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ABSTRACT 

Any programming language that supports concurrency needs a synchronization 

construct with which to express access control for shared resources. This thesis examines 

synchronization constructs from the standpoint of language design for reliable software. The 

criteria a synchronization mechanism must satisfy to support construction of reliable, easily 

maintainable concurrent software are defined. Some of these criteria, such as expressive power, 

can be defined only with respect to the set of problems the mechanism is expected to handle. A 

definition of the range of problems considered to be synchronization problems is therefore 

needed. Such a definition is provided by describing the possible types of constraints that may 

be imposed on access to shared resources. We then use this taxonomy of synchronization 

constraints to develop techniques for evaluating how well synchronization constructs meet the 

criteria discussed. These techniques are then applied to three existing synchronization 

mechanisms: monitors, path expressions, and serializers. Evaluations are presented, and the 

three mechanisms compared. 
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1. Introduction 

1.1 Baokgrou-nd and Motivation 

In recent years there has been great interest in development of high-level language 

constructs to support parallel programming. Numerous synchronization constructs have been 

proposed since Dijkstra , introduced the semaphoreC12l These include conditional critical 

regions[5], monitors[IS,7], path expressions[Sl and seria1izers[3l 

In addition, we have come to realize the importame of the role programming 

languages play in the development of reliable, high quality software. Languages that support 

good program structure significantly enhance programmer effectiveness in producing reliable 

software. One methodology for improving software quality is the use of modular programming 

techniques and abstraction mechanisms. Languages such as CLU[25] and Alphard[35] support 

this methodology. 

The need for reliable, easily maintainable software is even greater when concurrency is 

involved. Parallel programs are more complex and harder to understand than sequential ones 

because processes interact more, and time-dependent errors, which are not susceptible to 

traditional debugging techniques, are much more tik.e1y. It is therefore imperative that the 

language constructs used to implement parallelism support good program design. 

While a synchronization mechanism that supports modular programming and the use 

of data abstractions would certainly contribute to the reliability and quality of concurrent 

software, no clear description of the requirements that such a mechanism must satisfy has been 

established. Attempts to evaluate existing synchronization mechanisms usuatty depend on the 

rather ad hoc technique of attempting to implement numerous synchronization schemes using 

the mechanism. Unfortunately, one can never tell, when using this method, whether the 

analysis is complete. If the analysis reveals a weakness in the mechanism, the construct is 

modified or extended to handle the one case found. The result has been the development of 
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numerous constructs, each designed to correct on.e flaw in a previous version, with no standard 

criteria for deciding when a mechanism is satisfactory. 

The aim of this thesis is to state as explicitly as possible the criteria a synchronization 

mechanism must meet if it is to support construction of reliable, well-structured concurrent 

software. We will develop techniques to evaluate how ·well mechanisms satisfy these 

requirements. The criteria and evaluation techniques presented can then be used, not only to 

evaluate existing mechanisms, but as a basis for defining new mechanisms. 

1.2 Research Goals and Outline of the Thesis 

Our intention is to develop a methodology for evaluating the effectiveness of 

synchronization mechanisms in supporting the development of quality concurrent software. The 

first step in this process is to identify the function synchronization mechanisms serve in 

programming languages, that is, we must identify the class of problems to which these 

mechanisms will be applied. We accomplish this in Chapter 2 by developing a taxonomy of the 

synchronization constraints. 

The first criterion we establish is that a mechanism be able to express straightforward 

solutions to any problem that can be defined in terms of the constraints described. A 

mechanism is said to have sufficient expressive power if it satisfies this property. Any construct 

designed to support reliability must satisfy certain other basic criteria also. These include ease 

of use, modifiability, modularity, and correctness. None of these has a precise definition, and we 

must decide how each applies to synchronization. In the remainder of Chapter 2, we define 

these criteria with respect to synchronization and develop techniques for assessing how well 

each is supported by a given construct. 

In Chapters 3, 4 and 5, we examine three synchronization mechanisms: monitors, path 

expressions and serializers. The use of each mechanism is illustrated by a set of examples 

chosen to represent each class in our taxonomy of synchronization constraints. These examples 
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are then used in applying the evaluation techniques developed in Chapter 2. This analysis 

indicates whether a given mechanism satisfies our requirements and can be incorporated into a 

language designed to support software reliability without undermining the goals of that 

language. Furthermore, it provides information as to which problems can be easily 

implemented using a given mechanism. 

1.3 Related Work 

Most of the research directly related to this thesis has been mentioned in the previous 

sections. It falls into two basic categories: the development of synchronization constructs for 

high-level languages, and evaluations of these mechanisms. 

The monitor construct was developed independently by Hoare[IS] and Brinch 

Hansen[?] as an extension of Dijkstra's secretary concept[l3]. 

The path expression mechanism was first developed by Habermann and Campbe11[8], 

and has since been extended and modified several times [15, 14). The mechanism is intended to 

• provide a means of specifying synchronization non-procedurally, as a set of relationships among 

the operations used to access the shared resource. It thus appears to be a higher level construct 

than monitors. 

Serializers are the most recent of the mechanisms discussed. They are based on the 

monitor mechanism and were developed by Atkinson and Hewitt[3] to eliminate certain 

characteristics of monitors that were thought to be detrimental to good program structure. 

Several other, less extensive, proposals have been made to change specific features of 

monitors. Among these are the automatic signalling mechanism suggested by Kessler[23), and 

the manager construct of [21), which are aimed specifically at improving the signalling 

mechanism in monitors (see Chapter 3). These are not ~iscussed in the thesis; serializers are a 

more extensive revision of the monitor construct and cover the changes made by these 

proposals. 

---------------
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Few papers exist on techniques for evaluation of synchronization mechanisms 

according to the criteria mentioned earlier. Andler[l] presents a comparison of semaphores, 

conditional critical regions, monitors and path expressions. The comparison is based on 

solutions to the bounded buffer problem, and focuses on correctness issues. While we are 

concerned with correctness, our interest is primarily in how welt a mechanism supports 

construction of correct programs, rather than with proof techniques for the mechanism. 

In [20), Howard has compared several versions of monitors. Howard is primarily 

interested in equivalence of internal specifications of the various versions, and does not address 

issues of expressibility or ~ase of use. 

The work on the "nested monitor call" problem by Lister[28], and the responses to his 

initial presentation of the problem [29, 31, 22) are also relevant to our research. Further 

discussion of this work appears in later chapters. 

A brief comparison Qf monitors with serializers appears in [31 Some discussion of the 

differences between monitors and path expressions also appears in [151 
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2. Criteria and Evaluation Teohniques 

In this chapter, we present the criteria to be used in the evaluation of synchronization 

mechanisms. Techniques for measuring how well these criteria are supported by various 

synchronization constructs are also presented. 

Our principal concerns in this evaluation focus on programming methodology and the 

ways in which the addition of synchronization to a language influence software quality and 

reliability. We are therefore interested in such properties of synchronization mechanisms as 

expressive power, ease of use, modularity, modifiability, and correctness. These terms are 

sufficiently vague to make evaluation according to these criteria extremely difficult. 

We will attempt to clarify the definitions of these properties with respect to 

synchronization. This chapter is divided into several sections. The first deals with modularity; 

it applies the concept of abstraction mechanisms to the problem of modularizing the 

implementation of shared resources. The following section is devoted to defining a method for 

classifying synchronization problems and describing the range of problems that synchronization 

mechanisms will be expected to satisfy. This classification of problems will be needed in later 

sections to describe techniques for evaluating expressive power, ease of use, and modifiability, 

since these properties are meaningful only with respect to a given set of problems. The final 

section discusses correctness, and the properties of a synchronization mechanism that influence 

how easily a program can be written correctly and how easily it may be proved correct. We will· 

not actually discuss proof techniques. 

Thus, this chapter is devoted to establishing the definitions and techniques necessary 

for evaluating how well synchronization mechanisms support production of reliable, high 

quality software. It is a first attempt at establishing some standard criteria for evaluating 



- 12 -

properties long held to be very important for programming language constructs, but which 

have only intuitive, imprecise definitions. 

2.1 Modularity 

By modularizing programs, we limit the complexity the programmer must deal with at 

any given time, thus making it easier to write correct programs. The increase in complexity of 

software due to the presence of concurrency makes modularization essential for maintaining 

correctness. In this section we describe the ways in which software used to access or control 

access to shared resources should be modularized. This modularization is based primarily on 

the use of abstraction mechanisms[28]. 

There are two distinct modularity requirements for concurrent programs accessing 

shared resources. The first follows from the principle that the definition of an abstraction 

should be separated from its use. We consider a shared resource to be a data abstraction. The 

definition of the synchronization for a shared resource should be part of the definition of that 

resource, rather than being associated with each resource access. Thus our first modularity 

requirement is that usersl see a shared resource abstraction that can be assumed to be properly 

synchronized. No synchronization code need be included in programs accessing the resource. 

Our other modularity requirement has to do with the shared resource definition. 

Within the module that implements the shared resource, we have the definition of the structure 

and operations on the resource, as well as the definition of the synchronization scheme for the 

resource. These two parts actually serve different functions and should be separable into 

different subsidiary abstractions of the. shared resource. 

I. "User" of a resource refers to systems or applications software that accesses the resource. 
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We thus have a model of shared resources that consists of two levels of abstraction. At 

the higher level we have a protected resource abstraction with the operations that users may 

perform in accessing the resource. At the lower level, we have the resource abstraction, with the 

access operations that may be performed after a synchronizer ensures that access is safe, and a 

"synchronization abstraction", which contains state information necessary for synchronization, 

but not conceptually meaningful as a part of the resource, as well as synchronization operations. 

In examining synchronization constructs, we will be attempting to determine whether 

they automatically provide this modularization, and if not, whether they allow the resource 

implementor to easily modularize the design in this manner. 

2.2 Categorizing Synchronization Problems 

As stated earlier, expressive power, ease of use, and modifiability can only be evaluated 

relative to a specific set of problems. A synchronization mechanism need only be powerful 

enough to easily express solutions to those problems we consider to be valid synchronization 

problems. We therefore need a way to describe the range of problems in which we are 

interested. In this section, we identify a set of properties of synchronization schemes by which 

we can classify these problems. We will later use the idea that, since synchronization schemes 

have various combinations of these properties, testing whether the mechanism can express 

schemes with each property, and whether it allows us to easily combine properties, will indicate 

the power and usability of the mechanism. 
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2.2.1 Categorization of Constraints 

Synchronization mechanisms serve two main functions with respect to shared resources. 

One is excluding certain processes from the resource, under given circumstances; the other is 

scheduling access to the resource according to given priorities. Synchronization schemes are 

thus composed of a set of constraints, e;ch having the form: 

if condition then process A is excluded from the resource 

or: 

if condition then process A has priority over process B 

We will refer to constraints of the first type as exclusion or concurrency constraints and the 

second as priority constraints. Within these two main classes, constraints differ in the kinds of 

information referred to in the conditional clause. The information that should be available to 

the synchronizer, and thus the information that can appear in constraints, falls into several 

categories: 

I. the procedure(s) requested :2 

The resource is a data abstraction, so access to it is always obtained through operations of 

the resource type. In some synchronization schemes, the constraints depend on the 

operation requested. In stating, for instance, that readers of a data base have priority over 

writers, we are giving a constraint in terms of the types of procedures requested. In 

contrast, a strict first_comeJirst_serve ordering uses no information about the procedures 

requested. 

2. the time at which requests were made: 

2. We will often refer to this information as the "type" of the request. 
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Though it is rarely necessary to know exact times of requests, the time of a request relative 

to other events is often important. The most frequent use of time information is the 

determination of the order of requests. In addition, it is sometimes necessary to determine 

the synchronization state(see below) at the time of a request. 

3. arguments passed with requests: 

In many cases, the arguments passed with a request for resource access are needed to 

determine the order in which processes should be admitted to the resource. 

4. the "synchronization state" of the resource: 

Synchronization state includes all local data and state information needed only for 

synchronization purpose.s. Included in this category is information about the processes 

currently accessing the resource, and the procedures those processes are executing. 

5. the local state of the resource : 

Local state includes information that would be present regardless of whether the resource 

were being accessed concurrently or sequentially. It is information· mean.tngfU1 to the 

actual unsynchronized resource abstraction. Though local state information. is used Jn 

many synchronization schemes, its use often causes problems because it interferes with 

modularity requirements. (The local state information belongs in the reseurce module; ·and 

thus a synchronizer will not have automatk access to it. Sever-&l options for handling this 

problem are discussed in later chapters.) 

6. history information: 

History information is concerned with whether or not a given event has occurred, such as 

whether a specific procedure has been executed. This information type differs from 

synchronization state in that it refers to resource operations:that have alreacly completed, 

as opposed to those still in progress. It is often interchangeable with local state 
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information, since past events in which we are interested will most likely have left some 

noticeable change in the state of the resource. It is convenient to treat it as a separate 

category because it may be easier for the synchronizer to keep track of the history of 

operations executed than to obtain the required state information from the resource. 

We have thus identified two major types of constraints, and several classes of 

information that distinguish different kinds of constraints within the two major categories. To 

be sufficiently powerful, a synchronization mechanism must provide a means of expressing 

exclusion and priority; it must also enable the resource implementor to express those constraints 

in terms of any of the information types described. 

In the next section, examples that use various combinations of constraint types will be 

given. The way in which a mechanism makes use of different types of information, and how 

easily it can get access to this information are very important in determining how easily 

well-structured, reliable solutions can be developed. 

2.2.2 Examples 

The following are standard examples of synchronization problems. This set was 

chosen to cover all of the information types presented. Only informal descriptions of the 

problems are given. Formal specifications seem unnecessary for our purposes, but to avoid any 

ambiguity, the appendix contains formal specifications using notation from [24]. 

The bounded buffer problem 

The bounded buffer problem assumes there is a fixed size buffer, of length n, into 

which producer processes are placing data, and from which consumer processes are 

retrieving it. The constraints specified are that only one process may access the buffer 

at a time, that the producer may store in the buffer only if it is not full, and that a 



- 17 -

consumer may retrieve information from the buffer only if it is not empty. Thus, the 

constraint!- make use of information on synchronization state, resource sta_te, and the 

procedure requested. 

Readers_Writers Problems 

There are several readers_writers problems[IO] that illustrate the use of different types 

of information. The readers_writers problems assume there is a shared data base 

having read and write operations. All of the versions used here have the same set of 

exclusion constraints: reads may occur in parallel, but a write operation excludes both 

readers and other writers. The priority constraints are different in each version. The 

similarity of the various forms of the problem makes this set of problems especiatly 

useful in evaluating modifiability. 

Writers_exclude_others 

This version of the problem uses the exclusion constraints mentioned above but 

imposes no priority constraints. This synchronization scheme illustrates an important 

type of problem that synchronization mechanisms should be able to handle. The user 

may not care about the order in which operations are executed in certain cases. There 

may be external constraints that guarantee that eventually every request will be served, 

and the order is unimportant. Many mechanisms force the programmer to define an 

ordering when the specification has none. The inability to leave specifications 

nondeterministic is a weakness in the expressive power of the mechanism. 

Readers_priority (or writers_priority) 

In this version a priority constraint is added. If both a read request and a write 

request are pending, then the read (or in writers_priority, the write) is always given 

priority. The exclusion constraints remain the same. The priority is now based on the 
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operation requested. Notice that this scheme allows starvation.3 

First_come_first_serve (fcfs) 

In this version of the readers_writers problem, the type of operation requested is not 

used at all in the specification of priority constraints. Instead, priority is based entirely 

on order of request. 

Fair _readers_pri ority 

The fair Jeaders_priority scheme gives readers some priority over writers but limits 

that priority enough to be sure writers will eventua11y be served. One way of fulfilling 

this requirement is by use of the following constraints. If there are writers waiting 

when a read is requested, then the read must wait until one write completes. All reads 

waiting at the termination of that write may proceed. These constraints imply that 

only a finite number of readers have priority over a given writer. The writer that has 

been waiting longest will have priority over any readers not yet in the resource. The 

priority constraints for this scheme use a combination of request time and operation 

type. 

The One_slot buffer 

The one_slot buffer[8] problem assumes there is a message buffer with room for exactly 

one message. Users may insert and remove messages. The synchronizer must 

guarantee that a message is inserted before any process executes a remove, and that no 

message may be inserted before the previous one has been removed. Thus, an insert 

may occur only if the previous operation was a remove or a create, and remove may 

3. Starvation means that a process waiting to access a resource may wait forever and never be 
granted access. In the readers_priority scheme, since readers have higher priority than writers, 
if reads are requested often enough a writer may wait forever. 
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occur only when the previous operation was an insert. Operations occurring out of 

order must wait until these constraints are satisfied. This example therefore illustrates 

the use of history information. The synchronizer must keep track of the operations 

already _exec~ted to determine whether a process may enter the resource.4 

The disk scheduler 

The disk scheduler [18] is a scheme to control access to a disk by using an "elevator" 

algorithm. The disk head moves in one dir«tion until there are no more requests for 

tracks in that direction; then the direction is reversed. The access request contains the 

track number as an argument. The algorithm works as follows. If the had is 

currently moving up (toward higher-numbered tracks) then requests for tracks at the 

current track or lower must wait for the return pass. Requests that arrive for 

higher-numbered tracks will be serviced when the head reaches that track on the 

current sweep. Thus, it is the parameter of the request, and the state of the resource(i.e. 

current head position and direction) that determine the priority. The exclusion 

constraint allows only one process at a time to use the disk. 

The alarmclock 

The alarmclock is a system facility that allows processes to block th~selves and request 

to be restarted after a specified period of time. Thus, granting the "resource request" 

means restarting the process. The order in which requests are served is based on the 

argument telling the alarmclock. when to grant the request. The alarmclock example 

itself may not be a realistic use of synchronization. However, it is felt that it illustrates 

a class of problems that a synchronizer should be able to handle. 

