
'·~ l TI LC'.:> IT r~ -2 I J

PROBABILISTIC ALGORITHMS IN FINI TE FIELDS

Mi,: t1,1pl ti . 1{a t,1n

This blank page was inserted to presenie pagination.

CAMBRIDGE

MIT /LCS/TR-213

PROBABILISTIC ALGORITHMS IN FINITE FIELDS

Michael 0. Rabin

January 1979

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

PROBABILISTIC ALGORITHMS IN FINITE FIELDS
by

Michael O. Rabin

Visiting Professor of Applied Mathematics, MIT
Professor of Mathematics, Hebrew University

Jerusalem, Israel

Abstract. We present probabilistic algorithms for the problems

of finding an irreducible polynomial of degree n over a finite

field, finding roots of a polynomial, and factoring a polynomial

into its irreducible factors over a finite field. All of these

problems are of importance in algebraic coding theory, algebraic

symbol manipulation, and number theory. These algorithms have a

very transparent, easy to program structure. For finite fields of

large characteristic p, so that exhaustive search throng zp is not

feasible, our algorithms are of lower order in the degrees of the

polynomial and fields in question, than previously published algorithms.

Research on probabilistic algorithns in finite fields was work

conducted during 1976 whi1e at MIT.

Key Words and Phrases. Computations in finite fields; root-finding;

factorization of polynomials; probabilistic algorithms.

PROBABILISTIC ALGORITHMS IN FINITE FIELDS

Michael o. Rabin

In this paper we utilize the method of probabilistic

algorithms to solve some important computational problems

pertaining to finite fields. The questions we deal with

are the following. Given a prime p and an integer n, how

do we actually perform the arithmetical operations of

E • GF(pn). Given a polynomial f (x) of degree m with coef

ficients in E, we wish to find a root a £ E of f (x)= O, if

such a root does exist. This is the ~-finding problem.

Finally, given a polynomial f(x) £ E[x], we want to find the

factorization f = f 1•f2 • ••• •fk off into its irreducible

factors fi(x) £ E[x]. This is the factorization problem.

All of the above problems are of great significance

in algebraic coding theory, see [2], in algebraic symbol

manipulation, and in computational number theory.

'·,.·,,'

-2-

Algorithms for the latter two problems are given in Berle

kamp 'a [2 J and more completely in the important paper [3 J

which culminates his own work on the subject and also

incorporates important ideas of Collins, Knuth, Welch,

zaasenhaus, and others.

Berlekamp solves the root-finding problem for

f eGP(pn), deg(f) • m, by reducing it to the factorization

problem of another polynomial P(x) e ZP[x] (ZP • GP(p),

is the field of residues mod p), where deg(P) • mn. The

problem of factoring F(x) e ZP[x] is solved by reducing it to

finding the roots in zp of another polynomial G(x) c ZP[x).

Thus everything is reduced to root-finding in zp. For

root-finding in a large zp, a case in which search is not

feasible, Berlekamp proposes a probabilistic algorithm in

volving a random choice of de zp. The article (3] does

not contain a proof for the validity of this algorithm.

Our starting point is to solve directly the problem

of root-finding in GP(pn) • E for polynomials f e E[xJ,

by a probabilistic algorithm which generalizes to arbitrary

finite fields Berlekamp'a algorithm.for zp. The validity

of the algorithm is based on Theorem 4 which has a

eurpriaingly simple proof.

-3-

We now base factorization of a polynomial f (x) e ZP[x]

on root-finding for the same f. Namely, if f (x) has ir

reducible factors of degree m,h1 (x) e ZP[x], l!i!_k, then

the product D(x) • Ilhi(x) of these factors can be readily

found by computations in ZP[x]. The roots of D(x) are

in GP(pm) and the above root-finding algorithm allows us

to directly find such a root o e GP(pm). The minimal

polynomial h(x) e ZP[x] of ex, which is-of degree m, can be found

by one of two methods given in Section 3. Now, CJ is also

a root of some hi(x) of degree m, so that h(x) • hi(x),

and we have found one irreducible factor of f(x). An

iteration of this process finds all the irre4uqib1• factors.

The same algorithm works for factorization of polyncmiala

f(x) £ E[x], where Eis any finite field, by use of roots

of the polynomial f (x) itself.

In terms of the number of ZP-operations (additions

and multiplications mod p, of numbers O!_a, b<p) used, our

algorithms are of complexity proportional to log p. Thus

they are feasible even for fields GF(pn) where p is so

large that exhaustive search through zp is not possible.

