
MIT/LCS/TR-216

ANALYSIS OF THE SIMPLE CODE FOR

DATAFL OW COMPUTATION

John M. Myers

This blank page was inserted to presenie pagination.

Analysis of the SIMPLE code for dataflow computation

Cambridge

by

John M. Myers, Consultant

May, 1979

This research was supported by Lawrence Livermore
Laboratory under contract 8545403.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

Massachusetts 02139

This empty page was substih1ted for a
blank page in the original document.

Analysis of the SIMPLE code for dataflow computation

John M. Myers

ABSTRACT

We analyze a problem in hydrodynamics from the standpoint of
computation on a dataflow computer that is not yet fully specified, with
the objectives of helping to further specify the computer and helping to
develop VAL as its source language. Lawrence Livermore Laboratory supplied
the algorithm for hydrodynamics, including heat flow, as a 1749-line
FORTRAN code called SIMPLE .

. The algorithm viewed as 'abstract' (i.e. independent of physical
arrangements in space and time for its realization) is shown to imply
spatial and temporal structure that must appear in any and all implementa­
tions. Both for hardware design and program compilation it is useful to
map this structure to grosser levels of description, with the grosser
levels reflecting modularity of computational resources conjoined with
modularity of the algorithm. Following Holt (1979) we use role diagrams
to display spatio-temporal structure at different descriptive levels, so
as to guide translation into VAL as well as the analysis of the time to
compute.

Inter-resource communication essential to the problem is displayed,
and various issues of machine design are defined. Using VAL with one set
of extensions, we express the algorithm so that in principle it can be
compiled for execution by a dataflow computer. Input-output functions
beyond those implied by the SIMPLE code are discussed. A second set of
extensions to VAL is advocated to express the conjunction of problem and
resource modularity, so as to guide compilation. The dependence of time
to compute on the number of processing units is shown for various aspects
of the problem.

KEYWORDS: DATAFLOW, ALGORITHM ANALYSIS, PARALLEL COMPUTATION,

COMPUTATIONAL HYDRODYNAMICS, ROLE DIAGRAM.

This empty page was substih1ted for a
blank page in the original document.

Analysis of the SIMPLE code for dataflow computation

CONTENTS

1. Introduction: hydrodynamics meets a dataflow computer.

2. The hydrodynamic fields.

Figure 1: Nodes and zones.

3. Communications and the speed and
configuration of a dataflow computer~

3.1. General issues.

3.2. Connectivity in the face of resource sharing.

Figure 2: Connectivity of simplified hydrodynamics
in one space dimension with one processor

Page

1

5

6

9

9

11

assigned to each nodal and zonal calculation. 12

Figure 3: Constraints on concurrency imposed
by sharing of processors. 13

Figure 4: Grosser view highlighting
connectivity between processors. 14

Figure 5: Alternate view using the notation
of buffered co1T1T1unication. 15

3.3. Fitting the computation to the minds of the
analysts: input and output.

4. Modeling the time to compute.

4.1. Choosing an appropriate form of model.

4.2. The need for speed.

4.3. The computational cycle.

Figure 6: Concurrency and connectivity
in different phases of the cycle.

4.4. Dependence of time to compute on number
of zones and number of processors.

4.4.1. Case definitions.

Case 1: connectivity restricted to nearest

18

20

20

22

23

25, 26

27

27

neighbor p 1 us 11 tree 11
• 27

CONTENTS {continued)

Case 2: 11 general-purpose11 cortmunication.

4.4.2. Results.

Table 1: Fonn of depende~ce of time to
compute a cycle on number of
zones and numbeY" of processors.

4~5. Input, output, and control over
the extraction of features.

5. Translation of SIMPLE from FORTRAN into VAL.

5.1. The balancing of objectives.

5.2. Samples of VAL code.

5.2.1. Overall form of the VAL translation
of the SIMPLE code,

5.2.2. JES VAL .

5.2.3. SIMPLE VAL.

Page

28

29

31

32

34

34

37

37

38

44

5.2.4. Discussion of functions internal to SIMPLE VAL. 52

INITIALIZE, EDIT, BOUNDARY PROJECT, VELOCITY,
POSITION, HWORK, ZONE_GEOM-:- 52

ENERGY HYDRO. 52

HYDRO TOTAL. 56

ENERGY HEAT. 56

HEAT_TOTAL, TIME_STEP, PHYS_REPO~T, CYCLE_REPORT. 59

MODIFY.

6. Conclusions and possible next steps.

6.1. Speed, input-output, and
expression of the abstract algorithm.

6.2. Implications of the spatio-temporal
structure of the algorittvn.

6.3. The balance between progranming ease
and efficient use of hardware.

60

61

61

62

63

CONTENTS (continued)

6.4. Extending VAL to support resource allocation.

References

Appendix A: Interpreting role diagrams.

Appendix B: Notes on fitting the SIMPLE code
into role diagrams and VAL modules.

Appendix C: The SIMPLE code in FORTRAN.

Page

66

68

69

81

89

This empty page was substih1ted for a
blank page in the original document.

Analysis of the SIMPLE Code for Dataflow Computation

1. Introduction: Hydrodynamics Meets a Dataflow Computer

The equations of physics are prescriptions for calculating; from

some presumed starting conditions, they generate a 11 future 11
• The calculation

of this 11 future 11 involves many events, each of which 11 consumes 11 items -- values

of variables -- and 11 produces 11 other items. Because an item cannot be consumed

before it is produced, these events are subject to constraints of sequencing.

These constraints impose a pattern on the calculation.

Although the equations of physics constrain the calculation, they

do not fully determine it. The pattern is partly determined also by the

method of solution employed and by the structure of the computer. Thus the

same (partial differential) equations can result in different patterns of

calculation, according to the method of solution and the arrangement of

computational resources. For this reason the pattern of computation for

a given type of problem, say hydrodynamics, evolves as methods and computational

resources evolve. Pattern, method, and resources are coupled in their evolution,

with each selected in part to support and to draw on the others.

Over most of history the computer (human or machine) had only a

sequential processing capacity, so that computation was necessarily performed

one step after another. Thus methods which emphasize concurrency were not

called for, and as a result are today relatively unexplored and undeveloped.

Not only computers, but also numerical methods have evolved in a context that

is weighted toward the sequential, and away from the concurrent.

Via such means as dataflow architecture (see Dennis, 1978), an

increase in speed can be brought about by an organization of computational

resources that allows concurrency of many events. This report is concerned

with fitting -- or refitting -- a pattern that evolved in a sequential context

- 2 -

onto a dataflow computer. The report is based on a case study of an example

program written in FORTRAM for a sequential machine for the solution of a

problem of hydrodynamics, including heat flow. This program was prepared by

Lawrence Uvennore Laboratory, and is namedSIMPLE. The initially presented

questions were:

1.1) What is involved in translating the SIMPLE program from FORTRAN

(suitable for a sequential computer) into a dataflow language

(the VAL language in particular); and

1.2) Compared to a sequential computer, what speed advantage can be

expected from a dataflow computer in the execution of the SIMPLE

program?

To realize the potential advantage of a dataflow computer, its

program must be free of unnecessary sequencing constraints. Sequencing

constraints come from many sources, and their necessity depends on ones

point of view. Primarily we report on the narrow view that sees sequencing

constraints as imposed by the data dependencies of the FORTRAN. program.

In this view the "translation" per item 1,.1 entails the removal of sequencing

only as far as possible without disrupting the data dependencies expressed in

the FORTRAN program. Such a translated program would be expected to produce

numerical results identical to the FORTRAN program, apart from round-off errors.

But the narrow view fails to:

a) realize the potential for advances in speed, and

b) open the physics itself to new perspectives made possible by the

power to express concurrency.

- 3 -

Although their resolution is outside the scope of this report, we shall

define some broader issues of solution methods, machine design, and physics.

With respect to item a), the translated program will still contain

unnecessary sequencing constraints, imposed by a method of solution of the

equations of physics. For example, the back-substitution method (Crowley,

Hendrickson and Rudy, 1978) for solving the implicit formulation of heat

flow does not realize the potential of dataflow architecture, and it appears

that a method could be developed that (for a dataflow computer, but not for

a sequential computer) would be substantially faster. Thus in presenting our

resu1ts, we shall distinguish sequencing constraints that come from the

happenstance of the numerical method embodied in SIMPLE from constraints that

come from less malleable sources.

Once the method of solution is considered as variable and not fixed,

issues of machine design surface. If methods and machine are to be developed

in concert, it might be best to tailor the machine to a certain class of

methods, to the detriment of its performance with methods outside that class.

If the dataflow computer is seen as a network of interconnected processors,

then this issue arises with respect to the corrmunications facility that provides

processor-to-processor conmunication. The problems under study stem from

spacially distributed fields that interact in a purely local manner. From

this locality one can show that the equations can be solved on a dataflow

machine using a communications network which directly links only nearest

neighbors, so that a 11 global 11 conmunications facility is not required. Local

networks are cheaper and faster than global networks; however the methods

that they support have drawbacks with respect to speed, so that the question

of local vs. global remains open. One way of posing the issue is through

the following question:

i .

- 4 -

1.3) What number N1 of globally connected {i.e. fully connected)

processors have the same cost as N locally connected processors,

under the condition that the total memory of the two configurations

be the same?

The idea is that the spe~ loss from the restriction to local connectivity

might be regained throwgh the use of a larger ne~rk of processors. In other

words for a given investment tnere is a trade-off between fewer fully connected

processors and more locally connectE!d pr~s.sot's. If these two co.ntrasting

configurations are to be evaluated in thei.r performaQCe oo a given J:}roblem,

then total system memory s~ld be the s.- for eact, configu.raUon.

With respect to item b) it may be of thec0ret1ca1 interest t-0

introduce a class of dataflow computers te m<tdel Whit is .mea.nt by the equations

of physics.

---- -- ·- --· --- ~- ---· ~-~-~~·-··-·-'"--- ~~------~-

- 5 -

2. The Hydrodynamic Fields

Given finite propagation velocities, the fields defined by the

equations of physics can be pictured, as they were by Huygens, as networks

of communicating entities, all operating concurrently. A partial differential

equation represents a limit as the network becomes progressively more

fine-grained. Computation is possible, however, only if the limit is not

taken, or if it is "undone".

Via one or another numerical method the partia: differential

equations are transformed to difference equations defined on a spatial mesh

of N zones, with each zone have corners at nodes, as shown in Fig. 1. In

terms of the parameters defined in SIMPLE, one finds

N = (LMX-LMN)*(KMX-KMN) (Eq. 2.1)

SIMPLE employs a Lagrangian formulation, in which the mesh is deformable;

each node is thought of as a "tagged atom", carried along in a fluid whose

motion is described by the difference equations. By extending the discussion

of Morse and Feshbach (1953, vol 1, p.847-8) to equations of hydrodynamics,

one sees Huygen's principle works on a sufficiently small region of the mesh.

For a given node, one can choose an enclosing curve through the zones that

bound it, and with the result that, by interpolation, the acceleration of

the node depends only on the properties of the zones that bound it. A similar

argument could lead to the conclusion that the current properties of a zone

depend only on past poperties of the nodes at its corners, but SIMPLE is

based on a variation of this argument. Properties such as pressure and density

are defined only for zones and not for nodes, and the current properties of

a zone are shown to depend on their past values together with the current

deformation of the zone, along with the current rate of deformation of the zone.

- 6 -

(K-1,L+l) (K,L+l) (K+l,L+l) r- - - - --- - - --r--- --- -- --··
I J. I

I I II
I ZONE

I ZONE (K+l,L+l) f
I (K,L+l) I I
I I I
I I I
I I I
I I I

I ,1 (K+l.L)

I (Ktitl- - - - - - - --,I
I ----T
I ----- --- l I

(K-1,L) ---- I I
•--- - I ZONE I
\ I (K+l,L) I
I ZONE I I
' (K,L) I I
\

1, (K+l,L-1)

\ \ --· \ (K._~U-- - - - -
I ,,,,,,,,,
I /
I //
I /
I /
I ./

/
I ./

(K-1,L-l) .,,,.

Figure 1: Nodes (shown as heavy dots) and zones (enclosed by dotted lines).

- 7 -

The main fields are defined by Crowley, Hendrickson, and Rudy (1978)

as follows:

Zonal
name in

Field FORTRAN. Definition

£ E energy per unit mass

p p pressure

q Q artificial viscosity

p RHO density

8 TEMP temperature

T specific volume
I<.

thermal conductivity .

In addition the positions and velocities of the nodes form a field as a function

of node indices k and 1:

Field
....
x
....
u

Nodal
name in
FORTRAN Definition

R,Z position as function of k,l

U,W velocity as function of k,l.

The field equations are

d e = _ (p+q) d 'L + ..1.. 9 • t<. v e
dt dt (->

8 = 9(~ ' £)

K. = l'l(9)

q = q(p,.a-u, f)

dx ~
dt = u

(Eq. 2.2)

(Eq. 2. 3)

(Eq. 2. 4)

(Eq. 2. 5)

(Eq. 2.6)

- 8 -

p ~~ = - V(p+q) (Eq. 2. 7)

- 9 -

3. Communications and the Speed and Configuration of a Dataflow Computer

3.1. General issues

Because the least familiar aspect of a dataflow computer is its

communications facility, we give a preliminary statement of issues of speed

and machine design posed by the burdens that the SIMPLE problem will place

on such a facility.

A computational algorithm, such as the FORTRAN program of SIMPLE,

defines a flow of data values into and out of arithmetic operations. By

analyzing this flow, one can produce a dataflow graph that displays not

only the concurrency that is allowable within the confines of the algorithm,

but also an abstract pattern of communication. For the SIMPLE problem, most

of the dataflow graph can be modularized onto regions corresponding to the

mesh of Fig. 1: one region for each zone, and one for each node.

To perform the computation, resources are required: physical actors

must be provided to carry and transform the values that are specified by the

dataflow graph. The correspondence between physical actor and role as

value carrier is in part subjective, and inescapably so. There is no sure

rule for the "right way" to establish the correspondence, although there are

criteria by which to exclude many "wrong ways": wrong ways lead to failure

(e.g. of performance or of budget). In the light of currently well developed

technology, we may start by assigning a physical processor to each nodal and

zonal region of the dataflow graph. If each such processor comes with attached

memory, then a dataflow computer can consist of a set of processors together

with a communications facility that links them.

Affordable communications facilities never offer the full measure

of speed, bandwidth, freedom from blocking, and other properties that it

would be "nice" to have. Compromise is necessary. The determination of an

- 10 -

economic configuration is outside the scope of this work, but to help prepare

the ground, we consider the message patterns that are generated by the SIMPLE

program. All of the communications facilities under consideration could

handle all of these patterns, but different facilities will exhibit different

speeds for different patterns. Thus it is helpful to find out what patterns

really matter.

The burden placed by a dataflow graph on the communications facility

depends on:

.1 the connectivity of the dataflow graph -- how "scrambled" are

the needed connections;

.2 the number and accuracy of the field variables to be transmitted.

A given dataflow computer can compute a dataflow graph corresponding

to a square mesh of D zones without having to time-share its hardware (a~ would

a sequential computer). Thus D measures the largest mesh that a given

dataflow computer can handle in some "fully concurrent" manner. If D is

to be increased, then additional hardware must be incorporated into the

dataflow computer. In many cases of interest one expects to find N)) D, so

that each processor will have to be time-shared among N/D regions. The

burden on the communications facility will thus also be influenced by:

.3 the way in which resources are time-shared over different regions

of the dataflow graph.

Item .2 affects only the size of the messages to be transmitted and will not

be further considered here. Items .1 and .3 affect the "from-where-to-where"

aspect of the corrmunications burden, and we now discuss them further.

- 11 -

3.2. Connectivity in the face of resource sharing

By means of a role diagram, further explained in Appendix A,

Figure 2 illustrates the connectivity exhibited by the main cycle of a problem

like SIMPLE, but reduced to one space dimension and stripped of heat flow.

Figure 2 can be read as a marked graph over which tokens are moved to simulate

the occurrence of calculational activities; the top row of circles are viewed

as initially marked with tokens. A horizontally connected row of boxes

([J====t:J----==D) is a calculational activity. The inputs to an activity

arrive from above; the outputs depart below -- in other words the "flow of

time" is downward. Boxes connected by double bars (D==O) produce identical

copies of the same output value, and thus portray fanout. The figure is thought

of as wrapped around a cyclinder, with each bottom circle "wrapped up" to

coincide with the circle directly above it, so that a cycle is defined.

The diagram is to be interpreted not just as an abstract flow of

values, but as a flow of values carried by physical actors. Each vertical

line in Fig. 2 requires a physical resource, like a processor or a buffer,

that carries a value from one calculational activity to another. Each hor­

izonatl row likewise specifies a physical requirement -- e.g. for the

processing resources needed if the indicated values are to meet and be trans­

formed. The diagram of Fig. 2 looks similar to a dataflow graph because it

assumes no constraints due to any scarcity of resources: it assumes that

processors and co11111unications links are provided in abundance, at least at

the level of detail portrayed. Resource constraints would change the picture;

for example, Fig. 3 shows the same values as they would flow under additional

constraints imposed by a scarcity of processors such that each processor

must handle two adjoining activities.

Calculate new-\
nodal values -(

Calculate new-\..
zonal values -{

Note: N(K) = set of values for node K: [P, Q, RHO, E};

Z(K) = set of values for zone K: [X, VJ.

Figure 2: Connectivity of simplified hydrodynamics in one space dimension with one processor
assigned to each nodal and zonal calculation.

......
N

Calculate new -\
nodal values ~

Calculate new-\.
zona 1 va 1 ues -I"

- --1---Pt-oC. e ssot- A--·- ,-0==0==0-0
I

- - --- I - - -1·- ---- -· . ~-P 1-0 c..e ssor C

_1 L

~T"oc<ro·-r--r
1- 1- - _I - _ . I - } _ ·~ _ ~ --- __ -- _ -- J

~Prloc.es~ol;:-5- ·-

___ ,_!

Figure 3: Constraints on concurrency (heavy lines) imposed by sharing of processors.

......
w

Processor A Processor C Calculate new --\
nodal values -([b- 0} l 1 i1 II}

Calculate new ~
zonal values ~

calculating

Processor B

calculating

1

Figure 4: Grosser view of Fig. 3 highlighting connectivity between processors;
(compare with Fig. 2).

Processor D
}

.......

.j:>.

I · Processor A Processor C
transmitting transmitting

B trans­
mitting

Figure 5: Alternate view of Fig. 4 using the notation of buffered co!Tll1unication.

(See Appendix A, Sec. A.19 for more on the notation.)

D r~ceiving and
calculat-

1 ing

D trans­
mitting

......
CJ1

- 16 -

The suggested assignment of one processor to one nodal or zonal

region of the dataflow graph was in some degree arbitrary. Given a small

mesh and many processors, concurrency might be enhanced by assiging more than

one processor to each such region. For a mesh large compared to the number

of available processors, each processor would have to be assigned a larger

piece of the dataflow graph. A question then arises: under this circumstance

does simplicity in the connectivity of the dataflow graph imply that simplicity

can be maintained in the connectivity of the processors? The answer depends

on how a single processor is assigned to cover more than one region. Figure

3 illustrates the principle that such assignment can be made so that the

connectivity between processors is no more complex than is the connectivity

between nodal and global regions. Figure 4 highlights this connectivity

among shared processors; the same connectivity can be maintained when processors

are shared over larger regions of the dataflow graph. By use of the

abbreviated notation described in Sec. A.19 of Appendix A, Fig. 5 shows the

same connectivity as Fig. 4, but with the communications buffers (the unlabeled

roles) suppressed. A slanting bar implies: a) that the lower of the activities

consumes something produced by the upper activity; and b) that the two

activities are linked by an intermediating resource (such as a buffer) that

is not explicitly shown.

What can we learn from this example that is more generally applicable?

Sharing of processors reduces the size of the communications facility required

of a dataflow computer, at the cost of speed. For this example and this

manner of assigning processors, the communication pattern, although becoming

smaller, preserves its connectivity; be it one or many regions of dataflow

graph per processor, each processor communicates only with itself and with its

nearest neighbors. In the SIMPLE problem one finds somewhat more complex

- 17 -

more connectivity in the dataflow graph. Two points are to be noted in the

assignment of processors to pieces of dataflow graph of SIMPLE .

. 3. A mesh of N zones can be parcelled out to D processors in such a

way that the connectivity among processors preserves any "localness"

present in the connectivity among nodal and zonal regions of the

dataflow graph .

. 4. Other schemes of assigning processors that place additional demands

on their connectivity may offer advantages in speed.

Because of item .3 we can learn what connectivity is necessary to D processors

of a dataflow computer that is to solve a mesh of N zones, merely by studying

the connectivity of the dataflow graph. Because of item .4 we must bear in

mind that there will be additional questions of trade-offs between speed,

cost, and the connectivity of the communications facility.

- 18 -

3.3. Fitting the Computation to the Minds of the Analysts: Input and Output

Programs and parameters flow into a pattern of computation, and

significant features of the computation flow out. In some cases this interaction

can be partitioned into a sequence of phases: input, computation, output.

However, as the size of the computation increases there is progressively

more need to operate interactively, so that the selectivity of what flows

out can be increased along with the amount of computation.

Output from a dataflow machine is apt to involve transforming

an array, or some feature (such as a contour) extracted from it, into a

sequence of characters to be transmitted -- either to a person or to a

storage device. Such operations are bandwidth limited and threaten to

demand excessive time or buffering or both. As the scale of computation is

increased, it becomes necessary to increase the selectivity of feature

extraction in near proportion.

