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ABSTRACT

Any programming language that supports concurrency needs a synchronization
construct with which to express access control for shared resources. This thesis examines
synchronization constructs from the standpoint of langhage design for reliable software. The
criteria a synchronization mechanism must satisfy to support construction of reliable, easily
maintainable concurrent software are defined. Some of these criteria, such as expressive power,
can be defined only with respect to the set of problems the mechanism is expected to handle. A
definition of the range of problems considered to be synchronization problems is therefore
needed. Such a definition is provided by describing the possible types of constraints that may
be imposed on access to shared resources. We then use this taxonomy of synchronization
constraints to develop techniques for evaluating how well synchronization constructs meet the
criteria discussed. These techniques are then applied to three existing synchronization
mechanisms: monitors, path expressions, and serializers. Evaluations are presented, and the
three mechanisms compared.
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1. Introduction
1.1 Backgiround and Motivation

In recent years there has been great interest in development of high-level language
constructs to support parallel programming. NuMws synchronization constructs have been
proposed since Dijkstra”introduced the semaphore(i2) These include conditional critical
regions[5], monitors(18,7), path expressions[8), and serializers3]. |

In addition, we have come to realize the importance of the role programming
languages play in the development of reliable, high quality software. Languages that support
good program structure significantly enhance programmer effectiveness in producing reliable
software. One methodology for improving software quality is the use of modular programming
techniques and abstraction mechanisms. Languages such as CLU[25] and Alphard[35] support
thi; methodology. |

The need fdr reliable, easily maintainable software is even greater when concurrency is
involved. Parallel programs are more complex and harder to understand tﬁan sequential ones
because processes interact more, and time-dependent errt;rs, which are not susceptible to
traditional debugging techniques, are much more lil{ely. It is therefore imperative that the
language constructs used to implement parallelism support good program design.

While a synchronization mechanism that supports Amodular programming and the use
of data abstractions would certainly contribute to the reliability and quality of concurrent
software, no clear description of the requirements that such a mechanism must satisfy has been
established. Attempts to evaluate existing synchronization mechanisms usuaily depend on the
rather ad hoc technique of attempting to implement numerous synchronization schemes using
the méchanism. Unfortunately, one can never tell, when using this method, whether the
analysis is complete. »If the analysis reveals a weakness in the mechanism, the construct is

modified or extended to handle the one case found. The result has been the dévelopmem of




numerous constructs, each designed to correct one flaw in a previous version, with no standard
criteria for deciding when a mechanism is satisfactory.

The aim of this thesis is to state as explicitly as possible the criteria a synchronization
mechanism must meet if it is to support construction of reliable, well-structured concurrent
software. We will develop techniques to evaluate how ' well mechanisms satisfy these
requirements.’ The criteria and evaluation techniques presented can then be used, not only to

evaluate existing mechanisms, but as a basis for defining new mechanisms.
1.2 Research Goals and Outline of the Thesis

Our intention is to develop a methodology for evaluating the effectiveness of
synchronization mechanisms in supporting the development of quality concurrent software. The
first step in this process is to identify the function synchronization mechanisms serve in
programming languages, that is, we must identify the class of problems to which these
mechanisms will be applied. We accomplish this in Chapter 2 by developing a taxonomy of the
synchronization constraints.

The first criterion we establish is that a mechanism be able to express straightforward
solutions to any problem that can be defined in terms of the constraints described. A
mechanism is said to have sufficient expressive power if it satisfies this property. Any construct
designed to support reliability must satisfy certain other basic criteria also. These include ease
of use, modifiability, modularity, and correctness. None of these has a precise definition, and we
must decide how each applies to synchronization. In the remainder of Chapter 2, we define
these criteria with respect to synchronization and develop techniques for asséssing how well
each is supported by a given construct.

In Chapters 3, 4 and 5’, we examine three synchronization mechanisms: monitors, path
expressions and serializers. The use of each mechanism is illustrated by a set of examples

chosen to represent each class in our taxonomy of synchronization constraints. These examples




are then used in applying the evaluation techniques developed in Chapter 2. This analysis
indicates whether a given mechanism satisfies our requirements and can be incorporated into a
language designed to support software reliability without undermining the goals of that
language. Furthermore, it pfovides information as to which problems can bé easily

implemented using a given mechanism.
1.3 Related Work

Most of the research directly related to this thesis has been mentioned in the previous
sections. It falls into two basic categories: the development of synchronization constructs for
high-level languages, and evaluations of these mechanisms.

The monitor construct was developed independently by Hoare(l8] and Brinch
Hansen[7] as an extension of Dijkstra’s secretary concept[I3].

The path expression mechanism was first developed by Habermann and Campbell[8),
and has since been extended and modified several times [15, 14]. The mechanism is intended to
provide a means of specifying synchronization non-procedurally, as a set of relationships among
the operations used to access the shared resource. It thus appears to be a higher level construct
than monitdrs.

Serializers are the most recent of the mechanisms discussed. They are based on the
monitor mechanism and were developed by Atkinson and Hewitt[3] to eliminate certain
characteristics of monitors that were thought to be detrimental to good program structure.

Several other, less extensive, proposals have Been made to change specific features of
monitors. Among these are the automatic signalling mechanism suggested by Kessler[23], and
the manager construct of [2l]), which are aimed specifically at improving the signalling
mechanism in monitors (see Chapter 3). These are not discussed in the thesis; serializers are a
more extensive revision of the monitor construct and cover the changes made by these

proposals.




Few papers exist on techniques for evaluation of synchronization mechanisms
according to the criteria mentioned earlier. Andler{l) presents a comparison of semaphores,
conditional critical regions, monitors and path expressions. The comparison is based on
solutions to the bounded buffer problem, and focuses on correctness issues. While we are
concerﬁed with correctness, our interest is primarily in how well a mechanism supports
construction of correct programs, rather than with proof techniques for the mechanism.

In [20), Howard has compared several versions of monitors. Howard is primarily
interested in equivalence of internal specifications of the various versions, and does not address
issues of expressibility or ease of use.

The work on the "nested monitor call” problem by Lister[28), and the responses to his
~ initial presentation of the problem [29, 31, 22] are also relevant to our research. Further
discussion of this work appears in later chapters.

A brief comparison of _rﬁonitors with serializers appears in [3]. Some discussion of the

differences between monitors and path expressions also appears in [15).
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2. Criteria and Evaluation Techniques

In this chapter, we present the criteria to be used in the evaluation of synchronization
mechanisms. Techniques for measuring how well these criteria are supported by various
synchronization constructs are also presented.

Our principal concerns in this evaluation focus on programming methodology and the
ways in which the addition of synchronization to a language influence software quality and
reliability. We are therefore interested in such properties of synchronization mechanisms as
expressive power, ease of use, modularity, modifiability, and correctness. These terms are
sufficiently vague to make evaluation according to these criteria extremely difficult.

We will attempt to clarify the definitions of these properties with respect to
synchronization.‘ This chapter is divided into several sections. The first deals with modularity;
it applies the concept of abstraction mechanisms to the problem of modularizing the
implementation of shared resources. The following section is devoted to defining a method for
classifying synchronization problems and describing the range of problems that synchronization
mechanisms will be éxpected to satisfy. This classification of problems will be needed in later
sections to describe techniques for evaluating expréssive power, ease of use, and modifiability,
since these properties are meaningful only with respect to a given set of problems. The final
section discusses correctness, and the properties of a synchronization mechanism that influence
how easily a program can be written correctly and how easily it may be proved correct. We will
not actually discuss proof techniques.

Thus, this chapter is devoted to establishing the definitions and techniques necessary
for. evaluating how well synchronization mechanisms support production of reliable, high

quality software. It is a first attempt at establishing some standard criteria for evaluating
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properties long held to be very important for programming language constructs, but which

have only intuitive, imprecise definitions.
2.1 Modularity

By modularizing programs, we limit the complexity the programmer must deal with at
any given time, thus making it easier to write correct programs. The increase in complexity of
software due to the presence of concurrency makes modularization essential for maintaining
correctness. In this section we describe the ways in which software used to access or control
access to shared resources should be modularized. This modularization is based primarily on
the use of abstraction mechanisms[28).

There are two distinct modularity requirements for concurrent programs. accessing
shared resources. The first follows from the principle that the definition of an abstraction
should be sepa.rated from its use. We consider a shared resource to be a data abstraction. The
definition of the synchronization for a shared resource should be part of the definition of that
resource, rather than being associated with each resource access. Thus our first modularity

I'see a shared resource abstraction that can be assumed to be properly

requirement is that users
synchronized. No synchronization code need be included in programs accessing the resource.
Our other modularity requirement has to do with the shared resource definition.
Within the module that implements the shared resource, we have the definition of the structure
and operations on the resource, as well as the definition of the synchronization scheme for the

resource. These two parts actually serve different functions and should be separable into

different subsidiary abstractions of the shared resource.

1. "User" of a resource refers to systems or applications software that accesses the resource.




We thus have a model of shared resources that consists of two levels of abstraction. At
the higher level we have a protected resource abstraction with the operations that users may
éerform in accessing the resource. At the lower level, we have the résource abstraction, with the
access operations that may be performed after a synchronizer ensures that access is safe, and a
"synchronization abstraction”, which contains state information necessary for ‘synchronization.
but not conceptually meaningful as a part of the resource, as well as synchronization operations.

In examining synchronization constructs, we will be attempting to determine whether
they automatically provide this modularization, and if not, whether they allow the resource

implementor to easily modularize the design in this manner.
2.2 Categorizing Synchronization Problems

As stated earlier, expressive power, ease of use, and modifiability can only be evaluated
relative to a specific'set of problems. A synchronization mechanism need only be powerful
enough to easily express solutions to those problems we consider to be valid synchronization
problems. We therefore need a way to describe the range of problems in which we are
interested. In this section, we identify a set of properties of synchronization schemes by which
we can classify these problems. We will later use the idea that, since synchronization schemes
have various combinations of t‘hese properties, testing whether the mechanism can express
schemes with each property, and whether it allows us to easily combine properties, will indicate

the power and usability of the mechanism.
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2.2.1 Categorization of Constraints

Synchronization mechanisms serve two main functions with respect to shared resources.
One is excluding certain processes from the resource, under given circumstances; the other is
scheduling access to the resource according to given priorities. Synchronization schemes are
thus composed of a set of constraints, each having the form:
if condition then process A is excluded from the resource
or: |
if condition then process A has priority over process B
We will refer to constraints of the first type as exclusion or concurrency constraints and the
Second as priority constraints. Within these two main classes, constraints differ in the kinds of
information referred to in the conditional clause. The information that should be available to
the synchronizer, and thus the information that can appear in constraints, falls into several
categories:
1. the procedure(s) requested 2
The resource is a data abstraction, so access to it is always obtained through operations of
the resource type. In some synchronizétion schemes, the constraints .depend on the
operation requested. In stating, for instance, that readers of a data base have priority over
writers, we are giving a constraint in terms of the types of procedures requested. In
contrast, a strict first_come_first_serve ordering uses no information about the procedures
requested.

2. the time at which requests were made:

2. We will often refer to this information as the “type” of the request.
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Though it is rarely necessary to know exact times of requests, the time of a request relative
to other events is often important. The most frequént use of time information is the
determination of the order of requests. In addition, it is sometimes necessary to determine
the synchronization state(see below) at the time of a request. |

3. arguments passed w?th requests: |
In many cases, the arguments passed with a request for resource access are needed to
determine the order in which processe; should be admitted to the resource.

4. the "synchronization state” of the resource:
Synchronization state inclﬁdes all local data and state information needed only for
synchronization purposes. Included in this category is information about the processes
cufrently accessing the resource, and the procedures those processes are executing.

5. the local state of the resource :
Local state includes information that would be present regardless of whether the resource
were being accessed concurrently or sequentially. It is information ‘meaningful to the
actual unsynchronized‘ resource abstraction. Though local state information. is used 'in
many synchronization schemes, its use often causes problems because it interferes with
modularity ‘requirements. (The local state information belongs in the resource module, and
thus a synchroniier will not have automatic access to it. Several options for handling this
problem are discussed in later chapters.)

6. history information:
History information is concerned with whether or not a gi;ren event has occurred, such as
whether a specific procedure has been exeu';uted. This information type differs from
synchronization state in that it refers to resource operations-that have already completed,

as opposed to those still in progress. It is often interchangeable with local state
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information, since past events in which we are interested will most likely have left some
noticeable change in the state of the resoﬁrce. It is convenient to treat it as a separate
category because it may be easier for the synchronizer to keep track of the history of
operations executed than to obtain the required state information from the resource.

We have thus identified two major types of constraints, and several classes of
information that distinguish differ;znt kinds of constraints within the two major categories. To
be sufficiently powerful, a synchronization mechanism must provide a means of expressing
exclusion and priority; it must also enable the resource implementor to express those constraints
in terms of any of the information types described.

In the next section, examples that use various combinations of constraint types will be
given. The way in which a mechanism makes use of different types of information, and how
easily it can get access to this information are very important in determining how easily

well-structured, reliable solutions can be developed.
2.2.2 Examples

The following are standard examples of synchronization problems. This set was
chosen to cover all of the information types presented. Only informal descriptions of the
problems are given. Formal specifications seem unnecessary for our purposes, but to avoid any
ambiguity, the appendix contains formal specifications using notation from [24).

The bounded buffer problem

The bounded buffer problem assumes there is a fixed size buffer, of length n, into

which producer processes are placing data, and from which consumer processes are

retrieving it. The constraints specified are that only one process may access the buffer

at a time, that the producer may store in the buffer only if it is not full, and that a




-17-

consumer may retrieve information from the buffer only if it is not empty. Thus, the
constraints: make use of information on synchronization state, resource state, and the
procedure requested. |

Readers_Writers Problems
There are several readers_writers problems[i0] that illustrate the use of different types
of information. The readers_writers problems assume there is a shared data base
having read and write operations. All of the versions used here have the same set of
exclusion constraints: reads may occur in parallel, but a write operation excludes both
readers and other writers. The priority constraints are different in each version. The
similarity of the various forms of the problem makes this set of problems especially
useful in evaluating modifiability.

Writers_excludé;_others
This version of the problem uses the exclusion constraints mentioned above but
imposes no priority constraints. This synchronization scheme illustrates an important
type of problem that synchronization mechanisms should be able to handle. The user
may not care about the order in which operations are executed in certain cases. There
may be external constraints that guarantee that eventually every request will be served,
and the order is unimportant. Many mechanisms force the programmer to define an
ordering when. the specification has ﬁone. The inability to leave specifications
nondeterministic is a weakness in the expressive power of the mechanism.

Readers_priority (or writers_priority)
In this version a priority constraint is added. If both a read request and a write
request are pending, then the read (or in writers_priority, the write) is always given

priority. The exclusion constraints remain the same. The priority is now based on the
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operation requested. Notice that this scheme allows starvation.

First_come_first_serve (fcfs)
In this version of the readers_writers problem, the type of operation requested is not
used at all in the specification of priority constraints. Instead, priority is based entirely
on order of request.

Fair_readers_priority
The fair_readers_priority scheme gives readers some priority over writers but limits
that priority enough to be sure writers will eventually be served. One way of fulfilling
this requirement is by use of the following constraints. If there are writers waiting
when a read is requested, then the read must wait until one write completes. All reads
waiting at the termination of that write may proceed. These constraints imply that
only a finite number of readers have priority over a given writer. The writer that has
been waitihg longest will have priority over any readers not yet in the resource. The
priority constraints for this scheme use a combination of request time and operation
type.

The One_slot buffer
The one_slot buffer(8] problem assumes there is a message buffer with room for exactly
one message. Users may insert and remove messages. The synchronizer must
guarantee that a message is inserted before any process executes a remove, and that no
message may be inserted before the previous one has been removed. Thus, an insert

may occur only if the previous operation was a remove or a create, and remove may

3. Starvation means that a process waiting to access a resource may wait forever and never be
granted access. In the readers_priority scheme, since readers have higher priority than writers,
if reads are requested often enough a writer may wait forever.
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occur only when the previous operation was an insert. Operations occurring out of
“order must wait until these constraints are satisfied. This example therefore illustrates
the use of history information. The synchrdnizer must keep track of the operations
already executed ;o determine whether a process may enter the resource.t
The disk scheduler
The disk scheduler [18] is a scheme to control access to a disk by using an “elevator”
algorithm. The disk head moves in one direction until there are no more requests for
tracks in that direction; then the direction is reversed. The access request contains the
track number as an argument. The algorithm works as follows. If the head is
currently moving up (toward higher-numbered tracks) then requests for tracks at the
~current track or lower must wait for the return pass. Requests that arrive for
higher-numbered tracks will ‘be serviced when the head reaches that track on the
current sweep. Thus, it is the parameter of the request, and the state of the resource(i..
current head position and direction) that determine the priority. The exclusion
constraint allows only one process at a time to use the disk.
The alarmclock

The alarmclock is a system facility that allows procesies to block themselves and request
to be resﬁnd after a specified period of time. Thus, granting the “resource request”
means restarting the process. The order in which requests are served is based on the
argument telling the alarmclock when to grant the request. The alarmclock exampie
itself may not be a realistic use of synchronization. However, it is felt that it illustrates

a class of problems that a synchronizer should be able to handle.

