
--"-..

Synchronization Mechanisms for Modular Prosrammin1 Lan1ua1es

by

Toby Bloom

January, 1979

C) Massachusetts Institute of Technology

This research was supported in part · by the Advanced Research Projects Agency of the

Department of Defense, monitored by the Office of Naval Research under contract

NOOOli-75-C--0661, and in part by the National Science Foundation under grant MCS7+-21892.

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge, Massachusetts

02139

This empty page was substih1ted for a
blank page in the original document.

- 2 -

Synchronization Mechanisms for Modular Programming Languages

by

Toby Bloom

Submitted to the Department of Electrical Engineering and Computer Science

on January 26, 1979, in partial fulfillment of the requirements

for the degree of Master of Science

ABSTRACT

Any programming language that supports concurrency needs a synchronization

construct with which to express access control for shared resources. This thesis examines

synchronization constructs from the standpoint of language design for reliable software. The

criteria a synchronization mechanism must satisfy to support construction of reliable, easily

maintainable concurrent software are defined. Some of these criteria, such as expressive power,

can be defined only with respect to the set of problems the mechanism is expected to handle. A

definition of the range of problems considered to be synchronization problems is therefore

needed. Such a definition is provided by describing the possible types of constraints that may

be imposed on access to shared resources. We then use this taxonomy of synchronization

constraints to develop techniques for evaluating how well synchronization constructs meet the

criteria discussed. These techniques are then applied to three existing synchronization

mechanisms: monitors, path expressions, and serializers. Evaluations are presented, and the

three mechanisms compared.

Thesis Supervisor: Barbara H. Liskov

Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: synchronization, concurrency, modularity, data abstractions,
progratlllling methodology

- 3 -

ACKNOWLEDGMENTS

I would like to express my appreciation to Professor Barbara Liskov, my thesis

supervisor, for her guidance in my research, as well as for her patience and support while I was

writing this thesis.

Craig Schaffert provided many useful insights and helped in clarifying many of the

ideas in the thesis. Russ Atkinson and Mark Laventhal provided a great deal of

encouragement and support, as well as technical help; without them I would have given up long

ago.

I would especially like ~o thank Tim Anderson for reading the many drafts of this

thesis, and for helping to put it into readable form. Bob Scheifler also helped edit the final

draft.

Finally, I would like to thank my roommates, Margery Colten, Vicki Bier, and Dale

Hattis, for giving me the encouragement I needed, and for putting up with me while I was

writing this thesis.

This research was supported in part by the Advanced Research Projects Agency of the

Department of Defense, monitored by the Office of Naval Research under contract

NOOOH-75-C-0661, and in part by the National Science Foundation under grant MCS74-21892.

1.

2.

3.

4.

- 4 -

CONTENTS

Introduction •••••••••••••••••••••••••••••••••••••••

1.1
1.2
1.3

Background and Motivation ..•.
Research Goals and Outline of the Thesis ••••••.•••••••••••••••••••
Related Work ..•............

Criteria and Evaluation Techniques • •••••••••••

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Modularity
Categorizing Synchronization Problems •••••••••••••••••••••••••••••
Expressive Power
Ease of Use
Modifiability
Correctness

..

..

................................ ,•
Summary

7

7
8
9

11

12
13
20
22
24
25
26

Monitors •• 28

3.1
3.2
3.3
3.4
3.5

Expressive Power
Modularity
Ease of Use and Modifiability •.•••••••.••••••••...............•.....•
Correctness
Cone I usi ons .•....•.•.•........•...•..••..•..••••..••.••••••.••••••.•••••••

Path Expressions ••••••••••••••••••••••••••••••••

4.1
4.2
4.3
4.4
4.5

Expressive Power
Modularity :
Ease of Use and Modifiability•..•..•...................
Correctness
Conclusions .. ~••........

31
44
49
53
54

55

58
75
80
82
84

- 5 -

5. Serializers ••••••••••••••••••••••••••••••••••••••• 85

5.1 Mechanisn:i Description•.......••..•.••.••••.•.•••.•......•.•.••••• 85
5.2 Ex·pressive power .. 89
5.3 M.odularity 99
5.4 Ease of Use and Modifiability ·.••........••.•.... 101
5.5 Correctness . 104
5.6 Conclusions ... 1•••••••••••••••••••••••••••••••••••• •• 106

6. Summary and Evaluation ••••••••••• · •••••••••.• ~. 107

6.1 Summary and Conclusions ...•.•..•.•.•••.••••••...••••••..•••.••.••• 107
6.2 Evaluation and Extensions of this Work . . • . . • • • • • . • • . . . • . . • • • • • • • 109

Appendix I. Specification of Synchronization Problems •••••.•. ..••••.• 111

- 6 -

FIGURES

Figure 1. Bounded Buffer using Monitors 31
Figure 2. Readers_Priority Monitor•..................... 33
Figure 3. Readers_Priority Protected_Resource Module •.••••.•.•••••. 35
Figure 4. First_Come_First_Serve Monitor 36
Figure 5. Writers_Exclude_Others Monitor 39
Figure 6. Alarmclock Monitor ... 40
Figure 7. Disk_Scheduler Monitor•............... 42
Figure 8. Protected Resource Structure 45
Figure 9. Bounded Buffer Monitor ... 48
Figure 10. Writers_Priority Monitor .. 51
Figure 11. Fair _Readers_Priority Monitor : •.. 52
Figure 12. First_Come_First_Serve using Path Expressions 60
Figure 13. Readers_Priority Database using Path Expressions 63
Figure 14. Alarmclock .. 67
Figure 15. One_Slot Buffer using Path Expressions 70
Figure 16. Bounded Buffer using Path Expressions 71
Figure 17. First_Come_First_Serve Synchronization Module 77
Figure 18. Hierarchical Deadlock in Path Expressions 78
Figure 19. Writers_priority Database using Path Expressions 81
Figure 20. Structure of Serializer Objects 85
Figure 21. First_Come_First_Serve Serializer•..................... 88
Figure 22. Writers_Exclude_Others Serializer 90
Figure 23. Readers_Priority Serializer 91
Figure 24. Bounded Buffer Serializer 92
Figure 25. One_Slot Buffer Serializer 94
Figure 26. Disk Scheduler Serializer .. 96
Figure 27. Comparison of Monitor and Serializer Structures • 100
Figure 28. Fair _Readers_Priority Serializer•.... 103

- 7 -

1. Introduction

1.1 Baokgrou-nd and Motivation

In recent years there has been great interest in development of high-level language

constructs to support parallel programming. Numerous synchronization constructs have been

proposed since Dijkstra , introduced the semaphoreC12l These include conditional critical

regions[5], monitors[IS,7], path expressions[Sl and seria1izers[3l

In addition, we have come to realize the importame of the role programming

languages play in the development of reliable, high quality software. Languages that support

good program structure significantly enhance programmer effectiveness in producing reliable

software. One methodology for improving software quality is the use of modular programming

techniques and abstraction mechanisms. Languages such as CLU[25] and Alphard[35] support

this methodology.

The need for reliable, easily maintainable software is even greater when concurrency is

involved. Parallel programs are more complex and harder to understand than sequential ones

because processes interact more, and time-dependent errors, which are not susceptible to

traditional debugging techniques, are much more tik.e1y. It is therefore imperative that the

language constructs used to implement parallelism support good program design.

While a synchronization mechanism that supports modular programming and the use

of data abstractions would certainly contribute to the reliability and quality of concurrent

software, no clear description of the requirements that such a mechanism must satisfy has been

established. Attempts to evaluate existing synchronization mechanisms usuatty depend on the

rather ad hoc technique of attempting to implement numerous synchronization schemes using

the mechanism. Unfortunately, one can never tell, when using this method, whether the

analysis is complete. If the analysis reveals a weakness in the mechanism, the construct is

modified or extended to handle the one case found. The result has been the development of

- 8 -

numerous constructs, each designed to correct on.e flaw in a previous version, with no standard

criteria for deciding when a mechanism is satisfactory.

The aim of this thesis is to state as explicitly as possible the criteria a synchronization

mechanism must meet if it is to support construction of reliable, well-structured concurrent

software. We will develop techniques to evaluate how ·well mechanisms satisfy these

requirements. The criteria and evaluation techniques presented can then be used, not only to

evaluate existing mechanisms, but as a basis for defining new mechanisms.

1.2 Research Goals and Outline of the Thesis

Our intention is to develop a methodology for evaluating the effectiveness of

synchronization mechanisms in supporting the development of quality concurrent software. The

first step in this process is to identify the function synchronization mechanisms serve in

programming languages, that is, we must identify the class of problems to which these

mechanisms will be applied. We accomplish this in Chapter 2 by developing a taxonomy of the

synchronization constraints.

The first criterion we establish is that a mechanism be able to express straightforward

solutions to any problem that can be defined in terms of the constraints described. A

mechanism is said to have sufficient expressive power if it satisfies this property. Any construct

designed to support reliability must satisfy certain other basic criteria also. These include ease

of use, modifiability, modularity, and correctness. None of these has a precise definition, and we

must decide how each applies to synchronization. In the remainder of Chapter 2, we define

these criteria with respect to synchronization and develop techniques for assessing how well

each is supported by a given construct.

In Chapters 3, 4 and 5, we examine three synchronization mechanisms: monitors, path

expressions and serializers. The use of each mechanism is illustrated by a set of examples

chosen to represent each class in our taxonomy of synchronization constraints. These examples

- 9 -

are then used in applying the evaluation techniques developed in Chapter 2. This analysis

indicates whether a given mechanism satisfies our requirements and can be incorporated into a

language designed to support software reliability without undermining the goals of that

language. Furthermore, it provides information as to which problems can be easily

implemented using a given mechanism.

1.3 Related Work

Most of the research directly related to this thesis has been mentioned in the previous

sections. It falls into two basic categories: the development of synchronization constructs for

high-level languages, and evaluations of these mechanisms.

The monitor construct was developed independently by Hoare[IS] and Brinch

Hansen[?] as an extension of Dijkstra's secretary concept[l3].

The path expression mechanism was first developed by Habermann and Campbe11[8],

and has since been extended and modified several times [15, 14). The mechanism is intended to

• provide a means of specifying synchronization non-procedurally, as a set of relationships among

the operations used to access the shared resource. It thus appears to be a higher level construct

than monitors.

Serializers are the most recent of the mechanisms discussed. They are based on the

monitor mechanism and were developed by Atkinson and Hewitt[3] to eliminate certain

characteristics of monitors that were thought to be detrimental to good program structure.

Several other, less extensive, proposals have been made to change specific features of

monitors. Among these are the automatic signalling mechanism suggested by Kessler[23), and

the manager construct of [21), which are aimed specifically at improving the signalling

mechanism in monitors (see Chapter 3). These are not ~iscussed in the thesis; serializers are a

more extensive revision of the monitor construct and cover the changes made by these

proposals.

- 10 -

Few papers exist on techniques for evaluation of synchronization mechanisms

according to the criteria mentioned earlier. Andler[l] presents a comparison of semaphores,

conditional critical regions, monitors and path expressions. The comparison is based on

solutions to the bounded buffer problem, and focuses on correctness issues. While we are

concerned with correctness, our interest is primarily in how welt a mechanism supports

construction of correct programs, rather than with proof techniques for the mechanism.

In [20), Howard has compared several versions of monitors. Howard is primarily

interested in equivalence of internal specifications of the various versions, and does not address

issues of expressibility or ~ase of use.

The work on the "nested monitor call" problem by Lister[28], and the responses to his

initial presentation of the problem [29, 31, 22) are also relevant to our research. Further

discussion of this work appears in later chapters.

A brief comparison Qf monitors with serializers appears in [31 Some discussion of the

differences between monitors and path expressions also appears in [151

- 11 -

2. Criteria and Evaluation Teohniques

In this chapter, we present the criteria to be used in the evaluation of synchronization

mechanisms. Techniques for measuring how well these criteria are supported by various

synchronization constructs are also presented.

Our principal concerns in this evaluation focus on programming methodology and the

ways in which the addition of synchronization to a language influence software quality and

reliability. We are therefore interested in such properties of synchronization mechanisms as

expressive power, ease of use, modularity, modifiability, and correctness. These terms are

sufficiently vague to make evaluation according to these criteria extremely difficult.

We will attempt to clarify the definitions of these properties with respect to

synchronization. This chapter is divided into several sections. The first deals with modularity;

it applies the concept of abstraction mechanisms to the problem of modularizing the

implementation of shared resources. The following section is devoted to defining a method for

classifying synchronization problems and describing the range of problems that synchronization

mechanisms will be expected to satisfy. This classification of problems will be needed in later

sections to describe techniques for evaluating expressive power, ease of use, and modifiability,

since these properties are meaningful only with respect to a given set of problems. The final

section discusses correctness, and the properties of a synchronization mechanism that influence

how easily a program can be written correctly and how easily it may be proved correct. We will·

not actually discuss proof techniques.

Thus, this chapter is devoted to establishing the definitions and techniques necessary

for evaluating how well synchronization mechanisms support production of reliable, high

quality software. It is a first attempt at establishing some standard criteria for evaluating

- 12 -

properties long held to be very important for programming language constructs, but which

have only intuitive, imprecise definitions.

2.1 Modularity

By modularizing programs, we limit the complexity the programmer must deal with at

any given time, thus making it easier to write correct programs. The increase in complexity of

software due to the presence of concurrency makes modularization essential for maintaining

correctness. In this section we describe the ways in which software used to access or control

access to shared resources should be modularized. This modularization is based primarily on

the use of abstraction mechanisms[28].

There are two distinct modularity requirements for concurrent programs accessing

shared resources. The first follows from the principle that the definition of an abstraction

should be separated from its use. We consider a shared resource to be a data abstraction. The

definition of the synchronization for a shared resource should be part of the definition of that

resource, rather than being associated with each resource access. Thus our first modularity

requirement is that usersl see a shared resource abstraction that can be assumed to be properly

synchronized. No synchronization code need be included in programs accessing the resource.

Our other modularity requirement has to do with the shared resource definition.

Within the module that implements the shared resource, we have the definition of the structure

and operations on the resource, as well as the definition of the synchronization scheme for the

resource. These two parts actually serve different functions and should be separable into

different subsidiary abstractions of the. shared resource.

I. "User" of a resource refers to systems or applications software that accesses the resource.

- 13 -

We thus have a model of shared resources that consists of two levels of abstraction. At

the higher level we have a protected resource abstraction with the operations that users may

perform in accessing the resource. At the lower level, we have the resource abstraction, with the

access operations that may be performed after a synchronizer ensures that access is safe, and a

"synchronization abstraction", which contains state information necessary for synchronization,

but not conceptually meaningful as a part of the resource, as well as synchronization operations.

In examining synchronization constructs, we will be attempting to determine whether

they automatically provide this modularization, and if not, whether they allow the resource

implementor to easily modularize the design in this manner.

2.2 Categorizing Synchronization Problems

As stated earlier, expressive power, ease of use, and modifiability can only be evaluated

relative to a specific set of problems. A synchronization mechanism need only be powerful

enough to easily express solutions to those problems we consider to be valid synchronization

problems. We therefore need a way to describe the range of problems in which we are

interested. In this section, we identify a set of properties of synchronization schemes by which

we can classify these problems. We will later use the idea that, since synchronization schemes

have various combinations of these properties, testing whether the mechanism can express

schemes with each property, and whether it allows us to easily combine properties, will indicate

the power and usability of the mechanism.

- Ii -

2.2.1 Categorization of Constraints

Synchronization mechanisms serve two main functions with respect to shared resources.

One is excluding certain processes from the resource, under given circumstances; the other is

scheduling access to the resource according to given priorities. Synchronization schemes are

thus composed of a set of constraints, e;ch having the form:

if condition then process A is excluded from the resource

or:

if condition then process A has priority over process B

We will refer to constraints of the first type as exclusion or concurrency constraints and the

second as priority constraints. Within these two main classes, constraints differ in the kinds of

information referred to in the conditional clause. The information that should be available to

the synchronizer, and thus the information that can appear in constraints, falls into several

categories:

I. the procedure(s) requested :2

The resource is a data abstraction, so access to it is always obtained through operations of

the resource type. In some synchronization schemes, the constraints depend on the

operation requested. In stating, for instance, that readers of a data base have priority over

writers, we are giving a constraint in terms of the types of procedures requested. In

contrast, a strict first_comeJirst_serve ordering uses no information about the procedures

requested.

2. the time at which requests were made:

2. We will often refer to this information as the "type" of the request.

- 15 -

Though it is rarely necessary to know exact times of requests, the time of a request relative

to other events is often important. The most frequent use of time information is the

determination of the order of requests. In addition, it is sometimes necessary to determine

the synchronization state(see below) at the time of a request.

3. arguments passed with requests:

In many cases, the arguments passed with a request for resource access are needed to

determine the order in which processes should be admitted to the resource.

4. the "synchronization state" of the resource:

Synchronization state includes all local data and state information needed only for

synchronization purpose.s. Included in this category is information about the processes

currently accessing the resource, and the procedures those processes are executing.

5. the local state of the resource :

Local state includes information that would be present regardless of whether the resource

were being accessed concurrently or sequentially. It is information· mean.tngfU1 to the

actual unsynchronized resource abstraction. Though local state information. is used Jn

many synchronization schemes, its use often causes problems because it interferes with

modularity requirements. (The local state information belongs in the reseurce module; ·and

thus a synchronizer will not have automatk access to it. Sever-&l options for handling this

problem are discussed in later chapters.)

6. history information:

History information is concerned with whether or not a given event has occurred, such as

whether a specific procedure has been executed. This information type differs from

synchronization state in that it refers to resource operations:that have alreacly completed,

as opposed to those still in progress. It is often interchangeable with local state

- 16 -

information, since past events in which we are interested will most likely have left some

noticeable change in the state of the resource. It is convenient to treat it as a separate

category because it may be easier for the synchronizer to keep track of the history of

operations executed than to obtain the required state information from the resource.

We have thus identified two major types of constraints, and several classes of

information that distinguish different kinds of constraints within the two major categories. To

be sufficiently powerful, a synchronization mechanism must provide a means of expressing

exclusion and priority; it must also enable the resource implementor to express those constraints

in terms of any of the information types described.

In the next section, examples that use various combinations of constraint types will be

given. The way in which a mechanism makes use of different types of information, and how

easily it can get access to this information are very important in determining how easily

well-structured, reliable solutions can be developed.

