MIT/LCS/TR-209

A MACHINE ARCHITECTURE TO SUPPORT

AN OBJECT-ORIENTED LANGUAGE

Alan Snyder

This rescvarch was supported by the Advanced Rescarch
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research undor
Contract No. NOOOT4-75-C-0661]

Tius blank page was inserted to preserve pagination.

“MIT/LCS/TR-209

A Machine Architecture to Support an Object-Oriented Language
by

Alan Sayder

s

Copyright (c) 1979 by Alan Sayder

March 1979

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by thc Office of Naval Research
under contract NO0O14-75-C-0661. :

Massachusetts Iustitute of Techuology
Laboratory for Computer Science

Cambridge : Masgsachusetts 02139

This empty page was substituted for a
blank page in the original document.

A Machine Architecture to Su”art an Object-Oriented Language
by
Alan Snyder

Submitted to the Department of Electrical Engineering and Computer Science
on March 9, 1979 in partial fulfiliment of the requirements
for the degree of Doctor of Philosophy.

Abktu‘_ct

In object-oriented languages (e.g., LISP, Simula, and CLU), all {or most) data abjects used
by a program are implicitly allocated from a free-storage ares snd are accessed via fixed-size
references. The storage for an object is automatically recisimed (garbage collected) when the
object is no longer accessible to the program.

This thesis presents the design of a computer system that directly supports an
object-oriented machine language. The machine provides s single, large universe of objects
shared by multiple processes. The design uses expected future technologies (fast-access
secondary storage devices and inexpensive processors) to satisfy the goals of good performance
and a simple, modular system organization.

Automatic storage reclamation is performed primarily using reference counts. The
proposed reference count implementation reduces the time overhead of automastic storage
reclamation and allows most reclamation processing to be performed in parsllel with normal
computation. In addition, the reference count scheme can be used in a multiprocessor
configuration without introducing complex synchronization problems.

A proposed implementation of the machine is described in terms of a number of
specialized processor modules communicating vis messages. Multiple processors sre used to
improve performance and to achieve a8 more modular system structure.

Thesis Supervisor: Barbara H. Liskov
Title: Associate Professor of Computer Science and Engineering

Keywords: language-oriented machine architecture, object-oriented programming
languages, garbage collection, reference counts

This empty page was substituted for a
blank page in the original document.

Acknowledgments

I would like to thank Barbara Liskov for her efforts in supervising this thesis. I would also
like to thank my readers, Liba Svobodova and Jack Dennis, for carefully reading the thesis and
providing helpful comments. Thanks are due also to Eliot Moss, who read a draft of the thesis
and pointed out a number of areas needing clarification.

This empty page was substituted for a
blank page in the original document.

Abstract .IlllIll..'l......I.l!.....,...ll'l..r.»‘{.\..{,I’g!l!...:,r.y..f’:..."..’l..l‘.-..'.‘.'._lib 3
Acknowledgmentsccceevceercrcercreecssscseosersssecsecascssssessesscscscsasessece &

Contents;...l..'l..'.O.‘...‘.:..;......‘./.v....,’Q........’I'..'....,Q'......'..... 5

l. IutrOd“ction .OC.C..‘O.....I..l..I.‘_!C‘IQ‘"”'.‘_I@Q.’“m,‘.l’i.""‘”"...I..”.‘... 9

1.1 Mﬂtim ov-b-tGot-oﬁo‘ooolo;o;‘oocoo‘-obn"boocboo-“i}i:d‘foiovo‘o“o;iﬁtb'-:‘ooo. 9
1.2 Goals .vuiierrierncercccisssssccstestessesssscsassscsscecscsccscss 10
1.3 Backgroundcccivaeeieraninscesecrenanransernecsssennees 12
k.4 Our Appf“c‘l 0000000000000 eIoRIPTEITIELI COETINEEOROIBOREISPROOS 14
L5 OVErVIEW ...cccevecnrecerencecerecrsensocssscsssecoserspesossacss L6

