was written

without knowledge of what the actual parameter type would be. Nevertheless, if the module is to

do anything with objects of the parameter type, certain operations must be provided by any actual

type. Information about required operations is described in a where clause, which is part of the

heading of a parameteriztd module. For example,

set .. cluster Ct: type] Is create, insert, elements
where t has equal: proctype <t, t> returns <booO

is the heading of a parameterized cluster defining a generalized set abstraction. Sets of many

different element types can be obtained from this cluster, but the where clause states that the

element type is constrained to provide an equal operation.

To use a parameterized module, actual values for the parameters must be provided, using the

general form

module_name [parameter_values J

Parameter values must be computable at the time they are compiled .. Providing actual parameters

selects one abstraction out of the class of related abstractions defined by the parameterized module;

since the values are known at compile-time, the compiler can do the selection and can check that

the where clause restrictions are satisfied. The result of the selection, in the case of a

parameterized duster, is a type, which can then be used in declarations; in the case of

parameterized procedures or iterators, a procedure or iterator is obtained, which Is then available

for invocation. For example, set[lntJ is a use of the set abstraction shown above, and is legal

because Int does have an equal operation.

§1.4 Parameterized Modules 9

A parameterized cluster, procedure, or iterator is said to implement a t,pe generator, procedu11

generator. or iterator generator, respectively.

1.5 Program Structure

As was mentioned before, a program consists of a group of modules. Each module defines

either a single abstraction or, if parameterized, a class of related abstractions. Modules are never

embedded in other modules. Rather, the program is a single level structure, with all modules

potentially usable by all other modules in the program. Type-checking of inter-module references

is carried out using information in the module headings, augmented, in the case of clusters, by the

headings of the procedures and iterators that implement the operations.

Each module is a separate textual unit, and is compiled independently of other modules.

Compilation and program construction are discussed in Section 4.

2. Data Types

One of the primary goals of CLU was to provide, through clusters, a type extension

mechanism that permits user-defined types to be treated as similarly as possible to built-in types.

This goal has been achieved to a large extent. Both built-in and user-defined types are viewed as

providing sets of primitive operations, with access to the real representation information limited to

just these operation~. The ways in which built-in types differ from user-defined types will be

discussed in Section 2.3 below.

2.1 Built-in Types

CLU provides a rich set of built-in types and type generators. The built-in types are Int. real,

bool, char, string, null, and any. Int and real provide the usual arithmetic and relational

operations on integers and real numbers, and bool provides the standard boolean operations.

Char is the full ASCII character set; the usual relational operators are provided, along with

conversion to and from integers. Strings are (possibly empty> sequences of characters; usual string

operations like selecting the itli character, and concatenation are provided. However, strings are

somewhat unusual in that string objects cannot be modified. For example, it is not possible to

change a character in a string; instead, a new string, differing from the original in that position,

10 Built-in Types §2.1

may be created.

Null is a type containing one object, nll. Null is used primarily in conjunction with the tagged

union type discussed below.

Any is provided to permit an escape from compile-time type-checking. The type any

introduces no new objects, but instead may be used as the type of a variable when the programmer

wishes to assign objects of different types to that variable, or does not know what kind of object

will be assigned to the variable. CLU provides a built-in procedure generator, force, wh'ich

permits a run-time examination of the type of object named by a variable of type any.

The built-in type generators are: array, sequence, record, struct, oneof, variant,

proctype, and ltertype. Arrays are one-dimensional. The type of element contained in the array

is specified by a type parameter, e.g., array{intl and array{array{lntll <The latter example

shows how a two-dimensional array might be handled.) CLU arrays are unusual in that they can

grow dynamically. An array is oflen empty when first created, but there is also a special arra1

constructor for specifying initial elements. Array operations can grow and shrink the array at

either end, query the current size and low and high bounds of the array, and access and replace

elements within the current bounds.

Sequences are immutable arrays, in that the size of a sequence can not be changed dynamically,

and new elements cannot be stored into a sequence. New sequences can be constructed from ·

existing sequences in much the same way as new strings are created. Sequence operations are culled

from both string and array operations, and there is a special stqutnet construttor, which is

syntactically similar to the array constructor form.

CLU records are heterogeneous collections of component objects; each component is accessed by

a selector name. Records must be explicitly constructed by means of a special record construttor.

The constructor requires that an object be provided for each component of the record; this

requirement ensures that no component of the record is undefined in the sense of naming no

object. Record operations permit selection of component objects and replacement of components

with new objects.

Structures are immutable records, in that the components of a structure cannot be replaced with

new objects. Structures are constructed by means of a structurt constructor, which is syntactically

identical to the record constructor form.

§2.1 Built-in Types 11

A oneof type is a tagged, discriminated union. The objects of a oneof type each consist of a

tag <an identifier> and a component object; oneof objects with different tags may have component

objects of different types. A oneof object, once created, cannot be changed. Thus, oneof types

provide a capability similar to that prov-ided by variant records in Pascal. Operations are

provided for creating oneof objects. Oneof objects are usually decomposed through the tagcase

statement.

Variants are mutable oneofs. The tag and component object of a variant can be replaced

simultaneously with new values. Like oneofs, variants are usually decomposed through the

tagcase statement.

Procedure and iterator types provide procedures and iterators as first-class objects; i.e., routines

<including those in clusters) can be assigned to variables and can occur as components of other

objects. These types are parameterized by all the information appearing in a procedure or iterator

heading, with the exception of the formal argument names.

In addition to all the built-in types and type generators mentioned above, CLU programs may

also make use of the type type. The use of type values is limited to parameters of parameterized

modules; there are no arguments or variables of type type.

Finally, CLU provides a number of types and procedures to support 1/0. These types are not

considered to be built-in types of CLU, but they must be available in the library. These types are

described in Appendix Ill.

2.2 User-Defined Types

Users may define new types by providing clusters that implement them. The cluster may

implement a single type, or, in the case of a parameterized cluster, a group of related types. The

type or types defined by a cluster are distinct from all built-in types and from all types defined by

other clusters.

2.3 Comparison of User-Defined and Built-In Types

Little distinction is made between user-defined types and built-in types. Either can be used

freely to declare the arguments, variables, and results of routines. In addition, in either case there

is a set of primitive operations associated with the type, and the same syntax is used to invoke these

operations. The ordinary syntax to name an operation is

12 Comparison or User-Defined and Built-In Types §2.S

type S op_name

Since different types will often have operations or the same name <e.g., crtatt>, this compound form

is used to avoid ambiguity.

For many operations there is also ·a customary abbreviated form of invocation, which can be

used for user-defined types as well as for built-in types. There is a standard translation from each

abbreviated form to the ordinary form or invocation. For example, an addition operation is

usually invoked using the infix notation ·x + y; this is translated into 'TSadd<x, y>·. where T is

the type of x. Extending notation to user-defined types in this way is sometimes called optrator

ovtrloading. We permit almost all special syntax to be overloaded; there are always constraints on

the overloading definition <e.g., add must have two input arguments and one result>, but they are

quite minimal.

Nevertheless, there are three main distinctions between built-in types and user-defined types:

I. Built-in type and type generator names cannot be redefined. <This is
why we always show them in boldface in this document.)

2. Some built-In types, e.g., int, real, etc., have literals. There is no
mechanism for defining literals for user-defined types.

3. Some built-in types are related to certain other constructs of CLU. For
example, the tagcase statement is a control construct especially
provided to permit discrimination on oneof and variant objects. In
addition. in places where compile-time constants are required, e.g., as
actual parameters to parameterized modules, the expressions that may
appear are limited to a subset of the built-in types and their operations.
One reason for this limitation is that the permitted types are known to
contain only immutablt objects <see Section 3.1>.

3. Semantics

All languages present their users with some model of computation. This section describes those

aspects of CLU semantics that differ from the common ALGOL-like model. In particular, we

discuss the notions of objects and variables, and the definitions of assignment and argument

passing that follow from these notions. We also discuss type-correctness.

§3.l Objects and Variables 13

3.1 Objects and Variables

The basic elements of CLU semantics are objects and variables. Objects are the data entities

that are created and manipulated by progra"!ls. Variables are just the names used in a program to

ref er to objects.

Each object has a type, which characterizes its behavior. A type defines a set of primitive

operations to create and manipulate objects of that type. An object may be created and

manipulated only via the operations of its type.

An object may refer to objects. For example, a record object refers to the objects that are the

components of the record. This notion is one of logical, not physical, containment. In particular, it

is possible for two distinct record objects to refer to (or slaare) the same component object. In the

case of a cyclic data structure, it is even possible for an object to •contain• itself. Thus, it is

possible to have recursive data structure definitions and shared data objects without explicit

reference types.

Objects exist independently of procedure and iterator activations. Space for objects ls

allocated from a dynamic storage area as the result of invoking constructor operations of certain

primitive CLU types, such as records and arrays. In theory, all objects continue to exist forever.

In practice, the space used by an object may be reclaimed <via garbage collection> when that object

~s no longer accessible. (An object is accessible if it is denoted by a variable of an active routine or

an own variable of any cluster or routine, or is a component of an accessible object.)

Objects may be divided into two categories. Some objects exhibit time-varying behavior.

Such an object, called a mutable object, has a state that may be modified by certain operations

without changing the identity of the object. Records and arrays are examples of mutable objects.

For example, replacing the itla element of any array a causes the state of a to change <to contain a

different object as the itli element>.

If a mutable object m is shared by two other objects x and y, then a modification to m made

via x will be visible when mis examined via '1· Communication through shared mutable objects is

most beneficial in th.e context of procedure invocation, described below.

Objects that do not exhibit time-varying behavior are called immutable objects. Examples of

immutable objects are integers, booleans, characters, and strings. The properties of an immutable

object do not change with time. These properties generally do not include the properties of any

component objects. For example, a sequence is Immutable even though its elements may be

Objects and Variables §3.1

mutable.

Variables are names used in programs to dtnott particular objects at execution time. Unlike

variables in many common programming languages, which are containers for values, CLU

variables are simply names that the programmer uses to ref er to objects. As such, it is possible for

two variables to denote (or sliart> the same object. CLU variables are much like those in LISP.

and are similar to pointer variables in other languages. However, CLU variables are not objects;

they cannot be denoted by other variables or referred to by objects. Thus, variab1es declared

within one routine cannot be accessed or modified by any other routine.

3.2 Assignment and Invocation

The basic actions in CLU are assignmtnt and tnvocatton. The assignment primitive x :• E,

where x is a variable and E is an expression, causes x to denote the object resulting from the

evaluation of E. For example, if E is a simple variable '1· then the assignment x :• 7 causes x to

denote the object denoted by '1· The object Is not copied; after the assignment is performed, the

object will be sliartd by x and '1· Assignment does not affect the state of any object.

figure 1 illustrates these notions of object, variable, and assignment. Here we show variables

in a stack, and objects in a heap <free storage area>, an obvious way to implement CLU. figure la

contains three objects: a, /J. and 'Y. a is an integer (in fact, 3> and Is denoted by variable x, whi1e IJ
and 'Y are of type setClntl and are denoted by variables '1 and z, respectively. Figure lb shows the

result of executing

y :• l

Now '1 and z both refer to, or share, the same object, -y; /J is no longer accessible, and so can be

garbage collected.

Invocation involves passing argument objects from the caller to the called routine and

returning result objects from the routine to the caller. The objects returned by the procedure, or

yielded by an iterator, may be assigned to variables in the caller. Argument passing is defined in

t~rms of assignment; the formal arguments of a routine are considered to be local variables of the

routine and are initialized, by assignment, to the objects resulting from the evaluation of the

argument expressions. We call the argument passing technique call ,,, sharing, because the

argument objects are shared between the caller and the called routine. The technique does not

correspond to most traditional argument passing techniques <it is similar to argument passing in

LISP>. In particular it Is not can by value because mutations of arguments performed by the ca11ed

§3.2 Assignment and Invocation 1~

Fig. 1. Assignment

a

x Int

y setClntl

1 setClntJ

Fig 1a.

Cl

x Int

y setClntJ

1 setClntJ

Fig 1b.

routine will be visible to the caller. And it is not can by reference because access is not given to the

variables of the caller, but merely to certain objects.

Figure 2 illustrates invocation and object mutation. Figure 2a continues from the situation

shown in Figure lb, and illustrates the situation immediately after invocation of

setCint]Sinsert<y, x)

<but before executing the body of instrtl. Insert has two formal arguments; the first, s, denotes the

set, and the second, v, denotes the integer to be inserted into s. Note that the variables of the ca11er

<x, ., and. z> are not accessible to insert. Figure 2b illustrates the situation after insert returns. Note

that object "Y has been modified and now refers to a <the set "'(now contains 3), and since "Y is

shared by both "J and z, the modification of "'(is visible through both these variables.

Procedure invocations may be used directly as statements; those that return exactly one object

may also be used as expressions. Iterators may be invoked only through the for statement.

Arbitrary recursion among procedures and iterators is permitted.

16

Fig. 2. Invocation and object mutation

Cl

Fig 2•.

Fig 2b.

x

y

l

s

v

x

y

l

a.a Type-Correctness

Cl

Type-Correctness §3.3

setllntJ

sedlntJ

The declaration of a variable specifies the type of the objects which the variable may denote.

In an assignment, the object denoted by the right-hand side must have the same type as the

variable on the left-hand side: there are no implicit type conversions. <The type of object denoted

by an expression is the return type of the outermost procedure invoked in that expression, or, if the

expression is a variable or literal, the type of that variable or literal.) There is one special case; a

variable declared to be of type any may be assigned the value of any expression.

Argument passing is defined in terms of assignment; for an invocation to be legal, it must be

possible to assign the actual arguments (the objects) to the formal arguments <the variables> listed

in the heading of the routine to be invoked. Furthermore, a return <or yleld> statement is legal

only if the result objects could be legally assigned to variables having the types stated in the

routine heading.

§3.3 Type-Correctness 17

CLU is a t,pe-safe language, in that it is not possible to treat an object of type T as if it were

an object of some other type S; in particular, one cannot assign an object of type T to a variable of

type S <unless S is any>. The type any provides an escape from compile-time type determination,

and a built-in procedure generator force tan be used query the type of an object at run-time.

However, any and force are defined in such a way that the type-safety of the language is not

undermined. The type-safety of CLU, plus the restriction that only the code in a cluster may

convert between the abstract type and the concrete representation, insure that the behavior of an

object is indeed characterized completely by the operations of its type.

4. The Library

As was mentioned earlier, it is intended that the modules making up a program all be separate

compilation units. A fundamental requirement of any CLU implementation is that it support

separate compilation, with type-checking of inter-module references. This checking can be done

either at compile-time or at load-time <when a group of separately compiled modules are combined

together to form a program>. A second fundamental requirement is that the implementation

support top-down programming. The definition of CLU does not specify how an implementation

should meet these requirements. However, in this section we describe the current CLU

implementation, which may serve as a model for others.

Our implementation makes use of the CLU library, which plays a central role in supporting

inter-module references. The library contains information about all abstractions. It supports

incremental program development, one abstraction at a time, and, in addition, makes abstractions

that are defined during the construction of one program available as a basis for subsequent

program development. The information in the library permits the separate compilation of single

modules, with complete type-checking at compile-time of all external references <such as procedure

names>.

The library provides a hierarchical name space for retrieving information about abstractions.

The leaf nodes of the library are description units <DUs>, one for each abstraction. Figure ~

illustrates the structure of the library.

18 The Library §i

Fig. 3. A sketch of the library structure showing a DU with pathname B.V

A DU contains all system-maintained information about its abstraction. A sketch of the

structure of a DU is shown in Figure 4. For purpo~s of program development and module

compilation, two pieces of inf ormatlon must be included in the DU: implementation information,

describing zero or more modules that implement the abstraction, and the interface specification.

The inttrfaet spteiflcation is that information needed to type-check uses of the abstraction. For

procedural and control abstractions, this information consists of the number and types of

parameters, arguments, and results, the names of exceptional conditions and the number and types

of results returned in each case, plus any constraints on type parameters <i.e., the where clause, as

described in Section l.i>. For data abstractions, it includes the number and types of parameters, .

Fig. 4. A sketch showing the structure of a DU

interface
specification

source object
code code

abstractions
used in
lnterf ace

abstractions
used in

implementation

implementations

...

other
information

other
information

The Library 19

constraints on type parameters, and the name and interface specification of each operation.

An abstraction is entered in the library by submitting the interface specification; no

implementations are required. In fact, a module can be compiled before any implementations have

been provided for the abstractions that it uses; it is necessary only that interface specifications have

been given for those abstractions. Ultimately, there can be many implementations of an

abstraction; each implementation is required to satisfy the interface specification of the abstraction.

Because all uses and implementations of an abstraction are checked against the interface

specification, the actual selection of an implementation can be delayed until jUst before <or perhaps

during> execution. We imagine a process of binding together modules into programs, prior to

execution, at which time this selection would be made.

An important detail is the method by which modules refer to abstractions. To avoid the

problems of name conflicts that can arise in large systems, the names used by a module to ref er to

abstractions can be chosen to suit the programmer's convenience. When a module is submitted for

compilation, its external references must be bound to DUs so that type-checking can be performed.

The binding is accomplished by constructing a compilation tnvironmtnt <CE>, mapping names to

DUs and constants, which is passed to the compiler along with the source code when compiling the

module. A copy of the CE is stored by the compiler in the library as·part of the module. A similar

process is involved in entering interface specifications of abstractions, since these interfaces can

include references to other <data) abstractions.

When the compiler type-checks a module, it uses the compilation environment to map the

external names in the module to constants :md DUs, and then uses the interface specifications in

the referenced DUs to check that the abstractions are used correctly. The type-correctness of the

module thus depends upon the binding of external references and the interface specifications of a11

referenced DUs, and could be invalidated if changes to the binding or the interface specifications

were subsequently made. For this reason, the process of compilation permanently binds a module to

the abstractions it uses, and the interface specification of an abstraction, once defined, is not

allowed to change. Of course, a new DU can be created to describe a modified abstraction.

Furthermore, during design (before any implementing modules have been entered into the system>

it is reasonable to permit abstraction interfaces to change.

Typically a small to medium sized project will use only one CE, thereby establishing a

consistent vocabulary for use by all programmers. Larger projects might have a number of

<possibly "overlapping"> CEs, each specialized for some subproject.

20 The Library

The 1ibrary and DU structure described above can be used for purposes other than compiling

and loading programs. In each case, additional information can be stored in the DU; the •other

fields shown in Figure i are intended to illustrate such additional information. For example, the

library provides a good basis for program nrification. Here the •other• information tn the DU

would contain a formal specification of the abstraction, and possibly some theorems that had been

proved about the abstraction, while for each implementation that had been verified, an outline of

the correctness proof might be retained. Addtttonal uses of the library tnclude retention of

debugging and optlmiiatlon information.

&. Notation

We use an extended B~F grammar to def tne the syntax. The general form of a production ts:

nonterminal ::s alternative

alternative

alternative

The following extensions are used:

a • •.• a ltst of one or more a's separated by commas: •a• or •a, a• or
·a, a, a• etc.

{a} a sequmce of ZffO or more a'i: • •or •a• or •a a• etc.

(a] an optional a: • • or ·a·.

Nonterminal symbols appear in normal face. Reserved words appear In bo1d face. AH other

tttmlna1 symbols are non-alphabetic, and appear in normal face.

Full productions are not always shown in the body of this manual; often a1temattves are

presented and explained individually. Appendix I contains the complete syntax.

§6 Lexical Considerations 21

6. Lexical Considerations

A module is written as a sequence of tokens and separators. A tolc.tn is a sequence of "printing•

ASCII characters <octal value iO thru 176> representing a reserved word, an identifier, a literal, an

operator, or a punctuation symbol. A stparator is a "blank" character <space, vertical tab, horizontal

tab, carriage return, newline, form feed> or a comment. In general, any number of separators may

appear between tokens. Tokens and separators are described in more detail in the sections below.

6.1 Reserved Words

The following character sequences are reserved words:

any cvt force oneof returns true
array do has others sequence type
begin down if own signal up
boo I else in proc signals variant
break elseif int proctype string when
cand end is real struct where
char except iter record tag while
cluster exit itertype rep tagcase yield
continue false nil resignal then yields
cor for null return

Upper and lower case letters are not distinguished in reserved words. For example, 'end', 'END',

and 'eNd' are all the same reserved word. Reserved words appear in bold face in this document.

8.2 Identifiers

An identifier is a sequence of letters, digits, and underscores that begins with a letter or

underscore, and that is not a reserved word. As in reserved words, upper and lower case letters are

not distinguished in identifiers.

In the syntax there are two different nonterminals for identifiers. The nonterminal idn is used

when the identifier has scope <see Section SJ>; idns are used for variables, parameters, module

names, and as abbreviations for constants. The nonterminal namt is used when the identifier ls

not subject to scope rules; names are used for record and structure selectors, oneof and variant tags,

operation names, and exceptional condition names.

22 Literals §6.S

8.S Literals

There are literals for naming objects of the built-in types null bool. Int. re•l char, and

string. Their forms are discussed in Section 7.

8.4 Operators and Punctuation Symbols

The following character sequences are used as operators and punctuation symbols:

(<• N<• ..
) • .., . • II

>• N>• I le
[$ > N> I
] :• ..,

< N< + B

8.& Comments and Other Separators

A commtnt ts a sequence of characters that begins with a percent sign Cl), ends wtth a newline

character, and contains only printing ASCII characters and horizontal tabs in between. For

example:

z :• a(iJ + I a comment in an expression
b(i]

A st'parator is a blank character <space, vertical tab, horizontal tab, carriage return, newline,

form feed> or a comment. Zero or more separators may appear between any two tokens, except that

at least one separator is required between any two adjacent non-self-terminating tokens: reserved

words, identifiers, integer literals, and real literals. This rule ls necessary to avoid lexical

ambiguities.

8.8 Semicolons

The use of semicolons <;> to terminate statements and various phrases is permitted in CLU, but

semicolons are completely optional and their use is discouraged. Placement of semicolons is not

shown in the body of this manual; refer to the complete syntax in Appendix I.

§7 Types, Type Generators, and Type Specifications

7. Types, Type Generators, and Type Speclflcatlons

A t'1pe consists of a set of objects together with a set of operations to manipulate the objects.

As discussed in Section 3.1, types can be clas~ified according to whether their objects are mutable or

immutable. An immutable object <e.g. an integer) has a value that never varies, while the value

<state) of a mutable object can vary over time.

A t'1pe generator is a parameterized type definition, representing a (usua11y infinite> set of

related types. A particular type is obtained from a type generator by writing the generator name

along with specific values for the parameters; for every distinct set of legal values, a distinct type is

obtained. For example, the array type generator has a single parameter that determines the

element type; array{intl, array{realJ, and array{array[lntJJ are three distinct types defined by

the array type generator. Types obtained from type generators are called paramtttriztd types;

others are called simple types.

Within a program, a type is specified by a syntactic construct called a t'1pe_spec. The type

specification for a simple type is just the identifier (or reserved word) naming the type. For

parameterized types, the type specification consists of the identifier (or reserved word> naming the

type generator, together with the parameter values.

This section gives an informal introduction to the built-in types and type generators provided

by CLU; many details <such as error conditions) are not discussed. Complete and precise

definitions are given in Appendix JI. Sections 7.1 to 7.7 describe the objects, literals, and some of

the operations for each of the built-in types, while Sections 7.8 to 7.14 describe the objects, type

specifications, and interesting operations of types obtained from the built-in type generators. A

number of operations can be invoked using inf ix and prefix operators; as the various operation

names are introduced, the corresponding operator, if any, will follow in parentheses.

In addition, we describe type specifications for user-defined types, and other special type

specifications in Section 7.15. The mechanism by which new types and type generators are

implemented is presented in Section 13.

7.1 Null

The type null has exactly one immutable object, represented by the literal nil. The type null ls

generally used as a kind of ·place filler· in a oneof or variant type <see ·sections 7.12 and 7.13>.

2i Bool §7.2

7.2 Bool

The two immutable objects of type boo~ with literals true and f alae, represent logical truth

values. The binary operations tqual <"".>, and <Be>, and or <I>, are provided, as wen as unary not (...,).

7.8 Int

The type Int models <a range on the mathematica1 integers. The exact range is not part of the

language definition, and can vary somewhat from imp1ementation to implementation <see

Appendix II, Section 3>. Integers are immutable, and are written as a sequence of one or more

decimal digits. The binary operations add (+),sub<->. mul b), div Cl>, mod Cl I>, and IJowtr (o) are

provided, as well as unary minus <->. There are binary comparison operations It «>, It «•>, tqual

(.),gt<>->. and gt<». In addition, there are two operations,/rOnLto and/r<mLto-lYJ, for iterating

over a sequence of integers. For example, one can iterate over the odd numbers between I and 100

with

for i: Int In lntSf rom_to_by<l, 100, 2> do .. .comf1Utt ... end

7.4 Real

The type real models <a subset on the mathematica1 real numbers. The exact subset is not

part of the language definition, although certain constraints are imposed <see Appendix JI,

Section i>. Reals are immutable, and are written as a mantissa with an <optional) txpontnt. A

mantissa is either a sequence of one or more decimal digits, or two sequences (one of which may be

empty> joined by a period. The mantissa must contain at least one digit. An exponent is 'I' or 'e',

optionally followed by '+'or'-', followed by one or more decimal digits. An exponent is required if

the mantissa does not contain a period. As is usual, mEx • mtlOX. Examples of rea1 literals are:

3.14 3.HEO 3lie-2 .0314[+2 3. .Ii

As with integers, the operations add (+),sub(-), mul <•>.div Cl>, mod (//), powtr <u>, minus <->.
lt «>. lt «·>. tqual <•>. gt <>·>. and gt <», are provided. It is important to note that there is no

form of implicit conversion between types. So, for example, the various binary operators cannot

have one integer and one real argument. The i2r operation converts an integer to a rea1, r2t

rounds a real to an integer, and trunc truncates a real to an integer.

§7.5 Char 25

7.6 Char

The type char provides the alphabet for text manipulation. Characters are immutable, and

form an ordered set Every implementati~ must provide at least 128, but no more than 512,

characters; the first 128 characters are the ASCII characters in their standard order.

Printing ASCII characters <octal 10 thru octal 176>, other than single quote or backslash, can be

written as that character enclosed in single quotes. Any character can be written by enclosing one

of the following escape sequences in s_ingle quotes:

esca~ sequence ,. ,.
\\
\n
\t
\p
\b
\r
\v /

'***
\......,

character

•
\

<single quote)
<double quote)
<backslash>

NL <newline>
HT <horizontal tab>
FF <form feed, newpage>
BS <backspace>
CR <carriage return>
VT <vertical tab>
specified by octal value <exactly three octal digits>

The escape sequences may be written using upper case letters. Examples of character literals are:

7 'a' - '" 'B' '171

There are two operations, i2c and c2i, for converting between integers and characters: the

smallest character corresponds to zero, and the characters are numbered sequentially. Binary

comparison operations exist for characters based on this numerical ordering: It«>. It«->, tqual (.),

gt<>•>, and gt<».

7.8 String

The type string is used for representing text. A string is an immutable sequence of zero or

more characters. Strings are lexicographically ordered, based on the ordering for characters. A

string is written as a sequence of zero or more character representations, enclosed in double quotes.

Within a string literal, a printing ASCII character other than double quote or backslash ts

represented by itself. Any character can be represented by using the escape sequences listed above.

Examples of string literals are:

•1tem\tCost• •a1tmode (\003> • \ \oo~· - ••

26 String §'1.6

The characters of a string are indexed sequentially starting from one, and there are a number

of operations that deal with these indexes: J1tcA, .su.str, 11.st, lJUlat, and lnclns. The /1tcA

operation is used to obtain a character by index. Invocations of /1tcA can be written using a special

syntax <fufty described in Section 10.S.l>:

s(ll I get the character at index t of s

Suh.str returns a string given a string, a starting index, and a length:

atrtngSsubstr<•abcde•, 2. ~) • "bed•

Rist, given a string and a staning index, returns the rest of the string:

atrlngSrest<•abcde·. 3> • ·a1e•

lndnc computes the least index at whkh a cha~cter occurs in a string. and lndn.s does the same

for a string; the resuk is zero if the character or string does nat occur:

atrlngSindexc<'d', •abcdei • 4
atrlngSindexs<•a1•, •abcdei • 3
atrlngSindexs<•abcde·, ·a1i • 0

Two strings can be concatenated together With concat <I>, and a single character can be

appended to the end of a string With a~/Jtnd. Note that atrtngSconcat.<9abc·, •dei and

atrlngSappend<.abcd•, 'e') produce the sa1ttt string as writing •abcde•. C2.s converts a character to

a single-character string. The size of a string can be determined· with .st11. Claar.s iterates over the

characters of a string, from the first to the last character. There are also the usual lexlcographk

comparison operations: It «>. 11 «•>, tf&Ull (.). f' <>->.and fl<».

7.7 Any

A type specification is used to restrict the class of objects that a variable can denote, a

procedure or iterator can take as arguments, a procedure can return, etc. There are times when no

restrictions are desired, when any object is acceptable. At such times, the type specifkation any Is

used. for example, one might wish to implement a table mapping strings to arbitrary objects, with

the intention that different strings could map to objects of different types. The lookup operation,

used to get the ob'ject corresponding to a string, woukl have its result declared to be of type any.

The type any is the rinion of all possible types. and it is the onl7 true union type in CLU; an
other types are bast types. Every object is of type any, as wel1 as being of some base~· The

type any has no operatioos; however, the base type or an object can be tested at run-time (see

Section 10.11>.

§7.8 Array Types

7 .8 Array Types

Arrays are one-dimensional, and are mutable. Arrays are unconventional because the number

of elements in an array can vary dynamically. Furthermore, there is no notion of an ·uninitialized•

element.

