
MIT/ LCS / TR-210

Seria lizability of
Concurrent Database Updates

Christos H. Papadimitriou

This blank page was inserted to presenie pagination.

MIT/LCS/TR-210

SERIALIZABILITY OF CONCURRENT DATABASE UPDATES

Christos H. Papadimitriou

March 1979

This report was prepared with the support of the National

Science Foundation Grant No. MCS-77-01193 and No. MCS-77-05314.

It will appear in the Journal of the ACM. A preliminary version

of Sections 2 and 3 was presented at the Conference for Theoret

ical Computer Science at Waterloo, July 1977, in a joint paper

with P.A. Bernstein and J. B. Rothnie.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

The Serializability of concurrent Database Ypdates*

by

Christos B. Papadimitriou
Massachusetts Institute of Technology

Abstract

A sequence of interleaved user transactions in a database system may not

be seria.UaabZ.e, i.e., equivalent to so111e sequential execution of the

individual transactions. Using a simple transaction model we show that

recognizing the transaction histories which are serializable is an NP-

complete problem. We therefore introduce several efficiently recognizable

a~J.-.sses of the class of serializable histories; most of the•• -~

classes correspond to serializability principles existing in the

literature and used in practice. We also propose two new principles

which subsume all previously known ones. We give necessary and sufficient

conditions for a class of histories to be the output of an efficient

history scheduler; these conditions imply that there can be no efficient

scheduler that outputs all of serializable histories, and also that all

subclasses of serializable histories studied above have an efficient

scheduler. Finally, we show how our results can be extended to far more

general transaction models, 'to transactions with partly interpreted

functions, and to distributed database syst811l8.

* Research supported by NSF Grants MCS-77-01193 and MCS-77-05314.

This empty page was substih1ted for a
blank page in the original document.

1. INTRODUCTION

In many situations many users may consult anc! update a common data

base. We can think of such independent user transactions as sequences of

atomic database operations, interleaved with computations that are local

to the user, that is, they do not affect or depend on the current state

of the database. It is a function of database manaqement to handle the

update and retrieval requests made by the users in such a way so 'that the

resultinq overall process is in some appropriate sense correct. It is

generally accepted--see·; ·for example, [SLR]. , [SIC] , [BGLT) , [BPRJ --that

the right notion of correctness in this context is that of·sel"la.tiaab-ttity.

A sequence of atomic user updates/retrievals is ealled serializable

1•1•n~~ally if its overall effect is as thouqh the users took u~,, i~

SOiie order, executing each their entire transaction indivisibly~ 'l"h•

simplest example of a non-serializable sequence is a primitive form of a

•irace". Imagine two users that increment a counter by first sensinq its

value, and later reqisterinq an increased one. If both users retrieve

the value of the counter before either of them has updated it, the

resulting execution sequence--or histozty--is not serializable. This is

because both possible serial executions of these transactions would have

resulted in a larger total increment. Naturally, lllUch subtler examples

exist.

The appeal of serializability as a correctness criterion is quite

easy to justify. Databases are supposed to be faithful models of parts

of the world, and user transactions represent instantaneous changes in

the world. Since such changes are totally o:i:'dered by temporal priority,

-2-

the only acceptable interleavings of atomic steps of different trans-

actions are those that are equivalent to some sequential execution of

these transactions. Another way of viewing serializability is as a tool

for ensurinq system correctness. If each user transaction is correct--i.e.,

when run by itself, it is qua.rariteed to map consistent states of the data-

base to consistent statea--and transactions are guaranteed to be inter

minqled in ·a serializable way, then the overall system is also correct • .
In this paper we conaider transactions that consist of two atomic

actions: a retrieval of the value• of a Ht of database entiti .. --c:alled

the l'flad.-ast of the tranaac:tion-foll.ond by an update of the values of

another set of entities--the 111l'its-Bet. This is exactly the kind of

transactions handled by the system SDD-1 fBGSiP], [RG). However, the

main reason for considering this model here is that it provides a nice

framnork for understandinq·and comparinq very different philosophies of

aerializabUity that already exiat in the literature-e.q., CBS], [SLR],

(BGLT], [BGRP). Despite its apparent simplicity, it yields a theory of

serializability that is rich in combinatorial intricacies, and raises

interesting complexity questions. Since our model is the most general

coD1DOn restriction of the models in the various references cited above,

our neqative results apply verbatim to those models. Furthermore, most

of our positive results and characterizations are also easily generalizable

to more general situations, although their proofs--in many cases their

very statements--would be extremely cumbersome. Hence, we view our model

as a convenient lanquaqe, of the right degree of conceptual complexity,

for developing and communicating our ideas about serializabili~y, rather

than a set of restrictions that enable the proofs of certain theorems.

. ·"'·

-3-

We formalize our model of transactions in Section 2, where some pre•

liminary results are also proved.

In Section ·3 we prove that the question of whether a qiven sequence

of read and write operations corresponding to several traneactions (called

a hi.sto-py) is serializable is NP-c:omplete CAHUr, [lea]. This ~s

that, most probably, there is no efficient algor·±tbm that distinquishes

between serializable and non-aerialisable histories.

In Section 4, we study soam efficisltly recognizable subsets of the

set of serializable histories. In other words, we present:'polynom:ial-time

"heuristics" that approximate the NP-complete predicate of seriali&ability-

in a manner qlli.te r-.iniscent of efficienta.pprcm-imations Gt &•complete

"'''~tion prob.lam [GJJ, [PS). We.show dmt the twa•pbase l,~

strategy [~] and the protocol P3 of {BGttP] are incomenaurate":apecial

oases of two more 9enera1 claases c-.J.~ect Q and DSR.••tbe latter: ia

related with the model of [SLR] • These two aerialiubility principles

are therefore very qeneral (and applicable) new serialization methods. We

also introduce the class SSR of histories that can be serialized without

reversing the order of temporally non-overlapping transactions1 it is not

known whether this class is efficiently recognizable. In Section 5, we

observe that the quite intricate interrelations among these interesting

classes are simplified considerably if some "static" restrictions are

imposed on the read- and write-sets. We point out there that the simple

serializability theory of [SLR] is due to such a restriction of their model.

For all efficiently recognizable classes of histories studied in

Sections 4 and 5 there is also an efficient saheduteP1 an algorithm, that

is, which takes any history and transforms it to its closest {according

-4-

to some appropriate metric) history within the class considered. In

Section 6 we show that this is no accident: a class of histories has

an efficient scheduler if and only if it is efficiently recognizable,

plus a regularity condition, naaely that its set of pzeefi,zes is also

efficiently recognizable. By this result, the complexity theory developed

in Sections 3 through 5 is practically relevant, because the practical

question of the md.atence of an efficient scheduler for a given class

of histories is explicitly linked to the c011plexity properties of the

cl.aaa. Another illplicatioa 1a the negative ruult that, unless P • NP,,

there :_is no efficient "Mr:l.ali&er'1 of hiatorlu, and hence considering

ef f iciellt but aore r .. trictive achedulera--such aa the onea discussed

above-ia a ruaonable alternative. Finally, S.Ction 7 concludes our

treat11eat of the Rbjact. We discuss there a nuaber of possible exten

sione of our results such as to general (multi-step) transactions and

diatributecl databa

•
t

-s-

2. DEFINITIONS-NOTATION

A histo~ is a quadruple h·• (n,~,V,S), where n is a positive

integer; w is a permutation of

that is, a one-to-one function

the se.t En,.· {1\,w1 ,R2,w2 , ••• ,Rn,wn}-

w:l: + {1,2, ••• ,2n}--such that
n

W(Ri) < W(Wi) for i -1,2, ••• ,n (a permutation w is represented by

-1 -1 -1
<ir (l),~ (2), ••• ,w (2n)>); finally, Sis a function mapping l: to

n

2v, where V is a finite set df variables. Each pair (Ri,Wi) will be

called a traansacti.on Ti. S(Ri) will be called the :read set of T1 , and

S(Wi) its bT.r'ite set. We shall represent histories in a COJli>&Ct way by

exhibiting ir, with the sets S(•) given in brac::Jceta'followinq each

element of En. For example, the history h • (3,<1\,~,w1 ,a3 ,w2 ,w3>,

'{x,y},s) where S(l\) - S(R3) • {x}, S(R2) - ,, S(W3) -· {y}, and

1(¥1 > • SCW2) = {x,y} is represented as

The set of all histories is denoted by H.

We can think of each transaction Ti as starting with an instantaneous

reading of the values in the variables in S(Ri), performing a possibly

lengthy local computation and then instantaneously recording the results

in a different set S(Wi) of variables. We do not look into the details

of the exact nature of the local.computation. In fact, we view each

transaction Ti as a set of ls<wi) I uninterpreted ls<Ri) 1-ary function

sydx>ls {fij :j = 1, ••• ~(Wi)\}. 1T is the sequence in which these at®sig

J:Oead and write operations take place. Thus, a history can be vi~ •II •

special case of a fork-join parallel program schema, in which the local

-6-

start

halt

tl2 + fll (tll)

tl3 + f12<t11>

Fiqure l. The history h•R
1

[xJR
2
w

1
[x,y]R

3
[xJW

2
[x,y]W

3
[y] viewed as a

parallel program schema.

·- - ~ ~ ··~ .,,. -·--, --·-, ·77- "" . ·~ . '

-7-

computations involve a number of local temporary variables tij and are

executed in parallel with other read-write operations (see Figure 1).

