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Abstract i '~, 

...._IU~---ctmistiGJ~• J'r..,..._.iat ........ t11Gal4be.Conduqve ·to· 
writin1 modular programs, be able to OXl>fOtl ~--~...,..vior, 
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problems, such u operatfna.systems and data bue inquiry systems, require. a prop-am· 

min.s· laaguaae capable of non-determhw;y becauee of the non-determinate behavior of 

tHi;f physical environment. To date, there hu been no sadltactory denotational 

semantics of prop-ammin1 lanpages with aoe-cleterminacy. This diaettatioa. presents a 

straightforward denotational treatment ·of ~.;.determinate data flow prOIJ'&ftll u 

functions from sets of caged sequences to Seti of tatlfd sequences. A simple complett 

partial order on such sets exitts, in which the data flow primitivet are continuou 

functions, so that any data flow propam computes a . well defined function. Allo 

pre1e11ted are sugestio111 for extensions of ~ samndsf, dilAaiom of "fair" non

determinacy and other questiom, and the reladoa of thil approach to other approaclles. 

In particular, it is unnecessary to use the 0 power domain'' construction iil order to 

handle simple non-determinacy in data flow laqu&ps. 
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Need for Formal Semantics 

-1-
Introduction 

The success of syntax theory in making precise the syntax of programs led investiga

tors to attempt to describe the semantic behavior of programs with equal precision. In 

particular, in order to prove theorems about the behavior of programs, it is necessary to 

have a mathematically precise set of axioms which define how programs behave. These 

axioms define the way in which the elementary semantic units behave (where elementa

ry units are the basic data, operators, statements, etc.) and how the behavior of com

pound semantic constructs (such as expressions, statement lists, etc.) behave in terms of 

their components, elementary or compound. 

The major truth one wishes to be able to prove about a program is . that it does what 

it is supposed to do. There are two ways of expressing this: that it meets some specifica

tion, or that it does what another program does (which is known correct). Proving that 

one program does what another does is usually called proving program equivalence, and 

is not decidable in general. Proving that a program meets some specification requires 

having a formal statement of that specification (which also must be known correct, a 

point sometimes overlooked) and then proving that the behavior of the program is 

consistent with the specification. Such specifications (usually expressed in predicate 

calculus, the "assembly language" of the specification world) are often more compact 

than an equivalent program known to work, but they are not necessarily more perspicu

ous, since they may contain much that is "non-constructive" which programs by defini

tion cannot. That a program meets its (formal) specifications is also undecidable in 

general. 

There are other things that one might want to prove about a program. The most 

common is that the program terminates for all of its "legal" input, that is; one wants to 

prove that its domain of definition is what one thought. A second property worthy of 

proof is that the program consumes (no more than) a certain amount of time or space; 

the efficiency of a program is almost as important as its correctness. Obviously, a 
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mathematically precise semantics for programs is needed in order to construct mathe

matical proofs such as these. 

There are three main approaches to precise semantics: the operational, the axiomat

ic, and the denotational or functional semantics. The operational approach, based on 

the notion of an abstract interpreter, is the most intuitive of the three, but it is rather far 

from the mainstream of mathematics, so that it is difficult to invoke many useful 

theorems or other tools. The axiomatic approach of Floyd [Flo-67] and Hoare [Hoa-69], 

which views a program as relating (in the mathematical sense) the "before'' state of the 

abstract machine to its "after" state, has the disadvantages that it needs something that 

has a state, and that relations are less convenient than functions. The functional 

approach of Scott and Strachey [S&:S-71] treats the semantic behavior of a program as a 

function from inputs to outputs, a well known kind of mathematical object. 

The tractability of the formal semantics of a programming language depends more . . 

on the elegance of that language than on the class of semantic model chosen, however. 

We will present a programming language whose semantics we trust is quite tractable, 

considering its scope. 

Need for Modularity 

If a program is large, it is important that it be decomposable into parts, called 

modules, each of which performs a well defined function (at least in the informal, if not 

the formal, sense). Furthermore, it is important that the interactions of the modules 

with each other be held down to a reasonable amount. That is, the functions performed 

should be as independent as possible besides being well defined. The purpose of 

modularization, of course, is to keep the program understandable, since it is the rare 

person who can comprehend a large system with many interdependencies. In fact, since 

the number of interdependencies can grow exponentially in the number of components 

(consider all K way interactions, for KS N), one might consider the point of modulari

zation to reduce such exponential growth to a more tractable polynomial or even linear 

growth. If the program is quite large, a hierarchy of modules is more appropriate. Then 

each module at the top level is composed of modules, each of which is in turn composed 

of modules etc., until the modules are simple enough to be understood without further 
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decomposition [Sim-69]. This hierarchical decomposition need not be a tree, a submo

dules may be shared (e.g. both the carburetor and the automobile as a whole contain 

screws). 

A program which is well partitioned into modules also is more likely to be proved 

correct (assuming that specifications for it can be formulated). The approach to proving 

such a program, as one might expect, is to prove that each module properly implements 

its well defined function, and that the modules are interconnected so as to meet the 

overall specification. If the program is a hierarchy of modules, this process is repeated 

for each level of the hierarchy. 

Modules are often realized as subroutines, or more likely, in large programs, as 

collections of subroutines sharing data. An extreme case of modularization may be 

found in data abstractions as exemplified by the CLU language. Roughly speaking, data 

abstractions are collections of subroutines which provide and enforce access functions 

for an extended (e.g. user defined) data type. The way in which data abstractions differ 

from the ordinary way of providing access functions is that the only way to access 

objects of that type is through the subroutines of the data abstraction. Thus data 

abstractions assure that the program is modularized as claimed and that no one is 

"cheating" by violating the module boundaries. 

This thesis presents a language which is uniquely disposed towards modularization, 

both in its syntax and its semantics. Since its semantics is based on the mathematical 

notion of function, it is possible for modules to perform one function in the formal sense. 

Thus this language and its semantics may provide a basis for proving properties of large 

programs expressed in it. 

Need for Parallelism 

There are several situations in which parallelism is desirable or necessary in a 

programming language. The first situation is when the problem to be solved is inherent

ly parallel. The classic example of this is a multi-user computer system. Each user sits 

at a terminal making independent requests to the computer. Since the users are inde

pendent, and since persons live their lives in parallel with one another, it follows that the 
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computer system must be able to serve these r.,quests in pan11leJ (i.e. simulta~eously 

with respect to an appropriate time granularity). In order to serve the requests ln 

parallel, some pan of the computer's prop-am must be capable of parallel operation. In 

the case of a regular time sharing system such as VM/370 (the purest case), it is only the 

supervisory program· which operates in parall¢l; each' \iser appears to have a virtual 370 

on which she runs her prOjrams sequentially. In fact. ; ope~~dlig systems in general need 

parallelism [Koa-73b]. 

The next case in which parallelism is desirable is when there is some hardware 

(especially CPU) with actual parallel proces$ing capacity and the user wishes his 
. • ' ' '«,. :~ . , ...,· . 

program to take advantage of it in order to run faster in total elapsed time. A typical 

example of this is performing weather {bydrof;i~~c) cal('.ulations on a highly parallel 
.. . , . . - .... . . . ' ., : ~ . . . 

computer such as ILLIAC IV. Here~ tJie extra s~ed a~ne~, by performing calculations 
. . ,. . .. . -~ .... '• 

simultaneously on many lrid points m~~ d,i~ dilf ctl'.•QCe ~tween useful an~wers and 
. ... . ' \ ' !.';' 

not (nobody wants to predict ycatef.4aY's.weathe~). 

These two cases of parallelism in program· operation ate rather different. In the 

first case, the simultaneous ope~ations tend to be 'domgt different tasks, while in the 

second case, they all are performing nearly the ~e comp~tation, but on diffe~nt data. 

Different proarammial I ...... approae.bes hav«t: ~ ~ to oope· with these 

different cases. To handle the firit case. muki-tlMiDI' faciities. oft.en. ha~ ·been added 

to an otherwise coDYentional propammia3 ~~· For· f:Qmple, PL/I. has the TASK 

option on the CALL statement, which cases·tbeimsJked. preeedure to be··· run as an 

independent, parallel task or process. In ALGOL style lanauagea. the parallel statement 

approach is favored; this is a compound statement whose component statements are to 

be executed in parallel with one another, rather than serially in the .. order they are 

written. In both these language classes, some synchron:izatlo~ operati~ns are provided 

also because the parallel paths. are never t<JNIJl y inde;endeat of one aoother. 

The second kind of parallelism is often handled without any sp.ecialized features in . 
the language, but is rather accommodated e11tirely by the ~piler. For example, APL is 

,_ ' -, ' - ·-

a sequential programming languaae with array ~ta and an exteµsive collection of array 

operators, but with no emphasis on parallelism. Howe~er, it is easy to imagine an 
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interpreter or compiler for APL programs which compiles in a fashion to take full 

advantage of the array processing parallelism of the ILLIAC IV. 

There is a third kind of parallelism that is desirable in programming that is not truly 

supported by any common programming language. That is parallelism for the sake of 

omitting unnecessary detail. The course of programming language development has 

been to create languages of ever "higher level", where by higher level is meant a 

language in which less implementation detail need be specified. For example, FORTRAN 

introduced the notion of arithmetic expression, LISP the notion of automatic storage 

management, and most recently, CLU and others have introduced the notion of abstract 

data type, an advanced form of data representation independence. All of these lan

guages, however, still demand that the programmer specify that operations take place in 

some serial order, even though problem only demands that the operations take place in 

some partial order. The only case in which the exact ord~r need not be specified is 

when the language has operations which operate on structured data as a whole; then the 

order of operation on the components need not be specified. But if one is defining an 

operation on structured data, the irrelevant total ordering of component operations may 

again creep in. For example, in defining a complex add operation, it doesn't matter 

whether the real parts are added first or the imaginary parts are added first. 

What is needed, then, is a programming language which supports all three kinds of 

parallelism, parallelism demanded by the nature of the problem, parallelism demanded 

by the need for execution speed, and parallelism needed to suppress unnecessary 

implementation detail. 

Need for Non-determinate Behavior 

Although it is generally considered desirable for programs to be determinate (to 

always give the same output when presented with the same input) there are certain cases 

in which determinate behavior would be crippling. Consider the classic example of an 

airline reservation system: it consists of a central computer(s) and data-base connected 

to a number of agents' terminals. Each agent works independe'iltly, requesting informa

tion and booking reservations. Thus the behavior of the system must include some 

dependency on the arrival time of the transactions - the last seat on a flight must be 
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given to the person who requests it first (where "first" means at least E earlier). But 

such timing dependency is contrary to the notion of determinate behavior. If the system 

were to operate completely determinately, there would be no way for the system to 

transact with the agents at their convenience, but only according to a rigorous schedule. 

If one agent were out to lunch unexpectedly, for example, all the other agents would be 

delayed while the system waited for that agent's response. The way out of this difficul

ty, of course, is to include the arrival time as part of the input data, then the time 

dependency reduces to a data dependency, which is determinate. However, the part of 

the system which performs this operation is itself nondeterminate, but it is an isolated 

singularity. 

The part of the system mentioned above which merges multiple sources of inputs 

into one output and perhaps tacks on the arrival time of each input is often called an 

arbiter. (The very act of merging several input streams into one output stream attaches 

an ordering to the arrivals of the separate inputs, so often an explicit arrival time may be 

dispensed with. ) Given such an arbiter, which merges several streams of inputs into one 

output stream, a question which is of much concern is the question of fairness, that is, 

whether the input streams get equal treatment by the arbiter. In particular, might inputs 

one some ports get accepted preferentially to inputs one some other ports, or worse yet, 

is it possible that the inputs presented at some input port be held up indefinitely while 

inputs from other ports are accepted freely. Both of these behaviors are conceivable for 

arbiters (since, by their very name, their merging is arbitrary) but, although the priority 

treatment of certain inputs might be desirable, the indefinite delay of some inputs when 

there are no other inputs is almost certainly undesirable. 

We may conclude from this discussion that a programming language must allow 

nondeterminacy but that it is rarely necessary to use it, and when it is, the arbiter seems 

to be an appropriate construct. The question then arises as to whether the nondetermi

nate arbiter operation which is provided is fair or not (and which meaning of fair 

applies). Therefore, any semantics of such a programming language surely must be able 

to cope with nondeterminacy and with the question of fairness. 
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Overview of Dissertation 

In an attempt to meet the four needs outlined above, this dissertation sets forth and 

analyzes an unconventional kind of programming language, called a data flow program

ming language [Den-73, Kos-73 ]. This semantics of this language is defined in terms of 

mathematical functions, yet the functions transform the data of interest rather than the 

state of the machine, so modularity is achieved easily by means of function composition. 

The two dimensional syntax of the language provides parallelism in a natural manner, 

both in terms of the elimination of detail and the specification on independent tasks. 

The ability of the language to operate on structured data means that parallelism of such 

operations is also possible. Finally, the language allows non-determinate programs, and 

has a relatively straightforward semantics for non-determinacy, but the language 

construct for non-determinism allows the programmer to isolate the non-determinate 

behavior in small sections of the program, thus allowing the analysis of most of the 

program in the simpler determinate semantics. 

The major part of the dissertation deals with the denotational semantics of non

determinate data flow programs. The necessary domain for the functions is defined and 

its properties proved; then the primitive operators in the language are functionally 

defined and they are proved to have the necessary mathematical properties. In particu

lar, chapter 2 discusses and informally defines data flow programming languages, 

chapter 3 gives background on mathematical semantics, chapters 4 through 6 contain the 

formal definitions and proofs, and chapter 7 concludes with discussion of several points. 
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-2-
D ata Flow Prop-amming Lilnguages 

Background 

In recent years a new class of proaramming • lanpagtat .called data flow languages, 

has evolved [Den-73. Kos-73}. Unlike at08t propams, die· secution of data flow 

programs is gov'9rned solely by the availability.of data,··,bedJ iaput and computed, rather· 

than by the movement of one W'mote abltractlO@Sel'OfCOAtrol.·.A dau,flow program 

may be represented by a flowehan~like aettn>tk at operau;n, eoDIMCted ;by. data paths. 

Each operator executes when.the data it·needs is '·present .. on its input paths yielding 

transformed data on appro,rlate output pathL, Operators an Strictly locai in effect, that 

is they can influence one anotl1er only by•UlQDS of data· 'nm via the paths. New 

operators may be defined as ttetworb'of. adler''°"'~ ..togou to Sllbroutines, and 

recursive definitions are permitted. 

One of tile virtues of data. flow proaramllling is tbat it. allows parallelism to be 

expressed in a naiural fashion. Furthemore;•Uie:puallwtin can" be :guaranteed determi

nate,. if desired. The expreuion·of paraUeHsmis,.one of the early reasons researchers 

were attraded to data flow. However, data: flowrria.raow ,knowa.10· have• other advantages 

as well. The two most important are. mcatityof" effect.: -aod . applicative be'havior. · 

Applicative behavior means that data flow opst"ators:c!aa •dmcaoteriZed as mathemati

cal functions. Locality of effect means that the mathematical equations for a data flow 

program can be derived simply by conjoining the equations for the various parts of the 

program in an "additive .. manner. In spite of its applicative behavior, an operator may 

be a function from input sequtnces to output sequences and thus exhibit an (internal) 

state with regard to single inputs and outputs. Therefore, data flow languages can be 

analyzed mathematically almost as easily as "toy" applicative languages (e.g. pure LISP) 

but are more powerful in that they provide parallelism and "state ... 

Informal Semantics of DFPL, a Data Flow Programming Language 

The data flow language which will be considered in depth in this paper is a develop

ment of the author [Kos-73], and is called DFPL for brevity. 
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A DFPL program is a directed graph whose nodes are operators and whose arcs are 

data paths. Operators in DFPL functionally transform their inputs to their outputs 

without ever affecting the state of the rest of the program. Since there is no control 

flow, there is no GOTO; in spite of this, loops may be programmed as well as recursion. 

Most significant though, is the fact that unlike ordinary applicative languages, programs 

may exhibit memory behavior: that is, the current output may depend on past as well as 

current inputs. The effects of memory are local like those of other operators and it does 

not permeate the semantics of programs. 

Data in DFPL are pure values, either simple like numbers or compound like arrays 

and records. There are no addresses as primitive data in DFPL, although compound 

operators may be defined to interpret data values in a manner reminiscent of addresses. 

An operator "fires" when its required inputs are available on its incoming paths. After 

an unspecified interval, its sends its outputs on its outgoing paths. It is not necessary 

that all inputs be present before an operator fires; it depends on the particular operator. 

Similarly, not all outputs may be produced by a given firing. A synchronous operator is 

one which fires only when all its inputs are present and it produces all its outputs at 

once. The outputs may depend on past inputs as well as current inputs. If the outputs 

of a synchronous operator depends only on current inputs, the operator is said to be 

simple. Synchronous operators are analogous to subroutines (with "own" or "static" 

variables if the operator is not simple). Some operators produce a time sequence of 

output values from one input value or conversely; they are analogous to coroutines. The 

operators in a DFPL program thus operate in parallel with one another subject only to 

the availability of data on the paths. 

An operator may either be primitive or defined. An operator is defined as a 

network of other operators connected by data paths such that some paths are connected 

at one end only. These paths are the parameters of the defined operator. An instance 

of a defined operator operates as if its node were replaced by a copy of the network 

which defines it and the parameter paths spliced to the paths which were connected to 

that node. This "copy rule" allows recursive operators to be defined. 

Sufficient synchronization signals are passed with the data on the paths so that 

operators do not fire prematurely, and so that operation of the program as a whole is 
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independent of the timings of the co.mponent operators (at least ·in basic DFPL, full DPPL 

allows timing dependent prf.>llamsin order to cope with ·the t"Oal world). 

Cl888es of Operators 

There are three classes of ·operators in OFPL: .simplct :Operators, including the usual 

arithmetic, logical and agregate operators stream .operators. includi:ng the primitive 

Switch operators (for conditionals and other data routing) and primitive Hold operator (for 
. . . 

memory and iteration); and non-determinate operators, including the primitive Arbiter . 

(for copin1 with the non-determma~e physical world). ~pi~ operators all have the 

property that they demand all. their inputs to fire, whereupon they produce all their 

outputs. Furthermore, each firing is independent of any .past history, that is, . the 

operator is a function from current input to current output. 

Stream operators soaietimes do·not accept/produce all.their inputs/outputs, or their 

current output may depend•on past inputs. Thus we cu aot describe their functional 

behavior as simply as before (not producin& u .ou.t.pUt,il ~t ·the same -as producing a 

null output). ·But we can dacribe: their behavior4f we ~ ·them as functions from 

streams (sequences o~er •e> of inputs to s.treams of o ... tp,.utl. Not all computable 

functions from streams to streams describe str"8'1 operator!$ bowever; the function must 

be causal, ,that is, the aperator may never retract some ouq>ut upon receiving further 

input. 

Non-determinate operators produce any one of a set of output values (according to 

whim, or in a real implementation, U.milll eontideratioD1) w~n presented. with specified 

input values. The primitive Ar1'it~r oper•tor'Ji upon . wllioh other non-determinate 

operators may be hued, takes as input two or more atr~ms and produces as output a 

stream which is the result of mer,png the input streams ~ some arbitrary way. Non

determinate operators may be view,d .as relations. fl'om streams to streams,. or more 

profitably. as we shall soon see, as functions from~ts of str~s to sets of streams. 

Synchronous operators allows us to avoid the tedi'1m of using a separate index for 

the stream of values on each data path. All paths in a subnetwork of synchronous 

operators may share the same stream index since that subnetwork behaves as a single 
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synchronous operator. Note that all simple operators are synchronous and stream 

operators may or may not be synchronous. Also, any defined operator constructed 

entirely out of synchronous operators is itself synchronous. 

Primitive Operators 

There are five primitive operators in basic DFPL (shown in Figure 2.1). Of these, 

two are simple in their behavior: the Fork and the primitive computational function or 

Pcf. The Fork is a multi-output identity function, that is, a copy of its input is sent to 

each of its outputs. The Pcf is really a whole set of operators including the usual 

arithmetic, logical and aggregate operators (e.g. Construct and Select). The Modify 

operator is an example of a Pcf which typifies DFPL in that it generates new data rather 

than updating existing data. Modify takes three inputs, an array A, an index I and a 

value V, and produces one output, a new array Anew, which is a copy of A except that 

Anew1 • V. Note that the Fork and all Pcf operators are synchronous. Since Forks 

have such simple fun~tional properties we do not treat them as explicit operators on 

proofs, but rather just label all their paths the same. 

The most complicated of the primitive operators are the Switch operators, also 

shown in Figure 2.1. These two operators have the property that each firing is inde

pendent of previous firings, but not all inputs/ outputs are demanded/ produced upon 

each firing. The outbound Switch or Oswitch, for example, demands C and U as inputs 

for each firing, but only one of X, Y and Z receives output in any firing. Which one 

receives the output, which is just the input value U, is determined by the value of the 

input C. The inbound Switch or !switch operates conversely, only one of the inputs X, 

Y, Z is accepted upon firing (C is always demanded), and its value is always sent out on 

u. 

Informally speaking, an I switch merges two or more data streams into one data 

stream of the same length as the control stream, selecting which input data stream to use 

next according to the current value on the control stream. Conversely, an Oswitch splits 

a data stream into two or more data streams dependent on the values of the control 

stream. Figure 2.2 exemplifies the behavior of both !switch and Oswitch according to 

which paths are input and which are output. In both cases, the ordering(s) of the output 
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stream(s) is consistentwith the ordering(s) of the. input str~(s). Althou.ght]le value 

of an output from a SwitcA.is de~deatO;AlyQB .. tJ:Mt.~~ .~t v.alues for tbi$ firina. 

the position of that output value in its stream is dependent on previous firings. he11ee 

neither Switch is·a simple operator. 

Since these operators sometilnes do not demand/ produce inputs/ outputs, we can 

not describe their functional behavior~ simply as before (not producing an output is not 

the same as producing a null. ou~t). But we.·can -t.e'.·::theu beilavipr, if we view 
- , I ~ -. ' . 

them as functions from streams of inputs to streams of outRPts. 
. , , "-• r 

; .. , ~ 

The most interesting piitnitive operator in bdfe··f>P.Pt ii that ~ch behaves like a 

~ind of memory cell. It is Just a hdlding siauaa;:that is, 1M'dutpUt is·Wbat the input was 

on the previous firing and the imtlat oltqMu it .itl cbnatmit· ~er. · That 1$. Otd1+ 1. • 

Inl and Out1 • Q. The IloU operator is intet~q haud ii iS •ufficient to· constrU~t 

any kind of memory desired, yet itself it. pureijf~~l ~~ · ftom fnpdt ttrea111s to 

output streams). It can also bti used to co~t{~~; ·' ' .. 

All of the above primitive_operators are causal-in me nase that an output-cannot be 

affected by futur.e inputs; ttia:t ii, once an outP:ut'is ~··lt ~mnot:be changed. 
' ~' /-<: ? ," ~ 

Some Compound Operators 

Swite1' operators are. most often;! UMd ~ .. ~.-ci ,paks, w.iM'l .the coutr~. input of 

each conneete.d, via a FO'rk, to the. ·same ·.SO\Kca of a;-COll.lfol •~·. :Whea ~onnected in 

this way, the DFPL versioa of a~~'~:• ••a.in Fipre 2.3. 

The equivalent expression is lf P(X) ThM F(.X) Olllerwl#G(.X). 

