
COPYING COMPLEX STRUCTURES IN A DISTRIBUTED SYSTEM

Karen Rosin Sollins

May 16, 1979

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the
Office of Naval Research under Contract No. N00014-75-C-0661

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

COPYING COMPLEX STRUCTURES IN A DISTRIBUTED SYSTEM

by

KAREN ROSIN SOLLINS

Submitted to the Department of Electrical Engineering
and Computer Sceince

on May 16, 1979 in partial fulfillment of the requirements

for the Degree of Master of Science.

ABSTRACT

This thesis presents a model of a distributed system where the

universe of objects in the distributed system is divided into mutually

exclusive sets, each set corresponding to a context. This model allows

naming beyond the context boundaries, but limits commlU\ications across

such boundaries to message passing only. Copying of complex data

structures is investigated in this model, and ·semantics, algorithms, and

sample implementations are presented for three candidate copy

operations. Of particular interest is a new operation cgpy-full-local

which copies a complex data structur.e to the bound~ries of the context

containing the object.

Thesis Supervisor:
Title:

Liba Svobodova
Assistant Professor of Electrical Engineering
and Computer Science

Key words and phrases: copying, sharing, distributed system, message

passing, strongly typed objects.

- 3 -

. ACKNOWLEDGEMENTS

There are three people without whom I could not have written this

thesis. I wish to thank Profes8or Li'ba .Sov01tCMktva ·for th'e' diligence with

\JhiCh she has read and understood the many dt:afts o.f this thesis. Iler

ability to help me extract and clarify f//f!! ideas has been invaluable.

Mike and Peter, my husband and son, have provided themorsl and

emotional support I needed through these ia.an1 mol!lths, part:!:cularly the
:< .· '.·,' ..

last two. They above all had the CGl'lffdence in ae that I could and

should do this work.

In addition, I 1'ish to thank Dave CU'ft• ille Lwlieald 1 Jim

Peterson, Dave Reed, atu:l Jerry Saltzer fo'r."htdip.fltg 1ile tO' clarify 111y

ideas and wr·iting. I wish to thanlt _,..parent., Alee-1 :.a,td 1ta1::hy lt:osin;, ·

and sister, SUunrra: Rergtold for tneir co:M~ ''ftf:ia. Yittally, I
. . . .

wish to thallk all the metllb.eTs of th« ~· 'S)\'iltetts: IW•ft:tll Gtitttlp f~'tt.

being themselves and provid:tng a ftitur~ ~!~. :fil'l W.:f.Clt to. do.

re·search.

- 4 -

CONTENTS

Abstract ... 3

Acknowledgments .. 4

Table of Contents .. 5

Table of Figures ... 7

Chapter One. Introduction 9

1.1 Model of a distributed system 10
1.2 The problem 15
1.3 Related work 19
1.4 Plan for the thesis 21

Chapter Two. Contexts . 23

2.1
2.2
2.3
2.4

Naming environment
Abstract networks
Contexts
Summary

as objects

23
29
31
32

Chapter Three. The~ Operations ••••..•••••••••••••••••• 33

3.1
3.2
3.3
3.4

Existing copying algorithms
Proposed copy operations
The copying algorithms ••••••
The receiver ••••••••.••

Chapter Four. Additional Mechanism for Copying

4 .1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Message-contexts and images
Layering in a node ••..••••••
The details of sample copy operations
Preservation of sharing ••••••.•••••••
The receiving end ••••••
The local copying operations
Additional issues
Summary

- 5 -

35
41
47
55

59

59
64
67
75
79
81
85
90

Chapter Five. Summary and Conclusions•.....•....•. 93

5. 1 Summary • • . . . • • • 93
5. 2 Cone lusion about the research•.•........••. 96
5.3 Suggestions for further research 101

References ..•...•.•.•...••.•..........•..•••.•.•......••• 107

- 6 -

FIGURES

1.1. Contexts and communication by message passing •••••••• 11
1. 2. Communication within the distributed system • • • • • • • • . . 14
1.3. Sharing of components within a data structure •••••••. 16
1.4. An example of the copy-full-local operation •••••••••• 18
3.1. A mutable CLU object of extended type ••.•.••••••••••• 37
3.2. An example of an object .••••••••••••••••••••••••.•••• 43
3. 3. The results of a copy-one • • • • . • 44
3.4. The results of a copy-full ••••••••••••••.•••....••.•• 45
3.5. The results of a copy-full-local .••••••••.•••..•••••• 46
3.6. Message-context and image for a copy-one ••••••..••.•. 49
3.7. Message-context and images for a copy-full ••••••••••. 51
3.8. Message-context and images for copy-full-local ••••••• 54
3.9. Receiving message-contexts ••••••••••••••••••••••••••• 57
4.1. Layers in the system (on one node) •••••••.••••••••••. 67
4.2. Operations in the T type manager •••••••••••••.••••••• 72
4.3. The generic copy operations •••••••• · ••••••••••••.••••• 73
4.4. The send operation for message-contexts •••••••••••••• 74
4.5. Sharing across context boundaries •••••••••••••••••••• 75
4.6. Using copy-full-local for foreign components ••••••••• 76
4.7. Using copy-full for foreign components ••••••••••••••• 77
4.8. The receive and receive-image operations ••••••••••••• 80
4.9. The generic receive operation ••.••••••••.•••••••••••• 80
4.10. The receive-message-context operation •••••••.••••••• 81
4.11. Modifications for local copying ••••••••••••••••.•••• 83

- 7 -

- 8 -

Chapter One

Introduction

Many aspects of computing are based on the ability to copy

information. The foremost of these is parameter passing by value; in

distributed systems, it is the only way to pass parameters between

program modules executing at different nodes. Since these parameters

may be abstract objects whose actual representations are complex data

structures, copying in this kind of environment is a non-trivial matter.

The second area is a more general sharing where copies of some objects

will be maintained at several nodes. Finally, copying is needed to move

an object from one location to another; this is different from the

previous, in that after an object is moved, there is still only one

instance of the object in the system. Each of these and possibly other

areas require the ability to copy objects. Each also requires other
1

~echanisms, which have, in general, been topics of research. The

research reported here has concentrated only on copying, in particular

copying complex data structures. ··

In addition to the problems for which copying is a part of the

solution, there are a number of interesting problems that must be

addressed in developing semantics and algorithms for copying. For

1. For example, if several copies of a mutable object exist in a
system, a requirement may be that these copies be maintained in mutually
consistent states.

- 9 -

~· .•

example, com1i·der .the situation fln . .tiieh ,a ·s.trwctured Object is being

copied. .of intere&t .here ?&Te ··tltaee :compo.nattts ·.that ;a're con:ta:Lned by

component .obje:ct>a. A dectaion;111Ust~l>e.1made.as to.1'11kether or not these

or once for ·each paiuter .to the object. ·Ano.tlter queati.on that ·must be

answered is vbedler or uot maTe ·titan one tilld .:ctt ·copy '4i>peration is

needed, ·and, if ao, •what the· aemattt:ios ()f tee ~:.etiff.epent -operations are.

In order to :address .these .pr.ol>leaas, :a ,_,.l is ··necessary. This chapter

will introduce the IKHlcel of ·a ·d:tatrihut.e.d ,sy,-a.tan :used in this research.

Usi'llg the mo.de!, a diacusai'OO .of . cit.-e ·-pr:o.bl:eai to ''De ·.solved and .an

introduction to .the solution will 'fcllrow. ·aeaeaX'Ch ·related to this work

will then be .survoeyed, concluding.1tith the .plan for the .thesis.

The model ·of .a distrib.uted -sy.abem used. in this research assumes .the

hardware of the ·system to l:te a network of computers, .each ·computer

hav.ing its own pr.ivate memory or .namespace fo-r objects. Since .a single

namespace in a :campttter provides neither ·enoQgh flexibility in naming

objects nor enou,gh. prote.c.tien in a.ceeutna ebS.--ect:s,, this wor.k first

namespace.

Each computer .o:r node in the distribut:ed sy..stem supports one or

more contexts.. The w:dverse of objects o-n·,.a node fora .disjoint sets,

each set corresponding to a single context. Thus the context defines

- '1.<l -

FIGURES

1.1. Contexts and communication by message passing •••••••• 11
1. 2. Communication within the distributed system • • • • • • • • • • 14
1.3. Sharing of COlllponents within a data structure •••••••• 16
1.4. An example of the copy-full-local operation •••••••••• 18
3.1. A mutable CLU object of extended type •••••••••••••••• 37
3. 2. An example of an object _. 43
3.3. The results of a copy-one •••••••••••••••••••••••••••• 44
3.4. The results of a copy-full ••••••••••••••••••••.•••••• 45
3.5. The results of a copy-full-local ••••••••••••••.•••••• 46
3.6. Message-context and image for a copy-one; •••••••••••• 49
3.7. Message-context and images for a copy-full ••••••••••• 51
3. 8. Message-context and images for copy-£ ull•local •.• • • • • • 54
3.9. Receiving message-contexts ••••••••••••••••••••••••••• 57
4. 1. Layers in the system (on one node) • • • • • • • • • • • • • • • • • • • 6 7
4.2. Operations in the T type manager ••••••••••••••••••••• 72
4.3. The generic copy operations ••••••.•••••••••••••••••••• 73
4.4. The send operation for message-contexts •••••••••••••• 74
4. 5. Sharing across context boundaries • 7 5
4.6. Using copy-full-local for foreign components ••••••••• 76
4. 7. Using copy-full for foreign C011lponents • • • • • • • • • • • • • • • 77
4.8. The receive and receive-image operations ••••••••••••• 80
4.9. The generic receive operation •••••••••••••••••••••••• 80
4.10. The receive-message-context operation ••••••••••••••• 81
4.11. Modifications for local copying ••••••••••••••••••••• 83

- 7 -

protection of groups of obj.ects,,,.tiere .a ,,gro'!lp is .a subset of the set of

all objects on a,:particul.antmacb.ine~

The system,model recognizes two kinds of entities, active and

passive. The active entities are called .p1;ocasses, cand can be executing

in no more than one context at a tiee. Since processes.are not of

primary interest in this research,.· no further assWJptions are made about

them. The .passive entities are objects. All ·objects have three

attributes, value or state, name, 1.and type. 'Every o~ject has -a value

associated with it. An object.will·.have the value of .. empty associated

with it when it is created. Obj.ect •value.s~are of one :Of· t-wo de,grees of

permanei:ice, ,making the correapGadi-; obj~te..at.ahle. or 1 imlwtable. .An

immutable object can be assiped'''S·>~alrue 1at.,eost. ouc.ce, -whereas a.mutable

object can be ass:igned a»1'4lu.e.mo1:e~.tban-~oml8. • 'lhts,is not aeant.to

illply that either :of "these·:·aeeeaaat:ily'~up,aa.a, ~Oill'Y .that tlbe

possibility exists. 'At '.the lev•l of ccnttext'-, eve..:y ob:jl!Ct 'will have at

least .one .name, and will>bave ~·exactly 'OD:e ··tn :tg,s -h0188 :cont:ext. · (As

mentioned prnllously, '.an .object'"•mLIY '·" tllialHl>lie' frem ,a ·f-0relgn context,

and in order to.rdo,.this the ilareign· coatex.t aust .assign to the object a

name that is local to Lhe foreign con.text.)

The thii:d att:dbu~e of an object .is its t~; every .ob,_j·,ect is -Of

exactly one type £,or .its whole l.ih. .'Eype .is ra ,desC;r.i.p1d.'On ·of,·ithoee

charactet:i•tic.s that a collection of ,objeeus.,have in c.-on~ a &et of

rules by wh.teh the ·<e,~jac:ts rand' tile'•Me'SS·r:Of :th~ .·..,Pj..eo1ts·•ust ab!Lcle.

There exists a type manager .or ·.,aome .. ~other,;;ae,chani:aai ·for each type (there

may be one instantiation of the type maaager per obj.Ct that may be

-.12 -

· .. ··'-- :;':•-' :. :., ... ··<,,

, I.;.~.

considered an integral part of ·the object, or there may be an overseer

of a particular type) that insures that only cer.tai.Jl oper.ations can be

performed on the objects bei~g maintained by ~t. In this work, we are

assuming a single overseer oi type ma~ager foi all ~he objects ~ a type
' ' ! .

at a particular physical node. Ekcep~ for the, . ..A11t.: _p.Hm:Lti..J'i cypes
··;~ { '.~~ ~

called base typee •. \ilich are provided '.AJ the:~~ystem. to each con,t,xt_,

every type is defined. in terms .of .. othf.Jr types ... thc. r.e.pJ:"eaentatiion of

such a type is in terms of the· representations of othe-r -types, and the

operations provided by a type are defined in terms of operations on the

component types. ··'?he types that &il'.e uot·_,~s:arekno"'1 ~-~

extended tyw;s. An extended type object contains a list of the names of

... ,_. - ~~.,, ~-·A"'" <

its component object. Such an object contains nothing but names local
;.

to the context in libich it resides. The definitions of extended types
1 ~ f
•r ,

form a network of definitions that must .~e based in the final analysis
' .·- <' ~.-);,' J

on the definitions of the base types provided by the system.
, r: . " : -- ~ ~- ... ~

Several eupportil'lg mecha'niMs for· th'is aodel ·of con'ttUtt.1J are

necessary. Thaae aecbani111la formdl• urul;.: ··For the pupases of this

research, only the· mes•aae handler ami•stdtage.Jll&1ltlger are of cenceru.

Figure 1. 2 depict& t.bi• situation •.. 'The ·aessrap '1.ancler llUBt be abla· to

(1) pass messages ·between contexts local' to. a cejasie ~er, (2) pass

messages from a local c&ntext out in't'f> the':Mtwork,, aml'~ (3) receive

messages and see that they are delivered to the correct local context., ·

The message handler transforms messages passed between contexts into the

kinds of messages that can be passed through the network hardware. The

message handler contains information about low level protocols. It i•

- 13 -

Contexts I

Figure ..!...:.! A model of. the cOlllllmlic&ticm within aud 9.etween nodes of the
distributed system.

quite poss·ible that the low level aeesages of the network do not

correspond to the high level .message objects or i!!les which will be

discussed later in the thesis. theae high level messages may be

buffered and sent in gr~ps, or split into smaller packets. Whatever is

done by the musage handler at 8\1Ch a lo.v lev,el is hiddea .from the

contexts and users. The storage Mn.ager, as i.~:8 .-. indicates,

oversees storage of objects. For •ch object sto.re4 in the node, it

provides a unique name in order that the pbyaical obj1act ••Y be accessed

(through the st.orage manapr) • Each storage 1urme is known to a single

context and associated with the .local naae aasig-.d to that object by

that context.

- 14 -

1. 2 The problem

The problem that this thesis investigates is copying complex

structures within the model that has been sketched. The complex

structures in this case are objects of extended type, and the copying of

particular interest here is copying across context boundaries.· As was

mentioned, copying is needed for a number of reasons. This research is

a study of how to provide such copying: what the semantics of copying

should be, and how to achieve them. In order to investigate copying

further, we have set ourselves four goals: (1) any sharing that exists

in the original structure must be maintained; (2) economy of mechanism

by using a single approach in all copy operations defined (there will be

three) is desirable; (3) since all communication between contexts is by

message passing, the amount of message passing should be limited; (4) it

should be possible to send and receive component images separately.

Each of these is discussed below.

The first goal to be discussed is the retention of sharing among

components when copying an objects. Although a more common concern is

sharing among processes or users, this research concentrates on sharing

within an object. In the model assumed for this research, objects can

have arbitrary structure, including recursive containment. The simplest

question is whether maintenance of sharing would be necessary in copying

objects if recursion were not allowed, but sharing components were, as

in Figure l.3{a). If sharing does not occur in a copy where it does in

the original, the behavior of the copy may be different from the

behavior of the original object under the same conditions. Now,

- 15 -

(a) Non-recursive sharing (b) R.ecurshte sharing

(c} Recursive sharing across context boundaries.

Figure 1.3 Examples of sharing of co.ponen,ts within a data structure.

considering the more Cdllplex •trueture· tut ·f.ttelu4e• rec.uraift

containment o·f componeat11 ·auoo ·a the sgrue~ure in '1i*1Jre l.J(b}, it

becoaes even clearer that aucb shart.g wu•t· IN.c oopied in order to

termiaate a copy operation which -copies the e0mpleta ·structurce. Sharin;g

across cont$Xt bounlil·ariea, as in Piigurs · 1.,3(0), acids a ·BW ctinnsion to

the problem of copyiag. ·· It ctoea .not illt.todue.e any,.new t~ for

maintaining sharing, ho11eVer, reeurstve •tr(Jetara are much 1-0re

difficult to cletect acros• conten boua._,iu. · lfnwa~ thee·e is even a

greater need for a mech.8.nia t·bat det.~• .1avch sha-rin:g.~

- 16 -

,.
t\ ,.
L
I,

r ,.
I•

'

i

..
'
~
~·
' ~

f,
' r·

(

the local private memory or namespace. In order to provide flexible

control of sharing and to lillit error:propagat.ion, the;only means of

communication between contexts is by pasaina ;messages •.. This canst.taint

allows enforcement of arbitrary degrees of protection at the con·text

boundaries •. It does not eliminate the possibility of sharing an object

across context boundaries, but does limit the means of access to that

object; if an object is known beyond the boundary of its local context,

the only means of operating on the object is by passing the name of such

a foreign object in a message requesting that some operation be

performed on the object in the containing context. The user will see a

collection of contexts with messages flowing between them as in Figure

1.1.

,Context~

DD

Figure .h!. J:;ontexts cont:aJ.nj.ag Qbjeq~s 4111d, c~uni1;:a~ing by,ipessage
passing

This mo~l of a context provides protection at a level not

generally pr¥ded i• coaputer syst••· .· It; i& .cQIPPn tP:'t a $YJ•t~ to

enforce prote~tion of the syatea .a a wh.ol•,;. . the ,requirement ,of

passwords is pne such mechanista. At Jtbe,·atber «J¢tlelll$,.' indivi1tual

objects are f-=equent:ly protected; two com:mon mechaniBlls_ ·to achiev.e thi$

are capabilitfles and access control• liats .• - .Cont.ext& all.ow .for

- 11 -

; .

f'

l

f
I

f
I
I
r
t
~.
I
'
I
I
l
[
f

level of the structure, ee~yiag pointers to a:u.· th e~enenbs o.f the

original. ll'l fact, the. CO!! $f8Yd.i .. i'tt· 4enae6.·~ ~&lling ~~opyl OD ·

lhe or"iginid object, at\CI' ~tten cUUttg·!!UL f« •~h·· eOll'°W,mt,. mE>¥i.ag·

thtough . the strut!tu'l"e ttn>til all• the ~~ilWt•· h*V•' b:Ma 'copift• . CO!!

provid•• the staaurd .-.....-1-n fltr · ·~; It etlfftni: alt: of ttt•· obj.et.,

and ct;>pyl allow for c:raatioa:· of· s~1-11., 6t-.lior*4 ~tng, in wtricb

not all the: cODlpOmmt:a need'· to be copi:ec;l0• • ltt:~li• ~rcb the ·

<>perations silailar to cQptl all(f~ a~e <::ori• •l:..d'·t?ttjy ... full:..

. ' . . -

oper4tion: the con-hU.l~local.. 'the eo~x-~U~19¢ai.. op~1.-ati.on cop1e• .to
- .• ·,,-·~ .-.' . ," · .. -~f"':·-'·;.~ ;t~1<,"::':-·,~'c'.-:-,:::~!_· :' : .•',

the boundary of the co~text C()Ut~~l'l&;,.~~ ~,ipnal.;~~t. Fig.lire 1.4
- ~ ~ ,. ~ \.

original copy

. , - - .

Figure 1.4 An example of the coex=:ful,l•l.«:Al ope:rat~on. The obj•ct
lat.eile'l'"Wi t:b * is c~ted itltij; ~~ •J•tl 1--i.l.,'~ it\lltt 'and .the··
component labelled l is copied into 1." ~· The cGllpOnett-ta labelled 2 and 3
are no.t copied.

top level (directly or through other local components) of the structure

and in the original context are copied/· This copy operation complements

tb.e other two in such a way that the tlh!e~ 'pre.Wide ;the user 1'tth a' ·great.

deal of fluibility i.11 eopytlig coaiple:x data strtl(!1'1lre& across context·

boundaries.