4. This problem can be restated using local state information if there ls some way to determine 
whether the buffer contains an unread message. 
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Both the alarmclock and the disk scheduler represent examples of synchronization 

problems using arguments passed with requests as the basis for determining priorities. The 

primary difference between them is that the disk scheduler has a fixed number of possible 

parameter values on which to base the ordering, while the alarmclock may take any integer 

value as an argument. It therefore may require more mechanism to handle the type of problem 

illustrated by the alarmclock. Either the disk scheduler or the alarmclock can be used to 

represent the class of problems using arguments as a basis for priority. 

All of the examples given deal with single resources and single accesses in each call to 

the synchronized resource. We have assumed throughout this thesis that the correct level of 

synchronization is at the point of access to the resource. One may, in addition, want 

synchronization at a level encompassing several resource accesses in the course of executing a 

synchronized operation. Some of the problems resulting from this extension are discussed in 

the section on correctness of hierarchically structured resources. 

We have presented a method for categorizing synchronization problems according to 

their function and the types of information needed to express their solutions. This 

categorization will be used in the following section to develop methods for evaluating the 

expressive power of synchronization mechanisms. Evaluation techniques for ease of use and 

modifiability also make use of this problem classification. 

2 .3 Expressive Power 

In evaluating the expressive power of a synchronization mechanism, we will be 

attempting to decide whether the mechanism provides straightforward methods for expressing 

priority and exclusion constraints, and whether one has the ability to express those constraints 

in terms of any of the information types described earlier. 
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One test of expressive power is to use the mechanism to implement solutions to the 

examples given in the previous section. If there is no direct way to use a certain kind of 

information, it should become obvious when an attempt is made to implement a solution 

requiring it. While testing one example from each class of information may be insufficient to 

guarantee that a mechanism is actually powerful enough, it does provide us with some 

indication of a mechanism's power, and will at least point out any large gaps in power. 

A more general way to measure expressive power is simply to examine each mechanism 

and attempt to determine what features it has that will enable it to deal with each type of 

constraint. For example, we will see that monitor queues are a construct for handling request 

time information, while serializer crowds retain synchronization state information. Some data 

manipulation technique must be available for each type of information. The ability to identify 

the particular way in which to handle each information type will also make a mechanism easier 

to use because the structure of a solution will be indicated by the kinds of information referred 

to in the specification. 

One technique that is often used for comparing the computational power of language 

constructs, and that has recently been used to compare several versions of monitors [20), is 

translation between solutions using different mechanisms. In comparing computational power, 

this technique is useful because if one mechanism can be implemented in terms of another, then 

the implementing mechanism must be at least as powerful as the one implemented. If the 

translation is possible in both directions, the two mechanisms must be equally powerful. This 

technique has been used to show that monitors, serializers and path expressions are alt as 

powerful as semaphores. Since semaphores are considered to be sufficiently powerful as a 

synchronization construct, alt three higher level constructs must have sufficient computational 

power. 
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It has been suggested that this translation technique can be used in comparing 

expressive power as well. If there is a straightforward, simple translation from one mechanism 

to another, then the one translated to must have at least the expressive power of the other. We 

have chosen not to employ this technique because the results of such a translation are unclear. 

It is too difficult to judge how simple and straightforward a translation algorithm is, or whether 

the translations in each direction are equivalent in complexity. If the translation in one 

direction varies slightly in complexity from the one in the other direction, the. mechanisms 

probably vary slightly in power. Though the methods presented earlier for analyzing 

expressive power seem less algorithmic than the translation technique, we feel that by defining 

. the set of properties we expect a mechanism to express, and then testing for the ability to do so, 

we have in fact used a more objective approach than translation. 

2.4 Ease of Use 

In analyzing expressive power, we determine whether a synchronization mechanism 

allows the straightforward implementation of the synchronization constraints described earlier. 

, Whether or not a mechanism is easy to use depends not only on the ability to easily construct 

solutions to individual constraints, but on the ability to easily construct implementations of 

complex synchronization schemes made up of many such constraints. 

Given that our requirements for expressive power are satisfied, complex 

synchronization schemes will be easy to implement only if they can be decomposed into 

individual constraints that can then be realized independently. If the implementation of any 

one constraint is dependent upon the other constraints present, solutions quickly become very 

difficult to construct as the number of constraints increases. Since the implementor must be 

aware of the entire set of constraints, and make sure that each constraint is consistent with every 
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other constraint present, the complexity of construcUng the solution . (not the complexity of the 

solution itself) increases with the number of combinations of constraints present. It is therefore 

far more difficult to construct· a solution than if it were possible to implement each constraint 

separately, regardless of which other constraints were present. 

One way to test whether a mechanism a11ows independent implementation of 

constraints is to examine solutions to two similar synchronization problems. If the solutions 

share some constraints, but differ in others, then the common constraints should be similarly 

implemented in both solutions. Differences in the way a given constraint is implemented in two 

different synchronization schemes, or solutions in which the implementations of each individual 

constraint are not even identifiable as separate parts of the solution, indicate that our 

independence criterion for constraints is being violated. 

Among the examples presented earlier in this chapter, there. are several readers_writers 

problems having a common exclusion constraint. The problems differ in the priority 

constraints used. These examples provide a good basis for examining independence of 

constraints. If the implementation of the exclusion constraint cannot be iSolat«l in each 

mechanism, or if the implementation in each mechanism differs, it is an indicatiOn that the 

>mechanism is hard to use. Conversely, if the implementation of this constraint is the same or 

very similar in each solution, we have a fairly strong indication that each constraint is 

independent of other constraints in the synchronization scheme. 

Assuming a mechanism satisfies this ~straint independence property, if it is easy to 

express solutions to each individual constraint, it will be easy to express solutions to mor.e 

complex synchronization problems. Our evaluation of expressive power should indicate how 

easily individual constraints can be expressed. Mechanisms that are easiest to use will be thole 

for which there Js a particular structure or method for handling each information class and 
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constraint type. 

2.5 Modifiability 

We define modifiability to mean that a small change in a synchronization specification 

will result in a similarly minor change in its implementation. Like ease of use, modifiability is 

primarily dependent on the constraint independence property discussed in the previous section. 

If each constraint is implemented independently, a modification to one constraint should affect 

only the part of the solution implementing that constraint. If we have showri in our evaluation 

of expressive power that each type of constraint is easily implementable, then a small change in 

the specification should be easy to implement. 

We can also evaluate modifiability by looking at modifications that mi.ght typically be 

made to some synchronization schemes, and judging whether the extent of the change required 

in the implementation was consistent with the size of the change in specifications. We would 

expect that a modification to one constraint that did not affect the type of the constraint or the 

kinds of information used, would be simple to implement. The structure of the modified 

solution should be similar to that of the original. 

Modifications involving many constraints, or those involving changes in the types of 

constraints or kinds of information used, are more extensive, and can be expected to require 

more significant changes to the implementation. However, if it is extremely difficult to change 

an implementation when a realistic change in specifications has been made, the mechanism may 

not be consistent with our goals. Such a weakness in modifiability is usually indicative of a 

weakness in understandability, expressive power, or ease of use as well. 

We would like to analyze and compare the ease with which modifications may be made 

both within a constraint class and between constraint classes. To do so, we will examine several 
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versions of the readers_writers problem: - readers_priority, writers_priority, and 

fair _readers_priority. The readers_priority and writers_priority examples can be used to 

evaluate modifiability for the case in which the constraint types are not changed, since both use 

priority constraints based on procedure requested. The fair Jeaders_priority problem combines 

priority based on procedure type with that based on order of request. We would thus expect a 

change from readers_priority to writers_priority to be easier than a change from 

readers_priority to fair _readers_priority. 

Thus, we can measure the "size" of a modification in terms of the number and types of 

constraints changed, and use this metric in evaluating how well synchronization mechanisms 

support modifiability. In this thesis, we will use transformations between various versions of 

the readers_writers problem to test modifiability. 

2 .8 Correctness 

In the area of correctness, we are concerned primarily with the ability to write correct 

programs, rather than with techniques for verifying those programs. In the sections on 

correctness in the following chapters, we will concentrate on two main topics. One is whether 

there are specific features of each mechanism that will either aid or impede the production of 

correct programs. Highly structured mechanisms that perform a great deal of syntactic checking 

will find errors sooner, leaving less to be debugged at runtime. This is especially important 

when concurrency exists, because parallel programs are prone to time-dependent errors that may 

hot become evident when using traditional debugging techniques. (These mechanisms also ease 

the verification task by enforcing certain criteria at compile time and removing the burden 

from the verifier.) We will also attempt to determine whether there are specific syntactic 

constructs within a mechanism that are particularly hard to use correctly (or are easy to misuse). 
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The other correctness criterion with which we are concerned is whether the use of a 

mechanism will often lead to deadlock. When data abstractions are u.sed as a design tool in 

' 
implementing synchronized respurces, the resources may have a hierarchical structure in which 

the data abstraction representing the resource actually depends on one or more independently 

implemented, lower level abstractions. If these lower level abstractions are themselves 

synchronized, we must be careful that the interactions among the various synchronizers do not 

lead to deadlock. In a hierarchically structured resource, deadlocks can occur in the following 

situation: suppose an operation of the higher level abstraction calls an operation at a lower level 

and the synchronizer at the lower level causes the process to wait on some condition. If that 

condition can only be satisfied through execution of a higher level operation that is excluded 

until the current operation completes, a deadlock results. This situation, as it applies to 

monitors, has gained much attention [28] recently. We will find that the problem applies to 

other mechanisms as well. Part of our examination of correctness issues will be an attempt to 

decide how often deadlocks due to hierarchical structuring occur in using a given mechanism, 

and whether such deadlocks can be avoided. Because hierarchical structuring is fundamental 

to well-modularized programs, it is important that synchronization mechanisms support this 

structuring in a safe manner. 

2.7 Summary 

The criteria upon which we plan to base our evaluation of synchronization 

mechanisms have been presented. These include modularity, expressive power, ease of use, 

modifiability and correctness. We have provided reasonably precise definitions for these 

(usually only vaguely defined) terms with respect to syn~hronization, and developed methods for 

evaluating how well synchronization mechanisms conform to these criteria. Because relatively 
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precise meanings have been provided for each criterion, we have been able to provide testing 

procedures that allow for uniform and fairly objective analyses of each mechanism. 
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3. Monitors 

The monitor construct was developed independently by Hoare[18] and Brinch 

Hansen[7] as an extension of the secretary con_cept of DijkstraCSl The version used here is the 

one defined by Hoare. 

A monitor consists of a set of operations needed to schedule access to a shared resource, 

and any local data needed by those operations. Its structure is derived from that of the Simula 

class construct[ll] and is similar to the cluster in CLU[25] and the form in ALPHARD[35l The 

construct is presented here using syntax from the programming language CLU,1 rather than the 

Simula syntax used in [181 but we have not modified the semantics of the mechanism in any 

way. The form of a monitor definition is: 

monitorname - monitor is opl, ... , opn; 
rep - record[..local data .. ] 

opl • proc() 

opn • proc( ) 

end monitorname 

The procedures defined within a monitor module are mutually exclusive. Only one 

process at a time may execute an operation on a given monitor object. All monitor operations 

that may be called by users are listed in the isjist. The rep (the internal structure of the 

monitor) is a record that contains all local data needed by the monitor in making 

synchronization decisions. It may also contain the resource object. in which case users will view 

I. All examples in this thesis are written in CLU-like syntax so as to provide a uniform 
language for comparing solutions. 

~----------------------·-----



- 29 -

the monitor as a protected resource. 

Synchronization is accomplished via two special operations, wait and signal, which are 

called from within monitor operations. The invocation wait(queue) causes the calling process to 

be suspended and placed at the end of the named queue. Control of the monitor is relinquished 

by the waiting process, so another process waiting to execute a monitor procedure may continue. 

When a waiting process is restarted, it continues execution at the statement following the 

invocation of wait. 

The invocation signal(queue) restarts the first process on the named queue. This 

process immediately regains control of the monitor and continues execution. The signalling 

process is suspended on an urgent queue. Processes on the urgent queue have highest priority 

for regaining control of the monitor when another process relinquishes it. One other operation 

on queues is provided for use in monitor procedures; the operation queue takes one argument, 

which is a queue, and returns true if there is a process waiting on that queue, and Jalst 

otherwise. 

When a process executes a wait, it is normally placed at the end of the specified queue. 

In some cases, it is desirable to specify the order in which processes are to be placed on the 

queue. The monitor mechanism therefore provides priority queues. The wait operation on 

priority queues takes a second argument specifying the priority associated with the waiting 

process. 

Monitors may be used in one of two ways; the shared resource may be made a 

component of the monitor, or the resource and monitor objects can be created independently. If 

the resource is part of the monitor object, it will be created when the monitor is created; the 

resource will therefore be accessible only through monitor operations. Since monitor operations 

are mutually exclusive, mutual exclusion on the resource is automatic. 
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To allow concurrent access, the resource must be separated from the monitor object. 

Since the resource will now be accessed outside of the monitor operations, appropriate monitor 

operations must be invoked before and after resource accesses to ensure proper synchronization. 

This structure leaves open the possibility of accessing the resource without first using the 

monitor. Later in this chapter, we will discuss methods of structuring shared resources so as to 

prevent unsynchronized access, while aHowing concurrency. 

An example of the use of monitors to solve the boonded buffer problem is given in 

Figure I. In this example, the monitor contains the resource (the buffer), two queues, nonfull 

and nonempty, and the maximum buffer size. We use the name condition instead of qU1Ut in 

the examples to conform .to the notation in [181 Since the buffer is inside the monitor mutual 

exclusion is guaranteed. 

The monitor operations work in the following way. In the append operation, a test is 

made to see if the buffer is full If it is, the append cannot proceed, so the executing process is 

placed on the nonjull queue, and the monitor is released. When there is space in the buffer, the 

process continues at the statement following the wait. After the data is appended to the buffer; 

the nonempt'J queue is signalled. Since a message was just inserted, the buffer can no tonger be 

empty, so a process waiting to do a remove may proceed. 

The remove operation keeps processes waiting on the nontmpt'J queue until data is 

available in the buffer. When a remove operation completes, a buffer slot becomes available, so 

the nonjull condition queue is signalled. This will cause a process waiting to perform an 

append to continue. 
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Figure 1 .. Bounded Buffer using Monitors 
bounded_buffer • monitor is create, append, remove; 

am= array[message]; 
rep • record[ slots:am, max:int, nonempty, nonfull: condition] 

create .. proc(n:int) returns (cvt); 
return (repS{slots:amSnew(), 

max:n, 
nonempty ,nonf u II: cond itionScreate()}); 

end create; 

append • proc(buffer:cvt, x:message) ; 
if amSsize(buffer.slots) = max 

then conditionSwait(buffer.nonfull); 
end; 

am$addh(buffer.slots,x); 
con d ition$signa l(b u ff er .nonempty); 
end append; 

remove .. proc(buffer:cvt) returns (message); 
if amSsize(buffer.slots) .. 0 

then conditionSwait(buffer.nonempty); 
end; 

x:message := amSreml(slots); 
cond itionSsignal(buff er.nonfu 11); 
return (x); 
end remove; 

end bounded_buffer; 

3.1 Expressive Power 

In the last chapter, a set of examples representative of the classes of common 

synchronization problems was presented. In this _seetion, the monitor solutions to these examples 

will be described and these solutions will be used to evaluate the expressive power of the 

mechanism. 

The bounded buffer solution has already been presented. This example makes use of 

resource state information to describe exclusion constraints. The solution given demonstrates 
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that the use of such information poses no problems for the monitor construct. This type of 

information is obtainable either by invocation of resource operations that return state 

information or by keeping the needed information in the monitor object. In Figure 1, the 

current buffer size is obtained by invoking the size operation, but the maximum size is stored 

in the monitor. 

The next examples to be discussed are the readers_writers problems. These solutions 

use monitors that are associated with, but do not contain, the resource. Such a structure allows 

concurrent access to the resource. 

Readers_priority 

The readers_priority monitor is shown in Figure 2. (The solution is taken from [181 

but translated into CLU.) It contains four operations, one to be used before and one after each 

resource access. To properly synchronize the resource, users must invoke the appropriate 

monitor operations preceding and following each access. 

The solution is relatively simple. The local variabl~ bus1 is used to keep track of 

whether there is a writer in the resource. Readercount is the number of readers in the resource. 

The startread operation prevents readers from proceeding if a writer is in the resource, while 

writers must wait in startwrite if any process is currently in the resource, or, because readers 

have priority, if there are reads waiting. (Since readers only wait if there is a writer in the 

resource, there is no need for .a separate test to determine whether readers are waiting if we are 

testing busy) Endread wilt signal the writers queue when the last read exits the resource. 

End write wilt check whether there are readers waiting and, if so, signal the readers queue; 

otherwise it will signal the writers queue. 

This solution's structure, and its use of request type and synchronization state 

information are fairly straightforward. The needed information about synchronization state is 

------------------



Figure 2. Readers_Priority Monitor 
readers_priority • monitor is create, 

startread, 
end read, 
start write, 
end write; 

rep - record[readercount: int, 
busy:boolean, 
readers, wrtters:condition]; 

create • proc() returns (cvt); 
· return(repl{readercount: 0, 
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busy:false, 
readers,writers:conditionlcreate()}); 

end create; 

startread • proc(m:cvt); 
if m.busy then conditionlwait(m.readers~end; 
m.readercount:• m.readercount .: I; 
conditionlsignal(m.readers); 
end startread; 

endread • proc(m:cvt); 
m.readercount:• m.readercount - I; 
if m.readercount:-0 

then conditionlsignal(m. writers) 
end; 

end endread; 

startwrite • proc(m:cvt); 
if m.readercount > 0 I m:busy 

then conditiontwait(m.writers) 
end; 

m.busy:•true; 
end startwrite; 

endwrite • proc(m:cvt); 
m.busy:-false; 
if conditionlqueue(m.readers) 

then conditionlsignal(m.readers) 
else conditionlsigna1(m.writers) 
end; 

end endwrite; 

end readers_priority; 
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kept in the local variables busy and readercount. Request type information is kept by queuing 

processes requesting different operations on different queues. 