The state of an array consists of an integer called the low bound, and a sequence of objects

called the elements. The elements of an array are indexed sequentially, starting from the low

bound. All of the elements must be of the same type; this type is specified in the array type

specification, which has the form

array C type_spec l

Examples of array type specifications are

array{lntJ
array{ array{ string]]

There are a number of ways to create a new array, of which only two are mentioned here.

The create operation takes an argument specifying the low bound, and creates a new array with

that low bound and no elements. An array constructor can be used to create an array with an

arbitrary number of initial elements. For example,

array{lntJ S (5: I, 2. !.\, 41

creates an integer array with low bound 5, and four elements, while

array{booll S Ctrue, false]

creates a boolean array with low bound I <the default>, and two elements. Array constructors are

discussed fully in Section 10.6.1.

An array type specification states nothing about the bounds of an array. This is because

arrays can grow and shrink dynamically. Addlz adds an additional element to the end of the array,

with index one greater than the previous last element. Addi adds an additional element to the

beginning of the array, and decrements the low bound by one, so that the new first element has an

index one less than the previous first element. Remh removes the last element; reml removes the

first element and increments the low bound. Note that all of these operations preserve the indexes

of the other elements. Also note that these operations do not create holes; they merely add to or

remove from the ends of the array.

As an example, if a rem Ii were performed on the integer array

array{lntJ S [5: 1, 2, !.\, 41

the element 4 would disappear, and the new last element would be !.\, still with index 7. If a 0 were

28 Array Types §7.8

added using add/, it would become the new first element, with index i.

The JetcA operation extracts an element by index, and the stCJrt operation replaces an element

by index; an index is illegal if no element with that index exists. Invocations of these operations

can be written using special forms <covered fully in Sections 10.5.l and 11.2.U:

a[il i fetch the element at index i of a
a[il := 3 % store 3 at index i of a <not really assignment>

The top and bottom operations return the element with the highest and lowest index,

respectively. The AigA and low operations return the highest and lowest indexes, respectively. The

elements iterator yields the elements from bottom to top, and the tndtxts iterator yields the indexes

from low to high. There is also a siu operation that returns the number of elements.

Every newly created array has an identity that is distinct from all other arrays; two arrays can

have the same elements without being the same array object. The identity of arrays can be

distinguished with the equal (.,) operation. The similar/ operation tests if two arrays have the

same state, using the equal operation of the element type. Similar tests if two arrays have similar

states, using the similar operation of the element type. For example, writing

ai$[3: 1, 2, 31

<where "ai" is equated to array(lntl> in different places pr<xl!Jces arrays that are similarl and

similar <but not equal>, while the following produces arrays that are similar, but not similarl (or

equal>:

array{ail S Cl: aiScreate<UJ

7.9 Sequence Types

Sequences are immutable arrays. Although an individual sequence can have any length, that

length cannot vary dynamically, and the elements of the sequence cannot be replaced. The elements

of a sequence are indexed sequentially, starting from one. A sequence type specification has the

form

sequence C type_spec l

The new operation returns an empty sequence. A sequence constructor, which is syntactically

similar to the array constructor, can be used to create a sequence with an arbitrary number of

elements. Sequence constructors are discussed fully in Section 10.6.2.

§7.9 Sequence Types

Although a sequence, once created, cannot be changed, new sequences can be constructed from

existing ones. Add Ii creates a new sequence with an additional element at the end (with index one

greater than. the last element of the old sequence>. Addi creates a new sequence with an additional

element at the beginning. with index one, so that every other element has an index one greater

than its index in the old sequence. Remli creates a new sequence with the last element removed:

re ml creates a new sequence with the first element removed. Note that, for each of these operations,

element objects are shared between the old and new sequences.

The fetcli operation extracts an element by index, and the replaet operation creates a new

sequence with a new element at a given index; an index is illegal if no element with that index

exists. Invocations of the fetch operation can be written using a special form <covered fully in

Section 10.5.l>:

qCil % fetch the element at index i of q

The top and bottom operations return the element with the highest and lowest index,

respectively. The size operation returns the number of elements. The elements iterator yields the

elements from bottom to top, and the indexes iterator yields the indexes in increasing order, starting

from one. Two sequences can be concatenated together with concat <II> to produce a new sequence,

and subseq extracts a subsequence of a sequence.

Two sequences with the same elements are the same sequence. The equal <'"'> operation tests lf

two sequences have the same elements, using the equal operation of the element type. Similar tests

if two sequences have similar elements, using the simtlar operation of the element type. For

example, writing

sequence(array[lntll$[array[Intl$[11J

in different places produces sequences that are similar but not equal.

7.10 Record Types

A record is a mutable collection of one or more named objects. The names are ca11ed selectors,

and the objects are called components. Different components may have different types. A record

type specification has the form

record C field_spec , •.. J

where

field_spec ::= name .••• : type_spec

Selectors must be unique within a specification, but the ordering and grouping . of selectors ls

Record Types

unimportant. For example, all the of the following name the same type:

recordClast, first, middle: string, age: Intl
recorcf first, middle, last: string, age: Intl
recorcf last: string, age: Int, first, middle: string]

A record is created using a record constructor. For example:

info$ {last: "Jones", first: "John", age: 32, middle: "j."}

§7.10

<assuming that "info" has been equated to one of the above type specifications; see Section 8.3>. An

expression must be given for each selector, but the order and grouping of selectors need not

resemble the corresponding type specification. Record constructors are discussed fully in

Section 10.6.3.

For each selector "sel", there is an operation geLsel to extract the named component, and an

operation set_sel to replace the named component with some other object. For example, there are

get_middle and set_middle operations for the type specified above. Invocations of these operations

can be written in a special form <discussed fu11y in Sections 10.5.2 and 11.2.2):

r.middle
r.age := 33

I get the 'middle' component of r
I set the 'age' component of r to 33 <not really assignment>

As with arrays, every newly created record has an identity that ls distinct from all other

records; two records can have the same components without being the same record object. The

identity of records can be distinguished with the equal (.) operation. The simtlarl operation tests

if two records have the same components, using the equal operations of the component types.

Similar tests if two records have similar components, using the similar operations of the component

types.

7 .11 Structure Types

A structure is an immutable record. A structure type specification has the form

struct C f ield_spec , ••• l

where <as for records>

f ield_spec ::: name , ... : type_spec

A structure is created using a structure constructor, which syntactically Is identical to a record

constructor. Structure constructors are discussed fully in Section 10.6.i.

For each selector "sel", there is an operation geLsel to extract the named component, and an

operation rtplace_sel to create a new structure with the named component replaced with some other

object. Invocations of the get operations can be written in a special form <discussed fully ln

§7.11 Structure Types 31

Section 10.5.2>:

st.seldom % get the 'seldom' component of st

As with sequences, two structures with the same components are in fact the same object. The

equal <=> operation tests if two structures. hav·e the same components, using the equal operations of

the component types. Similar tests if two structures have similar components, using the similar

operations of the component types.

7 .12 Oneof Types

A oneof type is a taggtd discriminated union. A oneof is an immutable labeled object, to be

thought of as "one of" a set of alternatives. The label is called the tag, and the object is called the

value. A oneof type specification has the form

oneof C field_spec •••• J

where (as for records>

f ield_spec ::: name, ••• : type_spec

Tags must be unique within a specification, but the ordering and grouping of tags is unimportant.

As an example of a oneof type, the representation type for an immutable linked list of integers,

int_list, might be written

oneoflempty: null,
pair: structCcar: int, cdr: int_listJJ

As another example, the contents of a "number container" might be specified by

oneof[empty: null.
integer: Int,
real_num: real,
complex_num: complex]

For each tag "t" of a oneof type, there is a makt_t operation which takes an object of the type

associated with the tag, and returns the object <as a oneof> labeled with tag "t". For example,

number$ma ke_rea l_num<l.37>

creates a oneof object with tag "real_num" (assuming "number" has been equated to the "number

container" type specification above; see Section 8.3).

The equal <=> operation tests if two oneofs have the same tag, and if so, tests if the two value

components are the same, using the equal operation of the value type. Similar tests if two oneofs

have the same tag, and if so, tests if the two value components are similar, using the simtlar

operation of the value type.

Oneof Types §7.12

To determine the tag and value of a oneof object, one norma11y uses the tagcaae statement,

discussed in Section 11.6.

7.13 Variant Types

A variant is a mutable oneof. A variant type specification has the form

variant C field_spec , ••• 1

where (as for records>

f ield_spec ::: name , .•• : type_spec

The state of a variant is a pair consisting or a label called the tag and an object called the valut.

For each tag "t" of a variant type, there is a mde_t operation which takes an object of the type

associated with the tag, and returns the object <as a variant> labeled with tag •t•. In addition, there

is a cliange_t operation, which takes an existing variant and an object of the type associated with

"t", and changes the state of the variant to be the pair consisting of the tag "t" and the given

object.

Every newly created variant has an identity that is distinct from all other variants; two

variants can have the same state without being the same variant object. The identity of variants

can be distinguished using the equal (.,) operation. The similarl operation tests if two variants

have the same tag, and if so, tests if the two value components are equal, using the tqual operation

of the value type. Similar tests if two variants have the same tag, and if so, tests if the two value

components are similar, using the similar operation of the value type.

To determine the tag and value of a variant object, one normally uses the tagcase statement,

as discussed in Section 11.6.

7.14 Procedure and Iterator Types

Procedures and iterators are objects created by the CLU system (see Section ~.U. The type

specification for a procedure or iterator contains most of the information stated in a procedure or

iterator heading; a procedure type specification has the form

proctype ([type_spec , ••.] > [returns] [signals]

and an iterator type specification has the form

ltertype ([type_spec , •••]) [yields] [signals]

where

§7Ji Procedure and Iterator Types

returns ··- returns (type_spec , •••) ··-
yields ··- yields < type_spec , •••) ··-
signals ··- signals < exception , •.•) ··-
exception ··- name [(type_spec ~ •••)] ··-

The first list of type specifications describes the number, types, and order of arguments. The

returns or yields clause gives the number, types, and order of the objects to be returned or

yielded. The signals clause lists the exceptions raised by the procedure or iterator; for each

exception name, the number, types, and order of the objects to be returned is also given. All names

used in a signals clause must be unique, and cannot be Jailurt, which has a standard meaning in

CLU <see Section 12.1>. The ordering of exceptions is not important. For example, both of the

following type specifications name the procedure type for strlngSsubstr:

proctype <string. int, Int> returns <string) signals <bounds, negative_size>
proctype <string, int, int> returns <string) slgnals <negative_size, bounds>

Strlng$chars has the following iterator type:

ltertype <string) yields <char>

Procedure and iterator types have an tqual <=> operation. Invocation ls not an operation, but a

primitive action of CLU semantics <see Section 9.3>.

7 .15 Other Type Specifications

The type specification for a user-defined type has the form

idn [[constant , ... l]

where each constant must be computable at compile-time <see Section 8.3>. The identifier must be

bound to a data abstraction <see Section i>. If the referenced abstraction is parameterized,

constants of the appropriate types and number must be supplied. The order of parameters always

matters in user-defined types.

There are three special type specifications that are used when implementing new abstractions:

rep. cvt, and type. These forms are discussed in Sections 13.3 and 13.4. Within an

implementation of an abstraction, formal parameters declared with type can be used as type

specifications.

In addition, identifiers which have been equated to type specifications can also be used as type

specifications. Equates are discussed in Section 8.3.

Scopes, Declarations, and Equates §8

8. Scopes, Declarations, and Equates

We now describe how to introduce and use constants and variables, and the scope of constant

and variable names. Scoping units are _described first, fol1owed by a discussion of variables, and

finally constants.

8.1 Scoping Units

Scoping units follow the nesting structure of statements. Generally, a scoping unit ls a body

and an associated "heading". The scoping units are <ref er also to Appendix I>:

1. From the start of a module to its end.

2. From a cluster, proc, or lter to the matching end.

3. From a for, do, or begin to the matching end.

i. From a then or else in an If statement to the end of the corresponding
body. '

5. From a tag or others in a tagcase statement to the end of the
corresponding body.

6. From a when or others in an except statement to the end of the
corresponding body.

7. From the start of a t1pe_w to its end.

The last case above, the scope in a type_set, is a special case that will be discussed in Section 13:f.

Whatever we say about scopes in the remainder of this section refers only to cases 1 through 6.

The structure of scoping units is such that if one scoping unit overlaps another scoping unit

<textua11y), then one is fully contained in the other. The contained scope is called a nested scope,

and the containing scope is called a surrounding scope.

New constant and variable names may be introduced in a scoping unit. Names for constants

are introduced by equates, which are syntactically restricted to appear grouped together at or near

the beginning of scoping units. For example, equates may appear at the beginning of a body, but

not after any statements in the body.

In contrast, declarations, which introduce new variables, are allowed wherever statements are

allowed, and hence may appear throughout a scoping unit. Equates and declarations are discussed

in more detail in the following two sections.

§8.1 Scoping Units

In the syntax there are two distinct nonterminals for identifiers: idn and namt. Any identifier

introduced by an equate or declaration is an idn, as is the name of the module being defined, and

any operations it has. An idn names a specific type or object. The other kind of identifier ls a

namt. A namt is used to refer to a subpiece of something, and is always used in context; for

example, namts are used as record selectors. The scope rules apply only to idns.

The scope rules are very simple:

1. An idn may not be redefined in its scope.

2. Any idn that is used as an external reference in a module may not be
used for any other purpose in that module.

Unlike other "block-structured" languages, CLU prohibits the redefinition of an identifier in a

nested scope. An identifier used as an external reference names a module or constant; the reference

is resolved using the compilation environment <see Section 4> ..

8.2 Variables

Objects are the fundamental "things" in the CLU universe; variables are a mechanism for

denoting <i.e., naming> objects. This underlying model is discussed in detail in Section 3. A

variable has two properties: its type, and the object that it currently denotes (if any>. A variable is

said to be uninitialized if it does not denote any object.

There are only three things that can be done with variables:

I. New variables can be introduced. Declarations perform this function,
and are described below.

2. An object may be assigned to a variable. After an assignment the
variable denotes the object assigned. Assignment is discussed in
Section 9.2.

3. A variable may be used as an expression. The value of such an
expression (i.e., the result of evaluating it) ls the object that the
variable denotes at the time the expression is evaluated. Expressions
and their evaluation are described in Section 10.

8 .2 .1 Declarations

Declarations introduce new variables. The scope of a variable ls from its declaration to the

end of the smallest scoping unit containing its declaration; hence, variables must be declared before

use.

Declarations §8.2.1

There are two sorts of declarations: those with initialization, and those without. Simple

declarations <those without initialization> take the form

decl ::: idn , ••• : type_spec

A simple declaration introduces a list of variables, all having the type given by the type_spec. This

type determines the types of objects that can be assigned to the variable. Some examples of simple

declarations are:

i: Int
i, j. k: char
x, y: complex
z: any

'X declare I to be an integer variable
'X declare i, j, and k to be character variables
'X declare x and y to be of type complex
'X declare z to be of type any; thus, z may denote any object

The variables Introduced in a simple declaration initially denote no objects, i.e., they are

uninitialized. Attempts to use uninitialized variables (if not detected at compile-time) cause the

run-time exception

failure<·uninitialized variable•>

<Exceptions are discussed in Section 12.l

8.2.2 Declarations with Inltlallzatlon

A declaration with initialization combines declarations and assignments into a single statement.

A declaration with initialization is entirely equivalent to one or more simple declarations followed

by an assignment statement. The two forms of declaration with Initialization are:

idn : type_spec :•expression

and

decl1, ••. , decln :• invocation

These are equivalent to <respectively>:

ldn : type_spec
idn :• expression

and

decl1 ••. decln 'X declaring idn1 ••• idnm

idn1, ••• , idnm :• invocation

In the second form, the order of the idns in the assignment statement is the same as in the original

declaration with initialization. <The Invocation must return m objects; see Section 9.2.2J

§8.2.2 Declarations with Initialization

Some examples of declarations with initialization are:

astr: array(strlngl := array(stringlScreate<U
% declare astr to be an array variable and initialize it to an empty array

first, last: string, balance: int:= acct~query<acct_110)
i declare first and last to be string variables, balance an integer variable,
i and initialize them to the results of a bank account query

The above two statements are equivalent to the following sequences of statements:

astr: array(string]
astr :• array(strlngl$create<U

first, last: string
ba la nee: Int
first, last, balance := acct$query<acct_110)

8.3 Equates and Constants

An equate allows a single identifier to be used as an abbreviation for a constant that may have

a lengthy textual representation. We use the term constant in a very narrow sense here: constants.

in addition to being immutable, must be computable at compile-time. Constants are either types

<built-in or user-defined>, or objects that are the results of evaluating constant expressions.

<Constant expressions are defined below.>

The syntax of equates is:

equate ::: idn • constant

idn = type_set

constant ::= type_spec

expression

This section describes only the first form of equate; discussion of type_sets is def erred to

Section 13.i.

An equated identifier may be used as an expression. The value of such an expression is the

constant to which the identifier is equated. An equated identifier may not be used as the target of

an assignment.

The scope of an equated identifier is the smallest scoping unit surrounding the equate defining

it; here we mean the entire scoping unit, not just the portion after the equate. All the equates in a

scoping unit must appear near the beginning of the scoping unit. The exact placement of equates

depends on the containing syntactic construct; usually equates appear at the beginnings of bodies.

Equates and Constants §8.3

Equates may be in any order within the group. Thus, forward references among equates in

the same scoping unit are allowed, but cyclic dependencies are illegal. For examp1e,

x - y
y = l

z "'3

is a lega I sequence of equates, but

x = y
y - l

z = x

is not. Since equates introduce idns, the scoping restrictions on idns apply (i.e., the idns may not be

defined more than once>.

8.3.1 Abbreviations for Types

Identifiers may be equated to type specifications, thus giving abbreviations for type names.

For example:

at • array{ Intl
ot • oneofCthere: rt, none: null]
rt 2 recorcla: foo, b: bar]
pt • proctype <Int. Int> returns <Int> signals <overflow) .
it • ltertype <Int, Int, Int> yields <Int> signals <bounds>
istack • stackCtntl
mt • mark_table

Notice that since equates may not have cyclic dependencies, directly recursive type specifications

cannot be written. However, this does not prevent the definition of recursive types: clusters allow

them to be written (see Section 13>.

8.3.2 Constant Expressions

Here we define the subset of objects that equated identlf iers may denote, by stating which

expressions are constant expressions. <Expressions are discussed in detail in Section 10.> A constant

. txprtsston is an expression that can be evaluated at compile-time to produce an immutable object

of a built-in type. Specifically this includes:

1. Literals.

2. Jdentif iers equated to constants.

§8.3.2 Constant Expressions

3. Procedure and iterator names <see Section 10.3), including forceCtl for
any type t.

4. Invocations of procedure operations of the built-in constant types,
provided that all operands and all results are constant expressions.
However, we explicitly forbid the use of formal parameters as operands
to invocations in constant expressions, since the values of formal
parameters are not known at compile-time.

5. Formal parameters <see Section 13.4>.

For completeness, the list of the built-in constant types is: null, Int, real, bool, char, string,

sequence types, oneof types, structure types, procedure types, and iterator types.

Some examples of equates involving expressions are:

hash_modulus • 29
pi • 3.14159265
win= true
control_c .. '\003'
prompt_string = ·input: •
nl • strlng$c2s<'\n')
prompt ,. nl II prompt_string
prompt_len .. strlng$size<prompt>
quarter = pi I 2.0
ftb .. lnt$from_to_by
ot = oneof[cell: cell, none: null]
cell = recorclfirst, second: Intl
nilptr • otSmake_none<nm

. Note that the fallowing equate is illegal because it uses a record constructor, which is not a constant

expression:

cell_l_2 = otSmake_cell<cellS{first: I, second: 2»

Any invocation in a constant expression must terminate normally; a program is illegal If

evaluation of any constant expression would signal an exception. <Exceptions are discussed in

Section 12.> Illegal programs will not be executed.

9. Assignment and Invocation

Two fundamental actions of CLU are assignment of computed objects to variables, and

invocation of procedures <and iterators> to compute objects. Other actions are composed from these

two by using various control flow mechanisms. Since the correctness of assignments and

invocations depends on a type-checking rule, we describe that rule first, then assignment, and

Assignment and Invocation §9

finally invocation.

8.1 Type Inclusion

CLU is designed to a11ow compile-time type-checking. The type of each variable is known by

the compiler. Furthermore, the type of objects that could resuk from the evaluation of any

expression <invocation) is known at compile-time. Hence, every assignment can be checked at

compile-time to make sure that the variable is only assigned objects of its declared type. The rule

is that an assignment v :• E is legal only if the set of objects defined by the type of E <loosely, the

set of all objects that could possibly result from evaluating the expression) is included in the set of

a11 ob jecls that could be denoted by v.

Instead of speaking of the set of objects defined by a type, we generally speak of the type and

say that the type of the expression must be included in the type of the variable. If it were not for

the type any, the inclusion rule would be an equality rule. This leads to a simple interpretation of

the type inclusion rule:

The type of a variable being assigned an expression must be either the type of the
expression, or any.

8.8 .Assignment

Assignment is the means of causing a variable to denote an object. Some assignments are

lmp1icit, i.e., performed as part of the execution of various mechanisms of the language <most

notably procedure invocation, iterator invocation, exception handling, and the tagcase statement>.

Alt assignments, whether implicit or explicit, are subject to the type inclusion rule. The remainder

of this section discusses explicit assignments.

The assignment symbol ·:· • is used in two other syntactic forms that are not 'true assignments,

but rather abbreviations for certain invocations. These forms are used for updating collections

such as records and arrays <see Section 11.2>.

8.8.1 Simple Assl1nment

The simplest form of assignment is:

idn :• expression

In this case the expression is evaluated, and the resuking object is assigned to the variable. The

§9.2.l Simple Assignment 41

expression must return a single object (whose type must be included in that of the variable>.

Examp1es of simple assignments are:

x := 1
y := string$substr<s, 5, n>
a := array{intl$new0
p := array{lntlScreate(3)
z := <foo .. bar>

% x's type must indude Int, i.e., it must be Int or any
% y's type must include string
i· a's type must include array{ Intl
% p's type must include array{lntl
% z's type must include bool

It is also possible to dedare a variable and assign to it in a single statement; this is caned a

declaration with initialization, and was discussed in Section 8.2.2.

9.2.2 Multiple Assignment

and

There are two forms of assignment that assign to more than one variable at once:

idn , ••• :• expression , •••

idn , ••• :• invocation

The first form of multiple assignment is a generalization of the simple assignment. The first

variable is assigned the first expression, the second variable the second expression, and so on. The

expressions are all evaluated (from left to right> before any assignments are performed. The

number of variables in the list must equal the number of expressions, no variable may occur more

than once, and the type of each variable must include the type of the corresponding expression.

This form of multiple assignment allows easy permutation of the objects denoted by several

variables:

X, y :• y, X

i, j. k :• j. k, i

and similar simultaneous assignments of variables that would otherwise require temporary

variables:

a, b : .. (a + b), (a - b)
quotient, remainder := <u I v>, Cu // v>

There is no form of this statement with declarations.

The second form of multiple assignment allows one to retain the objects resulting from an

invocation returning two or more objects. The first variable is assigned the first object, the second

variable the second object, and so on. The order of the objects is the same as in the return

statement of the invoked routine. The number of variables must equal the number of objects

returned, no variable may occur more than once, and the type of each variable must include the

Multiple Assignment §9.2.2

corresponding return type of the invoked procedure. Note that the right-hand side iS syntactically

restricted to simple invocations (see Section 10.fl; sugared Invocations bee Sectlans I0.5. 10.'1> are not

allowed.

Two examples of this form of assignment are:

first, last, balance:• acctSquery(acctJIO)
x, y, z :• vectorScomponentsC•>

8.8 Invocation

Invocation is the other fundamental action of CLU. In this S«tion we discuss procedure

Invocation; iterator Invocation is discussed in S«tion IU.2. However, up to and Including passing

or arguments, the two are the same.

ln•ocations take the form:

primary C (expression ••••) >

A primary is a slightly rHtricted form of expression, whkh includes variables and routine names,

among othtt things. <See the next section.>

The sequence of activities ln perf ormlng an invocation are as follows:

1. The primary is evaluated. It must evaluate to a pracedure or Iterator.

2. The expressions are evaluated, from Wt to right.

3. New variables are lntradueed corresponding to the formal arguments
of the routine being invoked Ci.e., a new environment Is created for the
invoked routine to execute In).

f. The objects resu1ting from evaluating the expressions (the actual
arguments> are assigned to the corresponding new variables Cthe formal
arguments>. The first formal ts assigned the first actual. the second
formal the second actua~ and so on. The type of each expression must
be included in the type of the corresponding fonna1 argument.

5. Control is transferred to the rouUne at the start of Its body.

An invocation is considered legal in exactly those situations where an the Ctmplldt) assignments

involved in its execution are legal.

It Is permissible for a l'OUline to assign an object to a formal argument variable; the effect ts

just as if that ob~ were assigned to any other vartnle. From the point of vtew. or the Invoked

routine. the only difference between its formal argument variables and Its other local variables Is

that the formals are lntlialtzed by Its caller.

§9.3 Invocation

Procedures can terminate in two ways: they can terminate normall'J, returning zero or more

objects, or they can terminate exceptionall'J. signalling an exceptional condition. When a procedure

terminates normally, the result objects become available to the caller, and will <usually> be assigned

to variables or passed as arguments to other- routines. When a procedure terminates exceptionally,

the flow of control will not go to the point of return of the invocation, but rather will go elsewhere

as described in Section 12.

Some examples of invocations are:

pO
array{intlScreate<-1>
routine_tableC index l< input>

10. Expressions

I invoking a procedure taking no arguments
I invoking an operation of a type
I invoking a procedure fetched from an array

An expression evaluates to an object in the CLU universe. This object is said to be the result

or value of the expression. Expressions are used to name the object to which they evaluate. The

simplest forms of expressions are literals, variables, and routine names. These forms directly name

their result object. More complex expressions are generally built up out of nested procedure

invocations. The result of such an expression is the value returned by the outermost invocation.

Like many other languages, CLU has prefix and infix operators for the common arithmetic

and comparison operations, and uses the familiar syntax for array indexing and record component

selection <e.g., a[i] and r.s>. However, in CLU these notations are considered to be abbreviations

for procedure calls. This allows built-in types and user-defined types to be treated as uniformly as

possible, and also allows the programmer to use familiar notation when appropriate.

In addition to invocation, four other forms are used to build complex expressions out of

simpler ones. These are the conditional operators cand and cor <see Section 10.8), and the type

conversion operations up and down <see Section 10.10>.

There is a syntactically restricted form of expression called a prtmar'J. A primary is any

expression that does not have a prefix or infix operator, or parentheses, at the top level. In certain

places, the syntax requires a primary rather than a general expression. This has been done to

increase the readability of the resulting programs.

11 Expressions §10

As a general rule, procedures with side effects should not be used in expressions, and programs

should not depend on the order in which expressions are evaluated. However, to avoid surprises,

the subexpressions of any expression are evaluated from left to right.

The various forms of e~pressions are explained below.

10.1 Literals

Integer, real, character, string, boolean and null literals are expressions. The syntax for literals

is given in Sections 7.1 to 7.6. The type of a literal expression is the type of the object named by

the literal. For example, true is of type bool, ·abc• is of type string. etc.

10.2 Variables

Variables are identifiers that name objects of a given type. The type of a variable is the type

given in the declaration of that variable, and determines which objects may be named by the

variable.

10.3 Procedure and Iterator Names

Procedures and iterators may be defined either as separate modules, or within a cluster. Those ·

defined as separate modules are named by expressions of the form:

idn [[constant , ••• l]

The optional constants are the parameters of the procedure or iterator abstraction. <Constants were

discussed in Section 8.3.>

When a procedure or Iterator is defined as an operation of a type, that type must be part of

the name of the routine. The form for naming an operation of a type is:

type_spec S name [[constant , •.• l]

The type of a procedure or iterator name is just the type of the named routine. Some

examples of procedure and iterator names are:

primes
sort[Intl
lntSadd
array{ boollSelements

§10.i Procedure Invocations

10 .4 Procedure Invocations

Procedure invocations have the form

primary ([expression , •••] >

The primary is evaluated to obtain a procedure object, and then the expressions are evaluated left­

to-right to obtain the argument objects. The procedure is invoked with these arguments, and the

object returned is the result of the entire expression. For more discussion see Section 9.3.

The following expressions are invocations:

p<x>
lnt$add<a, b>
withinC3.21<7.I, .003e7>

Any procedure invocation P<E1, ... En> must satisfy two constraints: the type of P must be of

the form

proctype <T1 •... T n> returns <R> signals<...>

and the type of each expression Ei must be Included in the corresponding type T 1. The type of the

entire invocation expression is given by R.

Procedures can also be invoked as statements <see Section 11.U.

10.5 Selection Operations

Arrays, sequenc.es, records, and structures are collections of objects. Selection operations

provide access to the individual elements or components of the collection. Simple notations are

provided for invoking the fetch. and store operations of array types, the Jetcli. operation of sequence

types, the get and set operations of record types, and the get operations of structure types. In

addition, these ·syntactic sugarings• for selection operations may be used for user-defined types

with the appropriate properties.

10.5.1 Element Selection

An element selection expression has the form:

primary [expression 1

This form is just syntactic sugar for an invocation of a fetcla operation, and is completely

equivalent to:

T$f etch< primary, expression>

Element Selection

where T is the type of primar7. For example, if a is an array of integers, then

a[271

is completely equivalent to the invocation

array(tntJSfetch<a, 27>

§10.5.I

When primar1 is an array(SJ or sequence[S] for some type S, nprtssum must be an Int, and

the result has type S. However, the element selection expression is not restricted to arrays and

sequences. The expression is legal whenever the corresponding invocation is legal. In other words,

T <the type of primar1> must provide a procedure operation named fttd., which takes two

arguments whose types include the types of primar7 and txprtssion, and which returns a single

result.

The use of fttclr for user-defined types should be restricted to types with array-like behavior.