1.3 Related .!2!!.

The model of a di'Btributed system uaect· i.n ~hf• :reaeal!'ch has been

influenced strongly by the work of SaltzerrHtJ, Liwmt ·et al:. [10,11),

and SvobOdova et a1. f):9} In Saltze:r' s work every ·object is associated

with a context or naat:fittg en•'il'cmnteut; «11' f-be ft811e8 ·or patnw.re in an

obj.ect are resolved with respect -to the context. specified for that

object. The purpose of contexts in Saltzer's work is to achieve what he

terms modular sharin$• A number .. of ideas from iiie work in CLU of Liskov

et al. UO, 11] have influenced this work. First, the work on CLU

presents a strong justification for abstractions or strongly typed

objects and type extension. Second, the CLU syntax and approach to

modularity in programming has p~ovide_d a baa.is f~r illplementation of a
< ' ' ,. • ••• ·1,·

number of the most important procedures for this research. CLU also

provides approaches to the semantics of _c~PY.in3, ~he ~opyl and £2e.I.

operations for arraxs at;ld records, as menti~ned previously. Both arrays
} • ¥ ., ''. • ' '.· '. • .~ ' -"~ :~ :

and records can be complex structures. The third strong influence on
c: . ' ·.·,· },,., . : . - ' ,.

this . research is the work on diStributed syst•s -of Svobodova et al. [19]
. . :·. :.~ -~:· . .. ~ . '··· -~ ;' -~

The model of a distributed system in that wor~ aa~UU1es guardians
;'.:g'.~ .. ~ .. <-~ ": ,,• :_-~: .. ·'.!-'" ·•· ,

cOlllmunicating only by message passing. The universe of entities in thi•

model is .divided into two kinds of entities, active, which are called

- 19 -

,. ·~"'

processes, and &tatic, ·called :&.bjoeet-9~ A guar.diaxt ie ~()OlpoSed of OJle or

more pi;.oceaaes and the local adclre.u. Sl>ac.e (t~ directly accessible

objects) of those proceaaes. 'Xhe loQe.1,-add;~ apapes o.£. &uax4ian:s are
I '" •

mutually exclusive sets of objects. A. process or object can refer

directly only to objects within :the saae aua~dian. Ac~o&s guardian

boundaries only processes aay b-e named directly; objects can·be named

indii:ectly by usiQg tQ-ken;s, .external name• £~ :ohJecta, passed to other

conte~ts by the contex.t contain:Lng the ol>Jec:.t,. .· ~· llO_del ~d in this

research is very similar to that .of 'S,vQJ>;odcwa et a.1; ., 1 ~cept that thi•

work. is eon~m;ned c.nly wi~ objecta, -~H~-,~~·"-••

It must be :pointed out that .a u-rie.ty iii -eopyd!o.g ·&lgorithuas have
. . ., .. ' ~

been dn,eloped :by other people :lnChr.de 1lboaa developed simply as
,• . :·l; '-.:; ,>. , ·'

copying algorithm• (for example b.o1th Clark. [3] and Fisher .[5]) and those
~ . 'i·-~ i ~

with particular func.tions in mind such as giu.iuap collection (for
j, 1 .• -, (.

example McCart'hY [12, 13) atid Baker lll . Although these ~rks must be .

considered i~ a development of yet another' copying Algorith1n., they

present a common problem. They all use tne'copy t~t i.8 being created

as part of the workspace needed to generate the copy. if copying 18 to

be performed actoaa conte:st bowtdaries, euch u~e of the copy iapliea

increased message passing. Because of th~~o~l: -Tn ti~ :and' greater

possibility of failure due to the need fat cooperation ·between context.a,
, . : ~ ' " . :.. '

.for the purposes of this research an alternative approach was chosen
~··

that avoids these problems.

- 20 -

The external marked database developed by Bishop[2] provi~es much

of the mechanism in his copying garbage collection for areas that our

message-contexts provide here. (Message-contexts will be discussed at

length in Chapters 3 and 4.) In our case the sending message-context is

the repository of the names of objects that have been copied (it also

has other functions) and the receiving message-context holds the names

of the new objects containing the copies of the various components, in

copying from the original object into an image and from an image into

the copy in the receiving context. Bishop achieves this in one phase

because he is not copying across naming boundaries.

1.4 Plan for the thesis ---------

The remainder of this thesis can be divided into two parts. The

first is a further amplification of the model of the distributed system:

this is encompassed in Chapter 2. The second contains the discussion of

the copy operations proposed as a solution to the problem of copying

complex structures; Chapters 3 and 4 present this material.

Chapter 2 discusses in greater detail the nature of contexts.

Three complementary views of contexts are presented: (1) the context as

a naming environment, (2) the context as a node in an abstract network,

and (3) the context as an object. All three views are used throughout

the rest of the thesis.

Chapter 3 introduces the three copy operations. The mechanisms for

the copy operations meeting the goals discussed earlier are presented in

this chapter. This is then followed by a description of the algorithms

- 21 -

betag·dene.

Chapter 4 investigates in gr.eater detail two .new types of objects,

proposed in order to achieve the copying diec.u.eed·:l.11 Cbapt•r 3. It is

then recognized that the si•pleat. •pproacn w· prov.1.4in1 copying for

typed objects is to provide. geue~ic; opesation• or pJocedur-8 that can ba

invoked by individual type managers,. Posa:J.Gle·iiapl..-ntations of the

ilaportant operation& are then pi;~d- .· One cO'l\C·lueton to be drawn

"'
from this work is that llOet of the .. chani ... needed fo~ copying can be

provided by the. systea to the uctiv-idual ~ea.C•tllh -~ct.1:\e :tOQll! of. the

generic operations, and that taezrefore.cineluiug ta.·type specific cppy

operations in particular t~ aana:prs ia aoc., very difficult ..

Chapter 5 is the coacludi·ng chapter of. tb.e theaie. lt SUlllUlrizes

the thesis, and then cliacnaaea poa•tble due4t:.titu for :iurtller. research

related to this• tlm!~.

>' '~_re.-'' : - ·. ' i

1 · ·"- -·','-

- 2.Z -

--------- -------------- ~ -

Chapter Two

Contexts

Contexts can be viewed as several different, but complementary,

classes of entities. As they were first presented, they appear to the

user to be namespaces. A context is an environment in which local

objects exist and can name each ~ther using only names local to the

context in which they reside. An extension of this view leads to

classifying contexts as nodes in an abstract network. The nodes can

communicate only by sending messages. It is also possible to

extrapolate from the brief discussion in Chapter 1 to the point where

contexts are considered to be typed objects themselves. Their behavior

should be strictly circumscribed; their structure and the operations

defined on them must be carefully specified.

This chapter will discuss separately these three aspects of

contexts. It will conclude with a brief discussion of how contexts will

be viewed throughout the remainder of the thesis.

2.1 Naming environment

Names are fundamental to referring to entities in a computer

system. There are situations in which the value of an entity is used

for identification, such as in an associative memory; however, this has

not be shown to be practical when the value of the entity has a complex

- 23 -

structure. Thus, we will asswa:e that each entity must have a name in

addition to its value or state.

A nami~ mechanism, if it is de•igned· Md implemented properly, can

pro•icle ·fle:ld.l>ility in two dir.-•fAJB•·•~'aockaMtri.,y, . .-4 eh«rin&• as

diacused by s<zer{l8). the achi•v--~t of.AOdu.lari~y in a n~i~g

mechanism meana that ent.it.iea caa be n-.4 (,coatainecl),..~y othe .. r ent.itiea. . ' .. · . . """'·· .

particular, if two object• l and 2.:u.a• th..$._. ~· 4 to. imply

different obj.ects, 3 and 4 rea"&:-tively,. thell ,}tbje~~- 1 ~d a).ao be

object 2; the refe~-ence A in obj•c:tt l,_lfQ,l, .Q.11~~o4't.;e ~j:ec;t 3, 4Jld.

the referenc·e A in obje~t 2 will •UU ia4'_k•fl.le Qb}Mtt.;4. ,l;/J ~~~d.

in Chapter l, Saltzer' • eoat.xt•U&J frOYi'iAIMJtlba,. fecUi;ty •.. OUr

context a are modelled after hi.• ia; ~- J:~\~·

· .. ·'

J:l~t ;~l·!:.t.~''.i<';:~- .'.: ·'·~'=r.:>.3 \.
having some form of access to i-t.o SiUe we previoualy: &tetiiti64 that

objects ace i.4e.~~ii~d by. Aaaa,,,1£,••~ tU-.f~•l4!..£1r4..,_• ,Jlr•.~JJ.•., for
,., ·.,

a Shu.a,_ QJ>:ject.,·.tjle7 llll9t.., •. ,Jt!le; l~:~l~.,-\v~-;~ ·~·~,,•••· .. : .

naaa.. 'l1wa at t~e. ti.a • ,;etoaaca ,i.a . ._ ,..,...~~~trJ,cular "~ti;th'

to provide this uniqueness of name resolution. At one end of the range,

there is a mechan·ililTI such u the refarence tree developed by

- 24 -

Halstead[6]. Reference trees provide a basis for relative naming. A

reference tree for an object can be considered to be a connected acyclic

graph. The nodes of such a graph represent those entities that know

about the object in question. A given node knows for each object which

of its immediate neighbors know about the object. Using such a graph,

the object could have a different name for each arc in the graph as long

as each end of each arc maintains the necessary information. It is not

clear that this is a useful approach to take, but it is possible. At

the other extreme, it is possible to have names that are unique for all

time. An example of such a mechanism is a capability system[4];
1

rapabilities are names that are unique for all time and unforgeable.

Finally, it is sufficient to provide names that are all unique at any

specific time, but are not unique for all time. The standard use of

physical addresses is an example of this. At any one time no more than

one object can have a specific address in memory, but the same address

1. Some capability systems, have been proposed in which the object
name within a capability is a virtual address and thus is not unique for
all time. For example, Bishop uses this approach[2].

- 25 -

l.
'•

can he used. ~y different objects at different t:lmes. This last

4)tpfbach is assumed in OU; madel; ,,alt the ~bJ'e~ta On a n~de will be

given names that are unique at aay givea tima.. the aanapmeat aud
:, '~ ~ ·t . ~

teaolution of n-.e• will be provice4 by the kernel of the node.

Within a node. eve• if tail aede.1- ~,·l•"~i c;9Gl~~r1 u•,f:d. by

only on~ ,person at a tiae, it .. , \le .. 1~@ef•l to .. IJ~,1·~e,,t;o .. cl.ivide t,he ·

world of obj.ecte i.Qto -.11u wodda. ·'nli!l ·"81 ,b, ;•iift>lf~:~.

convenience, or there may Q4a Ji!Or.e pt:N•~a ~~· tor .. i·t .a~ .&.jjl,,

security or coat.aimaent far verUicat.ioa •. ~ .• ~µop tQ .~ ·

overall u.aaiq -.vironmeu.t 1Jil ,tll' .,iocle._ ;.,._ :~ a~a,i~ -~ler
2 .

envirooaaats callad .cpi•&U-. ._•ica~lx,. •. coa~~ ,,.iJ.l .pr~i· a ll&Ple
> • - .,, •', ' .,., , ••• -> • ••'A

resolving ability for uaaea kaown .iu the),O'~f!J. ·-.nv~na.-Ut. into thos,e

names ua.ique to t1le W.ole ~de.. . l'be:.•1• ~- ~• •~.te~,,wtil,;be. clivi,~4.

into contexts, such that every object will be in exactly one context.

1. As a utter oi fact,,. in the. .itic• .,.,..._, t1-re are names of. all
three degrees of uniqueness. A sea-ant that is shared by two or aore
processes, prob4bly will be known o~ • 4Ufereat .. 111eut Bulliber in the·
KST or Known SegMnt Table of each proceae; thu there will be different
names for the same ae.gaant. At a differeat level ta naaain8 the sepent,
when a page of it is ia priaaiy raeaory.. if. t~ proc.._• want. to ace.ass
that page, their different naaee for the 'infobaat1oa they want
(different because of d:le differeat-t ._.,•r•l . .._t re•alve to the
same physical address. On the other hq4• if the ae ... at is not used
for a pe.ri.od of tiae it qy be mov.ed fr-.,pc~q .-.ry. od the
physical space used for something elaa; ttle p'11atca,l •ddreu aow aay be
an addreaa of a ,page of a cliffe.reat •aaa••t. lballJt uch aea-nt has
a unique naae by which 1.t can be recognt.Ud. Th_. ·last naae• are
capabili.ties; they ue Wli.- for. all t•• a:ad. uato~l•• They are
part of the infcn:aat:ioll &bGvt a eepeat ill a entry' UCi OT~.,. (Such, a
capab il,~ty SX.~& ,~D .Wi~ t.o , t~,~i....U.,Jll&~~~,;~ J'4~ ,,it~~~n,.tli<:l:J.
is a reusable ll&lle.) lor: a detailed 41~11 .. ~ o.f .'tb~--~t,i9s ·•Y.~t,m
see oraanick.[15] • . . ' ';• . . .• > '

2. Since this work is to a large extent hued on Saltz.er's work on
naming[l8], the term "c.ont:e:s.t'.' wa adopted.

- 26 -

When an object is created, part of the creation operation is the

assignment of a name local to the context in which the object is being

created to that object. The context is the repository for the knowledge

about whether or not a particular object exists within its domain. As

long as the context knows the local name and the storage name that is

associated with it, the object exists. Since it is the local name that

determines whether or not an object exists, and since the local name has

no meaning outside of the context boundaries, objects cannot move from

one context to another. An object can be copied into another context

but the resulting copy is a different object (even if the original

object is destroyed).

There are a number of reasons for using local names in contexts.

The first is that autonomy in naming is desirable, and often necessary,

if the distributed system can be partitioned or a node can be detached

from the system while continuing operation. If a centralized naming

mechanism were used, it would have to be accessed every time a new

object were created. If, on the other hand, the available namespace for

objects were divided, in particular, along context boundaries, each

context could assign locally the name for a newly created object. By

combining this with a globally unique context name, globally unique

naming can be achieved for objects. The second reason for using local

names for objects is in order to save space. Since the model of the

distributed system contains the assumption that there will be many

- 27 -

contexts at least one pe.r node and pcoba.bly more, the n.amespace for

objects will be p.artitiQl\ed and. .there.f~re the naaes .e~ &e ~ller.

As mentioned in Chapter 1, all objects are typed. An object of

ba11e type can be considered to contain i~a valuea, while·one of extended
' .; .. ,, ' ' ~ "" .,. .,~

type, any extended type, can be viewed aa ·~ ii,t of ~-. of the

component objects. Since an object will reside i.n the same context for
" , J •• '

its whole lifetime, the names used for the components can and, by

assumption, will be names that are local to that coatext. Permitting
'. ' ·. ',' ·; '-.~ ... :' ! : '; '.

objects of extended type to contain only local namea provides a simpler

and more elegant model than allowing two different khd~of.' ~es,
depending on whe.ther or uot the n-.d coaapo•t Js . .lAJc.al ot foreign.

The si;aaplifica.tion b con~tual aa .well u iQ ~---ntatipn. In

addition, using only loc•l ~s all.~.fo~ .tn.. ~llJ.\µ.\·1~· o,f using . . ~ .. . '. . . ··.

capabilities pr<>.v.ide.,d by the loc;-1 ~1\t.Pt.. ,_., .acf41UQM1,,p~oi.e.c~ion

beyond what aig~t be provi~ by. ll1=9'tec~i• ~radpta. ~d. ~

mqsage flow .a.t tba con.t;.extr bound~, ... ,-. qbj,~~ ,~,.t' .-tentkld

type contain11 Qnly a l.ist of J..o<;Al DafM¥1,.: ,

The fun~tion of the context is to resolve the names used by the

objects of extended type. In those cases
0

where it is desirable,

containment by naming foreign components should be 8Va1iehle, that is,

objects that reside in another bontext~ ·Of ~~~r~e, etnce: as was stated

in Chapter 1, communication between contexts can only-be done using

message passing, the names of foreign coaponeata can only be received in

messages. It is also the case that such foreign coaponents can be

accessed only by sending a message to the correct COllteJtt containing a

- 28 -

request to perform a single operation on the object. If names of

objects can be passed outside the bounds of a context, objects can be

shared across context boundaries.

Now, it was stated that names within objects are only.local,

resolvable by the local context. This means that contexts must be able

to contain (map from local names into) two forms of names. One form, as

already stated, is the node-wide name to be resolved by the kernel of

the local node. We will call this a storage ~· The other is the

foreign name that needs further resolution; the current context is not

capable of such name resolution. This kind of entry will consist of the

name of the foreign context and a name that is local to that foreign

context. The implications of this form of containment for sharing have

been mentioned in Chapter 1 and will be explored further later.

2.2 Abstract networks

We now have arrived at the following situation. We have a node

within a distributed system. The naming environment that it defines

contains objects that are all uniquely named. From the point of view of

the user this world of objects is composed of partitions which we call

contexts. An object exists in exactly one context. Each context has

the ability to name the objects it contains independently of all other

contexts. All communication among contexts is exclusively by means of

message passing. Thus our contexts are taking on the appearance of

nodes in a network, resembling the abstract network postulated in the

recent work done by Svobodova et al.[19]

- 29 -

Contexts allow fQr two t,ypes of ,protec.Uon. First, they provide

a simple means of limit.ing e:r;'r·or prQPAP:t.ion. .Second., they allow

itlfll811$-utation 0:f arbitr•ry -pxiltecu.- ;CQnfit·ratn\a on the context;

authorization to have messag• proeeeaed and oper.tions performed in

one; s behalf within a coatext can be constrained to any desired degree.

The seeond type of prot.e(lti®- aakes .. tlut f~lit poasiitu. As long as

messages are not sent outside • .~ontot, any errors that .may occur

inside. the context will remain eon~i-4 w!tM.11 it. If error• cause

messages to be sent., prov;~di~ ~Q~ata ·'ift~· the ability to i>rote.et

themselves to any desired ~ar~ mea&ls. th-.,. ~ey ~- ~ect th•selves

from external en:ors,.

Drawing on the comparison of coat.e~ta and nodes of a ~twork, if .

two processes must cOllUIUD.icate, it is necessary to consider whether or

not they are running within the same context. A procesa·executes

procedures, and s.ince all procedµrea are ObJec:ts ~4 ~st vj;th_in a.ome
. ' '• .. " .- '

context, the proce.-e aua~ be by de;f1-:i.ti® eucut.J.aa a ll1'oC1tclure from

within a context. (Ve will avoid a dis.cwieioa: about. 'Wb•th•r .. or not th•.

con~xt in which a. prope.a11 r1,11:1s .ia .f~d, for t\le: U.~4 of tj;le, P.roc.eu or

not.) Now if two proceasee ue •ecut.ing, Wf...thia tb,e -.e .context, they

can comaun icate through a shared d11ta obj e.ct. fhie. .. is i;io.t to say that

thb1 is the most desirable fo• of c~~.at:J.~n. but· that it h

available, Oa the ot-er bud,, if two n~e~'8• .1.J;l aepara~.~ cpJi.te~t.s

wish to cODU1W1icate, tlley have ~o do .,it 97 m.eeea.ae ,.s•~a~ We a.re

viewing contexts as abstracti011• of riode8, &lld tt.ave post.Ulated t.hat
' •' '," <_· -·. ' . •

processes coauaunicate between nodee by sending .e:aaagea thtoup the

- 30 ... ,'

canmunication medium. Thus sharing an object across context boundaries

exaggerates the differences between the two kinds of sharing; if an

action is to be performed on object l, which is local to context A, from

context B, (1) a request can be sent to context A for the action to be

taken at context A or (2) a request can be sent for a copy of object l

to be sent to context B in oder that the action be taken on the copy.

These two forms of sharing have existed in situations where direct

access was possible from both sites, but message passing accentuates the

differences.

2.3 Contexts ~objects

As mentioned previously, the contexts must be nameable by each

other. It was stated in Chapter l that an object has three attributes,

name, type, and value or state. In light of this definition it is

possible to consider that contexts are objects, in the same way that

other types of data are objects. There is something inherently

different about contexts though; the domain of the names they can

contain is different in nature from those contained in data or procedure

objects. The latter two contain only names that are local to the

context in which the objects exist. A context, on the other hand,

contains storage names for those objects that exist within it, and pairs

of names (name of another context and name to be resolved within that

other context) for those objects that are known to objects it contains,

but are not local to the context. Thus, context is a special type of

object. It must be a basic type since it provides one of the interfaces

between the user and the kernel. We will see later that parts of the

- 31 -

kernel must be able to acceaa p~t•.f.lf ~··~~t~;x;t_tl)'etnanager •. ~n

Ch.apter .4 we .will di.ae,uaa thoee ope.~.•iQ~."ffC~. t~ .. ~.Jlt• ~(i)ntext t,ha~ ."8

will .n~d to .achi.&Ve ·.the ~otYioa. dt•u&Mld.,.J.,n, ~Pw.s.,;l u.d 4.

- .r

This chapter haa .~U.K_.d,..,i:·hJ'iu. ~Ui.i:~,,~f.-eo.t posacible

views of. CQ.D·textcs. .As,,¥iU ~ c.l.9&r.~ ~~ 3 S,ild 4, n. :will.

use all three sU.Ultaneoualy. A cQQtext contai&l.s ,the object we }fish ~o.

shar-e by copying. In Qrder to ac~teve the. ~opyiM, ~t is neCe.ssa.ry to

perform. soae opera·tiona oa coa .. •xts. •• _.j~ aad 80ile~iaes: r°equest

that con.texts send_ .. ,.,ff- •c;h ~;:~,~~· ;~~r~-~~nents

as part of copying. !f4l-. Ye· wUl •lit# . ..-111-:t·~ .4:ilf.e;~t:·Yi•~ of

contexts without being1 explicit al>out it~

- 32 -

Chapter Three

In Chapter 2 we developed a better idea of what a context is. In

particular we can imagine contexts to be nodes in an abstr•ct network.

Inside each such node is a n•espace conta~ning objects. As mentioned

in Chapter 2 contaiaent and sharing of com.ponenta can occur across

context boundaries. It is also the case that procedures can be invoked,

requiring parameter passing, across context boundaries. Finally,

multiple copies of an object for reliability and acce•sibility must be
-'. s

l ~ .

considered. In all these cases copying m.ust occur when context
·-'"''

boundaries are crossed. Therefore, the semantics of copying needs

investigation.

Copying must be clarified; if a copy of an object is to be created,

it must be indicated precisely in which ways the original and the copy

are the same and in which ways they are d:l.fferent. Clearly, the values

should be the same. But also, the behavior should. be as similar as

possible. In other words, if an object and its copy are in the same
-·1' ..

state and the same sequence of operations is performed on both, they

should be in the same state afterwards. This means that any sharing

that occurs in the structure of the original should also occur in the
1 ".,

copy.

1. As we will see later CLU(ll] currently does not do this.

- 33 -

As mentione4 previously, we wi.Ll p.rovide several different copying

facilities. ln a sense., the matt baa.,ic cop.y operation is what we will

ca11 copy-one. 'Ib:is c~i.es juat .. .c.he top level of e object of extended

type. The other c::opy opeattona eG.tld in es .. ace ·be built up out of

copy-one operations.· by 111Xplici:tly ·~ting copy-one f·or each

component object. The se.cood ts the moat encoapa&&iug, cQEy-full; it

involves copying the 11lhol:e Obj'ect, .the eotliplete structure. The third is

something between the tWG, coey-ful1-lec:alo. lt involves copying just

that part of the Object that ts local to the eontellt containing the

object itself. 'there operatiaaa will be dtacuseed ia detail furth.er on

in this chapter and 111 Chapt•r 4. Cona.ideiration of the apparent

relative usefulness of the three operations is postponed until Chapter

5.