2. Objects cnoootcono-.co.oooqooocoo.qoo“--uo.“uo-q..gqch@.g‘_g‘qcn-mqoco’noqoopo 19

.1 Description ceeserestintscassutstastarsseribersotarasossssernanses 19
ZImplementation Impﬂ!ﬂﬁom oooo.nncnoo»ouﬂnoonooooot.oo- 21
3 »Example LS Syt £ I P S GR P .
4 Ad!’“t‘g@s 0Uoooool.ootooovoooootooooooo'oo..oobcooooo“ﬁtoooooooo‘o 23
.5 A Universe of Obmts S PURIPRrSLEI-SEEE TR S Y |

3- An Object'oriem MaehimNﬁhﬁ&ﬁl‘@.un.-u-n."...-........... 31

&)NN&N

3 l CLU ooaoco-oooooooooooéo¢00-.ooo.iochocoooooOQtoooooooouoooootoo 31

3 2 Al‘Ch“eCtul‘ﬂ Philmphy 0060.iliooooobloocno.oooooo.oooooioboo 33
3 3 The Madﬂﬂ! L‘Igﬂﬂge bo.adoco.oooooooooo.oooo*ooo.oooootoogooo 35
3‘.4 A Simp“ﬁtlﬂon oooooooooooooooo.f.iooof_oobéoooo-oo‘ooroon‘o;o"or.o.oo 38

-6 -

4. System Structure: an Overview escessssncesessnssrrerssessrsnsesassesnseseses B3

4.1 Machine Functionsccceecee cecccsscccsccscsesssssscsssese 33
4.2 Design Strategles ...cccassiisnssisisecoscesscsssssacsssssescsses 44
4.3 High-Level System Structure ...ccccccceccecscccsscoscscscscses 46
4.4 Multiprocessing Philosophycecoccececnverccccccccssee 50
4.5 The Processing Moduleccccvceveeeccecccocccscocscscsccses 39

5. The Implementation of Object References . 61

5.1 The Problemccoveveeecccccscscsssorcsssssccocsssssscssess O1
5.2 Our Solation cesesrseessrsersessessersosssesssnnsssscssscsns 02
5.3 Associative Memory DesIgR .cccocevervcoessssccsceccscasscccss 04
5.4 Evaluationccccoieveevercececcecoccorcecescoccecccrscorscsoess 68

5.5 Comparison with Other Methodscccvvievieccccccccccces 10
6. The Implementation of Antomtchtome Reclamation .ccceeee. 77

6.1 Accessible Objectsc.icoiveivecniesicinctccsccsscecscscesecs 77
6.2 Simple Garbage Collectionccciicenccscressscscroscsccseess 18
6.3 Alternatives cesese tevesseseiesensensesssssersssasssssevensss B0
6.4 Reference Counts“81
6.5 Conventional Reference Count Implementation 83
6.6 Queued Reference Countsceeceeeconseascesccscsscsscsccsass 84
6.7 A Note ont Ordering ..c.cooeeeeeecesccssesesscrcossssscscssnesces 857
6.8 Queued Reference Count PerformaBee .coecciceessessiosssssss 91
6—.9 G‘rbue Cullﬂ!ﬁon 9090020090000 008000000000000000003030000000 95
6.10 Garbage Collection Performanceccevsvceccecenisiscssses 98
6.11 Evaluationcccceeeecerescsarssscascssossscssssecssinssscess 109

7. The Implementation of Storage AlIOCRLIOR. ...ixececrsesisessisnescascess 109

7.1 Secondary Storage ALIaCRtIOR ..iecvveerscccsserccsssecsssscse 109
7.2 Zoned Aumti@n 00 0900008080000060008000000ssontsneisssenseses 110
7.3 Block AlIoCAtion ...ccoveeennvscsvccsncncssssnscnsnviiossoccscns LEd
7.4 Evalﬂation 0800000000000 0000090000000000000004000bRRdssnesInRCOOOT 116
7.5 Primary Storage Allocationccceevevcecssccocscccscece .ee 118

-7-

8. System Structure: the Memory Moduleccceconecccecancrcsncsecseses 121

Vectors and Pages ...c.cceeceeetcrcescsrescescossccscocsssccssne
Vector Module Specifichflon: wooceveeccccrrecccrscccsccsessase
Vector Module DesSIgR .ccoveeeeecerrcssccssessosssoccscococsee
Page Module Specificationcceceevecevcrssscscccccssecens
Page Module Design erecececatennncsenpenssusarssenscapsarens
Improvementﬁ eesecresetsecitseccrstastesrssessnrstersssnprase