While this solution indicates that monitors can adequately handle these information 

types, it also illustrates some weaknesses in the construct. The monitor mechanism provides no 

way to associate the monitor with the resource it is to synchronize. If this monitor is used with 

no additional structure, correct synchronization depends on users of the resource properly 

invoking monitor operations before and after each access; there is no protection against 

unsynchronized access. Modularity is impaired because monitor invocations must appear in 

user procedures, and correctness is undermined because no guarantee of proper synchronization 

exists. 

A method for using monitors that conforms to the model of protected resources 

discussed in Chapter 2 is needed. Users must only have access to the protected resource, and 

the synchronization for the resource should be localized within it. This can be accomplished by 

constructing a protected__database abstraction that encapsulates both the monitor and the 

resource. Users will then have access only to protected_database objects; invocations of monitor 

and resource operations will be allowed only within protected_database operations. A protected 

readers_writers database is shown in Figure 3. 

It is thus possible to construct synchronized resources with the resource and monitor 

separated, while maintaining protection from unsynchronized access. This method for doing so 

is discussed further in the section on modularity. 

First_come_first_serve 

Another version of the readers_writers problem is the first_comeJirst_serve scheme. Its 

solution is given in Figure 4. Because priority in this example is based on time of request 

rather than type of request, the queuing scheme is different from that of the previous example. 
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Figure 3. Readers..Priority Protected_Reaource Module 
protected_data_base •cluster is create.read.write; 

rep • record[m: readers_priority,d: data_base) 

create • proc()returns(cvt); 
return (repl{m: readers_prioritylcreate{), 

d: data..)>aselcreate()}}, 
end create; 

read • proc(pdb: cvt) returns(data}, 
readers_prioritylstartread(pdb.m); 

· x:data :•data_baselread(pdb.d}, 
readers_pri9ritylendread(pdb.m); 
return (x); 
end read; 

write • proc(pdb: cvt, x:data); 
readers_prioritylstartwrite(pdb.m}, 
data_baselwrite((pdb.d, x); 
readers_prioritylendwrite(pdb.m}, 
end write; 

end protected_data_base; 

Readers and writers are placed on a single queue, thereby ordering them by time of request. 

However, the exclusion constraints for read~rs are different from those for writers, so 

information about type of request is also needed. Because the monitor construct provides no 

means of identifying the process at the head of a queue or determining the conditions for which 

it is waiting, the first process on the queue must fM dequeued before the exclusion constra1nts 

can be checked. In the first_comeJirstJerve case, it happens that the exclu1ion constraints for 

readers are always met when a process is dequeued from the users queue. However, there can 

be readers in the re$ource when a signal on the users queue occurs, so the constraints for writers 

may not be satisfied. If a writer is dequeued when the resource is not empty, the writer wtll 

have to wait on a second queue until the constraints are satisfied. The signalling scheme 
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Figure 4. First_Come_First_Serve Monitor 
first_comeJirst_serve • monitor is create, startread, endread, startwrite, endwrite; 

rep • record[ busy: boolean, 
readercount: integer, 
users, writer: condition) 

create = proc() returns (cvt); 
return(repS{busy:false, readercount:O, users, writer: conditionlcreate()}; 
end create; 

startread .. proc(m: cvt) 
if m.busy I conditionSqueue(m.writer) I conditionlqueue(m.users) 

then conditionlwait(m.users}; 
end; 

m.readercount:=m.readercount + I; 
conditionlsignal(m.users}; 1.start all readers 
end startread; 

endread • proc(m:cvt); 
m.readercount :• m.readercount - I; 
if m.readercount = 0 

then if conditionlqueue(m.writer) 

end; 

then conditionlsignal(m.writer) 
else conditionlsignal(m.users) 
end; 

1.anyone on the writers queue has been waiting longer than those on users queue 
end endread; 

startwrite = proc(m:cvt); 
if m.readercount > 0 I m.busy 

then conditionlwait(m.users); 
end; 

if m.readercount > 0 
then conditionlwait(m.writer); 
end; 

m.busy := true; 
end startwrite; 

end write = proc(m:cvt); 
m.busy:=false; 
conditionlsignal(m.users); 
end endwrite; 

end first_comeJirst_serve; 
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ensures that a writer waiting on the writers queue will be served before any other process is 

dequeued from the users queue. Since no processes are being allowed into the resource, it will 

eventually empty and the writer will be signalled. This signalling order preserves the 

first_come_first_serve specification. 

It is thus possible to express request time information using monitors. This solution is 

more complex than the readers_priority solution, but since it contains an additional type of 

information we would. expect some additional complexity. The two queues in the solution 

maintain different types of information. The users queue keeps track of relative times of 

request, while the writers queue maintains request type information. Thus, we can identify the 

part of the solution associated with each constraint. Though it is more complicated than the 

readers_priority solution, this example still appears reasonably straightforward and easy to 

understand. 

Writers_exclude_others 

Though conceptually simpler than the other problems, the writers_exclude_others 

example creates special difficulties for monitors. The specification of this problem contains only 

exclusion constraints; the order in which waiting processes are granted access to the resource is 

unspecified. The difficulty in implementing this specification arises from the way in which 

priority constraints are handled. The monitor construct requires that control of the monitor be 

explicitly passed to waiting processes via the signal mechanism. In cases where more than one 

queue contains processes ready to contir:me, the signalling procedure must select one of the 

queues; the priorities of those queues must therefore be explicit in the code of the monitor 

procedures. There is no way for the programmer to leave the priorities unspecified. In such 

cases, the design process is made more difficult, and the likelihood of error increased. We 

would prefer the mechanism to grant access requests in some fair order at times when the order 
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is not determined. 

As a basis for comparison with other mechanisms, we present a solution that satisfies 

the writers_exclude_others consfraint, and, in the cases in which order is not determined by the 

specification, grants access in order of request. (The ambiguity arises in exactly one case here: 

when a write terminates, and both readers and writers are waiting.) This solution ls basically 

the first_come_first_serve solution, with the change that if there are already readers in the 

resource, any new readers will be allowed to continue, even if there are writers waiting. (This 

solution therefore allows writers to starve.) The solution appears in Figure 5. 

One_Slot Buffer 

The one_slot buff er problem is a simple example or the use of history information. 

The resource is a message buffer that can contain only a single message. The insert and 

remove operations on the buffer must alternate to ensure that no message is lost. Monitors 

have no specific method for sequencing operations, so the history information is kept as local 

data. The easiest way to solve this problem in monitors is to treat it as local state information, 

rather than history information, making it a special case of the bounded_buffer problem. The 

only local data needed is a boolean indicating whether there is an unread message in the buffer. 

We could alternatively keep a local variable indicating the last operation performed. Either 

solution is simple; however, because the implementor must manage the information explicitly, it 

will be difficult to implement solutions using complex history information. This is not a serious 

drawback because such schemes do not appear to be common. However, as will be seen in the 

next chapter, path expressions provide a direct method of expressing such constraints, and are 

thus better suited for these kinds of problems. 
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Figure 5. Writers_Exclude_Others Monitor 
writers_exclude_others •monitor is create, startread, endread, startwrite,endwrite; 

rep • record[busy: boolean, 
readercount: int, 
users, writers: conditionl 

startread • proc(m:cvt); 
if m.busy 

then conditionlwait(m.users); 
end; 

m.readercount :• m.readercount+l; 
conditiontsigna1(m.users); ~art all waiting readers 
end startread; 

endread • proc(m:cvt); 
m.readercount :• m.readercount-1; 
if m.readercount • 0 

then if conditionlqueue(m;writers) 
then conditionkignal(m.writers) 

·end; 

else conditionlsigna1(m.users) ithere might be a writer on the users queue 
end; 

end endread; 

startwrite • proc(m:cvt); 
if m.readercount > 0 I m.busy then conditionlwait(m.users) end; 

'?.if there are readers waiting behind a writer at this point, 
'?.they will not be restarted. To do so requires stgnaHing users again before 
'?.the wait in the next statement. 

if m.readercount > 0 then ~onditionlwait(m.writers) end; 
m.busy :• true; 
end startwrite; 

end write • proc(m:cvt); 
m.busy :• false; 
if conditiontqueue(m. writers) 

then conditionlsignal(m.writers) iproce55eS on writers queue have waited longest 
else cond itionlsigna1(m.users) 
end; 

end endwrite; 

end writers_exctude_others; 
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Alarmclock 

The one category of synchronization schemes not yet discussed involves constraints 

based on arguments passed to the synchronization operations. The alarmclock problem 

illustrates the use of priority queues to handle such constraints. The alarmclock is a system 

facility that allows processes to put themselves to sleep until a specified time. The monitor 

solution to the alarmclock problem is given in Figure 6. One shortcoming of this solution is 

that the first process in the queue is awakened every time unit; if it is not yet the time at which 

it was to be restarted, it i.s requeued. Thus the implementation is awkward. The awkwardness 

Figure 6. Alarmclock Monitor 
alarmclock "' monitor is create, wakeme, tick; 

pq=priority _queue; 

rep= record[wakeup: pq, now: int]; 

create = proc() returns(cvt); 
return (repS{wakeup: pqScreate(), now: O}); 
end create; 

wakeme "' proc(ac: cvt, time: int) 
alarmsetting: int :• time+ac.now; 
while ac.now < alarmsetting do 

pq$wait(ac.wakeup, alarmsetting) 
end; 

'7.the while statement is necessary because the first process on the 
1.queue is a wakened every tick. 
pq$signa l(ac. wakeup); 
1.in case the next process has same wakeup time. 
end wakeme; 

tick = procedure(ac:cvt); 
ac.now := ac.now + I; 
pq$signal(ac. wakeup); 
end tick; 

end alarmclock; 
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exists because monitors cannot examine the first entry on the queue without dequeuing it first. 

As noted by Howard[l9], adding an operation on priority queues to return the priority of the 

first element will eliminate this problem. 

Disk Scheduler 

Although the disk scheduler illustrates the use of information types already presented, 

we present it here for comparison with other mechanisms. The solution uses two priority 

queues, upsweep and downsweep, which hold the processes to be served on the next sweep of 

the disk head up or down the disk. The track number requested serves as the priority for 

enqueuing processes. In the upsweep queue, the lowest track requested is first on the queue, 

while the downsweep queue is in the reverse order. The structure of the solution resembles that 

of the readers_priority solution in that operations are provided for synchronizing before and 

after the disk access. The primary function of the monitor is to ensure exclusion on the disk., 

and to move the diskhead in the proper sequence. The solution is shown in Figure 7. 

Initially, the disk head is positioned at track 0, and is moving up. When a request to 

access the disk is made, the track requested is compared with the current track. If the track 

requested is the current track, the request is queued to be serviced on the next sweep across the 

disk; immediate service would allow starvation of processes requesting other tracks. If the 

requested track is greater than the current track, the process is queued on the upsweep queue; if 

less than the current track, the process waits on the downsweep queue. 

When a process releases the disk, the next request on the queue for the current 

direction is served. If that queue is empty, the direction is changed and the first process on the 

queue for the new direction is signalled. 
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Figure 7. Disk_Scheduler Monitor 
disk_scheduler .. monitor is create, request, release; 

pq•priority _queue; 
rep • record[upsweep, downsweep: pq, 

busy: boot, 
direction: string, 
headpos: cylinder]; 

create - proc(cylmax: int) returns(cvt); 
retutn(repl{upsweep, downsweep: pqlcreate(), 

busy:false, 
·direction:"up", 
headpos:O}); 

end create; 

request • proc(dest:cylinder, sched:cvt); 
if sched.busy 

then if sched.headpos < dest I (sched.headpos • dest 8c sched.direction • ·down•) 
then pqlwait(sched.upsweep, dest) 
else pqlwait(sched.downsweep, dest) 
end · 

end; 
sched.busy : .. true 
sched.headpos:• dest; 
end request; 

release • proc(sched: cvt); 
sched.busy :•false; 
if sched.direction • "up" 

then if pqtqueue(sched.upsweep) 
then pqlsignal(sched.upsweep) 
else sched.direction :• "down" 

pqlsignal(sched.downsweep) 
end; 

elseif pqlqueue(sched.downsweep) 
then pqlsignal(sched.downsweep) 

else sched .. direction :• "up" 
pqlsignal(sched.upsweep) 

end; 
end release; 

end disk_scheduler; 
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3.1.1 Conclusions 

We conclude from the analysis of the examples that monitors have the power necessary 

to express a wide range of synchronization problems. All but the writers_exclude_others 

problem had straightforward, easily derivable solutions. Furthermore, the analysis made 

apparent specific ways in which each type of information is handled within monitor solutions, 

and how each type of constraint is expressed. Request type and request time information are 

maintained via use of queues, as shown in the readers_priority and first_comeJirstJerve 

. 
examples. Information from arguments passed can usually be handled by priority queuing. 

Synchronization state, history information, and some local state information must be explicitly 

kept by the user in "local variables" (in CLU, these local variables are additional components of 

the rep). While use of local variables is a rather low level method of maintaining information, 

and requires the synchronization procedures to exp!icitly keep and manipulate the information, 

it does provide generality. We can therefore be confident that any synchronization constraint 

can be implemented in a fairly straightforward manner. 

The use of explicit signals is probably the weakest point in the monitor mechanism. It 

affects expressive power in problems such as the writers_exclude_others problem by forcing 

decisions about priority at every, point where a process is restarted. In addition, correctness and 

understandability are undermined. When a process performs a wait, there is no indication of 

when or by whom it will be awakened, so it may be difficult to understand the conditions under 

which it will be resumed. The conditions tested before a wait may not be the same as those 

that must be true before the process resumes. An example of this situation appears in the 

fair Jeaders_priority solution. Readers must wait if there are any writers waiting, but they can 

be resumed even if some of those writers are still enqueued. It is therefore necessary to examine 
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all of the monitor procedures to determine when waiting processes will be signalled. Correctness 

is affected because the implementor must be careful to perform signals at all the necessary 

points. (It should be noticed in the examples presented that signals on a given queue must 

often be performed in several places.) Forgetting any point at which the conditions for 

signalling might .become satisfied will lead to incorrect solutions. 

It should be mentioned that explicit signals do have several advantages over automatic 

signalling constructs. Explicit signals are more efficient; they were included in the monitor 

construct precisely for this reason. Automatic signals, such as those found in serializers, are less 

efficient because the conditions associated with every queue must be checked each time 

possession of the synchronizer is relinquished. We can also be sure that explicit signals are 

powerful enough to implement any ordering scheme we choose. We will see in the serializer 

\ 

chapter that cases exist for which it is easier to write solutions using explicit signals, than using 

automatic signalling. 

3.2 Modularity 

In several of the solutions in the previous section the criteria for modularity discussed 

in Chapter 2 are not met. The bounded buffer solution combines the implementation of the 

buffer with the synchronization in a single module. The readers_priority example improves the 

situation by having a separate synchronization module, but provides no way of associating the 

monitor with the resource to protect against unsynchronized accesses. If monitors are to meet 

our requirements, we will need to develop a discipline for using them that produces reliable · 

and properly modularized implementations of shared resources. 

The protected_database module provided with the readers_priority monitor in the 

previous section (Figure 3) illustrates that an abstraction that encapsulates both the monitor and 
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resource modules will protect the resource from unsynchronized access, while allowing separate 

implementations of the resource and monitor. When such an abstraction is used, users of the 

resource will have access only to the protected object. The operations on the objects of the 

protectedJesource type can ensure that the monitor is properly accessed before and after 

accesses to the resource. The form of protectedJesource objects is shown in Figure 8. 

Jn the general case, the method for producing this structure is as follows. A resource 

abstraction containing no synchronization should be defined. The synchronization constraints 

are implemented in a monitor, which will have operations to be called before and after each 

resource access. The operations to be called before an access must check that constraints are 

satisfied, and invoke waits if not. Before terminating, this "start" procedure should set monitor 

information about synchronization state to indicate that the process has entered the resource. It 

is assumed that the resource will be entered immediately upon leaving the monitor. The 

operations to be invoked following a resource access should reset the state information and 

signal any queues for which the associated conditions have become true. We are thus assuming, 

in designing this monitor, that operations will be called exactly in the order 

"mon itorSsta rt_access; resou rceSaccess; mon itorSend_access". 

We ensure that this order is upheld by creating a protectedJesource abstraction, which 

will contain both the monitor and the resource. Thus, a create operation on the 

Figure 8. Protected Resource Structure 

protected resource 
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protected_resource will create both a resource object and a monitor object, and neither will be 

accessible to any but protectedJesource operations. The operations of the protectedJesource 

correspond to the operations users may invoke on the resource. In other words, for every 

operation access of the resource type, there should be an operation access of the 

protectedJesource type.2 Each protectedJesource access operation should contain exactly the 

three invocations mentioned earlier: 

access = proc(pr:protected_resource); 
mon itor$start_access(pr .man); 
resou rcdaccess(pr .res); 
mon itor$end_access(pr.mon ); 
end access; 

Thus, the protectedJesource operations enforce the proper use of the monitor when the 

resource is not inside the monitor. 

In addition to providing better modularity and allowing concurrent access, this 

structure has another advantage over solutions in which the resource is contained in the 

monitor: it reduces the possibility of deadlocks. Implementing resources inside monitors can 

lead to deadlocks in the following situation.3 Suppose the resource were implemented in terms 

of another abstract type that contained a monitor. Resource operations would be invoked from 

the monitor containing the resource. A resource operation could then invoke an operation of 

the lower level monitor. If a wait is executed in the lower level monitor, that monitor will be 

released, but the higher level monitor will not. If the only place a signal can occur in the lower 

level monitor is in an operation invoked from the higher level, a deadlock will result. 