One reason that extracting features is challenging is that what is

significant sometimes becomes apparent only as the computation unfolds, so

that the definer of significance must interact with the computation. Further,

significance varies according to the viewer. Because of this 11 vaporous 11

quality, one approach is to report out 11 all the data 11 from a computation,

so that it forms a database that can later be manipulated according to taste.

As the scale of computation increases, this approach becomes progressively

more demanding, and may become unrealizable.

An alternative approach would be to provide a facility by which

multiple viewers of the computation could each construct filters and other

11 feature extractors 11 in real time as the computation proceeds. No doubt

some users would still build 11 databases 11
, but they would have the opportunity

(and perhaps the necessity) of building more selectively than has been the

- 19 -

common practice.

This approach generates requrirements to be met by dataflow hardware

and software. The image is of a controllable "funnel" or 11 tree 11 that sucks

up arrays of field variables as the computation proceeds, discards what is

irrelevant, and issues a stream of characters that conveys the features

specified by one or another analyst. The "specification of relevant features"

could by supplied prior to execution, or could be supplied interactively

by the analyst as the computation unfolds.

Such a scheme demands software interfaces that can accept analyst­

suppl ied specifications of the features to be selected. Presumably the

structure should accomodate multiple analysts. The hardware requirements

are an extension of those already generated by the needs to sum over an

array and to convert an array into an output stream for transmission over

a single communications line. For example, program-controlled merging

of array elements into a stream can provide efficient sorting. Just as they

are needed to sum and to report out all the elements of an array, tree

structures will be needed to report out selected elements of an array (such

as the elements of a contour). However, one expects an advantage from more

flexible control of tree connectivity and of tree, nodal and zonal processing

than would be needed just to solve the field equations.

- 20 -

4. Modeling the Time to Compute

The prediction of execution time of SIMPLE on a dataflow computer

that is not yet fully specified is a complex task which, in this report,

can be started but not completed. For this reason we separate a general

discussion of what needs to be undertaken from a sketch of initial results:

4.1. Choosing an appropriate form of m9del

The question of time to compute is a question of what happens when

an abstract pattern -- the algorithm of SIMPLE -- meets a configuration of

physical resources -- conmunications lines, switches, buffers, processors, etc.

that compose a dataflow computer. The modeling of computation time entails

the modeling of the joining of the abstract event of the algorithm with the

physical event of the configuration. This calls for a modeling form that

straddles abstract (i.e. input-output) relations and physical circumstances.

For example, we are forced to observe that anything that is (even a value)

must be some place, such as on a co1TU11unications line, in a buffer, etc.

We must learn to see something like a dataflow graph as having, in addition

to its implications for abstract values, implications concerning the resources

required to support the logical operations on values. As a foundation for

this shift in view, we turn to Holt 1 s (1979) concept of the role played by an

actor who carries a value. The value is in the domain of mathematics and

algorithms; the actor (human or mechanical) is in the domain of space and time.

It would be advantageous to have a gross model with only a few

parameters, both to estimate the time for a dataflow computer to solve the

SIMPLE problem, and to help in configuring an implementation of a dataflow

computer. However, a believable gross model of such a complex situation

can be derived only by condensing a model that encompasses sufficient

- 21 -

complexity to account, for example, for the effects of pipe-lining and

of communications bottlenecks. It thus appears that the modeling form

should lend itself to different levels of detail.

The modeling method must encompass the concurrency exhibited by

dataflow architecture. This requirement rules out models based on the concept

of a system state, and directs toward models based on Petri nets.

The modeling scheme must provide for the modeling of different

methods of numerical solution. For example, the implicit fonnulation of

heat flow results in a difference equation, the solution of which is equivalent

to the inversion of a certain near-diagonal matrix. The method of inversion

used in SIMPLE is that of back-substitution. However, it appears possible to

develop an alternative method that would impose far fewer unnecessary

sequencing constraints, and would hence better realize the potential advantage

of dataflow architecture.

The SIMPLE program uses a global determination of a time step that

varies from one cycle to another, but is invariant over the mesh. It appears

that in the computation of hydrodynamic shock, there would be a substantial

advantage in providing for the local determination of time steps that would

vary not only from cycle to cycle, but also from location to location over the

mesh. Such methods are used in the calculation of gravitational fields and

in relativistic fluid dynamics, as is discussed by Misner, Thorne and Wheeler

(1970, Chap. 42). Although this extension of method is outside the scope of

our present work, we require that the modeling method encompass time steps

as local values derived on an even footing with other field quantities.

These requirements suggest modeling based on the concept of a

Petri net. Because of its capacity to join abstract and physical operations,

we choose the modeling scheme of Holt (1979) to express the essential logical

and physical dependencies. For a discussion of the concepts, the reader is

- 22 -

referred to the cited report of Holt. As a "quick and dirty" view of "how

to do it", Appendix A describes the modeling conventions.

4.2. The need for speed

Faster computers are desired to allow a finer grained mesh.

Consider a given physical domain and a given duration of hydrodynamic

interaction. As the mesh is made finer the number of zones, N, increases,

and moreover the physical time step achievable in a cycle of computation
3/2

decreases as l/YN. Therefore the time to compute increases as N .

This dependence applies to a dataflow computer with O << N, just as it does

to a sequential computer.

To decrease the linear dimension of the zones by a factor of 10,

N must increase by a factor of 100, and to maintain a fixed time to compute,

given the necessary decrease in physical time step, the speed of the computer

must be raised by a factor of 1000.

One should not that the constant of proportionality that relates

the allowable physical time step to 1/]l"N depends on the numerical method

used, and that the freedom to choose an advantageous method depends on the

connectivity of provided by the c01T111unications facility of the dataflow

computer. Richer (e.g. more than nearest-neighbor) connectivity supports

larger time steps, but then richer connectivity slows the computer and requires

an investment that could otherwise buy more processors; thus there is a

trade off.

- 23 -

4.3. The computati,onal cycle

The SIMPLE computation consists of initialization followed by

repeated execution of a main cycle. A cycle consists of computing the

velocity and position of each node, and then computing the properties (such

as pressure and density) of each zone. The cycle involves times in two senses:

a physical time step (e.g DTNPH in SIMPLE); and a time to compute the cycle.

Because the initialization is done once and the cycle is repeated many times,

the (total) time of computation is nearly independent of the time to initialize

the computation, and is essentially the time to compute a cycle multiplied by

the number of cycles.

The computational cycle can be partitioned either in terms of

the physics or in terms of the concurrency and connectivity that it presents.

These two partitionings result in somewhat different pictures. The following

is a compromise between the two. We view the cycle as composed of the

following phases of activity:

.1. establish boundary values (by means of "ghost" nodes and zones);

.2. calculate velocity and position of interior nodes;

.3. calculate zone variables for interior zones (e.g. pressure,

specific energy, artificial viscosity, density) except for

temperature;

.4. calculate temperature and recalculate energy to include the

effect of heat flow;

.5. calculate the time step for the next cycle;

.6. calculate totals: work done on boundary, energy lost, etc.

- 24 -

.7 extract needed output and bring in parameters to control
subsequent output, as discussed in Sec. 4.5.

Figure 6 schematically displays the types of connectivity, and

hence concurrency, in the flow of data prescribed by SIMPLE over a network

of processors, with one processor assigned to each node and each zone of

the dataflow graph. Additional processors are assumed to handle the 11 tree 11

connectivity of phases 5, 6 and 7. As noted in Sec. 3, if fewer processors

are available, they can still be connected with the same connectivity, by

assigning each processor a set of contiguous zones, contiguous nodes, or

portion of the "tree". If more processors are available, then more than one

can be assigned to a given nodal or zonal region of the dataflow graph, with

the result that a higher degree of parallelism will be achieved. Some

possible assignments of this type are illustrated in Appendix B.

ghost
node ghost

Phase 1: Establish
boundary values via
ghost nodes and
zones (typical row
or column).

Phase 4: Calculate temp­
erature and correct energy:

calculate CBB and DBB
(typical row or column);

Z-sweep
(typical column, all
columns in parallel);

R-sweep
(typical row, all
rows in parallel);

zone
,--,

- 25 -

(continued on next page)

Phase 5: Calculate next time
step and distribute ("tree"
connectivity covers a 11 zones):

calculate locally,
then take minimum;

distribute.

Phase 6: Calculate total
internal energy and energy
exchange across boundary
("tree" connectivity
covers all zones; see note a.)

Phase 7: Input/output:

test values (e.g. against
thresholds) and extract
features {see Note b.)

receive changes in param­
eters (e.g. thresholds)
that control feature
extraction. {See Note
band Secs. 3.3 & 4.5.)

- 26 -

(continued from preceding page)

yst ?....

yst :<.

Note a: Phase 6 consists of a local calculation, like phase 3, followed
by a summing operation. In SIMPLE this phase is distributed
throughout the other phases; however, this distribution does not
change the character of the demand placed on computational resources.

Note b: The dotted box (ti') wi 11 involve sequencing (~) or not ('t() ,
according to whether messages are or are not concatenated.

Figure 6: Concurrency and connectivity in different phases of the cycle.

- 27 -

4.4. Dependence of time to compute on number of zones and number of processors

Although not attempting quantitative estimates, we discuss how the

time to compute varies with the size of the mesh and the number of processors.

Each phase of SIMPLE, as shown in Fig. 6, will be considered separately,

as different phases exhibit different dependencies. Several areas of

uncertainty confront even qualitative estimation; in particular the detailed

operation of a co11111unications facility necessary to a dataflow computer

bears on the dependence. This operation has not been modeled to date; for

this reason we confine our discussion to two limiting cases. The first case

leans toward keeping the communications facility local; i.e. co11111unications

between nearest neighbors are stressed. The second case posits a general

purpose, global corrmunications facility without worrying about its realizability;

the intent is to see what contribution to speed such a facility could make if

it were available.

4.4.1. Case definitions

Case 1: connectivity restricted to nearest neighbor plus 11 tree 11
• As case 1

we posit a restricted corrmunications facility. We imagine processors

connected like a two dimensional mesh, with a provision for two-way communications

between each zonal processor and its neighboring nodal processors. I.e. the

processors are divided into two classes, and a given direct communication is

always between two members that are in different classes. Fig. 7 illustrates

the connectivity. In addition, we posit additional processors and connections

to perform such functions as global sums and the taking of maxima. Each zonal

processor is imagined to be a twig of a tree. At nodes of the tree there are

processors of a third class (the 11 tree 11 class) which can operate to

a) accept a flow of values from twig to root, operating by program to

select and pass on the largest value, to sum the incoming values and

- (I\ -

pass on the sum, etc, or

b) accept a value flowing from root to twig, providing either for

fanout to all zones or for selective routing to a given zone.

For simplicity we imagine that the mesh of the SIMPLE problem

is roughly square, and that the D zonal processors are arranged in a

square array. To use the configuration of case 1, we imagine that each

zonal processor is assigned about N/D contiguous zones; i.e. each zonal

processor operates on a 11 super 11 -zone of the mesh, as discussed in Sec. 3.

As indicated in Sec. 3., the connectivity between super-zones (and the

corresponding super-nodes) will show the same pattern as does Fig. 6.

The assignment of pieces of dataflow graph to processors is static, and does

not change during execution of the program.

Case 2: "general-purpose" communication. Suppose that the dataflow computer

has a communications facility that is ideal in the sense that each processor

can send a message to any other, with a rate of flow constrained only by

the bandwidth of the processors. We define parameters as follows:

Te = time for a processor assigned to a node or zone of the dataflow
graph of SIMPLE to enter a communication into the communications
facility, for forwarding to another processor; and

Tx(D) = time for the communication, under the loading conditions at hand,
to travel to its destination.

Tx must increase with D at least logarithmically; in practical terms it will

probably grow more or less linearly.

The assignment of processors to portions of the dataflow graph

can be made as in case 1, but, as will be discussed below, there is an

advantage in speed if processors can be reassigned during execution. In

- 29 -

particular, during the Z-sweep of phase 4 it is an advantage to have each

zonal processor assigned to a column of zones of the dataflow graph; during

the R-sweep it is an advantage to have each zonal processor assigned to

a row of zones of the dataflow graph.

4.4.2. Results

Consider the SIMPLE problem for a mesh of N zones, running on a dataflow

computer capable of computing a mesh of D zones without time-sharing of

hardware. The running time will depend on the time to compute a cycle,

as discussed previously. The time to compute a cycle will be a function

of N and D. Examination of the connectivity shown in Fig. 6 for various

phases of the cycle leads to the results shown in Table 1. In Table 1

the parameters T1 through T7 will be different for the two cases, and indeed

depend on details of the implementation. However, they do not depend

substantially on N or D.

In order to move to a quantitative estimate, one must both estimate

the parameters T1 through T7 far whatever detailed cases are to be judged,

and one must also determine the degree to which pipelining could make the

total cycle time less than the sum of the times for the individual phases.

Although the values of the T-parameters may vary between case 1 and

case 2, it is to be noted that the dependence on N and D is of the same form

for the two computers, except in phase 4, where the configuration of case 2

promises a substantial advantage. This advantage could be obtained as follows.

Assume for simplicity that N = o2 and that the mesh is square, so that there

is one processor for each row of zones and for each row of nodes, or alternatively,

one processor for each column of zones and for each column of nodes. For

the Z-sweep assign each processor to a column, so that one processor must

- 30 -

operate sequentially along its column. Because of the data dependence of

the back-substitution method used, this involves no more computing time than

would the assignment of one processor per zone and node. At the completion

of the Z-sweep, reassign each processor to a row, in preparation for the

R-sweep. In this reassignment each processor must send and receive field

variables to and from all the other processors of its class. If the

communications facility accepts messages as fast as the processors can stuff

them in, then we find that the time to reassign is about as follows:

Reassignment time = D Te+ T x (D) (Eq. 4 .1)

Table 1, under Phase 4, shows the comparison of dependencies achieved

with this capability, versus the simpler facility offered in case 1. (Note

that T4 for case 1 is not the same as T4 for case 2.) It is to be noted that

the advantage of the more general communications facility can be realized only

if the facility supports "high bandwidth" in the sense of providing for complete

exchange of messages among all processors. This total exchange must actually

take place to make the scheme work.

The square-root dependence shown for case 1 comes about because in

a square array of processors with processing constrained to be sequential

along a column (for example), then only one row of processors is in parallel;

the other rows are waiting. As D is increased, the length of the row of

processors grows as the square root of D.

Phase 1: Phases 2 & 3: Phase 4: calculate temperature Phase 5: Phase 6: Phase 7:
boundary calculate time energy input/
value nodes and Case 1: Case 2: step. totals. output.
determi- zones except communications 11 general purpose,
nation. temperature. restricted to global 11 communi-

nearest neighbor cations facility.
and 11 tree 11

•

Numerical
~ T T (D)~ method of

T 1 YN/D
N T(l)N/fo T(2)N l + ~ + x N T6 ~ log20 SIMPLE (T2+T3)[) 4 4 D Tc D

T 5 0 log2o T 7 N ; but
lnote c) reducible

Change to
to something

hypothetical II II (?) T4 ~ log2o II ti
approaching

concurrent T
7

log2N
method for
matrix through
inversion increasing

selectivity
of feature

Additi ona 1
T' ~

extraction.
change to

II II II II

local deter-
50 See Secs.

3.3 and mination of
time steps 4.5.

Notes. a) Communication more general than 11 tree 11 + "nearest neighbor", even if available, can be effectively
used only in phase 4.

b) The issues of estimating the parameters T1 through T6 is discussed in Sec. 4.4.

c) Phases 1 through 6 may overlap, so that, as discussed in Sec. 4.4, the cycle time may be less
than their sum; in particular the results of phase 6 are not used in any loop calculation and phase
6 can thus easily be pipelined.

d) The mesh is assumed to be roughly square.

Table 1: Fann of dependence of time to compute a cycle on number of zones (N) and number of
processors (D).

w
I-'

- 32 -

4.5. Input, Output, and Control Over the Extraction of Features

For the first six phases of Table 1, the time to compute diminishes

as the number of processors is increased. But this is not so for phase 7:

SIMPLE requires the "wholesale" shipment of arrays to an external storage

medium. As discussed in Sec. 3.3, the time to transmit N elements over a

single transmission line has a lower bound that is proportional to N, and

moreover is independent of how many processors are brought into the dataflow

computer. Thus the generation of output threatens to consume a time that

could become excessive. This threat can be countered by providing greater

selectivity in reporting; i.e. one programs for the reporting only of

significant features, and avoids communicating "masses of raw data".

In order to avoid swamping analysts even with present computers,

Livermore Laboratory has assembled a powerful facility for computerized

extractions of significant features from masses of data. At present

the approach is to first compute a relatively "general" database, and then

to exercise selectivity in the extraction of features. In order to make

efficient use of a dataflow computer, one must shift to a greater emphasis

on selectivity in generating the output which will form displays and/or

"special purpose" databases. Without bringing selectivity into the generation

of output, the linear growth of time to report an array with the number of

zones is apt to dominate the computation. Even if it does not, the increase

in size in any "general-purpose" database is a serious drawback.

The SIMPLE code offers a small beginning in this direction in the

option in the EDIT subroutine by which one can eliminate the reporting of

nodes and zones that show less than a specified degree of motion. More is

doubtless done in other programs to provide selective reporting, but still

- 33 -

more must be done as the scale of computations is increased. As a specific

example along these lines, an analyst could specify that the value of say

pressure be reported out for any given zone .2!!.li'... if the pressure had changed

by more than ten percent since the last report for that zone. Thresholds

(e.g. the "ten percent") might be varied during execution.

If selectivity of reporting is made to increase in near proportion

to the number of zones, then input and output can be handled with a structure

for which Phase 7 of Figure 6 serves as a point of departure. As discussed

in Sec. 3.3, however, more trees and more flexible control over them would be

of advantage. The goal of selectivity would ~e to keep the formation of

output from overwhelming the analyst and from taking too long. Through

increasing selectivity with the number of zones, one can keep the growth

rate of the time to form the output from growing as fast as the number of

zones; one might hope to contain it to a logarithmic dependence.

rurther discussion is outside the scope of this work, but would

be appropriate for a future project.

- 34 -

5. Translation of SIMPLE from FORTRAN into VAL

5.1. The balancing of objectives

In developing a code in any language, the following desires are

balanced:

.1. Express the algorithm as clearly as possible; and

.2. Make good use of computing resources.

In producing VAL code for a dataflow computer whose hardware is not yet

fully specified, it would also be desirable to illuminate constraints on

concurrency, and in particular to:

.3. Organize the code so as to make clear which aspects of SIMPLE

place which demands on hardware speed and connectivity; and

.4. Extend the SIMPLE problem by sketching more of the input and

display functions, because these functions are essential to any

actual problem of the SIMPLE type and place demands on both

language and hardware not made by other phases of the problem.

In addition, since we are translating from FORTRAN, it would be desirable to:

.5. Make VAL code that can easily be compared with the given FORTRAN

code.

These desires conflict in various ways, and any VAL code will reflect

a balance between them. In support of items .1 and .3 we group variables

into bunches (such as START) in a way that will either decrease efficiency

or place extra burdens on compilation. The decrease in efficiency would

take the form of sending a longer message where a shorter one would suffice;

- 35 -

concurrency at the level of detail shown in Fig. 6 would not be affected.

In support of items .2 and .3 we have sacrificed item .5 to the

extent of introducing new variables (STRESS, GX, GV) that are tensors

defined in each zone, in order to demonstrate that the connectivity demanded

by SIMPLE in computing the acceleration of each node is only nearest-neighbor,

in contrast to the first impression given by lines 580 throug 593 of SIMPLE {1979).

Appendix B illustrates demands placed on hardware by various parts of the

SIMPLE problem, as expressed in VAL.

In support of .4 we have indicated possible extensions of the VAL
I

language that seem to be needed to help with the extraction of significant

features from an array, and with input and output in general; these are:

a. the stream type of value for input and output;

b. the addition of concatenate to the list of forall operations,

so that a stream can be formed quickly from a sparse array;

c. the addition of an asymmetric merge operation on arrays to help

in communicating a sparce pattern of change to an array; the effect

is that one of the two arrays to be merged supplies default values

which are overridden by non-empty elements of the other array.

d. a form of forall eval max that extracts the lowest index at which

the maximum value of an array of reals is found, in addition to

the maximum value itself.

In support of item .5 we use the names of variables as given in the

FORTRAN code except where different structures are introduced.

In connection with item .1, it is to be noted that the algorithm of

- 36 -

SIMPLE evolved over decades in a process that was influenced by often

conflicting needs for single-step accuracy, stability, and economy; for

this reason the algorithm will not be found to show a simple structure, no

matter how it is displayed.

The FORTRAN code, including conunents, runs some 1749 lines, and

a complete translation into VAL would be of roughly the same size. Because

the SIMPLE code in FORTRAN is always undergoing minor revisions, as is the

VAL language, it seems beside the point to carry through details of translation

that duplicate the form of translations already made. We rely on Hirshman

{1978) and Woodruff (1979) to demonstrate that many FORTRAN passages can

be translated efficiently into VAL; some of thes passages are referred to in

what follows. Rather than duplicate their work, we present a more detailed

code of the main module of the VAL program for SIMPLE, as a framework in

which to view passages that deal with specific acitivities of computation.

In this framework we highlight the issues that were encountered in a detailed

review of the entire SIMPLE program, focusing on areas, notably input and

output, that require further development of the VAL language. Our intent

is both to show how the present edition of VAL is sufficient to translate

most of the FORTRAN, and to show clearly certain extensions of VAL that.

appear necessary for a complete translation, including the extension of

SIMPLE to provide for the extraction of significant features from arrays.

- 37 -

5.2. Samples of VAL code

5.2.1. Overall form of the VAL translation of the SIMPLE code

As discussed by Ackerman and Dennis (1979) a VAL program consists of

a collection of external function modules, each of which may contain internal

function modules. One internal module cannot invoke another. We present

the VAL code for SIMPLE as a main external function module called SIMPLE_VAL,

along with an external function JES which is a table look-up used by two

functions internal to SIMPLE_VAL; in addition some external routines presumed

to be in a system library are used, such as sine, cosine, and square root.