Leaving out the factor log p and factors of order

10911•109 loqn, the algorithms presented here have the

following complexities. A root of f(x) .e GP(pn), deg f • m,

-4-

can be found in O (n2m) zp -operations. A polynomial

f(x) £ ZP[x], deq(f) • n, can be factored in O(n3) ope

rations.

If the arithmetical operations of the field E • GP(pn)

are wired into circuitry so that an E-operation can be

viewed as a unit, then the above root-findinq algorithm

uses·O(nm) operation. Under the same assumption for the

fields GP(pi), i~n, the factorization of f(x) uses 0Cn2)

operationa.

The root-findinq and factorization alqorithma for

the case of larqe p, qiven in [3] are of hiqher order in

n. ROot•findinq for f(x) e GP(pm), de9(f) • n, ua•s

O((n•m) 3•m) ZP-operations. Factorisation of f e ZP[x],

de9(f) • n, uses O(n4) zp-operations.

If p is small so that it is practicable to find a

solution in zp of f (x) • 0 by search, then a more careful

comparison between the alqorithms qiven here and the non

probabilistic alqori thms presented in [3] is necessary.

The latter alqorithm for factorization will run in time

O(n3) but there is an O(p) factor. our al9orithm will

run in O(n3) (in the non-preprocessed case) with a factor

of O(loqp). Thus for very small p, exact comparisons will

- ------....--"--- ·---
', ""j •.• , •,-;:

-s-

depend on the numerical constants involved. However,

the alqorithnm qiven here are sufficiently fast in all

cases to justify their use even for small values of p.

'!'he probabilistic nature of our alqorithms does not

detract from their practical applicability. '!'he baaic

probabilistic step is a random choice of an element 6 e E

which i• then used in an attempt to split a polynomial

f (x) into two factors. We prove that for any fixed finite

field E and any fixed f(x), the probability of success

by such a random choice is at least half. 'l'hus the ex

pected number of auch steps leadinq to auccess is at most

two. Purt:he~re, in an alqorithlll involvin9 many such

steps, the probability of a run of bad random choices

· leadinq to a siqnif icant deviation from the expected total

number of steps is very small.

-6-

1. ARITHMETIC OF GF(pn)

Let p be a prime, n an integer and q • pn. As

customary, denote by GF(q) = E the unique finite field of

q elements. In particular GF(p) • ZP is the field of

residues mod p. We want to actually compute with elements

of E. For ZP = ({O,l, ••• ,p-1}, + ,•), the operations are

simply addition and multiplication mod p. If

(1)

is an irreducible polynomial of degree n , then

where (g) is the ideal generated by g. Given such a

g(x), E can be represented as the set of n-tuples of ele

ments of zp. Let a - (bn-1•····bo), y = (cn-1•···•co>.

Addition is component-wise. To multiply, form

- --- ----- --- -------- ------- ------- ~-------

-7-

n-1 and find the residue ~(x) = dn_1x + ••• +d0 of d(x) when

divided by g (x). Then a-v = (dn-1' ••• ,do>.

Thus we need a method for finding an irreducible poly

nomial (1). To ~for irreducibility we uee the following.

LEMMA 1. Let .t1 , ••• ,.tk be all the prime divisors of n and

denote n/J.i •mi. A polynomial g(x) £ Zp[x] of degree n

is irreducible in ZP[x] if and only if

n
(2) g (x) I (xP -x) ,

m.
1

(3) (g(x), xP -x) • 1, l~i~k,

where (a,b) denotes the greatest common divisor of a and b.

Proof. Assume that g(x) is irreducible, then every root
n

a of g(x) • 0 lies in E = GF(pn). Hence aP - a • O, and
n

(x-cil I (xP -x). Since g(x) has no multiple roots, (2) follows.

Since g(x) is irreducible of degree n, it has no

roots in any field GF(pm), m<n. This directly implies (3).

Assume conversely that (2) and (3) hold. From (2) it

follows that all roots of g(x) = O are in E • GF(pn).

-e-

Assume that g has an irreducible factor g1 (x) of degree

m<n. The roots of g1 Cx) lie in GF(pm) which is generated

over ZP by any one of these roots. Hence GF (pm) C: E and -
min. Consequently mlmi for one of the maximal divisors

m.
mi of n, and all roots of g1 (x) lie in GF(p 1

). But then
m.

