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ABSTRACT

Cunsider a machine with a cellular memory used to store a hst Xi, where X oas
a Lmte alphabet and 1 ¢ N, We investigate the machine representation of such a
hist and the implementation of common list operations such as deterpunimg the )
clement and adding or deleting an element.  Information-theoretic arguments are
usecd in order to obtain lower bounds on storage and access costs for nnplementing
vatiable-length lists and, i particular, stacks. Representations are discussed which
attamn these bounds separately and can sometimes attain both, although it 1s shown
that soine common representations for stacks cannot simultancously achieve both.
On the constructive side, we show that 1t is possible to implement a stack of any
fuite fength so as to achieve Kraft storage and so that the number of memory cell
accesses requured to perform a PUSH or a TOP aperation is always O(log n) but
where, assuming a nomincreasing probability distrihution on stack lengths, a POP
operation requires on the average only a constant number of accesses.
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CHAPTER 1
INTRODUCTION

With the present-day widespread use of computers, it is important to be able
to efficiently store information and execute operations. For a given problem,
depending on the structural relationships between the data elements, we choose to
use a particular type of data structure. In this thesis, we shall consider only the
simplest information structure, a list; in particular, we discuss stacks and briefly

mention some work with queues.
1.1 The Data Model

The data model | will use for studying list structures is based on the model of
a slorage and retrieval problem developed by Elias [5] and Welch [23]. A retrieval
problem consists of a collection of data bases, any one of which may be observed at
a given time, and a set of retrieval questions which may be asked of any data base.
It may also be desired to perform updates; i.e., to transform the currently observed
data base into some other data base from the domain, the set of possible data bases.
A retrieval system which solves a retrieval problem must have several
components:
(1) a method of representing any observed data base,
(2) a method for answering any retrieval question about the observed data
base,
(3) a method for performing updates on the observed data base.
For a given question, the method for answering the question must be independent
of the observed data base; to allow the method to depend on the observed data
base would presuppose some knowledge of the observed data base by the user in
order to determine which method is appropriate. Thus, the method must give the

correct answer no matter what the current data base is.
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The following example illustrates what we mean by a storage and retrieval
problem. We delay discussion of how a data base might be stored and how a query
ot update might be implemented until the next section, where we shall reconsider

this example.

Example 1.1. Consider the problem of Rotary Fan Manufacturing Co., R.F.M,,
receiving mail orders for fans. Somehow R.F.M. must keep track of these orders to
be filled. Exactly what information is needed depends on the questions and updates
that will be executed. A data base corresponds to the current list of orders to be
filled. The domain is the set of all possible data bases; i.e., all possible lists of fan
orders. Notice that there are data bases of different sizes; in fact, it may be
possible for a data base to have any integral size greater than or equal to zero. Of
course, if R.IF.M. wants to stay in business for long it had better be the case that
shorter data bases are more probable than larger ones.

Because old orders are continually being filled and new orders recetved, it
must be possible to update the current order list; in particular, RF.M. needs to be
abie to perform the following two updates.

u,: Process an order from the order list. This involves mailing the desired
fans and deleting the order from the current list. Thus, the size of the
data base is decremented by one.

Uyt A new order arriving st be placed on the order list, which results in
the size of the current data base being incremented by one.

R.F.M. must also be prepared to answer queries concerning the current data
base, such as whether or not John Doe's order is on the list, or whose order will be
filled next. For mstance, we might have the following set of questions.

q,: s (name) a customer waiting to have his order processed?

q,: Who is the kth customer in line; ie,, what order will be the kth 1o be
served?

q5: What are the 1 most recently placed orders?
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Exactly what information needs to be stored on the order list depends on the

particular queries that will be made. i
1.2 List Structures

We consider a list problem to be a type of storage and retrieval problem,
where each data base is a particular list. In general the size of the list may vary,
and exactly how the list will be implemented depends on the specific questions and
updates to be performed. In this section we introduce the basic list structures we
will be concerned with in this thesis: stacks, queues, and dequeues. The
appropriate operations will be formally defined later,

A linear list is just an ordered sequence of items chosen from a particular set
of clements (sce eg. Knuth [141, Aho, Hopcroft, and Uilman [11). In many
instances, accessing of a list is restricted to the first and last elements; in particular,
it may be the case that items can be added or deleted only at the ends of the list.
Because these lists are frequently encountered, they have special names: stacks,
queues, dequeues.

A stack, also known as a push-down store or a LIFO (last-in/ first-out) list,
is a linear list for which all insertions and deletions are made at one end of the list,
the top. For example, consider an initially empty stack; ie., there are no elements
in the list. Suppose we then insert two elements onto the stack:

Element 1, Element 2.
Since Element 1 was the first item put onto the stack, it occupies the bottom stack
position and is the least accessible item; it cannot be removed until all other
elements on the stack have been removed. To add, PUSH, a third element onto the
stack, we locate the top of the stack and insert this new element, Element 3:
Element 1, Element 2, Element 3.

Element 3 is now at the top of the stack, and so if we delete, POP, an element
from the stack, we are left with:

Element 1, Element 2.
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Of course, if the stack had been empty we would not have been able to perform a
POP operation, so there must be some way of detecting an empty stack.

Exactly how one might choose to implement a stack is one of the issucs
discussed in this thesis. Figure 1.1 should help picture how the stack operations
work and corresponds to one common type of implementation, where each item 1n
the stack has a poimnter which indicates the location of the previous stack item. An
additional pointer always points to the top of the stack. Such a storage arrangement
allows the stack operations to be performed in a straightforward way. In parucular,
a TOP operation is performed by reading the pointer in order to locate the top of
the stack and then simply reading what the TOP value is. To perform a POP we
locate the top of the stack, use this element to locate the second stack element, and
then reset the top of stack pointer to this second element, which becomes the TOP
element.  Similarly, a PUSH operation can be implemented by first locating some
free memory cell, into which the appropriate new stack value is inserted. This new
cell has a pointer which is set to the same location as the top of stack pointer, and
then the top of stack pointer 1s changed so that it points to the newly filied cell, our
new top of stack. The pointers involved in these implementations are indicated in
Fizure 1.1, Notice that the directions of the pointers between the stack elements
make recading "down" the stack straightforward, but there would be no way o read
back "up" the stack. Of course, if the stack occupied a contiguous section of

memory, there would be no need at all for pointers between the stack elements.

PUSH or POP

l

bottom 3rd ' 2nd TOP

Figure 1.1, Stack Operations
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A queue, also known as a FIFO (first-wn/ first-out) hist, or a circular list, is a
linear list for which all insertions are made at one end of the list, the rear, and all
deletions are made at the other, the front. Thus, elements leave the list in the same
order in which they entered. Suppose we insert, ENQUEUE, three elements onito an
inutially empty queue, first element 1, then element 2, then element 3:

Element 3, Element 2, Element 1.
If we now delete, DEQUEUE, one element, we are left with:
Clement 3, Element 2.
Figure 1.2 illustrates the queue operations. Notice that if the arrows between
elements in Figure 1.2 were reversed, then after performing a DEQUEUE operation
we would have no way to keep track of the location of the front of the queue, Of
course, we might choose to store pointers going 1n both directions, but this would

involve greater storage costs.

ENQUEUL DEQUEUE
l A
rear e 3rd < 2nd front

Figure 1.2. Queue Operations

A dequeue is a linear list for which all insertions and deletions are made at the
ends of the list. Thus, a stack and a queue can each be viewed as a particular type
of dequeue. One may also distinguish out put-restricted or input-restricted dequeues,
in which deletions or insertions, respectively, are allowed to take place at only one
end.  The ends are commonly referred to as left and right, although either an
insertion or a deletion may occur at either end (see Figure 1.3). We shali not in

this report discuss any results specifically concerning dequeues, but it appears that a
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dequeue can be viewed as a straightforward extension of a queue,

tnsert or Delete : Insert or Delete
' 2nd nd l
left fram from right
left right

Figure 1.3. Dequeue Operations

Now that we have discussed these simple list structures, let us reconsicer the

issue of developing a solution to the system of Example 1.1.

[Example 1.2, How R.F.M. develops a system to solve its order problerm depends not
only on finding an efficient means to store any data base, but also on what queries
and updates it expects to be making most often. Thus, finding an "optimal” solution
would depend on knowing some rather precise probabilities. On the other hand,
we can at least make some general comments. The representation of a data buase
must include the names of the persons who ordered fans, as well as the other
necessary iformation such as quantity ordered, address, payment, etc. It would
probably make sense to store a data base as some sort of list structure. For
sunplicity, let us consider only a list of names and assume that each name also
contains a pointer to the relevant corresponding information.  In other words, we
access any element 1n the list by reading the appropriate name. We have decided
that each data base is to be represented by a list structure, but the type would be
determined by R.F.M.'s desired processing order. Let us discuss several possible
implementations.

One reasonable scheme would be to process orders FIFO; 1e., in the same
order in which they arrived. ‘['his would correspond to implementing some sort of

queue, perhaps as an Figure 1.2, In this case we always keep track of the next
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orcder to be processed and the last order received. Presumably, updates uy and u,
would be easy to perform. On the other hand, returning the answer to question q,
reqinres searching the qucue for a particular name. Unless we have move
information, this could require searching through the entire list. For a quecue
implementation, it would probably be straightforward to answer question q,, by
tracing backward k items from the front. On the other hand, g, would probably
be difficult to answer. To determine the one most recently placed order would
require only a single access to the rear of the quecue. But to determine the second
most recently placed order is not as easy. Unless there is some way of knowing the
“reverse pointers”, then it would be necessary to read all items from the front,
keeping track of each previous item read, until we reach the rear of the queue, Of
course, if we expected q4 to be asked frequently, we might wish to alter our
implementation scheme and store both forward and reverse pointers. At the price
of increased storage, we could decrease the expense of answering q 4.

Another possible scheme would be to try to process orders as they are
received, using a stack representation. Of course, R.F.M. Co. might lose a lot of
business this way, because if it gets at all behind 11 processing orders, then some
poor souls would be stuck indefinitely at the bottom of the stack. (And R.F.M.
hasn't even considered the issue of cancelling an order from the middle of the list!)
With such a FILO implementation, we would expect q to be easier to answer than
it was with a queue implementation, but now q, doesn't even make sense, because
there is no way to know when an order will be processed. Question q; would
probably be no more or less difficult than it was for the quecue.

If we expected to spend most of our time answering question q, we might
want to sort the list of names alphabetically. (T'his would also make it easier to
cancel an order.) But then we would need some additional means of indicating the
processing order, such as a number field associated with the name. Unless we want
to mail out the fans according to some alphabetical order, we would either neced

pointers to indicate the processing order or else updates might be very expensive. |
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1.3 Computer-lmplemented List Problems

In this thesis we are concerned with computer-implemented solutions of list
problems.  Recall that in Section 1.1 we mentioned the three components that any
stich system must possess. Note that requiring the algorithmic method for answermng
a question (or performing an update) be independent of the observed data base
implies a strict separation of "program"” and "data". The "program" to answer a
question must remain constant, while presumably the computer memory state
(representing the observed "data"™) differs for different observed data bases.

A computing system which finds the values of a function f:D,~ R, can be
viewed information-theoretically as a deterministic communications channel with
input d € Dy and output value f(d) ¢ Ry n [6], Elias considered the strictly
imformational limits on computer performance and obtained lower bounds on
storage and access required in the computation of a single funcuon. This was done
by allowing freedom of choice of representation of the input and decoding of the
output.  Viewing the contents of a computer's memory as a codeword, Elias [7]
dealt with questions about the use of codewords which are not sequences but are
sets of bits at addresses scattered throughout a shared memory. The next step was
to extend these results to the computation of a family of functions defined on a
common domain. An overview of much of this work is given by Elias [9], and an
analysis of the complexity of some simple retrieval problems with update was given
by Ehas and Flower [10]. Warner [22] has investigated the performance of
retrieval systems for tables of entries.

Let us note that information-theoretic approaches have been taken to other
problems as well. T'he work of Kolmogorov [151 using minimal program length as a
measure of computational complexity has an informational flavor. Also Ghaiten [4]
viewed the contents of memory as a program to be executed. Other work has been
done relating to problems of exact and partial match and their storage and access

costs (Minsky and Papert [19], Rivest [20], [213).
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This thesis extends work that Elias has done, in which he has considered
many issues concerned with storage and retrieval problems using a fixed size hinear
array. o allow the natural represcntation and manipulation of data, variable size
arrays such as stacks, queues, dequeues, lists, and trees are frequently used. 'T'he
fact that they have variable size makes different storage representations and
accessing  techniques appropriate; for instance, we must consider the basic
operations of insertion of new elements and deletion of existing elements.

We are interested in investigating certain costs associated with solving
computer -implemented list problems. In particular, we are concerned with lower
bounds on the cost of storing a data base and on the cost of implementing a
question or an update on the currently observed data base. The storage cost we
measure in terms of the number of memory cells required for the data base
representation.  The implementation cost we measure in terms of the number of
memory accesses required, which is in general directly related to the time taken to
perform an operation.

We begin by in Chapter 2 discussing the formalism of our machine model and
what 1t means to solve a list problem. Chapter 3 discusses storage and access costs
and explains the notions of Kraft storage and access, indicating the types of cost
bounds we might expect to obtain. In Chapter 4 we consider the entire set of table
lookup questions and investigate consequences of achieving Kraft storage and access,
Possible implementations for the table lookup question set are explored in Chapter
5, where we discuss three types of representations: fixed length, endmarker, and
pointer. These same representation classes are analyzed in Ghapter 6 with respect to
implementing stacks. Finally, we summarize our results, discuss how the techniques
we have developed can also be used to help obtain storage and access bounds for

queues and dequeues, and point out directions for future work.
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CHAPTER 2
SOLUTION OF A LIST PROBLEM

In this chapter we discuss our formal machine model and what it means to
solve a list problem. This work is based on the model of a storage and retrieval
problem developed by Elias [5], [6], [8]. We shall here introduce much of the
terminology and notation that is used throughout the thesis. We first define a
storage atid retrieval problem, and then define our machine model and what 1t
means for a machine to answer a question correctly. We discuss the distinction
between the problem and machine domains and then define the machine
representation of a problem domain. At this point we are finally in a position to
state precisely what 1t means for a machine to solve a storage and retrieval problem,.
In the last section we summarize some of the ideas presented in the chapter, in

order to clarify what we mean by the solution of a list problem.
21 Definition of a Storage and Retrieval Problem

Let F be a family of functions (operations) defined on a common domain 1D,
and mdexed by some index set J €N, F ={fii€J}. An operaton f, € F is an
ordered pawr of functions f; = (q,,u;), where dom(f;) =D and ran{u) € iD. We
refer to an element d ¢ D as a data base. Lxecuting operation f; on data base
d € 1D rewurns the value q,{d) and has the side effect of updating d to the new
value u,(d); we denote this by f(d) = (q,(d),u(d)). Q ={q,l (q,u) € F} 1s
called the question set and U = {ul (q,,u;) € F} 1s called the update set of F. We
refer to (F, ID) as a storage and retrieval problem. 1f the data base d is not
changed as a consequence of executing f, (Le., if u(d) =d), then (F, D) 15 said
to be a static problem, and we may write it as (Q, D). In general, however, the
data base may change with time, in which case (F, ID) is a dynamic problem, or a

problem with update.
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In this thesis, we shall consider storage and retrieval problems which represent
list data structures; we refer to these as list problems, or simply problems. In Section
2.7 we will be in a better position to explain precisely what we have in mind when
we ciscusy the solution of a list problem. Let us begin by presenting a simple
example of a storage and retrieval problem, which will illustrate some of the above

terminolozy. Examples 2.2, 2.3, and 2.7 are extensions of this example.

Example 2.1. Let ID = {d,| 0 <i <6} where each d, ¢ ID is a string of symbols
from the set X = {0,1}; i.e., each d, € X*:

dy =2 d, =01
d, =0 dg =10
d, = dg =11
d, =00

Note that we write dy = A to indicate that d is the null string, the string with no
elements.  Now consider two operations on D, f, and f, The function
fy= (g 1’“1) is simply the identity question and update:

q,(d)) =d,

u,(d,) = d,
Since u, causes no change to the data base d|, f, effectively has only a question
component and so is a static operation. We define f,, however, to be a dynamic
operation: f, = (q,,u,), where

q,(dg) =a, u,

(do) =d,
qax(d) =a, uy(d,) =d,
azldy) =aja, u,(d,) =d,
q,(d4) =aaa, u,(dy) =d,
qzldy) =22, upldy) =d,
q {dg) =aza, u,(dy) =d,
az(dg) =a,3,303, uglde) =dy

Thus, executing the operation f, on data base d, gives the answer a,aga, and
changes the current data base, dj, to the data base d,. Notice that

dom(f,) =dom(f,) =D, ran(u,) =D, and ran(u,) ={d,, d,, d,, d,} € D.
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So if we were to exccute the sequence of operations f,,f,,f,,f, on dg, then we
would expect the sequence of answers to be a,aja,, d;, a,, a, and the resulting

data base to be d, I

We frequently denote the domain of a function, dom(f), by D, and similarly
ran(f) by R. Where we have a set F = {f,| i € J} of operations, we may find it
convenient to write D, and R, for Dfi and R,i, respectively. If there is no
possibility of confusion, we may simply omit the subscripts and write D and R.
For instance, D(S) denotes the domain of the set S. Note that when we discuss a
problem (F, ID), we write ID to refer to the problem domain, which happens to be

the common domain of each function f. € F.
2.2 Definition of the Machine Model

Our machine model is a deterministic, sequential, random access
cell-addressable, halting automaton M, with a memory m consisting of L ce.lls
(where L may be infinite). The set of all possible contents of a memory cell, 3,
corresponds to M's finite input alphabet, and 8L denotes the set of possible memory
states. Via its memory, Nl stores a sequence b € 81‘, which it reads in some order
determined by the structure of 11l and the values in b. 11l may or may not rewrite
values as it reads the cells, but it eventually prints a sequence of output symbols
chosen from some finite output alphabet £. Since M is deterministic, a given input
(initial state of memory) always causes 11l to print the same output (if 11l halts), so
M computes a partial function @ from inputs in B‘L to outputs in £*. If we let
(M) < 4L be the set of inputs for which M halts in finite time and M) < £*
be the set of outputs which Nl prints before it halts, then each automaton Il defines
a "characteristic function" @:D(M) > R(M). The only functions which T can
actually compute are restrictions of its characteristic function to some subset of its

acceptance set,
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2.3 Machine Computation of a Static Function

Now that we have in mind a machine definition, let us investigate in what
sense a machine M with L memory cells can compute a static function q:Dq - Rq.
Technically, a machine 1M can compute the values of a question q:Dq - Rq only
when D, € (M) and Ry € M(M). It is often claimed, however, that a machine
M computes a function q even when the machine alphabets and the prbblem
alphabets are not identical. In such a case, the user also has in mind two
non-machine compotients: a coder and a decoder. T'he coder consists of some
encoding relation 7:D_ ﬁq, from the domain of q onto a subset T € (M) ;
each d € D is taken into a subset r(d) ¢ BL, and any string b € 7(d) is said to
"represent” d. (We shall later use the symbol p to stand for an encoding function,
as explained in sections 2.5 and 2.6. Using that terminology, our encoding relation
7 will be seen to correspond to a relation 7.) The decoding function 6:9?q - Rq
maps the subset !Rq = w(qu) c D(M) onto the range of q. The machine is said to
compute q correctly if, for any d € D, when any b € 7(d) is supplied to 1 and
gives output e = w(b) = w o 7(d), the decoding 6(e) of e satisfies

q(d) =8(e) =6owor(d), d€D.
In particular, w o 7 must be a function. These conditions are summarized in the

following diagram, where all arrows denote total and onto functions or relations:

r
D, ~ 9 c D(m) c gL
q-<  restriction of @ | @

6
Ry * ﬂ?q c R[EM) c &*

To help us understand all of this terminology, we consider the computation of

question q, from the previous example.
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Example 2.2. Recall the question gq, from Example 2.1, where
qu2 ={d,| 0 <i <6}, qu € {aga,a,0*  Let T be a deterministic, sequential
halting automaton with a memory m consisting of three cells. Let 8 = {0,1,2,0},
£ =1{0,1,2}. M operates as follows: it reads the string of inputs until it encounters
a 0, reading in order memory cell 0, then cell 1, then cell 2; it interprets the string
of characters from {0,1,2} as the ternary representation of a natural number; Tl
computes, also in ternary,zthe square of this number, prints it, and then halts. So
DM = iLJ1 {0,1,2}0{0,1,2,0}2
= {000, 001, 002, 000, 100, 101, 102, 100, 200,
201, 202, 200, 100, 110, 120, 200, 210, 220}
R(m) = {0, 1,11, 100, 121, 221, 1100, 1211, 2101}
Ml computes q, correctly, if we choose our encoding and decoding relations

appropriately. Let 7:D_ - 5° be defined as follows:
q

7(d,) = {000, 001, 002, 000} r(d,) = {110}
7(d,) = {100, 101, 102, 1o} r(dg) = {120}
7(d,) = {200, 201, 202, 200} r(dg) = {200}

7(d,) = {100}

Thus, qu =T(M) - {219, 220} and qu = N(M) - {1211, 2101}. Now define
6:9?q2 - qu by

6(0) =a, 6(121) = a,a,a,

6(1) = a, 6(221) = a,3,2,

6(11) = aa, 6(1100) = a,a a3,

6(100) = ajagqa,
So the machine 1M with encoding 7 and decoding & computes q, correctly. For
instance,
doweT(dy) =80°w(000) =8(0) =ay=q,ldy)
dowoT(dg) =60 w(200) =6(1100) = a,a,azay = q,(dg) |
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24 The Problem Domain

Because in this thesis we are concerned with representing list structures, we
consider a data base d € D to be a string of characters chosen from the problem
alphabet X. For notational convenience, we formally represent d as a set of |d|
ordered pairs, containing one value d(n) from the alphabet X for each n € N less
than |d:

d ={{(n,d(n)) 0 <n<idl, d(n) € X}.
When there is no chance of ambiguity, we may write d = X 1X X (X 5 to stand for

d = {(0,x,), (L,x;), (2,x,), (3,x,)},
where each x; € X. Thus, what the formal ordered pair notation does is to
explicitly state the implied order of characters in the string d. In an obvious way,
the definition of d could be extended to include countably infinite strings; i.e., we
may wish to consider the size of a data base d € D to be unbounded. In this
thesis, we shall consider only problem domains D where for all d,, d, € XX,
d, €D if and only if d, € D. Thus, if we allow a string d, € X* to be in the
domain D, then all strings in X¥ are included in ID. Certainly there might be
instances where we would want to restrict character sequences, but unless we
consider specific applications it would be difficult to characterize the domain.
Therefore, we consider only problem domains D of the form ID = U Xi, for some

1€]
J € N.

Example 2.3. In Example 2.1, the problem domain consists of seven data bases,
ID ={d|0<i<6}. The problem alphabet is X = {0,1}, and each d, € X*. In
particular,

D= U x'={a}uxux?
ie{0,1,2}

The data base d,, for example, is the string 01 € X2, which can be formally
4 p ’

written as {(0,0), (1,1)}. Similarly, we can denote each d, € D:
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do={}=2 d, = {0000, (1,1)} =01
d, ={(0,00} =0 d5={01) (1,00} =10
d, ={(0,)} =1 dg = {(0,1), (1,1)} =11

d, ={(0,0), (1,00} =
Notice that the data base do is just the empty string, A. When we view d as being
represented by a set of ordered pairs, then d, ={ } = 8. Thus, we might either

say that dy = A or that d, = &, depending on our viewpoint at the moment. |
2.5 Machine Representation of the Problem Domain

As we have observed, a data base itself cannot be stored in memory. Instead,
we store some encoding of the data base, a string of values from the alphabet Z.
Each d € ID is mapped by 7 into some subset of gt Itis unnecessarily restrictive,
however, to require that an encoding 7 specify values for every memory cell. In
fact, most computer systems allocate only certain sections of memory to a given
user, and other users may write in the remaining cells of memory in ways unknown
to the first user. In order to model practical memory allocation schemes such as
Jinked lists (recall Section 1.2), it is necessary to allow an encoding to specify values
for only some of the memory cells.

Thus, we view 7(d) as some set of codewords, a subset of the code C = 7(ID)
(see Elias [81). Each codeword ¢ € C is itself a finite set

¢ ={(j,c(j)lj€ D{c)}

of lel ordered pairs. The first coordinate of each pair (j, c(j)) is the integer
address j € N of a cell in memory, and the second coordinate is the value ¢{j) € &
assigned by ¢ to be stored at that address. Thus, each codeword in C is a partial
function ¢:N - # from integer addresses to values in Z; its domain, D(c), is a
finite subset of N.

We denote by Z3+ the class of all such partial functions from N to B that are
each defined on a finite domain. Thus, a codeword set C is just a subset C C gt

The domain D(C) of a set C ¢ B+ is the union of the domains of its members:
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p(c) = U D(e).
c€C

Example 2.4. Let 3 = {0,1}, and consider the code C, = {c, ¢, ¢,}, where

¢, = {(0,0), (2,1)}

¢, = {(0,1), (1,0)}

c, = {(1,1), (2,0)}
Each codeword c, is a partial function cﬂN ~» {0,1,2,0}, so ¢, ¢ gt and €, c at.
Notice that D(cg) ={0,2}, D(c,) = {0,1}, D(¢,) ={1,2}, and D(cC,) ={0,1,2}.
We may find it convenient to represent C, as an array, as in Fig‘ure 2.1, where the
i'"" row represents codeword ¢. The entries in each row correspond to the contents
of the corresponding memory cells. The j‘h entry in row ¢, is the value ci(j) if

i€ D(¢) and is blank if j ¢ D(c,). Each column corresponds to a memory cell

address, here 0, 1, or 2. 1

r_co 0 1
¢, 9¢, | 1] o
L_cz 1 0
0 1 9
L J
~"
D(C)

Figure 2.1. Representation of Code C, as an array.

Recall that we write 8L to denote the set of all L-celled memories. Then a
memory state m is in 8T if m € % and its domain is D(m) = {0,1,2,...,L-1}, so
that

m = {(0,m(0)), (L,m(1)), - - -, (L-1,m(L-1))},
where the first member of each pair (n, m(n)) is the integer address n € N of a

cell in memory, and the second is the contents m(n) € B of cell n. (Recall that it is
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possible that L be infinite.) A codeword ¢ € C is stored in a memory m € 31‘ by
setting m(j) = c(j), for all j€ D(c). Other users may fill in the values of the
L - lel cells not occupied by ¢ but must leave ¢ itself undisturbed.
For any string b ¢ 8% we can define its L-closure, by , as the set
| 5, ={mesllocm)
of memories in BL that store b, in the sense that the (address, value) pairs in b are

included among those in m. For L < maxD(b), b; = #. Where the value L is

understood, we frequently write b to mean ;. Note that b, | = il -l
Define the set
g*= U gt
. L>0
of all finite memories that store values from & Then for b€ 5¥,

D(b) ={0,1,...,L} for some L € N. So the L-closure of b contains all sequences
in & with prefix b: b =b - E(L-lbl).

Example 2.5. Recall code C, from Example 24, where 3 ={0,1}. Since
(e, I = |/3]L"l°il, then I(E,)) 4l = 93-led =9, So for L =3 there are two memory
states which contain the codeword ¢, In particular,
(8g)5 ={m€8°c,<m)
= {{(0,0), (1,00, (2,D)}, {(0,0), (1,1), (2,1} }}.

We can represent the 3-closures of ¢y, ¢,, ¢, in array form, as in Figure 2.2.
Notice that no matter how other users may fill in memory cells n where n ¢ D(cl) )
it is always possible to tell precisely what codeword ¢, is being stored. Since L = 3
and 4 = {0,1}, there are eight possible memory states, six of which store codewords
from C,.

Also note that

(), =»

(00,0, (1,0), (2,1), (3,00}, {(0,0), (1,0, (2,1), (3,1},
(0,00, (1,1), (2,1), (3,0}, {(0,0), (1,1), (2,1),(3,1) }}

. 2 5
Since ¢, € 5%, ¢, € 5%, but ¢y, ¢, ¢ 5% |

i

(g0



_ 0 0 1
Co
0 1 1
) 1 0 0
<
1 0 1
_ 0 1 0
€z
1 1 0
L 0 1 2
~V
D(c,)

Figure 2.2. Representation of the closures of codewords in C;.

Having discussed what we mean by an encoding 7:D > 8L and a code
Cc 8+, we can now explain what we shall mean by a representation p:D - Z5’+.
Throughout the thesis, unless otherwise specified, we always make the assumption
that p is a one-to-one function. Thus p(d) is a single codeword in 13'*', and

(Vd,, d;€D)(i #j = pld) = pld)).
The one-to-one condition guarantees that distinct data bases d; and dj map to
distinct codewords. Since
pp(d) ={m¢ 8Ll p(d) < m),

we can see that the relation 7 corresponds to the relation 7 in Section 2.3. When
M's memory contains precisely L cells, a specification of a representation p
indicates, for any d € D, that the cells in D( p(d)) be filled in as specified and the
remaining cells can be filled in any possible way by other users.

For instance, suppose we have some representation p, for which
Ady) ={(0,1), (2,0)}; ie., dy € D is represented by any memory state in which
m(0) =1 and m(2) =0. Since the value m(2) to be stored in cell 2 is not

specified, cell 2 corresponds to a "don't care". For L =3, we shall find it
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convenient to write p(dy) =10 to mean p(d,) = {(0,1), (2,0)}. Where L is
understood, we may even write p{dy) = 1 0 rather than p(d ) =10 _for L =5;
i.e., we may suppress all trailing "don't cares”, which serve simply as place holders.

We saw in Example 2.5 that if ¢, € C, is stored in memory, then it is always
possible to distinguish ¢, no matter what other users have done with cells not in
D(e¢,). In other words, there is no memory state in BL that stores both ¢; and ¢,

for 1 = j When this is the case, we say that ¢; and cyare distinguishable.

Definition. Let p:D - 4%, and let dy,d, €D, Then p{d,) and p(d,) are
said to be distinguishable if and only if

P (d) Np(dy) =2
for any L 2 max{maxD{(p(d,)), maxD(p(d,))}.

In other words, a code C ¢ 4’5+

is distinguishable if and only if the closures of its
members are pairwise disjoint (see Elias [8]).

If there exist d, d, ¢ D such that p{d,) and p(d,) are not distinguishable,
then for some memory state m it is not possible to tell whether d; or d, is stored;

in fact, m, represents both d, and d,. We do not want to allow this loss of

information and so make the following formal definition of a representation,

Definition. We say that a function p:D - [)’+ is a representation if and only

if for alidy, d, € D, where d, = d,, p{d,) and p(d,) are distinguishable.

Example 2.6. Let D ={d, d,, d,}, § =1{0,1}, and L = 3. Consider the function
oD - 8% defined by

pldg) =01
pldy) = 10_
pld,) = 00

Then p is not a representation, because it does not have disjoint 3-closures. In
particular, p(d ) and p(d,) are not distinguishable:

p(d,) n p(d,) = {100, 101} N {000, 100} = {100} !
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Example 2.7. Let us define the function p:D » 8° by

pldy) =00_ pld,) =110
dy) =10_ pldg) =120
pld,) =20 pldg) =200
pdy) =100

Notice that

Psldy) = {(0,0), (1,0)}5 = 1000, 001, 002, 000}
Thus, there are four memory states that correspond to a representation of dy, and

the relation g is identical to the relation 7 of Example 2.2. i

From now on, we define an encoder by specifying a representation function g

Then any string b € P, (d) represents the data base d.
2.6 Solution of Dynamic Problems

I Section 2.3 we explained what it means for a machine Tl to answer correctly
a question q. Now that we have also discussed what we mean by a representation,
we can explicitly state what we mean when we say that a machine il solves some
list probiem.

We can extend the notion of the computation of a function (question) q to
include the solution of a set of questions Q = {qil 1 € J}, where each q;:D = R,
maps a common domain D onto its own range R, Since the ranges are in general
different for different questions, a set & = {§/1€ J} of different decodings is
allowed. For the solution of the family of questions Q, we introduce a set
M= {W] i€ J} of machines with a family 9 = {w | i € J} of different characteristic
functions, where wi:’Di - fnl. We can consider 1Ml to be a single device, with a set
Sq = {si€J} of distinct initial states, or programs. W, is the submachine
corresponding to Til started in the initial state s. We say that (11, p, ) solves
(Q, D) if, for all i € J, 1, computes q; correctly. In other words, if (11, p, §,)
computes q,, then for any m € g, (d), q,(d) =8, o w,(m).
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Having seen what it means for a machine to solve a static problem (Q, D),
let us now extend this to include updates. Recall that in our discussion of the
machine model, it was mentioned that M may rewrite some of its memory cells.
Thus, when given some input m,, M may halt in a new memory state m,. For a
machine 1M which computes a single function f, if we want to be able to compute f
several times in succession, then it is natural to require that this new memory state
be in M's acceptance set. In fact, if T, solves (q, u) correctly, then performing
an update function on any memory state containing p(d) leaves us with a memory
state that is a representation of the problem domain update function u(d). In
general, we want a machine MM to compute a fanuly of functions F, and so we

represent our update function in the machine domain by the family of functions

T = {vl1¢ J}, where yD(IM) > D(M) for TAM) = Ujs(mg c gh.
i€

Definition.  Consider the machine Ml = {ﬂlil i€J} with the family
Q= {w|i€J} of characteristic functions and the family T ={ul1€ J} of
update functions. We say that‘(Trl, p, A) solves the dynamic problem (F, D)
if the following conditions are satisfied for all f; = (q,,u;) € F:

(1) a(d) =80, o 7, (d)

(2) v(p (d)) € 7y (u(d)).

2.7 Solution of a List Problem

In this section we merely want to summarize what we shall mcan when we talk
about the solution of a list problem.

