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PROBABILISTIC ALGORITHMS IN FINITE FIELDS 

Michael o. Rabin 

In this paper we utilize the method of probabilistic 

algorithms to solve some important computational problems 

pertaining to finite fields. The questions we deal with 

are the following. Given a prime p and an integer n, how 

do we actually perform the arithmetical operations of 

E • GF(pn). Given a polynomial f (x) of degree m with coef

ficients in E, we wish to find a root a £ E of f (x)= O, if 

such a root does exist. This is the ~-finding problem. 

Finally, given a polynomial f(x) £ E[x], we want to find the 

factorization f = f 1•f2 • ••• •fk off into its irreducible 

factors fi(x) £ E[x]. This is the factorization problem. 

All of the above problems are of great significance 

in algebraic coding theory, see [ 2 ], in algebraic symbol 

manipulation, and in computational number theory. 
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Algorithms for the latter two problems are given in Berle

kamp 'a [ 2 J and more completely in the important paper [ 3 J 

which culminates his own work on the subject and also 

incorporates important ideas of Collins, Knuth, Welch, 

zaasenhaus, and others. 

Berlekamp solves the root-finding problem for 

f eGP(pn), deg(f) • m, by reducing it to the factorization 

problem of another polynomial P(x) e ZP[x] (ZP • GP(p), 

is the field of residues mod p), where deg(P) • mn. The 

problem of factoring F(x) e ZP[x] is solved by reducing it to 

finding the roots in zp of another polynomial G(x) c ZP[x). 

Thus everything is reduced to root-finding in zp. For 

root-finding in a large zp, a case in which search is not 

feasible, Berlekamp proposes a probabilistic algorithm in

volving a random choice of de zp. The article (3] does 

not contain a proof for the validity of this algorithm. 

Our starting point is to solve directly the problem 

of root-finding in GP(pn) • E for polynomials f e E[xJ, 

by a probabilistic algorithm which generalizes to arbitrary 

finite fields Berlekamp'a algorithm.for zp. The validity 

of the algorithm is based on Theorem 4 which has a 

eurpriaingly simple proof. 
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We now base factorization of a polynomial f (x) e ZP[x] 

on root-finding for the same f. Namely, if f (x) has ir

reducible factors of degree m,h1 (x) e ZP[x], l!i!_k, then 

the product D(x) • Ilhi(x) of these factors can be readily 

found by computations in ZP[x]. The roots of D(x) are 

in GP(pm) and the above root-finding algorithm allows us 

to directly find such a root o e GP(pm). The minimal 

polynomial h(x) e ZP[x] of ex, which is-of degree m, can be found 

by one of two methods given in Section 3. Now, CJ is also 

a root of some hi(x) of degree m, so that h(x) • hi(x), 

and we have found one irreducible factor of f(x). An 

iteration of this process finds all the irre4uqib1• factors. 

The same algorithm works for factorization of polyncmiala 

f(x) £ E[x], where Eis any finite field, by use of roots 

of the polynomial f (x) itself. 

In terms of the number of ZP-operations (additions 

and multiplications mod p, of numbers O!_a, b<p) used, our 

algorithms are of complexity proportional to log p. Thus 

they are feasible even for fields GF(pn) where p is so 

large that exhaustive search through zp is not possible. 

Leaving out the factor log p and factors of order 

10911•109 loqn, the algorithms presented here have the 

following complexities. A root of f(x) .e GP(pn), deg f • m, 
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can be found in O (n2m) zp -operations. A polynomial 

f(x) £ ZP[x], deq(f) • n, can be factored in O(n3) ope

rations. 

If the arithmetical operations of the field E • GP(pn) 

are wired into circuitry so that an E-operation can be 

viewed as a unit, then the above root-findinq algorithm 

uses·O(nm) operation. Under the same assumption for the 

fields GP(pi), i~n, the factorization of f(x) uses 0Cn2) 

operationa. 

The root-findinq and factorization alqorithma for 

the case of larqe p, qiven in [ 3 ] are of hiqher order in 

n. ROot•findinq for f(x) e GP(pm), de9(f) • n, ua•s 

O((n•m) 3•m) ZP-operations. Factorisation of f e ZP[x], 

de9(f) • n, uses O(n4) zp-operations. 

