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Analysis of the SIMPLE code for dataflow computation 

John M. Myers 

ABSTRACT 

We analyze a problem in hydrodynamics from the standpoint of 
computation on a dataflow computer that is not yet fully specified, with 
the objectives of helping to further specify the computer and helping to 
develop VAL as its source language. Lawrence Livermore Laboratory supplied 
the algorithm for hydrodynamics, including heat flow, as a 1749-line 
FORTRAN code called SIMPLE . 

. The algorithm viewed as 'abstract' (i.e. independent of physical 
arrangements in space and time for its realization) is shown to imply 
spatial and temporal structure that must appear in any and all implementa­
tions. Both for hardware design and program compilation it is useful to 
map this structure to grosser levels of description, with the grosser 
levels reflecting modularity of computational resources conjoined with 
modularity of the algorithm. Following Holt (1979) we use role diagrams 
to display spatio-temporal structure at different descriptive levels, so 
as to guide translation into VAL as well as the analysis of the time to 
compute. 

Inter-resource communication essential to the problem is displayed, 
and various issues of machine design are defined. Using VAL with one set 
of extensions, we express the algorithm so that in principle it can be 
compiled for execution by a dataflow computer. Input-output functions 
beyond those implied by the SIMPLE code are discussed. A second set of 
extensions to VAL is advocated to express the conjunction of problem and 
resource modularity, so as to guide compilation. The dependence of time 
to compute on the number of processing units is shown for various aspects 
of the problem. 

KEYWORDS: DATAFLOW, ALGORITHM ANALYSIS, PARALLEL COMPUTATION, 

COMPUTATIONAL HYDRODYNAMICS, ROLE DIAGRAM. 
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Analysis of the SIMPLE Code for Dataflow Computation 

1. Introduction: Hydrodynamics Meets a Dataflow Computer 

The equations of physics are prescriptions for calculating; from 

some presumed starting conditions, they generate a 11 future 11
• The calculation 

of this 11 future 11 involves many events, each of which 11 consumes 11 items -- values 

of variables -- and 11 produces 11 other items. Because an item cannot be consumed 

before it is produced, these events are subject to constraints of sequencing. 

These constraints impose a pattern on the calculation. 

Although the equations of physics constrain the calculation, they 

do not fully determine it. The pattern is partly determined also by the 

method of solution employed and by the structure of the computer. Thus the 

same (partial differential) equations can result in different patterns of 

calculation, according to the method of solution and the arrangement of 

computational resources. For this reason the pattern of computation for 

a given type of problem, say hydrodynamics, evolves as methods and computational 

resources evolve. Pattern, method, and resources are coupled in their evolution, 

with each selected in part to support and to draw on the others. 

Over most of history the computer (human or machine) had only a 

sequential processing capacity, so that computation was necessarily performed 

one step after another. Thus methods which emphasize concurrency were not 

called for, and as a result are today relatively unexplored and undeveloped. 

Not only computers, but also numerical methods have evolved in a context that 

is weighted toward the sequential, and away from the concurrent. 

Via such means as dataflow architecture (see Dennis, 1978), an 

increase in speed can be brought about by an organization of computational 

resources that allows concurrency of many events. This report is concerned 

with fitting -- or refitting -- a pattern that evolved in a sequential context 
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onto a dataflow computer. The report is based on a case study of an example 

program written in FORTRAM for a sequential machine for the solution of a 

problem of hydrodynamics, including heat flow. This program was prepared by 

Lawrence Uvennore Laboratory, and is namedSIMPLE. The initially presented 

questions were: 

1.1) What is involved in translating the SIMPLE program from FORTRAN 

(suitable for a sequential computer) into a dataflow language 

(the VAL language in particular); and 

1.2) Compared to a sequential computer, what speed advantage can be 

expected from a dataflow computer in the execution of the SIMPLE 

program? 

To realize the potential advantage of a dataflow computer, its 

program must be free of unnecessary sequencing constraints. Sequencing 

constraints come from many sources, and their necessity depends on ones 

point of view. Primarily we report on the narrow view that sees sequencing 

constraints as imposed by the data dependencies of the FORTRAN. program. 

In this view the "translation" per item 1,.1 entails the removal of sequencing 

only as far as possible without disrupting the data dependencies expressed in 

the FORTRAN program. Such a translated program would be expected to produce 

numerical results identical to the FORTRAN program, apart from round-off errors. 

But the narrow view fails to: 

a) realize the potential for advances in speed, and 

b) open the physics itself to new perspectives made possible by the 

power to express concurrency. 
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Although their resolution is outside the scope of this report, we shall 

define some broader issues of solution methods, machine design, and physics. 

With respect to item a), the translated program will still contain 

unnecessary sequencing constraints, imposed by a method of solution of the 

equations of physics. For example, the back-substitution method (Crowley, 

Hendrickson and Rudy, 1978) for solving the implicit formulation of heat 

flow does not realize the potential of dataflow architecture, and it appears 

that a method could be developed that (for a dataflow computer, but not for 

a sequential computer) would be substantially faster. Thus in presenting our 

resu1ts, we shall distinguish sequencing constraints that come from the 

happenstance of the numerical method embodied in SIMPLE from constraints that 

come from less malleable sources. 

Once the method of solution is considered as variable and not fixed, 

issues of machine design surface. If methods and machine are to be developed 

in concert, it might be best to tailor the machine to a certain class of 

methods, to the detriment of its performance with methods outside that class. 

If the dataflow computer is seen as a network of interconnected processors, 

then this issue arises with respect to the corrmunications facility that provides 

processor-to-processor conmunication. The problems under study stem from 

spacially distributed fields that interact in a purely local manner. From 

this locality one can show that the equations can be solved on a dataflow 

machine using a communications network which directly links only nearest 

neighbors, so that a 11 global 11 conmunications facility is not required. Local 

networks are cheaper and faster than global networks; however the methods 

that they support have drawbacks with respect to speed, so that the question 

of local vs. global remains open. One way of posing the issue is through 

the following question: 
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1.3) What number N1 of globally connected {i.e. fully connected) 

processors have the same cost as N locally connected processors, 

under the condition that the total memory of the two configurations 

be the same? 

The idea is that the spe~ loss from the restriction to local connectivity 

might be regained throwgh the use of a larger ne~rk of processors. In other 

words for a given investment tnere is a trade-off between fewer fully connected 

processors and more locally connectE!d pr~s.sot's. If these two co.ntrasting 

configurations are to be evaluated in thei.r performaQCe oo a given J:}roblem, 

then total system memory s~ld be the s.- for eact, configu.raUon. 

With respect to item b) it may be of thec0ret1ca1 interest t-0 

introduce a class of dataflow computers te m<tdel Whit is .mea.nt by the equations 

of physics. 

---- -- ·- --· --- ~- ---· ~-~-~~·-··-·-'"--- ~~------~-
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2. The Hydrodynamic Fields 

Given finite propagation velocities, the fields defined by the 

equations of physics can be pictured, as they were by Huygens, as networks 

of communicating entities, all operating concurrently. A partial differential 

equation represents a limit as the network becomes progressively more 

fine-grained. Computation is possible, however, only if the limit is not 

taken, or if it is "undone". 

Via one or another numerical method the partia: differential 

equations are transformed to difference equations defined on a spatial mesh 

of N zones, with each zone have corners at nodes, as shown in Fig. 1. In 

terms of the parameters defined in SIMPLE, one finds 

N = (LMX-LMN)*(KMX-KMN) (Eq. 2.1) 

SIMPLE employs a Lagrangian formulation, in which the mesh is deformable; 

each node is thought of as a "tagged atom", carried along in a fluid whose 

motion is described by the difference equations. By extending the discussion 

of Morse and Feshbach (1953, vol 1, p.847-8) to equations of hydrodynamics, 

one sees Huygen's principle works on a sufficiently small region of the mesh. 

For a given node, one can choose an enclosing curve through the zones that 

bound it, and with the result that, by interpolation, the acceleration of 

the node depends only on the properties of the zones that bound it. A similar 

argument could lead to the conclusion that the current properties of a zone 

depend only on past poperties of the nodes at its corners, but SIMPLE is 

based on a variation of this argument. Properties such as pressure and density 

are defined only for zones and not for nodes, and the current properties of 

a zone are shown to depend on their past values together with the current 

deformation of the zone, along with the current rate of deformation of the zone. 
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Figure 1: Nodes (shown as heavy dots) and zones (enclosed by dotted lines). 
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The main fields are defined by Crowley, Hendrickson, and Rudy (1978) 

as follows: 

Zonal 
name in 

Field FORTRAN. Definition 

£ E energy per unit mass 

p p pressure 

q Q artificial viscosity 

p RHO density 

8 TEMP temperature 

T specific volume 
I<. 

thermal conductivity . 

In addition the positions and velocities of the nodes form a field as a function 

of node indices k and 1: 

Field 
.... 
x 
.... 
u 

Nodal 
name in 
FORTRAN Definition 

R,Z position as function of k,l 

U,W velocity as function of k,l. 

The field equations are 

d e = _ ( p+q) d 'L + ..1.. 9 • t<. v e 
dt dt (-> 

8 = 9( ~ ' £) 

K. = l'l(9) 

q = q( p,.a-u, f) 

dx ~ 
dt = u 

(Eq. 2.2) 

( Eq. 2. 3) 

( Eq. 2. 4) 

( Eq. 2. 5) 

(Eq. 2.6) 
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p ~~ = - V( p+q) ( Eq. 2. 7) 
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3. Communications and the Speed and Configuration of a Dataflow Computer 

3.1. General issues 

Because the least familiar aspect of a dataflow computer is its 

communications facility, we give a preliminary statement of issues of speed 

and machine design posed by the burdens that the SIMPLE problem will place 

on such a facility. 

A computational algorithm, such as the FORTRAN program of SIMPLE, 

defines a flow of data values into and out of arithmetic operations. By 

analyzing this flow, one can produce a dataflow graph that displays not 

only the concurrency that is allowable within the confines of the algorithm, 

but also an abstract pattern of communication. For the SIMPLE problem, most 

of the dataflow graph can be modularized onto regions corresponding to the 

mesh of Fig. 1: one region for each zone, and one for each node. 

To perform the computation, resources are required: physical actors 

must be provided to carry and transform the values that are specified by the 

dataflow graph. The correspondence between physical actor and role as 

value carrier is in part subjective, and inescapably so. There is no sure 

rule for the "right way" to establish the correspondence, although there are 

criteria by which to exclude many "wrong ways": wrong ways lead to failure 

(e.g. of performance or of budget). In the light of currently well developed 

technology, we may start by assigning a physical processor to each nodal and 

zonal region of the dataflow graph. If each such processor comes with attached 

memory, then a dataflow computer can consist of a set of processors together 

with a communications facility that links them. 

Affordable communications facilities never offer the full measure 

of speed, bandwidth, freedom from blocking, and other properties that it 

would be "nice" to have. Compromise is necessary. The determination of an 
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economic configuration is outside the scope of this work, but to help prepare 

the ground, we consider the message patterns that are generated by the SIMPLE 

program. All of the communications facilities under consideration could 

handle all of these patterns, but different facilities will exhibit different 

speeds for different patterns. Thus it is helpful to find out what patterns 

really matter. 

The burden placed by a dataflow graph on the communications facility 

depends on: 

.1 the connectivity of the dataflow graph -- how "scrambled" are 

the needed connections; 

.2 the number and accuracy of the field variables to be transmitted. 

A given dataflow computer can compute a dataflow graph corresponding 

to a square mesh of D zones without having to time-share its hardware (a~ would 

a sequential computer). Thus D measures the largest mesh that a given 

dataflow computer can handle in some "fully concurrent" manner. If D is 

to be increased, then additional hardware must be incorporated into the 

dataflow computer. In many cases of interest one expects to find N )) D, so 

that each processor will have to be time-shared among N/D regions. The 

burden on the communications facility will thus also be influenced by: 

.3 the way in which resources are time-shared over different regions 

of the dataflow graph. 

Item .2 affects only the size of the messages to be transmitted and will not 

be further considered here. Items .1 and .3 affect the "from-where-to-where" 

aspect of the corrmunications burden, and we now discuss them further. 
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3.2. Connectivity in the face of resource sharing 

By means of a role diagram, further explained in Appendix A, 

Figure 2 illustrates the connectivity exhibited by the main cycle of a problem 

like SIMPLE, but reduced to one space dimension and stripped of heat flow. 

Figure 2 can be read as a marked graph over which tokens are moved to simulate 

the occurrence of calculational activities; the top row of circles are viewed 

as initially marked with tokens. A horizontally connected row of boxes 

( [J====t:J----==D) is a calculational activity. The inputs to an activity 

arrive from above; the outputs depart below -- in other words the "flow of 

time" is downward. Boxes connected by double bars (D==O) produce identical 

copies of the same output value, and thus portray fanout. The figure is thought 

of as wrapped around a cyclinder, with each bottom circle "wrapped up" to 

coincide with the circle directly above it, so that a cycle is defined. 

The diagram is to be interpreted not just as an abstract flow of 

values, but as a flow of values carried by physical actors. Each vertical 

line in Fig. 2 requires a physical resource, like a processor or a buffer, 

that carries a value from one calculational activity to another. Each hor­

izonatl row likewise specifies a physical requirement -- e.g. for the 

processing resources needed if the indicated values are to meet and be trans­

formed. The diagram of Fig. 2 looks similar to a dataflow graph because it 

assumes no constraints due to any scarcity of resources: it assumes that 

processors and co11111unications links are provided in abundance, at least at 

the level of detail portrayed. Resource constraints would change the picture; 

for example, Fig. 3 shows the same values as they would flow under additional 

constraints imposed by a scarcity of processors such that each processor 

must handle two adjoining activities. 
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nodal values -( 

Calculate new-\.. 
zonal values -{ 

Note: N(K) = set of values for node K: [P, Q, RHO, E}; 

Z(K) = set of values for zone K: [ X, VJ. 

Figure 2: Connectivity of simplified hydrodynamics in one space dimension with one processor 
assigned to each nodal and zonal calculation. 
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Figure 4: Grosser view of Fig. 3 highlighting connectivity between processors; 
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The suggested assignment of one processor to one nodal or zonal 

region of the dataflow graph was in some degree arbitrary. Given a small 

mesh and many processors, concurrency might be enhanced by assiging more than 

one processor to each such region. For a mesh large compared to the number 

of available processors, each processor would have to be assigned a larger 

piece of the dataflow graph. A question then arises: under this circumstance 

does simplicity in the connectivity of the dataflow graph imply that simplicity 

can be maintained in the connectivity of the processors? The answer depends 

on how a single processor is assigned to cover more than one region. Figure 

3 illustrates the principle that such assignment can be made so that the 

connectivity between processors is no more complex than is the connectivity 

between nodal and global regions. Figure 4 highlights this connectivity 

among shared processors; the same connectivity can be maintained when processors 

are shared over larger regions of the dataflow graph. By use of the 

abbreviated notation described in Sec. A.19 of Appendix A, Fig. 5 shows the 

same connectivity as Fig. 4, but with the communications buffers (the unlabeled 

roles) suppressed. A slanting bar implies: a) that the lower of the activities 

consumes something produced by the upper activity; and b) that the two 

activities are linked by an intermediating resource (such as a buffer) that 

is not explicitly shown. 

What can we learn from this example that is more generally applicable? 

Sharing of processors reduces the size of the communications facility required 

of a dataflow computer, at the cost of speed. For this example and this 

manner of assigning processors, the communication pattern, although becoming 

smaller, preserves its connectivity; be it one or many regions of dataflow 

graph per processor, each processor communicates only with itself and with its 

nearest neighbors. In the SIMPLE problem one finds somewhat more complex 
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more connectivity in the dataflow graph. Two points are to be noted in the 

assignment of processors to pieces of dataflow graph of SIMPLE . 

. 3. A mesh of N zones can be parcelled out to D processors in such a 

way that the connectivity among processors preserves any "localness" 

present in the connectivity among nodal and zonal regions of the 

dataflow graph . 

. 4. Other schemes of assigning processors that place additional demands 

on their connectivity may offer advantages in speed. 

Because of item .3 we can learn what connectivity is necessary to D processors 

of a dataflow computer that is to solve a mesh of N zones, merely by studying 

the connectivity of the dataflow graph. Because of item .4 we must bear in 

mind that there will be additional questions of trade-offs between speed, 

cost, and the connectivity of the communications facility. 
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3.3. Fitting the Computation to the Minds of the Analysts: Input and Output 

Programs and parameters flow into a pattern of computation, and 

significant features of the computation flow out. In some cases this interaction 

can be partitioned into a sequence of phases: input, computation, output. 

However, as the size of the computation increases there is progressively 

more need to operate interactively, so that the selectivity of what flows 

out can be increased along with the amount of computation. 

Output from a dataflow machine is apt to involve transforming 

an array, or some feature (such as a contour) extracted from it, into a 

sequence of characters to be transmitted -- either to a person or to a 

storage device. Such operations are bandwidth limited and threaten to 

demand excessive time or buffering or both. As the scale of computation is 

increased, it becomes necessary to increase the selectivity of feature 

extraction in near proportion. 

One reason that extracting features is challenging is that what is 

significant sometimes becomes apparent only as the computation unfolds, so 

that the definer of significance must interact with the computation. Further, 

significance varies according to the viewer. Because of this 11 vaporous 11 

quality, one approach is to report out 11 all the data 11 from a computation, 

so that it forms a database that can later be manipulated according to taste. 

As the scale of computation increases, this approach becomes progressively 

more demanding, and may become unrealizable. 

An alternative approach would be to provide a facility by which 

multiple viewers of the computation could each construct filters and other 

11 feature extractors 11 in real time as the computation proceeds. No doubt 

some users would still build 11 databases 11
, but they would have the opportunity 

(and perhaps the necessity) of building more selectively than has been the 
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common practice. 

This approach generates requrirements to be met by dataflow hardware 

and software. The image is of a controllable "funnel" or 11 tree 11 that sucks 

up arrays of field variables as the computation proceeds, discards what is 

irrelevant, and issues a stream of characters that conveys the features 

specified by one or another analyst. The "specification of relevant features" 

could by supplied prior to execution, or could be supplied interactively 

by the analyst as the computation unfolds. 

Such a scheme demands software interfaces that can accept analyst­

suppl ied specifications of the features to be selected. Presumably the 

structure should accomodate multiple analysts. The hardware requirements 

are an extension of those already generated by the needs to sum over an 

array and to convert an array into an output stream for transmission over 

a single communications line. For example, program-controlled merging 

of array elements into a stream can provide efficient sorting. Just as they 

are needed to sum and to report out all the elements of an array, tree 

structures will be needed to report out selected elements of an array (such 

as the elements of a contour). However, one expects an advantage from more 

flexible control of tree connectivity and of tree, nodal and zonal processing 

than would be needed just to solve the field equations. 
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4. Modeling the Time to Compute 

The prediction of execution time of SIMPLE on a dataflow computer 

that is not yet fully specified is a complex task which, in this report, 

can be started but not completed. For this reason we separate a general 

discussion of what needs to be undertaken from a sketch of initial results: 

4.1. Choosing an appropriate form of m9del 

The question of time to compute is a question of what happens when 

an abstract pattern -- the algorithm of SIMPLE -- meets a configuration of 

physical resources -- conmunications lines, switches, buffers, processors, etc. 

that compose a dataflow computer. The modeling of computation time entails 

the modeling of the joining of the abstract event of the algorithm with the 

physical event of the configuration. This calls for a modeling form that 

straddles abstract (i.e. input-output) relations and physical circumstances. 

For example, we are forced to observe that anything that is (even a value) 

must be some place, such as on a co1TU11unications line, in a buffer, etc. 

We must learn to see something like a dataflow graph as having, in addition 

to its implications for abstract values, implications concerning the resources 

required to support the logical operations on values. As a foundation for 

this shift in view, we turn to Holt 1 s (1979) concept of the role played by an 

actor who carries a value. The value is in the domain of mathematics and 

algorithms; the actor (human or mechanical) is in the domain of space and time. 

It would be advantageous to have a gross model with only a few 

parameters, both to estimate the time for a dataflow computer to solve the 

SIMPLE problem, and to help in configuring an implementation of a dataflow 

computer. However, a believable gross model of such a complex situation 

can be derived only by condensing a model that encompasses sufficient 
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complexity to account, for example, for the effects of pipe-lining and 

of communications bottlenecks. It thus appears that the modeling form 

should lend itself to different levels of detail. 

The modeling method must encompass the concurrency exhibited by 

dataflow architecture. This requirement rules out models based on the concept 

of a system state, and directs toward models based on Petri nets. 

The modeling scheme must provide for the modeling of different 

methods of numerical solution. For example, the implicit fonnulation of 

heat flow results in a difference equation, the solution of which is equivalent 

to the inversion of a certain near-diagonal matrix. The method of inversion 

used in SIMPLE is that of back-substitution. However, it appears possible to 

develop an alternative method that would impose far fewer unnecessary 

sequencing constraints, and would hence better realize the potential advantage 

of dataflow architecture. 

The SIMPLE program uses a global determination of a time step that 

varies from one cycle to another, but is invariant over the mesh. It appears 

that in the computation of hydrodynamic shock, there would be a substantial 

advantage in providing for the local determination of time steps that would 

vary not only from cycle to cycle, but also from location to location over the 

mesh. Such methods are used in the calculation of gravitational fields and 

in relativistic fluid dynamics, as is discussed by Misner, Thorne and Wheeler 

(1970, Chap. 42). Although this extension of method is outside the scope of 

our present work, we require that the modeling method encompass time steps 

as local values derived on an even footing with other field quantities. 

These requirements suggest modeling based on the concept of a 

Petri net. Because of its capacity to join abstract and physical operations, 

we choose the modeling scheme of Holt (1979) to express the essential logical 

and physical dependencies. For a discussion of the concepts, the reader is 
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referred to the cited report of Holt. As a "quick and dirty" view of "how 

to do it", Appendix A describes the modeling conventions. 

4.2. The need for speed 

Faster computers are desired to allow a finer grained mesh. 

