
MIT/I.CS/TR-221

ABSTRACT MODEL SPK'.IFICATIONS FOR

DATA ABSTRACTIONS

Valdis Andris Berzins

This blank page was inserted to presenie pagination.

Abawaot Model Speoif~hPhta ~htractions

This research was supported by· the .flatiOnat Science Foundation
under grants OCR74-21892 and MCS74-21892 A01. "

MassachUfffts Institute of Technology ...
Laboratery for Computei0s:E-~, ., "d

C~rtclfe, .~~s~ij.ti: , . . ,
n21~1

- 2 -

·~~~wlllteelfl..U-S'f'or ~taI•Mstraottona

~

Yalcit;Andria l1it1IW,

Submitted to the Department of Electrical Engineering and Computer Science
on July !J, 1979 in partial fulfillmmt of the requirements

for the ~rtt of Doctor of Phtlosaphy.

Abstract

A data abf,tf~iofl.fnl'Nduces•datatype,Widtahlddtlt·~Uen. Specifications
of data abstractions are required to aUow the data to be described and used without reference to
the underlying representation. There are two main approaches to specifying data abstractions.
the abstract model approach and the axiomatic approach.

This thesis is concerned with the problems of formalizing and extending the abstract
model approach. A formally defined language for writing abstract model specificaUons is
presented. The correctness of an implementation with respect ~ an abstract model specification
ts defined, and a method for proving the correctness of implementations is proposed.

Our formulation treats data abstr~~s with operations that can dynamically create
new data objects, modify the properties of ~ktiftl· a~ objects. and raise exception conditions
whm prewnted with unusual input values.

Thesis Supervisor: Barbara ff. U.~ov
Tttte: Associate Professor of CORtituter Selene;.- ·8rtcl' 'E rtng

Keywords: apeclflcatton., abstract models, data abatractlona, data types,
errors, exceptions, side ef fee ts, lllOdlflcatlon of a hared data, verification

- 3 -

Acknowledgements

Special thanks are due to my --:~tUN-t Barbara Liskov, whose encouragement,
limit.less patience. and sound advice kept me going. My readers Carl Hewitt and Ronald Rivest
havP offered many valuable suggestions for improving the structure and presentation of this
work. Dttpak Kapur and Bob ScheiOer have participated in many arguments and discussions
which, hav.e< darih~ the jc\eas prt$ellted here. , Eliot Mau Q:t1,,a:,,y&y·,;atti'ful ,,,., in
proofrP.adirrg a draft of this work. The excellent text processing facilities provided by the MIT
La.b for Computer Science have been inv_aluab~ ~n p~od~,i~$.. tW~,9'c.ft~·, 1T~i~ research
was supported by the Nalfon'al 'Science Found~, ~er, 91f~Dff ~. ·. DCR-1<f,.21892 and
MCS1fi2f892 AOt ·

'·'

,,
;

' '~ .. ' .. ~

. ;. ;·.:.

' , ~:

-.. -

00Jft9M1'8 .

·'
,,;

l. latroclactloa •• , •.•.••••. •'{,•••. ~ .·9_-,: ••••• ···•. ··" ••••••••••• 7

2.

3.

1. 1 PreVloUS Work . .
- ·' · ·c ,- , ~~::··~·:••••••••·.·~·--··········~~~·······~;_·i"~···············~~·· .. ··•···

1.-2 flfcttttlattOrt•:for tllll W..-1 -... ·•~·· ··-··~
Assumptions and Restrlctioll• •••
Results of tit-IS Work

Mathem•tlcal Models .. .
Proof Techniques
Specification L1111gUage ••

1.3
1.4
1.4.1
1.4.2
1.4.3
1.6 Overview of Rentelnlnfl Chapters ··

Modeling DAta Behavior • •••••••••••••••••••••••

1P
12
14
15
15
18
18
17

19

2. 1 Types and Subordinate Abstractions ••••••••••••••••• ••• •••• •• ••••••• 20
2.2 Simple AbatractiOlls ••• 22
2.3 Exception Condttlorl1 • • •• • ••••••••••••••••••••••••••••••••.••••••••••••••••• ••• ••• ••• 24
2.3.1 Ter111lnatlon vs. Resumption •••.••••••• 24

2.3.2 Termtnatloll Condltlorta ··~· 25
2.3.3 Exceptlorl Algebru ································~······························ 28
2.4 Time Depencleiat Behavior ••••••••••••••••••••••••• ~ •••••••••••••••••••••••••••••• 28
2.4.1 Data Objects vs. Variables ••.••••••••••••••.•••••••••••••.•••••••••••••• -••••• 30
2.4.2 State Mac:hlnea •• 33
2.4.3 Mutatiort of Data Objects ... · •••••••••••••• 38

2.4.4 Sharing of -.italale Data ••• •• ···• 3 7
2.4.5 Creatk111 of Data Objects •••••••••••••••••••••••• .' •• ~ •••••••••••••••••••••••••• 39

Denotations for Data Abstraotlons • ••••••••••••• 43

3.1 Complete and Partial Models •• 43
3.2 Behavioral Equivalence •• 45

3.3 Reduced Moctels ·································'···································· 55
3 .. 3. 1 Reduced Static Models • ••• •••••• •••••••• ••••.••• •• • • •• 66
3.3.2 Reduced Dyna111lc Models •••••••••••••••••••••••• ,_ ••••••••••••••••••••••••••••• &9

·'·

- 5 -

4. Specification Langua.ge •••• , ~ ~ •••• , ~ • ~· • • • • • • • • • • • 85

4. 1 Components of a Specificat~ .. 66.

4.2 Defining Operations .. ··········•o;••-,•••Jl ... , t~ -. •• -... ".•••·· .;;,,,,. 70 t-· - _.. < •

4.'2.1 COndJtiOii&I EXpressiOna ···················•················· ••••••••••••••••• •• 70
4.2.2 Iota Exp~~~ ••• ~,•~····'·"··~·"-!•••M•••*-•i. , ~~~·:·12
4.3 ConstructinG Algebras ~ •.••••.•••••••••••••..••••••••••••• 73

~ .. 3.1 Booleans ··•·········~~' .•. ~ .. ··~'7'-~'~,..-.--~··~.:e~r·•·
'4 • .1.2., .. Naturattlumbers ·and Integers •• :'. •••• ~~~··r····,··.?J·~,~~~·!·~·~~!~·~·~~·'~:"
4.3.3 Enttmef'attorts· :.-. ~~~············-·················.~·;r .. •A_!_•_!~;···~~·~··
4.3-.4' Tuples· •·············•·························:··••••••••••••••••••••••••-:·~ ~·~··~,·--:•
4.3.6« Oneef·s •••• <., ••••• ~~···:-··~-~..: i~~·~~
a.3.6 Sets- .. ~ .•••••••••• : •••••••• ~ ••••• ~ ~ •••••

75
"17
77 •,

7$
aq
81

4.3.7 Sequences •••.••••••••••••••• , .. ·!•••,t,.,A••·······························~···_ .. ~.,. __ ca.a
4.3.8 "Ffxpoints •••• ~. • ••••• ; .: •••• ~ ••• ~ .~.~.~ •••• ~ •• '~\ ••.••••• ~·.·::.:;.~ ••••• ~ •• ~ ••• ~·. ~·:· •• : ~ ~. ••• 86
4.3.9 System States .. 9_~
4.4 Wtrll f~~«I ~peclfic;ations A~O'.~\,~~j..u • .,J;.: ~ •. ~ »?
4.4. 1 Type Correctness • ••• •• •• • • ••• •• 97
~.4.2

~:~"'4.4~'3

4.4.4
4.4.S

Rep~esent~, ~~!•te~~· .• , ~~\~~ .. ·~-'~•00!-n··~~ ~-
~t!)IJ'e.seftta'\toh Invariant ···············4!················.············ 88
Conpuence • • • • •• • • • • ••• •••••• ••••• ••••• ••• ••• • •• • •• •••• •• • • •• •• • 89

Ter.llllnation .:··············-.·····~······ ... •••••••••••••••••••••••••••••••••••·••••••• 100

6.

8.

Correctness of Implementation • •••••••••••••••••

5.1 Implementation "Models •••
5.2 Static Specification, Static ltnplementatton
6".2.1 Homotnorphtant Theol'em .. .
5.3 Static Specification, Dynallllc ntatlon
5.3.1 Correspoltdence Theorefft · •••
5.3 .. 2 Simple Ex....,1e
6.4 Dynamic Specification, Dynatlllc ~ ••••••••••••••••••••••
6.4. 1 Simple Ex....,,.. .. •••.•••••
6 .. 4.2 Typical fxB111PI• •••••••••••••••••• · •••
a.4.a Sophlsttcated Exampte ··

Conclusions •,• -· ..

101

102
103
103
105
1~8
109
115
119
123
128

137

6.1 Central Concepts .. 137
8.1.1 Data Objects .. 137
6.1.2 Behavior at Equivalence ••••• ••• ••••• 138
8.1.3 Simulation Ret.ations •••••• , ••• 139
8. 1.4 Proving Theorems about Oat• Abstractions •••••m•••••••••••••••••• 141
8.1.5 Com-putatlon Induction ••.••.•••••••••••••••••••••••••••••••••• ••••••••••••••••• 142

- 6 -

· 8.2 Algebraic vs. ~batract Model Sp.Ctfleatlona •••••••• ••••••••••••••••••• 143

8.2.1 Relation of the Tec_hnlquea ··········~·······~~·····~····~·~······~~,;,••·-'\···~· 144
8.2.2 Cdtlcal,Ce•,.,..11 -0•··-·•"•••······.~.~~ •••• -.,.;~;::: •• :.-••• ~ ••• ~.~.~.~ ••• ~:;~ •••• , 145 ·. <, ~ . :_. ·-
a.a Dlrecllona ,_ futtlre·Reae~ .• -••• ,.-.·.; ••••• ~ •• ~·~ ••••••••• ; •.• "·.~-···••.,•••t•9!.•• 160

~:~.-t; . ~~ -; ·~. ·; ~;;<._;;t;~4. ~-~!" '."~- ·,

Appendix I. A..namptl ... ancl ·~rletl~~ • • • • • • • • 168

1 ~ Patttat -o,eratron•••..•.•. : ..•....••• ~·-·~~····~·~·~·~~"*"••@'1••.t.•._ -~J ea
2. llbncfetertnlnlSttc Operallofta ••••••••••• ~~············••!f·~·e.p~~,..·····'•~'- r154
a. c.c....,.ncy .~ ~'. ~ ~.~~···--~··~--~··········, .. •-•··*-P"'- 19s
*· E•c9'ptlOltS ··············•···!'•!·~;.~.-,-~ .~1 ae ~ . ~····~~.-~.,

own-v.t• ~··~··~·········!·~·····~~·····• •·•·•··•·•·•·· ~&1
Appendix II.

~"3 -; ' ' .>

Basie Type Deftnltlo- .•.• ~ ~ ••. ., ~,~· ~. '58
. •• - 1 • ' • . • . ' ~

•ppeQ.dlx III. Proofs

1.:

Jr· 1 .

. '
-; ,.

·i·

~ .-

;.

'·-· ;_•

-1-

1. Introduction

Specifications play an important part in the programming process, especially in the

design and construction of large programs. It is generally accepted that large programs should

be designed as systems of loosely coupled independent modules, so that each module can be

designed and understood withou.t reference to the other modules. A precise specification of the

behavior of a module decouples the programs that use a module from the programs that

implement the module, since programs that use the module depend on the specification of the

module rather than on the implementation. The hope is that the specifications of a module will

usually be simpler and more stable than the implementation of the module, so that the use of

the specifications will make It easier to design, implement, and maintain the modules that make

up a program. Specifications are also needed for program verification.

The research reported here is primarily concerned with specifications for data

abstractions. A data abstraction consists of a set of data objects and a set of primitive

operations on those objects. The objects of a data abstraction are treated as abstract indivisible

entities, which do not have any directly accessible substructure. The objects of a data

abstraction can be manipulated only by means of the primitive operations provided by the data

abstraction.I The behavior of a data abstraction is completely characterized by the behavior of

its primitive operations, and the observable properties of the abstraction are precisely those

computable in terms of the primitive operations. Since the behavior of a data abstraction is

I. The only exception to this rule is the boolean abstraction. The host programming language
may provide statements, such as the conditional, which make the flow of control depend directly
on a boolean value. These statements are not primitive operations of the boolean abstraction,
and they cannot be defined using only the primitive operations.

-8-

independent of the way in which the associated data objects are represented in any particular

hnplemt'ntation, introducing data abstractions ts one way of decomposing a program into
,··

Independent modules [39, 40, 19, of, 291 The concept of representa_t,ion Jndependmce is made
• < ~· • • • ~- '

more precise by the definition of behavioral equivalence of data ~eb. developed in. Ch~pter 3.
- "' -":!,. -- . '--.. 0 • "- - ,, '

and il is the basis for the usual data type induction rule [531
' r ' - ' . . •. -; •• -

To specify the behavior of a d!ta abstraction, it i~ sufficient to sp.ecif'J the beha,ior .of

each operation, since the only way to interact With the ob~ _of a dat~ abstraction is by meam.

of the primitive operations. The problem of specifying _the c;tperationS of a data abstraction

differs from the problftn of specifying procedures because~Jte speciflc~ti9n of a data abttracUon

must be independent of the way the associated da~ objects are ,.,re$ftlted in ;iny particular

tmplmwntation of the abstraction. There are ~wo _ ~~ approac~ to $p«ifying data

abstractions, the abstract model approach and the axiomatic approach.

In the abstract model appr~ch, an abstract rqJ~t~c-'for the data objects is

deft~. and the operations are specified tn terms of the abstract repmet1ta.tlon. Tbe

representation Is abstract because it is constructed fl'Of1l mathematically defined domam,s. rather

than the built in data types of some programming language. The abstract. representation

should be chosen so that the operations can be defined as simply as possible. The

representation used in the implementation of a data abstraction. must often be chosen to

optimize space or time efficiency, and may be quite different from the abstract representation.

To prove the correctness of an implementation with respect to an abstract model specification. it

Is. nec~ry to define the correspondence between the rep~ used in the tmplementatlon

and the abstract representation.

In the axiornatk approach. the set of data objects is defined impltcitly, by giving a set

- 9 -

of axioms relating the primitive operations. The axioms specify the relcttionships that must

hold between the operations of a data abstraction, and any structure satisfying the axioms ts

taken to be an acceptable model for the abstraction. If the axioms are consistent, then there will

be at least one structure satisfying the axioms. It is possible for many different structures to

satisfy the same set of axioms. To establish the correctness of an implementation with respect to

an axiomatic specification, it is necessary to show that the operations of the tmplementation

satisfy the axioms. An excellent treatment of correctness proofs based on axiomatic

specifications can be found in (37].

The work reported here is concerned mainly with formalizing and extending the

abstract model specification technique. We present a formally defined language for writing

abstract model specifications. A criterion for judging the correctness of an implementation of a

data abstraction with respect to an abstract model specification ts developed, along with a

method for proving that particular implementations are correct with respect to specifications in

our specification language. Both the specification language and the proof technique apply to

situations where mutable data can be shared. Previous work on specifications has largely

avoided the Issues associated with shared mutable data. Our formulation provides an

integrated treatment of data abstractions with operations that can dynamically create new data

objects, modify existing data objects, or raise exception conditions when presented with unusual

Input values.

. - 10 -

l.t PINWlotts ·Work

Most high level pr_ogramtpi9' ~~~~~~;~~~,:A ;S,fl .or .built$ dMa •Wtradions.

Languages that support user defined data a~~acUpn$, blve,_,,,beeJ,l .4uekiped. mdudtng
. -. - . :; .- ,, -. ~- ·-' . . .

implemt"ntation structure can be c~~nged ~~- lfl«Wtl- _,., ~\the applffationl- pregrams

using the abstraction.

Surveys of specification tec~ntques fqr: $1J"', abst.,.aions ~,:.be f°'8ad. in (31) a.nd In

(281

The abstract model approach is dir~ ill ihe SeR$e t,baLthc ~ of data objects

associated with a data abstract!~ is ex.pficii.lr .c:on,r,u,qed. Ref"'°"' .tQ .. rly- work-on Jtbsttact
' j; ' ' r ' ; • '

model specifications can be found in ,l31l ,;rh.t. -er~ J>f .~viflg,·t~- cerrectne11 d ·11n

implementation of a data ab~traction With r's.pe.ct. .to a,n .. aburact ~ -5P'1Cilica.._ ._, been

treated by Hoare in [181 and the 11r~. of ,PrcrtJrig,.Jhe Q)U.,._ of prqgranu-usillg die

objects and operations of a data abstraction .has bttn trtated "' Shaw in [i7). m botlf',,-=aMS.

the specification language has been introduced if\f°""'UJ, and ~ed data. ha• ~-eHluded .
. , ' "

The problem of Spt'Cifying the behavior of data shared bJ concurre,pt prOCf$5H.has been treMed

in the conteoxt of the actor formalism by Yonezawa in (551

The abstract model approach is related to the denotational definition method for

programming languit,ges developed at Oxford by Scott and Strachey ['t9, 461 in whkh a ·

mathematical rnodei is· defined for nch of the constructs of a programming language, including

the data domains. The major· emphasis of the work at O~ford has bttn directed at issues othef

- II -

than data abstractions. A formal treatment of a language with the potential for sharing

mutable data can be found in (50), although the model makes little attempt to abstract from the

storage representation of the data. A denotational definition of CLU, a fanguage with facilities

for constructing mer defined data abstractions, can be found in [i5].

The axiomatic approach is indirect in the sense that the set of data objects associated

with a data abstraction is defined implicitly. There are several different axiomatic specification

techniques, which are distinguished by the kind of logic in which the axioms are embedded.

Axiomatizations of data abstractions in first order logic can be found in [19). A first

order logical approach has also been used in the iota system (37) for constructing and verifying

programs that use data abstractions.

A restricted form of axiomatic specification using only conditionals and equations has

come to be known as the algebraic approach [56, 10, 7, 13, 9). The name stems from a uniform

method for constructing a canonical model for axiomatizations expressed in this form. The

canonical model is a many sorted algebra which is unique up to isomorphism, and which ts

called the initial algebra. A system for verifying programs using data abstractions specified by

algebraic specifications has been developed at ISi (35, II, 36].

The problem of proving properties of programs that manipulate potentially shared

mutable list structures has been treated by Burstall in [2]. Burstall follows a hybrid approach,

by explicitly introducing a model and defining its behavior axiomatically. Proofs about

programs that manipulate pointers have been treated by Suzuki and Luck.ham (51, 32].

An approach to defining programming languages combining aspects of the direct and

indirect approaches is being d.eveloped by Schaffert [ii]. Schaffert treats shared mutable data

abstractly, and considers the problem of proving properties of programs using mutable data

- 12 -

~bstractions.

1.a Motivlations for this Work .-. - ,_ }.. ..

The original aim Or this r~rch was to\tevdQP toOb a~ 't~hnaqUes for' incrnsing
· . · \ ~·-~ I _---.,i··q ; d"'.<· ·: ~-:C-~:" -r '; '. .-.1: -~~ ,"-;; "}d :

the leveJ of c6nrtdmc~ that a formal sp«tiicatiOO 'tor a abStradtOn does tndeed capture the

behavior intended by the'<J~sign~. Wef starl~ wkh t~e'~1gebi~tc spectrta~ technique~ ~~

described by the wark of Zilles (56] and..Odttag 00
. ~.

After some prdimlnary inv~ation: lt beeame ciei'r that there were a n.umber of

1 .1' : - -- :, -:'"'· ~ !.-:~f· -'°~i~ ·;· o-·· -~r:~~- - '~-.. _ ·~ -, "
phenomena associated with" the data types actually used by programmers that could not be

. · ,_:, J ~ <I _, _ -.. j.;: :..-. . ~-: b . -· L . .. ~ ? ~1 . ~

adequately described by this specification technique as It stoOd, notably the dynamic crnUon ot
. _ _: ~- , 3 , .• -, , ·:-i«:. _ ·:o ir~:_lf_.1 ·t·. ··~;,__,;~ ! . ~

data Objects~ changes of state Of potentially shared data, and exception handHng .
. ,. . • :_ , • ; . . f , ~ -~ • I :: t_, , ~ , :·, • f. _. : "! :', ~ ~ {; ; ' ~ • • ••

lt arso appearecfto be'difTlcu1t to prOduce a welfformed algebraic specification for a
. . : ~ ~ . . . ;~. -·· .-:_.,. £ ,.. .. ~-~·-:.·~

new data abstractioo, especially if the exact behavior required was not yet completely designed.

- .:, ~-,-~ ', -- --~_:,:: -. ~ ... __ t~· .. l .. '.--;f-:;._'-~.::
Jn our experience, a typical attempt to design a data abstraction using axiomatk specifications

runs as follows. ,After analyzing the probfrm, 't~ ~ttons of· t~ data abstraction are

determined, and the inputs and outputs of ~ch operation ~n! ider.tified .. When the in.tended
, .-f ~- •

behavior Of each operatwn on a typtdl -~ of input v1tues is f~iriy '-'~11 understood, a

prelknfnary · axi0matizatiorl is constructed. th~ pr0cess of ·,,~~Ing ttie pr~liminary

axiomatization helps to pinpoint special cases and. bound~ry values for the input d0main, a,;d

the problem is analyzed further to determine approi>rtate'behavior fot the 'operation on unusual
, ,

or m formed input values. The axioms are examined in'hght or the.new design decisions and
·,,

are adjusted to conform. After a few iterations each or the axioms looks plausible when

considered in isolation. At this point the axlOniatiiatton ts examtrled for consistency and

- 13 -

completeness. often at the cost of considerable effort. Fairly often we have found such an

axiomatization to be inconsistent, and less often to be incomplete. It was disturbing to find that

plausible axiomatizations could be ill formed, and that the effort of producing a precis~

description of a seeming simple design decision could be quite large.

We also designed some data abstractions using abstract model specifications, and

found that the process was much easier. One point was that inconsistencies in the design would

usually surface immediately, because ii would not be possible to define some operation so that it

satisfied all of the informal constraints, while the usual result of trying to axiomatize an

inconsistent set of design decisions was a inconsistent axiomatization, which was often difficult

to recognize as inconsistent. Another point was that minor perturbations in the behavior of an

operation were easier to describe for an abstract model specification than for an axiomatic

specification. As long as the meaning of the abstract representation is not changed, a

modification in the definition of one operation cannot affect the other operations, since in an

abstract model each operation is defined in terms of its effect on the abstract representation. In

an axiomatic specification the meanings of the operations are defined in terms of the relations

between them, so that a change in an axiom can affect many operations.

While the above is a very subjective judgment, based on our personal experience with

a fairly small set of examples, we found that other people trying to use axiomatic specifications

in the design process had similar complaints. This motivated a more extensive Investigation of

abstract model specifications.

We found that previous work on abstract model specifications was largely Informal,

and that abstract model specifications were used without saying what the specification language

was or what the specifications meant. Since abstract model specifications appeared to have

-1.f -

advantages from the point of vinhJf design, estabtfsJ\)rig I pretlse mathematica'I formulation Of

'lM 51>'Ctftcatlon t~ arOSt' a1 a nituraf sUbp.l: ''ltd~ proeess::o; f>ursuing this g~f it

bemne app.rem thatdyrmritc ttmtori ot'data ot>jtttsta~ cM~'arici exce(iiiOO c~it'~s

. could be r~dily tncorporateit' into ihe .. tri~;' · 'Xt iffia{unkt: tictstillg wwk on ·a~at'k
:spec:tfbtfofts dkf not addms these tsmes~ ~hittr\tpc '~ :uji hi t~ cies'.gn'1 ~ programs.

. -._. , . -,,,";-· -:.c~.-.--1·'._,;-,, >-~:-: -·".. !, ~ - t~-·-·!
As a resuft, the dir«tlbn of 'tftb r'5eareh'shifte0 to ctnetapirig. and extending the abstract

modd specification techn~. aftd ~ original·p~·~i~5't:a~ as' a· wbj«t for.future

. - . - - ~ - . ' . »' -. -' i < - • ;_. • < •

M the intttests bf (feftftlng' a prOblem thaf cari be 'treated in depth In a reasonable

amount :or tfme, we hne nflcte ~; rtmid~; Oh tfle'·scoPe or·o(J;r•n~~igat~: ·;'f~

restrtdtons lire exptkttlf Stattd w~~ :r.nott'~iid itisa~~st'atr«it i~ rfttrkttOn~· arid .the

m5ons ·ror introoudrig tfmn ti~ tie'fbund In A~i~ "(' .

We have not' conskle~ed ca~·;w~ ~tabt{d~~ iS shared by concurrent processes.

~ -- ,.,~--- -· ~".',:-: 'l - -. ::; , ~··,_. :; f~:·, ::~: ~'_;-n;:r·· ~ i-_ '. • _· , .: ~ ~
so that a model of a computation as · i linear· sequence Ot opentions ts sufficient for our

purposes; We hav'e auumed 'that' each opm~ is ~minist~ s0 that ~very c~tatlon ·

produCes , a onkjue result. . ~· assumpt~s ~d to a 'samplet ' characterization of the

ot>wrvatile ~havkW or a data absttattion than -Woti1cf0ttter~ise be posslb1e:

We have adopted a model of exception handling in whkh operations are terminated

If they· raise an exception condition. This rrltnmon· alloWs the IJehaviOr ~ an operation to be

described fndependtontfy of the bthavtor oi eiception hand~I and'
1~xceptton handling

mechanisms, and·teads to a clean model ofCtata behavior.

. .. ~

- 15 -

We have assumed that each operation depends only on the properties of the data
~ " : ;,

objects passed to the operation as arguments. Operations that depend on global data or on own
- • ~ • • • - >

data (i.e., operations with internal state) are excluded by this assumption. Without such a
~ ~ •"" _.

1
"J ~·'$:__,;;,~ ~ .. "·:;J. iJ··~~~:r_ .. ~·<~-:

restriction on the operatlons,_systems must be trnted where the behavior of a data object may

be affected without applying any of the primitive operations associated with the data

abstraction, and the concept of behavioral equi~alence (see Chapter 3) must be reformulated.
, .. - { :.:.

Since the behavior of such structures is not. completely characterized by the bmavior of the

primitive operations, we do not accept them as welt formect data abstractions.

1.4 Results of this Work

We have invttstigated the structure of mathematical models of data abstractions,

developed a general framework for proving the correctness of implementations, and proposed a
. ~~<·- -i 1~. ; - t1

prot0type specificat~ language based on these results.

A specification can be viewed as a method for singling out the structures (or modeb)

be identified with the class of models consistent with the specification. This gtves us a basis for

judging whether or not two specifications in two different formalisms have the same meaning .
. ·

The set of structures consistent with a given axiomatic spectftcation Contains precisely. those
·, \ q ;,: : .. !h.'.: j;· .'

structures in which all of the axioms are true. An abstract model specification defines a

particular model exhibiting the desired behavior, and the class of all models consistent wath the

specification contains just those structures with the same externally observable behavior as the

-16 -

standard model. In this work, we have formaHy characterized the aspects of the behavior of a
... - i1l ~; 'I'\ - ;'\ .. 'CJ· -

data abstraction that are detectable by an external observer.
. ,

'_-)- -::,"" ;; . ' '} ..
We have described two classes or algebraic structum. exuption algebras and state

.-- : ::__ .. :.· - -_.,, , ,-~ l:'_c•.:, ·<::" ·!"''}j~ ~· ...,,,~ 1~ · -. - ·

machines, which can be used as models for data abstractions wtth exception conditions and with
~- ~ --~ - : ': , :

state changes. Thts worlt wiH be or interest to people wtsh to extend the axiomatic techn~
'!,_ ,'

to include exceptions and state changes, since it explores the kinds of, ~res that ",ID have to
... ~ ;~:;, ;'i ~/-· ~- -_~:~ ~ -·~- (·,

be defined axiomatically.

1.4.2 Proof Techniques

In treating a range of behavior including object creation, mutation of data. and
..... . . - ~ .- 'j ': ~ . : , - .:._/ _; ~ ~ -·),-. ,:-: - . .

exceptions, we have found it necasary to refonnulale the crtterta for the correctness _of a
-fL ~ ·-r-~ ..,;-~(_\V~f·-~ - ~; '' · 7 -

'
proposed implementation or a data abstraction, and to develop new techniques for proving the

.:;._~ .. :;-.:·: -;-=.~ !:-:....: ~--~_: -·.:,.~ '~ ;{~;, .. ; ~' -· ;i" ~--' ,

correctness of an implementation with respect to the new criteria. These techniques are or

Interest also to people who wish to verify mutable ifi¥ W.~w tJfta'jbWf~ionS iktd

respect to axiomatic sp«ifications .

. .
We have developed a specification language for defining data_ abstractions based _on

":Ji"~ ~~i ~-'.·:~';_:!i;: "''·i;; .~?t ·-·1 ,::. ;_

abstract models. This language has been given a mathematical definition that Is sufftdentlf
~ -, .. ~-:.. :L'h -t~~ • •· -

'-'

formal to support mathematical proofs or propttties or the specification, and of the corrKtnns
f ,. • > • ": • ~ • ! • • ("~ ~ "/ - • ", ' • F • •

of implementations. We have made an effort to incorporate aH or the features necessary for a
' ' -~ ;~ -~ ~ >~ :-; ; ! - - - - ' -- ' • ,

practtcal specification language, rather than to define a language desigMd to facilitate proofs of
• - ' ;<-; : ; . ' ~ ~ -~ ~ _t : ' } - : ;. : ! ; ~" ~-- : ---- -

meta-theorems about the specification language. We have intended this language to serve as a

- 17 -

prototype, which can be used as a guide for people designing practical specification languages.

The language presented here has been designed primarily to be read and written by humans,

rather than to be mechanically processed (e.g., by a program verification system). In some

applications it may be desirable to use a more restricted language, in order to facilitate

automatic theorem proving at the expense of making the specifications harder to construct.

1.5 Overview of Remaining Chapters

In Chapter 2 we explt1in the novel aspects of data behavior associated with exc~ption

conditions, dynamic alloct1tion, and mutation of potentially shared data, and describe algebraic

structures suitable for modeling that behavior.

In Chapter 3 we formally define the externally observable behavior of a data

abstraction. The meaning of a data abstraction is associated with the class of all structures

exhibiting the same externally observable behavior. The concept of a reduced model for a data

abstraction is developed and explored.

In Chapter 1 we present a specification language for constructing models, along with a

mathematical definition for the semantics of the language. Each well formed expression of the

language denotes an alg.ebraic model. The construction of the model ls explained, and the

requirements an expression must satisfy in order to be a well formed specification are

established.

In Chapter 5 we state our basic definition of the correctness of an implementation, and

develop a methodology for proving the correctness of an implementation with respect to a

standard model for the data abstraction to be implemented. The methodology is illustrated by

examples of correctness proofs. The basic definition depends on the material in Chapter 3,

- 18 -

while the ex;imples use the language developed in Chapter 4.

Chapter 6 contains our conclusmns, a comparison of the abstract model specification

technique to the algebraic technique, and indications of directions for future resl·arch.

-19-

2. ~odeli~g Data Behavior .. ,

We will ddine the behaviOr of a data abaraction by constructing a standard model

~h1bittng that behavior:·' A ~~ is' ~·fuath~~t~t st~'~,;~.i~~,.'g~nt;;p,;tatlons.for

the objects and operations of the data abstractioo: The. ~xternatly Observable behavior of a

data abStt'action consists of the results of all finfte comP~tiON ~ from the primitive

operations of th~ d~ta . abstraction and ytetding' obJem ~ --~ types.I ' An abstract model is

JC • - •• • • ' ~ - , • '.-. ~ '~ "-· ~- : -- • t ' ,

uSed to spttify 'the externany observable behavior of a data abstraction. All properties of a

model that are not externally observable are irrelevant, in the sense that they do n~ influence

whether or not a proposed implementatiOfl of a Qlta~~~1qiar11tt "'-it-::.i~ to,ttie

standard model. We will say that two mod~ are 6tlla1"orq.ll7 19uivalmt if and only if they

have the same externally observable behavior. ·~u t~o stn'..ctum ar~ behaviorally equivalent

then~ they ate models of the iame data,~bstiactiOn. · Behav~I equivalence is treated in depth
. ' ~. ;

fh Chapter 3.·

' The standard model is .intended to be a. i~P.,ic image of' the data abstraction as

- i . - • ,",: ':'.\ • " • ~ ' ' '·; t--J -, _·· j ~--~ • :

conceived by the designer: every object of the da'ta abstraction imagined by the designer should

correspond to ·a unique objed .. i,n tt,; sta~ard mc;de1. and the.,~re~dence ~hould preserve

the operations. The stanCJard ~el Or. an abStra~~' an ,~ identtfied with the structure

ctmceited by the designer; thus bridging the gap between the inaccessible pattern in the

I. Except for the boolean abstraction, the only way to interact with the objects of a data
abstraction :iJ by means or the prtm1tin operiftehs:10 that the only way to export anr
information from an abstract type is by means of the primitive operations yielding results .of
some other type. The intere5ttd· ri!adH may :wtsh t0·atrnpa~ this fdea with the· treatment of
sufficient completeness in [IO).

- 20-

dt>Signer's hl'ad and a publicly accessible mathematical strucb.~e ... ·A "wetf designed st11nda-;d

~<'I should be TtdU~td: U should n()t be ~ib~ t~ ~~"~'tl.f! ~;f[~~,•J>e._4IOCJdel.or to

coalesce two distinct objects without a,ffr,«t~g ,t~;;~t~lft1~'1''lab~.~~~~ ,~.~~ _

The concept of a reduced ~el is discussed further Jn ~ff 3. . r, ._

In this chapter we_ wi_N consider var~s -.speas qf, t!'~ ~yiqr of .a d~ta ab$lr~ct•~·

and show how they can be moc;t_eled using a,~.~ ~!~.r~, -~,Uf f~rsL~.tia __ ve ~.~~
examine the internal structure of a_ data abstratt~ ,nc1 !"F W~J! J~ .. w-,~h a_ set qf data

; - r . < - ~ - . -- i : ' - ._ - , .

abstractions can be related to tach other.

We wtn ca II a set of data objects subject to the $1~ ~·iol1:$ -~· IJr'. T~ definition
. . . :·'., ._,-..- ' ' . ·,

of a new data abstraction ~~rod.~ a~ t~ the_;f~~~.W'!.f~k~he"a.b~-~~' ':~~

operation of the abstraction involves objects of the principal type. and often also f?b~s or

other types, which we will call the subordinate t111ts ~ t~ _data ~~!~· I:or ep.mple, the
., ~~ :i:~- , .. n'~.~- :-.:_ ,--;~)?.; · ~ ~n ti '<-~--. j : -·· ~ '

set of integers is the principal type of the integer d~ta -~~ractionr and,, t.~e set pl ~ns Js ~
- ' " ' . ; . ' . - . : ';-' ;· . ~ - ... - .

subordinatl' type, because the integer abstra~ion has the ~!~tions • 'nd ,<. !.hkh map .pai~s of
' " - . - , -- ' - . . _,,'

integers into boolea R$. Every type is the principal type of_~ un~ d_ata .abstra,ttion_. knowa
- • - - - '. _ ;.:_ :~ • : -: 4, . -, '

as the dtflning abstractton of the type. The primitive oper~~ on t~ ~ject.s of a Jype are

just the operations of tts defining abstraction.

A modl'J for a data absrraction must contain Interpretations for the principal type and

operarions, and also for the subotdinate lfP'$.: .. Uft·•lftJ ppentien$-Bwelff- ot.jects of the

subordinate types as welt as of the principal type. ___ Eadt-el -~..._...,, types al a data

abstraction d b the principal type of its defining abstraction d'. Thus we are usually dealing

- 21 -

with a set of related data abstractions, and with a set or related models for those abstractions.

We will assume that systems of data abstractions are defined incrementally, where the definition

of a model for a new data abstraction explicitly introduces an interpretation for its principal

type, and where the interpretations for the subordinate types are taken from the models for the

.
defining abstractions for those types. This construction guarantees that a type is not given two

different interprerations in a single system or models. However, a bit or caution is required,

because It may not always be possible to define the data abstractions in a system in an order

such that the defining abstractions of the subordinate types of each data abstraction are defined

before the data abstraction itself. For example, suppose that the fixed point number abstraction

has an operation for converting fixed point numbers to noating p9int, and that the floating

point abstraction has an operation for converting floating point numbers to fixed point, say by

rounding. Jn such a case, floating point numbers are a subordinate type for the fixed point

number abstraction, and vice versa, so that it is not possible to define both types in an order

such that their subordinate types have been previously defined.

In order to make the idea or a hierarchically ordered set of type definitions more

precise, we define the direct subordinate and subordinate relations as follows.

Definition 1 Direct subordinate relation.
If d 1 and d 2 are data abstractions, then d 1 is a direct subordinate of d 2 if and

only if the principal type of d1 is a subordinate type or d2.

Definition 2 Subordinate relation
The subordinate rnlation is the transitive closure of the direct subordinate
relation.

We would like the subordinate relation to be a well founded partial order, but this need not

always be the case, because two data abstractions can be subordinate to each other, as in the

'' :- -.;,!

- 22-
-.. - ', .. '

above example. However, if we group together. an of the data abstractions that are mutually
.::_:;

subordinate (i.e., take the quotient with respect to the largest equivalence relation contained In

: ,._ ,:. . ' ·. ;,~ (' ~ .- ·'. -.- !'"'(. > "_ • ·iq.·- '; ". - J ;: , - -·· •

subordinate), then the sllbordtnate relation does in fact induce a partial order on the groups

(equiva lenCe' clasm).

W~ will treat each group oi mutuanJ sul»ordlnat9 data abstractions as a single

module. A model for such a module win. have several principal types. one for each data
.·o 'I ''' l '

abstractiori. Modutes ~res~ t~ the equtv~lence eta~ introduced in the previous

paragraph. The subordinate relation for modutes ts alwap a partial ordering. This ordering

is. also w~lf foonded, bec~~se the set of data abstractions in any ~I system is. finite. Since the

ordering is well founded, we can uie structural induction wtih raped to the· subordinate
.~ -.. . . :-~, .~;;, ~.- ·:::--. .-,,-:: n~~

relation on.mooules wh~ provmg'ph:.perties. of systems of da~ ·abStfactions (i.e .. to establish a

·(_.>--·- l'Y~-' ;., _; - • ' I~·~· t ~· ,.,,,,. :~~~; j:"'!t{}~~ ii.-._'~ -) ~ •, ~
property for the data abstractions in the module ... we CIR assume the property holds for aU

:·. ·~ ;,, - ~-:. :~~· :

abstractions subbrdlnate tom).

·~ - - ..._ (

It wm usually be tht' cast that each module ddlna a single data abstraction, with a

single principal type. In the following discussion we wift often tacitly assume that each model

any number of principal types per model.

2.2 Simple Abstractions

The purpose of a standard model speciUcat~ ~:$0fro~.an inwpr$ti0n wceach

type and for each operation of the data abstraction it spedfies. A well chosen standard model

should provide interpretations that are clean and simple. "the most witab~ modeling structures

depend on the kinds of behavior ·that muSt be de~ribed.' The simplest case is a data

- 23 -

abstraction without any exception conditions or any time dependent behavior, because in such a

case the types can be interpreted as fixed sets of constant values, and the operations can be

interpreted as functions on those sets. We will refer to this kind of abstraction as a simple data

abstraction. The early work on algebraic specifications for data abstractions [56, 10, 7] dealt

primarily with simple abstractions. Following their lead, we will model simple abstractions as

heterogeneous algebras [I].

A heterogeneous algebra, also known as a many sorted algebra, is a pair (P, F), where

P • { Pa I a c A } is an indexed set of phyla (also called carriers), and where
\

F == { F (3 I f3 c B } is an indexed set of operations. The index sets A and B contain the names

of the types and operations, respectively. Each phylum in P is a set of data objects. Each

operation in F is a function F {3 : P a({3, I) x ... x P a({3, n<t3)) ~ P r({j~ where n : 8 ~ N,

a : B x N ~ A, and r : B --+- A are functions such that 11(/J) ~ 0 is the number of arguments

for F fj. a(f3. k.) is the type index for the k.-th argument of F fJ• and r({J) is the type index for the

return value of F {3' and where N is the set of all natural numbers. The principal and

subordinate types of a constant data abstraction are interpreted as the phyla of the algebra, and

the operations of the data abstraction are interpreted as the operations of the algebra.

Simple data abstractions are easy to describe, but they represent a very restricted class

of abstractions, which almost never occur in practice. For example, the fixed point number

abstraction, a common and relatively simple data abstraction, fails to qualify as a constant data

abstraction on two counts. First, an attempt to divide by zero results in an exception condition.

Second, fixed point numbers have a print operation, which modifies the state of an output

stream. Exception conditions and state changes are discussed in detail below.

- 2.f -

2.3 Exception Conditions

.Many programming 1Mlguaps havtJ t1ata lbirracttOfts ·with operations that rllay signal

errors or ni~ txnl'fl•n CPJtdiUMU (We pmeriM' latter tmn)'. 'A common 'example' ts the integer

data abatrac:t1on, ,~e an atmnpr to 'fl•Pidt"by ietiJmUks ttt>a1f ~~ilcit . fn''geJetal~ an
operation should raise an exception whenner tt is catled with an arpi'nMt Olitside its natitral

domain of definition. -Sieuattdftsc.fillethlS'itfe·cptil~tOti~ 10·that ttb'tmportabt to Include

e~s in our model of data abstm:tiofts; .

2.3.1 Termination vs. Resumption

An exception causes a d.eparU1re from the ,Ol'Ml1 flQw of Control, to execute a program

frag~. mtt111<W to Nntll1;tbe'e1upt1Gnat:e:andltilir. 'lti aleS-~ thi'M:eptton ftandler

can f«OHI'. from tM excepti•,c' ~ mnp--.. mt' conttnue; and GttfttW1W it MuSt .' a,e·

aborted. There is no untvusaUy ac;ceptM med" fOI' thti proc.1!ss.