4. This problem can be restated using local state information if there is some way to determine
whether the buffer contains an unread message.
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Both the alarmclock and the disk scheduler represent examples of synchronization
problems using arguments passed with réquests as the basis for determining priorities. The
primary difference between them is that the disk scheduler has a fixed number of possible
parameter values on which to base the ordering, while the alarmclock may take any integer
value as an argument. It therefore may require more mechani;m to handle the type of problem
illustrated by the alarmclock. Either the disk scheduler or the alarmclock can be used to
represent the class of problems using arguments as a basis for priority.

All of the examples given deal with single resources and single accesses in each call to
the synchronized resource. We have assumed throughout this thesis that the correct level of
synchronization is at the point of access to the resource. One may, in addition, want
synchronization at a level encompassing several resource accesses in the course of executing a
synchronized operation. Some of the problems resulting from this extension are discussed in
the section on correctness of hierarchically structured resources.

We have presented a method for categorizing synchronization problems according to
their function and the types of information needed to express their solutions. This
categorization will be used in the following section to develop methods for evaluating the
expressive power of synchronization mechanisms. Evaluation techniques for ease of use and

modifiability also make use of this problem classification.
2.3 Expressive Power

In evaluating the expressive power of a synchronization mechanism, we will be
attempting to decide whether the mechanism provides straightforward methods for expressing
priority and exclusion constraints, and whether one has the ability to express those constraints

in terms of any of the information types described earlier.
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One test of expressive power is to use the mechanism to implement solutions to the
examples given in the previous section. If there is no direct way to use a certain kind of
information, it should become obvious when an attempt is made to implement a solution
requiring it. While testing one example from each class of information may be insufficient to
guarantee that a mechanism is actualiy powerful enough, it does provide us with some
indication of a mechanism’s power, and will at least point out any large gaps in power.

A more general way to measure expressive power is simply to examine each mechanism
and attempt to determine what features it has that will enable it to deal with each type of
constraint. For example, we will see that monitor queues are a construct for handling request
time information, while serializer crowds retain synchronization state information. Some data
manipulation technique must be available for each type of information. The ability to identify
the particular way in which to handle each information type will also make a mechanism easier
to use because the structure of a solution will be indicated by the kinds of information referred
to in the specification. |

One technique that is often used for comparing the computational power of language
constructs, and that has recently been used to compare several versions of monitors [20], is
translation between solutions using different mechanisms. In comparing computational power,
this technique is useful because if one mechanism can be implemented in terms of another, then
the implementing mechanism must be at least as powerful as the one implemented. If the
translation is possible in both directions, the two mechanisms must be equally powerful. This
technique has been used to show that monitors, serializers and path expressions are all as
powerful as semaphores. Since semaphores are considered to be sufficiently powerful as a
synchronization construct, all three higher level constructs must have sufficient computational

power.
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‘It has been suggested that this transiation technique can be used in comparing
expressive power as well. If there is a straightforward, simple translation from one mechanism
to another, then the one translated to must have at least the expressive power of the other. We
have chosen not to employ this technique because the results of such a translation are unclear.
It is too difficult to judge how simple and straightforward.a translation algorithm is, or whether
the translations in each direction are equivalent in complexity. If the translation in one
direction varies slightly in complexity from the one in the other direction, the. mechanisms
proba'bly vary sligh.tly in power. Though the methods presented earlier for analyzing
expressive power seem less algorithmic than the translation technique, we feel that by defining

“the set of properties we expect a mechanism to express, and then testing for the ability to do so,

we have in fact used a more objective approach than translation.
2.4 Ease of Use

In analyziﬁg expressive power, we determine whether a synchronization mechanism
allows the straightforward implementation of the synchronization constraints described earlier.
Whether or not a mechanism is easy to use depends not only on the ability to easily construct
solutionS to individual constraints, but on the ability to easily construct implementations of
complex synchronization schemes made up of many such constraints.

Given that our requirements for expressive power are satisfied, complex
synchronization schemes will be easy to implement only if they can be decomposed into
individual constraints that can then be realized independently. If the implementation of any
one constraint is dependent upon the other constraints present, solutions quickly become very
difficult to construct as the number of constraints increases. Since the im;)lementor must be

aware of the entire set of constraints, and make sure that each constraint is consistent with every




other constraint present, the complexity of constructing the solution (not the complexity of the
solution itself) increases with the number of combinations of constraints present. It is therefore
far more difficult to cqnstruct'a solution than if it were possible to implement each constraint
separately, regardless of which other constraints were present.

One way to test whether a mechanism allows independent implementation of
constraints is to examine solutions to two similar synchronization problems. If the solutions
share some constraints, but differ in others, thén the common constraints shﬁuld be similarly
implemented in both solution#. Differences in the way a given constraint is implemented in two
different synchronization schemes, or solutions in which the implementations of each individual
constraint are not even identifiable as separate parts of the solution, indicate that our
independence criterion for constraints is being violated.

Among the examples presented earlier in this chapter, there are several readers_writers
problems having a common exclusion constraint. The problems differ in the priority
constraints used. These example; provide a good basis for examining independence of
constraints. If the implementatlon of the exclusion constraint cannot be isolated in each
mechanism, or if the implementatxon in each mechanism differs, it is an indication that tht
maechanism is hard to use. Conversely, if the implementation of this constraint is the same or
very similar in each solution, we have a fairty’strong indication that each constraint is
independent of other constraints in the synchronization scheme.

Assuming a mechanism satisfies this constraint independence property, if it is easy to
express solutions to each individual constraint, it will be easy to express solutions to more
complex synchronization problems. Our evaluation of expressive power should indicate how
easily individual constraints can be expressed. Mechanisms that are easiest to use will be those

for which there is a particular structure or method for handling each information class and
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constraint type.
2.5 Modifiability

We define modifiability to mean that a small change in a synchronization specification
will result in a similaﬂy minor change in its implementation. Like ease of use, modifiability is
primarily dependent on the constraint independence property discussed in the previous section.
If each constraint is implemented independently, a modification to one constraint should affect
only the part of the solution implementing that constraint. If we have shown in our evaluation
of expressive power that each type of constraint is beasily implementable, then a small change in |
the specification should be easy to implement.

We can also evaluate modifiability by looking at modifications that might typically be
made to some synchronization schemes, and judging whether the extent of the change required
in the implementation was consistent with the size of the change in specifications. We would
expect that a modification to one constraint that did not affect the type of the constraint or the
kinds of information used, would be simple to implement. The structure of the modified
solution should be similar to that of the original.

Modifications involving many ﬁonstraints, or those involving changes in the types of
constraints or kinds of information used, are more extensive, and can be expected to require
more significant changes to the implementation. However, if it is extremely difficult to change
an implémentation when a realistic change in specifications has been made, the mechanism may
not be consistent with our goals. Such a weakness in modifiability is usually indicative of a
weakness in understandability, expressive power, or ease of use as well.

We would like to analyze vand compare the ease with which modifications may be made

both within a constraint class and between constraint classes. To do so, we will examine several
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versions of the readers_writers problem: - readers_priority,  writers_priority, and
fair_readers_priority. The readers_priority and writers_priority examples can be used to
evaluate modifiability for the case in which tﬁe constraint types are not changed, since both use
priority constraints based on procedure requested. The fair_readers_priority problem combines
priority based on procedure type with that based on order of request. We would thus expect a
change from readers_priority to writers_priority to be easier than a change from
readers_priority to fair_readers_priority.

Thus, we can measure the "size” of a modification in terms of the number and types of
constraints changed, and use this metric in evaluating how well synchronization mechanisms
support modifiability. In this thesis, we will use transformations between various versions of

the readers_writers problem to test modifiability.
2.6 Correctness

In the area of correctness, we are concerned primarily with the ability to write correct
programs, rather than with _tecﬁniques for verifying those programs. In the sections on
correctness in the followiﬁg chapters, we will concentrate on two main topics. One is whether
there are specific features of each mechanism that will either aid or impede the production of
correct programs. Highly structured mechanisms that perform a great deal of syntactic checking
will find errors sooner, leaving less to be debugged at runtime. This is especially important
when concurrency exists, because parallel programs are prone to time-dependent errors that may
hot become evident when using traditional debugging techniques. (These mechanisms also ease
the verification task by enforcing certain criteria at compile time and removing the burden
from the verifier) We will also attempt to determine whether there are specific syntactic

constructs within a mechanism that are particularly hard to use correctly (or are easy to misuse).
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The other correctness criterion with which we are concerned is whether the use of a
mechanism will often lead to deadlock. When data abstractions are used as a design tool in
implementing synchron‘ized resources, the resources may have a hierarchical structure in which
the data abstraction representing the resource actually depends on one or more independently
implemented,v lower level abst;factio'ns. If these lower level abstractions are themselves
synchronized, we must be careful that the interactions among the various synchronizers do not
lead to deadlock. In a hierarchically structured resource, deadlocks can occur in the following
situation: sdppose an operation of the higher level abstraction calls an operation at a Iéwer level
and the synchronizer at the lower level causes the process to wait on some condition. If that
condition can only be satisfied through execution ﬁf a higher level operation that is excluded
until the current operation completes, a deadlock results. This situation, as it applies to
monitors, has gained much attention [28] recently. We will find that the problem applies to
other mechanisms as \well. Part of our examination of correctness issues will be an attempt to
decide how often deadlocks due to hierarchical structuring occur in using a given mechanism,
and- whether such deadlocks can be avoided. Because hierarchical structuring is fundamental
to well-modularized programs, it is important that synchronization mechanisms support this

structuring in a safe manner.
2.7 Summary

The criteria upon which. we plan to base our evaluation of synchronization
mechanisms have been presented. These include modularity, expressive power, ease of use,
modifiability and correctness. We have provided reasonably precise definitions for these
(usually only vaguely defined) terms with respect to synchronization, and developed methods for

evaluating how well synchronization mechanisms conform to these criteria. Because relatively
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precise meanings have been provided for each criterion, we have been able to provide testing

procedures that allow for uniform and fairly objective analyses of each mechanism.
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8. Monitors

The monitor construct was developed independently by Hoare(l8] and Brinch
Hansen[7] as an ektension of the secretary concept of Dijkstrall3l The version used here is the
one defined by Hoare.

A monitor consists of a set of operations needed to schedule access to a shared resource,
and any local data needed by those operations. Its structure is derived from that of the Simula
class construct{ll] and is similar t'o the cluster in CLUI[25] and the form in ALPHARDI35). The
construct is presented here using syntax from the programming language CLU,! rather than the »
Simula syntax used in (18], but we have not modified the semantics of tﬁe mechanism in any
way. The form of a monitor definition is:

monitorname = monitor is opl, .., opn;
réep = recordl.local data.)

opl = proc( )

opn = pr'oC( )

end mon'i;orname_

The pfocedures defined within a monitor module are mutually exclusive. Only one
process at a time may execute an operation on a given monitor object. All monitor operations
that may be called by users are listed in the is_list. The rep (the internal structure of the
monitor) is a record that contains all local data needed by the monitor in making

synchronization decisions. It may also contain the resource object, in which case users will view

1. All examples in this thesis are written in CLU-like syntax so as to provide a uniform
language for comparing solutions.
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the monitor as a protected resource.
Synchronization is accomplished via two special operations, wait and signal, which are

called from within monitor operations. The invocation wait(queue) causes the calling process to

- be suspended and placed at the end of the named queue. Control of the monitor is relinquished

by the waiting process, so another process waiting to execute a monitor procedure may continue.
When a waiting -process is restarted, it continues execution at the statement following the
invocation of wait.

The invocation signal(queue} restarts the first process on the named queue. This
process immediately regains control of the monitor and continues execution. The signalling
process is suspended on an urgent queue. Processes on the urgent queue have highest priority
for regaining control of the monitor when another process relinquishes it. One other operation
on queues is provided for use in‘monitor procedures; the operation gueue takes one argument,
which is a queue, and returns true if there is a process waiting on that queue, and Sfalse
otherwise.

When a process executes a wait, it is normally placed at the end of the specified queue.
In some cases, it is desirable to specify the order in which processes are to be placed on the
queue. The monitor mechanism therefore provides priority queues. The wait operation on
priority queues takes a second argument specifying the priority associated with the waiting
process.

Monitors may be used in one of two ways; the shared resource may be made a
component of the monitor, or the resource and monitor objects can be created independently. If
the resource is part of the monitor object, it will be created when the monitor is created; the
resource will therefore be accessible only through monitor operationls. Since monitor operations

are mutually exclusive, mutual exclusion on the resource is automatic.




To allow concurrent access, the resource must be separat,ed from the monitor object.
Since the resource will now be accessed outside of the monitor operations, appropriate mqnito;
operations must be invoked before and after resour& accesses to ensure proper synchronization.
This structure Ieavgs ’open the possibility of accessing the resource without first using the
monitor. Later in this chapter, we will discuss methods of structuring shared resources so as to
prevent unsynchronized access, while allowing concurrency.

An example of the use of monitors to solve the bounded buffer problem is given in
Figuré 1. In this example, thei monitor contains the resource (the buffer), two queues, nonfull
and nonempty, and the maximum buffer size. We use the name condition instead of queue in
the examples to conform to the notation in [I8). Since the buffer is inside the monitor mutual
exclusion ivs guaranteed.

The monitor operations work in the following way. In the append operation, a test is
made to see if the buffer is full. If it is, the append cannot proceed, so the executing process is
_placed on the nonfull queue; and the monitor is released. When there is space in the buffer, the
process continues at the statement following the wait. After the data is appended to the buffer,
the nonempty queue is signalled. Since a message was just inserted, the buffer can no longer be
empty, so a process waiting to do a remove may proceed.

The remove operation keeps processes waiting on the nonempty queue until data is
available in the buffer. When a remove operation completes, a buffer slot becomes available, so |
the nonfull condition queue is signalled. This will cause a process waiting to perform an

append to continue.




-3 -

Figure 1. Bounded Buffer using Monitors
bounded_buffer = monitor is create, append, remove,

am= array[message];
rep = record[ slots:am, max:int, nonempty, nonfull: condition)

create = proc(n:int) returns (cvt);
return (rep${slots:aménew(),
max:n,
nonempty,nonfull: condition§create()});
end create;

append = proc(buffer:cvt, x:message) ;
if am#isize(buffer.slots) = max
then condition$wait(buffer.nonfull);
end;
amfaddh(buffer.slots,x);
condition$signal(buffer.nonempty);
end append,;

remove = proc(buffer:cvt) returns (message);

if am$size(buffer.slots) = 0
then condition§wait(buffer.nonempty);
end;

x:message := am$remi(slots);

condition$signal(buffer.nonfull);

return (x);

end remove;

end bounded_buffer;

3.1 Expressive Power

In the last chapter, a set of examples representative of the classes .of common
synchronization problems was presented. In this section, the monitor solutions to these examples
will be described and these solutions will be used to evaluate the expressive power of the
mechanism.

The bounded buffer solution has already been presented. This example makes use of

resource state information to describe exclusion constraints. The solution given demonstrates
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that the use of such information poses no problems for the monitor construct. This type of
information is obtainable either by invocation of resource operations that return state
information or by keeping the needed information in the monitor object. In Figure 1, the
current buffer size is obtained by invoking the size operation, but the maximum size is stored
in the monitor.

The next examples to be discussed are the readers_wﬁters problems. These solutions
use monitors that are associated with, but do not contain, the resource. Such a structure allows
concurrent access to the resource.

Readers_priority

The readers_priority monitor is shown in Figure 2. (The.solution is taken from [18),
but translated into CLU.) It contains four operations, one to be used before and one after each
resource access. To properly synchronize the resource, users must invoke the appropriate
monitor operations preceding an_a following each access.

The solution is relatively simple. The local variable busy is used to keep track of.
whether there is a writer in the resource. Readercount is the number of readers in the resource.
The startread operation prevents readers from proceeding if a writer is in the resource, while
writers must wait in startwrite if any process is currently in the resoﬁrce, or, because readers
have priority, if there are reads waiting. (Since readers only wait if there is a writer in the
resource, there is no need for é separate test to determine whether readers are waiting if we are
testing busy) Endread will signal the writers queue when the last read exits the resource.
Endwrite will check whether there are readers waiting and, if so, signal the readers queue;
otherwise it will signal the writers queue.

This solution’s structure, and its use of request type and synchronization state

information are fairly straightforward. The needed information about synchronization state is
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Figure 2. Readers_Priority Monitor

readers_priority = monitor is create,
startread,
endread,
startwrite,
endwrite;

rep = record[readercount: int,
busy:boolean,
readers, writerscondition};

create = proc() returns {(cvt);
return(rep${readercount: 0,
busy:false,
readers,writers:condition$create()});
end create;

startread = proc(m:cvt);
if m.busy then condition$wait(m.readers) end;
m.readercount:= m.readercount « {;
condition8signal{m.readers);
end startread;

endread = proc(m:cvt);
m.readercount:= m.readercount - I;
if m.readercount:=0
then condition§signal(m.writers)
end;
end endread;

startwrite = proc{m:cvt),
if m.readercount > 0 | mbusy
then condition$§wait{m.writers)
end; ’
m.busy:=true;
end startwrite;

endwrite = proc(m:cvt),
m.busy:=false; »
if condition8queue(m.readers)
then condition$signakim.readers)
else condition$signakm.writers)
end;
end endwrite;

end readers_priority;
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kept in the local variables busy and readercount. Request type information is kept by queuing
processes requesting different operations on different queues.