2.2.2 Examples

The following are standard examples of synchronization problems. This set was

chosen to cover all of the information types presented. Only informal descriptions of the

problems are given. Formal specifications seem unnecessary for our purposes, but to avoid any

ambiguity, the appendix contains formal specifications using notation from [24].

The bounded buffer problem

The bounded buffer problem assumes there is a fixed size buffer, of length n, into

which producer processes are placing data, and from which consumer processes are

retrieving it. The constraints specified are that only one process may access the buffer

at a time, that the producer may store in the buffer only if it is not full, and that a

- 17 -

consumer may retrieve information from the buffer only if it is not empty. Thus, the

constraint!- make use of information on synchronization state, resource sta_te, and the

procedure requested.

Readers_Writers Problems

There are several readers_writers problems[IO] that illustrate the use of different types

of information. The readers_writers problems assume there is a shared data base

having read and write operations. All of the versions used here have the same set of

exclusion constraints: reads may occur in parallel, but a write operation excludes both

readers and other writers. The priority constraints are different in each version. The

similarity of the various forms of the problem makes this set of problems especiatly

useful in evaluating modifiability.

Writers_exclude_others

This version of the problem uses the exclusion constraints mentioned above but

imposes no priority constraints. This synchronization scheme illustrates an important

type of problem that synchronization mechanisms should be able to handle. The user

may not care about the order in which operations are executed in certain cases. There

may be external constraints that guarantee that eventually every request will be served,

and the order is unimportant. Many mechanisms force the programmer to define an

ordering when the specification has none. The inability to leave specifications

nondeterministic is a weakness in the expressive power of the mechanism.

Readers_priority (or writers_priority)

In this version a priority constraint is added. If both a read request and a write

request are pending, then the read (or in writers_priority, the write) is always given

priority. The exclusion constraints remain the same. The priority is now based on the

- 18 -

operation requested. Notice that this scheme allows starvation.3

First_come_first_serve (fcfs)

In this version of the readers_writers problem, the type of operation requested is not

used at all in the specification of priority constraints. Instead, priority is based entirely

on order of request.

Fair _readers_pri ority

The fair Jeaders_priority scheme gives readers some priority over writers but limits

that priority enough to be sure writers will eventua11y be served. One way of fulfilling

this requirement is by use of the following constraints. If there are writers waiting

when a read is requested, then the read must wait until one write completes. All reads

waiting at the termination of that write may proceed. These constraints imply that

only a finite number of readers have priority over a given writer. The writer that has

been waiting longest will have priority over any readers not yet in the resource. The

priority constraints for this scheme use a combination of request time and operation

type.

The One_slot buffer

The one_slot buffer[8] problem assumes there is a message buffer with room for exactly

one message. Users may insert and remove messages. The synchronizer must

guarantee that a message is inserted before any process executes a remove, and that no

message may be inserted before the previous one has been removed. Thus, an insert

may occur only if the previous operation was a remove or a create, and remove may

3. Starvation means that a process waiting to access a resource may wait forever and never be
granted access. In the readers_priority scheme, since readers have higher priority than writers,
if reads are requested often enough a writer may wait forever.

-19 -

occur only when the previous operation was an insert. Operations occurring out of

order must wait until these constraints are satisfied. This example therefore illustrates

the use of history information. The synchronizer must keep track of the operations

already _exec~ted to determine whether a process may enter the resource.4

The disk scheduler

The disk scheduler [18] is a scheme to control access to a disk by using an "elevator"

algorithm. The disk head moves in one dir«tion until there are no more requests for

tracks in that direction; then the direction is reversed. The access request contains the

track number as an argument. The algorithm works as follows. If the had is

currently moving up (toward higher-numbered tracks) then requests for tracks at the

current track or lower must wait for the return pass. Requests that arrive for

higher-numbered tracks will be serviced when the head reaches that track on the

current sweep. Thus, it is the parameter of the request, and the state of the resource(i.e.

current head position and direction) that determine the priority. The exclusion

constraint allows only one process at a time to use the disk.

The alarmclock

The alarmclock is a system facility that allows processes to block th~selves and request

to be restarted after a specified period of time. Thus, granting the "resource request"

means restarting the process. The order in which requests are served is based on the

argument telling the alarmclock. when to grant the request. The alarmclock example

itself may not be a realistic use of synchronization. However, it is felt that it illustrates

a class of problems that a synchronizer should be able to handle.

4. This problem can be restated using local state information if there ls some way to determine
whether the buffer contains an unread message.

- 20 -

Both the alarmclock and the disk scheduler represent examples of synchronization

problems using arguments passed with requests as the basis for determining priorities. The

primary difference between them is that the disk scheduler has a fixed number of possible

parameter values on which to base the ordering, while the alarmclock may take any integer

value as an argument. It therefore may require more mechanism to handle the type of problem

illustrated by the alarmclock. Either the disk scheduler or the alarmclock can be used to

represent the class of problems using arguments as a basis for priority.

All of the examples given deal with single resources and single accesses in each call to

the synchronized resource. We have assumed throughout this thesis that the correct level of

synchronization is at the point of access to the resource. One may, in addition, want

synchronization at a level encompassing several resource accesses in the course of executing a

synchronized operation. Some of the problems resulting from this extension are discussed in

the section on correctness of hierarchically structured resources.

We have presented a method for categorizing synchronization problems according to

their function and the types of information needed to express their solutions. This

categorization will be used in the following section to develop methods for evaluating the

expressive power of synchronization mechanisms. Evaluation techniques for ease of use and

modifiability also make use of this problem classification.

2 .3 Expressive Power

In evaluating the expressive power of a synchronization mechanism, we will be

attempting to decide whether the mechanism provides straightforward methods for expressing

priority and exclusion constraints, and whether one has the ability to express those constraints

in terms of any of the information types described earlier.

- 21 -

One test of expressive power is to use the mechanism to implement solutions to the

examples given in the previous section. If there is no direct way to use a certain kind of

information, it should become obvious when an attempt is made to implement a solution

requiring it. While testing one example from each class of information may be insufficient to

guarantee that a mechanism is actually powerful enough, it does provide us with some

indication of a mechanism's power, and will at least point out any large gaps in power.

A more general way to measure expressive power is simply to examine each mechanism

and attempt to determine what features it has that will enable it to deal with each type of

constraint. For example, we will see that monitor queues are a construct for handling request

time information, while serializer crowds retain synchronization state information. Some data

manipulation technique must be available for each type of information. The ability to identify

the particular way in which to handle each information type will also make a mechanism easier

to use because the structure of a solution will be indicated by the kinds of information referred

to in the specification.

One technique that is often used for comparing the computational power of language

constructs, and that has recently been used to compare several versions of monitors [20), is

translation between solutions using different mechanisms. In comparing computational power,

this technique is useful because if one mechanism can be implemented in terms of another, then

the implementing mechanism must be at least as powerful as the one implemented. If the

translation is possible in both directions, the two mechanisms must be equally powerful. This

technique has been used to show that monitors, serializers and path expressions are alt as

powerful as semaphores. Since semaphores are considered to be sufficiently powerful as a

synchronization construct, alt three higher level constructs must have sufficient computational

power.

- 22 -

It has been suggested that this translation technique can be used in comparing

expressive power as well. If there is a straightforward, simple translation from one mechanism

to another, then the one translated to must have at least the expressive power of the other. We

have chosen not to employ this technique because the results of such a translation are unclear.

It is too difficult to judge how simple and straightforward a translation algorithm is, or whether

the translations in each direction are equivalent in complexity. If the translation in one

direction varies slightly in complexity from the one in the other direction, the. mechanisms

probably vary slightly in power. Though the methods presented earlier for analyzing

expressive power seem less algorithmic than the translation technique, we feel that by defining

. the set of properties we expect a mechanism to express, and then testing for the ability to do so,

we have in fact used a more objective approach than translation.

2.4 Ease of Use

In analyzing expressive power, we determine whether a synchronization mechanism

allows the straightforward implementation of the synchronization constraints described earlier.

, Whether or not a mechanism is easy to use depends not only on the ability to easily construct

solutions to individual constraints, but on the ability to easily construct implementations of

complex synchronization schemes made up of many such constraints.

Given that our requirements for expressive power are satisfied, complex

synchronization schemes will be easy to implement only if they can be decomposed into

individual constraints that can then be realized independently. If the implementation of any

one constraint is dependent upon the other constraints present, solutions quickly become very

difficult to construct as the number of constraints increases. Since the implementor must be

aware of the entire set of constraints, and make sure that each constraint is consistent with every

- 23 -

other constraint present, the complexity of construcUng the solution . (not the complexity of the

solution itself) increases with the number of combinations of constraints present. It is therefore

far more difficult to construct· a solution than if it were possible to implement each constraint

separately, regardless of which other constraints were present.

One way to test whether a mechanism a11ows independent implementation of

constraints is to examine solutions to two similar synchronization problems. If the solutions

share some constraints, but differ in others, then the common constraints should be similarly

implemented in both solutions. Differences in the way a given constraint is implemented in two

different synchronization schemes, or solutions in which the implementations of each individual

constraint are not even identifiable as separate parts of the solution, indicate that our

independence criterion for constraints is being violated.

Among the examples presented earlier in this chapter, there. are several readers_writers

problems having a common exclusion constraint. The problems differ in the priority

constraints used. These examples provide a good basis for examining independence of

constraints. If the implementation of the exclusion constraint cannot be iSolat«l in each

mechanism, or if the implementation in each mechanism differs, it is an indicatiOn that the

>mechanism is hard to use. Conversely, if the implementation of this constraint is the same or

very similar in each solution, we have a fairly strong indication that each constraint is

independent of other constraints in the synchronization scheme.

Assuming a mechanism satisfies this ~straint independence property, if it is easy to

express solutions to each individual constraint, it will be easy to express solutions to mor.e

complex synchronization problems. Our evaluation of expressive power should indicate how

easily individual constraints can be expressed. Mechanisms that are easiest to use will be thole

for which there Js a particular structure or method for handling each information class and

- 24 -

constraint type.

2.5 Modifiability

We define modifiability to mean that a small change in a synchronization specification

will result in a similarly minor change in its implementation. Like ease of use, modifiability is

primarily dependent on the constraint independence property discussed in the previous section.

If each constraint is implemented independently, a modification to one constraint should affect

only the part of the solution implementing that constraint. If we have showri in our evaluation

of expressive power that each type of constraint is easily implementable, then a small change in

the specification should be easy to implement.

We can also evaluate modifiability by looking at modifications that mi.ght typically be

made to some synchronization schemes, and judging whether the extent of the change required

in the implementation was consistent with the size of the change in specifications. We would

expect that a modification to one constraint that did not affect the type of the constraint or the

kinds of information used, would be simple to implement. The structure of the modified

solution should be similar to that of the original.

Modifications involving many constraints, or those involving changes in the types of

constraints or kinds of information used, are more extensive, and can be expected to require

more significant changes to the implementation. However, if it is extremely difficult to change

an implementation when a realistic change in specifications has been made, the mechanism may

not be consistent with our goals. Such a weakness in modifiability is usually indicative of a

weakness in understandability, expressive power, or ease of use as well.

We would like to analyze and compare the ease with which modifications may be made

both within a constraint class and between constraint classes. To do so, we will examine several

- 25 -

versions of the readers_writers problem: - readers_priority, writers_priority, and

fair _readers_priority. The readers_priority and writers_priority examples can be used to

evaluate modifiability for the case in which the constraint types are not changed, since both use

priority constraints based on procedure requested. The fair Jeaders_priority problem combines

priority based on procedure type with that based on order of request. We would thus expect a

change from readers_priority to writers_priority to be easier than a change from

readers_priority to fair _readers_priority.

Thus, we can measure the "size" of a modification in terms of the number and types of

constraints changed, and use this metric in evaluating how well synchronization mechanisms

support modifiability. In this thesis, we will use transformations between various versions of

the readers_writers problem to test modifiability.

2 .8 Correctness

In the area of correctness, we are concerned primarily with the ability to write correct

programs, rather than with techniques for verifying those programs. In the sections on

correctness in the following chapters, we will concentrate on two main topics. One is whether

there are specific features of each mechanism that will either aid or impede the production of

correct programs. Highly structured mechanisms that perform a great deal of syntactic checking

will find errors sooner, leaving less to be debugged at runtime. This is especially important

when concurrency exists, because parallel programs are prone to time-dependent errors that may

hot become evident when using traditional debugging techniques. (These mechanisms also ease

the verification task by enforcing certain criteria at compile time and removing the burden

from the verifier.) We will also attempt to determine whether there are specific syntactic

constructs within a mechanism that are particularly hard to use correctly (or are easy to misuse).

- 26 -

The other correctness criterion with which we are concerned is whether the use of a

mechanism will often lead to deadlock. When data abstractions are u.sed as a design tool in

'
implementing synchronized respurces, the resources may have a hierarchical structure in which

the data abstraction representing the resource actually depends on one or more independently

implemented, lower level abstractions. If these lower level abstractions are themselves

synchronized, we must be careful that the interactions among the various synchronizers do not

lead to deadlock. In a hierarchically structured resource, deadlocks can occur in the following

situation: suppose an operation of the higher level abstraction calls an operation at a lower level

and the synchronizer at the lower level causes the process to wait on some condition. If that

condition can only be satisfied through execution of a higher level operation that is excluded

until the current operation completes, a deadlock results. This situation, as it applies to

monitors, has gained much attention [28] recently. We will find that the problem applies to

other mechanisms as well. Part of our examination of correctness issues will be an attempt to

decide how often deadlocks due to hierarchical structuring occur in using a given mechanism,

and whether such deadlocks can be avoided. Because hierarchical structuring is fundamental

to well-modularized programs, it is important that synchronization mechanisms support this

structuring in a safe manner.

2.7 Summary

The criteria upon which we plan to base our evaluation of synchronization

mechanisms have been presented. These include modularity, expressive power, ease of use,

modifiability and correctness. We have provided reasonably precise definitions for these

(usually only vaguely defined) terms with respect to syn~hronization, and developed methods for

evaluating how well synchronization mechanisms conform to these criteria. Because relatively

- 27 -

precise meanings have been provided for each criterion, we have been able to provide testing

procedures that allow for uniform and fairly objective analyses of each mechanism.

- 28 -

3. Monitors

The monitor construct was developed independently by Hoare[18] and Brinch

Hansen[7] as an extension of the secretary con_cept of DijkstraCSl The version used here is the

one defined by Hoare.

A monitor consists of a set of operations needed to schedule access to a shared resource,

and any local data needed by those operations. Its structure is derived from that of the Simula

class construct[ll] and is similar to the cluster in CLU[25] and the form in ALPHARD[35l The

construct is presented here using syntax from the programming language CLU,1 rather than the

Simula syntax used in [181 but we have not modified the semantics of the mechanism in any

way. The form of a monitor definition is:

monitorname - monitor is opl, ... , opn;
rep - record[..local data ..]

opl • proc()

opn • proc()

end monitorname

The procedures defined within a monitor module are mutually exclusive. Only one

process at a time may execute an operation on a given monitor object. All monitor operations

that may be called by users are listed in the isjist. The rep (the internal structure of the

monitor) is a record that contains all local data needed by the monitor in making

synchronization decisions. It may also contain the resource object. in which case users will view

I. All examples in this thesis are written in CLU-like syntax so as to provide a uniform
language for comparing solutions.

~----------------------·-----

- 29 -

the monitor as a protected resource.

Synchronization is accomplished via two special operations, wait and signal, which are

called from within monitor operations. The invocation wait(queue) causes the calling process to

be suspended and placed at the end of the named queue. Control of the monitor is relinquished

by the waiting process, so another process waiting to execute a monitor procedure may continue.

When a waiting process is restarted, it continues execution at the statement following the

invocation of wait.

The invocation signal(queue) restarts the first process on the named queue. This

process immediately regains control of the monitor and continues execution. The signalling

process is suspended on an urgent queue. Processes on the urgent queue have highest priority

for regaining control of the monitor when another process relinquishes it. One other operation

on queues is provided for use in monitor procedures; the operation queue takes one argument,

which is a queue, and returns true if there is a process waiting on that queue, and Jalst

otherwise.

When a process executes a wait, it is normally placed at the end of the specified queue.

In some cases, it is desirable to specify the order in which processes are to be placed on the

queue. The monitor mechanism therefore provides priority queues. The wait operation on

priority queues takes a second argument specifying the priority associated with the waiting

process.

Monitors may be used in one of two ways; the shared resource may be made a

component of the monitor, or the resource and monitor objects can be created independently. If

the resource is part of the monitor object, it will be created when the monitor is created; the

resource will therefore be accessible only through monitor operations. Since monitor operations

are mutually exclusive, mutual exclusion on the resource is automatic.

- 30 -

To allow concurrent access, the resource must be separated from the monitor object.

Since the resource will now be accessed outside of the monitor operations, appropriate monitor

operations must be invoked before and after resource accesses to ensure proper synchronization.

This structure leaves open the possibility of accessing the resource without first using the

monitor. Later in this chapter, we will discuss methods of structuring shared resources so as to

prevent unsynchronized access, while aHowing concurrency.

An example of the use of monitors to solve the boonded buffer problem is given in

Figure I. In this example, the monitor contains the resource (the buffer), two queues, nonfull

and nonempty, and the maximum buffer size. We use the name condition instead of qU1Ut in

the examples to conform .to the notation in [181 Since the buffer is inside the monitor mutual

exclusion is guaranteed.

The monitor operations work in the following way. In the append operation, a test is

made to see if the buffer is full If it is, the append cannot proceed, so the executing process is

placed on the nonjull queue, and the monitor is released. When there is space in the buffer, the

process continues at the statement following the wait. After the data is appended to the buffer;

the nonempt'J queue is signalled. Since a message was just inserted, the buffer can no tonger be

empty, so a process waiting to do a remove may proceed.

The remove operation keeps processes waiting on the nontmpt'J queue until data is

available in the buffer. When a remove operation completes, a buffer slot becomes available, so

the nonjull condition queue is signalled. This will cause a process waiting to perform an

append to continue.

