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CHAPTER 1 

INTRODUCTION 

With the present-day widespread use of computers, it is important to be able 

to C'ffic1cntly store information and execute operations. For a given prnblem, 

clependmg on the structural relationships between the data elements, we choose to 

use a particular type of data structure. In this thesis, we shall consider only the 

:otimplest information structure, a list; 111 particular, we discuss stacks and briefly 

mention some work with queues. 

1.1 The Data Model 

The data model I will use for studying list structures is based on the model of 

a storage and retrieval problem developed by Elias [5] and Welch [23]. A retneval 

problem consists of a collection of data bases, any one of which may be observed at 

a given time, and a set of retrieval questions which may be asked of any data base. 

It may also be desired to perform updates; i.e., to transform the currently observed 

data base into some other data base from the domain, the set of possible data bases. 

A retrieval system which solves a retrieval problem must have several 

components: 

( 1) a method of representing any observed data base, 

( 2) a method for answering any retrieval question about the observed data 

base, 

( 3) a method for performing updates on the observed data base. 

For a given question, the method for answering the question must be independent 

of the observed data base; to allow the method to depend on the observed data 

bas.e would presuppose some knowledg·e of the observed data base by the user in 

order to determine which method is appropriate. Thus, the method must give the 

corrC'ct answer no matter what the current data base is. 
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The iollowmg exC1rnplc illustrates what we mean by a storage and retrieval 

problem. We delay discussion of how a data base might be stored and how a query 

or update might be implemented until the next section, where we shall reconsider 

this ex ;:irnple. 

Exampl(> LL Consider the problem of Rotary Fan Manufacturing Co., R.F.M., 

rrccavmg mail orders for fans. Sornehow R.F.M. must keep track of these orders to 

be filled. Exactly what information is needed depends on the questions and updates 

that will be executed. A data base corresponds to the current list of orders to be 

filled. Tlir domain is the set of all possible data bases; i.e., all possible lists of fan 

orders. Notice th;:it there are data bases of different sizes; m fact, it m;:iy be 

pmqlJJe for a data base to have any integrC1l size greater than or equal to zero. Of 

course, 1f R.F.M. wants to stay in business for long 1t had better be the CC1SP. that 

shorter data bases are more probalJle than larger ones. 

Bec::iuse olrl orders are contmually bemg filled and new orders received, it 

must be possilJle to update the current order list; m particular, R.F.M. needs to be 

able to perform the f ollowmg two updates. 

u 1: Process an order from the order list. This mvolves mailing the desired 

fans and deleting the order from the current list. Thus, the size of the 

data base is decremented by one. 

u 2 : A 11ew u1de1 c111iv111t; 111u~L Lie plaet~d u11 Lhe urJer li~L, wlllch results 111 

the size of the current data base being incremented by 011c. 

R.F.M. must also be prepared to answer queries concerning the current data 

bcisc, such as whether or not John Doc's order 1s on the list, or who~e order wall tie 

filled next. For instance, we might have the following set of questions. 

q 1: Is (name) a customer waiting· to have his order processed? 

q 2 : Who 1s the k th customer in hne; 1.e., what order wJ!l be the k th to be 

served? 

q 3 : What are the 1 most recently placed orders? 
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Exactly what information needs to be stored on the order list depends on the 

µarticular queries that wlll be made. I 

1.2 List Structures 

We consider a list problem to be a type of storage and retrieval problem, 

where each data base is a particular list. In general the size of the list may vary, 

and exactly how the list will be implemented depends on the specific questions and 

11prlatPs to be performed. In this section we introduce the basic list structures we 

will be concerned with in this thesis: stacks, queues, and dequeues. The 

appropri;:itc operations will be formally defined later. 

A l111ear list is just an ordered sequence of items chosen from a particular set 

of clrrncnts (sec e.g. Knuth [14], Aho, Hopcroft, and Ullman UJ). In many 

instances, <1ccessing of a list is restricted to the first and last elemcnrs; in particular, 

It may bl' the case that Items can be added or deleted only at the ends of the list. 

Bf'cause the~e lists are frequently encountered, they have special names: stacks, 

queues, cleq ueues. 

A stack, also known as a push-down store or a LIFO (last-in/ first-out) list, 

1s a linear list for which all insertions and deletions are made at one end of the list, 

the top. For example, consider <111 initicilly empty stack; i.e., there are no elements 

in the list. Suppose we then insert two elements onto the stack: 

Element 1, Element 2. 

Smee Elernent 1 was the first item put onto the stack, it occupies the bottom stack 

position and is the least accessible item; it cannot be removed until all other 

elements on the stack have been removed. To add, PUSH, a third element onto the 

stack, we locate the top of the stack and insert this new element, Element 3: 

Element 1, Element 2, Element 3. 

Element 3 is now at the top of the stack, and so if we delete, POP, an element 

from the stack, we are left with: 

Element 1, Element 2. 
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Of course, if the stack had been empty we would not have been alJle to perform a 

POP operation, so there must be some way of detecting an empty stack. 

[x;:ictly how one mig·ht choose to irnplernent a stack is one of the issues 

discussed in this thesis. figure 1.1 should help picture how the stack operations 

work ;:incl conesponds to one common type of implementation, where each iti:•rn 111 

the stzick has a po111ter which indicates the lociltion of the prev1011s stack item. An 

acldit1011<1I pointer <ilways points to the top of the stack. Such a storage arrangement 

allows the stack operations to be performed in a straightforward way. In particular, 

a TOP oprration is performed by reading the pointer in order to locate the top of 

the stack <1nd then simply reacl111g what the TOP value is. To perform a POP we 

loccite the top of the stcick, use this element to locate the second stack element, and 

then reset the top of stack pointer to this second element, which becomes the TOP 

element. S1rnibrly, a PUSH operrition can bC' implemented by f 1rst locatmg some 

frrf' memory cell, 111to wl11ch the appropriate new stack value 1s inserted. Tl11s new 

cell has a pointer which is set to the same location as the top of stack pointer, and 

then the top of stack pointer 1s changed so that it points to the newly filled CC'll, our 

nrw top of st:ick. The pointers 111volvccl in these 1mplcmcntat1on.s arc incl1catecl 111 

figure 1.1. Notice that the directions of the pointers between the st<1ck elements 

m;:ikc rcadmg "down" the stack straightforward, but there would be no way to re<icl 

back "up" the st;ick. Of course, 1f the stack occupied a contiguous section of 

memory, there would be no need at all for pointers between the stack elerne11ts. 

PUSH or POP 

-'>iL 

bottom I.::.. 3rd t 2nd !..<_ TOP 
" f ~ 

'-~-~--~ 

Figure 1.1. Stack Operations 
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A qunu, also known as a FIFO ( ill"st-11/ first-out) list, or a circular list, is a 

1111f'ar lisr for which all insertions are made cit one end of the list, the rear, ::ind cill 

deletions cire rnacle cit the other, the front. Thus, elements leave the list in tlic sC1rne 

ordC'r 111 which they entered. Suppose we insert, ENQUEUE, three elements 011to an 

initially empty fjUeue, fir.st element 1, then element 2, then element 3: 

Element 3, Element 2, Element 1. 

If we now delete, DEQUEUE, one element, we are left with: 

Element 3, E le men t 2. 

Figure 1.2 illustriltcs the queue opercitions. Notice that If the arrows uctwcen 

elF?ments in Figure 1.2 we1e reversed, then after performing· ci DEQUEUE operation 

we would have no way to keep track of the location of the front oi the queue. Of 

COLll'sP, \-Ve mi~ht choose to store pointers g·oing 111 both directions, but th1<. would 

111 volve greater storage costs. 

ENQUEUE DEQUEUE 

\II ~ 

rear .... 3rd ~ 2nd "°- front 

" I' 

Figure 1.2. Queue Operntions 

A dequeue is a linear list for which all insertions and deletions are mcidc at the 

ends of the list. Thus, a stack and a queue can each be viewed as a particular type 

of rlequeue. One may also distinguish outj.iut-rcstrictt'd or input-ustrictcd dequeues, 

in which clelel10ns or insertions, respectively, are allowed to take place at only one 

encl. The ends are commonly referred to as left and right, although either an 

111sert1011 or a deletion rnay occur at either end (see Figure 1.3). We shall not an 

this report discuss any results speciiically concernmg dequeues, but it appears that a 
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dequeue can be viewed as a straightforward extension of a queue. 

Insert or Delete 

left 
~nd 

from 
left 

2nd 
from 
nght 

Fie~ure 1.3. Dequeue Operations 

Insert or Delete 

right 

Now thilt we h;ive discussed these simple list structures, let us recons1clcr the 

issue of clcvclop111g a solution to the system of Example 1.1. 

Examplf' 1.2. How R.F.M. develops a system to solve its order problem depends not 

onlv un f111d111g C111 eff1cie11t means to store any data base, but also 011 wh;it queries 

::i11cl upcl;itcs it expects to be rnC1k111g most often. Thus, f 111cling· an "optimal" solution 

\VOuld depe11Cl rn1 knowmg some rather precise probabilities. On the other h;ind, 

we can <it lcc;st rnc;ke some general comments. The representat1011 of a data b~1se 

must 1ncluclc the n<lmes oi the persons who ordered fans, as wrll as the other 

111.·ccs<.;11 y 111forrnat1011 such ZiS quZlnt1ty ordered, Ziddress, payment, etc. It would 

prob;:ilJly m:1ke Sl'l)Se to store a cl Cl ta bi!SC as some sort of list Structure. for 

s1111plicit~1 , let us co11s1der rndy a list of nC1rnes and assume th;it each n::irne al~o 

cn11t;uns ii po111tcr to the relevant corresponding inforrnat10n. In other words, we 

:iccess ,111y elPme1H m the list by reading the appropriate name. We have decided 

that c:-ich data bi!se is to be represented by a list structure, but the type would be 

cletPr1111111°cl by l\.F.M.'s desired processing order. Let us discuss several possible 

1 mp lcrnen tat ions. 

Onr rr;i~oncible scheme would be to process orders FIFO; 1.e., 111 the SZirnc 

order in which they ar11ved. This would correspond to implementin~ some sort of 

queue, prrliaps as rn Figure 1.2. In this case we always keep track of the next 
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orckr to be processed and the IC1st order received. Presumably, upd<ltes u 1 and u 2 

would be ea~y to perform. On the other hand, returning the answer to question q 1 

1C'q111rrs searching the queue for a prirt1cular name. Unless we have more 

111form(ltion, this could require searching through the entire list. ~-or a queue 

implementation, it would probably be straightforward to answer question q 2 , b)' 

tracing b::ickw(lrd k items from the front. On the other hand, q 3 would probably 

be cliif1rnlt to amwer. To determine the one most recently p!Jcecl order would 

rcquirr only a single access to the rear of the queue. But to dctenninc the seco11d 

most recently placed order is not a~ easy. Unless there is some Wily of knowm~; thf:' 

"reverse potnters", then it would be necessary to read all items from the front, 

krepmg tr(lck of t'ach prevwus Item read, until we reach the rear of the queue. Of 

coursP, if we expected q 3 to be asked frequently, we might wish to alter our 

implcine11tation scheme <lnd store both forward and reverse pointers. At the price 

of 111cre;ised storae~r, we could decrease the expense of answermg q 3 . 

Another possible scheme would be to try to process orders as they are 

received, 11rn1g a stack represent<ltion. Of course, R.F.M. Co. rnip,ht lose a lot of 

business this way, uecause 1f it gets at all IJehind m processing orders, then some 

poor souls would be stuck indefi111tely at the bottom of the stack. (And R.F.M. 

h<lsn't even cons1clerecl the issue of cancelhn~: an order from the m1cldle of the list~} 

With such a FILO implementation, we would expect q 3 to be easier to answer than 

It was with a queue 1rnplernentC1tion, but now q 2 doesn't even make seme, becC1use 

there 1s no way to know when an order will be processed. Question q 1 would 

probably be no more or less difficult th<ln it was for the queue. 

If we expected to spend most of our time answering question q 1, we might 

want to sort the list of names alphabct1cally. ( Tlrn would also make it ear,1er to 

ca11cel an order.) But then we would need some additional means of 111d1cat111g; the 

processing order, such as a number field associated with the name. Unless we want 

to mail out the fans according to some alphabetical order, we would either need 

pomters to indic<lte the processing order or else updates might be very expensive. I 
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1.3 Computer-I mplementecJ List Problems 

In tl11s thesis we are concerned with cornputer-1mplcmentrci solutions of list 

prolJlems. Recall that in Section 1.1 we mentioned the three components th~1t <1ny 

s11cli system must possess. Note that requiring the algo1ithm1c mrtltod for an::.wcr111g 

~i qlie:-l1on (or performing illl update) be mdepenclent of the observed data base 

implies a strict srparation of "prngrarn" and "data". The "program" to answer a 

quest1011 rnust remain constant, while presumably the computer memory state 

( rcprcsc11ting the obsrrvccl "data") differs for different observed data IJa~es. 

A rnrnpurmp, system wh1cl1 fmds the values of a function f:Dr _ _. Rf on be 

viewed 111iorrn;itwn-rhcoretically as a deterministic communications cl1annel with 

inp11t d ( Dr and output value f(d) (: Rr In [6], Elias considered the strictly 

1nforrnat1on~-1I l1rn1ts on computer performance and obtamed lower bmrncls on 

storage and access required in the computation of a single function. This was clorie 

bv <illowinf'. frf'eriom of choice of representation of the input and decoclin[~ of the 

output. V1ewmg the contents of a computer's memory as a codeword, Elias [7] 

dP::ilt wnh fJUPst1ons about the use of codewords which are not sequences lrnt arc 

sets of bits at addresses scattered throughout a sh.:ired memory. The next step was 

to ex trn cl these rcsu lts to the computa t10n of a family of functions def med on a 

common dorna111. An overview of much oi this work is given by Elias [9], and an 

a11C1lys1s of the complexity of some simple retneval problems with update was given 

by Elias and Flower [10]. Warner [22] has invest1g;ated the performance of 

retrieval svsterns for tables of entries. 

Let 11s note tint 111forrnC1tion-theoretic approaches have been takrr1 to other 

problems <1s well. The work of Kolmogorov [lSJ usmg minimal program length as a 

mc:isure of comput:itional complexity has an informational flavor. Also Chaitcn [4] 

viewed the contents of memory as a program to be executed. Other work has been 

done relat111g to problems of exact and partial match and their storage and access 

costs (Minsky and Papert [19], Rivest [20], [21J). 
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This thew. extends work that Elias has done, in which he has cons1clcrecl 

m;rny issues concerned with storage and retrieval prolJlerns using a fixed s11.e lmear 

arrav. To allow the natural representation and man1pulat10n of data, variable size 

.ur;:iys such as stClcks, queues, dequeues, lists, and trees are frequently used. The 

f:lct tl1at they have variiible size makes d1fferent storage representations and 

:iccessme; techniques appropriate; for imtance, we must consider the basic 

operat1011s of msert1011 oi new elements and deletion of existing elements. 

We <1re intPrested in investigating certain costs associated with solvrng 

computer -1mpleme11tecl list problems. In part1culiir, we are concerned with lower 

bounds on the cost of storing· a data base and on the cost of irnplerne11t111g a 

question or an update on the currently observed data b(lse. The storage cost we 

me;:isurc in terms of the number of memory cells required for the data bas~~ 

1eprese11t<1t10n. The implementation cost we measure in terms of the number of 

nH:mory C1ccesses n'quired, which is in general directly related to the time taken to 

perform ;:in operation. 

We IJegm by m Chapter 2 cliscurnng the formalism of our machine model and 

what It mr(lns to solve a list problem. Chapter 3 discusses ~torage and access costs 

and expbins the not10ns of Kr;:ift storag·e iind access, 111dicatlng the types of cost 

bounds we might expect to obtain. In Ch;-1pter 4 we consider the entire set of t<1ble 

lookup questions and investig-ate consequences of achieving; Kraft storage and access. 

Possible implerne11tations for the taule lookup question set are explored in Chapter 

S, where we discms three types of representations: fixed length, end marker, C1nd 

pointer. These same representation classes are analyzed m Chapter 6 with respect to 

1rnplrme11ting st;:icks. Finally, we summarize our results, discuss how the tech11iques 

we h<1ve developed can also be used to help obtain storage and ;:iccess bounds for 

queues and dequeues, and point out directions for future work. 
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CHAPTER 2 

SOLUTION or A LIST PROBLEM 

In this chapter we discuss our formal machine model and what it means to 

solve a list problem. Tim work 1s based on the model of a storage <1nd rctncv<1l 

ptolJlern developed by Elias [SJ, [6], [8]. We shall here introduce much of the 

tf'rm111ology and notation that is used throughout the thesis. We first define a 

-'torage aml retrieval problem, and then deime our machine model and wh;it it 

11w~-111s for a machine to answer a question correctly. We discuss the d1st111ct1on 

br-twef'n tile problem cincl rn<1chine domains and then def me the m~1ch111e 

n•prcsent;1tiun of a problem domain. At this point we are fmally in a pos1t1011 to 

st::ite p1 ec1scly wli<1t It means for a mcichinc to solve a storage and retrieval problern. 

In the List section we summarize some of the ideas presented in the ch::ipter, 111 

order to clarify wl1at we mean by the solution of a list problem. 

~.1 Oefinition of a Storar,e and Rel rieval Problem 

Ler F be a family oi iunct1ons (operations) defmed on a common dornalll ID, 

and 111clcxed by some mdex set J ~IN, f ::: {f111 E J }. An operat1or1 f 1 E F 1s an 

orclerrd p;i1r of functions f 1 = (qi'11i), where darn( i 1) =-ID <1nd rC1n( u 1) ~ iD. \Ve 

refer to an element d ( ID as Cl data b;:ise. Executing operation f 1 011 cl<ita base 

J E ID rr:-turns the value qi(d) and has the side effect of updating d to the r1ew 

v;ilue ui(d); we denote tlrn by t)d) = (qi(d),u 1(d)). Q = {q 11 (qi'u 1) E F} 1s 

c:illcd the question set <incl U = {u 11 (qpu 1) t F} is called the update sN of F. We 

refer to ( F, ID) ;is a storage and 1t'trieval firoblnn. If the data bC1sc d is not 

chC1nged as <t consequence of executing f 1 (1.e., 1i u1(d) = d), then (F, ID) JS said 

to be a static j1rr/>/cm, <1nd we may write it Cls (Q, JD). Jn general, however, the 

data base may change with time, in which case (F, ID) 1s a dynamic problem, or a 

/nc+tem tt_1itli ujidatt'. 
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In this thesis, we shall consider storage <111d retrieval problems which represe11t 

list data structures; we reier to these as list problems, or simply problems. In Section 

2.7 wr will be in a better position to explain precisely what we have in mind when 

we d1~cu~:.. the solution of a list problem. Let us beg111 by presenting a simple 

example of a storage and retrieval problem, which wJll illustrate some of the above 

terminology. Examples 2.2, 2.3, and 2.7 are extensions of this example. 

Example 2 .. 1. Let ID = {dil 0 S. i S 6} where each di E ID is a string of symbols 

from the set X = {0,1}; i.e., each d 1 E X*: 

d 0 =A. 

d 1 ::: 0 
d 2::: 1 
cl 3 = 00 

d4 = 01 

d5::: 10 

JG::: 11 

Note that we write d 0 = /... to indicate that d 0 is the null string, the string with no 

elements. Now consider two operations on ID, f 1 and f 2 . 

f 1 = ( q 1 ,u 1 ) is simply the identity question and update: 

ql(dl) =di 

u1(d1) =di 

The function 

Since u 1 causes no change to the data base dp f 1 effectively has only a question 

component and so 1s a static operation. We def me f 2 , however, to be a dynamic 

operation: f 2 = (q 2 ,u 2 ), where 

q2(c/o) =ao 

qz(d1) =al 

qz(dz) = alal 

q 2 ( d 3) = a 1 a oa o 

qz(d,l) = a1<12a1 

q2(d5) =a2a2a1 

qz(dG) = a1a1aoao 

u2(do) =do 

uz(d1) =do 

Uz(c/2) =JI 

u 2( J 3) = d 1 

U2(J4) ::: dz 

u2(d5) = d2 

Uz(JG) =d3 

Thus, executing the operation f 2 on data base d 3 gives the answer a 1 a0 a 0 and 

changes the current data base, d 3 , to the data base d 1• Notice that 

dom(f 1) = dom(f 2 ) =ID, ran(u 1) =ID, and ran(u 2 ) = {d 0 , d 11 d 2 , d 3 } £ID. 
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So if we were to execute the sequence of operations f 2 ,f 1,f 2 ,f 2 on d 3 , then we 

would expect the sequence of answers to be a 1a0a0 , d 11 a 11 a 0 and the resulting 

data base to be d 0• 

We frequently denote the domain of a function, dom( f), by Dr and similarly 

ran( f) by Rr Where we have a set F = {fil i t J} of operations, we may f111d it 

convenient to write D1 and R 1 for Dr and Rr, respectively. If there is no 
i i 

pornbility of confusion, we may simply omit the subscripts and write D and R. 

For instance, D( S) denotes the domain of the set S. Note that when we discuss a 

problem ( F, ID), we write ID to refer to the problem domain, which happens to be 

the common domain of each function f. t F. 

2.2 Definition of the Machine Model 

Our machine model is a deterministic, sequential, random access 

cell-addressable, halting automaton m, with a memory m consisting of L cells 

(where L may be infinite). The set of all possible contents of a memory cell, 8, 

corresponds to nt's fmite input alphabet, and gL denotes the set of possible memory 

states. V 1a its memory, Tl'l stores a sequence b E t:l, which it reads in some order 

determined by the structure of m and the values in b. m may or may not rewrite 

values as 1t reads the cells, but it eventually prints a sequence of output symbols 

chosen from some finite output alphabet £. Since m is deterministic, a given input 

( inirial state of memo1"}·) always causes m to print the same output (if m halts), so 

rn computes a partial function w from inputs in 13L to outputs in £*. If we let 

~( m) ~ 13L be the set of inputs for which m halts in finite time and ITT( lrl) ~ c;* 

be the set of outputs which m prints before it halts, then each automaton m defines 

a "characterntic function" w:".D(Trl) -+ !n(m). The only functions which m can 

actually compute are restrictions of its characteristic function to some subset of its 

acceptance set. 
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2.3 Machine Computation of a Static Function 

Now that we have in mind a machine definition, let us investigate in what 

sense a machine m with L memory cells can compute a static function q :D q ~ Rq. 

Technically, a machine m can compute the values of a question q :Dq --+ Rq only 

when Dq s;; ~{nt) and Rq s;; 9Hm). It is often claimed, however, that a machine 

1ll computes a function q even when the machine alphabets and the problem 

alphabets are not identical. In such a case, the user also has in mind two 

non-machine components: a coder and a decoder. The coder consists of some 

encoding relation f':Dq ~ ~q' from the domain of q onto a subset ~q s;; ~( Trl) ; 

each d ~ Dq is taken into a subset 'T(d) s;; 13L, and any string b ~ 'T(d) is said to 

"represent" d. (We shall later use the symbol p to stand for an encoding function, 

as explained in sections 2.5 and 2.6. Using that terminology, our encoding relation 

'T will be seen to correspond to a relation p.) The decoding function o:9lq ~ Rq 

maps the subset Vlq = w( ~q) s;; ~( 1Tl) onto the range of q. The machine is said to 

comjiute q correctly if, for any d ~ Dq, when any b ~ 'T(d) is supplied to m and 

gives output e = w(b) = w 0 'T(d), the decoding o(e) of e satisfies 

q(d} =O(e} =Oo(&)of'(d}, d~ D. 

In particular, w o 'T must be a function. These conditions are summarized 111 the 

following diagram, where all arrows denote total and onto functions or relations: 

'T 

Dq ~ ~q s;; ~(Trl) s;; 13L 

q -l. -l. restriction of w -l. w 

0 
Rq ~ 91q s;; 9Hm) s;; &* 

To help us understand all of this terminology, we consider the computation of 

question q 2 from the previous example. 
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Example 2.2. Recall the question q 2 from Example 2.1, where 

IDq = {dil 0 ::; i ::; 6}, Rq c; {a0 ,a 11a2 }*. Let m be a deterministic, sequential 
2 2 

halt111g· automaton with a memory m consisting of three cells. Let B = {0,1,2,0}, 

E = {0,1,2}. m operates as follows: it reads the string of inputs until it encounters 

a O, reading in order memory cell 0, then cell 1, then cell 2; it interprets the string 

of characters from {0,1,2} as the ternary representation of a natural number; Trl 

computes, also in ternary, the square of this number, prints it, and then halts. So 
2 

Tl(ln) = LJ {O,l,2}1o{0,1,2,0}2
-
1 

I= l 

= {000, 001, 002, ooo, 100, 101, 102, 100, 200, 
201, 202, 200, 100, 110, 120, 200, 210, 220} 

ITT( m) = {O, 1, 11, 100, 121, 221, 1100, 1211, 2101}. 

m computes q 2 correctly, if we choose our encoding and decoding relations 

appropriately. Let T:Dq 4 83 be defined as follows: 

T( cl 0) = {000, 001, 002, 000} 
T(d 1) = {100, 101, 102, 10} 
T( d 2) = {200, 201, 202, 200} 
T(d3) = {100} 

T(d 4) = {110} 
T(d 5 ) = {120} 
T ( d G) = { 20 0} 

Thus, '!lq
2 

= '.'.r.(m) - {210, 220} and D'tq
2 

= ut(m) - {1211, 2101}. Now define 

o:91 __. R by 
q2 q2 

o(O) =a0 
o(l) =al 

o(ll) =a1a1 

o(lOO) = a 1a0a0 

0(121) = a 1a2 a 1 

0(221) = a2a2 a 1 

0(1100) = a 1a 1a0a0 

So the machine m with encoding· T and decoding o computes q 2 correctly. For 

instance, 

0 0 w 0 T(do) = 0 0 w(OOO) = o(O) = ao = q2(do) 

0 0 w 0 T(d6) = 0 0 w(200) = o(llOO) = alataoao = q2(d6) I 
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2.4 The Problem Domain 

Because in this thesis we are concerned with representing list structures, we 

consider a data base d E ID to be a string of characters chosen from the problfm 

al /ilzabct X. For notational convenience, we formally represent d as a set of IJI 

ordered pairs, containing one value d(n) from the alphabet X for each n f IN less 

than lcil: 

d = {(n,d(n))I 0 ~ n < ldl, d(n) f X}. 

Wht:>n there is no chance of ambiguity, we may write d = x 1x2x 1x3 to stand for 

d = {(O,x 1), (1,x 2), (2,x 1), (3,x 3 )}, 

where each x1 f X. Thus, what the formal ordered pair notation does is to 

explicitly state the implied order of characters in the string d. In an obvious way, 

the definition of d could be extended to include countably infinite strings; i.e., we 

may wish to consider the size of a data base d t ID to be unbounded. In this 

thesis, we shall consider only problem domains ID where for all d 1, d 2 f X k, 

J 1 f ID if and only- if d 2 f ID. Thus, if we allow a string d 1 f X k to be in the 

domain ID, then all strings in Xk are included in ID. Certainly there might be 

instances where we would want to restrict character sequences, but unless we 

consider specific applications it would be difficult to characterize the domain. 

Therefore, we consider only problem domains ID of the form ID = LJ X1
, for some 

1tJ 
J ~IN. 

Example 2.3. In Example 2.1, the problem domain consists of seven data bases, 

ID = {d 11 0 :s;. i :s;. 6}. The problem alphabet is X = {0,1}, and each d 1 f X*. In 

particular, 

ID = LJ X 1 = {'A} U X U X 2• 
iE{0,1,2} 

The data base d 4 , for example, is the string 01 E X2
, which can be formally 

written as {(0,0), (1,1)}. Similarly, we can denote each d 1 f [): 



d 0 ={}=A 

d1={(0,0)}=0 

d 2 ={(0,1)}=1 

d3 = {(0,0), (1,0)} == 00 

- 21 -

d4 = {(0,0)' (1,1)} = 01 

d5 = {(0,1), (1,0)} = 10 

d6 == {(0,1), (1,1)} == 11 

Notice that the data base d 0 is just the empty string, A.. When we view d 0 as being 

represented by a set of ordered pairs, then d 0 = { } = ¢. Thus, we might either 

say that d 0 = A. or that d 0 = ¢, depending on our viewpoint at the moment. I 

2.5 Machine Representation of the Problem Domain 

As we have observed, a data base itself cannot be stored in memory. Instead, 

we store some encod111g of the data base, a string of values from the alphauet 13. 

Each d E ID is mapped by ., into some subset of BL. It is unnecessarily restrictive, 

however, to require that an encoding ., specify values for every memory cell. In 

fact, most computer systems allocate only certain sections of memory to a given 

user, and other users may write in the remaining cells of memory in ways unknown 

to the first user. In order to model practical memory allocation schemes such as 

lmked lms (recall Section 1.2), it is necessary to allow an encoding to specify values 

for only some of the memory cells. 

Thus, we view 1'( d) as some set of codewords, a subset of the code C = 1'( lD) 

(see Eh as [8]). Each codeword c E C is itself a finite set 

c = {(j, c(j)I j E D(c)} 

oi lei ordered pairs. The first coordinate of each pair ( j, c( j)) is the integ·er 

address J E IN of a cell in memory, and the second coordinate is the value c( j) E 8 

assigned by c to be stored at that address. Thus, each codeword 111 C is a partial 

function c:IN ~ 13 from integer addresses to values in 8; its domain, D(c), is a 

finite subset of IN. 

We denote by Bt the class of all such partial functions from IN to 8 that are 

each defmf'd on a fmlte domain. Thus, a codeword set C is just a subset C c 13t. 

The domain D( C) of a set C c 13+ is the union of the domains of its members: 
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D(C) : LJ D(c). 
c<:C 

Example 2.4. Let l3::; {0,1}, and consider the code C1 ::; {c 0 , c 11 c 2 }, where 
Co::; {(0,0) 1 (2,1)} 
c

1 
: {(0,1), (1,0)} 

C2::; {(1,1) 1 (2,0)} 

Each codeword c1 is a partial function c1:1N _.. {0,1,2,0}, so c1 <: 13t and C 1 c 13+. 

Notice that D(c 0 ) ::; {0,2}, D(c
1

) ::; {0,1}, D(c2 ) ::; {1,2}, and D(C 1) = {0,1,2}. 

We may find it convenient to represent C1 as an array, as in Figure 2.1, where the 

i th row represents codeword c. The entries in each row correspond to the contents 

of the corresponding memory cells. The /h entry in row c1 is the value c 1( j) 1f 

j E D(c 1) and is blank if j ¢.. D(c 1). Each column corresponds to a memory cell 

address, here 0, 1, or 2. I 

0 1 

1 0 

1 0 

0 1 2 l ___ _ 
.........,,.. I 

D(C) 

Figure 2.1. Representation of Code C 1 as an array. 

Recall that we write 13L to denote the set of all L-celled memories. Then a 

memory state m is in BL if m E at and its domain is D( m) ::; {0,1,2, ... ,L-1}, so 

that 

m ::; { ( O,m( O)), (1,m(l)), · · · , ( L-1,m( L-1) )}, 

where the first member of each pair ( n, m( n)) is the integer address n E IN of a 

cell in memory, and the second is the contents m(n) <: 8 of cell n. (Recall that it is 
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possible that L be infinite.) A codeword c E C is stored in a memory m E BL by 

setting m(j) = c(j), for all j f D(c). Other users may fill in the values of the 

L - lei cells not occupied by c but must leave c Itself undisturbed. 

for any string· b E tl we can define its L-closu.re, bv as the set 

b L = { m E 3L I b ~ m} 

of memories in BL that store b, in the sense that the (address, value) pairs in b are 

included among those in m. For L < maxD(b), bl= flf, Where the value L is 

understood, we frequently write li to mean liL. Note that lliLI = IBIL-lbl. 

Define the set 

f3* = LJ 13L 
L?_O 

of all finite memories that store values from !3. Then for bf 13*, 

D( b) = {0,1, ... ,L} for some L f IN. So the L-closure of b contains all sequences 

in 13L with prefix b: li = b · tl L-lbl). 

Example 2.5. Recall code C 1 from Example 2.4, where 13 = {0,1}. Smee 

I( c) LI = IBIL-lc1I, then I( c) 3 1 = 23-lc1I = 2. So for L = 3 there are two memory 

states. which contain the codeword c1• In particular, 

(c 0 ) 3 = {m E 1331 c0 ~ m} 

= {{(0,0), (1,0), (2,1)}, {(0,0), (1,1)' (2,1) }}. 

We can represent the 3-closures of c 0 , cl' c2 in array form, as in figure 2.2. 

Notice that no matter how other users may fill in memory cells n where n '1. D( c 1), 

it is always possible to tell precisely what codeword c1 is being stored. Since L = 3 

and 8 = {0,1}, there are eight possible memory states, six of which store codewords 

from C 1• 

Also note that 

(co)2=f2f 

(c 0 ) 4 = {{(0,0), (1,0), (2,1), (3,0)}, {(O,O), (1,0), (2,1), (3,1)}, 

{(0,0), (1,1), (2,1), (3,0)}, {(0,0), (1,1), (2,1),(3,1)}}. 

Since c 1 E 82
, c 1 E 13*, but c 0 , c2 '/.13*. I 
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0 0 1 

0 1 1 

1 0 0 

1 0 1 

0 1 0 

1 1 0 

\ 0 

figure 2.2. Representation of the closures of codewords in C 1• 

llavmg discussed what we mean by an encoding T:IO ~ 8L and a code 

C c 8+, we can now explain what we shall mean by a representation p:lD ~ s+. 
Throughout the thesis, unless otherwise specified, we always make the assumption 

that p is a one-to-one function. Thus p( d) is a single codeword in a+, and 

( V d I' d J E ID)( i ;t j ~ p( d 1) ;t p( d) ). 

The one-to-one condition guarantees that distinct data bases d 1 and d J map to 

distinct codewords. Since 

pl(d) = {m E gl I p(d) ~ m}, 

we can see that the relation p corresponds to the relation 1" in Section 2.3. When 

TTL's memory contains precisely L cells, a specification of a representation p 

indicates, for any d E ID, that the cells in D( p( d)) be filled in as specified and the 

remaining cells can be filled in any possible way by other users. 

for instance, suppose we have some representation p, for which 

p(d 0 ) = {(0,1), (2,0)}; i.e., d 0 EID is represented by any memory state in which 

m( O) = 1 <1nd m( 2) = 0. Since the value m( 2) to be stored in cell 2 is not 

specified, cell 2 corresponds to a "don't care". for L = 3, we shall find it 
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conve111ent to write p(d
0

) = l_O to mean p(d 0 ) = {(0,1), (2,0)}. Where L 1s 

undnstoocl, we may even write p( d 0 ) = l_O rather than p( d 0 ) = l_O __ for L = S; 

i.e., we may suppress all trailing "don't cares", which serve simply as pl;ice holders. 

We saw in Example 2.5 that if c1 E C 1 is stored in memory, then 1t is always 

pos~1hle to d1stingu1sh ci' no matter what other users have done with cells not in 

D(c). In other words, there is no memory state 111 BL that stores both c 1 and cJ, 

for 1 ;r J. When this 1s the case, we say that ci and c J are distinguishable. 

DPfinilion. Let p:ID,... Bt, and let d 11 dz EID. Then p(d 1) and p(d2 ) are 

said to be distinguishable if and only if 

pL(d1) n PL(dz) = ;zs 

for any L ~ rnax{mC1xD(p(d 1}}, rnaxD(p(d2))}. 

In other words, a code C c 3t 1s distinguishable if and only 1f the closures of its 

members are pC!irwise dis 101nt (see Elias [8]). 

If there exist d 11 dz<: ID such that p(d 1) and p(dz} are not dislingu1shC1ble, 

then for sornc memory state m0 It is not possible to tell whether d 1 or d 2 is stored; 

111 fact, m0 represents both d 1 and dz· We do not want to allow this loss of 

inforrnC1t1on and so make the following formal defmition of a representation. 

Df'finition. We say that a function p:ID .... Et is a representation 1f and only 

lf for all clp dz<: ID, where d 1 ;t. dz, p(d 1) and p(dz) are d1stingu1shable. 

Example 2.6. Let ID = {c1 0 , d 11 dz}, 8 = {0,1}, and L = 3. Consider the function 

p:ID -+ 3+ defined by 

p( cl 0 ) = O_l 
p(dl) =10_ 
p(dz) = _oo 

Then p is not a representation, because it does not have d1sJ0111t 3-closures. In 

part1cul;ir, p( J 1) and p( d 2 ) are not distinguishable: 

p(J 1 } n p(J2 ) = {100, 101} n {ooo, 100} = {100} I 
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Example 2.7. Let us define the function p:ID ~ 133 by 

Notice that 

p(d 0 ) = 00_ 
,n( d 1) = 1 o_ 
p( d 2) = 20_ 
p(d3) = 100 

p( cl) = 110 

p(d 5) = 120 
p(d6} = 200 

p3 (cJ 0 ) = {(O,O), (1,0)} 3 = {000, 001, 002, 000}. 

Thm, thrrc arc four memory states that correspond to a representation of cl 0 , and 

the 1elat1011 p 1s identical to the relation -r of Example 2.2. I 

From now on, we clefme an encoder by specifying· a represent:ition function p. 

TIH'll any strmg b E PL (cl) represents the data based. 

2.6 Solution of Dynamic Problems 

In Section 2.3 we explained what it means for a machine m to answer correctly 

a question q. Now that we have also discussed what we mean by a represcntat1011 1 

we c:in explicltl;· state what we mean when we s<1y that a machine m solves some 

list problem. 

We can extend the notion of the computation of a function (question) q to 

include the solution of a set of questions Q = {q 111 E J}, where e<1ch qi:!D ~ R 1 

m<1ps a common dorn;iin iD onto Its own range R 1• Since the rnnges are in general 

cl1ifcrcnt for cl1ffercnt questions, a set A= {611 i E J} of different decodings is 

allowf'.'d. For the solution of the family of quest10ns Q, we introduce a set 

HI = {Hl 1\ i E J} of machines with a family f2 = {w 11 i E J} of different characteristic 

functions, where w/v1 _. 91 1• We can consider rn to be a single device, with a set 

SJ 0= {s11 i ~ J} of distinct initial states, or programs. rn, is the submachine 

correspond mg to m started in the initial state Si. We say that ( rn, p, A) solves 

(Q, ID) if, for all i E J, mi computes qi correctly. In other words, if (rrtp p, o) 

computes q
1

, then for any m E pL(d), qi(d) = oi o wi(m). 
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Havmg seen what it means for a machine to solve a static problem (Q, ID), 

lel us now extend this to include updates. Recall that in our discussion of the 

mach111e model, it was mentioned that m may rewrite some of its memory cells. 

Thus, when given some mput m0 , m may halt in a new memory state m 1• For a 

machme m which computes a single function f, if we want to be able to compute f 

several times in succession, then it is natur<d to require that this new memory state 

be 111 nt's acceptance set. In fact, if nt1 solves (qP u) correctly, then performing 

an update f unct1on on any memory state contammg p( J) leaves us with a memory 

st<1te that is a represent<1tion of the problem domain update function u 1( ti). In 

general, we want a machine m to compute a family of functions F, and so we 

represent our update function in the machme domain by the family of functions 

r = { u.I I ( J}, where u.:".D( m) ~ti( m) for '.!)( nt) = u '.3)( ml) ~ 13L, 
I I iEJ 

Definition. Consider the machine rrL = {mil i E J} With the family 

fl = { w 11 i E J} of characteristic functions and the family T = { u11 I E J} of 

update functions. We say that ( m, p, ti.) solves the dynamic problem ( F, iD) 

1f the following conditions are satisfied for all f 1 = (qpu 1) E f: 

(1) q 1(d) = oi o w1 o pL(d) 

(2) u1(pL(d)) ~ pL(u 1(d)). 

2.7 Solution of a List Problem 

In this section we merely want to summarize what we shall mean when we talk 

about the solution of a list problem. 

First, rec<1ll from Section 2.1 that a list problem is a storage cind retrieval 

problem ( F, ID) where the domain elements have some list structure, e.g-., they may 

be stack.>. In any case the problem domam ID consists of strings of characters 

chosen from the problem alphabet X and is of the following form: ID = LJ X 1 for 
i<:J 

some J ~ IN. For any d <: ID, we want to be able to perform the operations in F; 

e.g., TOP (return the value at the top of the stack) and POP. 
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If a m<ich inc m is to solve the list problem ( F, ID), then there must be some 

way to represent each d t ID in the cells of m's mernory with machme alphabet !3. 

