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Altttract 

In object-oriented languages (e.g., LISP, Simwa, and CLU). all (or rnoJt) data objecb UMd 
by a program are implicitly allocated from a fr.......,. ... lftd are ICceNed vi• fixed,-size 
references. The storage for an object is automatically reclaimed <...-.. colleeted) when the 
object is no longer accessible to the program. 

This thesis presents the design of a computer s)'Jtem that directly supports an 
object-oriented machine language. The machine provides a siagle. large univene of object$ 
shared by multiple processes. The desigA u• expected fut\lfe technolo1ies (fat-access 
secondary storage devices and inexpensive processon) to satisfy the goels of 1ood performance 
and a simple, modular system organization. 

Automatic storage reclamation is performed primarily UJing reference counts. The 
proposed reference count implementation reduces the time overhe8d of automatic $torage 
reclamation and allows most reclamation processing to be performed in parallel with normal 
computation. In addition, the reference count scheme can be used in a multiprocessor 
configuration without introducing coaplex synchronization problems. 

A proposed implementation of the machine is described in terms of a number of 
~pecialized proces.'<>r modules communicating via measaps. Multiple processors are used to 
improve performance and to achieve a more modular tJ$Cem structure. 
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1. Introduction 

Lt Motivation 

The desig(l of computers is s~ongly influenced t>r the . charactteristics of 

available technology. Untjl recently, cemputers have ~ .. <ksigned ~nder . the 
. - _. ''· - ·. 

co,nstraint . that pr~ing hardware is e1pen,sive. J'lte r~ulting desire to 

minimize hardware ~t. has had a number of unfortunate effects. 
- 4 - • . . - ' • - ; ~ ,,-- ~ _; . ,· - ? - -

One effect is that conventional machines aenef&U.Y l>;(Qvide. a rather low 

level machine language, thus encouraging the use of pr~ammiag lJJquages with 

similar low level (or "m•chine }~rieated") ~~· . A'thOllp better 

programming langu~es have bee.n . devc;loJJCd, their im~tation on 
. . . . 

conventional machines is ofte~ _ ~.xces&iveb',. iJl#f~~t;. 

A.pot.her eff ~t is that individual. ptOCf)SSOJ'.S are mt.Jltiplexed to perform 
' - - ~ ' ' . - . 

many d.ifferent functions. For example, 3, s~ ~· is often . used. to 
. . ~ -

interpret user processes .. implement the vi#ual. ~y, 8.JlQ .coatt:ol 1/0 devices. 
•,,' '·· - ,_ 

This multiplexing is support~ by, a .~ jn~rupt-driven operating system, 

characterized by considerable interac:tions among its v:..-ious .~mponents. Such 
- . ' - - _, . ,,- . "" -

complex system~ are difficlillt to unders~ or verify >~pd at~ . likely to be 

unreliable. 

The cost of hardware is continually <JeRreasinf and. the pica.nt cost of 

software has become more and mor~ apparent. Ther~fore, we believe it is 

appropriate to consider how hardware ~bnology .·can be used to i~plement 

better programming languages and to reduce the coD\plCJity of comP,uter systems. 
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1.2 Goals 

This thesis presents the design of a new computer system that-. efficiently 

supports a single, large universe of objec11. Our notion of objects appears in a 

number of· 'programming languages, such u ·LJSPf!6]; Sidiul8 [6}; arid CLU (22). 

The essentfill characteristics of such ·object-oridttd languages and their 

advantages over traditional ;a/u~oriented larig\aage's ate described in detail iii the 

next chapter. We note at this point, howe\tet, :ttiatan imjJc)ttant implementation 

implication of object-oriented · languages is the use df · automatic storage 

reclamation· (garbage Collection). 

Unlike mdst implementations of o&ject«iented languages. on conventional 

~achines, which. provide a separate and USuany lmatl • or ob,ieCts for each 

process, our computer system iilstead·provittes:,a ~·Very utge space of objects 

shared by all of the processes in die system. This space Of objects would include 

not only temporary objects used during dle·exetufion Of ptOlrant&, but 8lso the· 

"permanent" procedures and data noi-mally St~ in· a file system. 

Having a single, large unifetW of' Otlje!Ct» means that there is no ·distinction 

between objects that are l0cal to a prOces$ aftd thOse ' tha'.t are stored in the 

permanent file syStem. . Thete are . ilo . artificiat . barriers between different 

processes or between processes and . the fde system. Objects in the fde system can 

be a~ directly,· with no restriction$ on the types ·or· objects that inay be 

permanently stored and·~ need for cooverlions. 

The primary goal of this thesis has been to design a machine that 

effecti\'ely supports a large universe· dr objecti. A .econct· goal bas been t<? 

minimize the complexity of the design. We want the machine to have a simple 
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and modular structure, in comparison with conventional machines aad operating 

system kernels that provide similar functions. To accomplish these goals, we have 

·made two assumptions abOut expected future· technology: 

The first assumption is that processors are suffieiently inexpensive that we 
can use a number of processors. where· one is used today. ..;we use multiple 

processors to obtain greater modularity ira · tile implemelltation of' the system, as 

compared to current systems where processors are a scarce· resource and must be 

multiplexed to serve many different · functionr. ·Jn addition, we use multiple 

processors to ·improve ·the performanee of the ·system; particularly the 

implementation of automatic storage reclamatiOlt'· "Out 'IC>al· is to increase the 

throughput of · the · systent•· although perhaps :. at the ·expen5e of decreased 

utilization ofresources. 

The second assumption is the existtnce of mt-access secondary storage 

devices that can be used for· file storage. We art· enVisibning arr· access .time on 

the order of 100 microseconds (compared to 10~ namaecotid• · ror cUir~FdiSks). 
Such devices are used to obtain good mul~ meittOtr- performance without 

introducing undne complexity. ThiS 85SUmfition · 1$ m.tivatecf by the' expected 
small average size of abjeets, based on· mealurements ·of 'existing programs; it is 

not needed if the objeets; ;supported: :by '11ie·. ·-·~aft{ mostly large objects, 

'SintHar to pages or segments in eurrenf·Vimnif MefttOry lyste!iis. I 

1 Aside from a. fast aceess time, we are. not;: ..,1"1'Ut& :UY .1pecH1l· prQpe .... ~9f · ch,e,. ~ond..-y 
storage devices. For example, we do not 8"Ume the ability to scan the entire s.econdary storage 
in·oneact.ss:fune, MalNlity provWecl bj-~u;lfil64*ViiHI. •.: ·· · ·, ., · 
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1.3 Background 

We are proposing a single large space of. °"~a }'hole ~ze is similar to 

that of curr.ent file systems. Thus, the-uai~:pf•ob~ .• ~· be ~ented 

by a multj-level memory system., Curreat;ardli.~ ~ .rfidently support 

such a large. space of objects. The majc;)r pr~ !aYC>We the performance of 

the multi-level memory. system. 

Current seco~ st~e devices are ~terized by access times that are 

many orders of m~ longe( thao:.-,-- time of primary storage. To 

achieve rcaso~able perfonnance . ia a muJ,tHevd DlClfM>l'J. sys~ .it is thus 

necessary that the rate of access,~ ~ ~age ~A:p&i~ lo~. To keep the 

access rate low, it is necessary to transfer a fairly large a~t,of ,,./ul _data on 

each transfer frQDl_ sec()Qdary storage. (Transferring )P· 1 ••r ~ .amount of data 

than is actually needed to fulfi11 a req~ is ~~.onb' if some of tbat 

additional ~ta will ~ aeeded ~ the_ near future.). 

Page sizes in CUJtent .multi-1-vel ....,. ~ ,raap from 128 words to 
~ - - . . --· . ' . . - -- .. 

4096 words. Howe~r, ,J?logramm~-~ ob~-~ to. be quite 611\all. A 

median size of under. 20 wotd& is .. not uqJjkdY lll .00. w~ ~ve measured 
• - " - , .[ • • ,- --~ - ~:. ~ > - ' • •• ,: 

program~ whose averap objts;t .siie~ ,is. qply ~,.l!foaM<,{ree · ~tion b.8). _Thus, 
- -· ~ --- • • - "·· '. • •• : --- ·- ·- > 

to .efficiently impJenicnt an '*ject~;:d. _st(K.-,1n~J .~ ~t ,secoadary 
- . - . ,,.... .. -. ~ ~ ' _, -- - -:: - ., - -.. __ .., . " . - ~ - -

storage devices, it is necessary to group related objecis to,gether :in some piaamer 

and ·transfer· them u- a unit'bet\ftell ·pl'iraal'y. and secoadary storage. 

Conventional. im~ ·of:,·~·-~ group related 

objects together implicitly through the use of small object spaces. Each space of 

objects contains the objects needed by a single process. Thus, the space can be 

broken into a small number of pages all ct which contain objects that are likely 

to be used by the. process. The use of afeompacting prbage collector tends to 
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minimize the number of ~ 9"d by eac& ~.of objects, thus reducing the 

working sets of the processes· {101 Further~. tiaoe -11 small space of objects 

is garbage collected separately, the time requj{ed, for prbap collection is (in 

most cases) tolerable. 

These techniques are not easily extended to the case of a·'$ingle, very large 

space of objects. Here, some additional grouping of objects is needed to take the 

place (for performance reasons) ·of the- ~all· object . sp~ces in conveµtional 
< ~ ; 

systems. The mechanism for grouping objects can ~·either explicit (the. gr~ups 
are constructed by the user) or implicit (t~· groups ~re· conitructed automatically 

·- ''-' '-• ~-· 

by the system). In addition, it must be possible to perform garbage collection on 

individual groups of ob~cts. A garbage eollec~;;of ~~ entire multi-level 

memory. system would be quite slow. 'Ev~n if the;. prbage ·collection wert 
,. < ~-:~ - ~ 

performed concurrently with normal system operation, it would tie \IP the 

s~ondary. storage cte~~ ~~ signjf~tly r.t~"l~ peri~nia~~ of the system . 
.F ' - • - • • •• - ¥ ' .- .,_, .. '"' ' - - ' -

Furthermore, unless garbage. collection is Perro~ realonably {requently, it will 
. . ~ -: -:, . -'-: ~ .. ,.... ';.- ' ~ ;;-. . -· . 

have little effect on the wMking.sets of the active·~. 
. " , . , - ·,, ~:: ~-/1~ \ :~..t:,, ,:·~-- ~ 

A system with these charactetjstics has been designed by Bishop [7]. In. his 
, . , - :', '. '. it . C:·,-::·.r,.~-: .·· t ;- ·.· - .· 

system, objects are grouped into areas, which · u~ explicitly created and 
- ~ - .. . . .:c - . ,(; .~. ;·' . '\ 

manipulated by users. Ob~ts may be ~xplicitly assigned to .. areas by the 
__ , • ~- .,.,. ~,, , . ~1-; ...... :) ··,~.,; ..;:·-· ·: ·, ~ .. 

programmer. However, explicit assignment of objects to areas is not necessary; a 
. - - . ; :-·'""' ~ '.. .... • . t< - " f •• -

mechanism is provided that will automatically move ob~. to the "proper" areas. 
" . . - ~ .. ~" - . ' 

In addition, Bishop's system includes a com~ting garbage collector that works 
• '!:-·; ._ "· • -. • • 

on individual areas or groups of_ relat~ ~reas. 

We believe that Bishop's approa~h to the implementation of a large universe 

of objects is the correct one, given current &eC(?ndary sUX:age devices. Ho~ever, 
:- ". --,· -· - . --~ ~ . ; 

his system is complex and its user interface (with areas) is more complex than 
. - ~ _.; .~* ·~ .. ·. ,. . . ';. 
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necessary. We believe that expected future -teolmology will allow a very large 

universe of objects to be implemented without aay notion of atas and in a 

relatively simple and modular way. 

1.4 Our Approacla 

As stated above, we are making two assumptions about expected future 

technology. The first assumption, inexpensive prOcessors, is fairly safe. LSI 

processors are being introduced today that . are c00tparable in power to 
,.- ,.. --· 

minicomputers of a few years ago. It is widely predicted ~t LSI processors 

equivalent to current mainframes will be developed in the next d_ecade. The cost 
«'~ ..- - . 

of these processors will be quite low compared to the to~ cost of a computer 

system. As a result, it will be feasible to use .alumy procesSors in a single system. 
, .- .,.,. 

The other assumption, fast-access file Storage devices, is more questionable. 

The access time flgure. of 100 micr~ ·ii withm :,the-.J,redicted range for_ 

charge-coupled devices and electronic ~-. memories-{33}. Electronic beam 

memori~ however, are still in the -researcl. -stige~ --~cial charge-coupled 
- - . ' -

devices are beginning to appear; however, the major question here is whether 
- . ' ~. 

their cost will ever be sufficiently low to all0w thCm to replace disks. Current 
:. - - !.- ,_ -

projections (25) show the cost of ~Os approaching- the curren~ cost of disk 

memories. However, theSe projections alsO sh~. the. cost of disk memories 

decreasing, so that disk memories will still . -be. an order of magnitude. less -

expensive than CCD memories. Thus, although it is· clifr~ult to predict th~t 
" . 

CCDs will completely replace disks in the near future, they can be expected to 
·~"'-. ;:; 

be used in reasonably large quantities for file itorage. 

The assumed existence of fast-access secondary storage devices means that 

it is possible to swap individual ob,;e(:ts be~,, p~- ~isecondary storage 

with acceptable petf ormance. The expected decrease in the average amount of . 
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information transferred on each secondary stotap acceas.is about a factor of 100 

(10 word objects vs. 1000 wottl paga). We: would expect, therefore. that 'the 

rate of access to secondary ttorage \WMltd increase by at Dl08t a factor of· too.2· 

However, the expected decrease: in tlte'access-;time CMtpata te 4Urtent: ·tec:ondary 

storage devices is also about a factor of: 100. Thut, · it~· is ·teasanable to ·predict 

that the performance of a system that &'\\fappld iddivtfluD,o~ to and front 

fast-access secondary·0stotage ·devices would be-• ~.,._,ttaan tile perf0rmance <>f'. 

curl'ent · multi .. level memory ·systems. 

In many current systems,c tbe tiflM~>required to·petfor111.1r¥econdary storage 

tranSfe is rivaled by the time spent by·the procetlOt i1Jjhandlinl''t1ae·1Jage·:t:.Utt. 

locating the page in secondary storage, scbedali111u .. 1he~i4NlldeJ,. --Uclrifag. · te 
another process, etc. Unless this overhead can be reduced, full advantage could 

·"' > ~-

not be taken of the improved secondary storage access times pos~lated. 'We ·ao 
not beUeve_Jbat a large QVer~a<I ~. jn_herently ~! _" M~i.i of the ONCrhead 

. - ! - - .: , .. - . - . . .. : ~ t: .··s. . ·~1 : . ~, ~\ , : " .. , . c 

in current systelllS .r~pJ~!lfS ,attempts ai .. C?ptjpt~tion ~~.,JU:e llPprop;U.te only 
• • - ~' ., ' ~. '· ,, "' - ,,,,.. • ~· ~ •• <• • • , ' , • ' • 

in .the coqtext o(~ ver1Jpn1 sec<>nd.,., ••• <id:&Y~ _ Ot.b¥,aspec~ w~ beJ;eye, 
- . ' - ' ' - - . ". - -. ' - ' -- - . ~. - - ;. '. ; ·: -- ' ·- - - - . - - - .-· ~ . 

can be reduced. by pr()per design . 
. ,.': ._ ,, '· ' 

We also note Jhat a full factor .. _of_ 100 .improvem. ".ent jp the ~ndary - - . ' ,. 

s~?rage ,ccess tjme ._may~. not be needed. ::tQ"'~hieve.,JOOC!I. 1Wfforman(;e, For_q~e 

thing, swapping individu;ij ,pb~ rather thaA .~ ~- ,allQW a gi~n amount of 

prim~ry storage to capture a &reater portion . 9f t~. wot~_ sets ,of ~xecuting 
~- - ~ _. .,._.. ~ .- r__ •4c " ~' " -·- ' : 

processes, thus reducing the secondary storage a~,.J•~· ~ c~dition, the 
' ' ~ . ·' - - . 

rapidly. fal~i~&. ,~t ~( prinJary storage ~ .a~w~Jv~,_-:a~~ts of primary 

storage to be used, which can alSQ red~~ th.e eecqnd•ry storage. 11,ccess rate. 
- - i - ·- - -· - ' ': . \ - . ; . -· ' . ' " . :· ~ . . ; ~ . . 

2Jt is p0ssible for the nun.her ohecodcbty5t<>rege acc8*"to mcNilise b)tm~'tMn1• factor of 
n when the page size is ~ut by a factor of 11[24,161 However,.~ do.not believe this anomaly 

to be a 5erious problem in practice. · , · · 
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· However, neither.· of th• offeeta .reduce the umber of te:QC>Adary ·storage 

accesses that oceur whep a ·progratn or data .. bat.·:ts -iaitially 11ec..-t. To ·.lie 

conservative. we will continue to ..une·dae factor~« Kl' improvement. 

If individual objects are 1wapped,.fbeo: ·tlw&d• act aeed to group objects 

together for performaace reasens. Thu., tbere is , ao: need for area ·or an 

automatic grouping meehaaism.. Similarly, tllere. ii no need to have a compacting 

garbage collector to improve locllity. (A compemaa ..-.ccollector might •till 

be useful for reducing storage fragmentation.~ ·1a5t .. ;:,we. cm use·:refetencc 

counts as OQr pri1Plf¥ meaat u .,automtic ttoraae>teelwtion. Iafrcquent 

garbage ~llection eaa_ be UHd_ to. reollim iaaellible·dbjeotl dial oanftOt;,be 

detceted ··usitas ........ :GOUms. ' 

LS Overview 

The initial chapten present· an overview or ttie ~e 'and ~gn or 
the machine. In Chapter 2, we ~ deacnae :the O&jeet~ Storage litdclel in 

detail and dtscUss the advantage$ attcl":im,._tatioA ·rrnpalC*tioDS· of ··this model. 

In Chapter 3, we describe the visible archi~- of~ ~hinc ··mci· the 
philosophy of Its . design; In . Chaptei · 4,:. 1" pve '· an ovemew · of the 

implementation 'of the machine. 'The···· is·~~ u coftsiltibg of two 
major modules, one implementing the object~ted' memory, the other 

implementing processes. Our ippto.ach to the implelntQtatioft'' or· multiple 

procases is briefly explained. 

The remainder of the thesiS eottcenttates on ·the· aftemory ·module. The next 

three chapters d&cUs&'•Peclfic-isaues u(~'inlPlementattol' Of o&jtcU:· In Cbapt~r 

5, we describe the implemeatatiol of .. o"ject. refeteaet1 . aad compare our 

implementation to preVioiis work. In Chapter 6, we .~"me.Jsnple~ntation 
of automatic storage reclamation. In Chapter 7, we diacuu storap allocation. 



- 17 -

The following chapter, Chapter 8, presents a specific memory module design, 

consisting of a number of hardware modules that communicate by passing 

messages. The chapter pays particular attention to the questions of 

synchronization and flow control. 

Finally, in Chapter 9, we present conclusions. 
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2. Ol>jects 

Most current programming languages. are ~· .. ~ the notions of variables 

and values. Values are mathematical values, such as integers. c,haracters, llftQ 

sequences. Variables are CCU. that COii/am. v~~. ~eo* C(Jpiet a value 

into a variab~ destroying the prev~:conteots pf,. tbe ~~e. : : 

A number of languages, JUCh as uw .. :~' af¥l, µ..u, are based on the 

notion of objects. . In this cllap~er, we. ~I». ~. 11otjcm .. of objects . and its 

extension to a very large universe of ob~ We d~; ,the proarammi.Qg 

advantages and some of the implemeata~. i~,.9f :the object-«iented 

storage model. 

2.1 Description 

The concept of objects is best explained by;;~ prt)pertieS of objectS. 

First of all, objects are th~ ;inf~ataimng~ eotmes 'that are tteated and 

manipolated; by prt;grant•~· Thus,; ·m~ ·atrin&si' ;11ttiiy(''lnd.·procedures are all 
examples of objects; 

second, the information content of an object may include other objects. 

Although some objects (e~g;, int~·· 8"' ·ftotmaffy •'thought; of ·as being 

unstructured, -others-(e;g., arrays) are nornlllly theught bf.·as :h.ving components· 

that are themselves objects. · · '. · -·'· 

Third, a single tltjeet eaa be a comp()llent of many objects or be denoted 

by (be the "value" ;Of) many variables;· Pet ei'8mple, in -8 ·givell: program, two . 

variables x and 1 can both denote the iliteger,3; ,; 
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Fourth, an object, once created, exists forever. There is no COQCept. of the 

"extent" of an object. An object exists 81 1oog 81 the program needs it; it is up 

to the language implementation~ aeter..m.:Wlad 1lie .,. for an object can 

safely be reclaimed·. ·· 

So far, all of these properties ·hold•tor •. valaes fa common programlriing 

languages. Such · \ea1ues, •being ·mtbearatitaf valUd.:roiadeett' dist "fore\rer 

eonceptually.· It is~ tnte'·eiat:aa attlY'~ ifl'eompo.eci•·or·etement 

values· and that a ·~mpe·· -nhie7 can bi:ihe·-~ of1ainy stnsetUred ~ 
and can be• tile value' or ·many v~ .· 

· What· distlftiuilheW objeeti · frcm: ftlUei: ii that objeCw;_ can have a 

time-varying information content, or 11a1e. Objects with a · ~g 

information content are called mutable objects. Objects with a constant 
~.-_.~'~ ~·- - j'-· " 

information content are called C01Utan11, and are equivalent to values in 

tgadi_ti9Jtal ptQjl'l~'°'Df· .... gel · _ _. , . ., , . . 

For_ e'1!mplo,, -i'1 ;~µ.'; ia,._.... char~~atnct--.. ar. .all · co~ts. 

CLU arrays,~~~:'1Rta~-~-... -~o(.,-11111'3J~i--~ 

some number of element objects. An array object caa be ~ ,py •U&4 4lf .t:Jae 

store oper~tion, wbieJa re~ .oac ~t: g('1 * 'MPJ,i'"""J aew 9hjec1:. For 

Q,all.lJ>le, Jf fl. dc,111Jtp: an aft.,_ that. -~"8'"·• e..,.. l.. 4. wt. 7, the& the 

effect of sior•~('1t_l,t>)~,U~~d\f•. 4:AO,r ... i~J;iat~# 80\J 6 .. (4 now 
contains the elements 6, 4, and 7). 