Objects of such types will contain <along with other information) a collection of objects, where the

collection can be indexed in some way. For example, it might make sense for an

associative_memory type to provide a fttcla operation to access the value associated with a key.

Fttcli. operations are intended for use in expressions; thus they should never have side-effects.

Array-like types may also provide a stort operation <see Section 11.2.l>.

10.5.2 Component Selection

The component selection expression has the form:

primary • name

This form is just syntactic sugar for an invocation of a gtt_naJM operation, and ls completely

equivalent to:

TSget_namt<primary>

where T is the type of 1"'"'"'1· For example, if x has type recorclfirst: Int. second: reaO, then

x.first

Is completely equivalent to

recorclfirst: Int, second: rea11SgetJirst<x>

When T is a record or structure type, then T must have a selector called namt, and the type of

the result will be the type of the component named by that selector. However, the component

selection expression is not restricted to records and structures. The statement is legal whenever the

corresponding invocation is legal. In other words, T <the type of prtmar1> must provide a

procedure operation named gtLnamt, which takes one argument whose type includes the type of

§10.5.2 Component Selection

primar'J, and which returns a single result.

The use of get operations for user-defined types should be restricted to types with record-like

be ha vi or. Objects of such types will contain (along with other information) one or more named

objects. For example, it might make sense for a file type to provide a get_author operation, which

returns the name of a file's creator. Get operations are intended for use in expressions; thus they

should never have side-effects.

Types with named components may also provide sit operations <see Section 11.2.2>.

10 .8 Constructors

Constructors are expressions that enable users to c'reate and initialize arrays, sequences, records,

and structures. Constructors are not provided for user-defined types.

10.8.1 Array Constructors

An array constructor has the form:

type_spec $ C [expression:] [expression , •••] J

The type specification must name an array type: array(TJ. This is the type of the constructed

array. The expression preceding the":" must evaluate to an integer, and becomes the low bound of

the constructed array. If this expression is omitted, the low bound Is 1. The expressions following

the ":" are evaluated to obtain the elements of the array. They correspond <left to right) to the

indexes low_bound, low_bound+l, loru_bound+2 • ... For an array of type array(TJ, the type of each

element expression. in the constructor must be included in T.

For example, the expression

array(booll $ [79: true, false]

constructs a new boolean array with two elements: true <at index 79), and false fat inc;lex 80). The

expression

array(ail $ Cai$[], aiS[]]

<where ai is equated to array(lntl> creates two distinct integer arrays, both empty, and creates a

third array to hold them. The low bound of each array is 1.

An array constructor is computationally equivalent to an array c11att operation, followed by a

number of array addla operations. However, such a sequence of operations cannot be written as an

expression.

48 §10.6.2

10.8.2 Sequence Constructors

A sequence constructor has the f onn:

typeJp« S C (expression ••••) 1

The type specification must name a sequence type: aequenc.CTJ. This ls the type of the

constructed sequence. The expressions are evaluated to obtain the elemenU of the sequence. They

correspond <left to right> to the indexes I, 2, 3, ..• For a sequence or type aequeftC.CTJ, the type of

each element expression in the constructor must be included in T.

A sequence constructor ts computationaHy equivalent to a sequence JUW operation, followed by a

number of sequence addlt operations.

10.8.8 Record Constructors

A record constructor has the f onn:

type_spec s (field •••• }

where

field ::• name, ••• : expression

Whenever a field has more than one name, it is equivalent to a sequence or fields, one for each

name. Thus, the following two constructors are equivalent:

R •· recorcl. a: Int. b: Int. c: Int 1
RS(a, b: 7, c: 91
RSla: 7, b: 7. c: 91

Jn a record constructor, the type specification must name a record type:

record CSi:T1 •...• Sn:T nl This will be the type of the constructed record. The component names

tn the field list must be exactly the names s1 •... , Sn• although these names may appear in any

order. The expressions are evaluated left to right, and there is one evaluation per component

name even if several component names are grouped with the same expression. The type of the

expression for component Si must be included in Ti. The results or these evaluations form the

components of a newly constructed record. This record ls the value of the entire constructor

expression.

AJ an example, consider the following record constructor:

AS • array[string]
RT • recorcllistl, list2: AS, item: Int]
RTSUtem: 2, listl, 1tst2: ASSC"Susan·, •George•, •Jani>

§10.6.3 Record Constructors 49

This produces a record that contains an integer and two distinct <but similarl> arrays. The arrays

are distinct because the array constructor expression is evaluated twice, once for list/ and once for

list2.

A record constructor is computationally equivalent to a record crtatt operation <see

Appendix II>, but that operation is not available to the user.

10.6.4 Structure Constructors

A structure constructor has the form:

type_spec S { field , ••• }

where <as for records>

field ::: name , ••• : expression

Whenever a field has more than one name, it is equivalent to a sequence of fields, one for each

name.

In a structure constructor, the type specification must name a structure type:

struct CSt=T 1 , Sn:T nl This will be the type of the constructed structure. The component

names in the field list must be exactly the names s1, ... , Sn, although these names may appear in

any order. The expressions are evaluated left to right, and there is one evaluation per component

name even if several component names are grouped with the same expression. The type of the

·expression for component Si must be included in Ti. The results of these evaluations form the

components of a newly constructed structure. This structure is the value of the entire constructor

expression.

A structure constructor · is computationa11y equivalent to a structure crtatt operation <see

Appendix II>, but that operation is not available to the user.

10.7 Prefix and Infix Operators

CLU allows inf!x and prefix notation to be used as a shorthand for the following operations.

The table shows the shorthand form and the equivalent expanded form for each operation. For

each operation, the type T is the type of the first operand.

50

Shorthand C!!!!!!
expr1 u expr2
expr1 // expr2
expr1 I expr2
expr1 • expr2
expr1 ft expr2
expr1 + expr2
expr1 - expr2
expr1 < expr2
exprl <• expr2
expr1 • expr2
expr1 >• expr2
expr1 > expr2
expr1 ""< expr2
expr1 ""<• expr2
expr1 ...,. expr2
expr1 "">• expr2
expr1 ""> expr2
expr1 le expr2
expr1 I expr2

- expr
""expr

Prefix and Infix Operators

Expansion

Tspower<expr1• exprr
TSmod<exprl• exprr
TS~iv<expr1• exprr
TSmulCexpr1• exprr
TSconcat<expr1• exprr
TSadd<expr1, expr~
TSsub<exprl• exprr
TSk<expr1• exprr
TSle<expr1, exprt
TSequa1Cexpr1• exprt
TSge<expr1• _exprr
TSgt<expr1, exprt
"" <expr1 < eiprf
"" <expr1 <• exprr
"" <exprl • exprr
,., <expr1 >• exprr
,., <expr1 > exprt
TSand<expr1• exprt
TSor<expr1, exprr
TSminus<expr>
TSnot<expr>

§10.7

Operator notation is used most heavily for the built-in types. but may be used for

uier-defined types as well. When these operations are provided for user-defined types. they

should always be side-effect free. and they should rnean roughly the same thing as they do for the

buik-in types. For example. the comparison operations should only be used for types that have a

natural partial or total order. Usually. the comparlsen operattons Clt1 l11 'f'Ull. I'• ft) wll be of type

proctype <T. T> retums <bool>

the other binary operations <e.g .. add, sub> wiU be of type

proctype <T, TI returns <T> •ltn..S (.J

and the unary operations wiU be of type

proctype en returns en tJ

§10.8 Cand and Cor 51

10.8 Cand and Cor

Two additional binary operators are provided. These are the conditional and operator, cand.

and the conditional or operator, cor.

expression1 cand expression2
is the boolean and of expression1 and expression2. However, if expression1 ts false, expression2 ls

never evaluated.

expression1 cor expression2
is the boolean or of expression1 and expression2, but expression2 is not evaluated unless

expression1 is false. For both cand and cor, expression1 and expression2 must have type bool.

Conditional expressions can be used to avoid run-time errors. For example, the following

boolean expressions can be used without fear of "bounds" or "1ero_divide• errors:

<low _bound <= i) cand <i <• high_bound> cand <ACiJ ,.,. O>
<n ., 0) cor <1000//n • O>

Because of the conditional expression evaluation involved, uses of cand and cor are not

equivalent to any procedure invocation.

10 .9 Precedence

When an expression is not fully parenthesized, the proper nesting of subexpressions might be

ambiguous. The following precedence rules are used to resolve such ambiguity. The precedence

of each inf ix operator is given in the table below. Higher precedence operations are performed

first. Pref ix operators always have precedence over Infix operators.

The precedence for infix operators is as follows:

Precedence Oeerators

5 ** .. • I II

3 + II

2 < < .. >• >
N< N<= ,.,. N>• N>

I 8c cand

0 cor

Precedence §10.9

The order of evaluation for operators of the same precedence is left to right, except for ••.

which is right to left.

The following examples illustrate the precedence rules.

Expression Equivalent Form

a+b//c a + (b // c>

a+ b - c (a + b> - c

a+bucud a + tb u (c u d»

a•blc•d <a • b> I <c • d>

- a• b <-a> • b

10.10 Up and Down

There are no implicit type conversions in CLU. Two forms of expression exist for explicit

conversions. These are:

up (expression >
down< expression >

Up and down may be used only within the body of a cluster operation. Up changes the type

of the expression from the representation type of the cluster to.the abstract type. Down converts

the type of the expression from the abstract type to the representation type. These conversions will

be explained further in Section 13.3.

10.11 Poree

CLU has a single built-in procedure generator called force. Force takes one type parameter.

and is written

force C type_spec 1

The procedure forceCTl has type

proctype (any> returns <T> signals (wrong_type>

If forceCTJ is applied to an object that is included in type T, then it returns that object. If

forceCTl is applied to an object that is not in type T, then it signals •wrong_type• <see Section 12>.

Force is a necessary companion to the type any. The type any allows programs to pass

around objects of arbitrary type. However, to do anything substantive with an object, one must

use the primitive operations of that object's type. This raises a conflict with compile-time

§10.11 Force

type-checking. since an operation can be applied only when the arguments are known to be of the

correct types. This conflict is resolved by using force. ForceCTJ allows a program to check, at

run-time, that a particular object is actually of type T. Ir this check succeeds, then the object can

be used in all the ways appropriate for objects of type T.

For example, the procedure forceCTJ allows us to legally write the following code:

x: any:• 3
y: Int:• forceClntJ<x>

while the fallowing is illegal:

x: any:• 3
y: Int:• x

because the type of 'Ont> does not include the type of the expression x (•ny>.

11. Statements

In this section, we describe most of the statements of CLU. We omit discussion of the algnal.

exit, and except statements, which are used for signalling and handling exceptions, as described

in Section 12.

CLU is a statement-oriented language, i.e., statements are executed for their side-effects and

do not return any values. Most statements are control statements that permit the programmer to

define how control flows through the program. The real work is done by the simplt statements:

assignment and invocation. Assignment has already been discussed in Section 9; the invocation

statement is discussed in Section 11.1 below. Two special statements that look like assignments but

are really invocations are discussed in Section 11.2.

The syntax of CLU is defined to permit a control statement to control a group of equates,

declarations, and statements rather than just a single statement. Such a group is called a bod,, and

has the form

body ::= { equate }

{ .statement } i statements include declarations

Scope rules for bodies were discussed in Section 8.1. No special terminator is needed to signify the

end of a body; reserved words used in the various compound statements serve to delimit the bodies.

Occasionally it is necessary to explicitly indicate that a group of statements should be treated like a

single statement; this is done by the block statement, discussed in Section 11.3.

Statements §II

The conditional statement is discussed in Section 11.i. Loop statements are discussed in

Section 11.5, as are some special statements that control termination of a single iteration or a single

loop. The tagcase statement is discussed in Section 11.6. Finally, the return statement is

discussed in Section 11.7, and the yleld statement in Section 11.8.

11.1 Procedure Invocation

An invocation statement invokes a procedure. Its form is the same as an Invocation

expression:

primary < [expression , ...])

The primary must evaluate to a procedure object, and the type of each expression must be included

in the type of the corresponding formal argument for that procedure. The procedure may or may

not return results; if it does return results, they are discarded.

For example, the statement

array[lntlSremh<a>

will remove the top element of a <assuming a is an erray(lntll. Rtmlt also returns the top element,

but it is discarded in this case.

11.2 Update Statements

Two special statements are provided for updating components of records and arrays. Jn

addition they may be used with user-defined types with the appropriate properties. These

statements resemble assignments syntactically, but are really invocations.

11.2.1 Element Update

The element update statement has the form

primary [expression1 J :• expression2

This form is merely syntactic sugar for an invocation of a start operation, and Is completely

equivalent to the invocation statement

TSstore<primary, expression1, expression2>

where T is the type of primar7. For example. if a is an array of integers,

aC27J :• 3

is completely equivalent to the invocation statement

§11.2.l Element Update 55

array{int1$store<a, 27, 3>

The . element update statement is not restricted to arrays. The statement is legal if the

corresponding invocation statement is legal. In other words, T <the type of primar1> must provide

a procedure operation named store, which· takes three arguments whose types include those of

primar1. expression 2• and expression 2, respectively. In case primar1 is an array{ SJ for some type S.

expression1 must be an integer, and txprtHilm2 must be included in S.

We recommend that the use of store for user-defined types be restricted to types with

array-like behavior, i.e., types whose objects contain mutable collections of indexable elements. For

example, it might make sense for an associative.)Tlemory type to provide a store operation for

changing the value associated with a key. Such types may also provide a fttclr. operation <see

Section 10.5.U.

11.2.2 Component Update

The component update statement has the form

primary • name :• expression

This form is merely syntactic sugar for an invocation of a stt_namt operation, and is completely

equivalent to the invocation statement

T$set_namt<primary, expression)

where T is the type of primar7. For example, if x has type recorclflrst: Int, second: realJ, then

x.first :• 6

is completely equivalent to

recordfirst: Int second: reall$setJirst<x, 6)

The component update statement ts not restricted to records. The statement is legal if the

corresponding invocation statement is legal. In other words, T (the type of primar7> must provide

a procedure operation called set_name, which takes two arguments whose types include the types of

primar7 and expression, respectively. When T is a record type, then T must have a selector called

name, and the type of expression must be included in the type of the component named by that

selector.

We recommend that set operations be provided for user-defined types only if record-like

behavior is desired, i.e .. it is meaningful to permit some parts of the abstract object to be modified

by selector name. In general, set operations should not perform any substantial computation, except

possibly checking that the arguments satisfy certain constraints. For example, in a bank account

56 Component Update §11.2.2

type. there might be a ut_min._balanet operation to set what the minimum balance in the account

must be. However, dtposit and witltdraw operations make more sense than a stt_balanu operation,

even though the stt_balanct operation could compute the amount deposited or withdrawn and

enforce semantic constraints.

In our experience, types with stt operations occur less frequently than types with gtt operations

<see Section 10.5.2).

11.3 Block Statement

The block statement permits a sequence of statements to be grouped together Into a single

statement. Its form ls

begin body end

Since the syntax already permits bodies inside control statements, the main use of the block

statement is to group statements together for use with the except statement; see Section 12.

11.4 Conditional Statement

The form of the conditional statement is

If expression then body

{ elself expression then body }

(else body)

end -

The expressions must be of type bool. They are evaluated successively until one is found to be

true. The body corresponding to the first true expression is executed, and the execution of the If

statement then terminates. If none of the expressions is true, then the body in the else clause is

executed <if the else clause exists>. The elsetf form provides a convenient way to write a

multi-way branch.

11.6 Loop Statements

There are two forms of loop statements: the while statement and the for statement. Also

provided are a continue statement, to terminate the current cycle of a loop, and a break statement,

to terminate the innermost loop. These are discussed below.

§11.5.1 While Statement 57

11.5.1 While Statement

The while statement has the form:

while expression do body end

Its effect is to repeatedly execute the body as long as the expression remains true. The expression

must be of type bool. If the value of the expression is true, the body is executed, and then the

entire while statement is executed again. When the expression evaluates to false, execution of the

while statement terminates.

11.5.2 For Statement

The only way an iterator <see Section 13.2> can be invoked is by use of a for statement. The

iterator produces a sequence of ittms <where an item is a group of zero or more Objects> one item at

a time; the body of the for statement is executed for each item in the sequence.

The for statement has the form:

for [idn , •••) In invocation do body end

or

for [ded , ••.] In invocation do body end

The invocation must be an iterator invocation. The idn form uses previously declared variables to

serve as the loop variables, while the dtcl form introduces new variables, local to the for statement,

for this purpose. In either case, the type of each variable must include the corresponding yield

type of the invoked iterator.

Execution of the for statement proceeds as follows. First the iterator is invoked, and it either

yields an item or terminates. If the iterator yields an item, its execution is temporarily suspended,

the objects in the item are assigned to the loop variables, the body of the for statement is executed,

and then execution of the iterator is resumed (from the point of suspension>. Whenever the

iterator terminates. the entire for statement terminates.

An example of a for statement is

a: array[lntl

sum: Int:= 0
for x: Int In array[lntlSelements(a) do

sum:• sum+ x
end

which will compute the sum of all the integers in an array of integers. This example makes use of

For Statement §11.S.2

the tltmtnt.s iterator on arrays. which yields the elements of the array one by one.

11.5.3 Continue Statement

The continue statement has the form

continue

Its effect is to terminate execution of the body of the smallest loop statement in which it appears,

and to start the next cycle of that loop (if any>.

11.5.4 Break Statement

The break statement has the form

break

Its effect is to terminate execution of the smallest loop statement in which It appears. Execution

continues with the statement following that loop.

For example,

sum: Int:• 0
for x: int In array(lntlSelements<a> do

sum:• sum+ x
If sum>• 100

then sum :• 100 break end
end

computes the minimum of 100 and the sum of the integers in a. Note that execution of the break

statement wilt terminate both the iterator and the for loop, continuing with the statement following

the for loop.

11.8 Tagcase Statement

The tagcase statement is a special statement provided for decomposing oneof and variant

objects. Reca 11 that a oneof or variant type is a discriminated union, and each object contains a tag

and some other object called the valut <see Sections 7.12 and 7.13>. The tagcase statement permits

the selection of a body to perform based on the tag of the object.

The form of the tagcase statement is

§11.6

where

tagcase expression

tag_arm { tag_arm }

[others : body]

end

Tagcase Statement

tag_arm ::= tag name , ..• [< idn: type_spec)] : body

59

The expression must evaluate to a oneof or variant object. The tag of this object is then matched

against the names on the tag_arms. When a match is found, if a declaration (idn: t7pt_sptc> exists,

the value component of the object Is assigned to the local variable idn. The matching body is then

executed; idn is defined only in that body. If no match is found, the body in the others arm is

executed.

In a syntactically correct tagcase statement, the following constraints are satisfied. The type

of the expression must be some oneof or variant type, T. The tags named in the tag_arms must be

a subset of the tags of T, and no tag may occur more than once. If all tags of T are present, there

is no others arm; otherwise an others arm must be present. Finally, on any tag_arm containing a

declaration <idn: t'jpt_sptc>, t1pcsptc must equal the type specified as corresponding in T to the

tag or tags named in the tag_arm.

An example of a tagcase statement is

pair .. structlcar: Int, cdr: int_listJ
x: oneofCpair: pair, empty: nulll

while true do
tagcase x

tag empty: return< false>
tag pair <p: pair): If p.car ... i

end
end

then return<true>
else x :• down<p.cdr>
end

This statement might be used in a list <of Integers> operation that determines whether some given

integer (i) is on the list.

60 Return Statement §11.7

11.7 Return Statement

The form of the return statement is:

return [< expression , •••)] .

The return statement terminates execution of the containing procedure or iterator. If the return

statement is in a procedure, the type of each expression must be included in the corresponding

return type of the procedure. The expressions <if any> are evaluated from left to right, and the

objects obtained become the results of the procedure. If the return statement occurs In an Iterator

no results can be returned.

For example, inside a procedure f> with type

proctype <. • .> returns <tnt, char>

the statement

return<3, 'a'>

Is legal and returns the two result objects 3 and 'a'.

11.8 Yield Statement

Yleld statements may occur only in the body of an iterator. The form of a yleld statement Is:

yleld [< expression , •••)]

It h'as the effect of suspending operation of the iterator, and returning control to the invoking for

statement. The values obtained by evaluating the expressions (left to right> are passed to the for

statement to be assigned to the corresponding list of identifiers. The type of each expression must

be included in the corresponding yield type of the iterator.

12. Exception Handling and Exits

A routine is designed to perform a certain task. However, in some cases that task may be

impossible to perform. Jn such a case, instead of returning normally <which would imply successful

performance of the intended task>, the routine should notify its caller by signalling an txctptlon,

consisting of a descriptive name and zero or more result objects.

Exception Handling and Exits 61

For example, the procedure strlng$fetch takes a string and an integer index and returns the

character of the string with the given index. However, if the integer is not a legal index into the

string, the exception bounds Is signalled instead. The type specification of a routine contains a

description of the exceptions it may signal; tor example, strlngSfetch is of type

proctype <string, Int> returns (char) signals <bounds>

The exception handling mechanism consists of two parts, the signa11ing of exceptions and the

handling of exceptions. Signalling is the way _a routine notifies its caller of an exceptional

condition; handling is the way the caller responds to such notification. A signalled exception

always goes to the immediate taller, and the exception must be handled in that caller. When a

routine signals an exception, the current activation of that routine terminates and the

corresponding invocation (in the caller) is said to raise the exception. When an invocation raises

an exception. control immediately transfers to the closest applicable handler. Handlers are attached

to statements; when execution of the handler completes, control passes to the statement following

the one to which the handler is attached.

The exception failure serves as a general catch-all error indication. When raised, it implies

that some lower-level abstraction has failed in an unexpected (and possibly catastrophic> way.

Failure is accompanied by a string result explaining the reason for. the failure. All routines can

potentially signal failure. Failure is implicitly part of all routine headings and routine types; a

signals clause must not list failure explicitly.

12.1 Signal Statement

An exception is signalled with a signal statement, which has the form:

signal name [(expression , •••)]

A signal statement may appear anywhere in the body of a routine. The execution of a slgnal

statement begins with evaluation of the expressions (if any>, from left to right, to produce a list of

exception results. The activation of the routine is then terminated. Execution continues in the

caller as described in Section 12.2 below.

The exception name must be either one of the exception names listed in the routine heading,

or failure. If the corresponding exception specification in the heading has the form

name<T 1, ••• , T n>

then there must be exactly n expressions in the signal statement, and the type of the itla expression

must be included in Ti· If the name is failure, then there must be exactly one expression present,

62 Signal Statement

of type string.

The f o11owing useless procedure contains a number of examples of slgn•I statements:

signaller .. proc <i: Int> returns <int> signals <zero, negative<lnt>>
If i < 0 then signal negativeC-il

elseif i > 0 then ·returmi)
elself i • 0 then signal zero
else slgnal failuree·unreachable statement executed!,
end

end signaller

12.2 Except Statement

§12.l

When a routine activation terminates by signalling an exception, the corresponding invocation

<the text of the call> is said to raise that exception. By attaching handlers to statements, the caller

can specify the action to be taken when an exception is raised.

A statement with handlers attached is called an except statement, and has the form:

statement except { when_handler}

where

(others_handler)

end

when_handler ::: when name , ••• [(decl , ••• >] : body

when name , ••• (• > : body

others_handler ::: others ((idn : type_spec)] : body

Let· S be the statement to which the handlers are attached, and let X be the entire except

statement. Each when_han~ler specifies one or more exception names and a body. The body is

executed if an exception with one of those names is raised by an invocation in S. All of the names

listed in the when_handlers must be distinct. The optional others_handler is used to handle all

exceptions not explicitly named in the when_handlers. The statement S can be any form of

statement, and can even be another except statement.

If, during the execution of S, some invocation in S raises an exception E, control immediately

transfers to the closest applicable handler; i.e., the closest handler for E that is attached to a

statement containing the invocation. When execution of the handler completes, control passes to

the statement following the one to which the handler ts attached. Thus if the closest handler is

attached to S, the statement following X is executed next. If execution of S completes without

§12.2 Except Statement

raising an exception, the attached handlers are not executed.

An exception raised inside a handler is treated the same as any other exception: control passes

to the closest handler for that exception. Note that an exception raised in some handler attached to

S cannot be handled by any handler attac~ed to S; either the exception is handled within the

handler, or it is handled by some handler attached to a statement containing X.

We now consider the forms of handlers in more detail. The form

when name ...• [< decl , •••)] : body

is used to handle exceptions with the given names when the exception results are of interest. The

optional declared variables, which are local to the handler, are assigned the exception results before

the body is executed. Every exception potentially handled by this form must have the same

number of results as there are declared variables, and the types of the results must equal the types

of the variables. The form

when name •••• < • > : body

handles all exceptions with the given names, regardless of whether or not there are exception

results; any actual results are discarded. Hence exceptions with differing numbers and types of

results can be handled together.

The form

others [< idn : type_spec)] : body

is optional, and must appear last in a handler list. This form handles any exception not handled

by other handlers in the list. If a variable is declared, it must be of type string. The variable.

which is local to the handler, is assigned a lower case string representing the actual exception name;

any results are discarded.

Note that exception results are ignored when matching exceptions to handlers; only the names

of exceptions are used. Thus the following is illegal. in that lntSdiv signals zero_divide without

any results, but the closest handler has a declared variable:

begin
y: int; .. 0
x: Int :• 3 I y .,.

except when zero_divide (z: Int>: return end
end

except when zero_divide: return end

An invocation need not be surrounded by except statements that handle all potential

exceptions. This policy was adopted because in many cases the programmer can prove that a

particular exception will not arise. For example, the invocation lntSdiv(x, 7> will never signal

64 Except Statement §12.2

zero_divide. However, this policy does lead to the possibility that some invocation may raise an

exception for which there is no handler. To avoid this situation, every routine body is contained

implicitly in an except statement of the form

begin routint_bod., end
except when failure <s: string>: signal failure<s>

others <s: string>: signal failure<·unhandled exception: • H s>
end

FaUurt exceptions are propagated unchanged; an excepUon named na91t becomes

failure<·unhandled exception: namti

12.8 Resignal Statement

A resignal statement is a syntactically abbreviated form of exception handling:

statement resignal name , .•.

Each name listed must be distinct, and each must be either one of the condition names listed in the

routine heading, or failure. The resignal statement acts like an except statement containing a

handler for each condition named, where each handler simply signals that exception with exactly

the same results. Thus, if the resignal clause names an exception specification in the routine

heading of the form

name<T 1, ••• , T n>

then effectively there is a handler of the form

when name <x1: T 1, ••• , xn: T n>: signal name<x1, ••• , xn>

As for an explicit handler of this form, every exception potentially handled by this implicit handler

must have. the same number of results as declared in the exception specification, and the types of

the results must equal the types listed in the exception specification.

then

As a simple example, if a routine has a signals clause of the form

signals <underflow, overflow>

x: real :• 3.H.159 • y * y
resignal underflow, overflow

is equivalent to

§12.3 Resignal Statement

x: real :- 3.Hl59 * y • y
except when underflow: slgnal underflow

when overflow: signal overflow
end

12.4 Exit Statement

A local transfer of control can be effected by using an exit statement, which has the form:

exit name [< expression , ••• >]

65

An exit statement Is similar to a slgnal statement except that where the slgnal statement signals

an exception to the calling routine, the exit statement raists the exception directly in the current

routine. An exception raised by an exit statement must be handled <explicitly> by a containing

except statement with a handler of the form

when name •••• [< decl , ••• >] : body

As usual, the types of the expressions in the exit statement must equal the types of the variables

declared in the handler. The handler must be an explicit one, I.e., exits to the implicit handlers of

resignal statements or to the implicit Jailurt handler enclosing a routine body are illega1.

The exit statement and the signal statement mesh nicely to form a uniform mechanism. The

signal statement can be viewed simply as terminating a routine activation; an exit is then

performed at the point of invocation in the caller. <Because this exit is implicit, it is not subject to

the r~strictions on exits listed above.>

The following is a simple example of the use of exits in search loops:

elt: T
begin

for elt In array{Tl$elements<x> do
If special<elt> then exit found end
end

elt := make_new_one<...> 'X Didn't find one, so make one up
end except when found: end
" At this point we have an object and we don't care how we got it

12 .5 Example

We now present an example demonstrating the use of exception handlers. We will write a

procedure, sum._strtam, which reads a sequence of signed decimal integers from a character stream

and returns the sum of those integers. The stream is viewed as containing a sequence of fields

separated by spaces; each field must consist of a non-empty sequence of digits, optionally preceded

66 Example

by a single minus sign. Su"l...strtam has the form

sum_stream • proc <s: stream> returns <Int> algnala <overflow,
unrepresentablejnteger< •trlng),
badJormat< •trlnG>>

end sum_stream

§12.5

Su11L.stream signals overflow if the sum of the numbers or an intermediate sum is outside the

implemented range of integers. Unrepresentable_integer is signalled if the stream contains an

individual number that is outside the implemented range of integers. BadJormat is signalled if

the stream contains a field that is not an integer.

We will use the getc operation of the stream data type <see Appendix III>, whose type is

proctype <stream) returns <char> signals <end_of Jile, not_possible<strlng»

This operation returns the next character from the stream, unless the stream is empty, in which

case end_of _file is signalled. Not.possible is signalled if the operation cannot be performed on the

given stream <e.g .. it is an output stream, or does not allow character operations, etc.> We will

assume that we are given a stream for which gttc is always possible.

The following procedure is used to convert character strings to integers:

s2i • proc <s: string> returns <Int> signals <invalid_character<char>,
badJormat;
unrepresentable.Jnteger>

end s2i

S 2i signals invalid_character if its string argument contains a character other than a digit or a

minus sign. BadJormat is signalled if the string contains a minus sign following a digit, more

than one minus sign, or no digits. Unrepresentable_integer is signalled if the string represents an

integer that is outside the implemented range of integers.