In particular, there 1s some one-to-one representation function p:\D 4 B+, and any 

p( d) storeci 111 m can be viewed as some sort of codeword. Tlie representation has 

the property that it is always possible to determine what (if any) codeword 1s 

currently stored in memory. What other users do cannot interfere with this 

determination. 

Suppose the current memory state is m0 , where m0 t PL ( d). Then Trl 1 will 

output the answer w1 ° p L ( d) and halt in the new memory state u1( PL ( d)). If we 

claim that 11'1 1 computes the function f 1 = (qi' u 1) ( F, then 

u1(pL(d)) s:; pL(u 1(d)) and there must be some sort of decoding function o1 such 

that q 1( d) = o1 o w1 o PL ( J). In other words, nt1 outputs the machine 

representation of q 1(d) and halts 111 a memory state which is included Ill the set of 

memory states that represent u1(d). 

We S(IY that (HI, p, A) solves the list problem (F', ID) if the above conditions 

are satisfied for all f1 t F and for all d t ID. For simplicity, we shall also assume 

that each decoding function o1 t A is one-to-one. Thus, we speak of a system 

(Tr!, p) solving a problem (F, ID). 

When we discuss the machi11e solution of a problem (f, ID), we have 111 mind 

a 1rp1c~entation of the dornain ID in memory and some collection 0 .. of algorithms 

or programs which compute the functions F. Any algorithm O.i that we discuss can 

be implemented by a machine rrt1 as defi11ed above. Since we do not, however, 

always want to concern ourselves with all the details of the machine itself, we shall 

henceforth speak of a system (a., p) solving a problem (f, ID). Thus we specify 

an 1rnplrmentCltion by defining the function p and by, in some (usually 

prograrn-like) form, presentmg the set of aJg·orithms Cl (which can be implemented 

by machine Trl). 
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CHAPTER 3 

STORAGE AND ACCESS COSTS 

In Section 3.1 we introduce various system costs involved in solving a problem. 

Since in this thesis we are concerned with obtaining lower bounds on storage and 

access co~ts, these costs are discussed more fully in sections 3.2 and 3.3, respectively. 

We first define our cost measures and then present some basic results. For further 

information the interested reader is referred to Eltas [6], [9], [10]. 

3.1 Systf>m Costs 

Many different systems can be used to solve the same problem, and the choice 

among them depends on their relative costs. There are three basic components of 

system cost: 

( 1) Storage cost. There is always some sort of purchase or rental cost for 

the memory used to store the representation of a data base. 

( 2) Access cost. This refers to the number of memory cell accesses made 

by an algorithm or machine and is a partial indication of the time 

required by a system to answer a question or perform an update. 

(3) Processor cost. This involves the costs in memory and logic of the 

algorithm or machine m itself. 

For sever a I reasons, we do not in this thesis consider the processor cost. F 1 rst, 

any such measure would reflect characteristics of the particular machine, and it is 

therefore d1fficult to determine an appropriate measure. We have deliberately tried 

to let our machine model be as general as possible. Second, the list implementations 

we do consider are in general quite straightforward and therefore a system which 

does well for both storage and access costs probably would not have a prohibitive 

processor cost. Third, the storage-access trade-off is easier to recognize and we do 

not want the current analysis to become too complex. 
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3.2 Storage Costs 

One measure of the memory requirements of a retrieval system (0., p) solving 

a problem ( F, ID) is the number of memory cells dedicated to the storag·e of a 

representiltion 111 memory. 

Definition. Consider a system ((.l,p) solving a problem (f',10), and 

assume that pis a function. The memory storage cost, lp(d) I, associated with 

any data base d (; ID is the number of memory cells for which representation 

p specifies a value when representing d: 

Ip( d) I &:: ID( p( d)) I. 

Thus, we define Ip( d) I to be the number of memory cells occupied by the codeword 

p( cl). There is, however, no requirement that the set of occupied cells be 

contiguous; i.e., there may be "gaps" or "holes" in the representation. Because we 

are essentially concerned with obtaining· lower bounds, we charge only for the cells 

actually occupied by p( d) and do not charge for these gaps. 

Example 3.1. Let 8 = {0,1} and define the code C2 = {c 0 , cl' c 2 , c 3 , c 4 } as 

follows: 

c 0 = O_l 
('1=10_ 

c2 = _10 

c3 = 000 

c 4 = 111 

Suppose that ID = {d 0 , d 11 d 2• d 3 , d 4 } and the representation p:ID -+ s+ is defined 

by p( di) = er Then 

and 

Ip( d 0) I = Ip( d 1 ) I = Ip( d 2 ) I = 2 

Ip( d 3 ) I = Ip( d 4 ) I = 3. 

Certainly the issue of memory management is an important one, because it 

may be difficult to efficiently allocate to a single user the unspecified mernory cells 

corresponding to holes in another user's memory space. Elias [9] has addressed the 



- 31 -

problem of assigning a contiguous section of memory, definmg the sp{jn of a 

rPpre:;ent<it1on p to be the smallest set of contiguous memory cells capable of holding 

the representation of any domain element. Many representation schemes we shall 

construct will be able to avoid such gaps, at least when the problem alphabet is of 

the appropriate size. 

Our storage cost measure docs not indicate the complexity of the encoding p. 

For a static problem, stonng a representation would be only a one-tirne t<1sk. When 

we consider dynamic problems, the complexity of the representation will evidence 

Itself in the costs of performing updates. In general, a complicated encoding results 

in higher access costs. 

Consider a code C c Bt that has the property that for each c E C, 

D{ c) == {0,1, ... ,lcl-1}; i.e., C c 13*. Then C is said to be a Jircjix code, or to be 

prefix-free, if none of its members is a prefix of any other. In other words, a 

preiix -f1 ee set C c 13* has the property that 

{Vc 11 c2 EC) (c 1 ct c2 ). 

As noted by Elias [8], a code C c 13* is distmguishable if and only if it is a pref ix 

code. 

The well known Kraft inequality [2], [12], [16] states that a necessary and 

sufficient condition for the existence of a prefix code with codeword lengths 

l7. 1 , l7. 2 , .•. , P.k and codeword characters chosen from the alphabet 8 is that: 
k 

2: 181-Q.i ~ 1. 
i= 1 

This result is probably most easily seen by recalling the simple correspondence 

between prefix codes and labeled trees. Each node corresponds to a memory cell 

number, and the IJranch labels correspond to the cell contents; i.e., there are 181 

branches from each node. Each codeword is associated with a distinct leaf. \Ve 

adopt the convention that the leftmost branch of each node always corresponds to 

the same element b 0 E 8, and similarly for each of the other branches. For full 

trees this convention eliminates the need for writing the labels on branches 

emanating from non-root nodes. In particular, for 8 == {0,1}, we always let a 
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leftward branch correspond to a zero and a rightward branch to a one. 

Example 3.2. Recall the representation p:!D ~ 13* from Example 2.7. The code 

p( ID) = {00, 10, 20, 100, 110, 120, 200} 

1s a prefix code and satifies the Kraft inequality because 

-lcl 1 2 IBI = 3 · 4 -.a + 4 • 4 -3 = T < 1 
cf:p( ID) 

The tree corresponding to the code p( ID) is illustrated in figure 3.1. 

figure 3.1. Tree corresponding to p from Example 3.2. 

I 

Elias has extended the Kraft inequality to any distinguishable code C c B+. 

Theorem 3.1. (Elias [BJ). Let C c 13+ be distinguishable. Then 

2 181-lcl ~ 1. (3.1) 
cf:C 

Equivalently, consider any representation p:ID ~ 13+. Then 

-lp(d) I 
2 181 ~ 1. ( 3.2) 

df:ID 

Proof: Let 

CL ={cf: Cl L z max D(c)} 

be the subset of the code C whose elements can be stored in an L-cell memory. 

Since C is distinguishable, the closures of its members are disjoint and we have 

LJ cL £ 13L, 
cf:CL 
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L-lcl 
Recalling also that lcLI = IBI , we obtain 

L-lel L 
2 IEi s IBI 

cECL 

Now dividing through by IBIL gives 

and so 

-lei 2 181 s 1. 
cECL 

-lei -lei 2 181 s 2 IBI s 1, 
cEC L eEC L+l 

-lei 
lim ( 2 181 ) = l. 

L-+oo eECL 

Tl11s proves ( 3.1). Since any representation p is by definition distinguishable, the 

Kraft ineq11<illty also holds for rerresentarion storage costs and thus (3.2) follows. 

Theorem 3.1 is a statement about clistnbut1ons of the storage measure Ip( d) I for any 

representation p of domain ID. Not all data bases 111 ID can have short 

rcprcsi:11t;it1ons, smcc a small value of Ip( cl) l corresponds to a L:irge term in the 

Kraft sum. If some of the data bases have relatively shorr representations then 

others must have relatively long representations. If, in fact, we have equality in 

the t~r;:ift sum, then no data base representation can be shortened without 

lengthenmg another data base representation. 

Definition. We say that a representation p acliieves Kraft storage if and only 

1f the Kraft sum of equation (3.2) is sat1si1ed with equality: 

2 IEl-lp(cJ)l=l (3.3) 
dEiD 

Similarly, a code C achieves Kraft storage if the Kraft sum of equation ( 3.1) is 

equal to one. 
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We can also extend our usage of trees to correspond to any distinguishable 

code C c 8+. However, since we do not restrict ourselves to pref ix codes (i.e., we 

cillow scattered representations), we would not necessarily choose to have the 

memory cells read in order 0, 1, 2, ... on the path to every leaf. This and the 

result of Theorem 3.1 are illustrated in the following example. 

Example 3.3. a) For code C 1 of Example 2.4, 181 = 2 and 

-lei 3 2 181 = 2-2 + 2-2 + 2-2 
::: 4 < 1. 

cEC 1 

A tree corresponding to C 1 is g·iven in Figure 3.2a, with the memory cells listed in 

order 0, 1, 2. On the other hand, we might choose to represent C 1 by the tree 111 

Figlire 3.2b. In any case, C1 does not achieve Kraft storage. 

(a) ( b) 

0 

Figure 3.2. Trees corresponding to code C 1• 

b) For code C2 of Example 3.1, 

"° I 1-lcl ' 2-2 2 2-3 1 L.. 8 =3· + • ::: 
cEC 2 

and so C 2 achieves Kraft storage. A tree for code C 2 is given in Figure 3.3 

c) Recall once again the representation p:ID -+ 13* from examples 2.1 and 3.2. 

since each d E 10 has a unique representation p(d): 

2 181-lp(d)I = 2 IBl-lcl = 3 · 4-2 + 4 · 4-3 = l_ < 1. 
d<:ID c<:p( [)) 4 

Then 

I 
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f 1gure 3.3. Tree corresponding to code C 2• 

When we solve sorne problem we would like to find a rcpre.scntat1on that docs 

not result in high storage costs. We say that a representation p:!D __, B+ is optimal 

111 storage ii no other representation requires less storage for some data base without 

req u i r mg more storage for another. 

Definition. A representat10n function p:lD __, B+ achieves optimal storagt 1f 

and only 1f for any p/:ID __, 3+ 

(Vd
1 

E ID)[(lp/(d 1 )1 < lp(d
1

1) => (3d
2 

E ID)(lp"{d2 )1 > lp(d 2 )1)J. 

Thus, we use the term optimal storage for a representation if no other 

representation can uniformly do better. There may, of course, be many 

representations that are storage optimal, and which would be preferred deprnds on 

the p;:irticular problem and is conditional on the probabilities of the various data 

bases 111 ID. In fact, one might not choose to use a storage optimal representation at 

all if such a representation resulted in higher access or other system costs. However, 

these involve details of p<1rt1cular problems and, for the general framework we arc 

considering, we shall not usually prefer one optimal representation over another. 

:r a representation p meets the Kraft sum with equality, then p is storage 

optimal. This condition makes it easy to recognize certain storage optimal 

rep resen ta ti on s. 
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Theorem 3.2. Consider the representation function p:ID ~ s+. If 

L: 181-lp( d) I = 1, 

dEID 
then pis storage optimal. In other words, if p achieves Kraft storage then pis 

storage optimal. 

Pr(laf: If pis not storage optimal, then there exists some representation p':ID -+ s+ 
such that (Vd E ID)(lp'(d)I ~ lp(d)I) and (3d 1 E ID)(lp'(d 1}1 < lp(d 1)1). But 

this says that 

1 = L: 181-lp( d) I 
dEID 

L: 
181

-lp(d)I + 
181

-lp(d 1)1 

dElO-{d 1} 

~ L: 
181

-lp'(d)I + 
181

-lp(d 1)1 

dEID-{J 1} 

< L: 181-lp'(d)I 

JEID 

which contradicts the Kraft inequality of Theorem 3.1. I 

Example 3.4. Recall Example 2.7 where B = {0,1,2,o}, and consider the alternative 

encoding p2 :1D 4 s+ defined by 

P2(do) = 0 
p2 ( d 1) = 1 
p2 (d 2 ) = 2 
p2 ( d 3 ) = 00 

and also the encoding p3 :1D -7 3+ defined by 

p3 ( d 0 ) = 00 
p3 ( d 1) = 0 

p3 ( d 2 ) = 02 
p3 (d 3 ) = 00 

p2 (d 4 ) = Ol 
p2 ( d 5 ) = 02 
p2 (d 6 ) = 00 

p3 ( d 4 ) = 1 
p3 (d5 ) = 2 
p3 ( d 6 ) = 01 

By Theorem 3.2, both p2 and p3 are storag·e optimal because 
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On the other hand, p as defined in Exarnple 2.7 is not storage optimal because p2 

does better; in fact, p2 takes less storage everywhere: 

(Vcl E ID)(lp2 (d)I < lp(cl)I). 

The represcnt;ition p3 also docs better than p, because 1t never uses more storage 

and sometimes uses less. 

If we were forced to pay a very high price for storage, we would probably 

choose to solve the problem ( F, ID) of Example 2.1 using representation p2 or p3 

rather than p. However, p corresponds to a simple ternary representation ( wnh 0 

sPrvins ;is cin endmarker) and might be more desirable than p2 or p~{ in terms of 

other costs. 

We h:ivc seen that a code p( ID) achieves optirniil storag·e if we get equality 111 

the Kr:ift sum. Let us examine the conditions under which this equality is attained. 

We f11st def111e a distinguishable code C c 3+ to be complete if :md only 1f for all 

c,. E ,y+, C U {c "} 1s not distinguishable. Eh as [8] has shown that a f1111te 

dist111guish:ible code C c 8+ is complete if and only if the L-closure of its members 

-lei 
partitions ,j'L (for L = rnaxD( c)) which is true if 2 IBI = 1. The converse 1s 

cEC 

-lcl 
not true, i.e., a code C may be complete even if 2 181 ;e 1. 

cEC 

Example 3.5. Recallmg Example 3.3, we see that C 1 is not complete, since C 1 c C 2 • 

However, C2 is complete. If we look at the trees for c 1 and C2 , given in figures 3.2 

and 3.3, it 1s easy to see that C 1 does not part1t1on {0,1} 3
, since there are some 

leaves in the tree for C 1 that correspond to no codeword. Also, by Example 3.3 we 

know that C 1 does not achieve Kraft storage and thus cannot be complete (since it 

1s finite); C 2 docs achieve Kraft storage and is therefore complete. 
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Wr can conclude that, as Illustrated in the above example, a finite 181-ary code C is 

complete if and only if every leaf in a full 181-ary tree for C corresponds to some 

codeword c E C. 

Us111g the terminology of representations, we can show that if a representation 

p:ID 4 3+ achieves Kraft storage, then p( ID) is complete. 

Theorem 3.3. Let p:lD -+ 3+ be some representation which achieves Kraft 

storrige. Then for a II b E .B+, there is some d E ID such that b ~ PL ( d). 

Piolj: Let p achieve Kraft storage and assume that there 1s sorne b0 E 3+ such 

that, for all d E ID, b0 rt,. pl(d). In other words, b0 and dare cl1sringuishable, for 

every d. Then 

2 181-lp(d)l~l => 2181-lp(d)l<l, 
JE IDU{b} JEID 

which contradicts the fact that p achieves Kraft storage. 

The converse is not true (see, once again, Elias [8]). However, 1f p(ID) is 

complete for ID finite, then we do know that p achieves Kraft storag·e. 

Let us briefly mention two results concernmg worst case and averae:e storage 

cos.t~. The first result follows from well-known tree properties (see e.g·. Ca Hager 

[12J) and states that for any representation p:ID -" 8+, there is some data base 

whose representation specifies values for at least r1og 11011 memory cells. On the 
131 

other hand, for any domain ID there is some representation which never requires 

more than rlog llDll memory cells. 
~ 16'1 

Theorem 3.4. (Elias [6J). (i) For any representation function p:ID-+ s+, 
max lp(d) I > r1og- llDll 
dEID - ~181 

( 1i) There is some representation function p:ID -+ B* such that 

max lp(d) I = rJog llDll 
d~ID ~181 

This result can be interpreted in terms of any tree corresponding to the 181-ary 
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d1st1nguisl1able code p( ID), where there must be at least IJDI leaves (since p 1s 

one-to-one). Smee the tree is 181-ary, the depth of the tree (i.e., the length of the 

lon£~cst codeword) 

with llDI leaves 

rJog 11011 - 1. 
' 131 

must be at least rlog
181

11Dll. Also, a complete, full 181-ary tree 

has all of its leaves at either depth rtog llDll or depth 
~ 151 

The second result involves average storage costs. There will be occasions 

where we wish to comider some sort of probability distribution P on the members 

of our domain ID: 

P( d) [-.,the fraction of time a user expects to consider data base d E ID. 

Thus, it mC1kes sense to look at the average storage cost: 

L p ( d) . Ip( d) I. 
dEID 

We can use a procedure such as Huffman encoding· [13], [12] to comtruct a 

representation p for which very probable data bases have short representations and 

less probable d;:ita b;:ises have longer representations. Other preconstructcd 

univers(IJ codes perform almost as well as Huffman codes, provided the shorter 

prPconstructed rrprrsentations are assigned to the more probable data bases (see 

Elias [7]). 

Theorem 3.5. (Elias [6]). Consider a domain ID and assume there is some 

probability distribution Pon ID. Define the entropy 1-1( ID) by 

H ( ID) == - L P ( d) log P ( d). 
dEID 181 

( i) For any representation function p:ID ~ 3+, the average storage cost is 

L P ( d) · Ip( d) I ;::: 1-l( ID). 
dEID 

(ii) There is some representation functrnn p::O ~ 8+ such that 

L P ( d) · Ip( d) I < 1-l( ID ) + 1. 
JEID 
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3.3 Access Costs 

A user is necessarily concerned with the amount of time it takes to perf arm an 

operation f on some J E ID. The number of memory cell accesses made by an 

:llgorithm before halting is one direct indication of the performance time. This 

memory access measure has been used by Minsky and Papert [19] and [has (SJ. 

The number of accesses made to memory will depend not only on the algorithm 

used but also on the particular data base which is stored. 

There arc various ways m which we could define an access, but we use the 

notion commonly u5ed in Turmg machine theory. A machine or algorithm reads a 

cell <lnd, depending on that cell's contents, may rewrite the value stored there; this 

corresponcis to only one access. We also choose to allow an algorithm to possibly 

read a cell in another user's memory space, but the algorithm certainly cannot 

rewnte s11ch a cell (without being charged for it in storage). 

Definition. Consider a system (0 .. , p) solving a probkrn (F, lD). A memory 

cell acass is made each time (J.. moves to a new cell. Once (J.. references a cell, 

it may read ancV or rewnte the cell contents; this constitutes a single access. 

Dqwndmg on the hardware of an actu;il rnacl1111e, this reading and then rewriting 

action might require two accesses, in which case our results could be off by a factor 

of two. Flower [11] Ins investigated update costs and shown the1t it is ncccsse1ry for 

an access measure to 111volve both reads and writes; considering either reads or 

wntcs alone docs not give reasonable lower bounds. 

We present the follow1ng example in order to illustrate some of the 

termmology we shall use when we discuss the implementation of a function. We 

frequently find it convenient to describe an algorithm using a program-like 

description. 
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Example 3.6. Recall exC1mples 2.1 and 2.7 and consider the problem of perf ormmg 

thr update operation u2 on some data base d ~ ID. The following algorithm, (.lu
2

, 

performs the update. (For simplicity, we do not here consider the question 

component of the function f 2.) 

if m( 0) = 0 then return 

if m(O) == 1 then if m(l) = 0 then m(l) ,_ O 
return 

ii m(l) = 1 then m(l) ,_ 0 
m(u) ,_ 2 
return 

if m(l) = 2 then m(l) +- 0 
m(O) +- 2 
return 

ifm(l) = Othen m(O) +-0 
return 

ifm(O) =2then m(O) +-1 
return 

For instC1nce, suppose we have p(J 0 ) 111 memory. Given that we know there 

is some p( Ji) stored, when we access cell 0 and discover that m( 0) = 0, then we 

know that it is d 0 stored. Since u2(d0 ) = d 0 , we do not need to rewrite any 

mrrnory cells. Thus, performing the u2 operation on p( d 0 ), us111g algonthrn O.u , 
2 

111volves only a reading of cell 0. 

Suppose d 5 is stored in memory with representation p. Using algorithm (.lu , 
2 

we first access cell 0. Smee m(O) = 1, we next access cell 1. Since m(l) == 2, we 

rewrite cell 1, sett111g It to the new value 0, <1nd then backtrack and set m( 0) +- 2. I 

BPcC1u~e we ~pend Cl great deal of time discussing algorithms for performing various 

operattons, we find it convenient to make some notational def 1111t1ons for dealing 

with memory access costs. 

Definition. Suppose a system (Cl, p) solves a problem (F, ID). Then for 

each d ( ID we can define the followmg. 

~ rile sequence of memory cell accesses rn<tde by algorithm 

O .. i in cornputmg· f 1( d) using representation p. 
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tl[0.1( p( d))] 2' ICO .. J( p( d)) JI, the number of memory cell accesses made 

by algorithm 0..1 in computing f 1( d) using representation 

p. 

{[0,1( p( d)) J} ~ the set of memory cells accessed by algorithm 0 .. 1 111 

computing f 1(d) using representation p; i.e., the access set 

for f 1( c.1) corresponding to algorithm 0 .. 1• 

We may sometimes write [f1( p( d))] to denote the access sequence which an 

algornhm 0..i uses to compute f 1(p(d)). 

We refer back to Example 3.6 to illustrate the above definition. 

Example 3.7. Recall the algorithm (J..u of Example 3.6. In computing u 2 (J 5 ), 
2 

0,u first reads cell 0, then reads and rewrites cell l, and then backtracks and writes 
2 

cell 0. Thus, the access sequence is 0, 1, 0. For notational convenience, when we 

g-ive an access !'equence we shall underline any memory cell accesses which 

correspond to writes: 

[0) 17( d 0 )) J = 0 

[0,1 ( p( c.l 1) ) J = OlQ. 
[<l/ p( c.12)) J = Q. 
[(),,( p( c.l 3)) J = 01 

rn .. 1(p(c.1 4))J = 010 
ca) p( c.1 5)) J = 010 
w .. 1( p( c.1 6 )) J = Q. 

Then for the number of memory cell access in each case we clearly have: 

#[(1..u (p(do))J = tl[(.lu (p(c.16))] = ll[(l..u (p(d2)] = 1 
2 2 2 

tl[(l..u ( p( d 1))] = #[(l..u ( p( c.l 4)) J = #[(.lu ( p( c.l 5) J = 3 
2 2 2 

#[(}..u ( p( cl 3)) J = 2 
2 

Note also that the access sets are just: 

Since our algorithms are sequential and determini~tic, we find it convenient to 

model them by access trus. Access trees are basically the same as the trees we used 

in Section 3.2, where each internal node corresponds to a memory cell access. An 
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access tree corresponding: to the alg·orithm for a question q will label each leaf by 

thC' appropriate answer q ( d), if there is one. We speak of the access tree for q 1 (or 

ui) to mean the access tree for an algorithm 0,1 solving q1 (or u1). 

Example 3.B. Consider the static problem ( F, ID) where F :::: {f 11 f 2 } and 

ID = {d 0 , cl 1 , d 2 }. Define the representation function p:ID ~ {0,1} + by: 

p( do> = o_o 
p(ci 1) =l_O 
p(d2) = __ 1 

Let q 1 and q 2 be clefmecl as follows: 

q 1 (do> = a 
ql(dl) = b 

qt(dz) = b 

q2(do) =a 

q2(d1) ::::a 

q2(d2) = b 

where a, b E E. An access tree correspondmg· to the obvious algonthm for q 1 is 

gwm in Figure 3.4a. Notice that, in fact, two accesses are necessary to d1stingu1sh 

p(d 0 ) from p(d 1 ) or p(d2 ) and thus two accesses are required to determine the 

leaf that can be labelled a. Question q 21 however, can be answered after a single 

access, to cell 2. 

b 
~ 

a b 

a b 

figure 3.4. Access trees for q 1 and q2 of Example 3.8 

Each output corresponds to some leaf on the access tree for q 11 and we define 

a 1( r) to be the minimum depth of any leaf labelled r. 
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Definition. Suppose a system (Cl, p) solves a static problem ( Q, ID), <1nd 

lr.t ID 1(r) = {d EID! q1(d) = r}. 
Then 

Similar to our storage result, we have a Kraft inequality for access. 

Theorem 3.6. ([Has [6]). If the 181-ary system (<J..., p) solves a static 

problem ( Q, ID), then for all q 1 E Q: 

~ -a:i( r) 
L.. 181 ~ 1. ( 3.4) 

rEqt(ID) 

Cmre~poncl in g to each answer r E q 1 (ID) , the ra ng·e of q ii there is one term in the 

~11m111C1t1on with nq_~Cltive exponent a: 1( r). This theorem 1s a statement about 

distnbut1ons on the numbers of accesses to return the amwers r E R and tells us 

that riot all operations in qi( ID) can have short retrieval times. In fact, equation 

( 3.4) ca11 be strengthened; It holds not only for ai( r), the minimum number of 

accesses ro return the v;ilue r, but also for the number of accesses to return the 

valuer for any d E qt- 1(r). In other words, if we let d 1 E q 1-
1(r), then we have 

l~I -fj[O,j(p(dj))J 
~81 s 1. 

i= 1 

0f:'fini lion. Suppose a 181-ary system ((J..., p) solves a static problem 

( Q, ID). Then O .. t is said to achieve K. raft access if 

L: 181-a: 1(r) = l. (3.S) 
rEq 

1
( ID) 

In fact, 1f (3.5) holds and (O .. Pp) is understood, we shall frequently say 

simply that qt achieves Kraft access. 

If we "assume qt achieves Kraft access", we mean that we are considering some 

system (<A, p) where (J...i achieves Kraft access and answers q 1 on domain ID. 
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In accessing a cell we read some b1 E !J. Information-theoretically, one access 

d1st1nf~u1shrs amon[~ IBI possib1litics, and if it 1s not the case that each of tl1esc IBI 

poss1IJle cell contents leads to a different answer, then we have 111 some sense 

obtilin('d more inforrniltion than is needed. Thus, if an algorithm Cl achieves Kraft 

access, then its access tree rnust be a full tree where every leaf corresponds to a 

distmct r E R. 111 pi!rticulilr, we have the following result. 

Tlworem 3.7. Suppose a system (Cl, p) solves a problem ( Q, ID). If 0 .. 1 

achieves Kraft access, then for all d 11 d 2 E iD 1(r), 

Let's look <1ga111 <1t the problem from the previous example. 

Example 3.9. Rec<11l Example 3.8, and let R 1 and R2 denoteq 1( iD) and q 2 ( ID), 

respectively. For q 1: 

-a: ( r) 2: 181 I 
rER 

l 

= 2: 2 -a: I ( r) 

rE{a,b} 

-ex 
1 

( a) -ex 
1 

( b) 
= 2 + 2 3 = 2-2 + r I = 4 < 1. 

Notice th<1t the arcess tree for q 1 in Figure 3.4a does not have a d1st111ct label for 

each leaf and so cannot achieve Kraft access. For q 2 : 

-ex ( r) 2: 1131 2 = 2- 1 + 2- 1 = 1, 
rER 2 

and so docs achieve Kraft access, which 1s what we would expect by observing 

Figure 3.4 b. 

/\s we did for storage costs, we define an implementation or algorithm to be 

opt1rn::il in access if no other 1rnplenwntation of the operation requires fewer accesses 

ior some data b<1se representation without requiring more accesses for some other 

data base represer1tat10n. 



- 46 -

Definition. An implementation ( 0,P p) is access optimal if and only if for 

C1ny other irnplcrncntation ( 0./, p): 

(Vd 1 E lD)[(#W/(p(d 1))J < #[G)p(d 1))J) 

=> (3d 2 E ID)(#Ul
1
"(p(d2 ))J > #U.l

1
(p(d2 ))J)J 

Simi!C1r to our result for Kraft storage, if <J..1 achieves Kraft access then 0.1 is C1ccess 

optimal. 

Theorem 3.8. Suppose the 181-ary system (<J.., p) solves the static problem 

( Q, ID). If 

then (l. 1 is access optimal. 

Unkss we allow the trivial question, which always returns the same v<tlue no 

matter what dC1tC1 b(lse is stored 111 memory, then it is always necessary to mcike at 

least one access to answer a question. 

Theorem 3.9. Given any implernentiltion ( <J.., p), assume that (l.i( p( J)) is 

not a constant function. Then, for all d E ID, 

Corollary 3.9.1. If tt[(l. 1( p( d)) J = 1 for all d E ID, then 0.1 is access optimal. 

If IRI < 181, then when we access one cell we can d1stingl1ish 181 characters, 

wlwreas we only have IRI distinct answers. Therefore we have in some sense 

obtC1incd more information than we can use, giving us an inequality 111 the Kraft 

sum, as tl1e next theorem shows. 

Theorem 3.10. Consider a IBl-ary system ((l.., p) which answers the question 

q :ID 4 H... If n. achieves Kraft access, then IRI 2'. 181. 
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Proof: Assume 0.. meets Kraft with equality. Then by Theorem 3.9 it is always the 

case that 0:: ( r) 2 1, and so 

1 = 2: ILJl-a(r) ~ 2: 10r 1 =-10.1 
rER rER !Jr 

If IRI < 131 then we get a contradiction. 

Notice that this theorem does not depend on the representation used. 

Assurne we have an implementation that achieves Kraft access for sorne set Q 

of quest1om. Tl11s then tells us something about the possible relative range s1z.es of 

questions 111 Q. We first recall a lemma about trees (see e.g. Knuth [14]). 

Lemma 3.1. There is a full 181-ary tree with k leaves if and only if there 1s 

some n E IN such that k = ( 181 - 1) · n + 1. (The number n corresponds to the 

number of internal nodes in the tree.) 

From this lemm(I and recalling that we have equality in the Kraft sum only when 

the exponents correspond to the depths of the leaves in a full tree, we have the 

following theorem. 

Theorem 3.11. (Gallager [12J). Let f:J 4 IN. If 2: 181·f(t) = 1, then 
iEJ 

IJI = n ·(!Bl -1) + l for some n E IN. 

This now tells us something about the possible pairwise relative sizes of the ranges 

of questions that each achieve Kraft access. 

Theorem 3.12. Consider a 181-ary system ( O .. , p) which answers the 

questions q 1 :ID 4 R 1 and q 2 :1D 4 R 2 , and assume both q 1 and q 2 achieve 

Kraft access. Then there is some integer n such that IR 11 - IR 2 1 = n ·( IBI - 1). 
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Prorj: Since both q 1 and q2 achieve Kraft access, 

L 181-a 1(r) =1 and L 181 az(r) =1 
rER rER 1 2 

B1;· TIH'nrem 3.11 we thus know that there exist n 11 n2 ( IN such that 

IR 11 = 1 + n 1 ( 181 - 1) 

and IR2 1 = 1 + n2 ( 181 - 1) 

Therefore, 

We f md this theorem useful for some of the results we shall prove later. 

As was the case when we discussed storage, it is difficult to understand what 

the Kraft inequality of Theorem 3.8 tells us about access costs of interest to the user, 

except when we actually do achieve Kraft access. Thus, we mention two results 

concerning access costs; these correspond to the storage theorems 3.4 and 3.S. 

First, if we need to distinguish IRil answers with a 181-ary tree, it is clear that 

the access tree must have maximum de1Jth at least rlo2" IR
1
.ll. i\lso, it 1s alw<1vs 

~181 . 
possible to answer a question q 1 in such a way that the corresponding access tree 

h<IS ll)(IX imum cle1)th exactly r1og· IR1ll. 
181 

Theorem 3.13. (Elias [6]). Consider a problem ( F,ID). 

( i) If the 1131-ary system (<l.i' p) answers the question qi' then 

rn;ix a 1( r) ~ rlog IR 11l 
r(R

1 
181 

(11) There 1s some 181-ary system (0.
1
, p) that answers question q 1 such that 

rnc:ix a 1( r) = rlog IRill. 
rER 1 181 

The bou11cl 111 (ii) can be attai11ed by using a representation p which stores in 

rncmor1;· tl1c answers to each ciucstlon in Q. Thus, to answer q 11 0,1 simply reads 

the 1th answer ( s.ee Eltas and Flower UOJ). 

If there is some known probability distribution P on ID, this induces a 

probability distribution Pi on R1 defined by 
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CHAPTER 4 

THE TABLE LOOKUP QUESTION SET 

In the previous chapter we discussed what 1s meant by Kraft storCif/' and 

access. In this chapter we sh;:ill examine more closely under what conditions Kraft 

storage and Kraft ;:iccess can be achieved. In particular, we consider the table 

lookup question set and attempt to understand the implications of Kraft storcige and 

access and to e:et a f ei>l for some storage-access tradeoffs. 

4.1 OEO·finition 

If for all i we know the i1
h element in a list, then we have determined the list. 

Tl111s, 111 -~orne sPnse this forms a complete set of questions on any domain ID, 

because :rnswermg these allows us to answer any other question. 

Definition. Define the table lookup qiit'Stion St't 

r = h 111 ::; i ~ max ldl} 
d(ID 

which has as Its 1th member the function "'( 1:1D -~ X defined by 'Yi( d) = d( 1). 

For i > ldl, we say "'(i(d) ~ JlJ, 

Thus, each data base cl t ID is mapped onto the value of its i1
h clement. When 

i > ldl, then we want "'( 1(d) to return a null answer, which we denote by J?J. 

Consider a system (r.l, p) solving· (r, ID). As was mentioned in Section 3.3, 

if we say that 'Yi achieves Kraft access, we mean that 0.1 solving "'( 1 achieves Kraft 

acce~s. In genPral, although 'Yi is defined in the problem domain, we may 

informally refer to "'( 1 in the machine domain; in particular, we say that 'Y 1( p( d)) 

accesses cell k to mean that k t {W .. 1( p( d)) J}. 
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Example 4.1. Recall Example 2.3, where ID = {t..} U X U X2 for X = {0,1}. Then 

we have, for instance, 

'Y1(clo) = ..,.. 1 ( 11.) = 91 = ..,.. 2< cl 0) 

'Y1(cll) = 'Y1(0) = 0 

'Y2(cl1) = 'Yz(O) ::: 91 

'Y1(cl6) ='Y1(ll) = 1 = 'Y2(cl6). 
Alternatively, we may informally wnte, using the representation p given 111 

Example 2.7: 

'Y 1 ( p( cl 0) ) = ...,. 1 ( 0 0) = 91 = ...,. 2 ( p( cl 0) ) 

'Y1(p(cl6)) = 'Y1(200) = 1 = 'Y2(p(cl6)) 

lf we are going to achieve Kraft access for all questions in the table lookup 

quesuon set, then for IBI > 2 the ranges of all the questions must be the same. 

Theorem 4.1. Let 'Y P 'Y j E r and assume that 181 > 2. If 'Y 1 and "Y j both 

achieve Kraft access, then R1 = R.P where R1 = R('")' 1(1D)). 

Pro~(: Consider a table lookup question 'Y on p:ID -+ at. Since n = U x1
, 

1EJ 
Suppose where J ~iN, then either R('")' 1(1D)) =X or R("( 1(1D)) =X U{91}. 

IRil "- IR)· Then IR 11 - IR) = ±1. By Theorem 3.12 we know that 

IR 11 - IR) = n · ( 181 - 1) = ±1, and so the only solution is for 181 = 2, n "' ±l. 

Thus, if 181 > 2 we obtain a contradict10n, proving that IR11 = IR), which implies 

I 

It is e;isy to show that the condition 181 > 2 is necessary in the above theorem. 

Example 4.2. Let ID = X u X2 where X = {a,b} and define the representation 

p:ID -+ {0,1} t by: 

p( ii) = 00_ 
p( b) ::: 10_ 
p( aa) = 010 

p(ab) =011 
p( ba) = 110 
p( bb) = 111 

Then the table lookup question set r =hp 'Y2} can be solved by algorithms With 
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access trees as shown in Figure 4.1. It is clear by observation of these trees that 

both 'Yi and 'Yz achieve Kraft access, and yet R 1 = X whereas R2 =XU {.0'}. I 

(b) 'Y2 

0 

b 

figure 4.1. Access trees for 'Y 1 and 'Y 2 of Example 4.2. 

lt immediately follows from the previous theorem that if we have Kraft access 

for the set of table lookup questions, and IBI > 2, then /\ E ID except when ID = xn 

for some n. 

Theorem 4.2. Let 181 > 2. If all 'Y 1 E r achieve Kraft access, then either 

/\ E ID or else ID = X n for some n E N •. 

'YI (J 1) =0 and R('Y ([D)) =XU{¢}. Now assume that 'Act.ID. Then 
J 21 ld 21 

R( 'Y 1 (ID)) = X. But by Theorem 4.1 this says that 'Y 1 and 'Y can't both 
ld 21 

achieve Kraft access, a contradiction. Therefore /\ E ID. 

Thus, if 131 > 2, then A. <t. ID implies that ID = xn for some n. 

Ri = X U {¢},we know that if ID -t- Xn, then f2f E R1• 

Because 

Corollary 4.2.1. Let 181 > 2. If all 'Y 1 E r achieve Kraft access and there is 

non E IN+ such that ID= xn, then R('Y 1(1D)) =XU {0}, for all 'Y 1 Er. 
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4.2 Kraft Access with Overlapping Access Sets 

In this sect10n we discuss achieving Kraft access for the set of table lookup 

questions r and frequently refer to the set of memory cells accessed in order to 

answer some 'YI t r. 

Definition. Let p be a representation p:ID ~ 3t, and tet 'Y P "Y J E r. Then 

we say th at 'Y 1 and "Y j lzave overlap ping access sa s if, for some d E ID, 

{C"Y 1( p( d)) J} n {C"r) p( d)) J} ~ ¢. 

\Ve shall show that, for 1131 > 2, if all 'Yi t r achieve Kraft access then there can be 

no ovnlapping access sets (see Theorem 4.4). For the case IE! = 2, two access sets 

{['Yi(p(d))J} and {C'Y}p(J})J} can overlap, but in at most one cell and only 

when Xk <J_ ID, for all i ~ k < J (see Theorem 4.8). Where all 'Yi Er achieve Kraft 

accPss we also show that 
Jrl 
2#C"Y 1(p(d))J ~ lp(J)I + lrl -1, 
i = 1 

and tf the "Y 1 do not have overlapping access sets then 

1r1 
2 #[ 'Y 1 ( p( d) ) J ~ Ip( d) I. 
i= 1 

(see corollaries 4.7.l and 4.5.1.). 

Consider any representation p and suppose that 'Y 11 'Y 2 t r meet Kraft access. 

Our fll'St theorem says that if 'Y 1(p(d 1)) and 'Y 2 (p(d 1)) access some cell m 

common, then ID does not mclude all strings of the form 

or all strings 

d 1(i) · R2 

Ri. d1(J). 

Theorem 4.3. Consider a representation p:iD ~ at and let "Y P "Y J E r each 

achieve Kraft access. Suppose there exists d 1 t ID such that "Y 1( p( J 1 )) and 

'Y} p( J 1) ) access some cell in common. Then 
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-,(Vr E R)(3d2 E ID)(d2 (i) = d 1(i) and d 2 (j) = r) 

and -,(Vr ( R
1
){3d2 ( ID){d2 (i) =rand d 2(j) = d 1(j)). 