The ooncatenation of two histories h
1

• (n,'ll'#V,S),

is -a history h
1

o h
2

• (n+m, T, V ,P), where P (Wi) • S (,Wi)

P(W1)=T(Wi-n) for i>n. Similarly, P(Ri)•S(l~.i) if

h
2

• (m,P,V ,T)

if i ~ n, and

P(Ri) = T(R.) for i > n. Also T(Wi) • 'll'(Wi) if i < n, and
1-n -

T(Wi)•P(Wi-n)+2n for J:>-n, ·T(R1) .. 'It'(~) for i .s n, T(R1) • p(Ri-n)+2n for

i > n. In other words hih2 is a juxtaposition of the two histories, only

with.the transactions of h2 renamed. 'fhus, if

and

then

We say that two histories h1 • (n,1T,V,S) and h2 • (n,1T' ,V,S) are

equivalent (written h1 :: h2) if and only if the correapondinq schemata are

(strongly) equivalent. In other words, given any set of lvl domains for

the variables, any set of initial values for the variables from the

corresponding domains, and, furthermore, any interpretation of the functions

fij' the values of the variables are identi,oal after the execution of both

histories. Notice that our definition of equivalence requires that the two

histories involve the same set of transactions. Thus h1 • ~ [yJR2w2 br.Jw1 [x]

ie J>.Ot equivalent to h2 • ~ [yJw1 [x], despite the fact that their coz:or.-•PQn4~9'

schemata are equivalent (essentially because T2 is "dead" in h1). This is

a matter of convenience, and little chanqe to our derivations would be

necessary in order to broaden equivalence in this sense.

-----~----

-a-

To qive a syntactic characterization of equivalence, it is necessary

to first introduce some terminology. Let h= (n,1T,V,i) be a history.

The augmented veztsion of h is the history h • (n+2, i, V, S) , where

ii• <Rn+l '•n+l' 1T ,Rn+2 ,wn+2> and S (Ri) • S (Ri), S cw1 > • s (Wi) for i ~ n,

and also S(Rn+l> •S(Wn+2 > =9J, S(Wn+l> ·~(Rn+2 > •V. In other words, ii

is h preceded by a transaction that initializes all variables without

aenainq any, and followed by a transaction that reacAI the final values of

all the variables, without chan9in9 th-. Suppose that x € s (fti) • We

aay that a1 Nada x fz'om wj i.n It if wj ia th• latest occurrence

ot a write ayllbol before a
1

in Ji such that x Es (Wj) • lfotice that

since ii .contains "n+l with S(Wn+l> •V, such a write symbol always

exists. 'l'he definition of a 1.i.ve transaction in h is as follow•:

a. Tn+2 is live in h.

b. · If· for some live tranaaction Tj, Rj r...sa a variable from Wi

in h, then Ti is also live in h.

c. 'l'he only kinda of live transactions in h are defined by {a)

and (b) above.

The followi.nq is now a simple syntactic characterization of history

equivalence, essentially a restatement of the characterization of schema

equivalence in terms of Herbrand interpretations, [LPP]:

PROPOSI'l'IOH l. Two histories h
1

"" (n,ir,V,S) and h2 = (n,1f' ,V,S)

are equivalent if and only if they have the same sets of live transactions,

.and a live Ri reads

from wj in h2 •

x from W.
J

if and only if Ri reads x

D

-9-

One of the implications of Proposition 1 is thaie, equivalence of

histories can be decided efficiently. The sets of live transactions can

be found in O(n·lvl> time by applyinq the recursive definition given

above, and so can the zteads from relation for transactions. Hence we have:

COROLLARY. Equivalence of histories can be decided in O(n· lvl)

time. c

The main theme of this paper is the notion of sel'iat.iaabiUty. A

history h= (n,'11',V,S) is sel'iat. if 'fl'(Wi) •'ll'(Ri) +l for all i•l,2, •• ,,n,

in other words, a history is serial if lt.i inllledia.tely preceeds Wi in it

for i = 1, ••• , n. A history h is se'l"'f..at.iaab '/,e (notation: h € SR) if and

only if there is a serial history hs such that h : h • s In the next

filection we shall present a. syntactic characterization of serialj.1-1:>1•

histories analogous to (and based on) Proposition 1.

--------- ------ ~------

-10-

3. THE COMPLEXITY OF SERIALIZABILITY'

In order to examine the complexity of the serializilbility problem,

we need first to introduce some graph-theoretic te.rminology.

DEFINITION 1. A po"Ly~h* P'"' (N,A,B) is a diqraph (N,A) to-

qether with a set B of bipaths1 that is, pairs of arca--not necessarily

in A--of the form ((v,u) ,fu,w)) such that (w,v) EA. c

Alternatively, a polyqraph (N,A,B) can be viewed a.a a f~ly 0(R,A,B)

of difraPha. A digraph (H,A ') is in OCH,A,B) if and only if A~ .a.',

and for each bipath ca
1

,a2> E:B, A' contains at l.ea.at one of a
1

, a 2 •

Polyqraphs will be represented schematically as in Figure 2a. .a.res in A

will be drawn as ordinary arrows, and pairs of area in B will be marked

by a circular arc centered on their ~n node.

DBPIRJ:TIOH 2. .a. polygraph (H,A.,B) is aoyo'tic if there is an

acyclic digraph in 1'01,A,B). c

For example, the digraph of Fiqure 2b is both in VCN,A,B) and

acyclic; it follows that (N,A,B) of Figure 2a is acyclic. Notice that

for a polygraph (N,A,B) to be acyclic, the digraph (N,A) must

definitely be acyclic.

Given any history h • (n,11' ,v ,S) we are going to define a polygraph

P(h) = (N,A,B). N is the set of live transactions of h, the augmented version

of h. First, A contains the arcs { (Tn+l 'v) :v E N-{Tn+l}}, and also the

* We insist on this terminology only because it has already become
notorious for its impropriety.

.•'.

b· J

-11-

arcs {(v, Tn+2> :v E'. N:..{T~+2}}. Secondly, whenever transaction u reads

some variable x from v in h, we add the arc (v,u) in A. Further-

more, if for a third tranaaction w, x ia in the writ•-••t of w, then

we add the bipath ((u,w), (w,v)) in B. 'l'hia concludes the construction

of P(h).

Intuitively, P(h} captures a partial order that can be interpreted

aa "happenec! before"., and with which any hiatory that i• equivalent to h

must he consistent. Bach arc (v,u) _ means that u read .,_ variable

frclll v and hence mat follow it. Also, a hipath ((u,w), (w,v)} means that

w write• on .the ._ variable, and hence cannot he in between v and u1

it mat either precede v or follow u. 'l'his is stated as a 1-.:

LIDllA 1. TWo histories 1'i • (n,11',V,S) and h2 • (n,11"' ,v,.s) are

equivalent if and only if P<1'i> and P(h2> are identical.

Proof. Both directions follow from Proposition 1 and the definition

LEMMA 2. A history h• (n,ir,V,S) without dead transactions is seriali-

zable if and only if P(h) is acyclic.

Proof. If h is serializable, there exists a serial history h
9

such that h:: h
8

or, by Lemna 1, P(h) • P(h) •
. s

Hewever P(h) .. (N,A,B) s

is acyclic. To see this, let (T1 , ••• ,Tn) be ordered according to their

occurrence in h • We construct a digraph (N ,A') € V (P Ch)) as follows: s s

A' contains the arcs in A, and for each bipath ((T. , T.) , (T. , Tk)) in
l. J J

-12-

show that exactly one of these must occur, rec•ll tha:t in h
8

Ti reads

a variable x € S CW j) from Tk, and hence k < t , and not k < j < i .

Consequently the above construction yields a diqraph (N ,A') in

VCP,A,B). Next, notice that (N,A') is acyclic since it is a subqraph

of the total order (Tn+l'T1 , ••• ,Tn,Tn+2>. So, P(h) is also acyclic.

Now, let (N,A') be an acyclic diqraph in VCP(h)). The seria,l

history h s resultinq from topologically aortinq (N,A') is then equi-

valent to h • This follows from Proposition 1 and from the fact tha.t

since one of the two arcs of each bipath in B is in A', all transactions

in hs read all variables from the same transaction in h as they do in

h • D s

Unfortunately, the combinatorial characterization of serial repro-

d~oibility shown in Lenma 2 does not directly suqqest an efficient test.

In fact, the theorem below is strong evidence that no such test exists.

THEOREM 1. Testing whether a history h is eerializable is NP-

complete, even if h has no.dead transactions.

In order to proceed with the proof of Theorein 1 we first need another

lemma. It is well known (see [AHU],[X&)) that the satisfiability problem

of B<>olean formulas in conjunctive no%'1DOJ. form with two or three literals

in each clause (abbreviated SAT) is NP-complete. We can show that a more

restricted version of this problem is still NP•complete. Call a clause

rrri:l!ed if it contains both variali>les and negations of variables, and call a

fQl'Jllula nonci.raular if at most one of the occurrences of each variable i•

in a mixed clause.

-----~----~----------

-13-

LEMMA 3. SAT is NP-complete even if the formulae are restricted

to be noncircular._

Proof. Consider any instance F of SAT and a variable x in it.

Let m be the number of occurrences of x in the formula F, and let
.•

x
1

,x
2

, ••.• ,xm l:ie new variables. We replace x in its first occurrence

by .Xi.;· in its second by i 2, in its third by x3, etc. Finally, we add

the clauses (Xi V x2) A (Xl V x2) A (x2 V x
3

) A (x
2

V x
3

) A ••• , which is the

- -conjunctive normal fora of ~ : x2 E x3 : x4 :: • • • • Repeatinq this for all

variables, we obserYe that the reaultinq formla ia trivially ncncircular,

and the construction requires only a polynaai.al amount of time.

Proof of 'fbeorem 1. The set of SR histories is definitely in MP,

since to show that h is SR, one only needs to construct a serial history

h
8

(of len9th ·not greater than that of h) , and check by Propoai tion 1 that

h and h
8

are equivalent.

We will next show that a known &-complete problem, the noncircular

SAT problem of Lemma 3 above, reduces to SR-testinq in polynomial time.

Given any such formula F, we are qoing to construct a polygraph

PF= {N,A,B) such that PF is acyclic if and only if F is satisfiable.

We will then show that PF can be considered as P(h) for a suitable

history h, without dead transactions. In view of Lumia 2, this will

conclude the proof.