Figure .2.4 s.Rows a ciefinition of a .. dJMIBlial -~ opet&.tor. This. operator taJces 

no inputs but produces an (idfinite)sttftlil of ~tvalWtll'd!tbe same (Q). 

A fancier memory cell is shown in FiaJJre 2~5. When ~,.o y•lue. is presented on the 

control path C, the cWTent contents is read ou,tonto path Y:. When a 1 value is present-
,. ~ ~ . ' . , '. -.~ ·, ' . 

ed on C, and a data value pr~ented on illput~ ~. t~ cell)~_ \lpd&ted to contain that 

aew data value. The cell has an initial contents of Q. 

-17-



The Primitive Non-determinate Operator 

To allow the construction of programs with indeterminate behavior, we define an 

operator which merges its input streams in an arbitrary manner. This operator, called 

the Arbiter, is shown in Figure 2.6. Speaking informally, the Arbiter operator merges 

two or more input streams into an output stream whose order of items is consistent with 

the separate orders of items in the input streams. This merging is done randomly (or 

arbitrarily) analogous to shuffling together two decks of cards. The Arbiter also 

(optionally) generates a stream of control values which tells exactly how the merge was 

performed. This control stream is of a form such that if it is fed to an Oswitch, the 

merged stream can be unscrambled into its component input streams. The optional form 

of Arbiter can be programmed from the more primitive form, which does not generate 

the control stream output, together with a Fork and an !switch. 

Since the Arbiter produces an output stream chosen randomly from a set of possible 

output streams, we might characterize the Arbiter as a relation from input streams to 

output streams. However, since the the fixed-point theory of functions is better under

stood, we will treat the Arbiter as a function from (sets of) input streams to sets of 

output streams. We consider sets of input streams even though intuitively the Arbiter 

works on individual input streams because we wish the domains and codomains to be 

compatible. 

In extending the semantics of DFPL to accommodate the Arbiter, the semantics of 

the determinate operators must be upgraded also. This upgrading is the obvious one of 

saying that the determinate operators map sets of input streams into sets of output 

streams pointwise, that is, each stream in the input set gets mapped to a single stream in 

the output set by applying the old stream-to-stream function of the operator. Multiple 

input operators are more complicated. If the input sets originate at the same Arbiter, 

then the operator is applied to corresponding streams from the input sets in a manner 

similar to an inner product of vectors. If the sets originate at different Arbiters, then 

the operator is applied to the Cartesian product of the sets. If the sets have mixed 

origins, that is have some Arbiter in common which affected their computation, as well 

as independent Arbiters, then a mixture of inner and outer (Cartesian) products must be 

taken. Thus, the determinate operators produce output sets whose cardinalities are no 

bigger than the product of the cardinalities of the input sets. The indeterminate Arbiter, 
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unfortunately, tends to cause cardinalities to get out of hand. since the output set 

oardinalities depend on the input ~et elements q.e. the number of ways they can be 

merged) as well as the input sets cardinalities. 

Examples 

The DFPL program shown in F~re 2. 7 is an example of a procedure definition. 

The procedure performs the multiplication of tW() complex. numbers with a high degree 

of parallelism. Figure 2.8 .shows a DFPL procedu~e for computing the myd~ic recursive 

factorial function. Figure 2. 9 .shows a DFPL procedure which implements ·a random 

access memory of 1000 cells, each Ulitialized to 0. · 

Tbe program illustrated in Figure 2. 10 takes advanta1e _of the fact that the optional 

control output of an A1'bittr may be used to conirol an 01witch to unscramble the 

mergiq performed by that Arbiur. If the operator Fis simple •. that is, it is a function 

.from its current input to its current output(thus. indePt;ndent of previous inputs), then 
- - . . ~ 

the defined operator Tripi.a·/ behaves exactjy as three copies of F applied separately to 

U, V, and W producing Z, Y. and Z respectively (see Fipre 2.11). However, the 

operator Fis shared' among the three input and output paths and therefore saves 

resources as compared to three copies of F. Of course, this is at the cost of running at 

least three times slower. MOit importaDt. even thoup m.: itttemals of Triplt-f are 

indeterminate, the behavior of Triple-f as a wh&le is functional and thus determinate. 

Therefore, it is possible to construct determinate· prC>grams using indetenninate compo

nents, and furthermore, proving one has done so is not Meessarily difficult. 

Other Data Flow Lancuaaes 

One of the earliest pure data flow models of programming was developed by 

Rodriguez [Rod-67] This provided most of the capabilities of DFPL except for operator 

definition, and, thus, recursion. Programs in this luguage Were guaranteed determinate 

in operation. 

Luconi developed a model of parallel computation [Luc-68] which was more general 

in some ways than Rodriguez's. However, because a relatively conventional sort of 
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memory cell was necessary to .hold data for the operators (approximately one such cell 

per operator), determinate behavior could not be guaranteed, except by following strict 

conventions in programming. 

Adams developed a pure data flow programming language [Ada-68] similar to 

Rodriguez's and DFPL except that data paths were FIFO queues of unbounded length. 

This makes direct hardware implementation impossible; it is possible for DFPL without 

recursion if data types are of bounded size (e.g. FORTRAN ·numbers and arrays). It is 

presumably possible to directly implement Rodriguez's language in hardware also. 

At the same time as DFPL was developed, Dennis independently developed a Data 

Flow Procedure Language [Den-73] which is almost identical in terms of its primitive 

concepts. In its original form, it lacked an indeterminate primitive operator (present in 

DFPL) so that indeterminate programs could not be constructed. Further restrictions on 

the construction of programs in Dennis' language were imposed to ease the mathemati

zation of the semantics. These restrictions also simplify direct execution by a data flow 

processor (hardware). Thus, certain semantic behaviors, permissible in our DFPL, were 

not allowed in Dennis' original language. 

Of the four languages mentioned here (other than DFPL), only Dennis' is having a 

denotational semantics developed for it. Stoy [Sto-74) and Ciccarelli [Cic-76] have 

mathematized the semantics of this language. 

A related class of programming languages is those conventional languages which 

include interprocess communication mechanisms. Examples of these are suggested by 

Hoare's "communicating sequential processes" [Hoa-78] and Kahn and MacQueen's 

"coroutines and networks of parallel processes" [K&M-78). Yet another kind of lan

guage related to data flow languages is LUCID of Ashcroft and Wadge [A&W-77]. This is 

a language which is applicative yet works on streams of data. 
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-3-
Background on Mathematical Semantics 

Kinds of Mathematical Semantics 

The two approaches to mathematical semantics are, as stated earlier, the axiomatic 

and the denotational or functional. In the axiomatic approach, each primitive operation 

in the programming language has associated with it one or . more axioms which formally 

specify the effect the operation has on the state of the abstract machine when that 

operation is executed. That is, the axioms describe the mathematical relationship 

between the "before" state and the "after" state. This relationship may or may not be 

functional. A sequence of operations have an effect which is the composition of the 

individual relations for the component operations. A loop in the program requires an 

inductive proof based on the relationship implied by the roop body and loop predicate. 

The inductive assumption (often called the loop invariant) may either be given or 

deduced from the initial and final conditions. A recursive program requires an inductive 

argument also. 

Programs which modify data structures as side effects are hard to deal with in any 

semantics. The usual axioms for assignment are not directly applicable when the 

assignment is to some computed variable. This situation arises with assignment to array 

components, with assignments indirectly via pointers, and with. "aliasing" of any data 

objects via procedure parameters. This remains one of the open problems in axiomatic 

semantics [C&0-78]. 

As is well known, programs which loop or recur sometimes do not terminate. 

Unfortunately, the inductive proof of a loop's behavior ment~oned above often does not 

prove termination, but only the behavior of the loop if it terminates. The termination 

property (often) must be proved as a separate result. A new axiomatic semantics called 

dynamic logic, which is based on modal logic [H&P-78], allows one to treat termination 

simultaneously with "partial correctness", (as the behavior assuming termination is 

frequently called). An extension to dynamic logic allows one to treat non-determinacy 

as well [H&P-78]. 
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Thus. given a proarain ~et wjlta;sei ~ ~ ~ its behavior, o(le mifht 
determine by theorem proving (manual or automatie) wllether the program satisfies its 

assertions. Alternatively, one might derive an assertion wlUch describes the proaraai's 

beliavior. ' : , 

In the denotationalaJpr<>adl,.S paamififtt'.,..ati6ar:kl:tlltr:tantuaP··is described 

by UIOCittin'g wittr it •: .. '"Mmntie;ftmcdrei•: wllidf1if ;,__.F ~, I 1se'quence of 

.. , operatiom··~lh•·~ Wllilfl:'fWlM'......,. rliltllill•of ~the'"CO.,_.nt· operations' 

· functiolli'.· If the open.tiODI &e p91foc1Ud:te-*I_..,~ ·•In/.'& .WftlLa lilop~· ca compos

ite fuaedonil not*> e&ily ~(t.:fhe,....__Ja,,..,_ll, Utinduetift proof is 

needed). 5ettiq .,,. die f1ilactiOlllil: ....... t.po11diq t'odiif·lbbJ)l OH pts: 

F(X)•lf Tl8t(X) Then F(&Hty(.X)) ~lS•X 
, ~:r - ._ ., .: - . ·:- __ L.:~·H:·'.?.':"~:'1.''"· :, .- ... " 

where T11~ is the predicate of the WHILE, Bod.r iS ~ ~~· wbi~h demibes the body 
~~ • - 7"- .; • •I . -·- ': • ~ • :::Z.'!o'" ~~~<-~<-.'.: ~i~~ .:.:nil·:• .. , . .,_, <--; ... ' __ , ; ''( 
of the loop, and F ii the function which..~· ~ loop as a whole. This is a recur-

'. · -, _. _·- · ~-"'- :. - «· . . >."i(H:.·.! ... ~ L-~:P_:;1 1::·:,- , ~-:H.; 'r. ?;-. "'~ ,,_ , . :· .... 

sive deimition, but it is hard to solve because the tmknown. F, is a /11.11ction. 

This approach can be used on applicative 1aaguaps with relative ease since such 

Ianluages ~ebded on tbe tdeaa.;ofi. fUll~: ~·· ~·;:t~~n?· UBfot'tWWely, 
,= - ~- ,,..: - l .. -:-_· . .;·; ~;..:. _ :·z£ .~ .,:r ;.:i~·--~-~'·" .. ;·~ .:.~ -' _ :: ... ·- . - · 

applicative lanpages are selclom u.d fOr · pr~; even .USP 1W. n6napplicative 

o~ators such u 06~ mQ anct'~co.'~~eHia'l:itsac1f6Pi/atori is tt> make the 

tunctio~a1 characterization of tie'l:>rOll'ani'; ·~'':~~ratiit · tt6M ·tile syntactic 

'struc~~ of the program. This oe~urffoltwo ~o~f;Ttrii;·:~c:··;shifte b~~tors such 

as assignment (e.g. SETQ or worse, RPLACi>) chauge the st&~ of the···wh6l~ abstract 

Q1a4:bine, the function corr~ t~>.~~!.~ ?;~'?l , ~:);tfii~~nn states into 

3tates= Then, in orc;aer to hf:.c~~ ~.;; 4W'~~~~~ ~g~ }~t~, whereas 

the program is, wtjt~ as if m~~r~: ... ~~,,~RJ~1.: ~.a,~. ~.o~~I ft<Jw 

Rper,U>rs (of wbich ~P'$ GO ~ • Drild '~)~.(:~ (:&~, .bc:Jdl. thf!. <:On~itional and the u 
' • , --· ·- - · ·' ': · . " -::~P-· -· - · .:.':;· _ · .· .- , ;;~ _, · ,, •· t. ,,,_, .· ·· · .. 

loop stni~re ~f the ·prop'.~,~: ,be~;~;,~· .... s,~~ture~: J>togram
ming, with its jJlsisten~ on .a limited, dilci~ set of control operators (e.g. IF-TfflN-

,., . : ·- .,.-:.: ·; ·-:_ , _ -.'"';r»:·'·-~:·;-c:·.:: t·l·-(~·T,..~ f:J:_·;·,.~ , · ~-~-.- · - - · 

EL5E and Dq-WHILE) prevenu th4' second~~ fro,1n _ occµrriq,. that .is• one recursive 
.. - ~,, ~ ·~~ - --~_.; ~~:-.; ~l~ <'.i,.-~<<f;~ ·-~:"- t, \- ~ .• • 

equation corresponds to one loop. The ill'St problem remains ~9~,v~,r. since most 
' ., ' ~ ... . . . 

. existing languages have state transforming auipment operators. 
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Mathematical Concepts 

A partially ordered set, or poset, is a set of objects together with a relation which is 

reflexive, transitive and antisymmetric. That is, V X: X S X, V X, Y, Z: X S Y /\ Y S Z + X 

S Z,and VX, Y:X SY/\ Y S X+X• Y. If, in addition, the relation holds in one direction 

or the other for every pair of elements in the set, the set is said to be totally ordered. 

The integers are totally ordered under the usual ordering, while the set of all subsets of a 

given set are partially ordered under the inclusion relation. A chain is a totally ordered 

(subset of a) poset. A set is said to be pre-ordered or quasi-ordered under a relation if 

the relation is reflexive and transitive (but not antisymmetric). The set of equivalence 

classes under the quasi-order form a partially ordered set, where X and Y are in the 

same equivalence class iff X S Y /\ Y S X. 

A Cartesian product of posets is itself a poset under the pointwise partial order; that 

is, CXa, Ya,Za) S CXb, Yb,Zb) iff Xa S Xb/\ Ya S Yb/\Za S Zb. Since a function can be 

treated as an element of a large cartesian product (the product of identical copies of the 

codomain indexed by the domain), functions can be partially ordered also. The order is 

defined by: F S G iff V X: F(X) S G(X) 

An up per boun4 of a subset S of a poset P is an element U £ P such that V X £ S: X 

SU. A supremum or least upper bound (often abbreviated l.u.b.) of a subset S is an 

element L £ P such that VU£ P: LS U where the U's are upper bounds of S. An 

infimum or greatest lower bound (often abbreviated g.l.b.) is the order duals of the 

above (which is obtained by replacing "S" by its converse relation "~ "). Many posets 

of interest have_ a least element, called bottom (" .1. "), which forms a lower bound for all 

subsets. A lattice is a poset in which every two elements have both an infimum or meet 

and a supremum or join [M&B-67]. Note that Mis the meet of X and Y iff MS X and 

M S Y and VB: B S X /\ B S Y + B S M, and the join is the order dual. Many lattices of 

interest have both a least and a greatest element. 

A function from a poset to a poset is said to be isotone iff V X, Y: X S Y + F(X) S 

F(Y). (The term monotone is often used instead of isotone, but it is less precise since 

isotone corresponds to monotone increasing only [Ros-77]. ) 

A poset is said to be chain-complete iff every chain has a supremum (not necessari

ly in the chain itself). The integers are not chain complete, for example, but the real 
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nulJlbors on a .<:losed iJlt.erval ar.e. ADY chain complete pos~ , 11-FCess-arily has a bottom 

element -it ~ the supremum of .die empty ~- A .. ~· . i.n'4t'~- example of a 

chain COIDplete ~t ia the set. of .all tiai• ud ... inf~ ~""'1JOCS ~ *1nepts -of soale 

set partially ordered by. the ·Jll'•f i~ qr ~1.1itia.l,,J1~~1tf'!~! '-•~n. (F9J:. •x~~ AB S 

· AIC $A.,SCD.andAB,$A,6D! );bU&lia~t,be-~,~·.•···~ ·.~·<length 
' ' . . 

<.>). Theemptysequ~e i4dlf,.,..._t0£,~, ~~·: ~efe, ia no .. greateat 

. element •. The poaet JDa¥ ~ IN.c~;_. a..ta;.,..Qf),dai~ ~. ~MJ,:e .,h (,fiJli~) node · 

corretponda,to.a (finUo)~.alMi-:¥~·~;, .. Jf~·~~g .&W:4J. ftom the 

node is·tabelod '41(idl.a·diff•eat el__. f~, ip.,~~ Pf. ;09~,. c 'W•: ·restrict 

our attention to chains which are countablf, ~··Hes:~~··• ~erlVnl set to 

be countable. For example, the set of subsets of the integers is uncountable, but the 
' ''. . ,.· " ' . ' . ;.\' """ "'"•"'' ' ".', "' '': 

chains under the mclUsion order each 'have a coulHlbre bli~r of elements. Although 

there are other varieties of ~otnpletebess~ sUdi 'ai· tilr«ild.:t•l~o'lnpllteness in' which any 

finite su'b8et which li_. an upf'4=r bound has" a siip1e~/~. ttC>w: on ''fld will· mean 

A function from one complete poaet to another is said to be continuous iff it is 

isotone and preserves supren!a; itlat ·~, iff the value ol''ihi tlln~n on ;the supremum' of 

a ch&in in its d~main ~ the suprel'rium of :the' ~t of'Vifu,}j;;\ihic1{ b ' tile' ~age of tJw 

chain. Note that shlce the furi~uori is ~e. It~m. 'c~~; ilit~ en~: AISci. note 
. - : . ' . . -. . - ;- ~.~' . "-. '' '. -:· ~, / ,- -: . ''. ._; /'.'- ~/ '?.t_·;.' \ ~ . ~ ·. :, _ ... ''. ': . . . .. . . ) 

that the isotonicity of the function ca1ibC deduced'ftom iis'cohtmwty (suprema preser-

vation), merely by considering finite cli.rlns, .Wh~ ~upteniir,are theu·greaiest elethents .. 

. It is an easily proved arid useful fact tllat'a ~'.;.tikti'·'~i~ ·~ ~cartesiifu product of 

(complete) posets into'a pOset and is isOt:one' ;:'(co~di:luoiiSf oil e~cli argumentis also 

isotone (continuous) on the tuple."' Similarly, th~ ' c<>ulpc)sition , of ··two isotone 

(continuous) function~ is in tum il<>ton~ (eontiaJous1. 'u · i~ ~ straightforward to prove 

that the set of continuous functions fr~tiJ.; on~ ~~-~( t~ a~other , itself' forms a 

complete poset tlnder the natural pardal or0.·98 ~ 4,efiu.od .a?>••· . ·' 
'· .. · . "' ._j ;~ _: - . < • ~ ._· c : -· • • 

Now we come to the point of introducint poseis, eompleteness, isotonicity and 
·.~ . -~·: ~ -:,"-, -,' ;~ .. -~; '.~~ '.,:-J :~bJ";_;._;•·: ;:. ·, .·, . . 

continuity - the Tarski fixpoint theorem {Mat-76]. ff F: J? • P is ·an isotone function 

mapping a complete potet into, itself, ur.·F 1-t:•l*fixtJoiDt Xe:.· That is.3.K:F(X) • X 

and VY: F(Y) • Y • X ~·r~ ~.it F ,if:~s as; :...U·.iM"isotoQO, we can 

"compute" its least fixpoint by a straightforward technique (actually the technique 
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I 1·' 

' 

involves taking a limit, so it is not computable in the ordinary sense) [Sto-77}. Consider 

the sequence .L, F(.1.), ~.il,Fl(i), 1'4(.1.')~' •tc. "nfti;~,:formai~~ltainc.because .1. 

S 1'(.L) by definition of .L and F'tl:lS 1'1'+l(IJ beeiUile!'~ R!iilt!\"'is()tonei. Tlleliefoi'e the 

sequence forms a chain wbieh4las a limit 1* 1'~emafbeeauN >tbe'4Jpolet ::is .i:hain 

coqipleie. If we fQrw, lJ,F,1(..1.) (where I€ w), ¥td call it, X, we see that X equals 
. '.; . ,, { .' Y'..c :jJ'l ~y1('(:,:_· 'd ~1'~!~~7 ·-. ..: lJ _'.," 

UiF~F1(J.)) wbich by_ continuity e~yals F~Hf~(.*~l~l,:')'·~~,T~~:!~:~(~) ':::~~i~~~f F. 
To sbow X i.s tb,e 1eut ~int, ass\lme Y: is a fixpoint. Then .1. :SY and thus F(.L) S 

.. ~ .< '.{ __ · ·.. .. ~~;· ;.· - ",!·~·~·<. .Li'-,_; !4 :·,:~~z)·:. · f' ·. ·· . .;:::. ., .. ~ 

F(Y) • Y! So by indlJ.9tion, 1'1(J.) :Si Y and so XS Y . 
• • ~ {. • ":. • ~,, ·".· ; .• J_ : •• ,t-">· ;" .>. ·, . 

Denotational Semantics 

In the standard treatments of denotational semantics one data element or function is 

• said to be less than another iff it is lea well defined than the other, so that the partial 
~ . 

order is an ordering by approximation or information CO$nt (S&S-71 ]. J6t 11 .. ple. Ui 

the c-'eiJ partial fuptµc;>ns ()~~~ .. ~ Sffl ~? -~:f!'8-fcr~ ~n ano~~r i~ it ~t•Nh the 
. other, th•t is. it ,is d~fuled ~~ a -~~ do~ and they &Jr.ee in value on the smaller 

- . :,; .~ ~:· ·: ·~ .. '- ~-1~:..":·~:Y ?'. ~:.: .. -_, ~ .~··~ '· · . - ··~- ·:_,;,; 

4o{ll&,in [M"'1-74). In ~e. ~it.~ of ~p~ ~~!;~,.~'~t" ·~i'.'~rder is. :o~~ )11ed, it 

consists of a set of data w».Wh are not o~r related to each other and a bonc:>n1 element 
. - . . · .• 1, ••. ·' .... , • ~ • . : .. •. ·.·,· ,' •. _:···L-: .. :;·~-·~·, ·~-s:~x'.: ~~··-t! ~:'?Dr~· , .. , . . if- :-·;'~ .. J.'._, 

which is less than any ~~:'~~':, &o_~~ ~~ ~~~,~~:4~~\~f ~~t~r~st in ~hemselves, but 

are used to construc:t 1™>!0. interes~ ~ as o~~. ~lo\V· 
.;•· '• ,,· .. · .~.·-'!~);.. •. ~.: .... ::· .. ;~:;.~:~· 

Earlier we indicated that it was diffie'Gi\i·to assip -aftHovMlf fWIGtiottal •beha\tior to 

prop:a~ witl'l~,~111.!·•~~~ve.~~ti~~~~lih:i-?;_ -~~s,,a -~~n u the 
' - . . . " '·' .~ "" . - ' . ,; ' .. ' .•. ..,. , 

unknpwn. Such .eq~aq.., .caa Q.e_ soJv~Jv PO~ circumstallces by meaps of the Y, or 
.' ~,_, -·.' , , .f ·-•• - ··> - .t ~:r .. t : ~~.:., ::;,::·::z~;( · .. · : ~- .- '., ;·~f: 

fixed PQint. operator • . ;~ffl~~~· ~ -~- :Pf<' .,~,~-· ,,~, .~an~, . pr<>,~,,mmiq 
J.anauaaea, such u USP, BCPL and even PL/I, we wish to ~ abl~ tQ treat ~Ctia u 

. r:'n ;.'.f.::;1-. 

data objects. In order to mathematize this, we require that the domain of functions 

mel\tde tUnctiou from thatdOliliitt t& dlaf~;: 11'1itt •·•• mt ttae ddmain muu be 

recuniftlfd~tined:· If we'letN beM di0ain1'f'1~,.-onal dasa ;(sull ."ai nwn

l>en),' ttlett the d6i\tairi 1" m'Ut w180tft0ipftiC' t(F'N 6"~f 9· ±tHljoiat unioll- of N 

and the set of (¢ontiftuous) ftlnctiou1:froufD'td1Df"i 1~our11 'cmitrlbUtion ; __ MU to 

show that 'there exist lattices called r~- domaiiS Wh1f9ii. satitfy~thil'womorplliim and 

in which the Y 'operttor can' always apptf to pve tfle· ~ miDUnal ftxecl peint·tolution 
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of the functional equations alluded to earlier. Furt.DermeR!. such domains adequately 

sharacterize pl'Qll'amQ1in1 laQlllaps. Tlaoroup, tr~ts of . thia approaca to program

. ming lnpa•'lelD4QUq.may be found-ia (!tiLfrS..76, $tp.-77] ... . . 