First, recall from Section 2.1 that a list problem is a storage and retrieval
problem (F, D) where the domain elements have some list structure, e.g., they may
be stacks. In any case the problem domain D consists of strings of characters
chosen from the problem alphabet X and is of the following form: D = U X! for

i<]
some J € IN. For any d € ID, we want to be able to perform the operations in F;

e.g., TOP (return the value at the top of the stack) and POP.
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If a machine 1M is to solve the list problem (F, D), then there must be some
way to represent each d € ID in the cells of TM's memory with machine alphiabet Z.

+, and any

In particular, there is some one-to-one representation function gD - 3
pld) stored in m can be viewed as some sort of codeword. I'he representation has
the property that it is always possible to determine what (if any) codeword is
currently stored in memory. What other users do cannot interfere with this
determination.

Suppose the current memory state is m,, where mqy € ; (d). Then W, will
output the answer @, = p; (d) and halt in the new memory state v (g, (d)). If we
claim that my computes  the  function fi=(q,u) ¢F, then
v(2;(d)) € 7, (u(d)) and there must be some sort of decoding function 6, such
that qi(d) = 51 °w; Z)L(d). In other words, T, outputs the machine
representation of qi(d) and halts in a memory state which is included in the set of
memory states that represent ui(d).

We say that (11, p, A) solves the list problem (F, ID) if the above conditions
are satisfied for all f; € F and for all d € D. For simplicity, we shall also assume
that each decoding function 6, € & is one-to-one. Thus, we speak of a system
(M, p) solving a problem (F, D).

When we discuss the machine solution of a problem (F, D), we have in mind
a representation of the domain D in memory and some collection (L of algorithms
or programs which compute the functions F. Any algorithm (Ll. that we discuss can
be implemented by a machine M, as defined above. Since we do not, however,
always want to concern ourselves with all the details of the machine itself, we shall
henceforth speak of a system (X, p) solving a problem (F, D). Thus we specify
an implementation by defining the function p and by, in some (usually
program-like) form, presenting the set of algorithms (& (which can be implemented

by machine ).
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CHAPTER 3
STORAGE AND ACCESS COSTS

In Section 3.1 we introduce various system costs involved in solving a problem.
Since in this thesis we are concerned with obtaining lower bounds on storage and
access costs, these costs are discussed more fully in sections 3.2 and 3;3, respectively.
We first define our cost measures and then present some basic results. For further

information the interested reader is referred to Elias {61, [91, [10].
3.1 System Costs

Many different systems can be used to solve the same problem, and the choice
among them depends on their relative costs. There are three basic components of
system cost:

(1) Storage cost. There is always some sort of purchase or rental cost for
the memory used to store the representation of a data base.

(2) Access cost. This refers to the number of memory cell accesses made
by an algorithm or machine and is a partial indication of the time
required by a system to answer a question or perform an update.

(3) Processor cost. This involves the costs in memory and logic of the
algorithm or machine M itself,

For several reasons, we do not in this thesis consider the processor cost. First,
any such measure would reflect characteristics of the particular machine, and it is
therefore difficult to determine an appropriate measure. We have deliberately tried
to let our machine model be as general as possible. Second, the list implementations
we do consider are in general quite straightforward and therefore a system which
does well for both storage and access costs probably would not have a prohibitive
processor cost. Third, the storage-access trade-off is easier to recognize and we do

not want the current analysis to become too complex.
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3.2 Storage Costs

One measure of the memory requirements of a retrieval system (&, p) solving
a problem (F, ID) is the number of memory cells dedicated to the storage of a

representation in memory,

Definition. Consider a system ((, p) solving a problem (F, D), and
assume that pis a function. The memory storage cost, |p(d)], associated with
any data base d € [D is the number of memory cells for which representation
p specifies a value when representing d:

lp(d)t 2 1D(p(d))].

Thus, we define [p{d)]| to be the nhumber of memory cells occupied by the codeword
A(d). There is, however, no requirement that the set of occupied cells be
contiguous; i.e., there may be "gaps" or "holes" in the representation. Because we
are essentially concerned with obtaining lower bounds, we charge only for the cells

actually occupied by p(d) and do not charge for these gaps.

Example 3.1. Let 8 ={0,1} and define the code C, = {cg, ¢,, €5, €5, €4} as

follows:
¢, =01 ¢ = 000
c, =10 ¢, =111
c, =_10

Suppose that D = {d,, d,, d, d,, d,} and the representation p:ID - gt is defined
by p(d;) =c¢, Then

lp(d ) =1p(d )] = 1p(d )] =2
and lp(d )] =1p(d )1 = 3. 1

Certainly the issue of memory management is an important one, because it
may be difficult to efficiently allocate to a single user the unspecified memory cells

corresponding to holes in another user's memory space. Elias [9] has addressed the
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problem of assigning a contiguous section of memory, defining the span of a
representation g to be the smallest set of contiguous memory cells capable of holding
the representation of any domain element. Many representation schemes we shall
construct will be able to avoid such gaps, at least when the problem alphabet is of
the appropriate size,

Qur storage cost measure does not indicate the complexity of the encoding A
For a static problem, storing a representation would be only a one-time task. When
we consider dynamic problems, the complexity of the representation will evidence
itself in the costs of performing updates. In general, a complicated encoding results
in higher access costs,

Consider a code € c 8+ that has the property that for each ¢ € C,
D{c) ={0,1,...,lcl-1}; ie,, C c 8% Then C is said to be a prefix code, or to be
prefix-free, if none of its members is a prefix of any other. In other words, a
prefix-free set C ¢ 5* has the property that

(Ve c,€C) (e ¢ cp).
As noted by Elias [8], a code € c £* is distinguishable if and only if it is a prefix
code.

The well known Kraft inequality [2], [12], [16] states that a necessary and
sufficient condition for the existence of a prefix code with codeword lengths

by, 0, ..., &, and codeword characters chosen from the alphabet Z is that:

k )

218 <L

i=1
This result is probably most easily seen by recalling the simple correspondence
between prefix codes and labeled trees. Each node corresponds to a memory cell
number, and the branch labels correspond to the cell contents; i.e., there are |5l
branches from each node. Each codeword is associated with a distinct leaf. We
adopt the convention that the leftmost branch of each node always corresponds to
the same element b, € B, and similarly for each of the other branches. For full
trees this convention eliminates the need for writing the labels on branches

emanating from non-root hodes. In particular, for 3 = {0,1}, we always let a
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leftward branch correspond to a zero and a rightward branch to a one.

Example 3.2. Recall the representation gD = #* from Example 2.7. The code
p(ID) = {00, 10, 20, 100, 110, 120, 200}

is a prefix code and satifies the Kraft inequality because

|
pdy) pldy) pldg) pldg)
Figure 3.1. Tree corresponding to p from Example 3.2.
Elias has extended the Kraft inequality to any distinguishable code C ¢ gt
Theorem 3.1. (Elias [81). Let C c 8" be distinguishable. Then
~lel
28 <L (3.1)
c€C
Equivalently, consider any representation p:D - 8. Then
-lp(d)]
>3 < (3.2)

d¢D
Proof: Let
€ ={c€ClL 2max D(c)}
be the subset of the code C whose elements can be stored in an L-cell memory.

Since C is distinguishable, the closures of its members are disjoint and we have

Ue ca-
CGCL
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L-lel
Recalling also that €, | = |4l , we obtain

L-lcl L
2 g <lal
CQCL
Now dividing through by 4L gives
-lel
2 I8 <L
CGCL

Since C; € Cp 4,

~lel ~lel
2 < 2 <,
CGCL C(’CL+1

and so

-lel
im( 2 18 ) =L
Lo c€Cy

T'his proves (3.1). Since any representation g is by definition distinguishable, the

Kraft inequality also holds for representation storage costs and thus (3.2) follows. 1

Theorem 3.1 is a statement about distributions of the storage measure |p(d)1 for any
representation p of domain [D. Not all data bases in D can have short
representations, since a small value of |p{d)] corresponds to a large term in the
Kraft sum. If some of the data bases have relatively short representations then
others must have relatively long representations. If, in fact, we have equality in
the Kraft sum, then no data base representation can be shortened without

lengthening another data base representation.

Definition. We say that a representation p achieves Kraft storage if and only

if the Kraft sum of equation (3.2) is satisfied with equality:
-lp(d)|
2 13l

deiD
Similarly, a code C achieves Kraft storage if the Kraft sum of equation (3.1) is

=1 (3.3)

equal to one.
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We can also extend our usage of trees to correspond to any distinguishable
code ¢ c 3T, However, sitice we do not restrict ourselves to prefix codes (i.e., we
allow scattered representations), we would not necessarily choose to have the
memory cells read in order 0, 1, 2,... on the path to every leaf. This and the

result of Theorem 3.1 are illustrated in the following example.

Example 3.3. a) For code C, of Example 2.4, I8l = 2 and
-lel ’
Solg o =22epenfo oSl
c€Cy
A tree corresponding to C, is given in Figure 3.2a, with the memory cells listed in
order 0, 1, 2. On the other hand, we might choose to represent C; by the tree 1n

Figure 3.2b. In any case, C, does not achieve Kraft storage.

(a) (b)

Figure 3.2. Trees corresponding to code C,.

b) For code C, of Example 3.,

el ] ]
S8 =3.0249.90 21
cGC2

and so C, achieves Kraft storage. A tree for code C, is given in Figure 3.3
c) Recall once again the representation gD = #* from examples 2.7 and 3.2. Then

since each d € ID has a unique representation p(d):

- d -
R AR |3|'°'=3~4'2+4'4'3=%<1' !
d€D c¢p(ID)



CS CZ C, €4

Figure 3.3. Tree corresponding to code C,.

When we solve some problem we would like to find a representation that docs
not result in high storage costs. We say that a representation p:lD - 8+ is optimal
in storage if no other representation requires less storage for some data base without

requiring more storage for another,

Definition. A representation function p:D - 8t achieves optimal storage if
and only if for any p7:D - 3+
(Vd, € D)L(Ip7(d )| < Ipld ) = (3d, € D)(1p7(d )] > lp(d,) )]

Thus, we use the term optimal storage for a representation if no other
representation can uniformly do better. There may, of course, be many
representations that are storage optimal, and which would be preferred depends on
the particular problem and is conditional on the probabilities of the various data
bases in ID. In fact, one might not choose to use a storage optimal representation at
all if such a representation resulted in higher access or other system costs. However,
these involve details of particular problems and, for the general framework we are
considering, we shall not usually prefer one optimal representation over another.

if a representation p meets the Kraft sum with equality, then p is storage

optimal.  T'his condition makes it easy to recognize certain storage optimal

x'eprcsentations.
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Theorem 3.2. Consider the representation function gD - gt i

-lp(d)]
S g 0 o,
d¢D
then p is storage optimal. In other words, if p achieves Kraft storage then g is

storage optimal.

Proof: If pis not storage optimal, then there exists some representation p”:D - st
such that (Vd € D){1p"(d)] < 1p(d))) and (3d, € D) (1p7(d )] < lp(d,)]). But
this says that

5 IE{4P(J)|
d€D

1 =

=1 p(d)] .

“Ip(d
3 g P!

= l
d€¢D-{d,}

Aol ptdy)]

13 l

<
d¢D-{d,}
-lp7(d)]

<2 g
d¢€D

which contradicts the Kraft inequality of Theorem 3.1. |

Example 3.4. Recall Example 2.7 where 8 = {0,1,2,0}, and consider the alternative

encoding p,:D - g% defined by

pz(do) = 0 Pz(d4) = o-l-
pld) =1 poldg) = 02
polds) = 00

and also the encoding p,:D - 8% defined by
pald,) =0 paldg) =2
paldz) =02 paldg) =01
pald,) =00

By Theorem 3.2, both p, and p, are storage optimal because
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d€iD d¢D

On the other hand, p as defined in Example 2.7 is not storage optimal because g,
does better; in fact, p, takes less storage everywhere:

(Vd € D) (lpy(d)l < 1p(d) ).
The representation p, also does better than p, because it never uses more storage
and sometimes uses less,

If we were forced to pay a very high price for storage, we would probably
choose to solve the problem (F, D) of Example 2.1 using representation g, or pq
rather than p. However, p corresponds to a simple ternary representation {with ¢
serving as an endmarker) and might be more desirable than P, OF pg in terms of

other costs. |

We have seen that a code p(ID) achieves optimal storage if we get equality in
the Kraft sum. Let us examine the conditions under which this equality is attained.
We first define a distinguishable code C ¢ 3% to be complete if and only 1if for all
c’ ¢ B+, C U{c’} 15 not distinguishable. Elias [8] has shown that a finite

distinguishable code € ¢ 8+ is complete if and only if the L-closure of its members

. L v . . .“icl o ‘
partitions 8% (for L = maxD(¢)) which is true if 2 3] = 1. The converse is
c€C
_ _ ‘ el
not true, i.e., a code C may be complete even if 2 13 # 1,
c€C

Example 3.5.  Recalling Example 3.3, we sce that C, is not complete, since ¢, < C,,.
However, € is complete. If we look at the trees for C, and C,, given in figures 3.2
and 33, it is easy to see that C, does not partition {0,1}3, since there are some
feaves in the tree for C, that correspond to no codeword. Also, by Example 3.3 we
know that C, does not achieve Kraft storage and thus cannot be complete (since it

is finite) ; C, does achieve Kraft storage and is therefore complete. 1
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We can conclude that, as illustrated in the above example, a finite |5l-ary code C is
complete if and only if every leaf in a full |8l-ary tree for C corresponds to some
codeword ¢ € (.

Using the terminology of representations, we can show that if a representation

p:D = 87 achieves Kraft storage, then p(ID) is complete.

Theorem 33. Let gD - 8% be some representation which achieves Kraft

storage. Then for all b € B+, there is some d € ID such that b € /_JL(J)-

Proof: Let p achieve Kraft storage and assume that there is some by € 8" such
that, for all d € D, b, ¢ p; (d). In other words, by and d are distinguishable, for

every d. Then

-1p(d)| -lp(d)|
S oaf < o st <,
d€DU{b} Jd€iD
which contradicts the fact that p achieves Kraft storage. I

The converse is not true (see, once again, Llias [81). However, if p(ID) is
complete for ID finite, then we do know that p achieves Kraft storage.

Let us briefly mention two results concerning worst case and average storage
costs.  The first result follows from well-kniown tree properties (see e.g. GCallager
(123) and states that for any representation p:D -~ Z}+, there is some data base
whose representation specifies values for at least log IIDIT memory cells, On the

other hand, for any domain D there is some representation which never requires

more than FloglngDﬂ memory cells.

Theorem 3.4. (Elias [6]). (i) For any representation function p:D - B+,

max 1p(d)l 2 Tlog 1D
d¢D 13l
(1i) There is some representation function p:D » #* such that

max |p(d)} =Tlog |IDN
<D 3

This resuilt can be interpreted in terms of any tree corresponding to the |5l-ary
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distinguishable code p(ID), where there must be at least [ID| leaves (since g is
one-to-one). Since the tree is |Zl-ary, the depth of the tree (i.e., the length of the
longest codeword) must be at least HoglhlllDﬂ. Also, a complete, full |5l-ary tree
with |ID| leaves has all of its leaves.O at either depth FIog‘IEIHDﬂ or depth
Mog DN - 1.
13

The second result involves average storage costs. There will be occasions
where we wish to consider some sort of probability distribution P on the members
of our domain 1D:

P(d) = the fraction of time a user expects to consider data base d € ID.

Thus, it makes sense to look at the average storage cost:

> P(d)- Ipld)l
d€D
We can use a procedure such as Huffman encoding [131, [12]1 to construct a

representation g for which very probable data bases have short representations and
less probable data bases have longer representations.  Other preconstructed
universal codes perform almost as well as Huffman codes, provided the shorter

preconstructed representations are assigned to the more probable data bases (see

Elias [77).

Theorem 3.5. (Elias [61). Consider a domain ID and assume there is some

probability distribution P on ID. Define the entropy H(ID) hy

H(D) = - 2 P(d)log P(d).
d¢D 4l

(i) For any representation function p:D - B+, the average storage cost IS

2 P(d)-1p(d)] > H(ID).
d¢D

(i1) There is some representation function p:D = 87 such that

2 P(d): 1p(d)] < H(ID) + 1.
d€D
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3.3 Access Costs

A user is necessarily concerned with the amount of time it takes to perform an
operation { on some d € ID. The number of memory cell accesses made by an
algorithm before halting is one direct indication of the performance time. This
memory access measure has been used by Minsky and Papert [191 and Elias [51.
The number of accesses made to memory will depend not only on the algorithm
used but also on the particular data base which is stored.

There are various ways in which we could define an access, but we use the
notion commonly used in Turing machine theory. A machine or algorithm reads a
cell and, depending on that cell's contents, may rewrite the value stored there; this
corresponds to only one access. We also choose to allow an algorithm to possibly
read a cell in another user's memory space, but the algorithm certainly cannot

rewrite such a cell {without being charged for it in storage).

Definition. Consider a system ((k, p) solving a problem (F, ID). A memory
cell access is made each time (A moves to a new cell. Once (L references a cell,

it may read and/ or rewrite the cell contents; this constitutes a single access.

Depending on the hardware of an actual machine, this reading and then rewriting
action might require two accesses, in which case our results could be off by a factor
of two. Flower [11] has investigated update costs and shown that it is necessary for
an access measure to involve both reads and writes; considering either reads or
writes alone does not give reasonable lower hounds.

We present the following example in order to illustrate some of the
terminology we shall use when we discuss the implementation of a function. We
frequently find it convenient to describe an algorithm using a program-like

description.
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Example 3.6. Recall examples 2.1 and 2.7 and consider the problem of performing

the update operation u, on some data base d € ID. The following algorithr, (4, ,
2

performs the update. (For simplicity, we do not here consider the question

component of the function f,.)

(luzz if m(0) =0 then return
if m{0) =1 then if m(1) =0 then m(l) « ©
return
if m(1) =1 then m(1) < ¢
m(G) «~ 2
return
if m(1) =2 then m(1) « ¢
m(0) « 2
return
if m(1) = 0 then m(0) « 0
return

if m(0) =2 then m(0) «1

return

For instance, suppose we have p(do) in memory. Given that we know there
is some p(d;) stored, when we access cell 0 and discover that m(0) =0, then we
know that it is d stored. Since u,(d,) =d,, we do not need to rewrite any
memory cells. Thus, performing the u, operation on p(d,), using algorithm (Luz,
involves only a reading of cell 0,

Suppose d is stored in memory with representation p. Using algorithm (Luz,
we first access cell 0. Since m(0) =1, we next access cell 1. Since m(1) =2, we

rewrite cell 1, setting it to the new value 0, and then backtrack and set m(0) « 2. 1§

Because we spend a great deal of time discussing algorithms for performing various
operations, we find it convenient to make some notational definitions for dealing

with memory access costs.

Delinition. Suppose a system ((, p) solves a problem (F, D). Then for
each d € ID we can define the following.

LA, (p(d))] 2 the sequence of memory cell accesses made by algorithm
(; in computing fl(d) using representation p.
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>

#Lo(p(d)) ] LA (p(d)) 3], the number of memory cell accesses made
by algorithm (X, in computing f{d) using representation

p.

>

{[(li(p(d))]} 2 the set of memory cells accessed by algorithm (4, in
computing f,(d) using representation p; i.e., the access set
for f,(d) corresponding to algorithm (&,

We may sometimes write [f,( p(d))] to denote the access sequence which an

algorithm (X, uses to compute f,( p(d)).
We refer back to Example 3.6 to illustrate the above definition.

Example 3.7. Recall the algorithm (Lua of Example 36. In computing uy(d,),
(,, first reads cell 0, then reads and rewrites cell 1, and then backtracks and writes
cclI‘O. Thus, the access sequence is 0, 1, 0. For notational convenience, when we
give an access sequence we shall underline any memory cell accesses which

correspond to writes:

L, (p(dy))] =0 ta(pld,))] =010
L, (p(d))] =010 [a,(p(dg))1 =010
LA (p(d,))] =0 a,(pldg))1 =0

[, p(d )T = 0L
Then for the number of memory cell access in each case we clearly have:
#[(Luz( Mdy))] = #[auz( pldg))] = #[(Luz(p(dz)] =1
ﬂ[(Luz( pd )] = #[uuz( Ady))] = #muz( pAdg)l =3
#[(Luz(p(ds))] =2
Note also that the access sets are just:
{[(Luz(p(do))]} = {[(Luz( pld,))1} = {muz( pldg) 1} = {0}
{muz(p(d,))l} = {[(Luz(p(ds))]} = {[(Luz(p(d4)]} = {[(luz(p(ds))l} = {0,111

Since our algorithms are sequential and deterministic, we find it convenient to
model them by access trees. Access trees are basically the same as the trees we used

in Section 3.2, where each internal node corresponds to a memory cell access. An
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access tree corresponding to the algorithm for a question q will label each leaf by
the appropriate answer q{d), if there is one. We speak of the access tree for q, (or

u,;) to mean the access tree for an algorithm (; solving q, (or u).

Example 3.8. Consider the static problem (F, D) where F ={f,, f,} and

ID ={dg, d,, d,}. Define the representation function p:D - {0,1}" by:

pldy) =00
pld) =10
/](dz) =_____l
Let q, and q, be defined as follows:
q.(d,) =a q,(dy) =a
ql(dz) =Db qz(dz) =b

where a, b € £ An access tree corresponding to the obvious algorithm for q, is
given in Figure 3.4a. Notice that, in fact, two accesses are necessary to distinguish
pld,) from p(d,) or pld,) and thus two accesses are required to determine the
leaf that can be labelled a. Question q,, however, can be answered after a single

access, to cell 2. |

(a) q, . (b) g,

Figure 3.4. Access trees for q, and q, of Example 3.8

Each output corresponds to some leaf on the access tree for q,, and we define

“i( r) to be the minimum depth of any leaf labelled r.
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Definition. Suppose a system (X, p) solves a static problem (Q, D), and
let D(r) ={d € Dl q,(d) =r}.
Then

(r) & min #IA(p(d))].
d¢iD (r)

&;
Similar to our storage resuit, we have a Kraft inequality for access.

Theorem 36. (Elias [61). If the |8l-ary system (&, p) solves a static
problem (Q, D), then for all q, € Q:

&,
2 g V<L (3.4)
réq,(ID)

Corresponding to each answer r € qi( lD), the range of q,, there is one term in the
summation with negative exponent a,(r). This thcorem s a statement about
distributions on the numbers of accesses to return the answers r € R and tells us
that not all operations in q,{ID) can have short retrieval times. In fact, equation

(3.4) can be strengthened; 1t holds not only for a,(r), the minimum number of

value v for any d € q"l(r). In other words, if we let d, € ql'l(r), then we have
1

-#LA (p(d )]
Sa P

i=1

Definition.  Suppose a |3l-ary system ((, p) solves a static problem

(Q, D). Then ( is said to achieve Kraft access if
-a(r)
gt =1 (3.5)
réq.(ID)

I fact, if (3.5) holds and ((,p) is understood, we shall frequently say

simply that q; achieves Kraft access.

It we "assume q; achieves Kraft access”, we mean that we are considering some

system ((k, p) where (X, achieves Kraft access and answers q, on domain ID.
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In accessing a cell we read some b, € 4. Information-theoretically, one access
3 { Y

an

distinguishes among |5

possibilitics, and if it is not the case that each of these [l
possible cell contents leads to a different answer, then we have in some sense
obtained more information than is needed. Thus, if an algorithm (L achieves Kraft
access, then its access tree must be a full tree where every leaf corresponds to a

distinct + € R. In particular, we have the following result.

Theorem 3.7.  Supposc a system (Q, p) solves a problem (Q, D). If &,
achieves Kraft access, then for all d,, d, € D (1),

HLA(p(d ())] = #TGQ,(p(d,)) 1.
Let's look again at the problem from the previous example.

Example 3.9. Recall Example 3.8, and let R, and R, denote q,(ID) and q,(DD),
respectively. For q:
-a,(r) -a(r)
N I T
réR ré{a,b}
Q_al(a) + 2—a1(b)

Notice that the access tree for q, in Figure 3.4a does not have a distinct label for
each leaf and so cannot achieve Kraft access. For g,
~a(r) .
28 E T =atent o

r€R,
and so does achieve Kraft access, which is what we would expect by cobserving

Figure 3.4b. 1

As we did for storage costs, we define an implementation or algorithm to be
optimal in access if no other implementation of the operation requires fewer accesses
for some data base representation without requiring more accesses for some other

data base representation.
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Definition.  An implementation (X, p) is access optimal if and only if for
any other implermentation (0‘1,’ p):
(Vd, € D)L(HLO,"(p(d )] < HLA(p(d,))])
= (dd, € DY(HLA " (p(d,))] > #LA(p(d,))])]

Similar to our result for Kraft storage, if &, achieves Kraft access then (X, is access

optimal,

Theorem 3.8. Suppose the |Bl-ary system (&, p) solves the static problem

(Q, D). If

!
réq,(ID)

then (1, is access optimal.

Unless we allow the trivial question, which always returns the same value no
matter what data base is stored in memory, then it is always necessary to make at

least ornie access to answer a question.

Theorem 39. Given any implementation (&, p), assume that (L(p(d)) is

not a constant function. Then, for all 4 € D,

#(p(d))d > 1.
Corollary 39.1. If #La,(p(d))] =1 for all d € ID, then (&, is access optimal.

If IRl <I15l, then when we access one cell we can distinguish 13l characters,
whereas we only have |R| distinct answers. Therefore we have in some sense
obtained more information than we can use, giving us an inequality in the Kraft

sum, as the next theorem shows.

Theorem 3.10. Consider a |5l-ary system ((L, p) which answers the question

q:ID = R. If ( achieves Kraft access, then IRl > |5,
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Proof:  Assume (L meets Kraft with equality. Then by Theorem 3.9 it is always the

case that a(r) > 1, and so

1= Zigreld) < 3ot = A
r€R r€R o
If Rl <13 then we get a contradiction. I

Notice that this theorem does not depend on the representation used.
Assume we have an implementation that achieves Kraft access for some set Q
of questions. This then tells us something about the possible relative range sizes of

questions in Q. We first recall a lemma about trees (sce eg. Knuth [141).

Lemma 3.1. There is a full |Zl-ary tree with k leaves if and only if there 1s
some n € N such that k = (I3l - 1)< n + 1. {The number n corresponds to the

number of internal nodes in the tree.)

From this lemma and recalling that we have cquality in the Kraft sum only when
the exponents correspond to the depths of the leaves in a full tree, we have the

following theorem.

Theorem 3.11. (Callager [121). Let f:7-N. If 2 187 =1, then
i€]
7l =n - (15 -1) +1 for somen ¢ N.
This now tells us something about the possible pairwise relative sizes of the ranges

of questions that cach achieve Kraft access.

Theorem 3.12. Consider a |8l-ary system (X, p) which answers the
questions q 3D » R, and q,:D - R,, and assume both q, and q, achieve

Kraft access. Then there is some integer n such that |R,| - IRl = n-(I8} - 1).
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Proof: Since both q, and q, achieve Kraft access,
e, (r) -a (1)
2 3t = and 2 18 7% =1

1€R, 1R,

By Theorem 3.11 we thus know that there exist ng, n, € N such that
IR1=1+n,(l8-1)
and IRyl =1+n,(l8 - 1)

Therefore, IR =1R,l = (ny - n,) (13l - 1). !

We find this theorem useful for some of the results we shall prove later.

As was the case when we discussed storage, it is difficult to understand what
the Kraft incquality of "heorem 3.8 tells us about access costs of interest to the user,
except when we actually do achieve Kraft access. ‘T'hus, we mention two results
concerning access costs; these correspond to.the storage theorems 3.4 and 3.5.

First, if we need to distinguish |R,| answers with a |Bl-ary tree, it is clear that

the access tree must have maximum depth at least [fog IR /[N Also, it is always

3l

possible to answer a question q; in such a way that the corresponding access tree

has maximum depth exactly log IR/,

3l
Theorem 3.13. (Elias [61). Consider a problem (F,ID).

(1) 1f the |5l-ary system (@, p) answers the question qy, then

> Tiog RN
g

max ai(r)
réR‘

(11) There is some |3l-ary system (L, p) that answers question q, such that

max a,(r) = Tog IR
réR, |51

The bound in (ii) can be attained by using a representation p which stores in
memory the answers to each question in Q. Thus, to answer q, (&, simply reads
the 1'™ answer (see Elias and Flower [101).

If there is some known probability distribution P on D, this induces a
probability distribution F’i on Ri defined by

P(r) = 2 P(d)
d¢iD(r)
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where D (r) = {d € DI q,(d) = ggs1q,17

'l'hérrm 3%2%5939 M .PM? D), and assume there

is a probability distribution P on D, Define the entropy H(R)) by
Dis 9usioiz etd yd inssm 2 (sdw t)% %w zsngb otvery o nd
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CHAPTER 4
THE TABLE LOOKUP QUESTION SET

In the previous chapter we discussed what is meant by Kraft storage and
access. In this chapter we shall examine more closely under what conditions Kraft
storage and Kraft access can be achieved. In particular, we consider the table
lookup question set and attempt to understand the implications of Kraft storage and

access and to get a feel for some storage-access tradeoffs.

4.1 Definition

If for all i we know the i'™ element in a list, then we have determined the list.
Thus, in some sense this forms a complete set of questions on any domain D,

because answering these allows us to answer any other question.

Definition. Define the table lookup question set

['={y |1 <i< maxldl}
d¢iD

which has as its i'™ member the function v:D ~ X defined by ¥,(d) =d(1).

For i > [dl, we say v,(d) & @.

t

Thus, each data base d € ID is mapped onto the value of its i'" element.  When

i > |dl, then we want ')"(d) to return a null answer, which we denote by .
Consider a system (@4, p) solving (I', ID}). As was mentioned in Section 3.3,
if we say that 7, achieves Kraft access, we mean that G solving vy, achieves Kraft
access.  In general, although ¥, is defined in the problem domain, we may
informally refer to 7Y, in the machine domainj in particular, we say that ’y,(ﬁ(d))

accesses cell k to mean that k € {{( p(d))1}.
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Example 4.1. Recall Example 2.3, where D = {A} U X U X2 for X = {0,1}. Then

we have, for instance,

v, (dy) =, (A) =g =v,(d))
v, (d) =4,(0) =0
v,(dy) =v,(0) =g
v, (dg) =v,(11) =1 = v,(d}).

Alternatively, we may informally write, using the representation p given In

Example 2.7:
v (pld)) =7,(00) =g =v,(p(dy))
v, (pldy)) =v,(200) =1 =v,(p(dy)) I
If we are going to achieve Kraft access for all questions in the table lookup

quesuon set, then for |51 > 2 the ranges of all the questions must be the same.

Theorem 4.1. Let v, v; € I' and assume that i3] > 2. If ¥, and 7v; both
achieve Kraft access, then R, = R, where R = R(y,(ID)).

Proof: Consider a table lookup question ¥ on gD - g%, Since D = l% x4
1€
where J €N, then either R(x (D)) =X or R(¥,(D)) =X U{g}. Suppose

IRl = IR L. Then IR} -IR| = 1. By Theorem 312 we know that
IR} - IRl =n - {3l - 1) = £l, and so the only solution is for 18l =2, n = £l
Thus, if 18] > 2 we obtain a contradiction, proving that IR | = IRJI, which imphes

that R, = RJ.. 1

It is easy to show that the condition 18l > 2 is necessary in the above theorem.

Example 4.2. Let ID = X U X% where X ={a,b} and define the representation
D = {0,1}7 by:

pla) =00 plab) =011
o(b) =10 p(ba) = 110
plaa) =010 p(bb) =111

Then the table lookup question set I' = {71, 'yz} can be solved by algorithms with
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access trees as shown in Figure 4.1. It is clear by observation of these trees that

both %, and ¥, achieve Kraft access, and yet R, = X whereas R, = X U {a}. |

(a) ‘Y‘ (b) 'fz

Figure 4.1. Access trees for 7y, and v, of Example 4.2.

It immediately follows from the previous theorem that if we have Kraft access
for the set of table lookup questions, and 151 > 2, then A ¢ D except when D = X"

for some n.

Theorem 4.2. Let 13l > 2. If all ¥, € T achieve Kraft access, then either

A€Dorelse D = X" for somen ¢ N,

Proof: Let ID = X™ Then there exist d, d, €D such that |d,| <ld, . So

v, (dy) =g and R(y (D)) =X U{g). Now assume that A ¢ ID. Then
Id ld |

R{y,(ID}) = X. But by Theorem 4.1 this says that ¥, and 'yld | can't both

2
achicve Kraft access, a contradiction. Therefore A € ID. I
Thus, if 131> 2, then A ¢ D implies that D = X" for some n.  Because

R; = X U {#}, we know that if ID = X", then & € R,.

Corollary 4.2.1.  Let 151 > 2. If all v, ¢ T achieve Kraft access and there is
no n € IN* such that ID = X™, then R(y,(ID)) = X U {g}, for all ¥, € T".
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4.2 Kraft Access with Overlapping Access Sets

In this section we discuss achieving Kraft access for the set of table lookup
questions I' and frequently refer to the set of memory cells accessed in order to

answer some 7y, € I

Definition. Let p be a representation gD - 8+, and fet ¥, 7, ¢ T. Then
we say that v and ¥ have overlapping access sets if, for some d € D,

{Lv,(p(d))} N {[')’J(p(d))]} % 2.

We shail show that, for 131 > 2, if all 4, € I' achieve Kraft access then there can be
no overlapping access sets (see Theorem 4.4). For the case |13l = 2, two access sets
{Ly,(p(d))]} and {['YJ( p(d))1} can overlap, but in at most one cell and only
when X¥ ¢ ID, for all i <k < j (see Theorem 4.8). Where all v, ¢ T achieve Kraft

access we also show that
T}

2 Hy,(p(d))] < Lpd)] + T - 1,
i=1

and if the vy, do not have overlapping access sets then
Tl
240y, (p(d)) < lpld)l.
i=1

(see corollaries 4.7.1 and 4.5.1.).
Consider any representation p and suppose that ¥,, ¥, € I' meet Kraft access.
Our first theorem says that if v, {p(d,)) and ¥,(p(d,)) access some cell n
common, then ID does not include all strings of the form
d,(i) - R,

or all strings Ry-d ().