While this solution indicates that monitors can adequately handle these information
types, it also illustrates some weaknesses in the construct. The monitor mechanism provides no
way to associate the monitor with the resource it is to synchronize. If this monitor is used with
no additional structure, correct synchronization depends on users of the resource properly
invoking monitor operations before and after each access; there is no protection against
unsynchronized access. Modularity is impaired because monitor invocations must appear in
user procedures, and correctness is undermined because no guarantee of proper synchronization
exists.

A method for using monitors that conforms to the model of protected resources
discussed in Chapter 2 is needed. Users must only have access to the protected resource, and
the synchronization for the resource should be localized within it. This can be accomplished by
constructing a protected_database abstraction that encapsuiates both the monitor and the
resource. Users will then have access only to protected_database objects; invocations of monitor
and resource operations will be allowed only within protected_database operations. A protected
readers_writers database is shown in Figure 3.

It is thus possible to construct synchronized resources with the resource and monitor
separated, while maintaining protection from unsynchronized access. This method for doing so
is discussed further in the section on modularity.

First_come_first_serve

Another version of the readers_writers problem is the first_come_first_serve scheme. Its

solution is given in Figure 4. Because priority in this example is based on time of request

rather than type of request, the queuing scheme is different from that of the previous example.
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Figure 3. Readers_Priority Protected_Resource Module
protected_data_base = cluster is createread,write;

rep = record[m: readerS_priority,d: data_base]

create = proc()returns(cvt);
return (rep8{m: readers_priority$create(),
d: data_basefcreate()})

end create;

read = proc(pdb: cvt) returns{data);
_readers_priority$startread(pdb.m);
‘x:data :=data_basefread(pdb.d);
readers_priority$endread(pdb.m);
return (x);
end read;

write = proc(pdb: cvt, x:data);
readers_priority$startwrite(pdb.m),
data_base$write((pdb.d, x);
readers_priority$endwrite(pdb.m);
end write;

end protected_data_base;

Readers and writers are placed én a single queue, thereby ordéring them by time of request.
Howevér, the exclusion constraints for réde_rs are differént from those for writers; S0
information about type of réquest is also needed. Because the monitor construct provides no
means of identifying the process at the head of a queue or determining the conditions for which
it is waiting, the first process on the queue must be dequeued before the exclusion constraints
can be checked. In the first_come_first_serve casé, it happens that the exclusion constraints for
readers are always met when a process is dequeued from the users queue. However, there can
be readers in the resource when a signal on the users queue occurs, so the constraints for writers
may not be satisfied. If a writer is dequeued when the resource is not empty, the writer ‘wﬂl

have to wait on a second queue until the constraints are satisfied. The signalling scheme
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Figure 4. First_Come_First_Serve Monitor
first_come_first_serve = monitor is create, startread, endread, startwrite, endwrite;

rep = record[ busy: boolean,
readercount: integer,
users, writer: condition]

create = proc() returns (cvt),
return(rep${busy:false, readercount:0, users, writer: condition$create()}; -
end create;

startread = proc(m: cvt)
if m.busy | conditionfqueue(m.writer) | condition§queue(m.users)
then condition$wait(m.users);
end;
m.readercount:=m.readercount + I;
condition§signal{m.users); %start all readers
end startread;

endread = proc{m:cvt);
m.readercount := m.readercount - |;
if m.readercount = 0
then if conditionfqueue(m.writer)
then condition$signal(m.writer)
else condition§signal(m.users)
end;
end;
%anyone on the writers queue has been waiting longer than those on users queue
‘end endread;

startwrite = proc(m:cvt);

if m.readercount > 0 | m.busy
then condition§wait(m.users),
end;

if m.readercount > 0
then condition$wait(m.writer);
end;

m.busy := true;

end startwrite;

endwrite = proc(m:cvt);
m.busy:=false;
condition§signal{m.users);
end endwrite;

end first_come_first_serve;
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ensures that a writer waiting on the writers queue will be served before any other process is
dequeued from the users queue. Since no processes are being allowed into the resource, it will
eventually empty and the writer will be signalled. This signalling order preserves the
first_come_first_serve specification.

It is thus pdssible to express request time information using monitors. This solution is
more complex than the readers_priority solution, but since it contains an additional type of
information we would. expect some additional complexity. The two queues in the solution
maintain different types of information. The users queue keeps track of relative times of
request, while the writers queue maintains request type information. Thus, we can identify the
part of the solution associated with each constraint. Though it is more complicated than the
readers_priority solution, this example still appears reasonably straightforward and easy to
understand.

Writers_exclude_others

Though conceptually simpler than the other problems, the writers_exclude_others
example creates special difficulties for monitors. The specification of this problem contains only
exclusion constraints; the order in which waiting processes are granted access to the resource is
unspecified. The difficulty in implementing this specification arises from the way in which
priority constraints are handled. The monitor construct requires that control of the monitor be
explicitly passed to waiting processes via the signal mechanism. In cases where more than one
queue contains processes ready to continue, the signalling procedure must select one of the
queues; the priorities of those queues must therefore be explicit in the code of the monitor
procedures. There is no way for the programmer to leave the priorities unspecified. In such
cases, the design process is made more difficult, and the likelihood of error increased. We

would prefer the mechanism to grant access requests in some fair order at times when the order




is not determined.

As a basis for comparison with other mechanisms, we present a solution that satisfies
the writers_exclude_others constraint, and, in the cases in which m_fder is not determined by the
specificﬁtion; grants access in order of reﬁuest. (The ambiguity arises in exactly one case here:
when a write teﬁninates, and both readers and writers afe waiting.) This solution is basically
the first_come_first_serve solution, with the change that if there are already readers in the
resource, any new readers will be allowed to continue, even if there are writers waiting. (This
vsoluti.on therefore allows writers to starve.) The solution appears in Figure 5.

One_Siot Buffer

- The one_slot buffer problem is a simple example of the use of history information.
The resource is a message buffer that can contain only a single message. The inse& and
remove operations on the buffer must alternate to ensure that no message is lost. Monitors
have no specific method for sequencing operations, so the history information is kept as local
data. The easiest way to solve this problem in monitors is to treat it as local state inform@tion.
rather than history information, making it a special case of the bounded_buffer problem. The
only local data needed is a booleﬁn indicating whether there is an unread message in the buffer.
We could alternatively keep a local variable indicating the last operation performed. Either
solution is simple; however, because the implemenfor must manage the information explicitly, it
will be difficult to implement solutions using complex history information. This is not a serious
drawback because such schemes do not appear to be common. However, as will be seen in the
next chapter, path expressions provide a direct method of expressing such constraints, and are

thus better suited for these kinds of problems.
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Figure 5. Writers_Exclude_Others Monitor
writers_exclude_others = monitor is create, startread, endread, startwriteendwrite;

rep = record[busy: boolean,
readercount: int,
users, writers: condition};

startread = proc(m:cvt);
if m.busy
then condition§wait(m.users);
end;
m.readercount := m.readercount+};
condition§signakm.users); %start all waiting readers
end startread; : :

endread = proc(m:cvt);
m.readercount := m.readercount-i;
if m.readercount = 0
then if condition$queue(m.writers)
then condition$signakim.writers)
else condition$signam.users) %there might be a writer on the users queue
end;
" end;
end endread;

startwrite = proc(m:cvt);

if m.readercount > 0 | m.busy then condition§wait(m.users) end;
%if there are readers waiting behind a writer at this point,
‘%they will not be restarted. To do so requires signalling users again before
%the wait in the next statement.

if m.readercount > 0 then condition$wait(m. wrmrs) end;

m.busy := true;

end startwrite;

endwrite = proc(m:cvt);
m.busy := false;
if conditionfiqueue(m.writers)
then condition$signal(m.writers) %processes on writers queue have waited longest
else condition$signakm.users)
end;
end endwrite;

end writers_exclude_others;
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Alarmclock

The one category of synchronization schemes not yet discussed involves constraints
based on arguments passed to the synchronization operations. The alarmclock problem
illustrates the use of priority queues to handle such constraints. The alarmclock is a system
facility that allows processes to put themselves to sleep until a specified time. The monitor
solution to the alarmclock problem is given in Figure 6. One shortcoming of this solutioﬁ is
that the first process in the queue is awakened every time unit; if it is not yet the time at which

it was to be restarted, it is requeued. Thus the implementation is awkward. The awkwardness

Figure 6. Alarmclock Monitor
alarmclock = monitor is create, wakeme, tick;

pq=priority_queue;
rep= record[wakeup: pq, now: int};

create = proc() returns(cvt);
return (rep${wakeup: pqfcreate(), now: 0});
end create;

wakeme = proc(ac: cvt, time: int)
alarmsetting: int := time+ac.now;
while acnow < alarmsetting do
pq#wait(ac.wakeup, alarmsetting)
“end;
7the while statement is necessary because the first process on the
%queue is awakened every tick.
pq#signal(ac.wakeup);
%in case the next process has same wakeup time.
end wakeme;

tick = procedure(ac:cvt);
ac.now := ac.now + |;
pqésignal{ac.wakeup);
end tick;

end alarmclock;
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exists because monitors cannot examine the first entry on the queue without dequeuing it first.
As noted by Howard([19], adding an operation on priority queues to return the priority of the
first element will eliminate this problem.

Disk Scheduler

Although the disk scheduler illustrates the use of information types already presented,
we present it here for comparison with other mechanisms. The solution uses two priority
queues, upsweep and downsweep, which hold the processes to be served on the next sweep of
the disk head up or down the disk. The track number requested serves as the priority for
enqueuing processes. In the upsweep queue, the lowest track‘requested is first on the queue,
while the downsweep queue is in the reverse order. The structure of the solution resembles that
of the readers_priority solution in that operations are provided for synchronizing before and
after the disk access. The primary function of the monitor is to ensure exclusion on the disk,
and to move the diskhead in the proper sequence. The solution is shown in Figure 7.

Initially, the disk head is positioned at track 0, and is moving up. When a request to
access the disk is made, the track requested is compared with the current track. If the track
requested is the current track, the request is queued to be serviced on the next sweep across the
disk; immediate service would allow starvation of processes requesting other tracks. If the
requested track is greater than the current track, the process is queued on the upsweep queue; if
less than the current track, the process waits on the downsweep queue.

When a process releases the disk, the next request on the queue for the current
direction is served. If that queue is empty, the direction is changed and the first process on thé

queue for the new direction is signalled.
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Figure 7. Disk_Scheduler Monitor
disk_scheduler = monitor is create, request, release;

pq=priority_queue;

rep = record[upsweep, downsweep: pq,
busy: bool,
direction: string,
headpos: cylinder};

create = proc(cylmax: int) returns(cvt); -
return(rep8{upsweep, downsweep: pqfcreate(),
busy:false,
direction:"up",
headpos:0});
end create;

request = proc(dest:cylinder, sched:cvt),
if sched.busy
then if sched.headpos < dest | (sched.headpos = dest & sched direction = "down")
then pq8wait(sched.upsweep, dest)
else pq8wait(sched.downsweep, dest)
end '
end;
sched.busy := true
sched.headpos:= dest;
end request;

release = proc(sched: cvt);
sched.busy :=false;
if sched direction = "up”
then if pq#queue(sched.upsweep)
then pq¥isignal(sched.upsweep)
else sched.direction := "down”
pq8signal(sched.downsweep)
end;
elseif pqiqueue(sched.downsweep)
then pq8signal(sched.downsweep)
else sched direction := "up”
pq8signal(sched.upsweep)
end;
end release;

end disk_scheduler;
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3.1.1 Conclusions

We conclude from the analysis of the examples that monitors have the power necessary
to express a wide range of synchfonization problems. All but the writers_exclude_others
problem had strafghtforward, easily derivable solutions. Furthermore, the analysis made
apparent specific ways in which each type of information is handled within monitor solutions,
and how each type of constraint is expressed. Request type and request time information are
maintained via use of queues, as shown in the readers_priority and first_come_first_serve
examples. Inforhation from arguments passed can usually be handled by priori.ty queuing.
Synchronization state, history information, and some local state information must be explicitly
kept by the user in "local variables” (in CLU, these local variables are additional components of
the rep). While use of local variables is a rather low level method of maintaining information,
and requires the synchronization procedures to explicitly keep and manipulate the information,
it does provide generality. We can therefore be confident that any synchronization constraint
can be implemented in a fairly straightforward manner.

The use of explicit signals is probably the weakest point in the monitor mechanism. It
affects expressive power in problem.s such as the writers_exclude_others problem by forcing
decisions about priority at every‘point where a process is restarted. In addition, correctness and
understandability are undermined. When a process performs i wait, there is no indication of
when or by whom it will be awakened, so it may be difficult to u;mderstand the conditions under
which it will be resumed. The conditions tested before a wait may not be the same as those
that must be true before the process resumes. An example of this situation appears in the
fair_readers_priority solution. Readers must wait if there are any writers waiting, but they can

be resumed even if some of those writers are still enqueued. It is therefore necessary to examine
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all of the monitor procedures to determine when waiting processes will be signalled. Correctness
is affected because the implementor must be careful to perform signals ‘at all the necessary
- points. (It should be noticed in the examples presented that signals on a given queue must
often be performed in several places) Forgetting any point at which the conditions for
signalling might‘ become satisfied will lead to incorrect sc;lutions.

It should be mentioned that explicit signals do have several advantages over automatic
signalling constructs. Explicit signals are more efficient; they were included in the monitor
construct precisely for this reason. Automatic signals, such as those found in serializers, are less
efficient because the conditions associated with every queue must be checked each time
possession of the synchronizer is relinquished. We can also be sure that explicit signals are
powerful enough to implement any ordering scheme we choose. We will see in the serializer
chapter that cases exist for which it is easier to write solutions using explicit signals, than using

automatic signalling.
3.2 Modularity

In several of the solutions in the previous section the criteria for modularity discussed
in Chapter 2 are not met. The bounded buffer solution combines the implementation of the
buffer with the synchronization in a single module. The readers_priority example improves the
situation by having a separate synchronization module, but provides no way of associating the
monitor with the resource to protect against unsynchronized accesses. If monitors are to meet
our requirements, we will need to develop a discipline for using them that produces reliable -
and properly modularized implementations of shared resources.

The protected_database module provided with the readers_priority monitor in the

previous section (Figure 3) illustrates that an abstraction that encapsulates both the monitor and
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resource modules will protect the resource from unsynchronized access, while allowing Separate
implementations of the resource and monitor. When such an abstraction is used, users of the
resource will have access only to the protected object. The operations on the objects of the
protected_resource type can ensure that the monitor is properly accessed before and after
accesses to the resource. The form of protected_résource objects is shown in Figure 8.

In the genera_l case, the method for producing this structure is as follows. A resource
abstraction containing no synchronization should be defined. The synchronization constraints
are implemented in a monitor, which will have operations to be called before and after each
resource access. The operations to be called before an access must check that constraints are
satisfied, and invoke waits if not. Before terminating, this "start” procedure should set monitor
information about synchronization state to indicate that the process has entered the resource. It
is assumed that the resource will be entered immediately upon leaving the monitor. The
operations to be invoked following a resource access should reset the state information and
signal any queues for which the associated conditions have become true. We are thus assuming,
in designing this monitor, that operations will be called exactly in the order
"monitor§start_access; resource§access; monitor§end _access”.

We ensure that this order is upheld by creating a protected_resource abstraction, which

will contain both the monitor and the resource. Thus, a create operation on the

Figure 8. Protected Resource Structure

protected resource

resource monitor
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protected_resource will create both a resource object and a monitor object, and neither will be
accessible to any but protected_resource operations. The operations of the protected_resource
correspond to the operations users may invoke on the resource. In other words, for every
operation access of the resource type, there should be an operation access of the
protected _resource type.2 Each protected_resource access operation should contain exactly the
three invocations mentioned earlier:
access = proc(pr:protected_resource);

monitor§start_access(pr.mon);

resource$access(pr.res);

monitor$end _access(pr.mon);

end access;
Thus, the protected_resource operations enforce the proper use of the monitor when the
resource is not inside the monitor.

In addition to providing better modularity and allowing concurrent access, this
structure has another advantage over solutions in which the resource is contained in the
monitor: it reduces the possibility of deadlocks. Implementing resources inside monitors can
lead to deadlocks in the following situation.? Suppose the resource were implemented in terms
of another abstract type that contained a monitor. Resource operations would be invoked from
the monitor containing the resource. A resource operation could then invoke an operation of
the lower level monitor. If a wait is executed in the lower level monitor, that monitor will be

released, but the higher level monitor will not. If the only place a signal can occur in the lower

level monitor is in an operation invoked from the higher level, a deadlock will result.

