MIT/LCS/TR-216

ANALYSIS OF THE SIMPLE CODE FOR

DATAFLOW COMPUTATION

John M. Mvers

Tius blank page was inserted to preserve pagination.

Analysis of the SIMPLE code for dataflow computation

by
John M. Myers, Consultant

May, 1979

This research was supported by Lawrence Livermore
Laboratory under contract 8545403.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

Analysis of the SIMPLE code for dataflow computation

John M. Myers

ABSTRACT

We analyze a problem in hydrodynamics from the standpoint of
computation on a dataflow computer that is not yet fully specified, with
the objectives of helping to further specify the computer and helping to
develop VAL as its source language. Lawrence Livermore Laboratory supplied
the algorithm for hydrodynamics, including heat flow, as a 1749-1ine
FORTRAN code called SIMPLE.

The algorithm viewed as 'abstract' (i.e. independent of physical
arrangements in space and time for its realization) is shown to imply
spatial and temporal structure that must appear in any and all implementa-
tions. Both for hardware design and program compilation it is useful to
map this structure to grosser levels of description, with the grosser
levels reflecting modularity of computational resources conjoined with
modularity of the algorithm. Following Holt (1979) we use role diagrams
to display spatio-temporal structure at different descriptive levels, so
as to guide transiation into VAL as well as the analysis of the time to
compute.

Inter-resource communication essential to the problem is displayed,
and various issues of machine design are defined. Using VAL with one set
of extensions, we express the algorithm so that in principle it can be
compiled for execution by a dataflow computer. Input-output functions
beyond those implied by the SIMPLE code are discussed. A second set of
extensions to VAL is advocated to express the conjunction of problem and
resource modularity, so as to guide compilation. The dependence of time
to compute on the number of processing units is shown for various aspects
of the problem.

KEYWORDS: DATAFLOW, ALGORITHM ANALYSIS, PARALLEL COMPUTATION,
COMPUTATIONAL HYDRODYNAMICS, ROLE DIAGRAM.

This empty page was substituted for a
blank page in the original document.

Analysis of the SIMPLE code for dataflow computation

Introduction:

CONTENTS

hydrodynamics meets a dataflow computer.

The hydrodynamic fields.

Figure 1:

Nodes and zones.

Communications and the speed and
configuration of a dataflow computer.

3.1.
3.2.

3.3.

General issues.

Connectivity in the face of resource sharing.

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Connectivity of simplified hydrodynamics
in one space dimension with one processor

Page

assigned to each nodal and zonal calculation.

Constraints on concurrency imposed
by sharing of processors.

Grosser view highlighting
connectivity between processors.

Alternate view using the notation
of buffered communication.

Fitting the computation to the minds of the

analysts:

input and output.

Modeling the time to compute.

4.1.
4.2.
4.3.

4.4,

Choosing an appropriate form of model.

The need for speed.

The computational cycle.

Figure 6:

Concurrency and connectivity
in different phases of the cycle.

Dependence of time to compute on number
of zones and number of processors.

4.4.1. Case definitions.

Case 1: connectivity restricted to nearest

neighbor plus "tree".

25,

13

14

15

18

20
20
22
23

27
27

27

4.5.

4.4.2.

CONTENTS (continued)

Case 2: '"general-purpose" communication.
Results.
Table 1: Form of dependence of time to

compute a cycle on number of
zones and number of processors.

Input, output, and control over
the extraction of features.

Trans1ation of SIMPLE from FORTRAN into VAL.

5.1.
5.2.

The balancing of objectives.

Samples of VAL code.

5.2.1.

5.2.2.
5.2.3.
5.2.4.

Overall form of the VAL translation
of the SIMPLE code.

JES VAL .
SIMPLE_VAL.
Discussion of functions internal to SIMPLE_VAL.

INITIALIZE, EDIT, BOUNDARY PROJECT, VELOCITY,
POSITION, HWORK, ZONE GEOM.

ENERGY_HYDRO.

- HYDRO_TOTAL.

ENERGY HEAT.

HEAT_TOTAL, TIME_STEP, PHYS_REPORT, CYCLE REPORT.

MODIFY. '

Conclusions and possible next steps.

6.1.

6.2.

6.3.

Speed, input-output, and
expression of the abstract algorithm.

Implications of the spatio-temporal
structure of the algorithm.

The balance between programming ease
and efficient use of hardware.

Page
28
29

31

32
34
-34
37

37
38
4
52
52
52
56
56
59
60

61
61
62

63

CONTENTS (continued)

Page

6.4. Extending VAL to support resource allocation. 66

References 68

Appendix A: Interpreting role diagrams. 69
Appendix B: Notes on fitting the SIMPLE code

into role diagrams and VAL modules. 81

Appendix C: The SIMPLE code in FORTRAN. 89

This empty page was substituted for a
blank page in the original document.

Analysis of the SIMPLE Code for Dataflow Computation

1. Introduction: Hydrodynamics Meets a Dataflow Computer

The equations of physics are prescriptions for calculating; from
some presumed starting conditions, they generate a “future". The calculation
of this "future" involves many events, each of which "consumes" items -- values
of variables -- and "produces" other items. Because an item cannot be consumed

before it is'produced, these events are subject to constraints of sequencing.

These constraints impose a pattern on the calculation.

Although the equations of physics constrain the calculation, they
do not fully determine it. The pattern is partly determined also by the
method of solution employed and by the structure of the computer. Thus the
same (partial differential) equations can result in different patterns of
calculation, according to the method of solution and the arrangement of
computational resources. For this reason the pattern of computation for
a given type of problem, say hydrodynamics, evolves as methods and computational

resources evolve. Pattern, method, and resources are coupled in their evolution,

with each selected in part to support and to draw on the others.

Over most of history the computer (human or machine) had only a
sequential processing capacity, so that computation was necessarily performed
one step after another. Thus methods which emphasize concurrency were not
called for, and as a result are today relatively unexplored and undeveloped.
Not only computers, but also numerica]Amethods have evolved in a context that
is weighted toward the sequential, and away from the concurrent.

Via such m;ans as dataflow architecture (see Dennis, 1978), an
increase in speed can be brought about by an organization of computational

resources that allows concurrency of many events. This report is concerned

with fitting -- or refitting -- a pattern that evolved in a sequential context

-2 -

onto a dataflow computer. The report is based on a case study of an example
program written in FORTRAN for a sequential machine for the solution of a

problem of hydrodynamics, including heat flqw. This program was prépared by
Lawrence Livermore Laboratory, and is named SIMPLE. The initially presented

questions were:

1.1) What is involved in translating the SIMPLE program from FORTRAN
(suitable for a sequential computer) into a dataflow language

(the VAL language in particular); and

1.2) Compared to a sequential computer,‘what speed advantage can be
expected from a dataflow computer in the execution of the SIMPLE

program?

fo realize the potential advahtage'of a dataflow computer, its
program must be free of unnecessary sequencing constraints. Sequencing
constraints come from many sources, and’thefr necessity depends on ones
point of view. Primarily we report on the narrow view that sees sequencing
constraints as imposed by the data dependencies of the FORTRAN program.
In this view the "translation" per item 1.1 entails the removal df sequencing
only as far as possible without disrupting the data depgndencies expressed in
the FORTRAN program. Such a translated program wou1d be expected to produce
numerical results identical to the FORTRAN program, apart from round-off errors.

But the narrow view fails to:
a) realize the potential for advances in speed, and

b) open the physics itself to new perspectives made possible by the

power to express concurrency.

-3 -

Although their resolution is outside the scope of this report, we shall
define some broader issues of solution methods, machine design, and physics.

With respect to item a), the translated program will still contain
unnecessafy sequencing constraints, imposed by a method of solution of the
equations of physics. For example, the back-substitution method (Crowley,
Hendrickson and Rudy, 1978) for solving the implicit formulation of heat
flow does not realize the potential of dataflow architecture, and it appears
that a method could be developed that (for a dataflow computer, but not for
a sequential computer) would be substantially faster. Thus in presenting our
results, we shall distinguish sequencing constraints that come from the
happenstance of the numerical method embodied in SIMPLE from constraints that
come from less malleable sources.

Once the method of solution is considered as variable and not fixed,
issues of machine design surface. If methods and machine are to be developed
in concert, it might be best to tailor the machine to a certain class of
methods, to the detriment of its performance with methods outside that class.
If the dataflow computer is seen as a network of interconnected processors,
then this issue arises with respect to the communications facility that provides
processor-to-processor communication. The problems under study stem from

spacially distributed fields that interact in a purely local manner. From

this locality one can show that the equations can be solved on a dataflow
machine using a communications network which directly links only nearest
neighbors, so that a "global" communications facility is not required. Local
networks are cheaper and faster than global networks; however the methods
that they support have drawbacks with respect to speed, so that the question

of local vs. global remains open. One way of posing the issue is through

the following question:

v _4-

1.3) What number N' of globally connected (i.e. fully connected)
processors have the same cost as N locally connected processors,
under the condition that the total memory of the two configurations

be the same?

- The idea is that the speed loss froﬁ the restriction to lecal cennectivity

might be regained through the use of a larger network of processors. In other

. words for a given investment there is a trade-off'bgtueenvfeuer fully connected

processors and more locally connected processors. If these two contrasting
configurations are to be evaluated in their performance on a given problem,
then total system memory should be the same for each configuration.

With respect to item b) it may be of theoretical interest to
introduce a class of dataflow computers to madel what is meanit by the equations
of physics.

2. The Hydrodynamic Fields

Given finite propagation velocities, the fields defined by the
equations of physics can be pictured, as they were by Huygens, as networks
of communicating entities, all operating concurrently. A partial differential
equation represents a limit as the network becomes progressively more
fine-grained. Computation is possible, however, only if the Timit is not
taken, or if it is "undone".

Via one or another numerical method the partial differential
equations are transformed to difference equations defined on a spatial mesh
of N zones, with each zone have corners at nodes, as shown in Fig. 1. In

terms of the parameters defined in SIMPLE, one finds
N = (LMX-LMN)*(KMX-KMN) . ‘ (Eq. 2.1)

SIMPLE employs a Lagrangian formulation, in which the mesh is deformable;

each node is thought of as a "tagged atom", carried along in a fluid whose
motion is described by the difference equations. By extending the discussion
of Morse and Feshbach (1953, vol 1, p.847-8) to equations of hydrodynamics,
one sees Huygen's principle works on a sufficiently small region of the mesh.
For a given node, one can choose an enclosing curve through the zones that
bound it, and with the result that, by interpolation, the acceleration of

the node depends only on the properties of the zones that bound it. A similar
argument could lead to the conclusion that the current properties of a zone
depend only on past poperties of the nodes at its corners, but SIMPLE is

based on a variatfon of this argument. Properties such as pressure and density
are defined only for zones and not for nodes, and the current properties of

a zone are shown to depend on their past values together with the current

deformation of the zone, along with the current rate of deformation of the zone.

(w;gg___ﬂ____ggg) ______ (K+1,L+1)
| r) ﬁ—.T
1
/ ' ZONE /
|
/ R , (K+1,L+1) |
| / I
| ! ’
| | I
, | !
1 ! (ki dL)
| 2D
(Ke) o — =~ |
/ /’//*ﬂ]
K-1,)_ ——— | I
{ |
\ | ZONE |
\ ZONE ‘ (KH1,L) |
| (K.L) | :
\ 1\ (K+1,L—1)
\ fﬂﬂb””f’”‘
\ -7
\ id
\ e
\ e
‘ pd
) -
(K-1,L-1)

Figure 1: Nodes (shown as heavy dots) and zones (enclosed by dotted Tlines).

-7 -

The main fields are defined by Crowley, Hendrickson, and Rudy (1978)

as follows:
Zonal.
name in
Field FORTRAN. Definition
€ E energy per unit mass
p P pressure
q Q artificial viscosity
P RHO density
8 TEMP temperature
T specific volume
K

thermal conductivity .

In addition the positions and velocities of the nodes form a field as a function
of node indices k and 1:

Nodal

name in

Field FORTRAN Definition

R,Z position as function of k,1

xi

U,W velocity as function of k,1.

=i

The field equations are

dit= - (p+q)%7c'€ + kvkVO (Eq. 2.2)
8=6(p,€) (Eq. 2.3)
K= H(8) (Eq. 2.4)
q = q(p,al,) (Eq. 2.5)
dx _ =2 (Eq. 2.6)

- ¥(p+q)

(Eq. 2.7)

-9 -

3. Communications and the Speed and Configuration of a Dataflow Computer

3.1. General issues

Because the least familiar aspect of a dataflow computer is its
communications facility, we give a preliminary statement of issues of speed
and machine design posed by the burdens that the SIMPLE problem will place
on such a facility.

A computational algorithm, such as the FORTRAN program of SIMPLE,
defines a flow of data values into and out of arithmetic operations. By
analyzing this flow, one can produce a dataflow graph that displays not
only the concurrency that is allowable within the confines of the algorithm,

but also an abstract pattern of communication. For the SIMPLE problem, most

of the dataflow graph can be modularized onto regions corresponding to the
mesh of Fig. 1: one region for each zone, and one for each node.

To perform the computation, resources are required: physical actors
must be provided to carry and transform the values that are specified by the
dataflow graph. The correspondence between physical actor and role as
value carrier is in part subjective, and inescapably so. There is no sure
rule for the "right way" to estab1jsh the correspondence, although there are
criteria by which to exclude many “wrong ways": wrong ways lead to failure
(e.g. of performance or of budget). In the light of currently well developed
technology, we may start by assigning a physical processor to each nodal and
zonal region of the dataflow graph. If each such processor comes with attached
memory, then a dataflow computer can consist of a set of processors together
with a communications facility that links them.

Affordable communications facilities never offer the full measure
of speed, bandwidth, freedom from blocking, and other properties that it

would be "nice" to have. Compromise is necessary. The determination of an

- 10 -

economic configuration is outside the scope of this work, but to help prepare
the ground, we consider the message patterns that are generated by the SIMPLE
program. A1l of the communications facilities under consideration could
handle all of these patterns, but different facilities will exhibit different
speeds for different patterns. Thus it is helpful to find out what patterns
really matter.
The burden placed by a dataflow graph on the communications facility

depends on:

.1 the connectivity of the dataflow graph -- how "scrambled" are

the needed connections;

.2 the number and accuracy of the field variables to be transmitted.

A given dataflow computer can compute a datafiow graph corresponding
to a square mesh of D zones without having to time-share its hardware (as would
a sequential computer). Thus D measures the largest mesh that a given
dataflow computer can handle in some "fully concurrent” manner. If D is
to be increased, then additional hardware must be incorporated into the
dataflow computer. In many cases of interest one expects to find N>») D, so
that each processor will have to be time-shared among N/D regions. The

burden on the communications facility will thus also be influenced by:

.3 the way in which resources are time-shared over different regions

of the dataflow graph.

Item .2 affects only the size of the messages to be transmitted and will not
be further considered here. Items .1 and .3 affect the "from-where-to-where"

aspect of the communications burden, and we now discuss them further.

- 11 -

3.2. Connectivity in the face of resource sharing

By means of a role diagram, further explained in Appendix A,
Figure 2 illustrates the connectivity exhibited by the main cycle of a problem
like SIMPLE, but reduced to one space dimension and stripped of heat flow.
Figure 2 can be read as a marked graph over which tokens are moved to simulate
the occurrence of calculational activities; the top row of circles are viewed
as initially marked with tokens. A horizontally connected row of boxes
(O———=10) is a calculational activity. The inputs to an activity
arrive from above; the outputs depart below -- in other words the "flow of
time" is downward. Boxes connected by double bars ({===1) produce identical
copies of the same output value, and thus portray fanout. The figure is thought
of as wrapped around a cyclinder, with each bottom circle "wrapped up" to
coincide with the circle directly above it, so that a cycle is defined.

The diagram is to be interpreted not just as an abstract flow of

values, but as a flow of values carried by physical actors. Each vertical

line in Fig. 2 requires a physical resource, like a processor or a buffer,
that carries a value from one calculational activity to another. Each hor-
izonatl row likewise specifies a physical requirement -- e.g. for the
processing resources needed if the indicated values are to meet and be trans-
formed. The diagram of Fig. 2 1looks similar to a dataflow graph because it
assumes no constraints due to any scarcity of resources: it assumes that
processors and communications links are provided in abundance, at least at
the level of detail portrayed. Resource constraints would change the picture;
for example, Fig. 3 shows the same values as they would flow under additional
constraints imposed by a scarcity of processors such that each processor

must handle two adjoining activities.

() () @ i(2) O 703) Q (3) Q 7() O (a) Q (5)

Calculate new N A _d n L .

nodal values :;> [F=] =1}] S F——{F——1
Ca]CU]ate new — r - ey P e by e 3

zonal values :>' Lk {F =]] LT =l {1 =

O000000000O0O0OOO

set of values for node K: {P, Q, RHO, E};

set of values for zone K: {X, V}.

=

o

t+

[$2]

N =
— o~
N R
—
1] i

Figure 2: Connectivity of simplified hydrodynamics in one space dimension with one processor
assigned to each nodal and zonal calculation.

_z‘[.-

nodal values

C
Calculate new :> !
!

L

Calculate new

OCEéSsso

zonal values

L=

Figure 3: Constraints on concurrency (heavy lines) imposed by sharing of processors.

oJeJeleleleleleloleYeToleXeXe

- €1 -

N(1),N(2) Q 2(2),2(3) Q N(3).N(4) O (2(8),12(5)

Calcg]at? new ::> ‘ Processor Aj'} ic;rocessor C & 53

nodal values calculating ' calculating

Ca]Cl]ﬂat$ new :> { _Erocessor B 4 0 f[;r‘ocessor D)
zonal values rﬁa]culating calculating

Figure 4: Grosser view of Fig. 3 highlighting connectivity between processors;
(compare with Fig. 2).

V'[

N(1),N(2)

Processor A
transmitting

0

A receiving and
calculat-

B receiving and
calculat-
ing

B trans-
mitting

N(3),N(4)

Processor C
transmitting

_C receiving and
calculat-
ing

O

Z(4),2(5)

D receiving and
calculat-

ing

]

D trans-
mitting
|

-

Figure 5: Alternate view of Fig. 4 using the notation of buffered communication.

(See Appendix A, Sec. A.19 for more on the notation.)

-g‘[_

- 16 -

The suggested assignment of one processor to one nodal or zonal
region of the dataflow graph was in some degree arbitrary. Given a small
mesh and many processors, concurrency might be enhanced by assiging more than
one processor to each such region. For a mesh large compared to the number
of available processors, each processor would have to be assigned a larger
piece of the dataflow graph. A question then arises: under this circumstance
does simplicity in the connectivity of the dataflow graph imply that simplicity
can be maintained in the connectivity of the processors? The answer depends
on how a single processor is assigned to cover more than one region. Figure
3 jllustrates the principle that such assignment can be made so that the
connectivity between processors is no more complex than is the connectivity
between nodal and global regions. Figure 4 highlights this connectivity
among shared processors; the same connectivity can be maintained when processors
are shared over larger regions of the dataflow graph. By use of the
abbreviated notation described in Sec. A.19 of Appendix A, Fig. 5 shows the
same connectivity as Fig. 4, but with the communications buffers (the unlabeled
roles) suppressed. A slanting bar implies: a) that the Tower of the activities
consumes something produced by the upper activity; and b) that the two
activities are linked by an intermediating resource (such as a buffer) that
is not explicitly shown.

What can we learn from this example that is more generally applicable?
Sharing of processors reduces the size of the communications facility required
of a dataflow computer, at the cost of speed. For this example and this
manner of assigning processors, the communication pattern, although becoming
smaller, preserves its connectivity; be it one or many regions of dataflow
graph per processor, each processor communicates only with itself and with its

nearest neighbors. In the SIMPLE problem one finds somewhat more complex

- 17 -
more connectivity in the dataflow graph. Two points are to be noted in the

assignment of processors to pieces of datafiow graph of SIMPLE.

.3. A mesh of N zones can be parcelled out to D processors in such a
way that the connectivity among processors preserves any "localness”
present in the connectivity among nodal and zonal regions of the

dataflow graph.

.4. Other schemes of assigning processors that place additional demands

on their connectivity may offer advantages in speed.

Because of item .3 we can learn what connectivity is necessary to D processors
of a dataflow computer that is to solve a mesh of N zones, merely by studying
the connectivity of the dataflow graph. Because of item .4 we must bear in
mind that there will be additional questions of trade-offs between speed,

cost, and the connectivity of the communications facility.