There are a number of goa,ls to qep inmind, while exploring

copying mechani••· First, since tbere v:Lll be raore tbaQ. Qne type of

copy operation,. we ahould econoai&e o m~, sad attempt to provide

a single mechanise to achieve all the copy operations. Second, siuce·

all passing· of infoi:matien from oae .·context to another only occurs

through messages, the 118Chani81UI should keep down the quantity of

separate piece• of info~tion that must move between the two contexts,

in order to keep the nuaiber of messa1es under c()ntrol. Thus, the

representation of several coaponents can be packed together in a si11gle

message. On the other hand. it seeas useful to copy an object

piecemeal. There are three reasons for this. First, this will help

reduce the amount of buffer space needed at both ends of the message

- 34 -

passing facility. Second, it will allow processing at the receiving end

to overlap with sending. Third, it may' t:ed\ICe 'the amount of inf'ormation

that may need to be retranlllllitted, ·aiD.c·~ the 'bigger th~· ·al'~ssage, the
• ·t;.:- ' { .: . • ·~ :: •. '. ·. ' ' • ;; ~ '. •

_higher the possibility of an error. Both cif thesti become important when

a large aiaount ·of 'information iDust· be passed d~r'ful a ~o~y ~pe~ation.
• , -"J ~

It must be re11ember.ed that since we are a~~paiqg ttult, •l). objj!cts
'! • ! ," • " .~ •• ' i ,·. : . _ ~ ' <; - - ' -

are typed, an object c,an on~y be .!llan-~p~~t~d t,l11-:~}'&ll. use of_ ppet:ations
·, . . ·_ ' . . ·~ ~' ... :·

defined for its type •. Therefore the ~9PY ,~ver~t;~ou~ must_ ~e d'ti~~d for
' . '. '• <. ;_ < :

each type of object that may ever_ need tp be c9p~e-~1'. or ,fhe_ ~ther '!;land,

a different kind o.f copy_, an intet:nal one (creat~~ge). ~ich wU.). be
• • - < r ' \ ·· ~ .. ,.:: j I ' '~' , I .,,' •; ' ·~ ~ ',,. , - •

discussed later, is sufficient for typea that are and will be 011ly
,, ; .. :~ .· ,'>,-:: •.":" ~, .. _:J ~{:~- : ... ' ' .,._., .. t

components.

The chapter has the following plan. S~<7~ion 1 provid~s a br~ef

description of the copy operations tha~ e!':!•t ~9J; ~~e ~~:J.c; types of
. ' . , '· .. - t f! ,, ·~ ' ' 1.. ;:,

RECORD and ARRAY in CLU(ll] since our CQPY"':'()O.e anc;J copy-full are ~ased
, ' :~·~ :, .:< . ' . ' - ' , , '

on them. It also diacuHea otti~r cop".~~f,:•1:~9,J'.it,~•~ .. 84!ct;ion 2

introduces the .tgorithma clevelope<J ,i9;,.;~hAf i:•~~·r~b~ . Se~tions .J a.nd 4
•.'I • . ..· . ·" -· .• ,. • ., ,. '

develop the details of the algorithms for the aea41ng .•nd re_ceiving
; ' • • • - ' • ~- ;'_. [• > : '.' •• ·:. :: ~ '"j_ : ;. .·, ~ -.· ": '- .) ' -. J • '

contexts involved in a copy~ ~ de~a.i~e~··"~\e, i4 ,Q.r48QQ~e.d in thea~

two sections.

3.1 Exiating copyig alaorithms

As we have mentioned previously. CI.U[ll] prqvi,_d,y a. good. l>a,s~ f.or • . • ' ' > ' l ·: • ' ' • • • :: < /'" ~ ' ' f ·, ;, ., ~~ :) • < I

discussing copy operations for extended types. CUJi.1t-& strongly typad

language. This brings· wi:th ft the ittapltc~.qon ·t:~~~r all operati9ns are
,. ; ' .,,,_

- 35 -

type specific. This means that there are no generic operations that can

be used on an object. On the other hand, copy operations are defined

lot tllOSt of the basic types o.f abstractions and type generators. The

two types that have interesting ~opy operations are ar:rays and records.

these are actually generato'r&" of infln.ite classes of mutable types of
1

ob"'ects. (This means that they can be used to generate types based on

any other types.) For each, array and record, there are two distinct

copy operations, copyl and copy. The semantics (and implementation) of

the array$copyl are the same as those of the record$copyl. The same is

true for array$copy and record$copy. Thus it suffices for the remainder

of this discussion to use the terms copyl and copy.

The simplest way to describe the behavior of the two copy

operations is to giV'E! an eumple. Figure 3~1 depicts. a mutable object

in CLU. The object contains two· parts, the h.aad.er, containing the

description of what is to follov (Specifically, the reptype, Which

indicates the form of the representation of 'the object, and the length),

and the actual repr.esentation ()f the object. this figute depicts an

object that U a list of references to other obj~'cta. A ref4!rence is

composed of se'Veral flag bit-a~ sometning under TO bits to describe the

type of the object named by the reference (this actually is an index

into a table of pointers to descriptiot'ls of ty,pes), and the addteas of

the object. The copyl operation C!reates a new object of· the same type

having all the same references. tri other Words, What is returned by the

1. We are proposing in this thesis three additional mutable basic
types, contexts, message-contexts, and images. The latter two will be
discussed in detail in this and the next chapters •.

- 36 -

' ~ . ,,

CLU object

rep type length

flags type address

.
• references . I

Giobal table

. .

. Type description

. '· .. ·

~ -...
c . . .

Fi;sure 1:.1 A mutable OLU ob~ect of exten~ed ty~e~ The,beader contains
the reptJPe, in this case' i-efere11ce~. ''Snd 'the "length,' 'tn tb'is case 'the ..
~'11Jb~r of referenc,e~· 'tbe rep't-eS!'J:l~f~:l,.on ot thtLo,\>j~c~. is the .l~st .of
refe't'ences that fotl'ow the beadeJt. '''The 01.ily pla¢e tri Which the tyPe of
ati object is stored is in a reference naming the object. " ' ' ' . -; : ~ . . , '

copyl operation is a_ new reference ~ving .tl\e &811le type as the. original,

but a differeri.t address, and, the objec.t ,at ~~is .a44r.ess nas the same

contents as .the origj.na~ object, i.e. t~e .new object wi.nts to. all the

same objects the original does. Tpe copy works as fol,l.ows. First, a

copyl i.s performed Oll. the qbj ec.t to be copied. Then ~ch Jeterence is.

picked up from the new object, and a copy operation is perfol:'lll8d on this

- 37 -

1
caaponent object. For each coaponent. as .it is copied, the new

ttflrenc.e is us.ed to replace the old 011e in ~~~ CeP,J'Of its. c<>ata+~ng ·

object. This prcx:ess of copying componeata een£i.'ft until copie11 li~ve

heat made of all the lowst level baei.c ':JPe objecu.

There are several pTobleme with the cqpy operation. 'l'he first one

is a semantic problem. . If sharing exisu •thtn a ~d and the

record$copy operation is use:d, this shariag will not be ~resent in the

newly created object; an object th'at is *8re4 by t• compc>'Hlltll wtll file

copied twice.

that of the origiaal object' uader all operfll'C'il'R:'lje for. the ~rti-cular
. . '· .·1 . ' '

type. In order to achieve shar:blg that will b• ~opted, a .ftff•ren.t copy

'operation auat be. iaplmeaud that takes copizanee ol whe,J'.e ~rina is '

to occur. ?De. aecond problea aria .. froa the. ~ticm of'·ttre CLO

enviromaent in general. The lifetime of an. oltject 1• ao J.onaer t\\au the

lifetime of .the p:rocea• tha~ cre,atecl it •. ..,,¢.1',.0.f,i:~.,ouect ·~·.:be

saved in e_ome fom in aecondarr atouge,; ~·t' if ta. ,riOce..e th•t cr.-,ted
- - - • - ' • " < , -_ • ·~ f,. ' . . ' ' • ~ ' .

the obj.ect die• and a new process want'• to retrte•~ 'the iiilQrtatadon. it

will by definition be in a aa. object. 'J!be·-ll89cl to identify a

object 18 ull.i;,que at a given time lsy virtu,&_~c:il tta coni.;f.111"1 an &ddr••.

When the state or value of an obj.act ia stare.cf or ea~, all the

addrea~ are iaodif'ied ao as to be telati'Ve· t:t> &oilMi' .. ad:Clreaa

attachecl to the el\tit.y being: stored •. · Tliu the U1M• ~ed tiy a pioce8-

f.or obj'ects' can never &•t into· aeeolid&Yy 1al~~'.~' •-f 'ia Objfict 'ta

1. Thia description co.nforma to tha iapl ... ata·t1oa of CLO on the DIC20
system at the Laboratory for Computef Scieace. •Mn'.

- J8 -

retrieved from secondary storage, it will be given a new name or

reference (address) based on its new position in primary memory. Now

the object really has become a new object having the same structure as

the old one and which might be considered to be a complete copy of the

original. In this thesis, the assumption has been made that an object

can have an existence beyond that of the process that may have created

it. Therefore, the object must have a name that is not tied to the

creating process, such as an address in the primary memory allocated to

that process. If the name is not tied to a physical address, we can

arrange the naming mechanism and its interface to the storage mechanism

so that the physical location of an object can change without changing

the value or content of the object.

In ·addition to the copying provided in CLU, other copying

algorithms must be examined before devising one to fit the particular

needs of this research. One approach that must be considered is the

copying done by various garbage collecting mechanisms. An important

such algorithm is that suggested by McCarthy[l2] and then later used in

LISP l.5[13), MACLISP[l4], and other list processing systems. This

algorithm passes over the information three times, first marking all

cells still accessible, second compacting or moving all the accessible

cells into contiguous storage, thus adding all the inaccessible cells to

the free list of available storage, and finally updating all the

pointers, so they point correctly to the cells that have been moved.

There are two problems with this approach. First, because the algorithm

requires three successive complete passes over the structure, one in the

- 39 -

old location, one to.move th,e data, and one in the n'w location, we

would not be able .to achiev• m'i!Ch ov'-rlap.pill(l, .o.f pr~eaaing. Second,

this algorithm requires manJ ~u;.e 1JlU&qes th~ n~e'~·1 a.s will be

seen later. Anothei' approach to s•~bage coUec:tiop. Q.aa· .been developed

by Baker [1): real"."time ~rbage eelle,c:.ti~, '. ~~.in., ~ witb the

algorithms mentioaed above, the orta!na~ obJ.~«;t, 81!'~ co•ponents are uaed

to store the name of the copies. If we are to use , an. app.roach such as
' ', .. ••' ., ' . . ,·'

this, additional message passing would be necessary.

On the other hand, Bishop h.as develo,_d .a llecha1daii similar to

ours [21 for his coapactiua garoa.- collec to;. P'oi'- aiaplicity he does

not modify the original abject. being c;.opied, but rathet' maintains ati

external marked. databa•• t.lla.t mape th&. ~·, caf ol>j eets. into. th~ new

copies of these abjects. An -.try: i~. t~i~,9'~ b"e,;fo; a,partic~ai.:

object indicate&; ~at it h4S beea. .co9ie~ an4 e~ovid•., ~e n•e of the

copy.

function, althq.ugh it .. aleo ···~~~·· .t~~ J.~~.9J ,fhq'8 obj.ecta .to be

copied. The. reason for this is t:hat Ji~hop f«?il09- eaeh,path to its

end, thereby cppying.the lowest level. coa~n~n.ts fir~t, in fact, and

ending with the top level object. In this thesis on~ of the goals is to

send images as . quickly as possible, . not i,n;vnkin. the . ~opy~ng recursiv~ly

on components;. therefore the message-coat:.4!Xt i:-il th~ 1'-8811& of r•tain:t,.ng

the information about which co;aapon~ts ia~d copying•

Other algorithms for 'copying list structures have been developed by

Fisber[SJ and Clark(3]. The purpose of these lllgbrithms is to copy an

object of arbitrl.ilrY size in a work.space of bounded size. In both cases

- 40 -

---~---------------~-~------------

· in order to achieve such a goal both the original object and the copy

are utili.i:ed·by ch•ging the val:ue& t.!Q= ea~h".nl.tit>le" 1d.mes. the11e

algorithms have t from· otir paint of. v-ullr pf;-bb'l.'iin• allt11.a:r to "thee: Qf

the garbage colleeti:fim; •itorrtthas. ,;'ftiail ... ;'W8J!foad:i,t ilec~y ;to:.

devel6p otit ewil·» ~i- ·.foi- '8'>~118· l!J· dlfl-i Citatl•: in· Wh~ll all ' :

c01Ulua:tcation -take•! pl~ tbroup· ._.._ .. , .. ~;;•••·' Lt: t& ~•i•&M.•; or

eveb' ~8'8U'J to. aead Jlia~c:Pf th• eo191 ---~ ia· •eparate ·c:.

11essa3es. ' " .. ~ .

'_ ..

• ~ • 't ; C\

This thesis will prc>v:ide t;hree varieties of c~y operations~
~ ' . ' ...

of them are very at•U•r ·to the t<119 pr~itlect by CLU aa diacua•ed in the
• - :

8

• .: , ~, :~ , - • ,;,·. · -~ • ·-~ /J~ /-});.~ :.. ;·~-:t ._+ .:: /;~~:-.;·~ .. ~1 ,;', i~ ~-< -,~:.:-;; .{ f~ 1 . ., ; - : :_ · - : ~ f ;·z ;~ ~ ·~ h

preceding section. Two problems were broupt ~ in relation to CLU,
: " -·~· j ;

first, that. CLU does not. recognize a~y sharing withi.n an object, and,
• ' I t'~ .~~. f~ ;:,' ' (' ?} _ ";.- ,-,~ • . .! (.: ','.:' ~~,- ~

second, that, as can be seen in tlle uM.iq Mehniea,used in CLU, aa

object has no exiatenca without the pi::pceaa that created it. We are
:' I ,j/ f ; <;

assuaing that an obj.~t has an exiat,eace tied to i.ta context instead.

As we hA•• ,dd.M •• d, pr·•toutal.~,·-fMatredr,,...u·euh 1ocal·•aaae' in •·

conuxt "111 tJe a:a_. •f one:· of tire U11fwi:~a ful&::· . ._',pair:o! the-0 fon.

{contest, local nae}, ~r~ a atoralt''il-.-~tlat' uM.1tal1 tiletiti!fies ttie:

.object to the;st~rqe uitaget U1 ot~~-tn•t ttie,,;ibject cah actuall:J;t;e ·

a~ceeSid. Also, as Mntiened,;.·Jretioust,Y• Wit.tu· h ':•l•~ r.• allaHd::,-,flj'. '···

~atng) ·by tlfo·.eaapeiilanu 6f::Jd.otzhir dllJict •1•'115 lll'·6•fng 'cot;f.e-d·'tiat ·

- 41 -

We will call the two copy opera,tioua that. are modelled on CLU

copy-one and copx-full. the tnir.d copy ope.ratioa ia tb.e

Cil.r:full-lec&l. Thie 09erat.ioa L• the same;. a.e th• ¢t>py-full e¥Cept

that only tbe original object aac1 •. those ~~nt# o.f tt in the aa.e

cottte•t aa die origiaal el:tj.ect wi.Ll \M ~. •~, U>r. tae foretgp.

components only the nae• will- be aent. Agaia. t'\M b•t way t& espla:i.n

the details of these operations is to couidec • exapl&.

Let us first consider Figure 3.2(a). 'IU~~,the reMia.· 4er of
' .. ~ ·~ ' . . '. ,. : .', , ,

this thesis the abbreviation ''L-N" will l>e .uaed for "local-name" and
;, --., "

"S-N" will be used for "storage-nae" tu naai.ng objects dur.ing the

discussion of examples and figures •. We wieh to copy the object in

context l having a local name of L-M 18 to context 5. Figure 3. 2(b)

shows the structure of the object L-H 18 as a block d.iqra11l. Noll, in

order to perform a copy-one ope.ration on L-l!l 18, to create a co,y in

context 5, four names local to conte~t S •u•t lte cholien (here L-M
•• l< ,. <

31-34). Figure 3.3 depicts wh.at wil.1 he in coat.ext 5 after the copy ... one

operat;Lon; there will be a copy of L-tc 18 of ceatext l and for each

local name used in the copy in. coo.text. 5 .thue. ell' be a r.efKeace hack

to the original comp<uteat. ThU8' th.e first naae, . .mu. iol.l!i>W84 tbJ'ough,,

points to L•N 8 in co.nta:itt 1, tke aecoo.4.. to L--N. 12 in.. cPntext 1, aad.

the third to L-N 9 in COD.text 3. The- U.ret tWQ cao. b~: r;eeplYed io

storage naaes im. context l, bll'l. the thir4A~aa *1lY ·in ~ontext 3. i'iaure

3.4 preseats the copy-full OJ;!. L-N 18 of ,c•e~ 1 ••. ;a this cas• all ~he

components have also be.en copie4, an U!ff loul. _.... ~e needed in

context 5. Now, there are no references back to the c:>riginal objects,

- 42 -

context 1

L-N 18
L-N 8
L-N 12
L-N 17
L-N 7

L-N 18
L-N 8
L-N 12
L-N 17

L-N .12
n;:NSl.
lJdLzJ

context 3

S-N 1
S-N 2 L-N 9 S-N 5
S-N 3
context 3, L-N 9
S-H 4

L-N 8
I value I

L•N 9
I :value I

L-N 7
f value I

(a) The names in an object, its coapoaenta.; ancl the relevant cont•xts.
The con:teJtts eontai11,,••Pf~p,bacweta. ~al:....-P..ani,.acorage.or full
names ali Well as objute~n~., '•ai fl&-lfJf ·--··al>t.••~tadoaa for;
"local-name'' ·and "atorage-n•e" respectively.

(context 1)

3).

:-,'

(b) Black diagram of the· struct;ure of the object L-H 18 of (a)

Figure 3.2 An example of an object.

- 43 -

context 5

L-N 31
L-N 32
L-N 33
L-N 34

L-N 31
L-N 32
L-N 33
L-N 34

s...;N 6
context 1, L-N 8
context 1, L-N 12
context 3..a. L-N 9

Figure hl The results in. context 5 of a cQpy-on• on {contextl, L-N 18}
of Figure .l •. 2 to conte;&t 5 •... Tlie.1c9.at-t~ c""ia• •11-A8".t8 ~e well as .a
mappiiig betwe• local-•. and- atc:n;.ap, 01'. t•tl>---••: "1,;,..,Nn .and ''S-N"
are abbreviationa for "local-a.-" .aad ''et.ot...-.na.e'~ rqapectiv:ely.

context separate f.rom the rest. On the other band:sharing has been

maintained. Figure 3.5 depicts the copy-fuli-loe-1.~·ou L-N 18 of c<>ntext

1. Here again five local names ati>e, tt~ 1* ¢on~xt S~- but the

component that was in context l, since th~t 'is not the con:'text 'that

contained the object originally -b~ing copiSd~ was ~ot copied. Only 'the

name of that object has been l>as&ed to the reeeiviag col,!tteKt.

At each physical node in the system, there 11ust be in addition to

the set of contexts residing there a kemel that Jl\q)ports such basic

functions as message passing between contexts, 'eOl!lllunication with the

hard~are network underlying the systea, storage managennt, and

allocation of other physical resource& that are shared alllong the

processes running in different contexts on the same node. A kernel will

- 44 -

context 5

L-N 31
L-N 32
L-N 33

'L-N ·34
L-N 35

L-N 31
L-N 32
L-N 33
L-N 34

L-N 33
n;:N3fl
Lld .. ~J·

s-11
S-N
S-N
S-N
S-N

6
7
8
9

10

L-N 32
I value I

L-N 3
I value· I
L-N 35
1·value I

Figure .U ']!be results in context 5 of a copy•full on {context 1, L-N
18} of Figure 3.2 to context 5. The ce)ntext contains object' as well as
a-~.· ... ,.bM:wan:·ioea:lf,,d. sto~1*"r%U:' ~.-.i n:11~0· aad·.' ..
"s:-N'.., ·aff ilborenadiotta' to~' Hfoc41"1..a'' 1Mill~"';titorale4iaiac!'r 1

· -

reSpectivet)". · · · · ·. · . • · .. ,, •. ,,r; '.: ., • ··-: · · ·.. ! •

also provide· aeehani•• for enforcing securf.ty · coot-ratnta or·· the

contexts it supports.

In copying an .o't?je~.t f~01" oQ.e. cont~xt .t~ .~.tJi~, .im_a.a~s 4,:e

created with.in the &ending context a,s P.J:~i~µsJ..y .~iacri):)ed. They ar~
• ,,· ' 1 . ~-- ' . ·~ ~•-.." - .

then passed to the keme~ of the sendi~~ coq~xt., .. W~ .will pos.t.~ate: ~
' (" ., , -· c" ,• ' •

message handler that deals with all the problems of passing messages

among contexts on the local node and into and out of the network for the

- 45 -

context 5

L-N 31 S-N 6
L-N 32 s~N 7
L-N 33 S-N 8
L-N 34 context 3, L-N 9
L-N 35 S-1 10

L-N 31 L-N 32
L-N 32 f value J
L-N 33
L-N 34

L-N 3.3 L~N 35
L-N 32 I value I
L-N 35

~-· .. • I

Figure>~ the resuµ.a. i~. cpa~~f;: ~. ~f .. ,..1!f>BtAMl~~ .. 011. {.~ l;t

L-N 18} of Figure 3.2 .t.o 4:ont~ 5 ••• '.flle~; ~~··AA.1«t• as· ".
well as a mapping between locu, ·~• •4: •t.4>r.age. ot ·full ~"· , "L"'!N ·
and "S-N" are abbreviations for n1oca1:...nae" and "iltorage ... ti.ame11

respectively. ·

1
local contexts. The message handler must detaraine hov to find the

receiving context• If the teceiviq con-.t is on the same .nocle, the

network need not be involved at atl'. Th'e dlea"8•& ·pass•d out of the

sending context Will siinpiy ·t>e pa'ned cUr~tly to' the receivftig conteXt.