1

(g(x), xP -x) is divisible by g1 (x) contradicting (3).

Thus g(x) must be irreducible.

In computing the number of operations required to test

a given polynomial for primality we count, here and else-

where in this article, in terms of arithmetical operations

of zp. To obtain a bit-operations count, we should multiply

our results by B(p) - the number of bit operations required

to multiply or divide two numbers of log p bits. As is

well known, B(p) can be taken to be O(loqp log lop p).

In order to shorten subsequent formulas we introduce

the following

Notation: · L(n) = log n•log log n

n
The computation of (g(x) ,xP -x) is executed by computing

P
n n

x modulo g(x). As is well known,xP can be calculated by

-9-

at most 2·log pn multiplications mod g(x). Since we compute

mod g(x) we never deal with polynomials of degree greater than

2n.

It is shown in [4 1 that multiplying two n-degree

polynomials with coefficients in any finite field can be

done by O(n log n log log n) • O(n L(n)) field operations.

Consequently division and finding remainder can be done in

O(nL(n)) operations, see [1 ,p.288]. Thus the basic step

of computing r(x)•s(x) mod g(x), where deg(r), deg(s)<n-1,
. Pn -

uses O(nL(n)) operations. The computation of x uses
2 .

O(n L(n) log p) operations.

To test (3) we need k<log n computations of the above

type so that the total number of operations is OCn2lognL(n)loq p).

The search for an irreducible polynomial of degree n is

based on the following result which is a weaker form, suf

fucient for our purposes, of Theorem 3 .3 .6 [2] • We give a

proof not utilizing generating functions.

LEMMA 2. Denote by m(n) the number of different manic

polynomials in Zp[x] degree n which are irreducible.

(4) n n/2 p -p log n
n

< - <
nn

m(n) ~ -n

Then

(5) 1 < m(n) "' 1
2n-~ ii p

-10-

Note that pn is the number of all monic polynomials of

degree n.

Proof. Let g1 (x) , ••• ,g1 (x), t = m(n), be all the pair-

wise different irreducible monic polynomials of degree n.

Ahy element a £ E = GF(pn) which is of degree n over zp

satisfies exactly one equation gi(x) ~ O and each such

equation has exactly n such roots. If H c: E is the set

of elements of degree n over zp' then c(H)/n • m(n).

An element a £ E is in H if it is not in any proper -m.
maximal subfield GF (p 1

) c: E ,where mi is a maximal divisor

of n (see the notation in Lemma 1). The cardinality of such

a subfield is at most pn/2 and the number of these maximal

subfields is smaller than 109 n. Thus pn - pn/2 log n ~ c(H)

from which (4) and (5) follow.

In [2 1 Berlekamp remarks that Theorem 3.36 means that

a randomly chosen polynomial of degree n will be irreducible

with probability nearly l/n, without suggesting to base an

algorithm on this fact. In the general spirit of the present

paper, we solve the problem of finding an irreducible poly

nomial by randomization.

-11-

The algorithm for finding an irreducible polynomial

proceeds as follows. Choose a polynomial (1) randomly and

test for irreducibility: continue until an irreducible

polynomial of degree n is found. Lemma 2 ensures·that

the expected number of polynomials to be tried before an

irreducible one is found is n. Thus the expected number of

operations (in ZP) for finding an irreducible polynomial

of deqree n is O Cn3lognL-(n) • loq p).

The root-findinq algorithm for GF(q) assUIJM!IS that the

arithmetic of this field is given, so that the question of

finding an irreducible polynomial actually does not arise.

In the factorization of a polynomial of degree n we may
n

need computations in fields GF(p i), l!.i~t, such that

D n1 < n. The count of !!!. operations, including the pre

computation of the gn. (x), will use the following.
1

LEMMA 3. Let ni' l!_i!_t, satisfy t ni < n. The expected

number of operations used for finding irreducible poly

nomials hi(x), deg Chi)= ni, l!.i!.t, is O(n3lognL(n) log p).

Proof.

t n~ · loEJniL(ni)log p !. n
2
log nL(n)logpl: ni !.

~ n3lognL(n) 109 p.

-12-

2. ROOT-FINDING IN GF(pn)

Let E = GF(q) be a fixed finite field, and f(x) £ E[x]

be a polynomial of degree m. We wish to find one (or all)

of the roots a £ E of f (x) = o. we give a probabilistic

algorithm for this problem, which is a generalization of

the algorithm given in Berlekamp [3 1 for prime fields zp,

to arbitrary finite fields E. our proof for the validity

of the general algorithm of course applies also to the

spemzal case of zp, which is given essentially without

proof in [3] •

Assume for the time being that q = pn is odd. We

shall indicate later how to treat the important case q = 2n.