We start from the construction of PF• (N,A,B). F has m clauses

c1 , •.• ,Cm and involves n Boolean variables x
1

, .•. ,x
0

• Each clause c
1

cons is ts of three 11 terals :\ il '¥ :\ 12 v :\ i
3

, where ;\ j k is either a variable

or a negation of one. N contains the nodes a. , b. , cj for each variable
J J

·.,.;

-14-

xj, and yik' zik' k • 1, •• ,mi for each clause Ci with mi literals. For

each variable xj we add the arc (aj,bj) to A, and the bipath ((bj,cj),

(cj'aj)) to B. For each clause Ci, we add the arcs (yik'zi,k+l>

(addition mod mi) to A. Finally, if A.ik ..- xj , we add the arcs (cj ,yik)

and (bj,zik) to A, and the bipath ((zik'Yik),(yik'bj)) to B. If A.ik• ij'

then we add the arcs (zik'cj) and (yik'aj) to A, and the bipath ((aj,zik)'

(z ik; yik)) to B. For exaq:ile, if the literal).ik ie xj , the subpoly

qraph of Piqure 3 will appear in PF •

. Finally, we add to It the node• n.
0

,nc and nf, together with_ tM

arcs (n0 ,n), (n,nc) and (n,nf) for all nE. N-{n0,nc,nf}, and also the arc

(nc,nf). This concludes the const1"'1Ction of P1 • In Figure 4a we.:i,llustrate

the construction for the Boolean forwla

:ror simplicity, in Fiqure 4 we have omitted the nodes n
0

and nf.

we will now arque that PF is acyclic if and only if F is satis

fiable. suppose that PF is acyclic. This means that there is an acyclic

diqraph (N,A') EVCPF). Obviously, for each j, exactly one of the edqes

(b.,c.}
J J

and is in A'. Think.the fact that (cj ,aj) €A'

means that x. is assigned the value t:rue.
J

We may :inlDediately note that

if a literal Aik is qiven the value faZae by this assignment, the

corresponding arc (zik'yik) is also in A', since otherwise, a cycle of

the form (cj,yik'bj}--or (zik'cj,aj) if).ik•xj--would exist in (N,A').

Hence, the only way for (N ,A') not to have a cycle of the form

(zil'Yi1 ,z12 , ••• ,y13> is that at leaat one literal in each clause ia

assigned the value tl'UB, which means that F is aati8fiabla.

-15-

Conversely, suppose that F is satisfied by some truth assignment

T. We will construct an acyclic digraph (N ,A') € 1J (PF) • A' contains

all of A and the arcs (c.,a.) if T(x.) =t:t'Ue, (b.,c.) if
J J J J J

T(xj) •fa'lee, and the arcs (zik,yik) if T(Aik) •faZse, (yik'bj) if

Aik•ij and T(xj) •tz.ue, and (aj,zik) if Ajk•xj and T(xj) =faZse.

Obviously, (N,A') is in 0(Pl!') 1 the claim is that it is acyclic. We

first note that since F is by hypothesis noncircular, (N,A) is acyclic.

'11lis is becaUBe by the construction of A, the clauses containing

variables only or ~tions only cone~ to nQ4e Mts with only in-

coainCJ or, respectively, onlyoutqoinq aroar node MU c:orreapond.inq to

mixed clauses have both incoainq and outgoinq arcs, but no two such node

sets are reachable frc:a each other in (11,A), by F's noncircularityr it

follows that (H,A) is indeed acyclic. It is qsy to chec:Jt that the arcs

in A' - A can harm the cliqraph' a acyclicity only by introducing a

(zil'Yu•···•Y13> cycle1 howaver, this 'tlOUld mean that ... clause 'bas

no tl9ue (under T) literal, and hence T does not aa.tisfy F, a contra-

diction. In Figure 4 we show in brcic.en lines the arcs of an acyclic

digraph in 1JCPF)1 this digraph corresponds to the truth assignment

TCx1> = "tPue, TCx2> =faZse, T(x3) =faZse which satisfies F.

In order to conclude the proof we need to construct a history h

such that P(h) •PF. All nodes of PF correspond to distinct transactions.

To construct the read and write sets of the transactions (except for

n0 ,nc and nf), we start by having all read sets empty, and a variable xv

in the write set of each transaction v. For each arc (v,u) EA we add a

variable x to the write set of v and the read set of u, and for each
vu

bipath ((v,u),(u,w))EB we add x
WV

to the write set of u . Finally,

.·,,·

-16-

{x : (u,v)EA} • R(nf), R(n) • {x :uEN},
~ c v

W(nf) = ~' W(nc) • {xuv: (u,v)EA}. In order to sketch the construction of

h, we represent the read and write operations corresponding to the _node

v of PF by R(v),W(v) respectively. We use v to stand for R(v)W(v).

We start the construction of h from left to right. First. for each clause

Ci consisting of just negations we add the subhistory h(Ci) • Yil" •• yimi

Next, for each variable xj that appears unnegated in the mixed clause

c1 (i..tj).tR • xj) we add the subhistory h(xj) • R(aj)zimcjW(aj)It(bj)y1aW(bj).

The z:lm part appears only if Ci is purely negated and).ili • ij . Further,

if .).pq • xj for some purely unnegated clause CP then y pq appears also

after y .tk. Then follow subhistories corresponding to the remaining

variables. If xj does not appear unnegated in a mixed clau~e,

add to h the subhistory h(xj) • R(aj)zimcjW(aj)lt(bj)y1B.W(bj).

then we

Again,

y .tR appears only if \a • zj for some purely unnegated clauee c 1, and if

xj also appears in a purely negated clause C (). • ij) then z comes p pq pq

after zim. Finally, we have h(Ci) • z11 ... zim for each purely negated
i

clause Ci, and at the end the transaction nc.

To argue that PF• p(h), first note that all (yij'zij+l) (mod mi)

arcs are realized br h, and that the subpolygraph of Figure 3 is realized

for each xj •.).ik' and the symmetric subpolygraph for ij • ·\R.

Furthermore, it is quite easy to check that no other area and bipaths are

added by the construction. Hence PF• P(h), which completes the proof of

Theorem 1. D

-17-

4. EFFICIENTLY RECOGRIZABLE CLASSES OP SBlttALl:ZABLB HISTORIES

Given that SR is NP-complete, it is reaao~ie to look for .e~ts of

SR that are efficiently recOCJllizable. In this section: we atudy -.veral

such classes of serializable histories.

4.1 The Class DSR

PBFINITION 3. Let h1 .. (n, 'If, V, s) and h2 • (n, 'If' , V, S) be histories.

We write that h1 "'h2 whenever 'lf(a) • 'lf'(ICJ) for all a€ l:n except for

two ~lements a1 ,?2 E l:n with 'lf{a1> •'If' ca2> a j, 'lf(a2) •'If' (al,) ""'j+l for

some l ~ j ~ n-1, and either

a. O'l"" Ri' 0'2 • Rj for some i, j~n, or

b. al.., Ri' a2 ""wj, ipl j, i, j ~ n, and s(Ri) nscwj> •9J, or

c. al .. wi, <12•W,, i, j ~n, and S(Wi) n S{Wj) •9J.
J

Cl

As an illustration, we have that

because at each step the next history is obtain.a' from the previous one by

switching two adjacent symbols obeying one of the conditions (a), (b) and

(c) of Definition ·3 above.

The following is a direct consequence of Proposition 1 and the above

d•finition:

Cl

-18-

* Let - be the reflexive-transitive closure of -. Since - is

synnetric, * - is an equivalence relation which is, by Proposition 3, a

restriction of :. We can show that ~ is a proper restriction ol =
by obnrvinq that for the two histories

but

w. .. Y tbat the biatory h is D-ama'Li.ubt. <DBRJ .t.t there a a Mrial

history h8 auch that h & h8 • ObvioU.ly, if a history is osa, it is

certainly SR.

We can associate with a history h• (n,ir,V,S) a diqraph O(h)

defined as follows: The nodes of D(h) are the transactions {T1 , ••• ,Tn}

of h, and the pair (Ti,Tj) is an arc of D(h) if and only if either

a. S (Ri) 0 S (Wj) 'fl. flJ and 'll'(Ri) <ir(W.), or , J

b. S(lfi) n S(Rj) ,, ra and 'll'(Wi) <ir(Rj)' or

c. s cw 1 > n s cw j > ,, ra and 1T (W i) < 1T (W j) •

LEMMA 4. Suppose that for two histories h
1

== (n,ir,V,S) and

h2 • (n,1T' ,V,S) D(h1) and D(h2) have no cycles of length 2. Then

h1 ~ h2 if and only if D(h
1

) = D(h2).

.•

-19-

Proof. It should be obvious from the definition of D(h) and the

- relation that whenever h
1

... h
2

, also D (h
1

) • D (h
2

) • Consequently,

h
1

!. h
2

implies D (h
1

) = D (h
2

) •

For the other direction, assume that D(h
1

) .• D(h
2
). We shall

transform h2 to h1 by a sequence of "' transformations as follows:

Take the symbol in Ln that is the f'irst symbol in h
1

(i.e., '11'-l (1))

and bring it to the first place of h2 by successively switching it with all

-1 symbols preceding it in h
2

1 then take 'II' (2) and bring it to the

second position by switching it with all symbols preceding it, e.oept

-1
'If (l); and so on, until h

2
is transformed to h

1
• It remains to show

that all these switchings have been leqal transformations. Suppose

that at some time we had to switch <1
1

with a
2

in a manner not

allowed by Definition l; that is either

1,, a1 • Ri, a 2 •Wi1 this ~" how•ver, that in h1 , "i p:r:tQ'4ea

R1 , and hence h
1

is not a history.

b. O'l =Ri' a2 =Wj and scRi> nscwj> r1- fl. This would mean

however, that (Ti' Tj) is in D(h2) and (Tj ,Ti) is in D(hl). Since

D(hl) and D(h2) have no cycles of lenqth 2 we can conclude that

c. a

We can now prove the following Theorem.

THEOREM 2. A history h • (n, 'If, V, S) is DSR if and only if D (h)

is acyclic.

Proof. Suppose that D(h) is acyclic. We can thus sort

topologically the set· {T
1

, ••• ,Tn} of nodes of D(h). Think of this

-20-

order as a serial history h8 . It is :immediate that D (h
5

) = D (h) , and

* hence, by Lemma 4, h - h5 • It follows that h is DSR.