2. There are cases in which the protected_resource operations need not be one-to-one with 
resource operations. We may want to hide more information than just the synchronization 
inside the protected_resource. For instance, an operation of the protected resource may perform 
several resource accesses. The general structure remains the same, however: the 
protectedJesource operations coordinates monitor calls with resource invocations. 
3. This problem is referred to as the "nested monitor call" problem in[28]. 
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Separating the resource from the monitor eliminates the possibility of hierarchical 

deadlock in almost a'll cases. Because the resource invocations occur outside the monitor, the 

higher level monitor witl be released before the second monitor is entered. Therefore, executing 

a wait in the lower level monitor will not tie up the other monitor, so no deadlock will arise. 

The only case in which the potential for hierarchical deadlock still exists is when the monitor 

must invoke a resource operation. Such a situation may occur when resource state information 

is needed in the synchronization scheme. This situation is rare, however, so the range of cases 

in which hierarchical deadlocks can occur has been greatly reduced. In general, therefore, 

structuring monitor solutions by separating the resource and monitor and providing a 

protectedJesource abstraction substantially improves modularity and correctness. 

Alt of the examples in the previous section, with the exception of the bounded buffer. 

use the method just described for structuring synchronized resources. The bounded buffer 

could, of course, be implemented in the same way. However, because mutual exclusion is 

needed, and buffer operations must be invoked from within the monitor anyway, most of the 

advantages of this structure do not apply. It therefore seems unnecessary to create three 

modules to implement this solution. One improvement in modularity that does seem 

worthwhile for the bounded buffer example is to separate the buffer implementation from that 

of the monitor, but leave the buffer object inside the monitor. The monitor for this buffer is 

shown in Figure 9. Since the monitor is not released during calls to the resource, mutual 

exclusion is still automatic. However, since the resource object is no longer part of the 

monitor.the modularity is better. The monitor no longer contains information that should be 

local to the resource, such as the buffer size; it can obtain the needed information by invoking 

the full and empty operations.· The same monitor can now be used for any size buffer. 

Furthermore, the implementation of the buffer may be changed without modifying the monitor. 
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Figure 9. Bounded Buffer Monitor 
protected_buffer .. monitor is create, append, remove; 

rep '"' record[ slots:buffer, nonempty, nonfull: condition ] 

create '"' proc() returns (cvt); 
return (repS{slots:bufferScreate(), 

nonempty,nonfull: conditionScreate()}); 
end create; 

append = proc(pb:cvt, x:message) ; 
if bufferSfull(pb.slots) then conditionSwait(pb.nonfull) end; 
buffer$append(pb.slots, x); 
conditionSsignal(pb.nonempty); 
end append; 

remove = proc(pb:cvt) returns (message); 
if bufferSempty(pb.slots) then conditionSwait(pb.nonempty) end; 
x:message := bufferSremove(pb.slots); 
cond itionSsignal(pb.nonf u II); 
return (x); 
end remove; 

end bounded_buffer; 

Conversely, the synchronization scheme for the buffer can be altered without changing the 

buffer implementation. Modifiability and understandability are therefore enhanced. This 

structure therefore seems most appropriate for the bounded buffer problem. However, this 

example is clearly an exceptional case. It is only because of the example's simplicity, and the 

fact that it uses mutual exclusion and needs resource state information, that this two-module 

structure seems better than the protectedJesource structure described earlier. 

In conclusion, we can define a technique for using monitors in a way which conforms 

to the model defined in the previous chapter. Unfortunately, there is no way to enforce the use 

of this technique. The lack of enforcement of modularity is one problem that must be 

recognized if monitors are to be included as a synchronization construct in a language 
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supporting software reliability. 

3.3 Ease of Use and Modifiability 

In the section on expressive power, we observed that it was possible to make use of 

each of our information types within monitor solutions. We could, in fact, idemify the way in 

which each type had to be handled in implementations. We must now determine whether these 

individual constraints can be easily combined to form more complex solutions. To evaluate 

constraint independence in monitor solutions, we can compare the implementations of the 

exclusion constraints in each of the readers_writers problems (see Figures 2, 4, 5). In each, the 

constraint on reads is implemented in startread by making readers wait if a writer is in the 

resource, and by ensuring that no write is in progress before signalling the readers queue. 

Similarly, writes must wait if any process is in the resource. We can thus identify the parts of a 

solution associated with each constraint, and add new constraints without modifying already 

existing ones. Some interaction between the exclusion and priority constraints is noticeable in 

the first_come_first_serve solution, because the priority constraint causes writers to wait on two 

queues. The exclusion constraint has to be checked before waiting on each one. In most cases, 

however, it is clear how the exclusion constraints are to be implemented, and priority constraints 

may be added or changed without changing the existing implementation of mutual exclusion. 

The independence of constraints within a solution is the primary determinant of how 

easily that solution may be modified to implement a slightly different synchronization scheme. 

We therefore expect monitors to support modifiability fairly wel1. To test this assumption 

further, we can compare the solutions to the readers_priority and writers_priority problems: 

both use the same information types and differ in only one constraint. Thus, the modifications 

required to change from one to the other should be small. The writer-priority monitor is shown 
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in Figure 10. 

The priority constraint in readers_priority is implemented by signalling readers before 

writers at the termination of a write, and by allowing readers to enter the resource as long as 

the exclusion constraint is upheld, regardless of whether there are writers waiting. To change 

to writers_priority, the signalling in endwrite had to be changed to signal writers before readers, 

and startread changed to block readers if there are writers waiting. (In the readers_priority 

solution, startwrite did not have to check whether readers were waiting because reads only 

waited when a write was in progress, so if busy was false, there were no readers waiting.) The 

modifications necessary to alter the solution were minor and conceptually simple. Only those 

parts of the solution directly related to the constraint being changed had to be altered. 

To determine whether more complex modifications can be made by altering only the 

parts of the solution related to the constraints being changed, we examine the modification of 

the readers_priority solution to a fair Jeaders_priority scheme. This solution combines request 

type information with information about time of request, thus adding an information type to the 

specification. Since a change from an unfair to a fair solution is one that seems likely to be 

made, it is important that modifications of this sort be easy to perform. 

The modification requires the addition of request time information to the priority 

constraints. The needed information can be obtained by checking whether writers are waiting 

when a read is requested. Thus, to transform the readers_priority solution to a fair solution we 

need only add a test in startread to make readers wait if a write is already waiting. Readers still 

get priority when a write terminates. The fair_readers_priority monitor appears in Figure 11. 

Though the actual textual changes made are small, it is conceptually more difficult to 

locate the changes needed in this example. This is to be expected, since an additional type of 

information is needed. It is still possible, however, to limit the modifications to small sections of 



- 51 -

Figure 10. Writers_Priority Monitor 
writers...priority • monitor is create, startread~ endread, 
startwrite, endwrite; 

rep • record[readercount:integer, busy:boolean, readers,writers:condition] 

• 
create • proc() returns (cvt); 

return (repl{readercount:O, busy:fa1se, 
readers:conditionkreate(),writers:conditionkreate()}); 

end create; 

startread • proc{m:cvt); 
if m.busy I conditionSqueue(m.writers) 

then conditionlwait(m.readers) 
end; 

m.readercount:•m.readercount+l; 
condiUonlsignal(m.readers); 
end startread; 

endread • proc{m:cvt); 
m.readercount:•m.readercount-1; 
if m.readercount • 0 

then conditionlsignal(m. writers) 
end; 

end endread; 

startwrite • proc(m:cvt); 
if m.readercount>O I m.busy 

then conditionlwait(m.writers); 
end; 

m.busy:•true; 
end startwrite; 

endwrite • proc(m:cvt); 
m.busy:•false; 
if conditionlempty(m.writers) 

then conditionlsignal(m.readers) 
else conditionlsignal(m.writers) 
end; 

end endwrite; 

end writer-priority; 
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Figure 11. Fair _Readers_?riority Monitor 
fair _rp = monitor is startread, endread, startwrite, endwrite,create; 

rep .. record[ readercount:int, busy:boolean, readers, writers: conditionl 

create = proc() returns(cvt); 
return(repS{readercount:O, 

busy:false, 
readers, writers:conditionScreate()}); 

end create; 

startread = proc(m:cvt); 
if m.busy I conditionSqueue(m.writers) 

then conditionSwait(m.readers) 
end; 

m.readercount := m.readercount + I; 
condition$signal(m.readers); 
end startread; 

endread = proc(m.cvt); 
m.readercount := m.readercount -1; 
if m.readercount .. 0 

then condition#signal(m.writers); 
end; 

end endread; 

startwrite .. proc(m:cvt); 
if m.readercount > 0 I m.busy 

then condition8wait(m.writers); 
end; 

m.busy := true; 
end startwrite; 

endwrite = proc(m:cvt); 
m.busy := false; 
if conditionSqueue(m.readers) 

then conditionSsignal(m.readers) 
else conditionSsignal(m.writers) 
end; 

end endwrite; 

end fair _rp; 
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the solution. The structure of the monitor remained unchanged. 

From the examples shown in this section, we can see that monitors support 

modifiability and ease of use. It is easy to determine which parts of a solution are associated 

with any given constraint, and only these sections must be modified if the specification of that 

constraint is changed. 

8.4 Correctness 

There are two correctness issues with which we are concerned. One is the monitor 

mechanism's use of explicit signals. The other is the possibility of deadlocks due to 

hierarchical structuring of resources. 

The disadvantages of explicit signalling were discussed brieny in the section on 

expressive power. The weakness of the signal construct lies in the inability of the mechanism to 

ensure its correct use. Though a queue is intuitively associated with some logical condition, the 

wait and signal operations provide no way to connect that condition with the actual use of the 

queue. There is no guarantee that a queue will be signalled when the condition associated with 

it is satisfied. Conversely, there is also no guarantee that the conditions associated with a 

signalled queue are true when a signal occurs. 

Proof rules for the signal construct do exist, (see (18] and (19]). Thus, while it may be 

possible to verify that correct programs meet their specifications, the signal construct provides 

little support for producing the correct programs. Though proof rules are important, they are 

no replacement for a mechanism that provides more support for producing correct programs 

initially. 

The other issue with which we are concerned is the hierarchical deadlock. problem. 

This problem was discussed in the section on modularity. We have shown that by designing 
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the protected resource so that the resource is not part of the monitor, we alleviate much of the 

problem. There appears to be no way to guarantee against such deadlocks. 

There has been much discussion about the deadlock problem and possible solutions[28, 

22, 29,31), but at present, no solution has completely eliminated the problem. At best, we can 

minimize the likelihood of its occurrence by properly modularizing monitor solutions. 

3.5 Conclusions 

We have found that monitors meet our expressive power, ease of use, and modifiability 

requirements reasonably well. Only the writers_exclude_others problem lacks a simple, easy to 

construct solution. However, the support given modularity and correctness is weak. The use of 

the technique shown for properly modularizing monitor solutions overcomes the modularity 

problems and improves correctness by substantially reducing the possibility of deadlock due to 

hierarchical structuring of shared resources. 
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4. Path Expressions 

The path expression mechanism was developed by Campbell and Habermann[S] to 

provide a way to specify the synchronization for a data abstraction as part of the definition of 

that abstraction. The mechanism is based on the following concept: since access to a resource 

may be gained only through operations of its type, the synchronization for the resource may be 

defined as the set of allowable orderings in which those operations may be performed. 

A path expression is thus a specification of this set. It is included in the type definition 

for the shared resource type. A path "controller" keeps track of the operations executed on each 

object of the type, and. ensures that the operations executed on that object conform to some legal 

ordering. When a process requests execution of an operation named in a path, if there is some 

allowable ordering in which this operation could occur next, then the process is allowed to 

proceed. Otherwise, the process is blocke.d until the path contro11er determines that the 

requested operation can execute. It is important to realize that the path expression does not 

cause the invocation of procedures. Rather, when an operation named in the path is invoked 

by a process, a check is made to determine whether there is some sequence defined by the path 

that would allow this operation to execute immediately. It should also be noted that the path is 

associated with a resource, not a process, and therefore has no control over which process 

executes which operations. The proper order of operations on a resource must be enforced, but 

each operation may be performed by a different process. 

Several versions of path expressions have been proposed. The version presented here 

is taken primarily from [8]. This version was chosen because it provides a way to explicitly 

state that two resource operations may execute simultaneously. If synchronization is to be · 

specified as a set of relationships among operations on the resource, we felt it imperative that 
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one be allowed to specify concurrency. The assumption that all operations named in paths are 

mutually exclusive is too strong to allow natural solutions to problems. 

The path expression implementation of a synchronization scheme consists of one or 

more.paths of the form: 

path ordering specification end 

where the ordering specification describes the set of allowable sequences of operations. The 

path-end pair, which must surround the ordering specification, denotes that the sequences 

allowed by the specification may be repeated any number of times. When the end of a path is 

reached, control returns to the beginning of the path, and waits for an operation request 

consistent with the start of a sequence allowed by the path. If there are several paths in a 

module, any operation executed must be consistent with all of the paths. If an operation is not 

named in a path, it is unsynchronized, and may occur at any time, regardless of whether any 

other operations are executing. Furthermore, unless concurrency is explicitly stated in a path, it 

is assumed that only one process may be executing an operation named in the path at any 

given time. 

The ordering specification in the path is written in terms of four kinds of relationships 

between operations of the resource type: sequencing, selection, repetition, and concurrency. The 

sequencing operator, ";", allows the specification that a set of procedures must be executed in a 

given order. Thus, 

path open; read; close end 

indicates that open must occur before read, and~ read must occur before close. Since no 

concurrency is specified, all must be executed sequentially. After close executes, the "state" of the 

path expression is the point prior to read. Another open must occur before a read or close. 

Nothing is implied about which processes execute the operations. Each procedure may be 

.· 
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executed by a different process. 

The selection operator, "+ ", allows only one of the specified procedures to execute at a 

time. The path 

path read +write end 

indicates that the path controller must select one process from among those waiting to execute 

read or write to proceed. The one chosen must also conform to the specifications in other paths. 

Although [8] states only that selection must be done in some fair order, we will explicitly require 

that if more than one process is ready to proceed and meets all requirements of the path 

expression, the one that has been waiting longest will be selected. We will need this 

first_come_first_serve property to meet our expressive power criteria. 

Concurrency is denoted by braces surrounding the section of the path that may be 

executed concurrently by several processes. Thus, { read } signifies that several processes may 

execute the procedure read at the same time. Once one process starts executing read others may 

start, as long as some execution of read is still in progress. Once a point is reached at which no 

executions of the bracketed procedure are in progress, this portion of the path is considered to 

be complete. Further requests for read must wait until the next repetition of the path (even if 

the next operation in the path has not yet started). 

Concurrency may also be used in conjunction with other path operators. The path . 
path { read } +write end 

allows reads in parallel, while a single writer will exclude all other processes. The path 

path write; { read} end 

will allow any number of reads in parallel after a write has occurred. At least one read must 

occur between writes. As soon as all readers leave the resource, any further reads will be 

blocked until another write has completed. 
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The expression { write ; read } means any number of sequences of wrltt followed by 

read may execute concurrently. An execution of write must complete before the corresponding 

read starts, but any number of writes and reads may actually be executing at once. The 

expression { read +write } means any number of reads and writes may execute simultaneously. 

Repetition permits a pattern of operations to be repeated any number of times. As 

. stated earlier, the path-end pair surrounding a path allows repetition of sequences allowed by 

the .enclosed ordering specification. 

Examples of the use ofthis mechanism will be presented in the next section. 

4.1 Expressive Power 

In this section, we evaluate expressive power by examining the path expression 

solutions to the problems described in Chapter 2. Each of these examples was chosen because it 

illustrates the use of some type of constraint that synchronization mechanisms must be able to 

express. In discussing the exam_ples, we will also attempt to point out aspects that affect other 

criteria. 

4.1.1 Examples 

Writers_exclude_others 

The writers_exclude_others problem is one for which path expressions are very 

well-suited. The solution is extremely simple. One need only include the path: 

path {read}+ write end 

in the module defining the resource. If a user invokes a read operation while a write is 

executing, the path will block the user process; otherwise the read will be allowed to proceed. A 

------·---------------------------
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write request can proceed only when the resource is empty. 

This example demonstrates that path expressions allow the straightforward 

implementation of exclusion constraints based on the synchronization state of the resource. ·The 

path expression solution is considerably simpler tban the monitor solution. This difference can 

be attributed to the ability to impltment nondeterminate specifications with path expressions. 

The writers_exclude_others problem contains no priority constraints. Thus, if both readers and 

writers are waiting when a writer leaves the 'res0urce, the next process to be served is ·not 

described by the specification. When using path expressions, the implementor of the solution 

need not include any definition of what to do in this cue; the path conti'Olter will make a fa·ir 

selection. Monitors, on the other hand, only define service to be first come first serve for 

processes waiting on a single queue. Since readers and writers are on different queues in the 

monitor implementation of this problem, explicit information about which queue to serve first 

must be part of the monitor solution. That solution is therffore more complex. · 

First_come_first_serve 

The path expression solution to ·the first.:.comeJirst_serve problem is shown in Figure 

12.1 READ and WRITE are the operations available to users ot the resource. Ttte~proceclures 

chat actually access the resource are read and write. 