The bulk of the code will be the function modules internal to SIMPLE VAL.

Each external function module consists of:

header,

type definitions,

external function declarations (e.g. for library supplied utilities)

internal function definitions, and

body.

In the code that follows there will be gaps, indicated by comments,

such as passages that can be filled in from the work of Hirshman (1978).

Comments will also indicate where a possible extension of the VAL language

has been invoked to overcome one or another obstacle of the type discussed

in Sec. 5.1.

The program will consist of the external functions

SIMPLE VAL

JES VAL

SIN

cos

SQRT %square root,

and might well be augmented by system utilities to indicate running time, etc.

- 38 -

Because certain features of SIMPLE VAL are understandable only in the context

of JES_VAL, we present JES_VAL first.

5.2.2. JES_VAL

The FORTRAN code of SIMPLE contains a table look-up subroutine named

JES. In SIMPLE_VAL this look-up is used by two internal functions: ENERGY_HYDRO

and ENERGY HEAT. Because it is called by two internal functions, we construct

the VAL translation of JES as a function external to SIMPLE_VAL.

JES operates on numbers and not arrays; it can be applied fully

concurrently be each zonal processor to the elements of a given zone.

An issue in translating is that the FORTRAN version of JES uses

many GOTO statements, and these statements are not supported under the more

structured philosophy of VAL. Thus the JES code must be re-expressed in

an IF-THEN-ELSE fon:n. In arriving at the code displayed below, it was

very helpful to first flow chart the FORTRAN CODE. Another issue is that

in FORTRAN, JES is employed not by calling 11 JES 11
, but by calling one or another

of the entry points IESl and IES2; these will correspond to the parameter

ENTER in JES_VAL, our VAL equivalent of JES: ENTER = 1 corresponds to IESl;

ENTER = 2 corresponds to IES2.

Partly because it uses a method of successive approximations, SIMPLE

employs JES several times in the calculation of energy for a single zone. JES

(for ENTER=2) returns energy or (for ENTER=!) pressure as a function of

temperature (TARGl) and density (RARGl), by means of a table look~up. The

table is organized as a two dimensional array of rectangular regions on

the (temperature, density)-plane, with a region specified by a pair of

integers NT and NR. The returned value is supplied by a procedure that

has several steps:

- 39 -

e Search for and find the NT, NR for the region that contains the

11 point 11 (TARGl, RARGl);

e Per line 1353, statement 5310 of SIMPLE (1979), evaluate a function

of NT and NR to obtain an integer M as index to an array of sets

of coefficients e.g. AESLMJ, etc. The set of coefficients

for a found M will be used to interpolate.

• Obtain the value to be returned by means of a quadratic interpolation

function, using the set of coefficients AES[MJ, etc.

The running time of SIMPLE (at least for a sequential machine) is significantly

reduced by saving NT, NR, and Mas NTSV(NJ, NRSV(N], and MSV[NJ for use

as trial starting values for the search in the next invocation of JES. In

the FORTRAN code NT (along with NR and M) is saved separately according to

which of the two entry points (corresponding to ENTER = 1 or ENTER = 2) is

invoked. Thus NT is saved in a two-element array, with one element for

each possible entry point. We refer to the six saved numbers collectively

as SV_REC, where SV_REC is a structure of type SV_REC_type, defined by:

type SV_REC_type = record[NT, NR, M: array[integerJJ %.

The structure which we have called SV_REC saved from a given zone

supplies trial values for the next invocation of JES, which may be for

the same zone, or for a different, usually neighboring zone, as the sequential

processor steps from zone to zone. The facilitation of the.search is still

likely when a shift is made to a neighboring zone, because conditions change

little from a zone to its neighbors. The speed advantage accrues because

the sequential processor usually last invoked JES either for the same zone

- 40 -

or for a neighboring zone. When the last invocation was for a far-away

zone, then SV_REC is no help; this does not affect the answer produced

by JES, but does extend the time to find the answer.

Now we turn to the issue of translation for a dataflow computer.

Suppose, as suggested in Sec. 3, a dataflow computer has D zonal processors,

each assigned to cover a 11 super-zone 11 composed of (about) N/D contiguous

zones. When N>> D a given zonal processor will step sequentially from

zone to zone in a 11 rast.er scan 11 over its N/D assigned zones, just as the

sequential computer is specified by the SIMPLE code to scan all N zones.

There are three options:

a. Omit the use of SV_REC, and accept a slower look-up (noting that

because many look-ups will be done concurrently, the speed is not

so important as it was in the FORTRAN code).

b. Create an array of SV_REC 1 s, with one SV_REC for each zone. This

option maintains the speed, but as the cost of storing a factor

of N/D more SV~EC's than are really needed.

c. Cause each zonal processor to carry one SV REC along as it steps

through its N/D zones.

Option a) is easiest to implement, but is hardly an example of translating

power. Option c) is both the most efficient and the most demanding, and

is coded in Sec. 5.2.3, where it shows up in initializing SV prior to

entering the main loop, and in Sec. 5.2.4 where it is discussed under

ENERGY HYDRO.

The VAL function module follows:

- 41 -

function JES_VAL(ENTER: integer; TARGl, RARGl: real; SV REC: SV_REC_type

returns real, SV_REC_type)

type SV_REC_type = record[NT, NR, M: array[integerll

let % The closing 11 in 11 is the the last line of JES VAL.

% Set up constants for table; these are provided in the FORTRAN code by

% subroutine SETUP acting via COMMON; we incorporate much of the equivalent

% of SETUP here.

IZES, !TES, IRES: array[integerJ := [1: •.. J, ... ;

TES, RES, AES, ... , PES: array[reall := [1: ...], ... % End of set-up part.

EXTTl, EXTRl: real := 1;

N: integer := ENTER; % Change of name to conform to FORTRAN code

NT, NR: integer:= SV_REC.NTCNJ, SV_REC.NRlNJ;

EXTT2: real := EXTTl * TARGl;

EXTT, TARG: real, FLAG, NTl: integer .

if TES[NTJ) TARGl then

if NT<= ITES[NJthen EXTT2 I TESCNTJ, TES[NTJ, 0, NT

else for Nl: integer := NT-1

do if TES[Nll > TARGl then

if Nl) IES[Nl then iter Nl := Nl-1 enditer

else EXTT2 I TES(NlJ, TES[Nll , 1, Nl endif

else EXTTl, TARGl, 1, Nl endif

end for

end if

else if TESlNT+lJ > TARGl then EXTTl, TARGl, 0, NT

else if NT+2 = ITES[N+l] then EXTT2 / TESlNT+ll, TESCNT+l], 0, NT

el.se for Nl: integer := NT-1

do if TESCNl+l]) TARGl then EXTTl, TARGl, 1, Nl

- 42 -

else if Nl+2=ITES[N+1Jthen EXTT2 I TESt:Nl+U, TESLNl+lJ, 1, Nl

else iter Nl := Nl+l enditer endif

endif

end for

endif

end if

end if

EXTR2: real := EXTRl * RARGl;

EXTR, RARG: real, FLAG2, NRl: integer:=

if FLAG=O then

if RES[NR l > RARGl then

if NR > IRESlNJ then for Nl: integer := NR-1

do if RES[NRJ > RARGl then

if NR > IRES[NJ then iter Nl := Nl-1 enditer

else EXTR2 I RES[Nl~ RES[Nll, 1, Nl endif

else EXTRl, RARGl, 1, Nl endif

end for

else EXTR2 I RES£NRJ, RESCNRJ, 0, NR endif

else if RES[NR+lJ > RARGl then EXTRl, RARGl, 0, Nl

else if NR+2=IRES[N+1Jthen EXTR2 I RESlNR+ll, RESCNR+lJ, 0, NR
I

else for Nl: integer := NR+l

do if RES[Nl+lJ > RARGl then EXTRl, RARGl, 1, Nl

else if N1+3 > IRES[N+ll then EXTR2/RESLN1+1J, RESCNl+lJ, 1, Nl

else iter Nl := Nl+l enditer endif

end if

end for

end if

end if

- 43 -

end if

else if RES[NRl (RARGl then for Nl: integer := NR

do if RESlNl+lJ > RARGl then EXTRl, RARGl, 1, Nl

else if Nl+3 > IRES[N+11then EXTR2/RES[Nl+ll, RES[Nl+l], l, Nl

else iter Nl := Nl+l enditer endif

endif

endf or

else for Nl: integer := NR

do if RES[Nll > RARGl then

if Nl > IRES[NJthen iter Nl := Nl-1 enditer

else EXTR2/RES[Nl], RES[Nl], 1, Nl endif

else EXTRl, RARGl, 1, Nl endif

endf or

end if

end if;

M: integer := if FLAG2=0 then SV REC.M

else IZES[NJ+(ITES[N+lJ-ITES[NJ-l)*(NRl-IRES[N]+NTl-ITES[NJ) endif;

SV RECl: SV_REC_type :=

if FLAG2=0 then SV REC

else SV_REC replace[NT: SV REC.NT[N: NTlJ; NR:SV REC.NR[N:NRlJ;

M: SV REC.M[N:MJJ endif;

FUNC: real := AES[M J + RARG * (BES[MJ + RARG * DESCMJ)

+ TARG * (CES[MJ + RARG * (FES[MJ + RARG * GESlMJ)

+ TARG * (EES[MJ + RARG * (HES[MJ + RARG * PES[MJ)));

FUNCl real := if ENTER=l then FUNC * EXTT * EXTR

else FUNC * EXTT endif

in %closes "let" on line 2 of JES VAL

FUNCl, SV REC! endlet endfun % End of function JES VAL

- 44 -

5.2.3. SIMPLE_VAL

SIMPLE VAL is the main module -- i.e. the overall framework -­

for the VAL code translation of SIMPLE. Because the functions internal

to this module correspond to roughly 25 pages of FORTRAN code, the section

of internal function definitions is abbreviated to a list of headers, and

a discussion of salient features of these modules will be found in Sec. 5.2.4.

The code that follows is a detailed statement of the overall structure

of the VAL translation of SIMPLE.

% Header:

% Note presumed language extension to 11 stream 11 type for input and output.

function SIMPLE_VAL(INPUT_A: start-type; INPUT B: stream

[correction_typeJ returns stream[out_phys_type],

stream [out_cycl e_type] , stream[out_edi t_type],

stream out_condition_type)

%type definitions:

type vector = record lR, Z: real] ;

type zona 1 = array [array [real] J;
type zone_tensor = array[array[record[E,W: vectorJ]];

type noda 1 = array [array(vectorj] ;

type node_scalar = array[array[real]];

type start_type = record[DTNPH, TFLR, EDDT, P0, E0, RH00, DTMIN,

DTMAX, TMAX, C0F, ClF, GAM: real; BC: record[U, D, L, R: integer];

LIM: record[KN, KX, LN, LX, DS: integer]; NCP: integer];

- 45 -

% As shorthand we shall write "STATE" and "state_type" to refer to

% a list of the variables that define the state of the computation:

% state_type = listlOTNPH, OTN, TNUP, ENCG, EOTIME, EOOT: real; NYCL:

%

%

integer; P, Q, RHOJ, E, S: zonal; X, V: nodal; GX: zone tensor;

OTMIN, OTMAX, TMAX, C0F, CIF, GAM, EOOT, TFLR: real; NCP: integer]

type out__phys_type = 11 state_type 11
;

type out_cycle_type = record[NYCL: integer; OTNPH, TE, ENC, SKE, HN, WN,

ENCG: real; OTEN, OTC2: record(DT: real;

K, L: integer]] ;

type out_edit_type = "state_ type";

type out_condition_type = stream; % language extension

type correction_type = stream;

type lim_type = record[KN, KX, LN, LX, OS: integer];% 4 fields correspond

% to FORTRAN code KMN, KMX, LMN, LMX; OS describes implementation for

% the implementation-dependent use of JES_VAL shown in ENERGY HYDRO.

type SV_REC_type = record[NT, NR, M: arrayl integer]];

% SV_REC discussed in Sec. 5.2.2 in connection with JES VAL.

type SV_type = array[array[SV_REC_typeJ]; % Because of our choice of

% option c) of Sec. 5.2.2, the array SV of type SV_type will have

% dimensions of LIM.OS by LIM.OS, where LIM.OS squared is D, the

% number of zonal processors of the dataflow computer. If option b)

% were used, then LIM.OS would not have to appear in the program, and

% the array SV would have N (number of zones in mesh) elements instead

% of D elements.

- 46 -

% external function declarations:

external JES_VAL(ENTER: integer; TARGl, RARGl: real; SV REC:

SV_REC_type returns real, SV_REC_type)

external sin(DUMMY: real returns real)

external cos(DUMMY: real returns real)

external sqrt(DUMMY: real returns real) % square root.

% The bodies of the internal function definitions are omitted here; the

% headers are listed for all internal functions of SIMPLE VAL:

% INITIALIZE(START: start_type returns "state_type")

% EDIT(STATE returns edit_type)

% BOUNDARY_PROJECT(P, Q, RHOJ: zonal; X: nodal; GX: zone_tensor; LIM:

% lim_type returns zonal, zonal, zonal, zone_tensor)

% VELOCITY(V: nodal; P, Q, RHOJ: zonal; GX: zone_tensor; DTN: real;

% LIM: lim_type returns nodal)

% POSITION(X,V: nodal; DTNPH: real; LIM: lim_type returns nodal)

HWORK(X, V: nodal; P, Q: zonal; DTNPH: real; LIM: lim_type returns real)

% ZONE_GEOM(X, V: nodal; MASS, S: zonal; LIM: lim_type returns

% zonal, zonal, zonal, zonal, zone_tensor, zone_tensor)

% ENERGY_HYDRO(E, P, AJ, RHO, DVOL, MASS: zonal; GX, GV: zone_tensor;

SV: SV_type; DTNPH, C0F, ClF, GAM, DTMAX: real; LIM:

lim_type returns zonal, zonal, zonal, zonal, SV_type)

- 47 -

% HYDRO_TOTAL(V: nodal; MASS, E: zonal; LIM: lim_type returns real, real, real)

% ENERGY_HEAT(E, RHO, AJ, TEMP, MASS: zonal; X: nodal; SV: SV_type;

DTNPH, TFLR: real; LIM: lim_type returns zonal, zonal, zonal,

node_scalar, node_ scalar, SV_type)

% HEAT_TOTAL(E, TEMP, MASS: zonal; CBB, DBB: node_scalar; DTNPH, HN: real;

% LIM: lim_type returns real, real)

% TIME_STEP(TSO, YE: zonal; X: nodal; DTNPH, DTMAX, C0F, ClF, GAM: real;

% LIM: lim_type returns real, real, real, real)

% PHYS_REPORT("STATE": "state_type" returns "state-type")

% CYCLE_REPORT(YE, TSO: zonal; NYCL: integer; TNUP, DTNPH, TE, ENC,

% SKE, HN, WN, ENCG: real; LIM: lim_type returns

% out_cycle_type)

% MODIFY{ 11 STATE 11
: "state_type"; DUMMY: correction_type returns

% "state-type 11
)

- 48 -

% body of SIMPLE_VAL

% The gross plan of the body is

% for STATE: state_type:= INITIALIZE{first(INPUT_A}};

% OUT PUT: stream:= null

% do if (condition) then OUT_PUT

% else iter STATE:= main_cyle(STATE) enditer

% endif

% end for

% In the detailed presentation that follows we split "STATE" into

% its fields (as given in the section of type definitions), and split

% 11 main_cycle 11 according to the phases illustrated in Figure 6:

for START: start_type:= first(INPUT_A); % read input stream

STATE: 11 state_type 11 := INITIALIZE(START);

OUT_PHYS: stream[out_phys_type]:= null;

OUT_CYCLE: stream[out_cycle_type] :=null;

OUT_EDIT: stream[out_edit_typeJ:= EDIT{STATE);

CORRECTION: stream := INPUT_B;

HN, WN: real := O.;

% Set up temporary variables, other than those covered in STATE,

% needed for main cycle:

AJ, DVOL, TEMP, TSO, YE: zonal := array_fill(LIM.KN + 1, LIM.KX,

array_fill(LIM.LN + 1, LIM.LX, O.});

GV: zone_tensor := array_fill(LIM.KN + 1, LIM.KX,

array_fill(LIM.LN + 1, LIM.LX, record[E, W: record[R, Z: O.]J);

CBB, DBB: nodal := array_fill(LIM.KN, LIM.KX, array_fill

(LIM.LN, LIM.LX, record[R,Z: O.]));

DTEN, DTC2, SKE, ENH, TE, ENC: real :=O.

- 49 -

LIM: lim_type := START.LIM;

% Set up array of SV_REC 1 s to conform to option c) of Sec. 5.2.2.

% Let OS be the greatest integer such that DS*DS = D, where D is the

% number of zonal processors, as discussed in Sec. 3.

SV: SV_type :=

let OS: integer := LIM.OS % implementation-dependent parameter.

in arr~_fill(l, OS, array_fill(l, OS, record NT: array_fill(l, 2, O);

NR: array_fill(l, 2, O); M: array_fill(l, 2, O); EXTR: 0.)) endlet;

do if DTNPH < DTMIN I TNUP) TMAX then

let OUT CONDITION: stream .

if DTNPH (DTMIN then 11 DT_STOP 11 II NYCL II TNUP II DTNPH II DTMIN

else 11 STOP TMAX 11 llNYCL llTNUP llTMAX endif

in OUT_PHYS, OUT_CYCLE, OUT_EDIT, OUT CONDITION endlet

else iter

% Phase 1 of cycle (see Fig. 6 for description of phases):

P, Q, RHOJ, GX := BOUNDARY_PROJECT (P,Q, RHOJ, X, GX, LIM);

% Phase 2 of cycle:

V := VELOCITY(V, P, Q, RHOJ, GX, DTN, LIM); % vector velocity

X := POSITION(X, V, DTNPH, LIM); % vector position

% "WW part of Phase 6:

WN := HWORK(X, V, P, Q, DTNPH, LIM) + WN;

% Phase 3_of cycle:

RHO,.AJ, DVOL, S, GX, GV := ZONE_GEOM(X, V, MASS, S, LIM);

E, P, Q, TEMP, TSO, SV := ENERGY_HYDRO(E, P, AJ, RHO, DVOL, MASS,

GX, GV, SV, DTNPH, C0F, ClF, GAM, DTMAX, LIM);

- bO -

% Hydro part of phase 6:

SKE, ENH, TE := HYDRO.._TOTAL(V, MASS, E, LIM);

% Phase 4 of cycle:

E, RHOJ, YE, CBB, DBB, SV := ENERGY_HEAT(E, RHO, AJ, TEMP, MASS, X, SV,

DTNPH, TFLR, LIM);

% Heat part of phase 6:

ENC, HN := HEAT_TOTAL{E, TEMP, MASS, CBB, 088, DTNPH, HN, LIM);

% Phase 5 of cycle:

DTN, DTKPH, DTC2, DTEN := TIME_STEP(TSO, YE, X, OTNPH, DTMAX,

C0F, ClF, GAM, LIM);

% Phase 7 of cycle (output and corrective input):

OUT_PHYS, EDTIME :=

if TNUP (EOTIME then OUT_PHYS, EDTIME

else OUT__PHVS H PHYS_;_REPORT(STATE), EDTIME + EDDT endif;

NYCL := NYCL + l;

OUT CYCLE :=

if fo«>D(NYCL, NCP)"'= 0 then OUT_CYCLE

else OUT_CYCLE !ICYCLE_REPQRT(NYCL, TNUP, OTNPH, YE. TSO,

TE, ENC, SKE, HN, WN, ENCG) % lines 766-773 of FORTRAN

end if

STATE, CORRECTION ;=

if CORRECTION = null then STATE, CORRECTION

else MOOIFY,STATE, firs.t{CORRECTIOH)), rest(CORRECTION)

end if

- 51 -

% An alternative approach to output would be to extract significant

% features. For example, we illustrate a report of pressure for only

% those elements of the array P that have changed by at least 10

% percent since they were last reported. We assume an array P _LAST

% as an iteration variable to carry the "last reported" value of P:

P_LAST, OUT_PHYS_SELECTIVE :=

if TNUP < EDTIME then nil %language extension for iteration variables

else let COND: array[arraylboolean.JJ :=

forall Kin [LIM.KN+ 1, LIM.KX], Lin lLIM.LN + 1, LIM.LX]

construct ABS { (P [K,L] - P _LAST(K,L]) /MAX (EPS, P _LAST [K,L])) < .1 enda 11

end if

in forall Kin [LIM.KN+ 1, LIM.KX], Lin (LIM.LN + 1, LIM.LX]

construct if COND then P_LASTLK,L]

else P[K,L] endif endall, OUT_PHYS_SELECTIVE II
forall K in[LIM.KN + 1, LIM.KX], L in [LIM.LN + 1, LIM.LX]

eval concatenate %language extension

if COND then null

else recordlP: P[K,L]; K: K; L: L] endif endall

endlet

% end of example of feature extraction

enditer

end for

endfun % SIMPLE VAL

- 52 -

5.2.4. Discussion of functions internal to SIMPLE_VAL

INITIALIZE includes code nke the modules GENBC and GENPOS of Hirshman (1978),

along with code of the form, say for pressure,

% P: zonal :=

array_fill(LIM.KN + 1, LIM.KX , array_fill(LIM.LN + 1, LIM.LX, START.P0)).

~DIT is straightforward to translate, except for one demand which it places

on the language: one needs to extract not only the maximum element of an

array (as can be done with forall eval max) but also the K,L coordinates

at which the maximum is found. Efficient support of this need requires

hardware and language attention.