If p is small so that it is practicable to find a 

solution in zp of f (x) • 0 by search, then a more careful 

comparison between the alqorithms qiven here and the non

probabilistic alqori thms presented in [ 3 ] is necessary. 

The latter alqorithm for factorization will run in time 

O(n3) but there is an O(p) factor. our al9orithm will 

run in O(n3) (in the non-preprocessed case) with a factor 

of O(loqp). Thus for very small p, exact comparisons will 
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depend on the numerical constants involved. However, 

the alqorithnm qiven here are sufficiently fast in all 

cases to justify their use even for small values of p. 

'!'he probabilistic nature of our alqorithms does not 

detract from their practical applicability. '!'he baaic 

probabilistic step is a random choice of an element 6 e E 

which i• then used in an attempt to split a polynomial 

f (x) into two factors. We prove that for any fixed finite 

field E and any fixed f(x), the probability of success 

by such a random choice is at least half. 'l'hus the ex

pected number of auch steps leadinq to auccess is at most 

two. Purt:he~re, in an alqorithlll involvin9 many such 

steps, the probability of a run of bad random choices 

· leadinq to a siqnif icant deviation from the expected total 

number of steps is very small. 
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1. ARITHMETIC OF GF(pn) 

Let p be a prime, n an integer and q • pn. As 

customary, denote by GF(q) = E the unique finite field of 

q elements. In particular GF(p) • ZP is the field of 

residues mod p. We want to actually compute with elements 

of E. For ZP = ({O,l, ••• ,p-1}, + ,•), the operations are 

simply addition and multiplication mod p. If 

(1) 

is an irreducible polynomial of degree n , then 

where (g) is the ideal generated by g. Given such a 

g(x), E can be represented as the set of n-tuples of ele

ments of zp. Let a - (bn-1•····bo), y = (cn-1•···•co>. 

Addition is component-wise. To multiply, form 

- --- ----- --- -------- ------- ------- ~-------
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n-1 and find the residue ~(x) = dn_1x + ••• +d0 of d(x) when 

divided by g (x). Then a-v = (dn-1' ••• ,do>. 

Thus we need a method for finding an irreducible poly

nomial (1). To ~for irreducibility we uee the following. 

LEMMA 1. Let .t1 , ••• ,.tk be all the prime divisors of n and 

denote n/J.i •mi. A polynomial g(x) £ Zp[x] of degree n 

is irreducible in ZP[x] if and only if 

n 
(2) g (x) I (xP -x) , 

m. 
1 

(3) (g(x), xP -x) • 1, l~i~k, 

where (a,b) denotes the greatest common divisor of a and b. 

Proof. Assume that g(x) is irreducible, then every root 
n 

a of g(x) • 0 lies in E = GF(pn). Hence aP - a • O, and 
n 

(x-cil I (xP -x). Since g(x) has no multiple roots, (2) follows. 

Since g(x) is irreducible of degree n, it has no 

roots in any field GF(pm), m<n. This directly implies (3). 

Assume conversely that (2) and (3) hold. From (2) it 

follows that all roots of g(x) = O are in E • GF(pn). 
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Assume that g has an irreducible factor g1 (x) of degree 

m<n. The roots of g1 Cx) lie in GF(pm) which is generated 

over ZP by any one of these roots. Hence GF (pm) C: E and -
min. Consequently mlmi for one of the maximal divisors 

m. 
mi of n, and all roots of g1 (x) lie in GF(p 1

). But then 
m. 

1 

(g(x), xP -x) is divisible by g1 (x) contradicting (3). 

Thus g(x) must be irreducible. 

In computing the number of operations required to test 

a given polynomial for primality we count, here and else-

where in this article, in terms of arithmetical operations 

of zp. To obtain a bit-operations count, we should multiply 

our results by B(p) - the number of bit operations required 

to multiply or divide two numbers of log p bits. As is 

well known, B(p) can be taken to be O(loqp log lop p). 

In order to shorten subsequent formulas we introduce 

the following 

Notation: · L(n) = log n•log log n 

n 
The computation of (g(x) ,xP -x) is executed by computing 

P
n n 

x modulo g(x). As is well known,xP can be calculated by 
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at most 2·log pn multiplications mod g(x). Since we compute 

mod g(x) we never deal with polynomials of degree greater than 

2n. 