For the other direction, assume that h is DSR. We have two cases

a. D(h) has a cycle (T1 ,Tj,Ti) of lenqth 2. This means that

'll'(Ri) <'ll'(Wj) <11'(Wi), and S(Ri) nscwj) -r 9J, S(Wi)(\ (S(Wj)US(1tj))'7' ... It is

easy to show that in all histories h' * for which h - h • we will also

have 11'' (Ri) < 11'' (Wj) < 11'' (Wi), as otherwise h + h' , amt: h .,, h·', by

Proposition 3 •. He.nee there is no serial history hs such that h ~ b
8

,

a contradiction~

b. D(h) has no cycles of length 2. By Le an 4, there is a serial

history hs such that D (h) • o Ch
8
> • However, serial histories h6

have acyclic D(h8), and hence D(h) · is ac:yclic. a

!heor•f ·2 SWJCJUt:.s that histories that are DSR can be detec:ted

efficiently by oheckinq D(h) for acyclic:ity:

COROLLARY 1. Checking whether a history h • (n, 11', V, s) is DSR can

be done in O(lv(n2> time. D

Also, we can rephrase Theorem 2 as follows (compare with

Definition 4 below):

COBOLLARY 2 • A history h = (n,11' ,V ,S) is DSR if and only if we can

find real numbers . {sl, .•• ,sn} such that

a. If S(Wi) n S(Rj) " ¢
and '11' (W.) < '11' (R.) then s. < s ..

l. J l. J

b. If S (R.) n S (W.) -r ¢ and '1T'(R.) < 'Jf(W,) then s. < s ..
l. J l. J l. J

c. If S CW.) 0 S (W .) ':F f2' and 'IT (W.) < 7T CW .) then s. < s .. 0
l. J l. J l. J

-21-

4.2 The Class Q

DEFINITION 4. A history h • (n, 11', v, s) is in Q if there exist

non-inteqer, distinct real numbers s
1
,s

2
, ••• ,sn with the followinq

properties:

a. 'IT(Ri) <Si< 'll'(Wi)

b. If scRi> nscwj> .,. ff, i'J'j and 'll'(Ri) < 1T(Wj) then Si< Sj

c. If scwi> nscwj>.,. 9J and 'll'(Wi) < 'R'(Wj) then Si< Sj.

The real numbers s
1

, ••• ,sn in Definition 3 are called s•riati

sabi.ti.ty points. Their intuitive •aninq is that the history h is the

same as thouqh transaction T1 had executed. indivisibly at the time

instance s1 (durinq which, by (a) above, it was active), tr-.n..-ction

1, •• s2 , and so on. As an illustration, the ~iatory

is in the class Q, since the value• s
1

• 3.5, s
2

• 2.5, and s
3

• 4.5

satisfy, as the reader can check, the requirwnta of the definition.

The claaa Q was independently introduced by [Wo].

THEOREM 3. If h is in Q, then h is DSR.

PrOCi>f. Conditions (b) and (o) of t.he definition of the class Q

above are identical to (b) and (c) of Cozollary 2 to 'l'heormn 2. Hence

it suffices to show that condition (a) above illplies condition (a) of

a

Corollary 2. But this is imnediate, because if w(Wi) < 'll'(Rj)

that Si< 'IT(Wi) < 'IT(Rj) < sj, no matter what S(Rj) and SfWi) are~ a

----------------~---------- - -----

-22-

Given a history h• (n,ir,v,s) we can construct another digraph

D'(h)--a superdigraph of D(h)--with node set again {T
1

, ••• ,Tn} and

(Ti,Tj) an arc if and only if one of the followinq holds

a. 'll'(Wi) < 1F(Rj)

b.

c.

'll'(Ri) < 1F(Wj)

11'(Wi) < 'll'(Wj)

and s (R1 > n s cw j > 'f' SIS

and S (W i) 0 S (W j) ~ If.

In other 110rds D' (h) contains all the arcs of D (h) and possibly some

~ 4. '1'ba hi8tory h• (n,w,V,8) i• in the ola•• Q if and

oftly if D • (h) is ac:yclic.

Pxoof. Suppa• that hE:Q, and let s
1

, ••• ,sn be appropriate

. nUllbera. Witboat loss of qaerality s1 < s2 < • • • < Sn. We shall 8how that

wbenner ('l'i ,'l'j) is in D' (h) , then i < j. Suppose that i > j 1 by the

definition of D • (h) one ot the followin9 ... t bole! s

a. wcw
1
> < 'ft'(Rj). Bowever, s

1
< wcw1 ~ < 'W(llj) < sj, which contradictll

our assumption that s1 < s2 < • • • <Sn and 1 > j.

b. 'IT'(Wi) < 'll'(Wj) and S(Wi) n S(Wj) "" fa. By (c) of Definition 4,

however, Si < S j , again a contradiction.

c. 'll'(Ri) < 'll'(Wj) and S{Ri) 0 S(Wj) 'fl. 9J. Similarly, a contradiction

is reached by (b) of Definition 4.

Consequently, D'(h) is acyclic, since it is a subgraph of a total order.

For the other directiop, suppose that D'(h) is acyclic. We can

sort topologically its nodes to obtain the order, say, (T1 ,T2 , ••. ,Tn).

We can define the real numbers s 1 ,s2 , .•. ,sn' and sn+l (for convenience)

as follows:

~ .. . ·-·· ---- ~·---·~:"- ··-~· -,

-23-

a. sn+l = 2n+ 1

b. l
j • n~ n-1, ••• ,1 • --n+l '

It is clear that the S.'s are distinct, increaainq, non-inteqer
J

real numbers, and that they satisfy (b) and (c::i) of Definition 4. :tt

suffices thus to prove (a) of Definition 4, in particular that Si :.'ll'(Ri)

for all i. suppose that, for some i, Si ~ 'll'(Ri). Let j be the

smallest index, no smaller than i, for which 'lf(Wj) < sj+l • 'l'hua

S • 'lr(W) - j-i+l > '11'(W) - l
i j n+l j

Consesiuently 1T(Ri) >n(Wj) - 1, or 1T(Ri) >ir(Wj). Bence (Tj,Ti) €A,

~~ eontradicta the fact that j ~ i in the topoloqioal sort~M of
:t .

DI (h).

COROLLARY. Testing whether a history h• (n,'lf,V,$) is in Q can

be done in O(lvln2 > time.

4.3 Two-Phase Locking and the Protocol P3

A very influential proposal for CJU&J:anteeinq serializability of

update systems has been the two-phase lockinCJ mechanism of [EGLT]--also

discussed extensively in [BS]. Also, the essence of a quite different

a

D

.. rializability principle (which was used in the development of t!\e SID ... 1

distributed system [RG], [BGRP]) is captured by the so-called protocol P3

-24-

(see [BS]). In this SUbsection we show that these two different

philosophies of serializability are reduced, in our model, to two

efficiently recognizable incOlllllensurate subsets of our class DSR.

'l'he two-phase locking strategy requests and rel • actual locks--

i.e., mechanims that guarantee exclusive data accesa--durinq the execution

of the different ~ationa of an update. The rule that is proven

aufficient for guaranteeinCJ MrialiAbility i•: nenr requeat a lock

after a lock has been rel....S. We haft, therefore, a.> 'phases: one

c!urincJ wbich locks •Y only be requeated, followed by one during which

locJcs can cml.y be releued. '!la. first rel.... of' a lock c!el.iaits the

two phuu. In our '8>del of two-step update• the author• of (BS] note

that bJrl-pbaM locking for a history h• (n,'11',V,S) •••entially amounts

tb 4ivitincJ the interval frcm 'R'(Rj) to 'll'(Wj) into two intett<a

one duri119 wb.iah no myllbol Wi with S(llj) ns(Wi) ~. can.exist, followed

by one during which no symbol a Et· with S(O) OS(W) ~. can exist.
n j

'l'bis is captured by the following definition:

DBFINI'l'Iat S. A history h • (n, 'Ir, V, S) is ttuo-p1taae locked

(notation: h E 2PL) if and only if there exist distinct non-inteqer real

numbers .t
1

, ••• ,J,n (the 'Lookpoints) such that

. a. 11'(R1> < 11 < 'lr(W1) for i • l, ••• ,n

b.

c.

If S(Ri) OS(Wj) 'tJ fl, iJ'j and 'll'(Ri) <'ll'(Wj)' then 11 <!j

If S(Wi) 0 S(Wj) ~ fd and 'll'(Wi) < 'll'(Wj), then 1T(Wi) < R.j.

To understand Definition 5, consider a transaction (R,,W.)
))

in a

history h € 2PL, and its lockpoint R... The intuitive meaning of the
)

lockpoint is the :following: durinq the interval all

a

-25-

variables in S(Rj) are "protected" from writinq by other transactions,

by virtue of (b). Also durinq the interval [1j,'IT(Wj)] the variables

in S (W.) are protected from reading and writinq. Conditions (b) and
J

(c) therefore essentially say that the interval [1j,'IT(Wj)] overlaps

no interval [R.k 1 1T(Wk)] with S(Wk) OS(Wj) -.; f6 and no interval ['IT(~) ,R.k]

with S (W j) n S (~) '#- fl}. Thus, the second lock is granted before the first

is released, in accordance with the two-phase locking principle.

Althouqh Definitions 4 and 5 differ only slightly in condition (c),

the latter is a substantial restriction. First, we notice that 2PL S. Q.

Indeed, if h € 2PL then the lookpoints .e,
1

, ... ,.e,n are automatically

valid serializability points s
1

, ... ,sn in Definition 4. To see this,

just notice for that condition (c) of Definition 5 (1T(Wi) <R.j) together

with (a) (1i < 1T(Wi)) imply (c) of Definition 4 (namely, Si < Sj).

IJe IMW that the inclusion is proper, notice that for the histQ11}'

we have that h E Q (see Figure Sa for D' (h)) but h t. 2PL. The ex-

planation for the latter fact is that transaction 3 has no lockpoint .e.
3

,

since, if it had, 1
3

should obey .e,
3

< 1
1

< 4 (by (b)) and also 13 > 5

(by (c)).