Form the g.c.d.

q-1 f 1 (x) = (f(x), X -1).

If f 1 (x) • 1 then f(x) has no roots in E. In general

where the a. are all the pairwise different roots in E of
l.

f (x) • o.
Now

-13-

The next natural step is to try (f1 (x), xd-1). If some

of the ai satisfy a~-1 • O while others satisfy a~+l • o,

then this q.c.d. will be a true divisor of f 1 (x), and we

will have further advanced towards the qoal of finding a

linear factor x-a, i.e. a root, of f(x). In qeneral we are

not guaranteed that the g.c.d will be different from 1 or

f 1 Cx). However, this advantageous situation can be created

by randomization.

Call <J,B f.: E, a .J. O, B .J. O, of different~if

~ - -z--·
THEOREM 4.

(7) s;!. • c({ol o£E, a1+o and a2+o are of different type })

Proof. The elements a1+o and a2+o are of different

type if and only if neither is zero and

(
a +o)d c/ +g ~ lJ

2
(

a +o)d
hence a~+g • -1.

-14-

The equation xd = -1 has exactly d = g2l solutions in E.

a1+l5
Consider the 1-1 mapping ~(15) = ---- • 1\s 15 ranges over a2+o

E -{ -a2}, '(15) ranges over E - {l}. Thus for exactly~

values of 15, '(15)d = -1. This implies (7).

COROLLARY s. Consider for 0 & Ethe g.c.d f
0

(x) • (f1 (x),

Cx+o)d-1). We have

(8)

Proof. The conunon roots of f 1 Cx) and (x+o)d-1 are those

ai Cf1 Cai) • 0) for which Cai+l5)d-l • o. By Theorem 4,

with probability 1/2, a 1+o has this property while a2+o

does not, or vice-versa. This entails (8). Actually the

probability is nearly l-l/2k, where deg f 1•k, but W6 cannot

prove this.

Root-finding algorithm. Given f (x) of degree m,

compute f 1 Cx). Choose 6 & E randomly and compute f 0 (x).

If O<deg f 0 <deg f 1 then let £2 Cx) = f 0 (x) or £2 Cx) =

f 1/f0, according as to whether deg f 0 ~ 1/2 deg f 1 or not.

If f 0 = l or f 0 = f 1 choose another o and repeat the previous

step. By Corollary s, the expected number of choices of

o £ E until we find £2 (x) is less than 2.

-15-

Since the degree is at least halved in each step,

after at most log m steps we find a linear factor

of f(x), i.e. a root.

x-a.
l.

The number of (field -E) arithmetical operations re

quired for finding f 1 (x) and f 2 (x) is O(n•m L(m)log p),where

E GF(n) s· d f 1 i't f 11 th t th umb = p • ince eg 2~ ~m, o ows a en er

of operations for finding f 3 (x) is at most half the number

of operations for finding f 2 ; and similarly for f 4 etc.

Thus the total number of E-operations used for finding a

root of f(x) is still just O(n•mL(m)log p).

In terms of operations in zp' each E-operation re

quires O(nL(n)) operations with residues modulo p. Thus

the total (expected) number of Zp-operations for root

finding is

(9) 0 Cn2 •mL (m) L (n) log p)

3. FACTORIZATION OF POLYNOMIALS

Let f (x) E z [x] be a polynomial of degree n which we
p

want to factor into its irreducible factors. We may assume

that f'(x) (the derivative) is not zero. For otherwise

-16-

k
f(x) • (g(x))P where g'(x) 1 0 and this g is readily

found. For example, x2P+a xP + b • (x2+a x + b)P. By

calculating (f(x), f'(x)) = h(x), and f/h 1we have reduced

the problem to factoring a polynomial with no repeated

factors. Calculate

m
gm(x) • (f(x), xP -x) , l<m<n.

Since GF(pm) consists exactly of all the elements of

degrees i, ilm, over zp' we have that gm(x) is the product

of all irreducible factors h(x) jf (x) of degrees ijm.

Ch09se the gm t 1 of lowest index m. If deg (gm) = t,

then

I k•m • t ,

and each hi(x) is irreducible of degree m. All roots of

gm(x) are in GF(pm). Find a root a of gm(x) = O. This

root is a root of a unique hi(x).