Proof: For and J
1 

( ID, let p( d 1) ~ m1• Suppose there is some d 1 E ID such that 

"Y 1(p(J 1)) and 'Y}p(J 1)) both access cell k. Let m 1(k) = b 1 <: 8. Smee 

'Y'p 'Yj <: r achieve Kraft access and access cell k then, for all d 2 EID, 

d 2 (i) = d 1(i) => m2(k) = b 1 

d 2 (j) = d 1(j) => m2(k) = b 1. 

Since "Y J achieves Kraft access, we know there 1s some string d 3 ( ID such th at 

m 3 ( k) ;z! b P and 'Y' J accesses cell k. So there is no way to represent a str111g d ,1 

where 

d 4 (i) = d 1(i) and d 4 (J) = d 3 (j) 

Similarly, there is no way to represent a string d 5 where 

d 5(i) = J 3(i) and d 5(J) = d 1(j). I 

The intuition bC'hind the preceding theorem can perhaps best be seen by picturing 

the access trees for two table lookup questions, as we do in the following· example. 

This gives us an example of overlapping storage, although we obviously can't 

represent all strings in the product of the ranges. 

Example 4.3. Let 8 = {0,1,2}, and let X ={xii 1 ~ i ~ 9}; i.e., 181 = 3 and IXI = 9. 

Suppose 'Y 1 and 'Y 2 have the ternary access trees as shown in figure 4.2 and 

therefore achieve Kraft access. These trees indicate that, for instance, 

p(x 2 · x 6 ) = 0121_ and p(x 8· x 5 ) = 12202. The only time we have overlapping 

access sets is ford<: ID such that d(l) = x6 , x 7 , or x 8 ; i.e., 'Y 1(p(d)) = x 6 , x 7 , 

or x 8 . So we can certainly represent any pairs of strings in xi' X, where 

x 1 f/.. {x 6 ,x 7 ,x 8 }. It is also possible to represent the pairs of strings x 6 · Xp x 7 · x 2 , 

and x 8 · xj where xj <f.. {x 1,x 2 }. 
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"Y 1 

x 1 

Figure 4.2. Access Trees for 'Y 1 and 'Y 2 of Example 4.3. 

So 1f 'Y 1 and 'Y J do overlap in access of cell k, then it is not possible for iD to 

include a stnng· ell' such that p(d 1(i)) has some value b 1 in cell k and p(d 1(J)) 

has some value b 2 ;I! b 1 111 cell k. If 'Yi meets Kraft access, then its access tree is 

full, so there will be at least 181 elements d E ID such that 'Y 1( p( d)) accesses cell k. 

Similarly for 'Y S Let S be the set of strings 111 the domain that agree with d 1 in 

every position except the j1h: 

S = {d EID I d(n) = d 1(n) for all n ;I! J}. 

Then ISi ~ IR) - ( 181 - 1), since there must be at least 181 - 1 characters r 111 R J 

such that we cannot represent any stnng in X* whose i1
h component is d 1 ( i) and 

whose /h component is r. 

Lemma 4.1. Consider any representation p:ID -+ 8t and let 'Y P 'Y J E r 
achieve Kraft access. Suppose that ford 1 E ID, 'Yi and 'YJ access some cell in 

common. Then 

I LJ {J(j)} I~ IRJI -181+1. 
dEID 

P1w'f: 'Y 1( p( d 1)) and 'Y / p( d 1)) access some cell in common. Since 'Y 1 meets 

Kraft access, then for p(d 1) ~ m11 "( 1(p(d 1)) corresponds to m 1(k) = b E 8. 

Since 'Y J a Isa meets Kraft access, there are at least 181 - 1 values for d( J) that do 

not hiive m(k) = b. Thus, I LJ {d(j)} I~ IR I -181+1. 
dEID J 
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Rec a 11 that for a pair of table lookup q ucstions 'Y 1 and 'Y J' where i < j, then 

Ri = RJ 1f 'Yi and 'YJ achieve Kraft access and 181>2. If d(i) = x EX, then all we 

know 1s that d(j) (XU{¢}. On the other hand, we know that if d(i) =¢,then 

d( j) = Y-f; in this case there are IXI combinations of d( i) and d( j) that do not 

exist for any cl E ID. So perhaps there could be some representation scheme that 

would allow us to overlap accesses. The next theorem follows from Lemma 4.1 and 

shows tint there is no such scheme. 

TIH1 orem 4.4. Cons1clcr a representation p::O _, s+, where 181 > 2, and Jct 

'Yp 'YJE reach achieve Kraft access. Then, for all d<: ID, 'Y 1(p(d)) and 

'Y} p( d)) access no cells in common. 

Proc1f: Assume there exists d 1 (:ID such that 'Yi(p(d 1)) and 'Y}p(d 1 )) each 

:1Ccf'ss cell k, i < j. Tl1cn since all 'Yi achieve Kraft access, for all b <: 13 there is 

some c/ 2 (ID such that 'Yi(p(J2 )) causes cell k to be accessed and m2 (k) = b, 

where p(J 2 ) c; m2 . Since not all leaf descendants of node kin the access tree for 

'Yi can be labelled ¢,there is some d 3 EID such that d 3 (i) '?!¢and 'Y 1(p(d)) 

accessf's cell k. If we let IDi = {J <: ID Id( i) = d 3 ( i) }, then we have 

I LJ {J(j)} I~ IR I -181+1~IXI+1 -181 <IXL 
JEID

1 
J 

But bv the way we have def med a problem domain, there are IX I data bases d <: ID 

lh(lt ci1ffcr from d 3 only in the /h position. This gives a contradiction and so, for 

all ti<: ID, "'( 1(p(d)) and 'Y}p(d)) do not have overlapping access sets. I 

Smee for any d E ID each 'Yt accesses a distinct set of cells, the total number of 

accesses made by the various "( 1s cannot be more than Ip( d) I. 

Theorem 4.5. Consider any rcprcscntatrnn p: ID -t s+ and assume all "I 1 <: r 

achieve Kraft access. If 'Yi and 'YJ access no cells in common, then 

1r1 
2: II[ "I I ( p( d) ) ] 5- Ip( d) I. 

i=l 
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From theorems 4.4 and 4.5 we can immediately ger the following· result. 

Corollary 4.5.1. Consider any representation p: ID-ts+, where IBI > 2, and 

let il II "YI f r achieve Kraft access. Then 

1r1 
l: ll["'f 1(p(d))J s; lp(d)I. 

i =1 

Unfortunately, Theorem 4.4 does not hold for 181 = 2. In other words, 1t is 

possible for "Y 1 and "Y j to achieve Kraft access and also access some cell m common. 

Examplf' 4.4. Let 13 = {0,1}, X = {a,b}, and ID= {'A} u X2 u X3
. Consider the 

representation p:ID -t 3+ defined as follows: 

d 
A. 
aa 
ab 
ba 
bb 
aaa 
aab 
;iba 
abb 
baa 
bab 
bba 
bbb 

Pitl 
10_0_ 
0100 
0110 
1100 
1110 
01010 
01011 
01110 
01111 
11010 
11011 
11110 
11111 

Smee 'A f ID, R1 = {a,b,.0} for if {1,2,3}. Possible access trees for 'Yp 'Yzi 'Y 3 are 

shown in Figure 4.3. Notice that 'Y 1 and 'Y 2 may both access cell 1, and we have 

the following storage allocation: 

Without ;iltering the access trees, we could extend p and ID so as to also include the 

element a (: X, by letting· p( a) = 00_0. It would not, however, be pornble to 

similarly include b in the domain, because p( b) would require cell 1 to be set to 1 
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and also to 0. 

"Y 1 'Y 2 'Y 3 

·~ ¢~ ¢~ 
fZJ b a b a b 

Figure 4.3. Access trees for 'Yp 'Yzi "'( 3 of Example 4.4. 

We c:in sPe that Corollary 4.5.1 docs not hold for 181 == 2, since for d :c bab, 

p( IJ ;:i IJ) = 11011 an ct : 
3 

2: 11[•·1) 11011) J = 2 + 2 + 2 = 6 > Ip( bab) I. 
I= 1 

Notice rtlso that p does not achieve Kraft storage: 

2: 1s1-lp(d)l=4·2·4 +r3 +8·2· 5 = 5 <L 
JEID 1f 

The follow1ng lemma shows for 181 = 2 that if 'Yi and 'YJ each have Kraft 

access, and 1i they both CICcess cell k, then the access trees for -y 1 and 'YJ each have 

a node labelled k leading to a leaf ¢ via a branch labelled b t 8. 

Lemma 4.2. Let 10'1 = 2 and let b, b' E 8, b -;t. b". Consider a representation 

p:ID -• a+, and assume that 'Y P 'Y J t r achieve Kraft access and that 

k E ( U { [ 'Y 1 ( p( d) ) J} n U { [ 'Y} p( d) ) J } ) . 
dEiD dEID 

Choose elements Xp x2 E R1 and x3 , x4 t RJ, such that m 1(k) = b, 

m2 (k) = b', m3(k) = b, mik) = b", where m1 2 p1.Jx 1). Then either 

x 1 = x 3 =¢or x2 ::: x4 = ¢. 

Pr~•l:f: Cleflrly p cannot represe11t a string d 1 where d 1 ( i) = x 1 and d 1 ( J) = x 4 or 

a string rl 2 where d 2 (i) = x2 and d 2 (J) = x3• There are two cases to consider: 

( 1) If x 1 E X then x 4 = ¢, since we do not necessarily need to represent d( i) E- X 
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a11d d( J) = 0, but we rnmt be <1ble to represent d( i) E X and d( j) E X. This tells 

us that x 3 ;;!. f2f and so x3 EX. Since we cannot represent d P then x2 = ¢. 

(id If x 1 c= f2f, then x 4 E X and x 2 E X. Since we cannot represent d 1, then 

I 

In Example 4.4, the access sets for 'Yi and '"( 2 each included the ccll l. Notice that 

Ill each of their access trees, the left branch from the node lnbellcd 1 led to the leaf 

f2f; ming the terrni no logy of Lemma 4.2, x 1 = x 3 = f2f. 

Lcmmil 4.2 allows us to prove that at most one cell can be in two access sets, 1f 

we achieve Krait <1ccess. 

Tlwor('tn 4.6. Assume 'Yp 'Yj Er achieve Kraft access. Then the CICCCSS sets 

for 'Y 1 and 'Y J contain at most one cell 111 common. 

P1A:f. If 'Y 1 and 'Y J access two cells in common then by Lemma 4.2 each tree has 

two leaves 0, which violates our assumption of Kraft access. 

We c<111, in fact, rn;ike the even stronger statement that if we achieve Krait access 

ior all of r then any table lookup question 'Yi Er can access only one cell that ;rny 

other 'Y J E r accrsses. The following theorem formalizes this. 

Theorem 4.7. Consider a representation p:ID ~ 8+, and assume that all 

'Yi (- r achieve Kraft access. If 'Yp 'YJ both access cell k 1 and 'Yp 'Yk both 

access cell k 2 , then k 1 = k 2. 

Proof: By Lemma 4.~, we know that node k 1 in 'Y 1's access tree leads to a leaf 

labelled ¢. But also node k 2 in the tree for 'Y 1 must lead to a leilf 0. S111ce 'Y 1 

ilch1eves Kraft access, there can be at most one leaf labelled ¢, ilncl so k 1 = k2 . 

This gives us a result sirrnlar to Theorem 4.5, for the case where we allow access 
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overlap. 

Corollary 4.7.L Consider ;my representation p:ID ...., Bt ancl assume that all 

'Yi~ r achieve Kraft access. If we allow access overlap, then 

1r1 
2: II[ 'i' i( p( d)) J ~ Ip( d) I + 1r1 - 1. 

I= 1 

Prrof: From Theorcrn 4.5 we recall that where there 1s no access overlap, then 
1r1 
2: II[ 'i' 1 ( p( d) ) J ~ Ip( d) I. 

I= 1 

Now from Theorem 4.7 we know that each 'Y 1 can have at most one cell in common 

with any other 'Y J So 

Jrl 
2:11c..,, 1(p(d))J ~ lp(d)I + lrJ -1. I 
i= l 

Example 4.5. Recall Example 4.4, where 
3 

2:11c..,. 1(p(bab))J = 2 + 2 + 2=6~lp(bab)I+1r1-1=s+3 -1=7. I 
i = 1 

The next example verifies that, in fact, the bound in the above corollary is the best 

possible. We achieve this bound when all 'Y 1 E r access some cell in common. 

Example 4.6. Let 13 = {0,1}, X = {a,b}, and ID={!..} u X3
. Consider the 

representation p:ID ...., Bt defined as follows: 

cl 

A. 

aaa 
ailb 
aba 
abb 
baa 
bab 
bba 
bbb 

pUl 
10 0 
0101 
0100 
0111 
0110 
1101 
1100 
1111 
1110 

Consider the access trees for 'Y 1, 'Y 2 , 'Y 3 shown in Figure 4.4. Then it is easy to sec 

that 
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3 

2:#['Y1(p(d))J s lp(d)I +Ir! -1. 
i= 1 

1 n part1cu Jar, 

and 

3 

2:11[..,, 1(p(:\))J = s s 3 + 3 -1 
i= 1 

3 

2:11["'t' 1(p(bba))J = 6 S 4 + 3 -1. 
i= 1 

"'t'z 

0~ 
a b 

Figure 4.4. Access trees for "'t' 11 'Y 21 'Y 3 of Example 4.6. 

I 

Essentially, we were able to allow access overlap in Example 4.4 because we 

did not need to represent the strings aJZf J2f or bJZf JZf, This was because we restricted 

10 so that X 1 rJ. !D. If it is necessary, however, to represent the situation where 

'Y 1( p( d)) ;t JZf and 'Y J( p( d)) = J2f, then no overlap between 'Y 1 and 'Y 2 is pomble. 

In fact, for 181 = 2, this works in both directions, as the next theorem shows. 

Theorem 4.8. Let 181 = 2 and let "'t' P 'Y J E r each achieve Kraft access. There 

ex is ts a representation p:!D ~ 8t such that 'Yi and 'Y J access some cell in 

common if and only if xk g;, lD for all i S k < J. 

Praoj.- ( => ) As in the proof of Theorem 4.4, we can assume without Joss of 

generality that "( 1(p(d 1)) ;t J2f, Then IR("'t'}d 1))1=IXI+1. But by Lemrna 4.1, 

if 'Yi and 'YJ access some cell in common, then "'t'}P(d)) can take on at most 

IR) - 181 + 1 ~ IXI + 2 - 181 s IXI < IXI + 1 

values. So 'Yi and 'Y J access no cells in common. 

( <= ) If there exists no k such that i < k S j, then 



- 62 -

and 

We can always construct a representation p such that "Y 1 and "Y J will both access 

some cell k. Let the access tree for iy 1 have exactly one node corresponding· to an 

access of cell k, and let this node be at a greater depth than any other nonleaf 

11ode. Let the left branch from this node lead to a leaf labeled ¢ and the right 

branch lead to some other leaf x 1 ~ X. Then construct the access tree for 'Y J such 

that the root is labeled k, and its left branch leads directly to a leaf labeled ¢. 

This allows us to represent all strings X · X and ¢ · ¢, and yet "Y 1 and 'Y J both 

access cell k. I 
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4.3 Achieving Kraft Storage and Kraft Access 

We have seen in Example 4.4 that it is possible to have Kraft access with 

overlapping access sets, although Lhat particular representation did not achieve 

Kraft storage. This leads us to wonder whether it is even possible to achieve both 

Kraft storage and Kraft access; the following example shows us that it is. 

Example 4.7. Let B = {0,1}, X = {a,b}, ID = {A} U X2, and define p::O -+ s+ by 

d 
A 
aa 
ab 
ba 
bb 

Pl1.l 
0 
100 
101 
110 
111 

Now consider the access trees for 'Y 1 and 'Y 2 as shown in figure .4.4. Clearly 'Y 1 

and 'Yz each achieve Kraft access. It is also the case, however, that p achieves 

Kraft storcige, smce 

Now notice that 
2 

2: 2 -Ip( d) I = 2-1 + 4 . 2-3 = 1 
d~ID 

2 #[')' 1(p(ab))J = #['Y 1(p(ab))J + #['Y 2 (p(ab))J = 2 + 2 = 4 > lp(d)I 
I= 1 

and so Corollary 4.S.l does not hold for 181 = 2, even when we achieve both Kraft 

storage <rnd Kraft access. I 

The main results of this section, theorems 4.9 and 4.10, tell us that if we achieve 

both Kraft stor;ie~e ;ind Kr;ift access then our domain must be of the form ID = xn 

We are now in a position to prove our first of two main results of this section: 

if we are to have Kraft storage and access and not allow overlapping access sets, 

then ID = xn. We first prove the following lemma. 
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(a) 'Y1 ( b) 

a b a b 

figure 4.4. Access trees corresponding to 'Y 1 and 'Y 2 of Example 4.7. 

Lemma 4.3. Consider a representation p:ID -+ tl and assume that all 'YI E r 
achieve Kraft access. Then, for k ~ Ir!, 

2 181-:-~#[')'!(p(s))J = 1, 

sERk 

where Rk g R 1 o R 2 o ••• o Rk. 

Prorj: We prove this result by induction on k. 

Basis: Since 'Y 1 achieves Kraft access, by Theorem 3.7 we have 

"" -#[')' 1(p(s))J "" -a 1(s) 
~ 181 = ~ 181 = 1. 

sER 1 sER 1 

( 4.1) 

Induction step: Let Rk+l = {r 11 r2, ... ,1), and assume that (4.1) holds for Rk. 

Then 

+ 

k 

-2:t1[ 'Y 1 ( p( s) ) ]-II[ 'Y k + 1 ( p( s) ) J 181 ,,, 

k 

"" I -2tt[ 'Y 1 ( p( s) ) ]-#[ 'Y k +I ( p( s) ) ] 
~ 81 ''' 

sERk· r 
2 

k. 

"' -211[ 'Yi ( p( s) ) ]-#[ 'Y k + 1 ( p( s) ) ] 
+ ... + ~ lBI ·•• 

sERk· r n 

Since 'Yk+l achieves Kraft access, then for r E Rk and r ER, we have 

#['Yk+l(p(r·r,))J = ak+1<r,) 

This g·ives us 



... 
"" -2:#[..,. 1' ( p( s) ) ] 
L. 181 •• , 

s<.:Rk+t 
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... 

= 181-cx k + 1 ( r 1) 2 181-~II[ 'Y 1 (,o( s) ) J 

s<.:Rk 
\<. 

+ 181-cxk+l(rz) 2 131-~~['Yt(p(s))J 
s<.:Rk 

I<. 

+ ••• + 181-cxk+l(rn) 2 181-,?,#['Yt(p(s))J 

s<.:Rk 
Bv our inductive assumption and since we are given that 'Yk+ 1 achieves Kraft access 

for k + 1 ~ Ir!, this becomes: 
~· · 

2: IBl-~•tl["'fi(p(s))J = 181-cxk+l(rl) + 181-cxk+l(rz) + ••• + 181-o:k+l(rn) 

s<.:Rk+I 
= 1. 

We now prove our desired theorem. 

Theorem 4.9. Consider a representation p:ID ~ 8+ which achieves Kraft 

storage and assume that all ..,. I<.: r achieve Kraft access. If for all ..,. i' ..,. j <.: r 
U { [ 'Y I ( p( d) ) J} n LJ { [ 'Y} p( d) } ] } = ¢ , 

d<.:iD dEID 
then ID = xn. 

lrl 
Proof: Let Ri denore the set of strings of length 1r1, where each element 1s 

1r1 
chosen from R 1• Define the one-to-one funrnon g:ID ~ R 1 by 

g(d) ='Y 1(d)·..,. 2(d)· .... ..,. (d). 
Ir! 

Assume that A<.: ID. Then, by Corollary 4.2.1, R('Y 1(1D)) =XU{¢} for all i. But 

1r1 
for all 'Yi<.: r, 'Y1(p(d)) =¢implies that 'Yi(p(d)) = ¢. So g(ID) ~RI since, 

1r1-1 
e.g., ¢· X <t g( ID). Because we have Kraft access and no overlapping access 

sets, 

I 181-lp( d) I 
d<.:ID 

1r1 

~ 2 181-~~[..,. i ( p( d) ) ] 

dEID 
1r1 

"=' , -?#[..,. 1' ( p( s) ) J 
= L. IEI ··· 

sEg( ID) 

by Theorem 4.S 

since g is 1-1 
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1r1 

" -l:#["f,.(p(s))J 
< L.. 181 '" 

sER lrl 
I 

= 1 

1r1 
since g( ro) cR I 

by Lemma 4.3. 

This gives a contradiction, since we know that p achieves Kraft storage. So 'A ';!! ID~ 

which by Theorem 4.2 says that iD = xn. I 

As we saw in Example 4.7, the condition that there be no access set overlap is 

necessary in the above theorem. 

From theorems 4.9 and 4.4, we have the following corollary. 

Corollary 4.9.1. Let 181 > 2, and consider a representation p:ID ~ 8+ which 

achieves Kraft storage. If all 'Yi E r achieve Kraft access, then ID = xn. 
k 

Because we shC1 ll freq ucntly consider domains of the form lD = LJ X 1, it is worth 
l=O 

notmg thClt with a domain in this form, it is not possible to attain both Kraft 

storcige cind Krcift access. 

k 

Corollary 4.9.2. Let ID= Ux 1
, for k > 0, and consider a representation 

l=O 

p:ID ~ 8+. Assume that all "( 1 E r achieve Kraft access. Then p does not 

achieve Kraft storage. 

Although we have proved that Kraft access, Kraft storage, and no access set 

overlrip implies that ID = xn, we know by Example 4.1 that It is also possible to 

have, for some domain ID ~ xn, both Kraft storage and access with access overlap. 

Example 4.7 is not an 1solatecl case; i.e., the next example illustrates that it is not 

necessary th;:it IX I = 2 or that ID = {'A} U X2
• 

Example 4.8. Let 8 = {0,1}, X = {a,b,c,d}, ID = {'A} U X3
, and define p:ID ~ 3+ 

as indicC1tcd in Figure 4.5. Such a definition is possible because only cell 0 is in two 

access sets, and m( 0) = 1 for all d E ID except d = 'A. For instance, 
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d P1s!.l 
A. 0 
aaa 10 0011 
aba 10 __ 0111 
aca 10 __ 1011 
ada 10 1111 
b<lC 110 0000 
bbc 110 0100 
bee 110 1000 
bdc 110 1100 
cad 11100010 
cbd 11100110 
ccd 11101010 
cdd 11101110 

This systPm has overlapping access sets and achieves Kraft access. In fact, we also 

have Kraft storage, since 

-Ip( d) I 2: 2 = 2- 1 + 42 . 2-5 + 42 . 2-7 + 2· 42 . 2- 8 = 1. 
dtlD 

"Y 1 

c b d a 

figure 4.S. Access trees corresponding to 'Yp 'Y 2 , and 'Y 3 of Example 4.8. 

Now we want to determine for what possible domains ID we can get Kraft 

storage and access if we allow overlapping access sets. Certainly we know that 

181 = 2, and recalling ex<1mples 4.7 and 4.8 we might suppose that ID is of the form 

{'A} U X n, as is indeed the case. 
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LPmma 4A. Let 181 = 2 and consider a representation p:ID ~ 3+ which 

achieves Kraft storage. Assume that lrl > 1 and 'Yp'YJ Er achieve Kraft 

access, and 

LJ {C'Y 1(p(J))J} n LJ {C'YJ(p(d))J} = {k}. 
dEID dEID 

Then the access trees for 'Y 1 and 'Y J each have root node labelled k. 

Proof: Let i < J. By Lemma 4.2, we know that ¢ E R 1 and ¢ E R J Assume that 

the access tree for 'Yi has root with label t 1 ;e k and that the access tree for 'YJ has 

root t 2 . Without loss of g·enerality, let the leaf in tree 'Yi with label fZJ have t 1 = O; 

1.e., p( 0) has m(t 1) = 0. Smee t 1 ;t k the node k must be a descendant of t 11 and 

there ex 1sts x 1 E X such that p( x 1) also has m( t 1) = 0. Clearly there is some 

x 2 EX such that p(x 2 ) has m(t 1) = 1. from Lemma 4.2 we know that 111 the tree 

'Y j we rnust also have the ¢ leaf a descendant of node k, with m( k) = 0. Thus 

d 1 ¢.ID, where d 1(i) = x 1 and d 1(j) =¢since p would require setting m(k) = 1 

and m( k) = 0. Since 'Y 11 'Y J achieve Kraft access, then by Theorem 4.8 it must be 

the C<l!'e th;:it xP t ID for i ~ p < j. On the other hand, we know that p docs 

achieve Kraft storage. So by Theorem 3.3 there is some d 2 E ID such that 

d 2 ( i) = x 2 and d 2 ( J) = fZJ, which contradicts the fact that X P <t. ID for 1 ~ p < J. 

Thus, t 1 = k and we can s1milarly show that t2 = k. 

This lemma <lllows us to prove our second main result of the section: If we have 

Kraft <1ccess, Kr<1ft stor<1ge, and access overlap, then ID = {;q U xn. 

Theorem 4.10. Consider a representation p:!D ~ 3+ which achieves Kraft 

storage, and assume that all 'Yi E r achieve Kraft access. If there exist 

'Y P 'Y j E r such that 'Y 1 and 'Y J have overlapping access sets, then 

ID ={le} U xn. 
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P10C1j: Assume 'Y 1 and 'Y J both access cell k, and assume there is some "Y m E r that 

does not access cell k. Then we can represent d 1 ( i) = ¢, d 
1 

( j) == ¢, d 1 ( m) E X, 

mdicating: we don't have Kraft storage, a contradiction. So if 'Yi and "YJ both access 

cell k, then for all 'Ym Er, "Ym accesses cell k. By Lemma 4.4, 'Ym has root node k 
1r1 

with one brcrnch to leaf ¢. Thus, we can represent exactly the strings 95 and 

If I { } n X , and so ID = 'A U X • 

In Theorem 4.S we showed that if we meet Kraft access and have no access set 

overlap, then Ip( d) I is an upper bound on the total number of accesses made in 

re::iding all the elements in p(d). We now show that for any 181? 2, 1f we achieve 

Kraft storage then every cell must be accessed in answering some question 'Yi· Thus 

Ip( d) I is a lower bound on the total number of accesses to read p( d). 

Theorem 4.11. If the representation p:lD -; Bt achieves Kraft storage, then 

for all d E ID: 

P1 oof: We def me S to be the set of cells accessed by asking of some d 1 E ID each 

ofthequest1ons')' 1: S= LJ {["(1(p(d 1))J}. Wewamtoprovethat 
"( 1Er 

k E D ( p( d 1) ) => k E S. 

DPfine the representation p 1 :ID --+ Bt by: 

{

p(d) 

P1 ( J) = 
{(k,m(k)) I kES} 

for d ;e d 1 

for d "" d 1 

Then p 1 is a representation because p is: for d 2 , d 3 E ID where d 2 ;t. d 1, d 3 ;t d 1 , 

we have 

p 1(J2 ) n )\(d3 ) ;e ;o ~ p(d2 ) n p(d3 ) ;e ;o => d
2 

= d 3 , 

and for d 2 E ID, d 2 ;e d 1, we have 

P 1 ( d 2 ) n P 1 ( d 1 ) ;e ;o => ( v 'Y 1 E r )( 'Y 1 ( p( d 1 ) ) = 'Y 1 ( p( d 2 ) ) ) => d 2 = d 1• 
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Assume there exists kt D(p(d 1)) such that k <1-S. Then lp1(d 1)1 = ISi < lp(d 1 )1 

and 

> L 181-lp( d) I + 181-lp( d 1) I 
dEID-{d 

1
} 

= L IEl-lp( d) I = 1 
c/EID 

This viol"tes the fact that p achieves Krafr storag·e, so k E D( p( d 1)) =~ k E S. 

Corollary 4.11.1. If the representation p:ID ~ Et achieves Krait storage, then 

for all d ( ID: 
lrl 
L II[..,. I ( p( d) ) J z Ip( d) I. 

i= l 

From theorems 4.5 and 4.11, we immediately have the following rcsulr. 

Theorem 4.12. Consider a representation p:ID ~ 3+ which achieves K rafr 

storage and assume that all 'Yi E r achieve Kraft access. Ii there is no access 

set overlap, rhen for all d E ID: 
1r1 
L #[..,.I ( p( d) ) J = Ip( d) I. 

I= 1 
n 

Since we are in general considering list problems where ID = LJ X1
}, Theorem 4.9 

i=O 

holds for the cases of particular interest to m. 

n 

Corollary 4.12.1. If ID = LJ X1 and the rerresentation p:ID ~ 3+ achieves 
i=O 

Kraft storage, and all 'Yi t r achieve Kraft access, then for all d E fD: 

1r1 
L #[..,.,(p(d))J = lp(d)I. 

i = 1 
n 

Thus, for list problems where ID= LJ X1
, if all 'Yi Er achieve Kraft access then 'Yi 

i=O 

and 'Y J access no cells in common. 
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4.4 Storage Consf>quences of Kraft Access 

We conclude this chapter by examining some consequences of Kraft access for 

the set of tab le lookup q uest1ons. In particular, achieving Kraft access tells us 

sorncthrng about the m111imum and maximum possible values of Ip( d) I: 

and 

max Ip( d) I > 1r1 · (flog IRll - 1) 
JEID 10'1 

min lp(d) I 2 IJI - 1. 
d(ID 

In gf'ncra I we have even better bounds. 

In order to lower bound lp(d)I, we first prove two lemmas. 

Lemma 4.5. Let p:ID ~ s+ be any representation. Then 

(V'Y 1 E r)(]d E ID)(#[")'1(p(d))J 2 flog· IR 111). 
IBI 

By Theorem 3.13, mCIXIXi{r) 2 flog . IR1ll 
rER

1 
IBI 

max/1["'( 1(p(d))J ~flog IR 111, 
dEID 181 

so 

and this immediately gives our desired result. 

Lemma 4.6. Let ID = LJ X 1 and let p:ID ~ s+ be any representation. Then 
iEJ 

(3d 1 E ID)(V"'( 1 E r)(ll["'( 1(p(J 1))J 2 floglBllR 1ll). 

Proof: Let cl 1 E ID be the database defined as follows: 

d 1 ~ {d 1(i) = r1 I (r1 EX)/\ (a:1(1) =max a 1(r)) /\ (0 2 i ~ 1r1)} 
rER 1 

It 1s always possible to define such ad 1• Now recalling Theorem 3.13, 

t/["'( 1(p(d 1))J =max a: 1(r) 2 flog·
1

1',.

1
1R111. 

rER o l 

We now show it 1s always the case that 

max Ip( d) I 2 lrl · flog IRll - 1r1 + 1 
dEID 181 

and a I most a !ways the case th at 

max Ip( d) I 2 1r1 · flog IRll. 
dED I~ 

I 
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Theorem 4.13. Let ID ::: LJ X1 and p:\D -+ Bt be any representation. Assume 
iEJ 

that all "Yi Er achieve Kraft access. Then we can conclude the following 1 

where we write IRI to denote min!R 11. 
1EJ 

(a) max Ip( d) I 2 1r1. (flog IRll - 1) + 1 
dEID 181 

( b) If there are no overlapping access sets for "Y 1 E r or if there is no j E IN+ 

such that IX! ::: 2J, then 

max Ip( d) I 2 1r1 · rlog IRll. 
dEID 181 

Proof: (a) By Corollary 4.1.1, 
lrl 
2u[..,.

1
(p(d))J 2lp(d)I+1r1 -1. 

i = l 

from l.cmrna 4.6, there exists ad 1 E ID such that 

lrl lrl 
2:tt[..,.i(p(d 1))J 2 2:r1og IR 111. 
i=l i=l 181 

Combining these, we get 
Ir! 

Ip( d 1) I 2 1~/1og181 1R 1 11 - lrl + 1 

2 Ir! · (rlog IRll - 1) + 1 
181 

and so max Ip( d) I ~ Ir!· rJog . IRll - 1) + 1 
d<:ID 181 

( b) ( i) If there a re no overlapping access sets, then Theorem 4.5 tells us th at 
1r1 
2 #[ "Y I ( p( d) ) J s Ip( d) I , 
l= 1 

and so we conclude that 

max Ip( d) I 2 Ir!· rlog IRll. 
dEID 181 

(ii) If we do have overlapping access sets, then by Theorem 4.4 we know that 

IBI = 2 and by Lemma 4.2 we know IRI = IXI + 1. Assume there exists j E IN+ such 

that 2J < IXI < 2J• 1
• So in each 'Yi tree there is some x1 EX which labels a leaf at 

depth j + 1. Now define d 1 E ID so that d 1( i) ::: x 1 for all 1 S i S 1r1. Then 

Smee 

we have 

lp(d 1)12(j+1)· 1r1. 

r1og IRll = j + 1, 
181 

max Ip( d) I 2 1r1. rtog IRll. 
dEID Im 
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In the following; example we verify that if we allow overlapping access sets for 

IX I = 2J, then we may have 

max Ip( d) I < Ir!· r1og· IRll. 
dEID 181 

Also, the bound in Theorem 4.13( a) is tight. 

Example 4.9. (a) In Example 4.8 we clearly have 

max Ip( d) I = 8 < 3· rJog·2Sl = Ir!· r1og IRll, 
dED I~ 

since p( d) only occupies cells in the set {0,1,2,3,4,S,6,7}. Note, however, that 

max Ip( d) I = 8 > 3· (rlog251 - 1). 
dED • 

( b} In Example 4.7 we have 

However, since 

max Ip( d) I = 3 < 2· rlog231 = 4. 
JEID 

maxlp(d}I = 3 > 2· (rlog231 -1) = 2, 
dEID 

the bound rn Theorem 4.13( a) is best possible. I 

On the other hand, it is sometimes the case that we have overlapping access sets, 

IX! = 2J, ;rnd also 

max lp(d) I ~ Ir!· rlog IRll. 
dEID 181 

Example 4.10 illustrates this. 

Example 4.10. Let 8 = {0,1}, X = {a,b,c,d}, and ID ={A} U X 2
• There exists (as 

the reader may verify) a a representation p:D 4 5+ such that the trees shown in 

Figure 4.6 implement 'Y 1 and 'Y 2 , respectively. For instance, 

In this case 

p( A) = 10_00 __ 
p(cd) = 10_1111 
p( ca) = 10_10 
p( be) = 0_1110 

max Ip( d) I = 6 = 1r1. r1og IRll. 
dEID 181 

I 

Let us now say somethmg about the minimum size a representation can have. In 
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d 

c d 

Figure 4.6. Trees for 'Y 1 and 'Y 2 of Example 4.10. 

particular, it is always the case that Ip( d) I ;;:: IJI - 1. Where there is no access set 

overlap, then it follows from Theorem 4.5 that Ip( d) I 2 Ir!. 

Theorem 4.14. Let ID = LJ X1 and let p:ID -+ 8+ be some representation. 
1tJ 

Assume that all 'Yi tr achieve Kraft access. 

(a) Then for all d t ID: 

lp(d) I 2 IJI - 1. 

( b) If there are no overlapping· access sets, then for all d t ID: 

Ip( d) I 2 1r1. 

Prfloj: (b) By Theorem 3.9, #["( 1(p(d))] 21, and so if there is no access 

overlap, then Theorem 4.5 tells us that 
lrl 1r1 

lp(d)l 2211c'Yi(p(d))J221=1r1. 
j; 1 j; 1 

(a) On the other hand, suppose we allow overlapping access sets. If 

lp(d) I < IJI - 1, then there are at most IJI - 2 root node labels. So for j t IN+ not 

a 11 of the access trees 'Y J where j t J can have distinct root node labels. Pick 

j 11 j 2 E J, ii ~ j 2 , such that 'Y j 
1 

and 'Y j
2 

have the same root node label. Then by 

Theorem 4.B, xk <t ID for any j 1 ~ k <j2• But we know that Xj 1 ~ ID, a 

contradiction. Therefore, Ip( d) I 2 IJI - 1. I 
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Example 4.11 shows us that the bound in Theorem 4.14 is best possible. 

Example 4.11. Let B = {0,1}, X = {a,b}, and ID = LJ X1
, for J = {0,3,S,6}. 

j(: J 
Consider the representation p:ID _, s+ that corresponds to the set of acce.ss trees 

shown in Figure 4.7. Then all 'Yi(: r achieve Kraft access, and 

Ip( t.) I = 3 = I J I - 1. 

..,, 1 'Y2 'Y3 

¢~ ¢~ ¢~ 
a/ b a b a b 

..,. 4 'Y 5 'Y5 

¢~ ¢~ ¢~ 
a b a b a b 

Figure 4.7. Access trees for 'Y 11 'Y 2 , 'Y 3 of Ex ample 4.11. 

Note that the bound in Theorem 4.14b may also apply to a table lookup question set 

that has overlapping access sets; recall Example 4.4. 

Frorn Theorem 4.14 it immediately follows that if all 'Yi(: r achieve Kraft 

access and max ldl is unbounded, then infinite storage is required to represent each 
d(:ID 

J (:ID. 

Corollary 4.14.l. Let p:ID _, 8+ be any representation, and assume that all 

'Yi(: r achieve Kraft access. If -.(3k 1 (: iN)(maxldl s k 1), then for all 
d(:ID 

J (: ID , -. ( 3 k 2 (: IN )( Ip( d) I s k 2 ) • 



- 76 -

CHAPTER 5 

IMPLEMENTING THE TABLE LOOKUP QUESTION SET 

In Chapter 4 we cliscurn~d the set r of table lookup questiom and 

comequences of achieving Kraft access for each 'Yi E r. In this chapter we 

introduce three major classes of representation schemes and then examine the table 

lookup question set in the contexts of these three basic representations: fixed lenf'.th, 

endmarkf'r, and pointer. The fixed leng·th representation WCIS chosen because 1t 

sometimes allows us to achieve both Kraft storage and Kraft access. The enclmarker 

and pointer representations were chosen because they illustrate techniques commonly 

used for implementing vanable length lists. In Chapter 6 we reconsider these 

rl'presentations 111 order to implement stacks. 

5.1 Classes of Representations 

In this section we briefly discuss some basic definitions and representation 

techniques and thi:.>reby motivate the formal definitions for fixed length, 

endm;:irker, ;:incl pointer representations, which are presented formally in sections 

5.2, 5.3, and 5.4, respectively. 

We brgin with two notational definitions. 

Definition. Consider a function b E Bt and recall that 

b = {(n, mb(n)) In E D(b)}, 

where b ~ mb. For k E IN, we define 

{b}k~ {(n+k,mb(n)) lnED(b)}. 

Thus, {b}k is the set b E 3+ "displaced" by k, as illustrated in the followmg 

example. 
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Example 5.1. Conmler a function f:S ._, {O,l}t and let s 1 ES. If 

f(s 1} = {(1,0), (3,1), (S,O), (6,1)}, 

then {f(s1)}0 = f(s1) 

and {f(s 1)} 2 = {(3,0), (5,1), (7,0), (8,1)}. 

Also, we shall frequently have occasion to refer to the concatenation of two stnngs 

Ill [f*. 

Definition. Let f 1 be a function f 1 :S""" 8*, let f2 be a function f 2 :S """ !:/"-, 

and let s 11 s2 ES. We write f 1(s 1)· f2(s2} to denote the concalt'nation of the 

strmgs f 1(s 1) and f2(s2}, where 

Thu~, 

:incl 

f1(s1)· f2(s2) ~ f1(s1) U {f2(s2)}1r (s )IE[:;*. 
1 1 

lf 1(s 1)· f 2 (s)I = lf 1(s 1)1 + lf2 (s2 )1, 

D(f 1(s 1)· f 2 (s
2
}) = {0,1, ... , lf 1(s 1)1 + lf2 (s2 )1 - 1}. 

Notice that when f 1(s 1} =A., then lf 1(s 1}1=0 and f 1(s 1)· f2 (s2 ) = f2 (s); 111 

particuL:ir, i\· i\ = i\. In an obvious way, the definition can be extended to the 

concaten<ttion of any countable number of strmg·s. 