It is shown in [ 4 1 that multiplying two n-degree 

polynomials with coefficients in any finite field can be 

done by O(n log n log log n) • O(n L(n)) field operations. 

Consequently division and finding remainder can be done in 

O(nL(n)) operations, see [ 1 ,p.288]. Thus the basic step 

of computing r(x)•s(x) mod g(x), where deg(r), deg(s)<n-1, 
. Pn -

uses O(nL(n)) operations. The computation of x uses 
2 . 

O(n L(n) log p) operations. 

To test (3) we need k<log n computations of the above 

type so that the total number of operations is OCn2lognL(n)loq p). 

The search for an irreducible polynomial of degree n is 

based on the following result which is a weaker form, suf

fucient for our purposes, of Theorem 3 .3 .6 [ 2 ] • We give a 

proof not utilizing generating functions. 

LEMMA 2. Denote by m(n) the number of different manic 

polynomials in Zp[x] degree n which are irreducible. 

(4) n n/2 p -p log n 
n 

< - < 
nn 

m(n) ~ -n 

Then 
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Note that pn is the number of all monic polynomials of 

degree n. 

Proof. Let g1 (x) , ••• ,g1 (x), t = m(n), be all the pair-

wise different irreducible monic polynomials of degree n. 

Ahy element a £ E = GF(pn) which is of degree n over zp 

satisfies exactly one equation gi(x) ~ O and each such 

equation has exactly n such roots. If H c: E is the set 

of elements of degree n over zp' then c(H)/n • m(n). 

An element a £ E is in H if it is not in any proper -m. 
maximal subfield GF (p 1

) c: E ,where mi is a maximal divisor 

of n (see the notation in Lemma 1). The cardinality of such 

a subfield is at most pn/2 and the number of these maximal 

subfields is smaller than 109 n. Thus pn - pn/2 log n ~ c(H) 

from which (4) and (5) follow. 

In [ 2 1 Berlekamp remarks that Theorem 3.36 means that 

a randomly chosen polynomial of degree n will be irreducible 

with probability nearly l/n, without suggesting to base an 

algorithm on this fact. In the general spirit of the present 

paper, we solve the problem of finding an irreducible poly

nomial by randomization. 
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The algorithm for finding an irreducible polynomial 

proceeds as follows. Choose a polynomial (1) randomly and 

test for irreducibility: continue until an irreducible 

polynomial of degree n is found. Lemma 2 ensures·that 

the expected number of polynomials to be tried before an 

irreducible one is found is n. Thus the expected number of 

operations (in ZP) for finding an irreducible polynomial 

of deqree n is O Cn3lognL-(n) • loq p). 

The root-findinq algorithm for GF(q) assUIJM!IS that the 

arithmetic of this field is given, so that the question of 

finding an irreducible polynomial actually does not arise. 

In the factorization of a polynomial of degree n we may 
n 

need computations in fields GF(p i), l!.i~t, such that 

D n1 < n. The count of !!!. operations, including the pre

computation of the gn. (x), will use the following. 
1 

LEMMA 3. Let ni' l!_i!_t, satisfy t ni < n. The expected 

number of operations used for finding irreducible poly

nomials hi(x), deg Chi)= ni, l!.i!.t, is O(n3lognL(n) log p). 

Proof. 

t n~ · loEJniL(ni)log p !. n
2
log nL(n)logpl: ni !. 

~ n3lognL(n) 109 p. 
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2. ROOT-FINDING IN GF(pn) 

Let E = GF(q) be a fixed finite field, and f(x) £ E[x] 

be a polynomial of degree m. We wish to find one (or all) 

of the roots a £ E of f (x) = o. we give a probabilistic 

algorithm for this problem, which is a generalization of 

the algorithm given in Berlekamp [ 3 1 for prime fields zp, 

to arbitrary finite fields E. our proof for the validity 

of the general algorithm of course applies also to the 

spemzal case of zp, which is given essentially without 

proof in [ 3 ] • 

Assume for the time being that q = pn is odd. We 

shall indicate later how to treat the important case q = 2n. 

Form the g.c.d. 

q-1 f 1 (x) = (f(x), X -1). 