- 31 -

Figure 1 .. Bounded Buffer using Monitors
bounded_buffer • monitor is create, append, remove;

am= array[message];
rep • record[slots:am, max:int, nonempty, nonfull: condition]

create .. proc(n:int) returns (cvt);
return (repS{slots:amSnew(),

max:n,
nonempty ,nonf u II: cond itionScreate()});

end create;

append • proc(buffer:cvt, x:message) ;
if amSsize(buffer.slots) = max

then conditionSwait(buffer.nonfull);
end;

am$addh(buffer.slots,x);
con d ition$signa l(b u ff er .nonempty);
end append;

remove .. proc(buffer:cvt) returns (message);
if amSsize(buffer.slots) .. 0

then conditionSwait(buffer.nonempty);
end;

x:message := amSreml(slots);
cond itionSsignal(buff er.nonfu 11);
return (x);
end remove;

end bounded_buffer;

3.1 Expressive Power

In the last chapter, a set of examples representative of the classes of common

synchronization problems was presented. In this _seetion, the monitor solutions to these examples

will be described and these solutions will be used to evaluate the expressive power of the

mechanism.

The bounded buffer solution has already been presented. This example makes use of

resource state information to describe exclusion constraints. The solution given demonstrates

- 32 -

that the use of such information poses no problems for the monitor construct. This type of

information is obtainable either by invocation of resource operations that return state

information or by keeping the needed information in the monitor object. In Figure 1, the

current buffer size is obtained by invoking the size operation, but the maximum size is stored

in the monitor.

The next examples to be discussed are the readers_writers problems. These solutions

use monitors that are associated with, but do not contain, the resource. Such a structure allows

concurrent access to the resource.

Readers_priority

The readers_priority monitor is shown in Figure 2. (The solution is taken from [181

but translated into CLU.) It contains four operations, one to be used before and one after each

resource access. To properly synchronize the resource, users must invoke the appropriate

monitor operations preceding and following each access.

The solution is relatively simple. The local variabl~ bus1 is used to keep track of

whether there is a writer in the resource. Readercount is the number of readers in the resource.

The startread operation prevents readers from proceeding if a writer is in the resource, while

writers must wait in startwrite if any process is currently in the resource, or, because readers

have priority, if there are reads waiting. (Since readers only wait if there is a writer in the

resource, there is no need for .a separate test to determine whether readers are waiting if we are

testing busy) Endread wilt signal the writers queue when the last read exits the resource.

End write wilt check whether there are readers waiting and, if so, signal the readers queue;

otherwise it will signal the writers queue.

This solution's structure, and its use of request type and synchronization state

information are fairly straightforward. The needed information about synchronization state is

Figure 2. Readers_Priority Monitor
readers_priority • monitor is create,

startread,
end read,
start write,
end write;

rep - record[readercount: int,
busy:boolean,
readers, wrtters:condition];

create • proc() returns (cvt);
· return(repl{readercount: 0,

;. 33 -

busy:false,
readers,writers:conditionlcreate()});

end create;

startread • proc(m:cvt);
if m.busy then conditionlwait(m.readers~end;
m.readercount:• m.readercount .: I;
conditionlsignal(m.readers);
end startread;

endread • proc(m:cvt);
m.readercount:• m.readercount - I;
if m.readercount:-0

then conditionlsignal(m. writers)
end;

end endread;

startwrite • proc(m:cvt);
if m.readercount > 0 I m:busy

then conditiontwait(m.writers)
end;

m.busy:•true;
end startwrite;

endwrite • proc(m:cvt);
m.busy:-false;
if conditionlqueue(m.readers)

then conditionlsignal(m.readers)
else conditionlsigna1(m.writers)
end;

end endwrite;

end readers_priority;

- 34 -

kept in the local variables busy and readercount. Request type information is kept by queuing

processes requesting different operations on different queues.

While this solution indicates that monitors can adequately handle these information

types, it also illustrates some weaknesses in the construct. The monitor mechanism provides no

way to associate the monitor with the resource it is to synchronize. If this monitor is used with

no additional structure, correct synchronization depends on users of the resource properly

invoking monitor operations before and after each access; there is no protection against

unsynchronized access. Modularity is impaired because monitor invocations must appear in

user procedures, and correctness is undermined because no guarantee of proper synchronization

exists.

A method for using monitors that conforms to the model of protected resources

discussed in Chapter 2 is needed. Users must only have access to the protected resource, and

the synchronization for the resource should be localized within it. This can be accomplished by

constructing a protected__database abstraction that encapsulates both the monitor and the

resource. Users will then have access only to protected_database objects; invocations of monitor

and resource operations will be allowed only within protected_database operations. A protected

readers_writers database is shown in Figure 3.

It is thus possible to construct synchronized resources with the resource and monitor

separated, while maintaining protection from unsynchronized access. This method for doing so

is discussed further in the section on modularity.

First_come_first_serve

Another version of the readers_writers problem is the first_comeJirst_serve scheme. Its

solution is given in Figure 4. Because priority in this example is based on time of request

rather than type of request, the queuing scheme is different from that of the previous example.

- 35 -

Figure 3. Readers..Priority Protected_Reaource Module
protected_data_base •cluster is create.read.write;

rep • record[m: readers_priority,d: data_base)

create • proc()returns(cvt);
return (repl{m: readers_prioritylcreate{),

d: data..)>aselcreate()}},
end create;

read • proc(pdb: cvt) returns(data},
readers_prioritylstartread(pdb.m);

· x:data :•data_baselread(pdb.d},
readers_pri9ritylendread(pdb.m);
return (x);
end read;

write • proc(pdb: cvt, x:data);
readers_prioritylstartwrite(pdb.m},
data_baselwrite((pdb.d, x);
readers_prioritylendwrite(pdb.m},
end write;

end protected_data_base;

Readers and writers are placed on a single queue, thereby ordering them by time of request.

However, the exclusion constraints for read~rs are different from those for writers, so

information about type of request is also needed. Because the monitor construct provides no

means of identifying the process at the head of a queue or determining the conditions for which

it is waiting, the first process on the queue must fM dequeued before the exclusion constra1nts

can be checked. In the first_comeJirstJerve case, it happens that the exclu1ion constraints for

readers are always met when a process is dequeued from the users queue. However, there can

be readers in the re$ource when a signal on the users queue occurs, so the constraints for writers

may not be satisfied. If a writer is dequeued when the resource is not empty, the writer wtll

have to wait on a second queue until the constraints are satisfied. The signalling scheme

- 36 -

Figure 4. First_Come_First_Serve Monitor
first_comeJirst_serve • monitor is create, startread, endread, startwrite, endwrite;

rep • record[busy: boolean,
readercount: integer,
users, writer: condition)

create = proc() returns (cvt);
return(repS{busy:false, readercount:O, users, writer: conditionlcreate()};
end create;

startread .. proc(m: cvt)
if m.busy I conditionSqueue(m.writer) I conditionlqueue(m.users)

then conditionlwait(m.users};
end;

m.readercount:=m.readercount + I;
conditionlsignal(m.users}; 1.start all readers
end startread;

endread • proc(m:cvt);
m.readercount :• m.readercount - I;
if m.readercount = 0

then if conditionlqueue(m.writer)

end;

then conditionlsignal(m.writer)
else conditionlsignal(m.users)
end;

1.anyone on the writers queue has been waiting longer than those on users queue
end endread;

startwrite = proc(m:cvt);
if m.readercount > 0 I m.busy

then conditionlwait(m.users);
end;

if m.readercount > 0
then conditionlwait(m.writer);
end;

m.busy := true;
end startwrite;

end write = proc(m:cvt);
m.busy:=false;
conditionlsignal(m.users);
end endwrite;

end first_comeJirst_serve;

- 37 -

ensures that a writer waiting on the writers queue will be served before any other process is

dequeued from the users queue. Since no processes are being allowed into the resource, it will

eventually empty and the writer will be signalled. This signalling order preserves the

first_come_first_serve specification.

It is thus possible to express request time information using monitors. This solution is

more complex than the readers_priority solution, but since it contains an additional type of

information we would. expect some additional complexity. The two queues in the solution

maintain different types of information. The users queue keeps track of relative times of

request, while the writers queue maintains request type information. Thus, we can identify the

part of the solution associated with each constraint. Though it is more complicated than the

readers_priority solution, this example still appears reasonably straightforward and easy to

understand.

Writers_exclude_others

Though conceptually simpler than the other problems, the writers_exclude_others

example creates special difficulties for monitors. The specification of this problem contains only

exclusion constraints; the order in which waiting processes are granted access to the resource is

unspecified. The difficulty in implementing this specification arises from the way in which

priority constraints are handled. The monitor construct requires that control of the monitor be

explicitly passed to waiting processes via the signal mechanism. In cases where more than one

queue contains processes ready to contir:me, the signalling procedure must select one of the

queues; the priorities of those queues must therefore be explicit in the code of the monitor

procedures. There is no way for the programmer to leave the priorities unspecified. In such

cases, the design process is made more difficult, and the likelihood of error increased. We

would prefer the mechanism to grant access requests in some fair order at times when the order

- 38 -

is not determined.

As a basis for comparison with other mechanisms, we present a solution that satisfies

the writers_exclude_others consfraint, and, in the cases in which order is not determined by the

specification, grants access in order of request. (The ambiguity arises in exactly one case here:

when a write terminates, and both readers and writers are waiting.) This solution ls basically

the first_come_first_serve solution, with the change that if there are already readers in the

resource, any new readers will be allowed to continue, even if there are writers waiting. (This

solution therefore allows writers to starve.) The solution appears in Figure 5.

One_Slot Buffer

The one_slot buff er problem is a simple example or the use of history information.

The resource is a message buffer that can contain only a single message. The insert and

remove operations on the buffer must alternate to ensure that no message is lost. Monitors

have no specific method for sequencing operations, so the history information is kept as local

data. The easiest way to solve this problem in monitors is to treat it as local state information,

rather than history information, making it a special case of the bounded_buffer problem. The

only local data needed is a boolean indicating whether there is an unread message in the buffer.

We could alternatively keep a local variable indicating the last operation performed. Either

solution is simple; however, because the implementor must manage the information explicitly, it

will be difficult to implement solutions using complex history information. This is not a serious

drawback because such schemes do not appear to be common. However, as will be seen in the

next chapter, path expressions provide a direct method of expressing such constraints, and are

thus better suited for these kinds of problems.

- 39 -

Figure 5. Writers_Exclude_Others Monitor
writers_exclude_others •monitor is create, startread, endread, startwrite,endwrite;

rep • record[busy: boolean,
readercount: int,
users, writers: conditionl

startread • proc(m:cvt);
if m.busy

then conditionlwait(m.users);
end;

m.readercount :• m.readercount+l;
conditiontsigna1(m.users); ~art all waiting readers
end startread;

endread • proc(m:cvt);
m.readercount :• m.readercount-1;
if m.readercount • 0

then if conditionlqueue(m;writers)
then conditionkignal(m.writers)

·end;

else conditionlsigna1(m.users) ithere might be a writer on the users queue
end;

end endread;

startwrite • proc(m:cvt);
if m.readercount > 0 I m.busy then conditionlwait(m.users) end;

'?.if there are readers waiting behind a writer at this point,
'?.they will not be restarted. To do so requires stgnaHing users again before
'?.the wait in the next statement.

if m.readercount > 0 then ~onditionlwait(m.writers) end;
m.busy :• true;
end startwrite;

end write • proc(m:cvt);
m.busy :• false;
if conditiontqueue(m. writers)

then conditionlsignal(m.writers) iproce55eS on writers queue have waited longest
else cond itionlsigna1(m.users)
end;

end endwrite;

end writers_exctude_others;

- 40 -

Alarmclock

The one category of synchronization schemes not yet discussed involves constraints

based on arguments passed to the synchronization operations. The alarmclock problem

illustrates the use of priority queues to handle such constraints. The alarmclock is a system

facility that allows processes to put themselves to sleep until a specified time. The monitor

solution to the alarmclock problem is given in Figure 6. One shortcoming of this solution is

that the first process in the queue is awakened every time unit; if it is not yet the time at which

it was to be restarted, it i.s requeued. Thus the implementation is awkward. The awkwardness

Figure 6. Alarmclock Monitor
alarmclock "' monitor is create, wakeme, tick;

pq=priority _queue;

rep= record[wakeup: pq, now: int];

create = proc() returns(cvt);
return (repS{wakeup: pqScreate(), now: O});
end create;

wakeme "' proc(ac: cvt, time: int)
alarmsetting: int :• time+ac.now;
while ac.now < alarmsetting do

pq$wait(ac.wakeup, alarmsetting)
end;

'7.the while statement is necessary because the first process on the
1.queue is a wakened every tick.
pq$signa l(ac. wakeup);
1.in case the next process has same wakeup time.
end wakeme;

tick = procedure(ac:cvt);
ac.now := ac.now + I;
pq$signal(ac. wakeup);
end tick;

end alarmclock;

- 41 -

exists because monitors cannot examine the first entry on the queue without dequeuing it first.

As noted by Howard[l9], adding an operation on priority queues to return the priority of the

first element will eliminate this problem.

Disk Scheduler

Although the disk scheduler illustrates the use of information types already presented,

we present it here for comparison with other mechanisms. The solution uses two priority

queues, upsweep and downsweep, which hold the processes to be served on the next sweep of

the disk head up or down the disk. The track number requested serves as the priority for

enqueuing processes. In the upsweep queue, the lowest track requested is first on the queue,

while the downsweep queue is in the reverse order. The structure of the solution resembles that

of the readers_priority solution in that operations are provided for synchronizing before and

after the disk access. The primary function of the monitor is to ensure exclusion on the disk.,

and to move the diskhead in the proper sequence. The solution is shown in Figure 7.

Initially, the disk head is positioned at track 0, and is moving up. When a request to

access the disk is made, the track requested is compared with the current track. If the track

requested is the current track, the request is queued to be serviced on the next sweep across the

disk; immediate service would allow starvation of processes requesting other tracks. If the

requested track is greater than the current track, the process is queued on the upsweep queue; if

less than the current track, the process waits on the downsweep queue.

When a process releases the disk, the next request on the queue for the current

direction is served. If that queue is empty, the direction is changed and the first process on the

queue for the new direction is signalled.

- 42 -

Figure 7. Disk_Scheduler Monitor
disk_scheduler .. monitor is create, request, release;

pq•priority _queue;
rep • record[upsweep, downsweep: pq,

busy: boot,
direction: string,
headpos: cylinder];

create - proc(cylmax: int) returns(cvt);
retutn(repl{upsweep, downsweep: pqlcreate(),

busy:false,
·direction:"up",
headpos:O});

end create;

request • proc(dest:cylinder, sched:cvt);
if sched.busy

then if sched.headpos < dest I (sched.headpos • dest 8c sched.direction • ·down•)
then pqlwait(sched.upsweep, dest)
else pqlwait(sched.downsweep, dest)
end ·

end;
sched.busy : .. true
sched.headpos:• dest;
end request;

release • proc(sched: cvt);
sched.busy :•false;
if sched.direction • "up"

then if pqtqueue(sched.upsweep)
then pqlsignal(sched.upsweep)
else sched.direction :• "down"

pqlsignal(sched.downsweep)
end;

elseif pqlqueue(sched.downsweep)
then pqlsignal(sched.downsweep)

else sched .. direction :• "up"
pqlsignal(sched.upsweep)

end;
end release;

end disk_scheduler;

- 43 -

3.1.1 Conclusions

We conclude from the analysis of the examples that monitors have the power necessary

to express a wide range of synchronization problems. All but the writers_exclude_others

problem had straightforward, easily derivable solutions. Furthermore, the analysis made

apparent specific ways in which each type of information is handled within monitor solutions,

and how each type of constraint is expressed. Request type and request time information are

maintained via use of queues, as shown in the readers_priority and first_comeJirstJerve

.
examples. Information from arguments passed can usually be handled by priority queuing.

Synchronization state, history information, and some local state information must be explicitly

kept by the user in "local variables" (in CLU, these local variables are additional components of

the rep). While use of local variables is a rather low level method of maintaining information,

and requires the synchronization procedures to exp!icitly keep and manipulate the information,

it does provide generality. We can therefore be confident that any synchronization constraint

can be implemented in a fairly straightforward manner.

The use of explicit signals is probably the weakest point in the monitor mechanism. It

affects expressive power in problems such as the writers_exclude_others problem by forcing

decisions about priority at every, point where a process is restarted. In addition, correctness and

understandability are undermined. When a process performs a wait, there is no indication of

when or by whom it will be awakened, so it may be difficult to understand the conditions under

which it will be resumed. The conditions tested before a wait may not be the same as those

that must be true before the process resumes. An example of this situation appears in the

fair Jeaders_priority solution. Readers must wait if there are any writers waiting, but they can

be resumed even if some of those writers are still enqueued. It is therefore necessary to examine

-44-

all of the monitor procedures to determine when waiting processes will be signalled. Correctness

is affected because the implementor must be careful to perform signals at all the necessary

points. (It should be noticed in the examples presented that signals on a given queue must

often be performed in several places.) Forgetting any point at which the conditions for

signalling might .become satisfied will lead to incorrect solutions.

It should be mentioned that explicit signals do have several advantages over automatic

signalling constructs. Explicit signals are more efficient; they were included in the monitor

construct precisely for this reason. Automatic signals, such as those found in serializers, are less

efficient because the conditions associated with every queue must be checked each time

possession of the synchronizer is relinquished. We can also be sure that explicit signals are

powerful enough to implement any ordering scheme we choose. We will see in the serializer

\

chapter that cases exist for which it is easier to write solutions using explicit signals, than using

automatic signalling.

3.2 Modularity

In several of the solutions in the previous section the criteria for modularity discussed

in Chapter 2 are not met. The bounded buffer solution combines the implementation of the

buffer with the synchronization in a single module. The readers_priority example improves the

situation by having a separate synchronization module, but provides no way of associating the

monitor with the resource to protect against unsynchronized accesses. If monitors are to meet

our requirements, we will need to develop a discipline for using them that produces reliable ·

and properly modularized implementations of shared resources.

The protected_database module provided with the readers_priority monitor in the

previous section (Figure 3) illustrates that an abstraction that encapsulates both the monitor and

- 15 -

resource modules will protect the resource from unsynchronized access, while allowing separate

implementations of the resource and monitor. When such an abstraction is used, users of the

resource will have access only to the protected object. The operations on the objects of the

protectedJesource type can ensure that the monitor is properly accessed before and after

accesses to the resource. The form of protectedJesource objects is shown in Figure 8.

Jn the general case, the method for producing this structure is as follows. A resource

abstraction containing no synchronization should be defined. The synchronization constraints

are implemented in a monitor, which will have operations to be called before and after each

resource access. The operations to be called before an access must check that constraints are

satisfied, and invoke waits if not. Before terminating, this "start" procedure should set monitor

information about synchronization state to indicate that the process has entered the resource. It

is assumed that the resource will be entered immediately upon leaving the monitor. The

operations to be invoked following a resource access should reset the state information and

signal any queues for which the associated conditions have become true. We are thus assuming,

in designing this monitor, that operations will be called exactly in the order

"mon itorSsta rt_access; resou rceSaccess; mon itorSend_access".