An implementation of su"l...stream is presented in Figure 5. There are two loops within an

infinite loop: one to skip spaces, and one to accumulate digits for conversion to a number. Notice

the placement of the inner end_of _file handler. If end_of Jile is raised in the second inner loop,

then the sum is computed correctly, and the first invocation of strtam.Sgttc will again raise

end_of _file. This time, however, the infinite loop is terminated and execution transfers to the

other end_of _file handler, which then returns the accumulated sum.

We have placed the remaining exception handlers outside of the infinite loop to avoid

cluttering up the main part of the algorithm. Each of these exception handlers could also have

been placed after the particular statement containing the invocation that signalled the

§12.5 Example

Fig. 5. The sum_stream procedure.

•
sum_stream - proc <s: stream> returns <Int> signals <overflow,

unrepresentableJnteger< string>,
badJormat<strlng)>

sum: Int:= 0
num: string
while true do

i skip over spaces between values; sum is valid, num Is meaningless
c: char := streamSgetc<s>
while c •''do

c ·=· streamSgetc<s>
end

I read a value; num accumulates new number, sum becomes previous sum
•• num :•

while c ' ' do
num :• strtngSappend(num, c>
c :• streamSgetc<s>
end
except when end_of Jile: end

I restore sum to validity
sum :• sum + s2i<num>
end

except when end_of Jile: return<sum>
when unrepresentable_integer: signal unrepresentableJnteger<num>
when badJormat, invalid_character <•>: slgnal badJormat<num>
when overflow: slgnal overflow
end

end sum_stream

67

corresponding exception. The (t) form is used in the handler for the badJormat and

invalid_character exceptions since the exception results are not used. Note that the overflow

handler catches exceptions signalled by the lntSadd procedure, which is invoked using the infix +

notation. Note also that in this example all of the exceptions raised by sum.._stream originate as

exceptions signa11ed by lower-level modules. Sum_stream simply reflects these exceptions upwards

in terms that are meaningful to its callers. Although some of the names may be unchanged, the

meanings of the exceptions <and even the number of results) are different in the two levels.

As mentioned above, we have assumed strtamSgttc never signals not.possible; if it does, then

sum.._strtam will terminate, raising the exception

failure<·unhandled exception: not_possiblei

68 Modules

13. Modules

A CLU program consists of a group of modules. Three kinds of modules are provided, one

for each kind of abstraction we have found to be useful in program construction:

module ::= { equate } procedure

{ equate } iterator

{ equa,te } cluster

Procedures support procedural abstraction, iterators support control abstraction, and clusters

support data abstraction.

A module defines a new scope. The identifiers introduced in the equates Hf any> and the

identifier naming the abstraction <the modult namt> are local to that scope <and therefore may not

be redefined in an inner scope>. Abstractions implemented by other modules are referred to by

using non-local identifiers. The system will provide some means of determining what abstractions

are meant by these non-local identifiers; one such mechanism is defined in Section 4.

The existence of an externally established meaning for an identifier does not preclude a local

definition for that identifier. Within a module, any identifier may be used in a purely local

fashion or in a purely non-local fashion, but no identifier may be used in both ways.

Example programs appear in Appendix IV.

13.1 Procedures

A procedure performs an action on zero or more argumtnts, and terminates returning zero or

more rtsults. A procedure supports a proctdural abstractton: a mapping from a set of input

objects to a set of result objects, with possible modification of some of the input objects. A

procedure may terminate in one of a number of condtttons; one of these ls the normal condmon,

while others are txetptional conditions. Differing numbers and types of results may be returned in

the different conditions.

The form of a procedure is

where

idn • proc [parms) args [returns) [signals) [where)

routine_body
endldn

§13.1 Procedures 69

args ::s < [decl , •••])

returns ::: returns < type_spec , ••• >

signals ::: signals (exception , •••)

exception ::: name [(type_s~ , •••)]

routine_body ::: {equate}

{ own_var}

{ statement }

In this section .we discuss non-parameterized procedures. For a non-parameterized procedure,

the parms and where clauses are missing. Parameterized modules are discussed in Section l~.4.

Own variables are discussed in Section 13.5.

The heading of a procedure describes the way in which the procedure communicates with its

caller. The args clause specifies the number, order, and types of arguments required to invoke the

procedure, while the returns clause specifies the number, order, and types of results returned when

the procedure terminates normally <by executing a return statement or reaching the end of its

body). A missing returns clause indicates that no results are returned.

The signals clause names the exceptional conditions in which the procedure can terminate,

and specifies the number, order, and types of result objects returned in each condition. In addition

t~ the. conditions explicitly named in the signals clause, any proced~re can terminate in the fatlure

condition. The failure condition returns with one result, a string object. All names of exceptions

in the signals clause must be distinct, and none can be Jailurt.

A procedure is .an object of some procedure type. For a non-parameterized procedure, this

type is derived from the procedure heading by removing the procedure name, rewriting the formal

argument declarations with one tdn per dtcl, deleting the names of formal arguments, and finally,

replacing proc by proctype.

As was discussed in Section 9.3, the invocation of a procedure causes the introduction of the

formal variables, and the actual arguments are assigned to these variables. Then the procedure

body is executed. Execution terminates when a return statement or a slgnal statement is executed,

or when the textual end of the body is reached. If a procedure that should return results reaches

the textual end of the body, the procedure terminates in the condition

failure<·no return values·)

At termination the result objects, if any, are passed back to the invoker of the procedure.

70 Procedures §1~.1

The idn following the end of the procedure must be the same as the tdn naming the

procedure.

Examp1es of procedures are given in Appendix JV.

18.2 Iterators

An iterator computes a sequence of items, one item at a time, where an item is a group of zero

or more objects. In the generation of such a sequence, the computation of each item of the

sequence is usually contro11ed by information about what previous items have been produced. Such

information and the way it controls the production of items is loca1 to the iterator. The user of the

iterator is not concerned with how the items are produced, but slmp1y uses them <through the for

statement> as they are produced. Thus the iterator abstracts from the detai1s of how the production

of the items is contro11ed; for this reason, we consider an iterator to imp1ement a control abstraction.

Iterators are particularly useful as operations of data abstractions that are collections of objects

<e.g., sets>, since they may produce the objects in a collection without revealing how the collection ts

represented.

An iterator has the form

where

idn • lter (parms) args (yields) [signals) (where l
routine_body
endidn

yields ::: yields < type_spec , •••)

Jn this section we discuss non-parameterized iterators, in which the parms and where clauses are

missing. Parameterized modules are discussed in Section 1:u. Own variables are discussed in

Section 13.5.

The form of an iterator is very similar to the form of a procedure. There are only two

differences:

1. An iterator has a yields clause in its heading in place of the returns
c1ause of a procedure. The yields clause specifies the number, order,
and types of objects yielded each time the iterator produces the next
item in the sequence. If zero objects are yielded, then the yields clause
is omitted.

2. Within the iterator body, the yield statement is used to present the next
item In the sequence. An iterator terminates in the same manner as a
procedure <note that it may not return any results>.

§13.2 lteratqrs 71

An iterator is an object of some iterator type. Its type can be derived from its heading by

removing the iterator name, rewriting the formal argument declarations with one tdn per dtcl,

deleting the formal argument names, and finally, replacing tter by ltertype.

An iterator can be invoked only by a for statement. The execution of Iterators ls described ln

Section 11.5.2.

An t'Xample of an iterator is

splits • lter <s: string> ylelds <string, string>
for i: int In tnt$from_to<O, strlngSsize<sH do

yleld<strlngSsubstr<s, 1, i>, stringSrest<s, i + I))

end
end splits

Additional examples of iterators are given in the nt'xt section.

Remarks

Iterators provide a useful mechanism for abstracting from the details of control Furthermore,

they permit for statements to iterate over the objects of interest, rather than requiring a mapping

from the Integers to those objects.

It is important to realize that the argument objects passed to the iterator are also accessible in

the body of the for loop controlled by the iterator. If some argument object is mutable, and the

iterator modifies it, the change can affect the behavior of the for loop body, and vice-versa. Such

changes can be the cause of program errors.

As a general principle, an iterator should not modify its argument objects. There are some

examples, however, where modification is appropriate. For example, an iterator that produces the

charact~rs from an Input stream would advance the stream ·window· <the currently accessible

character> on each iteration.

Also as a general principle, the for loop body should not modify the iterator's argument

objects. Again, occasional examples exist where modification is desirable. In programming such

examples, the programmer must ensure that the iterator will still behave correctly in spite of the

modifications.

Clusters §13.3

ta.a Clusters

A cluster is used to implement a new data type, distinct from any other built-in or user-defined

data type. A data type <or data abstraction) consists of a set of objects and a set of primitive

operations. The primitive operations provide the most basic ways of manipulating the objects;

ultimately every action that can be performed on the objects must be expressed in terms of the

primitive operations. Thus the primitive operations define the lowest level of observable object

behavior.

The form of a cluster Is

where

idn .. cluster [parms) la idn , ••• [where]

cluster _body
endidn

cluster _body ::: { equate } rep • type_spec { equate }

fown_var}

routine { routine }

routine ::: procedure

Iterator

In this section we discuss non-parameterized clusters, in which the fJarms and where clauses are

missing. Parameterized modules are discussed in Section 13.4. Own variables are discussed in

Section 13.5.

The primitive operations are named by the list of idns following the reserved word la. All of

the ldns in this list must be distinct.

To define a new data type, It Is necessary to choose a concrttt rtfJrtsnitatlon for the objects of

the type. The special equate

rep • type_spec

within the cluster body identifies t1pt_sptc as the concrete representation. Within the cluster, rep

may be used as an abbreviation for t1pt_sptc.

The identifier naming the cluster is available for use in the cluster body. Use of this

Identifier within the cluster body permits the definition of recursive types Can example Is given

below>.

§13.3 Clusters

In addition to specifying the representation of objects, the cluster must implement the primitive

operations of the type. The operations may be either procedural or control abstractions; they are

implemented by procedures and iterators, respectively. Most of the routines in the duster body

define the primitive operations <those wtiose names are listed in the cluster heading>. Any

additional routines are hiddtn: they are private to the cluster and may not be invoked by users of

the abstract type. All the routines must be named by distinct identifiers; the scope of these

identifiers is the entire cluster.

Outside the cluster, the type's objects may only be treated abstractly <i.e., manipulated by using

the primitive operations>. To implement the operations, however, it is usually necessary to

manipulate the objects in terms of their concrete representation. It is also convenient sometimes to

manipulate the objects abstractly. Therefore, inside the cluster it is possible to view the type's

objects either abstractly or in terms of their representation. The syntax is defined to specify

unambiguously. for each variable that refers to one of the type's objects, which view is being taken.

Thus, inside a cluster named T, a declaration

v:T

indicates that the object ref erred to by v is to be treated abstractly, while a declaration

w: rep

indicates that the object referred to by w is to be treated concretely. Two primitives, up and down,

are available for converting between these two points of view. The use of up permits a type rep

object to be viewed abstractly, while down permits an abstract object to be viewed concretely. For

example, given the declarations above, the following two assignments are legal:

v := up(w)
w := down<v>

Only routines inside a cluster may use up and down. Note that up and down are used merely to

inform the compiler that the object is going to be viewed abstractly or concretely, respectively.

A common place where the view of an object changes is at the interface to one of the type's

operations: the user, of course, views the object abstractly, while inside the operation, the object is

viewed concretely. To facilitate this usage, a special type specification, cvt, is provided. The use

of cvt is restricted to the args, returns, yields and signals clauses of routines inside a duster, and

may be used at the top level only <e.g., array{cvtl is illegal>. When used inside the args clause, it

means that the view of the argument object changes from abstract to concrete when it is assigned

to the formal argument variable. When cvt is used in the returns, yields, or signals clause, it

Clusrers

means the view of the result object changes from concrete lo abstract as it is returned <or yielded>

to the caller. Thus cvt means abstract outside, concrete inside: when constructing the type of a

routine, cvt is equivalent to the abstract type, but when type-checking the body of a routine, cvt is

equivalent to the representation type. ·

The cvt form does not introduce any new ability over what is provided by up and down. It

is merely a shorthand for a common case. In its absence, the heading of each routine would have

to be written using the abstract type in place of cvt Then inside the routine, additional variables

of type rep would be declared, the argument objects assigned to these variables using down, and

each return, yield, or signal statement would use up explicitly. The use of cvt simply causes the

appropriate up or down to be performed automatically, and avoids the declaration of additional

variables.

The type of each routine is derived from its heading in the usual manner, except that each

occurrence of cvt is replaced by the abstract type.

Inside the cluster, it is not necessary to use the compound form <t1r-sfJtcSop_namt> for

naming locally defined routines. Furthermore, the compound form cannot be used for invoking

hidden routines.

The identifier following the end must match the identifier naming the cluster.

Some examples of clusters are shown in Figure 6. The first example implements <part of> a

~omplex numt:>er data type. This data type may be implemented using either x and y coordinates,

or rho and theta coordinates; the cluster shown uses x and y coordinates. Note that the cr1at1,

get_x, and get_1 operations might signal an exception if rho/theta coordinates were used; therefore

these exceptions are listed in the headings, even though in this implementation the exceptions will

not be signalled .. The coordinates of a complex number can be queried using the get operations

explicitly, or by using the special syntax, e.g.,

a.theta

No set operations are provided, since complex numbers should be immutable like other numbers

(integers, reals, etc.>. Other operations on complex numbers are the usual arithmetic ones <only add

is shown>. and equal, similar, and con <these are discussed in the remarks section below>. <Note: we

have assumed that square_root and arctangent2 exist in the library.>

The second example cluster implements lists of integers. These lists are immutable, like pure

lists in LISP. The implementation is recursive: the representation type refers to the abstract type.

Notice the elements operation, which produces all integers in the list in order; it Is an example of a

:

§13.3 Clusters

recursive iterator.

The final example is sets of integers. The sets are mutable: operations insert and dtlttt

modify sets. Again note the tltmtnts iterator, which prcxiuces all elements of a set in some

unspecified order. Also note the use of ts_in in insert; since is_in requires an abstract object as its

argument, up is used to provide one.

Remarks

The main reason CLU was developed was to support the use of data abstractions. Use of data

abstractions leads to an object-oriented style of programming, in which concerns about data are

primary and serve to organize program structure. It requires some effort to learn to program in

this style, but the effort is worthwhile because the resulting programs are more mcxiular, and easier

to modify and maintain.

A cluster permits all knowledge about how a data abstraction is being implemented to be kept

local to the cluster. This localization permits the correctness of an implementation to be established

by examining the cluster alone. Part of such a correctness proof involves showing that only legal

representations are generated by the cluster. For example, in the tnt_set cluster above, not all

arrays are legal inLstt representations; only those without duplicate elements are legal.

Information about what constitutes a legal representation is described during program verification

b~ stating the concrete invariant. Each operation must preserve this invariant for each object that

it manipulates of the abstract type. This requirement applies at all return and slgnal statements

in operations, and also at yield statements in iterator operations.

When defining a new data type, it is important to provide a set of primitive operations

sufficient to permit all interesting manipulations of the objects. There is no reason to attempt to

define a minimal set, however; frequently used operations can be made operations of the cluster

even if they could be implemented In terms of other operations.

Operations that will frequently be required are con. equal, and similar. These operations are

needed if the type being defined is intended for general use, since without these operations, the use

of the type within another type's concrete representation is somewhat limited. For example,

array[Tl$copy cannot be used unless T has a con operation. In addition, most types should

provide 110 operations as discussed in Appendix Ill.

'76 Clusten

Fig. 8. Example Clusters

complex • cluster Is create, add, get_x, get_y, getJho. get_theta. equal, similar, copy

rep • atructex. y: re.0

create• proc <x, y: reaP retums (cvt) signals (overflow, underflow>
return<repS(x: x, y: y»
end create

add • proc <a, b: cvt> returns <cvt> signals <overflow, underflow>
return<repS{x: a.x + b.x, y: a.y + b.yn

resignal overflow, underrlow
end add

get..J' • proc <c: cvt> returns <reaO slgnals <onrflow, underflow)
return<c.x>
end get_x

get_y • proc Cc: cvt> retums <reaP signals <overflow, underflow)
return<c.y>
end get_y

getJho • proc <c: cvt> retums <reaP stgnals <overflow, underflow)
return<squareJoot<c.x • c.x + c.y • c.y»

resignal overflow, underflow
end getJho

get_theta • proc <c: cvt> returns <reaP signals <overrlow, underrlow>
return<arctangent2<c.x, c.yH

~eslfnal overrlow, underflow
end get_theta

i Note that the equal operation or the rep type tests equality of cormpandlng ml components,
I not identity of rep objects.

equal • proc Cd, c2: cvt> returns <booO
returnCcl • c2>
end equal

similar• proc Cd, c2: cvt> retums CbooO
return<cl • c2>
end similar

copy • proc <c: complex> retuma <complex>
returnee>
end copy

end complex.

§13.3 Clusters

int_list .. cluster Is create, cons, car, cdr, is_in, is_empty, elements, equal, similar, copy

rep '"' oneoffpair: pair, empty: nulll
pair .. structCcar: Int, cdr: int_listl

create • proc 0 returns < cvt>
return< repSmake_empty< nit»
end create

cons • proc Ci: Int, 1st: int_list> returns (cvt>
return<repSmake_pair<pairS{car: i, cdr: 1st}))
end cons

car • proc Clst: cvt> returns Unt> signals <empty)
tagcase 1st

tag pair Cp: pair): return<p.car)
tag empty: signal empty
end

end car

cdr • proc Clst: cvt> returns <int_list> signals <empty>
tagcase 1st

tag pair <p: pair>: return<p.cdr>
tag empty: signal empty
end

end cdr

is_in • proc Clst: cvt, i: Int> returns Cbool>
while true do

tagcase 1st
tag empty: return<false>
tag pair Cp: pair>: if p.car • i

end
end

end is_in

then return<true>
else 1st :• clown<p.cdr>
end

is_empty • proc Clst: cvt> returns < bool>
return< repSis_empty<lst»
end is_empty

78 Clusters

elemenu • lter <1st: cvt> ylelda <Int>
tegceae lst

teg pair <p: pair>: yleld<p.car>

teg empty:
end

end elements

for I: Int In elementsCp.cdr> do
. ylelcl(i)
end

SIS.S

I Note that the equal operation of the rep type tests equality f1I carrespanding llst elelnents, RGI

I tdentity of rep objects.

equal • proc<lstl, lst2: cvt> retuma (bool)

returnflstl • lst2>
end equal

similar • proc <lstl. lst2: cvt> returns (bool)

returnflstl • lst2>
end similar

copy • proc <1st: intJtst> returns Ont_list>
return(Isl>
end copy

end int_Hst

lntJet • cluater la create, Insert, delete, lsJn, size. elements. equal. similar, capy

rep • arreyClntJ

create • proc 0 returns < cvt>
return< repSnew<»
end create

Insert • proc <s: cvt, i: Int)

If .., isJn<up(s>, t> then repSaddhb, I) end
end Insert

§13.3

delete - proc (s: cvt, i: Int>
for j: Int in repSindexes<s> do

lfi-sCjl
then sCj1 :- repStop<s>

repSremh(s)
return

end
end

end delete

is_in - proc <s: cvt, i: Int> returns (bool>
for j: int In repSelements<s> do

If i • j then return<true> end
end

return< false>
end is_in

size - proc <s: cvt> returns <Int>
return< repSsize<sH
end size

elements - lter <s: cvt> ylelds <tnt>

Clusters

for i: int In repSelements(s) do
yield<i>
end

end elements

equal • proc <sl, s2: cvt> returns (bool)
return<st • s2>
end equal

similar .. proc <sl, s2: int_set> returns (booP
if size<st> ,..,. size<s2> then return<false) end
for i: int in elements<sU do

If ,.., isJn<s2, i) then return<false> end
end

return< true)
end similar

copy • proc (s: cvt> returns <cvt>
return< repScopy<s>>
end copy

end int_set

'79

80 Clusters §IS.S

In many earlier sections, we have discussed the use of special syntactic forms for invoking

operations, and have described how operations must be named and defined in order to make use of

these syntactic forms. The use of such forms is quite unconstrained: the special form is translated

to an invocation, and is legal if the invocation is legal.

Our reason for not imposing more syntactic constraints on operator overloading is that such

constraints only capture a small part of what it means to use operator overloading correctly. For

example, to overload • • • correctly, the tqual operation should be an equivalence relation satisfying

the substitution property; i.e., if two objects are equal, then one can be substituted for the other

without any detectable difference in behavior. In the sections where special syntactic forms are

described, we have discussed in each case what constitutes proper usage.

Overloading operator symbols is not the only place where care must be taken to ensure that the

new definition agrees with common usage; the same care must be taken when redefining common

operation names. For example, the co"1 operation should provide a ·copy• of its input object, such

that subsequent changes made to either the old or the new object do not affect the other. In the

case of an immutable type, like compltx_numbtr above, in which sharing between two objects will

never be visible to the using program, cop, can simply return its input object. Ordinarily, however,

con should copy its input objects, including each component (using the co,,, operation or the

component's type>. as is done in the implementation of int_stt .

. The tqua~ operation should return true if its two input objects are the same abstract object.

This is necessary to satisfy the substitution property: if two objects are equal, then using one in

place of the other in a computation will not alter the computation. Thus, implementing equal

· properly requires a thorough understanding of both the abstraction being implemented and the

representation being used. Usually two mutable objects are equal only if they are the exact same

object in the CLU universe; e.g., see inLstt$tqual above. For immutable objects, the contents of

the object is usually all that matters; e.g., see compltxStqual and inLlistStqual above.

The similar operation should return true only if its two input objects <both of the same type>

have ·equivalent state•. This means that any query made about information in two similar objects

immediately after they were determined to be similar would provide an equivalent answer for

either of the two objects <i.e., the answers would be similar). Note that similar is a weak.er

condition than equal: two objects are tqual if they are the same abstract objects, and so of course

they are similar for all time. Equal and similar return different results only for mutable types,

because only mutable types have objects whose state can change. Co11'1 and stmtlar should be

§13.3 Clusters 81

related as follows for any type T:

V x E T [TSsimilar<x, T$copy<x»]

With the exception of stt and stort operations, procedures that define operator symbols, col1"J,

similar. and the 1/0 operations should never modify their input objects in a way that the user of

the object can detect. This rule does not prohibit "benevolent• side-effects, i.e., modifications that

speed up future operations without affecting behavior in any other way.

13.4 Parameterized Modules

Procedures, iterators, and clusters may all be parameterized. Parameterization permits a set of

related abstractions to be defined by a single module. Recall that in each module heading there is

an optional fJarms clause and an optional where clause. The presence of the parms clause

indicates that the module is parameterized; the where clause states certain constraints on

permissible actual VC\lues for the parameters.

The form of the f>arms clause is

[parm , ••• J

where

parm ::: idn , ... : type_spec

idn •••• : type

Each parameter is declared like an argument. However, only the following types of parameters are

·legal: Int real, bool, char, string, null, and type. Parameters are limited to these types because

the actual values for parameters are required to be constants that can be computed at compile-time.

This requirement ensures that all types are known at compile-time, and permits complete

compile-time type-checking.

In a parameterized module, the scope rules permit the parameters to be used throughout the

remainder of the module. Thus they can be used in defining the types of arguments and results,

e.g .•

p .. proc Ct: type] <x: t> returns <t>

To use a parameterized module, it is first necessary to instantiatt it; that is, to provide actual,

constant values for the parameters. <The exact forms of such constants were discussed in

Section 8.3.> The result of instantiation is a procedure, iterator, or type <where the parameterized

module was a procedure, iterator, or cluster, respectively> that may be used just like a

non-parameterized module of the same kind. For each distinct instantiation, <i.e., for each distinct

82 Parameterized Modules

list of actual parameters>, a distinct procedure, iterator, or type is produced.

The meaning of a parameterized module is most easily understood in terms of rewriting.

When the module is instantiated, the actual parameter values are substituted for the formal

parameters throughout the module, and the parms clause and where clause are deleted. The

resulting module is a regular <non-parameterized> module. In the case of a cluster some of the

operations may have additional parameters; further rewriting will be performed when these

operations are used.

In the case of a type parameter, constraints on permissible actual types can be given in the

where clause. The where clause lists a set of operations that the actual type is required to have,

and also specifies the type of each required operation. The where clause constrains the

parameterized module as well: the only primitive operations of the type parameter that can be used

are those listed in the where clause.

The form of the where clause is

where

where ::= where restriction , •••

restriction ::: idn has oper _decl , •••

idn In type_set

• aper _decl ::: op_name , ••• : type_spec

op_name ::= name [C constant , ••• J]

type_set ::: { idn I tdn has oper _decl , ••• { equate } }

idn

There are two forms of restrictions. In both forms, the initial idn must be a type parameter.

The has form lists the set of required operations directly, by means of oJJtr_dtcls. The t7f1t-sf1tc

in each oper_dtcl must name a routine type. Note that if some of the type's operations are

parameterized, particular instantiations of those operations must be given. The In form requires

that the actual type be a member of a t"jpe_set, a set of types having the required operations. The

two identifiers in the type_set· must match, and the notation is read like set notation; e.g.,

{t ft has f: ... }

means "the set of a 11 types t &uch that t has f ... ". The scope of the identifier is the type_set.

The In form is useful because an abbreviation can be given for a typeJet via an equate. If it

is helpful to introduce some abbreviations in defining the type_set, these are given in the optional

equates within the type_set. The scope of these equates is the type_set.

§13.i Parameterized Modules

A routine in a parameterized cluster may have a where clause in its heading, and can place

further constraints on the cluster parameters. For example, any type is permissible for the array

element type. but the array similar operation requires that the element type have a similar

operation. This means that array{TJ exists for any type T, but that array(TJSsimilar exists only

when T$similar exists. Note that a routine need not include In its where clause any of the

restrictions included in the cluster where clause.

Two examples of parameterized clusters are shown in Figure 7. The first defines the set type

generator. This cluster is similar to inLstt, presented in the previous section. The main difference

is that everywhere that integer elements were assumed, now the parameter I is used.· The set type

generator has a where clause that requires the element type to provide an equal operation; in

addition, the similar operation imposes an additional constraint on the element type by requiring a

similar operation. Thus set[XJ is legal if X has an equal operation; but setCXJSsimilar can be used

only if X also has a similar operation. Note the procedure ts_tn.....sim; it is a hidden routine of this

implementation. Also note the use of the type_set sim_l'Jf't·

The state of a stt object is the set of abstract objects currently in the set. What matters is the

identity of the objects, not their state. This should help in understanding why equal, similar, and

copy are written as they are. Notice that we have two new operations, similar/ and conl. Similar/

returns true when two objects have equal state <in the abstract sense), whereas similar returns true

when they have similar state. Cof1'11 is to similar/ what cof17 is to similar, i.e.,

T~similarl<T$copyl<x>. x> should always be true. In general, mutable type generators that behave

like collections should provide similar I and cof1'11 to ensure that types obtained from the generator

can be used as part of the concrete representation of other types.

The second example is a list type generator, which is similar to tnt_list in the previous section.

List does not place any constraints in its type parameter. Therefore any element type is permissible

for lists, including type any. Note that the types generated by the list type generator are

immutable. The state of a list is considered to be the ordered set of objects in the list, where only

the identity of the objects matters. Lists are immutable even if the objects in the lists are mutable,

because the state of a list never changes.

Confusion can arise unless the designer and implementor of a data type have in mind a dear

idea of exactly what constitutes the state of the objects of the type they are defining; it must be

resolved in which cases it is only the identity of the components that matters, and in which cases

84 Parameterized Modules

Fig. 7. More Ixamp~ Clusters

set • cluster Ct: type] la create. insert, dr~e. isjn. size,

rep • array{tJ

elements. equal. similar, similarl, copy. copyl
where t INla equal: proctype Ct. t> retwM Cboot

sim_type • {s Is has similar: proctype <t. t> retwna Cbaot}

create• proc O returns <cvt>
return< repSnew<»
end create

insert • proc <s: cvt. v: t>
If N is_in<up(s>, v> then repSaddhCs. v> elMI
end insert

delete • proc Cs: cvt. v: t>
for j: Int In repSindexesCs> do

If v - sCjJ
then sCjl :• r..,Stop(s>

repSremhCs>

end
end

end delete

bJn • proc <s: cvt. v: t> returns <bool
· · · for u: t In repSelenaentses> do

If u - v theft retwn<true> end
end

return(fatae>
end isjn

isJnJim • proc <s: cvt. v: t> returns <bool where t In siln_type
for u: t In repSelements(s> do

If tSsimilar<u. v> tlten return<true> end
end

retum(fatae>
. end isJn_sim

size • proc <s: cvt> returns Ont>
return(repSstze<s>>
end size

§13.4 Parameterized Modules

elements .. tter <s: cvt> yields <t>
for v: t In repSelements<s> do

yteld<v>
end

end elements

equal • proc <sl, s2: cvt> returns <bool)
return<sl • s2>
end equal

similar .. proc <sl, s2: setCtJ> retufns (bool> where t In sim_type
If size<sl> N• size<s2> then return<f alse> end
for u: t In elements<sl> do

If N is_in_sim<s2, u> then return<f alse> end
end

return< true>
end similar

similarl • proc <sl, s2: setCtJ> returns <bool>
If size<st> N= size<s2> then return<false) end
for u: t In elements<sl> do

If N is_in<s2, u> then return<false> end
end

return< true>
end similarl

copy .. proc <s: cvt> returns <cvt> where t has copy: proctype (t) retuma <t>
return< repScopy<s> >
end copy

copy I • proc <s: cvt> returns (cvt)
return< repScopyl<s»
end copyl

end set

86 Parameterized Modules

list - cluster Ct: type) Is create, cons, car, cdr, isJn, is_empty, e1ements. equal, similar, copy

rep = oneofCpair: pair, empty: null]
pair • structlcar: t, cdr: listCtJJ

create • proc 0 returns < cvt>
return< repSma ke_empty< nlP>
end create

cons • proc <v: t, 1st: list[t]) returns <cvt>
return<repSmake_pair<pairSf car: v, cdr: lstm
end cons

car "' proc <1st: cvt> returns <t> signals <empty>
tagcase 1st

tag pair <p: pair): return<p.car>
tag empty: slgnal empty
end

end car

cdr • proc <1st: cvt> returns <listCt]) signals <empty>
tagcase 1st

tag pair <p: pair>: return<p.cdr>
tag empty: signal empty
end

end cdr

lsJn - proc <1st: cvt, v: t> returns (booO where t has equal: proctype (t, t> returns (booD
while true do

tagcase lst
tag empty: return<false>
tag pair (p: pair): If p.car • v

end
end

end isJn

then return< true>
else 1st :• down<p.cdr)
end

is_empty - proc <1st: cvt> returns <bool>
return< repSis_emptyUst>>
end is_empty

§13.4 Parameterized Modules

elements • lter <1st: cvt> yields <t>
tagcase 1st

tag pair <p: pair): yteld<p.car>

tag empty:
end

end elements

for v: t tn elemenu<p.cdr> do
yleld<v)
end ·

87

equal - proc <lstl, lst2: cvt> returns <bool> where t ha• equal: proctype <t, t> returns <bool>
return<lstl • lst2>
end equal

similar = proc <lstl, lst2: cvt> returns (bool>
where t has similar: proctype (t, t> returns <booO

return< rep$simllar<lstl, lst2»
end similar

copy • proc <1st: cvt> returns <cvt> where t has copy: proctype Ct> retuma Ct)
return< repScopy<lst»
end copy

end list

88 Parameterized Modules §13:f

their state matters as well.