A slightly more recent approach to denotational selaantics UieS complete posets 

. rather than complete tat_ticei [ADJ~ ti, Mar-76, 'kol-1'7}: ·· ~Ji ·p0ee0· aecurately modeJ 
the basic notion of approximation, and akliwp 'the ·. · bOttom·· · element corr~ds to 

"undefmedness", the "top,. element of the l&ttite (and · 0t1set· j()ias necessary for the · 

lattice to exist) do not seem to correspond to any computationally meaningful object. 

We do not use reflexive domains in this thesis, as we do .. not,~Jl' functioa val~e~ data, .. : ~' - - ·~ .; . ~ " ' , 

but we do use posets rather than lattices, for the reuoos stated. 

Notation 

Names of variables and functions are denoted. by capitalized cursive italie words 

such as Var and Fun.. This is more lite ~i nciation · than conventional 

mathematical notation, which tends to Ule 8miJe · cliatacter symbol! fot" all variables and 

functions, but it is more.mnemonic·and tDUS more ~e when many names exist: 

Literal data symbols are represented by auster~ i~' ~·such u 'A and by· austere 

numbers such as 9 9 9. Liter&! data lyml>Oti My be taggdl by a~nding sttitlgs of 

miniature digits to the symbol$, for exunple, <Ao• Aoo, A~01). 

The angle brackets"{,. and">" are used to enclose exPJicit sequences of data, for 

example (A, B; C). Braces (i.e. ''{"and-••J0
) denocd sett in the usual way: {X, Y} 

denotes the set consistirig of X and Y, while f,t· 1 ~X)f denotes the set of all X 

satisfying P(X). 

Subscripts on nameJ denote ~·of a~ i~. from ~_$et of sllnilar items. 

for example V «ir 2, Fu.al' Su.pem:ript& o~ ~les wblch are stretJlrU · (sequences) 

denote selection of an element from that,·~·~ f9r ~~plc, S/ ~C:llotes t~e /-th 

element of the stream SN' which in tum i$ the N~th •eam <?fa s,et Qf related streams. 

Superscripts on data syml,lols mean repetition of tflat s~Ql, for example (A 8 ) denotes a 
sequence of K A's. Superscripts on function ~:!i~r ~~()te tepea.(ed composition, 

if the superscripts are numeric constants or variables, or they denote a new function 
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related to that function denoted by the un-superscripted name, if the superscript ts a 

greek letter. For example, FM(X) denotes the M fold application of F to X, whereas F~ 

denotes the "extension" of F by some rule, and F"' denotes the "completion" of F by 

some other rule. 

Finally, conventional mathematical notation 1s used for everything else: infix 

operators, prefix operators, quantifiers (with ":" separating the quantification from the 

body), function application and argument lists, and conditional expressions, including 

"If", "Then" and "Otherwise". 

-2 8-
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-4-
Semantics of Determinate DFPL Programs 

Overview 

In this chapter we develop the fixed-point semantics of the determinate subset 

(really a sub-algebra) of DFPL. To do this we first show that the domain of Streams is 

suitable for fixed-point solutions of programs, then we show that the determinate 

operators are continuous on this domain. We therefore deduce that (recursion free) 

determinate DFPL programs have a well defined behavior no matter what inputs they 

receive. We conclude with an· example of a simple fixed-point computation of a pro

gram containing a loop. 

A Complete Partial Order on Streams 

A Datum is an element of some set of data, for example, integers, characters, 

Booleans, arrays of floating point numbers, payroll records, directed graphs etc. The 

data sets available depend on the kind of DFPL programs being analyzed. We will not 

consider what types of data are available except that we shall assume that the integers 

are since they are needed to control the Switch operators. All data are assumed to be 

incomparable from the denotational point of view. That is, any ordering of data in a 

data set (e.g. the integers) is not of interest to us since it does not represent approxima

tion. 

A stream is a finite, empty or infinite sequence of data items, often denoted by 

enclosing their elements in angle brackets, for example, ( ) for the empty stream, (A , B , 

C, D} for a finite stream of length 4, and (A , B, ... , Z , ... ) for an infinite stream. More 

precisely, a stream is a function from the positive integers . or some initial segment 

thereof (including the empty set), to the set of Data.. That is, S: NBeg - Data.; where 

N Beg=- { } (S the empty stream), or N Beg• {I I 1 SIS N} (S a finite stream), or N Hg• {I 

I I~ 1} (S an infinite stream). Put another way, streams are functions whose domains -

are ordinals no bigger than w and whose codomains are some set Data. We denote the 

value of a stream at some integer I by 81, using superscripting for emphasis. A stream 

S1 is said to be a "prefix" of a stream 82 (denoted S 1 ~82 ) iff Dom(S1) s;; Dom(S2) and 8
2 
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restricted to Dom(S,) (denoted sl fDotllJ(Sl)) is-eq~ to s, . . nat is, s/-s/ for a,11 IE 

Dom(S
1
). 

neorem 4.1 : The prefix relation is a partial order on streams. 

Reflexivity and transidvity fulk>w ,frf>'m. die rdte~ ,aild ·nutitM.tY of "'"·and 

'especially"-'". The~tr)' 0f "'S''·f.no.s &oat ldMJtaatif,.m.ay of "~0 •• 

Hence the set of streams form a diterece tJONt whicll we clldl ~···II' 

Note that the bouom. element of this poaet ii the empty ~,(denoted l. ·ot C )) , and 
' ,., , -(· ... 

the inf'urite streams are maximal elements of the peat. 

Lemma 4.1: An indispensable .property of Cpo-1tft•GtrU is die followinf:. if S 1• S:i and 

S3 are streams such that 8 1 ~83 and S2 <tS3, then eilher 8 1 ~82 or S2 ~S1 • This essen

tially says that the graph of the paniaJ. ~,is a tree, v4c,h ~ eml)tt stream as the root 
'.' ,,_. •. ., + - _- ,, • ' • .- -

and the infinite streams as the leaves. 

Tb.is follows easily from the fact that .00.(S1) ,and Do:M(S,a) ~e ordinals so Dom(S1) 

s;Dotn(S2) or j)q•(S2) s;.oo.(S1). We apl'ly .the ~on o(~··" to ,et S3 1Do-M(S2)-.Sv 

and S3 1.Dom(S1) • S1, Now. assumJ.n1 .00.(81) Si .oo.(s2)~ ~e 1et S2 1.Do•(S,f• S3 1 
- - ' . ' . - ~ ' 

Dottt(S2) 1.Do•(S1) which inlpties 8 3 J.Do'MlS_1) • S1, which . means 81 ~82• Assuming 

Dofll(S2) '.00.(81) gives us 81.~ Sl' which .Pt;<>ves the Property'. ~II 

Lenuaa4."2: If sl and sl are infinite~ sl ~s2 iff SI .. s2. 

Theorem 4.2: The poset Cpo .. streams is countable cha.in complete. 

To show tllat this poset is chain complete, ~e must prove that any chain of streams 
-' :- ! '-: :. ;,, ,, . I ·. 

has a supremum in the poset. The chaias are J"8t ··sets. ~f. streams? .{S1,S2, .•• }, such that 

81 <E 8 2 <E ••• ; we need not worry thatS1 • s.., Jin.~ a clulin is a ~et. The~ are four cases 
. ,,: . - '· .. -,. ' 

to be considered: if the. c1'ain is empty, Ulen its ~upt,"eraum is .i.. If the chain is f~ 
. : . • - > ~ ' • ' -- . ., .I" '" ·,-,• , • 

then its supremum is iust its '.muimal ehmleJit. .If tlte, c~ is infinite and contains an 

infinite stream S, thens ii thfkSUpremunt of ~.c.ham, ~C4' s~ s, ~for all fu1ite Sr SI 

<ES, and for no finite SN is SN~ S1 foe d:l finite S~ and ~ ~~ ~te' stream can be in 
' •• ' <' 

the chain. ·If the chain is infinite but colltaias -01liy fuu~ streams, then its supremum S is 
- ·~ .~ ' - . - ' ·. 

not in the chain but ®,es exist in ,the potet. We m"°ely dofhle S. to be the stream such 
.,'( 'L:... :-,, ·.·,, • > " 

that 81 -s/ for all IE Dom(SN) for any SN inthe chain. s is well defined because the 
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SN are elements of a chain. S is infinite because the chain is infinite and the domains 

Dom(SN) are unbounded. No element of the chain is an upper bound (given any stream 

in the chain, we can find a longer one) so Sis the supremum. (El 

Therefore Cpo-strea.ms lives up to its name: .it is a chain complete partially ordered 

set. Note that the finite streams in this poset constitute a basis in the sense of [M&R-76]. 

Strictly speaking, we should define Cpo-strea.ms(Da.ta.-type) and therefore have different 

posets for each kind of data. We will not do this in this dissertation, as the generaliza

tion is clear. Instead we will treat DFPL as an untyped language (like LISP). 

DFPL Operators as 1.sotone Functions on Finite Streams 

In this section, we restrict our attention to DFPL operators on finite streams because 

we wish to prove isotonicity - continuity is treated later. 

The simple operators, since they operate on streams element by element, are clearly 

isotone. Let SopF be a simple N-ary operator on streams which applies F to each 

N-tuple of corresponding input data. We denote this by SopF(S1, ... ,SN): each function 

F gives a different simple operator. That is: 

Now let SK~ Sz K' then Sz K • { ) implies SK • { ) (because Dom(S x> Si Dom(Sz x>). But Sz 

=-Sop,(81, ... ,Szr ... ,SN) iff for all IE~• Dom(Sxrn1,..gDom(SJ)) Szl • F(S/, ... ,S:x:i, 

... , S/). Now since L Si~. it is also the case that for all IE L: S:T! - F(S/, .. . , S:x:g1, .. . , 

S/}. But since L Si Dom(SK) and SK~ S:x:K' we have S:Tf • F(S/, ... ,S/} for all IE L. 

Thus S:T! == 81 for all I f L so S ~ Sx. Therefore Sop is isotone in each argument. iJ 

The operator Hold takes a constant datum C and attaches it to the front of the stream 

S. We denote this by Holdc(S): each value of C gives rise to a different Hold function. 

-32-



We define H oldc(S) • C @ S where "@" is def med as follows (with "+" representing 

orcliftal addition): 

Where Dom(Sci)• 1 +.00.(S) 

Thus"@" is isotone since if S1 ~S2 then A @S1 ~A $:$2• Therefore IJold.c(S) is 

isotone in S. IBl 

We deime another uaeful isotone ope~ation 

ordinal subtraction): 

..,. S•Sd. 

And Sd/-S'+1 

.. ..,.,, as follows, {with "-" 
~> - • 

representing 

Obviously, .. ..,. .. is isotone since if sl ~Si then TSI ~-rs,,. The "@'' and "T" operations 

are equivalent to CONS and CDll in LISP. 

The Switch operators are the most complicated functions from streams to streams. 

First we define the Outbound Switch operator Otwitc1'p(C,D): 

Oswitc1i P ( C, D) • 

If C• ()VD•() Then () 

If C1 •P Then D1 @Otwitcla.p( Tc' TD) 

Ot/Nrwiae O.witchp (..,. C, T D) 

Here P is the port number, C is the control· stream Ud· D . is . the data stream being 

switched. Thus an.Outbound Switch with tlli'ee ,,erta(O. t amL.2} woWd require the 

three functions Olwitcl&0(C,D), Os10\to1'1(C,D) .Qd. o..ati~(G,D) for its complete 

description. 

We prove that 01wito1' is isotone in the argwaent C by sllowinl that if. C ~ Cz then 

Oswitchp(C,D) ~ Oswitch.p(Cs,D). Th' proof~ a,ind~.tiqn on th~ finite ordinal 

Dom(G~). Note that Cz • ( ) iff .Dom(C:e) • { } and that 01witc.1iP(( ), D) • Oswitckp(C, ( )) 
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== ( ) Substituting Cx in the definition of Oswitch, we get: 

OswitchP( Cx,D) = 

If Cx == ( ) VD- ( ) Then ( ) 

If Cx 1 = P Then D1 8 OswitchP (,. Cx, 'TD) 

Otherwise Oswitchp ( 'T Cx, 'T D) 

We assume in the steps that follow that Dis not ( ), since for any C and Cx, Oswitchp(C, 

( )) = ( ) - Oswitchp(Cx, ( )). The base step is as follows: Cx"" ( ) implies C • ( ) so that 

Oswitchp(C, D) = Oswitchp(( ), D) = Oswitchp(Cx, D). The induction step is: let Dom(Cx) 

- N + 1; if C = ( ), then OswitchP(C, D) - ( ) which is a prefix of any stream. If C :f:. ( ) then 

TC~ TCx and C1 • Cx1
• Now if C1 = P then: 

OswitchP ( C ,D) = C1 8 Oswitchp (,. C, 'TD) 

OswitchP( Cx ,D) = Cx 1 8 Oswitchp( 'T Cx,,. D) 

So OswitchP ( Cx ,D) = C1 8 Oswitchp ( 'T Cx, 'TD) 

By the isotonicity of "8", OswitchP(C,D)~Oswitchp(Cx,D) if Oswitchp('TC,TD)~ 

Oswitch P( TCx, 'TD) But TC~ TCx and Dom( 'TCx) = N, so we may assume, as the inductive 

hypothesis, that Oswitchp('TC,TD)~Oswitchp('TCx,'TD). Now if C1 :f:.P then: 

OswitchP ( C, D)"" Oswitchp ( 'T C, 'T D) 

Oswitchp ( Cx ,D )- Oswitchp ( 'T Cx, 'TD) 

But TC~ 'TCx and Dom('TCx) • N, so again we apply the inductive hypothesis, that 

OswitchP('TC, TD)~ OswitchP('TCx, TD). 181 

The proof that Oswitckp(C,D) is isotone in Dis essentially identical. 

The Inbound Switch operator has N + 1 data ports D
0 

through DN, where we start at 
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0 because the simple case of D
0 

and D
1 

corresponds naturally to a True/False Switch. 

!switch is defined as follows: 

I switch ( C ,D
0

, ••• ,DN) • 

If C • { ) Then {) 

If C1 •OAD09' ()Then 

D 0 I e I switch ( 1' c 9r D 0 ' ••• 'DN) 

• • • • 

If C1 •N ADN9' ()Then 

DN1 e !switch( 'Tc ,Do' ... ,.r DN) 

Otherwise { ) 

• 

One can prove that I switch is isotone in each of its arguments in a manner similar to that 

Oswitch by which was proved isotone, except that the induction must be on the (ordinal) 

sum of the domains of the D1 since only one is reduced by each recursion. 

DFPL Operators as Continuous Functions on C po-streams 

Having .defined all the primitive determinate DFPL operators as functions on finite 

streams, we wish to complete them to be continuous functions on Cpo-streams. That is, 

we wish UOp(C) • Op(UC) for any chain C (where US denotes the supremum of S). 

This is straightforward since we have yet to say how a primitive operator transforms an 

infinite stream. Let Max-chain(S) - {SI I SI~ S} for any S, so that for infinite S, 

Max-chain(S) is the (infinite) maximal chain containing S. To make an operator 

continuous, we define Op"'(S) • Op(S) when S is a finite stream, and . Op"'(S) • 

UOp(Max-chain(S) - {S}) when Sis an infinite stream (recall that if X is a set, F(X) = 
{F(Xelt) I Xelt £ X}). 

Theorem 4.3: The completion Op"' of Op as defined above is continuous. 

Since Cpo-streams is chain complete, the supremum exists. Since S = 

UMax-chain(S) we have continuity on maximal chains automatically. Now consider 

UOp(C) where C is an arbitrary chain. There are two possibilities for C: it may contain 

a greatest element (if a finite stream then C is finite, if an infinite stream then C may be 

either finite or infinite); or C may contain no greatest element, On which case it is an 
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infinite chain of finite streams). If C contaim a greate1t element S, then 0p"'(S1) :!!l 

Op-(S) for all S 1 e: C (by isotonicity of Op- if S is fiaite; tsy definition of Op"'(S) . for 

infinite S). Thus ();#(8) is the greatest element of Op"(C) ;ad, :hence ita supremum. 

If C contains no greatest element, C will be an Qifinite subchain of Mti:e-clla.i'll(S) for 
' -- 'I • 

some infinite S. Since Cpo·1trta.flU. is diserete and since C ~infinite, no 'fmite element is 

an upper bou~d for C, thus S •UC. By defbtltion. ~f·,, 0pw(S) ~~r ,infinite 's, Op"'(S1) ~ 
Op"'(S) for all s I E c. Now the set Op111(C) must ~ ~- chaili because. c is a chaiD. and Op"' 

is isotone~ If .Op"'(C) is an j_.i$e qhaio. ._.~.1¥f.¥1\0 ~; lloP"-f bound so. ii has the 

(uniqµe) infinite upper boua4 ()p-111.(S). B~ ~"~~;:J)p.:otaer· u~9r bounds so Op"'(S) • 

UOp"'( C). If Op"'(C) is a finite. ~~11 then it ~ ~,,Jr.~~ t=lo'11DPS ~ • U0p"'( C). By 

isotonicity of Op"', there must exist S 11 E C such that Op"'(S 1) • S 0 for all Sr 't!: S 1t1 (obvious 

for Sr E C, also true for Sr« Mti:e·chai-.(S)). Thus, S0 • UOp"'(Mu-c1'a.i"(S)) • Op"'(S) • 

UO,"'(C). ti 

TherefOl"e, we have proved that for aay .ch{tin c. O,rl"(UC) • UO,"'(C), so ·that Op"' is 

continuous. ·This applies in tfa• obvieus manner to~...,...t operalQls •. ·Note. that 

in the ca• of muki-asaumftt: operataa. * .«4er"-of:,;;t-..,:ftl~ .. 4"J 119t JP.~r 

because the operatiDm·of c:ompletins a po.tefHaAo.-..nc:UG1 'Jl1 iJotQne function [Mar-7'6, 

·,Mar-71} give results unique. up to iloinorphism. 

Solvability of First Order Fixed-point 'Equations 

We have now shown that the OFPL primiUve operate>ts ate is0tone on streams, and 

that we can extend any isotone function Oo. ;trftm,· to a ch~tinuous function on streams 

by defining.h:.s beh&vior on inf'mite ;ireams al ab0'9e.' ··irtu·;;D'Pt»L prlmitivi operators 

may all be extended to be contmuoWi fU'nctidtis ;lror.ti streanla to streams,· or· ·more 

generally, from Carteshlo.'prC>dUcts of fueal:ISttY'(~prbductS of) streams. Now 

it is known that any system of O"quadons in1'olvtng· ' only · coatiftuous functions over 

complete poaets have a minimal fixed pgim::so1ution ~7-6, Mlt;.111. 

Now any DFPL program graph that includes only primitive operators and no rtQUr· 

sion can be ·convened to an equivalent system ef 4M1fftians.: RecaH that a prop'am graph 

corresponds ·.to a s'et of equations in w.fllcla;eacti ·c:l&ta path corresponds to an· equation 
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variable and each operator instance to a· function instance. By use of the copy rule, a 

proaram graph containing usages of defined operuors ean ·be ex.,.ded into a .araph 

containing only primitives and thence into a Oar1e) system of equations. Therefore, any 

suoh DFPL program has a minimal fixed point solution:. that is, ah aSsipment of streams 

to the data paths which are the overall result of "roiining" that program (perhaps 

forever) startina with empty data paths. 

Note that the solution obtained is a confipration of data streams and thus re,re· 

sen ts a particular resuh of applying the fUnctiou represe.tett by tlnftptogtam, ram« than 

the function itseH. For this reason, we call this a MtOrder-fhed*pOUtt. 

Examples of First Order Fixed-points 

Figure 4.1 shows a simple DFPL program with· a loop, for ~hicll we· will compute a 

first order fixpoint. TIM HoUl operator ia as c:tiacuasedearlier~ tho;fivery .. o~ operator 

delivers as output every other element ofits iap11t·1ueaa ·For o~le,E•err-oU&tr((A, 

·s, c, D. E, ... »•<A, c. B, ... ). ·wewillnotexplotJtdle -iDa&rck ofdiis operator, they..re 

not germane to the fix-point computation. To· solve dlU loop, we cut it at the point 

labeled .X, then we solve the equation X • E'Vt'r'/l·otlur(Hol.dB(HoldA(X))). We do this 

by applying the standard fix-point rule, computing U{ .1.,F(.t.),F(F(.1.)), ... } . 

Proceeding by this rule we start, with Hold A (( )) - (A),_ J:loltl8(~ » • (B , A} and X 1 • 
I 

Every·oth.er((B, A))• (B}. Note that this is the fmt approximation to X, not the first . . . . . . . - . ' . . ~ -~ " 

element of X which would be denoted X 1• ~e _second ~pproximation is X 2 • 

E ve'r'/l·Oth.er(H old s<H old A (X1))) • Every-othtf'(H old s<H o;ltl A (( B)))) -_ E~e'r'/19oth.er( ( B , A , 

B)) • <B , B). The third appToKimatiQA is X 3 ,. &vtrr-~thrril{old6(11 old A ($_1))) • 

Every-otktr(Holda(Hol.d.A((B, B)))) • Every-o~(B, A, B, B)) * (B, B). Thus we 

have converged after three iterations (X • X 3. • X 2). We can also deriv" the fix-point 

values of Y and Z. To wit, Y • HoUl A(X) •(A, 8, B) and Z * Holda(Y) • (B, A , B, B). 

We could equally well have cut the loop at Y or Z. Then we would have solved Y • 

Hold A(Ever71-otlur(Hol.ds(Y))) or z- Hold11(R-old A(.i'""'·otk.e,t'(,,;))) rewectively. 

Either of these approaches would have given the same results for X, Y and .Z . 
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It is very important to remember that the iterations involved in computing a (first 

order) fix-point are not the same as the iteratiom implied by executing a DFPL program 

loop. In computing the fix-point, we are "standina outside of time" and considering the 

data streams as wholes, wheroas in executing the prosram loop, we are observing the 

data streams develop within time. This is analo1oua to the solution of equations in 

physics: the iterations necessary to solve a dynamical equation do not take place within 

the time expressed by that equation. 
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.5. 
A Partial Order for Non-Determinacy 

Introduction 

We have seen that streams of data, partially ordered by the prefix relation, form a 

domain upon which determinate DFPL operators are continuous functions, so that the 

function computed by a DFPL program may be determined by means of function com

position and computation of fixed-points. Our task now is to find a domain suitable to 

both determinate and non-determinate operators, that is, a domain in which both kinds 

of operators may be cast as continuous functions. Part of our task however, is to 

formulate the domain and functions in such a way as to be compatible with the determi

nate formulation. That is, there must be a morphism from the general system to the 

determinate one, mapping the determinate functions in 'the general system to corre

sponding functions in the determinate system, and mapping "determinate" elements of 

the general domain onto corresponding streams in the determinate domain 

( C po-streams). 