Example 5.2. Define the function f:{a,b,c} ._, {0,1}* by 

f(a) = 0 
f( b} = 10 
f(c) = 11 

Then f(a)· f(b) = {(0,0)} U {(0,1), (1,0)}
1 

::: {(0,0), (1,1), (2,0)} = 010 

and f(c)· f(c) = {0,1), (1,1)} U {(0,1), (1,1)} 2 

::: { ( 0,1}, (1,1}, ( 2,1), ( 3,1)} = 1111. I 

Many commonly used representation schemes involve the concatenat10n of 

encodings of a set X. For instance, given a function f:X ._, 13* it would seem 

natural to encode x 1x2 ... xk E Xk as f(x 1)· f(x 2 )· ..• · f(xk). Similarly, we 
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could encode Xk by placing each of f(x 1), ••• , f(xk) into a fixed field. We 

11lustr<1te these schemes in Example 5.3a and 5.3b. 

Example 5.3. Let X = {a,b,c,d}, 8 = {0,1}, and consider a function f:X ~ b'* 

defined by 

f(a) = 00 
f(b) = 010 
f(c) =011 
f(d) = 10 

Assume that the domciin is of the form ID = U X1
, and we want to def me a 

i~J 

nnpping from ID to s+ 
(a) Consider the function f 1 :\D ~ 13*, where 

For mstance 

fl(d) = f(d(l))· f(d(2))· .... f(d(ldl)). 

f 1(abcid) = f(a)· f(b)· f(a)· f(d) = 000100010 
f1(bdb) = f(b)· f(d)· f(b) = 01010010 

f 1 ( f\) = f\ 
Notice that, for 131 > 1, f 1 is not a representation because there is no way to 

recognize the end of the string f 1 ( J), e.g., f 1 ( b) and f 1 ( ba) are indistinguishable 

since f 1(b) o;: f
1
(ba). 

( b) Consider the function f 2:\D ~ 13+, where 

\di 

Then 

f 2 (d) = U{f(d(i))} 3 <i-i) 
i= I 

f 2 ( a bad) = 00_01000_10_ 
f2(bdb) = 01010_010 

f 2 ( f\) = f... 

As 111 the case off 11 the function f 2 is a representation 1f and only if IJI = l. I 

In the previous example, f 1 and f 2 would be representations, even for IJI > 1, if 

there were some way of detecting the ends of codewords f 1 ( d) and f 2 ( d). In 

p<1rticular, we might reserve some symbol to mark the end of the list or we might 
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give sornc spcc1f1cation of the length ldl or the length lp(d) I. 

Many representations that we consider are what WC ca 11 

cone a ten at ion-preserving, where the encoding of a list includes the en cod in gs of the 

111div1ducil elPrnents in the list. We now generalize the familiar notion of 

concatenation of encodings of list elements to not necessarily imply a "left to rieht" 

ordermg, only that the encodings are in disjomt sets of memory cells. Thus, if we 

know where to look then it is possible to determine d( i) and obtam no information 

about d( J), for 1 s; i,j s; lcJI. 

Definition. Let ID = LJ X1 and consider a function f:X ~ s+. Def me the 
i<:J 

fu11ct1on f":ID ~ 3·1" by 
!di 

f"(cJ) U{f(d(i))}n(d) 
l= 1 I 

where n 1:1D ~IN. Then f" is said to be a concatenation-preserving junction if, 

for all i ~ j, 

D({f(d(i)}}n
1
(d)) n D({f(d(J))}n/d)) = J25 

Let g be any function g:ID ~ 3+ and let f" be the function defined above. 

Consider the function p:ID -> s+ defined by the union 

p(d) = {f"(d)}nl(d) U {g(d)}n2(d)> 

where n 1 :ID ~ iN, n2:1D ~ IN. If pis, in fact, a representation and if 

D({f"(d(i))}nt(d))) n D({g(d)}n2(c1)) == ¢, 

then pis said to be a concatenation-preserving representation. 

The condition that the domains of {f(d(i))}n
1
(d) and {f(d(j))}n/d) not intersect 

guarantees that f" is, in fact, a concatenation of encodings of the list elements and 

that the representations of the list elements do not overlap. Notice that the function 

g can be chosen in any way whatsoever, so long· as the resultmg union, p, is a 

representation. We now reconsider Example 5.3 and see that f 1 and f 2 are 

cone a ten a ti on -preserving functions. 
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Example 5.4. The functions f 1 and f2 from Example 5.3 are 

concatenation-preserving functions, since they fit the form of the above definition. 

(a) Given the function f:X-+ 1? as in Example 5.3, we can define f 1:10-+ s+ by 
!di 

r1(d) = U{r(d(i))}n (d)' 
i = 1 i 

l- 1 

where n1(d) = :l:lf(d(j))I. 
j= 1 

Since n 1+ 1(d) - n 1(d) = lf(d(i))I, it is clear that 

D({f(d(i))}n (d» n D({f(d(j))}n (d)) = ¢. 
i j 

( b) Recall that WC defined f 2:iD -+ s+ uy 

ldl 
r2 Cd) = U{f(d(i))} 30 _1t 

Is 1 

Since max D( f( x)) = 2 the domains do not intersect, and it is clear that f 2 is a 
xEX 

con ca ten ation-preser v mg function. 

Recallinf~ Example 5.3, when ID = Xk we know that ldl = k and f 1 <ind f 2 arc, 

in fact, representations. When we wish to allow ID ;;t X\ however, then we may 

wish to com icier one of the fallowing three representation schemes. 

( 1) If Ip( d) I is of fixed size for all d E ID, then there is no need to specify 

Ip( d) I. fixed lenglh representations are discussed in detail in Section 

5.2. 

(ii) An endmarker representation reserves some symbol or set of symbols 

b E B+ to indicate the end of the list f(d). A formal definition is given 

in Section 5.3. 

(iii) We can encode the length ldl itself and use this as a pointer. A pomter 

representation is defined formally in Section 5.4. 

We illustrate enclmarker and pointer representations in Example 5.5a and S.5b, by 

extendmg the function f 1 from examples 5.3 and 5.4. 
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Example 5.5. (a) Recall from examples 5.3 and 5.4 the function f:X ..... 8+ and the 

function f 1 :JD 4 8+. We can then define the representation p 1 :ID -4 13+ by 

p 1(d) = {f 1(d)} 0 U {g(d)}n2(d)' 

where g:ID -4 13+ is defined by 

g(d) =11 
ldl 

<1nd where n2 (d) = :l:lf(d(j))I. 
j= 1 

Since we already know that f 1 is a concatenation-preserving function, we need only 

note that 

D({g(d)}n2(d)) n D({f 1(d)} 0 ) = ¢ 

111 order to verify that pis, in fact, a concatenation-preserving representC1t1on. For 

111stance, 

p1(abad) = {f 1(abad)} 0 U {g(abad)} 2 n (d) 

= {f(a)· f(b)· f(a)· f(d)} 0 U {11} 9 = 00010001011 
p 1(bdb) = f(b)· f(d)· f(b)· g(bdb) = 0101001011 

p 1(c) = 011 
p1 (It) = 11. 

Jdl 
Notice that lp1(d)I = :l:lf(d(j))I + lg(d)I. 

j= 1 

Smee g( d) and f( x) are distinguishable for all x E X, the srring g( d) = 11 serves 

as an endrn<1rker, allowing· us to detect when the encl of the list has been reachl'd. 

However, since we also have, e.g., p(c) = 011, not every occurrence of the string; 11 

corresponds to the endmarker. It is necessary to somehow decode p( d) as we read 

it. 

( b) Recall the functions f:X _,, 8* and f 2 :10 '""s+ from Example 5.3. Def me the 

concatenatmn-preservmg representation p2 :1D -t 8+ by 

Pz(d) = {f2(d)}ldl+1 U {g·(d)}o, 

where g·:ID ..... 3+ is defined by 

Notice that g( d) corresponds to the lenglh ldl. Thus, after reading g( d), we shall 

always be (Ible to tell when we are at the end of the list representation f 2 (d). For 
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p2 (abad) = 11110000100010 
p2 ( bdb) = 111001010010 

P2(1,) = 0 

We shall IC1ter discuss rnore "efficient" pointer representations. 

If in a conccitcnat1on-preserving function the functions n 1 arc all constant 

functions (i.e., the values of ni are not functions of the particular d be111g 

represented) then we say that the function has fixed position fields. Intuitively, 

this says thilt if we were to ask the question "Y 11 for i ~ ldl, then we would always 

know where in the representation to begin reading·. 

D""finition. Let ID = LJ X1 and let f be a function f:X ..., s+. Consider a 
if:J 

COllCC1tenat1on-preserving· function f':ID..:, s+ defined by 
ldl 

f"(d) = U{f(d(i))}n<d> 
i= 1 i 

where n1:!() -+IN. Ii for all d 1, d 2 f: iD and for all j, l ~ j ~ max i, 
if:J 

n1(d1) = n,(c12) 

then the function f" is said to have fixed position fields. We def me an n 1 field 

to be the set 

LJD(f(x))+ni' 
xf:X 

for 1 S: i S: !JI, where we use the notation 

Cle:nly neither of the extensions of f 1 in Example S.S g·ives us a function with fixed 

position fli~lds. The function f 2 from Example 5.3 is, however, a fixed position· 

field function, since n1(d) = 3·(1-l) for all d EID and thus each n1 is a constant 

function. Since each n1 field consists of all cells which may be occupied by 

p( d( I)), the n1 field for p of Example 5.3 is JUSt {n 11 n1 + 1, n 1 + 2}. Notice that 1t 

is not necessary that an 11 1 field consist of contiguous memory cells, although for 

simplicity most of our examples will be of this form. In fact, it is possible for two 
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ni f 1elcls to "cross"; e.g., we might have 

kp k 1 + k2 E LJ D(f(x)) + n1 
xEX 

:rnd k 1 + k3 E LJ D(f(x)) + ni+P 
xEX 

ior 1 ::; k3 < k2 . Example 5.6 gives an example of a concatenation-preserving 

rcp1 esentation with fixed position fields, where a field does not consist of 

contiguous cells. 

Example 5.6. Let X = {a,b,c}, B = {0,1}, and ID= LJxi. Oefme the funct10n 

f:Xu{0} ..... s+ by 

f (a) = 0 0 
f( b) = 0 1 
f(c) = 1_0 
f(,0) = 1_1 

Consider the representation p:ID ~ tl defmed by 
ldl 

i=O 

p( d) = LJ {f ( d ( i) ) } n U { 1_1 } n 1 
i=l i ldl+l 

where 

{

2·i - 3 
111 = 

2·i - 2 

for i even 

for i odd 

Thus, d(l) occupies cells 0 and 2, d(2) occupies cells 1 and 3, d(3) occupies cells 4 

and 6, d(4) occupies cells Sand 7, d(S) occupies cells 8 and 10, etc. For instance, 

p( 1') = l_l 
p( a baa) = 000100001_1 

p( bacba) = 001010010101. 

So an n 1 field is not a set of contiguous cells. In fact, the n3 field is 

LJ D(f(x)) + n3 ;:: LJ D(f(x)) + 4 = {4, 6} 
xEX xEX 

and the 11 4 field is 

LJ D(f(x)) + 11 4 = LJ D(f(x)) + S = {S, 7}. 
xtX xEX 

Notice that the n 3 field and the n4 field "cross", since 

4, 6 E LJ D(f(x)) + n3 
xEX 

<1nd S E LJ D(f(x)) + n
4

. 
xEX 

I 
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5.2. Fixed Size Representations 

In theorems 4.9 and 4.10 we showed that 1f a representation p:lD 4 8+ 

:ich1eves Kraft storage and also achieves Kraft access for all 'YE r, then ID = xn or 

ID = {!-.} U xn. In this section we show that it is possible, where ID = xn or 

ID ""' { 1'} U X, to h<1ve Kr<1ft storage and access with a fixed size represcnt<1tion. In 

fact, 1f the relative sizes of the problem and machine alphabets are chosen 

correctly, and if the domain 1s of one of the two appropriate forms, then there 1s 

always a fixed size representation which achieves Kraft storage and access (see 

Theorem S.S and Corollary 5.5.1). 

Recalling Section 5.1, a representation p is said to be of fixed size 1f It maps 

all strings in ID into strings of the same length. 

Definition. A representation p:ID 4 8+ is a fixed size representation function 

of siu r if and only 1f 

( V d E ID )( Ip( d) I = r) 

Notice that the definition rnakes no requirement that D( p(d)) = {O, 1, ... , ldl-1}, 

and in general p( d) might ocwpy any r cells of memory, not necessarily 

contiguous. Of course, we frequently consider a representat10n p::O 4 [/, where 

each d E ID is mapped onto a sequence m = m( 1) m( 2) ... m( r) = p( d), for 

m(!) E i3. for any fixed size representation, however, it is known that each p(d) 

ocrnp1es ex;ictly r cells, and so it is not necessary to store any addition<1l 

1nforrncit1011 concerning the length of the representation. Let us look at two 

ex;irnples of fixed size representations. 

Example 5.7. Let ID ={A.} u X u X 2
, X = {<1,b}, and 8 = {O,l}. Def111e the fixed 

size representcit1on p:!D 4 133 as follows: 

p( /..) = 000 
p(a) = 001 
p( b) = 010 
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p(aa) = 011 
p( ab) = 100 
p( ba) = 101 
p( bb) = 110 

Smee there is no d ~ ID such that p( d) = 111, p does not achieve Kraft storage. 

A Isa, it IS not possible, using representation p, to implement any 'YI E r so as to 

:lch1eve Kraft access. (If 'Yi did achieve Kraft access, then the tree for 'Yi would 

have three leaves and therefore two internal nodes. So one answer among a, b, JZf 

would be determined in a single access, but by inspection we can see that this 

cannot h;:ippen.) I 

Ex<tmple 5.8 illustrates a procedure for constructing a fixed size representation for 

which, if ID?! xn and IXI = 16'11
' - 1, we can attain Kraft access (although not 

Kraft storage). Notice that r = k·lrl, and we answer 'Yi by first accessing cell 

(i-l)·k. 

n 

Ex.unple 5.8. Let ID = Ux1, X = {a,b,c}, and 8 = {0,1}. Define the fixed size 
l=O 

concatenation-preserving representation p:ID -t 82
n by 

ldl n 

p(d) = U{f(d(i))} 2 <i-i) u U {f(¢)}2 <i-i) 
I= l i=ldl+ I 

where f:X U{ JZf} -+ 82 is defined by 

In particular, for n = 2 we have 

f(a) = 00 
f(b) = 01 
f ( c) = 10 
f( ¢) = 11 

p( !.) = 1111 
p( a) == 0011 
p(b) . = 0111 
p( c) = 1011 
p( aa) = 0000 
p( ab) = 0001 
p( ac) = 0010 
p( ba) = 0100 
p( bb) = 0101 
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p( be) = 0110 
p( ca) = 1000 
p(cb) =1001 
p( cc) = 1010 

Notice th<it 181 = 2 and 22 
- 1 = 3 = IXI. So r = 2·2 and to answer 'Y 1 we first access 

Cf'll 2·(i-1). Figure 5.1 illustrates access trees for 'Yi and 'Y 2 , and it is clear that we 

ach1f've t~raft access. On the other hand, p does not have Kraft storage because 

2:13. 2-4 =-fr ;C i. 

l11tull1 vely, we would have achieved Kraft storage if we had altered the defrnit1on of 

p by lettine: p( A) = 11 __ ; this would have made p(ID) a complete code. Instead, 

we chose to specify values for m( 2) and m( 3) so we could always answer 'Y 2 in two 

accesses. This illustrates a trade-off between Kraft storage and Kraft access. 

a b 

Figure 5.1. Access trees for "I 1 and "I 2 of Example 5.8. 

Notice that when we define some fixed size representation p, we have nor 

explicitly s;i1d anything· cibout the elements in the problem domain ID. If, however, 

we rneet Kraft storage, then we know by the following theorem that there are ll:W 

elements in the domain. 

Tlworem 5.l. Let p:ID ..., 3+ be a fixed size representation of size r. p 

achieves Kraft storage if and only if llDI = IBlr. 

Proof: Since Ip{ d) I = r for a II d E ID, then 

L 181-ip(d)I = llDl·IEl-r 
dEID 
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and we have Kraft storage if and only if llDl·l81-r = 1; that is, if and only if 

llDI = IBlr. 

Notice that we could, of course, be representing any lbf strings in ID. 

We know by Theorem 3.10 that we cannot achieve Kraft access for IX I < 181. 

Unfortunately, even for IXI ~ 181, the conditions llDI = I.Bir and ID = LJ X 1 do not 
iEJ 

g·uarantee that there is a fixed size representation that attains Kraft access. 

Ex.rn1ple 5.9. Let IEI = 3, IXI = 4, and ID= {ti.} U X2 u X 3
• Then for r = 4, we 

have lbY = 34 = 43 + 42 + 1 = llDI, and a fixed size representation p:ID _., 8 4 is 

storage optimal. On the other hand, by theorems 4.9 and 4.10 we know that there 

is no representation, fixed size or otherwise, that achieves both Kraft storage and 

Kraft access for the table lookup question set r = {'Y 1, 'Y 2 , 'Y 3 }. I 

In the last chapter, we have already shown that in order to possibly achieve 

Kraft stora)~C' and Kraft access, it must be the case that ID = xn or ID = {t...} U xn. 

If we wish a fixed size representation to have Kraft storage and access, then either 

iD = X n or else we have the less interesting situation where ID = { t...} U X 1• 

Lemma 5.1. Let ID = { ;\} U X n and consider a fixed size representation 

p:ID .... s+, of size r, which achieves Kraft storage. Assume also that each 

'Y 1 E r achieves Kraft access. Then 181 = 2 and 1r1 = 1; i.e., ID = { t..} U X 1 

and IXI "'1. 

Proof: By Theorem 4.9 and Corollary 4.9.1, since ID ;t xn then the only way we 

can achieve both Kraft storage and access is to have I.Bl = 2 and for there to be 

some 'Y P 'Y J E r such that "Y 1 and "Y J have overlapping sets. As a consequence of 

Theorem 4.8, we know that ")' l' ")' J access some cell in common if and only 1f 

Xk rt ID for all i :5. k < j. Since ID = {t...} U xn, then any pair of table lookup 

questions has overlapping access sets. Now lemmas 4.2 and 4.4 allow us to conclude 
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rh~~t e;:icl1 'Y 1 E I' ltas the s;:irnc root node lcibcl and each hcis a leaf labelled 0 at 

depth 1. Rut this says that Ip( A.) I = 1, and so ii p is a fixed size representation 

tl1r11 1t is <i fixed size representation of length l. Thus II'! = l. If 'Y 1 has a leaf 

bbcllcd ~1 rtt depth greater thiln 1, then Ip( t.) I ~ Ip( a) I and p could 11ot be a fixed 

SIZI' !"('prcsc11tation. Thus 'Y 1 has its only two leilves at depth one and so we have 

rlw tn vial case ID = {A.} U X 1 and IXI = 1. 

Of comsi:.', the above lemrn;:i simply says that if a fixed size representation achieves 

Kr;:ifr ~torap:c and access, then iD ={A.} U X. The following exarnple shows thcit I( 

1.0:, 1n fact, pornble to have ID={;>._} U X for a fixed size representation which docs 

h::iv<' Kratt storcige and access. 

Example 5.10. Let 13 = {0,1}, X = {a,b,c}, and ID = {t.} U X. 

rep1e~f:'11tat1on p::O -t 0·r by 

p( A.) = 0_1 
p( (l) = o_o 
p( b) = 10_ 
p(c) = 11_ 

Def me the 

Clearlv p 1s a storcif:;e optimal fixed size representation of size 2, and frorn Figure 

5.2 we see tit at It 1s possible to implement 'Y 1 so that it has Kraft access. 

'Y 1 

a 

Figure 5.2. Access tree for 'Y 1 oi Example 5.10. 

Now f rorn Lemma 5.1 and theorems 4.9 and 4.10 we obtain the following result. 
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Theorem 5.2. Consider a fixed size representation p:ID ~ 13+. Assume p 

achieves Kraft storage and each 'Yi Er achieves Kraft access. Then iD = Xn 

or ID = { t.} U X. 

In fact, achieving· Kraft storage and access with a fixed size representation tells 

us something about the relative sizes of the problem and machine alphabets. 

Lemma 5.2. Consider a fixed size representation p:iD -t s+ which achieves 

Kraft storag·c, and assume that all 'Yi E r achieve Kraft access. Then, for all 

'YI (: r, the access tree for "( i has uniform depth. 

Prnof: By Theorem 5.2, there are two cases to consider: 

(1) ID= {;q U X. In this case we know by Lemma S.l that Jrl = 1 and IXI = 1, so 

'Y 1 clearly hils uniform depth and pis a fixed size representation. 

(ti) ID = Xk. Then by Theorem 4.10 there arc no overlapping access sets. Assume 

there 1~ some 'Y n whose access tree does not have uniform depth; in particular, let 

leaves l<1bcllcd x 11 x 2 E X be at different depths. Then there exist d pd 2 E ID such 

that d 1(n) = x 1 and 

By Theorem 4.12, 

and 

But 

for i ;;t n 

for i = n 

Ip( d 1 ) I = :Z: #['YI ( p( d 1 ) ) ] + #[ 'Y n ( p( d 1 ) ) ] 
I ;tn 

lp(d2)I = l: li["f1(p(d2))J + uc..,,n(p(d2))J. 
i;en 

#["fn(p(d 1))J = tl[x 1J ;e ll[x 2J = tl['Yn(p(d2 ))J. 

Thus Ip( d 1) I ;;t Ip( d 2 ) I, implying p is not a fixed size representation, a 

contrnd1ct1on. So each 'Yi has a tree of uniform depth. 
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This lemma allows us to prove that IXI = IBlk or IXI = 181k - 1 1f we are to attain 

Kraft storage and access with a fixed size representation. 

Theorem 5.3. Consider a fixed size representation p:ID ~ zl which achieves 

Kraft storage, and assume all 'Yi Er achieve Kraft access. If ID = xn then 

IBlk = IXI for some k E IN, and if ID= {'A} u X then 181k = IXI + 1. 

PrrciJ: Let ID = xn. By Lemma 5.2, we know that the access tree for "Yi has 

uniform depth, say k, and so IBlk = IR(-y 1(1D))I = IXI. Similarly, for 

ID= {A.} u X, IR('Y 1(1D))I = IXI + 1 = l81k. 

The following example illustrates, however, that attainmg Kraft storci:_~e and 

access, even where ID = xn and IXI = 181\ does not necessarily mean our 

representation has fixed size. 

Example 5.11. Let 8 = {0,1}, X = {a,b,c,d}, and ID = X2
. Define the 

reprcsc11tation p:lD ~ st as illustrated in Figure 5.3. More specif 1cally, for 

xl' x2 EX, we can let p(x 1• x2 ) = f 1(x 1)· f2 (x 2 ), where the representation tree 

for f 1 has the same form as the access tree 'Y 1• For instance, 

p( ac) = 0 10 
p( iicl) = o __ 11 
p( l>b) = 10_01 
p( de) = 11110. 

From the trees It is clear that 'Y 1 and 'Y 2 achieve Kraft access. Also, since 

lp(x 1· x2 )1 = lf 1(x 1)1 + lf2 (x 2 )1=lf 1(x 1)1+2 

then the reader can verify that 

2 . 2 -Ip( J) I = 4· r 3 + 4· 2- 4 + 8· 2-5 = 1 

JEX 2 

and so p achieves Krait storage. 

On the other hand, the followmg example shows that we could have dcfmcd p 111 

the above example to be a fixed size representation and still have attained Kraft 
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..,. 1 

a 

d 

Figllre 5.3. Access trees for 'Yi and 'Yz of Example 5.11. 

storaf:';e and access. In fact, there would always be such a fixed size representation. 

Example 5.12. Let b', X, and ID be the same as in Example 5.11 and def me the 

representation p:ID -t st as illustrated in Figure 5.10. For instance, 

..,. 1 

p( ac) ::: 0010 
p( <1d) = 0011 
p( bb) = 0101 
p(dc) = 1110 

a c 

Figure 5.4. Access trees for 'Yi and 'Yz of Example 5.12. 

Clearly we achieve both Kraft access and Kraft storage. I 

To help motivate some further discussions, we first prove the following simple 

lemma. 
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Lemma 5.3. Let ID = x11
• Then the following statements are equivalent. 

( 1) There is sorne represcntat10n p:X -t 8t which attains Kraft storage. 

( 2) There is sorne implementation for which each 'Y 1 E r achieves Kraft 

access. 

(3) There is some k E IN such that IX! = k·( 181 - 1) + l. 

Pl··11•· \.lj. For ID=Xn, R(')'
1
(1D)) =X. There is sorne representation p which 

atta1m Kraft storage for x E X if and only 1f there is a 181-ary tree with IXI leaves 

1f and only if IXI = k·( LSI - 1) + l. Also, 'Yi achieves Kraft access if and only 1f its 

IBl-ary tree has IXI leaves if and only if IXI = k·( 16'1 - 1) + 1. I 

It 1s not the case, however, that Kraft storage for a representation p:X n -> 8t 

implies Kraft storage for sorne representation p:X -> Et. 

Example 5.13. Let 181 = 5 and IXI = 7. To get KnJft storage for X, we would need 

d l;J'I - 1) + l = 4i + 1 = 7, which is not possible. 

i-( 181 - 1) + 1 = 41 +1 = 49. 

2 But for X , i = 12 gwes us 

We are now ready to prove the main results of this section. The proof of the 

followi11g lemma 1s csse11t1ally the same as the proof of Lemma 4.3. 

Lemma SA. Let x = {x 1' X21 ... I xk} and ID = xn. Consider a 

representation f:X .... zl. If f achieves Kraft storaf!:c, then a 

concatenat10n-preservmg representation p:ID -> 8t defined by 
n 

p(d) = U{f(d(i))}n(d)' 
i = 1 I 

wlwre n 1:10 .... IN, also achieves Kraft storage. 

Proof: By induction on n we prove that 

2: 181-lp(d)I = l. 
dEX 11 

Basis= For n = 1, Ip( d) I = If( d) I and so 

( S.l) 
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2 181-lp(d)I = 2 IEl-lf(d)I = 2 IBl-lf(x)I = 1. 

d<:X d<:X x<:X 
Assume that ( S.l) holds for n. Then 

Ml 

"-" -Ip( d) I 
L. 181 

= 2: 
181

-:,?,lf(d(i))I 

d<:Xn+t df:Xn+l 

= 
2: 181 -C~1lf(d(i))I + lf(x 1)1) 

df:Xn·x 
1 

" 
"-" -(l:li(d(i))I + lf(x 2 )1) 

+ .{.. 16'1 i•I 

J<:Xn·X2 

" 
-lf(x 2 )1 "-" -l:lf(d(i))I 

+ 181 L. 181 ,., 
d<:Xn 

" 
-lf(xk)I "-" -2:1f(d(i))I 

+ • • • + 181 L. 181 '~I 
d<:Xn 

By our inductive hypothesis this then gives us 

2 181-lp(d)I = ~181-lf(x)I = 2181-li(x)I=1. 

df:Xn+l i=l x<:X 
I 

ThPorem 5.4. Let ID = xn. If there exists some k <: IN for which 

IXI = k·(l.81-1)+1, then there is an implementation (0 .. , p) solving (r, !D) 

such that p:!D ~ s+ achieves Kraft storage and each 'Yi<: r achieves Kraft 

access. 

ProD.f: Smee IXI = k·( ISi - 1) + 1, we know by Lemma 3.1 that there is a 181-ary 

tree T with IXI leaves and node labels chosen from the set {0,1, ... r}, for r ~ k-1. 

We can use this tree T to define the storage optimal representation f:X ~ 8*. Now 

define the concatenat10n-preserving representat10n p:ID ~ a+ by 
n 

p(d) = LJ{f(d(i))}(r+l)(l-1) 
i= 1 
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By Lemma 5.4, since f achieves Kraft storage so does p. Also, if we implement 

'Yi Er by the same tree T except replacin& node label j by label j + (r+l)·(i-1), 

then each 'YI E r achieves Kraft access. 

From Lemma 5.3, Theorem 5.4 holds if instead of the condition IXI = i-( 181 - 1) + 1 

we have the condition that there be some representation p:X ~ 3+ which attams 

Kr:ift stor'1ge or that there be some implementation for 'Yi which achieves Krafr 

access. Trivially, the above theorem also holds for ID= {t..} U X, when 

Ix I + 1 = d 181 - 1) + 1. 

Corollary 5.4.1. Let ID = { !-.} U X. If there exists some k E IN+ for which 

IXI + 1 == k·( 181 - 1) + 1, then there IS an implementation (a., p) solvin[': 

( r, ID) such that p:ID ~ zl achieves Kraft storage and 'Y 1 E r achieves Kraft 

access. 

We pres.ent an example to illustrate how p and f in the proof of Theorem 5.4 might 

be chosen. 

Example 5.14. Let 13 = {0,1}, X = {a,b,c,d,e}, and ID = xn. Then 

IXI = I'( LSI - 1) + 1 1s satisfied by 1 = 4, and there is a bmary tree with five leaves 

and four internal nodes whose labels are in {0,1,2,3}. In fact, there are many such 

trees, and we (arbitrarily) pick T to be the tree shown 111 Figure 5.5a. Using T, we 

define the rcpresentat10n f:X ~ 3+ by 

f(CI) =00 __ 
f(b) = 01 __ 
f(c) =1_00 
f( cl) = 1_01 
f( e) = 1_1_ 

By inspection, f attams Kraft storage. We define the concatenat1on-preserv111g 

representation p:JD ~ 3+ by 

p( d) = f ( d ( 1) ) . f ( d ( 2) ) . 
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(a) T ( b) 

a 

c d c d 

f ig·ure S.S. Trees for T and 'Y 2 of Example S.14. 

So T is also the access tree for 'Y 1, and the access tree for 'Y 2 is the same as T but 

has each node label j replaced by the label 2i + j. The tree for 'Y 2 is illustrated in 

Figure S.Sb. Then we have, for instance, p( be) = 01 __ 1_00. The representation p 

achieves Kraft storaf~·e because 

~ 2 2-lp(d)I = 9· 2-4 +12· 2-5 + 4· 2· 5 =1. 

dEX 2 

By inspection of the trees for 'Y 1 and 'Y 2 , we also attain Kraft access. I 

Notice, however, that the representation pin Theorem S.4 has many "gaps" in 

it. Even 1f we had constructed the tree T so that each node at depth j had label j, 

we would still have had gaps, unless T were of uniform depth. If we require that p 

be located in consecutive cells, then we cannot obtain Kraft access unless for all 

dl'd2 E xn, lp(dl)I = lp(d2)I; i.e., ll["(i(p(d))] = ll["f}p(d))], for all 

'Y p'Y j E r. We now show that if in Theorem 5.4 it had also been the case that 

IX I = 181\ then there would have been an implernentation achieving Kraft storage 

and access with a fixed size representation and without any "gaps". 

Theorem 5.5. Let lD = xn and IXI = IBlk for n,k E IN+. Then there is an 

implementation ((l, p) solving ( r, !D) such that p:!D ~ 3nk is a fixed size 

representation achieving Kraft storage, and each 'Yi E r achieves Kraft access. 
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Proof: Since we are g·iven that IXI = IBI\ the equation IXI = H 181 - 1) + 1 is 
k-1 

satisfied for i = 2 IBIJ. Theorem 5.4 immediately tells us that there is some 
j=O 

representation with Krafr storage and. access, but we want to show that there is, in 

fact, such a fixed size representation. As in the proof of Theorem 5.4, we clef111e 

the concatenation-preserving representation p:iD ~ Bnk by 

p(d) = f(d(l))· f(d(2))· ... · f(d(n)) 

where f:X ~ 13k corresponds to a tree T of uniform depth k where each internal 

node at depth j has label j. Certainly f and therefore p both achieve Kraft storag·e, 

as verified by 

.2: 181-lp(d) I = 2 181-nk =IX In· 181-nk =IXln· IXl-n = 1. 
d<ID JO: n 

Also, we implement "Ym Er by the same tree T, with labels j replaced by mk + J. 

Each "Ym Er achieves Kraft access, since #["Ym(p(d))J = k and 

2 181-a(r) = 2 181-k = IXI · 181-k = 1. 
rE X rEX 

We can gwe an example, similar to Example 5.12, which illustrates this theorem. 

Example 5.15. Let 8 = {O,l}, X = {a,b,c,d}, and ID = X2
. Notice that IXI = 181 2

, 

and Figure 5.6a shows a tree T of uniform depth two corresponding to the 

representation f:X ~ 132
• Then we define the representation p:ID ~ 8 4 by 

p(J) = f(d(l))· f(d(2)). For instance, 

p( ac) ;:: 0010 
p( ad) = 0011 
p( bb) = 0101 
p( de) = 1110 

The tree T of Figure S.6a is the access tree for "Y P and the access tree for "Y 2 is 

shown 111 Figure 5.6b. I 

Analogous to Theorem 5.4, we have the following corollary. 



(a) T ( b) 

a 

Figure 5.6. Trees for T and 'Y 2 of Ex ample 5.15. 

Corollary 5.5.l. Let ID = {!...} U X and IXI + 1 = 181k for some k E IN .... Then 

there is an implementation ( (.l, p) solving· ( r, ID) such that p:ID ~ Bk is a 

fixed size representation achieving Kraft storage, and each 'Y 1 E r achieves 

Kraft access. 

What we have proved in this section is a weak equivalence between the 

requirements that ID = xn (or ID = {!...} U X) and that there be some fixed size 

impleme11t3t1on in ·which we achieve Kraft storage and access. More precisely, 

Theorem 5.2 told us that if there is a fixed size representation p:ID ~ 3+ which 

achieves Kraft storage and for which each 'Yi E r achieves Kraft access, then 

ID = xn or ID = {!...} U X. Conversely, Theorem 5.5 and Corollary 5.5.l essentially 

tell us that if ID = X n or ID = { 11.} U X, then there is some fixed size representation 

which achieves Kraft storage and access. The condition IXI = 18ik (or 

IXI + 1 = IBlk) was put in to avoid "rounding errors". If we do not have IXI == lb'lk 

for ID = xn, then either we do not have Kraft storage or else our tree must have 

leaves at (at least) two depths, j and j + 1. This would cause 

nj ::; Ip( cl) I ::; 11( J + 1) and so p would not be of exactly fixed size. Or else we 

could let p:JD--+ Bn(J+l) be fixed size and then we would not quite att;:iin Kraft 

stor<1g·e. Thus, theorems 5.2 and S.S allow us to prove the following result. 
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5.3 E:nclmarker Representations 

Recall from Section 5.1 that an endmarker representation has some fixed 

svrnbol or sequence of symbols in s1· which are always at the "end" of the list. 

Example S.5a is an example of an endmarkcr representation. The representation p 

in Example 2.7 is also an endmarker representation, with endmarkcr 0. We now 

give a formal ddinition. 

Definition. Let f be a total function f:!D-" Bt, and let 0 E tl ( O ~ ..0). 

For each d EID, let n(d) E IN such that n(d) >max D(f(d)). Then a 

rcprcsr.ntation p::D -" 3+ which is defrncd by 

p( d) = f( d) U { 0} n(d) 

1s an t•ndmarka rcprt·scntation. The relation 0 is known as the cndmarka, 

and the function f 1s the list component of p. 

To illustr:=ite what this definition says, we present the following example. 

Example 5.16. Let X = {a,b,c}, 13 = {0,1}, and lD = LJ X1
• Define the function 

If we then def me f/:ID -" 8+ by 

f( a) ;;: 0 0 
f ( b) = 10 
f( c) = 11 
f(,0) =01 

ldl 
f/(c1) = U{r(c1(i))} 3 <1_1>, 

i= 1 

then the representation 

iEJ 

00 

is a concatenation-preserving endmarker representation. for ID;;: Ux 1
, it is easy 

i=O 

to verify that p achieves Kraft storage, since 

Ip( d) I = 2·ldl + 2. 
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Thus, 

2 2 -lp(d) I = 2 2 2-<2ldl + 2) 

dflD if J dE x1 

i=O 
00 

= 1. 

Note that no frnite IJI will give us Kraft storag·e. 

Now consider answering a table lookup question 'Yi f r. For 'Y 1 we need only 

access m( 0) and m( 1), or else m( 0) and m( 2). On the other hand, to answer the 

question 'Y 2 , accessing just m( 3) and m( 4) (or else m( 3) and m( 5)) may not give 

the correct answer. In particular, unless we have already determined that the 

cinswer is 0, then we must verify that ldl ~ 1. This requres accessing m( 0) and 

possibly m( 2). Possible access trees T1 for each 'Y 1 can be constructed as indicated 

in figure S.7, where we write {'l)k to denote the tree T1 with each node label J 

1 eplaced by the label J + k. These trees correspond to reading the necessary 

memory cells 111 a left to right order. It would also be possible to read the cells 

essentially from right to left. For either method, once f( ¢) is encountered for "Yi' 

then it is known that ldl < i. 

'Y 1 T 1 'Yi+ 1 

r1· 1 
' jJ 3 

b c 

Figure S.7. Trees for 'Yi of Example S.16. 
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The cndmarker representations we have thus far seen are all 

conc;itPnation-preserving· representations, but there is no such requirement in the 

defrnttion. In fact, there is not even any requirement that the endmarker be 

necessary; i.e., for an end marker representation p( d) = f( d) U { 0} n(d) it may be 

the case that f( ID) itself is a representation and thus the end marker 0 1s 

superfluous. Also, there is no restriction that the endmarker not appear in f( d). 

Even if the pattern 0 (: ;y+ does not appear in f(d), there may be "holes" in f( d), 

which allow the possibility of another user writing 0. Thus, it may not be the case 

that the first occurrence of 0 serves as the end marker. 

Example 5.17. Let l3 = {0,1} and, for ID= {d 11 d 2 , d 3 , d 4 , d 5}, define the 

function f:ID ~ 13+ by 

f(d 1) = o_o 
f(d2) = 0_1 
f( d 3) = 10_ 
f( d 4) = _10 
f( d 5) = 11_ 

If we let 0 = { ( 0,1), ( 1,0) }, we can then define the endmarker representation 

p:ID ..... 13+ by 

p( d 1) = 0_0_10 
p( d 2) = 0_1_10 
p( d 3) = 1010 
p( d 4) = _1010 
p( d 5) = 1110 

The cndmarker here is not superfluous because it does enable us to distinguish 

betwf'en p(d 1) and p(d) and between p(c14 ) and p(d5 ). On the other hand, 

even if we were to eliminate d 4 from the domain, p would still be an end marker 

representation. Notice also that p(d 1) = 0_0_10, and thus if another user sets 

m( 1) = l then the actual endrnarker is not the first occurrence of O. In fact, f( d 3 ) 

itself contains the set 0. I 
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We usually have in mind a more restricted notion of an endmarker 

representation, where we require 0 to be dis[ing-uishable and reserve 0 solely to 

mdic1te the end oi the list. (Of course, 1f the representation has holes m 1t, then it 

1s still possible for other users to write 0.) Thus, if we read a list representation 

from left to right and access no cells not 111 the representation, then encountering 0 

1mrnecl1ately tells us when we've reached the end. Most of our examples will be of 

tins form. 

Notice that the funct10n f / in Example S.16 has fixed position fields. 

However, the endrnarker in the representation p has a displacement function 

n( cl) == .?o·IJI. So n is not a constant function, and the endmarker is not always 111 

the same memory position. In fact, if the endmarker were always at the same 

location, then there would be no point in havmg an endmarker at all; there is no 

such concatenation-preserv111g endmarker representation. We make the followrng 

drfmit1on. 

Definition. Let p:ID _, 5+ be a concatenation-preserving endrnarker 

representation, With end marker 0, and formed from a 

concatenation-preserving function f/ with fixed position fields ni. If p is of 

the form 
!di 

p(J) LJ{f(J(i))}n U {O}n 
i=l 1 ldl+l 

then pis said to be a fixed position fidd endmarker representation. 

Thus, the representation p in Example S.16 is a fixed position field end marker 

representation. 

In Example S.lG we saw an endmarker representation that achieves Kraft 

storag·e when ID == LJ X1
• \Ve can, in fact, show that achieving· Kraft storng·e imphes 

i=O 

that 1wix Ip( d) I is unbounded. 
dEID 
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Theorem 5.7. If an endmarker representation p:ID ..., a+ achieves Kraft 

storage, then -,(]n E lN)(Vd E ID)(lp(d)I Sn). 