- 18 -

© 3.3. Fitting the Computation to the Minds of the Analysts: Input and Output

Programs and parameters flow into a pattern of computation, and
significant features of the computation flow out. In some cases this interaction
can be partitioned into a sequence of phases: input, computation, output.
However, as the size of the computation increases there is progressively
more need to operate interactively, so that the selectivity of what flows
out can be increased along with the amount of computation.

Qutput from a dataflow machine is apt to involve transforming
an array, or some feature (such as a contour) extracted from it, into a
sequence of characters to be transmitted -- either to a person or to a
storage deviée. Such operations are bandwidth limited and threaten to
demand excessive time or buffering or both. As the scale of computation is
increased, it becomes necessary to increase the selectivity of feature
extraction in near proportion.

One reason that extracting features is challenging is that what is
significant sometimes becomes apparent only as the computation unfolds, so
that the definer of significance must interact with the computation. Further,
significance varies according to the viewer. Because of.this "'vaporous"
quality, one approach is to report out "all the data" from a computation,
so that it forms a database that can later be manipulated according to taste.
As the scale of computation increases, this approach becomes progressively
more demanding, and may become unrealizable.

An alternative approach would be to provide a facility by which
multiple viewers of the computation could each construct filters and other
“feature extractors" in real time as the computation proceeds. No doubt
some users would still build "databases", but they would have the opportunity

(and perhaps the necessity) of building more selectively than has been the

- 19 -

common practice.

This approach generates requrirements to be met by datafliow hardware
and software. The image is of a controllable "funnel" or "tree" that sucks
up arrays of field variables as the computation proceeds, discards what is
irrelevant, and issues a stream of characters that conveys the features
specified by one or another analyst. The "specification of relevant features"
could by supplied prior to execution, or could be supplied interactively
by the analyst as the computation unfolds.

Such a scheme demands software interfaces that can accept analyst-
supplied specifications of the features to be selected. Presumably the
structure should accomodate multiple analysts. The hardware requirements
are an extension of those already generated by the needs to sum over an
array and to convert an array into an output stream for transmission over
a single communications line. For example, program-controlled merging
of array elements into a stream can provide efficient sorting. Just as they
are needed to sum and to report out all the elements of an array, tree
structures will be needed to report out selected elements of an array (such
as the elements of a contour). However, one expects an advantage from more
flexible control of tree connectivity and of tree, nodal and zonal processing

than would be needed just to solve the field equations.

- 20 -

4. Modeling the Time to Compute

The prediction of execution time of SIMPLE on a dataflow computer
that is not yet fully specified is a complex task which, in this report,
can be started but not completed. For this reason we separate a general

discussion of what needs to be undertaken from a sketch of initial results.

4.1. Choosing an appropriate form of model

The question of time to compute is a question of what happeqs when
an abstract pattern -- the algorithm of SIMPLE -- meets a configuration of
physical resources -- communications lines, switches, buffers, processors, etc.
that compose a dataflow computer. The modeling of computation time entails
the modeling of the joining of the abstract event of the algorithm with the
physical event of the configuration. This calls for a modeling form that
straddles abstract (i.e. input-output) relations and physical circumstances.
For example, we are forced to observe that anything that is (even a value)

must be some place, such as on a communications line, in a buffer, etc.

We must Tearn to see something like a dataflow graph as having, in addition
to its implications for abstract values, implications concerning the resources
required to support the logical operations on values. As a foundation for
this shift in view, we turn to Holt's (1979) concept of the role played by an
actor who carries a value. The value is in the domain of mathematics and
algorithms; the actor (human or mechanical) is in the domain of space and time.
It would be advantageous to have a gross model with only a few
parameters, both to estimate the time for a dataflow computer to solve the
SIMPLE problem, and to help in configuring an implementation of a dataflow
computer. However, a believable gross model of such a complex situation

can be derived only by condensing a model that encompasses sufficient

- 21 -

complexity to account, for example, for the effects of pipe-l1ining and
of communications bottlenecks. It thus appears that the modeling form
should lend itself to different levels of detail.

The modeling method must encompass the concurrency exhibited by
dataflow architecture. This requirement rules out models based on the concept
of a system state, and directs toward models based on Petri nets.

' The modeling scheme must provide for the modeling of different
methods of numerical solution. For example, the implicit formulation of
heat flow results in a difference equation, the solution of which is equivalent
to the inversion of a certain near-diagonal matrix. The method of inversion
used in SIMPLE is that of back-substitution. However, it appears possible to
develop an alternative method that would impose far fewer unnecessary
sequencing constraints, and would hence better realize the potential advantage
of dataflow architecture.

The SIMPLE program uses a global determination of a time step that
varies from one cycle to another, but is invariant over the mesh. It appears
that in the computation of hydrodynamic shock, there would be a substantial
advantage in providing for the local determination of time steps that would
vary not only from cycle to cycle, but also from location to location over the
mesh. Such methods are used in the calculation of gravitational fields and
in relativistic fluid dynamics, as is discussed by Misner, Thorne and Wheeler
(1970, Chap. 42). Although this extension of method is outside the scope of
our present work, we require that the modeling method encompass time steps
as local values derived on an even footing with other field quantities.

These requirements suggest modeling based on the concept of a
Petri net. Because of its capacity to join abstract and physical operations,
we choose the modeling scheme of Holt (1979) to express the essential logical

and physical dependencies. For a discussion of the concepts, the reader is

- 22 -

referred to the cited report of Holt. As a "quick and dirty" view of "how

to do it", Appendix A describes the modeling conventions.

4.2. The need for speed

Faster computers are desired to allow a finer grained mesh.
Consider a given physical domain and a given duration of hydrodynamic
interaction. As the mesh is made finer the number of zones, N, increases,
and moreover the physical time step achievabie in a cycle of computation
decreases as 1/¥/N. Therefore the time to compute increases as N3/2.

This dependence applies to a dataflow computef with D << N, just as it does
to a sequential computer.

To decrease the linear dimension of the zones by a factor of 10,

N must increase by a factor of 100, and to maintain a fixed time to compute,
given the necessary decrease in physical time step; the speed of the computer
must be raised by a factor of 1000.

One should not that the constant of proportionality that relates
the allowable physical time step to 1/ /N depends on the numerical method
used, and that the freedom to choose an advantageous method depends on the
connectivity of provided by the communications facility of the dataflow

computer. Richer (e.g. more than nearest-neighbor) connectivity supports

larger time steps, but then richer connectivity slows the computer and requires

an investment that could otherwise buy more processors; thus there is a

trade off.

- 23 -

4.3. The computational cycle

The SIMPLE computation consists of initialization followed by
repeated execution of a main cycle. A cycle consists of computing the
velocity and position of each node, and then computing the properties (such
as pressure and density) of each zone. The cycle involves times in two senses:
a physical time step (e.g DTNPH in SIMPLE); and a time to compute the cycle.
Because the initialization is done once and the cycle is repeated many times,
the (total) time of computation is nearly independent of the time to initialize
the computation, and is essentially the time to compute a cycle multiplied by
the number of cycles.

The computational cycle can be partitioned either in terms of
the physics or in terms of the concurrency and connectivity that it presents.
These two partitionings result in somewhat different pictures. The following
is a compromise between the two. We view the cycle as composed of the

following phases of activity:

.1. establish boundary values (by means of "ghost" nodes and zones);
.2. calculate velocity and position of interior nodes;

.3. calculate zone variables for interior zones (e.g. pressure,
specific energy, artificial viscosity, density) except for

temperature;

.4. calculate temperature and recalculate energy to include the

effect of heat flow;
.5. calculate the time step for the next cycle;

.6. calculate totals: work done on boundary, energy lost, etc.

- 24 -

.7 extract needed output and bring in parameters to control
subsequent output, as discussed in Sec. 4.5.

Figure 6 schematically displays the types of connectivity, and
hence concurrency, in the flow of data prescribed by SIMPLE over a network
of processors, with one processor assigned to each node and each zone of
the dataflow graph. Additional processors are assumed to handle the "tree"
connectivity of phases 5, 6 and 7. As noted in Sec. 3, if fewer processors
are available, they can still be connected with the same connectivity, by
assigning each processor a set of contiguous zones, contiguous nodes, or
portion of the "tree". If more processors are available, then more than one
can be assigned to a given nodal or zonal region of the dataflow graph, with
the result that a higher degree of parallelism will be achieved. Some

possible assignments of this type are illustrated in Appendix B.

- 25 -

ghost
node ghost

T ' zone
O "GOO EE -
‘ ’,,ﬂ—{]

Phase 1: Establish
boundary values via
ghost nodes and

zones (typical row
or column). i

NN

Phase 2: Calculate
velocity and posi- i
tion of interior

nodes (typical row

or column).
B.C.
Phase 3: Calculate

zonal values except A
temperature (typical
row or column).

ZEAN

Phase 4: Calculate temp-
erature and correct energy:

calculate CBB and DBB C
(typical row or column);

/
S
P

<

[N &N
N

—J

V4

}\‘\‘[
Z-sweep - }\\“‘f
’/‘E

N
/
~
4

(typical column, all
columns in parallel);

va

I

?a 3<[c]

]\D<E]
R-sweep 3‘*\\f}:::£3
(typical row, all

rows in parallel);

B
/,/{3”/4

(continued on next page)

- 26 -
(continued from preceding page)
Phase 5: Calculate next time

step and distribute ("tree"
connectivity covers all zones):

—rd.

[N L\
\ J/

calculate locally,
then take minimum;

distribute.

Phase 6: Calculate total El::::f
internal energy and energy

:
exchange across boundary \\\\\;
o

VAW

Y\ P %

("tree" connectivity
covers all zones; see note a.)

Phase 7: Input/output: 0 out }\\\\{ 1]
test values (e.g. against -5 fgg;;~
thresholds) and extract N - P g
features (see Note b.) N -] r-v)
o) N yst L.
- g From -
receive changes in param- /L_'T analyst1 ' ;,.O,.,‘, yst 2.

eters (e.g. thresholds) /]
that control feature '

extraction. (See Note
b and Secs. 3.3 & 4.5.)

i\J/
S

\

C

Note a: Phase 6 consists of a local calculation, like phase 3, followed
by a summing operation. In SIMPLE this phase is distributed
throughout the other phases; however, this distribution does not
change the character of the demand placed on computational resources.

Node) {Zone} (Node Etc.

)
&

®

N
Note b: The dotted box (I_L) will involve sequencing (‘ig:) or not ('\jf)s
according to whether messages are or are not concatenated.

Figure 6: Concurrency and connectivity in different phases of the cycle.

- 27 -

4.4. Dependence of time to compute on number of zones and number of processors

Although not attempting quantitative estimates, we discuss how the
time to compute varfes with the size of the mesh and the number of processors.
Each phase of SIMPLE, as shown in Fig. 6, will be considered separately,
as different phases exhibit different dependencies. Several areas of
uncertainty confront evenqualitative estimation; in particular the detailed
operation of a communications facility necessary to a dataflow computer
bears on the dependence. This operation has not been modeled to date; for
this reason we confine our discussion to two limiting cases. The first case
leans toward keeping the communications facility local; i.e. communications
between nearest neighbors are stressed. The second case posits a general
purpose, global communications facility without worrying about its realizability;
the intent is to see what contribution to speed such a facility could make if

it were available.

4.4,1. Case definitions

Case 1: connectivity restricted to nearest neighbor plus "tree". As case 1

we.posit a restricted communications facility. We imagine processors
connected like a two dimensional mesh, with a provision for two-way communications
between each zonal processor and its neighboring nodal processors. I.e. the
processors are divided into two classes, and a given direct communication is
always between two members that are in different classes. Fig. 7 illustrates
the connectivity. In addition, we posit additional processors and connections
to perform such functions as global sums and the taking of maxima. Each zonal
processor is imagined to be a twig of a tree. At nodes of the tree there are
processors of a third class (the "tree" class) which can operate to

a) accept a flow of values from twig to root, operating by program to

select and pass on the largest value, to sum the incoming values and

- 28 -

‘pass on the sum, etc, or

b) accept a value flowing from root to twig, providing either for

fanout to all zones or for selective routing to a given zone.

For simplicity we imagine that the mesh of the SIMPLE problem
is roughly square, and that the D zonal processors are arranged in a
square array. To use the configuration of case 1, we imagine that each
zonal processor is assigned about N/D contiguous zones; i.e. each zonal
processor operates on a "super"-zone of the mesh, as discussed in Sec. 3.
As indicated in Sec. 3., the connectivity between super-zones (and the
corresponding super-nodes) will show the same pattern as does Fig. 6.
The assignment of pieces of dataflow graph to processors is static, and does

not change during execution of the program.

Case 2: "general-purpose" communication. Suppose that the dataflow computer

has a communications facility that is ideal in the sense that each processor
can send a message to any other, with a rate of flow constrained only by
the bandwidth of the processors. We define parameters as follows:

T, = time for a processor assigned to a node or zone of the dataflow

graph of SIMPLE to enter a communication into the communications
facility, for forwarding to another processor; and

T,(D) = time for the communication, under the loading conditions at hand,
to travel to its destination.
T, must increase with D at least logarithmically; in practical terms it will
probably grow more or less linearly.
The assignment of processors to portions of the dataflow graph
can be made as in case 1, but, as will be discussed below, there is an

advantage in speed if processors can be reassigned during execution. In

- 29 -

particular, during the Z-sweep of phase 4 it is an advantage to have each
zonal processor assigned to a column of zones of the dataflow graph; during
the R-sweep it is an advantage to have each zonal processor assigned to

a row of zones of the dataflow graph.

4.4.2. Results

Consider the SIMPLE problem for a mesh of N zones, running on a dataflow
computer capable of computing a mesh of D zones without time-sharing of
hardware. The running time will depend on the time to compute a cycle,
as discussed previously. The time to compute a cycle will be a function
of N and D. Examination of the connectivity shown in Fig. 6 for various
phases of the cycle leads to the results shown in Table 1. In Table 1

the parameters T1 through T, will be different for the two cases, and indeed

7
depend on details of the implementation. However, they do not depend
substantially on N or D.

In order to move to a quantitative estimate, one must both estimate

the parameters T, through T7 for whatever detailed cases are to be judged,

1
and one must also determine the degree to which pipelining could make the
total cycle time less than the sum of the times for the individual phases.
Although the values of the T-parameters may vary between case 1 and
case 2, it is to be noted that the dependence on N and D is of the same form

for the two computers, except in phase 4, where the configuration of case 2

promises a substantial advantage. This advantage could be obtained as follows.
Assume for simplicity that N = D2 and that the mesh is square, so that there

is one processor for each row of zones and for each row of nodes, or alternatively,
one processor for each column of zones and for each column of nodes. For

the Z-sweep assign each processor to a column, so that one processor must

- 30 -

operate sequentially along its column. Because of the data dependence of
the back-substitution method used, this involves no more computing time than
would the assignment of one processor per zone and node. At thé completion
of the Z-sweep, reassign each processor to a row, in preparation for the
R-sweep. In this reassignment each processor must send and receive field
variables to and from all the other processors of its class. If the
communications facility accepts messages as fast as the processors can stuff

them in, then we find that the time to reassign is about as follows:
Reassignment time = DTe-FTX(D) . o (Eq. 4.1)

Table 1, under Phase 4, shows the comparison of dependencies achieved
with this capability, versus the simpler facility offered in case 1. (Note

that T4 for case 1 is not the same as T, for case 2.) It is to be noted that

4
the advantage of the more general communications facility can be realized only
if the facility supports "high bandwidth" in the sense of providing for complete
exchange of messages among all processors. This total exchange must actually
take place to make the scheme work.

The square-root dependence shown for case 1 comes about because in
a square array of processors with processing constrained to be sequential
along a column (for example), then only one row of processors is in parallel;

the other rows are waiting. As D is increased, the length of the row of

processors grows as the square root of D.

_'[E.-

Phase 1: | Phases 2 & 3: Phase 4: calculate temperature Phase 5: Phase 6: | Phase 7:
boundary | calculate time energy input/
value nodes and Case 1: Case 2: step. totals. output.
determi- | zones except communications ""general purpose,
nation. temperature. restricted to global" communi-
nearest neighbor | cations facility.
and "tree".
Numerical
T T (D)
method of 1 2) (1 e ol N N
SIMPLE 1, YVWD | (1Y iy Tt)N(ﬁ #3225 Tofroa | T Broa0f 7,5 but
(note c) || reducible
Change to to something
hypothetical 0 " (?) T ﬂ1ogzD . . approaching
concurrent D T_logoN
method for 7
matrix @hrough_
inversion increasing
selectivity
of feature
Additional . .) - N . extraction.
change to =
1oca? deter- 50 See Secs.
mination of 3.3 and
time steps 4.5.

Notes. a) Communication more general than "tree" + "nearest neighbor", even if available, can be effectively
used only in phase 4.

b) The issues of estimating the parameters T. through T6 is discussed in Sec. 4.4.

1

c) Phases 1 through 6 may overlap, so that, as discussed in Sec. 4.4, the cycle time may be less
than their sum; in particular the results of phase 6 are not used in any loop calculation and phase
6 can thus easily be pipelined.

d) The mesh is assumed to be roughly square.

Table 1: Form of dependence of time to compute a cycle on number of zones (N) and number of
processors (D).

- 32 -

4.5. Input, Qutput, and Control Over the Extraction of Features

For the first six phases of Table 1, the time to compute diminishes
as the number of processors is increased. But this is not so for phase 7:
SIMPLE requires the "wholesale" shipment of arrays to an external storage
medium. As discussed in Sec. 3.3, the time to transmit N elements over a
single transmission line has a lower bound that is proportional to N, and
moreover is independent of how many processors are brought into the dataflow
computer. Thus the generation of output threatens to consume a time that
could become excessive. This threat can be countered by providing greater
selectivity in reporting; i.e. one programs for the reporting only of
significant features, and avoids communicating "masses of raw data".

In order to avoid swamping analysts even with present computers,
Livermore Laboratory has assembled a powerful facility for computerized
extractions of significant features from masses of data. At present
the approach is to first compute a relatively “"general database, and then
to exercise selectivity in the extraction of features. In order to make
efficient use of a dataflow computer, one must shift to a greater emphasis
on selectivity in generating the output which will form displays and/or
"special purpose" databases. Without bringing selectivity into the generation
of output, the linear growth of time to report an array with the number of
zones is apt to dominate the computation. Even if it does not, the increase
in size in any "general-purpose" database is a serious drawback.

The SIMPLE code offers a small beginning in this direction in the
option in the EDIT subroutine by which one can eliminate the reporting of
nodes and zones that show less than a specified degree of motion. More is

doubtless done in other programs to provide selective reporting, but still

- 33 -

more must be done as the scale of computations is increased. As a specific
example along these lines, an analyst could specify that the value of say
pressure be reported out for any given zone only if the pressure had changed
by more than ten percent since the last report for that zone. Thresholds
(e.g. the "ten percent") might be varied during execution.

If selectivity of reporting is made to increase in near proportion
to the number of zones, then input and output can be handled with a structure
for which Phase 7 of Figure 6 serves as a point of departure. As discussed
in Sec. 3.3, however, more trees and more flexible control over them would be
of advantage. The goal of selectivity would be to keep the formation of
output from overwhelming the analyst and from taking too long. Through
increasing selectivity with the number of zones, one can keep the growth
rate of the time to form the output from growing as fast as the number of
zones; one might hope to contain it to a logarithmic dependence.

Further discussion is outside the scope of this work, but would

be appropriate for a future project.

- 34 -

5. Translation of SIMPLE from FORTRAN into VAL

5.1. The balancing of objectives

In developing a code in any language, the following desires are

balanced:
.1. Express the algorithm as clearly as possible; and
.2. Make good use of computing resources.

In producing VAL code for a dataflow computer whose hardware is not yet
fully specified, it would also be desirable to illuminate constraints on

concurrency, and in particular to:

.3. Organize the code so as to make clear which aspects of SIMPLE

place which demands on hardware speed and connectivity; and

.4. Extend the SIMPLE problem by sketching more of the input and
display functions, because these functions are essential to any
actual problem of the SIMPLE type and place demands on both

language and hardware not made by other phases of the problem.
In addition, since we are translating from FORTRAN, it would be desirable to:

.5. Make VAL code that can easily be compared with the given FORTRAN

code.

These desires conflict in various ways, and any VAL code will reflect
a balance between them. In support of items .1 and .3 we group variables
into bunches (such as START) in a way that will either decrease efficiency
or place extra burdens on compilation. The decrease in efficiency would

take the form of sending a longer message where a shorter one would suffice;

- 35 -

concurrency at the level of detail shown in Fig. 6 would not be affected.