If f 1 (x) • 1 then f(x) has no roots in E. In general 

where the a. are all the pairwise different roots in E of 
l. 

f (x) • o. 
Now 
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The next natural step is to try (f1 (x), xd-1). If some 

of the ai satisfy a~-1 • O while others satisfy a~+l • o, 

then this q.c.d. will be a true divisor of f 1 (x), and we 

will have further advanced towards the qoal of finding a 

linear factor x-a, i.e. a root, of f(x). In qeneral we are 

not guaranteed that the g.c.d will be different from 1 or 

f 1 Cx). However, this advantageous situation can be created 

by randomization. 

Call <J,B f.: E, a .J. O, B .J. O, of different~if 

~ - -z--· 
THEOREM 4. 

(7) s;!. • c({ol o£E, a1+o and a2+o are of different type }) 

Proof. The elements a1+o and a2+o are of different 

type if and only if neither is zero and 

(
a +o)d c/ +g ~ lJ 

2 
(

a +o)d 
hence a~+g • -1. 



-14-

The equation xd = -1 has exactly d = g2l solutions in E. 

a1+l5 
Consider the 1-1 mapping ~(15) = ---- • 1\s 15 ranges over a2+o 

E -{ -a2}, '(15) ranges over E - {l}. Thus for exactly~ 

values of 15, '(15)d = -1. This implies (7). 

COROLLARY s. Consider for 0 & Ethe g.c.d f
0

(x) • (f1 (x), 

Cx+o)d-1). We have 

(8) 

Proof. The conunon roots of f 1 Cx) and (x+o)d-1 are those 

ai Cf1 Cai) • 0) for which Cai+l5)d-l • o. By Theorem 4, 

with probability 1/2, a 1+o has this property while a2+o 

does not, or vice-versa. This entails (8). Actually the 

probability is nearly l-l/2k, where deg f 1•k, but W6 cannot 

prove this. 

Root-finding algorithm. Given f (x) of degree m, 

compute f 1 Cx). Choose 6 & E randomly and compute f 0 (x). 

If O<deg f 0 <deg f 1 then let £2 Cx) = f 0 (x) or £2 Cx) = 

f 1/f0, according as to whether deg f 0 ~ 1/2 deg f 1 or not. 

If f 0 = l or f 0 = f 1 choose another o and repeat the previous 

step. By Corollary s, the expected number of choices of 

o £ E until we find £2 (x) is less than 2. 
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Since the degree is at least halved in each step, 

after at most log m steps we find a linear factor 

of f(x), i.e. a root. 

x-a. 
l. 

The number of (field -E) arithmetical operations re

quired for finding f 1 (x) and f 2 (x) is O(n•m L(m)log p),where 

E GF( n) s· d f 1 i't f 11 th t th umb = p • ince eg 2~ ~m, o ows a en er 

of operations for finding f 3 (x) is at most half the number 

of operations for finding f 2 ; and similarly for f 4 etc. 

Thus the total number of E-operations used for finding a 

root of f(x) is still just O(n•mL(m)log p). 

In terms of operations in zp' each E-operation re

quires O(nL(n)) operations with residues modulo p. Thus 

the total (expected) number of Zp-operations for root

finding is 

(9) 0 Cn2 •mL (m) L (n) log p) 

3. FACTORIZATION OF POLYNOMIALS 

Let f (x) E z [x] be a polynomial of degree n which we 
p 

want to factor into its irreducible factors. We may assume 

that f'(x) (the derivative) is not zero. For otherwise 



-16-

k 
f(x) • (g(x))P where g'(x) 1 0 and this g is readily 

found. For example, x2P+a xP + b • (x2+a x + b)P. By 

calculating (f(x), f'(x)) = h(x), and f/h 1we have reduced 

the problem to factoring a polynomial with no repeated 

factors. Calculate 

m 
gm(x) • (f(x), xP -x) , l<m<n. 

Since GF(pm) consists exactly of all the elements of 

degrees i, ilm, over zp' we have that gm(x) is the product 

of all irreducible factors h(x) jf (x) of degrees ijm. 

Ch09se the gm t 1 of lowest index m. If deg (gm) = t, 

then 

I k•m • t , 

and each hi(x) is irreducible of degree m. All roots of 

gm(x) are in GF(pm). Find a root a of gm(x) = O. This 

root is a root of a unique hi(x). 