If the receiving conte:ict is ·no.t a.· 't'he :local node', :ttMi ~~s4ge bandier

1. We are assuming not only that the architectures of all the nodes
are the same, but also that the specifi~tion and illpleaentation of the
extended and base typea of objects tha:t cfui be cop.iU are the saaa 911
all machines. By this we mean that the r•preaentadou of an object of
extended type will be composed of the .ea.a component types on all nodes
between which the object can be copied. The piobleae caused and avoided
by such a restriction will be discusaed in Chapter 5.

- 46 -

. ..

must prepare each message for tranS111i8sion through the network to the
l

correct node.

The procedure that will be followed will be-' s!m:t'.la:r for all three

types of copy operations. When it bas 'b•ea 'deC'lli*d that an object is to

be copied; the first ·iltepwill be tt> crea~e·a:ue••je-colttext. A

message-context is an entity that is gtCA;a611' and''"1'ill have only a short

lifetime. It is a mapping between the index of· ·an· entry a:nd the value

of that entry. An entry is ·created as fell!ewst each 'name in 'the

or:l.ginal ®ject will be examined·to·tf.rtd·the full 'name~ {context name,

local name} pai~' for it •. • This will 'f>ecome :an entry in th'e

message-context if it ia not there ·alrady. 'l'he·attj' associated with

it\deJl 0 11111 be the full name of tb'e' top lev'*'l object beixig copied.

Me-anwh:ile an image of the object vtlflte cre&te'd 'having in place of

each name in the object the index of the ·entty in tltl!' measage-conte"t

containing the full name of the component object. _The image of each
' • ~'' i

component will have attached the index used in the message-context.
• < ~' , ' .- .-~ ,• ' • •

Each object will also have the type attached. When an image of the

original bas thus been created and an entry for it has_b~en made in the
'.

message-context, it is ready to send. ~t this point an image of the
' - - •, :-. :1~i f ·:-'. • ' •

i

next object named in the message-contex;t is created in the salile manner
l 1;-~ ' / : ~

1. Thia work does not deal with the co..uni~tion protocols of the
network,. 'although of COUTSe the dt88'SaJ8 '1:Uthdl'er" ft~l know them~ .· The
copy operations can know nothing about the•e preaec.e:ls nor about the
degree of reliability they provide. We will discuss reliability !!l a
later point. ·· , · ' · ·

- 47 -,

~s the top level object using the same messag~context, thus adding

entries to the end of the aesse.ge.,..-context when necessary. This is

rapeated until .an image has been created and sent for every object named

copy-one operatiQn, the ,copying .is oalyvpe~f~. QB ··the to,p level

object. Once the image of the obJ~ct h~ be.ell l!peat 9 .all image of the

message-context must also be sent, <in orc;ler .t.o .. c•~t4' the col:'rect

entries in the r.eceiving context -fo~ th,ce.;aaaea in .thil e>Q.ject .being

copied. For a copy~full, once ~es. ,for aJ,,i tb.,e c.QllP.Qti~ts .have been

created and sent, no.thing 'llQr• ,!l•~~.s .t.o .'b~ ;~t. ;'lhe 11eU4g&0-c°'text 1-s

of no more uae •. Finally, for a copy ... f"1ll.,.J.ocaJ. Qper.atiqn, all the

components that are in the sending cont.ext w:Ul be cop~d, and. a part~al

image of the message-context containing the indices and., entries ,for .the

foreign references •uat be s~t.

The image created for each object co.pied will have a two part

header. One part is the index of the object's 'name in the

message-context. This would not be necessary if we could guarantee that
• I ·•

all mes.sages would be receiv_ed in the same order they were sent,
1

however, such an assumption WOt.Jld be to_o restrictive. The other part

of the header is the type of the particular object to 'Which . the header

is attached. Again this should not be neceaeary· in t108t cases assuming

that messages are received ln the order ,;11-8'1.t-~ ~e rea•on fo.r. this i$

1. This assumption would put additional burden on the lower level
protocols, and since the overhead of sending the index.is low~ s~ch an
assumption is not considered necessary.

·- 48 -

,,~,,-;:.-:_ : : · :··~, ' _,J;.,~~,~":··~.;+q?:'~~" ~'"'•">·~~ ' ::>"~:;,·; :!:, :/~~~·'' ~.>··,;P.",-~·~,;.-~1;;f.~<.~l:"} t•;" -'·;.:~""'·::.:...;· {;i~(ti ~~~:" r'·_'~;'.~<c:1:/~{';\··,1'.~-·:·-f1"!~,,.j3:~i,~~~.~?~'.V-',.<~~~~-~;:,.0-;;y~~'. ~~~;~J.~~;.j.~?·1·····~~~~.;~;;·:f·'.·'

:: '. - .~ .. '·!· ·• ..

,·'

that if the order of arrival is predice.ble and the types of the

kndWll. However, if tl\41 ~wceive11 ia 1 npafriias &R :obj.Ct of< type ffYl·;-\tba

object· being ·received ·•at hfte .. its. ty.pei•ttadaed ;t<J'''tc~ .in order that '·

the ·reci!i'lf•r:caa:·:haad .it to tbe coi:rec:t t.ype aaa ... ri.~.~ bl •aa.J. ~·•·ran

if we; c.oul4 tpore ·th• ·t:eaeonfng Jua-t fol1o¥41d. M iac:l.udiq bo~.,.aru

of th~ oh.e,aider,, ,the.Y: c..,.a, ·ba.jUlftifi,e;q qa .;~.-~a ,t~ ,t~ prov;Uiei•.;;

We will now examine some exaDJples for a bet.ter ~derstanding of the
',, :"' ;,-· -;: .. • \ ~ ~ 1'. -. • / f

algQr!thms. The obje¢t to be copied agai.Jl "111 be L,..N 18 of Figure 3. 2.
i·;

•'
Figure 3~·6 depicts the copy-one operation. the message-context is set

messa e-context
0 context 1, L-N 18
t C:<>l\text. .. 1. ·~·. 8, · ·
2 coiitext 1, L-N 12
3 '.' c te; .9

~. LU
Figure 1:i .Fo,r ~e ~opy~ Qpar~tiQ•:h ~p., ~tkOf Qpj~t 0. 4n4 .. the
message-context (without its first entry) will be sent. i~ copyiJlg
{~Q~-~t;·~'t.· 1.(-N lf>, pi Pigure l.~. th• .. ~Ut!1"'1 ,uL-N" is ~ fa::rr .. ·
"local-n.ame".

~~, ·'. _:!,· '£ •• ,':' ~ • ·\-:

first l!l(Jked up; and folHld to be loc41 1;Q "~t. copt.J!•t.~·· H~e, .J~- ·tull
,

- 49 -

. ",;.

an since it has index 1 ~ a 1 ie put into the ,,f,i.r08t po•ition. in thJa

image of L-N 18 beill8 created for sencU.n&• .'U\e,n U. flull tl:a1le ia f<llUl.l.d

for L•ll 12 in ;COQWXt i, -4, since it ts ,-.t alma4y in the

than a· &toraae name in th-a coatext, t'iler·e ·'i1' .. ~ {:eowtelit'· Utae,

local na.me} pair. This, then~ ia QSad·&s the ~1 . ..- .t:o put in1:10 the

message..:.context in the same way as the other full naaes. .the heade:r for

the image of abject L-N 18 contains both the ty~ and a zero. Now, the

image and the message-context can be sent (tti separate messagee, if

desired, as long as there is some 11eaas of telliaa the receiver that the
1

two really belong ·together).

The copy-full operation is the .Ost -eneotilpaa8:iug 0of the· t:hree copy

operations, and &8 such WlCQVera pr.oblMS aot.·•~wfiM;t·~fth th• ether

two. First, the problems aseocia.te.d with shared C011.penents appeai;.

(This was not a problem in the copy-one., altbouah we wili" aee it also in

the copy-full-local operation.) We want to be sur-e that e.11 S'1Ch

sharing is maintained if that is desired• The mesaaae-cont~t will do

this for us. Second, we taUet cons14e?' ttie' cprorl..a&'iil -h-aacllitig fo-re-i:p

components. (This is not a problem in et~her •f th& othet ·operat'i0ft8.)

1. Some optimiza'tton could 'be dtn\ft' 'h°erllh ' Flrst'• etnce,. oftly ,one
object is beiq copied the zero in the header ii& ~••ury. Second,
if ·no cOllponeat-;n&meli the--otiglnal ~e<it~'--ttie' etut'.r:,. ftir' f;t' tit' the
message-conti!Xt need not be seat. Third, we really, do not ne:ed to·a~nd
the ••sag&-context sepatate:ly., liietead, 1le OOU:lf:-Uile 'the- full- n-.a -
for the references, thus including the masaage-:coatext information in
the image of the object.

... 50 -

,

In this case, in addition to the problems associated with acquiring a

copy of a foreign COJllponent, we also must be careful to maintain sharing

components across context bo\Jndaries. In order 'to 'do this, a copy-one

operation should be performed on any f'o:teign<component. This means that

only the top level of any foreign compc1nent· pl\is 'tb'e' 1u1111es it uses wif:t·

be acquired. By this means the messagt!-'coiitert' "11.l discover all

sharing, even that involving foreign ·cd.penerits.

The copy-full. operation is exemplified in Figure 3. 7. Again, as

message-context
()' context l; L•N 18
1 context 1, L-N 8
2 conte¥t 1, L-N 12
3 context 3, L-N 9
4 context 1_1 U-N 7

Figure hl For the copy-full operation images of objects O, 1, 2, 3, and
4 will' be sent, but no image of the messilge-contert need be sent in
copying {context 1, L-N 18} of Figure 3. 2. The abbreviation "L-N'1 is
used for n1ocal-name". ·

in the copy-one, the menage-context Hi' ·cruted with att entry for ·

{context l, L-N 18}. Also, again, •n tatage ia cteated of L•N 18. Once··

this has been done, and the header of type and index O have been

- 51 -

attached to this image, it can be sent off. Now, the next entry in the

message-context, {context 1, L-N 8}, is picked up and an image of that

object is created as with the first. It is of a base type, and

therefore its value will be copied. Again, the header will be attached

to it, this time containing the type of this object and an index of 1

(which is the index of its entry in the message-context}. Now this

image can be shipped. Once an image of L-N 8 has been created, we can

pick up the next entry in the message-context. This is {context 1, L-N

12}, which is an object of an extended type. It contains a list of two

names. The first .is L-N 8. When the full name is found for this,

{context 1, L-N 8}, and it is compared with the entries already made in

the message-context, it will be discovered that there already is an

entry for that object. Its index is picked up for the image of L-N 12,

but no new entry is made in the message-context. Now the next name in

L-N 12.is handled. It is found to have a full name of {context 1, L-N

7} which is not yet an entry in the message-context, so an entry is

created and the index of 4 is used. Once the header containing the type

of L-N 12 and an index of 2 have been attached to the image of L-N 12,

this step of the operation is complete. The next object to be copied is

{context 3, L-N 9}; a copy of this must be acquired from context 3.

Once that has b'een done, an image can be created for this object having

in its header the name of the type of {context 3, L-N 9} and an index of

3. The copy operation from context 3 must be a copy-one, although for

an object of base type as in this case, it makes no difference.

- 52 -

There are several issues that need mentioning here. First, the

copy of {context 3, L-N 9} will not be kept in context 1. If such a

copy were kept in the sending context, we would have a situation in

which the copy-full operation would have side-effects on the sending
1

context; this is clearly undesirable. Second, there may be problems

with acquiring that copy from a foreign context. It will, at least,

cause some delay; at worst, it may be impossible, causing the original

copy-full to fail. It is for this reason, and we will discuss it

further later, that we have added the copy-full-local operation.

To resume our example, we will assume that the copy-one on {context

3, L-N 9} into context 1 has been completed successfully. We now can

proceed to {context 1, L-N 7}. This is another object of a base type.

The value will be copied as with L-N 8, and the header attached. Now

when we look at the message-context, we see that all the objects named

in it have been copied and their indices attached to them in their

headers. Therefore we do not need to send any part of the

message-context to the receiver of the copy, and the message-context is

expendable.

As was mentioned before, the final copy operation is the

copy-full-local. This seems to be particularly useful 'When one cannot

or does not want to involve other contexts. An example of the

copy-full-local operation is depicted in Figure 3.8. It is quite

similar to the copy-full operation. First, the message-context is

1. Of course, copy-full operations will always have temporary
side-effects.

- 53 -

messa..&.e-context
0 context 1, L-N 18
1 context 1, L-N 8
2 context l, L-N 12
3 cont;;ext 3, L ... ll 9
4 cont~n li L-N 7

W
'

.

2
3

Figure 3.8 For the copy-full-local operatiOft ·imageil of objects 0, 1, 2,.
·and 4, and a par,ti~l ..._. ol "" ._...,. .. ~ ~f3\tlatniag· :the fourtb
etttry (3, {context 3, L"'4i t}h· Vill tie •eot in ce,#Jll {conte.xt 1, Ir-N
18} of Figure ,) .. 2. !he abkev:iattdit)'~~ c:ia ,wed ·~' "lwal"'-llaae"t•

is discovered that the next •try .·in. t:~ ••aaa •CQD.tac.t: {context 3.,·· ~·

9} ~ames .an object in a forei30 co11.-t:9· the i:Ug•lhiot this ,obj'.8Ct i.s

not created, but the entry in the message-context is marked for future

reference. Finally, the image of L-N 7 is c reatecl. Any time after each
';.,'''

image has been created, it may b~ sent. An image of a partial
.-: _-. : , - . '.

message-context must also be sent containing all those entries in the

message-context that were marked as not copied. Once all this·has been

sent, the message-context can be deleted and the sender has finished his

part in the operation.

- 54 -

hl . The receiver

. As mentioned prC!Y'idUitly, the. aettage hantl).,.r 'for· the' sending
. , -,. . ' " ~ ; ' - ·;, j ~· '.. ;

the receivi~ c:ontn:t. tf the ret~J.'71~g~ ci~.f~,ll:f~; 1'8. oh, ih~ .. same node in

the distributed system as the' se~lU.'q co~xt ,';tb.iJ cift>' contexts will
- '> ,, .; ·;, - - ••• ;· 'i.-1· .! -~;(, '.

make use of the same iaesaage handler. . If ~~ rec_e~y_iD.J co~text is on
' ' _;\~_,;·. ~~ ... ,_,, J·· (.-~

anoth~r· pode, the sendtn:s aes:hge l'l.$nclltr will' Pa~·> th;~·· •gee out into
: • --, }"' - •. ·; .: .• .' 2 : '. ; , ' • • - -· . ' ~ : • . • ' ~ .: . • ·...- : ·,

the networttf a foieijn •·••1e band1u~ wi11 1 ·tat,r''Cate ol them. Whether

or not ttt•'network vas''\lsed,' it is in the ~c6~rt,·context that the

images cred.ted by tt'1e eendti\g cot\text:mat' be·:t1~eti'"t6';create the actual
~·: .·. . . : \. --·c, -. . .

copies 4f ~bject.a.·· we -.u1. prbeat the• reee:t•~-"~ocedurtls as a set of
• • -I > '' •• •',' ' ~ • ' "" i • '. '

. cases eaelt to 'be liaad1el •·tf fefti't!iy, \ ••. th1irit•; are;) ~tf •ata.j possible
: ... ~ 1 ·~) '~ •

orderings of the ard:vai-e ef ·the' parts of ~· copy•· •d we want processing
'. ' ' ~ • ./., -~ ~ ' > ·' '."' ' ,· ,.·: .1 . } J ,.' • ··~' •

to·beain as·sootl ·as a receive eoilllAttd ha• ~w:1asued aad· at least one
._,.. , ...

image has al'rived .•

·We aust be able to·· identify e.Ch piece of a cfopy as p~rt of that

copy. Each pi-ece will be labelled· with''ttes ow ;typ~ and. its index if it

is a copy of a component or the fa~t that i~ is a message-context or a
i; ' :·· .· . '.

part 't'nereof, if the copy was a i;Copy""'°r\e or a ~op~full..:.ifocal. The
, ••. l > '·,·: > ~~;·<_;:.!_' ~; ; ;:_.

procedure is as foUOW&.

· 1. When the first imag-e (caap01ieix't' 'or _.esap~cQ1'.rn:t tm..e>"· is
read~ to . b~ .. e,roce~.,.d,. ' l~c~l,. r~cte.i_vi~ ~messa,g~cog.~e.xt .·
is crett$d{'. 'It' w:tft contit'i'lf fn"'lidd'fft.OG'·tcP(fid ':tn.cfft· tor
each object; the local naae for that object once that naae
haS~··deteriilitied~ ·· :::,•;:'"·''" .. '" ··· '

2. \hen the' aeda-gawc'o'ntext. . iwtie . ilnive!!s';. ;it's' . entrte'e are·
processed sequentially. As each entry ts.processed• the
receiving message~context l1t fit'at 'cwii~. :.lf ttier4· ia a

- 55 -

local name there associated with the index of that entry.
this local .~ .. is. uaed. ~o. fin<t ~~ .. l.Qeati~ in the lpca1
context to pla:ee the full aalae curted by the
aessag~eon.tex.t ~·. t.f, ttt415~ ~. QQ,.JJ,pc:,al. naae in. the
receiving •••age-context f.or that entry, the eon.text must
find a l~al .~ t,o ~~~~. to .~;~ore .. , ~b~~t, this
ea.try is cwated la the· local context., and ail entry is
create~. iR-; th&. ,FfC.eh~~ttJ~ f1)r.t1J,e
appropriate loeal naae: hdt:• the ~op:ri.ate index.

3. When a component tmaga artives.1 t.tw! tee.tvi~ message-context
is checked for a loc&l-~. to.~~ uaed for. tbe. ~Jf.abj.ect,.
If a reference to dae arrtrl.~~· co.to•~ has.· alr~dy f been

received in.~~et: i-.., ... ~ ~·1~t~~-l J.\av';~U
assigned. tf not, ona aut be'· re~.ed (raa the context.
Using. the appt;opr1-.t~ l"c.•1 ~·~h, :i~•.~rfUfcu:•e4·.··
into a copy of the original ob.jcect. if the Object is of a
base type., ... j.ta val•, 1•·· ~-- i•·••"";:*t• •t .·. lf, :f..t ia. of
extended type, each .naae· ia p~cllied up o:Ut o:f the iaage.
U•·in& tb;s . ._.. P·· u. tn.~~Jl• ..,.qe ... eqru~e•t,.a
look up is doae. 1£ e·ithei; .CltU objac.t"• iaage itself. bu
arrived. Pl'~iou4Y•. qr. ·~iJ(liejllJGlfaJ;O..,tzhat ajeci .
has arrived in yet autl.ic · ~~ tba there already wi.11
be an eau-y ill tlie J:'•Ui•t1'*Dld!l*f.f~9ft4x~ q.q•*-'1•'-t a
local name for the r•fer•ee. 'l'hi• v.Ul be uae4 iii the
copy. of the, COJlaP.'DN:l". . .,~,.Jr'4tff~l~ .. if ,,$11•• 1• ,no· loeal · ·
nmae for the refer,efl.ee yat,. t,. eoateat mut provide one.
Thus an entry will be cruted in tbe t"ecU.v1-g ..
message-con.text. haviag the a,pteptia-te 1nde«. and the.
local name prov:l4.ed by· the c t. ·· ~so an 41!ntry must be
aade in the ce•~X~t·; ·~~•111rt.,..gftj·!'}t ,~!L,b.e ~•11$ed
as yet; i.e., there nll be .. loeai mme·. in the context
haviUJ no ot~r _. '.tt~l' ; ~r:ap Ck ;"1J.l, ·au&) ·
associated with it.

4. Images are received. until there are 'no entri~s in the context
that do not have stq~.-~·""·J~~ ~~l ~~ ,as:~ociat,ed .
with them. A.t thia point., the e0py baa been cOlilpleted and
the receiving mesaag.-;.context is ao l,*3er n~e,d.

"' •. _.,..t ,.,. >< "' ' c ~.·

When the message-cont.ext depicte4, in Figure l.9 (.a) :La ... 4Ad~ to Figures

3.3, and message-context in Ji.g\lEe l •. 9c.(b~:·r.~ 1ttl•¥.l~4aad 3.5, we

can see the receiving contexts for the cou ... o;ae:,, ~~full, and

copy-full-local Opfit.r:&t.ionaaft.er all. thtt:-.-...~ C.t.U. i~ FtgUJ?:es 3.6,

3. 7, and 3. 8 respectively have been ree•ived •.

- 56 -

me ssa__g_e-context
0 L-N 31
1 L-N 32
2 L-N 33
3 L-N 34 ..

·'r' •. •• i~~·
y ~.

(a) The message-context· that must be added to Figure 3.3 in ord.er that
it depict the receivin& context after it has received the infomation
sent in ligure 3.6. the copy•one.

measa_g_e-context
0 L-M 31
1 L-N 32
2 L-N 33
3 L-N 34
4 L..;.N 35

(b) The message-.context that must be added to Fig~es 3.4 and 3.5 in
order that they depict the receivi~ coo.text after it has received
resp•ct;ively the tn.fomation sent in FtglU'• 3. 7 ad 3·.8, the copy-full
and· copy-fUll~local.