One Y~wpoint, whkh we :shall adopt, b that u operat10n may have a number of

return points. one for the normat ca~. af1d ene for 'ftdt excepric>n. We sftalf refer to this·;

viewpoint as thto termination model of' ex~ handting. Ac:tordtng kt the termination model,

ratsmg an nuptton is just a special way of terminating an operation.

An altttnattve, v~wpoiftt. wftkh is carnmont(held, ts· that an exception causes the

excq>tton handler to be invoked as a procedure, with lhe tmptkattan that the operatioo that

raised the exct"ption wtH continue after the ha~ler returns. We'wiH reftr to this viewpoint as

the resumption model of exception handling.

Both ·alternatives have been implemented. For example, in CLU an exception

- 25 -

conditions always terminates the operation that raised it, while in PL/I the operation ls resumed

(for one class of exception conditions). A detailed analysis and comparison of the termination

and resumption models can be found in [30), where it ls argued that the termination model has

a much simpler behavior than the resumption model.

2.3.2 Termination Conditions

We will assume that an operation of a data abstraction may terminate in any of a

number of termination conditions [cf. 13), one of which (the normal condition) corresponds to

the normal behavior of the operation, while the others correspond to the exception conditions

that may be raised by the operation. The effects of an operation and the number and types of

return values will usually depend on the termination condition. For motivational purposes, we

will assume that when an exception occurs, the data objects produced by the operation. if any,

are passed to the appropriate exception handler as arguments.2

A specification for a data abstraction with exceptions must therefore specify when each

exception occurs, and what the results of the operation are for each termination condition. The

definition of the host language must specify which error handler is associated with each

occurrence of an exception, and what happens after the handler terminates. The only constraint

we Impose on the host language is that whenever an operation raises an exception, the

operatipn Is terminated before the handler is invoked, arid may not be restarted.3

2. This corresponds closely to the exception mechanism ln CLU. In other languages, more
roundabout methods may have to be used for passing information to an exception handler,
such as assigning values to global variables.
3. This constraint is implicit in C.10] and [8).

- 26-

2.a.a Bxoeptlen Algeltras

Jn order to get a class of strudum suita.ble for ~~ d~ta ~bstr,cti~U 1'i.th
• ~ ~ • ! • _,. ' .. ,, ~ _, :-: ' " --- : - - - • "' - . ' ' ' • f :

exceptions, we have to extend the notion. of a_ ~.~ 'lg~ra;, lo • f)eten?gert~J
-~ , ' .· ., : - - ' - -.. , . ·. , . . - ' -

algebra as described in Cll each operation is a function whose range is some phylum of the

algebra, but a typical <¥ration of~ data abstradioif lWay ·~ ~'lf.~Jj ~'a~~1~,;Jt~ ~nd

it may return objt'cts of different types in differmt termination ~itionJr . R'}her than
~ ,, - - s ·: ··:, : -~{. - -, ; t-' - • - - '~ ; ~.

Introducing phyla with a complicated substructure, ~ .Prefer to relax th~ constra~nt .on .~~
• - - '.>;; : , , . - ~ - I , : - . : ·. : ·- , ~ ~ ·~ '_. ,;; ':""'" ;_. . .. , - . ' -- '

allowable ranges of the operations, since wt would like to maintain a simple corr~ertce
--·.,;,,.: ... - -_--: ' . . .

between the types of a data abstradion and the phfla of the mod~inJ ,stnact~rf. ~n an
- .• . - ---~ ~-:---:~t ~-: _;-~~~:~f!'.~<_,··.- -~,

e~ception. a~ebra, the range of a ,typical ~at~,1~. t~~,~~e"',,~~Y~ ~' ~ami~J ~d~.ts~-~~.~.

of which .is a cartesian product of some number of phyla (possibly zero•).
;.' - -'~-- :1_7;'~-5 ·:~-.

We will also include tt,, index sets and. the functions describing the types of th,e
.!·,~;: -· ' -~ .. '- --~ ,;_,;j.~ --~-~? -. . -. ~~ .('.

operations as explicit components of the exception afgebn, to prevm' confus~ tn .situations
• ,-.·• J • < -·~ ~ ,K .' : 0'.-'· • •, ,~,-:J • '--: •" ~ , ,<, '" -· •• i~-· '>

where we are dealing with several algebras in the same context.

Definition 3 Exceptlott aftebr• · ·
An exception alg.t>ra is a tuple <phyla : P, operatiCX:Ws: F, arglengt~.: n, argtype_: a,
t<·: t, rlength: m. ~': r, f1Pftt1mes:: 8; C;pMM': s;·~·~''r9!'pt: D), 'where
P .. {Per fa< A J is antndexed St't of phyla, a~ where.~.~ 11-'o.ltJ < B) is an

indexed' ·ser or ·operations, such itlar· e.t·ch!i ~atl6fl·· "in F is a function

F fJ: P a(fJ. I) x ... x P Q((J. n({j))-+ U ~ ~~,IJ ~; WJ\;!'~e.,J,t_~,~ .the .dtsjoipt~
union operation, and where R,,. • P r({j, 'f, I) x ... x I' r(/J, f', rll(/J, f')t n : B --+ N,

a : B x N -+ A, t : 8 -+ P(T), m : B x T -+ N, r : B x T x I -+ A are functions
such that n(/3) is the number of arguments for F fJ• a(tf~ t)· is the type··ancte>e for the ·

k-th argument of F (J• t(tJ~ is the set of. iiU ,~~ ~,may .. r~sult from

'f. The empty carteslan product is a singleton set containing the empty sequence.

- 27 -

F {J. m((j, 'T) is the n~mber Qf object5: re!urn~ by F /j .if! t~ Jefmination c~d,ition 'I', _

a~d r(tJ. 'T, k) is the type index for the--i-th return ~~lue or·Ffj. in the termination

condition T. A isthe set of typt t1anles. :J..u dte;.sad opeqtiortt111mes, Tis the set. -
of termination condition names, and D ~A contains the names of the distinguished
principal types. N is the set of natural numbers.

The cletails of this formal definition or an exception algebra will be used primarily in Chapter

clarify the meanJng of the"vaJ;iow ~mts·~--a.Jt;~Oh alt*•~ ·Let Jf·be an eneption

a.lg:~ra model for~ th~ ~egcr data abstraction. ··Theft wc~t.ve:

A. typenames - { "int", "boolean" }
~ • 1 " I " " . • "d'f' " " ~· i '!'•op~;• 1 .pus , --~tmes.), 1.erenq,. qqot--. h• 1 '

A. tcnames = { "n0rmat", "zero_divide"}
A. pt - { "int".}
A. phyla int = { 0, I, -1, 2, -2, ... }

A.phJbboo.ean - r r. F J
A. operationsptus = t (x, '1· z) I z • x + J}

Q!_1otes have been used to emph~size that t~e first f09r ~ ~tain~_ Ra.wes (strings) ,rather. than
•-' :· • • • > - -· ::

the sets they denote. Note that an algebra is a_ la~~ .t~ple~ ~nd ,that. we ~re using a d.qt
' ' ' ; - ' \ !;;.; { _,:.; ~· ~ ' " • '' ' ' '

notation similar to that used for the components of records .jll P~~CAL to refer to the

components of the tuple. If A. arglength • n, A. argtype • a, A. tc • t, A. rlength • m, and

A. rtype .. r, then:

n(quotient) • 2,
a(quotient, I) • a(quotitnt, 2) = "int",
t(quotient) .. { normal, zero_divide },
m(quotitnt, normal) • I,
m(quotient, zero_dlvide) • 0, and
r(quotitnt, normal, I) = "int".

,.-_-.:·.- -

- 28 -

In the specification language described in Chapter.•~ 'ft wtn descr~,,the tp infor~!ton for
: • • ". • " : • • • • ,- ' ' ;. - > ; ;: • ! ' .· '. .- !_- : ·:-i-; ~ :. ~ ,_- - ~ . ' . . :

an optralion in a CANPpact syntax..,._.,._.,.._....,,....,..
,_.

quotient: int x int -+ (normal : int) + (zero_divide :)

brackets, the colon, and the condition name.

The reader should note that te~ .dnl1t1Gfti.:·an1· dna objlcts are'treated ln
,- !Jd-: ~1-1~·t..\:~ ~~'hsr~~r1n } :-~~Ttf .,-.. ·;.,

different ways, and that the inputs to an opentton are always ordinary data objects~ whlch ate
• ~ - r t ! ' .

. i

never used to reprnmt exceptions. In previous work on spedf y .. data-~ ~'-'~~·"'*'" with
" ;e., :' \ ' -~t- ' i - ,; r-·' . . - . ; -.

exceptions, exceptions were modeled as distifteuished' auf!UMt ti6j«ts, whk'h were either

elements of extra phyla [IO] or distinguished subsets of the ordinary phyla (81 We. have

followed {'f3] In Introducing exphdt named t~at~· ~/tkm, ~i~taintng a disUnctfon

between t~mination conditi0ns and a'ata objects,: smce. we 'feel' that this appraach prov kl~' a

more coherMt and dfKt~fined vlew of the exceptiOns auodafed with a data abst~actkJn.

2.4 Time Dependent Behavior

Many programming languages have data abstractions with data objects,. wb~

properties may be changed. Two common examples are ~ds ip rA~C.~L, and -rrays' in

extMded LISP. Since data abstractions with time dependent properties are in fad widdy uSed,

it. is important to develop a formalism suitable for specifying their behavior.

An operation Is non-functional if it is possible to tnvoke the operation with the same

- 29 -

arguments al two different times and get two distinguishable results. A data abstraction

exhibits time dependent behavior if it has at least one non-functional operation. Data

abstractions with time dependent behavior will be modeled as state macliines. A state machine

is a special kind of exception algebra containing a distinguished phylum of .system .state

functions. The progrC'ssion of time in a computation is represented by the sequence of system

states of the state machine.5

We distinguish two kinds of time dependent behavior. If an operation changes the

properties of an existing data object, we will say that the operation mutates the data object. If a

data abstraction has no operations that mutate any data objects, then the abstraction is

immutable, and otherwise it is mutable. If every invocation of an operation returns a data object

that is distinguishable from all data objects that have been computed previously, we say that

the operation creates a new data object. If a data abstraction has no operations that create new

data objects, then the abstraction is static, and otherwise it is dynamic. It is possible for a

dynamic data abstraction to be immutable, as illustrated by the unique id abstraction described

in Chapter i.

Mutable data abstractions are usually dynamic, since the possibility of sharing data

objects goes hand in hand with the need to create new data objects. A change in the state of a

mutable data object is visible in all contexts in which the data object appears. If all of the

contexts in which a given data object is med are not known, as is often the case in a program,

then the data object cannot be mutated without risk of violating the assumptions made about

5. We are relying on our assumption that a computation is a single sequential process. The
history of a parallel computation has been described· as a partia11y ordered set of local states in
{55].

- 30-

the data object in some of the other contexts in which it may appear. A newly creat~ <;tata
_ • , ~ ,4~----i~ -~.·· ;,.•>< ;~ ·-~ ~~-~:''-"-~--~·-,"; ~·-·.;--__;. :...,_:~· ~ '~ ,;o::•~i~··-;

object is known to occur only in the context in whkh it was created, and can therefore be
: ~ ~- :·. . :! ' . ~--.; ·' ..:;. t •

mutated without risk of int~rfering with other paru of the program.

Data abstractions that are mutable or dynamic will be modeled as state machines~ since

they exhibit time dependent behavior. Data abstractions that are:.both static and immutable
• 3'f4 n~ ;{ ' ; ,_, ._..,. -,.~;,'

can be modeled as exception algebras without introducing states. The rest of this section is

concerned wirh state machine models.

2.4.l Data Objeota Ys.· Varimles

In the early work on abstract data types, abstract data objects were treated as

immutable values, and all changes of state were identified with assignments of new abstract
1 ~ - .'!-t . 'i;:, • ' ' - • ".'. '·

values to program variables. This point of view is now widely held, and is often taken for
--·.·

. .
• __ ::_r_ ··,:i

granted in work on specifications for data abstractions. However, as clearly stated in Hoare's
)J.it

~ ,; .. ' --~ .. :

pioneering paper (18l this approach is not suited for describing programs that manipulat'

pointers, or mort abstractly, for describing mutab~ data abstractions that allow sharing of

mutable data objects.

The distinction between the assignmmt of new values to variables and mutation of
'·. ~

data b«omes important in cases where mutable data ts sMlrtd (several variables denote the

same data object). Consider the example from LISP illustrated in Figure I. Suppose that

initially the value of the variable xis the list (3) and the value of the variable 1 is the list (i 5).

The assignment {sttq x 7) will change the value of x to ~ the list (i 5) which is identically the
" ,

same list as the initial value of 1· This assiJfiMent has not infldenc!d the properties of the t)$l.s

(3) or (i 5), and therefore has not affected any other variables whose values happen to be the

Figure 1. Shared Mutable Lists

Initial state

After (setq >< yl

)(--->

y --->

x -+
t
i

- 31 -

3 I ni I I

4 *==l====>

I -------------

5 I n i I I

y -+-> 4 *== J ====> I 5 I n i I 1

After (rplaca >< 7)

)(-+
I
I
I -------------

y -+-> 7 *==I====> s I nil I

same lists as the original values of x or '1· If we now modify the list x by executing the

operation (rplaca x 7), we will have changed the first element of the list x to be 7. Both x and 1

continue to denote the sam.e list (the original value of "j}, but the first element of this list has

changed, so that the value of either x or "j would print out as (7 5). Whenever a data object is

modified, that change is visible in all variables that denote the data object, and in all other

data objects that refer to (or "contain") the modified object.

The classical approach of associating all changes with the variables does not work

very well in cases where mutable data Is shared. If we were to insist that list values be modeled

- 32-

as immutable sequences, and that an changes be. described by assigning new values to the

variables, then we would have a -sttuattort-where~ rfllaa operation could change the values of

arbitnrily many varjables, depending 'On how the-data was shared. By associating states, wit~
- ' .. ; ~ - '· , . . -

the data ebjttts-the~lves rathft" than with the variables. we can overcome this difficulty. since
' - -· :}' : ; ,,_

changes can·~ localized in an object centered dftcription. An example of a description or a

mutable data structure wtth shared subcomponents can be found in Section 2.i.<t.
'·.

- ' .
The treatment of potentiaHy shared mutable data has been one of the rnajo(goals ,of

~ '. - '. - : - -, ~ - -~ -:: :" ;

thts wor_k· Our IJ!P~ch is ma,sr t~ matdttc? ~ abject oriented languages such as CLU
; ,.- -:; .. ~;; - . - - ;

and· LISP, -amt- our -work is more ·or 1m applleable to languages with pointers and heap

. allocation, such as Euclid, Algol 68, and PUI. We tr~t dperations as functions that take a

system state and some data objects, and produce a new sistem state and 'some£aafa Ob~s.'·-T~
• - A

variables of tile hou ptognf'ftmtftg timguage do '* &plltitlt enter into our treatment, and we

leave a discussion of the assignment of data objects to variables to the definition of the· host

programming .language. Our treatment is direly applicable t4h-the programming 1anguage

CLU. in Wfttcb the invocation of an opmtbl Or p~tlre mily'tt.rigilhe properties1df sMie

data objects, but is gnarantt!ed: not to ctistum the us0dation·bet•te\'·•anab9's and data objects.

For host programmmg taftpaps wt.ere the tn¥0c1fttiltof a procedutt may: alter the assoc:titton

betw~ variables and data objects, ·IS in (impu!'e} LISPi EUcM. ~'lgol 68, airid· PLtJ; a~

corr"pondftlce has to:be.fMde between tM operatlofts ohhe lbgulp m<t•tfte operations (If

the abstract model for each data abstraction.

Tht're are two ways of; incorporating abstf'9dlens wtth · operatit>ns that assign to thetr

input parameters tn our framework. OM'way is totOnStcf«tht abSrraetions to be Immutable.

with operations that return vectors of values to be assigned to the output variables of the

- 33 -

procedure. Another way to model such operations is to consider the L-values (cf. 50] of the

variables to be' paTt of the datl object rather than the var~61e. ahel to treat the data abstraction

as mutable ..

The first approach is wel1 suited m cases where there I~ no sharing of mutable data.

Aliasing can in fact introduce $haring.__. the fermal:pa~ers of a 'caff-by·reference

procedure, so that special care is required in cases where the sa~ variable is pa~ i~ more
: . .; '

than one ttfgtmlmt posttk"1 [l?J.

In order to describe data objects w~ pi-opertits are sutiject to change, we will

introduce a· system state ·function~ whkh maps each· dahl ofSJ«t into its properties in the current

state. Only· the permanent properties of a data obje(t' ar~ reprtiftlted by the interpretation of a

data objett m a state machine modet, while the prOptrites' of a data object that are subJ'ct to
·change are represented by the image ofthe obJeCt uildet tht~ystem state functioR. F~r -~~

mutable data abstractions, the on1y permanent property' of data object is its identity.

2.4.2 State Ptlachines

Mutable data abstractions are modeled as state machines, which are defined formally

below. A state machine ts an exception' algebra with ~· di5tinguish~ phylum of system states.

Definition 4 State Machine
A state machin~ i~ a mple < phyla : P; operations : F, statefunctions : 1:, states : A,
a_rgl~~gth : n, argtype : a~ tc)• rle~g~h : m,, Xtype : r, JJp~ames :,.A,, <tpnames : B,
tcnames : r. statenaines : S, ss : s, pt : fj >. where P • { Pa I a c A } as an jnc:Jexed set

of phyla. and where F • l F 11-I fJ c 8 I is an in(lexed set of operations, ,such that

each operarion in F is a function
F (3 : P s ..__. (P a(fj, I) x ... x P a((:J, n(fj)) ..__. P s x U { R..,. t 1' < t({j)}).

where LI denotes the disjoint union operation, and

R,,. .. P r({3, 1', 1) x ... x P r((3, 'T, m((J, 'T))· t "' (ta I a < S }

wherl'
and

- 34-

ll - (lier I a c $ I are iAdexfd 5fts such th~t -~ch·""<•'~ t 0 . ·~·a ~te function

a~ P"-+ Au· u :.a,c P,,-th$:·ao-iUl•&,btr.-~',J ..)ufar1: lonW'qo-0 :t· E<r . 1

n : B -+ N, a : B x N -+ A, t : B -+ P(T), 111 : B x T -+ N. r : B x T x N -+ A are
functions such that n(/J) is the number or arguments for F(/ta) for any systemj~,., ;·

er) _a(~. l) is ~.he .t~~. i"d!x, for_ t~,,,l~~~-3r•f"mfff1 ,ot,,f.;p-~ ~~ ~: 1~.r an
termination ·conditions that may result from F (/.ti), ""1. 1') is the number or data

· ebjec;U MUmetl lay II~) 'trflfw•1'tf'mtna1Mit -.....r.r . ._,.; 1,' l) tS1 tfte 'typt 1
'

:dt~o~t;:~-~~ i:)~~~:;:ttZJ~l ~? ~;:::~ ;:,,;z~::, -
names, D '-A contains the names of the principal types. S %1' ~1Rf•,~~ rt;
the types that have a cormponding set of state funcUons. atKt s c (A'· S ·DJ ts the

dtsti~g,u~~'1ed P~f~.°'-~fSl~.~t~ ff,jU!fe!"-i!f.~~s.. ·,.:.: '·

T~e phylpm.or systef!l uates .f's-~ all.:~·~,--~J~ -~or. "';hic;h

r~~ele!'ts ~~ f;U.~rent '~I ~ate~ .. ~. ~Y.stem ., SJ:itt ~ .•. ts,~ -~isjojl)t . .,aten . 91,· a It, t~
. ~ - -;, - - " ,_ ' ' -;., ~ :

'~d,iy.~~al st~te, functiPllS, :each of. W,hkh .J:~~i;~M 'ME~t,,~'.of ~ .tp,ll(;Jb. ~~
- . ;. - . - - ~ :

ft: d1 -+ r1•)s f fu~i~, /: U (,df,lt<, •• ,t~Ul.r:e i; .. ~ JiL:r~,,~t wheaev,~
- ~. - ~ - .. ') ' . ~ -

x c Ur d1 It (I } and x • (i, 7_ >. j(x) • /~1>~ Informally, the elements of the domain or the

·:- --~- .- : ~: ri \ fi ·_:-~;: ~' ·! --*'i .: . '. ·- · _;_ ..
system state function are taggfd with the name of the phylum they calM from, so that the same

set can b~ used to repr~t many diff~t ehJ- wJ!~!. q~~;,,ffJr. i~t,r~, NOORg the

various components of the ~ystem, state func«on. ~ .•s t .. a~ A°''~' !Ile _d~ins Ille.I

ranges of the individual state functions, and hence are used ift the construction of the phylum

:'"-f-i:Hi~,-.:~1 st:~·;f-::; ~ -: _.·, tz.."~Cj
or system states p I' but they are not. thernselvn,,J>fl{la Of}~e U,,.J~,~C~I~~ n~ti~J t~ fact

. - ~ - " - ~ . . - ! , • . .- ' -

that none Of the operations of"rhe state ~chine ~e'indlvid~aaj' stii~iJ'·~jonJ of':t.~tyjdual -.- ; . ._,,, ' - ..

types. Individual state functionS ·.are. assoctah!d _lfft)y · .. •Ith. ti• ~le ·tj'ptl of a data

abstraction.

- 35 -

The operations of the state machine are curried,6 so that formally an operation of a

state machine is viewed as a family of operations parameterized by the current system state.

This structure is introduced because the system state is qualitatively different from the other

arguments of a typical operation, and because this structure makes corresponding notations for

state machines and exception algebras more uniform. The operations of any immutable

subordinate types are extended to take the system state as an extra argument, and to return the

unchanged system state as an additional return value (the first component of t~e tuple of return

values).

Each operation of a state machine takes the current system state as its first argument,

and when supplied with the rest of its arguments the operation produces the new system state as

its first return value. The reason for making the global state an argument to each operation of

a data abstraction, rather than just the state function of the principal type, is that the operation

may depend on or modify the state of some subordinate type. A common example of this kind

of behavior is the print operation of a data abstraction, which modifies an output stream, but

which usually does not affect•the state of any data object belonging to the principal type.

If none of the principal types of a data abstraction has an associated phylum of state

functions, then we will say that the abstraction introduces no mutabilit1. An abstraction that

introduces no mutability may still exhibit time dependent behavior, and hence require a state

machine model, if it has some operations that depend on or modify the state of some

subordinate type. or if it has some operations that take or return mutable data objects.

6. The process of abstracting from a function with n arguments to a higher order function
which takes one argument and returns a function of n-1 arguments is named after Haskell B.
Curry (3).

- 36 -

8.4.3· Motatlori of Data ·O'bjeOts

In a. state machine, ,t.he propertK:s qf' a d;ata ~,{l_)aJ dPffli ,ql},J~ ~~,ref1'·SYHOlll
~. : ' ~ ·. - . . ' ' - . - '

of each data object wtth that ®ject. sp thft, the _saP"d~Jl!l:.t ql!I 8,ve, differ• ,i:operues .. ilt

different states. The set ~ ~ata stal#s A4 ~-t~,,tJJr! Cl.,.,.,_., G{~PJ-indtvkhltl state;

function <t c l:a for that type. The data state of a mutable abject is roughly analogous le lM

'-,,

A ver.y simple eJ(a •. of a. ~tabk ~'.'"~·"~ht •er ceU. . Atl. ~

cen ts a. unit of memorY that can $tore an ~Pleger0 ,v. ... 1 •. ~. ~fQf jntqer c•· .can be·
• ~ > ~ - ; - ··~ ' ; ' • • •

constructed by u~lng the natural?~~~ _fQr f!.....,ce1t,~ .Ute;~~ far ~ffl:tt1~

since the only observable, property of ~-~~II that is spb;ect to d,lance-M<tbe~lJ. d tl'[e integer
. ,. . ~

cunently contained in the cell. The_ syst'c:r\ ~t~ fuqqJoo. ct IRa~_,ever,y .,natw"aJ· numNr

representing a cell into the integer \hat is . the currmt ~ of,. that <:ell. Ther.e aie. three

opera~ions on inteser cells: crtaU,fttcla. and stor1'. The "Hl'.~atjon creates.a new.cell.with a

specified integer as its Initial contents. (The ~t~ of data Db~ is diSiCUssed in Section

2. 4.5.) The /etc/a operation applies the state function to the-cell to get its- torrent cetitt'nts. and·

the s.tor1 operation produces a· MW system state that dtffl'n front t.a.e old one only in mapping
" ' ~ '

the updated cell into its new contents. A language for specifying models is dt'fined in Chaptet

- 37 -

4. and a number of complete examples of models for mutable data abstractions can be found

there.

2.4.4 Sharing of Mutable Data

From the point of view of this work, the existence of sharing relationships among

immutable data objects is not externally observable, since we are concerned only with the results

of a computation, and not with the time and space requirements for performing the

computation. A specification of an immutable data abstraction can therefore be constructed

without considering potential sharing relationships. Sharing relationships among mutable data

objects are often externally observable. so that they must be described in a state machine model,

at least to the extent that they influenc~ the externally observable behavior of the abstraction.

To reflect possible sharing relationships, the set of data states is al~owed to overlap

with the phyla of a state machine, so that the data state of an object x may be or may contain

another object y tbat lies in the domain of the system state function, and therefore has a data

state of its own. This kind of modeling structure is indicated whenever the object x has a

potentially shared subcomponent y, such that the state of "J is subject to change and such that

the externally observable behavior of x depends on the state of °J·

In the general case, the behavior of a data object x may depend on an indefinitely

large set of data states, which are reachable from x by repeatedly applying the current system

state to x and to components of other data states already in the set. We will call this set the

reachability closure of the object x. For data abstractions where there ~re no eicternally

observable sharing relations, as in the integer cell example, the set of data states should be

chosen to be disjoint from the domain of the system state function, so that all of the state

- 38-

Information is. reacllable by means .of a single apPli~tion Or the system state function.

Mutable binary graphs are a classic example of' a data abstraction where sharing

relationships are important. This abstraction has, ~Ufns- ~ ~afil}g t~ ~U~ graph. for ·

creating a composite graph with given left and right subgraphs, for extracting the left and

right subgraphs ot ·a c.ite graph, for modifytng t~- ten iand ·;tght ~~~~aphs or •

c()fnpOli~ graph, and p~edkates for testing if a graph -.~'empty ~nd tf tw'o g~phs' are identical.

One way to construct a state machine inodel for bi~~ry g~ph~ Is ~ take Pbina.ry graph to ~,

the set of natura I numbers N, and abinary graph t.; be the di~;dnt union nuft u (N x N). The
. . " . : . ,. ' -~ . - ' '

data state of a graph is either nutl, indicating th•t the gnph Is emptf,
1

or it is a pair of natural

numbers representing the t!ft and right- sut>graphS. . An" :tllustration of a system state <t

containing a number of
1

overlapptng birtary graphs Is shown tn 1

Fig~~'·2·:'Note that the graph

represented by the number.i is' a subC~t··~·the graphs'·a and i and :is therefo~e shared.

Binary graphs ca~ also contain cycles, as shown 't>y griph &, ~kh Is tts own left wbgraph.

The mutation of shared data is a ph~ .that has been ~v~ed in most existing

_ . _ . • . ,~j '. . .- ·, , · X""t~ · ~

work on· specifications for data abstractions. As the example in Figure 2 indicates. it ts not

difficult ro describe shared murab~ data once we adopt a point of view c~ter~ on data ob.;«ts

Figure 2. Shared Binary Graphs

CT (8)

CTUJ
CT (2)

CT t3J
CT (4)

CT fS)

= null
= <3. '4)
= <4. 5)
= (0, 0>
= <0. 0>
e: (8, ·S>

1 2
I\ l \

I \ I
3 4

I \ I \
I I I t e e e e

\
5<;..;..+

I \ I
I I I
e +--+

- 39-

rCJther than on variables. Some qf Ule issuainYOlvtd itt tasonlng abbUt sflared mutable data

~m be discµss~· in Chapter 5.

2.o4.6 Creation of Data Objects

The principaJ type of a data abstnt,ctioo .is a ,fixakset fer bodt stattc and'dyMmlc data

operations of t~e data tib$traction .. , ;.

The ,populatum of. a.dynaQlic data ab..-,fL·i1tl $Jllem ~e er 11 the iet of an

objects of the princiP,~l type of d that exist in the ·•• :O'. The concept ef a pepulaliOn h

i:neaningless. Jpr static.: dafa ~bstra~on~ ~~ ·'WJ!t ·ffmt, tt:·~tnt 10 werk wtth total
'

yet is the special object .uAClefined. whidtis a,~,if Verf phflum:d' ttae..1ratt ma~IM.

Al~ ~tatipns of.thescate m~c""" are im~Ucid1exl;4neled-to applflto tftis.,extri·-Objftt by the

following strictness requirement:

Vi C I ~ i ~ n & x1 .. undefined ~ .f(x1, ... , Xn) • ~ndefined J

for any operation f taking n arguments. for any 11 ~ J. 'We also adopt the contfntieft 'that

<t(undef,lned) "" uqdeflneclfor every system state.a <·· l;;

· Definition 5 Population of a data abstr•ctlon.
The _population·d the"data abstr;u:tiall d itt the.system state o- JS' defined ro be' the
set { x c Pd I o-(x) ~ undefined}.

.i.-

We will assume that in the initial system state ev.ery mutable type has an empty

• 40 •

. populMion. and that ~ are ad<h!d to the papotltRii as they are· created.· We will also

assume that every data objttt must be computed (i.e., returned as' t~ nhie;br Some operation)

before tt can be used as an argument to a subsequent operation.

We would like any program we can write m terms of the primitive operations of a

mta abstraction to be guarantefd 10 raurft onty'dlta aJj«ts wttir a weft detlnN state. and we

wiU caU a data abstraction stcur~;if it hu this propertr.

Data abstractions with;apenttDnrtftat exptielfty destroy'data objects can .be modeled

rttadily in our framework, by having the operation change t~·mfi'of ·the data object it' is to

destroy bad to the originaf. value undetfMd; thus removing it from the current population.

Data abstractions witb operations that explicitly desttOy·c:tita objfm·cannot•be"settil'e, because a

computation . that creates an object, dtst1oys·1t, -and then ippves •nf flirt~ apen\iOh to It: wiU

produc~ Mftdeffned as. a ·;vafue, The ptulJtMI ohledtltng'_,.en it ts ~fe fo. dj>lfcitly d~stroy a

given data object must thus be addrmm·'•netf for eattt',rdgra'ni"'thaf uies Objects of an

isumire'.data·abstraclien. This is known as fllf da1tjlinf'ref~~·prot>tem, and it il generally

acknowledged to be difficult.

We will concern ourselves mostly with secure data abstractions. The population of a

secure data abstraction grows monotonically, and the reachability closure of any object in the

population of a secure data abstraction Will RY.ercontaih tbedata abjeCt undefined.

Informally, we will say that a modet is rtdUtftl if U does not ccntain -any unneettssary

data objects. (A more carl'ful definition of a reduced model can be foond tn Section 3.3.) The

standard model of a data abstraction should ~ redam.t-, siftt'e this generally .ft-ads to a cleaner

SpE'cification. In the context of a state machine model, this means that an operarion should

extend the population only when it creates a ·new" abstract object. An abstract object is "new"

- 41 -

if it is distinguishable from every object in the old population by means of some finite sequence

of operations. In practice the required sequence of operations is often very easy to find, since

many dynamic data abstractions provide an equal operation which can be used to test if two

abstract objects are identical.

A very simple example of a dynamic data abstraction is the unique id abstraction.

which has only two operations, create and equal. The create operation creates new unique ids; a

newly created unique id is unique because it is guaranteed to be distinct from all previously

created unique ids. The only way to create a unique id is by means of the create operation.

The equpl operation is provided as a means of comparing unique ids, and it is guaranteed to

distinguish a new_ly created unique id from any previously existing unique id. Unique ids are

immutable (so that they cannot be forged or tampered with - one application for unique ids ls

in implementing capability based data protection schemes).

This example illustrates that there is a state change associated with the creation of a

new data object, as reflected by the increased size of the population, even though the properties

of all previously existing objects may be unchanged. Note that the create operation js not a

function of Its arguments unless the state is explicitly included as an argument to the operation,

because it will return different unique ids in different states, and it will never return the same

one twice.

Another example of a dynamic data abstraction is the impure list abstraction (as found

in LISP), with the operations conJ, car, cdr, atom, equal, eq, rplaca, and rplacd. Each time it is

called, the conJ operation constructs a new list, which is distinguishable from any previ?usly

existing list by means of the eq operation. The impure list abstraction is also mutable, because

the rplaca and rplacd operations can be used to modify the contents of existing lists. These

- 42 -

operations can also be used to distinguish a newly created list from a previously existin~ Hst

. '

wtth thtt same contmts, by modifying one of thtt lists and looking to see if the other ts changed
- - ,.

p·-. .
also. If the lists are dblinct, then one will be changed and the other will not be. Thus the

,- ' ~ ! ~

impure Hst abstraction would be dynamic even without the If operation. In the general case,
- ~ ; .i - . '

two abstract objttts are identical only If they have the same observable properties in the current
,!· '' !

state, and if they are guaranteed to have the same properties in aH sub~uent states.
I ;:- - ' .,,,: • •

Consider a restricted kind of ltst, whkh has the same operations as the impure lists of . .

the previous example. exCttpt for tq, rfHaca, and rfllacd. This list abstraction ts immutable, and

also static, because there is no way to distinguish the list returned ~y one invocation of c01ts
'-,;::.! .--

from th.at returned by a later Invocation with the same arguments. This example demonstrates . . ~ .

that whether or not a given operation returns a new abstract data object depends on the other
4 'i -

operations of the ab~traction. It may require a bit of thought to decide if a given data
~ j - ,,. ~: ~ ~ ' .

abstraction is in fact dynamic, and hence requires a state machine modet or if Jt is static and
j • - . . ~

immutable. and hence should be specified by an exceptiOn algebra model.

- 43 -

3. Denotations for Data Abstractions

The meaning (or denotation) of a data abstraction is the class of all models of the data

abstraction. In the axiomatic approach to specifying data abstractions, this class is taken to be

the class of all models satisfying a given set of axioms. In the abstract model approach, the

class of all models of a data abstraction is taken to be the set of all models with the same

observable behavior as a given model, which is explicitly constructed.

In this work, we will assume that a model for a data abstraction is an exception

algebra. We will say that a model is dynamic if it has a distinguished phylum of system states,

and that it is static if it does not.

3.1 Complete and Partial Models

A model for a data abstraction d is complete If and only if d has interpretations for the

types and operations of d and of every data abstraction subordinate to d. The externally

observable beha v lor of d is cha racterlzed by the finite computations in terms of the operations

of d and the abstractions subordinate to d, and any such computation can be interpreted in a

complete model for d. A partial model for d may leave some of the abstractions subordinate

to d uninterpreted.

Since the identities of the objects in a model are not a priori observable, there may be

no way to compare the results of a closed computation in two different models. This problem is

resolved by insisting .on a unique standard model for the booleans, containing exactly two

boolean values, so that the results of any computation producing a boolean value can be

compared for any set of models. To reduce all comparisons of results to the problem of

comparing book-an values, it is nttessary to ;tncltldt tlae ~~t~s> of the 'subordinate

abstractions in the computations. T.hus complete ~els are: ~if~ .~ make. sure lhat evety
- . . . - ~ .- ' . . ~ - -,

computation of interest can be interpreted.
·,1 -

In practice, a system of data abstractions b described incr~f-IJJ, ~Jglvis,g a J>ii'Tt#;al
. ,. ~ .~-·-»:-~,-~ .. ·- ..

description for ~ch abstraction (or set of ;~utuaHy -·~~'~ ab5f!aft~~s) .d in the .syst"8.
i . . ~ ' . . -

The partial descriptions give a prrscription for constructing _interpretation~ for. the princi_pa,I
. -. ' . ' - ' ~ i ' • . . ; - •

type and operations of d, assuming that complete moclels for the,~~~r.~.~ti~s aubqr~~nate to d
. ' ~ . ' _; r, '~ -r: -~ ; '-)-'. w: - • _:.-_ 0; t ... ~- - _..,

are already defined. In particular, the interpretations of the, sµ~m~~~ t~ Qf d are to btl:..
• ; - • ~ • . . . ~ ~ j ,-_ "' '~c e • _.._ - , • - •

taken from the models for the defining abstractions of those .t~;.,,The ~~rtKtioll .of a

complete model ford is described more precisely below.I

Let d be a data abstraction, let di, ... ~.d~ ~\a.e·a&cr~dions auboidtnmte i~ d, and

let "'; be a complete model for di for each i in the range I ~ l :S n. 5';'~ ~. h~v~ a parti~I

description D for d, which gives the signature or d, the name of~~ pr!nci~I type of d, and

inttrpretalions for the principal type and operations of d. If D dacr~ ,~n tx~q>t_ton alget>r:a.
... '. ~ . ~ ' . ,

then a complett model m for d is constructed as follows.

Ill• phyla • D;pttytaD. pt·u (U 111,. phyta11 pt)
. . ~ ISiS11 i"

m. ops • D. ops U (U "';•ops)
ISiSn

in. arglength .. I!.• arglength u (1:S~n "'J";,ar~h}
m. argtype. m. tc. m. rlength, and m. rtype are similarly defined as disjoint unions.
"'· typenames • l>. typen•1nn• (U "'i·~nw.if) · ' · ·

lSiSn
m. opnames .. D. opnafl'K'S U(U DJi•opn.-)

· . tSt:Sn
m. tcnames • D. tcnames U (U "'I" tcnames)

. ISt:SR

I. The details of this construction are not essential for an understanding of the rest of this
work, and may be skipped on a first reading.

- 45 -

m. pt = D. pt

where LI denotes disjoint union and where U denotes ordinary set theoretic union. If D

describes a state machine, then the above relations still apply, and we have to add the following:

m. stat:functions = f D. statefunctionsv. pt l U { mi' statefunctionsmi. pt I mi is a state machine }

m. states = { D. states0 • pt l U { mi. statesmi. pt I mi is a state machine} ·

m. statenames = D. statenames U (U { mi. statenames I mi is a state machine})
m. ss = D. ss
m.·phylam. ss = { Li { O' a I a c S } I oa c }:a for each a c S }

where S = m. statenames and }; = m. statefunctions.

In the rest of this Chapter, we will limit our discussion to complete models, and we will

frequently leave out the qualifier "complete".

3.2 Behavioral Equivalence

Informally, two models are behaviorally equivalent if they have the same externally

observable behavior. In this section we develop a precise mathematical definition of an

equivalence relation that captures this informal notion. We define dosed computations, and the

interpretation of a dosed computation in a model. Two models are behaviorally equivalent if

they contain interpretations for the same types and operations, and if the value of any finite

closed computation in one model is indi$tinguishable from the value of that computation in the

other model.

Beha viora I equivalence is an important notion, because it is the basis for defining the

correctness of an implementation of a data abstraction. An implementation defines a model for

the abstraction it implements, and the implementation is correct if the model it defines js

- 16 -

behaviorally equivalt'nt to the model that specifies the abstraction.

We can meaningfully compare two f110dels, -~ if ~heJ,h~~~ inter.(!reta~s fe>r_lhe
. '· . ~ . •. -:- ·~i~·~ _• ~· i·~>~'.o>f "· ·~.-.• ·

same types and operations. TWC> models,ean be behaviorally
1
•1v.a1ent .~ty if they J•~\le :the

, - " - . ,..;_, - . ; '

same signature.

Def inltlon 6 Signature

The signature ef n exception Mgebra a ts the tuple
< arglength : a. arglength, argtype : •· argtype,
tc: a. tc, rlengah: a. rlengthi nypeot Cl•rtype. . · · .
typmames: a.\ypenames, opnames: a. QpnalM,$i "'1~tMS-: •·tcnames).

Jf two exception algebras have the same signature, then they have the same names for the
.. ,

phyla, operations, and termination conditions, and corresponding operations have the same
' '-·-~ t~ ;1 < 1 .

numbers and types of arguments, the same set of possible termination conditions, and the same

numbers and types of return values in each te~Aimdl-~~iAS.a.mltts .. ~::bbtatlon'll

convenience, we require comparable models to be indexed by the same sets, so that

corresponding types and ~a:tions have the same namrs, and we can talk about the

Interpretations of the same operation name in several different models.

In order to characterize the kinds of behavior a data abstraction may exhibit, we

defme the set of closed computations.

Definition 7. Closed COlftlHlt•tlott

A closed computation with respect to a signature S is a finite sequence of pairs C
such that
C(i] "' <.op : /, argJ : s) for each t in tM range I Si S length(G)~
where f (S. opnaml's, and s is a sequence of argument specifications such that
length(s) • S. arg"91t"<f).
s[j] • (step: n, tc: T, result: l), (the source of the fth argument to.fl
I ~ n < i, (n is the indeK of a prevmus step ef the computatiofl)
T c S. tc(C[n). op), (T is the required temlinatton condition for step n)

- 41 -

I ~ k ~ S. rlength(C[n]. op, T), (the k-th object returned by step n must exist)
and S. rtype(C[n]. op, T, k) .. S. argtype(f, j) (and it must have the right type)
for each j in the range I ~ j ~ length(s).

A dosed computation is a sequence of steps. ".'"'here each step is the application of some

operation of a data abstraction to data objects resulting from previous steps. Every

computation starts from nothing. and computes data objects as it proceeds. A dosed

computation is analogous to an uninterpreted flowchart, since the sequence of the operations is

given, but the oprration names are left uninterpreted. A step is a pair consisting of an

operation name and a sequence of argument· specifications. An argument specification is a

triple, which specifies a previous step. a required termination condition for that step, and the

index of the desired result. The index is necessary because an operation will in general return

more than one object, and we have to say which of the returned objects to use. Since the

number and types of objects resulting from an operation can be different for· different

termination conditions, an argument specification requires the step producing the argument

object to terminate in a particular termination condition, so that we can be sure that the

specified data ob JeCt is of the proper type. A closed computation can fail to have an

interpretation in a given model, if the termination conditions actually computed do not match

the required terrnination conditions in the argument specifications of the closed computation.