2. There are cases in which the protected_resource operations need not be one-to-one with
resource operations. We may want to hide more information than just the synchronization
inside the protected_resource. For instance, an operation of the protected resource may perform
several resource accesses. The general structure remains the same, however: the
protected_resource operations coordinates monitor calls with resource invocations.

3. This problem is referred to as the "nested monitor call” problem in[28].
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Separating the resource from the monitor eliminates the possibility of hierarchical
deadlock in almost all cases. Because the resource invocations occur outside the monitor, the
higher level monitor will be released before the second monitor is entered. T herefore, executing
a wait in the lower level monitor will not tie up tﬁe other monitor, so no deadlock will arise.
The only case in which the potential for hierarchical deadlock still exists is when the monitor
must invoke a resource operation. Such a situation may occur when resource state information
is needed in the synchronization scheme. This situation is rare, however, so the range of cases
in which hierarchical deadlocks can occur has been greatly reduced. In general, therefore,
structuring monitor solutions by separating the resource and monitor and providing a
protected_resource abstraction substantially improves modularity and correctness.

All of the examples in the previous section, with the exception of the bounded buffer,
use the method just described for structuring synchronized resources. The bounded buffer
could, of course, be implemented in the same way. However, because mutual exclusion is
needed, and buffer operations must be invoked from within the monitor anyway, most of the
advantages of this structure do not apply. It therefore seems unnecessary to create three
modules to implement this solution. One improvement in modularity that does seem
worthwhile for the bounded buffer example is to separate the buffer implementation from that
of the monitor, but leave the buffer object inside the monitor. The monitor for this buffer is

shown in Figure 9. Since the monitor is not released during calls to the resource, mutual
exclusion is still automatic. However, since the resource object is no longer part of the
monitor,the. modularity is better. The monitor no longer contains information that should be
local to the resource, such as the buffer size; it can obtain the needed information by in‘voking
the full and empty operations. The same monitor can now be used for any size buffer.

Furthermore, the implementation of the buffer may be changed without modifying the monitor.
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Figure 9. Bounded Buffer Monitor
protected_buffer = monitor is create, append, remove;

rep = record| slots:buffer, nonempty, nonfull: condition ]

create = proc() returns (cvt);
return (rep${slots:bufferfcreate(),
nonempty,nonfull: condition§create()});
end create;

append = proc(pb:cvt, x:message) ;
if buffer$full(pb.slots) then condition$wait(pb.nonfull) end;
bufferfappend(pb slots, x);
condition$signal(pb.nonempty);
end append;

remove = proc(pb:cvt) returns (message);
if bufferempty(pb.slots) then condition$wait(pb.nonempty) end;
x:message := buffer§remove(pb.slots);
condition$signal(pb.nonfull);
return (x);
end remove;

end bounded_buffer;

Conversely, the synchronization scheme for the buffer can be altered’without changing the
buffer implementation. Modifiability and understandability are therefore enhanced. This
structure therefore seems most apprdpriate for the bounded buffer problem. However, this
example is clearly an exceptional case. It is only because of the example’s simplicity, and the
fact that it uses mutual exclusion and needs resource state information, that this two-module
structure seems better than the protected_resource structure described earlier.

In conclusion, we can define a technique for using monitors in a way which conforms
to the model defined in the previous chapter. Unfortunately, there is no way to enforce the use
of this technique. The lack of enforcement of medularity is one problem that must be

recognized if monitors are to be included as a synchronization construct in a language
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supporting software reliability.
3.3 Ease of Use and Modifiability

In the sectiqn on expressive power, we observed that it was possible to make use of
each of our information types within monitor solutions. We could, in fact, identify the way in
which each type had to be’handled'in implementations. We must now determine whether these
individual constraints can be easily combined to form more complex solutions. To evaluate
constraint independence in monitor solutions, we can compare the implementations of the
exclusion constraints in each of the readers_writers problems (see Figures 2, 4,\5). In each, the
constraint on reads is implemented in startread by making readers wait if a writer is in the
resource, and by ensuring that no write is in progress before signalling the readers queue.
Similarly, writes must wait if any process is in the resource. We can thus identify the parts of a
solution associated with each constraint, and add new constraints without modifying already
existing ones. Some interaction between the exclusion and priority constraints is noticeable in
the first_come_first_serve solution, because the priority constraint causes writers to wait on two
queues. The exclusion constraint has to be checked before waiting on each one. In most cases,
however, it is clear how the exclusion constraints are to be implemented, and priority constraints
may be added or changed without changing the existing implementation of mutual exclusion.

The independence of constraints within a solution is the primary determinant of ﬁow
easily that solution may be modified to implement a slightly different synchronization scheme.
We therefore expect monitors to support modifiability fairly well. To test this assumption
further, we can compare the solutions to the readers_priority and writers_priority problems:
both use the same information types and differ in only one constraint. Thus, the modifications

required to change from one to the other should be small. The writer-priority monitor is shown
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in Figure 10.

The priority constraint in readers_priority is implemented ‘by signalling readers’ before
writers at the termination of a write, and by allowing readers to enter the resource as long as
the exclusion constraint is upheld, regardless of whether there are writers waiting. To change
to writers_priority, the signalling in endwrite had to be changed to signal writers before readers,
and startread changed to block readers if there are writers waiting. (In the readers_priority
solution, startwrite did not have to check whether readers were waiting because reads only
waited when a write was in progress, so if busy was false, there were no readers waiting.) The
modifications necessary to alter the solution were minor and conceptually simple. Only those
parts of the solution directly related to the constraint being changed had to be altered.

To determine whether more complex modifications can be made by altering only the
parts of the solution related to the constraints being changed, we examine the modification of
the readers_priority solution to a fair_readers_priority scheme. This solution combines request
type information with information about time of request, thus adding an information type to the
specification. Since a change from an unfair to a fair solution is one that seems likely to be
made, it is important that modifications of this sort be easy to perform.

The modification requires the addition of request time information to the priority
constraints. The needed information can be obtained by checking whether writers are waiting
when a read is requested. Thus, to transform the readers_priority solution to a fair solution we
need only add a test in startread to make readers wait if a write is already waiting. Readers still
get priority when a write terminates. The fair_readers_priority monitor appears in Figure 1.

Though the actual textual changes made are small,‘ it is conceptually more difficult to
locate the changes needed in this example. This is to be expected, since an additional type of

information is needed. It is still possible, however, to limit the modifications to small sections of
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Figure 10. Writers_Priority Monitor
writers_priority = monitor is create, startread, endread,
startwrite, endwrite; '

rep = record(readercount:integer, busy:boolean, readers,writers:condition)

create = proc() returns (cvt);
return (rep${readercount0, busy:false,
* readers:conditionfcreate(),writers:condition$create()});
end create;

startread = proc(m:cvt);
if m.busy | condition$queue(m.writers)
then condition$wait(m.readers)
end; '
m.readercount:=sm.readercount«+l;
condition$signal(m.readers);
end startread;

endread = proc(m:cvt);
m.readercount:=m.readercount-l;
if m.readercount = 0 ‘
then condition$signalim.writers)
end;
end endread;

startwrite = proc(m:cvt);
if m.readercount>0 | m.busy
then condition$wait(m.writers);
end;
m.busy:=true;
end startwrite;

endwrite = proc(m:cvt);
m.busy:=faise;
if conditionfempty(m.writers)
then condition8signal(m.readers)
else condition$signal{m.writers)
end; '
end endwrite;

end writer-priority;
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Figure 11. Fair_Readers_Priority Monitor
fair_rp = monitor is startread, endread, startwrite, endwrite,create;

rep = record[ readercount:int, busy:boolean, readers, writers: condition};

create = proc() returns(cvt);
return(rep${readercount:0,
busy:false,
readers, writers:condition§create()});
end create;

startread = proc(m:cvt);
if m.busy | condition$queue(m.writers)
then condition§wait(m.readers)
end;
m.readercount := m.readercount + [;
conditionf#signal(m.readers);
end startread;

endread = proc(m.cvt);
m.readercount := m.readercount -l;
if m.readercount = 0
then condition$signal(m.writers);
end;
end endread;

startwrite = proc(m:cvt),
if m.readercount > 0 | m.busy
then condition$wait(m.writers);
end;
m.busy := true;
end startwrite;

endwrite = proc(m:cvt);
m.busy := false;
if condition§queue(m.readers)
then condition$signal(m.readers)
else condition$#signalm.writers)
end;
end endwrite;

end fair_rp;
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the solution. The structure of the monitor remained unchanged.
From the examples shown in this section, we can see that monitors support
modifiability and ease of use. It is easy to determine which parts of a solution are associated

with any given constraint, and only these sections must be modified if the specification of that

constraint is changed.
3.4 Correctness

There are two cotrectness issues with which we are concerned. One is the monitor
mechanism’s use of explicit signals. The other is the possibility of deadlocks due to
hierarchical structuring of resources.

The disadvantages of explicit signalling were discussed briefly in the section on
expressive power. The weakness of the signal construct lies in the inabiiity of the mechanism to
ensure its correct use. Though a queue is intuitively associated with some logical condition, the
wait and signal operations provide no way to connect that condition with the actual use of the
queue. There is no guarantee that a queue will be signalled when the condition associated with
it is satisfied. Conversely, there is élso no guarantee that the conditions associated with a
signalled queue are true when a signal occurs.

Proof rules for the signal construct do exist, (see (18] and (19]). Thus, while it may be
possible to verify that correct programs meet their specifications, the signal construct provides
little support for producing the correct programs. Though proof rules are important, they are
no replacement for a mechanism that provides more support for producing correct programs
initially.

The other issue with which we are concerned is the hierarchical deadlock problem.

This problem was discussed in the section on modularity. We have shown that by designing
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the protected resource so that the resource is not part of the monitor, we alleviate much of the
problem. There appears to be no way to guarantee against such deadlocks.

There has been much discussion abou‘t the deadlock problem and possible solutions[28,
22, 29,31), but at present, no solution has completely eliminated the problem. At best, we can

minimize the likelihood of its occurrence by properly modularizing monitor solutions.
3.0 Conclusions

We have found that monitors meet our expressive pﬁwer, ease of use, and modifiability
requirements reasonably well. Only the writers_exclude_others probfem lacks a simple, easy to
construct solution. However, the support given modularity and correctness is weak. The use of
the technique shown for properly modularizing monitor solutions overcomes the modularity
problems and improves correctness by substantially reducing the possibility of deadlock due to

hierarchical structuring of shared resources.
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4. Path Expressions

The path expression mechanism was developed by Campbell and Habermann[8] to
provide a way to specify the synchronization for a data abstraction as part of the definition of
that abstraction. The mechanism is based on the following concept: since access to a resource
may be gained only through operations of its type, the synchronization for the resource may be
defined as the set of allowable orderings in which those operations may be performed.

A path expression is thus a specification of this set. It is included in the type definition
for the shared resource type. A path "controller” keeps track of the operations executed on each
object of the type, and ensures that the operations executed on that object conform to some legal
ordering. When a process requests execution of an operation named in a path, if there is some
allowable ordering in which this operation could occur next, then the process is allowed to
proceed. Otherwise, the process is blocked until the path controller determines that the
requested operation can execute. It is impoftant to realize that the path expression does not
cause the invocation of procedures. Rather, when an operation named in the path is invoked
by a process, a check is made to determine whether there is some sequence defined by the path
that would allow this operation to execute immediately. It should also be noted that the path is
associated with a resource, not a process, and therefore has no control over which process
executes which operations. The proper order of operations on a resource must be enforced, but
each operation may be performed by a different process.

Several versions of path expressions have been proposed. The version presented here
is taken primarily from [8). This version was chosen because it provides a way to explicitly
state that two resource operations may execute simultaneously. If synchronizatibn is to be .

specified as a set of relationships among operations on the resource, we felt it imperative that
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one be allowed to specify concurrency. The assumption that all operations named in paths are
mutually exclusive is too strong to allow natural solutions to problems.

The path expression implementation of a synchronization scheme consists of one or
more paths of the form:

path ordering specification end
where the ordering specification describes the set of allowable sequences of operations. The
path-end pair, which must surround the ordering specification, denotes that the sequences
allowed by the specification may be repeated any number of times. When the end of a path is
reached, control returns to the beginning of the path, and waits for an operation request
consistent with the start of a sequence allowed by the path. If there are several paths in a
module, any operation executed must be consistent with all of the paths. If an operation is not
named in a path, it is unsynchronized, and may occur at any time, regardless of whether any
other operations are executing. Furthermore, unless concurrency is explicitly stated in a path, it
is assumed that only one process may be executing an operation named in the path at any
given time.

The ordering specification in the path is written in terms of four kinds of relationships
between operations of the resource type: sequencing, selection, repetition, and concurrency. The
sequencing operator, ";", allows the specification that a set of procedures must be‘executed in a
given order. Thus,

path open; read; close end
indicates that open must occur before read, and-read must occur before close. Since no
concurrency is specified, all must be executed sequentially. After close executes, the "state” of the

path expression is the point prior to read. Another open must occur before a read or close.

Nothing is implied about which processes execute the operations. Each procedure may be
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executed by a different process.

The selection operator, "+", allows only one of the specified procedures to execute at a
time. The path |

path read + write end
indicates that the path controller must select one process from among those waiting to execute
read or write to proceed. The one chosen must also conform to the specifications in other paths.
Although [8] states only that selection must be done in some fair order, we will explicitly require
that if more than one process is ready to proceed and meets all requirements of the path
expression, the one that has been waiting longest will be selected. We will need this
first_come_first_serve property to meet our expressive power criteria.

Concurrency is denoted by braces surrounding the section of the path that may be
executed concurrently by severa.l prbcesses. Thus, { read } signifies that several processes may
execute the procedure read at the same time. Once one process starts executing read others may
start, as long as some execution of read is still in progress. Once a point is reached at which no
executions of the brac‘keted procedure are in progress, this portion of the path is considered to
be complete. Further requests for read must wait until the next repetition of the path (even if
the next operation in the path has not yet started).

Concurrency may also be used in conjunction with other path operators. The path

path { read } + write end
allows reads in parallel, while a single writer will exclude all other processes. The path

path write; { read} end
will allow any number of reads in parallel after a write has occurred. At least one read must
occur between writes. As soon as all readers leave the resource, any further reads will be

blocked until another write has completed.




The expression { write ; read } means any number of sequences of write followed by
read may execute concurrently. An execution of write must éomplete before the corresponding
read starts, but any numberiof writes and reads may actually be executing at once. The
expression { read + write } means any number of reads and tywritesv may ex?cute simultaneously.

Repetition permits a pattern of operations to be repeated any number of times. As

~ stated earlier, the path-end pair surrounding a path allows repetition of sequences allowed by

the enclosed ordering specification.

Examples of the use of this mechanism will be presented in the next section.

*

4.1 Expressive Power

In this section, we evaluate expressive power by examining the path expression
solutions to the problems described in Chapter 2. Each of these examples was chosen because it
illustrates the use of some type of constraint that synchronization mechanisms must be able to
express. In discussing the examples, we will also attempt to boint out aspects that affect other

criteria.

4.1.1 Examples

Writers_exclude_others

The writers_exclude_others problem is one for which path expressions are very
well-suited. The solution is extremely simple. Qne need only include the path:

path { read} + me end | |
in the module ;:iefining the resource. If a user invokes a read operation while a write is

executing, the path will block the user process; otherwise the read will be allowed to proceed. A
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write reqﬁest can proceed only when the resource is empty.

This example demonstrates that path expressions allow | the stnightforwgrd
implementation of exclusion constraints based on the synchroniiation state'of the resource. The
path "expression solution is considerably simpler than the monitor solution. This difference can
be attributed to the ability to irﬁplement nondeterminate specifications with path expressions. |
The writers_exclude_otﬁers problem contains no priority constraints. Thus, if both readers and
writers are waiting when a writer leaves the resource, the next process to be served is not
described by the specification. When using path expression#, fhe implementor of the solution
need not include any definition of what to do in this case; the path controller will ma,ke‘a fair
selection. Monitors, on the other hand,‘on-ly define service to be first come first serve for
prbcesses waiting on a single queue. Since readers and writers are oh .diffe‘rent queues in the
monitor implementation of this problem, explicit information about which queue to serve first
must be part of the monitor solution. That solution is therefore more corﬁplex. -
First_come_first_serve | |

' The path expression solﬁtion ‘to the first_come_first_serve problem is shown in ‘Figure
i2! READ and WRITE are the operations available to users oft_!m»ruouré. Theprocedures
that actually access the resource are read and write.

When READ or WRITE is called, th§ corresponding request operation is-immediately -
invoked. The path will allow only one of these requests at a-time ﬁ: proceed, and in the order
in which they were invoked. When a requestwrite starts, it invokes write, rwhich must wait until

the resource empties. (While it is impossible for other writes to be executing, there may be

I. This solution appears in [8], but is characterized there only as a fair solution. Our
first_come_first_serve constraint on selection is needed to guarantee the first_come_first_serve
‘property.