We ensure that this order is upheld by creating a protectedJesource abstraction, which

will contain both the monitor and the resource. Thus, a create operation on the

Figure 8. Protected Resource Structure

protected resource

- 46 -

protected_resource will create both a resource object and a monitor object, and neither will be

accessible to any but protectedJesource operations. The operations of the protectedJesource

correspond to the operations users may invoke on the resource. In other words, for every

operation access of the resource type, there should be an operation access of the

protectedJesource type.2 Each protectedJesource access operation should contain exactly the

three invocations mentioned earlier:

access = proc(pr:protected_resource);
mon itor$start_access(pr .man);
resou rcdaccess(pr .res);
mon itor$end_access(pr.mon);
end access;

Thus, the protectedJesource operations enforce the proper use of the monitor when the

resource is not inside the monitor.

In addition to providing better modularity and allowing concurrent access, this

structure has another advantage over solutions in which the resource is contained in the

monitor: it reduces the possibility of deadlocks. Implementing resources inside monitors can

lead to deadlocks in the following situation.3 Suppose the resource were implemented in terms

of another abstract type that contained a monitor. Resource operations would be invoked from

the monitor containing the resource. A resource operation could then invoke an operation of

the lower level monitor. If a wait is executed in the lower level monitor, that monitor will be

released, but the higher level monitor will not. If the only place a signal can occur in the lower

level monitor is in an operation invoked from the higher level, a deadlock will result.

2. There are cases in which the protected_resource operations need not be one-to-one with
resource operations. We may want to hide more information than just the synchronization
inside the protected_resource. For instance, an operation of the protected resource may perform
several resource accesses. The general structure remains the same, however: the
protectedJesource operations coordinates monitor calls with resource invocations.
3. This problem is referred to as the "nested monitor call" problem in[28].

- 47 -

Separating the resource from the monitor eliminates the possibility of hierarchical

deadlock in almost a'll cases. Because the resource invocations occur outside the monitor, the

higher level monitor witl be released before the second monitor is entered. Therefore, executing

a wait in the lower level monitor will not tie up the other monitor, so no deadlock will arise.

The only case in which the potential for hierarchical deadlock still exists is when the monitor

must invoke a resource operation. Such a situation may occur when resource state information

is needed in the synchronization scheme. This situation is rare, however, so the range of cases

in which hierarchical deadlocks can occur has been greatly reduced. In general, therefore,

structuring monitor solutions by separating the resource and monitor and providing a

protectedJesource abstraction substantially improves modularity and correctness.

Alt of the examples in the previous section, with the exception of the bounded buffer.

use the method just described for structuring synchronized resources. The bounded buffer

could, of course, be implemented in the same way. However, because mutual exclusion is

needed, and buffer operations must be invoked from within the monitor anyway, most of the

advantages of this structure do not apply. It therefore seems unnecessary to create three

modules to implement this solution. One improvement in modularity that does seem

worthwhile for the bounded buffer example is to separate the buffer implementation from that

of the monitor, but leave the buffer object inside the monitor. The monitor for this buffer is

shown in Figure 9. Since the monitor is not released during calls to the resource, mutual

exclusion is still automatic. However, since the resource object is no longer part of the

monitor.the modularity is better. The monitor no longer contains information that should be

local to the resource, such as the buffer size; it can obtain the needed information by invoking

the full and empty operations.· The same monitor can now be used for any size buffer.

Furthermore, the implementation of the buffer may be changed without modifying the monitor.

- 48 -

Figure 9. Bounded Buffer Monitor
protected_buffer .. monitor is create, append, remove;

rep '"' record[slots:buffer, nonempty, nonfull: condition]

create '"' proc() returns (cvt);
return (repS{slots:bufferScreate(),

nonempty,nonfull: conditionScreate()});
end create;

append = proc(pb:cvt, x:message) ;
if bufferSfull(pb.slots) then conditionSwait(pb.nonfull) end;
buffer$append(pb.slots, x);
conditionSsignal(pb.nonempty);
end append;

remove = proc(pb:cvt) returns (message);
if bufferSempty(pb.slots) then conditionSwait(pb.nonempty) end;
x:message := bufferSremove(pb.slots);
cond itionSsignal(pb.nonf u II);
return (x);
end remove;

end bounded_buffer;

Conversely, the synchronization scheme for the buffer can be altered without changing the

buffer implementation. Modifiability and understandability are therefore enhanced. This

structure therefore seems most appropriate for the bounded buffer problem. However, this

example is clearly an exceptional case. It is only because of the example's simplicity, and the

fact that it uses mutual exclusion and needs resource state information, that this two-module

structure seems better than the protectedJesource structure described earlier.

In conclusion, we can define a technique for using monitors in a way which conforms

to the model defined in the previous chapter. Unfortunately, there is no way to enforce the use

of this technique. The lack of enforcement of modularity is one problem that must be

recognized if monitors are to be included as a synchronization construct in a language

- 49 -

supporting software reliability.

3.3 Ease of Use and Modifiability

In the section on expressive power, we observed that it was possible to make use of

each of our information types within monitor solutions. We could, in fact, idemify the way in

which each type had to be handled in implementations. We must now determine whether these

individual constraints can be easily combined to form more complex solutions. To evaluate

constraint independence in monitor solutions, we can compare the implementations of the

exclusion constraints in each of the readers_writers problems (see Figures 2, 4, 5). In each, the

constraint on reads is implemented in startread by making readers wait if a writer is in the

resource, and by ensuring that no write is in progress before signalling the readers queue.

Similarly, writes must wait if any process is in the resource. We can thus identify the parts of a

solution associated with each constraint, and add new constraints without modifying already

existing ones. Some interaction between the exclusion and priority constraints is noticeable in

the first_come_first_serve solution, because the priority constraint causes writers to wait on two

queues. The exclusion constraint has to be checked before waiting on each one. In most cases,

however, it is clear how the exclusion constraints are to be implemented, and priority constraints

may be added or changed without changing the existing implementation of mutual exclusion.

The independence of constraints within a solution is the primary determinant of how

easily that solution may be modified to implement a slightly different synchronization scheme.

We therefore expect monitors to support modifiability fairly wel1. To test this assumption

further, we can compare the solutions to the readers_priority and writers_priority problems:

both use the same information types and differ in only one constraint. Thus, the modifications

required to change from one to the other should be small. The writer-priority monitor is shown

- 50 -

in Figure 10.

The priority constraint in readers_priority is implemented by signalling readers before

writers at the termination of a write, and by allowing readers to enter the resource as long as

the exclusion constraint is upheld, regardless of whether there are writers waiting. To change

to writers_priority, the signalling in endwrite had to be changed to signal writers before readers,

and startread changed to block readers if there are writers waiting. (In the readers_priority

solution, startwrite did not have to check whether readers were waiting because reads only

waited when a write was in progress, so if busy was false, there were no readers waiting.) The

modifications necessary to alter the solution were minor and conceptually simple. Only those

parts of the solution directly related to the constraint being changed had to be altered.

To determine whether more complex modifications can be made by altering only the

parts of the solution related to the constraints being changed, we examine the modification of

the readers_priority solution to a fair Jeaders_priority scheme. This solution combines request

type information with information about time of request, thus adding an information type to the

specification. Since a change from an unfair to a fair solution is one that seems likely to be

made, it is important that modifications of this sort be easy to perform.

The modification requires the addition of request time information to the priority

constraints. The needed information can be obtained by checking whether writers are waiting

when a read is requested. Thus, to transform the readers_priority solution to a fair solution we

need only add a test in startread to make readers wait if a write is already waiting. Readers still

get priority when a write terminates. The fair_readers_priority monitor appears in Figure 11.

Though the actual textual changes made are small, it is conceptually more difficult to

locate the changes needed in this example. This is to be expected, since an additional type of

information is needed. It is still possible, however, to limit the modifications to small sections of

- 51 -

Figure 10. Writers_Priority Monitor
writers...priority • monitor is create, startread~ endread,
startwrite, endwrite;

rep • record[readercount:integer, busy:boolean, readers,writers:condition]

•
create • proc() returns (cvt);

return (repl{readercount:O, busy:fa1se,
readers:conditionkreate(),writers:conditionkreate()});

end create;

startread • proc{m:cvt);
if m.busy I conditionSqueue(m.writers)

then conditionlwait(m.readers)
end;

m.readercount:•m.readercount+l;
condiUonlsignal(m.readers);
end startread;

endread • proc{m:cvt);
m.readercount:•m.readercount-1;
if m.readercount • 0

then conditionlsignal(m. writers)
end;

end endread;

startwrite • proc(m:cvt);
if m.readercount>O I m.busy

then conditionlwait(m.writers);
end;

m.busy:•true;
end startwrite;

endwrite • proc(m:cvt);
m.busy:•false;
if conditionlempty(m.writers)

then conditionlsignal(m.readers)
else conditionlsignal(m.writers)
end;

end endwrite;

end writer-priority;

- 52 -

Figure 11. Fair _Readers_?riority Monitor
fair _rp = monitor is startread, endread, startwrite, endwrite,create;

rep .. record[readercount:int, busy:boolean, readers, writers: conditionl

create = proc() returns(cvt);
return(repS{readercount:O,

busy:false,
readers, writers:conditionScreate()});

end create;

startread = proc(m:cvt);
if m.busy I conditionSqueue(m.writers)

then conditionSwait(m.readers)
end;

m.readercount := m.readercount + I;
condition$signal(m.readers);
end startread;

endread = proc(m.cvt);
m.readercount := m.readercount -1;
if m.readercount .. 0

then condition#signal(m.writers);
end;

end endread;

startwrite .. proc(m:cvt);
if m.readercount > 0 I m.busy

then condition8wait(m.writers);
end;

m.busy := true;
end startwrite;

endwrite = proc(m:cvt);
m.busy := false;
if conditionSqueue(m.readers)

then conditionSsignal(m.readers)
else conditionSsignal(m.writers)
end;

end endwrite;

end fair _rp;

- 53 -

the solution. The structure of the monitor remained unchanged.

From the examples shown in this section, we can see that monitors support

modifiability and ease of use. It is easy to determine which parts of a solution are associated

with any given constraint, and only these sections must be modified if the specification of that

constraint is changed.

8.4 Correctness

There are two correctness issues with which we are concerned. One is the monitor

mechanism's use of explicit signals. The other is the possibility of deadlocks due to

hierarchical structuring of resources.

The disadvantages of explicit signalling were discussed brieny in the section on

expressive power. The weakness of the signal construct lies in the inability of the mechanism to

ensure its correct use. Though a queue is intuitively associated with some logical condition, the

wait and signal operations provide no way to connect that condition with the actual use of the

queue. There is no guarantee that a queue will be signalled when the condition associated with

it is satisfied. Conversely, there is also no guarantee that the conditions associated with a

signalled queue are true when a signal occurs.

Proof rules for the signal construct do exist, (see (18] and (19]). Thus, while it may be

possible to verify that correct programs meet their specifications, the signal construct provides

little support for producing the correct programs. Though proof rules are important, they are

no replacement for a mechanism that provides more support for producing correct programs

initially.

The other issue with which we are concerned is the hierarchical deadlock. problem.

This problem was discussed in the section on modularity. We have shown that by designing

- 54 -

the protected resource so that the resource is not part of the monitor, we alleviate much of the

problem. There appears to be no way to guarantee against such deadlocks.

There has been much discussion about the deadlock problem and possible solutions[28,

22, 29,31), but at present, no solution has completely eliminated the problem. At best, we can

minimize the likelihood of its occurrence by properly modularizing monitor solutions.

3.5 Conclusions

We have found that monitors meet our expressive power, ease of use, and modifiability

requirements reasonably well. Only the writers_exclude_others problem lacks a simple, easy to

construct solution. However, the support given modularity and correctness is weak. The use of

the technique shown for properly modularizing monitor solutions overcomes the modularity

problems and improves correctness by substantially reducing the possibility of deadlock due to

hierarchical structuring of shared resources.

- 55 -

4. Path Expressions

The path expression mechanism was developed by Campbell and Habermann[S] to

provide a way to specify the synchronization for a data abstraction as part of the definition of

that abstraction. The mechanism is based on the following concept: since access to a resource

may be gained only through operations of its type, the synchronization for the resource may be

defined as the set of allowable orderings in which those operations may be performed.

A path expression is thus a specification of this set. It is included in the type definition

for the shared resource type. A path "controller" keeps track of the operations executed on each

object of the type, and. ensures that the operations executed on that object conform to some legal

ordering. When a process requests execution of an operation named in a path, if there is some

allowable ordering in which this operation could occur next, then the process is allowed to

proceed. Otherwise, the process is blocke.d until the path contro11er determines that the

requested operation can execute. It is important to realize that the path expression does not

cause the invocation of procedures. Rather, when an operation named in the path is invoked

by a process, a check is made to determine whether there is some sequence defined by the path

that would allow this operation to execute immediately. It should also be noted that the path is

associated with a resource, not a process, and therefore has no control over which process

executes which operations. The proper order of operations on a resource must be enforced, but

each operation may be performed by a different process.

Several versions of path expressions have been proposed. The version presented here

is taken primarily from [8]. This version was chosen because it provides a way to explicitly

state that two resource operations may execute simultaneously. If synchronization is to be ·

specified as a set of relationships among operations on the resource, we felt it imperative that

- 56 -

one be allowed to specify concurrency. The assumption that all operations named in paths are

mutually exclusive is too strong to allow natural solutions to problems.

The path expression implementation of a synchronization scheme consists of one or

more.paths of the form:

path ordering specification end

where the ordering specification describes the set of allowable sequences of operations. The

path-end pair, which must surround the ordering specification, denotes that the sequences

allowed by the specification may be repeated any number of times. When the end of a path is

reached, control returns to the beginning of the path, and waits for an operation request

consistent with the start of a sequence allowed by the path. If there are several paths in a

module, any operation executed must be consistent with all of the paths. If an operation is not

named in a path, it is unsynchronized, and may occur at any time, regardless of whether any

other operations are executing. Furthermore, unless concurrency is explicitly stated in a path, it

is assumed that only one process may be executing an operation named in the path at any

given time.

The ordering specification in the path is written in terms of four kinds of relationships

between operations of the resource type: sequencing, selection, repetition, and concurrency. The

sequencing operator, ";", allows the specification that a set of procedures must be executed in a

given order. Thus,

path open; read; close end

indicates that open must occur before read, and~ read must occur before close. Since no

concurrency is specified, all must be executed sequentially. After close executes, the "state" of the

path expression is the point prior to read. Another open must occur before a read or close.

Nothing is implied about which processes execute the operations. Each procedure may be

.·

- 57 -

executed by a different process.

The selection operator, "+ ", allows only one of the specified procedures to execute at a

time. The path

path read +write end

indicates that the path controller must select one process from among those waiting to execute

read or write to proceed. The one chosen must also conform to the specifications in other paths.

Although [8] states only that selection must be done in some fair order, we will explicitly require

that if more than one process is ready to proceed and meets all requirements of the path

expression, the one that has been waiting longest will be selected. We will need this

first_come_first_serve property to meet our expressive power criteria.

Concurrency is denoted by braces surrounding the section of the path that may be

executed concurrently by several processes. Thus, { read } signifies that several processes may

execute the procedure read at the same time. Once one process starts executing read others may

start, as long as some execution of read is still in progress. Once a point is reached at which no

executions of the bracketed procedure are in progress, this portion of the path is considered to

be complete. Further requests for read must wait until the next repetition of the path (even if

the next operation in the path has not yet started).

Concurrency may also be used in conjunction with other path operators. The path .
path { read } +write end

allows reads in parallel, while a single writer will exclude all other processes. The path

path write; { read} end

will allow any number of reads in parallel after a write has occurred. At least one read must

occur between writes. As soon as all readers leave the resource, any further reads will be

blocked until another write has completed.

- 58 -

The expression { write ; read } means any number of sequences of wrltt followed by

read may execute concurrently. An execution of write must complete before the corresponding

read starts, but any number of writes and reads may actually be executing at once. The

expression { read +write } means any number of reads and writes may execute simultaneously.

Repetition permits a pattern of operations to be repeated any number of times. As

. stated earlier, the path-end pair surrounding a path allows repetition of sequences allowed by

the .enclosed ordering specification.

Examples of the use ofthis mechanism will be presented in the next section.

4.1 Expressive Power

In this section, we evaluate expressive power by examining the path expression

solutions to the problems described in Chapter 2. Each of these examples was chosen because it

illustrates the use of some type of constraint that synchronization mechanisms must be able to

express. In discussing the exam_ples, we will also attempt to point out aspects that affect other

criteria.

4.1.1 Examples

Writers_exclude_others

The writers_exclude_others problem is one for which path expressions are very

well-suited. The solution is extremely simple. One need only include the path:

path {read}+ write end

in the module defining the resource. If a user invokes a read operation while a write is

executing, the path will block the user process; otherwise the read will be allowed to proceed. A

------·---------------------------

- 59 -

write request can proceed only when the resource is empty.

This example demonstrates that path expressions allow the straightforward

implementation of exclusion constraints based on the synchronization state of the resource. ·The

path expression solution is considerably simpler tban the monitor solution. This difference can

be attributed to the ability to impltment nondeterminate specifications with path expressions.

The writers_exclude_others problem contains no priority constraints. Thus, if both readers and

writers are waiting when a writer leaves the 'res0urce, the next process to be served is ·not

described by the specification. When using path expressions, the implementor of the solution

need not include any definition of what to do in this cue; the path conti'Olter will make a fa·ir

selection. Monitors, on the other hand, only define service to be first come first serve for

processes waiting on a single queue. Since readers and writers are on different queues in the

monitor implementation of this problem, explicit information about which queue to serve first

must be part of the monitor solution. That solution is therffore more complex. ·

First_come_first_serve

The path expression solution to ·the first.:.comeJirst_serve problem is shown in Figure

12.1 READ and WRITE are the operations available to users ot the resource. Ttte~proceclures

chat actually access the resource are read and write.

When READ or WRITE is called, the corresponding request operation ls· immediately ·

invoked. The path will allow only one of these· requests at a time to proceed. and in the order

in which they were invoked. When a requestwrite starts, it invokes write, which must wait until

the resource empties. (While it is impossible for other writes to be executing, there may be

I. This solution ·appears in [81 but is characterized ther.e . only as ~ fair solutkm. Our
first_comeJirst_serve constraint on selection is needed to guarantee the first_comeJirst_serve
property.