In a (strict) ~ted .1,..., .all .~ •• ~·-" .the r.-ilt of 

~~~- ·'. ~- -••• .~,,w_. ~';flt~tMtli ~ <•· i, £l> • :tho 
assignment a[l) := 6. This 1.np~~:"t~ec4'9;.~~-wianina~•now 
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array v.alue (equal to the old QAe except_. at index· 1) to ft, array variaWe a or 

(in a DJOl"e complex model) u, aaigniag a aew,,,iatepW .;.._ td ibe integer 

variable a(l]; 

The· addition· of· mutable el>je.cts pa ~new meaaiag a the· properties.· listed 

above. N<>te that a mutable o8ject bu IB'1icleatity1~acbbeyeikhJts :curtent 

state. Two different atrap canboth:coataia;tlte~•meteleiqeat.s,;but if a non 
operation is performed on one of them, the: 0th« one will•aot change. However, 
if a single array.objoet is .~ .. k)r::two~uriablel x aadiJ'• then .a;modif'ibation 

to the array made via one. ~:wii· bl:YiUble via ;tlae,llidrer 'Variable:: The 

array i" said to be slttged by the variables x·~ aad y ;y-: z Assignment in: an 

~j,ct~~.lallgqp C'1f.1q;a yujable~w ..,_;thedJjectt...tting ftom me 
eval•tioa.pf:.the right:liW 5*.: .. Anaigzscnt1of tile bal':ic.:=·y. where x 

and y arJ;0 V¥i.able&w:~ ~- aaf', to-.r.~1.,agia,dlJ(idaoted by· Y• •. 

l\(utable. objectJ.are not.a1Tiays •. struet....a.~'11Df ....,all;,ttructwed objects. 

~essa.rily mut•le: .f()I ;_~r:OA6·coukl;•fiat,:JtJq111fffn4•tlatate ;nuttable 

®~.&imibl( to iatepn,. .-o.e.~-..W .a1P._s,m1llth&ft1Cat}:~:,wllich· 

are immutable analogs of arrays. 

" 

2.2 Implementation Implications 
~~ , ~ -- .. c-~~ .. -': -

. The possi&ility of having· ·11iared, mutable objects h&S . 'siglllficant 
implementation 'fmt>li&ttdn$: 'Wftli<Sut·; hlu,tio~;Ob~,·~iii ciSneept of sharing is 

not particularly useful. If two yjtif&lts ·.t 'aJid . y :&<rtb ,-deoote ~ se(auenee val~e 
v, then one could say that the sequence value ' is shared by x and y. However, 

because v is a constant, the implementation is free to have separate copies of r, 

one for each variable that denotes it. With side effects on r impossible, no one 

can tell if multiple copies are being used or not. 
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Thus _we arrive at the .. ::tralitioaal impleaaeatatioll teelmfffue . for 

value-oriented- laapages. _ Bach vahae il•-repNSeated- •by :a -camtant bit -striq. 

Each variable is represented as a container that can contain a bit string. 

Assigning a:. value to a variable is ftplenam ud by :IXlfJli"I the bit, string 

representing the value-into tile coatainer- ••n••;*'·•riable. There is' no 
problem detetmiaing -wbea to throw vahaa ·away;- wlla: a ··varilble is deleted 

(\,IJJOR bldck exit), its contmts areddeted. . - >, ' 

In an implemenqatioa of aa objeet-orien1id-......, tkete can be only 0oe 

CoW of each ~object. A variabll-;dlllt'~VIOIM 'Objeft will contain.• 

refennce to tile'. object. A· refereace· it. a bit .-., • tMt' l<Jlically edfttains two 

i~em5 of jnfumatioa: -One item· S·8 '1/# dN#J the...,,. oode.::hldiCates;itlfeFtJpe 

of the object to which the referaee -Hien. (De:.,.,--~ iwoulcf be· "'*J•, 
string, etc; in-mallf-'ilnplementa._;.s,:ful lYJI cede<if·:aot :reqUirect) The 

second item is -the """' .,.,._ ~it in -- ........ ~-0( names one . 
particular object of tlle.1pecifie1ttype. Typically;· the data~part·w· the addreSs of 

a block ofat.oaaej11.w1Uch9e·stm0£:•-.;.tt:a_,1lli-~ copib'a 
reference to an object, not the object itself. 

The property that an object exists forever has a non-trivial meaning for 

mutable objects. There may be many ref~ :to.~ Ob~' a~ ~I; as; there' is 

at least one ref ere~ . acces&ible to -• ,p(q&rW. tbe object lllll$1 .. ~ retained. 
- -- . . ~ - . .,.;;. ,_ ' ~ ' ' - _: ~ -- . 

Thus, some form ~ autpmatic_storap -~ (e.&,.-,Af. ... --~~pt.). Qi 
• - •• - • -. ~ _,.._ - ~) _,,. '··"''·""'---~~ c, 

necessary to implement an object-orien• ~ 
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2.3 Example 

Figure l sh~ atl ewnp&,"pf --;~";.:::~, y, aad i are local 

v~~blC.$ of.~ process. ~-v~ .,. ... :If CfMJ-allQCated·in •stack. 

(AlthQllgh .the stack_loob like.an ob#ct qd·_lllJ.:"imp._ted as an object, it 

is not _directb' -~i4>le to ~- pr~.)- Vati1~~1...ui ~•rences to the 

ob~cts they currM&ly denote; ia the ff1W9.J. r.___,are. ~- as arrows. 

The viuiables- .x and;. 1 ~ denote. ,ti.~:'~ olt~: w~- current st.-e, 

contains. three ele~ts. tb9. ~ l, 2,,aµd 3. •·'Ilae ~e i also CWl'e.IJtlY 

2.4 Ad vantages 

Object-oriented languages have a:-rmmt;et·-or··acHaimges~ The primary 

advantage ii direet $Uppbrt fof ~blt ~ti. ~~':'-· of nlut&ble objects iS 

common· in pr()gfaniming~'. &wever, '~ill~:·tanpages do nrit 

Figare 1. An example of ol;Jects. 

y 

progra111 stack 
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support mutable object& well. As we shall describe below, strict ·val~nted 

languages have to be extended to provide the facilities needed to use mutable 

()bjects. The resultiog,fang.._. aare,un~·~ and-error prone. 
In additiOn, most ftlae-oriented l~-:-ptovide tunpletely separate 

me.chantsms for accessillg- ttpel'ftiaaent" data ltcnclid a me •tem. -- A file :s;stem 

is mo&t naturally d49scribed-· as- a sbaniclf ·mutdle data :structute - (1he fil~ 

directories) contailiing- mutable 1Jt ilunnable-;objects'-'('the -data -~). The' file 

system is a permanent data stnteturer:the ~ &itif:·deletkm "of'flles do not 

correspond to any staCk dildpline. An~; 'ttonijf rtiodel·- alloWI the 

permanent file system and the temporary data of progralDS: tO tie- unified iii a 

single universe of objects. 

Object-oriented languages allow mutable data abstractions to be directly 

modeled. In an object..orienteci _ ~ m\IUtfJe- ob~ are "first-class 

citizens_.~ They __ ~.,be, crea,ted, ~ JP:c-~~ :""'~ to.-~-...--an4_ 

re~urµed by,procedura" .The~-· 4-a\kWltina~d.-.-¥ ~tely 
haadled-by the-language implemeatatioa. , ______ -- -· ' -

In a value-oriented language, the closest ti)iqa to ~,-~utable object j.l. .. ;a 
~ . ..,, ·-· - - ' ~,., . ' "'" ~ 

variable. However, to use a variable as a mutable object, one must be able to 

share the - variable, at the very least between callidj- inO called procedures. 

(Otherwise, no procedure could ever. modify a muta~ _-.eDMAt object.-in which 

case one could not use procedures to implement ~ti~, o_n _ mutable data 

abstractiom.) Thus, the concept of caU.:&f~reference ~:.~·iiiti'oduced. To -allow 

arbitrary sharing of mutable.object$., a generat"~:tJPe-mUst bci,introduced, 
,,."' -, ~ 

in addition to the atMlity < ~o ,~ cr~te new variables. _ While a reference 

type allows list structures -and the sharing of object.s in Clata strUcturcs, it also 

introduces problems of dangling references. In most common programming 

languages, variables are deleted either implicitly upon block exit or explicitly by 

.-
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user command. In either . cue, it is .pouibl& tlaat.. ref•rences _to tbe deleted 

variable still e~ist. 1 
. If, Qne attempts to U¥ •~~~~,.,t'erepce, the .s~tem 

should ,prevent the attemp~ use and report &n·e,{qr ... ~ver, in most systems 

such checkipg is dt;emed too. expe~ive -~,js ~,.in ·'Y~h ~ Q5e o( a 

dangling i:efei:epce is ~ely t9 cause ~voe. 

In an object-orWnted Jpg~ . dalllliA&, ,~ ~e impos&ib.~ as 

objects are deleted . .only by t•&yste.m; ~ . .-.are 89'llo11MI." accessible. Io. 

addition, the ~ncept of a r*r~ is .. ~-j~ tD&. ~tic$ of aa 

object-oriented language. No explicit refe~ : ,QJ>t· ii . ~ nor is 

qill-by~.refer~ .. Wilen a pr~ure- is Um*ed,;;ii ¥.:ae~ed,: a pumber of. objects 

as.::·argumcnts. T~1.~--~ ·.fl#ligl/f#-~t:tMe·.;:~l -atpmeats oJ the 

procedure;_. they are,~ sharfd.¥tw.CCD tJle,,;~l 1!1!4t ~~iProcedor~· If an 

al'&un,ient object is mutable, :&hen it Jqff- ~i~'-by"~;.calle4 pr~w:e; if 

it is con~~ then Qf .. c.oun.. it;~ ~t,l' -~ r~-" Beca• there ~--no 

reference type, there is no .~ty gf:J~.,.,r:~ v~~ th-, ~ 

variables of.one pr°'*1ur~ can.be-~pl ...... ~~-·~ by any othu 

procedure. I:~ an object-or•ted. la~:"'~ CIQ simply. be.Jocal· $tme.. 

used wit)\in a sinaJ.e procedur~, t~ ref•r tQ: Qt-°'~ 

As we sta~ed earlier, .UJ, .-. -·~~-:of M object-Qrien.ted laQ&~ 

mutable objects are accessed via references. While it is not.,..~y,~ do:~.it: 

is qµi~ co11venient to acce&f ;sll,R~•c ,b}l,.,·f~,·;tefer~.2 .. {W~ do not 

mean to imply that inte~s J1WSt ~, alloM-4." ~ a f~IP- ar48.· .:~use 

· 1 In Algol ~ [14i dangliri~ refer~nces to itnpficitry-deleted 'toe* \rkJibaes are prevented by 
scope rules that forbid, a F4J(er~ ~ a \W'....,,_ oA 1)aeww" 'SCOjl!e;. fro~ ,\'9ing ~gned to a 
variable of "older" scope (the "newer" the r.cope, the sooner the variable will be deleted). Such 
scope rut. .tend to .bee....._,, rtstQctiYe;~,1for ....,._::t_.....,..,..~it impos$lbl9 
for a procedure to create a new object and insen it into a previousiJ.-exi&ting ,$U.ud\lr• pused to 
it as an argurpent. To oy.ercome ~ li'8itftiQ8s, Al&QI 68 -1ao JM:C>Vicles "heap" variabJ~ which 
are similar to objects (exeept that references are expliQit}.. > . . 
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integers are constants, the data part of aa integer _refereaee -·can be' the integer 

value itself. This tecbnittue: caa be -used for •·'lit cOattMts wllctse information 

content will fit iR a reference.) IC all objects are ~, Via ftXeckite 

references, then each 'variable is simply ·a. ceU·-tblt' ca• 'COntain a •reference. 

Because all variables are the same size, the •6'1ze>tt-of an oti-t · ~ ·mUch less 
important than in a vahte-or~ -~·wttere •· · "sae-' of a value 

determines the size of the variable tlmt' l.Jl8et' holG4ttJ : hf'~' a eomjjiler 
fur an object.oriented laa&uage does not haYe -10; ~ codcehaM. '*Ith the Sizes. of 
Objects when generating-cede. 

· One resuk of usiq (txed-Size references is· tliat it-is asy: to provide- Objects 

(e.g., arrays) ,that can grow''ilftd'-shrini~- to 'W~r size-'it·-aeeded. 

Use of such dymunic objtitti ·efiamifatel ~rfs&.e ltiitl ,in -·programs· and' 

also -probably aaw:s ~paiee:' m.teact·Of-· allbcatiag- a -'9iUilllunt ma ·(wlUcb is Selecttcl 

in- the hope that it Will ~ -be -~)i·enty-• the. 'aiomit -of' storage 8ctuatly · 

needed is allocated. Similatty,-it-ii pOtiitile to:'tmcieattr iiipllDeQt t\aia~:

integers in an object«ien~ ~; -'Sftidt integerl am· be represented by 

references that ·contain the-- integer 'vale'• .u;oga:mtegets ·tao be· represented by 
references that point to sepanttely-aitecaletf'.stotaae.~··-·-~ Uillre' of uftbou~

integea would remove a major soufCe' 'tJf lMChine tleteadeaey tbet-exitfs in· most 

programmi1lg languaga. 

·-lfl ·addition, me of fix«kize--~-fot all:objectl facilitates sep&rate

compihltion ,of modal&.: .. ·la a ...... ._ a~l8dufe4tMy define"• data type, 
" - •-o-. 

modules that use the data type can be -~·,be{~ a -~q ha•. been - . . . -. - - . . : .. -. ~-;. -

chosen for the data type. The eompilet'eld geaente:.-'thit'1*t' objects -of 

tbat data type without having to kaow how~-~~ • -~:are. -'S-1ar1y, -the 
2This implementation teehniqUe can Of coune be uMd ·t« ~~ ·1an~ • well u 

object-oriented languages, but it usually isn't. · -· - - -
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implementation of parameterized modules is feilitated. An example of a 

parameterized module is 11ack[tL where t is a type parameter that specifies the 

type of the objects in the stack. A compiler can generate a single (possibly 

parameterized) object code module for s~,c~that will work regardless of what 

type of element is actually being u... Finally, ~use all variables are alike, it 
. ~ ~ : 

is possible tp have a· type any.. A'"\'a.riable of ,i,pe. .~ is allowed to refer to any 

type of object, thus providing an escape mechanism to run-time type checking. 
,. .l.., . • 

Such a notion is impossible in a traditional implementation of a valu~riented 

language, where the size of variables ii not, ~ded. 

2.5 A Universe., Objects 
_,__ . ' 

As we stated in the Iatr~uction, most .implementations of object-oriented 

languages· provide a· single space of ObjectS' ·ror ··each· program or process. Each 

space. Qf object~ is '15Ually emall, aad:ao1•f;Gnmaicati~,.of ·9bjects between 

different .spaces is ~. We are propoaiag to:ex .... cdae netiOR of objects .by: 

providing a single, very large space of objects that would be·· shared. by· all 

processes. i11 the system. This: ·\lnt.-SC ·.of 'Objecui ,..Wdaclude not only the 

temporary objects - during. tae:.execution c,prop111t19i.but;iw.0Uld also inclwh! 

"permanent" objects normally ator~ ia a file .,aem. : · .· 

Fiaur" 2 shows -.a example: of a :(emaU) univenc of object&. In this 

example, tbere are tw4i> proet.8$ -stacks ·npraent.ing two ruoning processes. ·Jn 

addition, there is a _.u,.file ':1y.wni.attachea:: to a: root node. , Nete that '50me 

objects are. both part .of the flle system and· refaud:~to, by processes. 

Ha"ing a single system-wide univene of objeets has-• number of ad•antages 

compared t& current. systems. . The first advaittap it. uniformity., All>of the data 

in the system, both lOQJ data UICd by .propamsr aad perrilaaent ;data, ate ·objects. 

All s~ch data are treated the same (except that objects that may be shared by 



- 21 -

Flaare l. A aal•ene of oltjects.. 

•111. tvet.• 
l"QOt 

' ·. •tack 

multiple proce•s may nqaire ~). In 1*1nBt ·systems, there are 

two kinds cf data: 'Ndal •• .... ... Thi two< kiadi'-« .... ~ ftstly 

different~.-

. The aecoad advaataae ia ··limplidty. - Petmimeat data -Objects •are operated 

upon directly. just like'loall .4'1a <*jecta. Mo_,aidt Ito 9eed 1'e ~performed-by 

the programmer; no conversions me needed:; ta ...Y cQ'aneat •Jwtmas, files- co 

be accessed only by perfwina- aplicit l/O·'to "OF from- ·local ~ In 

addition. objects mm· be coawrted •"•• thllit .._,mott" format and &ft 

estemal format (eitller a strina ~·bits« ·a d'illl· ·~ .,....,.). · 
·The third adftntaae is generality. ,n.re.. ·veao·Mfrictions on wbat·tiads 

of object'! can.. be permaaeatly stored. -For' a: mple, ·-.~ .ore laqe' mambers 

of small 'Objects or object& ·that ~ve·Jist or gtapb ......... Ottreat $J$tW 

generally de not effi£ieetly qpportc_::.r(tla"wli•• ._ ate cat patab1e to 
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programming language objects, i.e. 1 to' 100 words)~" Itt ·addition, few' system& 

permit pointers to be stored in files. Data structures that involve pointers must 

be converted to some other form before thw,am be 1tOI'~ in a file. 
,;: ; r~.- -: . :·;-~ .t_,.,.,z~fl '\ 

Similarly, there are no restrictions oa what~ of objects can be passed 
. . - . ,,.. .. ~ ' 

between procedures, between processeS, or betYt~. prO&!ams. Conventional 

systems generally limit the "arguiDents" that can be given to programs 

(subsystems) to constant values,· mually striap~~ .la . an o)..jeOt-orieoted system, 
. ~· .. -~·_,r.:..· ·- .... , .... ---~~~-,~~~ 

there may be no need foi: a ~pt of: a: "pr~"·· A...prc)graan is: simply a 
• .;, '., - ' ""' . ...., . .;f ·~:;-'· ... . -~ ':...:. ·- - -

procedure; normal argumeat puling can t>e- iiSed (witho~t restriction) for 

communication. 

The net effect o( tlae:a..adyantegu ·.is '~t the Qa-of Jong .. Jived data ·bases is 

encouraged and made Wier· (~nd, w;· -~ ~~1~~; -~>'n example of 

the kind of data base we are thinkU:.g of is ~ CLUlibriry~{22). The CLU 

library is a data base containing information ~t propiuns. Each module of a 
. 1 . \ ' ' • 

program (e.g., a procedure or a data- type)-'Would ~~epr~atb~e in the 

library called a description unit (~ Fi~;)}~ .... ,. ~J"1lf'W<>~ld contain, 

among. other things, a specification oilhe -type intefface . of the. module. A 

procedure description unit would contain the ·number Ud t)rpes of the procedure 

arguments; a data: t1Pe d~' uatt•woakt «tnfaiit··Ui~~icafions: di 

the. operatio•·< of 1he da'ta >type;' L Note ·dlat .• , ~ ..... ~ioll· or~ a 

procedure oontains data types -and 'thus 'mtJY ftier 'to 'ttatw'tJrei defcription units. 

The interfact! specifieafioAs. would be u&eO ~ tltelCLW1Codlpilet 10 type-check 

intermodule references (e.g., calls of one ~iiy:illlOJther) .. · 
The CLU library can· natunlly:. bl ,._lt•fl:,·.u.a set· of objects with· 

inter-object .referimces. · Unfortvnateiyt·· ....... : .... ,,.,: .. not· diFeetly 

support such a notion. Implementing the CLU library on· a conventional machine 

is difficult, particularly because of the relatively large numbers of small objects 
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Flaure 3. The CLU Hbr•rJ· 

-

iavolved. F\11'.tltermore, . usiaa tuell aa bnpletMat._. je,, ~.at hecaute the 

informatioa stored ill tile ,libnry mast be;~..- f,. -tU uterul. ·fie form 

iate the. internal; object format , ... by- tJlo_,IOIDJJiler., _In; a,~ .tupportiog • 

universe. of ob.;..,. the -CLU litnry could "-· .,..._ .. directly u a 

collection of object&. ,nesa objaeta_CCJUld·'.be ~...-,.by-the ~. 

without coavenioDL for exa.,&e. the:type'delctiptieat UIOd:m the Ubraty could 

be exactly the tame • the type~ .O· iotcr..Uy.:tay • .cempiler •. 
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3. An Object-OriUted·Macltiae0Al'dllteetuN. 

In t~s c~ter. we d~ribe the visi*·:•~~ure of the machine (the 
• ·• '~ ~ .. • . '' - ' ~ • .p -

"machine language") and tht;. philosoP,hy,pf.Jta ~ . Qar: ~ i&. AOt .to fully 
- .- ' , ' . . . . - -· - - -- -· "" ' - .. _ - '·' - . .. ' - . 

specify ,the arcbi,tecture,. but ~crr~Y ctp ~-~~~~.M¥° Jat~ ~ whicb 
describe the iJ1-lple~•tioa .of the~. ,,~y,,t>f .. .,_,~ns.made.~ 

~· - ' : _, - . : ' .--· . ~ ; - ' -- ,_, - - ..:.. ... __ ,. ' - - . . ~ i: • 

represeqt J>ef$0nal prefereoce aAd are ~t.~:., -~;JMjo.r i~ prese11~ 
• - • - • ~ • I • - .• ·•< , ,• • o ~ • - • ;J• ' • 

in the rest of th~ t~ .. 
; ? -

3.1 CLU 
. ' 

The primary infteeilce·e1t·tbe.desip of dle"•l1cbiw arcltitectare b5 been 

the programmiftt l•••• •.CUJ.:.f22f. · QUli if:u ~•led· llnpaje that 

has been. desipecl·Lto facilitMe tJte:;:~AOfi ;prograa· tnt· are 

undtmtaad&We, relieblltt,~aad·r1nliataMlde. 4' !~:aoa:.js;; acomnplishd primarily 

by providing language .oa.tn.ca that .,....:,die: u..;:Ofi~.:·in IJtOgram 

design• .. aad .. ialpleeaeatatioati-if. . '.TJlNe ·.f.- ot:•~i are · ~ted: 
procedural abstraction (prooedufel);. -~ :·~ ·. (i'teNton){llnd: '.;d•ta 

abstraction. 

Of these, the most intensting< formds data• abstraction, the ·tlefinition -and 

use of abstract .daa 1)1JIL A;, data· t)'pe'm 'GL.lJicofttistl'~a. •t -of "1>~ ·#ad 

operations • . The 'Opill'a-..AODlflleteiy::dtaraeterbte titrbebavilw· of;tbe,~Objects: 

they are the only direct. lnellJl,~of «Utial;·•jee-1o~aformation. from 

objects, or modifying objects. CLU provides a number of primitive types, such as 

integers, booleans, characters, strings, arrays, and records. In addition, CLU 

allows the programmer to define new data types. 
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A new data type is damed. bf ~ a: mtd•· cded .••. clwter. . In. a 

cluster, the programmer specifies a representation for objects of the ne~ abstract 

type by giving a representation type. Por examPte, a·· fype #rt t] :may tu.ve a 

representation ·or tirra,l t] ( / ·is a type· patametet spedfying the type of elements 

in the sets)•· meaning ttiat each objeCt Oftype·Jdfrl •·ilctUlllY··tep,esented by an 

object of type· arl-ay(rl ln cackfition, ·implmientatiom C)f'the' operatiOns of the 

abstract type are pen in the forin of protedUres mat OJJerate·. uporr objects Of 

the representation type. These procedures (only) are give«~ power to convert 

objects of the representation type into objects of the abltract type and vice Yer.&f

Thus only the operations of the type may directly create objects of the type. 

. . .To enor•.thftt u.e ~btlaavier of ,...object of aaAbltfaet in-·it' completely 

defined by the operatioqs ·of the ~·OQC...,.-1·~.._.,: the .object -to be 

operated upoa as an ollject e>f. tho, ~~ tJlle. nnis -~ "Can be 

en.(oreed t.y_ •. ~in&.: eacll proeedore .~ ·tO·•:_.·,aare tlat -the-Mtual 

llfgumeot eb,iecf$ are of ·tbe,~types·--- byU. JtOlltlure.. . . 

. c~u w been .. ;pect~eo t1aat complete ~.,....·:ea• perfonaed ~ 

compile-time. Each. variable- ill a Q;.U, prapua, ;. ,~ 1M to the type of 

object it may denote; each CLU procedure is declared as· to the a....., and 

types of.objects. it. accepta ................. .-...:t<n'.~-:~·'.Sioee.· CLU 

eapreesioftl are compated .of. variable ---...- ,... .. :~ the 

CLU ~er, cao·determiae ·at1compilHime .. 1tJpad<all·.,..... and

c1*k .that aa ......... :wl ~ - t)'pMOJn.Ot;· ' ; 
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CLU also pfovides a type any, .w"1ic.G:all<>wa a. variable, . procedure 

argument, or return value to .be dec,\ar4d t.e,.~'.of.,any type •. An expr~Oll-af' 

type any can~~ valuate to ~y~ .. of@f~~:1g,.JJ:baJ-.b,eeq d4efi&Md 

so that in this utWl~-~plicit.run-timt. ty"·~:must ·be i*forJRed 

before the object can actually be, µ&ed. 

3.2 Architect~ral Philosophy 

'Out intention' is 'to design a- maciiine that will effectWely support the 

implementation of a ;langWlge similar 1to tttt However, we·' are not proposing 
that the machine tlifectly execute CLU programs. mstead, the machine' will 

interpret' prograftls ·in 'ibme iftterini!diateta&guagt ~t\sfa· coin'filer :· There 
are a num&er· of"-tusoas far: malting;·tlris;droift.~;;_!Merpfeting an'inf~ditte · 

language is sithpfer' and mdre -effieient. ' Fuitl\Wiitote; ,·;;· '; deai&'e~d" a~; a 

compiler can play an important role in the early detecdOft-of ertdfs. (BeCa'nse 

this "intermt\iiate" iangtt•<as tlftctfy'~~-·w5:fk 111~ :it shall 

heneeforth becalled the mllChine languap.) 

The next· · issue' is to determine the. · rel•fionship -between the "1Bthine 

language and CLU. 'One· po5Sibility is for the' ~hl'tle tanauage ·tc)···bcf simply a 

parsed- form of CLU, with essentially the' .ne -semantics~ ~ever, we ·have 

decided that the maclaine language $hduld''hotbt selMfttie&Hy '«ftrivateDt to CLU, 

but instead be at a lower level. Tie'primify-~ri''fdf:tlm decllion i• to· tak~ 

advanta~e of CLU's ability to ·support c:aatplite · -Cc;mpile-time · -type · checking. 

Except where the- type any is used, it· is nOt necessary ·fbr abstract types to exist 

at run-time. Thus, it is not· necessiry that «'fhe -· machine dirl!ctly support 

user~efihed data types. As a tesult, the machine cari· ·" Simpler and probably 

more efficient. 
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Although the mackine language is not· intended tbr direct use by 

ptogr~mmerw, we ··beliewe it shoUld-·provide'a liniple· and··welledermed interface:· 

Altheugh it ·need not ~support '11er-deruaed :c1ata fypet~ ff ~'piOYlde a· fixed. 

set of types, and alf priamne:·opemfOOs· should'pelforn'a.'~ {run~me) tYPe · 
checking of their arguments. Similarly, wh«t2'teli¥8'ri~· Mt priftllnve ·operatiotis ~ 

should perform bounds checking. All possible result$.. q( program, execytiQp 
'-~~}~~fL-~ .. :i':-tf~3' .s~·-_,-._-·rc~·,:: • "- .-

Should be defined in terms of the machine langiage; there showd be no result 

that ·can be eqlajJled O!Uy by .reft;ffin&:: ~;,)~~;·of the ... underlying 

implementation ... The mac•.tflus: f~:81l·.~Jl1Que.~,~t ~•:•a base' 

for hi&lier (software) levels that WQJlkl ina~~ .... -. abJtract· data 

type~· A .. sys.tem co~.,.iA tbia.·lae_e1*:·M~.~.of~~tae··le~--,, 

likely to,..be.both ~e ~t~,.-;,-.·,r---.f.hks;,resukiq..frosn 

CQ111piler errors: or J1ar.dwar'-.~: .;&t:--...wi. ~~bft. ~-lier qci .. by. 

higher levels of "1e sysleDL 

The mac~ ~e·JVUI. ~~nld.~J~.~ we.aJr• aot.tryhl&· 

to design a machine language that woukf:.,l;e.;,~,vsetuk.(or.-.impla,uati»g 

any p(Ogramming. lanpage.. .. Th~ .the. mac~i.• ~· .~i. .. lhquld be '1Seful 

for im~ementing the.~eCLU.t~.t~•.·tbJrr·need not be ~y, 

the same as the (;LU types.. For eamp)e, tJaeJ:l.U.~" lJPe' is par•..-tjqld: . 

each array may hold objec4 of-,~YA>fl,;;Qr~ .. J\e ~iq ty~ in tbe 

machine l~nguaae Deed· pot have:~ tc5triction. ' 

Certain.. decisions .abou.t .the .mac:tµQe ~.-..e, Jnust ~-~.·.that. go bpyon.d 

the current. design of <;LU. fO,J' e••~Y'I.' aaut ~1 ~ ~m f()f . 

the creation of, multiple procases . .-id ~:~DI, of,~ . .among. multiple 

processes. . Other .. ~·~ ~· s~ !" :)~~~~. li~kiQJ, . ~~ 
implementations of types, and protection, will be ipored. 
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3.3 The Machine Laquage 

The maobine lanpage· proYides· a fiml, set~of ·clata types,;each with a fixed 

set of primitive opetations.. Of · ttte. data; tJpes, _,,tifwo::.· .are ·of particUlar 

importance, procedures and processes. 

A procedure is an objeet~-*a.t ~· t>e executed' ·by· the ·machlne. A 

pracedure:,accepts a ...... aumna of objeeta;v .. 111118tt1 aact·produe8 ·a r.-ct 
number .of objr.et&;as results. Tile Je•ca'oe .,.....;..- nmlMlr «'primitive 

procedure objects, JDGSt.con:espondiag to openrtieai;ofh111e·.priiliitilte ·types. In 

addition, the machiQe .pn:wida· a :ivay, ia .wbida: _. tfAdi ectue objectl ca 0be 

created. These user defJllai proced 11111.~ lena 12aalf ito 'IQMl*te'i laDl'\1lge 

programs. When · inw*ed; ·euelt·· proeec!lwet-are-ittte.,,dll/ ·by ihe'· machine;· ·The 

basic actions that can be performed by a -~ ,.:W'\W~e. ;:_F~U:t~,.· are 

defining and assigning to local variables, invoking procedures, and performing 

other control functions such as conditionals and ~i'i~·X l>f:~~re is q"utte 
'(' -· • '~ "·~ ··"" - ct-

limited in its ability to access objects. A procedure ,an ...... only its 

arguments,· its Ibcat vari.bles, and ~ (~~ -~,;~~~~~tffff ~ied at the 

time the procedure was created. These known objects would include the 

procedure objects t.}tat ~e .~o l)et~~ffl--1!J1, t~1pr~~:,,}~ ... ~le ~chine 
language is presented iatApp~~·· L}: , : , . .,. · .. . ·, . 

A process is an object th~t ~epr~-~- poten@lf '~neurt~t· execution 
,,. , ' . - '. - . ~ :-_";·· - -':" - ~ - . ~ • ~~-· ~: .; ~- ~ ' ''.; . i .~ - -: ' : "'" ., :- . ' 

of a procedure. Process creation is· similar to procedu~~· _,A pr~re 

object and a set of argument objects ar~ s~~L~-~'.1s i~!bk~~With 
• ' '' ~u' ~ -. ,·, • --! ,,;: " ';J "•" "" " - '' •' 1 " ' • ~ 

the specified arguments. (As in the case of normal procedure invocation, the 

argument objects are ~hared by the caller and the called proced~f lla'1Vever, 
- ' ~-'- ~- •• _\·:.; - - " -. - ~.. ~ ~ ~- -,- : ~- ;:,: •'"-: ~ '. "_f - -

instead of returning· the results of the invoked pr~ the :process "eation 

operation immediately returtJS· to its cauer 'a lii~;Oli/lttt .,' n-e~ e~eeution of the 
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invoked procedure will proceed concurrently with, • eqsu~ --.'If .the caller. 
- - ·~- ..,_ .. ' •. - . ~ ' 

Process operations can be performed on the process object; operations are 

provided to $Utt or nap the eaclboa'··of, 0 dae-:.1ilt2til9d ··procedwe and to 

·determine .wheiheco. the~PfOCedua lm>;termiaated. aacl;·jf so, what the result 

objects are (see Figure 4). 

One rua-tilllf?e ....... atack·,per·.-cea·;if._Ultd tty tlaeamohine to store 

procedure argu-.ata .- l,ocal variablea. .llalleMll, .tllese stacb~·.areiimptidt in 

·the semantics of the>machioe ......... end am ~:dilecdJ- ace Ith ·to 

procedw'-. · W• ,auaue1 that---~ the •athiar:•· .iaitillited. c:a· agle pocess is 

automaticaBy created .to -CHCllte ·an app:opriata *'"'"~ We dO -aot 
--~ ... _ • ·~· • ~ ...s... • • ..,......_y ,..,.;,aa:maum WYeneiua ccJCC11aCJe&t1· ·· 

Fi1ure 4. Precesl ·•,erattou. '' 

process state = oneof [ 
stopped: null, 

._, 

killed: null, . ~ . . 
termina~~ arl'!l>ianYl ~ the.~ c>l>~.gf_-~ pr~ ·hrittli.tl:'.ftbll -~- aone ortw·~ :·t· , ·. · · · _., 

l . ; ; ; ,;- . .. . ' - . . '·· . · ..... 

create = proe. (p: procedure,' argi: amyluy)). returits' ~) 
% The new procesa is created in '6i ·1¢ 1J 4'.attateL· 

start = pr~ (p: ~) . , . ._. . . . . . .. ; . 
. . . stgnali {pr«aLtermiiiited) 'Ir. Ifptticess tetmiaated or killed. 
stop = prec (p· proom) · 
kill = proc (p: ~) . _ 
state = proc (p: P..oCell) retaru {ptocess..&tate) 

block = prqc 0 . . ·. ... .· ' . . ·; .· . . ··. .. 
. "' Blocks -the mcuting Protas until a ~, is i>etformed. 

wakeup • troc (tr. procea) - · · 
% Wake& _up the. sptd&d process. if blocked. 

• 
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The· othet maohine·language tjtpes· are otaiiiafy data types ·that correspond 

iri some manner to ~ primitive CLU data types. ·nus, We-. \vould expe1Ct the 

machine to support integers, booleans, characters, and strings, plus ., aome 
structured objects. A number of types of structured objects coul<J be. provid.~, 

"'r-~. 0-.-;;r':~,. , .~·. ~·:; ,_·. ·· 

such as fixed-length structures (corresponding to .. CLU ' records) and 

variable .. length struet~~. (COJ'.t~diaa JQ. CLl1 9''"11).~ ... The ~ .~noice of 
- - ·• - - >. • • -

~Y~ is n,ot par,ticuladyJ~tant for.~~ qf :~··~ 

TQe set of. accesail>le oejeots,,in~n~kt"Mr¥.'1:·'81' ·~ble) pr~"°'· 
In. addi~ion,-~ ·~.ther~ is.~ •ioale dWilllf.._,~~·P•~:o* TOPl:of 

. the file aystem, tl?t is_alwayi~~; ~{~ ~·,~ Clf::a .~~ (or 

graph-like) directory structure that contains the "permanent" objects 9f·.\t&le 

S}'-St•m,?•·l-.~tr~~!."14·data ....... 1'!1•• •Y..-MitMt ~ r,efet;red to 

PY ·aa a~~~~ Dl>Pi-·i·iJ itsel{ a~'*';;. •tt ~ e-.:!a"" :by ,~efillition 

iJlllcc,essi~.a tJieir 1ter.ap 1ul>jeci to beiAl<•a.iUlfld PJ.f&ha.~ 

We will de{~~~l·~tive·o,..-._,,.. • ~·:·1fr.:ia--. •~ft 

tliat any •·'1f d> .. ti~:~~±Jil8f,f~,\~~·~19e,~uiv«lefft. ~o 

performing the ·.~· 9't of Opel~: .181 gp .. ~ . ~ .. Qtf~tKm· fqllows 

from our desire tilat·tM·belaavior.of. ~Janpap .~.:be~ped. 

Its implication is thaLt~ machine ,fl~·~.t~1'8·:()0 mutabl~ 

object$ to ensure,~teacy. 

Of course, prQvkting synchroaiq~ . for the p~~tive . type& will not 

eliminate the need for explicit synchr~~' of., ~1'c~ \~~ A.$: y~t, 

CLU providesno synchronization -~Di@; (it ii~:~~ l~uaae). A 

number of synchroniz.ation ~:have ·o.i p:~ jn ;:tho lUerat-..re, such 

as : se~phor~ IJ,t()nitprs,. eve.ntcoµnts,. and:•~. liowevet, the search (or 

the "best" synchronization mechanism is a subject of current research. 

Therefore, rather than choosing one of these mechanisms, we will provide the 
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most basic synchronization primi~va,.- ~ ~ ......,pJ+ij (.ee Figure 4). 

Tpgether. JVi~ shared ~ ~ RtiaitiYel.~ jupe~~l uy ,qf _~ prqpQSCCI 
\ . 

mechanisms. 

3.4 A Simplification 

Although \ire belie~·that the -maclaine·iaaguap'·shOald P,ovide-datif types 

that are similar to the -primitne CL-U ~~tile -~tati«a of -such types 
Wotlld ift\lol¥e ·ll· fair 8inoWnt''Of detaiPttiatt''*cNkf-~'.llo- uldur patpc:iie-:in this 

the5is. ·. nms, for pr~-~ .e~Wll;•me thaft'lfi1machirie·~ 

(in ~ to- ~ei and'prOcc:$saFomt:•two dlta-~- ·1stnnp' ·and 
Yeetoh. -

Bstrings are COftltant (immutable) ~ bit"'Sttings.~ - TI_ae ltngth :of 
bStrings ·wm be chOsea 10 that· a •tlstritil :"8ie ·all be ltoiei.•entifety in- the· data 

part of a referente; th-, IK> ildaitiaaal--atii--~ ...W'td ~at bstiinP~

(Tbe sbbject -of reference$ize i8 ~-,~~5~):·~ ate ~tially 
equivalent to the> uattped at:a:'.}oliRipidattkP'tij· '~".uuachlne&.· · The 

operations·on ~ wouklbetJittUSuaf·~dd__.-~ the 

exact ·dtoice of opentions· ii· Dot -~ ~ialpktlit7 fbt' our parperses. 
However, there woufdbe;no c,_. operitiOJl~,;we. blsliiag 1.aaes·are Cftat«i by 

performing operations on old values. We wuae tlllf 'tiitUjp 'are- ultdnattly · 

created by :110 -~- Naturally, bltriRp caa be- illte!rjntecl ·a dulracters, 

booleans, or smlll ~ as· the need-'Wila· ·· ---
. . 

- Vectors are rtmMengt&, anutatile ~: u Objects, simitar· to arrays in 
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vector. The .exact choice is a matter for. the 1ptmn deliitner· and is dependent 

upon a number of factors. ($ee Chapter 7). The ..-.ua:vector size will likely, 

be in the· range ftoa 0128 elements to· 4K, el~. 

The vector operations are listed ia Fipfe·. s. The :f:M/IH operation creates 

a vector with a given number of elements, all 4£·:whU:f-. iaitializet\ to . .some 

distinguished bstring object. (la a real•)'&tem<•PP«tiDI~__, primitive -types, 

this object would ,be .ate unitpe llltM/Wd ~·•heM~.pvpase: i& to .permit 

detection of use of uainitialii.ed variables aad:·'.vec.tor; 4lements.). The . .;u 

argument is a bstring that a interpreted as,-.. iUtler. ·if.the smLarpmeat. ·ia 

less than zero or greater thaa the: maximum. siz.e of a ·vttctOFJ. then aa exception .is 

signalled. (We assume· that the. machifte;:rlnP91e.;"?.,pmts;: tc>Dle. ·-form of 

exception· handling. similar. tn that in flll:·faa}.): ·,·litlfil*a,,·,• exc:eptioa is 

signalled .if .there is imufficient storage 11vailabie to: atilfy· th~:•~ la all 

caSeS we:assume that>$} oxceptien;:is >Sipaledif an OUject of·Ftiae Wl'Ollg type•is. 

given to a primitive operation. 

Figure 5. The vector operations. 

create = proc (size:, bstring) 
, returns (vector) 

sipal1 ·(neptive....size, sia..:tao.-'vge.. no..siorage) 
equal = proc (vl, v2: vector) r:~t11r,_.f O~tring) 
size = proc (v: vector)- returns {bStnng) · 
fetch == proe (v: vectcJ4;ina.: t:stiin1):r~14ant~ 11...-::(\louftdg,) 
store = proc (v: vector, index: ps~ -~~~tq~~~) ll~:t("!'und!) 
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The t!f/Ufll operation returas tnae (a puticular-{·bltriaa) if its two vector 

arguments are the same,. WJetor object, ancl1 retuna .faa.0 (a different bstring> 

otherwise. (Two vectors are not equal- just becawetlley Ctllreatly have ·the same 

contents; each m•ocation of the CMI#. openciolir retutas. a :Met.or that ~·distinct 

from any previously cteated vector.) . 

The · size opentien; retums • bstria& (ialcrpr-etfld~: •. an inleger) ' that 

specifies the number -0f elements ia the ~i Tiie · /etd operation returns an 

element of a vector given its -index. n. ll#e opeiadoa4110difies the vector to 

contain the· given elemmt .. '°1& {«ell aad".,..1sipal blrd•·if the iadex is 

less than zero or greater tban..ot>apaal:to11aeca.Gf tllewctar .. 

·Tftese; types are .Ute:~ ad.·wouW'seem to coauadiet many of .the 

claimed advantages of object-oriented .laaguagel ·liven in ~ i · ·However; we· 

are not ptDpQaiag:'dlat •'1al aud1Dae prOPide-1J._.'tJpelt or.that it would 

provide 'these types at all. We .._ dloaea *'- ·iypes to simplify the 

presentation in the remainder of the thesis. 

The bstring .and veetor types ·are ·realiltic . in tllat ·they -could be used 

internally to a machine to construct more ~\II, ,ty~ . F,°()I' , e~ple, ~r 
~ ....... ~ ' .· ~- ;. -.. -'·, . .. ' ~ .. . - ' . ...._ - - ' -""" 

structured objects cou~ be constructed by using two levels of vectors: the object 

would be represented by a single top-level vector ·~~jp1ng references to 
-... .';, ,_ : {~t ~ ·::--;· 

lower-level vectors that store the actual Qbjct:~ .'IIUI usage would be 

equivalent to the use of page map& . ~ ~! ~~· . sr~·· pynamic 
-- ~, - . . , '._ - ~' -~ - . . . . - -~ 

structured objects.t(objlots a. can.;;gmw or:•a) Cll&.apia. implellllllted by· 
~ - - . : ' - -- - - -' , . . ~ ..... -- - ' ~-~ - - - --

using two levels or vectors. Adding or detetirij · ·staraae can be perf orined by 

adding, deleting, or replacing the lower-leYel YeCton. This implementation is 
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equivalent to our current implementation of CLU arrays on a conventional 

machine. Unbounded integers could be implemented by using bstrings for small 

integers and vectors of bstrings for larger ones. 
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4. System Stnacturc an Oveniew 

In this chapter we provide . an overview of the ~ip .f>I a machine to 

impl~ment th~ J.a11g~~ -~ri~ .~.,~ --~~ ~~·· .We. bep~. l?Y. 
reviewing' the functioqs that the. mach~ gi"~' ~i>f Pl· 

' -· ~ ·- •· :-' ;, ~ ' • - • > 

4.1 Machine Functloas 

The primary fuactions of the macbille ·a.• .:implement ·•he :.four. maehiu 

language types: proceases, ·p1ocedure,s, Yf:Ctms, aad. ~~<i The· .implementation 

of ~processes . involves. the .. man.-.t er ·• '.ceUection :of. 'COncarreat. activities. 

Tbe machine must· ardga,,·relOUfCel,to thdle aetilitim •~· ........ ·way. 

Tht.madrioe.wilt· need .tie .watain~.-.,intipnaaoa for'-*P'"'*'· Naturally, 

the various process operations, including bloclc and wakftp, must be 

implemented. 

The ·inlplemeatation ef plOCed .. ·:imolwl '~ :lite interpretatkm· of 

machine: l&n1uage code. J1lil. intetpretatiod· Will iRYGIW; the·:manipuWioriPof 11n· 

evaluatiOn°sMCkllnd the invocation :.of tYfrimitM ~-
The implemelltMie11:of:"vdetM;~~·t1te<811dea .... ; ~rat, and' 

automatic reclamation of storage. The amount of storage provided. is sufftcien~ly 
--~;~r"~-~~:"''~-r~:) :--l ·: .;~ :.r ,·, 

large that a multi-level memory system ia required. Inl~meniing the vector 
operations also req~ifes ~t th~ .madtip•.~·i*~J' {~,P, fr~ a,~~t9f· r4'rence 

to the a~l storaa~.Jor the vr:ctor. _111 ~::~·~~:~tor ,9~fJl~ 

must be synchronized so that they beb,ave .- atQIDic Ol*a®ns. 
- - r ··-., • '•," ' -- • , 

Vectors ar~ t~ basic storage type Qf ~~_.piacl,tioc •. They ~n be used to 
~ - ·' ~ . -· .. . ,, . •'" . ' ,, . . ~ 

store infonpation needed .fof the .~en~tiao. of pr~ and Rr.<>Ceci,\lfCS· A 

procedure can be represented by a vector containing iestruetions· -(eneoded -as 

bstrings) and referenees to "known"' objeets (literals artcf ofher procedures) .. A 
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process can be represented by a state vector, wbicb· £0Dtaias.$Udr illfonnation as 

the currently active procedure, the instruction counter (which identifies an 

instruction in the active procedure), the eyjJuafioo 'statk/ Pius scheduling 

information. A procedure or proteSs reference ·~o..%acftaally be a reference 
to the corresponding vector representilll fhe.ptoeedu're'or pr<>Cess .. These u~ of 