We can, however, check very efficiently whether a history h is

two-phase locked. Given any history h• (n,'l!',V,S) we define the history

h*= (2n,1T*,V,S*), where h* is obtained from h by inserting a

transaction Rn+j, wn+j after Wj in h for j • 1, ..• ,n, S* (Rn+j) = IZJ,

and S*(Wn+j> = S(Wj). For example, the history h* for h of the

example above is

-2Sa-

(a)

(b)

Figure 5

-26-

THEOREM 5. For a history h = (n,11' ,v ,S) h € 2PL if and .only if

h* €Q.

~-·. Let U.1 , ••• , tn} be a set of distinct non-inteqer real

numbers, and let a(j) be the number of poaitions to the riqht ~t the

~ymbol 11' -l (j) was shifted in h* 1 in other words a (j) • 2 • Hw1 ;'A' (Wi) < :HI •

Consider the set {sl I ••• ,s2n} I where Si - .ti+ a er ti 1) for i ~ n, and

s. • 'll'(Wi) + a('ll'(Wi.)) + 3/2 for i > n. we. aiaim that · {11} is an
i -n -n

acceptable set of lockpoints satisfyinq Definition 5 if and only if

{sj} is a set of serializability points accorcU.ng to Definition 4. Both

directions follow from the definitions. 'l'be formal derivation is

'l'o illustrate the theorem, the history h above is in Q, since

D' (h) is acyclic (Fiqure Sa). However, it ia not in 2PL, because o• (h*)

is not acyclic (Fiqure Sb). Naturally, Theorem 5 yields

COROLLARY. Testing whether a histoey h• (n,11',V,S} is two-phase

looked can be done in o (n 21 VI } time. D

We now turn to formalizing and studyinq in our model the protocol Pl

of [BGRP] and [BS]. Recall the diqraph D(h) d.efined.for any history h

in Subsection 4.1--see Figure 6a for an illustration in the case of

-27-

(a) (b)

l'igure 6

DBPDII'l'IOll 6. Let G (h) be the vwJ:tNO'Ud graph correspondinq to

D(h)-l'igure 6b~ A (Jf/fJ'l.11 in G-(h) is a sequence (Ti , 'l'i)
l a

a ? 2 tranaac:Uou nch that [Ti , '1' i]
j j+l

are edcJea ~ G(h),

of

j • l, ••• ,a-1, and eo i• (Ti ,'l'i] • Rotice that all edges are cycles
. • 1

accordin9 to thi• definition. A cycle ('l'i , ••• ,'1'1) is 'bad if
1 •

cs <•1 > u s <• 1 > 1 n s <• 1 > ~ - ,
• • 1

Notice that in the above definition the first node of a cycle and

the order of listinq of the nodes are important. For example, in

a

Pigure 6 (T1 ,T2) is a bad. cycle, whereas CT2,T1) is not. Bad cycles

are, intuitively, tho•• cycle• that can correspond to a directed cycle in

D(h') for some other history h' involvinq the same transactions.

DEFINITION 6 (continued). Let h= (n,'IT,V,S) be a history. We say

that Tj is a (JUQZ'dian of Ti if there exists a bad cycle

(Ti,Tj, ••• ,Tk) in G(h). We say that h obeys ths protooot P3 (notation

h € P3) if whenever TJ. is a quardian of T
1
. we do not have 'IT (R.) < 11' (W.) < 'IT (W.) •

1 J 1

c

-28-

For example, consider the history h of Figure 6. The only bad

cycle in G(h)--Figure 6b--is (T
1

,T2), and hence th• quardian relation

is simple: just T
2

is a guardian of T
1

• Since · 'll'cw2> > n<w1 >, we have

that h E P3.

THEOREM 6. Suppose that h • (n, 11', V ,S) is in PJ. Then it is also ..
in DSR.

Proof. we shall show that h E P3 implies that D (h) is acyclic·

Suppose that D(h) has a cycle
Consider the arc

(T T) Of D(h) --addition mod m; we have three cases:
j' j+l

a. S (W j) n S (W j + l)
" f6

and 'll'(Wj) < 'll'(Wj+l).

b. S (Wj.) n S (Rj+l) r f6 and 'll'(Wj) < 11'(Rj+l).

Q, S(Rj) n S(Wj+l) r f6 and 1T(Rj) < 'll'(Wj+l) .

:Notice that in both cases (a) and (b) we have that 'II' (Wj) < 'll'(Wj+l), and

that more than one case may be applicable to the same arc. Case (c) is

split into two subcases.

(cl) Cases (a) and (c) do not apply to the arc (Tj-l' Tj).

(c2) j • 1 or ' '
case (a) or case (c) applies to (Tj-l 'Tj).

In case (cl) we have that 'II' (Wj-l) <'II' (Rj) <'II' (Wj+l). In case (c2), however,

we notice that Tj+l is a guardian of Tj" Consequently, since 'll'(Rj) <

'll'(Wj+l) we must necessarily ~ave that '11'(Wj)<'11'(Wj+l).

Now, consider the operations Oj, j • 1, ••• ,m, where Oj = Rj _if

case (cl) is applicable to the arc (Tj' Tj+l) , and Oj • Wj otherwise.

We have shown that 'll'(Oj) < '11'(0j+l) for j • 1, ••• ,11 (addition mod m).

This is a contradiction, since it implies that 'II' CW
1

)<,,. (W
1
). o

'' ----------

-29-

Theorem 6 implies the following, independently proved in [BS J •

COROLLARY. Histories that obey the protocol P3 are serializable. a

Our next result concerns the complexity of recoqnizing those histories

that obey protocol P3. By the definition of this class, this complexity

is determined by the complexity of computing the guardian relation amonq

tlii- transactions -ln a history. We shall show how this relation can be

computed efficiently. Por each transaction Tj' let r(Tj) be the set

of all transactiona Ti that satisfy S(Rj) ns(Wi) J' flJ. 'l'hus, r(Tj)

is the set·of all tranaactions that are possibly quardiana of Tj. 'l'o

detei'iiine whether a transaction i.r
1

€ f(Tj) is indeed a guardian of Tj,

we delete all edges [Tj ,Tk] such that S(Wj) n [S(Wk) US(~)] • fl troll

G(h), and then detez.:mine whether Ti and Tj are on the same biconnected

gomponent of the resultinq graph. This can be done in O(n
2

) time by

the algorithm of [Ta]. are on the .- biconnected

component, this means that there is a bad cycle ('l'j,Ti, ••• ,Tk) in G(h),

and hence Ti is a guardian of Tj; otherwise, it is not. Repeating this

for all T. 's, we get an algorithm of total complexity ocn2 (Iv! + n
2>).

J

Hence we have

-30-

THEOREM 7. Testing whether a history h • (n, 'Ir, V, S) € P3 ~an be

D

4.4 The Class SSR

Certain histories, though perfectly serializable, have a cur~ous--and,

according to some, undesirable--property. Consider, for example, the

history

h =

This history is serializable. However, the only serial history equi-

valent to h is easily shown to be

What is interesting is t.llat in h transaction 2 has completed

execution before transaction 3 has started executinq, whereas the order

in h5 has to be the reverse. This phenomenon is quite counterintuitive,

and it has been opined that perhaps the notion of correctness in trans-

action systems has to be'strenqthened so as to exclude, besides histories

that are not serializable, also histoi:ies that present this kind of

behavior. This leads to the follawinq definition:

DEFINITION 7. A history h= (n,'11',V,S) is said to be sezoiaUzabte

in the etnct sense (notation: h € SSR) • If there is a serial history

h6 ca (n,1T',V,S) such that h:h5 , and 'IT(Wi) <ir(Rj) implies

'II' I (W.) < 'IT I (R.) •
l. J

D

-31-

It is not hard to verify that all' histories in the class Q satisfy

Definition 7. To see this, recall that a history h in Q has a set of

serializability points s
1

< s2 < ••• <Sn, say, such that h5 "" 1\w1 • • ·RnWn: h.

Now, if 'll'(W
1

) <ir(R.), we have, by the definition of S., s
1

<ir(W.) <'ll'(R.)
J - l. l. J

< S • , and therefore i < j . Hence transactions - i and j have the same ',
J

order in h
8

that they_ have in h. It follows that Q c.;. SSR.

Heverthele•s, the classes Q and SSR are not the same, as con-

jecturad by (Wo]. A counterexample is

'l'h.is history is equivalent to the serial history

satisfying Definition 7. However, h i• not in Q; w c:heck this, just

notice that the digraph D'(h) shown in Fi9'Jr• 7 i• not acyclic. It is

not known whether the class SSR is efficiently recognizable.

Figure 7

-32-

4.5 Summary

The topography of the set of all histories H and its subclasses

SR, S (the serial histories), Q, SSR, DSR, P3 and 2PL is depicted in

Figure 9. The inclusions shown either follow from the results of this

section, or are straight-forward. We also show below an example of a

history for each of the 12 regions in this diagram.

-33-

H
SR· •• 'DS l. 1.1-,. ·_! ... ~-

'2.PL i"'"' •
·S ·At

·p3 fW, ~
~· ' '!:I> • •I

~~ LJ
. '

"

Pigure 8

~ • ~[xJw1 CxJ~[xJW2 Cx]

b2 • ~ hd~ [YJ"1_ CxJw2 [yJ

h -7

.41

'Sfl'
.,

)

-34-

5. USTRIC'l'IONS ON THE BAD- AND WRITE-SB'l'S

It turns out that if we impose certain restrictions on the structure

of the map s of a history--i.e., the read- and write-sets of the trans-

actions in the history--the topoqraphy of H (shown in Pigure 8 for the

qener8.l, 'case) is simplified considerably. The most strikinq such result

is that of [$Wt]. A basic. assumption in the model of [SLRJ--which is

otherwise more qeneral than the present in that it allows lll)re than two

steps--is that no database entity (or vuiable) is up4ate4, unless it has

been previously read. In our mdel and notation, this ~s that

S{Wj) S S(Rj). What is surprisinq, is that serializabiliey, an NP-complete

predicate in our model, i• efficiently decidable i.11 theirs. We explain

this in view of our previous diacuaaion .. follows:

IJIHBOREM 7. Suppose that for a hiatory h • (n, 11', V, S) we hl.ve

s (W j) =. s {R j) for j • 1, ••• , n. Then h is serializable if and only if

h is in DSR.