An example of a closed computation Cl over the list abstraction of pure LISP is shown

below.

Cl(I]"' (op: nil, args: ())
Cl[2] • (op : cons , args : ((step : I, tc: normal, result : I), (step: I, tc: normal, result : I)))
Cl[3] .. (op : cons , a rgs : ((step : I, tc : normal, result : I), (step : 2, tc : normal, result : I)))

This computation computes the value of the LISP expression "(cons nil (cons nil nil))".

- 48-

A dosed compatat~ conststs Of a fmite .. _~ce:of .mtiOns. with no cGQCliliOnals

or other control structures, and can be thought or as a: trace' of the necution of sOme program

that uses the opmtions of the ~ata abstfactions of~ m 'rintte prefixes ~r the history of

any program caR c9'arfy be ·described bj I set .. or closed, ~tion~ a~ any finit~ closed

computation can be destribed· bra program ·an jUst about my programming ta~ge. Note

rt.at a machine'for executing ckJsed compUtatioins r~el an'"unbounded amount of memory,

because ft Is antlmed thantwiffsults ofeadt step art sa¥~. ~nd-may be
0used In any number of'

succttdtng s~ps.

We want to know whether or nGt there- IS sonte" computation that yields observably

dfffttent'~tda whert iHterptftfd tri each of the tWo ~ whose behavior we are comparing.

It ts sufficient for this' purpose to· considtr only the finite cOmputa'tiOOs: given two infinite

~ if we lnaw that th8r pretms- fif length • :are (fie lame fOr enry ~atural _number n,

~. interpretatton or a computation in a given model Js the sequence of results

obtained by applying tbe Interpretations of the spedfied seqUenCe of opttations in the model to

the specified ~ rguments. Since the interpretatiOn or an -Ope.'lttOn Is ·different for -static and

dynamic ·models, wt" Wift give sq>arate definitions for the interpretation Of I closed computation

in each Und of model.

Definition 8 Interpretation of a Computation In a Stattc Model
Let M be an excq>tion algfbra model. let F • M. operations. let n • M. arglmgth. let
C be a c~ computation with respect to tM signature of .M. and let I be a
sequence. I ts the interpretation of the computatWlt. C: in the lnodel M_ if a.nd only if
aH of the foMowi"g cendittons hold: - - · ·

- 49 -

I. length(][) "' length(C),

2. For each i in the range 1 ~ i ~ length(C),
R[i] "' F o<x1 ' ... • Xn(f3)). where C[i] .. < op : fJ. args : s >.

3. For each j in the range I :S j :S n(tJ)
x1 = obj(][[kJ) {w], where s[j] .. (step: It, tc: T, result: w), and

4. tc(][[k]) "' 1".

A computation is a sequence of operation names and argument specifications, and the

interpretation of a computation in a model is the sequence of values obtained by applying the

interpretations of the specified operations in the model to data objects specified by the argument

specifications. The set of operations of a model Is indexed by a set of operation names, and the

indexing function specifies the interpretation of each operation name in the model Since an

operation may return more than one data object, the interpretation of a computation is a

sequence of tuples of data objects, injected into the component of the disjoint union

corresponding to the termination condition produced by the operation. Recall that the range of

each operation of an exception algebra is a disjoint union of a set indexed by termination

conditions. Each element of a disjoint union is a pair, containing a tag and a data object. If 1

is the result of some operation of an exception algebra, then obj(y) denotes the object without

the tag, and tc(y) denotes the tag, which is the name of a termination condition.

The interpretation of the computation Cl (shown above} in the usual model of pure

LISP is the following:

n1 [1] - (normal, (nil))
n1 [2] .. (normal, ((nil)) >
RI [3] • (normal, ((nil nil)))

The pairs stemming from the disjoint union are shown explicitly. The first component of the

- 50-

pair is the tag (termination condition), and thf' SfCOl1d component is tht' sequence of data objects
', r-; ..._;)

resulting from each operation. Since .atl of .Uir J>pn~hown U,Us exa~ t~nl'a single

value, the resulting data objects are contained In ~-Of lmgtluane.
,_}'-:

Note that the termination condition or each step must match the termination condition
•':'" ~

required by every argument spedfacation that uses the results of that step. A closed

computation may .or may not have an interpretation in a model. If an interpreta.tion exists. lt ts
- - ;t: r·•

unique, because the ~ations or a exception algebra are fUnctions, which necessarily have
./F -,

unique values. A computation may fail to have an interpretation in a given model because the

operarion specified by some step of the computation may terminate in a different condition than

the one required by some later step that uses the results of~ giv~ ~~- If several steps of a

computation make conflicting req0irements on the termination Conctition of a given step. then
.,. -·· -,j;.··

that· computation will not h~ve an interpretamn in 0117 mactel of the abstraction. If a

computation has an interpretation in a model, we wiH say that the computation is feasible tn

that model A feasible computation can involve steps with exceptionai termination conditions,

and it is possible for the termination conditiOn of the fmal step to be normal even If the

termination conditions of some intermediate steps are exceptional

The interpretation of a closed computation in a dynamic model is similar, except that

there is an t>xtra component containing the system state. RecaU that the first argument and the

first return value of every operation of a state machine is a system state.

Definition 9 Interpretation of a Computation In a DynllMlc llcHlel
Let M be a state machine, let F .. M. operations, let 11 • M. arglength. II!& C ht- a
closed computation with n~spect to the signature of M, and let I be a sequence. I is
the interpretation of the computation C in the model M if and only if all of tht>
foflowiqg conditions hokl:

- 51 -

I. length(JI) = length(C),

2. For each i in the range I ~ i ~ ~ngth(C),

lICi] = F (3(0) (x1 , ... , xn<f3»· where

C{i] = < op : {3, a rgs : s >.
cri = ;>.. x • undefjned if i =I
cri = obj(JI(i - I]} [I] if i >I

3. For each j in the range I ~ j ~ n((j)
x1 = obj(ll[k)) [w • I], where s[j] = (step : k, tc : T, result : w), and

i. tc(][[k]) "' T.

The initial state for any computation sequence is the empty state, which maps every data object

into the initial data state undefined and thus has an empty population (i.e., no data objects

have been created in the initial state}. Each step of a computation except for the first step starts

with the state produced by the previous step. The interpretation of a computation in a dynamic

model is a sequence of tuples, whose first component is a system state, and whose remaining

components are the tuples of data objects and the system states produced by the operations

specified by the closed computation. Since the first return value of an operation of a state

machine is always a system state, the w-th data object returned by an operation of the abstract

type corresponds to the (11.i.l}-st component of the sequence of values returned by the

interpretation of the operation in the state machine.

If a computation has an interpretation in a given model, then th~ value of the

computation in that model is the result of the last step of the computation.

Definition 10 Value of a computation
If the computation C has the interpretation][in the model M, then the value of C in
M is obj(ll[length(Il))) if M is a static model, and the value of C in M is
(v[2] , ... , z1[length(v)]) where v = obj(ll[length{ll)]) if M is a dynamic model.

Note that the value of a computation can be a tuple containing more than one data object. The

- 52-

final state of the interpretation of a computation in a state machine is not part of the value,

since it is not directly externally observable. · 1. ,,,_

- ·'f·

We art' now ready to define behavioral equl'laltnu .. ,

Deftnl•ion 11 Behavioral Equivalence of Modef4 .

Two models ~I, and /*(2 are~ bettaviora_": ·~·~~_if. a~ ona, ~l:f ~II ¢ ttte
following cond1tft1ns hold: · · · · ·

I. Ml and M2 have tM same signature S.

2. For any finite closed computation c· with respect to' the slgi.ature S, C has an
interpretation in Ml if and only if it has. an in~retat*"'1 tn M2.

- 1 '7-::o ; -~ .. ~~.''.~ ;<. :-•; .. : .-f'; • ~

3. For any _finite closed_ computa!~ C ~ith ~e~ t~ .t~ 1s~~tu{e .~· C has an
intttpretaffon · tn ·Mt 2nd the va1ue ot C 'iii "Mf lttt.e ~rt :~a111e· t tr and only if
C has an interprrtation in M2 and the ~toe of C in M2 Is t~ same boolean
valuer. :. · ·'·· '· · ·:.-. , .. ·· :.: :-'·'.·· · ..

Two models are ~avioratty equinlent if they have the same signatUPe, ·interpretations for the.

sa~ !ft of c~ computations, and if every compUtatiOn. restditng Jn 'I boolean value has the

Theorem 1 : Behavioral equivalence is an equivalence r~lation.

Proof : The thl'Ofem follows dqectly from the definition.
End of Proof

We intend two models to be Whaviorafty erquivalent If and C>nlf if they have the same •

extttrnally observable behavior. In practice, what' wt can 'idby _.,ve is the output of a

program, which is usually manifested as characters printed, on a_ piece of ~ptt.,9r displayed on

a terminal. Although thl"re ts a wtde variett of pertpMril devkes Cha,1 can be''tonnected _to a

computer, upable of producing a wide variety of obmvable effects, t~ can an be modttled by

a (mutablfo) output stream data abstraction suf'ftdmtty 'Wdl:for our purposes. since we are not

- 53 -

concerned with the actual physical properties of the output, but only with whether or not two

outputs are distinguishable. We model the data states of an output stream as finite sequences of

integers (which can be interpreted as character codes in most cases). We assume output streams

have an operation that returns the current state of the stream, represented as an immutable

sequence of integers. This operation models the system user, who observes and compares the

actual outputs of the system, and it need not actually be implemented. It is included because

some data abstractions have properties which can affect the printed output, but which cannot

be tested by another program.

Integer sequences are defined to be a priori distinguishable because they are used to

model physically observable outputs of the system. Note that the states of mutable data

abstractions other than output streams are not a priori observable. We will further assume that

integer sequences have an equal operation which allows us to reduce the problem of comparing

sequences of integers, representing states of output streams, to the much simpler problem of

comparing truth values.

The domain of truth values is a priori distinguishable because of our assumption that

the host programming language provides some means of altering the now of control depending

on a truth value. For example, a conditional statement that prints a different message on each

arm can be used to physically distinguish between the truth values. Because of this property of

truth values, we insist that the boolean abstraction be given the standard interpretation in ali of

the models that will enter our discussion. In the standard interpretation, there are exactly two

truth v-alues, T and F, with the operations and, or, not, implies, and tquivalenct (see Section 4.2.l

and Appendix I).

Different termination conditions are also externally observable, because we c~n

- M-

associatf!' handlers that print differmt messages with each exception. We do not have to

introduce any extra machinery to trl'at this ca~. beau~ it Is already covered by our definition
. '. ~

of the interpretation of a computation. If the final step or a computation C results in two
,,·;

dtfft>rent termination conditions in two differmt models, then by adding one more step that uses

the results of the last step or C and that recprim it to tmninate in one of the two observed

termination conditions, we will get a closed computation C' that is feasible in one model but not

in the other.

In our definition of behavioral equivalence, we have assumed that all of the aspects of

the behavior of a data abstraction can be observed by means or the operations of the
' >

abstraction and its subordinate abstractions. If every aperaUon or nery abstraction in the

system computes results that depend only on the data objects explkitly passed in as arguments

or on the data states in the rl"llchability closure of the arguments (see Section 1.3), then this

assumption is justified. An example of a system that violates this assumption is the following.

Suppost> that the abstraction NASTY has an operation count that returns a natural number

repres~ting the number of objects of type NASTY that have been created so far, and that the

only optration that creates new objects of type NASTY is the nuffary crtatt operation .. lri order

to implmlent this behavior, the atalt and count operations must share some own data. If some

other abstraction A in the system is implemented using a representation containing a object of

ty~ NASTY, then the operations of A can have effects whkh are only ob56vable by means or

the count C>pt'ration of NASTY, even though NASTY is not necessarily subordinate to A (t.e ..

A need not have any operations that operate on or return any objects of type NASTY). In

general, abstractions with state components that are associated with the type as a whole rather

than wtth any individual data obj«t cannot ~ used to represent objects of other types without.

- 55-

introducing hidden interactions of the sort described above •. Becaf.l.Se'we·want the behavmr'ohr

data abstraction to be •ndepmden,t of the re~tation·usecl 1n•any particular implen'ientation,

we exctu.d~ structures lik.r ·NASTY flom.ou~·discUfS1'Jl.,; llle·spedfiat•·latrgt•~ pttM'f1kd

in Chapter i has been designed so that abstractions violating this locality a.ssumptton canftOt· be

defined.

3.3 · Reduced Models

Data abstractions are idl'fltified with equivalence classes of models with respect t«t the

behavioral equivalence relation. In this section we will s9'ow how to construct a representative

ttlement of such an ttquivalence class, known as a rtductd mocltl, which can be used to spectfy

the behavior common to all of the members of the class. Reduded• moc:lfts •re shown ro be

unique up to isomorphism, and they are mini~Hn.- tMiS1Pse.-thaUltey <OOta,ln· rk> unnecessary

elements. Models to be used as specifications for data abstnctions should be ·redutedt Since

irrelevant components serve no useful purpose and may lead to confusion.

The concept of a reduced model has to be defiaed IMftewhzt differently for static and

for dynamic models. The two cases are discussed below.

3.3.1 Reduced Static Models

Before we can precisely define what we mean bf a r«luced model, we have to

introduce some auxiliary concepts. A reduced model should be free'ef ~extra• obj@cts that

cannot influence the externally observable behavior of the model.

. 56-

Def lntUon I 2 Reacltallle- Olljecta.
A data objl'Ct · x is rtacltllblt in a model M with a Mgllature S if and only if there is
some f ... dolfd ian{;Willt·~··rs •·ttfatl~'IUWfo'+ataeOICin M:-

O_nly. the r~haWe obfeas· m the .phyla· et·•· tMdfl.u.. ·~ ~~-~ Ol>servab~

· behavier of a tnGdel

'

We would also like a reduced model not to contain redundant copies of the satne

ob~ct, tf there is no observable property that can disttaguish bet~~~e f~'.'"~~ ~}~ve at_"

a definition for tht> external equtva1eftce relation on data objects. w have to define open

compvtattom.

Def lnltlon 13 Open Computatton for a St•tic Model

An open computation with respect to a signature S and a type a < S. typenames
isafinite~Csodt"'8t · -'·· .c •

C(i) • (op : /, args : s) for ach l in the range 2 $ t S length(C),
wltettf .(;JS • .-•ttet.·Mtd".Jtts~, .. --,.ftMl .
length(s) • S. arglent"<f),

· 4.jl~ (...,, :-•. k:'f'. r~·: t ·), wheft
l:S11<i,

if n • I then S. argtJP'V, ft e a; 1" and-l • \ .
and tf n > I then 'f c S. tc(ClnJ. op)

I i i ~ s. tlm4th(G(a}. ap. Y) ··
and S. rtype(ci11]. op. 'f', l) • S. argtype(f. fl

.for each j in the range J ~ j :S length(.!}.

An open computation is just like a closed computation, except_ that an. initial d~ta ob.Jee~ ts
,:,> " ~ ~,;,:;_--.; .. J =-~·:"-;, ~-~.--if-';"-~: .:_-

specified, which can be uSfd in any subsequent step of the computation, in addition to the data

Deftnltton 14 Interpretation of an Open C0ntput•t1on tn a Static Model
Let M be an exception algebra model, let F • M • ..-ations, let n • M.arglength, let
C be a closed computation with resp«t to the typename a and the signature of M. let
x f Pa• and lt't I be a sequence. I is the interpretation of the computation C

- 57 -

applied to the object x in the model M if and only if all of the following conditions
hold:

I. length(I) = 1ength(C)

2. 1(1] = (normal, < x > >

3. For e<tch i in the range 2 ~ i ~ length(C),
ICi] = F {3(x1 • ... • xn({3)), . where C[i] = (op : 13, args : s }, and

i. For each j in the range I ~ j ~ n(tJ)

x1 = obj(R[k]) {w]. where s[j] = (step: k, tc: 'T, result: w), and

5. tc(li[k.]) ., T.

The interpretation of an open computation is like the interpretation of a closed

computation, except that the interpret<ttion of the first step of the computation is a sequence of

length I, containing the specified initial data object x, and with a normal termination condition.

We have injected the initial data object x into the normal component of a disjoint union for

the sake of uniformity. The (tag, object) pair is shown explicitly in condition 2.

Definition 15 Value of an Open Computation In a Static Model
If C is an open computation with respect to the type a and the signature S, M is a
model with signature S, x c M. phylaa· and If I is the interpretation of C in M with

respect to a, then the value of C applied to x in M is C(x) = obj(1I[length(ll)]).

The value of an open computation is the tuple of data objects resulting from the last step of the

computation when interpreted in the given model.

Definition 16 External Equivalence of Objects In a Static Model
Let M be a model, a (M. typenames, and xi, x2 c M. phylaa. The the data objects

xi and x2 are extern<tlly equiv<tlent if and only if for every open computation C with
respect to a all of the following conditions hold:

I. C h<ts "" interpretation in M with re~pect to the d<tta object xi if and only if C
has <tn interpret<ttion in M with respect to the data object x2.

- 58 -

2. C ·has an interpretation in M with respect t~ xi and t~ value of C applied to xJ
in M is the boolean value t if and only tf C has an interpretation in M with
respect to xi and the value of C applied to x2 in M is the ..,. ~" J!~~ :L.i ;

Two objects of a given model are externally equivalent i(and Q11ly if ~ WM~~ation

applied to one of the objects yields a result that is ind,lstif'l"ilhable (ram, the result of applying

the same open computatioo to tfte other;·Object. This.means ~t the t~·,dbjects share aU

externaDy observable ~roperties. and tf;teref~ represen. th~ ,.,_' a~ract ~ even if theJ

are two distinct objects in the model The point is that the ldentlties of the d>jrcD'1~ a model

tflem observable~

Now we are ready to define rec;luced sta~~~-
• - ; ; • •• > • : ", , '

DefttdtlOft 17 Reduced Static Model
A statk model M is r~tJ,Uftd if .and only if ~ QI' the. foffowinJ ~ilions hof,d:

I. For each a c M. typenames and for each x (M. phyla0 , x ts reachable.

2. For each a c M. typenames arid. for eatlf %1, x2 < M .·phyi;.01, if xi and x2 are

exte1nal'y equivateni. thftl xi • x2.

A rrduced static model has no exfra object$, since every·ObjeCt is the resuk of some finite closed
•

computation, and hence externaHy observable, and every distinct pair of objects in the model

differs in some externally observable propmy.

Theorem 2 : Every equivalence .class of mod"1 with respect to the behavioral ,equiv~lenc~
relation contains a reduced model.

Proof : Take the reachable subset, and divide by the external ·equt'Ya~e refation. Det'ails tn
Appendix Ill.
End of Proof

. ":

- r.9 -

Theorem 3 : H two reduced models art> behaviorally equjv~lent. t~ tJwy,ar:e isomorphK.

Proof : The isomorphism maps the valqe qf,~verr,~ c<¥npU~ic.D in O{te model into the
value of the same computation in the other mocfel. Details ·Jn Appendix Ill.
End of Proof

Thus rvery constant data abstracUoo h~~~ re91.1ced mpdeJ thati~M,ffi~ UPrto ~ill~·
; '• . '·

Theorem 4 : If M is behavjoni11y equivalent to M• and M is reduced, then there is a
homomorphism from a subset of M' onto M.

Proof : The construction of theorem 2 yields a reduc~ mO<ltl '"w~M:h ~~ a hemocnorphk j~g~
of M. Compose rhat homomoi"phism with the Isomorphism guaranteed by theorem 3. Derails

in Appendix llL. . ·~ , :i::t:·
End of Proof

We c~n always fmd a homomorphism from an arbitrart static model to a ~haviorally

equivalent reduced model This result is interesti'ng because the classical way to pr~v~ the

correctness of an implementation of a data abstr~ction wtth respect to an abstract model

specification is to construct such a homoinorphi5m from the irnpiemefttatlon to the defintng

model. The theorem says that the required homomorphism' exists· for any correct static

implemen~ation model,· provided that the defining model, is reduced. While there is no

guarantee that the homomorphism is' computable or even finitely describable, the

homomorphisms corresponding to most implementations are quite tractable. As we shall see in

the next subsection, the ~orrespondlng theorem for dynamic ~els is false.

3.3.2 Reduced Dynamic Model1;,

Informally, a model is reduced if it has no unnecessary objects. We have to take a

different approach to formalizing 'this concept for dynamic models, because the existence of a

data object and the properties of a data object are not completely determined by the identity of

- 60-

the object, since they will in general depend on the systetn state~ Theorem i fails for dynamk

models for this nry msdn. . A homomorphtsn'f on~ , ~ny .· 'sorl,f.id , ~ lgebra is a. f amtly Of

mappings, ont' for each phyh.am. In a dynamic model, the elements of an.y phylum

correspondmg to the pnwctpat · tYf>e of a dynamk data' abstradiOO have no ·distinguishing

properties except for their identity. A~. of the int~~~ii~ of an ot.ljt'Ct belonging .lv
' '. . ' - ' ---- - ~

such a phylum come from the image of that object ·~nder the system state funaiori, and any

parttcutar object does not haw ~ny interesting p.ieS Ul)tH it b created (i.e., until ~
. ' ... ~ ' . - ~ - ~ ~ ; .- ' . -

operation gives the object a data state other than undefined). Depending on hpw ·an objes;t

gets created in t"ach particular computation, an object in ~he m.c>del qi,~ ~·Jo repre!mt. any or

a number of different abstract objects. ConSf'Clllmtly •. ~here. AliY be no correspond.ence be.tween
-.. . -. " - , -

t,he objects of one model and those of another which is f)oth copststep.t with the;operations and

independent of the computation history. The ca~ where tJle ~respolld~ce is. independent of
,"... -

the computation history are rare.

The rest of this sectiOft consists of a characteriµt"'" of a reduced dynamic mode~_and

an example of two ~havioralty equivalent models such t~t, one is reduced but is not a

homomorphic image of the other.

There are two requirements a dynamic model. lf!USl meet if. tt is t~,be .reduced: the

phyla must contain no unnecessary objects, and for every state, the population must contain no

unnecessary objects. If we insist that every element or ev~ phflum must be reachable, the. first

requirement is met. Reachability can ~ defined for dynamic models in a way. rntirely

analogous to the definition for static models, and presents no essential difficulty. For mQSt

dynamic models a countable infinity of data objects are reachable, and each data object has no

directly observable properties except for its identity, so that the first requirement is not very

- 61 -

interesting. The second requirement requires a fun<lamentaHy new approach •. beca~st thf're is
' ., ·. -- . - ' ' '

no way to meaningfully define the behavior of an abs~rt11ct ol>Jeft independently of the system

state.

We will assume that an operation of a data abstraction can create at most. finitely
·- ~ ~;:~ ·~;_.';~<~ ~::~ -· :-. . ,_~ <~ _> ... ~ '.--~ --.:~:.,:.:, ._ . __ ,· '

many new data objects (cf. 151. Since we require all aperations to term~nate in_ a finite a,mo,unt of
:; ' ' ~ - 2 ¥ • ' • -, A ... • ~ '

time, and since all real machines compute at a fin~e r~te, t~i~ ~su~ti~, is jt.J~UJied~~ ':-.
-;:, ·,,{"· .•;_:·:.. r •. ~]~ . . ~- ;~·,-ff.,~ .1.i'_!.- ~ · ''

consequence of this assumption is that the population of every reachable state ts finite. where a
' '. - - ~ -;:.-

state is reachable if and only if there is some finite closed computa.tion that proc:luceJ. that state.
~ -:) ~'1 ' .- 'J ' • • •

We can define reduced models for dynamic models as follows.

Definition 18 Reduced Dynamic Model
A dynamic model M is rtduced if and only .if there is no other nk»del M" such that
M' i$ bettavtor1ttr,~ui¥atent ti> ,Nf, 'WM~ Mf~line :;d6s:ea~:~Uoo" C, the .
cardinali&y-ef thf~latk>n of•fhe O~htitt ~ tiy~t 'i'f~ tfUrktft H.taller
than the cardinality of the population of the final state produced by C in M.

An example of a case where we have a redbted' dJftlMIC' model, Ml. and a

behaviorally equivalent model M2 such that there i~ no h~phism from any subset of M2

onto Ml is described below.
' ~ ~ .

Consider a version of mutable lists, which have nll as the only atom, and for which

the rpl.aca and rplacd operations.return the list thae cWH'.-WM1'athe;than:-tht Old value of

61ist - {.nil } U (N x N). In Aff, the only operation that ex.-s .me poputatton of the fist

domain is cons. The tq operation serves to ma~e the ~tJ relation on, 'objects· M the mocte1

externa.Uy observable, $Q that enry ~wty cr:eated object tulittinpisldfbl! from any· prevtouslJ

existing object, and hence M4 is red~d.

- 62-

The model M2 has Plist .. N and dust• cetlc{ntl} LI (N x N)l Jn M2, rplaca and
" ••• .,.·. 'j • • ••

': .· .

rf'lacd as welt as cons ntend the population 'cl P~. We have introduced an extra level of
·_,_, E

indirection, so that the identities of the abstract objects correspond to the identities of the cells
.. ~ r.. - t'. r4 · 1~ _ ~- ~ ~, . Y - ,,._,

that are. the data state! 'or the elements of plist' rather than to the etements of plist directly, as
. , - f- '\'·: i· 2' .._·. f ,--. ' ' . ! ,; .

would be the case for any reduced mOdel. M2 ts betla~ioraly equivalent to Ml, but M2 Is not
~-;1' :--· ,..,_:l~q:-·~: ~:~;""~;·:...,_,. .. ·~ "

reduced, because the rplaca and rfJlacd operations create fedundant list objects.
~ ~ . f~ " ,... . ; ·• - : .• ,_ ., ! > • •

,There can bt- no ~hism.from M~ to Ml ~~·tttecorrespondence between
i'

objects in M2 and objc!cts in.' Ml depends on the system state. For example. the computation

shown in Cl below

Cl(I) • <ap : nil, ar~s : () ~ :
Cl(2) •.<op: ~ons, ~-IJS ~ <~ ~ 1.-tc: nortU,I. r~ :..Q, ~w.J.:IC •;.,,.at.-resulu I))) ,,,
Cl(3) •(op: C01U, at~~ .{Sitep d,tc ~,f!IJI""" ~;»,, '-lt3 "'~~~~9l;t't1Utt: J)))

has the followtng lnterpr~tion In Ml:

lft(l) - (ct 0 • 0)

111(2) • (ct I , I)

111(3) • < ct 2 • 2)

where a cJ.O) • nU
where a ~O) • nil, and a ~I) • (0, 0) · , ~.-

where at.o>. ml. <ti.I) • < O. O >.and <r«/.2) • < O. O >
' • --f. ~' ' '; - ' • :~~

Ct evaluates the expmsian •(toaJ. all wll'f'· twice, resulting in two capid of the list (JrU);' · [ach

element of the <interpretation IU ls a patr cantaiftinr thf mulfl' 'ftlUrMd by the operation

spedfied by the correspondmg step d dle-c~Cl The mst;etement dr each pair is a

a mutable list. Note that the SJstem state' .ts. tonsldered to be result 0, and that result I ts the

first data objt'ct returned by thr operation, corrtsponding to tlie'ii!cond· n!ment or each pair.

The computation Cl has the following interpretation in M2:

JU2[1] .. ((j 0 . 0)

112(2] = ((j I I I)

][12{3] = ((j 2 I 2)

- 63 -

where a-cf..O) "' cell-0,

(j o(cell-0) "' nil

where <T~(O) = cell-0, o-1(1) • cell-I,

a-1{cell-0) = nil, o-1{ce1H) .. (0, 0)

where a-2(0) = cell-0, o-2<0 • cell-I, a-2(2) .. ceU-2

0-2(cell-O) =nil, o-2(cell-I) .. (0, 0), o-2(ce11-2) .. (o, 0)

In model M2 we have an extra level of indirection. If the state tt Ml of Ml corresponds to the

state <i M2 of M2, then we have the relation O' Ml(n) = O' M2(11 M2'n)) for any n c N (a natura1

number representing a mutable list). The correspondence between the elements of Plist for the

final state produced by Cl in M2 and the elements of the population of Pust in the final state

produced by the interpretation of Cl in Ml is

M2 Ml
0 ~ 0
I ~ I
2 -+ 2

Now consider the computation C2 shown below.

C2[1] .. (op : nil, args : ())
C2(2] .. <op : cons , args: ((step : I, tc: normal, result: I), (step: I, tc: normal, result : I)))
C2[3] • (op : rplaca , args: «step : 2, tc: normal, result: I), (step: 1, tc: normal, resu1t : I)))

C2 computes the expression "(rplaca (cons nil nil) nil)". The interpretation of C2 in Ml is

n21m • < 110 • o >
ll21C2] • (I] I I I >
ll21[3] - (111 • 2)

where 110(0) = nil.

where o-1(0) =nil, and rr1(1)"' (0, 0).

where O' 2(0) "' nil, and 0-2(1) .. (0, 0). ·

The interpretation of C2 in M2 is

122£2] • (u I , I)

-S.-

where a rJ.O) "' cell-0, and· ·

a o(cell-0) • nil.

where a~o)·~·mi-o. o.<Jl • c~J.
a 1(cell-O) • riil, and ct~~) ~ (0, 0). '. ·

· ~ wttei>e«2'0) ;.L-c:en-o. v2fff ~.:.~1. 11~~-~·an-1
. a-~~ nu,anc1·1rtf•1>''- <o.o'f · ··

Thus tt.. correspondence betWftft ·t1e elements or the ~tatiOn of Pfist in M2 and the

eh!ments of·I' list in Ml requftd· fn the final state ptudtktd 6y C2 tS

M2 Ml
0 -+ 0
I -+ I
2 -+ I

A homomorphism must be a function, and hmce single valued. Since the computatiom CJ and
.:;.- ;

C2 introduce conflicting requirements for the image of the element 2 < Plist• there can - ne>

homomorphism from M2 to Ml.

This example demonstrates that there 'art! ·some corred · imp~tations. whe>Se

· correctness cannot be established by exhibiting a homomorphism from the implemen~tion '*°
. ,_ '~

the defining model,- nen tr the defihing model 'ts ~- TheretcJre other ~hods of proof
~- • < ~

relying more directly on the underlying concept of behavioral equivalence are needed. Proofs

of correctness of Jmplemencatton. are dtscussed in Chapter 5.

- 65 -

4. Specification Language

In Chapter 3 we saw how a data abstraction could be identified with an equivalence

class of models with respect to the beht1vioral equivalence relation. It is our thesis that an

effective and useful technique for specifying a data abstraction is to explicitly construct a

(reduced) model of the abstraction. The data abstraction denoted by such a specification is the

class of all models behaviorally equivalent to the model that was constructed, which will be

referred to as t.he standard model. In order to define a standard model for a data abstraction,

we must specify the signature of the data abstraction, and give interpretations for its phyla and

operations. In this chapter we present a number of methods for doing this, along with a

language for describing particular models defined using these methods. Chapter 5 is concerned

with proving that a proposed implementation is correct with respect to a given standard model.

Since we are primarily interested in using our specification language for defining

particular models, rather than for proving meta-theorems about the specification language, we

have made no effort to keep the language minimal. Our intent was to make it easy for people

to read and write specifications in our language. Such a goal has no objective measure, and the

reader is urged to consider our examples and to construct additional ones in order to judge the

merits of the formalism. The syntax and abbreviations we have chosen are meant to ease the

task of the human reader. For applications where mechanical processing of the specifications is

to play a dominant role, a more restricted syntactic form may be appropriate.

As mentioned in Section 3.1, we will construct models for data abstractions

incrementally, assuming at each stage that models for all of the subordinate abstractions have

already been defined. We will explicitly construct the interpretation of the principal type, and

-66-

implicitly specify that the interpretation of each subordmate -~'is the principal type of the

standard model for its defining abstraction.

In this Chapter we wiU assume that a moclel for a statk data a~stract,IQn ts a"
.. ~ ! . ~ "~ .

exception a~ebra, and that a model for a data abstraQIQn with t~ d~t be•vior is &

stat• machine. (Recan that a state machine is an ex~ ~lg~ }¥.ilh a dist,in&uishecl

phylum of system states.)

4.l' Components of a Speclficatlon

The important part at; the specification. ~nguag~Jsjt• ~ucqar~ ~nd :wrnanticJ. which.
" ; '• . ~ ; ' - . "' .. ~ - " . . . :

are explained informally below .. ~ pr~definidon.o{ Of.lt,.pw~t •rbit~i,tly .c~ synt~X

can. be found in A~pentUx IV.

The basic components of a model. spectficat•care, i ... fa~~ lly, th(ex,_l"Jlle sJK>wn in
, · ·. ,· c; ·.• • J -· , < ·· ,

Figure 3. This examp_le gives a defjnition of fmllK!tab~ ~cks ,(or, stia~. Jl~tn).. fnQde,lecl. ta .
. ' - - '. -- . ·-. - -- ' ~ . - . ~ ' . 1 . - -~ ·-

terms of sequences, where the top element of ttte stack Js the last e~t Gt the sequence

r~esenting the stack. This example has been · trQted ~l ~ in the Jit~rature QA
- ' - . . -

specifications for data abstractions, •nd wiR p!Ohably .~ farnjlia.r: tot,~ r~der. 4ter we wiff,
. ' ~: ·. .

see a specification or mutable stacks. TM form or a ~ifka~ioQ and ,th~ meaning of ~.

components are explained briefly below. with occasional reference t~ t"' stack example.

The name of the abstraction, which is the same as the .name of t~e ,principal ty~. is

introduced by the keyword type. An optional abbrev,iatiop for the name of ,ttle principal type

is introduced by the keyword as. The name of the type is followed by ~n optional list of

paranwters, enclosed in square brackets. If there is a parameter list, then the specification is not

a single definition, but rather a definition schema, which tan be instantiated by substituting a

Figure 3. Stack

type stack[E]
requires

with

representation:
restrictions:
Identity:

operations:

end stack

as S
E: type

empty:
push:
pop:
top:
null:

sequence[E]

-+S
ExS-+S
S -+ S + (stack_undernow : >
S -+ E + (stack_undernow :)
S-+ boolean

none
sequence[E]fequa I

empty() = sequence[E]Sempty()
push(e, s) = addlast(s, e)
pop(s) = if •s = 0 then (_stack_underflow :)

else s[I .. (•s)-J]
top(s) = sequence[EJtlast(s)
null(s) = if •s=O then true else false

~ the empty stack

its s empty?

i • Is length
'l s[a .. b J Is subrange

suitable expression for the occurrences of each parameter in the body of the definition. If there

is a par;1meter list, there must also be a requires clause which specifies the restrictions on the

expressions that may be substituted for each parameter. In the stack example, the parameter E

is restricted to range over the names of types (E Is the name of the type of the elements on the

stack).

The keyword with introduces a specification of the signature, in the notation

introduced in Section 2.3.3. The signature gives the name and type of each externally available

operation, including the number and types of arguments and the number and types of return

values for each possible termination condition. The set of subordinate types is also implicitly

specified, since it contains precisely those types, other than the principal type, that are used as a

(.omponmt or the rfomatn or rang" of sornr. opt'falion in the signature. Ea~·h opP.ration may

also havr. an alt,.rnarc syntactic form, which is introduced by the k~f~ es. Wf~· ~··
._~ ·; .

dt'finition of an akf.'rnat" syntactic form. th" expression ~-9 n· stands f()f tile n-th argumen\ IQ
,. !-:· . .- , . -~ -

the operation, and all of the other symbols (!-fp fu 'ttwe ;emf::of the line) ar~· sr.parators (prt>fix.
' . i - ~ • -__ ·~ '"' - • !

infix. postfix, etc.), which ar" to~ tilttt~. ~ty~ ~an opl'fat~{.t.e., thP name of its
'~ ~ - ,;,._.-.,. "'-.1'·.·

defining abstraction) should bt obvious from its context_ In ca~. ~~~e .!' .. is ~- ob,vt~ ..,,-
- -";? "'-i,,- ~

where we want to emphasize the type. we wift use the stantl~!d ru,~.~\JJOtation, wher~ t~
~- . . ' - ~ -

munt> of tht> ~ration is prefixf.'d by the name of its ~f'f~ing ~bstr~~ folloYmL by ~ ,-,l~~
• ! . - : ~ - ,_; .

TM parameters of the type wiff be includ~ in ca~ }~~tr th~ ,is· ~.1pitt1 to the (human)
~ •. - . ' . .(4. c<f • - ~-· •• - ' • - • ' ~ ~

reader.• ! \

.. - -~ . ' - ~ •. { '

The interprt'tation of the principal type is specified by the next three comp?DentS. ;

~ underlying repre5l'ntation algt'bra is specified bf an expression introduced by the keyword .
-+ ,_ ·-- ,_ •

representation.- Th<' allowable t'Xp_renions ~nd t~r meaa;,nu,.,~ ~~~ ~ f!iSecticm
- , ., ·, ' . _- ~ '· -, ·--' ~ t' -~. - ' - -

i.3 ~tow. The restt'Jctions component ~ifies ~-~ .of I~ pr~~ type d-.tt~
~ . '- : , ·. --~ :;:, - . '

representation algebra. and the Identity ~ion ~if~; art.P..*''~ .relatp-t on that 51$sel.

Tht> intnpretation of the primipal lypt> is tht' quotief1t of t~,spttj{fed sn~ of the pdncipal

type of . the rrpr~ntation algebra with rE'~t to the specifkd equivalmce rt'btion. The .. '

the abstraction being defined, and serves as the log~,I ~a~tr ~ f..: t""_prirJQpal lfp!! or

the modt»t. Logical equality is not exter~Hy ava~b~ .• ~ QM, . .of,..ta.e,~ of the

abstraction h::.ppem; 10 coincide with it In a red~ ~d. lqgiQI. Cllua:lilY .\hou.~ be'

finilf' comput::.tion for alJ objects in its domain.

-69-

The operations are defined in a section introcluc!CMJy the :keyword e>perattons. The

forms and meanings of the operation dE'finitions are described in Section 4.2 below.

Comments can appear at any point in a specification. They are introduced by the

symbol "'%" and extend to the end of the line.

Auxiliary functions or abbreviations may be used in the definition of the operations.

The types of any auxiliary functions must be given In the Internal section, and the definitions

of any auxiliary functions or abbreviations must be given in the definition section, In the same

form as the types and definitions of the operations. Auxiliary functions are introduced solely

for clarity and expressive power, and they are not externally available (for use by programs) or

even part of the model, which contains only the functions acting as the interpretations for the

externally available operations. Amciliary functions may be used in assertions and in proofs of

properties of the data abstraction.

A specification is terminated by the keyword end, optionally followed by the name of

the abstraction that" was defined. In cases where several data abstractions are subordinate to
.. ~ i

each other it is necessary to define a group of related abstractions by a single model with

several principal types. In the specification language, a module defining a model with several

principa I types consists of the keyword module, followed by any number of type definitions,

followed by end module. The representation and·,tfte•int'fll&I' flinctieris Of, .ac-11 type are

accessible throughout the module. Modules may not be nested.

-'10-.

4.2 Deflalag Operations

The principal type of a model is the quotient of the subset or the principal type of the
' \ ' ... ~ < ' • - • '

representation algebra satisfying the constraints specified in the restrictions sect~ with
' , : ~ .,_ ,) - c": -~. -· ._\ - ~-- ~ • " . ~ ,·., - '.-. ,

respect to the equivalence relation specifaed in the Identity section. If there ls no restriction•
"

section, the ftltire principal type is used. If thett is no lclentfty S«tion, then the logical equality
j' .-

' ~ .: ~ :: ~ - ·1

of the principal type of the representation algebra is used, and the quotient structure is trivial,
-"":.,· "

since all of the equivalence cla55'S are singletons in this case.

. The definitions of the operations in a type definition In our specifkation language
~... ... ,

explicitly define functions that operate on the elements or the principal type of the

representation algebra. These functions are imp1kit1y extended to operate on the ~ivalence
- .. -: ; ~~ ~ :_i· !~!-~ :\'':· ·~. _, :··

classes that make up the principal type of the quotient structure in the usual way, described in
. . . - ~ ..

more detail In Section 1.f.<f.

The following subsections describe the means for defining functions provided in th~
: - -, ' .~-._;_ <~- -- ''--:), ~~ <;;"· .- - <'; ' .- -~ "'!

specification language, and then examine the constraints a function definition has to satisfy in

order for it to denote a well formed 1>peRtion for the exception ·~~ or state machine being

We will use a language for defining functions similar to that introduced by McCarthy

in (331 extended by tht' iota expressions dncribed in the next subsection.

A function ddinition consists of a function name, a list of variables, an equals sign.

and an expression. Valid expressions are variables. iota expressions, functions applied to

- 71 -

expressions, and conditionals applied to expressions. Conditionals are written with the usual

if-then-else syntax, and they have the usual meaning:

b ,,..,. ((If: 6 thM ~else 1> • x)
.., b ==> {(if b then x else 'J) = 7).

The variables that may appear consist of the variables ~ppearing in the li~t of,fo~mal
"•' .- . • r· -:7 . , . . . ~

arguments on the left side of the equals sign, and any local varia.bles defined immediately after

the funcfion definition. A local ·variable is 'defltled by writtrlg Its riaine,"an equals 'stgn, and an

expresslbh. Circular detinitions orr!'not allow~: U must be possiti1eto elitntnate an of the·Jocal

vafflbles from the right fiarid sid~'bf a funtlitm detinltion bf a flnite' number of substltuttons,

each of which replaces an occurrence of a' tocat ft;rlable &y! the exf:fr~sloft odefh'dhg. it. ' l.0ca1

variables are a notational conV-enience, itl the sew~ that ~.,,~ftnition using local variables has

an ·equivalent definition with0ut b:af ;~a'rtabfes:· .. '\"f~ 'ibbtevtatiOrfs introduced by local

apparent to the human reader, and th~y an ilftimes dramatiftj: mo.~ the text of a fuhctlon

definition.