PrCl~f: Assume that (3n E IN )(Vd E !D)(lp(d)I::; n). 

Then it is possible to choose d k E ID such that 

max D(p(dk)) =max D(p(d)). 
dEID 

Thus, no p( d) occupies a Jarg·er memory cell location than p( d k). By the 

definition of an endmarker representation, there is some function f such that 

p(dk) =f(dk) u{o}n(dk). 

Now let r = min D( 0), and choose b0 E l3 such that b0 is not a prefix of 0. (Since 

181 ~ 2, thrre must always be such a b0.) Consider the string 

b = f(dk) U {(n(dk) + r, b0 )} E Bt 

For alt d 1 E ID, band p(d1) are distinguishable. In other words, there is no di E ID 

such that b ~ h(d). So by Theorem 3.3 p does not achieve Kraft storage. Thus, 

our original assumption must have been wrong, and we conclude that 

-,(]n E IN)(Vd E ID)(lp(J)I Sn). 

It immcd1ately follows that if an endmarker representation achieves Kraft storage, 

then the domain ID must be infinite and also that the index set J must be mfmite. 

Corollary 5.7.l. If an endrnarker representation p:!D ..., 8+ achieves Kraft 

storage, then -,(]n E IN)(llDI::; n). 

Corollary 5.7.2. If an endmarker representation p:ID ..., B+ achieves Kraft 

storage, then -,(Jn E IN )(maxis n). 
j(; J 

Thus, when we are discussing endrnarker representations, we frequently consider 

ID= LJx 1
• 

l=O 
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Notice that since achieving Kraft storage tells us that the domain must be 

inf 1111tc, we irnrncdiatcly know that no endmarkcr representation can achieve IJoth 

Kr<1ft stor<1ge <111d Kraft access. 

Theorem 5.8. There is no end marker representation that achieves Kraft 

storage and also achieves Kraft access for all "( 1E r. 

Proof: From theorems 4.9 and 4.10, we know that if a representation p achieves 

Kraft storage and Kraft access for all 'Y/~ r, then ID = xn or ID = {11.} u xn. But 

by Coroll;:iry S.7.1 we know that liDI cannot be finite for an endrnarker 

representation that achieves Kraft storage. Thus, there is no endmarker 

representation that achieves both Kraft storag·e and Kraft access. 

l\ec:ill again the representation p in Example S.16, which achieved Kraft 

stor<1e,e. We can show that this result 2:eneralizcs. In particular, given any 

representation f:X U{ 0} -? 3+ which achieves Kraft storage, 

concatenation-prescrvmg cndmarkcr representation p formed from f also achieves 

I~ L~fL storage. Before we prove this, however, we introduce some terminolog)'' and 

prove a lemma. We begin with the followmg defmition. 

Definition. Consider a full IBl-ary tree T/ with 181k nodes at depth k, for 

all k E IN. Assume that some of the (internal) nodes are labelled 0 but that 

T / has the property that if a node is labelled 0 then none of the descendants 

of that node is labelled. We use the term [21-nodc to refer to a node labelled 0 

or the descendant of a node labelled ¢. \Ve then let ( denote the fraction of 

the nodes in T / at depth k that are ¢-nodes. 

Smee ( is a fraction of nodes that arc ¢-nodes, It is clear that 0 S t( k) S l. A !so 

H k + 1) 2 t( k), since a 0-node at some level leads to the same fraction oi 

0-node descendants at the next level. The followmg example should clarify wh<1t is 
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meant by a 0-node and by t(k). 

Example 5.18. Consider the tree T' in Fig·ure S.S. For simplicity we have deleted 

the node labels indicating memory cell locations. We have, however, retained the 

extC'rnal label ¢ on certain nodes and marked each ,0-node with an "x". Notice 

that all descendants of nodes labelled ¢ are themselves ¢-nodes. The:·e are 1 

,0-node at depth 2, 3 ¢-nodes at depth 3, a ¢-nodes at depth 4-, 19 .0-nodcs at 

depth 5, etc. Thus 

t(O) =Hl) =0 

((2) = ! 
1 3 t{3) = t{2) + -8- = -8-

t t 2 1 d4) = ~(3) +Tii =-2-
3 19 t(S) =((4) +32"=1r 

We shall have occasion to refer back to this tree T' in a later example. 

Figure 5.8. Tree T' from Example 5.18. 

I 

In order to motivate some of the terminology used in the next lemma, kt us 

consider another example. 
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Example 5.19. Let X = {a,b}, l3 = {0,1}, and consider the representat10n 

f:XU{.0} _. S* defmed by 

f( a) = 1 
f(b) = 00 
f( ¢) = 01 

Then f achieves Kraft storage and corresponds to the tree Tr shown in Figure S.9a. 

Now, for ID = LJ X1
, define a concatenation-preserving endmarker representation 

l=O 

p:ID _. 13* by 
Id! 

= LJ{f(d(i))}n(d) U {(0,0), (1,l)}n(d) 
i= 1 I 

p(d) 

i-1 !di 
where n 1(d) = l:if(d(J))I and n(d) - l:lf(d(j))I. Then we can construct a tree 

j=l j=l 

T for representation pas in Figure S.9b. I 

We can now prove the following lemma. 

Lf'mma 5.5. Consider a prefix representation f:XU{¢} _. E* which achieves 
00 

Kr a ft storage. Let ID = LJ X 1 and consider a concatenation-preserving 
i=O 

endrnarker representation p:ID _. 3t defmcd by 
!di 

p(d) = LJ{f(d(i))}n (d) U {f(¢)}n(d)' 
1=1 1 

where n 1:rD _. IN, n ::D _. IN. Let T be a 181-ary tree. corresponding to p, and 

let T / be an extension of T which keeps the ,0'-node labels of T but extends 

the tree so that T/ has 181k nodes at depth k, for all k E IN, and the 0 labels 

now label internal nodes. Then 

hrn c(k) = 1. 
k-400 

Procij: Since the prefix representation f achieves Kraft storage, there is a 

correspondmg full IBl-ary tree Tr , as shown in Figure S.9a. Assume that 

if(.0)1 =rand that max lf(x)I =p. Then Tr has (maximum) depth p and 
x EX U{ ¢} 

the depth of its ¢-node is r. The tree T corresponding to pis formed from Tr by 
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a 

Figure S.9. Trees Tr and T from Example S.19. 

placrng a copy of Tr at each leaf not labelled ¢ and doing this indefinitely. (The 

mernory cells to be accessed need to be altered according to the values of n 1( d) and 

n(d). Since we know, however, that no path will contain the same rncmory 

location twice, we choose to ignore these access labels and are concerned only with 

the external labels at a .0-node indicating the d such that p( d) leads to this node.) 

T" is the extension of T where we keep the ;zs-node leaf labels but extend from 

each of these leaves a full 181-ary tree. Thus, for all k E IN, T" has l.Blk nodes at 

depth k. 

We are now ready to determine lim H k). It is clear that Hi + 1) ~ Hi), 
k~oo 

because if there are j ;zs-nodes at depth i, then there are 18l·j descendants of these 

¢-nodes at depth i + 1. Thus, the fraction of these ¢-nodes cannot decrease. 
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Also, there rnay be more .0-nodes at depth i + 1, corresponding to copies of Tr 

with leaves labelled .0 cit depth i + 1. Each node at depth i which is not a ,0'-node 

will have a clescenclant withm depth p which is a ¢-node. Thus, at least IZ~WP 

descendants of non ¢-nodes at depth i will themselves be ¢-nodes at depth i + p. 

Smee the frciction of non ¢-nodes at depth i is 1 - H 1), 

Hi+ p) 2:: Hi)+ lhfP(l - Hi)) 

== _1_ + IBIP - 1 . Hi) 
IB!P IB!P 

If we look at the values of ~(k) at depths 0, p, 2·p, etc., we find that 
k-1 . 

H k ·p) > _1_ . 2 ( IBI P - 1 ) J 
- IBIP j=O IB!P 

= l _ ( !Bl P - 1 ) k 
IBIP 

Of course we know that Hk·p) ::;; 1, and so we conclude that 

limt(k) =L 
k-700 

To illustrate the method used in proving Lemma S.S, we refer back co Example S.19. 

Example 5.20. Recall the representation p from Example S.19. The extension of T 

to a tree T" with 181 1
' nodes at depth k is the tree T" of Example 5.18, shown in 

Figure S.8. The tree Tp from which T and T" were constructed, has maximum 

depth 2, and the depth of its ¢-node is 2. We want to verify that 

Hi + 2) 2:: Hi) + ! · 0 - Hi)). 

The fraction of non .0-nodes at depth i is 1 - t{i). Every non ¢-node at depth 1 

serves either as a root of another copy of Tr (see node A in Figure 5.lOa) or else is 

an internal node of some Tr copy (see node B of figure 5.lOb). In the former case, 

we get a new 0-node cit depth i + 2. In the latter case, we get a new ¢-node at 

depth i + 1, which gwes us two additional ¢-nodes at depth i + 2. I 

Lemma 5.5 allows us to prove the following result. 
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(a) ( b) 
root of Tr 

root of T f 

root of Tr 

Fig·ure 5.10. Origination of new .0'-nodes at depth i + 2. 

00 

Theorem 5.9. Let ID= Ux 1, and consider a representation f:XU{¢}..., J3* 
i=O 

which achieves Kraft storage. Assume that the set f(X U {¢}) forms a prefix 

code, and let p:ID """ at be a concatenation-preserving enctmarker 

representation defined by 
!di 

p(d) = LJ{f(d(i))}n.(d) U {f(J2f)}n(d)' 
I= 1 I 

where n 1:1D -"' IN, n:ID -"' IN. Then p achieves Kraft storage. 

Proof: Let \Ji( i) be the distribution function 

l/t ( i) ~ I { p( d) I Ip( d) I = i} I. 

So l/t( i) corresponds to the number of ¢-nodes at depth that have no ¢-node 

ancestors. Then 
<O 

2 181-lp(d) I = 2 \JI( i) · l6f1 

d~ID i=O 
k 

=Jim l:\J.i(i)· IBi-1 

k-100 i=O 
k 

= lim 181-k 2: l/t( i) · IElk-i 
k-100 i=O 

A .0'-node at depth i is an ancestor of IBlk-i descendants at depth k, and so there 
k 

are 2 l/t( i) · IBlk-i .0'-nodes at depth k. Since at depth k there are a total of 181k 
i=O 

nodes, the fraction of nodes at depth k which are J2f-nodes is 
k 

181-kLl/t(i)· IBlk-i = ((k). 
i=O 
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Applying Lernrna S.S gives the demed result: 
. -lp(d)I 

2 181 = lim t(k) = 1. 
dEiO k4oo 

I 

The above theorem still holds if we do not require that f( X U { .0'}) be a pref 1x 

code. 

Theorem 5.10. Consider a representation f:XU{J2f} -ts+ which achieves 

Kraft storcige. For ID = LJ X1
, let p:ID -t 3+ be a concatenation-preserving 

l=O 

endrnarker representation, where 
Jdl 

p(d) = LJ{f(d(i))}n.(d) U {f(J2f)}n(d)' 
i = 1 · I 

for 11 1:10 ""' IN, n:ID ""' IN. Then p achieves Kraft storage. 

Proof: Consider ciny representation f 1:XU{J2f} ""'8+, and recall from Chapter 3 the 

statement of the Krcift inequality. If f 1 achieves Kraft storage, then 

"' -lf 1(x)I 
L. 181 = 1 

xEXU{.0'} .. 
and the Kraft inequality is satisfied (with equality). Thus, there 1s some function 

f2 :Xu{0} ""'tl such that f 2 (X U {0}) is a prefix code and lf2 (x)I = lf 1(x)I for 

all x E X U {0}. By Theorem 5.9 we know that for any concatenation-preserving· 

repre.,entation p1 formed from f 2 , 

"' -lp 1(J)I "' -(Lif2 (J(i))I + if(.0)1) 
L. 181 = 1 = L. 181 

JEID JEID 
Id! ldl 

Since lp(J)I = l:if 1(d(i))I + lf(.0)1 = 21f2 (d(i))I + lf(0)I, 
i= 1 i= 1 

we can conclude that 

and so p achieves Kraft storage. 

2 181-lp(J) I= 1 
dEID 

I 

We can verify directly that the representation p from examples S.19 and S.20 

achieves Kraft storage. 
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Example 5.21. What we want to show is that 

2 2 -Ip( d) I = i \II ( i) · 2 -I = 1. 
dEID l=O 

Referring· to the tree T of Figure S.9b, we see that 

!Jt( O) = !Jt( 1) = 0 
!Jt(2) = 1 
\(1(3) = 1 
1/1(4) = 2 
1/1(5) = 3 

In fact, whenever a copy of Tr terminates at depth i, then there is a leaf from Tr at 

depth i-1 which serves as the root of another copy of Tp one which has a .0'-leaf 

at depth i + 1. Similarly, if a copy of Tr terminates at depth i - 1, then there is a 

leaf of Tr also at depth i - 1 which serves as the root of a copy of Tp leading· to a 

.0-leaf at depth i + 1. Thus, we can define the distribution function I/I by 

ijl(l) = 0 
1/1(2) = 1 

l/l(i + 1) = l/l(i) + l/t(i -1) 

Solving this Fibonacci expression, we find that 

·'·(·) _ S - .JS. (1 + .JS)i S +.JS. (1- v'S)i 
'I' I - IO 2 + 10 2 

for i 2 1. Thus, we can directly show that p achieves Kraft storage. 
00 co 

21/l(i)· 2-1 = 2cs - .JS. ,1 + .JS)i + s + v'S. ,1 - v'S)i]. 2-i 
l=O I= 1 IO 2 10 2 

co co 

=S-v'S. 2(1+.JS)i + S+.JS. 2(1-v'S)i 
10 i=t 4 IO i=1 4 

5 - .JS 1 + .JS S + v'S 1 - .JS 
::: IO . 3 - vS + IO . 3 + vs 
= 1. 

As an aside for interested number theorists, notice that the sum in Example S.21 

holds for 1/1( i) any extended Fibonacci sequence. 

Corollary 5.10.1. 
00 

Then ~ fibn( i) · 2-l = 1. 
i=O 
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Proof: Consider a binary tree Tr of the form shown in figure S.9a, which has 

111ternal node labels 0, 1, ... , n-1 (for 0 ~ i < n, there is one node at depth 1, 

and that node has label i) and has one leaf at each of the depths 1, 2, 3, ... , n-1 

and two leaves at depth n. Consider the extension T of Tp as in Figure S.9b. If a 

copy of Tr has a .0-nocle at depth 1 - k, for 1 ~ k~ n, then that copy of Tr has its 

root at depth i - n - k and thus has a node at depth i - n which is not a .0-node. 

This node, not itself a .0-nocle, must serve as the root of yet another copy of Tr 

and tlm new copy of Tr has a 0-leaf at depth i. Thus 

ijl( i) = ijl( i-1) + ljl( i-2) + ... + 1/1( i-n). 

But by Theorem S.10 we know that the extens10n T of Tr corresponds to a 

representation p which achieves Kraft storage. Thus 
00 00 
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5.4 Pointer Representations 

Recall from Section 5.1 that a pointer representation has some function 

(1.:J ~ tit which serves as a pointer and indicates the length ldl. Example 5.Sb 

g·ave an example of a pointer representation, and we now give a formal definition. 

Definition. Let ID = LJ X1
, let f be a total function f:!D ~ 8+, and let 

if: J 
fl.:J ~ 3+ be a representation. Then a representation p:!D ~ e+ which is 

defined by 

p(d) ={f(d)}n (d)U{i!(ldl)}n (d) 
1 2 

is a pointer representation if 

D({f(d)}n (d)) n D({P.(ldl)}n (d)) = 91, 
l 2 

where n 1, n 2 are functions, n 1 :JD ~ IN , n 2 :JD ~ IN. The function f 1s the list 

com/1oncnt of p and _Q. is the pointer component of p. We refer to Ji( ldl) as the 

f-1ointa of p(d). 

Note that the functions n 11 n2 in the above definition are not the same functions as 

the n 1 in the definition of a concatenation-preserving· function. Before discussing 

the pointer representation in more detail, let us present the following example in 

•order to illustrate the definition. 

Example 5.22. Let X = {a,b,c,d}, B = {0,1}, and ID = LJ X1
• Define the funccion 

if:J 
f:X -+ 8+ by 

f(a) = o_o 
f(b) =10_ 
f( c) = 11_ 
f( d) = 0_1 

and then define the concatenation-preserving function f":lD ~ s+ by 
Jdl 

f"(d) = U{f(d(i))} 3<1_1>. 
I= l 

The pointer fl.:J -+ s+ is defined by 
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E( 1) = 1 iO. 

Then the represf'ntat1011 p:!D -+ at where 

p(J) '""'{£(lJi)} 0 U {f/(J)}ldl+l 

1s a po111ter representation. For instance, 

Notice that 

p( a bad) = 111100_010_0_00_1 
p( bdb) = 111010_0_110_ 

p( r.) = 0. 

lp(d)I = lul + 1+lf/(d)I=3·ldl + 1. 
00 

For J = iN, then iD = LJ X 1 and it is easy to verify that p achieves Kraft storage: 
i=O 

2 2-lp(d)I = 2 2 2-(3i + i) 

c/EID iEJ dEX 1 

00 

i=O 

= 1. 

Now consider answering the table lookup qucst10n "Yi E r. The answer to the 

question 'Yi 1s essentially found at memory locations beginning with cell 3·( 1-l), 

except th<1t we have stored the pointer in front of i( d), and so f( d) has been 

rlispl;:irPrl hy lr!I + 1 rPlls. Th11s, thf' ;:imwPr tn 'Yi' for i ~ ldl, is found by reading· 

m(ldl+1+3(i-l)) and then reading either m(ldl+1+3(i-1)+1) or m(ldl+1+3(i-1)+2). 

When 1 > lc!I, we need only read the pomter to determine that the answer is J2f, 

One possible algorithm to answer the question "Yi therefore has the memory cell 

access sequences: 

o, 1, ... , lc!l-1, ldl, IJl+3(i-1)+1, IJl+3(i-1)+2 

0, 1, ... , ldl-1, lctl, lc!l+3(i-l)+l, ldl+3(i-1)+3 

o, 1, ... , ldl-1, IJI 

if m( ldl+3i-2) = 1, ldl ~ i 

if m( ldl+31-2) ~ 0, !di ~ i 

if !di < i 
Thi~ immediately tells us the total number of accesses made: 
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{

ldl +3 
#(')'I ( p( cl) ) J • 

ldl + 1 

if ldl ~ i 

if lcil < t 
I 

ThE' mtultlon behind the definition of a pointer representation is that we 

P.ncrJdP the length so that In order to answer a question 'Y, we need only read the 

pni11tN t111d can thm look up the a1uwe1". hi the case of the cndmarker 

1·epresent:o.tlun 1 we were forced to actually read the list. The question remains, 

howevt'r 1 why we chose to allow the pointer to encode ldl rather than Ip( d) I. If we 

Wish to bl" iible to Recess indivldURI list elements, as by asking the questions in r I 
then at is rc::uonable to encode le/I. Reading the pointer will then at least tell us 

irnrncdiati:ly whetlH?I' the answer to 'Yt is 91 or not. On the other hand, if we wish 

to perform the u1ldate operation of appending an element to the end of the list, 

then it wnu ld be ad vantag·eous to know Ip( d) I. If 

(VrJ 11 cJ2 c: ID)(lcJ 11 • lcJ21 • lf(cJ1)1 • lf(dJ)I) 

thr.n it of course makes no difference whether the pointer encodes ldl or If( d) I, 

since we can determine one from the other. 

Exampl~ S.23. Reconsider the functions f and g from Example S.22 but define a 

partial function l.':L\I -+ a+ such that D( .e') = {2i I i ~ 3}, the even natural 
(~) 

numben, and «'{n) = 1 2 0. Notice that P.' is a representation. So the 

t'('pr('S('tltation p':IO ~ 8+ defined by 

p'{cl) • {4'(if(J)l)}0 u {f(d)}ldl•t 

Is equivalent to the representation pin Example S.22 because 

B'(lf(d)I) • .l(ldl). 

Technically, howevet·, the representation p' is not a pointer representation because 

e' :{~1 I i ~ 3} ~ 8+, whereas the definition requires that .1.:3 -+ a+. But since 

IC>{ 1.')I =ID( l!)I = 131, we often find it convenient to loosely refer to p' as a 

pointer representation itself. I 
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We could have written the formal definition of a pointer to allow a mapping 

P.":IN --> 3i· where ID( ll_") I = IJI, but we chose not to since the added generality 

would rnake the definition statement more complex and would not improve our 

resu Its. 

\Ve shall, however, allow one conceptual extension for pointer representat10ns. 

Since we re<11ure the pointer and list components, P.( ldl) and f(d), to be placed in 

memory so as to not overlap, we rnay want to view them as bemg stored in separate 

sections of memory. In other words, we could view f( d) as being stored in rnemory 

as usual and l'.( ldl) as being stored in an au:-:Jl1ary section of memory, perkips 

sorne sort of register. However, we shall not in general want to bound the size of 

the pointer and we do not differentiate between the cost of a pointer access vs. the 

cost of a list access, so it is easier to view the pointer as also being in memory. \Ve 

simply assume the memory man<1ger allocates the list and the pointer separate areas. 

Perhaps they arc even mterspcrsed, bot we do not want to have to alter our coding 

schPnies to take this into account. Therefore for numbering simplicity we may 

choose to allow both the list and the pointer to begin at cell number 0 and just note 

th<1t the rcpresrntations are separate and therefore disjoint. In this way, the storage 

of f(d) m rnemory does not have to depend on the memory locat1011 of L!(ldl). 

Definition. Let f be a total function f:!D ~ 8+, and let li be a representation 

P.:J ~ 8+. Assume that f(d) and e( lcll) are stored in separate semons of 

memory. Then we ref er to a pointer representation p:ID ~ 8+ formed frorn l~ 

cind fas ci s1)1arate fiointer representation and write 

p(d) =f(d) u e(!dl) 

In order to avoid possible confusion, when we have in mind a separate pointer 

represPn ta ta ion, we sh all explicitly say so. 
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Example 5.24. Reconsider the pointer representation p of Example 5.22, but 

assume that the pointer and the list components are stored in separate memory 

sections. So p is a separate pointer representation 1 and we denote it by 

p( d) = .e( ldl) u f'( d). 

Certainly we have not altered the storage costs from those of Example 5.22, but it is 

possible to implement each 'Y 1 in such a way that we decrease the access costs. 

Possible access sequences for 'Yi~ r are: 

0, 1, ... ' i-1, 3(i-l), 3(i-l)+l 

o, 1, ... ' i-1, 3(i-l), 3(i-l)+2 

o, 1, ... ' ldl-1, ldl 

Thus we have for the total number of accesses: 

if ldl ~ i 
#[ 'Y I ( p( d) ) ] = 

if m(3( i-1)) = 1, IJI ? i 

if m(3(i-l)) = 0, ldl ~ i 

if ldl < i 

{

i + 2 

ldl + 1 if ldl < i 
Notice that this represents ;in improvement over the access costs we previously had. I 

A !though we shall not in general concern ourselves with the way in which separate 

memory sections are allocated, let us note, in the context of this same example, one 

possible scheme. 

Example 5.25. Let f be defined as in Example 5.22, but now define the 

concatenation-preserving representation f 1 :ID ~ g+ by 

ldl 
f 1(J) = U{f(d(i))}

40
_1). 

i= 1 

If we view the pointer tJ. 1 as being "scattered", we may define 

l1. 1(i) = {(3+4j, 1) I 0 ~ j < i} u {(3+4i, O)}. 

Then the pointer representation p1 :ID ~ a+ is defined by 

p 1 ( d) = {Q. 1 ( Id I) } 0 u {f 1 ( d) } o· 

For instance, 
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p1 (a bad) = 0_0110_10010_11 ___ O 
p 1 ( bdb) = 10_10_1110_1 ___ O 

p
1
(A.) = ___ O. 

Since we ::ire counting only the actual number of cells occupied, the storage has not 

been altered. For 'Yi fr we have the followmg access sequences: 

3, 7, 11, ... , 3+4(i-l), 41-4, 4i-3 if m(4i-4·) = 1, !di::'.". 1 

3, 7, 11, ... '3+4( i-1), 4i-4, 4i-2 

3, 7, 11, ... , 3+4( IJl-1), 3+41JI 

1f m( 4i-4) = 0, ldl ~ i 

If IJI < i 
This giv!'s us the same total number of accesses as we had in Example S.24, where 

we simply made the assumption that we had separate memory sections. 

Example S.25 illustrates an encoding for a separate pointer scheme. Notice that this 

encodmg did not affect the order in which memory cell contents were dctermmcd; it 

simply altered the memory cell numbers in which this informat10n was found. \Ve 

can show in general that there is no harm in using· a separate pomter scherne if it 

makes our coclmg job easier, because for any separate pointer representation p 

there is a pointer representation p' without a separate pointer that achieves the 

same storage and access costs. 

Theorem 5.11. Given any pointer representation p with a separate pointer, 

there exists a pointer representation p' without a separate pointer such that 

and 

lp(d)I = lp'(d)I for all d EID 

tl[f1(p(d))J = t/[f 1(p'(d))J for any operation f 1 

Proof: Suppose the representation p:fD ~ g+ has a separate pointer and is defined 

by 

p(d) = f(d) u P.(ldl). 

We can define a representation p':ID ~at without a separate pointer by 

p'(d) = f'(d) u £'( ldl) 

where f'(d) = {(2n, m(n)) In E D(f(d))} 
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and e"{ldl) = {{2n + 1, m{n)) In E D{ll{ldl))}. 

Since D { f" { d) ) n D { P." { Id I) ) = r6, 

it 1s clear that lp{d)I = lp"(d)I for all d EID. Also, any access sequence to perform 

an operation f1 using p" can be mapped in an obvious way to an access sequence to 

perform r, using representation p. 

Rec::ill that no cndmarkcr representation can achieve Kraft storag'e for fmite lD. 

This i~ not the case for pointer representations, as the following example shows. 

Example 5.26. Let X = {a,b}, 8 = {0,1}, and ID = LJ X 1
• Define the 

iunction f:X ~ 8* by 

f( a) = 0 
f( b) = 1 

an cl the concatenation-preserving function f" ilD ~ s+ by 
ldl 

f"(d) = U{f(d(i))}1_
1 

i= 1 

Let the pomter P.:{0,1,2,3} ~ 13* be defined so that 

_l!(O) =00 
P.(1) = 01 
P.{2) = 10 
ll(3) = 11 

Then we define the representation p:!D ~ 13* by 

for instance, 

p(d) = {e(ldl)} 0 u {f"(d)}2 

p( /..) = 00 
p(a) = 010 
p(b) =011 

p( aa) = 1000 
p( abb) = 11011 

The representation p achieves Kraft storage, because 

IE { o, 1 ,2,3} 
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2: 2 -Ip( d) I = 2: 2: 2-< 1 + 2 ) 

J(:ID iEJ dEX1 
3 

= 2:21. 2-(i + 2) 

l=O 

= 1. 

So we know from examples 5.22 and 5.26 that a pointer representation may achieve 

Kraft storae~e for ID infinite or finite. 

Let us try to determine under what condit10ns a pointer representation p does 

achieve Kraft storage. The following theorem shows that the pointer P. must itself 

achieve Kraft storage in order for p to achieve Kraft storage. 

Theo rem 5.12. Let f be a total function f:ID -+ 3+ and let P.:J -t 3+ be a 

representation which does not achieve Kraft storag·e. Then the pointer 

representation p:ID -+ 13+, where 

p(d) ={f(d)}n (d)U{P.(ldl)}n (d) 
1 2 

does not achieve Kraft storage. 

Proof: Since P. is a representation which does not achieve Kraft storage, 
°'" -lli(i)I 
L.. 181 < 1. 

it J 
We first show that the theorem holds for a separate pointer representation 

p/:10-:> a+, where 

p/(d) =f(d) UP.(ldl). 

Assume that the representation p' docs attain Kraft storage. Then 

1 = 2: (181-IP.(i)I 2: IBl-lf(d)I) 
i(:J J(: x' 

Thus, there exists k f J such that 

2: 181 -lf ( d) I > 1. 

dEXk 

So f 1s not a represcn tat ion and there exist d 11 d 2 E X k such th at f( d 1) and f ( d 2 ) 

are indist111gu1shable. But since le.I 11 = le.I 2 1 = k, 
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p' ( d 1) = f ( d l) u .l!( k) 

p'(d2) = f(d2) u ll(k) 

are indistinguishable, contradicting the fact that p' is a representation. Thus, p' 

cannot achieve Kraft storage if e doesn't. Since 

then 

implies that 

lp'(d)I = lf(d)I + IP.(ldl)I = lp(d)I, 

2: IEl-lp'(d) I ;a! 1 
J(ID 

2: 181-lp( d) I ;a! 1. 
d(ID 

So the pointer representation p cannot achieve Kraft storage if P. doesn't. 

Thus, the pointer P. achieving Kraft storage is a necessary, although certainly not 

sufficient, condition for the pointer representation p to achieve Kraft storage. 

We frequently consider a pointer representation formed from a 

concatenation-preserving function f' and a pointer /I,, We now show that whenever 

that concatenation-preserving function f' is based on a function f:X ~ 8+ which 

itself is a representation and attains Kraft storage, then the pointer representation p 

also achieves Kraft storage, assuming, of course, that the pointer fl achieves Kraft 

storage. 

Theorem 5.13. Let ID = U X 1 and consider a representation function 
1(J 

f:X ~ 8+ which achieves Kraft storage. Let f':!D ~ 8+ be a 

concatenation-preserving function formed from f and defined by 
ldl 

f' ( d) = LJ { f ( d ( i) ) } n. ( d )' 
I= 1 I 

If the representation f.:J ~ 3+ attains Kraft storage, then the pointer 

representation p:ID ~ 3+ also achieves Kraft storage, where 

p(d) = {f'(d) }n (d) U {£( ldl) }n (d)' 
1 2 
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Proof: S111ce lp(d)I = lf/(d)I + IC.(ldl)I, 
'-" -lp(d)I '-" '-" -(lf/(d)I + IC.(i)I) 
L. 151 = L. L. 181 

dt!D itJ dtXi 

'-" ( -lf(i)I '-" -lf"(d)I) 
= L. 181 · L. IBI . 

iEJ d<.::XI 
Smee f achieves Kraft storage we can make use of Lemma S.4, which gwes us 

2 181-lp(d)I = 2181-lr.(i)I 
dt!D itJ 

= 1 

We now want to determine the conditions, if any, under which a pointer 

rcp1 escntat1on can achieve Kraft access for the set r of table lookup questions and 

also achieve Kraft storage. 

Theorem 5.14. Let ID = LJ X1
• If a pointer representation p:!D _, 13+ 

i<.::J 
achieves Kraft storage and also achieves Kraft access for all "Y 1 E r, then 

181=2 and ID= {A.} U xn for some n E IN+. 

Prnof. Theorem 5.12 guarantees that if p achieves Kraft storage, then its pointer 

function P.:J --;. Bt must also <1chieve Kraft storage. Since IEI 2 2, it must be the 

case that 111 2,: 2. Thus, ID ~ xn. Recalling theorems 4.9 and 4.10, we know th~1t if 

a representation p achieves Kraft storage and Kraft access for all "Y 1 E r, then 

ID = xn or ID = {A.} u xn. Since the former is not true, the only possibility is that 

lD = {A.} U xn. So if we are to achieve Kraft storage and access at all, then IJI = 2 

and therefore 181 = 2. 

Theorern 5.14 simply says that if a pointer representation is to achieve Kraft storage 

and access, then 181 = 2 and ID = {A.} U xn. It does not necessarily say that it is 

possible to ever achieve both. The following example shows, however, that it is 

possible. 
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Example 5.27. Let X = {a,b,c}, 8;:: {0,1}, and ID = {t..} u X3
. We want to 

construct a pointer representation p which achieves Kraft storage and also achieves 

Kraft access for r = {'Y 11 "Y 2 , "Y 3 }. To do so, we first define a function f:X """ 8+: 

f( a) = 00 
f(b) = 01 
f( c) ;:: 1_ 

We then let f":lD -+ 8+ be the concatenation-preserving function formed from f: 
ldl 

f"(J) = .U{f(u(i)) }2 <i-i)· 
1= 1 

The pointer function r.:J -+ a+ is defined by 

Q.( 0) = 0 
e( 3). = 1 

Then the pointer representation p:ID -+ a+ can be defined by 

The representation p achieves Kraft storage, because 
2: 

2
-lp(d)I = 2: 

2
-(lf"(d)I + le(ldl)I) 

J(:IO dE{ t..,Xn} 

= r 1 2: 2 
-lf"(d)I 

JE{ r..,xn} 
= 2- 1(2- 0 + r 3 + 6·2-4 + 12.2-5 + 8·2- 5 ) 

= 1. 

We can construct access trees for "Y 11 'Y 2, 'Y 3 as shown in Figure S.11. By 

observation, each achieves Kraft access. 

This example can be generalized, giving us the following theorem. 

Theorem 5.15. Consider any domain of the form ID = {r..} u xn, IXI > 1, 

and assume that 181 = 2. Then there is a concatenation-preserving pointer 

representation p:ID -+ s+ which achieves Kraft storage and for which it is 

possible to implement the table lookup questions r = {'YI I 1 ::; i ~ n} so that 

each 'Y 1 achieves Kraft access. 
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'Y 1 'Y 2 'Y 3 

95 

c c c 

a b a b a 

Figure 5.11. Access trees for 'Yp 'Yv "( 3 of Example 5.21. 

Proof: The construct10n is like that in Example 5.21. We first define a function 

f:X ~ Bt such that f achieves Kraft storage. It 1s possible to do this since there 

ex1m n 1 E IN such that IXI = (181 -1)· n 1 +1=n 1 +1. A tree T for f has n 1 

internal nodes, for which we can choose labels from the set {O, 1, ... , n - l}. We 

now define the concatenation-preserving function f":IO ~ s+ formed from f: 
!di 

f"(u) = U{f(cl(i))}n<i-i) 
I 0 1 

The po111ter function l'.:J ~ 8+ is defined by 

l1(0) = 0 
P.( n) = 1 

From these we def me the po111ter representation p:ID ~ 3+: 

p(d) = {£'.(ldl)} 0 U {f"(cl)} 1• 

By Theorem S.13, since f and P, achieve Kraft storage, so does p. Also, if T is the 

full tree correspondmg to f, then the access tree for any 'i' 1 E r is of the form 

shown in Figure 5.12. Thus, p achieves both Kraft access and Kraft storage. 

We have seen by Theorem 5.14 that only for 131 = 2, ID={/.-} U xn can a 

pointer representation achieve Kraft storag·e and access. Let's try to see when It 1s at 

lea~t possible to achieve Kraft access. The following example presents such a 

scheme, but the resulting pointer storage cost is high: IJI - 1. 
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"(I 

A{'I'} 
¢ l+n (1-1) 

1 

Figure 5.12. Access tree for 'Yi in proof of Theorem 5.15. 

Example 5.28. Let /3 = {0,1}, X = {a,b,c,d}, and ID = LJ X 1 for J = {0,3,S,6}. 
if: J 

Let f:X ~ g+ be defined by 

f (a) = 00 
f(b) =01 
f ( c) = 10 
f(d) =11 

and clef ine from f the concatenation-preserving representation f/:ID -+ g+ so that 
!di 

f/(d) = U{r(d) }2 <1_1) 
l = 1 

(a) Define a le11gth iunction r. 1:!0 ~ 8+ by 

_e
1 
(!di) = 11d101r1-ldl = 11d106-Jdl 

TJ1en a pointer representation p 1 :ID ~ 13+ can be defined by 

p
1
(d) = {f/(d)}

6 
U {P.

1
(idi)} 0. 

Notice that lp 1(cl)I = lf/(cl)I + 6 = 2·1cll + 6. 

Since P. 1 docs not achieve Kraft storag·e we know that p1 does not either. On the 

other hand, we can implement each 'Yi(: r so as to achieve Kraft access. We do 

this by first reading the ith bit of tt 1 (Id!). If m( i) = 0, then we know !di < 1 and 

so '"( 1(p(cl)} = ¢. On the other hand, if m(i) =l then we know '"( 1(p(c.1));:: 91 

and we look in locations 2( i-1) + 6 = 2i + 4 and 2i + 5 in order to determine 

'Y 1( p( d)). Thus, each 'Y 1 can be implemented by an access tree as shown in Figure 

5.13. 

( b) Recalling Theorem 4.14 leads us to try to find a length function r.2 , where 

I P. 2 ( lc.11) I = IJI - 1. Since we know, for instance, that X4 
g;_ ID, then 

'Y .i< p( d 1)) = ¢ if and only if "( 5 ( p( d 1)) = ¢. So we define the length function 



- 127 -

Figure 5.13. Access tree for -y 1 of Example 5.28a. 

roo If IJI = 0 
P.2( ldl) = 100 ii ldl = 3 

110 if !di = 5 
111 if ldl = 6 

Then the pointer representation P2:fD __, st IS defined by 

p
2
(d) = {f/(d)}

3 
U {l~2(ldl)} 0• 

Once again, p2 cannot achieve Kraft storage since P.2 doesn't. But we can 

implrmcnt each -y 1 Er so as to achieve Kraft access, as shown 111 figure S.14. 

Not1cc that, for all d E ID, lp2 (d) I~ 3 = 1.11 - 1, as required by Theorem 4.14. I 

a 

Figure 5.14. Access trees for all 'Y 1 E r from Example S.28b. 

The method used in Example S.28b can be generalized so that it is always possible, 

when 181 = 2, to construct a pointer representation that achieves Kraft access. 
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Theorem 5.16. Let ID ;;: LJ X1
, and let 181 = 2. Then it is possible to 

iEJ 

construct a concatenation-preserving pointer representation p:!D __, 13+ such 

that each 'Y 1 E r can be implemented so as to achieve Kraft access. 

Proof: Construct some representation f:X ~? such that f achieves Kraft storage. 

Since 181 = 2, it is always possible to do this; f corresponds to_ some full tree T. Let 

k "°' maxlf(x)I and define the concatenation-preserving function f":ID ~ 13+ by 
xEX 

!di 
i"(d) = U{r(d(i))}k<i-i) 

i= 1 

We define the length function Q.:J ~ s+ in such a way that IP.(i)I = IJI - 1, for all 

i ( J. first, index the elements in J so that J = {i 0 , i 11 i 2 , ••• }, where iJ < 1J+l' 

Then defme 
n IJl-1-n 

Q.(in) =1 0 

The sep<Hate pointE'r representation p:lD ~ s+ defined by 

p(d) = i"(d) u Q.( ldl) 

can be implemented so as to achieve Kraft access. for instance, 'Y J E r can be 

implemented as follows. Determine the least value in E J such that j :::; in. Then an 

access to cell n-1 of the pointer indicates whether or not 'Y} p(d)) = fZf: 

m ( n -1) = 0 ~ 'Y} p( cl) ) == fZf 

and m ( n -1) == 1 => 'Y} p( cl) ) -.t- fZf 

Ii 'Y}P(cl)) :"¢,then we can go to cell k(j-1) of the list function f"(cl). Fit:urc 

S.lS illustr<ites an access tree for 'Y J' where the nodes of T correspond to memory 

cells of the list component f "( d). 

A !though the pointer representation constructed in Theorem 5.16 can achieve Kraft 

access, this 1s at a potentially very high storage cost, since for all d E ID, 

I p( c1 ) I ~ I J I - 1. Unfortunately, by Theorem 4.14 we know that we cannot 

uniformly irnprove this storage. In other words, if we insist on Kraft access for all 

'Y1 Er, then we are stuck with lp(d)I ~ IJI -1. 



- i29 -

'Y j Note: cell n-1 is in 

~ pointer representation 

¢ {T}kCJ-1) 

Figure 5.15. Access tree for 'YJ Er in the proof of Theorem 5.16. 

Theorem 5.15 presented a rnethod for constructtng a pointer represent<ition so 

as to achieve Kraft access, but It was only for the case 181 :::: 2. This leads us to 

wonder whether it is po.mble to extend the result to 181 > 2. The following theorem 

shows that, for 181 > 2, it is not possible with a pointer representation to implement 

each 'Yi E r so as to achieve Kraft access, unless the pointer component 1s 

"superfluous". 