(10) 

To find this hi(x) form the powers 

1, a, ••• , m 
a • 

Tlleae elements of GF(pm) are m-component vectors with 

coordinates in zp. Solve the system of linear equations 
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bo + b1a+ ••• b am-1 +am= O, m-1 

where the bi' O!_i.!_m-1, are the unknowns and the coordinates 

of the ai are the coefficients. Now, hi (x) = 
m m-1 x +bm_1x + ••• +b0• 

Anothef way for computing hi(x) was suqgeated by M. 

Ben-or. Note that hi(x) is irreducible of deqree m. Since 

~Ct) • tP is an automorphism of GF(pm) over the field zp, 

the conjugates of a are 

m-1 
(12} a0 =a, a1 = aP, ••• , ~-l = aP • 

The polynomial h1 (x) is now obtained by the calculation 

in GF(pm) of 

(13) hi (x) • (x-a0) (x-a1) • • • Cx-am-l) • 

Using either one of the above methods, one irreducible 

factor of gm(x) (and of !x)) is found.Next we find a root 

a of gm(x)/hi(x) and another factor hj(x) of gm(x), and so on. 

------ ---------
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Proceeding to factor the other gi(x), we choose 

gr(x) $ 1 with the lowest index m<r. If mfr then gr(x) 

the product of irreducible factors of deqree r. If mlr 

then gmlgr' and gr/gm is the product of such factors. 

Factor gr(x) or gr/gm into its irreducible factors of 

deqree r by one of the above methods. 

is 

In general~ let m1<m2< ••• <mt~n be the indices for which 

qm $ 1. After i-1 steps we found o1 (x), ••• ,o1_1 Cx), where 
i 

Dj(x) is the product of all irreducible factors of degree 

mj of f(x), and each Dj(x) is factored. (Note that 

Dj(x) : 1 is possible despite gm $ 1. For example, f(x) 
j 

may have irreducible factors of degrees 2 and 3, but no 

irreducible factors of degree 6. In this case o2 Cx) $ 1, 

D3(X) $ 1, D6(x) = 1, and g6(x) - D2Cx)D3(X) .) Now, 

(14) = gm. (x) I JI . Dj {x) • 
1 mjtmi 

m.<m. 
J 1 

If Di(x) $ 1 and mi<deg Di(x), then factor it by the above 

method. If mi a deg Di(x) then Di(x) is already irreducible 

of degree mi' and f (x) has exactly one irreducible factor 

of this degree. 
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4. COUNTING OPERATIONS 

Let us now count the number of zp-operations re

quired to factor a polynomial f (x) £ Zp[x] of degree n. 

The cost of getting rid of multiple factors of f (x) and 

of discovering the factors Di(x) defined in Section 3 

is majorized by the cost of factoring the o1 (x), so that 

we confine ourselves to estimating the latter cost. 

We have f(x) = o1 (x) ••• ot(x), where deg Di= di. 

Each Di(x) • hi1 Cx)• ••• •hiki (x), where deg hij •.m1 , 

and hij is irreducible. The algorithm of Section 3 

k. roots a1 , ••• ,ak of o. (x) = o, one for each factor 
1 i 1 

seeks 

hij(x), so that hij(Bj) = o. Using the operation count 

(9) for root-finding, where n = mi (because 
m 

.Bj £ GF(p i), l~j<k1 ), and deg_Di •_di' we get 

O(m~di L(di)L(m1)log p) for finding one root, say a1 • 

We then find hi(x) by (11) or (13). Next we find a root of 

Di(x)/hi1 (x), so that we are sure that the root belongs to 

a hij + h11• Overestimating by not using the fact that 
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deg (Di/hil) =di-mi etc., we get O(kimfdi L(di)L(mi) log p) 

for total number of zp-operations to find the relevant roots 

Qf_ o1 (x_) '.' Sin_c~_kim-! • _gi and m~di we get 

(15) 

as a bound on these operations for o
1

(x). Since n = I:di 

we obtain by summation from (15), in the manner of deriving 

Lemma 3, 

(16) O(n3 L(n) 2 log p) 

as a bound on cost of finding all the necessary roots of 

all the o1 (x). 

The first method for finding the hij(x),once a root 

for each hij(x) is given, employs O(m~LCm1>> zp-operations 

to calculate the sequence (10) of powers of the given root. 