The functions that may appear on the left hand side of an PP,'~~t~n definition are the

primitive operations of the representation algebra and of its subordinate abstractions, and the

operations and auxiliary functions defined in thti'~:s~ftcatbt ot·.MOldule m,;\vhich the

defining expression appars; Recursive deftnitions' are •ltiWed~ Amtitiary Tundioris must be

defined tn the deffhitknt section" Amtiliaty rune~' cait iftcrea~ the _expressive power of the

language, as proved for equational axiomatic definitteftt in· Ml' •Tfus :mutt'·lhoukt' not be

surprising, since auxiliary functions may be defined recursively, so that the proctis or

- 72 -

substituting the body of the function definitions for each invocatioo (attempting to eliminate the

• ' f1 .• f ',, 'i

auxiliary functioos from the main definiUon) may fall to terminate.

Since the operations of a data abstraction are sup~ tQ be twal Junctiqns. it ta

necessary to show that all recursive definitions used are well founded.

4.2.2 Iota Expressions

Iota expressions are named. for the ~ operator in. locik·: · ~n ~a e1tpr~ssi(Jn bas .the

form x: /1(x~ where xis t~onlyJree var,..b~ in tht;,pr"R,ti ~)., l(xis qf.tfpe,T, aod tr t~

set Ix (TI /l(x)} b a stpgldon Jet, then :the value of t\M . .._ ~!~ ~./l(x) ls tflt,~

element of that set, iind otherwise the ioca exprmio;rt .i&i~

. Iota expressions are -..serul in cases where it ta ~ ,_.;to spec:ify a pr•s;tJ the

resuk of a ruooion ~satisfy. aJ'l(l l6c-proye t~t U.. p~;~ly. detel'mineS t~e result

than it is to prov4<1e a.recumv.e _dd'inJtion or the f\lllC.ti9'~ Jqt~:~e$Sjpns are the equ1¥alent

of Hoare style input/~ predicates for a languw .. Vf#h ~s apicl. w.-.hOllt side eUedJ.

An examptes of a definition where an iota expression definition is appropriate is

whtch defines the~er square root function.

It is necessary.to show that uch iota.~.UIC"li-,in a-.~~ is wcll.dt'fined,

given the (»flte~t in which it appean. Mere_pr'ftiMIJd.•-f.,.. ~:r-.otr~ must be

- 73 -

I. q(x) ==> 3x { pl.x)]

2. Vx.1 [q(x) & pl.x) & q(7) & pl.1) => x = 7]
' .

where = is thl' equivalence rl'latioo defined in the Identity secti~. or the logical equality

.· . -, . .. ' . ! >·4· . . ' • '
relation if there is no identity section, x ranges over the principal type, and where q(x) is the

path predicate describing the conditiot~·s u~der whkh th~~ exp~ssion ~an get evaluated. Let

a be an occurrence of an iota expression in the ei<pre~sion' 1, and let path(a, t) denote the path

=:, .·:i

predicate for a in t. Then path(a, t) is defined as foHo~s:

path(a, a) .. true .
if 1 is J'(x1, ... , "nr and a occurs in "; then patb(a, e) • path(a, 'xi
if 1 is)f b then x else , .. and q occJvi, ill .b ,, ;dhea~~:of} " p;ltll(tr, .~ ,.
if t is "if b then x else ·y" and a occurs in x then path(a, t) • b It path(a, x)
if·' is ·;r 4,then. x ,else ~l aJKI a occ'I~ '1 ' -~ path(~4 91,-;o ~'~~ • .,)

4.3 ·Constructing 'Alget',~as

Our app,r:oaclJ,~iH~ ~.define-a staoda.,d mpc:W .,,,. ••·a~jft ,of,a

given representation algebra. The prinqpaL lJF.of·tbc-,•odar4.-~:W™ lf'ig~t11I~ lhe

quotien~.,~f il .. specifie(l.subset of lhe pr~ne!pt.L.type ~ -l.tae r,epr~tiolJ. qqa .. w•tt. respect to

a specified equlv~le"c~ relat;an .. T~~ op~r~tiof\S_P"•-~P.d ~~~••t~1~Qaed."1.t,~ms

of ttie op-'riJt,iOO~ of the repr~Jfr).tation algebra .. "' tl,esg:ibed·1n tbe.p-~~s,~ The.rtfst of
J •· - - ·- • ' •• ~ •' > - ' :

buitding, .b~ksJpr ddiqing fll9,dels.

Si~ce it is. not ~IT aim: in the present, "!Qr,k. to ~~jg~ the ,fou,ndaUons of

mathematics. we will assume that .log~. tru~h:yalueJ.. lft"°"l:t'5ian .ty~U<'tsa natural oumbeH

and integ·ers are primitive. An excellent formalization of these structurn.caq tJ,, f:otmcl in Ci8l

- 7f -

We will use the notations summarized below.

T and F denote the truth values tnu and falst respectively. Thm are the only truth

values, and they are distinct. Be, v~:--· ==--. ~n<t:! d~t t~,,,. .. or ... ~. im>J.l,ls .. -'nd tqulHlm"
, • r ' • I - · ' .c"O < .- - • 1. < • • • • • - • -

operations on the truth values, respecttnly •. and '!a~ ~.d~.J~,~~ive~s.J.a,J:ld:~Xist~I

quantifters. c, U, n, and - dmete set membel'Jhtp, union. intersect~ •. and set"differ:ence. F..,Ue
' '. _, ,, ' .' -

sets are written { x1 •... , x11 } and finite cartnian p~~·~ n~~ are, written (x1 •... , xn).

The Mh component of an ntuple x is writte(I .x l '· IO that ~,xi ' ·;- ~ Xn) - x,. The .set or

natural numbers is denoted by N. 0, CJ, •, •. <.and • der.Gte zero. successor, plus. times, ~

than, and logical equality oo .~,res~ti!~· The .set of:,~~· 0is.~411!l··.by Z. an,d •,(I,-,

quotitnt, rtmatndn, ah, i¢i ·aftcl • ~1 pluS.• times. lunatyl ·lftlftus· ·ar (btn!lrJl subt~ctton, the
~ ' t ,~. - } - ·• ,·cl:. · ";

relation, and the equals relation, resptctivety. We rely on \he ~ tq differ~tiate. betw~
.· • - : ''"'"'? . ; ."':·, ;1 --: ').' J -~- -.: -:· -! - ~ (- ' .

operations on the integers and operations on the natural numbers with the same name. The

usuat~mahwtatieitWil- usM rormteger~ _,.tdt a'ti'dfna.Mr•(O b'e an infinite

dass .of nalfary operatkiM fronuf.e'rormll pointot~. · ·"

We wttr defln~ a ittrmbtt of WaJS for dftilig atg~ras, namely finite enumerations.

finite tartmatfproducts. fttrite dtsjOiftt uinans,'ftde ~'Sets, ftntte ·~~ •nd recursive

dttftntttons (flxpoittt ~taM). The set'Of "Pf'eSentatlait algebra• is dalned to be ttte set

generated by rh~ standmt model for ·~ booleiit •,,. ~ ~ wldi respect ~to ttte

constructions listed above (i.e., the smallest set of algebras itital it d:ised wttfi· Mp«f tO ~

con1tfuttiCM for 'genttattftg new algebras); · !ach of the'· toniiuctiOns wpp~ a set of

0perations as wt>U as a 5't .of data objects; so thit'°ft att g_,..tlng a set of algebras rat~r

than mft'efy a set of sets. ·

- 75 -

We also define two special purpose algebras, token and state[D], for us~ in_ defin_tng
- ~ ~ ~ t'"'? . .. • ~

the phylum of system states in a state machine model. Toktns and states have interdependent

meanings. and are defined by a single module with two principal types. These two abstractions

codify the ways in which the operations of a state rnachtnt can depend on the system state . .
4.3.1 Booleans

- '

We want to have an image of the domain of truth values as one of our representation

algebras. Since everything else depends on the boolean domain ~predicate operations ret?rn
. . . .

values of type boolean), we cannot use the methods described -belOW to define it without
~ ; 1" ~-i l : t • ; ~ - •

introducing a circularity. We will define boi>hRs- in' tetins rif· the truth values in the

underlying mathematics. _A necessarily informal deffnffion in a, ndeatton similar to our

specification language is shown in Figure 4. Because the meaning of a data abstfactiori"is

defined in terms of booleans (cf. behavioral e<JUivalel*e, Chapter 3), wetns-ist that t~booleans

Note that-tM t-qttalqr.tratiert on theboo1eafts-:11·tt.esame as"togka1 equfvatence ·C)n the

underlying domain of truth values, which in turn is the same as the logical eqoiltty On· rtte

boolean domain. In kttpmg with our pOfity that th~ only externany observable properties of a

data: abstraction. are those· that 'can be calculated in terms or the nperations, we win always

interpret "•" as the rqu,dl ~·atieft of t'M'deffntng abttractiOn c>f'thti'ly'pe·:of the (ftt~ objects

beittg rompared. Thus it k proper tet~m~ ",."in th'e cttrtnittori of an·operation t>nfy lfth~

repruentation, t)lfle· bas an tquiit-<ipmtton. Car~ ifMrit·&e tiUH t~t the iqual apentian of' an

- 76 -

Figure 4. Boolean Abstraction

type boolean

with

representation

operations

as B

true: ___,. n
false: -+B,
not: B ___,. B
and: BxB~B

or: BxB_,.B
implies: BxB-+8
equal: BxB...,..B

B .. truth values

true()'"' T
false()• F
not(x) • if x then F else T

and(x, y~ • if,x ·""~ y c ~be f.
or(x. y) .. if x then T else y
implies(J(. y) • (... ") y J.
equal(x. y) • (x => y) Be (y => x)

as ... arg I
as arg I Br arg 2
•••etv·at12 ·
as arg I ~ arg 2
••erg I• erg 2

the algebras defined is in fact an ident#.J relatioa.I Lqckal ~ts ..aumed to be defilled

natural numbers.

The boolean.type is isomorphic to,the dontaiR of trulh .yalufi;iftcthf underlytng·klgk.

as indicated by the int~pretations of tht operations trut alld f•IH m the standard model far

logk. and. have no counwpart in. the r.epHMntation ~~ We wiH tnake hea-vy and itaplic:tt

I. An identity relation equal must be reflexive, symmetric, transitin, and must satisfy the
substitution property tqual(x, 1> ==> P(x) E P(1). for any predicate P.

- 77 -

use of the isomorphism between the booleans and the underlying domain <If truth vatuei, so

that the primitive predicates of.any representation algebra., which return valUes of type boolean,

can be combined with quantifiers, and used in if-then---el~ expressions, both of whidi ·are

defined in terms of the underlyi~g logic. The booleans are the only type for which we will talk

·'
about properties of the interpretations of the objects wectly. For all .Qd:rer types, we wiH· talk

only about the results of applying the primitive operations. The only direct connection to the

underlying mathematics is by lllt'aQs of the. bQoleans, wh&ch is wa.l Ulat type b given a

distinguished status.

4.3.2 Natural Numbers a'-d: ln~eger~

We import the systems of integers and. natural numbe;s directly from the underlying

. - ., , ';, '.' ,'(;t ?. i '

mathematics. Definitions of these types are given in Appendix II. Th~ definitions serve to

pin down the syntax, and have nothing surprising in them. ,.

4.3.3 Enu ... e~~~Jons
• ~ ' ''l. •

Enumerations are useful for defining small finite sets, such as charaicters. Larger finite

sets, such as Weed length integers, are most conveniently descrit>ed in terms of the infinite sets

they are intended to approximate, as will be illb~t~ted latedn this chapter.

' An enumeration { xi ' .. : . Xn } defines an algebra who~~ principal type is a set with n

, . . '' :- ' ~; :) ' .. : . .. ~ . ~ '

elements, and whose only subordinate type is booltan. 'The algebra has 'l'i nullary operations, the

constants xi for I ~ i ~ n, and ohe binary ~ration, equal, ~hich'aHo~s the elements of the

principal type to be distinguished from each other. We want equal(x;,'~} to be true' if a'nd ooly

if i = j. The indices range over the set of natural numbers N. There a're many models that

-18 -

•T

wltlt _.T ,; for I S 1·~ "·
T x T -+ boolean

-. f

representation: natural numbers
. treatrlcttau: t '.such·thal'll s i ~ ft
Identity: =

operations: x~) • i for I ~ i :S n
.,1(a, b) • ifa - b then true ·e1se falle

end

exhibit the behavior described above: ~Our ~.ktJrt rnotttt~ s1tMJ' in Figdre ~.· uses. n~ural

numbers to represent the elements of the enu~atjon. T~ • • ~ operat~ .u~ in .. ~,Cining the
-: - • - .- - , - ' .. ~ - c • ~· " . : -~ ! 't ·; .: • . i ' "

tqu.al operation of the enumerat~. t~ denotes the ~litJ ~l,~ ~ !~ ~tural n.u~r~.
- ~- , : . . . ,, ' . - . . :. . -, .

4.3.4 Tuples :-. ~ ' ' . :' . ~-

for the set of n-tuples such that the i-th .c~ent is .a ~.of the~ .sl and bears the
. . ' ' , '; - " ..]- - . ',. ' ', ~ : -_' - ' ' .

. labef wi. for each i in the range I ~ i :S_ n. W,e_ ·~~ w,rtte: (•t=-~t· '."€:' ~ .. =r~n) f()I'_ t.~~ t,.pJe
. . - ·- - . . {

containing the elements xi f xn. The ero~ioft,,function ~pein' a '-~~.to .i!S t·Jh
c-• -~ ·-, • ~~·-···~-~-'";: •

componttnt is denote by p[w;l an<I if t is a t~p~. th,m pC•tXt> ta!f ~ ~~brevi.at~ ~s t. "';· If
. . : ' - -. - ' ~ . - - ~ ~ - ' ' .

t • < wa: xi,._ .. / r1111 : x11 > •. Jhen ,'-;~~ 1~ fi ~or ~ch. ~.i~. t,he ~',Ip ,I ~J .. ~ n. , Twq t~p)es ~e

equal if and only if correspQ11ding components are equal .. ~altty of tuples Js define<I, fqr t,he
- . ~ . -J. . .- ' • : _- • - --. -• • . . - .-

type tupteC~1 : s1 , ... , wn: Sn] ff and only if t~ d~~i;~,i~.$~ra,,of ~1,has 'n tqual operation

for each i in the range I ~ I ~ n wh~h is an identity relation. If some of th~ compqnent _types
' . .

Figure 6. Tuple

type

requires

with

- 79 -

tuple£1111 : S 1 , ... , 111n : S n1
Si: type

construct:

p{wf}.

NJUal:

s1 x ... x Sn---+ T
·p-.s.

t
T x T ---+ boolean

representation . T = S 1 x ... x Sn
restrfetlons · none
Identity equal

operations construct(x1, .. '.., xn) "' (x1 , ...• x11)

p[wi](x) .. x J. i

asT
for I :S I :S n

as (ru1 : x1 , ... , run : xri) as:•• •~ "'t ' tor I :S l ~ n

equal(x.. 1) =if Vi {IS i -~ n ~-x. uti ""'I• rll;)then-true else false
end tuple

do not have equality operations, then the tuple type does not have an equal operation etth~r,

although the type and all of the other operations on it are w~ll defi~~.2 .

This description is summarized in Figure 6 in an informal notation.- Retaff' that

cartesian products are primitive, and that if x is an . n1¥,p~ Jth~_n· x J. J denotes the. i:tth

component ofthe n-tuple.

2. An equal operation will be defined for every representation algebra ·in our basic set. It ts
also possible to construct tuples with components from user defined types, which need not have
an equal operation (eg. stacks). · ·

- 80-

4.3.6 Oneofs

Oneofs are finite labt'led disjoint unions. A oneof ts the dual of a tuple, in the ~se
l '. >~ i '..(- _;':: . * ' - ~._.

that the projection f~~~Mo in the other directioo. '4'W~wttl wrtte ... [.,I: SI, ... , "'n: S,.J

Our standard model for
" - . ~~~ ;,

oneof(rvl: s1 , rvn: Snl shown in Ftgure 7, uses the ~, 1~~< ''"fi.J. x ~i· to 'reef~l U1e _,_,.
principal type, which coincides with the standard interpretation for' dl~joint unions u~ in

c..,. . - • - f~ ". -,

came from. If an element occurs in more than one of the s,. it wiU occur in several distinct

patr. ·

type·Gt~ ;.S1, •.. ·, •n: Snf If* O ·

requires Si : type
with in[1111}

to[wi1

ishu;l:
equal:

s,~o

0 ~ s1 + (wrong_type:)

S1 ~ booltan

O x 0 _.,. boolean

representation 0 • U { 'lllt } x S;
l:Si:Sn

restrictions none
Identity

operations in[t11iXx) .. (1111, x)

..J
\',

·for I :S.t Sa

aa arg I in 1111 for I S I S n
u aro I to •t for I :S t s n

•• aro I is a11 for I :S i S n

toCm;Xo) .. if o J_ I .. °'i then o l 2 else (wrong.Jyp,t :)
ls[r11iXo) • if o ! I "' w1 then true else false
equal(ol, o2) • if (ol ! I • o2 l I 8c ol l 2 • o2 l 2) then true ehe false

end oneof

- 8J -

A oneof type has n injections from the component types into the <ijsj9int union,-n

predicates indicating whether or not an element of the disjoint union came. bQIYl ,,a give,n

. - . . ' - ·- -~ --~ ,.. ~ '. ~ ... ~ _· ~ - ' '.' .
component, and 1l · projt'ctions, which return tlte element, wlttiOut the la~I if the label

• ~· ',•;, ·, f.""1-J

corresponds to the component of the projection! and '¥hkh termiri~.t.e in the 11Jrong_t,fH
• - "" ,_ <.

exception with no return value otherwise. The ~type has an tq~~loperation if and only if
, ,. ~ ~ ·F :• -: ,~ .,. ,

each component type has an tfUa/ operation.

As w~ shall see below, one of the m,ain u~s for disjdinr ~"'i90s Is in constructing
'·'" .. ,,, ' -.

recursively def~ned ty~. such as trees.

4.3.6 Sets

We will write set(E] for the doMild H 'tfh~~'"su~ 'i»{t~_.type E. An ~-qf~~

definition of set[E] is shown in Figure 8. This construction t,5 ~ v_ali~. f?Jlly if t~ .~~\?lOJ
i', : ., '. :p

abstraction of the type E has an equal operation that ~t~. ab idet:1tity relation, because
~ ~ • -· - -, i-· ·;_-:-,v~ ,, ·.

<1'.~ J " ,_ {f~" ~ - '. ;:' ' ; - •

equality Is necessary for deciding set membership. ,T~er;f ii ~e1riU!.rf~r~tion which returns
,'' .' < ,. ';"'' !--. '

the empty set of the given type, and ther~ •.~~1 ~~~~~ ~;~d~~:'~.t;'~ removing elements,

and for forming unions, intersections,·~~ dlffer~; ~n(I mtriCt~s. 'T,~r~'. are also operations
''~f,·' w~> -~-; ,·"'·~""°"';' .? :· ·':· !~ • :.: _,"j; • \• '>:;

for testing to stt if an ~' ~10n,~ td' a ,Ji!~:~~,:~~ is .. s~b~ ·~.another, If two sets
. ' ;, • . . :.;o • . .< - -• .';.!:- ~ >; • - •

have the same members, and for finding the Sile of a set,t~hktfA ahii~ys defined because we
"i , '« i ! 1: v. -· I~ t ·•. -.:::-o,,: ·:·,:,.~jj-f·-:. ·, .;,;' ~,

are dealing only with finite sets. Set restrktlon is'ttea't~ as IQ. in({eftnltely large parameterized
.. :- - / • ~ ... ~~- ,_· . '{ >~ v

family of operations, where tlte patam~~rs ~~e :~. ~rkl,_:1~iiable and the body of a lambda
.:· . . \.'.'' . ' ·~ .;•:: 'fJ' l

expression defining a predicate (i.e., a function from E to boolean). The si1e of a set ls~defin~

to be an integer rather than a natural number, SO" that·stzes-can- be subtracted ·and divided.

T-tte naturat numbers and tftt integers: are defined in Appendix II.

- 82-

FlgUf'e a. Set

type set(EJ u S

requtr47s E: type with ae..a~ Ex E-+ ~~ ~,~~t.~l~

representation
restrictions
~ttY "'~

eperatlons

definition

end set

null:
add:·
remove:
union:

-+s
Exs~s

Exs~.s
. ··.i· ..

sxs-+s
intersection: S x S ~ S
difference: S x S-+ S
restr~x. p(x)} S -+. S
emptf: · s -+ ~n
member: E x S -+ boolean
subset: S x S -+ boolean
equa I: S x S -+ bool!an
size: S -+ int

S • mathftnaticat sets

s sucttr ... t _s.~J: an<tcar4~.~J,{~c .,1,
equal · · ·· · · ·

null()• {}
add(e, s) • s. U I e 1
remove(e, si- ,: -{ e l
union(st •• s~t· ~Us~. ,. . . , .
'initt5'CtiOO<st, s2) ~sf n s2
differ~$~ s2) • sl ~ s~ . .
resfricttx. p(x)ls)"' r x '(s~t p(x) J

as argJU arg2
, ¥<.•ttHlMA·2,

aa-01-arg2
~ 'X~: •• I ' p(x) J

>: J·: ":«t l 1~)'Jr•:.
asargl~arg2

asargl•arg2
••I •r1JJ .. :

emp!J(s) • if}?C[X CS }Jmv,~,~~.~ .;
mmlber(e, s} • If e { s theft true • false
subset(sl, s2) ~.if 3 .x l x J ,st.Jr .. : (~. f 12).),UW.Ja* elst ts:ue
equal{st: s2) ',. if(~I , ·i2 I; s2' ~ S1) lMil tn.e eile ·raise · ·
size{s):".'car<lt~J.tty(5) .,,. ,,, .. , .,

ident_op(O .~ V~ C f(x, x) J 8(, .. · ..
· · · Vx,y [f(x, y)=> f(y~· x> J Ir ·

Vx,y;1. [J(~,. y) le Ky. d ~.;t(x. d JAc
VP Vx,y (itx. y) ~ (P(x) E P(y)))

- 83 -

theory. The nottttion in the figure is ambiguous, because we wish to use the standard notatio.ns

for the usual set operations as abbreviations for the operations of the representation algebra as
. r ~"".<

well as for the set operations of the underlying mathematks. The ambiguity ls •resot'ved as

follows: with4n . the definitions of the operati<JOS, the stattdard set ilf10tations refer to the
'.:: .,l{;

operations of the unde1lying mathematics, while the ,. daUJes in thf' 1ignature section redefine

those notations as· ~brevfations for the operaUC)fts of::.rM trpresentattdn algebra, for external

use (i.e .. when _using_ re.presentation algebras<from the Mt ftlnily to d4flt1e;standard models for

other data abstractions).

4.3.7 Sequ•ne•s
, '

We will write se.quence[E] for the doma1n of ftn:ite sequences<lfelemenu of'type E.
(~ ·-

An informal definition of 5equences in terms of cartesian prpduc~s,'is :shown ·in 'F_igure 9.
;' .,:, ... ~ ~ - ·- -~ ' .

-"' . ~,.... . ~ ~'

Another definition, using a fixpoint construction, will be sket(hed tt(~lt~.'(t~xt section.'' ·' · · . '
' '. . . ·. ~: ~} '~ ~ '.: .

Sequences have an exceptionitl termination-co(tdtU~1~~s~ :~hic11 b associated with
• ~-~',. ~ ":.. jf-:' ~ ·;. ~. .' • ! ' - -

attempts to use elements or the sequence that do not ~~fsf. ~entes cati 'be decomposect into
, ·v, . ' \ . . "'«,;!(':

the first element and the sequence c90taiftlng'1U,l)µt'the't~st element, and also into the last
., . ~· ' . . - (-, '!- •_,.. •' ' ·),_!-~

' .:.·· - . ' -

element and tht sequern:e;M atl·but the fa~t elfmtnt, s0_ th'itrt~lther ena of the sequence ·ts

preferred with respect t~ ease of actes~. subfa"gei ·are'.-~fi~ by.Jiving the first and last

, l

elements of the subrange in the original sequence. . iii~ Jt!ngth. ~f. a')ubrange s[a .. b] is
• .~ , t . . ~ , - ~ " .

I + b - a. Subranges with strictly negative lengths are not defined,,_ and an attempt to construct . ' ~ ;} '. ' :

one will result in a bounds exception, with no return value.

--------------- - .

-M-

Figure 9. Sequence
,.

type sequence(E}
.,.. .. £:type

••Q.

with ernptyseq: -+ Q. a (>
~ftot: ·.Q.>< £-+Q:.
addlast: Q..x [-+ Q.
butfinr:. Q.--+, Q. c

butlast: Q.-+ Q.

'a-.·2 •I.Wt
••all+ arg2

. append: ;Q.. x-<t,~ Q. as -.+1 arcr2
subrange: Q. x int x int -+ Q. • (bounds :) a •I I [arg 2 .. .,.. 3 l
prefk: Q. x • -+ Q.• :{;·--s: •· ailreff - _... 2 l
suffix: Q.x Int-+ Q.• {bounds:) M .,.1C.•g2 ..)
elemmt: Q.x int-+ E • (bounds:) •·lltWf l' .. '!J·
first: Q.-+ E • (bounds :)
last: Q.-+ E • (bounds:)
length: Q.-+ int
empty: Q.-+ boolean
equal: Q. x Q.-+ boolean

••P'9a8ntatielt <t. u (i I x £' .
t ~ 0

as arg I • erg 2
;Jf t thtae length .

restrlctJon•
Identity
operatlofta

end sequence

none
·.e ceifqual
IPflV'thl--t\ • (0)
;ddf~~t e) ~ (1.(tq). e , q(ll ... , q(~)
ad~fasc(q. e) ':' tM~ q[ll .'." '"ql-ql ')
butfirst(ci).• fl.2 .. -.J
bu.\Jf"'q)- q(J>. (~tJ
append(q, r) • if ~ • 0 then r

•tf.•r·O~tt" ··•· ·
• etse < (eqM•r~ qlil q[eql rm: rl•rl >

subra~Cj,J.j) •if (i.~;,ll,'(,g ?t·~~ Uu~i1'),~(~s it>
else if j • i-1 then (0)

. . ~ ;q~,tk'41 - 'qUl >
prefix(q, 0 • qO · .. 0 · · · · ·
suffix(q. i) • qe, .. .qJ , "
etementlq. i) • ir (i < I) v (i > ttq) then (bounds :)

first(q) ~- qOJ
last(q) • q(eq]

else q J. (t.J)

_ length(q) • q l I
empty(q) .. tf -q • 0 then true else false
equal(q. r) • if eq • •r It Vi [I ~ i ~ eq .,. q(i] • r[i] J then true else false

- 85 -

4.3.8 Fixpolnts

It is convenient at times to Introduce algebras whose principal types have a "recursive"

structure. such as the algebra of binary trees. While it is possible to define isomorphic Images
,\

of such algebras using just the machinery introduced so far, by introducing appropriate

encodings into the natural numbers, such a strategy does not contribute to the clarity of the

resulting specifications. Instead, we will introduce explicit recursive (circular) domain

definitions, which are considered as fixpoint equations over the domain of all algebraic

structures.

The representation component of a specification will always be a domain equation.

In cases where the name of the algebra bring defined does not appear on. both sides of the

equation, there is always a unique solution, since we are essentially solving for the fixpoint of a

constant transformation. In cases where the representation algebra ls defined in terms or itself.

there may be many different solutions to the equation. Following ScottH6l we will introduce an
~; .~.. d(-·-~-., ,.;<r ·

ordering. and say that a fixpoint equation denotes the minimal solution with respect to that
~ • ; •• "! \ -~ ~ ~ ~ ' "~ • ; } •' ·- - •• ,

ordering. We will use the pointwlse containment ordering on algebras, denoted by i;;;, and
',. ··;~-- ·:~ ;·'.·d~ ·~.'-~ .", /,-· '-~ ~ ·.. "•

defined below.

Defmttton 19 Polntwtse Contalnment
Let a and b be algebras. Then a ~ b if and only If all or the following conditions
hOld:

a. typenames s;, b. typenames,
Va c a. typenames [a. phylaa ~ b. phylaa],

a·.1>p0ames '- b• opnames, - ''
Vfj c a. opnames (a. operationstJ s;. b. operationstJ l
a. tcnames ~ b. tcnames, " · .·

a. arglength ~ b. arglength,
a. argtype ~ b. argtype,

a. tc s;. b. tc.
a. rlength ~ b. rlmglh. and ,,., ,...:
ca.pt k 6. pt

• 86.

If a c;; b, we wUI say that a is contained In 6. This means that for every phylum of a, b has a
.. '.

phylum of the same name, and for every operation of a, 6 has an operation with the same name
• .J • l • ~ ~ - ~ : ::-. ;-; • ~ • ,,... ..

and type. Every phylum of a is a subset of the corresponding phylum of 6, and every operation
-, I-

of a ts a restriction of the corresponding operation of 6. The larger algebra 6 may have types
;_ t----;.~.~.' {_·;-~r·- , ,;.·~ ·.,. , .. ' 1 ~-::/.

and operations not present in a. The set of principal types for a must be a subset of the set of
.,

prtndpa 1 types of b.

Note that C is reflexive, transitive, and antisymmetric. and hence is a partial orderin~
' .. : - . ,-~. ""- • "-- '· ~ ':- . ~ - , ·;_ -'!' ' ">; ; t '-

relation. Because C is antisymmetric. if a minimal solution to a fixpoint equation exists, it must

be unique. If we restrict ourselves to expressions built from continuous (with respect to I;}
,,~~ '<~':(-,"•;>.···,-,'. !,;~-.;::.,.' .;•,rf1i ,;-·";;'·-~·,« ,;~c•"-'·1

transformations on algebras, then the existence of a sollltion ts guaranteed by K Ilene's first
.... .·;r:. -';I:-.~; .-:.~ 1.r:;·" .. \:: .• ,~ ,,~q~::·-;:~~~ -' .

recursion theorem (231 which also gtves us an explicit formula for the solution.

. ..
K~'s first recunion theorem states that if the tnnsformation F is continuous wtth

:, _: :, ~ - ~- ••. -~i·: .;,. - ·~~ ,;-: ~~:;~~;; ~, ~- ·.. .

respect to ~. then F(YF) • YF, and YF t; A whenntt F(A) •A, where YF • U F1(1), U
t <.:I.I: . '

denotes the lttast upptt bound with respect to C, F°<A) •A, ,.;+~A)• F(F(A)). and where l.

of the transformation F. In order to show that YF exists, it is suffKiftlt to show that there ts an

algebra .l such that .l CA for every algebra A. and that ev-r~-Wlta r~ to~ has a
.- ~ i . 1 ' - -· "'- 't

least upper bound in. tM the domain of all exception algebras. IU1-.my .. tf:J. • that l -extsts: It

is the algebra with all components equ~I to
1

~he ~ set.·~~-~·._ .no pt.Jla ,and no

operations.

- 87 -

Theort!m 5 : Every chain with respect to!:; has a least upper bound.

Proof : Take pointw1se unions, details in Appendix Ill.
End of Proof

In order to use this rE'sult, we need a means of defining continuous transformations.

This is also easy, because all of the methods for constructing atgebras introduced earlier in this

chapter are in fact continuous. The reasoning required to establish continuity is illustrated for

the tuple transformatioR.

Theorem 6 : The tuple transformation is continuous with respect to !;;.

Proof : tuple preserves pointwise unions for chains of algebras. Details in Appendix III.
End of Proof

Since all constant transformations are continuous, and since the composition of two continuous

transformations is continuous, it follows by an easy induction on the depth of the nesting that

any expression composed from the constructors for enumerations, tuples, oneofs, sets and

sequences defines a continuous transformation. Thus a minimal solution is guaranteed to exist

for any domain equation expressible in our specification language.

In order to make sure that the transformations defined earlier in this section are

monotonic with respect to ~. we have to be a bit more precise about what the transformations

are. (If a transformation is continuous with respect to f;, then it must also be monotonic with

respect to {;.)

We will add an implicit parameter to each of the transformations, which specifies the

name of the principal type of the algebra resulting from the transformation. The construction

of the principal type and of the operations on the principal type has been described above.

The subordinate types of each input algebra are included as subordinate types of the output

algebra If ancl only if they have a distinct namt' from that given by the tmplidt parameter ..

TM namt"s of the e>pl'rattons on the principal type are taken from the definidenl ·or the

transformations. and prefaxed ~y the namt of tlaf prjndpaHJPf to IRab surtnhey are distinct

from the names of the opera~ on &he subeidinate &1fl'J.

For any composttiolJ of tuple, oneof, Mt and -.•nee OORStructtons. the lmptklt

narnt parameters are to be chosm so that enry occurrence or sch conSmlcter tn the expttsstort

is given a distinct name paramecer, and so that the name parameten are distinct from any of

the names of any constant algebras occurring in the expression. With this proviso, any

expression that can be formed from the tuple, oneof, set, and sequence transformations and

any algebra ,const;ants will be .monotonic with respect mt;. It Js atso easy to see that the new

phylum defined by a fixpoint c005truction will haft. the same nMM n tts ~ under the

defining .traruformatiqn,..so.t~l the priacipal t~.U built up:bJ ~ approxtmattons. as

.
usual for a SiQluUQn to. a '-xpoint, eqttatiolt. .Afso- that as cRftMd above, nth of our

transformations maps complete models intct~Jnernadfts.

An intuitive ;tJstification.for ctloosing the minimal~ to a domain equation is

The explicit solution to the Jixpotnt equation can also liw uMJd to argue that &M mihimat

solution is exactly the solution we would like to obtain, because it contains all of the obj«tl d.at

are finitely constructible using t~e operations of the representation algebra, and no orhers. To

see this, note that any •raUQn can produce a.d-GbjecNn a domain F~J.) with an ind~x I at

one U there are no arg.uDll'Rts). Therefore the resuks Gl,some fiftite'computatien 6n terms of the

primitive operations can produce elements of F1(1) for fin•te natural numbers t, and all of those

- 89 -

doma Ins are contained in the principal type or Y F. ~versely, if our. tr<Jnsrc;armati9n F is ,such

that every element of the principal type or F(..f) is (ioiteJy «MJ$~rY,ctible wh~.ver all of the
\ . ' ' . ' ' ·, . /. ~ - .

elements of the phyla of A are, then so are aHof the ,,e~ts Qf the p.hyla of Y F, i~ the

principal type of Y F is ~st the union. _of ~he ~~i~I, tJ~ ¢.an!'· t~e algetJras Jnithe chain

Fi(.l).

~

To illustrate the use of recursively defi~. rq>r~tioP .. ,atg~ras.. ~qJt4er the

definition of immut~ble bi.n~~Y trees sh()wn In .F.wure. ~~- "&i~ai:y~ree,t~ a faJDiJJ of daQ
' ···-· c • - -- - • ;

abstractions, parameterized by the type of the le~f n~ 9f th,Jree. ,, The.leaf op~ation «:r~es.
<, "' ' - t"?• "

a leaf contai~ing a given element ~f ~,Y~ E,! ~hei:~,~- ~f is a ~ind,~ ~in,,ry_tree .. J:tle '"'

operation constructs a composite, tree w~~~ ~iYeJI ~.ft~~ ~i,~ ~~t~$'i,,;r.he lef(~O(i ;DIM

operations return the left andnght sub!rees o{ a c~t~ .tf~·-'~ '~!"i~~l~ iQ}he no~~rte,
:, ~- <' , "'' -, : '-;:' - - ' - - :· '- - • .'·- • •• • '

Figure 10.

type binary_tree[E]
reAIUlr" I :,type

HT

with leaf:.
tree:
right:
left:
value:
leaf?:

E.-...,....T . ,, , -- _,.

TxT-+T
T-+T+(no~:,

T-+ T + (noJUbtree:)
T -+ E + (not_teaf :) _
T -+ boolean ' - ·

representation T ., oneof[lear: E, tuple[left: T, right: T) 1_

operations

end binary _tree

';- "• ' ~' ~,~ ; : • r,. ... ~ •

leaf(e) .. e in leaf
tree(x~, y) ·• .(Wr: "· right : y > m trtt ·
right(x) • if is(leaf](x) then (no_subtree : ~ else toCtree)(x). ri,ght
left~)..- if:t${~f)(k}thett+no.::,'stltitftlei:)' el5e ~trttX*l.1eft
value(x) = if is[leafKx) then to[leaf](x) else (not_leaf :)
leafWx) -... tf'is(teal)'.x)'ttien rt~et~ N~-i

-~-

exception with no return vak1es if applied to a leaf. The predicate ltafl tests a tree to

dftermine whether or not ft IS a leaf. ·The oalut operafion extracts' the element contained In a
-, ~. :

Inf node of the tree, and it results in a not_lta.j exceptkn ifapplied to a composite node.

There ts no qtialttative difference between defining the operati~s of a mOdel whose

representation algebra is defined by a fixpoint construction and defining the operations of a
...

• I . ~

modef wht>se rq>resentatton algebra is defined by some ·finite composition of tuples, oneofs, sets,

and sequentes. The d0main equation specifies the structure.of the representation algebra. and

tmpffcttly aho the operations available· on .the representatiOO '~lgebra, since each of the

transformations'· mentioned above introduces some 'operations. '·For example, since the

- ' ·, ; " <- _- , , - :. ; ~ '~ - .: ~ ~ • - •• ~ '1 . -- . ,'.

representation of a 'binary:_tree is ct oneof, the proje'ctions, Injections. and domain test predkates

of the given oneof type are available for use in ddi~ing the .. oi>eration~ of binary_tree. This

uniformity is a consequence of the fad that the representation algebra is an exact solution to the

domain equation.

The fixpoint construction can also be used to construct the natural numbers, Mtd~me ·

parameterized ·family sequence[El A convenient r~tation algebra: for defining 'the

natural numbers is the solution to the equation

nat ., oneof{zero : (0 }, noniero : natl

This equation is based on the fact that each natural number is either 1ero, or it is the successor

of some other natural number. Thus zeroJs r.,{esentectas the element of the arbitrarily chosen

singleton enumeration type { 0 }, and any .. ~hei naturalnumMr n.1•epresmMCliby its predecessor
·,,,

injt'cted into the non:zero component of the disjoint ua;on. Tlris· ,worb.fH!cause each injection

adds a tag to keep the elements of a disjoint union distinct. Thus zero is represented by the

- 91 -

pair (zero, 0 >. one is represented by the pair (nonzero, (zero, 0)), two by .the pair

(nonzero, (nonzero, (zero, 0) >), and so on, where the nat~{al munbtt 1l has .n tags equal to
.} ,- ' '·"

nonurtt and one tag equal to zero. A representation algebra suitable .for def.ining sequ,ence[E)
. ; -- \ ' : ": ~- ' ~ ~ , ~-

is defined by the following equation.

seq • oneof{empty : { A }; nonempty : tupfefflrst : E,· test ':'.qi]

The reader is invited to fill in the details of the last two examples, to get some experience in
'. ..

working with recursively defined representation algebras.
'j -

Another treatment of recursively defined domains can be found in (26, 25]. We prefer
r- '.r _,'t· z., t { : · ' ~. · - ~ ' ' ~ : ,

to avoid a category theoretic formulation, on the grounds that the subject can be treated

satisfactorily in terms of a more widely known mathematical setting.

4.8.9 87s.tem States .·•

In a state machine model, the current system state function is the disjoint union of the
·-· ; . ~ ' :, , , : '. < -.. ·: f ' 1 i• .. ' " ~ ~ : ' , .-

current individual state functions for each mutable type. When defining a state machin~ model
~ ~ ,;_ , ·' ,

in our specification language, we will explicitly construct only the individual state function for
f. , ;-, :s.~·; :.: fV·- j -~ ··

the principal type. The individual state functions for the-subordinate types are taken from the
~ .

1!·-, ; r '. r-o:

standard models for the defining abstractions of the subordinate types, and the disjoint u"ions
~ - ; . ~ .· ._ 1 -·",: . ~*- .

of the individual state functions required to get a system state function are left implicit.
~ ~' •, • ·-:; ·~ ., ·~ -- ' ~ ~i (. ~- ,' '. : ~ ,. . •

We provide two abstractions, tokens and states, for use in constructing the· principal
') ' ... • : >;. /. ;. '

type and the individual state functions of a state machine model The Interpretation of tt~e
' '

principal type of a state machine will always be the principal ,type of the token abstraction, and

the set of individual state functions for the principal type of the state machine will always be
.·,

•..

- 92 -

state[D), where l> is the set of data statn for the state machine.

The token and state[D) abstractions are defined by the standard model shown tn.

Figtare It. These abstracti~s have beeri defined so th~t the only property of a token that Is

externally observable Is its identity, by means of the tokenhqual operation. The only way to

create a token o.r to extend the•~'-Uon·of lhe-.pr#Kipl& tJpeAs lly: me.am of the state

extension operation.
. '._-

The only way to extract any information from an Individual state function is to apply
~~i l ·1) i',,; ~·~~ 1;;;-~ '1)! '

it to a token to get the current data state of that token. If ail accesses to the state of a type are
~- '»·~-.~- ~'-".'

limited to the operations provided by the state abstraction, then we can be assured that the
.:;:·,.'

only state informatloo in a state machine-~ is that associated with "the tndtvidual data objects.
: ("';. '• - :· ~ :- ~--:

thus enforcing the assumption discussed in Section 3.2 and in Appendix I.

New states can be created by the init, txt1nd, or "'"""'' liiis . .-rTi1&~f11Jt-opsadee

creates an empty state. This operation has been included for completeness, since it is required
< -~·, .

to define the initial state of the state machine. The statelextend operation creates a new state
. .