Figure 3,9 Message-context in the receiving context. The abbreviation
"L-1'" 1"i\ia9ci for "loca.l"""llae".

Chapter 4 will explore in greater detail the support that must be

provided to achieve what has been diacuaeed this far. In particular, it

will investigate the typee m.essage-eontex.t and !Mage and how they can be

used to provide those faciliti~s the user needs while hiding what the

user does not need to know. Chapter 5 will C011pare the three copy

operations and point out problems and some interesting possibilities for

further research in similar directiOna.

- 57 -

- 58 -

Chapter~

Additional Mechaniaa for Copying

... c:]«'

In Chapter 3, we discussed algorithms for copying to be used in an

environment of contexts as described in Chapter 2. We must now explore
; .

the implications of these algorithms in terms of what new basic types
' .. : ~. r, .. "? ., .. ! ••. d 1·.~, ~J\'.· ·,;; ~ i

are needed in conte:Jcts, what mechaniSllls are needed as supports below the

.level of the contexts in order to achieve such copying between contexts,
·' - . ,· -:;:, · .••• ~ :· -~· ,~ ~-'J.' -~·

and the interdependencies among these entities. We will also extend the
~ . ' . ' .:; .· ,• "''7 ' ' • : . ~

copy operations to include local copyi~g.

4 .1 Measye-:"eontata .fil• imge&

Two special types of objects were ueed in Chapter 3 to describe the

copying ope-rations that must be defined within the contexts:

node ~upportifig the context. Thi.a aec'ti«i clarifies their

characteristics by describing the operations defined for these types.
. ,.~ . :.· ,;; -. -·~) f J ·. ;- ' .

Languase constructa aiailar to tho&e of CUJ\llJ Vitt· be• used fo-t this

purpose.

As mentioned ·~evi~s~y' a81.ua~t.U."t1t' at:~~·etm~lat' in. many ways
~::-, ... :.:.- fj.;.,::·.~;r:c·.,, ::-:;.f'.~_ ·-.,:-;:"(.~~·. ._ t

to contexts. Each is a mapping froa one kind of niaiaes; local to and

unique within the context, to: other iti.tt4r''~:i~~;~f" M*~cOt\texts

are used specifically for prepar1.n.g itige't When·co,yirtg an object. A

- 59 -

message-context, as used in Chaptar 3, is a mapping between the indices
' ',_;

for entries in the message-context and the contents of those entries,

that is, the full names for objects. We will aod,ify this definition

slightly later in ·this cha.pt.er when dtscuasiug an optiaization for local

copying within ·one col'ltext. A mesM~o~xt tMlt t>nly must lt-eep track

of the component objects, but ~lao JDUBt do some other bookbeping.

Fi rs t, it must reumber how many inti-ices hav~ been . ueed. Second, it

also should remember W.ich component.a h~e'"been ~opied aad which have

not. We will depend ~ the mesaage-conte~t to prcWide. the name of the

next object to be copied. In orcler to dO i$la, t~·':,Ussage-eontext muat

remember .tlich type of copy ope,ration it ie aandl:Ut&• The

message-context must also oversee the. serul~,of:.q; pqe }>f a partial

message-context in tbe cases of the copy-omt and .copy-full-local

operations. Finally it muet self-des-truct.

Ten operations are needed for tbe .-eag~e-.t~.. So.,a.e of· these

are used only for local copyitaa• a.ad ther.ef9ff will; DQ,i be, tuted until ..

later in the chapter. The meaa&ge"\"coutext operati,QJ18 are a~ follows:

1. create (obj ec t-n•e·, <>P.:.name) returns' (message-context-name) : .
takes. as .ar&Ulll8ta.t•· a. ~l ...- ef 4, ~al,..9Pj•~t ~~he a.,..
of a copy operation (copy-one·,· copy-full, copy-full-local,
receive.), -creates ame•••ae-conust. and returns tbe local uam.e
for that message-context.

2. delete (me•Nae~e..oa.text-n-.e).; . tatas •!I an ~~nt '. lc;>cal name
for a local aeuage-ccmtexf. ~-- clelet'ea it f ram the context, and
returpa noU11ng.

3. aext""ae11d (.. uag.e....eoat••-~ 'Y~~· J~j,f.c:~-aapae, ·
context-n-., index:l, object-local): ia a OLU•lilte iterator. On
each invoclJt;ion widl,.,tbe-4.~Xt•nam• it produces
another object-naae from the ll4tssai~context until it bas
exhausted its supply, so that the nae of each object to be

- 60 -

copied has been given to the invoker exactly once. For each
object name produced it also returns the name of the context
containing the object, the index of the object in the
message-context, and a boolean which is true if the object is
local and false if the object is foreign. If copy-one is being
executed, only the name of the first entry in the
message-context will be returned. If copy-full is being
executed, all the names will be returned. If copy-full-local is
being executed, the names of all the local objects will be
returned.

4. create-image (message-context-name) returns (image-name): takes
the name of a message-context and creates an image of it to be
sent to another context. This transformation uses the
information about the type of copy operation being done using
this message-context, and the name of the local context. The
image created will have its type specified as message-context.
The index field can have any value since it is not used for this
kind of image. If the copy operation is copy-one, all of the
entries in the message-context except the first will be copied
into the image. If the operation is copy-full, this is an
error, because no message-context image is sent, and this should
have been discovered before this operation was invoked.
Finally, if the operation is copy-full-local, only those entries
for which the context is not the local context will be copied
into the image along with their indices. This then is the image
that is sent to the receiver.

5. send (message-context-name, receiver-name) : takes as arguments
a message-context name and the name of a receiver, to receive
the copy. This operation manages the copying; it does the
following for each component to be copied including the original
object. The index in the message-context of the object is
found. If the object is foreign, a copy of it is obtained.
Now, regardless of whether the object is foreign, its type is
found, create-image is invoked for that type. Then the index
can be added to the image header, the names in the image
translated into indices using the message-context, and the image
sent~ If the object was foreign, the copy of it created locally
will be deleted. Once all this has been done for each object,
an image of the message-contex.t can be created arid sent if that
is appropriate. See the later sections of this chapter for more
details of this operation.

6. local-send (message-context-name, receiver-name): takes as
arguments local sending and receiving message-context. It
generates the appropriate kind of copy of the object named in
the first entry of the sending message-context. It is invoked
when the receiver is local to the sending context, and achieves
for local copying what the combination of send and receive

- 61 -

achieve fo.r distant cop,y:in,g. A .sample iaipleae.ptat:ion of it is
presented later.

7 .' !!.!1!!: (mes~A86""'.Cont~t ... n~.1• 4l,dex) r;,e,turns {(#ject-n~): tak.es
as . argume;n~a. • iruJ•xt: anc.i .. ~)lle,QJ.~~t,.e~t;, ·MIU a~d x-eturns
the name essociat•d wit;h .· th"1t il\~lt ~ :·th,e, •~ge'.""c,o~;gt. If
there is. ~9.· $:Ueh ~ '";~~><~•t•'~ -,:I.~, t~t;~ ~: provide a
local name which latex- will have a•aociated ·with it ~ ~bject.
This o~ratio11 is. uae.d in r.eceiY.i.ll& ·

8. receive ~-.ssaae ... eQatAUtt ... Q411• 1 .If~~~): taikes a• gguments
a race!v~:q ~~U:tc~.t &ll4 a~ ,i~~i.O.~· ~r the ,arriving
copy (s~r-n.aae) •. Thia ce;>peratiQQ i.s the rtl:Vfl'.•. 9£ sei.nd; it
receives ima&ea and •anaae.s tlle c:r:.-t;i~ <>:f~ ~- :4;<illllPQnents of
the copy. uaill& ~ ,iaages, lt.~pef.X:' 1~ AW 1 ~x8Jllple later in
the chapte,:-.

. . ' ~ .

9. rec.eive-imye (image-n.ae. 11u~ssage-c~t4x~-naae) .takes as
argument~. an·~ . . qj .4 ~4~··.••·~on~; ,aA.d, .~. ~-aeiving
context and µpda;ti,es. the re~ivi,aa ;.-.-s~c~~ ·:•~d t¥
context ¥itb. th•.~Qll~~.1,of. th:e ~--'~· ~i.M· ia 11aed ~l:y in
th.e receiving context. ·

lo. next-receive (mesaage-c.c:>ntext., Mifcler ... n~) ... Yields (inlll'&e-name.
typelt indexl): takes aa ar,'WIQ.t{• the.~ of a recteiving
message-context and a sender. from whoa a copy is cming. It is
an it~ator that yields tb.e .:1l8JJe ~f ··• :-....~ ~~.,re¢ved, and
the type aad indelt that. .have J)eQ e~;r~t.&4, ·ffOllc,\~ ~ge.

·header. I·t 1>rovides the ?:~'l.ar:ee 4lllJQfi~ f.r-. nQst,-s,e.~d.

As long as utessage-contuts ~ize .. -.e4,. ~ly fot:.,s.u.d~g apA .l'.e.c~iving

copies of objects, these o.perat.~QCls are •v£fi;cient.

The other n~w type is i.IM,ge. We have diacussed to. some extent the

use and form of an image, but more must be said. An illa~ge has a header,

and is of variable size. it has twel.ve operati~I1s defined on it as

follows:

1. create' (type)' returns' (ilJage-nenu~): takes as .an at;gume~t the
type of the object fo.,: wbich"a~ i,aaae is b·•ina cre4ted. The
operation .cr~tes"~ll~ .im4'8• .hi\;)l yi~l ·~Qlfc_,~fl 1Qf;a1 n~es a11d
values are stored into the :blag~. tb~s operation returns the
local name of the image that has beeri created.

- (>2 -

2. store-name (image-name, index, next-name): takes as arguments
the name of an image, an index into the image, and a local name
for an object to be stored there. These names will be
transformed later. This operation returns nothing. It is used
only in the sending context.

3. store-value (im~ge-name, index, value): t~kes as arguments the
name of an image, an index into the image, and a value to be
stored there. Such a value will not be transformed before
sending the image. This operation returns nothing. It is used
only in the sending context, but not in the examples presented
here.

4. store-index (image-name, message-context-index): takes as
arguments the name of an image and an index which the operation
will store in the header of the image. This operation returns
nothing. It is used only in the sending context.

5. translate-out-name (image-name, message-context-name): takes as
arguments an image and a sending message-context, and uses the
message-context and sending context to transform any names
stored in the image by the store-name operation into indices,
adding entries to the message-context when necessary. This
operation returns nothing. It is used only in the sending
context.

6. send (image-name, receiver-name): takes as arguments the names
of an image and a receiver for the image and passes them to the
message handler. This has the effect of deleting the image from
the context. This operation returns nothing. It is used only in
the sending context.

7. receive: is the reverse of send. It is not invoked in any of
the sample programs, but is included here for completeness. It
would be invoked by message-context$next-receive.

8. translate-in-name (image-name, message-context-name): takes as
arguments the names of an image and a receiving message-context
and translates all the indices put into the image by
translate-out-name into local names in the receiving context
using the message-context and receiving context. This operation
returns nothing. It is used only in the receiving context.

9. get-next-name (image-name) yields (next-name, index): takes as
an argument the name of an image in the receiving context, for
which translate-in-name has been invoked and returns one at a
time the local names in the image, each with its index in the
image. This operation is an iterator. It is used only in the
receiving context.

- 63 -

10. get-next-value (image-name) yields (value, index): takes as an
argument the name of an image and returns one at a time each
value in the image with its index in the image. This operation
is an iterator. It is used only in the receiving context, but
not in the examples given in this thesis.

11. transform-names (image-name, message-context-name,
receiver-name): takes as arguments the names of an image, a
sending message-context and. a receiving message-context in the
same context. This operation translates the local names in the
image into the appropriate local names for a local copy
operation. This operation returns nothing. It is used only for
local copying.

12. delete (image-name): takes as an argument the name of an image,
and deletes the image from the local context. The operation
returns nothing. It is used when receiving a copy.

These are the operations needed for sending and receiving images of

objects. Images are the only base type objects that have the send

operation defined for them.

4. 2 Layering in _!. node

Now that we have a better idea of the two new basic types that are

the basis of the interface between contexts and the system, we can

explore the layering again in more depth. At the system level, we need

to clarify the function of two entities: the storage manager and the

message handler. In the kernel of a node, objects are named by .their

storage names. Storage names are used by the storage manager to name

uniquely every object that the storage manager must handle. It is not

clear that storage names have to be unique over all time, although they

obviously should be unique at any one ti'!lle. A storage name must not

appear in more than one context at a time, because that would imply

direct sharing of the object; two contexts would have an alternative

form of communication to message passing. Depending on whether or not

- 64 -

·'c'11d'Oic.•'·'"'"""' -~-~· .. .r:~~'"'}·:~;r·J;.~~~-.;: ~~-·?~~"-':~:,:~:'":: :.-x~ :;:t~·:r<·'+,'~~~~~~:~~~:ir~~<~~~::-:;~-~l'!f .. ;:c:-e~->:,,,.r~~f.!i;~~~~'-~·~"'it:.; it:

..... ~..::..~"?~~";_,"!'':-::,,.. .: · ·::r.:.;,~,~1~._,_ ... ~~)4,,:;t"4,~ .! _

storage names are. to have other functioua auch as providing some .of the
. :_;tt_; 1 oc;.cJ .i:

security wanted, they may be capabilities,' but they al.0 may be just
~-... ·~~ '·· · ··_,,' ··1 • ~:;_··~,°.:JS'

physical addresses (if objects are not phyaic~i!i'.Oved), or po~stbly

naes .. that hide the physi~a1 '1ocationa oi'"'d\'e
1~j:eets~'""t,.;i3 provide no "~

, . . : , . .~ , ·~ , ·.,~ ;..4;:. ~ i~; i .. : .; :;:·.;::.},;. r-_-_,.: ·)_J,~~:" ',· ·. :·" . ·- , ·:
security (in Qther words they are forgeable). that are local to a

. ,_· . . :_, .:'·· .. :·' .3-~:':~ :: . "("-,f:.:,----, ,:~L1-~.-~-~.i· .,,; .:·;_f ..; ~- .. • ,,

context have ao meanin& ·at this level; they are oaly strings or llUllbers
, ··' ,. , · ·~ • • ~·>·I;;, ··~· ·~r.~~':.. .~,, i ,- •' '.'· '-·~' :;,."•. ,:_;, • ,1.

or very simple entities that ru>l)ef'ul.1f<ln:J:'1 no'r:'Gi· uniP\ilateCI in uy
•. :-,t·· ~ •. ~:' i~. ~:. ~1. OLJ}:) .. , ,..tL ~+:"~ ... J ,

way that is damaging to the objects and contexts.

1he storage ·~~~~ is t.liF iI):tei;~~~~ b;et'!!l~PJ~~~. ·~~i:age_ al\<l;, ·

all ~he r,_,t.- of the. •Y~~ .. , Th.'f.,,:~ 1¥),rf~t~~J,; all: ttw ~~J' ~n.a
distributed ayst• p..~, to ha.v~ ~~ ~i ~"1P~~i~i¥.f .. ~e •t<>J~ .•

11uu1aa•r. The· ~R~ap '-''~f•, WW h~. PJ:.9~~":.P.-Rl!l ·~~ ~~n,e,;, ?¥ th•.

mes~, ~ncµ.e:r~ ._,.~JM M~~, o~" ~~~'*"•Ni". J~ -~ th4ee

that, must ag~ee., ~: coo.r•~~ .. not ~ ~fU:W:,.,f.Mprf, .> 1\1' •toraa~. f

manager aay be quit~ cl•v~+Y.~H~~1 ,.rr0:;> ~~::i14V~~"f .. o~ .. •U llO{.t• ~t

optimizations,. such •• sharing imautabl• object• between contexts by

providing se)>(lrate stol:qe n•~'s thilt:;iap lito th~" e~e object. It may
.) ... v .. , :·.:'.:..:::... ·.:--,.r·~ J (· , .. <t:i). I.~·~

use the types of objects to help in utili&ing space to greater advantage

or red~ce tiae ~eq&dieaeD.ts f~i:~vina" ol>Je~t~ b~tiree~ 3
different levels

1
of memory.

:,:, ~'!· _· :- ~;!·· ~·1.f;·,·"'

of concern in this thesis.

1. These opt:imiza tion• bowev~r·~ le~d i to. a cycitc dependency that is
undesira~le,.~t'9"1.t¥ '°"\,-.q~ ;&fft@tllft'jlft~&CIJ1-0V..s.AtL5M MNel.Q_.,,,.,.~
•uch a storage manager .OUid have to ta~ •xtra precautions. See
JaD.110n[U, C~pteJt 3, •ftC~~n .3 f01'~.f1 ... 5&1tlUqtl41Ava•tM QJ$ cyclj,e;
dependencies and many of tlle problems related to them.

- 65 -

The other important.:' entity is a message handler. As mentioned

above, the message handl,e~s must cooperate. The me,ssage handler will

take the storage name of an iJlaage, and th,e n~e ()f ~e receiver, and see

that the message handle~', for the. receiver re~eivea the image. Assuming

prepare and se11~ the·~· thtq~gh the· ne,t;~rk. ~iis ,the message
~ . '·. ' . . .· ·,,·. . . ' '

handler will have to know network addresse.• of all relevant contexts and
,, '.;>·. ,<,>

'l

the network. protocols for :sending images. As far as the information

about locations of 'cdrite.bf is· cdill::etned, this infdbaad.ott can be bpt

in a table that· is int~lil to· the ut•ua• hai.-d1ir'~ it is 1nfo.t1lat1on

about which n0th:lrrg •l•e tn th& uo4i should *eect te>· kn:df:

Alternatively, a protocol such as di& one BU:a-t'eil ~ k.e~tl[16J cou14 be

used to fiad the reeeiver ·n.8· by i11terro19Mi1g di~ct&ttes at different"'

nodeS. The network p'rotoliolia w.tll b'~ clta'Cu•a 119 furtb'er thu to say

that the variou8 message·~ndlers mUSt a&r'- •it·~eir.•··

If we were to parallel the sending and. receiving in the case in

which the two contexts are on the same node, the sae aessage handler
. - •· ' ·~' . ,

would be used for the .t~, but i't, would call on t~e. i114ge type manager
) . . - ' ,- . .. ' ~' .-. - - . . '• .,

in the receiving context to create a Jle..W i~e fn tbe. r~c~~1(ing context.
"t} . .;. -· ' .- ,_ .. \.'.;:,. • :

The image object that was created in tbe send.tna·context should be

deleted. The image should never appear to be in two places at once.

On top of· the ketnel containing the ~to~.a~e aanager and the messaae

handler are the coiltaxt•;•· Ml 4teua.W4 la;'clllpter ·2, · c0nteicts are

namespaces, the only· namesp&ce• ·availabt~ to. t)'u!· ilser of such a system.

Figure 4.1 ·depicts one view of this arraii&ement. When a context is

- 66 -

user
environ
ment

~r~l l

cont.ext 1

local-name storage-name
local-name 'full;.name . .

• • . .

storage manager

,,

context ;l

; .,

''
1,.

'

, ' ,, ~ ,_. -

,, •'

message handler
' -:: ' ~~ f,

,,

'

Figure 4.1 Layers in the system (oa.ooe node)-~···

...

'

"::~ ...
'

,.

.created, it will have a certain number of ic:>cal names preassigned to

important objects, such as the type managers of all the base types

including the context type manager, and all other resources that, in the

kemel and all'the,hardwal:'e that is to be·usea'b1':mere than eae

context). It is also ponittle t:llat a~ coatext -w!lt ·need to hli•e a· local

name assigned to itself, to do some forms of name translation, or

receive responses from type managers, for example.

4. 3 .!!!!. details of samel§ .£2.l?I. operations
•)1•5;. .* : ; .-' -~, '~

- In this section we will present'tl\e 'detaila- of' the copy operations
,,·, :) "

for a type manager of a specific extended type. We will demonstrate

this on an example of a hypothettcal··tyfe• T1~we aleuae ·that 01!>,!ects of
' _! ,: i .~ J. '.~ I ··~ ; ' ': i '-' _ ~ ~;, .f'

several other assumptions we need· to'make abOut ot;jee~"'Of type. T.

- 67 -

Firs't, we need to be able t-0 create obj.ects of type T. Second, we will
. . . ,

also find a need 'tO delete objects of type T in or,d.er .to avoid side

effects in the sending context when copying lmder certain circumstances.

This is a special form of delete, as is discussed below in the

description of the ope.ration.. Third, we will need to be .able t-0 get the

names of the components of an object of type T one at a t:$.me. Fourth,

we will need to be able to create images based on objects of type T, and

receive images and translate them into objects of type T. Fifth, we

will need to be able to assip coaponeots of • object of type T oae at

a time. This means that it must be poasible to create an object of type
' '

T with a value of nil, and insert into it coaponents one at a time.

This implies a need for storlng a coiapoaent i-n:to an object of type T.

To .-chieve. .tale ¢opy opera.tioa.s tlHLfoi.1ow1ag. suppo..,tiag ope.ratio.as

will be a&&\PU ior t.YPfJ ,T ... {The ~~-t~9JU1 f!.QN~·-, >fi~py-full,

later.)

1. create () returns (objeet-name): takes no arguments, but creates
an object of type T and returns a· local nae for it.

2. delete-copy (object~nale); .takU the U811l~ 9f an object of type.
T, calls on the context to delete that local name·and all the
local contaiue4 .. ~n th• .~j:$C,t. fr .. U..,f:O&Jtext,. and
returns nothing.

3. get-next-naae Cobject-n•e) yields (nat•n.e, index): takes as
an argument ~he ume of,• ·obJeet,Qf t.ne,.,T anct ~et~irna one at a
time the aaaes and indices wi~iR the Object of each of its
components. · Tll;!..t,~perafion it ..,_. i~er~or;;,.