Consider a given physical domain and a given duration of hydrodynamic 

interaction. As the mesh is made finer the number of zones, N, increases, 

and moreover the physical time step achievable in a cycle of computation 
3/2 

decreases as l/YN. Therefore the time to compute increases as N . 

This dependence applies to a dataflow computer with O << N, just as it does 

to a sequential computer. 

To decrease the linear dimension of the zones by a factor of 10, 

N must increase by a factor of 100, and to maintain a fixed time to compute, 

given the necessary decrease in physical time step, the speed of the computer 

must be raised by a factor of 1000. 

One should not that the constant of proportionality that relates 

the allowable physical time step to 1/]l"N depends on the numerical method 

used, and that the freedom to choose an advantageous method depends on the 

connectivity of provided by the c01T111unications facility of the dataflow 

computer. Richer (e.g. more than nearest-neighbor) connectivity supports 

larger time steps, but then richer connectivity slows the computer and requires 

an investment that could otherwise buy more processors; thus there is a 

trade off. 
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4.3. The computati,onal cycle 

The SIMPLE computation consists of initialization followed by 

repeated execution of a main cycle. A cycle consists of computing the 

velocity and position of each node, and then computing the properties (such 

as pressure and density) of each zone. The cycle involves times in two senses: 

a physical time step (e.g DTNPH in SIMPLE); and a time to compute the cycle. 

Because the initialization is done once and the cycle is repeated many times, 

the (total) time of computation is nearly independent of the time to initialize 

the computation, and is essentially the time to compute a cycle multiplied by 

the number of cycles. 

The computational cycle can be partitioned either in terms of 

the physics or in terms of the concurrency and connectivity that it presents. 

These two partitionings result in somewhat different pictures. The following 

is a compromise between the two. We view the cycle as composed of the 

following phases of activity: 

.1. establish boundary values (by means of "ghost" nodes and zones); 

.2. calculate velocity and position of interior nodes; 

.3. calculate zone variables for interior zones (e.g. pressure, 

specific energy, artificial viscosity, density) except for 

temperature; 

.4. calculate temperature and recalculate energy to include the 

effect of heat flow; 

.5. calculate the time step for the next cycle; 

.6. calculate totals: work done on boundary, energy lost, etc. 
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.7 extract needed output and bring in parameters to control 
subsequent output, as discussed in Sec. 4.5. 

Figure 6 schematically displays the types of connectivity, and 

hence concurrency, in the flow of data prescribed by SIMPLE over a network 

of processors, with one processor assigned to each node and each zone of 

the dataflow graph. Additional processors are assumed to handle the 11 tree 11 

connectivity of phases 5, 6 and 7. As noted in Sec. 3, if fewer processors 

are available, they can still be connected with the same connectivity, by 

assigning each processor a set of contiguous zones, contiguous nodes, or 

portion of the "tree". If more processors are available, then more than one 

can be assigned to a given nodal or zonal region of the dataflow graph, with 

the result that a higher degree of parallelism will be achieved. Some 

possible assignments of this type are illustrated in Appendix B. 



ghost 
node ghost 

Phase 1: Establish 
boundary values via 
ghost nodes and 
zones (typical row 
or column). 

Phase 4: Calculate temp­
erature and correct energy: 

calculate CBB and DBB 
(typical row or column); 

Z-sweep 
(typical column, all 
columns in parallel); 

R-sweep 
(typical row, all 
rows in parallel); 

zone 
,--, 
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(continued on next page) 



Phase 5: Calculate next time 
step and distribute ("tree" 
connectivity covers a 11 zones): 

calculate locally, 
then take minimum; 

distribute. 

Phase 6: Calculate total 
internal energy and energy 
exchange across boundary 
("tree" connectivity 
covers all zones; see note a.) 

Phase 7: Input/output: 

test values (e.g. against 
thresholds) and extract 
features {see Note b.) 

receive changes in param­
eters (e.g. thresholds) 
that control feature 
extraction. {See Note 
band Secs. 3.3 & 4.5.) 
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(continued from preceding page) 

yst ?.... 

yst :<. 

Note a: Phase 6 consists of a local calculation, like phase 3, followed 
by a summing operation. In SIMPLE this phase is distributed 
throughout the other phases; however, this distribution does not 
change the character of the demand placed on computational resources. 

Note b: The dotted box (ti') wi 11 involve sequencing ( ~ ) or not ( 't( ) , 
according to whether messages are or are not concatenated. 

Figure 6: Concurrency and connectivity in different phases of the cycle. 
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4.4. Dependence of time to compute on number of zones and number of processors 

Although not attempting quantitative estimates, we discuss how the 

time to compute varies with the size of the mesh and the number of processors. 

Each phase of SIMPLE, as shown in Fig. 6, will be considered separately, 

as different phases exhibit different dependencies. Several areas of 

uncertainty confront even qualitative estimation; in particular the detailed 

operation of a co11111unications facility necessary to a dataflow computer 

bears on the dependence. This operation has not been modeled to date; for 

this reason we confine our discussion to two limiting cases. The first case 

leans toward keeping the communications facility local; i.e. co11111unications 

between nearest neighbors are stressed. The second case posits a general 

purpose, global corrmunications facility without worrying about its realizability; 

the intent is to see what contribution to speed such a facility could make if 

it were available. 

4.4.1. Case definitions 

Case 1: connectivity restricted to nearest neighbor plus 11 tree 11
• As case 1 

we posit a restricted corrmunications facility. We imagine processors 

connected like a two dimensional mesh, with a provision for two-way communications 

between each zonal processor and its neighboring nodal processors. I.e. the 

processors are divided into two classes, and a given direct communication is 

always between two members that are in different classes. Fig. 7 illustrates 

the connectivity. In addition, we posit additional processors and connections 

to perform such functions as global sums and the taking of maxima. Each zonal 

processor is imagined to be a twig of a tree. At nodes of the tree there are 

processors of a third class (the 11 tree 11 class) which can operate to 

a) accept a flow of values from twig to root, operating by program to 

select and pass on the largest value, to sum the incoming values and 
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pass on the sum, etc, or 

b) accept a value flowing from root to twig, providing either for 

fanout to all zones or for selective routing to a given zone. 

For simplicity we imagine that the mesh of the SIMPLE problem 

is roughly square, and that the D zonal processors are arranged in a 

square array. To use the configuration of case 1, we imagine that each 

zonal processor is assigned about N/D contiguous zones; i.e. each zonal 

processor operates on a 11 super 11 -zone of the mesh, as discussed in Sec. 3. 

As indicated in Sec. 3., the connectivity between super-zones (and the 

corresponding super-nodes) will show the same pattern as does Fig. 6. 

The assignment of pieces of dataflow graph to processors is static, and does 

not change during execution of the program. 

Case 2: "general-purpose" communication. Suppose that the dataflow computer 

has a communications facility that is ideal in the sense that each processor 

can send a message to any other, with a rate of flow constrained only by 

the bandwidth of the processors. We define parameters as follows: 

Te = time for a processor assigned to a node or zone of the dataflow 
graph of SIMPLE to enter a communication into the communications 
facility, for forwarding to another processor; and 

Tx(D) = time for the communication, under the loading conditions at hand, 
to travel to its destination. 

Tx must increase with D at least logarithmically; in practical terms it will 

probably grow more or less linearly. 

The assignment of processors to portions of the dataflow graph 

can be made as in case 1, but, as will be discussed below, there is an 

advantage in speed if processors can be reassigned during execution. In 
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particular, during the Z-sweep of phase 4 it is an advantage to have each 

zonal processor assigned to a column of zones of the dataflow graph; during 

the R-sweep it is an advantage to have each zonal processor assigned to 

a row of zones of the dataflow graph. 

4.4.2. Results 

Consider the SIMPLE problem for a mesh of N zones, running on a dataflow 

computer capable of computing a mesh of D zones without time-sharing of 

hardware. The running time will depend on the time to compute a cycle, 

as discussed previously. The time to compute a cycle will be a function 

of N and D. Examination of the connectivity shown in Fig. 6 for various 

phases of the cycle leads to the results shown in Table 1. In Table 1 

the parameters T1 through T7 will be different for the two cases, and indeed 

depend on details of the implementation. However, they do not depend 

substantially on N or D. 

In order to move to a quantitative estimate, one must both estimate 

the parameters T1 through T7 far whatever detailed cases are to be judged, 

and one must also determine the degree to which pipelining could make the 

total cycle time less than the sum of the times for the individual phases. 

Although the values of the T-parameters may vary between case 1 and 

case 2, it is to be noted that the dependence on N and D is of the same form 

for the two computers, except in phase 4, where the configuration of case 2 

promises a substantial advantage. This advantage could be obtained as follows. 

Assume for simplicity that N = o2 and that the mesh is square, so that there 

is one processor for each row of zones and for each row of nodes, or alternatively, 

one processor for each column of zones and for each column of nodes. For 

the Z-sweep assign each processor to a column, so that one processor must 
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operate sequentially along its column. Because of the data dependence of 

the back-substitution method used, this involves no more computing time than 

would the assignment of one processor per zone and node. At the completion 

of the Z-sweep, reassign each processor to a row, in preparation for the 

R-sweep. In this reassignment each processor must send and receive field 

variables to and from all the other processors of its class. If the 

communications facility accepts messages as fast as the processors can stuff 

them in, then we find that the time to reassign is about as follows: 

Reassignment time = D Te+ T x (D) ( Eq. 4 .1) 

Table 1, under Phase 4, shows the comparison of dependencies achieved 

with this capability, versus the simpler facility offered in case 1. (Note 

that T4 for case 1 is not the same as T4 for case 2.) It is to be noted that 

the advantage of the more general communications facility can be realized only 

if the facility supports "high bandwidth" in the sense of providing for complete 

exchange of messages among all processors. This total exchange must actually 

take place to make the scheme work. 

The square-root dependence shown for case 1 comes about because in 

a square array of processors with processing constrained to be sequential 

along a column (for example), then only one row of processors is in parallel; 

the other rows are waiting. As D is increased, the length of the row of 

processors grows as the square root of D. 
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b) The issues of estimating the parameters T1 through T6 is discussed in Sec. 4.4. 

c) Phases 1 through 6 may overlap, so that, as discussed in Sec. 4.4, the cycle time may be less 
than their sum; in particular the results of phase 6 are not used in any loop calculation and phase 
6 can thus easily be pipelined. 

d) The mesh is assumed to be roughly square. 

Table 1: Fann of dependence of time to compute a cycle on number of zones (N) and number of 
processors (D). 
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4.5. Input, Output, and Control Over the Extraction of Features 

For the first six phases of Table 1, the time to compute diminishes 

as the number of processors is increased. But this is not so for phase 7: 

SIMPLE requires the "wholesale" shipment of arrays to an external storage 

medium. As discussed in Sec. 3.3, the time to transmit N elements over a 

single transmission line has a lower bound that is proportional to N, and 

moreover is independent of how many processors are brought into the dataflow 

computer. Thus the generation of output threatens to consume a time that 

could become excessive. This threat can be countered by providing greater 

selectivity in reporting; i.e. one programs for the reporting only of 

significant features, and avoids communicating "masses of raw data". 

In order to avoid swamping analysts even with present computers, 

Livermore Laboratory has assembled a powerful facility for computerized 

extractions of significant features from masses of data. At present 

the approach is to first compute a relatively "general" database, and then 

to exercise selectivity in the extraction of features. In order to make 

efficient use of a dataflow computer, one must shift to a greater emphasis 

on selectivity in generating the output which will form displays and/or 

"special purpose" databases. Without bringing selectivity into the generation 

of output, the linear growth of time to report an array with the number of 

zones is apt to dominate the computation. Even if it does not, the increase 

in size in any "general-purpose" database is a serious drawback. 

The SIMPLE code offers a small beginning in this direction in the 

option in the EDIT subroutine by which one can eliminate the reporting of 

nodes and zones that show less than a specified degree of motion. More is 

doubtless done in other programs to provide selective reporting, but still 
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more must be done as the scale of computations is increased. As a specific 

example along these lines, an analyst could specify that the value of say 

pressure be reported out for any given zone .2!!.li'... if the pressure had changed 

by more than ten percent since the last report for that zone. Thresholds 

(e.g. the "ten percent") might be varied during execution. 

If selectivity of reporting is made to increase in near proportion 

to the number of zones, then input and output can be handled with a structure 

for which Phase 7 of Figure 6 serves as a point of departure. As discussed 

in Sec. 3.3, however, more trees and more flexible control over them would be 

of advantage. The goal of selectivity would ~e to keep the formation of 

output from overwhelming the analyst and from taking too long. Through 

increasing selectivity with the number of zones, one can keep the growth 

rate of the time to form the output from growing as fast as the number of 

zones; one might hope to contain it to a logarithmic dependence. 

rurther discussion is outside the scope of this work, but would 

be appropriate for a future project. 



- 34 -

5. Translation of SIMPLE from FORTRAN into VAL 

5.1. The balancing of objectives 

In developing a code in any language, the following desires are 

balanced: 

.1. Express the algorithm as clearly as possible; and 

.2. Make good use of computing resources. 

In producing VAL code for a dataflow computer whose hardware is not yet 

fully specified, it would also be desirable to illuminate constraints on 

concurrency, and in particular to: 

.3. Organize the code so as to make clear which aspects of SIMPLE 

place which demands on hardware speed and connectivity; and 

.4. Extend the SIMPLE problem by sketching more of the input and 

display functions, because these functions are essential to any 

actual problem of the SIMPLE type and place demands on both 

language and hardware not made by other phases of the problem. 

In addition, since we are translating from FORTRAN, it would be desirable to: 

.5. Make VAL code that can easily be compared with the given FORTRAN 

code. 

These desires conflict in various ways, and any VAL code will reflect 

a balance between them. In support of items .1 and .3 we group variables 

into bunches (such as START) in a way that will either decrease efficiency 

or place extra burdens on compilation. The decrease in efficiency would 

take the form of sending a longer message where a shorter one would suffice; 
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concurrency at the level of detail shown in Fig. 6 would not be affected. 

In support of items .2 and .3 we have sacrificed item .5 to the 

extent of introducing new variables (STRESS, GX, GV) that are tensors 

defined in each zone, in order to demonstrate that the connectivity demanded 

by SIMPLE in computing the acceleration of each node is only nearest-neighbor, 

in contrast to the first impression given by lines 580 throug 593 of SIMPLE {1979). 

Appendix B illustrates demands placed on hardware by various parts of the 

SIMPLE problem, as expressed in VAL. 

In support of .4 we have indicated possible extensions of the VAL 
I 

language that seem to be needed to help with the extraction of significant 

features from an array, and with input and output in general; these are: 

a. the stream type of value for input and output; 

b. the addition of concatenate to the list of forall operations, 

so that a stream can be formed quickly from a sparse array; 

c. the addition of an asymmetric merge operation on arrays to help 

in communicating a sparce pattern of change to an array; the effect 

is that one of the two arrays to be merged supplies default values 

which are overridden by non-empty elements of the other array. 

d. a form of forall eval max that extracts the lowest index at which 

the maximum value of an array of reals is found, in addition to 

the maximum value itself. 

In support of item .5 we use the names of variables as given in the 

FORTRAN code except where different structures are introduced. 

In connection with item .1, it is to be noted that the algorithm of 
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SIMPLE evolved over decades in a process that was influenced by often 

conflicting needs for single-step accuracy, stability, and economy; for 

this reason the algorithm will not be found to show a simple structure, no 

matter how it is displayed. 

The FORTRAN code, including conunents, runs some 1749 lines, and 

a complete translation into VAL would be of roughly the same size. Because 

the SIMPLE code in FORTRAN is always undergoing minor revisions, as is the 

VAL language, it seems beside the point to carry through details of translation 

that duplicate the form of translations already made. We rely on Hirshman 

{1978) and Woodruff (1979) to demonstrate that many FORTRAN passages can 

be translated efficiently into VAL; some of thes passages are referred to in 

what follows. Rather than duplicate their work, we present a more detailed 

code of the main module of the VAL program for SIMPLE, as a framework in 

which to view passages that deal with specific acitivities of computation. 

In this framework we highlight the issues that were encountered in a detailed 

review of the entire SIMPLE program, focusing on areas, notably input and 

output, that require further development of the VAL language. Our intent 

is both to show how the present edition of VAL is sufficient to translate 

most of the FORTRAN, and to show clearly certain extensions of VAL that. 

appear necessary for a complete translation, including the extension of 

SIMPLE to provide for the extraction of significant features from arrays. 
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5.2. Samples of VAL code 

5.2.1. Overall form of the VAL translation of the SIMPLE code 

As discussed by Ackerman and Dennis (1979) a VAL program consists of 

a collection of external function modules, each of which may contain internal 

function modules. One internal module cannot invoke another. We present 

the VAL code for SIMPLE as a main external function module called SIMPLE_VAL, 

along with an external function JES which is a table look-up used by two 

functions internal to SIMPLE_VAL; in addition some external routines presumed 

to be in a system library are used, such as sine, cosine, and square root. 

The bulk of the code will be the function modules internal to SIMPLE VAL. 

Each external function module consists of: 

header, 

type definitions, 

external function declarations (e.g. for library supplied utilities) 

internal function definitions, and 

body. 

In the code that follows there will be gaps, indicated by comments, 

such as passages that can be filled in from the work of Hirshman (1978). 

Comments will also indicate where a possible extension of the VAL language 

has been invoked to overcome one or another obstacle of the type discussed 

in Sec. 5.1. 

The program will consist of the external functions 

SIMPLE VAL 

JES VAL 

SIN 

cos 

SQRT %square root, 

and might well be augmented by system utilities to indicate running time, etc. 
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Because certain features of SIMPLE VAL are understandable only in the context 

of JES_VAL, we present JES_VAL first. 

5.2.2. JES_VAL 

The FORTRAN code of SIMPLE contains a table look-up subroutine named 

JES. In SIMPLE_VAL this look-up is used by two internal functions: ENERGY_HYDRO 

and ENERGY HEAT. Because it is called by two internal functions, we construct 

the VAL translation of JES as a function external to SIMPLE_VAL. 

JES operates on numbers and not arrays; it can be applied fully 

concurrently be each zonal processor to the elements of a given zone. 

An issue in translating is that the FORTRAN version of JES uses 

many GOTO statements, and these statements are not supported under the more 

structured philosophy of VAL. Thus the JES code must be re-expressed in 

an IF-THEN-ELSE fon:n. In arriving at the code displayed below, it was 

very helpful to first flow chart the FORTRAN CODE. Another issue is that 

in FORTRAN, JES is employed not by calling 11 JES 11
, but by calling one or another 

of the entry points IESl and IES2; these will correspond to the parameter 

ENTER in JES_VAL, our VAL equivalent of JES: ENTER = 1 corresponds to IESl; 

ENTER = 2 corresponds to IES2. 

Partly because it uses a method of successive approximations, SIMPLE 

employs JES several times in the calculation of energy for a single zone. JES 

(for ENTER=2) returns energy or (for ENTER=!) pressure as a function of 

temperature (TARGl) and density (RARGl), by means of a table look~up. The 

table is organized as a two dimensional array of rectangular regions on 

the (temperature, density)-plane, with a region specified by a pair of 

integers NT and NR. The returned value is supplied by a procedure that 

has several steps: 
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e Search for and find the NT, NR for the region that contains the 

11 point 11 (TARGl, RARGl); 

e Per line 1353, statement 5310 of SIMPLE (1979), evaluate a function 

of NT and NR to obtain an integer M as index to an array of sets 

of coefficients e.g. AESLMJ, etc. The set of coefficients 

for a found M will be used to interpolate. 

• Obtain the value to be returned by means of a quadratic interpolation 

function, using the set of coefficients AES[MJ, etc. 

The running time of SIMPLE (at least for a sequential machine) is significantly 

reduced by saving NT, NR, and Mas NTSV(NJ, NRSV(N], and MSV[NJ for use 

as trial starting values for the search in the next invocation of JES. In 

the FORTRAN code NT (along with NR and M) is saved separately according to 

which of the two entry points (corresponding to ENTER = 1 or ENTER = 2) is 

invoked. Thus NT is saved in a two-element array, with one element for 

each possible entry point. We refer to the six saved numbers collectively 

as SV_REC, where SV_REC is a structure of type SV_REC_type, defined by: 

type SV_REC_type = record[NT, NR, M: array[integerJJ %. 

The structure which we have called SV_REC saved from a given zone 

supplies trial values for the next invocation of JES, which may be for 

the same zone, or for a different, usually neighboring zone, as the sequential 

processor steps from zone to zone. The facilitation of the.search is still 

likely when a shift is made to a neighboring zone, because conditions change 

little from a zone to its neighbors. The speed advantage accrues because 

the sequential processor usually last invoked JES either for the same zone 
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or for a neighboring zone. When the last invocation was for a far-away 

zone, then SV_REC is no help; this does not affect the answer produced 

by JES, but does extend the time to find the answer. 

Now we turn to the issue of translation for a dataflow computer. 

Suppose, as suggested in Sec. 3, a dataflow computer has D zonal processors, 

each assigned to cover a 11 super-zone 11 composed of (about) N/D contiguous 

zones. When N>> D a given zonal processor will step sequentially from 

zone to zone in a 11 rast.er scan 11 over its N/D assigned zones, just as the 

sequential computer is specified by the SIMPLE code to scan all N zones. 

There are three options: 

a. Omit the use of SV_REC, and accept a slower look-up (noting that 

because many look-ups will be done concurrently, the speed is not 

so important as it was in the FORTRAN code). 

b. Create an array of SV_REC 1 s, with one SV_REC for each zone. This 

option maintains the speed, but as the cost of storing a factor 

of N/D more SV~EC's than are really needed. 

c. Cause each zonal processor to carry one SV REC along as it steps 

through its N/D zones. 

Option a) is easiest to implement, but is hardly an example of translating 

power. Option c) is both the most efficient and the most demanding, and 

is coded in Sec. 5.2.3, where it shows up in initializing SV prior to 

entering the main loop, and in Sec. 5.2.4 where it is discussed under 

ENERGY HYDRO. 