(10)

To find this hi(x) form the powers

1, a, ••• , m
a •

Tlleae elements of GF(pm) are m-component vectors with

coordinates in zp. Solve the system of linear equations

(11)

-17-

bo + b1a+ ••• b am-1 +am= O, m-1

where the bi' O!_i.!_m-1, are the unknowns and the coordinates

of the ai are the coefficients. Now, hi (x) =
m m-1 x +bm_1x + ••• +b0•

Anothef way for computing hi(x) was suqgeated by M.

Ben-or. Note that hi(x) is irreducible of deqree m. Since

~Ct) • tP is an automorphism of GF(pm) over the field zp,

the conjugates of a are

m-1
(12} a0 =a, a1 = aP, ••• , ~-l = aP •

The polynomial h1 (x) is now obtained by the calculation

in GF(pm) of

(13) hi (x) • (x-a0) (x-a1) • • • Cx-am-l) •

Using either one of the above methods, one irreducible

factor of gm(x) (and of !x)) is found.Next we find a root

a of gm(x)/hi(x) and another factor hj(x) of gm(x), and so on.

------ ---------

} -

-18-

Proceeding to factor the other gi(x), we choose

gr(x) $ 1 with the lowest index m<r. If mfr then gr(x)

the product of irreducible factors of deqree r. If mlr

then gmlgr' and gr/gm is the product of such factors.

Factor gr(x) or gr/gm into its irreducible factors of

deqree r by one of the above methods.

is

In general~ let m1<m2< ••• <mt~n be the indices for which

qm $ 1. After i-1 steps we found o1 (x), ••• ,o1_1 Cx), where
i

Dj(x) is the product of all irreducible factors of degree

mj of f(x), and each Dj(x) is factored. (Note that

Dj(x) : 1 is possible despite gm $ 1. For example, f(x)
j

may have irreducible factors of degrees 2 and 3, but no

irreducible factors of degree 6. In this case o2 Cx) $ 1,

D3(X) $ 1, D6(x) = 1, and g6(x) - D2Cx)D3(X) .) Now,

(14) = gm. (x) I JI . Dj {x) •
1 mjtmi

m.<m.
J 1

If Di(x) $ 1 and mi<deg Di(x), then factor it by the above

method. If mi a deg Di(x) then Di(x) is already irreducible

of degree mi' and f (x) has exactly one irreducible factor

of this degree.

-19-

4. COUNTING OPERATIONS

Let us now count the number of zp-operations re

quired to factor a polynomial f (x) £ Zp[x] of degree n.

The cost of getting rid of multiple factors of f (x) and

of discovering the factors Di(x) defined in Section 3

is majorized by the cost of factoring the o1 (x), so that

we confine ourselves to estimating the latter cost.

We have f(x) = o1 (x) ••• ot(x), where deg Di= di.

Each Di(x) • hi1 Cx)• ••• •hiki (x), where deg hij •.m1 ,

and hij is irreducible. The algorithm of Section 3

k. roots a1 , ••• ,ak of o. (x) = o, one for each factor
1 i 1

seeks

hij(x), so that hij(Bj) = o. Using the operation count

(9) for root-finding, where n = mi (because
m

.Bj £ GF(p i), l~j<k1), and deg_Di •_di' we get

O(m~di L(di)L(m1)log p) for finding one root, say a1 •

We then find hi(x) by (11) or (13). Next we find a root of

Di(x)/hi1 (x), so that we are sure that the root belongs to

a hij + h11• Overestimating by not using the fact that

-20-

deg (Di/hil) =di-mi etc., we get O(kimfdi L(di)L(mi) log p)

for total number of zp-operations to find the relevant roots

Qf_ o1 (x_) '.' Sin_c~_kim-! • _gi and m~di we get

(15)

as a bound on these operations for o
1

(x). Since n = I:di

we obtain by summation from (15), in the manner of deriving

Lemma 3,

(16) O(n3 L(n) 2 log p)

as a bound on cost of finding all the necessary roots of

all the o1 (x).

The first method for finding the hij(x),once a root

for each hij(x) is given, employs O(m~LCm1>> zp-operations

to calculate the sequence (10) of powers of the given root.

The solution in ZP of the system (11) of m linear equations

in m unknowns uses O(mf> operations which majorizes the

previous term. Summing over all the hij(x) and over

estimating we get O(n3) zp-operations for finding all the

hij (x), l~i~t, 19~ki.