4. create-j.maae (Qbj ect"'!'a.-e) ,returns· (1-Ja1•-•...-~t: tak•*1 as an
argume11t the nae of an object of type T and returns.an image of
that object containing local names that will be translated

- 68 -

later. The image may also contain values that will not be
translated.

5. receive-image (image-name, object-name): takes as arguments an
image name and an empty object of the type any. Tilere must be
only names local to the receiving context or values in the
image. The state of the image will be put into the object.
This operation returns nothing.

6. store-name (obj ect.;.name, index, next-name): takes as an argument
the name of an object, an index to a component of the object and
the name of that component to be installed. This operation
returns nothing.

This is a list of only those operation needed in type T in order to

achieve the copying. It says nothing about what other operations there

may be in type T.

A number of additional details must be specified. We will assume

only two operations on contexts:

1. request-copy (object-name, context-name) returns (new-name):
takes as arguments the two components of the full name of a
foreign object, obtains a copy (copy-one, to avoid any loss in
sharing) of the object, and returns the local name for the newly
created local object, which is a copy of the foreign object. It
guarantees that a new local name is assigned to each non-local
subcomponent name.

2. local (object-name) returns (boolean) :. is a test operations that
takes an object name as an argument and returns T if the object
named is local to the context, and F otherwise.

In order to implement the procedures described below, some modifications

are needed for the CLU type any. This work assumes two operations on

the type any: (1) type, ~ich produces the actual type of the object in

the any object, and (2) force, which forces the any object to the object

inside the any. CLU provides no operations for the type any, although

it does provide a force built-in function. Another type that is assumed

- 69 -

in this work is ~· No operations- are needed for it in the sample

implementations in thilj work ..

Now that we have a better understanding of the relevant aspects of

coo.texts, and the, full complement of operations av&ilable for images and

message-contexts, we can consider the details of a possible

implementation of the three forms of copying discussed in Chapter 3. We

will begin by noticing the similarities among the operations. In

particular, the message-context appears to be a focal point. Since the

message-context contains the name of the copy operation being performed

(copy-one, copy-full, eopy-full-1.ocal) and. the identity of the top level

object being copied, it contains,eaough istfoaaU~ to-be at the core of

all three copy operation. The message-context$send operation provides

this central f uu.ction on. the me&aage-context. n·u1 .es.age-context is
. .

created containing two pieces.of infoJ?:11tation, the ~ame of the o~iginal

object being copied and the type of the, eopy .. opetatioa. (Later

message-contexts. will also be er.eated with "receive•i as the name of the

operation using them.) Message-context$s.end invokes the. cr~te-image

operation of the type manager for each component to be copied. When all

com'ponents that should be sent have been sent; an image of the part of

the message-context naming those components not sent is c'reated and

sent. After some cleaning up the copying is complete.

It is important to keep in mind that the tools provided for the

system users should be as simple- as possible and shoulq not. contain any
'

mechanism for which there is no apparent need on the particular level of

abstraction. Message-contexts may well fall into this category, but

- 70 -

they can be hidden from the creator of an extended type manager or

cluster. A method of achieving this is to make available three generic

operations or procedures named proc-copy-one, proc-copy-full, and

proc-copy-full-local. These procedures will simply see that

message-contexts are properly created and sent. There is one other

place at which the programmer might come into contact with

message-context; when the images are sent, they contain only names

generated by the message-context, yet the creation of the image of an

·object of extended type should be controlled by the extended type

manager. The reason for image creation being in the type manager is

that what actually is sent should be type specific. There may be

information which is node specific, that the receiving type manager will

have to acquire later. There may be components such as temporary

workspace that it would be a waste to send, and perhaps for security

reasons should never be sent. Whatever the reason, image creation

should be under the control of the type manager. For this purpose, the

programmer will be required to write a create-image operation, which

will see that the image is created and write values and only names local

to the context into the image using the image$store-value and

image$store-name operations. The message-context$send operation will

later, unbeknownst to the programmer, invoke image$translate-out-names,

using the appropriate message-context. Thus the programmer never knows

of the existence of the message-context.

- 71 -

The only other pieces of code the programmer •u.st write are

definitions of which copy operatioas· are to lJe. defiaed for the type.

Th.ase operations will do nothing but invoke the appropriate geaeric copy

operation passing along the paraureters. Figm-es 4 .. %. aatt 4.3 provide a

possible coding of the procedures d&&crlbe1i in thl•· sect.ion f.or oajects

such as the top level object u&ed in the exampies in Chapter 3. They

are written in a subset of a language based on the· comtentions of CLU.

copy-one = proc (object-name: !, rec-ei-.ier-nae: any);
proc-copy•one {object-l'lMe, receiftt...U-.');
!.!!! copy-one;

copy-full = eroc (object-name: !• receiver-rune: any);
· proc-copy-full (objeet•aame, recet~l'Uille).·~
!.!!! copy-full;

copy-full-local• eroc (object-name; T, recei-ver"'!"name: .!&,);
p.roc-cop.y-f ull~ local (ob1ect•name, receittr~ame) ; ·
!.!!! copy-full-local;

create-image • p:roc (object•naae: T) returns (image);
image""Bame! i:!!p .. :•· iilage$·ereit• {'+'H · ·
for (next-naae: anx;, index: int) _!:!. get-next-nae

(object-nae).·· ·do · ·. · · .
image$store-ii'8me (image-name, index, next-naae);
.!!!!,;

return (image-name);
end create-iulage;

Figure 4. 2 Operations in the T type manager

Figure 4.4 presents an implementation of message-context$send;

since message-contexts are base type objects, the message-context type

manager with all its operations is provided in eveey context.

Message-context$send is some'liihat involved. It iterates over all the

- 72 -

proc-copy-one • eroc (object-name:. any. receiver-name: any);

~·~:e.;~~==~=J~Wj;Ri~~~~~itip'y-ol\e~,; ' '
mesaage-context$send (ae•'4~coat,ext-n.•e, i;e~eiver:.liame) ;

· ,-ea••.«~_..<Soat~~~~l~te Jri4~~~ .. _~:,~t~~~·i)f' . i: -.!!!! proc•copy-ane; ' , · · ··.::· J...:'~--·- • ·~-"· ·

F!Bure hl Th'e -geueri-c copy ~eratiob or proeeckiree 1tI'OVd.ded to each
context by the· w~l. · · . · ·' .

names in the message-context. While this is happenin9, additional

entries are made into the message-context by the

measage•co11text$aend. operation..requeu. . .a.copy.of .. .the. object ... if that

object ia ·not 'local to the aendiag coa'text!'; ~o.·meh i·s a local OC>p-1

of the object (if the·obfett waa''local m al!didbn8'l1i:-eopy wilt ha\l'e·be4"1·

created) , the type of the object can be· c:feteririned and the appropriate

create-image operation cari be iuv~; · ?h:f'if <Sl*Mi<Jtidiflfll create an

iniage containing possibly a ·subset (th±&' will''b'l.t''llfseuned ltter)'-;of the

same local names that vere l'tl the!' Object it-..:lf .' Therefore, •the
·:,~

programmer" does not need to 'lm'ew libo\lt •w~c:ontexts- in orier to

write the create-image operation. Oht:e the<'~ has bf!en created, 'the

- 73 -

send .. proc (message-cont.ext;-:naaet se•!!i!,""tcr,o&wt,., receiver-name:
any); · . .

. for 0!;:!~~ ~~~:i;:b~;~j~i:x!~~=~i'5J;~g~~==£a!~:~ame)
do ' ···· · ·. · ·

-i!. _ (objJ:lC~_-loc_14 eq~aal F) • •- . _ . . ·.:
n~~l .Jll.:~;-~ .. ~~t~ ,r~~"."co~y (c)Qject-name,

ccmtext•••l; · ... -. . -
object~~-~ ~~---~~WilUJ••~-t . -!.!¥1j .. · •.;• -· . ··-···" ; --

typel: £Ia!. :• any$type (dbJ~q~~_);
image-n.e: i!a.ge :• typelfcreate-image (any$f0rce

. (obj~~~-~l.l• .. • ·.; .. ·. . -·· . . .·
image$atore-~ U••aa•·~-~ •. index);.
iula&e$tr~J!l~~~~·~'''~~.~ .
·. me~Qa~~"·)·~.; · ·.·
u..a_.,f.-i .. U••~~•; ;l'•~.-r---..>;
if (object-local equal.~} .JD.!a ,

typel$delet ... copy · (~~RQJ:ce {object-name)) ;
end; .

end· -=-' . !1 (op-code <.-aa.aae~ccm~t-:-~). aot eq~l ·~copy-:-full") tnen
iaage-aeaa...-cop.te•~=-.,aue ... :• .. er._

(measage-coot~.t·naae); ·
image$s~d (image--....--context, receiver-name.);·
end• - · .· · · .- · ·· · · · -· end •4lld;

Figure 4.4 The send operation of -tbe -..~coat~t ;type 11¥f.D.a8&J:'.
·~

index in the ·message-context of the obj~t froa llilich it was crea·ted can

be placed in the header of tb.e image. Also. ·tJl• .naes in the ·image 1Duat

be tranelated. from local names to. indices iJl .the aaaaage~~pntext. This

may involve creating uw entries in the JUSf:lage~cont;~t, and therefore

also may involve the context. After thJ.s· transt..d:oA ~a .baen completed

the image can be sent. If a copy of the. object 88 acquired from a

foreign context, the .. c()py will J¥>W ~dUtl.~,..., .il~c:l .the whole .prpcedure

can begin for the next comP.Qnent. Wb,en ~••· have.J~~en sent. fo~'. ali -

the components to be copied, if the operation was not a copy-full, an

- 74 -

image of the message-context must be sent. This completes the

message-context$aend operation.

4.4 Preservat.ion of sharing

foreign cro•ponents. At the coatext 1-.ve'l·, • l.tllD; oontrol hOw. 111uch

sharing wi~bin an obj act we wish to W0'1':ry ~.abodti aero•• ccmtaxt

boundaries. If, we wim to ma:l.ntai.n ,al.b:~,.:T...-ba• nf . .eontext,

boundaries, the context will. request a ·:copy-o\191 of. 'the fore.ign

component. We will use Figura 4 .:5 as :~,b:Qie. ,., ~l.l'lrChet; -diacuasion,.

Figure 4.5 An example of sharing across context boundaries. The numbers
in the boxes represent values of objects.

When a context requests only copy-one for each foreign component,

exactly one object im.age and a message-context image will be acquired
..

for each foreign c091ponent. Thus thf! u.-.ae ... c~. £C..r. the. wbole copy

- 75 -

!

I
!
I
i
'

I.
I

operation will keep track of all possible sharing even across context

boundaries (because for every component the globally unique n811le is

ftn.tttd). The result is that the structure in the receiving context will

bt exactly that in Figure 4.5 except that it all Will be in c:>ne .context.

The problem ·with this is that a reques.t 11ust be sent out for a copy of

every foreign subcomponent of the original foreign c01Dponent named in

the object being col)ied. If instead it is decided that we care about

most sharing but are willing to t.rade loeing some in return for the

saving in time and messages, a copy-full-local can be WJed instead. ln

this case, we will lose the identity of subcomponents of a foreign

component that are local to that foreign cQttteX,t. Thus requesting a

copy-full-local of the foreign components would lead to a· final

structure of the form depicted in Figure 4~6. In this case, many fewer

Figure ~The resulting structure of a copy of the object shown in
Figur.e 4 .5 when copy-full.,.local is used: ac!'O•a coaaW:t boundaries. The
numbers in the boxes represent values. Thus we can see clearly where
extra copying has taken place.

- 76 -

. '
,•

'· . .\.;'.

··:·

m,essages will be required if the foreign components are large (that is,

have many subcoaP<)~ents) t but •'if there,'ia a'ucb "&h'aring across context

boundaries, there Wilt be a gre4ter e.Jtpue 'tli t~ms ·ot·&pace needed 'for

the addit±otbll copiea of· t:h'e ·stll>·c~po~•t:&. · ti 'eh~'re' ta· no interest 'in

maintaining sbarfus acros·s cont.e'xt 1'0ulidatiea~ t'h. ~~p§-:..'.£u1ij operation

can be itivoked·· ·· · In th:ts case~ o'Uty snariti'a'i:t.\i&{ "I~ !cicai to a c~ntext'

ar iii wtttetl two loe•l :&•"Po•e• 'rfttiae th'•' f'o'r~ign couiponent llil.l. b~

preserved. Figlire 4. 7 pr~siides ah e~i}la'· of the' 'st'~~tu~e· in. the

receiving context f~r tpe cae~ ~n .~ich .C.~J:~fqll i~)¥.Seel .. to reqqe•t

copie,s of. f t;»I'.8i$n ,c,o,.po~u1~_t.8: :1~ q~~C!r t~ pr~~·f• ~~.~ UsJng t}le

ca;~y.;.full may hav~. ~r.i~us 4ra~~f" .~l~~o~.f~~ "W'Y,~~es it aa~y caave

~· _;

Figure !.:.I The resulting structure of a copy of the object shown in
Figure 4. 5, 111ben copy-full is. used ~c,.ro••. c:. .. t,~t. 'o~a~iee •.. ';rlle
iiumbers in the bo~es represent "'alues. Thu& we can see clearly Where
extra copying has taken place •

..
- 77 -

much in time and many messages~ The problem is that the foreign

com,ponent may contain foreign components, which may c.ontain foreign

cdi»onents. If such a structure has loops not. ot:Uy across context

boundaries, but across node boundaries, the tnfinit~ recursion might be

very difficult to discover, and even m~e difficult ~o handle-. Thus,
·•

although this may be a very tempting approach because,, of itliJ simplici-ty.,,

it is probably something that ought to be avoided.

There is an issue that has not yet been addresft.d, altho'1gh it was

considered in detet'lllining the operations earlier in 'this chapter. When

' - " ,· ,\' '. - - - .. j·';. :·.'·-· "
a local copy is made of El foreign COS1'Qaen:t, in order to create an blage

that will be part of a copy-full ope:ration, eueh a local copy must not

ha'le any side-effects on the local ccmteitt. In other words, aot only

must the copy itself be deleted, but also the local aames ueed to

identify any foreign compc>nenta of the copy mu.et be delete4. It is for

this r•son that the delete-copy operatiou £or the type :T wjs defined t.o.

delete not only the object itself, but alao all the f01:ef.&n collpolleats
'

of the copy, from .the local contexL Using the other types of copying

when requesting copies of foreign components aolvea these prQbl•s, the

copy-full-local to some extent, and the copy-full completely. The

reason for this is that by using the.se~ fewer or no local names will be

associated with full names of foreign subcomponents before copies of

them are acquired. As we have seen there are other tradeoffs. Perhaps

the decision as to which fona of copying is ua'd in .r:eque~tiqg cor>ies c;>f

foreign components' should be left to the ~JisOn o~ 1!1\19stl· behalf the

context is created.

- 78 -

4.5 !!'!..!. receivigg !!ll!

The operations needed to receive 'ati 'OtJ:Ject of ~ype T are similar to
~ _·_r,t:, l.

those fo·r sending except that rather than t't\~i!'e 1C:t1i~· of ope'ia1::ions.

there is just: one. 'ilen t}le bits representing the sent images arrive
' ~ - \; , .--- • l t. ~ - ' : > '

over the network,.the measage handler 't•ce'tW• the. and' placea them in
i - ~<-=;:: -~; r:"

The mesaaga:.':\mdlbir· 18\ist
" .: ._:t·: t:._>~:: .. ~-:.. . . :1 t ·--:'

extract from 6omething called ~ pseudo-image~.

incom.ing messages identifiers to be used in aaseab,U.ng ·the images

. belortgin.g to th~ aaae object. Wilen the receive request has been issued

by the appropriate tYP•. unager, .•. in our cue type T, th~ .process of

creating the copy in the appropriate context can begin. The

:laplemeot:aU.oa ·-Of reeeiviaa. is •iailar to ... ,u.aa;· agaia, a pnar~

oper•t ion is prov~ to be il\~o'ked· ·4Y Cha ri&Jt.a:-copy ~~u11t.ions ·of

particular types. ·. Again 'most of :the coatiol iS' 'i'h tbe>m:essage-context,
,~ ...•. ---~·· $'._-~,.· ' ~-'· .. -'' _,._._,:·••< ~ ·' - ,· .,

drive the mole operation of receiving is next-receive mich yields

images acquired froa the ~essage handler. '11\e operations of interest
~" ' ';:.:r,';J . , "

«

for this thesis are receive-image and receive-copy for type T, the

generic receive proc-receive, and message-context$receive. For an
'- . ' ' .:

iapl•entation of these se,e figui;ea ~.8, _4.9, an4 ~:10.

It ta in the· create-iJl.aae and receive-image ope·rattons of type T

that the! decision a·s to met is··cop:18.d 'atuf ttow ·'ft 'is made. 1.'bese tw

1. As a check that the copy wai;'perfo'taed correctly; perhaps type
checking oqght to b• done on the c°"'p.lete. ~t.ructure •. The
messagel'coiiia't can ':be mted :for this ::"to ·'avo:t.d;ial'ii J!OO}Ja ; .. , Thi• is simply
p matter of checking that all the compqnents of each COlll~n!allt are of
the ccfrt"ec·t tjpes. · · · · • ,· ; ·

- 79 -

receive-copy • proc (sender-name: any) returu (.!);
object-name: I :• c~at.eO; ..
proc-receive (ol)ject:..nae, sender-naae);
r ~turn (obj ec t-n~} ;
.!.!'!!! receive;

t:eceive-im.age •proc {image-nae: ·!!Ye, Ohject,.:..n..e: !>;
object-nae :• ct~e .:(,),; . : · · ·. , .. .
ill (next-nme: ex, index: tat) !I hlace•ae't•next-aane

(iaaage-~> .. ,S, ; '
atore-n-.e (ohject-naae,, tncla.&.- next.;.n..);
e.,S.;

_!!!.4. receive-iaage;

Figure i:,! The receive-copy and r~ceive-iU&• eper~attona of the T type
manager.

proc-t:eceive - eroc ~object,: - .. ~cJ~~cm.);' .
mesaage-context-nwi"••i=s-wt. :• ... '···' .

· messa~~teKtk~~ \ ·. : ·. ,t .~ ~ · ;._ .~r~eivfit"); .. ·
message-cont.ftt$recaiu ·(ae~t~. Hiule;r:_;itaiie);
-~-;eOl\ta.~de1-te c..a.-.~ • ..r>.;,
!!!, proc-receive.; ' · · · ·.·

Figure 4.9 The generic receive operation c;r pr~edure.

operations together provide the type specific qJ&ittie~ ~i copying. it·

1s here that we can dee tde not to copy 8N.e ~n;a·t~ ..itthout. ca'Wii~I

the whole copy operat:lon t.o fail. For ~at":,~• .it S:Q:U .~*'PO~t .of an

object is context. specific, the,. cre«t~1-ge ~•;i-Qil. -~~ -~~.r-a.te fl

special signal or value to the receive rather tha the name of a

component even in a copy-f.ull. Tha si&a4_1 llWlt b.• in~erpr.eted by ttie

receive-imaae, so tha,t it will be able:·tc(f:1fi .ia. t:h~ 41>pr.Qi>t'4te .·

component. This is just an exampl~ ·of the Teaaori:lag tba.(-.ight occu.r.

- 80

,-., , ...
' ~ ' ' ~ ., {:•, :- ' "

''.-<.

receive • proc (message-context-name: message-context, sender-name:
any);. ·
m (illlage-aae: image, · type·J:s.· .!J!:!, ·fml*Xl: 111.t)' !!l

next-receive (message-context-name, sender-name) ~
if (type1 "a.0~ ;•qwil "••-.~mttext") 1..5.!!!!.,

image$translate-in-n•e (image-name,
· liessage-ceo•at ... n-.).; · ,

object-name: any :• naae(measage-context-nam.e,
·in4exl) ; ·.• ·

typel$receive-image (image-name, any$£orce
(object-+naae).); · .,, .

.!.!!!.. receive-image (image-name,
meaa.,.~coat.ext~naae);

end•
image$deiete .(imqe-name);
end;

· .!!! recs i ve;

Figure 4.10 The receive operation of tha:message--coatext type manager.
lt f8 similar to the message-context$aead operation.

This completes the discussion of copying acroas context boundaries,

but there is still one more form of copying that must be dis.cussed.

!:,! · ~ local copyiy opar.ationa

The last situation that JDust:. be, ~oa-•#..dered ;Ls whea tbe ~opying is

done within a single CGiiite.xt... Por thili$; .. we Wi:L-11 use 11.uf:ti.. of Uie

of the copy-one, copy-hdl, and copy ... full~looal for tbe :J,ocal situatiQD.,

should be the sue. AIJ a 111atter ·of· fee-t' the opeTatiO'lls·ean be invoked

by using the sne operation names. The ·onl-y' changes: ~ed are changes ,

to pieces of code that the pt<ogt'-alllB~ 'rteYe'r aeea-, ·in, particular the

generic operations and message-coatext$send. To make these operations

llfOrk for a copy within a single context. it is necessary to simulate tll•

- 81 -

important parts of both the send and the receive sides .o.f a copy

operation, handled in a single operat.ion, ·ata-a~fZQR.text$1ocal-send.

rot this we will use two meQage-..ceat.exta:. <ho"lh we will see later

that this is not always necessary. When the eopy_o.,eration is invoked,

the receiver-name will be the local 1l4lle of tile <eOpy that is to be

created. The first message-coatextwtll ~ta-tile same as previously,

associating with the index used for. a CQllf01i81'lt t~ fvl.!4 lMlUle of the

component. The second message-context will 'be used. to. 45ac.ciate, for

each component, the index that it had in the first·aesaage-context with

the local naae for the copy, if tbat is oPPt•f1!'1ate.~ 'l'll~ the fi~st

entry will be the name passed as the rece:l,ver-naae. At this point, the

receiver-name will be reassigned 'to contain tbe iuitii8 of the second
,5'

message-context. For any component that will not be copied (as with

some components in copy-one and copy-full-local), the local naile of the

original will appear in the second meas~ •.