vectors would not be apparent· at the machine language.~ .
1 :., ,:.,. 

The implementation of bstrings involves simply implementing the bstring 

operations. ·No additioaal "storap." ii a.led;• maw-(hy defmitioa, · see Section 

3.4) the •ahJe, of a bstriag can·ee completelJ ,contcinr4,ill"its ~eRnce) The 

implementation oLbstrinp is· thlls~trivial; wl;QIJl,ile:performetf dfrectly by any 
~ware module. -For:. example, tile; invocatioa·>of:•a.riag' 'OpeJations ·by 

machme-language procedures can be pmfamml·.dinlct.IJ er :~the· ••IJine4anF..P 
interpreter. ~ · .· 

There are some other functions that the machine must perform that are not 

directly related to the ·imp)emcmtatioa Jtf ~..,t,.,... 1ilta*~•·· il!or eomple, 

tbe ·.~. JDUSi,,r•··pet{erm .' .. :.····-al:iiadoll, ... ~. ·aad. 
reconfiguration. In~- the a)tteQI·--,~~'*"" ._. .. of. -1/0• The 

imple~tien of tberelunctioos ... , ... 14.•··-··· 
4.2 Design Strategies 

. . . . ' . .. . . . .. 
In this section we describe ·&Olne of the design strategies used to make the 

machine ·as simple and· ·uodetstaadable as·' po;lible. Tile·~ tetttaique ·used 
to minimize the complexity of·~ maclli*' if Modularity:· splitting. the·· machiM 

into separate modules with well-defia!ed iriterfacel. A mMullt · desip is easier to 

undemand because it is composed of a ~ "' .,.... . (if a dfdte manageable 
1The act~ storage is provided by v~cors (whole .... ts ,...y be \JFinp) ~ ~Y ~-..-• 

· registers. · · · · · · · - · · · · ' · · · 
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size, each of which can be examined.:and· undentoOd separately. In a good 

modular decompoeitioa <tf a ~ each. module•caw;be ~'-aS'-a' "black bolf:" 

at the system level. That is, when .... ,.tilt ·~em, & 'a whole,, one need 

understand only the interface of _., module, aacf; not·'._, internal eon5truction 

of the module. SimiaRy; when .viewU..· tke~ ~ 'l>f ·.a' module; 

one need only relate it to its interface speCiftoatioa; · the other modUles · iil the 

sys.teal can be ignoled. Thia :epptofldl0 cq.1-tef:•pflleci ~y, as ·any 

module can it.self· be coastructed out of a ......,.,_,., illletaal ·modula, · 

There are certain strategies that can be Ultid; 10 obtain a ttiodular 

decomposition of a system. : One strateay ,,is aeparatioa et fuactioa: ]>rOviding a 

separate me<lule for·e&qLfwtiaa that«mutt t.np11feuaat ._, t1W:s1,._~ ·:nus 
idea is related to our desire to minimize the .e (lf.l• ... nia• ,jn -ttre··gystem; 

In conv.entional aystems, multiplexiag>oftea:UM>I.- dte_.,,~ot a ~ module to 

perform many funeticm.' ·,· Mor aample;/ a' ..... ;,.. ...... "ii mttkiplfted tO 

int~ -user programs, implement ta~ ... .,, .... ICJOlltrel cl/0 -~. 

A usef~l·t~ iK'~iclaltifJU&·:~'·~- li*~pllmentM:t;y 

medules is the ·ndlioa,.of:data-·types. >,;;· 1110dule'•tkat "inrplemeftts a data type 

encapsulates knowledge 1A»ut··therialplemeatatiGa ef a:~ot;:jeots Iof· ,it\'cPtype. 

Other modules can use the objects without knowin1 any detai,ls of their 

implementation. The objects are identified by, ~refeien~~c~~e~r,,} the relerenees 

are inte(pr~ted only by the type ipod"!le.,)f~ ;pccf~1q1, ppcu-JttioQ$ qpp.n the 
~' i" ' , : •• -· _, :· \.. • ' • -· .. _,_ ·- - ' - • 

objects at the request of other modules. 
- . -- . '· ~- •" ,, 

As we described above, many of ttie ('!ll~~. of ~he ~.a<,!~i~ corrFSPQJ><t to 
• ~ :-· •~-- • : ' J :."': '."·.'-·.;:: ~_!,..,."- o' f---'--: ..,._' °': · •.t' -~ ~· -·,_ ·' '• 

the implementation of,~~ti~ular,_,~~~-i~P!'~~~ ~~J:'f~~~v~~s, ·n~ 

bstrings). Exce)?t for _bstrinp, ~.pfJl~~h9'~J~Jl ~'1Je:,~~~~~~~. 
• • , I • '. _,; : ' " • ; " '.: • • •, -~ ~ ~ ' '- : t '- '• .C , • _,.. "-.- -<'~, • .,...;.~ • -·~ ' r ' • • ·; 
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implemeatati()ll by a separate module., . :It J118J be ·coavenient in the 

implementation of.these types to ·illtrulucc .sublidiary IJpel;: for ~aampl~ ia dae 

implementation of vectors. a lyfM' fN116 ·IUIJ ha>weful. ". r'. ' 

An importNlt preblcau arc;a ia the .. dcsip of aust computer systems is the 

proper synchronization of, COJlQQl'teDt: .aetmtia. .n. sptela~lfaould be designed 

so that there are· no uade&itable race 'CO&ditiens IOd ·no possibility of 

unintentional deadlock. 1\e methods utal· to jmpiebleat spchroaization sllould 

be both efficient and euily ~- The- use of data typet' can be helpful 

here. Because all operatioal oa an . .object are . .ctually ·performed by· a single 

module (tile ty.pe moch•>• that module ii i& aa acitlleat·pDlition to' aupenife tbe 

~rrent execptioa of .opefationa te .-re aenri•8* 0 ·We· witl.:4ilc1ass this 

~ furdter in later dlapters. 

One .Cul dOtiga. pal is tkat'all·module ~~be· ~nt. 

Speed i&Jdepende~ -... that the: s:rstea· will work .. repaMm of the··~ taken 

to traDS,Qlit, datii from ioae ~ to ·aaotW: orr:ihe~1ialeAwea for a ,module to 

res~ «t alljqput. -~,ia~••W« awpiding·raceumclitions. 

If .some action itappeae~\to take ~a::.-. u.e,.-..:perfetmaaca d'·the .machine ...,, 

be degraded;·~ the madtiae will •Sfor9'tie1L"OOIWellldr"~ .. ,,.,c. · 

4.3 High-Level System .. St.~ 

We are now ready to.· describe the overall stfuctUre of the system. Our f"ust 

decision was to separate the implememtafioa ·or·· pr~ifra <(inStructiC>n 

mtefpretation) fronf the· impleDientatiOe ~ ~' We ;pu{~ .tem mto two 

major patts,.a:'p~~ng m"'1ille (PM);··~-ia~-f>r~o~aQd .~ 
multi~''Pt'~ antra inf!ln'iil-'miawt.!-~ --~ti,~-<~ 
Figure 6). 
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Figure 6. Hlgh-le•el 1ystea 1tr11cture. 

Processing· 
Mod.ule 

The interpretation -of :procedura illYoWes ptVforming. eaplicitly · ·invoked 

vectoroperatiens.c;ln:additioot as:~ atr llt?ilodtipeoeeduraand~ 

are actually represeat•by wetor-objectL:cnUlf\dal:~.uaes.~,MM:.,to--allist 

in ·the implementatiqn ef proceduresianelrproces•. 

The communieation ::between ;~,;1t1ro ;mailuler··;censi1tB .. primarily ··.·of 

requests .sent ftom the·PM,to·the~MM andrr.eplicsRat f-. die MMte,the::PM. . 

Tiwe .recfUe8tS:ooa.111 (JOrid· te ,lbe,psimi. ndtol.iopea~ ~c,..., ilJflnll.t ·· '4e• 

fetch, and store. Each request message consists of a fixed. amount of 

information, which. ~)an ideotifjQMien .. ef: dle:::qMtration:,to ~•,·performed, 

plus object . references. for the., aJ1Utnadl of the>J~. Reply . messages 

contain tbe: statu&; of ,:the reply (oorlO'at or aceptioaal . terminatioa), pkJ& object 

references for ·any re&Ults of the operation. · 

For example, suppose a procedwe.: iav<>its the ,vector Cl'M/e operation .t~ 

create a five-element vector. When this invocation is executed by the PM, it will 

send a create request tQ4b~ MM. The MM will create a new vector, initialize it, 

and return a referenee to the vector to the PM, which~ Will· ufe that reference as 

the result of the inv~;tlon. The request and reply ~es ~re shown in Figure 
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7. (The notation t#d indicates an ob~J1tf .... ;Jri. MJe,00(,le t and·detit: 

d. In the case of a vector reference, the aact data value is not predictable, nor 
"""- ....._ ~. ,,._--... 

is it relevant outside the MM.) 

Additional details -of '1lw i'M-~y interface- are presented below and in 
~ !. -

Chapter 8. Note, ~' thatc.'!'e ,fn ~_.141_,~ ~t ~training the 

PM-MM interface to ~t of afsingle\physicaf~. The interface 

allows multiple requests to be subaiitted to theH MM 8nd ·J,rC>Cessed ccpncurrently. 

Splittina the &ystem up iate-tkese-two--major----··.U. a number of 

advantages. The primary advantage. --iS" that the ~ of -t~ system is 

simplif"ted,/ eompated,r10 'COll~tioMtnsys...S"'":;,._:J\ftioulh··tllei 'moctaie diagram 

above may,loo&Aike.·:a ceueatiomd ~L:i-...,:t.:,ti!cr:llCiU~ -A1 

primary-ntemory:in-a,COJ1ttotional;•11tem•.·•~'io.ievel:latcl• .-e--~ dlat i5 but 

one piece of the implementatiea:.;:af.3,._,~.......,~-.. ...-•t:seeB~·;by '.:user 

programL, -.»While a·cenftilth el priinary"iaemolJ u a<wttlMlefined task and a 

simple;in•f~ the nleYaat>if•lliel;a•h~liinuLaNn•r>-•not 

~-"by .a -sillgle module, but 9'1anail~ al! ... Jwar&:·a.tDles .ad 

The-MM, on the .etber"hand, ~~add fully. luM*ta .>Objeca·Gat are 

very ·similar. ta:ftose--nBplatal by _,,~....- DatW~"W&peulates all 

knowledge of laow- W!Ctor5 ·ue-impkmeatt4~8"wfoa ~ta.niDqllemDtatioo of the 

·-Reqaest: 
nanae: ,&ttlfl~. 

size: bstring#S 

1Nflt: 
-ltatul:-DC>tmal 
''rel.di: .. vector#? 
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multi-level memory, storage allocation, and .. utomatic ltOt.age reclamation. The 

MM as$umes full respoGlihility for . iat.plemoatiaa v.ectM ... · Nq processiag power 

n~ to -perform this foaction will l)e,proRdediwidUa the: .. MM. 

The sole· function·· of the PM u to;-., ... ptocedures.·and processel'. 

Unlike conv•tional syate°' the PM ex~:·,flO' ";,,_.ect'tmachiae-laaauage 

code tq: _supporl tlie multi-level memory .s]l'Mea Tho iaWface •tween ·the PM 

and the ·MW .is~- and~l;·.~ .. '<~J.;of invocations, of ;cthe 

vector ~atioas .. TM~ is e&N~ly °"'' ~:""*~ that:dlc! PM must obey: it 

m\ist not create or modify v~tor refer~.;.lf,tWs tu1e••yed, then.tltere .. is 

no way that the PM (~ ther~ ·~ pa:iJIJap.} • il~e .with. the correct 

operation of the MM. 

The PM must cooperate with the MM to ._1.:MM··~,.clet~Jnine<;Wbich 

objects are needed and which can be reclaimed. In particular, at certain times 
, . ' ; ·, ~ ~:· ,;. - ' ~ 

the MM will request the PM to discard itt~Of'·its ··veCtc>F rM~e'JICd' ~except 
references to the rQOt vector, which is permanently accessible). One way for the 

" ,.>~,.,-... -:·· ,·· .: .~-- . . , 

PM to satisfy this request ~ to store its referencef in the M~, in vectors 

accessible from the· ;oot. .. When there ~re no vector ref~rence5 ;;~-~ide the MM, 

then we say. th~ system is in qui~c~.~ '·During "~u~ence,' ~he MM can 
- • • • - , ' • •. ·- ' • - - - ,, • ' - ' - ~- - - { + ' ; ~- -

examine the entire collection of accessible vectofS, witho-.t interference from the 
-_ ';_ , - . -- - , -~: .: : n··· -, . : - . _.,. \: , - , -~ . - . 

PM. (Exactly what the MM does is the subject . of ci.p~~r 6.) The MM 

inf or ms the PM when it is finished. The PM will tlten read back all neede~ data 
~: "' 

from the MM and resume normal. operation. ' 
~- . ~ 

This additional interaction be~ the . PM and the MM is not desirable, 
- -- ' : -,,. .'"' .. ' ' ~ <;..,.. :_;,-; '- -~ • . ..._:. ;": ~ .+, ., _:._;; ~' 

but is probably the best alternative. - The definitiQn of qui~nce is easy to 
- . ~ ,,._·· ' - ~ - ' '. ' -~=' '.' ~ .:- • ~'",J- .... J , "'' '• ··" . - - ' 

understand, and verifying its corr~t implementation $hould be ·straightforward. 

Cooperation between the PM and the ,MM: is ~·=beca~ th~ ~ple~ntation 
' ~ . , . 
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of automatic storage reclamatioa requires that al vectot references be accounted 

for, regardless of where they are in die'~ Tbe-need-for cooperation can be 

eliminated only if weetor refuenca :never-tea. the' MM, :a in an architecture 

proposed by Baker-(2). lea suck• solutian,'some ntebl'must be'pr<#ided-te allow 

the PM to identify particular~-.ecton ·in iti ft4Uest& to' -the MM;- ·-ia Baler's 

proposal, the PM -woukt ·specif,y ofleJ.of_ 11 nuftl'8r of lpeiCial rqisten in'1he MM~ 

The effect i& to introduce a. new "adcltell· tp11et.-" (eil-J register nitnbcrs) used 

instead of refeteooes ·•tside the· MM. · . ~ ""addfeaises" are' -inferior to 

references for a numlJer of teasoos. Par One •·tbiag, _ttte· relationship -between 

addresses and ·objects is- fime.ftryiai;- a&"addtid. ii 'vidid: only as IOng as the 

register is unchanged. In addition, it is impoasible to name ay ··existiag Wject· at 

any tiftle (the problem e1·register :~• ~ Por·tbae reasons, we 

consider:"1Ch··sdlut.ioa»hs ·~ 

OUr system uses multiple proces&ors to implCment multil>le processes~ · This 

secti9n describes our motivation far ~'lnultiple ~ and. explains the 

reasoning behind a number ofrelated-~: (l)to -~'~witch ·p;~- ~n 
~ .. -~ . - - ..;: .- ' - ~ 

secondary storage accesses (page faultS)~ · (l) to- &tOre proce. state vector& in. the 

virtual memory, and (3) to pi-ohibit the pRem~ Of~:~~ -~hile waiWig for 
- .. ::;_ "'_-_ ': ,: . -- . -

a reply from the MM. 
Our goal in using multiple processors is not so much to increa;se the 

capacity of the system, but to reduCe ... the need· t~ "l>Coce&SOr multiple~mg. 
Current- systems .attempt to ~~,the ~tilizatfuo of;~,, (us~ally ~ngle) 
process0r through the use or' morl~tum 1ehetl11ling [27l, ~-te~ ~heduling' is 

- -:~ ~ i ' ~"' ; . ' a technique,_ by which a processor , iS .. : multipleXid amOng a ~all number of 

pr~· (called, the eligible ;:pl"oeesra). whenev~· the currently execUting 
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process must wait (e.g., for disk 1/0), anotb.er ..... process is quickly selected 

for execution. For ma~wn. procasor ._utiliza-,: *- timt· required to -witch 

the processor. from one ~ligib1e J>toce,&f .to. anodaer ~ .. bCl small. The number 

of eligible processes is selected to satisfy 4 two ~ts: (1) There should be 

enough eligible .. proc~ .that at ~ 8QC iln•ara-rQdy.t(> run. (2) There 

should be sufficiently {C:W. eligible ... ~· dlat tliek ~ sets can all be 

contained. in primary storage. Short·teca -,~ .i& ,4istinct from. -1Qng-ter111 

schcdulina. wher~ the prim'!Y gpal • •f·faif ~·.~a of resouroes to 

processes (possibl)f of differ~ J?rioti~). .• +oat·•9l:c·-'~- oper•tes .by 

determining the ~t <>f ~ble pa:~ .,.. &et .•. ~ a~ relatively .. i<>A& 
intervals (on tqe ord.,.. ?f lCXlmij\jsec.cmda). 

If .prQCeS&Ors. ~re ftlativ~y.ine~ve, thee ~Jl(OCeSSOrs can be ~, 

and processor util~ ~mes·· 1-· .impottaat. : ·lnsteae of . using .non.term 

scheduling to multiplu~• Single processor •wa·~· !fiet uof .. eligible .pn>eesse$, we 

can run each eligible process on a separate proc•or .. · PICICm switching .Will ·.still 

be· ~acy t. lUPJQft~-m.in~ . .wa}would,ahrays apeet-the:number 

of active procetSeS to beJarpr thaa the aumber• ef ·prece&lcn.- However, the rate 

of ~process switching will. likely · be'.. less, so .·ithat· · the.. time required · to switch 

~ will be ·less. importaat. 

The performance empbuis in this detsign-is :Jiot·dle: ~ utilization,, but 

the execution speed ofJodlvidual p~. .Improved. eaemion speed is obtained 

by providing additional _procesaor1:-ud .asaigaiag each· process .to a processor for 

longer periods of time. During that time, the p~ocess wm °,~tain greater use of 

its processor, as tbe processoc is not beiaa .lilared.i ·witA,~other.-.processes. In 

addition, the· longer a single prOc:ess occupel a.foOcessor. the more d'tective use it 
- - - <' . "' ~ ~ 

can make of a local cache in the processor;· 
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. Using multiple procason iacreates- the denmacl Oil ·tile MM. If the MM 

bandwidth ii· inadequatet procc:saes wDr1'e ·de1i;N bciCiilie :or memory eontention. 

Adequ&te Ml'f ·baadwidth can·· be prOfiddJ·::llidg · ai. ·tec11Aiqae: • an.IOgoaa tO 

conventional iaterlea•ilg -~ ia 1Setitbr 1.6. '-

Once we abandolt sbort-tenn·~, it no·'lODger ·ibakes much seme· to 

switdt processes when a preeess·attem·~y:s ... (tdaa·p.ge·rautt2). 

O:>mentional systemi preempt a pi0cel$~ wli&r ·it takes a 'page fault so>flrat 

another process can le'ruif·1fhile• ~firlt is ·Wiitilijifer; tie page· to be brOaght 

into ·primaty stotap.·-·~·weare •miftltiediMllarfi.~·e,-. t1l8f ate 

Sigftificalltly · IBster than ·a.rrent ~·· itOiajt'·d!~icd; the delay ·c:ausect 'by 

accessing secondary storage will be mvelt•6G~ttt'tif'Oai~ twi'm ~·
systems. Thus,. S\'ritdiiag 'prociciaeS •• ,.., . ., .... •weufd ;Bot' TeSlllt'in cmuch 

improwelllent ia· procr!•or~-uulizatioa. FwlMi81Df6;-·• 1121·e1ibed· a&We, ·we do 

not dcaaaod that pretessor 11tilizatica.be••'WD'd:t ·,~,tlaiere-iS' 1noneed 

to awitcb 1JrOCesscs on· . ...- fault& . ·~ ,,~, 

'Ihe.-decision to ••toll.proeessw·.on~·,.._·1 in··cet11~- .,..... 

requires. that ail ·infonnatioa needed to· ,.,..t. JINDili•''Slfit'* .t;e· a..nattte in 
primary storage. If pn>C:m· switching>-coald plOdttOe~a .... llult;. thdn •pr°'*5«

utilization could be degraded. More importandy, die .Y•tem ·wOllld have tO' tie 

designed. to handle -pap~ Wts in .lthe' fale. :fault llanJtas:. SWitolaiag ·a pr«essor 

betweea procares ~ writing:ilifomntien·iato·•·old·pn,c. state .ector 

and reading information ·.from tis .- . ....,..., atate ..ctor. Current systems 

1We U5e the t~rm page f.,lt to indkate the ~.~w~e,.~ req~ tot~ MM requir"' 

ccessing ~:~ lf·w•~•....r.l -~ l#G•••'•....r, stol'ag*-*5s•S. we 
would have the "MM notifyJhe _PM when. a reo~.~ ~-~ ~ .. -~ The PM 
would. ttierr fdM;· itie·~ io~-.. ~ ,..,.. ~ t:Rdite eonv.ationat 
$ystems. however, the PM would not have to ""'~ ~~~·~.W ·'""- "AW..,.. •.. 
fault notification would simplJ be .Svice designed to altOw imprevecl performance. Jlegardless 
of that the PM did, the MM would perform tM seco.ndary atorap KCfSI and complete tia. 
requested operation. · 
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avoid these problems by ensuring that the state· vectors of albprocesses (or all 

eligible processes) are."wifed.down" in primary storage, so·tbat accessing a state 

vector can never generate a page fault 

In our system, we do not switch procmes oa: page faults. It is thus possible 

to store process state information in ordinary ot.jecw ia·the; M"' .This• decision 

avoids the ·need for a special medlanism :to proiride· ·wiled"<lowa. storage for 

process state vectors. - In addition, it avoids the aeedAo· dace a limit · on- the 

number of existing proceacs. We. would ·like to :encourage; the use of processes 

wherever natural. In· particular,. we would. like ·to. ellCOUA&p the use of large 

numbers of lollt"lived processes tlutt spend, most <>f ·*6--Uoie waiting for ~me 

event to- occur. Although proces& switdaioa-·-..lGCOl&iaoaiy,;be;;flelayed because 

of secondary -stora11 accale&t the a...,e ,procaatswMchiag _time abould not be 

degraded. as active ·proceu· atate veotan • . ....w~ natutalit• tend to remain in 

primary storage~ 

In summary, we hrfe decided (l) not .ta mtch ·tH'OGelSeS cm page faults 

and (2) ~ store process ·state vectors in vimaal ·lllelllOFJ ·(no "wire~" 

vectors). Given these decisions, it is reasollabla to to one step further and 

disallow preemption of a process .while. it ,. ·waiting for. a· -reply from -,the MM. 

(Any· preemption would be delayed uotil thc:MM has replied.) In effect, all 

requests to· the MM are like .uninterruptihle pr«edwe caUs. This _decision leads 

to a significantly simpler system structure. As.far as the PM is ~rned. there 

is no such thing as a page fault. Some reqwts to the MM ue answered quickly~ 
• 

and some take more time. Interactions between page faults and process 
' - . . 

management are a major source of complexity in-current .,stems. In our system, 

there are no such in~actions.3 
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The disadv•atage of prohibiting pcee.,a. of,~·waitin& for replies 

from the MM is that the W(Jl'St cw preeanftiGa time Meoun· ..... r.~· To aYCiid · 

the need for fast preemption, we will assume tt.t·;aQ 11():; .. ioes -ue ~· 

via separate. controlla1L Dat· isolate ·aRJ sewae...~og-~cmstraints ·from the ,tat of 

the system tlr°"8fl the use of .lUfering.. · 

The area ef inUtrtuptibility:- is a pmbl1m ·ia maat aultiPftJll1Ulllllecl systems. 

Wbe11 a proteas is:<p-eemptecl, its state-. mm,be U11edil0 tbat.it' ca later tie 

renamed. The best·. time to preempt_ a·· protas.·.,il'.·.'1'ilea it is "between~ 

instructions," that -, . .-...theft are no~~ • .,...._. in the~ ad 

the process state. is. :welHlefmed.. ·If a· ·pl'OOllll ii pn11•pted-',.. iastnaction 
• • • . ' '' 4.1..- _ ... ~--· ' ' :-c- . '' --~ 1..... ... --..a eucuuon-a·sm~·;uaa,; ............. ~uW-· .. ,..,.~.toJus•111t•Cu· 

to record the p1ogress of the . ·mtemlJ*d .. ~~ Ill, addition, if the 
• • • -L- .a.. • • .. .L • ·..&.-..-.& ~- ~ 4;'--IDStructJon IO.\'uan;a; C'i'il"""I ~& -- te;m-/:...cu'_,.-. .._.., •.. _. •. 

process should not be preempted until the shared object is releaselL.· l0tbea•ile,. 

the preempting (higltfA' .priori17) procas a&ay;·-.'.waitiag for. ·tlJe; Clbject 1o be 

released, possibly c:maiag~-~. T&a.latterJptabh1a:·.an .occar Jn· cur._ 

&)'Stem& when a·proc• ~te.a ".supeM&or calf'iaatnistiaJI.'·.· : ... 

·If-rapid inw,upt reipofa§oet aen•••#-.. dowiag.~:only 
"between instructiena" • acce~·parilled ~~---·time i...a'. 

reasonable uppat bouad. la oar: ew.. we ..- ·: eanre . a.t ,. all · pftmitPe 

procedures (thole implementmd. dialttJy; .,. ;die ••*Woe) .will tttminate ia a 

reasonably sllort titm. ·Thus,· for :11 1114ef·'.we hae. cter• ae: .eetcw-.,~/WM 
· 3 A simila; positiM has ~: taken by the ~n '(,f 

0

the M.l.T. LISP machine (4). In tha~ 
IMC~ fhe':vinual..., fetola'llid,llO(f~I....-:~,~: .......... 
This decision was bzed on a desire to simplify the impleme~ ~~· the ~ of the. 
virtual memory by all parts of the 5)'Reln. (Routiw that cau9ill'WI ill*" ·a llore · dlftltult 'fO 
use, especially by routines that handle interrupts.} 

4The worst case involves transferring large (e.g., 4K-word) ·Pllfll into primary storage. At a 
transfer rate of two words per microsecond, the page fault service lime could be u high • two 
milliseconds. 
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operation to raise an exception if iaaaffioienLstorap 'is available, rather, than 

waiting until the request can be satisfied. As the ayailability of additional 

storage may depend upon the actions of otllet, proceues, there is no guar1:ntec 

that additional storage will become avaitabfi"*itlibrQy ftxed time. If desired, a 

machine language procedure can be written that ~ CIWlle repeatedly (at 

suitable intervals) until storage become&~~- .. 

There is one essential exception to. <>Ur r~riction th~t all primitive 

procedures terminate in a bounded lengda .# Jhne: the block primitive. The 
' - --- ···,·:. '"-~- L;<_- , •.. ..,. ---~ 

block procedure does not .. return untii. a-· oorrespPading;:nwikeup has been 
. ;: ··-,.(', t"f-

performed by some oth•6lptOceSS, which may in fact iaever~r. Thus; block 

could not be made uninterruptible. Howe\rer, ~ motivation for block is 

explicitly to cause the executing P!'~ tt)"'1"~ pending the occurrence 

of the wakeup; if this were not the ca-,..-9y waiting would be satisfactory. 

Therefore, block·is neee1sarily1tandled as-.~~--· ·· ··· · 

'.' ~ '1· 

4.5 The Processing' Module 

The PM consists of. one cot11ro/~.,,_.., .. (O) r6s' .aine: ·number of 

instruction processors (IPs), conncctecl':ity •""~diJF'-CdinmumcMion·(IPC) 

bus (see. Filure .·8)~ T~ "funetiolrof, •~4P'•=to 1m*l>ref: pNiRduR$ , .. An IP 

performs the computatioa of a siltgle proeas ·(•41·~::tlaat ·0pr0Cds is &aKf· to 

be bound to the IP (a..t. \dee:: 'Yeraa,).:. Al any'1Qne, eath:;JP May be ooand to ·at 

mostOR'e proces&, and each proceSs may.1Jo,~'lo*t ----~IP.· , , ; 

The function of the CP is to manage the execution of multiple :proce&$e5. 

The CP performs scheduling and controls the binding of processes to IPs 

accordingly. To perform scheduling, the CP maintains some database (e.g., a 

priority queue) that contains references to the (state vectors of) processes that 

are unbound and runnable (not terminated, blocked, stopped, or killed). Because 
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Fiaure 8. Processlaa Medak block ........ 

IPC'" .... ; 

_,... CP ....,_,. 

··--·-~· 

-~ IP 115--··-' .. -

to 
,,M)li 

unrunnable processes are not "held onto" by the CP., _ tJipy_ are ~bject _ tq ,being 
~-><. :- 1 ~ ~ ~ ;_, .,. - - - - . .• -

reclaimed should they become inaccessible. A ·stopped or blocked procas can be 
' ' 

made runnable only by perf()t1lling g,_operatjoa oa the- preclll object, whieh can 

happen only_ if ~ ~ Qbject,ja:~_ 

The CP aad tbct- IPI- are. :each: CODllC!Cted to a: separate J>011 -or- the MM. 

Each port accepts request masages oae.- af a .. ;tine; a proce•ot" must- wait for -. 

reply before ~ aaotlaer iequest., l.equats:•bmittW 1o 4iffereat pons- are 

processed concurreattr by the MM;- the<DlriR ef..md of requests on dtfflll't!llt 

poR8 i& i{relevaot. 
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An IP sends requests to.the MM t~ ~rfon;n v~tor o~ratiQnsinvokcd by 

the prOCC$S it is executing. . It also ~ the MM tQ f~ch iastnictiQns and 
1-\, ' ,: - , • ~.; ,.. " 

operands. The CP accesses the ~ • ~l\ipu'¥~ pt~,,state v~tOG and its 

scheduling data base. 

Process creation is implemented by eeQdiq a: Cf'f{l/e meuaae .to .. tile CP over 

the IPC !;>us. . Contained in the ena/' meM•&Ar. a. r~ to a '.Vector that 

contains all information .needed to ~itial~ d-, nc~::.~·::iUJ>OD r~pt of a 

create message, the CP will create~· proeeu,a,t,ate .y~toJ.-.illiP.a~ii, and· return 

the process ref«en~ to.~- req~ting IP. ·. 

Wh,en the CP bi,Qdl a. pr~ ,.to an .. If,. it.,,~ tile .~QCeM J:efer«;nae if> 

t~ IP in a bind .mesfNC., While ~,:~t'•~:W,WSJlf¥1fl!Lto .•. IP,i qoly the 

IP can directly- perfocm ~tio.- °"PQQ:~~:4Ul't!f~ .. "'1:.hu,a.ra~P 
process state ~tors are &Jaar~ .. dae)t,~ ~E~~ :~P"~ .a,t.~ 

time (either, the JP. to ~biola -~ p~ _.,,bog.,,pr,".~:(:2;,if _,.~, pr~ is. 
- ' -. .-~ . -· - ~ -· 1f ' ; .. ,· ' - - '·~ , . - ' ' - - -..- - "' 

unbound). 

The varipus operations on -pr~ ·~"c.ftop.: /di,, 1fgte,·-:JD~ .~keup, 

are performed by_b~(U/i'W a.,~~-'~~;Pr~rdere~··Aa·,tM, 

IPC bus. ,(A pr~,,t.~f~~ is r~y,a r~ • ~fM'~,_.t,tc _y~tor,. 

except with a. differell,t -type~· . TYP6:~iaa ~ jqy<>eatipas. of. pd.Wtive 

pr~ures preven:ta Unpr9J]er .3CC411SSA0. ,.... state ,~a.) .. If the .. tafpt 

process is bound to aa. If,_ $at IP wil,\ accept.*"·: m.-w (by matching the 

process reference) and. perf9fm the indicat.ed c;>petaqon. :!Of tile IP is. buay. and 

unabl~ to buffer the m~ge, it . will nf~ tJ:ie m~ .~ting to the 

r~uesting processor r that it should r*4d'-'' tJte IJlell88C, .·at. ~;-· later time.) 

Otherwise, ao IP will accept the messap, in. w~ ease. it .. wiU. ·t>e. deliy~rcd to tbe 

CP, which will perform the specified oper~ ou the ·proceu.state vector. The 

CP may also ~odify its intemal ~·4&~~.Jor oxample, if the pr~ 
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becomes runnable as the result· of •an or · .,,,.,_,,, then the process "will be 

addedlto the CP's queue of tuiinable ~llis.·· Duri8f the transition between 

being unbound and being bouncf to n· IP, ·tit eP afid the lP Wfti refit# ali 

messages directed at the process,· causing the requests to be retransmitted until 

the transition completes 8ttct 1fte ··..W ·~ ·or; tfllt· proees.· :begins accepting 

messages for the procea. . In this< way,;.~ tiiAd wt' untiild ;ttansitidos appeat 
instantaneous ·to othet ~ ~;re i«iilldoos. 

· ·Unbinding a· process :is 1Jerfonntid·' by 'tire :tp to 1l'bidl ·the-proctiss a ·bOUftd: 

The unbinding is instigated either as the·•ftsift··aft'iii·Olifatloii'petfcitmm:-by; the 

IP (bloat,i·Wait~;nop,u k/ll)~-~the-jrit&s.'tirit1Mt4id;« &etaUiie the CP 

~nipft<t -the·proeciss (byt..._;;._.:Whi'tll 'ofllae-Wf:~ ,,Alter·, ttae :IPl 11a5· 

utkfa~ t1he ptoces5 .ttu .ectof'ap;rbjtilttiJ, 'if·'Will· aotifY ·~i Cli t1W it"· mw· 
wbounct··m ·pr-ocus 'Wlcflt'~ m··•~"ibul.r1'r aDOtllei~·procas~· lf·ttie. 

ptotess-k- l'llftnable (it was ~~th&t ~CP··will ictcfiit tO i~·queue Of 

·. runnable processes. 

. . Eack~.,IP·'·hM a local· ·memoty ,wtial 'it '-*' i*,-,tllie hiterptetatioo of 

mstn1ct~ , nns~tocat:J11emMy··ean·tls6~wJiieil •'•··~~·t0·· rec1Uee··t11e rate 
of miuests w-·tlte·MM:· Por·edmpte, wild:• ptc;tej1·9·1'oelltft0 an'IP,.:tlle··IP 

emf i'ead•.tlle proceS-sta'te ftom·tfll!'~-sta~iatDiti~IOeal· ntemol'f~ · 1n 

addition, it can· read· die· top eklnetla.::<bf'1ie''~ .a· iftto "ifS·-toeat 

memoty, . Heiding fwdter m.·' to 1be ·11reSl" ·0-'lfact; object ·-· me stack 

changes · greatly in Site. lt calt 1lfio ·~ · eliB:Dll- Of inuiluftl&le objects 

(partkululy ~}. A pollitile" Oljilmatiod~ftltilhil';caetle is mown ~-1n 
Figure 9. The Cache Would"'be •ild\ttetyk..,.. dtt;ttadl_ instrUctiOJffeteh. 

The local · meiitOry of ·am, IP 'is iDteaded · -~' a1 aa ;Oplm•katidn; ·its ·ase mast 
not affect 1he selnaiitics m the mae&kie' taapale.";· Oift'ibities U.Uld 'arise 1n the 

case of sharC'd, mutable objetts, ar licte'~- peltiaiecFoad1: lOCal topy of an 
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object would not be visible to other IPs. Thus, we restrict the objects that may 

be wholly or partially copied into an IP's local memory to immutable objects 

(e.g., procedures), objects that ate not shared (e.g., the evaluation stack), and 

objects whose sharing is specially-controlled (e.g., the process. state vector). 

When a process is unbound, the IP must write the process state back into 

the process state vector in the MM. It also must update the process stack in the 

MM by writing the "stack pointer" and all (chanpd) stack elements back into 

the corresponding objects in the MM. &Cached conteoti of immutable objects 

can be retained, since all processes operate in the same address space. 

When quiescence is established, the process state and the stack contents 

must be written into the MM, as described above. However, in addition, all IP 

caches must be cleared, so that the IP contains no references. During 

quiescence, the MM may reclaim some objects. Any references to a reclaimed 

object remaining in an IP cache would then be invalid. If the reclaimed object is 

la~er reused (a new object is created whose reference ia identical to that of the 

reclaimed object), an IP could erroneously use old information in its cache to 

perform fetch operations on the new object. For tu reason, all cache entries 

should be cleared at quiescence. 

Figure 9. IP cache of lmmutule object eleaents. 

object element lnclex 

vector#?! 0 
vector#?l 1 
vector#72 0 

contents 

bstring#.n 
bstriaa#m 
Yeetor#?3 
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5. The Implementation of Object R......_ 

Th.e next three chapters are concerned with the. itnplementa~,n of storage 
' - . "'" .. 

objects. A storage object ~ on.e .,wh~ rept'*1tation RA'9t•. ~o~p,ae in addition 

to that provided by the object rd"ence iQelf. , l'1 ou.r .~ijied snt~~ vec.to~ 

are storage objecU, .. wbeteas ~trinp are noi~ For .COD~QCC. we will use . the 
. - ~ . , . - -: ' - . - ' ~ . . . - : - -

term object in t)J~ cJ)apien t<> mean ~.d>n ... 
; - . ~--· ~~·· ~- '-~ "-~,. :-. ,. -, ',, - ,:;-

We begin in thjs c~pter b~ ,MPk>fiq the ~. il$uea involved in 

implementing objects acce&ed via .refer~ ... ~· acxt .chapterr .. discUS&eS the 
~ - ~ ' . - - . -· . ~ '. "'" ~ - --- . 

implementation °'f a'1tomatic s .. e ~· ~-.. 1 ·c!eak· Jrith stor• 
alloca~on. . , . . 

5.1 ·The Problem 

When an operatiOR •sudl as:vector cNtlte itealled tt> aeate a new· object, it 

aHocates storage to hold .the repreaeatatieW lJf•Ute·objletj'initlalUes the Storage, 

and .. retuma- 1Ul'.:object• ref~.' · 'llds~dlelfldtlt 1ifi•·fi1etf>leftgt11 .... : string· that 

in some manner must identify the newly-created object so that when the 

reference is subsequently passed to other operations, it will be poslible 'to locate 

the representajion of .the Qbject. ~ ~~ Qf ;~-t- ref.-,.-s is a 

major des,ign problem. 

"(he problem.~ .. ~~ted by.~ .. U,Se.J~f. J!. multi:Jeyti memerY system. At 

any par~ul~ tim~ the object .·.f~pr~nUltio~ ,Pl&J .. ~~ ;jA ~,1or secondai;y 

s.torage. .or ,.both. Ho\Ve.ver, ~ object ~aa ~q>ef3~~'~ o.nl.Y ;while. it '.resides 

in primary storage. W,hen an e>pei:ation ~~,pcrf9rmqLon, .. a11: .ol?-Ject,. an qpject 

reference is passed to the operation. Froo;L, that ~·the •acl,iine. must. be 
' . •, ,.: ,·. . '· - - ' 

able to determine whether or not the object currently resides in primary storage. 
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If so, it must determine whero U.. object_ nlidec iJa, prjmlq. JtOraF; so tbat it 

can perform the operation. Otherwise, it must determine -where in secondary 
- . ' 

storage the:·object·--~ sO that it cu·c0py tliefiob~'fllto~Primaty storage. 

· It is thUs '~ to be aOle to map from· Ob~- refetences to priillacy 
and ·secondary storage addresses. ThiS pt~-. :.siml&r :t0 -lhc)$e faced by 

·conventional virtua1--·mem0ry ·systems~ .;~:-fiij.Jb(''difr~· ir that we are 

providing a single, unstructuie<f 11Ml*~ .. -~"of' d'-~ large numbet 

of (mostly) small objects. Mott: eoltYint~af \1ifua1 ·ltemdty sjst'mis provide 

relatively mall;, strisCtu~ amfress :~'"-~itiq-:OfM.tr~lflatge, tt1~tf s~ 

pages: As ·we '5hall see; oar iin~ ~· atilitUcli 'greater. 
Because the primitive operation& are so frequently performed,-mapping-fl'om 

an object reference to its primary storage location must be f~~_!'+Jt .. ~ ~ 

that _the mapping time be about the same as (and hopefully faster than) the 

actual pri~y ~• JlCqC.11-,·tiDIC-:.-,-Othel;ielpQrl~~ ant' the size 

of -~ data,._..,_ ~ to.,_jmplt_.t:•--......_ ~- :the effect& .of-, ttae 

rderenc:e .r~Wtiop}ac .. •Mitw.;.-«JMR•.--ttfJl•·dcMatioo• - -
,·:;: 

5.2 Our Solution 

After comparing ..noua-- ..... or ~ ob}eCt referenees 
(reviewed in Section S.S), based on our design goal1 aad tiaSie' asloinptions{we 
decided that abject· ~-~-Coiimr~·f;liyifclf~ot' dle;·object 

representation· in ·~ary storage~ Wi';liRibe'1f&it aabot.JjeCt rtPiesenta&n 
eoosists of 'i ~ngl~ ~' blOci:< cif;SUrilt. '11' ~--*y, -ttiis: sidrale c8n 
contain ·references' - to -other ObjeOts, scr ncf ~! ts 1c1t~ (ThiS Internal 
struchlring would ~- tr&llspatent ~10-ctii u.tr.) ,- ' 
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When a new object is creat~ 1pace is allocated for the objec. t in secondary 
. -

storage. This ~ndary storap area is used: to ~· ~ :Db~t .. represeotatiol:i 

whenever the object is ru>t reJident in prilnary stQl:ap-. The aQ4reu .. of this 

storage is used as the data part .of~ object .refetence,:1rqicb is retprne<i: as t~ 

result of the create operation. 

An assc>eiative memory is used to ~ fro~;~ sccopdary s~ag~ address 

of an object in primar,y . storage to its pr~y st~ add,J:ess. When .. , an 

operation is.~rforme:d 011 an ob~t,,~.~~~•·ac¥1~~ ()~the o~;et 

is obtained .from t1te .referea,ee .. .-. if,.~c;q ~ill -0.~i~tiye mCmQry •. lf . • - . ··,.- ' "' ' . '·.'<.,, ,. '·· ~ · .... " .. - . ~;.,,. -· .. ·- .. - . ,. 

th~re is no Dµ1!ching a~'tiv,e me~ ea,tq, :~ tlte .~tis copied. froJJl 

secondary storage to primary storage and an entry is added to the associative. 

memory. (The secondary storage address is already available, so no additional 

mapping is needed.) Otherwise, the primaty~iiltttifa~tw ;ttii.;61iject is 

obtained from the associatiye memory entry. 
-· .. ~k;.:_,' 

The associative mempry performs a functipn similar to a page map . in a 

conventiQnal virtual ~ry s;st~. ·~v~,·;·~vea~tpage map contains 
' .- _··: :-~ ·, ' - . ; - --, - <· ',~;. -,.'.' _., ---"'~J! : '·: - - \ 

en.tries for all addressable pages, whether in primary qr secon<htry storage. · · O!Jr 
,-, - ., - "' ·:-. - --,;-)· ~-·~·-~£~} ... ~t::·~1-·~~~~r--~ ~t1~ .. ·f" .. _,_ ~·''.-~ « - ,~ 

associative memory contains entries only· for objects th.a~ ar;e in primary stQrage . 
. :· . -· - . -~ '_. ·-~ .-; _, ~- ~-~;;-::t-!1.:~~:;--~---.~.t- ·,:.Lf:~;:,~: \~~.:.r'f.:, :·~:i .. _;,: ; "~"·'. : 

Nevertheless, because the aver•e object size is likely tQ. be quite small (perhaps 
. -·:· ·-~-·" :, ': ~ ·: , :.·· __ . _,' ·.:·_1.---t-r~·1~·_7_! ""·~ ~~-~··l -~;~~. ·~t ~ ,··-:~. l • 

only four words), the number of entries in the assoc~tive' mem()ry __ will be quite 
_ .' • : _ - • - l- •• : :s :'.';r~~--.::1: =-:'-;_~~- .. ::=,:~,_,_~'iJ-,'; ~- -~ .. ·~~ ._,_ -... ,-.7:·._ · 

large. If each entry occupies two words, then the associative memory could be 
~ - ~ ' "· . . 

- .F ': -~; , ,. 

one-half as large as the primary storage itself. . ~ - . , '":-

Mari y conventional ·virtual ~emory s,Stems provi~e address spaces that are 
' • • • -~ ,. ,'.·, _ .• -· -~ o • ·'.:i:~.:·U~.'!::..~:· .L-J. ~ - _ .. 

either sufficiently small or sufficiently structured so that directly indexed tables 
• ~ • _; .-1 ... ~~ ¢ _:·~ ..;,,.. .. ,;·;~-#..~ _7·:·;-- c;;E·_;:-·,,;;·"*:.'fd:~ot' -~~if"';:~~~::-~:) .. >,_:.~~·};/.".~<-~,' :~~~ ,' 

can be used. For example, the Multics legmeoted virtual memory-[S] is organized 
.. ,,. . ...,, ·--- . - ~·-

so that each a~di:~b14~.~,ll,Cjd~tjf1~~<t\>J!"~ ~::il).t~.,a ~pient 

number and a page number within the segment. The paae table entry for a page 
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can be found by using the segment munbei a· an index into the descriptor 

segment to obtain a . page table, then using the'" P*ae. numW' • an index into the 

page table· tO obtaift the page table entry.I -"11m SOiution works &ecause the 

number of segments used by any 0ne process is'·~ small, and· the nuihber 

of pages in each segment is also fairly small. 

·Our virtual address space, on ·die otbet band- is very · 1arge and without 

internal structure. ThUs, it Wo\ild not be , piactical to use any form of 

directly-indexed page map. Instead; wt·tmlst 0 
.. '•·ttue llSOciative memory~ The 

practicatity or our ·schelne depends up6a thle teuibilitj~orbutldirtg ah assoclative 

memory that peffOrml the desired Dtappibl~ 'Pwt' ·~ · ddS · iilUe in'· the next 

section.· 

Our associative memory contains oo~· entry for .. ~Ii Object currently 

residing · in l>rimary- ·storage. Each entry ~taios"· ·ttae~-Prunafy a8d ~ary. 
- .- -· - - ~ ~ . - ~ - :-~,-~:··. - ~·-~~T --'~;.£' !_-·_: -~ - :; -~ . - <_ 

storage addresses · of the object, plus a. small amc>unt of addit~nal control 

information.· Each ~try tit~ occupies ~l>Pro~teiy two·:;,;cb~ 1 The size of~ 
-- ... ' . --

associative. memory should appromDate the averaie number of objects that cao 