- 60-

Figure 12. First_Come_First_Serve using Path Expressions

database - cluster is READ, WRITE;
rep• ...

path requestread + requestwrite end
path { openread ; read} +write end

requestread .. proc(db:database);
openread(db);
end requestread;

requestwrite - proc(db:database, k:key, d:data);
write(db, k, d},
end requestwrite;

openread • proc(db:database);
end openread;

READ .. proc(db:database, k:key) returns(data);
requestread(db);
return(read(db, k));
end READ;

WRITE• proc(db:database, k:key, d:data);
requestwrite(db, k ,d);
end WRITE;

read - proc(db:cvt, k:key) .returns (data);

end read;

write • proc(db :cvt, k:key, d:data);

end write;

end database;

- 61 -

reads in progress.) No other requests can start until the write completes, since write is called

from requestwrite, and the requestwrite excludes other requests. When a requestread starts, it

invokes openread. When the openread completes, the requestread will terminate, and read will

proceed, thus allowing another request to start. Several reads may execute simultaneously, but

they can only start if there are no requestwrites waiting.

This example shows that it is possible to use information about time of request in path

expression solutions. However, the paths no longer contain only operations that access the

resource. Requestread, requestwrite, and openread are "synchronization procedures". Though

they are operations of the resource definition module, they are not intuitively operations on the

resource, and do not access the resource. They are included solely for purposes of

synchronization.

The invocations of requestread and requestwrite serve to record information about time

of request in a manner usable by the path expression. If paths contained only operations that

were intuitively procedures of the resource type, there would be no way to distinguish between

time of request and time of entry into the resource. There would thus be no way to separate

request time information from synchronization state information. By separating the

user-invoked operations (READ and WRITE) from the actual resource access operations (read

and write), and by executing a request operation immediately upon invocation of a user

operation, the path expression mechanism can separate request time from entry time.

The openread operation has a different function. It does not provide additional

information for use in the paths; rather it forces reads and writes to occur in the same order as

their corresponding requests. Without open read in the second path, the following improper

sequence of operations could occur: requestread; requestwrite; write; read .

Thus, synchronization schemes requiring information about time of request can be

- 62 -

implemented using the path expression mechanism. However, we have evidence that the

concept of expressing synchronization via relationships among operations on the resource is not

sufficiently powerful. The burden of finding a way to obtain request time information in a

form usable by the path expression mechanism has been placed on the resource implementor.

While this requirement might be acceptable if there were an easily understandable method of

obtaining the information, no .such method seems to exist. It is never clear whether the

"request" operations should contain the invocation of the resource access operation. (In this

example, for instance, requestwrite contains the write invocation, but requestread does not

contain the call on read, although both requests are being used to obtain the same kind of

information.) Furthermore, using operations such as openread, which coordinate progress

through paths, is a conceptually difficult task. Therefore, the need 'for synchronization

'
procedures should be considered a weakness in the path expression mechanism.

Readers_priority

The readers_priority solution as given in [8] and translated into CLU is presented in

FigLrre 13. This example is more complicated than the previous one; it is easiest to understand

if we trace the progress of user requests for access to the resource through the various

operations in the module. A READ results in the following sequence of invocations: READ,

requestread, read. WRITE causes the invocations: writeattempt, requestwrite, openwrite, write.

Readers gain priority in two ways in this solution. First, since requestreads may

execute concurrently, but requestwrites may not, a requestwrite may be blocked indefinitely while

requestreads are allowed to proceed because other requestreads are already executing. In

addition, readers will get priority in the following way. The first path allows only one

writeattempt at a time. Therefore, since requestwrite is invoked from writeattempt, there wi11 be

at most one requestwrite waiting at the second path at any time. All other WRITEs in progress

- 63 -

Figure 13. Readers_Priority Database using Path Expressions
database = cluster is READ, WRITE;
rep= ...

path writeattempt end
path { requestread} + requestwrite end
path { read } + (openwrite ; write) end

requestwrite = proc(db: database);
openwrite(db);
end requestwrite;

writeattempt "' proc(db: database);
requestwrite(db);
end writeattempt;

requestread = proc(db: database, k: key) returns (data);
return (read(db,k));
end requestread;

openwrite = proc(db:database);
end openwrite;

READ - proc(db:database, k:key) returns(data);
return (requestread (db,k)};
end READ;

WRITE = proc (db:database, k:key, d:data);
writeattempt(db);
write(db,k,d);
end WRITE;

read .. proc(db:cvt,k:key) returns(data);

end read;

write = proc(db:cvt,k:key,d:da~a);

end write;

end database;

- 61 -

will be blocked at the first path. However, while a requestwrite or write is in progress, any

number of requestreads may enqueue at the second path, awaiting their turn to execute. Thus,

during execution of a requestwrite, any number of READs and WRITEs may have started.

The READs will have been allowed to proceed as far as the second path; no other WRITEs

could have reached that point. Since the selection operator in the second path will restart the

process that has been waiting longest at that path, any number of requestreads may have

priority over the next requestwrite, regardless of the order of invocation of the corresponding

READs and WRITEs.

This solution is difficult to understand; there are complex interactions among the.

paths, and it is not clear how each resource operation is affected by the paths. It therefore is

difficult to convince oneself that the solution handles all cases properly. In fact, there is one

case in which this solution does not satisfy the definition of readers_priority as presented in

Chapter 2. Consider the case in which there are two WRITEs invoked, followed by a READ,

and assume the resource was empty at the time of the first WRITE invocation. The first

WRITE will enter the resour.ce. The second WRITE will invoke writeattempt. Suppose the

READ occurs after the second write invokes requestwrite but before the first write completes.

The requestread will be blocked until the requestwrite terminates. When the first WRITE

terminates, there will be a reader and a writer waiting, but the writer will proceed first,

violating our definition of readers_priority. The fact that it is so difficult to determine whether

the solution satisfies our specifications implies that solutions are difficult to understand and

prove correct.

The reason for the complexity of the solution to the readers_priority problem may be

the lack of a way to express priority constraints directly. Priorities must be established by

designing path expressions that force lower priority operations to wait at additional points in

- 65 -

paths, thus delaying their progress through selection operators when higher priority operations

are executing. (Thus, in the readers_priority solution, writers are synchronized at invocations of

writeattempt, in addition to requestwrite and write.) The conditions expressed in the priority

constraint are not directly reflected in the structure of the solution. This indirect method of

expressing priority constraints makes solutions less clear.

Alarmclock problem

This example illustrates the use of arguments to synchronization procedures as a means

of determining priority. The solution is taken from [15); it has been translated into CLU, but

conforms as closely as possible to the original. The solution makes use of three data

abstractions: wakeuptime, alarmclock, and a list abstraction. Wakeuptime and alarmclock,

which contain synchronization,' are presented in detail. The specifications for the list

abstraction used appear below; the implementation of the list is not provided. The operations

and behavior of the abstraction are not those of a standard list; they are closer to those of a

stream. A current pointer keeps track of the list element currently being processed. It is

possible to move this pointer down the list, or reset it to the beginning. New elements may be

inserted at the current point, or the current element may be deleted. The list abstraction has

the following operations:

advance (list) - sets current of list to the next element of the list or nil.

reset(list) - sets current back to the first element of the list.

new(list) - inserts a new element preceding current. This element
becomes current of list.

free(list) - deletes current of list, and sets current to next element.

- 66 -

create() returns(list) - returns a new list.

current(list) - returns the current element of the list.

·Wakeuptime objects record the time at which processes wish to be awakened. New

wakeuptime objects, or those no longer associated with processes, have the value oo. The

operations available on wakeuptime objects are:

create () - creates a new wakeuptime and gives it the value tnftnlt'j.
I

val(wakeuptime) - returns the time saved in the object.

pass(wakeuptime) - records the fact that the current time has exceeded
the wakeuptime.

set(wakeuptime, time) - sets the value of the wak.euptime to the time
. given.

wakeup(wakeuptime) - executed when the process associated with the
wakeuptime is awakened.

Alarmclocks are represented as lists of wakeuptimes. They have two external

operations, wakeme and tick. Tick is invoked by a hardware clock at every time unit.

Wakeme(n) is called by processes wishing to be awakened in n time units. The implementation

of these two abstractions is given in Figure H.

In this solUtion, the blocking of processes until the appropriate time is accomplished in

the following way. Wakeme calls the internal operation setalarm, which inserts a wakeuptime

object into the list representing the alarmclock. The value of the wakeuptime object is the

current time plus the number passed as an argument to wakeme. Wakeme then cans

wakeuptimeSwakeup. However, according to the path in the wakeuptime abstraction, wakeup

may only execute after a pass operation has been performed on that object. Therefore, the

process that invoked wakeme will be blocked until a pass is called on the wakeuptime object.

- 67 -

Figure 14. Alarmclock
wakeuptime .. cluster is set,pass,wakeup,val;

rep = record[wt: int];
path set ; pass; wakeup end

set = proc(n:int,u:cvt) 1.sets value of wakeuptime object to n.
u.wt := n;
end set;

pass = proc(u:cvt)
u.wt := O;
end pass;

1. when the wakeup time is reached
1. the value is reset to 0.

val = proc(u:cvt) returns (int); 1. returns the value of wakeuptime u.
return (u.wt);
end val;

wakeup = proc(u:cvt)
u.wt:- oo;
end wakeup;

create .. proc() returns (cvt);
return (repS{wt: oo});
end create;

end wakeuptime;

alarmclock = cluster is wakeme,tick,create;

1. when the process is awakened,
1. the corresponding wakeuptime object
1. is reset to infinity

rep = record[now, first: int; wl: It];
It = list[wt];
wt .. wakeuptime;

path setalarm +tick end;

create = proc() returns(cvt);
return (repS{now:O, first: oo, wl:ltScreate()});
end create;

1.setalarm creates a new element in the list of wakeuptimes
'?.corresponding to the time at which the calling process
'?.wishes to be awakened.

setalarm • proc(x:cvt,n:int) returns(wt);
time:int : .. n + x.now;

. ltlreset(x.wl);
while wtlval(ltlcurrent(x.wl)) <time

do ltladvance(x.wl);
end;

if x.first > time then x.first :• time; end;
' ltlnew(x.wl);

wtlset(current(x. w l),time);
return (ltlcurrent(x.wl));
end setalarm;

1.wakeme calls setalarm, then invokes wakeup,
1.which will be blocked until the value of the
1.wakeuptime object.is Jess than the current time.

wakeme • proc(x:alarmclock,n:int)
w:wt :• setalarm(x, n);
wtlwakeup(w);
end -wakeme;

1.tick increments the current time and checks whether
1.any processes should be awakened.

tick .. proc(x:cvt)
x.now:•x.now+J;
ltSreset(x. wl);

end alarmclock;

while ltlcurrent(x.wl) <• x.now do
ltlpass(ltScurrent(x.w1)) '?.invoking pass will allow wakeup to

1.continue,thus unblocking the waiting process.
ltlfree(ltlcurrent(x.wl))
end;

end tick;

Pass will be invoked by the tick operation only when the current time exceeds the value in the

wakeuptime object. Thus the process that invoked wa.keme (and indirectly, wakeup) will be

blocked until the time it asked to be awakened.

---------------~

- 69 -

The synchronization needed to block processes for the appropriate length of time is

therefore found in the wakeuptime abstraction, rather than in the alarmclock abstraction. The

path in the alarmclock module is needed only to ensure mutual exclusion on the list of

wakeuptimes, so that tick does not access the list while setalarm is updating it.

The user must create and manage the queue explicitly, employing the synchronization

mechanism only to awaken the first process at the appropriate time. There is no direct means

for handling· priority based on arguments passed to the protected resource operations. The

monitor mechanism, by contrast, provides a priority queuing option, freeing the user from

explicitly maintaining the queue. While the monitor solution is deficient in that it awakens the

first process on the queue at every tick, an easy modification to the monitor mechanism allows a

solution equivalent in effect to the path expression solution, but far easier to understand.

We therefore conclude that though path expressions have the power to express priority

constraints based on explicitly stated priorities, they do not provide enough aid to the user

wishing to do so. Synchronization in this example was handled by synchronizing wakeuptime

operations appropriately; such an indirect method does not model the structure of the problem

specification and thus makes solutions more difficult to understand.

One_slot Buffer

The path expression solution to the one_slot buffer problem is given in Figure 15. The

needed information about the history of accesses to the resource can be acquired simply by

stating, in the path, the set of allowable histories. The path expression mechanism thus

provides a direct way to solve synchronization problems in which we can specify the set of legal

histories of operations. This solution is more direct than the monitor solution, which must store

history information in local variables.

Bounded Buff er

- 70 -

Figure 15. One_Slot Buffer using Path Expressions
buffer • cluster is read, write;
rep • record[m:message];

path write; read end

read • proc(b:cvt) returns (message);
return(b.m);
end read;

write • proc(b:cvt, msg:message);
b.m :• msg;
end write;

end buffer;

Our last example is the bounded buffer. This problem is solved in (15] by placing

synchronization at the level of the slots in the buffer, rather than at the level of the buffer itself.

While this provides more parallelism than the higher level synchroniiation, we would like a

solution to the problem as defined in Chapter 2, so that it may be compared with the solutions

shown for monitors and serializers. In Figure 16, we present a bounded buffer solution that

implements mutual exclusion on the entire buffer.

There are three constraints in this scheme: mutual exclusion of appends and removes,

exclusion of removes when the buffer is empty, and exclusion of appends when the buffer is

full. The implementation of the mutual exclusion constraint, in the first path, is

straightforward. (CheckJull appears in this path to prevent processes from checking the buffer

state while an append or remove is in progress.) The second constraint has been translated to

an equivalent constraint that uses history information instead of local state, because path

expressions handle history information so easily. The constraint that each remove be preceded

by an append is equivalent to prohibiting removes on an empty buffer. The path ;tzt4

{not.Jmptry; remove} end implements this constraint, since not_empty is invoked at the end of

- 71 -

Figure 16. Bounded Buffer using Path Expressions
bounded_buffer • cluster is REMOVE, APPEND, create;
rep • record[slots : am,

max: int
waiting: int];

am • array[message];

path remove+ append + checkJull end
path { not_empty; remove} end
path { not_full; append } end
path APPEND end

create • proc(n: int) returns (cvt);
return(repl{slots: amlnew(),

max: n,
waiting: O});

end create;

REMOVE• proc (b: bounded_buffer) returns (message);
return(remove(b));
end REMOVE;

'
APPEND• proc(b:bounded_buffer, m:message);

checkJull(b);
append(b, m);
end APPEND;

checkJull • proc(b:cvt);
if amlsize(b.slots) IY• b.max

then notJull(b)
else b.waiting :• b.waiting + l
end;

end checkJull;

not_empty .. proc(b:rep);
end not_empty;

notJull • proc(b:rep);
end notJull;

------------------------ --------------------~-------------....----

remove = proc(b:cvt) returns(message);
m:message := am$reml(b.slots);

- 72 -

am$set_low(b.slots, 0) '?.this sets the index of the first element to 0.
if am$size(b.slots) = b.max-1 & b.waiting > 0

then not_full(b); '?. only execute notJull if appender is waiting
end

return(m);
end remove;

append = proc(b:cvt, m:message);
if b.waiting >0

then b.waiting := b.waiting - I
end;

am$add h(b.slots, m);
not_empty(b);
end append;

end bounded_buffer;

every append operation.

The implementation of the third constraint is somewhat more complex. Because it is

dependent on the size of the buffer, this constraint cannot be converted to one using history.

information. It is implemented by requiring a notJull operation to precede every append. If

the buffer has empty slots available, checkJull will invoke this operation before calling append.

If not, append will be called and will have to wait for a remove operation to invoke the

required not_full. Remove checks whether any appends are waiting, and, if so, invokes notJull

after freeing a slot.

The synchronization associated with the notJull constraint is not handled directly by

the path expression mechanism; instead, the synchronization decisions are made in the

procedures. Either check_full or remove decides when another append can execute. The

invocation of notJull is used as a signal to allow a waiting append to proceed, by providing

the first member of the not_full; append sequence in path 3. The path is being used only to

- 73 -

block and restart processes according to decisions made in procedures. The management of

synchronization in this problem is similar to that in the alarmclock problem. Since paths

cannot directly make use of either the arguments to resource operations, or local state

information, such information is handled explicitly in implementations of synchronization

schemes using it, and the decisions made in the procedures are enforced by the paths.

In addition to the synchronization's being handled primarily in procedures, rather than

in paths, the structure of the solution is rather awkward. There are four paths and eight

procedures being used to implement a shared resource that intuitively has two operations.

There is no clear distinction between synchronization procedures and resource accessing

procedures. The remove operation accesses the resource, then calls not_full, which is a .

synchronization procedure. CheckJull accesses the resource and, instead of returning a boolean

to indicate whether the buffer is full (as one would expect), invokes notJull also.

These problems are not peculiar to this particular implementation of the bounded

buffer. Rather, they reflect problems in using the path expression mechanism. A

better-structured solution is not easily derivable. The procedures in the solution do not

represent intuitive functional units; they are implemented as such to define the critical sections

necessary for correct implementation of the synchronization. The difficulty stems from the fact

that, if each constraint is implemented independently, the paths that seem most natural will

interact to cause a deadlock when combined. The implementation of the mutual exclusion

constraint (independent of other constraints) is:

path append + remove end

The implementation of the notJull constraint is:

path notJull ; append end

The problem arises if the append operation contains the check on buffer state, and waits if the

- 74 -

buffer is full. Waiting inside append will not release exclusion on the first path; therefore no

remove can execute to invoke notJull, and a deadlock results. We are thus forced to create a

checkJull procedure separate from append. However, the ch.eek-full; append sequence must be

executed uninterrupted to preserve the integrity of the buffer. We therefore need an APPEND

procedure that calls both of these operations, and excludes other APPENDS. For similar

reasons, the remove and checkJull operations must contain both buffer accesses and

synchronization invocations to define the needed critical sections. Thus, the. modularization for

the resource is essentially dictated by the path expression mechanism. More important than the

poor modularization, however, is the problem that arises if the implementor does not see the

potential conflicts between constraint implementations; deadlock situations are easily created.

The basic conclusion about expressive power, drawn from analyzing the bounded

buffer example, is that local state information can be used in path expression solutions, but that

it is not directly accessible in paths. Solutions are therefore not very straightforward. As a

result, correct implementations can be difficult to construct.