Theorem 4.3. Consider a representation p:D - 3t and let Yir vy € I’ each
achieve Kraft access. Suppose there exists d, € ID such that ¥,(p(d,)) and

'yJ( p(d)) access some cell in common. Then
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—(Vr € R)(3d, € D)(d,(1) = d (i) and dp(}) =)
and =(Yr € R)(3d, € D)(d,(i) =rand d,(j) =d,())).

Proof: For and d, € D, let p(d;) € m. Suppose there is some o, € ID such that
v(p(dy)) and v (p(d,)) both access cell k. Let m (k) =b, €8  Since

Yo 7€ ' achieve Kraft access and access cell k then, for all d, € D,
dz(i) =d1(i) = mz(k) =b,
dy(j) =d,(j) = my(k) =b,.

Since 1, achieves Kraft access, we know there 15 some string d 5 € ID such that
ma(k) = by, and v, accesses cell k. So there is no way to represent a string d
where

d (i) =d (i) and d,(j) = d,(})
Similarly, there is no way to represent a string d g where

de(i) = d,4(i) and d(§) = d,(]). |

The intuition behind the preceding thcorem can perhaps best be seen by picturing
the access trees for two table lookup questions, as we do in the following example.
This gives us an ‘example of overlapping storage, although we obviously can't

represent all strings in the product of the ranges.

Example 4.3. Let 3 ={0,1,2}, and let X ={x,/ 1 <i <9}; ie, 18l =3 and IX| = 9.
Suppose v, and 7, have the ternary access trees as shown in Figure 4.2 and
therefore achieve Kraft access. These trees indicate that, for instance,
plx, xg) =012 and p(xg xg) =12202. The only time we have overlapping
access sets is for d € ID such that d(1) = xg, x,, or xg; ie, ¥,(p(d)) = xg, %,
or X5 So we can certainly represent any pairs of strings in x; X, where
X, ¢ {xG,x7,x8}. It is also possible to represent the pairs of strings Xg Xyqy Xp Xp,

and x g x; where XJ~¢0\1,X2}- 1
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X7 Xg Xg

Xq X4 Xg

Figure 4.2. Access Trees for v, and v, of Example 4.3.

So if ¥, and v do overlap in access of cell k, then it is not possible for D to

include a string d,, such that p(d,(i)) has some value b, in cell k and p(d ()

1)
has some value b, # b, in cell k. If ¥, meets Kraft access, then its access tree is
full, so there will be at least |5l elements d € D such that ¥ ( p(d)) accesses cell k.
Similarly for v Let S be the set of strings in the domain that agree with d, 1n
every position except the j”’:

S={d €D !|d(n) =d(n) foralln = j}.
Then ISI < IR - (I8l - 1), since there must be at least 18] - 1 characters r in R

such that we cannot represent any string in X* whose it component is d,(x) and

1 )
whose i'™ component is .

Lemma 4.1. Consider any representation p:D -~ 8+ and let v, v ¢
achieve Kraft access. Suppose that for d, € D, v, and Y ; access some cell in

common. Then

LU {a(DYI<IR) - 181+ L.
d¢€iD

Pmof.- v,(pld,)) and 'yJ(p(dl)) access some cell in common. Since 7y, meets
Kraft access, then for p(d,) €m,, ¥, (p(d,)) corresponds to m,(k) =b € B.
Since v also meets Kraft access, there are at least |15l - 1 values for d{ j) that do

not have m(k) =b. Thus, | U {d(j)} 1< IR - 18+ L. I
d€D
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Recall that for a pair of table lookup questions 7, and Y where 1 < j, then
R; = Rjif v, and % achieve Kraft access and 18] > 2. If d(i) = x € X, then all we
know is that d(j) € X U {g}. On the other hand, we know that if (i) = &, then
d(j) = g; in this case there are |X| combinations of d{i) and d(j) that do not
exist for any o € ID. So perhaps there could be some representation scheme that
would allow us to overlap accesses. The next theorem follows from Lemma 4.1 and

shows that there is no such scheme.

Theorem 4.4. Consider a representation p:D - B+, where 151 > 2, and let
Yio Y€ I' each achieve Kraft access. Then, for all d € D, v,(p(d)) and

’YJ( p(d)) access no cells in common.

Proof:  Assume there exists d; ¢ ID such that v,(p(d,)) and ¥ (p(d,)) each
access cell k, i < j. Then since all ¥, achieve Kraft access, for all b € Z there is
some d, ¢ ID such that v, (p(d,)) causes cell k to be accessed and my(k) = b,
where p(d,) € m, Since not all leaf descendants of node k in the access tree for
7, can be labelled g, there is some d, € ID such that d,(i) # # and ’r‘(ﬁ(ds))
accesses cell k. If we let ID, = {d € ID | d(i) =d,(i)}, then we have

| U (D} IR) - 18+ 1 < IXI+ 1 - 18] < IXL

d€iD

But by the way we have defined a problem domain, there are |X| data bases d € ID
that differ from d, only in the Jm position. This gives a contradiction and so, for

all d €D, v,(p(d)) and 'yj( pld)) do not have overlapping access sets. i

Stnce for any d € D each v, accesses a distinct set of cells, the total number of

accesses macle by the various 4's cannaot be more than lp(d)].

Theorem 4.5. Consider any representation p: ID > 8% and assume all v, ¢T

achieve Kraft access. [f v, and Y access no cells in common, then
T

_Zl Hly (p(d))T < Lpld)l.
i=
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From theorems 4.4 and 4.5 we can immediately get the following result.

Corollary 4.5.1. Consider any representation p: ID - 8+, where |5l > 2, and

let all v, € I' achieve Kraft access. Then
T}
, #ly (p(d))] < Hp(d)L

1=

Unfortunately, Theorem 4.4 does not hold for 18l = 2. In other words, it is

possible for v, and v;to achieve Kraft access and also access some cell in common.

Example 44. Let 8 =1{0,1}, X ={a,b}, and D = {2} U X2 U X> Consider the

representation gD - 8+ defined as follows:

d Ad)
A 10 0_
aa 0100_
ab 0110_
ba 1100_
bb 1110
aaa 01010
aab 01011
aba 01110
abb 01111
baa 11010
bab 11011
bba 11110
bbb 11111

Since A € D, R, = {a,b, &} for i € {1,2,3}. Possible access trees for ¥, ¥,, 75 are
shown in Figure 43. Notice that v and 7, may both access cell 1, and we have

the following storage allocation:

S N’
Y1 oy, Vs

Without altering the access trees, we could extend p and ID so as to also include the
element a € X, by letting p(a) =000. It would not, however, be possible to

similarly include b in the domain, because p(b) would require cell 1 to be set to 1
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and also to 0.

Figure 4.3. Access trees for ¥y, v, 75 of Example 4.4,

We can see that Corollary 4.5.1 does not hold for |18l = 2, since for d = bab,
Albab) = 11011 and: |
3

2 Wiy (11011)T =2+ 2+ 2 =6 > |p(bab) .
i=1 '

Notice also that g does not achieve Kraft storage:

-lp(d)|
> 8l ) 404408, 8.05_ 5 ¢, I
J€D k]

The following lemma shows for |8l =2 that if ¥, and v, each have Kraft
access, and if they both access cell k, then the access trees for ¥, and 7 each have

a node labelled k leading to a leaf @ via a branch labelled b € 4.

Lemma 4.2, Let |5l =2 and let b, b” € B, b = b’. Consider a representation
piD - E+, and assume that ¥, of ¢ T" achieve Kraft access and that
ke (U {ty(pani} n U {ty (p(a))ID.
d¢D d¢D
Choose elements x,, X, € R, and xg, x4 € Ry, such that m,(k) = b,
my(k) =b’, mu(k) =b, m,y(k) =b’, where m; 2 p(x). Then either

.\'1=X3=ﬂ02'X2=X4=,®'.

Proof:  Clearly p cannot represent a string d; where d (1) = x, and ¢ () = x, or
a string d, where d (i) = x, and d,(j) = x5 There are two cases to consider:

(1) If x, € X then x, = &, since we do not necessarily need to represent d(i) € X
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and d( ) = o, but we must be able to represent d(i) € X and d(j) € X. This telis
us that x, # & and so x5 € X. Since we cannot represent d |, then x, = &.
(i) If X, = #, then x, € X and x, € X. Since we cannot represent d, then

XNg = & 1

In Example 4.4, the access sets for 9, and 7, each included the cell 1. Notice that
i each of their access trees, the left branch from the node labelled 1 led to the leaf
&5 using the terminology of Lemma 4.2, X, =Xz =g

Lemma 4.2 allows us to prove that at most one cell can be in two access sets, if

we achieve Kraft access.

Theorem 4.6.  Assume v,, v, € I’ achicve Kraft access. Then the access sets

for v, and Y contain at most one cell in common.

Proof: If v, and Y access two cells in common then by Lemma 4.2 each tree has

two leaves g, which violates our assumption of Kraft access. i

We can, in fact, make the even stronger statement that if we achieve Kraft access
for all of T' then any table lookup question Y, € I' can access only one cell that any

other v € I’ accesses. The following theorem formalizes this.

Theorem 4.7. Consider a representation gD - E+, and assume that all
v, € I achieve Kraft access. I[f Yo Y both access cell k, and %,, v, both

access cell k ,, then ky = k.

Proof. By Lemma 4.2, we know that node k, in 7's access tree leads to a leaf
labelled g. But also node k, in the tree for %, must lead to a leaf g. Since v,

achieves Kraft access, there can be at most one leaf labelled &, and so k; = k. |

This gives us a result similar to Theorem 4.5, for the case where we allow access
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overlap.

Corollary 4.7.1. Consider any representation gD - 8% and assume that all

v, € T' achieve Kraft access. If we allow access overlap, then
IT|
240y (p(d))] < 1p(d)] + T - 1L
i=1

Proof:  From Theorem 4.5 we recall that where there is no access overlap, then
T

2 HEy (p(d))T < Ipld))
i=1
Now from Theorem 4.7 we know that each 4, can have at most one cell in common

with any other V5 So
T
24y, (pld)T < Ip(d)| + (T - L. 1
i=1

Example 4.5. Recall Example 4.4, where

3

2 #ly (p(bab))I=2+2+2=6<|plbab)|+ T -1=5+3-1="1, [
i=1

The next example verifies that, in fact, the bound in the above corollary is the best

possible. We achieve this bound when all v, € T' access some cell in common.

Example 46. Let #={0,1}, X ={a,b}, and D = {2} U X2 Consider the

representation p:D - 3% defined as follows:

d od)
A 100
aaa 0101
aab 0100
aba 0111
abb 0110
baa 1101
bab 1100
bba 1111
bbb 1110

Consider the access trees for ¥,, 7,, 75 shown in Figure 4.4. Then it is easy to sec

that
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3
210y, (p(d))I < lp(d)] + T - L.
i=1

In particular,

3
2y (p(A))]1=5<3+3-1
i=1

3
and z#['yl(p(bba))] =6<4+3-1. 1
i=1
7, Y2 Y3
(0)
a 1) 2 b
= a b &z a

Figure 4.4. Access trees for ,, 7,, 75 of Example 4.6,

Essentially, we were able to allow access overlap in Example 4.4 because we
did not need to represent the strings ag g or bg@. This was because we restricted
D so that X' ¢ ID. If it is necessary, however, to represent the situation where
v, (p(d)) = & and 'yJ( p(d)) = g, then no overlap between ¥, and 7, is possible.

In fact, for {5l = 2, this works in both directions, as the next theorem shows.

Theorem 4.8. Let |8l = 2 and let v, v, € I' each achieve Kraft access. I'here
exists a representation p:D - 8+ such that %, and v access some cell in

common if and only if X¥ ¢ D foralli <k <j

Proof: { =) As in the proof of Theorem 4.4, we can assume without loss of
gencrality that v,(p(d,)) # g. Then IR('yJ(dl))I = |X|+ 1. But by Lemma 4.1,
if v, and ¥ access some cell in common, then 'yJ(p(d)) can take on at most

IRJ - 181+ 1 <IXI+2 - 18 <IXI<IX] + 1
values. So v, and Y j access no cells in common.
( <) If there exists no k such that i <k < j, then

v (p(d)) € X = (p(d)) € X
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and v(p(d)) = 2 =>'YJ(/’(d)) = g,

We can always construct a representation p such that v, and v will both access
some cell k. Let the access tree for ¥, have exactly one node corresponding to an
access of cell k, and let this node be at a greater depth than any other nonleaf
node. Let the left branch from this node lead to a leaf labeled @ and the right
branch lead to some other leaf x, € X. Then construct the access tree for 7 such
that the root is labeled k, and its left branch leads directly to a leaf labeled 2.
‘This allows us to represent all strings X - X and #& - &, and yet ¥, and o both

access cell k. I
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4.3 Achieving Kraft Storage and Kraft Access

We have seen in Example 4.4 that it is possible to have Kraft access with
overlapping access sets, although that particular representation did not achieve
Kraft storage. This leads us to wonder whether it is even possible to achieve both

Kraft storage and Kraft access; the following example shows us that it is.

1}, X ={a,b}, D = {A} U X2, and define p:D - 3% by

Example 4.7. Let 5= {0
d od)
A

0
aa 100
ab 101
ba ' 110
bb 111

Now consider the access trees for 4, and %, as shown in Figure 4.4. Clearly '71
and v, each achieve Kraft access. It is also the case, however, that p achieves
Kraft storage, since
~1p(d)]
> 2
deD

27V 4 4.9321

Now notice that
2

> Aly (p(ab))] = #ly,(p(ab)) ] + #ly,(p(ab))] =2+ 2 = 4 > |p(d)]
=1
and so Corollary 4.5.1 does not hold for |8l = 2, even when we achieve both Kraft

storage and Kraft access. !

The main results of this section, theorems 4.9 and 4.10, tell us that if we achieve
both Kraft storage and Kraft access then our domain must be of the form ID = X"
or D ={a}uXx™

We are now in a position to prove our first of two main results of this section:
if we are to have Kraft storage and access and not allow overlapping access sets,

then D = X" We first prove the following lemma.



Figure 4.4. Access trees corresponding to v, and ¥, of Example 4.7.

Lemma 4.3. Consider a representation p:D - 3 and assume that all v, €T

achieve Kraft access. Then, for k < IT'l,

5 [ AN L, ()

SERX

where R® =‘i—:R1 ° Rzo...oRk.

Proof: We prove this result by induction on k.
Basis: Since v, achieves Kraft access, by Theorem 3.7 we have

s IBI—#[‘y,(p(s))] .S lgl-al(s) )

s€R? s€R!
Induction step: Let Ry, ={ry,;ry ...}, and assume that (4.1) holds for R,

L

Then
X7

IBI-Z#M( pls))] 5 ‘8,‘..2“[71( ALs))I-Hy, (p(s))]
s€RN*] SERS. ry
5 IBI—Z/i[yi(p(s))]-tl[-ykﬂ(p(s))]

séRk- ry

+

+Il'+

5 ,8,'2.”[7i(/’(5))]"”['Ykn("(s”]
S€R* 1
Since ¥, , achieves Kraft access, then for r € R* and r € R, we have
By oy (PLrr))] = a4 ()

This gives us
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-2y, (p(s))] g () s lgl—gt#['yl(p(s))]

seRH VLI

"oy (rp) S lgl‘z‘“[')’i(ﬁ(s))]
s¢R® .

Ut 5 R (A(9))]

+ 18l

+o.o.0+ 8l
s€RK
By our inductive assumption and since we are given that ¥, achieves Kraft access
for k +1 < ﬂ‘l this becomes:
2#[7 (p(s))] ey, (ry)

151 = |3l

-y, (rp) . R lgl—akﬂ(rn)

+ 18]
= 1. i

We now prove our desired theorem.

Theorem 4.9. Consider a representation gD - 8% which achieves Kraft

storage and assume that all v, € I' achieve Kraft access. If for all ¥, vy € T
U{['y(p NI} N U {Cy (A d))1} = =,

then D = X"

IT'|
Proof: Let R,  denote the set of strings of length [I'l, where each element is
T
chosen from R, Define the one-to-one function g:D =+ R, by
g(d) = ,(d)-v,(d)-...- 'ym(d).

Assume that A € ID. Then, by Corollary 421, R(y(ID)) = X U {#] for all i. But

IT|
for all ¥, € T', v,(p(d)) = & implies that v,(p(d)) = 2. So g(ID) = R,  since,

eg., & X ¢ g(ID). Because we have Kraft access and no overlapping access
sets,
Skt Ad))
-lpld)) 4
2 13l F < 218 7l by Theorem 4.5
d€D deiD o
240y (p(s))]
= 2 BT VP since g is 1-1

s¢g(ID)
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[}

lBI-iZ“ﬂ['yi( pls))] Ir|

< since g(ID) cR,

=1 by Lemma 4.3.

This gives a contradiction, since we know that p achieves Kraft storage. So A = D,

which by Theorem 4.2 says that iD = X", I

As we saw in Example 4.7, the condition that there be no access set overlap is
necessary in the above theorem.

From theorems 4.9 and 4.4, we have the following corollary.

Corollary 49.1. Let |8l > 2, and consider a representation p:iD - gt which
achieves Kraft storage. If all o, € " achieve Kraft access, then ID = X",

k
Because we shall frequently consider domains of the form D = UX‘, it is worth
i=0
noting that with a domain in this form, it is not possible to attain both Kraft
storage and Kraft access.

k

Corollary 49.2. Let ID = UX!, for k >0, and consider a representation
i=0

pD = Bt Assume that all v, € I' achieve Kraft access. Then p does not

achieve Kraft storage.

Although we have proved that Kraft access, Kraft storage, and no access set
overlap implies that ID = X", we know by Example 4.7 that it is also possible to
have, for some domain D # X", both Kraft storage and access with access overlap.
Example 4.7 is not an isolated case; ie., the next example illustrates that it is not

necessary that [X| = 2 or that ID = {A} U X2

Example 4.8. Let 8 = {0,1}, X = {a,b,c,d}, D = {A} U X3, and define p:D - gt
as indicated in Figure 4.5. Such a definition is possible because only cell 0 is in two

access sets, and m(0) =1 for all d € ID except d = A. For instance,
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d eld)

A 0

aaa 10 0011
aba 10_ 0111
aca 101011
ada 10 1111
bac 110 0000
bbc 110 0100
bee 110 1000
bdc 110 1100
cad 11100010
cbd 11100110
ced 11101010
cdd 11101110

This system has overlapping access sets and achieves Kraft access. In fact, we also

have Kraft storage, since
-1p(d)|
> oM
d¢iD

971 442,976, 42.97 4 9.4%2. 978 21, I

Figure 4.5. Access trees corresponding to v,, 7 ,, and v 5 of Example 4.8.

Now we want to determine for what possible domains D we can get Kraft
storage and access if we allow overlapping access sets. Certainly we know that
18l = 2, and recalling examples 4.7 and 4.8 we might suppose that D is of the form

{A} U X", as is indeed the case.
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Lemma 4.4. Let |8l =2 and consider a representation gD » 87 which
achicves Kraft storage. Assume that [I'l > 1 and 7Y€ I" achieve Kraft
access, and

U {Ly(p(a)3} 0 U {Ly ()]} = {K).
deiD deiD

Then the access trees for v, and of each have root node labelled k.

Proof: Let i < j By Lemma 4.2, we know that g € R, and g € R, Assume that
the access tree for 7Y, has root with label ty #k and that the éccess tree for v has
root t,. Without loss of generality, let the leaf in tree 7, with label g have t; = 0;
re.,, p( ) has m(t;) =0. Sincet, = k the node k must be a descendant of t,, and
there exists x; € X such that p(x,) also has m(t,) =0. Glearly there is some
X, € X such that p(xz) has m(tl) =1, From Lemma 4.2 we know that in the tree
7v; we must also have the g leaf a descendant of node k, with m(k) =0. Thus
d, ¢ D, where d (i) = x, and d,(j) = & since p would require setting m(k) =1
and m(k) =0. Since ¥, 7 achieve Kraft access, then by Theorem 4.8 it must be
the case that XP ¢ ID for i <p < j On the other hand, we know that p does
achieve Kraft storage. So by Theorem 3.3 there is some d, € D such that
d (i) = x, and d,(j) = &, which contradicts the fact that XP ¢ ID for 1 £ p < j.

Thus, t; = k and we can similarly show that t, = k. i

This lemma allows us to prove our second main result of the section: |f we have

Kraft access, Kraft storage, and access overlap, then D = {A} U X™.

Theorem 4.10. Consider a representation gD - 8% which achieves Kraft
storage, and assume that all 7, ¢ I' achieve Kraft access. If there exist

Y 'yJ.GI‘ such that v, and 7, have overlapping access sets, then
D = {A} U X"
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Proof:  Assume 7, and v both access cell k, and assume there is some 7y € T that
does not access cell k. Then we can represent d,(i) = g, d,(j) = &, d,(m) € X,
indicating we don't have Kraft storage, a contradiction. So if y, and v ; both access

cell k, then for all ¥ € T, Y, accesses cell k. By Lemma 4.4, ¥, has root node k

T
with onc branch to leaf @. Thus, we can represent exactly the strings &  and

IT|
X Landso D ={a}ux" i

In Theorem 4.5 we showed that if we mcet Kraft access and have no access set
overlap, then |p(d)| is an upper bound on the total number of accesses made in
reading all the elements in p(d). We now show that for any |5l > 2, if we achieve
Kraft storage then every cell must be accessed in answering some quesLion v, Thus

lp(d) 1 is a lower bound on the total number of accesses to read p(d).

Theorem 4.11. If the representation p:iD - 8% achieves Kraft storage, then

for all d € ID:

keD(pld) ke U {[v(pd))}
v €]

Proof: We define S to be the sct of cells accessed by asking of some d, € D each
of the questions y;: § = UP{['yi(p(di))]}. We want to prove that
v €
k€ D(pld,)) »ke€S.
Define the representation p,:D - gt by:

pld) ford = d
pld) =
{(k,m(k)) 1 keS} ford =d,

Then p, is a representation because p is: for d,, d, € ID where d, = d,, d5 = d,,
we have

Pildy) npldy) = g »pldy) Npldy) # 8 =d, =dy,
and for d, € D, d, = d,, we have

P ld) Nnp(dy) =g = (Vy €Ty (pd)) =v(pld;))) »d, =d,.
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Assume there exists k € D(p(d,)) such that k ¢ S. Then lp,(d )| = 18] < Ip(d )]

and
-lp(d)l -lp(d)l -lp,(d )]
S g e - g PR g
de¢D d€D-{d}
-1p(d)] -lp(d,)]
S B R AN
d¢D-{d,}
-lp(d)|
N
d¢D
This violates the fact that p achieves Kraft storage, so k € D(p{d,)) =k €S, I

Corollary 4.11.1. If the representation p:D = 8% achieves Kraft storage, then
for all d ¢ ID:

Tl

24y (p(d))] 2 1p(d)].

i=1

From theorems 4.5 and 4.11, we immediately have the following result.

Theorem 4.12, Consider a representation p:lD - 8" which achieves Kraft
storage and assume that all vy, € I' achieve Kraft access. If there is no access

set overlap, then for all d € D:
T}

2 Hly,(p(d)] = lp(d)l.
i=1

n

Since we are in general considering list problems where ID = U X'}, Theorem 4.9
i=0
holds for the cases of particular interest to us.

n
Corollary 4121, 1f D = U X! and the representation p:iD - st achieves
i=0
Kraft storage, and all v, € I' achieve Kraft access, then for ali d € D:
T

2 Hly(p(d))] = lp(d)l.
i=1

n

Thus, for list problems where ID = U Xl, if all 4, € T achieve Kraft access then ¥,
i=0

and Y ; access no cells in common.
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4.4 Storage Consequences of Kralt Access

We conclude this chapter by examining some consequences of Kraft access for
the set of table lookup questions. In particular, achieving Kraft access tells us
somcthing about the minimum and maximum possible values of |p(d) |:

maxlp(d)| > T - (Mog  IRIT - 1)
d€iD 15l
and min [p(d)! > 171 - 1,
d¢iD
In general we have even better bounds.

In order to lower bound |p(d)|, we first prove two lemmas.

Lemma 4.5. Let p:ID - 5" be any representation. Then

(Vy, € T)(3d € D) (4ly(p(d))] 2 ”°g;g|'R'm'
Preof: By Theorem 3.13, maxa (r) 2 Tlog IR
1'(‘Ri 15l
s0 max#ly (p(d))] 2Tlog IR
aen 1F Sl 1
and this immediately gives our desired result. |

Lemma 4.6. Let D = l.é)(i and let p:D -~ 8% be any representation. Then
i€

(3d, € D)(Vy, € T)(#ly (p(d,))] 2 Tlog IR ).

18l

Proof: Let d, € ID be the database defined as follows:

dy e{d (i) =r | (r,€X) A (alr) =max a(r)) A0 2i<ITD}
réR,
It 1s always possible to define such a d,. Now recalling Theorem 3.13,

Wy (p(d))] = max a(r) >Tlog |R1. I
TEAGIT TR “lg

We now show it is always the case that

maxlp(d)| 2T -Tlog RN -1ITI+1
déiD 13l

and almost always the case that

<lp(d)] > 1T - Flog. RN,
2D’ %3
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Theorem 4.13. Let ID = l_!?x‘ and p:D -~ 5" be any representation. Assume
i€
that all ¥, € T achieve Kraft access. Then we can conclude the following,

where we write [R| to denote minlR |,

€]
(a) maxip(d)l 21T (Mog [RIT-1) +1
d¢iD i3l

(b) If there are no overlapping access sets for v € T or if thereisno j€ N*

such that |X1 = 23, then

maxlp(d)| 2 IT' - 1 [RIN.
D *13

Proof: (a) By Corollary 4.1.1,
T}

240y (p(d))I 2 ()] + 71 - L
i=1

From Lemma 4.6, there exists a d, € ID such that
Tl T

2 4y (p(d,))1 > 2liog IR/,
i=1 i=1 18l
Combining these, we get
' T
lp(d )] > Zllog IR -7l +1
=1 I8l
> ITI - (HoglgliRﬂ -1) +1
and so max|p{d)! > ITl-Tlog  IRN -1) + 1
d¢D 138l
(b) (i) If there are no overlapping access sets, then Theorem 4.5 tells us that
T

24y (p(d))T < Lpld)],
i=1
and so we conclude that

max|p(d)| 2 T Tog, IR
d¢iD 2]
(ii) If we do have overlapping access sets, then by Theorem 4.4 we know that

15l = 2 and by Lemma 4.2 we know IRl = [X| + 1. Assume there exists j € N* such
that 29 < |X| < 29*'. So in each 7, tree there is some x, € X which labels a leaf at
depth j + 1. Now define d, € ID so that d,(i) =x,for all 1 <i <IT'l. Then
lpld )12 (j+ 1) 1T
Since Mog IR =j+1
%13 J*t 4,

we have max|p(d)| > IT'l- Tog  [R[. |
2D’ B3
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In the following example we verify that if we allow overlapping access sets for
IX] = 29, then we may have

max|p{d)| <IT|-Tlog |RI.
d¢iD g gIZJI

Also, the bound in Theorem 4.13(a) is tight.

Example 49. (a) In Example 4.8 we clearly have

axlp{d) =8 < 3-Tlog,51 = Tl Nog. _IRIT,
2D %2 %13

since p(d) only occupies cells in the set {0,1,2,3,4,5,6,7}. Note, however, that

max|p(d)| = 8 > 3 (Tog,51 - 1).
d€D i
(L) In Example 4.7 we have

max|p(d)| =3 < 2:Tlog,31 = 4.
d¢iD
However, since

maxlp(d)| =3 > 2- (Tog,31 - 1) =2,

d€iD
the bound in Theorem 4.13(a) is best possible. i

On the other hand, it is sometimes the case that we have overlapping access sets,
IX1 = 24, and also
max|p(d)i 2 IT'|- Tlog _IRIN.

D 13l

d€l
Example 4.10 illustrates this.

Example 4.10. Let 3 = {0,1}, X = {a,b,c,d}, and ID = {A} U X2 There exists (as
the reader may verify) a a representation p:lD - B+ such that the trees shown in

Figure 4.6 implement v, and Y 5, respectively. For instance,

p(A) =1000_ _
plcd) =10 1111
olca) =10 10

plbec) = 01110
In this case

max|p(d)| =6 = [T'l- Tlog, _|RIN. i
d€iD 18l

Let us now say something about the minimum size a representation can have. In
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Figure 4.6. Trees for ¥, and 7, of Example 4.10.

particular, it is always the case that |p(d)] 2 |J| - 1. Where there is no access set

overlap, then it follows from Theorem 4.5 that [p(d)| > IT'.

Theorem 414, Let D = Ux! and let gD > 3" be some representation.
i€]

Assume that all ¥, € T achieve Kraft access.
(a) Then for all d € D:
lp(d)l 2 131 - 1.
(b) If there are no overlapping access sets, then for all d € ID:

lp(d)| > 1T,

Proof: (b) By Theorem 39, #lv,(p(d))] > 1, and so if there is no access

overlap, then Theorem 4.5 tells us that

T T
()] > ZHly(p(d))1 > 2 1 =T
i=1 =1
(a) On the other hand, suppose we allow overlapping access sets. if

Ip(d)| <171 - 1, then there are at most |J] - 2 root node labels. So for j € N * not
all of the access trees 7, where j€ ] can have distinct root node labels. Pick

Jidz € 35 iy £ jgy such that 7j1 and 'yjz have the same root node label. Then by

Theorem 4.8, ng_:lD for any j; <k <j,, But we know that XJ1 cD, a
contradiction. Therefore, [p(d)]| 2 11 - 1. |
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Example 4.11 shows us that the bound in Theorem 4.14 is best possible.

Example 411. Let 8=1{0,1}, X ={a,b}, and D = U X!, for J =1{0,3,5,6}.
i€]

Consider the representation p:D - 8% that corresponds to the set of access trees

shown in Figure 47. Then all 4, € T achieve Kraft access, and

lp(A) =3 =171 - L |
74 Yz Y3
(0) (0) (0)
P ) Z (2) & /
a b a b a b
74 75 76
(4) @
P24 % &) z &)
a b a b a b

Figure 4.7. Access trees for v,, 7,, 75 of Example 4.11.

Note that the bound in Theorem 4.14b may also apply to a table lookup question set
that has overlapping access sets; recall Example 4.4.

From Theorem 4.14 it immediately follows that if all ¥, € I' achieve Kraft
access and max|d| is unbounded, then infinite storage is required to represent each

d€iD
Jd € D.

Corollary 4.14.1. Let p:D - 3" be any representation, and assume that all

v, € T' achieve Kraft access. [If —(3k, € N)(maxldl < k,), then for all
d¢D

d €D, =(3k, € N)(Ip{d)] < k,).
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CHAPTER 5
IMPLEMENTING THE TABLE LOOKUP QUESTION SET

in Chapter 4 we discussed the set I' of table lookup questions and
consequences of achieving Kraft access for each #y, € I'. In this chapter we
introduce three major classes of representation schemes and then examine the table
lookup question set in the contexts of these three basic representations: fixed length,
endmarker, and pointer. The fixed length representation was chosen because it
sometimes allows us to achieve both Kraft storage and Kraft access. The endmarker
and pointer representations were chosen because they illustrate techniques commonly
used for implementing variable length lists. In Chapter 6 we reconsider these

representations in order to implement stacks.
5.1 Classes of Representations

In this section we briefly discuss some basic definitions and representation
techniques and thereby maotivate the formal definitions for fixed length,
endmarker, and pointer representations, which are presented formally in sections
5.2, 5.3, and 5.4, respectively.

We begin with two notational definitions.

Definition. Consider a function b € B+ and recall that
b ={(n, my(n)) In ¢ D(b)},
where b € m,. For k € N, we define

{6}, & {(n+k, my(n)) In€D(b)}.

Thus, {b}k is the set b ¢ 8+ "displaced" by k, as illustrated in the following

example,
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Example 5.1. Consider a function f:S = {0,1}+ and let s, €S, If
f(s,) ={(1,0), (3,1), (5,0}, (6,1)},
then {f(s))}g = 1(s,)
and {t(s)}, = {(3,0), (5,1}, (7,0}, (8,1)}. I

Also, we shall frequently have occasion to refer to the concatenation of two strings

in 5%

Definition. Let f, be a function f,:S = Z*, let f, be a function f,:§ - 5%,
and let sy, s, €S, We write f,(s,)- f,(s,) to denote the concatenation of the
strings 1,(s;) and f,(s,), where

f1(51) fz(sz) £ fl(sl) U {fz(sz) }If1(51)| e 6*'

Thus, FiCs ) £ 0s )1 =16, (s )+ 1 ,(s,)1,

and D(f(s)£,0s,)) ={0,4, ..., If (s )l +1f,(s5)] - 1}

Notice that when f,(s,) = A, then If,(s )1 =0 and f,(s,)-f,(s;) =1f,(s;); n
particular, A+ A = A. In an obvious way, the definition can be extended to the

concatenation of any countable number of strings.

Example 5.2. Define the function f:{a,b,c} » {0,1}* by

fla) =0
f(b) =10
flc) =11
Then f(a)- f(b) = {(0,00} U {(0,1), (1,0},
= {(0,0), (1,1), (2,0)} = 010
and f(c)-f(c) ={0,1), (L,1)} u{(0,1), (1,1)},
={(0,1), (1,1), (2,1), (3,1)} = 1111 I

Many commonly used representation schemes involve the concatenation of
encodings of a set X. For instance, given a function f:X - #* it would seem

natural to encode X, X,...x, € X% as fx,)- f(x,)- ... - f(x,). Similarly, we



could encode X* by placing each of f(xy)y ..., f(x,) into a fixed field. We

illustrate these schemes in Example 5.3a and 5.3b.