Just as determinate DFPL programs may be viewed as functions on input streams and 

output streams, it is reasonable to view non-determinate programs as relations from 

input streams to output streams. Unfortunately, if we take this point of view, we lose 

the fixed-point theory which is based on continuous functions (althouah we still have a 

useful notion of composition for relations). The way out of this problem is to apply the 

well known "functor" which transforms relations on sets of objects into "equivalent" 

functions on sets of sets of those objects. Therefore, for the rest of this dissertation we 

shall characterize non-determinate programs as functions from sets of input streams to 

sets of output streams. Each stream in the set corresponds to · one possible execution 

Each possible execution of a non-determinate program causes a particular stream, 

chosen from the set of streams, to appear on a particular data path. If the program is 

determinate, then only one stream can appear, so the set is a singleton. Thus the natural 

map between the determinate and non-determinate semantics involves mapping a stream 

to the singleton set containing that stream. 
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Counterexamples to "Posets'' on Simple Seta of Streams 

The exact choice of what kind of set of streams, as we shall see, is crucial to the 

formulation of a reasonable denotational semantics of DFPL. The obvious choice of a Ht 

of streams is just that, a set of streams. If we use this u our domain, tile. question is 

what partial order is suitable. The obvious choice for a partial order on sets is the 

iaclusion relation, which is even chain complete. A. momenti ~tight, 'however, shows 
·, • : . . '• • ., '! •. ··.' ; " ; . . . 

U1 that this.is unsuitable ia that it does not reduce, Whell af>Plled to smpeton seb,.to the 

prefix order on su:eams. For example, the stre-* <Alis.a pr\tfix ofthe stream (A, B), 

but the s~gleton set {<A>l is not a subset of the'~a sef=trA. B>}. ·nu1 the subset 

relation is not a comPatible partial order. · 

To have a compatible partial Ol'Qei:, the t~~~ ~~en }~o . ~ingleton sets of 

streams must reduce to tile prefix relation on tJiolc. •t1MO ur~. . The obVious e~ension 
.:, . ' . - . - - . " ' "" ~ '• , :\ . - . ' ... : ' '" ,, ' -, , . ' ·- - - . . -. 

of this to non-siq.letoe sets is to say. that ~eams in .. the fitst . set are matched with . . " . ~ - '' ·- -~-' .--' ,, - " - ,• : ; {' - •. _.,_; .• ' : : ; ; ' . ~--. 
atreams in the seoond l.llCi: tke first • -- thAA. IA" "co~.~. the prefix relation holds .... ., ·.-.. ,.,, ' •; ·.:-.' , ' '. 

on all tlie maiched str~ FUl'thermore, our in~Ppo t~Jll. \l8 }ha...t o'~ ~~t of streams 

can· be "S" than another in two ways: first, u indicated above, the s~eams in one may 

be prefixes. of the streams in the other; second, .the biger set may simply contain more 

streams. 

ThiS sugests the following attempt at a pa,rtial ~rder~ a set of streams Ss 1 is "S,. 

than a set.Ss2 iff for all streams S1 in Ss.1, th~e !xists a stream 81 in Ss2 such that S 1 is a 

prefix of 82• Unfortunately, this is not a partial ~der ~t .dnlY a quai•order, since it 

does not Obe)' the antisymmetry rule. Co~ider Sa 1 :.:.-Jt;.') :: CA ' .4 n and Sal ... {(A • A>} 

Here we have both Ss
1 

S Sa2 and 812 S Sa1 but clearly Sa 1 fi Sar One. way around this 

difficulty is to form the equivalence classes ofsets ()f stieama wbieh are both "S" and 

"~"to one another. This constructs a "quotieat•··~yltim .. inwhieh·u:s••'ts ,u4ranteed to 

be a true partial order. 'However, in thiS qu&iettt dO'itiain ilie semantic equations can 

only be solved to yield equivalence ctasaes, (i~e~ s~ts · of "~intu sets of streams) 

which might .not be enouP. deUi.il for our' needl. 

We· now observe that the trouble with the. previoµs a~gt;4 p~rtial order was that it 
• • ' k '• ~ 

allowed us to match two different stream.a in Sa1 wi~,~ ~~ s.trea111)n Ss2• Also, our 

intuition tells us that each element in a set of streams corresponds to a different execu-
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tion of the program, and since programs should be isotone functions, feeding a program 

a "bigger" input should not reduce the possible executions. That is, it should not be the 

case that {(A), (A , A)} S {(A)}. In response to these points, we make another attempt at 

a partial order: Ss1 S Ss2 iff there is an injective map from Ss1 to Ss2 such that each 

stream in Ss1 is a prefix of its image in Ssr Unfortunately, this too turns out to be only 

a quasi-order: consider the infinite sets Ss 1 • {(A), (A , A , A), (A , A , A , A , A), ... } and 

Ss2 • {(A , A), (A , A , A ,. A), (A , A , A , A , A , A), ... } . We can match (A) with (A , A), 

(A, A, A) with (A , A_, A , A} etc., discovering that Ss 1 S Ss2, or we can match (A , A , A) 

with (A, A), (A, A, A, A, A) with (A, A, A, A) etc. (omitting (A)) and find that Ss
1 

2: 

Ssr But this would imply that Ss1 is equivalent to Ss2, which is unreasonable, since they 

have no elements in common. It does not help to demand that the map from one set of 

streams to another be bijective, since then sets of unequal (finite) size would be incom

parable. 

The following scenario suggests that we wish Ss 1 to ·be strictly less than Ss2• 

Consider a non-determinate program that operates as follows: it produces an indetermi

nate, but even (including zero), number of A's on its output port, then copies its input 

symbols to that output port. Therefore, when presented with the input stream B, its 

output is (B) or (A, A, B) or (A, A, A, A, B) etc.; when presented with the input 

stream (A), its output is (A) or (A, A, A) or (A, A, A, A , A) etc.; and when presented 

with (A , A), its output is (A , A) or· (A , A , A , A) or (A , A , A , A , A , A) etc. More 

precisely, when applied to the input set {(A)}, it produces Ss 
1 

above, and when applied 

to the input set {(A, A>}, it produces.Ss2• Since our intuition tells us that the set {<A>} is 

strictly less than {(A , A)}, and since we wish all DFPL programs to be isotone, we must 

say that the output set Ss 1 is strictly less than Ss2, for they are clearly not equal. 

There are a number of other possible contenders for a partial order on sets of 

streams. One which actually is a partial order, and not merely a quasi-order, defines Ss
1 

S Ss2 iff there exists an injective map from Ss 1 to Ss2 such that each element of Ss 1 is les~ 

than its image in Ss 2, such that the image of the map is a closed below subset of Ss 2 (i.e. 

whenever Xis in the subset, so are all Y S X), and such that the map is co-isotone (i.e. 

F(X) S F(Y) implies XS Y). Unfortunately, not all DFPL operators are isotone in this 

partial order, so it too is unsuitable for our purposes. In fact, we conjecture that there is 

no suitable partial order (if we restrict ourselves to plain sets of streams) which does not 
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require using equivalence classes of sets of streams, which reduces to the prefix order on 

sinaleton ·sets, and in which all primitive operators are isotone functions. 

Another Problem with· Simple Sets of Streams 

Consider the DFPL program in Figure S.l. lt CQnsiats of tw• two-in.put Arbit1r's 

whose outputs are co~ected to the.iyu.tl of.a~ primiti•e Add. operator. If the 

input streams to the Arbit•r's are, u illustrated. the0 siaal0tont (~,.(a;), (4) and <s>. then 

the Arbit1r's outputs are the ~ts {(2 y 3), (3, 2>} and· {(£h 5) •. (5., 1.1.)J,, wllich are also 

the inputs to the sides of the.adder u shown. Now, ;tince ... .aay ·atetminate eperator 

must, if. confronted with sets. of input streams, ~ ··eu.Jt. 8'1e&m element of each set 

· widi.every element of every other (i.e. it must operate on the ·Cartesian pl'Oduct of its. 

input sets) the output of the adder must be the set {< 6 , a> • ( 7 , 7 > , < 8 , 6 )}. Note that 

the stream ·(7·. 7) WOUid.be 1enerated twice but would· ?nl~ ... ,~~ C)nCe, be~use the 

output is a s~t. 

Now CG111ider the DFPL prOIJ'aui in Fiaure S .2. It con'*8' of a sin&Ie. two input 

Arbitw whose Qutpa«il comieeted'to botltmputsof • irllpleiptimitive Adcfoperator. If 

the inJ)1Jt streams to the Arbiu-r are, as illUatrated~ the··~ (2 >·.and· <3 ), then the 

Arbitw's output is tho set {C2, 3), (3, 2>}, Which is a.ISO tlltdbj>ut t~ both sides of the 

adder as shown. Now, by tke·Cartesian product Mite we ·~d above~ the output of the 

adder would be {(4, 6), (5, 5), (6, 4>}. This, ·unfonunatoly, is a result which the 

operational semantics of .DFPL contradicts·- the stteam ( 5 , 5 r can never be a result of 

this program. The Arbitw either outputs (2, 3) ot (3, 2)~ it can never output both 

together nor can it output their avera1e! 

This example demonstrates that simple sets of streams is not an adequate basis for 

the denotational semantics of even very simple projrams not involving .fix-points. Such 

simple sets just do not contain enough infonnation to allow such · pr,ograms as Figure S .1 

to be distinguished from programs like Figure 5.2. In p&nicular. the adder .operator has 

no way of knowing whether its inputs came from the same. or different Arbiter's. Thus 

we feel justified in searching for a somewhat more complicated basis. We must incorpo-
• ..~. -: ; i ·' ·: • 

rate in each stream an indication of how it may have been arbitrated. 
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Sets of Tagged Streams of Data 

It is possible to obtain a straightforward partial order by considering sets of tagged 

streams of data. Each datum in each stream in the set has associated with it zero or 

more tags, each of which identifies the sequence of arbitrary choices made by a non

determinate operator which contributed to the existence of that datum in that stream. 

Sets of tagged streams are constrained in the following two ways. A later datum may 

never be the result of fewer non-determinate choices than an earlier datum, and no 

stream is merely an approximation to another. 

Two sets are compared by matching each stream in the first set with a stream in the 

second set such that the first stream is a prefix of the second stream. The prefix relation 

used here is the same as that used in Cpo-streams, except that the items in tagged-stream 

are pairs of Data and Tag-set, rather than merely Data. However, all the relevant 

properties apply to tagged-streams. This relation may be shown to be a true · partial 

ordering of sets of tagged streams, and the resulting poset is chain complete if infinite 

streams and sets are admitted. 

Each instance of an Arbiter in a DFPL program is uniquely identified by its 

Arbiter-name, an element of set with equality. Remember that each recursion level 

generates new instances of its operators. A Choice•sequence of an Arbiter is an empty, 

finite or infinite sequence of integers, chosen from range O through Number-of-input

ports - 1. A Choice-sequence represents, in order, the non-determinate choices made by an 

Arbiter. A Tag is a pair <Arbiter-name, Choice-sequence), and represents the choices made 

by a particular Arbiter. A Tag-set is an empty or finite set of Tags such that no two 

elements have the same Arbiter-name component. A tag-set represents the non

determinate choices made by a set of Arbiters. The restriction that no two elements 

have the same Arbiter-name insures that no tag-set represents that an Arbiter has made, 

self-contradictory choices. A tag-set Ts 2 is said to be an Extension of a tag-se~ Ts 1 iff 

there is an injective map from Ts 1 to Ts
2 

such that for each element of Ts 1, the Arbiter

name of that element is the same as the Arbiter-name of its image, and the Choice-sequence 
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of the element is a prefix of the Ckoice-Bequence of its image. More precisely. we say 

that: 

Tgsc; Tgsz• 

3Map: Tg1 - Tgsz: 

Injective ( M cip ) A 

VTg E Tga: 

Arbittr-"""" ( Tg) • Arbit1r·M1'W (Map ( Tg)) A 

CM>ic•·sequnce.( Tg) ~ Clwiu·u~(Map:( Tg)) 

; ~ ' ·, ,·, ' ' 

A Dcitum is an element of some set of data~ All. data m assumed to be incomparable 
. ' 

from the denotational point of View. A Toggtd-ltrtam is an ~pty, finite or infmite 

sequence of pairs of the 'form <Dutv•, Tag·~~t) Whiet:i Obeys ·the t~-set ~xiension rule~ · 

This rule demands that the 'taa·aet ~o~t of.., elritimt'ih. the. u.,,ed~Stream. is an 

extension of the tag-set component of au etemellts prec~ it 'itl tllat: taged.;Stream. 

This iniures that no datum is the result of· fewer~:a'Oil41etetddnate ehoi¢es · thiin a datum 

which occurred earlier in that taged-stream. A Taii«-U;-t"t.stn;,;Hfls a non-empty set of 

taged-streams which is Pref iz-rtd.1"tld.. This map1 that Q9 taped-stream is a . strict 
-. ~:·.. . · .· .- ·~ ~-, t,·; ·--~.J:~ .:._ ;\ : :, ,-:,Y'~/ :'- ··· · ~ 

prefix of any other tagged-stream in the ta~streapi~set ... This insures that no taged .. 

stream is merely an ap~·tion to a~other ~' dw;' ~am; :~~str~:'set. · 

For example, Che result of supplyina.a two·:pon (o...-ennmatel· Ariitlr with the 

(detennh.ate) iliputs-f(A}l and{<B<>}·yiclds •··euq>vt ~- (_.determiaa~)· taged

stream-set {4h, 801) ... (B-1 •Au>}, The r ... -of ;,...._; . ti.tat· set dlrough a 

(determinate) operator wbich·throwa .-.,._ ~ d4ta· •ti p. A ... appears, ~hereupon· it 

copies the_reat of the stream to its outf»Jt.por4is{<A•, Bo'1), CA1.)}. 

The partial order on taged-stteam-setl .. Y no., ·~ d6fmect A tagged~stream~set 
T88 1 is~ a ta"9d-stream-sei T••i iff thde.Ml·u,mjectiW'rilap from Ti1 1 ·to Tss2 

such that ~ach elemeut of Ts1 1 ii a preftx.ofift- in tsar ''Note that this implies 

that the cardinality of Tni is·no bigerthlh that of !far Also nOte' ~t tliil is equiva

lent to saying that T11 1 ~ TH2 iff'for all ~temedtl Of't'ff'
1

, dtenlf0e;dsti an elmnent of T88
2 

of which it is a prefix. This may be shown as follows. If Sci, Sb and Sc are streams such. 

that Sa is a prefix of Sc and Sb is a prefix of Sc, then either Sa, is a prefix of Sb or Sb is a 

prefix of Sa.. This implies that if there exiSts an elementS2 of Tss2 of which an element 

-45-



Sa 1 of Tss 1 is a prefix, then there is no other element Sb 1 of Tss 1 which is also a prefix 

of S2, otherwise, either Sb
1 

would be a prefix of Sa.
1 

or vice versa, and we disallow this in 

the definition of tagged-stream-set. 

The map which takes a stream S into a tagged-stream-set Tss • {St} such that St1 • 

{S1, {}.)for all I€ Dom(S), is an monomorphism of posets. This will become clear in the 

next two sections, justifying our implied claim of a non-determinate domain which is 

compatible with the domain Cpo-streams. We shall see later that the Tags have another 

use besides allowing the definition of a compatible partial order. 

The way that the tags force the tagged-streams of one tagged-stream-set to be 

compared with particular tagged-streams of the other tagged-stream-set is reminiscent of 

the "arrows" in Lehman's categories which he uses to model domains for non

deterministic fixed-point semantics [Leh-7 6]. 

Proof of Partial Order 

Theorem 5.1: The relation "~" is a partial order. 

To prove that "~" is a partial order on tagged-stream-sets, we must prove that it is 

reflexive, transitive and antisymmetric. Reflexivity is obvious: take the identity map as 

the injection of Tss
1 

to Tss 1• Since any tagged-stream is a prefix of itself, we have Tss 1 

~Tss 1 • 

Transitivity is almost as simple. Given an injective map M 1 from Tss 1 to Tu2, and 

an injective map M2 from Tss2 to Tss3, we know that the composition M2 ° M 1 is an 

injection from Tss 1 to T88
3

• Then, since the prefix relation is transitive, we know that 

every element in Tss 1 is a prefix of its image (under M2 ° M 1) in Tssr Thus "~" is 

transitive. 

Antisymmetry is the most difficult property to prove; it is the property which the 

alleged partial orders discussed earlier lack. Let M 1 be an injection from Tss 1 to Tss2 

and M2 be an injection from Tss 2 to Tss 1• We can immediately conclude that TBB
1 

and 

Tss 2 have the same cardinality and that M 2 o M 1 is a bijection from Tss 1 to itself. Each 

element of Tss 1 must be a prefix of its image in T ss 1 under M 2 o M 1, but due to the 
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constraint on tagged-stream-sets, no element can be a prefix of another. Hence the 

image must be the element itselfso M 2 ° MI must be the identity. Now we observe that 

each ~lement of 7'811 is a prefix of its imaae in 7'n2 ~de~ M:p and that element .in 7'182 

is a prefix of its imap. ia 7'n1 watler M2• But the: iaap wader Af.f iS' the on•blal element 

in Tn 1• so the a.m..t in ~a2 is equl to the eJcmeat i&·T•c-bJ' ~meu:y of the 

ptefixrelation. Them~ 7'112 is·equlto 7'aa1 .:.aml:"~~-ii,aMisJmmoUic. 8 

Proof of Completeness 

TJaeoremS.2: The partial order "~"is (countable) chain complete. 

. To prove t.bi&, we tm11t show that any countable chain b.Ma .supremua · Let {7'111 ~ 

7'882 ~ 7'883 ~ ••• } be such a countal;>le chain. aaa. ·let::{M1.¥11~ .. } be tti.. ~iated 
sequence of injective maps which specify the relations (i.e. M1: Tn1 - 7'181, M1: 7'8a2 -

7'813etc.). LetSbeanelement of 7'11N,then the set'{S,MN(S),MN°MN+1<S), ..• } 

forms a chain under the prefix order. Since Cpo-8t1'ea1111 is ~ ~iiam complete, this set has 

a supremum which we call S-111.p. Call.~ set~ all ~c;h s~naa. ;l'aa-rup~ Since All 
the M's are injective, and each 7'81 is prefix-reducedJ we apply Lemma 4.1 to deduce 

that each elements ()fa 1'u befoup to exactly one such chaiil. For each TBBN' define 

Mn.pN to map each elelttent s into s;;up, the sl&premiun 'of Its •c:bin. Tfie s\iprema of 

au distinct chains are themselves distiriet (by Leinmi. s. t amt die · assutiqrtion that T 88's 

are prefix-reduced) because each chain has at least one non-supremal element not the 

other chain. Then we h.ave that M8i£pN: .Tsa11 :" '!;H-81'.J' is ~,n,, injective map which 

establishes that Ts.sN ~ 7'13-111.p. But N was arbitrary_. so 7'8~~"'4! is an upper. bound for 

the chain of TBB's. 

If there were another upper bound, call ·it Ts ... ub, for the 'Chain of T••'s· Which was 

strictly less than 7'11·sup, then there would be an element S-ub in 7'11-ub wbieh was a 

strict prefix of an element S-811.p of 7'H-8Up, or there would be an element in TBB-sup 
, • r.• ' , } • ·-" ~ ' • 

which had no prefix in 7'11-ub. In the first case, S-ub would be an upper bound of some 
!- ;.~ • 1 ', ',.. ~ • ~ 

chain, but S-ub ~ S-aup, contradicting the fact that S-aup was the supremum of that 

chain. In the second case, there would be a chain of elements from the Tss's which had 

no supremum in Ts8-ub, hence TSB-ub could not even be an upper bound. Therefore, we 
. , .. , :·::;., :-·, 

may conclude that T8s-sup is indeed the supremum of the 7'1B's. 
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It remains to be shown that Tss-sup satisfies the extra conditions on tagged-stream

sets: namely, that no tagged-stream is a strict prefix of another, and that within an 

tagged-stream, the Tag-set on a later item in the tagged-stream must extend the Tag-set 

on an earlier item. . We prove these additional properties by contradiction. 

If one tagged-stream, Ts 1, were a strict prefix of another, Ts2, then all the elements 

of the chain of which Ts 1 was the supremum would be in the chain of Ts
2

, hence Ts 1 

could not be their supremum. 

If the tag-set extension property were not obeyed, then there would exist a tagged

stream Ts-sup in Tss-sup such that Tag-set(Ts~supK) did not extend Tag-set(Ts-supJ) 

(where JS K). But, since Tss-sup is the supremum of its chain of Tss's, there would 

exist some TssN which contained a tagged-stream Ts~ Ts-sup such that Ts1 • Ts-sup1 

and Ts1 • Ts-supJ contradicting the tag-set extension property assumed for the TSl's. 

Therefore the Tss-sup is a proper tagged-stream-set and is the supremum of the 

Tss's, which means that the set of tagged-stream-sets is a complete poset. BJ 

Satisfaction of Previous Counterexamples 

As we have just proved, the set of tagged-stream-sets form a chain complete 

partially ordered set (not merely a quasi-ordered set). Also, we have shown how the set 

of tagged-stream-sets is compatible with streams under the map which takes a stream S 

into the singleton set consisting of the tagged-stream whose Data are the same as S, and 

whose tag-sets are empty. Therefore we have satisfied the two generic counterexamples. 

The specific counterexample involved a non-determinate program which had two 

states: produce A's (state 0) and copy input (state 1). Using the history of these states 

as the Choice-sequence attached to each output datum (and since there only need be one 

Arbiter, omitting the Arbiter-name and set brackets from the tag-set), we get the 

following specification of the program: an input of {(A)} gives rise to the output: 

{ {A1), {Ao, Aoo, Aoo1), {Ao, Aoo, Aooo, Aoooo, Aoooo1)} 

whereas an input of {(A , A)} gives rise to the output: 

{ (A1, Au), (Ao, Aoo, Aoo1, Aoo11), (Ao, Aoo, Aooo, Aoooo, Aoooo1, Aoooo11)} 
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The rules for match tassed-streams in one t~ged-stream-set ,with those i,n another make 

it quite clear that the first output is ~ the second. 

Referring back to 'Fli\lre ~.2 now, we ee<tllat Che A'l"'~'s :output streams would 

be 1'-ued as follows: {(2o, 301), (31, 210>}. Let us •dopt a modified Canesian pro41'U' 
. •'.. ,,7 ~ · ;_-:I~",:\~~ '· ~. · • 

rule, to be deta*d in the next ~r, th&t, tu~, <>,f inPlU. ~·'1118 are combined by an 

operator only if their T&gt are Co1'1ittl•t. Then the outpu!~~f ·~ adder would be the 

taued-stream-set {(4o' 601), (61 t 410)}. The stream (5 t 'S'') c.Mot appear at all in,the 

output set bec°'e its first Ol~Jrt would' haw -to W. talP¢ both 0, and , 1. This is 

impoaible sbice it would mean 'that the AriiNfi'i~ lfWc ... 1'ally· exclusive decisions 

at onoe. 