4.1.2 Conclusions

We have now examined solutions to synchronization problems making use of each of

the types of information discussed in Chapter 2. Based on this analysis, the following

conclusions may be drawn about the expressive power of path expressions.

To be sufficiently powerful, a mechanism must provide a means of directly expressing

both priority and exclusion constraints; information about request time, resource state,

synchronization state, access history, type of request and parameters passed with each request

must be available in implementing a synchronization scheme. Path expressions provide an easy

way to express simple exclusion constraints, but no direct means of expressing priority

~ 75 -

constraints is provided.

Expressive power is further hampered because certain types of information, such as

resource state and arguments passed to the request, cannot be easily used. Paths are intended to

express relationships among procedures of the resource. Yet, only some of the information

classes we have defined are procedure-dependent. To express the other types of information

requires use of synchronization procedures. Examples of these procedures appear in the

first_come_first_serve, readers_priority, alarmclock, and bounded_buffer problems. These

procedures are difficult to use, and tend to increase interaction among paths, making solutions

difficult to understand without actually tracing the flow of control.

The most attractive feature of the path expression mechanism is its non-procedural

approach to defining synchronization schemes. The need for synchronization procedures clearly

undermines this feature. In later sections, the impact of these procedures on modularity and

correctness will be discussed.

In conclusion, there are certain classes of problems for which the path expression

mechanism seems ideally suited. However, the inability to express other kinds of constraints

without the use of synchronization procedures is a severe limitation of the mechanism.

4.2 Modularity

In Chapter 2, several different modularity criteria were discussed. The first of these

was the requirement that the synchronization for a shared resource be associated with the

implementation, rather than with the use, of that resource. Because path expressions assume

the existence of data abstractions, this criterion is incorporated into the path expression

mechanism. Path expressions are written in terms of the operations on the resource type, and

can occur only within the module implementing the resource abstraction. Thus, users may

- 76 -

assume that the synchronization is handled properly by the protected resource. This structure is

in contrast to that of monitors, where we must impose additional constraints on the style in

which monitors are used in order to enforce this modularity requirement.

The second modularity requirement is the distinction between the unprotected resource

data abstraction and the synchronization abstraction associated with that resource. In simple

synchronization schemes, the use of path expressions to implement the synchronization for a

data abstraction requires only the addition of paths to the module defining the abstraction.

The second requirement is met in these cases: the synchronization is completely implemented by

the paths and is therefore clearly identifiable and separable from the implementation of the

resource abstraction.

In solutions requiring the use of synchronization procedures, the division is less clear.

The synchronization and resource operations are then in the same module. It is more difficult

to distinguish between the two. As a result, readability and modifiability are impaired.

A more serious consequence of the use of synchronization procedures in resource

modules, is the interaction among operations named in paths. The hierarchy problem in

monitors was virtually eliminated by placing monitor operations in a module separate from the

resource. This solution will not help in path expressions, because even if the synchronization

procedures are placed in a sepa_rate module, the resource operations must still be called from

synchronization operations. (To show how the synchronization could be put in a separate

module, the first_come_first_serve synchronizer is presented in Figure 17.) The hierarchical

deadlock problem in path expressions can occur, not only between modules, but within modules

- 77 -

Figure 17. First_Come_First_Serve Synchronization Module
protected_database •cluster is. READ,WRITE;
rep • database;

path requestread + requestwrite end
path { openread; read}+ write end

requestread • proc(cib:database},
openread(db);
end requestread;

requestwrite • proc(db: database, k: key, d: data},
write(db, k, d);
end requestwrite;

READ • proc(db: database, k: key) returns(data);
requestread(db);
return(read(db, k)}.
end READ;

WRITE = proc(db:database, k:key, d:data);
requestwrite(db, k. ,d);
end WRITE;

read • proc(db:cvt, k:key) returns (data);
return(replread(db;k.)}, 'Z reptread and reptwrke contain the actual
end read; t resource accesses.

write • proc(db:cvt, k:key, data);
repSwrite(db9k,d);
end write;

end protected_database;

i The read and :write operatkms· in· this module
t are synchronization procedures needed
~ to ensure that acceisses -ate' performed
'Z at the correct time.

~-- ----------------------------------~~---

- 78 -

as well, because synchronization operations within a module often call one another.2

The hierarchy problem arises in path expression solutions in the following case.

Suppose request!, request2, opl, and op2 are operations named in the path expression shown in

Figure 18. Whenever an execution of request2 starts before a corresponding execution of

request!, a deadlock results. Request2 will attempt to execute op2 and be blocked awaiting

execution of opl. But opl is only called from request!, and all executions of request! will be

blocked until the current request2 terminates. We thus have a deadlock situation.

This situation is precisely what had to be avoided in our implementation of the

bounded buffer problem (see the bounded buffer example in the expressive power section). To

emphasize that such interactions among synchronized procedures occur in actual path

expression solutions, we will again examine the alarmclock solution taken from [15], and

discussed in the previous section. The example appears in Figure 14. The paths in the

example show exactly the structure described.

Figure 18. Hierarchical Deadlock in Path Expressions

path request! + request2 end
path opl ; op2 end

request! = proc();
opl();
end request!;

request2 = proc();
op2();
end request2;

2. This problem is not (theoretically) limited to interaction between synchronization operations,
but resource access' operations in a module are unlikely to call each other in a way that would
cause deadlock.

- 79 -

The two path expressions in the solution are:

path setalarm +tick end

path set ; pass ; wakeup end.

Since setalarm calls set and tick calls pass, if tick ever executes before setalarm, a deadlock. will

arise in exactly the way described above. Nothing in the path expression prevents this

ordering. An examination of the code for tick will show that tick never calls pass unless the

current time is greater than the first wakeuptime in the list. Because wakeuptimes are

initialized to infinity, pass will never execute before a setalarm. While the code is correct, this

example shows the problems arising from the lack of modularity. To u~derstand how this

solution works, and to convince oneself it is correct, requires understanding, and simultaneously

dealing with, the implementations of two data abstractions, and the synchronization for both. It

was precisely the need to be able to understand each abstraction separately that led to our

criteria for separating the synchronization from the data abstraction definition for resources.

Thus, path expressions do not uphold our modularity criteria.

Furthermore, because the synchroni_zation operations are used together with resource

operations in paths, and because synchronization operations often call other operations named

in paths, it is difficult to define conventions for using path expressions that woukl improve

modularity without limiting expressive power.

Thus, monitors and path expressions vary greatly in their support of our modularity

criteria. Path expressions guarantee that synchronization for a shared resource is associated

with the definition of the resource, rather than with its use. However, they do not provide a

means for separating the synchronization from the implementation of the unsynchroniled

resource. Monitors, in contrast, do not ensure that the synchronization will be separated from

the use of the resource. However, it is easy to develop a style of usage that supports both the

- 80 -

association of synchronization with implementation of a shared resource, and the separation of

the implementation of the synchronizer from that of the unsynchronized resource. Assuming

monitors are used properly, they support modularity far better than path expressions. We will

see in the next chapter that serializers offer a still better structure.

4.3 Ease of Use and Modifiability

Ease of use and modifiability are largely dependent upon expressive power. If the

tools needed to construct straightforward solutions are not available, it cannot be easy to

implement those solutions.

The synchronization problems presented in the section on expressive power provide

evidence of the effect of weaknesses in power on ease of use. The need to create

synchronization procedures to obtain required information increases the difficulty of

constructing solutions because it is difficult to decide what procedures are needed and how they

interact with one another. The derivation of the solution to the bounded buffer problem in the

expressive power section exemplifies these difficulties.

In this section we will compare the readers_priority and writers_priority problems to

evaluate both ease of use and modifiability. The solution to the writers_priority problem is

shown in Figure 19. The readers_priority solution was given in the expressive power section, in

Figure 13.

While the two solutions are almost symmetric, the amount of code changed in

converting from one to the other is large in proportion to the size of the solution: four

procedures and all of the paths have to be changed. Even requestread and requestwrite, which

are used to obtain the same information in both solutions, must be completely rewritten.

Though the exclusion constraint has not changed, the path implementing it has, because it must

- 81 - .

Figure 19. Writers_priority Database uain1 Peth Expre88iona

database .. cluster is READ, WRITE;
rep ;

path readattempt end
path requestread + { requestwrite} end
path { openread; read} +write end

readattempt • proc(db: database},
requestread(db);
end readattempt;

requestread • proc(db: database},
openread(db);
end requestread;

requestwrite • proc(db: database, k: key, d: data);
write(db, k, d);
end requestwrite;

READ - proc(db: database, k: key) returns (data);
readattempt(db);
return(read(db, k));
end READ;

WRITE - proc(db: database, k: key, d: data);
requestwrite(db, k, d);
end WRITE;

read • proc(db, k) returns (data);

end read;

write • proc(db, k, d);

end write;

end database;

- 82 -

interact differently with the new priority constraint. When path expression solutions are

designed, there is often a problem of finding an implementation of each constraint that will

properly interact with the other constraints present. As a consequence, path expressions are

often difficult to use.

Since the priority constraint in the two problems presented are exactly reversed, one

can reasonably expect their solutions to be symmetric. In the general case, however, when the

relationship between the two synchronization schemes is less obvious, the required changes can

be much less apparent. The need to change almost all of the code to effect a change in one

constraint, even when the change did not require a change in the type of information used,

indicates a high degree of interaction among constraint implementations, as well as a lack of

support for modifiability.

4.4 Correctness

Many of the correctness issues with which we are concerned have been referred to

earlier in conjunction with discussions of modularity and ease of use. Our major concern in the

area of correctness is the ease with which a programmer can decide whether an implementation

meets its specifications. Whether solutions written using a mechanism can easily lead to

deadlock, and whether those deadlocks are easily detectable is part of this problem.

In our evaluation of modularity, we have noted that separation of the synchronization

from the resource abstraction is difficult. As illustrated by the alarmclock example, proofs of

correctness of the synchronizer cannot be performed independently of the resource

implementation. Furthermore, when hierarchically structured resources are involved, proof of

termination (absence of deadlock) may involve implementation details from several levels of

abstraction. If verification of complex programs is to be possible, it is essential that each

- 83 -

module be independently verifiable, using only external specifications of other modules. Path

expressions do not support this property.

Our analysis of expressive power and ease of use also has implications for correctness

and verifiability. In particular, consider the readers..priority example. While a correct solution

is possible, the fact that it was very difficult to determine whether the solution given met its

specifications, and whether all special cases had been covered, leads us to believe that it will in

general be very difficult to convince oneself that a solution involving path expressions is

correct.

Path expressions do aid verification in one important way. Possible deadlock

situations, such as the one arising in the alarmclock solution, are easily detectable at compile

time, if they arise in paths in a single module. While an algorithm exists for detecting the same

situations occurring between modules. as in the alarmclock case, it requires flow analysis;

detection would therefore be rather costly. It should also be noted that the situations detected

are possible deadlocks. It is far more difficult to determine whether the deadlock is inevitable,

or, as in the alarmclock case, will never arise. Thus, at best, the programmer could be warned

that the possibility exists, and that proof of termination is impossible.

We conclude that if path expressions supported separation of synchronization from

resource implementations, and the independent verification of modules, they would meet our

requirements. While easy detection of deadlocks within a module is certainly an important

feature, we feel that deadlocks due to conflicts between paths in different modules are too likely

to arise. Furthermore, the difficulty of understanding solutions in even a single module leads us

to believe that proofs that those solutions meet specifications will be difficult. We therefore feel

that the version of path expression presented here does not support correctness of concurrent

programs.

- 84 -

4.5 Conclusions

Path expressions are based on the idea of expressing synchronization constraints as sets

of relationships among operations of the resource type. This approach appears attractive

because it automatically associates the synchronization with the data abstraction defining the

resource. It seems natural that synchronization be expressible in terms of operations of the

resource type.

Unfortunately, path expressions as defined in (8) do not satisfy all the criteria set forth

in Chapter 2. We have found that expressive power is lacking; several types of information

needed are not readily accessible. This problem in turn causes awkwardness in solutions,

making the mechanism more difficult to use and impeding verification. Synchronization

operations are needed in paths, undermining the premise that synchronization is expressible in

terms of operations on the resource. The use of these operations also makes it difficult to

separate the implementation of a synchronization scheme from that of the resource, which is a

modularity requirement we established.

The designers of the mechanism have attempted to overcome some of these problems

in later versions of the mechanism[15, 14). However, none of these has been completely

satisfactory. Another version of path expressions now under development[2) promises to show

improvements in both eicpressive power and verifiability. However, unless expressive power

can be extended enough to eliminate the need for synchronization procedures, it is doubtful that

the new version of the mechanism will meet our criteria either.

- 85 -

5. Serializers

Serializers[3] are similar to monitors but are intended to improve upon those features

of monitors that seem poorly structured. There are two significant differences between the two

mechanisms. First, serializers incorporate into the mechanism a means for invoking resource

operations outside the control of the synchronizer, thus allowing concurrency, while ensuring

that all resource accesses are properly synchronized. Second, they replace the monitor signal

construct with an automatic signalling mechanism.

5.1 Mechanism Description

Like monitors, serializers are modules defined by a set of operations and a description

of the internal structure of the serializer objects. Serializers may be thought of as encapsulating

the resource to form a protected resource object. The structure of this protected resource is

shown in Figure 20. Users see only the protected resource; the operations users invoke to access

the resource are actually the operations of the serializer.

As in monitors, the operations of the serializer are mutually exclusive. Only one

process has access to the serializer at a time. It is not necessary to exit a serializer before

Figure 20. Structure of Serializer Objects

protected resource

serializer

LJ

- 86 -

accessing the resource in order to obtain concurrency. Serializers provide a means for leaving

the serializer temporarily, to perform the resource operations. The invocations of resource

operations are textually contained in the serializer operations, but if they are within a

'join_crowd' statement, they will be executed outside the control of the serializer. Other

processes may execute serializer operations concurrently with these resource accesses. After the

resource access is completed, control automatically returns to the serializer. This structure is

similar to that of the modularized monitor scheme proposed earlier (Figure 8). However,

leaving and reentering the synchronizer is done automatically in serializers, so an additional

'protected resource' module is unnecessary.

There are two built-in data types used in serializers: queues and crowds. Q..ueues differ

from monitor queues in several ways. Rather than wait and signal operations, there is an

enqueue operation that specifies, not only the queue on which to wait, but also the condition for

which the process is waiting. The serializer mechanism will automatically restart the process

when it becomes first on the queue and the condition is satisfied at a time when possession of

the seria lizer is relinquished. No dequeue or signal operation is necessary. The form of the

enqueue command is:

enqueue(queue_name) until condition

A process executing an enqueue is placed on the end of the specified queue; the condition is

not checked until the process reaches the head of the queue.

Crowds are unordered collections of processes used to handle synchronization state

information: they keep track of what processes are in the resource and what operations are

currently being executed. Though conceptually a crowd contains the identities of the processes

involved, it can be implemented simply as a count, since the only information needed is the

number of processes using the resource. In addition to the create operation, crowds have a join

- 87 -

operation. Join serves two functions: it puts the process executing the join into the specified

crowd, and it releases possession of the serializer. The form of the join command is:

join(crowd) then body end

where body is a list of statements to be executed by the process when possession of the serializer

is relinquished. At the completion of the body, a leavt__£rowd operation is automatically

executed. This has the effect of regaining possession of the serializer, and removing the process

from the crowd.

Thus, the normal sequence of events for a process requesting access to a shared

resource is :

enter (gains possession of the serializer)
enqueue (release possession of the serializer)
dequeue (regains possession)
join_crowd (release possession of serializer and enter resource)
leave_crowd (leave resource, reenter serializer)
exit (releases the serializer)

A set of priorities exists for gaining possession of the serializer. Processes waiting to dequeue

have priority over those waiting to enter the protected resource or leave crowds. Processes

waiting to enter the protected resource or leave crowds will be handled in first_comeJirst_serve

order.

The solution to the first_comeJirst_serve problem shown in Figure 21 is an example of

a serializer. The resource object is created inside the serializer, so it can be accessed only

through invocations of serializer operations. Protection is therefore guaranteed. It is not

necessary, as it is in the monitor case, to create a separate protected resource module to associate

the resource with the synchronizer and hide it from users.

In the read operation, the process requesting the read must wait on a queue until the

writers_crowd empties and all processes preceding it on the waiting_q have continued. Then it

- 88 -

Figure 21. First_Come_First_Serve Serializer
first_come_first_serve = serializer is read, write, create;

rep = record[waiting_q: queue,
readers_crowd: crowd,
writers_crowd: crowd,
db: data_base];

create = proc() returns (cvt);
return (repS{ waiting_q: queueScreate(),

readers_crowd: crowd$create(),
writers_crowd: crowd$create(),
db: data_baseScreateO});

end;

read = proc(s: cvt, k: key) returns (data);
queue$enqueue(s.waiting_q) until (crowd$empty(s.writers_crowd));
d: data
crowdSjoin(s.readers_crowd) then

d := data_base$read(s.db, k);
end;

return (d);
end read;

write = proc(s: cvt, k:key, d:data);
queue$enqueue(s.waiting_q) until (crowd$empty(s.readers_crowd)

& crowdlempty(s.writers_crowd));
crowdSjoin(s.writers_crowd) then

data_baseSwrite(s.db, k, d);
end;

end write;

end first_come_first_serve;

is dequeued (automatically) and proceeds to the statement following the enqueue, where it enters

the readers_crowd. Entering the crowd causes possession of the serializer to be released so that

other processes may obtain it. Statements in the then clause are executed outside the control of

the serializer. The read operation is performed and the value is assigned to d; control must

then return to the serializer so that the process may be removed from the crowd and leave the

protected resource. At termination of the statement in the then clause, the process is blocked

- 89 -

until it can obtain possession of the serializer. The priorities defined for obtaining possession

of the serializer guarantee that the process will eventually be continued. When execution

resumes, the value of d is returned, and the process exits the serializer, allowing another process

to gain possession. The write operation differs in the conditions in the until clause and the

statements in the then clause but its basic structure is the same as that of the read.

In the first_comeJirst_serve example, the only predicates used in until clauses are

empty tests on queues or crowds. These predicates are sufficient to handle synchronization

schemes based on request type and synchronization state. Time ordering of requests is handled

by the queuing mechanism. Thus a serializer mechanism using just these predicates is powerful

enough for most synchronization problems. This restricted serializer is much easier to analyze

and construct correctness proofs for than the complete serializer mechanism. To handle other

classes of synchronization schemes, however, the mechanism has been generalized. Local

variables may be used to store any kind of state information. Priority queues have also been

added to handle explicitly passed priorities.