121
124
128
132
135
151

9. CO“Clusu)ns ..o.o.c'O;OVQco.-o.-.e.o;Ocoooo.'oj‘o.;;O.,‘,l};q_;;jl".gQ-?Q;?QQ.:';Q!?!!}l,”..o”-:;:.:N.; 153

9 l Evaluatlon .o 0oooceooooooooooooocnoooo.’O&p.&aod000.0400600”9000. 153
9 2 F“rther work 00oooooooooo003041c00§0ktﬂ0000'loi’p?ooopcooooooo 160
9 3 A Perspecﬁve o0oooocn.tt..o&o“t-&."“‘;p’ct’"QFG.VO«O‘O"ioov' léz

Appendlx I A Poﬂlhk Muhm LW ...“..l.l."..‘.‘.'.l....'...O. 165

.

NP W -

L4

Prm“r‘es "Q.’..“'..0....'....."'....U.."‘Q.'."."‘....".‘..‘..".

Pl’oce-dlﬂ'& mthﬁs ooov’t.t“CQQCOOOO”OOQWrﬁfhﬁblcooooooc‘oo
In&trﬂCﬂOR set vooto.o-'vv“ottoooooo‘.'.'“abovoood%ol‘.or'-ooo.oo

Nﬂtes voogocoscocoo'oovcovoéoooeoooobvociovqo:tﬁrttrtti.doo-ooooo&-

Examp’le oooootv.ooovcvoooboo‘Ooooo~6vvoooicoo‘oocoooof'QOt'ooo00000

165
165
166
168
168

Appendix IL. Page Module Dm'iptloa L1

-
2

4

LESe“d [EENE XN N NN (XX N) ..;.'....O...“;.:....".Q....Q.'.......Q..Q..'...

Pase Handl" (PH) Q..O......Q......'..0..O.........O...Q.......

&cond.ry Stome M“dﬂe (m .'...Q.........'..‘.......’..

171
172
174
176

References ceeeeseesesrsesnsusensersesstsnssnssssrsnseesessssesesencsesnssnsesssssnsesss 11D

Figure 1. An example of objects. .cccccocerccrccrcencrenscsssascecsasccccce
Figure 2. A universe of objJects. .cocvcevsocrsvesccccsssccaseccsscssccsssens
Figure 3. The CLU HDBrary. cccccceeceercccccccorocssocsscossssessssacsesess
Figure 4. Process Operations.ceeeeececcccencccccccccsssscssssssccsces
Figure 5. The vector operatlons.ccceeceeeeccesccsccscsrossccssccccses
Figure 6. High-level system structure. cesrecsitssccssssescncsas
Figure 7. An example request and reply.
Figure 8. Processing Module -block diagun. cesesesicesisisesessrssentene
Figure 9. IP cache of immutable object Qleae_n:ts.,
Figure 10. The logical structure of & et associative:memory.
Figure 11. Set associative memory implementation. ...cocovceececcccenens
Figure 12, GQ Processing Algorithm,ccccccocencccssencessssccsccens
Figure 13. Recursive Mark Phase Algorithm. . ivescocecsresnasosioscses
Figure 14. Iterative Mark Phase Algorithm.cccooiveeencerncencocenes
Figure 15. Iterative Multipracess Mark Phase Algorithm. ...ccceccces
Figure 16. Fields of a vector header word.cccccecnencecssscnicacecss
Figure 17. Memory module StrucCtlre. «icecseeesssccssscscsscscsccssscsss
Figure 18. Vector module external-operations.ccveoeeeeeccccncecses
Figure 19. Vector module internal operatlons.cccocceveevcovcsccecee
Figure 20. Synchronization analysis of vector operations.ccoc.00
Figure 21. Vector module block diagram. cecesserssessensssstssssesssane
Figure 22. Page module Operations.c.ccoeecceeeacrsosascocccscsosces
Figure 23. Page ‘module block diagram. eresecssssecsscsscssstocscsnsense
Figure 24. An example of the machine language.cceeceeccecceccee.