. ·~ ' -' .· ::.~;~· ~:~ I~,; ,.. ~~~)!· ._.~ ~';~-· , -~~

in which the data states of alt previously existing data objects are unaffected, and in which a
{· ':1 ~.~> . .

new data object has ~created, with a given value IS its initial data state. This ope;auon Is
. {_: i f i~ t t ·'

used to describe the dynamic creation of a data object. The st•telupdate operation constructs

a new state -differing from the old one only at a single point in its domain, and it is used to

model operations that change the properties of some Histing data objects.
:_.,,;~, ~- ~--·.j·<, ,- _,,~: "· '(< • ...-, ..

Jn addition, there is an internal function atatelused, which ·tests whether a given

token has ever bttn created in a given state. This function may not be used In defining the
. , ;i· '

operations of a standard model, but it is useful in assertions and proofs about dynamic data

abstractions (see Section 5. f). Note that the ustd operatkJn wiH .say that an object that has been

• 93.

Figure 11. Tokens and States

module
t¥Pe· token .as T

with , equal: : T >< T,.. booleMt

repres•ntatton int
restrictions
klentity

operations

t¥Pe ,state[O)
requires

with

re.,...sentatiOn
restrictions
•4..-tity-··

Internal
definition

end state
end module

x such that x ~ I
equal

equat(i, j) .. if intkqmt{i, j) then true etse fa"" -

ass
O: type

in it:
extend:
update:
apply:

--+ s
S x D ~ S x tokrn
S x token x D--. S + (undft'inect .. object: >
S ><token ...-t!D." ·- ·">' c_ ·'aS'at-t'I(erg 2)

s, ... 'Sequence[{))
none

s•.,.noele.qual

init(). ... () - . "

extend(s, d) = (s I• d, I + (•s))
update(s, t, d) .. if I S t S •s then s(.. (t-1)) I• d •I s[(t+I) ..]

else (undefined_object :)
apply(s..t) • if 1 ~. t S •s then skhlse uftdtlfhtMt

used: - token x S -+ boolean
used(t, s) .. if I S t S •s then true else false

created and then destro)'ff (by changing its \\lasa state batk'te -..91fmed·dstng stM9liJpdate)

- 9f -

int~ currmt state. (For secure data abstractions, the two notions coincide.)

The reason for defining tokens and states in the same module;ls-18 limit atftll·todtlf

operations on tokens. Note that. the deflnitianulf the aate-0perations Ute'JM representatioW of

tokens, which is available throughout the module, but not outside it. If tokens wdt th!f'Rted In

a separate module, then the representation would not be accessible, and adiltitional operaltOns Cir

do not want modules other than the definition of the state abstraction to have acc•to itfty

operations on tokens other than tqual. We freely admit that this ts an ad '1oc soluticM; Mid ·9"

refer the r~ader to (21] for a description of a general access control mechaniSm for data

abstractions.

except at a finite number of tokens. This restriction assum••dmttdMUenilainlllfiflR!M IWtftl

is countable, even though it is a function space on an infinite~•tst_,.P CMe :tonsequen«"'of "'8'

is that we have no need of limit constructions or transfinite ~=tn reaSOltlWrf1HeOt'

system states. ·, ~ .

Spt'Cification has a data states componeotrath« tllan a repreaentatto1uomponent, W.'ltlOW
.,,;

that a state machine is being defined, rather than an exception atgebra, and that the
-

representation of the principal type is implicitly defined to be the token abstractiOl'J'ldefAffd In

Figure II. In this case the set of diua srat~ ~ ~ stng~on enumeration.type. At. isll me proper

been created, its properties are fixed forever), so that one proper data state is all that Is nttded.

. - 95 -

Figure 1 2. Standard Model for Unique~ld

type unique_id as U

with

data states

operations

where

end unique_id

cr~ate:

equal:

D = {null}

-+U
u)(u -+ boo1m)

create(s)() = extend(s, nu8)
equal(sXx, y) = (s, v }
v = if tokenlequal(x, y) then true else false

..•• ir . •

its purest form. The unique_id abstraction is secure, since there are no operations that 'deslro)

unique;,jds.

A state maChtne rriod~ff()r a ~moryteHcon~Ihmg ia:Sing~bb~ Or type Eb shoWn

in Figure 13. cenf are a~ -the simplest 'ff.uub1e 1Claii'"a~l8*s.1 ~ftte'j,V,.fi·'~ud...

returns a new ce11 witli a ·Sp«h'ied lnitiaf·c&\teht's. ''Nti& thiit''~'ata'tde~terta''~rataon

returns a pair or values, contl'ihing the n~w'Stiie?ai&fri~~ :tefit~ntfhg ltie >newty'tr~t~

object. The new stare· is' the firsr rerurrr'htUe'bY' ~df"~tbf~i it'i(~~ Mid.1Ni !Jmet and

ifi'e okf-state is the fir~t ~tgdmerit. rt. an 'imp~fatrbri, the· stite''is ·j)assecfarourici' implicitly,

while it is explidtly represented"iri a Sh.te'rnad.ifte"~tit!;'·~t~rtfi'eMt"ec! in the signature,

whith has no men'tion of the state, ana'·6~strities1~,,.~ ty~· ~rlktbre '~isible externally. The

ufxlate operau&. returtis ilo data objeet(but it' pitJclutes' a new state fit whklt t~ given ceri ·t.as

a n·ew value for its contents .. The conttnti operltiOn retutnis
1
(he 'dirierit conr~'tS of a. ceh, and

the equal operation tests to see if two cells are identical. Seth of these opetations do nor·inodity

Figure 13.

type cell[E]
requires

data states

operations

where

~nd cen

asC
E: type

create:
update:
contents:
equal:

- 96 -

[--+c"
CxE--+
c--+ E
C xC--+~lt

create(sXe) .. extend(s, e)
update(s)(c, e) .. stete(DJlupdate(s. c, e)
contents(s)(c) • (s. s(c))
equat(s)(tt, c2) • (s, 9)

. v • 1r ·~~·~~~2) then t.~ .. e• fal$f .

the system $~ate. If we vte;~, c;ells as. th~ J,.-va~ of t11e ~,r~~0~ ~.9~r~~I language

[cf: 50], thtn :the ttplal :~ration can be u~ ~o .det~ne .. w~h~ QC n~ t .. ere ts ,aliasing

between two_ variables: an .assignmeJ)po Oil' ,\'ariabk' (a ~~~ ~a~) ~ill affe<:t d)e

value of the other u.an(P?l!.J if .the '(ariab;f!!s have tglltl(L-~alves.

Not,e thaJ there is no, s~h-~~ing, .as an _,ininitialiud cefl. Jf .~ ~anted t4:>-de{iq~. a,

differ~nt cell abstracti~, in whit,h cens could be ~r~tt',d. Wf~~LWi~, .~iUalized, then ,,e . - - ~ .. .

would have to introduce an additional data stak toJn~iul! t~at ~ cell_ w~s Ufltnitlaliz~. si,llc:~ a,

tole.en with the data state und~flned rq>re~nts a ce~l .• tl"t h~,s not been creat~ ~- Since we

require the_ operations or.a ~ata ab~traction to t;>e d~trn,i•~•c. an J,~tempt to fjnd the contents

of al) uninitiali_zed cell _would eitl,er have toJe$ult _in an except~. ~d,~tion, or in some

comtant default value.

- 97 -

4.4 Well Formed Specifications

A spedfication is well formed tf K ~ 'Sdttfe e'lc~, ~lgeb~a or stat~ machitte.

This wot ~ dte ,. tr the requir~ MStribtcl' tn ·the'~f61ow1nf-sub~s !a're mt>t. In

addiliolJ, a, reaSORalty deflntd· ~ata abstrmmll sho4iW'dtisf'ft~!¥'oltawmg~twb · cen~traints

{cf. il,101

Every operation of the abstraction d should either ~ake a~ least one argurmmt frQJQ t~~
~--2 ...,~ ... :::~r~")_;,. ""tn~~;'. ,- .·: ·- _ -~.~1::~"~ .. · · :. -.,,-,

principal type of d, or it should produce at least onP. return value (in the normal termination

c;ondi\iQn) Jrom the pr.tncip.at:11peeh~4or fNrNtloWw~qr tt1~· is'mdre than one).

Tf1e pt~rpose QI' ttiis··CGOSlraint is to rutf out .fUnctkJm'lttal hlW ·~hmg to do with die
.,

beha.vfor of.the primipal-tJfW. . . ~ .

. T~re &hoqtd ·~ at lent 'one opttat'flft'tllaf ~-;12 :.,YattJe ~ging ·ta 'Hi~

principal type which does not take any arguments from tl*J"'mtif'iil'type.1••1r- this torr~frllilit lS

not l'Tlt'l, then there is no way to compute any ~va~es. of .the .~in~ip,al .• tYf>e. an~
.... ~:: ;..·- 4 ,,~' ' -, _i -· • ""* ,,,_\' . . >-

t~.us .th~

interpretation or the principal type in a reduced model is the empty set.

Note that both o£ the above cynstntinas t'C'1 'bf,'t~ed gitflt jUSt the 'signature

. . t ~.

4.4.1 Type Correctness

All of the expressions in the specification must satisfy the type constraints contained In

the signatures of the abstraction being defined, the signature of the representation algebra, and

the signatures of the algebras subordinate to either. This means that every operation must be

supplied with the correct numbtt of arguments, and that t~ definition of each operation must

termimue In Of}ly these termjnatiog. a.ht if!ttjflld•tM apa•re;;IMMt fWodule the right

nulnbfr and type.s. of retufn v~Jer •h.· ,TMs a110t•a1,....ar·syatac:tic ct.eel~ because 'tt

Dl&J require prqYl!'g that tt,e expMUien Mftniag. ;an·~ teainlwatu: ift a gtven

termination condition (usually the normal conditionl

4.4.2 Representation Consistenq

The represenratioQ. ~nul~_.,J>,,* ~eqtatlllft sec:t.tot'I, must either:~ a

mem~r. of the~- of atgebra.s geMraled:bf-eheaJftllnKtiln1gtwnttufier,m tMs chapta. or it

must have a previously defined standard model If the rep~iGn · ~, Is d~flne.Fht

termi of,~. para~fiJ'ld d~ tWi·c~·spedfild '*" ttw~r •"Set'tion of the

para~eriZed ~inttion. ~be •tek. •

4.4.8 Representation Invariant

condition ca·n be t>stablished by an inductive argument:.a• ttatftdt•goment from·rtw

principal type satisfies the restriction, show that each return value of each operation satisfies.the

restriction.

--~----- ----

-99-

4.4.4 Congruenpe

"'>·.-t

If a nonttlvial·~uiva"tence relation is given in the tdentlty section, then it is necessary
•c • .; '. ; ;; ;, .

to show that each operation is consistent with the equivalence relation, in the sense that it maps
' ' , • : _,~ ' ' ' :· l~ . j~ f: '

'equivalent arguments into equivalent outp~ts. This requirement is a necessary condition for the . ,. ..
'

, • • - ' ~· - 1: ~ - ~ -:-~_ ~ "".· ~' ~ ~ • ~'· .;

impfidt extension of the operations from the representation algebra to the quotient structure to
..

be we11 defined, as described below.

The opera.tions are eKplicitlJ Qef~ as f\mcttons that operate on_·the elmlents of the

principal type of the representation algebra. The model denoted by a specification is in general
-~ ··~

a. quotient structure, and the interpretations or the operations or the data abstraction in that

model operate on equivalence classes of elements from the principal.ty~:of"the:'t"eprelentarion

algebra. The operations can be extended to operate on equivalence classes in the usual fashion.
i .- '"1'•" ·- l/

If the operation f takes a single argument from the principal tjpe' and returns a single value in

the principa I type, then the corresponding operatk>rp P9. f)q8iva-'1'.9'Sl f ~ {4J def'tne<l ~Y

fa< [x]) = lj{x)] 'j

where [x] denotes the equivalence class containing the element x. For:~ x'l~tilpft tlefifttd ·bf

the. above equation' to' lie · siflgle t)tti~:· ;a~d ; h~~~~ ·.~ f\J~;~~.,_on eq~ivalence dassel, the

function f must satisfy the following requirement:

x • '1 ~ f{.x) = ./{."J). .,,,

Note that~ if ;:: b the same as the logical equality relation on the principal type of the

.... . . ' ·' . • ? ·, .• :~ l - ; ~ '·.. ' ~· . } ' .

representation algebra, the11 this requircmentis aut0maticaHy satisfied. An equivalence relation

-IOO-

that satisfies the above constraint is known as a congnunct r1ldiibW ~ith··reSp«t to f. A

definition off: and or the congruence requ~t ~~,a ~~·'·;'~~a~.~ of an excq>tion
- - ~ ,- " < ~ " ; - ' • • ' ' ~ " , • •

afgrbra or a state machine is given below.

Let f be an operation of the abstract.ion A, J: •t x ·- x a11 ~. -~ R,. ~where
·. \; t.

R,, • r1 x ... x r m(T~ and let d be _the principal !~ ",.~· , L~ = ~e the relation defined by
' ,- ,<- • ' " <f

the fdenttty section of the specifrcation. Derme the ecpnvalen<:e r~lation If _by
, -. ' ~ - , . ' - _, " :

and define the •equivalence class• ec by

and/ must satisfy the requiremmt

Vt: t<t~n~l ft!/."1; 1;> J:->
-~.

tc(l{x1, ... , xn)) • tc<f{11 , 7,J) le V j : IS fllll(T) (~~~ ... -.·;: e; ~11)) .~Jo, ~IJ(Jj, .~. , 1.» ~ft l

4.4.5 Termination

Every operation must be shown to terminate in one of the termination ~onditions

~pecified in the signature for any set of argu,mmts of tfle proper !JPe-,. given th't anr. argumenu . ~ - - .. - - '

from the principal type satis~y the restriction given in the restrtctloJu J«tiol:I of t~

specification.

- IOI -

5. Correctness of Implementation

Every well formed implementation of a data abstntction defines an impltmnztation
,, !' ,~ ,- ;._ ;,) ~ .. •. •'

model for the data abstraction. The construction of the implementation model is discussed in

Section !°l.J t>elow. Our basic definition of correctness ts tftat the impterflentation model must be

behaviDMlly equivalent to tt.e standard mooet of the abma'c!tlon to be implementee[This

definition corresponds to·the- ifttuiUon that there 1fioutd w 6o obServable dlfference ·between

the behavior of the. impwnlti\ttation and tht- behavior' of 'the 'standard tnodef.'cast Into the

framework ;of de'terminist:ic tequen<iaf l'Omputations. . ;

The ctassical way &o ptoYe the 'COITectnfts if·alfimpletnehtatton with respect to an
~bslfa(t mo*bspeci~cation is so exhibit a h~ptdsm; "th Sectian s.2, we show that.'the

~ssical apf>"a~7 is.dound·ifl ~- ifandard"modet' mct·tfnf·ffn~neihmtiOh model are both

e~ceptioo: algebras, by.e;hawingcthat t~ distae> el'i' ~tram- ftorn 'thltnftp~menlitl0n

model ·~·:the standard moRf impl'Ws· that'1he tW& inedeb' rre ~aV'k>rally equivalent. "'ti was

shown in Section· 33.1 that thre dassiUJ a~h ts ats0 t'blftfileie 'tof·'the static t~se:'it.' ;the

foUowing sense: if the standard medttit'rfct~~ tlieft'there~;·a··h~phism: ~rom any

beha vi,orally equiva.tem impleR1efltition modef te the lt8hdartl mddel.

Section 6.3 discusws tt.e ¢a5e' ~e the· itiftdl'td c:rnodet ··ts a·n excepcron algebra ' and

the implementation model 1is a state machine. Ir ts ~·that a correspondence foncfion

apatogous tQ, it' homomorphism can be vsied :co demoristra~'Mbatlbtarequf\ijlence.

Section !i.i disc;tmes the casec wlter.e the· standarchnodeJ amt· the implementanon· model

are both state machines. In this case there is no useful analog to th~"homomorpl\'t'sm·ttie0r~

of Section 5.2, and proofs of correctntss rest directly on th,definition or behavioral equivalence.

- IO'l -

The proof methodology is Illustrated by examples.

6.1 Implementation Models

principal type :t# the 5tallf,\~r4-IDOdd. fer t1ae- . ..,._e1lfau.t,.....,... •,,lllernct.ible subset

contaiqF just t~ elements of Ute prJndpalt)llle.Jl\lt1.-~b;'~fintte ·~

comput,tlon in, terms of ~.~ioaJ.of 4 aftd.the-...11tt1C111s;1 ~1t> ti., Tite

t~teq>r~at~.,of.an.Qpe!f'~,pf.,~pr"""'*"''it:ilw,_...., • .,,Uliclzllfitf*.~tlft
':.. : • ~ ' ' ' ' t - ' . " ' - • ' •

a~dt"'~e to~'. ar~ rak,cn {~Jhe ~rd~,,C·, ... _. •. atistraC!tkln.

,· tl\~Jmp~tion ..W a<,,,.,...bf _....._ iilD il;contams 1n1ttpre1a..S

rnchabfr. T~re. ts no. explicit•~ ctass~ alk...,lemmattulfanoM\•fllwat

several distinct Jroplemen~UQP<.~Gb~·,fftaf f'PfWM "'the ;alJstna··objKt. "PM

- 103 -

5.2 Static Specification, Static lmpiementation

The classical methOd for dernomtnhitf tht- canettness of an 'ttnplementatiM -•ith

respect to a standard model specification is to establish a honfOldbirphi1m from the

implementation model to the standard mod1!1. ,.,fft;ifl* ~ioo' wt' ~t -a tfteorem that

demonstrates that the classical method is ~nd for cases where both the standard model and

•/:,

5.2.1 Homomorphism Theorem

Since an excitption 'ifgebra +.as I dlsjotm <triftol'I structure not present in the

ht'tt!rogeneout alg~s Of (1], 'w~ have' to eitttid'tfledefinUtort ot a homOiYtorphisrn 's1ighrty: A

homomorphism betwttn two ~x(t;ttion. litgeb#as jmUSt 1 praerv~ tactl; apmtiOn, 1 whtch -means

that me rermmanon confitions of ~pbtl8tng•~ti0n irt\roatlonf nmst be 'die same. and

that tor~sponding r~ villi~'· mu9'f·.f)el hOMoHtGtptlk''lmages,· when~er cortespood1ng

arguments a~ "8inbmorphic imaps: More·prtctsety; if';i'l'ndi~lf ale two exception atgebrai'

with the ·samt> stgnatiire;, ~ a ·ltol~sth' A from A''lbi-ft tS a tainity' of'funcUons

Let P = A. phyla, F = A. operations, fJ c A. opnames, n • A. arglength({j),
let«;• A. argtype(tJ; t) and xi< J'4 . for each I mNw r1nget~·1 $'11, • ·.

i ,

let (1:· < 11- ... , 7111 >) "' F fJ<"xt, ... , x11).

where ,,. c A. tc(tj), m = A. rtength('T, fj),
and wh~re 'p•, A. rtype(·'T, fJ. J) and1j < P ,

1
ror eachij HI thf range I~ J !r.rn.

Let 0 .. B. operations.
< :. ' < -.

- KM -

The in the conclusion refers to the equality relation on abstract objects. For models defined

Theorem 7 : Let Ml and M2 be complete exception algebra models with a common signature.
If there is a homomorphism from Ml to M2 !lt.9*J.t:'I..,,..._._,.fM1ppinf 1

'"'' the
subordinate ty~. then Ml and M2 are behaviorally equtntent.

Proof : By induction on the length of the computM*t.;-, Dtintls .• '.t•pldiJC:iHlu .
End of Proof

compu,tation C .in Ml is a step bJ. stepAir••tiee, ef '"·' itfttrpt~· oLC in Ma.

Corresponding resuks (data ~jects) may ~ave cliffe""t ,r~iofts :ift tM· two .. models •. but

they must ha¥.e the same propert~. Sifq.&ht,~hfp .;~f'td. lQ,._ the ~

maP.Ping Ql1 _the b.ooleans, the. ~f1Wmi ~J·. ,..,1gua~ ._ any. pdmtave

predicat~ ~jJl,~jve the sa•twth •aitrefos:(C)fr~ ~._,m.Mlaad M2.· ·

.. Note tbat.we.are ~Jjng wjth.complel•~·~ ..,. ... ~ ofievery

type subordln~te to the pr•ipal type hi~ to ttt. ..-1onsof-tbe l"'in< .. l<tfpe. If

homomorphism must preserve alt of the operations of an exception algtbra, including those
' ~ : •' h~.

associated with the subordinate types .. Jt i~suff~tte-~icit:lf <~tder only.the;oprratiens ef1

. the principal type whm proving the correctness of a R'atic fMpltinentatton, because the
. .

component of the ~ptaistn for ft(h;of·rhe ~- 'JPft· fs'the· klenttty 'ftWttttali,

which trivially preserves all of the operations of the defining abstraction~ ~~ch 'su~in~~e·
• <; ~ ; - , (' \ ; ':-,'

type. The rt"quirement that the homomofpWsm must reduce to tM'' identity mapping on the

subordinate types is no restriction in practice, because of ·the way in which· the standard model

- 105 -

and the implementation model are constructed. In both cases the interpretations of the objects

and operations of the subordinate types are taken from the standard models of the defining

abstractions of the subordinate types. Consequently, the subordinate types have identical

interpretations in both models, and the natural correspondence between the two is the identity

mapping . •

6.3 Static Specification, Dynamic Implementation

In the ca~e where the implementation algebra is a state machine and the standard

model is an exception algebra. a correspondence function can be used to establish the

behavioral equivalence of the two models in a way entirely analogous to the homomorphisms

used in the case where both models are exception algebras. In the rest of this section we present

a theorem justifying the use of correspondence functions, and an example to illustrate the

procedure for establishing the correctness of a dynamic implementation for a static data

abstraction.

The correspondence function that Is used to demonstrate the behavioral equivalence of

..
a dynamic model and a static model is not a homomorphism on algebras, even though it must

have similar properties. Some of the differences between homomorphisms and correspondence

functions are outlined below.

Recall that a homomorphism is a family of mappings, one for each phylum. Each

mapping is a function from a phylum of one algebra to the corresponding phylum of the other

algebra. The ab~trnct objrct represented by some implementation object mui:t be completely

determined by the identity of the implementation object, since the mapping takes no other

arguments. This works well in the static case. In a state machine model, the properties of a

- IOO -

data objt"ct will depend not only on the tdentity Ot the object, but also on the current systttn

state. Consequffitly a correspondence function must differ from a homomorphism by taking the

system state as·an extra argument.

Recall that the principal type o(a state machine contains tokens representing all of the

data objects that can ev.er be created. In each system state the population of objects that have

been created so far is the s~bStt of the principal type.-~h ~~ ~!fhtlit w.lttle lhf objids

that have not been created yet are all mapped into the (improper) data state undefined by the

system state function. In system states wfm.e a givm tolt~ has the data state undefined, the

token does not represmt any abstract data Object, and after an ~ration Is performed that
~. . :

assigns a propt>r_ data state to the token, the token represents the newly crnted data object. To

make the corre~dence a totalfunction we adoPt the; following conventtOn. A correspondence
r. . i

function must map a· token into the special ~ject unclefkted f~ any system state for whkh the

tOkm Iles outside the current p0pulation.

The proprrtits of the newly created object are determined at the time the object ts

crl'ated; and h:ive no particular. rebtiOn to the 'ki~tity of ·ti~ tok~ representing the object.

Different corriputations can tead to states in which a gi~en token has different properties, and ln

such a case the cor~espondmce function must map the t~en into different abstract objects in

the two states.

The correspondence between the tokens of the implementation model and the abstract

objects of the standard model ts established by a series of approxima~ions, corresponding to the

steps in the computation· that create new objects of the principal type. Initially, the population

of the implementation model is empty, and the initial correspondence is empty (i.e., in the initial

state the correspondence maps every token into the improper object undefined). As new

• J07.

objects are created, the image of the token represenUng t~~-,newly created (J~ject chang-;s. ,fr~
. ,' ,::_, .,, ~- ?~ i: ,.:;: ·~>:: .":: '.- 1~l ' :~. '

undefined in the state just before the object was created, to the abstract object represented by

the newly created implmtentatton t1bject in the:st.itt just after it' wa~ d·eat'ed. 'For abstractions

that do nm a&w the exp1ictntestructmn or data ~ts, the eortespOriHence tunmons for the

sequent~ of system states proeuQ!d by a closed :tompUtatlon· at~ a-· ~tes"of pure f.iixtmslons:· lf ·

correspondence funttiOn, and l < f, then ir must· be the ·cm t'hat

c(x, O" ,> 'If undefined ==> c(x,O" i) .. c(x, "}

implementation objec.t has been created, and it has. C9JM tQ repretmt a proper abstract objeGt,"

the monotonicity property says that the imp~ltoWObject must continue to represent the
;i,

same abstract object in all subsequent states. This Is just what we would ~xpect; jf .w~ crea,te .ilfl

implementation object and assign it to a va.ri_ab~. we wpuld Uke to assert tha~ tb.e varia.ble ,1'Vtll

continue to denote the same (1mmutableh"5tract abjll:t as long as: we. do not aUign a new value

to the variable. Spontaneous changes in the abstract identity of the value are not acceptable.

A correspondence function mu't reduce.to tf\e identity mapping os:i ~hi. ,..,bordinate

functlon is independent of tfie system state .. The abstractions we ~.re considering in this section . ' . . .

have static standard mod~ls. so that a.U of .the.1uborm11a~. types~ be s~lk. and all of the
. . . .

objects of the subordinate types must therefore ex~ i~ . all,. ~le w~ st~tCJ, in the

implementation model a~ well as in tt~e staQdard ~L

-108-

5.3.1 Correspondenoe Theorem

thec>rem suppqrtin' ~r U$Cfulness .. J..et A be•._,,......"'•· IClt I c'1e: a11·~Kcepden

. alg,..bra . suc;b that the Jtpa.ture qf 1't.JA (GAia._..., in: tf9' ~ Ali, A • . ·A cormpo1~

machine A. A correspondence c must saUsf y the following property.
~ \ .

Let P •A. phyla, F ·A. operations, tJ (B. opnames, 11 •A. arglength(8),

let a, • A. argtypc(d Q:.arntft ~' P"'l fqr A'b i •:.t¥ ~ !~ I,$; II•:.·

let a < P s•

let ('f', (tr', 11· ... , 1m)) • F j.ci, xi, -· , x11), '

where 't < A. rc(lJ}.,17',e P1.,• "';A• rleqgf~'f,,IJ~ ,
and whf're 'J • A. rtype('F', fJ •. fl and 'J < Pr for ea'ch j in the range I :S j :S 111.

Let G •· B.operatiOns. . . j .. . ·-' : .. .

Then Cfj(c0 (tr, x1), ... , c
4

(O', xn)) • ('T, (c, (O'', ,.)~ ... , ,,- (er';,.>">),·
I n I 11

x < Pa le a<· ~-statenamtt I: x•<n,..1:Ri0n(Ol._ ·~ 14•~ at,·
and x < Pa 8c a < A. statenamn ~ c(a, x) • c(cr', x) ..

•
The correspondence property says that the rorrespondenct ntust pmerve all or the operations or

' .
·_. - - •. : ~ .~·.' ~''. ~~c_,,· • .-,,,.,~.'-~- ' . .; •. _ ~·

the target algttf.>ta· .. Nott-that tttto·new state 0--ptottuerd by ttW..,a1ton or the state Machine ts

u~ to detenmntr the corresponden~ betWeen 'the mdlts'Ot' tftf ~tion ln t~ state machine

·and ·tn the·~ceptton algrbra. A ~-fOftCiton·musr l1slO satuty the rnon0tonfdty

'r~utremmt~·as stated ih·t'Mt-ttst two·c1abses.

A correspondence function is dtstmglitsfted'fram a ~p~{Slri' since it takes the

system state as an extra argument, and since It satisfies the monotonicity property specified by

- 109 -

the second clause of the conclusion. Since the range of the mapping is an exception algebra,

there is no component of the correspondence function for the phylum of system states.

The correspondence theorem assures us that two models are behaviorally equivalent
, "

4: ':i,.
.. ~ ' .

whenever there is a correspondence function from °"" t• t~ other.

Theorem 8 : Let Ml be a state machine model[a,1\d;~t M2·bffU}!:4~on a~ra .~; If
there is a correspondence function from Ml to M2 which reduces to the,identity ~ ori
the subordinate types, tht>n Ml and M2 are behaviorally equivaie9L;ft1 · ·; r1 : '

Proof : By induction on the length of the c~tioo. :~tails in,Appendix Ill.
End of Proof r,. ;;. · -

The proof is very similar to the proof of the homomorphism theorem, except that ".the

monotonicity property is required to transfer pn>pert~s.ofa dat1Jm,je(t from the state in .which

it_ was_ ~reated tot.be stat~_.m. wl}ich it;~ used~- .mieM4D<a IUM11:prt111.ptratton.

6.3.2 Simpl~ Example

impJe~~n,ta.tioo pf ,a ~tic,da.tar;ab-stra4*t1il,~ ie;thiS:ltlbledion; i We wilt tonftftt' an

imp,~entation of ~e intptlil ,abstract .. ,iorle~d' •rara.rnq•S<'. /Mflalts are ·l'fttmutable

a variable size. _ It is _nQt pquible . to. cFeate ap Mf&J.c14'Mh · unifti(~bzed eJemeflts. The a trays'

Figure 14. Pairs of Integers

type intpair as P

wtth

Tepresentatloa
r•strlciWna
Identity

operations

end intpair

create:
left:

int x int--+ P
, int

right: P --+ int

P • tuple(ltft: int, right~ int}
·nont"

tuplelequat

create(~; y) • (right : x, teft-! y'
lefl(x) • x. left
right(x) • x. right

i: .

Figure 17. The derivation ·of the implementation model from th~ trw~tatlpn,., i~
. ,-'; ; ~ ~ ; ·~ :~. :, :~ .s -? .1 i" "'· fl- ·~ ,;; ·~"' ~

straightforward. The operations of the implementation model are described in the same

notation as the operiltioi'IJ of,tbe standa,.. mode1 to:a'Void imtcfdoan;'a;host 'programming

practical pi:oofs as well, thus Sl'p1tratiftf the tssues lnvoW«t In dabfishin~ the· Coirespondence

between two dtff'f!ttnt representattans for a data absrractm ftbm tw problMI of ptovtng that a

procedure'. writtm in a pa rtiwlar programming language tmplfmenu ·a pantcular function.

To prove the correctness of tha·knp1etftei1tatten; •hue tO'ex'hibtt a mapping c and

demonstrate that it is indeed a correspotidenu ftiffdibn. · The·bthavioral-equtva'terice of tt*

standard model and the implementation ·rnodet :wi11 lhen rc,fk,w from the correspondence

theorem. In order to distinguish tM> optndioni of the irriplementatfon model from the

operations of the standard model tn tie proof, we. will preftX the· tmplementation operattons

- Ill -

Figure 15. Arrays

type array[E] as A
requires E : type

with

data states
restrictions
Identity

operations

end array

cn~ate: int~ A
addh: Ax int~ A
add I: Ax int~ A
remh: A ~ + (bounds :)
rem I: A ~ + (bounds :)
store: A x int x E ~ + (bounds :)
fetch: A x int ~ E + (bounds : .)
equal: A x A ~ boolean
low: A~ int
high: A~int

length: A~ int

D = tuple[low: int, e: sequence[[})
none
tuplelequa I

create(sXi) = state{D]fextend(s, (low: i, e: ()))

as arg I [arg 2 J :• arg 3
as arg 1 (arg 2 1
as arg I • arg 2

addh(sXa, x) = (state{D)lupdate(s, a, (low: s(a). low, e: s(a). e I• x)), a)
addl(sXa, x) = (state[D]lupditte(s, a, (low: s(a). low - I, e: x +I s(a). e)), a)
remh(sXa) = if •(s(a). e) = 0 then (bounds : s)

else (state[D)lupdate(s, a, (low: s(a). low, e: butlast(s(a). e)), a)
reml(s)(a) = if •(s(a). e) .. 0 then (bounds : s)

else (state[D]tupdate(s, a, (low: s(a). low + I, e: butfirst(s(a). e)), a)
store(sXa. i, x)., if s(a). low ~ i .S s(a). low + •(s(a). e) - I
then state[Dltupdate(s, 11, (low: s(a). low, e: s(a). e[.. M] I• x •I s(a). e[i+J . .]))
else (bounds : s)
fetch(sXa. i) "' if s(a). low ~ i ~ s(a). low + •(s(a). e) - I

then (s , s(a). e[I - low + i])
else (bounds : s)

equal(sXal, a2) .. (s, tokenlequal(al, a2))
low(sXa) = (s, s(a). low)
high(sXa) = (s, s(a). low + •(s(a). e) - I)
length(sXa) .. (s, •(s(a). e))

with a "! ". T9 help the reader distinguish elements of the standard model from elements of the

implementation model, variables ranging over implementation objects will also be prefixed with

-112.

Figure 18. Implementation

representatfon array{int]

operations create(x, y) • addh(addh(arra~I), x). J)
left(p) '"fetch(p, I) ·.-,
right(p) • fetch(p, 2)

Figure 17. nple"""'atjon Model

representation array[intl

operations
where

create(s)(x, y) • addh(s2)(p2.y)
(s2. p2) • addh(sl)(pl, x)
(sl, pl) • arraylcreate{a)D). .p

~ft(s)(p) • ft'tch(s)(p. l)
right(s)(p) • fetch(s)(p, 2)

:. ;~

We have shown only the component of the c~r~J91' the principal type int/xlir. The

correspondences for all other types are'tden,¥J f.t,mqiops.
' ~ \, "'- : - . './"- ..

The proofs for the operations."'"''•.~~ left •P.l:~h9Wn 1~ ... The proof for the . . ' . ' .
o' , '.~ "- ! !;, ·~ •c ; ;-, ~-;

operation right is similar to the proof for lift, and ts ~ as an exercise for the rea~., Tk

proof relies on the implemmtation invariant I shown bfiow, which i.J a restriction on the data

state of every object rtp:~ an intl#Zt'·

- 113 -

Let x, y be integers,
!a, !p be tintpairs,

ls, hO be system states for !intpairs,

Let JI = !s(!p). low = 1 & •(ts(Jp). e) = 2

create
Let (!s, J.a) = lcreate(!sOXx, y).
We have to show that c(!s, Ja) = create(x, y).
From the definition of create, create(x, y) = <left: x, right: y).
From the definition of c, c(ls, la)= (left: ls(!a). e[I], right: .l.s(la). e[2]).

Using the definition of tuplelt>qual, we have to show that
ls(la). e[IJ = x and J.s(J;i). e[2] = y.
From the definition of the array operations create and addh,
!s(!a) = (low: I, e: (x, y)) and Js(Jp) = JsO(!p) for .l.p -;t la,
so ls(!a). e[I] = x and !s(la). e[2] = y.
So c(ls, .I.a)= creatc(x, y).

Since la is newly created and h(lp) .. lsO(!p) for all .l.p "' la,
the monotonicity property holds.
Since the array operations create and addh can only terminate in the normal condition,
c preserves the termination condition of the create operation.
So c preserves the create operation.

Also !s(!a). low =I & •Os(!a). e) = 2 and ls(J.p) .. bO(lp) for !p"' h,
so that the implementation invariant holds in state h if it holds in !sO.

left
Let (1s. x) = 11eft(I sO, la).
Let a "' c(Js, !a).
We must show that x = left(a).
By the definition of c, a = (left: !s(1a). e[I]. right: ls(J.a). e[2]).
By the definition of left, left(a) = h(Ja). e[JJ.
From the invariant, 1sO(la). low =I & •OsO(la). e) .. 2
so J.sO(J.a). low ~ I ~ tsO(Ja). low + •(!sO(h}. e} - I,
and by the definition of !left and arraylfetch, Js = lsO and
x .. !sO(la). e[I - I + I] "' !sO(h). e[IJ.
So x .. left(a).
left and Heft always terminates in the normal condition.
So the correspondence c preserves the left operation.
Since .ls = !sO the monotonicity requirement is triviatly satisfied.
The implementation invariant holds since ls .. hO.

right
Proof left to the reader.

- 114 -

For the purposts of comparison, if immutable sequences had been used as the

represmtation of intf'<Zir instead of arrays, the homomorphism would have been the following

for the analogous rtprestntation:

lt(x) • (left: x[ll right: x[2]).

The proof would have been similar for the immutable epe, tKCefK thal tflere would have been

previously existing data objects satisfy the implementation in._r:iafttt :a5 we did fQr the """'

;,,.

,,.

on the images under the new system state of the data objects 1etumed. A ·COl'l'«:tlyc ~.

operation must preserve the invariant, wlt1';h rnea"5- that the iay~t lllUSl .held ~ith restJ'd

to all data objects after the operation is performed. This includes the objects. returned by the

operation, as well as any others whose state may have changed as a resu- of the .pPera&ion.

Note that the proof methodology presented here ha$ no difficulties handffng

implementations with benevolent side effects. If t"'.'cor~ f~. iJ.·~Y to, one.

then an operation may change the state of' an· i.mpliem.entatiQn .~ · wUhOUl .affecting the

correctness argument, as long as the image of the imp~00f1 object under the

correspondence function dOl's not change. Such'5ifk .• eff«ts QA ~ w$Gul itl,i~~• :~e an

operation rearranges a data strmture ro make future Ofl"'aa.s on ·t~t struttwe more .effi~kmt.

without changing the externally observable behavior of the structure.

- 115 -

5.4 Dynamic Specification, Dynamic Implementation

The correctness of a dynamic implrmentation of a dynamic data abstraction can be

proved by constructing a simulation rdation, and by showing that the simulation relation holds

for all closed computations. The method of simulation relations is a general solution to the

problem of proving the behavioral equivalence of two models, since it can be applied to both

static and dynamic models. If the standard model is static, then some simplifications are

possible, as illustrated by the homomorphism theorem and the correspondence theorem

presented in the previous sections. In this section we consider the fully dynamic case, where the

full power of simulation relations is needed.

Recall that each object of a dynamic type is modeled by a token. Tokens have no

distinguishing features other than their identities. The properties of a data object represented

by a token are modeled by the images of the token under the current system state function. To

establish the behavioral equivalence of two models, we must specify the correspondence between

the tokens of the two models, and also the relations that must hold between the states of

corresponding tokens. The first of the two correspondences is the correspondence relation .,.

described below, and the second is described by the simulation relation. For a pair of state

machine models, the simulation relation is typically defined in terms of the correspondence

relation.

Since tokens do not have any distinguishing properties other than their identities, it is

generally not possible to describe the correspondence between the tokens of the implementation

model and the tokens of the standard model without reference to the computation that produced

the current state. The correspondence relation for tokens is easy to describe in terms of the

- 116 -

. . .
computation, since the resillts of corresponding steps of the' computation. in the two models must

, D~flnttton 20 Corres.,0..dence Relation
If the computation C is feasib" iJ1 ~'b Ml and ~2.~ x,is t~J.-th retU•· value or
rhe fth step ofthe tnterpretatiOn of C an Ml, and if 7 is the Mh return value of the
j-th step of the interpf'(a~ionQf C i~ M2. ~ ,,,_ ,wilfrlaJ•.._iX:,CIM'_l"'f -41' to J ·
and we wtb write x ... ,. · ·· .· · ·

The correSpondence relation applies to system states as well as to data objects. The

~ . , I • .

correspondence relation Is syntactic in nature: it is· defined In terms of the structure of the

computation, without any regard for the meanings of the operations. so that the same deflnitton

applies to an data abstractions.

The simulation relation describes the re.;.r~ that must hold betwttn the sta.tes of

corresponding data objects in the twO models for t~ objects to have the same externally

obSt"rvablfi behavior. E'xamples of simulation retat~s can be found in the proofs or correctness

given· in' tile following sections.
~ ' .- ' · ..

'
. i''

A typitaf proof of correctness proettds by induction~ the length or the computation.
-·:",

to show thit for any dosed c0mputation, the. terminattm condition oft~ last step Is the same in

both models, and that the simulatiOn relatton'hold~;in'~~"final statn of the two models. The
· ... ' -~ - - ~ · 1

. proof splus up.into cases on the type of the last ot>erat,ion of the computation, with one case for

each primitive operation.

To establish behavioral equivalence, the simulation relation must imply that

corresponding· ~an values are equal. ·fypi~1ly dte simulation relation will be the

conjtindton ·or a number of clauses, where each ~la use is an implication. The hypothesis of the

imptkalion' 5ays- that a number of pairs Or objects have gi-~en types ~'are related by the·

- 117 -

correspondence relation H. The conclusion describes the relations that must hold between the

identities and states of corresponding objects. The clause stating the standard requirement on

boolean values is the following:

b .. lb ~ b = !b,

where we follow the convention that variables prefixed by a "!" refer to elements of the

implementation model, while variables without such a prefix refer to elements of the standard

model. Just as we required the homomorphism or correspondence function used in a proof of

correctness of a static data abstraction to be the identity mapping on the subordinate types, we

will in general require a clause in the simulation relation for each subordinate type, stating that

corresponding objects of the subordinate type must be equal.

In order for the induction to go through, the simulation relation must be strong

enough to enable the simulation relation to be proved in the final state, given that the

simulation relation holds in all previous states. In working out sample proofs, we have found

that the definition of the simulation relation usually evolves along with the proof, In the

beginning. the simulation relation states just the required constraints on the boolean domain

and on the other subordinate types. In considering each operation, it is often found that an

additional hypothesis is required to show that the operation preserves the simulation relation

defined so far. As clauses are added to the simulation relation, it is of course necessary to go

back and show that the other operations preserve the new clause as well. If the implementation

is in fact correct, then this process will eventually terminate in a proof that every operation

preserves every clause of the simulation relation.