BOUNDARY PROJECT includes the module GEOMETRY of Hirshman, the filling of

P, Q, and RHOJ arrays (where RHOJ[K,L] = RHO[K,L} * AJ[K,L]), and the

calculation of GX for boundary zones. The calculation of GX for interior

zones is done in ZONE GEOM, and is discussed in Appendix B.

VELOCITY: see Appendix B, where connectivity of the flow of data is discussed.

POSITION is like Hirshman's module HYDRO; see also Appendix B.

HWORK is essentially Hirshman's module of the same name.

ZONE_GEOM produces AJ and S like the module GENAREA of Hirshman, and also

produces GX and GV by the algorithm discussed in Appendix B.

ENERGY_JiYDRO contains parts like NEWE and NEWQ of Hirshman. However,

NEWQ can be recast to use GX and GV in place of X and V, with the result

that the calculation for a given zone draws only on values of that zone;

i.e. no node-to-zone colTITlunication is required for the computation of Q when

- 53 -

GX and GV are made available from ZONE GEOM.

Subroutine TEMPCAL of the FORTRAN code can be translated readily into

a function module internal to ENERGY HYDRO. Both via TEMPCAL and directly,

ENERGY HYDRO calls the external function module JES_VAL to compute pressure

(from JES_VAL(l, TEMP, RHO, SV_REC)) and energy (from JES_VAL(2, TEMP, RHO, SV_REC)).

The value SV_REC supplied to JES_VAL is in effect a hint where to start

searching in a table; the value supplied does not affect the numerical results

produced by JES_VAL, but it does affect the time to execute JES_VAL.

If option b) os Sec. 5.2.2 were selected, coding into VAL would

be easier because there the array SV would have N elements and be of the

same shape as P, RHO, etc. For that option a typical use of JES VAL would

be the production of a trial pressure Pl, as in:

.1
Pl, SV: zonal :=

forall K in [LIM.KN+!, LIM,KXl, L in [LIM.LN+l, LIM.LX J construct

JES_VAL(l, TEMP[K,LJ, RHO[K,L], SV[K,LJ) endall; %.

Instead of using option b), we have chosen option c) as an example

of the kind of demand on expressive power that occurs in tailoring an

algorithm to an implementation. As discussed in Sec. 5.2.2 option c) saves

storage by taking SV to be an array of only D (= number of zonal processors)

elements; this can be much smaller than the N-element array used in option b).

To express the N-element array Pl as a function of a D-element SV, it appears

necessary to first create a partitioned array equivalent to Pl, with a block

of this partitioned array corresponding to an element of SV.

The N interior zones of the mesh constitute a two-dimensional

array of (LIM.KX - LIM.KN) by (LIM.LX - LIM.LN) elements. For simplicity

we assume that both of these dimensions are exactly divisible by LIM.OS,

- 54 -

where D = (LIM.DS)2 is the number of zonal processors used, and we assume

a physical configuration of a square array of LIM.OS by LIM.OS zonal

processors.

Each zonal processor is to be assigned a rectangular "super-zone"

of the mesh, consisting of KS by LS contiguous zones, where

.2

and

KS = (LIM.KX-LIM.KN)/LIM.DS

LS = (LIM.LX-LIM.LN)/LIM.OS

In place of .1 one expressed an N-element Pl in tel"'lls of a D•element SV,

where one elemnt of SY corres(>Onds not to one element of Pl, but rather to

a block of KS by LS elements of Pl. Let P _BlOCK be ·a partitioned array

equivalent to Pl; that is, while Pl is a 2-dimensional array of reals,

P_BLOCK i's an array of LIM.OS by LIM.OS "little" arra:,Ys,- each with KS by LS

real elements, so that P_BlOCK must be a 4-G:imensional array of reals.

Option c) demands that:

. • computation proceed in each of the D blocks of P _BlOCK concurrently, and

• within a given block, computation proc~ed in a raster scan sequentially.

The correspondence between Pl and PBLOCK is:

.3
PH Kl*KS + K0,ll*LS+L0] = P _BLOCK{Kl,Ll ,K0,lJ J .

In other words, Kl,Ll tell which block, and K~,L0 tell which element

within the block. It follows that (with the VAL convention for downward

· rounding of integer division} the [K,Llelement of Pl is given by

.4
PHK,L J = P _BLOCKlK/KS, L/LS, MOD(K,KS), MOD(L,LS) J .

- 55 -

The VAL code for producing Pl and SV in accordance with option c) follows:

Pl: zonal, SV: sv_type :=

let P_BLOCK: array(array[array[arrayLrealJJJJ, SVl: SV_type.

forall Kl in Cl, LIM.OS], Ll in [l, LIM.OS]

KS: integer . (LIM.KX-LIM.KN)/LIM.OS; % Assume exactly divisible

LS: integer . (LIM.LX-LIM.LN)/LIM.OS; % 11

construct % P_BLOCK[Kl,LlJ is itself a 2-dimensional array.

for BLOCK: array[array[real11:= array_empty[arrayLreall % Element of P BLOCK.

SV_RECl: SV_REC_type . SV[Kl,Ll];

K0: integer := 1

do if K0 > KS then BLOCK, SV REC!

else iter BLOCK, SV_RECl :=

let BCOL: array[realJ, SV_REC2: SV_REC_type :=

for BCOLl: array[realJ:= array_empty[realJ;

SV..:....REC3 : SV_REC_type := SV_RECl;

L0: integer := 1

do if L0 > LS then BCOLl, SV REC3

else iter BCOLl, SV REC3 :=

endif

end for

let P_EL: real, SV_REC4: SV_REC_type :=

JES_VAL(l, TEMP[Kl*KS+K0, Ll*LS+L0J,

RHO[Kl*KS+K0, Ll*LS+L0J, SV_REC3)

in BCOL1CL0: P_ELJ, SV_REC4 endlet;

L0 := L0 + 1

enditer

in BLOCK K0: BCOL , SV REC2 endlet;

endif

endf or

endall

K0 := K0 + l;

enditer

in% Pl: zonal, SV: sv_type :=

- 56 -

forall K in [LIM.KN+l,LIM.KXJ, L in [LIM.LN+l, LIM.LXJ construct

P_BLOCK[K/KS, L/LS, MOD(K,KS), MOD(L,LS) J , SVl

endlet % Completes production of Pl and SV.

Because of the explicit reference to LIM.OS, a parameter of

implementation, this example gives a glimpse of the type of expression

needed when a prograrrmer assists in compilation. It is generally recognized

that hardware can be used more effectively if the programmer tailors the

program to it. In simple cases one hopes that the algorithm will not have

to be changed to effect such tailoring, but we have just seen a case in

which the algorithm (though not its numerical result) did change. To

facilitate compilation of the whole SIMPLE code, one might well express

all the arrays in blocked (i.e. partitioned) form for internal computation.

If this were done then the conversion to 2-dimensional form would not

be done as part of the above example, but would be deferred to the

generation of output, as in the module PHYS REPORT.of SIMPLE VAL.

HYDRO_TOTAL, like HWORK, is straightforward, being essentially the

execise of the construct forall-eval-plus.

ENERGY HEAT is the main bottleneck in the SIMPLE problem, because of

the sequencing constraints due to the back-substitution method chosen

for solving for heat flow. The sequencing constraints are illustrated

- 57 -

in Appendix B, Fig. B.1. The constraints are in the 11 R-sweep 11 and 11 Z-sweep 11

portions of subroutine CONDUCT of the FORTRAN code of SIMPLE. This code

steps from one element of an array to another, using results of a previous

element to calculate a next element.

Subroutine CONDUCT saves TEMP as TS in line 1586, and then restores

TEMP to TS in line 1673, so that after the execution of CONDUCT, TEMP is

unchanged; what is calculated is really a temporary variable which we call

TEMP! in the code below. Its use is not to get a new TEMP, but rather to

help in adjusting E to account for heat flow. The FORTRAN code partially

inializes arrays A and B outside of the sweeps; we incorporate this initial­

ization into the sweeps. The VAL arrays CBB and DBB are like those of

the FORTRAN code, but re-indexed to clarify the connectivity actually

required (see note be following the VAL code below). The production of

TEMP! in the VAL code for ENERGY HEAT would then appear inside a LET construct

as fo 11 ows :-

% Z-sweep (per line 1612 of the FORTRAN code of subroutine CONDUCT)

TEMPl: zonal := let TEMP2: zonal % Z-sweep calculates TEMP2

forall K in [LIM.KN+ 1, LIM.KX] construct

let A, B: array[real]:= % range over L

for L: integer := LIM.LN +1;

ACOL, BCOL: array[real]:= array_fill(LIM.LN, LIM.LX, 0.), TEMP[K)

do if L) LIM.LX then ACOL, BCOL

else let DUMl: real := SIG[K,L] + CBBlK,L] + CBB(K,L-1] * (1 - ACOL[L-1))

in iter ACOL, BCOL := ACOL[L: CBB(K,L]/ DUMl], BCOL(L: SIG(K,L] *

TEMP[K,L) + CBB[K,L-1] * B[K,L-1] /DUMl];

L := L+l

enditer endlet endif endfor

- 58 -

% ... ALPHA, BETA FORWARD

1n for L: integer := LIM.LX; TCOL: array[real] := TEMP(K]

do if L (LIM.LN + 1 then TCOL

else iter TCOL := TCOL[L: A(L] * TCOL[L+l) + B[Ll]; L := L-1 enditer

endif endfor endlet endall % end of Z sweep; returns TEMP2

in % Feed TEMP2 through R-sweep to produce TEMPl:

% R sweep

let A, B: array[array[real]] :=

for K: integer := LIM.KN + 1; A2D, B20: array[array[real]] :=

array_fill(LIM.KN, LIM.KX, array_fill(LIM.LN, LIM.LX, 0.)), TEMP2

do if K) LIM.KX then A20, B2D

else let ACOL, BCOL: arraylreal] .

forall L in [LIM.LN + 1, LIM.LX] DUMl: real := SIG(K,L]

+ DBB(K,L] + DBB(K-1,L] * (1- A2D(K-1,L])

construct DBB(K,L] I DUMl, SIG[K,L] * TEMP2[K,L] +

DBB[K-1,L] * B2D[K-1,L] I DUMl

endall

in iter A2D, B2D := A2D[K: ACOL), B2D[K, BCOL];

enditer endlet endif endfor

% ALPHA, BETA FORWARD SWEEP

in for K: integer := LIM.KX; T2D: array[array[realJ] := TEMP2

do if K (LIM.KN+ 1 then T2D

else iter T2D := T2D[K:

forall L in [LIM.LN + 1, LIM.LX]

construct A[K,L] * T2D[K+l,L] + BLK,L]

endall]; K := K-1

enditer endif endfor endlet endlet % Returns TEMPl

Notes:

- 59 -

a. In VAL the syntax for operating on a two-dimensional array with

a forall construct over one index and a for-iter over the other

index is different according to which index is· subjected to which

construct. For this reason the Z-sweep and the R-sweep, which

look much the same in FORTRAN, look different in VAL.

b. The FORTRAN code uses an awkward convention in indexing CBB and DBB,

with the result that there appears to be more coupling of array

elements than is in fact the case; to clarify this we write

CBB[K,L] in place of what in the FORTRAN code would be written

CBB[K-1,L]; similarly we write DBB[K,L]in place of DBB[K,L-1].

c. In FORTRAN only one edge of the array A is initialized prior to

the loop; in VAL it was convenient to initialize the whole array.

The VAL code re-initializes A in the R-sweep. This is permissible

because although the A array is operated on in the Z-sweep, the

only column that matters (i.e. LIM.KN) is not changed in the Z-sweep.

HEAT_TOTAL uses foral l eval ~-

TIME_STEP combines Hirshman's module TINCR with the calculation of DTEN,

which in the FORTRAN is done in subroutine CONDUCT. Calculation of KC, LC,

KEN, and LEN is not done in TIME_STEP, but is deferred to CYCLE REPORT.

PHYS_REPORT is similar to EDIT.

CYCLE_REPORT is straightforward except for needing the coordinates of an

array where a maximum or minimum value is found, as was the case with EDIT.

- 60 -

MODIFY is an augmentation of SIMPLE to allow for real-tim0 interaction with

an analyst; e.g. MODIFY is to provide for receiving a change in say DTMAX,

or even for receiving an entire "STATE", as would be needed to restart

the computation after an analytic "catastrophe".

- 61 -

6. Conclusions and Possible Next Steps

6.1. Speed, input-output, and expression of the abstract algorithm

As shown in Table 1, except for outputting results, the application

of D processors configured as a dataflow computer can reduce the execution

time of the SIMPLE code by a factor of at least D~. The sequencing constraints

that limit improvement to this factor occur in the calculation of heat flow,

as illustrated in Fig. 6. These constraints stem from the method chosen

in the SIMPLE code for the inversion of a tri-diagonal matrix: back-substitution.

It would appear feasible to find or develop a method with weaker sequencing

constraints. If this were done, then all phases of the program, except

output, would execute in times that decrease at least as D/log D with increasing

D.

As discussed in Sec. 4.5, the outputting of results called for

in the SIMPLE code amounts to a 11 dump" of raw data. There is a minimum time

for such a dump that grows with the size of the mesh and is independent of

D. As discussed in Sec. 4.5 and illustrated at the end of Sec. 5.2.3,

it appears essential to pre-process the data so as to extract significant

features. If this is done, then output need not be a bottleneck.

The VAL language is demonstrated as satisfactory for the expression

of the SIMPLE problem as an abstract algorithm, provided that certain extensions

are made in it. These extensions are listed in Sec. 5.1 and their use is

shown in Secs. 5.2.3 and 5.2.4. The need for additional extensions to promote

pfficiency of execution is discussed below.

- 62 -

6.2. Implications of the spatio-temporal structure of the algorithm

Following Holt (1979) we have analyzed the SIMPLE problem as given

in an abstract algorithm expressed first in FORTRAN and then translated into

VAL. The algorithm expressed in either language is called 'abstract' when it

is viewed as independent of physical arrangements in space and time for its

execution. Our analysis of the SIMPLE algorithm in terms of role diagrams

reveals spatial and temporal structure which will have to be found in any and

all implementations. For example, by tracing through the algorithm for

possible references to computational variables we discover the existence of

algorithm-defined times when some number n of such variables must be co-maintained.

This in turn implies that in any implementation of the algorithm there will

have to be available, for some period, a space large enough to hold n values.

(As the algorithm is to be executed by electronic circuits, this number n places

a lower bound on the physical space which the algorithm can occupy.) To

be more specific, ElJ,K], P[J,KJ, Q[J,KJ, etc. meet in a zone and phase

shown in Fig. 6 and in a relational sense define a time and location.

As a second example, we discover in Fig. 6 that for any instruction

of the main loop there are times-- i.e. phases -- when a given instruction

may be executed and times when it certainly will not be. In other words one

can determine prior to execution and independent of implementation that in

any given phase a certain large majority of the instructions of the main loop

will not be called. This property can be used both to guide compilation and

also to guide the design of hardware for a dataflow computer: it suggests

a programmable instruction cell that can make ready first one instruction

and then another, much like a sequential processor.

Finally the discussion of Sec. 3 and Figs. 3, 4 and 6 show that only

a few of the myriad possible patterns of communication are actually needed

- 63 -

for a set of processing resources to execute the SIMPLE problem. In

configuring a dataflow computer there are many possible alternatives for

the arrangement of processing units, instruction cells, packet memory,

and communications resources. Different arrangements offer different

advantages for different problem classes, and place different demands on

compilation. As discussed in Sec. 3, any hardware arrangement will reflect

compromises which will detract from the execution of some classes of problems.

Prior to large-scale investment, these relations between physical arrangement

and problem class need to be examined in connection with various sample

problems.

6.3. The balance between programming ease and efficient use of hardware

As a first step in exploring relations between hardware and

problem class, VAL was employed to help express a problem in hydrodynamics

in support of two anticipated tasks, relative to a dataflow computer that

is not yet fully specified:

.1. the design task of choosing a physical arrangement of hardware

resources suitable to the SIMPLE problem; and

.2. the compilation task of mapping the coded problem into machine

instructions appropriate to a given physical arrangement of

resources.

Both tasks concern the mapping of a problem onto physical resources. The

mapping is done in two steps: coding in a source language (VAL); followed

by compilation which maps the source language into machine instructions.

Historically a source language has been intended for the expression of a

- 64 -

problem as an abstract algorithm -- 'abstract' meaning that the algorithm

was not tied to a particular physical arrangement of resources. But note:

.3. To achieve efficient use of resources a programmer must allow

for at least some features of implementation (e.g. 11multiply" takes

longer than "add") .

. 4. If the physical arrangement changes too much, a given source

language become inappropriate.

Indeed concurrently operability of resources contributed to the need to

express concurrency in the problem, and hence to the need for VAL; i.e. VAL

is superior to FORTRAN in expressing concurrency. A source language is

shaped in part by assumptions concerning the physical arrangement of

computational resources. FORTRAN was designed to facilitate a two-step

mapping of a problem to machine instructions. In step one FORTRAN is used

to map the problem essentially into instructions for a machine that is

an idealized sequential computer -- idealized for instance in that it is

imagined to have a random-access memory so big as not to be a constraining

factor. In step two the FORTRAN code is compiled into machine code for

an actual machine that departs in limited ways from the idealization --

e.g. by using a "small" random-access memory backed up by secondary storage.

As FORTRAN corresponds to an idealized sequential computer, VAL

presently corresponds to an idealized dataflow computer -- e.g. a dataflow

computer imagined to have so many instruction cells that the number poses

no constraint on how a problem might be executed. Note that:

.5. A program like SIMPLE is a major task for programmers who can

afford to learn the salient features of implementation;

- 65 -

.6. The program is expected to run many hours per execution, and to

be executed many times on a machine that costs enough to justify

a large investment in efficient execution;

.7. The program is written to answer questions of physics that are

progressively better answered as larger mesh sizes become executable

in a day's run; the need for answers to these questions justifies

a large investment in speed of execution.

Whatever hardware design is chosen, the resources of a dataflow computer will

be more complex than those of a sequential computer, and less susceptible to

fully automated resource allocation. Within the dataflow context, the

balance between ease of prograrrming and efficiency weighs more toward the

demand for efficiency. For problems of the SIMPLE type it appears unwise

to force a separation between source-language programming and resource

allocation. Some current languages -- e.g. PL/l -- provide facilities for

the control of resources; however these facilities are added ad hoc to

a language that conceptually is inhospitable to the expression of physical

arrangements in time and space. Because VAL encompasses the expression of

concurrency, it offers at least a chance of extension to cover the control

of resources in a more systematic way. The discussion of ENERGY HYDRO in

Sec. 5.2.4 illustrates a related issue, the adaptation of the algorithm

to a particular physical arrangement.

- 66 -

6.4. Extending VAL to support resource allocation

We have seen that the SIMPLE problem has spatio-temporal structure

that is germane to physical design, and for a given design, germane to the

allocation of physical resources to execute the problem. Presently, a VAL

program is thought of as having a "meaning" only to the extent that it

defines a dataflow graph at the descriptive level of machine instructions.

At this level of description the dataflow graph of SIMPLE is an enormous

lacework, with something on the order of a thousand computational events

per zone, times thousands of zones. If a compiler works only from a dataflow

graph at this level of detail, is it reasonsable to imagine that it could'

efficiently distribute all the instructions throughout the "space-time" of

the computational resources?

One might hope for some future 11 genious 11 to design such a compiler,

but there is another approach:

.1. Recognize that compilation will in fact use higher-level and/or

auxiliary descriptions of the problem in allocating resources; and

.2. Extend the programmer's task and his power of expression -- VAL -­

to express properties of the problem that can greatly reduce the

burden of compilation properties such as those expressed in

the role diagram of Fig. 6.

In this approach the programmer would be supported in structuring the problem

in a way that eases compilation for a given machine organization. This

requires that the progranmer be more explicit in guiding the "when" and

"where" of program execution. It might be objected that such guidance depends

too much on the details of a particular implementation, but this is not

- 67 -

necessarily so. There is a middle ground, where the prograrruner would

formally express the information now conveyed by Fig. 6. The "where"

implied by a "zone" of Fig. 6 is not directly a 11machine location", but

rather a relational location inherent in the SIMPLE algorithm. In that

algorithm E[J,KJ, PCJ,Kl, QCJ,K1, etc. meet many times, and in a relational

sense meetings define 11 times and locations 11
-- e.g. ZoneCK,Ll of Fig. 6.

In essence we see the progranmer as calling the compiler's "attention" to

grosser regions of a dataflow graph than appear at a machine-instruction

level of description. The compiler would thus block out the assignment

of gross regions to resources in a first phase, and then subsequently deal

with further details. To pursue this course additional effort is needed

to:

.3. Bring under control the expression of the space-time aspect

of an algorithm at different levels of detail, so as to guide

the algorithm toward a particular machine organization;

.4. Show what changes would be needed for VAL to express such aspects;

.5. Evaluate the advantage of expressing SIMPLE and other examples in

this way with respect to:

a. what suggestions are offered for the organization of the

resources of a dataflow computer; and

b. how to distribute the burden of computing a problem over a

given organization of resources.

- 68 -

REFERENCES

Ackerman, W. B. and \l. B. Dennis (1979) "VAL -- A Value-Oriented
Algorithmic Language; Preliminary Reference Manual" Massachusetts
Institute of Technology, Laboratory for Computer Science, 545
Technology Square, Cambridge, Massachusetts 02139 (March 22).

Crowley, W. P., C. P. Hendrickson and T. E. Rudy ·(1978), "The SIMPLE Code",
Lawrence Livermore Laboratory Report UCID 17715, February 1.