When READ or WRITE is called, the corresponding request operation ls· immediately · 

invoked. The path will allow only one of these· requests at a time to proceed. and in the order 

in which they were invoked. When a requestwrite starts, it invokes write, which must wait until 

the resource empties. (While it is impossible for other writes to be executing, there may be 

I. This solution ·appears in [81 but is characterized ther.e . only as ~ fair solutkm. Our 
first_comeJirst_serve constraint on selection is needed to guarantee the first_comeJirst_serve 
property. 
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Figure 12. First_Come_First_Serve using Path Expressions 

database - cluster is READ, WRITE; 
rep• ... 

path requestread + requestwrite end 
path { openread ; read} +write end 

requestread .. proc(db:database); 
openread(db); 
end requestread; 

requestwrite - proc(db:database, k:key, d:data); 
write(db, k, d}, 
end requestwrite; 

openread • proc(db:database); 
end openread; 

READ .. proc(db:database, k:key) returns(data); 
requestread(db); 
return( read(db, k)); 
end READ; 

WRITE• proc(db:database, k:key, d:data); 
requestwrite(db, k ,d); 
end WRITE; 

read - proc(db:cvt, k:key) .returns (data); 

end read; 

write • proc(db :cvt, k:key, d:data); 

end write; 

end database; 
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reads in progress.) No other requests can start until the write completes, since write is called 

from requestwrite, and the requestwrite excludes other requests. When a requestread starts, it 

invokes openread. When the openread completes, the requestread will terminate, and read will 

proceed, thus allowing another request to start. Several reads may execute simultaneously, but 

they can only start if there are no requestwrites waiting. 

This example shows that it is possible to use information about time of request in path 

expression solutions. However, the paths no longer contain only operations that access the 

resource. Requestread, requestwrite, and openread are "synchronization procedures". Though 

they are operations of the resource definition module, they are not intuitively operations on the 

resource, and do not access the resource. They are included solely for purposes of 

synchronization. 

The invocations of requestread and requestwrite serve to record information about time 

of request in a manner usable by the path expression. If paths contained only operations that 

were intuitively procedures of the resource type, there would be no way to distinguish between 

time of request and time of entry into the resource. There would thus be no way to separate 

request time information from synchronization state information. By separating the 

user-invoked operations (READ and WRITE) from the actual resource access operations (read 

and write), and by executing a request operation immediately upon invocation of a user 

operation, the path expression mechanism can separate request time from entry time. 

The openread operation has a different function. It does not provide additional 

information for use in the paths; rather it forces reads and writes to occur in the same order as 

their corresponding requests. Without open read in the second path, the following improper 

sequence of operations could occur: requestread; requestwrite; write; read . 

Thus, synchronization schemes requiring information about time of request can be 
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implemented using the path expression mechanism. However, we have evidence that the 

concept of expressing synchronization via relationships among operations on the resource is not 

sufficiently powerful. The burden of finding a way to obtain request time information in a 

form usable by the path expression mechanism has been placed on the resource implementor. 

While this requirement might be acceptable if there were an easily understandable method of 

obtaining the information, no .such method seems to exist. It is never clear whether the 

"request" operations should contain the invocation of the resource access operation. (In this 

example, for instance, requestwrite contains the write invocation, but requestread does not 

contain the call on read, although both requests are being used to obtain the same kind of 

information.) Furthermore, using operations such as openread, which coordinate progress 

through paths, is a conceptually difficult task. Therefore, the need 'for synchronization 

' 
procedures should be considered a weakness in the path expression mechanism. 

Readers_priority 

The readers_priority solution as given in [8] and translated into CLU is presented in 

FigLrre 13. This example is more complicated than the previous one; it is easiest to understand 

if we trace the progress of user requests for access to the resource through the various 

operations in the module. A READ results in the following sequence of invocations: READ, 

requestread, read. WRITE causes the invocations: writeattempt, requestwrite, openwrite, write. 

Readers gain priority in two ways in this solution. First, since requestreads may 

execute concurrently, but requestwrites may not, a requestwrite may be blocked indefinitely while 

requestreads are allowed to proceed because other requestreads are already executing. In 

addition, readers will get priority in the following way. The first path allows only one 

writeattempt at a time. Therefore, since requestwrite is invoked from writeattempt, there wi11 be 

at most one requestwrite waiting at the second path at any time. All other WRITEs in progress 
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Figure 13. Readers_Priority Database using Path Expressions 
database = cluster is READ, WRITE; 
rep= ... 

path writeattempt end 
path { requestread} + requestwrite end 
path { read } + (openwrite ; write) end 

requestwrite = proc(db: database); 
openwrite(db); 
end requestwrite; 

writeattempt "' proc(db: database); 
requestwrite(db); 
end writeattempt; 

requestread = proc(db: database, k: key) returns (data); 
return (read(db,k)); 
end requestread; 

openwrite = proc(db:database); 
end openwrite; 

READ - proc(db:database, k:key) returns(data); 
return (requestread (db,k)}; 
end READ; 

WRITE = proc (db:database, k:key, d:data); 
writeattempt(db); 
write(db,k,d); 
end WRITE; 

read .. proc(db:cvt,k:key) returns(data); 

end read; 

write = proc(db:cvt,k:key,d:da~a); 

end write; 

end database; 
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will be blocked at the first path. However, while a requestwrite or write is in progress, any 

number of requestreads may enqueue at the second path, awaiting their turn to execute. Thus, 

during execution of a requestwrite, any number of READs and WRITEs may have started. 

The READs will have been allowed to proceed as far as the second path; no other WRITEs 

could have reached that point. Since the selection operator in the second path will restart the 

process that has been waiting longest at that path, any number of requestreads may have 

priority over the next requestwrite, regardless of the order of invocation of the corresponding 

READs and WRITEs. 

This solution is difficult to understand; there are complex interactions among the. 

paths, and it is not clear how each resource operation is affected by the paths. It therefore is 

difficult to convince oneself that the solution handles all cases properly. In fact, there is one 

case in which this solution does not satisfy the definition of readers_priority as presented in 

Chapter 2. Consider the case in which there are two WRITEs invoked, followed by a READ, 

and assume the resource was empty at the time of the first WRITE invocation. The first 

WRITE will enter the resour.ce. The second WRITE will invoke writeattempt. Suppose the 

READ occurs after the second write invokes requestwrite but before the first write completes. 

The requestread will be blocked until the requestwrite terminates. When the first WRITE 

terminates, there will be a reader and a writer waiting, but the writer will proceed first, 

violating our definition of readers_priority. The fact that it is so difficult to determine whether 

the solution satisfies our specifications implies that solutions are difficult to understand and 

prove correct. 

The reason for the complexity of the solution to the readers_priority problem may be 

the lack of a way to express priority constraints directly. Priorities must be established by 

designing path expressions that force lower priority operations to wait at additional points in 
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paths, thus delaying their progress through selection operators when higher priority operations 

are executing. (Thus, in the readers_priority solution, writers are synchronized at invocations of 

writeattempt, in addition to requestwrite and write.) The conditions expressed in the priority 

constraint are not directly reflected in the structure of the solution. This indirect method of 

expressing priority constraints makes solutions less clear. 

Alarmclock problem 

This example illustrates the use of arguments to synchronization procedures as a means 

of determining priority. The solution is taken from [15); it has been translated into CLU, but 

conforms as closely as possible to the original. The solution makes use of three data 

abstractions: wakeuptime, alarmclock, and a list abstraction. Wakeuptime and alarmclock, 

which contain synchronization,' are presented in detail. The specifications for the list 

abstraction used appear below; the implementation of the list is not provided. The operations 

and behavior of the abstraction are not those of a standard list; they are closer to those of a 

stream. A current pointer keeps track of the list element currently being processed. It is 

possible to move this pointer down the list, or reset it to the beginning. New elements may be 

inserted at the current point, or the current element may be deleted. The list abstraction has 

the following operations: 

advance (list) - sets current of list to the next element of the list or nil. 

reset(list) - sets current back to the first element of the list. 

new(list) - inserts a new element preceding current. This element 
becomes current of list. 

free(list) - deletes current of list, and sets current to next element. 
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create() returns(list) - returns a new list. 

current(list) - returns the current element of the list. 

·Wakeuptime objects record the time at which processes wish to be awakened. New 

wakeuptime objects, or those no longer associated with processes, have the value oo. The 

operations available on wakeuptime objects are: 

create () - creates a new wakeuptime and gives it the value tnftnlt'j. 
I 

val(wakeuptime) - returns the time saved in the object. 

pass(wakeuptime) - records the fact that the current time has exceeded 
the wakeuptime. 

set(wakeuptime, time) - sets the value of the wak.euptime to the time 
. given. 

wakeup(wakeuptime) - executed when the process associated with the 
wakeuptime is awakened. 

Alarmclocks are represented as lists of wakeuptimes. They have two external 

operations, wakeme and tick. Tick is invoked by a hardware clock at every time unit. 

Wakeme(n) is called by processes wishing to be awakened in n time units. The implementation 

of these two abstractions is given in Figure H. 

In this solUtion, the blocking of processes until the appropriate time is accomplished in 

the following way. Wakeme calls the internal operation setalarm, which inserts a wakeuptime 

object into the list representing the alarmclock. The value of the wakeuptime object is the 

current time plus the number passed as an argument to wakeme. Wakeme then cans 

wakeuptimeSwakeup. However, according to the path in the wakeuptime abstraction, wakeup 

may only execute after a pass operation has been performed on that object. Therefore, the 

process that invoked wakeme will be blocked until a pass is called on the wakeuptime object. 
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Figure 14. Alarmclock 
wakeuptime .. cluster is set,pass,wakeup,val; 

rep = record[wt: int]; 
path set ; pass; wakeup end 

set = proc(n:int,u:cvt) 1.sets value of wakeuptime object to n. 
u.wt := n; 
end set; 

pass = proc(u:cvt) 
u.wt := O; 
end pass; 

1. when the wakeup time is reached 
1. the value is reset to 0. 

val = proc(u:cvt) returns (int); 1. returns the value of wakeuptime u. 
return (u.wt); 
end val; 

wakeup = proc(u:cvt) 
u.wt:- oo; 
end wakeup; 

create .. proc() returns (cvt); 
return (repS{wt: oo}); 
end create; 

end wakeuptime; 

alarmclock = cluster is wakeme,tick,create; 

1. when the process is awakened, 
1. the corresponding wakeuptime object 
1. is reset to infinity 

rep = record[now, first: int; wl: It]; 
It = list[ wt]; 
wt .. wakeuptime; 

path setalarm +tick end; 

create = proc() returns(cvt); 
return (repS{now:O, first: oo, wl:ltScreate()}); 
end create; 



1.setalarm creates a new element in the list of wakeuptimes 
'?.corresponding to the time at which the calling process 
'?.wishes to be awakened. 

setalarm • proc(x:cvt,n:int) returns(wt); 
time:int : .. n + x.now; 

. ltlreset(x.wl); 
while wtlval(ltlcurrent(x.wl)) <time 

do ltladvance(x.wl); 
end; 

if x.first > time then x.first :• time; end; 
' ltlnew(x.wl); 

wtlset(current(x. w l),time); 
return (ltlcurrent(x.wl)); 
end setalarm; 

1.wakeme calls setalarm, then invokes wakeup, 
1.which will be blocked until the value of the 
1.wakeuptime object.is Jess than the current time. 

wakeme • proc(x:alarmclock,n:int) 
w:wt :• setalarm(x, n); 
wtlwakeup(w); 
end -wakeme; 

1.tick increments the current time and checks whether 
1.any processes should be awakened. 

tick .. proc(x:cvt) 
x.now:•x.now+J; 
ltSreset(x. wl); 

end alarmclock; 

while ltlcurrent(x.wl) <• x.now do 
ltlpass(ltScurrent(x.w1)) '?.invoking pass will allow wakeup to 

1.continue,thus unblocking the waiting process. 
ltlfree(ltlcurrent(x.wl)) 
end; 

end tick; 

Pass will be invoked by the tick operation only when the current time exceeds the value in the 

wakeuptime object. Thus the process that invoked wa.keme (and indirectly, wakeup) will be 

blocked until the time it asked to be awakened. 

---------------~ 
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The synchronization needed to block processes for the appropriate length of time is 

therefore found in the wakeuptime abstraction, rather than in the alarmclock abstraction. The 

path in the alarmclock module is needed only to ensure mutual exclusion on the list of 

wakeuptimes, so that tick does not access the list while setalarm is updating it. 

The user must create and manage the queue explicitly, employing the synchronization 

mechanism only to awaken the first process at the appropriate time. There is no direct means 

for handling· priority based on arguments passed to the protected resource operations. The 

monitor mechanism, by contrast, provides a priority queuing option, freeing the user from 

explicitly maintaining the queue. While the monitor solution is deficient in that it awakens the 

first process on the queue at every tick, an easy modification to the monitor mechanism allows a 

solution equivalent in effect to the path expression solution, but far easier to understand. 

We therefore conclude that though path expressions have the power to express priority 

constraints based on explicitly stated priorities, they do not provide enough aid to the user 

wishing to do so. Synchronization in this example was handled by synchronizing wakeuptime 

operations appropriately; such an indirect method does not model the structure of the problem 

specification and thus makes solutions more difficult to understand. 

One_slot Buffer 

The path expression solution to the one_slot buffer problem is given in Figure 15. The 

needed information about the history of accesses to the resource can be acquired simply by 

stating, in the path, the set of allowable histories. The path expression mechanism thus 

provides a direct way to solve synchronization problems in which we can specify the set of legal 

histories of operations. This solution is more direct than the monitor solution, which must store 

history information in local variables. 

Bounded Buff er 
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Figure 15. One_Slot Buffer using Path Expressions 
buffer • cluster is read, write; 
rep • record[m:message]; 

path write; read end 

read • proc(b:cvt) returns (message); 
return(b.m); 
end read; 

write • proc(b:cvt, msg:message); 
b.m :• msg; 
end write; 

end buffer; 

Our last example is the bounded buffer. This problem is solved in (15] by placing 

synchronization at the level of the slots in the buffer, rather than at the level of the buffer itself. 

While this provides more parallelism than the higher level synchroniiation, we would like a 

solution to the problem as defined in Chapter 2, so that it may be compared with the solutions 

shown for monitors and serializers. In Figure 16, we present a bounded buffer solution that 

implements mutual exclusion on the entire buffer. 

There are three constraints in this scheme: mutual exclusion of appends and removes, 

exclusion of removes when the buffer is empty, and exclusion of appends when the buffer is 

full. The implementation of the mutual exclusion constraint, in the first path, is 

straightforward. (CheckJull appears in this path to prevent processes from checking the buffer 

state while an append or remove is in progress.) The second constraint has been translated to 

an equivalent constraint that uses history information instead of local state, because path 

expressions handle history information so easily. The constraint that each remove be preceded 

by an append is equivalent to prohibiting removes on an empty buffer. The path ;tzt4 

{not.Jmptry; remove} end implements this constraint, since not_empty is invoked at the end of 
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Figure 16. Bounded Buffer using Path Expressions 
bounded_buffer • cluster is REMOVE, APPEND, create; 
rep • record[slots : am, 

max: int 
waiting: int]; 

am • array[message]; 

path remove+ append + checkJull end 
path { not_empty; remove} end 
path { not_full; append } end 
path APPEND end 

create • proc(n: int) returns (cvt); 
return(repl{slots: amlnew(), 

max: n, 
waiting: O}); 

end create; 

REMOVE• proc (b: bounded_buffer) returns (message); 
return(remove(b)); 
end REMOVE; 

' 
APPEND• proc(b:bounded_buffer, m:message); 

checkJull(b); 
append(b, m); 
end APPEND; 

checkJull • proc(b:cvt); 
if amlsize(b.slots) IY• b.max 

then notJull(b) 
else b.waiting :• b.waiting + l 
end; 

end checkJull; 

not_empty .. proc(b:rep); 
end not_empty; 

notJull • proc(b:rep); 
end notJull; 

------------------------ --------------------~-------------....----
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m:message := am$reml(b.slots); 
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am$set_low(b.slots, 0) '?.this sets the index of the first element to 0. 
if am$size(b.slots) = b.max-1 & b.waiting > 0 

then not_full(b); '?. only execute notJull if appender is waiting 
end 

return(m); 
end remove; 

append = proc(b:cvt, m:message); 
if b.waiting >0 

then b.waiting := b.waiting - I 
end; 

am$add h(b.slots, m); 
not_empty(b); 
end append; 

end bounded_buffer; 

every append operation. 

The implementation of the third constraint is somewhat more complex. Because it is 

dependent on the size of the buffer, this constraint cannot be converted to one using history. 

information. It is implemented by requiring a notJull operation to precede every append. If 

the buffer has empty slots available, checkJull will invoke this operation before calling append. 

If not, append will be called and will have to wait for a remove operation to invoke the 

required not_full. Remove checks whether any appends are waiting, and, if so, invokes notJull 

after freeing a slot. 

The synchronization associated with the notJull constraint is not handled directly by 

the path expression mechanism; instead, the synchronization decisions are made in the 

procedures. Either check_full or remove decides when another append can execute. The 

invocation of notJull is used as a signal to allow a waiting append to proceed, by providing 

the first member of the not_full; append sequence in path 3. The path is being used only to 
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block and restart processes according to decisions made in procedures. The management of 

synchronization in this problem is similar to that in the alarmclock problem. Since paths 

cannot directly make use of either the arguments to resource operations, or local state 

information, such information is handled explicitly in implementations of synchronization 

schemes using it, and the decisions made in the procedures are enforced by the paths. 

In addition to the synchronization's being handled primarily in procedures, rather than 

in paths, the structure of the solution is rather awkward. There are four paths and eight 

procedures being used to implement a shared resource that intuitively has two operations. 

There is no clear distinction between synchronization procedures and resource accessing 

procedures. The remove operation accesses the resource, then calls not_full, which is a . 

synchronization procedure. CheckJull accesses the resource and, instead of returning a boolean 

to indicate whether the buffer is full (as one would expect), invokes notJull also. 