The solution in ZP of the system (11) of m linear equations 

in m unknowns uses O(mf> operations which majorizes the 

previous term. Summing over all the hij(x) and over

estimating we get O(n3 ) zp-operations for finding all the 

hij (x), l~i~t, 19~ki. 
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We now estimate the operations used in Ben-Or's 

method for computinq the hij(x) from the roots. Usinq the 

notation of (12) and (13), so that the root is a and 
m 

deq Ch1 Cx)) •mi, we use 0Cm1 loq p) GF(p 1)-multiplications 

to perform the m1 raiainqa 

operations, we qet 

to exponent p. Countinq zp -

(17) O(m~ LCm1) loq p) 

operations for computinq the sequence (12) • 

The formation of the product (13) is a computation of 

the polynomial h(x) from its qiven roots ao,a1,···,am-1· 

Usinq the result of [l,p.299 ] , and takinq into account that 

in a finite field we require 0 (m L(m)). (instead of 0 (m loq m) 

operations to multiply two polynomials of deqree m, we qet 

that 

operations of zp are used to form each hij• Since n1 Cx) 

has ki factor hij(x), l~~ki' and deq Di• miki' we qet 
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from (17) , (1.8) the upper estimate 

(19) O{(nL(n)) 2 (loq n + loq p)) 

for the zp-operations used in Ben-Or's method to find all 

the irreducible factors hij(x), l!_i!_t, l!_j!,ki' of f(x), 

once a root of each factor was computed. 

S. SUMMARY OP RESULTS AND EXTENSIONS 

'l'tle root-f indinq method of Section 2 is not applicable 

to polynomial• f (x) GP(2n) [x]. However, a a11all modifi

cation does work. Instead of xq-l_l we use the polynomial 

2 2m-l 
Tr(x) • x + x· + ••• +x • 

For a & GP(2n) •Ewe have T(a) 2 • T(a) so that every a is a 

root of T(x) • 0 or of T(x) • 1. Also T(a+8) • T(a) + T(S). 
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Proof. 

Now a1+a2 + O so that B • ~Ca1+a2 ) runs with ~ throuqh all 

B £ E. In particular, for appropriate valuaa of ~. all the 

2n-l roots of T(x) • 1 are obtained. 'l'hia proves the theorem. 

Baaed on Theorem 6, we have a probabilistic root

finding algorithm for polynomials f £ E[x] which is 

completely analoqoua than the algorithm in Section 2 • 

'l'he factorization alqorithlu for polynomials 

f (x) £ Zp{x] qiven in Section 3 ilmaediately generalizes to 

polynomials with coefficients in a general finite field 

E • GP(q). 'l'he operations-count are the same, with£

operations replacing zp-operations. 

We aUJlllUlrize our results as follows. 

1. Pinding irreducible polync:aiala. 

The expected number of step• for finding an ir

reduc.j.ble polyncnial g(x) £ ZP(x], of degree n is 

0Cn31oq n L(n) loq p). Any such polynomial enables us to 

compute in GP(pn). 

2. Root-finding. 

The expected number of zp-operationa used to find a 

root in E • GP(pn) of a polynomial f(x) £ E[x] of degree 

mis O(n2m L(m) L(n) loq p). 
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If the arithmetic of GP(pn) is directly wired into 

circuitry so that an £-arithmetical operation is counted 

as one operation, then the number of operations for 

root-findin9 is O(n•m L(m) 109 p). 

3. Factorization into irreducible factors 

The total number of zp-operations for factorin9 a 

polynomial f & ZP[x] of degree n is 

Here are included the computations of the necessary ir

reducible polynomials gi(x) needed for the arithmetics of 

the relevant fields GP(pm). The last term represents the 

operations used to solve linear equations under the first 

method. 

If we assume that the arithmetics of all fields GP~pm), 

m~n, are performed by wired circuitry then it is preferable 

to use the second method for ccmputin9 the factors from the 

roots, based on (12) and (13). Prom (16) and (19) it fol

lows, since each GP(pm) operation ia counted as one ope

ration, that the number of operations used for factoring a 

------------------- - -~-- -
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polynomial of degree n into irreducible factors is 

2 O(n L(n) log p) + O(nL(n) (log n +log p)). 

The first term majorizes the second term, but we display 

the latter as well since it reflects the structure of the 

algorithm. 
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