Figure 12. First_Come_First_Serve using Path Expressions

database = cluster is READ, WRITE;
rep = ..

path requestread + requestwrite end
path { openread ; read} + write end

requestread = préc(db:database);
openread(db);
end requestread;

requestwrite = proc(db:database, k:key, d:data); -
write(db, k, d);

end requestwrite;

openread = proc(db:database);
end openread;

READ = proc(db:database, k:key) returns(data);
requestread(db);
return( read(db, k));
end READ;

WRITE = proc(db:database, k:key, d:data);
requestwrite(db, k .d);
end WRITE;

read = proc(db:cvt, k:key) returns (data);

end read;

write = proc(db :cvt, k:key, d:data);

end write;

end database;
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reads in progress.) No other requests can start until the write completes, since write is called
from requestwrite, and the requestwrite excludes other requests. When a requestread starts, it
invokes openread. When the openread completes, the requestread will terminate, and read will
‘proceed, thus allowing another request to start. Several reads may execute simultaneously, but
they can only start if there are no requestwrites waiting.

This exaﬁp!e shows that it is possible to use information about time of request in path
expression solutions. However, the paths no longer contain only operations that access the
resource. Requestread, requestwrite, and openread are “synchronization procedures”. Though
they are operations of the resource definition module, they are not intuitively operations on the
resource, and do not access the resource. They are included solely for purposes of
synchronization.

The invocations of requestread and requestwrite serve to record information about time
of request in a manner usable by the path expression. If paths contained only operations that
were intuitively procedures of the resource type, there would be no way to distinguish between
time of request and time of entry into the resource. There would thus be no way to separate
request time information from synchronization state information. By separating the
user-invoked operations (READ and WRITE) from the actual resource access operations (read
and write), and by executing a request operation immediately upon invocation of a user
operation, the path expression mechanism can separate request time from entry time.

The openread operation has a different function. It does not provide additional
information for use in the paths; rather it forces reads and writes to occur in the same order as
their corresponding requests. Without openread in the second path, the following improper
sequence of operations could occur: requestread; requestwrite; write; read . \

Thus, synchronization schemes requiring information about time of request can be
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implemented using the path expression mechanism. However, we have evidence that the
concept of expressing synchronizatioﬁ via relationships among operations on the resource is not
sufficiently powerful. The burden of finding a way to obtain request time information in a
form usable by the path expression mechanism has been placed on the resource implementor.
While this requirement might be acéeptable if there were an easily understandable method of
obtaining the inf‘ormation, no such method seems to exist. It is never clear whether the
“request” operations should contain the invocation of the resource access operation. (In this
example, for instance; requestwrite contains the write invocation, but requestread does not
contain the call on read, althdugh both requests are being used to obtain the same kind of
information.) Furthermore, using operations such as openread, which coordinate progress
through paths, is a conceptually difficult task; Thereforg, the need for synchronization
procedures should be considered a weakness in the path expression m;chanism.
Readers_priority

The readers_priority solution as given in [8] and translated into CLU is presented in
Figure 13. This example is more complicated than the previous one; it is easiest to understand
if we trace the progress of user requests for access to the resource through the various
operations in the module. A READ results in the following sequence of invocations: READ,
requestread, read. WRITE causes the invocations: writeattempt, requestwrite, openwrite, write.

Readers gain priority in two ways in this solution. First, since requestreads may
execute concurrently, but requestwrites may not, a requestwrite may be blocked indefinitely while
requestreads are allowed to proceed because other requestreads are already executing. In
addition, readers will get priority in the following way. The first path allows only one
writeattempt at a time. Therefore, since requestwrite is invoked from writeattempt, there will be

at most one requestwrite waiting at the second path at any time. All other WRITES in progress
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Figure 13. Readers_Priority Database using Path Expressions
database = cluster is READ, WRITE;
rep = ..

path writeattempt end
path { requestread} + requestwrite end
path { read } + (openwrite ; write) end

requestwrite = proc(db: database);
openwrite(db);
end requestwrite;

writeattempt = proc(db: database);

requestwrite(db);
end writeattempt;

requestread = proc(db: database, k: key) returns (data);
return (read(db,k));

- end requestread;

openwrite = proc(db:database);
end openwrite;

READ = proc(db:database, k:key) returns(data);
return (requestread (db,k));
end READ;

WRITE = proc (db:database, k:key, d:data);
writeattempt(db);
write(db k.d);
end WRITE;

read = proc(db:cvtk:key) returns(data);

end read;

writel= proc(db:cvt,k:key,d:data);

end write;

end database;
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will be blocked at the first path. However, while a requestwrite or write is in progress, any
number of requestreads may enqueue at the second path, awaiting their turn to execute. Thus,
during execution of a requestwrite, any number of READs and WRITEs may have started.
The READs will have been allowed to proceed as far as the second path; no other WRITEs
could have reached that point. Since the selection operator in the second path will restart the
process that has been waiting longest at that path, any number of Irequestreads may have
priority over the next requestwrite, regardless of the order of invocation of the corresponding
READs and WRITEs.

This solution is difficult to understand; there are complex interactions among the.
paths, andt it is not.clear how each resource operation is affected by the paths. It therefore is
difficult to convince oneself that the solution handles all cases properly. In fact, there is one
case in which this solution does not satisfy the definition of readers_priority as presented in
Chapter 2. Consider the case in which there are two WRITEs invoked, followed by a READ,
and assume the resource was empty at the time of the first WRITE invocation. The first
WRITE will enter the resource. The second WRITE will invoke writeattempt. Suppose the
READ occurs after the second write invokes requestwrite but before the first write completes.
The requestread will be blocked until the requestwrite terminates. When the first WRITE
terminates, there will be a reéder and a writer waiting, but the writer will proceed first,
violating our definition of readers_priority. The fact that it is so difficult to determine whether
the solution satisfies our specifications implies that solutions are difficult to understand and
prove correct.

The reason for the complexity of the solution to the readers_priority problem may be
the lack of a way to express priority constraints directly. Priorities must be established by

designing path expressions that force lower priority operations to wait at additional points in
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paths, thus delaying their progress through selection operators when higher priority operations
are executing. (Thus, in the readers_priority solution, writers are synchronized at invocations of
writeattempt, in addition to requestwrite and write.) The conditions expressed in the priority
constraint are n‘ot directly reflected in the structure of the solution. This indirect method of
expressing priority constraints makes solutions less clear.
Alarmclock problem

This example illustrates the use of arguments to synchronization procedures as a means
of determining priority. The solution is taken from [I5}; it has been translated into CLU, but
conforms as cIoSer as possible to the original. The solution makes use of three data
abstractions: wakeuptime, alarmclock, and a list abstraction. Wakeuptime and alarmclock,
which contain synchronization, are presented in detail. The specifications for the list
abstraction used appear below; the impleme‘ntation of the list is not provided. The operations
and behavior of the abstraction are not those of a standard list; they are closer to those of a
stream. A current pointer keeés track of the list element currently being processed. It is
possible to move this pointer down the list, or reset it to the beginning. New elements may be
insertéd at the current point, or the current element may be deleted. The list abstraction has

the following operations:

advance (list) - sets current of list to the next element of the list or nil.
reset(list) - sets current back to the first element of the list.

new(list) - inserts a new element preceding current. This element
becomes current of list.

free(list) - deletes current of list, and sets current to next element.
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create() returns(list) - returns a new list.

current(list) - returns the current element of the list.

Wakeuptime objects record the time at which processes wish to be awakened. New
wakeuptime objects, or those no longer associated with processes, have the value ©o. The

operations available on wakeuptime objects are:

create () - creates a new wakeuptime and gives it the value nfinity.
valwakeuptime) - returns the time saved in the object.

pass(wakeuptime) - records the fact that the current time has exceeded
the wakeuptime. -

set(wakeuptime, time) - sets the value of the wakeuptime to the time
- given. :

wakeup(wakeuptime) - executed when the process associated with the
wakeuptime is awakened.
Alarmclocks are represented as lists of wakeuptimes. They have two external
- operations, wakem’é and tick. Tick is invoked by a hardware clock at every time unit.
Wakeme(n) is called by processes wishing to be awakened in n time units. The implementation
of these two abstractions is givén in Figure 14.

In this solution, the blocking of processes until the appropriate time is accomplished in
the following way. Wakeme calls the internal operation setalarm, which inserts a ‘wakeuptime
object into the list representing the alarmclock. The value of the wakeuptime object is the
current time plus the number passed as an argument to wakeme. Wakeme then calls
wakeuptime§wakeup. However, according to the path in the wakeuptime abstraction, wakeup
may only execute after a pass operation has been performed on that object. Therefore, the

process that invoked wakeme will be blocked until a pass is called on the wakeuptime object.
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Figure 14. Alarmclock

wakeuptime = cluster is set,pass,wakeup,val;
rep = record[wt: int];
path set ; pass ; wakeup end

set = proc(n:int,u:cvt)  %sets value of wakeuptime object to n.

u.wt:=n;
end set;
pass = proc(u:cvt) % when the wakeup time is reached
uwt :=0; % the value is reset to O.
end pass;

val = proc{u:cvt) returns (int); % returns the value of wakeuptime u.
return (u.wt);

end val;
wakeup = proc{u:cvt) % when the process is awakened,
u.wt:= 00 ; % the corresponding wakeuptime object
end wakeup; % is reset to infinity

create = proc() returns (cvt),
return (rep${wt: oo});
end create;

end wakeuptime;

alarmclock = cluster is wakemetick create;
rep = record(now, first: int; wi: It};
It = list[wt];
wt = wakeuptime;
path setalarm + tick end;

create = proc() returns(cvt);
return (rep8{now:0, first: 0o, wlit§create()});
end create;
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%setalarm creates a new element in the list of wakeuptimes
%corresponding to the time at which the calling process
%wishes to be awakened.

setalarm = proc(x:cvt,n:int) returns(wt);

time:int ;= n + X.now;
 ItBreset(x.wi);

while wt8val(it§current(x.wl)) < time

do ltadvance(x.wi);
end;

if x.first > time then x.first := time; end;
" t§new(x.wl);

wtiset(current(x.wl)time);

return (It§current(x.wl));

end setalarm;

%Zwakeme calls setalarm, then invokes wakeup,
%which will be blocked until the value of the
%wakeuptime object js less than the current time.

wakeme = proc(x:alarmclock,n:int)
w:wt := setalarm(x, n);
wtfwakeup(w);
end -wakeme;

%tick increments the current time and checks whether
%any processes should be awakened.

tick = proc(x:cvt)

X.now:=x.nows;

It$reset(x.wi); _

while It§current(x.wl) <= x.now do :
It§pass(it§current(x.wl)) %invoking pass will allow wakeup to

%continuethus unblocking the waiting process.

It8free(it§current(x.wl))
end;

end tick;

end alarmclock;

Pass will be invoked by the tick operation only when the current time exceeds the value in the
wakeuptime object. Thus the process that invoked wakeme (and indirectly, wakeup) will be

blocked until the time it asked to be awakened.
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The synchronization needed to block processes for the appropriate length of time is
therefore found in the wakeuptime abstraction, rather than in the alarmclock abstraction. The
path in the alarmclock module is needed only to ensure mutual exclusion on the list of
wakeuptimes, so that tick does not access the list while setalarm is updating it.

The user must create and manage the queue explicitly, employing the synchronization
mechanism only to awaken the first process at the appropriate time. There is no direct means
for handling priority based on arguments passed to the protected resource operations. The
monitor mechaniSm, by contrast, provides a priority queuing option, freeing the user from
explicitly maintaining the queue. While the monitor solution is deficient in that it awakens the
first process on the queue at every tick, an easy modification to the monitor mechanism allows a
solution equivalent in effect to the path expression solution, but far easier to understand.

We therefore conclude that though path expressions have the power to express priority
constraints based on explicitly stated priorities, they do not provide enough aid to the user
wishing to do so. Synchronization in this example was handled by synchronizing wakeuptime
operations apprqpriately; such.an indirect method does not model the structure of the problem
specification and thus makes solutions more difficult to understand.

One_slot Buffer

The path expression solution to the one_slot buffer problem is given in Figure 15. The
needed information about the history of accesses to the resource can be acquired simply by
stating, in the path, the set of allowable histories. The path expression mechanism thus
provides a direct way to solve synchronization problems in which we can specify the set of legal
histories of operations. This solution is more direct than the monitor solution, which must store
history information in local variables.

Bounded Buffer
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Figure 15. One_Slot Buffer using Path Expressions
buffer = cluster is read, write; ‘
rep = record[m:messagel;

path write ; read end

read = proc(b:cvt) returns (message);
return(b.m);
end read;

write = proc(b:cvt, msg:message);
b.m := msg;

end write;

end buffer;

Our last example is the bounded buffer. This problem is solved in [15] by placing
synchronization at the level of the slots in the buffer, rather than at the level of the buffer itself.
While this provides more parallelism than the higher level synchrﬁnization, we would like a
solution to the problem as defined in Chapter 2, so that it may be compared with the solutions
shown for monitors and serializers. In Figure 16, we present a bounded buffer solution that
implements mutual exclusion on the entire buffer.

There are three constraints in this scheme: mutual exclusion of appends and removes,
exclusion of removes when thé buffer is empty, and exclusion of appends when the buffer is
full. The implementation of the mutual exclusion constraint, in the first path, is
straightforward. (Check_full appears in this path to prevent processes from checking the buffer
state while an append or remove is in progress) The secoﬁd constraint has been translated to
an equivalent constraint that uses history information instead of local state, because path
expressions handle history information so easily. The constraint that each remove be preceded
by an append is equivalent to prohibiting removes on an empty buffer. The path path

{not_empty; remove} end implements this constraint, since not_empty is invoked at the end of
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Figure 16. Bounded Buffer using Path Expressions
bounded_buffer = cluster is REMOVE, APPEND, create;
rep = record[slots : am, '
' max : int
waiting: int};
am = array[message};

path remove + append + check_full end
path { not_empty ; remove } end

path { not_full ; append } end

path APPEND end

create = proc(n: int) returns (cvt);
return(rep8{slots: am$new(),
max: n,
waiting: 0});
end create;

REMOYVE = proc (b: bounded _buffer) returns (message);
return{remove(b));
end REMOVE;

APPEND = proc(b:bounded_buffer, m:message);
check _fuli(b), :
append(b, m);
end APPEND;

check _full = proc(b:cvt);
if am$size(b.slots) ~= b.max
then not_fuli(b)
else b.waiting := b.waiting + |
end;
end check_full;

not_empty = proc(b:rep);
end not_empty;

not_full = proc(b:rep);
end not_full;
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remove = proc(b:cvt) returns(message);

m:message := am§reml(b.slots),

am$set_low(b.slots, 0) %this sets the index of the first element to O.

if amésize(b.slots) = b.max-1 & b.waiting > 0
then not_full(b); % only execute not_full if appender is waiting
end

return(m);

end remove;

append = proc(b:cvt, m:message),
if b.waiting >0
then b.waiting := b.waiting - |
end;
am$addh(b.slots, m);
not_empty(b);
end append;

end bounded_buffer;

every append operation.

The implementation of the third constraint is somewhat more complex. Because it is
dependent on the size of the buffer, this constraint cannot be converted to ohe using history.
information. It is implemented by requiring a not_full operation to precede every append. If
the buffer has empty slots available, check_full will invoke this operation before calling append.
If not, append will be called and will have to wait for a remove operation to invoke the
required not_full. Remove checks whether any appends are waiting, and, if so, invokes not_full
after freeing a slot.

The synchronization associated with the not_full constraint is not handled directly by
the path expression mechanism; instead, the synchronization decisions are made in the
procedures. Either check_full or remove decides when another append can execute. The
invocation of not_full is used as a signal to allow a waiting append to proceed, by providing

the first member of the not_full; append sequence in path 3. The path is being used only to
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block and restart processes according to decisions made in procedures. The management of
synchronization in this problem is similar to that in the alarmclock problem. Since paths
cannot directly make use of either the arguments to resource operations, or local state
information, such information is handled explicitly in implementations of synchronization
schemes using it, and the decisions made in the pro;edures are enforced by the paths.

In addition to the synchronization's being handled primarily in procedures, rather than
in paths, the structure of the solution is rather aw);ward. There are four paths and eight
procedures being used to implement a shared resource that intuitively has two operations.

There is no clear distinction between synchronization procedures and resource accessing

procedures. The remove operation accesses the resource, then calls not_full, which is a.

synchronization procedure. Check_full accesses the resource and, instead of returning a boolean
to indicate whether the buffer is full (as one would expect), invokes not_full also.