Dennis, J. B. (1978) "Data Flow Computer Architecture", Computation
Structures Group Memo 160, Laboratory for Computer Science,
Massachusetts Institute of Technology (May)

Hirshman, D. S. (1978) "SIMPLE, A Lawrence Livermeor Laboratories Program
Translated into Data Flow Language", Massachusetts Institute of
Technology, Laboratory for Computer Science, Computation Structures
Group (May 18)

Holt, A. W. (1979) "Roles and Activities, A System for Describing Systems"
(Incomplete draft) Boston University, Academic Computing Center,
111 Cu1T111ington Street, Boston, Mass. 02215

Misner, C. W., K. S. Thorne and J. S. Wheeler (1970) "Gravitation",
W. H. Freeman and Co., San Francisco.

Morse, P. M. and H. Feshbach (1953) "Methods of Theoretical Physics"
McGraw-Hill Book Co, New York.

SIMPLE (1979): FORTRAN code of Lawrence Livermore Laboratory, Edition
of February 12 as provided by John Woodruff. (Reproduced in App. C.)

Woodruff, J. P. (1978) VAL code for one-dimensional hydrodynamics
(Edition of December 4).

- 69 -

Appendix A: Interpreting Role Diagrams

SECTION DIRECTORY

Section

A.l. Vertical string as path of a role player.

A.2. Tokens

A.3. ~ Circuits.

A.4.~ Initialization and termination.

t'
A. 5. ~ Fragments

A.6. 6-~ Coincident activity of multiple role players.
I

A.7. !fJ Invariance of value.

A.8. ~ Branching to alternative consumers.

A.9. ~ : 0- Steering.

A.10. ~) Encoding

A.11. l-1 Decoding

A.12. ?--6 Merging from alternative producers.

A.13. (I IJ
-----y--- Bundling.

I

I

A.14. rt--1~ Unbundling.
I ,

A.15. \941 Compression of representation.

A.16. 1S 9 ' ~=-:-cc---:' Copying.

- 70 -

A.17. t ~~}Saving an old value.

A.18. Operations(+,-, etc.)

A.19. ~ Buffered communication.

- 71 -

Appendix A: Interpreting Role Diagrams

Throughout the report we have used role diagrams, invented by A. W.

Holt (1979) to show the flow of values carried by physical actors. The

notation presented here allows us to distinguish participations of actors

in activities according to whether they are coincident, concurrent, alternative,

or sequenced.

The interpretation of role diagrams differs from that of dataflow

graphs in that the former is based on this attitude: anything that ~ (even

a value) must be someplace. Hence the flow of a value is a flow of effect

over physical actors. A role diagram can be partitioned into strips; each

strip is a locality in system space, and thus a place where some actor is

resident.

A.1: A vertical line is read downward as the advance of a role player

(i.e. an actor) from one state to another through a sequence of activities.

A state is drawn as a vertical line segment; an activity is drawn as a box.

Here we show a role player "carrier of the value PRESSURE" proceeding through

activity 1, followed by activity 2.

I
p

- 72 -

A.2: The vertical line can be thought of as marked by a token. The position

of the token shows the state of the role player. The token for pressure carries

an inscription which states the value of the pressure.

A.3: Circles at the top and bottom of a vertical line denote the same location

of a circuit. In other words the figure

denotes a cyclic progression through activity 1, activity 2, activity 3, back

to activity 1, and so on.

A.4: If a role P is initialized in activity 1 and terminated in activity 3

we draw the following.

p

Note that the initiation of a role (shown in activity 1) requires that a

physical actor be on hand to play the role.

- 73 -

A.5: In contrast to A.4, a fragment of a longer chain is drawn

A.6: When several roles participate in a common activity their coincident

participation is denoted by horizontal links.

p

t
I
Q

t ~
STRESS

I

As shown, P and Q must coincidently be present at the creation of STRESS.

The horizontal line of boxes converts inputs {above) to outputs (below).

A.7: The diagram A.6 indicates that P and Q change values as a consequence

of taking part in the creation of STRESS. If we wish to indicate no change

of value of P, we draw

I
p Q

·~-4'--?
I STRESS

I

- 74 -

A.8: A role can branch into alternative states, shown as

p

A.9: In case of a branch, the choiceof path can be resolved by interaction

with other value-carrying roles. Suppose that exactly one of Bl or B2 will

be present, and will resolve the choice for P; then A.8 could be filled out

as

I
p Bl B2

A.10: In drawing a diagram with two alternative states, such as Bl and B2 in

A.9, it may be convenient to pull the two lines into one:

Bl 82

B
I

This pulling together is not an "objective" fact of the "system", but rather

a matter decided by the drawer of the diagram. He decides to view the distinction

formerly borne by the separation of the lines as "encoded" into an attribute of

a token that travels on the joined line.

- 75 -

A.11: If the person who draws the diagram has encoded Bl and B2, as in A.10,

then in drawing A.9 he would have to "decode" them -- i.e. to reporduce

separated lines, one for each of the encoded alternatives. In this case A.9

would be drawn with a fork:

p B

Bl B2

A.12: Two activities can be alternatives to the production of a single state,

in which case two states of a role can merge.

p

I
A.12 can be compared with A.9. Lines joined by branches and merges of a role

form a state component of a Petri net.

A.13: For convenience of presentation one may wish to bundle several roles

together and picture them as a single 11 cable 11
, as in an image of cabling

together of different 11 wires 11
• We illustrate this by roles A, Band C which

are 11 cabled 11 into a compound strand called L . In other words,

L :c{A,B,C}.

- 76 -

I I
~

L

Unlike encoded alternatives (see A.10) all the roles of a bundle can be

concurrently played

A.14: Unbundling corresponding to the undoing of A.13 is drawn as follows.

A.15: Brackets around a row indicate that the row is compressed from a

more detailed diagram shown elsewhere; for example the figure

is compressed from

DTN
I

{

DTN
I

I
DTNPH

I
DTNPH

I x

I x
I
E

- 77 -

A.15.1: The outputs of a bracketed row can be produced by an internal loop,

containing internal variables. TNUP is such a variable in the following

diagram, where

I I I I
TMAX OT X V

[6-_.,0i-----?-------9 }
is compressed from

TNUP > TMAX ?

- 78 -

A.16: The following illustrates fanout.

I
p

h
(This notation was used in A.15.1.)

A.16.l: Fanout can also be shown as follows.

A.16.2: We link two boxes by a double bar to assert identity of output values;

the following asserts that after the occurrence of the activity, B and B'

carry copies of the same value; the figure does not assert anything about the

relation between inputs, nor about the relation between inputs and outputs.

B B'
I I

A.17: The following illustrates the saving of the value of P as OLO_P, while

P is changed.

p

h
p OLD P

I I
(This notation was used in A.15)

-79 -

A.18: On occasion we indicate arithmetic operations on values, as in this

picture. After the activity of the row occurs, C carries the value A+B.

! I
A B

4-J
c
I

A.18.1: If A is a matrix, then Bas the sum over the elements of A could be

pictured as follows. I
A

ti--~
B
I

A.19: Buffered communication. A fragment of Figure 2 (of the main report is

(buffer) (buffer)

.1.

This can be expanded to

. 2.

The figure .2 contains the fragment

. 3 +~Lt-
for which we introduce the abbreviated notation:

- 80 -

.4

The slanted bar asserts that the lower activity consumes something produced

in the upper activity, and that a buffer not explicitly shown mediates the

transfer from the producing to the consuming activity. With this notation,

Figure 4 of the main report is transformed into Fig. 5.

- 81 -

APPENDIX B

Notes on Fitting the SIMPLE Code into Role Diagrams and VAL Modules

Figure 6 of the main report somewhat schematically shows the

connectivity of communication among processors, when one processor is assigned

to each nodal and each zonal region of the dataflow graph. In this appendix

we discuss the connections in more detail, and also discuss certain ways

in which the algorithm of SIMPLE has been restated to clarify the connectivity.

The objective is to help in considering hardware requirements, and to clarify

aspects of the translation from FORTRAN into VAL.

B.l. Interpretation of the cycle

Fig. 6 shows phase 3 as producing new values for zone [K,Llas

follows.

zone
[K,LJ

.1: Schematic representation of production of zonal value.

The fragment .1 is a schematic picture of an activity at zone K,L

that draws on values from the four neighboring (i.e. corner) nodes to feed

into the production of new values for the zone. With the indexing convention

defined in Fig. 1 of the main report, one sees that the fragment .1 stands for

the connections shown in .2:

node
LK-1,Ll

node
[K-1,L-l]

zone
[K,L J

- 82 -

node
LK, LJ

node
[K,L-U

.2: Completed fragment showing all connections of nodes to a zone.

The nodal values are a vector (with R and Z components) for velocity

and a vector for position at each node. The corresponding type definitions

and declarations in SIMPLE VAL are:

type vector= record[R, Z: real];

type nodal = array[array[vectorJJ;

X, % position

V: % velocity

nodal %.

The correspondence between these names as used in SIMPLE VAL and the names

used in the FORTRAN code of SIMPLE is:

FORTRAN code

R

z
u

w

VAL code

X.R

x.z
V.R

v.z

- 83 -

In order to clarify the connectivity, as well as to eliminate some

unnecessary arithmetic, we introduce auxiliary variables, starting with

a kind of tensor -- GX -- that describes the diagonal dimensions of each

zone:

/

I
/

--,- - ---

.3: Definition of GX.

GX is, at least in spirit, a tensor; GX[K,LJ.W is the vector difference

between the vector position at the nortwest corner and the vector position

at the southeast corner. GX is produced for interior zones by ZONE_GEOM

in phase 3, and for boundary zones by BOUNDARY_PROJECT; in the first case

the defining relation is

.4. type zone_tensor = array array record E, W: vector

GX: zone tensor :=

for~ll Kin [LIM.KN+!, LIM.KXJ, L in [LIM.LN+l, LIM.LXJ construct

record[E: XfK,U- X[K-1,L-IJ; W: X[K-1,LJ- X[K,L-IJJ endall; %.

Note that X is a vector, so that .4 is a shorthand expression; strictly speaking

one must define a subtraction function with vector arguments. This is

easy to do, but clutters the presentation. With the understanding that

we are abbreviating,we shall apply 11
-

11
,

11 +11 and multiplication by a scalar (11* 11
)

to vectors. The node-to-zone communications needed to fonn GX are shown in

- 84 -

the picture .2. The auxiliary variable GV is a zonal tensor formed from V

in exactly the same way that GX is formed from X.

Now we address phase 2 and the calculation of V. Prior to

corrmunicating from the zones around a given node to the node, a tensor

STRESS is calculated for eac~ zone; this calculation for a given zone

draws only on array elements for that zone. The computation covers boundary

zones, set up in phase 1, as well as interior zones .

. 5 STRESS: zone tensor :=

forall Kin [LIM.KN, LIM.KX+l], L in[LIM.LN, LIM.LX+lJ construct

record[E: (PlK,Ll+ QlK,LJ)*GXCK,Ll.E; %scalar * vector

W: (PC K,U+ Q[K,LJ)*GXl K,LJ.W J endall ; %,

where P and Q are pressure and artificial viscosity, respectively, just as

in the FORTRAN code. In phase 1 the auxilliary variable RHOJ is produced as:

.6 RHOJ : zonal :=

forall K in[LIM.KN, LIM.KX+l], L in lLIM.LN, LIM.LX+lJ construct

RHO[K,Ll*AJL K,L J endall; %,

where RHO and AJ are density and area jacobian, just as in the FORTRAN code.

Phase 2 of the cycle produces new values for each node, namely

V and X. The fragment that produces values for a particular node, say

node K,L appears in phase 2 of Fig. 6 as follows .

. 7: Schematic representation of the production of a nodal value.

- 85 -

The fragment .7 is a schematic picture of an activity that draws on values

from the four zones around node [K,LJ to feed into the production of new

values of X and V for the node. Thus the fragment .7 stands for

zone zone
[K,L+ll CK+l,L+lJ

zone
f K+l ,Ll

.8: Completed fragment showing all zones connected to a node

Each "cable" of values from a zone to node [K,Ll must carry STRESS and

RHOJ from the zone, and at least one of these cables must bring the time

steps DTNPH and DTN as well. (DTNPH and DTN are used here as they are in

the FORTRAN code of SIMPLE (1979).) The activity of the node in .8 during

phase 2 of the cycle is to calculate an acceleration (ACC), to use this

acceleration to update velocity (V), and then to use the velocity to update

position (X). In updating velocity a time step DTN is used. Position times

interleave the times at which velocity is calculated, so that a different

time step (DTNPH) is used to update position. Continuing to use the

abbreviation of scalar operation signs for operations on vector values,

this activity can be expressed in VAL as:

- 86 -

v' x : =

forall Kin [LIM.KN, LIM.KX+l], L in [LJM.LN, LIM.LX+ll construct

let Y: vector := (2./(RHOJCK,L l + RHOJLK,L+l] + RHOJ[K+l,LJ + RHOJ[K+l,L+U))

*(STRESS[K,L+lJ.E + STRESS[K,Ll.W - (STRESSCK+l,L+lLW + STRESS[K+l,Ll.E});

ACC: vector := record[R: -Y.Z; Z: Y.RJ;

Vl: vector := DTN*ACC + V[K,LJ

in Vl, DTNPH*Vl + X[K,Ll endlet

endall

After expansion of the vector operations, this code would provide the

functions VELOCITY and POSITION of Sec. 5.2.3.

Phase 4 involves arrays that are partly nodal and partly zonal in

character. An element of CBB is obtained as an intennediate between two

nodes of the same L-coordinate but adjoining K coordinates, and two zones

bounded by the nodal K coordinates and on either side of the L coordinate:

In calculating heat conduction subroutine CONDUCT of the SIMPLE

FORTRAN code generates arrays CBB and DBB, per lines 1583 through 1608.

CBB and DBB draw on values from both nodes and zones, as shown:

~ - -···1
I zone

1
I [K,L+l ll

node 1- _ I node
lK-1,LJ

1
--jrK,U

1 zone I
L __!_K ._!:) ~

For CBBlK,LJ

r- -
I zone
I [K,L]

/_ -

node
lK,L l

- ------ --1

I
I

----­node
CK,L-lJ

For DBBCK,U

'

zone
fK+l,LI

-- _j

.9: Nodes and zones that supply values to the calculation of CBBLK,Ll
and DBBCK,LJ.

- 87 -

To adhere stri-ctly to the connectivity shown in Fig. 6, one programs the

calculation of CBB and DBB in two parts, one as an augmentation of ZONE_GEOM

and the other as part of an augmented ENERGY_HYDRO. The augmentation

consists of generating geometrical quantities as part of ZONE GEOM,

referring these to zones, as was done for GX, and then using these quantities

to simplify the connectivity needed in ENERGY_HYDRO. An alternative which

is displayed in SIMPLE_VAL of Sec. 5.2.3 is to accept a slightly more

complex connectivity and thereby avoid the introduction of more auxilliary

variables.

CBB and DBB are partly zonal and partly nodal in character,

so that fitting them to either class of processors is arbitrary. Because

the nodal processors are less heavily used, we have assumed that they

would be used to compute CBB and DBB from zonal quantities (CC in FORTRAN).

The consequent connectivity is shown in phase 4 of Fig. 6. For the

Z-sweep this connectivity is shown in more detail in .10:

- 88 -

Node Zone
[K,L-1.J CK, L J

I

I CBB

{TEMP,1
SIG

"'{A,BJ

{CBB*{ 1-A) '}
CBB*B CBB

{ A,B)

TEMP2l.K,L+lJ

TEMP2[K,LJ TEMP2[K,LJ
~

' .10: Detail of Z-sweep of ENERGY_HEAT.

Node
[K,U

I
CBB

Zone
[K,L+ll

{TEMP,) SIG

JCBB*{ 1-A) •l
LCBB*B 1

{ A,Br

.,,..,........
TEMP2LK,L+21

TEMP2[K,L + U
J

- 89 -

Appendix C: The SIMPLE code in FORTRAN

Edition of February 12, 1979 as provided by John Woodruff

1 $PUTT IME,,,100000 100000,,,2000
2 PROGRAM H2DDCHFILE,TAPE3=HFILE>
3 c
4
5
6
7 c
8
9 c

10
11
12
13
14
15 c
16
17
18
19 c
20
21 c
22
23
24 c
25
26
27
28 c
29
30
31
32
33
34
35
36
37 c
38 c
39 c
40 c
41 c
42 c
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

COMMON /KLS/ K,L,DEBUG,VERSION,WHER.WHEN,P106LPIE,IGEN,P102
X ,OTC,KC,LC,DTEN,KEN,LEN,SKE,HN,SIEL,CNN,ENC,~NH,ENCG,WN
X ,NCP,P108,VCUT

COMMON /PROGG/ RO,ZO,R1,Z1,RP,ZP,RR.ZZ

COMMON /COMN/ RC33,33J,ZC33,33l,UC33,33),RH0(33,33J,QC33,33)
X ~E(33,33l,PC33,33),AJC33,33),SC33,33l,NBCC33,33)
X ,WC3~,33l,TEMPC33,33l
X , AC33,33l,BC33L33l,CC(33,33l,DUMC33,33),CBBC33,33l
X , DBBC33,33l,CA~C33,33J,SIGC33,33l,TSC33,33l

COMMON /PARAM/ NYCL,TNUP,DTNUP,DTN,DTNPH,DTNMH,EDTIMELEDOT
X ,GAM,GAMZ,COF,C1F,C1,TMAX,DTMAX,OTMIN,TFLR,NOHYu
X ,C2,P2,P3,NO,NTTY,NEO

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP

COMMON /GENCOM/ RHOO,EO,UO,PO,WO,DR,OZ,NBCU,NBCO,NBCL,NBCR
X ,PBC3l,PBBC3l,QBC3l

COMMON /MINMAX/ XMIN,XMAX,YMIN,VMAX.PMIN,PMAX,QMIN,QMAX
X,RMIN,RMAX,KQ,LQ,KR,LR,KP,LP
X ,XMINX,XMAXX,YMINX,YMAXX

COMMON /TI Ml NG/ NBT< 20 l, NCTC 20>, NETC20), NPTC 20>, NXTC20l

COMMON /EOSCOM/ KEOStTARG1LTARG2,TARG3,RARG1,RARG2,RARG3,
X FUNC1,FUNC2,FUNC3, EMPS,~PS,EPSO

COMMON /COM2/ NTSVC2l,NRSVC2l,MSVC2l TESC7l,RESC9l
X ,AESC12l,BES<12l,CES<12l,DESC12l,EES(12),FESC12l,GESC12l
x . HES (1 2 J • PES (1 2) J I TES (3) I I RES (3) J I ZES (3)

NCYL = CYCLE COUNTER EDTIME= TIME OT EDIT
TNUP =PROBLEM TIMECN+1) EDDT = OELTAT NEXT EDIT
DTN = DELTAT CNJ TMAX = MAXIMUM TIME
DTNPH= DELTAT CN+1/2l DTMAX = MAXIMUM ALLOWED OT
DTNMH= DELTAT <N-1/2) DTMIN = MINIMUM ALLOWED OT

DIMENSION ARRAYC1l
EQUIVALENCE <ARRAY,Rl
DATA 11 /0/
DATA NLINKS/5/
DATA VERSION /1./
DATA NCP/10/
DATA IER/O/
DATA NTTY/59/
DATA N0/3/
DATA DEBUG/O./
DATA DTMAX/.01/
DATA OTM!N /.0001/
DATA TFLR/.0001/
DATA NOHYD/O/
DATA PIE/3.1415926535898/
DATA EDTIME/O./
DATA EDDT/4./
DATA P1D2/.5/

PAGE

61
62
63
64

-55 c
66
67
68
69 c
70 c
71 c
72
73 c
74
75 c
76
7 - "' I '-'

78
79 c
80 c
81 c
82
83 c
8Ll c
85 c
86
87
86
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
11 0
1 1 1
112
11 3
114
115
116
117
11 8
119
120

DATA TMAX/12.001/
DATA VCUT/1 .E-10/
DATA DTEN/1 .E+lO/
DATA DTC/1 .E+lO/

CALL CHANGEl2H+HJ
CALL ASS!GN(3,2RPHI
CALL CLOCK(WHER,WHENJ

ZER~ OUT ALL ARRAYS

L=21:>:33*33

Del 10 K=l,L

P.RRAY (K) = 0.

10 CONTINUE

SET UP EOS TABLES

CALL SETUP

SET PARAMETERS FOR TEST PROBLEM

GAM=1.4
P2=6.
P3=0.
PB< 1I=1.
PB<21=0.
PBC3J=O.
QB(1l=1.
QBl21=0.
QB(31=0.
PBB< 1 I =O.
PBB(2l=P2
PBBC31=P3
RHOO=l.4
KMN=2
LMN=2
KMX=5
LMX=22
DR= 1.
DZ= 1.
DTNPH=.01
TMAX=10.
DTN=DTNPH
DTNMH=DTNPH
TNUP=O.
EO=O.
UO=O.
PO=O.
WO=O.
NBCU= 1
NBCR=2
NBCL=1
NBCD=1
C2= 1. 5
COF=C2ll<.25
Cl=.5

PAGE 2

c

c

c

c
c
c
c
c
c
c

c

C1f:: 5*C1
GAMZ GAM- 1.
OTC= 00.
P1D8 1 ./8.
HN=O.
WN=O.