In summation, we. have C()n.Structed a domain for aon•determinate semantics that . ·- ~~>' ~-i·_.>t'·~' 

satisfies all the objections we discovered to the earlier approaches. 
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-6-
Semantics of Non-Determinate DFPL Programs 

Overview 

In this chapter we develop the fixed-point semantics of full DPPL with both the 

determinate and non-determinate primitives. We have shown, in Chapter 5, that the 

domain of Tagged-str•am-Hta is suitable for fixed-point solutions of programs. We must' 

now show that the DPPL operators are continuous on this domain. To do this, we first 

develop some helper functions on tag-sets, then we show how the determinate operators 

are extended to tagged-stream-sets, then we can show that the determinate operators are 

continuous. Next we precisely define the non-determinate A r&i.t•r and prove that' it is 

continuous also. We can therefore deduce that all (recursion free) DPPL. progtamS have 

a well defined behavior no matter what inputs they. re~ive. We conclude with an 

example of a simple fixed-point computation of a non-determinate program containing a 

loop. 

Notation 

The notation used in this chapter is somewhat complicated and thus is outlined here. 

Variables are written out programming style (i.e. multi-letter abbreviations) a8 in earlier 

chapters, but there are more possibilities. Variables consist of a bead (usually an 

abbreviation), which connotes their domain, an optional body followed by an option8I 

tail, which identify the particular variable, and an optional subscript, which identifies 

one of a group of similar variables. Commonly appearing heads are: Ts for a tagged

stteam, TSB for a tagged-stream-Set, Tg for a tag and Tga for a tag-set. The common 

optional bodies are: -a-, -b-, -c- and -d-, where -a- and -b- connote arbitrary distinct 

variables, ·c- and -d- usually connote control and data· inputs respectively, and lack of a 

body usually connotes an output variable. An tail -z usually connotes extension of a 

stream or set, that is Ts~ T11z, Tga i; Tg11z etc. Some examples are: TBB for an output 

tagged-stream-set, Tstk1 for the /th extended data input tagged-stream, Tgs~ for an 

extended tag .. set, and Tga. for an arbitrary tag. 
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In the interest of brevity, we often apply a function to a set of arguments without 

writing it out explicitly. For example, if F:X x Y - Z, we write F(Xs, Ys) (where Xs Si 

X and Ys so Y) instead of {F(Xa, Ya) I <xa, Ya)€ Xs x Ys}.. In general, if a function takes 

an element of some domain as an argument, we may apply that function to a set of such 

arguments implying that the appropriate set of results is denoted. Note that the original 

domain may have sets as elements, in which case we would apply the function to a set of 

such sets. 

Tag-set Functions and their Properties 

In order to define the extensions of the determinate operators (Holdf, Sopf, 

Oswitchf and Iswitchf), we define some helpful auxiliary functions. First of all, we 

define some access functions which allow us to take components of Tagged-streams and 

Tags in a clear manner: 

Datum (Ts) - Ts 1 

Tag-set (Ts)• Tsl 

Arbiter-name• Tag 1 

Choice-sequence • Tag2 

The next function, Consistent-tags, is a predicate which is true of unions of tag-sets 

which are consistent, that is, tag-sets which do not contain Tags with the same Arbiter

name but Choice-sequences which are not prefixes of each other (i.e. Choice-sequences 

which do not form a chain): 

Consistent-tags ( Tgs 1 , ••• , TgsN) • 

V Tga, Tgb € UISN Tgs1 : 

Arbiter-name ( Tga) •Arbiter-name ( Tgb) • 

Choice-sequence ( Tga) ~ Choice~sequence ( Tgb) V 

Choice-sequence ( Tga) ~ Choice-sequence ( Tgb) 
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The last helpful auxiliary function is related to the p~us. lt is the Mffle·ta.gs 

function, which merges the Tag• in a colllistenttq...et\ Unioa«> yield a ta1-set whiob 
.. 

contains, for each A'l"6iew·""1'N, the maximal~~·ffom.ta. input 'l'ag1: 

Merge-ta.ga ( Tga 1 , ••• , Tg1N) • 

{ Tg E UrsN Tg11 I 
V Tga. E U15N Tga1 : 

. 

A r&it1r-w1•H ( T1) • A r&itlr·natM ( Tga,) + 

Clwic«-u~( Tg). c~....-< fM)} 

The M 1rg1-ta.g1 function is used to generate the tq-setl for the outputs of opera-

tors pven theii inp\lt tas-sets. The Couia'-"t·tc&f •.function. is used to assure· that 
, '. ~-. . . ·; t• 

operators do not process any input streams which are incouistent with each other (cf. 
,: ,~ ., 

Chapter S, especially Fipre S.2 and related text). 

Lemma6.1: Both C0Mi1t1wt-ta.g1 and Merge-tags are commutative and associative 
,. ~,, ~ . 

functions. That is, F·t411(Tg1a, F-t11rs(Tg1b, Tgu)):~ ,f~tag,{Tgia, 1:':U•h, Tg1c) • 
~ ' . 

F-ta.g1(Tgac,F-ta.g1(Tg1a, Tgab)) • (where F-tag1 is CO'IUiti,ttt·tsg1 or Merg1,-tag1). 

This follows directly from the definitions.· 

Lemma6.2: If Tg1 K; Tg1z men C0t&1i1t11at-to,.(Tg1, Tgaz) is True. This too follows 

directly from the definitions of"''' and COMi4'1lt-tag1~ 

Lemma6.3: If Coui1t1nt-tag1(Tg11, ••• , Tg11, ••• , Tga_N)is Fain, tllen; foe my I and 

any Tg•s1 such that Tg11 I: Tg1z1, Couiatnt·tag•fTq11, ••• , Tf11#1, ~ •• , Tg1N) is also Falff. 

Expanding the definition of Ctmai1t111t·togs(Tg11, ••• , Tg•r ... , TgaN) we find tha,t it is 

Falte iff: 

3 Tga.,Tgb € UJSN T1•1= 

A rbitar·name ( Tga, J • Amt.r....,.., ( Tlfs}A 

Choic1·Hqu1nc1 ( Tga) ~ Clwic1·1~c1 ( Tgb) /\ 

Choics-Hq'&Unce ( Tgo) .~ Clwice-"'f'"'MI ( Tgb) 
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Now recall the definition of "i;; ": 

Tgs1 c;; Tgsx1 :11 

3Map: Tgs1 - Tgsx1 : 

Iniective (Map)/\ 

V Tg E: Tgs1 : 

Arbiter-name ( Tg) =-Arbiter-name (Map ( Tg) )/\ 

Choice-sequence ( Tg )~Choice-sequence (Map ( Tg)) 

Now if neither the Tga or the Tgb which falsified Co1'sistent-tags(Tgs 1, ••• , Tgs1, .•. , 

TgsN)is an element of Tgs-1, then Consistent-tags(Tgs 1, ••• , Tgax1, ... , TgsN) is trivially 

False also. If, however, either Tga or Tgb is an element of Tgs1 then its image in Tgsz1 

under Map serves as a counterexample to Consiste'lt.t-tags(Tgs 1, ••• , Tgsx1, ... , TgsN) (due 

to the properties of"~"). 18 

Lemma 6.3 assures that the tagged-streams which result from the operators defined 

recursively in the next section are well behaved in the sense that if the recursion is 

terminated by Consistent-ta.gs( ... ) becoming FalH, there are no elements farther down 

some input stream which might contribute to the output, if only they could be reached. 

That is, the recursive definitions do not disallow any realizable behavior. 

Lemma 6.4: If Tgsx1 i;; Tgs1 then Merge-tags(Tgs
1
, ••• , Tgs1, ... , TgaN) c; 

Merge-tags(Tgs 1, ••• , TgsxI' ... , TgsN). Recalling that: 

Merge-tags ( Tgs 1 , ••• , TgsI' ... , TgsN) • 

{ Tg E: UJsN TgsJ I 
VTga E: UJSN TgsJ: 

Arbiter-name ( Tg) •Arbiter-name ( Tga) + 

Choice-sequence ( Tg) i. Choice-sequence ( Tga) } . 

We immediately derive that: 

Merge-tags ( Tgs
1

, ••• , TgsxI' ... , TgsN) • 

f Tgx E TgsrU uJ .. 1 TgsJ I 
V Tga E Tgs1UU;.,.1 TgsJ: 

Arbiter-name ( Tgx) •Arbiter-name ( Tga) • 

Choice-sequence ( Tgx) i. Choice-sequence ( Tga) } 
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Let Mtg• Merge-ta.g1(Tg1 1, ••• , Tgs1, .•. , Tg1N) and Mtgz • Merge-ta,gs(Tgs
1
, ••• , Tgsx1, ... , 

TgaN). To show that Mtg' Mtgz we must consuuct a map Mtmap:Mtg .. Mtgx which 

satisfies the definition of"'" above. Let Tg E Mtg, Tp E Mtpand Tg;-_ Mtmap(Tg). 

Now define Mtma.p as follows, if Tg c T111 where J "I. th~~ T:is • Tg, but if Tg E Tg11 

then Tgz • Map(Tg) ~here Map is the map which makes Tg11 C1'gax1 as above. 
~ ~· ~ - -. ,·; •, ; ·. ' f ' 

Obviously Mtma.p satisfi'8 the second (quutified) part of the definition of "'" since 

both Map. and the identity do, so we only aeed show. that Jttma; is injective. Let Tga " 

Tgb be arbitrary eletMlm of Mtg and let t';U and '1,-.be "tJfC 1Rlaj6ls under Jlf'Ma.p. 

Note that neither Tga ~ Tgb nor Tgb ~ 1'ga ca be·'ttue'~- Of'tlie: definition of Mtg. 

If neither Tg<1. nor Tgb are in Tg11 then Tlds * Tl& amt\'t'ps• TJI sh T,U ti !'jbc since 

Mtm<1.11 is the identity excel;t on Tg1I" Similarly, if bodf't\t4 and· fi'ga are m f'r-1' then 

Tgut' Tgbs because Mt1Mp •Map when restricted to ~1 amt Map is ass\imed injective. 
•. 

·The iAterestiq·caMS'are .. wJ\ea./l'p 4. T1•1 MA;\, 'f11l.-.1.'fft Ql'._1ice-~~ la the first 

cue, TgO. • Tgb ud TffS • M-a.fl(Tga). But bJ the ~~qim. :~~ Mfl.p sJiq~ how 

Tg11 (; Tgax1, we know m.t C ... ~TfCil•-~~~.(TgQ,%). By the . . 

that Tgb" Tgu andhence·dlat.Tgkfft'l'gu. ,~ Mi-.~ ,is ipjective -~_Mtg I: 

Mtgz. la 

Lemma 6.5: If Tga i; Tgu then Merg1-ta,ga(Tga, T~),.- Tgu. Substituting in the 

definition of Merge-tag•, we get: 

Merge-tag• ( Tga, Tg1z) • 

{ Tg E TgsUTga:i: I 
VTga E TgsUTgn: 

Arbiter·M?M ( Tg) •Arbiter-mime ( Tgd )+ 

~koice-aeqtUftet ( Tg ) .;_ Choic1-11qutftef ( Tg<1.) } 

If Tg E Tg1 then 3Tgx E Tgsx: Tg ~ Tgz (because Tg1 i; Tgn) so no elements of Tgs 

contribute themselves to Merg1-tag11(Tg1, Tgss) unless they also are in Tgaz. Therefore 
,. 

Merge-taga(Tgs, Tgs:) • Tgu:. IJ 

Lemm.a 6.6: If Con1i1tnt-taga( Tg1a, Tglb) then Tgsa. C M1rgei-tags( Tgsa, Tgsb), and 

symmetrically, Tgab C Merge-tags(Tgaa, Tgab). 
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Consider all pairs (Tga., Tgb) E Tgaa x Tg1b. If Arbiter-name(Tga)" 

Arbiter-name(Tgb) then both get included in Merg~-"ta.gM.Tta4, rpab). If 

Arbiter-name(Tga) • Arbiter-n1:i'1M(Tgb) then tJW6ne ·mat'il'til• prefiX of the other (and 

one is since the sets are consistent) getl dUGatded''; in' 'the~ · O&llltruction of 

M6'rg1-tag1(Tg1a, Tg1b). Since both Tgl4 anc:1 Tg•b bav.e only one occurrence of each 

"-r~ur·•~· W!=, ~~-~op ~r.JXl~~~~~~:~·P:M',';~c:~r.1>r-ff-~n1 ~:gbWii. 
_Hence each Tga either, i~~ ~,.,,"JiJ!~~_!;:~ff~':;~r,e~:?r>~ Tg~'~f \IVhi~h it is a 

prefix appears. Therefore1 by the definition of 0
'"· we see ·that Tg111' 

M•,.,,.tut*'.T11-.1'g,.. ad sy...mc.By .. ,e;;;;c . • 

. 
Ellien•ion of l>e~rQJbt.ate ,0Pt!1'ton "" , , . , 

~ • , ~' • .,--"-. 'i ,. ..'> ." ,•',r • • ·' : • ' : , ,;J \ ,> 

·. ci~firi.ed as follb~: 

Hold<}(TBI) ,_ { Tsa c HoMc"'< Ta:) )·i 'v·.r~· c's~uc"'<T•~): T~ -tT•b} 
; ~ - ' -~ -~ :-;. --~ . 

WA•,.. Hold.c"' (Ta)• 

· It Do1n·fr~f ~ C:, 1'Mli 'B:otic( Tlf~li¥1.J~:;<;~il6tdc (Ta/)· 
- . --~--~ • ':" ;1"·:""'.,.,~~-'-- ,,:·1'·-\ {..,: 7:;·-- ·~ 

~-' ' 

"nlat is· llofl ~1"1•f1l·the~ of *11.-~:..lh'tfftllli lfrdm 7!n 'Wkh., the addidooal item • . c9\ """• ......-- . . . . . 
"empey;;tQled'C"·a~ totlie'~'aMf',•i:datdllf::tet •'~Nlhiced. to:;.,iminate 

· strict· preflxri. ·But ._ ttn is a!tMiy: ~~~ allli ·'linoe the exteJJliea of "®" 

is triViat, \ff ,aa;sialpllfy tk<4eftdio1r to: .: ' ~; 

H~ce<T11>·f<d,{ }>®T• j 'r,.r .. r,· .,. 
'l' -

:' i;:" ' ·~· : 

Note that since any tq-set exteads the empty tag .. set, the tagaed-sueams in HoltJ.cf(Tu) 

obey the ta1-set extension rule. Note allo that . the on-duded 'Haid fun-ction. here is 
very similar to the Hold~ in Chapter

1
4'. ,_ ... ,·r 

To simplify the definitions of the rem•iniq OPPL operators, we define once and for 

all the completion Op"' of an operator Op. Namely: 
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Where Cs( Ts)• 

II Dotn(Ts)<w Then {Ts} 

Otlterwia• { Tsa I Ta ~ Ts } 

This definition is the obvious· generalization of the one -tiNd'&bOve m; the defmition of 

Bolde"' and is equivalent to the definition '1secf in cl:api~ 4. ;. 

Lemma 6. 7: The completion 0pw. of an isotone operaaor . ~ as .defillod above, is 

continuous on its To.gg1d-1trta• arguments. 
\· 

The single "U0 is well defined because tile codomam· ··of ·o, 11 the set Tagged

at1"ea""'whicb is ~·dlain complete aJid the set ~(.i1{f1 1), •• ~,p~~r:•Nn is :~ected and Of 

cardinality no biger than c.> [Mar-76, Mar-77]. The -proof is th~, ~.obvicnJ.s ,generaliza

tion of the proof of Theorem 4.3, substitutins directed ·~ for chains and the domain 

To.gg1d.;1trtam1 for Cpo-atrn••· 

Now we can define the extended Simple ·Operators. The extended Simple. Operator 
- .. 

Sop,E of N arguments and one parameter F (the function. to be applied), essentially 

takes the Cartesian product of its input tagdd-~-set! and: a)~ the stream 

operator Sop,. to each- element thereof to pt :an : output \~Q..streem .. set, fr~ which 

strict prefiKes are elimiaated (h•fi#-red'IUJtia;ta). Howe~er, ··;Whenever Sop,. finds 

tag-sets which are mucually inconsistent, it ceases .. proces..sig ~t puiicular N -tuple of 

input streams, truncating the output stream.a~rdinPY. "Olil .~ that F is not 

applied to any data which could not coexist under a particular sequence - of non

determinate choices. The precise definitions of Sop,~ and Sop, are: 

Sop,~ ( T881 , ... , TBIN) • 

{ Tao, €Sop/' ( T881 , ... , TaaN) 

V Tsb € &>1J,."'(Taa1 , ••• , T88N): Taa~ Tab} 
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Where SopF( Ts 1 , ... , TsN) • 

If 3ISN: Ts1 •() Then () 

If Consistent-tags (Tag-set (Ts 11
), ••• , Tag-set ( TsN 1 )) Then 

(F(Datum ( Ts1
1), ••• ,Datum ( TsN 1 )), 

Merge-tags (Tag-set ( Tsl 1)' ... 'Tag-set ( TsN I))} e 
SopF( T Ts 1 , ••• , T TsN) 

Otherwise (} 

Next we define the extended Outbound Switch operator. The OswitekPE operator 

takes two arguments: the control tagged-stream-set, Tsse, the data tagged-stream-set, 

Tssd, and one parameter, the port number P. This parameter is necessary since the 

Outbound Switch is an N output operator, and mathematical notation does not directly 

allow such functions. Oswiteh PE essentially applies Oswiteh P to each pair of input 

tagged-streams in the input tagged-stream-sets, and then Prefiz-reduees the resulting 

set. Again, OswitehP stops processing its input streams whenever it finds two tag-sets 

which are inconsistent. The precise definitions of OawitehPE and Oswitehp are: 

OswitehPE( TBBe, T8Bd) • 

{ Tsa E Oswitehp w ( TBBe, Tsad) I V Tsb E OswitekP"' ( Tsse, Tssd): Tsa .f. Tsb} 

Where Oswitehp (Tse, Tsd) • 

If Tse• ( ) V Tsd • ( ) Then ( ) 

If Datum ( Tse 1 ) •PA Consistent-tags (Tag-set ( Tse1 ), Tag-set ( Tsd 1 )) Then 

(Datum ( Tsd 1 ) ,Merge-tags (Tag-set ( Tse 1 ), Tag-set ( Tsd 1 )))@ 

Oswitehp ( T Tse, T Tsd) 

If Datum ( Tse 1 ) "PA Conaistent-tags (Tag-set ( Tse 1 ), Tag-set ( Tsd1
)) Then 

Oswitehp ( T Tse, T Tsd )· 

Otherwise ( ) 

Last we define the extended Inbound Switch operator. The lswitekE operator takes 

N + 2 arguments: the control tagged-stream-set, Tsse, and N + 1 data tagged-stream-sets, 

Tssr Iswitch.E applies !switch to each N + 2-tuple from the Cartesian product of its inputs 

sets. I switch stops when it finds tag-sets which are not consistent, as usual, but note that 

!switch recurs differently than the previous operators; although it always takes "T" of Tse 
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(the control tagged-stream), it only takes "T" of the selected data tagaed-stream, Tsr 

The precise definitions of I1111itt:nf and !switch are: 

I1witchf ( Tl8c, TIB0 , ••• , T11N) • 

{ Tsa E Iruntclt.w(No-tag1, T11c, TBB0 , ... , Tl8N) I 
V Tsb e I1witclt.w(No-tag1, Tssc, Tss0 , ... , THN): Tia~ Tab} 

Where N ~tag•• { } 

Andlawitclt.( Tgs, Tse, T10 , ... , TsN)• 

If Tse• ( ) Then ( ) 

If D<itum(Tsc
1
)•0/\T1

0
• (}Then() 

• • • • • 
If DGtum(Tsc

1
)•N/\TsN•() TA.n() 

If Datum ( T1c
1

) • O /\ Co1"1i1t.1lt-t4gs ( Tg1, Tag-set ( Tac 1), Tag-Ht( Ts0
1
)) Then . 

(Datum ( T1
0

1) ,Mn-ge-tag1 ( Tgi, Tag-ut { f1c 1), Trlg·s#t ( Ts0
1)))@ 

I1witclt.(Merg1-tag1( Tg1, Tag~set( T1c1 ),Tag..:an( T10
1 )), 

T Tsc,T T10 , ... ,T1N) 
I 

• • • • • •· • •· • 
If Datum ( Tsc1 ) • N /\ Con1ilt1nt-tag1 ( Tgs, Tag·Ht( T1c1), Tag-set( TsN 1 )) Then 

(Datum ( TsN1 ) ,M1rge-tag1 ( Tg1, Tag-81t( 7'u1), 'l'lJf·let( TsN1 )) )@ 

Iswitt:h(Merge-tags( Tg1, Tag·ut( Tsc 1 ),Teg•ut(T•N1 )), 

T T~c, Ts0 , ... ,.,. T1N) 

Otherwise () 

Continuity of the Determinate ·Operators 

Theorem.6.1: The extensions of determinate operators, as defined above, are 

continuous functions in all of their tagged-stream-set arguments. 

Let Fw be a function on tagged-streams which is continuous and thus isotone, and 

let{Tu1,Tu2, ... ;T11}beachainwhosesup~isT11. (Altho.u.gh F may be a 

function of several arguments, we are considering continuity in Qlle argument at a time 

so for brevity we elide the others and write onlY:. F(X).) Consider the sequence . of image 

sets: {Fw(TBB1),r(Tu2), ... ,F"'(Tsa)}; note thtlt Uris· is not the extension of Fw as above, 

just the normal application of a function to a set of arguments. If fTaK, TsK+t' ... , Ts}, 
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where Ts 1 E Tss1, is a chain whose supremum is Ts, then {F"'(TsK),F"'(TsK+i>• ... , 

F"'(Ts)} is a chain whose supremum is F"'(Ts). (We start the chain with K instead of 1 

because the cardinality I Tss1 I is isotone in I and hence not all possible chains start in 

Tss1.) But, although F"'(Ts1) E F"'(Tss1), it is not necessarily the case that F"'(Ts1) E 

FE(Tss1) because FE(Tss1) is the Prefix-reduction of F"'(Tssr>· However, if F"'(Ts1 ) E 

FE(Tss). then F"'(Ts1+1) E FE(Tss1+
1
). because F"'(Ts1 ) E ,FE(Tss1) means that for all 

F"'(Tsa) E FE(Tss): F"'(Ts1 ) ~ F"'(Tsa) and F"'(Tsa1 ) ~F"'(TsJ). But then Ts1 <If:. Ts1 +1 

and Tsa1 -E TsaJ+I taken together imply that F"'(Ts)~F"'(Ts1+ 1 ) and that F"'(Tsa1 ) ~ 

F"'(TsaJ+i>· Thus F61(Ts1+ 1 )~F"'(Tsa1+ 1 ) and F"'(Tsa1+1)-tF"'(Ts1+1) by Lemma 4.1. 

Therefore, every chain of Fw(Tsr> (an element of F"'(Tss1)) has a closed-above subchain 

Fw(Ts 1 ~ 1) (an element of FE(Tss 1~ 1)) which is disjoint from all other such chains and 

thereby establishes the necessary w + 1 sequence of injections from FE(TssK) to 

FE(TssK+i> and on to FE(Tss). This proves that {FE(Tss 1),FE(Tss2), ... ,FE(Tss)} is a 

' chain and FE(Tss) is its supremum. BJ 

Theorem6.2: The extended operator HoldE is continuous. 

The continuity of HoldE follows easily from Theorem 6.1; we merely observe that 

"@" is isotone on streams. Note that our results in Chapter 4 concerning streams carry 

over to tagged-streams, since the pairs <Datum, Tag-set) make perfectly good stream 

elements, that is, the codomain of a stream function may be any set with an equality 

relation. The only care we must take is to show that our resultant tagged-streams obey 

the tag-set extension rule. It is clear that a tagged-stream whose first element has an 

empty tag-set obeys the tag-set extension rule if the remainder of the tagged-stream 

obeys the rule, which it does by assumption, being the input. 18] 

Theorem6.3: The extended operator SopE is continuous in all of its arguments. 