23
28
30
36
39
47
48
56
59
635
66
90
97
99
104
122
123
124
125
127
129
134
135
169

1. Introduction
1.1 Motivation

The design of computers is strongly influenced by the characteristics of
available technology. ’Untﬂvfe(?enﬂy, computers have mgn designed under the
constraint that processing hardware is expensive. The resulting desire to
minimize hardware cost has had a number of unfottunate effects.

One effect is that conventional machmes generally provide a rathet low
~level machine language, thus encouraging the use of ptggtammmg languages with
similar low level (or "machine orieated") . mm _Although - better
programming languages have been - developed, thexr implementation on
‘conventional machines is often excessively. ingfficient, :

Another effect is that individual progessars are multnplexed to perform
many different functxens For examplg, a single processor is often used to .
interpret user processes,“ implement the vu‘tual ‘memory, and control 1/0 devices.

This multiplexing is supported by.a comp}e;, gatgrmptr-dnge‘n; operating system,
characterized by considerable interactions among its i@tbug,;comgpnents. Such
complex systems are difficult to understand or verify and are likely to be
unreliable.

The cost of hardware is contipually decreasing and the s;gmfncant cost of
software has become more and more apparent. Therefore, we believe it is
appropriate to consider how hardware technology can be used to implement
better programming languaggs and to,rred;uce V,the-, compleznty of computer systems.

-10 -
1.2 Goals

This thesis presents the design of a new computer system that efficiently
supports a single, large universe of objects. Our notion of objects appears in a
number of programming languages, such as LISP [36]; Simula [6}; and CLU [22].
The essential characteristics of such objact—onemad languages and their
advantages over traditional mlue—onented hmguages are described in detail in the
next chapter We note at this point, however, that an nnportant implementation
implication of ~object-oriented - languages is the use of “automatic storage
reclamation (garbage collection). ' ' ‘

Unlike most implementations of object-onented languages on conventional
machines, which provide a separate and osually small spiice of objects for each
process, our computer system instead provides a single, véry large space of objects
shared by all of the processes in the system. This spice of objects would include
not only temporary objects used during the execution of progtams, but also the

"permanent” procedures and data normally stored in a file systeri1. :

" Having a single, large universe of objects means thut there is no distinction
between objects that are local to a process and those that are stored in the
permanent file system. There are ‘no artificial barriers between different
processes or between processes and the file“s'ystem. Objects in the file systétn‘ can
be accessed directly, with no ‘restrictions on the types of objects that may be
permanently stored and no need for conversions.

The primary goal of this thesis has been to design a machine that
effectively supports a large universe” of objects. A second goal has been to
minimize the complexity of the design. We want the machine to have a simple

-11 -

and modular structure, in comparison with conventional machines and operating
system kernels that provide similar functions. To accomplish these goals, we have
‘made two assumptions about-expected future technology: -

The first assumption is that processors are sufficiently inexpensive that we
can use a number of processors where one is used toddy. “We use multiple
processors to obtain greater modularity in' the implementation of the system, as
compared to current systems where processors are ‘a scarce resource and must be
multiplexed to serve many different functions. ‘In addition, we use multiple
processors to improve -the performance of ‘the ‘system, particularly the
implementation of automatic storage reclamation. 'Our goal is to increase the
throughput of - the system, although perhaps " at ‘the ‘expense of decreased
utilization of resources. - R | | D

The second assumption is the existence of fast-access secondary storage
devices that can be used for file storage. We are envisioning an ‘access time on
the order of 100 microseconds (compared to 10 miltiéeconids for current disks).
Such devices are used to obtain good multi-level memory performance without
introducing undue complexity. This assumgtion i metivated by the' expected
small average size of 'objeéfé, based on' messurements of ’eifsting programs; it is
not needed if the objects’ supported ‘by “the ‘system are’ mostly large objects,
similar to pages or segments in current vxrtuafmem'ory systems |

IAside from a. fast access time, we are. not assuming any specisl properties:of -the. secondary

storage devices. For example, we do not assume the ability to scan tho enure secondnry storage

‘in"one ac¢ess {ime, an ability provided by me

-12 -
1.3 Background

We are proposing a single large space of objects whose size is similar to
that of current file systems. Thus, theunwerseoiobpcts will be implemented
by a multj-level memory system. Cusrent architectures cannot efficiently support
such a large space of objects. The major problems involve the performance of
the multi-level memory system.