GET INPUT PARAMETERS

WRITECNTTY,4)
4 FORMATC23H cNTER INPUT PARAMETERS)

READCNTTY,5lKMN,KMX,LMN,LMX,EDOT,ED~IME,TMAX
5 FORMATC412,3F5.2)

KMNP=KMN+l
LMNP=LMN+l

KMXP=KMX+l
LMXP=LMX+l

KMXZ=KMX-1
LMXZ=LMX-1

GENERATE PROBLEM

CALL GEN

IGEN=O

I NI TI ALI ZE Tl MER

NED=l
12=NECONDCl1)

121
122
123
124
125
126
127 c
128 c
129 c
130
131
132 c
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179 c
180

C START CYCLE HERE
c

1 CONTINUE
c

DTC2=1.E+12
SKE=O.
ENC=O.
ENH=O.
DTEN=1.E+12

c
C**~****
C* *
C* GEOMETRY CALCULATION FOR BOUNDARY ZONES *
C* *
C**•**** c
c
c

SET UP BOTTOM SIDE BOUNDARY ZONES

C PCK,L+1)
C OCK,L>
C RCK,L-1>
c

1CK+1,Ll

L=LMN

RO=RCKMN,L>

PAGE 3

181
182 c
183
184 c
185
186
187 c
188
189
190 c
191
192 c
193
194
195 c
196
197
198 c
199
200 c
201 c
202 c
203 c
204 c
205 c
206 c
207
208
209 c
210
211
212 c
213
214
215 c
216
217
218 c
219
220 c
221
222
223 c
224 c
225 c
226 c
227 c
228 c
229 c
230
231
232
233 c
234
235 c
236
237
238 c
239
240

ZO=Z<KMN. Ll

DO 200 K=KMN,KMXZ

Rl =RCK+l ,L)
Zl=ZCK+l,L)

RP=RCK,L+l)
ZP=ZCK,L+l)

CALL PROJCT

RC K, L-1) =RR
ZCK,L-l)=ZZ

RO=Rl
ZO=Zl

200 CONTINUE

SET UP BOTTOM RIGHT CORNER

PCK, L+l l
lCK-1 ,Ll OCK, Ll

RCK, L-1)

K=KMX
L=LMN

RO=RCK, LJ
ZO=ZCK, LJ

Rl=RCK-1,L>
Zl=ZCK-1,Ll

RP=RCK,L+ll
ZP=ZCK,L+ll

CALL PROJCT

RCK,L-l>=RR
ZCK,L-l>=ZZ

SET UP TOP SIDE BOUNDARY ZON£S

RCK, L+l)
OCK,L) 1CK+1,Ll
PCK,L-ll

L=LMX
RO=RCKMN,Ll
ZO=ZCKMN, Ll

DO 204 K=KMN,KMXZ

Rl =RCK+l ,Ll
Zl=ZCK+l,L)

RP=RCK,L-1)
ZP=ZCK,L-1>

PAGE 4

PAGE 5

2-41 c
242 CALL PROJCT
243 c
244 RCK,L+l>=RR
245 ZCK,L+l>=ZZ
246 c
247 RO=Rl
248 ZO=Z1
249 c
250 204 CONTINUE
251 c
252 c SET UP TOP RIGHT CORNER
253 c
254 c R(K, L+1 l
255 c 1CK-1,Ll O<K,Ll
256 c P(K,L-1l
257 c
258 K=KMX
259 L=LMX
260 c
261 RO=RCK, LJ
262 ZO=ZCK, LJ
263 c
264 R1 =RCK-1 ,Ll
265 Z1 =Z<K-1 ,Ll
266 c
267 RP= R < K, L - 1 l
268 ZP=ZCK,L-1l
269 c
270 CALL PROJCT
271 c
272 RCK,L+1>=RR
273 ZCK,L+1l=ZZ
274 c
275 c SET UP LEFT SIDE BOUNDARY ZONES
276 c
277 c 1CK,L+1l
278 c RCK-1,Ll OCK,Ll PCK+1,Ll
279 c
280 K=KMN
281 RO=RCK,LMNl
282 ZO=ZCK,LMNl
283 c
284 DO 207 L=LMN,LMXZ
285 c
286 R1=RCK,L+1l
287 Z1=ZCK,L+1l
288 c
289 RP=RCK+1.Ll
290 ZP=ZCK+1 ,Ll
291 c
292 CALL PROJCT
293 c
294 RC K - 1 , Ll =RP
295
296 c ZCK-1, Ll =ZZ

297 RO=R1
298 ZO=Z1
299 c
300 207 CONTINUE

301 c
302 c
303 c
304 c
305 c
306 c
307
308
309 c
310
311
312 c
313
314
315 c
316
317
318 c
319
320 c
321
322
323 c
324 c
325 c
326 c
327 c
328 c
329
330
331
332 c
333
334 c
335
336
337 c
338
339
340 c
341
342 c
343
344
345 c
346
347
348 c
349
350 c
351 c
352 c
353 c
354 c
355 c
356
357
358 c
359
360

SET UP TOP LEFT CORNER

RCK-1,LJ OCK,U PCK+l,U
1CK,L-1J

K=KMN
L=LMX

RO=R(K Ll
ZO=ZCK'. LI

R1=RCK,L-1J
z·r=ZCK,L-1 l

RP=RCK+l ,Ll
ZP=ZCK+l ,LJ

CALL PReJJCT

RC K- i , L J =RR
Z C K-1 , L J = ZZ

SET UP RIGHT SIDE BelUNDARY ZBNES

1 CK, L+l J
PCK-1,LJ OCK,LJ RCK+l,LJ

K=KMX
RO=RCK,LMNJ
ZO=ZCK,LMNJ

oe 210 L=LMN,LMXZ

Rl =RO(, L+l J
Z1=ZCK,L+1l

RP=R<K-1,Ll
ZP=ZCK-1,Ll

CALL PROJCT

R (K + 1 , Ll =RR
ZCK+l,LJ=ZZ

RO=R1
ZO=Z1

210 CelNTINUE

SET UP TOP RIGHT CORNER

PCK-1,Li OCK,Ll RCK+l,Ll

Ko:KMX
L=LMX

1CK,L-1l

RO=RCK, Ll
ZO=ZCK,LJ

PAGE 6

361 c
362
363
36.4 c
36t5
366
367 c
368
.. c
310
3'1'1
3'7t c
37$ c
37i4 c
37'5 c
375 c
~;g c
379
390 c .,
30
3A c
384 me w g:g c
391 c
392 a• 394 c mg
3•7 c
38 c gc
402 c
40'3
4(M
~!! c
40?.
40. c
409
4l0
411 c
412
413 c
414
41G
416 c
41? c
418 c
'419 c
420 c

Rl=RCK,L-1)
Zl=ZCK,L-1>

RP=RCK-1 • L>
ZP=ZCK-1,L>

CALL PRO.J'CT
RCK+l, L> =RR
ZCK+l, L> =ZZ

SET UP TOP RIGHT CORNER

PCK-1,L+l>

K=KMX
L11LMX

RO=RCK,Ll
ZO•Z<K, LJ

1CK,L+1>
OCK,L>

Rl=RCK,L+l)
Zl=ZCK,L+l>

RP=RCK-1,L+l)
ZP•ZCK-1,L+l)

CALL PRO.JCT
RCK+1,L+l}•RR
Z(K+1,L+1>:rZZ

RCK+1,L+1>

SET UP BOTTOM LEFT CORNER

RCK-1,L-1>

K=Kf1N
L=LMN
RO=RCK, Ll
ZO=ZCK, LJ

OCK, L>
lCK,L-1)

R1=RC1(,L-1>
Zt•Z(K,L-1>

RP=RCK+l ,L.-U
ZP=ZCK+l,L-1>

CALL PRCIJCT

RCK-1,L-ll=RR
ZCK-1,L-l>=ZZ

PCK+l,L.-1>

SET UP BOTTOM RIGHT CORNER

OCK,L>
PCK+1,L+1>
1CK+1,L>

PAGE 7

RCK+l,L-1)

K=KMX
L=LMN

RO=RCK,LJ
ZO=ZCK, Ll

Rl=RCK+l,LJ
Zl=ZCK+l,LJ

RP=RCK+l,L+l)
ZP=Z<K+l,L+l)

CALL PROJCT

RCK+l,L-l>=RR
ZCK+l,L-l>=ZZ

SET UP TOP LEFT CORNER

RCK-1,L+l)
lCK-1,LJ
PCK-1, L-1 >

L=LMX
K=KMN

RO=RCK,LJ
ZO=ZCK, Ll

OCK, L>

Rl =RCK-1,Ll
Z1 =ZCK-1,Ll

RP=RCK-1,L-1)
ZP=ZCK-1.L-1>

CALL PROJCT

RCK-1,L+l)=RR
ZCK-1,L+l>=ZZ

421 c
422 c
423
424
425 c
426
427
428 c
429
430
431 c
432
433
434 c
435
436 c
437
438
439 c
440 c
441 c
442 c
443 c
444 c
445 c
446
447
448 c
449
450
451 c
452
453
454 c
455
456
457 c
458
459 c
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474 c
475
476 c
477
478
479
480

c
C*************************************
C• *
C* SET UP BOUNDARY ZONE ATTRIBUTES *
C* *
C************************************* c
c
c

SET UP BOTTOM SIDE BOUNDARY ZONES

C CK,L> = CK,L+l)
c

L=LMN

DO 255 K=KMNP,KMX

RHOCK,L>=RHOCK,L+l)
AJC!.<.J_L>=AJCK,L+l>
IP=rmC<K-1 Ll
QCK,L>=QBC1P>•QCK,L+1>

PAGE 8

481
482 c
483
484 c
485 c
486 c
487 c
488 c
489
490 c
491
492 c
493
494
495
496
497
498 c
499
500 c
501 c
502 c
503 c
504 c
505
506 c
507
508 c
509
510
511
512
513
514 c
515
516 c
517 c
518 c
519 c
520 c
521
522 c
523
524 c
525
526
527
528
629
530 c
531
532 c
533 c
534 c
535
536
537
538
539 c
540 c

PCK,L>=PBBCIPl+PBCIP>•PCK,L+l)

255 CONTINUE

SET UP RIGHT SIDE BOUNDARY ZONES

CK+l, Ll = CK, L>

K=KMX

DO 265 L=LMNP,LMX

RHOCK+1,Ll=RHOCK,L>
AJCK+l,Ll=AJCK,L)
I P=NBCCK, L>
QCK+l,L)=QBCIPl•QCK,L>
PCK+1,Ll=PBBCIPl+PBCIPl•PCK,Ll

265 CONTINUE

SET UP TOP SIDE BOUNDARY ZONES

CK, L+l l = CK, L>

L=LMX

DO 275 K=KMNP,KMX

RHOCK,L+ll=RHOCK,Ll
AJCK,L+1l=AJCK,Ll
!P=NBCCK-1 Ll
QCK,L+ll=QBCIPl•QCK,L>
PCK,L+ll=PBBC!Pl+PBCIPl•PCK,Ll

275 CONTINUE

SET UP LEFT SIDE BOUNDARY ZONES

CK,L> = CK+l,Ll

K=KMN

DO 285 L=LMNP,LMX

RHOCK,Ll=RHOCK+l,Ll
AJCK,Ll=AJCK+l,Ll
IP=NBCCK L-1>
QCK,Ll=QBCIPl•QCK+l,Ll
PCK,Ll=PBBC!Pl+PBCIPl•PCK+l,Ll

285 CONTINUE

SET UP BOTTOM LEFT CORNER

PCKMN,LMNl=P<KMNP,LMNPl
QCKMN,LMNl=QCKMNP,LMNPl
RHOCKMN,LMNl=RHOCKMNP,LMNPl
AJCKMN,LMNl=AJCKMNP,LMNPl

SET UP BOTTOM RIGHT CORNER

PAGE 9

PCKMXP,LMN>=PCKMXP,LMN+1)
QCKMXP,LMN>=QCKMXP,LMN+1)
RHOCKMXP,LMN>=RHO<KMXP,LMN+1)
AJCKMXP,LMN>=AJCKMXP,LMN+1)

SET UP TOP RIGHT CORNER

P<KMXP,LMXP>=P<KMXP,LMX>
QCKMXP,LMXP>=QCKMXP LMX>
RHOCKMXP,LMXP>=RHOCKMXP,LMX>
AJCKMXP,LMXP>=AJCKMXP,LMX>

SET UP TOP LEFT CORNER

PCKMN,LMXP>=PCKMNP,LMXP>
QCKMN,LMXP>=QCKMNP,LMXP>
RHOCKMN,LMXP>=RHOCKMNPbLMXP>
AJCKMN,LMXP>=AJCKMNP,L"XP>

GET BOUNDARY CONDITION COMPUTE TIME

12=NECONDCl1)
NBTCNED>=NBTCNED>+l2

DEBUG EDIT

IFCDEBUG.EQ,O.) GO TO 442
IGEN=1

WRITECN0,441)
441 FORMATC9H DEBUG

CALL EDIT

442 CONTINUE

1)

541 c
542
543
544
545
546 c
547 c
548 c
549
550
551
552
553 c
554 c
555 c
556
557
558
559
560 c
561 c
562 c
563
564
565 c
566 c
567 c
568
569
570 c
571
572
573 c
574
575 c
576
577 c
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595 c
596
597 c
598
599
600

DO 450 L=LMN,LMX
DO 445 K=KMN KMX

COMPUTE ACCELERATlaN
AU=CPCK,L)+QCK,L>> * CZCK,L-1>-ZCK-1,L>> +

X CPCK+1,L)+QCK+1,Lll*CZCK+1,Ll-ZCK,L-1)) +
X CPCK+1,L+1)+QCK+1,L+l>)•CZCKtL+1J-ZCK+1,L>> +
X CPCK,L+1)+QCK)L+1)l*CZCK-1tLJ-ZCK,L+1))

AW=CPCK,L)+QCK,L) * CRCK,L-11-RCK-l,L>> +
X CPCK+l,L>+QCK+l,L>> * CRCK+1,Ll-RCK,L-1>> +
X CPCK+1,L+1)+QCK+l)L+1>> * CR<KtL•l>-RCK+l,L>> +
X CPCK,L+l)+QCK,L+l > * CRCK-l,L1-RCK,L+l>>

AUW=RHOCK,L>•AJCKAL>+RHOCK+l,L>•AJCK+l,L>+RHOCK,L+l>*AJCK,L+l>
X +RHOCK+l,L+l>* JCK+l,L+l)

AUW=2./AUW
AU=-AU•AUW
AW=AW•AUW
UCK,L>=UCK L>+DTN*AU

ADVANCE VELOCltJES TO N+l/2 FROM N-1/2
WCK,L>=WCK,L>+DTN*AW

POSITION CN+l)
IFCABSCUCK,L>>.LE.VCUT>UCK,LJzO.
IFCABSCWCK,L>>.LE.VCUT>WCK,L)zQ,
ACK.L>=UCK,Ll**2+WCK,Ll**2

PAGE 10

445 CONTINUE
450 CONTINUE

IFCNOHYD.EQ.1) GO TO 455
C NOHYD=1 TO SKIP HYDRO

601
602
603
604
605
606
607
608
609
610
611 c
612 c
613 c
614 c
615 c
616 c
617 c
618 c
619
620
621 c
622
623
624 c
625
626 c
627
628 c
629
630 c
631 c
632
633
634
635
636
637
638
639
640 c
641 c
642 c
643
644
645
646
647 c
648 c
649
650
651
652
653
654
655
656
657
658
659
660

DO 452 L=LMN,LMX
DO 451 K=KMN,KMX
RCK,L>=RCK,L>+DTNPH*UCK,L>
ZCKtL>=ZCK,L>+DTNPH*WCK,L>

451 CON INUE
452 CONTINUE

ACCELERATION VELOCITY AND
CO-ORDINATES DONE

BEGIN LOOP 3
TEMP RY *****•***

DEBUG EDIT

IFCDEBUG.EQ.O.> GO TO 455
IGEN=1

WRITECN0.456)
456 FORMATC9H DEBUG

CALL EDIT

455 CONTINUE

CALL HWORK

2)

END OF NECOND PASS

COMPUTE HYDRO WORK ON THE BOUNDARY
DO 490 L=LMNP,LMX
DO 485 K=KMNP KMX .
AJ1=RCK,L>* CZCK-1,L>-ZCK,L-1)) +

X RCK-1,L>• CZCK,L-1>-ZCK,L>> +
X RCK,L-1>*CZCK,L>-ZCK-1 L>>

AJ3=R<K-1,L>* CZCK-1,L-1>~ZCK,L-1l> +
X RCK-1,L-1>•CZCK,L-1>-ZCK-1,L)) •
X RCK,L-1>•CZCK-1,L>-ZCK-1,L-1))

JACOBIAN AREA IN CR,Z> PLANE

SN=SCK LJ
AJCK,Ll=P1D2•CAJ1+AJ3)
SCK,L>=P1D6•CCRCK,L>+RCK-1,Ll+R<K,L-1>>*AJ1 +

X CRCK-1,L>+RCK-1,L-1>+RCK,L-1>>*AJ3

S=VOLUME/2X CCM••3/RADIAN>
VN=1./RHOCK,LJ

C VN=SPECIFIC VOLUME AT CNJ
C VNP=SPECIFIC VOLUME AT CN+1)

RHOCK,L>=RHOCK,L>•SN/SCKtL)
DUMCK,LJ=RHOCK,L>•SCK,L'

C DUM=MASS
C DENSITY AT N+1

VNP=1./RHOCK,L>
DELV=VNP-VN

COMPUTE ARTIFICIAL VISCOSITY
DRK=RCK,L>-RCK-1,L-l>+RCK,L-1>-RCK-1,L)
DRL=RCK,L>-RCK-1,L-1)+RCK-1,LJ-RCK,L-1)

PAGE 11

DZK
DZL
DUK
DUL
DWK
OWL

ZCK, U -ZCK-1, L-1 > +ZCK, L-1) -ZCK-1, L)
Z<K, U -ZCK-1, L-1 l +ZCK-1, L> -ZCK, L-1 >
UCK,Ll-UCK-1,L-ll+UCK,L-ll-UCK-1,L)
UCK,Ll-UCK-1,L-ll+UCK-1,LJ-UCK,L-1)
WC K , U -W < K - 1 , L - 1 J + W C K, L - 1 > -WC K - 1 , L)
WCK,Ll-WCK-1,L-ll+WCK-1,Ll-WCK,L-1}

DRK=2DR/DK
DRL=2DR/DL

Wl= DRK*DWL-DZK*DUL
W2= DUK*DZL-DWK*DRL
GlCK,Ll=O.
W3=0.
W4=0.
IFCW1.LT.O. JW3=W1**2/CDRK**2+DZK**21
IFCW2.LT.O. JW4=W2••2/CDRL••2+DZL*•21
IFCCW3+W4l.EQ.O.J GO TO 465
CA=SQRTCGAM•PCK,Ll/RHOCK,Lll

DON'T COMPUTE Q IF ZONE IS NOT BEING COMPRESSED
QCK,L>=COF•RHOCK,Ll•CW3+W4l + C1F•CA•RHOCK,Ll•SQRTCW3+W4l

ClF= Cl•.5 COF=.25•C0••2 CA=SOUND SPEED

IFCCA.EQ.0.) GO TO 465
TSO=CAJCK~Ll••2l/CCA•CA•CDRK•*2+DRL~•2+DZK**2+DZL**2ll
IFCDTC2.L~.TSOJ GO TO 462

HAVE A NEW MINIMUM DELTA T
DTC2=TSO
KC=K
LC=L

462 CONTINUE
465 CONTINUE

EPS=ECK,L>-CPCK,Ll+QCK,Lll*DELV
ECN+l)

RARGl =RHO CK, Ll
CALL TEMPCAL -
TARGl=TEMPS
CALL IES1
PNP=FUNCl

661
662
663
664
665
666
667 c
668 c
669 c
670 c
671
672
673
674
675
676
677
678
679
680 c
681
682 c
683 c
684
685
686
687 c
688
689
690
691
692
693
694 c
695 c
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

C GAMMA-LAW EOS GAMZ=GAM-1.
ECK,Ll=ECK,Ll-C.5•CPNP+PCK 1 L))+QCK,Lll•DELV
ECK, L> =AMAX! CECK, L>, 1. E-30J
EPS=ECK, Ll
CALL TEMPCAL -

C GET TEMPERATURE AS FUNCTION OF E.RHO
TARG1=AMAX1CTEMPS,TFLRl

TEMP CK, L> =TARGl
CALL IESl

C GET PRESSURE
PC K, Ll = FUNC 1

C ECN+ll
C PCN+ll
c

SKE=SKE+P1D8•DUMCK,Ll*CACK,LJ+A<K-1,Ll+ACK,L-1l+ACK-1,L-1ll
C KINETIC ENERGY FOR THE ZONE

485 CONTINUE
490 CONTINUE

C********************************END OF LOOP 3 c

PAGE 12

c
c

c

c
c
c

DEBUG EDIT

IFCDEBUG.EQ.0.) GO TO 495
IGEN=1

WRITECN0.493)
493 FORMATC9H DEBUG 3)

CALL EDIT

495 CONTINUE

IGEN=O
12=NECONDCl1)
NXTCNED>=NXTCNED)+l2

CALL CONDUCT
DO HEAT CONDUCTION

NYCL=NYCL+ 1
C ADVANCE CYCLE COUNTER

DTNMH=DTNPH

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736 c
737
738 c
739 c
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

DTC=SQRTCDTC2>
DTNPH=DTC
DTNPH=AMIN1CDTNPH,DTEN,DTMAX)

C LIMIT MAGNITUDE OF OT
DTN=.5•CDTNPH+DTNMH>
TNUP=TNUP+DTNPH
IFCDTNPH.GE.DTMIN> GO TO 602

C********** DT IS BELOW ALLOWED MINIMUM ~**~******
WRITE<N0.601lNYCL,TNUP,DTNPH,DTMIN
WRITE<NO 601lNYCL,TNUP,DTNPH,DTMIN

601 FORMAT<12H DTSTOP NYCL, 16,3H T ,E12.4,4H DT ,E12.4~
GO TO 999

602 CONTINUE
TE=SKE+ENH
CN=TE-HN-WN
IFCNYCL.EQ.1) CNOLD=CN
CNN=CN-CNOLD
ENCG=ENCG+CNN
CNOLD=CN
IFCMODCNYCLLNCPl.NE.O> GO TO 603
WRITECN0.70ol