The VAL function module follows: 
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function JES_VAL(ENTER: integer; TARGl, RARGl: real; SV REC: SV_REC_type 

returns real, SV_REC_type) 

type SV_REC_type = record[NT, NR, M: array[integerll 

let % The closing 11 in 11 is the the last line of JES VAL. 

% Set up constants for table; these are provided in the FORTRAN code by 

% subroutine SETUP acting via COMMON; we incorporate much of the equivalent 

% of SETUP here. 

IZES, !TES, IRES: array[integerJ := [1: •.. J, ... ; 

TES, RES, AES, ... , PES: array[reall := [1: ... ], ... % End of set-up part. 

EXTTl, EXTRl: real := 1; 

N: integer := ENTER; % Change of name to conform to FORTRAN code 

NT, NR: integer:= SV_REC.NTCNJ, SV_REC.NRlNJ; 

EXTT2: real := EXTTl * TARGl; 

EXTT, TARG: real, FLAG, NTl: integer . 

if TES[NTJ ) TARGl then 

if NT<= ITES[NJthen EXTT2 I TESCNTJ, TES[NTJ, 0, NT 

else for Nl: integer := NT-1 

do if TES[Nll > TARGl then 

if Nl) IES[Nl then iter Nl := Nl-1 enditer 

else EXTT2 I TES(NlJ, TES[Nll , 1, Nl endif 

else EXTTl, TARGl, 1, Nl endif 

end for 

end if 

else if TESlNT+lJ > TARGl then EXTTl, TARGl, 0, NT 

else if NT+2 = ITES[N+l] then EXTT2 / TESlNT+ll, TESCNT+l], 0, NT 

el.se for Nl: integer := NT-1 

do if TESCNl+l]) TARGl then EXTTl, TARGl, 1, Nl 
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else if Nl+2=ITES[N+1Jthen EXTT2 I TESt:Nl+U, TESLNl+lJ, 1, Nl 

else iter Nl := Nl+l enditer endif 

endif 

end for 

endif 

end if 

end if 

EXTR2: real := EXTRl * RARGl; 

EXTR, RARG: real, FLAG2, NRl: integer:= 

if FLAG=O then 

if RES[NR l > RARGl then 

if NR > IRESlNJ then for Nl: integer := NR-1 

do if RES[NRJ > RARGl then 

if NR > IRES[NJ then iter Nl := Nl-1 enditer 

else EXTR2 I RES[Nl~ RES[Nll, 1, Nl endif 

else EXTRl, RARGl, 1, Nl endif 

end for 

else EXTR2 I RES£NRJ, RESCNRJ, 0, NR endif 

else if RES[NR+lJ > RARGl then EXTRl, RARGl, 0, Nl 

else if NR+2=IRES[N+1Jthen EXTR2 I RESlNR+ll, RESCNR+lJ, 0, NR 
I 

else for Nl: integer := NR+l 

do if RES[Nl+lJ > RARGl then EXTRl, RARGl, 1, Nl 

else if N1+3 > IRES[N+ll then EXTR2/RESLN1+1J, RESCNl+lJ, 1, Nl 

else iter Nl := Nl+l enditer endif 

end if 

end for 

end if 

end if 
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end if 

else if RES[NRl ( RARGl then for Nl: integer := NR 

do if RESlNl+lJ > RARGl then EXTRl, RARGl, 1, Nl 

else if Nl+3 > IRES[N+11then EXTR2/RES[Nl+ll, RES[Nl+l], l, Nl 

else iter Nl := Nl+l enditer endif 

endif 

endf or 

else for Nl: integer := NR 

do if RES[Nll > RARGl then 

if Nl > IRES[NJthen iter Nl := Nl-1 enditer 

else EXTR2/RES[Nl], RES[Nl], 1, Nl endif 

else EXTRl, RARGl, 1, Nl endif 

endf or 

end if 

end if; 

M: integer := if FLAG2=0 then SV REC.M 

else IZES[NJ+(ITES[N+lJ-ITES[NJ-l)*(NRl-IRES[N]+NTl-ITES[NJ) endif; 

SV RECl: SV_REC_type := 

if FLAG2=0 then SV REC 

else SV_REC replace[NT: SV REC.NT[N: NTlJ; NR:SV REC.NR[N:NRlJ; 

M: SV REC.M[N:MJJ endif; 

FUNC: real := AES[M J + RARG * (BES[MJ + RARG * DESCMJ) 

+ TARG * (CES[MJ + RARG * (FES[MJ + RARG * GESlMJ) 

+ TARG * (EES[MJ + RARG * (HES[MJ + RARG * PES[MJ))); 

FUNCl real := if ENTER=l then FUNC * EXTT * EXTR 

else FUNC * EXTT endif 

in %closes "let" on line 2 of JES VAL 

FUNCl, SV REC! endlet endfun % End of function JES VAL 
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5.2.3. SIMPLE_VAL 

SIMPLE VAL is the main module -- i.e. the overall framework -­

for the VAL code translation of SIMPLE. Because the functions internal 

to this module correspond to roughly 25 pages of FORTRAN code, the section 

of internal function definitions is abbreviated to a list of headers, and 

a discussion of salient features of these modules will be found in Sec. 5.2.4. 

The code that follows is a detailed statement of the overall structure 

of the VAL translation of SIMPLE. 

% Header: 

% Note presumed language extension to 11 stream 11 type for input and output. 

function SIMPLE_VAL(INPUT_A: start-type; INPUT B: stream 

[correction_typeJ returns stream[out_phys_type], 

stream [out_cycl e_type] , stream[ out_edi t_type], 

stream out_condition_type ) 

%type definitions: 

type vector = record lR, Z: real] ; 

type zona 1 = array [array [real] J; 
type zone_tensor = array[array[record[E,W: vectorJ]]; 

type noda 1 = array [array( vectorj ] ; 

type node_scalar = array[array[real]]; 

type start_type = record[DTNPH, TFLR, EDDT, P0, E0, RH00, DTMIN, 

DTMAX, TMAX, C0F, ClF, GAM: real; BC: record[U, D, L, R: integer]; 

LIM: record[KN, KX, LN, LX, DS: integer]; NCP: integer]; 
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% As shorthand we shall write "STATE" and "state_type" to refer to 

% a list of the variables that define the state of the computation: 

% state_type = listlOTNPH, OTN, TNUP, ENCG, EOTIME, EOOT: real; NYCL: 

% 

% 

integer; P, Q, RHOJ, E, S: zonal; X, V: nodal; GX: zone tensor; 

OTMIN, OTMAX, TMAX, C0F, CIF, GAM, EOOT, TFLR: real; NCP: integer] 

type out__phys_type = 11 state_type 11
; 

type out_cycle_type = record[NYCL: integer; OTNPH, TE, ENC, SKE, HN, WN, 

ENCG: real; OTEN, OTC2: record(DT: real; 

K, L: integer]] ; 

type out_edit_type = "state_ type"; 

type out_condition_type = stream; % language extension 

type correction_type = stream; 

type lim_type = record[KN, KX, LN, LX, OS: integer];% 4 fields correspond 

% to FORTRAN code KMN, KMX, LMN, LMX; OS describes implementation for 

% the implementation-dependent use of JES_VAL shown in ENERGY HYDRO. 

type SV_REC_type = record[ NT, NR, M: arrayl integer]]; 

% SV_REC discussed in Sec. 5.2.2 in connection with JES VAL. 

type SV_type = array[array[SV_REC_typeJ]; % Because of our choice of 

% option c) of Sec. 5.2.2, the array SV of type SV_type will have 

% dimensions of LIM.OS by LIM.OS, where LIM.OS squared is D, the 

% number of zonal processors of the dataflow computer. If option b) 

% were used, then LIM.OS would not have to appear in the program, and 

% the array SV would have N (number of zones in mesh) elements instead 

% of D elements. 
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% external function declarations: 

external JES_VAL(ENTER: integer; TARGl, RARGl: real; SV REC: 

SV_REC_type returns real, SV_REC_type) 

external sin(DUMMY: real returns real) 

external cos(DUMMY: real returns real) 

external sqrt(DUMMY: real returns real) % square root. 

% The bodies of the internal function definitions are omitted here; the 

% headers are listed for all internal functions of SIMPLE VAL: 

% INITIALIZE(START: start_type returns "state_type") 

% EDIT(STATE returns edit_type) 

% BOUNDARY_PROJECT(P, Q, RHOJ: zonal; X: nodal; GX: zone_tensor; LIM: 

% lim_type returns zonal, zonal, zonal, zone_tensor) 

% VELOCITY(V: nodal; P, Q, RHOJ: zonal; GX: zone_tensor; DTN: real; 

% LIM: lim_type returns nodal) 

% POSITION(X,V: nodal; DTNPH: real; LIM: lim_type returns nodal) 

HWORK(X, V: nodal; P, Q: zonal; DTNPH: real; LIM: lim_type returns real) 

% ZONE_GEOM(X, V: nodal; MASS, S: zonal; LIM: lim_type returns 

% zonal, zonal, zonal, zonal, zone_tensor, zone_tensor) 

% ENERGY_HYDRO(E, P, AJ, RHO, DVOL, MASS: zonal; GX, GV: zone_tensor; 

SV: SV_type; DTNPH, C0F, ClF, GAM, DTMAX: real; LIM: 

lim_type returns zonal, zonal, zonal, zonal, SV_type) 

-----------
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% HYDRO_TOTAL(V: nodal; MASS, E: zonal; LIM: lim_type returns real, real, real) 

% ENERGY_HEAT(E, RHO, AJ, TEMP, MASS: zonal; X: nodal; SV: SV_type; 

DTNPH, TFLR: real; LIM: lim_type returns zonal, zonal, zonal, 

node_scalar, node_ scalar, SV_type) 

% HEAT_TOTAL(E, TEMP, MASS: zonal; CBB, DBB: node_scalar; DTNPH, HN: real; 

% LIM: lim_type returns real, real) 

% TIME_STEP(TSO, YE: zonal; X: nodal; DTNPH, DTMAX, C0F, ClF, GAM: real; 

% LIM: lim_type returns real, real, real, real) 

% PHYS_REPORT("STATE": "state_type" returns "state-type") 

% CYCLE_REPORT(YE, TSO: zonal; NYCL: integer; TNUP, DTNPH, TE, ENC, 

% SKE, HN, WN, ENCG: real; LIM: lim_type returns 

% out_cycle_type) 

% MODIFY{ 11 STATE 11
: "state_type"; DUMMY: correction_type returns 

% "state-type 11
) 
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% body of SIMPLE_VAL 

% The gross plan of the body is 

% for STATE: state_type:= INITIALIZE{first(INPUT_A}}; 

% OUT PUT: stream:= null 

% do if (condition) then OUT_PUT 

% else iter STATE:= main_cyle(STATE) enditer 

% endif 

% end for 

% In the detailed presentation that follows we split "STATE" into 

% its fields (as given in the section of type definitions), and split 

% 11 main_cycle 11 according to the phases illustrated in Figure 6: 

for START: start_type:= first(INPUT_A); % read input stream 

STATE: 11 state_type 11 := INITIALIZE(START); 

OUT_PHYS: stream[out_phys_type]:= null; 

OUT_CYCLE: stream[out_cycle_type] :=null; 

OUT_EDIT: stream[out_edit_typeJ:= EDIT{STATE); 

CORRECTION: stream := INPUT_B; 

HN, WN: real := O.; 

% Set up temporary variables, other than those covered in STATE, 

% needed for main cycle: 

AJ, DVOL, TEMP, TSO, YE: zonal := array_fill(LIM.KN + 1, LIM.KX, 

array_fill(LIM.LN + 1, LIM.LX, O.}); 

GV: zone_tensor := array_fill(LIM.KN + 1, LIM.KX, 

array_fill(LIM.LN + 1, LIM.LX, record[E, W: record[R, Z: O.]J ); 

CBB, DBB: nodal := array_fill(LIM.KN, LIM.KX, array_fill 

(LIM.LN, LIM.LX, record[R,Z: O.] )); 

DTEN, DTC2, SKE, ENH, TE, ENC: real :=O. 
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LIM: lim_type := START.LIM; 

% Set up array of SV_REC 1 s to conform to option c) of Sec. 5.2.2. 

% Let OS be the greatest integer such that DS*DS = D, where D is the 

% number of zonal processors, as discussed in Sec. 3. 

SV: SV_type := 

let OS: integer := LIM.OS % implementation-dependent parameter. 

in arr~_fill(l, OS, array_fill(l, OS, record NT: array_fill(l, 2, O); 

NR: array_fill(l, 2, O); M: array_fill(l, 2, O); EXTR: 0.)) endlet; 

do if DTNPH < DTMIN I TNUP ) TMAX then 

let OUT CONDITION: stream . 

if DTNPH ( DTMIN then 11 DT_STOP 11 II NYCL II TNUP II DTNPH II DTMIN 

else 11 STOP TMAX 11 llNYCL llTNUP llTMAX endif 

in OUT_PHYS, OUT_CYCLE, OUT_EDIT, OUT CONDITION endlet 

else iter 

% Phase 1 of cycle (see Fig. 6 for description of phases): 

P, Q, RHOJ, GX := BOUNDARY_PROJECT (P,Q, RHOJ, X, GX, LIM); 

% Phase 2 of cycle: 

V := VELOCITY(V, P, Q, RHOJ, GX, DTN, LIM); % vector velocity 

X := POSITION(X, V, DTNPH, LIM); % vector position 

% "WW part of Phase 6: 

WN := HWORK(X, V, P, Q, DTNPH, LIM) + WN; 

% Phase 3_of cycle: 

RHO,.AJ, DVOL, S, GX, GV := ZONE_GEOM(X, V, MASS, S, LIM); 

E, P, Q, TEMP, TSO, SV := ENERGY_HYDRO(E, P, AJ, RHO, DVOL, MASS, 

GX, GV, SV, DTNPH, C0F, ClF, GAM, DTMAX, LIM); 
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% Hydro part of phase 6: 

SKE, ENH, TE := HYDRO.._TOTAL(V, MASS, E, LIM); 

% Phase 4 of cycle: 

E, RHOJ, YE, CBB, DBB, SV := ENERGY_HEAT(E, RHO, AJ, TEMP, MASS, X, SV, 

DTNPH, TFLR, LIM); 

% Heat part of phase 6: 

ENC, HN := HEAT_TOTAL{E, TEMP, MASS, CBB, 088, DTNPH, HN, LIM); 

% Phase 5 of cycle: 

DTN, DTKPH, DTC2, DTEN := TIME_STEP(TSO, YE, X, OTNPH, DTMAX, 

C0F, ClF, GAM, LIM); 

% Phase 7 of cycle (output and corrective input): 

OUT_PHYS, EDTIME := 

if TNUP ( EOTIME then OUT_PHYS, EDTIME 

else OUT__PHVS H PHYS_;_REPORT(STATE), EDTIME + EDDT endif; 

NYCL := NYCL + l; 

OUT CYCLE := 

if fo«>D(NYCL, NCP)"'= 0 then OUT_CYCLE 

else OUT_CYCLE !ICYCLE_REPQRT(NYCL, TNUP, OTNPH, YE. TSO, 

TE, ENC, SKE, HN, WN, ENCG) % lines 766-773 of FORTRAN 

end if 

STATE, CORRECTION ;= 

if CORRECTION = null then STATE, CORRECTION 

else MOOIFY,STATE, firs.t{CORRECTIOH)), rest( CORRECTION) 

end if 
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% An alternative approach to output would be to extract significant 

% features. For example, we illustrate a report of pressure for only 

% those elements of the array P that have changed by at least 10 

% percent since they were last reported. We assume an array P _LAST 

% as an iteration variable to carry the "last reported" value of P: 

P_LAST, OUT_PHYS_SELECTIVE := 

if TNUP < EDTIME then nil %language extension for iteration variables 

else let COND: array[arraylboolean.JJ := 

forall Kin [LIM.KN+ 1, LIM.KX], Lin lLIM.LN + 1, LIM.LX] 

construct ABS { ( P [K,L] - P _LAST( K,L] ) /MAX ( EPS, P _LAST [K,L] ) ) < .1 enda 11 

end if 

in forall Kin [LIM.KN+ 1, LIM.KX], Lin (LIM.LN + 1, LIM.LX] 

construct if COND then P_LASTLK,L] 

else P[K,L] endif endall, OUT_PHYS_SELECTIVE II 
forall K in[LIM.KN + 1, LIM.KX], L in [LIM.LN + 1, LIM.LX] 

eval concatenate %language extension 

if COND then null 

else recordlP: P[K,L]; K: K; L: L] endif endall 

endlet 

% end of example of feature extraction 

enditer 

end for 

endfun % SIMPLE VAL 
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5.2.4. Discussion of functions internal to SIMPLE_VAL 

INITIALIZE includes code nke the modules GENBC and GENPOS of Hirshman (1978), 

along with code of the form, say for pressure, 

% P: zonal := 

array_fill(LIM.KN + 1, LIM.KX , array_fill(LIM.LN + 1, LIM.LX, START.P0)). 

~DIT is straightforward to translate, except for one demand which it places 

on the language: one needs to extract not only the maximum element of an 

array (as can be done with forall eval max) but also the K,L coordinates 

at which the maximum is found. Efficient support of this need requires 

hardware and language attention. 

BOUNDARY PROJECT includes the module GEOMETRY of Hirshman, the filling of 

P, Q, and RHOJ arrays (where RHOJ[K,L] = RHO[K,L} * AJ[K,L] ), and the 

calculation of GX for boundary zones. The calculation of GX for interior 

zones is done in ZONE GEOM, and is discussed in Appendix B. 

VELOCITY: see Appendix B, where connectivity of the flow of data is discussed. 

POSITION is like Hirshman's module HYDRO; see also Appendix B. 

HWORK is essentially Hirshman's module of the same name. 

ZONE_GEOM produces AJ and S like the module GENAREA of Hirshman, and also 

produces GX and GV by the algorithm discussed in Appendix B. 

ENERGY_JiYDRO contains parts like NEWE and NEWQ of Hirshman. However, 

NEWQ can be recast to use GX and GV in place of X and V, with the result 

that the calculation for a given zone draws only on values of that zone; 

i.e. no node-to-zone colTITlunication is required for the computation of Q when 
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GX and GV are made available from ZONE GEOM. 

Subroutine TEMPCAL of the FORTRAN code can be translated readily into 

a function module internal to ENERGY HYDRO. Both via TEMPCAL and directly, 

ENERGY HYDRO calls the external function module JES_VAL to compute pressure 

(from JES_VAL(l, TEMP, RHO, SV_REC)) and energy (from JES_VAL(2, TEMP, RHO, SV_REC)). 

The value SV_REC supplied to JES_VAL is in effect a hint where to start 

searching in a table; the value supplied does not affect the numerical results 

produced by JES_VAL, but it does affect the time to execute JES_VAL. 

If option b) os Sec. 5.2.2 were selected, coding into VAL would 

be easier because there the array SV would have N elements and be of the 

same shape as P, RHO, etc. For that option a typical use of JES VAL would 

be the production of a trial pressure Pl, as in: 

.1 
Pl, SV: zonal := 

forall K in [LIM.KN+!, LIM,KXl, L in [LIM.LN+l, LIM.LX J construct 

JES_VAL(l, TEMP[K,LJ, RHO[K,L], SV[K,LJ) endall; %. 

Instead of using option b), we have chosen option c) as an example 

of the kind of demand on expressive power that occurs in tailoring an 

algorithm to an implementation. As discussed in Sec. 5.2.2 option c) saves 

storage by taking SV to be an array of only D (= number of zonal processors) 

elements; this can be much smaller than the N-element array used in option b). 

To express the N-element array Pl as a function of a D-element SV, it appears 

necessary to first create a partitioned array equivalent to Pl, with a block 

of this partitioned array corresponding to an element of SV. 

The N interior zones of the mesh constitute a two-dimensional 

array of (LIM.KX - LIM.KN) by (LIM.LX - LIM.LN) elements. For simplicity 

we assume that both of these dimensions are exactly divisible by LIM.OS, 
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where D = (LIM.DS)2 is the number of zonal processors used, and we assume 

a physical configuration of a square array of LIM.OS by LIM.OS zonal 

processors. 

Each zonal processor is to be assigned a rectangular "super-zone" 

of the mesh, consisting of KS by LS contiguous zones, where 

.2 

and 

KS = (LIM.KX-LIM.KN)/LIM.DS 

LS = (LIM.LX-LIM.LN)/LIM.OS 

In place of .1 one expressed an N-element Pl in tel"'lls of a D•element SV, 

where one elemnt of SY corres(>Onds not to one element of Pl, but rather to 

a block of KS by LS elements of Pl. Let P _BlOCK be ·a partitioned array 

equivalent to Pl; that is, while Pl is a 2-dimensional array of reals, 

P_BLOCK i's an array of LIM.OS by LIM.OS "little" arra:,Ys,- each with KS by LS 

real elements, so that P_BlOCK must be a 4-G:imensional array of reals. 

Option c) demands that: 

. • computation proceed in each of the D blocks of P _BlOCK concurrently, and 

• within a given block, computation proc~ed in a raster scan sequentially. 

The correspondence between Pl and PBLOCK is: 

.3 
PH Kl*KS + K0,ll*LS+L0] = P _BLOCK{Kl,Ll ,K0,lJ J . 

In other words, Kl,Ll tell which block, and K~,L0 tell which element 

within the block. It follows that (with the VAL convention for downward 

· rounding of integer division} the [K,Llelement of Pl is given by 

.4 
PHK,L J = P _BLOCKlK/KS, L/LS, MOD(K,KS), MOD(L,LS) J . 
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The VAL code for producing Pl and SV in accordance with option c) follows: 

Pl: zonal, SV: sv_type := 

let P_BLOCK: array(array[array[arrayLrealJJJJ, SVl: SV_type. 

forall Kl in Cl, LIM.OS], Ll in [l, LIM.OS] 

KS: integer . (LIM.KX-LIM.KN)/LIM.OS; % Assume exactly divisible 

LS: integer . (LIM.LX-LIM.LN)/LIM.OS; % 11 

construct % P_BLOCK[Kl,LlJ is itself a 2-dimensional array. 

for BLOCK: array[array[real11:= array_empty[arrayLreall % Element of P BLOCK. 