These problems are not peculiar to this particular implementation of the bounded
buffer. Rather, they reflect problems in using the path expression mechanism. A
better-structured solution is not easily derivable. The procedures in the solution do not
represent intuitive functional units; they are implemented as such to define the critical sections
necessary for correct implementation of the synchronizaﬁon. ’The difficulty stems from the fact
that, if each constraint is implemented independently, the paths that seem most natural will
interact to cause a deadlock when combined. The implementation of the mutual exclusion
constraint (independent of other constraints) is:

path append + remove end
The implementation of the not_full constraint is:

path not_full ; append end

The problem arises if the append operation contains the check on buffer state, and waits if the
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buffer is full. Waiting inside append will not release exclusion on the first path; therefore no
remove can execute to invoke not_full, and a deadlock results. We are tﬁus forced to create a
check_full procedure separate from append. However, the ckeck_full; append sequence must be
executed uninterrupted to preserve the integrity of the buffer. We therefore need an APPEND
procedure that calls both of these operations, and excludes other APPENDS. For similar
reasons, the remove and check_full operations must contain both buffer accesses and
synchronization invocations to define the needed critical sections. Thus, the modularization for
the resource is essentially dictated by the path expression mechanism. More important than the
poor modularization, however, is the problem that arises if the implementor does not see the
potential conflicts between constraint implementations; deadlock situations are easily created.
The basic conclusion about expressive power, drawn from analyzing the bounded
buffer example, is that local state information can be used in path expressioh solutions, but that
it is not directly accessible in paths. Solutions are therefore not very straightforward. As a

result, correct implementations can be difficult to construct.
4.1.2 Conclusions

We have now examined solutions to synchronization problems making use of each of
the types of information discussed in Chapter 2. Based on this analysis, the following
conclusions may be drawn about the expressive power of path expressions.

To be sufficiently powerful, a mechanism must provide a means of directly expressing
both priority and exclusion constraints; information about request time, resource state,
synchronization state, access history, type of request and parameters passed with each request
must be available in implementing a synchroniz#tion scheme. Path expressions provide an easy

way to express simple exclusion constraints, but no direct means of expressing priority
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constraints is. provided.

Expressive power is further hampered because certain types of informatibn, such as
resource state and arguments passed to the request, cannot be easily used. Paths are intended to
expreés relationships among procedures of the resource. Yet, only some of the information
classes we have defined are procedure-dependent. To express the other types of information
requires use of synchronization procedures. Examples of these procedures appear in the
first_come_first_serve, readers_priority, alarmclock, and bounded_buffer problems. These
procedures are difficult to use, and tend to increase interaction among paths, making solutions
difficult to understand without actually tracing the flow of control.

The most attractive feature of the path expression mechanism is its non-procedural
approach to defining synchronization schemes. The need for synchronization procedures clearly
undermines this feature. In later sections, the impact of these procedures on modularity and
correctness will be discussed.

~ In conclusion, there are certain classes of problems for which the path expression
mechanism seems ideally’ suited. However, the inability to express other kinds of constraints

without the use of synchronization procedures is a severe limitation of the mechanism.
4.2 Modularity

In Chapter 2, several different modularity criteria were discussed. The first of these
was the requirement that the synchronization for a shared resource be associated with the
implementation, rather than with the use, of that resource. Because path expressions assume
the existence of ’data abstractions, this criterion is incorporated into the path expression
mechanism. Path expressions are written in terms of the operations on the resource type, and

can occur only within the module implementing the resource abstraction. Thus, users may
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assume that the synchronization is handled properly by the protected resource. This structure is
in contrast to that of monitors, where we must impose additional constraints on the style in
which monitors are used in order to enforce this modularity requirement.

The second modularity requirement is the distinction between the unprotected resource
data abstraction and the synchronization abstraction associated with that resource. In simple
synchronization schemes, the use of path expressions to implement the synchronization for a
data abstraction requires only the addition of paths to the module defining the abstraction.
The second requirement is met in these cases: the synchronization is completely implemented by
the paths and is therefore clearly identifiable and separable from the implementation of the
resource abstraction.

In solutions requiring the use of synchronization procedures, the division is less clear.
The synchronization and resource operations are then in the same module. It is more difficult
to distinguish between the two. As a result, readability and modifiability are impaired.

A more serious consequence of the use of synchronization procedures in resource
modules, is the interaction among operations named in paths. The hierarchy problem in
monitors was virtually eliminated by placing monitor operations in a module separate from the
resource. This solution will not help in path expressions, because even if the synchronization
procedures are placed in a separate module, the resource operations must still be called from
synchronization operations. (To show how the synchronization could be put in a separate
module, the first_come_first_serve synchronizer is presented in Figure 17) The hierarchical

deadlock problem in path expressions can occur, not only between modules, but within modules
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Figure 17. First_Come_First_Serve Synchronization Module
protected_database = cluster is READ,WRITE;
rep = database;

path requéstread + requestwrite end
path { openread ; read} + write end

requestread = proc(db:database);
openread(db);
end requestread;

requestwrite = proc(db: database, k: key, d: data);
write(db, k, d);
end requestwrite;

READ = proc(db: database, k: key) returns(data);
requestread(db);
return( read(db, k));
end READ;

WRITE = proc(db:datébase, k:key, d:data);
requestwrite(db, k d);
end WRITE;

read = proc(db:cvt, k:key) returns (data);
return(rep$read(dbk));;, % repread and rep§write contain the actual
end read; % resource accesses.
% The read and write operations in this module’
% are synchronization procedures needed
% to.ensure that siccesses are performed
% at the correct time.

write = proc(db:cvt, k:key, data);
rep§write(db.k d);

end write;

end protected_database;
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as well, because synchronization operations within a module often call one another.2

The hierarchy problem arises in path expression solutions in the following case.
Suppose requestl, request2, opl, and op2 are operations hamed in the path expression shown in
Figure 18. Whenever an execution of request2 starts before a corresponding execution of
requestl, a deadlock results. Request2 will attempt to execute op2 and be blocked awaiting
execution of opl. But opl is only called from requestl, and all executions of requestl will be
blocked until the current request2 terminates. We thus have a deadléck situation.

This situation is precisely what had to be avoided in our implementation of the
bounded buffer problem (see the bounded buffer example in the expressive power section). To
emphasize that such interactions among synchronized procedures occur in actual path
expression solutions, we will again examine the alarmclock solution taken from [I5), and
discussed in the previous section. The example appears in Figure 14. The paths in the

example show exactly the structure described.

Figure 18. Hierarchical Deadlock in Path Expressions

path requestl + request2 end
path opl ; op2 end

requestl = proc();
opl()
end request;

request2 = proc();
op2();
end request2;

2. This problem is not (theoretically) limited to interaction between synchronization operations,
but resource access operations in a module are unlikely to call each other in a way that would
cause deadlock.



‘The two path expressions in the solution are:

path setalarm + tick end

path set ; pass ; wakeup end.

Since setalarm calls set and tick calls pass, if tick ever executes before setalarm, a deadlock will
arise in exactly the way described above. Nothing in the path expression prevents this
ordering.b An examination of the code for tick will show that tick never calls pass unless the
current time is gr_eater than the first wakeuptime in the list. Because wakeuptimes are
initialized to infinity, pass will never execute before a setalarm. While the code is correct, this
example shows the problems arising from the lack of modularity. To understand how this
solution works, and to convince oneself it is correct, requires understanding, and simultaneously
dealing with, the implementations of two data abstractions, and the synchronization for both. It
was precisely the need to be able to understand each at;straction separately that led to our
criteria for separating thé synchronization from the data abstraction definition for resources.
Thus, path expréssions do not uphold our modularity criteria.

Furthermore, EeCause the synchroni‘z‘atipp operations ﬁre used together with resource
operations in paths, and because synchronization operations often call other operations named
in paths, it is difficult to define conventions for using path expressions that would improve
modularity without limiting expressiVe power.

Thus, monitors and path expressions vary greatly. in their support of our modularity
criteria. Path expressions guarantee that synchronization for a shared resource is associated
with the definition of the resource, rather than with its use. Hov)ever, they do not -provide_ a
means for. Separating the synchronization from the implementation of the unsynchronized
resodrce. Monitors, in contrast, do not ensure that the synchronization will be separated from

the use of the resource. However, it is easy to develop a style of usage that supports both the
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association of synchronization with implementation of a shared resource, and the separation of
the implementation of the synchronizer from that of the unsynchronized resource. Assuming
monitors are used properly, they support modularity far better than path expressions. We will

see in the next chapter that serializers offer a still better structure.
4.3 Ease of Use and Modifiability

Ease of use and modifiability are largely dependent upon expressive power. If the
tools needed to construct straightforward solutions are not available, it cannot be easy to
implement those solutions.

The synchronization problems presented in the section on expressive power provide
evidence of the effect of weaknesses in power on ease of use. The need to create
synchronization procedures to obtain required information increases the difficuity of
constructing solutions because it is difficult to decide what procedures are needed and how they
interact with one another. The derivation of the solution to the bounded buffer problem in the
expressive power section exemplifies these difficulties.

In this section we will compare the readers_priority and writers_priority problems to
evaluate both ease of use and modifiability. The solution to the writers_priority problem is
shown in Figure 19. The readers_priority solution was given in the‘ expressive power section, in
Figure 13.

While the two solutions are almost symmetric, the amount of code changed in
converting from one to the other is large in proportion to the size of the solution: four
procedures and all of the paths have to be changed. Even requestread and requestwrite, which
are used to obtain the same information in both solutions, must be completely rewritten.

Though the exclusion constraint has not changed, the path implementing it has, because it must
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Figure 19. Writers_priority Database using Path Expressions

database = cluster is READ, WRITE;
rep = ..; :

path readattempt end
path requestread + { requestwrite} end
path { openread; read} + write end

readattempt = proc(db: database);
requestread(db);
end readattempt;

requestread = proc(db: database);
openread(db);
end requestread;

requestwrite = proc(db: database, k: key, d: data);
write(db, k, d); .
end requestwrite;

READ = proc(db: database, k: key) returns (data);
readattempt(db);
return( read(db, k));
end READ;

WRITE = proc(db: database, k: key, d: data);
requestwrite(db, k, d);
end WRITE;

read = proc(db, k) returns (data);

end read;

write = proc(db, k, d);

end write;

end database;
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interact differently with the new priority constraint. When path expression solutions are
designed, there is often a problem of finding an implementation of each constraint that will
properly interact with the other constraints present. As a consequence, path expressions are
often difficult to use.

Since the priority constraint in the two problems presented are exactly reversed, one
can reasonably expect their solutions to be symmetric. In the general case, however, when fhe
relationship between the two synchronization schemes is less obvious, the required changes can
be much less apparent. The need to change almost all of the code to effect a change in one
constraint, even when the change did not require a change in the type of information used,
indicates a high degree of interaction among constraint implementations, as well as a lack of

support for modifiability.
4.4 Correctness

Many of the correctness issues with which we are concerned have been referred to
earlier in conjunction with discussions of modularity and ease of use. Our major concern in the
area of correctness is the ease with which a programmer can decide whether an implementation
meets its specifications. Whether solutions written using a mechanism can easily lead to
deadlock, and whether those deadlocks are easily detectable is part of this problem.

In our evaluation of modularity, we have noted that separation of the synchronization
from the resource abstraction is difficult. As illustrated by the alarmclock example, proofs of
correctness of the synchronizer cannot be performed independently of the resource
implementation. Furthermore, when hierarchically structured resources are involved, proof of
termination (absence of deadlock) may involve implementation details from séveral levels of

abstraction. If verification of complex programs is to be possible, it is essential that each
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module be independently verifiable, using only external specifications of other modules. Patﬁ
expressions do not support this property.

Our analysis of expressive power and ease of use also has implications for correctness
and verifiability. In particular, consider the readers_priority example. While a correct solution
is possible, the fact that it was very difficult to determine whether the solutién given met its
specifications, and whether all special cases had been covered, leads us to believe that it will in
general be very difficult to éonvince oneself that a solution involving path expressions is
correct. |

Path expressions do aid verification in one important way. Possible deadlock
situations, such as the one arising in the alarmclock solution, are easily detectable at compile
time, if they arise in paths in a single module. While an algoritﬁm exists for detecting the same
situations occurring between modules, as in the alarmclock case, it requires flow analysis;
detection would therefore be rather costly. It should also be noted that the situations detected
are possible deadlocks. It is far more difficult to determine whether the deadlock is inevitable,
or, as in the alarmclock case, will never arise. Thus, at best, the pfogrammer could be warned
that the possibility exists, and that proof of termindtiqn is impossible.

We conclude that if path expressiom,‘supported separation of synchronization from
resource implementations, and 't‘h'e independent verification of modules, they would meet our
requirements. While easy detection of deadlocks within a module is certainly an important
feature, we feel that deadlocks due to conflicts between paths in different modules are too likely
to arise. Furthermore, the difficulty of understanding solutions in even a single module leads us
to believe that proofs that those solutions meet specifications will be difficult. We therefore feel
that the version of path expression presented here does not support correctness of concurrent

programs.
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4.5 Conclusions

Path expressions are based on the idea of expressing synchronization constraints as sets
of relationships among operations of the resource type. This approach appears attractive
because it automatically associates the synchronization with the data abstraction defining the
resource. It seems natural that synchronization be expressible in terms of operations of the
resource type.

Unfortunately, path expressions as defined in [8] do not satisfy all the criteria set forth
in Chapter 2. We have found that expressive power is lacking; several types of information
needed are not readily accessible. This problem in turn causes awkwardness in solutions,
making the mechanism more difficult to use and impeding verification. Synchronization
operations are needed in paths, underrﬁining the premise that synchronization is expressible in
terms of operations on the resource. The use of these operations also makes it difficult to
separate the implementation of a synchronization scheme from that of the resource, which is a
modularity requirement we established.

The designers of the mechanisrﬁ have attempted to overcome some of these problems
in later versions of the mechanism{l5, 14l However, none of these has been complétely
satisfactory. Another version of path expressions now under development(2] promises to show
improvements in both expressive power and verifiability. However, unless expressive power
can be extended enough to eliminate the need for synchronization procedures, it is doubtful that

the new version of the mechanism will meet our criteria either.
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B. Serializers

Serializers[3] are similar to monitors but are intended to improve upon those features
of monitors that seem poorly structured. There are two significant differences between the two
mechanisms. First, serializers incorporate into the mechanism a means for invoking resource
operations outside the control of the synchronizer, thu;v; allowing concurrency, while ensuring
that all resource accesses are properly synchronized. Second, they replace the monitor signal

construct with an automatic signalling mechanism.
5.1 Mechanism Description

Like monitors, serializers are modules defined by a set of operations and a description
of the internal structure of the serializer objects. Serializers may be thought of as encapsulating
the resource to form a protected resource object. The structure of this protected resource is
shown in Figure 20. Users see only the protected resource; the operations users invoke to access
the regource are actually the operations of the serializer.

As in monitors, the operations of the serializer are mutually exclusive. Only one

process has access to the serializer at a time. It is not necessary to exit a serializer before

Figure 20. Structure of Serializer Objects

protected resource

serializer

resource
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accessing the resource in order to obtain concurrency. Serializers provide a means for leaving
the serializer temporarily, to perform the resource operations. The invocations of resource
operations are textually contained in the serializer operations, but if they are within a
‘join_crowd’ statement, they will be executed outside the control of the serializer. Other
processes may execute serializer operations concurrently with these resource accesses. After the
resource access is completed, control automatically returns to the serializer. This structure is
similar to that of the modularized monitor scheme proposed earlier (Figure 8). However,
leaving and reentering the synchronizer is done automatically in serializers, so an additional
'protected resource’ module is unnecessary.

There are two built-in data types used in serializers: queues and crowds. Queues ‘differ
from monitor queues in several ways. Rather than wait and signal operations, there is an
enqueue operation that specifies, not only the queue on which to wait, but also the condition for
which the process is waiting. The serializer mechanism will automatically restart the process
when it becomes first on the queue and the condition is satisfied at a time when possession of
the serializer is relinquished. No dequeue or signal operation is necessary. The form of the
enqueue command is:

enqueue(queue_ﬁame) until condition
A process executing an enqueue is placed on the end of the specified queue; the condition is
not checked until the process reaches the head of the queue. |

Crowds are unordered collections of processes used to handle synchronization state
information: they keep track of what processes are in the resource and what operations are
currently being executed. Though conceptually a crowd contains the identities of the processes
involved, it can be implemented simply as a count, since the onjy information needed is the

number of processes using the resource. In addition to the create operation, crowds have a join
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operation. Join serves two functions: it puts the process executing the join into the specified
crowd, and it releases possession of the serializer. The form of the join command is:

join(crowd) then body end
where body is a list of statements to be executed by the process when possession of the serializer
is relinquished. At the completion of the body, a leave_crowd operation is automatically
executed. This has the effect of regaining possession of the serializer, and removing the process
from the crowd.

Thus, the normal sequence of events for a process requesting access to a shared
resource is :
enter (gains possession of the serializer)
enqueue (release possession of the serializer)
dequeue (regains possession)
join_crowd (release possession of serializer and enter resource)
leave_crowd (leave resource, reenter serializer)
eXit (releases the serializer)
A set of priorities exists for gaining possession of the serializer. Processes waiting to dequeue
have priority over those waiting to enter the protected resource or leave crowds. Processes
waiting to enter the protected resource or leave crowds will be handled in first_come_first_serve
order.

The solution to the first_come_first_serve problem shown in Figure 2l is an example of
a serializer. The resource object is created inside the serializer, so it can be accessed only
through invocations of serializer operations. Protection is therefore guaranteed. It is not
necessary, as it is in the monitor case, to create a separate protected resource module to associate
the resource with the synchronizer and hide it from users.