Example 53. Let X ={a,b,c,d}, 8=1{0,1}, and consider a function f:X - &*
defined by

f(a) =00
f(b) =010
f(c) =011
f(d) =10
Assume that the domain is of the form ID = UX’, and we want to deiine a

i€]
mapping from D to st
(a) Consider the function f:D » Z*, where
f,(d) =f(a(1))- £f(d(2))-... - f{a{ld])).
For instance

f(abad) =1(a)-f(b)- f(a)- f(d) = 000100010
f,(bdb) =f(b)-f(d) f(b) = 01010010
f,(a) =2

1l

]

Notice that, for [JI > 1, f, is not a representation because there is no way to
recognize the end of the string f,(d), eg., f,(b) and f,(ba) are indistinguishable
since ,(b) € f (ba).

(b) Consider the function f:D - B+, where .
ldl
f,(d) = H{f(d(i))}s(i_l)

Then
fz(abad) = 00.01000_10_
fz(bdb) = 01010 010
f,(A) =
As in the case of fy, the function f, is a representation if and only if I3 = 1. |

In the previous example, f, and f, would be representations, even for |J| > 1, if
there were some way of detecting the ends of codewords f,(d) and f,(d). In

particular, we might reserve some syrmbol to mark the end of the list or we might
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give some specification of the length |d] or the length {p(d)I.

Many representations  that  we  consider are what we call
concatenation-preserving, where the encoding of a list includes the encodings of the
individual elements in the list. We now generalize the familiar notion of
concatenation of encodings of list elements to not necessarily imply a "left to right”
ordering, only that the encodings are in disjoint scts of memory cells. Thus, if we
know where to look then it is possible to determine d{i) and obtain no information

about d(j), for 1 <i,j < ldl

Definition. Let D = U)(1 and consider a function fiX - B+. Define the
i€]
function £7:D - gt by
ldl

f(d) = H{f(d(i))}ni(d)

where ngD » N. Then £ is said to be a concatenation-preserving function if,
for alli = |,

DU}y (o) N l)({f(d(J'))}nJ(d)) =2
Let g be any function g:D - 8% and let £/ be the function defined above.
Consider the function g:D - 8% defined by the union

pld) = {£7(d) }104y U {e(d) 1240

where n 1D » N, nID » N. If pis, in fact, a representation and if

D({"(d(i))},1.4))) N DUg(d)} 2,y = =,

then p is said to be a concatenation-preserving representation,

The condition that the domains of {f(d(i))}ni(d) and {f(d(j))}n‘j(d) not intersect
guarantees that f7 is, in fact, a concatenation of encodings of the list elements and
that the representations of the list elements do not overlap. Notice that the function
g can be chosen in any way whatsoever, so long as the resulting union, g, is a
representation. We now reconsider Example 53 and see that f, and f, are

concatenation-preserving functions,
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Example 54. The functions f, and f, from Example 53 are
concatenation-preserving functions, since they fit the form of the above definition.

(a) Given the function f:X - Z* as in Example 5.3, we can define f,:D - gt by

ldl
f,(d) = U{f(d(i))}ni(d),
i=1
i-1
where n‘(d) = ZIf(d(J))I
s

Since n,,(d) - n(d) =If(d(i))], it is clear that
DU}, () N D({f(d(j))}nJ(d)) = 2.

(b) Recall that we defined f,:D - Zi’+ by
fdl

f(d) = H{f(d(i))}s(l_l).
Since m:).?' D(f(x)) =2 the domains do not intersect, and it is clear that f, is a
concat;\nation—preservmg function. I
Recalling Example 5.3, when ID = X* we know that ld] = k and f, and f, are,
in fact, representations. When we wish to allow ID = Xk, however, then we may
wish to consider one of the following three representation schemes.
(i) If lp(d)] is of fixed size for all d € ID, then there is no need to specify
lp(d}]. Fixed length representations are discussed in detail in Section
5.2.
(ii)  An endmarker representation reserves some symbol or set of symbols
b € 5 to indicate the end of the list f(d). A formal definition is gn‘ven
in Section 5.3. '
(iii)  We can encode the length ld| itself and use this as a pointer. A pointer
representation is defined formally in Section 5.4.
We illustrate endmarker and pointer representations in Example 5.5a and 5.5b, by

extending the function f, from examples 5.3 and 5.4.
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Example 5.5. (a) Recall from examples 5.3 and 5.4 the function f:X - gt and the
function f:D - 8%, We can then define the representation p,:D - 3% by

pi(d) = {f,(d)}, U {eld)} 24,
where g:D - BT is defined by

gld) =11
[dl

and where n2(d) = 2|f(d(j))|.
Since we already know that fyisa cox1ca€;1:ation—prcserving‘ function, we need only
note that

D{g(d)},2¢4)) NDUE(d)),) = 2

i order to verify that pis, in fact, a concatenation-preserving representation. For

mistance,
p,(abad) = {f,(abad)}, U {g’(abad)}nz(d)
= {f(a)- £(b)- £(a)- £(d) }, U {11}, = 00010001011
p1{bdb) = f(b)- f(d): f(b)- g(bdb) = 0101001011
pylc) =011
py(n) =11
Idl
Notice that ip(d)] = 2+ lg(d) .
=1

Since g(d) and f(x) are distinguishable for all x € X, the string ¢(d) = 11 serves
as an endmarker, aflowing us to detect when the end of the list has been reached.
However, since we also have, eg., p{c) = 011, not every occurrence of the string 11
corresponds to the endmarker, It is necessary to somehow decode p(d) as we read
it.
(b) Recall the functions f:X = 4* and f,:D - 3% from Example 5.3. Define the
concatenation-preserving representation p,:D - 8" by

po(d) = {f,0d) } g, U {g(d) ]y,
where g:D - 3% is defined by

e(d) = 1M,

Notice that g(d) corresponds to the length ldl. Thus, after reading g(d), we shall

always be able to tell when we are at the end of the list representation fz(d). For



instance,
p,{abad) = 11110000100010
p,(bdb) = 111001010010
pa(r) =0
We shall later discuss more "efficient” pointer representations. 1

If in a concatenationi-preserving function the functions n, are all constant

functions (i.., the values of n,

; are not functions of the particular d being

represented) then we say that the function has fixed position fields. Intuitively,
this says that if we were to ask the question 7v,, for i < |dl, then we would always

know where in the representation to begin reading.

Definition. Let ID = U X' and let f be a function f:X » 8%, Consider a
€]
concatenation-preserving function f7:D = 8% defined by
lal

£(d) = Ult(ati}, (o)
i=1

where ni:lD > N, If for all d, d, € ID and for all j, 1 <

72N

max i,
i€]
n(d,) =nld,)
then the function 7 is said to have fixed position fields. We define an n; field

to be the set

U p(s(x)) +n,,
Xe€X
for 1 £ £ ldl, where we use the notation

{spy 85 .00, spp ko2 {sy#ky 5%k, ooy s %k

Clearly neither of the extensions of f, in Example 5.5 gives us a function with fixed
position fields. The function f, from Example 5.3 is, however, a fixed position
field function, since n(d) = 3(i-1) for all d € D and thus each n, is a constant
function. Since each n, field consists of all cells which may be occupied by
p(d(1)), the n; field for p of Example 5.3 is just {n,, n, + 1, n, + 2}. Notice that it
is not necessary that an n; field consist of contiguous memory cells, although for

simplicity most of our examples will be of this form. In fact, it is possible for two
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n, fields to "cross”; e.g., we might have
kp, kg +ky € U D(f(x)) +n,
x€X

and ky+ky€ U D(f(x)) t N,
x€X
for 1 <kg <k, Example 56 gives an example of a concatenation-preserving

representation with fixed position fields, where a field does not consist of

contiguous cells,

Example 56. Let X = {a,b,c}, 8=1{0,1}, and D = UXl Define the function
i=0

X U{s} = 8% by

fla) =00
f(b) =01
flc) =10
f(z) =11
Consider the representation gD - 8" defined by
lal
pld) = Uff(a(i))}, v {1},
=1 i ldl+1
where
24 -3 for i even
n, =
24 -2 for i odd

Thus, d(1) occupies cells 0 and 2, d(2) occupies cells 1 and 3, d(3) occupies cells 4
and 6, d(4) occupies cells 5 and 7, d{5) occupies cells 8§ and 10, etc. For instance,

p(r) =11
plabaa) = 000100001 1
plbacba) = 001010010101,

So an n, field is not a set of contiguous cells. In fact, the n, field is

U b(s(x)) +ng = U D(£(x)) + ¢ = {4, 6}
X€EX XEX
and the A field is

U p(s(x)) +n, = U D((x)) +5 = {5, 7).
X€X x€X
Notice that the n, field and the n field "cross“, since
4,6 € U D(f(x)) + N,
x€X

and 5 ¢ Ub(f x)) *+ng, 1
x€X



By definition it is, of course, not possible fog e MM&'Q’Msn 1
In sections 5.3 yesl+Si(xdv)@xighd Xheinetian, pf a fixed position field function.

¥z

to fixed ition fie gﬂ gt 0
pos x;qﬂ m Al I, ;d

xsfg%';oagesfcffmtﬂs%fm i 0 Ngm xsmns' *‘am;xfi 21w

35“":2’2?&5’%? %"ﬁ;‘n g swdw  abieil noitieog Dexil riw noilsinmg et

For mstamb we

2H9) 2000311100

novsnut s el X1 = G bas ,{1;0} =8 fad.8)= X 1wl .32 slgmexd
9
| wd T8« {nlukn
00= {sh
1 0= {an
01= LR
Li={an
¢d bamlsh 3« Qi noisinseagyt 9di 19biznod
oga U LR - (w
R i Ing )
s13riw
nsve § ot £~
ﬂ, ]
tho 1 01 -8

b aliey emguoso {E)u (£ bos [ ailes asiquaso (830§ bas 0 alles esiquodo (L)% 2udT
coannszas w01 019 01 brg § oliso esiquose (€)% U bas 2 allsy esiquoo ($)b 3 bas

L1+ (£R
1_100001005 = (seds
101010010100 = (sdosd )y,

@i fish gy 081 al 2l wwsowgines 10 192 & Joa 2i bisit 0 ne o2

(a8 =t {lonla U = s (0 U
&4 h¥x
2i blost a1 9 bos

AP =2+ {xa U = o0+ ({x)1)a U
ERITTEIN zwo m«m pft 561 bris bﬁsd & ol 166d1 9310

gre mmald s a0
A¥x
H : Lir ({1 SR bag
AIx

oum,




-85 -
5.2 Fixed Size Representations

[n theorems 49 and 4.10 we showed that if a representation p:D - gt
achieves Kraft storage and also achieves Kraft access for all 4 € T', then ID = X" or
D = {2} UX™ In this section we show that it is possible, where D = X" or
D = {A} U X, to have Kraft storage and access with a fixed size representation. In
fact, if the relative sizes of the problem and machine alphabets are chosen
correctly, and if the domain 1s of one of the two appropriate forms, then there is
always a fixed size representation which achieves Kraft storage and access (see
Theorem 5.5 and Corollary 5.5.1).

Recalling Section 5.1, a representation p is said to be of fixed size if it maps

all strings in 1D into strings of the same length.

Definition. A representation p:D - 8t is a fixed size representation function
of size r if and only if

(Vd € D)(1p(d)] = 1)

Notice that the definition makes no requirement that D(p(d)) = {0, 1, ..., ldl-1},
and in general p(d) might occupy any r cells of memory, not neccssarily
contiguous. Of course, we frequently consider a representation p:D - 57, where
each d € ID is mapped onto a sequence m =m(1)m(2)...m(r) = p(d), for
m(i) € 5. For any fixed size representation, however, it is known that each p(d)
occupies exactly r cells, and so it is not necessary to store any additional
information concerning the length of the representation. Let us look at two

examples of fixed size representations.

Example 5.7. Let ID = {A} U X U X2, X ={a,b}, and 8 = {0,1}. Define the fixed
size representation gD - 5> as follows:

p(A) =000
pla) =001
p(b) =010
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plaa) =011
plab) =100
plba) =101
p(bb) =110

Since there is no d € 1D such that p(d) = 111, p does not achieve Kraft storage.
Also, it 1s not possible, using representation p, to implement any ¥, € I' so as to
achieve Kraft access. (If ¥, did achieve Kraft access, then the tree for ¥, would
have three leaves and therefore two internal nodes. So one answer among a, b, &
would be determined in a single access, but by inspection we can see that this

cannot happen.) i

Example 5.8 illustrates a procedure for constructing a fixed size representation for
which, if D = X™ and IX| = 18/* - 1, we can auain Kraft access (although not

Kraft storage). Notice that r = k«T'l, and we answer %, by first accessing cell
(i-1) k.
n
Example 58. Let D = Ux!, ¥ ={a,b,c}, and 8 = {0,1}. Define the fixed size
i=0

concatenation-preserving representation gD - 8°" by
ldl

n
P(d) = U{f(d(l))}z(‘-i) U IL]J {“2’)}2(1-1)
i=1 i=ldl+ 1
where f:XU{ g} » 5% is defined by
f(a) =00
flb) =01
f(c) =10
flg) =11
In particular, for n = 2 we have
pla) = 1111
pla) =0011
plb) =0111
P(C) = 1011
plaa) = 0000
plab) = 0001
plac) =0010

p(ba) = 0100
4(bb) = 0101
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plbc) = 0110
plca) = 1000
o(ch) = 1001
plec) = 1010

Notice that 5l =2 and 22 -1 =3 = [X]. Sor =22 and to answer 7, we first access

cell 2:(i-1). Figure 5.1 illustrates access trees for %, and %,, and it is clear that we

achieve Kraft access. On the other hand, p does not have Kraft storage because
Z13 0=y,

Inturtively ,we would have achieved Kraft storage if we had altered the definition of

p by letting p(A) = 11__; this would have made p(ID) a complete code. lInstead,

we chose to specify values for m(2) and m(3) so we could always answer v, in two

accesses. This illustrates a trade-off between Kraft storage and Kraft access. i
Y, 72
() @)
(1) (D (3] (3)
a b C a b c y]

Figure 5.1. Access trees for ¥, and ¥, of Example 5.8.

Notice that when we define some fixed size representation p, we have not
explicitly said anything about the elements in the problem domain [D. If, however,
we meet Kraft storage, then we know by the following theorem that there are |3l°

elements in the domain.

Theorem 5.1. Let gD - g% be a fixed size representation of size r. g
achieves Kraft storage if and only if [ID| = |3i".
Proof: Since |p(d)}] = r for all d € D, then

-ipld
d?:[D P o
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and we have Kraft storage if and only if [D}38!™" = 1; that is, if and only if
DI = I3I". I

Notice that we could, of course, be representing any |I" strings in ID.

We know by Theorem 3.10 that we cannot achieve Kraft access for IX| < |5l
Unfortunately, even for [X| 2 |8l, the conditions [ID| = 18" and ID = V%Xi do not
guarantee that there is a fixed size representation that attains Kraft acc;ss.

Example 59. Let 51 =3, IX| =4, and D = {A} U X2 U X> Then for r = 4, we
have 15" =3%=4%+4%+1 =D, and a fixed size representation gD - gt is
storage optimal. On the other hand, by theorems 49 and 4.10 we know that there
is no representation, fixed size or otherwise, that achieves both Kraft storage and

Kraft access for the table lookup question set I' = {71: Y 25 73}. |

In the last chapter, we have already shown that in order to possibly achieve
Kraft storage and Kraft access, it must be the case that ID = X® or ID = {A} U X",
If we wish a fixed size representation to have Kraft storage and access, then either

D = X™ or else we have the less interesting situation where D = {A} U X .

Lemma 5.1, Let ID ={A} U X" and consider a fixed size representation
pD - 8+, of size r, which achieves Kraft storage. Assume also that each
v, € T' achieves Kraft access. Then 18l =2 and II'l =1; ie, D ={A} U x1
and [X| = L.

Proof: By Theorem 4.9 and Corollary 4.9.1, since ID # X" then the only way we
can achieve both Kraft storage and access is to have |5l = 2 and for there to be
some 7y, ¥ ¢ I" such that v, and v have overlapping sets. As a consequernice of
Theorem 4.8, we know that Y Yy access some cell in common if and only if
X¥ ¢ D for all i <k < j Since ID = {A} UX™, then any pair of table lookup

questions has overlapping access sets. Now lemmas 4.2 and 4.4 allow us to conclude
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that each v, € I has the same root node label and each has a leaf labelled @ at
depth 1. But this says that [p(A)] =1, and so if pis a fixed size representation
then it is a fixed size representation of length 1. Thus I = 1. If o, has a lcaf
labelled a at depth greater than 1, then [p(A)] # [p(a)] and p could not be a fixed
size representation. Thus o has its only two leaves at depth one and so we have

the trivial case D = {A} U X' and IX] = L. !

Of course, the above lemima simply says that if a fixed size representation achieves
Kraft storage and access, then D = {A} U X. The following example shows that it
1s, in fact, possible to have ID = {A} U X for a fixed size representation which does

have Kratt storage and access.

Example 5.10. Let 5 =1{0,1}, X ={a,b,cj, and D ={A} UX. Define the

representation piD - 5t by

pln) =01
pla) =00
plb) =10
plc) =11

Clearly p s a storage optimal fixed size representation of size 2, and from Figure

2 we see that it is possible to implement 7, so that it has Kraft access. i

Figure 5.2, Access tree for v, of Example 5.10.

Now from Lemma 5.1 and theorems 4.9 and 4.10 we obtain the following result,
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Theorem 5.2. Consider a fixed size representation gD - gt Assume P
achicves Kraft storage and each v, € I' achieves Kraft access. Then ID = X"

or D = {2} U X.

In fact, achieving Kraft storage and access with a fixed size representation tells

us something about the relative sizes of the problem and machine alphabets.

Lemma 5.2. Consider a fixed size representation p:D - g% which achieves
Kraft storage, and assume that all ¥, € I’ achieve Kraft access. Then, for all

v, € I', the access tree for %y, has uniform depth.

Proof: By Theorem 5.2, there are two cases to consider:

(1) ID = {A} U X. In this case we know by Lemma 5.1 that [I'l =1 and IX] =1, so
v, clearly has uniform depth and g is a fixed size representation.

(ii) D = XX Then by Theorem 4.10 there are no overlapping access sets. Assume
there is some v, whose access tree does not have uniform depth; in particular, let
leaves labelled x;,%, € X be at different depths. Then there exist d,d, € [D such
that d,(n) =x, and

d (i) fori=n

X, fori =n
By Theorem 4.12,
lp(d )l = 2 4y (p(d )]+ 8y (p(d,))]

1#n
and
lpld )| = 2 iy (pld )T+ uly (p(d ).
1#N
But

#ly (p(d )] = #lx 1 = #0x,] = #ly (p(d,)) 1.
Thus 1p(d ) =1p(d )], implying p is not a fixed size representation, a

contradiction. So each v, has a tree of uniform depth. I
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This lemma allows us to prove that IX| = 51 or I1X] = 18* - 1 if we are to attain

Kraft storage and access with a fixed size representation,

Theorem 5.3. Consider a fixed size representation gD - 8" which achieves
Kraft storage, and assume all v, € T' achieve Kraft access. 1f ID = X" then

151% = IX| for some k € N, and if D = {A} U X then 181* = Ix| + L.

Proof: Let D = X" By Lemma 5.2, we know that the access tree for v, has
uniform depth, say k, and so IZj‘Ik=IR(7l(lD))I = |Xl.  Similarly, for
D ={atuX, IR(y(D)|=IxI+1=1z" I

The following example illustrates, however, that attaining Kraft storage and
access, even where D = X" and IX| =13%, does not necessarily mean our

representation has fixed size.

Example 511.  Let 3=1{0,1}, X ={a,b,c,d}, and D = X2 Define the
representation p:lD—>8+ as illustrated in Figure 5.3. More specifically, for
X1y X5 € X, we can let p(x,-x,) =1f,(x;)-f,(x,), where the representation tree

for f, has the same form as the access tree y,. For instance,

plac) =010
plad) =0__11
p(bb) = 1001
pdc) = 11110,

From the trees it is clear that v, and 7, achieve Kraft access. Also, since
IpCx o x )= 10 (x DI+ Ik ) =1 (x )]+ 2
then the reader can verify that

o(d)]
s g ADT_ asgag0s g

and so p achieves Kraft storage. I

On the other hand, the following example shows that we could have defined g in

the above example to be a fixed size representation and still have attained Kraft



Figure 5.3. Access trees for v, and 7, of Example 5.11.

storage and access. In fact, there would always be such a fixed size representation.

Example 5.12. Let 4, X, and ID be the same as in Example 511 and define the

representation g:iD - 5" as illustrated in Figure 5.10. For instance,

plac) = 0010
plad) = 0011
p(bb) = 0101
plde) = 1110
71 72
(©)
(1) (D
a b C d a b c d

Figure 5.4. Access trees for 4, and 7, of Example 5.12.

Clearly we achieve both Kraft access and Kraft storage. |

To help motivate some further discussions, we first prove the following simple

lemma.
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Lemma 5.3. Let ID = X" Then the following statements are equivalent.

(1) There is some representation p:X - 8" which attains Kraft storage.

(2) There is some implementation for which each v, € I' achieves Kraft
access.

(3) There is some k € N such that 1X] = k(15 - 1) + L

Proof:  For D = X", R('yi(lD)) = X, There is some representation p which
attains Kraft storage for x € X if and only if there is a |5l-ary tree with |X| leaves
if and only if IX| = k(15 - 1) + 1. Also, v, achieves Kraft access if and only if its
I51-ary tree has |X| leaves if and only if IX| = k-(158] - 1) + L. I

It is not the case, however, that Kraft storage for a representation p:x" - 3+

implies Kraft storage for some representation pg:X = 8+.

Example 5.13. Let 15l =5 and [X| =7. To get Kraft storage for X, we would need
(51 -1) +1 =4i+1 =", which is not possible. But for XZ, i =12 gives us

(151 - 1) + 1 = 4i+1 =49, !

We are now ready to prove the main results of this section. The proof of the

following lemma 1s essentially the same as the proof of Lemma 4.3.

Lemma 54. Let X ={x,, X, ..., %} and D =Xx" Consider a
representation X -’H+. If f achieves Kraft storage, then a

concatenation-preserving representation p:D - 8+ defined by
n

P(d) = U{f(d(l))}n(d)y
i=1 i
where n;lD = IN | also achieves Kraft storage.

Proof: By induction on n we prove that

pld
s g A

dex®
Basis: For n =1, Ip(d)] = if(d)! and so

= 1. (5.1)
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-lpld -If(d -If(x) 1
R D N RIS NP ALY
dex d€X xEX
Induction step: Assume that (5.1) holds for..?.' Then
-lp(d =216(d (i
R R e CIC]
dexnl dexrtl )
(2l Cd(i)) ]+ If I
I S X CIORI RN {EY
deX x,
.S IEI-(ZI:'(d(t))l EWD!
dexX"x,
. .S lbl-(Z!f(d(i))hlf(xk)l)
S deXTx,
| F(d(i))]
=Ib’l f(x,) ZIIZ( ()
déXn
r d(i))l
dex"
R If (x,)1 S 13 Izlf(d(x))l
dex®
By our inductive hypothesis this then gives us
lpld)] -If -If(x)
2 Il 2 2 18 = 1. i
dex™? i=1 x€X

Theorem 54. Let ID = X" If there exists some k € N for which
IXT = k(18] - 1) + 1, then there is an implementation (X, p) solving (T, D)
such that gD - 5% achieves Kraft storage and each ¥, € I' achieves Kraft

access,

Proof: Since IX| = k-(18] - 1) +1, we know by Lemma 3.1 that there is a |Zl-ary
tree " with |X| lcaves and node labels chosen from the set {0,1, ... r}, for r < k-1.
We can use this tree T to define the storage optimal representation f:X = &*. Now

define the concatenation-preserving representation g:lD - 8+ by

= il:{{f(d(l) ) }(r+1)(]'1)
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By Lemma 5.4, since f achieves Kraft storage so does p. Also, if we implement
v, € I' by the same tree T except replacing node label j by label j+ (r+l1)-(i-1),

then each v, € T' achieves Kraft access. |

From Lemma 5.3, Theorem 5.4 holds if instead of the condition |X| = i-(15] - 1) + 1
we have the condition that there be some representation p:X - g% which atains
Kraft storage or that there be some implementation for v; which achieves Kraft
access. Trivially, the above theorem alse holds for D ={A} UX, when

IXt+1=i(l5 - 1) + L.

Corollary 5.4.1. Let ID = {a} U X. If there exists some k € N* for which
IXI+1 =%(l8 -1) +1, then there is an implementation ((, p) solving
(', D) such that gD » 3% achieves Kraft storage and v, € T achieves Kraft

access,

We present an example to illustrate how p and f in the proof of Theorem 54 might

be chosen.

Example 5.14. Let 8=1{0,1}, X ={ab,c,d,e}, and D = X" Then
IXI = i-(15] - 1) + 1 is satisfied by 1 = 4, and there is a binary tree with five leaves
and four internal nodes whose labels are in {0,1,2,3}. In fact, there are many such
trees, and we (arbitrarily) pick T to be the tree shown in Figure 5.5a. Using T, we

define the representation f:X - 8+ by

f(a) =00__
f(b) =01 _
f(c) =100
f(d) = Lol
f(e) =11

By inspection, f attains Kraft storage. We define the concatenation-preserving

representation p:lD - 3t by
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(a)

Figure 5.5. Trees for T and #, of Example 5.14.

So T is also the access tree for v, and the access tree for ¥, is the same as T but
has each node label j replaced by the label 2i + j. The tree for v, is illustrated in
Figure 55b. Then we have, for instance, p{bc) = 01__1 00. The representation g

achieves Kraft storage because

-lp(d)]| . ] .
P R PR P Y
deX?
By inspection of the trees for ¥, and v ,, we also attain Kraft access. |

Notice, however, that the representation g in Theorem 5.4 has many "gaps" in
it. Even if we had constructed the tree T so that each node at depth j had label j,
we would still have had gaps, unless T were of uniform depth. If we require that p
be located in consecutive cells, then we cannot obtain Kraft access unless for all
dydy € X0 Apld ) =1p(d,)]; e, #ly(p(d))] = 4Ly (p(d))3,  for all
Y ¢ I". We now show that if in Theorem 5.4 it had also bcen the case that
X1 = lBlk, then there would have been an implementation achieving Kraft storage

and access with a fixed size representation and without any “gaps".

Theorem 5.5. Let D = X" and IX| = 18/* for n,k € N*. Then there is an
implementation (@, p) solving (I', ID) such that p:D - 8™ is a fixed size

representation achieving Kraft storage, and each ¥, € T achieves Kraft access.
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Proof: Since we are given that |X| = |3, the equation IX| =i-(18l - 1) +1 is
k-1

satisfied for i = 218 Theorem 5.4 immediately tells us that there is some
representation thiJ;oKraft storage and. access, but we want to show that there is, in
fact, such a fixed size representation. As in the proof of Theorem 5.4, we define
the concatenation-preserving representation p:D » 4™ by

pld) = £(d(1))- £(d(2))- ... f(d(n))
where f:X > 3% corresponds to a tree T of uniform depth k where each internal

node at depth j has label j. Certainly f and therefore p both achieve Kraft storage,

as verified by

-lp(d)| ) - ;
S Y e T e X g =X X = L
d¢D dex™
Also, we implement v € I' by the same tree ', with labels j replaced by mk + j.

Each o € I" achieves Kraft access, since #lv (p(d))] = k and

> |z51"°‘(r) = S B =Xk = L I
rex reX

We can give an example, similar to Example 5.12, which illustrates this thecrem.
Example 5.15. Let 4 = {0,1}, X = {a,b,c,d}, and D = X% Notice that |X| = |33,
and Figure 56a shows a tree T of uniform depth two corresponding to the

representation f:X » Z%  Then we define the representation 2D - 8% by

p(d) = (d(1))- £f(d(2)). For instance,

plac) = 0010
s(ad) = 0011
p(bb) = 0101
plde) =1110

The tree T of Figure 5.6a is the access tree for #,, and the access tree for v, is

shown in Figure 5.6b. i

Analogous to Theorem 5.4, we have the following corollary.
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(a) T (b) ¥,

Figure 5.6. Trees for T and ¥, of Example 5.15.

Corollary 55.1. Let D = {A} U X and IXI + 1 = 181* for some k € N*. Then
there is an implementation (@, p) solving (I', ID) such that gD - 3% is a
fixed size representation achieving Kraft storage, and each 7, € I' achieves

Kraft access.

What we have proved in this section is a weak equivalence between the
requirements that D = X" (or ID = {A} U X) and that there be some fixed size
implementation in which we achieve Kraft storage and access. More precisely,
Theorem 5.2 told us that if there is a fixed size representation p:lD - 8% which
achieves Kraft storage and for which each v, € T' achieves Kraft access, then
ID = X" or D = {A} U X. Conversely, Theorem 55 and Corollary 55.1 essentially
tell us that if ID = X" or ID = {A} U X, then there is some fixed size representation
which achieves Kraft storage and access. The condition IX| =18* (or
IX] + 1 = 15%) was put in to avoid "rounding errors”. If we do not have [X| = |5I¥
for ID = X", then either we do not have Kraft storage or else our tree must have
leaves at (at least) two depths, j and j+1. This would cause
nj <lp(d)l <n{j+1) and so p would not be of exactly fixed size. Or else we
could let gD = Z™* 1) pe fixed size and then we would not quite attain Kraft

storage. Thus, theorems 5.2 and 5.5 allow us to prove the following result.
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5.3 Endmarker Representations

Recall from Section 5.1 that an endmarker representation has some fixed
symbol ar sequence of symbols in 8% which are always at the "end" of the list.
Example 5.5a is an example of an endmarker representation. The representation p
in Example 2.7 is also an endmarker representation, with endmarker 0. We now

give a formal definition.

Definition. Let f be a total function f:D -~ B+, and let 0 €8 (0= g).
For each d €D, let n(d) € N such that n(d) > max D(f(d)). Then a
representation puD - 8% which is defined by

pld) = 1(d) U {0},
is an endmarker representation. The relation ¢ is known as the endmarker,

and the function f 1s the list component of p.
To illustrate what this definition says, we present the following example.

Example 5.16. Let X ={a,b,c}, 8={0,1}, and D = U X" Define the function

i€]
fxulg) -~ 8% by
fla) =00
f(b) =10_
flc) =11_
flg) =01
If we then define f:D - g7 by
|dl
f’(d) = U{f(d(i))}g(x-l))
i=1

then the representation
pld) = 17(d) U{i(2) }qy
[ o]

is a concatenation-preserving endmarker representation. For D = UX’, it 1s easy
. i=0

to verify that p achieves Kraft storage, since

lp(d)] = 2:1d] + 2.
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Thus,
z g_lﬁ(d)[ - 2 2 2'(2]d|*2)
d€D i€] gex!
o
- 2 [XIi' 2-(2i + 2)
i=0
1 3yi
133
426 4

Note that no finite |J| will give us Kraft storage.

Now consider answering a table lookup question v, € T. For v, we need only
access m(0) and m(1), or else m(0) and m(2). On the other hand, to answer the
question v ,, accessing Just m(3) and 7ﬁ(4) (or else m(3) and m(S)) may not give
the correct answer. In particular, unless we have already determined that the
answer is g, then we must verify that |d| > 1. This requres accessing m(0) and
possibly m(2). Possible access trees 'I'; for each %, can be constructed as indicated
in Figure 5.7, where we write {T}, to denote the tree T, with each node label |
replaced by the label j+ k. These trees correspond to reading the necessary

memory cells in a left to right order. It would also be possible to read the cells

essentially from right to left. For either method, once f( &) is encountered for Y

then it is known that |d] < i !
71 Ty Vi1 Ty
() (O}
(2) (1 (25 {T,}4
a 2z b C T =3
“i}s

Figure 5.1. Trees for v, of Example 5.16.
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The endmarker representations we have thus far seen are all
concatenation-preserving representations, but there is no such requirement in the
definttion. In fact, there is not even any requirement that the endmarker be
necessary; i.e., for an endmarker representation p(d) = f(d) U {O}n(d) it may be
the case that f(ID) itself is a representation and thus the endmarker ¢ is
superfluous.  Also, there is no restriction that the endmarker not appear in f(d).
Even if the pattern ¢ € 37 does not appear in f(d), there may be "holes" in f(d),
which allow the possibility of another user writing ¢. Thus, itb may not be the case

that the first occurrence of ¢ serves as the endmarker.

Example 517. Let 3 ={0,1} and, for D ={d,, d,, ds d,, dg}, define the
function f:lD - B+ by

f(d,) =00
fld;) =01
f(dg) =10
f(d,) =_10
f(dg) =11

If we let 0 ={(0,1), (1,0)}, we can then define the endmarker representation

gD - st by

pld,) =0010
pld,) = 0110
pld,) = 1010
pld,) = _1010
pldg) = 1110

The endmarker here is not superfluous because it does enable us to distinguish
between p(d,) and p(d,) and between p{d,) and p(d;). On the other hand,
even if we were to eliminate d, from the domain, p would still be an endmarker
representation. Notice also that p(d,) =0010, and thus if another user sets
m(1) =1 then the actual endmarker is not the first occurrence of 0. In fact, f(ds)

itself contains the set 0. i
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We wusually have in mind a more restricted notion of an endmarker
representation, where we require ¢ to be distinguishable and reserve ¢ solely to
indicate the end of the list. (Of course, if the representation has holes 1n it, then it
is still possible for other users to write 0.) Thus, if we read a list representation
from left to right and access no cells not in the representation, then encountering ¢
immediately tells us when we've reached the end. Most of our examples will be of
this form.

Notice that the funcuon {7 in Example 516 has fixed position fields.
However, the endmarker in the representation p has a displacement function
n{d) = 3Jdl. So n is not a constant function, and the endmarker is not always in
the same memory position. In fact, if the endmarker were always at the same
location, then there would be no point in having an endmarker at all; there is no

such concatenation-preserving endmarker representation. We make the following

definition.
Definition.  Let gD - 8% be a concatenation-preserving endmarker
representation, with endmarker 0, and formed from a

concatenation-preserving function f” with fixed position fields n. If p1s of

the form
dl

pd) = U{ed(i)))

i=1 Mal+1
then pis said to be a fixed position field endmarker representation.

n

u {0}
i

Thus, the representation p in Example 5.16 is a fixed position field endmarker
representation.

in Example 516 we saw an endmarker representation that achieves Kraft
(Lol

storage when 1D = Ux' we can, in fact, show that achieving Kraft storage implies
i=0
that max|p(d)| i1s unbounded.
- deD
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Theorem 5.7. If an endmarker representation p:ID-’B+ achieves Kraft

storage, then ~(dn € N)(¥d € D) (1p(d)| < n).