In support of items .2 and .3 we have sacrificed item .5 to the
extent of introducing new variables (STRESS, GX, GV) that are tensors
defined in each zone, in order to demonstrate that the connectivity demanded
by SIMPLE in computing the acceleration of each node is only nearest-neighbor,
in contrast to the first impression given by lines 580 throug 593 of SIMPLE (1979).
Appendix B illustrates demands placed on hardware by various parts of the
SIMPLE problem, as expressed in VAL.

In support of .4 we have indicated possible extensions of the VAL
language that seem to be needed to help with the extraction of significanf

features from an array, and with input and output in general; these are:
a. the stream type of value for input and output;

b. the addition of concatenate to the list of forall operations,

so that a stream can be formed quickly from a sparse array;

c. the addition of an asymmetric merge operation on arrays to help
in communicating a sparce pattern of change to an array; the effect
is that one of the two arrays to be merged supplies default values

which are overridden by non-empty elements of the other array.

d. a form of forall eval max that extracts the lowest index at which

the maximum value of an array of reals is found, in addition to

the maximum value itself.

In support of item .5 we use the names of variables as given in the
FORTRAN code except where different structures are introduced.

In connection with item .1, it is to be noted that the algorithm of

- 36 -
SIMPLE evolved over decades in a process that was influenced by often
conflicting needs for single-step accuracy, stability, and economy; for
this reason the a]gorithm will not be found to show a simple structure, no
matter how it is displayed.

The FORTRAN code, including comments, runs some 1749 lines, and
a complete translation into VAL would be of roughly the same size. Because
the SIMPLE code in FORTRAN is always undergoing minor revisions, as is the
VAL language, it seems beside the point to carry through details of translation
that duplicate the form of translations already made. We rely on Hirshman
(1978) and Woodruff (1979) to demonstrate that many FORTRAN passages can
be translated efficiently into VAL; some of thes passages are referred to in
what follows. Rather than duplicate their work, we present a more detailed
code of the main module of the VAL program for SIMPLE, as a framework in
which to view passages that deal with specific acitivities of computation.
In this framework we highlight the issues that were encountered in a detailed
review of the entire SIMPLE program, focusing on areas, notably input and
output, that require further development of the VAL language. Our intent
is both to show how the present edition of VAL is sufficient to translate
most of the FORTRAN, and to show clearly certain extensions of VAL that .
appear necessary for a complete translation, including the extension of

SIMPLE to provide for the extraction of significant features from arrays.

- 37 -

5.2. Samples of VAL code

5.2.1. Overall form of the VAL translation of the SIMPLE code

As discussed by Ackerman and Dennis (1979) a VAL program consists of
a collection of external function modules, each of which may contain internal
function modules. One internal module cannot invoke another. We present
the VAL code for SIMPLE as a main external function module called SIMPLE VAL,
along with an external function JES which is a table look-up used by two
functions internal to SIMPLE VAL; in addition some external routines presumed
to be in a system library are used, such as sine, cosine, and square root.
The bulk of the code will be the function modules internal to SIMPLE VAL.
Each external function module consists of:
header,
type definitions,
external function declarations (e.g. for Tibrary supplied utilities)
internal function definitions, and

body.

In the code that follows there will be gaps, indicated by comments,
such as passages that can be filled in from the work of Hirshman (1978).
Comments will also indicate where a possible extension of the VAL language
has been invoked to overcome one or another obstacle of the type discussed
in Sec. 5.1.
The program will consist of the external functions
SIMPLE VAL
JES VAL
SIN
cos
SQRT %square root,

and might well be augmented by system utilities to indicate running time, etc.

- 38 -

Because certain features of SIMPLE VAL are understandable only in the context

of JES VAL, we present JES VAL first.

5.2.2. JES_VAL

The FORTRAN code of SIMPLE contains a table look-up subroutine named
JES. In SIMPLE VAL this look-up is used by two internal functions: ENERGY_HYDRO
and ENERGY_HEAT. Because it is called by two internal functions, we construct
the VAL translation of JES as a function external to SIMPLE VAL.

JES operates on numbers and not arrays; it can be applied fully
concurrently be each zonal processor to the elements of a given zone.

An issue in translating is that the FORTRAN version of JES uses
many GOTO statements, and these statements are not supported under the more
structured philosophy of VAL. Thus the JES code must be re-expressed in
an IF-THEN-ELSE form. In arriving at the code dispiayed below, it was
very helpful to first flow chart the FORTRAN CODE. Another issue is that
in FORTRAN, JES is employed not by calling "JES", but by calling one or another
of the entry points IES1 and IES2; these wf]] correspond to the parameter
ENTER in JES VAL, our VAL equivalent of JES: ENTER = 1 corresponds to IESI;
ENTER = 2 corresponds to IES2.

Partly because it uses a methéd of successive approximations, SIMPLE
employs JES several times in the calculation of energy for a single zone. JES
(for ENTER=2) returns energy or (for ENTER=1) pressure as a function of
temperature (TARG1) and density (RARG1), by means of a table look-up. The
table is organized as a two dimensional array of rectangular regions on
the (temperature, density)-plane, with a region specified by a pair of
integers NT and NR. The returned value is supplied by a procedure that

has several steps:

- 39 -

@® Search for and find the NT, NR for the region that contains the
"point"” (TARGl, RARG1);

@® Per line 1353, statement 5310 of SIMPLE (1979), evaluate a function
of NT and NR to obtain an integer M as index to an array of sets
of coefficients -- e.g. AES[M], etc. The set of coefficients

for a found M will be used to interpolate.

® Obtain the value to be returned by means of a quadratic interpolation

» function, using the set of coefficients AESIM, etc.

The running time of SIMPLE (at least for a sequential machine) is significantly
reduced by saving NT, NR, and M as NTSVEN], NRSVINI, and MSV[N] for use

as trial starting values for the search in the next invocation of JES. 1In

the FORTRAN code NT (along with NR and M) is saved separately according to
which of the two entry points (corresponding to ENTER = 1 or ENTER = 2) is
invoked. Thus NT is saved in a two-element array, with one element for

each possible entry point. We refer to the six saved numbers collectively

as SV_REC, where SV_REC is a structure of type SV_REC type, defined by:
type SV_REC_type = record[NT, NR, M: arraylintegerl] %.

The structure which we have called SV _REC saved from a given zone

supplies trial values for the next invocation of JES, which may be for

the same zone, or for a different, usually neighboring zone, as the sequential
processor steps from zone to zone. The facilitation of the search is still
likely when a shift is made to a neighboring zone, because conditions change
little from a zone to its neighbors. The speed advantage accrues because

the sequential processor usually last invoked JES either for the same zone

- 40 -

or for a neighboring zone. When the last invocation was for a far-away
zone, then SV_REC is no help; this does not affect the answer produced
by JES, but does extend the time to find the answer.

Now we turn to the issue of translation for a dataflow computer.
Suppose, as suggested in Sec. 3, a dataflow computer has D zonal processors,
each assigned to cover a "super-zone" composed of (about) N/D contiguous
zones. When N>> D a given zonal processor will step sequentially from
zone to zone in a "raster scan" over its N/D assigned zones, just as the
sequential computer is specified by the SIMPLE code to scan all N zones.

There are three options:

a. Omit the use of SV_REC, and accept a slower look-up (noting that
because many look-ups will be done concurrently, the speed is not

so important as it was in the FORTRAN code).

b. Create an array of SV_REC's, with one SV_REC for each zone. This
option maintains the speed, but as the cost of storing a factor

of N/D more SV_REC's than are really needed.

c. Cause each zonal processor to carry one SV_REC'élong as it steps

through its N/D zones.

Option a) is easiest to implement, but is hardly an example of translating
power. Option c) is both the most efficient and the most demanding, and
is coded in Sec. 5.2.3, where it shows up in initializing SV prior to
entering the main loop, and in Sec. 5.2.4 where it is discussed under
ENERGY_HYDRO.

The VAL function module follows:

- 41 -

function JES_VAL(ENTER: integer; TARG1, RARG1l: real; SV_REC: SV_REC type
returns real, SV REC type)
type SV _REC type = recordINT, NR, M: array[integer]]
let % The closing "in" is the the Tast Tine of JES_VAL.
% Set up constants for table; these are provided in the FORTRAN code by
% subroutine SETUP acting via COMMON; we incorporate much of the equivalent
% of SETUP here.
IZES, ITES, IRES: arraylintegerl} := L[1: ...1, ... ;
TES, RES, AES, ... , PES: arraylreall := [1: ...), ... ; % End of sét-up part.
EXTT1, EXTR1: real := 1;
N: integer := ENTER; % Change of name to conform to FORTRAN code
NT, NR: integer := SV_REC.NTIN], SV_REC.NRLNI;
EXTT2: real := EXTT1 * TARG1;
EXTT, TARG: real, FLAG, NT1l: integer :=
if TESINT] > TARG1 then
. if NT <= ITESCN}then EXTT2 / TES[NT], TESINT1, §, NT
| else for Nl: integer := NT-1
do if TESIN11 > TARG1 then
} if Nl > IESIN1J then iter N1 := N1-1 enditer
' else EXTT2 / TESEN11, TESIN1l, 1,N1 endif
else EXTT1, TARGl, 1, N1 endif
endfor
| endif
else if TESUNT+1] > TARGl then EXTT1, TARGl, @, NT
else if NT+2 = ITES[N+11 then EXTT2 / TESINT+1], TESINT+11, @, NT
else for N1: integer := NT-1
do if TESIN1+1] > TARGl then EXTT1, TARGl, 1, N1

- 42 -

else if NI1+2=ITES[N+1lthen EXTT2 / TESLN1+1lL TESIN1+1]1, 1, N1
else iter N1 := N1l+1 enditer endif
endif

endfor
endif
¥ endif
endif
EXTRZ: real :=.EXTR1 * RARG1;
EXTR, RARG: real, FLAG2, NR1l: integer:=
if FLAG=0 then

if RESLNR1 > RARG1 then
| if NR > IRESINIJ then for N1: integer := NR-1

do if RESINR1 > RARGl then

if NR > IRESCN] then iter N1 := N1-1 enditer
else EXTR2 / RES[N1l, RES[N1l, 1, N1 endif
else EXTR1, RARGl, 1, N1 endif

endfor
- else EXTR2 / RESINR], RESINRI, P, NR endif
élse if RESLNR+1] > RARG1 then EXTR1, RARG1, @, N1

else if NR+2=IRESUN+11then EXTR2 / RESLNR+11, RESINR+1], @, NR
[else for Nl1: integer := NR+l

| do if RESIN1+11 > RARG1 then EXTR1, RARGl, 1, N1
: e];e if N1+43 > IRESIN+11 then EXTRZ2/RESLN1+11l, RES[N1+1l, 1, N1
| else iter N1 := N1+l enditer endif
!
i
,

- 43 -
endif
e1selif RESINR] < RARG1 then for N1: integer := NR
dQ if RESLN1+11 > RARGl then EXTR1, RARGl, 1, N1
else if N1+3 > IRESIN+1lthen EXTR2/RESIN1+1], RESINI+1l, 1, N1
else iter N1 := N1+1 enditer endif
endif
endfor
else for Nl: integer := NR
do if RES[N1] > RARG1 then
if N1 > IRES[NIthen iter N1 := N1-1 enditer
else EXTR2/RES{ N1}, RES[N11, 1, N1 endif
else EXTR1, RARG1, 1, N1 endif
endfor
endif
endif;
M: integer := if FLAG2=0 then SV_REC.M
else IZESINI+(ITESCN+11-ITESINJ-1)*(NR1-IRESLNJ+NT1-ITESIN]) endif;
SV_REC1: SV _REC type := |
if FLAG2=0 then SV_REC
else SV_REC replace[NT: SV_REC.NTLN: NT11; NR:SV_REC.NRLN:NR11;
M: SV_REC.MIN:M11 endif;
FUNC: real := AES[MI+ RARG * (BESLM1 + RARG * DES[MI)
+ TARG * (CESIM] + RARG * (FESIM] + RARG * GESLMI)
+ TARG * (EESCM1 + RARG * (HESIM] + RARG * PES[M1)));
FUNC1 : real := if ENTER=1 then FUNC * EXTT * EXTR
else FUNC * EXTT endif
in %closes "let" on 1ine 2 of JES VAL

FUNC1, SV_REC1 endlet endfun % End of function JES VAL

- 44 -

5.2.3. SIMPLE_VAL

SIMPLE VAL is the main module -- i.e. the overall framework --
for the VAL code translation of SIMPLE. Because the functions internal
to this module correspond to roughly 25 pages of FORTRAN code, the section
of internal function definitions is abbreviated to a 1ist of headers, and
a discussion of salient features of these modules will be found in Sec. 5.2.4.
The code that follows is a detailed statement of the overall structure

of the VAL translation of SIMPLE.

% Header:
% Note presumed language extension to "stream" type for input and output.
function SIMPLE_VAL(INPUT A: start-type; INPUT_B: stream
[correction_;ype] returns stream[out_phys_;ype],
stream[out_cycle type], stream[out edit type],

stream out_condition_type)

*type definitions:

type vector = record|R,Z: real];

type zonal = array[array[real]];

type zone_tensor = array[array[record[E,W: vector]]];

type nodal = array[?rray[vector]] 5

type node_scalar = arraylarray[real]];

type start_type = record[DTNPH, TFLR, EDDT, PP, E@, RHOP, DTMIN,
DTMAX, TMAX, CPF, C1F, GAM: real; BC: record[U, D, L, R: integer];
LIM: record[KN, KX, LN, LX, DS: integer]; NCP: integer];

- 45 -

% As shorthand we shall write "STATE" and "state type" to refer to
9 a list of the variables that define the state of the computation:
% state_type = 1ist[DTNPH, DTN, TNUP, ENCG, EDTIME, EDDT: real; NYCL:
% integer; P, Q, RHOJ, E, S: zonal; X, V: nodal; GX: zone_tensor;
% DTMIN, DTMAX, TMAX, CPF, C1F, GAM, EDDT, TFLR: real; NCP: integer]
type out phys_type = "state type";
type out cycle type = record[NYCL: integer; DTNPH, TE, ENC, SKE, HN, WN,
ENCG: real; DTEN, DTC2: record[DT: real;
K, L: integer]];
type out edit_type = "state_type";
type out condition_type = stream; % language extension

type correction type = stream;

type lim type = record[KN, KX, LN, LX, DS: integer]; % 4 fields correspond
% to FORTRAN code KMN, KMX, LMN, LMX; DS describes implementation for

% the implementation-dependent use of JES_VAL shown in ENERGY_HYDRO.

type SV_REC_ type = record[NT, NR, M: array[integer]];
% SV_REC discussed in Sec. 5.2.2 in connection with JES VAL.

type SV_type = array[array[SV_REC_type]]; % Because of our choice of
% option c) of Sec. 5.2.2, the array SV of type SV_type will have

% dimensions of LIM.DS by LIM.DS, where LIM.DS squared is D, the

% number of zonal processors of the dataflow computer. If option b)

% were used, then LIM.DS would not have to appear in the program, and
% the array SV would have N (number of zones in mesh) elements instead

% of D elements.

- 46 -

% external function declarations:

external JES VAL(ENTER: integer; TARGl, RARG1: real; SV_REC:
SV_REC type returns real, SV_REC type)

external sin(DUMMY: real returns real)

external cos(DUMMY: real returns real)

external sqrt(DUMMY: real returns real) % square root.

% The bodies of the internal function definitions are omitted here; the

% headers are listed for all internal functions of SIMPLE VAL:

%

%

INITIALIZE(START: start type returns "state type")
EDIT(STATE returns edit type)

BOUNDARY PROJECT(P, Q, RHOJ: zonal; X: nodal; GX: zone tensor; LIM:

1im_type returns zonal, zonal, zonal, zone_tensor)

VELOCITY(V: nodal; P, Q, RHOJ: zonal; GX: zone_tensor; DTN: real;

LIM: 1im_type returns nodal)
POSITION(X,V: nodal; DTNPH: real; LIM: Tim_type returns nodal)

HWORK(X, V: nodal; P, Q: zonal; DTNPH: real; LIM: 1im_type returns real)

ZONE_GEOM(X, V: nodal; MASS, S: zonal; LIM: 1im_type returns

zonal, zonal, zonal, zonal, zone tensor, zone_tensor)

ENERGY_HYDRO(E, P, AJ, RHO, DVOL, MASS: zonal; GX, GV: zone_tensor;
SV: SV_type; DTNPH, COF, C1F, GAM, DTMAX: real; LIM:

1im_type returns zonal, zonal, zonal, zonal, SV type)

%

%

%

%

%
%

%

%
%
%

%
%

- 47 -
HYDRO TOTAL(V: nodal; MASS, E: zonal; LIM: 1im type returns real, real, real)

ENERGY_ﬁEAT(E, RHO, AJ, TEMP, MASS: zonal; X: nodal; SV: SV type;
DTNPH, TFLR: real; LIM: 1im_type returns zonal, zonal, zonal,
node scalar, node_ scalar, SV_type)

HEAT_TOTAL(E, TEMP, MASS: zonal; CBB, DBB: node scalar; DTNPH, HN: real;

LIM: Tim_type returns real, real)

TIME_STEP(TSO, YE: zonal; X: nodal; DTNPH, DTMAX, C@F, C1F, GAM: real;

LIM: Tim_type returns real, real, real, real)
PHYS_REPORT("STATE": "state_type" returns "state-type")

CYCLE_REPORT(YE, TSO: zonal; NYCL: integer; TNUP, DTNPH, TE, ENC,
SKE, HN, WN, ENCG: real; LIM: lim_type returns

out cycle type)

MODIFY("STATE": "state type"; DUMMY: correction_type returns

"state-type")

- 48 -

% body of SIMPLE VAL

% The gross plan of the body is

% for STATE: state type:= INITIALIZE(first(INPUT_A));
% OUT PUT: stream:= null

% do if (condition) then OUT_PUT

% else iter STATE:= main_cyle(STATE) enditer

% endif

endfor

its fields (as given in the section of type definitions), and split

%
% In the detailed presentation that follows we split "STATE" into
%
%

"main_cycle" according to the phases illustrated in Figure 6:

for START: start_type:= first(INPUT A); % read input stream
| STATE: "state_type":= INITIALIZE(START);
OUT_PHYS: stream[out_phys_type]:= null;
OUT_CYCLE: stream[out _cycle_type]:= null;
OUT_EDIT: stream[out edit_type]:= EDIT(STATE);
CORRECTION: stream := INPUT B;
HN, WN: real := 0.;
% Set up temporary variables, other than those covered in STATE,

% needed for main cycle:

AJ, DVOL, TEMP, TSO, YE: zonal := array fil1(LIM.KN + 1, LIM.KX,
array filT(LIM.LN + 1, LIM.LX, 0.));
GV: zone_tensor := array fill1(LIM.KN + 1, LIM.KX,
array fil1(LIM.LN + 1, LIM.LX, record[E, W: record[R, Z: 0.]]);
CBB, DBB: nodal := array_fi]](LIM.KN, LIM.KX, array fill
(LIM.LN, LIM.LX, record[R,Z: 0.]));
DTEN, DTC2, SKE, ENH, TE, ENC: real :=0.

- 49 -

LIM: Tim type := START.LIM;

% Set up array of SV REC's to conform to option c) of Sec. 5.2.2.

% Let DS be the greatest integer such that DS*DS = D, where D is the

% number of zonal processors, as discussed in Sec. 3.