To show that SopE is c~ntinuous on tagged-stream-sets, we first note that SopE is an 

extension of Sop"', which obeys the precondition of Theorem 6.1, because Sop"' is the 

continuous completion of Sop (by Lemma 6.7) if Sop is isotone. So we need only prove 

that Sop is isotone on tagged-streams. We prove that Sop is isotone in its I-th (Data

path) argument by showing that if Ts1 ~ Tsx1 then SopF(Ts 1, ... , Ts1, ... , TsN) ~ 

SopF(Ts
1

, ••• , Tsx1, ... , TsN) . The proof proceeds by induction on the finite ordinal 

Dom(Tsx
1

) • N; note that Tsx
1 
= () iff Dom(Tsx

1
) • { }, and that SopF(Tsl' ... , ( ), ... , 
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TsN) • ()for any 1 SIS N. Substituting T1Jz1 in the definition of SopF(Ts,, ... , Ts1, ... , 

TaN)~ we get: 

SopF( Ts 1 , Ts:t1 , TtN) • 

If Taz1•0 Then () 

If 3J,,.I: TaJ• ()Then () 

If CoT&1iltent-ttlg1( Tag-ut( Ts
1

1), Ta.g-stt ( Ts:t1 ), Ta.g·set( TsN 1 )) Thfln 

(F(Dat11t11 (Ta/) ,Dfltu• ( Tsz1) ,DGtu1J1( TsN1)), 

Merg1·tGgB ( Ta1·11t( Ts, 1)' Tag-Ht( Tazr' ), Ta.g-ut ( T•N'))) ® 

Sop,.( 'T Ts1 , 'T Ta:t1 ,'r TsN) 

Otherwise ( ) 

We assume in the steps that follow that Vl SIS N:Ts1 "( ),since otherwise Sop,.(T11, ••• , 

Ta1, .•. , TaN) • <>. The bue step is: Tu1 • 0 implies T11 •()so that Sop,.(Ts 1, ... , Ts1, 

... ,TaN) • () • Sop,(T1 1, ... ,T1zr .... T1N) The~nstepis:kt.00..(Taz1)•N+ 
1. If Ts1 •(),then Sop,.(Ta 1, ... , T•r ... , T1N) •(),which is the prefix of any tagged-

stream. If Ts1 " (),then Ta/• Tamr' and 'TTa1 ~ 'TTa:t1• Now if Tag-set(Ta/) is not 

consistent with some TGg-lft(Ta/), then Sop,.(Ts 1, ... , Tar ... , T1N) • ( ), which is the 

prefix of any tagged-stream. Now if Ta.g-lft(Ts1
1) is consistent ~th all Ta.g-aet(Ta/): 

Sop,.( Tai, ... , T11 , ... , TaN) • 

(F(.Dcitum( Tsr' ), ... ,Datum(Tsr'), ... ,Dcitvm( T8N1 
)), 

Mrrg•-tag1( Ta.g-lft ( Ta 1
1), ••• , Ta.g-aet ( Ta1

1), ••• , Tag-ut ( TsN 1 ))) ® 

Sop,.( 'T T1
1

, ... ,.,. Ts1 , ... , 'T TaN) 

Sop,.( Ta1 , ... , Ta:t1 , ... , TsN)• 

(F(.Datum( Ts1
1), ... ,.Datum( Ts/), ... ,Datum( TsN1)), 

Mrrge-tags ( Ta.g-Ht( Ts1
1), ... , Tag-set( Ts/), ... , Tag-"t ( TsN 1))) ® 

Sop,.( 1' Ts 1 , ... , 'T Tsz1 , ... , 'T TsN) 

Sop,.( Ts1 , ... , Tsz1 , ... , TsN) • 

( F (Datum ( Ts1
1 ), ••• ,Datum ( Ts1

1), ••• ,Datum( TsN1 )), 

Merge-tags (Tag-set ( Ts 1
1), ••• , Tag-set ( Ts1

1), ... , Tag-set ( TsN1))) ® 

Sop,.( 'T Ts 1 , ... , 'T Tsfl:1 , ... , 'T TsN) 
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Hence, by the isotonicity of"@" we deduce that SopF(Ts 1, ••• , Ts1, ..• , TsN) :!S SopF(Ts 1, 

... , TszI' ... , TsN) given the inductive hypothesis, that SopF(TTs 1, ••• ,TTs1, .,.,TTsN)~ 

SopF(TTs 1, ••• ,TTsz1, ... ,TTsN). This is the inductive hypothesis becauseTTsz1 ~TTs1 
and Dom(TTsz1) • N. 

Next we must show that the tagged-stream which results is indeed a proper one 

which obeys the tag-set extension rule. To do this we apply Lemma 6.4. Assume J < K, 

and let TsJ and T.X be the J-th and K-th elements in the tagged-stream output of 

SopF(Tsl' ... , Ts1, •.. , TsN). Also assume that all its inputs Ts1 obey the tag-set extension 

rule. By unwinding the recursive definition of SopF we see that Tag-set(TsJ) • 

MeTge-tags(Tag-set(Ts/), ... , Tag-set(TsN1)) and the same for K. Thus we c~ easily 

see that Ts obeys the tag-set extension rule - refer to the above equations for 

Tag-set(TsJ) and Tag-set(TsK) and note that the inputs Ts1 obey the tag-set extension 

rule (Tag-set(Ts/) ~ Tag-set(Ts/) for all I). Therefore since each application of Sop 

obeys the rule we conclude that Sop( obeys the tag-set eXtension rule as well as being 

isotone. 181 

Theorem 6.4: The extended operator Oswitck( is continuous in both of its arguments. 

Again we prove this by first proving that Oswitch is isotone on tagged-streams, then 

appealing to Lemma 6.7 and Theorem 6.1. We prove that Oswitchp is isotone in its first 

argument by showing that if Tse~ Tscz then Oswitchp(Tsc, Tsd) ~ Oswitchp(Tscz, Tsd). 

The proof again proceeds by induction on the finite ordinal Dom(Tscd • N; note that 

Tscz • ( ) iff Dom(Tscz) - { } and that Oswitchp(( ), Tsd)- ( ) - Oswitchp(Tsc, ( )). Substi

tuting Ts.cz in the definition of OswitchP, we get: 

Oswitch P ( Tscz, Tsd) • 

If Tscz • ( ) V Tsd - ( ) Then ( ) 

If Datum ( Tsc:r:1 ) - PA Comisunt-ttJgs ( Tag-1et ( Tscz1 ) , Tag-set ( Tsd 1 ) ) Then 

(Datum( Tsd 1 ),Merge-tags( Tag-set( Tsc:r:1 ), Tag-Bet( Tsd})))@ 

OswitckP ( T Tscz, T Tsd) 

If Datum ( Tscx1 ) "PA Consiste11.t-tag1 (Tag-set ( Tscx1 ), Tag-set ( Tsd 1)) Then 

Oswitchp ( T Tscz, T Tsd) 

Otherwise ( ) 
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We assume in the steps that follow that Tad" ( ), since for any Tac and Tsc:r:, 

Oawitchp(Tsc, ( )) • { ) • Oawitchp(Tac:r:,, ( )). The J>aae step is: Tsc:r: • ( ) implies fsc • ( ) 

&o that Omtchp(Tsc, Tad)• OnoitcJ&P(( ), Tad)• 08'fl1itcl&p(Tac:r:, Tad}. The inductlOft 

step is: let Dom(Tac:r:) • N + 1. If Tac• ( ), then Onlitchp(X'ac, Tad)• ( ), which is the 

prefix of any tage4-atteam. If 2;c" ( >. tJleD,.·Tt,_..• ·'l'to:r1 attcf:.::'fTc10 ~ 'f'!Tte:r:. Now if 

Te1g-m<Tsc 1) ia DOt COlilittttm·with·Ttlg-ot(2'141); tll4ftt~OlnfttaA-jt(7'10,2'14)•( ), which is 

the prefix of any taaed-strftm.. But if f'o,:.td(f''81l ia coasistent ·with Tcif-Ht(Tad 1), 

and DGtu•(7'ac1)tiP then: 

O.Witchp ( Tac:r:, Tad)• Onrifol&.p ( 1' Tact:, -r Tad) 

' . 
Hence, sin~ .Do•(1'Tac:r:) • N and 'f'Tac ~ 'TT'", we may assume the inducdon hypothe-

sis, th•t Oa111itcApfrTac, 'f'Tad) ~ OnoitchpfrT~~' ~7'.at ' tf howeve~ Ta~-8 •. t(Tac1) is. 

consistent with Tcig-Ht(Tad 1), and Delt~;..d•sc 1)·~ P ibeil:: 
Onlitcl&P (Tac, Tad)• 

<DGtum( T1a1
) ,Merge-tflf•( Ta.g-Ht( Tac1 ), TG,;.aet( T1a1·'>n <t> 

08'fl1itch p ( 'f' Tat: , ,,. Tad ) 

Oa111itchp ( Tsc:r:, Tad)• 

(Dcitum( Tld1 ),M1rge-tcig1( Tag-Bit( Taest), Tag-ut( TU1)) )@ 

01Witchp(1' T1c:r:,'f' Tld) 

So 01witchp ( Tac:r:, 'P1d) • 

(Datum( Tad1 ),Merg1-taga( Tag-8ft( Tac 1 ), Tcig-11t( Tsd1 )))@ 

OtruJitchp('T Tsc:r:,T T1d) 

Hence, by isotonicity of"@" we deduce tbM-OnritcJ&p{Tac,Td)~omtcilp(T1c:r:, Tad) 

given the induction h~ that OttriffAp(1T~ irl'td} ~:OwttDA:p(1rT1~, 'f'Tsd). 

Now we must show that Oawitcn obeys the tag-set extension· rule. Again we apply 

Lemma 6.4, this. time to the taged-stream output of 01111it~kp. Assume J.out S Kout, 

and let TsJ0
'" and TsK"" be the Jout-th and Kout-th elements of Oswitchp(Tsc, Tsd). 

Note however that TsK""t does not necessarily derive from TacKotitind Tsd.K'"' because 

the recursion schema skips elements of the input tagged-stream (i.e. whene11er 
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• : ' - . ·'¥ 

~~ '#" 

·1-~''' ~ 
' .· ·~ ' 

Dtitum(Tacl-)" P). But Tag-a.t(TaK'"') • M•rg1-ttig1(Tag-BBt(TacKi"), Tag-s~~Mf:;)) 
for sl>me'Kin ?! K&at and similaTly for J0ut:~J'i1&. 1~·me sane arpmenl\ve used 

to show tllat ·the outplit of Sop', obeyj the :~set 1extenn0ti titfe·;.shows that the· output of 

Orioitch.P d0es. Therefore \Ye cohciude''that ·011'ick1>f'~'ihe tag-set extension rule 
u well as being·iMtone. II >'. ··· : . 

The0t·~a6.~: ~4~ °"rator.f.,n~~,~.c~1'R.,.,~•¥lof its .• ~ts (by 

Lemma 6.7 and Theorem 6.1). 

The pmof that ·latfi~ is isoto~ is . ...,. Qitfi-. ·fhwt . !<e ~ilow that lMDitclt. is 

isotone ,on taaed-streama.-. .tbea tile. ilQf.O~ ;'1#,r"~t_,.f, .fi>PMra difectly (~ Theo

r.em 6.1. We prwnnbat1l•vitoA is isotono ·ia ~t1)a T•1 -~ by .-wiaa dlat if for 

all OSISN, Ta1 ~Tu1, then lmtc/t,(Tg1,Tac.rt~.~·•~tjl·.-.~1..nvn(mg•i~Tu0, ... , 

Ts::N) for any Tga € Tag·ut. This time.th~,proof .woceedl _,Y '"ul~l)~ous hlduction on 
·, -.• • -, "'· ~· • \ "· ·~ .• ·.1: -' ~ "t~ t"' .i' \. ' .· - "J •• ;t' 

the finite. or.dipal& .Qotft(T•~r>,• iV1;, n~te ·~.~~<.T~iJ.-,. {J jl.f 7'~1 • ( ), and that 

lswitch(Tgs, < ), "Xa0, : •. ~.·f~11> ~ t>.,.bu~ ~~t;it )~~ot'.~~~~Y..,~~ ~t lawitcll(Tg1, T10, 

... , ( ), ... , T1N) • (. ). Substitutiq Ts::1 (for al~[)~u;to tbe;~~on of IIWitcA we pt: 
,, , - l - .· .. •.• . 

_I awitch. ( Tgs, Tic, Taz0 , ••• , Ts::N) • 

If Tac•<) The.11 ( ~. · .. 

If Dtitum( 7'ac1 )_•0/\ Taz0 • ()Then() 

• • • • • 

If Dtitum ( T1e 1) •NI\ TnN • ( ) TAM ( ) 

If Datum( T1c1 )•O/\ Co-a1im.Wttif1(T1~~1.t,,'l'lo 1;)~T•an(-T,.0 1 )) TINn 

< Datwm( Tn0 •) .,J/-.rg•·.00t('Tg.i,2'opifU"*1} ifttf.o.t.,,ezt•0
1 >l>@ 

I switcl& (~·tafl·f Tp, ,.4f~1.t( !'11'·~ t Fag .. tC.~04 )'), 
-r TBCt'f' Tn0 , ••• ,TezN) . 

• • • • • • • • • 

If Dtitum( Tse_,) •N /\ qomiau~t~tGg• (l'g•, ~ag-ut( T1e1), Tjlf·s.t(7'1:rN1 )) T!Nn 
. " . . i ~ • ~ ' . ~ « , • ' 

(.Df&tQJ(T~N1 ),!rllfge'-ta.g1(7',ftl, Ta.g·#t(Tac1 ),7'4fl·•at( TszN1)))@ 
• < ' • • • • •• ' : :. - •• ~ -· • ~ • • ~- ,, - '. • 

Iawitcl&(Jl~11-~( i:111, ff!P·~(T•$11),Ta.g-Nt.( '!'~11 1 l), 
,. _. "·' ' . ' ,.·, 

-r Tac, Tn
0

, ••• ,.,. TszN) 

Otherwiae ( ) 
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We.assume in the steps that follow that Tse fl' {},since for any Ts1, Iawit<;h(fg1, ( }, Ts0, 

... , T,_1N) • ( ). The base step is: for ail OSI SN, Tn,J·· {)which implies for all OS I' N, 

T11 • ( ) so thatlawitch(Tga, Tse, Ts0, ••• , Ts
11

) ~ lawitcA(Tga, Tse, ( ), ... , ( )) • 

Iawitch(Tga, Tac, Taz0, ••• , TazN). The induction step is; let Ios-rs~m(Ta:zJ) • N + 1. 

There are several cases to consider depending on whether .Datum(T.te1
) •I or not, 

whether Ta 1 • ( > or not, 'and whe~er the ta~seti are ~ or rtOt; 

If .DCltum(Tac1) • l and Ta1 • (), then IawitaMTg1, Tac, Ta0, ... , Tar,)•() which is 

the prefix of any taged-stream. If Dtttt&M(Tac1)•I·aftd. J\•i""~». then T•r1 
• Ta:r/ and 

1'Ta1~1'T•r Now if Tg;, Tag·••t(Tu1)•1id r., ... .c<T•t1~ are iiot mutually consistent, 

then Inoiuh(Tg1, Tac, Ta0, ••• ,Ty•<), wbicll ia the pr.efb,ohmy tailed-streain~ But if 

they are mutually consistent, then:. 

IB'Witch ( Tga, Tac, Ts0 , ••. , Ti1 , .•. , TaN) • 

( D4tum (Ta 1
1 ) , M wge-ta.ga ( Tga, Ta,g·8ft ( Tac1), T~·Bft (Ts 1

1 ) ) ) @ 

ll'Witch (Merge-ta.ga ( Tga, TGg·Ht ( Tsc1), 'l'a.g-nt l 181
1)), 

1' Tac,Ta0 , ... ,1' Ta1 , ••. ,T1N) 

I ll'Witclt. ( Tga, Tac, Tu0 , ... , Taz1 , •.• , TnN) • 

(Datum ( Taz1
1 ) ,Mrrge-ta.g• ( Tg1, Tag:.ut ( T.te1), TGg-ut ( Tiz/)))@ 

I rwitcla ( M wg1-ta.g• ( Tga' Ta.g-Bft ( Tae1)' Tag-ut ( Tnl 1 ) ) ' 

1' Tse, T10 , ••• , T Tn19 ••• , TaN) 

I switch ( Tga, Tac, Tas0 , ••• , Ta:zt, •.. , TnN) • 

(Datum( Ta1
1 ),Mrrge-taga(Tgt, Ta.g-ut( T~ 1 ),Ta,g-set( '1'•1

1)))@ 

IB'Witc1'(Mrrg1-ta..-( Tga, Tag-aet(Tec1l, l'~·Nt(T~/ ),:},, 

T Tse, Ts0 , ••. , 1' Taz1 , ... , TaN) 

Hence, by ilotonicity of "@" we conclude that IswitcM.Tga, Tac, Ts0 , .••• Tsl' ... , Ts.v> ~ 

Iswitch.(Tga, Tse, Ts:i0, .•. , Ts~1, .• . , TnN) given the induction hypothesis, that 

Iawitch(Tgam, -rTac, Ts0, ••• , -rTa1, ... , TaN) ~ I1witc1'(Tg.,,,.., -rTac, Ts0, • .• , -rTaz1, .. . , TsN) 

where Tgam • Merge-t4g1( ... ). In any case, we are reducing IosJs~m(Ts:i:J), so the 

induction is well founded. 

Proving that Iswitch is isotone in its first argument (Tse) is a relatively straightfor

ward induction (similar to that of Sop) and is therefore omitted. 
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The proof that !switch obeys the tag-set extension rule is more complicated than 

any of the previous such proofs. The reason for this is that the recursion schema 

includes an extra variable Tgs, which accumulates the tag-sets generated by the previous 

recursion levels. 

Now let Ts=- !switch({}, Ts 0, ... , TsN) and consider Ts1 . Upon unwinding the 

recursion, we see that Tag-set( Ts)== Merge-tags(Merge-tags(. .. , Tag-set(Tsc1 - 1), 

Tag-set( Ts Pa. Qa.)), Tag-set(Tsc1 ), Tag-set(TsPbQb)) (assuming TsJ even exists). Now by 

associativity and commutativity of Merge-tags, we see that Tag-set( Ts;>• 

Merge-tags(Tag-set(Tsc1), Tag-set(TscJ- 1), ••• , Tag-set(TsPa. Qa.), Tag-set(Tsp,,Qb), ... ) • 

Merge-tags(Merge-tags(Tag-set(Tsc1 ), Tag-set(Tsc1 - 1 ), ••• ), Tag-set(Ts Pa. Qa.), 

Tag-set(TsP,,Qb), ... ) But by since Tse obeys the tag-set extension rule, Tag-S1t(Tsc1 - 1) r; 

Tag-set(Tsc1) etc., thus by Lemma 6.5 we get Tag-set(Ts'l • Merge-tags(Tag-set(Tsc1), 

Tag-set(TsPa.Qa.), Tag-set(TsPbQb), ... ). Now we apply associativity and commutativity of 

Merge-tags again in order to group together the Tss with the same subscript (i.e. to group 

together the data inputs}' to get Merge-tags(Tag-set(TscJ),Merge-tags(Tag-set(Ts0
1), ••. ), 

... ,Merge-tags(Tag-set(TsN1), ••• )). (Although we show Ts/ for all I, it must be 

understood that the whole M-tags subexpression is present iff 3M S J:I € Datum(TscM)). 

Now by N applications of Lemma 6.5, we derive that Tag-set(Ts) • 

Merge~tags(Tag-set(Tsc1), Tag-set(Ts
0 

Cou1't(Tac,O,J>), ... , Tag-set(TsN Cout1t(T•c,N,J))) where 

Count(Tsc,I,J) is the number of times the value I appears in the set {Datum(TscM) I M 

SJ}. By the same argument, we also derive that Tag-set(Tsx> • 

M erge-tags(Tag-set(TscK), Tag-set(Ts
0 
Cou"t(Tac,O,K>), .. . , Tag-set(TsN Cou"t(Tac,N,K))) (again 

assuming that Tsx even exists). Since Tse and all Ts1 obey the tag-set extension rule, we 

see that if K ~ J then Tag-set(Tsc1 ) r; Tag-set(TscK) and Tag-set(Ts
1 
Cot"'t(Tac,I.J>) r; 

Tag-set(Ts/0u"t(Tac,I.K>) for all IS N (since Count(Tsc,I,J) S Count(Tsc,I,K) for all IS 

N). Thus by N + 1 applications of Lemma 6.4, we conclude that Tag-Btt(Ts1 , 

Tag-set(TsK)) so that Ts' obeys the tag-set extension rule too. Therefore we·have proved 

that I switch~ obeys the tag-set extension rule as well as being isotone. 8J 

Definition of Non-determinate Primitive Arbiter 

In order to define the Arbiter operator, we first define an auxiliary function 

Extend-tags which takes two arguments Choice and Tgs, and a parameter A. Extend-tags 
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appeJ!dS the number Claoice on to the tail end of the q1aoic~~••qutt&ce in the Te&g. T1 (in 

2"ge), whose Arbitw-•a11U is A. Its precil,e definition is: 

Ezt•nd-ta.g• A ( Clt.O'iet ' Tg1) -

{TgE Tg• I Arbitw-MtM(Tg),.A}U 

{ <A, Cloice-uqunu < T,)@ Ch.oiceJ. I Tg E .. T1• 1\.~m~r-Mnw ( 1'g >·A } . 
' . . ' ' •, I ' ' ~ . 