Tlworem 5.17. Let I.Bl > 2 and consider a function f:!D -t 8+. Let p:lD -t 8+ 

be a pomter representation 

p(d) ::::f(d) u t'.(ldi), 

where r. is a representation a:J -t s+. If f is not by itself a representation of 

ID, then p does not achieve Kraft access for all 'Yi E r. 

Proof: Let the function f not be a representation, and assume p does achieve Kraft 

access for all ..,. i E r. Since f IS not a representation, there exists 'Y1.; E r such that 

the access tree for 'Yk' T, has an internal node labelled r E D( P.( ldl) ). By Theorem 

4.1 and Corollary 4.2.1, since 'Yk achieves Kraft access, it has IXI + 1 leaves with 

clistrnct lalJels from the set XU {0} (or IXI le<ives if ID :::: xn) and the node r has 

181 branches. Let one of the branches from node r eventually lead to some leaf 

labelled x 1 E X and another branch from r eventually lead to a leaf labelled 

x 2 .E X. There is some J
1 

EID such that d
1
(k) :::: x 17 r ( {[iyk(p(d 1 ))J}, and 

r (ID( l'.(ld
1
1)) where m

1
(r):::: b E Bfor m1 2 p(d 1). Let 

d 2 :::: {(n,J 1(n)) 11 ~ n ~ ld 11, n ;e k} U {(k,x 2 )}. 

In other words d 2 differs from d 1 only in its k th element. By the definition of ID, 
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d 1 EID imples that d 2 EID. Then m2 (r)=b'E8, where b"~b, for 

m2 2 p(d 2 ). Since IJ 11 = IJ 2 1, P.(lc/ 11) = P.(IJ 2 1) and so m 1(r) = m2 (r), since 

r E ID( fl.( Id 11) ). This gives a contradiction. Thus, p cannot achieve Kraft access 

for ::Ill 'Yi Er. 

Thus, if a pointer representation achieves Kraft access for all 'YI E r, then th1e list 

component f w;:is itself ;:i representation and so we need not have stored any pointer 

at :ill. [ffect1vely, this says that It is impossible for all 'Yi Er to achieve Krait 

access with a pointer representation in which the pointer is in fact needed to store 

length mfornut1on. Certainly, it 1s not possible for a concaten:Hion-preserv1112. 

po111tcr reprcscnt;:ition to achieve Kraft access, since a concatenation-preserving 

function f" is not a representation (except in the trivial case where Xk if_ :0 for 

k ~ 2). 

Corollary 5.17.1. Let ID= LJ X1
, where maxi > l. If IBI > 2, no 

i(J iEJ 
concatenation-preserving pointer representation can achieve Kraft access for all 

'Yi E r. 

\Ve h:.ivc seen that for a pointer representation we in general cannot hope to 

C1ch1eve Kraft C1ccess. On the other hand, we know that we can actually achieve 

K ra it storcige. So let us discuss how well we can do for access costs 1f we ms 1st on 

Kraft stor(lge. This is the approcich we take for the rest of this section, and we 

shall see th;:it pointer representcitions can, in fact, be quite eff 1cient in terms of 

• acce~s as well as storage costs. 

Recall the pointer representation scheme used in Example 5.24. Smee the list 

component f" had fixed position fields, we could immediately (and with Kraft 

access) determine the answer to any 'Y 1 E r, as soon as we knew the answer was not 

0. So 111 order to amwer a toble lookup question 'YI' we read enough of the 

pointer to know whether or not !di 2: i. Since the pointer function /!,:J "" zl was 

defined by r.( !JI)) = 11d1o, this meant we had to read i bits of the pointer for 
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IJI ::.: 1 and lcll + 1 bits of the pointer for IJI < i. We shall present a scheme to 

rrclucc tile length IO( !JI) I, which therefore reduces the cost of accessing the pom:er. 

F"or 1131 = 2 we saw 111 Example S.22 the pointer representation, where 

r( n) = 1 no; this 1s essenti<dly Cl unary represema[1on of n followed uy an 

P11dma1 kf'r. It would, of course, be desirable to somehow represent n in btn:iry, 

wh1cl1 wuuld clescrease the sto1A;e cost but would generate the problem of dctectint. 

the Pnd nf tl1e string; 1.c., we need sorne way to guarantee that £1• 1s :-1 

represe11t;1t1on. S111ce D( (') = :N, we use a universal encoding method cis di:·scribcd 

by l::l1as ['IJ. In tlm scheme we successively cncoclc, in btnary, the length of the 

result of the previous encodmg. For instance, we could represent IJI as a bm~ny 

strn1s s, which would h'1ve length isl~ log2 1dl. If we were to use, say, a unary 

e11cod111g to specify Isl, then we could write l'. 1
( !JI) ""ok'ils, which gwcs LIS 

IP. 1(1Jl)I = 2·1sl + 1~2·1o~~2 1JI + 1, 

<in irnp1 ovcmr11t for lat['.C lcil over our previous scheme's cost, where we h::id 

If( 11'1) I = IJI + 1. In the following example we present an encoclmg scheme for the 

CC!Sl' IBI ::: 2. 

Examplf> 5.29. Recall tlie fixed position field concatcnat1on-prcscrvmG funmon i/ 

from Example S.22. Our concern here 1s with finding an efficient lent.rh 
00 

represe11tC1t1on l'.:J _. ,u+. Assume for s1mpl1city that iD = LJ X1• Rather than 
i=O 

dcl111111g r( IJI) = 11
d
1o, as we did in Example 5.22, consider representing Id\ = n as 

a b111<1rv string as follows: 

ll hl.!tl_ 
0 
1 0 
I) 1 £, 

3 00 
4 01 
s 10 
6 11 
7 000 
8 001 
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More formally, we can define h:IN -+ 13* by letting h(n) be the binary 

representation of n + 1, with the leftmost symbol deleted. For example, to 

determine h(21), we write 22 in binary, 10110, and then delete the leftmost symbol 

(always a 1): h( 21) = 0110 (see Table 5.1). Notice that 

lh(n)I = Llog2(n+l)J. 

We now define a pointer representation .Q.
1:!N -+ 1:f* by 

P.l( n) = olh(n)l.1.h( n)' 

as also shown in Table 5.1. The storage cost for the representation i. 1 is 

IQ. 1(n)I = 2·1h(n)I + 1=2·Llog2 (n+l)J + 1. 

We can show that the representation ll 1 achieves Kraft storage by noting that, for 

each J ~IN, Llog2(n+l)J = J for 2J consecutive values of n: 

~ 
2

-lli 1(n)I == ~ 
2

-(2·Llog2(n+l)J + 1) 

n=O n=O 

= L: 2j·2-(2j + 1) 

J=O 

= 1. 

Thus, a worst case access cost to determine whether or not 'Yi( d) == ~ is JU St 

2·Llog2 ( n+l) J + 1, an improvement over the scheme in Example S.22 (or Example 

5.24), which had a worst case of n + 1. In general, we can expect to do even better 

than this, reading only as much of the pointer as necessary. Because only two 

accesses of the list representation are required to read the answer 'Yi( d) for this 

particular example, we have the following access costs: 

r1og2( i+2) l + 2 for i ~ 2 
r1og2( n+2) 1 

rtog)n+2)1 -1 r1og·2(n+2)1 
IJ[')'i(d)J= 2·Llog2 (n+l)J+3 for2 ~is2 -2 

r1og2( n+2) l 
r1og2( n+2) l for i ;::: 2 - 1. 

Using the same tnck over again, we can encode the length of the length of n 

by def ming the pomter representation .IZ2:1N -+ 13* by 

E2 ( n) = olh(ih(n)i)l.1.h( ih( n) I) ·h( n) I 

g1 vi ng a storage cost of 
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11 hlDl D.!!l h(lh(n)I) t'.2( n) 

0 1 1 
1 0 010 0 0100 
'l 1 011 0 0101 ... 
3 00 00100 1 01100 
4 01 00101 1 01101 
s 10 00110 1 01110 
6 11 00111 1 01111 
7 000 0001000 00 00100000 
8 001 0001001 00 00100001 
9 010 0001010 00 00100010 
10 011 0001011 00 00100011 
11 100 0001100 00 001001GO 
12 101 0001101 00 00100101 
13 110 0001110 00 00100110 
14 111 0001111 00 00100111 
lS 0000 000010000 01 001010000 
16 0001 000010001 01 001010Ci01 
17 0010 000010010 01 001010010 
18 0011 000010011 01 001010011 
19 0100 000010100 01 001010100 
20 0101 000010101 01 001010101 
21 0110 000010110 01 001010110 
'l'l 0111 000010111 01 001010111 ...... 
23 1000 000011000 01 001011000 
24 1001 000011001 01 001011001 
25 1010 000011010 01 001011010 
26 1011 000011011 01 001011011 
27 1100 ·000011100 01 001011100 
28 1101 000011101 01 001011101 
29 1110 000011110 01 001011110 
30 1111 000011111 01 001011111 
31 00000 00000100000 10 0011000000 
32 00001 00000100001 10 0011000001 
33 00010 00000100010 10 0011000010 

Table 5.1. Construction of pointer representations £1 and £2 , for 181 = 2. 
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ll!2 (n)I = 2·1h(lh(n)l)I + lh(n)I + 1 

= 2·Llog2 ( Llog2(n+l)J + l)J + Llog2 (n+l)J + 1, 

and, as for P. 1, it can also be verified that the pointer representation 1~2 achieves 

Kraft storage: 

~ 
2

-IU.2 (n)I = ~ 
2
-(2·Llog2 (Llog2 (n+l)J + l)J + Llog2 (n+l)J + 1) 

n=O n=O 

:; -(2·Llog2(j+l)J+l+j) +j 
= L.2 ·2 

j=O 

~ -(2·Lloo-,(J+l)J + 1) 
= L. 2 oz 

j=O 

:; -IP. 1(n)I 
= L. 2 

j=O 

= 1. 

The po111ter representation construction procedure presented in Example S.29 

can be applied in clef initely, encoding the length of the length of the length of n, 

etc. It can also be extended to the case where 181 > 2. In order to do this, we make 

use of a mocl-181 successor Of)eration, $ , on strin!'.1,'S. We define EB so that, e.g·., 
I Bi ~ 181 ~ 

$ 2 corresponds intuitively to addition base 2 with the leftmost 1 deleted: 

0 EB 2 1 = 1, 1 EB 2 1 = 00, 00 9 2 1 = 01, ... , 11 EB2 1 = 000, ... 

for EB3 we would obtain the sequence of strings 

1, 2, 00, 01, 02, 10, ... , 22, 000, 001, ... 

Definition. Consider a b111ary string 

s = slsi"Sisi-i' ... ·s3·s2·S1 t 13* 

and let 

k = min{i I s1 ;t 181 - 1}. 

(If si = 181 - 1 for 1 ~ i ~ Isl, by convention we have k = Isl + 1.) Then we 

clef ine s"=sffi 1 
181 

by 
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for 1 S i < k 
for i = k, k S Isl 

for k < i S Isl 

for i = k, k = Isl + 1 

So ls"I =Isl except whens= {181-1}1:•1, in which cases"= {O}J.sl+l and ls"I ==Isl+ 1. 

We can now define a function h as a 181-ary string representauon of a natural 

number n. 

Definition. for 181 > 2, let h (n) be the encodin~· of n t 1\1 as a 181-ary 
- 181 ° 

string h :IN ~ 8* where 
~, 181 , 

h ( 0) 
181 

h (1) 
181 

h (n+l) 
181 

= A. 

::::0 

=h (n) ffi 1. 
181 181 

For any string b t B*, for 181 = 1 we by convention define 

h 1 ( b) g b. 

We extend our notation and write h k+
1(n) to indicate k + 1 applications of 

IBI 
h 

IBI 
h 1'. 1(n) &: h k (lh (n)I). 

181 181 181 

Where the particular !Bl we are considering is clear, we may simply write h rather 

than h . For instance, the function h in Table 5.1 corresponds to h2 . Notice that 
!Bl 

1· h 2 (n+l) = 1· h2 (n) + 1, where the addition is in base 2. 

Example 5.30. For 181 = 3, Table 5.2 illustrates h3 ( n) and h ~( n). To see how we 

can use the above definitions to determine h3 (n), assume we know h)ll) = 21. 

So 

h3(12) = h3(1l) ffi3 l :::: 21 Etl3 l. 

Lettings = 21 = s2s 11 then min{i I s1 ~ IBl-1} = 1 and so 
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for i = 1 

for i = 2 

Thus, 

s, = h 3( 12) = 22. 

Similarly, h3(13) = h3(12) ©3 1 = 22 ©3 1, 

<111d for s = 22 = s2sp then min{i I s1 ~ 2} = 3 = Isl+ 1 and 

h3(13) = 000. 

Usmg the above notation we have, e.g., 

h ~(n) = h ~(lh 3 (n)I) = h3 (1h 3 (1h 3 (n)l)I) 

Notice that lh 3 (n)I =0 for one value of n, lh 3 (n)I =1 for three values of n, 

lh 3 (n)I == 2 for nine values of n, etc. 

In generiil, since Is EB 11 = Isl except for s = {181-l}lsl, we note that the above 
181 

clcf111it10ns, by design, give us the following lemma. 

Lemma 5.6. For 1.81 z 1, there are 181r values of n E iN such that 

lh (n)I::: r. 
IBI 

Lemma S.6 immediately allows us to show the following. 

Lemma 5.7. Let n t IN. For 181 z 2, 

lh (n)I = Llog (181-l)(n+l)J. 
181 181 

For 181 = 1, lh 1 ( n) I = n. 

Proof: For IBI = 1, lh 1 ( n) I = n by definition. So consider 181 z 2. Since Lernma 

5.6 tells us that there are IU'lr values of n t IN such that lh (n)I = r, then we know 
181 

there are 2:1.81i values of n such that lh (n)I ~ r, and 
i=O 181 



n 

0 
1 
I) ... 
3 
4 
s 
6 
7 
8 
9 
10 
11 
u 
13 
H 
15 
16 
17 
18 
19 

38 
39 
40 
41 
42 
43 
44 

120 
121 
122 

h...Jnl 

0 
1 
I) 
<. 

00 
01 
02 
10 
11 
12 
20 
21 
22 

000 
001 
002 
010 
011 
012 
020 

221 
222 

0000 
0001 
0002 
0010 
0011 

2222 
00000 
00001 
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!i~ 

2 
020 
021 
Ol')IJ <.t... 

1200 
1201 
1202 
1210 
1211 
1212 
1220 
1221 
1222 

002000 
002001 
002002 
002010 
002011 
002012 
002020 

002221 
002222 

0120000 
0120001 
0120002 
0120010 
0120011 

0122222 
10200000 
10200001 

~( lh 3 ( n) I) 

0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 

I) ... 
2 

00 
00 
00 
00 
00 

00 
01 
01 

£ ~( n) 

rJ .. 
0200 
0201 
0202 

02100 
02101 
02102 
02110 
02111 
02112 
02120 
02121 
02122 

022000 
022001 
02~002 

022010 
022011 
022012 
022020 

022221 
022222 

12000000 
12000001 
12000002 
12000010 
12000011 

12002222 
120100000 
120100001 

Tab le 5.2. Construction of pointer representations D. 1 and 1.2 , for 181 = 3. 
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I< 

lh ( n) I = min{k I n ~ L 181i - 1} 
181 l=O 

l.Plk+l - 1 = rnin{k I n + 1 ~ '"'
181 

_ 1 } 

= min{k I ( 181 - 1)( n + 1) S 181k+l - 1} 

= Llog ( 181 - 1 )( n + 1) J 
181 

l n2 We now define our class of pointer representations, extending the P. and l:. 

of Ex ample 5.29. For 181 == 2 we want: 

e ~(n) = oih(n)l.1.h(n) 

(/, ~(n) = olh(ih(n)i)i.1.h(lh(n)i)·h(n) 

(/, ~(n) = olh(ih(ih(n)i)i)l,1.h(lh(lh(n)l)l)l·h{lh(n)l)·h(n) 

Notice, however, that for 181 > 2 the first component of /), I , olhi(n)I, 1, can in fact 
IBI 

be encoded in base 181 - 1, leaving one unused symbol to serve as the endmarker. 

So we can formalize the class of pointer representations as follows. 

Definition. Let 181 z 2. We can define a class oi pointer representations P.1, 

for i > 0, as follows: 
k 

e k ( n) = { h ( I h 1
' ( n) I) -( 181-1) 1

} 0 U ( LJ { h i . ( n) } n ) 
1131 181-1 181 i=l 181 i 

where I\= 1 + lh (lhk(n)l)I + L lhi(n)I 
181-1 J=l+ 1 

Therefore 

U. k (n) = h (ih k (n)IHIBl-l)·h k (n)·h k- 1(11)· ••• ·h 2 (n)·h (n) 
ISi 1131-1 181 !Bi 181 181 lb'i 

Example 5.31. We now verify that the definition behaves as we would like for 

IBI = 3, writing h to mean h3. In particular, 

.P. ;(n) = h 2 (1h(n)l)·2·h(n) 

Thus, 

P. ~(n) = h2 (1h(lh(n)l)i)·2·h(lh(n)l)·h(n) 

Q. ;(n) = h2 (1h 3(n)l)-2·h(lh(lh(n)l)l)·h(lh(n)l)·h(n) 
3 

P. ;(n) = {h2 (1h 3 (n)l)·2} 0 U ( LJ{h 1(n)}n) 
i= 1 3 



where 

So 

n 1 = lh 2 (1h ~(rr}l)I + 1 +lb ~(n)I + lh ~(n)I 

n2 = lh 2 (1h ~(n)l)I + 1 + lh ;(n)I 

n3 =lh 2(1h;(n)l)l+l 

U.3
3

(11) = h2(1h 3(n)l)·2·h gcn)·h ~(n)·h ;en). 

The lcnr~"th IQ. k ( n) I should immediately be clear. 
·- 181 

Tllf'orE>rn 5.18. Let 181 ?: 2, k ?: 1. Then 
k 

IP. k (n)I = lh (lh k (n)l)I + 1+l:lh 1 (n)I. 
181 18'1-l 181 i=l 181 

While the exact numerical value of llog k ( n) I can be obtained by substituting· 
. 181 

Llogl (181-l)(n+l)J for lh (n)I in the expression in Theorem 5.18, we can see 
~ El 181 

that we essentially have: 

I (( 1 
( n) I ~ 21 og n, 

IP.2 (n)I ~log· n + 21oglog n, 

IP.3 ( n) I ~ log n + loglog n + 21ogloglog n. 

In any case, we can make the following statement. 

Corollary 5.18.1. Let 181 ?: 2, k ?: 1. Then 

I (( i ( n) I = 0 ( log· n) . 
181 181 

We can now show that each of the pointer representations l~ i achieves Kraft 
, 16'1 

storage. 

Theorem 5.19. For 181 ?: 2, k ?: 1, each of the pointer representations f!. k 
181 

achieves Kraft storage:· 

n=O 

.Proof: The proof is by induction on k. Once again, we write /2 to denote P, and 
IBI 

h to denote h . 
181 

Basis: for k = 1, 
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by Lemma 5.8 
n"O n=O 

~ -(lhlBI 1(r)I + 1 + r) r 
::: L.. 181 - ·181 by Lemma 5.6 

r=O 

00 

by Lemma 5.6 

::: 1 

Induction step: Assume the resulr holds for k; i.e., assume that 

Then 

<x:> -lr.k+ 1(n)I 
2: 181 

n=O 

~ -lek(n)I 
L.. 181 ::: 1. 

n=O 

~ -(lh (lhk+ 1(n)l)I + 1 + Llh 1(n)I) 
::: L.. 181 181-1 

n=O 

n=O 

= ~1s1-(lh1s1-1"hk(j)l)I + 1 + j + L:1h1(j)l·l8IJ 
j=O 

= ~ 181 -(ih 181 _1 (1hk(J)l)I + 1 + L'.lh 1(j)I) 

j=O 

~ -I b:k( J) I 
= L..181 

j=O 

::: 1. 

Since each of the pointer schemes P.1 achieves Kraft storage, it follows from Theorern 

5.13 that a pointer representation which uses i also achieves Kraft storage 1f the list 

component is storage efficient. 

Corollary 5.19.1. Consider a separate concatenation-preserving pointer 

representation p:ID -+ st defined by 
ldl 

p(d) = U{f(d(i))}ncd) u {.a k (ldl)}. 
i=l I 181 
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If f achieves Kraft storage, then p also achieves Kraft storage. 

So we have presented a pointer encoding scheme which allows us to represenr 

lists of unbounded length and also achieve Kraft storage. Consider a fixed position 

field, separate, concatenation-preserving· pointer representation p, and let us see 

how well one can do for access. We already know, of course, that we cannot 

achieve Kraft access. So suppose we want to answer some table lookup question 

"YI f r. We can do this by reading the pointer in order to determine whether or 

not Ii/I ~ i. If it is not, then we immediately return the answer ¢. lf it is, then we 

g·o to the appropriate memory location to read the answer. So at worst we need to 

make 
I 

IQ. 1 
( ldl} I ~ log 1 ldl + 2: log J ldl + k 

IBI 181 j= 1 181 
accesses, where k is some constant depending on the function f, at most the size of 

a fli~ld ni. We can often do even better by only reading· enough of the pointer to 

determine if ldl ~ i, bur, of course, for ldl = i we would be forced to read 

IP.( ldl) I + k = 0( logldl) cells. We shall discuss this encoding in the context of stacks 

in Section 6.4. 
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CHAPTER 6 

STACKS 

In Chapter 1 we discussed what we mean by a stack, a linear list for which all 

insertions and deletions arc made at the top of the stack. Much work has been 

done to obtain formal specifications of the stack as a data type (see e.g., Liskov and 

Zilles [18J, Lehman and Smyth [17]), but such a formal definition is unimportant 

for our purposes. Any scheme which captures our intuitive notion of a stack would 

suffice. It is our goal to. apply some of the techniques we have thus far developed 

to analyze some stack implementations in terms of Kraft storage and access. We first 

define the basic stack operations and in the following· sections we examine 

endmarker and poionter stack representations. Table 6.3 at the end of the chapter 

summarizes some of the lower bound results. 

6.1 Stack Operations 

While there are various operations we might wish to consider, any stack 

implementations will have PUSH and POP operations. These are presumably the 

only update operations that we shall want to perform on a stack. We also want 

some w::iy to read elements in the list; we at least need to be able to read the top 

stack element. So we begin by formally defining these three stack operations: 

PUSH, POP I TOP. 

Viewed in the problem domain, a PUSH operation causes a new value in X to 

be mserted at the top of the stack, thereby increasing the stack length by one. So a 

PUSH is a pure update, provided the stack can grow indefinitely. Where the 

memory size L is bounded, some sort of "Error" statement must be returned if an 

attempt is made to PUSH a value onto a stack which has no room to grow. Thus, 

we define a PUSH operation to consist of both a question and an update. 
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Because we are considering only domains of the form ID = LJ {Xi} and a 
1EJ 

PUSll operation will cause a stack to increase in size by one, it makes little sense to 

consider domains where i, i + 2 E J but i + 1 <t. J. So for simplmty we shall 
L 

henceforth assume that ID = LJ {X 1
}, where L may be infinite. 

i=O 

For the problem domains we are considering, if b E X 1 and b E iD, then 

Xi ~ ID. So any value in X can be pushed onto a stack at any time, and there are 

in general IXI different PUSH operations. The following dcfmit1on states more 

formally what we mean in the problem domain by a PUSH operation. 

L 
Definition. Jn any problem domam ID= LJ{x 1

}, we defme the class of 
i=O 

PUSH operations 

f PUSH = { f PUSHx I X E X }, 

where each PUSH operation f PUSHx consists of a question component and an 

update component: 

For any d E ID, 

1f ldl < L 

if ldl = L 

and 

{: U {(ldl,x)] 

else 

If L is infinite, then any finite stack is allowed, and we always have 

qPUSH)d) = Q 

urusH)d) =dU{(ldl,x)} 

and so we can view a PUSH operation as a pure update. 
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Similarly, a POP operation also consists of a question and an update portion. 

A POP causes the top stack element to be removed; i.e., the stack length is 

decrea~ed by one. If the stack length is already empty, however, then its length 

should not be decreased and some sort of "Error" must be returned. 

L 
Definition. For any problem domain ID = LJ {X 1} and any d (: ID, we 

l=O 

define a POP operation f POP by 

f POP = ( q POPI U POP), 

where 

qPOP = {¢ 
Error 

if ldl > 0 

if ldl = 0 

and 

up0 p(d) = {(n,d(n)) I 0 ~ n < ldl -1}. 

Note that llpop( d) = ¢ when ldl = 0 (as well as when ldl = 1). We have defined 

the POP operation to be a pure update when ldl ii! 0. 

We read the stack via the top element, using the operation TOP. Since the 

stack state is not altered, u ( d) = d and TOP is defined as a 1rnre question. 
TOP 

L 
Definition. For any pr.oblem domain ID = LJ {X 1

} and any d (: ID, we 
!=O 

define the TOP operation f TOP as a pure question: 

{

d( ldl-1) 
f TOP(d) = qTOP(J) = 

Error 

if ldl > 0 

if ldl = 0 

We might have chosen to define a POP operation so as to return the value 

which it deletes from the top of the stack. Instead, we define another operation, 

TPOP, to serve as a combination TOP and POP operation. 
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L 
Definilion. for any problem domain ID = U {X 1

} and any d ~ ID, we 
i=O 

define the TPOP operation f TPOP by 

where 

and 

f TPOP = ( q TPOP' U TPOP) ' 

qTPOP(d) =qrop(d) 

UTPOP(d) = UPOP(d). 

So TPOP returns an "Error" message precisely when ldl = 0. In general, we choose 

to discuss separately the component TOP and POP operations and only occasionally 

make reference to the TPOP operation. 

We have defined the basic stack operations that we shall cons1de.r. Notice that 

a PUSH or POP operation causes the stack size to increment or decrement by at 

most one. It is also possible to execute the composition of a fixed sequence of 

operations; e.g., to push a sequence of k symbols onto the stack. We might extend 

this notion and consider the execution of a conditional sequence of operations in 

which the operation to be executed next (if any) depends on the answer sequence 

returned by the operations performed so far. For instance, there might be an 

operation to clear the stack; i.e., POP until stack is empty. 

We shall in the rest of the chapter consider several stack representations and 

see how efficiently it is possible to perform the basic stack operations. Recall that 

the operation definitions we have presented describe behavior in the problem 

domain; for a particular representation, the operation behavior in the machme 

domain might or might not resemble the problem domain behavior. 
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6.2 The TOS Endmarker Representation 

Consider using an endrnarker representation to implement a stack and the 

PUSH, POP, TOP operations. The following example illustrates one possible such 

imp lcrnentation. 

Example 6.1. Let X = {a,b}, B = {0,1,2}, and ID = LJ X1
• Let the function 

f :XU{ f!J} """ f:i* be defined by 

f(a) =0 
f( b) = 1 
f( ¢) = 2 = 0 

1=0 

Def me the concatenation-prcscrvine: cndmarkcr representation p:ID """ B* by 
ldl 

p(d) = U{f(d(i))}i-1 u {O}ldl" 
I= 1 

In this representation, one symbol from 8, namely 2, is reserved to tell us when we 

have reached the top of the stack. for imtance, 

p( ).) = 2 
p( ab a a) = 01002 

p( baabba) = 1001102 

If we view each d ~ID as a stack, then we might implement the POP, PUSHx, and 

TOP operations by first reading the stack representation from left to nght until we 

detect the end-of-stack marker 2. for a POP operation, we then back up and put 

0 in the previous cell. Assuming L is unbounded, this corresponds to the followmg 

algorithm. 

i +- 0 
while m( i) ~ 2 do i (.- i + 1 
if i = 0 then return "Error" 

else rn(i -1) (.- 2 

for PUSHx and TOP operations, we similarly read u11til we detect the end of stack 

marker 2, and we can then immediately perform the desired operation. 
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i (-- 0 
while m(i) ;t 2 do i <-- i + 1 
m ( i) <-- f( x) 
m(i+l) <--2 

i~O 

while m( i) ;t 2 do i <-- i + 1 
1f i = 0 then return "Error" 

else if m( 1-l) = 0 then return "a" 
else return "b" 

These algorithms give us the following access costs when no Error conditions are 

encountered: 

tl[Clror( p( d)) J = ldl + 2 

#[0.PUSH) p( d))] = ldl + 2 

#[O,TOP( p( d))] == ldl + 2 

We could improve slightly the access cost for O..TOP by remembering· the previous 

cell value 111 5orne location called "temp", as we make our left to right reading of 

the stack representation. 

i (-- 0 
while m( i) ;t 2 do temp <-- m( 1) 

i (-- i + 1 
if i = 0 then return "Error" 

t·he if temp = 0 th1.·11 1ctun1 
11

<1
11 

else return "b" 

Ti11s mociif ed a!t,oritl1rn gives us a 11"1er11ory cell access co~t of 

t/[O,TOP( p( d))] = !di + 1 

A It hough temp can be viewed as requiring additional cells, we choose to let temp be 

part of our processor state, and so we do not include it in the memory access cost. I 

A representation such as pin Example 6.1 is a natural one to use if we choose 

to implement a stack with an cndmarker representation. We assume the bottorn of 

the stack is at some fixed (known) location, and we reserve some string 0 E 13+ to 

denote the top of the stack. We shall also require that a TOS endmarker 

representation have fixed position fields and that D(O) ~ LJ D(f(x)); the 
xEX 
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reasons for these assumptions will be made clear shortly. We now make the 

following definition. 

00 

Definilion. Let ID= LJx 1 and consider a function f:XU{¢} """s+. Let 
i=O 

p:ID ~ a·r be any fixed position field endmarker representation 
ldl 

p(d) = LJ{f(d(i))}n U {O}n 
1=1 I ldl+l 

where n1 E IN, for any i E IN+, and f(¢) = 0. If D(O) ~ LJ D(f(x)), then 
xEX 

we refer to pas a top of stack (TOS) endmarkcr repreuntation. 

Clearly the representation pin Example 6.1 is a TOS endmarker representcition. We 

use the term TOS because the endmarker 0 is always situated in the set of cells 

which the stack element d( ldl+l) would occupy, if there were one. In other words, 

0 is in the field at the top of the stack. The representation is easiest to visualize 

when ni+l > n1 and each field consists of contiguous memory cells. Notice also that 

it is not necessary that each field have size one. The following example illustrates 

another TOS endmarkcr representation and shows that we need not restrict 

ourselves to the case where 181 ~ IXI + 1. 

Example 6.2. Let X = {a,b}, 8 = {0,1}, and ID= LJx 1
• Define the function 

f:XU{¢} ~ B* by 

f( a) = 00 
f(b) = 01 
f( ¢) = 1 = 0 

1=0 

Then we can define the TOS end marker representation p:ID -+ a+ by 
ldl 

p(d) = U{f(d(i))}2<1-1) u {0}21d1· 
i= 1 

for instance; we have 

p( :\) = 1 
p( a baa) = 000100001 

p( baabba) = 0100000101001 

Similar to what we did in Example 6.1, we can implement the POP, PUSHx, and 
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TOP operations by first read mg p( d) from left to right until we detect the end of 

stack marker 0. However, since If( a) I = If( b) I ::: 2, we can locate 0 by read mp,· only 

cells 0, 2, 4, ... , until we detect a 1. We then perform the desired operation 111 a 

straightforward way. Thus, assuming· L is unbounded, we might use the following 

algorithms. 

i t- 0 
whllem(i) ¢ldoi+-i+2 
if i = 0 then return "Error" 

else m( i-2) +- 1 

i +- 0 
while m ( i) ;t! 1 do i +- i + 2 
m(i) +-0 
if x =a then m(1+l) +- 0 
ifx =bthenm(i+l) +-1 
m( i+2) +- 1 

i +- 0 
whilem(i) ;t!ldoi+-i+2 
if i = 0 then return "Error" 

else if m( i-1) ::: 0 then return "a" 
else return "b" 

These produce the following access costs, when no Error conditions are encountered: 

tJ[(J.POP( p( d))] = ldl + 2 

ll[Q.PUSHx( p( d))] ::: ldJ + 3 

11[0.TOP( p( d))] = idJ + 2 I 

In both examples 6.1 and 6.2 we found that the access costs for the stack 

operations POP, PUSHx, and TOP grow with ldl. This leads us to wonder whether 

it is ever possible to perform the operations with fewer accesses. We shall prove 

that the answer is no. In particular, whenever a TOS endrnarker representation is 

used we show that for each d f ID it must be the case that 

#[(.lPOP( p( d))] ~ ldl + 1 

11[(.lPUSH) p( d))] ~ ldl + 2 
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{

r ldl-1 1 + 2 

#WTOP(p(d))J ~ 1 -r 
for !di > 0 

for !di = 0 

To aid us in proving these results we prove three lemmas. The first says that 

when ldl = 0 any algorithm for a POP, PUSHx, or TOP operation wi11 access the 

n 1 field, which is also the nldl+l field. 

co 

Lemma 6.1. Let ID = LJ Xi and let d 0 t ID, Id 01 = 0. Consider a function 
i=O 

f:X u{ ¢} --+ s+. Let p:ID --+ 8+ be any TOS end marker representation 
!di 

p( d ) = LJ {f ( d ( i) ) } n U { 0} n · 
i= 1. i Id!+ 1 

Then any implementation of a POP, a PUSHx, or a TOP operation on data 

base d 0 <: ID must access some cell in the n 1 = n !di+ 1 field. 

P1cioj: If Id 01 = 0, then p( J 0 ) = { 0 }n . Thus, if a stack operation 1s performed 
l 

without accessing· the n 1 field, then no cells in p(d 0 ) were accessed at all. Even if 

we accessed every one of the (infinite number of) other memory cells, we would eet 

no mformation concerning· whether or not IJI = 0. Effectively, tlus says that we 

were able to perform the operation with no accesses, an impossibility. 

Lemma 6.2 guarantees that performing a stack operation on any d E ID causes the 

n 1 field to be accessed. 

co 

Lemma 6.2. Let ID = LJ Xi and consider a function f:X u{ ¢} --+ s+. Let 
i=O 

p:ID --+ b't be any TOS endmarker representation 
Id! 

p( d) = LJ { f( d ( i) ) } n U { 0} n • 
i=l I !di+ l 

Then for all d E ID any implementation of a POP, a PUSllx, or a TOP 

operation must access some cell in the field n 1• 
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Proof: Let d 0 be some stack, d 0 E ID. As a consequence of Lemma 6.1, the result 

of this lemma clearly holds for Id 0 1 == 0. So consider the case where Id 0 1 > 0, and 

let m be a memory state which contains the representation of d 0 ; m 2 p( d 0 ). 

Assume there is an algorithm <l.0 P for the stack operation OP (one of POP, 

PUSHx, TOP) such that {W .. 0 P(p(d 0 ))J} docs not contain any cells 111the11 1 field. 

Let m 1 be a memory state which differs from m0 only in the contents of field n 1: 

m1 == {(n,m 0 (n))I n ¢. D(field n 1)} U {O}n. 
1 

So m 1 represents the empty stack J 1, Id 11 ::: 0. Since Cl.0 p docs not access the n 1 

f 1elcl when applied to memory state m0 , it also does not access the field n 1 for the 

memory state m 1• Thus, 0..0 P performs the same operation in either case. Let us 

now look separately at the three stack operations. 

( i) Consider the operation POP, and notice that 

Uror(d 1) ::: Error 

whereas u POP( d 0 ) -.t Error. 

Thus O .. POP cannot always operate correctly without accessing the n 1 field. 

(ii) Similarly, a.TOP cannot always give the right answer without accessing· the f 1eld 

11 1, because 

whereas 

qTOP(d 1) =Error 

q TOP( d 0 ) -.t Error. 

(iii) O .. PUSHx will wnte a 0 in field n2 if and only if the current memory state 

contains a representation of the empty stack. 

Thus, for all d E ID, an algorithm which implements a POP, a P US!lx, or a TOP 

operation will access field n 1• 

It is also necessary that the endmarker field be accessed, as the following· lemma 

shows. 



- 152 -

Lemma 6.3. Let ID = u x I and consider a function f:X u{ .0} -4 s+. Let 
l=O 

p=ID -4 3+ be any TOS endmarker representation 
ldl 

p(d) = LJ{f(d(i))}n U {O}n • 
1=1 i lcil+l 

Then for all d EID any implementation of a POP, a PUSHx, or a TOP 

operation must access the nldl+l field. 

Proof: for a PUSllx operation, 
ldl 

p(d) = LJ{f(d(i))} U {O}n 
' l=l Jdl+l 
ldl 

and p(uPUSH)d)) = LJ{f(d(i))} U {f(x)}n U {O}n 
i=l jdj+l ldl+2 

and so field nldl+l must be not only accessed but rewritten. 

The rest of the proof is similar to that of Lemma 6.2. Lemma 6.1 shows that 

this lemma holds for any d 0 E ID such Id 0 1 = 0. So consider the case Id 0 1 > O, and 

let m 0 be a memory state such that m0 2 p( d 0 ). Assume there is an algorithm 0. 0 p 

for the stack operation OP such that performing <l0 P( p( d 0 )) does not cause any 

cell in the n
1
d l+l field to be accessed. Choose k E IN such that the nk and the nk+l 

0 

f 1elds are not accessed (e.g., choose k > Id 01 + 1). Now define a memory state m 1 

that differs from m0 only in fields nldl+P nk, and nk+l: 

m1 = {(n,m 0 (n))I n <t. D(field nk), n ¢. D(field nk+ 1), n ¢. D(ficld nldl+l)} 

U { p( x 1 ) } n U { p( x 2 ) } n U { 0 } n , 
ldl+l k k+l 

where x 1 is any element in X and x2 EX such that x2 ;I! d 0 (ld 0 l). Pick d 1 EID 

such that p(d 1) ~ m1• Since Cl0 P accesses neither the nldl+P the nk field, nor the 

nk+l field, 0 .. 0 P is not a correct algorithm for either of the stack operations POP or 

TOP, because no such implementation can perform correctly for both d 0 and d 1• 

(This same argument also would include the PUSl-lx operation.) Thus, any 

algorithm (J..0 P must access field nldl+l" 

We can now prove our lower bound results for the number of memory cell accesses 



- 153 -

required to perform any POP or PUSHx operation using a TOS cndrnarkcr 

representation. 

00 

Theorem 6.1. Let ID= Ux 1 and consider a function f:XU{¢} _. B+. Let 
i=O 

p:ID ~ at be any TOS endmarker representation 
!di 

p(d) = LJ{f(d(i))}
0 

U {0}
0 

• 

i=l l ldl+l 
Thm for all d E ID any implementation of a POP operation requires at lea!.t 

ldl + 1 memory cell accesses, and any implementation of PUSHx requires 

lcil + 2 accesses; i.e., for all J E ID, 

t1[aror( p( d)) J :;:-:: IJI + 1 

#[ClrusH) p( J)) J 2:: ldl + 2 

PrClClj: Any implementation of a PUSHx or a POP operation using p will result in: 

Id! 
p(uPUSH)d)) "'LJ{f(d(i))}

0 
U {f(x)}

0 
U {0}

0 i= 1 i Id!+ 1 ldl+2 
ldl-1 

p(up0 p(d)) = LJ {f(d(i))}
0

. U {0}
0 i= 1 I ldl 

Assume there is some algorithm 0,0 P, for POP or PUSHx, for which there is some 

p, 1 :5, p :5, ldl, such that no cell in nP is in {W .. 0 p( p( d 0 )) J}, for d 0 E ID. Let m0 

be a memory state such that m0 2 p( d 0 ), and define a memory state m 1 that 

differs from m0 only in field nP: 

m1 = {(n,m 0(n)) In ft. D(ficld nP)} U {0}
0

• 

p 

Choose d 1 EID such that p(J 1 ) ~ m1. Since D(O) ~ LJ D(f(x)), the endmarker 
xEX 

0 is located entirely in the nP field and so 0,0 P does not distinguish p( d 1) from 

p( d). Performing a PUSHx or a POP operation on d 1 would give: 
p-1 

p(urusH)J 1)) = LJ{f(d(i))}
0

. U {f(x)}
0 

U {0}
0 

j = l I p p+ 1 
p-2 

p(up0 p(d 1)) = LJ{f(d(i))}
0

. U {0}
0 

i=l l p-1 

Thus, we must be able to distingl1ish Id 11 from ldl in order for a PUSllx or POP 

operation to necessarily be performed correctly. Since the argument holds for any 
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p, 1 :::;. p :::;. ldl, we need to access at least IJI cells. By Lemma 6.3, 1t 1s al~o 

necessary to detect the endmarker, leading to one additional access and a lower 

bound of ldl + 1 for both POP and PUSHx operations. Notice that for a PUSHx 

operation, it is, in addition, necessary to write 0 in the nldl+ 2 field, which gives the 

ldl + 2 lower bound for the PUSHx operation. 