In the read operation, the process requesting the read must wait on a queue until the

writers_crowd empties and all processes preceding it on the waiting_q have continued. Then it
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Figure 21. First_Come_First_Serve Serializer
first_come_first_serve = serializer is read, write, create;

rep = record]  waiting_g: queue,
readers_crowd: crowd,
writers_crowd: crowd,
db: data_base];

create = proc() returns (cvt);
return (rep${waiting_q: queue§create(),
readers_crowd: crowdfcreate(),
writers_crowd: crowd$create(),
db: data_basefcreate()});
end;

read = proc(s: cvt, k: key) returns (data);
queuefenqueue(s.waiting_q) until (crowd§empty(s.writers_crowd));
d: data
crowd§join(s.readers_crowd) then
d := data_base$read(s.db, k);
end; '
return {d);
end read;

write = proc(s: cvt, k:key, d:data);
queueflenqueue(s.waiting_q) until (crowd§empty(s.readers_crowd)
& crowdfempty(s.writers_crowd));
crowd$join(s.writers_crowd) then
data_base$write(sdb, k, d);
end;
end write;

end first_come_first_serve;

is dequeued (automaticaily) and proceeds to the statement following the enqueue, where it enters
the readers_crowd. Entering the crowd causes possession of the serializer to be released so that
other processes may obtain it. Statements in the then clause are executed outside the control of
the serializer. The read operation is performed and the value is assigned to d; control must
then return to the serializer so that the process may be removed from the crowd and leave the

protected resource. At termination of the statement in the then clause, the process is blocked




- 89 -

until it can obtain possession of the serializer. The priorities defined for obtaining possession
of the serializer guarantee that the process will eventually be continued. When execution
resumes, the value of d is returned, and the process exits the serializer, allowing another process
to‘gain possession. The write operation differs in the conditions in the until clause and the
statements in the then clause but its basic structure is the same as that of the read.

In the first_come_first_serve example, the only predicates used in until clauses are
empty tests on queues or crowds. These predicates are sufficient to handle synchronization
schemes based on request type and synchronization state. Time ordering of requests is handled
by the queuing mechanism. Thus a serializer mechanism using just these predicates is powerful
enough for most synchronization problems. This restricted serializer is much easier to analyze
and construct correctness proofs for than the complete serializer mechanism. To handle other
classes of synchronization schemes, however, the mechanism has been generalized. Local
variables may be used to store any kind of state information. Priority queues have also been

added to handle explicitly passed priorities.
5.2 Expressive power

The first_come_fitst_serve example was shown in the preceding section. In this section
we will present the other examples in which we are interested, evaluate the power of the
mechanism, and compare it to monitors and path expressions.

The basic writers_exclude_others readers_writers solution is shown in Figure 22. This
solution was difficult to implement using monitors because the specification does not determine
a total ordering for requests in éll cases. Here, due to the automatic signalling in the serializer
construct, the solution can be written without the user specifying the ordering in these cases.

However, the way'in which the serializer mechanism will handle the situation is unclear. The




Figure 22. Writers_Exclude_Others Serializer
writers_exclude_others = serializer is create, read, write;

rep= record( read_q:queue,
© write_g:queue,
readers_crowd: crowd,
writers_crowd: crowd,
db:data_base]

create = proc() returns (cvt);
return (repf{read_q: queuefcreate(),
write_q: queueficreate(),
readers_crowd: crowd$create(),
writers_crowd: crowd$create(),
db: data_base§create()});
end create;

read = proc(s: cvt, k: key) returns(data);
queue$enqueue(s.read_q) until crowd8empty(s.writers_crowd);
d: data; :
crowd$§join(s.readers_crowd) then
d := data_base§read(s.db, k);
end;
return(d);
end read;

write = proc(s: cvt, k: key, d: data)
queuefenqueue(s.write_q) until(crowd8empty(s.writers_crowd)
& crowd$empty(s.readers_crowd));
crowd$join(s.writers_crowd) then
data_base§write(s.db, k, d);
end;
end write;

end writers_exclude_others

definition of serializers does not explain how to handle the case in which the conditions
governing two queues are true when the serializer is released by some process. Some fair
method for dealing with this problem, such as first_come_first_served, should be included in the
mechanism definition. The claim made in (3] that solutions should be constructed to avoid

having two queues ready at the same time is invalid, since it fails to recognize situations such as
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the above, in which the designer really does not need to specify a total ordering of operations.
Thus, path expressions seem to be the only mechlamsm that allows ‘incomplete’ specifications
such as these and guarantees that they will be handled in some fair manner.

The readers_priority solution is shown in Figure 23. (Only the read and write
operations are shown; the internal structure of the serializer, and the create operation are that of
the previous examples) Writers are now far mare restricted in when they can enter the
.rclesource. It can be seen from this example that miali_izrs. can easily express priorities based on
the type of request. Such priorities.are usually expressed by testinjempty conditions on queues
for operations with higher priority. In this case, for example, readers are given prtority by
inserting a test in the until cléuse of the write operation to make sure the readers queue is
empty before writers proceed. A comparison of tf\i; solution to the fair_readers_priority and the
writers_priority solutions will be made in the section on modifiability. From the previous two
examples it appears that modifications are localized and consistent with changes in the

specifications.

Figure 23. Readers_Priority Serializer
read =proc(s: cvt, k: key) returns(data);
queuefienqueue(s.readers_q) until (empty(s.writers_crowd));
d: data;
crowd$join(s.readers_crowd) then
d:= data_base$read(s.db, k);
end;
return (d);
end read;

write = proc(sicvt, k: key, d: data)
queueSenqueue(s.writers_q) until (empty(s.readers_q)
& empty(s.readers_crowd)
& empty(s.writers_crowd));,
crowd$join(writers_crowd) then
data_base$write(s.db, k, d);
end;
end write;
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Bounded Buffer

The bounded buffer solution is shown iﬁ Figure 24¢. The resource state information is
obtained by calls on the resource operations not_full and not_empty. These invocations are
made only affer checking that no processes are accessing the resource. Since mutual exclusion
within a serializer is automatic, we can be sure that no one will enter the resource between the
empty test and the invocation of not_full or not_empty. This is important in énsuring the

consistency of the resource. The result of a full or empty test performed while another process

Figure 24. Bounded Buffer Serializer
protected_buffer = serializer is append, remove, create;

rep = record(append_q, remove_g: queue, c: crowd, bb: bounded_buffer];

create = proc() returns {cvt)
return({append_g: queuefcreate(),
remove_g: queueficreate(),
c: crowd$create(),
bb: bounded_buffer§create()});
end create; ‘

append = proc(s:cvt,m:message);
queueffenqueue(s.append_q) until (crowd$empty(s.c)
. CAND bounded_buffer$not_full(s.bb));
crowd$join(s.c) then
bounded_buffer§append(s.bb,m);
end;
end append,

remove = proc(s:cvt) returns(message);
queue$enqueue(s.remove_q) until (crowd§empty(s.c) ‘
CAND bounded_buffer§not_empty(s.bb));
m: message;
crowd$join(s.c) then
m:= bounded_buffer$remove(s.bb);
end;
return {m);
end remove;

end protected buffer;
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is updating the buffer ils not well defined.

The plloblem' of poten‘tiayll deadlocks resulting from invocations of resource operations
from’ within synchronization modules was explained in detail in the chapter on monitors. The
problems arising in serializer solultions are the same. The programmer must be very sure:that
no deadlocks arise from resource invocations within a synchronizer. Certain synchronization
schemes require knowledge of resource state. This state information can be obtained only by
invoking resource opérations or by keeping the resource state in local variables. The second
alternative, while avoiding the deadlock problems, violates the separation of resource from
synchronization which:is one of our goals. The first alternative, invoking resource operations
from within the synchronizer, is not safe uniess it can be guaranteed that the résourcefis»-'empty
at the time of inf\.ﬂocation.l

Thus, serializers handle resource state information in much the same way monitors do,
by use of local variables or invocations of state-testing operations on the resource. It must be
realized that the operations of the synchronizer are "unsafe areas™: the synchronizer can itself
access the resource incorrectly. Care must be taken to ensure that these operations impose the
necessary restrictions on themseives, as well as user processes.

One_Slot Buffer

Serializers, like monitors, provide no special way of handling history information; it
must be handled by local data. The easiest way to solve the one_slot buffer problem is to store
the needed information in a boolean describing whether an unread message is in the buffer.
The difference between this solution and the bounded_buffer is that we are assuming there:is

no operation on the resource abstraction, equivalent to full or empty, that the serializer may

1. The monitor solution to the bounded buffer problem guarantees mutual exclusion because
the buffer is inside the monitor.
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invoke to obtain the required information. The information must therefore be deduced by
keeping track of past operations. When an insert is executed, the boolean full is set to true; it is
reset to false when remove takes the message. This solution is shown in Figure 25.

The one_slot buffer is the first serializer example we have seen in which local variables
are used in condifions. These variables are set explicitly in the serializer operations. Once
general informatioh, rather than just émpty tests on queues and crowds, is allowed in conditions,
the automatic signalling of serializers loses its advantage over monitor’s explicit signals.
Programmers are as likely to incorrectly set a local vﬁriable, or not set it at all, as they are to

forget to explicitly perform a signal.

Figure 25. One_Siot Buffer Serializer

protected_single_buffer = serializer is create, insert, remove;
rep = record(insertq, removeq: queue, c:crowd, sb: buffer, full: boot};

create = proc() returns(cvt);
return(rep8#{insertq, removeq: queuefcreate(),
c: crowd§create(),
sb: buffer§create(),
full: false});
end create;

insert = proc(b: cvt, m: message);
queueSenqueue(b.i'nsertq) until (~b.full & crowd$empty(b.c))
b.full := true;
crowd$join(b.c) then buffer§insert(b.sb, m) end;
end insert;

remove = proc(b: cvt) returns(message);
queuefenqueue(b.removeq) untikb.full & crowd§empty(b.c));
m: message;
b.full := false;
crowd$join(b.c) then m:= buffer§remove(b.sb) end;
return{m);
end remove;

end protected_single_buffer;
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Disk Scheduler

The other class of problems to be examined are those requiring user-specified priorities
(priorities given by arguments passed to serializer operations). The disk scheduler problem is
representative of this group. Priority queues were added to serializers because such problems
were difficult to implement without them. The disk scheduler sélution using priority queues is
given in Figure 26.

When a request to read or write from the disk is made, the request is enqueued in
order of track number. The up queue holds processes to be serviced as the disk head sweeps
up across the disk, the down queue as it sweeps down. The variable current stores the current
track position of the head.2 If the current position is greater than the requested position, the
request will be processed on the next down sweep, so it is enqueued on the down queue. If the
current position is lower than the one requested, the request will be placed on the up queue.
Requests for the track at which the head is currently located must wait until the current sweep
is completed, and the head returns to that track on the next sweep.

A request will be served when there are no other processes preceding it on the queue
and the disk head is moving in the proper direction. Whenever a queue empties, the direction
changes. When a process gains possession of the serializer after dequeuing, it joins the users
crowd, and the appropriate operation on the disk is performed. When it re-enters the serializer,
a check is made to see if the queue being serviced is empty; if so, the direction is changed so

that the other queue may be serviced.

2. Notice that we could have called an operation current_track on the disk to obtain this
information instead of using local variables. However, this would have led to synchronization
problems, since it could only be invoked when the disk was empty. In our solution, the variable
current in the serializer can be accessed while another process is moving the disk head.
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Figure 26. Disk Scheduler Serializer
disk_scheduler = serializer is create, read, write;

rep = record[direction:string,

up:queue,
down:queue,
current:int,
number_of _tracks,
d:disk,
users:crowd]

create = proc(n:int) returns (cvt);
return (rep${direction:"up",

up:priority_queueficreate(),
down:priority_queuefcreate(),
number_of_tracks:n
current:0,

users:crowd fcreate(),
d:disk$create()});

end create;

request = proc(s: rep, track_num: int);

if track_num > s.current | (track_num = s.current & s.direction = "down”)
then priority_queueflenqueue(s.up track_num) until

else

end;

(crowd$empty(s.users) &

(priority_queue$empty(s.down) | sdirection="up"))
priority_queue$enqueue(sdown,number_of_tracks - track_num) until

(crowd$empty(s.users) &

(priority_queuefiempty(s.up) | s.direction = "down"));

s.current := track_num;
end request; -

release = proc(s: rep);

if s.direction = "up" & priority_queueffempty(s.up)

then s.direction := "down"

elseif s.direction = "down"” & priority_queuefempty(s.down)

end;

then sdirection := "up”; end;

end release;
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read = proc(s:cvt, track_num:int) returns(data);
request(s, track_num);
d: data;
crowd$join(s.users) then
d := disk§read(s, track_num)
end;
release(s);
return(d),
end read;

write = proc(s:cvt, track_numint, d: data);
request(s, track_num);
crowd§join(s.users) then
disk$write(s, track_num, d)
end;
release(s, track_num),
end write;

end disk_scheduler;

This solution is very similar to the monitor solution. The main difference is that in
the serializer solution, the functions of the protected_resource module and the monitor are
combined into the single serializer module. (We never saw the read and write operations of the
monitor solution, because they are in the protected_resource module, which was not shown.)

This is one example in which the extra module of structured monitor solutions may be
beneficial. In cases such as the disk scheduler, where the synchronization does not depend on
the operation requested and in fact is the same for all operations, there is actually a distinction
between synchronization procedures and protected_resource operations. The function of the
synchronizer is to move the disk head to the appropriate track and implementvexclusion on disk
access. - The function of the protected_resource module is to associate the appropriate
synchronization operations with each resource operatibn. In the serializer solution, these two
functions are combined in a single module, though the operations are clearly separable into two

groups. The user-invoked operations of the serializer look very much like the protected




resource operations in the structured monitor. The read operation, for example, has the form
request, read, release. Request and release, the two synchronization operations in the monitor
solution, are defined as internal operations of the serializer, to be called before and after the
resource accesses.

There is thus little difference between the two solutions. Bécause the synchronization is
independent of the operation requested, the monitor structure seems to better model the
structure of the problem, and may therefore make it slightly easier to construct the solution.
While the distinction between the two stfuctures is relatively‘minor, and does nﬁt represent a

serious weakness in the serializer mechanism, it indicates that there are some cases in which the

extra modularity of structured monitor solutions is useful.
6.2.1 Conclusions

We can conclude from the examples presented that serializers are sufficiently powerful.
The way in which each type of constraint is handled is straightforward. As in the monitor
mechanism, request time and request type information are handled by use of queues. Serializers
also provide a crowd construct t§ handle synchronization state information, eliminating the need
to explicitly keep track of the numbér of processes in the resource by the use of local variables.
History information and some local state information must still be explicitly maintained in local
variables.

The only example that illustrates a weakness in the mechanism is the
writers_exclude_others problem. The behavior of serializers in cases of incomplete

i
specifications such as the writers_exclude_others problem needs to be more clearly defined.
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5.3 Modularity

The most important contribution of serializers is in the area of modularity. The
structure for protected resources provided by the serializer mechanism is far more conducive to
the development of properly modularized synchronized resources than is the monitor structure.
\As was stated earlier, we are interested in two distinct properties relating to modularity. One is
how easily the syﬁchronization can be separated from the resource implementation and localized
in a synchronization module. The other is how well the mechanism supports the use of
modularization and hierarchical structure in constructing the resource, and whether the
synchronization coﬁstruct can be used with hierarchically structured resources. Serializers
represent an improvement in both of these areas.

In monitor solutions, the only way to allow concurrent access to a resource is to create
the resource independently of the monitor. The monitor construct does not provide a
mechanism for maintaining an association between the monitor and the resource in this case.
The user is responsible for ensuring the correct use of the monitor when accessing the resource.
Though a method for ensuring correct access exists, it is the programmer’s responsibility, when
using monitors, to create a ﬁodule that encapsulates the resource and the monitor, and invokes
the proper synchronization operations when a user of the resource attempts access.

Serializers represent an improvement because they provide this encapsulation
automatically. The programmer need only make the resource a component of the serializer
construct. The essential difference between monitors and serializers is that serializers allow the
resource to be created inside the synchronization module without restricting the access scheme to
‘be mutual exclusion. Because a join_crowd operation releases the serializer while the resource

operations are executing, the resource object can be part of the serializer object and still be
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accessed concurrently without violating the constraint that only one process at a time have
possession of the serializer. Thus, the programmer need only define the serializer and resource
modules, and can assume that the resource is protected (it cannot be accessed without going
through the serializer).

The difference may be clearly seen by comparing the structure of a serializer solution
with that of a monitor structured as described in the previous chapter. Both are shown in
Figure 27.

'l;hough the monitor forces the user to do more work, it also provides some additional
modularity. There is a protected resource abstraction separate from the synchronizer. In
complicated scheme§ this additional modularity may be useful, since it allows the designer to
deal with the synchronization without worrying about what the actual resource operations are.
This is especially helpful when the synchronization scheme is independent.of the operation
requested, as in the disk scheduling problem. It also makes it easier to change synchronization
schemes, or to use the same synchronizer for more than one resource. However, the advantages
of the structure provided by serializers outweigh the small improvement in modularity found in
the structured monitor solution.