SV_RECl: SV_REC_type . SV[Kl,Ll]; 

K0: integer := 1 

do if K0 > KS then BLOCK, SV REC! 

else iter BLOCK, SV_RECl := 

let BCOL: array[realJ, SV_REC2: SV_REC_type := 

for BCOLl: array[realJ:= array_empty[realJ; 

SV..:....REC3 : SV_REC_type := SV_RECl; 

L0: integer := 1 

do if L0 > LS then BCOLl, SV REC3 

else iter BCOLl, SV REC3 := 

endif 

end for 

let P_EL: real, SV_REC4: SV_REC_type := 

JES_VAL(l, TEMP[Kl*KS+K0, Ll*LS+L0J, 

RHO[Kl*KS+K0, Ll*LS+L0J, SV_REC3) 

in BCOL1CL0: P_ELJ, SV_REC4 endlet; 

L0 := L0 + 1 

enditer 

in BLOCK K0: BCOL , SV REC2 endlet; 



endif 

endf or 

endall 

K0 := K0 + l; 

enditer 

in% Pl: zonal, SV: sv_type := 
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forall K in [LIM.KN+l,LIM.KXJ, L in [LIM.LN+l, LIM.LXJ construct 

P_BLOCK[K/KS, L/LS, MOD(K,KS), MOD(L,LS) J , SVl 

endlet % Completes production of Pl and SV. 

Because of the explicit reference to LIM.OS, a parameter of 

implementation, this example gives a glimpse of the type of expression 

needed when a prograrrmer assists in compilation. It is generally recognized 

that hardware can be used more effectively if the programmer tailors the 

program to it. In simple cases one hopes that the algorithm will not have 

to be changed to effect such tailoring, but we have just seen a case in 

which the algorithm (though not its numerical result) did change. To 

facilitate compilation of the whole SIMPLE code, one might well express 

all the arrays in blocked (i.e. partitioned) form for internal computation. 

If this were done then the conversion to 2-dimensional form would not 

be done as part of the above example, but would be deferred to the 

generation of output, as in the module PHYS REPORT.of SIMPLE VAL. 

HYDRO_TOTAL, like HWORK, is straightforward, being essentially the 

execise of the construct forall-eval-plus. 

ENERGY HEAT is the main bottleneck in the SIMPLE problem, because of 

the sequencing constraints due to the back-substitution method chosen 

for solving for heat flow. The sequencing constraints are illustrated 
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in Appendix B, Fig. B.1. The constraints are in the 11 R-sweep 11 and 11 Z-sweep 11 

portions of subroutine CONDUCT of the FORTRAN code of SIMPLE. This code 

steps from one element of an array to another, using results of a previous 

element to calculate a next element. 

Subroutine CONDUCT saves TEMP as TS in line 1586, and then restores 

TEMP to TS in line 1673, so that after the execution of CONDUCT, TEMP is 

unchanged; what is calculated is really a temporary variable which we call 

TEMP! in the code below. Its use is not to get a new TEMP, but rather to 

help in adjusting E to account for heat flow. The FORTRAN code partially 

inializes arrays A and B outside of the sweeps; we incorporate this initial­

ization into the sweeps. The VAL arrays CBB and DBB are like those of 

the FORTRAN code, but re-indexed to clarify the connectivity actually 

required (see note be following the VAL code below). The production of 

TEMP! in the VAL code for ENERGY HEAT would then appear inside a LET construct 

as fo 11 ows :-

% Z-sweep (per line 1612 of the FORTRAN code of subroutine CONDUCT) 

TEMPl: zonal := let TEMP2: zonal % Z-sweep calculates TEMP2 

forall K in [LIM.KN+ 1, LIM.KX] construct 

let A, B: array[real]:= % range over L 

for L: integer := LIM.LN +1; 

ACOL, BCOL: array[real]:= array_fill(LIM.LN, LIM.LX, 0.), TEMP[K) 

do if L ) LIM.LX then ACOL, BCOL 

else let DUMl: real := SIG[K,L] + CBBlK,L] + CBB(K,L-1] * (1 - ACOL[L-1)) 

in iter ACOL, BCOL := ACOL[L: CBB(K,L]/ DUMl], BCOL(L: SIG(K,L] * 

TEMP[K,L) + CBB[K,L-1] * B[K,L-1] /DUMl]; 

L := L+l 

enditer endlet endif endfor 
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% ... ALPHA, BETA FORWARD 

1n for L: integer := LIM.LX; TCOL: array[real] := TEMP(K] 

do if L ( LIM.LN + 1 then TCOL 

else iter TCOL := TCOL[L: A(L] * TCOL[L+l) + B[Ll]; L := L-1 enditer 

endif endfor endlet endall % end of Z sweep; returns TEMP2 

in % Feed TEMP2 through R-sweep to produce TEMPl: 

% R sweep 

let A, B: array[array[real]] := 

for K: integer := LIM.KN + 1; A2D, B20: array[array[real]] := 

array_fill(LIM.KN, LIM.KX, array_fill(LIM.LN, LIM.LX, 0.)), TEMP2 

do if K) LIM.KX then A20, B2D 

else let ACOL, BCOL: arraylreal] . 

forall L in [LIM.LN + 1, LIM.LX] DUMl: real := SIG(K,L] 

+ DBB(K,L] + DBB(K-1,L] * (1- A2D(K-1,L]) 

construct DBB(K,L] I DUMl, SIG[K,L] * TEMP2[K,L] + 

DBB[K-1,L] * B2D[K-1,L] I DUMl 

endall 

in iter A2D, B2D := A2D[K: ACOL), B2D[K, BCOL]; 

enditer endlet endif endfor 

% ALPHA, BETA FORWARD SWEEP 

in for K: integer := LIM.KX; T2D: array[array[realJ] := TEMP2 

do if K (LIM.KN+ 1 then T2D 

else iter T2D := T2D[K: 

forall L in [LIM.LN + 1, LIM.LX] 

construct A[K,L] * T2D[K+l,L] + BLK,L] 

endall]; K := K-1 

enditer endif endfor endlet endlet % Returns TEMPl 
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a. In VAL the syntax for operating on a two-dimensional array with 

a forall construct over one index and a for-iter over the other 

index is different according to which index is· subjected to which 

construct. For this reason the Z-sweep and the R-sweep, which 

look much the same in FORTRAN, look different in VAL. 

b. The FORTRAN code uses an awkward convention in indexing CBB and DBB, 

with the result that there appears to be more coupling of array 

elements than is in fact the case; to clarify this we write 

CBB[K,L] in place of what in the FORTRAN code would be written 

CBB[K-1,L]; similarly we write DBB[K,L]in place of DBB[K,L-1]. 

c. In FORTRAN only one edge of the array A is initialized prior to 

the loop; in VAL it was convenient to initialize the whole array. 

The VAL code re-initializes A in the R-sweep. This is permissible 

because although the A array is operated on in the Z-sweep, the 

only column that matters (i.e. LIM.KN) is not changed in the Z-sweep. 

HEAT_TOTAL uses foral l eval ~-

TIME_STEP combines Hirshman's module TINCR with the calculation of DTEN, 

which in the FORTRAN is done in subroutine CONDUCT. Calculation of KC, LC, 

KEN, and LEN is not done in TIME_STEP, but is deferred to CYCLE REPORT. 

PHYS_REPORT is similar to EDIT. 

CYCLE_REPORT is straightforward except for needing the coordinates of an 

array where a maximum or minimum value is found, as was the case with EDIT. 
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MODIFY is an augmentation of SIMPLE to allow for real-tim0 interaction with 

an analyst; e.g. MODIFY is to provide for receiving a change in say DTMAX, 

or even for receiving an entire "STATE", as would be needed to restart 

the computation after an analytic "catastrophe". 
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6. Conclusions and Possible Next Steps 

6.1. Speed, input-output, and expression of the abstract algorithm 

As shown in Table 1, except for outputting results, the application 

of D processors configured as a dataflow computer can reduce the execution 

time of the SIMPLE code by a factor of at least D~. The sequencing constraints 

that limit improvement to this factor occur in the calculation of heat flow, 

as illustrated in Fig. 6. These constraints stem from the method chosen 

in the SIMPLE code for the inversion of a tri-diagonal matrix: back-substitution. 

It would appear feasible to find or develop a method with weaker sequencing 

constraints. If this were done, then all phases of the program, except 

output, would execute in times that decrease at least as D/log D with increasing 

D. 

As discussed in Sec. 4.5, the outputting of results called for 

in the SIMPLE code amounts to a 11 dump" of raw data. There is a minimum time 

for such a dump that grows with the size of the mesh and is independent of 

D. As discussed in Sec. 4.5 and illustrated at the end of Sec. 5.2.3, 

it appears essential to pre-process the data so as to extract significant 

features. If this is done, then output need not be a bottleneck. 

The VAL language is demonstrated as satisfactory for the expression 

of the SIMPLE problem as an abstract algorithm, provided that certain extensions 

are made in it. These extensions are listed in Sec. 5.1 and their use is 

shown in Secs. 5.2.3 and 5.2.4. The need for additional extensions to promote 

pfficiency of execution is discussed below. 
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6.2. Implications of the spatio-temporal structure of the algorithm 

Following Holt (1979) we have analyzed the SIMPLE problem as given 

in an abstract algorithm expressed first in FORTRAN and then translated into 

VAL. The algorithm expressed in either language is called 'abstract' when it 

is viewed as independent of physical arrangements in space and time for its 

execution. Our analysis of the SIMPLE algorithm in terms of role diagrams 

reveals spatial and temporal structure which will have to be found in any and 

all implementations. For example, by tracing through the algorithm for 

possible references to computational variables we discover the existence of 

algorithm-defined times when some number n of such variables must be co-maintained. 

This in turn implies that in any implementation of the algorithm there will 

have to be available, for some period, a space large enough to hold n values. 

(As the algorithm is to be executed by electronic circuits, this number n places 

a lower bound on the physical space which the algorithm can occupy.) To 

be more specific, ElJ,K], P[J,KJ, Q[J,KJ, etc. meet in a zone and phase 

shown in Fig. 6 and in a relational sense define a time and location. 

As a second example, we discover in Fig. 6 that for any instruction 

of the main loop there are times-- i.e. phases -- when a given instruction 

may be executed and times when it certainly will not be. In other words one 

can determine prior to execution and independent of implementation that in 

any given phase a certain large majority of the instructions of the main loop 

will not be called. This property can be used both to guide compilation and 

also to guide the design of hardware for a dataflow computer: it suggests 

a programmable instruction cell that can make ready first one instruction 

and then another, much like a sequential processor. 

Finally the discussion of Sec. 3 and Figs. 3, 4 and 6 show that only 

a few of the myriad possible patterns of communication are actually needed 
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for a set of processing resources to execute the SIMPLE problem. In 

configuring a dataflow computer there are many possible alternatives for 

the arrangement of processing units, instruction cells, packet memory, 

and communications resources. Different arrangements offer different 

advantages for different problem classes, and place different demands on 

compilation. As discussed in Sec. 3, any hardware arrangement will reflect 

compromises which will detract from the execution of some classes of problems. 

Prior to large-scale investment, these relations between physical arrangement 

and problem class need to be examined in connection with various sample 

problems. 

6.3. The balance between programming ease and efficient use of hardware 

As a first step in exploring relations between hardware and 

problem class, VAL was employed to help express a problem in hydrodynamics 

in support of two anticipated tasks, relative to a dataflow computer that 

is not yet fully specified: 

.1. the design task of choosing a physical arrangement of hardware 

resources suitable to the SIMPLE problem; and 

.2. the compilation task of mapping the coded problem into machine 

instructions appropriate to a given physical arrangement of 

resources. 

Both tasks concern the mapping of a problem onto physical resources. The 

mapping is done in two steps: coding in a source language (VAL); followed 

by compilation which maps the source language into machine instructions. 

Historically a source language has been intended for the expression of a 
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problem as an abstract algorithm -- 'abstract' meaning that the algorithm 

was not tied to a particular physical arrangement of resources. But note: 

.3. To achieve efficient use of resources a programmer must allow 

for at least some features of implementation (e.g. 11multiply" takes 

longer than "add") . 

. 4. If the physical arrangement changes too much, a given source 

language become inappropriate. 

Indeed concurrently operability of resources contributed to the need to 

express concurrency in the problem, and hence to the need for VAL; i.e. VAL 

is superior to FORTRAN in expressing concurrency. A source language is 

shaped in part by assumptions concerning the physical arrangement of 

computational resources. FORTRAN was designed to facilitate a two-step 

mapping of a problem to machine instructions. In step one FORTRAN is used 

to map the problem essentially into instructions for a machine that is 

an idealized sequential computer -- idealized for instance in that it is 

imagined to have a random-access memory so big as not to be a constraining 

factor. In step two the FORTRAN code is compiled into machine code for 

an actual machine that departs in limited ways from the idealization --

e.g. by using a "small" random-access memory backed up by secondary storage. 

As FORTRAN corresponds to an idealized sequential computer, VAL 

presently corresponds to an idealized dataflow computer -- e.g. a dataflow 

computer imagined to have so many instruction cells that the number poses 

no constraint on how a problem might be executed. Note that: 

.5. A program like SIMPLE is a major task for programmers who can 

afford to learn the salient features of implementation; 
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.6. The program is expected to run many hours per execution, and to 

be executed many times on a machine that costs enough to justify 

a large investment in efficient execution; 

.7. The program is written to answer questions of physics that are 

progressively better answered as larger mesh sizes become executable 

in a day's run; the need for answers to these questions justifies 

a large investment in speed of execution. 

Whatever hardware design is chosen, the resources of a dataflow computer will 

be more complex than those of a sequential computer, and less susceptible to 

fully automated resource allocation. Within the dataflow context, the 

balance between ease of prograrrming and efficiency weighs more toward the 

demand for efficiency. For problems of the SIMPLE type it appears unwise 

to force a separation between source-language programming and resource 

allocation. Some current languages -- e.g. PL/l -- provide facilities for 

the control of resources; however these facilities are added ad hoc to 

a language that conceptually is inhospitable to the expression of physical 

arrangements in time and space. Because VAL encompasses the expression of 

concurrency, it offers at least a chance of extension to cover the control 

of resources in a more systematic way. The discussion of ENERGY HYDRO in 

Sec. 5.2.4 illustrates a related issue, the adaptation of the algorithm 

to a particular physical arrangement. 
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6.4. Extending VAL to support resource allocation 

We have seen that the SIMPLE problem has spatio-temporal structure 

that is germane to physical design, and for a given design, germane to the 

allocation of physical resources to execute the problem. Presently, a VAL 

program is thought of as having a "meaning" only to the extent that it 

defines a dataflow graph at the descriptive level of machine instructions. 

At this level of description the dataflow graph of SIMPLE is an enormous 

lacework, with something on the order of a thousand computational events 

per zone, times thousands of zones. If a compiler works only from a dataflow 

graph at this level of detail, is it reasonsable to imagine that it could' 

efficiently distribute all the instructions throughout the "space-time" of 

the computational resources? 

One might hope for some future 11 genious 11 to design such a compiler, 

but there is another approach: 

.1. Recognize that compilation will in fact use higher-level and/or 

auxiliary descriptions of the problem in allocating resources; and 

.2. Extend the programmer's task and his power of expression -- VAL -­

to express properties of the problem that can greatly reduce the 

burden of compilation properties such as those expressed in 

the role diagram of Fig. 6. 

In this approach the programmer would be supported in structuring the problem 

in a way that eases compilation for a given machine organization. This 

requires that the progranmer be more explicit in guiding the "when" and 

"where" of program execution. It might be objected that such guidance depends 

too much on the details of a particular implementation, but this is not 
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necessarily so. There is a middle ground, where the prograrruner would 

formally express the information now conveyed by Fig. 6. The "where" 

implied by a "zone" of Fig. 6 is not directly a 11machine location", but 

rather a relational location inherent in the SIMPLE algorithm. In that 

algorithm E[J,KJ, PCJ,Kl, QCJ,K1, etc. meet many times, and in a relational 

sense meetings define 11 times and locations 11 
-- e.g. ZoneCK,Ll of Fig. 6. 

In essence we see the progranmer as calling the compiler's "attention" to 

grosser regions of a dataflow graph than appear at a machine-instruction 

level of description. The compiler would thus block out the assignment 

of gross regions to resources in a first phase, and then subsequently deal 

with further details. To pursue this course additional effort is needed 

to: 

.3. Bring under control the expression of the space-time aspect 

of an algorithm at different levels of detail, so as to guide 

the algorithm toward a particular machine organization; 

.4. Show what changes would be needed for VAL to express such aspects; 

.5. Evaluate the advantage of expressing SIMPLE and other examples in 

this way with respect to: 

a. what suggestions are offered for the organization of the 

resources of a dataflow computer; and 

b. how to distribute the burden of computing a problem over a 

given organization of resources. 
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Appendix A: Interpreting Role Diagrams 

SECTION DIRECTORY 

Section 

A.l. Vertical string as path of a role player. 

A.2. Tokens 

A.3. ~ Circuits. 

A.4.~ Initialization and termination. 

t' 
A. 5. ~ Fragments 

A.6. 6-~ Coincident activity of multiple role players. 
I 

A.7. !fJ Invariance of value. 

A.8. ~ Branching to alternative consumers. 

A.9. ~ : 0- Steering. 

A.10. ~) Encoding 

A.11. l-1 Decoding 

A.12. ?--6 Merging from alternative producers. 

A.13. ( I IJ 
-----y--- Bundling. 

I 

I 

A.14. rt--1~ Unbundling. 
I , 

A.15. \941 Compression of representation. 

A.16. 1S 9 ' ~=-:-cc---:' Copying. 
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A.17. t ~~}Saving an old value. 

A.18. Operations(+,-, etc.) 

A.19. ~ Buffered communication. 
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Appendix A: Interpreting Role Diagrams 

Throughout the report we have used role diagrams, invented by A. W. 

Holt (1979) to show the flow of values carried by physical actors. The 

notation presented here allows us to distinguish participations of actors 

in activities according to whether they are coincident, concurrent, alternative, 

or sequenced. 

The interpretation of role diagrams differs from that of dataflow 

graphs in that the former is based on this attitude: anything that ~ (even 

a value) must be someplace. Hence the flow of a value is a flow of effect 

over physical actors. A role diagram can be partitioned into strips; each 

strip is a locality in system space, and thus a place where some actor is 

resident. 

A.1: A vertical line is read downward as the advance of a role player 

(i.e. an actor) from one state to another through a sequence of activities. 

A state is drawn as a vertical line segment; an activity is drawn as a box. 

Here we show a role player "carrier of the value PRESSURE" proceeding through 

activity 1, followed by activity 2. 

I 
p 
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A.2: The vertical line can be thought of as marked by a token. The position 

of the token shows the state of the role player. The token for pressure carries 

an inscription which states the value of the pressure. 

A.3: Circles at the top and bottom of a vertical line denote the same location 

of a circuit. In other words the figure 

denotes a cyclic progression through activity 1, activity 2, activity 3, back 

to activity 1, and so on. 

A.4: If a role P is initialized in activity 1 and terminated in activity 3 

we draw the following. 

p 

Note that the initiation of a role (shown in activity 1) requires that a 

physical actor be on hand to play the role. 
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A.5: In contrast to A.4, a fragment of a longer chain is drawn 

A.6: When several roles participate in a common activity their coincident 

participation is denoted by horizontal links. 

p 

t 
I 
Q 

t ~ 
STRESS 

I 

As shown, P and Q must coincidently be present at the creation of STRESS. 

The horizontal line of boxes converts inputs {above) to outputs (below). 

A.7: The diagram A.6 indicates that P and Q change values as a consequence 

of taking part in the creation of STRESS. If we wish to indicate no change 

of value of P, we draw 

I 
p Q 

·~-4'--? 
I STRESS 

I 
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A.8: A role can branch into alternative states, shown as 

p 

A.9: In case of a branch, the choiceof path can be resolved by interaction 

with other value-carrying roles. Suppose that exactly one of Bl or B2 will 

be present, and will resolve the choice for P; then A.8 could be filled out 

as 

I 
p Bl B2 

A.10: In drawing a diagram with two alternative states, such as Bl and B2 in 

A.9, it may be convenient to pull the two lines into one: 

Bl 82 

B 
I 

This pulling together is not an "objective" fact of the "system", but rather 

a matter decided by the drawer of the diagram. He decides to view the distinction 

formerly borne by the separation of the lines as "encoded" into an attribute of 

a token that travels on the joined line. 
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A.11: If the person who draws the diagram has encoded Bl and B2, as in A.10, 

then in drawing A.9 he would have to "decode" them -- i.e. to reporduce 

separated lines, one for each of the encoded alternatives. In this case A.9 

would be drawn with a fork: 

p B 

Bl B2 

A.12: Two activities can be alternatives to the production of a single state, 

in which case two states of a role can merge. 

p 

I 
A.12 can be compared with A.9. Lines joined by branches and merges of a role 

form a state component of a Petri net. 

A.13: For convenience of presentation one may wish to bundle several roles 

together and picture them as a single 11 cable 11
, as in an image of cabling 

together of different 11 wires 11
• We illustrate this by roles A, Band C which 

are 11 cabled 11 into a compound strand called L . In other words, 

L :c{A,B,C}. 
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I I 
~ 

L 

Unlike encoded alternatives (see A.10) all the roles of a bundle can be 

concurrently played 

A.14: Unbundling corresponding to the undoing of A.13 is drawn as follows. 

A.15: Brackets around a row indicate that the row is compressed from a 

more detailed diagram shown elsewhere; for example the figure 

is compressed from 

DTN 
I 

{ 

DTN 
I 

I 
DTNPH 

I 
DTNPH 

I x 

I x 
I 
E 



- 77 -

A.15.1: The outputs of a bracketed row can be produced by an internal loop, 

containing internal variables. TNUP is such a variable in the following 

diagram, where 

I I I I 
TMAX OT X V 

[ 6-_.,0i-----?-------9 } 
is compressed from 

TNUP > TMAX ? 
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A.16: The following illustrates fanout. 