Proof: Assume that  (dn € N)(Vd € D)(Ip(d)] < n).
Then it is possible to choose d, € ID such that

max D(p(d,)) = max D(p(d)).

d¢iD
Thus, no p(d) occupies a larger memory cell location than p(dk). By the
definition of an endmarker representation, there is some function f such that
pld) = ldy) U {0}y g
Now let r = min D(9), and choose by € & such that b, is not a prefix of 0. (Since
151 2 2, there must always be such a by} Consider the string
b =f(d,) U{ln(d,) +r,b,)} €8

For all d, € ID, b and p(d,) are distinguishable. In other words, there is no d, € ID
such that b € 7,(d;). So by Theorem 3.3 p does not achieve Kraft storage. Thus,
our original assumption must have been wrong, and we conclude that

—~(3n € N)(Vd € D)(Ip(d)] < n). 1

It immediately follows that if an endmarker representation achieves Kraft storage,

then the domain ID must be infinite and also that the index set J must be infinite,

Corollary 5.7.1. [If an endmarker representation gD - B+ achieves Kraft

storage, then —(dn ¢ N)(IID| < n).

Corollary 5.7.2. If an endmarker representation gD - 8% achieves Kraft

storage, then —(dn € N)(max i <n).
i€]

Thus, when we are discussing endmarker representations, we frequently consider
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Notice that since achieving Kraft storage tells us that the domain must be
infinite, we immediately know that no endmarker representation can achieve both

Kraft storage and Kraft access.

Theorem 5.8. There is no endmarker representation that achieves Kraft

storage and also achieves Kraft access for all € I

Proof: From theorems 4.9 and 4.10, we know that if a representation p achieves
Kraft storage and Kraft access for all v,€ I', then ID = X" or D = {A} U X". But
by Corollary 571 we know that [D| cannot be finite for an endmarker
representation that achieves Kraft storage.  Thus, there is no endmarker

representation that achieves both Kraft storage and Kraft access. £

Recall again the representation p in Example 5.16, which achieved Kraft
storage.,  We can show that this result generalizes. In particular, given any
representation f:XU{g} ~» 37 which achieves Kraft storage, a
concatenation-preserving endmarker representation p formed from f also achieves
Kraft storage. Before we prove this, however, we introduce some terminology and

prove a lemma. We begin with the following definition.

Definition. Consider a full [5l-ary tree T* with 15® nodes at depth k, for
all k € N. Assume that some of the (internal) nodes are labelled g but that
T7 has the property that if a node is labelled @ then none of the descendants
of that node is labelled. We use the term g-node to refer to a node labelled @
or the descendant of a node labelled . We then let § denote the fraction of

the nodes in T7 at depth k that are @g-nodes.

Since § is a fraction of nodes that are g-nodes, 1t is clear that 0 < §(k) < 1. Also
E(k + 1) > E(k), since a g-node at some level leads to the same fraction of

@ -node descendants at the next level. The following example should clarify what is
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meant by a g-node and by §(k).

Example 5.18. Consider the tree T” in Figure 5.8. For simplicity we have deleted
the node labels indicating memory cell locations. We have, however, retamned the
external label @ on certain nodes and marked cach g-node with an "x". Notice
that all descendants of nodes labelled & are themselves g-nodes. ‘There are 1
#-node at depth 2, 3 @g-nodes at depth 3, 8 g-nodes at depth 4, 19 @-nodes at

depth 5, etc. Thus

6 2
3 19

ES) = k(4) + 7 =57

We shall have occasion to refer back to this tree T in a later example. !
¢
¢
& g
# ¢ 2

Figure 5.8. Tree T” from Example 5.18.

In order to motivate some of the terminology used in the next lemma, let us

consider another example.
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Example 5.19. Let X ={a,b}, 8=1{0,1}, and consider the representation

f:XU{ g} » B* defined by

f(a) =1
f(b) =00
f(z) =01
Then f achieves Kraft storage and corresponds to the tree I'; shown in Figure 5.9a.

Now, for ID = U)«", define a concatenation-preserving endmarker representation
i=0 .
2D - 5¥ by
pld) = U{i(a(i}, ) U {00,0), (1,1}, 4
= 1
i-1 lal
where n(d) = 2I(d( ) and n(d) = 21E(d(j))]. Then we can construct a tree
J=1 J=1

T for representation p as in Figure 5.9b, i
We can now prove the following lemma.

Lemma 5.5. Consider a prefix representation f:XU{g} - #* which achieves
o0

Kraft storage. Let D = Ux' and consider a concatenation-preserving
i=0

endmarker representation p:D - 8+ defined by
ld|

pld) = Ulr(a(i}, o) U {12 )y gy
where n:D » N, n:D - INt-iLet T be a |8l-ary tree corresponding to p, and
let 17 be an extension of T which keeps the g-node labels of T but extends
the tree so that T” has |4/ nodes at depth k, for all k € N, and the g labels

now label internal nodes. Then

lim E(k) =1,

k=

Proof:  Since the prefix representation f achieves Kraft storage, there is a
corresponding full |5l-ary tree T, as shown in Figure 59a. Assume that

f(#)] =r and that  max If(x)| =p. Then T has (maximum) depth p and
x€X U{ g}
the depth of its g-node is r. The tree T corresponding to p is formed from T, by
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(a) T,
O,
0 a
b z
(b) T
©
(1) (D
(2] 2 O, (2)
(39 ©, (3) a  (3) (3)

ba ab aaa

Figure 5.9. Trees T, and T from Example 5.15.

placing a copy of T, at each leaf not labelled ¢ and doing this indefinitely. (The
memory cells to be accessed need to be altered according to the values of n‘(d) and
n(d). Since we know, however, that no path will contain the same memory
location twice, we choose to igriore these access labels and are concerned only with
the external labels at a g-node indicating the d such that p(d) leads to this node.)
T7 is the extension of T where we keep the g-node leaf labels but extend from
- each of these leaves a full 18l-ary tree. Thus, for all k € N, T* has 15" nodes at
depth k. ‘

We are now ready to determine lim §(k). It is clear that §(i + 1) > E(i),
k=

because if there are j g-nodes at depth i, then there are |5l-j descendants of these

@-nodes at depth i+ 1. Thus, the fraction of these @-nodes cannot decrease.
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Also, there may be more g-nodes at depth i+ 1, corresponding to copies of 1,
with leaves labelled g at depth i + 1. Each node at depth i which is not a g-node
will have a descendant within depth p which is a g-node. Thus, at least |#™P
descendants of non g-nodes at depth i will themselves be g-nodes at depth i + p.
Since the fraction of non g-nodes at depth i is 1 - £(i),

ECi+p) > E(D) +18I7P(L - E(1))

1 + I/j‘lp - l E(
. 1)
5P 151
If we look at the values of £(k) at depths 0, p, 2+p, etc., we find that
k-1 .
1 18P - 1,]
b 18P 0 1BIP
sIP 1 K
_ (IZ}I = l)
5l
Of course we know that £(k-p) <1, and so we conclude that
lim E(k) =L 1

k=2e0

To tllustrate the method used in proving Lemma 5.5, we refer back to Example 5.19.

Example 5.20. Recall the representation p from Example 5.19. The extension of T
to a tree T” with |5 nodes at depth k is the tree T“ of Example 5.8, shown in
Figure 58. The tree T, from which T and T’ were constructed, has maximum
depth 2, and the depth of its g-node is 2. We want to verify that
B+ 2) > B+ 4 - (1- £,

The fraction of non g-nodes at depth i is 1 - £(i). Every non @-node at depth 1
serves either as a root of another copy of 1’y (see node A in Figure 5.10a) or else is
an internal node of some T copy (see node B of Figure 5.10b). In the former case,
we get a new g-node at depth i + 2. [n the latter case, we get a new g-node at

depth i + 1, which gives us two additional g-nodes at depth i + 2. I

Lemma 5.5 allows us to prove the following result.
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(a) (b)
(-7 root of T,

A root of T, B (1]

root of Ty (I+D

Figure 5.10. Origination of new g-nodes at depth i + 2.

oo

Theorem 59. Let ID = UX', and consider a representation £:XU{z} - 5*
i=0
which achicves Kraft storage. Assume that the set f(X U {#}) forms a prefix

code, and let p:lD—>8+ be a concatenation-preserving endmarker
representation defined by
fdl
pld) = U{(d(i)) ]}, 4y U 1E(2) Yo ans
i=1 1

where n:lD » N, n:ID » N. Then p achieves Kraft storage.

Proof:  Let (i) be the distribution function
(i) & {pld) 11p(d)] = i}l.
So (i) corresponds to the number of Z-nodes at depth i that have no @-node

ancestors. Then

> lzal"p(d)' = 2¥(i) 157
d€D i=0

K
= lim 2¢(i). 18"
k=0 {=0
Kk
= lim 187* 2 ¢(i)- 13*!

k=« i=0

A g@-node at depth i is an ancestor of |8*"! descendants at depth k, and so there
Kk
are 2y (i)- 18%" g-nodes at depth k. Since at depth k there are a total of 1ZI¥
. i=0
nodes, the fraction of nodes at depth k which are g-nodes is

k
B2 18 = E(K).
i=0
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Applying Lemma 5.5 gives the desired result:

s A E(x) = 1. i
d¢iD k=0

‘I'he above theorem still holds if we do not require that f(X U {g}) be a prefix

cocle,

Theorem 5.10. Consider a representation f:XU{g} > 8T which achieves

(< o]
Kraft storage. For D = UXi, let p:D - 8" be a concatenation-preserving
i=0
endmarker representation, where
lal

= Ut} ) U 182D}y

for n;:D > N, n:D » N. Then p achieves Kraft storage.

Proof: Consider any representation f,:XU{g} - B+, and recall from Chapter 3 the
1

statement of the Kraft inequality. If f, achieves Kraft storage, then
-If, (%) 1
Bt =1
x€XU{ 7}
and the Kraft inequality is satisficd {(with equality). Thus, there is some function
f:XU{g} ~ Bt such that f,{x U{z}) is a prefix code and If (x)| = If,(x)} for
all x € X U {g}. By Theorem 59 we know that for any concatenation-preserving

representation formed from f
I i 21

s lgl—lm(d)l .S lgl—(ZIfz(d(i))l + f(2)])

d€¢iD d¢D
ldl Idi
Since lp() ] = 21, (d ()] + I &)1 = fo (d(i))] + If( )]
i=1
we can conclude that (
-lp(d) |
DI A
d¢D
and so p achieves Kraft storage. I

We can verify directly that the representation p from examples 519 and 5.2

achieves Kraft storage.
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Example 5.21. What we want to show is that

2 2 el zsb (i)- 27 =
d¢iD
Referring to the tree T of Figure 5.9b, we see that

p(0) =y¢(l) =
w(2) =1
¢U)-1

y(4) =

¥(5) =

in fact, whenever a copy of T terminates at depth i, then there is a leaf from T at
depth i-1 which serves as the root of another copy of T, one which has a g-leaf
at depth i + 1. Similarly, if a copy of T, terminates at depth i - 1, then there is a
teaf of T, also at depth i - 1 which serves as the root of a copy of T, leading to a

@-leaf at depth i + 1. Thus, we can define the distribution function Y by

(1) =0
v(2) =1
wli+ 1) =y(i) + (i -1)

Solving this Fibonacci expression, we find that
s-vs 1+v5 0 5+v5 1-v5l
‘/J(l) = ( 2 ) + 10 * ( 2 )
for i 2 1. Thus, we can dnectly show that p achieves Kraft storage.
[~ o]

S (i) 2" _2[ A (LY S5 (LYl
i=0

) 10
S-S s l+v5i 5+ vs g l-vsi
=23 'le( .2 121( )
S-S 1+vS | S+vS 1-V5
0 '3-v5 " "I 3+

=L i

As an aside for interested number theorists, notice that the sum in Example 5.21

holds for ¥ (i) any extended Fibonacci sequence.

Corollary 5.10.1. Let  fib (i) & fib (i-1) + fib (i-2) + ... +fib (i-n).

Then Zfibn(i) N
i=0
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Proof:  Consider a binary tree T, of the form shown in Figure 5.9a, which has
internal node labels 0,1, ..., n-1 (for 0 <i < n, there is one node at depth i,
and that node has label i) and has one leaf at each of the depths 1, 2, 3, ..., n-1
and two leaves at depth n. Consider the extension 1" of T, as in Figure 59b. If a
copy of T, has a g-node at depth 1 - k, for 1 < k< n, then that copy of T, has its
root at depth i - n - k and thus has a node at depth i - n which is not a g-node.
This node, not itself a g-node, must serve as the root of yet another copy of T
and this new copy of T, has a @-leaf at depth i. Thus
w(i) = yli-1) + ¢(i-2) «...+ Y(i-n).

But by Theorem 5.10 we know that the extension T of T, corresponds to a
representation p which achieves Kraft storage. Thus

22t =1 = Zeib (i) 27 i
i=0

I8

i
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5.4 Pointer Representations

Recall from Section 5.1 that a pointer representation has some function
¢:J » 5% which serves as a pointer and indicates the length ldl. Example 5.5b

gave an example of a pointer representation, and we now give a formal definition.

Definition. Let D = UX', let f be a total function f:D - 8+, and let

i€]
0:7] - 3t be a representation. Then a representation p:D - 2% which s
defined by

pld) = {f(d)}nl(d) U {&( Idl)}nz(d)
is a pointer representation if
DU}, (q) NDUHUIANY, () = 2,

where n, n, are functions, n:D » N, n,7D » N. The function f is the list

component of p and L is the pointer component of p. We refer to £(Id|) as the

pointer of pld).

Note that the functions iy, N, in the above definition are not the same functions as
the n, in the definition of a concatenation-preserving function. Before discussing
the pointer representation in more detail, let us present the following example in

*order to illustrate the definition.

Example 5.22. Let X = {a,b,c,d}, 8 ={0,1}, and ID = U X' Define the function

i€]
- gt by
f{a) =00
f(b) =10_
flc) =11_
fld) =01

and then define the concatenation-preserving function f7:D - gt by
lal

- U{f(d(i))}s(x-l)'
=1

The pointer £:7 - 8T is defined by
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o(i) = 1.
Then the representation p:D -~ 3% where
pld) = (B0} Jo U {7 () g0y
is a pointer representation. For instance,

plabad) = 1111000100001
p(bdb) =1110100 110
pr) =0
Notice that

lp(d)] = 1d) + 1 +1f(d)] = 3ldl + 1.

[e o]
For J = N, then iD = X" and it is easy to verify that p achieves Kraft storage:
i=0
s A s s @
d€lD i€] gey!
= 2 x| e )
i=0
[ce)

_ 1S lyi
- 52 ()

=1,

Now consider answering the table lookup question v, € I'. The answer to the
question 7y, is essentially found at memory locations beginning with cell 3-(i-1),
except that we have stored the pointer in front of f(d), and so f(d) has been
displaced hy |d] + 1 cells. Thus, the answer tn ., for i < [7], is found by reading
m(ld1+1+43(i-1)) and then reading either m(ldl+1+3(i-1)+1) or m(ld+1+3(i-1)+2).
When 1 > |d], we need only read the pointer to determine that the answer is #.
One possible algorithm to answer the question 7y, therefore has the memory cell
access sequences:

0, 1, ..., ldi-1, ldl, ld1+3(i-1)+1, ld1+3(i-1)+2 if m(ld1+3i-2) =1, ld} 2 i
0,1, ..., ldI-1, ldl, ld+3(i-1)+1, {d1+3(i-1)+3 if m(ld1+31-2) =0, ld| 2 i
0,1, ..., d-1, ldl if ldl <i

This immediately tells us the total number of accesscs made:
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dl+3  ifldl 21
My (pld))] =
i+ 1  ifldl <1

The intuition behind the definition of a pointer representation is that we
encode the length so that in order to answer a question %, we neced only read the
pointe and can then look up the answer. In the case of the cndmarker
representation, we were forced to actually read the list. The question remains,
hawever, why we chose to allow the pointer to encode |d| rather than |p(d) . If we
wish to be able to access individual list elements, as by asking the questions in T,
then 1t 1s reasonable to encode ldl. Reading the pointer will then at least tell us
immediately whether the answer to %, is & or not. On the other hand, if we wish
to perform the update operation of appending an element to the end of the list,
then it would be advantageous to know [p{d)l. If

(Vo dg ¢ D)yl = 1dyl = I(d) = If(d))])
then it of course makes no difference whether the pointer encodes ld| or If(dJ)|,

since we can determine one from the other,

Example 523. Reconsider the functions f and g from Example 5.22 but define a

partial function €8N > 8% such that D(27) = {2ili¢ J}, the even natural
n

numbers, and €°{n) =1 2 0. Notice that £’ is a representation. So the
representation p%:D = 8T defined by

p’(d) = {&(it(d)) }g U {F(d) } 410,
is equivalent to the representation p in Example 5.22 because

& (li(a)) = &(idl).

Technically, however, the representation p° is not a pointer representation because
e :{hlie]}~ 8+, whereas the definition requires that £:] - g8t But since
ID( &) = ID(8)| = |JI, we often find it convenient to loosely refer to p’ as a

pointer representation itself, I
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We could have written the formal definition of a pointer to allow a mapping
0N > 37 where ID(£7)] = |71, but we chose not to since the added generality
would make the definition statement more complex and would not improve our
results.

We shall, however, allow one conceptual extension for pointer representations.
Since we require the pointer and list components, £(ld]) and f{d), to be placed in
memory so as to not overlap, we may want to view them as being stored in separate
sections of memory. In other words, we could view f{d) as being stored in memory
as usual and 0(ld}) as being stored in an auxiliary section of memory, perhaps
some sort of register. However, we shall not in general want to bound the size of
the pointer and we do not differentiate between the cost of a pointer access vs. the
cost of a list access, so it is easier to view the pointer as also being in memory. We
simply assume the memory manager allocates the list and the pointer separate arcas.
Perhaps they are even mterspersed, but we do not want to have to alter our coding
schemes to take this into account. Therefore for numbering simplicity we may
choose to allow both the list and the pointer to begin at cell number 0 and just note
that the representations are separate and thercfore disjoint. In this way, the storage

of f(d) in memory does not have to depend on the memory location of &{ldl).

Definition. Let f be a total function f:D - 8+, and let € be a representation
e:7 » 5%, Assume that £(d) and 6(Idl) are stored in separate scctions of
memory. Then we refer to a pointer representation p:D - A% formed from ¢
and f as a separate pointer representation and write

p(d) =£(d) U &(ld})

In order to avoid possible confusion, when we have in mind a separate pointer

representataion, we shall explicitly say so.
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Example 5.24. Reconsider the pointer representation p of Example 5.22, but
assume that the pointer and the list components are stored in separate memory
sections. So p is a separate pointer representation, and we denote it by

pld) = &(ldl) U f7(d).
Certainly we have not altered the storage costs from those of Example 5.22, but it is
possible to implement each 9, in such a way that we decrease the access costs.

Possible access sequences for v, € T are:

0,1, ..., i1, 3(i-1), 3(i-1)+1 it m(3(i-1)) =1, ldl > i
0,1,...,i-1,3(i-1), 3(i-1)+2 if m(3(i-1)) =0, Idl 2 i
0,1,..., ldl-1, ldl if ldl <i

Thus we have for the total number of accesses:

i+2  ifldl >i
#y (p(d))] =
dl+1 ifldl <i

Notice that this represents an improvement over the access costs we previously had. |

Although we shall not in general concern ourselves with the way in which separate
memory sections are allocated, let us note, in the context of this same example, one

possible scheme.

Example 5.25. Let f be defined as in Example 522, but now define the

concatenation-preserving representation f,:D - gt by

]

£,(d) = U{E(a(i)) ) 4pqy

i=1

[f we view the pointer £, as being "scattered", we may define
,(i) = {(3+4j,1) 10 < j<i} u{(3+i, 0)}
Then the pointer representation p,:D - 8" is defined by
pild) ={2,(ld)}o U {£,(d) }.

For instance,
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p,(abad) = 0.0110_10010_11__ 0
py(bdb) = 10_10_1110_1__ 0
pi(A) =__ 0.

Since we are counting only the actual number of cells occupied, the storage has not

been altered. For v, ¢ T" we have the following access sequences:

3,7, 11, ..., 3+4(i-1), 41-4, 4i-3 if m(4i-4) =1, ldl 21
3,7, 11, ..., 3+4(i-1), 4i-4, 4i-2 if m(4i-4) =0, ldl > i
3,7, 11, ..., 3+4(1d)-1), 3+4ld| if 1dl < i

This gives us the same total number of accesses as we had in Example 5.24, where

we simply made the assumption that we had separate memory sections. §

Example 5.25 illustrates an encoding for a separate pointer scheme. Notice that this
encoding did not affect the order in which memory cell contents were determined; it
simply altered the memory cell numbers in which this information was found. We
can show in general that there is no harm in using a separate pointer scheme if it
makes our coding job easier, because for any separate pointer representation g
there is a pointer representation p’ without a separate pointer that achieves the

same storage and access costs,

Theorem 5.11. Civen any pointer representation p with a separate pointer,

there exists a pointer representation p” without a separate pointer such that
lp(d)] = 1p?(d)l foralld € D

and HIE (p(d))] = #lE(p7(d))]  for any operation f,

Proof: Suppose the representation p:D - 8% has a separate pointer and is defined
by
pld) = £(d) U &ldl).
We can define a representation p”:D - 8" without a separate pointer by
p(d) =£(d) U L (ld])
where f(d) = {(2n, m(n)) I n € D(f(d))}
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and ¢’ (ldl) ={(2n+1,m(n)) IneD(elld))]}.

Since D((d)) N DL () = &,

it is clear that |p(d)| = |p7(d)| for all d € ID. Also, any access sequence to perform
an operation f; using p” can be mapped in an obvious way to an access sequence (o

perform f| using representation p.

Recall that no endmarker representation can achieve Kraft storage for finite [D.

This is not the case for pointer representations, as the following example shows.

Example 526. Let X ={ab}, 8={01}, and D = U XL Define the
i€{0,1,2,3}
function f:X - 5* by
f(a) =0
f{b) =1
and the concatenation-preserving function f*:D - Z3+ by
ldl

f’(d) = U{f(d(l))}1-1
i=1
Let the pointer £:{0,1,2,3} > #* be defined so that

£(0) =00
£(1) =01
£(2) =10
0(3) =11

Then we define the representation p:D - 5* by
pld) = {eld)}o U {t(d)},

For instance,

p(A) =00
pla) =010
p(b) =011
plaa) = 1000
plabb) = 11011

The representation p achieves Kraft storage, because



So we know from examples 5.22 and 5.26 that a pointer representation may achieve
Kraft storage for ID infinite or finite.

Let us try to determine under what conditions a pointer representation g does
achieve Kraft storage. The following theorem shows that the pointer & must itself

achieve Kraft storage in order for pto achieve Kraft storage.

Theorem 5.12. Let f be a total function £:D » 8% and let £:7 » 57 be a
representation which does not achieve Kraft storage. ‘Then the pointer
representation gD - 8+, where

pld) = ()}, (g U LD}, )

does not achieve Kraft storage.

Proof: Since £ is a representation which does not achieve Kraft storage,

-1e(1)|
2 18 <1
i€
We first show that the theorem holds for a separate pointer representation
p’:D - B+, where
p (d) =1(d) U L(ld}).

Assume that the representation p” does attain Kraft storage. Then
I P g

-le(i)] -f(d)]
1= Saa s g1
i€] de X!
Thus, there exists k € J such that
-lf(d)]
s O
dexk

So f is not a representation and there exist d,, d, € X¥ such that f(d,) and f(d)
10 %2 1 2

are indistinguishable. But since ld,| = ld,| = k,
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p’(dy) =f(d,) U (k)
and P (d,) =1f(d,) U &k)
are indistinguishable, contradicting the fact that p” is a representation. Thus, p’

cannot achieve Kraft storage if £ doesn't. Since

Lo (d)] = IE(d)] + 1e(ld]) | = 1 p(d)],

-lp7(d)]|
then 2 15l ? %1
“0 (d)
~-lp(d)]
implies that 2> 18l g = 1.
d€D
So the pointer representation g cannot achieve Kraft storage if & doesn't. i

Thus, the pointer & achieving Kraft storage is a necessary, although certainly not
sufficient, condition for the pointer representation p to achieve Kraft storage.

We frequently consider a pointer representation formed from a
concatenation-preserving function f* and a pointer £. We now show that whenever
that concatenation-preserving function f” is based on a function f:X - 8+ which
itself is a representation and attains Kraft storage, then the pointer representation p
also achieves Kraft storage, assuming, of course, that the pointer £ achieves Kraft

storage.

Theorem 513. Let D = UX' and consider a representation function

€]
f:X = 8% which  achieves Kraft storage. Le f:D->8" be a
concatenation-preserving function formed from f and defined by
]
£(d) = 1EJl{f(d(i))}ni(d).

If the representation £:] - 8+ attains Kraft storage, then the pointer
representation gD - 8% also achieves Kraft storage, where

Ad) = {87(d) )}y (g U LLLAD gy
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Proof: Since |p(d)] = if7(d)| + 1£(ld])],

-lp(d)] (7 () +1e(i) ]
d¢iD i€] d(‘Xl
-1£7(d) |
= 2 !Bl Zm e )).
i€] dex?

Since f achieves Kraft storage we can make use of Lemma 5.4, which gives us

-ipid -1 6(1
S 13 p(d) S [e(i)l
d€D €7

=1 |

We now want to determine the conditions, if any, under which a pointer
representation can achieve Kraft access for the set I' of table lookup questions and

also achieve Kraft storage.

Theorem 514, Let D=Ux" It a pointer representation p:iD -zt
i€

achieves Kraft storage and also achieves Kraft access for all v, € T, then

13l =2 and D = {A} U X™ for some n ¢ N,

Proof: 'heorem 5.12 guarantees that if p achieves Kraft storage, then its pointer
function 0:] - Y must also achieve Kraft storage. Since |8l > 2, it must be the
case that [JI > 2. Thus, ID # X" Recalling theorems 4.9 and 4.10, we know that if
a representation g achieves Kraft storage and Kraft access for all v, ¢ T', then
D = X"or D = {A} U X" Since the former is not true, the only possibility is that
D = {A} U X™ So if we are to achieve Kraft storage and access at all, then |J| = 2

and therefore 151 = 2. i

Theorem 5.14 simply says that if a pointer representation is to achieve Kraft storage
and access, then 13l =2 and ID = {A} U X" It does not necessarily say that it is
possible to ever achieve both. The following example shows, however, that it is

possible.
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Example 527. Let X ={a,b,c}, 8=1{0,1}, and D ={a} U X3 We want to
construct a pointer representation p which achieves Kraft storage and also achieves

Kraft access for I' = {¥,, ¥,, 75}. To do so, we first define a function f:X ~ gt

fla) =00
f(b) =01
flcd =1
We then let £:D » &% be the concatenation-preserving function formed from f:
lal

£(d) = U{e(a(i)) )54y
i=1
I'he pointer function &:J - 8t is defined by

£(0) =0
83). =1

Then the pointer representation p:D - 8" can be defined by
pld) = {L(ld)) }, U {£7(d) },.

The representation p achieves Kraft storage, because

Eg—lp(d)l= 5 2—(If’(c1)l+|(£(ldl)|)

d¢D de{a, X"}
-7 (d)1
=91 2 2
de{n, X"}
= 020428460744 100754+8279)
= 1

We can construct access trees for 7¥,, ¥, %5 as shown in Figure 5.11. By

observation, each achieves Kraft access. I
This example can be gencralized, giving us the following theorem.

Theorem 5.15. Consider any domain of the form D = {A} U X", IX| > 1,
and assume that |18l = 2. Then there is a concatenation-preserving pointer
representation gD - 8% which achieves Kraft storage and for which it is
possible to implement the table lookup questions I' = {, 11 <i < n} so that

each v, achieves Kraft access.



(0) () ©,

Figure 5.11. Access trees for v, v, 75 of Example 5.27.

Proof: 'The construction is like that in Example 5.27. We first define a function
£:X = 47 such that f achieves Kraft storage. It is possible to do this since there
exists ny; € N such that Xl = (I8l -1)-n; +1=n,+1. A wee T for f has n,
internal nodes, for which we can choose labels from the set {0, 1, ..., n - 1}. We

now define the concatenation-preserving function f7:D - 8" formed from f:
ld|

£(a) = U{eCa(0) )y

i=1
The pointer function :] - 8% is defined by

2(0) =0
&n) =1

From these we define the pointer representation p:lD - gt

pld) = {LlldD }, U {f(d) ],
By Theorem 5.13, since f and @ achieve Kraft storage, so does p. Also, if 'I' is the
full tree corresponding to f, then the access tree for any 7%, € T is of the form

shown in Figure 5.12. Thus, p achieves both Kraft access and Kraft storage. i

We have seen by Theorem 5.4 that only for 13l =2, D = {A} U X" can a
pointer representation achieve Kraft storage and access. Let's try to see when 1t is at
least possible to achieve Kraft access. The following example presents such a

scheme, but the resulting pointer storage cost is high: 1J] - 1.
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7y

A

g {'I‘}1+n1(l-l)

Figure 5.12. Access tree for v, in proof of Theorem 5.15.

Example 5.28. Let 4 ={0,1}, ¥ ={a,b,c,d}, and D = L{'IX‘ for J = {0,3,5,6}.
i€]

Let f:X - 3% be defined by

and define from f the concatenation-preserving representation f”:D - 2% so that
Id|

f7(d) = U{f(d)}z(x-x)

i=1
(a) Define a length function £,:D - gt by

2. (ldl) = 1lelgiTi-lal _ 1 laly6-ldl
Then a pointer representation p:D - 8" can be defined by

pi(d) = {£7(d)}, U {£,(ldD) ],
Notice that o (d) = 1f7(d)] + 6 = 2:4d] + 6.
Since &, does not achieve Kraft storage we know that p, does not either. On the
other hand, we can implement each ¥, € I' so as to achieve Kraft access. We do
this by first reading the i bit of 2,(I1dl). 1f m(i) =0, then we know ld| <1 and
so 7{(p(d)) = g. On the other hand, if m(i) =1 then we know v(p(d)) = »
and we look in locations 2(i-1) +6 =2i+4 and 2i+5 in order to determine
v, (p(d)). Thus, each 7, can be implemented by an access tree as shown in Figure
5.13.
(b) Recalling Theorem 4.14 leads us to try to find a length function @,, where
lliz(ldl)l =JI - L Since we know, for instance, that X% ¢ ID, then

v4(p(d,)) = & if and only if v (p(d,)) = 2. So we define the length function
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Figure 5.13. Access tree for 7, of Example 5.28a.

£:D - st by

000 if dl =0
¢ (1) = 100 if ldl = 3
10 ifldl =5
UL if ldl =6

Then the pointer representation p,:D - 87 is defined by

pold) = {17(d)}5 U {L,(1d) ],
Once again, p, cannot achieve Kraft storage since £, doesn't. But we can
implement each vy, € I' so as to achieve Kraft access, as shown in Figure 5.14.

Notice that, for all d € D, lp,(d)| > 3 =[] - 1, as required by Theorem 4.14. i

71172;73 Y475

(Q) Q.
:zr # % @
2i+2) (21+2 (2i+2) Gi+2)

a b ¢ d a b ¢ d

Figure 5.14. Access trees for all v, € I' from Example 5.28b.

The method used in Example 5.28b can be generalized so that it is always possible,

when |5l = 2, to construct a pointer representation that achieves Kraft access.
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Theorem 5.16. Let D = L{}X‘, and let 18l =2. Then it is possible to
i€

construct a concatenation-preserving pointer representation gD = 8T such

that each 7, € I" can be implemented so as to achieve Kraft access.

Proof: Construct some representation f:X = #* such that f achieves Kraft storage.
Since 15] = 2, it is always possible to do this; f corresponds to some full tree I. Let
k = maxlf(x)| and define the concatenation-preserving function f”:[D - gt by

x€X .
[l

i7(d) = U{(d()) o,
i=1
We define the length function €:7 » 87 in such a way that 18(i)] = 171 - 1, for all
i € J. First, index the elements in J so that J = {ig, iy, ig « . }, Where ij <ij,q.

Then define

The separate pointer representation giD - 8T defined by
pd) =17(d) U &ld])

can be implemented so as to achieve Kraft access. For instance, v €¢I can be
implemented as follows. Determine the least value i € J such that j <i,. Then an
access to cell n-1 of the pointer indicates whether or not 'YJ( pld)) = &

m(n-1) =0 = v,(p(d)) = 2
and m(n-1) =1 = 'yJ(p(d)) % o
If v (p(d)) # &, then we can go to cell k(j-1) of the list function £”(d). Figure
5.15 illustrates an access tree for %, where the nodes of T correspond to memory

cells of the list component f’(d). I

Although the pointer representation constructed in Theorem 516 can achieve Kraft
access, this 1s at a potentially very high storage cost, since for all d € D,
lp(d)] > 171 - 1. Unfortunately, by Theorem 414 we know that we cannot
uniformly improve this storage. In other words, if we insist on Kraft access for all

v, € T, then we are stuck with |p(d)] > 17 - L.



; Note: cell n-1 is in
/QK pointer representation
2 Thn

Figure 5.15. Access tree for v, € I' in the proof of Theorem 5.16.

Theorem 5.15 presenited a method for constructing a pointer representation so
as to achieve Kraft access, but it was only for the case |51 = 2. This leads us to
wonder whether it is possible to extend the result to |8l > 2. The following theorem
shows that, for |5 > 2, it is not possible with a pointer representation to implement
cach 7, € I' so as to achieve Kraft access, unless the pointer compoiient is

“superfluous".