5 .2 Expressive power

The first_comeJitst_serve example was shown in the preceding section. In this section

we will present the other examples in which we are interested, evaluate the power of the

mechanism, and compare it to monitors and path expressions.

The basic writers_exclude_others readers_writers solution is shown in Figure 22. This

solution was difficult to implement using monitors because the specification does not determine

a total ordering for requests in all cases. Here, due to the automatic signalling in the serializer

construct, the solution can be written without the user specifying the ordering in these cases.

However, the way in which the serializer mechanism will handle the situation is unclear. The

··---· -- ----~- ------·

- 90 -

Figure 22. Writers_Exclude_Others Serializer
writers_exclude_others • serializer is create, read, write;

rep= record[read_q:queue,
write_q:queue,
readers_crowd: crowd,
writers_crowd: crowd,
db:data_base)

create • proc() returns (cvt);
return (repl{read_q: queudcreate(),

write_q: queuelcreate(),
readers_crowd: crowdlcreate(),
writers_crowd: crowdScreate(),
db: data_baselcreate()});

end create;

read • proc(s: cvt, k: key) returns(data);
queue$enqueue(s.read_q) until crowdlempty(s.writers_crowd);
d: data;
crowdSjoin(s.readers_crowd) then

d :• data_baselread(s.db, k);
end;

return(d);
end read;·

write • proc(s: cvt, k: key, d: data)
queuelenqueue(s.write_q) until(crowdlempty(s.writers_crowd)

&: crowdlempty(s.readers_crowd));
crowdljoin(s.writers_crowd) then

data_baselwrite(s.db, k, d);
end;

end write;

end writers_exclude_others

definition of serializers does not explain how to handle the case in which the conditions

governing two queues are true when the serializer is released by some process. Some fair

method for dealing with this problem, such as first_comeJirst_served, should be included in the

mechanism definition. The claim made in [3] that solutions should be constructed to avoid

having two queues ready at the same time is invalid, since it fails to recognize situations such as

- 91 -

the above, in whith the designer really does not need to specify a total ordering of operations.

Thus, path expressions seem to be the only mechanism that allows 'incomplete' specifications

such as these and guarantees that they will be handled in some fair manner.

The readers_priority solution is shown in Figure 23. (Only the read and write

operations are shown; the internal structure of the serializer, and the create operation are that of

the previous examples.) Writers are now far more restricted in when· they can enter the

resource. It can be seen from this example that serializers can asily express priorities based on

th~ type of request Such priorities are usually expressed by testing empty conditions on queues

for operations with higher priority. In this case. for example. readers are given priority by

inserting a test in the until clause of the write operation to make sure the readers queue is

empty before writers proceed. A comparison of this solution to the fair Jeaders_priority and the

writers_priority solutions will be made in the section on modifiability. From the previous two

examples it appears that modifications are localized and consistent with changes in the

specifications.

Figure 23. Readers_priority Serializer
read •proc(s: cvt, k: key) returns(data);

queuelenqueue(s.readers_q) until (empty(s. writers_crowd)}.
d: data;
crowdljoin(s.readers_crowd) then

d:• data_baselread(s.db, k}.
end;

return (d},
end read;

write • proc(s:cvt, k: key, d: data)
queuelenqueue(s. writers...q) until (empty(s.radera_q)

Be empty(s.readers_crowd)
Be empty(s.writers_crowd)},

crowdljoin(writers_crowd) then
data.J>uelwrite(s.db, k, d}.
end;

end write;

- 92 -

Bounded Buff er

The bounded buffer solution is shown in Figure 2-t. The resource state information is

obtained by calls on the resource operations notJull and not_empty. These invocations are

made only after checking that no processes are accessing the resource. Since mutual exclusion

within a serializer is automatic, we can be sure that no one will enter the resource between the

empty test and the invocation of notJull or not_empty. This is important in ensuring the

consistency of the resource. The result of a full or empty test performed while another process

Figure 24. Bounded Buffer Serializer
protected_buffer • serializer is append, remove, create;

rep • recordfappend_q, remove_q: queue, c: crowd, bb: bounded_buffer);

create = proc() returns (cvt);
return({append_q: queue$create(),

remove_q: queudcreate(),
c: crowdlcreate(),
bb: bounded_bufferScreate()});

end create;

append .. proc(s:cvt,m:message);
queuelenqueue(s.append_q) until (crowdSempty(s.c)

CAND bounded_bufferSnotJu11(s.bb)},
crowdljoin(s.c) then

bounded_bufferlappend(s.bb,m);
end;

end append;

remove .. proc(s:cvt) returns(message);
queuelenqueue(s.remove_q) until (crowdlempty(s.c)

m: message;
crowdljoin(s.c) then

CAND bounded_bufferlnot_empty(s.bb));

m:• bounded_bufferSremove(s.bb);
end;

return (m);
end remove;

end protected buffer;

- 93 -

is updating the buffer is not well defined.

The problem of potential deadlocks resulting from invocations of resource operations

from' within synchronization modules was explained in detail in the chapter on monitors. The

problems arising in seria1izer solutions are the same. The programmer must be very sure that

no deadlocks arise from resource invocations within a synchronizer. Certain synchronization

schemes require knowledge of resource state. This state information can be obtained only by

invoking resource operations or by keeping the resource state in local variables. The second

alternative, while avoiding the deadlock problems, violates the separation of resource from

synchronization which· is one of our goals. The first alternative, invoking resource operations

from within the synchronizer, is not safe unless it can be guaranteed that the resource, ts··empty

at the time of invocation.I

Thus, serializers handle resource state information in mu.ch the same way monitors do,

by use of local variab~es or invocations of stat~testing operations on the resource. It must be

realized that the operations of the synchronizer are •unsafe areas•: the synchronizer can itself

access the resource incorrectly. Care must be taken to ensure that these operations 1Mpese the

necessary restrictions on themselves. as well as user processes.

Dne_Slot Buffer

Serializers, like monitors, provide no special way of handling history informatien; it

must be handled by local data. The easiest way to solve the one_stot buffer pr-Oblem is to store

the· needed information in a boolean describing whether an unread message is in the buffer.

The difference between this solution and the bounded_buffer is that we are assuming there:is

no operation on the resource abstraction, equivalent to full or empty, that the serialiier may

I. The monitor solution to the bounded buffer problem guarantees mutual exclusion becaule
the buffer is inside the monitor.

- 94 -

invoke to obtain the required information. The information must therefore be deduced by

keeping track of past operations. When an insert is executed, the boolean full is set to true; it is

reset to false when remove .takes the message. This solution is shown in Figure 25.

The one_slot buffer is the first serializer example we have seen in which local variab1es

are used in conditions. These variables are set explicitly i~ the serializer operations. Once

general information, rather than just empty tests on queues and crowds, is allowed in conditions,

the automatic signalling of seria1izers loses its advantage over monitor's explicit signals.

Programmers are as likely to incorrectly set a local variable, or not set it at all, as they are to

forget to explicitly perform a signal.

Figure 25. One_Slot Buffer Serializer
protected_single_buffer .. serializer is create, insert, remove;

rep • record[insertq, removeq: queue, c:crowd, sb: buffer, full: booll

create - proc() returns(cvt);
return(repl{ insertq, removeq: queuelcreate(),

c: crowdtcreate(),
sb: buff erlcreate(),
full: false});

end create;

insert .. proc(b: cvt, m: message);
queuelenqueue(b.insertq) until (""b.full & crowdlempty(b.c))
b.full :• true;
crowdljoin(b.c) then bufferlinsert(b.sb, m) end;
end insert;

remove .. proc(b: cvt) returns(message);
queuetenqueue(b.removeq) until(b.full & crowdlempty(b.c)},
m: message;
b.full : .. false;
crowdljoin(b.c) then m:• bufferlremove(b.sb) end;
return(m);
end remove;

end protected_single_buffer;

- 95 -

Disk Scheduler

The other class of problems to be examined are those requiring user-specified priorities

(priorities given by arguments passed to serializer operations). The disk scheduler problem is

representative of this group. Priority queues were added to serializers because such problems

were difficult to implement without them. The disk scheduler solution using priority queues is

given in Figure 26.

When a request to read or write from the disk is made, the request is enqueued in

order of track number. The up queue holds processes to be serviced as the disk head sweeps

up across the disk, the down queue as it sweeps down. The variable current stores the current

track position of the head.2 If the current p~sition is greater than the requested position, the

request will be processed on the next down sweep, so it is enqueued on the down queue. If the

current position is lower than the one requested, the request will be placed on the up queue.

Requests for the track at which the head is currently located must wait until the current sweep

is completed, and the head returns to that track on the next sweep.

A request will be served when there are no other processes preceding it on the queue

and the disk head is moving in the proper direction. Whenever a queue empties, the direction

changes. When a process gains possession of the serializer after dequeuing, it joins the users

crowd, and the appropriate operation on the disk is performed. When it re-enters the serializer,

a check is made to see if the queue being serviced is empty; if so, the direction is changed so

that the other queue may be serviced.

2. Notice that we could have called an operation currentJrack on the disk to obtain this
information instead of using local variables. However, this would have led to synchronization
problems, since it could only be invoked when the disk was empty. In our solution, the variable
current in the serializer can be accessed while another process is moving the disk head.

- 96 -

Figure 26. Disk Scheduler Serializer
disk_scheduler = serializer is create, read, write;

rep • record[direction:string,
up:queue,
down:queue,
current:int,
number _of _tracks,
d:disk,
users:crowd]

create = proc(n:int) returns (cvt);
return (repS{direction:"up",

up:priority _queueScreate(),
down:priority _queueicreate(),
number _of _tracks:n
current:O,
users:crowd$create(),
d:disk$create()});

end create;

request = proc(s: rep, track_num: int);
if track_num > s.current I (track_num = s.current & s.direction • "down")

then priority _queue$enqueue(s.up,track_num) until
(crowd$empty(s.users) &
(priority _queue$empty(s.down) I s.direction• "up"))

else priority _queueSenqueue(s.down,number _of_tracks • trackJlum) until
(crowd$empty(s.users) &
(priority_queueSempty(s.up) Is.direction • "down"));

end;
s.current := trackJ]um;
end request;

release .. proc(s: rep);
ifs.direction = "up" & priority_queueSempty(s.up)

then s.direction := "down"
elseif s.direction = "down" & priority_queueSempty(s.down)

then s.direction :• "up"; end;
end;

end release;

- 97 -

read = proc(s:cvt, track_num:int) returns(data);
request(s, track_num);
d: data;
crowdSjoin(s.users) then

d := diskSread(s, track_num)
end;

release(s);
return(d);
end read;

write = proc(s:cvt, track_num:int, d: data);
request(s, track_num);
crowd$join(s.users) then

diskSwrite(s, track_num, d)
end;

release(s, track_num);
end write;

end disk_scheduler;

This solution is very similar to the monitor solution. The main difference is that in

the serializer solution, the functions of the protectedJesource module and the monitor are

combined into the single serializer module. (We never saw the read and write operations of the

monitor solution, because they are in the protectedJesource module, which was not shown.)

This is one example in which the extra module of structured monitor solutions may be

beneficial. In cases such as the disk scheduler, where the synchronization does not depend on

the operation requested and in fact is the same for all operations, there is actually a distinction

between synchronization procedures and protectedJesource operations. The function of the

synchronizer is to move the disk head to the appropriate track and implement exclusion on disk

access. · The function of the protectedJesource module is to associate the appropriate

synchronization operations with each resource operation. In the serializer solution, these two

functions are combined in a single module, though the operations are clearly separable into two

groups. The user-invoked operations of the serializer look very much like the protected

- 98.

resource operations in the structured monitor. The read operation, for example, has the form

request, read, release. Request and release, the two synchronization operations in the monitor

solution, are defined as internal operations of the serializer, to be called before and after the

resource accesses.

There is thus little difference between the two solutions. Because the synchronization is

independent of the openition requested, the monitor structure seems to better model the

structure of the problem, and may therefore make it slightly easier to construct the solution.

While the distinction between the two structures is relatively minor, and does not represent a

serious weakness in the serializer mechanism, it indicates that there are some cases in which the

extra modularity of structured monitor solutions is useful.

6.2.1 Conclusions

We can conclude from the examples presented that serializers are sufficiently powerful.

The way in which each type of constraint is handled is straightforward. As in the monitor

mechanism, request time. and request type information are handled by use of queues. Serializers

also provide a crowd construct to handle synchronization state information, eliminating the need

to explicitly keep track of the number of processes in the resource by the use of local variables.

History information and some local state information must still be explicitly maintained in local

variables.

The only example that illustrates a weakness in the mechanism is the

writers_exctude_others problem. The behavior of serialiws in cases of incomplete

I
specifications such as the writers_exctude_others problem needs to be more clearly defined.

------------- -----------·-···---·-··- -

- 99 -

5.3 Modularity

The most important contribution of serializers is in the area of modularity. The

structure for protected resources provided by the serializer mechanism is far more conducive to

the development of properly modularized synchronized resources than is the monitor structure.

As was stated earlier, we are interested in two distinct properties relating to modularity. One is

how easily the synchronization can be separated from the resource implementation and localized

in a synchronization module. The other is how welt the mechanism supports the use of

modularization and hierarchical structure in constructing the resource, and whether the

synchronization construct can be used with hierarchicalty structured resources. Seria1izers

represent an improvement in both of these areas.

In monitor solutions, the only way to allow concurrent access to a resource is to create

the resource independently of the monitor. The monitor construct does not provide a

mechanism for maintaining an association between the monitor and the resource in this case.

The user is responsible for ensuring the correct use of the monitor when accessing the resource.

Though a method for ensuring correct acces~ exists, it is the programmer's responsibility, when

using monitors, to create a module that encapsulates the resource and the monitor, and invokes

the proper synchronization operations when a user of the resource attempts access.

Serializers represent an improvement because they provide this encapsulation

automatically. The programmer need only make the resource a component of the serializer

construct. The essential difference between monitors and serializers is that serializers allow the

resource to be created inside the synchronization module without restricting the access scheme to

be mutual exclusion. Because a join_crowd operation releases the serializer while the resource

operations are executing, the resource object can be part of the serializer object and still be

- JOO -

accessed concurrently without violating the constraint that only one process at a time have

possession of the serializer. Thus, the programmer need only define the serializer and resource

modules, and can assume that the resource is protected (it cannot be accessed without going

through the serializer).

The difference may be clearly seen by comparing the structure of a serializer solution

with that of a monitor structured as described in the previous chapter. Both are shown in

Figure 27.

Though the monitor forces the user to do more work, it also provides some additional

modularity. There is a protected resource abstraction separate from the synchronizer. In

complicated schemes this additional modularity may be useful, since it allows the designer to

deal with the synchronization without worrying about what the actual resource operations are.

This is especially helpful when the synchronization scheme is independent of the operation

requested, as in the disk scheduling problem. It also makes it easier to change synchronization

schemes, or to use the same synchronizer for more than one resource. However, the advantages

of the structure provided by serializers outweigh the small improvement in modularity found in

the structured monitor solution.

Overall, serializers improve upon the modularity supported by the monitor mechanism.

Figure 27. Comparison of Monitor and Serializer Structures

serializer structure monitor structure

serializer protected resource

jresource I l moOiror J lresource I

- 101 -

Because users have an easier way to properly structure solutions, and will find it more difficult

to do things incorrectly, software reliability should be enhanced by use of the serializer

mechanism.

5 .4 Ease of Use and Modifiability

Serializers also satisfy our ease of use and modifiability criteria well. We can easily

locate the implementation of each constraint within the solutions presented. In the

readers_writers problems (Figures 21, 22, 23, 28), the exclusion constraint on readers is enforced

by the condition crowd$empty(writers_crowd) in the until clause in read, and the constraint on

writers is enforced by the condition that both the readers_crowd and writers_crowd must be

empty. Other conditions may be added to enforce other constraints, but the implementation of

t+tese constraints remains unchanged. The constraint independence criterion we established for

evaluating ease of use and modifiability is therefore met.

We can also examine modifications that might be made to synchronization schemes we

have discussed to determine how easily those changes can be implemented. In this section we

discuss two modifications to the readers_priority scheme.

One modification is to change to a writers_priority scheme. As indicated by our

analysis of synchronization problems in Chapter 2, the exclusion constraints remain the same,

and there is no change in the types of information used to specify the priority constraints, so the

changes needed are expected to be minimal. Conceptually, the difference between the two

schemes is that in the writers_priority problem, readers must wait if any writers are waiting,

while the reverse is true in the readers_priority problem. In serializer solutions, all of this

information is contained in the until clause of enqueue statements, so the only parts of the

solution that should need modification are these clauses. The dequeue conditions for read must

- 102 -

be changed so that readers must wait until no writers are waiting. The enqueue statement for

readers becomes:

queue$enqueue(readers_q) until (crowdSempty(writers_crowd)
& queueSempty(writers_q));

The dequeue condition for writers no longer has to check that no readers are waiting. Thus,

the enqueue statement in the write procedure becomes:

queue!enqueue(writers_q) until (crowdSempty(readers_crowd))

Thus, the changes made were minimal. In addition, it was possible to easily identify those parts

of the solution needing modification. Because the conditions for which an enqueued process is

waiting are specified at the point of the wait, and restarting is done automatically, constraint

implementations are even easier to· identify than in monitor solutions. It is no longer necessary

to search for signal statements in all of the procedures; the entire implementation of the

constraint occurs in the enqueue statement. Changing one constraint in an implementation is

therefore straightforward.

A more difficult modification is the change from readers_priority to

fair _readers_priority. The fair solution will not allow a reader to enter the resource if a writer

is already waiting. Only one writer wilt proceed at a time, though; so if several writers are

waiting when a reader enters,· the reader will precede att but the first writer. This solution

requires use of request times as well as request type in the priority constraints. The solution is

shown in Figure 28.