I 
p 

h 
(This notation was used in A.15.1.) 

A.16.l: Fanout can also be shown as follows. 

A.16.2: We link two boxes by a double bar to assert identity of output values; 

the following asserts that after the occurrence of the activity, B and B' 

carry copies of the same value; the figure does not assert anything about the 

relation between inputs, nor about the relation between inputs and outputs. 

B B' 
I I 

A.17: The following illustrates the saving of the value of P as OLO_P, while 

P is changed. 

p 

h 
p OLD P 

I I 
(This notation was used in A.15) 
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A.18: On occasion we indicate arithmetic operations on values, as in this 

picture. After the activity of the row occurs, C carries the value A+B. 

! I 
A B 

4-J 
c 
I 

A.18.1: If A is a matrix, then Bas the sum over the elements of A could be 

pictured as follows. I 
A 

ti--~ 
B 
I 

A.19: Buffered communication. A fragment of Figure 2 (of the main report is 

(buffer) (buffer) 

.1. 

This can be expanded to 

. 2. 

The figure .2 contains the fragment 

. 3 +~Lt-
for which we introduce the abbreviated notation: 
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.4 

The slanted bar asserts that the lower activity consumes something produced 

in the upper activity, and that a buffer not explicitly shown mediates the 

transfer from the producing to the consuming activity. With this notation, 

Figure 4 of the main report is transformed into Fig. 5. 
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APPENDIX B 

Notes on Fitting the SIMPLE Code into Role Diagrams and VAL Modules 

Figure 6 of the main report somewhat schematically shows the 

connectivity of communication among processors, when one processor is assigned 

to each nodal and each zonal region of the dataflow graph. In this appendix 

we discuss the connections in more detail, and also discuss certain ways 

in which the algorithm of SIMPLE has been restated to clarify the connectivity. 

The objective is to help in considering hardware requirements, and to clarify 

aspects of the translation from FORTRAN into VAL. 

B.l. Interpretation of the cycle 

Fig. 6 shows phase 3 as producing new values for zone [K,Llas 

follows. 

zone 
[K,LJ 

.1: Schematic representation of production of zonal value. 

The fragment .1 is a schematic picture of an activity at zone K,L 

that draws on values from the four neighboring (i.e. corner) nodes to feed 

into the production of new values for the zone. With the indexing convention 

defined in Fig. 1 of the main report, one sees that the fragment .1 stands for 

the connections shown in .2: 



node 
LK-1,Ll 

node 
[K-1,L-l] 

zone 
[K,L J 
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node 
LK, LJ 

node 
[K,L-U 

.2: Completed fragment showing all connections of nodes to a zone. 

The nodal values are a vector (with R and Z components) for velocity 

and a vector for position at each node. The corresponding type definitions 

and declarations in SIMPLE VAL are: 

type vector= record[R, Z: real]; 

type nodal = array[array[vectorJJ; 

X, % position 

V: % velocity 

nodal %. 

The correspondence between these names as used in SIMPLE VAL and the names 

used in the FORTRAN code of SIMPLE is: 

FORTRAN code 

R 

z 
u 

w 

VAL code 

X.R 

x.z 
V.R 

v.z 
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In order to clarify the connectivity, as well as to eliminate some 

unnecessary arithmetic, we introduce auxiliary variables, starting with 

a kind of tensor -- GX -- that describes the diagonal dimensions of each 

zone: 

/ 

I 
/ 

--,- - ---

.3: Definition of GX. 

GX is, at least in spirit, a tensor; GX[K,LJ.W is the vector difference 

between the vector position at the nortwest corner and the vector position 

at the southeast corner. GX is produced for interior zones by ZONE_GEOM 

in phase 3, and for boundary zones by BOUNDARY_PROJECT; in the first case 

the defining relation is 

.4. type zone_tensor = array array record E, W: vector 

GX: zone tensor := 

for~ll Kin [LIM.KN+!, LIM.KXJ, L in [LIM.LN+l, LIM.LXJ construct 

record[E: XfK,U- X[K-1,L-IJ; W: X[K-1,LJ- X[K,L-IJJ endall; %. 

Note that X is a vector, so that .4 is a shorthand expression; strictly speaking 

one must define a subtraction function with vector arguments. This is 

easy to do, but clutters the presentation. With the understanding that 

we are abbreviating,we shall apply 11
-

11
, 

11 +11 and multiplication by a scalar ( 11* 11
) 

to vectors. The node-to-zone communications needed to fonn GX are shown in 
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the picture .2. The auxiliary variable GV is a zonal tensor formed from V 

in exactly the same way that GX is formed from X. 

Now we address phase 2 and the calculation of V. Prior to 

corrmunicating from the zones around a given node to the node, a tensor 

STRESS is calculated for eac~ zone; this calculation for a given zone 

draws only on array elements for that zone. The computation covers boundary 

zones, set up in phase 1, as well as interior zones . 

. 5 STRESS: zone tensor := 

forall Kin [LIM.KN, LIM.KX+l], L in[LIM.LN, LIM.LX+lJ construct 

record[E: (PlK,Ll+ QlK,LJ)*GXCK,Ll.E; %scalar * vector 

W: (PC K,U+ Q[K,LJ)*GXl K,LJ.W J endall ; %, 

where P and Q are pressure and artificial viscosity, respectively, just as 

in the FORTRAN code. In phase 1 the auxilliary variable RHOJ is produced as: 

.6 RHOJ : zonal := 

forall K in[LIM.KN, LIM.KX+l], L in lLIM.LN, LIM.LX+lJ construct 

RHO[K,Ll*AJL K,L J endall; %, 

where RHO and AJ are density and area jacobian, just as in the FORTRAN code. 

Phase 2 of the cycle produces new values for each node, namely 

V and X. The fragment that produces values for a particular node, say 

node K,L appears in phase 2 of Fig. 6 as follows . 

. 7: Schematic representation of the production of a nodal value. 
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The fragment .7 is a schematic picture of an activity that draws on values 

from the four zones around node [ K,LJ to feed into the production of new 

values of X and V for the node. Thus the fragment .7 stands for 

zone zone 
[K,L+ll CK+l,L+lJ 

zone 
f K+l ,Ll 

.8: Completed fragment showing all zones connected to a node 

Each "cable" of values from a zone to node [K,Ll must carry STRESS and 

RHOJ from the zone, and at least one of these cables must bring the time 

steps DTNPH and DTN as well. (DTNPH and DTN are used here as they are in 

the FORTRAN code of SIMPLE (1979).) The activity of the node in .8 during 

phase 2 of the cycle is to calculate an acceleration (ACC), to use this 

acceleration to update velocity (V), and then to use the velocity to update 

position (X). In updating velocity a time step DTN is used. Position times 

interleave the times at which velocity is calculated, so that a different 

time step (DTNPH) is used to update position. Continuing to use the 

abbreviation of scalar operation signs for operations on vector values, 

this activity can be expressed in VAL as: 
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v' x : = 

forall Kin [LIM.KN, LIM.KX+l], L in [LJM.LN, LIM.LX+ll construct 

let Y: vector := (2./(RHOJCK,L l + RHOJLK,L+l] + RHOJ[K+l,LJ + RHOJ[K+l,L+U)) 

*(STRESS[K,L+lJ.E + STRESS[K,Ll.W - (STRESSCK+l,L+lLW + STRESS[K+l,Ll.E}); 

ACC: vector := record[R: -Y.Z; Z: Y.RJ; 

Vl: vector := DTN*ACC + V[K,LJ 

in Vl, DTNPH*Vl + X[K,Ll endlet 

endall 

After expansion of the vector operations, this code would provide the 

functions VELOCITY and POSITION of Sec. 5.2.3. 

Phase 4 involves arrays that are partly nodal and partly zonal in 

character. An element of CBB is obtained as an intennediate between two 

nodes of the same L-coordinate but adjoining K coordinates, and two zones 

bounded by the nodal K coordinates and on either side of the L coordinate: 

In calculating heat conduction subroutine CONDUCT of the SIMPLE 

FORTRAN code generates arrays CBB and DBB, per lines 1583 through 1608. 

CBB and DBB draw on values from both nodes and zones, as shown: 

~ - -···1 
I zone 

1 
I [K,L+l ll 

node 1- _ I node 
lK-1,LJ

1 
--jrK,U 

1 zone I 
L __!_K ._!:) ~ 

For CBBlK,LJ 

r- -
I zone 
I [K,L] 

/_ -

node 
lK,L l 

- ------ --1 

I 
I 

----­node 
CK,L-lJ 

For DBBCK,U 

' 

zone 
fK+l,LI 

-- _j 

.9: Nodes and zones that supply values to the calculation of CBBLK,Ll 
and DBBCK,LJ. 
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To adhere stri-ctly to the connectivity shown in Fig. 6, one programs the 

calculation of CBB and DBB in two parts, one as an augmentation of ZONE_GEOM 

and the other as part of an augmented ENERGY_HYDRO. The augmentation 

consists of generating geometrical quantities as part of ZONE GEOM, 

referring these to zones, as was done for GX, and then using these quantities 

to simplify the connectivity needed in ENERGY_HYDRO. An alternative which 

is displayed in SIMPLE_VAL of Sec. 5.2.3 is to accept a slightly more 

complex connectivity and thereby avoid the introduction of more auxilliary 

variables. 

CBB and DBB are partly zonal and partly nodal in character, 

so that fitting them to either class of processors is arbitrary. Because 

the nodal processors are less heavily used, we have assumed that they 

would be used to compute CBB and DBB from zonal quantities (CC in FORTRAN). 

The consequent connectivity is shown in phase 4 of Fig. 6. For the 

Z-sweep this connectivity is shown in more detail in .10: 
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Node Zone 
[K,L-1.J CK, L J 

I 

I CBB 

{TEMP,1 
SIG 

"'{A,BJ 

{CBB*{ 1-A) '} 
CBB*B CBB 

{ A,B) 

TEMP2l.K,L+lJ 

TEMP2[K,LJ TEMP2[K,LJ 
~ 

' .10: Detail of Z-sweep of ENERGY_HEAT. 

Node 
[K,U 

I 
CBB 

Zone 
[K,L+ll 

{TEMP,) SIG 

JCBB*{ 1-A) •l 
LCBB*B 1 

{ A,Br 

.,,..,........ 
TEMP2LK,L+21 

TEMP2[ K,L + U 
J 
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Appendix C: The SIMPLE code in FORTRAN 

Edition of February 12, 1979 as provided by John Woodruff 



1 $PUTT IME,,,100000 100000,,,2000 
2 PROGRAM H2DDCHFILE,TAPE3=HFILE> 
3 c 
4 
5 
6 
7 c 
8 
9 c 

10 
11 
12 
13 
14 
15 c 
16 
17 
18 
19 c 
20 
21 c 
22 
23 
24 c 
25 
26 
27 
28 c 
29 
30 
31 
32 
33 
34 
35 
36 
37 c 
38 c 
39 c 
40 c 
41 c 
42 c 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

COMMON /KLS/ K,L,DEBUG,VERSION,WHER.WHEN,P106LPIE,IGEN,P102 
X ,OTC,KC,LC,DTEN,KEN,LEN,SKE,HN,SIEL,CNN,ENC,~NH,ENCG,WN 
X ,NCP,P108,VCUT 

COMMON /PROGG/ RO,ZO,R1,Z1,RP,ZP,RR.ZZ 

COMMON /COMN/ RC33,33J,ZC33,33l,UC33,33),RH0(33,33J,QC33,33) 
X ~E(33,33l,PC33,33),AJC33,33),SC33,33l,NBCC33,33) 
X ,WC3~,33l,TEMPC33,33l 
X , AC33,33l,BC33L33l,CC(33,33l,DUMC33,33),CBBC33,33l 
X , DBBC33,33l,CA~C33,33J,SIGC33,33l,TSC33,33l 

COMMON /PARAM/ NYCL,TNUP,DTNUP,DTN,DTNPH,DTNMH,EDTIMELEDOT 
X ,GAM,GAMZ,COF,C1F,C1,TMAX,DTMAX,OTMIN,TFLR,NOHYu 
X ,C2,P2,P3,NO,NTTY,NEO 

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP 

COMMON /GENCOM/ RHOO,EO,UO,PO,WO,DR,OZ,NBCU,NBCO,NBCL,NBCR 
X ,PBC3l,PBBC3l,QBC3l 

COMMON /MINMAX/ XMIN,XMAX,YMIN,VMAX.PMIN,PMAX,QMIN,QMAX 
X,RMIN,RMAX,KQ,LQ,KR,LR,KP,LP 
X ,XMINX,XMAXX,YMINX,YMAXX 

COMMON /TI Ml NG/ NBT< 20 l, NCTC 20>, NETC20), NPTC 20>, NXTC20l 

COMMON /EOSCOM/ KEOStTARG1LTARG2,TARG3,RARG1,RARG2,RARG3, 
X FUNC1,FUNC2,FUNC3, EMPS,~PS,EPSO 

COMMON /COM2/ NTSVC2l,NRSVC2l,MSVC2l TESC7l,RESC9l 
X ,AESC12l,BES<12l,CES<12l,DESC12l,EES(12),FESC12l,GESC12l 
x . HES ( 1 2 J • PES ( 1 2) J I TES ( 3) I I RES ( 3) J I ZES ( 3) 

NCYL = CYCLE COUNTER EDTIME= TIME OT EDIT 
TNUP =PROBLEM TIMECN+1) EDDT = OELTAT NEXT EDIT 
DTN = DELTAT CNJ TMAX = MAXIMUM TIME 
DTNPH= DELTAT CN+1/2l DTMAX = MAXIMUM ALLOWED OT 
DTNMH= DELTAT <N-1/2) DTMIN = MINIMUM ALLOWED OT 

DIMENSION ARRAYC1l 
EQUIVALENCE <ARRAY,Rl 
DATA 11 /0/ 
DATA NLINKS/5/ 
DATA VERSION /1./ 
DATA NCP/10/ 
DATA IER/O/ 
DATA NTTY/59/ 
DATA N0/3/ 
DATA DEBUG/O./ 
DATA DTMAX/.01/ 
DATA OTM!N /.0001/ 
DATA TFLR/.0001/ 
DATA NOHYD/O/ 
DATA PIE/3.1415926535898/ 
DATA EDTIME/O./ 
DATA EDDT/4./ 
DATA P1D2/.5/ 
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61 
62 
63 
64 

-55 c 
66 
67 
68 
69 c 
70 c 
71 c 
72 
73 c 
74 
75 c 
76 
7 - "' I '-' 

78 
79 c 
80 c 
81 c 
82 
83 c 
8Ll c 
85 c 
86 
87 
86 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
11 0 
1 1 1 
112 
11 3 
114 
115 
116 
117 
11 8 
119 
120 

DATA TMAX/12.001/ 
DATA VCUT/1 .E-10/ 
DATA DTEN/1 .E+lO/ 
DATA DTC/1 .E+lO/ 

CALL CHANGEl2H+HJ 
CALL ASS!GN(3,2RPHI 
CALL CLOCK(WHER,WHENJ 

ZER~ OUT ALL ARRAYS 

L=21:>:33*33 

Del 10 K=l,L 

P.RRAY ( K) = 0. 

10 CONTINUE 

SET UP EOS TABLES 

CALL SETUP 

SET PARAMETERS FOR TEST PROBLEM 

GAM=1.4 
P2=6. 
P3=0. 
PB< 1I=1. 
PB<21=0. 
PBC3J=O. 
QB( 1l=1. 
QBl21=0. 
QB(31=0. 
PBB< 1 I =O. 
PBB(2l=P2 
PBBC31=P3 
RHOO=l.4 
KMN=2 
LMN=2 
KMX=5 
LMX=22 
DR= 1. 
DZ= 1. 
DTNPH=.01 
TMAX=10. 
DTN=DTNPH 
DTNMH=DTNPH 
TNUP=O. 
EO=O. 
UO=O. 
PO=O. 
WO=O. 
NBCU= 1 
NBCR=2 
NBCL=1 
NBCD=1 
C2= 1. 5 
COF=C2ll<.25 
Cl=.5 
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c 

c 

c 

c 
c 
c 
c 
c 
c 
c 

c 

C1f:: 5*C1 
GAMZ GAM- 1. 
OTC= 00. 
P1D8 1 ./8. 
HN=O. 
WN=O. 

GET INPUT PARAMETERS 

WRITECNTTY,4) 
4 FORMATC23H cNTER INPUT PARAMETERS) 

READCNTTY,5lKMN,KMX,LMN,LMX,EDOT,ED~IME,TMAX 
5 FORMATC412,3F5.2) 

KMNP=KMN+l 
LMNP=LMN+l 

KMXP=KMX+l 
LMXP=LMX+l 

KMXZ=KMX-1 
LMXZ=LMX-1 

GENERATE PROBLEM 

CALL GEN 

IGEN=O 

I NI TI ALI ZE Tl MER 

NED=l 
12=NECONDCl1) 

121 
122 
123 
124 
125 
126 
127 c 
128 c 
129 c 
130 
131 
132 c 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 c 
180 

C START CYCLE HERE 
c 

1 CONTINUE 
c 

DTC2=1.E+12 
SKE=O. 
ENC=O. 
ENH=O. 
DTEN=1.E+12 

c 
C****************************************~**** 
C* * 
C* GEOMETRY CALCULATION FOR BOUNDARY ZONES * 
C* * 
C****************************************•**** c 
c 
c 

SET UP BOTTOM SIDE BOUNDARY ZONES 

C PCK,L+1) 
C OCK,L> 
C RCK,L-1> 
c 

1CK+1,Ll 

L=LMN 

RO=RCKMN,L> 
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181 
182 c 
183 
184 c 
185 
186 
187 c 
188 
189 
190 c 
191 
192 c 
193 
194 
195 c 
196 
197 
198 c 
199 
200 c 
201 c 
202 c 
203 c 
204 c 
205 c 
206 c 
207 
208 
209 c 
210 
211 
212 c 
213 
214 
215 c 
216 
217 
218 c 
219 
220 c 
221 
222 
223 c 
224 c 
225 c 
226 c 
227 c 
228 c 
229 c 
230 
231 
232 
233 c 
234 
235 c 
236 
237 
238 c 
239 
240 

ZO=Z<KMN. Ll 

DO 200 K=KMN,KMXZ 

Rl =RCK+l ,L) 
Zl=ZCK+l,L) 

RP=RCK,L+l) 
ZP=ZCK,L+l) 

CALL PROJCT 

RC K, L-1 ) =RR 
ZCK,L-l)=ZZ 

RO=Rl 
ZO=Zl 

200 CONTINUE 

SET UP BOTTOM RIGHT CORNER 

PCK, L+l l 
lCK-1 ,Ll OCK, Ll 

RCK, L-1) 

K=KMX 
L=LMN 

RO=RCK, LJ 
ZO=ZCK, LJ 

Rl=RCK-1,L> 
Zl=ZCK-1,Ll 

RP=RCK,L+ll 
ZP=ZCK,L+ll 

CALL PROJCT 

RCK,L-l>=RR 
ZCK,L-l>=ZZ 

SET UP TOP SIDE BOUNDARY ZON£S 

RCK, L+l) 
OCK,L) 1CK+1,Ll 
PCK,L-ll 

L=LMX 
RO=RCKMN,Ll 
ZO=ZCKMN, Ll 

DO 204 K=KMN,KMXZ 

Rl =RCK+l ,Ll 
Zl=ZCK+l,L) 

RP=RCK,L-1) 
ZP=ZCK,L-1> 
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2-41 c 
242 CALL PROJCT 
243 c 
244 RCK,L+l>=RR 
245 ZCK,L+l>=ZZ 
246 c 
247 RO=Rl 
248 ZO=Z1 
249 c 
250 204 CONTINUE 
251 c 
252 c SET UP TOP RIGHT CORNER 
253 c 
254 c R(K, L+1 l 
255 c 1CK-1,Ll O<K,Ll 
256 c P(K,L-1l 
257 c 
258 K=KMX 
259 L=LMX 
260 c 
261 RO=RCK, LJ 
262 ZO=ZCK, LJ 
263 c 
264 R1 =RCK-1 ,Ll 
265 Z1 =Z<K-1 ,Ll 
266 c 
267 RP= R < K, L - 1 l 
268 ZP=ZCK,L-1l 
269 c 
270 CALL PROJCT 
271 c 
272 RCK,L+1>=RR 
273 ZCK,L+1l=ZZ 
274 c 
275 c SET UP LEFT SIDE BOUNDARY ZONES 
276 c 
277 c 1CK,L+1l 
278 c RCK-1,Ll OCK,Ll PCK+1,Ll 
279 c 
280 K=KMN 
281 RO=RCK,LMNl 
282 ZO=ZCK,LMNl 
283 c 
284 DO 207 L=LMN,LMXZ 
285 c 
286 R1=RCK,L+1l 
287 Z1=ZCK,L+1l 
288 c 
289 RP=RCK+1.Ll 
290 ZP=ZCK+1 ,Ll 
291 c 
292 CALL PROJCT 
293 c 
294 RC K - 1 , Ll =RP 
295 
296 c ZCK-1, Ll =ZZ 

297 RO=R1 
298 ZO=Z1 
299 c 
300 207 CONTINUE 



301 c 
302 c 
303 c 
304 c 
305 c 
306 c 
307 
308 
309 c 
310 
311 
312 c 
313 
314 
315 c 
316 
317 
318 c 
319 
320 c 
321 
322 
323 c 
324 c 
325 c 
326 c 
327 c 
328 c 
329 
330 
331 
332 c 
333 
334 c 
335 
336 
337 c 
338 
339 
340 c 
341 
342 c 
343 
344 
345 c 
346 
347 
348 c 
349 
350 c 
351 c 
352 c 
353 c 
354 c 
355 c 
356 
357 
358 c 
359 
360 