SV: SV _type :=
let DS: integer := LIM.DS % implementation-dependent parameter.
in arrax_fi]](l, DS, array fi11{(1, DS, record NT: array fill(1l, 2, 0);
NR: array fil1(1, 2, 0); M: array fil1(1, 2, 0); EXTR: 0.)) endlet;

do if DTNPH < DTMIN | TNUP > TMAX then
let OUT_CONDITION: stream :=
if DTNPH < DTMIN then "DT_STOP" || NYCL || TNUP || DTNPH [{ DTMIN
else "STOP TMAX" [INYCL |l TNUP || TMAX endif
in QUT_PHYS, OUT_CYCLE, OUT_EDIT, OUT_CONDITION endlet
else iter
% Phase 1 of cycle (see Fig. 6 for description of phases):

P, Q, RHOJ, GX := BOUNDARY_PROJECT (P,Q, RHOJ, X, GX, LIM);

% Phase 2 of cycle:
V := VELOCITY(V, P, Q, RHOJ, GX, DTN, LIM); % vector velocity
X := POSITION(X, V, DTNPH, LIM); % vector position

% "WN" part of Phase 6:
WN := HWORK(X, V, P, Q, DTNPH, LIM) + WN;

% Phase 3 of cycle:
RHO, AJ, DVOL, S, GX, GV := ZONE GEOM(X, V, MASS, S, LIM);
E, P, Q, TEMP, TSO, SV := ENERGY_HYDRO(E, P, AJ, RHO, DVOL, MASS,

GX, GV, SV, DTNPH, CPF, C1F, GAM, DTMAX, LIM);

- 50 -

% Hydro part of phase 6:
SKE, ENH, TE := HYDRO_TOTAL(V, MASS, E, LIM);

% Phase 4 of cycle:
E, RHOJ, YE, CBB, DBB, SV := ENERGY_HEAT(E, RHO, AJ, TEMP, MASS, X, SV,
DTNPH, TFLR, LIM);

% Heat part of phase 6:
ENC, HN := HEAT _TOTAL(E, TEMP, MASS, CBB, DBB, DTNPH, HN, LIM);

% Phase 5 of cycle:
DTN, DTNPH, DTC2, DTEN := TIME_STEP(TSO, YE, X, DTNPH, DTMAX,
CBF, CIF, GAM, LIM);

% Phase 7 of cycle (output and corrective input):
OUT_PHYS, EDTIME :=
if TNUP < EDTIME then OUT_PHYS, EDTIME
else OUT_PHYS || PHYS REPORT(STATE), EDTIME + EDDT endif;
NYCL := NYCL + 1 |
OUT_CYCLE :=
if MOD(NYCL, NCP)~= O then OUT CYCLE
else OUT_CYCLE || CYCLE_REPORT(NYCL, TNUP, DTNPH, YE, TS0,
TE, ENC, SKE, HN, WN, ENCG) % lines 766-773 of FORTRAN
endif | ‘
STATE, CORRECTION :=
if CORRECTION = null then STATE, CORRECTION

else MODIFY(STATE, first(CORRECTION)), rest(CORRECTION)
endif

- 5] -

% An alternative approach to output would be to extract significant
% features. For example, we illustrate a report of pressure for only
% those elements of the array P that have changed by at least 10
% percent since they were last reported. We assumean array P_LAST
% as an iteration variable to carry the "last reported" value of P:
P_LAST, OUT PHYS SELECTIVE :=
if TNUP < EDTIME then nil %language extension for iteration variables
else let COND: array[array[boolean]]:=
forall K in [LIM.KN + 1, LIM.KX], L in [LIM.LN + 1, LIM.LX]
construct ABS((P[K,L] - P_LAST[K,L])/MAX(EPS, P_LAST[K,L])) < .1 endall
in forall K in [LIM.KN + 1, LIM.KX], L in[LIM.LN + 1, LIM.LX]
construct if COND then P_LAST|K,L]
else P|K,L] endif endall, OUT_PHYS_SELECTIVE H
forall K in[LIM.KN + 1, LIM.KX], L in [LIM.LN + 1, LIM.LX]
eval concatenate %language extension
if COND then null
else record|[P: P[K,L]; K: K; L: L] endif endall
endlet
endif
% end of example of feature extraction
enditer
endfor

endfun % SIMPLE VAL

- K7 -

5.2.4. Discussion of functions internal to SIMPLE_VAL

INITIALIZE includes code like the modules GENBC and GENPQS of Hirshman (1978),

along with code of the form, say for pressure,

% P: zonal :=

array fill(LIM.KN + 1, LIM.KX , array fi11(LIM.LN + 1, LIM.LX, START.PP)).

EDIT is straightforward to translate, except for one demand which it places
on the language: one needs to extract not only the maximum element of an

array (as can be done with forall eval max) but also the K,L coordinates

at which the maximum is found. Efficient support of this need requires

hardware and language attention.

BOUNDARY_PROJECT includes the module GEOMETRY of Hirshman, the filling of

P, Q, and RHOJ arrays (where RHOJ[K,L] = RHO[K,L] * AJ[K,L]), and the
calculation of GX for boundary zones. The calculation of GX for interior

zones is done in ZONE GEOM, and is discussed in Appendix B.

VELOCITY: see Appendix B, where connectivity of the flow of data is discussed.
POSITION is like Hirshman's module HYDRO; see also Appendix B.

HWORK is essentially Hirshman's module of the same name.

ZONE_GEQOM produces AJ and S 1ike the module GENAREA of Hirshman, and also

produces GX and GV by the algorithm discussed in Appendix B.

ENERGY_HYDRO contains parts like NEWE and NEWQ of Hirshman. However,

NEWQ can be recast to use GX and GV in place of X and V, with the result
that the calculation for a given zone draws only on values of that zone;

i.e. no node-to-zone communication is required for the computation of Q when

- 53 -
GX and GV are made available from ZONE_GEQM.

Subroutine TEMPCAL of the FORTRAN code can be translated readily into
a function module internal to ENERGY HYDRO. Both via TEMPCAL and directly,
ENERGY_HYDRO calls the external function module JES VAL to compute pressure
(from JES_VAL(1, TEMP, RHO, SV_REC)) and energy (from JES VAL(2, TEMP, RHO, SV_REC))
The value SV_REC supplied to JES VAL is in effect a hint where to start
searching in a table; the value supplied does not affect the numerical results
produced by JES VAL, but it does affect the time to execute JES_VAL.

If option b) os Sec. 5.2.2 were selected, coding into VAL would
be easier because there the array SV would have N elements and be of the
same shape as P, RHO, etc. For that option a typical use of JES VAL would

be the production of a trial pressure Pl, as in:

P1, SV: zonal :=
forall K in [LIM.KN+1, LIM,KX], L in LLIM.LN+1, LIM.LX] construct
JES VAL(1, TEMPLK,L], RHOLK,L], SVIK,L]) endall; %.

Instead of using option b), we have chosen option c) as an example
of the kind of demand on expressive power that occurs in tailoring an
algorithm to an implementation. As discussed in Sec. 5.2.2 option c) saves
storage by taking SV to be an array of only D (= number of zonal processors)
elements; this can be much smaller than the N-element array used in option b).
To express the N-element array Pl as a function of a D-element SV, it appears
~ necessary to first create a partitioned array equivalent to P1, with a block
of this partitioned array corresponding to an element of SV.

The N interior zones of the mesh constitute a two-dimensional

array of (LIM.KX - LIM.KN) by (LIM.LX - LIM.LN) elements. For simplicity

we assume that both of these dimensions are exactly divisible by LIM.DS,

- 54 -

where D = (LIM.,DS)2 is the number of zonal processors used, and we assume
a physical configuration of a square array of LIM.DS by LIM.DS zonal
processors.

Each zonal processor is to be assigned a rectangular "supér-zone"

of the mesh, consisting of KS by LS contiguous zones, where

KS

(LIM.KX-LIM.KN)/LIM.DS

and
LS

1]

(LIM.LX-LIMfLN)/LIM.DS

In place of .lkone expressed an N-element Pl in terms of a D-element SV,
where one elemnt of SV corresponds not to one element of Pl, but rather to
a block of KS by LS elements of P1. Let P_BLOCK be a partitioned array
equivalent to Pl; that is, while Pl is a 2-dimensional array of reals,
P_BLOCK is an array of LIM.DS by LIM.DS "little" arrays, each with KS by'LS
real elements, so that P_BLOCK must be a 4-dimensional array of reals.

Option c¢) demands that:
- o computation proceed in each of the D blocks of P_BLOCK concurrently, ‘and
e within a given block, computation proceed in a raster scan sequential1y.

The correspondence between Pl and PBLOCK is:

PLLKI*KS + K@,L1*LS+LP] = P_BLOCKLK1,L1,K@,L8).

In other words, K1,L1 tell which block, and K@,LP tell which element
within the block. It follows that (with the VAL convention for downward
- rounding of integer division) the [K,Llelement‘of Pl is given by

.4
P1{K,L 1= P_BLOCKLK/KS, L/LS, MOD(K,KS), MOD(L,LS)] .

- 55 -
The VAL code for producing Pl and SV in accordance with option c) follows:

P1: zonal, SV: SV_type :=

let P_BLOCK: arrayfarraylarraylarraylrealll]], SV1: SV type :=
forall K1 in [1, LIM.DS], L1 in [1, LIM.DS]

KS: integer := (LIM.KX-LIM.KN)/LIM.DS; % Assume exactly divisible

(LIM.LX-LIM.LN)/LIM.DS; % "

LS: integer :
construct % P _BLOCKLK1,L1] is itself a 2-dimensional array.
for BLOCK: array[array[realll:= array empty[arraylreall ; % Element of P_BLOCK.
SV_REC1: SV_REC type := SVIKI,L1];
K@: integer :=1
do if K@ > KS then BLOCK, SV_REC1
else iter BLOCK, SV_RECI :=
let BCOL: array[reall, SV_REC2: SV_REC type :=
for BCOL1: arraylreall:= array_pmpty[reaT];
SV_REC3 : SV_REC type := SV_REC1;
L@: integer :=1
do if LP > LS then BCOL1, SV REC3
else iter BCOL1, SV_REC3 :=
let P_EL: real, SV_REC4: SV_REC type :=
JES VAL(1, TEMPLK1*KS+K@, L1*LS+L@1,
RHOLK1*KS+K@, L1*LS+L@J), SV REC3)

in BCOL1LLP: P_EL], SV REC4 endlet;
LA := 1P+ 1
enditer

endif

endfor

in BLOCK K@: BCOL , SV REC2 endlet;

KD := Kp + 1;
enditer
endif

endfor
endall
in % P1l: zonal, SV: SV_type :=

forall K in [LIM.KN+1,LIM.KX], L in CLIM.LN+1, LIM.LX] construct

P_BLOCKLK/KS, L/LS, MOD(K,KS), MOD(L,LS)], SVl

endlet % Completes production of Pl and SV.

Because of the explicit reference to LIM.DS, a parameter of
implementation, this example gives a glimpse of the type of expression
needed when a programmer assists in compilation. It is generally recognized
that hardware can be used more effectively if the programmer tailors the
program to it. In simple cases one hopes that the algorithm will not have
to be changed to effect such tailoring, but we have just seen a case in
which the algorithm (though not its numerical result) did change. To
facilitate compilation of the whole SIMPLE code, one might well express
all the arrays in blocked (i.e. partitioned) form for internal computation.
If this were done then the conversion to 2-dimensional form would not
be done as part of the above example, but would be deferred to the

generation of output, as in the module PHYS REPORT of SIMPLE VAL.

HYDRO_TOTAL, 1ike HWORK, is straightforward, being essentially the

execise of the construct forall-eval-plus.

ENERGY_HEAT is the main bottleneck in the SIMPLE problem, because of
the sequencing constraints due to the back-substitution method chosen

for solving for heat flow. The sequencing constraints are illustrated

- 57 -

in Appendix B, Fig. B.1. The constraints are in the "R-sweep" and "Z-sweep"
portions of subroutine CONDUCT of the FORTRAN code of SIMPLE. This code
steps from one element of an array to another, using results of a previous
element to calculate a next element.

Subroutine CONDUCT saves TEMP as TS in line 1586, and then restores
TEMP to TS in line 1673, so that after the execution of CONDUCT, TEMP is
unchanged; what is calculated is really a temporary variable which we call
TEMP1 in the code below. Its use is not to get a new TEMP, but rather to
help in adjusting E to account for heat flow. The FORTRAN code partially
inializes arrays A and B outside of the sweeps; we incorporate this initial-
ization into the sweeps. The VAL arrays CBB and DBB are like those of
the FORTRAN code, but re-indexed to clarify the connectivity actually
required (see note be following the VAL code below). The production of
TEMP1 in the VAL code for ENERGY HEAT would then appear inside a LET construct

as follows:-

% L-sweep (per Tine 1612 of the FORTRAN code of sUbr0utine CONDUCT)
TEMP1: zonal := let TEMP2: zonal := % I-sweep calculates TEMP2
forall K in [LIM.KN + 1, LIM.KX] construct
let A, B: array[rea]]:= % range over L
for L: integer := LIM.LN +1;
ACOL, BCOL: array[real]:= array fill(LIM.LN, LIM.LX, 0.), TEMP[K]
do if L > LIM.LX then ACOL, BCOL
else let DUML: real := SIG[K,L] + €BB[K,L] + cBB[K,L-1] * (1 - AcoL[L-1])
in iter ACOL, BCOL := ACOL[L: cBB[K,L]/ DUM1], BcoL[L: SiG([K,L] *
TEMP[K,L] + cBB[K,L-1] * B[K,L-1] /DUMI];
L := L+1

enditer endlet endif endfor

- 58 -

% ... ALPHA, BETA FORWARD
in for L: integer := LIM.LX; TCOL: array[real]:= TEMP[K]
do if L < LIM.LN + 1 then TCOL
else iter TCOL := TcOL[L: A[L] * TcoL[L+1] + B[L1]; L := L-1 enditer
endif endfor endliet endall % end of Z sweep; returns TEMP2
in % Feed TEMP2 through R-sweep to produce TEMP1:
% R sweep
let A, B: array|array[real]] :=
for K: integer := LIM.KN + 1; A2D, B2D: array[array[real]] :=
arréyﬁfi]](LIM.KN, LIM.KX, array fi11(LIM.LN, LIM.LX, 0.)), TEMP2
do if K > LIM.KX then A2D, B2D
else let ACOL, BCOL: array[real] :=
forall L in [LIM{LN + 1, LIM.LX] DUM1: real := SIG[K,L]
 + DBB[K,L] + DBB[K-1,L] * (1- A2D[k-1,L})
construct DBB[K,L] / DUM1, SIG[K,L] * TEMP2[K,L] +
oBB[K-1,L] * B2D[K-1,L] / DUMI
endall
in iter A2D, B2D := A2D[K: AcoL], B2D[K, BCOL);
enditer endlet endif endfor
% ALPHA, BETA FORWARD SWEEP
in for K: integer := LIM.KX; T2D: array[array[real]] := TEMP2
do if K < LIM.KN + 1 then T2D
else iter T2D := T2D[K:
forall L in [LIM.LN + 1, LIM.LX]
construct A[K,L] * T2p[k+1,L] + B[K,L]
endall}; K := K-1

enditer endif endfor endlet endlet % Returns TEMP1

Notes:

- 59 -

In VAL the syntax for operating on a two-dimensional array with
a forall construct over one index and a for-iter over the other
index is different according to which index is subjected to which
construct. For this reason the Z-sweep and the R-sweep, which

look much the same in FORTRAN, look different in VAL.

The FORTRAN code uses an awkward convention in indexing CBB and DBB,
with the result that there appears to be more coupling of array
elements than is in fact the case; to clarify this we write

CBB[K,L] in place of what in the FORTRAN code would be written
cBB[K-1,L]; similarly we write DBB[K,L}in place of DBB[K,L-1].

In FORTRAN only one edge of the array A is initialized prior to
the loop; in VAL it was convenient to initialize the whole array.
The VAL code re-initializes A in the R-sweep. This is permissible
because although the A array is operated on in the Z-sweep, the

only column that matters (i.e. LIM.KN) is not changed in the Z-sweep.

HEAT_TOTAL uses forall eval plus.

TIME_STEP combines Hirshman's module TINCR with the calculation of DTEN,

which in the FORTRAN is done in subroutine CONDUCT. Calculation of KC, LC,

KEN, and LEN is not done in TIME_STEP, but is deferred to CYCLE_REPORT.

PHYS_REPORT is similar to EDIT.

CYCLE_REPORT is straightforward except for needing the coordinates of an

array where a maximum or minimum value is found, as was the case with EDIT.

- 60 -

MODIFY is an augmentation of SIMPLE to allow for real-time interaction with
an analyst; e.g. MODIFY is to provide for receiving a change in say DTMAX,
or even for receiving an entire "STATE", as would be needed to restart

the computation after an analytic "catastrophe".

- 61 -

6. Conclusions and Possible Next Steps

6.1. Speed, input-output, and expression of the abstract algorithm

As shown in Table 1, except for outputting results, the application
of D processors configured as a dataflow computer can reduce the execution
time of the SIMPLE code by a factor of at least D%. The sequencing constraints
that limit improvement to this factor occur in the calculation of heat flow,
as illustrated in Fig. 6. These constraints stem from the method chosen
in the SIMPLE code for the inversion of a tri-diagonal matrix: back-substitution.
It would appear feasible to find or develop a method with weaker sequencing
constraints. If this were done, then all phases of the program, except
output, would execute in times that decrease at least as D/log D with increasing
D.

As discussed in Séc. 4.5, the outputting of results called for
in the SIMPLE code amounts to a "dump" of raw data. There is a minimum time
for such a dump that grows with the size of the mesh and is independent of
D. As discussed in Sec. 4.5 and illustrated at the end of Sec. 5.2.3,
it appears essential to pre-process the data so as to extract significant
features. If this is done, then output need not be a bottleneck.

The VAL language is demonstrated as satisfactory for the expression
of the SIMPLE problem as an abstract algorithm, provided that certain extensions
are made in it. These extensions are listed in Sec. 5.1 and their use is
shown in Secs. 5.2.3 and 5.2.4. The need for additional extensions to promote

efficiency of execution is discussed below.

- 62 -

6.2. Implications of the spatio-temporal structure of the algorithm

Following Holt (1979) we have analyzed the SIMPLE problem as given
in an abstract algorithm expressed first in FORTRAN and then translated into
VAL. The algorithm expressed in either language is called 'abstract' when it
is viewed as independent of physical arrangements in space and time for its
execution. Qur éna]ysis of the SIMPLE algorithm in terms of role diagrams
reveals spatial and temporal structure which will have to be found in any and
all implementations. For example, by tracing through the algorithm for
possible references to computational variables we discover the existence of
algorithm-defined times when some number n of such variables must be co-maintained.
This in turn implies that in any implementation of the algorithm there will
have to be available, for some period, a space large enough to hold n values.
(As the algorithm is to be executed by electronic circuits, this number n places
a lower bound on the physical space which the algorithm can occupy.) To
be more specific, EILJ,K1, PLJ,K], Q[J,KI, etc. meet in a zone and phase
shown in Fig. 6 and in a relational sense define a time and location.

As a second example, we discover in Fig. 6 that for any instruction
of the main loop there are times-- i.e. phases -- when a given instruction
may be executed and times when it certainly will not be. In other words one
can determine prior to execution and independent of implementation that in
any given phase a certain large majority of the instructions of the main loop
will not be called. This property can be used both to guide compilation and
also to guide the design of hardware for a dataflow computer: it suggests
a programmable instruction cell that can make ready first one instruction
and then another, much 1ike a sequential processor.

Finally the discussion of Sec. 3 and Figs. 3, 4 and 6 show that only

a few of the myriad possible patterns of communication are actually needed

- 63 -

for a set of processing resources to execute the SIMPLE problem. In
configuring a dataflow computer there are many possible alternatives for

the arrangement of processing units, instruction cells, packet memory,

and communications resources. Different arrangements offer different
advantages for different problem classes, and place different demands on
compilation. As discussed in Sec. 3, any hardware arrangement will reflect
cbmpromises which will detract from the execution of some classes of problems.
Prior to large-scale investment, these relations between physical arrangement
and problem class need to be examined in connection with various sample

problems.

6.3. The balance between programming ease and efficient use of hardware

As a first step in exploring relations between hardware and
problem class, VAL was employed to help express a problem in hydrodynamics
in support of two anticipated tasks, relative to a dataflow computer that

is not yet fully specified:

.1. the design task of choosing a physical arrangement of hardware

resources suitable to the SIMPLE problem; and

.2. the compilation task of mapping the coded problem into machine
instructions appropriate to a given physical arrangement of

resources.

Both tasks concern the mapping of a problem onto physical resources. The
mapping is done in two steps: coding in a source language (VAL); followed
by compilation which maps the source language into machine instructions.

Historically a source language has been intended for the expression of a

- 64 -

problem as an abstract algorithm -- 'abstract' meaning that the algorithm

was not tied to a particular physical arrangement of resources. But note:

.3. To achieve efficient use of resources a programmer must allow
for at least some features of implementation (e.g. "multiply" takes

Tonger than "add").

.4. If the physical arrangement changes too much, a given source

language become inappropriate.