This solution is fair because the serializer mechanism gives dequeues priority over

enters for gaining possession of the serializer. When the resource is empty, the dequeue

condition for readers will be satisfied, so all readers on the readers queue will be dequeued and

enter the resource before any more read requests can enter the serializer. The readers queue

- 103 -

Figure 28. Fair _Readers_Priority Serhtlizer
fair JP • serializer is create, read, write;

rep • record[readers_q, writers_q:queue,
readers_crowd, writer _crowd: crowd,
db:data_basel

create • proc() returns (cvt);
return(repS{readers_q:queueScreate(),

writers;...q:queuelcreate(), '
readers_crowd:crowdkreate(),
writers_crowd:crowdlcreate(), ·
d b:data_baselcreate()});

end create;

read • proc(s:cvt,k: key) returns(data);
queueSenqueue(s.readers_q) until (crowdlempty(s.writers_crowd));
d: data;
crowdljoin(s.readers_crowd) then

d:• data_baselread(s.db,k);
end;

return (d);
end read;

write • proc(s:cvt, k:key, d:data);
queueSenqueue(s. writers_q) until (queuelempty(ueaders_q)

8t crowdhmpty(s.writers_crowd));
queuelenqueue(s.readers_q) until (crowdternpty(s.readers_crowd)

8t crowdlempty(1;wrilers_crowd));
crowdljoin(s.writers_crowd) then

data_baselwrite(s.db,k,d);
end:

end write;

end fairJp;

will then be empty, so the condition for dequeuing writers from the writers queue becomes

satisfied, and the first writer on that queue will have highest priority for gaining- possession of

the serializer. This writer is then enqueued on the (still empty) readers queue. Since the writer

is now first on the readers queue, it will enter the resource before any more readers. Assuming

read accesses terminate, the readers in the resource will eventually finish and the resource will

- IOi -

empty, allowing the writer at the head of the readers queue to proceed. At the termination of

this write, the process just described repeats: all waiting readers will enter the resource, but the

first writer on the writers queue wilt get priority over any new readers entering the serializer.

Thus readers still have priority, but writers will not starve, because only a finite number of

readers can enter the resource before any write. Note that if several writers are waiting when a

reader enters the serializer, only the first of these will enter the resource before the reader.

The change in code from the readers_priority to fairJeaders_priority solution is small;

only the write operation has changed. One additional enqueue statement has been added to

maintain the needed information about relative times of read and write requests. Enqueuing

writers on the readers queue is one way to establish a first_comeJirst_serve order in the

necessary cases.

From examining the set of readers_writers problems, we can conclude that minor

changes to synchronization specifications result in only minor changes to serializer

implementations of those specifications. Identifying the parts of the solution that need

modification is straightforward, and our constraint independence criterion is upheld.

5 .5 Correctness

In our discussion of correctness in monitors, we were primarily concerned with two

issues: explicit signalling and deadlocks due to hierarchical structuring of resources. Serializers

have reduced the problems due to explicit signalling by associating conditions with each queue,

and automatically restarting waiting processes. For synchronization schemes in which the

conditions associated with queues can be expressed in 'terms of empty tests on queues and

crowds, automatic signalling represents a significant improvement in the support given

correctness. For synchronization problems that involve resource state information, arguments

- 105 -

passed, or history information, more complex conditions are needed. In these cases, serializers

lose their ad vantage. Local variables are as easily misused as explicit signals. We have also

seen a case, in the bounded buffer example, where the integrity of the resource could be easily

undermined by incorrectly using resource state information in a condition. If the resource

invocations were incorrectly ordered, a condition would have appeared true, and a process

would have been dequeued, when the condition was false. Despite these weaknesses, in most

cases, the automatic restarting of processes in serializers is superior to explicit signalling.

The problem of hierarchical deadlocks in serializer solutions is equivalent to that in

properly structured monitors. Since resource operations are almost always executed outside the

control of the serializer, the problem will rarely occur. The only time a hierarchical deadlock

can arise is when a resource operation is invoked outside of a join_crowd statement in a

serializer operation. As in the monitor solutions discussed, this situation can occur if the

serializer is obtaining resource state information via invocations of resource procedures.

However, it is unlikely that such an operation would be forced to wait at a lower level. While

serializers and "properly used" monitors both avoid the hierarchical deadlock problem in almost

all cases, the structure of serializers ensures that the potential for deadlock is minimized, while

in monitor solutions, safety is dependent on the programmer properly using the construct. We

therefore conclude that, by eliminating the explicit signal construct, and providing more aid in

producing better modularized programs, serializers provide better support for developing

correct programs than do monitors.

- 106 -

5 .6 Conclusions

Serializers have succeeded in improving upon many of the poorly structured features of

monitors .. Modularity, and thus understandability and ease of use, are enhanced by use of

serializers. The use of automatic signalling improves reliability by eliminating one source of

programming errors.

The one drawback to the construct is that it is more complex mechanism (since so

much more is done automatically) than the monitor mechanism. It is therefore less efficient.

Efficiency can be improved by changing from the use of crowds, which actually store process

identities, to counts. There appears to be no need for any more information about a crowd

than how many processes are currently in it.

The other feature detrimental to efficie.ncy is the automatic signalling. Because

monitors allow explicit signalling, processes can often be restarted without any tests on

conditions at all, and when tests are needed the programmer can use his or her knowledge

about the possible current states to limit the number of conditions that need to be tested.

Conceptually, automatic signalling means that the conditions at the head of every queue must

be tested each time possession of the serializer is relinquished. Whether such tests actually cost

a great deal remains to be determined. Most synchronization schemes do not require very many

queues, so the overhead may not be great. While we consider the use of automatic signals to be

an improvement over monitors, the reduction in efficiency may make serializers unsuitable for

some purposes.

Overall, serializers represent an improvement over monitors. Of the mechanisms

evaluated in this thesis, serializers come closest to satisfying our requirements.

- 107 -

8. Summary and Evaluation

This thesis has addreSsed two issues related to software reliability and synchronization

of shared resources. One is how synchronization mechanisms can be evaluated to measure how

well they support such criteria as expressive power, ease of use, modularity and correctness.

The second is how well existing synchronization constructs meet these criteria.

8.1 Summary and Conclusions

Several results have been derived from our study of evaluation techniques. The

development of methods for evaluating expressive power led to a study and definition of the

kinds of problems we feel synchronization mechanisms should handle. It has been shown that a

synchronization problem may be defined as a set of constraints, which fall into two basic

categories, priority constraints and exclusion constraints. In addition, these problems can be

categorized according to the kinds of information used to express the constraints. We have

identified six categories of information needed in synchronization constraints: the time at which

requests are made, the procedure requested, the local state of the resource, the synchronization

state of the resource, the arguments passed with the requests, and the history of invocations of

resource operations. Fu·rthermore, the categories of information used in a synchronization

scheme largely determine how easily that scheme may be implemented using a given

mechanism. Thus, by analyzing a mechanism to determine whether it provides access to each

type of information and a method for expressing each type of constraint, we can measure its

expressive power. In addition, we can estimate the difficulty of implementing a particular class

of problems using the mechanism. Methods for evaluating ease of use and modifiability based

on this categorization of problems are also described.

- 108 -

The other major result of this study is the application of modularization techniques to

the structuring of shared resources. We have shown that significant benefits accrue when a

shared resource is implemented as the composition of a synchronization module and an

unsynchronized resource module, that is, when all synchronization is handled within the

synchronized resource, but is independent of the unsynchronized resource. Not only does this

structure improve usability and understandability, but it also reduces deadlock problems in

many cases.

The remainder of the thesis is devoted to evaluating monitors, path expressions, and

serializers, the three existing mechanisms that seem most likely to satisfy the requirements of

good software engineering. Based on this evaluation, we have drawn the following conclusions

about these three mechanisms. While the approach taken by path expressions seems very
~"

attractive, our analysis has revealed some serious shortcomings. Path expressions do not

provide access to several types of information needed in synchronization constraints, and thus

lack sufficient expressive power. In particular, it is difficult to use the resource state and the

arguments passed to procedures. To maintain information about time of request, or to express

priority constraints in general, requires additional synchronization procedures, thus increasing

the solution's complexity. In addition, the modularity requirements we find necessary to ensure

~ase of use and verifiability are not well supported by the mechanism. We therefore conclude

that the mechanism does not contribute to the production of reliable, easily maintainable

software. The construct might be substantially improved if the need for synchronization

procedures could be reduced. Given our enumeration of the kinds of constraints the mechanism

must be able to express, it may now be possible to produce a version that incorporates the

means for obtaining the necessary information. The use of extra procedures might then be

unnecessary, and expressive power, ease of use, and modularity would be greatly enhanced.

-109 -

Both monitors and serializers satisfy our criteria reasonably well. If asked to select one

mechanism for inclusion in a modular programming language now, we would select serializers.

Though certain tradeoffs are involved in selecting one of these mechanisms over the other.
'

serializers seem superior in two important respects. First, they meet our modularity

requirements more closely. The proper use of monitors requires a special protected-resource

module in addition to the synchronizer and resource modules; the resource implementor must

also follow specific guidelines for defining monitor operations. Serializers depend less on such

rules: the protected-resource module is not needed, and serializer operations are precisely the

user-accessible operations on the protected resource. Serializers are thus more likely to be used

correctly. The other important distinction between the two mechanisms is the use of automatic

signalling in serializers. Though proof rules for the monitor signal construct have been

developed, an automatic signalling feature is more likely to aid in constructing correct programs,

and in easing the burden placed on the verifier. These differences between monitors and

serializers indicate that serializers better support the construction of reliable concurrent

programs than do monitors. The tradeoff made in selecting serializers over monitors is one of

' efficiency for structure.

8.2 Evaluation and Extensions ·•f this .work

There are several areas related to this thesis that we feel warrant further study. The

principal contribution of this work has been in outlining a method for evaluating

synchronization constructs to determine how well they support the goals of good programming

methodology. The method is dependent upon the recognition of classes of synchronization

constraints based upon the kinds of information needed to specify a constraint. While this

categorization of constraints appears valid, and hu proved useful in the evaluations presented

- llO -

here, a more detailed investigation of synchronization problems may yield more finely grained

divisions that could isolate weaknesses in mechanisms still further.

For example, the thesis is limited in the model of shared resources with which it deals.

It is assumed that the resource to be synchronized is an object of an abstract data type, and that

we are synchronizing individual accesses to that object. A more general analysis would have

included several classes of problems omitted here. One such group of problems takes the form

of a protected resource whose operations contain several invocations of resource procedures,

rather than just one. The bank account problem in (20) is a member of this group. Another

set of problems has one synchronizer controlling access to more than one resource. We need to

know whether these problems can be reformulated to fit the model used here. If not, it is

important to determine what properties synchronization mechanisms must satisfy to handle

these problems adequately.

One further extension to the analysis of requirements for synchronization mechanisms

is the determination of the properties needed for such a mechanism to be usable in a

distributed environment. We believe the modularization of a shared resource, and the

association of the synchronization scheme for that resource with the resource definition, is a

valid model in both centralized and distributed systems. However, the need for communication

between a protected resource and users in a distributed environment may impose further

restrictions on the kinds of mechanisms acceptable.

--:~--·'

- 111 -

Appendix I - Speolfloatlon of Synohronlzatlon Problems

In this appendix, we present formal specifications for those problems defined

informally in Chapter 2. The notation used is that of Laventha1C24l In this formalism, each ..
invocation of a synchronized operation has associated with it three events: request, enter, and

exit. Request is the time at which the synchronizer first becomes aware that a user wishes to

execute the operation. Enter is the time at which the process gains access to the resource, and

exit is the time at which it leaves. In addition procedure activations are numbered uniquely for

each resource object. For example, p2 denotes the second activation of procedure p. The

specifications are written in terms of events, such as p1enter, which describes the enter event

associated with the ith activation of the procedure p. The symbol • means temporally

precedes.

Writers_Exclude_Others

ReadersJ'riority

((writetnter -+ writelnter) ::> (write1exit -+ writetnter)) 8c

((writetcit -+ readk enter) I (readk exit -+ writea enter))

Though not explicitly stated, the following two constraints are usually assumed. They state

that reads are taken first_comeJirst serve with respect to each other, as are writes.

(read{..,.''-+ readjrequest) ::> (readienter -+ readlnt•')

(write reque•t -+ write reque•t) ::> (write enter -+ write enter)
i j i ' j

- 112 -

First_come_first_serve

(p{8quest ..,. qj'equest) ff (ptnter ..,. qjenter)

Here, p and q represent any resource operations. Whichever activation is requested first is the

one to enter first.

Fair _Readers_Priority

((read{equest ..,. write/•it) => (read1enter-+ writej+lenter)) &:

(((write/xit -+ read{8quest) Be (writej+lrequest -+ read{equest)) :>

(write· enter -+ read enter))
j+l i

One_Slot Buffer

(insert· exit ..,. remove. enter) & (remove· exit ..,. insert· enter)
I I I 1+J

Bounded buffer

Alarmclock

((tick.enter-+ wakeme.(n)'equest) :> (tick· enter..,. wakeme.(n)'n1")) &:
I J l+n J

((wakemeln)'equest ..,. ticki+i8nter) => (wakemeln>'"'" -+ ticki+n+l•nter))

- 113 -

Disk head scheduling

((a enter .._. a enter) ::> (a exit .._. a enter)) &
z y z y

((a.(x2)'8quest .._. ak(xl)exit .._.a (x2)enter) &
I I

(a ·(x3)'8quest .._. ak(xl)exit .._. a ·(X3)enter) &
J J

(am(xO)exit.,.. ak(xl)exit)) &

((xO < xi < x2 & (x2 < x3 I x3 < xi))

(xO > xl > x2 & (x2 > x3 I x3 > xi)))

::> (a .(x2)enter .._. a (x3)enter))
I J

- 114 -

References

1. Andler, S., "Synchronization Primitives and the Verification of Concurrent
Programs", Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pa., May 1977.

2. Andler, S., Private communication, May, 1978.

3. Atkinson, R., and C. Hewitt, "Synchronization in Actor Systems", 4th
SIGPLAN-SIGACT Symp. on Prine. of Prog. Lang., Jan. 1977, 267-280

4. Berzins, V. and D. Kapur, "Denotational and Axiomatic Definitions of Path
Expressions", Computation Structures Group Memo 153, Laboratory for
Computer Science, M.l.T., Cambridge, Mass., Oct. 1977.

5. Brinch Hansen, Per, "Concur.rent Programming Concepts", Computing
Surveys, (5, 4), December 1973.

6. Brinch Hansen, Per, Operating Systems Principles, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

7. Brinch Hansen, Per, "Th~ Programming Language Concurrent Pascal",
IEEE Trans. on Software Engineering, vol SE-I, no 2, June 1975.

8. Campbell, R.H., and A.N. Habermann, "The Specification of Process
Synchronization by Path· Expressions", Lecture Notes in Computer Science 16,
Springer-Verlag, 1974.

9. Campbell, R.H. and P.E. Lauer, "A Spectrum of Solutions to the Cigarette
Smokers Problem", TR 63, University of Newcastle upon Tyne, May 1974.

10. Courtois, P.J., F. Heymans, and D.L.Parnas, "Concurrent Control with
'Readers' and 'Writers'", Comm. ACM 14, 10 (Oct 1971), 667-668.

11. Dahl, O.J., "Hierarchical Program Structures", Structured Programming,
Academic Press, New York, 1972.

12. Dijkstra, E.W., "Cooperating SequentialProcesses", Programming
Languages, (F. Genuys, ed.), Academic Press, N.Y. 1968.

13. Dijkstra, E.W.,"Hierarchical Ordering of Sequential Processes", Acta
Informatica 1,2 (1971), 115-138.

. ·--·-------·-, --------~--

- 115 -

14. Flon, L. and A.N. Habermann, loward the Construction of Verifiable
Software Systems•, Proceedings of the Conference on Data Abstraction,
Definition, and Structure, Sigplan Notites (8, 2) 1976.

15. Habermann, A.N., •Path Expressions·, Dept of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pennsylv~nia,June 1975.

16. Haddon, B.K., "Nested Monitor Calls•, Operating Systems Review (11,10),
Oct 1977.

17. Hoare, C.A.R., lowards a Theory of Parallel Programming•. Operating
Systems Techniques (C.A.R. Hoare and R.H. Perrott, Eds.), Academic Press, New
York, 1973

18. Hoa.re, C.A;R ., "Monitors: An Operating System Structuring Concept•,
Comm. ACM (17JO) Oct. 74, 54!r557.

19. Howard, J.H.;Proving Monitors•, Comm. ACM (19,S). May 1976, 273-279.

20. Howard, J. H., •signalling in Monitors", Proceedings of the Second
International Conference on Software Engineering, 1976, <t7-52.

21. Jammel, AJ. and H.G. Stiegler, •Managers versus Monitors•, IFIP Congress
Proceedings, 1977.

22. Joseph, P. and V.R. Prasad, •More on Nested Monitor Ca11s•, Operating
Systems Review (12.2), April 1978.

23. Kessels, J.L.W., •An Alternative to Event Q)ltues for Syncrhonization in
Monitors•, Comm. ACM(20,7) July 1977.

24. Laventhal, M.S., "Synthesis of Synchronization Code for Data Abstractions",
TR-203, Laboratory for Cc>rnputer Science, M.lT., Cambridge. Mass., June 1978.

25. Liskov, B.H., Snyder.A., Atkinson, R., Schaffert, C., •Abstraction
Mechanisms in CLu·, Comm. ACM (20, I), August 1917, ~-576.

26. Liskov, B.H., •An Introduction to. CLU", Computation Structures Group
Memo 136, Laboratory for Computer Science,M.l.T., Cambridge. Mass., Feb. 1976.

27. Lister, A.M. and P.J. Sayer, "Hierarchical Monitors•, Proceedings of the
1976 International Conference on Parallel Processing", 1976.

28. Lister, A., "The Problem of Nested Monitor Calls", Operating Systems
Review (11.2), July 1977.

- 116 -

29. Parnas, D.L., "The Non-problem of Nested Monitor Calls", Operating
Systems Review (12,1), Jan. 1978.

30. Reed, D.P. and r. Kanodia, "Synchronization with Event Counts and
Sequencers", Sixth Symposium on Operating Systems Principles, Nov. 1977.

31. Wettstein, H., "The Problem of Nested Monitor Calls Revisited", Operating
Systems .Review (12,1), Jan. 1978.

32. Wirth, Niklaus, Modula: A Language for Modular Multiprogramming,
Institut fur Informatik ETH, Report No. 18, March 1976.

33. Wirth, Niklaus, The Use of Modula, Institut fur Informatik ETH, Report
No. 19, June 1976.

34. Wirth, Niklaus, The Design and Implementation of Modula, Institut fur
Informatik ETH, Report No. 19, June 1976.

35. Wulf, W.A., R.L.London,and M. Shaw, "Abstraction and Verification in
ALPHARD: Introduction to Language and Methodology", Carnegie-Mellon
University and USC Information Sciences Institute Tech. Reports, 1976.