SET UP TOP LEFT CORNER 

RCK-1,LJ OCK,U PCK+l,U 
1CK,L-1J 

K=KMN 
L=LMX 

RO=R(K Ll 
ZO=ZCK'. LI 

R1=RCK,L-1J 
z·r=ZCK,L-1 l 

RP=RCK+l ,Ll 
ZP=ZCK+l ,LJ 

CALL PReJJCT 

RC K- i , L J =RR 
Z C K-1 , L J = ZZ 

SET UP RIGHT SIDE BelUNDARY ZBNES 

1 CK, L+l J 
PCK-1,LJ OCK,LJ RCK+l,LJ 

K=KMX 
RO=RCK,LMNJ 
ZO=ZCK,LMNJ 

oe 210 L=LMN,LMXZ 

Rl =RO(, L+l J 
Z1=ZCK,L+1l 

RP=R<K-1,Ll 
ZP=ZCK-1,Ll 

CALL PROJCT 

R ( K + 1 , Ll =RR 
ZCK+l,LJ=ZZ 

RO=R1 
ZO=Z1 

210 CelNTINUE 

SET UP TOP RIGHT CORNER 

PCK-1,Li OCK,Ll RCK+l,Ll 

Ko:KMX 
L=LMX 

1CK,L-1l 

RO=RCK, Ll 
ZO=ZCK,LJ 
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361 c 
362 
363 
36.4 c 
36t5 
366 
367 c 
368 
.. c 
310 
3'1'1 
3'7t c 
37$ c 
37i4 c 
37'5 c 
375 c 
~;g c 
379 
390 c ., 
30 
3A c 
384 me w g:g c 
391 c 
392 a• 394 c mg 
3•7 c 
38 c gc 
402 c 
40'3 
4(M 
~!! c 
40?. 
40. c 
409 
4l0 
411 c 
412 
413 c 
414 
41G 
416 c 
41? c 
418 c 
'419 c 
420 c 

Rl=RCK,L-1) 
Zl=ZCK,L-1> 

RP=RCK-1 • L> 
ZP=ZCK-1,L> 

CALL PRO.J'CT 
RCK+l, L> =RR 
ZCK+l, L> =ZZ 

SET UP TOP RIGHT CORNER 

PCK-1,L+l> 

K=KMX 
L11LMX 

RO=RCK,Ll 
ZO•Z<K, LJ 

1CK,L+1> 
OCK,L> 

Rl=RCK,L+l) 
Zl=ZCK,L+l> 

RP=RCK-1,L+l) 
ZP•ZCK-1,L+l) 

CALL PRO.JCT 
RCK+1,L+l}•RR 
Z(K+1,L+1>:rZZ 

RCK+1,L+1> 

SET UP BOTTOM LEFT CORNER 

RCK-1,L-1> 

K=Kf1N 
L=LMN 
RO=RCK, Ll 
ZO=ZCK, LJ 

OCK, L> 
lCK,L-1) 

R1=RC1(,L-1> 
Zt•Z(K,L-1> 

RP=RCK+l ,L.-U 
ZP=ZCK+l,L-1> 

CALL PRCIJCT 

RCK-1,L-ll=RR 
ZCK-1,L-l>=ZZ 

PCK+l,L.-1> 

SET UP BOTTOM RIGHT CORNER 

OCK,L> 
PCK+1,L+1> 
1CK+1,L> 
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RCK+l,L-1) 

K=KMX 
L=LMN 

RO=RCK,LJ 
ZO=ZCK, Ll 

Rl=RCK+l,LJ 
Zl=ZCK+l,LJ 

RP=RCK+l,L+l) 
ZP=Z<K+l,L+l) 

CALL PROJCT 

RCK+l,L-l>=RR 
ZCK+l,L-l>=ZZ 

SET UP TOP LEFT CORNER 

RCK-1,L+l) 
lCK-1,LJ 
PCK-1, L-1 > 

L=LMX 
K=KMN 

RO=RCK,LJ 
ZO=ZCK, Ll 

OCK, L> 

Rl =RCK-1,Ll 
Z1 =ZCK-1,Ll 

RP=RCK-1,L-1) 
ZP=ZCK-1.L-1> 

CALL PROJCT 

RCK-1,L+l)=RR 
ZCK-1,L+l>=ZZ 

421 c 
422 c 
423 
424 
425 c 
426 
427 
428 c 
429 
430 
431 c 
432 
433 
434 c 
435 
436 c 
437 
438 
439 c 
440 c 
441 c 
442 c 
443 c 
444 c 
445 c 
446 
447 
448 c 
449 
450 
451 c 
452 
453 
454 c 
455 
456 
457 c 
458 
459 c 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 c 
475 
476 c 
477 
478 
479 
480 

c 
C************************************* 
C• * 
C* SET UP BOUNDARY ZONE ATTRIBUTES * 
C* * 
C************************************* c 
c 
c 

SET UP BOTTOM SIDE BOUNDARY ZONES 

C CK,L> = CK,L+l) 
c 

L=LMN 

DO 255 K=KMNP,KMX 

RHOCK,L>=RHOCK,L+l) 
AJC!.<.J_L>=AJCK,L+l> 
IP=rmC<K-1 Ll 
QCK,L>=QBC1P>•QCK,L+1> 
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481 
482 c 
483 
484 c 
485 c 
486 c 
487 c 
488 c 
489 
490 c 
491 
492 c 
493 
494 
495 
496 
497 
498 c 
499 
500 c 
501 c 
502 c 
503 c 
504 c 
505 
506 c 
507 
508 c 
509 
510 
511 
512 
513 
514 c 
515 
516 c 
517 c 
518 c 
519 c 
520 c 
521 
522 c 
523 
524 c 
525 
526 
527 
528 
629 
530 c 
531 
532 c 
533 c 
534 c 
535 
536 
537 
538 
539 c 
540 c 

PCK,L>=PBBCIPl+PBCIP>•PCK,L+l) 

255 CONTINUE 

SET UP RIGHT SIDE BOUNDARY ZONES 

CK+l, Ll = CK, L> 

K=KMX 

DO 265 L=LMNP,LMX 

RHOCK+1,Ll=RHOCK,L> 
AJCK+l,Ll=AJCK,L) 
I P=NBCCK, L> 
QCK+l,L)=QBCIPl•QCK,L> 
PCK+1,Ll=PBBCIPl+PBCIPl•PCK,Ll 

265 CONTINUE 

SET UP TOP SIDE BOUNDARY ZONES 

CK, L+l l = CK, L> 

L=LMX 

DO 275 K=KMNP,KMX 

RHOCK,L+ll=RHOCK,Ll 
AJCK,L+1l=AJCK,Ll 
!P=NBCCK-1 Ll 
QCK,L+ll=QBCIPl•QCK,L> 
PCK,L+ll=PBBC!Pl+PBCIPl•PCK,Ll 

275 CONTINUE 

SET UP LEFT SIDE BOUNDARY ZONES 

CK,L> = CK+l,Ll 

K=KMN 

DO 285 L=LMNP,LMX 

RHOCK,Ll=RHOCK+l,Ll 
AJCK,Ll=AJCK+l,Ll 
IP=NBCCK L-1> 
QCK,Ll=QBCIPl•QCK+l,Ll 
PCK,Ll=PBBC!Pl+PBCIPl•PCK+l,Ll 

285 CONTINUE 

SET UP BOTTOM LEFT CORNER 

PCKMN,LMNl=P<KMNP,LMNPl 
QCKMN,LMNl=QCKMNP,LMNPl 
RHOCKMN,LMNl=RHOCKMNP,LMNPl 
AJCKMN,LMNl=AJCKMNP,LMNPl 

SET UP BOTTOM RIGHT CORNER 
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PCKMXP,LMN>=PCKMXP,LMN+1) 
QCKMXP,LMN>=QCKMXP,LMN+1) 
RHOCKMXP,LMN>=RHO<KMXP,LMN+1) 
AJCKMXP,LMN>=AJCKMXP,LMN+1) 

SET UP TOP RIGHT CORNER 

P<KMXP,LMXP>=P<KMXP,LMX> 
QCKMXP,LMXP>=QCKMXP LMX> 
RHOCKMXP,LMXP>=RHOCKMXP,LMX> 
AJCKMXP,LMXP>=AJCKMXP,LMX> 

SET UP TOP LEFT CORNER 

PCKMN,LMXP>=PCKMNP,LMXP> 
QCKMN,LMXP>=QCKMNP,LMXP> 
RHOCKMN,LMXP>=RHOCKMNPbLMXP> 
AJCKMN,LMXP>=AJCKMNP,L"XP> 

GET BOUNDARY CONDITION COMPUTE TIME 

12=NECONDCl1) 
NBTCNED>=NBTCNED>+l2 

DEBUG EDIT 

IFCDEBUG.EQ,O.) GO TO 442 
IGEN=1 

WRITECN0,441) 
441 FORMATC9H DEBUG 

CALL EDIT 

442 CONTINUE 

1) 

541 c 
542 
543 
544 
545 
546 c 
547 c 
548 c 
549 
550 
551 
552 
553 c 
554 c 
555 c 
556 
557 
558 
559 
560 c 
561 c 
562 c 
563 
564 
565 c 
566 c 
567 c 
568 
569 
570 c 
571 
572 
573 c 
574 
575 c 
576 
577 c 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 c 
596 
597 c 
598 
599 
600 

DO 450 L=LMN,LMX 
DO 445 K=KMN KMX 

COMPUTE ACCELERATlaN 
AU=CPCK,L)+QCK,L>> * CZCK,L-1>-ZCK-1,L>> + 

X CPCK+1,L)+QCK+1,Lll*CZCK+1,Ll-ZCK,L-1)) + 
X CPCK+1,L+1)+QCK+1,L+l>)•CZCKtL+1J-ZCK+1,L>> + 
X CPCK,L+1)+QCK)L+1)l*CZCK-1tLJ-ZCK,L+1)) 

AW=CPCK,L)+QCK,L) * CRCK,L-11-RCK-l,L>> + 
X CPCK+l,L>+QCK+l,L>> * CRCK+1,Ll-RCK,L-1>> + 
X CPCK+1,L+1)+QCK+l)L+1>> * CR<KtL•l>-RCK+l,L>> + 
X CPCK,L+l)+QCK,L+l > * CRCK-l,L1-RCK,L+l>> 

AUW=RHOCK,L>•AJCKAL>+RHOCK+l,L>•AJCK+l,L>+RHOCK,L+l>*AJCK,L+l> 
X +RHOCK+l,L+l>* JCK+l,L+l) 

AUW=2./AUW 
AU=-AU•AUW 
AW=AW•AUW 
UCK,L>=UCK L>+DTN*AU 

ADVANCE VELOCltJES TO N+l/2 FROM N-1/2 
WCK,L>=WCK,L>+DTN*AW 

POSITION CN+l) 
IFCABSCUCK,L>>.LE.VCUT>UCK,LJzO. 
IFCABSCWCK,L>>.LE.VCUT>WCK,L)zQ, 
ACK.L>=UCK,Ll**2+WCK,Ll**2 
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445 CONTINUE 
450 CONTINUE 

IFCNOHYD.EQ.1) GO TO 455 
C NOHYD=1 TO SKIP HYDRO 

601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 c 
612 c 
613 c 
614 c 
615 c 
616 c 
617 c 
618 c 
619 
620 
621 c 
622 
623 
624 c 
625 
626 c 
627 
628 c 
629 
630 c 
631 c 
632 
633 
634 
635 
636 
637 
638 
639 
640 c 
641 c 
642 c 
643 
644 
645 
646 
647 c 
648 c 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 

DO 452 L=LMN,LMX 
DO 451 K=KMN,KMX 
RCK,L>=RCK,L>+DTNPH*UCK,L> 
ZCKtL>=ZCK,L>+DTNPH*WCK,L> 

451 CON INUE 
452 CONTINUE 

ACCELERATION VELOCITY AND 
CO-ORDINATES DONE 

BEGIN LOOP 3 
TEMP RY *****•*** 

DEBUG EDIT 

IFCDEBUG.EQ.O.> GO TO 455 
IGEN=1 

WRITECN0.456) 
456 FORMATC9H DEBUG 

CALL EDIT 

455 CONTINUE 

CALL HWORK 

2) 

END OF NECOND PASS 

COMPUTE HYDRO WORK ON THE BOUNDARY 
DO 490 L=LMNP,LMX 
DO 485 K=KMNP KMX . 
AJ1=RCK,L>* CZCK-1,L>-ZCK,L-1)) + 

X RCK-1,L>• CZCK,L-1>-ZCK,L>> + 
X RCK,L-1>*CZCK,L>-ZCK-1 L>> 

AJ3=R<K-1,L>* CZCK-1,L-1>~ZCK,L-1l> + 
X RCK-1,L-1>•CZCK,L-1>-ZCK-1,L)) • 
X RCK,L-1>•CZCK-1,L>-ZCK-1,L-1)) 

JACOBIAN AREA IN CR,Z> PLANE 

SN=SCK LJ 
AJCK,Ll=P1D2•CAJ1+AJ3) 
SCK,L>=P1D6•CCRCK,L>+RCK-1,Ll+R<K,L-1>>*AJ1 + 

X CRCK-1,L>+RCK-1,L-1>+RCK,L-1>>*AJ3 

S=VOLUME/2X CCM••3/RADIAN> 
VN=1./RHOCK,LJ 

C VN=SPECIFIC VOLUME AT CNJ 
C VNP=SPECIFIC VOLUME AT CN+1) 

RHOCK,L>=RHOCK,L>•SN/SCKtL) 
DUMCK,LJ=RHOCK,L>•SCK,L' 

C DUM=MASS 
C DENSITY AT N+1 

VNP=1./RHOCK,L> 
DELV=VNP-VN 

COMPUTE ARTIFICIAL VISCOSITY 
DRK=RCK,L>-RCK-1,L-l>+RCK,L-1>-RCK-1,L) 
DRL=RCK,L>-RCK-1,L-1)+RCK-1,LJ-RCK,L-1) 
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DZK 
DZL 
DUK 
DUL 
DWK 
OWL 

ZCK, U -ZCK-1, L-1 > +ZCK, L-1) -ZCK-1, L) 
Z<K, U -ZCK-1, L-1 l +ZCK-1, L> -ZCK, L-1 > 
UCK,Ll-UCK-1,L-ll+UCK,L-ll-UCK-1,L) 
UCK,Ll-UCK-1,L-ll+UCK-1,LJ-UCK,L-1) 
WC K , U -W < K - 1 , L - 1 J + W C K, L - 1 > -WC K - 1 , L ) 
WCK,Ll-WCK-1,L-ll+WCK-1,Ll-WCK,L-1} 

DRK=2DR/DK 
DRL=2DR/DL 

Wl= DRK*DWL-DZK*DUL 
W2= DUK*DZL-DWK*DRL 
GlCK,Ll=O. 
W3=0. 
W4=0. 
IFCW1.LT.O. JW3=W1**2/CDRK**2+DZK**21 
IFCW2.LT.O. JW4=W2••2/CDRL••2+DZL*•21 
IFCCW3+W4l.EQ.O.J GO TO 465 
CA=SQRTCGAM•PCK,Ll/RHOCK,Lll 

DON'T COMPUTE Q IF ZONE IS NOT BEING COMPRESSED 
QCK,L>=COF•RHOCK,Ll•CW3+W4l + C1F•CA•RHOCK,Ll•SQRTCW3+W4l 

ClF= Cl•.5 COF=.25•C0••2 CA=SOUND SPEED 

IFCCA.EQ.0.) GO TO 465 
TSO=CAJCK~Ll••2l/CCA•CA•CDRK•*2+DRL~•2+DZK**2+DZL**2ll 
IFCDTC2.L~.TSOJ GO TO 462 

HAVE A NEW MINIMUM DELTA T 
DTC2=TSO 
KC=K 
LC=L 

462 CONTINUE 
465 CONTINUE 

EPS=ECK,L>-CPCK,Ll+QCK,Lll*DELV 
ECN+l) 

RARGl =RHO CK, Ll 
CALL TEMPCAL -
TARGl=TEMPS 
CALL IES1 
PNP=FUNCl 

661 
662 
663 
664 
665 
666 
667 c 
668 c 
669 c 
670 c 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 c 
681 
682 c 
683 c 
684 
685 
686 
687 c 
688 
689 
690 
691 
692 
693 
694 c 
695 c 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 

C GAMMA-LAW EOS GAMZ=GAM-1. 
ECK,Ll=ECK,Ll-C.5•CPNP+PCK 1 L))+QCK,Lll•DELV 
ECK, L> =AMAX! CECK, L>, 1. E-30J 
EPS=ECK, Ll 
CALL TEMPCAL -

C GET TEMPERATURE AS FUNCTION OF E.RHO 
TARG1=AMAX1CTEMPS,TFLRl 

TEMP CK, L> =TARGl 
CALL IESl 

C GET PRESSURE 
PC K, Ll = FUNC 1 

C ECN+ll 
C PCN+ll 
c 

SKE=SKE+P1D8•DUMCK,Ll*CACK,LJ+A<K-1,Ll+ACK,L-1l+ACK-1,L-1ll 
C KINETIC ENERGY FOR THE ZONE 

485 CONTINUE 
490 CONTINUE 

C********************************END OF LOOP 3 c 
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c 
c 

c 

c 
c 
c 

DEBUG EDIT 

IFCDEBUG.EQ.0.) GO TO 495 
IGEN=1 

WRITECN0.493) 
493 FORMATC9H DEBUG 3) 

CALL EDIT 

495 CONTINUE 

IGEN=O 
12=NECONDCl1) 
NXTCNED>=NXTCNED)+l2 

CALL CONDUCT 
DO HEAT CONDUCTION 

NYCL=NYCL+ 1 
C ADVANCE CYCLE COUNTER 

DTNMH=DTNPH 

721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 c 
737 
738 c 
739 c 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
780 

DTC=SQRTCDTC2> 
DTNPH=DTC 
DTNPH=AMIN1CDTNPH,DTEN,DTMAX) 

C LIMIT MAGNITUDE OF OT 
DTN=.5•CDTNPH+DTNMH> 
TNUP=TNUP+DTNPH 
IFCDTNPH.GE.DTMIN> GO TO 602 

C********** DT IS BELOW ALLOWED MINIMUM ~**~****** 
WRITE<N0.601lNYCL,TNUP,DTNPH,DTMIN 
WRITE<NO 601lNYCL,TNUP,DTNPH,DTMIN 

601 FORMAT<12H DTSTOP NYCL, 16,3H T ,E12.4,4H DT ,E12.4~ 
GO TO 999 

602 CONTINUE 
TE=SKE+ENH 
CN=TE-HN-WN 
IFCNYCL.EQ.1) CNOLD=CN 
CNN=CN-CNOLD 
ENCG=ENCG+CNN 
CNOLD=CN 
IFCMODCNYCLLNCPl.NE.O> GO TO 603 
WRITECN0.70ol 

706 FORMATC6H CYCLE,4X,5HTIME ,7Xt2HDT,lOX,3HDTC,5X,8H KC 
X 4X 3HDTE,5X 8H KEN LEN1 

WRITECNOL707>NYCLLtNUP 1 DTNPH,DTC,KC$LC,DTEN,KEN,LEN 
707 FORMATClo,3E12.4,~14,E12.4,214> 

Z~=ABSCENC-CENH+HN>>IENC 
WRITECN0.708> 

708 FORMATC4X,4HETOT,8X,4HIE ,8X,4HKE ,8X,4HHN ,8X,4HWN 
X 8X,5HECONS,7X,5HCNCN>,7X,4HECNG> 

WRITECN0.709>TE,ENC,SKE,HN,WN,Z2,CNN,ENCG 
709 FORMATC8E12.4l 

603 CONTINUE 
12=NECONDCl1) 
NCTCNED>=NCTCNED>+l2 

C RUN TIME FOR PHYSICS 
IFCTNUP.LT.EDTIME> GO TO 605 

C TIME TO EDIT 
CALL EDIT 
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WRITECN0,604>NYCL,TNUP,DTNPH,RMAX,KR,LR 
604 FORMATC12H EDIT NYCL= , 16,2E12.4,E14.5,214> 

C MESSAGE TO TTY 

781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 
801 
802 
803 
804 c 
805 c 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 c 
823 
824 

EDTIME=EDTIME+EDDT 
C ADVANCE ED!TME TO NEXT VALUE 

605 CONTINUE 
IFCTNUP.LT.TMAX> GO TO 610 

C*******••• PROBLEM HAS REACHED TMAX*****~**** 
WRITECN0,607>NYCL,TNUP,TMAX 
WRITECN0,607lNYCL,TNUP,TMAX 

607 FORMATC12H STOP TMAX ,16,2E12.4> 
GO TO 999 

610 CONTINUE 
GO TO 1 

999 CONTINUE 
C PROBLEM COMPLETED GET OFF 
C CALL PLOTE 

WRITECN0,616JCNBTCKl,NCTCK>,NET<KJ,NPTCK),NXTCK>,K=1,NED> 
616 FORMATC5C 1X, 110) > 

11=0 
DO 618 K=1,NED 
11=11+NBTCK>+NCTCK)+NETCKl+NPTCK>+NXTCKl 

618 CONTINUE 

619 
c 

620 

I F ( I 1 . EQ • 0 > I 1 = 1 
DO 619 K=2,NED 
NBT< 1) =NBTC 1) +NBTCK> 
NCT< 1>=NCTC1) +NCTCK> 
NETC1>=NETC1>+NETCK) 
NPTC1>=NPTC1>+NPTCK> 
NXTC1 >=NXTCll+NXTCKl 
CONTINUE 

AESCl>=CNBTCll*lOOl/11 
AESC2>=CNCTC1)*100l/11 
AESC3>=CNETC1l*100l/11 
AESC4l=CNPTC1l*100l/11 
AESC5>=CNXTC1l*l00)/11 
WR I TE C NO, 620) I 1 , C AES C I 2 > , I 2= 1 , 5) 
FORMATCl10,5E12.4> 

RETURN 
END 
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825 

SUBROUTINE GEN 

THIS SUBROUTINE GENERATES THE INITIAL PROBLEM TO BE RUN 

COMMON /KLS/ K,L,DEBUG,VERSION,WHER,WHEN,P1D6,PIE,IGEN,P1D2 
X ,DTC,KC,LC,DTEN,KEN,LEN,SKE,HN,SlEL,CNN,ENC,ENH,ENCG,WN 
X ,NCP 