Since, as we said before, the senC:liag aeaMg•·•U)ftUJct.-. caa be

thought of as representing sendtng of th• caw,. U.. ~vtna

message-context, or in this case the second cotitfdt• · c.an ·b.j!

thought of as representing the rece.pti:oa of ·~ copy. 'rh~ef.orth making

the second message-context the receive,t;•n-., fl1il.t\ p~cin.g !n it the local

name of the new object are re.aso04l>le •. ~e, P~?Cacl~AA ~· ~ue~ be

- 82 -

proc-copy-full • proc (object-name: any, receiver-name: any);
message-conte~~:-'Qame:. nu:ssaae-sot?f;t;~t· .. :•

· message•conte1tt$create · fobJect!~ •' "c0p-y-fuil"};
receive-local: boolean:• context$lbcal (receiver-name);
if receiv-e-locai then ' c • '

- second-.message-context: aessa.e-context : ...
message-context$.Cre4ttt ('ftil4ifffl\.itlfate, "copy.-full");

receiver-name ;• second-message-context;
message-context$local-aend (message-context-name,

receiver-dame); ,, ;
tl!!, message-coniext$send {message-context-name,

receive r•nallle) ; " ~ ·
end;
message-context$delete (11essage-corttext•dame);
if receive-local then
-.- message-context$delete (receive-1·•naiae~;

~;
end proc-eopy-full;

message-context$locS.l-send "' proc (messa{ge-"'context-name:
message:-context, receiver: anx>; .

for (of>}ect.:ii:.ijame':· aav 'cont~--bcontext, inded: .!al·
obj•ct-loc;al: boolean) · tn. ~.ext, (mesaage-context..;.name) ~

if '(objt!ct•local eq'WiP'P) th8tl1
'' •

- new-n•e: a~y :• context$request-copy (object-name,
. conte·xt-name); "' ;, ... ·

object-name :• neW-name;
end;

typel: ~ :• any$type (o~ject-name);
image-name: image :• typel$cft&t&-image (any$'force

(object-name));
image$tra~uJfo rm-n•es {image-name~ message-context-name,

.• receiver-name);'
new-object: typel :• any$force(name (receiver-name,

indaxl));
typel$receive-illl8.ge {image~name, new-object);
image'$delete {i1lage-name};
end· _,

end local-send;

Figure i:.!l The proc-copy-full m0dified':to take into account local
copying and the message-context$local-send procedure. Proc-copy-one and
proc-copy-fW.l-loca:l are identical t6• the ·pi"Oc"*Co~l except for the
creation: of the tlleSSage-cpntext$ where the appropriate operation name
must be used.

- 83 -

message-context$local-send liWtt; be cteat;ad.~ :<i(thi;a. ~~ld '?:e, .included in

message-context$aend ,. but for ease in t.lodit~~d:iog ~·~~ Pl'.<>,&i;aras has
;.:. ··.

l\Ot .} !'ige~ 4.11 .ci9p~ta tlieae 'Uvia:,\~s.

There is a great deal of aechani• lJ..r•~-~-~··~~4'-~ aomething

apparently simple. There are several rq~ •. f!~;¢~~~ it~at. of all,

one of the primary g" ... ·~l ~:1$,.,Wf?FJ,,~ll:i~f~!~Mb~~J ~l\f#.~ in the
r: , ._ ~ : ·' 1 ·- h~ . • •

structure; message-c;.ooteat•,.-• .iJ-.0.f~~h~<~fll~-,. ,~4:'9~• ding t;he

mechanie•a already 1D place to. perf on d,i•t~~· ~PJ,~ .. ~~~;:t~~ on

mechllnism. Th.J,rd, as ~n~i.o~. prev~~lltliY~~•~ffll~~~·~'~t~.can ~d

should. be hitld1»1 .. fr<Jll t~ .prgr-119~'(,~!>~f.fl!1'-.-~~g~~,t~-oqis ~ We
. _' ~.- ·."' .. •. .

use images agaui and have ~~y·,110fii'4e~.:~~-t~J~,;~1i be provided
. ... '

• · , • • .•·. ,; ; : , · ~ ~ . " :: '.. ·- ., :-,.l.' H ·r: .. ,,,. ··\:_, · ~ ~-· . ·

bv the system fo_r the prograaaer. Re. Pq.;l)':'o~,a·.~o- think about copying.

Thus,
, .. ,'.· .-_ ... ,,.- .• 1 ··- ~ ~t1~r:::;)'-~ .,; ~;~"·:.:Jr ..

although the mechanin appear• C°"Plex · frOlll .. ~M system point of

the .. pi;op~' -, Job .. bow- b-$1.1.;ijilcl · ~·:: ,:,;.:~:1 .> .·~ · .
•••• - <.

view,

• • ' • . ;_ '· ! • __ .(;, '.- ·.-' .• ;,,.'7:"::-·.. _.fr_ • .,,,. ; ,_ .• : ·' , .. ··~· -~ .··: '. ·-' •' • • 1
As mentioned earlier,. the.re are ··~· ,, •• ~l,e.'Qi~t.llizationa~ One

' ~· ' · t ·' ·,:·· •.,. :~--~ r.· • ~ ! · \'·£.)<·~· • .;> :;., ~- '-$. '~~-;:~ i ~-::.t:' -i-.f~~· ;:-: -· ·

has already been included in Piaure 4 .11. If we •t~. J:o .4uplicate
, " - ' .. ,., ~ ' '

-· - ' : ·"· · ·'-.~>.-~~~f~; - · }.'[.F.~:· .. ·:~--'.~1,; ... ·';· '·" ~:'.~-3 · ... ·;·.,:.,
strict' ly what is done at a distance. wa., ~.g ~~d·~, liaages, one for

sending and one for receiving. We have elided t.¥: ~~:~·Jntp· one. A

second is that it should be apparent that for the copy~one operation the

'•. .·-' - ._:_ ',>;,~ _f_:-:~.:,; .. _··_,,~.., . ..:·:_,.-' · .. ~ ... ·'1=;·;,.,/-:'.'. .·'' ' ;: .. ·._'~\'')

Heµ.ce, only ·«>¥. aee-..ge-.co~ .i• n&f:e&~,- •• : · Ac,~~1;1:' tor co,py..;()fie ·.We

could get away with non~,· a~d simply- p~~fo'i. ~·bit;i>y 'bit copy from the

original to the copy of the object.

- 84 -

•,'

4.7 Additional issues

This section addresses several additional issues that arise in the

implementation of the contexts. and collllllunication between contexts.

l. Global .nallling for co·ntexts and types of object.$.

A problem with glol>ally ·u-~ique n.-es·of.aay sort· is that they imply

approac\'l to gene-rating glohally uniqlie -names is «to p.J:'.ovide a aingle n•e

server. ·· This cei·t&inly caa be made to Jgwa~eatee uni.<1ue n'8es.

U1lfortun4tely, .no ·~w n•es .caa be. acquiil'ed· by· anaame clien.t:c whi!n he ts

n~e server, by partitioning the n$tespace and providing each potential

client with a piece or subset of the whole oamesp,.ce. Th·i& is what bas

been. do-tte ·for obje·ct:s in the model. uaed./iQ.. tbts,·.(aaearch. Each context

has a part of the nameepace of tbe 1i!lbole dis•d.b:uted system. By

combining the locally uniqu.e .naa• of an .. obj.act ~itb the global,.ly ~nique

context name, objeets can be aasigned· globally anique n-.es •. But this

is based on the . a.ssUllption that coa~exta · b.4lYe g!ob4lly unique nam.as. ·.

the sa.ae procedure of part:Ltd.on:ing ~he., coat•~t · Q4DleJ:JpflCe by nodes of the

distributed system could be used., so that a".11od.e,co'1ld be detach~&t fi:om

the system and .still be able to crea>te new eroatexta. . Now, the nQdes ·

need to be globally unif1Uely named. At age point t}le.process of

d-4viding the nameapace m~ stop and thel'e atist ·be, d.epende.nce on a

central name server. It is quite reasonable to •peC't this at the leval

- 85 -

of naming the nodes, because this may very will be encoded into the

hardware interface to the communication network supporting the

dittributed system.

The assumption of global naJR•s has also been made for types. The

of neg-oti.&ti-on that ·1'Ust ooau in :o'f'd•~'ifor 'C""'anttiotta .. ,t,o,.~e ··that

they ltoth have correct •eraions ofi the t71>•··.&Dagn~:; 1.tM!:ra, i:a '• .rfl&.808.

tl\at part of this ·agre.-eot cannot··~ to .at•,4• f,a !1t11~~· _...for

... . -·t } }, ~- < . '

2. Uniformity among machines in defining typ .. cop~•d between machines

We have assumed that. when an' oo~ect i• ••pi-84 tr•· Oll4? cqnte~t t.o, ..

another, .not only will there lte tlte ~iab'l •kof, .,._r.._ •• ,._ or

clusters at the receivirag eoate•t to recai.ve th•-~•• of th• opjeet ...

and its componaats, but .also that" the.,,... --•~•:,·¥Ul.1lte, cl•fined,iQ.

any type that is to be copied will N ~he<·.a.e·tar,t.._ of il.:a component

been coaoletely appareat that this ~ioa: •&·-'~-•"bu.t. .as. l"g aa

we permit the partially copyt'R& operatioaa• c~ e4

copy-full-local, coapoaant typ• .llUat Jte· ~- ._..,,, ,Let-:A.UJ. r~cn1aider.

the object L-N 18 of Figure 3 .• 2. Let L--1' 18 p ef type Tl. lJJ. con~ext

1, let its third component be of type T2. tf in context 5 (the

- 86 -

receiving context) an object of type Tl is implemented as having the

third component of type T3, we ha~e a·'problem1
•. Yor ti\'* copy•one and

copy-full-local operations the copy shoufd have the t:h'tra compc>nent; ,

pointing to an object of type T3, but ·h~s i°'f~pohent o'f 't}Fp'e T2~ .A

more difficult oc<:~rs ln 'cases in whi~h 'tni tt!\tt-' .. entatiott of a type has ·'

different numbers of corip0nents in dfffertint ccSdteits~ '· Thtill whether ~;'

not a 'componm:t (or several component&) 11~a to' 1"e';cd1Xvertt!d into a

different type can be determined only by :exaalfug oth~l cnmponents. To.

solve this a different approach ·to copying wuld ;~e:'~t.o wed, one 1tf:tl\

much less overlap.

Thet.:e, is. aJso a aQre subtl! .er,~bl~ w,i,~ cr'4_ting the copy at the
·- . . ;:;, - • ,..t -~; ·-· ' • •. 7 •• .:.

receiver (in the c:aaes ~~e .. s~yera! iMl8,• ar~ :e&1sed, cot?.y-full and
d c. • < ' ') •

copy~full~local) if the variou~ r~pre.,,~~~iol!~ ot a tyJ>.~ are differ,ent

in terms of type of components ~11 ~iitfereo.t. ~ont.exts.
: .:"' . ,,. . ; \..- ;

Sometimes when a
' '

canponent of a specific type e.g. T2 above, is received it will be

transformed into an object of another type e.g. T3 as above and' other

times not. Wb.etbu o.!= not this sh9~1,$i ,b.~.; done. may, not be fD~wn until
. ·'• ' ,. , ' ' , ,,'_, .' :-

all the ~gea hav.e bef,!tt received and proce~~d,. Much reprocessing may
. .: ¥•.

need to be done. . As l(itb the previous. ,po;f.!lt aade ~oye, some degree of

autonomy is at stm if type representa,t:ions must contorm to each other.
, . ··' , ., ' , I ,t

3. Sharing code between contexts on the saile node

This problem can be broken into two proJ.>lems depending on whether
. '. . .. /j. .. ~.: : . ·~

or not the c.ode in question is. J>t.J.re c~de, or not. If the code can be
:r,..,

impure, each con.text must have its own copy of eve,ry P,iece of code, in

- 87 -

particular type managers. If this were not the case, there would be

anot.her means of communication b~tween contexts bes.tde!J message passing,

and t bat has b.~en exclude ct fJ:Plll our. model. lf, on the other hand, code

can be guaran;teed to be pui;e, even though two contexts may in fact have
l ':- ~ '> ' ·,

different storage names for a piece of code, the·stoTa.ge manager may . -" ' ,.' . ., . '""' . ~' '. '..'

actually map these different ia.a.es into the. s.aae object repre~enting the
- '• ··-' . '··:· . ,_:,:·· :,

piece of code~ In p.$rticular, at the. bot~9~i()f ~e ~f!~twork,~f _type

managers, the type ,qna:aers o.f th~ _base typ~a .. (e.g. ,those,.J;hat may be
- , ; ,· : ,, , ; ' -. . .,_ . :-.t j •', •• ~ ' ; ~ ' \ '

implemented in hardware) 'Ifill be pure, and therefore can _be. shared, As
~ '·r -

a matter of fact, those in hardware must be shared, unless there is a

separate processor fo~ ~ach c~litext~ ~fch s¥81is f:i'fe$;'an' \itlrel!isdtiably

severe limitation. L~oking at tt\ii"p~6b-i~1i siig'litlf,.d:ftf•u!entty, We

must consider whether or not· Umi~tjb1a oliJitta 'eiln''liie lttiared. We 't:a11

conclude that this form of sharing is' invisible.'

4. Synchronization

Conceptually the si~plest ancl moat strai.ghtt·omra'maeh~nism.· to

guarantee consistency is locking. thete'·'are seve'ralJ' p~·bt>ie11nf,With this.
• - ·- • 'I. . : '· ,. ,...,. ,; • ,•:,., ':?> :. '

First, it requires an ·additional pass ove~ tfle ob}"et t in otct~i- to '

discover and iock all the componeilts. S~con:d;' .. there t•· a more iie'rious

problem when components are fp:fe.~~, .ln .~l\i,r,pase tll~?'?':,, c~lications

arise. There is a problem of responsibility for foreign lock.a if they

can be held by foreigners.

impinge on the autonomy of a c~nt~xt •.. c tti\ui,: for' pr~~ti~•f 'Ile ·well as

sec~rity rea~ons, locking may not be the;'·cciii:e~t 15ti1u'tiori •. Ait•'approach

developed by B.eed[l7] appears to provide a better solution to this

- 88 ...

. '

., .

' ,•
' i
'

problem. Reed proposes that when mutable objects are lllodified, new

versions of them. ate created and ttme-.atampecl. th'us, ·as long as the

older; version11 are saved, it is possible to refer to and use a

consistent version of the object. This also solves the problem of

locking foreign components.

5. The Size of aessage-eontext•

The size of message-context is a potential problem. One of the

requirements that Fisher[S) and Clar~[3~ put on their copy~ng algorithms

was bounded buffer space to achieve the copy. We have traded that for a

smaller number of messages and the ability to pr0cess in parallel.
'•. :,: .,

although we have considered the problem of the size of message-context

in developing the algorithms presented here. First of all, we have

eliminated, as much as possible, actually copying .the message-context.

Second, we expect that the system will support a larger quanti~y of and

more useful base types than CLU[ll), s~e of which will be la{ger in

order to _avoid having to break every object into the immutable base
J' . • ..•

types of CLU. For instance, it may be \$eful to consider arrays and
i . ·- , . ~· ' !

records of bas~ types to be base types.
':l

As aentioned in earlier
- • . l ~

chapters, we consider contexts and message-contexts to be base types.

This m~ans that when a message-context is sent as part of a copy-one or

copy-full-local, it need not be broken apart into smaller pieces. More

research needs to be done to determine additional base types.

- 89 -

6. Types of component objects that should not be copied

An object of a particular type may include components that should

not be copied, although the object it_self may have a copy operation·

defined on it. The reasons for this may be numerous. For example, one

of. the components of a procedure may be its ~n:kapac•. Tb.is certainly

should not be copied. Or, a table that is to be customized for the

local context is to be copied. Some of the com.pQnents should be copied,

but in place of others flags should be sent. so that .. the type manager in

the receiver will insert the correct component in these spots. We have
..

provided the hooks for handling this probln., in the form of the
_, .;'.

create-image operation that the inlplement"4!r of the type manager must

provide. This means that type specific image creation is performed, and
' , ·'''

therefore can be written to provide the desired flexibility.

4.8 Swmaaq

This chapter has presettted in greatet: detail the sending and
. .

receiving operations needed to copy an object. To this end we defined

two types of objects. the image and the meBSage-context. The image is
. .

the vehicle by which we pass the value or state of the ob-ject from the

sender to the receiver. O~her wo.rk[ll) uses the terms encode and decode

to describe the operations of creating from the original an image in

order to create a copy. The message-conte:w:t ie the m.eans by which we

retain any sharing in the original structure in the copy. In addition,

it is the means by which we avoid looping infinitely when copying cyclic

structures.

- 90 -

The remainder of the chapter detailed how one might implement the

copying making allowances for foreign components and for local copying.

In order to do this, a number of operations were assumed to exist for

both the context and the hypothetical extended type for which copy-one,

copy-full, and copy-full-local were then defined. An important result

of this chapter is that what needs to be written by the implementer of

an extended type, in order to provide these copying facilities, is

minimal.

- 91 -

- 92 -

Chapter !!:!!_

SUllllllary ~ Conclusions

5 .1 Summary

we·are now :at a point to.review what.has· been accapli~d in ~his

thesis. We began with a lllOdel of a dietribu~ed syat•· It has as a

hardware base a network of· computer•:• ,Each'aode in thie network

supports·& kernel, tbe local·syatem aoft.ware1e On.top of this we

postulate one or more coatens at each .ftOcle. : A. e-.text can be viewed in

several ways: as a naae.,,ace :ln- Which proceaaea ca.a execute 1 as a node
(

in an abstract network (with communication among auch abstract nodes

only by message passing), and finally as objects in a world of typed

objects. We also assume that the typed objects contained in contexts

may not migrate among contexts. Given this model of. the system, we

investigated sharing. Since we do allow n$1ling across context

boundaries, sharing is possible. However, eharhlg of foreign components
'

is limited to the following two ways: passing messages requesting

operations to be done on the object in the foreign context, or by

acquiring a local copy and performing operations locally on the copy.

In the first case, the physical object is shared, and any mutations of

the object caused by one of the .sharers will be visible to the other.

In the second case, since a copy of the object is passed, although the

information content of .the object at the time a copy is made is shared,

the physical object is not and therefore any changes made by one of the

- 93 -

sharers will not be visible to the other. In spite of this, since all

communication must be done by message passing, sharing by copying may be

the more desirable approach for a number of reasons. First, message

passing is likely to be expensive in terms of both time and space.

Second. if the two contexts between '41ich messages are passing are on

differetit calllputers, since we have as•umecl 8' ~•1:Jol,l ... uton~y. as PQ&sible

for the nodes and cannot: predict .failure of either th• ,n9d•11L:or the

object will be available at any particular tille.. Thus, sharing by

making a copy may betlle only reaaonable a1't.•o.a~ive. ~n any ~a••• it

certainly is an alternative: that sb°'1ld oe: prei>vi<le4-., .

In order to achieve this sharing by copying, we have defined three

copying operations that we think ought to be considered. The first is

the copy-one, copying just the top level of the object's structure.

Second, we considered the copy-full. which copies the complete st.ructure

of the object including any c01llpon•nts that reside in another cont.ext.

Finally, we have looked at a novel approach to copying, the

copy-full-local which copies a complex data object to the boundary of

the context containing that object, but no further •. In devising a
, " . ,

mechanism for achieving these copy operations, eeveral goals wex:e set.
" .

First and most importantly• we want to aa~hl-tain any ehar.ing that exists

in the original structure, because we believe this to be an important

part of the information contained by the object. S.cond, we want to

economize on mechanism by using a single approach in all three

operations. Third, since all communication between contexts is by

- 94 -

message pas~ing, we want to limit the amount of message passing

necessary; that is, copying ehould requi'tf! as little c<>.municationbaelt

and forth bet11een the two context• as 'possible. Finally,' we want to

.allow for parallel J)r004•eing at the seftdd.Dg and raceivi:ng ends- of these

copy operations. the 1Bechanisa diacua•ed ilt· Chaptett.• 3 and 4 achiaveff

these goals. In order to ·40 th·i:S, wac-tiave' f08tu!4ated two. new .types of

objee.ts, the 1!Ye and. the •t•iln=contiu.c. How ,cmpyina aiaply i;equire:s

creating a message-context to: b4 used to r-.onet\rut:.'.tc the :sharing vitih±n

· the structure and determine 111hich objects ,ue M>· be 'CO'Pi&d as

c0111.ponents. The type image is the tYJH! of object that actual:ly can be

sent in a message. Thus for each object that the message-cont~xt

determines must be copied, an image is created and sent. At the

receiver, the reverse is done. The message-context ag!lin is the means

of handling sharing within the structure and images are the objects that

are received ·and that bear the information that is used to create the

copy.

The proc.eduree that have l>een d.eYelopecl·:LaQ)apger 4\1.ndicate that

copy operations can b• inlpleianteci :in, such '4 .way that the creator of a

new extendttd type must do very little in order '~o .provide these. three

operations for his type. First, he 11ll.t8t define-. :the operatiO'l:llll siaply as

invocations of generic p,r:ocedurea of silailar name•. These procedures·

are to be provided in each coa-te:K\t by :tft.e keme.1. .. ,'Ille other chore left

for the programmer is to define how an image is created from an object

of his type, by implementing the create-ia!ge operation for his type.