Pro0f. It suffices to show that if S(a1) nsca2>. ~ ¢ and

'11'(a
1

) < '11'(a
2
> for a

1
, a

2
€ I:n such that at least one of a 1 , a2 is a

write symbol, then 'JI'' <a
1

> < 11'' ca2) in any history (n,11'' ,v,s) equi-

valent to h. Suppose that a1 • w1 , a2 • w2 • s cw1) and s cw2> •~•

a variable x, which, by hypothesis, ia &180 in S(~) and SCRi>·

Consequently, in h T
2

reads x from either T
1

or from another

transaction which, by the same arqmnent, reads x from another, and. ao

on, up to T
1

• Now, notice that the S(R.j) =. S(Wj) asaumption iJlplies

that in any serializable history there can be no dead tranaactiona. Bence,

----------··-----------------

-35-

by Propoaition 1, in any history (n,ir',V,S) equivalent to h we must

also have 11'' cw
1

> < 11'' cw2). The other two cases are settled veey

similarly.

It turns out that the rest of the classes of histories discussed

previously have a considerably simpler structure under the assumption

that S(Wj) : S(Rj). We •how below, without proof• the oorruponding

diagram.

SI ·~ 2IL

,~

0

Figure 9

under a different restriction on s, the class SSR coincides with SR.

'11D!X>RBM 8. Suppose that in a history h • (n, 'II', v, s) there is a

aubMt X • {Xi,~····•xn}: V such that for j•l,2, ••• ,n we have

(a) x:_s(Rj), (b) xj€S(Wi) if and only if i•j. Then h is

serializable if and only if b € SSR.

Sketch of Proof. Imagine that the variable x. is a Boolean sig
J

a

nalling whether transaction T. has completed. Therefore, if T. completed
J J

in h before Ti started, the same must hold in any other history equivalent

to h. c

-36-

.
6. SCHEDULERS OF HISTORIES

The practical importance of the ola~s of histories 2PL and P3

discussed in Section 4 steins from th~ faet that they are known to

correspond to simple qahBtJ.ut.ers. A soheciule,r for a class of histories

(to be defined formaJ.ly below) is generally an al9Qrithm that takes as

an input an arbitrary history--po~sibly non-s~~izable--and returns a

history which is the "closest" to the given one .. ~nq those belonqing to

the class. If the class is a subpt of ~' t~er•fore, -~ scheduler

gua:r;antees that its output history is ser~a.liza,ble. . .Such a scheduler

can be used in the serializability component of the .database ~~nt

sy•tem. Of course, in practice one would 8'q>eCt that a scheduler operates

on-line and is reasonably efficient.

The history-input of the scheduler is the sequence of arriving

user requests. The output of the scheduler is the actual execution

sequence. The basic fact that makes our approach very different from

prev:i.ous work on concurrency control which was motivated by operating

sys~ems (e.g., the notion of ~terminacy of [CD]) is that the supplier

of ~his input history is a population of userl[I, ea~h user being unaware

of the actions of the others. This implies that the order of arrival

of these requests has no 1:1emantic conte~ whatsoever, and therefore

the scheduler is not bound to produce an output which is equivalent

(or related in any prescribed way) to the input. In fact, the operation

of the scheduler becomes interesting and important exactly when the

scheduler must necessarily transfopu the input to an inequivalent output,

because the input is non-serializable, say.

-36a-

There are, however, certain performance criteria that the input-

output mapping of a scheduler should satisfy. For example, a trivial

scheduler which guarantees serializability is the one that outputs

only serial .histories. This is, however, too restrictive a mechanism

to be of practical value. Intuitively, the richer the output class,
.·

the more powerful the scheduler, because a less restrictive class

of histories will require less reshuf~lin9 of the operations .an.I will

cause fewer and shorter unnecessary delays. Ideally, we would like to

have a sena:'tiaezo I whose output spans all of SR. unfortunately, we

shall aoon aee that the existence of nch a practically uadul device

is very improbable.

DBl'DII'rIOM 8. The metric d(.,.) on the set H ia defined u

follows:

a. .{ ~ ~ } d((n,ir,V,S), (n,p,V,S)) - n"""8U:j:'ll' (i) - p (i), i•l, ••• ,j •

b. d((a,w,v,s), (n.,p,W,T)) • 00 i:f any one o:f •fin, v,iw,

S JI T holds.

The distance between two histories defined on the same set of

transactions is therefore n minus the length of their lonqest co11m10n

pref~. Notice that d (.,.) satisfies the metric axioms. A variety of

other metrics would suffice for what follows.

DEFINITION 8 (continued). Let c be a non-empty subset of H.

A scheduteP f OP c is a function A :H + C
c

d(h,A (h)) = min{d(h,h'):h'Ec}
c

such that

a

a

-37-

Thus, A
0

. can be thought of as projecting H onto C undeJ: the

metric d(.,.). Notice that Ac(h) and h will not be equivalent in

general. The metric d(.,.) requires that A
0

leaves histories in c

intact, and, in fact, ·it leaves intact as long prefixes of arbitrary

histories as possible.

Let us restate now the assumptions of our model of achedulera

(a). A scheduler A minimizes the d-distance between its input c

and its output. This intuitively means that the scheduler operates on-

line, and, furthermore, that it acts in an optimistic way: As long as

the history seen so far could possibly be extended to a correct.history

(here by "correct history" we mean one which the scheduler, in its 11.m-

ited sophistication, recognizes as correct, or, equivalently, an ele-

ment of C • A CH» the scheduler does not intervene to rearrange read c

lad W'Ji~• requests. As a corollary, if the scheduler is fed wit~ ~-·

own output, it leaves it intact; it ia therefore idempotsnt, or a projection.

This is a quite reasonable assumption to make. Although we cannot

totally exclude the possibility of schedulers that operate otherwise

{for example, anticipating future requests that will.make the history

non-serializable), all schedulers proposed in the past satisfy this

assumption. Any scheduler implemented by natural constructs such as locks

[KP], [EGLT] or queues has this property.

(b). Among all histories in C that have the longest possible common

prefix with the input history, A selects any one as its output. Clearly, c

in practice this choice would be made ao as to minimize aome more r•fin•d

metric d'. However, the results obtained below for our weaker metric

-37a-

d' would apply to more relaxed metrics, too.

We say that Ac is an efficient scheduler if A is computable in c

polynomial time. Our qoal in this Section is to understand which classes

of histories have efficient schedulers. It is temptinq to conjecture

that if a class is in P, then it has an efficient scheduler. 'l'his

conjecture is not.plau!J,le, because, consider the followinq:

EXAMPLE. Let E• {h•h8 :h8 is serial, and h=hs}.

Obviously, B can be recognized in polynomial· time; the algorithm

inwlves splittin9 a 9iftll history in two halves, testin.9 whether the

second half is serial, and whether the aeo0nd half is equivalent to the

.,-----·--....--~---·- ---........---·-----,-.--...-- ~---·--~· ..,..----,-.·-- -
' '.i."

-38-

first. However, it is also easy to see that B aannot; have an efficient

scheduler, unless P • NP. Suppose t;.hat B baa an affj.cient aohed~er

~· Then we could test whether an arbitrary history h i11 eerialiaable

by first computing ~(heh), and then check~ Wl.\ether ~(h.h) starts

with h. Since ~ is supposed to lea .. ~ aa lonq pre!iaes of

its input as possible, it will alter the f.lrat 1-J,f of b-h only if h

is not serializable. Since serializability u known to be NP-cqtplete; E

cannot have an efficient aohedul.er unless P • NP.

Our next result essentially says that efficiently recoqnizable

classes have efficient schedulers, unless they are as patholoqi9al ae

9~ ~le E above. L8t h• (n,v,v,s) be a hi.a~, cooa1-M4 ~

as a string of symbols representing n,v ,.s and th.a pexautation 'Ir.

A ~efi:z of h is an initial &89JB81lt of this repreaentation, containing

the encodinq of n, v, s, as well as an initial part of v--i.e.,

-1 -1 -l <'IT (1) ,Tl' (2), ••• ,'II' (j) > for acme o ~ j ~ 2n.; If C ia a class of

D

histories, then PR(C) is the set of all prefixes of all histories in C.

THEOREM 9. Let c be a subset of H. C has an efficient scheduler

i:f and only if PR(C) E 1'.

Proof. Suppose that c has an efficient scheduler Ac. In order

to determine whether a string q is a pref ix of a history h € C we may

act as follows: we first verify that q contains encoclin9e of n, v,
. ·•,

2': • .n and s, toqether with an initial segment p of a penautation 1r of

W. then generate a oompt.ticm p of p by juxtapoalinq to p th•

symbols wj such that Rj but not wj is present in p, and then the

-39-

for all j's such that neither Rj appears in

P• We then. calculate h' •A ((n,p,V,S)). c It is straiqhtf orward to see

that q is a prefix of h • if and only if q E: PR(C). Thus we can

efficiently detendne whether q e: PR(C).

For the other direction, suppose that PR(C) E: 1'. Based on the

recognition algorithm for PR(C) we design an efficient scheduler: Ac

llhown in Pigure 10. Ac oempatea A
0

(h) • (n,P,V,S) by detemininq P

el .. nt•by-element. It tlbould be obvious that Ac operates as
. 2

prucrilMld within a tiae bound of O(n C(n, lvl)), where C(n, lvl) is

the COlllpluity of noognlalng. Pa(C). fte 'l'beorea follows.

rt ia now easy to link the di8CUasion of Sections 3 and 4 with the

exiatence of efficient 8Cbedulua. We 99t two typets of results a

a

OOPOLt.MtY 1. tlnl••• P• NP, n baa no efficient achedulu. a

CX>IOLLUlY 2. '!be clu•• s, 2PI., Pl, g, Diil have efficient

achedulus.