Indeed concurrently operability of resources contributed to the need to
express concurrency in the problem, and hence to the need for VAL; i.e. VAL
is superior to FORTRAN in expressing concurrency. A source language is
shaped in part by assumptions concerning the physical arrangement of
computational resources. FORTRAN was designed to facilitate a two-step
mapping of a problem to machine instructions. In step one FORTRAN is used
to map the problem essentially into instructions for a machine that is
an idealized sequential computer -- idealized for instance in that it is
imagined to have a random-access memory so big as not to be a constraining
factor. In step two the FORTRAN code is compiled into machine code for
an actual machine that departs in limited ways from the idealization --
e.g. by using a "small" random-access memory backed up by secondary storage.
As FORTRAN corresponds to an idealized sequential computer, VAL
presently corresponds to an idealized dataflow computer -- e.g. a dataflow
computer imagined to have so many instruction cells that the number poses

no constraint on how a problem might be executed. Note that:

.5. A program like SIMPLE is a major task for programmers who can

afford to learn the salient features of implementation;

- 65 -

.6. The program is expected to run many hours per execution, and to
be executed many times on a machine that costs enough to justify

a large investment in efficient execution;

.7. The program is written to answer questions of physics that are
progressively better answered as larger mesh sizes become executable
in a day's run; the need for answers to these questions justifies

a large investment in speed of execution.

Whatever hardware design is chosen, the resources of a dataflow computer will
be more complex than those of a sequential computer, and less susceptible to
fully automated resource allocation. HWithin the dataflow context, the
balance between ease of programming and efficiency weighs more toward the
demand for efficiency. For problems of the SIMPLE type it appears unwise

to force a separation between source-language programming and resource
allocation. Some current languages -- e.g. PL/1 -- provide facilities for
the control of resources; however these facilities are added ad hoc to

a language that conceptually is inhospitable to the expression of physical
arrangements in time and space. Because VAL encompasses the expression of
concurrency, it offers at least a chance of extension to cover the control
of resources in a more systematic way. The discussion of ENERGY_HYDRO in
Sec. 5.2.4 illustrates a related issue, the adaptation of the algorithm

to a particular physical arrangement.

- 66 -

6.4. Extending VAL to support resource allocation

We have seen that the SIMPLE problem has spatio-temporal structure
that is germane to physical design, and for a given design, germane to the
allocation of physical resources to execute the problem. Presently, a VAL
program is thought of as having a "meaning" only to the extent that it

defines a dataflow graph at the descriptive level of machine instructions.

At this level of description the dataflow graph of SIMPLE is an enormous
lacework, with something on the order of a thousand computational events
per zone, times thousands of zones. If a compiler works only from a dataflow
graph at this level of detail, is it reasonsable to imagine that it could
efficiently dfstribute all the instructions throughout the "space-time" of
the computational resources?

One might hope for some future "genious" to design such a compiler,

but there is another approach:

.1. Recognize that compilation will in fact use higher-level and/or

auxiliary descriptions of the problem in allocating resources; and

.2. Extend the programmer's task and his power of expression -- VAL --
to express properties of the problem that can greatly reduce the
burden of compilation -~ properties such as those expressed in

the role diagram of Fig. 6.

In this approach the programmer would be supported in structuring the problem
in a way that eases compilation for a given machine organization. This
requires that the programmer be more explicit in guiding the "when" and
"where" of program execution. It might be objected that such guidance depends

too much on the details of a particular implementation, but this is not

- 67 -

necessarily so. There is a middle ground, where the programmer would
formally express the information now conveyed by Fig. 6. The "where"
implied by a "zone" of Fig. 6 is not directly a "machine location", but
rather a relational location inherent in the SIMPLE algorithm. In that
algorithm E{J,K], P[J,K), Q[J,K], etc. meet many times, and in a relational
sense meetings define "times and locations" -- e.g. ZonelK,L] of Fig. 6.
In essence we see the programmer as calling the compiler's "attention" to
grosser regions of a dataflow graph than appear at a machine-instruction
level of description. The compiler would thus block out the assignment
of gross regions to resources in a first‘phase, and then subsequently deal
with further details. To pursue this course additional effort is needed

to:

.3. Bring under control the expression of the space-time aspect
of an algorithm at different levels of detail, so as to guide

the algorithm toward a particular machine organization;

.4. Show what changes would be needed for VAL to express such aspects;

.5. Evaluate the advantage of expressing SIMPLE and other examples in

this way with respect to:

a. what suggestions are offered for the organization of the

resources of a dataflow computer; and

b. how to distribute the burden of computing a problem over a

given organization of resources.

- 68 -

REFERENCES

Ackerman, W. B. and J. B. Dennis (1979) "VAL -- A Value-Oriented
Algorithmic Language; Preliminary Reference Manual" Massachusetts
Institute of Technology, Laboratory for Computer Science, 545
Technology Square, Cambridge, Massachusetts 02139 (March 22).

Crowley, W. P., C. P. Hendrickson and T. E. Rudy (1978), "The SIMPLE Code",
Lawrence Livermore Laboratory Report UCID 17715, February 1.

Dennis, J. B. (1978) "Data Flow Computer Architecture", Computation
Structures Group Memo 160, Laboratory for Computer Science,
Massachusetts Institute of Technology (May)

Hirshman, D. S. (1978) "SIMPLE, A Lawrence Livermeor Laboratories Program
Translated into Data Flow Language", Massachusetts Institute of
Technology, Laboratory for Computer Science, Computation Structures

Group (May 18)

Holt, A. W. (1979) “"Roles and Activities, A System for Describing Systems"
(Incomplete draft) Boston University, Academic Computing Center,
111 Cummington Street, Boston, Mass. 02215

Misner, C. W., K. S. Thorne and J. S. Wheeler (1970) "Gravitation",
W. H. Freeman and Co., San Francisco.

Morse, P. M. and H. Feshbach (1953) "Methods of Theoretical Physics"
McGraw-Hi1l Book Co, New York.

SIMPLE (1979): FORTRAN code of Lawrence Livermore Laboratory, Edition
of February 12 as provided by John Woodruff. (Reproduced in App. C.)

Woodruff, J. P. (1978) VAL code for one-dimensional hydrodynamics
(Edition of December 4).

- 69 -

Appendix A: Interpreting Role Diagrams

SECTION DIRECTORY

Section
AL, ‘ Vertical string as path of a role player.
A.2. Tokens

A.3. gg Circuits.

A.4.§i Initialization and termination.
A.5. &;Fragments
A.6. ﬁ}v-{b Coincident activity of multiple role players.

A.7. d] Invariance of value.

A.8. i}———~4? Branching to alternative consumers.
A.9. f Steering.

A.10. \(J Encoding

A.11. (/*“\ Decoding

A.12. #}———{5 Merging from alternative producers.

A.13. dw~y»i) Bundling.
A.14. —— Unbundling.

A.15. {[?—~——ﬁ]} Compression of representation.

A-10. H ’ [5*—_'# Copying.

- 70 -

!

A.17. [*ﬂ%&Saving an old value.

A.18. Operations (+, -, etc.)

A.19. [}\\\\\{1 Buffered communication.

- 71 -

Appendix A: Interpreting Role Diagrams

Throughout the report we have used role diagrams, invented by A. W.

Holt (1979) to show the flow of values carried by physical actors. The
notation presentéd here allows us to distinguish participations of actors
in activities according to whether they are coincident, concurrent, alternative,
or sequenced.

The interpretation of role diagrams differs from that of dataflow
graphs in that the former is based on this attitude: anything that is (even

a value) must be someplace. Hence the flow of a value is a flow of effect

over physical actors. A role diagram can be partitioned into strips; each
strip is a locality in system space, and thus a place where some actor is

resident.

A.1: A vertical Tine is read downward as thé advance of a role player

(i.e. an actor) from one state to another through a sequence of activities.

A state is drawn as a vertical line segment; an activity is drawn as a box.
Here we show a role player "carrier of the value PRESSURE" proceeding through

activity 1, followed by activity 2.

- 72 -

A.2: The vertical line can be thought of as marked by a token. The position
of the token shows the state of the role player. The token for pressure carries

an inscription which states the value of the pressure.

A.3: Circles at the top and bottom of a vertical Tine denote the same location

of a circuit. In other words the figure

denotes a cyclic progression through activity 1, activfty 2, activity 3, back

to activity 1, and so on.

A.4: If a role P is initialized in activity 1 and tekminated in activity 3

~we draw the following.

Note that the initiation of a role (shown in activity 1) requires that a

physical actor be on hand to play the rote.

- 73 -

A.5: In contrast to A.4, a fragment of a longer chain is drawn

A.6: When several roles participate in a common activity their coincident

participation is denoted by horizontal links.

o —

l
JT STZ]ESS

As shown, P and Q must coincidently be present at the creation of STRESS.

The horizontal line of boxes converts inputs (above) to outputs (below).

A.7: The diagram A.6 indicates that P and Q change values as a consequence
of taking part in the creation of STRESS. If we wish to indicate no change

of value of P, we draw

o
O

1 T
]J STRESS

_74-
A.8: A role can branch into alternative states, shown as

P

+

A.9: In case of a branch, the choice of path can be resolved by interaction
with other value-carrying roles. Suppose that exactly one of Bl or B2 will
be present, and will resolve the choice for P; then A.8 could be filled out

as

7
—

A.10: In drawing a diagram with two alternative states, such as Bl and B2 in

A.9, it may be convenient to pull the two lines into one:

Bl B2

B
|

This pulling together is not an "objective" fact of the "system", but rather
a matter decided by the drawer of the diagram. He decides to view the distinction
formerly borne by the separation of the lines as "encoded" into an attribute of

a token that travels on the joined line.

- 75 -

A.11: If the person who draws the diagram has encoded Bl and B2, as in A.10,
then in drawing A.9 he would have to "decode" them -- i.e. to reporduce

separated lines, one for each of the encoded alternatives. In this case A.9

would be drawn with a fork:

o—>0 B1 B2

A.12: Two activities can be alternatives to the production of a single state,

in which case two states of a role can merge.

-

A.12 can be compared with A.9. Lines joined by branches and merges of a role

form a state component of a Petri net.

A.13: For convenience of presentation one may wish to bundle several roles
together and picture them as a single "cable", as in an image of cabling
together of different "wires". We illustrate this by roles A, B and C which

are "cabled" into a compound strand called L . In other words,

L = {A,B,C}.

Unlike encoded alternatives (see A.10) all the roles of a bundle can be

concurrently played

A.14: Unbundling corresponding to the undoing of A.13 is drawn as follows.

|
L
|

A.15: Brackets around a row indicate that the row is compressed from a

more detailed diagram shown elsewhere; for example the figure

| I

I
DTE?H X E
{Q Y
DTN
' .
is compressed from
l '
DTNPH X E
1 {1 {il
1

DTN

- 77 -

A.15.1: The outputs of a bracketed row can be produced by an internal Toop,
containing internaT variables. TNUP is such a variable in the following

diagram, where

I ! |
v

Q _
—

TMAX X
{-[I] LS EP_—{;]}
is compressed from
]
Méb DT X v
NUP,
- , calculate X, V. /4 4
. TNUP > TMAX ?
- 10
O—0 O0—0 yesAo Q—9Q 00
- O i iy
+
iy,

0
s

-

Py
|

- 78 -

A.16: The following illustrates fanout.

|
P

H

(This notation was used in A.15.1.)

A.16.1: Fanout can also be shown as follows.

i

A.16.2: We link two boxes by a double bar to assert identity of output values;
the foi]owing asserts that after the occurrence of the activity, B and B'
carry copies of the same value; the figure does not assert anything about the

relation between inputs, nor about the relation between inputs and outputs.

A.17: The following illustrates the saving of the value of P as OLD P, while

P is changed.

p OLD_P

(This notation was used in A.15)

-79 -

A.18: On occasion we indicate arithmetic operations on values, as in this

picture. After the activity of the row occurs, C carries the value A+B.

A.18.1: If A is a matrix, then B as the sum over the elements of A could be

pictured as follows. [
A

I

A.19: Buffered communication. A fragment of Figure 2 (of the main report is

uffer) (buffer)

1

This can be expanded to

The figure .2 contains the fragment

R

for which we introduce the abbreviated notation:

- 80 -

. \erv

The slanted bar asserts that the Tower activity consumes something produced
in the upper activity, and that a buffer not explicitly shown mediates the
transfer from the producing to the consuming activity. With this notation,

Figure 4 of the main report is transformed into Fig. 5.

- 81 -

APPENDIX B

Notes on Fitting the SIMPLE Code into Role Diagrams and VAL Modules

Figure 6 of the main report somewhat schematically shows the
connectivity of communication among processors, when one processor is assigned
to each nodal and each zonal region of the dataflow graph. In this appendix
we discuss the connections in more detail, and also discuss certain ways
in which the algorithm of SIMPLE has been restated to clarify the connectivity.
The objective is to help in considering hardware requirements, and to clarify

aspects of the translation from FORTRAN into VAL.

B.1. Interpretation of the cycle

Fig. 6 shows phase 3 as producing new values for zone (K,Llas
follows.

zone
[K,L]

A .

.1: Schematic representation of production of zonal value.

The fragment .1 is a schematic picture of an activity at zone K,L
that draws on values from the four neighboring (i.e. corner) nodes to feed
into the production of new values for the zone. With the indexing convention
defined in Fig. 1 of the main report, one sees that the fragment .1 stands for

the connections shown in .2:

- 82 -

node
LK’]. ,L]

<7£
node

[K-1,L-1]
zone
[K,L]

node
LK,L]

B node
[K,L-1]

.2: Completed fragment showing all connections of nodes to a zone.

The nodal values are a vector (with R and Z components) for velocity

and a vector for position at each node.

and declarations in SIMPLE VAL are:

The corresponding type definitions

type vector = recordlR, Z: reall;

type nodal = arraylarray[vectorl];

X, % position
V: % velocity

nodal %.

The correspondence between these names as used in SIMPLE VAL and the names

used in the FORTRAN code of SIMPLE is:
FORTRAN code

R
Z

VAL code

X.R
X.Z
V.R
V.Z

- 83 -
In order to clarify the connectivity, as well as to eliminate some
unnecessary arithmetic, we introduce auxiliary variables, starting with

a kind of tensor -- GX -- that describes the diagonal dimensions of each

zone:

GXLK,L1.W GX[K,L1E
(a vector) (a vector)

.3: Definition of GX.

GX is, at Teast in spirit, a tensor; GX[K,L]1.W is the vector difference
between the vector position at the nortwest corner and the vector position
at the southeast corner. GX is produced for interior zones by ZONE_GEOM
in phase 3, and for boundary zones by BOUNDARY PROJECT; in the first case

the defining relation is

.4, type zone tensor = array array record E, W: vector ;

GX: zone_tensor :
forq]] K in [LIM.KN+1, LIM.KX]J, L in [LIM.LN+1, LIM.LX] construct
record[E: XI[K,L]l- X[K-1,L-117; W: X[K-1,L1- X[K,L-11] endall; %.

Note that X is a vector, so that .4 is a shorthand exbression; strictly speaking
one must define a subtraction function with vector arguments. This is

easy to do, but clutters the presentation. With the understanding that

we are abbreviating, we shall apply "-", "+" and multiplication by a scalar ("*")

to vectors. The node~to-zone communications needed to form GX are shown in

- 84 -

the picture .2. The auxiliary variable GV is a zonal tensor formed from V
in exactly the same way that GX is formed from X.

Now we address phase 2 and the calculation of V. Prior to
communicating from the zones around a given node to the node, a tensor
STRESS is calculated for each zone; this calculation for a given zone
draws only on array elements for that zone. The computation covers boundary

zones, set up in phase 1, as well as interior zones.

.5 STRESS: zone tensor :=
forall K in [LIM.KN, LIM.KX+13, L inCLIM.LN, LIM.LX+1] construct
recordlE: (PLK,LI+ QIK,L1)*GX[K,L].E; %scalar * vector
W: (PUK,L)+ QLK,L1)*GXLK,L1.W]endall ; %,

where P and Q are pressure and artificial viscosity, respectively, just as

in the FORTRAN code. In phase 1 the auxilliary variable RHOJ is produced as:

.6 _ RHOJ : zonal :=
forall K in[LIM.KN, LIM.KX+1]1, L in [LIM.LN, LIM.LX+1] construct
RHOLK,LI*AJLK,L] endall; %,

where RHO and AJ are density and area jacobian, just as in the FORTRAN code.
Phase 2 of the cycle produces new values for each noede, namely
V and X. The fragment that produces values for a particular node, say

node K,L appears in phase 2 of Fig. 6 as follows.

node

A [K,L] N

.7: Schematic representation of the production of a nodal value.

- 85 -
The fragment .7 is a schematic picture of an activity that draws on values
from the four zones around node [K,L] to feed into the production of new

values of X and V for the node. Thus the fragment .7 stands for

zone zone
[K,L+1] [K+1,L#1]
zone - zone
[K,L] ;ﬂ [K+1,L]
node
[K,L] ////////’

.8: Completed fragment showing all zones connected to a node

Each "cable" of values from a zone to node [K,L1 must carry STRESS and

RHOJ from the zone, and at least one of these cables must bring the time
steps DTNPH and DTN as well. (DTNPH and DTN are used here as they are in
the FORTRAN code of SIMPLE (1979).) The activity of the node in .8 during
phase 2 of the cycle is tocalculate an acceleration (ACC), to use this
acceleration to update velocity (V), and then to use the velocity to update
position (X). In updating velocity a time step DTN is used. Position times
interleave thevtimes at which velocity is calculated, so that a different
time step (DTNPH) is used to update position. Continuing to use the
abbreviation of scalar operation signs for operations on vector values,

this activity can be expressed in VAL as:

- 86 -
vV, X :=
forall K in { LIM.KN, LIM.KX+1], L in [LIM.LN, LIM.LX+1] construct
let Y: vector := (2./(RHOJLK,L 1+ RHOJLK,L+11 + RHOJ[K+1,L3 + RHOJ[K+1,L+11))
*(STRESSIK,L+1].E + STRESS[K,L.W - (STRESSIK+1,L+11.W + STRESSLK+1,L].E));
ACC: vector := recordlR: -Y.Z; Z: Y.R];
V1: vector := DTN*ACC + V([K,L]
in V1, DTNPH*V1 + X[K,L] endlet

endall

After expansion of the vector operations, this code would provide the
functions VELOCITY and POSITION of Sec. 5.2.3.

Phase 4 involves arrays that are partly nodal and partly zonal in
character. An element of CBB is obtained as an intermediate between two
nodes of the same L-coordinate but adjoining K coordinates, and two zones
bounded by the nodal K coordinates and on either side of the L coordinate:

In calculating heat conduction subroutine CONDUCT of the SIMPLE
FORTRAN code generates arrays CBB and DBB, per lines 1583 through 1608.

CBB and DBB draw on values from both nodes and zones, as shown:

-

! zone node

| LK,L+11 - — kLl
‘ l - b‘“‘l-’ - 1
node 1_.__~___inode zone | zone |
(k-1,L1] 1K, L] [k,L3 | [K+1,L0 |
! zone | L - ~ node —
L IKLI [K,L-11
For CBBIK,LJ For DBBLK,L]

é
-9: Nodes and zones that supply values to the calculation of CBBLK,L]
and DBB{K,L].

- 87 -

To adhere strictly to the connectivity shown in Fig. 6, one programs the
calculation of CBB and DBB in two parts, one as an augmentation of ZONE_GEOM
and the other as part of an augmented ENERGY_HYDRO. The augmentation
consists of generating geometrical quantities as part of ZONE_GEOM,
referring these to zones, as was done for GX, and then using these quantities
to simplify the connectivity needed in ENERGY HYDRO. An alternative which
is displayed in SIMPLE_VAL of Sec. 5.2.3 is to accept a slightly more
complex connectivify and thereby avoid the introduction of more auxilliary
variables.

CBB and DBB are partly zonal and partly nodal in character,
so that fitting them to either class of processors is arbitrary. Because
the nodal processors are less heavily used; we have assumed that they
would be used to compute CBB and DBB from zonal quantities (CC in FORTRAN).
The consequent connectivity is shown in phase 4 of Fig. 6. For the

Z-sweep this connectivity is shown in more detail in .10:

Node
[K’L-l]
}
CBB

A

\:3\{

o)

-
TEMP2EK,L]

’{,,/”

CBB*B

CBB*(1-A) ,}
~_

Zone
[K,L1

TEMP,
SIG

TEMP2LK,L]

- 88 -

CBB

{A81

TEMP2LK,L+11

.10: Detail of Z-sweep of ENERGY HEAT.