The use of the correspondence function ++ is one difference between proofs of

- Ill -

correctness for dynamic absfractions and for static abstractions. Another phenomenon that

occurs 'bn1y fC!f dynamiC abStral'Utinj· is 0tf1.ar ~tmes''~'ts·nece~yy -t~ ·~onskler,.the. ~rations .
. "'~:·'(;·;_,: '. ';·~-' :r:~

of the subordinate ty~s in the .correctness proof, as well as the optrations of the principal type.

The operations of any mutable subordinate type must be considered, since they can modlf,y , ... ;

system state, and since the simulation relation (usually) depends on the system state .. · The

oP!r~tlons·of ~tauc slibor'dit1ate ty\ws ·~·nof~'c<Mt~. r~~se they-·can~ cha~ge the

. , ·. . . - . . - ~ -. , , . -; ~-- , : >-.i ,· '. ;. ~ -; : ,. -· . -·_ ~ ~3 ~. . t ~ ~ .. ~ .. ' ... : ~,. ; . - , r ~ , . ~
systetn· state or f'etum objects of the prindpaJ type.' Since 1A Cl the subordinate types of a statiC

abstrattton are'stalic. fhe dpefatiOns oft~ subOfd~ale(typa Of~.,, -;~t~-~b";a~ion-.need' ~

. t . .- - :: ~. -- -= • - ; - ...;, ') - ~ ~ . .- • l ., , ; ' - : ' -· ~ ~ ~ : ,__ .

Afiy irifefactions between the observable behavior of a mutable data abs~action and

:- "_,H'J·-:. ,·;,. '.:", , . • l; : • ~ ;~:~·>1'Jd;~; ~ 1 !• .. ~-~!/j-~ -·i~} , . · -~' '-~
the operations of its mutable subordinate types depemi on the mutation of shared data objects.

~ · · ~·· ~ ~- •. _, ,·..,.·c* •,- -.-.• '; :;'l ~~ ·'! ,_.•}O:~l~'. .·.--~'- ·:~! ·-..·- ,~' ' '

Stfice"thi ·•ubOtttthale retatioo on 'models ts'a''Wdl rot.rlded pa~riial order, tt ts not possible for
. .

.,. . : ' - 11 . ·-· - ··;~ :i:: ,:·-:. -~. "'.'~·., ~ ; ... ·- ·- .

any of the oper•tions of a· subordinate.type' to operate 'direttly on any object of the prindpal
- - , ..-· . . ' ~ ~ r . : .~ i ~ ..

typt'. lt'is possibte'for an Ob~dx of'a subori:Unate type to share some substructure with an

object ' of ffif prrndpa1' fypf, :~'-tt1a~ tlle extrinifty (;(,~'~ab~;~;~·~ Or 1' can d~ on the

state of x .. Srta'ring df thts titld ca·n·0ccur'tifcori(\i-u(tibri~or by'()~i~lon.' In the rir~t ase,.
some ptlrmtift aperaUOn tali~s x)f'an ·a/~t and· ~te$'tfi~tc{,: where either i is

pl~sed- as l'fi argument to the~'""' ot'ereat~ tiy;the opera'tiiM.·~ft(l returned. rn 'the ~d.

caw, some prtmttive t>ptontiOn · tal~s 1·as an atg'~~i 'anc:f ,t;lum~ ~ ~t x. '

' Far iln' ex~mple 'Of a casl'llhere ah tnteri~tt(it"'W~"the c:ipft'ations of a wbordinate.,

tfPt" n ponibte, consi(jt>{tht' mui ilbStracri<in tleittw ii r~r\M~t~ a~~ mutable .sets,· ~ith .
:': :, i:;'f iu·Li:-ii<~ ·L• ·. _ '<..'_, ~;' '' ;·~""' "-"i·~

the usual set operations, and also an eltmtnts opetallOR thit returns an array containing the

elements of the' $et: In ttte'samtard fno(iel; 'th«! it~ts't;pef*;tian returns a newly cr~ted array,

- 119 -

without affecting the state of any mset. Consequently, a subsequent assignment to some element

of the array returned by the elements operation does not affect the contents of the rnsrt from

which the array was derived. An implementation in which such an assignment did affect the

contenrs of the mset would not be behaviorally equivalent to the standard model, but tht> only

way to detect thr difference is to perform an arraylstore operation, which is an operation of a

mutable type subordinate to mset. (Such an incorrect implementation of mset is plausible,

since it would arise if the programmer chose to represent msets as arrays, and in implementing

the elements operation forgot to return a. copy of the array representing the mset, rather than

the representation itself.) For such an incorrect implementation, it would not be possible to

prove that the arraylstore operation preserves the simulation relation, even though it could be

possible to show that every operation of the principal type does preserve the simulation relation.

5.4.1 Simple Example

In this section we present a proof of correctness of an implementation of the untque_td
·•

.abstraction. This is just about the simplest possible data abstraction that requires a state

machine model. Recall that unique_ids are immutable, but they can be dynamically created.

The standard model for the unique_id abstraction is repeated for the reader's convenience in

Figure 18. An implementation of unique_ids in terms of arrays is shown in Figure 19. In this

implementation, we are taking advantage of the fact that arraylcreate always returns a new

array (one that has not been used yet in the current computation). The Implementation

depends only on the identity of the array, so that the contents of the array can be changed

arbitrarily without affecting the correctness of the implementation. A newly created array has a

length equal to zero, and a specified lower bound for the indices. The standard model for

• 120.

Figure 18. Stanclard;Modef for Untque_td

type antque_id, n U

wltlt

data states

operations

where

end uniqueJd

neate:
equal:

D ·I null}

-+U
U x U _.boolean

crcate(sX) • extend(s, null)
erqtta('S){;(yf~ l(S, Y) .

v "' if tokenhqual(x, y) then true me false
. . - . .

Figure 19. lmplementatton of Unlque_ld

representation array[int)
. j < ~ • ; ~ :

operation• aeatf'() • array(intllcreate(I)
equal(x, y) • array[int:lequal(x, y)

arrays n shown fn Agor~~·. tn Section ·s.3.2. ·-r..e :ptoar or·~ ts .shown below. As

befbte; we wtH·prelfi~s.-objet'ts.a'nd~~tfl bftitig~ ~-die tmfllemen~tton with a.,.

: ~i.

To provtt that unique_id and lunique_id are behaviorally equivalent.
J>Mof by tftdUttleft on ttre-tength oNfie't'omputaUbrl: ' . . .
Assuming the simulation relation R hotc;ls for_aH _c~tations C such that I S length(C) <.N,
s.._ that·R 9'oltts-ftJr-'aft1Ehtidt thlt'~gtMt1;,. N.- · -- · - -

Let s; sO, sl l>4! system'SN~ fOr•uniqUeJd, -·
J.s, .1s0, hi be system states for .1unique_id,

- X, Xi, Ji t be tmkp!_i\ts - ..
J.x, .1xt, J.y, h be J.unique_ids
b, J.b ~ boolnfts: ·

Let R ~- -x +-- h le s ... ls _=> used(x, s) = used(h, J.s)

- 121 -

& X H J.x & Y H !y ~ (X = y) ;: (lx = !y)
& b H .J.b ~ b = !b

Proof by cases on the name of the last operation in C.

Case I: create

Let sO H lsO.
Let unique_idlcreate(sO)() = (sl, xi> and !unique_jdfcreate(lsOX) = (lsl, !xi>,
so that sl H Isl and xi ... lxl.
By the defmition of unique_idlcrcate, statelextend, and statelused,
used(xl, sl) & _, used(xt, sO)
and med(z, sO) ::: med(z. sl) for z ;it xi.
By the definition of arraylkrcate, statelextend, and statelused,
used(!xl, !sl) & --. used(Jxl. JsO)
and used(lz. !sO) = used(Jz. !sl) for lz ;it hi.
So z H lz ~ used(z, sl) ~ used(!z, J.sl) for any z, h.
So the first clause of R is established for sl, !sl.

(lemma I) if z ;it xi and z H lz then lz ;it !xi:
used(!xl. hi) & .., used(!xl, J.sO),
but used(J z. !sl) = used(z. s1) = used(z, sO) = used(h, lsO),
So J.z -;it lxl.

(femma 2) if z = xi and z ... !z then !z "' lxl:
Since z = xi. used(z, sl) & .., med(z, sO).
By the first clause of R, used(!z, !sl) & .., used(lz, lsO).
used(!z, lsO) = used(!z, lsl) for lz ;t hi.
So !z = lxl.

Let x H !x and y ,_. !y.

Case I.I: x ;t xi, y ;t xi

By lemma I, lx -;it lxl and !y -;it !yl.
So x H !x and y ... ly in the prefix of the computation C.
So the second clause of R holds by the induction hypothesis.

Case 1.2: x = xi, y ;it xi

Then x ;it y.
By lemma I, !y -;it !xi.
By lemma 2. lx = !xi.
So J x ;it Jy and the second clause of R holds.

Case 1.3: x ~ xi, y = xi

Similar to Case 1.2.

Case l:f: x • xi, y • xi

Then x • y.
By lemma ~ !x • lxJ • !y, .
So the second clause of R holds.

-122-

The third clause of R>holds since create and !create do not ~many boplean vahles.
So R holds. . -':

Both create and Jcreate al~ap ter}IJinJt~.ill ~ ,...... ~Won.

Case 2: equa I

Let sOlsO, xO.,. hO, and yO ff .lyO. . , •.... . ..
Let equal(sO)(xO, yO) .. (sl, b} and .lequal(bO)(bO, lyO) • (.lsl, lb}.
By the ddinition of equal, s• • sO and b = _(Jt().J'l r>~-. .. .·,
Sy the definition of !equal, .lsl • .lsO and lb = (.lxO • ~,qi , ;_
Since R holds in sO, (xO • y()~ =.(bO.r. 1,elso•b,.~}~ "4J ~Id~:
Both equal and !equal always terminate in the ftor.at coftdition.

So ff preserves termination condUions and truth ~~
Therefore unique_id and lunique_id are behaviora_ly MUiY.alenl ..

...

The most important property of a untqu.t_id. is that it is unique. T:~ts js ~ssed by

the second clause of the simulation relation. R, whkh says that two ~¥+14'1 ~ye the.. same

representation if and on.ly ~r the abstract objects they represent are ~entkaPy the same .. The

third clause of R Is jmt the standard requirement on.~ltan.valu,es,Srqmwh~a,,the btthavioral

. ~' « ~

equivalence of the two models follows. easily. The .only .,.tt8n-of.wlifw.J't"'atproduces a

boolean valut> is equal, and for that case the third clause of R follows easily from the second

clause and the definition of tqual. Establishing the second clause is barde.r, requiring the

addUion of the first clause to the simulation relation, to strengdleo the· ind~ion,,hypothesis.
c n.

The first clause Is based on that fact that corresponding objects in the implementation and in

- 123 -

the standard model are created at the same time, so that either both exist (in states after the

abstract object has been created) or both do not exist (in states before the abstract object has

been created}. Since the object returned by unique_idlcreate is always newly created (and hence

distinct from previously existing objects), and since only one object at a time is created. the

unique representation property is preserved.

The proof shown above is a typical example of the argument used to establish a

unique represent<1tion property, treated in detail. Similar properties will be rt'qu~red in later

examples, and we will ~ketch the proofs without filling in all of the details, assuming that the

reader c<1n adapt the argument given in this section.

5.4.2 Typical Example

A simple example of a proof of correctness for a dynamic data abstraction is presented

in this section. We have adapted the intset example from [18], without incorporating the bound

on the size of a set.I A stand<1rd model for intsets is shown In Figure 20. lntsets are mutable

sets of integers. The empty operation creates a new intset, which is initially empty. The insert

operation inserts a given integer into a given intset, returning no values and changing the state

of the intset. The remove operation removes a given integer from a given intset. The laas

operation tests to see if a given integer is a member of a given intset.

An implementation of intsets in terms of arrays is shown in Figure 21. This

I. If sets with a bounded size 11re desired, then an exception conditions should be associated
with the insert operation to indicilte when an attempt has been made to excet'd the size bound.
This will add another case to the proof without further illuminating the methodology, and
hence Is omitted.

- 12.f.

Figure 20. Standard Model for lntset

type intset as I

with

data states
restrictions
Identity

operations

end intset

empty:
insert:
remove:
has:

D"' setlint]
non~·

setlequal

--+I
I x int--+
Ix int--+
I x int --+ boolean

empty(s)() .. eictend(s, setlnull())
tnsert(sXx, I) • update(s, setfadd{i, s(x)))
remove(s)(x, I) • update(s, ae .. ~ve(i, I(~)))
has(sXx. i) • <s, setimembn(r, l<x1)) · ·

Fl~ure 21. lntset Implementation

representation intset • arrayUntl
reStttettona a such that low(a) - l& (low(a) ~ j ' k ~ high(a) It j 111 l ~ a(j) .. a(k))
lctentlty arraylequal .. ,

operatlonJ · empty() .. array[intltq~te(I)
inst>rt(a", i) = If ., ·has(a; · i) then addh(a, i)
remove(,. i) • ~f f!as(a. ,i), tf)~ ,I st~e(a. Ji~a, .t>t,a_~~~Wl; remh(a) I ·
has(a, I}• if :lj[fOW(a) -~ j ~ high(a) Ii a{j1.tl then true else false

definition find(a. t) • '1 3j[a[j] • i_) then j: ati) • i. el$e 0
-, '. •] ·," - . - -

im~lernftltation keeps at most one instance o(any gi~en integer.Jn.'.in,a,~ray, ,but th• order of

the elements is arbitrary. The standard model for arrays is shown in Figure IS in Section 5.3.2.

The proof of correctness is shown below. An explanation follows the proof.

--- - -------

- 125 -

To show that intset and lintset are behaviorally equivalent.
Proof by induction on the length of the computation:
Assuming R & II for a II computations C such that I $ len~h(C) < N,
show R & II for a II C such that length(C) = N.

Let s, sO, sl be system states for intset
Js, J.sO, J st be system states for lintset
x, xt, z be mtsets
J.x, J.xl, J.z be J.intsets
i, ii, !i, !ii, k, n be integers
b, bl, lb, !bl be booleans

Let R. = ls H s & J x o x & !i o i => (i < s(x) =]j[I $ j $ •(ls(lx). e) &: !i ., ls{!x). e[jll)
& J.b H b ~ Jb = b

Let I = Js(!x).low = I & (I ~ j , k ~ •(ls(!x). e) & j ;.e k => J.s(h). e[j] -1' J.s(J.x). e(k]) .

R is the simulation relation and .D: is the implementation i~variant.

Proof by cases on the name of the last operation of C.

Case I: create

Let lsO H sO, lcreate(J.sO)() = (Jsl, .l.xt>, create(.sOX) = (sl, xi)
Then we have Jsl <-+ sl and !xi--+ xi
By the definition of create, sl(z) = sO(z) for z -1' xi
By the definition of Jcreate, !sl(Jz) = JsO(J.z) for !z -1' hi
So R and :U: hold for s ., sl, .l.s = hi, x ;.e xi, J.x -1' hi
For x = xi and .J.x = !xi we have
sl(xl) = setlnull(), soi c sl(xl) is false for all i.
!sl(!xi) .. (low: I, e: 0), •(Js(!x). e) = 0, and I ~ j ~ 0 is false for all i.

So R holds for the pair of states sl, hi.
!sl(txl). low = I and I $ j , k ~ 0 is false, so][holds.
H preserves termination conditions since both create and .I.create always
terminate in the normal condition.

Case 2: insert

Let sO +-- J.sO, xi o !xi, ii o Jil.
Let insert(sOXxl, ii)= st, JinsertOsOX!xl, .I.ii) .. !st.
Then st 4 1 sl.
We h11ve sO(z),., sl(z) for z -;t: xi, and similarly for !sO,
so we have to show R and II only for x = icl, tx .. !xi, s .. sl, ls .. J.sl.
By the definition of insert, sl(xl) .. sO(xl) U f ii I.

• 126-

Case 2.1: ii c sO(xl).

Then. st(xl) "' sO(xl), and. h~ce sl .. sO. _. ,, . . .
Since R holds in sO,]j[I S j S e(hO(lxl). e) Be J.sO(lxt)~ eljl • J.ill
So J.sl "' hO by the definition of linsert. · ,
So R and I hold by the induction hy $il..,

Case 2.2: -.. ii < sO(xl).
(, ,\ r

From R in sO, -. 3j[I S j S e(J.sO(bl). e) Be lsO(lxl).cij)• .Utl
From the definition of linsert, hl(lxl) • <tow: I, e: J.sO(bl). e I• J.i).
~jU s j ~ e(J~Q(l!CJ).,.e), "J$0(.l¥l),. ~,.,.lit) I~ : I ' '

Jj[I S j S -<lsttixl}. e) · I & J.sl(txl}. e{j] • J.tl]
and hl(bl). eCjJ • H for j • .(lst(lxl). e),

. so R hold$ in .sl bl.
Fnxn the Ci~finitk.n or itnSttt, J.s(Jxl). 1ow • 1.
I holds for I S j ,,k ~ tt(J.~~ei9!~kl).•h I by the tnductkJft hypathms.
and I holds for I S j < k • .(J.sl(bl). e),·
since-.]j{I S j S e(JsO(lxl).e)•~ .. Mlli' ·
So I holds. ·

++ preserves termination conditions since both insert and !insert
always terminate in the nonnat condition.

Case 3: remove

Let sO .,.. J.sO, xi .. hi, ii lil
Let rm.ovt'(sO)(xl, ii) • sl, J.remove(lsO)(J.xl, J.il) • .&.sl ,
Thm sl +-t J sl.
We have sO(z) • sl(z) for z .- xi, and similarly for~· · ..
set we have to sh01fif R.~4:;{'.qrpl.J (of~• Niu~~;• ~l.,.s ·~·"•·•ht.
By the definition· of rem0ve, sl(xl) • sO(xl) - { tl,. . •1;

Case 3.1: ii c sO(xO .

Since R holds in sO, hO , 3j[l S j S e(lsO(lxl). e) Be J.sO(lxl). eCjl • J.il]
Choose n such that I s n s e(lsO(bl). e) Be J.sO(J.xl). e(n) • ltl.
I holds in sO so n is unique and n • fjnd(J.sO)(lxl, itt).

Case :Ul: n .. •(hO(hl). e)

Then from the definition of :J.rfflJOff.,
J sl(J.xO."' (low: I, e: bO{l.xl). e{t..q-1]).
From I with k • n and the previpus~Jine,
-.. 3jCI :s j ·s e(Jsl(hl). e) & lsl(J.xl). eCJ] • lUl
so R holds for i • ii.

•' ! '

- 127 -

Since lsl(.1.xl). e[k] "' JsO(l xi}. e{k] for I :5 R. :5 n,
for i ~ ii, 3j[t ·~ j s •('fSO(lxl).' e) t/'hO(ll(O· eOt • ih = ·
. 31U s · ~ •(Ht(lxl). ~)1 &' l~~'fl. efil ;.:.ti). · . J J , ··~, J ,., ,. ·~
So R is established in sl, lsl. ' ·. ·. ' · · '1 ' '·" · · ·.

I in l s1 follows tram I tn lsO.

Case 3J.2: n :it •UsO(bl). e)

Then from the definition:of l.remcrv~; ".h

., l.s!(l;xO = <~:.1~1~;/CJ~Ln-Jll• cj~l ~t~C~~h~q-l~>.1 ,
Wnere q "' iSvvX ,.-e.
Fr~ I \Alith k = n. and th~ pre,vJQtJs Jjne,. "
.... 1jfl :5 J ~ it(tst(lxl). e) &: lsf{lxl). eCjJ · .. 101 . '
so R holds for i = ii. . .

. Sine~ l~tdx'O. eThl • lsO(lxl).ti1tor'i''~l ~'n ~'I a.:tcfn ·.IS k Seq - l,
and hl(Jx~). e[n]_ •, hO(!xl) .. e(-ql , . . .

· for i ii i(1j[t s· j s •UsO(lxO. e)lt iSo<lxt). e{j] • 'J.0 =
. , , ~JP SJ S ,t,sl(lx~)· e,> ~ ,~1,xl)~ #i], 1~-clll .· .:

So R is establisfted in sl; bl. · " . '
I in hi foltows from I in .J.sO.

' •..- '" .,. ·«

Case 3.2: ., U c sO(xt)

Then sl(~I) ." sO(~I) - {i~ I~ sfl(x1~.so ~J • '9· . " , .. 1 , 1 , · .. ~
Slnce"lt holbs in sO, -<]jO Sj S it(ls((lxl). e) & lsO(lxl):aj) ~ till
so hi .. lsO. by the definition of lremove and J.has.
So R and I hold in sl, lsl.

.,. preserves termination conditions since both remove and J.remove
always .terfuinate"' t"h~ norlft~ ~ditiOn. ,,. ; ; .. ·' '. ' ..

Case -t: tia'i

Let '10 ++ lsO. xt .+ lxl, jl ~ til.
Let has(sO)(xl, ii) .. (sl, bl), lhas(lsO)(bl, lil) - (ls1, lbl).
Tlk"W'sf~ J'slantf bt'~ tilt ·1' · ' · i''

From the definitions of has and 1.has, sl • sO and lsl • lsO. s<>I hofds. • ·· · · · · · · ·, ': , ···· .· .. ·
We need to show that bl = lbl.
By tft~c·d~kittc)n"'iof his;·t,1 .:n c skxr). ·'
Sy the d~finltion of l.has, lbl ..]j(l ~ j S .(J.sO(lx~). ~) tt.~~~.~O· e(jt • li].
Bfthe ffrSt dauSl!·or'R; bt • 'tbt · ·) "" · ·· · · · ,,. ··
.. preserves termination conditions since both has and J.has always

'li' - . ~-- -~- ''.-' ..- ~":-- ,- " l]. .o'·i ~

tel'mmate in the norlitaf tmdltkm. ' . ' '

Since ..:. preserves termination conditions and the simulation rel~Hoo.

-128 -

all computations are equifeasible in int~ and JnJ1auet. ~nd each ,_
computation produdng a ~n v~,;prOCluc~ the acne value,._ both models.
So intset and lintset are btofta-vibrailj'ecpai'•aJmt · . · : ~ · · ·' ..

The only primitln intstt operation that can moctu~. a boolean. va~ ~ Aa.r, and the
: '.. ' '

relationship required for the MU operat~ ffl,gJ'e t"' '"""~)n ~~~els is expressed

by the first clause of the simulation retaliofl' Jf ·The~ itJ~~nt I expresses a
. .•. ' {1 ,:: ,• --·

restriction on the implementation. ,strudbre;)~~ -.~sf·~.·~~~ :b.J t~ operations of the
- • ~ ••• -. • ·- > • •

. - ' • • ~ ; • t ~ < • ' f ~ ; ' ' ,:

standard model, in contrast to .the simulation-~ which ii ~ed ,with the relations
. . '· . ' : . ' . . '-<. . "' ·. ·c:'

"'
between the two modttls. The tinp~tatiOn. ~·,·~~~~ -~,.,,~~-}}~ ~.~ elernftlts of the

- ; r.~ lf . ' •_-~'.;i· ... ,. ?:- ; _; -~
array representing an intstt must be distinct, and thifttte loW bOund ofthe array must be

always equal to I (recall that arrays can grow and shrink from both ~s). The 1frapiementatton

invariant is needed. in.:~ :fm1of to.~-~·~ ·;~~~~,,,;W,.S;{~,l.e simulation

relation.

state machine, ~ have to reestablish that the properties required for our proof o(corr~ness

are still true in the final state. There can be no simple g~I ~~ fQI'. tra~er:ri. fnoperties .

from one state to the next. b«au5e thttre is no s~~~ syft4f~ ... ~~~-the text

specifying an operation and the ~,of data Obje(tS that W. be iffe:crect b' t~.,~auoo. In

general. the t'ffects of an opt'ration are not lirnir~t, to ,~he ~ta:;~~- _that are" ~ssed as

arguments to the •ratiOO. because the data stare of a-, pt;,jec{, can,., ~r data,objects,

which tn turn can have data ·states containi~g sttA mm:e, 4~ - , ~n .i~voca,Uon of an

operation can potentially ~ffec_t;~very objt'ctin.tht reacbabiJ#J ~Fe of t,be ~rgu~JS. ~hich
, ,, • ·-· .•< , ••

- 129 -

can vary from one state to the next. Consequently we must establish the invariance of

properties of data objects with respect to state transitions on a case by case basis.

As can be seen in the proof above, explicitly arguing that each property is transferred

from one state to the next need not lead to unmanageable complexity. In a correctness proof we

are typically trying to show that the simulation relation and the implementation invariant

remain true in spite of any state transitions that may be caused by the operations of the data

abstraction we are trying to verify. In the example above, the arguments are very simple, since

there is no potential for data sharing between intsets. In the example shown in the next section,

there is potential sharing among the objects of the principal type, so that the arguments

required to show that the simulation relation is preserved by a state transition have more

content.

5.4.3 Sophisticated Example

A sophisticated example, consisting of the nonstandard implementation for mutable

lists discussed at the end of Chapter 3, is presented in this section. This example treats a

mutable abstraction whose objects may share subcomponents. The implementation is not

reduced, so that more than one object (token) in the implementation may represent the same

abstract mutable list. The standard model for mutable lists is shown in Figure 22. The

implementation model for mutable lists is shown in Figure 23. We have defined the

implementation model in the same notation as the standard model in order to keep the example

as simple as possible. Strictly speaking, this example shows a proof of the behavioral

equivalence of two models. The proof of correctness is outlined below. The proof for the cdr

operation is very similar to the proof of the car operation, and similarly for rplaca and rplacd,

- 130 -

Figure 22. Standard Model tor Mutable Lista

type list as L

with

data states
reatricUona.
Identity

operations

nil:
COll5:

car:
.cdr~

rplaca
rplacd:,
eq:

--. L
L >«L-+L
t-+ L • (no_car·:)
L ~L• (llOJdr :,)
L x L --. L + (no_car :)

. . . L. >< L -ft L • (; no.Jiik :)
L x L -+ boolean .

D • oneof[null: _{ ntf }, pair: tuple[I: L, r: LD
none,
to1t enlequa I

nil(s)() • stateCDJlextmd(s, nil in nun)

. ~. l,•

cOl;tS(r.~, y> •, 1ja~tpld{$..·{J: .x.,. r: y~ n. pair)
car(s)(x) • if isfpairXs(x)) t .. <s. tG[patrXs(x)). I)

!lse (no_car : s)
cdr(s)(x) •if is(pairXs(x)) thm <s, to(patrXs(x)). r)

!lse <no_cdr : s)

.,;

rplaca(s)(x, y) • if is(palr Xs(x)) (P' "_,.: -:: d. · ' J, ~ 1 c · . -n

then <stateCDJlupdat!(s. x, (I: 7, r: to(pairls(x)). r) in pair), x)
else (no_car: s)

rpJar..ciWC., r}.!':i£Js(pair:X.)), ,, :' ·, .. ; · ·• · ,·
' thm (stateCDJhPdat!(s, x, (I: to(pairls(x)). I, r: y) in pair), x)

$f! ~Q.cdr;~., , . ; p -L~: '•! ..

eq(s)(x, y) • tok"11equal(x, y)

To show that list and Uist are bt>haviorally equivalent.
Proof by in4-tton • th! length of' the ~,
Assuming R holds for all computations C such that I S lmgth(C) < N,
show that R holds for aU,C suchlhat~Ut!C)• H,, ·

Let s, sO, sl be system states for lbt,
h, hO, hi btt systttm states for l.list,

- 131 -

Figure 23. Implementation Madel for Mutable List$

w, X, y. Z, xO, yO be lists
lw, lx, J.y. J.z, J,xO, lyO be !lists,
b, lb be booleans,
!c be a cell.

Proof by cases on the name of the last operation of C.
' ,,. <"'; ,, '. - ; ~ ~ - ~- ~

Case I: nil

Let so .. .1.$0.

-132-

Let nil(s.OX) - (sl, w) and lnil(lsO)() .. (lsl,.J.w>:' · .. · ..

Thm sl ._. hi and w .+ J.w~

. sl(z) • sO(z) for z - w, and 'similarly for J.s1:
So we need to-~~ PR'l~ x ~ 'V.Jx_• lw.
By,~~ d.~Oqitt~ ~ f!~~MPJ{vqt . .
By tft(i dertniU0n of lnil, ls(nu11Jh1(lsl(w))). .·.
So the first clause of R ho1ds.
The second clauSt' is trivially true for x • ·..;, .lf 1'.lw. _
since the hypotM!is of the implkllion is fa~\;_ ... , , ,~;·. : ,
Since w and lsl(lw) are newly c~(~·1~,~ .. ~I. holds.
Both nil and lnll always terminate in d.e ~~·

Case 2: cons

Let sO tt l~~ xO , .. ~~?·~~~r lJO., -,,,: _ ;· .. ;
Let cons{sO)(,cO, y0) _. ul. w) and lcon~lsO)(~~_,-.J.yO) • (lsl, lw).
Thmsl.-.hlandw ... tw. ., v: ·,, :·

sl(z) • sO(z) for z - w, and similarly for, ~•l. . , , ('. - . . · .·

,· .: ;

• "...: '~- !'! , ' f":,' i . ~ ~. .
So we need to show R only for x;.'". ~!J~,.;. .. ~. , .; -,,-; .
By the definition of cons, ls(pai(.~¥7>).:,~"t.l :- xQ, and sl(w), r • yO.
By the ~~ff2Cffl'lo1'1/~Y/ft,t~~~~~~J);·~1sl(tw)). I • J.xO, and lsl(bl(lw)). r • lyO.
The first c St' · fs trlvia1J t . : i !< .
Since xOa.xo and yO ... lyO, the second ctaus,r Qf«,R 11pkls.
Since wand bl(lw) are newly created,!~ ~~"",Pf;.,.. ~s.-.
Both cons and J.cons always terminate-ff. tfft nafiilat t'Ollditian.

Case3: car

Let sO .. hO and xO" lxO.

Case 11: is[pa ir](sO(xO))
j

Let car(sOXxO) • (sl, w} an(l kar(U()XlxO)'~ (bl.~).
Then sl .. lsl and w .. J.w.
By the definition of an, sl ~ sP ~nd y • sO(xO).' I.
By the definiston Of ,lcar. lJJ i:r •~,aJJd lw ~ lsO(lsO(bO)), I

,. .. '

Since sl • sO and J1(• hol R~ ~s)'1\,.sl• !~Sor JJ• ~" "· . .
Since R holds in 'so, lsO, ts~irXtsO(!SO(!xO))) •nd sO(~. J :tlO(J.JO(b()t). I.
So w .. l w for the prefix of C.
So R holds for sl, lsl. . -
Both car and lcar terminate in the normal condition for this case.

Case 3.2: is[null](sO(xO))

Then since R bolds in sO, isCnull](J.sO(lsO(l.xO))).

- 113 -

Let car(sO)(xO) .. sl and kar(J.sOXbO) • bl.
Then st ... lsl

Case 4: cdr

By t~e definJtion of car ind lcar, ~":"·SO and J.$1 ~ hO. so Rholds.
Both. car and lcar terminate in the no_car condition for this case.

Similar to Case 3, proof left to the reader.

Case 5: rplaca

Let sO f.+ .J.sO, xO H l xO, and yo ... J.yO.

Case 5.1: is[pairJ(sO(xO))

From R, is{pair](JsO(hO(!xO))).
Lf.'t (sl, w) = rplaca(sO)(xO, yO).
Let (lsl, l.w) = rplaca(lsO)(txO, l.yO).
Then sl ... hi and w ... l.w.
By the definition of rplaca,
sl(z) = sO(z) for z 'If xO = w.
By the d~fi~J,lion.of .Jrp,~ca,,, ..
:fsl(lz) = lsO(h) for h 'll .J.w and isl(k) • isO(.J.c) for k ii l.sO(J.w) • J.sO(l.xO).
R holdt~n.~.JsO. ai:id.fr~Jhe th,ir4 c~;of·-R•~
z H h & z ~ xO => fsO(h) '/l. J.sO(.J.xO).
So lsl(hl(h)) = .J.~O(bO(lz)).for h· ~ ., . .11LK(),
So R hold's 'ror x ~· xO. •· ·· · · ·

The first _clause pf R hokls for x • ~' • :w ~P il(nuQsl{w)).
From the def~nition of rplaca, w • xO.
F1pm th~.!i~finiUOJl .Of ~rfllata,,,~sl(l141~,"°:.l~O).
and hl(iz) = l.sO('iz) for h 'll l-w.
So the third clttus~ of R in sl,. lsl Iolbvs,kom R in Si(),. J.sQ.
From the defmition of rplaca, sl(w) .. (I: yO, r: sO(xO). r).
Suppose x = xO = w.
Then from the third clause of R,
x H h ~ Jsl(hi) ~ Jsl(J.w), lVld ~sl(!sl(lx)) * !Jl(tsl(l11r)).
From the definitiofl of J.rplaca, is[patrXlsl(J.sl(J.w))) and
tsl(Jsl(.J.w)) •,<I: J.yO, r: J.s.O(bO(bO)). r). _
We have yO ... J.yO, and since R hokls Jn sO, lsO,
sO(xO). r ... J.sO(bO(J.xO)). r.
So the second clause of R holds in sl, hi.
So R holds.
Both rp1aca and !rplaca terminate in the normal condition for this case.

Case 5.2: is[null](sO(xO))

- Gt -

Lrt rplaca(sO)(xO, yO) .. sl and !rplaca(tsij)(hO, !yO) • bl.
By thf' definitions of rptaca and !rplaca, sO • sl and .&.sO • !sl, so R holds.
Both rpllia,ariil ~plata·tenn11tite1n tfie riO~cartanditibn ti'this ca~.

' ' ' i . , . - •

Case 6: rplacd.

Similar to Case 5, proof left to reader.

Case 7: eq

Let sO ++hO, xO H lxO, -and yO .. lyO.
Let eq(sO)(xO, yO) • (sl, b) and !eq(hO)(lxO, !yO) .'(lsl, .lb). ·
By the definition of eq. sl • sO and b = (xO • yO).
By the definition of leq, lsl • !sO and lb = (!sO(xO) • !sO(yO)).
Since R holds in sO, xO ff !xO, and yO .., lyO, (xO • yO) • (.&.sO(bO) • lsO(!y.P)).
Sob• lb, and R holds. .r ·' · '· ·:- • · '''.

Both eq and !eq terminate in the normal condition. '

So list and !list are behaviorally equivalent.
., :

..

The mutable list example was chosen to illustrate seftl'a1 · -~ arls,irig from the
_,.,. . . ·' ,.·.

sharing of mutable data objects. Since we: have nade i :tri'k:t dtsflncttGn ·~eeri -t~ identity of
• . ' ! ': · .• : ·-· , .. - •

a tokm and Us state, there is no notational ~frlCUlty 1h ~Ing lhlt one object is a

subcompont:nt of the states or sneralather objects (1.e., t,..t the: rtrsf Object.is ·shared by the
• .. - ',-··. ! : '

latter objects). Note the use of the corrtspondence Telatbt .,. In the contlu$.lon .of the second
., ,• ·-' • < ••

clause of tht> simulation refatton ·R, to tndtca~ 'that the k14!ntlttes ot the components of a

non-null list must correspond in the two models.

The example illustrates a case where tt~re rna'y ~ ~ny disrir~ r_~resentations for
• - k • • - - l -~ . - , -

the same mutable object. Every time a rf"aca or rf"atd opttation Ii 'performed on ~ list, a new

representation object for that list ·is created in the imp,~~rton. Despite tt., multiple
. ' . ·~

representations, the externally observable behavior of mutable lists Is correct1y: realized in the

implementation, so that the non-uniqueness of the representation used bl the tnipfementatipn ts

------ .--- ------

- 135 -

not externally observable. Whenever the state of a list is modified by a rplaca or rplacd

operation, the change is reflected in the states of all of the representations for the abstract list

that was modified, and not just in the particular representation that is returned as the result.

This is accomplished by introducing an extra level of indirection: the state of a hst in the

implementation model is a cell containing the abstract state of the list. In our notation, if s ~ .J.s

are two corresponding states and if x H !x are two corresponding lists, then the abstract state

s(x) corresponds to the concrete state J.s(!s(h)), where !s(!x) denotes the identity of the shared

cell. The cell is shared by all of the representations of the same abstract list, and a11 of the

relevant state information is contained in this cell, so that any state changes are automatically

renected in all "copies" of the list object. The eq operation computes the ident~ty relation on

abstract lists, rather than the identity relation of the implementation model, which is not

externally observable. The identity relation on abstract lists is described by the third clause of

the simulation relation R. Note that the implementation depends critically on the fact that the

data state of a token representing a list (the identity of the shared cell) never changes, although

the data state of the data state of the token (the contents of the cell) may change. Jt is easy to

check that this property is maintained, since none of the ilist operations applies a statelupdate

operation directly to a token representing a list.

The interesting part of the proof is case 5.1, where the normal termination of the state

changing rplaca operation is treated. Note the use of the third clause of the simulation relation

R to implicitly describe the set of representation objects affected by the operation.

Implementation objects other than those passed as arguments can be affected by a rplaca

operation, due to the shared mutable cell in the state of a list in the Implementation model. In

the argument to establish that the rplaca operation does not damage the simulation relation for

• 136.

'-l,

objects other than those passed as argumt'nts, the relation given by the third clause of R is used
- ' ," ~ : ;

,-_, .
to distinguish betwttn the set of objects that is supposed to be affected by the operation from

'.' ·. - - ,.; '. ' -- . ' ·,_-. ·:\ ,,,;_,·,11· '-11il .,, •·'il -{;~- l)i•i ,f" <i -:. .;' d:

those objects that are not supposed to be affected. It is just as important to establish that all of
· -_-.. = f.- 1! .. -,~ .;r .. : ___ ,H_-,_ hn, - -d ~-~!;.:Li,.· .. :1:~

'"'', ' ·.·'"'•:fli ,., -
the Objects whose statt>s are supposed to be affected by the 0peration reflect the change as it is

While it may be difficult to derive a description of the set of objects that is supposed
-.,_•_ .. , ,·'!, ;i' ~~ '.,]f._:~ _·,;,,. •. "- ~1;~. <'! ~;,'.r~ •te_» .?, ..

to be . aff~ted by a. given OJ>'ratton from an implemenration of an arbitrary mutable data ·
•;·,, -.. - .•. _. ;'~; "i: ~~~ t! ['":~'~ :i. f; :~ ... ~- ':- •

' ..,.,.~

abstraction, it is · impo11ant to make this set explicit, because errors stemmtng from hidden
_ ~ _ .. __ .;-~-. ~ •·.. -~-?-. ~~ -~ ~-~r~- r~:: -~.,~~Jq;-. -:~ rtf)•;f.,P'!(>~'~; --~}J_;;. ",.~~ ··-:':;f:·~;

interactions. due 'to unintended sharing mations are very difficult to track down. The designer
- · ·-·< , __ · ;,. ,,- ,· ·"'tF y:i .,.;T :,.,;,' ,,,. ·,,--ti.:.:)~>~-~('" H;,. ''' : .,.. :-·,.

should th-erefbre pay explicit and careful attention to the charaaertzation of the set of data

.--,,

pr0cess, for later' reference a~ ·f;r ~ible u~,j~·proor;:··This -~~est~ ts analogous to .the
;~; '.! . 5, ; ' t : ·f; b

, ·'. . . . - .•- -~~ :¥' \~ ·, ·~ '~. ·_';< ':~: ;. ~'. -;~·~t..<·J~F·

sugge~teit prathee ·or dt>vtlOping toOps together with the associated loop invariants. The
;·--..:;'>"·. --~-' -~·~, - " ~ .. ' f,';_-_} t.;.

suggestroo is'motivated by the fact,that the required information must be Informally considered

. .- ~ > :·_ ,,._ . "'" - . -. - , :_. ",1[' ~ t.~::, ~' :.::-<.:J;l;. ,·:: ': ·< .. : ; .t>'

by ttie-designer ;lnyw'ay, and thant is nsier to formalize a familiar but informal notion than it
.L.

is to derive the required properties from an unfamiliar implementation.

------ ----- -

- 137 -

6. Conclusions

In this chapter we review the concepts central to this work, present a comparison of

the algebraic and abstract _model specifications, and suggest some directions for future research.

-6 .1 Central Concepts

We have been concerned with treating potentially shared mutable data. This

orientation has lead us to adopt an object oriented viewpoint, and to define the correctness of

an implementation of a data abstraction in terms of the behavioral equivalence of the

implementation and the standard model. To prove the correctness of an implementation, we

have found it necessary to replace the representation function introduced by Hoare [18) with the

simulation relation. We have also found that a form of computation induction is an

appropriate method for proving properties of mutable data abstractions.

6.1.1 Data Objects

In this work we have adopted an object oriented viewpoint, rather than the more

conventional variable oriented view. This choice was motivated by our desire to treat shared

mutable data. If then~ is no sharing of data, then a change in the state of a data object can

affect at most one variable, and the change can be modeled as the assignment of a new

immutable value to the affected variable. If data can be shared, then a change In the state of a

mutable data object can affect arbitrarily many variables, so that the simplicity of the va'riable

oriented viewpoint breaks down.

In our approach, states are associated with data objects as well as with variables. A

mutabll' data object is modeled as a featureless token, whkh serves to identify the object. The

value of a variablf is a. data object (~_,tok~)~ ,.T~, v~~, of .J .~arialJle u affected by
~ ·, ~ ~ ~ .,- -. " ~ -: . - - ; -_ ~- - " ~ ·1 } . -- ~ - ' . - ·'

assignment statements. The system state fufKtion maps:.,"~h ~.m irl~.tt4. curttftt data ~ta~
~ ' ~ • ~ < ' - -

For most mutable data abstractions all of the interesting propttttes of a mutable data object

\'.)~~::.,,_.,·~- ~iJ-} i5

other than its identity are subject to change, and are represented 'by the data state associated

With the object by the currmt.sys~tm.state, fU~ion .. 1;"' .• ~·data;.-.~- a,given type
. .- - . . ' ; '. -· - - -- ,• . . ' -·

can be affected by the primitjve Of>!l:ations of J~. type. .
. '.'. , . - , ~ ' '

By introducing, an extra level of Jndj~ ,Jn ""r ~ •. we. aciUe;Ve ~lizccl

descriptions of opt>rations that modify ~eqt.~.lly s,.rtcl,, ~},~· , . lf~"°1 .Y~f~ltles share the iMJW·
,

0
:, 1 -- i , , • >--'. , . ~ •-c • -

data object~ then t~ey ~~ tf_le. ~me tok~ •. a~ a~y c~!!'C!.~ ~'~ "'te . .of ~hat.~ will
~ : ·' '.'. - ·.: - -- ; . - - - - _. i" : ' : - ~ --~~ • ' ;;

values, since the identity of the ~~~red data .,jtq ~ .~ ,r~~~!·:'"",,!M·~. of_ the

shared object are different in the new state.