Proof. We have shown that these ••ts are in 1'1 it is usually

straiqhtforward to show that their sets of prefixea are also in P (this

is not a general property of 1'1 there are lanquaqes in 1' that have

non-recursive sets of prefixes). As an illustration, we will sketch a

proof that PR (Pl) E: 1'. First, given an encoding of n, V, s, and a

segment p of 'Ir, we first compute from S the digraph F of the guardian

We next make sure that whenever T. is a
J

quardian of Ti and p(Wj) is defined, then either p (W.) < p (W .) , or
l. J

p(Ri) > p(Wj), or p{Ri) is undefined. Finally, we make sure• that p

Scheduler A
c

Input: a history h= (n,TI,V,S)

-40-

Output: a history h' = (n, p, v, S) EC such that d (h,h') is the

smallest possible, if such an h' exists.

begin

if (n,< >,V,S) f PR(C) then return

comment < > is the empty permutation;

else begin

p:=< >;

for j = 1, ••. , 2n do

begin

done: = false;

for i=j, j+l, ... ,2n do until done

if

end;

end;

-1
(n,<,p,7f (i)>,V,S) EPR(C) then

begin

done: = tru.e;

inta.rocihange 'It' -J.(i) ·and 1T -l(j);

-1
p : = <;p , 7f (i)> ;

end;

return (n,p,V,S);

end

Figure 10

-41-

can be ccmpleted in a manner not violatinq Pl. It turn• out that this

amounts to verifyinq that the restriction of P to the transactiona

that are active (i.e., P· (Rj) is defined but p (Wj) i• not) is acyclic

(a diac:ussion of this part follows the proof). Bence we have an

efficient algorithm for PR(P3). a

We show in l'iqure 11, without proofs, stylizecl ver•ions of effici11nt

schedUlers for the clasees 2PL (llb). Pl (lla), DSR and Q (llc1 for Q

we also include the two statements labeled Q). Besides serializability,

tbase algori~ wt alm guarantee the abtsence of d6ad?ooks. 'ftle

isne of 4Mdlocks appears to be orthoc]onal to that of serializability,

and, in fact, cltrnr serializability -t:hods are known to introduce

increased. dancJer of deaclloc:ks .of the •circular wJ.tiJMJ• variety ([CD) ,

pp.'tO·'O). A unified treatmmt of serializability and deadlocks in a

restricted data model is attempted in [Sit). In all cases of in~erest to

ua, 4eaclloab can be prnented by testing a dynaaioally chanqinq ·dllatJ:Look

f!Z'CZPh for acyC:licity. !'or example, in two-phase lockinq deadlock can

occur if a nuliber of transactions have each locked their read-set, and

are awaitinq for each other to release their locks. Hence, in this case

the deadlock graph has variables as nodes, and has an arc from x to y

if and only if scae transaction currently on phase 1 reads x and writes

y. In Pl the deadlock graph is the restriction of the qua.rdian relation

to the currently active transactions--this was mentioned in the proof of

Corollary 2 to Theorem 9. Finally the deadlock graph in DSR (resp., Q)

has as nodes the active transactions and includes the arc (Ti,Tj) if

and only if there is a path from T. to T. in D(h)--resp. D'(h)--
l. J

-42-

Our notation in Figure 11 assumes that the process R.
J

or W.
J

is

initiated as soon as a corresponding read or write requests arrive.

We use constructs such as when (denoting the awaiting for a condition)

and ibegin ... iend (bracketing statements that are to be executed

indivisibly) • It should be obvious that these algorithms can be

implemented deterministically and efficiently on any standard model of

computation.

-43-

p'Z'00#188 Rj

tJhe:n the deadlock qraph with Tj is acyclic do

output (Rj)

pl'OOBllB Wj

tJ1um Tj is not the guardian of an active transaction do

output (Wj)

(a)

(JZ'OOa8 Rj

·fllum the deadlock graph with 'l'j is acyclic and

DO variable i• . S~Rj) i• read-locked do

. write-lock all variables in s (Rj) 1

output (Ri)

rJlum. a process w1 with scw1> n S(Rj) r) (I or i • j has been initiated and

no variable in S (Wj) - s (Rj) is writelocked do

ibegin

write-lock and read-lock all variables in S(Wj);

un-write-locJc.all variables in S(Rj) - S(Wj).

process wj

tJhe:n Rj has terminated do

ibegin output (W.)
J

unlock all variables in S(W.)
J

(b)

-44-

prooess Rj

deoZ.azte Lj sequence of symbols in tn U {£}

aorrment Lj contains all Ri or w1 such that T1 is rQchable by a

path from Tj in D (resp. D'), up to this point;

when the deadlock graph is acyclic and for no Ti r Tk

with s<Rj> nscwi> r gJ, s(Rj> nscwk> r - is wiE:~ a.o
ibegin .

output (R.)
)

Lj: ... · {R,}
.)

add Rj to all ~ containing Wi with S(Rj) 0 S(Wi) r fa

Q: add Rj to all ~ containinq f

iend

pl"OOBBB Wj

UJ'hen the deadlock graph contains no arc CT1 ,Tj) do

ibegin

output (Wj)

add Wj to all 1'Jc containinq <J such tha.t S (Wj) 0 S (O') "i gJ

Q: add f to all 1'Jc containinq Rj or Wj

set Lj: = gJ

iend

(c)

Figure 11

-45-

7. DISCUSSION

We shall consider extensions of our results in three directions:

qeneral multi-step transactions, interpreted transactions, and

distributed databases.

1fe llhall briefly diacuaa how our entire 4evelopmant of Section• 2

through 6 can be -ily uten494 to a far more general ml.t.i•atep model of

tranaactiona. We consider tranaactiona that consist of sequences of

stepa1 each step may involve both reading and writing. The values written muat

be conaic1ere4 •• uninterpreted functions of all va:d.abl.ea read at the

pruent or preYiou atepe of the traneaction. Om: clefinit.ian of

11 veness now applies to individual st.ps of tranaactions. No further

m4ificat.ions are necuary for statin9 the anal09 of Propoeition 1.

Serialisability is obvioualy NP-complete in this 8)del, as it·

subsumes oura. Aaauainq that no transaction reads inte.J:Mdiate results

of another or reads two different versions of the same variable at two

different ateps--in which case the history is not serializable--t.enna 2

is also valid. The four aerializability principles discussed in Section 4

remain virtually unchan.ged~in fact, two-phase locking was initially pro

posed for a similar model in [EGLT]. For another example, we shall describe

in a somewhat more detailed manner the generalized'P3 class of histories.

In the multi-step model a step s of a transaction can be an (i,j)-gu.apdian

.,

-46-

of another transaction, where i < j are steps. This means that a

inteioacts with i--i.e., either its write set includes variables of i,

or vice-versa--and there is a chain of interactions from s to j. If

this is the case, s is not allowed to occur between i and j. This

P3 protocol always yields DSR (and hence serializable) histories.

For the classes DSR and Q, we have similar graphs D(h) and D'(h). An

arc (T. , T.) is in D (h) if a step of T
1
. interacts with a subsequent

l. J

step of T. •
J

For D' (h), it may just be that the last step of Ti

precedes the first step of T .• The acyclicity of D(h) again quarantees
. J

serializability, and that of D'(h) strict serializability. Hance, these

remain two most general serializability techniques, subsuming two-phase

locking and P3, in this general setting, too.

Pinally, it is easy to see that the results of Section 6·~lbl

necessary and sufficient condition for the existence of efficient

schedulers and its corollaries--apply even more directly to multi-step

histories. We hope that the reader is by now convinced that introducincf

general multi-step transactions would have resulted in an unmanageably

cumbersome notation but in very few new impOrtant ideas.

7.2 Interpreted Transactions

A significant departure from our model would be to look more closely

into the computations performed by the transactions and exploit their

details for studying serializability--or correctness. in general. If

only syntactic information about the transactions is available (e.g •• the

read- and write-sets} then serializability can be formally proved to be

-46a-

the right concurrency concept [KP]. If, however, semantics of the

functions performed, or even the integrity constraints, are known, then

it may be the case that more liberal concurrency principles than seriali

zability are applicable. An example is the correctness theory proposed

in [Lal], where the concurrency control mechanism takes into account in

formation about th• s811&Dtica and integrity constraints supplied by correct

naa proofs of the indiviclual trauactiou. 'l'he extent to which such

information i• helpful i• investigated in [IP].

It is doubtful whether complete semantic information can be used

effectively for concurrency control. Any reasonably complex domain of

interpretation (e.g., arithlletic) would soon aa1te the serializability

probl- undecidable. There ahould be, however, ways to use partial

•-ntic inf omation in order to iaprove our ua.derstand.ing of aeriali

aability. Oae poas1bil1ty is to use the fact that two transactions

perform precisely the function; one of the implications is that they

cOlleUte. It i• not too hard to see that this adds nothing to the model

developed thus far. Incidentally, this allows us to extend our original

model so aa to permit aul.tiple occurrences of a transaction in a history.

Another possibility would be to selectively consider certain very

simple trausactions to be interpreted. A good example of a very common

transaction that performa a well-understood function is the

a transaction that reads z and later records its v&lue at y. Serializa

bility become trickier. Por ezample the history

-47-

is not serializable in our ordinary sense, b\lt ~co•s equivalent to the

serial history h8 • T5T1T2T3T4 once we assume that transactions 3 and 4

are copiers. Proposition 1 becomes somewhat more complex in the

presence of copiers. However, it is interestinq to note that if copiers

are restricted not to read variables from other copiers, then the

introduction of copiers adds no strength to our mOdel, and Proposition 1

and Lemma 2 remain unchanged under this assumption. This remark plays

an important role in the next topic of our discussion.

------------------------ --------------------

-48-

7.3 Distributed Databases

There is a larqe body of literature aiminq at the understandinq of

the quite elusive notion of distributed COJllPUtinq (see, for exaipl~ [La2]).