Thus the actual contents of the image can be type specific, yet the

- 95 -

implementer need never know about message-contexts and other details of

the copy operations at all. In order to receive copies, similar

operations must be written by the programmer; receive, which invokes the

generic receive operation, and receive-image, which transforms an image

into an object of the type being implemented by the programmer. We have

also shown how the mechanism can be extended to provide the three copy

operations within a single context (in addition to copying across

context boundaries) without requiring the implementer to distinguish

between these calls.

Thus, assuming our particular model of a distributed system, this

thesis developed a solution to the problem of copying. The following

section will assess the relative utility of the three operations and

mechanism developed.

5.2 Conclusion about the research

Now that we have developed a mechanism to solve the problem

presented in Chapter 1, we must examine what has been achieved. This

discussion will be divided into two parts. First we will consider the

relative usefulness of the three copy operations.. Second, we will

consider in what ways the mechanism might be simplified if we were to

relax our goals as initially stated in Chapter 1.

As stated earlier in the thesis, the copy-one may be considered the

most basic of the three copy operations we have presented. In theory

the other two operations ought to be achievable by a repeated

application of copy-one. In practice, in order to maintain the sharing,

- .96 -

the programmer would have to take on the function of discovering most of

the sharing froa the aessage-.context. Th• aewag..,..eoa.text will only

discover sharing among COllponet\t1l of··· s1.n9le obJect. Simulating t.h~

more. 11e88age passing than we have founa neeeau.ey~ . It: is not clear '19·"'

useful the copy-one Operation is; if tfl:ta ob:j.et• t• M C()pied is Of U .

extended type, then copying only th& ~o.y le:ve-1· dpes not .appe.ar t,o., ~

by passing more messages across context boundarie&.; (.Qf course, tber~

may well be situations in which it is desirable to allow the names of

components to be passed around without actually copying the components.)

On the other band, if the object is a base type object, there is no
. .

>~··

difference among the various copy operations; all three should have the

same effect. The only difference in this case is whether or not

extended types using the base types as components can have defined on

them one or another of the copy operations. As will be discussed

further later, in order to define the copy-~ull and copy.,.;full-local

operations for an extended type, it must be clear that the relevant

operation is defined for each component type. 'l'bis will be considered

further in the discussions of verification and exception handling.

-~ow, when consid•ring the copy-full operation, we find this to he

what is· most· frequently oonsi·derecl tor•be the stanflard •eopy opetati,oa.

In our model, severe cOllplications may ,arise becaua=e contexts ••Y
support arbitrary autbOrilation constl'aints, nQd•a c11tay disassociate

theaaelves at any tiae from the system,..~and the eoamunication network 11

- 97 -

well as the individual aodea aay not be relia\>.le. 'We •re not

considering the reliability issue related to. ,.._tb.8" or not an

individual message ia lost; or scrambled.; but rat.hat: .a~wn,wHfu.1 the

CO)'y-full. operation is if the netwotk has.a hijh...proha))µi~y of. be;i.ng

unavailable. at any giveu time. •. ·) 'nltt copy.-~~!· •l• .. 'f84~ir~,s~ the extTii

commitment in time and apace to acquire. copies. of .i-:1 f-0,,reip ~ompo~ents

copy full is too.general.
I

The copy-full-local is a new operation developed in this thesis

that appears to strike a iaiddle ground. It approaches a solution to the

above criticisms of the other two operations. Assu.ing some or most of

the coiaponents of an object are in the same context, most of the state

of the object can be copied. In addition, if the full state of the

object is the obj_ective, there is a savings in number of messages (copy

requests) and message-contexts (one returned for each copy request) over

those needed if only copy-one operations are executed. At the same time

if the foreign components are unavailable for whatever reason the

copy-full-local operation does not fail where the copy-full would. Of·

course, if instead we have the situation in which most or all the

component objects are in other ..contexts, <i>erball&, Q:a•O:tMr ~. tb~n

of the copy. Since . the other coapoaente auat .· al.s.o be .requeeteci i,n this ..

case, it will be necessary to ace.et• ;tl\4 i<>r•m .~pon•nts anyway. It

also means that SOJBe sharing in the structure:MJ he lost, becau.e once

images have been created, the globally unique identities of their

- 98 -

originals are no longer attached to them. On the other side, in this

case of widely dispersed component obje·cts,·· the ·copy•·full aay be mo'l'e

expen·si'V'e in terms of use of resources :atnd ·u.ae, e'.inctt· ·each of the

foreign components really w±ll b'e ·e·opied· twice. "- suspect this ie an ··

unusual situation, but the only true :teat is e-.,.rienee. · Thus ·we

recommend that all t-b~e operations d.ould 1W! 'aniJ.able :la a .aystea ·

si111':ilar. to the ~ne wra haM modellH, ·4.J.:choap w SU'Spect that the

copy.;.ft.tl.l-lacal will be th• moat ·.useful.

the mechanism presented appears to be fairly complicated. It is

worth considering whether it could be •implified if we relaxed some of

our goaia for the copy operations.. Our goals or constraints on the copy

operations were listed in Chapter 3 and again earlier in this chapter.

The most important one was to maintain sharing among components. We

have aiready discussed relaxing this in acquiring foreign components to

create the appropriate images for a copy-full. If we were to eliminate

consideration of any sharing, we must consider whether we could

eliminate message-contexts. The answer is .that we could not entirely.
';

It would still be necessary to pass to the .receiver the names of

components not copied in the copy-one and copy-full~local operations and

these would have to be collected somewhere. The problem is that objects

only contain names local to their containing context for a number of

reasons discussed in Chapters 3 and 4. If only names local to the

sending context are sent in images, the naming network would become much

more compiex. Foreign components of an object aight become inaccessible

because one of the intermediate contexts was unavailable, when, in faat,

- 99 -

the context .containing the component was available.. On. the oth~r hancl,

using only the globally unique names wouJ..d .solve this prob.em. Instead

this would cause a waat.e of space. UaiM ei.ther lQt;Al .~$8 p,r .globa~l.y ·

unique names causes another p,robleli; .it allOl!ftl th;e lpcal -~ foi: the

context. -For security reasons, this aay be »nd.eeira\>le,. There is aleo

the problem of circular lists or recur•i••· eoat.illl!leQ;~. If. that ,,_re

not to be handled by message-contexts, there WQuld have to be some other

mechanism. It is possible that if locking were used as the

synchronizing mechanism, it could also be uaed to cletect circularity.

Unfortunately, as we have mentioned, there are other problems with

locking. Thus it is quite likely that, even if we were not .to consider

sharing, message-contexts would provide the s·iaplut approach to solving

these other problems. A relaxation of the second and third goals of
. ': ... '

eco.nomizing on mechanism and limiting the n....-ber of messages needed to

copy a component would only lead to a more. complex Mchanism because of

the nature of the model with which we are working. The final goal of

allowing images of components to be sent, received, and processed

separately, if relaxed, might allow for some simplification, although

not at the sending context. A simplification would oecur in type

checking the structure as it is created rather than needing to wait
: ,~' ,'

until all the components have been created. (This type checking. was· not

included in the procedures presented in Chapter 4, since it is necessary

' only for reliability, an issue not addressed in this thesis.) ·The

mechanism we have presented would still need images and

message-contexts. At the receiver, the components could be processed in

- 100 -

the most convenient order, which is probably the order in which they

were ·sent. Th1s would simplify. t'boae functions proYided· by the syst•.

On the other hand, the message batt.dler atpt ha~e to be more compler and

certainly would nqd more buffer space, since it would have to collect
•, ' . . '

; ~ ::~ ~.:

and ox-der all the approp~iate pseudo-f.11a&ea before the execution of the
'r <. •' ,·,.,,.· • • o,

receive command could start. This approach would simplify receiving a
' , ·-~-; ·.;:' :. "i _«__ .,·~ ~ -

coraplete copy (copy~full) .in those .cases in Which the representations of

the type are different in the sending and receiving contexts. It would

not be of much help in the case in which the repx-e.sentations are

different, but only a partial copy is occurring. The tradeoffs are such

that it is not clear there is any benefit to be had from relaxing this

goal. Thus we are led to conclude that the copy operations as defined

postulated.

5. 3 Sugpstions for further research
; '· ·-· ' ; ' .f '·' • ~ <

Since we have U9ed CLU as a basis ·tor much :,of our. wo1.1k., it is

reasonable to consider the possibility of ;'l11eludiag th proposed

O}M!rations in CLO. AB CLU stands currently, it is based on a different

model from ours. It assumes a user envirowaent in which there is a

single ~rocess and a single naae,pace (address space). However, ~ork is
>. ': , •.

currently progr•ssing in the direction of extending CLU for a . l . .

distributed environment. Operations similar to the proposed copy
···!-

' 1. This work is taking place at the Laboratory for Computer Science,
M..I.T.,··caabridge, Maaa~ undeT tftff·c:lir.cticm<>f a. 1 1.i11kov and D. llee4,
however, there is as yet no published work. ·

- 101 -

operations of this thesis need to be c.oas~r:e.d to facilitate sending
• (. f .~ ' ' . "

values of abstract objects bet.we.en. tnr~Md in sucb-envirc:>mneno .•

This thesis has dealt with so11e parts of the 'copying problem in a

distributed system. There are related areas that need research;

generalizations of the work pre~nted here are also possible: In
'".· .·; '

accordance with this, we have a number of suggestions. ·They fail into

three categories: items 1, 2, a~ 3 .ad~~~~ ~ddi.tional' detail~' that. have

to be solved when implementing tt~e' 'scheae preS.nted in t"tiis · thesis, ·

1 tems 4, 5, and 6 are extensions to the wor}t, and ·item 7 is a

generalization.

1. Thia research ha• adclre-¥Q<i ooly . ~ ~ "'' .•.-din.a .. t.y:9ecl, pieces

of information. It is clear that there are other •tities that .. P4D- h•

in messages names, ccamands or requests, additiou.l control infoI'lll&tioa, ·

type information, to name a few. riirth~{-~e~tcl.;tnt(f ~-ji·l:t~al of

messages, other than iaqu. ,19 oee.cleclo. Tt&J.•·--t J~e, 4.on.e. in the

context of a .JIOre -0.e.il•cl aQCle~. of t;lle, !Jj.fctJ;~~d;,,!~!f.•·

2. We have mentioned very little about verification·~ Much verification

should take place at C011pilatiol1 time of' type aanagert. The receiving

context should be able to verify tha~ ·ati'i''~~e~:f.v~a 'c&a~nents ite of

:~., :'Y!:.:~·'· 1t~. _.: ..

of autonomous nodes, it is important to 4.o aome run-time checking. As

mentioned, if a ·copy-full or eopy-full-locti 18 ci8flniA '.fot a t)'p•, tt
,. , ..

had also better be defined for ita ~~~~ *'1~·-·C'1J.. ~· 4-~~~, a~

compilation time for the local. type aaiaas.era •. Mow, there are two

- 102 -

oossible interpretations of a type being the same in two different

contexts. In the first case~ in additioa ·to t;he ti1{m·Ji•iQ;S COlllpose.d ~f

the ~ame component types, all the saae opewatiou,-,eu defined. In this

casej ev~n for a copy-full ·*ich allows ior•j.g1) Q9J!'ltt~aeqJ;a,, ~ype

checking cata all be doae at c•ttile"!'"time ~ , ~nr the ·•~o~d, .case. two t)':pes

being considered the uae meaas that, ttley bave•.Ue_,~ ~•PE~"nta,t.~o.n

in terms Of CCllllponent types, anti t~· OP'J«"a~iAJ.U~ of op.e "1\4il : a 1u1~1i1~t of

are defined on both, the operations have the· aaae,-t1f.fect~ l>ut Df)t a],.1

operations need be supported in every context. The effect of this is

that during a copy-full operation, run-time type checking for the

availability of operations must be done in the foreign contexts.
:.l~,. .

Although, as pi-eviou.aly discussed, a type should be composed of the same

cOlllponent types at each site between which copying is to occur, this
' ~ ' ,-

does not guarantee that copying is defined for a specific type at each
:,.·

node on which on the type occurs. Regardless of the definition of two

versions of a type manager being the saQle, permission to copy a

particular object •at be c.hecked. _ This. 'oan.- only .Pe cQec.ke.d at

run-time.. Work must also be -dou- 01\ g~;Mfl,lie~iP:JJ ~h~ two t)'Pe. aymagers.

at different nodes- really ar.e imp.lem.eaU-IW tu Miit@. type if they .claim

to be, regardles& of which definitieb. of beiag',~quiv~ent is used. This

is easy if type •aagera are writtea ·1.U _a h-i&h .-~ l-ana.~ge. and are

simply dist'ributed t:O ·ana :filtstalllild (campU.4) at indi~idual nodes.

This is a great imposition on nodea·and di~~tliy _tbr.atens their

autoaomy and abU.ity to -0perat'e · 11tdle diuasoci.-t$d .fr~ tlH! distri,buted

system. It is clear that work must be dooe in ~ia area.

- 103 -

3. We have not addressed any issues of exeeptiQll handling, ·except

obliquely. We have pointed out several places at which exceptions might

occur: the context boundary (inauffieient autllorization), unavailable

operations (discovery that a particular operation is not defitled for a .

component type in: a foreign context) , an muwaj,.la,hle node (the node has

been detached from the systea), an unreliable network.. It maybe

difficult to distinguish some of these; bat tbou.gh.t 11.ust be p,ut into

what to do when exceptions occur.

4. It might be quite useful to be able to pass images to a context

without requiring that the context use them to create copies~ but rather

be able simply to assemble a collection of images for storage or passing

on to a third context. In this case what may be n~ed .in addition to

the receive command at the receiving site is a c01llllland that would imply

just collecting images. Possible uses for such a facility might be to

support a file server or back up storage.

5. This thesis has explicitly excluded the issue.of· moving objects. We

have assumed that an object resides p61'11Mlnantly witshiu one context. If

it is necessary to create the apJ>earance that an ob.ject bas m.oved; this

should be handled at a higher level by creating a copy ~£ ~he obJect at

the new location, deleting the original. aud uaiag " hiaher l·evel ne,me

to point, first. to the original object aad>.tbent after the "~e" to

the new object. There are problems aaaoeiated with •Ving objects. One

is the question of resolving names of objects •. since in our model the

name contains the name of the context, there wou,ld:ha'le to be some

policy and mechanism for how to resolve outstanding references to the

- 104 -

mov•d object. Further questions relate to security policies, such as if

there i8' an outstanding refe'retiee to ·the object before it move4:. should

that reference be updated, who has the rigbtto'update it, when should

this occur, and the liat goes on. 'lbis. is· an -~ tor much JD()re

research.·

6. It might be interesting to extend the approach used in this thesis as

foliows. Each time a new entry is made in the sending message-context a

new process is created to copy that. new- coaapomint . ..- 'tbe processes all

would use the same aaesag8"'!coutext, so no •hat',J.itg:ll'Ould. bfa lost. There

would be a uster ,process aseociateci with the iae: ge-context, and one

for eac:h oa11ponent to be uapied,. I11• 'thi• ,,..,., lllllCh 1'0:re paralleli•

might ·b~. achieved if ihe bardwa~e col.f;}.d .. upport it. · lf processes a.r~.

not expen&ive, not much baa been loett in o1'erhead; while allowing for ·,e.e

much parallel proceasiag ae ,p&aaible~ f Of. ·coutlee • actj,.viti-_~ involvtn.g

the message-context would have to be synchronized, but that could \>.e

··managed by the process associated with the message-context. This

approach is an extension in the direction pursued by Atkinson, Hewitt,

and Baker [7,8].

7. The approach we have taken in this thesis to copying is to translate

every object into an image. Images are the only objects that can be

sent in messages. This approach can be generalized so that we have,

instead of images, message-images, display-images, printer-images, et~.

In other words, for each physical device there is a form in which it

expects information. This can be used .to create the appropriate

abstractions as we have done for the network by creating our images.

- 105 -

This should simplify the task of transferring objects to other devic.es.

The progr81Blller must specify which operations are to be defined for his

tytut and write the operation to tran&fom .one of nia obj~cta into the

iuae appropriate for the device. At this point the programmer's.

responsibilities should halt and the system should take over. This puts

responsibilities where they belong.

One of the most importaat con•idet'atiotm inlooldng to t:be futura

will be to learn more about how thiar kind uf, aodel .would be uaed.(ho11 it

relates to the characteriatics of real ci&.at~ihute:cl -.p:plicafl.ions) and to.·.

assess the costs (perfomancea) of the CP41taUona,:p-ropoeed in this

thesis. It is possible that e'ltperi*tiC'e 'tftlJFiWdi'l!•t.• that different

operations or even a different model 18 nee.tech 'l'be. rese·arch pr~nted

in this thesis must be tested byexperaoee:aact t,«e:pr4P0Sal .of

alternatives.

- 106 -

[l]

[2]

[3]

.. ,,.· .i ;,.-.,,.·~· ... «~_,;.·-:·~.~·.:.~:;.~, ~:-.'~;~---::-----
,.. •• _ ~- <

Ref er enc es

Baker, H.G., Jr.,Actor Systems for B.eal-tim.e Computation,
M. I. T Laboratory for dolipute~ :Science' Tecluilcal ·llepa-rt l'R-19 7,
Cambridge, Mass., March 1978. (Also Ph.D. Thesis for the
Dept. of Electrical Engineerin~ an~ Computer Science, M.I.T.
Cambridge, Mt••• March, 1978~)

Clark, D.W., ~Structure: Meaeureaents·, Algorithms, ~
Encodings, Ph • D. · 'l:hesi s, Dept • of Computer 1ie'ietiee;
Carnegie;...ilelloo, University, Pittaburg, Pa., August 1976~

~ ' ' ! \ ·'

[4}. Dennis, J.B. and Van llo-rn~ E.G.,: 1\f'ragr ... iq eellantics for
aultiprogrammed computat:i,ons," Ce!• _2!. A.at 9, 3 (March 1966),
pp. 143-155.

[5] Fisher, D .A., "Copying Cyclic List Structures 11f Linear Time
Using Bounded Workspace, II eoma. ~ ACM • .l!.t 5 (May 1975),
pp .• 251-252.

[6] Halstead, R.H., Multiele processor ImPl•enta·ttons ~

::.:ar:~~:~4~1c=:t,:.ti!&.~=:~t!. ~:.~~:ry
'1918~ .•. (Al~io s.tt~ 'theatal for·itlie''~a~ttteti1: of ·,g1een1cal
Engineering and com:piltet "SciriC:e, M.t l .'f ~, '~i'idge', Mass.
January, 1978.)

[71 Hewitt, C~ and Baker~ ·H.' fiLaw for CO!Jililunicati.o.g Parallel'
Pt:oeesse~,"' froc. IPIP qo~i;eaa Il• llOrtit-Holl:and t>Ub liahing
Co., New York~ Atigtist t9'771rpp.9l7...,92. '

' > - • • " ' J ~ , ' ":' ". ·;·.: -- r-, :-- .: ~ .

(8] Hewitt, C. and Atkinson, R., "Specificatton and Proof
, Techniq~~ for Seri.alizers? '.' .1,,. !f.fnS,t.ion~. g,n Software
, Bagtne't~I, $!-5, I (Januafy"'lf t) ~'Pt:>< ·~'23. ·'

"' . '·

- 107 -

,• ·~··

[9)

[l 0)

[11]

[12]

[13]

[14]

[15)

[16]

[17]

[18]

~-.-

Janson, P.A., Using !IE!. Extension !2_ Organize Virtual Memory
Mechanisms, M. I. T. Laboratory for Computer Science Technical
Report TR-167, Cambridge, Mass. Setpenaber 1976. (Also Ph.D.
Thesis for the Dept. of Elec~ri~al Engineering and Cc;>tl.puter
Science, M.I.t., Caabridie, Hass.,. A"gJiat 1976.)

Lisk.av, B.H., et al., "Abstracti9QMechADi•s in CLUll," Comm.
.2f AQI 20, 8 (August 1977), pp. 564.:.516. ·

Lisk.av, B.H., et al., !h;! £YI kf•Emce:~Wlt' CSG Memo I
161, M.I.T. Laboratory .fo~ .COIJltuut>St!t~, Csllbridge, Mass-.
July 1978. . · ·

McCarthy, J., "Recursive Functions of Sym.bol.ic Expressions and
Their Computation by Machine", Coam. 2£.@. ,l, 4 (April 1960) •
pp.184-195. .

McCarthy, J., et al., LIS,P 1.5 Pr21raamer's Manual, 2nd
edition, The MIT Press, Gamb:r.idae 1 Ka~.-· 1965.

Moon, D.A., MACLISP Reference Manual, Project MAC.
Massachusetts Institute of Technology, Cad>ridge, Mass.,
December, 1975.

Organick, E.I., .!!!.!. Multics Systea: !!!_Examination of Its
Structure, The MIT Press, Ca11bridge, Maas., 1972.

Reed, D.P., "A Service Addressiilg i'rotocol. fot ,the Local
Network," M.I.T. Laboratory fot Computer &oie.nce.l.ocal Netwrk.
Note #5, Cambridge, Mass., Decaaber 1976. ·

Reed, D.P. Naming and Synchronization Mt.! Decentralized
Comeuter Syst•, M. I. T. Laboratory tt>r ;.~~te.i: $<J;i,'Pce
Technical Report TR.-205. c;.U.rt.4a•, ¥.allj. •· Sejt ... er 1978.

~!!~:e!~i~~ !::·~~::~e~:c~:::!1~i.~7, ~~~!::!, Mass.,
September 1978.) .

Saltzer, J.H., ••Naming and Binding o~ ~b.j~c~s," L!,cture Notes
.!!!. Computer Science §.Q. (Ch. 3), Springet" Verlag, Rew York,
1978, pp. 99-208.

- 108 -

[19] Svobodova, L., Liskov, B., Clark, D., Distributed Computer
Systems: Structure and Semantics, M.I.T. Laboratory for
Computer Science Technical Report TR-215, Cambridge, Mass.,
March 1979.

- 109 -