These problems are not peculiar to this particular implementation of the bounded 

buffer. Rather, they reflect problems in using the path expression mechanism. A 

better-structured solution is not easily derivable. The procedures in the solution do not 

represent intuitive functional units; they are implemented as such to define the critical sections 

necessary for correct implementation of the synchronization. The difficulty stems from the fact 

that, if each constraint is implemented independently, the paths that seem most natural will 

interact to cause a deadlock when combined. The implementation of the mutual exclusion 

constraint (independent of other constraints) is: 

path append + remove end 

The implementation of the notJull constraint is: 

path notJull ; append end 

The problem arises if the append operation contains the check on buffer state, and waits if the 
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buffer is full. Waiting inside append will not release exclusion on the first path; therefore no 

remove can execute to invoke notJull, and a deadlock results. We are thus forced to create a 

checkJull procedure separate from append. However, the ch.eek-full; append sequence must be 

executed uninterrupted to preserve the integrity of the buffer. We therefore need an APPEND 

procedure that calls both of these operations, and excludes other APPENDS. For similar 

reasons, the remove and checkJull operations must contain both buffer accesses and 

synchronization invocations to define the needed critical sections. Thus, the. modularization for 

the resource is essentially dictated by the path expression mechanism. More important than the 

poor modularization, however, is the problem that arises if the implementor does not see the 

potential conflicts between constraint implementations; deadlock situations are easily created. 

The basic conclusion about expressive power, drawn from analyzing the bounded 

buffer example, is that local state information can be used in path expression solutions, but that 

it is not directly accessible in paths. Solutions are therefore not very straightforward. As a 

result, correct implementations can be difficult to construct. 

4.1.2 Conclusions 

We have now examined solutions to synchronization problems making use of each of 

the types of information discussed in Chapter 2. Based on this analysis, the following 

conclusions may be drawn about the expressive power of path expressions. 

To be sufficiently powerful, a mechanism must provide a means of directly expressing 

both priority and exclusion constraints; information about request time, resource state, 

synchronization state, access history, type of request and parameters passed with each request 

must be available in implementing a synchronization scheme. Path expressions provide an easy 

way to express simple exclusion constraints, but no direct means of expressing priority 
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constraints is provided. 

Expressive power is further hampered because certain types of information, such as 

resource state and arguments passed to the request, cannot be easily used. Paths are intended to 

express relationships among procedures of the resource. Yet, only some of the information 

classes we have defined are procedure-dependent. To express the other types of information 

requires use of synchronization procedures. Examples of these procedures appear in the 

first_come_first_serve, readers_priority, alarmclock, and bounded_buffer problems. These 

procedures are difficult to use, and tend to increase interaction among paths, making solutions 

difficult to understand without actually tracing the flow of control. 

The most attractive feature of the path expression mechanism is its non-procedural 

approach to defining synchronization schemes. The need for synchronization procedures clearly 

undermines this feature. In later sections, the impact of these procedures on modularity and 

correctness will be discussed. 

In conclusion, there are certain classes of problems for which the path expression 

mechanism seems ideally suited. However, the inability to express other kinds of constraints 

without the use of synchronization procedures is a severe limitation of the mechanism. 

4.2 Modularity 

In Chapter 2, several different modularity criteria were discussed. The first of these 

was the requirement that the synchronization for a shared resource be associated with the 

implementation, rather than with the use, of that resource. Because path expressions assume 

the existence of data abstractions, this criterion is incorporated into the path expression 

mechanism. Path expressions are written in terms of the operations on the resource type, and 

can occur only within the module implementing the resource abstraction. Thus, users may 
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assume that the synchronization is handled properly by the protected resource. This structure is 

in contrast to that of monitors, where we must impose additional constraints on the style in 

which monitors are used in order to enforce this modularity requirement. 

The second modularity requirement is the distinction between the unprotected resource 

data abstraction and the synchronization abstraction associated with that resource. In simple 

synchronization schemes, the use of path expressions to implement the synchronization for a 

data abstraction requires only the addition of paths to the module defining the abstraction. 

The second requirement is met in these cases: the synchronization is completely implemented by 

the paths and is therefore clearly identifiable and separable from the implementation of the 

resource abstraction. 

In solutions requiring the use of synchronization procedures, the division is less clear. 

The synchronization and resource operations are then in the same module. It is more difficult 

to distinguish between the two. As a result, readability and modifiability are impaired. 

A more serious consequence of the use of synchronization procedures in resource 

modules, is the interaction among operations named in paths. The hierarchy problem in 

monitors was virtually eliminated by placing monitor operations in a module separate from the 

resource. This solution will not help in path expressions, because even if the synchronization 

procedures are placed in a sepa_rate module, the resource operations must still be called from 

synchronization operations. (To show how the synchronization could be put in a separate 

module, the first_come_first_serve synchronizer is presented in Figure 17.) The hierarchical 

deadlock problem in path expressions can occur, not only between modules, but within modules 



- 77 -

Figure 17. First_Come_First_Serve Synchronization Module 
protected_database •cluster is. READ,WRITE; 
rep • database; 

path requestread + requestwrite end 
path { openread; read}+ write end 

requestread • proc(cib:database}, 
openread(db); 
end requestread; 

requestwrite • proc(db: database, k: key, d: data}, 
write(db, k, d); 
end requestwrite; 

READ • proc(db: database, k: key) returns(data); 
requestread(db); 
return( read(db, k)}. 
end READ; 

WRITE = proc(db:database, k:key, d:data); 
requestwrite(db, k. ,d); 
end WRITE; 

read • proc(db:cvt, k:key) returns (data); 
return(replread(db;k.)}, 'Z reptread and reptwrke contain the actual 
end read; t resource accesses. 

write • proc(db:cvt, k:key, data); 
repSwrite(db9k,d); 
end write; 

end protected_database; 

i The read and :write operatkms· in· this module 
t are synchronization procedures needed 
~ to ensure that acceisses -ate' performed 
'Z at the correct time. 

~-- ----------------------------------~~---
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as well, because synchronization operations within a module often call one another.2 

The hierarchy problem arises in path expression solutions in the following case. 

Suppose request!, request2, opl, and op2 are operations named in the path expression shown in 

Figure 18. Whenever an execution of request2 starts before a corresponding execution of 

request!, a deadlock results. Request2 will attempt to execute op2 and be blocked awaiting 

execution of opl. But opl is only called from request!, and all executions of request! will be 

blocked until the current request2 terminates. We thus have a deadlock situation. 

This situation is precisely what had to be avoided in our implementation of the 

bounded buffer problem (see the bounded buffer example in the expressive power section). To 

emphasize that such interactions among synchronized procedures occur in actual path 

expression solutions, we will again examine the alarmclock solution taken from [15], and 

discussed in the previous section. The example appears in Figure 14. The paths in the 

example show exactly the structure described. 

Figure 18. Hierarchical Deadlock in Path Expressions 

path request! + request2 end 
path opl ; op2 end 

request! = proc(); 
opl(); 
end request!; 

request2 = proc(); 
op2(); 
end request2; 

2. This problem is not (theoretically) limited to interaction between synchronization operations, 
but resource access' operations in a module are unlikely to call each other in a way that would 
cause deadlock. 
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The two path expressions in the solution are: 

path setalarm +tick end 

path set ; pass ; wakeup end. 

Since setalarm calls set and tick calls pass, if tick ever executes before setalarm, a deadlock. will 

arise in exactly the way described above. Nothing in the path expression prevents this 

ordering. An examination of the code for tick will show that tick never calls pass unless the 

current time is greater than the first wakeuptime in the list. Because wakeuptimes are 

initialized to infinity, pass will never execute before a setalarm. While the code is correct, this 

example shows the problems arising from the lack of modularity. To u~derstand how this 

solution works, and to convince oneself it is correct, requires understanding, and simultaneously 

dealing with, the implementations of two data abstractions, and the synchronization for both. It 

was precisely the need to be able to understand each abstraction separately that led to our 

criteria for separating the synchronization from the data abstraction definition for resources. 

Thus, path expressions do not uphold our modularity criteria. 

Furthermore, because the synchroni_zation operations are used together with resource 

operations in paths, and because synchronization operations often call other operations named 

in paths, it is difficult to define conventions for using path expressions that woukl improve 

modularity without limiting expressive power. 

Thus, monitors and path expressions vary greatly in their support of our modularity 

criteria. Path expressions guarantee that synchronization for a shared resource is associated 

with the definition of the resource, rather than with its use. However, they do not provide a 

means for separating the synchronization from the implementation of the unsynchroniled 

resource. Monitors, in contrast, do not ensure that the synchronization will be separated from 

the use of the resource. However, it is easy to develop a style of usage that supports both the 
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association of synchronization with implementation of a shared resource, and the separation of 

the implementation of the synchronizer from that of the unsynchronized resource. Assuming 

monitors are used properly, they support modularity far better than path expressions. We will 

see in the next chapter that serializers offer a still better structure. 

4.3 Ease of Use and Modifiability 

Ease of use and modifiability are largely dependent upon expressive power. If the 

tools needed to construct straightforward solutions are not available, it cannot be easy to 

implement those solutions. 

The synchronization problems presented in the section on expressive power provide 

evidence of the effect of weaknesses in power on ease of use. The need to create 

synchronization procedures to obtain required information increases the difficulty of 

constructing solutions because it is difficult to decide what procedures are needed and how they 

interact with one another. The derivation of the solution to the bounded buffer problem in the 

expressive power section exemplifies these difficulties. 

In this section we will compare the readers_priority and writers_priority problems to 

evaluate both ease of use and modifiability. The solution to the writers_priority problem is 

shown in Figure 19. The readers_priority solution was given in the expressive power section, in 

Figure 13. 

While the two solutions are almost symmetric, the amount of code changed in 

converting from one to the other is large in proportion to the size of the solution: four 

procedures and all of the paths have to be changed. Even requestread and requestwrite, which 

are used to obtain the same information in both solutions, must be completely rewritten. 

Though the exclusion constraint has not changed, the path implementing it has, because it must 



- 81 - . 

Figure 19. Writers_priority Database uain1 Peth Expre88iona 

database .. cluster is READ, WRITE; 
rep ..... ; 

path readattempt end 
path requestread + { requestwrite} end 
path { openread; read} +write end 

readattempt • proc(db: database}, 
requestread(db); 
end readattempt; 

requestread • proc(db: database}, 
openread(db); 
end requestread; 

requestwrite • proc(db: database, k: key, d: data); 
write(db, k, d); 
end requestwrite; 

READ - proc(db: database, k: key) returns (data); 
readattempt(db); 
return( read(db, k)); 
end READ; 

WRITE - proc(db: database, k: key, d: data); 
requestwrite(db, k, d); 
end WRITE; 

read • proc(db, k) returns (data); 

end read; 

write • proc(db, k, d); 

end write; 

end database; 
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interact differently with the new priority constraint. When path expression solutions are 

designed, there is often a problem of finding an implementation of each constraint that will 

properly interact with the other constraints present. As a consequence, path expressions are 

often difficult to use. 

Since the priority constraint in the two problems presented are exactly reversed, one 

can reasonably expect their solutions to be symmetric. In the general case, however, when the 

relationship between the two synchronization schemes is less obvious, the required changes can 

be much less apparent. The need to change almost all of the code to effect a change in one 

constraint, even when the change did not require a change in the type of information used, 

indicates a high degree of interaction among constraint implementations, as well as a lack of 

support for modifiability. 

4.4 Correctness 

Many of the correctness issues with which we are concerned have been referred to 

earlier in conjunction with discussions of modularity and ease of use. Our major concern in the 

area of correctness is the ease with which a programmer can decide whether an implementation 

meets its specifications. Whether solutions written using a mechanism can easily lead to 

deadlock, and whether those deadlocks are easily detectable is part of this problem. 

In our evaluation of modularity, we have noted that separation of the synchronization 

from the resource abstraction is difficult. As illustrated by the alarmclock example, proofs of 

correctness of the synchronizer cannot be performed independently of the resource 

implementation. Furthermore, when hierarchically structured resources are involved, proof of 

termination (absence of deadlock) may involve implementation details from several levels of 

abstraction. If verification of complex programs is to be possible, it is essential that each 
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module be independently verifiable, using only external specifications of other modules. Path 

expressions do not support this property. 

Our analysis of expressive power and ease of use also has implications for correctness 

and verifiability. In particular, consider the readers..priority example. While a correct solution 

is possible, the fact that it was very difficult to determine whether the solution given met its 

specifications, and whether all special cases had been covered, leads us to believe that it will in 

general be very difficult to convince oneself that a solution involving path expressions is 

correct. 

Path expressions do aid verification in one important way. Possible deadlock 

situations, such as the one arising in the alarmclock solution, are easily detectable at compile 

time, if they arise in paths in a single module. While an algorithm exists for detecting the same 

situations occurring between modules. as in the alarmclock case, it requires flow analysis; 

detection would therefore be rather costly. It should also be noted that the situations detected 

are possible deadlocks. It is far more difficult to determine whether the deadlock is inevitable, 

or, as in the alarmclock case, will never arise. Thus, at best, the programmer could be warned 

that the possibility exists, and that proof of termination is impossible. 

We conclude that if path expressions supported separation of synchronization from 

resource implementations, and the independent verification of modules, they would meet our 

requirements. While easy detection of deadlocks within a module is certainly an important 

feature, we feel that deadlocks due to conflicts between paths in different modules are too likely 

to arise. Furthermore, the difficulty of understanding solutions in even a single module leads us 

to believe that proofs that those solutions meet specifications will be difficult. We therefore feel 

that the version of path expression presented here does not support correctness of concurrent 

programs. 
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4.5 Conclusions 

Path expressions are based on the idea of expressing synchronization constraints as sets 

of relationships among operations of the resource type. This approach appears attractive 

because it automatically associates the synchronization with the data abstraction defining the 

resource. It seems natural that synchronization be expressible in terms of operations of the 

resource type. 

Unfortunately, path expressions as defined in (8) do not satisfy all the criteria set forth 

in Chapter 2. We have found that expressive power is lacking; several types of information 

needed are not readily accessible. This problem in turn causes awkwardness in solutions, 

making the mechanism more difficult to use and impeding verification. Synchronization 

operations are needed in paths, undermining the premise that synchronization is expressible in 

terms of operations on the resource. The use of these operations also makes it difficult to 

separate the implementation of a synchronization scheme from that of the resource, which is a 

modularity requirement we established. 

The designers of the mechanism have attempted to overcome some of these problems 

in later versions of the mechanism[15, 14). However, none of these has been completely 

satisfactory. Another version of path expressions now under development[2) promises to show 

improvements in both eicpressive power and verifiability. However, unless expressive power 

can be extended enough to eliminate the need for synchronization procedures, it is doubtful that 

the new version of the mechanism will meet our criteria either. 
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5. Serializers 

Serializers[3] are similar to monitors but are intended to improve upon those features 

of monitors that seem poorly structured. There are two significant differences between the two 

mechanisms. First, serializers incorporate into the mechanism a means for invoking resource 

operations outside the control of the synchronizer, thus allowing concurrency, while ensuring 

that all resource accesses are properly synchronized. Second, they replace the monitor signal 

construct with an automatic signalling mechanism. 

5.1 Mechanism Description 

Like monitors, serializers are modules defined by a set of operations and a description 

of the internal structure of the serializer objects. Serializers may be thought of as encapsulating 

the resource to form a protected resource object. The structure of this protected resource is 

shown in Figure 20. Users see only the protected resource; the operations users invoke to access 

the resource are actually the operations of the serializer. 

As in monitors, the operations of the serializer are mutually exclusive. Only one 

process has access to the serializer at a time. It is not necessary to exit a serializer before 

Figure 20. Structure of Serializer Objects 

protected resource 

serializer 

LJ 
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accessing the resource in order to obtain concurrency. Serializers provide a means for leaving 

the serializer temporarily, to perform the resource operations. The invocations of resource 

operations are textually contained in the serializer operations, but if they are within a 

'join_crowd' statement, they will be executed outside the control of the serializer. Other 

processes may execute serializer operations concurrently with these resource accesses. After the 

resource access is completed, control automatically returns to the serializer. This structure is 

similar to that of the modularized monitor scheme proposed earlier (Figure 8). However, 

leaving and reentering the synchronizer is done automatically in serializers, so an additional 

'protected resource' module is unnecessary. 

There are two built-in data types used in serializers: queues and crowds. Q..ueues differ 

from monitor queues in several ways. Rather than wait and signal operations, there is an 

enqueue operation that specifies, not only the queue on which to wait, but also the condition for 

which the process is waiting. The serializer mechanism will automatically restart the process 

when it becomes first on the queue and the condition is satisfied at a time when possession of 

the seria lizer is relinquished. No dequeue or signal operation is necessary. The form of the 

enqueue command is: 

enqueue(queue_name) until condition 

A process executing an enqueue is placed on the end of the specified queue; the condition is 

not checked until the process reaches the head of the queue. 

Crowds are unordered collections of processes used to handle synchronization state 

information: they keep track of what processes are in the resource and what operations are 

currently being executed. Though conceptually a crowd contains the identities of the processes 

involved, it can be implemented simply as a count, since the only information needed is the 

number of processes using the resource. In addition to the create operation, crowds have a join 
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operation. Join serves two functions: it puts the process executing the join into the specified 

crowd, and it releases possession of the serializer. The form of the join command is: 

join(crowd) then body end 

where body is a list of statements to be executed by the process when possession of the serializer 

is relinquished. At the completion of the body, a leavt__£rowd operation is automatically 

executed. This has the effect of regaining possession of the serializer, and removing the process 

from the crowd. 

Thus, the normal sequence of events for a process requesting access to a shared 

resource is : 

enter (gains possession of the serializer) 
enqueue (release possession of the serializer) 
dequeue (regains possession) 
join_crowd (release possession of serializer and enter resource) 
leave_crowd (leave resource, reenter serializer) 
exit (releases the serializer) 

A set of priorities exists for gaining possession of the serializer. Processes waiting to dequeue 

have priority over those waiting to enter the protected resource or leave crowds. Processes 

waiting to enter the protected resource or leave crowds will be handled in first_comeJirst_serve 

order. 