W,,.,..S@X•Ss 

And .00.(S:s}•.0..'.(8)+ t 

~ 

The Arbiter A opetator takes N + 1 a,rpme&ts which .¥e '!lle~"."~~eaui"."s~ts, 7'11r and 

one parameter A which is the Arbi,.,;-u •• (we omit-~ r~fmnces. to A in the 
. • - ' ; ~ . .. ",• ,. ' . - ~ -.>· :. " ;_. . . '.. ' . . '. . '· -. . 

explanation). The Arnt.r,. applies ArlttMr,,_.. to each N + l·t¥1>,le from the ~rtesian 
''"'. ; ·.' • j ') ' ,• : 1 ' ,. ·" - ., '; ~~ .· 

product of the TH'S oad Pref iz-rld1'Cl8 the re,JJ}t_. ..t~· A . takes N + 1 . taged-

streams and ~erses thc;in all possible ways •. produclq a .. Pr~l~retluced set. of -tau~d-
.. : . . ; . : -. ; ~: '. . .~ . -. . . .. ~:' . . ":.:. .,_ 

streams u its .remt. It does this by using Ar~~•f ~~. ~·.~~ -~ ~-N and_ taJ.dn1 the 
union of .. their results. Each ArbwWrgc J.J uses ArlnMrp .f ~~~Y to. merJe th~ tail of 

• , ' -- ,_J .,. • -~ "' .. 

the Ith taged;,stream with all die rest. and a~hes thf:. head. of the /th taped-stream to 
,. . - ·~ , : ' ·~- : -. ' • -, •-.(~ • • ·: .l '. ~' - ,:,~ 

each taned-stream in the resulting set. The. N ~ ·wl\i!h ,r~ylt at e•ch tecursiQn level 
. - . . . i·.· -.. ·. _,·. ', ~~?·~~,,. ~ ,· ... 

are unite~ to form a single set which is th~. overall. r,esult. of th.fl~ level. A r,,_.,,.g, A and 

ArhHrg•,.J bo~ t&ke .an.addi~oaal .arpment, T~~ (.buti.\llr.~~"~'0 ~th ?ne .T4.j whose 

A rbit1r-nc11•1 is A and whose Cl&oic•··~· ii empty), wllic1' recoi:-ds the arbitrary 
- - ' '•. . ( . .'.:,"'·,~':~~ .,_):/'':· _.' . ' . 

choice.s made so far in the. recunion. The pr~iae definitiQm of Arbiter A, A rhMrge A 

and Arbm1rg1 AJ are: 

Arbiter A( Tsa0 , ... ,T11N)• 

{ Taa e: U Arbnurgt A411 (Tg1A ,T110 , ••• , 7'nN) 

't/ Tab E u Ar,,_,,,.,, A"' ( Tg•A' T••o' ... ,'l'••N): TN"' :1'ab.} 

Where Tg1 A • .{ (A , ( ) ) } 

AndArlnnergeA ( Tgs, T10 , ... , TsN) • 

{ Tsa £ UrsN Arln.Nrg1AJ( Tg•, T10 , ••• , TiN) 

't/ Tsb E U1~N Arhur11 A.I (Tr•, Ta0 , ••• , f'•w>: T"s ~Tsb} 
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AndArbmeTge .u< Tg1, Ts0 , ••. , TsN) • 

If Ts
1

• ()Then { ()} 

If Comiltent·tag• ( Ez;te11.d.-tag1 A (I, Tgs), Tag-set (Ta 1
1 ) ) Then 

{(Datum( Ts/), Tgaz)@ Ts I 
Ts€ Arbmerge A ( Tg1z;, T10 , ... , T Tai, ... , TaN)/\. 

Tg1z• Merg.,.ta,g1(E:&te11,d-ta.gs A (I,, Tga), Ttlfl"'&t( Ta/))} 

Otherwia• { ( ) } 

The fact that Arbme~ A 111 is continuous on its taged-stieam arguments, even though itl 

result is a tagged~stream-set, will be made cle~ib,-Lemma· 6.10. Note that the uses of . 

A rbmerge A 111 in the definition of Arbiter A make use of out functlon-of-argument-seta 

convention only with respect to the TB11: althoulh Tga,t is a set, .Ar&merg1A'"' wants a 
... :·. 

such a set as its first argument. 

Continuity of the Non-determinate Arbiter 

To prove that .A.,-IKUr A is iaocone, we first'l>rove '.~that Arbwwrge A is ilotone in its 

tagged-atream·arpmenta~' Nof.e:that tho outpUt aomain·il.dle'ddlihd!l'ef T&gpd-atream

lfti While tire input tfOrnain is that·Of T«gg~( ·S"Jilee tliey v.,~both poets lfowever, 

isotonicity is well defined. First, howeter, ·we prb'Ye- :allOthet: handy· lemma about 

taa-sets. 

From the definition of Ezt1nd-ta.g1 we see that an element Tgz of Ezt1nd.-ttJ11A(C, 

Tga) is either already an element of.'fga Cit Arbitlr-1'~m~(1'ga:)9'A)·or it derives from 

the element Tga in Tga su~h that Arbit1r•M19U(Tga) • Arb1ter-nam1(Tgz) and 

Choice-lfquence('l'g) ~ Choi~•-•equence(Tgz) ht Arbit~-~me(Tg,z) •A). fl 

Lemma6.9: If VIS N: Ta1 ~ Tsz1 then .4~1;..(Tg1;2t10, ..• , TtN) ~ Ar1"'Hrg• A(Tga, 

Tsz0, ••• , Tsz.v>· 

To show that this is true, we need ap injection from Ar~ergeA(Tg8, T•0, .... 'l'1N) to 

ArbmergeA(Tga, TB:r;0 , ... , T8:&N) su_ch th~t oeach eleme~t of the first is a prefix ("~") of 

an element of the second. Since Ts1 ~ Tsz;1 for all ! SN, we see that T~r' •Ta/ 
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(assuming the non-trivial case Dom(Ta1)" { }). Upon substit1;1W.g Tsz1 for T11 in the 

definitions of Arbt1Hrg1 A and Arbm1rg1 AJ we get: 

Arbmerge A ( Tga, Taz0 , ••• , TezN) • 

{Tia E UrsN Arhurg1AJ(Tg•,Taz0 , ••• ,TazN) 

VT1b c UrsN ,.,......,.,.AJ(f'11;T•o•·~·.,T1Cithl'•1'Te&} 

And Arlmut-g1 AJ ( Tg1, Taz0 , ••• , TazN) • 

If T1z1 • () Tlaen { ()} 

If Cot&IWtnt·tGg1(Estnd·tag1A(I ,Tga),Tq,g·m(T~/)) Then 

{ (.0.t1im ( T11
1 ), Tgaz) ® Taz I 

Taz E ArbmlrgtA (Tgn, T1~0 , ••• ,.,. Tn1 , •.. ,TazN)A 

Tgaz • M 1rg1-tag~ ( E•»tcg• A (I, Tg•) , TIJl!B~t ( Ta1
1 

) ) } 

OtMrwN.e { { ) } 

Now consider a stream Tia. in Arbmerg• A(Tg1_, 7:'.ot ... , t•N)' &lld ~onsider its first 
. ,,.. . .· ·,:-l:- ~ .... ~.~ ~d· ~. '.·. _ <: . ·. . .· . . r I 

element Taa.1• Clearly, T1t1 E Ar0.1rg•.u(Tg1, T10, ~ •• , T1N) for some I Tsa • 

<.DGttl1n(T1/),Tg1~), aad TT•c A1!..,,.,...t(~ftl!J91!t0, .... ,:'F2';1r,.:••T•_;,,wllere. Tgaz• 

M1r,1-tGg1{E~Gft.,.'1,T~, r_, .. .,l(T1/)).· Prot11tbif,1"• ~~hlde··~at Tia may 

be ~acte~ by ita 4"iaioa:•N•&bO:f ·~~'.' .l.•;;,~,ll,* Det(T1•). The 

same araci. may be applied to lhe elaboracion of: 

Arbmerge A ( Tg1 '· Taz0 , ••• , TazN) • 

{ Taa.. E UrsN Ar~• AJ ( Tg1, Taz0 , ... , TuN:) 

V Tab E UrsN Arbm1rg1AJ(Tg1, T1z0 , ••• , TnN): Taa.-i Tab} 

This will give rise to a set of one or more streams sinpe the recursion can p~oceed ·at 

least as f~r as before (because Ts1~ Tsz1 for all!): I~, we pick an arbitrary S!re~ Tau: 

from this se~ we easily see that Tia~ Tsu since the oracle J • that generates Tia 
, ' . ~ ' " , . . 

generates a prefix of Tau,. and the elements of that prefix are equal to the correspond

ing elements of Taa since thole eloments derive ft:om the T•1 <preffHs of the Tszr 

Furthermore, if Tab" Tao is in ArbtMrge A.(Tg1, Ta0, ... , T1N) the Tahir .in :A.rbturg• A(Tgs, 

Tsz0, ••• , TazN) of which it is a prefix must not equal 7'MZ by Lemma 4.1. Thus we have 

established an injection from Arbm1rg1A(Tg1, 2'10, ... ; T1N) toArbmerge._.(Tgs, Tsz0, ... , 

TszN) such that each element of the domain is a · pre{ix of its image. Therefore, 

Arbmerge A(Tg1, Ts0, ••• , TsN)~ Ar""'-rge i7'g;, T1z
0

, ••• , Tas~).:· 
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Each stream in Arbmerge iTgs, Ts
0

, ••• , TsN) obeys the tag-set extension rule. This 

follows easily from Lemmas 6.6 and 6.8. 

The result of all this is that A rbmerge A is indeed isotone in its tagged-stream 

arguments and each element of its output prefix-reduced tagged-stream-set is a proper 

tagged-stream. 18 

Lemma6.10: The completion Arbmerge/1 of ArbmergeA is continuous in its tagged

stream arguments Ts!" 

The fact that the output of A rbmerge A is a tagged-stream-set does not upset the 

continuity result of Lemma 6. 7. All that is required is that the codomain is w directed 

set complete, which it is since it is w chain complete. 

Now we can state and prove the key result of this chapter: the theorem that 

completes the basis for a denotational semantics of non-d:eterminate data flow programs. 

It is. principally for this theorem that the chain complete poset of Tagged-strea,1m.-Hts was 

developed in the last chapter. 

Theorem 6.6: The non-determinate Arbiter operator is continuous in each of its 

(tagged-stream-set) arguments. 

The proof of this is similar to the proof of Theorem 6.1. First, to shorten the text of 

the proof, we abbreviate ArbmergeA(Ts0, ... , Tsp, ... , TsN) as Amp(TsP) and 

Arbiter iTss0, ... , TssP, ... , TssN) as Ap(TssP), where the P-th argument is the one of 

interest. (During the rest of the proof, Ts1 and Tss1 will refer to an element of the 

respective chain, not to the I-th argument of Arbmerge A or Arbiter A' unless otherwise 

stated or implied by appearance as an explicit argument.) Now, by Lemma 6.10 we 

know that Amp"' is continuous and thus isotone. Let {Tss1, Tss2, .•• ,TBS} be a chain 

whose supremum is TBS, and consider the sequence of image sets {Amp"'(TSB1), 

Amp"'(Tss2), ••• ,Amp"'(Tss)}. Note that this is not the extension of Amp"', just the 

application of a function to a set of arguments. Now if {TsK, TsK+•' ... ,Ts} (where Ts1 
E TBB1) is a chain whose supremum is Ts, then {Amp"'(TsK),Amp"'(Tsx+i>• ... , 

Amp"'(Ts)} is a chain whose supremum is Amp"'(Ts), by Lemma 6.10. We wish to 

establish an w + 1 sequence of injections from Ap(Tssx> to Ap(TssK+i> and on to 

Ap(Tss) which demonstrates that they form a chain. Here we must depart from the 
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proof of Theorem 6.1 since the result of Amp(Ts) is a taged-stream-set rather than a 
0- '•c• ' 

&aged-stream. Noting that Arbiitr A({Ta0}, ... , {T1N}) • Arittt1rge A(Tgs, T10, ... , TsN), 

and that Ap(T1a) Si A•p"'(Tt•), SllllefU that we .ftmn ·th' '1111iott of die maps which 

show that A•p"'<T•xJ~A•;"'<1'•x+1>nmitiilg over all ~iic 'l'••r W• do this and theii. 

restrict the domain of this relation to the set Ap(T11x> to aet a ,._ctietf Fx• · aince we 

.. thereby discard any first ele~ts Qf the .relaclOJ.1 Pair w~~hc. ~efF, . ~~·, , That this 

function is injective follows euily from Lemma 4.1. S~ I' .r<.T•f'.l)":'l,r,(7'~~) where 

Taa, Tab« Ap(T11x)· Then either TIG-j 2'16 or 7'16~ Ta by Lemma 4.L But Ap(THK) is 

prefix-reduced, so thii is imPouible. Hence P' ~ta 'aii''itt}eetlon from 'A;<T••&-> to 

Ap(T11.-+ 1) such that ea~h elemellt is a prefix of itl <fui6tt!, '\tililch' esubttwhts that 
'. •·;· ) ' V- _•;'..~ ~; :.' .' •'" •,_r·,··~ ... ,,:'~ 

Ap(7'uK)~Ap(Tux+i>· By repeadnj this ccinstructicm"suffidently often (c.> + t_timesl) 

ww eltablisaihat {Tu-1, Ta2, ••• ,Tit.} ii.._. a ~..-J,o(;,....,q~ets whose 

supremum ii Tu~ since ei.eh elemeat•of I'•• ii-the ....... : .Qf. • ~ of ~aaed

ltrftllll: Therefore wetaaw·proYed'tltat .A91 a,"1cocri•••Aaut.'.':P1:.~, ar;bJU.JUY, so 

A rbit1r A is continuous in each atgument. II 

First Order Fix-Points of Non-detenninaw'Dl'Pfi PMflT&JU .,, 

Having established that all the DFPL primitive operatorl· &re continuous in their 

tagged-stream-set arguments, ~e conclude that any ~ec~·!ree DFPt. pfogram can be 

solved for its first order fixed-point behavior. a. indiC&ted in. Chapter 4. 'The. details of 
' - • . . . ' '. ~ . , . ~· ~ } ·;'. .',; ; ·~ ' .(·. :1 :· . ' .- .- . 

the data domain do not matter, as long as it is U1-Chain complete. Similarly, the details 
. ' . ~ ' - ' - ' ' . -

of the operatQrS do not matter, as long as they are oontinuoua functions on the domains; 
' " -· • • ,·.: ·• (: ~- .~. ·~-:-. -~ : __ 1_~· '_,. ·::.-·r:: '. '.,,·'_ :-: 
We will th,refore undertJke a simple fixed-point comp~t.~ti~· 

Figure 6.1 shows a non-determinate DFPL prcigrlta' with a lOop, ft>t" which we will 

compute a first order fixed-point. Note thit tliiS thne we m'it6dnce input from outside 

the loop. We do this to pt a no~-trivial answer since none of :the opef.itdt'S hi the loop 
. , 

generate any data. The E~ery-otlNr operaio~ is ~ deffue'd" lD dipter 4 and will again 

ensure finiteness of the result. The Arbiter operator is &s' deJiDed earlier iii this chapter 

except that we drop the parameter A which distinaUishes among Arbiter;$ Since' we only 

have one of them. 
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To solve this loop, we cut it at the point labeled X, then we solve the equation X • 

Arbiter( {(A , 8)}, Every-other(X)). To make the solution process more illuminating, we 

introduce the auxiliary variable Y, and generate approximate solutions to the above 

equation in two steps: Y 1 •Every-other(X1) and X 1+ 1 •Arbiter({(A, 8)}, Y 1). Naturally 

we start the approximation with X 
0 

• .L • { ( ) } • The first approximation is: 

X 
1 

=- Arbiter( { (A , 8 ) }, { ( } }) • { (Ao , Boo } } 

Y
1 

• Every-other(X
1

) • {(Ao)} 

The second approximation is: 

X 2 •Arbiter( {(A , B}}, Y
1

) • { (Ao ,Boo ,A 001), (Ao ,A 01, 8010)} 

Y
2 

• Every-other(X
2

) • {(Ao ,Aoo1}, (Ao, 8010)} 

Note that the fact that the second input to Arbiter is already tagged (by this selfsame 

Arbiter) constrains the way that Arbmerge can do its mergin~ - the tag generated by 

Eztend-tags must be consistent with the input tag. The third approximation is: 

X
3 
•Arbiter( {(A , B)}, Y2) • {(Ao ,Boo ,Aoo1,Aoo11), (Ao ,Ao1,8010 ,Bo101)} 

Y3.;. Every-othe1'(X
3

) • {(Ao ,Aoo1), (Ao ,8010)} 

Note. that the tags as well as the data is dropped by Every-other from the output tagged

streams - the output therefore indicates on/ y those arbitrary decisions that actually 

entered into the particular output. Note also that the generation of X 3 involves 

Prefiz-Teduction. Part of the computation of X3 involves evaluating Arbmerge(U,B), 

(Ao, Ao o i)). This generates the empty tagged-stream and the tagged-stream (Ao, Ao 1, 

8010), both of which are discarded by the Prefia:-reduction. which occurs when Arbiter 

generates its result tagged-stream-set. 

Since Y 3 • Yi the fixed-point computation has converged and the solution is X • 

{CA0,Boo,Aoo1,Aoo11),(Ao,Ao1,8010,8010d}. If we were cut the. graph at Y instead of X; 

the first approximation would start with Y 
0 

=- { ( ) } , so that X 
1 

• Every-other( Y 
0

) • { ( ) } • 

This would delay the convergence by 1 step, but the fixed-point would obviously be the 

same. ' 
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Overview 

-7-
Conc\usion 

This chapter ties up loose ends and suaests directions for future work in the 

semantics of Data Flow Lanpages. Some of the looa endt co~red are: "fairness"' 

of non-determinate DFPL prosrama, fllnctional behavior·. of DJ'l!L p~~ with loops 

and recursion. and the meaning of "bottom" (or J.) in DPPL's ~tics. Directiom ·for 

future work are sqgested in the areas of: qur -aad• as " · QleUS to proVing equiva

lence of DFPL programs, operators as valid DFPL 8-ta and· the ··relation ·to reflexive 

domains. 

Explanation of the. Anomaly of BTeek and~Aekennan 

In [BlcA-77], Brock and Ackerman· preSen.t two small non-determinate data flow 

programs which exhibit anomalous behavior. The. anoaWY is ~t . their operational 

behavior is different from the behavior predicted by a· simple denotational semantics 

based on sets of streams. From this, they correctly conciude that· a· semantics baaed only 
. . . 

on sets of streams (which they call histories) is inadequate to characterize non

determinate syste~s. In our model, based on ;et . of taged streams, their two progl-ams 

correspond to different flinctio~. and thus ·their differ~nt b.haflQr ii not anomalous. In 
' '~ ' 

particular' the first stream element output by the second program .. is tagged, while the 

first stream element output by the first progi-am is not tagpd: The details of this may 

easily be filled in by examining their note, and will not be elabc>rat~d here. 

"Fairness'' and the Arbiter 

As mentioned in· Chapter 1, a non-determiilate setvtee program may or may not 

treat its users "fairly". The usual definition of a "fair" program , is that the program 

never keeps the user who requests service waiting for more than a specified or reasona

ble period of time. This can be refined by specifying what period of tinie is permissible. 

Two possibilities are: no user need wait an infinite amount of time for a request to be 
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serviced; no user need wait more than a bounded amount of time for a request to be 

serviced after it is presented to the sy$tem. 

Neither of th~se de~ns of "fairaea" &f~· . directly aipplicable to DFP~ ~nee its 

semantics has no notion of time in the usual sense. The semantics of OFPJ,. does, 

however, have the notion of relative order of appearance of data items. (This ordering 

is induced by the otderln1 of the positive iht~n which w' the domain of the fuaction 

which defines a Tagg.C;ltrtam~) Thus the ~al>O\re deflDitions of "fairness" call ·~ recast 

as follows: any user's request Will "be s~rviCed att~t a :rttiite number of oth~f users' 

requests are serviced; any uil~r;s ;equest~ilr'be setvi"ced''~fter a bounded' nu·inber of 

other users' requests are serviced. Let us nrJw 1 

'iJiv~stil~te .. wh'ether either, · .. {jf these 

definitions of '"fairness;' can be satisfied withln' dllse~tics of OFPL. 
'. .. ', 

Since the solll'Ceof all no&odetemrin•blhaYior.:DfPLia the Ar:bitff!, tll.e ques

tion boils down to the"'faimen" of•the Atmtn .. ~T!hat is •. : if averal -sourcea .. of requests 

are to be meqed ittto one for consideratibn by aom processma program, even if the 

program,hu hitemal queues forllU&tilfiet4:.,..-..,....rtht Ariit.r makes· the initial 

decision a•to which request ·Jetl .served or e.vea queued tor service. 

Recall that neither in the determinate semantics of streams (cf. Chapter 4) nor in 
. ' ,· ; . . . : . .· .. ' ·:', ;·· ·-·i• . ".' ·, 

the non".'deten;ninate se~tics of .~~ed-~~~~~-~~Jcf .. Chapter 6) .~o ~e bave the 

notion of a datu~ in_pp.e stream precediq.Ql' ~9llqw~&.! 9atum in another •tream. 
• • ' ' . ( ·. . ' ···~ .... '. .· ~, • i . " ·:. , ; ; . ' 

Therefore, we cannot even express the concept of a datum not being delayed at an 

A rbiltrr while more than a bounded n1ntlber of other ·thputi · are proceuecl. There is 

another related concept w~ch is exprelat&le hawever. That iS' the idea any stteam which · 

is"the outpllt of an A1'biter will n~r ha\re mete than a 1~ number of' contiauous 

data itelJll which are passed illtough from a~y single input stream. This cotlhf 'easily be 

realized by changing the definition of the Arbmcrge A sqbfwwtion (cf. Chapter 6) to 

have extra arguments which counted how many data .. items frem each input have been 

accepted so far and constrainin1 therd>y which A,.bm.,-q•l sllbfunction was to be called 

at each recursion. Unfonunately, this approach has a crippling flaw. Suppose the 

bound on the number of contiguous acceptailces·is N and sitppose· that one inpui so tu 
Arbiter is presented with a stream of length N+ M'and the other inputs· with empty 

streams. Then the output can only consist c>t the first·· N data items of the. non-empty 
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input stream, the remaining M items will never be,acce~d. Thus. in the .name of · 

bounded delay "fairness", we impose infinitt delay in certain circumstances! TherefGr• 

we can reject bounded delay "fairness•• ashi~wftlf·tiur fmiJsittlPle semantics 

of DFPL; 

The notion of finite delay "f~C$8" mil requjies co~~.:r:ation. An Arbitlr may ,be 
- .- ' . , , - , . ' -;.,; . ; 

said to have finite delay if -any input d.ana.m ev~)' s}\oJ'fs !J.pJn the output st.~eam no 
- ' __ .. ·. -:-~.~- .,.'·--,,· '-·:\_ -~' . -:: ) ' ' 

matter what sequence of arbicraey (but allowa~td~~ w~ made by the Arflit-tr. 
' < - , !-?' ,_; ___ •• . ',- ,:· .· • ·.,_:; 

More precisely, we would say that for any input sir~ 7'11 .~d .for any J .in its. domain, 
. . " "" " )., . " " . , .. 

then for any output stream. T• in the output ~~S!l'e°.'~'et !~• there e~ - . finite K 

such that T.X •Ta/. Now im~ ~ ~o ,input A':'fri~,. ~C.h. : th~t its left htput is 

presented with the siq1eton str~ .(A),(for ~tY. ~e,:~ the t&ct'diat the inputs 

are really sets), aaditl;nptinpat'is"~;~ tlte.'.atfeam (B. B. ; .. , B). Tbe 

oUtput·of.thil Af'fKtwt", accordlli1 to it*defhddon'm <~; 6, mus1 be tile:: ta~

stream•set {<A, B, ... , B), lB:, A, ••.. •Bl, .•. ;.,(B,. ••. ,.,a·, A:lh :.(Bore we drep-the tags 

in the.interest of brevity, they are'ttedacibhi .. flcmt1the. ~-weich c~.diatinel.) '.The last 

stream in this taged"!'stream•set has the A all dre~Bf ;al:••llCL, 'No ml#et a.o.., loQg a 

finite stream of B's we feed it, the Arlntw will always prQduce such a stream .as. an 

element of its output taued-str~ani-set. Smee' thetA+iK~;r'c:dii'tirl'u6tis,·t(s output when 

confronted with an infinite input stream ii fbe·;sul>fflliuiti bf ia' 'butJ>'uts gbneii.ted from 

the finite inp11t streams wliich· have that ibft~:sitiidf-ai"tMfr ft:t*E!mui'.n. · 

frqm. our previous no~tion. Let (AN) ~ for •·•4..- 'lf N 6ccu~.ences. of A, ratller 

than.theN-th element.of a strum A" (Wa C&P.:.~. till!, ~-.C by .. the precise 

typo,graphy of the letters A, B etc.) Thea OtJI' 4?~•• oiq,:,be wriUe:n as: 

Arfntw{ (A ) ' ( sN)) • 

{ {BK , A , gll-K) f () S KS N } • 

{ < sN , A > } u { < sx •A , sN-K > I o s K < N} 

Now these taQed-stream-seu cleady comprise a o •. for in~roa.s;na N (they must 

because Arbiter is isotQne), and that cbaj.n ~ _. supr~m111J1. ,~Y . .our c,ons~ction· of 

such a supremum (cf. Chapter 5), each 1-&aed~SU:e&llJ in~~ ta,Jpd-stream~set must be 
• • ,, • j '. ' ' ' ,, ~ .... • • 

in a chain of tagged-streams which has a tagged-stream supremum. The question now is, 
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.-.~. •·:· ... 

does the infinite stream (B"') appear in the supremal o~~ut set? The 8.Illwer is tlo; ~-::' 
',. h- .-. - '.. ) '. } ' • ~ ~ ' ' 

because there is no chain of sequences in. the chatn of set. which . has that 'inf mite stre~t; ", . 

as its supremum. A set does exist which is an upper bound of the c~." of. sets and 

which contains that stream, but it would not be the /eat upper bound. II 

Therefore, although the continuity of the Arbitn- precludes its being fair in the 

bounded delay sense, it is fair in the sense of haviq ddi;;finitfi delay. 