The position taken in the list type generator below is that the state of a list consists only of the

identity of the objects in the list, and does not depend on their state. Hence, these lists are

immutable. This explains why list has ·no similar/ or con/ operations, and why tqual, stmllar, and

co"1 are implemented as they are.

There are two restrictions on the kinds of constants that can be used in op_narnes of where

clauses and type_sets. These restrictions eliminate certain ambiguities that would otherwise arise in

type-checking. There is no need to understand or remember these restrictions, as the programs

they affect are fairly bizarre, and have never occurred in practice. The rules are included here

solely for completeness.

The first restriction is that no type parameter, and no type identifier introduced in a type_set,

can be used anywhere in an op_name constant. Thus, if t is a type parameter, an op_name of the

form "computef array(tJJ" would be illegal. The second restriction deals with the way data

abstractions depend on each other. If, in the interface of a data abstraction A, some data

abstraction B is used in an op_name constant, we say that A is "restricted in terms or· B. We

define r-uus to be the transitive closure of this relation. The second restriction, then, Is that an

abstraction cannot r·ust itself.

13.5 ow·n Variables

Occasionally it is desirable to have a module that retains information internally between

invocations. Without such an ability, the information would either have to be reconstructed at

every invocation, which can be expensive <and may even be impossible if the information depends

on previous invocations>, or the information would have to be passed in through arguments, which

is undesirable because the information is then subject to uncontrolled modification in other

modules.

Procedures, iterators, and clusters may all retain information through the use of own variables.

An own variable is similar to a normal variable, except that it retains its denotation from one

routine activation to the next, including recursive activations. Syntactically, own variable

declarations must appear immediately after the equates in a routine or duster body; they cannot

appear in bodies nested within statements. Own variable declarations have the form

§13.5 Own Variables 89

own_var ::: own decl

own idn : type_spec :• expression

own decl , ••• :"' invocation

Note that initialization is optional.

Own variables are created when a program begins execution, and they always start out

uninitialized. The own variables of a routine <including cluster operations> are initialized in

textual order as part of the first invocation of that routine, before any statements in the body of

the routine are executed. Cluster own variables are initialized In textual order as part of the first

invocation of the first cluster operation to be invoked <even if the operation does not use the own

variables>. Cluster own variables are initialized before any operation own variables are Initialized.

Aside from the placement of their declarations, the time of their initialization, and the lifetime

of their denotations, own variables act just like normal variables and can be used in all the same

places. As for normal variables, attempts to use uninitialized own variables (if not detected at

compile-time> cause the run-time exception

failure(·uninitialized variable·>

Own variable declarations in different modules always ref er to distinct own variables, and

distinct executions of programs never share own variables <even if the same module is used in

several programs>. Furthermore, own variable declarations within a parameterized module produce

distinct own variables for each instahtiation of the module. For a given instantiation of a

parameterized duster, all instantiations of the type's operations share the same set of cluster own

variables, but distinct instantiations of parameterized operations have distinct routine own

variables. For example, in the following cluster there is a distinct " and ' for every type t, and a

distinct z for every type-integer pair <t, i>:

90

C • cluster Ct: type) la ...

own x: Int :• in it<...> • 2

P • proc C...>
owny: ...

endP

Q. • proc Ci: lntJ <...>
ownz: ...

endQ.

endC

Own Variables §13.5

Own variable declarations cannot be enclosed by an except statement, so care must be

exercised when writing initialization expressions. If an exception is raised by an initialization

expression, it will be treated as an exception raised, but not handled, in the body of the routine

whose invocation caused the initialization to be attempted. This routine will then signal JaUurt to

its ca11er <see Section 12.2>. In the example cluster above, if procedure P were the first operation of

CCstrlngJ to be invoked, causing initialization of x to be attempted, then an ovnjlODJ exception

raised in the initialization of x would result in P signalling

failure<·unhandled exception: overflowi

to its ca lier.

Remarks

Own variables are often useful in declaring ·constants• that are either derived from

complicated computations or are otherwise illegal in equates. In almost all such cases, the

initialization can be attached directly to the declaration. For example,

own flip: complex := complexScreate<O.O, 1.0l
own primes: sequence(lntJ :• table_of _primes<>

However, the data denoted by own variables may also change dynamtcal1y, and may contain history

information, a~ the following <fairly useless) module demonstrates:

§13.5 Own Variables

delayer • proc Ct: type, delay: tntJ <x: t> returns (t) algnala <not_yet>
at =·array{t]
own oldies: at :• atSnewO
atSaddh<oldies, x>
If atSsize<oldies> > delay

.then oldies.low :• I
return<atSreml<oldies>>

else signal not_yet
end

end delayer

'X add to waiting list
I if delayed long enough
I prevent eventual overflow
I remove and return oldest

91

When duster own variable initialization involves lengthy computations, one own variable can

be initialized with an <internal> operation call, and the body of that operation can assign values

directly to the other own variables:

C - cluster Is ...

own x: table :• ownJnitO
own y: table

own_init • proc O returns <table)

endC

y :• ..•

return< .. .>
end own_init

On occasion, when a particular program is known to use exactly one object of a particular

user-defined type, it is tempting to implement the type such that the sole object is denoted by a

cluster own variable. In this way, the object need not be passed as an argument to the various

routines in the computation, many of which do not even use the object directly. This is a poor

design decision in most cases, because the ways in which the type can be used later are then

severely restricted. For example, the type cannot then be used in any program requiring several

ob jeers of that type. It is usually better to design types in as general a manner as possible.

With the introduction of own variables, procedures and iterators become potentially mutable

objects. If the abstract behavior of a routine depends on history information <as does dtla'n

above>, then care must be exercised to guarantee that the routine is used correctly in other modules.

<Ideally, a CLU system should have some method of controlling access to routines.> In general, own

variables shouid not be used to modify the abstract behavior of a module.

92 Syntax

Appendix l - S7ntax

We use an extended BNF grammar to define the syntax. The general form of a production Is:

nonterminal ::: alternative

alternative

alternative

The following extensions are used:

a , ••• a list of one or more a•s separated by commas: •a• or •a. a· or
·a. a, a• etc.

{a} a sequence of zero or more a•s: ••or ·a• or ·a a" etc.

[a] an optional a: ••or ·a·.

All semicolons are optional in CLU, but for simplicity they appear in the syntax as ";" rather

than •[;]·. Nonterminal symbols appear in normal face. Reserved words appear in bold race. All

other terminal symbols are non-alphabetic, and appear in normal race.

module ::: { equate } procedure

{ equate } iterator

{ equate } cluster

procedure ··- idn • proc [parms] args [returns] [signals] (where] ; ··-
routine_body
end idn;

iterator ::= idn • lter [parms] args [yields] [signals] (where];

routine_bod,J
end idn;

cluster ··-··- idn • cluster [pa.rms] Is ldn •••• (where] ;

cluster _body
end idn;

panns ··- C parm, ••• l ··-
pa rm ··- ldn, ••• : type ··-

idn , ••• : type..spec

args ··- ((decl , •••] > ··-

§I Syntax

dKI ··- idn , .•. : type_spec ··-
returns ··- returns < type_spec •.•• > ··-
yields

.. _
yields < type_spec , ..•) .. -

signals
.. _

signals (exception , ...) ··-
exception ::: name (< type_spec , ...)]

where .. _
where restriction , -

restriction
.. _

idn has oper_decl, -
idn In type_set

type_set ::= { idn I idn has oper_decl, ••• ; {equate} }

idn

oper_dKI ::: op_name , ... : type_spec

op_name
.. _

name [C constant , ... J] .. -
constant

.. _
expression .. -
type_spec

routine_body ::= {equate}

{ own_var}

{ statement }

cluster~body
.. _

{ equate } rep • type_spec ; {equate} .. -
{ own_var}

routine { routine }

routine
.. _

procedure .. -
iterator

equate
.. _

idn • constant ; .. -
idn • type_set ;

own_ var ::: own decl;

own idn: type_spec :•expression;

own decl, ... :•invocation;

Syntax §I

type_spec ::= nun

boot

Int

real

char

string

any

rep

cvt

array C type_spec J

sequence C type_spec 1

record [field_spec , ••• 1

struct C field_spec , ••• 1

oneof C field_spec, ••• J

variant C field_spec , ••• l

proctype < [type_spec , •••] > [returns] [signals]

ltertype < (type_spec , •••]) (yields) [signals]

idn [constant , ••• 1

idn

field_spec ::• name , ••• : type_spec

Syntax

statement
.. _

decl; ··-
idn : type_spec :•expression;

decl , ••• :• invocation ;

idn , ••• :• invocation ; .

idn , ••• :• expression , •.• ;

primary • name :• expression ;

primary C expression J :•expression ;

invocation ;

whlle expression do body end;

for [decl , •••] In invocation do body end ;

for (idn , ••.] In invocation do body end ;

If expression then body

{ elself expression then body }

[else body)
end;

tagcase expression

tag_arm { tag_arm }

(others : body]

end;

return [< expression , •••)] ;

yteld [< expression , ••• >] ;

signal name [< expression , •••)] ;

exit name (< expression , •••)] ;

break;

continue;

begin body end ;

statement resignal name , •••

statement except { when_handler }

[others_handler]

end;

tag_arm ::= tag name, ••• [< idn : typeJPec)] : body

96 Syntax

when_handler ··- when name , ••. [< decl , •••)) : body ··-
I when name , ••• < • > : body

others_handler ::: others [< idn : typeJpec > J : body

body ::= {equate}

{ statftnent }

expression ··- primary ··-
< expression >

,., expression I 6 <precedence>
- expression 16

expression •• expression I 5

expression II expression I i

expression I expression I •
expression • expression I i

expression n expression I 3

expression + expression I 3

expression - expression I 3

expression < expression I 2
expression <•expression I ·2
expression ·expression l 2
expression >•expression l 2
expression >expression I 2

expression N< expression I 2
expression N<• expression I 2
expression N• expression I 2
expression N>• expression I 2
expression -> expression I 2
expression le expression I I
expression cand expression I I
expression I expression l 0
expression cor expression I 0

§I Syntax

primary ::= nll

true

false

int_literal

real_literal

char Jitera 1

string_litera 1

idn

idn [constant , ••• J

primary • name
primary [expression J

invocation

type_spec s { field I ooo }

type_spec $ [[expression :] (expression , •••) J

type_spec S name [[constant , ••• J]

force C type_spec J
up (expression)

down < expression)

invocation ... primary < [expression , •.•]) ··-
field ::= name, ••• : expression

Rtstrvtd word: one of the identifiers appearing in bold face in the syntax. Upper and lower

case letters are not distinguished in reserved words.

Namt, idn: a sequence of letters, digits, and underscores that begins with a letter or underscore,

and that is not a reserved word. Upper and lower case letters are not distinguished in names and

idns.

lnt_literal: a sequence of one or more decimal digits.

RtaLlittral: a mantissa with an <optional> exponent. A mantissa is either a sequence of one or

more decimal digits, or two sequences <one of which may be empty> joined by a period. The

mantissa must contain at least one digit. An exponent is 'E' or 'e', optionally followed by '+' or '-',

followed by one or more decimal digits. An exponent is required if the mantissa does not contain a

period.

98 Syntax

Cliar_littral: either a printing ASCII character <octal value iO thru 176>, other than single quote

or backslash, enclosed in single quotes, or one of the following escape characters enclosed in single

quotes:

escape sequence ,. ,.
\\
\n
\t
\p
\b
\r
\v , ...

characttr

•

\

<single quote>
<double quote>
(backslash>

NL (newline>
HT <horizontal tab>
FF <newpage>
BS <backspace>
CR <carriage return>
VT <vertical tab>
specified by octal value <exactly three octal digits)

The escape sequences may be written using upper case letters.

String_littral: a sequence of zero or more character representations, enclosed in double quotes.

A character representation is either a printing ASCII character other than double quote or

backslash, or one of the escape sequences listed above.

Commtnt: a sequence of characters that begins with a percent sign, ends with a newline

character, and contains only printing ASCII characters and horizontal tabs in between.

Stparator: a blank character <space, vertical tab, horizontal tab, carriage return, newline, form

feed> or a comment. Zero or more separators may appear between any two tole.en~ except that at

least one separator is required between any two adjacent non-self-terminating tokens: reserved

words. identifiers. integer literals, and real literals.

§II Built-in Types and Type Generators 99

Appendix II - Built-In Types and Type Generato~s

The following sections describe the built-in types and the types produced by the built-in type

generators. For each type, the objects of the type are characterized, and a11 operations of the type

are defined <with the exception of the encode and decode operations, which are defined in

Appendix III, Section 6).

In defining an operation, argl, arg2, etc., refer to the arguments <the objects, not the syntactic

expressions>, and rts refers to the result of the operation. If execution of an operation terminates

in an exception, we say the exception "occurs". By convention, the order In which exceptions are

listed in the operation type is the order in which the various conditions are checked.

The definition of an operation consists of an interface specification and an explanation of the

relation between arguments and results. An interface specification has the form

name: type_spec
restrictions

side_eff ects

If side_ejfects is null, no side-effects can occur. "PSE" <primary side-effect> indicates that the state

of argl may change. "SSE" <secondary side-effect> indicates that a state change may occur in some

object that is contained in an argument.1 Restrictions, if present, is either a standard where

da.use, or a clause of. the form

where each Ti has oper_decli

which is an abbreviation for

where T 1 has oper _decl I' ... , T" has oper _decl"

Arithmetic expressions and comparisons used in defining operations are to be computed over

the domain of mathematical integers or the domain of mathematical reals; the particular domain

will be dear from context.

Definitions of several of the types wil1 involve tuples. A tuple is written <e1, ••• , e">; ei is

called the i"' element. A tuple with n elements is caned an n-tuple. We define the following

functions on tuples:

1. For operations of the built-in types, secondary side-effects occur when a subsidiary abstraction
performs unwanted side-effects. For example, side-effects are not expected when
array[Tl$simi1ar cans TSsimilar, but their absence cannot be guaranteed.

100 Built-in Types and Type Generators

Size«e1, •..• e,.» • n

A • B • (Slze<A> • Slze<B» " (VI I lslSSlze<A»Cai • b)

<a, ... , b> I <C, ... , d> • <a, ...• b, C, ... , d>

Front«a, ... , b, c» • <a, ... , b>.

Tail«a, b, ... , c» • <b, ... , c>

Tai1°(A> • A and Tai1'" 1(A> • TaiMTail"<A))

Occurs(A, B, U • (JC,D)[(B • C ff, A ID>" <Slze<C> • i - I))

If Occurs< A, B, U holds, we say that A occurs in B at index i.

11.1. Null

There is one immutable ob jKt of type null, denoted nH.

equal:
similar:

proctype (null, nulP returns <booD
proctype <null, nutP returns <bool>

Both operations always return true.

copy: proctype < nutP returns <nun>

Copy always returns nl.

11.2. Bool

§II

There are two immutable ob jttts of type bool. denoted true and ,..... These objects

represent logical truth values.

and: proctype <boot, booP returns (bool)

or: proctype <bool, booP returns <booP
not: proctype (bool) returns <boot>

equal:
similar:

These are the standard logical operations.

proctype (bool, booP returns <booP
proctype <bool. booP returns (bool)

These two operaUons return true if and only If both arguments are the same object.

copy: proctype <booD returns <booP

Copy simply returns Its argument

§11.3 Int 101

11.3. Int

Objects of type Int are immutable, and are intended to model the mathematical integers.

However, the only restriction placed on an Implementation Is that some closed interval

Clnt_Min, Int Max] be represented, with Int. Min< 0 and lnLMax > 0. An overflow exception

is signalled by an operation if the result of that operation would lie outside this interval.

add: proctype <Int, Intl returns <Intl signals <overflow>
sub: proctype <tnt, Int> returns <Int> signals <overflow)
mut: proctype <Int, Int> returns <Int> signals (overflow)

minus:

The standard integer addition, subtraction, and multiplication operations.

proctype <Int> returns <Int> signals <overflow)

Minus returns the negative of its argument.

div: proctype <Int, Int) returns <Int> signals <zero_dlvide, overflow>

Div computes the integer quotient of argl and arg2:
3r C<O ~ r < larg2I> " (argl • arg2trts + r>l

mod:

power:

Zero_divide occurs if arg2 • 0.

proctype <Int, Int> returns <Int> signals <zero_divide, overflow)

Mod computes the integer remainder of dividing argl by arg2. That is,
Jq C<O s rts < larg2I> " <argl • arg2•q + rts>J

Zero_divide occurs if arg2 • 0.

proctype <Int, Int> returns <Intl signals <negative_exponent, overflow)

This operation computes argl raised to the ari2 power. Power<O, O> • 1.
Negative_exponent occurs if arg2 < 0.

from_to_by: ltertype <tnt, Int, Int> yields (Intl

This iterator yields, in succession, argl, argl + argJ, argl + 2targJ, etc., as long as the
value to yield, x, satisfies x s arg2 when argJ > 0, or arg2 s x when argJ < 0. The
iterator continually yields argl if argJ • 0. The iterator yields nothing when
<argl > arg2> " <argJ > Ol or when (argl < arg2> I\ <argJ < O>.

f rom_to: ltertype Ont, Int> yields <tnt>

from_to<argl, arg2> is equivalent to from_to_by<arr/, arg2, I>.

102 Int §II.~

parse: proctype <string> returns <Int> signals <badJormat, overflow>

This operation computes the exact value corresponding to an integer literal. The
argument must be an integer lireral, with an optional leading plus or minus sign.
Bad_format occurs if the ar~ument is not of this form.

unparse: proctype <Int> returns <string>

Unparse produces an integer literal such that parse<unparse<argn> • argl. Leading
zeros are suppressed, and no leading plus sign is added for positive integers.

It: proctype <Int, Int> returns (bool>
le: proctype <Int, Int> returns <boot>
ge: proctype <Int, Int> returns (booP
gt: proctype <Int, Int> returns (bool)

equal:
similar:

The standard ordering relations.

proctype <Int, Int> returns <booP
proctype <Int, Int> returns (bool)

These two operations return true if and only if both arguments are the same object.

copy: proctype <Int> returns <Int>

Copy simply returns its argument.

11.4. Beal

Objects of type real are immutable, and are intended to model the mathematical real numbers.

However, only a subset of

D • C-Reat Max, -Real Min] U {O} U [Real .. Min, ReaLMaxl

need be represented, where 0 < Real __ Min < 1 < Real..Max. Call this subset Real. We require that

both 0 and 1 be elements of Real. If the exact value of a real literal lies in D, then the value In

CLU is given by a function Approx, which satisfies the following axioms:

V r E D Approx<r> E Real
V r E Real Approx<r> • r

V r E D - {O) l<Approx<r> - r>I~ < 1ol-P
V r,s E D r :s s Approx<r> :s Approx<s>
V r E D Approx<-r> • -Approx<r>

The constant p is the precision of the approximation, and must be at least 7.

We define Max __ width and Exp_ width to be the smallest integers such that every non-zero

element of Real can be represented in •standard· form <exactly one digit, not zero, before the

decimal point> with no more than Max_width digits of mantissa and no more than Exp_wldth

§11.4 Real IOS

digits of exponent.

add:
sub:
mul:
minus:
div:

power:

proctype <real, real> returns <real) signals <overflow, underflow>
proctype <real, real> returns <real> signals <overflow, underflow>
proctype <real, real> returns <real> signals (overflow, underflow>
proctype <real> returns <real> ·
proctype <real, real> returns <real> signals <zero_divide, overflow, underflow>

These operations satisfy the following axioms:

l> <a,b 2: 0 v a,b :!:'. O> -+ add(a, b> • Approx<a + b)

2> add<a, b> • (1 + d<a + b) M < 1ol-P
3> add<a, O> • a
4) add<a, b> - add<b. a>
!» a s a' -+ add<a, b> :!:'. add(a', b>
6) minus<a> • -a
7> sub<a, b) • add(a, -b>
8> mul<a, b) • Approx<a • b>
9> div<a, b> .. Approx<a I b)

In axiom 2, the value of p is the same as that used in defining Approx. Note that the
inf ix and prefix expressions above are computed over the mathematical real numbers.
The axioms only hold if no exceptions occur. An exception occurs if the result of an
exact computation lies outside of D; overflow occurs if the magnitude exceeds
Real Max, and underflow occurs if the magnitude is less than ReaLMfn. Zero_divide
occurs if arg2 • 0.

proctype <real, real> returns <real>
signals <zero_divide, complexJesuk, overflow, underflow>

This operation computes argl raised to the arg2 power. Zero_divide occurs if
<argl = O> I\ <arg2 < O>. ComplexJesult occurs if argl < 0 and arg2 is non-integral.
Overflow and underflow occur as explained above.

i2r: proctype <Int> returns <real> signals <overflow>

12r returns a real number corresponding to the argument: res • Approx<argn. Overflow
occurs if argl lies outside the domain D.

r2i: proctype <real> returns <Int> signals <overflow)

trunc:

R21 rounds to the nearest integer, and toward zero In case of a tie:
<Ires - argll :!:'. 112> I\ <Ire~ < larg~ + 1/2)

Overflow occurs if the result lies outside the domain for CLU integers.

proctype (real> returns (Int> signals (overflow>

Trunc truncates its argument toward zero: <Ires - arg~ < 1> f\ <lre4 s larg~>. Overflow
occurs if the result lies outside the domain for CLU integers.

104 Real §11.4

exponent: proctype <reaP returns <Int> signals <undefined)

This operation returns the exponent that would be used in representing argl as a literal

in standard form: rts • max{i 1 larg~ ~ 101>. Undefined occurs if argl • 0.0.

mantissa: proctype <real) returns <r.eal>

parse:

This operation returns the mantissa of argl when represented in standard form:
res - Approx<argl I 10exponent(argl>)

If r - 0.0 the result is 0.0.

proctype <string> returns <real> signals <badJormat, overflow, underflow)

This operation computes the exact value corresponding to a real or integer literal, and
then returns the result of applying Approx to that value. The argument must be a real
or integer literal, 'with an optional leading plus or minus sign. BadJormat occurs if the
argument is not of this form. Overflow occurs if the magnitude of the exact value of
the literal exceeds Real. Max; underflow occurs if the magnitude ls less than ReaLMin.

unparse: proctype <real> returns <string)

Unparse produces a real literal such that parse<unparse<argn> • argl. The general form
of the literal is:

[-}-fleldf-field[eu_field]
Leading zeros in Lfltld and trailing zeros in /-field are suppressed. If argl is integral
and within the range of CLU integers, then /-field and the exponent are not present.
If argl can be represented by a mantissa of no more than Max_ width digits and no
exponent <i.e., -1 s exponent(argl> < Max_ width), then the exponent is not present.
Otherwise, the literal is in standard form, with Exp_ width digits of exponent.

It: proctype <real, real> returns <booD
le: proctype <real, real) returns (bool)
ge: proctype <real, real> returns <booD
gt: proctype <real, real> returns <bool>

equal:
similar:

The standard ordering relations.

proctype <real, real> returns (bool>
proctype <real, real> returns <booD

These two operations return true if and only if both arguments are the same object.

copy: proctype <real) returns <real>

Copy simply returns its argument.

§11.5 Char 105

11.6. Char

Objects of type char are immutable, and represent characters. Every implementation must

provide at least 128, but no more than 512, characters. Characters are numbered from 0 to some

Char_ Top, and this numbering defines the ordering for the type. The first 128 characters are the

ASCII characters in their standard order.

i2c: proctype <int> returns <char> signals Cillegal_char)

12c returns the character corresponding to the argument. lllegal_char occurs if the
argument is not in the range CO, Char .. Topl

c2i: proctype <char> returns Ont>

This operation returns the number corresponding to the argument.

It: proctype (char, char> returns (bool>
le: proctype (char, char> returns (bool>
ge: proctype (char, char> returns (bool)
gt: proctype <char, ch~r> returns (bool>

equal:
similar:

The ordering relations consistent with the numbering of characters.

proctype <char, char> returns (bool)
proctype (char, char> returns (bool)

These two operations return true if and only if the two argumenu are the same object.

copy: proctype <char> returns <char>

Copy simply returns its argument.

11.8. String

Ob jeers of type string are immutable. Each string represents a tuple of characters. The 1th

character of the stri~g is the ith element of the tuple. There are an infinite number of strings, but

an implementation need only support a finite number. Attempts to construct illegal strings result In

a failure exception.

size: proctype <string> returns <int>

This operation simply returns the size of the tuple represented by the argument.

empty: proctype <string> returns <bool>

This operation returns true if and only if size<argn • 0.

106

lndexs:

lndexc:

String

proctype <string, string> returns <Int>

If argl occurs in arg2, this operation returns the least index at which argl occurs:
rts • minfi I Occurs<arg/, arg2, i>l

Note that the result is 1 if argl is the 0-tuple. The resuk is 0 If arr/ does not occur.

proctype (char, string> returns Ont>

If <argl> occurs in arg2, the result is the least index at which <argl> occurs:
rts • minU I Occurs«arg/>, arg2, i>l

The result Is 0 if <argl> does not occur.

§11.6

c2s: proctype <char> returns <string>

This operation returns the string representing the I-tuple <arfl>.

concat: proctype <string, string) returns <string>

Concat returns the string representing the tuple argl II arr2.

append: proctype <string, char> returns <string>

fetch:

This operation returns the string representing the tuple aril R <arf2>.

proctype <string, Int> returns <char> signals <bounds)

Fetch returns the arg21h character of argl. Bounds occurs if arg2 < I or
arg2 > slze<argl>.

rest: · proctype <string, Int> returns (string) signals <bounds>

substr:

s2ac:

The result of this operation is Tai1"'2- 1<argl>. Bounds occurs if arg2 < I or
arg2 > size<argl> + I.

proctype <string, Int, Int> returns <string> signals <bounds, negativeJize>

If argJ s size<rest<argl, arg2», the result Is the string representing the tuple of size argJ
which occurs in argl at Index arg2. Otherwise, the result is rest<argl, arg2>. Bounds
occurs if arg2 < 1 or arg2 > size<argl> + I. NegativeJlze occurs if ar1J < 0.

proctype <string> returns <array{charJ>

This operation places the characters of the argument as elements of a new array of
characters. The low bound of the array is I, and the size of the array is size<argn. The
1th element of the array is the 1th character of the string.

ac2s: proctype <array{charl> returns <string))

Ac2s serves as the inverse of s2ac. The resuk is the string with characters in the same
order as in the argument. That is, the 1th character of the result Is the
(j + low<ar1n - uth element of the argument.

§11.6 String 107

s2sc: proctype <string) returns <sequenceCcharl>

This operation transforms a string into a sequence of characters. The size of the
sequence is size<argl>. The ith element of the sequence is the t1h character of the string.

sc2s: proctype <sequenceCchar1> re~urns (string>

chars:

Sc2s serves as the inverse of s2sc. The result is the string with characters in the same
order as in the argument. That is, the 1th character of the resuk is the 1th element of the
argument.

ltertype <string) ylelds <char>

This iterator yields, In order, each character of the argument.

It: proctype <string, string) returns <bool>
le: proctype <string, string> returns <bool>
ge: proctype <string, string) returns <bool>
gt: proctype <string, string> returns (bool>

equal:
similar:

These are the usual lexicographic orderings based on the ordering for characters. The
It operation is equivalent to the following:

It• proc <x, y: string> returns <bool>
size_x: Int :• strlngSsize<x>
size_y: Int :• strlngSsize<y>
min: Int
If size_x <• size_y

then min :• slze_x
else min :• size_y .
end

for i: Int In lntSf rom_to<l, min) do
If xCiJ ...,. yCiJ then return<xliJ < yUJ> end
end

return<size_x < size_y>
end k

proctype <string, string> returns < booP
proctype <string, string) returns (bool>

These two operations return true if and only if both arguments are the same object.

copy: proctype <string> returns <string>

Copy simply returns its argument.

108 Array Types §11.7

11.7. Array Types

The array type generator defines an infinite class of types. For every type T there Is a type

array(TJ. Arrays are mutable objects. The state• of an object of type arr•y(Tl consists of:

a> an integer Low, called the low bound, and
b> a tuple Elts of objects of type T, called the elements.

We also define Size • Size<Elts>, and High • Low + Size - l. We want to think of the elements of

Elts as being numbered from Low, so we define the arrayjndex of the 1th element to be

<t + low - l>.

For any array, low, High, and Size must be legal Integers. Any attempts to create or modify

an array in violation of this rule results in a failure exception. Note that for all array operations.