', ~ ? " - - --; _- ; . ~ - .- . ... - : .· - -: -'1-.1 - • .o· ·-- ! .' ~-- < '... - _' ~ ~_: . -- ·. ~ ·-; ' -

fit in primary storage. For a primary storage of 1 million words and an average 

objeet size .. of. 4 w~ds, the; ~iative memory wffi·L~~ :i56K. ~ntries and 
'.-· . - . ' .. - . 

occupy S 12K words of additional storage. 

Building a full associative memOry of this size is impraCticai. Luckily, it is 

not necessary. ~,, .. ~ of OU; ~~ve· :~. can be,, closely 

approximated by a set associative .memorJ [9}, which is ID~'easi« to build. 
'. . . ~ . '· . ~' .·. c::; v- -. 
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A set associative. ~mory with NS ~"is 'lopcally equiv;dlrht 1to • S full 

associative memories, each containing N entries ·(lee·Pigure 10). -'flte .. domain of 

key .. values. (ill .our case, secoodary -•toraae add,....) . .a partitionen .mto. S .sets by 

a. hashing fuJ!c~ion h_(k) that maps._~ key ,ifi,to .a .. ~! nu,"!1#, ~a~ging. from pt~ 

S-1. ·J?~h a~ja~~~,~~fllo~y A~~·h~ds ~ ~~,~~~~~~e~ ~ash. to i. To 
search for an entry given. a key k, only AMll(1'} need be searched. Searc~i.?g a. 

set associative memory in unit time thus requires only N comparisons, instead of 
' '~: . _' ' ~ .·.~·· > :. ~-,:-"'"-!{. ;·;' );·: -- ~. ~': 

NS for a full associative memory of the. same size. . 
' ' ,. :· _' - >". - ·<. ~ 'f'1; '"!< 

A set associative memory can be implemented using. N ordin~ry random 
'-,• - - --:~ : : ; --~ - i ·_:: . ~ " '',,. 

access memories (Rm&), each containing S entries, pbas N, a,ssocialec:l controllers 

(see Figure 11). Ap .entry with key k. will be stored in a ~,at.index h( le). 
' . . .. ·- ,, ' ' -- ' ~ . ' 

To search for an entry ~ith key k, ~a~h: contr,oller reads,,!>!e ~ntry at index h(k) 
. ' . . . , ' ,_ ,,. ~ .. a,· ; , . • 

from its associated RAM and compares its key with ~e given key. If the keys 
. - '. . 'i ;·. :_: :.·' .. : ,·· i .. ' ' 

match, then the entry is returneq to the tnafter controller; the matching entry 
" ~-- 1 ,-~-" _.-, j~ ~i. :; : ""f:'· -~ - ·. , .. ~- .. 

may be updated by subsequeiit opera~n&:, T~.adyJllltlle of the set associative_ 
. - " .. ,-_-_'. '-. ·, ~-~-:~_i -~-~·-<: .::.,f1 ' - .' '. - ·. . 
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Figure 11. Set ..... lJe·......,•Jl••tlt...,, 

Master 
Control 

RAM1 

, __ ., - _- _:. ·- .. ~ . ;; ' -

~ganization . is that a fast searCh . can be Perforilaed, yei ~;amount of speci~ 
purpose 1ogic.:and.ibe ~t ri~1~f~•1';iS'~alf'~~ to·N, the-

set size . 

. . the corresponding disadvan.":of ~·set~~- orpni;,.tiOn· is that at 
most N keys from any particular-~~:-~'~t};ec(ia.:the ~t~ative.memory 
at ariy one. time. w~ -~ ne\¥ ~w·1s ~to.the'~ ~ti\te ~ry, if 

• - ... -- ; :!>;'• ,,,_ • - - -- : - ,.- - <. • : .-· .., - : "'.,_ - - • - • ._ ,_ ),. ~· - • 

the c0rresponding ~\f; is. full, then· olleJ~ tile en_ttra i&·.AM~-must be remoftd 

·to __ m~ke rOOni:·ror the new entry.· tn ~ -- ir:~·tf.~~ :N objects rrom one 

set a~e "in active use/then -~ set: ~tive mip w14 Prod~· inore misses (page 

faults) th~n a fully associ&rlve 'mapof ~~·If&· ;JB MI. ' : : 

. The' e~pected m~ r~~~-- ·,1·r~ Of tii;~t:Siie,;N: A"larger N wilt 
reduce the miss rate, b\lf~ ~- ~-r~=eci.it or"'thi'aaisoCiative memory. 
Smith (31] bas shown that if the hashing fwactioa is aufficieotly raadom,1 ·then 

good (average) performance can be obtained with a small &et size. In particular, 



• 

- 67 -
-

Smith shows that for reasonably large, ~4'tive memories using LRU 

replacement within each set, the set associative.~ ~ rate will be greater 

than the full associative me~ry miA ra~CL~ ~ J~tot qf~,only N/(N-1)~. A set 

associative memory with a set size.pf.J6 w~:~~JJ~r,fgr~ ('.>nlY about 7% 

worse tluµi a fajl a~iatiye memory. We clo1Jbt lQt a set sW: of greaier than 
~'f I : ' -• • " - ," ' k - " • ; • '• , 

l~ would ever .be p~ed. 

~umfu..g ;~,~set siie .. of 16, a ,2S6K eatq ~t·~~ec,;memory would .. be 
> .,4~•C_ . •• ~;· • -'"~· ~'~~~-~.- •• ,,.,,_,, ·~ 

cons_truct~d out Qf. ~ 6, J.J\M&, }~ac~ -~~ioi~J.~ ea~ of, a1>pr1»imatel)' ~ 

b'~ ~~ch •. ~ 16K ~ 4 Rit ~)', c,1\i~ ~1)~.,- ~~ be required f~ 

each RAM. Only .16_~:9'~~:•~.P~;:,~~;:~~ ·~~#,-~ptetp.,be 
integrated on the RAM chips. Thus, the. bulk of the set -associative memory 

could be constructed uaing 2S6 identical chips. · 1-" · 

Because of the large amount of memorr required to implement the 

associ~tl~' memory, we would b:peet 'it to:'~ ·~ucted' Usi~ memory 

technology similar to that used for the "prilnaiy swlle.'' If sO, . the~' 1 ~he "t~kup 
tinie will be ap~roximately &iual' to the i>ti~ ~ ~~- tllne, resulting in a 

substantiar'overhead' on ~ch ~- to 'P,.i~y ~ior~ge. :~~~;, 'thiS ·situation i~' 
really ~o diff~rent than in ConventiOnal virtiiatniemorY .~~~ms where p~ge tables 

are stored in primary storage, and the solution is the~~~~ a fast translation 

lookaside buffer (TLB) [30( A TLB ic Sim~y a. siria1,~(a$t :a~aative memory 
~' ·_ - - - ' - ' _, ; ·-:-~- ;~7 .--~ . -. .,,- .,: ~~-1 ::,·; - -, '.' ~-. 

used as a cache to speed up repeated accesses· tO recently Used page map entries. 

It would be implemented usi~·fa~te; (i.e.; more exi>ensiVe) technology than. the 
. _j ' 

main associative memory, and eould ·also be sef Usdeiative. Of ~urse, our TLB 
• ' • _ ~ C, ~~ "t ' ·'- ~ ~ 

m~st be larger than a conventional TtB. to Ol>iaia the same hit rate. Because we 

2A r~dom· ~hina.f~ f~ ~·rf,:,~ .w,._ ~-~'obtained by 
exclusive-oring the low-order and higlH>rder bib of the secOndary storage iaddress together. 
Because <>f the storage allocation method med (~Jrl'QlllllfCirl t)i..,_.-~-eithk die 
low-order or high-order ·bits would probably not be .Wadently randOm. 
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are mapping smaller objects· (compared to coavtntional pages), Our working sets 

will contain more element&. Ho\¥ many more ... ~upOll pr0gram behavior, 

but would be at mest a factoiof lOO;(the ratiO of.di •p.p-·~). : 
In summary, We cottcltldt· that-an associau.e· ~'6f sOfficlent size ilnd 

speed can· be built· at an acceptable :COit. · · Ttie ~·
0

·~ ·would· be 

expensive, but only because it is large. Its cost could tte~..:6e-~f'·that of die 

primary storagC, deptndllig ·upon the avtrage ob~' sfa~ ~ 116wrrier; td some 

extent, the large associative' meltlory collld ... ,,., for. ilitt,•' ~',we woofd ·~xpect 
the swapping of ·sniall o~jects to ·result ·ui· JilOre 'stt.Ctivi ise of ptiittary stot.ge, 
as only needed data 'Will be swappecfin, ritl.«1tiai'1tlrore)~~i 1 ''~,, 

5.4 Evaluation 

The primary advantage of our method. of ~ting .ob~ references is 
- .. • ~ •• -.~' ~ - - "' - - ~ - - y' - ' 

that the mapping from an object reference to the current ph~cal.location of the. 
; - ·- . . ~- .. ~ ' ~ ~: ' - .- .-

object is. fast. The mapping is performed by a"siragle ~h, ~r ~.}•ssocia~ve 

memory. .As described in the previous. section, the1. a~ti~ ~ry . can -~ 
- . - " ... ;-,_. ~ . -. ;-~ ; ! - ·' - .,.,. .. £ ~ • • • ' - • ;.. ' 

implemented so that this search can be performed in a time no greater than Jhe 
. -_ - . - . : , . ~ - ; ~ ;. . ' : - . " -

primary storage access time. 

One important factor in the mapping speed is th;.J _the mapping da~. base is 
- - - ·::: - ' _,- . _- _... _.;-:: ' ,, -" 

small enough to . be stored entirely in fast, memory. It can -~ stored in fast 
;'. • -·-_ ·-)= ,. -~."':-<-:·-_._;.··1> ~~~--:~:~;. ·-·- ~:--_._~:? ·; _____ ,,. ~ · .. 

memory because it contains entries only for Qbjects tha~ · cu~rep.tly. reside in 
.• ' ~- '- - ; .' ~ - ~ - . - : - '"':" - .;- ti·. -

primary storage. If the map Contained entries f0r every object in the system, 
- _. - - ·- " < - _· ~ ~ • : ~ 

then, because of the small ~xpect~ averap object size, the map would be 
v "< • - ,,. 

comparable in size to the entire secondary storage. Sucb a..~map, in addition 

to representing a large· storage overhead,··~ aJso im~'Jrellter delays beCause 
- - . .-_ - ' --- "- . . 

-
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Another advantage is that object references caa :be compact. A reference 

si~ of 32 bits could provide 5 type»codt ·bitajaml 27·~ bi~ suppc>rting 

256M words of secondary &t0f8F (-w1•iag, Qbjrtt aim daat are multiples of 2 

words). Because of the sntaU expected oerage olt.jeet me, tlse, reference sizec,will 

be 'Close to the theoretical minimum. 

Our method aJso bu, disadvantages. Oae di&advaatap already -mentioned is 

that its speed is obtained · using a .costly UIOCia'IWe > Dlemoiy. · Another 

disadvantage is -that · identi{Jing. objects by .their.· set:oadUJ atorage addresses: 
' 

makes it difficult to move objects in secondary storage.c 

The ability to- relocate aA objeet ia· ~ry storage is. uscfvl in the 

implementation of secondary jtorap :alloeati~- WhenCTer ·one attempts to 

allocate coatiguous -Woeks qi. stetqe of ..... 41'•nt siul, f1om a 6inglQ. area, 

fragmentation can occur. Fragmentation occurs when a requeat,.for 'stQrage ;can 

not be satisfied, even though there is enough free storage available, because the 

free storage consists only of fragments filatl. ~~'than'·~·-desited.;siie: 
Fragmentation thus results in reduced utilization of the_ storage •rea.. 

... 
Fragmentation can be overcome if the allocated blocks can be moved, so that 

free blocks can be co~ to form laiger blocks. 

Because we identify objects by, their ~ &Ulfqe addresses. moving Jtn 

object in sec<>nfJ~ty1 storag~.requires.eitller CU d\at • •~ell9e8 te>·~-~ject,be 

chang~ to reflect the new ~ry. lt"f•--,~:-~ (2), ,that informatiQR 

about the.· move be recorded .SC) that. ~"-t .... ,.w that·~ will -~ 

redirected. to the new &eCOlldary. storqe l®adon. ~- . 

" ::_ 

30ne must also be sure that any new objects allocated in the old l~tion will be di$tinguishable 
from the old objeet. . . . ' . .. . . . 
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Finding all r~ to an objeet it· difill*lt. llt general, it reqaires a 

complete ·ICall ef UacLwirtual ~ (limilllr. to '.that. -pedcnaed clwifll· ·garba&e 

collection). Such a scaa woakt be quite. t'1•• Cb•mdng. · ·n. .. NClifection, method 

is ifttendetl to be uaed • a twmporary --·~·.Jtof 6e,ufcaeaees can :1)e 

converted, either by a garbage collection or bf ··coineriioa ·'11pOB me. · · (In . this· 

latter case, ret"ert:ta ...... wc:Mld he: mat ta . ....,._. that aB ·references had 

been converted.) However., the.oveme.I of redBectiea,·Wilt in time and: space, 

is likely to outweigh' any beaefit _in iacnilled< . .._.ary·L*>nlge 11tilization 

obtained by moving objects.. 

Thus, our· decision ·to' icleatify· ottjec'5 .by Mir, ·llCODduy storage addresses 

will likely result ia·\iciecreased'·'aoOeclq·:,....,..1.wcliatibot' iteca11e ~ot 

fngmeatation. Tbt -. . of llOtiflt lllotatiaif aid ft<J · n =ntatioll · is· disa•eCf 

fvrther in· Chaptcs 1. 

53.1 Capability Systems 

A number of other mechanisms llate· ..... pr~;Gr" implemeftt«t:that 

coukt·be·used to ~objectS;411.•·;.-.. ·::Ma1t14·tliele:·~ 

were clesigeed f« · "** · 9llfUig ~ · fdtt~"' fldllttOIJiag 1'CCa&· to 

A!SOUrbes{aG]:··Maoy capatJility-systeilil'·.are:liWaJflr1o.,. ia·ttiaf,~lities ate 

Used· like references • · a Rle8os of. 1u akag ~jeett.•· · Tli pridlatY' ftHactienal 

difference . is that most capability ~\D>;•.•...., ·18 ~ the a!J/ff!fl' 
deletion of objects, via explicit invocations of da«e opeaaUom, • o(4JOSed to our 

aut~tic deletion o{objects pm~~ by~· .~·~dterUa·o\J~.~ 
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inaccessible. Another difference is that most capability systems are designed 

under the assumption that objects are either ·1arge:;Ee.g., iel*lltS') or special (e.g., 

l/0 devices); tltus, they can :toltfate a l8fgfir··e~ per object tltaff'we can. 

One such system is the capability ;aMiiileciate pmposect by- Fabry (l4}. In 

his system, each object i1 idutified :by·· a flftitw: idmtf/Nr • (UID), ·. which is a 

fixed length bit string gu81"ailteed to be diffefent:iben;tlle mo:or any previously 

created- object. (UIDs could be obtau.d• ffom;'a ·· Mlft·· resOhrtion• ·clock or an 

object·creatiort• couttltr that .is never reset.} 

Two mapping tables are uled to ~t "this· method. One table 

contains an entry fer every mating objeet; .• entry-· «mtains '{at luSt) the 

cu.rrent secondary storap·1lddreu of:~~;· ~· odaet"tabie;is·Similar.to our 

aaoeiative memory: it contain :an entry ·f.r:·riefY· objeet alrrently in primary 

storage; the entry coataim -(at··~ lhec.cittrat ;j'Jlibiar)r ':tlOtager: llddress, of ;the 

object.:;.The primary stm'•"map·is-~ 08 eadt-ieferertee to ·an objett. If 

110 entry is found; the .etondary' ltOnge mav?ll ~ t\i l~ the; Object in' 

secondary -storage:. s : ' ·. · 

The primary· motivation for identifying otrjects;· ·by UIDs is to support 

explicit object deletion. When can object ii:~,, att;enfttes .f0r the otiject ate 

removed from the mapt. If the object-scw~flY ~ (via a dangling 

reference), no entry will be found in either map (because UIDs are neverl'e\ised): 

The reference is thus identified as dangling; an exception can be raised. 

4This use of capabilities is called capability based addressing by Fabry U4i Capabilities usually 
also contain rights that control specific kinds of access. e.g.. read access and write access. Such 
rights could easily be added to our references. · 
~Fabry suggests that the primary storage map also contain secondary storage map entries for 

objects recently removed from primary storage. The idea is to reduce the number of acces..~ to 
the secondary storage map, which would be &tored entirely in secondary storage. 
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Another advantage is that UIDs are djstiact · froaa seeondary storage. 

addr~ _allowiM complet• fieedom. • JQoWag .ob-ti Jilt ~ary storage ·to.~ 

com~ fragmentatioa,... .ota.i ac1y..,_ d: .. &WdJad~ .. ~ed . by the 

maps, e.g., · impleJQe~ grcwiq Qt.~ obje$ts, '88 ,j:.e proYidecl·. in our 

system .using explicit indira;tiOA (•ob~ ~·•::tef.efence·::to.aaother). 

In our S)1$tem, howe¥ery iadirection ~. bo used. C)Bly. where .needed. 

. The UID -~ s1'afes 9W'~Asa«Jya-., of ..... r11rge primary storage 

map that must be consulted on every ~-to &llt 9'>.MAt .la,lf.Wi-.. ~. 

the UID.meth94.rCQµirc;f :a i...~.Mqrap~.~~:an entry for - . ,;;; __ ,. -

every ob~t in the system. . 1f objec_._. ~ ~ a.n•t1luatou u we predict, 

then this.secooda~y ·storage, map ~,,9GfMPJ1 •.-tipj(ic .. ·~-~~.; 2j%). 
. . J 

of the ~ndar¥ itorage. Mole jmpor.W,,.~tiM_, tbe ~ary stQr,..e 

map could ~ly doul?Je.the,J)um~ of-~~--.--'5.:r. 
Fabry discµ~ a au8*1. ef . .._ MOabilitJ,,SJftMIL .·MMJ. of these.~ 

not support ()bject.;fefer_.~ia ~;·full;...-alia~;1;0tbt$ 1.ISC!LhtO·fo,_ ef· 

capabilities, one a special form used only for capabilities in prinlM)' ·•torap;-with. 

the .goal of speeding up.access.,or reckidot ·dae ll\llllber flfr -*~ 1tc). the plimary 

storage map. : lky;:UIMl ·QUI ..... ~ .......-y~ja :#llqUUielr wt, .wt:· do ftOt 

~~ that JJle aAd~tqvvlaead -of ccpa~ ~ ~'"~ qf .•l>"bilities 

is ;.tified. . . . . •: .,· . ! • 
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s.s.2 Paged ·systems · 

. Like our system, ,IJlOlt· capability 511tems/ tr.mer iadmdual .objects between 

primary and secondary . stoiage. Tile .-..nYet \11& exemplified by . Bishop's 

ORSLA [7], is to transfer fixed-size pages. In ORSLA, an object reference 

contains the address of the representation of the object in a large, linear virtual 

address space. Bishop recommends a size of at leut~i48;\lf~cis ;f~r this'virtuai· 

address space. 

The virtual ad~ress space is, impleme11ted using~ .~sed~.mul!i-level me~ory, 

similar to conve~t~~nal virtual memory s~• . A : p:j~ary •.te?~~~~ .. map, ~~P5. 

virtual page numbers into primary . storag~ page 11um~ f~r e~h rirtu~.~ page 
' . ~ - • ·.. ···- ,~·:_, k~ .... 'it -'': , ~~:,;,- ;.: _;. -_:, ,-,!' ,:tc'' -.! 

currently in primary storage. . A ~--· &tor• ~"1. ~IJI v~r~al ;eage 
~. • ' ;- "--r,_,,;..._. • ~-~ , _, -~.;;: J~ -·-~-- .-; • ·-. ' ., 

numbers to seeondary stor1lse addres&ea.6 The main.difference. between,OR.Sl,,~'s. 
.• ' -: >." ,_.':·--~."~-r ;. . ~-~, _- , ·::;:~--:;.~ ----~···,;~:_::;f'.~ ff'_}~~~".-: id ;-- ~- · -~ ,'· 

virtual memory and a conventional virtual memory is that ORSi,,Ai J?~()vides, a 
- J .~- ! . ; .~_', :- J :. - . 

single, very large virtual address space. Thus, the. primary ttorage map is 
, • • 'O ,. ~; r ,';?,'' ;,_-~-=-~1-·<·'!i··>·:: .. / .-~ ;.. ,<; 

associative, rather than. directly indexed. ~'because of ~he large page .size 

(e.g., 512 words), the -pri~ary a~d second;.;; storap ~ps ';epresent a rel~ti~ely 
• ' • ' .- • .:'4- :';- j :. . _ .. _; ·-; ~- .· ,_ -' + ' • ' 1-

small storage overhead. 
\-· 

As .we explained in C~pter 1, a_ system 1hat . transf~rs fixed size pages 
' . - .. 7 . . " ' ·- ,~-" ._,;·~ !---f: :"·;~.:~;.i'lf;:·i ,-{;: ._; ··~-. ~ . ~ '-·l .,,'; . 

between primary and secondary storage must . somehoW- arran$~ things so that 
.. - '- ~, :~·-· ~;:~:.!·~ ·~-~~f, '""'.':r~~ ...... ~ "·:,~.·':. .. i.l" ... _,:;::"< :: ;· .,!.1 ._: 

each page contains a reasonable amount of related informa.tiQn. Otherwise, 
' J• ••• ~ •' • .' .. ;- -~r { >'.' .:~ :'..·<~~ j~'~.-:-~t~I~~,., .. ;· '~ , : .: ·_.: • ~._ .. ~""'< - '-_,·."• ." 

primary storage utilization will be px>r' extra secondary storage &cce5$e5 will be 
~ .. • ~f .-.. .,..~. 4 •. .. _ ··. ,,,< -·,,,. .. ·_:,;_~~·,_ :,..;c: -:~:_·;.~: <, - ;;···-···· .. ,t:-':_ ~:·:- ·'·... . 

needed, and secondary storage band:width ~jll be wasted. ORSLA exploits spatial 
•• - - .. ;f • ·• ~"- ;'.S:':? :.t~tJi.':. ~ -~: ~ -.' ~:. ~ ~:: f £{;. :_:; :, -·· ;_; :- , , -

locality by allocating related ··objects in contiguous areas in the virtual address. 
_ .. ..z:; :..:! -,;_-:...:··_.1 "' .. $ ~_ .. :,.\i-~ _-;~:;t:4lG'~--::: \ :!· -",._ .. --;:}.~'-~\:: -· ~:; . ~t ~:_.:-~ 

~~--~-----........,;.......__...,,..__ 

:6-A: seeQJ\darf $tor-..· JIJ&p/i& Qlltded' 10· allow:thei.:faler 1Qii.lllOP"1.wb1ual 'Storage without 
allocating any corresponding ph15ical storage. Bishop u.. dli& feature to implement 
·unbounded. objects, e.g., stack&. A Secondary storage IMP can also be used to turn a non-linear 
secondary storage address space (one with "holes1 into a linear virtual .c:ldre55 space. 
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space and by using· a compacting single-area garbage ~tor· .N*. that even 

though ORSLA is paged, storage allocation is non-trivial, because small objects 

must -be packed toge&bet on pages aarl llrge~-~: . .-. · be· atloalted in 

~tiguous virtual paps. Tiie pr'111r collector. caa . ..,.:,objects ·to com1'at 

fragmentation., 

5.5.3. Very ~. 'aps?. _. 

W ~ have chosen to investigate systems that do not need to exploit, spatbll 

locality. w~ are . pr<>POsing a ~tan ''tb'at ~ ~ -~·· objects between 

primary and $eCOndary storage. HoweYer, given oUr ~ aboUt fast-acees;; 

secondary storage devices, 'it iS appfopriaie to.~ . the . ~ts of~ P&ied 
system with a very small P31e size that· dOes not try to expimt sj>atlal l~iity. 

- ~· - .-·.· - - . '"" .... - : - . :_-:-·.~;.·-~·,,"': -_,:_-.. _: ..... !;-.·-·-- ~ - - -
COuld such a s)'steii( perf0nn. better than ouri, or ~ pedorm equally Well 

but be Simpler? ·· 
{ .... .: ... : <: :- --~ ·- . • -

For the best comparison with· our S)'ltem, ·we Will' c~ a page size 

approximately equal to the ·average object size,. say 4· ~· ;Thus,. the J>rlmary 

storage map of this paged syst~ will ·contain about the ~ n~~ or :~tri~: 
as our associative memory, with entries oaly sliahtly smaller. ·we 1riii assume 

that the secondary 'sto~ deVicei-~ a na~ ~' .P.d ~~ess apace, 
,_ - , - -. . - ·--~-~- ,- - ~~.. - - - - ' "; -

so that no secondary storage map is Deeded. 
One poaibt1ity is 'to implement each object as ~ integral nwnber of 

- - ef __ ,. ~~\-'"''i -_~ . .,_,,.: :~~:.- -·- ~ ·._~ <.> - • -

pages, similar to a Multic$ segment. AD. object that rm in one pag~ would be 
'· , , <'.,'.,_ 1~- .. :;--:_:.:~::·--_I :.::.:·~,- ~~"" ,. .. ~~,~,- ,;.;_··---.;_-: :- - -- . : 

identified by the secondary storage address of that page. A larger object would 

be identified by the "seCOndary stOrage- 8ddresi;\d a:_N-_:18~ whicJi ,,o~ 

coatain the tetorldarJ'· ltOrap: .tdr••11 of·''* :'ftrious" ...-· ~: the 



object. The page table, if larger than a page, would itself be paged, etc. With 

such a small page size, the number of levels of page tables quickly becomes large 

for a moderate sized object, resulting in many extra secondary storage accesses. 

The advantage of this scheme is that storage allocation is trivial. However, 

since the page size is approximately equal to the average object size, internal 

fragmentation due to rounding up each object to an integral number of pages is a 

major problem, as is the storage and time overhead of the page tables. For these 

reasons, we believe this scheme to be unworkable. 

The alternative is to use a linear, paged virtual address space, allocating 

each object in a logically contiguous region of the virtual address space (not 

necessarily aligned on page boundaries). This system would be similar to 

ORSLA, except that (1) the page size would be much smaller and (2) no attempt 

would be made to group related objects together. An object would be identified 

by its virtual storage address, which would be equivalent to its secondary storage 

address. 

This scheme reintroduces the storage allocation problem and fragmentation. 

In addition, it is likely to have poor paging performance. When an object smaller 

than a page is referenced and must be transferred to primary storage, the entire 

page must be transferred. However, the rest of the page is not likely to be useful 

to the program. Thus, for objects smaller than a page, this paged system will 

access secondary storage just as often as a system that transferred individual 

objects, but will make less effective use of primary storage. For objects 

occupymg multiple pages, the paged system will most likely make many more 

secondary storage accesses than a system that transferred individual objects. 

Thus, using a paged, linear address space without utilizing spatial locality is not 

reasonable, even with a small page size. 
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6. The Implementation ofAlltomaticStorap Reclamation 

The &eeondary storage for an objeet is •.lf)licitly allocated by some primitive 

operation, such as the vect<»", creat( QJ>el'&tion. Tait.,,.,,.. can not be reclaimed 

as long as some pr~.~t petform:an operation.en: the, object. To maximize 

~ry storage utjliia,,U,n. - Stof. -tho\,IW tJe,J'.edaimed,as SOGll ,as possible 

after tile. ,~J;>ject ~mes i~ible. It is QI>· to the isyatem to determine when 

an object QecQme&-~ibJ& iu\d.,to tcdailll·,ihe ator•.:accordiagly .. How. the 

system detects al\d reclaims,haac;ceuible ob#ctl a.die: subjict of this chapter .. · 

6.1 A.:ce55ible Objects· 

Theotetically, an object cah be reclaimed 'ililmediatety after. it is last used. 
In practice, we must define: &Ore notion of acCess&bi'Jit)r·'t'h~t c~n e~sily .. be 

implemented~ . The sJ*te1n mttst'6bCy the. prcSperty: tnaf any ~ible object is . 

guaranteeti nof'to be u~d again, sO that 'its stot&ge:·can·tJe';~uSCd to lnlplCment 
some other object . 

. AtrdefinitiOns of accessibility' rely ori the fact .. that an object reference is 

create~ only at. the tbne the object is createa; "irmii· then ~o~, the reference can 

only be copied or destroyed. Thus, an object remains accessible only while there 
remain accessible references to the object. U~\l~,,tl¥;.re.,if.;p1~a.st.'~,~p~ 

~·,~,~ :;~ :t.0 ._.,,'. ·-~~ ·';,,,i _,·' -~~~''·"' ; ~'.,, 1, '< --'~·~ ~. >,"' 

to this principle, namely, the root of the tree of objects. (The collection of 

objects actually fortnSc a graph, or a tree, wit.,lt ar.bitrasy sharing~, We use the 

tertn tree for convenience.) The root object :is: a~iaccessible,.,regar-dless of 

whether or not refereaces to it,~. '(W•-~-:SC»DDltrimitive<operation can 

construct a ref~~ to the root whtoever-needed.) 
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Most definitioJlS of ~ibilitf ~UlC, , the "* ; cf ~hie objectJ 

recursively as consisting of some set of immediately accessible objects, plus all 

objects that Are components of ·~ble objeets. ·In fhe· case·of· a statiC tree of 

objects, there is a single .U.unediately ac'*8il* objeetr~ly, tile root ·of the 

tree. However, in our ~ .;rJUcb ~·Of:·• :INfil._ .of 11atdware" modules 

storing and . transmitting references; we l'llU$t· :as1111ne:.:41lM< :a.y M~ .uide 

the actuaLstored tree·of objects (~,in· an IP)'Wi&itt~bd--.· ·Tiiul,· aay object 

with a reference .au.- the stered · tree of ohjed&· 11 '~ iininediately 

accessib~ ·.·· This def'lllitjOa. places a ,beirty tiwldlia'"•· ilW itnpkaeotatibn. ·. · -Tiie 

implementation must keep track of every reference in every module and a!l 
_ '~~cjif:~ ~ ,-~;-,,<~1~f::,.-~-r~ i ···.,.~-

references in transit between modules. If the system is 10 -c)perauOn,· then the 

implementation ~( s~~ge ~~-~ .m~ 4'!oi4.~x q>~t& 1tj.tl\, normal 
• : '_! ! - -· , ~" -. ·, - -- ": -- .. _-. .... . '• -.... -.. . -· ,. -· - .. ·' • ~ 

operations that could result in references.. ~ina- oy_er~'9- -
_.-_- -·: _;- :- ,-~ - - :'. ' .. ·,,~ ~-·],.,,t- ~7:::.1.::::~ -

The ~t"_soluti00 . to this _pr~_ jf 19 ,M, ~ f"'t~ffl so t~t-:~~t 
~ - - " - - - - , - - - - .... - . 

accessibility is.compu~ only w~ the sptetn. ism..~ (~.ScctioP 4,.31 
,- - -., ,, • '. --"- _·, ~· ,. ·•;,_ ~··:· ". ,' ... - ~,- __ ,r:._: ''"';_,O- - ~,, ___ ~. • . ~---~,.. 

In quiescence, no references exist except in the stored tree of ob,ieetJ. i1,1_Jb~ ~. 
-. .. ;. ~ . ~ - ~ . _: . ~ ;; ·- -

Under these conditions,, race coaditions ~ ~. operalions are itu~t>le and 
_, ·. .. _;: ·-~ : ~'" ~ ~~::! -· -·-: ;;·}.'<' ·• - l' 1_ .-... l··. ~- '"'' . ~~'"; 

the ~ntir~set or.~~~.~~-~ ~Old)' ... ~obiects<_m .. ~ 
MM. 

6.2 · Simple catl>aae C011ection 

The 0'Simplest me~ for implemeating automatic storage 'fedamatien is 'the 

mam-.eep garbage. ceUecter :{191 · .• , . ...,.._ Colltdiolt ,. ·usually perf<>fiRed 

when·. an attempt: to. create . •·object -fllils. tteca•--of :iMafficienr ,free st0t•!: 

however, garbage collection can atao:;be, ....... esplidtlj.~-~la-~casei adMlal 

system operation is suspended while the garbage collection is being performed. 

Thus, the garbage· collector can compute the set of accessible objects by si·mply 
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starting at the root and tracing the tree of accessible objects, mark,ins each 

object seen. After this mark phase is completed, each accessible object has been 

marked. The garbage collector then examiaes ·eaci.~existiaf-0bject: if the object 

is not .marked, it is· reclaimed. The set of -existinl ob;.ets' is. fo\lftd by sweepittg 

through the entire _storage area. 

A number of variatioos of the mtuicf.1.-p algorithm exist, differing 

primarily in their use of auxiliuy-st0race. la addition; •there '•r. othu garbage 

collection algorithms using more or fewer phases. ·~owever, all of these 

algorithms involve accessing at least every accessible ,object. In our _ system, 

accessing every ~ible object weuld ~:a sabstantitd number of Reondary 

storage.accesses. Although we we,assumitag.a fastt«Glldary storap, we are ake 

as!uming a large sec»ndary ,1tocqe. Thust th&' 1iftle-' requiNd to . perform a 

garbage collection will be significant,· spalciag: pdllp!~on unacceptable 

except -at infrequen~ acReduled iatervak. <m ·s.tion :Ute:~ suggest a garbage 

collector. implementation that require& Oft 'tbcr-~t'do"leA immutes to' run. 
However, even" thia time is too loq;fm~ mr:o~•intetrupdon ·in stnice~) 

The .iaterval at which,prbage colltctioa....-"accuri~Upon the rate 

of object·· creation ,and the desir«l .~ starage utiliation• Uthe ·.average 

secondary storage utiiimtion is so. .. '(i.e., Bter· · prbqe ·: <x>llection. 20% <Jf 

secondary storage is 11nused),~,and. the sptem ..- object$ at' .. a rate of ;j()()O 

words/seeOftcL(see :Secti• !LI), thea-:a<l<&tmillioA' ~''.lt'Stem wiH run: for ollly 

about an bout between garbage:eollectiOas. •··· :timpie. gad r F collectioo. of a large 

virtual memory is clearly· iaadctate. 
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6.3 Alternatl'YM 

There are a BWllber . or. altorauive methods of ianplemeating autoalatic 

storage redamation. One: f0Aibilit1 is a parallil aar-.. Mlecuw,_ .one that· tuRI 

during normal system operation (32, JS, 13). :&eca.,_.. parallel ptbage col~ot 

does not require that t¥ ·syttem ··be .nopped. the prblp eollectioo time and the 

garbage colloction . iaternl are less Upif•at..... la factt.c ·a . pataltel · prbage 

GOlle.ctqr could bt NA oontia""'1y. . 

However, paralld·1atbaae· coll~ hate somt. dilad.vantqu. Tba major 

disadvantaae i1 that lino. the. prbap colleeaot . ruill in puallel .. with aormal 

system operation. its i>peration:ia mllChi~;.tlif&cult..to::Wtderatand ·or 9f0"• 

correct US]. Anotlter diaadvaatap is · tncr....t ·overlaid, t.eeause of memory 

eontention and -eolRf*:ting ~·of primur 1tnrap. 

A related altema.tive it aa · iaolemeatal ·prbqe: ~ • • , proposed by 

Baker UJ. .An increntlUltal 1arbaF colleGtOf distriauttl Abe;a..._.. · colleetion. 

time •.. by performini, a::tmall· put of .th&. P'1Nlae• GDlleotion.,eaeli) time .storap. is 

allocated. Although the total, aart.rae ...... U.·"ia ·no& deoieaed t.y this 

method, the disrvptioft. of aormal actmt, ·ii; ;aace ··,each internaptioo caused by 

p¢rforming more: garbqe colleeti.on is .slloft~ · Aa i~l garbage c:ollector 

avoids the complexity tiiladuataae.of;tlae paralW;ptt.pcolleotpr,, tince atormal 

activity i1 effectively stopped. while ·th$}prt.act collector ruas. ·Howeftl', 1Mre 
are disadvantages. Perlormaaa',*gradaiioD . resWtmt-:: from.·~ uM of 

primary storage is still a problem. More,.~tty,. the· use of ·Baktr's 

algorithm cuts secondary storage utilization by one-half. Such a performance 

penalty is reasonable only where uninterrupted service is essential. In addition, it 

is not clear how an incremental garbage collection algorithm can usefully be 
. . . 

adapted to work in. a multiprocessor system. 
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Another alternative is a single-aret- , &'»'ba&e- collectoc, as in Bishop's 

ORSLA. Garbage collectmg siftale areas is t~ beeause, during any 1bort 

interval, only small portions of the virtual m~y ·w.ill,-be a<>Qiiied. Only: these 

areas .. are likely to contain m\ICA g~bap •. ijy~ ~Ill ·g¥bage ·collection on the 

active areas, the total ~ng·term gaibaje . ,~l~tioa . .- can be reduced. 

Furthermore, in ORSLA, Qnly those ~ usiq ;the :-ba&e. collected areas 

n~ed be stopped during the garbap -O:O~>:~:ptbage .collecting ·a 

single area can be done in lJlUCh less . t.imA tllan ~ pit.ae . ~ecting the entire 

virtual memory, itopping the processes .will aenerallJ,·l»acceptable~ 

To gar~ ~t· a siDa,le area, •.. .,...JllUlt,knowwhich objects in 

the area are ref-erred.-~ from -out.side the;area+- ,(Tllese- are .. •umed to be the 

root objects of .the tree of. .accessible ob~ ~-·the area.) However, keeping 

track of inter-area-Rfcrences. is complex. · A1se, •as discussed in the-Introduction, 

we prefer not to introduce areas into the visible machine architecture. 

The fourth alterud\(C, whida, we,rhawt·,ehoscn.:;isft"e~ce counts~ We 

explore tllis alternative in the next sectioa. 

6.4 Reference Counts 

The basic idea of reference cou11t5 ·is 'to ~ate a counter with each 

storage object to count . the number of exfstlnf ret'et~ to the object. · When 

an object is created, a sing1e reference to the dbjee{is' crea1~, ~and the reference 
,., . ..-~ •. 

count of the object is set to one. Whenever a.,td'~~ ... W ~e obje(ltis cppied, 
. . . - .-. - "' v··· , - ~ • . - . 

the reference count is incremented~ · Whenever'· a referenee to the object is 
-::: :.,.-·_- .- . . 

destr..oyed (e.g., by overwriting it wit1a a new ,reW-.nce:k·the refereoce count is 

decremented. Whenever the reference count reaches zero, the object is 

inaccessible and can be reclaimed. (When an object is reclaimed, all contained 
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references are effectively ov.rwrittea. caualng the nf~ · · countt of the 

associated objects to be dectemMted. 'Wt··.-- dtat·w system· permanentty· 

contains a ref•rence to tile root Object.) .: 

. One problem With the tefmnee cataat .aeme is 'that ·the refettn~ couMS 

of some inaccessible -~ may ttbt tJe:UN, pnwentift& thdae objects from being 

reclaimed. This probtCll'l ·l'esulfl:from cyctea Of Nf'Mtleel. lf· '.a group of· bbjects 

contains a cycle of rtf~ then fteh object ill the tyole will have -e reference 

count of at least one, alttaough tilt Mlite·arout> iftlay be iaacceisible. ·A simihlr 

problem arises if retWuctF~fl" art lbaitecl in eia. It • bOuaded reference 

count ever reaches its anaximurn -~ it mutt rti8MB at~ tMt value fotewr, lest 

the object be reclaimat ptedlature&J.# Pet ..-ll01lll*'~ CO\lnt 11m (e.g., 8 

bits)~ this case will be. relativdly hisipiraoat. Wt! :di: ua.: th6 tentl cyelit 

g"""'8e to refet to all inao¢eaible ·Objects· aot r~ · 'Y"l'tff~ counts 

alone. 

A s-ystem using· reference· counts: dn11::r...._ ..,. ... ·colltction· to reclaim 

cyclic garbage. However, because the raee··ef~:a-attoad~:~ wid m 
general be much less than the total rate of garbage generation, garbage collection 

in a system using reference counts can be much less fdquent .. .:than in :a srstem 

without. reference coµnt~.,2 We ~uld "."4)~l,,~. -~- occurring at 

scheduled ~µtervals on the . order Qf. once per day or Qtw:e, per .. week. With such 
- < : ~ = ' ' , - • - ' .' ' 

intervals, stopping the syst~IJl, Jo, p,e(form .. Jat'baF col~n is probabl)' 
- ~ . ' . -. "' ' 

1~ problems can t>e avoided in. syst•ms whert alt ob,J.:ts are hiainuta*. Such &ysttms can 
be designed ~ that .cycles. ~f,Nt.r~c• Huot be er~. ,f.wtbitfaaore.. if ibe re1-r•nce ~o\IAt 
of an immutable object 'bieomes too high. on. can iiwa,i, eon .• he Ob.;Ki {prodUc:ina •. ·new· 
reference) itmead ,Of cap)'iftl the (old)reterw:., Wlllhovt919.,._ cNnhe:-.....i..._kW 
of the system. A system with thtse chan1cteriscics ~ ......... bJ W~,[37~ 

-~ :~ ~ ~ - - ·~" : ? ~., • 



acceptable, so that we can use a simple, mark..gwecp -fl).gorithm. It woµld also 

probably be useful.to combine the prbagc.collection -with a Jalvaging operation 

that checks for errors in the file system. 

6.5 Conventional Reference Count Implementation 

Reference counts have not often been used to the extent we are propc)sing. 

The primary reason is ·that the con•entional implement«tion C>t referenee counts 

incurs a large overhead. Each time a- reference to a storage object is copied or 

destroyed, a reference count must be updated. In a system like ours, these events 

occur at an enormous rate. Each ilssignrmmt ·to a ftriable that denotes a stotage 

ob jeet will cause a reference count operatiGn. Every tiitte a ·procedure is called, 

the reference counts of the argument objects must \be tftctemented. When the 

procedure returns, the reference counts of the argument objects aq.d · the 
~ ~ . ~,cc. ' '. ·• 

procedure's local objects must be decremented. It is easy to imagine a system 

spending_ 25-50% of its time updating. reference ~ts.3 . Because. garbage 

collectioa is needed -a&Jway to. ieclaint cydjc PfNP.· it As clirficult to justify the 

Qse of referepce C9\1nts ."1less it Mi.11ce8 the ~ytr)lead ... of performing aut()IDatie 

storage reclamation. 

The qthei: dw.advantage of the conveatiQoa~ .fe~.count implemeAtation 

is complexity. In a sys~:like Q'"5t _..,DOA-•re·~..,.sly. being. copi~ and 

destroyed in UJany system modules. .Smnehow,,, dJe . ~~~.re5'1lt of all this activity 

must be that every object has the ~rrect r~~· coun~ -A refer~ q~nt ~ 

2In a system. using reference counts. a low rate of cyclic garbage g~neration is the mark of a 
well behaved .pro.gram; jute a1low r•w of,~ta\ ........ t~ is the matt of• well 
behaved program in garbage collected systems. Mature programs will be tuned to minimize their 
rate of cyclic garbage ~eration. ·· ·· · · · · · 

31lle SmaUtaJ~-76 :.;ystem. which implements reference cou~b in micrPC09e on a minicomputer, 
is estimated to spend abQut 40% of iu CPU time on reference count operations [1si 
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small ·could lead to the object being· reclaimed premat\ll'ely, which could allow 

later erron to occur. A reference count too larae wilt prevent the object from 

being reclaimed before the next garbage eoUection. 'In ·a system supporting 

concurrent operations, ~ must be •urc thereare no r¥e· ~itions that could 
·- . ~ . ;: ' ' .. -

cause a reference CO\lnt to transiently become iero, ca•in& the ob~t to be 

r:eclaimed prematurely. (~ll Qample of ........... a .&iven ill Seotioa 6. 7.) 

These problems ()QCur becaqse .~""'~ CQlmt$ are 90e1ntiol . every 

reference to an object an,where 1", the: .f11te1U. The adv..,.t.ap of tllis approach 

is that the ref erenco counts are contia"°"'1 ~Uid.~~ •ht.lever • rtf ereocc ~at 
becomes zero. tlte object is bown to be ia~ible and ~ -be R9C1aimod, . The 

~vantage, as we have ~ is tbat the • ~· cpqi~ of ktcping 

reference counts contill~y valid are ~·.· 

6.6 Queued Reference Counts 

The alternative approach is not te eeuat every iefetenee in· the system. 

Instead, our reference counts ..UI cOunt 0111y i*1fa¥!Mia •old ··td Coll't/MlfOits of 

ob}«n /;, the MM. R.ef«ences outside ta 'MM, tK on 'their •1 i,. or out of the 

M~ will not be counted. (The root object will permanently have • non-zero 

reference count, regardlM of tile eumber· or,..,....,. _ _, ·1t1fterecf in' obJteu.) 