Theorem 5.17. Let |3l > 2 and consider a function f:D - 3T, Let piD - gt
be a pointer representation

' pld) = £(d) U eldl),
where { is a representation :J - B% 1f £ is not by itself a representation of

ID, then p does not achieve Kraft access for all 7, € T.

Proof:  Let the function f not be a representation, and assume p does achieve Kraft
access for all y, € T'. Since f is not a representation, there exists Yy € T" such that
the access tree for #,, T, has an internal node labelled r € D(&(ld1)). By Theorem
4.1 and Corollary 4.2.1, since v, achieves Kraft access, it has [X| + 1 leaves with
distinct labels from the set X U {g} (or IX] leaves if ID = X™) and the node‘ r has
[l branches. Let one of the branches from node r eventually lead to some leaf
labelled x, € X and another branch from r eventually lead to a leaf labelled
X, € X. There is some d, € D such that d,(k) =x,, r € {ly,(p(d))]}, and
r € D(&(ld D)) where m,(r) =b € Zform, 2 p(d,). Let
d,={(nd (n) 11 <n<Md,l,n=k}U{(kxy)}

In other words d, differs from d, only in its k'™ element. By the definition of D,
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d, €D imples that d,€¢ID. Then my(r) =b” €3, where b’ #b, for
my 2 pldy). Since ld,) =1d,l, &{ld,l} = &ld ) and so m,(r) =my(r), since
r€ IDCeCld,1)). This gives a contradiction. Thus, p cannot achieve Kraft access

for all v, € T, I

Thus, if a pointer representation achieves Kraft access for all 4, € I', then the list
component f was itself a representation and so we necd not have stored any pointer
at all. Effectively, this says that it is impossible for all ¥, ¢ T to achieve Krait
access with a pointer representation in which the pointer is in fact needed to store
length information. Certainly, it i1s not possible for a concatenation-preserving
pointer representation to achieve Kraft access, since a concatenation-preserving
function 7 is not a representation (except in the trivial case where Xk ¢ D for

k 22).

Corollary 5171 Let D= UX!, where maxi>1 If 13 >2, no
i¢J i€]
concatenation-preserving pointer representation can achieve Kraft access for all

v, €T,

We have scen that for a pointer representation we in general cannot hope to
achieve Kraft access, On the other hand, we know that we can actually achieve
Kraft storage. So let us discuss how well we can do for access costs if we insist on
Kraft storage. I'his is the approach we take for the rest of this section, and we
shall see that pointer representations can, in fact, be quite efficient in terms of
access as well as storage costs,

Recall the pointer representation scheme used in Example 5.24. Since the list
component 7 had fixed position ficlds, we could immediately (and with Kraft
access) determine the answer to any v, € I', as soon as we knew the answer was not
#. So in order to answer a table lookup question Y, we read enough of the
pointer to know whether or not Id| 2 i. Since the pointer function £:] = 8+ was

defined by £(ld1)) =190, this meant we had to read i bits of the pointer for
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ldl =1 and ldl + 1 bits of the pointer for |/l <i. We shall present a scheme to
reduce the length [8(1d1) |, which therefore reduces the cost of accessing the potrnter.
. For 151 =2 we saw in Example 522 the pointer representation, where
t(n) =1"0; this is essentially a unary representation of n followed by an

endmarker. It would, of course, be desirable to somchow represent nin binary,

which would descrease the storage cost but would generate the problem of detecting

the end of the sutring; ie., we need some way to guarantee that £ is a
representation. Since D({) = N, we use a universal encoding method as described
by Lhias ['7]. In this scheme we successively encode, in binary, the length of the
result of the previous encoding. For instance, we could represent ld} as a binary
string s, which would have length is| = log,ldl. If we were to use, say, a unary
encoding to specify Isl, then we could write £'(1d]) = 0FIls, which gives us

127 (D | = 25l + 1 & Didog ld] + 1,

an amprovement for large ld over our previous scheme's cost, where we had

[e( 1) ]

ldl + 1. In the following example we present an encoding scheme {or the

]
Lo

it

case |7

Example 5.29.  Recall the fixed position field concatenation-preserving funcuon 17

from Example 5.22.  Our concern here is with finding an efficient lenzth
(e o]

representation £:] —-*Z{+. Assume for simplicity that D = UXx%.  Rather than
i=0
detfining €(ld]) = l!d'O, as we did in Example 5.22, consider representing ld| = n as

a bimary string as follows:

h(n
0
1
00
01
10
11

000
001

—

oo\wcr\uw-&—wbgv—‘01
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More formally, we can define hiN - #* by letting h(n) be the binary
representation of n + 1, with the leftmost symbol deleted. For example, to
determine h(21), we write 22 in binary, 10110, and then delete the leftmost symbol
(always a 1): h(21) = 0110 (see Table 5.1). Notice that

Ih(n)| = Llog,(n+1) 1.
We now define a pointer representation LLN - ¥ by

2 (n) = 0PMLLR(n),
as also shown in Table 5.1. The storage cost for the representaﬁon FART

121 (n)] = 24h(n)1 + 1 = 2:llog,(n+1)J + L.
We can show that the representation &' achicves Kraft storage by noting that, for
each j € N, Llog,(n+1)J = j for 2! consecutive values of n:
gg-lﬂl(n)l (2:llog,(n+1) 1 + 1)

n=0

o«

= 29
n=0

= >odg-(2i+1)

Thus, a worst case access cost to determine whether or not ¥,(d) = & is just
d-llog,(n+1)J + 1, an improvement over the scheme in Example 522 (or Example
5.24), which had a worst case of n + 1. In general, we can expect to do even better
than this, reading only as much of the pointer as necessary. Because only two
accesses of the list representation are required to read the answer 'yi(d) for this

particular example, we have the following access costs:

Mog,(n+2)1
Mog,(i+2)1 + 2 fori <2 2

Mog,(n+2)1 -1
Hly (d)] = < 2-llog,(n+l)) + 3 for 2 %85(n i<

Mog,{n+2)1 y

21’]0g2(n+2)1_ 5

Mog,(n+2)1 fori 2?2
Using the same trick over again, we can encode the length of the length of n
by defining the pointer representation £2:N - &% by
0%(n) = 0PURMDLLR(Ih(n) 1) h(n),

giving a storage cost of



e D = O

[Vn i o o PN B @AY

hi(n

00
01
10
11
000
001
010
011
100
101
110
111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
00000
00001
00010

010
01l
00100
00101
00110
00111

0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111
000010000
000010001
000010010
000010011
000010100
000010101
000010110
000010111
000011000
000011001
000011010
000011011
000011100
000011101
000011110
000011111

00000100000

00000100001

00000100010

h{lh{n)l

—— O O

00
00
00
00
00
00
00
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
10
10
10

t2(n)

1
0100
0101
01100
01101
01110
01111
00100000
00100001
00100010
00100011
001001060
00100101
00100110
00100111
001010000
001010001
001010010
001010011
001010130
001010101
001010110
001010111
001011000
0010110601
001011010
001011011
001611100
001011101
001011110
001011111
00110060GC0
0011000001
0011000010

Table 5.1. Construction of pointer representations £' and £2, for 14l = 2.
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1e2(n)1 = 2/n(Ih(n) D1+ Ih(n)l+ 1
= 2-Llog,(Liog,(n+1)J + 1) + Llog,(n+1)J + 1,
and, as for (’.1, it can also be verified that the pointer representation £2 achieves

Kraft storage:
S o121 _ §2~(2'L10g2(L10g2(n+l)J + 1)1 + Log,(n+1)J + 1)

2.2
n=0

0

n

~(2-llog,(j+1)) + 1+ j) N

™M 38

2

x

_ 22-(2'Llogz(j+l)J +1)
J=0

§2-1a‘(n)|

§=0

= 1. i

T'he pointer representation construction procedure presented in Example 5.29
can be applied indefinitely, encoding the length of the length of the length of n,
etc. It can also be extended to the case where {8l > 2. In order to do this, we make
use of a mod-|5l successor operation, G)IB,, on strings., We define ®I"’l so that, e.g.,
@, corresponds intuitively to addition basie 2 with the leftmost 1 dele:2d=
0Oe,1=1,1®,1=00,00®,1=01,...,11 &,1=000,...
For @, we would obtain the sequence of strings

1, 2, 00, 01, 02, 10, ..., 22, 000, 001, ...

Definition. Consider a binary string
S = S|gSygl-q” -+ ¢ 5858y € B
and let
k =min{i |s; =18l - 1},
(If s, =18/ -1 for 1 <i < Isl, by convention we have k =ls| + 1) Then we
define s"=s® 1

18l
by
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0 for] <i<k

s,/ =< s+ 1 fori =k, k <lsl
s for k <i < s
0 fori =k, k =ls/+1

So Is’| = Is except when s = {|51-1}%, in which case s* = {0}F*! and Is”] = Is| + 1.
We can now define a function h as a |8l-ary string representation of a natural

number n.

Definition. For |31 > 2, let hlEl(n) be the encoding of n ¢ N as a |Zl-ary

string,, hlgl:lN > 5%, where

h 0) =
g

h (1) =0

('BI 1) (n) & 1
h + =h @
B 3 Vg

For any string b € 5, for 13l = 1 we by convention define

hl(b) & b,
We extend our notation and write h ;‘_‘T(n) to indicate k + 1 applications of
h ¢
13

h 5 Yn) eah® (Ih .
5 (n) Ia’l(l IBI(H)I)

Where the particular 5] we are considering is clear, we may simply write h rather

than h . For instance, the function h in Table 5.1 corresponds to h,. Notice that
5

1- h,(n+1) =1-h,(n) +1, where the addition is in base 2.

Example 5.30. For |3l = 3, Table 5.2 illustrates h,(n) and h g(n). To see how we

can use the above definitions to determine h,(n), assume we know h,(11) =21

So

Letting s = 21 = s,s,, then min{i | s; = 18/-1} = 1 and so



. sy + 1 fori=1
51’ =
S, fori =2
Thus,
s/ = h3(12) = 22.
Similarly, hs(13) = hy(12) @51 =22 @, 1,

and for s = 22 = s,s,, then min{i | 5, # 2} =3 = s + 1 and
h5(13) = 000.
Using the above notation we have, eg.,
h 3(n) =h Z(lhz(n)1) = hylh(h,(r)D1)
Notice that lhg{(n)l =0 for one value of n, Ih(n)l =1 for three values of n,

tha(n)1 = 2 for nine values of n, etc. i

In general, since ls (}éigl 1l = Isl except for s = {lgl*l}‘sl, we note that the above

definitions, by design, give us the following lemma.

Lemma 56. For 18 >1, there are |87 values of n €N such that

lh ()l =r
151
Lemma 5.6 immediately allows us to show the following.

Lemma 5.7. Letn ¢ N, For 15l > 2,

lh (n)l=Lllog (18-1)(n+1) ..
15l 13l
For 15l =1, Ih, ()l =n.

Proof: For 181 =1, Ih,(n)| = n by definition. So consider 18 2 2. Since Lemma

5.6 tells us that there are 151" values of n € N such that IhIBI(nH = r, then we know

r

there are 2 1ZI' values of n such that lhl@l(n)l <r, and
i=0
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n ha{n) 2 3(n) h{lhg(n)1) i)
0 - 2 - 2

1 0 020 0 0200

2 1 021 0 0201

3 2 ‘ 022 0 0202

4 00 1200 1 02100

5 01 1201 1 02101

6 02 1202 1 02102

i) 10 1210 1 00110

8 11 1211 1 02111

9 2 1212 1 00112
10 20 1220 1 02120
11 2 1221 1 02121
12 2 122 1 02122
13 000 002000 2 0220060
14 001 002001 2 022001
15 002 002002 2 022002
16 010 002010 2 022010
17 011 002011 2 022011
18 012 002012 2 022012
19 020 002020 2 022020
38 221 002221 2 022221
39 222 002222 2 022222
40 0000 0120000 00 12000000
41 0001 0120001 00 12000001
42 0002 0120002 00 12000002
43 0010 0120010 00 12000010
44 0011 0120011 00 12000011
120 2222 0122222 00 12002222
121 00000 10200000 01 120100000
122 (0001 10200001 01 120100001

Table 5.2. Construction of pointer representations &' and £%, for |3l = 3.
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“’1731(")' = min{k In € 214 - 1}

(=0
kel
min{k [n+1¢ —m—l—wg - 1}

min{k | (181 - 1)(n +1) < 8% - 1}
Llog -1 +1)}] I
ogIBI(IBI Jn+1)

"

We now define our class of pointer representations, extendmg’ the &' and %
of Example 5.29. For |8l = 2 we want:
¢ ln) = oMLy h(n)
22(n) = omAn™IDLLL(h(n) 1) h(n)
¢ 3(n) = omnthGIDDLLR(Ih(In(n) 1)) A (I(n) ) h(n)
Notice, however, that for |5 > 2 the first component of £ ;gl, Olhi(")l- 1, can in fact
be encoded in base |5l - 1, leaving one unused symbol to serve as the endmarker.

So we can formalize the class of pointer representations as follows.

Definition. Let |5l > 2. We can define a class of pointer representations (i‘,

for i >0, as follows:

Kk
k =

g = Ol D011 T U (Uth | ()3,

wher L= +
were n; =1 IhlBI-l( (n)D)! HE”lh n)l
Therefore

g K - )\ , k-1 2
lul(n) hIA“l (Ih IZZI( n) 1) -(151-1) h (x )h . I( n)-...h ljl(n) hbi(n)

Example 5.31. We now verify that the definition behaves as we would like for

15l = 3, writing h to mean h,. In particular,
¢ g(n) = hy(Ih(n)1)-2-h(n)
¢ 2(n) = h(n(n(n) DD 2h(Ih(n)1) h(n)
e g(n) = hz(Iha(n)l)'2~h(lh(|h(n) ))-h(Ih(n) 1) -h(n)
3
Thus, 0 g(n) = {hz(lhs(n)l)-2}o U ( x(n)}
i
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where ny = lh,0h S(MDI+1+1h 5(n)l+ Th 3(n)]
ny =lhy(lh 3(n)D1+ 1+ 1k 3(n)
ng = lhy(Ih 3(n)N1+1

So £,%(n) = h,(Ih%n) D2 3(n)-h Z(n)-h 3(n).
The length (€ Ikb’l(n” should immediately be clear.

Theorem 5.18. Let 151 22, k 2 1. Then
k
(h* (DI+1+ 2! ()l
-1 18l i

=1 15l

lo % = |h
g™ =g

While the exact numerical value of Ilpg ‘kgl(n)l can be obtained by substituting
Lloglgl(i«?l-l)(ml).l for IhIBI( n)! in the expression in Theorem 5.8, we can see
that we essentially have:

16 (n)| = 2log n,

10%(n)| = log n + 2loglog n,

163(n)] ~ log n + loglog n + 2logloglog n.

In any case, we can make the following statement.

Corollary 5.18.1. Let 181 22,k 2 1. Then

0} = O(log. n).
| IBI(n)I (oglgln)

We can now show that each of the pointer representations £ ' achieves Kraft

7

storage.

Theorem 5.19. For 18l 22, k > 1, each of the pointer representations £ r"l
%]
achieves Kraft storage:-

o -lE5(n)]

2 8l
n=0

Proof: 'The proof is by induction on k. Once again, we write £ to denote ﬂ'l"‘l and
. G
h to denote hI

Basis: For k =1,
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2 13 -M (n)] 2 IB’I—(lhlgl']‘“h(n)l)I *1+Inn}) by Lemma 5.8
n=0 n=0
_— |Zﬁ"l~(|h|3l_1'(r)I Pl r)-IZ?}lr by Lemma 5.6
r=0
L5151t
b r=0
%Tz l51 (18l - 1) by Lemma 5.6
J=0 ,
=1
Induction step: Assume the result holds for k; i.e., assume that
-1e¥(n)|
2 i3l =1.
Then
§ m-lak*%n)n z i 1(|hk”(n)|)r + 1+ 2lhi(n)])
= (J -
n=0

- zm,““‘wn LUR*UR DT+ 1+ Th(n) |+ ZIh' T (n)D)

ZIBI “llél l(lh (Nl )|+1+]+Zlh(J)l
J=0
= 218

J=0
o

= 213

J=0

8%

~(Ihyg (IR (DT + 1+ 2D

16X )1

Since each of the pointer schemes £' achieves Kraft storage, it follows from Theorem
5.13 that a pointer representation which uses ' also achieves Kraft storage If the list

component is storage efficient.

Corollary 5.19.1. Consider a separate concatenation-preserving pointer

representation g:D - 8T defined by
Idl

U ({(d(i))} U 1 ClaD)
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If f achieves Kraft storage, then p also achieves Kraft storage.

So we have presented a pointer encoding scheme which allows us to represent
lists of unbounded length and also achieve Kraft storage. Consider a fixed position
field, separate, concatenation-preserving pointer representation p, and let us see
how well one can do for access. We already know, of course, that we cannot
achieve Kraft access. So suppose we want to answer some table lookup question
v, € I'. We can do this by reading the pointer in order to determine whether or
not || 2 i. If it is not, then we immediately return the answer . If it is, then we
go to the appropriate memory location to read the answer. So at worst we need to

make

1] Bl

accesses, where k is some constant depending on the function f, at most the size of

i
le! (Il ~tog ! |dl+ 2log? ldl +k
15 | =

a field n;, We can often do even better by only reading enough of the pointer to
determine if |d| > i, but, of course, for |dl =i we would be forced to read
(D1 + k = O(logld!) cells. We shall discuss this encoding in the context of stacks

in Section 6.4.
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CHAPTER 6
STACKS

In Chapter 1 we discussed what we mean by a stack, a linear list for which all
inscrtions and deletions are made at the top of the stack. Much work has been
done to obtain formal specifications of the stack as a data type (see e.g., Liskov and
Zilles [18], Lehman and Smyth [17]), but such a formal definition is unimportant
for our purposes. Any scheme which captures our intuitive notion of a stack would
suffice. It is our goal to. apply some of the techniques we have thus far developed
to analyze some stack implementations in terms of Kraft storage and access. We first
define the basic stack operations and in the following sections we examine
endmarker and poionter stack representations. Table 6.3 at the end of the chapter

summarizes some of the lower bound results.
6.1 Stack Operations

While there are various operations we might wish to consider, any stack
implementations will have PUSH and POP operations. These are presumably the
only update operations that we shall want to perform on a stack. We also want
some way to read elements in the list; we at least need to be able to read the top
stack element. So we begin by formally defining these three stack operations:
PUSH, POP, TOP.

Viewed in the problem domain, a PUSH operation causes a new value in X to
be inserted at the top of the stack, thereby increasing the stack length by one. So a
PUSH is a pure update, provided the stack can grow indefinitely. Where the
memory size L is bounded, some sort of “Error" statement must be returned if an
attempt is made to PUSH a value onto a stack which has no room to grow. Thus,

we define a PUSH operation to consist of both a question and an update.
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Because we are considering only domains of the form D = U{X‘} and a
1€J

PUSH operation will cause a stack to increase in size by one, it makes httle sense to

consider domains where i,1+2¢€¢ ] but i+1¢J. So for simplicity we shall
L

henceforth assume that D = U{Xi}, where L may be infinite,
i=0

For the problem domains we are considering, if b € X' and b€ D, then
X' < ID. So any value in X can be pushed onto a stack at any time, and there are
in general |X| different PUSH operations. The following definition states more

formally what we mean in the problem domain by a PUSH operation.

L
Definition. In any problem domain D = U{X‘}, we define the class of
i=0
PUSH operations
Feusu = { fpusux | 5 € X 1,

where each PUSH operation fp gy, consists of a question component and an

update component:

fpushx = (QpusHx: UpysHx) -

J’z if ldl < L

For any d € D,

Gpysux(d) =
Error if ldl =L
.
and -
d U{(ldl,x)}  if qpygu,(d) =0
Upysux(d) = <
d else

If L is infinite, then any finite stack is allowed, and we always have

Apysuxld) =0
Upysxtd) =d U {(ld],x)}

and so we can view a PUSH operation as a pure update.
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Similarly, a POP operation also consists of a question and an update portion.
A POP causes the top stack element to be removed; i.., the stack length is
decreased by one. If the stack length is already empty, however, then its length

should not be decreased and some sort of "Error'" must be returned.

L

Definition. For any problem domain D = U{x'} and any d € D, we
i=0

define a POP operation fy,p by

feop = (apops Upop) s

where
1 ifldl >0

dpop =
Etror if ldl =0

and

upopld) = {(n,d(n)) 10 <n <ldl - 1}.

Note that upop(d) = @ when |d| = 0 (as well as when ld| = 1), We have defined
the POP operation to be a pure update when Id| = 0.
We read the stack via the top element, using the operation TOP. Since the

stack state is not altered, u'l'OP(d) = d and TOP is defined as a pure question.

L
Definition. For any problem domain D = U{X‘} and any d €D, we
i=0
define the TOP operation f1,, as a pure question:
d(ldi-1) if Idl >0
fropld) = Qrop(d) =
Error if ldl =0

We might have chosen to define a POP operation so as to return the value
which it deletes from the top of the stack. Instead, we define another operation,

TPOP, to serve as a combination TOP and POP operation.
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L

Definition. For any problem domain D = U{X'} and any d4 € D, we
i=0
define the TPOP operation f,op by

frror = (Q1pops Urpop)s

So TPOP returns an "Error" message precisely when id| = 0. In general, we choose
to discuss separately the component TOP and POP operations and only occasionally
make reference to the TPOP operation,

We have defined the basic stack operations that we shall consider. Notice that
a PUSH or POP operation causes the stack size to increment or decrement by at
most one. It is also possible to execute the composition of a fixed sequence of
operations; eg., to push a sequence of k symbols onto the stack. We might extend
this notion and consider the execution of a conditional sequence of operations in
which the operation to be executed next (if any) depends on the answer sequence
returned by the operations performed so far. For instance, there might be an
operation to clear the stack; i.e.,, POP until stack is empty.

We shall in the rest of the chapter consider several stack representations and
see how efficiently it is possible to perform the basic stack operations. Recall that
the operation definitions we have presented describe behavior in the problem
domain; for a particular representation, the operation behavior in the machine

domain might or might not resemble the problem domain behavior.
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6.2 The TOS Endmarker Representation

Consider using an endmarker representation to implement a stack and the
PUSH, POP, TOP operations. The following example illustrates one possible such

implementation.

Example 6.1. Let X ={a,b}, 8={0,1,2}, and D = Ux" Let the function
i=0
f:XU{#} > B* be defined by
f(a) =0
f(b) =1
flg) =2=0
Define the concatenation-preserving cndmarker representation gD -~ 5* by
ldl|
pld) = U{e(a(i)) ., U {0}y
i=1

In this representation, one symbol from &, namely 2, is reserved to tell us when we
have reached the top of the stack. For instance,

pn) =2
plabaa) = 01002
p(baabba) = 1001102

If we view each d € ID as a stack, then we might implement the POP, PUSHx, and
TOP operations by first reading the stack representation from left to right until we
detect the end-of-stack marker 2. For a POP operation, we then back up and put
0 in the previous cell. Assuming L is unbounded, this corresponds to the following
algorithm.
(A pop: i<
while m(i) #2doiei+1
if i =0 then return "Error"
elsem{i -1) «2

For PUSHx and TOP operations, we similarly read until we detect the end of stack

marker 2, and we can then immediately perform the desired operation.
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Apyshxt i«0
while m(i) #2doiei+]
m{i) « f(x)
m(i+l) « 2

Oropt i«0

while m(i) #2doiei+1
if i =0 then return "Error"
else if m{i-1) =0 then return "a"
else return "b"

These algorithms give us the following access costs when no Error conditions are
encountered:
HOponl p(d))T = ld] + 2
MLy, A(d))T = 1d] + 2
| B O op( p(d))] = ldl + 2
We could improve slightly the access cost for (k;op by remembering the previous
cell value in some location called "temp", as we make our left to right reading of
the stack representation.
¢\ i<0
while m(i) # 2 do temp « m(1)
iei+]
if i =0 then return "Error"

else if temp =0 then return Ma
else return “b"

TOP*

This modifed algorithm gives us a mermory cell access cost of
#lOLop( pP(d))] = 1d] + 1
Although temp can be viewed as requiring additional cells, we choose to let temp be

part of our processor state, and so we do not include it in the memory access cost. |

A representation such as p in Example 6.1 is a natural one to use if we choose
to implement a stack with an endmarker representation. We assume the bottom of
the stack is at some fixed (known) location, and we reserve some string ¢ € 8+ to
denote the top of the stack. We shall also require that a TOS endmarker

representation have fixed position fields and that D(0) ¢ U D(f(x)); the
Xx€X
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reasons for these assumptions will be made clear shortly, We now make the

following definition.

o
Definition. Let D = UX! and consider a function f:XU{g} - Z}+. Let

i=0
pD - B'f be any fixed position field endmarker representation

Il
d) = f(d(i ui{¢
pd) H{ (@)}, Vo,

where n, € N, for any i € N*, and f(g) = 0. If D(0) ¢ U b(f(x)), then

x€X
we refer to p as a top of stack (TOS) endmarker representation.
Clearly the representation p in Example 6.1 is a TOS endmarker representation. We
use the term TOS because the endmarker 0 is always situated in the set of cells
which the stack element d(|d|+1) would occupy, if there were one. In other words,
0 is in the field at the top of the stack. The representation is easiest to visualize

when n,

j+1 > 0y and each field consists of contiguous memory cells. Notice also that

it is not necessary that each field have size one. The following example illustrates
another TOS endmarker representation and shows that we need not restrict

ourselves to the case where |8 > |X| + 1.

w
Example 6.2. Let X ={a,b}, 4 ={0,1}, and D = UX" Define the function
f:XU{z} » B% by e
f(a) =00
f(b) =01
f(g) =1 =0
Then we can define the TOS enc}nlwarker representation p:lD - 8+ by
d
pld) = H{f(d(i))}z(,_” U {0} z1qp
For instance, we have
p(n) =1

plabaa) = 000100001
p(baabba) = 0100000101001

Similar to what we did in Example 6.1, we can implement the POP, PUSHx, and



TOP operations by first reading p(d) from left to right until we detect the end of

stack marker 0. However, since lf(a)| = If(b)| = 2, we can locate 0 by reading only

cells 0, 2, 4, ...

straightforward way. Thus, assuming L is unbounded, we might use the following

algorithms.

0.

X

£

These produce the following access costs, when no Error conditions are encountered:

In both examples 6.1 and 6.2 we found that the access costs for the stack
operations POP, PUSHx, and TOP grow with ld|. This leads us to wonder whether
it is ever possible to perform the operations with fewer accesses.
that the answer is no. In particular, whenever a TOS endmarker representation is

used we show that for each d € ID it must be the case that

, until we detect a 1. We then perform the desired operation in a

POP’

PUSHx'

TOP
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i<0

while m(i) # 1l doi«i+2

if i =0 then return "Error"

else m(i-2) « 1

i<0

while m(i) =1 doiei+?2
m(i) <0

if x = a then m(i+l) « 0
if x = b then m(i+l) « 1
m(i+2) « 1

i<0
while m(i) 21 doiei+2

if i =0 then return "Error"

else if m(i-1) =0

HlOpop(p(d))] = ld] +2
HLOG sy A(d))] = 1d] + 3
HlOop(p(d))] = ld] + 2

HOLop(p(d))] > 1d)+ 1
MOy A(d))T 2 1d] + 2

then return "a"
else return "b"

We shall prove
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r‘—"%inz for ldl > 0

HLOop( p(d))] 2
1 for ld] =0

To aid us in proving these results we prove three lemmas. The first says that
when |d} = 0 any algorithm for a POP, PUSHx, or TOP operation will access the

n, field, which is also the ngjey freld.

-]
Lemma 6.1. Let D = Ux' and let dy €D, ld,l = 0. Consider a function
i=0
f:YU{g} - B+. Let gD - 8+ be any TOS endmarker representation
lal
pld) = U{eta(i))}, ufe}, .
i=1. i ldl+1

Then any implementation of a POP, a PUSHx, or a TOP operation on data

base d; € ID must access some cell in the ny = n,,, field.

Proof: If ldyl =0, then p(d,) = {0} Thus, if a stack operation 1s performed

n.

1
without accessing the ny ficld, then no cells in p(do) were accessed at all. Even if
we accessed every one of the (infinite number of) other memory cells, we would get
no information concerning whether or not |d| = 0. Effectively, this says that we

were able to perform the operation with no accesses, an impossibility. i

Lemma 6.2 guarantees that performing a stack operation on any d ¢ ID causes the

ny field to be accessed.

o
Lemma 62. Let ID = UX! and consider a function f:xU{g} - 8+. Let
{=0
gD - 3" be any TOS endmarker representation
ld]
pld) = Ufr(a(iN)}, u o}, .
i=1 i |dl+1

Then for all d € D any implementation of a POP, a PUSHx, or a TOP

operation must access some cell in the field n,.
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Proof: Let d, be some stack, d, € ID. As a consequence of Lemma 6.1, the result
of this lemma clearly holds for ld | = 0. So consider the case where |d | > 0, and
let m be a memory state which contains the representation of dy; m 2 pld,).
Assume there is an algorithm (op for the stack operation OP (one of POP,
PUSHx, TOP) such that {{Q,(p(d,))]} does not contain any cells in the n, field.
Let m, be a memory state which differs from mq only in the contents of field n:
m, = {(n,m,(n))I n ¢ D(fieldn,)} U {0}']1.

So m, represents the empty stack d,, Id,l =0. Since A, does not access the n,
field when applied to memory state m,, it also does not access the field n, for the
memory state m,. Thus, Ry, performs the same operation in either case. Let us
now look separately at the three stack operations.
(i) Consider the operation POP, and notice that

upopld,) = Error
whereas Upop(dy) # Error.
Thus (A, cannot always operate correctly without accessing the n, field.
(ii) Simitarly, (;op cannot always give the right answer without accessing the field
n,, because

Qropldy) = Error
whereas qropld,) = Ervor.
(iii) Apysux Will write a 0 in field n, if and only if the current memory state
cotitains a representation of the empty stack.
Thus, for all d € D, an algorithm which implements a POP, a PUSHx, or a TOP

operation will access field n,. I

It is also necessary that the endmarker field be accessed, as the following lemma

shows,
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(-]
Lemma 63. Let D = UX' and consider a function f:XU{ g} > 1’3’+- Let
i=0
piD - B+ be any TOS endmarker representation
Il
pld) = U{f(a(i))}, ufo}, .
i=1 i laf+1

Then for all d € D any implementation of a POP, a PUSHx, or a TOP

operation must access the n), , field.

Proof: For a PUSHx operation,

ldl
pld) = U{f(a(i))} U {0},
=1 lal+1
ld|
and Plupysn,(d)) = i[;Jl{f'(d(‘i))} U {f(X)}nlle U {0}"Idl+2

and so field n;,, ; must be not only accessed but rewritten.

The rest of the proof is similar to that of Lemma 6.2. Lemma 6.1 shows that
this lemma holds for any d ¢ D such ld gl = 0. So consider the case Id | > 0, and
let m, be a memory state such that m, 2 p{d,). Assume there is an algorithm (A,
for the stack operation OP such that performing (g p( p(d,)) does not cause any
cell in the n|d0|+1 field to be accessed. Choose k € N such that the n, and the n,,
frelds are not accessed (eg., choose k > ldyl + 1). Now define a memory state m,
that differs from m, only in fields Nigle1s Mo aNd Ny

my = {(n,my(n))In ¢ D(field n,), n ¢ D(field n,,,), n ¢ D(ficld nyy,,)}
U {p(x,)}nldm U {p(xz)},,k u {°}nk.1’
where x, is any element in X and X, € X such that x, = do(ldol). Pick ¢, €D
such that p(dl) € m,. Since Q,p accesses neither the Nigle1s the n, field, nor the
Ny, field, (A, is not a correct algorithm for either of the stack operations POP or
TOP, because no such implementation can perform correctly for both d, and d.
(This same argument also would include the PUSHx operation.) Thus, any

algorithm (g, must access field Nigletr !