COMMON /PROGG/ RO,ZO,Rl,Zl,RP,ZP,RR.ZZ 

COMMON /COMN/ RC33t33lLZC33,33),UC33,33),RHOC33,33l,QC33,33l 
X LEC33,33JLPC~3,33),AJC33,33),SC33,33),NBCC33,33) 
X ,WC3~ 33l,TEM~C33,33) 
X , AC33,33lLQC33L33),CCC33,33l,DUMC33,33),CBBC33,33l 
X , DBBC33,3~l,CA~C33,33l,SIGC33,33l,TSC33,33l 

COMMON /PARAM/ NYCL,TNUPLDTNUP,DTN,DTNPH,DTNMH,EDTIME,EDDT 
X ,GAMLGAMZ,COF,ClF,~1,TMAX,DTMAX,DTMIN,TFLR,NOHYD 
X ,C2,~2,P3,NO,NTTY,NED 

COMMON /KLSPACE/ KMN,LMN,KMX,LMK,KMXZ,LMXZ,KMNP,LMNP,KMXP,LMXP 

COMMON /GENCOM/ RHOO,EO,UO,PO,WO,DR,DZ,NBCU,NBCD,NBCL,NBCR 
X ,PBC3l,PBBC3l,QB(3} 

COMMON /MINMAX/ XMIN,XMAX,YMlN,VMAX,PMIN,PMAX,QMIN,QMAX 
X,RMIN,RMAX,KQ,LQtKR,LRiKP,LP 
X ,XMINX,XMAXX,YM NX,YMAXX 

IGEN NOT EQUAL 0 WILL CAUSE THE EDIT ROUTINE TO PRINT ALL THE VARIABL 

DATA IGEN/1/ 

826 
827 
828 c 
829 c 
830 c 
831 
832 
833 
834 c 
835 
836 c 
837 
838 
839 
840 
841 
842 c 
843 
844 
845 
846 c 
847 
848 c 
849 
850 
851 c 
852 
853 
854 
855 c 
856 c 
857 c 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 
868 
869 c 
870 
871 
872 c 
873 
874 c 
875 c 
876 c 
877 
878 c 
879 
880 
881 c 
882 
883 c 

c 
C************************ 
C* * 
C* GENERATE NBC ARRAY * 
C* * 
C************************ c 
c 
c 

SET BOTTOM AND TOP BOUNDARY CONDITIONS 

DO 52 K=KMN,KMX 

fl{BCCK,LMN>=NBCD 
NBCCK,LMX>=NBCU 

52 CONTINUE 

SET LEFT AND RIGHT BOUNDARY CONDITIONS 

54 

DO 54 L=LMN,LMX 

NBC C KMN, U = NBCL 
NBCCKMX, U =NBCR 

CONTINUE 

884 C***********************************~****~ 
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885 C* ll 
886 C* GENERATE COORDINATES AND VELOCITIES ~ 
887 C* ll 
888 C***********•***********************K***** 
889 c 
890 C INITIALIZE THE MINIMUM AND MAXIMUM VALUES OF R AND Z 
891 c 
892 XMINX=1 .E+6 
893 XMAXX=-1.E+6 
894 c 
895 YMINX=1.E+6 
896 YMAXX=-1.E+6 
897 c 
898 RP=LMX-LMN 
899 ZP=KMX-KMN 
900 c 
901 DO 58 K=KMN,KMX 
902 c 
903 Z1=10+K-KMN 
904 c 
905 DO 57 L=LMN,LMX 
906 c 
907 C COMPUTE THE COORDINATES R AND Z 
908 c 
909 RR=L-2 
910 ZZ=<-.5+RR/RP>*PIE 
911 c 
912 RCK,L>=Z1•COS<ZZ) 
913 ZCK,L>=Z1•SINCZZ> 
914 c 
915 C FIND THE MINIMUM AND MAXIMUM VALUES OF RAND Z 
916 c 
917 XMINX=AMIN1CXMINX,RCK,L>> 
918 XMAXX=AMAX1CXMAXX,RCK,L>> 
919 c 
920 YMINX=AMIN1CYMINX,ZCK,L)) 
921 YMAXX=AMAX1CYMAXX,ZCK,L>> 
922 c 
923 57 CONTINUE 
924 c 
925 58 CONTINUE 
926 c 
927 C***********************************X********************* 
928 C• * 
929 C* GENERATE ZONE QUANTITIES RHO, P, E AND COMPUTE AREA * 
930 C• * 
931 C***********************************X****~**************** 
932 c 
933 
934 
935 
936 
937 
938 
939 
940 
941 
942 
943 
944 

c 
c 
c 

c 
c 
c 

P1D6=1./6. 

DO 65 L=LMNP,LMX 

DO 63 K=KMNP,KMX 

RHOCK,L>=RHOO 
PCK,Ll=PO 
ECK, Ll =EO 

COMPUTE JACOBIAN 
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63 

65 

AJl=R,K,L>•CZCK-1,L)-ZCK,L-l>>+RCK-t,L>•CZCK,L-1>-ZCK,L>> 
X +RCK,L-l)•CZCK,L>-ZCK-1,L>> 

AJ3=RCK-t,L>•CZCK-1 1 L-1>-ZCK 1 L-l))+RCK-1,L-l)*CZCK,L-1>-ZCK-1,L)) 
X +RCK,L-l)•CZCK-1,L>-ZCK-1,L-I)) 

AJCK,L>=P1D2*CAJ1+AJ3) 

SCK,L>=P1D6•CCRCK,L>+RCK-1,L>+RCK,L-l>>*AJ1 + 
X CRCK,L-1>+RCK-1,Ll+RCK-1,L-1>>*AJ3) 

CONTINUE 

CONTINUE 
c 
C**************** 
C* * 
C* DEBUG EDIT * 

945 
946 
947 c 
948 
949 
950 c 
951 
952 c 
953 
954 
955 c 
956 
957 c 
958 
959 
960 
961 
962 
963 
964 
965 
966 
967 c 
968 c 
969 c 
970 
971 
972 c 
973 
974 
975 c 
976 
977 
978 c 
979 
980 
981 c 
982 
983 c 
984 
985 c 
986 
987 
988 
989 c 
990 
991 

C* * 
C**************** c 

IFCDEBUG.EQ.O.>GO TCI 80 

PRINT NBC BCIUNDARY SENTINELS 

WRITECN0,71)CNBCCK,LMN>,K=KMN,KMXJ 
71 FORMATC3HLMN,8011) 

WRITECN0,72)CNBCCK,LMX>,K=KMN,KMX) 
72 FORMA TC 3HLMX, 80.J 1 ) 

WRITECN0,73)CNBCCKMN,L>,L=LMN,LMX) 
73 FORMATC3HKMN,8011) 

WRITECN0,74)CNBCCKMX,L>,L=LMN,LMX) 
74 FORMATC3HKMX,8011) 

CALL EDIT 

80 CONTINUE 

WRITECNO 85) 
WRITECNTtv,85) 

85 FORMATC21H GENERATION COMPLETED) 

RETURN 
END 

" 
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992 
993 c 
994 
995 
996 
997 c 
998 
999 

c 
c 
c 

SUBROUTINE EDIT 

COMMON /KLS/ K,L,DEBUG,VERSION,WHER,WHEN,P1D6,PIE, IGEN,P1D2 
X ,DTC,KC,LC,DTEN,KEN,LEN,SKE,HN,SJEL,CNN,ENC,ENH,ENCG,WN 
X ,NCP 

COMMON /COMN/ RC33,33>,ZC33,33J,UC33,33>,RHOC33,33),QC33,33) 
X ,EC33,33>,PC33,33>,AJC33.33J,SC33,33l,NBCC33,33) 
X ,WC33,33l,TEMPC33,33) 
X , AC33,33l~BC33,33l,CCC33f33l,DUMC33~33),CBBC33,33l 
X, DBBC33,3~>.CAPC33,33l,S G(33,33l.T~C33,33) 

COMMON /PARAM/ NYCL,TNUP,DTNUP,DTN,DTNPH,DTNMH,EDTIME,EDDT 
X ,GAM,GAMZ,COF,C1F,C1,TMAX,DTMAX,DTMIN,TFLR,NOHYD 
X ,C2,P2,P3,NO,NTTY,NED 

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP 

COMMON /MINMAX/ XMIN,XMAX,YMIN,YMAX,PMIN,PMAX,QMIN,OMAX 
X,RMIN,RMAX,KQ,LQ,KR,LR,KP,LP 
X ,XMINX,XMAXX,YMINX,YMAXX 

COMMON /TIMING/ NBTC20l,NCTC20),NETC20>,NPTC20l,NXTC20l 

C TEMPIS SUBROUTINE EDITS 
DATA Nl00/100/ 

1000 
1001 
1002 
1003 c 
1004 
1005 
1006 
1007 c 
1008 
1009 c 
1010 
1011 
1012 
1013 c 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 c 
1022 c 
1023 c 
1024 
1025 
1026 c 
1027 
1028 
1029 c 
1030 
1031 
1032 c 
1033 
1034 
1035 c 
1036 
1037 
1038 c 
1039 c 
1040 c 
1041 
1042 
1043 c 
1044 
1045 
1046 c 
1047 
1046 
1049 c 
1050 c 
1051 c 

ALL M~SH VARIABLES 

11 =O 

INITIALIZE MINIMUM AND MAXIMUM VALUES OF RHO, P, Q, R AND Z 

RMIN=1.E+6 
RMAX=-1.E+6 

PMIN=1.E+6 
PMAX=-1.E+6 

QMIN=1.E+6 
QMAX=-1.E+6 

XMIN=1.E+6 
XMAX=l.E-6 

YMIN=l .E+6 
YMAX=1.E-6 

INITIALIZE LOCATION OF MAXIMUM VALUES OF RHO, P AND Q 

KR=O 
LR=O 

KP=O 
LP=O 

KQ=O 
LQ"O 

FIND THE MINIMUM AND MAXIMUM VALUES OF RHO, P, Q, R AND Z 
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1052 
1053 c 
1054 
1055 c 
1056 
1057 
1058 
1059 
1060 c 
1061 
1062 c 
1063 
1064 
1065 
1066 
1067 c 
1068 
1069 c 
1070 
1071 
1072 
1073 
1074 c 
1075 
1076 c 
1077 
1078 
1079 
1080 c 
1081 
1082 
1083 c 
1084 
1085 
1086 c 
1087 
1088 c 
1089 
1090 c 

DO 715 L=LMNP,LMX 

DO 714 K=KMNP,KMX 

IFCRHOCK,Ll.LE.RMAXlGO TO 701 
RMAX = RHCH KI L) 
KR=K 
LR=L 

701 CONTINUE 

IFCPCK,L>.LE.PMAXlGO TO 702 
PMAX=PCK,Ll 
KP=K 
LP=L 

702 CONTINUE 

IFCQCK,Ll.LE.QMAXlGO TO 703 
QMAX=QCK,L> 
KQ=K 
LQ=L 

703 CONTINUE 

RMIN=AMIN1CRMIN,RHOCKtLll 
PMIN=AMIN1CPMIN,PCK,L1l 
QMIN=AMIN1CQMIN,QCK,Lll 

XMIN=AMIN1CXMIN,RCK,Lll 
XMAX=AMAX1CXMAX,RCK,Lll 

YMIN=AMIN1CYMIN,ZCK,L)) 
YMAX=AMAX1CYMAX,ZCK,Ll> 

714 CONTINUE 

715 CONTINUE 

1091 C PRINT PROBLEM PARAMETERS 
1092 c 
1093 
1094 
1095 
1096 c 
1097 
1098 
1099 
1100 
11 01 
1102 
1103 
1104 
1105 
1106 
1107 c 
1108 c 
1109 
111 0 
111 1 

WRITECN0.717) NVCL,TNUP,DINPH,OTN,VERSION,WHER,WHEN 
717 FORMATC6H NYCL ,16,6H TIME ,E12.4,7H DTNPH ,E12.4,5H DTN 

X E12.4,9H VERSION ,F4.1,2A10) 

WRITECN0.718l PMAX,KP,LP,QMAX,KQ,LQ.RMAX,KR,LR 
718 FORMAT<14H MAXIMUM <K,L>,E12.4,214,3H P ,E12.4,214,3H a , 

X E12.4,214,5H RHO > 
UVTEST=l.E-5 
KL=KMN 
LL=LMN 
KU=KMX 
LU=LMX 
IFCIGEN.EQ.Ol GO TO 720 
UVTEST=-100. 

PRINT ALL MESH POINTS 
IGEN.NE.O WILL RESULT IN EDIT OF ENTIRE MESH,=O ONLY ACTIVE ZONES 

KL=KMN-1 
LL=LMN-1 
KU=KMX+1 
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1112 
1i13 
1 1 1 "~ 
1115 
1116 
1i17 
1118 
1119 
1120 
1121 
1122 
1123 
1124 
1125 

U.J=LMX+ 1 
720 cei~n ! NUE 

C BEGiN COIT 
DC 740 L=LL, L.U 
1-!R l TE (~HS, 725 l 

725 FORMATIBH L K,4X,1HR, lOX, 1HZ,10X, 1HU,10X, lHW, 10X,3HRHO, 
X BX, lHE, 10X, 1HP,10X, 1HQ,10X,2HAJ,9X,5HTHETAI 

Dei 738 K=l<t_, KU 
!FllABStUCK,Lll+ABSCWCK,Llll.LE.UVTESTlGO TO 738 

C DO~IT PR I NT V/11~ J ABLES IF NO f'ieJT I eJN 
WRITECNel,726lL,K,RCK,Ll,ZCK,LJ,UIK,Ll,WCK,Ll,RHCCK,Ll,ECK,Ll 

c 
1 126 
1127 
1128 
1129 c 
1130 
1131 
1132 
1133 c 
1134 
1135 

726 
738 
740 

X, PC K, Ll , Q ( K, Ll, AJ CK, Ll , TEMP CK, LJ 
FeJRMAT ( 2 f "1, 1OE11 . 3 I 
CONTINUE 
CeJNTINUE 

NETCNEDl=NECONDCI1 J 

NPTCNEDJ=NECONDCJ1l 
NED=NED+1 
JFCNED.GT.201 NED=l 

RETURN 
END 
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SUBROUTINE TEMPCAL ,If 1.- ) ! ,-. 'J s 

COMMON /EOSCOM/ KEOS,TARG1,TARG2,TARG3,RARG1,RARG2,RARG3, 

1136 
1137 c 
1138 
1139 
1140 

X FUNC1,FUNC2,FUNC3,TEMPS,EPS,EPSO 
c 
C INVERSE TABLE LOOK-UP 
c 

DATA P1M6/1 .E-6/ 
TARG1=0. 

CALL IES2 
E=EOSCO,RHO> 

EPSO=FUNC1 
TEMPS=O. 
IFCEPS.LT.EPSO> RETURN 

RETURN TEMPETA = 0 IF BELOW 
TEMPS=10.*EPS 

I NI Tl AL GUESS 
10 TARG1=TEMPS 

CALL IES2 

FUNC2=FUNC1 
TARG1=TARG1+P1M6 

CALL IES2 

TABLE 

1 1 41 
1142 
1143 
1144 
1145 c 
1146 
1147 c 
1148 
1149 
1150 
1151 c 
1152 
1153 c 
1154 
1155 c 
1156 
1157 c 
1158 
1159 
1160 c 
1161 
1162 c 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
11 71 

DTEMP=P1M6*CCEPS-FUNC2)/CFUNC1-FUNC2)) 
TEMPS=TEMPS+DTEMP 
IFCTEMPS.LT.P1M6) GO TO 20 
IFCABSCDTEMP>.GT.P1M6) GO TO 10 

CONVERGED 
RETURN 

20 TEMPS=O. 
RETURN 
END 
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1172 
1173 c 
1174 
1175 
1176 c 
1177 
11 78 
1179 
1180 c 
1181 
1182 
1183 
1184 
1185 
1186 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 
1198 c 
1199 c 
1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 c 
1221 
1222 
1223 c 
1224 c 
1225 c 
1226 
1227 
1228 c 
1229 c 
1230 c 
1231 c 

c 
c 

SUBROUTINE JES 

COMMON /EOSCOM/ KEOS,TARG1,TARG2,TARG3,RARG1,RARG2,RARG3, 
X FUNC1,FUNC2,FUNC3,TEMPS,EPS,EPSO 

COMMON /COM2/ NTSVC2>,NRSVC2),MSV(2},TESC7l,RESC9l 
X ,AESC12J,BESC12l,CESC12>,DESCJ2),EESC12),FESC12l,GESC12l 
X , HES ( 1 2) , PES C 1 2) , I TES C 3) , I RES C 3) , I ZES C 3) 

N=l 
RETURN 
ENTRY IESl 
N=l 
EXTT= 1. 
EXTR=1. 
TARG=TARG1 
RARG=RARG1 
IBOUND=O 
I ESTB= 1 
GO TO 5000 

110 CONTINUE 
FUNC = AESCM>+RARG*CBESCM)+RARG*DESCM>> 

1 +TARG*CCESCM>+RARG*CFESCMJ+RARG*GESCM>> 
2 +TARG*CEESCMl+RARG•CHESCMl+RARG•PESCMlJ)) 

FUNC1=FUNC*EXTT•EXTR 
RETURN 

IES2 ENERGY=FUNCTIONCTEMPETA RHO) 

210 

ENTRY IES2 
N=2 
EXTT= 1. 
TARG=TARG1 
RARG=RARG1 
IBOUND=O 
IESTB=2 

GCI TCI 5000 
CONTINUE 
FUNC = AESCM>+RARG*CBESCM>+RARG*DESCM>> 

1 +TARG*CCESCMl+RARG*CFESCMl+RARG*GESCM>> 
2 +TARG*CEESCMl+RARG•CHESCMl+RARG*PESCM}J)) 

FUNCl=FUNC*EXTT 
RETURN 

TABLE LOOK UP 

5000 NT=NTSVCN) 
NR=NRSVCNJ 
MLR = 0 
MLT = 0 

IFCTESCNTJ.GT.TARG> GCI TO 5100 
IFCTESCNT+1J.LE.TARGJ GO TO 5200 

TARG IN SAME T STRIP AS FOR PREVIOUS ENTRY 

IFCRESCNR>.GT.RARGJ GO TO 5300 
IFCRESCNR+1J.LE.RARGl GO TO 5400 

TARG AND RARG IN SAME BOX AS FOR PREVIOUS ENTRY 
M SAME AS FOR PREVIOUS ENTRV,FAST RETURN 
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c 
c 
c 
c 
c 
c 
c 

5100 
c 

1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 
1240 
1241 
1242 
1243 
124.4 
1245 
1246 
1247 c 
1248 c 
1249 c 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1258 c 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
1268 
1269 
1270 
1271 
1272 
1273 
1274 c 
1275 c 
1276 c 
1277 
1278 
1279 
1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 c 
1288 c 
1289 c 
1290 
1291 c 

c 
c 

c 
c 
c 
c 

c 
c 
c 

5105 

5115 

5120 
c 
c 
c 
c 

c 
c 
c 

5200 
c 
c 
c 

5205 

M=MSVCN) 
GO TO Cll0,210) ,IESTB 

T SEARCH 

TARG BELOW T STRIP OF PREVIOUS ENTRY 

OUT OF TABLE TEST, LOW T 

IFCNT.LE.ITESCNll GO TO 5115 

SEARCH TO NEXT LOWER T STRIP 

NT=NT-1 
IFCTESCNTl.GT.TARG) GO TO 5120 

STRIP CONTAINING TARG FOUND, BEGIN R SEARCH 

IFCRESCNRJ-RARGJ 5410,5310,5320 

TARG BELOW LOWEST TABLE ARGUMENT AND 
WAS BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY 

MLT=-1 
EXTT=EXTT*TARG/TESCNTl 
TARG=TESCNTl 

IFCRESCNRJ.GT.RARGl GO TO 5300 
IFCRES CNR+ll.LE.RARGJ GO TO 5400 
M = MSVCN) 
GO TO (110,210) ,IESTB 

OUT OF TABLE TEST, LOW T 

IFCNT.GT.ITESCNJ) GO TO 5105 

TARG BELOW LOWEST TABLE ARGUMENT BUT 
WAS NOT BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY 

MLT=-1 
EXTT=EXTT*TARG/TESCNTJ 
TARG=TES<NTJ 

BEGIN R SEARCH 

IFCRESCNRl-RARGl 5410,5310,5320 

OUT OF TABLE TEST, HIGH T 

IFCNT-ITESCN+1)+2l 5205,5215,5205 

SEARCH TO NEXT HIGHER T STRIP 

NT=NT+l 
IFCTESCNT+ll.LE.TARGJ GO TO 5220 

STRIP CONTAINING TARG FOUND, BEGIN R SEARCH 

IFCRESCNR>-RARG> 5410,5310,5320 
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c 
c 
c 

TARG ABOVE HIGHEST TABLE ARGUMENT AND 
WAS ABOVE TEMPAT ARGUMENT ON PREVIOUS ENTRY 

1292 
1293 
1294 
1295 
1296 
1297 
1298 c 
1299 
1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 
1313 
1314 c 
1315 c 
1316 c 
1317 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 c 
1351 c 

5215 MLT=1 
EXTT=EXTT*TARG/TESCNT+l) 
TARG=TESCNT+l) 

c 
c 
c 

5220 
c 
c 
c 
c 

c 
c 
c 

713 

5320 
c 
c 
c 
c 

c 
c 
c 
c 
c 

5300 
c 
c 
c 
c 

c 
c 
c 

IFCRESCNR>.GT.RARG) GO TO 5300 
IFCRESCNR+l>.LE.RARG> GO TO 5400 
M = MSVCN) 
GO TO (110,210) , IESTB 

OUT OF TABLE TEST, HIGH T 

IFCNT-ITESCN+1 )+2) 5205,713,5205 

TARG ABOVE HlGHEST TABLE ARGUMENT BUT WAS 
NOT ABOVE TEMPAT ARGUMENT ON PREVIOUS ENTRY 

MLT=1 
EXTT=EXTT*TARG/TESCNT+1) 
TARG=TESCNT+l) 