8.1.2 Behavioral Bquivalenee

The con,cept °1: f)ehavior~I ~iva~'~'~ is~.1,~Jhfs ~ltr. T~,~ ·.

are behaviorally equivak>nt if every computitjon ~Its.in. tile ~. l'1'~ion ClJl'.ldiUQn in -
• ; (~ ~, ._ - • _. • ,,._~-,,-0 • } • ~;~t·: __ ; ~, ::rf~ -·-te. · 'l. ... · 4

- - _

both models, and if any computation with a boolt~f.l;-~ .Jifldt,t~~~,,.value in botlJ.
,,,., -. :. •- :I·--•- .; . , - " . ·, .

modef~. This formal characteriiation of the. ex~~lly,. ~.Y~'l.~ _ ~~yiot 9f .a ~,J,,"5 .
-: - .. ', • • - . -._, • _J ___ ,, __ • ,

intu,!~ivefy satisfying, s~nce it says that nvo models ~~e ~YifpfA\fJ,•~~~ Jf.-l~J Jaave the

same externany observable properties. The charaaerization is alsQ ~uJ ·~ tt,a.UOW• ~.to

compare models with quite different intern~I .srructures. We ~ve .~ ,x~~. onJJ tbe.pames of
: - ! ~ J_ -:..· - '1 . ,.. - -~- _)_• ... ' ,. - - , t::: 4. _. . _; - -

termination conditions and boolean values to apply our definition of behavioral equivalence.

- J39 -

The representation of the objects of all other types is not explicitly mentioned, and can be

different in the two models to be compared. System state functions are never explicitly

compared, and it does not matter whether a model has a phylum of system states or not. It is

quite possible for a state machine model (with system states) to be behaviorally equivalent to an

exception algebra model (without system states).

An implementation of a data abstraction is correct if and only if it is behaviorally

equivalf'nt to the standard model of the abstraction. We feel that this definition of correctness

with respect to an abstract model specification is the right one to use, because it reduces to the

classical one (existence of a homomorphism) for the case where both the standard model an~

the implementation model are static (see theorems 4 and 7), and because it applies also to

dynamic models, whereas the classical criterion does not.

8.1.3 Simulation Relations

We have developed a method based on simulation relations for proving the

behavioral equivalence of two models. The method can be used to prove the correctness of an

implementation of a data abstraction with respect to an abstract model specification. The

method is applicable to all models satisfying the assumptions set down at the beginning of this

work, but it is most useful in the case where bath models are dynamic. Simpler methods based

on correspondence functions and homomorphisms are available for the cases where one or both

models are static, as described in Chapter 5. Simulation relations and correspondence functions

were introduced because it was found that homomorphisms do not suffice for dynamic models.

A simulation relation describes the relation that must hold between the representations

and data states of corresponding objects in the Implementation and standard models in order

- l.fO -

for the externaHy obSE'rvabk> bl'haV'tor of th~ objfcfs th be~the same. To show that two rilodels

a~ behaviorally equivafmt, a simulation rtbtlon ts explidtty constructed, and lt is establi~hect

that tftt .. sttnulirtiofr rtladori holds for an r~cfaable stjtes by induction over all computati~

~tttnces. To· estabftsh 'behhiOrat equivafenc~. tJte jSimUtad6n · r~latiOO · must" imply that

- < - - • '~ ': ,- ' -.. ' - :t - ·' :
corresponding operations on corresponding objftti result tn the 'same termination conditions

and bdolmr values. The slfnUlation1*tion riiust atSo be stron{enO'Ugh to establish all of the

propemts of.the inputs that the' operations depend on, s0 'that the indiJctioo 'wllf go\tmmgh.

Simulation · relatk>ns are d~ In terms Of. t~ corres,Jondence relation which

refates t.fte identities of tormpondlng data ObjeeU in rt1e~· models. '4-. ls defined in terms of

the comptttatian ~fftef, br saymg rilat t~ rl"SuJt~ Of corr'ei°~inf st~s o(i~e compUtatton'

• • • > ~ • '- ' • • i > ~ u.• :- -{, -~~ • .' • , {J~ •'

in the two models are related by '"+. Since 'thetobns or a dtnamk model are anonymous, and

since operations that create new data objects result in. token.s _ unr#at~ t9 previ~y knowa_
+~ _ · ~) , ; ' !, · ! '_, .~ _.: ,~r .;; ..- : r ~ __ .:._

tokms, the only generally applicable method for establishing the correspondence is to appeal to

the history of th~ computation; A simufatton retatiOn -his ·:tlle same purpose as a

homomorphtsrn, but it cannot be defined as Cl functton in 'the dynamie case because of the~

dependence on\·the hittory'.of l~·temputatieil:". m the statifca~:·a Simulation rPlatlon would

require that "Objttts rffated by ... are homomorphic tmlfge, btit since;tttere is no'nttd to separate

the identity of an t>bject from·tti pr.,.des int~ Sfafic ttle, the horiiomotphiSm can· be used In.

the proof dtrectty, without tntred~ing-tM H relation.

- 141 -

8.1.4 Proving Theorems about Data Abstractions

Jn the main body of this work we have concentrated on proving the correctness or an

implementation of a data abstraction with respect to a standard model specification. This is

only half of the process required to verify programs that use data abstractions. The other half

of the process involves proving that the invocations of the operations of a data abstraction in a

program written ming the abstraction have the specified effect.

The intended behavior of a program is typically described by giving assertions

expressing the relations that must hold between the data objects manipulated by the program at

various points in its execution. For programs that use data abstractions, the assertions will be

written in terms of the primitive operations of the abstraction. For dynamic abstractions, the

system state must be explicitly included in the assertions, so that the operations can be treated as

functions, and used without regard for the context in which they appear (i.e., there are no side

effects m the assertion language).

The problem of showing that a program satisfies its assertions can be reduced to the

problem of proving theorems about the data abstractions it uses, by using an axiomatic

definition of the control constructs of the programming language to eliminate the program texts

from the correctness requirements. The theorems derived from the annotated program texts,

which must be proved in order to establish its correctness. are called verification conditions.

The process of deriving the verification conditions from an annotated program text has been

extensively treated in the literature on program verification for the case where the data

abstractions used by the program are well understood domains such as the integers. The

process is not significantly affected by the introduction of static user defined data abstractions.

- H2-

Tht" introduction of dynamic absmrctionl talm tlfe problem~ Of tnticiducing symboli~ name~ f~r

the intermediate system states, which a~e imp~lt in. tf1e p_r~~" trxt, ~.~ whh;h are required in
.. J " - •

the assertions. ·This process will require a flow ~"-IJSis.~, t~~ p~ra01., Prev~$ l!Wrk .PIJ
' ·. -· ... , .- ·. ' "' '

automatic verification of programs opera~mg on mutable ~ta [51. l2] ~s not ~plidtly

introduced states Into assertions, avoi~ipg this issu~'. __ W'Mle we:.~~e:Jl .. ~v~g~.;the
- ' ~ '• < • ·- ·~ ' • , • • • • ' ' ' • ~· I

problem in detail, we foresee no ~sen~ial di~f~~~Y., in)~~~tl&,v~U~~. ~Jtiofl~for

programs that use mutab~ data abstractions. : ~ -

The problem of proving the verification copdj!l9nJ ~~ 90 ,an abltra;~ ~
~ -. , ' ·. ' .• <~- ;;.i-, {;., - - ~- ~--~ - ---~: - ·, - :~

specification presents no meth~olog~1 pr~. a1t~l\-Ju.c.~··UlY bl~ing ·data
' - - - ' , 1.' _·_ ; : - - - - . -

domain has theorems which are ~ard,. to prove. It _i~ 1 ~.f~ttQpro,ve,~.,~~r$tlQOS of

the verification conditions in the sta.nd~rd ~~ o{Jfle .. ~ta ,.-~~-~~ b,J thtqM:ogr:..., ..
·- - ~ - , ' . . . -

since behavioral equiva~e gua~antefS_ t!tat,~,H ~, t~ g~~' ~---~po.q. f~,~
0 !';:: ~ ~ • - -

primitive operations of the abstraction wiR have the same truth ~~"in,,~h Jhe,~ndu4,
,•,>. •", - -·.

model and .any behav!«aUy equivalept imp~at~ -~'~ d~iJ,\C'- qua~Qcn can be
,- ' -· : }': ~ , - - •• • • ~ • < • • • i ., . . •--::-. I •

equivalence implies that any aSStttk>r! wiJl.!:'ave the sa~_t{.~ ~a,~,,fn, ~ ~ •·
- - ; . . - - ·-~ ~~· '~_:•- . ,~!'>-; ---~ - •, -. >

8.1.fi Computatton' l'ncluotlon

Jn doing the proofs of correctnest of imp~~t~.m C~pter ~ we have used.~
, - .,<., I , •

form of computation indu~tion to establish that the s~t~.ret..~.a.ok1$ for afl.freacNble)
. : ''- :, . . ~ - . ;

objects and states of an abstraction. Thi$ tech11,ique is UseftJI for pn::lving.propm~ of dynamic

data abstractions, and ~forflls the sanw fun9t~. a~ the ¥,ePf!llpr ~~~ ~ Jor ... $latic ~ta·
> • '• - - - •

abstractions. There are two essential differences between the two kinds of induction.

- 143 -

The generator induction rule requires us to show Jhat all of the operations of a data
j ~ .' -~ ";. f'j, > ~ >

abstraction preserve tht' pr~ny to be proved. To prove a property of the data abstraction d

abstr~(:tion subordinate to'" presefve the propertf, ilf;addltfOfttofhe u,ei-attons of d. This is

The generator induction rule requires m ta attow -thafftte d>jttt.s l'~tumro by each

operabon satisfy the property. we are trytng te· prow. The' cempurMiOn 1hductl6D rule also

are trying to prpve. including the new 1ystem"Scate<fuftctton that is M' imf>1idf te!uk of each

operation :()f a state machine. Since the system state ftmdion 'dMCHbel cUre ·cur~t states of alt

Qf:1the data objects in"the s.ystem, WP haft te·shew t.hatiltMrpopertY• are trying to prove

bolds in the- new,is,ystmt state for '3ll data objetts, Rd wet flllffW!ff'ie'data' objects thit'· weri·

passed as.arguments- tothe-i0,peration or.that W«'e· "·ll-re1Utts:'11'ftts"iSwetes~ry bttau~:

an .. oper.atioo can cause :State ckanees·m obj«IS tmtfi'Wtlt~ passed1·es argum8th; but which

• t'

~' <) '

8.2 Algebraic vs. Abstract Model Speclfioatlons
~ .·;i"'t L ;

·'In this settion we potntout s0me of the ret.tttoni'~ ttte:absttacfmodet and the

a~braic·spec:ification techntques,-and,,resentamttcaftf,mptthcft'ber~'thetwd·techritijues.

i,',t

- H-1-

8.2.1 Relation of the Techniques

The algebr~jc ~&he ••raGt.fllOdtl:ttchntqlla;aJe·bo&ft.1~c:wtth specifying

the ~avio.r; of a data abltr~. and hence .tQh .• ,.,.......,.· wlth 1 •1M,~···t1ns ·'Of

mathematkal structures. a~h :theft ate.$itpl'eedmkal di«WMa!S kft~ way tn·whtdt

different researcher$ ®f~Jcl:te c:Jau; Theferare,lnirrat:..aMcJwn1~'re1atmg 11n '•ipbratt

specification tQ.t-.e class of model& satisfying lite aped.ficatton.

One· of the mai,n atgebrak results. .. n~·to the alpbrak sipeclflcation techn~ {9)

u .a unifon~ constructjoo elf a onoakal ~ fGro&llJ· ..-.datkNi~tftf:of a ·set of

equations. where the expressions OR ,"8th-·sidet :ef,;ftdt· equation are. compaMd from ttfe.

operations of the data· ~~aion. The rnodn .muki"I' from this' cen1t11Jctk>A ·is ·a quotient

struct,yre; whose elemcRts are 4M1Uinlence ·dnset. af·•pnssDl~;where 'two ~xpressiortS: a~·

equi.vaJent if one. t1 , derivable: fr-,. the otMr ff'Odt the" aXiDnll: ifti cfinitety ""1.wnf' sttips. Thb

theo{em esta.bijs~s a CO'Jfl~tion bdW'ftn.the proaf thtorJ ofan:alpbfail'specifkati6n and an:

aJst>braic RlQCU:I fOl':.the ipfdlted al>str~iofl. Tile ithfermt·dows·as to :vieW an -atpbrak!

specification as a prescription for consrructing a standard modelfor:;t..,.data abstraction.th•ltft':

specified, so that an algebraic specification can be considered either as an uiomatization or ·~

the definition of a standard model.

Another important algebraic res.uk is that thf, ~l model constructed as

described above is .aninilial algebril -jlltht .c.ateg,ory of,aljdmas ...,.,..;the axiGrM '91 which

means that there is a homomorphism from the initial algebra to any other algebra in the

catt>gory. In view of theorem 7, and ttie existence of the homomorphisms guaranteed by the

initiality property, all of the elements of the category are behaviorally equivalent to the initial

- HS·

algebra. In view of theorem 4. if the in,tial algebra is reduced, then there is a homomorphism

from the initial algebra to every other algebra behaviorally equivalent to it, so that the whole
· ..

category is an equivalence class with respect to behavioral equivalence. If we restrict ourselves

to static abstractiom and to axiomatizations that define a reduced canonical model, then the set

of all models satisfying the axioms is the same as the set of all models behaviorally equivalent to

the canonical model, and our definition of correctness agrees with those used in the· axiomatic
• <

approaches (37, 10, 9). For the case where the canonical model defined by the axioms is not

reduced, there is a lack of agreement on the proper definition of the set of implementations

consistent with an algebraic specification (12, 9, 221

8 .2 .2 Criti.cal Comparison

The criteria for evaluating specification techniques given in (31) are: (I) formality, (2)

r .. -~~.

constructibility, (3) comprehensibility, (of) minimality, (5) range of applicability, and (6)

extensibility.

Both the algebraic technique and the abstract model technique as developed in this
'-.;· ,''-') .·t •

work are sufficiently formal, since both techniques have been given mathematical definitions .

• , :;_ '. • • • • t :·t'i-1~;-' ''i

Both techniques result in minimal specifications. It has often been (incorrectly) said

that abstract model specifications are not minimal, because the model may have irrelevant

characreristics. As our definition of ct!rrectness mustrates, only those properties of a mod~I that

are externally observable in terms of the operations of the abstraction are relevant, and those

properties must be defined by any complete specification. Neither abstract model specifications
1.

nor algebraic specifications constrain either the representation structure or the algorithms that

may be used by an ·implementation, as long as the externally observable behavior of the
. ·:;

- H6-

abstraction is rttalized.

From a less formal point of view, it could be arg~ that the abstract repre~ntation ts

not directly observablr. in terms of thtt opE"ration~ available to t~ user
1

~f _t,~e0 ,abs~raction, an~
j

that this introduces thtt burden of keeping track of which details are directly obse~vab~, ~an~
• <~.:· -~ > ' ', ';- •• r -~ ·"·;': ..:i;'~~~ it 5,-, >d ·;~- • ~ ·-~~ .,, :

which details are not. The ax.iomatic approach has ad~~~~ges with r~s~t to t~is criter~.

since there is no explicit mention of the representation. ·It has been shown [52) that there are

abstractions that ct1nnot be axiomatized without introducing auxiliary functions. Since the
'l'-J .:·...:··~ ,,• '(~ ::· .: ~-t

auxiliary functions also compute values that are not directly observable in terms of the

operations, axiomatic specifications can also have details that nttd not appear in an

implemt'fltation.

Another argument that has bef>n used to suggest that abstract model specifications are
I ·; y··i~. .-_. ' .·• '

not minimal is that the abstract representation tends to sug~est an trnplemmtat~on. Thb is
, • • ' ' ~ ::. • • • - ' :; / ; ; . I. ~ • ;- ; • '

possible, but concern with issues of time and space eff1eiency often requires that, the

representation used in an implementation differ significantly from the, representation uSt'd in
' '- :-._t • • - ·' r · -

the standard model, which is usually the simplest structure that wiH exhibit the des;re()
,----{ ·". ·'' c ' '·.

behavior. The abstract representation is often defined in terms of mathematical stru~tures not
' • - ' • - ~ , - - • < - : : ,_ ~ ;;' :-~ : • ; • ~-•• t - '"'t ,,.-

directly supported by the host programming fanguage, so that in many cases. it is not possible to ·
• ·~~-. - t.,·; -: .~--,-$,: - ·: ·~~-.: ;· ~ /. ",--- .; ~ :_ !~

use the specification structure in the implementation.

At the time of this writing, the abstract model technique has a clear advantage with
.;,-

rH -- ~ -__ ~ . -

respect to range or applicability over the algebraic specification technique, since it treats shared
,- *><

mutable data while the algebraic .technique does not. We expect this advantage to be a

temporary one, which will disappear as further research extends axiomatic specifications to

apply to this domain also.

- 147 -

We have found abstract model specifications significantly easier to construct a.nd to

understand than algebraic specifications. This is a subjective impression based on our own

experience, and we urge the reader to try both techniques and to form his or he.r own opinion.
t ~: . 'i . '

We conjccmre that part of the rt'ason for our experience is that the set of data objects ~s
_ .. : . ..

explicitly described by an abstract model specification, while it is implicitly defined by the
:. ':';~ '. .,~ :.~-.;, ~ ~

interaction of a potentially large number of axioms in the algebraic technique. The resuh is
'~ i'o ,., ~ • '.. • ,

that the operations can often be understood and defined one at a time and based .on fairly local

considerations when ming the abstract model technique, whereas th~ interac~ions between a
:·-t 1·1 :" i ·~ =}'' ': '

number of operations must be considert'd in the algebraic approach, requiring a more global
~ J ·'" : . ' ~'..• : ~ l -~ . ~;.:-'. < ';.> ';

analysis.

We have found that abstract model sp«ificaUons are significantly easier to modify
: ., ·~

than algebraic spt>cifications, especially in the case where the meaning of one operation i~
-~ ·!

changed but the meaning of the abstract representation is not changed, because only the
' . ":'.)) ~

operation that Is changed need be considered. In an algebraic specification, every axiom that
. ' . . : ..

mentions the e>peration that was changed must be reexamined, and usually each operation is
• • : < ~- .f". • ' : ., " -

mentioned in more than one axiom. The effort of extending the specification of an abstraction

by adding a new operation is roughly the same as that required to define an operation in the
i' -~. -.

initial design, and again we have found that the process is easier using the abstract model
} - - . ,' ,....- : ; ,, ,'

technique.

An algebraic specification can also be viewed as the definition of an abstract model
.: ; . - ~' ~ .,_ . : ' .. ~ . . -~

whose representation is the word algebra, containlng all of. the. expression that can be

c~nstructed from the names of the primitive operations. For abstractions whose operations are
. • 1 . "

relatively easy to define using this representation (i.e., syntax. trf'es), the algebraic specihcati~s
" t ~ ' • ' . ' ' .

- H8-

are relatively simp~. whUe for other abstractions the.OJ>erattoQs may be quite a"'kward to define
- .. ;;_"

using this representation, and an abstract model using a representation algebra .with a
-! . --l ~ ' -~ [: - r , . • • , _·::_ ' , -

significantly different" structure may be much siinpler than the corresponding algebraic
; - •\; ., ! ;· i :·

specification. from this point of view, the abstract model t«hniqUe is easier to use sJmply
: : ~ . -_, \ -

because it offers a widtt choice of representation structures to start from. By using the fixpoint

'·~: --.-,- . ~~---~- ~ .: ,.,,~· :t ·:;;-~p ~ri: . .

construction to define a representation domain of syntax trees. it ts always possible to define an
~ ~ . , -. ' .. ~ \.-'.!J.; _:: _ ~1 .- ,-~;~;; ~=· ~)' ;,' ~\'-•, ,·_r~~:_t ·::;' .~ :j: °'"·' :.'-

abstract model with essentially the same structure u any given algebraic definition.
::;

Another criterion for judging a speciftcation technique ts the. relative difficulty of

checking whether a· given specification is well formed. If we are interested in using

specifications in the design process, it is helpful for the proms of constructing the specifications
.. • .,- ' ~,, ; ~>

.; : ~ r ~

to poi~t out inconsistencies in the design, or at INst to make them easier to find. We would like
/; --" ~, .o: -:; .·~ } ; '.

iH f ~rmed specifications to be easy to recognize.

To check that an abstract model specification is well formed it is necessary to 'check

~ J,_· • • ?• ~, .'. - ~. , '• 'v --

that the operations are well defined functions. and that the operations prest't've the constraints
1 . . : ~

adop;~ when .defini~~ the model. For each operation, it is necessary to check that the results

of the operation satisfy the invariant relation specified by the restrictions section of the.

specificatkm. fr is also neces~ry to check that each operation wiU y~ld equivalent results when
~ • ,,. . ~""! , ~. ', '. ·,, {: > ~ ~ ~--- n ~~ ! ;~ ·=-. f :·-. ~ i ~ . ·; ·: ,-:. H: -:.•, ;-__ .·;·~' ~-: ,"--,~tJ',..-~,,·:.-~,-.,·. -~--

applied to either of two data objects related by the equivalence relation defined by the Identity
' - l : ~ , ' ,

st'Ction of the specification. These properties are fairly easy to check informally. and they are

generally not too difficuk to. prove rigorously. It is also usually fairly straightforward to check

that the operations are defi~ed i~ all Inputs, and ·~~k tn :~ va~.":'I~ is necesury to

show 'th.at. ea th in~ocatkm of an operation that. ~n ~ise 'an ~x~eption will terminate in the
} . :

expected termination condition, and that each recu..;ive ciJmitioft and each iota expression (see

- 149 -

Chapter 1) is well founded Showing that a recursive function terminates is undecidable in the

general case, but that seems to have little practical significance. In cases where something is

wrong with the design, the designer will usually be unable to produce a function definition that

even appears to be well formed.

In the algebraic approach, there is no analog to the data invariant, and the

equivalence is guarantred to be consistent with the operat.ions by construction (of the canonical

model). If an attempt is made to define an operation that attempts to produce different value

for expremons represent mg equivalent abstract objects, then the result will be an inconsistent

axiomatiz.ation, where the multiple values are redefined to be equivalent. Jn such a case the

subordinate types of the canonical model often collaps~ into singleton sets. Incomplete

definitions introduce extra data objects into the subordinate types, which are produced by

expressions that cannot be reduced to bona fide elements of the subordinate types by the

axiomatic definition. Rather than leading to an easily recognized failure, the algebraic

technique will typically redefine the previously defined types in cases where the basic design is

flawed.

Determining whether a given axiomatization is complete and consistent is generally

acknowledged to be a difficult problem in modern mathematics, and there does not seem to be

any straightforward procedure for checking the well formedness of an axiomatization. There

are mechanical procedures for checking whether an axiomatization is complete and consistent

that apply in restricted cases (the general problem is undecidable), but it is not clear whether

these procedures can be used as practical aids in the design process.

An advantag(' of algrbraic specifications is that fairly powerful automatic theorem

provers for algebraically defined data abstractions have been developed. This advantage Is

,.

- 150 -

probably abo temporar,y. pmding the devtttopnimt of good domain specific tht"Orem provers for

the domains u~ to construct ·st\\ndaftl rilod~f spe(lf'ICatkMls. · F~ ·the d~ain of static. data
. ,. '.

abstractions. it is possib~ to dfl'ine an absthid .Mdtt' ustng .-~~. axioms, by introducing
. -.: , ~

an auxiliary operation that maps an object of the representation atCebr~;into the abstract object

it represents (cf. Hoatt'S. abstraction runctioh, etaJf'such. an ajifji'.oach ~iio'w~ ~,~~~ advantage

of . knowll fmpertift of the mcideliftg d~ih. and a15o' of' existing theorem provers for
'. '

appljQbJe- to·mutab~ daa abstncttons. ·

ln. oor opintob. libstract model specittbtiOO~ are dearly superior to algebraic

•·
~if.ications for-th~pur,pose ef desiptttg programs. The' algebraic specification. technique has

advantages for dtt' purpose of prorifft 'tfle tor~s or' prog~ms at ~~ currt'nt t~me.· ~ince it
• ' ' ~ - ' : ; >, ~·- _j ~ f '

~ been more exMlsiv@ly 'dev~; but w feel that a ·1ong term advantage has not been

6 .3 Directions for Future Research

Pnt> illterestmg question that has'bttn' raiSetf but not resolved by tht' current work is

wht'thrr or not al»tract model specif'kattoris'#rt- betrer tflan axiomatk specifications with respect

to,pr.ogram vertfication. Since theab5tract r!presentatidn~cieach data typemust be considered

when Using ·abstract model sptcifkations, and need not be ~Sidered 'when using axiomatic

specifications." a naive analysis would indieate that prds with . resi>ect ·to abstract· Model.

specifications are more complicated than the corresponding proofs wkh respect to axiomatic

specifications. based on the sheer volume of detaff fO be expected. HO\ttnr, tn the proofs we

have dQJU! (r.nanualty). we have found thattnowrq>ropeniei c~ftttt'fucX:lettng domain can often

-----------~. - -- -

- 151 -

be carried over to the abstract domain, leading to short and simple arguments. This

phenomenon may have an analog for mechanical theorem provers, since special purpose

theorem provers designed for the particular modeling domains used in constructing abstract

models may be more efficient and more powerful than a general purpose theorem prover that

must work with arbitrary axiomatizations.

If proofs of correctness are to be used for certifying software, then it is necessary to

develop mechanical proof checking procedures, because proofs developed manually are at least

as susceptible to errors as programs written by people. While a completely automated theorem

proving facility would be nice to have, it looks likely that in a practical system the theorem

prover will need human guidance, perhaps in the form of an informal outline of a proof, which

the mechanical procedure tries to augment until it either discovers a formal proof or an error.

Our experience with proofs in terms of abstract model specifications indicates that an

intuitive understanding of the model derived from familiarity with the underlying modeling

domain often acts as a valuable guide to discovering a successful proof strategy. For uciomatic

specifications this intuition is often lacking, and the process of trying to construct a proof

degenerates into fairly blind symbol manipulation and syntax directed searching more often

than for abstract model specifications. If the theorem pPover must rely on human guidance,

then the ease of finding intuitive insights can be an important consideration. We also

conjecture that the extra structure provided by the abstract model is useful in constructing .

heuristics to guide the search strategy of a completely automated theorem prover.

In order to settle these questions, special purpose theorem provers oriented to the

modeling dom;iins used in ahstrilct model ~pC'cifications should be constructed and integrated

into a program verification system.

- 152 -

Another question that is of interest is the extension of the framework developed here
. .. '

to incorporate nondeterminism and partial opera~ions. Both of these extensions require a

refinement of the idea of bmavioral equivalence.

If the operations of a data abstraction can be nondeterministic, then a computation no
. '\, .::-. ;' h • I '

longer has a unique value, but rather a set of possible values. Strict equivalence of the

behavior of two models would require that the set of possible results of a computation be the

same in both models. Since a more deterministic implementation of a nond~erminbt~

operation is presumably correct if it always exhibits one of the possible behaviors for the
' . "- - ' ~ - : -.. '.

standard model, an approximation relation that requires the set of possible resu~s for the . '

implementation to be a subst't of the set of possible results for the standard model is a ~'
.,

appropriate mtttric for the correctness of an implementation, provided that the set o~ possible
•• ; < '; • ~~ '!- ~ '(.,; ·-_

results is neve·r empty.

Some abstractions have potentially useful operations that are inherently pa,rUal
7'._~ ::' • t _-;. t ;, ' F ~,. -

f~:nctions. O~e e~ample is the domain of txpressions for a Turing complete programmi~-
, '. - i'.• ·,. ' .· . '

language, with an operation for evaluating expressions. In order to de~~lop a model for such a.
-~- :.:,.<·- ; · ,f· __ , ~}~~{~ r - · • .. · 't

structure, some sort of provision has to be made for cases in whkh the operations do not
. '< ~

terminate. The impact of such an exttnsion on the rest of the theory should be investigated .
.:.-, ., ! ; , ·'- -- .,..,_

'

- 153 -

1. Partial Ope~ations ·

functions, since there may bf' circumstances under whic;h they do n.otJerr:nin~te., ,We ~UI J:eqµire
- ~ - - ' ' ' < ·', ' ; '-·~' - •

the operations of a data abstraction to be total, because w~ feel, tJ:i.at it is ba(j .progr1.mming
~ : ; ? - - - ' . ' .

practice to design abstractions with primitive operations tf'lat n:iayfaip9 t~r~nat.e. s~ .r:e~
- ~ ' - ··.1 t";~-.-~'\- '."' ~-·-,_ " ··. -

work on specifying data abstractions with partial operati9ftS can.~ found ir;w (27].
~ ~~ ~':: ~ ··--·_~' ·' -,1· ' •

Many data abstractions have operations that ~ke sense.only fQr: SQmf: prop~r sub.:t
~ • - • ~ '. - ; ' - ; "' ; : "" -~l ': . ' 1~ - - ' -- ' - -. -

of the input domain (ie. dividing by zero is not well de~ined). If .an. operation i~ invoked with
_ ;,. , -: ;: _, - , 'i'J, ~~) _ f,L;- ·~:: ·-. - .

arguments that are outside its natural domain of definiti<in, the ~tion s~~kl tfrminattt by
~ ~ . . . , r - , . ,- ··: ~ _, ·-·; { ~ - , - ': . w

raising an exception, to indicate that something unusual has happenF<f ... ·The reader sboulc;l
, . -: :_);. . ~ . ": ~ - - t ,'_ - j" ' ' ".:! . '

note that it is possible to transform a compt~table p~rtial ru,~~tio!J, i'!t~. a ~Ofll,Putab~ ~I,
. .: - ·.. ',' .:'. - .I-;

function that raises an exception only if the domain of definition of th~ parUa1 fl!.r,~~'9n- is a
. . ., • ~: ~ , ;~ ·j. --~ ,! ·':~ f'~.ii;;- •';·_» ,_.,, ' -~ I,•. .

recursive set An interpreter for any :rurinrc~~f~~, ,l~~~u~2{~,~~~ ,~ :~~ai".lf d~fi,oiUon tb!lt

is not recursive (otherwise the halting problem would be decidab~) •. ~~strat!.n,; .that. t~~rlt
, ., , ·{~ .. ·,, .- -_,- ' .. · .' ,,. , ;. · ;- ·.: { ~Ji-1·;:- ·.~1 ~"r_~, ·-;, "· · .. ·· - \ ., · ·· -

are interesting functions that canno~ be made t~ ,satisfr ~r r~stri.cti0f1;.. ,r,.,.rt~a! recunJ.ve
. ' ·;, j' -,; • ' - ". i . .': . ; ;- ' ~ - f ~ s. ; -1 ! - .. .,..: ..

procedures that compute such functions can of course be defined in terms of. the primitiv:e
' . . ' ~ --. ' ~ -~ ,' ~

operations of a suitable data abstraction, but we do not allow them to be included as primltiv~
i ., • • • ' ~ - : i't '·-; •

. , .

operations of the abstraction.

- IM -

2. Nondeterridnttltlo Operation«·

nondetl'rministic operations. A. partially specified operation is defined only for some proper
< • ' - - • !_ :·~ :-'•_ . - ·~ ._-; -·< .: ;:'~ ',,_· :~-.!f, --.~-"q'(.' "'- -~~ ~i"'

·subset flf its' mput typtt, and' prnumably the designer dotS not care what the operation does if it
) ... { . --~ ; ' ~-. :; ! '

is 'ptesenfect With an input outsidr of ~ha~. subset. W~ feel that it is bad design practise to
, .

• J:. ! '.)
produce: spmflcations Of this type, because of the possibility of undetected errors in the use Qf

'~abstraction. The only ca5' in ~hich 'w.truly- do ~i ~.'.e ~~t .~ ~rat; ,d~~,-~, a

certain input ts if· we know th~t it wiJI ~ever be ~Ned '~tth that ~pu;. .. A ~~II designed data
-::, --~·-::;: :i·· ~,~;f·t~.-::' h:rL

abstractiOil shollf<I rafse an ex~q>tion f~ ali ln~ts 'ror which no normal response Is specif~. so

. '
that atremptS to u5e the •ration outside of its domain of valtdity will not pass undetected . . -..

Data abstractions With nondeterministic operations are potentiaHy Interesting, but are
, ', - 1 !"ft'~! i '"": -<..,, - ' ~ ·-- ; : ' ·. ;

not tre.t«I In the main bocffof this Woi-k. An operation .can be described by an input~tput
"· l'.C

' ~ . - '. ~ ;: ~

tebtion R, Which re1~tes the inputs of an 0perati0n to the legal output values for those inpuu._
- ' ~ . ·'

~, ' ,- '! ' • ..1'' ' ,,,~ "" '.:~}-J. ~·;,

for a Cfet~rministic operation, such a relation is single valued, and is In fact an ordinary
' : ~ ".:, t _-. • - - t. ~

function. Some operations are most naturally d.escribed by relations that are not single valued:
: --h:'..J_'~-· ;.-·";~·-' .·t•> ;~; ~. · ,,,---,•

the programmer wants the operatioo to satisfy certain criteria (eg. the relation R), and does not

care if there' is a uniql..e resuk. or whkh valid result is actually chosen, if there is more than one

.·
valid choice.· We do not recommend introducing extra constraints with the sole purpose of

r~tricttng R to the point where it becomes a function. Such constraints complicate the

specification by introducing irre~vant details, and also may exclude some of the simplest and

most f'fftcient implementations, whkh would be perfectly acceptabte without the artificial

con,traints.

- 155 -

A non functional input-output relation R, is consist~nt with.~ wh~l.e ~lass of operations.

some of which are deterministic, and some of which are not. The reader should note that it is

quire possible to implement a data abstraction with nondeterministic -, 0p~tations on a

deterministic machine, because an abstract data object need r:iot have a. unigue ,representation in
. - • --: : ~ ~ -~ ' : i" • "

the implementation. For example, consider the data abstraction consist~ng .of the (inite sets,Qf
·. . . ' ' }

natural numbers, together with the usual set theoretic aperations, and a '"·09.se operation. T~C!
- t . c - ~ c" ·, - '"} • ~."' , I~ ' • " ,

clroou operation returns an element of a given set if the set is nonempty, and r~is~~ a,n..e~CfptiQn

otherwise. It is not specified which element of the set is to be chosen if Olere is more than one.
;, ,.. " ~ - < :::: ._ • • • : • •

Abstract sets are immutable, and two sets are equal if and only if t,hey f:t~ve the same elements.
• • : J ~. ; ' ' ' ' ' '. ~-, ; "'

In an implementation, sets might be represented as linked lists, an<! tile c~QOst mera~ton n,tight
. . ·..; ,-: " : .. r; . '~ ~ . _. . . .

return the first element in the list. However, sine~ t.here ',rre ':'.'J~X.~i~f~r,e~.t r;epr~~ntatioru for.
• C < O • I , ' ' .- '. f • ! ', > ~ > - "'; • ' • • • > • •

the sattie set, with the elements stored in different orders, the clioost operation ~ppear~-.tp_. ~-,

nondeterministic when viewed as an operation on abstract sets.
• f., • - : -I • "'. :!, ~ :''! :-~ JZ'.! <

We know of no work that has been done on specifying data abstracti.ons with

nondeterministic operations. Some work, on. specifying n<»f1d,~erm~~istic ~a,ttons in ter!"s of
. ; .. < ! • :]' - < '-"; l ; ' <:' ,. ' • _.;: ~- -' -

relations is reported in [3il
"

Concurrent access to data objects by parallel processes is an interesting}ubject that is

beyond the scope of this Thesis. It is profitable to consider parallel processing in _the conte_xt,_of
•· ' ., I

data abstractions {20, 16, 6, 38, 2i] because processes need to be synchrOJ!iZecl only if they
' ~ --, i ·i ' ~ ' - . ; - . .

operate on shared data. Even though a quite a bit of work, has been d~e ,in this area, the

issues involved in specifying the correctness of a data abstraction in the presence of concurrent

- 156 -

mutation of data objects are not yet well understood.

4. Exceptions

. ' . '-

Since there is no generaliy a~ed model or exceptions and exception handling. we
; -(- . ; ~ ~ - . : r ? , - .

have cho5en a point Of view th~t simPlif~ the ~erface presented by an operation, and whkh
- ., - ~ ~ ' •• 1 ~~·'. - "- ,_ -: • - .

helps to separate the externally visible behavior of an operation from the internal processes that

produce that be11avior.

We a·ssume that an operation terminates whenever tt raises an exception. Thus an
- - . ~ ~ ' ~ . • • ' - . ~ . - - +~· '. i - . ·r ' '1 - :--, -1 -; _ •. 'i ; : '. ; : - ·, - -

operatibn may terminate tri any one of a number of conditions, one of which ts normal and the
. ' t.., ~ --~ . ,-.·: -"

mt of which 'Ire ex~tionat. In general, the ·results ~ the opftation In each condition will be

.• · .- ' . ; . . ". "·· .. ·d·-! . . :
dtfferent, arid mttsr be 'specffit'd (Or an possible termination conditions tn a complete description

-:.-

or tht' operatlbn.
.--

The alternative to our point of view is to allow an exception to cause some events, and
,,.. ' ; ' • ~ - j _, .• • -.: -

then· to co'1tinue performing· the or~inal operation at the point whrre it left off. This

F
a1ternauve is not attractive because the separation between the specifications of an operation

lV.l ·. ,,. ,.

and the details of its implementation breaks down. Given a specification of an operation that

describes the results of the operation for the normal trrmination confjacM'1 'i1"f 'glWs' tttei:'

conditions under which each exception occurs, and given a specification of an exception

handler for each exception raised by the operation, we still do not have enough information to

. '

predict the behavior of the operation in the context of the specified exception handlers. It is

necessary to analyze the implementation of the operation with rnpect to the specifications of the

exception handlers In order to determinf' the effects of the operation. Since different

invocations of the operation can occur in the contexts of different exception handlers. we cannot

- 157 -

treat an operation as a closed module if we ~de>pt th,e. resumpti~ model of, exception handling.
~' ~ , . ., __ , -.... f; .. ,.t - --;"~7- , ~ ~· ,-.... .···

Exceptions are discussed further in Chapter 2 .

.. ·::'

We assume that the operations of a data abstraction are funct~al. This mean~ .that
•. .-. .,., - : .--., -! ·: ' ~~::·l- '">'. :~~ _,,. :·:) ~ ,., -·

an operation must not have any internal state, so that the resuks of an operation depend only
~ . .- i ,_ '~ : - . ! . I

on the information contained in the data objects passed to t~ .~rat~on as arguments J'!tlidt
~ < '.}~ :._ i . • . : ... "~- -"'~.fr;j:_~-<~ '·.'..i·,~-,~.;. ;)~ ;L ~~-;, _,;. - , ,

may include references to other objects). Data objects may themselves have states. so that wear~.
"• •, ~. . -~\ : ., . : - .. - . - . , ' '

not excluding the possibility that an operation may retur!' diff~rent results if _it is invoked w~th
~ - -':'- ~ _.; ., - • -·. ;; (~:~;_,·- ,_ •. '·':: .·:;.-:-· ?" - ' -

the same arguments at two differtnt times. This restriction is meant to prohibit type managers

(ie. SIMULA classes, -cLU dtisfers,- Ali>HAiio farms, ·etc.) irom ·1c.;ptng mutable own data,

which introduces a component of the state associated with the type as a whole, rather than with

the individual data objects. This issue is discussed further in Section 3.2.

i._,

-158 -

Appendix II. • Baslo T7pe Deflnltlons

The definitions of the natural numbers and the integers are imporll~Udilec.tlJ from.

thl" underlying standard matMmatics. The definition of the natural number abstraction is
. ,;..

shown in Figure 2+'.' As in the definition c of •• ~· i~ ChaPt;; ~. 1

the standard notations for
' ~ -I • • ~ 1 • ' i '

natural numbers and integers are used in the definitions of the operations to refer ro the

~ .
standard operations of the underlying mathematical domains, while the same notations are

introduced as abbreviations for rt.e operations of the e~~ion algebra. for use in the

ddinttions of other modules. The only nonstandard, fea~re of this. d~inttion of the natural

Figure 24. Natural Numbers

type nat as NN

wtth

representation
restrictions
Identity

operations

end nat

constant[n} -+NN
zero: -+NN
successor: NN--+ NN
plus: NN x NN-+ NN
ttmE'S: NN xNN-+NN
less: NN x NN -+ boolean
equal: NN x NN -+ boolean

natural numbn's N
none
natlequal

constant[nX) • n
zero()• 0
successor(x) • O'(x)
plus(x, y) • x + y
fimes(x, y) • x f.• y
less(x, y) • x < y

•• n for n c N
asO
•• 0-(arg I)
asargl+arg2
•• arg l<i erg 2
u erg I< arg 2
asargt-arg2

- 159 -

numbers is the mfinite parameterized family of constants. These operations ar~ intr~uced sp
- " -~\ • i ~ . .

that we can use the familiar decimal notation for natural numbers in our specification. language,

rather than having to build up each number from zero using ,th' successor function, which
~" - - . -.- ' - '

quickly gets cumbersome.