We can now prove our lower bound results for the number of memory cell accesses
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required to perform any POP or PUSHx operation using a TOS endmarker

representation.
oD
Theorem 6.1. Let ID = UX' and consider a function f:XU{g} - E+. Let
i=0
gD - 8" e any TOS endmarker representation
al
= Ulrtatin}, v o}, .
i=1 { |d+1

Then for all d € D any implementation of a POP operation requires at least
Idl + 1 memory cell accesses, and any implementation of PUSHx requires
ldl + 2 accesses; i.e., for all 4 € ID,
#Hpop( p(d))T 2 1dl + 1
HI g A(d))T 2 1]+ 2

Proof Any implementation of a PUSHx or a POP operation using p will result 1n:
ld]

Alupygngld)) = LJ‘f(d(i))}“'LJ{f(X)}Wdl1 U {o}
i=1 i +

|dl-1
Alupp(d)) = U {(f@(n}, u{o}

Assume there is some algorithm (lop, for POP or PUSHx, for which there is some

is in {[Qgp( p(d )1}, for dy € ID. Let m

Mal+2

p, 1 <p <Idl, such that no cell in n,

be a memory state such that my 2 p{d,), and define a memory state m, that

differs from mg only in field Ny

my = {(n,my(n)) I n ¢ D(field n )} U {O}

Choose d, € ID such that Ad ) € my. Since p(o) c Ub f(x ), the endmarker
xeX

0 is located entirely in the n field and so (A, does not distinguish pld ) from

p(d). Performing a PUSHx or a POP operation on d would give:

Alupysye(dy)) = Ui}, v (t0al, U ol

p-2

U{r(a(i))}, u {0},

i=1 i p-

Thus, we must be able to distinguish |d,| from |d| in order for a PUSHx or POP

p+t

n

Alupop(dy))

operation to necessarily be performed correctly. Since the argument holds for any



- 154 -

p, 1 <p £ ldl, we need to access at least |d| cells. By Lemma 6.3, it is also
necessary to detect the endmarker, leading to one additional access and a lower
bound of ld| +1 for both POP and PUSHx operations. Notice that for a PUSHx
operation, it is, in addition, necessary to write ¢ in the Nigl+2 field, which gives the

ld] + 2 lower bound for the PUSHx operation. 1

Whenever f achieves Kraft storage, then D(0) € U D(f(x)), and so we have the

x€XN
following corollary.
(el
Corollary 6.1.1. Let D = U X! and consider a function f:XU{g)} - 8+. Let
i=0
p:D - 8" be any TOS endmarker representation
lal
pla) = U{s(a(i))}, u{o}, .
=1 i ld]+1

If { achieves Kraft storage, then for all d € ID any implementation of a POP
operation requires at least [dl+1 memory cell accesses, and any
implementation of PUSHx requires ld} + 2 accesses; i.e.,
#HLOGop( p(d))T 2 ldl + 1
MOy ALd))] 2 1d1 + 2

We have chosen to require that a 1TOS endmarker representation have fixed
position fields and that D(¢) ¢ léJ,D(f(x)), because these seem to be natural
requirements that are met in mo);t Ximplementanons. As Example 6.3 illustrates,
however, if we were to eliminate the condition that the fields be in fixed positions,

then we might sometimes be able to achieve lower access costs than were specified

by Theorem 6.1.

o

Example 63. Let X ={a,b}, £=1{0,1}, and ID = UX'. Consider the storage
=0

optimal function f:XU{ @} - £* defined by

fla) =0

f(b) =10
flg) =1L
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Construct from f the concatenation-preserving representation p:iD - 5* defined by
J p P

la]
pld) = Uls(a(}, u 1L},
i=1 !
where
i-1
n(d) = 21(d(}))]
=
and J
Jdl
n(d) = 216(d(j))L.
s

Then we have, for instance:

plaaaaaa) = 00000011
p(bbbbbb) = 10101010101011
plaabaab) = 0010001011

Notice that the leftmost occurrence of 11 indicates the end of the stack. [t is not
necessary, however, (o read every element in the stack representation. For instance,
when m(i) =0 and m(i+2) =0, then there is no need to read m{i+l). Thus, we
could implement POP and PUSH as follows.

L i1

pOP
loop: whilem(i) # 1 doieci+?2
if m(i-1) =0then i«i+1
¢oto loop
if i =1 then return "Error"
else m(i-2) «1
A pusha i<l
loop: whilem(i) #1doiei+?2
if m(i-1) =0then 1«i+1
goto loop
m(i-1) « 0
m(i+l) « 1
A pyshp’ i1

loop:  while m{i) = ldoi«i+?2
if m(i-1) =0then i«i+1
goto loop
m(i) «0
m(i+l) « 1
m{i+2) <1
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Using these algorithms to perform a POP or a PUSHx operation on p(a") or on

p(b"), we only make l‘é' + k, accesses, for some constant k; € N. So p s a

concatenation-preserving endmarker representation for which it is not always
necessary to make ld| accesses. Note, however, that for d = {ab}" these algorithms

lead us to access every cell in D( p({ab}™)), a total of—}?— - ldl + k, accesses. i

Although in the above example we were sometimes able to perform a POP or a

. ) : . i 3l
PUSHx operation in only —l—,j—l accesses, we at other times were forced to make ——

accesses. Thus, it seems likely that there would still be an average cost of ld}
accesses, even though the worst case cost has been improved. If we were to
eliminate the requirement that D{0) ¢ | D(f(x)), then we would lose storage

x€X
optimality but would be able to achieve lower access costs, as Example 0.4 shows,

Example 64. Let X ={a,b}, 8 =1{0,1,2}, and define the non storage optimal
function f:XU{ g} > 5* by

fla) =0
f{b) =1
flg) =22

Let gD > 5™ be the concatenation-preserving endmarker representation, with fixed

position fields, defined by
|d}
i=1
For instance,

plabaab) = 0100122
p(bbab) = 110122
oa) =022

Possible algorithms to implement POP and PUSHx operations are as follows:

Apopt i«
while m(i) #2 doi«i+2
if m(i-1) =2 then m(i-1) « 2
else if i = 1 then return "Error"
else m(i-2) « 2
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11
while m{(i) #2doi«ci+2
if m(1-1) #2 then m(i) « f(x)
m(i+2) « 2
else m(i-1) « f(x)
m(i+l) « 2

Qpyshy

For all d € ID, these algorithms have the following access costs:

M popl )T = Moy

#[ar‘usux(/’(d))] = ‘—%[_] + Ky

o

for ky, k, € N, 1

Theorem 6.1 made no mention of the TTOP operation; in fact, the ld| + 1 result
does not necessarily hold for every d ¢ D, We can see this by reconsicdering

Example 6.1, which we do in the following example.

Example 6.5. Recall the representation p from Example 6.1. We presented there an
algorithm (;yp which required ldl + 1 accesses, for all d € ID. We now show that
we can sometimes do better than |d] + 1. For instance, consider
plabbaaba) = 01100102,

From Theorem 6.1, we know that any algorithms for pgp and (R ey, will access
at least |d] + 1 memory cells, for all d € ID. Let us construct an algorithm for (A, ..
Suppose our algorithm first accesses cell 7. Since m(7) = 2, cell 7 must contain the
endmarker, if cell T is part of p(d). By reading m(6), we know that qrop = a if
TeD(p(d)). Of course, if ld| <7 then it is possible that q;op = b. In order to
verify that qqp = a we need only access cells m(0), m(2), m(3), m(S8), m(6). In
particular, we don't need to access m{1) or m(4), because we already know that
m(0) = m(3) =0. So upon locating the occurrence of the endmarker in cell 7, we
con jecture that qrgp = 3. If m(1) =2 or m(4) =2 then we still have gup = a.
Thus, we have an example where it is possible to sometimes determine Gpgp in
fewer than |di+ 1 accesses. Notice, however, that an algorithm such as we

presented here would for some d require more than |d| + 1 accesses; in particular,
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if the m(7) we originally accessed were not in our representation. i

In determining qTOP(d), the trick used in Example 6.5 could allow us to access, for

Fldl - 11 + 2 memory cells, In other words, we would

some d € D, as few as
always access the endmarker field and the field cotrresponding to the top stack
element. At best we would only have to access half of the remaining ldl - 1 cells.

The following theorem shows that it is never possible to do better.

(e
Theorem 6.2. Let D = UX! and consider a function f:XU{g} - 5% Let
i=0
pD - 8% be any TOS endmarker representation
]
pld) = Ute(a(i)y, u o), .
i=1 i ldl+1

Then for all d € ID such that [d] 2 1 and for any implementation, (A;op, of a
TOP operation:

HOpop( pd))I 27 MLy,

Proof: By Lemma 6.3, we know that the Nglet field must always be accessed.
Also, it is necessary to access the gl field, since this is the value we want to
determine. So the result clearly holds for ld| = 1 and, by also using Lemma 6.2, for
ldl = 2. Consider the case where Idl > 2. We know that we must access the ficlds
Ngleq and np e Now assume we have an algorithm for fop, (pgp, that for some
do € ID returns the value qpop{dy) =x, for some x, € X and for which there
exists k € N, 1 <k <ldl - 1, such that kpgp accesses neither the n, nor the n, .,
field. Let my 2 p(dy). Define a new memory state m, such that m, differs from
mq only in the n, field, which contains f(x,) (for x, = x,), and in the n_ 4
field, which contains ¢. Then m, 2 p(d,), where

d(i) fori <k
d,(i) =
Xy fori =k

Then, using the algorithm Oop , we must get (ooo(p(d)) = x,. But we know

that frop(d,) = x, This results in a contradiction, which means that for any
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valid algorithm (;op it is never possible to not access two consecutive fields ny and
Ny, for 1 <k <Idl - 1. Since by Lemma 6.2 we must always access the n, field,

this says that we must make at least F-li]—lziW + 2 accesses, i

From Theorem §10 we immediately know that a TOS endmarker

representation achieves Kraft storage when the function f does.

L]

Theorem 6.2. Let ID = UX! and consider the function f:XU{g} - gt
i=0
the function f achieves Kraft storage, then the TOS endmarker representation

pilD - 8+, defined by
la]

p(d) = U{ra(i)}, U {o}

)
i=1 i n|d|¢1
also achieves Kraft storage.

Before we conclude this section, let us say something about finite memories,
L < m. In our definition of a TOS endmarker representation we, for simplicity,
considered infinite domains and assumed that we would never run out of memory
space. Allowing L to be finite would not have changed our results, except perhaps
when |p(d)| = L, although our algorithms would, of course, have to be modified.
Also, recall from Section 5.3 that an endmarker representation cannot achieve Kraft
storage for finite L. If we had wanted to allow finite L we perhaps would have
chosen to extend the definition of a TOS endmarker representation as in the

following example.

Example 6.6. Recall Example 6.1, where X = {a,b}, 8 = {0,1,2}, and the function
f:XU{ g} = &* is defined by

fla) =0
f(b) =1
flg) =2
4
Assume, however, that L =4 and that D = Ux" We could define a
i=0

representation p:D - ¥ by
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~
ldl
{f(a’(i))}i_1 U{O}Idl for ldl €3
i=1
Ad) = <
Id|
U{f(d(i))}H for |dl =4
i=1
Then
AN =2

p(abb) = 0112
p(babb) = 1011

Notice that, using this definition, every possible memory state is a representation of
some stack and p achieves Kraft storage. The stack operations can be implemented

essentially as they were in Example 6.1, but we have to watch for |d| = L.

GPOP: i«0
while m{i) # 2doifi=L -1 then m(i) « 2
return
elseici+l
if i =0 then return "Error"
m(i-1) « 2
Apysax’ i0
while m{i) % 2doifi =L -1 then return "Error”
elsei«i+1
m(i) « f(x)
if i =L -1then m(i+l) « 2
(rop i«0

while m(i) #2doifi =L -1 then temp « m(i)
goto decode
else temp « m(i)
ici+l
decode: if i =0 then return "Error"
else if temp =0 then return "a"
else return "b"

These algorithms give the following access costs:
1 if ldl =0
HlOGoR(p(d))] =< ldl + 2 if 0 <ldl <L
Id| if ldl =L
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ldl + 2 ifldl+1 <L

Ml ey Pd))T = < ldi+ 1 if ldl+1 =1L
] if ldl =L
= min{ldl + 2,L}
ldl + 1 if ldl <L
HLO Lo (p(d))] =
] ifldl =L
=min{ldl + 1, L} | I

Thus, we certainly could have considered finite memory spaces, but the extra
complication in our algorithms would not have increased our understanding of TOS
endmarker representations. Similarly, in the next section we always make the
assumption that L s infinite. In  Scction 6.4, where we discuss pointer
representations for stacks, we shall consider both finite and infinite L.

In this section we have examined perhaps the most obvious stack endmarker
representation scheme, the TOS endmarker representation. We know as a
consequence of Theorem 6.2 that it is possible for such a representation to achieve
Kraft storage, but we have also shown that any implementation will result in
expensive access costs for every d € ID. In particular,

HLOpopl p(d))] 2 1d) + 1
HLO sl L) )T 2 1d] + 2
MOopl (@)1 > T 2L g0y
for any algorithms Qpon, (pyey,, g implementing the stack operations POP,
PUSHx, and TOP. This leads us to wonder whether some other type of endmarker
representation could result in cheaper access costs. The POP and PUSHx operations
involve updating the memory contents, but the TOP operation 1s just a question.

Suppose we were to keep the top of the stack at some fixed location. Such a

representation scheme is discussed in the next section.
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6.3 The BOS Endmarker Representation

Consider an endmarker representation of a stack in which the top of the stack
is always at a fixed (known) location and the bottom of the stack is allowed to
vary. In this case, the endmarker denotes the bottom of the stack. The following

example illustrates one possible such implementation.

Example 6.7. Consider the function f from Example 6.1, where we have

[
X ={a,b}, 8 =1{0,1,2}, D = UX!, and where we define the function XU{ g} » 5*
i=0
by
f{a) =0
f(b) =1
f(g) =2 =0
Define the concatenation-preserving endmarker representation p:lD - gt by
ld]
pld) = U{E(a()), gy Y {0}ncay
i=1 i
where n,(d) = 2(1dl - i)
and n(d) = 2ld|

In this representation, the endmarker indicates when we have reached the bottom
of the stack. Reading the memory contents "from left to right” corresponds to
reading the elements in the stack from the top down. For instance,

pln) =2
plabaa) = 00102
plbaabba) = 0110012

It is certainly easy to perform a TOP operation, since we need only read m({0).

Oqop: if m{(0) =2 then return "Error"
else if m(0) =0 then return "a"
else return "b"

On the other hand, consider performing a PUSHb operation on d = ababa:
p(d) = p(ababa) = 010102
Plupyensld)) = plababab) = 1010102

Notice that it will certainly be necessary to access Id| + 2 cells, since this many cells
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are actually rewritten. Intuitively, we want to set m(0) « 1 and to shift the contents
of each cell in p(d) right by one. Recalling the notation introduced in Chapter 3,
one implementation scheme would have the access sequence

0,1, 0, .. 0dl -1, ldl, Id] + 1.

One possible algorithm is the following.
7Y 10
templ « f(x)
while m(i) = 2 do templ s m(i)
i1+l

PUSHxX'

m{i) « templ
m(i+l) « 2

Notice that we have made use of the additional register templ, as we did In
Example 6.1. Recall also that in Chapter 3 we defined a single access to consist of
reading and then possibly rewriting a cell. Thus, we have written

templ 5 m(i)
to indicate a single access to m(i), where the old contents of m(1) is stored in templ
and the old contents of templ is stored in m(i). We refer to this as an exchange,
and might have written it out using a second temporary location, temp2:

temp2 « m(i)
m(i) « templ
templ « temp2

Now consider performing a POP operation on d = ababab:
pld) = plababab) = 1010102
plupep(d)) = plababa) = 010102
As for PUSHx, a POP operation will have to rewrite ld| cells and so at least |d|
accesses will be required. In this case, we intuitively want to shift the contents of
all of the cells in p(d) left by one. One scheme for doing this would have the

access sequence

0,1,2, ... ldl-L, Idl, ldl-L, 118, ... ,8, 1, 0

and could be implemented using the exchange operation described above.
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a if m(i) =0 return "Error"

iel
while m(i) #2doi«i+1
templ « 2
whilei >0do i«j-1
m(i) s templ i

POP’

We refer to a representation such as p in Example 6.7 as a BOS endmarker
representation, because the endmarker ¢ is always situated in the ficld following
that field which contains the bottom stack element; i.e., in the set of cells which the

bottom stack element would occupy if the stack had another element in it.

oo

Definition. Let ID = [UX' and consider a function f:XU{ &} —'B+. Let
i=0

p:D - 8% be any endmarker representation

ldl
pld) = U{f(a(i))}, u {0},
i1 ld]+1-1 [a]+1

where n, € N, for any i ¢ N, and f(g) = 0. If D(0) € 'le_JXD(f(x)), then

we refer to p as a bottom of stack (BOS) endmarker represenz);tion.

The definition of a BOS endmarker representation is basically the same as that of a
TOS endmarker representation, except that d(i) is located in field Rigle1-; Yather
than in field n,. In other words the order of the representations of the stack
elements is reversed. The representation is easiest to visualize when n, 4 > n; and
each field consists of contiguous memory cells, but no such requirements are
imposed by the definition,

The BOS endmarker representation was motivated by an attempt to decrease
the access cost for performing a top operation. As we shall see, however, we have
not altered the access cost for PUSHx and we have actually worsened, for all
d € D, the lower bound access cost for POP:

HlQop( p(d))T 211
HOpyen, L A(d))] 2 1d) + 2
HOpop p(d)) > 1 3dir Ly Iy
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o
Theorem 63. Let D = UX' and consider a function f:Xu{g} -~ 73+- Let
i=0
piD - 87 be any BOS endmarker representation
fdl
pld) = U{eail, — ufe}, .
i=1 i+ 1-1 ldl+1

Then for all d € ID any implementation of a PUSHx operation requires at least
ld] + 2 memory cell accesses; ie., for all d € D,

HLO g A(d))T 2 1l + 2.

Proof:  Assume there exists some algorithm Ay o, for performing a PUSHx
operation and some dy € D such that #lO, e (p(dg))T <Idl+2. By the

definition of a PUSHx operation we know that
]

1) = U{(d (i U {0
/’(‘o) ll:Ji*( O(l))}"(dl*l-i ¢ }n|d|+1
lal
Plupygiy(do)) = H{f(do(‘))}"ldhz-i v {f(x)}“l v {O}"IdPZ'

Certainly the values in fields ng,, and Nigj+z Must be accessed. Assume that there
is some p, 1 < p < Idl, such that (hpyey, (p(d o)) does not access field n. Let m,
be a memory state such that my 2 p(d ), and as in the proof of Lemma 6.3, let m;
be a memory state which is identical to m, except in the ny, field, where ¢ is stored.
If m, 2 p(d,), then the algorithm Gy, does not distinguish d, and d,; and
thus (Apyepp, does not correctly perform a PUSHx operation on d,, a contradiction.
So any algorithm (e, must always access the Id| fields ny, ng, ..., nyy, well as

the fields Mgle and Nglez: !

As a consequence of this theorem, we know that the algorithm Apyshx N Example
6.7 is optimal; in fact, we know that for no d € ID is it possible to make fewer than
ld| + 2 accesses.

- Let us now consider the construction of an algorithm for the POP operation.
Using the scheme presented in Example 6.7, we could read the n; fields essentially

from left to right until we reach the bottom-of-stack endmarker, and then shift the
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elements in the representation "left one field". This corresponds to a field access
sequence
1, 2,...,dl-1, ldl, \di+], ldl, IdI-1, ..., 2, L
If we choose not to read all the way to the endmarker and then backtrack, we could
use an algorithm with a field access sequence
1,2,1,3,2,4,3, ..., dl, ldI-1, ldI*+1, Id].

Either of these algorithms would, however, require making a total of 2-d|+1
accesses, and we shall show that it is possible to (always) do better. In order to
motivate the lower bound we shall obtain for the POP operation, we indicate how

the algorithm (A, in Example 6.7 could be improved.

Example 6.8. Recall the representation p from Example 6.7 and consider
perforring a POP operation on d, = abaa. We know that

pldy) = 00102
and Plupepl pld o)) = 0102,
Recall that our definition of access allows us to read and then, if we choose, rewrite
a cell. So suppose we first access cell 1. Since m(1) =0, we put a 0 into cell 0,
checking, of course, that cell 0 is not the end of the stack. We then read cell 3.
Since m(3) =0 # 2, we go back to cell 2, which we now read. Since m(2) = 0, we
write a 0 into cell 2. We already know that m(1) # 1, and so we set m(1) « m(2).
At this point we have (correctly) rewritten m{0), m(1), m(2). We now read cell 5.
For the case we are considering, m(5) is not included in p{d,), so cell 5 might or
might not contain the endmarker 2. In either case, we back up and read cell 4, at
which time we find that m(4) = 2. Having already read cells 0, 1, 2, 3, we now
know that cell 4 contains the BOS endmarker. So we set m(3) « 2 and are done.
Using this procedure we have the memory cell access sequence

1,0,3,2,1,5,43,1,659,81,11,10,9, ...

We might write the algorithm out as follows, making use of two temporary

locations, templ and temp?.
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Q templ « m(1)
if m(0) =2 then return "Error"
else  m(0) « templ

if templ = 2 then return

POP*

i3
while m(i) = 2 do templ « m(i)
temp2 « m(i-1)
m(i-2) « temp?
if temp2 =2 then return
else  m(i-1) « templ

ieci+d
temp2 « m(i-1)
m(i-2) « temp?
if temp2 =2 then return
else m(i-1) « 2
This algorithm results in an access cost of
3-’—3—’1 +2 for |d| even

HLApopl p(d))] =
3--"—112-——1— +2 for |d| odd.

We shall shortly prove that the algorithm is, in fact, optimal.

In order to derive a lower bound access cost result for performing a POP

operation we begin by proving two lemmas. Recall that our definition of access

allows us to read, although certainly not rewrite, a memory cell which is being used

by another user.

o0

Lemma 64. Let D = U)s’i and consider a function f:XU{g)} - 8+.

i=0
gD -~ 8t be any BOS endmarker representation
Il

pld) = U{f(a(i))} u {0}

} )
i=1 Plaj+1-1 Migle1

Let

Then a cell in field n, i 21, cannot be rewritten unless each of the fields

My, ..., N,y has been accessed.
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Proof: A cell in field n; cannot be rewritten unless it is known that |d| > i - 15 1Le,
we are not allowed to rewrite field n, if it is in some other user's memory space.
Thus, in order to rewrite a cell in field n, it must be the case that no n for
1 £ j <1, contains the endmarker 0. There is no way to guarantee this without

accessing each of the fields n, ny, ooy ny_g. |

The following lemma essentially tells us that field n, cannot be rewritten until field

n,,4 has been accessed.

o
Lemma 65. Let D = U)\" and consider a function f:XU{g} = 3+- Let
i=0
D - 8+ be any BOS endmarker representation
ldl
pld) = U{e(d(iN}, uf{o}, .
i=1 [di+1-1 ld]+1

Consider any algorithm, (Rpqp, for the operation POP. Then there must be
an access to field n,,, made previous to the last rewrite of field n, for

1<i<ldl

Proof: Recalling the definitions of the BOS endmarker and the POP operation,

ld]
pld) = Ulf(a(in}, u{o},
f=1 ldl+1-1 lal+1
lal-1
and Aupepld)) = U{f(d(i))}n “u o}, .
i=1 [d}-i ld|

So f(d(1)) gets moved from field ny,,_; to field nj, ;. Since we can determine the
contents of field Dgle1-1 only by making at least one access to that field, field

N|gj+1-; MUSst be read before its value can be put into field Dygl-i i

For any algorithm (. we can consider its corresponding field access sequence.
Ve prove our lower bound result by lower bounding the size of a sequence which
meets the conditions presented in lemmas 6.4 and 6.5. We first make the following

défimtion.
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Definition. For k, i € N, define a set Si.1 as follows:
Sei & {k, kel ooy k-l ki, K, kel Lo, krizl)
We say that a sequence is an s(k,i)-sequence if it contains each of the terms
k, k*l, ..., k#i-l, k+i, if each term in the sequence is in Sy, and 1f the
following conditions are satisfied:
(i)  For all r, k <r <k +i, the last occurrence of r is preceded by r + 1 or
r+ 1.
(ii) For all ry k <r < k +1i, the last occurrence of r is preceded by j or j,
for every element j € {k, k+1, ..., r-2, r-1}.
We define o(k,i) to be an s(k,i) -sequence of minimal length, so that

lo(k,i)l 2 min ls(k,i)l
s(k,i

Since 1o (0,ld1)| is minimal over all sequences s(0,ldi), ¢(0,ld]) corresponds to an

optimal access order for performing a POP operation.

(L]
Lemma 66. Let D = [UX' and consider a function f:Xu{g} - 1‘:3'+. Let
=0
gD - 8 be any BOS endmarker representation
Jdl
d) = Uir(a(i))) ulo :
pld) i=1{ (( )”nldlﬂ-i t }"ldln
Then for any algorithm, (k,,,, which implements the operation POP, and for

all d € D:
#HLpop(p(d))] 2 10 (0, )],

Proof: Recalling the definition of a field access sequence, the proof follows directly

from lemmas 6.4 and 6.5 and from the definition of a(0,ld]). |

Now that we have established the correspondence between a sequence o(0,ld])
and #lpop( p(d))], we have the notation with which we prove our lower bound

result. We prove this as a consequence of three lemmas.
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Lemma 6.7. Fork ¢ N, k >0 (a) loe(k,0)l =1
(b) lo(k,1) =2

Proof: (a) We want the minimal length of a sequence o(k,0) containing k and
satisfying conditions (i) and (ii) in the definition of @ k is such a sequence and
therefore {o(k,0)! = 1. |

(b) We want the minimal length of a sequence o(k,1) containing k, k+l, and
satisfying (i) and (ii); k+1, k is such a sequence and clearly must be minimal.

Thus, lo(k,1)] = 2. i

Lemma 68. Fori€¢N,i>0, . 1(0,i+2)| =3 + |e(0,i)l.

Proof: (0,i+2) is a minimal length sequence containing 0, 1, ..., i, i*l, i+2, and
a(2,i+2) is a minimal length sequence containing 2, 3, ..., i, itl, i+2 (both
satisfying the above conditions {i) and (ii)).
(i) We first show that lo(0,i+2)] < 3 + le(0,i)l.
Suppose we have some minimal length sequence o(2,i+2). We convert this into a
sequence (0,i+2) by considering two cases:

(a) Assume that 2 is preceded by 2 in the sequence o(2,i+2). Immediately

following 2, insert 0, 1, 0 into the sequence.
(b) Assume that 2 is not preceded by 2 in the sequence. (Then it must be the

case that 2 is the first field written.) Before 2, insert 1, 0 and after 2 insert

L
Thus, le(0,i+2)| <3 +lo(2,i+2)] =3 + le(0,i) .
(ii) We now show that |g(0,i+2)| > 3 + |e(0,i) 1.
A minimal sequence a(0,i+2) must contain 0, 1, and a minimal sequence o(2,i+2)
will not contain these. But 1 must appear before 0, and 0 (as well as 2) must

appear before 1. Therefore, it is necessary to include 0 or 1 in order to have 0, 1.

Thus, lg(0,i+2)] 2 3 + 1e(0,i) 1. I
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Using the previous two lemmas, we can compute lo(0,i)].

Lemima 6.9. Fori € N, i >0, we have:
(a) lo{0,2i)] =3i+1
(b) le(0,2i+1)] = 3i + 2.

Proof: From Lemma 6.8, l0(0,i+2)| =3 + |¢(0,i)|. Now apply Lemma 6.7. For i
even, this gives us

lo(0,i+2) | = 3i + 1a(0,0)] = 3i + 1,
and for i odd we have

le(0,i+2)] = 3i + l6(0,1)] = 3i + 2. I

We rnow apply this discussion of sequences ¢ and recall from Lemma 6.6 the
correspondence to the POP operation. This now allows us to lower bound the

number of accesses required to perform a POP operation.

a0
Theorem 6.4. Let D = LUX' and consider a function £:XU{g} » 8%, Let
1=0
D - E+ be any BOS endmarker representation
ld
pld) = Uff(a(i))}, ufel, .
i=1 jd]+1-1 |d]+1

Let (pp be any implementation of the POP operation. Then for all d € ID:
3-Md ey il is odd
Bl e p())1 2
3 —|i2l—| +1 if ld! is even
In other words,

MO pop( )1 > 7 2L Ly

Theorem 6.5 combines the results of thecrem 6.3 and 6.4, along with the trivial

observation that #LA; .(p(d))] 2 L.
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- ]

Theorem 6.5. Let ID = LUX' and consider a function f:XUu{g} - 8+- Let
i=0

p:D - 5t be any BOS endmarker representation

ld]
pld) = U{f(a(i))}, U {0},
i=1 dl+1-4
Let (L, be any implementation of the POP operation, let Ay, be any
implementation of the PUSHx operation, and let (l;op be any implementation
of the TOP operation. Then for all d € D:
HLOpop(p())] > 1321y

AL sy A(d))] 2 1d] + 2
#HLO o p(d))T 2 L.

Recalling the algorithm for POP that we presented in Example 6.8, we now
know that that algorithm is optimal for |d| odd. Perhaps it would be possible to do
one access better, however, when |d| is even. As a consequence of the following
lemma, it is impossible to simultaneously achieve the bounds of Theorem 6.4 for

both |d| odd and |d| even.

Lemma 6.10. Let i be any even natural number. Suppose we have some
minimal length sequence ao(O,i) and some minimal length sequence

o ,(0,i+1). Then ¢ (0,i) is not a prefix of ¢,(0,i+1).

Proof: The sequence ¢,(0,i) must contain 0, 1, ...,i-1, i, and o,(0,i+1) must
contain 0, 1, ... ,i-1, i, i*l. Since i is even, lo,(0,i)| =3 —é— + 1. Because i + 1 is
odd and ¢,(0,i+l) also has minimal length, lo,(0,i+1)| = 3 -—;— + 2. Thus,

lo (0,i*1)| = lo o (0,i)] + L.
Suppose @ ,(0,i) is a prefix of ¢,(0,i+1). Since lg,(0,i)] is minimal, ,(0,i) does
not contain i + 1, and therefore also does not contain i, both of which must be
present in ¢ ,(0,i+1). So there is no way to append a sequence to a,(0,i) in order

to obtain a minimal length sequerice a1(0,1+1). ]
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Note that the proof of Lemma (.10 does not hold if i is an odd number, because
lo, (0,1+1) | = 2 + lo ,(0,i) | for i odd.

Theorem 6.5 gave lower bounds for implementing the stack operations with a
BOS endmarker representation. Example 6.7 showed that the bounds for the
PUSHx and TOP operations are actually achievable. We can also argue, as a
consequence of Lemma 6.10, that the algorithm (. from Example 6.8 is access
optimal.  Since (Apop has a miramal number of accesses for ldl odd, it cannot
possibly achieve 3 —I'-,,]—} + 1 accesses for ld] even. Thus, the best it could possibly do

would be 3 L{l + 2 accesses for ld| even, which is precisely what it does do. The
following example shows that we could have constructed an algorithm for the POP

operation which would have been minimal for |d} even.

Example 6.9. Reconsider the representation p from examples 6.7 and 6.8. The
algorithm (.4, from Example 6.8 is access optimal. Let (Rppp” be an algorithm for
the POP operation which has the field access sequence

07 27 l.’.o_’ 473.’ 2’6)‘5_, ,1_‘*_'_18, 'l’ .El,'"

Note that (.7 is, in fact, realizable, because this is basically the same algorithm

ror

we had before, only with a different starting sequence. This algorithm has for an

access cost:

3 —lg—l +1 it |d| is even
HLOpop (p(d))] 2
3.0dl-L Ly if 1d] is odd

Thus, (o7 requires a minimal number of accesses for |d| even and is also access

POF
optimal. In fact, for Example 6.1, the BOS endmarker representation p with TOP
and PUSHx implemented as in 6.1 and the POP implemented as in Example 6.8 is a
storage and access optimal implementation { g, popy Upyeiie Krop)-

As was the case for the TOS endmarker representation, Theorem 5.10

immediately tells us that a BOS endmarker representation achieves Kraft storage

when the function f does.
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o0

Theorem 66. Let ID = UX' and consider the function f:XU{g} - gt
i=0
the function f achieves Kraft storage, then the BOS endmarker representation

p:D - B+, defined by
ldl

Ald) = U{f(d(i))}ni U {0}

b
i=1 Mal+1

also achieves Kraft storage.

So we have constructed the BOS endmarker as an alternative to the TOS
endmarker representationi scheme. We thereby decreased the access cost for
performing a TOP operation, but in so doing we increased the cost of a POP
operation. For a summary of the worst case lower bounds, see Table 6.3 at the end

of the chapter.
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6.4 The TOS Pointer Representation

Consider using an endmarker representation to implement a stack and the
POP, PUSH, and TOP operations. The following example illustrates one possible

such implemerntation.

3
Example 6.10. Let X = {a,b,c,d}, 3 =1{0,1,2,3}, and D = U X" Let the function
i=0
f:X - 7* be defined by
f(a) =0
flb) =1
fle) =2
f(d) =3
Definie the concatenation-preserving pointer representation p:lD - 8+ by
ld|
pld) = U{r(a(i)) ), u {alaD },,
i=1
where the pointer component £:] - 73+ is defined by
£(0) =0
01y =1
(2) =
0(3) =
For instance,
p(n) =0
pld) =13
plcab) = 3201

We assume that L is large enough to represent any d € D; in particular L 2 4. In
order to perform a POP operation in this example we need only decrement the
pointer. Notice that there is no need to read any stack elements, since decrementing
the pointer automatically decreases |p(d)| by one. So we could use the following
sinple algorithim to perform a POP operation,

(popt vif m(0) =0 then return "Error"

‘ m{0) «m(0) -1
By our definition of a memory cell access, this algorithm for POP corresponds to a

single access; we read the contents of cell 0 and then, depending on its contents, we
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may rewrite the value. [f m(0) =0, then we return an "Error" message and the
second line in the algorithm never gets executed. For a PUSHx or a TOP
operation, however, we must read the pointer in order to determine where the top
of the stack is, and we then go to the appropriate stack location to perform the
operation.

Apysax if m{(0) =3 then return "Error"
m(0) « m(0) +1
m(m(0)) « f(x)

(Apopt if m(0) =0 then return “Error'
return m(m(0))

These algorithms give the following access costs:

HLOpep( p(d))] =1

2 if ldl # 3
B p g AT = 4
_1 else
(9 ifldl =0
HLOop( p(d))] = 4
__1 else |

Notice that the representation p in the above example allowed us to implement the
3

set of stack states ID = U X' with low update costs, lower than was possible with
i=0
the TOS or BOS endmarker representations.
We extend the pointer scheme illustrated in Example 6.10 and make the

following definition,

K
Definition. Let ID = UX!, for k € N and consider a function f:X - gt Let
i=0 _
pD - 8t be any fixed position field pointer representation

el

pld) = U{f(d(i))}nl u {elaD},
i=1
where n, n, ¢ N (for any 0<i<k) and where £ is a representation

8] - 8+. Then pis a TOS pointer representation.
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We use the term TOS because reading the pointer component, &(|d]), tells us ld|
and we can then go directly to the field ng in order to determine the top of stack

element.  Clearly the representation p from Example 610 is a TOS pomnter
o0

representation. It {iD] is large, and especially if D = UX‘, then the size of the
i=0

poimnter will grow large. Therefore, we may sometimes find it convenient to view

the TOS pointer representation as a separate pointer representation.

Restricting 6ur consideration to concatenation-preserving representations 1s
perhaps an obvious thing to do, but let us discuss why we also require that a TOS
pointer representation have fixed position fields. The fixed position field
assumption s included as a consequence of our definition of a pointer
representation, where we chose to encode Id| rather that [p{d)]. If we were to allow
val;lal)le position fields, then knowing &(ld]) would not necessarily tell us the
location of the top of the stack.