BEGIN R SEARCH 

IFCRESCNR>-RARG> 5410,5310,5320 

OUT OF TABLE TEST, LOW R 

IFCNR.GT.IRESCN>> GO TO 5305 

RARG BELOW LOWEST TABLE ARGIJMENT BUT WAS 
NOT BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY 

MLR=-1 
EXTR=EXTR*RARG/RESCNR> 
RARG=RESCNR> 
GO TO 5310 

R SEARCH 
RARG BELOW R STRIP OF PREVIOUS ENTRY 
OUT OF TABLE TEST, LOW R 

IFCNR.GT.IRESCNl> GO TO 5305 

RARG BELOW LOWEST TABLE ARGUMENT AND 
WAS BELOW TEMPAT ARGUMENT ON PREVIOUS ENTRY 

MLR=-1 
EXTR=EXTR*RARG/RESCNR> 
RARG=RESCNRl 
M = MSVCNl 
GO TO Cll0,210) ,IESTB 

SEARCH TO NEXT LOWER R STRIP 

5305 NR=NR-1 
IFCRESCNR> - RARG> 5310,5310,5320 

BOX CONTAINING TARG AND RARG FOUND, COMPUTE NEW M 
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1352 c 
1353 5310 
1354 
1355 
1356 
1357 
1358 c 
1359 c 
1360 c 
1361 5400 
1362 c 
1363 c 
1364 c 
1365 5405 
1366 5410 
1367 
1368 c 
1369 c 
1370 c 
1371 c 
1372 719 
1373 
1374 
1375 
1376 c 
1377 c 
1378 c 
1379 c 
1380 5415 
1381 
1382 
1383 
1384 
1385 

M=IZESCNJ+CITESCN+1J-ITESCNJ-1l*CNR-IRESCNJJ+NT-ITESCNJ 
NTSVCNJ=NT 
NRSVCNJ=NR 
MSVC NJ =M 
GO TO C110,210l ,IESTB 

OUT OF TABLE TEST, HIGH R 

IFCNR - IRESCN+ll+2l 5405,5415,5405 

SEARCH TO NEXT HIGHER R STRIP 

NR=NR+l 
IFCRESCNR+lJ.GT.RARGJ GO TO 53i0 
IFCNR-IRESCN+1)+3) 54~4 5405,719 

RARG ABOVE HIGHEST TABLE ARGUMENT BUT WAS 
NOT ABOVE TEMPAT ARGUMENT ON PREVIOUS ENTRY 

MLR=l 
EXTR=EXTR*RARG/RESCNR+1) 
RARG=RESCNR+1J 
GO TO 5310 

RARG ABOVE HIGHEST TABLE ARGUMENT BUT 
M SAME AS ON PREVIOUS ENTRY 

MLR=l 
EXTR=EXTR*RARG/RESCNR+ll 
RARG=RESCNR+1J 
M = MSVCN> 
GO TO C110,210J ,IESTB 
END 
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1386 
1387 c 
1388 
1389 
1390 
1391 c 
1392 
1393 c 
1394 
1395 
1396 
1397 
1398 
1399 
1400 
1401 
1402 
1403 
1404 
1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 
1415 
1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 
1426 
1427 
1428 
1429 
1430 
1431 
1432 
1433 
1434 
1435 
1436 
1437 
1438 
1439 
1440 
1441 
1442 
1443 
1444 
1445 

SUBROUTINE SETUP 

COMMON /COM2/ NTSVC2l,NRSVC2l,MSVC2l,TESC7l,RESC9l 
X ,AESC12l,BESC12l,CESC12l,DESCl2),EESC12l,FESC12l,GESC12l 
X , HES C 1 2 l , PES C 1 2 l , I TES C 3 l , I RES C 3) , I ZES C 3) 

CALL JES 
DEFINE A GAMMA LAW GAS EQUATION OF STATE FOR BIQUAD ROUTINE 

NTSVC 1l=1 
NRSVC 1l=1 
MSVC1!=1 
NTSVC2l=4 
NRSVC2l=5 
MSVC2l=7 
I TES ( 1 l =1 
I RES( 1l=1 
I ZES C 1 l = 1 
ITESC2l=4 
IRESC2!=5 
IZESC2!=7 
ITESC3!=7 
IRESC3l=9 
IZESC3!=13 

TES< 1 l 
TESC 21 
TESC 31 
TESC 41 
TES< 51 
TESC 61 
TES ( 7 l 
RESC ll 
RESC 21 
RESC 31 
RESC 41 
RESC 51 
RESC 61 
RES< 71 
RESC 81 
RESC 91 
AESC ll 
BESC ll 
CESC ll 
DESC ll 
EESC 1) 
FESC 1 l 
GESC 1 l 
HESC 11 
PESC ll 
AESC 2J 
BESC 21 
CESC 21 
DESC 21 
EES C 2 l 
FESC 21 
GES C 2 l 
HESC 21 
PESC 21 
AESC 31 
BES< 31 
CES ( 3 l 

.OE+OO 
1.0000E+OO 
1.0000E+02 

.OE+OO 
1. OOOOE+OO 
1.0000E+02 

.OE+OO 

.OE+OO 
3.0000E+OO 
3.0000E+02 
3.0000E+lO 

.OE+OO 
3.0000E+OO 
3.0000E+02 
3.0000E+10 

.OE+OO 

.OE+OO 

.OE+OO 

.OE+OO 

.OE+OO 

.OE+OO 
6.6667E-02 

-1.2953E-16 
-4.4409E-16 
-9.2519E-17 

.OE+OO 
-4.7184E-16 

.OE+OO 
-1.7146E-16 

.OE+OO 
6.6667E-02 

-4.8247E-17 
1. 0408E-17 

-2.3426E-18 
.OE+OO 
.OE+OO 

-8.0183E-17 
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DESC 31 .. 
EES< 3J 
FESC 31 = 
GESC 31 = 
HES< 31 = 
PESC 31 
AESC 41 = 
BES< 41 
CESC 41 = 
If 4) .. 

4J .. 
( 41 .. 

Ii 4J .. 
4) 
4.) .. 

AES< Sf = 
~I~ 15) • 

15) .. 

I' SJ = 
. ( 151 

F!S< 15) • 
( 151 = 
( 15 J • 
( 151 • 

All< 6J 
( 81 
( 81 • 
( 8J .. 
c 8J .. 
( 81 .. 
( 81 .. 
c SJ • 
.,( Sl • 1. 
( 7) • 

71 • 
7J .• f. 
71 .. 
71 • 

,'1$ 71 • 2. 
71• • -s. 1: 7): • • •• ' , 
7J • -1 .. .,. 
&J • -1. :.:HJ 
81 • 1. ,,t7 
SJ ,• t. i-0;1· 
•• -2. -17 ' ·~ ""°° ,'.S, 

. 2. .;.115 ·:· 11: -e .. H ·18 
J 6. Ml7E:-20 
J -2.0988E-1& 

SN. ,0£+00 
9J ,0£+00 

ll 
$) 1.0000E-01 
9) .0£+00 

:1 4.4409£-16 
-2.6587£-17 

GI$( 
HE$( 

9) = -6.0283E-21 
9) .. 1.9214£-17 

PES< 9) = 6.0233£-20 
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'1 50t:> t-ES' 'I 0 J = -1.8874E-15 
·15n7 ?_:';~..-:... ( 1 0) = I. l 273E-' 7 
-( 5or:. C, ~ :__.. r 1 0 J -- 1. OOOOE--0'1 
1509 [J~ ~ r ': 0) ~ 1.2168E-20 
., 510 ~::.:_. r 1 G J - -6.9389E-!8 
·, 511 ,- c :-.. 1 c .1 - -1.8510E-17 
1512 G~?:.: iOi = 4.2030E-20 
1513 HES' 1 Oi ~ -1.3521E-19 
151 4 PESr 1 Oi = 1 . 2168E-23 
1515 /-ESI 11) = .OE+OO 
1516 2.t::Sr 1 ·11 = .OE+OO 
1517 er-« • 11 i = 1. OOOOE-01 
1518 DES( 11) = .OE+OO 
1519 EESr 11 J = 8.8818E-16 
1520 FESr 1 i) = -5.8341E-26 
1521 r3ES r 11) = -6.3947E-36 
1522 HC~' 

'-'--'' 11) = 5.8341E-26 
1523 PESC 11) = -1 .8808E-36 
1524 .!\ESf 12) = ·-1 . 9429E- l 5 
1525 BESr 12) = -8.9878E-26 
1526 CE.Sf 12) = 1. OOOOE-01 
1527 DESf 12) = -5.3701E-36 
1528 EESf 12) = -6.9389E-18 
1529 FESf 12) = 8.9962E-26 
1530 GESC 12! = -2.8867E-36 
1531 ciES r 12) - -8.4134E-29 
1532 PESI 12) = -1 . 8745E-38 
1533 PET~Jr~N 
1534 END 



1535 
1536 (, 
1537 c 
1538 c 
1539 
1540 c 
1541 c 
1542 c 
1543 c 
1544 
1545 
1546 
1547 
1548 
1549 c 
1550 
1551 

SUBReJIJT I ~1E PRC JCT 

THIS SUBRelUTINE REFLECTS AN INTERIOR POINT ACROSS THE BOUNDARY 

COMMON /PRelGG/RO,ZO,Rl,Zl,RP,ZP,RR,ZZ 

REFLECT CRP,ZPl Tel CRR,ZZl 
WHERE IRO,ZOI AND (Rl,Zl I ARE BOUNDARY POINTS 

WI,/= ( 2' * ( z 1 -zo) ) I ( ( R 1 -RO)**~+ ( z 1 -zo) >0<2) 
ALP=1. -(21-ZOl*WW 
BET=(Rl-ROl*WW 
RR=RO+(RP-ROl*ALP + CZP-ZOl*BET 
ZZ=ZO+(RP-ROl*BET - (ZP-ZOl*ALP 

RETURN 
END 
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SUBROUTINE CONDUCT 

COMMON /KLS/ K,L,DEBUG VERSION,WHER.WHEN,P1D6,PIE, IGEN,P1D2 
X ,DTC,KC.LC,DTEN,KEN,LEN,SKE,HN,SJEL,CNN,ENC,ENH,ENCG,WN 
X ,NCP 

COMMON /COMN/ RC33t33lLZ(33,33l,UC3~,33>,RHOC33,33l,QC33L33) x LEC33,33JLPC~3L33),AJ[33~33>,SC33,33),N8CC33,3~) 
X ,WC3~,33l,TEM~C33 ~3) . 
X , AC33,33)L8C33L33l,CCC33j33>,DUMC33,33),CBBC33,33) 
X , 08BC33,3~l,CA~C33,33>,S G<33,33>.TSC33,33) 

COMMON /PARAM/ NYCL,TNUPLOTNUP,DTN,DTNPH,DTNMH,EDTIME,EDDT 
X ,GAMLGAMZ,COF,ClF,~lLTMAX,DTMAX,DTMIN,TFLR,NOHYD 
X ,C2,~2,P3,NO,NTTY,NEu · 

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP 

COMMON /EOSCOM/ KEOStTARG1LTARG2,TARG3,RARG1,RARG2,RARG3, 
X FUNC1,FUNC2,FUNC3, EMPS,~PS,EPSO 

ELECTRON CONDUCTION -LU-

DO 10 L=LMN,LMX 
DO 10 K=KMN,KMX 
CAPCK,L>=.1 
CCCK,L>=C.0001•SQRTCTEMPCK,L>>•TEMPCK,Ll**2l/AJCK,L> 
SIGCK,L>=DUMCK,L>*CAPCK,Ll/DTNPH 

10 
c 

1552 
1553 c 
1554 
1555 
1556 
1557 c 
1558 
1559 
1560 
1561 
1562 
1563 c 
1564 
1565 
1566 
1567 c 
1568 
1569 c 
1570 c 
1571 c 
1572 c 
1573 c 
1574 c 
1575 
1576 
H577 
1578 
1579 
H580 
1581 
1582 
1583 
H584 
1585 
1586 
1587 
1588 
1589 
1590 
H591 
1592 
1'593 
1594 
1595 c 
1596 c 
11597 
H598 
1599 
1600 
1601 
1602 c 
1603 
1604 
1605 
1606 
1607 
1608 
1609 c 
1610 c 
1611 c 

TSCK,L1=TEMPCK,L> 
CONTINUE 

DO 12 L=LMN,LMX 
DO 12 K=KMN,KMXZ 

C88CKLL>=C2.*CCCK+l,L>*CC(K+1,L+1))/CCCCK+l,L>+CCCK+l,L+l>> 
X * C.o*CRCK,Ll+RCK+l,L>>*CCRCK+1,Ll-RCK,Lll**2 . 
X +CZCK+1,L>-ZCK,Lll**2l l 

12 CONTINUE 
DO 14 L=LMN,LMXZ 
DO 14 K=KMN,KMX . 

D88CKLL>=C2.*CCCK+1,L+ll*CCCK,L+1J>ICCCCK+l,L+ll+CCCK,L+l)l 
X * C.o•CRCK,Ll+RCK,L+ll>*CCR<K,L•1>-RCK,Lll**2 
X +CZCK,L+ll~ZCK,L>>**2l > 

14 CONTINUE 

BOUNDARY CONDITIONS 
DO 17 L=LMN,LMX 
ACKMN, Ll =O. 
BCKMN,Ll=TEMPCKMN,Ll 
DBBCKMN,1..Ll =O. 

17 CONTINU~ 

19 

00 19 K=KMN,KMX 
ACK,LMNl=O. 
BCK,LMNJ=TEMPCK,LMN> 
CBB CK, LMX l = 0. 
CBBCK,LMNl=O. 
CONTINUE 
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C .......... Z SWEEP 1612 
1613 
1614 
1615 
1618 
1617 
1618 
1619 
1620 
1621 
1622 
1623 
1624 
1625 
1626 
1627 
1628 
1629 
1630 
1631 
1632 
1633 
1634 
1635 
1636 
1637 
1638 
1639 
1640 
1641 
1642 
1643 
1644 
1645 
1646 
1647 
1648 
1649 
1650 
1651 
1652 
1653 
1654 
1655 
1656 
1657 
1658 
1659 
1660 c 
1661 
1662 
1663 
1664 c 
1665 
1666 
1667 
1668 
1669 
1670 
1671 

c 
DO 53 K=KMNP,KMX 
DO 51 L=LMNP,LMX 
DUMCK,LJ=SIGCK,L>+CBBCK-ltL>+CBB<K-1,L-1>•<1 .-ACK,L-1)) 
ACK,L>=CBBCK-l,L)/DUMCK,L1 
BCK,L>=CSIGCK,Ll•TEMPCK,L>+CBB<K-l~L-1>•BCK,L-1> 

X l/DUMCK,Ll 
51 CONTINUE 

C ...... ALPHA, BETA FORWARD 
ML=LMX+l 
DO 52 L=LMNP,LMX 
ML=ML-1 
TEMPCK,ML>=ACK,ML>•TEMPCK,ML+l>+B<K~ML> 

52 CONTINUE 
C BACK SUBSTITUTION 

53 CONTINUE 
c 
c ......... . Z SWEEP END 

R SWEEP 
c 
c ......... . 
c 

DO 43 L=LMNP,LMX 
DO 41 K=KMNP,KMX 
DUMCKlLJ=SIGCK,L>+DBBCK,L-lJ+DBB<K-1,L-1)*(1.-ACK-1,L)) 
ACK,Li=DBBCK,L-1)/DUMCK,L> 

BCKbL>=CSIGCK,L>•TEMPCK,Ll+OBBCK-1,L-l>*BCK-1,L) 
X )/ UMCK.Ll 

41 CONTINUE 
C ...... ALPHA BETA FORWARD SWEEP 

ML=KMX+l 
DO 42 K=KMNP,KMX 
ML=ML-1 
TEMPCML~L>=ACML,L>•TEMPCML+l,L>+B<ML,L) 

42 CONTINUc. 
C BACK SUBSTITUTION R DIRECTION 

43 CONTINUE 
c 
C .......... R SWEEP END 
C COMPUTE OT CONTROL FOR HEAT CONDUCTION 
c 

C GET 

YE=O. 
KEN=O 
LEN=O 
DO 111 L=LMNP,LMX 
DO 111 K=KMNP,KMX 
NEW ENERGY 
ENH=ENH+EfK,Ll•RHOCK,Ll•SCK,L> 

TARG1=TEMPCK,Ll 
RARG1=RHOCK,L) 
CALL IES2 

ECK,L>=AMAX1CFUNC1,1.E-30) 
ENC=ENC+ECK~L>•RHOCK,L>•SCK,L> 
IFCTSCK L).c.Q.O.> GO TO 109 
TEMPR=ABSCCTEMPCKLL>-TSCK,Lll/TSCK,Ll) 
IFCTEMPR.LE.YE> Go TO 109 
YE=TEMPR 
KEN=K 
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1672 
~673 

LEN=L 
109 TEMP!K,Ll=TSCK,Ll 
111 CO~T!NUE 

IFCYE.EQ.O. I GO TO 118 
DTEN=I. l•DTNPHl/YE 

118 CONTINUE 
C ENERGY BALANCE HN 

1 67"1 
1675 
1 676 
1677 
1678 
1679 
1680 
1681 
1682 
1683 c 
1684 
1685 
1686 
1687 
1688 c 
1689 
1690 

05 122 K=2,KMX 
HN=HN•DTNPH•CBBCK-1,LMNl*CTEMPCK,LMNJ-TEMPCK,LMN+lll 

X +DTNPH•CBBIK-1,LMXl•CTEMPCK,LMX+ll-TEMPCK,LMXll 
122 CONTINUE 

DC 124 L=2,LMX 
HN=HN+OTNPH*DBBCKMN,L-1 l*CTEMP(KMN,Ll-TEMPCKMN+l,Lll 

X +DTNPH•DBBCKMX.L-1l•CTEMPCKMX+1,Ll-TEMPCKMX,LIJ 
124 CONTINUE 

RETURN 
END 

PAGE 32 



1691 
1692 c 
1693 
1694 
1695 
1696 c 
1697 
1698 
1699 
1700 
1701 
1702 c 
1703 
1704 
1705 
1706 c 
1707 
1708 c 

SUBROUTINE HWORK 

COMMON /KLS/ KLL,DEBUGLVERSION1.WHER.WHEN,P1D6,PIELIGEN,P1D2 
X ,DTCLKC,LC,DT~N,KEN,L~N,SKE,Hn,SIEL,CNN,ENC,ENH,~NCG,WN 
X ,NC~ 

COMMON /COM~/ RC33t33)LZ(33,33J,UC33,33>,RHOC33,33),QC33L33) 
X LEC33,331LPC~3L33l,AJC33.33),S(33,33),NBCC33,3~) 
X ,WC3~ 1 33>,TEM~C33 ~3) 
X , AC33L33>LBC33L33>,CCC33f33)LDUMC33L33),CBBC33,33) 
X , DBBC~3,3~),CA~C33,33),S G<3~ 1 33).T~C33,33) 

COMMON /PARAM/ NYCL,TNUP,OTNUP~DTN,DTNPH,DTNMH,EDTIMELEDDT 
X ,GAMLGAMZ,COF1.C1F,C1LTMAA,DTMAX,DTMIN,TFLR,NOHYu 
X ,C2,~2,P3,NO,NTTY,NEu 

COMMON /KLSPACE/ KMN,LMN,KMX,LMX,KMXZ,LMXZ,KMNP,LMNP,KMXP,LHXP 

1709 C SUM THE HYDRO WORK ON THE BOUNDARY 
1710 c 
1711 
1712 c 
1713 
1714 c 
1715 
1716 
1717 
1718 
1719 c 
1720 
1721 
1722 
1723 
1724 c 
1725 
1726 c 
1727 
1728 c 
1729 
1730 
1731 
1732 
1733 c 
1734 
1735 
1736 
1737 
1738 c 
1739 
1740 c 
1741 
1742 

510 

515 

Zl=DTNPH/8. 

DO 510 K=KMNP,KMX 

WN=WN+Zl•CPCKtLMN+l)+PCKtLMNJ+Q(K,L~N+ll+QCK,LMN)) 
X •C CUCK,LMN>+UCK-1,LMN>l•CZCK,LMNl-ZCK-1,LMN>> 
X - <W<K, LMN> +WCK-1, LMNJ) * ( RCK, LMNJ-RCK.-1, LMN>) 
X l•CRCK,LMN>+RCK-1,LMN>J 

WN=WN-Zl•CP<KtLMX+l)+P<KtLMX)+Q(K,L~X+l)+QCK,LMXJ> 
X •< <UCK,LMX1+UCK-l,LMX1>•<Z<K,LMXJ-ZCK-1,LMX>> 
X -<WCK,LMXl+WCK-1,LMX>>•CRCK,LMXl-RCK-1,LMX>> 
X l•CRCK,LMXl+RCK-1,LMX>> 

CONTINUE 

DO 515 L=LMNP,LMX 

WN=WN+Zl•CPCKMN+l,LJ+PCKMN 1 L)+Q(KMN+lLL)+QCKMNjL>> 
X •< CUCKMN,Ll+UCKMN,L-1>>•CZCKMN,Ll-£CKMN,L-1 > 
X -<W<KMN,L>+WCKMN,L-l>>•CRCKMN,LJ-RCKMN,L-1>> 
X >•CRCKMN,L>+RCKMN,L-1)) 

WN=WN-Zl•CPCKMX+l,L)+PCKMX,L)+Q(KMX+lLL)+QCKMX,L>> 
X •C CUCKMX,L>+UCKHX,L-l)l•CZCKMX,Ll-£CKMX,L-1)) 
X -CWCKMX,Ll+WCKMX,L-l>>•CRCKMX,Ll-RCKMX,L-1)) 
X >•<RCKMX,L>+RCKMX,L-1)) 

CONTINUE 

RETURN 
END 
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1743 FUNCTION NECONDCIARGJ 
1744 IAG=O 
1745 AAl=SECONDCIAGJ 
1746 NECOND=CAA1-AA2l*1 .E+6 
1747 AA2=AA1 
1748 RETURN 
1749 END 