706 FORMATC6H CYCLE,4X,5HTIME ,7Xt2HDT,lOX,3HDTC,5X,8H KC
X 4X 3HDTE,5X 8H KEN LEN1

WRITECNOL707>NYCLLtNUP 1 DTNPH,DTC,KC$LC,DTEN,KEN,LEN
707 FORMATClo,3E12.4,~14,E12.4,214>

Z~=ABSCENC-CENH+HN>>IENC
WRITECN0.708>

708 FORMATC4X,4HETOT,8X,4HIE ,8X,4HKE ,8X,4HHN ,8X,4HWN
X 8X,5HECONS,7X,5HCNCN>,7X,4HECNG>

WRITECN0.709>TE,ENC,SKE,HN,WN,Z2,CNN,ENCG
709 FORMATC8E12.4l

603 CONTINUE
12=NECONDCl1)
NCTCNED>=NCTCNED>+l2

C RUN TIME FOR PHYSICS
IFCTNUP.LT.EDTIME> GO TO 605

C TIME TO EDIT
CALL EDIT

PAGE 13

LC,

WRITECN0,604>NYCL,TNUP,DTNPH,RMAX,KR,LR
604 FORMATC12H EDIT NYCL= , 16,2E12.4,E14.5,214>

C MESSAGE TO TTY

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804 c
805 c
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822 c
823
824

EDTIME=EDTIME+EDDT
C ADVANCE ED!TME TO NEXT VALUE

605 CONTINUE
IFCTNUP.LT.TMAX> GO TO 610

C*******••• PROBLEM HAS REACHED TMAX*****~****
WRITECN0,607>NYCL,TNUP,TMAX
WRITECN0,607lNYCL,TNUP,TMAX

607 FORMATC12H STOP TMAX ,16,2E12.4>
GO TO 999

610 CONTINUE
GO TO 1

999 CONTINUE
C PROBLEM COMPLETED GET OFF
C CALL PLOTE

WRITECN0,616JCNBTCKl,NCTCK>,NET<KJ,NPTCK),NXTCK>,K=1,NED>
616 FORMATC5C 1X, 110) >

11=0
DO 618 K=1,NED
11=11+NBTCK>+NCTCK)+NETCKl+NPTCK>+NXTCKl

618 CONTINUE

619
c

620

I F (I 1 . EQ • 0 > I 1 = 1
DO 619 K=2,NED
NBT< 1) =NBTC 1) +NBTCK>
NCT< 1>=NCTC1) +NCTCK>
NETC1>=NETC1>+NETCK)
NPTC1>=NPTC1>+NPTCK>
NXTC1 >=NXTCll+NXTCKl
CONTINUE

AESCl>=CNBTCll*lOOl/11
AESC2>=CNCTC1)*100l/11
AESC3>=CNETC1l*100l/11
AESC4l=CNPTC1l*100l/11
AESC5>=CNXTC1l*l00)/11
WR I TE C NO, 620) I 1 , C AES C I 2 > , I 2= 1 , 5)
FORMATCl10,5E12.4>

RETURN
END

PAGE 14

825

SUBROUTINE GEN

THIS SUBROUTINE GENERATES THE INITIAL PROBLEM TO BE RUN

COMMON /KLS/ K,L,DEBUG,VERSION,WHER,WHEN,P1D6,PIE,IGEN,P1D2
X ,DTC,KC,LC,DTEN,KEN,LEN,SKE,HN,SlEL,CNN,ENC,ENH,ENCG,WN
X ,NCP

COMMON /PROGG/ RO,ZO,Rl,Zl,RP,ZP,RR.ZZ

COMMON /COMN/ RC33t33lLZC33,33),UC33,33),RHOC33,33l,QC33,33l
X LEC33,33JLPC~3,33),AJC33,33),SC33,33),NBCC33,33)
X ,WC3~ 33l,TEM~C33,33)
X , AC33,33lLQC33L33),CCC33,33l,DUMC33,33),CBBC33,33l
X , DBBC33,3~l,CA~C33,33l,SIGC33,33l,TSC33,33l

COMMON /PARAM/ NYCL,TNUPLDTNUP,DTN,DTNPH,DTNMH,EDTIME,EDDT
X ,GAMLGAMZ,COF,ClF,~1,TMAX,DTMAX,DTMIN,TFLR,NOHYD
X ,C2,~2,P3,NO,NTTY,NED

COMMON /KLSPACE/ KMN,LMN,KMX,LMK,KMXZ,LMXZ,KMNP,LMNP,KMXP,LMXP

COMMON /GENCOM/ RHOO,EO,UO,PO,WO,DR,DZ,NBCU,NBCD,NBCL,NBCR
X ,PBC3l,PBBC3l,QB(3}

COMMON /MINMAX/ XMIN,XMAX,YMlN,VMAX,PMIN,PMAX,QMIN,QMAX
X,RMIN,RMAX,KQ,LQtKR,LRiKP,LP
X ,XMINX,XMAXX,YM NX,YMAXX

IGEN NOT EQUAL 0 WILL CAUSE THE EDIT ROUTINE TO PRINT ALL THE VARIABL

DATA IGEN/1/

826
827
828 c
829 c
830 c
831
832
833
834 c
835
836 c
837
838
839
840
841
842 c
843
844
845
846 c
847
848 c
849
850
851 c
852
853
854
855 c
856 c
857 c
858
859
860
861
862
863
864
865
866
867
868
869 c
870
871
872 c
873
874 c
875 c
876 c
877
878 c
879
880
881 c
882
883 c

c
C************************
C* *
C* GENERATE NBC ARRAY *
C* *
C************************ c
c
c

SET BOTTOM AND TOP BOUNDARY CONDITIONS

DO 52 K=KMN,KMX

fl{BCCK,LMN>=NBCD
NBCCK,LMX>=NBCU

52 CONTINUE

SET LEFT AND RIGHT BOUNDARY CONDITIONS

54

DO 54 L=LMN,LMX

NBC C KMN, U = NBCL
NBCCKMX, U =NBCR

CONTINUE

884 C***********************************~****~

PAGE 15

885 C* ll
886 C* GENERATE COORDINATES AND VELOCITIES ~
887 C* ll
888 C***********•***********************K*****
889 c
890 C INITIALIZE THE MINIMUM AND MAXIMUM VALUES OF R AND Z
891 c
892 XMINX=1 .E+6
893 XMAXX=-1.E+6
894 c
895 YMINX=1.E+6
896 YMAXX=-1.E+6
897 c
898 RP=LMX-LMN
899 ZP=KMX-KMN
900 c
901 DO 58 K=KMN,KMX
902 c
903 Z1=10+K-KMN
904 c
905 DO 57 L=LMN,LMX
906 c
907 C COMPUTE THE COORDINATES R AND Z
908 c
909 RR=L-2
910 ZZ=<-.5+RR/RP>*PIE
911 c
912 RCK,L>=Z1•COS<ZZ)
913 ZCK,L>=Z1•SINCZZ>
914 c
915 C FIND THE MINIMUM AND MAXIMUM VALUES OF RAND Z
916 c
917 XMINX=AMIN1CXMINX,RCK,L>>
918 XMAXX=AMAX1CXMAXX,RCK,L>>
919 c
920 YMINX=AMIN1CYMINX,ZCK,L))
921 YMAXX=AMAX1CYMAXX,ZCK,L>>
922 c
923 57 CONTINUE
924 c
925 58 CONTINUE
926 c
927 C***********************************X*********************
928 C• *
929 C* GENERATE ZONE QUANTITIES RHO, P, E AND COMPUTE AREA *
930 C• *
931 C***********************************X****~****************
932 c
933
934
935
936
937
938
939
940
941
942
943
944

c
c
c

c
c
c

P1D6=1./6.

DO 65 L=LMNP,LMX

DO 63 K=KMNP,KMX

RHOCK,L>=RHOO
PCK,Ll=PO
ECK, Ll =EO

COMPUTE JACOBIAN

PAGE 16

63

65

AJl=R,K,L>•CZCK-1,L)-ZCK,L-l>>+RCK-t,L>•CZCK,L-1>-ZCK,L>>
X +RCK,L-l)•CZCK,L>-ZCK-1,L>>

AJ3=RCK-t,L>•CZCK-1 1 L-1>-ZCK 1 L-l))+RCK-1,L-l)*CZCK,L-1>-ZCK-1,L))
X +RCK,L-l)•CZCK-1,L>-ZCK-1,L-I))

AJCK,L>=P1D2*CAJ1+AJ3)

SCK,L>=P1D6•CCRCK,L>+RCK-1,L>+RCK,L-l>>*AJ1 +
X CRCK,L-1>+RCK-1,Ll+RCK-1,L-1>>*AJ3)

CONTINUE

CONTINUE
c
C****************
C* *
C* DEBUG EDIT *

945
946
947 c
948
949
950 c
951
952 c
953
954
955 c
956
957 c
958
959
960
961
962
963
964
965
966
967 c
968 c
969 c
970
971
972 c
973
974
975 c
976
977
978 c
979
980
981 c
982
983 c
984
985 c
986
987
988
989 c
990
991

C* *
C**************** c

IFCDEBUG.EQ.O.>GO TCI 80

PRINT NBC BCIUNDARY SENTINELS

WRITECN0,71)CNBCCK,LMN>,K=KMN,KMXJ
71 FORMATC3HLMN,8011)

WRITECN0,72)CNBCCK,LMX>,K=KMN,KMX)
72 FORMA TC 3HLMX, 80.J 1)

WRITECN0,73)CNBCCKMN,L>,L=LMN,LMX)
73 FORMATC3HKMN,8011)

WRITECN0,74)CNBCCKMX,L>,L=LMN,LMX)
74 FORMATC3HKMX,8011)

CALL EDIT

80 CONTINUE

WRITECNO 85)
WRITECNTtv,85)

85 FORMATC21H GENERATION COMPLETED)

RETURN
END

"

PAGE 17

992
993 c
994
995
996
997 c
998
999

c
c
c

SUBROUTINE EDIT

COMMON /KLS/ K,L,DEBUG,VERSION,WHER,WHEN,P1D6,PIE, IGEN,P1D2
X ,DTC,KC,LC,DTEN,KEN,LEN,SKE,HN,SJEL,CNN,ENC,ENH,ENCG,WN
X ,NCP

COMMON /COMN/ RC33,33>,ZC33,33J,UC33,33>,RHOC33,33),QC33,33)
X ,EC33,33>,PC33,33>,AJC33.33J,SC33,33l,NBCC33,33)
X ,WC33,33l,TEMPC33,33)
X , AC33,33l~BC33,33l,CCC33f33l,DUMC33~33),CBBC33,33l
X, DBBC33,3~>.CAPC33,33l,S G(33,33l.T~C33,33)

COMMON /PARAM/ NYCL,TNUP,DTNUP,DTN,DTNPH,DTNMH,EDTIME,EDDT
X ,GAM,GAMZ,COF,C1F,C1,TMAX,DTMAX,DTMIN,TFLR,NOHYD
X ,C2,P2,P3,NO,NTTY,NED

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP

COMMON /MINMAX/ XMIN,XMAX,YMIN,YMAX,PMIN,PMAX,QMIN,OMAX
X,RMIN,RMAX,KQ,LQ,KR,LR,KP,LP
X ,XMINX,XMAXX,YMINX,YMAXX

COMMON /TIMING/ NBTC20l,NCTC20),NETC20>,NPTC20l,NXTC20l

C TEMPIS SUBROUTINE EDITS
DATA Nl00/100/

1000
1001
1002
1003 c
1004
1005
1006
1007 c
1008
1009 c
1010
1011
1012
1013 c
1014
1015
1016
1017
1018
1019
1020
1021 c
1022 c
1023 c
1024
1025
1026 c
1027
1028
1029 c
1030
1031
1032 c
1033
1034
1035 c
1036
1037
1038 c
1039 c
1040 c
1041
1042
1043 c
1044
1045
1046 c
1047
1046
1049 c
1050 c
1051 c

ALL M~SH VARIABLES

11 =O

INITIALIZE MINIMUM AND MAXIMUM VALUES OF RHO, P, Q, R AND Z

RMIN=1.E+6
RMAX=-1.E+6

PMIN=1.E+6
PMAX=-1.E+6

QMIN=1.E+6
QMAX=-1.E+6

XMIN=1.E+6
XMAX=l.E-6

YMIN=l .E+6
YMAX=1.E-6

INITIALIZE LOCATION OF MAXIMUM VALUES OF RHO, P AND Q

KR=O
LR=O

KP=O
LP=O

KQ=O
LQ"O

FIND THE MINIMUM AND MAXIMUM VALUES OF RHO, P, Q, R AND Z

PAGE 18

1052
1053 c
1054
1055 c
1056
1057
1058
1059
1060 c
1061
1062 c
1063
1064
1065
1066
1067 c
1068
1069 c
1070
1071
1072
1073
1074 c
1075
1076 c
1077
1078
1079
1080 c
1081
1082
1083 c
1084
1085
1086 c
1087
1088 c
1089
1090 c

DO 715 L=LMNP,LMX

DO 714 K=KMNP,KMX

IFCRHOCK,Ll.LE.RMAXlGO TO 701
RMAX = RHCH KI L)
KR=K
LR=L

701 CONTINUE

IFCPCK,L>.LE.PMAXlGO TO 702
PMAX=PCK,Ll
KP=K
LP=L

702 CONTINUE

IFCQCK,Ll.LE.QMAXlGO TO 703
QMAX=QCK,L>
KQ=K
LQ=L

703 CONTINUE

RMIN=AMIN1CRMIN,RHOCKtLll
PMIN=AMIN1CPMIN,PCK,L1l
QMIN=AMIN1CQMIN,QCK,Lll

XMIN=AMIN1CXMIN,RCK,Lll
XMAX=AMAX1CXMAX,RCK,Lll

YMIN=AMIN1CYMIN,ZCK,L))
YMAX=AMAX1CYMAX,ZCK,Ll>

714 CONTINUE

715 CONTINUE

1091 C PRINT PROBLEM PARAMETERS
1092 c
1093
1094
1095
1096 c
1097
1098
1099
1100
11 01
1102
1103
1104
1105
1106
1107 c
1108 c
1109
111 0
111 1

WRITECN0.717) NVCL,TNUP,DINPH,OTN,VERSION,WHER,WHEN
717 FORMATC6H NYCL ,16,6H TIME ,E12.4,7H DTNPH ,E12.4,5H DTN

X E12.4,9H VERSION ,F4.1,2A10)

WRITECN0.718l PMAX,KP,LP,QMAX,KQ,LQ.RMAX,KR,LR
718 FORMAT<14H MAXIMUM <K,L>,E12.4,214,3H P ,E12.4,214,3H a ,

X E12.4,214,5H RHO >
UVTEST=l.E-5
KL=KMN
LL=LMN
KU=KMX
LU=LMX
IFCIGEN.EQ.Ol GO TO 720
UVTEST=-100.

PRINT ALL MESH POINTS
IGEN.NE.O WILL RESULT IN EDIT OF ENTIRE MESH,=O ONLY ACTIVE ZONES

KL=KMN-1
LL=LMN-1
KU=KMX+1

PAGE 19

1112
1i13
1 1 1 "~
1115
1116
1i17
1118
1119
1120
1121
1122
1123
1124
1125

U.J=LMX+ 1
720 cei~n ! NUE

C BEGiN COIT
DC 740 L=LL, L.U
1-!R l TE (~HS, 725 l

725 FORMATIBH L K,4X,1HR, lOX, 1HZ,10X, 1HU,10X, lHW, 10X,3HRHO,
X BX, lHE, 10X, 1HP,10X, 1HQ,10X,2HAJ,9X,5HTHETAI

Dei 738 K=l<t_, KU
!FllABStUCK,Lll+ABSCWCK,Llll.LE.UVTESTlGO TO 738

C DO~IT PR I NT V/11~ J ABLES IF NO f'ieJT I eJN
WRITECNel,726lL,K,RCK,Ll,ZCK,LJ,UIK,Ll,WCK,Ll,RHCCK,Ll,ECK,Ll

c
1 126
1127
1128
1129 c
1130
1131
1132
1133 c
1134
1135

726
738
740

X, PC K, Ll , Q (K, Ll, AJ CK, Ll , TEMP CK, LJ
FeJRMAT (2 f "1, 1OE11 . 3 I
CONTINUE
CeJNTINUE

NETCNEDl=NECONDCI1 J

NPTCNEDJ=NECONDCJ1l
NED=NED+1
JFCNED.GT.201 NED=l

RETURN
END

PAGE 20

SUBROUTINE TEMPCAL ,If 1.-) ! ,-. 'J s

COMMON /EOSCOM/ KEOS,TARG1,TARG2,TARG3,RARG1,RARG2,RARG3,

1136
1137 c
1138
1139
1140

X FUNC1,FUNC2,FUNC3,TEMPS,EPS,EPSO
c
C INVERSE TABLE LOOK-UP
c

DATA P1M6/1 .E-6/
TARG1=0.

CALL IES2
E=EOSCO,RHO>

EPSO=FUNC1
TEMPS=O.
IFCEPS.LT.EPSO> RETURN

RETURN TEMPETA = 0 IF BELOW
TEMPS=10.*EPS

I NI Tl AL GUESS
10 TARG1=TEMPS

CALL IES2

FUNC2=FUNC1
TARG1=TARG1+P1M6

CALL IES2

TABLE

1 1 41
1142
1143
1144
1145 c
1146
1147 c
1148
1149
1150
1151 c
1152
1153 c
1154
1155 c
1156
1157 c
1158
1159
1160 c
1161
1162 c
1163
1164
1165
1166
1167
1168
1169
1170
11 71

DTEMP=P1M6*CCEPS-FUNC2)/CFUNC1-FUNC2))
TEMPS=TEMPS+DTEMP
IFCTEMPS.LT.P1M6) GO TO 20
IFCABSCDTEMP>.GT.P1M6) GO TO 10

CONVERGED
RETURN

20 TEMPS=O.
RETURN
END

PAGE 21

1172
1173 c
1174
1175
1176 c
1177
11 78
1179
1180 c
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198 c
1199 c
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220 c
1221
1222
1223 c
1224 c
1225 c
1226
1227
1228 c
1229 c
1230 c
1231 c

c
c

SUBROUTINE JES

COMMON /EOSCOM/ KEOS,TARG1,TARG2,TARG3,RARG1,RARG2,RARG3,
X FUNC1,FUNC2,FUNC3,TEMPS,EPS,EPSO

COMMON /COM2/ NTSVC2>,NRSVC2),MSV(2},TESC7l,RESC9l
X ,AESC12J,BESC12l,CESC12>,DESCJ2),EESC12),FESC12l,GESC12l
X , HES (1 2) , PES C 1 2) , I TES C 3) , I RES C 3) , I ZES C 3)

N=l
RETURN
ENTRY IESl
N=l
EXTT= 1.
EXTR=1.
TARG=TARG1
RARG=RARG1
IBOUND=O
I ESTB= 1
GO TO 5000

110 CONTINUE
FUNC = AESCM>+RARG*CBESCM)+RARG*DESCM>>

1 +TARG*CCESCM>+RARG*CFESCMJ+RARG*GESCM>>
2 +TARG*CEESCMl+RARG•CHESCMl+RARG•PESCMlJ))

FUNC1=FUNC*EXTT•EXTR
RETURN

IES2 ENERGY=FUNCTIONCTEMPETA RHO)

210

ENTRY IES2
N=2
EXTT= 1.
TARG=TARG1
RARG=RARG1
IBOUND=O
IESTB=2

GCI TCI 5000
CONTINUE
FUNC = AESCM>+RARG*CBESCM>+RARG*DESCM>>

1 +TARG*CCESCMl+RARG*CFESCMl+RARG*GESCM>>
2 +TARG*CEESCMl+RARG•CHESCMl+RARG*PESCM}J))

FUNCl=FUNC*EXTT
RETURN

TABLE LOOK UP

5000 NT=NTSVCN)
NR=NRSVCNJ
MLR = 0
MLT = 0

IFCTESCNTJ.GT.TARG> GCI TO 5100
IFCTESCNT+1J.LE.TARGJ GO TO 5200

TARG IN SAME T STRIP AS FOR PREVIOUS ENTRY

IFCRESCNR>.GT.RARGJ GO TO 5300
IFCRESCNR+1J.LE.RARGl GO TO 5400

TARG AND RARG IN SAME BOX AS FOR PREVIOUS ENTRY
M SAME AS FOR PREVIOUS ENTRV,FAST RETURN

PAGE 22

c
c
c
c
c
c
c

5100
c

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
124.4
1245
1246
1247 c
1248 c
1249 c
1250
1251
1252
1253
1254
1255
1256
1257
1258 c
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274 c
1275 c
1276 c
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287 c
1288 c
1289 c
1290
1291 c

c
c

c
c
c
c

c
c
c

5105

5115

5120
c
c
c
c

c
c
c

5200
c
c
c

5205

M=MSVCN)
GO TO Cll0,210) ,IESTB

T SEARCH

TARG BELOW T STRIP OF PREVIOUS ENTRY

OUT OF TABLE TEST, LOW T

IFCNT.LE.ITESCNll GO TO 5115

SEARCH TO NEXT LOWER T STRIP

NT=NT-1
IFCTESCNTl.GT.TARG) GO TO 5120

STRIP CONTAINING TARG FOUND, BEGIN R SEARCH

IFCRESCNRJ-RARGJ 5410,5310,5320

TARG BELOW LOWEST TABLE ARGUMENT AND
WAS BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLT=-1
EXTT=EXTT*TARG/TESCNTl
TARG=TESCNTl