One effect of tltis deeition ii to-~y· ri9d'ik<ile·· nitltlber of events 

that cause reference 00\lnt··eperationt. ·nw °"" ,.,,,. tlltif·-ctirf Ctnlte N/'Wdt« 
t:Ollnt O/Jertldolrs are tlrO# '""' chllllp tit~ 'Ciintenti tJf "'1/#11 iii tlk MM. , These 

events are simply the MM 1ton requeet, ~ modif111 the contents Of an 

object, and object reclamation, wQidl,: (h•-·~ destroys. die -- of aa 

object. (In our proposed architecture, the ·vector q,;., operation, creates an 

object containing no_ references to storage ob~ so that. f)bjeet creati011 does 

not .·cause any reference count operations.) Note that the manipulations of 
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references performed by processors now do not chaage rererence counts. For 

example, operations performed on thlt Part of'tfii ~ahl'~tion stack stored in· an 

IP ~ause no reference count operations. 'Most"~· to· procedure arguments 

and local variables'wiH fall in this category. 

Of course, if referettce counts db not count alf references to an object, we 

can not reclaim an object ,JUst becaUle its· ~··• codht' has · beCOlrie 'zero. 

After all, some referenees to the ObjtCt may Mm exist ht a processor and may 

later be used. To aetUailly reclaim ··objects, we . must ··fotctf the &ystem into 

quiescence. In a quiescent state, till ttfetences are stated ·as the contents of 

objects in the MM. Thus, dUring quiesceOce,: oo· rehreriCe ··eounts are vafid and 

can be used to deft!cf matceseible Objee&~ 

One . way ~ ·locate·· all 'Ob:flctt= with zero reference· counts is to scan the 

entire ,memory lookia'i at every dbjeet. ·· lk>Wev&-;··a m\Jch bftter methOd is 

possible; . The objects that we· are leokial' tot·11re ;objects ·wlfose 'tef«ence couiits 

have become · zem ·sitlee · tile-· lasf qwelt:mt ·.'period. Therefore, whenever the 

reference count .<>f an otJjtct· ~ becomcll mc¥ (i.ttclGdiag When it is created,.), .we 

can add an entf1• llJMartt•.~"> en a ~ ·or:suWpected ~·· OQ. At the end 

of tbe· OQ cycle, when quieseenee· 1S next· forced, every object With a zero 

reference count will have a tlllcarcl eetry on the Gt).: De ''Objects with zero 

reference ~nts ~n thua be identified by ptcea$in& the 6Q ·and checking the 

actual reference ceunts. ',f. 

4When an ol)ject is cr,ated, a reference is ci;,...P. but . .u..Ul( .. :;Unw} &hat refereace is 
explicitly stored· in the MM as a comp0nent of 50me object. the reference count of the newly 
~i.d ob,ief;t is sero .. It ··iJ ~·.., . .W)a ._ltt:eAtft!'lOitllelGQ wta.n an c.l>jtlet is 

~~::~"!: ~~~~;!::~: ::_~oc.:ta 8:'a~·~~~~~aiT01i\~t!rt~·~;.nc;1t~ 
transient objects whose references are stored only in the proceu st.ck CKhe in an IP and are 
discarded before the process is unbound. 
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While the a~"" method il. iu"Clt. f..- tbaa ~PllN tM entka virtual 
memOfY, it requir". tl\t 'Y'ttll to. rtqWa Jjl qui•~~ \fAUL.tbe ..i of 

reclaimable object• has been de~. Bea• a ............. t canJ;)t ·.r.en> 
.·' •. - - • ' • - -c-, _;. -- ' 

at one time and then later be iucremeo.Wd. (if U. .-. ,,C~. t&:a . t1'e. QbjeQt -it 

first outJid~ tbe MM; bllt) ... r. ltOled .~ ~ M}d). .,. .• jectl ~ eatries on 

the OQ may not hi~ a ~J'ofeteJP ~t, ~w>ioill tAe • « objlctt to 
- - ~ ' - ' - ..: - < - . :.,,~- - . ... :.,. 

be recla.imed.}hlll reqqire.a u.ioisJI: the -~i~·~tt-ef the-~ 
with entri~ onthe"OQ, wliich can bcdoae Q(ll.f~-~· 

The need to e:iauilile the aetul rd~ couaw-. of Qbjecw QA be 
' ~· - , - - - - ·' -

elim""ted by adding ._,_ adclitk¥W ootry '""'~(..-l to· ~ .OQ •henever the 

reference count of the object x goes f~ W'l''~·-• _.._,._~ Toattller 

tbe dl1tar4 and r8hrnct,entriea allqw ~J .. -~.wJaedter·-the ... rerence 

count;of an.object 1'81 iea:o or __.o ff.:tltf "-··ffliflcf/Mc.,..,#N/IJ/Mlcwl,,. ,If 

the last entry for an ~jeet in tht.OQ•i.J-_a14*td,~~~dwa .the referuco 

count of that object must have '1eea ~ -U: tlutlau. eqfqr• •~.,....r•t entry, 

the reference count..,.. ~o. If .aa ~J)q.a,.,..,~.couau·-dt.1rina 
qu~nce. thoa tile a;~t;. tn\Wi~,-M ~-.~... . 

Using reqrrect envies it•-~ ~II)! -~--~~in·•·~ 
while the QQ i• beina. pr~. ~,af• ;f~•-Mtlblilhed. the old 

GQ i' ~ t.o a~~ OQ ·~ ··f9r .~. A .. M\lf1 wPt1 GO·M 
created for future use, and normal system operation is refltm5 ~-. the 

0Q processor is processing the old 0Q to de.-.... ~ .. wa.icb. object5 . .,.. 

inaceeasible during the q~t perriod. ·Alfy·. ob~ ·~ then - ~~e 
- . .-j. ' ' < ._ -. . ·'-· . ,.._ -~ - -. -. ·, '-_, - -. ·-_ ~ 

ia~ble aow .-1 oan ht nca.ilMd ~.<If de9i•·• OQ ~·can doa\M 

check th~t ·t¥ rcf~~ts"O,;.._. ......... ~ . ..-~) 'WlwA··.u 
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object is reclaimed, the reference counts of its component objects must be 

decremented. Any discard entries so produced must go on the new GQ, not the 

old one being processed. 

Using this method, GQ processing 1s overlapped with normal system 

operation and the system is essentially un.interrupted. Putting the system in a 

quiescent state is similar to unbinding all running processes. In general, there will 

be some minimum rate of process switching needed anyway to maintain 

interactive response. As long as the GQ cycle time is longer than the process 

time quantum, there need be little performance degradation. 

6.7 A Note on Ordering 

In a conventional reference count implementation, it is essential that 

reference count operations be performed in the proper order. Reference count 

operations are partially ordered in that the increment operation caused by the 

creation of a new reference always occurs before the matching decrement 

operation caused by the destruction of that reference. If this ordering of 

operations is not preserved, a reference count could transiently become zero, 

which would cause the object to be discarded prematurely. 

Consider the following example, and assume that our system uses a 

conventional reference count implementation. Suppose that the reference count 

of an object v is initially one. Then suppose that the following two operations 

are performed "concurrently" by two IPs: 

vector$store ( v I, i, v) 
vector$store ( v I, i, 0) 

If the store operations are performed by the MM in the given order, then two 

reference count operations on v will be generated internally by the MM, one to 
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increment r's refer~ count, aad one ~ ~- it. If for I.Onie reason the 

second reference count operatioa is.~ tint, . ._ tbe r,eference ·COUDt of r 

will be zero for a short time. In a multiprocasor MM iaqplemeotatioca ·· $UCh aa 

the one <*cribcd in Chapter 8, praervig ,;the atdedaw .. of refereace c:Ount 

operationa requq~ additional IJ .. onizatioa. 

Using tbe 9ueued i;.efecence CG\Ult teheme,-.\t; is. l!Qt Wlltial ~.·reference 

COl.1Qt operations be performed in thee ·CQlTeCt,~. AJ1,tJ1at,.-~ is that the 

final reference count .values at· ~ end :of~eacll CJQ '.cple be. cortect. If t~ 

ordering of reference couat opcratioa .ii aot- ~.··~· then it ·i& 

possible for a reference count to become transiently negative. The example above 

demonstrates this possibility, assuming that the referellCI ~t' 6F~- r is Originalty' 

zero (because the only references to ' are in an IP). 
- ~ - -- ~ . . ~ 

The only change needed to allow the queued· reference count mechanism to 
- _;. . :-~ '' 

handle negative reference counts is to extend the ~t and decre~nt 
' •," '. • m ' ; : • • 

operations to work for negative ref~. ~t values. Because negative 

reference counts are a transient condition, GQ entries.~ be generated only for 
-. -. . ' \"' 

transitions between, zero and one. A ndnimum reference count value must be 
: , - . - - - . ; ~..... . ' ... , ' ; ~ ~ 

chosen. Decrement operations on a miniJnum valueq .reference count will . be 

ignored; once a decrement operation is ignored, the ob~~ be ~eclaimecl only 
, .. - . .. 

by the garbage collector. Because negati¥e '~erenCe counl! are not very likely 

(as the example above demonstrates, the -Ii~; iha~ ~uce them involve 
: _,. - , - ~ ·· -~--:-~~,· ·:::: r~.·n i .. ·:~,·1 ./>J:.; ,:r;~~ , . ·~ 

race conditions in the user's programs), a_ mioimu~ ,ref'erence count value of -1 

would probably be sufracient. 
_, .\,;, ... (;'~ .. - ~·-·. .. , ~ o"" 
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According to the description in tfte, ;~' seetioo; ·the .order of .· 6Q 

entries is important, as the decision on whether OI'. not to reclaim an object was 
,: ~ ',~· • , ~~ - ·, - - ~-. '~ ~ ~~·: • ;,_ > 

based on whether the last GQ entry for that object was a 4isc.ard or a 
·' - '. 

resurrect entry. There is, however, an alternati~,:~of -processing the GQ 

that does not depend on the ordef!~ ~f ~ntri~. · .. · 
.. ,-·-~ -.. ·, :. ,,,. ' 

The GQ eatria~for :an~·~t·'6bject· ·•will consist of a sequence of 
.. · 

alternating discard and resurrect entrles.,#wap:beainning with a discard entry. 

If the object is accessible at the end of a GQ cycle, theJl · tbqe will be an even 

number of entries, ending with a resuri:ec~ entry. If th.e objett is inaccessible, 
.. ._-::,;:;. :_ -:; '.- ~ ::~~;~~~£}i'H -~ ....,_.~ . ~- ..;··---~t-. -~ ,, ·· 

there will be an odd number of entries, ending Wfda a tlttcarcl entry. Thus, an 

alternative method fp( ·cPmi>»~· ~ -~. q( ~~~ble objects involves simply 

determining whether the number~~-w~~Jor.,each object is even or odd. 
~ - ~ ---· ~. ,.• :-·_)"•"';' ~-~ ::''"'\'"'" 

This computation can be peW'ornl#makiag two sequential scans of the GQ 
I· k "'.," :,,:t ';_;;.z,~L,·:." 

and using two mark bits per object (lee P'igur°',i2). During the first scan, one 

m~rk bit is used to count (mod 2) the number of <XJ entri~,Jor each object. At 

the same time, the other mark bit is used to detect multiple entfiecPfot an object; 

all but .. the first entry. for each o~ject is .removed ftom the .. OQ (or ov~rwritten). 

During the second scan, all objects whose .. first mark bit is on. are recl~im~. 
\ ~· :<. 

Other objects have their mark bits reset. Removing_ duplica_te entries is ~eeded to 
, . . ·•. ' .;~.) '''""' . ~,/ 

avoid attempting to reclaim an object more than once. 
I 

The mark bits are stored in a header word associated with each vector. In ,- ~-- . 

addition to the mark bits, the header word wili'~ntai~ th~,·:reference count, size 
, < ' 

information, type information, etc. The. mark bits are used o~ly for GQ 
: ' · ... _ - . - ' - . . - . ' ~ - ; 

processing and garbage __ collection (~~ri~ below); there is no interference with 
' . ._ ~ ,. 

normal operation. If the mark bits were used during normal operation (e.g., to 
--------. - -

avoid placing duplicate entries on _the GQ in the first place), then the system 
,~· ~::.;_~ l ~ _.:·,~ . 

would have to remain in quiescence until the mark bits were reset to avoid 
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Ftwure 1-2. 

process_gq • proc (gq: ariay(~torD ., ....... 
for i: int in ..-ra1(ve<:torJSin•x• (aq) do 

Y: veiDtOr ~ dl' . . 
v.aavltl =- ....Y.aaarkl fa ~---' i . 
if v.aavk2 thfn -. h8ve ..._ tiefWe' -

M(i)>-.~·~···GQ ... 
end 

·end 
~HJCOJMJ~ .... ,•, 
for i: lnt in array(~tor]Sindexes (gq) do . 

,·, 

Yi. ....... ~ ,,,: 

if v .. -.1\defifted ~ • ~ a~ttell ~u• . 
< 1t•..ttt11ttt•Na•··~ . 

net 
Pd.pr ....... " 

•• .. =r',.,a;~1 .. 
-~,fYa•t•:tlla 
v...U•,.. 

interference. Note that usiQI mark bib prectudel coftCurrent procaaing ot 
multiple OQs;- a new oQ CyC~ ~ begirl udfthe; ofcf OQ bu' bee~ pioceAed 

- -· :: .... -.- ! ."'! ~ -l , • f ' -.. ; -

and the mark bits reset. 

This. method .of OQ pr~g ~,only _upon the number of <JC? 
entries and not on their order. It thus_pemlita entries to be added. to the 0Q in 

any order. In addition, it eliminates the .ct ·to d~- between dbeartl and 

resurrect entri~. Tu · meth~ mlaht : ~ ~ -~~ \h.n the originally 
· · · " · .. ~~rt :'"'~"·-~ ---., · ~ - · 

proposed method, as the new method· will. mab .•.. ~ ~ if any single 

GQ entry is, lost, whereas the old method-~ inue die 1'~. dedsion . only if 
··:~ --~<;)-._.!' ... ; ",· ·:-c 
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the last entry f e>r an object is lc:>ft.._ H<>we,v~ .we beµeve· thia diffuence ¥> ~ 

insignificant, since most: ,~~!& _ to . fl'~Y rec;l~iM a•k 90ject ,;an be 

prevented by first checking that the actual stored reference coimt is ,~ro. 

We hav~ sho.wn t~t bo~ reference.,co..,.t ~--s ruG~,-~iti.- .to the 

GQ can be ~pormc4jn,.anY order., !\Jl~;,ma~··•~.t• . .(10alrefer~ 
count v~lues .and the tatal ~· of GQ :en~ !Qr ~ Qbject at. the .,end of 

each GQ cycle. ~ we shall<tee ill, Q,aptet -$.:·this Proa.tr allews significant 

fr~dQm Jn -the actualj.m.j)le.,,t&tion •. ,~ ~Uw ~·~•reduces 

the need for internal synchronization in the MM and makes the system easier to 

understand. One less.~.-lialplJ-. Qlle,.Jest·-.y to 10-WtOIJll 

6JI Queued Ref erenee Count Perf ormaDce 

When the GQ procesSC>r · recfainls ail object, the< reference counts of the 

COlhponent: · ~ 'OIUSt be; ~mat. ;.;:·GQ '~ 'l>t<>duted by th~ . 

reference count·~peratieas will: be plaad··oa tlle newGQfMiich is ribt ·processed 

until tile nm OQ cycle.· ThUs, tile J"eCIBttifbllOI' :a··iitt :or~Objects is ptrformed 

breadttl;first;: one level ·pet <JO· cyele. A-' tiie Of deJkl' 'N d require N GQ 
cycles to be completeft ~. ' ·· '-·: 

The maxbnuM'·nuin&et' Of· GQ ·mtftd71tbat~cao lie 'ptoduced by the GQ 

plocessc:>r whil& reclamung:. a set of ot:i~· duntat'"0.. ·OQ eycte :equals° the 

number '<>f ref~renees stored in ~~1>6.ft!ct$.' (1be'Worst case 'is Where· every 

aBject1.~nt w·tlle·~·em~ ~r~·,fti'.>iotne-~a~"object.) The 

need te·use temporary stOtage can ~~~~~ .. ·.~,::~?OQ entfies in tile 

reclaimed objects thelllselva~ · (I(;"',•llc.N':· aftd'' "'*recf!il!ntrtt!s ... are not 
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distinguished, then a OQ entry is simpty a reference.) ne reclaimed objects can 

be chained together Using their header words, wlaiC1i :ire leparate' from the actual 

object components. 

It is importllftt that the OQ· cycle' 1ime be as· .ttort· as possible without 

introducing excessive 'OVel'head from forcing tilt system into quielcence. A short 

OQ cycle time will minimize the sii.d 'of tlie';(JOl;'minlinue' the amount of 

primary stotage wasted by inaccea"bte ob'jcrets· liot:yet teclatmed,··and maximize 

the probability that the object& 8CCtWd by theOQ'plloeasof are still in primary 

storage. 

Let us assume a OQ cycle time of HJ9 millisecohds, similar 10 current 

processor multiplexing intervals. How large wjll the GQs. be? H°" much storage 

will be occupied by inaccessible ob~ts? 

. We will assume •steady state where:~·--;C;i'eated and desm>yed at a 

rate of T objects per 100 milliaecoac:ll. ,:l1fe. will . .iso . ._._ .tlvouglaovt tl:ai$ 

analysis that the pr1lbability of a refe~' count tr_.Qtly. becc>aUna zero is 

negligible. A ref~ count can u..-~Y become zero.oalJ,# .U..rd'ereace1 

to the object are moved out of the. MM,. the Ml,t :~·'°''· ~- refereacos •fe 
overwritten, and a reference is later written backJill;o.~~; .. 

During :each QQ cycle, T :~~ :"'4ll:~ ~i·~ UMr 0 procaset· and T 

objects will become in~~le. Of~ T ()bjecta ~;.~1ftactioJJ -·F{TJ 

will become inaccessible during the _lallJC;,CJQ,AJc1'. .l"c>r~~~9b~ th._ y,ill 

be eitlter 1 GQ entry (dlscanl) .o,, ~ ~-.-~:·(4JICfr4·:~~•t,,.qd - '~ ; - . - ~ ' -- - ' , . . ~ . . . . '" . - -- - . 

ducard) generated,_ d•~ upqa ~~,a J~er.., to ~~,iacl _w~ ~ 

stored in th~ MM.. . Tile r~ainio&, f.P(TJ new. objpctt ~ the ·cycle, 

producing 2 OQ entries (discard and resurect). 
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The number of objects created before' the- currmt OQ cycle that ·become 

inaccessible. during the cycle must·ao be T-'fl?in tta.:steady state~; l!aCb of 

these objects.will·generatea single dlscarl'atl'J\·' Tiie relbaiaitlg'~n,·created 

before the current GQ .cycle aad· surviving tlaat:,cyclt, ~te- no 6Q et\tries. 

If we assume that objects created and discarded within thtfCyol&:genetate· 3 

GQ entries (the worst -case), then the nunlbcr of .GQ .. eldries generatecf :during 

each GQ cycle will be 3 ·T, itadependent:of ·F(FJ •. 'Rlie aext'·question to ask is 

what the rate of object· creatioa isdikely ~w :be."' To ~ : this question,· we 

measured the object creation ratet of'tluee GLU·~ Nnnilag -on a·· DEC 

PDP~IO (KA procasor). (As in ,ew··propoeect aystttbl, objects in· this CLU 

implementation lMwe · laeacter wards, .. wllidl .a. -~i:in' <all MeaSUt'eltlents (Jf 

object sizes.) 

The first program measur.ed was thecCL.U1compiler, produdng CLUMAC 

module .. · The coa1q ilez rall:.fdr·::lii: smonda.t'Jeft!·,.:timt· .. and ·CAated 26"166 

objects· of totaJ., ·. sDe 791.77 :words. ~oiebject:1' cleatien~i·••• 0 Wal t.i 

00.jecta/second (one .objem evuy-·5.1 milliseconds)-.and ,594 woidsfsecomt· ·Tile 

average -size.of-a ·new.f;'bject was 3 wotdS. · · 

The. secea.d program mealured .wa 1.tt& <i:L~ assemt;lei; 8$Seltlblina- the 

CLUMAC output produced in thc·~im step.·· fta;pmgntat.,ra1t'ior'lf>'~ seconds. 

of . CPU ·:time aad created 29637: objeota: of 'site :'91611: wotcls: . The "Object 

creation rafe; was llO-objecU/aecond: (oae; oWJect· ~ 5.6 miltiM coftds) -aad ''6 
words/seccmd. The aYCAp'·aew objeersia wa 'lpin ,3 woals. .. 
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To estimate the -wont - caae, wa- wrote: a propw that did' aotbiag but 

create objects, ia tbia-c.e PDP·l9 _,... (w!Jtida~are,ewo.wonl:atorage:Objeets in 

thi&implemtQtatioa). W. ran u....,..for-2';;1CPl;J,,..,.m,.inwhidt1ime 

it cr•tecl lOOOSi- objectl. lot a ;J'Me, cl 4150 ~ (one: object •tUy 

241 micE~s). -- - , · ·, 

Thus, we find -M obioct creaioa-rate oi-ap..-amatelf 200/see f« real 

program$ and 4000/• for a worstoa .,.._, we ..... 1-000/sec as • 

conservative esttma-._ -For a: mare-: ,...rul~-11,.e1ar-;'(fa.ter ad multiple 

processors), the atimatet- •• N .aled ;up.- for ...... to:~· (real); 

40000/.ec (wont<Me), ao4UUJ(}/teC".~Y,e}i We:-wiH--.e our ami,.is 

~ this- last fiawe,_~whic:h~eoctHf twdl to;W,;6ject attlltld 'MCi dilarded:~ 

100 microseconds. 

-Por a ,GQ cycle time of 100 mm~"' the: OQ weald .-ooatain l entries 

b each :of l&-ob~ a.-total·d'13K,.triel _..,,.,,,lK,_:words of·'ltorap.-

Two. ,OQt (.oae beins-~ed, :-the:._ tiliag ~'"'"' ·1-"cmtlltii up.-~ 6K:: 

eatries. occupJing ftK. word&. Jf~~'k•ptll-6fllilemtecl~1it '15 

then there are effectMl)r s ~4 pdtap .,...,. :a0exilteaoe •-UT 
one time, for a total number of about 5K.;eb~r~:15-50K·wontsof 

storage. --- (All of dais 1tor9\ji_ "._ -·~- -it:rja 1- _tllat-:the;:objects 

remain i11-primary atonage,uatittiey . .,:rtcltlkaeld.)' -- <<!.' - ,. -

., We eonclude,--~ that ii r•:Of lO'GQ qds.JIF second will .pnmde 

adequate perfor..-., hi ._ of• amotuird ... {illlcted :9.-kolcl;tbe--GQs 

and the garbage o8jlcta-. Of:.._ if t&e:f11tjeercru- rate- is '-"'tlaad ft 
have predicted, then -the 0Q cycle time can be incnued accordingly. However, 

there is not much to be gained by increaUs the OQ cycle time, since the 

5It is difficult to estimate a number here shon of constructina a CLU simulator that uses 
refwence counts. 
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quiescent state is more or less equmleat to uabindiag aH processes, and processes 

are· likely to be ullbound at a rate nO slower. tbB ·oaoe -..,-- too millileconds for 

scheduling reasons. 

The question .of \irhether- the OQ ptoOlllOI'' can reclaitn prbap as fast as 

user programs generate ·gart;ap is dieU•d'bi--leotRJn· '1.4.,·-·Shomd the OQ 

processor fall behind, and the: GQ$ tlecoaMP'-mo 'lllP"• t1le 11'$ would hatte to :-·1'e 

stopped until the OQ pt<K*IOr caught up. · 

6.9 Garbage Collection 
';. '~ 

As described· above, we have chosen to use the simple mark-sweep algorithm 
. .. . , . ·. ·«r .. ..· , . 

to perform infrequent, periodic garbage collection for the purpose of reclaiming 

cyclic garbage. Thi& algorithm identifies all ~ '1bjects. by. tracing the tree 
> ,; ,, u ' " 

of accessible objects and marking ~ch ·ob~t aeen. It then sweeps through the 

set of all objects, reclaiming all un~rked -~bjects .~ resetting the mark bits. 

This algorithm assumes that all mark bits a;~, ·initially. i-c~ecl. Ho~ever, if 
' -' -.., . ~ 

desired, a preliminary sweep can be made to verify that : all in~rk bits are cleared 

before beginning the mark phase. 

The primary function of the garbage ~~tor is to reclaim cyclic garbage. 

In doing so, the garbage collector will be destroying references, some of which 

may point to accessible objects. The reference counts'~· those· ob~ts should .. be 

adjusted accordingly. 

Using the normal reference count mechanism to adjust reference , counts 

during garbage collection would probably ~ work, as both the garbage collector 
, • - ~ ,- 'c .' __ ,.'~!~t~.'.- c·J-. -~-:· -.',;j¥:2' :. J • : • ~ 

· and the GQ processor could attempt ·to reclaim the same objects. Instead, the 
, ,., 
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garbage collector shoukl directly adjust t1ae ~ "'*8tt-of llCCGSib/f objects 

as refereacea ill aarbaae -~ -are -cle!ArO)WI,-; ..... ......... ~y GQ 
entries. 

However, a better solutioo..• to baJe die prlJlp.--~01 ~'*"Pletely 

recompute all reference eoua'8. In MditiaP to ieflecdAg, ~ retultin& from 

eyclic prbap ndamation, this ..... __ will cor!Mt any err:ooeQJIS reference 

counts resulting from hardware faults or-~)'ltt_tll er.-. Wore a4d~l duuage 

can be caused. 

A garbage collector that computes reference coUms can be obtained by a 

simple extension to the_ standard algorithm: When an object is first marked, its 

reference count is set to one; when ~itional references to the object are seen 

during the mark phase, the reference count is incre~nted accordingly. Because 
' :"- ' . ,-

the mark phase sees each accessible_ rd"eteoce exactly once, this method will 

compute the correct reference counts. (The -mark bit is not needed if a 

preliminary phase resets all reference counts 19 r.ero. Note that the standard 

mark-sweep algorithm can be viewed as a special case of this one, with the mark 
- ' 

bit equivalent to a reference count whose nlaximum value is one.) 

An implementation of the mark phae is __ sh0wn in Figure 13. Here we 

assume only two types of objects, bstrinp and vectors. The Jeetor_ina 
. .. . -

operation manipulates the reference count and mark bit of a vector. The normal 
~ ~' - . - ., - . -

. - - , 

1ize and fetch operations can be used, as they do not cause reference count 
' , ... 

operations. 

This mark phase algorithm -requires temporary storage in the . form of a 
• • ' < ..: • 

stack containing the states of suspended proCecture. activations. the maximum 
~ ~; : ·>-·- . . ~ : .~ 

size of this stack is proportional to the maximum depth of the tree of ~ible 
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Figure 13. Recurshe Mark PhlM Al1orttl11n. · 

recursive_mark_ph&Se.:. proc (root: vector) 
v~r .. iocf;'1oot) WI • m.enc:e cou• of reattO I 
trace (root) 
end' reoutsiw_mark_phase · 

trace• proc (v: vector) 
% V is a vtctor whoser~count ha jut t;aeen . .-Jo l. 
% Trace the references in V. 
n: int :- vedodsize•{v) 
i: int:• 0 % 'I' elements of V have been examined 
while i < n do % examine all elements of V • 

end trace 

e: Ill)':• V~torSfefch (Y, i) .· 
ii.;.i+I . 
ve: .vector :•'foroc(wotorl~••t t,pe,ef;g 

except when wrong..tYJ>'! CJ& if not a vector, 
eontimle 4" nftf heiatloh of toop · 
end . . '·• . . . . 

if veetor_inct (ve)"~, increment~ count 
Jbets tlaw (ve).~ ir• cbt•"8••at \WtOr 
end 

end 

veetor_incr • .proc (v: vector) retur~.(bo~l>. . . _ , .. . . 
% Increment the reference count o(V. If the new ret.rence 
% count iJ t. Htui:a. trae, indicarinjicbac.1119 .-., .... 
% be traced. Otherwise, return false. 
if NV.mark then% if not marked 

v.mark :- true % then mark tt>' . . 
v .re :• 1 % set reference count 
return (true)% tracing is needed 
end . . 

v.rc :• v.rc + I ~ increment refer'nce CC?':'P.' (unlesf • ..Umum value!) 
return (false) % tracing already started · · · · 
end ~tor ... incr 

objects, which is bounded only by the total numbCr of accessible objects. Thus, 

in theory, this garbage collection algori~ ~uld fail to operate because of 

insufficient temporary storage. 
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The need for temporary storqe aaa '1'e· .ai.eiuteci . by storiq the 

intermediate state of the computation in the tr~ of objects ~uelf, a teclµiique 

introduced by Schorr and Waite [29l · n.~-. ·fll aeh,~ure activ~tion 

consists of r, the object currently being traced, aad ;,. the Alviaber of elements of 

v that have been traced. 

The number of Cfotnponents I can be ·1ttftd· in • itself. A• shall be 

explained in Chapter 8, during garbage collection the •-lield ~· • ·can be used 

to store the element counter t. 
A reference to the vector ., can .bt stored in the vector v[i] when tracing 

v(iJ, in whatever elemeat of r[i} ia currently bling esamined. The effect is to 

reverse the chain of references frOllL the root . to the node being traced. This 

reverse chain allows the pr~ure to fmd the _prQPef ~,to ·return to when . ' . ~ :_ ' ~ . 

tracing of -the current 1IOcle is completed• An iteratitte'~ftlllk>n of this algorithm is 

presented in Figure 14. 

In practice, it is probably best to combine theae two methods, using a 

fixed-size stack and resorting to modifying tM 1re1·on1y,·--·1Jle'·staek ·becomes 

full. For most eases, a .mali •*-* (e•: t& ... ti) will~ 

6.10 Garbage Collection PerforJD111aca ... 

The primary f aetor in the performance Of the garbage ~lector is the delay 

caused by accessing secondaty ttora~· ... ·b6di --~. or· tile prba~· collector 

access most or all of the secondary storage. Compared to. the. seeendary storage 

delaY$. computation time willbe relativelyJ.nsipiC\Caat. 

. In evaluating the mark phase, we will assume that the maximum depth of 

the tree is sufficiently small .that ·the garbage ~ stack will not overflow 
~ , . t - . ' ~ -_,.. -- ' 

and all of the objects on the &tack will fit· in primary storage. By modifying the 
_-. 

garbage collector cOde to occasionally. touch all of the objects on the stack, we 
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Figure 14. Iteratl'fe Mark Pliase Al1otlthm. 

iterative_mark_phase - proc (root! vector) 
vector_incr (root),CJt seu.r.Cerence ~unt of ropt to l . 
v: vector :•_r09t % .Vis th!-yect~ curr'!'tlJ ~ig traced. 
vf: vector :• i0ot % VF • norrully~ ~ Qi' V. 

% However, if VF-_V, then Vis the r0c>t. 
% This conveation .. ~. to cletect ••iAatiPa. 

while true do , , , · 

ve: vector :- ~tor_currenLe~t (v}~ • vector e4'ment-0f V 
except when none: % if aal components o( v haveJJMn trsed 

if vf•V then return end 9'c~-~twc1, It. ... '~ 
ve :• v; v :• vf % pop up one leVel · · - · 
vf ;,. ,v~t.or.,.pe~~.(Y. ~l. . ... . . 

% store eJ.tHili btok,jnAC>V. ~a ~Id VF from V 
- • • - ' • • • < ~ , - • < • -$-. 

continue % nei.t i--- QI lPoP, ·. end · · · ... · · 

if vector_incr (ve)% ~e~tF~ ,count 
then % we need to trace 'VE' · · · 

vector_exch..ref (v, vf) % save ,.._r where SQn was 
vf :- v; v :- ve % down one levefin-'ti.;. ·· .· · · -· 

end. . .. ,, . 
v~-NiJ> ... elwnt 1(~),," ... ~~~t .. 
end, 

end iteratW....mar~-

vector_incr • proc (v: vector) returns (bool) . 
% Increment the reference count of V. If the new ref.rm count is 1, 
% !ft tNP&l.AUtlm:. trt&inJ.tl'Ki.rt!\lfl\ Jr.a,,i~ tblt. U. v"tor 
% should be traced. Otherwbe, return fa. 
if NV.mark then 9& if not aa_..tecl 
· v."*t;:~Nr~ ~th.n'ih'art'it 

YJ~.:-J.i~5'!~~~. 
save_size_info (v) 4 prepare to reuse size field 
v.m. :-.e % ibitillD.t•..U-.nwt 
return (true) 9& tracing is needed 
end 

v.rc :• v.rc + l % increment reference count (unless ai_gap;imum value!) 
, return (false)% tracing alread.)' •~ted .. 
epd veetor _incr . . 

vector_current..:element - proe (v: vector) returns(vectar)sign..t.:{nofie) 
% Return the first vector element of V not previously returned. 
% If none left, restore the state of V and signal none. 
% Causes no ..,.,arent side effects on V. 
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size: int:• compute_true_siae (v) .. 9'J. co.m.-~tiaitlrom redundant information 
while v.size <size do% look for lint vector component 

e: any :-v(v.size] ~ E it the component 
ve: vector :- force[ vector)(•) tit Ws.,i tJpl of! 
·~ whtn wron~tjpi: '1& if t.Ota •tor· 

y.size~••+t11pr~~nat ..... t 
conmn. ... MXt iWttlon~cit l6op 
end .. . 

return (ve)*·rwtum vector COtn,oMnt 
end 

% When loop ttrminatee. v.air.e Ima been ·reatOfAN1! 
signal none· · · 
end vector_current_element 

vector_exch_ref - proc (v: vector, e: vector) return1{Vct0r) 
% Store E .S tht:e1ement ot V jual tet&ltMd IJYvector_currenLelement. 
% Return the old vilue of thir'~ · ·. ·. · · 
old: vector :- v( v .size] . 
v( v .size 1 :• e % no merance count operations! 
return (okl) · 
end vectot_exch..ref 

vector Jkip_efement • proc (v: vector) 
% The element·of v 1-~by Yeecor_c·11arnt_-e...._t.bas been 
% pr«:ested. Update the state of V so tbat 6e ..i "'1 to 
% vector_current_element will return the next wet0r'lllli1nt of V. 
v.size :- v.Rze +I 
end vectorJkip_element 

' • l ; ... 

• 

can ensure that all of the objects on ~-~ ;~ ~ i,n.PrilliarY storage. In 

this way, we can guarantee that a seeoodaty~ .....,. . ..._·can occur only going 
. ~ - - -- . - - ........ ·--, 

down the tree (away from the.fioetf). Md-...-; -wbea -.-.rning up the tree 

(towards the root). 6 

6It is not clear that this strate17 is the best, but if not, it at .._ ~ ~- ¥PJ)el'.. ~nd on the 
number of secondary atorap accea1es. If our ..umpfton *>ut 1bt ._ or·O.'cstict and the 

objects on it does not~~.~ upper)~~U,ftd ~.ill"'""'_.. ' ... ~>(!'JO~· , 
'· . .• . . - . . . . . . ·-· ._ . ,_ . . ~ - - . - -
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If all reference counts are one, then there is no sharing in the tree. Each 

reference examined will refer . to an object not encountered previously. Because 

we can assume no relationship between the traversal order and the locations of 

the objects in secondary storage, each object· examined will require an 

independent access to secondary storap. In this case, the number ·of secondary 

storage accesses will equal the number of objects. The number of objects (and 

thus the number of secondary storage: aceaaes) can be predicted given the 

secondary storage size and the:expecteG .... object size. 

If there is sharing in the tree, then a reference may refer to an object 

previously encountered. This object may or may . not still. be in primary storage 

when the subsequent access occurs. Because sharing requires cooperatiOllf much 

sharing can be expected to occur within moderate sized . IUOtrees, in· which 'Case,. 

the, shared objects will remain in primaty sterage wtaile the sulmee is being 

traced. In the worst ca~ however, the 1au11ber of secondary storqe accesses will 

approximate the number of accesable references, ··whidi will -be larger than the 

number of accessible objects. 

To estimate the number of references in a system, we examined some CLU 

programs. We found the number of references to exceed the number of objects 

by about a factor of 2. We believe this number to be too high. Most of the 

sharing was in code (shared procedues) and ·· related objects (linkage · aOd 

debugging information). Data created by programs Gael lower ratios, generally 

less than 1.5.7 In a large file system,. we would expect data to predominate. For 

this reason, and because locality of. reference # relevant here, we estimate that 

the number of secondary storage accesses wilt exceed the nutnber of accessible 

objects by at most 25%. 

7Measurements by Clark [8] on data in LISP programs showed almost no sharing of list cells. 
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In a systeltl with 100 mWioa wotdl of .....-.,'..,,.._ aad an average 

object size of 4 W«ds. dtete .,.m ht.at IDQlt.lJ ldlioa__.ble,Gbjects aad .(we 

estimate) JO million laCCel&ible refereoca. .If the ftll'tae time to swap in ae 

object from .x>ndary .... ii 100 .aicrOllGOtlds, ... mark rpU.. that 

performed 30 naillioe llCODtiary storap acr11111 itl-aueeee would run.for about 

oae hour. 

The perfj)l'QJ.ance of the mark. phlll can be ;greatly improwd if multiple 

secondary storage requetta caa lie procesMd~tly·· lf•muJtiple. leCOlld1ry 

stQfage reqvests are ou.tstaadiag. to a tingle ·leCOftfluy 1toraae device, then the 

average acc. time can. be reduced by .Jl'OCIHilll· Nr1ileltl, in the proper order. 

The. eff~tive :~ time cq, a1- ba redueed by . ..,,tntdtiple,.coadary ,stoup 

devicet so. that a a.-r of traalfen.mn prooeed io pu1Uet · 

If enough coracurHPt ,,.. ... ,:caa. ·~ aeaeneed, ad time. are eaoush 
IC!C<>ndary •totaae devbl. die .Jimt•. t1ae ·,,.a••··'* wiU ,not be tbe 

.econdary •torap acce. ~·b1atwill ltetha:Jrimary'.1tarep:~ aad the 

overhead of initiating transfers. A factor of 10 -..-cm.d · -would inYolve 

transferring at most «> ··wordt per t<X» mica'~ , «· 1 word· every 2.S 

microseconds. wwniag aa average object lize,of •·words. .. This rate "is similar to 

secotadary atoraae tramftr ratee ia current . .,._.. def thoaW• preunt llO 

difficulty. The factor of. !(} imprcwe•11trc:c.ld: pnatily .ba.obtained: . ..U..:4;~to 

8 secondary atorage.·devicel, ..................... ,. r.- ef;2:~paeat 

from reorderifta req11em•.to ,eadl dlirice.· c-ful.~ imust be paid .to 

designing the. ayatent:to mi.- :the overheemof ,.,_ ..... ttaatfan. We, refer 

the r.ader·,to.a deliga .. by Ackerman for ... acbiP-t111ro.,..._ __.,,,:,atorap 

module (1). 
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A factor of 10 improvement yields.<-a, ,mark pbase time-: of only . al!Jout · 5 

minutes. Obtaining this improvement depends, upon generating lai:gc numbers of 
.~ - ' , ·. --

concurrent secondary storase request&.: Fommately, the ·amount of potential 

parallelism in the mark phase is practle,aUy ·uq)i~. · .:l;'racing a vectQC involves 

tracing the components of the vector, all of w1iich clln· be;traced concurrently. 
, -_, "' '. ~ - . .r .:i _·· . .· ,··. l '. ' '. 

The sequential mark phase algorithm can. eaaily· ~ modified to fork a new 
" '' ~ 

process to trace a partic~ar' vector wh~ver · .. th&. ·fu•t' number •.of garbage 

collector processes i'. Jess than·· .the desired ~umber:· 
. . 

Such an algorithm, is, presented in >Figure 15. This algorithm simulates 

multiple processes using an explicit state array. It uses a simple· cyclic: teheduling 

algorithiµ and.explicit polling of peftdina ·~•ri .. •tor. ~e(}uests. In this way, 

we avoid many of the problems of·implerneating ·a 'general process mechanism, 

such as synchronization and interruptibility.· This approach is possible because we 

believe ·that a sillgte processor ·is .. suff~ieat to drive the secondary storage devices .. · ... .,. . 

at the desired rate. 

The only special operation used:by tll6' multiprocess mark phase algorithm 
~·- . . 

is vector _touch. This opeJ"ation will.submit· a, seeoadary storage request for the 

vector, if needed. In aqy case, it re~~ 1in1mt~Ua~ c tJith an indication of 

whether or not the vector is currently in priµt8ry .storage. Vector_touch is used 
' ~, . - ~ -; ; 

to overlap computation with secondary storage ,·.accesses; when vector_touch 

indicates that a vector is not yet in prlnWy ~ .... the BµU°k phase will turn its 

attention to another process. Yector_t(!uc'll ·is qsed Only before accessing a new 

component of a vector being trace<!, as that is where secondary storage accesses 

are most likely. All ()tber vector operatio•' ,wait for any needed secondary 

storage accesses, as before. 
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Flpre 1 S. Iteratbe Maldpreceu Mark PlaaH Alaorltlam. 

multiprocess_mark_phase • proc (root: vector) 
vector_incr (root) CJfJ Je1I ~ count of root co I 
maxn: int :• 10 CJfJ maximum number of ·prCX*Mi• 
n: int :• l • current numtieror•proc•et• 
i: int :• 1 % the current •proeta• 
% The following two arrays store the proCels states. 
% Only the ........ in· the ranae -1..N .. ..uct. ... 
v: array[vector) :• array[vector]Sftll (1, mun, roOt) 

·. % Vftl iuhe '¥ector curnmt11 Mini tr.c.d bJ process 1 
vf: array[ vector] :• array[veccorJfiU O. ~ rooJ) . . . . 

% VF(i] is normally the father of V(il · Homer, if VF[i]-V(i]. 
.% then V[i) it ti», root of the.,. .. tr ... by process I. 
% This convention U5ed co detect termination. 

while true do · 
ve: vector :• ~tor_current_-,at (Y(iD ... Mt '14Ctor element of V[i] 

except whtn none: % if atr compOne..ts or V[i] baV. been traced 
if vfliMil c8la ... finitlwclce•••1 :1ootc0t tubtr" 

if ·n·l then return end t, all proces1es done 
v[i) :-vf .. ·vCft),..,.:vtfa)n > •t • ..... procen 
i :- i+l; if j>n then i :- I end CJI, select new procets 
contiftue •· ... ti iteration of loop 
end 

ve :• v[i) v[i) :- vf(i] % pop up one i.vel 
v(i) :- vector...-...,.,(Y{il ._) . 

% store element back into V(i]. obtain old VP[i] from V[i] 
'*ltinue ...... iteration of loop· 
end 

if NVector_tottch (ve) then''» VE not In prklilrJ 1toraae 
i :- i+l; if i>n then. i ;.. I end ., ,... •• proeeas 
continue~ next iteration of loop 
end 

if vectorJncr (ve) % incremtnt reference count 
then ., we need·to tree ft 

end 

if .. < mun ..... CJ(, fork • new procest 
n :- n+f; .[n]> ve; vf[n) i- ve .... ·. 

vector ..nch..ref (v(i). vf[i]) 9ft .ave father where son was 
vf[i} =- .,p) 1(1),. .... don 0 .... tevel ... ,,.. 

end 

veccor.,.skip_element (Y(iD CJ& done with that component 
end 

end multiprocelS_marLphase 
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The sweep phase will always perform at least as well as the mark phase. 

The sweep phase examines every object in the virtual memory. However, it can 