Current secondary storage devices are: charactenzed by access times that are
many orders of magaitude longer than. the access time of primary. storage. To
achieve reasonable performance in a multi-level memory system, it is thus
necessary that the rate of access to secondary starage be quite low. To keep the
access rate low, it is necessary to transfer a fairly large amgmntof useful data on
each transfer from secondary storage. (Transferring a . larger amount of data
than is actually needed to fulfill a request is bemﬁcmonly if some of that
additional data will be needed in the near future.). ‘ '

- Page sizes in cugrent multi-level memory mtcms range from 128 words to
4096 ‘words. However, programmmglangugu objects tend to be qulte small. A
median size of under 20 wards is not uglikely [3, and we have measured
programs whosc average object size: is qalyt.hrgewords(ge Section 6.8). Thus,
to efficiently implement an ab;ect—omnwd storage. mdclwusmg current secondary
storage devices, it is necessary to group related objects togpther in some manner
and transfer them asa umtbetm pemary &nd seoondary storage ‘
| Conventlonal nmpleme&taums of mect-onented W group _related
objects together implicitly through the use of smail object spaces. Each space of
objects contains the objects needed by a single process. Thus, the space can be
broken into a small number of pages all of which contain objects that are likely
to be used by the process. The use of afcompacting garbage collector tends to

«13 -

minimize the number of pages used by each space of objects, thus reducing the
working sets of the processes [10]. Furthermore, since each small space of objects
is garbage collected separately, the time required. for garbage collection is (in
most cases) tolerable.

These techniques are not easily extended to the case of a single, very large
space of objects. Here, some additional groupmg of objects is needed to take the
place (for performance reasons) of the small object spaces m conventxonal
systems The mechanism for groupmg objects can be etther explrcrt (the groups
are constructed by the user) or xmplrcrt (the groups are constructed automatrcally
by the system) In addmon, it must be posslble to perform garbage collectron on
mdmdual groups of objects A garbage collectton of an entrre multr-level
memory system would be qutte slow Even lf the garbage collectron were
performed concurrently wrth normal system operatron, lt would tie up the
secondary storage devxces and srgmficantly reduce the performance of the system
Furthermore, unless garbage collectxon is performed reasonably frequently, it wrll .
have little effect on the worlnng sets of the acttve processes

A system wrth these charactenstrcs has been desrgned by Brshop [7] In his
system, objects are grouped mto areas, whnch are explrcrtly created and
mampulated by users. Objects may be exphcttly assr_,gned to areas by the
programmer However,exphcrt assxgnment of objects to areas is not necessary,
mechanism is provrded that wrll automattcally move objects to the proper areas.
In addmon, Btshop 5 system mcludes a compactmg garbage collector that works
on mdlvxdual areas or groups of related areas.

We believe that Bxshops approach to the 1mplementatron of a large umverse
of objects is the correct one, gwen current secondary storage devrces However,

his system is complex ‘and its user mterface (wrtb areas) is more complex than

-14 -
necessary. We believe that expected future technology will allow a very large
universe ofobjectstobetmplementedwithoutanynotsonofareasandma
relatively simple and modular way. ‘

1.4 Our Approach

As stated above, we are making two assumptions about expected | future
technology. The first assumptton, mexpensrve processors, is farrly safe. LSI
processors are bemg rntroduced today that are comparable in power to
mmrcomputers of a few years ago. It is mdely predrcted that LSI processors
equivalent to current mamframes will be developed in the next decade The cost
of these processors wrll be qurte low compared to the total cost of a computer
system As a result, 1t will be feasrble to use many processors m a smgle system