If an exception other than failure occurs, the states of all array arguments are unchan&ed from

those at the time of invocation.

create: proctype <Int> returns < array[Tl>

This operation returns a new array for which Low Is tirgl and Elt1 is the 0-tuple.

new: proctype 0 returns < array[TJ>

This is equivalent to create<t>.

predict: proctype <tnt, Intl returns <array(Tl>

Predict is essentially the same as create<argl>, in that it returns a new array for which
low is argl and Elts is the 0-tuple. However. if ar12 ls greater than (less than) 0, it Is
assumed that at least larg2j addh's <addl's> will be performed on the array. These
subsequent operations may execute somewhat faster.

low: proctype < array[T]) returns <Int>
high: proctype <array[TJ> returns Ont>
size: proctype < array[TJ> returns <Int>

These operations return Low, High, and Size, respectively.

empty: proctype <array(Tl> returns <bool>

This operation returns true if and only if Size• Q.

l. For an array A, we should properly write LowA, etc .• to refer to the state of that particular
object, but subscripts will be dropped when the association seems clear.

§11.7 Array Types 109

set_low: proctype (array(Tl, Int>

Set_low makes Low equal to arg2.

PSE

trim: proctype <array(TJ, Int, int> signals (bounds, negativeJize> PSE

This operation makes Low equal to arg2, and makes Elts equal to the tuple of size

min{argJ, High' - arg2 + ll which occurs ln Elts' at index arg2 - Low'+ t.1 That ls,
every element with arrayJndex less than arg2, or greater than or equal to arg2 + arg1,
is removed. Bounds occurs if arg2 <Low' or arg2 >High'+ 1. NegatlveJlze occurs If
argJ < 0. Note that this operation is somewhat like strlngSsubstr.

fill: proctype <Int, Int, T> returns (array(T]) signals (negativeJize>

Fill creates a new array for which Low is argl and EJts ts an arg2-tup1e in which every
element is argJ. Negative_size occurs if arg2 < 0.

fill_copy: proctype <Int, Int, T> returns <array(T]) signals <negativeJize>
where T has copy: proctype <T> returns <T>

SSE

This operation is equivalent to the following:

fill_copy • proc <nlow, nsize: Int, elt: T> returns <at) algnala <negativeJize>
where T haa copy: proctype <T> returns <TI

at • array(TJ
If nsize < 0 then signal negativeJize end
x: at :• atSpredict<nlow, nsize>
for i: Int In lntSfrom_to<l, nslze) do

atSaddh<x, TScopy<ek»
end

return<x>
end fill_copy

fetch: proctype (array(Tl, int> returns <T) algn•I• <bounds)

bottom:
top:

store:

Fetch returns the element of argl with arrayJndex arg2. Bounds occurs ~f arg2 < Low
or arg2 > High.

proctype < array(T]) returns <T> signals <bounds>
proctype < array(Tl> returns <T> signals (bounds)

These operations return the elements with arrayJndexes Low and High, respectively.
Bounds occurs if Size • 0.

proctype <array(Tl, Int, T> signals (bounds> PSE

Store makes Elts a new tuple which differs from the old in that arg1 is the element
with arrayJndex arg2. Bounds occurs if arg2 < Low or arg2 > High.

1. Elts', High', etc. refer to the state just prior to invoking the operation.

110

addh:

add I:

remh:

remt:

Array Types §11.7

proctype <array(Tl, T> PSE

This operation makes Elts the new tuple Elts' I <t1rf2>.

proctype <array(TJ, T> PSE

This operation makes Low equal to Low' - I, and makes Elts the tuple <arg2> I Elt1'.
Decrementing Low keeps the array_indexes of the previous elements the same.

proctype < array(T]) returns <T> signals <bounds> PSE

Remh makes Elts the tuple Front<Elts'>, and returns the deleted element. Bounds occurs
if Size' • 0.

proctype < array(TJ> returns <T> signals <bounds) PSE

Reml makes Low equal to Low'+ 1, makes Elts the tuple Tail<Elts'>, and returns the
deleted element. Incrementing Low keeps the arrayJndexes of. the remaining elements
the same. Bounds occurs if Size' • 0.

elements: ltertype <array(Tl> ylelds <T>

This iterator is equivalent to the following:

elements • lter <x: at> ylelds <T>
at • array(TJ
for i: Int In lntSfrom_to<atSlow<x>, atShlgh<x» do

yleld< xC i1>
end

end elements .

Indexes: ltertype <array(Tl> ylelds Ont>

This iterator Is equivalent to lntSfrom_to<Low', High'>.

equal: proctype <array(TJ, a"ay(TJ> retuma <booD
. .

Equal returns true If and only if both arguments are the same object.

§11.7 Array Types

similar: proctype <array{TJ, array{TJ> returns <booll
where T has similar: proctype CT, T> return• (booD

This operation is equivalent to the following:

similar • proc <x. y: at> returns <booO
where T has similar: proctype <T, TI retuma (bool>

at • array{TJ
If atSlow<x> ..., .. atSlow<y> cor atSsize<x> ,,,. atSsize<y>

then return<false>
end

for i: Int In atSindexes<x> do
If ""'TSsimilar<xCiJ, yCiJ> then retum<falae> end
end

return< true>
end similar

simi1arl: proctype <array{TJ, array{T]) returns <booO
where T has equal: proctype <T, T> returns (bool)

Ill

SSE

SSE

Similarl works in the same way as similar, except that TSequal is used instead of
TSsimilar.

copy I:

copy:

proctype <array{ Tl> returns < array{T])

Copyl creates a new array with the same state as the argument.

proctype <array{TJ> returns <array{TJ>
where T has copy: proctype <T> returns (T)

This operation is equivalent to the following:

copy• proc <x: at> returns <at> where T has copy: proctype CTI returns CT>
at • array{TJ
x :• atScopyl<x>
for i: Int In atSindexes<x> do

xCiJ :• TScopy<xCiJ>
end

return<x>
end copy

11.8. Sequence Types

SSE

The sequence type generator defines an infinite class of types. for every type T there is a

type sequenceCTJ. An object of type sequenceCTJ consists of a tuple, Elts, of objects of type T,

catled the elements of the sequence. Sequences are immutable objects: a particular sequence always

represents exactly the same tuple of objects. However, if the objects in the tuple are mutable, then

the state of those objects may change.

112 Sequence Types §11.8

For convenience, we define Size • Size<Elts>. The elements of a sequence are numbered from 1

to Size. For any sequence, Size must be a legal integer; an1 attempt to create a sequence that

violates this rule results in a failure exception.

new: proctype 0 returns < sequenceCTJ>

This operation returns the empty sequence.

size: proctype (sequenceCTJ> returns Ont>

This operation returns Size.

empty:

subseq:

proctype <sequenceCTJ> returns <booP

Empty returns true if and only if Size • 0.

proctype <sequenceCTJ, Int, Int> returns (sequenceCTJ>
signals <bounds, negativeJize}

If argJ :s Size - arg2 + 1 then the result is the tuple of size argJ occurring in argl
starting at index arg2. Otherwise, the result is the tuple Tail8"2- 1<argn. Bounds occurs
if arg2 < 1 or arg2 > Size + 1. Negative_size occurs if argJ < 0.

fill: proctype <Int, T> returns <sequenceCTJ> signals <negativeJlzel

Fill returns the sequence for which Elts is the arg/-tuple in which every element ls arg2.
Negative_size occurs if argl < 0. ·

fill_copy: proctype <Int, T> returns <sequenceCTJ> signals <negativeJlze>

This operation is equivalent to the following:

fetch:

fill_copy • proc <nsize: Int, elt: T> returns <qt> signals <negatlveJize)
where T has copJ: proctype <TI returns <TI

qt • sequenceCTJ
If nsize < 0 then signal negativeJize end
x: qt :• qtSnewO
for i: Int In lntSfrom_toU, nsize) do

x :• qtSaddh<x. TScopy<elt))
end

retumx>
end f ill_copy

proctype (sequenceCTJ, Int> retums <TI signals <bounds>

Fetch returns the arg2'h element of tirgl. Bounds occun If arg2 < 1 or arg2 > Size.

SSE

§11.8

bottom:
top:

Sequence Types

proctype < sequenceCTJ> returns <T> signals <bounds>
proctype < sequenceCT]) returns <T> signals (bounds)

113

These operations return the first and last elements of argl, respectively. Bounds occurs
if Size • 0.

replace: proctype <sequenceCTJ, Int, T> returns CsequenceCTJ> signals <bounds>

This operation returns a new sequence whose arg2'h element Is argJ, but which ls
otherwise the same as argl. Bounds occurs if arg2 < l or arg2 > Size.

addh: proctype <sequenceCTJ, T> returns CsequenceCTJ>

Addh returns the sequence representing the tuple Elts II <arg2>.

addl: proctype <sequenceCTJ, T> returns <sequenceCTJ>

Addi returns the sequence representing the tuple <arg2> II Elts.

remh: proctype <sequenceCTJ> returns <sequenceCTJ> signals (bounds>

Remh returns the sequence representing the tuple Front<Elts>. Bounds occurs if
Size• 0.

reml: proctype <sequenceCTJ> returns <sequenceCT]) signals (bounds>

Reml returns the sequence representing the tuple Tall<Elts>. Bounds occurs if Size • 0.

e2s: proctype <T> returns <sequenceCTJ>

concat:

This operation returns the sequence representing the singleton tuple <argl>.

proctype (sequenceCTJ, sequenceCTJ> returns <sequenceCTJ>

Concat returns the sequence representing the tuple argl II arg2.

a2s: proctype <array(TJ> returns <sequenceCTJ>

This operation returns the tuple corresponding to the elements part of the state of argl.

s2a: proctype <sequenceCT]) returns <array(TJ>

This operation returns a new array with low bound land with Elts as the elements part
of the array state.

elements: itertype < sequenceCT]) yields <T>

This iterator yields, in order, each element of Elts.

indexes: itertype (sequenceCTJ> yields Ont>
...

This iterator ts equivalent to intSfrom_to<l, Size>.

IH

equal: proctype <seq•nceCTJ, sequenceCTJ) returns CbooD
where T haa equal: proctype CT, n retuna Clloal

Equal Is equivalent to the following:

equal • proc Cx, y: qt) returns (boot)

where T hu similar: proctype CT, n ,..,_ Cbool
qt• sequenc.CTJ
If qtSsize<x) ,.,. qtSsize<y> then retunllflllae) encl
for i: Int In qtSindexesb:) do

If xCil ,.,. yCil tllen retwnefalae) end
end

return< true>
end equal

§II.a

SSE

similar: proctype CaequenceCTJ, aequenceCT]) returns <booD SSE

copy:

where T h•a similar: proctype CT, TI returns CbooD .

Similar works in the same way as equal. except that TSslmtlar ts used instead of
TSequal.

proctype CsequenceCTJ> retuma CaequenceCTJ>
where T has copy: proctype en retUrna m

This operation ts equivalent to the following:

oopy • proc Cx: qt> returns <qt> where T hu copy: P.JOC1YP9 en retwns en
qt. aequenceCTJ
y: qt :• qtSnewO
for e: T In qtSelementsCxl do

y :• qtSaddh<y, TScopyCe>>
. end

return<y>
•ndcapy

SSE

11.8. Record T7pes

The record type generator defines an infinite class of types. For every tuple of name/type

pairs «N 1, T 1> •••• , <N
11

, T
11
», where an the names are dtsttnc:t. In lower case. and In lextc:ographk

order, there is a type recorclN 1:T 1, ••• , N
11
:T l <However the user may write this type with the

pairs permuted, and may use upper case letters in names.> Records are mutable objl!cts. The state

of a record of type recorclN 1:T 1, ... , N
11
:T .1 ts an It-tuple; the 1• element of the tuple Is of type Tr

The 1'" element is also called the NrcomponenL

§11.9

create:

equal:

Record Types us

proctype <TI' ... , T n) returns <recorclN 1:T I' ... , Nn:T n])

This operation returns a new record with the tuple <argl, ... , argN> as its state. This
operation is not available to the user; its use is implicit in the record constructor <see
Section 10.6>.

proctype <recorclN 1:T1, ••. , N :T]) returns <T.> · n n 1

This operation returns the Ni-component of the argument. There is a get_Ni operation
for each Ni.

PSE

This operation makes the state or argl a new tuple which differs from the old in that
the Ni-component is arg2. There is a set_Ni operation for each Ni.

proctype <recorclN 1:T I' ... , Nn:T n]' recorclN 1:T I' ... , Nn:T n]) returns Cbool>

Equal returns true if and only if both arguments are the same object.

similar: proctype <recorc1N 1:T1, ••• , Nn:Tnl' recorclN 1:T., ... , Nn:Tn]) returns (booll SSE
where each Ti has similar: proctype <Ti' Tl returns <booO

Corresponding components or argl and arg2 are compared in <lexicographic> order,
using TiSsimilar for the Ni-components. <The Ni-component of argl becomes the first
argument_.> If a comparison results in false, the result of the operation is false, and no
further comparisons are made. If all comparisons re~urn true, the result is true.

similarl: proctype <recorclN 1:T 1, ••• , Nn:T n]' recorclN 1:T I' ... , Nn:T n]) returns <bool> SSE

copyl:

where each Ti Jlas equal: proctype <Ti' Ti> returns <boot>

Similarl works in the same way as similar, except that TiSequal is used instead of
TiSsimilar.

proctype <recorclN 1:T 1, ••• , Nn:T n]) returns <recorclN 1:T 1, ••• , N":T "])

Copyl returns a new record with the same state as the argument

116 Record Types §11.9

copy: proctype Crecorcf N 1:T 1, •.• , N.:T .n returns CrecorcfN 1:T 1, - N.:T •)) SSE
where ••ch Ti h•• copy: ~type <T / returns CT/

This operation is equivalent to the following <note that the Ni are In lexkographk
order>:

copy • proc Cx: rt> returns <rt>
where T 1 h•a copy: proctype CT 1> retulM <T 1>,

T • 11•• copy: proctype CT J re-... CT.>
rt • recorcf N 1:T 1, N.:T .1
x :• rtScopyl<x)
x.N 1 :• T 1Scopy(x.N1>

x.N. :• T 11Scopy<x.N.>
retum<x>
encl copy

11.10. Structure Types

The atruct type generator defines an infinite class of types. For every tuple of name/type

pairs «N 1, T 1>, .•. , <N
11

, T ,.». where aH the names are distinct, in lower cue, and In lexicographk

order, there is a type atruc1CN 1:T
1
, ••• , N

11
:T ..J. <However the user may write this type with the

pairs permuted, and may use upper case letters in namesJ Structures are Immutable ob jetts. A- .

structure of type atruc1CN 1:T 1, N
11
:T

11
1 is an n-tuple; the 1" element ol the tuple Is ol type Tr

The 11• e~t is also called the Nr~ent.

create: proctype CT1, ••• , T
11
> returns CatrucfN1:T., N

11
:T

11
J>

This operation mums the strudUre representing the tuple <arfl, _ a1N >. This
operation is not available to the user; its use Is implldt in the strudUre c:onstructor bee
Section 10.6>.

get_N1 : proctype CatrucfN 1:T 1, ••• , N
11
:T

11
1> returns CT/

This operation returns the Nrcomponent of the argument. There Is a get....N1 operation
for each Nr

replace_Ni: proctype CatruclN 1:T1, ••• , N,.:T
11
J, Ti> returns Catruc1N1:T1, N

11
:T

11
))

This operation returns the tuple corresponding to •111 With its Nrcomponent replaced
by arg2. There is a replace_N1 operation for each Hr

s2r: proctype <atruc1N 1:T" ... , N
11
:T

11
)) retwna Crecor4N 1:T1, _ N

11
:T.D

S2r returns a rte'! record whose initial state is the tuple repraented by the argument.

§11.10 Structure Types 117

r2s: proctype (recorclN 1:T 1, ••• , Nn:T n]) returns <structCN 1:T I' ... , N":T "])

equal:

R2s returns the structure representing the tuple that is the current state of the argument.

proctype <structlN 1:TI' ... , Nn:T"1, structlN 1:T1, ... , N":T"]) returns (bool> SSE
where each Ti has equal: proctype <Ti' Ti> returns (booP

Corresponding components of argl and arg2 are compared in <lexicographic> order,
using TiSequal for the Ni-components. <The Ni-component of argl becomes the first
argument.> If a comparison results in false, the result of the operation is false, and no
further comparisons are made. If all comparisons return true, the result ts true.

similar: proctype <struc1CN 1:TI' ... , Nn:TnJ' structCN 1:T1, ... , Nn:T
11

J> returns (bool> SSE

copy:

where each T. has similar: proctype <Ti' T.> returns (booP
I I

Similar works in the same way as equal, except that T ;Ssimilar is used instead of
Tisequal.

proctype <structCN 1:T 1, ... , Nn:T "]) returns <struc(N 1:T 1, •• ., N
11
:T

11
l>

where each Ti has copy: proctype <Tl returns <Tl
SSE

This operation is equivalent to the following <note that the Ni are in lexicographic
order>:

copy • proc <x: st> returns <st>
where T 1 has copy: proctype <T 1> retums <T 1>.

T" has copy: proctype <T ,.> retums <T 11>
st• struc(N 1:T 1, ••• , N

11
:T

11
]

return<stS{N 1: T ;Scopy<x.N 1>,

N
11

: T
11
Scopy<x.N.»>

end copy

11.11. Oneof Types

The oneof type generator defines an infinite class of types. For every tuple of name/type

pairs «N 1, T 1), ••• , <N", T "». where all of the names are distinct, in lower case, and in

lexicographic order, there is a type oneofCN 1:T 1, ••• , N11
:T l <However the user may write this type

with the pairs permuted, and may use upper case letters in names.> Oneofs are immutable objects.

Each oneof represents a name/object pair <Ni' X>, where X is of type Ti. For each object X of

type Ti there is a oneor' for the pair <Ni' X>. Ni ts called the tag of the oneof, and X ls called the

value.

118 Oneof Types Ill.II

make_Ni : proctype <Tl retuma ConeotlN 1:T 1 N.:T
8

1>

This operation returns the oneof for the pair <Ni' or1n. There Is a make...N; operation
for each Nr

proctype <oneotlN 1:T 1 "N.:T .n retuma CIMd

This operation returns true if and only if the tag of the argument is Nr There b an
is_Ni operation for nch Nr

value_Ni: proctype ConeofCN 1:TI' N.:T.J> retuma CT/ Cwrong_tag>

If the argument has tag Ni' the result is the value component of the argument.
Wrong_tag occurs If the tag Is ~her than Nr There Is a value...N; operation for each
Ni.

o2v: proctype ConeotlN 1:T 1 •••• , N.:T ,.l> retuma Cvari.t:N 1:T 1, N.:T .»
This operation returns a new variant wtth an initial state that has the same tag and
value as the argument.

v2o: proctype CvarlM1CN 1:T 1 N.:T ,.l> retuma Coneotl:N1:T I' N.:T .n

equal:

This operation returns the oneof with the same tag and value as the current state f4 the
argument.

proctype <oneotCN 1:T 1 •••• , N,.:T .1. oneotlN 1:T 1, N.:T .1> returns Cbool)
where eacfl Ti has equal: proctype CT, T} returna Cbool>

SSE

If argl and arg2 have different tags, the result is t•e. If both tags are N, the result
is that of invoking T.Sequal with the two value compoMnts.

I .

similar: proctype ConeotCN 1:T I' N,.:T ,.l. oneotlN 1:T I' N.:T .J> returns Cbool> SSE
where ••ch T; has similar: proctype CT, T / retwns Chool

If argl and arg2 have different tags, the result is t•e. If both tags are N, the result
is that of invoking T;Ssimilar with the two value components.

copy: proctype <oneotCN 1:T 1, ••• , N.:T .n returns Coneof(N 1:T 1, N.:T .» SSE
where each T; has copy: proctype CT} retwRa CT/

If argl represents the pair CN, X>, then the result Is the oneof for the pair
<Ni' T~copy<X».

§11.12 Variant Types 119

11.12. Variant Types

The variant type generator defines an infinite class of types. For enry tuple of name/type

pairs «N 1, T 1>. ... , <Nn' T n»' where all .of the names are distinct, in lower case, and in

lexicographic order, there is a type vartantlN 1:T I' ... , Nn:T "]. <However the user may write this

type with the pairs permuted, and may use upper case letters in names.> Variants are mutable

objects. The state of a variant consists of a name/object pair <Ni' X>, where Xis of type T;· .For

each object X of type Ti there is a state <Ni' X>. N; is called the current tag of the variant, and X

is called the current value.

make_Ni : proctype <T;> returns <vartantlN 1:T 1, ••• , N
11
:T

11
1>

This operation returns a new variant whose initial state is the pair <N;, argn. There is
a make.:Ni oper~tion for each Ni.

change_Ni: proctype <variantlN 1:T1, ••• , Nn:T
11
J, Tl PSE

This operation changes the state of argl to be the pair <Ni' arg2>. There is a change...N1
operation for each Nr

proctype <vartantlN 1:T I' ... , Nn:T
11

1> returns (boo0

This operation returns true if and only if the current tag of the argument is Ni" There
is an is_N. operation for each N ..

. I I

value_~i: proctype <vartantlN 1:TI' ... , N
11
:Tn]) returns <Ti> slgnals (wrong_tag>

equal:

If the current tag of the argument is Ni' then the current value component is returned.
Wrong_tag occurs if the current tag is other than Ni. There is a value_Ni operation for
each Ni.

proctype <vartantlN 1:T1, ••• , Nn:Tnl' vartantlN 1:T1, ••• , N
11
:T

11
l> returns (booO

This operation returns true if and only if argl and arg2 are the same object.

similar: proctype <vartantlN 1:TI' ... , Nn:Tnl• vartantlN 1:TI' ... , Nn:T
11
]) returns (boo0 SSE

where each Ti has similar: proctype <T;, T;> retums (booO

If argl and arg2 have different tags, the result is false. If both tags are Ni, the result
is that of invoking TiSsimilar with the two value components.

simi1arl: proctype <varlantCN 1:TI' ... , N":T
11
1, vartantlN 1:TI' ... , Nn:T

11
]) returns <bool> SSE

where each Ti has equal: proctype <T;, T;> retums (booO

If argl and arg2 have different tags, the result ts false. If both tags are Ni' the result
is that of invoking T;Sequal with the two value components.

120

copy:

Variant Types

proctype <varlantlN 1:T 1, ••. , N
11
:T

11
1> returns <varlantlN 1:T 1, ••• , N

11
:T

11
))

where each Ti has copy: proctype <Tl retuma CT/

§11.12

SSE

If the current state of the argument is <Ni' X>, then the result Is a new variant whose
initial state is <Ni. TiScopy<X».

copyl: proctype CvarlantlN 1:T1, ••• , N
11
:T

11
J> return• CvarlantlN 1:T1, ••• , N

11
:T

11
l>

If the current state of the argument is <Ni' X>. then the result Is a new variant whose
initial state is also <Ni' X>.

11.13. Procedure and Iterator Types

Let A, R, LI' ... , L
11

be ordered lists of types, and let N 1, ••• , N
11

be distinct names in lower case

and in lexicographic order. Then there is a type

proctype <A> returns <R> signals <N 1<L 1>, ... , N
11
CL

11
))

and a type

ltertype <A> ylelds <R> slgnals CN 1<L 1>, ... , N
11
<L

11
».

<The user may permute the Ni<Lts. and may use upper case letters in names. If R is empty then

·returns CR>• is not written, •ctr is not written if Li is empty, and •a1g11ala t.J• Is not written If

n •OJ

The create operations are not available to the user; routines are created by compiling modules.

1:et T be a procedure <or iterator> type in the following.

~ual:
similar:

proctype <T, T> returns CbooD
proctype CT, T> returns CbooP

These operations return true if and only if both arguments are the same
implementation of the same abstraction, with the same parameters.

copy: proctype <T> returns CT>

Copy simply returns its argument

11.14. Any

The type any is the union of all types. There are no operations for the type any. Thus, for

example, no array(anyJScopy operation exists.

§III Input/Output 121

Appendix Ill - Input/Output

This appendix describes a set of standard ·ubrar(data types and procedures for CLU,

provided primarily to support 110. We do not consider this facility to be part of the language

proper, but felt the need for a set of commonly-used functions that have some meaning on most

systems. This facility is minimal because we wished it to be general, I.e. to be Implementable, at

least in large part, under almost any operating system. The facility also provides a framework. In

which some other operations that are not always available can be expressed.

Some thought was given to portability of programs, and possibly even data, but we expect that

programs dealing with all butt.he simplest 1/0 wiH have to be written very carefully to be portable,

and might not be portable no matter how careful one is.

The following additional types are described:

stream provides access to text files
istream - provides access to image files
file_name - a naming scheme for files
date calendar date and time

No type •file• exists, as will be explained.

111.1. Piles

Our notion of file is a general one that includes not only storage files (disk files>, but also

terminals and other devices <e.g. tape drives>. Each file will in general support only a subset .of the

operations described here.

There are two basic kinds of files, text files and image files. The two kinds of files may be

incompatible. However, on any particular system, it may not be possible to determine what kind a

given file is.

A text file consists of a sequence of characters, and is divided into lines terminated by newline

C\n'> characters. A non-empty last line might not be terminated. By convention, the start of a new

page is indicated by placing a newpage ('\p') character at the beginning of the first line of that

page.

A text file will be stored in the <most appropriate) standard text file format of the local

operating system. As a result, certain control characters <e.g~. NUL, CR, FF, "'C, "'Z> may be

ignored when written. In addition, a system may limit the maximum length of lines and may add

122 Files §Ill.I

<remove> trailing spaces to <from) lines.

Image files are provided to allow more efficient storage of information than is provided by

text files. Unlike text files, there is no need for image files to be compatible with any local flle

format; thus, image files can be defined ·more precisely than text files.

An image file consists of a sequence of encoded objects. Objects are written and read using

tncodt and dtcodt operations of their types. <These in turn will call tncodt and dteodt on their

components until basic types ar~ reached.> The objects stored in an image file are not tagged by

the system according to their types. Thus, if a file is written by performing a specific sequence of

tncodt operations, then it must be read back using the corresponding sequence of dttodt operations

to be meaningful.

111.2. File Names

File names are immutable objects used to name files. The system file name format is viewed

as consisting of four string components:

directory - specifies a file directory or device
name the primary name of the file <e.g. •thesisi
suffix - a name normally indicating the type of. file <e.g. ·c1u• for a

CLU source file>
other all other components of the system file name form

The dtrtctor1 and otlitr components may have internal syntax. The nalftt and suffix should be

short identifiers. <For example, in the TOPS-20 file name •ps:<eluser>ref.lpl3•, the tllrttt"'"J is

•ps:<cluser> •• the namt is "ref9, the suffix is ipt", and the otlan is -s•. In the UNIX path name

•tusr/snyder/doc/refman.r·, the dirtetor7 is "/usr/snyder/doc•, the nalflt is ·rerman•, the suffix ts

"r", and there is no otlan.

A null component has the following interpretation:

directory - denotes the current ·working• directory. <For example, the
"connected directory" on TOPS-20 and the •current directory"
on _UNIX. See also Section 8 of this appendix.>

name may be illegal, have a unique interpretation, or be ignored.
<For example. on TOPS-20, a null name is illegal for most
directories, but for some devices, the name is ignored.>

suffix - may be illegal, have a unique interpretation, or be ignored.
<For example, on TOPS-20, a null suffix is legal, as in
•<rws>foo".>

§111.2 File Names 12'

other should imply a reasonable default.

The operations on file names are:

create:

get_dir:
get_name:
get_suffix:
get_other:

parse:

unparse:

proctype <string, string, string, string> returns <file_name)
signals <badJormat>

This operation creates a file name from its components. Argl is the directory part.
arg2 is the name part, argJ is the suffix part, and arg4 is the other part for the new
file_name. In the process of creating a file name, the string arguments may be
transformed, e.g. by truncation or case-conversion.

proctype <file_name) returns <string>
proctype <file_name> returns <string>
proctype <file_name> returns <string>
proctype (file_name> returns <string>

These operations return string forms of the components of a file name. If the file
name was created using the crtatt operation, then the strings returned may be
different than those given as arguments to crtate, e.g., they may be truncated or
case-converted.

proctype <string> returns <file_name) signals <badJormat>

This operation creates a file name given a string in the system standard file name
syntax.

proctype (f ile_name) returns <string>

This operation transforms a file name into the system standard file name syntax.
We require that

parse<unparse<fn)) • fn
create<fn.dir, fn.name, fn.suff ix, fn.other) • fn

for all file names Jn. One implication of this rule is that there can be no fi1e name
that can be created by create but not by fJarst; if a system does have file names that
have no string representation in the system standard file name syntax, then create
must reject those file names as having a bad format. Alternatively, the file name
syntax must be extended so that it can express all possible file names.

make_output: proctype <file_name, string> returns <file_name> signals <badJormatl

This operation is used by programs that take input from a file and write new files
whose names are based on the input file name. The operation transforms the file
name into one that is suitable for an output file. The transformation is done as
follows: <I> the suffix is set to the given suffix <arg2>; <2> if the old directory is not
suitable for writing, then it is set to null; <3> the name, if null and meaningless, is set
to "output". <Examples of directories that may not be suitable for writing are
directories that involve transferring files over a slow network.>

12i File Names §111.2

make_temp: proctype <string, string, string) returns (file....name> signals <badJormat>

equal:

similar:

This operation creates a file name appropriate for a temporary file, using the given
pref erred directory name <argl>, program name <arg2>, and file identifier (argJ>. To
be useful, both the program name and the file identifier should be short and
alphabetic. The returned file name, when used as an argument to strtamSo(ltn or
istrtamloptn to open a new file for writing, is guaranteed to create a new file, and
will not overwrite an existing file. Further file name references to the created file
should be made using the name returned by the stream or tstream flt_naJM
operation.

proctype <fileJlame, file_name> returns <booO

Returns true if and only if the two file....names will unrrs1 to equal strings.

proctype (fileJlame, fileJtame> returns <booP

The same as the equal operation.

copy: proctype Cfile_name> returns <file....name>

Copy simply returns Its argument.