" ! ;; 

Second Order Theory 

The set of continuous funcnons from· a ctiain coMplete 'po1e1 to r chU.,. complete 

poset themselves'fonD. a clikin compl~te ·:~ii'ider''. mti ·potntwise ordet'·fMar-11, 

Ros-77]. Thadi, F c G ~iff v %: ~n !f otn~:: TtiUs, '1iiqild>Jti :iii{ such flmctiou also 
0

have fixed-points ;1'-liich can, ui'1Pf!nci~ie;·1M, ~Oitaptitea'~ ih~' saftie 'tti.ttb&r. We call the 

the~ryof fixed-poill'tl in the fu~uoh
1 

domam·~~~h~Hhif1theory to distlrlguish it 

from the first order theory of fixed-points in the domain of streams. There"are'!Wo basic 

. class~ f>l .. DfP.L·pr~ -,vJ:a.o,-..Jy~. ~Mtf;Mft;:~·~~:. tlus. ·iterative and 

the recurstv•:.;)Y41a.tllkat .. ~~.;~1~~i,4\ er•::to .~~ l:low ... prosrams 

which have both iterative and recursive parts may be dealt with. 

We 

wish to determine what F ii given G. That is, we have the equation Y • G(Y,.Z) but we 
' . '. •. ~ • .. ~.: . • : ' i ." '. , .. 1 ~ ·- , '" . _. ' - .-·: 

desire an F such that Y ~ F(X) .. Thia ldlema"il ;&UfflCi"1idy'. ieneral to· encompass all 
,_ < ·-, ___ :'._:' ,_ ' ... -:-,-~q L.'r-;.,~ 'f:_;: ~:1ii~11ud ,:.,;:·.j·, - ,. :.:~~:: 

iterative procedures. The· variables X and Y may in 1ineral be tuples of taged-stream-
, ;_-_ · - · · ,-, ~ . -~~: •. ~-1 ": ' .. _,._, .. ~;.~ Anc ~ L: ·1.h·-'.-:; ·~·· ~..,~~ _,. -"-< ·;0,r _. ~.; -:-· ·. ·, 

sets where Y includ".8 all feedback and. O\ltp11t paths ~d .G J~cludes. the entire body of 
;~- ·'· - ·:~ 1, '"" :·.· t:: :~ :-.r ::: -~"'--." .. ,_,;.:;:1~:-: .. ~-" "t.:t:;\ ~·..,<·~;\ ·. , .,_· j :? _, ,~ 

the procedure. If not all feedback paths are ~e4 as outputs, an appropriate projec· 
:: ·_;'.;--. _. :,~<- ;- .. ,.>-: · :;~:>- ,;·· .. :: :~·:1 x-~;s 1;~t:····".".-!1 --;j,~> ~,_.,: , , ,;_. 

tion fun~on can be .appUed to '.Y to »~•4 ~'· ~ut~\l{f :\ PrY' ~ changes the solution in a 
. '. '• .. .·· ·"-•._,'.· .. . . , . ' 

tri~fU.,way only. : : , ,,
1
,,. 

Let us assume·that G.is continuous mtd thar'6!!>'·"J<•W+'D where D i• our chain 

complete domam. Let Gz - ~ y~ (;(~ Y).-Tlieift ft_i:{~' continuous in i~ 'Single ltptMDt. 

To solve Y• G(X, Y) for a giver(X is e<titt~~t ~ ~;·Y'-''.G':z.fl"'J;.which iS'done by 

. finding U{J:, Gzf.1.), Gz(Gx(J.))J. Tks0lve fat the' F Wbft'1li>•efa,' we ·mtist 'lllow X to 



be an actual argument. Therefore consider the sequence: 

F 1 • ~X .G(X ,.L) 

F2 • 'AX .G(X ,G(X,J.)) 

F 3 •'AX .G(X ,G(X ,G(X ,.1 ))) 

• • • • 

Clearly each F 1 is a colUinUf)US ~ction, '-a~j:T}a, ~~~"1ous in e~ch &irgument, and 

both partiatapelication and~~n ~~e,99f.,,i~. Ns() •. ~~e ,~~t {F1 I f~O} 
·- . . ' . ' . ' ";- - : • _,.,t/• '"" • - -.- , J~ ~ - • >' .., ·~ -- - - • - . ,- ' . 

is a ·chain in the fuuction dom~ th•t ~ ~oC:,J ~J. f ,. ~~· 7. ~; !9Uo~ ,~)', itduction 

froQi the1a~ tMt G • ~· ~ ~ ~~~ ~~"•9 ~.{:A ~p<.;, .L). ~refore, 
'<' ', ~-~ •'• ',';;'"'~•''"'': :•'-•,• ~··.,·',• • ·~;)•,,,.,,,.,. #,,:- "• '·:,·.'' 

the.chain has a. contjJllM)QS --~~ .r.•U{:l,',J l.'f11 Y,~h ~~.t~~ ~tinuoU$Junction 
we wanted. 

We conclude from this itplllent that• !:Jfft··jt~ whiCh ha a loop for a 

becly· hu a·wellcWtiled aemaidc MctiOft, wM -...-.ii111·'~Bavil>r:·; 

··-, •, ;'.:'. 

Figure 7.2 shows a prototypical DFPL defaned. OP«?rat~r with an recursive body. 
' ' . . •': - •· ,,,.,_:_ - . '-. ~. l:J. 

Apin, by suitable bundling of data ~ths and repa~kaafnr. of operators, any recursiVely 

defined operator can be made to look like F. The .qvad~ to i ~ . s~lved is thus Y • 
·.·. ·' ... ',,;;.·,; .. , '· .··. ~ 

F(X) • H(Gl(X), F(Gfo(X))), where Gl is the pan of G that generates the left output aud 

Gt- is the part that pAerates the right outpUt: 'Since .this eq\latfo~ ~ust hol~ for :all x. we 

abstract to get F •Ax. a(GKn,F(~x))). ~~ !~~ .,am, we 'convert this to 

the second order (or functional) equation F •A E .AX .H(Gl(X),E(Gr{X)))(F}. Thus 

we wish to find the. (~ order) ~d~poU.t ,. Qf, . the , f Pll«.i()~ XE. 'AX. H(GZ(X), 
•• t . - ,, ••• , •.•• ' , ' •.J.. .,:;.· ' 

E(Gr(X))). But we know tliat any such fui¥:~n-1,. c9nsictip1 of compositions of (first 
' • •' ' ' <' • •:,,-' 'o ,,., • 

order) continuous functi911S and function variables, is (second order) continuous. 
- . . . ' :,:' - " ·."' ·'. ' ,· . 

Therefore, it has a least fb(ed-point, and that. f~fd"'.poitlt is the recursively .. defined 

function F. 
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We deduce from this argument that any DFPL procedure which has a recursive body 

corresponds to a well defined semantic function which describes its behavior. Further

more, DFPL procedures which involve both loops and recursion can be solved in a similar 

manner to yield their overall semantic function. The proper way of determining the 

semantic function of a large program, consisting of many procedure definitions and uses, 

is of course to solve for the semantic function of as small units as possible, then to build 

up the function for the whole program out of these units. 

"Bottom", Strictness and Termination 

In most treatments of denotational semantics [Man-74, S&S-71, Sto-76] the bottom 

element of the data domain represents the totally undefined datum, while the bottom 

element of a function domain represents the totally undefined function. The bottom 

datum, .1., is then (reasonably enough) taken to represent the "result" of a non

terminating computation. That is, the partial function which the program computes is 

extended to a total function by defining it to yield .L. where it was otherwise undefined. 

Given this interpretation of .1., it is also reasonable to demand that most functions be 

"strict", that is, that they yield .1. as their result if any of their arguments are .1.. This 

follows from the operationally reasonable notion that it is impossible to invoke a subrout

ine until the computations of all of its arguments are finished. Strictness is not demand

ed cf all functions however, the If-then-else function is usually only strict in its predi

cate so that it can be used to terminate recursions and iterations. 

In the semantics of DFPL, the bottom element of the function domain indeed 

represents the totally undefined element, but the interpretation of .1. in the data domain 

must be different. The data domain of DFPL, recall, is based on the notion of Streams, 

therefore its bottom element is the (set consisting of) the empty stream. The empty 

stream, however, is definitely not the "result" of a non-terminating computation, but 

rather is the definite result of a computation which has not yet received enough input to 

generate output on that port. (Note that much output may have appeared on another 

port, a luxury not permitted in most programming languages.) Furthermore, Df'Pf.. 

functions need not be strict at all. In fact, of the primitives, only the Oswitch and the 

Pcf's are strict; the !switch, Arbiter and especially the Hold (which has only one input) 
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are not strict. Therefore, .1. in the data domains of DFPL is not an "undefined" element 

which is added out of mathematical necessity (ie. to touilize partial functions·· and to 

clean up the partial order) but is a rather na.tUral object which ~·is . m\Jeh a part of tilt 

notion of streams as zero is of the integers. 

PTocram Correctness and Eq_uivalence 

As we stated in the introduction to this thesis, it is necessary to have a precise 

semantics for a programmina laquqe in OI'~~ to ·"- a~le to . Jm>Ve ~ a~ut pro.

grams. Given a denotational semantics for a ptop'llnmUDf laquage, as . we have for 

DPPL, it may be polll'ble to determine the OV«a\ll;. nmctioa• computed. by :a · program in 

that lan1U&1e. HaVing 4oue 10, it may then be: ,_.a,ie to~....,..·lllat. this.~-meets 

a specification (propm correctness), or that it ituhe same °'erall · .. f\lnetion as that 

computed by another propam (program~umdeaee) •.. Ouf,~ pves a l>a,sis for 

deing such proofs, but it does not make them.wn.....uy m~-~~ and use.fill 
semantics can do that. However, out semaati.Qf.iuol!po~.t:~l of non-determinate 

behavior, which many other .semantics have ttoQ91- det:Unl.~· 

Referring back to Fipres 2.10 and 2.1 l, we can now see ·that these two miniature 

pro11"ams are indeed equivalent in their overall · twletionafity' up to· homomOri>hism 

(assuming that Fis determinate and history ·independent, i~i: ;x''•f1"(tr1)); That is, the 

x' y and z outputs of pro1tam 2.10 are (Sfugletorif Sets of ti.*8~ m~ams', Whereas the 

outputs of pro1tam 2.11 are just streams, so we dlu.t map ellCh singleton Set to its 

element and remove all tap. This result, follows ditec;dJ from the denotational defini

tions of the various operators, we will .~ot give the d•~ as they consi~ merely of 

substitution into the definina equations, and then applying the homomorp~m. Note 
. '-:',, ' " ' 

that the A rbiur in Figure· 2. 10 is an augmel)ted .Qllerator: i~_ borizOl)tal output is a (set 

of) stream(s) of in4ex numbers, appearip,1. in sf.cht'o.niza~~i,i .wuh the r;~r (vertical) 
' : . ~ . ' . ,, i :,,: ' - -

output, such that each number merely says which input port is currently selected. 
. . , ' - . . . . ~ . . 

Operator Valuecl Data and lletlexive Domains . 

As mentioned in chapter 3, our current denotational semantics for DFPL does not 

include operators (functions) as data, and thus has no need for reflexive d0mains. To 
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meaningfUHy add: <rpefatorsto DFPL u·ata·Wlues, we· ·we\lld'•need ·an A'P'Plfl operator 

wbieh··wCM.tkl take such Uta a input. ;Unforc:ullatel¥,. it is bot 1clear how to. define an 

Anl11 operaior in an iaforaalopeia1ioa seDll, limcJrJea;ilt;aquecile. denotational sense. 

lt'is reuoaalde lO aaame that UaeA.p-.aplil'aflDll',r.·we\'tli &CQOIK.a·· dir,4cted ,,lflph or 

equiYalomapraea&adoll·:Of.th• fu~:,'llM*>:·...,,,;an4 ••t it w<>tJW :·~·~ect" 
that fua•a to ta..-r ~- aRd ~~-:Oft•.~,- ~~· "surt \.\P"· µie· new 
subnetwork.' The problem wJIA.~,,~ ii:; ~'.''~:~~ ,~c;a,doa. terasinate? 

There is, of coune, ao problem with an operator which does not terminate, the peculiar· 

ity of A7Jtll11 is'tbt it·~inherentty to' iWYfH'accept~i:1 ithan ·ott~''Mlction datum 

from it ostensible stre&iD of'tutlction data~; 1'liiS'll"iliii to~tlti,Mt·. thaf it HI m::aeneral 

undecidable -~a ~M1ha ternlilate~'t!Ot. · one might wet ,,around this 

One possibility is the following: the Apply operator receives as input a represent&· 

tion of a running sub$werk ralJl,r;$haqj~~· ,f11uc~ .. ~ 1-•. it .recme• the 

network representing. the· operator together with any streams in proarea. It also has ~ 

input;belides:the tDpud itftd'outintts 'wltlch ~~td'<Wipt)licadon~ which must 

be .. PWMQU m orc.ftt•to make die applledl~k'~~}:one tft81ition (we afe 

taking inoperatidUl wms . ..-m). Tile AW'f ··-operator •.condau•' •tiaumns , tile subnet· 

work behi• ..,ued u k;af U'tl!il U1put· il',ptoWICl1Widl 1!m.w. "Wlmn, a lal6s: ja, supplied 

instead,'cthe current .. ltate0 of.dae;.......,.is.dt...,.+OUt:-on -~ ...,..t port 

. of the 4tppl# .. Thia output value• ·JIMIJ. be fed:inz» th&· ~11uor ··.to raume · exeeution. 

By tlUf _.ans we:4m-dle .. ~ of :~·of,.tJM appijed,..._twork, 

we leave it.to the \llet:oltheA,,.Wra.~-... ~,-~ TI!lil m.:a:>:•~ :IMUlinlful 

the notion of a .Ueaal·Of tJUop to,.\te ARP.li~,)t ii. sindlaE.;~ .f. ~~· ()f. jobs to a batch 

Oper&tial',sy.li~m. 

Although, from the operational point of view, di~"' applitable object is a 'fUnction 

network plui 'its intemfl"Stice~"it\i'a1uft '«A~t~~ · 'df ~Stf6tnis to 'meams from the 

denotationil point of view~ mic~ such fun~ ltlfettdy·1 exhi8it the bellaYior" dt having 

an internal state. The oXt'eusion to ·n:oa~<lfl~ · ··'fUtfetfcms 'fheuld · fif ilt&o chi• 
framework u it did before the Apply operattir; 'Ttiit :~· 'jtllit · we milht ·want a 

reflexive domliin [Sto-1'7Jas our uttdcWlY'Bll'd<ffftain,:ithat·ii, a ·dotmift. which net only 
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containa ordinary .data but alao the cODtia'90~ functiODI f~, Wt:do~, tq .itJ;lf. This 

domain D would have to satilfy .• the ·ectdticmJ>S.J &tt1-tt.,..,.•ct~•tn1,.,,,,...of(Q; ® [D • 

DJ), where Q is lb domain of simple data +nu....,,1 .. .-..., .. recor:ds: ~) •. and "•" 

denotes isomorpllilnl. ••@·~ denotactia;oiat• .. ---... aad E»-fll ~-- cOadnuous 

functiontfrom Dto IJ. Tlmis:llflitMr·theaual!tddxivefdl*81•~·....-.fcbl'C·to .the 

·presence of the set c8nsUuctar, nor•is itqutw tile ~ idlilttdtft; eq11a1tGn. d• to the 

fact that the 1.is of tarf*I ·nref1Wt3 are llOt piaiifidli! 

This n.W funher.retearch. b,oth .. to iDV~;.:~·.·.llf;iliU'. ,~~'. ~le;'P,llinesa of this 
·,, ·., . 

operator is .- neceaary in.oaiet to have the ..... qj;~u~ it ·•f4).,s Jike the 

"program loader" of conventional ~Qaf:.-•t) '.'. 

Relation to the Lattice Fomiatatien ··df Bila Ty)HJIJ · 

Dana Scott 1114 de,:velopo.d • rat)lor COil,..~ '. .. t~' ... ~f •. ~omputation ' based on 
complete lattioes &&Ml eoaanuou ~ (~7~;; . Ilia -~·JyiJlg ·;~~p, is 'to 

model everything in terms of one universal.~.,.., ~l~",q' 411 s~ of the 

non .. negative iategen, which is m. """"""ic. aad a.1111.,,,. ~lame•;~ . .n !II_ tteing a· 

topOlogieal· space. In this damain,·cantiauout ~ on . die .domain .. moy be .repre-. 

sented by encodings of their grapJu,'iset.a of arau•llt .. v.aJ.ue •pairs.), as ean data values 

thftllelves. Reminiscent of OOdel twmberills,. encod._,.,.,,sets· of jncepis, that is, 

elements of""'· A single number is'eneoded al· the< fhltleton let containing that 

ii.umber. TbeflnitesubletlENof '->·may be,~tated(as- EN•{K0, •••• x .... _1} 

where N • Ii<M2K•) and the result of applfing a (continuous) fuliblk>n F.lt'& u arbitr~ry 

element of the domain is detjned . by F(X) ... {~1" N) I. !i N G, X}. Sin~,e Ju11ctions map 
> ·"'*-' '' - - • ' ,;,•_ ,· 

elements of 8'~ to el~nts ~ /fw,. f'1119tioaa :'1~1 P•~e 1 ~~~'5. an#. values V1,hich are 

sets, e.g. 6U 10+1•7U11. In fac~ Scott is·~ tq,.e~r,~::~ qqw_t4,. l~~~ ,calculus 

and a good amount of recursive fu:.oction theory W: ~ .. domain, inchidQig proofs of 
- '~... < ••• ·' • ' ·' ' • ' • 

validity of lambda conversion ndes, the con~ 9f Ja.m~a. .. qefiJ:labl~ (~tions, the 

first and secood recursion tlMtorems, and .the recuJ":Sive nott-e~~~ilit)(, of equations in 

the lambda calculus. 
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The fact that functions take sets as arguments and deliver results which are sets 

suggests that the domain fJ'w might be useful for expressing non-determinacy. However, 

the main purpose to which Scott puts this capability is the definition of data types as 

virtually arbitrary subsets of fJ'CJJ. He does this by introducing a class of functions called 

retracts which are idempotent functions on fJ'CJJ that map the data type to identically to 

itself, and other elements onto the data type. Then, by defining operators which allow 

combination of retracts, he is able to show that certain recursively defined data types are 

the minimal fixed-point solutions to equations involving retracts. For example, the data 

type of trees, both finite and infinite, is the solution to the equation Tree~ Nil+ (Tree x 

Tree) where "+" and "x" are operators on retracts analogous to union and cartesian 

product. 

The generality of the domain fJ'w, in particular its ability to express sets of data, 

would make it a possibility as an underlying model of the semantics of non-determinate 

DFPL. Certainly the tagged-streams needed could be encoded as sets of integers as easily 

as functions can be. However, whether this would clarify the semantics is doubtful: 

encodings of this sort are rarely noted for their transparency. Nor is the explicit 

machinery for dealing with non-determinacy already developed in this model. The 

existence, completeness and continuity of the relevant domains and functions has already 

been established for non-determinate DFPL. The treatment of operators as data is 

probably better examined in the framework of power domains as noted below. 

Relation to Power Domains 

The powerdomain construction of Plotkin [Plo-76), as clarified by Smyth [Smy-78), 

bears some similarity to our poset of tagged-stream-sets, there are some important 

differences however. The most important is that Smyth assumes different dom~ins, a 

domain S of states, and a domain R of resumptions (similar to continuations). The 

states are the states of the abstract machine, while the resumptions are mappings from 

states into sets of states (disjointly united with state, resumption pairs). The reflexive 

domain equation is thus R ril [S- fJ'(S <±) S x R)], where the powerset constructor, tr, is 

needed in order to express possible non-determinacy. The problem then is, how does 

one solve such equations? 
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To do this, Smyth inuoduces quaai-orderod. predomairu_ which ~e sets of <;nitcomes 
.. )r~ • •_ •, ; ' ; • < ' 

of (non-determinale) QOUlputatioQS. These ar,e q~e4 "by_~ 0~er orderina", which 

is otdy a q~-order~ 

SCT• 
VX1.S: :IYcT:YSXA 

VY e: T: 3X c S: Y S X 

The elements of this domain may be viewedu cron sectioDI of a .tree ··which represents 

the non-determin•t• computation; each path frorft ·tJl.e rOot tO It '~ correspO&dl to a 

particular sequence of arbitrary choices m&de by~ui uistaace oi the cotlijfufadorl~ Smyth 

observes tbat this model and this (quasi) orderinl forces oae to make "uil•tcome 

~"of o~ inf~-..U.. ....... ,~-:,1l~ _for a true 

~· Me suaests that ·thil eoukUM i~.A>l\E'~ ~ .. ,of. t!ae __ tr\tes ratrun' than 
,- . '- '•' .. -. " . ,·· .' .. 

just dseir«:t"Oll:•noau.. nus is -..tiAllY Qq\li~. to o~ - 0,f tl&Pd-~~ 
• ·' ·: > • ' - •• • ,,~ ~- ' • - • • • • ;_ • -~ : •• - • ; • '. ·~. • -

·except that we eave streuaa of data r~r .~,~---;OU~ ~ed_ by lettUig 
, ,· - . -. -'· •. -, "~ -,- ~ • -.· , ,,;-· .. -,r • ·.:\ . :~. -' • • • . 

the coaq>utation run ~erJonpr. f'~1.,•~q,~ '~" cateJ<>g theory 

as a,••· for. the ~v..S ~.·we., 4c) .~ ~-~ ,~onv•nti0J1al matllemat-
... , ,. ,' ·' , ~·- -,.".I~: , . . ' - ,- • ' 

i"3· of ,..,. aad "'i"'4DC~. 

Since our underlying doaiain. tagged-streatn•Mt&'. is a ·ttue·· tpotet ,&Jad has a simple 
. . 

struenlre, it seems likefy that our reCutstve ~ ._..._,_.ct,above 'Cafl. be solved 

in a straightforward manner using the techniques of Smyth and Plotkin. This is an 

especially promising area for. future research. 
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