IFCRESCNRJ.GT.RARGl GO TO 5300
IFCRES CNR+ll.LE.RARGJ GO TO 5400
M = MSVCN)
GO TO (110,210) ,IESTB

OUT OF TABLE TEST, LOW T

IFCNT.GT.ITESCNJ) GO TO 5105

TARG BELOW LOWEST TABLE ARGUMENT BUT
WAS NOT BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLT=-1
EXTT=EXTT*TARG/TESCNTJ
TARG=TES<NTJ

BEGIN R SEARCH

IFCRESCNRl-RARGl 5410,5310,5320

OUT OF TABLE TEST, HIGH T

IFCNT-ITESCN+1)+2l 5205,5215,5205

SEARCH TO NEXT HIGHER T STRIP

NT=NT+l
IFCTESCNT+ll.LE.TARGJ GO TO 5220

STRIP CONTAINING TARG FOUND, BEGIN R SEARCH

IFCRESCNR>-RARG> 5410,5310,5320

PAGE 23

c
c
c

TARG ABOVE HIGHEST TABLE ARGUMENT AND
WAS ABOVE TEMPAT ARGUMENT ON PREVIOUS ENTRY

1292
1293
1294
1295
1296
1297
1298 c
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314 c
1315 c
1316 c
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350 c
1351 c

5215 MLT=1
EXTT=EXTT*TARG/TESCNT+l)
TARG=TESCNT+l)

c
c
c

5220
c
c
c
c

c
c
c

713

5320
c
c
c
c

c
c
c
c
c

5300
c
c
c
c

c
c
c

IFCRESCNR>.GT.RARG) GO TO 5300
IFCRESCNR+l>.LE.RARG> GO TO 5400
M = MSVCN)
GO TO (110,210) , IESTB

OUT OF TABLE TEST, HIGH T

IFCNT-ITESCN+1)+2) 5205,713,5205

TARG ABOVE HlGHEST TABLE ARGUMENT BUT WAS
NOT ABOVE TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLT=1
EXTT=EXTT*TARG/TESCNT+1)
TARG=TESCNT+l)

BEGIN R SEARCH

IFCRESCNR>-RARG> 5410,5310,5320

OUT OF TABLE TEST, LOW R

IFCNR.GT.IRESCN>> GO TO 5305

RARG BELOW LOWEST TABLE ARGIJMENT BUT WAS
NOT BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLR=-1
EXTR=EXTR*RARG/RESCNR>
RARG=RESCNR>
GO TO 5310

R SEARCH
RARG BELOW R STRIP OF PREVIOUS ENTRY
OUT OF TABLE TEST, LOW R

IFCNR.GT.IRESCNl> GO TO 5305

RARG BELOW LOWEST TABLE ARGUMENT AND
WAS BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLR=-1
EXTR=EXTR*RARG/RESCNR>
RARG=RESCNRl
M = MSVCNl
GO TO Cll0,210) ,IESTB

SEARCH TO NEXT LOWER R STRIP

5305 NR=NR-1
IFCRESCNR> - RARG> 5310,5310,5320

BOX CONTAINING TARG AND RARG FOUND, COMPUTE NEW M

PAGE 24

1352 c
1353 5310
1354
1355
1356
1357
1358 c
1359 c
1360 c
1361 5400
1362 c
1363 c
1364 c
1365 5405
1366 5410
1367
1368 c
1369 c
1370 c
1371 c
1372 719
1373
1374
1375
1376 c
1377 c
1378 c
1379 c
1380 5415
1381
1382
1383
1384
1385

M=IZESCNJ+CITESCN+1J-ITESCNJ-1l*CNR-IRESCNJJ+NT-ITESCNJ
NTSVCNJ=NT
NRSVCNJ=NR
MSVC NJ =M
GO TO C110,210l ,IESTB

OUT OF TABLE TEST, HIGH R

IFCNR - IRESCN+ll+2l 5405,5415,5405

SEARCH TO NEXT HIGHER R STRIP

NR=NR+l
IFCRESCNR+lJ.GT.RARGJ GO TO 53i0
IFCNR-IRESCN+1)+3) 54~4 5405,719

RARG ABOVE HIGHEST TABLE ARGUMENT BUT WAS
NOT ABOVE TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLR=l
EXTR=EXTR*RARG/RESCNR+1)
RARG=RESCNR+1J
GO TO 5310

RARG ABOVE HIGHEST TABLE ARGUMENT BUT
M SAME AS ON PREVIOUS ENTRY

MLR=l
EXTR=EXTR*RARG/RESCNR+ll
RARG=RESCNR+1J
M = MSVCN>
GO TO C110,210J ,IESTB
END

PAGE 25

1386
1387 c
1388
1389
1390
1391 c
1392
1393 c
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

SUBROUTINE SETUP

COMMON /COM2/ NTSVC2l,NRSVC2l,MSVC2l,TESC7l,RESC9l
X ,AESC12l,BESC12l,CESC12l,DESCl2),EESC12l,FESC12l,GESC12l
X , HES C 1 2 l , PES C 1 2 l , I TES C 3 l , I RES C 3) , I ZES C 3)

CALL JES
DEFINE A GAMMA LAW GAS EQUATION OF STATE FOR BIQUAD ROUTINE

NTSVC 1l=1
NRSVC 1l=1
MSVC1!=1
NTSVC2l=4
NRSVC2l=5
MSVC2l=7
I TES (1 l =1
I RES(1l=1
I ZES C 1 l = 1
ITESC2l=4
IRESC2!=5
IZESC2!=7
ITESC3!=7
IRESC3l=9
IZESC3!=13

TES< 1 l
TESC 21
TESC 31
TESC 41
TES< 51
TESC 61
TES (7 l
RESC ll
RESC 21
RESC 31
RESC 41
RESC 51
RESC 61
RES< 71
RESC 81
RESC 91
AESC ll
BESC ll
CESC ll
DESC ll
EESC 1)
FESC 1 l
GESC 1 l
HESC 11
PESC ll
AESC 2J
BESC 21
CESC 21
DESC 21
EES C 2 l
FESC 21
GES C 2 l
HESC 21
PESC 21
AESC 31
BES< 31
CES (3 l

.OE+OO
1.0000E+OO
1.0000E+02

.OE+OO
1. OOOOE+OO
1.0000E+02

.OE+OO

.OE+OO
3.0000E+OO
3.0000E+02
3.0000E+lO

.OE+OO
3.0000E+OO
3.0000E+02
3.0000E+10

.OE+OO

.OE+OO

.OE+OO

.OE+OO

.OE+OO

.OE+OO
6.6667E-02

-1.2953E-16
-4.4409E-16
-9.2519E-17

.OE+OO
-4.7184E-16

.OE+OO
-1.7146E-16

.OE+OO
6.6667E-02

-4.8247E-17
1. 0408E-17

-2.3426E-18
.OE+OO
.OE+OO

-8.0183E-17

PAGE 26

PAGE 27

DESC 31 ..
EES< 3J
FESC 31 =
GESC 31 =
HES< 31 =
PESC 31
AESC 41 =
BES< 41
CESC 41 =
If 4) ..

4J ..
(41 ..

Ii 4J ..
4)
4.) ..

AES< Sf =
~I~ 15) •

15) ..

I' SJ =
. (151

F!S< 15) •
(151 =
(15 J •
(151 •

All< 6J
(81
(81 •
(8J ..
c 8J ..
(81 ..
(81 ..
c SJ •
.,(Sl • 1.
(7) •

71 •
7J .• f.
71 ..
71 •

,'1$ 71 • 2.
71• • -s. 1: 7): • • •• ' ,
7J • -1 .. .,.
&J • -1. :.:HJ
81 • 1. ,,t7
SJ ,• t. i-0;1·
•• -2. -17 ' ·~ ""°° ,'.S,

. 2. .;.115 ·:· 11: -e .. H ·18
J 6. Ml7E:-20
J -2.0988E-1&

SN. ,0£+00
9J ,0£+00

ll
$) 1.0000E-01
9) .0£+00

:1 4.4409£-16
-2.6587£-17

GI$(
HE$(

9) = -6.0283E-21
9) .. 1.9214£-17

PES< 9) = 6.0233£-20

PAGE 28

'1 50t:> t-ES' 'I 0 J = -1.8874E-15
·15n7 ?_:';~..-:... (1 0) = I. l 273E-' 7
-(5or:. C, ~ :__.. r 1 0 J -- 1. OOOOE--0'1
1509 [J~ ~ r ': 0) ~ 1.2168E-20
., 510 ~::.:_. r 1 G J - -6.9389E-!8
·, 511 ,- c :-.. 1 c .1 - -1.8510E-17
1512 G~?:.: iOi = 4.2030E-20
1513 HES' 1 Oi ~ -1.3521E-19
151 4 PESr 1 Oi = 1 . 2168E-23
1515 /-ESI 11) = .OE+OO
1516 2.t::Sr 1 ·11 = .OE+OO
1517 er-« • 11 i = 1. OOOOE-01
1518 DES(11) = .OE+OO
1519 EESr 11 J = 8.8818E-16
1520 FESr 1 i) = -5.8341E-26
1521 r3ES r 11) = -6.3947E-36
1522 HC~'

'-'--'' 11) = 5.8341E-26
1523 PESC 11) = -1 .8808E-36
1524 .!\ESf 12) = ·-1 . 9429E- l 5
1525 BESr 12) = -8.9878E-26
1526 CE.Sf 12) = 1. OOOOE-01
1527 DESf 12) = -5.3701E-36
1528 EESf 12) = -6.9389E-18
1529 FESf 12) = 8.9962E-26
1530 GESC 12! = -2.8867E-36
1531 ciES r 12) - -8.4134E-29
1532 PESI 12) = -1 . 8745E-38
1533 PET~Jr~N
1534 END

1535
1536 (,
1537 c
1538 c
1539
1540 c
1541 c
1542 c
1543 c
1544
1545
1546
1547
1548
1549 c
1550
1551

SUBReJIJT I ~1E PRC JCT

THIS SUBRelUTINE REFLECTS AN INTERIOR POINT ACROSS THE BOUNDARY

COMMON /PRelGG/RO,ZO,Rl,Zl,RP,ZP,RR,ZZ

REFLECT CRP,ZPl Tel CRR,ZZl
WHERE IRO,ZOI AND (Rl,Zl I ARE BOUNDARY POINTS

WI,/= (2' * (z 1 -zo)) I ((R 1 -RO)**~+ (z 1 -zo) >0<2)
ALP=1. -(21-ZOl*WW
BET=(Rl-ROl*WW
RR=RO+(RP-ROl*ALP + CZP-ZOl*BET
ZZ=ZO+(RP-ROl*BET - (ZP-ZOl*ALP

RETURN
END

PAGE 29

SUBROUTINE CONDUCT

COMMON /KLS/ K,L,DEBUG VERSION,WHER.WHEN,P1D6,PIE, IGEN,P1D2
X ,DTC,KC.LC,DTEN,KEN,LEN,SKE,HN,SJEL,CNN,ENC,ENH,ENCG,WN
X ,NCP

COMMON /COMN/ RC33t33lLZ(33,33l,UC3~,33>,RHOC33,33l,QC33L33) x LEC33,33JLPC~3L33),AJ[33~33>,SC33,33),N8CC33,3~)
X ,WC3~,33l,TEM~C33 ~3) .
X , AC33,33)L8C33L33l,CCC33j33>,DUMC33,33),CBBC33,33)
X , 08BC33,3~l,CA~C33,33>,S G<33,33>.TSC33,33)

COMMON /PARAM/ NYCL,TNUPLOTNUP,DTN,DTNPH,DTNMH,EDTIME,EDDT
X ,GAMLGAMZ,COF,ClF,~lLTMAX,DTMAX,DTMIN,TFLR,NOHYD
X ,C2,~2,P3,NO,NTTY,NEu ·

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP

COMMON /EOSCOM/ KEOStTARG1LTARG2,TARG3,RARG1,RARG2,RARG3,
X FUNC1,FUNC2,FUNC3, EMPS,~PS,EPSO

ELECTRON CONDUCTION -LU-

DO 10 L=LMN,LMX
DO 10 K=KMN,KMX
CAPCK,L>=.1
CCCK,L>=C.0001•SQRTCTEMPCK,L>>•TEMPCK,Ll**2l/AJCK,L>
SIGCK,L>=DUMCK,L>*CAPCK,Ll/DTNPH

10
c

1552
1553 c
1554
1555
1556
1557 c
1558
1559
1560
1561
1562
1563 c
1564
1565
1566
1567 c
1568
1569 c
1570 c
1571 c
1572 c
1573 c
1574 c
1575
1576
H577
1578
1579
H580
1581
1582
1583
H584
1585
1586
1587
1588
1589
1590
H591
1592
1'593
1594
1595 c
1596 c
11597
H598
1599
1600
1601
1602 c
1603
1604
1605
1606
1607
1608
1609 c
1610 c
1611 c

TSCK,L1=TEMPCK,L>
CONTINUE

DO 12 L=LMN,LMX
DO 12 K=KMN,KMXZ

C88CKLL>=C2.*CCCK+l,L>*CC(K+1,L+1))/CCCCK+l,L>+CCCK+l,L+l>>
X * C.o*CRCK,Ll+RCK+l,L>>*CCRCK+1,Ll-RCK,Lll**2 .
X +CZCK+1,L>-ZCK,Lll**2l l

12 CONTINUE
DO 14 L=LMN,LMXZ
DO 14 K=KMN,KMX .

D88CKLL>=C2.*CCCK+1,L+ll*CCCK,L+1J>ICCCCK+l,L+ll+CCCK,L+l)l
X * C.o•CRCK,Ll+RCK,L+ll>*CCR<K,L•1>-RCK,Lll**2
X +CZCK,L+ll~ZCK,L>>**2l >

14 CONTINUE

BOUNDARY CONDITIONS
DO 17 L=LMN,LMX
ACKMN, Ll =O.
BCKMN,Ll=TEMPCKMN,Ll
DBBCKMN,1..Ll =O.

17 CONTINU~

19

00 19 K=KMN,KMX
ACK,LMNl=O.
BCK,LMNJ=TEMPCK,LMN>
CBB CK, LMX l = 0.
CBBCK,LMNl=O.
CONTINUE

PAGE 30

C Z SWEEP 1612
1613
1614
1615
1618
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660 c
1661
1662
1663
1664 c
1665
1666
1667
1668
1669
1670
1671

c
DO 53 K=KMNP,KMX
DO 51 L=LMNP,LMX
DUMCK,LJ=SIGCK,L>+CBBCK-ltL>+CBB<K-1,L-1>•<1 .-ACK,L-1))
ACK,L>=CBBCK-l,L)/DUMCK,L1
BCK,L>=CSIGCK,Ll•TEMPCK,L>+CBB<K-l~L-1>•BCK,L-1>

X l/DUMCK,Ll
51 CONTINUE

C ALPHA, BETA FORWARD
ML=LMX+l
DO 52 L=LMNP,LMX
ML=ML-1
TEMPCK,ML>=ACK,ML>•TEMPCK,ML+l>+B<K~ML>

52 CONTINUE
C BACK SUBSTITUTION

53 CONTINUE
c
c Z SWEEP END

R SWEEP
c
c
c

DO 43 L=LMNP,LMX
DO 41 K=KMNP,KMX
DUMCKlLJ=SIGCK,L>+DBBCK,L-lJ+DBB<K-1,L-1)*(1.-ACK-1,L))
ACK,Li=DBBCK,L-1)/DUMCK,L>

BCKbL>=CSIGCK,L>•TEMPCK,Ll+OBBCK-1,L-l>*BCK-1,L)
X)/ UMCK.Ll

41 CONTINUE
C ALPHA BETA FORWARD SWEEP

ML=KMX+l
DO 42 K=KMNP,KMX
ML=ML-1
TEMPCML~L>=ACML,L>•TEMPCML+l,L>+B<ML,L)

42 CONTINUc.
C BACK SUBSTITUTION R DIRECTION

43 CONTINUE
c
C R SWEEP END
C COMPUTE OT CONTROL FOR HEAT CONDUCTION
c

C GET

YE=O.
KEN=O
LEN=O
DO 111 L=LMNP,LMX
DO 111 K=KMNP,KMX
NEW ENERGY
ENH=ENH+EfK,Ll•RHOCK,Ll•SCK,L>

TARG1=TEMPCK,Ll
RARG1=RHOCK,L)
CALL IES2

ECK,L>=AMAX1CFUNC1,1.E-30)
ENC=ENC+ECK~L>•RHOCK,L>•SCK,L>
IFCTSCK L).c.Q.O.> GO TO 109
TEMPR=ABSCCTEMPCKLL>-TSCK,Lll/TSCK,Ll)
IFCTEMPR.LE.YE> Go TO 109
YE=TEMPR
KEN=K

PAGE 31

1672
~673

LEN=L
109 TEMP!K,Ll=TSCK,Ll
111 CO~T!NUE

IFCYE.EQ.O. I GO TO 118
DTEN=I. l•DTNPHl/YE

118 CONTINUE
C ENERGY BALANCE HN

1 67"1
1675
1 676
1677
1678
1679
1680
1681
1682
1683 c
1684
1685
1686
1687
1688 c
1689
1690

05 122 K=2,KMX
HN=HN•DTNPH•CBBCK-1,LMNl*CTEMPCK,LMNJ-TEMPCK,LMN+lll

X +DTNPH•CBBIK-1,LMXl•CTEMPCK,LMX+ll-TEMPCK,LMXll
122 CONTINUE

DC 124 L=2,LMX
HN=HN+OTNPH*DBBCKMN,L-1 l*CTEMP(KMN,Ll-TEMPCKMN+l,Lll

X +DTNPH•DBBCKMX.L-1l•CTEMPCKMX+1,Ll-TEMPCKMX,LIJ
124 CONTINUE

RETURN
END

PAGE 32

1691
1692 c
1693
1694
1695
1696 c
1697
1698
1699
1700
1701
1702 c
1703
1704
1705
1706 c
1707
1708 c

SUBROUTINE HWORK

COMMON /KLS/ KLL,DEBUGLVERSION1.WHER.WHEN,P1D6,PIELIGEN,P1D2
X ,DTCLKC,LC,DT~N,KEN,L~N,SKE,Hn,SIEL,CNN,ENC,ENH,~NCG,WN
X ,NC~

COMMON /COM~/ RC33t33)LZ(33,33J,UC33,33>,RHOC33,33),QC33L33)
X LEC33,331LPC~3L33l,AJC33.33),S(33,33),NBCC33,3~)
X ,WC3~ 1 33>,TEM~C33 ~3)
X , AC33L33>LBC33L33>,CCC33f33)LDUMC33L33),CBBC33,33)
X , DBBC~3,3~),CA~C33,33),S G<3~ 1 33).T~C33,33)

COMMON /PARAM/ NYCL,TNUP,OTNUP~DTN,DTNPH,DTNMH,EDTIMELEDDT
X ,GAMLGAMZ,COF1.C1F,C1LTMAA,DTMAX,DTMIN,TFLR,NOHYu
X ,C2,~2,P3,NO,NTTY,NEu

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP

1709 C SUM THE HYDRO WORK ON THE BOUNDARY
1710 c
1711
1712 c
1713
1714 c
1715
1716
1717
1718
1719 c
1720
1721
1722
1723
1724 c
1725
1726 c
1727
1728 c
1729
1730
1731
1732
1733 c
1734
1735
1736
1737
1738 c
1739
1740 c
1741
1742

510

515

Zl=DTNPH/8.

DO 510 K=KMNP,KMX

WN=WN+Zl•CPCKtLMN+l)+PCKtLMNJ+Q(K,L~N+ll+QCK,LMN))
X •C CUCK,LMN>+UCK-1,LMN>l•CZCK,LMNl-ZCK-1,LMN>>
X - <W<K, LMN> +WCK-1, LMNJ) * (RCK, LMNJ-RCK.-1, LMN>)
X l•CRCK,LMN>+RCK-1,LMN>J

WN=WN-Zl•CP<KtLMX+l)+P<KtLMX)+Q(K,L~X+l)+QCK,LMXJ>
X •< <UCK,LMX1+UCK-l,LMX1>•<Z<K,LMXJ-ZCK-1,LMX>>
X -<WCK,LMXl+WCK-1,LMX>>•CRCK,LMXl-RCK-1,LMX>>
X l•CRCK,LMXl+RCK-1,LMX>>

CONTINUE

DO 515 L=LMNP,LMX

WN=WN+Zl•CPCKMN+l,LJ+PCKMN 1 L)+Q(KMN+lLL)+QCKMNjL>>
X •< CUCKMN,Ll+UCKMN,L-1>>•CZCKMN,Ll-£CKMN,L-1 >
X -<W<KMN,L>+WCKMN,L-l>>•CRCKMN,LJ-RCKMN,L-1>>
X >•CRCKMN,L>+RCKMN,L-1))

WN=WN-Zl•CPCKMX+l,L)+PCKMX,L)+Q(KMX+lLL)+QCKMX,L>>
X •C CUCKMX,L>+UCKHX,L-l)l•CZCKMX,Ll-£CKMX,L-1))
X -CWCKMX,Ll+WCKMX,L-l>>•CRCKMX,Ll-RCKMX,L-1))
X >•<RCKMX,L>+RCKMX,L-1))

CONTINUE

RETURN
END

PAGE 33

PAGE 34

1743 FUNCTION NECONDCIARGJ
1744 IAG=O
1745 AAl=SECONDCIAGJ
1746 NECOND=CAA1-AA2l*1 .E+6
1747 AA2=AA1
1748 RETURN
1749 END