Whenever f achieves Kraft storage, then D( 0) ~ LJ D( f( x)), and so we have the 
xEX 

following corollary. 

CQ 

Corollary 6.1.1. Let ID= LJxi and consider a function f:XU{¢}--) 8+. Let 
i=O 

p:ID --) 3+ be any TOS cndrnarker representation 
ldl 

p(J) = LJ{f(d(1))}n U {O}n · 
i=l I ldj+l 

If f achieves Kraft storage, then for all d E ID any irnplemcntatlon of a POP 

operation requires at least IJI + 1 memory cell accesses, and any 

implementation of PUSHx requires IJI + 2 accesses; i.e., 

#[(.l..POP( p( d))] > idi + 1 

IJ[(lPUSH) p( d))] 2 id! + 2 

We have chosen to require that a TOS endmarker representation have fixed 

position fields and that D(O) ~ LJ D(f(x)), because these seem to be natural 
xEX 

requirements that are met in most implementations. As Example 6.3 illustrates, 

however, if we were to eliminate the condition that the fields be in fixed positions, 

then we might sometimes be able to achieve lower access costs than were specified 

by Theorem 6.1. 

00 

Example 6.3. Let X = {a,b}, t3 = {0,1}, and ID= Ux 1
• Consider the storae;e 

optima 1 function f:X u{ ¢} --) 13* defined by 

f( a) = 0 
f(b) =10 
f( ¢) = 11. 

i=O 
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Comtrnct from f the concatenation-preserving representation p:ID _, B* clef 111ecl by 
Jdl 

where 

and 

p( d) = LJ { f ( d ( i) ) } n. U { 11} n ( d) 
i= 1 l 

1-1 

n1(d) = :lif(d(j))\ 
j= l 

Jdl 
n(d) :lir(d(J))I. 

j= 1 

Then we have, for instance: 

p(aaaaaa) = 00000011 
p( bbbbbb) = 10101010101011 
p(aabaab) = 0010001011 

Notice that the leftmost occurrence of 11 indicates the end of the stack. It is not 

necessary, however, to read every clement in the stack representation. For 111stance, 

when m(i) = 0 and m(1+2) = 0, then there is no need to read m(1+l). Thus, we 

could nnplement POP and PUSH as follows. 

(),POP: I ._ 1 
loop: while m(i) ~ 1 do i <- i + 2 

1f m( i-1) = 0 then i .,... i + l 
goto loop 

if i = l then return "Error" 
else m( i-2) <- 1 

i ('- 1 

loop: while m(i) ~ 1 do i <- i + 2 
1f m(1-l) = 0 then 1 <- i + 1 

goto loop 
m(i-1) <- 0 
m(i+l) <- 1 

I '- 1 

loop: while m(1) ~ 1do1 <- i + 2 
if m(i-1) = 0 then i <- i + l 

goto loop 
m(1) <- 0 
m(i+l) <- 1 
m( i+2) <- 1 
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Using these algorithms to perform a POP or a PUSHx operation on p( an) or on 

p( bn), we only make l~I + k 1 accesses, for some constant k 
1 

E IN. So p 1s a 

concatenation-preserving endmarker representation for which it is not always 

necessary to make ldl accesses. Note, however, that for d = {ab }n these algorithms 

lead us to access every cell in D( p( {ab t)), a total of -J- · Id\ + k2 accesses. 
i.. 

A !though 111 the above example we were sometimes able to perform a POP or a 

PUSHx operation in only l~I accesses, we at other times were forced to make 3 ~11 

accesses. Thus, it seems likely that there would still be an average cost of IJl 

accesses, even though the worst case cost has been improved. If we were to 

eliminate the requirement that D( 0) .~ LJ D(f( x)), then we would lose storage 
xEX 

optimality but would be able to achieve lower access costs, as Example 6.4 shows. 

Example 6.4. Let X = {a,b}, 13 = {0,1,2}, and define the non storag·e optimal 

function f:XU{0}-+ 13* by 

f( a) = 0 
f(b) = 1 
f(0) = 22 

Let p:ID -+ B* be the concatenation-preserving endmarker representation, with fixed 

position fields, def med by 

For instance, 

\d\ 
p(d) = U{f(d(i))} 1_1 u {22}

1
d

1 
i = 1 

p(abaab) = 0100122 
p( bbab) = 110122 

p( a) = 022 

Possible algorithms to implement POP and PUSHx operations are as follows: 

i ~ 1 
while m( i) ;t 2 do i ~ i + 2 
if m( i-1) ;t 2 then m( i-1) ~ 2 

else if i ::: 1 then return "Error" 
else m( i-2) ~ 2 
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i~l 

while m( i) ~ 2 do i ~ i + 2 
if m(1-l) ~ 2 then m(i) ~ f(x) 

m(1+2) ._ 2 
else m(i-1) ._ f(x) 

m(1+l) '""2 

For all d E ID, these algorithms have the followmg access .costs: 

tl[(l.POP( p( d)) J = ~j + k 1 

#W,rusH)p(d))J ~J + k2, 

for k 1 , k 2 E IN. 

Theorem G.l made no mention of the TOP operat10n; in fact, the IJI + l result 

does not necessarily hold for every d <: ID. We can see this by recorrndermt; 

Example 6.1, which we do in the following example. 

Example 6.5. Recall the representation p from Example 6.1. We presented there an 

algornhrn O'TOP which required ldl + 1 accesses, for all d <: ID. We now show that 

we can sometimes do better than ldl + l. For instance, consider 

p( abbaaba) = 01100102. 

F'rom Theorem 6.1 1 we know that any algorithms for (),POP and O..f'US!I;: will access 

at least Jdl + l memory cells, for all d E ID. Let us construct an alp:orithm for O .. Tm~ 

Suppose our algorithm f1rst accesses cell 7. Since m(7) = 2, cell 7 m11st contain the 

endrn;:irker, if cell 7 is part of p(d). By reading m(6), we know that qTOf' =a if 

7 E D( p( J)). Of course, if ldl < 7 then It is possible that qror = b. In order to 

verify that CJrop =a we need only access cells m(O), m(2), m(3), m(S), m(6). In 

p::nt1cubr, we don't need to access m(l) or m(4), because we already know that 

m( O) = m( 3) = 0. So upon locatmg the occurrence of the end marker in cell 7, we 

conjecture th:it qTOP =a. If m(l) = 2 or 111(/t) = 2 then we still have qTOP =a. 

Thus, we have an example where it is possible to sometimes cletermme q TOP 111 

fewer than IJI + l accesses. Notice, however, that an algorithm such as we 

presented here would for some d require more than le/I + l accesses; m particular, 
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1f the m( 7) we originally accessed were not in our representation. 

In determining; qTOP(d), the trick used in Example 6.5 could allow us to access, for 

some d E ID, as few as r IJl2-
11 + 2 memory cells. In other words, we would 

always access the endrnarker field and the field corresponding to the top st:1ck 

element. At best we would only have to access half of the rcme1ining \di - 1 cells. 

The followrng theorem shows that it is never possible to do better. 

00 

Theorem 6.2. Let ID = LJ X1 and consider a function f :XU{ .0} ~ s+. Let 
1=0 

p:ID .... 3+ be any TOS endmarker representation 
\di 

p(d) = LJ{f(d(i))}n U {O}n . 
1= 1 i \d\+ 1 

Then for all d E ID such that \di :2: 1 and for any implementation, O'TOP' of a 

TOP operation: 

Proof: By Lernma 6.3, we know that the n\d\+l field must always be accessed. 

A Isa, it is necessary to access the njdj field, since this is the value we want to 

determine. So the result clearly holds for \di = 1 and, by also using Lemma 6.2, for 

\di = 2. Consider the case where \di > 2. We know that we must access the f acids 

nldl+ 1 and n\d\' Now assume we have an algorithm for f TOP> O .. TOP' that for some 

d 0 E ID returns the value qTOP( d 0) = x 1 for some x 1 E X and for which there 

exists k ( IN, 1 S k < \di - 1, such that °'·mp accesses neither the nk nor the n k+ 1 

field. Let m0 2 p(d 0 ). Define a new memory state m1 such that m1 

m0 only m the nk field, which contains f(x 2 ) (for x2 ;t x 1), and 

field, which contains 0. Then m 1 2 p( d 1), where 

{

d(i) 
d 1 ( i) = 

Xz 

for i < k 

for i = k 

differs from 

in the nk+l 

Then, using the algorithm O .. TOP, we must get O .. TOP(p(J 1)) = x 1. But we know 

that frnp(d 1) = x2. This results in a contradiction, which means that for any 
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valid ale.onthm (,lrnr it is never possible to not access two consecutive fields nk C1nd 

nk+l' for 1 ~ k < ldl -1. Smee by Lemma 6.2 we must always access the n 1 field, 

this says that we must make at least r IJl 2-
1 l + 2 accesses. 

From Theorem S.10 we 1mmed1ately know that a TOS endmarker 

representation achieves Kraft storage when the function f does. 

"° 
Theorem 6.2. Let ID= Ux 1 and consider the function f:XU{.0} .... 8+. If 

i=O 

the function f achieves Kraft storage, then the TOS endmarker representation 

p:!D -• 8+, defmed by 
ldl 

p(d) = LJ{f(d(i))}n U {O}n 1 

i= l l idl+ I 

Before we conclude this sect10n, let us say something about f mite mernories, 

L < o.l. In our definition of a TOS endrnarkcr representation we, for s1mplic1ty, 

considered infinite domains and assumed that we would never run out of memory 

space. A Jlowing L to be finite would not have changed our results, except perhaps 

when Ip( d) I ~ L, although our algorithms would, of course, have to be mocl1f1cd. 

A !so, recall from Section S.3 that an end marker representation cannot achieve Kraft 

storage for finite L. If we had wanted to allow finite L we perhaps would have 

chosen to extend the definition of a TOS endmarker representation as in the 

following example. 

Example 6.6. Recall Example 6.1, where X = {a,b}, 8 = {0,1,2}, and the function 

f:X u{ .0} ~ B* is def med by 

f( a) = 0 
f ( b) = 1 
f(,0) = 2. 

4 

Assume, however, that L = 4 and that ID LJ X 1
• 

i=O 

representation p:ID ~ B* by 

We could def me a 
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ldJ 
Uff(d(i))} 1_1 u {o}

1
d

1 
l = l 

Id! 
U{f(d( i)) }

1
_

1 
i= l 

p( f.) = 2 __ _ 
p( abb) = 0112 
p( babb) = 1011 

for ldl :::; 3 

for IJI = 4 

Notice that, using this defmition, every possible memory state is a representation of 

some stack and p achieves Kraft storage. The stack operations can be implemented 

essentially as they were in Example 6.1, but we have to watch for ldl = L. 

j (- 0 

while m(i) ;t 2 do if i = L -1 then m(i) (;-- 2 
return 

else i (;-- i + 1 
if i = 0 then return "Error" 
m( i-1) .__ 2 

j (- 0 

while m( i) ;t 2 do if i = L - 1 then return "Error" 
else i .__ i + 1 

m(i) .__ f(x) 
if 1 ;t L -1 then m(i+l) .__ 2 

i (;-- 0 
while m( i) ;t 2 do if i = L - 1 then temp (;-- m( i) 

g·oto decode 
else temp(;-- m(i) 

i """ i + 1 
decode: if i = 0 then return "Error" 

else if temp = 0 then return "a" 
else return "b" 

These algorithms give the following access costs: 

#[(l.POP( p( d))] = {f JI + 2 

IJI 

if ldl = 0 
if 0 < ldl < L 

if ldl = L 
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{

ldl + 2 

= :~: + 1 

if ldl + 1 < L 
if ldl + 1 = L 

if ldl = L 

= min{ldl + 2,L} 

= tdl + 1 #[QTOP( p( J)) J 

ldl 

if ldl < L 

if ldl = L 

= min{IJI + 1, L} 

Thus, we certainly could have considered finite memory spaces, but the e.xtra. 

complication in our ale;orithms would not have increased our understancl111[~· of TOS 

enclmarker representations. Similarly, in the next section we always m<tke the 

assumption that L 1s infinite. In Section 6.4, where we discuss po111tcr 

representatio11s for stacks, we shall consider both f inlte and infmite L. 

In this section we have examined pcrh<tps the most obvious stack enclrnarkcr 

representation scheme, the TOS endmarker representation. We know <is a 

co11Scqucnce of Theorem 6.2 that it is possible for such a represe11tauon to achieve 

K r:tft storage, but we have also shown tl1at ;-rny implementation will result 111 

expensive access costs for every d ( ID. In particular, 

l/[(),POP(p(t!))J 2IJI+1 

#[(l'PUSH) p( J)) J 2 IJI + 2 

f/[(),TOP( p( cl))] 2 r .lill_'l- l l + 2, 
... 

for ;rny algorithms o'POPI (),PUSHx' aTOP irnplernentmg· the stack operat10ns POP' 

P USHx, and TOP. This leads us to wonder whether some other type of enclmC1rkcr 

representation could result in cheaper access costs. The POP and PUSllx operations 

involve updC1ting the memory contents, but the TOP operation as just a question. 

Suppose we were to keep the top of the stack at some fixed location. Such a 

representation scheme is discussed in the next section. 
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6.3 The BOS Endmarker Representation 

Consider an endrnarkcr representation of a stack in which the top of the stack 

is always at a fixed (known) location and the bottom of the stack is allowed to 

vC1ry. In this case, the endmarker denotes the bottom of the stack. The following 

example illustrates one possible such implementation. 

Example 6.7. Consider the function f from Example 6.1, where we have 
co 

X = {a,b}, 13 = {0,1,2}, ID = LJ X1
, and where we define the function XU{¢} -+ 13* 

i=O 

by 

f(C!) = 0 
f(b) =1 
f ( )2f) = 2 = 0 

Defme the concatenation-preserving endmarker representation p:ID -'t s+ by 
ldl 

p(d) = LJ{f(d(i)) }n.(d) U { O}n(d)" 
i= l 1 

where n (d) = 2( ldl - i) 
1 

and n(d) = 2ldl 

In this representation, the endmarker indicates when we have reached the bottom 

of the stack. Readmg the memory contents "from left to right" corresponds to 

reacli11g the elements in the stack from the top clown. for instance, 

p( ti.) = 2 
p( abaa) = 00102 

p( baabba) = 0110012 

It is certainly easy to perform a TOP operation, since we need only read m(O). 

if m( 0) = 2 then return "Error" 

else 1f m( 0) = 0 then return "a" 
else return "b" 

On the other hand, consider performing a PUSHb operation on d = ababa: 

p( d) = p( ababa) = 010102 

p(urusHb(d)) = p(ababab) = 1010102 

Notice that it will certainly be necessary to access ldl + 2 cells, since this many cells 
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are actually rewritten. Intuitively, we want to set m(O) ~ 1 and to shift the contents 

of e<ich cell in p(d) right by one. Recalling the notation introduced in Chapter 3, 

one irnplernentation scheme would have the access sequence 

9_, L ~ .... hlL:..l, !ill, IJI + L 

One possible algorithm is the following·. 

i~O 

templ (- f( x) 
while m( 1) ;t 2 do tcmpl ~ m( i) 

i ~ i + 1 
m( i) ~ ternpl 
m(i+l) ~ 2 

Notice thcit we have mcide use of the additioncil register templ, as we did 111 

Example 6.1. Recall also that in Chcipter 3 we defined a single access to consist of 

reading <ind then possibly rewriting a cell. Thus, we have written 

tcrnpl ~ m( 1) 

to indicate a single access to m( i), where the old contents of m( 1) is stored 111 ternpl 

and the old contents of ternpl is stored 111 m( i). We refer to this as an exchange, 

and might have written it out using Cl second temporary location, temp2: 

ternp2 ~ m( i) 
m( i) ~ ternpl 
ternpl ~ ternp2 

Now consider performmg a POP operation on d = ababab: 

p( d) = p( ababab) = l(Jl(Jl02 

p( ur0 p( d)) = p( ababa) = 010102 

As for P USHx, a POP operation will have to rewrite ldl cells and so at least IJI 

accesses wtll be required. In this case, we intuitively want to shift the contents of 

all of the cells in p(d) left by one. One scheme for doing this would have the 

access seci uence 

o, 1, 2, ... ,ldl-1, IJI, 1c11-1, 1c11-2, ... ,~, L Q. 

and could be implemented using the exchange operation described above. 
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if m( i) = 0 return "Error" 

i~l 

whiie m( i) ;ll! 2 do i ~ i + 1 
templ +- 2 
while i > 0 do i ~ i - 1 

m(i) !+templ I 

We refer to a representation such as p in Example 6.7 as a BOS endmarker 

representation, because the endmarker 0 is always situated in the field following· 

that field which contains the bottom stack element; i.e., in the set of cells which the 

bottorn stack element would occupy if the stack had another element in it. 

00 

Definition. Let ID = LJ X1 and consider a function f:XU{ J2f} -+ B+. Let 
i=O 

p:ID ~ s+ be any endmarker representation 
!di 

p(d) = LJ{f(d(i))}n U {O}n 
i=l !dl+l-1 ldl+l 

where ni E fN, for any i E IN+, and f( J2J') = 0. If D( O) ~ LJ D(f(x)), then 
xEX 

we refer to p as a bottom of stack (BOS) end marker re presentation. 

The clcf inltion of a BOS endmarker representation is basically the same as that of a 

TOS endmarker representation, except that d(i) is located in field nldl+l-i rather 

than in field ni. In other words the order of the representations of the stack 

elements is reversed. The representation is easiest to visualize when n 1+ 1 > n1 and 

each field consists of contiguous memory cells, but no such requirements are 

imposed by the definition. 

The BOS endmarker representation was motivated by an attempt to decrease 

the access cost for performing a top operation. As we shall see, however, we have 

not altered the access cost for PUSHx and we have actually worsened, for alt 

d E ID, the lower bound access cost for POP: 

l/[O,TOP( p( d)) J 2_ l 

11[0.PUSH) p( d))] 2. JdJ + 2 

ttUlpop( p(d) )J 2. r 3IJ~ + 1 , = L ¥ J + 1. 
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00 

ThPorem 6.3. Let !D = LJxi and consider a function f:XU{¢} ~ 8+. Let 
i=O 

p:ID .... 3+ be any BOS cndmarker representation 
ldl 

p( d) = LJ {f ( d ( i ) )} n U { 0} n • 
i=! ldl+l-i ldl+! 

llirn for all d E lD any implementation of a PUSHx operation requires at least 

IJI + 2 memory cell accesses; i.e., for all d E ID, 

tl[ll.PUSHx(p(J))J ~ IJI + 2. 

Proof: Assume there exists some algorithm O.TUSHx for performin2; a PLJSHx 

operation and some d 0 E lD such that #U.lpusH)p(d 0 ))J < IJI + 2. By the 

dei1nit1011 of a PUSHx operation \Ve know that 
ldl 

p( d 0 ) = LJ {f ( d 0 ( i ) ) } n U { 0 } n 
i=! ldl+!-i ldl+l 
Jal 

p(uPUSH)do)) = LJ{f(Jo(i))}n U {f(x)}n 
i= 1 ldl+2-i l 

10) U l ln . 
ldl+2 

Certainly the values 111 fields nldl+l and nldl+Z must be accessed. Assume that there 

1s some p, l ~ p ~ IJI, such that O'PUSH)p(d 0 )) does not access field nP. Let m0 

be :i rnernory state such that m0 2 p( d 0), and as in the proof of Lemma G.3, let m 1 

be a memory st;ite which is identical to m0 except in the nP field, where 0 is stored. 

If m 1 2 p(d 1), then the algorithm (.lPUSHx does not distinguish d 0 and d 1 ;rnd 

thus O.PUSl-Ix does not correctly perform a PUSllx operation on d 1 , a contradiction. 

So any ;:ilgorithrn O.PUSHx must always access the Id! fields n 11 n2 , ••• , nldl' well as 

the fields nldl+l and nldi+z· 

As a consequence of this theorem, we know that the algorithm (.lPUSHx 111 Example 

6.7 1s optimal; in fact, we know that for no d E lD is it possible to make fewer than 

!di + 2 accesses. 

Let us now consider the construction of an algorithm for the POP operation. 

Using the scherne presented in Example 6.'7, we could read the n1 fields essentially 

from left to right until we reach the bottom-of-stack endmarker, and then shift the 



- 166 -

elements in the representation "left one field". This ·corresponds to a field access 

sequence 

1, 2, ... ' ldl-1, ldl, ldl+l, \ill, Jdl-1, ... ' g_, !_. 

Ii we choose not to read all the way to the endmarker and then backtrack, we could 

use an algorithm with a field access sequence 

1, 2, 1, 3, £, 4, ~' ... ' ldl, ldl-1, ldl+l, @. 

Either of these algorithms would, however, require making a total of 2·ldl + 1 

accesses, and we shall show that it is possible to (always) do better. In order to 

motivate the lower bound we shall obtain for the POP operat10n, we indicate how 

the algorithm nTOP in Example 6.1 could be improved. 

Example 6.8. Recall the representation p from Example 6.1 and consider 

performing a POP operation on d 0 = abaa. We know that 

p( d 0) = 00102 

and p( U F'OP( p( d 0 )) = 0102. 

Recall that our defmltion of access allows us to read and then, if we choose, rewrite 

a cell. So suppose we first access cell 1. Since m( 1) = 0, we put a 0 into cell 0, 

checking, of course, that cell 0 is not the end of the ste1cJ.:.. We then ree1d cell 3. 

Since m( 3) = 0 ;t. 2, we go back to cell 2, which we now read. Since m( 2) ;t. 0, we 

write a 0 into cell 2. We alree1dy know the1t m( 1) ;t. 1, and so we set m( 1) '- m( 2). 

At this point we he1ve (correctly) rewritten m(O), m(l), m(2). We now read cell S. 

for the case we are considering, m( 5) is not included in p( cl 0 ), so cell 5 might or 

might not contain the endmarker 2. In either case, we be1ck up and read cell 4, at 

which time we find that m(4) = 2. Having already read cells 0, 1, 2, 3, we now 

know that cell 4 contains the BOS endrnarker. So we set m( 3) <- 2 and are done. 

Usmg this procedure we have the memory cell access sequence 

1, Q., 3, ~. L 5, ±., ~I 7, §_, ~I 9, ~I 1, 11, 10, 2_, ••• 

We might write the algorithm out as follows, making use of two temporary 

locations, templ and temp2. 
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templ (,- m( 1) 

if m( O) = 2 then return "Error" 
else m( O) (,.- templ 

if templ = 2 then return 
j(,-3 

while m( i) ~ 2 do templ (,.- m( i) 
temp2 (,.- m( i-1) 
m( i-2) (,- temp2 
if temp2 = 2 then return 

temp2 (,- m( i-1) 
m(i-2) (,.- ternp2 
if tcmp2 = 2 then return 

else m(i-1) (,.- 2 

This algorithm results in an access cost of 

11[0.POP( p( d) ) ] = 

{

3.M + 2 
2 

3· ldl - 1 + 2 
2 

else m( i-1) (,- templ 
i (,- i + 2 

for ldl even 

for ldl odd. 

We shall shortly prove that the algorithm is, in fact, optimal. 

In order to derive a lower bound access cost result for performing a POP 

operation we begin by proving two lemmas. Recall that our definition of access 

allows us to read, although certainly not rewnte, a memory cell which is being· used 

by another user. 

00 

Lemma 6.4. Let ID =-= LJxi and consider a function f:XU{.0'}-+ 8+. Let 
i=O 

p:ID _. 3+ be any BOS cndm~ukcr representation 
!di 

p( d) = LJ { f ( d ( i ) ) } n U { 0} n • 
i=l !dl+l-1 !dl+l 

Then a cell in field ni' i ~ 1, cannot be rewritten unless each of the f iclcls 

n 11 ••• , n 1_1 has been accessed. 
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Proof: A cell in field n1 cannot be rewritten unless it is known that ldl ;::: i - l; i.e., 

we are not allowed to rewrite field ni if it is in some other user's memory space. 

Th us, in order to rewrite a cell in field n P it must be the case th at no n J' for 

1 ::; j < i, contains the endmarker 0. There is no way to guarantee this without 

accessing each of the fields n 1' n 2' ••• , n 1_ 1. I 

The follow mg lemma essentially tells us that field n
1 

cannot be rewritten until f 1elcl 

n i + 1 has been accessed. 

00 

Lemma 6.5. Let ID = LJ X 1 and consider a function f:X U{ J2f} ~ 8+. Let 
i=O 

p:IO 4 8+ be any BOS endmarke1~ representation 
ldl 

p(d) = LJ{f(d(i))}n U {O}n . 
i=l ldl+l-i ldl+l 

Consider any algorithm, O..POP' for the operation POP. Then there must be 

an access to field n 1+1 m;ide previous to the last rewrite of f ielcl n P for 

1 ~ i ~ ldl. 

Proof: Recalling the definitions of the BOS endrnarker and the POP operation, 
ldl 

p(d) = LJ{f(d(i))}n U {O}n 
i= 1 ldl+ 1-1 ldl+ 1 

ldl-1 

and p(up0 p(d)) = LJ {f(d(i))}n U {O}n . 
I= 1 idl-i ldl 

So f( d( i)) gets moved from field nldl+l-1 to field nldl-I' Since we can determine the 

contents of field nldl+l-l only by making at least one access to that field, field 

n Id!+ l -i rnust be read before its value can be put into field nldl-i' I 

For any algorithm a.POP we can consider its corresponding field access sequence. 

We prove our lower bound result by lower bounding the size of a sequence which 

rneets the conditions presented in lemmas 6.4 and 6.5. We first make the following 

def i 111 ti on. 
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Definition. For k, i f IN+, define a SN sk,t as follows: 

sk,i g {k, k+l, ... , k+i-1, k+i, h, k+l, ... , k+i-1}. 

We say that a sequence is an s(k,i)-sequcnce if 1t contains each of the terms 

k k+l . . . k+i-1 k+i if each term iil the sequence is in sk jl and 1f the _, --' ' --' ' . 
following conditions are satisfied: 

(i) For cill r, k < r < k + i, the last occurrence of r. is preceded by r + 1 or 

r + 1. 

(ii) for all r, k < r < k + 1, the last occurrence of r. is preceded by J or J, 

for every element j E {k, k+l, ... , r-2, r-1}. 

We define er( k,i) to be an s( k,i)-sequcncc of minimal length, so th cit 

Ju(k,ill.@ min ls(k,1)1. 
s( k ,i) 

Since la(O,ldl)I is rnmimal over all sequences s(O,ldi), u(O,ldl) corresponds to an 

optimal access order for performing a POP operation. 

co 

Lemma 6.6. Let ID = LJ X 1 and consider a function f :XU{.¢} -+ B+. Let 
t=O 

p:ID -+ 3+ be any BOS endrnarker representation 
ldl 

p( d) = LJ { f ( d ( i) ) } n U { 0} n • 
t=l !dl+l-i ldl+l 

Then for any aJg·orithrn, O'POP' which implements the operation POP, and for 

all d EID: 

#[(.lPOP(p(d))J ~ la(O,ldl)I. 

Prn~f: Recalling the definition of a field access sequence, the proof follows directly 

from lemmas 6.4 and 6.S and from the definition of a(O,ldl). I 

Now that we have established the correspondence between a sequence u(O,ldl) 

and tt[(lp0 p( p( d)) J, we have the notation with which we prove our lower bound 

result. We prove this as a consequence of three lemmas. 
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(a) lcr(k,O)l=l 

( b) ler( k,l) I = 2 

Proof: (a) We want the minimal length of a sequence cr( k,0) contaming k and 

satisfying conditions ( i) and (ii) in the definition of er; k is such a sequence and 

therefore Jer( k,O) I = 1. 

( b) We want the minimal length of a sequence er( k,l) containing h., k+l, and 

satisfy111g ( i) and (ii); k+l, h is such a sequence and cleatly must be minimal. 

Thus, Ju( k ,1) I = 2. I 

Lemma 6.8. For i E IN, i ~ 0, Jcr( 0,i+2) I = 3 + lcr( O,i) I. 

Proof: u( O,i+2) is a minimal length sequence containing Q_, L ... , b cl, i+2, and 

u(2,i+2) is a minimal length sequence containing 2., ;i, ... , b i+l, i+2 (both 

satisfying· the above conditions ( i) and (ii)). 

( i) We first show that lcr( O,i+2) I ~ 3 + Ju( O,i) I. 

Suppose we have some minimal length sequence u(2,i+2}. We convert this into a 

sequence er( O,i+2) by considering two cases: 

(a) Assume that 2. is preceded by 2 in the sequence u( 2,i+2). lmmecl1ately 

following 2, insert 0, !., Q. into the sequence. 

( b) Assume that 2. is not preceded by 2 in the sequence. (Then it must be the 

case that 2. is the first field written.) Before g_, insert 1, Q and after 2. insert 

l. 

Thus, Ju( O,i+2) I ~ 3 + Jcr( 2,i+2) I = 3 + Jcr( O,i) J. 

(ii) We now show that Jcr( O,i+2) I ~ 3 + lo-( O,i) I. 

A minimal sequence o-(O,i+2) must contain Q., L and a minimal sequence u(2,i+2) 

will not contain these. But 1 must appear before Q, and 0 (as welt as 2) must 

appear before !_. Therefore, it is necessary to include 0 or 1 in order to have Q, !_. 

Thus, lo-( O,i+2) I ~ 3 + Jo-( O,i) I. I 
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Using· the previous two lemmas, we can compute lu( O,i) I. 

Lemma 6.9. For i E IN, i 2 0, we have: 

(a) lu(0,2i)l=31+l 

( b) Ju( 0,2i+l) I = 3i + 2. 

Proof: From Lemma 6.8, lu(O,i+2)1=3 + lu(O,i)I. Now apply Lemma 6.7. for 1 

even, this gives us 

lu( O,i+2) I = 3i + lu( 0,0) I = 3i + 1, 

and for i odd we have 

lu( O,i+2) I = 3i + lu( 0,1) I = 3i + 2. I 

We now apply this discussion of sequences u and recall from Lernma G.G the 

correspondence to the POP operation. This now allows us to lower bound the 

number of accesses required to perform a POP operation. 

00 

Theorem 6.4. Let ID = U X1 and consider a function f:XU{ 0'} 4 8+. Let 
1=0 

p:ID 4 s+ be any BOS endrnarker representation 
ldl 

p( d) = LJ { f ( d ( i) ) } n U { 0} n • 
i=l ldl+l-l ldl+l 

Let a.POP be any implementation of the POP operation. Then for all d E ID: 

{

3 · J4=1 + 2 if ldl is odd 

#[(lPOP( p( d)) J 2 

3 . HJ. + 1 if ldl is even 
2 

In other words, 

Theorem G.5 combines the results of theorem 6.3 and 6.4, along with the trivial 

observation that 11[0,TOP( p( d)) J 2 1. 
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00 

Theorem 6.5. Let ID = LJ X 1 and consider a function f:X U{ .¢} ~ a+. Let 
i=O 

p:ID ~ a+ be any BOS endmarker representation 
ldl 

p(d) = LJ{f(d(i))}n U {0} 0• 
1=1 ldl+l-1 

Let °''POP be any implementation of the POP operation, let O.PUSHx be any 

implementation of the PUSHx operat10n, and let (},TOP be any implementation 

of the TOP operation. Then for all d ~ ID: 

#[(·i ( (cl)) J 2 r 3lcJI + 1 1 "'POP p 

#[O'PUSH) p( d))] 2 jc]j + 2 

#[Cl.TOP( p( cl)) J 2 1. 

Recalling the algorithm for POP that we presented in Example 6.8, we now 

know that that algorithm is optimal for ldl odd. Perhaps it would be possible to do 

one access better, however, when lcJI is even. As a consequence of the following 

lemma, it is impossible to simultaneously achieve the bounds of Theorem 6.4 for 

both ldl odd and ldl even. 

Lemma 6.10. Let i be any even natural number. Suppose we have some 

minimal length sequence <r 0 ( O,i) and some minimal length sequence 

u 1{0,i+l). Then <r 0 (0,i) is not a prefix of u 1(0,i+l). 

Proof: The sequence u 0 (0,i) must contain Q., !_, ..• ,i-1, !, and <r 1(0,i+l) must 

contain Q., L ... ,i-1, !, i+l. Since i is even, lu 0 (0,i)I = 3 · ~ + 1. Because i + 1 is 

odd and u 1(0,i+l) also has minimal length, lu 1(0,i+l)I = 3 · ~ + 2. Thus, 

lu 1 ( O,i+l) I = lu 0 ( O,i) I + 1. 

Suppose u0 (0,i) is a prefix of u 1(0,i+l). Since lu 0 (0,i)I is minimal, u 0 (0,i) does 

not contain i + 1, and therefore also does not contain t, both of which must be 

present in u 1(0,i+l). So there is no way to append a sequence to 0' 0 (0,i) in order 

to obtain a minimal length sequence 0' 1(0,i+l). I 
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Note thC1t the proof of Lem111C1 G.10 does not hold if i is Cln odd number, bcCC1usc 

10" 1 (0,1+1)1==2+10" 0 (0,i)I for i odd. 

Theorem 6.S g-ave lower bounds for implcrncntmg the stack operations with a 

BOS endrnarker representation. Example 6.7 showed that the bounds for the 

P USHx and TOP operations are actually achievable. We can also argue, as a 

comeq11ence of Lernma 6.10, that the algorithm O'POP from Example 6.8 is access 

opt1rn:-1l. Since O.TOP has a mmmu.I number of accesses for lcll odd, it cannot 

possilJly :·1Cl1J1~vc 3 · ~J + 1 accesses for ldl even. Thus, the best it could possibl~· do 
,;_, 

would be 3 · l~I + 2 accesses for lcll even, which is precisely what it does do. The 

following example shows that we could have constructed an alg;orithm for the POP 

operation which would have been minimal for ldl even. 

Example 6.CJ. Reconsider the representation p from examples 6.7 and 6.8. The 

;:il~:ornhm aPOP from Ex<mlple 6.8 is 3ccess optimal. Let O'POP/ be an algorithm for 

the POP operation which has the field access sequence 

o, 2, L Q_, 4, J, ;i_, 6, ~' 1_, 8, 1, ~, ... 
Note that ().TOP/ is, in fact, realizable, because this is basically the same alt;orithm 

we hi!d before, only with a different starting sequence. This algorithm has for an 

access cost: 

if lcll is even 

if lcil is odd 

Thus, O.ror/ requires a rnininnl number of accesses for ldl even and is also access 

opt1rnal. In fact, for Example 6.1, the BOS endrnarker represe11tation p with TOP 

and PUSllx implemented CIS in 6.1 and the POP implemented as in Example G.8 is a 

storage and access optimal implementation ( p, O ... POP' O.PUS!lx' Cl .. ror). 

As was the case for the TOS endmarkcr representation, Theorem 5.10 

irnmed iatelv tells us that a BOS encl marker representation achieves Kraft storage 

when the function f docs. 
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00 

Theorem 6.6. Let ID= LJx 1 and consider the function f:XU{.¢} ..... 8·~. If 
1=0 

the function f achieves Kraft storage, then the BOS endmarker representation 

p:ID __. zl, defined by 
ldl 

p( cl) = LJ{f(c/(i))}n U {O}n , 
I= 1 i idi+ 1 

also achieves Kraft storage. 

So we have constructed the BOS endmarker as an altern<1tive to the TOS 

end marker representation scheme. We thereby decreased the access cost for 

performing a TOP operation, but in so doing we increased the cost of a POP 

operation. for a summary of the worst case lower bounds, see Table 6.3 at the end 

of the chapter. 
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6.4 The TOS Pointer Represenlat.ion 

Consider using an enclmarker representation to implement a stack and the 

POP, PUSH, and TOP operations. The following example illustrates one possible 

such irnplen1entation. 

3 

Example 6.10. Let X = {a,b,c,cl}, 13 = {0,1,2,3}, and ID = LJ X1
• Let the function 

l=O 

f:X ~ 13* be defined by 

f( a) = 0 
f( b) = 1 
f( c) = 2 
f( cl) = 3 

Def111e the concatenation-preserving pomter representation p:ID ~ 8+ by 
!di 

p(d) = U{f(d(i))} 1 U {O.(ldl)} 0 , 
i= 1 

where the pomter component Jl,:j ~ 3+ is defined by 

For instance, 

r.( o) = 0 
£:( 1) = 1 
l~( 2) = 2 
f.( 3) = 3 

p( '.\) = 0 
fl( cl) = 13 

p( cab) = 3201 

We assume that L 1s large enough to represent any d E ID; in particular L 2: 4. In 

order to perf orrn a POP operation in this example we need only decrement the 

pointer. Notice that there is no need to read any stack elements, since decrementmg· 

the pointer automatically decreases Ip( d) I by one. So we could use the follow mg 

~1111ple c1lgu1 llli111 Lu µe1 lurni a POP uperdLiu11. 

if m( 0) = 0 then return "Error" 

m(O) f- m(O) - 1 

By our definition of a memory cell access, this alg·orithm for POP corresponds to a 

single access; we read the contents of cell 0 and then, depending on its contents, we 
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may rewrite the value. If m(O) = O, then we return an "Error" message and the 

second line in the algorithm never gets executed. For a PUSHx or a TOP 

operation, however, we must read the pointer in order to determine where the top 

of the stack is, and we then go to the appropriate stack location to perform the 

operation. 

if m( 0) = 3 then return "Error" 
m(O) ~ m(O) + 1 
m(m(O)) ~f(x) 

if m( 0) = 0 then return "Error" 

return m( m( 0)) 

These algorithms give the following access costs: 

tl[(lPOP( p( d))] = 1 

#[aPUSHx(p(d))J = {'. 

#[aTOP(p(d))J = 1 
if ldl ¢ 3 

else 

if ldl ¢ 0 

else I 

Notice that the representation p in the above example allowed us to implement the 
3 

set of stack states [) = LJ X1 with low update costs, lower than was possible with 
l=O 

the TOS or BOS enclmarker representations. 

We extend the pointer scheme illustrated in Example 6.10 and make the 

following definition. 

k 

Definition. Let ID = LJx 1
, fork~ IN and consider a function f:X -+a+. Let 

i=O 

p:ID -+ a+ be any fixed position field pointer representation 
!di 

p(d) = LJ{f(d(i))}n U {t!(ldl)}n 
I= 1 I 

where n, n1 ~ IN (for any 0 S i S k) and where J, is a representation 

Q.:j -+ a+. Then p is a TOS pointer representation. 
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We use the term TOS because reading the pointer component, 11( ldl), tells us ldl 

and we can then go directly to the field nldl in order to determine the top of stack 

element. Clearly the representation p from Example 6.10 is a TOS pomter 

representation. If liDI is large, and especially if ID = LJ x1, then the size of the 
l=O 

pomter will grow larg·e. Therefore, we may sometimes find it convenient to view 

the TOS pointer representation as a separate pointer representation. 

Restricting; our consideration to concatenation-preserving: representations 1s 

pc1 haps an obvious thing to do, but let us discuss why we also require that a TOS 

pointi>r repre~entation have fixed position fields. The fixed po.s1t1on field 

assumption is included as a consequence of our definition of a pointer 

rcprescntat1on, where we chose to encode ldl rather that lp(d) I. If we were to allow 

vanalJle position fields, then knowing e( ldl) would not necessarily tell us the 

location of the top of the stack. 

Unfortuncitely, requiring fixed position fields will, in general, result in "gaps" 

111 the representation, unless lf(x)I = lf(x 2 )1 for all x 11 x2 (: X. Thus, if we insist 

on Kraft .storaee, a TOS pointer representation must sometimes have g·aps when 

IXI ~ 131 1
• \Ve could, alternatively, have def med a TOS pointer representation p to 

be a concatenation-preserving representation p:ID (: 13* defined by 
ldi 

p(d) = LJ{f(d(i))}n.(d) U {ll'.(lp(d)l)} 0 
I= l I 

1-1 

where n1 = ll~(lp(d)l)I + l:if(d(j))I. 
j= 1 

Such a definition would avoid the problem of having· gaps in the storage of p( d) 

and would not affect the storage and access results we obtain. Thus, our ongmal 

def1111tio11 of a TOS pointer representation is satisfactory for our purposes. 