examine the objects in any order, in particular, in whatever order will minimize 

the access time. If there are multiple secondary storage devices, it can sweep 

each device concurrently. If we assume that the sweep phase takes the same time 

as the mark phase, then the total time of the garbage collection will be about ten 

minutes. Clearly any time of. this magnitude is acceptable for infrequent 

scheduled garbage collections. 

6.11 Evaluation 

Our proposed mechanism using queued reference counts and occasional 

garbage collection has a number of advantages. Because reference· counts will 

detect most garbage, garbage collection need occur only infrequently at scheduled 

intervals. At such intervals, stopping the system to perform garbage collection is 

often acceptable. We can thus use a relatively simple garbage collection 

algorithm, which can easily be modified to perform a salvaging function. In 

addition, because we can devote the entire resources of the system to performing 

the garbage collection, the garbage collection time can be quite short. 

The queued reference count scheme has both simplicity and performance 

advantages. The set of counted references is well defined. The set of events 

that can change the reference counts is easily derived. Problems of race 

conditions and synchronization to preserve ordering are avoided. The rate of 

reference count modification is substantially reduced, and most reclamation 

activity is performed concurrently with normal processing. The overhead of using 

reference counts is thus minimized. The one functional disadvantage of queued 

reference counts is that the reference counts cannot easily be used by primitive 

operations or user programs, for example, to allow the representation of unshared 



- 106. 

immutable objects to be modified (witlJcMat ~,~ .C,Opied)r , TJajl clisadYantage 

would be serious in a 1yate1n ~t -~ ··.~ .~.ob~ e.g. • 
data-flow architecture U ii 

"· - . 

The, queued refereQCe couat tcbeane ii. similar ha urategy to a mechanism 

. propdscd by Deuuch and BobJow U2.J.1 ~~ ........ •• ~ig~ .fQI' a 

standard s~proceu. LISP •)'Stein·. Refer~ U1 • e,.._tion s~ck are not 

counted, thus reducinJ the. nwnber of r~ count operations. . Unlike our 

mechanism, the reference counts are not stored in the °"~· wt in •parate 

tables. These tables are arranged so that no storage is required for reference 

counts wh<>&e value is one, the most common case. The user· process does not 

~irectly access reference counts. Instead, all reference count operations are 

queued in a transaction file (1°F) ~nd prOCessed · in batehes. When the · TF is 

processed, a copy or the current evaluation stack is giveo to the transaction file 

processor (TFP) so t1lat refe~ces in the evaluation ~k Will be ··considered. 

This action of passing the' current evaluation stack ~· c TP and creating an. 

empty TF for future use is equivalent to the quiescent ~te in. our mechanism. 

Once the TPP has begun processing the TP, thC user process call be rcsum~. 

After the TFP has finished proceaing the TF, the reference count tables will 
contain the true reference counts at the ~ ;. m- ·,,. started. The TFP 

can reclaim ai1y object that ·bu a zero reference count and is not ·referred to by 

the evaluation stack. Because the TFP has sole accas to the reference eount 
- - - --

tables, it can directly perform any reference count operatioris resulting from 

object reclamation. · It can thus discard entire structures· at once (if desired), 

rather than one level per cycle. The ~~tap of thf.. meCbaailaii ii .. that, tF 
,. 
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entries are generated for every reference count transaction, not just those 

between zero and one. The number of additional TF entries will depend upon 

the amount and activity of shared objects. 
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7. The Implementation of Storage Allocation 

· There are actually two storage allocation prob~ms, secondary . storage 
. . . ' 

allocation and primary storage allocation., Seco~dary st~age is allocated as part 
,. ' . ' ~ -·... , ·' 

of the vecto~ create operatio(l; secondary storage is deallocat~. when a vector is 

reclaimed (by the GQ. processor or by the garbage collec~r). Primary storage is 

allocated when a vector is cr~ted or sw;tpped in; prim~ storage is deallocated 

when a vector is · removed from primary storage (as part of reclamation or .. to 
- . - ' ' - -

make room for other vectors). We will begin by ~ri~g secondary storage 

allocation, which 'is a more serious problem. 

A note of termi~ology: ~se . __ the units, of storage allocated and 

deallocated correspond to the units of informatio1.1 .. transf~~red . between primary 

and secondary storage, we will call these storage units . (primary storage or 
- ! ,.- ' - .- :: . -

secondary .Storage) JJil8.es. Unlike IJlOlt cony,.entioftat ~ systems, these pages 
., - - ' - :'.6 - -

come in many different sizes. 

7.1 Secondary Storage Allocation 

The secondary storage alk>cator must satis£y a number of constcainta. 

First, it must be prepared to satisfy arbitrary iequests. for ·JU>rage. ranging ·from 

one word to some maximum value ckoaa ay··tae .-m.designer.. In .. respo~.,tiQ 

a request, it must allocate (at least) the desired amount of contiguous MCODdary 

storage. 

Second, most allocated pages cannot be relocated · ;iri "~dary storage 

without stopping the sys~m. The SCCQUdary _storage alloca10( thus cannot depend 
~ - _. J .- - ; .. ,, . . :: >_; : •• • -

upon being able to perform .coin~tion,,,_ex~pt as P*l'.t .of peric.xjic system. 
. ·_ . ' . -'' . . . ' .- " :- . .. -

maintenance. One should expect that free stor-ae will be ~~iered throughout 
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secondary storage. It is important that _ttorage ~ caused by 

fragmentation be controlled. This problem is especially serious because 

campaction can not be . Used. 
Note that with respeet to a single system, storage underutilization is 

meaningful only when a request for storage· fli°k.· Sio~qe is ~derutilized if free 

storage exists but ~nnot be U$ed to satisfy the. railing request. Alternatively, t~e 
degree. of storage underutilization will detennmi'h0w much secondary storage is 

needed to allow a given computati~ to be perfo~~. In this case we arc ·in 

effect comparing multiPfe ·systems with different storage sizes to find the smallest 

system that can perform the computation. 

Finally, because secondary storage alfution ii performed frequently, it is 

impo~tant that allocation and . de&nocation t:Je'' fast. Herc' we arc concerned 

primatily with minimizing the number. Of secooctary storage · aCcesses, although 

processor time is also important. The free ~ storap p8ges will likely· be 

identified by chaining them together on free lists. We . muSt reject any method 

that involves searching through free sfO!•, ...... tq,.,~911Jl .~atien or 
·• .. ~-:> . 

deallocation, because such searching would likely incur multiple secondary storage 

accesses. Many standard storap allocatioa ,llla*ithadtw~- ,lal"Cltiq a free 

list to find a free page larp ·eaougk· to satisfy:-&- recpaat or. to _fllld adj-=ent free 

pages to ·merge with a:··paee beiag ... ._... .. · s.dl .algoridum are aot 

acceptable. 

7.2 Zoned Allocation 

Given the above constraints, we cOncf.Jde that the proper strategy is to 

divide secondary storage into a numbet Of;-:;.~h·~·;,,~ Pfovides pages"of 

a single size.1 (Pot the time being,' aSSilme thlt the-';nu~' ot mnes (pap sites) 

equals the number· of poaible vector sU.es and that the maximum vector size is 
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sufficiently large that the overhead of using multilevel structures is insignificant.) 

Within each zone, storage .allocation can be handled much as in a conventional 

paged system. The available secondary storage address space can be split up into 

pages, each of which is either allocated or free. The free pages can be chained 

together on a free list. Allocation and deallocation require at most one 

secondary storage access to read or write the free list pointer in the page being 

allocated or deallocated. Within each zone, there is no fragmentation, as all 

pages are the same size. 

While there is no fragmentation from the point of view ·of each zone, there 

can still be storage underutilization from the point of view of the system as a 

whole. If a particular zone becomes full, it is possible that a request for storage 

will fail even though free storage exists in other zones. If free storage exists in a 

zone that provides larger pages, then a larger page can be used (at a cost of 

introducing internal fragmentation). Ultimately, however, a request will arrive 

when free storage exists only in zones providing smaller pages. Unless the 

relative zone sizes can be adjusted (unlikely if allocated pages cannot be moved) 

or there exist contiguous free pages that can be combined to form a page of 

sufficient size (ultimately unlikely, and probably an undesirable solution in any 

case, as it adds complexity and defeats our method of determining the size of a 

page from its reference), the request will fail. Any free storage in other zones 

will be useless. 

The amount of storage underutilization resulting from partitioning 

secondary storage into zones depends on the variation over time of the 

distribution of the sizes of allocated pages. Each zone must be large enough to 

handle the peaks in the number of allocated pages of the corresponding size. If 

1The term zone is borrowed from the Smalltalk-76 implementation, which uses a similar 
secondary storage allocation method. 
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the size distrib\ltion remaim rdativdy ~ ·.tkea eadl .- will have timilar 

utilizatioos.. ShO\lkl a . .- become fvll, • o&llef, .,.. .. 'Will te· aeady full. se 

that the a.mount of ..... ltOrage is small. oa tbe ·other band. if the size 

distribution varies wildly over time, U.. tile •tiliaaUoll '.of ,the most uttli1ed aoao 

~t any one time will likely be much are&tef; *" the -~ of ti. other 

woes at that time, resultiq in sjpi&tat ttorqo wlcntitiaatioa• 
The amount of stonp wQrutiliption wi»,· in paera1 increaae as a 

function of the number of zones. There are two reuoas for tllis NlatioDMip. 

One . reason is th~ the relative effect ef ibtt oae·{ull ... (the· w rejecting a 

request for storage.) ia.,areater for ...U. a.-·of ..... If there are oaly 

two equally sized ·zene&. tbea the atorap.ftaQflet•titiza• CU· not be. QlOte taaa 

50%, 1.egardlea of the variatiom in 11MHltiJila._, et' .the two IQMS. The worst 

case storage under\ltiliiation fer tea ....UY·tiald .IOMS it ·9095>. 
The other rUSOIJ is tl:aat redudq the n....,. ,of .,.. ril tend to llDOOth 

out the ·time variationl. :ia tile ~- allcqt&td IJIP. Ji-. . If the aumber 

of zones is reduced. IOllle ~that.ftUW;._~ ... toiliff_. ·&OW will 

aow . go to the w zoae. · Vwtioqa in . .._ ... -. of palCf·· ~Y 

allocated. from the diffeieat zoaa will tead i. q1WAI out whoa the zones are 

Qterged, r~tinl ia 1--variatioa·ia ti..~·~,of .,_. ~ 

There are two wa)S to reduce .. ~ •UJlber ,of:.C08Q··(4M"'aiaaber of. paJC 

sizes), each of which bu an associated cost. One way is to reduce the muitnwa 

page size. The cost of this red~ ia an iaerwe- ia the eum\wr of objects that 

must be repre11~ted by .iti-level ~-.;..-.·,.W:~;tM &lllOWltof 

storage occup.I by "p11e ;tablel"... For- ... CLUt...,._~~ we fouad 
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the percentage of objects larger than 128 words was less than 1 % for each 

program. Thus, for maximum page sizes of at least 128 words, the overhead of 

page tables will be insignificant. 

The other way to reduce the number of zones is to provide only some of 

the possible page sizes in the range from two words (one header word plus one 

data word) to the maximum page size. Requests for other page sizes in this 

range would be satisfied by allocating pages of the next larger supported size. 

The cost of this method is that it introduces internal fragmentation, storage that 

is wasted because it is allocated as part of an object but never used. The 

amount of internal fragmentation can be controlled by proper selection of the 

supported page sizes. For example, one could provide page sizes that are powers 

of two. For the same four CLU programs, we found that providing the powers 

of two from 2 to 128 words would result in 17-19% internal fragmentation. 

Better results can be obtained by matching the page sizes to the expected size 

distributions. For these programs, adding page sizes of 3, 96, 5, and 48 words 

would reduce the internal fragmentation to about 7%. 

In a real system, storage is used for a number of purposes. Most storage 

will probably be used for "file" storage that changes at a relatively slow rate. 

Other storage is created and discarded at a relatively rapid rate by processes. 

The total storage usage is the sum of all activities. In a multiprocess, multiuser 

system, we would expect a relatively stable, slowly changing distribution of 

allocated page sizes. A slowly changing distribution can be handled by adjusting 

the relative zone sizes as part of periodic maintenance. What can't be handled in 

this manner are the dynamic ups and downs caused by the activities of processes. 

For example, a particular program may create a large number of objects of a 

particular size, which are all discarded when the program terminates. These 

variations can be handled only by providing extra storage in each zone. We 



would expect the variations··caUlld by nanoiq pnJCe•ea to t. a mia11. percentage 

of the total amrap·:asap, :&0 that tla mat of ......... undetutilizatioa ril be 

tolerable. 

7.3 Block Allocatloa 

To implement a number of.storage~ ft will cli~e· lecondary storage 
•• -, ·--·- •• •• ' u - • 

into fixed size blocks. Each block wni ~} 'ilaiifted ti) a :pa1:ticular. zone and will 
therefore provide a sinde page. size. The· block size ~lf.probably .. be a multiple 

of the maximum page size, chosen to m~~tt.e' ~~tit of storage· wasted 

when a block is carved up into pages of any of. the SUpPorted page sizes. The 

block size may also be. affected by the addfessina dw-C:teristici of the secondary 

storage devices, as we require contiguous-~~ -~- addresses within each 

block. Bl~ks wiil be identified by. bloCk num~ ;:boR . choice will again lie 

related to the addres&ing characterlstb of the '.~Uy . storage devim .. 

(However, for each secondary storage cSe~ the ~k. nu~bers should be 

reasonably compact, to allow ·the use of d. t~bles indemfby block number.) 

A secondary storage page will be identified by a device· number, a bl~k number 

on . that device, and an offset witlun: the bfock~2 (This.~ storage ~address" 
will be used as. the data part or a ~ J'ef~.) : . .: . . . ' 

Each secondary stOrage device will ~ha Ve an asiocia~ tabkf in fast storage 

mapping block numbers to zone numbers. (A .. directly ~:led table requires only 

4 bits per. secondary storage page, assuming 16c·~r re~ funel.}. The tables -·can 
2Alternatively, the pqe number within the bloek c;ua be u.ed ~ of the off~t. Thi5 

method saves one bit of address length' where odd ,... ........ uaecl. usuming • minimum page 
lize of two words. 
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be used to determine the size of a secondary storage page given its address. This 

ability is needed so that the proper amount of primary storage can be allocated 

before the contents of a page are transferred from secondary to primary storage. 

Two methods can be used to assign blocks to the various zones. Using 

static assignment, the expected distribution of page sizes is determined in advance 

(e.g., by measuring existing programs), and blocks are assigned to zones 

accordingly during system initialization. Using dynamic assignment, all blocks 

start out empty and not assigned to any zone. When a page of a given size must 

be allocated and there are no free pages of that size, an. empty block is assigned 

to the corresponding zone and is split up to form pages of the desired size. . The 

ultimate zone sizes thus will reflect the actual page size distribution, rather than 

a predicted page size distribution. 

Additional flexibility can be gained using dynamic assignment if blocks are 

removed from zones when the blocks become empty. (This ability requires the 

free lists to be organized so that each block in effect has its own free list, to 

allow the free list to quickly be adjusted when a block is removed from a zone.) 

Dynamic unassignment permits some adjustments in zone sizes in response to 

changing size distributions. The effectiveness of dynamic unassignment depends 

upon how many blocks become empty when the number of allocated pages in a 

zone decreases. The probability that a given block will become empty decreases 

rapidly as the number of pages per block increases. Dynamic unassignment is 

thus most helpful when storage usage shifts from large pages to small pages and 

least helpful when storage usage shifts from small pages to large pages. For 

dynamic unassignment to be useful, the block size should be minimized. 

Dynamic unassignment does not solve the problem of storage 

underutilization, but it does offer some help in recovering from a storage 

unbalance. Nevertheless, the best strategy is to make sure there is enough free 
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storage in each zone to handle: anticipated.~e. 'An.otmoua ~~of difficulty 

here is .the possibility that ,~ progralJl .. will maliciously or. erroneously allocate · a . . 

large number of objects of a . ~~ ·size. Here dynamjc'. assignment and 

unassignment perform WOf&e than static~ Static uli&•ment will stop 

the program when the particular zone beeo._. . full.. . If the objocts can be 

reclaimed, then the system can resume .nQtinal activMy withOtlt mu~ disruption. 

Dynamic assignment and UJ18SSipment ~~~ the,1PJ.'Olf&m to run longer, 

possibly reducing. the free storage leve.IJ io all zoae1Ja near a,ro •. FurtlaerlllGre, 

even if the program. is stQppM ~:the oWecu: rec~~ i5 no, &Ul\rBQt• 

that the blocks that were tlynamicaJly ·~· tq ~ ZOQe ~.;\>e:•ptied and 

so be .made available gain to.the~. zqiaes. lt.is ~that these blocks will 

also contain a small number of objects created ~rreA.iY Qf othei· processes. 

These objects may prevent the.storqe;u&Qal•c.e~fr-. beina:~ected. 

The solution to this problem aad .~-like ,jt must· be .a resource 

allocation mechanism dlat limit& the ability: of, -jadivid-1 ..... to obtain more 

than an appropriate. &hue of tlie system's·,..._. . We wiJI, enmiM ta isauo 

in Chapter 9. 

7.4 Evaluation 

In this section we· evaluate the block allocation mtthocl' with respect to ·the 

two criteria of storage under'1titization and 'alldcatiOll~tion speed. 

There are two sources of storale undertatilization. 'One is· internal 

fragmentation, resulting from ·rounding up request ·sizeJ to the'' llext ·supported 

page size. Our evidence ·indicates·· that a proper· Choice of ·at:>Out. tt· page .~ 

matched to the expected object· si7.e distribution can· limit storage underutilization 

caused by internal fragmentation to under · 109' ot the total secondary storage. 
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The other source .of storage u1Jderutili&at'1n is extetnal fragmentation 

resulting from paititiooing secollflary ..,..iatO' .zoaa .. ·1flae auanitude of' this 

underutilization depends upon ·tile amount· of short .. term ; "8riation in·' the 

distribution of oqjeet sias;· We ilave·• •is.: for -kid& ~IC estimates, but 

we believe that in· RlC)St. cases extemal.fi'agmentatioa:'wiU be a..nian perceatage of 

the. total secondary ·.storage size. . · 

It should be notc<l th~ COPentional · ft1-'.SJ8teml'also· have fragmentation 

problems, particulady, jiu.aaal i•meatatil'ln ,.......~ ifftmt allocating files -as 

integral number$ of fairly large pages or:.· blocks. Te large,_page size, plus the 

overhead of directory entr• .makes' large,;muabtn e(.•.amaH:~files. prohibitivelf 

expensive. w•ere s1114U ,object&:. -arc- ..,.. oar,ilpt1m:. Will ·lltitize··secondary 

.storage more.~e!ftcieatly than eonveational .,.telltlii 

With respect to allocation and deallocation speed, the block· · '8~ion 

method _ requires at tllQSt one. socoadaq se.ra,e ~ access per ·allocation and 

deallocation.- Is. ihis .. &aed. eaeugh?~ w,e .. have-,,~Ylltivdy. estimated an object 

creationireclaPUltiQn rate of :l(BX}.objeca;.-~~;'"~-• llCOlldary ,stotap 

acc;ess HQuin!s an av~tage of :100 mict~- •ea.'PCrfotming 20fXX> secondary 

~rage a~s .ta -.~ W<>11ld1,~:.two; wondat-: At this rate,•every 

second of µser .cosnpatation W®ld ·ca• two. setoddaief .secoodary,storage :access 

delay, limiting the system to at best 50% of intended capacity. 

There are a number ~f reasons why thf~ilte not rell1y .this bad. For one 

thing, many secondary storage requests can 1:Je perf9~ conc;urrently. Object 

reclamation is ~rformed conc~i:.r~n~y wj~ll. ~~ .. ~'"'. opeo1tion. The GQ 
- ' t-'- '- __ - - -. • - . ·. .• ~ ' • '-~_.... •· - . -

proce&s9'" can easily be. d~ned tQ J\lbmit muJtiple,JJ~U~tion: requests in 
. . " . . -~'-· . ·- ' :;:J.1: "-_ ~ .;t . -" . 

parallel. Storage allocation is perforuie,d, bY.ID\1.ltiP~ Rt~'° there will likely . -. . ;. .. ' - .. - "~ " . -
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be concurrent allocation r~ta. By. haring separate free lists for each 

secondary storage device Hd by ~ IJRlkiple>.:r..,__ to,each de\rice (see 

Section 6.10), we can process requestsia·paralel much flltJer than in sequence. 

Another factor is tbat tile ,eecoalary stota•v 8CCeSI performed during 

allocation serves oal1 to obtaia· the aew free list poiatw .from the ·allocated page. 

The allocation operation can thus "return" the adclrea of ·tlte: .newly allocated 

page immediately, without waiting for the secondary storage requat to complete 

(as IOng as the secondary storage request. is: ..... aateeil, to be·. performed before 

any other operation: on that &ee'Olldary· dllaae: ':PIP}'•· - Thus, the requestiftg 

ptoce&s will not be- delayed unlal~.-it .submits aao.dler allocation request to the 

much of the secondary storage ·aceees 4etay QA· be . a.ertapped with user 

computation. 

Finally, because much of ·the allocation and ~ act.Mty -i-esults 

from the contimaal· creation nrl reclamation of t-.ieAt 41>,lectsi the· number of 

·secondary SkJrage ~·caa~be nducmtitvt.-11ntialy tty··IJlldbtaining the "top" 

portion of the free list in last ftorale. - wt.ea. the raw Of -05ject alloC'atioll· 'Bnd 

deallocation are in (short·term) balance, mosi seeoadarJ: ;storage page· allocation 

and deallocation requeAI will ~txd•adled .....,... . .., ...... ry-lt«ap 8CCf.lleS. 

7.5 Primary Storaae All~tioa 

Compared to secondary storage allocatiOn, primary storage allocation is 

trivial. When allocating primary storage, We dO; ni>t have to lie coilcerned with 

minimizing the· number ··of ~ to ~~ :~urthermote, beC8use objects are 

not fixed for all time in speciric primary notap !Oca~ fr~tation is much 

less of a problem. Any of the traditional storage allocation algorithms can be 

used. To keep things simple, we suggest using the same zoned allocation scheme 
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for primary storage. Because primary storage usage reflects short-term program 

behavior, the zone sizes will occasionally need adjusting. Adjusting primary 

storage zone sizes is easy: one can swap objects out to secondary storage to free 

up blocks for reassignment. At worst, one could simply swap out all objects and 

start from scratch. 
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8. System Structure: the Memory Module 

The purpose of this chapter is to present an actual design for a memory 

module based on the ideas presented in the previous three chapters. The design 

will consist of a collection of hardware modules and interconnections. The 

functions of the modules will be described, as will the various kinds of messages 

transmitted between modules. Particular attention will be paid to questions of 

synchronization and flow control. 

8.1 Vectors and Pages 

The previous chapter introduced the notions of primary and secondary 

storage pages. At this point, it is convenient to introduce a third kind of page, 

called a virtual page. All pages are structured, mutable "objects" containing 

fixed numbers of elements. Unlike true objects, pages are explicitly deallocated, 

via dealloc operations. Thus, in some sense it is improper to call a page an 

object; however, for convenience we will continue to do so. In addition, as 

described in the previous chapter, pages come in only a few different sizes. 

A secondary storage page resides in secondary storage and is identified by 

its secondary storage address. A primary storage page resides in primary storage 

and is identified by its primary storage address. A virtual page resides in virtual 

storage, that is, it normally resides on secondary storage but will be copied into 

primary storage as necessary to support fast access. Virtual pages are the basic 

"objects" provided by a virtual (multilevel) memory. 

Virtual pages are implemented using secondary storage pages and primary 

storage pages. Each virtual page is represented by a secondary storage page, 

which provides the "long-term" storage for the contents of the virtual page. A 

virtual page reference will . be equivalent to the corresponding secondary storage 
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page reference, that is, it will ~- a·.~ry ;storage ~ When a 

virtual page is being used, its contents will be temporarily stored (cached) in a 

primary storage page. The correspondence befiteen virtual pages and primary 

storage pages is maintained by a page'tnap. 

Vectors will ·be, imj)lemented using ·virtual pages, henceforth simply called 

pages. Each vector wt11 be reprmented by a Single1 ·page. Element O of the page 

will be the vector header •otd, wttiCh fs a -bitting ~alUe tomposecf or' 'a nu~ber 
of fields, described in Figure 16. The remaining· elelttents ·or the page wt11 store 

the elements of the vector. A vector reference wjij __ µ."' ~t. ~taUl t~ 
-~· ~,ii ;'-c.1 }._ >;. ' -; _- , '. -

reference of the ~ge that represents the vector .. In particialar, the vector 

~eference. will conuain #le secondlU')' storase-.wr• ot • ._ . ..,.._ Tbe type code 

will indicate that the r.ofereqca. is a ftetOr.r tderence .. :,(Ne ~ .type 1XJde di be 

type code 

ref count 

marlc bit I 

mark bit 2 

size 

Identifies·· the pap ias being allOCa~ 8nd as representing a 
vector. 

Counts the nu'mber or rer«ences to the vector in the graph of 
objeC,ts in the MM. . ·· 

Used during· GQ. proc-esshlg to count (mod 2j the GQ entries for 
tWs vector. Usect ...,..)~.-..· Gollectibn'maik· pbw-'to 
mark accesfl~ .veqtop. . 

Used during GQ pr~ 10 identiff ttuplicate GQ entties for 
this vector. µ~ .,d~ ~-'~-~;_mark Phase to 
indicate that the vector sU.e is one less than the ~ siie (the 

. page. 4Tulr'). ; : ,· . ' ' ,. ' . ; 
', 

Normally, the number of elements in the vector. During the 
garbage COllectloa, awt pllue; the adibei of veemr elemelits 
~t have beeo examined..··· 
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stored in a vector reference, as the. representation type ,is . .implied by the abstract 

type.) Only the vector implemeDtation will be allowed. to coovert between a. 
vector reference allQ the correspondinJ page reference. 

l1t. ~tion 6.9~ it was mentioaed that tbe .. Y.ector aize fi~d in the beader 

word can. be used as. an el~nient ~wter by the,:lat~ AAllectm.'.. This "trick" 

depends upon the ability to determine the size ~f a.~ndary st(l(age page (and 

therefore a virtual page) given its secondll')'·~ adckas« (Jee Section 7.3). If 

we know that the page representing a vect.qf is. f\JJl, meanipg that the veetor . size 

is equal to the page size less one (the header word), then the vector size can be 

computed directly from the page size. OthetwiSt~rthe· vector size can be stored in 

the last word of the page while the vector is being traced. All we need to do is 
. . . 

be able to tell whether the page is full or not. We can use the second mark bit 
-:~ -,, ,.. ,• 

in the vector . header word for this purpose. 

Figure 17. Memory module str,actare. 

Vector 
Module 

Page 
Module 

1 If the memory module 5upported Iara• or d)'aaaic ~ tliM SUC'h aa object couid be 
repre~nted by a top-level page containing refer•~-;~·••t ,...._ Using pases (rather 
than vecton)'t'ti,. *~'"'c>•~~N ~~~ .. Jf<~,••W ~r~ur•*:.vie'ftKI as 
a 5ingle. object -~~bi~1~~~;:it ~~U:;J>e,4.~u •"flit. .,il'bp~,~.ie;r•~·~· counts 
for the internal componenb are not needed. 
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The distinction between vectors and pages allows'; a similar division in the 

design of the MM. The MM will be split into two modules, ·a page module, 

which implements pages, and a vector 111od11k, which implements vectors in terms 

of pages. This structure is shown in FigUre 17. The page module performs 

storage allocation, reference mapping, synehronizatiOn, attd implement& the 

multi-level ··memory. The vector module ·implements automatic storage 

reclamation. This separation of function helJ)! to imptove the organization of 'the 

design, making it simpler and more underitandable. 

8.2 Vector Module Specification 

The explicit function of the vector module is to. implement . the primitive 

vector operations described in Chapter 3. For CC?iivei.Ue.nce, these operations are 

listed again in Figure 18. 

In addition, the vector module has one implicit function: it must. 

automatically reclaim the storage of objects M' ha\fe ~ inaccessible. As 

described in Chapter 6, this functio11. req1:1iJ:es that t!ie vector module update 

reference counts, construct the GQ, process the OQ to identify inaccessible 

objects, and reclaim the storage of those objects. The vector module is 

Figure 18. Vector m9dule ext.-nal operations. 

create = proc (si~: bstring) 
returns (vector) 
signals (negative_size, size_too.Jarge., ao...atorage) 

equal = proc (vl, v2: vector) returns.(lstdng) · 
size = prec (v: vect'Qr) rettlns «bltring) 
fetch= pree,(v: •ector; index: bltriug) retwlls {any) dpalt (bounds) 
store= proc (v: vectc:>r1 inder. bstring, element: ny) 'd ..... (~) 

,. ,' ,.. . . t 
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responsible for initiatina the .quiesceAt state and coordinatiqg the. establishment of 

quiescence with the pr-OCeaSing modulo. r• wctor·..ctukJa,also responsible for 

performing garbage collection, at the request of the control processor. 

In performing storage reclamation,, a:,_ . ._._ .-of "iattcnal" operations are 

performed upon vectors . by the . vector- modulo· itself,, ·Tm. <>peratioas; were 

described in Chapter 6:aod are lilted in•Figvre 19~ . (F~ co.vMieace. " aseume 

only one mark bit,, rather than two.) __ For Jhe'.·r---...;« tbit"ehapter, we will 

not distieguish .betweeit-~aal amt hlter..i~-.r--·· 
The specification of the vector qperatio~- reqµi• ~~t the. ,operations be 

atomic, which ID43llS that any -seq~n~-- pf~,_ ... :.,.rati9ns perfor~ 

co~rently must. Pf~ a rmilt ~ >Wr1rJf'81i1&r• '(IJJWationt-·ia 

SOfD;e order. Actually_ pt;ff.ormiag.-onlJ ea6 9M.ation It a -~ \J;OU1d. paraatee 

atomicity, IJut WQQ!d. 1'e UllfieCaSaff!r~,- 8QQae.~ratjQRS c\Vitl take ~ 

relativoly k>ng; time to perfoim, blQ-~~ pr~j•<¥ being dcm4- (e.g.., 

Figure U>. Vector- meclule int•m•I ..,..:at..._ 

incr_rc = proc (v: vector)' retutlas (bstring) 
deer-re· =·proc (v: vector}:Ntflr•{blUia&) 
reclaim = proc ( v: vector) 
mark = proc (v: vector) 
unmack = prec (vr vector) . 
marked = proc (v: vectol') returns (bstring) 
touch = ptoc (v: vector) returns (tJstrillg) 
incr ::: prec (v: vector) tehtru (~~,,Ullfi,O,,traql phase 
currenLelement = proc_ {v: v~torl r~ttU",!~ ~~),!!~Jlals (none) 
exclLref = proc-(v: veelot,·e: vectdt)-re'tUras-"(vect'dt)' ·-- - · · 
skip.element = pree {v: vector) · : 
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create), or because data must be tramferted between primaty and tecondary 

storage. We would like other operatiOM to ,,.._. ~ia parallel, with these long 

operations. 

Allowing concurrent operatioas ~ ua to aaalya the eCCects of 

concurrent operationt to see where· ·etp1icit ··~ is needed. ·eere, n 
are-primarily concerned with the effect ef:two .,.._,being petf«med on t1Je 

same vector. (Other -tonftittl, such• COftCUl'Fedtly1creatial -two ve'etors, involve 

simultaneous access to internal data·balir, *-'·,"1ldlronization problems are 

discussed in the description -of the-peae-1110dufe~) We can 'immediately eliminate 

alt of the garbage coUector~~ratioas, ea·1he .-amption that· we ate using the 

pseud<J.patallel -implementation (.-:.: ¥lgiare <tJj, 'W...,. :pertotms -all vector 

operations in sequence.· The·reeultl·of·a aub*.,·ttie·l'emairiiq operations is 

presented in chart fORn itt,·Figure 20. · TIHi',ehaftr~,dft'e· entry for··each 

eombination of operations. · A Jetter ~· t1ttt: ·there can 'be ·no -C01i11iCt 
.,,_ ~ '~ 

between the two operations; a number indicates a possible conflict. 

As the figure shows, there··a1e.·~ fi._.,.._ of;..,..tial conflicts. These 

potential conflicts can be eliminated by the f~ ~411: .~t (3) involve:&. 

conflicts between operations that modift1 :tke · lfeadet· word and the store 

operation, which modifies other page elements. This cOntlict .caa 'be· eliminated 
- \c- ' ,·" .- ··" ,,_ • 

'by p~oviding fetch and store operations on pagea that at1ow· ·each element of the 

page to be read or written individually,,~t iA~erilw- l\fith. otJ:i~r,.,eJements 
' - ·. - . ' .· ~ . '· - ~ -- - ' ! 

of the page. Conflict (1). interaction· betlA 1ar' ~!'~ Ind lt<W, can be 

eliminated by making the ·P* _fotc~'"'.~((s~·,~~,•toPlic. C<>nflict. (2) 

involves the vector store operation, which may have<tofdecreallllat the refueDC* 

count of the object whose reference was overwritten. To make sure that the 

correct reference count is decremented, we simply have the page store operation 

(which is atomic) return the overwritten reference. Conflicts (4) and (5) involve 
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Fl1ure 20. Synchronization aaalytls of •ector eperatlons. 
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A: no conflict; concurrent operations involving any particular vector are not 
possible 

B: . no conflict; b<>th operations are .r~s . . . 
C: no conflict; no intersection between bits read and bits written 

1: 
2: 

3, 4: 

5: 

read/write coµfiict; r~ad Q!USt get either old or .new value 
stores must be performed in seq\ience; each store must obtain the old 
(ol«written) vehle &0 that ia refereattco.i&t ·ean be~remented 
the operations wtite disjoint bits; synclu:~tioq .. i$, n~ only if the 
writes are implemented' as updates, e.g.,''ui)datiftg' a whole word to write a 
single bit 
update conflict; botp.. operaµon& write a. new value. based on the olci value; 
operations must be performed iri sequence · · 

operations that modify parts of the header word. These conflicts can be 

eliminated by providing atomic page operations to perform the appropriate 

manipulations on the header word (element 0 of the page). 
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· What we have just done is to pua all of the ·vector 

problems onto the page module, which now m~t support a number of atomic 
7 •• _, -· 

operations of its own. As a result, we eliminate the need to have any explicit 

synchroniµtion in the vector niodule; itselt wli;le ac¥ina refere~ce count and 

mark bit operations to the page module is · &OllleWhat distasteful, ~e elimination 

of a second level of syndlronizatioo '5implifaes the design considerably. As an 

aside, although we will. name these new page operations after their vector 

counterparts (i.e., incr_rc, decr_rc, mark, and -, un""'1'k), their actual 

specification would not be in terms of referenCe couats aad mark bits (si11ce 

pages don't have reference counts or mark tiJta), tiut in terms of manipulating the 

contents of the bstring object .that is • contents. Of e1$aent _O (the vectOt 

header word). 

8.3 V eetor Module Design 

A block diagram of the vector . module is shown if Figure 2 L The 

connection to the processing module cooists- ·of·a numbefof'~ireetiOrlal por~ 

one for each instruction processor and one for the control processor. Each 

processor sends requests to the Wictor -module ·and · receiVeS ·replies' "Via iti 
- '" -- ' ~ - ' . 

associated JGtt. . The l'GJ'*tl: .scat to .tM .netor :rmodule· cormpond to 

invocation$ of the external vectot· operations. -A· pt~-14'ndS···a ·slilgle request 
- ~ . . '' . -.. ' ~ ' .. 

at a time, always waiting for the reply before sending another requett. (The 

rationale for this arrangement is presented ~··Section 4:4S' 
On the other side are a number of bidirectional ports connecting the vector 

module to the page module. TheSe parts are usea oy- ·the vector mod we to send 

requeats te - page .aodule wt HCCi~ dae:~ re,lies. Apio..ads 



- 129 -

Figure 21. Vector module block diagram. 
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port supports only one outstanding request at a time. Thus, the number of ports 

corresponds to the maximum number of concurrent requests being processed by 

the page module. 

The vector module itself consists of a number of vector processors, plus a 

reclamation processor. Each vector processor listens to a single input port. Its 

function is to perform each incoming request by submitting one or more requests 