Node
[K,L]

CBB

1

Zone

[K,L+1])

TEMP,

SIG
CBB*(1-A), ——
CBB*B } CBB

<

{A.BY

/
TEMP2 [K,L+2]
TEMP2[K,L+11

|

Appendix C: The SIMPLE code in FORTRAN

Edition of February 12, 1979 as provided by John Woodruff

| \V] N T PR U

=“QORNOIALWN—=OOONOAMWLN—

$PUTT ZME,,, 100000 100000, ,,2000

QOOO0O0

X
X

X
X
X
X

xXx

X

PROGRAM H2DD(HFILE, TAPE3=HFILE)
COMMON /KLS/ K,L,DEBUG, VERSION, WHER,WHEN, P1D6
JDTC,KC,LC,DTEN,KEN,LEN,SKE,HN,SIEL,CNN,ENC,éNH,ENCG,NN
,NCP,P1D8, VCUT

COMMON /PROGG/ RO, Z0,R1,21,RP,2P,RR,Z22Z

COMMON /COMN/ R(33,33),2(33,33),U(33,33),RHO(33,383),Q(33,33)
33,33),P(33,33),AJ(33,33),8(33,33),NBC(33,33)

E(
,W(33,33), TEMP (33, 33)
, A(33,33),B(33,33),CC(33,33),DUM(33,33),CBB(33,33)
, DBB(33,33),CAP(33,33),s516(34,33),T5(33,33)

COMMON /PARAM/ NYCL, TNUP,DTNUP, DTN, DTNPH, DTNMH,EDTIME, EDDT

,GAM,GAMZ.COF,C1F,C1,TMAX,DTHAX,DTHIN,TFLR,NOHYb
,C2,P2,P3,NO,NTTY,NED

COMMON /KLSPACE/ KMN, LMN, KMX, LMX, KMXZ, LMAZ, KMNP, LMNP, KMXP, LMXP
COMMON /GENCOM/ RHGO, EO, U0, PO, W0, DR,DZ, NBCU, NBCD, NBCL , NBCR

,PB(3),PBB(3),QB(3)
COMMON_/MINMAX/ XMIN, XMAX, YMIN, YMAX, PMIN, PMAX, GMIN, QMAX

X,RMIN, RMAX,KQ,LQ,KR,LR,KP,LP
X, XMINX, XMAXX, YMINX, YMAXX

COMMON /TIMING/ NBT(20),NCT(20),NET(20},NPT(20),NXT(20)

XCOMMON /EOSCOM/ KEOS, TARG1, TARGZ2, TARG3, RARG1, RARGZ2, RARG3,

FUNC1, FUNC2, FUNCS, YEMPS, EPS, EP$0

COMMON /CeM2/ NTSV(2),NRSV(2) ,MSV(2}, TES(7),RES(9)
X ,AES(12),BES(12),CES(12),DES(12),EEé(12),FES(12),GES(12)
X ,HES(12),PES(12),1TES(3),IRES(3),ZES(3)
NCYL = CYCLE COUNTER EDTIME= TIME QT EDBT
TNUP = PROBLEM TIME(N+1) EDDT = DELTAT NEXT EDIT
B;NP= DELTAT (N) TMAX = MAXIMUM TIME

DTNMH= DELTAT (N-1/2) DTMIN

H= DELTAT (N+1/2) DTMAX = MAXIMUM ALLOWED DT
= MINIMUM ALLDWED DT

DIMENSIGON ARRAY (1)

EQUIVALENCE (ARRAY,R)

[1/0/
DATA NLINKS/5/
DATA VERSION /1./
DATA NCP/10/
DATA IER/0G/
DATA NTTY/SQ/

/0/
DATA PIE/3.1415926535898/
DATA EDTIME/O./
DATA EDDT/4./
DATA P1D2/.5/

PIE, IGEN, P1D2

PAGE

O O 0O 000

OO0 000

NPt e w0000 000

bk o 4 kA) ke ke d i e ek eh
QOWONOUNALON—OOENNULW

PAGE
DATA TMAX/12.001/
DATA VCUT/T1.E-10/
DATA OTEN/T1.E+10/
DATA DTC/1.E+10/
CALL CHANMNGE (2H+H)
CALL ASSIGN(3, 2RPH)
CALL CLOCK(WHER,WHEN)
ZERT OUT ALL ARRAYS
L=21%x33%x33
Co 10 K=1,L
ARRAY (K)=0.
1C CONTINUE
SET UP EOS TABLES
CALL SETUP

SET PARAMETERS FOR TEST PROBLEM

[
>
=

'
N

o
N
AN =N OO0

TOODVITUD

usdecRockyifurfuely R Al
(7111 PARAOEGAP TN
Hnnoo—-=00—

ATYTVO- - - - -
Wh-

B
o
@
H QN = v - -

—enens bW BN

py
I
Q
(@]

DTN=DTNPH
DTNMH=DTNPH
TNUP=0,
EQ=0.
Uo=0.
P0=0.
W0=0,
NBCU=1
NBCR=2
NBCL =1
NBCD=1
C2=1.5
COF=C2x .25
€c1=.5

QO NNNSNNNNNNNOOOONAONNRAUGANNANUANRLLLALMLDLLBADLWWWROWRWWWWINNNNNNONNN
OCWRNOUNAWN—OVONONAON20BRNOUAWN—OCOONOUIAWLN-OOINONALON~OOR~NONLLN—

PAGE

C1F=.5xC1
GAMZ=GAM-1.

BGET INPUT PARAMETERS

WRITE(NTTY, 4) .
4 FORMAT(23H ENTER INPUT PARAMETERS)

READ(NTTY, 5)KMN, KMX, LMN, LMX, EDOT, EDT 1 ME, TMAX
5 FORMAT(4i2,3F5.2)

KMNP=KMN+1
LMNP=LMN+1

KMXP=KMX+1
LMXP=LMX+1

KMXZ=KMX -1
LMXZ=LMX -1

GENERATE PROBLEM
CALL GEN
1GEN=0

INITIALIZE TIMER

aooo

(¢]

000 O 000

NED=1

12=NECOGND(11)
START CYCLE HERE
1 CONTINUE

DTC2=1.E+12

SKE=0, .

ENC=0.

ENH=0,
c DTEN=1.E+12)
€5 % % %K X 3 3K K K K 3K 3K K K K K K %K K K K K K 0K K K K 30K K K KK XK KO8 KK XK X
Cx 3
g* GECMETRY CALCULATICON FOR BOUNDARY ZONES x
* x
(3232 3333232333 333333333383 833333 333435+ 08 8

SET UP BOTTOM SIDE BOUNDARY ZONES

0o 000

P(
O(K,L) 1{K+1,L)
R(K)

L=LMN
RO=R(KMN, L)

O 0000000

— e cncd mad v D b d) e)) —d —h — — — —
OO O WD DLW W PR DE
ORANOANDBON=OOONONMON—

N
[o]
(o]

201

8
209

NRANNOINRNRNNNDNDNNND
PO N N) =2 = b et od b o b b b
WN—=OOONOUAON~O

O

OOO0O000 O

O

(sleleielelele} (9]

(o]

200

SET UP BOTTOM RIGHT CGRNER

1K~

SET UP TOP SIDE BOUNDARY ZONES

R(K
0(K
P(K

Z0=Z{KMN, L)

DO 200 K=KMN,KMXZ

-
nu

N2 N'ZJ
AR XX

“« .

" w

22

[LIR1]

N N

)
)
)
)

rr i3

P=R(
P=2(
CALL PRGJCT

R(K,L-1)=RR
2(K,L-13)=22

RO=R1
20=21

CONTINUE

P(K,L+1)

R(K,

[1]

NA NAO NI TR

o9 ==

CALL PROJCT

R(K,L-1)=RR
2(K,L-1)=22

L+1)

1,L) OdK,L)
L-1)

NS 1¢K+1,L)
-1

L=LMX
RO=R(KMN, L)
Z0=Z(KMN,L)

DO 204 K=KMN, KMXZ

R1=R(
21

Z(
RP=R(
ZP=2Z(

QOOOO00 O

Q

(¢]

QOOOO0

(o]

CALL PROJCT

R(K,L+1)=
Z(K,L+1)=

RO=R1
Z0=21

204 CONTINUE

RR
2z

SET UP TOP RIGHT CORNER

N NI NA A

CALL PROJCT

R(K,L+1)=
Z(K,L+1)=

SET UP LEFT SIDE BOUNDARY ZONES

1¢
R(K~-1,L) ot

K=KMN

RR
2z

K,L+1)
K,L)

RO=R(K, LMN)
20=2(K,LMN)

DO 207 L=LMN, LMXZ

R1=R(K,L+1)
21=2(K,L+1)

RP=R(K+1,
ZP=Z(K+1,

L)
L)

CALL PROJCT

R(K-

RO=R
20=2Z1

c
207 CONTINUE

1,L)=
Z(K-1,L)=
1

RP
2z

P(K+1,L)

PAGE

308

WWWRWRWWWWWW

N oo 3 a2 a et s
COONOUBWN—0O

321

OO0

@]

o O

lelelolelele!

O

OOOOO0 O O

9]

SET UP TOP LZFT CORNER

R(K-1,L) O(K,L)
Tk, L-1)

o
[
x2Z

[=]e)
il
m NJU N2 NI 3ZZ=

- r

RGN
it
o~
j I
——
~——

i
s
AN

NAO NI NI X

o0
AR RARAR RR

w -
o

o
»
-

<X
T
Ry
o]
[

[

—_—

i,L)=RR

R(
2 ,L)=22

SET UP RIGHT SIDE BOUNDARY ZONES

1K, L+1)
P(K-1,L) O(K,L)
K=KMX
RO=R{K, LMN)
Z0=2Z2(K,LMN}

DO 210 L=LMN,LMXZ

210 CONTINUE
SET UP TOP RIGHT CORNER
R(K+1,L)

P(K-1,L) O(K,L)
1K, L-1)
K=KMX
L=LMX
RO=R(K, L]
20=2Z(K,L)

P(K+1,L)

R(K+1,L)

PAGE

(e 2N 9]

000000

(¢}

Q

(2 20N 7

Q00000

£3R258E

Q

AbhAhLbhADADLDOBLDD
COPNBUAON = DOBS

PAGE

R(K+1,L)=RR
2(K+1.0)=22

SET UP TOP RIGHT CORNER
PCK-1,L+1) 1(K,L+1) R(K+1,L+1)
. oK. L)

P

CALL PROJCT

R(K+1,L+1)=RR
Z(K+1,L+1)=2Z

SET UP BOTTOM LEFT CORNER

O(K,L)
R(K-1,L-1} 1{K,L-1) P(K+1,L~-1)

CALL PROGJCT

R(K-1,L-1)=RR
2(K~-1,L-1)=22

SET UP BOTTOM RIGHT CORNER

P(K+1,L+1)
O(K,L) 1(K+1,L)

o0

(g)

0000000

(2]

(¢}

c
CEERRXXKKXKKRKEEKRKREKKKKKRKRKE KK KK KX X K KKK

SET UP BOUNDARY ZONE ATTRIBUTES

ct********I*t****Xt**************#t*tl

SET UP BOTTOM SIDE BOUNDARY ZONES

Cx
Cx
Cx

0O O 00000

R(K+

CA

nn
N NIO NIT XX

NI NI NI X
v -;TI‘ oo

CALL PRGJ

‘R(K+1,L-1
Z(K+1,L-1

SET UP TOP L

NA NI NI A

CALL PROJ

R(K~-1,L+1
Z(K=-1,L+1

(K,L) = (K,L
L=LMN
DO 255 K=
iR

IP=NAC (K-
Q(K,L)=0B

1,L-1)

}=RR
y=22

EFT CORNER

CcT

)=RR
1=22Z

+1)

KMNP , KMX

RHO(K,L+1)
JIK,L+1)

1,L)
(IPYxa(k,L+1)

PAGE

agagagaa
— ek b b) — b
ONOULN—

0O O 00000 O

O O H0000 O

O O 00000 O

aoon O

P(K,L)=PBB(IP)+PB(IP)xP(K,L+1)

255 CONTINUE
SET UP RIGHT SIDE BOUNDARY ZONES
(K+1,L) = (K,L)

K=KMX

DO 265 L=LMNP,LMX
RHO(K+1,L)=RHO(K,L)
AJK+1,L1=AJ (K, L)
IP=NBC(K,L)

)
PY*P(K,L)

265 CONTINUE
SET UP TGP SIDE BOUMDARY ZONES
(K,L+1) = (K,L)

L=LMX
DO 275 K=KMNP, KMX

RHB (K, L+1)=RHE (K, L)
AJ(K,L+11=AJ(K,L)
[P=NBC(K-1,L)
QK,L+1)=QB(IP)*Q(K,L
PBLI

)
P(K,L+1)=PBB(IP)+ P)xP(K, L)

275 CONTINUE
SET UP LEFT SIDE BOUNDARY ZONES
(K,L) = (K+1,L)

K=KMN
DO 285 L=LMNP, LMX

RHO (K, L) =RHO(K+1,L)
AJ(K, LI=AJ(K+1,L)
IP=NBC(K,L-1)
Q(K,L)=QB{IP)*xQ(K+1,L)
P(K.L)=PBB(IP)+PBCIP)xP(K+1,L)

285 CONTINUE
SET UP BOTTOM LEFT CORNER

P(KMN, LMN) =P (KMNP, LMNP)
QC(KMN, LMN) =Q (KMNP , LMNP)
RHO(KMN, LMN) =RHO (KMNP, LMNP)
AJ (KMN, LMN) =AJ (KMNP, LMNP)

SET UP BOTTOM RIGHT CORNER

PAGE

[21eTe}

000

[e1ely]

[elele/

C
c
Cc

P(KMXP,LMN) =P (KMXP, LMN+1)
QIKMXP,LMN) =Q(KMXP, LMN+1)

RHO (KMXP , LMN) =RHO (KMXP, LMN+1)
AJ (KMXP,LMN) =AJ(KMXP,LMN+1)

SET UP TOP RIGHT CORNER
P(KMXP, LMXP) =P (KMXP, LMX)
Q(KMXP ., LMXP) =Q(KMXP , LMX)

RHO (KMXP , LMXP) =RHS (KMXP , LMX)
AJ (KMXP, LMXP) =AJ (KMXP, LMX)

SET UP TGP LEFT CORNER
P(KMN, LMXP) =P (KMNP , LMXP)
QC(KMN, LMXP) =Q (KMNP . LMXP)

RHO (KMN, LMXP) =RHO (KMNP , LMXP)
AJ (KMN, LMXP) =AJ (KMNP, LMXP)
GET BOGUNDARY CONDITION COMPUTE TIME

12=NECOND(I1)
NBT(NED)=NBT(NED)+12

DEBUG EDIT

IF(DEBUG.EQ.O0.) GO TGO 442
IGEN=1

WRITE(NO, 441)

441 FORMAT(9H DEBUG 1)

CALL EDIT

442 CONTINUE

DG 450 L=LMN, LMX
45 K=KMN, KMX

DO 4
COMPUTE ACCELERATIGN

AU=(P(K,L)Y+Q(K,L)) * (2(K,L-1)-2
X (P(K+T,L)+Q(K+1,L))*x(Z(K+1,L)
X (PK+1,L+1)+Q(K+T,L+1))x(Z(K
X (PIK,L+T)+Q(K,L+13) x(Z(K-T,L)
Aw=(P(K L)+Q(K, L)) * (RC(K,L-1}-R
X (P(K+T,L)+QUK+T,L)) x (R(K+1,
X (P(K+1,L+1)+Q(K+T,L+1)) x (R¢
X (P(K,L+1)+Q(K,L+1}) = (R(K-1,
AUW=RHO(K, L) *AJ (K, L) +RHO(K+1, L) &
X +RHO(K+1,L+1)*AJ(K+1,L+1)
AUW=2. /AUW
AU=-AUXAUW
AW=AWXAUW
4 UCK, L) =UEK, L) +DTNxAU
C ADVANCE VELGCIYIES TG N+1/2 FROM N-1/2
(K,L)=W(K,L)+DTN*AW
C POSITION (N+1)
IF(ABS(U(K,L)).LE.VCUT)IU(K,L)=a.
IF(ABS(W(K.L)).LE.VCUTIW(K,L)=0.
AK,L)=ULK,L)*xx2+W(K,L)%xx2

1. -
=R R[N
r+
A d

[
+

-

» W
R s

I whrm)
b I R

PrRCAIT 1~
L RN+ NXR
AL s
R b 0w 3K Ko
m~—_—
MrOrw=X=\-
C& Xall

Iv—lv

Q -

- -

K,L+1)xAJ(K,L+1)

(lololudu T ToTu T X T)
NN = o ed h ccd ik icd e i
=OO0RNOUNLWN-O

PAGE 11

445 CONTINUE
450 CGNT1NUE
IF(NOHYD.EQ.1) GO TG 455
C NOHYD=1 TO SKIP HYDRGO
D8 452 L=LMN, LMX
D8 451 K=KMN,KMX
R(K,L)=R(K, L) +DTNPHXU(K, L)
Z(K,L)=Z(K,L)+DTNPH*W(K, L)
451 CONYTINUE

452 CONTINUE
[ACCELERATION VELGCITY AND
g CO-ORDINATES DONE END OF NECOND PASS
Cc BEGIN LGOP 3
C TEMPRY X®XxXXkxxXxx
C
g DEBUG EDIT
IF(DEBUG.EQ.0.) GO TGO 485
¢ IGEN=1

WRITE(NG, 456)
456 FORMAT(9H DEBUG 2)

CALL EDIT
455 CONTINUE
CALL HWORK
COMPUTE HYDRO WORK ON THE BOUNDARY
DO 490 L=LMNP,

DO 485 K
AJ1=R

o0 O O 0

o
(5
>
[7}
Q

S=VOLUME/2X (CMxx3/RA
, VN=1./RHO(K,L) .
VN=SPECIFIC VOLUME AT (N)
VNP=SPECIFIC VOLUME AT (N+1)
RHO(K, L) =RHO(K, L) *SN/S (K, L)
DUM(K,L)1=RHO (K, L) xS(K, L)
DUM=MASS
DENSITY AT N+1
VNP=1./RHO(K, L)
DELV=VNP -VN
COMPUTE ARTIFICIAL VISCOSITY
DRK=R(K,L)-R(K-1,L-1)+R(K, L=
DRL=R(K,L)-R{K-1.L-1)+R(K=

o0 00

00

8
709

NN NN NNSNSNNN
Nt et b b b
OoVENOMAIN—CO

[21ele]y)

o0

o0

o 000 O

DZK=2(K,L)~Z(K-1,L-1)+Z(K,L-1)-Z(K-1,L)
DZL=2(K L) -Z(K-1.L-1)+Z(K-T,L)-Z(K,L-1)
DUK=U (K, L) -U(K-1,L-1)+UCK,L-1)-U{K-1,L}
DUL=U(K L) -U(K-1.L-1)+U(K-T,L)-U(K,L-1}
DWK=W(K L) -W(K=1,L-1)+W(K,L>T)-W{K-1,L}
DWL=W(K L) -WIK-1,L-1)+W(K-T,L)~WIK,L-1}
DRK=2DR/DK
DRL =2DR/DL
W1= DRK*DWL-DZKx*DUL
W2= DUK*DZL -DWK*DRL
Q(K,L>=0.
W3=0.
Wa=0.
IF(W].LT.0.)W3=W1xx2/ (DRKxx2+DZK* %2}
IF(W2.LT.0.)W4=W2x*2/ (DRL**2+DZL&x2 }
IF((W3+W4) .EQ.0.) GO TO 465
CA=SQRT (GAMXP(K,L)/RHO(K, L))
DEN’T COMPUTE Q IF Z6NE 1S NOT BEING CBMPRESSED
Q(K,L)=COFXRHO(K, L) *x (W3+Wd) + C1F*CA*RHO(K,L)*SQRT(W3+W4)
c1F= cix.5 COF= . 25%xCO%xx2 CA=SGUND SPEED
IF(CA.EQ.0.) GO TG 465
TSO= (AJ (K L)x*2)/(CA*CA*(DRK**Z+DRL$*2+DZK**2+DZL**2))
IF(DTC2.LE.TSO) GO TO 462
HAVE A NEW MINIMUM DELTA T
DTC2=TS0O
KC=K
LC=L

462 CONTINUE

465 CONTINUE
EPS=E(K,L)-(P(K,L}+Q(K, L))xDELV

E(N+1)

RARG1= RHO(K L)
CALL TEMPCAL —
TARG1= TEMPS
CALL IES1
PNP=FUNC1
GAMMA-LAW EOCS GAMZ=GAM-
E(K,L)=E(K,L)-(, 5*(PNP+P(K L)) +Q(K, L)) *DELV
E(K,L)=AMAXT(E(K,L),1.E-30)
EPS=E(K,L)
CALL TEMPCAL
GET TEMPERATURE AS FUNCTIGN OF E.RHO
TARG1=AMAX1(TEMPS, TFLR)
TEMP(K,L)=TARG1
CALL [ES$1T
GET PRESSURE
P(K,L)=FUNCI1
E(N+1)
P(N+1)