Overall, serializers improve upon the modularity supported by the monitor mechanism.

Figure 27. Comparison of Monitor and Serializer Structures

serializer structure monitor structure

serializer protected resource

resource | monitor resource
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Because users have an easier way to properly structure solutions, and will find it more difficult
to do things incorrectly, software reliability should be enhanced by use of the serializer

mechanism.
5.4 Ease of Use and Modifiability

Serializers also satisfy our ease of use and modifiability criteria well. We can easily
locate the implementation of each constraint within the solutions presentgd. In the
readers_writers problems (Figures 21, 22, 23, 28), the exclusion constraint on readers is enforced
by the condition crowd$empty(wr'iterurowd) in the until clause in read, and the constraint on
writers is enforced by the condition that both the readers_crowd and writers_crowd must be
empty. Other conditions may be added to enforce other constraints, but the implementation of
these constraints remains ﬁnchanged. The constraint independence criterion we established for
evaluating ease of use and modifiability is therefore met.

We can also examine modifications that might be madé to synchronization schemes we
have discussed to determine how easily those changes can be implemented. In this section we
discuss two modifications to the readers_priority scheme.

One modification is to change to a writers_priority scheme. As indicated by our
analysis of synchronization problems in Chapter 2, the exclusion constraints remain the same,
and there is no change in the types of information used to specify the priority constraints, so the
changes needed are expected to be minimal. Conceptually, the difference between the two
schemes is that in the writers_priority problem, readers must wait if any writers are waiting,
while the reverse is true in the readers_priority problem. In serializer solutions, all of this
information is contained in the until clause of enqueue statements, so the only parts of the

solution that should need modification are these clauses. The dequeue conditions for read must
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be changed so that readers must wait until no writers are waiting. The enqueue statement for
readers becomes:

queue$enqueue(readers_q) until (crowdfempty(writers_crowd)

& queuefempty(writers_q));
The dequeue condition for writers no longer has to check that no readers are waiting. Thus,
the enqueue statement in the write procedure becomes:

queueffenqueue(writers_g) until (crowdfempty(readers_crowd))

Thus, the changes made were minimal. In addition, it was possible to easily identify those parts
of the solution needing modification. Because the conditions for which an enqueued process is
waiting are specified at the point of the wait, and restarting i§ done automatically, constraint
implementations are even easier to identify than in monitor solutions. It is no longer necessary
to search for signal statements in all of the procedures; the entire implementation of the
constraint occurs in the enqueue statement. Changing one constraint in an implementation is
therefore straightforward.

A more difficult modification is the change from readers_priority to
fair_readers_priority. The fair solution will not allow a reader to enter the resource if a writer
is already waiting. Only one writer will proceed at a time, though; so if several writers are
waiting when a reader enters, the reader will precede all but the first writer. This solution
requires use of request times as well as request type in the priority constraints. The solution is
shown in Figure 28.

This solution is fair because the serializer mechanism gives dequeues priority over
enters for gaining possession of the serializer. When the resource is empty, the dequeue
condition for readers will be satisfied, so ali readers on the readers queue will be dequeued and

enter the resource before any more read requests can enter the serializer. The readers queue
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Figure 28. Fair_Readers_Priority Serializer
fair_rp = serializer is create, read, write;

rep = record(readers_q, writers_q:queue,
readers_crowd, writer_crowd: crowd,
db:data_base};

create = proc() returns (cvt);
return(rep§{readers_q:queue$create(),
writers_q:queuefcreate(),
readers_crowd:crowdfcreate(),
writers_crowd:crowdfcreate(),
db:data_base§create()});
end create;

read = proc(s:cvt,k: key) returns(data);
queuefenqueue(s.readers_q) until (crowd$empty(s.writers_crowd));
d: data;
crowd$join(s.readers_crowd) then
d:= data_base$read(s.dbk);
end;
return (d);
end read;

write = proc(s:cvt, k:key, d:data);
queuefienqueue(s.writers_q) until (queuefempty(s.readers_q)
& crowdfempty(s.writers_crowd));
queue$enqueue(s.readers_q) until (crowd$empty(s.readers_crowd)
& crowdfernpty{s.writers_crowd));
crowd$join(s.writers_crowd) then '
data_base§write(s.dbk,d);
end;
end write;

end fair_rp;

will then be empty, so the condition for dequeuing writers from the writers queue becomes
satisfied, and the first writer on that queue will have highest priority for gaining possession of
the serializer. This writer is then eﬁqueued on the (still empty) readers queue.‘ Since the writer
is now first on the readers queue, it will enter the resource before a.ny more readers. Assuming

read accesses terminate, the readers in the resource will eventually finish and the resource will
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empty, allowing the writer at the head of the readers queue to proceed. At the termination of
this write, the process just described repeats: all waiting readers will enter the resource, but the
first writer on the writers queue will get priority over any new readers entering the serializer.
Thus readers still have priorify, but writers will not starve, because only a finite number of
readers can enter the resource before any write. Note that if several writers are waiting when a
reader enters the serializer, only the first of these will enter the resource before the reader.

The change in code from the readers_priority to fair_readers_priority solution is small;
only the write operation has chénged. One additional enqueue statement has been added to
maintain the needed information about relative times of read and write requests. Enqueuing
writers on the readers queue is one way to establish a first_come_first_serve order in the
necessary cases.

From examining the set of readers_writers problems, we can conclude that minor
changes to synchronization specifications result in only minor changes to serializer
implementations of those speciﬁcétions. Identifying the parts of the solution that need

modification is straightforward, and our constraint independence criterion is upheld.
B.6 Correctness

In our discussion of correctness in monitors, we were primarily concerned with two
issues: explicit signalling and deadlocks due to hierarchical structuring of resources. Serializers
have reduced the probiems due to explicit signalling by associating conditions with each queue,
and automatically restarting waiting processes. For synchronization schemes in which the
conditions associated with queues can be expressed in terms of empty tests on queues and
crowds, automatic signalling represents a significant improvement in the support given

correctness. For synchronization problems that involve resource state information, arguments
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passed, or history information, more complex conditions are needed. In these cases, serializers
lose their advantage. Local variables are as easily misused as explicit signals. We have also
seen a case, in the bounded but;fer example, where the integrity of the resource could be easily
undermined by incorrectly using resource state information in a condition. If the resource
invocations were incorrectly ordered, a condition would have appeared true, and a process
would have been dequeued, when the condition was false. Despite these weaknesses, in most
cases, the automatic restarting of processes in serializers is superior to explicit signalling.

The problem of hierarchical deadlocks in serializer solutions is equivalent to that in
properly structured monitors. Since resource operations are almost always executed outside the
control of the serializer, the problem will rarely occur. The only time a hierarchical deadlock
can arise is when a resource operation is invoked outside of a join_crowd statement in a
serializer operation. As in the monitor solutions discussed, this situation can occur if the
serializer is obtaining resource state information via invocations of resource procedures.
However, it is unlikely that such an operation would be forced to wait at a lower level. While
serializers and "properly used” monitors both avoid the hierarchical deadlock problem in almost
all cases, the structure of serializers ensures that the potential for deadlock is minimized, while
in monitor solutions, safety is dependent on the programmer properly using the construct. We
therefore conclude that, by eliminating the explicit signal construct, and providing more aid in
producing better modularized programs, serializers provide better support for developing

correct programs than do monitors.
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5.6 Conclusions

Serializers have succeeded in improving upon many of the poorly structured features of
monitors. Modularity, and thl;s understandability and ease of use, are enhanced by use of
serializers. The use of automatic signalling improves reliability by eliminating one source of
programming errors.

The one dra.wback to the construct is that it is more complex mechanism (since so
much more is done automatically) thgn the monitor mechanism. It is therefore less efficient.
Efficiency can be improved by changing from the use of crowds, which actually store process
identities, to counts. There appears to be no need for any more information about a crowd
than how many processes are currently in it.

The other feature detrimental to efficiency is the automatic signalling. Because
monitors allow explicit signalling, processes can often be restarted without any tests on
conditions at all, and when tests are needed the programmer can use his or her knowledge
about the possible current states to limit the number of conditions that need to be tested.
Conceptually, automatic signalling means that the conditions at thg head of every queue must
be tested each time possession of the serializer is relinquished. Whether such tests actually cost
a great deal remains to be determined. Most synchronization schemes do not rgquire very many
queues, so the overhead may not be great. While we consider the use of automatic signals to be
an improvement over monitors, the reduction in efficiency may make serializers unsuitable for
some purposes.

Overall, serializers represent an improvement over monitors. Of the mechanisms

evaluated in this thesis, serializers come closest to satisfying our requirements.
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6. Summary and Evaluation

This thesis has addressed two issues related to software reliability and synchronization
of shared resources. One is how synchronization mechanisms can be evaluated to measure how
well they support such criteria as expressive power, ease of use, modularity and correctness.

The second is how well existing synchronization constructs meet these criteria.
6.1 Summary and Conclusions

Several results have been derived from our study of evaluation techniques. The
development of ;nethods fér evaluating expressive power led to a study and definition of the |
kinds of problems we -fe‘el synchronization mechanisms should handle. It has been shown that a
synchronization problem may be defined as a set of consfraints, which fall into two basic
categories, priority constraints and exclusion constraints. In addition, these problems can be
categorized according to the kinds of information used to express the constraints. We have
identified six categories of information needed in synchronization constraints: the time at which
requests are made, the procedure requested, the local state of the resource, the synchronization
state of the resource, the a;rguménts passed with the requests, and the history of invocations Of,
resource operationls. Furthermore, the categories of information used in a synchronization
scheme largely determine How easilyb that scheme may be implemented using a given
mechanism. Thus, by analyzing a rﬁechanism to determine whether it provides access to each
type of information and a method for expressing each type of constraint, we can measure its
expréssive power. In addition, we can estimate the difficulty of implementing a particular class
of probléms ﬁsing the mechanism. Methods for evaluating ease of use and modifiability based

on this categorization of problems are also described.
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The other major result of this study is the application of modularization techniques to
the structuring of shared resources. We have shown that significant benefits accrue when a
shared resource is implemented as the composition of a synchronization module and an
unsynchronized resource module, that is, when all synchronization is handled within the
synchronized resource, but is independent of the unsynchronized resource. Not only does this
structure improve usability and ur;derstandability, but it also reduces deadlock problems in
many cases.

The remainder of the thesis is devoted to evaluating monitors, path expressions, and
serializers, the three existing mechanisms that seem most likely to satisfy the requirements of
good software engineering. Based on this evaluation, we have drawn the following conclusions
about these three mechanisms. While the approach taken by path expressions seems very
a‘ttractive, our analysis has revealed some serious shortcomings. Path expressions do not
provide access to several types of information needed in synchronization constraints, and thus
lack sufficient expressive power. In particular, it is difficult to use the resource state and the
arguments passed to procedures. To maintain information about time of request, or to express
priority constraints in general, requires additional synchronization procedures, thus increasing
the solution’s complexity. In addition, the modularity requirements we find necessary to ensure
ease of use and verifiability are not well supported by the mechanism. We therefore conclude
that the mechanism does not contribute to the production of reliable, easily maintainable
software. The construct might be substantially improved if the need for synchronization
procedures could be reduced. Given our enumeration of the kinds of constraints the mechanism
must be able to express, it may now be possiBIe to produce a version that incorporates the
means for obtaining the necessary information. The use of extra procedures might then be

unnecessary, and expressive power, ease of use, and modularity would be greatly enhanced.
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Both monitors and serializers satisfy our criteria reasonably well. If asked to select one
mechanism for inclusion in a modular programming language now, we would select serializers.
Though certain tradeoffs are involved in sélecting one of these mechanisms over the other,
serializers seem superior in two important respects. First, they meet our modularity
requirements more closely. The proper use of monitors requires a special protected-resource
module in addition to the synchronizer and resburce Mules; the resource implementor must
also folldw specific guidelines for defining monitor operations. Serializers depend less on such
rules: the protected-résource module is not needed, and serializer operations are precisely the
ﬁsér-accessible opcrati'ons on the protected resource. Serializers are thus more likely to be used
correctly. The other important distinction between the two mechaﬁisms is the use of automatic
signalling in serializers. Though proof rules for the monitor signa.l construct have been
developed, an automatic sighalling feature is more‘ likely to aid in constructing correct programs,
and in éasing the burden placed on the verifier. These differences between monitors and
serializers indicate that serializers better support the construction of reliable concurrent

programs than do monitors. The tradeoff made in selecting serializers over monitors is one of

efficiency for structure,
6.2 Evaluation and Extensions of this Werk

There are several areas related to this thesis that we feel warrant further study. The
principal contribution of this work has beén in | outlining a méthod for evaluating
synchronization constructs to determine how well they ;uppon thé goals of good progrimming
methodology. The method is dependent upon the recognition of classes of synchronization
constraints based hpon the kinds of information needed to speciﬁ a constraint. Wbile this

categorization of constraints appears valid, and has proved useful in the evaluations presented




- 1I0 -

here, a more detailed investigation of synchronization problems may yield more finely grained
divisions that could isolate weaknesses in mechanisms still further.

For example, the thesis is limited in the model of shared resources with which it deals.
It is assumed that the resource to be synchronized is an object of an abstract data type, a;nd that
we are synchronizing individual accesses to that object. A more general analysis would have
included several classes of problems omitted here. One such group of problems takes the form
of a protected resource whose operations contain several invocations of resource procedures,
rather than just one. The bank account problem in [20] is a member of this group. Another
set of problems has one synchronizer controlling access to more than one resource. We need to
know whether these problems can be reformulated to fit the model used here. If not, it is
important to determine what properties synchronization mechanisms must satisfy to handle
these problems adequately.

One further extension to the analysis of requirements for synchronization mechanisms
is the determination of the properties needed for such a mechanism to be usable in a
distributed environment. We believe the modularization of a shared resource, and the
association of the synchronization scheme for that resource with the resource definition, is a
valid model in both centralized and distributed systems. However, the need for communication
between a protected resﬁurce and users in a distributed environment may impose further

restrictions on the kinds of mechanisms acceptable.
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Appendix I - Speéiﬁcation of Synohronization Problems

In this appghdix, we present formal specifications for those problems defined
informally in Chapter 2. The notation used is that of Laventhal[24). In this formalism, each
invocation of a syﬁc‘hronized oberation has associated with it three events: request, enter, and
‘exit. Request is the time at which the synchronizer first becomes aware that a user wishes to
execute the operation. Enter is the time at which the process gains access to the rgsource, and
exit is .the time at which it leaves. In addition procedure activations are numbered uniquely for
each resource object. For exaﬁtple, po denotes the sccdnd activation of procedure p. The
specifications are writtén in terms of events, such as pi‘""’, which describes the enter event

associated with the ith activation of the procedure p. The symbol "+" means temporally

precedes.
Writers_Exclude_Others
((writei"“" - writej"’"') s (writei““ - wr“ejontur» &
((write;** » read; *™*") | (read) *™ - write,*™*"))
Readers_Priority

(read,"*st writej'""') > (read*™* writej'""’)

Though not explicitly stated, the following two constraints are usually assumed. They state
that reads are taken first_come_first serve with respect to each other, as are writes.
(readi"“"_"' - readj"""”‘) 5 (rudionhv - mdj'“"')

(write;"*%**! - write j""“'") > (write*™*" writej"‘"')
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First_come_first_serve
(Piroqmsi - quoquost) PR (Pi'm" > qj-ntov)
Here, p and q represent any resource operations. Whichever activation is requested first is the

one to enter first.

Fair_Readers_Priority |
((readiuquost - wricejuxit) > (radi'"‘" - _‘"“ejol'"'"» &

‘,(((Writej"" > read,"* %) & (writej’l""”'" -+ read,"*8t )) 5

(writej’l”‘"' - readionhr»

One_Slot Buffer

(insert;" » remove,"™®") & (remove" - insert; *"*")
1 1 i i+l

Bounded buffer
(insert;* . remove,**") & (remove,™" - insert;, ") &
(insert;*" 5 insert, 4™ & (remove,™ o remove;,;*"*")
Alarmclock
((tick;"™*" -+ wakeme,(n)/*®*!) > (tick;,,™"*" > wakeme;(n)""") &

((wakemej(n)"q""' -+ tick; q"‘"') > (wakemej(n)'"'" - tick; . ,l"'"'))
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Disk head scheduling

exit N

((a entar -a entar)
z

5 (31 a enfar)) &

y y
(2 (x2)" 2! s 2 (D)™ - a,(x2)*™*") &
(031 o 2y ()" - (3 &

(ap(x0)™" » a, (xD™) &

~ 30) (@rp(x0™" -+ 3™ 2 (x)™) &

((x0 < Xl < X2 & (x2<x3 | x3 <xl) |

(x0>xl>x%x2 &(x2>x3 | x3>x1)

5 (ai(xz)enter_’aj(xg)enter»
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