111.3. A File Type?

Although files are the basic information-containing objects In this package, we do not

recommend that a file type be introduced. The reason for this recommendation is that few systems

provide an adrquate representation for files.

On many systems, the most reliable representation of a file <accessible to the user) Is a channel

<stream> to that file. However, this representation is inappropriate for a CLU file type. since

possession of a channel to a file often implies locking that file.

Another possible representation is a file name. However, file names are one level indirect from

files, via the file directory. As a result, the relationship of a file name to a file object is

time-varying. Using file names as .a representation for files would imply that all file operations

could signal non_txisttnt_ftlt.

Therefore, operations related to file objects are performed by two stream clusters, strtam and

istrtam, and operations related to the directory system are performed by procedures.

Note that two opens for read with the same file name might retum streams to two different

files. We cannot guarantee anything about what may happen to a file after a program obtains a

stream to it.

§111.'f Streams 125

111.4. Streams

Streams provide the means to read and write text files, and to perform some other operations

on file objects. The operations allowed on !1-ny particular stream depend upon the access mode. In

addition, certain operations may be null in some implementations.

When an operation cannot be performed, because of an incorrect access mode, because of

implementation limitations, or because of properties of an individual file or device, then the

operation will signal not_possiblt <unless the description of the operation explicitly says that the

invocation will be ignored>.

The PSE and SSE indicators used in the previous appendix will not be used here; in many

cases the exact form <and time> of change depends on the particular operating system.

open: proctype <file_name, string> returns <stream> signals <not_possible<strlng»

The possible access modes <arg2> are ·read•, "write", and "append". If arg2 is not
one of these strings, not_possible<~ad access modei is signalled. In those cases
where the system is able to detect that the specified pre-existing file is not a text file,
not_possible<"wrong file typei is signalled.

If the mode is ·read·, then the named file must exist. If the file exists, a stream ls
returned upon which input operations can be performed.

If the mode is ·write•, a new file is created or an old file ts rewritten. A stream ls
returned upon which output operations can be performed.

If the mode is "append", then if the named file does not exist, one is created. A
stream is returned, positioned at the end of the file, upon which output operations
can be performed. Append mode to storage files should guarantee exclusive access
to the file, if possible.

primary _input: proctype 0 returns <stream>

This operation returns the ·primary" input stream, suitable for reading. This ls
usually a stream to the user's terminal, but may be set by the operating system.

primary _output: proctype 0 returns <stream)

This operation returns the "primary• output stream, suitable for writing. This is
usually a stream to the user's terminal, but may be set by the operating system.

error _output: proctype 0 returns <stream)

This operation returns the ·primary" output stream for error messages, suitable for
writing. This is usually a stream to the user's terminal, but may be set by the
operating system.

126 Streams §111.i

canJead: proctype <stream> returns (bool)

CanJead returns true if input operations appear possible on the stream.

can_ write: proctype <stream> returns <boot>

Can_write returns true if output operations appear possible on the stream.

getc: proctype <stream> returns <char> slgnals <end_of Jile, not_possible<atrlng»

This input operation removes the next charader from the stream and returns it.

peekc:

empty:

proctype <stream> returns <char> slgnals <end_of JUe, not_possible<atrlng))

This input operation is like gttc, except that the charader is not removed from the
stream.

proctype <stream) returns <boot> signals <not_possible<strlng»

This input operation returns true if and only if there are no more characters in the
stream. It is equivalent to a call of fJttlu, where true is returned if fJttlt returns a
character and false is returned if /Jttlt signals end_ofJile. Thus in the case of
terminals, for example, this operation may wait until additional charaders have been
typed by the user.

putc: proctype <stream, char> signals <not_possible<strlng»

This output operation appends the given character· to the stream. Writing a newline
indicates the end of the current line.

putc.Jmage: proctype <stream, char> signals <not_possible<strlng»

This output operation is like fJutc, except that an arbitrary character may be written
and the character is not interpreted by the CLU 1/0 system. <For example, the ITS
XGP program expects a text file containing certain escape sequences. An escape
sequence consists of a special character followed by a fixed number of arbitrary
characters. T.fiese characters could be the same as an end-of-line mark, but they are
recognized as data by their context. On a record-oriented system, such characters
would be part of the data. In either case, writing a newline in image mode would
not be interpreted by the CLU system as indicating an end-of-lineJ

getcJmage: proctype <stream> returns <char> signals <end_of Jile, not_possible<strlng»

This input operation is provided to read escape sequences in text files, as might be
written using putc_imagt. Using this operation inhibits the recognition of
end-of-line marks, where used.

get_lineno: proctype <stream> returns <Int> signals <end_of JUe, not..possible<atrlng»

This input operation returns the line number of the current <being or about to be
read> line. If the system maintains explicit line numbers in the file, said line
numbers are returned. Otherwise, lines are implicitly numbered, starting with 1.

§111.i

set_lineno:

Streams 127

proctype <stream, Int> signals <not_possible<strlng))

If the system maintains explicit line numbers in the file, this output operation sets
the line number of the next <not yet started> line. Otherwise, it is ignored.

reset: proctype <stream> signals <not_possible<string))

flush:

This operation resets the stream so that the next input or output operation wl11 read
or write the first character in the file. The line number is reset to its initial value.

proctype <stream>

Any buffered output is written to the file, if possible. Otherwise, there is no effect.
This operation should be used for streams that record the progress of a program. It
can be used to maximize the amount of recorded status visible to the user or
available in case the program dies.

get_line_length: proctype <stream> returns <Int> signals <no_limit>

If the file or device to which the stream is attached has a natural maximum llne
length, then that length is returned. Otherwise, no_limit is signalled. The llne
length does not include newline characters.

get_page_length: proctype <stream> returns <Int> signals <no_limit)

get_date:

set_date:

get_name:

close:

If the device to which the stream is attached has a natural maximum page length. ·
then that length is returned. Otherwise. noJimit is signalled. Storage files will
generally not have page lengths. ·

proctype <stream> returns <date> signals <not_possible<strlngH

This operation returns the date of the last modification of the corresponding storage
file.

proctype <stream, date> signals <not_possible<strlng))

This operation sets the modification date of the corresponding storage flle. <The
modification date is set automatically when a file is opened in ·write• or ·append•
mode.>

proctype <stream> returns <flle_name> signals <not_possible<strlng))

This operation returns the name of the corresponding file. It may be different than
the name used to open the file. in that defaults have been resolved and link
indirections have been followed.

proctype <stream>

This operation terminates 1/0 and removes the association between the stream and
the file. Further use of operations that signal not_possible will signal not..possible.

128 Streams §111.i

is_closed: proctype <stream> returns <booO

This operation returns true iH the stream is closed.

is_terminal: proctype <stream> returns (bool)

This operation returns true iH the stream is attached to an interactive terminal <see
below>.

getl: proctype <stream> returns <string> signals <end_of Jile, not..possible<strlng»

This input operation reads and returns <the remainder of> the current input Une and
reads but does ~ot return the terminating newline (if any>. This operation signals
end_of Jile only if there were no characters and end-of-file was detected.

putl: proctype <stream, string> signets <not_possible<strlng»

This output operation writes the characters of the string onto the stream, followed by
a newline.

gets: proctype <stream, string> returns <string>
signals <end_of Jile, not..possible<atrlng))

This input operation reads characters until a terminating character <one in arg2> or
end-of-file is seen. The characters up to the terminator are returned; the terminator
<if any> is left in the stream. This operation signals end_of Jile only if there were
no characters and end-of-file was detected.

puts: proctype <stream, string> signals <not_possible<atrlng))

putzero:

putleft:

putright:

putspace:

This output operation simply writes the characters in the string using putt.
Naturally it may be somewhat more efficient than doing a series of individual purc's.

proctype <stream, string, Int> signets <negativeJield_width, not_possible<atrtng»

Output the string. However, if the length of the string is less than the field width
<argJ), then also output the appropriate number of extra zeros before the first digit
or '.' in the string <or at the end, if no such characters>.

proctype <stream, string, Int> signals <negativeJield_width, not..possible<atrlng))

Output the string. However, if the length of the string is less than argJ, then also
output the appropriate number of extra spaces after the string.

proctype <stream, string, Int> signals <negativeJield_width, not_possible<strtng»

Output the string. However, if the l~ngth of the string is less than arg J, then also
output the appropriate number of extra spaces before the string.

proctype <stream, Int> signets <negativeJield_width, not_possible<strlng»

This operation outputs arg2 spaces.

§111.4 Streams

equal: proctype <stream, stream) returns <bool)

Returns true if and only if both arguments are the same stream.

similar: proctype <stream, stream) r~turns <bool)

Returns true if and only both arguments are the same stream.

copy: proctype <stream) returns (stream>

Returns its argument.

111.6. String 1/0

129

It is occasionally useful to be able to construct a stream that, rather than being connected to a

file, instead simply collects the output text into a string. Conversely, it is occasionally useful to be

able to take a string and convert it into a stream so that it can be given to a procedure that expects

a stream. The following stream operations allow these functions to be performed:

create_input: proctype <string) returns <stream)

An input stream is created that will return the characters in the given string. If the
string is non-empty and does not end with a newline, then an extra terminating
newline will be appended to the stream. ·

create_output: proctype 0 returns <stream)

An output stream is created that will collect output text in an internal buffer. The
text may be extracted using the gtt_conttnts operation.

get_contents: proctype <stream) returns <string> signals <not....possible<atrlng»

This operation returns the text that has so far been output to the stream. It will
signal not_.possible if the stream was not created by cr1at1...DUl/Jut.

A stream to a string does not have a file name; a creation date, a maximum line or page

length, or explicit line numbers.

111.8. !streams

lstreams provide the means to read and write Image files, and to perform some other

operations on file objects. The operations allowed on any particular lstream depend upon the

access mode. Jn addition, certain operations may be null in some implementations.

130 lstreams §111.6

When an operation cannot be performed, because of an incorrect access mode, because of

impfementation limitations, or because of properties of an individual file or device, then the

operation will signal not_possiblt (unless the description of the operation explicitly says that the

invocation will be ignored>.

Actual reading and writing of objects is performed by tncod1 and dteodt operations of the

types involved. All of the built-in CLU types, and the file_ttame and date types, provide these

operations. Designers of abstract types are encouraged to provide them also. The type

specifications of the tncodt and dteodt operations for a type T are:

encode:

decode:

proctype <T. istream> slgnals <not_possible<1trlng»

The tncodt operations are output operations. They write an encoding of the given
object onto the istream.

proctype (istream> returns <T> signals <end_of _file, not_possible<strlng»

The dteodt operations are input operations. They decode the information written by
encode operations and return an object ·similar to the one encoded. If the sequence
of decode operations used to read a fife do not match the sequence of encode
operations used to write it, then meaningless objects may be returned. The system
may in some cases be abte to detect this condition, in which case the decode operation
will signal not_possible<"bad formati. The system is not guaranteed to detect all
such errors. ·

The istream operations are:

open:

canJead:

proctype <file_name, string> returns <istream> signals <not_possible<strlng»

The possible access modes (arg2> are ·read•, •write•, and •append·. If arg2 is not
one of these strings; not_possibte<"bad access modei is signalled. In those cases
where the system is abte to detect that the specified pre-existing file is not an image
file, not_possible<·wrong f ite type; is signalled.

If the mode is ·read·, then the named file must exist. If the file exists, an image
stream is returned upon which dtcodt operations can be perf armed.

If the mode is ·write", a new file is created or an old fife is rewritten. An image
stream is returned upon which tncodt operations can be performed.

If the mode is ·append", then if the named file does not exist, one is created. An
image stream is returned, positioned at the end of the file, upon which encodt
operations can be performed. Append mode to storage files should guarantee
exclusive access to the file, if possible.

proctype (istream> returns (bool>

CanJead returns true if dtcodt operations appear possible on the istream.

§111.6 Jstreams 131

can_write: proctype <istream> returns <boot>

Can_write returns true if encode operations appear possible on the tstream.

empty: proctype (istream> returns (bool>

Returns true if and only if there are no more objects in the file.

reset: proctype <istream) signals <not_possible<atrlng))

flush:

get_date:

set_date:

get_name:

This operation resets the istream so that the next input or output operation will read
or write the first item in the file.

proctype Ustream>

Any buffered output is written to the file, if possible. Otherwise, there is no effect.

proctype <istream> returns <date) algnala <not_possible<atrtng»

This operation returns the date of the last modification of the corresponding storage
file.

proctype (istream, date> signals <not_possible<atrlng))

This operation sets the modification date of the corresponding storage file. <The
modification date is set automatically when a file ts opened in •write• or ·append•
mode.>

proctype <istream> returns <fileJlame>

This operation returns the name of the corresponding file. It may be different than
the name used to open the file, in that defaults have been resolved and link
indirections have been followed.

close: proctype <istream>

is_closed:

equal:

similar:

This operation terminates 1/0 and removes the association between the istream and
the file. Further use of operations that signal not_possible wlH signal not_possible.

proctype <istream> returns <bool>

This operation returns true iff the istream is closed.

proctype <lstream, tstream> returns <boot>

Returns true if and only both arguments are the same istream.

proctype Ustream, istream> returns <boot>

Returns true if and only both arguments are the same lstream.

copy: proctype <lstream> returns <istream>

Returns its argument.

132 Jstreams §111.6

111.7. Terminal 1/0

Terminal 1/0 is performed via streams attached to interactive terminals. Such a stream is

normally obtained as an argument to. the top-level procedure of a program. A terminal stream is

capable of performing both input and output operations. A number of additional operations are

possible on terminal streams, and a number of standard operations have special interpretations.

Terminal input will normally be buffered so that the user may perform editing functions, such

as deleting the last character on the current line, deleting the current line, redisplaying the current

line, and rechsplaying the current line after clearing the screen. Specific characters for causing

these functions are not suggested. In addition, some means must be provided for the user to

indicate end-of-file, so that a terminal stream can be given to a program that expects an arbitrary

stream and reads H until end-of-file. The end-of-file status of a stream is cleared by the rtstt

operation.

Input buffering is normally provided on a line basis. When a program first asks for input

<using getc, for example> an entire line of input is read from the terminal and stored in an internal

buffer. Further input is not taken from the terminal until the existing buffered input is read.

However, new input caused to be read by the getbuf operation will be buffered as a unit.

Thus, one can read in a large .amount of text and allow ·editing• of the entire amount of text. In

addition, when the internal buffer is empty, the getc_imagt operation will read a character directly

from the termina I, without interpreting it or echoing it.

The user may specify a prompt string to be printed whenever a new buffer of input is

requested from the terminal; the prompt string will also be reprinted when redisplay of the current

line is requested by the user. However, if at the lime that new input is requested an unfinished

line has been output to the terminal, then that unfinished line is used instead as a prompt.

The routine putc_imagt can be used to cause control functions, e.g. '\rxtr <bell> and '\p'

<new-page or clear-screen>. We cannot guarantee the effect caused by any particular control

character, but we recommend that the standard ASCII interpretation of control characters be

supported wherever possible.

Terminal output may be buffered by the system up to one line at a time. However, the buffer

must be flushed when new input is requested from the terminal.

§111.7 Terminal 1/0

Terminal streams do not have modification dates. Terminal streams should have file names

and implicit line numbers.

Additional operations:

getbuf: proctype <stream, string) returns <string)
signals <end_of Jile, not_possible<atrlng»

This operation is the same as gtts, except that for terminals with input buffering,
the entire input read by gttbuf is buffered as a unit, allowing input editing of the
entire text.

get_prompt: proctype <stream) returns <string>

This operation returns the current prompt string. The prompt string is initially
empty ('"'). The empty string is returned for non-terminal streams.

set_prompt: proctype <stream. string)

This operation sets the string to be used for prompting. If not possible, there is no
effect.

get_input_buffered: proctype <stream) returns (bool)

This operation returns true iff the stream is attached to a terminal and Input Is
being buffered.

set_input_buffered: proctype <stream, bool> signals <not...possible<atrlng))

This operation sets the input buffering mode.

get_output_buff ered: proctype <stream> returns (boot)

This operation returns true iff the stream is attached to a terminal and output Is
being buffered.

set_output_buffered: proctype <stream, bool> signals <not...possible<strlngll

This operation sets the output buffering mode. Unbuffered output is useful for
programs that output incomplete lines as they are working to allow the user to watch
the progress of the program.

111.8. Miscellaneous Procedures

working_dir: proctype 0 returns <string)

This procedure returns the current working directory. A null directory in a file
name denotes the current working directory.

13-f Miscellaneous Procedures §111.8

set_working_dir: proctype <string> signals <badJormat, not..possible<strlng))

This procedure is used to change the working directory.

deleteJile: proctype <fileJlame> signals <not_possible<strlng>>

This procedure deletes ·the specified storage file. An exception may be signalled
even if the specified file does not exist, but an exception will not be signalled solely
because the file does not exist. For example, an exception may be signalled if the
specified directory does not exist or if the user does not have access to the directory.

renameJile: proctype {file_name, file_name> signals <not..possible<strlng»

This procedure renames the file specified by argl to have the name specified by
arg2. Renaming across directories and devices may or may not be allowed.

user _Jlame: proctype 0 returns <string)

This procedure returns some identification of the user who is associated with the
executing process.

now: proctype O returns <date>

eJorm:

fJorm:

This procedure returns the current date and time.

proctype <real, Int, Int> returns <string> signals <illegalJletd_wldth)

EJorm returns a real literal of the form:

[-}-fltld[/-fltld]ux_fltld
where Lfltld is arg2 digits, 1-fltld is argJ digits, and x-fltld is Exp_ width· digits
<see Appendix JI, Section i>. If argJ • 0, then the decimal point and f-fltld are not
present. If argl ~ 0.0, then the leftmost digit of Ljltld ts not zero. If '"fl • 0.0,
then x_fltld is all zeros. lllegal_f ield_width occurs if ar12 < 0 or arr J < 0 or
arg2 + argJ < I. If necessary, argl may be rounded to fit the specified form.

proctype <real, Int, Int> returns <string> signals <illegalJiekl_width,
insuff kientJiekl_wldth)

F Jorm returns a real literal of the form:

[-}-fltld/_fltld

where 1-fltld is argJ digits. If arg2 > 0, then Ljltld is at least one digit, with
leading zeros suppressed. If arg2 • 0, then Lfltld is not present. lllegalJield_width
occurs if arg2 < 0 or argJ < 0 or arg2 + argJ < 1. If necessary, argl may be rounded
to fit the specified form. JnsuffidentJiekl_wtdth occun If
reatSexponent<argn 2!: arg2 after any rounding.

§111.8

g_form:

Miscellaneous Procedures lSS

proctype <real, Int Int> returns <string) signals <illegalJield_width,
insufficientJield_width)

If argl = 0.0 or -1 s realSexponent<argn < arg2, then the result returned by this
routine is f _form<argl, arg2, argJ>. Otherwise, the result ts
e_form<argl, 1, arg2+argJ-Exp _width-3>. lllegalJield_width occurs if arg2 < 0 or
argJ < 0 or arg2 + argJ < 1. If necessary, argl may be rounded to fit the specified
form. lnsufficientJield_width occurs if argl -. 0.0 and
..,(-1 s realSexponent<argl> < arg2> and (arg2 + ar1J < Exp_wtdth + 3> after any
rounding.

111.9. Dates

Dates are immutable objects that represent calendar dates and times. The operations for dates

are:

create:

get_all:

get_day:
get_month:
get_ year:
get_hour:
get_minute:
get_second:

unparse:

proctype <Int, Int, Int, Int, Int, Int> returns (date) 1lgnal1 CbadJormat>

The arguments are (in order> day, month, year, hours, minutes, and seconds.

proctype <date> returns <Int, Int, Int, Int, Int, Int>

Returns the components in the same order as given to cr1at1.

proctype <date> returns <tnt>
proctype <date> returns <Int>
proctype (date> returns <Int>
proctype <date> returns <Int>
proctype <date> returns <Int>
proctype (date> returns <Int}

U .. 31>, <l .. 12>, <1 ..), <O .. 23>, <O .. 59>, <O .. 59), respectively.

proctype <date) returns <string>

e.g., "12 January 1978 01:36:59"

unparse_date: proctype <date> returns <string>

e.g. "12 January 1978"

unparse_time: proctype <date> returns <string>

e.g. "01:36:59"

equal: proctype <date, date> returns (booD

The obvious equal.

136

similar:

Dates

proctype <date, date> returns (bool)

Returns dateSequal (argl, arg2>.

§111.9

copy: proctype <date> returns <date>

Returns argl.

It:
le:
ge:
gt:

proctype <date, date> returns (bool>
proctype <date, date> returns (bool>
proctype <date, date> returns <bool)
proctype <date. date> returns <booO

The obvious relational operations; if dattl < datt2, then dattl occurs earlier than
datt2.

§IV Examples IS'7

Appendix IV - Examples

IV .1. Priority Queue Cluster

This cluster is an implementation of priority queues. It inserts elements in O<log2 n> time, and

removes the "best• element in O<log2 n> time, where n is the number of items in the queue, and

"best• is determined by a total ordering predicate that the queue is created with.

The queue is conceptually implemented as a binary tree, balanced such that every element is

"better· than its descendants, and such that the minimum depth of the tree differs from the

maximum depth by at most one. The tree is actually represented by keeping the elements in an

array. with the left son of a[i] in aCi•21, and the right son in aCtt2+11. The root of the tree, aCll, is

the "best" element.

Each insertion or deletion must rebalance the tree. Since the tree is of depth strictly less than

log2 n, the number of comparisons is less than log2 n for insertion and less than 21og2 n for

removal of an element. Consequently, a sort using this technique takes less than ~ n 1og2 n

comparisons.

This cluster illustrates the use of a type parameter, and the use of a procedure as an object.

138 Priority Q.ueue Cluster

p_queue • cluster Ct: type] Is create, best, size, empty, insert, remove

pt • proctype <t, t> returns CbooO
at • array{tJ
rep • structla: at, p: pt] I I .< i <• sizeCa> implies pCaCiJ, aCi/21>

§IV.I

I Create a p_queue with a particular sorting predicate. P should be a transitive, non-reflexive,
'I total order. P<x, y> means that x is better than y. Each element in the p_queue should better
'I than its sons. However, this may not be true if mutable elements are changed while in the
'I p_queue.

create - proc Cp: pt> returns <cvt>
return<repS{a: atSnewO, p: pl>
end create

'I Return the best element.

best • proc <x: cvt> returns <t> signals <empty>
return<atSbottom<x.a»

except when bounds: signal empty end
end best

'I Return the number or elements.

size • proc <x: cvt> retums <Int>
return<atSsizt<x.a))
end size

I Return true if there are rto elements.

empty • proc <x: cvt> returns <bool>
return<atSempty<x.a>>
end empty

I Low index or array must be I !

§IV.I Priority Q.ueue Cluster

'l Insert an element of type t.

insert - proc <x: cvt, v: t>
a: at :• x.a
p: pt:• x.p
atSaddh<a, v>
son: Int :• at$high<a>
dad: Int :• son/2
while dad > 0 cand p<v. a[dadl> do

a[son] :• a[dadl
son, dad :• dad, dad/2
end

a[sonl :• v
end insert

'l Remove the best element and return it.

remove • proc <x: cvt> returns (t) signals <empty>
a: at:• x.a
p: pt:• x.p
r: t :• atSbottom<a>

except when bounds: signal empty end
v: t :• atSremh<a>
max_son: Int:• atSsize<a>
If max_son = 0 then return<r> end
max_dad: Int :• max_son/2
dad: int:• I
while dad <• max_dad do

son: Int :• dad•2
sval: t :• aCsonJ

" Make room for new item

" Tentative index of v

" Get index of v's father

" While v better than father

" Move father down

" Get new son, father indexes

" Insert the element into place

'I Save best for later return

'I Shrink array; save element
'I Last son node
'I ·If now empty, we're done
'I Last node with a son
'l Tentative index of v
'I While node has a son
I Get the first son

if son < max_son 'I If there is a second son
then nsval: t :• aCson + 11 'I Find the best son

If p<nsval, sval> then son, sval :• son + l, nsval end
end

if "'P<sval, v> then break end
a[dadl :• sval
dad:• son
end

a[dad] :• v
return<r>
end remove

end p_queue

I If son doesn't beat v, we're done
I Move son up
I Move v down

I Insert the element into place
I Return the previous best element

IS9

HO Text Formatter §IV.2

IV.2. Text Formatter

The following program is a simple text formatter. The input consists of a sequence of

unformatted text lines mixed with command lines. Each line <except possibly the last> is terminated

by a newline character, and command lines begin with a period to distinguish them from text lines.

For example:

Justification only occurs in "fill" mode,
In "nofill" Mode, each input teMt line is output Mithout Modification.
The .br comMand causes a line-break •
• br
Just I ike this.

The program produces justified, indented, and paginated text. For example:

Justification only occurs in "fill" Mode. In "nofill" Mode,
each input text line is output uithout Modification. The .br
command causes a line-break.
Just like this.

The output text is indented 10 spaces from the left margin, and ls divided into pages of 50 text

lines each. Each output fine has 60 characters. A header of 5 lines, including a line giving the

page number, is output at the beginning of each page.

An input text line consists of a sequence of words and word-break characters. The

word-break characters are space, tab, and newline; all other characters are constituents of words:

Tab stops are considered to be every eight spaces.

Tabs and spaces are accumulated in the current output line along with the input words. Thus.

if two spaces occur in the input between two words and those words appear on the same output

line, then they will be separated by at least two spaces.

The formatter has two basic modes of operation. In ·norill• mode, each input text Hne Is

output without modification. In ·rnr mode, input is accepted until no more words can fit on the

current output line. Newline characters are treated essentially as spaces. The line is then justified

by adding extra spaces between words until the last word has its last character in the rightmost

position of the line. Initially the formatter is in fill mode.

Justification is performed by enlarging spaces between words, as evenly as possible. Enlarging

is perform~d alternately from the right and the left, starting from the right at the top of each page.

Only spaces to the right of all tabs and between words are subject to justification. Furthermore,

spaces preceding the first word following a tab are not subject to justification. If there are no

spaces subject to justification, then no justification ·is performed and no error message is produced.

§IV.2 Text Formatter HI

In fill mode, any input line that starts with a word-break character causes a 1ine-break: the

current output line is neither filled nor adjusted, but is output as is. An ·empty• input line <one

starting with a newline character) causes a line-break and then causes a b1ank 1ine to be output.

In nof ill mode, if an input line is 1onger than the line 1ength, it is output as given with no

error message. In fill mode, if a word is longer than the line length, it is output as given on a line

by itself with no error message.

The formatter accepts three different commands:

.br - causes a line-break

.nf - causes a line-break, and changes the mode to ·nofin•

.fi - causes a line-break, and changes the mode to ·nn·

An ·unrecognized command name causes an error message and is otherwise ignored.

The program performs input and output on streams.

H2 Text Formatter §IV.2

Fig. 8. Module Dependency Diagram

format

doJine

do_text_line do_command

stream

Note: boxes with a double line at the top indicate clusters.

§IV.2 Text Formatter H3

ix Read the instream, processing it and placing the output on outstream and writing error messages
'X on errstream.

format .. proc <instream, outstream, errstream: stream> signals <bad_arg<strlng))
If ""streamScanJead(instream> th~n signal bad_arg(·input streami

elseif "'streamScan_write<outstream) then signal bad_arg<•output streami
elseif ""streamScan_write<errstream) then signal bad_arg<·error streami
end

d: doc :• docScreate<outstream>
line: Int :• O
while ..,streamSempty<instream) do

line :• line + 1
do_line<instream, d)

except when error <why: string>:

end
end

docSterminate<d>
end format

streamSputl<errstream, lntSunparse<line> I ·:\t• I why>

i Process an input line. The line is processed either as a text line or as a command line, .
i depending upon whether or not the first character of the line is a period.

do_line • proc <instream: stream, d: doc> signals <error<strtng))
c: char:• streamSpeekc<instream>
If c • '.'

then do_command<instream, d>
resignal error

else doJext_lineUnstream, d)
end

enddoJlne

H4 Text Formatter §IV.2

I Process a command line. This procedure reads up to the first space or tab in a line and
I processes the string read as a command. The remainder of the line is read and discarded.

do_command • proc <instream: stream, d: doc> alpals <error<atrtng>>
streamSgetcCinstream> . I skip the period
n: string:• strnmSgetsCinstmm. • \t\ni

except when md_of Jilt: n :• - eftd
streamSgetl<instream> I read and discard remainder of input line

except wllen end_of _f ilt: end
If n •or• then docSbreak_lineCd>

elaeif n • •fi• then docSsetJill<d> . . . ',

elaelf n • nr then dQCSset_nof iHCd>
elself n • - tflen atgnal error<•missing commandi
else algnal error<_ In I .. not 1 commandi
end

end do_command

I Process a text line. This procedure reads one line from instream and processes it as a text line.
I If the first character is a word-break character, then a line-break is caused. If die line is empty,
I then a blank line is output. Otherwise, the words and word-break chancten in the line are
I processed in turn.

do_text_line • proc Cinstream: stream, d: doc>
c: char :• streamSgetdinsttam>
If c • '\n'

then docSskip_lineCd> I empty Input line
return

elaelf c • • • cor c • '\t'
then docSbrnkJtne<d> .

end
..... (N• '\n' do

If c • ' • then docSadd_space<d> .
elaelf c • '\t' then docSadd_tab(d)
elae w: word :• wordSscan<c, Jnstream)

docSadd_word(d,w> ·
end

c :• streamSgetdinstream>
end except when end.J)f Jilt: end

doc:Sadd.}leWffneCd)
end doJextJtne

§IV.2 Text Formatter H5

'l The doc cluster implements documents, the properly indented, justified, and paginated output of
'l the text formatter. A document is constructed incrementally, using operations to add words,
'l spaces, tabs, and newlines to the end of the document. Other operations are used for the basic
'l formatting actions: break_line to cause a line break, skip_line to output a blank line, setJill and
'l set_nof ill to set the formatting mode. Rather than collecting the entire document as a sequence
'l of lines before outputting to a file, each line is output as it is produced. The current output line
% is maintained for the purposes of performing justification. To perform pagination and the
'l production of headings, the current line number and the current page number are also
'l maintained.

doc • cluster Is create, add_word, add_space, add_tab, add_newline,
breakJine, skipJine, setJill, set_nofill, terminate

rep • recorcf line: line,
fill: bool,
r21: bool,
lineno: Int,

pageno: Int,
outstream: stream]

chars...per _line • 60
Hnn...per _page • 50
left_marginJiie • 10

i The current line.
'l True <••> in fill mode.
'l True <••> justify next line right-to-left.
'l The number of lines output so far 0n this page·
'l <not including any header lines>.
I The number of the current output page.
I The output stream.