-21-

We now estimate the operations used in Ben-Or's

method for computinq the hij(x) from the roots. Usinq the

notation of (12) and (13), so that the root is a and
m

deq Ch1 Cx)) •mi, we use 0Cm1 loq p) GF(p 1)-multiplications

to perform the m1 raiainqa

operations, we qet

to exponent p. Countinq zp -

(17) O(m~ LCm1) loq p)

operations for computinq the sequence (12) •

The formation of the product (13) is a computation of

the polynomial h(x) from its qiven roots ao,a1,···,am-1·

Usinq the result of [l,p.299] , and takinq into account that

in a finite field we require 0 (m L(m)). (instead of 0 (m loq m)

operations to multiply two polynomials of deqree m, we qet

that

operations of zp are used to form each hij• Since n1 Cx)

has ki factor hij(x), l~~ki' and deq Di• miki' we qet

-22-

from (17) , (1.8) the upper estimate

(19) O{(nL(n)) 2 (loq n + loq p))

for the zp-operations used in Ben-Or's method to find all

the irreducible factors hij(x), l!_i!_t, l!_j!,ki' of f(x),

once a root of each factor was computed.

S. SUMMARY OP RESULTS AND EXTENSIONS

'l'tle root-f indinq method of Section 2 is not applicable

to polynomial• f (x) GP(2n) [x]. However, a a11all modifi

cation does work. Instead of xq-l_l we use the polynomial

2 2m-l
Tr(x) • x + x· + ••• +x •

For a & GP(2n) •Ewe have T(a) 2 • T(a) so that every a is a

root of T(x) • 0 or of T(x) • 1. Also T(a+8) • T(a) + T(S).

-23-

Proof.

Now a1+a2 + O so that B • ~Ca1+a2) runs with ~ throuqh all

B £ E. In particular, for appropriate valuaa of ~. all the

2n-l roots of T(x) • 1 are obtained. 'l'hia proves the theorem.

Baaed on Theorem 6, we have a probabilistic root

finding algorithm for polynomials f £ E[x] which is

completely analoqoua than the algorithm in Section 2 •

'l'he factorization alqorithlu for polynomials

f (x) £ Zp{x] qiven in Section 3 ilmaediately generalizes to

polynomials with coefficients in a general finite field

E • GP(q). 'l'he operations-count are the same, with£

operations replacing zp-operations.

We aUJlllUlrize our results as follows.

1. Pinding irreducible polync:aiala.

The expected number of step• for finding an ir

reduc.j.ble polyncnial g(x) £ ZP(x], of degree n is

0Cn31oq n L(n) loq p). Any such polynomial enables us to

compute in GP(pn).

2. Root-finding.

The expected number of zp-operationa used to find a

root in E • GP(pn) of a polynomial f(x) £ E[x] of degree

mis O(n2m L(m) L(n) loq p).

-24-

If the arithmetic of GP(pn) is directly wired into

circuitry so that an £-arithmetical operation is counted

as one operation, then the number of operations for

root-findin9 is O(n•m L(m) 109 p).

3. Factorization into irreducible factors

The total number of zp-operations for factorin9 a

polynomial f & ZP[x] of degree n is

Here are included the computations of the necessary ir

reducible polynomials gi(x) needed for the arithmetics of

the relevant fields GP(pm). The last term represents the

operations used to solve linear equations under the first

method.

If we assume that the arithmetics of all fields GP~pm),

m~n, are performed by wired circuitry then it is preferable

to use the second method for ccmputin9 the factors from the

roots, based on (12) and (13). Prom (16) and (19) it fol

lows, since each GP(pm) operation ia counted as one ope

ration, that the number of operations used for factoring a

------------------- - -~-- -

-25-

polynomial of degree n into irreducible factors is

2 O(n L(n) log p) + O(nL(n) (log n +log p)).

The first term majorizes the second term, but we display

the latter as well since it reflects the structure of the

algorithm.

-26-

Bibliography

1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The

Design and Analysis of Algorithms, Addison-Wesley

Pub. Co., Reading, Mass. 1974.

2. Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill

Pub. Co., New York, 1968.

3. Berlekamp, E.R., Factoring polynomials over large

finite fields, Math. of Computations, vol. 24 (1970),

pp. 713-735.

4. Schonhage, A., Schnelle Multiplikation von Polynomen

uber Korpern der Charakteristic 2, Acta Informatica,

vol. 7 (1977), pp. 395-398.