In Example 6.10, the domain size was small enough that the pointer 

component was able to fit in a single rncrnory cell. For a larger but bounded 

domam size, we can still store a stack pointer in a fixed number of memory cells, as 

we do in the following example. 
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7 

Example 6.11. Let X = {a,b,c}, 8 = {0,1}, and ID = LJ X1
• Define the function 

f:X ~ h°'* by 

f(a) =0 
f(b) =10 
f( c) = 11 

1=0 

and the pointer component P.:J ~ 8* by 

r.( 0) = 000 
r.(1) = 001 
I'.( 2) = 010 
f'.(3) = 011 

P,( 4) = 100 
P.( S) = 101 
l'.( 6) = 110 
e( 7) = 111. 

Then we can define the TOS pointer representation p:\O """ 13* by 
!di 

p(J) = U{f(d(i))} 2 (i-l)+3 U {P.(IJl)} 0• 
I= l 

(We assume, of course, that L ~ 17.) Then we have, for instance, 

p( :\) = 000 
p( abc) = 0110_1011 

p( accab) = 1010_11110_10 

Notice that the representation p achieves Kraft storage. 

We can implement the stack operations roughly as follows. For the TOP 

operation, we read the three pointer cells and then go to the top of the stack. to look 

up the answer. 

templ ~ m(2) + 2· m(l) + 4· m(O) 

if templ = 0 then return "Error" 
ternp2 ~ 2· (ternpl-1) + 3 
if m( temp2) = 0 then return "a" 

else if m( temp2+1) = 0 then return "b" 
else return "c" 

In order to do a PUSHx operation, we must increment the three pointer cells as we 

read them, and we then insert the correct item onto the stack. 
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if m(2) = 0 then m( 2) ..... 1 

goto write 
m( 2) ,__ 0 
if m(l) = 0 then m( 1) ,__ 1 

goto write 
m(l) ,__ 0 

if m(O) = 0 then m( 0) ,__ 1 
g·oto write 

m( 2) ,__ 1 
m( 1) ,__ 1 
return "Error" 
templ ,__ 2· (m(2) + 2· m(l) + 4· m(O)) + 1 
if x = a then m( trmpl) ,__ 0 

else m( ternpl) ,__ 1 
if x = b then m( templ) + 1 '- 0 

else m(templ+l) ,__ 1 

for the POP operation, we need only decrement the pointer. Unfortunately, this 

may require accessmg some pointer mernory cell more than once. The following 

simple algorithm is one poss1bJl1ty. 

()'POP: if m(2) = 1 then m( 2) ,__ 0 

return 
m(2) ,__ 1 
1f m(l) = 1 then m(l) ,__ 0 

return 
m(l) ,__ 1 
if m(O) = 1 then m(O) ,__ 0 

return 
m(l) ,__ 0 
m(2) ,__ 0 
return "Error" 

Notice that this algorithm causes us to incorrectly change m(l) and m(2) in the 

case where an "Error" condition is to be returned, thus forcing us to go back and 

rewrite these cells. 

Excluding the cases where we get an Error condition, these three alg·orithms 

give us the follow111g access costs, for all d E ID: 
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5 2 #[0.TOP( p( d))] 2 4 

5 2 #[() .. PUSHx( p( d))] 2 4 

5 2 #[(J..p0 p( p( d)) J 2 4 I 

The strateg·y used in Example 6.11 for implementing the stack could be used 

with any TOS pointer representation which has a fixed size pointer field. 

k 

Definition. Let ID = LJ X1
, let r = rlog ( k + 1) 1, and let f be a function 

l=O 181 . 
f:X _. a+. Suppose the pointer component I!. is a one-to-one function 

a:{0,1, ... ,k} ..... 1.f. Then the TOS pointer representation p:ID ..... 8+ defined 

by 
!di 

p(d) = LJ{f(d(i))}n +r U {E(ldl)} 0 , 
i= 1 i 

is said to be a TOS pointer representation with a fixed .siu pointer field. 

The TOS pointer representations in both examples 6.10 and 6.11 have fixed size 

pomter fields, and we implemented the stack operations in essentially the same way, 

first reading the pointer and then, if necessary, accessing· the list component. 

k 

Theorem 6.7. Let ID = LJ X 1 and let r = rlog· ( k + 1) 1. Let f be a function 
i=O 181 

f:X ..... 8* such that max If( x) I = t. Consider the TOS pointer representation 
xEX 

p:ID ..... 13*, with a fixed size pointer field, defined by 
!di 

p(d) = LJ{f(d(i))}t(i-l)+r U {.l!(ldl)} 0 , 
i = 1 

where P.:J ..... Br. Then it is possible to define the representation {~ in such a 

way that the stack operations can be implemented with algorithms which have 

the following access costs. For all d E ID, 

r + t 2 #W.TOP( p( d))] 2 r + 1 

r + t 2 #[(lPUSH) p( d) ) J 2 r + 1 

2r - 1 2 #[(lp0 p( p( d)) J 2 1 
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Proof: The construction of algorithms for the TOP, PUSHx, and POP operations 

is the same as in Example 6.11, and we shall not present all of the details here. \Ve 

def111e r.(i) E tf so that when the string r.(i) is viewed as a number it is the base 

181 representation of i (with preceding O's, if necessary, since lr.(i)I = r). 

We construct a.TOP so that it reads the r memory cells in the pointer and then 

goes to field nldl to read the top stack element. Thus, O .. TOP accesses at least r + 1 

and at most r + t memory cells, depending on the size of the representation of the 

element at the top of the stack. 

Now consider implementing· an O .. PUSHx algorithm. By the way we have 

clefmecl the po111ter component r., it is possible to increment the pointer as we read 

It, 1f we access cells m the order m(r-1), m(r-2), ... , 1, 0. (See Example 6.11 for 

an illustration.) After rcadmg· the r pointer cells, we locate the appropriate field 

and write f( x), a total of r + If( x) I accesses. 

for the °'roP algorithm we need only decrement the pointer. So It would 

never be necessary to make more than 2·r - 1 accesses, because we could just read 

the pointer in one pass and rewrite it in the next. On the lower bound side, we 

clearly nPeci to make at least one access. 

Notice that, using the method from Example 6.11, the 2·r - 1 upper bound on the 

number of accesses for the POP operation would be attained only when ldl = 0 and 

an "Error" message is returned. For d ~ 'A, r would be an upper bound and we 

frequently would be able to do even better. 

In the proof of Theorem 6.7, the only reference to the particular pointer r. we 

chose was in obtaining the upper bound for the cost of performing a PUSHx 

operation. As we argued there for the POP operation, it would always be possible 

to incrernent the pointer by making 2·r - 1 accesses. This gives us the follow111g 

corollary. 
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k 

Corollary 6.7 .1. Let ID = LJ X1 and Jet r = rlog ( k + 1) 1. Let f be a 
l=O 181 

function f:X -+ 13* such that max If( x) I = t. Consider the TOS pointer 
xEX 

representatio11 1;:10 4 13* defined by 
!di 

p(d) = LJ{f(d(i))}t(l-l)+r U {P.(ldl)} 0. 
I= 1 

Then for any one-to-one pointer function ll:j -+ Br, it is possible to implement-

the stack operations so as to obtain the following access costs. for all d E ID, 

r + t ~ fi[() .. TOP( p( d)) J ~ r + 1 

2r - 1 + t z #[O'PUSHx( p( d) ) J z r + 1 

2r - 1 ) ft[O,POP( p( d)) J ~ 1 

Theorem 6.7 and Corollary 6.7.1 gave us upper bounds on access costs for 

performing POP, PUSHx, and TOP operations using a TOS pointer representation 

with fixed position fields. The bounds depend on r, not on ldl, although the size 

of r itself is dependent on max ldl: r = rtog (max ldl + 1) 1. Thus, when ldl 1s 
dEID 181 dEID 

srn::ill, bC'ing· farced to read r cells could be relatively expensive (e.g., when r is 

large and the stacks we are representing are small). Consider, however, where 

these bounds ccime from. We can rewrite the result of Corollary 6.7.1. for any TOS 

pointer representcit1on with a fixed siz.e pointer field, we ccin implement the stack 

operations with the followmg access costs: 

f.1[0.TOP( p( d))] 

#[(}'PUSH) p( d)) J 

~ IE(ldl)I + if(qrnr(d))I 

~ I e(ldl) I + If( x) I 

~ J2·1P.( ldl) I - 1 

l1e( ldl) I 

for ldl = 0 

for IJI ;t 0 

assuming that the function f is a representation and achieves Kraft storage. 

Let us now extend these results to TOS pointer representations where we do 
k 

not have fixed siz.e pointer fields. We would also like to allow ID = Ux 1
, where 

l=O 

k s; co. From the above discussion it should be easy to see that the follow111~: 
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themern holds. 

k 

Theorem 6.8. Let 10 == LJxi, where k S co, and let f:X-') 8* achieve Krc1ft 
i=O 

storage. Consider the TOS pointer representation p:JD -') a+ defmed by 
ldl 

p(d) == LJ{f(d(i))}n U {P.(!dl)}n, 
I= 1 1 

where {I is any representation P.:J ~ zl. Then it is possible to implement the 

stack operations so as to achieve the following access costs. For all d E ID 

#[O..TOP( p( d)) J s I 0.( Id!) I + If( q TOP( d)) I 

tl[O,PUSH) p( d)) J s 2·10.( !di) I + If( x) I - 1 

#[(J,POP(p(d))J S 2·10.(ldl))I -1 

Proof: for any TOS pointer rt'presentation, reading· the pointer immediately tells 

us the location of the top of the stack. So we can certainly perf arm a TOP 

operation, by accessing each pointer cell and then reading enough cells in the list 

component for us to distinguish qTOP(d). Since f achieves Kraft storage, this is 

precisely 11'.(IJl)I + if(qTOP(d))I. For the PUSHx and POP operations, it is, in 

general, necessary to rewrite the pointer, which at worst would require 2·1P.( IJI) I - 1 

accesses: one pass over 0.( !di) to read and the next to rewrite. for a POP, we 

need not access the list component at all, and for a P USllx, we need to write f ( x) 

into memory. 

From Thcorcrn 6.8, the issue is now to see how compact we can make our 

pointer component l'.( id!). Recalling the construction of the class of pointers (!, k 
181 

from Section 5.4 (see Table 5.2), we have a possible representation sclierne, with 

IO.(ldl)I == O(log Id!). 

Consider using· this scheme to perform a PUSHx or a POP. Since each pomter is a 

representation of a natural number n, we want to be able to increment or decrement 

by one the number to be represented. For the scheme in Section 5.4, this means we 

always need to alter the "rightmost" cell in the pointer representation. Smee the size 
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of the pointer component is not fixed (in fact, it may be unbounded), there is no 

way to know where this rightmost cell is, unless we read (most of) f.( ldl). Even 

then, we might be forced to backtrack. We shall construct a new pomter scheme, 

with the same storage cost as our previous one, but for which it will be easier to 

increment and decrement the pointer. This makes it, on the average, cheaper to 

perform a POP operation. 

Recall the pointer representation scheme (!, ~ as illustrated in Table S.1: 

P, 1( n) = olh(n)I, 1· h( n) l 

where we write h(n) for h2 (n). for instance, consider 

_P, 1 ( 18) = 000010011. 

In order to perform a POP operation cin a stack of length 18, we need to decrement 

the pointer, leaving us 

e ~(17) = 000010010. 

Notice that we needed to alter only the last bit in the pointer, but there is no way 

to locate this last bit without reading the entire pointer. If we could rearrange bits 

so that we read the last bit (of h(n)) early, then whenever n is even we would 

just chang·e the appropriate bit to 1 and immediately be finished with our POP 

operation. We can do this by interspersing the bits of e 1< n) from the olh(n)I 

component with those from the h( n) component (using an extra 1 to denote the 

end of the pointer representation). Note that these two components each have the 

same nurnber of bits. Since we would like to be able to read the last bit of h( n) as 

early as possible, we reverse the bit order of h(n). Such a strategy gives us 

A ~( 18) = 01_01_0Q_OQ_l 

A ~(17) = OQ.OtOQ.OQ.l. 

For clarity, we have underlined the bits that come from the h( n) component. Some 

additional values of A ~ are given in Table 6.1. 

_ We now give a formal definition of the pointer representation scheme A ~· 

We begin with the following preliminary definition, based on the definition of the 

string h ( n) from Section 5.4. 
~ 181 
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Definition. For 181 ~ 2, we define the string 
181 

8 ~ (h (n))R· 
n 181 ' 

• 

181 IBI 
i.e., the reverse of the string hlBI( n). For 1 Si S 10 n I, we write 8 n ( i) to 

181 
denote the 1

1
h component of the string 8 n • for notational s1mplic1ty we may 

simply write en to stand for 8 ~· 

IBI 181 
So e n ( 1) IS the last character in the string h ( n)' 0 n ( 2) is the next to the 

181 
last character in the string· h ( n), etc. 

181 

Example 6.12. Since h2 (18) = 0011. Then 8 18 = 1100, and we have 8 18(1) = 1, 

el8(2) = 1, 018(3) = 0, 818(4) = 0. 

We now define the pointer representation A ~, in terms of the string· en. 

Defini lion. Let 181 ~ 2. 

follows: 

We define the pointer representation scheme A 

IGnl 

c~ LJ {O· Sn( i) }2 (i-l) u {1} . 
i=l 21enl 

We illustrate the definition with an example. 

1 
2 as 

Example 6.13. Let us determine the pointer A ~( 26). Recall from Section 5.4 that 

h 2 (26) = 1011. So 8 2 (2G) = 1101, and 

A ~(26) = {0· 1}0 U {O· 1}2 U {O· 0} 4 U {O· 1}6 U {1} 8 

= 010100011. 

Table 6.1 gives the pointer representations A ~( n) for 0 Sn S 33. 

Now that we have defined the pointer representation scheme A ~, let us use 

this scheme and determine access costs for implementing the stack operations. 
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11 b1tl ~ A ,iWl 

0 1 
1 0 0 001 
2 1 1 011 
3 00 00 00001 
4 01 10 01001 
s 10 01 00011 
6 11 11 01011 
7 000 000 0000001 
8 001 100 0100001 
9 010 010 0001001 

10 011 110 0101001 
11 100 001 0000011 
12 101 101 010Q_OJJ 
13 110 011 0101001 
l4 111 111 0101011 
15 0000 0000 000000001 - -- - -
16 0001 1000 010000001 - - - -
17 0010 0100 000100001 - - - -
lB 0011 1100 010100001 - - - -
19 0100 0010 000001001 - ~- -- -
20 0101 1010 010001001 - - - -
21 0110 0110 000101001 - - - -
1'11'1 0111 1110 010101001 ...... - - - -
23 1000 0001 000000011 - - - -· 
24 1001 1001 (J10000011 -- -· - --
25 1010 0101 000100011 - - -- -
26 1011 1101 010100011 - - - -
27 1100 0011 000001011 - - - -
28 1101 1011 010001011 - - - -
29 1110 0111 000101011 - - - -
30 1111 1111 010101011 
31 00000 00000 00000000001 - - - - -
32 00001 10000 01000000001 - - - - -
33 00010 01000 00010000001 - - - - -

Table 6.1. Construction of pointer representation A ~· 
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00 

Theorem 6.9. Let ID== LJxi, let 13 = {0,1}, and comider a function 
i=O 

f :X ""' 13+. Let p:ID ~ st be a TOS pomtcr representation 
Id\ 

p(d) == LJ{f(d(i))}n U {A 1(1dl)}n, 
i= l 1 

where n, ni E IN. Let k 1 E lN". Then 1t is possible to implement the stack 

opercitions so as to achieve the following access costs for all d E ID. 

#[0..TOP( p( d)) J ~ IA 1( ldl) I + k 1 

#W.PUSHx(p(d))] ~IA 1(1dl)I + lf(x)I + 2 

#[0.POP( p( d)) J ~ IA 1( ldi) I + 1 

Proof: As we have prev10usly seen, it is certainly possible to implernent the TOP 

operation by reading the entire pointer and then going to the appropriate locat10n 

to look up the answer qTOP(d). Although a lookup of this aru.wer mit;ht require 

making more than If( qTOP( d)) I accesses, it cannot take more than some co11stant 

number of access.es, dependme,· on details of the function f. 

We have constructed the representation scheme A 1 so that it will be easy to 

decrement the stack pointer. Consider the following algorithm: 

O..POP 1f m( 0) = l then return "Error" 

if-1 
loop: if m( i) == l then m( 1) ..._ 0 

return 
111( i) f- 1 

if m( i+l) = l then m( i-1) ..... l 
return 

if-i+2 

goto loop 

In this algorithm, we read the pointer frorn left to right and never backtrack over 

more than one cell. This gwes the de.med bound for POP. 

A sirnilar scheme allows us to perform a PUSllx operation. 

if m ( 0) = 1 th en m ( 0) f- 0 

m(l) f- 0 
m(2) ..... 1 

return 
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i +- 1 
loop: if m(i) = 0 then m(i) +- 1 

return 
m( i} +- 0 
if m(i+l} = 1 then m(i+l} +- 0 

m(i+2) +-0 
m( i+3) +- 1 
return 

i +- i+2 
goto loop 

In this case we read the entire pointer and, although we never need to backtrack, 

we sometimes need to rewrite two additional cells. Having incremented the pointer, 

we can rnsert f( x} in the appropriate field with If( x) I accesses. I 

We can see that we have improved our previous access costs, so that each 

stack operation can be implemented with at most 0( logldl) accesses in the worst 

case. In fact, the next result shows that we could expect to do even better for a 

POP operation because for a very reasonable probability distribution we can expect 

to make, on the aven1ge, only a constant number of accesses. 

Theorem 6.10. Let ID= Ux 1
, let 13 = {0,1}, and consider a function 

i=O 

f:X -+ a+. Let p:ID -+ tl be a TOS pointer representation 
ldl 

p(d} = LJ{f(d(i))}n. U {A ~(ldl)}n 
i= 1 I 

where n, I\ f IN. Assume that there is a monotonically nonincreasing 

probability distribution P on the stack states: 

P(ldl = n + 1) ~ P(ldl = n). 

Then it is possible to implement the POP operation so that 

avg#[O.POP(p(d))J ~ k, 

for some k f IN. 
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Proof: Conmler the algorithm O'POP presented in the proof of Theorem 6.9. Note 

that 2 accesses arc required for IJI = 2,4,6,8,10, ... , that 4 accesses are required 

for !di= 5,9,13,17, ... , that 6 accesses are required for !di= 11,19,27,35, ... , etc. 

Denote P( !JI = 1) by pi' Since Pn+l S p 11 , we know th(lt 

and so 

Similarly, 

P2 + P4 + P5 +Pa+···~ P1 + P3 + Ps + P7 + · · · 

<' 1 
P 2 + P 4 + PG + Pa + · · · .::o rr· ,, 

1 < -­- 4' 
1 < --­- 8' 
1 

S Til' etc. 

Notice that extra work is required to perform the POP whenever IJI = 1, !di = 3, 

!JI = 7, IJI = 15, etc. (i.e., when lei I = 2i - 1 for some i E IN). Thus, 
00 00 00 

') 

2pi·#[O,POP(p(idl=i))J.:S; 24 + 2 P,k ·2(k+l) 
i=O i=1 2 k=O (2 -1) 

00 ''° 
< 2 ~ + 2 J_. 2( k+l) 
- 1=1 21 k=O 2k 

00 <O 

=2-il-+2l 
i=1 21 

k=O 21 

= 10 

The following theorem summarizes the results we have just denvrd. 

00 

Theorem 6.11. Let ID= Ux 1
, let 13 = {0,1}, and consider a function 

i=O 

f:X ~ 3+. Let p:fO ~ z/ be a TOS pomter representation 
!di 

p(J) = LJ{f(J(1))}
11

, U {A 1(1Jl)}
11 

i= 1 l 

where n, n1 E IN. Assume that there is a monotonically nonincrcasme; 

prob3bility distribution P on the stack states: 

P(ldl = n + 1) < P(ldl = n). 

Let k2 , k3 E IN. Then A ~ C1chievcs KrC1ft storage, and it 1s possible to 

implement the stack operations so CIS to C1chieve the following access costs: 
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#W.rop{ p( d))] S 2· Llog2 { ldl+ 1) J + k 2 

#[0.PUSH) p( d))] S 2· Llog2( ldl+ 1) J + If( x) I + 3 

#[0.POP( p( d))] S k3' 

Prcioj: The result for the POP operation is the result of Theorem 6.10. We obtain 

the inequalities for TOP and PUSHx by recalling· that IA ~( n} I = IQ. ~{ n) I and by 

making use of Lemma 5.7 and theorems 5.18 and 6.9. The Kraft storag·e follows 

from Theorem 5.19. 

We have chosen to prove these results for the pointer scheme A 1, but the 

scheme can be extended to include A 1 
.• As it turns out, the access costs we obtain 

181 
a re even better th an for A ~, a !though the resu Its a re all of the same order of 

growth. Because the details would tend to obscure an understanding of the class of 

pointer schemes A, we shall not formally define A 1 for 181 > 2 or i > 1. But let 
181 

us indicate informally how these extensions could be made. Note that we shall 

always have 

IA 1 (n)I = 1£\ 1 (n)I, 
181 181 

and, m fact, the string A 
1

1 
.
1

( n) is just a rearrangement of the elements 111 the 
B 

string P. 1 
( n). 

131 
Consider 181 = 3 and recall h3 (n) from Table 5.2. Since we want to construct 

A ;c n) Ill such a way that it is a .rearrangement of the elements in B ~( n), recall 

that 

P. ~(n);: h2 (lh 3 (n)I)· 2· h3 (n). 

In this case the first (pointer) component of D. ~(n) has only about log2 {1h 3{n)I) 

elements, whereas the second {list} component has ih 3 { n} I elements. So we clearly 

cannot just use every other cell for the fir.st component, as we did with A ~( n). 

Referring again to Table 5.2, we see that our pointer component has a 0 when the 

list component has length 1, has a 1 when the list component has leng"th 2, has 00 

when the list component has length 3, etc. So 
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!Sn! 
lh

3
(n)I = l: 21

-
18n(i), 

i= 1 

where en denotes 8 ~· When lh 3 ( n) I = 1 then A ~( n) is of the form O_, when 

lh 3 ( n) I ~ 2 then A ;( n) 1s of the form l_, etc. Tlrn scheme is illustrated in Fir~urc 

6.1. The string 9 ~ is wntten out m blocks of size 21 and the coeff 1c1ent of e;:ich 

block, 0 or 1, tells whether there are 2i or 2· 21 clements, respectively, 111 that block. 

Rather than attempt to say more m words, we refer the reader to Table 6.2. 

~ 
1 
2 
3 
4 
s 
6 
7 
8 
9 

10 
11 

form of A~ 
0 2 
1 2 
0 0 2 
1 0 2 
0 1 2 - ----
1 1 2 -- ----
0 0 0 2 - -- ----
1 __ 0 __ 0 ____ 2 
0_1 ____ 0 ____ 2 
1 1 0 2 ----------0_0 __ 1 ________ 2 

Figure 6.1. Outline of scheme for A ~(n). 

It is also possible to construct A 1 for i > 1. The procedure is outlined 111 
181 

Figure 6.2. Notice that we write the initial part of en, as much as possible, in 

k 

blocks of size 1, 2, 22
, 23

, 24
, etc. Of course, when 19nl ;c 2 21 for some k (i.e., 

i=O 

18nl ~ 1,3,7,15, etc.), then some digits in en will be left over. In particular, let 
j+ 1 

r 

r = min{j I l: 21 > 18nl} 
1-0 

Then we can write the first 2 21 elements in blocks of size powers of 2, each block 
i=O 

preceded by a 0; a 1 indicates when we do not want to continue reading the next 
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n ~ A1 A fuU_ 

0 2 1 
1 0 002 0010 
2 1 012 0110 
3 00 1002 00110 
4 10 1102 01110 
5 01 1012 00111 
6 11 1112 01111 
7 000 OQ.0002 00000100 
8 100 0!_0002 01000100 
9 010 000102 00010100 

10 110 010102 010101Ci0 
11 001 000012 00001100 
12 101 010012 01001100 
13 011 000112 00011100 
14 111 010112 01011100 
15 0000 1000002 0(10001100 

-·- --- -
16 1000 1100002 010001100 - - -
17 0100 1010002 000101100 - - -
18 1100 1110002 010101100 - - -
19 0010 1000102 000011100 - ~-·- -
20 1010 1100102 010011100 -- ~-- -
21 0110 1010102 OQ.OllllQ_O 
22 1110 1110102 010111100 - - -
23 0001 1000012 000001110 - - -
24 1001 1100012 010001110 -- -- -
25 0101 1010012 0(1(1101110 -- - -
26 1101 1110012 010101110 
27 0011 1000112 000011110 - - -
28 1011 1100112 010011110 - -- -
29 0111 1010112 000111110 - -- --
30 1111 1110112 010111110 - -- -
31 00000 00100002 0000010100 -- -
32 10000 01100002 OJ::J0010100 --
33 01000 00110002 0001010100 -- -

Table 6.2. Construction of pointer representations A ; and A ~· 
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succesively larger block. We must then repraeru tbe remaining 18nl · l2 elements 

l•O 

·'<Jlr~'J~l\f ...... ~lt'f&l;,~1•.._;we11tte-.y a 0 
or 1 to indkate its presence or absence. Table 6.2 prmereta ~ vahlllibtl~.tt 

9-~o 
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6.5 The BOS Pointer Representation 

for the sake of cornpleteness, let us briefly mention the bottom of stack pointer 

reµresentation. 

Example 6.14. Recall Example 6.10, where we had X = {a,b,c,d}, 8 = {O,l,2.,3}, 
3 

and ID = LJ X 1• The function f:X -+ 13* is defined by 
i=O 

f( a} = 0 
f( b) = 1 
f ( c) = 2 
f( d) = 3 

and the pointer U.:J -+ 8+ is defined by 

Ji,( 0) 
P.( 1) 
P.( 2) 
Q.( 3) 

=0 
= 1 
- t') - .... 

= 3 

Then we can define the concatenation-preserving pointer representation p:ID -+ 3+ 

by 

for instance, 

ldl 
p(d) = LJ{f(d(i)}}ldl-l+l U {U.(ldl)} 0• 

l= 1 

p( t..) = 0 
p(J) = 13 

p( cab) = 3102 

Assuming L is large enough to represent any d E ID (i.e., L 2: 4), let us construct 

algorithms to implement the stack operations. In order to perform a POP operation 

we need not only decrement the pointer but the contents of all of the memory cells 

will have to be shifted left by one. 

if m( 0) = 0 then return "Error" 
m(O) (- m(O) - 1 
i (- m( 0) + 1 
while i > 1 do m( i-1) (- m( i) 

i(-i-1 

Similarly, the PUSHx operation requires that the contents of each cell be shifted 



right by one. 

(.lPUSHx: 
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if m( O) = 3 then return "Error" 
m(O) +- m(O) + 1 
templ +- m( 0) 
temp2 +- m(l) 
m(l) +- f(x) 
i (- 2 
while i S templ then ternp2 ~ m( 1) 

i (- i + 1 

The TOP operation is much easier. 

if m( O) = 0 then return "Error" 

return m( 1) 

We can extend the pointer scheme in the previous example and def inc the ROS 

pointer representation in the obvious way. 

00 

Definition. Let ID= Ux 1
, fork E IN and consider a funct10n f:X..., 8+. Let 

i=O 

p:ID ~ 3+ be any pointer representation 
)di 

p(cl) = LJ{f(cl(i))}n U {ll(lcil)}
0 1=1 )d)<1-l-l 

where n, 11 1 E IN (for any 0 Si S k) and where JI, is a representation 

fl.:J -' B+. Then pis 3 bottom of stack (BOS) pointer rcprcscntatitin. 

The types of arglnnents used in the preceding sections can be used to 

cleterrn111e the access costs for implementing the BOS pointer representation. For 

PUSHx or POP, the elements in the stack will all have to be rnoved, requiring· an 

access to e;ich n 1 field and also re;iding the entire pointer component (assuming the 

pair 1ter <1ch1eves Kraft storage). A TOP operation is, however, cheap since It is 

always located in the same field, assuming, of course, that there 1s a TOP clement. 
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k 

ThE>orem 6.12. Let ID = LJ Xi for k E IN and let the function f:X ~ 8+be a 
l=O 

representation that achieves Kraft storage. Consider the BOS pointer 

representation p:ID ~ 13+ defined by 
ldl 

p(d) = LJ{f(d(i))}n U {e(ldl)}n, 
1=1 ldl+l-1 

where n, nJ E IN and where .~ is any representation R.:J ~ 13+. Then any 

implementation of the stack operations will have the followint( access costs: 

#[(lTOP( p( J))] ?:: 1 

l/[O .. PUSHx( p( d))] ?:: IQ.(IJl)I + IJI + 1 

{e( ldll I + ldl if ldl ;t 0 
lf[(.lPOP( p( d))] ?:: 

if ldl = 0 

We do not formally prove tlm theorem because the proof is similar to 

arguments we have already made and because we can now already see that the 

stack operations would have hig·her access costs than we would in general want. 

Note that the four stack representations we have discussed may all achieve 

Kraft storage, but their access costs differ greatly. We summarize in Table 6.3 some 

of the lower bounds we have determined in this chapter. 
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CHAPTER 7 

QUEUES 

The same framework that we have developed in this thesis can also be used to 

analyze queues. Although we shall not in this chapter prove any results, let us 

point out some of the complexities inherent in queues that are not present in stacks. 

Recall that a queue differs from a stack in that items are inserted at one end 

and deleted from the other. If we want to achieve Kraft storage in a representation 

of a queue, we know that we can use only a single pointer. This, however 1 does 

not allow multiple representations and.so updating operations will necessarily have 

high access costs. Jn all of the examples we consider in this chapter, we shall 

assume a problem domain alphabet X = {a,b,c,d} and assume that 181 is large 

enough so that a pointer always fits in a single cell in the cases we consider. We 

shall also assume that a E X is represented by 0 E 8, b by 1, c by 2, and d by 3. 

Example 7.1. Suppose we have a three element queue. Consider implementing 

such a queue with a single pointer and holding· the other end fixed. 

a) Let the rear of the queue be fixed; i.e., all insertions are made to the same cell. 

Thus, the entire contents of the queue must be slid each time an insertion is made. 

On the other hand, we need only decrement the pointer to delete an item from the 

queue. for instance, suppose our queue initially has three elements inserted: b, a, 

c. So m(O) = 2, m(l) = 0, and m(2) = 1: 

2 0 l - - --
If we DELETE an item we are left with 

2 0 

If we now INSERT(d), we obtain 

3 2 0 - - --

Pointer to front: 3 

Pointer to front: 2 

Pointer to front: 3 

Notice that each of the clements already on the queue had to be moved when we 

made an INSERT. With this scheme, a DELETE operation requires only a single 
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access in order to decrement the pointer. An INSERT operation, however, requires 

ldl + 1 accesses, where ldl is the initial queue size. 

b) If the front of the queue were stationary, then it would be an insertion which 

would be easy to perform. As above, suppose we have intially inserted b, a, c on 

the queue: 

1 0 2 Pointer to rear: 3 - - --

A DELETE operation requires moving the contents of each element in the queue: 

0 2 - ---
Now an INSERT( cl) is simple: 

0 2 3 - - --

Pomter to rear: 2 

Pointer to rear: 3 

Using· this second scheme, an INSERT operation requires two accesses, one to the 

pointer and one to insert the new element. On the other hand, the DELETE 

operation requires accessing every element in the queue (as well as the pointer), 

ldl + 1 accesses. 

The tradeoff in the preceding· example suggests that we do not want to 

consider separately the access com for the INSERT and DELETE operations; 

instead, we might want to consider the cost of a DELETE-INSERT pair of 

operations. In Example 7.la we found th<1t an INSERT had cost ldl + 1 and a 

DELETE had cost 1, a total cost of ldl + 2 accesses for the DELETE-INSERT pciir. 

In Example 7.lb, INSERT had cost 2 and a DELETE h<1d cost ldl + 1, a total cost of 

IJI + 3. 

The expense involved in the INSERT or DELETE operation in Example '7.1 

was due to the fact that we were forced to always maintain one end of the queue 

fixed. Of course, if we were to allow two pointers, then we would not have this 

problem. Instead, let us consider a scheme where we allow a queue to have one end 

in one of, say, two positions. 
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Example 7 .2. Reconsider Example 7.lb but assume that the pointer is large enough 

that one bit can be reserved to indicate whether the "fixed" end of the queue is m 

cell 0 or in cell 1. Suppose our initial queue state is, as before: 

1 0 2 Pointer to rear: 3 front: 0 - - --
Now if we do a DELETE, we do not need to move any of the list elements: 

0 2 - - --
An INSERT(d) operation gives: 

0 2 3 - - - -

Pointer to rear: 3 

Pointer to rear: 4 

Unfortunately, ;mother DELETE will require moving the queue: 

2 3 Pointer to rear: 2 

"- Finally one more INSERT( a): 

~ ~ Q__ Pointer to rear: 3 

front: 1 

front: 1 

front: 0 

Front: 0 

This effectively brings us back to our initial state ( althoug·h the actual queue 

elements differ). Notice that these four operations we performed required, in 

order, 1, 2, ldl + 2, and 2 accesses, where IJI refers to the size of our initial queue 

state before the two pairs of DELETE-INSERT operations were performed. 

So in Example 7.2, by reserving one bit of the pointer to indicate the location of the 
ldl + 7 front of the queue, we used a total of ldl + 7 accesses, only :.!. accesses on the 

averag·e for a DELETE-INSERT. On the other hand, without using this extra bit 

we in Example 7.1 were forced to make ldl + 2 accesses for a DELETE-INSERT. So 

we were able to not only delay the heavy cost of sliding the queue, but we in fact 

have decreased the averag·e cost of a DELETE-INSERT pair. Let us use the same 

trick again and reserve two bits to tell us where the front of the queue is located; 

i.e., the front of the queue may be in any of cells 0, 1, 2, 3. 

Example 7.3. Given an initial queue 2 1 0 3, let us perform a sequence of four 

DELETE-INSERT pairs of operations, keeping track of the numbers of accesses. 

DELETE: 

f.1Q.~--­

_1Q_~--- 1 



INSERT( a): 

DELETE: 

INSERT( c): 

DELETE: 

INSERT( b): 

DELETE: 

INSERT( a): 
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1 0 3 0 -------
0 3 0 -------
0 3 0 2 -------

---~Q_f__ 

3 0 2 1 -------
0 2 1 -------
Q_f. !_Q_ __ _ 

2 

1 

2 

1 

2 

ldl + 4 

2 

"l'l11·s . 1 f l- 1 ! 15 f ldl + 15 g1 ves a tot a o u + accesses, an a verag·e o 
4 

accesses per 

DELETE-INSERT pair. 

In general, if we reserve k bits of the pointer to indicate the location of one end of 

the queue, then there are 2k possible representations of each queue, and a 

DELETE-INSERT pair requires, on the average, 

IJI + 2k + 3·( 2k - 1) + 2 = ldl + 4 _ 1 = O( ldl) 
2 21< 21< 21< 

accesses. 

Thus, we have seen th'1t a one pomter scheme allows no multiple 

representations and we may achieve Kraft storage. Usrng· a two pointer scheme, the 

queue could be located anywhere in memory (within the range of the pointers) and 

may, in fact, drift throughout memory. An intermediate scheme has a single 

pomter which has enough room for ldl with one or more extra bits reserved to 

mclic<1te the location of one end of the queue. In this latter case, we not only defer 

but actually save in our access cost. This Illustrates not only a storage-access 

tradeoff but also a tradeoif with multiplicity of representation, and we have a nice 

continuum between the one ;:ind two pointer cases. 

Suppose we do want to achieve Kraft storage and are using a single pomter. It 

is interesting· to consider how many accesses are required in order to perform a 

DELETE-INSERT pair of operations. If the queue is always of a fixed size k ( 1.e., 

the only operations performed are DELETE-INSERT( a) pairs), then, somewhat 

surprisingly, it is possible to represent the queues in memory in such a way that the 
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average number of cells accessed is a constant independent of the length !di. On 

the other hand, suppose we insist that the representation function p have the 

constraint that p( d) is a permutation of d and that d( i) always maps to the same 

memory cell(s), for all 0 Si S ldl. Then it can, in fact, be shown that a 

DELETE-INSERT pair of operations performed on all queues of a fixed length k 

will have an average access cost of at least ( 18\
6
11 ) · k. Thus, for most natural 

encoding schemes it will be necessary to access essentially ldl cells. 
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CHAPTER B 

CONCLUSIONS 

In this thesis we have explored what it means for a list to be 

inforrnat1on-thcorctically optimal, in the sense that it achieves Kraft storage and 

Kr(lit (lCCess. We first examined the full set of table lookup questions and showed 

that 1f we are considering problem clornams of the form ID = LJ X1
, then 1t 1s 

1EJ 

possible to achieve both bounds smrnltaneously only for domains ID = X n and 

ID = {!..} U xn. TlllS corresponds to a notion of independence; essentially, 1t must 

be the case th::it 110 matter what the value rl( i) E X, then d( 1+1} might take on any 

value in X. If we were to determine d( 1) = 0 then it would have to be the case 

that d( 1+1) = fZf and we would not have independence. Of course, we did sec that 

there is a perhaps surprising exception, namely, when ID ={A.} U xn a11d 13i = 2. 

i\s a consequence of this work, we were able to show tl1at it is never possible 

to achieve both Krait storage and Kraft access for rnany cornrnon list representation 

schemes. The only exception w;is for a fix eel size representation, when ID = X n. 

Smee we :ire here prirnanly 111tere>ted in variable-length lists, It 1s clear that we will 

not be ahle acl11cve both. 

We discussed four natural stack reprcsf'ntat1on schemes: TOS endrnarkcr, BOS 

cndmarker, TOS pointer, and BOS pointer. We were able to obtain fairly tight 

lower bounds on access costs for performing POP, PUSHx, and TOP operations; 

those results are summz-trizecl in Table 6.3. It 1s shown th:1t enclmarkcr 

rcprcsrntat1ons are necessarily expensive to update. On the co11struct1ve side, we 

developed a represent;ition scheme for a TOS pointer that is stora!_',e optimal and 

does quite well for cicccss. Assurnrng a rnonotom1rnlly nonmcreasmg probability 

distribution on stack lengths, we were able to obtain the followine· access costs: 
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#[<.lTOP(p(d))] :£ 2· Llog2(1dl+l)J + k 1 = O(logldl) 

#[0,rusH)p(c/))J :£ 2· Llog·2 (1dl+l)J + k2 = O(log(ldl) 

avg #[Cl POP( p( d))] ::; k3, 

for k 1, k2 , k3 E IN. The bounds we obtained g·ive an indication as to why' pointer 

representations are so commonly used in the practical implementation of stacks. 

In the discussion of stacks, we were forced to examine separately several 

classes of representations. It would be nice if there were some more grnera I 

characterization that would allow us to make more general statements. For instance, 

is it possible for any implementation to perform both a PUSHx and a POP in a 

constant number of accesses. 

The model that we used is capable of more generalization. For instance, 

instead of considering access costs for performing only a single operation, we might 

wish to perform a sequence of operations. Also, our definition of access or storage 

costs could be altered to correspond to the desired application; we might even be 

::ibl<' ro romirli:-r ~nrnP ~('•rt ('•f hif'rilrchicill rnl'rnory structure. 

There remains a great deal of work to be done. Perhaps the most obvious 1s 

the need to apply the techniques used in this thesis in order to examine other ty·pes 

of lists. We briefly discussed queues, but it is clear that queues raise a lot of issues 

that were not present with stacks. The flavor of some preliminary results was 

indicated in that chapter. It appears that dequeues are a straightforward extension 

of queues, but there remain many other types of lists to be explored. In addition, 

it would be interesting to know whether similar arguments could be applied to trees. 

Some of the techniques discussed may also be useful in the analysis of hashing 

tables. 
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BIOGRAPHICAL NOTE 
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