The solution to the first_comeJirst_serve problem shown in Figure 21 is an example of 

a serializer. The resource object is created inside the serializer, so it can be accessed only 

through invocations of serializer operations. Protection is therefore guaranteed. It is not 

necessary, as it is in the monitor case, to create a separate protected resource module to associate 

the resource with the synchronizer and hide it from users. 

In the read operation, the process requesting the read must wait on a queue until the 

writers_crowd empties and all processes preceding it on the waiting_q have continued. Then it 
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Figure 21. First_Come_First_Serve Serializer 
first_come_first_serve = serializer is read, write, create; 

rep = record[ waiting_q: queue, 
readers_crowd: crowd, 
writers_crowd: crowd, 
db: data_base]; 

create = proc() returns (cvt); 
return (repS{ waiting_q: queueScreate(), 

readers_crowd: crowd$create(), 
writers_crowd: crowd$create(), 
db: data_baseScreateO}); 

end; 

read = proc(s: cvt, k: key) returns (data); 
queue$enqueue(s.waiting_q) until (crowd$empty(s.writers_crowd)); 
d: data 
crowdSjoin(s.readers_crowd) then 

d := data_base$read(s.db, k); 
end; 

return (d); 
end read; 

write = proc(s: cvt, k:key, d:data); 
queue$enqueue(s.waiting_q) until (crowd$empty(s.readers_crowd) 

& crowdlempty(s.writers_crowd)); 
crowdSjoin(s.writers_crowd) then 

data_baseSwrite(s.db, k, d); 
end; 

end write; 

end first_come_first_serve; 

is dequeued (automatically) and proceeds to the statement following the enqueue, where it enters 

the readers_crowd. Entering the crowd causes possession of the serializer to be released so that 

other processes may obtain it. Statements in the then clause are executed outside the control of 

the serializer. The read operation is performed and the value is assigned to d; control must 

then return to the serializer so that the process may be removed from the crowd and leave the 

protected resource. At termination of the statement in the then clause, the process is blocked 



- 89 -

until it can obtain possession of the serializer. The priorities defined for obtaining possession 

of the serializer guarantee that the process will eventually be continued. When execution 

resumes, the value of d is returned, and the process exits the serializer, allowing another process 

to gain possession. The write operation differs in the conditions in the until clause and the 

statements in the then clause but its basic structure is the same as that of the read. 

In the first_comeJirst_serve example, the only predicates used in until clauses are 

empty tests on queues or crowds. These predicates are sufficient to handle synchronization 

schemes based on request type and synchronization state. Time ordering of requests is handled 

by the queuing mechanism. Thus a serializer mechanism using just these predicates is powerful 

enough for most synchronization problems. This restricted serializer is much easier to analyze 

and construct correctness proofs for than the complete serializer mechanism. To handle other 

classes of synchronization schemes, however, the mechanism has been generalized. Local 

variables may be used to store any kind of state information. Priority queues have also been 

added to handle explicitly passed priorities. 

5 .2 Expressive power 

The first_comeJitst_serve example was shown in the preceding section. In this section 

we will present the other examples in which we are interested, evaluate the power of the 

mechanism, and compare it to monitors and path expressions. 

The basic writers_exclude_others readers_writers solution is shown in Figure 22. This 

solution was difficult to implement using monitors because the specification does not determine 

a total ordering for requests in all cases. Here, due to the automatic signalling in the serializer 

construct, the solution can be written without the user specifying the ordering in these cases. 

However, the way in which the serializer mechanism will handle the situation is unclear. The 
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Figure 22. Writers_Exclude_Others Serializer 
writers_exclude_others • serializer is create, read, write; 

rep= record[ read_q:queue, 
write_q:queue, 
readers_crowd: crowd, 
writers_crowd: crowd, 
db:data_base) 

create • proc() returns (cvt); 
return (repl{read_q: queudcreate(), 

write_q: queuelcreate(), 
readers_crowd: crowdlcreate(), 
writers_crowd: crowdScreate(), 
db: data_baselcreate()}); 

end create; 

read • proc(s: cvt, k: key) returns(data); 
queue$enqueue(s.read_q) until crowdlempty(s.writers_crowd); 
d: data; 
crowdSjoin(s.readers_crowd) then 

d :• data_baselread(s.db, k); 
end; 

return(d); 
end read;· 

write • proc(s: cvt, k: key, d: data) 
queuelenqueue(s.write_q) until(crowdlempty(s.writers_crowd) 

&: crowdlempty(s.readers_crowd)); 
crowdljoin(s.writers_crowd) then 

data_baselwrite(s.db, k, d); 
end; 

end write; 

end writers_exclude_others 

definition of serializers does not explain how to handle the case in which the conditions 

governing two queues are true when the serializer is released by some process. Some fair 

method for dealing with this problem, such as first_comeJirst_served, should be included in the 

mechanism definition. The claim made in [3] that solutions should be constructed to avoid 

having two queues ready at the same time is invalid, since it fails to recognize situations such as 
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the above, in whith the designer really does not need to specify a total ordering of operations. 

Thus, path expressions seem to be the only mechanism that allows 'incomplete' specifications 

such as these and guarantees that they will be handled in some fair manner. 

The readers_priority solution is shown in Figure 23. (Only the read and write 

operations are shown; the internal structure of the serializer, and the create operation are that of 

the previous examples.) Writers are now far more restricted in when· they can enter the 

resource. It can be seen from this example that serializers can asily express priorities based on 

th~ type of request Such priorities are usually expressed by testing empty conditions on queues 

for operations with higher priority. In this case. for example. readers are given priority by 

inserting a test in the until clause of the write operation to make sure the readers queue is 

empty before writers proceed. A comparison of this solution to the fair Jeaders_priority and the 

writers_priority solutions will be made in the section on modifiability. From the previous two 

examples it appears that modifications are localized and consistent with changes in the 

specifications. 

Figure 23. Readers_priority Serializer 
read •proc(s: cvt, k: key) returns(data); 

queuelenqueue(s.readers_q) until (empty(s. writers_crowd)}. 
d: data; 
crowdljoin(s.readers_crowd) then 

d:• data_baselread(s.db, k}. 
end; 

return (d}, 
end read; 

write • proc(s:cvt, k: key, d: data) 
queuelenqueue(s. writers...q) until (empty(s.radera_q) 

Be empty(s.readers_crowd) 
Be empty(s.writers_crowd)}, 

crowdljoin(writers_crowd) then 
data.J>uelwrite(s.db, k, d}. 
end; 

end write; 
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Bounded Buff er 

The bounded buffer solution is shown in Figure 2-t. The resource state information is 

obtained by calls on the resource operations notJull and not_empty. These invocations are 

made only after checking that no processes are accessing the resource. Since mutual exclusion 

within a serializer is automatic, we can be sure that no one will enter the resource between the 

empty test and the invocation of notJull or not_empty. This is important in ensuring the 

consistency of the resource. The result of a full or empty test performed while another process 

Figure 24. Bounded Buffer Serializer 
protected_buffer • serializer is append, remove, create; 

rep • recordfappend_q, remove_q: queue, c: crowd, bb: bounded_buffer ); 

create = proc() returns (cvt); 
return({append_q: queue$create(), 

remove_q: queudcreate(), 
c: crowdlcreate(), 
bb: bounded_bufferScreate()}); 

end create; 

append .. proc(s:cvt,m:message); 
queuelenqueue(s.append_q) until (crowdSempty(s.c) 

CAND bounded_bufferSnotJu11(s.bb)}, 
crowdljoin(s.c) then 

bounded_bufferlappend(s.bb,m); 
end; 

end append; 

remove .. proc(s:cvt) returns(message); 
queuelenqueue(s.remove_q) until (crowdlempty(s.c) 

m: message; 
crowdljoin(s.c) then 

CAND bounded_bufferlnot_empty(s.bb)); 

m:• bounded_bufferSremove(s.bb); 
end; 

return (m); 
end remove; 

end protected buffer; 
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is updating the buffer is not well defined. 

The problem of potential deadlocks resulting from invocations of resource operations 

from' within synchronization modules was explained in detail in the chapter on monitors. The 

problems arising in seria1izer solutions are the same. The programmer must be very sure that 

no deadlocks arise from resource invocations within a synchronizer. Certain synchronization 

schemes require knowledge of resource state. This state information can be obtained only by 

invoking resource operations or by keeping the resource state in local variables. The second 

alternative, while avoiding the deadlock problems, violates the separation of resource from 

synchronization which· is one of our goals. The first alternative, invoking resource operations 

from within the synchronizer, is not safe unless it can be guaranteed that the resource, ts··empty 

at the time of invocation.I 

Thus, serializers handle resource state information in mu.ch the same way monitors do, 

by use of local variab~es or invocations of stat~testing operations on the resource. It must be 

realized that the operations of the synchronizer are •unsafe areas•: the synchronizer can itself 

access the resource incorrectly. Care must be taken to ensure that these operations 1Mpese the 

necessary restrictions on themselves. as well as user processes. 

Dne_Slot Buffer 

Serializers, like monitors, provide no special way of handling history informatien; it 

must be handled by local data. The easiest way to solve the one_stot buffer pr-Oblem is to store 

the· needed information in a boolean describing whether an unread message is in the buffer. 

The difference between this solution and the bounded_buffer is that we are assuming there:is 

no operation on the resource abstraction, equivalent to full or empty, that the serialiier may 

I. The monitor solution to the bounded buffer problem guarantees mutual exclusion becaule 
the buffer is inside the monitor. 
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invoke to obtain the required information. The information must therefore be deduced by 

keeping track of past operations. When an insert is executed, the boolean full is set to true; it is 

reset to false when remove .takes the message. This solution is shown in Figure 25. 

The one_slot buffer is the first serializer example we have seen in which local variab1es 

are used in conditions. These variables are set explicitly i~ the serializer operations. Once 

general information, rather than just empty tests on queues and crowds, is allowed in conditions, 

the automatic signalling of seria1izers loses its advantage over monitor's explicit signals. 

Programmers are as likely to incorrectly set a local variable, or not set it at all, as they are to 

forget to explicitly perform a signal. 

Figure 25. One_Slot Buffer Serializer 
protected_single_buffer .. serializer is create, insert, remove; 

rep • record[insertq, removeq: queue, c:crowd, sb: buffer, full: booll 

create - proc() returns(cvt); 
return( repl{ insertq, removeq: queuelcreate(), 

c: crowdtcreate(), 
sb: buff erlcreate(), 
full: false}); 

end create; 

insert .. proc(b: cvt, m: message); 
queuelenqueue(b.insertq) until (""b.full & crowdlempty(b.c)) 
b.full :• true; 
crowdljoin(b.c) then bufferlinsert(b.sb, m) end; 
end insert; 

remove .. proc(b: cvt) returns(message); 
queuetenqueue(b.removeq) until(b.full & crowdlempty(b.c)}, 
m: message; 
b.full : .. false; 
crowdljoin(b.c) then m:• bufferlremove(b.sb) end; 
return(m); 
end remove; 

end protected_single_buffer; 
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Disk Scheduler 

The other class of problems to be examined are those requiring user-specified priorities 

(priorities given by arguments passed to serializer operations). The disk scheduler problem is 

representative of this group. Priority queues were added to serializers because such problems 

were difficult to implement without them. The disk scheduler solution using priority queues is 

given in Figure 26. 

When a request to read or write from the disk is made, the request is enqueued in 

order of track number. The up queue holds processes to be serviced as the disk head sweeps 

up across the disk, the down queue as it sweeps down. The variable current stores the current 

track position of the head.2 If the current p~sition is greater than the requested position, the 

request will be processed on the next down sweep, so it is enqueued on the down queue. If the 

current position is lower than the one requested, the request will be placed on the up queue. 

Requests for the track at which the head is currently located must wait until the current sweep 

is completed, and the head returns to that track on the next sweep. 

A request will be served when there are no other processes preceding it on the queue 

and the disk head is moving in the proper direction. Whenever a queue empties, the direction 

changes. When a process gains possession of the serializer after dequeuing, it joins the users 

crowd, and the appropriate operation on the disk is performed. When it re-enters the serializer, 

a check is made to see if the queue being serviced is empty; if so, the direction is changed so 

that the other queue may be serviced. 

2. Notice that we could have called an operation currentJrack on the disk to obtain this 
information instead of using local variables. However, this would have led to synchronization 
problems, since it could only be invoked when the disk was empty. In our solution, the variable 
current in the serializer can be accessed while another process is moving the disk head. 
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Figure 26. Disk Scheduler Serializer 
disk_scheduler = serializer is create, read, write; 

rep • record[direction:string, 
up:queue, 
down:queue, 
current:int, 
number _of _tracks, 
d:disk, 
users:crowd] 

create = proc(n:int) returns (cvt); 
return (repS{direction:"up", 

up:priority _queueScreate(), 
down:priority _queueicreate(), 
number _of _tracks:n 
current:O, 
users:crowd$create(), 
d:disk$create()}); 

end create; 

request = proc(s: rep, track_num: int); 
if track_num > s.current I (track_num = s.current & s.direction • "down") 

then priority _queue$enqueue(s.up,track_num) until 
(crowd$empty(s.users) & 
(priority _queue$empty(s.down) I s.direction• "up")) 

else priority _queueSenqueue(s.down,number _of_tracks • trackJlum) until 
(crowd$empty(s.users) & 
(priority_queueSempty(s.up) Is.direction • "down")); 

end; 
s.current := trackJ]um; 
end request; 

release .. proc(s: rep); 
ifs.direction = "up" & priority_queueSempty(s.up) 

then s.direction := "down" 
elseif s.direction = "down" & priority_queueSempty(s.down) 

then s.direction :• "up"; end; 
end; 

end release; 
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read = proc(s:cvt, track_num:int) returns(data); 
request(s, track_num); 
d: data; 
crowdSjoin(s.users) then 

d := diskSread(s, track_num) 
end; 

release(s); 
return(d); 
end read; 

write = proc(s:cvt, track_num:int, d: data); 
request(s, track_num); 
crowd$join(s.users) then 

diskSwrite(s, track_num, d) 
end; 

release(s, track_num); 
end write; 

end disk_scheduler; 

This solution is very similar to the monitor solution. The main difference is that in 

the serializer solution, the functions of the protectedJesource module and the monitor are 

combined into the single serializer module. (We never saw the read and write operations of the 

monitor solution, because they are in the protectedJesource module, which was not shown.) 

This is one example in which the extra module of structured monitor solutions may be 

beneficial. In cases such as the disk scheduler, where the synchronization does not depend on 

the operation requested and in fact is the same for all operations, there is actually a distinction 

between synchronization procedures and protectedJesource operations. The function of the 

synchronizer is to move the disk head to the appropriate track and implement exclusion on disk 

access. · The function of the protectedJesource module is to associate the appropriate 

synchronization operations with each resource operation. In the serializer solution, these two 

functions are combined in a single module, though the operations are clearly separable into two 

groups. The user-invoked operations of the serializer look very much like the protected 
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resource operations in the structured monitor. The read operation, for example, has the form 

request, read, release. Request and release, the two synchronization operations in the monitor 

solution, are defined as internal operations of the serializer, to be called before and after the 

resource accesses. 

There is thus little difference between the two solutions. Because the synchronization is 

independent of the openition requested, the monitor structure seems to better model the 

structure of the problem, and may therefore make it slightly easier to construct the solution. 

While the distinction between the two structures is relatively minor, and does not represent a 

serious weakness in the serializer mechanism, it indicates that there are some cases in which the 

extra modularity of structured monitor solutions is useful. 

6.2.1 Conclusions 

We can conclude from the examples presented that serializers are sufficiently powerful. 

The way in which each type of constraint is handled is straightforward. As in the monitor 

mechanism, request time. and request type information are handled by use of queues. Serializers 

also provide a crowd construct to handle synchronization state information, eliminating the need 

to explicitly keep track of the number of processes in the resource by the use of local variables. 

History information and some local state information must still be explicitly maintained in local 

variables. 

The only example that illustrates a weakness in the mechanism is the 

writers_exctude_others problem. The behavior of serialiws in cases of incomplete 

I 
specifications such as the writers_exctude_others problem needs to be more clearly defined. 

------------- -----------·-···---·-··- -
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5.3 Modularity 

The most important contribution of serializers is in the area of modularity. The 

structure for protected resources provided by the serializer mechanism is far more conducive to 

the development of properly modularized synchronized resources than is the monitor structure. 

As was stated earlier, we are interested in two distinct properties relating to modularity. One is 

how easily the synchronization can be separated from the resource implementation and localized 

in a synchronization module. The other is how welt the mechanism supports the use of 

modularization and hierarchical structure in constructing the resource, and whether the 

synchronization construct can be used with hierarchicalty structured resources. Seria1izers 

represent an improvement in both of these areas. 

In monitor solutions, the only way to allow concurrent access to a resource is to create 

the resource independently of the monitor. The monitor construct does not provide a 

mechanism for maintaining an association between the monitor and the resource in this case. 

The user is responsible for ensuring the correct use of the monitor when accessing the resource. 

Though a method for ensuring correct acces~ exists, it is the programmer's responsibility, when 

using monitors, to create a module that encapsulates the resource and the monitor, and invokes 

the proper synchronization operations when a user of the resource attempts access. 

Serializers represent an improvement because they provide this encapsulation 

automatically. The programmer need only make the resource a component of the serializer 

construct. The essential difference between monitors and serializers is that serializers allow the 

resource to be created inside the synchronization module without restricting the access scheme to 

be mutual exclusion. Because a join_crowd operation releases the serializer while the resource 

operations are executing, the resource object can be part of the serializer object and still be 
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accessed concurrently without violating the constraint that only one process at a time have 

possession of the serializer. Thus, the programmer need only define the serializer and resource 

modules, and can assume that the resource is protected (it cannot be accessed without going 

through the serializer). 