SKE=SKE+P1D8xDUM(K, L)K(A(K LI+A(K-1,L)+A(K,L-T)+A(K-1,L-1))

KINETIC ENERGY FOR THE ZON
485 CONTINUE
490 CONTINUE

g****x********x*******!*x******K*END OF LOOP 3

PAGE

12

g DEBUG EDIT

493

o

495

(2]

IF(DEBUG.EQ.0.) GO TG 495
IGEN=1

WRITE(NG, 493)
FOGRMAT(SH DEBUG 3)

CALL EDIT

CONTINUE

IGEN=0

I2=NECOND(11)
NXT(NED)=NXT(NED)+12

CALL CONDUCT
DO HEAT CONDUCTION

NYCL=NYCL +1

ADVANCE CYCLE COUNTER

DTNMH=DTNPH

DTC=SQRT(DTC2)

DTNPH=DTC

TNPH=AMIN1(DTNPH, DTEN, DTMAX)

D
LIMIT MAGNITUDE GF DT

DTN=.5x (DTNPH+DTNMH)
TNUP=TNUP+DTNPH
IF(DTNPH.GE.DTMIN) GO 7O 602

Crxxxxxxxxx DT IS BELOW ALLOWED MINIMUM X% %3 &X%XXx%

WRITE(NG,801)NYCL , TNUP, DTNPH, DTMIN
WRITE(NO,601)NYCL, TNUP, DTNPH, DTMIN

601 FORMAT(12H DTSTOP NYCL!I6,3H T ,E12.4,4H DT ,E12.4
GO TO 999
602 CONTINUE
TE=SKE+ENH
CN=TE-HN-WN
IF(NYCL.EQ.1) CNOGLD=CN
CNN=CN-CNOLD
ENCG=ENCG+CNN
CNGLD=CN
IF(MOD(NYCL, NCP) .NE.O) GO TO 603
WRITE (NG, 706)
706 FURMAT(SH CYCLE, 4X, SHTIME , 7X, 2HDT, 10X, 3HDTC,5X, 8H KC
3SHDTE.SX,8H KEN LEN}
(Nc ?o7)NYcL NUP DTNPH DTC,KC,LC, DTEN, KEN, LEN
707 FGRMAT(lé 3E12.4,214,E12.4,214)
22=ABS (EN& - (ENH+HN))/ENC
WRITE (NG, 708)
708 FORMAT (4X, AHETOT, 8X, 4HIE , 8X, AHKE sx AHHN |, 8X, 4HWN
X 8xX’ SHECONS, 7%, SHCN(N) , 7%, AHECNG

WRITE(NO, 709)TE ENC, SKE, HN, Wi, 22, CNN, ENCG

709 FORMAT(8E12,

603

CONTINUE
12=NECOND(I11)
NCT(NED)=NCT(NED)+I2

777 C RUN TIME FOR PHYSICS

F(TNUP.LT.EDTIME) GO TO 605

8 I
4 C TIME TO EDIT

CALL EDIT

Lc,

)

PAGE

13

781
782
783

a

809

0 G 00 (0 300 G 02 B G WD
NNVNVNNN 2t b b 2
AWN—=OVENOURMAWN—O

604

WRITE (NG, 604)NYCL, TNUP, DTNPH, RMAX KR,LR

FORMAT(12H EDIT NYCL=

C MESSAGE TC TTY

EDTIME=EDTIME+EDDT

, 18, 2ei2.

C ADVANCE EDITME TO NEXT VALUE

605

CONTINUE
IF(TNUP.LT.TMAX) GO TO

610

E14

5,

214)

Cxxxxxxxxxx PROBLEM HAS REACHED TMAXXXX kX% %X%X

(e19}

o0

607
610
998

WRITE(NO,807)NYCL, TNUP,
WRITE(NG,B807)NYCL, TNUP,
FGRHAT(iZH STOP TMAX
CONT]NUE

GG 1O 1

CONTI NUE

PROBLEM CCMPLETED GET OFF

616

618

619

620

CALL PLOTE

WRITE (NG, 61 6 (NBT(K),NCT(K),NET{K),NPT(K),NXT(K),K=1,NED)

T?RBAT(5(1 J110))
00-618 K=1,NED

TMAX
MAX
16 2E12. 4)

’

I1+UET(K)+NCT(K)+NET (K) +NPT(K) +NXT(K)

CGNTIN

m

QZZZZZO~
axuymowoam

Onny ZA~4——-
+4+4+++0

A~—-NO
e tal o ol B g
—.—l—l—l—lz
et ot ot e s [T
Z22ZZ

e Julel B

e e e L S R -

~Zununann

Counnnuy

AE

~Qsmnemas MZIZZZIRNO
[T) "t b e ik i b
R S)
N 2 3 3 % %
b b ek b
A~ O0000
V;OOOOO
PINNNSN S
(/) =t ot vt et e
P YU SN

RETURN
END

12),12=1,5)

PAGE

14

Qoo

0 000

SUBRBUTINE GEN

THIS SUBRGUTINE GENERATES THE INITIAL PROBLEM TO BE RUN

COMMON /KLS/ K,L,DEBUG,VERSIOGN, WHER, WHEN, P1D6, PIE, I1GEN, P1D2
X ,DﬁgﬁKc,LC,DTEN,KEN,LEN,SKE,HN,SIEL,CNN,ENC,ENH,ENCG,NN
COMMON /PROGG/ RO, Z0,R1,21,RP,ZP,RR, 22
COMMON /CGMN/ R(33,33),2(33,33), U(33, 33), RHE(33, 33),Q(33, 33)
X E(33,33),P(33, 33}, AJ133, 33}, (33, 33) . NBC(33, 33)
X ,W(33,33) . TEMP (33, 33)
X , A(33.33),8(33)33),CC(33, 33), DUM(33, 33, CBB(33, 33)
X . DBB(33,33),CAP(33,33),516(34%, 33),T5(33.33)

COMMON: /PARAM/ NYCL, TNUP, DTNUP, DTN, DTNPH, DTNMH, EDTIME, EDDT
,GAM, GAMZ, COF . C1F, &1, TMAX, DTMAX, DTMIN, TFLR, NOHYD
‘c2,P2,P3.No, NTTY. NED

COMMON /KLSPACE/ KMN,LMN,KMX, LMK, KMXZ, LMXZ, KMNP, LMNP, KMXP, LMXP

COMMON /GENCOM/ RHOOQ,ED, UG, PO,WD, DR,DZ, NBCU, NBCD, NBCL, NBCR
X ,PB(3),PBB(3),GB(3)

COMMON /MINMAX/ XMIN,XMAX, YMIN, YMAX,PMIN, PMAX, QMIN, QMAX
X,RMIN, RMAX,KQ, LQ,KR, LR,KP,
X' XMINX, XMAXX YMTNX YMAXX ,
IGEN NOT EQUAL O WILL CAUSE THE EDIT ROUTINE T6 PRINT ALL THE VARIABL

DATA IGEN/1/

xXx

€3 3% 3 3 5 K K 3K 0K KK B K K K K K K K K X K
Cx x
g* GENERATE NBC ARRAY x

x x

K 3 33 K 3 3K % K KK KK K KKK KKK KK X

O 000

O 000 O

c
c

SET BOTTOM AND TOP BOUNDARY CONDITIONS
DO 52 K=KMN, KMX

NBC (K, LMN)=NBCD
NBC (K, LMX)=NBCU

52 CONTINUE
SET LEFT AND RIGHT BOUNDARY CONDITIONS
DO 54 L=LMN,LMX

NBC(KMN,L)=NBCL
"NBC(KMX,L)=NBCR

54 CONTINUE

03K K 3 K KK K K KK KK R KK K K K KK K K KK K 3K Kk K XK K K K K K 50K K KK 8

PAGE

15

908
809

Cx
Cx GENERATE COORDINATES AND VELOCITIES :
Cx

Cx
C
o
c

c

o000 O 0 0O O

Qo0

C

c
c

c
Cx

Cx
Cx
Cx
Cx
o]

o 00

00

b

KKK KKK K KKK KK KKK K K KK K K K K KK KOK K KOK K OK K X K OKOR
INITIALIZE THE MINIMUM AND MAXIMUM VALUES OF R AND Z

XMINX=1,E+6
XMAXX=-1.E+6

YMINX=1,.E+6
YMAXX=-1.E+6

RP=LMX~LMN
ZP=KMX-KMN

DO 58 K=KMN, KMX
21=10+K-KMN
DO 57 L=LMN,LMX
COMPUTE THE COORDINATES R AND Z

RR=L-2
2Z2=(-.5+RR/RP)xPIE

R(K,L)=21%xCOS(ZZ)
2(K,L)=2Z1xSIN(ZZ)

FIND THE MINIMUM AND MA

XMINX=AMINT (XMINX, R
XMAXX=AMAX1 (XMAXX, R

(
(
YMINX=AMINT (YMINX, Z(
YMAXX=AMAX1 (YMAXX, Z(

57 CONTINUE
58 CONTINUE

XM
K,L
K,L
K,L
K,L

% 3K 33K %K K K K 3K XK R K K XK K K KK K K KKK KK KKK KK KK KK KKK OB KK K K K K K K K K K K K K X

GENERATE ZONE QUANTITIES RHO, P, E AND COMPUTE AREA

x
2K 2K K 3K K R K KKK R K K K K K K K K K KK K K K K K K K K KK K K KK R KK KK K KKK K XK K K K XK X

PiD6=1./86.

DO €5 L=LMNP,LMX
DO 63 K=KMNP, KMX
RHO(K, L) =RHOO
P(K,L)=P0O
E(K,L)=EO

COMPUTE JACGBIAN

AJT=R(K, LIX(Z(K-1,L)Y=Z(K,L-1))#R(K-T,L)I*(Z2(K,L-1)-2Z(K,L))

X +R(K, L-1)%(2Z(K, L) =2(K=1,L))
AJB=R(K-1,L)*(Z(K-1,L-1)-Z(K,L-1))+R(K-1,L-1)*x(2(K,L-1)-2Z(K-1,L))
X +R(K,L-1)x(Zz(k-1,L)-Z(K=-1,L~1))

AJ(K,L)=P1D2%x (AJ1+AJ3)
S(K,L)=P1D6X ((R(K,L)+R(K=-1,L)+R(K,L-1)}*AJ] +

X (R(K,L-1)+R{K>T,L)+R{K-1,L-1))*AJ3)

c
63 CONTINUE

65 CONTINUE

C
O3 K X X X K KK XXX KKXKX

Cx
Cx
Cx

[2191¢]

[¢)

DEBUG EDIT x
*

CREKXEXKKXRKKEKKEK XK

IF(DEBUG.EQ.0.)GO TO 80

PRINT NBC BOUNDARY SENTINELS

71

72

73

74

80

85

WRITE(NS,71) (NBC (K, LMN), K=KMN, KMX)
FORMAT (3HLMN, 8011)

WRITE (NG, 72) (NBC (K, LMX) , K=KMN, KMX)
FORMAT (3HLMX, 8011)

WRITE (NGO, 73) (NBC(KMN, L), L=LMN, LMX)
FORMAT (3HKMN, 8011

)
WRITE(NGD,74) (NBC(KMX, L), L=LMN, LMX)
FORMAT (3HKMX, 801 1)

CALL EDIT
CENTINUE

WRITE (NG, 85)

WRITE(NTTY, 85) ,
FOGRMAT(21H GENERATIGN CEMPLETED)

RETURN
END

PAGE

17

1009

[219]¢) 000 o000 O (9

oo0n

SUBROUTINE EDIT
COMMON /KLS/ K,L ,DEBUG, VERSION, WHER, WHEN,P1D6, PIE, [GEN,P1D2

X

X ,DggﬁKC,LC,DTEN,KEN,LEN,SKE,HN,S]EL,CNN,ENC,ENH,ENCG,WN

COMMON /COMNé R(33,33),2(33,33),U(33,33), RHO(33,33),Q(33, 33)

3, 33) P(33, 33) AJ(33, '33),8(33,33), NBC(33,33)
W(33 33), TEMP (33, 33)

X
X
X , A(33.33),B5(33.33),CC(33,33),DUM(33,33),CBB(33,33)
X | DBB(33,33),CAP(33,33),s16(3%,33),T5(33,33)

COMMON /PARAM/ NYCL, TNUP, DTNUP, DTN, DTNPH, DTNMH, EDTIME, EDDT

xx

COMMGN /KLSPACE/ KMN, LMN, KMX, LMX, KMXZ, LMAZ, KMNP, LMNP , KMXP, LMXP

M, GAMZ, COF,C1F, €1, TMAX, DTMAX, DTMIN, TFLR, NGHYD
02 P2,P3, NG, NTTY, NED

COMMON /MINMAX/ XMIN, XMAX, YMIN, YMAX,PMIN, PMAX, GMIN, GMAX
X,RMIN, RMAX,KQ, LQ,KR, LR KP,LP
X', XMINX, XMAXX, YMINX, YMAXX

COMMON /TIMING/ NBT(20),NCT(20),NET(20),NPT(20),NXT(20)

TEMPIS SUBROUTINE EDITS ALL MESH VARIABLES
DATA N100/100/

11=0
INITIALIZE MINIMUM AND MAXIMUM VALUES OF RHG, P, Q, R AND Z
RMIN=1.E+6
RMAX=-1.E+6
PMIN=1.Et6
PMAX=-1.E+6
QMIN=1.E+6
QMAX=-1.E+6
XMIN=1 .E+6
XMAX=1.E-6
YMIN=1.E+6
YMAX=1.E-86
INITIALIZE LOCATION OF MAXIMUM VALUES OF RHO, P AND Q
KR=0
LR=0
KP=0
LP=0
0
LQ

FIND THE MINIMUM AND MAXIMUM VALUES OF RHO, P, Q, R AND Z

PAGE

18

000N O O

(@]
o

ek b e b ek
o0

— et —h el e —h v — —
==000000000
—“0WoONOUAWN—

PAGE 19
DO 715 L=LMNP, LMX
DA 714 K=KMNP,KMX

IF(RHO(K,L) . LE.RMAX)GBOC TO 701
RMAX=RHO(K, L)

KR=K

LR=L

701 CONTINUE

IF(P(K,L).LE.PMAX)GO TGO 702
PMAX=P(K,L)

KP=K

LP=L

702 CENTINUE
IF(Q(K,L).LE.QMAX)GS TO 703
AMAX=Q{K,L)

KQ=K
c LQ=L
703 CONTINUE

RMIN=AMINT (RMIN,

PMIN=AMINT (PMIN’

GMIN=AMIN1 (GMIN]

XMIN=AMIN

X
N
X

Nt N
-
-
-

- .

- rre rex

XMAX=AMA

YMIN=AMI
YMAX=AMA

714 CONTINUE
715 CONTINUE
PRINT PROBLEM PARAMETERS

WRITE(NG,717) NYCL, TNUP,DTNPH, DTN, VERSION, WHER, WHEN
717 FORMAT(6H NYCL ,16,6H TIME ,E12.4,7H DTNPH ,E12.4,5H DTN ,
X E12.4,9H VERSION ,F4.1,2A10)

WRITE(NO,718) PMAX,KP,LP,QMAX,KQ,LQ,RMAX,KR,LR
718 FORMAT(14H MAXIMUM (K,L),E12.4,214,3H P ,E12.4,214,3H Q ,
X E12.4,214,5H RHO)
UVTEST=1.E-S
KL=KMN
LL=LMN
KU=KMX
LU=LMX
IF(IGEN.EQ.Q) 6O TO 720
UVTEST=-100,
PRINT ALL MESH POINTS
IGEN.NE.O WILL RESULT IN EDIT OF ENTIRE MESH, =0 ONLY ACTIVE ZONES
KL=KMN-1
LL=LMN-1
KU=KMX+1

N N
-t

—

AN OORNOUNLHRN—ORENOUIDRN

WL W0 W YNNI VRN - = —

) i b e A CCh kN o d) ok 2 o i ed b eh —d eh ey

PAGE

Ld=1MX+1
720 CONTINUE
BEGIN EDIT
DC 740 L=LL,LU
WRITE(NG, 725)
725 FORMAT(8H L K, ax, THR, 10X, THZ, 10X, THU, 10X, 1d%W, 10X, 3HRHO,
X 8X, 1HE 10X, THP, 10X, THG, 10X, 2HAJ,9X SHTHETA)
DO Ta8 K=KL,

C

TF(TABS (UK, L))+ABS(W(K L)) LE UVTESTIGG TO 738
C DONT PRINT VARIABLES IF NO MOTION
WRITE(ND, 726) L, K, R(K, L), Z(K, L), UK, L) , WK, L), RHO(K, L) ,E(K, L)
X,POK, L), QK , L)Y, AJ(K, L), TEMP(K, L)

7286 rGRVAT(2f4}7OE11,3)
738 CONTINUE
740 CONTINUE

c

NET(NED)=NECONDC(I] 1)
NPT(INED) =NECOND(] 1)
NED=NED+1

IF{NED.GT.20) NED=1

RETURN
END

O

b ko b b b b o e o e e e b ed e i e o e e e b e e e conk b b b e mnd md
t d e ek ek e e b e e ol e i e i sk i b e ok e o e i sed b d o nd h e med e b e ek
SNNOOOOMOOONOUINUNNRONUIALALDIALALDDAEWWOWD
—=OEONAUAWNODONOUAWN—~OORINOUIAON—=OOBOND

SUBROUTINE TEMPCAL . A+ 775

COMMGON /EGSCOM/ KEOS, TARG1, TARG2, TARG3, RARG1, RARGZ, RARGS,
X FUNC1,FUNC2,FUNC3, TEMPS, EPS, EPSO

INVERSE TABLE LOOK-UP

DATA PIMG6/1.E-6/
TARG1=0.

CALL [ES2
E=EO0S (0, RHO)
EPSO=FUNC1
TEMPS=0.
IF(EPS.LT.EPSC) RETURN
RETURN TEMPETA = O IF BELOW TABLE
TEMPS=10.*xEPS
INITIAL GUESS
10 TARG1=TEMPS

CALL I1ES2

FUNGC2=FUNC1
TARG1=TARG1 +P1M&

CALL IEs2

DTEMP=P1M6x ({ (EPS-FUNC2)/ (FUNC1-FUNC2))
TEMPS=TEMPS+DTEMP
IF(TEMPS.LT.P1M6) GO TO 20
IF(ABS(DTEMP.GT.PIM6) GO TG 10
CONVERGED
RETURN
20 TEMPS=0.
RETURN
END

o 0 0 0 o o000

o0

PAGE

21

O0WWOWRVWVBWWWRPEPEDRMDPENNNNNNNN
=QOONOULAWN=CORNOULBGN—=0OORNOOIAWN

e d b ed o h b b b h e ek md D rh b e ek b b o ek ek md b ek —b
PON) = b = e b ek 2 e o ik d d i srd b md ik d e ek ad ek b ek e e ad

N
[o]
N

ek e el ek w—h —
NN
000000
NNV

e) v e v h v b nd b vl —
SNBSS LM ATV M VEVE
N=00EJRIAON—=0V

NNt wmaa oo
w

1224

c
c

[e1ele}

(elelele]

110

l1ES

210

5000

SUBROUTINE JES

COMMON /EOSCOM/ KEOS, TARG1, TARG2, TARG3, RARG1, RARG2, RARG3,
X FUNCI1,FUNC2,FUNC3, TEMPS,EPS,EPSO

COMMEN /COM2/ NTSV(2),NRSv(2) ,MSV(2},T
X ,AES(12),BES(12),CES(12),DES(12),EES(
X ,HES(12),PES(12),ITES(3),IRES(3),[ZES

N=1
RETURN
EN{RY 1ES1

EXTT=1.

EXTR=1.

TARG=TARG]

RARG=RARG1

IBOUND=0

IESTB=1

GO TO 5000

CONTINUE

FUNC = AES(M) +RARGX (BES(
1 +TARGx (CES (M) +RARGx (FES
2 +TARGx (EES(M) +RARGx* (HES
FUNC1=FUNCXEXTTxEXTR

RETURN
2 ENERGY=FUNCTION(TEMPETA RHO)
ENTRY 1ES2

EXTT .