to the page module through its output port. The function of the reclamation 

processor is to process the GQs and to perform garbage collection. These two 

activities are never performed at the same time. 
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Associated with each vector pr~ i; ,a ·~:«Jlllfl·proceuor, whQSe 

function is to perform any reference count operations resulting from the 
-~ . ' 

processing of vector opetations. l;ach ~eo;nce :yount pr~r has .its ()Wn port 
. -· \ ~-- ~_-:::. : -_·, .... -. -·-- ' - ....-.- ~ ... ~ 

to the page module, allowing it to .. ~ paae operations in parallel with the 

vector processor. This concurrency .. is imPQ_l'Jant,'. as the execution of a store 

request may generate reference count operations~ two other vectors (the vector 

whose reference is being stored a~ _the ... ~. whose reference is overwritten). 

There is no need to hoJd up dl~· reply U>: t¥J qripnal- request while· waiting . for 

the reference count operations to· be performed (which might involve waiting for 

the affected vectors t() be swapped; Ultb 1>riiiiarY: ,.,age). The page mod\de can 

be designed to always select a request rro.D a ~ ~ before 4electing a 

requdt from the corresponding reference count prbceaor, if both pools ~tain 

requests. The idea is to minimize the interfereace"with vector operations caused 

by reference count operations~ . 

The refer~n~ couqt pr~--~~~. ¥-;:internal queue to hold reference 

count operatioJJs waitio&to be,~aM!14 :~ lthat becauae the reference count 

operations resulting from a ~ operation are not performed as part of a single, 
,,.,.. ......,.,...__""' ~ - . , - . .. - --

atomic operation, reference count operations generated by different vector 

J>focessors' can ,tie perftmned oat of ordU; "11 Midfflecfu lkcti00'6;7 ~ ~reid~ 

count-·operetioat·in oar sJStem do·not ~ t61&e1,i'etMl1ifil th 'tit:•'* crier as 
the generating store operations. 

; In" a&frtiOn, eadf ref~ence·~rit pr~ :llUifftikial"ltS own· qileue of GQ 

entries.· As described in SectiOD·:6.ttomftbe'tOW~~r'of GQ ~tri~ ·ror 

eaclr objeet iS' itnportaftt, nat·ltie ~'hi :wtilll the almes ate ptOcessed. Thus, 

each reference count ~·can C'Olleet'GQ:enfries·ea·1ta' o\ft'le})afate qdeue. 
At the· end of the OQ cycle, alt ·orlk ·~*_,ciueUes ·eaa be passed to the 

reclamation processor to be processed itojetller!' ·· mvma a separate . GQ ror each. 
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vector processor rather than a single GQ fer aU '-vector proce&$0rs eliminates the 

need to synchronize access to a shared data''tia8e add -~ OQ ·~rati""s from 

different vector processors to be performed C0*1\lrreatty (t& the extent permitted 

by the page module).· 

The various GQ$ wiH be implemented · u lats of pages; linked together by 

their first elements. The queue entries wilt simply be vector refetences; note, 

however, that these references are not counttd 'itfthe reference counts! Unused 

elements in these paces can ·bee initialiud tO' SGllle EliltingUillttd tlrrd~flntd value. 

A reference count proceubr will- obtain new'queuec:paps-fr&m the page ,module 

as needed and chain them into the lilt· Usinf:·thftd ·m.emdfy to implement the 

GQs eliminates the need to have a separate intermodule oommunieatiOn 

mechanism. 

The decision to begin a -new 0Q :eyde' is made · by the reclamation 

processor. A new OQ cycle · cannc7t &egin''11'iltit·· 'thtf 'pteticms 00 ·;has been 

processed by the reclamation processor. The- tidamatiorr proeessor will begin a 

new GQ cycle sometime after it ·fwshet·proediiq tke pM\'ioas GQ. 

The procedure for establishing quiescence and &qinamg· a new GQ cycle is 

as follows: The reclamation procesror ·0notifies·· "* a:mtrol ·'ptocessor of its 

intention to establish quiesceooe via a special asjn~'' cGtrtrOI · une, labeled 

"signal" in Figure 21. Upon receipt of this signal, the control processor Will eiuse 
all references in the processing module to be sto~ in . the memory m.odule. 

After all the references have been stored and. r~~Ues , ~\'e been .. received for . ail 

requests sent to the meipo9· module, .tho .. ~~~~~f will notify the the 

reclamation proceuor that ~tis done v~ the,~-~ol ~- At. this point, no 

more operatiQn !eqµests wiU be receiv«l b)'~~ vector pt~f&. 
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The reclamation processor:. dJell noaifaea the. ,vector . pr~ that 

quiescence is beina esfabU&hed. U&ing anotber asynehrOllOUI coatrol line. After 

pending, requests have beea fullJ pr'**'. 'Uacludiaa all .. refereace couat 

operations) and replies have been received for all requests sent to the page 

module, each vector procesaor will notify tho ~lamUiosl .p;ocasor by storing a 

reference to its GQ (a reference to the -fli'$t · Pf11e in the list). in a special GQ 

table page (GQTP). The elements of the GQTP •e:.ipidaUy let to eome 

distinguished undejinal value. The ~- Foce&IOt • determine tbat :the 

vector processors are reaey by waitia&. fC)I' taaem; to .... GQ 'tefereacea in the 

GQTP. (The reclamation processor is l>ltf1'"~ w~ ..., :~ in 

this Situation.) 

After all activity ceases in the vector processon and the reference count 

processors, the· reclamation pr~ can Qbtain. t~ .. vane.ts GQs and hegin to 

process them. The. reclamation pr~ must. v,:14. -~ all activity. cease$ to be 

sure that the OQs have reached their ,fuial .Utf;s. .Af• the reclamation 

processor obtains the QQs, it can reset the GQTP.· elaMPa. to. :11ndefin«J. It ~ 

then notify the coatrol processor to resuae operat.ion, .. the uyachronous 

control line .. Each vector procaaor, when it receiw:s ia next request from tbe 

processing module. will allocate a new GQ ia wlaida .. ~t GQ ~ntries ~ill 

be &tored. 

8.4 Page Module Specification 

The function of the page module· is to implement a number of · primitiVe · 

operations. The page ·module recei9d requesti from the ~or module on a 

number of bidirectional ports. . Each request· corrapoiiek to m iaVoeadOn or one 
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of the page operations. For most requests, the page module will eventually 

deliver a reply to the corresponding port. No additiomd requests can be 

submitted on that port until that reply has been delivered. 

The page operations are listed in Figure 22. Most of these operations have 

an obvious correspondence with the vector operations previously described. One 

difference is that page sizes will be identified by size numbers (zone numbers) 

rather than the actual size. Two new operations are sweep_reset and sweep_next. 

These operations are used by the reclamation processor to perform the sweep 

phase of the garbage collection. The sweep_reset operation is used to reset an 

internal counter in the page module at the beginning of the sweep. Then, 

sweep_next is called repeatedly; on each call it returns a reference to the "next" 

page in the virtual memory. (The order can be chosen to optimize the 

performance of the sweep phase.) Both allocated and free pages will be returned. 

The reclamation processor can determine whether a page is allocated or fre~ by 

examining the first element of the page; we assume that header words and free 

list pointers can be distinguished from each other and from anything else using 

some type code bits. 

All of the page operations are atomic. Any set of page operations 

processed concurrently by the page module must produce a result equivalent to 

performing the operations in some order. 

Not all possible sequences of page operations are valid. In particular, once 

a given page "object" has been deallocated, it is improper to perform additional 

operations on it. Of course, eventually the same page "object" will be 

reallocated, after which time operations on that page may again legally be 

performed. Because the page module cannot check the intent of a request (was 

it intended to be performed on the "current" use of a given page or one that was 

previously deallocated?), there is no way for the page module to detect all invalid 
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Figure 22. Page module operations. 

alloc = ·proc (size_nwnber: bstring) returas (page) dlaal1 (no...storage) 
dealloc = proc (p: page) "' No-~ _ .. 
equal = proc (pl, p2: page) retQrns (bstring) 
size = proc (p: page) retvris (bstrlUg) . . (. 
fetch= pcoc (p: page..index: ~ r ........ (aat)a.-k,(bounds) 
store = proc (p: page, index: bstring, cl~t: any) signal~ (b9unds) 
incr _re = proc· (p: page) retilrnS (blWing) "' Jleturm ·oia •mue of reference count 
deer _re = proc (p: page) retun1 (bstriag) • ll.....S new ... of refe.-oe count 
mark = proc (p: page) 
unmade: = proc (p: page) 
touch - proc .(p: pap) l'etarns (bstring) 
sweep_reset = proc O 
sweep_next· = proc () returns· (page) slpall (no_more) 

sequences of operation requests. Instead, we must simply fW/Uire that all 

sequences of page operations be valid; where multiple operations are submitted 

concurrently, we must require that . any Ordering of b' (,perations. be a valid· 

sequence. This requirement is simply a condition of corfectitess of the system; if 

this requirement is not satisfied, the system c&nnot bC ·considered .correct. 

There is really only one new restriction imposed by this requirement: No 

page may be deallocated if there are pending operations on that page. (The 

touch operation is the only operation that may· hutiate a s\V&pin withou't waiting 

for it to complete. For convenience, we will consider a · touc/t operation to be 

pending until some other operatioo. (e.g., fetdt) is performed on the page.) This 
' ' . : . ~ - . ~ -

restriction is interesting because it means that the page ~uie does . oot have to 

be prepared . for conflicts between dealloCatioti and -other' ~perations; it does not 

have to worry a~t someone deallocating a .page while' it is being swapped in. 

The restriction is easy to satisfy: Only-,_the ·r~.,pr~r- ~orms 
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deallocation; it does so only when the page is inaccessible to all other modules. 

Thus, there s~ould be no posaibility of COJM)Urreat operations on a page being 

deallocated. 

8.5 Page Module Design 

This section describes the design of the pa~ ~. We begin by 

presenting a block diagram and describing the funttiont: of the various ·internal 

modules. Nut, we descn'be the operation' or tfie-:pqe, niedule by considering how 

it processes the various kiads of input requests. Finally, we dilcuss -a number ·of· 

specific issues, including page replaeemeat, ~tbij and :ftow- contrOL 

8.5.1 Page Module Orpnization 

A block diagram of the page module is prese~ted in , Figure 23. The page 

module consists of a number of modulei that ~municate via messages sent over 

unidirectional or bidirectional cha~neis .. The .,rimar; :csioraJe m~ule and the 
! ' - , -.. ~ ::- 5·_ "i, _., ~ ' 

Figure 23. Page module block diagram. 

Handler '· ·Paae·Map ., 
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i ...----..,...~ .. 
i :=-
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.-----f l'lld11~•" Module 
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page map both behave as subroutines: a request ·iS 'accepted and a reply is quickly 

returned over the same channel. Otiiet modUMs have .... te mi*t and otitput 

ports and use a continuation model of communication (17l In this model,. each 
message (implicitly or explicitly) carries with it an ind~ti,<>o of whe~ the result 

- ~;.;:t.. __ '. =~ .- ' - - ~ ; .'J; • - ' ' 

of the operation is to be sent and what is to be done thereafter. For example, 

when the stwage pr~;~ a requa,t to * _..ry •toraae module, it 

doe&· not wait for a reply. l~tead.· whea •:~ ,IW&ll module· finishes 

proce&Sing the request, it will sead ~ messqe,·•·* ~ processor. 

This message will be ~ed as a aew request, by· &Ile •toraae Pf<>e:aSOr; the 

message will, coataio all. the inforaw.tion· ~·•··~·the storap. pr0CC$50&' 

about what to do with the message. 

The continuation model of commuiiication ii · ~y &Uitab1e · for 

impleme~ting concurrent operations in hardware systelql without a global state . 
. . ·_ - ·,· --~! -~- -• ~ ~-- : -(.· .:..~!--- ~~- ~ ,.-

It removes the need fot a calling module (e~.,, the storage pr~) to maintain 
- c : __ -·1~;-'~H:'----~l ~;<,.,~--,'":.~;~--~..:, ...... -;.- ·--- _ .• 

information about the state of the transaction· aftei: ·sending.• requeft to a called 
• • " : -- L' -• • • ·< ~---~- ~ ..,.-,:~:"!:': • ! •- ; • ""'.""~:0.7~J ~T·: _,,o ."_. 

module (the secoqd;uy stOr.qe QlQ<hde), lt. ~.· the. _.o.ced Jot~ .the .calling 

module to match that state information with the reply when the reply is received 

from the called module. Instead, the state ~:di/~~ is·-~ with. the 
request m~"-to t.ke~ed ·modu.,:,8"'.i~~k in the reply to the calling 

-- . - - -- - - - . - '.:..:: 

module] It might ~m t4at this 1~thod of ~mmudication is Jess $tf\lC_t\ated?than 

the strict proCedwe ~II/multi~; process • ;,since~ th~- ~Ilg motl~ is 
. . . . . ·-····· . ~- --"'::,.· . -~ .... -- ---~". ,;! i ~-·.,,c. ;"":: 

dependent upon the called module tp Cot~y ..,S · throNh. ~ state 
' . . 

information. Howe•~; the hierarchicat~ of the ~temjfnat damQed: 
, , .. ; - ' ~ 

the calling module ii always dependent u~ the , called m<>d~ (e.g., to 

terminate!); there is ·still no dependeaqrb,-tbe~~; module upon'. the calling 
- y· __ ,_ :."""· - ~~'.·_- .;~_.. . .,: . . 

module. · 
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8.5.2 Module Functio. 

In this section, we will briefly descr~ the Iunctiou of each of the internal 

modules of the ~ge mod\lle. l'!te MUX ·~4U:l>ittattJ, r,~ta-•rriving on 

the input ports. Whenever the page band~ ~: ,._.)LW,;reeei.ve a new request; 

the MUX will selec.t a waitiilg reque&t ftom ~ ef ~·i~,,ports. Each reque$t 

will include a port identification (supplied by the origilijltipa ~o.dule), which will 

later be used to address the reply ,to tpcLproper input pert. 

Replies may be generated by . ei~. :.. page handler . or the storage 

processor. Each reply containa a port ~~ When ~. of th• mod~ 

sends a.reply ~es5al',~ the,MUX,Jl)e ~.will,"8~~,tolho·&peeified 

port. Because each port may 1ubmit OAly ~-.t~ . .&;t _. time,{ the 4~~ 

port will always be ready to receive tile ~y, m.ae. . . 
There is one additional input to the MUX, which is connected to an output 

port of the storage processor. This chaiu1eti5, ~:~~ ~?'IP:IJCocess<>r to 

send n;iessages.to the page .handler ... It ~·~ '~:;;_~.7pr~i*Nd than the 

input ports. The MYX thus .serves 8$ the ~y ,aq,ite,r ,~~incoollna m~ to 

the page bandier. 

The ~ge hapdlet pr~s Uipµt requests)n ~· It has exclusive 

access to the page map, which it uses to determine tiJe,~rJ, stm;age ~r"*' 

of p~s beiN operated upon. In ~' ~ ,tlte,,~Pll• baJl4ilerA~an .. ·quickly 
' ~ - f, 

process a requ,est and send a reply back through ~· ¥1!X. -F,Qt, ,IQW ~rationst. 

s.uch as a/Joe and dealloc, the~ hao41ei: ~j)ISS ~:""ueat tG th~ stor•1e 

processor for hand1i4i. 

If an operation is performed on. ,a pap .. ta.at :is .flOt .if j?riQla1y -storage, . the 

page handler will queue the operation on an internal request queue (RQ) and 

send a swap_in request to the storage processor. When the swapin has 
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completed, the storage processor will notify the .. uadler aQd the pap 

handler can perform the queued requests for that page. Quea•ing requests on the 

RQ is contrary -to the continutioll model cletcribal· ill tlae 1JtcYious section. 

However, the altemati.e m sending··· reqaest• .lbag ·1ridl the 4*Jap_in request to 

the storage processor is unaooeptable, a.e Mditicmal' iequests receifed ·"1 the 

page handler for a paae beiag sw..,m in do ·aot eause·· .,._;,, requests to be 

sent to the storage pnlC!t:SIOI'. 

The primary function of the storage processor is to perform. primary storage 

allocation and deallocation.· In tllis capacity, the- storage piocasor als'o serves to 

initiate page replacemelit when the amount' Of free primary storage becomes too 

low. In addition, the storage'procellOi.Wr•esctO diaect ttarrac between ·the 'page 

handler ·and the secondary'. storage· module. rmillly,· the storage proceS$Or 

maintains the counters needed tO implemeat the ~ and the sWliJ![Lnat 

operations. 

The page map maintains a· mapping· betweea. the aecoDdary storage address 

and the primary statase· address of each page in primary stoiage. As- ·discussed in 

Chapter S, · the page map ·is 1Jl'Pqimf as a large tet ·-.ociative memory (SAM)1 

along with a small, fast translation lookaside buffer (TLB). The TLB Wilt·· use 

store through, so that w1ten a new entry is:to be~ tO die TLB, ·aa existing 

entry can simply be diacarded. 

The aecoodary storage module performs secondary storage dOcatiOn and 

data transfers between primary ·and secondary storage. ·It ·pioctssa request$ 

submitted by. the storage processor ·IDd re.Ids replies back ·to the storage 

processor. It is assumed to be capable of performina a nuaabctt' of operations in 

parallel to reduce the ·fterage secondary stOrqe actm· time. 



• 139. 

The primary storage module is a· coaveational addreasable. memory 

supporting read and write operations. R.eqae1tt· ·are sutMiitted by the pqe 

handler, the storage processor, and the secondary ttorage module. · 

8.S.3 Page Module Operation 

In this section, we informally describe the operation of the page module as 

it performs each of the various page operations. A more complete, although still 

informal, description of the operation of the variolls ·inodules· is given in Appendix 

II. 

All of the operations fetch, store, incr..:rc, decr_rc; mark, and unmark are 

processed in basically the· same. way. . For example, when the page handler 

receives a fetch request, it will first look up the page· in the page map.' If there 

is no entry for the page, then the page must be swapped in. ihe page handler 

will enter a new entry in the page map. This entry'wm·lndieate that ttie' page is 

being swapped in, to prevent subsequent requests for the same page 'that arrive 

before the swapin completes from initiating a second ~~apih.· The page handler 

will also send a swap_in request to the storage processOr, asking that the page be 
·.. i ~. ·' . , ' 

swapped in. In addition, the page handler will queue the original request on the 

RQ, to be procesSed again after the page is ·swapped in. (If the RQ is full, the 

page handler can reject the request by sending a rejectio~ reply message to the 

requesting module, informing it that the request should be resubmitted at a later 

time.) 

If there is an entry for the page, but it indicates that a swapin is in 
\ .. . 

progress, then the request is simply queued on the RQ.. Otherwise, the page 

handler obtains the primary storage address of the page from the page map entry, 
. ' 

performs the fetch operation, and sends the result back to the requesting module. 
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When the 1itorage proce&&Ot. receives a ..,,_;. requ~ ,,it first. sends a 

message to the secoedary atorap aiKlule tq find out wlm-tim, size; of the pap· is.. 

(Recall that the .- of a. page can be 4ete.rmintd by its secondaq storage 

address, using a table that maps block addresses to zone numbers.) When the 
. ' 

reply is received, the storage processor then allOcates ·a ·primary storage .. page of 

the desir~ size and sends a 1wap~in . req~. ~ ~ ~al}' st~ mpdule. 
- ' . - - . ..:' ,- - .·. . . 

The secondary stora~e module will transfer the pap a~icL send a swap_i~,done 
. ' ~ .- - . "' - - : 

message to the s.torase. p~ocasor, which Jorwar~ it to tile page handler .. The 
·.; - .... - . --· - - - - . - ·- -

page handler updates the page map entry to include the primary storage address 

and then performs; any queued requests for ~t ~-
. - .... -. ' .. , -.. -,. i ~- < • .- t ~ . -

There is one additional com~ in .... ~ .. ~ .Whenev~ a .. new 

~ntry is added t~ the page~p, it is ~ .. ·~;die.~re,sxmd~set of ~he. set 

associative mem~y will be fu~, in w~ cas;e ~ e~.~~. ,in .that ,~~ ~ust 
' - <· ~~ ' ' ';_~- • - - -~' ~: •• ' - -

be pushed out of th~ associative .. manor)' ~a,nd . ~t of primal)' s~orage.). (For 
- - . : . . ~ ... _ - ' : -;. . _- - - - . - ~ _: - - ,_ ., -

synchronization re~ we require that .en~ for pges.~ in transit i;aot be force4 
• • - - - ·- 0 '1 ,. ! _o ·-~ ~ - ' ,- • ..; -' • -- _:; - -

out of. the page map. Should the set be full of ia-trUsit entries, which is 
•• • - - !c • • • -

,. -. ,_ 

unlikely, the original request must be reje(;ted. The .-equating module w()\l}d 
• ,'}... < - ; ~.- , ._ _- - <-.... ·" -~-· :)·;) :·· -- ,_- -_ ~ .... ~ _·,'-. - .... -

then have to resubmit the request at a later time.) Whencvef an entry is forced 

out of th~ page ~p, the 'H han6r ',rill.~. the.·~··~ entry to ~ 
0 - - - - .... ~ ,-· - - ,~ -~-~ ~·:.;__·_'¢' :· ':./"...,-~- ;·,,· .. : -, _,-,,.-,_·-: ·-··· _.· 

storage processor in a IW!IP-~Ut req,~t. 
•' 

Pages must also ~ly be ~~- ~rom , prinulry. ~torage to make 

room for other pages to be swapped into j>rimary . storage. The declsM?n to 

remove a page from primary .•tof8'~ .is c:e :;b~ the' ·~ proetsSOr, ;as ,will be 

described in the ~ext sectjon. The storale' pr°'*50f mads a remore request to 
- -- - . - . '- - - . . -· .. - ~ ) i ~ ' < 

the page handler, whi~~ removes the P1P from ·~ .. ~ .~P. ~d sends the page 

map entry in a swap_~ut re<l\Jest back :to~ su>r.Fprou.sior. . . 
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Upon receipt of a swap_out request, the storage processor first checks the 

attached page map entry to see if the primary storage copy of the page has been 

modified. If not, all that needs to be done is to deallocate the primary storage 

page. Otherwise, the primary storage page must be written to secondary storage. 

In this case, the storage processor forwards the swap_out request to the 

secondary storage module. The secondary storage module will write out the page 

and then send a swap_ou t_done message back to the storage processor. The 

storage processor will then deallocate the primary storage page. 

When an alloc request is received by the page handler, it simply passes that 

request to the storage processor. The storage processor in turn passes the request 

to the secondary storage module. The secondary storage module will allocate a 

secondary storage page and pass its address back to the storage processor. Upon 

receipt of this message, the storage processor will allocate a primary storage page, 

initialize it, and send both the primary and secondary storage addresses to the 

page handler. The page handler will enter this information in the page map and 

send the secondary storage address back to the requesting module. 

When a dea/loc request is received by the page handler, it looks up. the 

. page in the page map. If there is an entry, it is removed, and the primary 

storage address is sent along with the secondary storage address to the storage 

processor. Otherwise, only the secondary storage address is sent. The storage 

processor will pass the deal/oc message to the secondary storage module, which 

will deallocate the secondary storage page. (No reply is returned to the storage 

processor.) At the same time, the storage processor will deallocate the primary 

storage page, if any. No reply is returned to the page handler or the requesting 

module. 

• 
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The equal operation is handled Solely-· -by the page handler, as all that is 

involved ii comparing tltetWO'~ The··~ on the-othet'hand, 

i5- passed via the storqe ·proeestOr to the teC08darf '~ modulet whicH 

determines the page size using its bloCk -.- The-iepiy•iS'tent'Via tfle,,.stotag~ 

processor to· the requesting module. · 

The to11t:h operatiorl is handled similarly tO the fdCll operation, e•cept 

that if a swap-in is required, no request is'q\le\ied; ID- 811 'C.., mi immediate 

reply is sent indicatiltg wllether or not ·t11e ·p.ge'iS in~· Siorap: 

Both the ·SWfe/1-"- and· Nftp_11at 'apmtbas · ari''pasiim directly to the 

storage processor, which replies directly to the~ requestiag modUle.. 

8.5.4 Pap RepJaceaeat 

The function of page replacement is to select ~,to be rem~ved from 
•· l - - - . • ' ~·;~. - '!-~ p : -~~.;.,··: ~:";~ : ~~; .. ~ ; '- ;-, 

primary storage to make room for other pages to be ~pt in:to primary_ 
' • ::. l ;. - . ~ .... - . -, --, - ~': ~ .. ~ - - - ; -

storage. In this section we present a simple .~'-~ent nietJ.lod .t\U\t ~ 
• ' - - ' • . - . -~ -.'.ct, ~ ·":'.ti'\ <' .. ! - '-· c • -. • " : - • • ". " • 

easily implemented. .,. 
As described above, when a set of the set ~tiye memory .(~) 

·. ' _- - ' - ''j .... .. J. : -: . '/ .-

becomes full and a new entry must be added to the set, ~.~tin& entry in 
' : . - .... ' - ' ·_, -~ t~,--, ; ·:·~~)' ~-~ _.,-.-.- ·~· . _· 

that set must be forced out of the page ~I>· Thus, the_ ~ .• ~ve me01ory 

requires a replacement algorithm of its own. The -~ recen.tly psed. (LR_U) 
. '. - - - !: ·:::' -:·. -~ ,, -~- ~ ~ -· ,. -. ---. --'3~. ~~-~-- ~":-

algorithm is a likdy c~ .for the .. set m,oc~~\'~ ~CDlot)'.f.~pl~~~~ algotj~ 
becau~ it is easily im~ine_nted ~d _gi~:~ .. Ped~~ ~ . -, , .. 

LRU replacement ~n be i~plement~. as .follows: ~ entry in ~e SAM 
- . .' ~._ -!~-" -:· ·:].- ·- 'i - . - - -

can contain the stack position of the entry in the LllU itack (261 When a ~ge 

is accessed, the stack positions of the entries in the set are adjusted so that the 

accessed page has stack position 1 (the top of the stack), and all entries 

previously higher in the stack than the accessed page are moved down one (their 
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stack positioss are io~reased by ooe). All of these. operatiom are performed in 

parallel. To find t~ least recently used entlj. eae sin:apliJ~searcha for an entry 

whose stack position equals . the number of entries .U. the set. (If the least 

recently used entry were muked as ~transit,. then the,nestdeast-recmtly"used 

entry would have to be found, etc. It is:walikcly, altlleuah,not impouible, for all 

the other· entries in the set to have.been acc.ased··a.tweeal tlte·time.that a swapin 

was initiated and the pthe swapin completes.) 

Our simple page r~meat algoridun is. based on. that implemented by 

the set associative RlOIQOl'y. Whenevet we wish lo select -a pag~tfor replacement, 

we choose a particular set (e.g., by·. keeping a couater; tbat.cycles through, all set 

numbers) and. then fqree the least recently. used not·ift.traasit member of that set 

(if any) out of the assoojatWe memory .{aacl dletd«e; iOUt,Df primal'y storqe). 

The only difference l.Jetwe,n thia action: and :the nennal LRU «tion ·of the set 

associative memory is that in tlU$ caae. th•kJet._, not be'; full. (although it is 

likely to be nearly full). Thus. the least recently used entry may be empty, 

forcing the search to cendaue. •h the ·next ·!cut .. recently used .. ntry, as 

described above. Page roplacement.·<:en ... aa Iona • the amount of available 

primary storage is below some de&i~ level~ 

The·decision to cau~ a.page to be removed from primarx storage is made 

by. the storage processor, which is in c~arge of .pria1aty atorap-allocation., The 

storage precessor will send a rem11re message. ooatajning ·.the selected set number 

to the page ·handler. Upon receipt_ of tile: ,,,...::request, the;page handler· will 

request the page map to remove the least recently used not· m.transit, page 'in the 

specified set. The page handler then sends a swap_out message to the storage 

processor. 
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Our . page replacement algorithm is an approximation of the LRU algorithm. 

It differs from the LllU algorithm only in the relatift ordering ·of pages in 

different sets of the SAM. The ob\liom disadYaatage of ··u LltU page 

replacement algorithm in our system .is that the'~ of:_pages·.are not taken into 

acc~t.. Suppose a free primary ..-ase page ofoaputiCuJar·sizeia-needed. Our 

algorithm may remove a number of paps 'Of. other lilies· before :a page of the 

desired size is removed. These urmecessary pap l'eln0¥als could later result ·in 

extra secondary storage acces&e& On the odler .. im1dt. if.:•the ·bloek allOcation 

scheme described .. in. Section 7 .3 a used f<»r. primary -storage allocation, then-' . it 

may occasionally be desirable to remove fNl'litlllar_ pages; c:A- :other si1.e1 to create 

empty blocks that can be reassigned ta> the ·deliffid ':t.one. Thus,· while- the 

proposed page replacement method will work, it-is cleHlt-aot Optimal.·· · 

We have not attempted to find the·-optimal pap;teplacellletlt algorithm ·for 

our system. However, it shoakt ·be aotid that cleverer tclieines·, mly requite 

additional hardware·or may take more tiale:fb perform. -For example, ·the ability 

to remove a "not recently used" .·page'of a-,.ucatar m···prohabty requires that 

each page -map entry contain the mne: aumMt "Of the J*ge. ·The - ability to 

remove specific pages to create free blocks tequifes· the ability to.find the page 

map entry· of a page pea its prim•1 #ol'op- :addfess; •Which· probably· requires 

an additional data bate mapping primary storage.~ to secondary storage 
addresses. When evaluating other . page replacement· , algofittulla,· t1ie cost of 

implementation must be balaaced apiast ·the ..-.d· beaefit .of a reduced 

aecondary storage ·aceas rate. 
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8.5.5 Synchronization 

The. simplest method for implemeptil)I at9mic operations is to have all 

operations performed by a single module that performs only one operation a' a 

time, in sequence. We have tried to * this method· to the. greates~; extent 
. . . - ·" ,.:. 

poss~ble. The page handler does pr~CS$ Only_ one requesi at a tiine. In m<>St 

cases it will complet~ly process the request· and send ~ reply to the requesting 

module before . reading tl\e next r~est. Using. this ~tbod1 there is only one 

point of sy~~hronization, the :M:lJX. Because .th~ paae handler has exclusive 

access to the page map, no synchronizatio~ is aeedec:t to control access to .the 

page map. 

Unfortunately, strictly fqllowing a one .reqµest at ~· time discjplin~. would 
; • • • ' • , • • < ~ 

lead to poor performance. Therefore, so~ ~ncurre~ is alJ:oweP. Allocation 

and deallocation are ~rformed con~rrentJy ~th. ,Q~~ ~ation,s. Swapins and 
' • . '. .---,_. • • ..;lo-•"'''."'··'" .·· .,,... -

swapouts are performed concuuently wi~h o;her .,~$.l'J.tions. '· Jbese coocurrent 
-· '. -.~ ... - - ,, ,.~-~~.· -"~' . -

operations require additional synchronization. 

The var.ious allocation data ba~. are sync.bro~ ... Pl' making them . private 
. . i ' .. :• ·- _. ' ..... -· ' 

resources of specific modules. -:(he storage pr~r has ~dusive access to the 
. • ••· •• . € ... 

primary storage allocation data. b,~; the -~~·'to~ft§e qacxlul~ ha$ exclu$ive 
' - .- ·- - . . , 

a~cess to the secondary storage all~tion ditta .~se .. ·· Eacl:l. modµle. can ~JlS\U'e 

consistent, access, to its.own data base. 

Other synchrpni~tion prcbj~qis inv~ve Jhe, C<>Qtdination of swapins and 
.- ~ . ~· '._ . . ,: - , ~~ ,,_- ,. t • - _, . ' ~· 

swapouts. with other activities. Swapins ar~ 7G.OO~ff~.•1;e<\:;fj~~.other ~vents using 

the tradit~onal device .. of .art in-transit .pA&e .~ ~ntry~ .. When a swapin is first 
: . _:_ • ' - ~ - ' .. 2 - - - .,'. - • ' ' 0 ,_ '~ •• ' 

requested, an entry i~ added to the ,~a.1e ~pjn~~tiq~ .that the page is in 

transit. This entry is later modified when the swapin completes. Input requests 

arriving in the mea~time can tell from the in-transit entry that a swapin is in 
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progress and avoid starting a second swapin. Replace reqsclll similarly will avoid 

selecting this page to be swapped out. Because each of tbae state changes are 

perf onned as atomic operations b)' the· page handler,' no race cOnditlons are 

possible. 

The synchronization or swapouts is a bit more diffacult. There are two 
problems that must be a¥0ided: Fust, if a swapout iS muDediately followed by a 

swapin, the swapin must not read the otcf secondary stOiage copy of the page. 

Second, if a swapout is immediately foUowed ·by a ~·then the swapout 

and the deallocation mtiit ·not interfere. One po1ui>le solution tO these &)roblems 

is to use state infonnation ia the page - • was &me ;t.O coordinate swapim. 

However, this solution is not acceptable. When a 1W1pin is requested, a new 

entry must· be added tO the page map. Adding tliiS new entry may force out an 

old entry, initiating a swapout. -··1r the Old eatrf~laad to stay in the page map 

until the swapout ~ corDplet~ then ·me•·Sw&pin ·~ nc>t begin until the 

swapout had finished. M'eamthl1e, the pap ...... ~~not· be able to process 

any new requests. 

While various methods could be used to make this solutioa work, there is a 

better S<>lutioa. The iaterfeteaice · bet•eca ~ts aDd Other even ti can be 

eliminated simply by easurlng- ·t11at an lecO&mry stor.&e transfers for a given 

secondary storage page· are performed in. the· Orclet that tbey Were initiated by the 

page handler. For enmple, we know that the Pale 11*'8dt« will . not geilerate a 

swapout··until after the previous·~' 1'.s--~ · '\\'irinoW ·that ., page 

handler will iiot ~ aaotber:-swapiu·unt11·arter~tt.:J.as~sent·0ut the sftpout 
request. If the secondary ·storage·. ttanlfers utiplif:a -~l'.ty· ~- reqUests are 
performed in that Order, tire& the srecoad ·swaiJia wilt-otitlut-the eouect data~- · 
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Similarly, we know that after the -paae1kaodier generates a dealloc request 

for a page, no further requfllt:S -Will be ;gcaeratcd -for that pap,Lunril after the 

page is reallocated. Thus, any, 1wap_tJ11t request must -have been issued befote· 

the· deal/oc request. If the aeeondary, etor«ge transfers corresponding to th~ 

swap_out, deal/oc, and alloc requests are performed in that order, then firs-t the 

page will be written by the swtlfhOill, then il', will -be -writteA by ,the dulloc 

(which writes the old,free pointer in the;f. elemeat: of the paae), and finally it 

will be read by the alloc (which reads the &ee, pQinter~- It ,.is possible that the 

primary storage page inay .be dealloca.ted -be{Qre.- tb4·- $"10/J-IHll is completed, in 

which ~se the sW!lp_ouJ transfer will write, pc----into: Uae ~ndary storage 

page. However, the immediately- followiag deolloc traas• will write, meaningful 

data. 

8.5.6 Flow Control 

The page module consists of a number of mc;dules that send 'messages to 

each other. Most of these modules can handle a number of concurrerit requests. 

However, each module can store orily-a tmiited number ·of messages at any one 

time. Should this limit be reached, it could nbt -a~ further input messages 

until the processing·of some of the stored me.ilage had ball· c:ompleted. 

If a module R is not aceepting input ~ges, then another module S that 

wants to send a message·10 R wmild ttOt- be able to. It must either hang until R 

is ready 'to ·accept the message (until which time S wiD not' accept additional 

messages), or it must queue messages for R intemllly ·until R· is ready to accept 

them. If S queues messages for R, ·it can eventually run. O\Jt of internal storage, 

in which case it again must stop accepting new input messages. 
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Thus we see that if one module stc>pa,aceeptins:messages, anathU module 

that sends messages m it may also .bedomd 10-.mp :BCCef.'Cing messages as a 

directresult~ If the system contains·directed~.dlea..:deadlock may result,• 

aU of the modules in a cycle may be stoppeci,waitinf for. another one to accept 

messages. 

In our design, there are tbRe directed cycleJ (aot couting the 

sbbrovtine-like conneciions to the pap map , and·· tbt. primary storage· module). 

We must check each of these CJyek;s to be sue'. that delldJeck.«caa be aVoided. 

One cycle (actually a &et of q;clts) Cellliia-of ·an ~r port~-~ to 

a pr~ in the vector module) *'the:; page,, llaMlef. .(In ;,some cases, the 

storage processor is ·.also ilwohwl~ - nit :eyd6 'ii. •:::~ ·· beea1lse each 

requesting processor can submit only one request at a time on a given port. For 

those requests that generate replies (all generate replies ~t .-1~/l'!C), ~e 

requesting processor is required to wait for the reply before ·sending ·another 
request on that port. We are thus .paraa~ ~ ... UJ, rg1y sent to JUl: input 

port will be accepted. 

Another cycle consists of.~ JWr8P .pc~ aQd the &eCOQdary storage 
. '-' , • ~ . • , - .. , r " .. - ~., . -

module.. All messaga seat from the ~: ~ ~tale to -~ stor• 
processor are in respoose to ~- eent from ·the ..-. JJ[ocessot ,~ the. 

secondary storage . •• . Therdoie. • ~~'- prqeeaor caa .. predict ~e 

amount of storage needed ~ store an~ted r~ frola,: dJe. secondary star~ 

module. It can avoid- seadiag a mesa• to tlae.~9' :~ll:'Dd~-~~

stotage has been resened for· the reply. This~~.be ~· tq_th~ 
' - . ' . "" ~... ! .. . :.: .. - . 
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from the pa~e handler unless it can reserve ~space tQ completely process 

the request, including s.torage to hold any replif.$. to raquat& sent to the 

secondary storage module. 

The third, cycle is the most complex,.. lt co~ of. the :page handler and 

the storage processqr. Most of th,t;.JA~actiQAs,.be~ the J>MC handler ~d ~ 

storage processor are. i~tiated by. dt~ pq& ~le_i'... , T• swap,..0111 and dealloc 

requests generate no replies by the-storage PJ~. J:he RllOC and swap_in 

requests eventually cause reply message& to· be sea$· ft91D ~' storage proceHOJ' to 