The ~finiflOft of, the integers is shown in. Figure 25. lnt,.~r~ .. also have an infinite

supply of consr.tnt op8atmns. Note the conversion ~operatibns inttgtr and nn, which serve to
~-? ' :

convert integers _to natural numbers and vie.~ versa. Tfie quotittttiand rtmaindtr operations

have exception conditions in the ca.ses where the' standard mathematical definitions are
~: -

u~defined. ··.·The quotitrtt ·operation rounds driWif'trrespedite of the st~n 1or its arguments, in

agreement with the usual mathematical definition, and in contrast to the w~y divisiOIJ ~r~~,t!'.
,_ '" " <. -. ~

most programming languages (e.g., FORTRAN).

The astute reader wil1 have noticed that we have omitted the definitions of th'
'1·li.

operations >, if:, ~.and ~.even though we have used thenhrM} in tJte ~ification language.

• ·. '•!'· ' ..

The astute reader will also be able to supply the standard defi'riitfbns fOJ' t~se operations, and
).- < ' ; -· • ' - '

is advised to do so.

These types are inten«it'd fur ·use)n t~. specitidtion tangu~ge. The corresponding

types for a programming language should prb&lbty 'be designed · ~ifferently, to include
... " .-· : ~ ~ 1 ,, ; ~·- - • \; '. ~ ' " '; ' .

limitations on \the sizes of the numbers, exception condition's f6r eases in' which those iize
!c; "

limitations are exceeded, and additional operations for converting strings of decimal digits infcf

numbers, and for printing out numbers ..

- l60-

Figure 25. Integers

type int as I

with

representation
restrictions
Identity

operations

en~ int

constant[nl · -+ I
integer:
minus:
plus: .

nat-+ I
I-+ I
lxJ-+J
lxf-+I
lxl-+J

difference:
times:

quotient
remainder:
abs:

I x I -+ I + (zero_djvide :)
I x I-+ l +. (zeio_cijvidf.z,.).
I-+ I

nn:
less:

I ·-:-:" na.t: + (wrongJip :),.: ·
I x I -+ boolean

equal:

integers Z
none
intlequ.al

I x J -+ bo9ltao

constant[nX) • n
integer(n) • ,,. in Z .
mlnus(x) .. -~
difftren~l{x. y) • x " J .
tillll'$(X, y) • X r) J

.J .

quotimt(x, y) .. if y • 0 then {zero_divlde:)

as n for n < Z

as - arg I
' ,., 2.

as argl + arg2
.......... 2

asl•roll

asargl<•g2
,,419:•••· •f2

el~ q : 3rC x • q • y + r le 0 :S r < abs(y) 1
s:emainder(x~ y) .. if y ~ Othen <.m,cuttride t~ - ·

el~ r : 3q(x • q o y + r I: 0 :S r < abs(y) 1
abs(x) '."Jf ~ <, O then ~.t~ x .
nn(x) "' if x < 0 thm (wrong_sign :) else x In N
fess(x, y) • x < y
equal(x, y) .. x • y

- 161 -

Appendix Ill - P~00fs

An exception .algcebra differs rrom a heterogeneous ~ .. -~, ~defined in (I] by having

a disjoint union $lructu.-e for the ranges of the':Of>eratioos, w~~~ ~~ dis~t ,~nion is indexed

by termination conditions, and whtre the components of ~he. ~U~Jqint. union are;,cartesiaft
- - . ~ '. ~

,- ! ·•

' ' ' ·•,' ",,' (' : ' ' "
products oft~ phyla. In a heterdgerttou~ atgef>ra, the· range Of each ope,r.at«in h~s; to be some

_,.. ; ' '

phylum of the algebra. The definitions of basic algebra,t~ '.~.r;~. sµch 1as· Mll>algft>ras.

congruence relations, quotient structures, and homomorphisms have~~; b~ adapted slighd1 .to ftt

into our framework. The required extensions are concerned mostly with termination conditions.

' ., '''1 ''" '

For exa •• ac congruence ~tatton is an equivafenct ~~1atioo that preserves all of the

operations of an exception algebra, so that if .correspc>111<Ung ~rguQ'leD~ ··of an operation ·aff
l. ,•' }· .. , < .- ••• • •

related by the congruence, then the terminatiOI}, 1=0QditP:i~. q(, tf\e .two inv~tions must M ·
0 • - :~;; \ ·' ' - J ; \ . • ' •

identical, and corresponding return values must be relat~ by the·~~~~, of the conpumce, .

relation for the appropriate phyla. As in [l],,~n ,~i~a~~ re~UoP ,qrt·,~n egcept;M alg*a ts
'

defined to be an indexed set of equivalence relatiOO~.'~lo~ eachp~ylum.

Theorem 2: Every equivalence class of static models with respect to the behavioral ~ah~ '

relation contains a reduced model.

Proof: Let E be an equivalence class of m~els "".i~h _.res,p~~to ~.~vior~I equiva~ 'i
andcboose.:M-< E:ThisWiU~IW'fys'betJOssibfe?'·· · · ·
since equivalence classes are nonempty by definition. . .
Let M' be the subalgebra of M containing only the reachable objects of the principal type,
and with the same subordinate types as M.
M' is dosed with respect to the operations of M, since it contains aU reachable data objects.
M' is behaviorally equivalent to M
since the value of any closed computation C in M' is the same as the value of C in M.
Let M" "' M'I=. where = is the external equivalence relation defined in Chapter 3.

-162 -

M" is well defined because = is consistent with all of thf operations by construction.
Then M" is reduced and behaviorally ~ivalmt to M.
Every ek>merlt of the prindpal type of M .. is reachable,
because any such rlement is t\U•I to [xJ for ~~~,Jfp.,~ ~t*Jlpe'of M'~
!'nd every sUch ~ n readdb~. by the Construction Or M'.
Any two ek-ments of the pri~ipal type CJ(M" .. ~tart~~alet1t:1nwst be fdendcat,
bf the- constnwuon OfiJJr tfbrn' M'. · · · ·
Hence M" is reduced. . , . . .
M" JS behavioraRy ·equiValent to M' because at ts a homomorphk tmage ol M',
under the na tura I homomorp~~Sl,11 ~ denn.l bJ li(x)" b:J. if ~,£,.4· -4 j(k) •·r otherwise,
.-re ·1f ii' the 'fritktpaftjpe ·Of M'. ·
Since behavioral equivalftlctt is tra~skive, ·
M~ is: ioralty fqttiritenl to M, ·
and the theorem is establishtd.
Eftdot~··

Theorem 3: If two reduced models are behaviorally muty~._ U... t"'7,•or~isomorphk~
• , : - >--.-"' "I

Proof: U! Mhnd M2 be reduced and behavioiaUy tqoivalenl
Define the isomorphism fas ro11ows. ' i

Far """" dowd t:Mtputadon C, W J(vahie(C, Ml) • value(C, Af2).
By Lemma I below, whtnevtt va~C,,Af1L"!,va~:.'4Q
thelt value(C, M2) .. nlu{ifl:', ·in).
so that f is single valued, and hence a fun_ction. . - , _ . , : .
The mnrse twappint is ObfifitWwbfinrl"rchangtng Mf and M2 in the above definitton,
and it is also single vahJed, by rhe same ~rgummt.. -·c i'.
So f is I : I. -·. ' - " . '- .· - .

The operations of the algebra are preserved by construction,
~o the isomorphism is t'stabliihed.
En4·of fin.of .,: .

lemma I: LE"f Ml and M2 be behaviorally equivaltnt exception algebra models. let C and C' be
,-.. ! ,!·

closed comput3'fom, md: fet vafue(C; Ml)·· valU!(C'. Ml}. T•: ,ahle(C.;M2) ts :e.xtemaHy

equivalent to valu~C. M2).

- J63 -

Proof: let Ml and M2 be behaviorally equiva~t exception algebras,
let C and C' be cloi:.ed computations, · · · ··. ·
Jet value(C, Ml) = value(C', Ml),
and let CO be an open computation.
Then value(CO, value(C". M), M) = vatue(C''fCO,.~}.;

l ~ ~

for any exception algebra M,, . . ·
where C"flCO is the con<atenation of tbe c0mputations ~" and cor2 .. length{CO)l
and where the step indices of all of the argument specifications in CO
have been increased by length(C")-1.
then value(CO, va1ue(C, M2), M2) = '' ·:· ·' •

value(CQC0.~~~2) .. . PJ1the detiftitfClfl df~lion; ·
value(CflCO, Ml) z since Ml and M2 are behaviorally equivalent
value(CO, value(C.. MJ}. Ml; ... ·. ~y;...e'ih!fiftittorh>f~fenatfon
value(CO, value(C', Ml), Ml}= by assumption,
value(C'llCO. Ml) .. by the definition of concatenation,
value(C'llCO, M2) = since Ml an~ M2 are behaviorallflequ'ivalent,
value(CO, value(C', M2), M2) by the d~finiti°'-l oi!~~~~tfQn.

So value(C, M2) is externally equivalent to value(C, M2).• . . .
End of Proof · ~ ·

Theorem 4: If M is behaviorally equivalent to At arid-"M is ~~uced. t~~ there i$.a

homomorphism from a subalgebra of M' onto M.

Proof: Let M" f>e the suba lgebra of M' containing only the reachable
objects of the principal type of M',
and with the same subordinate types as M'.
The quotient of M'' with respect to the external equivalence relation is reduce,d.
and behaviorally rquivalent to M' by ThfiO'retn 2.· .:'' ' '"1 ·

and by transitivity of behavioral equivalence, it is also behaviorally equivaleflVto M.
Then by Theorem 3, the quotient is isomorphic to M.
The composition of the natura I homomorphiSfl\ f~PIJl<M..: ¥» 1"4 quor•r~a11d
the isomorphism guaranteed by Theorem 3 is a homomorphism from M" to M,
so the theorem ls established.
End of Proof

Theorem 5: Every chain of algebras with respect to!; ~as a lea$~ppp~cJ>oun~.
.. . . M ·• .

- 164 -

f

Proof: Let A;: i < N ~a chain of algebras with respect to I;.

Then A .. U A, .• where A is defined as follows. .
i c N

Va E A. typmames [A. phyta0 • U A;• phylatr 1
t < N

V(J c ,f. opnamt's [1·e>per01t~~ f~W~;·-~1 ·
A.x • U A;oX,

t c N
where x can be any one of the following components: · ·

typenames, opnames, t~MC'-""·~tc,11ettgth, rtnw/or pt.·

By Lemma 2 the oper~!~.s ~~JJ~~,,._,..s artt#ell~nect: ·
. ; . " ~~)• :

A1 C A for all i c N,

since s
1
. & U s

1
. for any}:< ll

t c N
So A is an upper bound for.rhe'chain A1

If A; ~ B for all i < N thm A ~ 8,

since Si "s for an i (N implies u s, "s.
i (•

So A is the least up~ bound fm: !he c~iQ>-Ai.
Elitl'ot~f' . 1 ; "· ; ' 1 ' .·

defined function.

Proof: We have to s'frow that/•
1
-~NI; is single~~~ ..

Proof by contr~ie_tka. · ·
Suppose f is not single valued.

' ~ ' .
•'•

Then for some x, <x, a>•"'f..a~-<.~•)i< t•re a·.-·&. ··:.·
Since f.. U Ji·, ·· ,.~ · · '' · .. , .. ·. ,'.

i c N 1

pick n, m such that (x. a) < /n and (x. b) c fwa·

Since/i is a c~ain,/71 &/max(n, m) and/m '-fmax(n, 91t

·.lo;
·'-'-' '.

So <x. a)< fmax(n. m) a~ (x~-~) .< f~~<?r)flt~~~ ~ " 6h,, .,
But/; is a sing Jtt va h*'<f flmttitiftior ·an I (N. contradiction.

So f must b~ single valut'd.
End of Proof

; ~ • _I ' <

. \i. '

! \ t,

- 165.

Note that we are 11 ~atrng a funcHon fas tbe·Siet ofaff<l9'trSl fr,J(»)} such that x < domain(/).

Theorem 6: The tuple tr~nsfoi;mation is contff.IUOUlo W;ith r~ to ~

Proof: Let Ai be a chain with re~pect to~-

Let LI denote the least upper bound with respect to ~.,

(U A;) x s2 x ... x Sn = ll (A1- x s ... x .;.. >rlS ~
iCN i<N ' ••

from the defmit1or1 of union and crp~s proch_Jcl.
.,-:

The dC'finition of e;ich operation is a functional F from the MY"' W,Rf>eifl~Ons,on t~ phyla, ·
with the propeny rhat the v,llne of an operation on any inptit def.ends only on the input values.
and not on the phylum as a whole. ,. . . , .

. · :-.r c r* -" - , · . . : : " , ' : -" '~ . , " -. · ' · · · -- ·
(The f mite quant1ficati0n in the:d!!fin.~tioo o~ ~f can,,t»e_ dpan4s<J.
into an equivalent finite conjundfon.) · · ·
So F(U S;Xx) "' F(S jXx) for any S j such that x c SI

F(S j'Kx) is undennro if .., x < SI
So F(U S i)(x) = U F(S }x).
The definitions of the signaturl' t1M'tcf1MS1 ilsbllMive-lthfS'fH~Y.n; . .wr• · ·., · · i •

So the tupt.,tt~or.-nion:!Mf alflbt•'1 it t'41tttffllMIWl;WMt:ir~tW C.
End. of Proof +, ""' ,·h',,; · ·

Theorem 7: Let Ml and M2 be complete excepti~ 1fto1dfls'with'tfft1ume'Sfgriature and
:}~0.~!·;·---~ .·.:;.·~~~-~·-4- , _~)--~,_~1f.vl.,-··, ~-· "·· _q

the same interpretations far t~e,su~:rlina~~f.YpeJ.i~~.i1~~-(~nilln from Ml to
._.,-~'}, ")~C-1 ,,,. ''"'tf --1' ··~·,1.~·- . ~~ ,.~~-~·

M2, such that Ir is the identity mapping on ~II c?f t~,~~~toat~ l.Jfl~,J,-" Tt~en ~fl and M2 are

beha vioraHy eqtilvale:nt.
!.,"

Proof: For every finite dosed computation C, we have to shQW Jhat:.
''· . . '.·. ~-

{"i ~ ., ,.
A. C is feasible in Ml if and only if C is feasible in M2.

B. value(C, Ml}~ ~hie(C. A~fwhenever c is feasib~ 'In Ml' a_nd i>'r~u~~s a boo1~"-" ~a1u'~:·
·_1frf1'S~·~ i. • •• • :--:· • , • /.

Let H(C) "" (feasible(C, Ml) = foa:iible(C,'M2H & 2
, ' '

(length((.') 2: I 8c frasibte<C. MO).,~ A(valadC; Mt)):H• .valtM(C; Mt)~ 1.\

Assuming that ll(C') holds for all C' such that length(C') < fength(C);
show that H(C) holds.

Case I: length(C) = 0

'l

- 166 -

H(C) is trivially true, .s.in« the anltttd~t of lt\e tmptkation ts false.
A. holds since the t'lllfllJ computation ts frasible m anr model
8. holds stnce there lf~-;~'flfi~ 0 pt'Gtlidng:i:bodle8'Y1 vahie.

Case 2: length(C) > O

Let length(C) ... n and let C' • CCI .. n-11
Then H(C') since IE'ngth(C') • n-1 < length(C).

A. To show feasiblt{C, Ml) if and only if feasibfe(C; M2)

Case 2.1: c .. ts not feasible in Mt

Then by the induction hypo<htsis _H(C'), C' is !fflt . .f~Ji~9' in_ -~i
Since C' is a preftx'ofC, tis 'not feaSMe ht Ml or ltf2. : . .
So A. holds for caR 2.1. · ·" · . ·

Case 2.2: C' is feasible in Ml.

Then by the inductioo,\l_~~i5C'i5featibkitlhW2. ··
Therefore tht ter~ <flllllfUtitas •~die,. -tda•thr mpsiranents:
for every step of C' in both models. • - '

. j

C is feasible in Ml if and only If the cermination conditions of the arguments of C[n)
match the requiremmts of step C(nl
;:£,~ar.a"'~~.iH.ille·.8,._-<=-t*l"" · ·; , '· · ···;. " ' ~-" ·· · '· .·
where length(Ci) 2: I and where c1 is a proper prefix of C .

. ay (Mrif1t1waMf;fiy~siiCYltae(C,,~1''i.i•viW(t,.''42l~-

Then tc(h(value(Ci, Ml)) 7 ~~va~~~>t: ~~~;, • .. . ·'
since ft0fri<Jmorp1ltsms pr'tser-Ve tefmiriatiOn cOnditions.
Therefort' the arguments wilf match the requirements for the inl'fPT~tion.of
C in M2 whenever tht'J will match for the interpretation of C tn'M2. · ..
So A. is established for case 2.2.

B. Assume C i!> foasiblr in''MI and terigth{C) ~ t.
Show li(valu~C. Ml)) • vatue(C, M2) .

...

Each argument xi of the last operation Qf C is the resu~ or~preliJ(Ci_or C.
where I ~ lmgth(Ci) «tiength<C). . . . ,
By the induction ·hypothesis, A(value(C;. Ml),. va~C1,. M~.

Since Ir is a homomorphttmt A prtMrvrs-. the operations of Ml and M2.
So lr(vahte(C, Ml)) • value(C, M2t.

So H(C) for all comptttittions C.
If the principal type of Ml is boolean then Ml • M2,

-167 -

s1nce there is a unique standard model for th~boa1ean domain,
and otherwise boolean is .a subordinate type.
In either case, liboolean is the identity mapping.

So if a computation results in a boolean value,
it must result in tht> saw·~ value in 'Ml and tn · M?..
So MJ and M2 are behavioralty equivalent.

Then H(C) holds for all finite computations C.
End of Proof

Theorem 8: Let Ml be a s<ak> machine model and. let Af2'be an ex~~ption .algebra model with

the same signature and the ''Same interpretations for the subOtdinate types. . . Let c be a
' ~ - . : ' : :;- !'" ' '

correspondence function from Ml to M2, such that ' 'returns its second argument for all
·,, ' '

subordinate tY,pes. Then Ml and M2.are behavior.Uy -.utY.atenl

Proof: For every finite closed g>mp1;1ti.tiOIJ C, we have to ~w that:

A. C is feasible in Ml if and. on.ly if C is feasible Jn. Ma

B. value(C, Ml) = value(C. M2) whenever C is feasible in Ml and produces a boolean value.

Let state(C, M) denote the final state produced by
the interpretation of the closed computation C in the state machine model M.

Let H(C) = (ftasible(C, Ml) = feasibte{C, M2)} le , .. .
(tength(C) ~ I & feasible(C, Ml)) ==> c(state(C, Ml}, vall(e(C, Ml)) • v,.,.,e(C, M~).·
Assuming that H(C') holds for an C' such that Jength(C') ·~ ~gth(C), . .
show that H(C) holds. .· ' · · '

Case I: length(C) • 0

H(C) is trivially Hue, since the antecedent of the implication is false.
A. holds since the empty computation is feasible in any model · .,
B. holds since-there are noc:ompotattOM~leftgtff 9'pnJdutifYi'.a'boofean value.

Case 2: 1ength(C) > 0

Let length(C) .. n and Jet C' "' C{I .. n-IJ.
Then H(C') since length(C') .. n-1 < Jength(C).

-168 -

A. To show feit~ible(C, Ml) if afld mJy if HaJilJle(C,.; M2)

Case 2.1: C' is not fr.asible if) Mt.

n '

Then by the induction hyPJl~ts fic{C\-C: J~-.f~.M2.
Since C' is a prefix of C, C ·as not feasible~ 'fl"l··Mai· '°'~' , dy•
So A. holds for case 2.1.

Case 2.2: C' is feasible in Ml.

Then by the induction hypothesis C' ts ftasible in M2.
Ther('f'ore.Jh~.1~tllriP41li,cll ~icla$ c(U.aqJl~MtNllddt tfiei r~ · · ·
for every step tJr C" fo bOth 'nlodels. .·
C is feasible i~ Mf it~ "11J,.jJ tM,H'/_.,.._ flf~arpaments·of·Cbal
match the requirftneftts Oi '5tq) C(nl '
Each arg_~~t :If• i$Jhe v~lue~ofJtr: . , i .. ,.,_ • · ·

- - ·- '.,;"-.-·• t. •. /

where length(C;) ~ I and where C; is a prefix of C. .

By the induction hypldwesinfslite4Ci;. AI0~~1/Mf) ,.zv•fllefc1/M!f' · ;:,.·
Then tc(c(state(C;. Ml), vatue<c,, Ml)) • tc(value(C1• M2)).

since correspondmce functt.oos p~r~! t~t~ .~~~s .. , "' -. , 0 .• -,

Therriore the argUt'HMtW'WilfWtdi1 tftf n~qifi~'tar'-· ..,,. · ·
the interpretation of C in M2 •
whenever they wiH match for tM;lnt~attblrart W.'M'!'~ ' '·
So A. is e$tablished for case 2.2.

f;: 'f ' '

B. Assume C is feasible in Ml and length(C) ~ I.
Show c(state(C, Ml), value(C, Ml)) • valut(t; Jn):'

Each argument x1 of the la.st operation of C i~ t~ r~ ,of 591'M:pr,efix, g1 of C,
'~·~ i~'J,:,.':,; ,:• :· ~ .. , ',_,_· ... ~.

where I !': k-ngth(C1) < length(C~. ·' . < ·-~ " _ .-:. . , , _
' - • .. - - ~- •• + :·· -! 0 : - :· •• f ,- , -, ·). .- 0. ·-- , ' ... ;~. - - • _,

s1 the indoomrr h'1POf~~' .1~t~,~ M:,) .. J·~~~"4l~ ~ ,~~~er'*2l- ,
Since Ci is a prefix of C, C(state(C;. Ml), x1) • c(state(C. Ml). x1), :c'" ·' · ·. -, -

by the monotonkity property of correspondence functions.
Stnce c is a corr~pondence function, c preserves the operations of Ml and-M'Z.
So c(state(C, Ml), value(C, Ml)) • value(C, M2). ·

~ ' : ' ; <' -~ :. '. } - ~ -~ ~: ! .· '

So H(C) for all computations~. · , , -:. , . · ·· - ·
By the hypot_~~·~ 9flM':}~~F;.~ thll ~Ji-~PJitlg•4'fti.-boalu1t.._ltl.
So if a computation results in ·a boolnn value,
tt must rt-suk tn tht same boolean value in Ml and in M2. · ·
So Mt and M. are behaviorally tquivalent.

Then H(C) holds for all finite computations C.
End of Proof

,,

The syntax of an. abstract model :sptcif~ is given below in an extended form of

bnf. (X] means that X is opWn~t ~~ge, par.hes~ () are symbols of the meta language

used for grouping terms. Small parenthe~es ~tnd ~~re bi:ackets ~r.., 'li. T. ancJ.·T are &er~nal

symbols denoting the respective characters thernse1v~,_, x~ ffie!J.l~)c' can ·Pt:,npeated ~rp or

more times. X • is the same as X X,,. (X may occur one or more times).

<speciJication>::= <module> I <type definition>
<module>::• module <type def iniUon>·· end modble

<type definition>::• type <t~;narM> l ~ra~ 1hb }t .QbbrevlitkWf>)
[<requires>] · "·; · ' ._.,,, ·.,, · ·

<signature>
<rep spec>
<ops>
[<auxHiary'.signafDff>} · .. ·
[<definitions>]
end <type name>

<parameter list>::- [<pflrameter,name> (.• ~ameter natM> r]
<abbreviation>::• as <abbreviation body>

<requires>::• requires <parameter type> {,<parameter type>)ff.
<parameter type>;;.-,<patametername>: <type.na~f~._.t- tC!f>redicaW> J

-algnatlJJe>::• wttb <fl\lne(ioa ~ype> +

<auxiliary signature>::= internal <function type>•
<function type>:: .. <function name>: [<domain spec>] ~ [<domain spec>] <condition spec>('
<domain spec>::• <type name> (x <type name>)f.<
<condition spec>:: .. + < <exception name> : [<domain spec>])

<rep spec>::• <domain equation>..(j(J'atrktion>f (<..an*"te~J
<domain equation>::• <domain name> • <domain expression>
<domain expression>::• <domain name> t (<domain na~>·} .

I t•lel [<labeled expression list>) J
•·•wwtf('~ M1*'"'1tonlilt> Jl
I ae(<damailt expression>)
., tPdan•'~> J

<labeled expteSS!OO list>::~ .<J?beled ~~~> (.! _<!!~ ~> r
<taMted exprtsskin>::• <libel> : <tklftl1n~ t/t'~)> · · · ' · · '. · · ...
<restriction>::• re•trict ... none, ,..trtc~~~--~ t~t,<predkate>
<ecpitniena>~·r1ctenttty <ap'erltion name> · ··" · .~ ' · · ·

<ops>::• operations «>pttation definition>•

<definitions>::• deflntflon <Opttation definition>• ,.. . . 7 .. , • • • • , . •. • · .•

~ration definition>::• <apttation name> ~-~it>~~:~;~J>{.~IJ»;J, ..
<argument list>::• [(<identifier>) J (<identifier>*)

<operation body>::•<~"'°>;~.~~;~"~~ . w.·' c •.

I <identil'ter> : <predicate>
I if <bootran expression>
thm ~lion body>
else <aperation body>

>S:I

<expression list>::•() I (<aperatk>n body> (, <aperatiaft..WJ>.)t),

<locals>::•' where (<Variable>• <e>peration body>)• - · · ' · · · ·

The grammar shown~ a6ott specifies _., th <UMeXI 1ftit, fl" of' die·~··
; t~·~~-..-i ,.7f\ ~._·-~-.:.-;ti!': ~.:..:~ 't_ ! '

There are a number of additional constraints that must be met for a well formed spedficatton.
.. ::;_<;;\~ ~ " • . ..-., hr",.~ - ~jo >, 1' I '~~_,."'<'•, " ,,:' ~ ;.j '. - ... -7

be the same as the number of type names in ~he domain sf*lflC 1tn!i•411f ~tht7aperat.,.. In .the

signature.

- 171 -

Referenoes

1. Birkhoff. G. and Lipson, J. D. *Heterogeneous Algebras" journal of
Combinatorial TlitDT'f.8. U~l33, {1910).

2. Burstall, R. "Some Techniques for Proving Correctness of Programs which Alter
Data Structures", Mflcltinf. l11k!Ugtrzct 7, 23·5. Hathd Press-<t912):

4. Dahl, O·:.J. and Hoare, C. A. R. "Hicrachical Program Structures", Structured
Programllling, A P. l C. Su1<Ues ift Data Proctisif1t, No.>S.' ~- Prm. 1972,
175-220. .. ' '

5. Dahl, 0-J., Myhrhaug. S., and Nygaard, K. "The Simula 67 Common Base
Language", Publicatioo No. S~22. ·Norwegian ~·~tt. Osle, J97a:

6. Flon, L. and Habermann, A. N. "Towards the Construction of Vertryable
Software Systems", Proc. Conf on Data: Abstraction, Dtflnltlon, and Structure; also
in ACM SIC.PLAN Notius 8~ 2(1916). ,:'

7. Goguen, J. A, Thatcher, j. W., Wagner, E. G . .and Wright, J. B. "Abstract Data
Types as.fnihal AlgebrM ud the Cor~,.ofl)a•tRtpt.:writaU0nsll!, Proc. ef IAt

Ccmferenre -011 Computtr. Orsp!tus, Pwtftra ·1kcDfJttMo•,~aJ@l',,_.8irtidMrn, 89'-9!,
1975.

8. Goguen, J. A. "Abstract Errors for Abstract Data Typri•, Fortna.I Dtscr'i'/Jllbn of
Programming Concepts, E. Neuhold, ed., North-Holland. 1978, f91-522. (Proceedings
of the IRP Working_C.,.f~e19n F~t ~stiipiibri!ofl ~iffg ~s. ·
Aug .. :t~71J. · · : . ''"·' . •· ; ~ ., , .

9. Goguen, J. A., Thatcher,]. W:, Wright, E.G. "An Initial Atgebr~. Approach to
the SpetiftcatjOA. Cerrrctness,{a:nd~of".-Mtratt·Daitlt 'Types". Cttlrent
Trends in PrC1gramming Mttlwdolog, Vol. i, Data Structuring, R. T. Yeti,'~ .•
Prentice Hall, Englewood Cliffs, New Jersey, 1978.

_,
: ' \, :,·; ..

1 O. Guttag, J. V. Tiu Specification and Application to Programming of Abstract
Data T'JJns. i>h. · 0. Th81s;'UAivenitJ•of''TOrdmO CSRG4t9' {197S). . . .

11. Guttag, J. V ., Horowitz, E., and Musser, D. R. "Abstract Data Types and
Soflwa,c Va-lidat1on~ •. Comm. oft ht ACM, Yul. ZJ No.•t2(Dfc.t1978); ,io48-fflS1. · ·

~ ; : ~ ' t ·.~ , : ' ' ,"; \ I ;_

12. Gutrag, J. V. and Horning, J. J 'T~e Algebrak Specification of Abstract Data
Typt>s-", Afta lnj~rm<ttiCa JO, No. J, ll't-~(1978). · '·

- 172-

13. Guttag,J. V. "Notes on Type:~Glf..::Atoc. /EEE Conj. on Sptcifications
of Rtliable Sllfttvart, 36-16, April 1979.

14. Ha rel, D .. Lllgics of Proif~~s: Axi~tics an"<"'-ftFil'tiW ,,_,.,.,MIT Ph. tr:
Th~is, May 1978.

15. Hewitt, C. and-iNk~.H. ~ACf!GH.-d Con~f~.J'"'4UI·
l1tscrtption of Progra1'11111ng Concepts, E. Neuhold, ed., North-Hofland, 1978, 367-387. .
(Proc. IFIP Wori.il_lg.~-F:.-•h dpltdn dl "9jriflw1ditglCcMtwpts.'
Aug. 1977.)

j:

~ . i
- -

18. Hewitt,C. Ht6 MkMtSGn, It. R,,~Parallelistn IM~renlllitoit m'Att0r ·
Systems", Record of the 1977 Conference on Prmciples of Programming Languagb-, -1

January 1977, 267 - 280 .
.. -.

.... "''-:.

17. Hoar~ C~ A. R: P-rercdure•Mld,farame..,_ .. ;"'1 Axtomitte;AppNach•,;
S11'1frosium on tlit StMnllcs of AlgorUltJffk Lanpa11s•, ·E. Enfln,.. ~d., Sf1rlngtr
Verlag, YN._J. ~~ .. -, -~ _.i. -~:.-~.~-~,~,~ =i r <-·~r----~·~n;-: ! ~._:· '~ -~,

_,

18. Hoa re, C. A. R. "Proof of Correctness of Daa -Reprea1111tatioft'•· Miil'
lnjor1flatica /, 4 (1912), 271-281.

19"'. ~rt-,:C. ~- ~ .. ~OR'Dalat5~;Sfr111haN ,,,,.... ... ,~A; P.t.'
C. S~ ill ~-ftr.-ne.-N..,-&-"-dttnicJWJ&. ltPl;.~.~,;- :· · -

I .> ~

.. '!:. ,_ ,-- - :--~ - ~,;"'l~;~~ .. -:

21.-J9na. A. ,K.artd;LifJ"Y,;JB.'M-. ·Aunpaae Nu IOft1M~g·Attess
to Shared Data•, IEEE-Tra.nsattton on Softw.rt Eq111Uri•f, Val. SE-2, NoJ .f)~bec,._;_·'
1976), 2n-2s5. ·

' 'l: - ' : - • 1 - ~ : ; -i'! .-1 { -.": :"

22. -Ka~I"· f). 'Tow11ds ~ T~JrferJl• ~~ Ph:D;t~propool; -- '
MIT, Ft>b.,t~79. . _ ,- -.: ;;, rJ;;G .i r .i~1 '.r-.\,;:;.-1-. · ~:"''"' ,. ,_,.

' : . -.
23. Klttntt, S. C. lntrod!'-ction to Meta1flat"""'1.lics, Van Nostrand, 1950.

·~ _-J :',· l1l~:~ -:·.:·\~,-~. -- :·:, ,'~-\

24. Laventhal, M. ·~; 6'J1d/tW.>.tf SJfdt'111--&!tttl4.for-NIC MstNt!lUrtl.i '
forthcoming MIT Ph. D. Thesis.

. ,--.-

25. LehfllfUIR, .D.J,iCflftgtrltJ pr.~fXIH>i-rtl St**iu, ~· a Thesis. '1ltl•ers1ty of .. -
Warwick, Theory of Computation Report 15, 1976.

' s . - ' !,- '-'· -~- ?"- •l ..,_{ ,··!- ~ .. _.,,,..,.,:~ - l'~; < '- • _,. '~:

28. Lehmann, D.J. •Modes tn Algol v·.~~ J_,:J.l;ConMreffftd! on
Implementation and Design of Algorithmk Languages. Guidel, France, May 1977.

-173 -

111-123.

27. Lehmann, 0. J. and Smyth, M. B. "Data Types", Proc. 18-tli IEEE
S"jmposiu.m on Fllundations of Computer Scienu. Nov. 1977, 7-12. ·

',/'> '. : i '

28. Liskov, B. H. and Berzins, V.""Afl Appr~of·Pr(lftam:$pf!Cific.ations", in
Resrarch l>iuctions in Sojt111art Ttd111olof'I. MIT Press, Cambridge. Mass., 1979.

29. Liskov, B. H ., Sn¥de~. A .• Atkjruon, .R.: R~,,~ p C. "AbstractiOn
Mechanism~ in CLU", Colr1m. of tltt ACM 20, 8 (Aug. 1917), 561-576.

30. Liskov, B. It and Snyder, A .. "StltK&llred·\li1<ceptian,MmdJingr. l971, MIT
Computation Structures Group Memo 155.

31. !-iskov, B. H. and. ZiUes, S, "Spcc~cat.iQI} T.ft.~ for Data Ahstractions~.
IEEE Transactions on S('jtwart Engineering, Vol. SE-I, Ht(tl1')«

32. Luck ham. D. C. and Suzuki, N. "Aµtonaa~ Proe1am Verification V:
Verification Orientcit Proof Rules for Arrays, Records, and Point.;l'S:",:$tanford
ArM-278, (March 1976). ,

33. ·McCarthy, J. "A Basis for a Math~matical Theory qf~tatipn"l~'ltl"
Programming and Formal Systems, Braffort and Hirschberg, eds., North Holland
Publis.~ing Co, .. Am~terdam~'9nd()fl. {961.;· , . ; · 1 f; ·"

' . ,.:.. ~ •, ' ~' ' ' \

34. Milner, R. "An Algrhraic Definition of Simulation between Programs". Proc.
joint Conj. on A7tificial J.nuJUgtna, 18H89,, l971.

35. Musser, D.R. •'ft. Daca Tyj>e V~rtfic~tioo System B~~ on':l~NteRufes~,
p,oc. of tlit Sixth Texas Conj. on Cttmputing S1sttnts, Austin, Texas, Nov. 1977 .

•
•$:' 'r?,. ·,· ,,;· -·~o~~.~\·\··

36. ·Musser, D. R. ·Absti:act Data Type Specification in the AFFIRM .System", Pr«~
of tlit S puifirntions of Rrfiablt Software Conj., IEEE Computer Society, Technical
Commietee on Software tn.g.ine~1·ing. Apr~q9~."t7~S?,. .. / · ,

, .:·1 f-7o ~~;.~,~L ... ~ ,,
37. Nakajima, R. Honda, M. and Nakahara, H. "Describing and Verifying
Programs with ~b~trad l)~t~. Xype(,. §q11TJ<Z(..,DliS't£J;ti.'llJ of·fJl!ffflm'llfint, CMIC#fJt s-..; :'.
E. Neuh.old, ed.,.N()n,h-ijQnan~.J9]8',..~Z?-55f?. Jt>r~).¥,JP" ~ing ~Qfd~re1ce on : ·
Formal'D~scriptlOn.of Programming Concepts, Aug'. t9n.) .. !.'.

38. Owjcki,.S. "Y:erif~trig Concttrfent,frog~~\"1¥t~, ~r~,J>a1tClasse5~. Format,
Description o}Pu1gramrni'ng C<1napts, E. Neuholtk;i!d"!~w..-~. l978. a79-298.
(Proc. lflP Working Conference on Formal Description of Programming Concepts.
Aug. 1977.) .! , ,,,

- 17.f -

39, Palme, J. "Protected Program Modules in SIMULA 67", FOAP C8372-M3(ES),
Operations Research Ceottr, Research Institute of NatiOnal IHfen~. Stockholm,
Sweden (1973). , · , , "c ·

40. Parnas, D. L. "On the Criteria To Be Used i.'? Dec~ing ~yst~s intQ
Modvles"1£AeM U, 12, ~lff ~ 1972).. · · ..

41. Polajnar, J. An Algtbraic l'itw of Prottction and Extt11dabillt7 in ~~stract .Data
T"JfrtJ, Ph:,D. llft?sis, Umvmi\yer sOUt~rn.CffifonnS; ~ t918. , ·

. " :,. . . . ~ ! ..

42. Pratt, V. "Semantical Considerations on Floyd-Hoare Logic", . .
M IT/LCSITR-168, :al9o tt1 ·Pr~/ TW Sjrla,,,,,u9'on Ftllmdatllms' of ComfJuttr
Scttnct, Oct. 1976. · · · · ,

! '

43. · Schaffert, J C. A f>trfJrllll Dtfirittion tif CW, MIT Masttr\ 'thesis, January
1978, also MIT/LCS/TR-t!!. · · · · · · 1

· ·"

44. Schaff m, J.: C; S fli<l/1'11'1 Mt4ni1tg tn Objtct Ottmttd IA,rpag1s, MIT Ph. D.
Thesis (forthcoming). , · , , · ,_,

45. Scheifler, R. W. A Dtnotational St1flanttcs off-LU, MIT Master's T~esi.s.,also
MITILcs>lR·20I, ·May 1978. •

•\"

48. Scott. 0., "Data Types as Lattices", SIAM Jburnalon Com'Putlng, lioJ. ;, No. 3,
(Sept. 1976), 522-587.

' : ~ '

47. Shaw. M. "Abstraction and Verifitat'i6n in AtPHA1U): Design a~d
Verification of a Tree Handler, Comput~ Science Dept., Cu~ie-Mellon
Universtty. June, '1!'16. · · · · : .-.. , .

48. Shoenfi.-kl, j. Matlitmatical Letgic, Addison-~esley, R~din,g. t1a5$achu~ts.
1967.' . ; ' . : , , . " . . .

·,

49. Stoy. j. Denotational Stmantics.' tlrt Scott-Str•dtJ 'AJl,Woailt to Programming
Langungt TlttDr'J. MIT Press, Cambridge, Mass., 19n.

''o { ' . .•;

50. Strachey, C. 'TM Varit'ties of Programmi,ng U.nglia~~. Tech~ica1, . . ·. .
Monogr11plr:PRG-IO, Pr0gramming RtSl'arch Grodp,'oxtOt'd U,nfverstty,CornpUting .
Laboratory. March 191.l ,,_;. · · · '· '· ;: :. • ' ,. · -· · ·

51. SmuH, N. Autom<UIC II trift<trrion 'ef ProgramJ t11itli Compltx Data. Struciurts,
Ph. D. fhtsis. Stanford University, 1976'. · · · · ·

' 52. Thatcher, J. "Data Type Specification: Parameterization and the Power of
Specification Techniques", ProcttdingJ, SIG ACT IO·tlt Annual S7m/10sium on T litor1

- 175 -

of Computing, San Diego, California, (May 1978), 119-132.

~3. Wegbreil, B. and Spitzen, J. M. "Proving Properties of Complex Data
Structures ... journal of tlit ACM 1/ol. 2J, No. 2(April1976), 389-396.

54. Wulf, W., London, R., and Shaw, M. •Abstraction and Verification in
ALPHARD: Introduction to Language and Met.hodology", 1976, Carnegie-Mellon
University Technical Report; also USC 1s1· Research Report.

55. Yonezawa, A. Specificauon and 1/erification Tecliniquesfor Parallel Programs
based on Message Passing Stmantics, 1977, MIT Ph. D. Thesis.

56. Zilles, S. "Algebraic Specification of Data Types", Project MAC Progress Report
197+, 52-58; also MIT Computation Structures Group Memo Jl9:

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form

Report# l..c.s.=JR.-AA'

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
:a_ Laboratory for Computer Science (LCS)

Document Type:

fl!_ Technical Report (TR) D Technical Memo (TM)

D Other:
~----------

Date : ~/ 19 I C\J

Document Information Number of pages: f/(, (183-i MAVE:J)
- Not to include DOD forms, printer intstructlons, etc ... orlglnal pages only.

Originals are: Intended to be printed as :

D Single-sided or D Single-sided or

"X_ Double-sided

Print type:

}(Double-sided

D Typewriter D Offset Press D Laser Print

D Ink.Jet Printer)g(_ Unknown D other:. __ ~~~~~-

Check each if included with document:

D DODFonn

)8:. Spine

D Funding Agent Fonn

)(.._ Printers Notes

.¢:._Cover Page

D Photo negatives

D Other:
~--------------

Page Data:

Blank Pages{by...-number): ___________ _

Photographs/Tonal Material tbY...-numberl: ________ _

Other <"* ipllcwlipege,,_,:

Description : Page Number.

~~G~ IY'IA~ ! (I-Ii') lA.IV#-Ti\lil fk£€
1
~-I "15

1
\>..N°*\G'LAN)(

(n1 J f<g3) 5<:,.A,.,c:..orffi<JiL3<hVfBj Sf 1'tlf) t'R,.'tffi:R?s 41011"5.J
:ffiG:t) (3)

Scanning Agent Signoff:

Date Received: J..~ . .J.J1J 95 Date Scanned: J!!_1Jo I qs

~~.~
Scanning Agent Signature=---~--...;.....;;:~-Tu...i...x.._· ~=.i...i~-

\

Date Returned: Jl1 J... I cis

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-Jl029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