TARG= TARG1

RARG= RARG1
IBOUND

GES(12)

—~—n

M) +RARG*DES {
(M) +RARGxGES
(M) S

¢
+RARGXPES (

))
M))
M}))

CONTINUE

FUNC = AES(M)+RARGxX (BES(
1 +TARGx (CES(M) +RARG*(FES
2 +TARGx (EES (M) +RARGx* (HES
FUNC1=FUNCXEXTT

) +RARG*DES (
M) +RARG*GES
M) S

¢
(M) +RARG*PE

M)}
(M})
(M) »)

RETURN .
TABLE LOOK UP
NT=NTSV(N)
NR=NRSV (N)
MLR =
MLT = O
IF(TES(NT).GT.TARG) GO TG 5100
IF(TES(NT+1).LE.TARG) 6O TO 5200
TARG IN SAME T STRIP AS FOR PREVIOUS ENTRY
IF(RES(NR) .GT.RARG) GO TO 5300
IF(RES(NR+1).LE.RARG) GO TO 5400

TARG AND RARG IN SAME BOX AS FOR_PREVIOUS ENTRY
M SAME AS FOUR PREVIOUS ENTRY,FAST RETURN

PAGE

22

5100

Q00 _ 0000000

5105

o000 000

5115

¢/

5120

on00 000

5200

o0t _ 000 000

5205

O 000

ggﬂﬁg(?%10,21o) , IESTB
T SEARCH
TARG BELOW T STRIP OF PREVIGUS ENTRY
OUT OF TABLE TEST, LOW T
IF(NT.LE.ITES(N)) GO TO 5115
SEARCH TO NEXT LOWER T STRIP
NT=NT-1
IF(TES(NT).GT.TARG) GG TG 5120
STRIP CONTAINING TARG FOUND, BEGIN R SEARCH
IF(RES(NR) -RARG) 5410,5310,5320
WASCBELOW" TEMPAT ARGUMENT ON PREVIGUS ENTRY
MLT=-1

EXTT=EXTT*xTARG/TES(NT)
TARG=TES(NT)

IF(RES(NR) .GT.RARG) GO TO 35300
IF(RES (NR+1).LE.RARG) GO TGO 5400
M = MSV(N)
GO TO (110,210) ,IESTB
OUT OF TABLE TEST, LOW T
IF(NT.GT.ITES(N)) GO TO 5105

TARG BELGW LOWEST TABLE ARGUMENT BUT
WAS NOT BELOW TEMPAT ARGUMENT OGN PREVIOUS ENTRY

BEGIN R SEARCH
IF(RES(NR) -RARG) 5410,5310,5320

OUT OF TABLE TEST, HIGH T
IF(NT-ITES(N+1)+2) 5205,5215,5205

SEARCH TG NEXT HIGHER T STRIP

NT=NT+1
IF(TES(NT+1).LE.TARG) GO TO 5220

STRIP CONTAINING TARG FOUND, BEGIN R SEARCH
IF(RES(NR) -RARG) 5410,5310, 5320

PAGE

23

[\

(]
bW

oo

c
1285 5215
&

1298 C

5220

QOO0 000

713

5320

OO00 OO0 000

5300

CORNOUVAWN—~=OOO®NOANAWN=OORONONAWN—OWOON
QOO0 00000

h ok b b e b e) eh ik ko ek b b o b b d ek kb 3
WRWWAWWWWRWWWOWNDWWWWWRWWRWNWWWRWIWWY
BWWWRWOLWWWNNDNNNNNNNN St b aawwsa000

A

W
D
~NOY
(9]

TARG ABOVE HIGHEST TABLE ARGUMENT AND
WAS ABOVE TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLT=1
EXTT=EXTTxTARG/TES(NT+1)
TARG=TES(NT+1)

IF(RES(NR).GT.RARG) GO TO 5300
éF(REg(?R;1J LE.RARG) GO T8 5400
Go TG (110,210) ,IESTB

OUT OF TABLE TEST, HIBH T
IF(NT-ITES(N+1)+2) 52085,713,5205

TARG ABGOVE HIGHEST TABLE ARGUMENT BUT WAS
NOGT ABOVE TEMPAT ARGUMENT ON PREVIGUS ENTRY

MLT=1
EXTT=EXTTxTARG/TES(NT+1)
TARG=TES(NT+1)

BEGIN R SEARCH
IF(RES(NR) -RARG) 5410,5310, 5320

OUT OF TABLE TEST, LOW R
IFI(NR.GT.IRES(N)) GO TO 5305

RARG BELOW LOWEST TABLE ARGUMENT BUT WAS
NOT BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLR=-1
EXTR=EXTR*RARG/RES (NR)
RARG=RES(NR)

GO TO 5310

R SEARCH
RARG BELOW R STRIP OF PREV[OUS ENTRY
CUT OF TABLE TEST, LOW

IF(NR.GT.IRES(N)) GO0 TO 5305

RARG BELOW LOWEST TABLE ARGUMENT AND
WAS BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY

MLR=-1
EXTR=EXTRxRARG/RES (NR)
RARG=RES(NR)

M = MSV(N)

GO TO (110,210) ,IESTB

SEARCH TGO NEXT LOWER R STRIP

NR=NR-1
IF(RES(NR) - RARG) 5310,5310,5320

BOX CONTAINING TARG AND RARG FOUND, COMPUTE NEW M

PAGE

24

c
5310

(elolele] oQ0 OO0

OO0

5400

5405
5410

719

5415

M= ZES(N)+(ITES(N+1)-1TES(N)-1)*% (NR-IRES(N))+NT-I TES(N)
NTSV(N}=NT
NRSV(N)=NR
MSV(N)=M
GO TG (110,210) ,IESTB
OUT OF TABLE TEST, HIGH R
IF(NR - IRES(N+1)+2) 5405,5415, 5405
SEARCH TG NEXT HIGHER R STRIP
NR=NR+1
IF(RES(NR+1).6T.RARG) GO TO S53i0
IF(NR-TRES(N+1)+3) 54Q5,5405,713
RARG ABOVE HIGHEST TABLE ARGUMENT BUT WAS
NGT ABOVE TEMPAT ARGUMENT OM PREVIOUS ENTRY
MLR=1

EXTR=EXTRxRARG/RES (NR+1)
RARG=RES(NR+1)
GO T4 5310

RARG ABOVE HIGHEST TABLE ARGUMENT BUT
M SAME AS ON PREVIOUS ENTRY

MLR=1
EXTR=EXTRXRARG/RES(NR+1)
RARG=RES(NR+1)

M = MSV(N)
GO0 TO (110,210) ,IESTB
END

PAGE

25

SUBROUTINE SETUP

COMMGN /COM2/ NTSV(2),NRSV(2),M
X ,AES(12),BES(12),CES(12),DES(1
X ,HES(12),PES(12),1TES(3), IRESI

1386

1387

1388

1389

1390

1391

1392 CALL JES
1393 C DEFINE A GAM
1384 NTSV(1)=1
1395 NRSV(1)=1
1396 MSV(1)=1
1397 NTSV(2)=4
1398 NRSV(2)=5
1399 MSV(2)=7
1400 ITES(1)=1
1401 IRES(1)=1
1402 IZES(1)=1
1403 ITES(2)=4
1404 IRES(2)=5
1405 [ZES(2)=7
1406 ITES(3)=7
1407 IRES(3)=9
1408 I1ZES(3)=13
1409 TES(11
1410 TES(2]
1411 TES(3]
1412 TES(4]
1413 TES(5}
1414 TES(8]
1415 TES(7]
1416 RES(1]
1417 RES(2]
1418 RES(3)
1419 RES(4]
1420 RES(35l
1421 RES(61
1422 RES(7}
1423 RES(8)
1424 RES({ 91}
1425 AES(1)
1426 BES(1}
1427 CES(1)
1428 DES(11}
1429 EES(1)
1430 FES(1)
1431 GES(1)
1432 HES(1)
1433 PES(1)
1434 AES(2)
1435 BES(2]
1436 CES(2)
1437 DES{ 2}
1438 EES(2]
1439 FES(2)
1440 GES(2)
1441 HES(2)
1442 PES(2]
1443 AES(3)
1444 BES(3}
1445 CES(3}

—

. OE+Q0

. 0000E+QQ
. 0000E+02

. 0E+00

1.0000E+00Q

-—

WWW WWw

. 0O00QE+02

.QE+0Q0
. OE+00

. 0000E+QO0
. O0O0QE+02
. 0O0D00E+10

. QE+00

. 0000E+0Q0
. 0Q00E +02
. 0O000E+10

.QE+Q0
.DE+0Q0
. QE+00
.QE+00
.0E+Q0
. OE+00

6.6667E-02

-1

-4.
-1.

[+2}

-4,
-2.

—_

.2953E-16

S
2
3

P

MA LAW GAS EQUATION OGF STATE FOR BIQUAD ROUTINE

PAGE

26

27

PAGE

ooparyeecgoveYNoegTayLes

562441...1318132 .w.

HUNEEENEN RN ANHHENHONE AR RN AN NN AA NN U R RN

\‘,)]’\l\"\l,”lt},”l"))’})))’)l\lr,)l,ilrlii,)l ” 1,’ 11";\!”

333333444444444555555555683330566777777777335 99“9999

PAGE

i

.8B74E-15
L1273E-17
. 0000DE-C1
.2168E-20C
.9B38GE-18
.8B510E-17
.2030E-20
.3321E-19
.2168E-23

.QE+Q0

,0E+0Q0
. OC0QE -0

.0E+00
.8818E-16
.8341E-26
.3947E-38
.8341E-26
.8808E-356
L. 9429E-15
.9878E-26
. O00QE-01
.3701E-36
. 9389E-18
. 9962E-26
.8867E-36
.4134E-29
., 8745E-38

[
o PN e () s =

LI L T S E R T

—

U G G SV S G

GGG AOGIGIOTROTGII OIS GIARAA CTOI R JTGIHUTA
!]

OWIrTVXG

EES(

1
—ORNOSRU—=QR—=—-UIe U

PNVt s s 2 D00 OO0

LU E T I £ £ £ S T PN VA O LI)

WWEWMRMNTNIN N FRINI PRI AN b ot o b ot s ot = s s () Y
AWN=O0OWONOURWN-OOENRULMWN OO

b) e 3 3k ah b s

OO0 OO0

SUBRCUTINE PRGJCT

THIS SUBRBUTINE REFLECTS AN INTERIOR POINT ACRGSS THE BOUNDARY

COMMON /PROGG/RO,Z0,R1,21,RP,ZP,RR, 2Z

REFLECT (RP,2P) TGO (RR,Z2Z)
WHERE (RO, Z0) AND (R1,21) ARE BOUNDARY POINTS

WW=(2. x(Z1-20))/((R1-RO)xx2+(2Z21-20)%x2)
ALP=1,-(2Z1-20) xWW

BET=(R1-RO) xWW

RR=RO+(RP-RO)}*ALP + (ZP-Z0)x*BET
2Z=70+(RP-RO)*BET - (ZP-ZO)xALP

RETURN
END

PAGE

29

000000 O

o0

Q00

SUBROUTINE CONDUCT

COMMON /KLS/ K,L,DEBUG, VERSION, WHER,WHEN,P1D6,PIE, IGEN, P1D2
X ,DTEPKC.LC,DTEN,KEN,LEN,SKE,HN,S]EL,CNN,ENC,ENH,ENCG,WN

1

COMMON /COMN/ R(33,33),2(33,33),U(33,33),RHO(33,33),Q(33,33)
E(33,33),P(33,33),AJ133,33),5(33, 33) . NBC(33, 33)
,W(33,33). TEMP (33, 33) :
, A(33.33),B(33.33),CC(33,33),DUM(33, 33), CBB(33, 33)
! DBB(33,33),cAP(33,33),s16(34,33),T5(33. 33)

COMMON /PARAM/ NYCL, TNUP, DTNUP, DTN, DTNPH, DTNMH, EDTIME, EDDT
X ,GAM, GAMZ, COF . C1F, &1, TMAX, DTMAX, DTMIN, TFLR, NOHYD
X .c2,P2,P3.N6,NTTY, NED .
COMMON /KLSPACE/ KMN,LMN, KMX, LMX, KMXZ, L MXZ,KMNP, LMNP, KMXP, LBXP

COCMMON /EOSCOM/ KEOS, TARG1, TARG2, TARG3, RARG1, RARG2, RARGS,
X FUNC1.FUNCZ,FUNCS,?EMPS,EPS,EPSO

ELECTRON CONDUCTION -LU-
DG 10 L=LMN,LMX

X
X
X
X

DO 10 K=KMN, KMX
CAP(K,L)=.1)
CC(K,L)=(.0001*SQRT(TEMP(K,L))XxTEMP(K,L)»x2)/AJ(K,L)
SIG(K,L)=DUM(K,L)*CAP(K,L)/DTNPH
TS(K,LI=STEMP(K, L)
CONTINUE
DO 12 L=LMN,LMX
DO 12 K=KMN,KMXZ
CBB(K,L)=(2, *xCC(K+1,L)*xCC(K+1,L+1))A(CC(K+1,L)+CC(K+1,L+1))
X x (. Sx(R(K,L)+R(K+1,L)) % ((RCK#1,L)-R(K,L))*x2 ’
X +(Z(K+1,L)-2(K,L))xx2))
12 CONTINUE
DO 14 L=LMN, LMX2Z
DO 14 K=KMN, KMX)
DBB(K,L)=(2.*CC(K+1,L+1)xCC(K,L+1))/(CC(K+1,L+1)+CC(K,L+1))
X x (.5!(R(K,L)+R(K.L+1))*((R(K.L?1)-R(K,L))**2
+(Z(K,L+1)-2(K,L))xx%x2))

X
14 CONTINUE

BOUNDARY CONDITI1GNS

) DO 17 L=LMN,LMX
A(KMN,L)=0. -
B(KMN, L)=TEMP(KMN, L)
DBB(KMNEL)=O.

17 CONTINU
DO 19 K=KMN, KMX
A(K,LMN)=0

B(K,LMN)=TEMP (K, LMN)
CBB(K,LMX)=0.
CBB(K,LMN)=0,

19 CONTINUE

PAGE

30

QORI RANRO
WN=00ONORRWN

624

.......... Z SWEEP

DO 53 K=KMNP, KMX
DO 51 L=LMNP, LMX
DUM(K, Ll=SIG(K L) +CB
B(K-1,L)/DU
gG(K,L)*TEM

E
C...... ALPHA ,BETA FORWARD
ML=LMX+1
DO 52 L LMNP, LMX
ML =ML -

B(K-1
M(K.Li
P(K, L)+

L)Y+CBB(K-1,L-1)x(1, ~A(K,L-1))
CBB{K-1,L-1)»B(K,L-1)

TEMP(K ML) =A(K,ML)*TEMP(K,ML+1)+B{K ML)

52 CONTINUE
C BACK SUBSTITUTIGN
c 53 CONTINUE

g Z SWEEP END
g R SWEEP
DG 43 L=LMNP,LMX
DO 41 K=KMNP KMX
DUM(K L1=SIG(K,L)+DB
Li=DBB(K, L-1)/DU
B(K LY=(SIG(K,L)xTEMP
X) /DUMK, L)
41 CONTINUE
... ALPHA BETA FORWARD
ML =KMX +1
D6 42 K=KMNP, KMX
ML=ML-1

~X0

K,L-
K, L)
L)+

SWEEP

+DBB(K-1,L-1)x(1.-~A(K-1,L))

DBB(K-1,L~-1)xB(K-1,L)

TEMP(MLtL)=A(ML,L)*TEMP(ML+1,L)+B(ML,L)

42 CONTINU
C BACK SUBSTITUTION R DIREC
43 CONTINUE

TION

c

C....ovvvns R _SWEEP END

g COMPUTE DT CONTROL FOR HEAT CONDUCTION
YE=0.
KEN=0
LEN=0

DO 111 L=LMNP,LMX
DO 111 K=KMNP, KMX
C GET NEW ENERGY

ENH=ENH+E(K, L) *xRHO(K,L)xS({K, L)

c
TARG1=TEMP(K, L)
RARG1=RHO(K, L)
c CALL IES2

E(K,L)=AMAX1(FUNC1, 1.
ENCZENC+E (K L)*RHU(K,
IF(TS(K,L).EG.0.) GO
TEMPR=ABS ((TEMP (K, L)

IF(TEMP; .LE.YE) G& T& 10

YE=TEM
KEN=K

E-30)

L)xS(K,
To 109’
TS(E,L

L)
Y/TSIK,L))

PAGE

31

PAGE 32

TEMP K, L 1=TS(K, L3

F{YE, EG C.) GG TG 118

DTEN=(. 1xDTNPH) /YE
118 CONTINUE
ENERGY BALANCE HN

0B 122 K=2,KMX

HM=HN+DTNPHxCBB(K-1, LMN) x { TEMP(K,LMN)-TEMP(K LMN+1))

X +DTNPH*CBB(K-1,LMX)x (TEMP (K, LMX+ 1} -TEMP (K, LMX))

122 CCMTINUE

0O 124 L=2,LMX

HN=HN+DTNPH*DBB (KMN, L-1) % (TEMP (KMN, L) -TEMP (KMN+1, L))

Pt +DTNPHxDBB (KMX . L-1)*x (TEMP({ fX$1 L) -TEMP (KMX, L)
124 CONTINUE

RETURN
END

— 0O
O

1708

—h ek h mh e v el vl —d b wmd b) wrd e ek nd mnd wh e = —d
NN NN NN N N N S SN NN N N S ST SN SNIN N

WOWWNNNNNINNORNN et D 2 O
WN=OOENONRLON=OOONONKWN—~O

O 0O 000 0

SUBROUTINE HWORK

COMMON /KLS/ K,L,DEBUG, VERSION, WHER,WHEN, P1D6, PIE, IGEN, P1D2
§ ,D;g#KC.LC,DTéN,KEN,LéN,SKE,Hﬁ,SIEL,CNN,ENC,ENH,ENCG,NN
F]

CGMMEBN /COMN/ R(33,33),2(33,33),U(23,33),RHO(33,33),Q(33
X 33,333, P(33,33)) aJ133.33), 5(33,33). NBC(33, 33)
X ,W(33,33) . TEMP (33, 33)

X , A(83,33),B(33,33),CC(33,33),DUM(33,33), CBB(33, 33)
X | DBB(33,33%),CAP(33.33),516(33,33),T5(33,33)

COMMON /PARAM/ NYCL, TNUP, DTNUP, DTN, DTNPH, DTNMH, EDTIME, EDDT
X ,GAM, BAMZ, COF, C1F, 61, TMAK, DTMAX, DTMIN, TFLR, NGHYD
X 'c2,P2,P3.NO, NTTY. NED

COMMON /KLSPACE/ KMN, LMN, KMX, LMX, KMXZ, LMAZ, KMNP, LMNP , KMXP , LMXP

SUM THE HYDRO WORK ON THE BOUNDARY
Z1=DTNPH/8.
DO 510 K=KMNP, KMX

WN=WN+Z 15 (P (K, LMN+1)+P (K, LMN) +Q(K, LMN+1) +Q(K, LMN))
X x(C(UCK,LMN}+UCK-1,LMN}Ix(Z(K, LMNY-Z(K-1,LMN
X - (WU LMND +W(K=-1.LMN)) x (RCK, EMNY-RCK-1.LMN))
X)% (R(K,LMN)+R(K-1,LMN))
WN=WN-Z1% (P (K, LMX+1)+P (K, LMX) +Q{K, LMX+1) +Q (K, LMX))
X %0 (UCK, LMX)FUCK=1,LMXY) x(2(K, LMX)-2(K-1, LMX
X - (WK, LMX) +W (K-1.LMX)) x (RCKK, LMX)-R(K=-1, LMX})

. X Ix(RCK.EMXO +R(K=1.LMX))

510 CONTINUE

DO 515 L=LMNP, LMX
WN=WN+Z1% (P (KMN+1, L) +P (KMN, L) +*G(KMN+1, L) +Q(KMN, L))
X x(C(UCKMN,L)+UCKMN,L-1))* (Z(KMN,L3-2ZC(KMN,L-1))
X - (WOKMN. L) +W(KMN.L-1)) x (RCKMN, LI-RCKMN.L-1))
X)x(R(KMN,L)+R(KMN.L-1))
WN=WN-Z12(P{KMX+1,L)+P(KMX, L)Y +@QC(KMX+1, L) +Q(KMX, L))
X x((UCKMX,L)+UCKMX,L-1))%(Z(KMX,LY-2(KMX,L-1))
X - (WOEMX L) +W (KMX . L-1))% (R(KMX, LY -R(KMX,L-1))
X Ix(R(KMX,L)+R(KMX.L-1))

c
515 CONTINUE

RETURN
END

33)

PAGE

33

FUNCTION NECGND(TARG)
1AG=0

AA1=SECOND(IAG)
NECOND= (AA1-AA2)x1 . E+6
AA2=AA1

RETURN

END

PAGE

34