Distributed databases have inherited some of the intricacies of this

area [RG], [Th]. We shall limit our discussion to the case of two

C0111Plete copiea of the databue in clifferent looatiou, altbouqh there
.

are difficulties which first appear in the cases of three copies or of

selective redundancy [BSRG]. A major problem is, what happens when a

transaction is run in one location, thus chanqinq only one of the two

copies. A simple technique for solving- this would be to·send an update

,,.,111ags [BGRP J to the other location u soon as the transaction has

cc:mpletec!. We have therefore a MqUenCe of genuine tranaactiona and

'QPdate WM9ee runninq in the system, and we can thua view the two

copies of the database u a sinqle database--think of the two copies of

the variable x as two variables -~

A difficulty appears when we try to define a history. The distributed

nature of our computation, the comunication delays and imperf act clocks

make temporal priority--on which our ordinary notion of history was

based--less tanqible. '1'he observation here is that mistakes in our

arrangement of the events which are due to the above factors preserve

history equivalence. Bence, we can put toqether a history--the guiba'L

Zog of [BGRP]--as lonq as it is consistent with local priorities and

arrivals of messaqes. Now, the update messaqes are in fact just copiers,

and they only read variables that were updated by ordinary transactions.

Hence the last remark of the previous Subsection is applicable, and the

-49-

serializability problem has been reduced to the one already ~Qdied! Of

course, we are not just looking for serializability, but for the

existence of an equivalent serial history in which an update message

irmnediately follows the corresponding transaction. '!'his, however, does

not change the essence of the tas~. All our special case results hold

with very minor modifications.

What is considerably more complex in the distributed context is

the subject of schedulers. '!'here is no obvious neat way to compile

syntactic restrictions on the global history into distributed algorithms

that achieve them. It therefore appears that distributed history

schedulers must concern themselves with the details of the underlying

model of distributed computation in order to implement the intended

serializability principle; the formidable algorithms of ['l'h] and [BSRG]

L+~ua\l'o.te this point. Nevertheless, it is sti.11 natural to QQJl~•flltU•

that the more general ideas related to the classes DSR and Q would

prove advantageous in the distributed environment as well.

-50-

7.4 Open Problems

We have proposed a formalism for the concurrency control problem for

databases. There are two aspects of this formalism that may limit its

applicability, and must therefore be DK>dified in a second attempt. One

is our basic assumption, manifested throuahout the paper, that the syntactic

description of all trauactiona to occur in the hietory is known to the

scheduler a priori. It is not clear how to re110ve this usgaption, and

still retain the wealth of available solutions. One way would be to have,

following [BSRG], a certain number of prototype transactions-or ~l.9csses -

to one of which any arriving transaction can be matched. Another way out

would be to adopt only t%'ansaation-dl'ivsn concurrency controls. Two-phase

lockiDg [IGLT] .is an euaple of such a coacurreocy control, and ao would

be any other lockiDg scheme. 'l'he li111tationa of auch approaches are

studied in (IP]. On the other hand, it ia possible that variants of the

schedulers presented here could also be implemented in a transaction-driven

manner.

Secondly, our way of evaluating the performance of schedulers is also

in need of an improvement. We propose only a qualitative measure of the

performance of a scheduler--namely the set of all output histories. This

leads to only a partial order of schedulers. This was shown to be a

reasonable and useful approximation of reality when the goal is to derive

indicative results or compare general principles of serializability. It is

clear, however, that a more concrete measure of perfol'll&nce is needed for

more practical applications. One promising direction would be to somehow

count the total number of delays imposed on requests--at a first approximation,

the number of transaction steps that cannot execute immediately upon arrival.

.. t

-51-

This would be a refinement of our measure: our measure, roughly speaking,

assigns a perfect score to all histories that remain the same, and zero

score to all histories that are changed, however small the change. A

more refined •aaure aight even put to teat some\ of our aasumpd.ons, like

the "optimistic scheduler" assumption (Section 6): in certain caaea it

may be preferable to intervell8 and moclify.aligbtlJ the history,·vhen

serializable completion becoaes extremely UDlikely, although not impossible.

Naturally, adopting a more concrete measure of performance for schedulers

will most likely require the introduction of specific and pragmatic details

of .the particular application, and the overall approach may have to be

probabilistic.

By considering only serializability as our notion of correctneas we

have somehow limited our scope. Ezamples of concurrency control techniqlMts

more general than serializability can be foUDd in [Lal] and [IL]. They

are arrived at by assuming that the scheduler has more than syntactic in

formation about the transaction system that it handles~e.g., semantic

information or understanding of the integrity constraints. It is pointed

out in [ICP] that serializability is just one point in the trade-off

between information and performance of schedulers. However, we feel that

there is something natural about the use of syntactic infor11&tion for con

currency control, and the importance of concurrency techniques stronger

than serializability is of limited practical value.

Finally, we recall two other probl- that are left open hara: the

complexity of recopiz:tna the cl••• ssa, and developina techniquaa for

4••1111ina diatributed acheduler1 froa •Jllt&etic apecificationa.

Many illuainating discusaiona with Phil Bernatein have influenced

th1a work. Alao, we acknowledge helpful diacusaiona with B.T. ~g, Dan

loaenkranta, Jill lothnie, and Jeff Ull.maD, and careful reading of the

vnmcript by Marco Casanova and an anonymous referee.

-52-

[ABU] A. v. Aho, J. E. Bopcroft, J. D. Ullman. ~ Dssigri and Anal.yaw

of Compute%' Atgorithms, Addison, 1975.

[BGRP] P. A. Bernstein, H. Goodman, J. B.. B.o~ie, c. B. Pa_padimitriou.

"Analysis of Serializability of SDD-l: A Sy•tem of Distributed

Databases (the Fully Redundant Caae)", Im TNna• on SOftwazee

'Plngl'(J., Vol. SE-4, 3, May 1978.

[BPR] P. A. Bernstein, c. H. Papadiaitriou, J. B. B.othnie. ''Reaolving

Certain Concurrent Update Pro'bl- Without Locking: Ap Ab•~-·~~··,

Proo. IEEE. Wo%'kshop 01' OS and DBNS, ~cago, 19 77.

[BS) P. A. Bernatein, D. W. Ship•n. "A lorMJ. Model of Concurrency

Control Mecbaai.a• for D4tabaae Sy1t-", Pztoc. 19?8 Be%'~Z.11

flozekshop on Di.stributed Databuss and Compute%' NaQ1ol'ks, S.pt••r

1978, Berkeley.

[BSIG] P. A. Bernatein, D. W. Shipman, J. B. B.otlurl.e, N. Goodman. "The

Concurrency Control Mec~am of SDD-l: A System for Distributed

Databases (the General Case)". Tl. CCA-77-09, Computer Corp. of

America, Camb.ridge.

[CD] E.G. Coffman, P. Denning. Ops:rating Systsms 1!hsoey, Prentice Ball,

1973.

[BGLT] K. P. Bswaran, J. N. Gray, R. A. Lorie, I. L. Traiger. "The lotions

of Consistency and Predicate Locke in. a Datal>ue Syata", CACM,

19, 11, 1976.

(GJ] M. ll. Garey, D. s. Jolmaon. Campwtns and Intl'aotQbi.Uty: A auu.
to t'hll 'l'Moey of NP-Comp1.t1Un.Bss, Fr...-n, 1979.

.·

-53-

[la] R.. M. Karp. "R.educibilitiea Among Combinatorial Problems", in

COlflP1.a:lty of Computsze Computationa., It. B. Miller, J. W. Thatcher

(eda.), Plenum, 1972.

[IL] H. T. Kung, P. L. Lehman. "A Concurrent Database Problem: Binary

Search Trees", 'Pztoo. 4th Intsm. Confe%'fm0s on Veey La:Pge Data

baass1 Berlin, 1978.

[IP]

[Lal]

[La2]

[LPP]

[PBR.]

[PS]

[BG]

H. T. ltung, c. H. Papadimitriou. "An Optimality Theory of Con

currency Control for Databases", Hanuacript, Carnegie-Mellon

University, .1979.

L. Lallport. "Towards a Theory of Correctness for Multi-User Data

Baa• Syat ... ", Tll.CA.-7610-0712, Maaa. Computer Associates, 1976.

L. Lamport. ''Time, Clocka aDd Orc:leriug of &vents in a Distributed

Sy•tea", Coltp. Aaaoc. Tl. CA.-7603-2911, 1976.

D. c. Luckhaa, D. M. R.. Park, M. s. Paterson. "On Foraalized

Collputer Programs", JCSS, 4, 3, pp. 220-249, 1970.

C. B. Papadillitriou, P. A. Bernstein, J. B. Rothnie. "Computational

Problem Belated to Database Concurrency Control", Pttoc. Conf. on

~. Comp. Bai., Univ. of Waterloo, 1977.

c. B. Papadilll:itriou, r.. Steiglitz. Combinatona'L Optimiaation

A'Lgozti.thma, in preparation.

J. B. Rothnie, N. Goodman. "An Overview of the Preliminary Design

of SDD-1: A System of Distributed Databaau", 'Pztoc. 197? Bszeketey

fiozekshop on Disrnbuted Data Management and Computezo NetwPks,

Berkeley, California, May 1977.

[SIC] A. Silberschatz, z. lCedem. "Consistency in Hierarchical Database

Systems", Manuscript, U. of Texas at Dallas, 1978.

-54-

[SLR] R. c. Stearns, P. M. Lewie, D. J. 1.oaealr.rantz. "Concurrency

Control for Database Systaaa", 'Pl!oo. ~6th FOCS, 1976, pp. 19-32.

[Ta] R. E. Tarjan. "Depth-first Search and Liiiear Graph Algorithms",

Siam J. Computing, 1, 2, pp. 146-160, 1973.

[Th] R. H. Tho.-s. "A Solution to the ut>date Problem for Multiple
'

Copy Dat.abases which Uses t>;latributed Control", Tll 3340, BBN,

Cambridge, 1976.

[Wo] w. Wong. "Analysis of Serializable Loge", Manuscript, Harvard

University, 1978.