The difference may be clearly seen by comparing the structure of a serializer solution 

with that of a monitor structured as described in the previous chapter. Both are shown in 

Figure 27. 

Though the monitor forces the user to do more work, it also provides some additional 

modularity. There is a protected resource abstraction separate from the synchronizer. In 

complicated schemes this additional modularity may be useful, since it allows the designer to 

deal with the synchronization without worrying about what the actual resource operations are. 

This is especially helpful when the synchronization scheme is independent of the operation 

requested, as in the disk scheduling problem. It also makes it easier to change synchronization 

schemes, or to use the same synchronizer for more than one resource. However, the advantages 

of the structure provided by serializers outweigh the small improvement in modularity found in 

the structured monitor solution. 

Overall, serializers improve upon the modularity supported by the monitor mechanism. 

Figure 27. Comparison of Monitor and Serializer Structures 

serializer structure monitor structure 

serializer protected resource 

jresource I l moOiror J lresource I 
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Because users have an easier way to properly structure solutions, and will find it more difficult 

to do things incorrectly, software reliability should be enhanced by use of the serializer 

mechanism. 

5 .4 Ease of Use and Modifiability 

Serializers also satisfy our ease of use and modifiability criteria well. We can easily 

locate the implementation of each constraint within the solutions presented. In the 

readers_writers problems (Figures 21, 22, 23, 28), the exclusion constraint on readers is enforced 

by the condition crowd$empty(writers_crowd) in the until clause in read, and the constraint on 

writers is enforced by the condition that both the readers_crowd and writers_crowd must be 

empty. Other conditions may be added to enforce other constraints, but the implementation of 

t+tese constraints remains unchanged. The constraint independence criterion we established for 

evaluating ease of use and modifiability is therefore met. 

We can also examine modifications that might be made to synchronization schemes we 

have discussed to determine how easily those changes can be implemented. In this section we 

discuss two modifications to the readers_priority scheme. 

One modification is to change to a writers_priority scheme. As indicated by our 

analysis of synchronization problems in Chapter 2, the exclusion constraints remain the same, 

and there is no change in the types of information used to specify the priority constraints, so the 

changes needed are expected to be minimal. Conceptually, the difference between the two 

schemes is that in the writers_priority problem, readers must wait if any writers are waiting, 

while the reverse is true in the readers_priority problem. In serializer solutions, all of this 

information is contained in the until clause of enqueue statements, so the only parts of the 

solution that should need modification are these clauses. The dequeue conditions for read must 
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be changed so that readers must wait until no writers are waiting. The enqueue statement for 

readers becomes: 

queue$enqueue(readers_q) until (crowdSempty(writers_crowd) 
& queueSempty( writers_q)); 

The dequeue condition for writers no longer has to check that no readers are waiting. Thus, 

the enqueue statement in the write procedure becomes: 

queue!enqueue(writers_q) until (crowdSempty(readers_crowd)) 

Thus, the changes made were minimal. In addition, it was possible to easily identify those parts 

of the solution needing modification. Because the conditions for which an enqueued process is 

waiting are specified at the point of the wait, and restarting is done automatically, constraint 

implementations are even easier to· identify than in monitor solutions. It is no longer necessary 

to search for signal statements in all of the procedures; the entire implementation of the 

constraint occurs in the enqueue statement. Changing one constraint in an implementation is 

therefore straightforward. 

A more difficult modification is the change from readers_priority to 

fair _readers_priority. The fair solution will not allow a reader to enter the resource if a writer 

is already waiting. Only one writer wilt proceed at a time, though; so if several writers are 

waiting when a reader enters,· the reader will precede att but the first writer. This solution 

requires use of request times as well as request type in the priority constraints. The solution is 

shown in Figure 28. 

This solution is fair because the serializer mechanism gives dequeues priority over 

enters for gaining possession of the serializer. When the resource is empty, the dequeue 

condition for readers will be satisfied, so all readers on the readers queue will be dequeued and 

enter the resource before any more read requests can enter the serializer. The readers queue 
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Figure 28. Fair _Readers_Priority Serhtlizer 
fair JP • serializer is create, read, write; 

rep • record[readers_q, writers_q:queue, 
readers_crowd, writer _crowd: crowd, 
db:data_basel 

create • proc() returns (cvt); 
return(repS{readers_q:queueScreate(), 

writers;...q:queuelcreate(), ' 
readers_crowd:crowdkreate(), 
writers_crowd:crowdlcreate(), · 
d b:data_baselcreate()}); 

end create; 

read • proc(s:cvt,k: key) returns(data); 
queueSenqueue(s.readers_q) until (crowdlempty(s.writers_crowd)); 
d: data; 
crowdljoin(s.readers_crowd) then 

d:• data_baselread(s.db,k); 
end; 

return (d); 
end read; 

write • proc(s:cvt, k:key, d:data); 
queueSenqueue(s. writers_q) until (queuelempty(ueaders_q) 

8t crowdhmpty(s.writers_crowd)); 
queuelenqueue(s.readers_q) until (crowdternpty(s.readers_crowd) 

8t crowdlempty(1;wrilers_crowd)); 
crowdljoin(s.writers_crowd) then 

data_baselwrite(s.db,k,d); 
end: 

end write; 

end fairJp; 

will then be empty, so the condition for dequeuing writers from the writers queue becomes 

satisfied, and the first writer on that queue will have highest priority for gaining- possession of 

the serializer. This writer is then enqueued on the (still empty) readers queue. Since the writer 

is now first on the readers queue, it will enter the resource before any more readers. Assuming 

read accesses terminate, the readers in the resource will eventually finish and the resource will 
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empty, allowing the writer at the head of the readers queue to proceed. At the termination of 

this write, the process just described repeats: all waiting readers will enter the resource, but the 

first writer on the writers queue wilt get priority over any new readers entering the serializer. 

Thus readers still have priority, but writers will not starve, because only a finite number of 

readers can enter the resource before any write. Note that if several writers are waiting when a 

reader enters the serializer, only the first of these will enter the resource before the reader. 

The change in code from the readers_priority to fairJeaders_priority solution is small; 

only the write operation has changed. One additional enqueue statement has been added to 

maintain the needed information about relative times of read and write requests. Enqueuing 

writers on the readers queue is one way to establish a first_comeJirst_serve order in the 

necessary cases. 

From examining the set of readers_writers problems, we can conclude that minor 

changes to synchronization specifications result in only minor changes to serializer 

implementations of those specifications. Identifying the parts of the solution that need 

modification is straightforward, and our constraint independence criterion is upheld. 

5 .5 Correctness 

In our discussion of correctness in monitors, we were primarily concerned with two 

issues: explicit signalling and deadlocks due to hierarchical structuring of resources. Serializers 

have reduced the problems due to explicit signalling by associating conditions with each queue, 

and automatically restarting waiting processes. For synchronization schemes in which the 

conditions associated with queues can be expressed in 'terms of empty tests on queues and 

crowds, automatic signalling represents a significant improvement in the support given 

correctness. For synchronization problems that involve resource state information, arguments 
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passed, or history information, more complex conditions are needed. In these cases, serializers 

lose their ad vantage. Local variables are as easily misused as explicit signals. We have also 

seen a case, in the bounded buffer example, where the integrity of the resource could be easily 

undermined by incorrectly using resource state information in a condition. If the resource 

invocations were incorrectly ordered, a condition would have appeared true, and a process 

would have been dequeued, when the condition was false. Despite these weaknesses, in most 

cases, the automatic restarting of processes in serializers is superior to explicit signalling. 

The problem of hierarchical deadlocks in serializer solutions is equivalent to that in 

properly structured monitors. Since resource operations are almost always executed outside the 

control of the serializer, the problem will rarely occur. The only time a hierarchical deadlock 

can arise is when a resource operation is invoked outside of a join_crowd statement in a 

serializer operation. As in the monitor solutions discussed, this situation can occur if the 

serializer is obtaining resource state information via invocations of resource procedures. 

However, it is unlikely that such an operation would be forced to wait at a lower level. While 

serializers and "properly used" monitors both avoid the hierarchical deadlock problem in almost 

all cases, the structure of serializers ensures that the potential for deadlock is minimized, while 

in monitor solutions, safety is dependent on the programmer properly using the construct. We 

therefore conclude that, by eliminating the explicit signal construct, and providing more aid in 

producing better modularized programs, serializers provide better support for developing 

correct programs than do monitors. 
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5 .6 Conclusions 

Serializers have succeeded in improving upon many of the poorly structured features of 

monitors .. Modularity, and thus understandability and ease of use, are enhanced by use of 

serializers. The use of automatic signalling improves reliability by eliminating one source of 

programming errors. 

The one drawback to the construct is that it is more complex mechanism (since so 

much more is done automatically) than the monitor mechanism. It is therefore less efficient. 

Efficiency can be improved by changing from the use of crowds, which actually store process 

identities, to counts. There appears to be no need for any more information about a crowd 

than how many processes are currently in it. 

The other feature detrimental to efficie.ncy is the automatic signalling. Because 

monitors allow explicit signalling, processes can often be restarted without any tests on 

conditions at all, and when tests are needed the programmer can use his or her knowledge 

about the possible current states to limit the number of conditions that need to be tested. 

Conceptually, automatic signalling means that the conditions at the head of every queue must 

be tested each time possession of the serializer is relinquished. Whether such tests actually cost 

a great deal remains to be determined. Most synchronization schemes do not require very many 

queues, so the overhead may not be great. While we consider the use of automatic signals to be 

an improvement over monitors, the reduction in efficiency may make serializers unsuitable for 

some purposes. 

Overall, serializers represent an improvement over monitors. Of the mechanisms 

evaluated in this thesis, serializers come closest to satisfying our requirements. 
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8. Summary and Evaluation 

This thesis has addreSsed two issues related to software reliability and synchronization 

of shared resources. One is how synchronization mechanisms can be evaluated to measure how 

well they support such criteria as expressive power, ease of use, modularity and correctness. 

The second is how well existing synchronization constructs meet these criteria. 

8.1 Summary and Conclusions 

Several results have been derived from our study of evaluation techniques. The 

development of methods for evaluating expressive power led to a study and definition of the 

kinds of problems we feel synchronization mechanisms should handle. It has been shown that a 

synchronization problem may be defined as a set of constraints, which fall into two basic 

categories, priority constraints and exclusion constraints. In addition, these problems can be 

categorized according to the kinds of information used to express the constraints. We have 

identified six categories of information needed in synchronization constraints: the time at which 

requests are made, the procedure requested, the local state of the resource, the synchronization 

state of the resource, the arguments passed with the requests, and the history of invocations of 

resource operations. Fu·rthermore, the categories of information used in a synchronization 

scheme largely determine how easily that scheme may be implemented using a given 

mechanism. Thus, by analyzing a mechanism to determine whether it provides access to each 

type of information and a method for expressing each type of constraint, we can measure its 

expressive power. In addition, we can estimate the difficulty of implementing a particular class 

of problems using the mechanism. Methods for evaluating ease of use and modifiability based 

on this categorization of problems are also described. 
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The other major result of this study is the application of modularization techniques to 

the structuring of shared resources. We have shown that significant benefits accrue when a 

shared resource is implemented as the composition of a synchronization module and an 

unsynchronized resource module, that is, when all synchronization is handled within the 

synchronized resource, but is independent of the unsynchronized resource. Not only does this 

structure improve usability and understandability, but it also reduces deadlock problems in 

many cases. 

The remainder of the thesis is devoted to evaluating monitors, path expressions, and 

serializers, the three existing mechanisms that seem most likely to satisfy the requirements of 

good software engineering. Based on this evaluation, we have drawn the following conclusions 

about these three mechanisms. While the approach taken by path expressions seems very 
~" 

attractive, our analysis has revealed some serious shortcomings. Path expressions do not 

provide access to several types of information needed in synchronization constraints, and thus 

lack sufficient expressive power. In particular, it is difficult to use the resource state and the 

arguments passed to procedures. To maintain information about time of request, or to express 

priority constraints in general, requires additional synchronization procedures, thus increasing 

the solution's complexity. In addition, the modularity requirements we find necessary to ensure 

~ase of use and verifiability are not well supported by the mechanism. We therefore conclude 

that the mechanism does not contribute to the production of reliable, easily maintainable 

software. The construct might be substantially improved if the need for synchronization 

procedures could be reduced. Given our enumeration of the kinds of constraints the mechanism 

must be able to express, it may now be possible to produce a version that incorporates the 

means for obtaining the necessary information. The use of extra procedures might then be 

unnecessary, and expressive power, ease of use, and modularity would be greatly enhanced. 

-----------
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Both monitors and serializers satisfy our criteria reasonably well. If asked to select one 

mechanism for inclusion in a modular programming language now, we would select serializers. 

Though certain tradeoffs are involved in selecting one of these mechanisms over the other. 
' 

serializers seem superior in two important respects. First, they meet our modularity 

requirements more closely. The proper use of monitors requires a special protected-resource 

module in addition to the synchronizer and resource modules; the resource implementor must 

also follow specific guidelines for defining monitor operations. Serializers depend less on such 

rules: the protected-resource module is not needed, and serializer operations are precisely the 

user-accessible operations on the protected resource. Serializers are thus more likely to be used 

correctly. The other important distinction between the two mechanisms is the use of automatic 

signalling in serializers. Though proof rules for the monitor signal construct have been 

developed, an automatic signalling feature is more likely to aid in constructing correct programs, 

and in easing the burden placed on the verifier. These differences between monitors and 

serializers indicate that serializers better support the construction of reliable concurrent 

programs than do monitors. The tradeoff made in selecting serializers over monitors is one of 

' efficiency for structure. 

8.2 Evaluation and Extensions ·•f this .work 

There are several areas related to this thesis that we feel warrant further study. The 

principal contribution of this work has been in outlining a method for evaluating 

synchronization constructs to determine how well they support the goals of good programming 

methodology. The method is dependent upon the recognition of classes of synchronization 

constraints based upon the kinds of information needed to specify a constraint. While this 

categorization of constraints appears valid, and hu proved useful in the evaluations presented 

------------
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here, a more detailed investigation of synchronization problems may yield more finely grained 

divisions that could isolate weaknesses in mechanisms still further. 

For example, the thesis is limited in the model of shared resources with which it deals. 

It is assumed that the resource to be synchronized is an object of an abstract data type, and that 

we are synchronizing individual accesses to that object. A more general analysis would have 

included several classes of problems omitted here. One such group of problems takes the form 

of a protected resource whose operations contain several invocations of resource procedures, 

rather than just one. The bank account problem in (20) is a member of this group. Another 

set of problems has one synchronizer controlling access to more than one resource. We need to 

know whether these problems can be reformulated to fit the model used here. If not, it is 

important to determine what properties synchronization mechanisms must satisfy to handle 

these problems adequately. 

One further extension to the analysis of requirements for synchronization mechanisms 

is the determination of the properties needed for such a mechanism to be usable in a 

distributed environment. We believe the modularization of a shared resource, and the 

association of the synchronization scheme for that resource with the resource definition, is a 

valid model in both centralized and distributed systems. However, the need for communication 

between a protected resource and users in a distributed environment may impose further 

restrictions on the kinds of mechanisms acceptable. 
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Appendix I - Speolfloatlon of Synohronlzatlon Problems 

In this appendix, we present formal specifications for those problems defined 

informally in Chapter 2. The notation used is that of Laventha1C24l In this formalism, each .. 
invocation of a synchronized operation has associated with it three events: request, enter, and 

exit. Request is the time at which the synchronizer first becomes aware that a user wishes to 

execute the operation. Enter is the time at which the process gains access to the resource, and 

exit is the time at which it leaves. In addition procedure activations are numbered uniquely for 

each resource object. For example, p2 denotes the second activation of procedure p. The 

specifications are written in terms of events, such as p1enter, which describes the enter event 

associated with the ith activation of the procedure p. The symbol • .... means temporally 

precedes. 

Writers_Exclude_Others 

ReadersJ'riority 

((writetnter -+ writelnter) ::> (write1exit -+ writetnter)) 8c 

((writetcit -+ readk enter) I (readk exit -+ writea enter)) 

Though not explicitly stated, the following two constraints are usually assumed. They state 

that reads are taken first_comeJirst serve with respect to each other, as are writes. 

(read{..,.''-+ readjrequest) ::> (readienter -+ readlnt•') 

(write reque•t -+ write reque•t) ::> (write enter -+ write enter) 
i j i ' j 
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First_come_first_serve 

(p{8quest ..,. qj'equest) ff (ptnter ..,. qjenter) 

Here, p and q represent any resource operations. Whichever activation is requested first is the 

one to enter first. 

Fair _Readers_Priority 

((read{equest ..,. write/•it) => (read1enter-+ writej+lenter)) &: 

(((write/xit -+ read{8quest) Be (writej+lrequest -+ read{equest )) :> 

(write· enter -+ read enter)) 
j+l i 

One_Slot Buffer 

(insert· exit ..,. remove. enter) & (remove· exit ..,. insert· enter) 
I I I 1+J 

Bounded buffer 

Alarmclock 

((tick.enter-+ wakeme.(n)'equest) :> (tick· enter..,. wakeme.(n)'n1")) &: 
I J l+n J 

((wakemeln)'equest ..,. ticki+i8nter) => (wakemeln>'"'" -+ ticki+n+l•nter)) 
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Disk head scheduling 

((a enter .._. a enter) ::> (a exit .._. a enter)) & 
z y z y 

((a.(x2)'8quest .._. ak(xl)exit .._.a (x2)enter) & 
I I 

(a ·(x3)'8quest .._. ak(xl)exit .._. a ·(X3)enter) & 
J J 

(am(xO)exit.,.. ak(xl)exit)) & 

((xO < xi < x2 & (x2 < x3 I x3 < xi)) 

(xO > xl > x2 & (x2 > x3 I x3 > xi))) 

::> (a .(x2)enter .._. a (x3)enter)) 
I J 
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