'I Create a doc object. The first page is number I, there are no lines yet output on it. Fm mode 11.
'I in effect.

create -· proc <outstream: stream) returns (cvt)
retum<repSUine: lineScreateO,

encl crate

fill: trve.
r21: true.
lineno: 0,
pageno: I,
outstream: outstreamJ)

116 Text Formatter uv.2

I Process a word. This procedure adds the word W to the output document. If in nofill mode,
I then the word is simply added to the end of the current line Cthere u no line-length checking in
I nofill mode>. If in fill mode, then we first check to see if there is room for the word on the
'I current line. If the word will not fit on the current line, we first justify and output the line and
'I then start a new one; justificatiol1 is performed alternately from the right and the left on
'I successive lines. However, if the line is empty, then we just add the word to the end of the line;
'I if the word won't fit on an empty line, then It won't flt on any line, so we han no choke but to
'I put It on the current line, even if it doesn't fit

add_word • proc Cd: cvt, w: word>
If d.fill cand "'lineSemptyCd.line)

then If lindlength<d.line> + wordSWidthCw) > chars_per _tine

then lineS justif y(dJine. chan..per _line, d.r2D
d.r21 :• ~-r21
output.JtneCd)

end
end

UneSadd_worcl<d.line, w)

end add_word

'I Process a space -- just add it to the current line.

add..>pace • proc <d: cvt>
UneSadd_space<d.line>
end add_space

'I Process a tab -- just add It to the current line.

add_tab • proc <d: cvt>
lineSadd_tab<d.line>
endadd_tab

'I Process a newline. If In norm mode. then the current line Is GUtpUt u IL Otherwise, a newline
I is treated just like a space.

addJteWllne • proc <d: cvt>
If Nd.fin

then output.Jine<d>
else ltneSadd_space(d.Jlne)
ucl

ucl add_newline

§IV.2 Text Formatter H7

i Cause a line break. If the line Is not empty, then it is output as Is. Line breaks have no effect
i on empty lines -- multiple line breaks are the same as one.

break_line • proc (d: cvt>
If,lineSempty(d.line> then output_line<d> end
end break_line

I Cause a line break and output a blank line.

sktp_line • proc (d: cvt>
brea k_line< up(d))
output_line<d> I line is empty
end skip_line

I Cause a line break and enter fill mode.

setJill • proc (d: cvt>
break_line< up(d))
d.f ill :• true
end setJill

I Cause a line break and enter nofill mode.

set_nof ill • proc (d: cvt>
break_line< up(d))
d.f ill : .. false
end set_nofill

I Terminate the output document.

terminate • proc <d: cvt>
break_line<up(d))
end terminate

H8 Text Formatter §IV.2

'I Internal routine.

'l Output line is used to keep track of the line number and the page number and to put out the
'I header at the top of each page. At the top of each page, justification is reset to stan from the
'I right.

output_line • proc (d: rep)
If d.1ineno = 0

end doc

then If d.pageno > I

end

then streamSputc<d.outstream, '\p') end
stream$puts<d.outstream, "\n\ni % print header
streamSputspace<d.outsrream, lefunargin_size>
streamSputs<d.outstream, ·Page i
streamSputs<d.outstream, lntSunparse<d.pageno>>
streamSputs<d.outstream, "\n\n\ni

d.lineno := d.lineno + I
If ...,JineSempty<d.line>

then streamSputspace<d.outstream, leftJnargin_size>
lineSoutput<d.line, d.outstream>

end
strea mSputdd.outstream, '\n'>
If d.lineno • lines_per _page

then d.r21 :• true
d.lineno :• 0
d.pageno :• d.pageno + I

end
end output_line

§IV.2 Text Formatter H9

'I A line is a mutable sequence of words, spaces, and tabs. The length of a line is the number of
'X character positions that would be used if the line were output. One may output a line onto a
% stream, in which case the line is made empty after printing. One may also justify a line to a
'X given length, which means that some spaces in the line will be enlarged to make the length of
'X the line equal to the desired length. . Only spaces to the right of all tabs are subject to
'X justification. Furthermore, spaces preceding the first word in the output line or preceding the
'X first word following a tab are not subject to justification. If there are no spaces subject to
'X justification or if the line is too long, then no justification ts performed and no error message Is
'l produced.

line • cluster Is create, add_word, add_space, add_tab, length, empty, justify, output

tole.en '"' varlantlspace: Int,
tab: Int,
word: word]

at • array(tolc.enl
rep - recorcllength: Int.

stuff: at]

max_tab_width • 8

'I Create an empty line.

create • proc O returns < cvt>
return< repS{ length: 0,

'l the int is the width of the space
'l the int is the width of the tab

I the current length of the line
I the contents of the line
I no two adjacent tokens wlU both be spaces

I maximum chan per tab

Shlf f: atSnew<m
end create

'I Add a word at the end of the line.

add_word • proc <I: cvt. w: word>
atSadd h(I.stuff, tokenSmake_word(w))
I.length :• I.length + wordSwidth<w>
end add_word

'I Add a space at the end of the line, combining it with an existing trailing space, if any.

add_space • proc <I: cvt>
I.length :• I.length + 1
tagcase atStop<l.stuff>

tag space <width: Int>: tokenSchange_space<atStop<l.stuff), width + I>
re tum

others:
end except when bounds: end I Handle empty array case.

at$addh<l.stuff, tokenSmake_spacem>
end add_space

ISO Text Formatter

'l Add a tab at the end of the line.

add_tab • proc <I: cvt>
width: Int :• max_tab_width - <I.length 11 max_tab_width>
I.length :• I.length + width ·
at$add h<l.stuf f, tokenSmake_tab(width»
end add_tab

'l Return the current length of the line.

length • proc <I: cvt> returns <Int>
return< I.length>
end length

'l Return true if the line is of length zero.

empty • proc <I: cvt> returns (booO
return<l.length • O>
end empty

§IV.2

'l Justify the line, if possible, so that it's length is equal to LEN. Before justification, any trailing
'l space is removed. If the line length at that point is greater or equal to the desired length, then
'l no action is taken. Otherwise, the set of justifiable spaces is found, as described above. If there
'l are no justifiable spaces, then no further action is taken. Otherwise, the justifiable spaces are
'l enlarged, as evenly as possible, to make the line length the desired length. Enlarging is
'l performed either from the right or the left, depending on R2L

justify • proc. <I: cvt, len: Int, r21: bool>
tagcase atStop<l.stuff)

tag space <width: Int>: atSremh<l.stuff)
I.length :• I.length - width

others:
end except when bounds: end 'l Handle empty array case.

If I.length >• len then return end
diff: Int :• Jen - I.length
first: Int :• f indJirst_justifiable_space<D

except when none: return end
enlargeJpaces<I, first, diff, r2D
end justify

§IV.2 Text Formatter

" Output the line and reset it.

output • proc <I: cv\. outstream: stream>
fort: token In atSelements<l.stuff) do

tagcaset .
tag word <w: word>: wordSoutput<w, outstream>
tag space, tab <width: Int>: streamSputspace<outstream, width>
end

end
I.length :• 0
atStrim<l.stuff, I, O>
end output

" Internal routines.

151

" Find the first justifiable space. This space is the first space after the first word after the last
'l tab in the line. Return the index of the space in the array. Signal NONE if there are no
i justifiable spaces. Although no two adjacent tokens will both be words Cas lines are currently
" used>, no such assumption is made here.

find_f irst_justif iable_space • proc Cl: rep> retums Ont> signals (none>
a: at :• I.stuff
If at$empty<a> then signal none end
lo: Int :• atSlow<a>
hi: Int :• atShigh<a>
i: Int:• hi
while i > lo cand ""tokenSls_tab<aCiJ> do

i :• I - I
end

'l find last tab in the line Cif any>

while I <• hi cand,tokenSis_word<aCil> do 'l find first word after it Cor first in line>
i :• I + I
end

while i <• hi cand,tokenSis_space<aCil> do 'l find first space after that
i :• i + I
end

If i > hi then signal none end
return<i>
end f indJirst_justif iable_space

152 Text Formatter §IV.2

'¥ Enlarge the spaces in the array whose indexes are at least FIRST. Add a total of DIFF extra
'¥ character widths of space. Add spaces working from the right or the left. depending on R2L.

enlarge_spaces • proc <I: rep, first, diff: Int, r21: bool>
nspaces, last: Int := c~nt_spaces<I, first>
If nspaces • 0 then return end
by: Int:• 1
If r21

then by:• -1
first, last :• last, first

end
neach: Int :c diff I nspaces i Amount to increase each space.
nextra: int :• diff // nspaces i Leftovers to be distributed.
for i: Int In lntSfrom_to_by<first, last, by> do

tagcase l.stuf f[i]
tag space (width: Int>: width :• width + neach

If nextra > 0

others:
end

end
I.length :• I.length + diff
end enlarge_spaces

then width :• width + I
nextra :• nextra - 1

end
tokenSchange_spaceU.stuffUl, width>

'l . Return a count of the number of spaces in the line whose indexes in the array are at least IDX,
· 'l and return the index of the last space counted.

count_spaces • proc <I: rep, idx: Int> returns <Int, Int>
count: Int :• 0

end line

for i: Int In lntSf rom_to<idx, atShighCl.stuff)) do
tagcase 1.stuffCiJ

t•g spac~ count :• count + 1
idx :• i

others:
encl

end
retum<count, idx>
end count_spaces

§JV.2 Text Formatter 153

'l A word is an item of text It may be output to a stream. It has a width, which Is the number of
'l character positions that are taken up when the word is printed.

word • cluster Is scan, width, output

rep• string

'l Construct a word whose first character is C and whose remaining characters are to be removed
'I from the instream.

scan - proc Cc: char, instream: stream> returns <cvt>
s: string :• strlngSc2s<c>
s :• s II streamSgets<instream, • \t\ni

except when end_of Jile: end
return<s>
end scan

'I Return the width of the word.

width - proc <w: cvt> returns (Int)

return< strlngSsize< w))
end width

'I Output the word.

output • proc < w: cvt, outstream: stream>
streamSputs<outstream, w>
end output

end word

151 Text Substitution Program §IV.3

IV .a. Text Substitution Program

The following <rather complex> program performs textual substitutions of one set of strings

for another throughout a file. It can. be useful in expanding abbreviations, renaming variables,

correcting misspellings, etc.

Substitutions are specified by a list of rules read from a file. Each rule consists of a

left-hand-side <the string to be replaced> and a right-hand-side (the string to replace with),

separated by a '>' character. Each rule is terminated by a newline character. For example, to

substitute "BEGIN" for "begin" and "END" for "end", the rules would be:

begin> BEGIN
end>END

All substitutions are done simultaneously, so for example it is possible to substitute ·a· for "b•

and "b" for "a". Substitution is not performed on the results of a substitution, only on the original

text. When performing substitutions, the rule with the longest left-hand-side always takes

precedence. Thus, given the two rules:

abC>X
a>y

an Input of "abcab" would ~ transformed to "xyb".

Within a rule, characters can be represented with the same escape sequences allowed in string

literals. For example, the following rule replaces each newline by two newlines:

\n>\n\n

In addition, the escape sequence"\>" can be used to represent the character•>•.

The program asks for the name of a rule file, and then loops asking for pairs of input and

output file names to process using the given rules. If no input file is given, a new rule file ls

·requested. If no rule file is given, the program terminates. If no output file is given, a new input

f lie is requested.

The program is Implemented using a pushdown transducer: a pushdown automaton extended

to produce output.

§fV.3 Text Substitution Program I~

Fig. 9. Module Dependency Diagram

substitute

get_stream build_pdt run_pdt

getJule_pan

allJUffixJtates

stream state

file_name strip

Note: boxes with a double line at the top indicate clusters.

156 Text Substitution Program §JV.3

" Ask for a rule file and build a pushdown transducer for It, and then loop asking for pairs or
'.C Input and output files and processing them using that pushdown transducer. When no Input
'.C file is given, ask for a new rule file. When no rule file ls given, terminate. When no output
" file is given, ask for a new Input file.

substitute • proc 0
tyo: stream :• streamSprlmary_outputO
whlle true do

rst: stream :• get_stream<·rule file: ·, ·readi
except when refused: retum end

m: pdt :• build_pdt<rst>
except when illegal <line: Int, why: string):

streamSclose< rst>

end
streamSclose<rst>
whlle true do

streamSputl<tyo, lntSunparse<line> I •:\t• I why>
continue

inst: stream :• getJtream<·input file: •• ·readi
except when refused: bre.ak end

outst: stream:• getJtream<•output file:•, •wrltei
except when refused: streamSclose<inst>

COfttlllue
end

run_pdt<inst, outst, m>
streamScloseCoutst>
strearnScloseUnst>

end
encl substitute

§IV.3 Text Substitution Program 157

'X Read in a file_name and open the file in the given mode. Signal refused if no file_name Is
'X given.

get_stream • proc <prompt, mode: string> returns <stream> slgnels (refused>
tyi: stream :• streamSprimaryJnputO
tyo: stream:• streamSprimary_outputO
tyUnput_buff ered :• true
while true do

streamSputs<tyo, prompt>
fs: string :• streamSgetl<tyi>
If strlngSempty<fs>

then signal refused end
ret~rn<streamSopen<file_nameSparse<fs>, mode))

except when badJormat: streamSputl<tyo, "bad format file namei
when not.possible Cs: string): streamSputl<tyo, s>
end

end except when end..,.of Jile: slgnal refused end
end get_stream

'X Read and parse the rules from the given stream. Construct and return a pushdown transducer
I corresponding to those rules.

build~t • proc <st: stream> returns <pdt> signals Ullegal<lnt. string»
rule .. structCleft, right: string]
rulelist • array(ruleJ
rules: rulelist :• rulelistSnewO
line: Int :• I
whlle true do

while streamSpeekc<st> • '\n' do
streamSgetc<st>
line :• line + I
end except when end_of Jile: return<pdtScreate<rules» end

left: string :• getJule_part<st, •>\n">
If strtngSempty<left)

then signal illegal<line, ·missing left side of rule") end
If streamSempty<st> cor streamSgetc<st> '>'

then signal i11egal<line, ·missing right side of rule") end
right: string :• getJule_part<st, \n")
rulelistSaddh<rules, ruleS<left: left, right: right})
end except when Illegal <why: string>: slgnal illegal<line, why> end

end build_pdt

ISS Text Substitution Program §IV.3

'I Parses a rule part up to but not including the given tmninators. Accepts the regular escape
'I sequences, plus "\ > • to represent •>•.

getJUle_part • proc <st: stream, terms: string) returns (string) slgnals <Hlepl(strlng))
terms :• strlngSappend~tmns, '\ \ ')
part: string :• -
white true do

begin
part :• part n streamSgets<st, tmns>
If streamSpttkdstl N• '\ \'

then return<part> end
end except when end_of Jile: returnCpart> end
c: char :• streamSgetdst>
x: Int :• strtngSindexdstreamSpeekdst>, "'\ "\ \>ntpbrv.,
If x > 0

then streamSgetdst>
c :• "'\ "\ \>\n\t\p\b\r\v1xl

•I•• sum: Int :• 0
for i: Int In lntSf rom_ton. 3> do

c :• streamSgetdst>
lfc<'O' cor t>'1'

then exit illegal_char end
sum :• sum • 8 + chatSdi(d - charSc2t<'O'>
encl

c :• charSi2c<suml
end

part:• atrlngSappend(part, d
end

except when end_of' Jile, illega1_char: atgul tllegan.d escape sequencei
end getJUle..pan

S Perform all substitutions on a file.

run_pdt • proc Unst. outst: stream. m: pelt>
whle true do

pdtSrnove<m. stramSgetc<tnst>>
except when output <s: atrlng): streamSputs(outst. s> end

end except wllen enct_or Jlle: streamSpub(W. pdtl1eadm)) eacl
end run.pit · ·

§IV.3 Text Substitution Program IS9

% A pushdown transducer is a collection of states connected by transitions. A transition can also
"' connect a state to an output condition, with the initial state as the implicit next state. A
% transition is labeled with both an input character and a set of lookahead characters; the
% transition is to be fallowed if the current input character matches and the current lookahead
% character is in the lookahead set. The basic operation of the transducer is move, which moves
"' according to the current input character <at the top of the pushdown list>, and the current
% lookahead character <given as an argument>. Output is produced by signalling with a string
% result.

pdt - cluster Is create, move, reset

rep '"' recorcf first: state,
buffer: buf,

current: state)

rule • structCleft, right: string)
rulelist • array{rulel
buf • array{charl

% initial state
i path from initial state to current state
% plus next input char
I current state

% Two phase construction. First construct all states and transitions needed to follow any single
'X rule from the initial state to its output condition. Then fill in missing cross-transitions for rules
'X that interact with each other, in <approximately> the following manner. For each substring of a
'X left-hand side of a rule <a path from some state 53 to some state 52> that is also a prefix of a
% left-hand side of a rule <a path from the initial state to some .state SI>, add all transitions out of
% Sl <not conflicting with existing transitions out of 52> as transitions out of 52.

create .. proc <rules: rulelist> returns <cvt> signals <illegal<strlng))
first: state :• state$create0
for r: rule In rulelistSelements<rules> do

add_rule<f irst, r>
end resignal illega I

for path: string, s2: state In allJtates(f irst> do
for sl: state In all_suff ix_states<path, first> do

replicate<sl, s2>
end

end
return<repS{first: first, buffer: bufSnewO, current: first})
end create

160 Text Substitution Program §JV.!

I Make a move with the given char as the lookahead input. If a rule is recognized <an output
I condition is reached>, the left side of the rule is discarded from the end or the buffered input,
I and any remaining input is concatenated with the right side of the rule and returned for outpuL
I If no rule can match the current buffered input, the entire buffered input is returned for
I output.

move • proc <m: cvt, peek: char> signals (output<strtng)>
m.current :• statdmove<m.current, bufStop<m.buffer>, peel>

except when output (size: Int, out: string):
bufStrim<m.buffer, I, bufSsize<m.buffer) - size>
out :• resetJ<m) n out
bufSaddh<m.buffer, peek>
signal output<out>

when no_match:
out: string :• resetl<m>
bufSaddh(m.buffer, peel>
signal output<out>

when bounds:
end

bufSaddh<m.buffer,.peet>
end move

1: Force input termination. Returns any final output. Restores the pelt to its Initial state.

reset • proc < m: cvt> returns <string>
extra: string :• -
m.current :• statdmovel<m.currmt, bufStop<m.buff er»

except when output <size: Int, out: string):
bufStrim<m.buff er, I, bufSsize<m.buffer) - uze>
extn :•out

when RDJnatch, bounds: ...
return(resetl<m> I extra>
end reset

s Internal routine.

1: Return current buffered input. Reset current state to Initial state.

resetl • proc <m: rep> retuma <•trtnt>
s: string :• atrtngSac2s<m.buf fer>
bufStrlm<m.buff er. I, Gt
m.current :• m.ftnl
retwllls>
elMlraetl

.... pelt

§JV.3 Text Substitution Program 161

'X Add a new rule. Follow existing path through pdt as far as possible, and then add new states.
'X Just add states and transitions needed to follow the rule from the initial state to the output
'X condition, do not add cross-transitions for interacting rules.

addJule .. proc <s: state, r: rule> signals <illegaKstrlng»
rule = structCleft, right: string]
left: string := r.left
If string$empty<left)

then signal illegaWrule has empty left sidei end
size: Int :"' strfngSsize<left>
i: Int :• 1
peeks: string := ••

while i < size do
s :• stateSmove<s, leftCil, leftCi + I])
i :• I + l
end except when output h): peeks :• strlngSc2s<leftU + IJ)

when no_match:
end

while i < size do
ns: state :• stateScreate<>
stateSaddJOOve<s, leftCIJ, peeks, ns>
s :• ns
i :• i + 1

k •• pees;-
end

state$add_outputCs, leftCsizel, size, r.right>
except when illegal: signal illegal<·conflicttng rulesi end

end addJule

'X Traverse depth first left to right, yielding all path-state pairs reachable from given state. Depth
'X first traversal is used to satisfy the requirement that the rule with the longest left-hand side
'X takes precedence.

all_states .. lter Cs: state> yields <string, state>
for input: char, peeks: string, next: state In stateSall_moves<s> do

pre: string : .. strlngSc2s<input>
for path: string, ns: state In all_states<next> do

yleld<pre II path, ns>
end

yleld<pre, next>
end

end all_states

162 Text Substitution Program uv..s

I Given a string. follow all proper suffixes <longest first> of the string as paths from the given
I state, and yield the (inal state reached by each legal path. The mff1xes are dOM longest first to
I saUsf y the requirement that the rule with the longest Wt-hand Ude takes precedence.

allJuffixJtates • lter (path: string, fi.rst: state> ytelcla <state>
size: Int :• strlngSsize<pathJ
for i: Int In tntSfrom_to<2, size> do

s: state :• first
J: Int:• i
whHe j < size do

s :• stateSmove(s, pathCjl, pathCj + m
j:•j+l
end except others: continue encl

s :• stateSmovel<s, pathljl>
except others: continue end

ytefd(s)

end
end aH_suff ix_states

I For each input char causing a transition out of SI but not causing a transition aut of S2. add a
I transition out of S2.

replicate • proc Csl, s2: state>
for input: char, peeks: string, s: state in statdaD..moves<sD do

stateSmovel<s2, input>
except when output Ce): contlnlle

whe• llO,Jnltch:
end

stateSaddJOOve<s2, input. peeks. s>
except others: end

end
for input: ch•, size: Int. out: string In staldal_autpull(sl) do

stateSadd_autput<s2. input. size. out>
except others: end

encl replicate

§IV.3 Text Substitution Program 169

'X A state is a collection of arcs, each labeled with the input character required to take the
'X transition. An arc either points to a new state, or indicates an output condition <with the initial
'X state as the implicit new state>. For arcs to new states, a list of acceptable lookahead characters is
'X also present, with an empty list indicating "all others". An output condition implicitly carries an
'X "all others" lookahead list. There are operations to add new transitions, iterate over the
" transitions, and move to a new state given the current input and lookahead.

state '"' cluster Is create, all_moves, add_move, all_outputs, add_output, move, movel

rep • array{transl
trans = structCinput: char,

next: arc]
arc • oneofCstate: pstate,

output: output]
pstate • recorclpeeks: string,

state: state]
output • strucfsize: Int,

out: string]

I Create a new state with no transitions.

create • proc 0 returns <cvt>
return< repSnewO>
end create

" a state is a set of transitions
" a transition is a labeled arc

" an arc is to a new state
" or to an output condition
I empty lookahead means "all others"

I size of left side of rule
I right side of rule
I implicit "all others· lookahead

I Yield all transitions <input, lookaheads, next state> from the given state to new states.

all_moves • lter <s: cvt> yields <char, string, state>
for t: trans In repSelements<s> do

tagcase t.next
tag state <ps: pstate>: yleld<t.input, ps.peelts, ps.state)
tag output:
end

end
end all_moves

161 Text Substitution Program §IV.3

I Add a transition from one state to another for the given input and that subset of the given list
i of lookahead chars not present on existing transitions for the given input. The addition is
I illegal if all of the lookaheads are already accounted for by existing transitions. An empty
I lookahead list denotes "all others not specified on other transitioos for the same input•.

add_move • proc (from: cvt. input: char, peeks: string. to: state) algnala CtllegaO
rpeeks: string:• peeks
for t: trans In repSelements(from) do

If t.input • input
then tagcaae t.next

tag state <ps: pstate>: If strlngSempty<ps.peeks>
then algnal illegal
else rpeeks :• strip(rpeeks. ps.peeks>
end

tag output: If stringSempty<peeks>
then signal illegal end

end
end

end

If strlngSempty<rpeeks> cand strlngSempty<peeks>
then slgnal Illegal end

repSaddl<f rom, transS{ input: input,

end addJOOve

next: arcSmake_state<pstateS{peeks: peeks.
state: to))})

I Yield all transitions <input, size, output> from the given state to output conditions.

aft_outputs • lter <s: cvt> ylelda <char, Int. string)
for t: trans In repSelnnents<s> do

tagcaae t.next
tag state:
tag output <x: output>: ylelcllinput, x.size, x.out>
end

...... _autputs

OV.3 Text Substitution Program 165

i Add a transition from the given state to an output condition for the given input. An ·au
i others" lookahead list is implicit for this transition, so the addition is illegal if a transition for
i the given input and an "all others" lookahead list already exists.

add_output "' proc <from: cvt. input: char, size: Int, out: string) signals (illegal>
fort: trans In repSelements<rrom> do

If t.input = input
then tagcase t.next

end
end

tag state <ps: pstate>:
If Nstrlnglempty<ps.pee1ts>

then continue end
peeks: string :• ••
for x: trans In repSelements(down<ps.state» do

peeks :• strlngSappend<pee1ts, x.input>
end

ps.peeks :• peeks
tag output:

slgnal illegal
end

repSaddh<from, transSlinput: input,
next: arcSmake_output<outputS{size: size,

out: out})})
end add_output

i Return the next state for the given input and lookahead. Signal noJnatch if no transition Is
i possible. Signal output if an output condition is reached.

move = proc <s: cvt. input, peek: char> returns (state> signals <noJnatch, output<lnt, •~ring»
for t: trans In repSelements<s> do

If t.input • input
then tagcase t.next

tag state <ps: pstate>:
If strlngSempty<ps.peeks> cor strlngSindexdpeek, ps.peeks> > 0

then return<ps.state) end
tag output <x: output>:

end
end

end

signal noJTiatch
end mc>ve

signal output<x.size, x.out>

166 Text Substitution Program §IV.3

~ Return the next state for the given input with no further input available. Signal no...inatch If
~ no transition ts possible. Signal output if an output condition iS reached.

movel • proc <s: cvt. input: char> returns <state> algnata <no_inatch, outputUnt. atrlng)>
for t: trans In repSelements<s>. do

If t.input • input
then t•gcase t.next

end
end

t•g state <ps: pstate>: If atrlngSemptyCps.peels>
then re-..Cps.state) eftd

t•g output <x: output>: autput(x.size, x.out>
end

signal no_inatch
end movel

end state

I Remove chars in USING from chars in FROM.

strip • proc <from, using: string) retums <string)
for c: ch•r In atrlngSchars<using> do

i: Int :• atrlngSindndc. f Rllll)

If i > 0
then from :• •trlngSsubstr<f rom. I, I - I> I •trlntSresdfram. I + I> 9lld

•nd
retwnefrom>
end strip

SECURITY CLASSIFICATION OF THIS PAGE (When D•I• Enl•r•d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

fT. REPORT NUMBER 2. GOVT ACCESSION NO J. RECIPIENT'S CATALOG NUMBER

MIT/I.CS/I'R-225
4. TITLE (Md Sublllle) 5. TYPE OF REPORT c'l PERIOD COVERED

cw Reference Manual Interim
&. PERFORMING ORG. REPORT NUMBER

MIT~-225
7. AUTHOR(•) 8. CONTRACT OR GRANT NUMBER(•)

N00014-75-C-0661
B.Liskov, R.Atkinson, T.Blocm, E.Moss, c. Schaffer1 .. , M:S74-21892 AOl
B.Scheifler & A.Snyder

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

MIT/Laboratory for Carputer Science AREA a WORK UNIT NUMBERS

545 Technology Square
cant>ridge, MA 02139

II. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

ARPA/Departm:mt of Defense Cktober 1979
1400 Wilson Boulevard 13.1~1gntER OF PAGES

Arlington, VA 22209
14. MONITORING AGENCY NAME a ADDRESS(lf dlll•~t ,,_ Contll'Olllfll Olllc•) 15. SECURITY CLASS. (ol lhla repon)

OOR/Department of the Navy /NSF/Associate Program unclassified
Infonnation Systems Program/Director, Office of
Arlington, VA 22217 /catputing l\ctivities 15•. DECLASSIFICATION7DOWNGRADING

~' D.C. 205~
SCHEDULE

16. DISTRIBUTION STATEMENT (ol lhla Reporl)

'!his docment has been approved for public release
its distribition is unlimited .

and sale;

17. DISTRIBUTION STATEMENT (ol the aatr.ct-tered ln Bloclc 20, II dlller.ol hem R.,.on)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rev•r•• •Ide II nee•••..,. -d ld.,,tlfy by block n..,ber)

programning languages iteration abstracitoos
data abstractions cw
strong type ~ '
nOOularity
exception handling

20. ABSTRACT (Continue on rev•••• •Ide II nece••..,. Md Identify by bloclr -b•r)

'!his docmlent serves both as an introduction to CW and as a language reference
manual. Sections 1 through 4 present an overview of the language. 'lhese sections
highlight the essential features of CW, and discuss how CW differs fran other,
nore conventional, languages. Sections 5 through 13 f onn the ref erenoe manual
prqler. ~se sections·descri.be each aspect of CW in detail, and discuss the
proper use of various features. Appendices 1 through III provide concise
sumnaries of CW' s syntax, data types, and I/O facilities. Append.ix IV contains
exanple programs.

DD FORM
I JAN 73 1473 EDITION OF I NOV II IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When D•t• Enlered)