the page handle('. Other reques~ generate. i:eplies from the $t0rage Rf-OCeSSOt 

directly to the requesting input port. 

The storage prOCC$SOr initiates only OQe:~ind of inte;rac~iof\. with the page 

handler, using .. the remo#; request. .. lJte: ~· handlei .-Ecplies with a SWQ/LOMJ 

request. This ... message sequence. ~ .. ~ tQ .·.~use. PIPJ, to ;!le ~pped: ~~t to 

make room in primary stor9 fpt>Otbef ~· ~t ~Y ltft ~Y to swap out 
a number of pages qefore the storqe ·erocasocean .,~ff; all« or $WllJL.in 

requests. . , . 

To avoid deadlock,. we must ensU{e that ... if ·~e st(lrage,,processor. ever stops 

accepting me~ies frQ&n ~ page hand~t thea, ~ is .at ~t ~ request being 

processed by the storage pr~ ..y•_.Pl'.~iN ,~i.-~· fully completed 

witho\lt requiring the page_ handler to acce.pt a<14itio~ qiessa.ges. When t~is 

message is .fully. processed, storage . will. be ma~ a,yai~ tQ ~ow. a ~w message 

to be accepted by the storage. processQJ'. ,(F:or $Unplicity, ... we J1$Sume that all 

messages require an equal amount of internal .. 't~) . .By, our. a~umption, this 

new message also can be fully ,processed wi\hout· reqidriag. the page. handler. to 

accept additional messages. Included in this set of messages are replies to 
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previous requests from the storage processor to the page bandier; such reply 

messages allow pending requests to be completed by· tilt storage 'processor, thus 
reducing the number of requests pending in the storage~. 

This requirement has two implicatiOns:. ''One implication is ·that the storage 

processor must be able· to pr0cess other· requeSb at the 1aDte tiine it i& attempting 

to send a message· to an unresponsive page halldler. A multi-process ; stdrage 

processor is thus necessary, as is the sepatate $todige processor ,Port-· for sending 

messages to the page handler. · (NOte,· - &Oweftl', that this · multi-prdeess 

implementation must not ·reoider tequests 'Oil their way· tO the secondary storage· 
module!) 

The second implication is that the nttmber of· concurrent requests that. may 

· require the storage pr<>cessor to send a· message tO · ~ page bandier must· ·be 

bounded. · The requests that requite mel*aga· to be seat· ftom the storage 

processor to the page handler are alloc am swop_llt. Both meaages require a 

reply ·to be sent· from· the storage ptOcesaor to·• page -halidlet; both may require 

remo~ requests to be sent to the page handler. 

The number of eobCUrrent a/foe requeits is bounded by the number of 

input ports, which are the ultimate SouiCe of the -~ SWap_fn requests, 

howel'Cr, are not bounded by the number·· of input ports,·-as a sequence bf input· 

touch requests eould generate ···-virtUalfy an untimited' number of' concurrent 
swap;_.ill requests. To control ·the number of iwap_i11 reqUests ·..e muSt ·Jimit· 11ie 

number of touch requests that can be submitted before perl'orming · a real 

operation on a touched·· page (whieh would force· the requflstor' to wait ·until the 

page had been swapped in}. The touclt operation ii used ·only ·by t1le prbage · 
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collector; there is at most one pending swapin per prbage.~llector "process" (see 

Figure 15). Thus, by.restrietiagthe aumbcr:of .. ?19rbqei collector ~ we 
• 

can limit the number of concurrent requests.produced:by"IO•h-'apetations. · · 

In summary, the number of cencurreat a/JDC: and , · .,,.,._itt requests is 

bounded by the number of ·input ·pom• plus the· number d' :garbage collector 

processes. These munben can be find (maximum vatues··dtoseai) by the system 

designer. Avoiding deadlock is thus simply .• , .matter ·« providing, eno\igh. *torage 

in the storage pr.ocessot· to ;allow the ·ml'Siln•:·;aunHJer; . .of such requests t<» be 

processed concurrently, ph• room fer at ae.·.cone:«ker'~· ~For· safety~ the 

page handler can keep a :couat of:the>mumter: .. of .'tf/l#!;~.ac1.:sJNP-.i11 ·requests 

being processed by the storage processor. It can reject iaput;;messages:if·tbe 

count gets too high.) 

A number of improvements can be ·made to''die'"'de&lgli' presented in· this 

chapter to increase the performance of the system. In particular, there are a 

number of ways that the system can be "tuned" to provide greater throughput 

and to balance the capacities of the various parts of the system. For example, 

because all requests pass through the page handler, it is likely that the page 

handler would be a bottleneck, limiting the throughput of the memory module. 

However, the throughput of the memory module can be increased simply by 

providing more than one page handler (each with its own associated page map). 

The technique is similar to conventional interleaving. The virtual address space is 

divided into two or more subspaces, probably based on the same hashing function 

used to compute the SAM set numbers. Each page handler handles pages in one 

of the subspaces. Page operations directed at a particular page will be sent to 

the corresponding page handler; alloc requests can be sent to any page handler, 
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as - they are simply ~ to the (single)_ storage proeessor. To achieve the 

maxitnum- performance improvement.·.:the primary stor.qe ~ula: should probably 

also be interleaved ia the c0nvenao..a1 ._ to -:provide sufficient throughput for 

multiple page haadlers. It is. also fairly easy to p&'Ovide muhiple· secondary 

storage. mod~ jf greater ~ndary storage bamhridth is aeedod. · 

Aoother pl1usible impr<>ftmeat. would• be it& cCaebe: .tlae fmt .elements of 

pages in the TLB. The first dement&:of most pages are vector laeader wQl'ds. 

These elements are: aece&llCd frequently· to perf anil bounds dleckina and uplate 

reference_ counts. -0.-ro\Jld w provide additiooal.pqt•niodllle ports for use- by 

the r~lamation. proeessor, so tltat~ it ·coulclr1pet6>ra~• ~number' of t"eference- count 

~rations -in -paralld. 

In summary, the design is quite flexible in terms of permitting adjustments 

to achieve better, more balanced performance. Exactly what changes should be 

made would best be. determined . after simulation studtJs· · ()r ·' ·J,ettia~ the 

construction and measure~t of a prototype. 
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9. Conclusions 

This thesis has presented the design of a COmP\Jter system that directly 

supports an object-oriented machine language. The machine provides a singl~ 
~ ·•:' ; . -. -

large universe of objects shared by multiple pr~. 

The universe of objects is implemented using a multi-level memory system. 
' ; ~ - . ;· ; ., ~; - - -

Each object is represented by a sing~e "&.>•~; the system s~pports a number of 

different page sizes. Objects (pages) are identified by Jheir secondary stor~~ 
_- • - .'. - - lo-. 

addresses and are transferred individually ~~w.een P. rimary and secondary storage. 
' - - ) 

A large set associative memory maps from the secondary storage addresses of 

objects in primary storage to their primary storage addresses. Storage is allocated 
' . 

from a number of zones; each zone provides pages of a sinale size ~~. contains 
• - -- 0 • , ~ ' - - -. ' ;: 

its own list of free pages. Physical storage is divided in~ fi?Ced-size bl~ks; each 

block is (statically or dynamically) assigned to a sin~ zone. Autom~tic storage 
'> - ~ ' • ' • • ' ": • • ~ ' , ~ 

reclamation is implemented using queued reference co.unts a~d occasional garbage ., 

collection. 

An implementation of the sy~tem was d~ribed in t~rms. of a number of 
. "+ ~ '. ;;: i" - , - ~ ~ • ,- ~ 

specialized processor modules communicating via messages. Multiple processors 
. - . - . 

are used to improve performance and to achieve a more modular system 

structure. 

9.1 Evaluation 

The major contri\)ution of this thesis is a new design for, a computer system 

that supports a single, large address space, of objects.. :The proposed design has a 

number of advantages, and some disaOvantagesrin comparison with other designs· 

providing silJlilar . capabilities: 
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The first advantage is that the machine supports a uniform attdress: space. 

There is no concept of "areas" or other groups of objects needed to allow 

adequate performance. While we do not claim that object grou~ is inherently 

evil, or that it could never be useful, . any. ~ that '!eq~ programmers or 

users to think about grouping objects witrbe - comi>la ~- more diffi~ult to 

use than ooe that' :d6esn~t. The. corres~. cfJSadvantaF of our desigii is that 
- '. -· -- : : -_ . - :. - • ~ ·-_ - . -~ .£ .. ~ _:_::, - •. • -

its performance as more severely limited by the setolldilrY storage access time. 

~ile it is difficult to predict how short the aceess '~ mu5t be (among ~ther 
things, it depends upon how the system ·is Used), tt ·ii· Clear that ·a system 'that 

swa~ groups of objects can achieve better'· pmdrmalnce with slower secondary 

storage devices. 

Another advantage of the propOsed · desip is . that ii performs incremental 

automatic . storage . reclamatioli, using tereieaee · ~ts.· Storage reclamation is 

peff ormed contiiniousfy~ without requiring ·frequent or unpredictable interruptiOns 
~ - ,,,__ •-<c 

of ~rvice. · However,· periOdic garbage cOIJeCtion·':iS· stilt teqUired,· which· (in our 

proposal) requires the the system be stopped for short periods of time at 

scheduled intervalS. ->.. aasadvantage of o1ar·-~g11· is tb8't the need ·ror g~bage . 

collection' depends upon program behavior (~ rate Ot generation of . ~lie 
·- ' -~ 

garbage). 

Another advantage is that (we believe) the proposed design is capable of 

good performance. The virtual memory mapping is performed i~y .by a 

hardware set associative memory. We have shown how a large set associative 

memory can be constlUcted wiag a: Uliniabal: 811lbunt of~ hardware. 

In the . pr,oposed· desilRi memory manaaement eiMtia.' 'sudt as allecatkm and· 

~g, ,,are performed 1 concun-llftty · witlt>othlr, opllntieal.· -Tile;' Secondary 

storage allocation algorithm limits the number of ariled · teCOiidary storage 

accesses to at most one per allocation and deallocation; many of these accesses 
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are easily eliminated by maintaining portions of the free lists in fast storage. The 

use of queued reference counts reduces the ti!M overhead . of automatic storage 

reclamation and allows most redamation processin& to be performed concurrently 

with normal operations. References are compact, e.g., 32 bits. 

A disadvantage of using a set associative page map is that restrictions are 

placed on the possible collections of objects ;that can simultaneouSly reside in 

primary storage. On average, these restridions wiD have little effect; however, 

th~ potential exists for degradation of paging performance. 

Another advantage of the design is that it can be used in a multiprocessor 

configuration (multiple IPs). · The ability to use multiple proeessors allows· the 

processing power of the system to bi adjusted over ·a wider range, to support the 

computations performed on the data stored ·in the virtual memory. The design is 

flexible in that the machine can b& oonfigured (by the · d\tplieation of various 

modules) to provide ,reater throughput and to balnce the throughputs of the 

various components. 

Finally, and significantly, although -multiple ·proceisors are being used and 

automatic storage reclamation is being performed in parallel with normal 

computation, the basic concepts of the system are relatively simple. Using 

queued reference counts, the set of events that cause reference count operations 

is small, .·well-defined, and localized to the mell'lOry module. The notion of 

quiescence is easy to ·understand and vertfication· of its correct implementation 

should be straightforward. Furthermore, the reference count implementation 

avoids many synchronization problems. 

Three disadvantages of the proposed design have alteady been mentioned: 

the need for fast-access secondary storage devices, the need (or occasional ·garbage 

collection, and the potential for degraded paging .performance. The other 

disadvantage of the design is that it entails a higher hardware cost, compared to 
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other designs.. Additional bardwue is tCQ\liRQ lQf th.t -.t .1...,iauve. 'mttnOr)', 

the many hardware modUJ• (pr~tff), ud ia. 1equiNd module 

interconnectio(lS. Other coat. r•ult from ,;l.lder~tion of , primv)f · ud 

secondary storage: 

Primary storaat utiliia.tion il r~uoect fef a nvmber of ....-. Tho biggest 

factor is the fet asSQ$i•tivc memory, wlffeh ii in··•ff•·QOQltt'UOtod out of prim.My 

ttor~. The approprilte sja of tM ~t.•••tli•~ --*Y deplnds·upoa die 

expected average object .U.Ci the . num"' o.f UlllCiativt lllAna«Y eatries .. aould 

appro:iimate the ~pected numbtr of ob.ieo•- ia priatary .Jt•aae. lf-"tbe .average 

~bject size ~ ten woids • (mn• elemeatt aaer . vector),. theQ · the set . auoeiatlve 

memory 5bould be onM'ifth, 1".li• of. tho Mtul primary, storage (•UJPial··ach 

associJttive memory entry occupies ~ WOfdt). fott~aa overhead t4 1~. If the 

average object~" is only four wONls (tl'K-tl4'm0ntl.por.vecta.r), the cwerhoad··is 

~3%. Addition;U \lndor\ldlization is ·~~ by·· ,,...._.tioa. Internal 

fragmentation occurs because extra storage is allocated to ob~tlw.Qose sius; are 

different than any Gf. the "'P~ .~ lilts; ifttvJNd;.~tafien can be 

limited to S-15% by chOOlina an apPfOPl'iate set .of MlPPortcd· pap sir.a. 

External fragmentatiQil occ~ra . because blockJ of ttc>r• ate dedicated to 

providing particular ~- &~i the amQ\Ult of 1tonao wllted ·"--·of external 

f ragmentatioa is cliffi®lt tp pr,•t. AdditioAW. primary •tonp iJ OCC\lpied by 

the GQs (abQqt 6K word•) an4 by Qbj9ctf.o.ci *"GOI waitiq,to be rcdaimed 

(1,-'°1{ wOfds, ro~ly}. The actual .__..Mpend·ilPOQ.tM r:aie of garbqe 

generation and the GQ cycle time; to some uteat. ODe·aA:ttade off·stomp·for 

time by cha11aing the OQ cycle tiJM. 
On the other hand. tMie are tOnte f~ that ilUPfOYe pritnafy storage 

utilization. First, the swappiq of iadividull ol>.#ctf ••more tffectivo uee of 

primary storage. Secood, •iag referenco CO\lllts; ,garbqt wW be roclaimed sooner 
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than in a system using garbage collection (although a traditional reference count 

implementation would reclaim prbage,evaL8'181lCf~· "Tbese.'effects could cancel 

out some of the effects listed above. The main remaining factor is probably the 

set aSSQCiative memory .. ·· ·Altaouglt· 339' · uadendilizatidn of primary storage is 

probably more than in cooveRtio.aal systems.:it i&: not eveflPhelming. 

Reduced SCCQl\dary. •t<.lrage utiliutioa i• · ca\l&ed, by;;.three factors: internal 

fragment at~ external f ragrneatatioo. aMka'*'11lUla~.iic garbage. As in 

the case of primai:y stQl'age, iJ!terP1·frapneil~tiOfl.ean be-lim~ to the range of 

5-15% by proper selection of the. supPGl'techpap ,siza,-":"£xter'1lal fragmentation 

and c~lic, garbap ·are more. diffic»lt ·to .prediett aa :they: are dependent upon 

program behavior. 8asically, mra ~•tOraacLnllt.;be provicled to allow 

for changing object size distributions and ,::for, ~tee .. C){Clic garbage. 'The 

amount of extra storag~ needed..depeads upon; •program·· behavior and the d~red 

rate of garbage collectic>llt but not oa the 10fal .. seconclsr)!=··etoragc size. J'bus, for 

large secondary storage sizes, the fr.action et; wasted'<•ta'al••should be low. 

Another contribution of this· 1daesis is, drat~ it :.demonstrates. how multiJ* 

processors can .be used to £implifr .the ;structure anctdmprove thei performance of 

a system that supports: multiple processes and a large 'vhtual memory. We use 

the term processor here to include all of the major active hardware modules, not 

jus-t the instructioa1Jroces&ors. 

The system is constructed hierarehieally ·.out of modules that perform 

well-defined functioes~ At the .to,..most:Jwel, tb•·•tem is divided into two 

major modules, the processing module and the:memeryc·acd•le. The pr<>Ce5$ing 

module interprets procedures and implements multiple.precesses. -It consists of a 

number of instructioa proces&orSt . which ·'~. procedures, plus a control 

processor, which performs scheduling and controls the multiplexing of the 
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instruction processors. The. memory medule .ian ...... the \'frtual memory. 

The memory mcdule,ioterfaer:c111iAs ~ of·ia...._ of. d»-·:.ectet 

operations. · '~ 

The memory_ utodule 8"lftl!iltl -ot. the ----teeter- -.module _. _ the pap- tnodut.. 

The vector module U.plemem a11tomatic.,,.-Ndamadi'NL Jt·eo111istt IA• 

number of vector-~ wlalch perfonit wow:.,....... req1111md by the 

processing mod1dCt! plus .. -wociaterd "'°.,...._.., . .,... ~111on. 'w1iidl ?peff'Onlt 

reference count operations resuttiqf,...' f~'.~ ,_.. '• -~

pmcessor1 which -pr«alel the'OGl~JUid:,,.,,_. ...._,~ 

The page module implemats· t1ae· t>a*:-.lttull· (autlMRll}' :•lllOl'Y· ·Its 

interface consists of.-~ of, the ,....,daa type._ ·Dl·tNlP ·medule comila. 

of the pap ~r.the-.-.p ~,'dle·-•Mdiary-ttolage BlddWiej:plus a' 

conventional primary ltorapqnodule._ ~,,...: 11a ..... ; ..... pap mettnoes 
(secondary storage.addr.-.)··to-~,.....,.,.....,_;_,_ initiMes:.w&pias 

of needed pages not· in prinwy.atumge. ; It JMj ..... .,..._to tbe mappirtl; 

data base, which is: die. iet; 881GCiative·•1llilmDIJ. - -i;11e~!plpi•llandler deeives 

requests fr-om the ~ module ¥ia a· nmbi~- wldcJa·,arbitrata incoming 

requests and praenta dwn one at a tUne"-to•• ---}:taamllr-. "Whidl' proCllSe• 

requot4 soque11tially. 

The storage processor performs primary &torap- lllooatipa an4 ·deallocatiea

at the request of the pep.J11...,>•·iaitiata·1pap·r...,._t. It has 

exclusiv~ aecOA to ti. primary .._...,,~-'ct.ti bw.'' :'Re woadary 

storaae module ped._·llOOftdur storqe.._.._8*1·:1ded0catieo'ud

petfonu tr•ntfer1 betwefn primary ltOtap 1 * .......,. •toreP. It has 

eaelwive acceu to tbe'WG.Qdarr 1Bage;-.UO.t;.._ ..... -
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Splitting the system into modules in this manner leads ,to an organization 

that is superior to conventional systems constructed out of a single general 

purpose processor (or a small number of general' pUtpose processors) and a 

complex operating system kernel. The systeni can be undeRtood 'aS" a collection 

of modules communicating via messages. The'·irrterfaces 'between modules 11te 

simple, often corresponding to operations of abStract data types. ;There are no 

timing constraints on the speed at which messages are trariltnitted or acted upon. 

Eaeh module can be understtJOd itidtvidualfY:ia terms)of its interface to the rest 

of the 'system. Many modules encapsulate important 'data bases (e.g., the page 

map) and can: easily control and 1ynchrooite ~ to dlose data bases~ 

While this or any multiproeetSE>r otganizatia& cu be· simulated using 

multiple processes on a single proceasor, usini' wp&rate hardware modeltS has a 

number of advantages. The most ·obviws .:actvanage · is· -better performance: 

multiple ··processon··altow true concurrency,' which An increase the throughput of 

the system. , Furthermore, aay simulation of multiple··: precessors will involve 

overhead. In our system, the rate of interaction betweeo·some modules is quite 

high; the overhead of simulating tltis bemhioi: could be substantial.· Another 

advantage is better isolation between modules. The only coaneetion& between 

modules art the message channels; mooules can iatenct only in well defined ways 

via, message passing. In a uniprocessor simulation, interprocess· isolation must be 

proven. Proper isolation is difficttlt to achiev'e without hardware support. Even 

with hardware support, one must' be carer.I to avoid: illtetactioas via the process 

scheduler. To maximize performance, uniproceeior ~s generally use multiple 

priority levels, preemption, and interrupts. In such·~ atdditional potential 

exists for problems of unfair scheduling and deadlock not present in our 

multiprocessor organization. 
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9.2 Further Work 

The biggest q~ loft waanswered by thif·. ~ is, :will it work? If the 

proposed system wtrO· ~Ditl'~ted, woWd its perforJllaac. be -~t'? There 

are two methOOs that C(>uld ~ used to a.81• thil qu~ One .,ay,, of. cours.e, 

is to act.t.tally construct a · •)'Mem... The· otllor .. way : ii to .... ~eling aad 

simulation. to csti~ .. the.,perfqr~ancc.:0t.th4 ~ .. · l'JUS:d~Uot .~tbo<I is 

:Pr,ferabl~ if it C'1J pr~~ce ~1Jinlfu1.r,..... lltiaa.:"3itin\e and r.-our"5 'tlaaP 
would be required to act~ .COO$U.t a mffbiae. Th& _difficulty .if .. that the 

proposed $yttem is sufficiently clifle.-.u~ from .C1Jft4'$t: ~ys~ms (in·. J>4lrtiC\llar • in 

providin,g a single larp vutual meBlOl'Y ~- d SW.ble sand objects) that 

predictions based on date derived fsoaa ~tioaal ~ sptant .are· likely to 4'e 

unreliable. It i$ 4ifficult •prcdjct how \lStU;will1* aQ,u~tiOPal•~m 

short of giving tbem QPe. a.ad . .()blerviq ,~ MSW*-• OJNamiU: "l(tvU'- Qata 

without buildiDJ a . real syst~m woukl ~Y cecaPire a fairly •borate· 

simulation of the propoaed architectwe. 

Both of these meth®s represent a--~ wadertakin&. and are clearly 

ouui4• tht; 8CQl)e: of a single thesil. What wt· ha•e .doaf. iastafl in thi$. ~ is 

to give plausibility araunwmts to show at te.Ltkat '" ar~ ia tho· ri1nt balipau'.k. 

Wherever pos6il;>le. we have bMe4 our perf«1a~e estimates .. Oil ~~ · dttta 
obtain~ from .JUJ •tina lingle pr~ ,,111a&bamlf'81;~.;jmple1Qe11taUoa of 

CLU and oo data froa1 t•i.ttd &ytteRlt. W• do aot ~- the. r~ to, believe 

that the system will perfonn a4ecl•tely; ~' we do ~IJC', to. convi~ the 

reader that further iave&Ugatioa of this- k~ .of:~ .•cbitecture would· be 

worthwhile. 
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There are a. number of areas where the. proposed de$gn is h1oomplete. For 
~ ·' ' - ;. ' ' . . . .. . ·. . 

example, the machjn~ langµ• U&. not. ~n .. fwly specified.:. particularly ~n the 

area of control structures. No provision has .~ll. ma4e. for 1/0. .~ . .num~r e>f 
c ,,,. - - • ' 1 ' . - ~ " . - • 

issues relating to the ister.fac~ betweM. ~he in~~ioe)~uage and u.~r l~guages 

(e.g., CLU) have not been explore~, S\lCh as supJ>P.rt for de\>l&ggi{lg .. and 

mechanisms. for linking procedures together:. " lf a r~al <,system were to .be 

constructe.d, . one w~ld al59. want to consid~f pro-v.idiq qlore hardware support 

for spec:ific language featu~es, e.g., e~~~.dible 3rray•. 

One major area that requires further. Uiv~tigatjon is ~ subject. of resource 
- - . ' . · . ...:-' ' " ' . ~. ·.• . . ' . - ' . .· ; .. . 

allocation an4 control. There .are a n~~ <?f ways . in which th~. gross 

performance of the system i~ dependent u~.the-beh.a,vi9r of.individual proce~. 
- . ~ . ~ ' . - .. ·. . 

Of particular _importasi~ in this ,~ys~m. llre. the ,ate of generation., of cyclic 
' ' . ' . . . ·. 

garbage, \\'hich af(ec.~ the r.ate at.)~hic;h .~b;tge c.ollect~~n. is required,. and the 

variabili~y of the distri.butiop of ot?J~t s~es,. whi~h __ aff~ts .t~~; amoW}t of 

secondary storage fra.gmentation and can f Qr~ the, ~ptelll Jo be stoppe~ to 
' .· . ' '. .. · ' ") . : ~ . . 

perform comp~ction. Of CO,\lrs.e, as. ,ill. ~n,t.~~t~~!•'~ total storage U$Jiie is also 

important. Thus, an individual process, py ,i~ ac~~§, cou~d force the syste~ 

into a state where new objects could not be created, thus interfering with the 

ability of other processes to execute successfully. 

In many applications, this situation. would be unacceptable. The solution 

must. be some m·echanism to limit the ability of an individual process (or user) to 

acquire storage resources. The mechanism must take. into account secondary 

storage made unavailable by cyclic garbage or external f ragnientation. There are 

two reasons why resource allocation is ·a more difficult ·problem in ·an 

object-oriented system, as opposed to a more co~ventiOnal system: One reason is 

that objects can be shared; it is . difficult to assign.· responsibility for a shared 
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object in a fair manner. The otMr tealaa is that objf:Cts. are Jarae in number 

and generally smaH in size. Thus, traditfoMI metlaedl·· may not be acce.na~ 

became• of ~exces$ive ovethead per object. 

Another area reqdirlA,- fUtther ia~tioa iS 'tie ksue or off-line storag~ 

both for tlit pur~ or reliability and aicbiVfila. • 'h o&1'Ct is copied 6.tto 

off-fine·' storage, how much ol the grapll or·Ob)!cft -~ ttom that object 

should be written with it? (Suppme an Ob$ect cootaiit 'a tefereOCe to the ro()f of 

the rite system - why notf Should the -~~ ,.;:s s)itteai, ~ '-~· orit<S' otr-llite 

storage with it?) When the· ·CJbj«t and arty ~t~: °'jetts ·ate ·fead back into 

the system from orr~Hne ·~ hOw ate 'the dbjectl' re-integrated' With the 

existing cOllection of objects? How is ~· ~ (or is it)? 

These probl~ are not· unique to the' Pr~· arddtecture, but are 

problems, that must be faced in. any Ob~~mt ;tyttem.•' 1'roreovet; theSe 
problem$ also appear in conventic>nal .y,femS: · l~s ·1* ·t1tat the ··problems are 

more obvious and less easily aotved in 'Objt.Ct ·oriented. ~ ~·small Objects 

are directly supported and 'where sharing aacf ·1n'ttt-01tject de~ ate made 

explicit in the form of object rereteocu. 

9.3 A Perspective 

It is important to recognize the relationship between effective system design 
• • ' • .... > 

and the characteristics of available t~nology. Q\ar dee.a is predicated. on the 
. _;; ::- . ,· : _,;, ; ; . ' . ' : ~ ; -. ' , - .- ' " ; 

assumption that the desired virtual memory size is ~nt with affordable 
> • - .,,,- : i-

amounts of storage devices that provide. rdati~ fat access to small. pieces of 
- " " .• "-i _, 

data. This situation is not true t~ay, but will lik~J becom,e true . with the 

development of faster access secondary storage devices. How ·long this situation 
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will then persist depends upon whether the need for larger and larger virtual 

address spaces grows faster or slower than the ability of tech~ology to provide 

larger fast secondary storage devices. We will not attempt a prediction here. 

It is relevant to consider the relationship between this work and the 

growing popularity of "distributed computing." One likely form of a distributed 

computing system would provide separate local address spaces at each node, in 

addition to a distinct mechanism to support global addressing. We can easily 

imagine our proposed system as a node providing a moderate sized (10-lOOM 

word) local address space to a small group of cooperating users. We can also 

conceive of our system being used as a rather powerful personal computer. (Even 

a single user can utilize multiple concurrent processes.) While a multiprocessor 

implementation as we have proposed ii currently too expensive for either of these 

uses, it seems clear that such will not always be the case. 
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Appendix I • A Possible Machine Language 

In this section we describe a very simple machiGe language that could be 
used to specify user def~ procedures. This proposal oinits a num~r of 
features that would be needed to support ~U, ;C.g., exception handling ag.d 
iterators. It also ignores many possibilities for optimization. 

1. Procedures 

A procedure consists of two parts. One part, the code section, consists of 
an addressable collection of instru,c1io111. A set of, possible instructions is 
described below. The second pact, the. linkag6 ~eclion,.,consists qf aa addressable 
collection of arbitrary references. Included, in ~ linkge section would be 
(references to) all literals needed by the procedure, as well as: other'. ptocedutes 
invoked by the procedure. We assume that the code section and the linkage 
section are. both addressed by stmUI, Jl()D~,~· 

2. Procedure Activations 

A procedure activation is a collection of information that represents one 
particular invocation of a user defi,ned p{OCedU{~ •. The infQCmatiell ~ntained in 
a procedure activation. includes .the.following: 

• The procedure being interpreted. 

• An instruction coun~r. 

The instruction counter is an integer that identifies one particular 
instruction in the code section. of the procedure l:>eina in~erpreted. That 
instructi()n is the one a,rrently. being i.n.terPf!I .. or a~ut to. be interpreted. 
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• A stack frame. 

· The stack frame is an addressable collection of arbitrary references. It 
contains the actual arguments of the proced~ invocation, local variables of 
the procedure, plus tempotlries.: The"ltadt ftold ·IJ addteaed by ·consecutive 
illtegers, starting with zero. Elemed'"Caft·t;ib. adifecP0r a.tea' tnwn the titgh 
end (tile top) ·OI the 1tae"k f tame. · · 

3. Instruction Set 

The following instructions are allo~ as part of the code section of a user 
defined procedure. Instruction· operands Br&· w1itten iii ~tUlfcs... Alf operands are 
small ·nonnegati'fe ifttegerS; the iflterptetltitift··M op&val6'1-';de,,.dent ()ft the 
particular illMruction. · W! · 8Si111M · tlmt ·18 , *tessa · tO code stctions, lhtkqe 
sections,· and stack frames are checked· for attempts ttt~acoets C>Utside the current 
bOundS of the collection. · · · · ' · ' 

The interpretation of-~ proceettt .,~unless· a specific 
next instruction is specified by a branch inltnaction. 

• apply nargs 

Tbe applJ instruction ca\1$e$ a ·procectute to be invoked. The top, element 
is popped off the stack frame; this Objeict ·must :be'i·proaedut~ object.·. N•is 
elements are removed from the top of t~ stack fr•e; these 9bjects will be 
the actual arguments of the invocation (the'Dfaf~eltels lowest On the 
stack). The specified procedure is then invoked with the seeclfi~ ~rgument 
objects (see below); when the procedure terminates, &'·result ob,feei* are left 
on the top of the stack frame. 

When· 'a user defined procedure is invok~. ·a new procedure actlvatl~n is 
created. including a ·new staci· ftmnei:~;The'tieW;wtact·-:ftltne it1 lliitta1iZed to 
contain the actual arguments. Interpretation of the code section beains with 
the initial instruction. 
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When a primitive procedure is invoked, no procedure activation is created. 
Instead, the machine directly computes the result objects and pushes them on 
the oaller's stack frame. In the case of priltiitive.cpreoedur~ the machine also 
checks· each actual argument object ftrm~··aure.:tt·is Of the expected type 
(one of vector, bstring, procedure, or process). '·. 

• return nobjs 

The return · instruction mminates the execution of a user defined 
procedure; Nobjs specifies the number· of return~ which ari! removed 

· from the top .of .the stack frame. Thtse:objects Be' pushed onto the top of 
the calling ~ivation's stack . frame and iaterpretatiaa"'Of the calling activation 
is resumed. · ' ·.· · 

• pushstack addr 

The pushstack instruction copies a reference from the stack frame element 
specified by add/' ·aad pushes· it onto .tlw top of the stack frame. 

• pushlink addr 

The pushlink instruction copies a reference from the linkage section 
element specified by addr and pushes it onto the top of the stack frame. 

• pop addr 

The pop instruction pops a reference from the top of the stack frame and 
stores it in the stack frame element specified by addr. 

• branch addr 

The branch instruction causes interpretation to continue with the code 
section element specified by addr. 
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• fbranch addr 

The fbrandl. Jnuruction pops a m.en. fsom tilt. top of the stack fnune. 
. If that ref«ence is not tl"Mt .thin· ...vol btaacMi:· to: the oode .Uon 

element specified by llddr. 

4. Notes 

A number of reptesa1tationdetails:bave not· been~ for example: 
bow procedut• are··.,...tect. · how··imtnactiam~1nc·en~ bow procedure 
activ•tions are r.-..ted; and,how the;,procaiutea1ivationt·of··a single process 
(iocludiog all>staclt &ames) ·Qlft· t.- imtJl1mallhld·~;--118j;aiapn1tack object. 
These details (if done correctly) do not affect the semantics of ae-.machifte 
language; they are invisible to the machine lanauaae proaram. 

5. Example 

Figure 24. stao. a factorial prGcedure '.wfttlllt ia::C1U. aloq ._. the 
corresponding machine language pr01f8111. Symbolic names have been used for 
addresses into· the stack frame, cootrol •tioo. and linkap:; teedoa. ill·- the 
traditional assembly languap maaner. 
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Figure 24. An example of the machine language. 

Factorial in CLU: 

fact = proc (n: int) returns (int) 
f: int := 1 

Stack offsets: 

while n > 1 do 
f := f • n 
n := n - 1 
encl 

return (t) 
end fact 

n = 0 % the ai:gument to fact 
f = 1 % a local variable 

Linkage section: 

one: "the integer l" 
gt: "the procedure intSgt (greater than)" 
mul: "the procedure intSmul (multiply)" 
sub: "the procedure intSsub (subtract)" 

Code section: 

pushlink one 
L 1: pushstack n; pushlink one; pushlink gt; apply 2; fbranch L2 

pushstack f; pushstack n; pushlink mul; apply 2; pop f 
pushstack n; pushlink one; pushlink sub; apply 2; pop n 
branch Ll 

L2: return 1 
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Appendix II • Page Module Deserlption 

This appendix contains brief descriptions of the operations of three 
submodules of the page module: the page handler, the tJorage processor,, and the 
secondary storage module. For each module, we list the possible requests that 
may be received by the module and a description of the acDon taken upon 
receiving that request. A message is written as command(argl,arg2, ... ), where 
command is the request name and argl, arg2, etc., :are· masage ..-gwneats. 

1. Legend 

rid = request port identification (from Vector Module) 
SPID = special rid indicating Storage Processor 
sn = size number (encodes the page size) 
sp = secondary storage page address 
pp' = primary storage page address 
NILP = special NIL page id, in page map entry, indicates 

that the page is being swapped in 
mod = a boolean indicating that the primary storage copy 

of a page has been modified 
setn = a set number in the set associative memory 
oper = [f etch,store,incr _rc,decr _rc,mark,unmark] 

----------- --- --
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2. Page Handler (PH) 

• alloc(sn,rld) 

• new(sp,pp.rhl) 

enter (sp.pp) in page map 
if entry pushed out, send swap..out(osp,opp,omod) to SP 
send result(sp) to RID 

• equal(spl,sp2,rld) 

compare the addresses spl aad spl 
send result( eq) to RID 

• oper(sp,rld, ••• ) 

lookup page map entry 
if no entry then 

queue request 
enter [sp,NILP] in page map 
if entry pushed out, send swap_out~) to SP 
send swap_in(sp) to SP 

elseif e.pp=sNILP 9'in-transit9f, then 
queue request 

else 
perform request 
send result( ... ) to IUD 

end 
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• swap_in_done(sp,pp) 

update page map entry with pp %not in_transit% 
perform queued requests 

• touch(sp,rld) 

lookup page map entry 
if no entry then 

enter [sp,NILP] in page map 
if entry pushed out, send swap_out(osp,opp,omod).tQ· SP 
send swap_in(sp) to SP 
send result(false) to RID 

elseif e.pp=NILP %in_transit% then 
send result(false) to RID 

else · 
send result(true) to RID 

end 

• replace(setn) 

select page to replace from the specified set of the page map 
remove entry from page map 
send swap_out(sp,pp,mod) to SP 

• dealloc(sp,rld) 

lookup page map entry 
if no entry then 

send dealloc(sp,NILP) to SP 
else 

remove entry from page map 
send dealloc(sp,pp) to SP 

end 
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• slze(sp,rld) 

send size(sp,rid) to SP 

• sweep_reset(rld) 

se.nd sweep_reset(rid) to SP 

• sweep_next(rld) 

send sweep_next(rid) tat!' 

3. Storage ProcellOI" (SP) 

• alloc(sn,rld) 

send alloc(sn,rid) to SSM 

• new(sn,sp,rld) 

allocate primary storage page of given lil.e 
initialize primary storage pap 
send new(1p,pp,rid) to PH 

• • •• ,_lll(•p) 

,_ 
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• slze(sp,rld) 

send size(sp,rid) to SSM 

• slze_ls(sp,sn,rid) 

if rid=SPID then % continuing swap_in 
allocate primary storage page of given size 
send swap_in(sp,pp) to SSM 

else 
send result(sn) to RID 

end 

• swap_in_done(sp,pp) 

send swap_in_done(sp,pp) to PH 

• swap_out(sp,pp,mod) 

if -mod then deallocate primary ,storage page 
else send swap_out(sp,pp) to SSM 

• swap_out_done(sp,pp) 

deallocate primary storage page 

• dealloc(sp,pp) 

send dealloc(sp) to SSM 
if pp-=NILP then deallocate prjmary stor*., pap_ 

-----------------------------------~-------
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• sweep_reset(rid) 

flush page buffer (so that all free pages have identif'WSle'f~ -Hst 
pointers in their header words) 

reset internal sweep counter 
send result() to RID 

• sweep_next(rid) 
< ·: 

get sp of next page to be yielded (update internal counter), 
sp=NILP if no more 

send result(sp) to RID 

4. secondary Storage Module (SSM) 

• alloc(sn,rld) 

allocate secondary storage page of gweri-aa · 
send new(sn,sp,rid) to SP , 

• size(sp,rld) 

determine size of page 
send size..is(sp,sn,rid) to SP 

• swap_ln(sp,pp) 

transfer page from secondary ttorage to'primlry·ltOflle 
send swap.Jn..done(sp,pp) to SP 
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• swap_out(sp,pp) 

transfer page from primary storage to secondary storage 
send swap_ouLdone(sp,pp) to SP 

• dealloc(sp) 

deallocate secondary storage page 
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