Unfortunately, requiring fixed position.fields will, in general, result in "gaps"
in the representation, unless If(x,)| = If(x,)| for all x;, x, € X. Thus, if we insist
on Kraft storage, a TOS pointer representation must sometimes have gaps when
X1 = 151, We could, alternatively, have defined a TOS pointer representation p to
be a concatenation—preservmg|1'5?presentanon p:D € 5% defined by

d|

pld) = U{(d()}, g U {80p(d) D},
i=1 1
i-1

where n, = 1lip(d) )] + 'lef(d(ml.
Such a definition would avoid the problem cff: having gaps in the storage of p(d)
and would not affect the storage and access results we obtain. Thus, our original
definition of a TOS pointer representation is satisfactory for our purposes.

In Example 6.10, the domain size was small enough that the pointer
component was able to fit in a single memory cell. For a larger but bounded

domain size, we can still store a stack pointer in a fixed number of memory cells, as

we do in the following example.
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7
Example 6.11. Let X = {a,b,c}, 8=1{0,1}, and D = UX" Define the function
1=0
f:X » 5% by
fla) =0
f(b) =10
flc) =11
and the pointer component 0:] » 5* by
£(0) =000 £(4) =100
(1) =001 6(5) =101
£(2) =010 t(6) =110
£(3) =011 o7 =11L
Then we can define the TOS pointer representation gD » 8% by
lal ,
p(d) = ULE(d(0)} 50150 U (204D},
i=1
(We assume, of course, that L > 17.) Then we have, for instance,
p(A) =000

plabc) = 0110 1011
placcab) = 1010 11110 10

Notice that the representation g achieves Kraft storage.

We can implement the stack operations roughly as follows. For the TOP
operation, we read the three pointer cells and then go to the top of the stack to look
up the answer,

A opt templ « m(2) + 2-m(1) + 4 m(0)
if templ = 0 then return "Error"
temp2 « 2- (templ-1) + 3
if m(temp2) =0 then return "a"
else if m(temp2+1) = 0 then return "b"

else return 'c
In order to do a PUSHx operation, we must increment the three pointer cells as we

. read them, and we then insert the correct item onto the stack.
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PUSHxX' if m(2) =0 then
m(2) «0
if m(1) =0 then

m(l) «0
if m(0) =0 then

m(2) «1
m(l) «1
return "Etror”

m(2) «1

goto write

m(l) «1
goto write

m(0) «1

goto write

write: templ « 2 (m(2) + 2-m(1) +4-m(0)) + 1
if x = a then m(templ) « 0
else m(templ) «1
Cif x =b then m(templ) +1 <0

else m(rempl+l) « 1

For the POP operation, we need only decrement the pointer. Unfortunately, this

may require accessing some pointer memory cell more than once. The following

simple algorithm is one possibility.

Qo if m(2) =1 then

FOP*
m(2) <1
if m(1) =1 then

m(l) <1
if m(0) =1 then

m(l) <0
m(2) «0
return "Error"

m(2) «0

return

m(l) «0
return

m(0) «0

return

Notice that this algorithm causes us to incorrectly change m(1) and m(2) in the

case where an "LError" condition is to be returned, thus forcing us to go back and

rewrite these cells.

Excluding the cases where we get an Error condition, these three algorithms

give us the following access costs, for all d € ID:
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52 #lOop(p(d))] 204
§2 HlApugnlp(d))] 24
52 #lOp(p(d))] 24 !

The strategy used in Example 6,11 for implementing the stack could be used

with any TOS pointer representation which has a fixed size pointer field.

k

Definition. Let D = UX!, tet r = Floglgl(k +1)7, and let f be a function
i=0

f:X - B+. Suppose the pointer component [ is a one-to-one function
2:{0,1, ... ,k} » 8" Then the TOS pointer representation gD - 8t defined

by
la]

pld) = Ufr(a(i))},, u {a(ldD },,
i=1

is said to be a TOS poainter representation with a fixed size pointer field.

+r
oy

The TOS pointer representations in both examples 6.10 and 6.11 have fixed size
pointer fields, and we implemented the stack operations in essentially the same way,

first reading the pointer and then, if necessary, accessing the list component.

K
Theorem 6.1. Let D = Ux'and tetr = Hogm(k +1)7. Let f be a function
i=0 3
f:X = 8% such that max|f(x)] =t. Consider the TOS pointer representation
X€X
pD = 8%, with a fixed size pointer field, defined by
lal

p(d) = U{E(d()) 1yypyer U {00GD }o,
i=1

where 0:] > B". Then it is possible to define the representation £ in such a
way that the stack operations can be implemented with algorithms which have
the following access costs. For all d € D,
r+t 2 HlQpp(p(d))] 21+
ret 2 HOQpugn(A(d))] 2141
2r-1 2 #l0G(p(d))] 21
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Proof: 'T'he construction of algorithms for the TOP, PUSHx, and POP operations
is the same as in Example 6.11, and we shall not present all of the details here. We
define €(i) € 5" so that when the string €(i) is viewed as a number it is the base
131 representation of i (with preceding 0's, if necessary, since 18(i)| = r).

We construct (yp 0 that it reads the r memory cells in the pointer and then
goes to field n, to read the top stack element. Thus, (k;,p accesses at least r + 1
and at most r +t memory cells, depending on the size of the representation of the
element at the top of the stack. |

Now consider implementing an (O, ysny algorithm. By the way we have
defined the pointer component £, it is possible to increment the pointer as we read
it, if we access cells in the order m(r-1), m{r-2), ..., 1, 0. {See Example 6.11 for
an illustration.) After reading the r pointer cells, we locate the appropriate field
and write f(x), a totai of r + |f(x)] accesses.

For the (,,p algorithm we need only decrement the pointer. So it would
never be necessary to make more than 2 - 1 accesses, because we could just read
the pointer in one pass and rewrite it in the next. On the lower bound side, we

clearly need to make at least oiie access. i

Notice that, using the mcthod from Example 6.11, the 2:r - 1 upper bound on the
number of accesses for the POP operation would be attained only when |d} = 0 and
an "Error" message is returned. For d # A, r would be an upper bound and we
frequently would be able to do even better.

[n the proof of Theorem 6.7, the only reference to the particular pointer £ we
chose was in obtaining the upper bound for the cost of performing a PUSHx
operation. As we argued there for the POP operation, it would always be possible
to increment the pointer by making 2-r - 1 accesses. This gives us the following

corollary.



- 182 -

k
Corollary 671, Let D = Ux! and et r =flog|ﬁ|(k +1)1. Let f be a
1=0 4
function f:X = % such that maxlf(x)! =t. Consider the TOS pointer
X€X
representation ;=D = 5* defined by

lal

pld) = U{E(d(i)) Yy y.r U L0010 )
i=1

Then for any one-to-one pointer function £:J » ', it is possible to implement
the stack operations so as to obtain the following access costs. For all d € D,
MO p(d)] 21+l
2r-1+t 2 MO, g (p(d))] 21 +1

ar-1 > HlOpg(p(d))] 21

r+t

v

Theorem 6.7 and Corollary 6.7.1 gave us upper bounds on access costs for
performing POP, PUSHx, and TOP operations using a TOS pointer representation
with fixed position fields. The bounds depend on r, not on |dl, although the size

of r itself is dependent on maxldl: r =Tlog (maxld] + 1)1 Thus, when ld| is
d¢D 18l d€D
small, being forced to read r cells could be relatively expensive (e.g., when r is

large and the stacks we are representing are small). Consider, however, where
these bounds came from. We can rewrite the result of Corollary 6.7.1. For any TOS
pointer representation with a fixed size pointer field, we can implement the stack
operations with the following access costs:
HLOLop( p(d))T < 1ECIdD T + 1f(qop(d)) ]
HLO g A(d))T < 1ECdD] + 1£(x)]

21e(ld)l - 1 for Id| =0
HLOLop( p(d))] <

te(ldl) | for ldl = 0
~assuming that the function f is a representation and achieves Kraft storage.

Let us now extend these results to TOS pointer representations where we do
k

not have fixed size pointer fields. We would also like to allow ID = Ux!, where
i=0
k £ o, From the above discussion it should be easy to see that the following
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theorem holds.

K
Theorem 6.8. Let D = UX!, where k < o, and let f:X » #* achieve Kraft
i=0
storage. Consider the TOS pointer representation p:lD - 8+ defined by
fal
pld) = Ultla(i)) ), u{etiad},,
i=1 i

where { is any representation £:] - 8+. Then it is possible to implement the
stack operations so as to achieve the following access costs, For all d € ID
HLA ool p(d))T < TECID + 16 (q1op(d))]
HLOp g ALd)) T < 2:08CHd T + 1F(x)1 - L
HLOLop(p(d)) T < 2000l -1

Proof:  For any TOS pointer representation, reading the pointer immediately tells
us the location of the top of the stack. So we can certainly perform a TOP
operation, by accessing each pointer cell and then reading enough cells in the list
comyponent for us to distinguish qTOP(d). Since f achieves Kraft storage, this is
precisely [&(ld)] + If(q gpld))]. For the PUSHx and POP operations, it is, in
general, necessary to rewrite the pointer, which at worst would require 2-18(1d])] - 1
accesses: one pass over 0(ld]) to read and the next to rewrite. For a POP, we
need ot access the list component at all, and for a PUSHx, we need to write f(x)
into memory. 1

From Theorem 6.8, the issuc is now to sce how compact we can make our
pointer component £(ld]). Recalling the construction of the class of pointers € K

14

from Section 5.4 (sce Table 5.2), we have a possible representation scheme, with
1e(id) | = O(log Id1).

Consider using this scheme to perform a PUSHx or a POP. Since each pointer is a

representation of a natural number n, we want to be able to increment or decrement

by one the number to be represented. For the scheme in Section 5.4, this means we

always need to alter the "rightmost” cell in the pointer representation. Since the size
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of the paointer component is not fixed (in fact, it may be unbounded), there is no
way to know where this rightmost cell is, unless we read (most of) £(ld]). Even
then, we might be forced to backtrack. We shall construct a new pointer scheme,
with the same storage cost as our previous one, but for which it will be easier to
increment and decrement the pointer. This makes it, on the average, cheaper to
perform a POP operation.
Recall the pointer representation scheme £ ; as illustrated in Table 5.1:
¢ Ln) = 0™l 1. h(n), |

where we write h(n) for hy(n). For instance, consider

€ 5(18) = 000010011,
In order to perform a POP operation on a stack of length 18, we need to decrement
the pointer, leaving us

¢ 5(17) = 000010010
Notice that we needed to alter only the last bit in the pointer, but there is no way
to locate this last bit without reading the entire pointer. If we could rearrange bits
so that we read the last bit (of h(n)) early, then whenever n is even we would
just change the appropriate bit to 1 and immediately be finished with our POP
operation. We can do this by interspersing the bits of £ ;(n) from the 0PI
component with those from the h(n) component (using an extra 1 to denote the
end of the pointer representation). Note that these two components each have the
same number of bits. Since we would like to be able to read the last bit of h(n) as
early as possible, we reverse the bit order of h(n). Such a strategy gives us

A 1(18) = 010100001

A 1(17) = 000100001,
For clarity, we have underlined the bits that come from the h{n) component. Some
additional values of A é are given in Table 6.1.

o We now give a formal definition of the pointer representation scheme A ;

We begin with the following preliminary definition, based on the definition of the

string h I(n) from Section 5.4.

13
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Deflinition. For |8l 2 2, we define the string

175
0 " =(h (n))R
n fz ’
_ _ 14l _ 5l
i.e., the reverse of the string hm(n). For1 <i<18 |, we write © (i) to
5

4l
denote the i'" componerit of the string © n - For notational simplicity we may

simply write 8 to stand for © i

(2} is the next to the

2
So 6 : (1) is the last character in the string hl”l(n)’ o,
O

last character in the string hlb’l(n)’ etc.

Example 6.12. Since h,(18) = 0011. Then 6,5 = 1100, and we have 8 (1) =1,
0,,(2) =1,0,,(3) =0,0,,(4) =0. l

We now define the pointer representation A ;, in terms of the string Gn.

Definition. Let (5] 2 2. We define the pointer representation scheme A é as
0,
follows: Aln) e U000}, Ui} .
2 m{ a(zg-0 218 |

We 1liustrate the definition with an example.

Example 6.13. Let us determine the pointer A ;(26). Recall from Section 5.4 that
h,(26) = 1011. So 6,(26) = 1101, and
A L(26)  =1{0-1},u {01}, u{0- 0}, U {0 1}, U {l}4
= 010100011. i

Table 6.1 gives the pointer representations A ;(n) for 0 <'n <33
Now that we have defined the pointer representation scheme A é, let us use

this scheme and determine access costs for implementing the stack operations.



HBEEEuvo o s wmwr—o

Pt et pa et et b
W o 3 U oW

[oa TN Vo T - NN IS B . |

SN i o T N T Ve I e S i B o= I oV T e N o }
D o |

LW W W
[V RN - T o e

h(n)

00
01
10
11
000
001
010
011
100
101
110
i
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
00000
00001
00010

- 186 -

J’G)

00
10
01
11
000
100
010
110
001
101
011
111
0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111
00000
10000
01000

A 3(n)

1
001
011

00001
01001
00011
01011
0000001
0100001
0001001
0101001
0000011
0100011
0101001
0161011
000000001
010000001
000100001
010100601
000001001
010001001
000101001
010101001
006000011
010000011
000100011
010100011
000001011
010001011
000101011
010101011
00000000001

Table 6.1. Construction of pointer representation A .12
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o
Theorem 69. Let D = Ux!, let 8=1{0,1}, and consider a function
i=0

f:x =~ 5t Let p:D - 3% be a TOS pointer representation
tel

pld) = Ula()}, U A ;(dD},
where n, n, € N. Let k, él;\]l. Then it is possible to implement the stack
operations so as to achieve the following access costs for all d € ID.
HLop( p(d))T <A SUdD ]+ K,
HLO ey (AT S TA JUdD T+ (%) ]+ 2
HLOGo( p(d))] < IA J(dD ]+ 1

Proof: As we have previously seen, it is certainly possible to implement the TOP
operation by reading the entire pointer and then going to the appropriate location
to look up the answer qTOP(d). Although a lookup of this answer might require
making more than If(qpop{d) )| accesses, it cannot take more than some constant
number of accesses, depending on details of the function f.

We have constructed the representation scheme A ; so that it will be easy to

decrement the stack pointer. Consider the following algorithm:

Qpop if m(0) =1 then return "Error"
el
loop: if m(i) =1 then m(i) «0
return
m(i) «1
if m(i+l) =1 then m(i-1) «1
return
fei+
goto loop

In this algorithm, we read the pointer from left to right and never backtrack over
more than one cell, This gives the desired bound for POP.
A similar scheme allows us to perform a PUSHx operation.

Apyshy if m(0) =1 then m(0) «0
m(l) «0
m(2) «1
return
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iel
loop: if m(i) =0then m(i) «1
return
m(i) €0

if m(i+1) =1 then m(i+l) « 0
m(i+2) « 0
m(i+3) « 1
return

i« i+

goto loop

In this case we read the entire pointer and, although we never need to backtrack,
we sometimes need to rewrite two additional cells. Having incremented the pointer,

we can insert f(x) in the appropriate field with [f(x)! accesses. I

We can see that we have improved our previous access costs, so that each
stack operation can be implemented with at most O(logld]) accesses in the worst
case. In fact, the next result shows that we could expect to do even better for a
POP operation because for a very reasonable probability distribution we can expect

to make, on the average, only a constant number of accesses.

o0
Theorem 610. Let D = X!, let 5=1{0,1}, and consider a function

i=0
£:X » 8t Let piD - 8" be a TOS pointer representation
ld
pld) = Ufs(d(i))}, U {A J(laD},
=1 i

where n, n, € N.  Assume that there is a monotonically nonincreasing
probability distribution P on the stack states:
P(ldl =n +1) <P(ld| = n).
Then it is possible to implement the POP operation so that
avghlQpop( p(d))1 < K,

for some k € IN.
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Proof: Consider the algorithm (o, presented in the proof of Theorem €.9. Note
that 2 accesses are required for ldl = 2,4,6,8,10, ..., that 4 accesses are required
for ld| = 5,9,13,17, ..., that b accesses are required for ld| = 11,19,27,35, ..., etc.

Denote P(ld]l = i) by p,. Since p,; < p,, we know that

PatPatPgtiPgt -SSPy tpPgtPs*tP,
and so Pyt PytPg*tPgt - S-Ll—l.
Similarly, P ¥ Pg*Pyg*t Pyt S—i-,
Pry ¥ Pig ¥ Pz T Pag* e - S’%{’
Pag * Pag * Pgg * Pryt e S %6_’ etc

Notice that extra work is required to perform the POP whenever Id] = 1, Id| = 3,

ld| =17, Id| = 15, etc. (ie., when ldl = 2" - 1 for some i € N). Thus,

i=zopi ) a[apop( P( ld| = 1))] < Z —2‘—1- + 2 P ok . 2(k+l)

i=1 k=0 (27-1)
oD oD

<4 .3 Lot
i=1 2 k=0 2
o [ce)

= 2 -—t}l + —lr
i=1 &' k=02

fl
p—
[an>]

-

The following theorem summarizes the results we have just derived.

o0
Theorem 6.11. Let D = l_iXi, let & =1{0,1}, and consider a function
i=
£:X - 4%, Let pD - 4% be a! 'II'OS pointer representation
d
pld) = ‘U{f(d(l))}ni U{A LD},
where n, n,¢ N. Assumel—lthat there is a monotonically nonincreasing

probability distribution P on the stack states:
P(ld] =n +1) <P(ld] = n).
Let k,, kg € N.  Then A ; achieves Kraft storage, and it is possible to

implement the stack operations so as to achieve the following access costs:
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HLOop( p(d))] < 2 Llog,(ld+1) ] + k,
HLO sl ALd))T < 2- Llog,(ldi+1) ) + 1f(x)] + 3
#lOpop( p(d))] <k

Proof: The result for the POP operation is the result of Theorem 6.10. We obtain
the inequalities for TOP and PUSHx by recalling that |A ;(n)l = |a ;(n)l and by
making use of Lemma 5.7 and theorems 5.18 and 69. The Kraft storage follows
from Theorem 5.19. ' I
We have chosen to prove these results for the pointer scheme A ;, but the

scheme can be extended to include A | . As it turns out, the access costs we obtain

g

are even better than for A é, although the results are all of the same order of
growth. Because the details would tend to obscure an understanding of the class of
pointer schemes A, we shall not formally define A ;Hl for 181 > 2 or i > 1. But let
us indicate informally how these extensions could be made. Note that we shall

always have

Ai =0t 1,
I I@I(n)l | lgl(ll)l

and, in fact, the string A ' (n) is just a rearrangement of the elements in the

15
(n).
3l

Consider |8l = 3 and recall 113(11) from Table 5.2. Since we want to construct

string & ;

A ~l,(n) in such a way that it is a rearrangement of the elements in £ ;(n), recall
that

¢ 3(n) = hy(lhg(n)D)- 2- hy(n).
In this case the first (pointer) component of £ ;(n) has only about log,(lh(n)1)
- elements, whereas the second (list) component has |h,(n)| elements. So we clearly
cannot just use every other cell for the first component, as we did with A é(n).
Referring again to Table 5.2, we see that our pointer component has a 0 when the

list component has length 1, has a 1 when the list component has length 2, has 00

when the list component has length 3, etc. So
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6.
Ihg(n)l = 2278 (1),
i=1

where 6 denotes 6 3 When lhy(n)l =1 then A é(n) is of the form 0_, when

e
lhy(n)] =2 then A ;(n) is of the form 1, etc. This scheme is illustrated in Figure

6.1. The string © i’ is written out in blocks of size 2' and the coefficient of each

block, 0 or 1, tells whether there are 2' or 2- 2' elements, respectively, in that block.

Rather than attempt to say more in words, we refer the reader to Table 6.4,

[

Ho\DOD«]O\U\%QJl\DP—‘*
<
—
[ gNa)

form of A ;(n)
02
L2

— s

Figure 6.1. Qutline of scheme for A é(n).

[t is also possible to construct A ' for i > 1. The procedure is outlined in

1Al
Figure 6.2. Notice that we write the initial part of O, as much as possible, in
K
blocks of size 1, 2, 2%, 2% 2% etc. Of course, when e | = 2.2 for some k (ie.,
i=0
0 1 = 1,3,7,15, etc.), then some digits in © _ will be left over. In particular, let
J+1

r=minljl 22'>101)
-0

Then we can write the first 22! elements in blocks of size powers of 2, each block
i=0
preceded by a 0; a 1 indicates when we do not want to continue reading the next
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00
10
01
11
000
100
010
110
001
101
011
111
0000
1600
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
111
00000
10000
01000
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A

)
002
012
1002
1109
1019
1119
000002
010002
000102
010102
000012
010012
000119
010112
1000002
1100002
1010002
1110002
1000102
1100102
1010102
1110102
1000012
1100012
1010012
1110012
1000112
1100112
1010112
1110119
00100002
01100002
00110002

A 5(n)

1
0010
0110

00110
01110
00111
01111
00000100
01000100
00010100
01010100
00001100
01001100
00011100
01011100
000001160
010001100
000101100
010101100
006011100
010011100
000111160
010111100
000001110
010001110
000101110
010101110
000011110
010011110
000111110
010111110
0000010100
0100010100
0001010100

Table 6.2. Construction of pointer representations A é and A g
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6.5 The BOS Pointer Representation

For the sake of completeness, let us briefly mention the bottom of stack pointer

representation.

Example 6.14. Recall Example 6.10, where we had X = {a,b,c,d}, 8 = {0,1,2,3},
3

and ID = X% The function f:X - &* is defined by

i=0
fla) =0
f(b) =1
f(c) =2
fld) =3
and the pointer £:] - 8% is defined by
£80) =0
o1 =1
o2) =2
03) =3

Then we can define the concatenation-preserving pointer representation p:D - zt

by
ldl

pld) = ULr(d()) hyhy U {20dD )
i=1

For instance,

p(n) =0
pld) =13
plcab) = 3102

Assuming L is large enough to represent any d € ID (ie., L > 4), let us construct
algorithms to implement the stack operations. In order to perform a POP operation
we need not only decrement the pointer but the contents of all of the memory cells
will have to be shifted left by one,

Rpgpt if m(0) =0 then return "Error"
m(0) « m(0) -1
iem(0) +1
whilei > 1do  m(i-1) < m(i)
iei-1

Similarly, the PUSHx operation requires that the contents of each cell be shifted



- 195 -

right by one.

3 if m(0) =3 then return "Error"

m(0) « m(0) +1
templ « m(0)
temp2 « m(1)
m(1) « f(x)

PUSHx'

ie2
while i < templ then temp? s m(1)
iei+]
The TOP operation is much easier.
Aropt if m{(0) =0 then return "Error"

return m(1)

We can extend the pointer scheme in the previous example and define the EOS

pointer representation in the obvious way.

(=]

Definition. Let D = UX', for k € N and consider a function £:X - 31, Let
i=0

p:D - B be any pointer representation

|d}
pld) = Ulra(i)},
et ld}+1-

where n, n, € N (for any 0<i<k) and where £ is a representation

CRUCO

f:7 = Z}+. Then pis a kottom of stack (BOS) pointer representation.

The types of arguments used in the preceding sections can be used to
determine the access costs for implementing the BOS pointer representation. For
PUSHx or POP, the elements in the stack will all have to be moved, requiring an
access to each n; field and also reading the entire pointer component (assuming the
pointer achieves Kraft storage). A TOP operation is, however, cheap since it is

always located in the same field, assuming, of course, that there is a TOP element.
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Kk

Theorem 6.12. Let ID = UX! for k € N and let the function f:X¥ - 87be a
i=0
representation that achieves Kraft storage. Consider the BOS pointer

representation p:lD - 8" defined by
]

pld) = Ulra(in},
lal+1

i=1
where n, n ¢ N and where ¢ is any representation £:] - 8t Then any

Y {e(ldD) },,,

implementation of the stack operations will have the following access costs:
HlOgop(p(d))] 2 1
MLy AdNT 2 18]+ 1d) + 1
llaD ]+ ldl if ld] = 0

Y

HLOpop( p(d))]

V4

1 if ldl =0

We do not formally prove this theorem because the proof is similar to
arguments we have already made and because we can now already see that the
stack operations would have higher access costs than we would in general want.

Note that the four stack representations we have discussed may all achieve
Kraft storage, but their access costs differ greatly. We summarize in Table 6.3 some

of the lower bounds we have determined in this chapter.
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CHAPTER 1
QUEUES

The same framework that we have developed in this thesis can also be used to
analyze queues. Although we shall not in this chapter prove any results, let us
point out some of the complexities inherent in queues that are not present in stacks.

Recall that a queue differs from a stack in that items are inserted at one end
and deleted from the other. If we want to achieve Kraft storage in a representation
of a queue, we know that we can use only a single pointer. This, however, does
not allow muitiple representations and so updating operations will necessarily have
high access costs. In all of the examples we consider in this chapter, we shall
assume a problem domain alphabet X = {a,b,c,d} and assume that |Z] is large
enough so that a pointer always fits in a single cell in the cases we consider. We

shall also assume that a € X is represented by 0 € 3, b by 1, ¢ by 2, and d by 3.

Example 7.1. Suppose we have a three element qucue. Consider implementing
such a queue with a single pointer and holding the other end fixed.
a) Let the rear of the queue be fixed; i.e., all 1ns'ert10ns are made to the same cell.
Thus, the entire contents of the queue must be slid each time an insertion is made.
On the other hand, we need only decrement the pointer to delete an item from the
queue. For instance, suppose our queue initially has three elements inserted: b, a,
c. Som(0) =2, m(1) =0, and m(2) =1:

201 _ Pointer to front: 3
If we DELETE an item we are left with

_ 20 Pointer to front: 2

If we now INSER'T(d), we obtain

320_ Pointer to front: 3
Notice that each of the elements already on the queue had to be moved when we

made an INSERT. With this scheme, a DELETE operation requires only a single
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access in order to decrement the pointer. An INSERT operation, however, requires
Id| + 1 accesses, where |d| is the initial queue size.
b) If the front of the queue were stationary, then it would be an insertion which
would be easy to perform. As above, suppose we have intially inserted b, a, ¢ on
the queue:

102 Pointer to rear: 3
A DELETE operation requires moving the contents of each element in the queue:

02 Pointer to rear: 2

Now an INSERT(d

—

is simple:

2 Pointer to rear: 3

=}
[N

Using this second scheme, an INSERT operation requires two accesses, orne to the
pointer and one to insert the new element. On the other hand, the DELETE
operation requires accessing every element in the queue (as well as the pointer),

ld] + 1 accesses. i

The tradeoff in the preceding example suggests that we do not want to
consider separately the access costs for the INSERT and DELETE operations;
instead, we might want to consider the cost of a DELETE-INSERT pair of
operations. In Example 7.la we found that an INSERT had cost |dl+1 and a
DELETE had cost 1, a total cost of ld| + 2 accesses for the DELETE-INSERT pair.
In Example 7.1b, INSERT had cost 2 and a DELETE had cost ld] + 1, a total cost of
ld| + 3.

The expense involved in the INSERT or DELETE operation in Example 1.1
was due to the fact that we were forced to always maintain one end of the queue
fixed. Of course, if we were to allow two pointers, then we would not have this
problem. Instead, let us consicer a scheme where we allow a queue to have one end

in one of, say, two positions.
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Example 7.2. Reconsider Example 1.1b but assume that the pointer is large enough
that one bit can be reserved to indicate whether the "fixed" end of the queue is in
cell 0 or in cell 1. Suppose our initial queue state is, as before:

102 Pointer to rear: 3 Front: 0

Now if we do a DELETE, we do not need to move any of the list elements:

_02_ Pointer to rear: 3 Front: 1
An INSERT(d) operation gives:
_023 Pointer to rear: 4 Front: 1

Unfortunately, another DELETE will require moving the queue:
23 __ . Pointer to rear: 2 Front: 0
Finally one more INSERT(a):
230_ Pointer to rear: 3 Front: 0
This effectively brings us back to our initial state (although the actual queue
elements differ). Notice that these four operations we performed required, in

order, 1, 2, Id| + 2, and 2 accesses, where |d| refers to the size of our initial queue

state before the two pairs of DELETE-INSERT operations were performed. i

So in Example 7.2, by reserving one bit of the pointer to indicate the location of the
front of the queue, we used a total of |d| + 7 accesses, only Mgt—l accesses on the
average for a DELETE-INSERT. On the other hand, without using this extra bit
we in Example 7.1 were forced to make [d| + 2 accesses for a DELETE-INSERT. So
we were able to not only delay the heavy cost of sliding the queue, but we in fact
have decreased the average cost of a DELETE-INSERT pair. Let us use the same

trick again and reserve two bits to tell us where the front of the queue is located;

i.e., the front of the queue may be in any of cells 0, 1, 2, 3.

Example 7.3. Given an initial queue 21 0 3, let us perform a sequence of four

DELETE-INSERT pairs of operations, keeping track of the numbers of accesses.

DELETE: 103 1
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INSERT (a): _1030__ 2
DELETE: __030__ 1
INSERT(c): __0302_ 2
DELETE: ___302_ 1
INSERT(b):  ___3021 2
DELETE: 021 ____ ld] + 4
INSERT(a): 0210___ 2
This gives a total of |d]+ 15 accesses, an average of _l_c_{l_;‘_lé accesses per
DELETE-INSERT pair. i

In general, if we reserve k bits of the pointer to indicate the location of one end of
the queue, then there are ok possible representations of each queue, and a

DELETE-INSERT pair requires, on the average,

ol + 2%+ 3.(2%-1) +2 _Jdl,, _ 1 ||
= 4 - = = 0(x)
o gk gk T TR

accesses.

Thus, we have seen that a one pointer scheme allows no multiple
representations and we may achieve Kraft storage. Using a two pointer scheme, the
queue could be located anywhere in memory (within the range of the pointers) and
may, in fact, drift throughout memory. An intermediate scheme has a single
potnter which has enough room for |d| with one or more extra bits reserved to
indicate the location of one end of the queue. In this latter case, we not only defer
but actually save in our access cost. This illustrates not only a storage-access
tradeoff but also a tradeoff with multiplicity of representation, and we have a nice
continuum between the one and two pointer cases.

Suppose we do want to achieve Kraft storage and are using a single pointer. It
is interesting to consider how many accesses are required in order to perform a
DELETE-INSERT pair of operations. If the queue is always of a fixed size k (i.e.,
the only operations performed are D.ELE'I'E—INSER'I'(a) pairs), then, somewhat

surprisingly, it is possible to represent the queues in memory in such a way that the
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average number of cells accessed is a constant independent of the length Idl. On
the other hand, suppose we insist that the representation function p have the
constraint that p(d) is a permutation of d and that d(i) always maps to the same
memory cell(s), for all 0 <i<ldl. Then it can, in fact, be shown that a

DELETE-INSERT pair of operations performed on all queues of a fixed length k
13l -

b
encoding schemes it will be necessary to access essentially |d| cells.

will have an average access cost of at least ( 1) k. Thus, for most natural
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CHAPTER 8
CONCLUSIONS

In this thesis we have explored what it means for a list to be
information-theoretically optimal, in the sense that it achieves Kraft storage and
Kraft access. We first examined the full set of table lookup questions and showed

that if we are considering problem domains of the form ID = UX‘, then it is
€]

possible to achieve both bounds simultaneously only for domains D = X" and
D = {A} UX"™ This corresponds to a notion of independence; essentially, it must
be the case that 1o matter what the value d(i) € X, then d{i+1) might take on any
value in X. If we were to determine d{i) = @ then it would have to be the case

that ¢{1+1) = & and we would not have independence. Of course, we did see that

there is a perhaps surprising exception, namely, when D = {A} U X™ and |51 = 2.

As a consequence of this work, we were able to show that it is never possible
to achieve both Kraft storage and Kraft access for many common list representation
schemes. The only exception was for a fixed size representation, when D = X",
Since we are here primarily interested in variable-length lists, it is clear that we will
not be able achieve both.

We discussed four natural stack representation schemes: TOS endmarker, BOS
endmarker, TOS pointer, and BOS pointer. We were able to obtain fairly tight
lower bounds on access costs for performing POP, PUSHx, and TOP operations;
those results are summarized in Table 63. It 1s shown that endmarker
representations are necessarily expensive to update. On the constructive side, we
developed a representation scheme for a TOS pointer that is storage optimal and
does quite well for access. Assuming a monotomically nonincreasing probability

distribution on stack lengths, we were able to obtain the following access costs:
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#HlOrop( p(d))] < 2- Liog,(ldl+1)J + k| = O(logldl)
L g A(d))T < 2 Llog,(ld+1) 1 + k, = O(log(1d1)
avg Hl,qp( p(d))] < kg,
for ky, k,, ky € N. The bounds we obtained give an indication as to why pouter
representations are so commonly used in the practical implementation of stacks.

In the discussion of stacks, we were forced to examine separately several
classes of representations. It would be nice if there were some more general
characterization that would allow us to make more general statéments. For instance,
is it possible for any implementation to perform both a PUSHx and a POP in a
constant numbet of accesses.

The model that we used is capable of more generalization. For instance,
instead of considering access costs for performing only a single operation, we might
wish to perform a sequence of operations. Also, our definition of access or storage
costs could be altered to correspond to the desired application; we might even be
able to consider snme sart of hierarchical memory structure,

There remains a great deal of work to be done. Perhaps the most obvious is
the need to apply the techniques used in this thesis in order to examine other types
of lists. We briefly discussed queues, but it is clear that queues raise a lot of issues
that were not present with stacks. 'The flavor of some preliminary results was
indicated in that chapter. It appears that dequeues are a straightforward extension
of queues, but there remain many other types of lists to be explored. In addition,
it would be interesting to know whether similar arguments could be applied to trees.
Some of the techniques discussed may also be useful in the analysis of hashing

tables.
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