" The other assumptron, fast-access file storage devrces, ts more questronable
The access trme ﬁgure of 100 rmcroseconds rs wrthrn the pred‘ cted range for
charge-coupled devices and electromc beam memorres [33]. Electromc beam
memorres, however, are stlll m the research stage Commercral charge-coupled
devices are begmnmg to appear; however, the major questlon here is whether
their cost will ever be suffi crently low to allow them to replace drsks Current
pro_:ectrons [25] show the cost of CCDs approachmg the current cost of drsk
memories. However, these proyecttons also show the cost ot' disk memones
decreasmg, so that drsk _memories will strll be an order ot' magmtude less'
expensive than CCD memories. Thus, although it is dlffiCult to predrct that
CCDs wrll completely replace disks in the near future, they can be expected to
be used in reasonably large quantmes for ﬁle storage

: ‘The assumed existence of fast—access secondary storage devrces means that
it is possible to swap individual objects between primary and secondary storage
with ‘_acceptable performance. The expected decrease in the average amount of -

-,15.

information transferred on each secondary storage access is about a factor of 100
(10 word objects vs. 1000 word pages). We would expect, therefore, that the
rate of access to secondary storage would increase by at most a factor of 100.2
However, thé expected decrease in themsrtme comparsed to current secondary
storage devices is also about a factor of 100. Thus, it is reasonable to predict
that the performance of a system that swapped individual -objects to and from
fast-access secondary-storage devices would be mo worse than the performance of
current multi-level memory systems. ’

In many current systems, the time required to- perform a secondary storage
transfer is rivaled by the time spent by-the processor in’handling’ the page fault,
locating the page in secondary storage, scheduling:.the stransfer, switching to
another process, etc. Unless this overhead can be reduced, full advantage could_
not believe_that a large overhead is inherently necessary.. Mugh of the overhead
in current systems represents attempts at Qpﬁmg;atmn t,bat are appropriate only '
in ,the context of -a very long secondary storage delay. che:aspects, we believe,
can be reduced by proper design. . | f o : g

We also note that a full factor. of mo nnprovqment in the scgondary
storage access time may, not be needed to ushxeve good performance. For .one
thing, swapping 1:_;dtvxdua1§pb;g¢ts rather than pages cap allaw a given amount of
primary storage to capture a greater portion of the working sets of esecuting
processes, thus reducing the sécondary std_rage acces fate. In .addition, th
rapidly falling cost of primary storage will allawlargeramu;xts of primary
storage to be used, which can also reduce thcsecendary storageaccess rate.

1t is possible for the number of secondary storage accesses to intrease by more than'a factor of
n when the page size is cut by a factor of n [24, 16]. Howovor we do not believe thns anomaly
to be a serious problem in practice,

- 16 -

- However, neither of these eoffects reduce the number of secondary storage
accesses that occur whenp a program or dsta. base is .ipitially accessed. To be
conservative, we will continue to assume. the factor of 100 improvement.

If individual objects are swapped, then there is no: need to -group objects
together for performance reasons. Thus, there is ‘mo-need for aress or an
automatic grouping mechanism. Similarly, there is no need to have a compacting
garbage collector to improve locality, (A compacting garbage colisctor might still
be useful for reducing storage fragmentntibh.). Instesd, -we: can use reference
counts as our primary means of :.automatic storage reclamation, . Infrequent
garbagcmlbawnmuwedmmmm&m&ambe
detected -using reference counts. g

15 Ovérview

The initial chapters prmnt an overview of ﬁc afchﬁacture and design of
the machine. In Chapter 2, we describe the objectorietité storage model in
detail and discuss the advantages and implementation tmplicmons of thiis model.
In Chapter 3, we describe the visible architectute of the machine and the
philosophy of its design. In~ Chapter 4, we give an overview of the
unplementaﬁon ‘of the machine. The' synetn is ﬁmemeﬂ ‘s’ consisting of two
major modules, one implementing the “object-oriented memory, the other
implementing processes. Our approach to the imphmentatwn dl’ multtple
processes is briefly explained. .

" The remainder of the thesis coricentrates on the memory module The next
three chapters discuss specific issués in “the’ Mp&emenhﬁon of objectt In Chapter
S, we describe the implementation of object refm and compare owur
implementation to previous work. In Chapter 6, wecomidg:thexmpkmentﬂtlﬂﬂ
of automatic storage reclamation. In Chapter 7, we discuss storage allocation.

-17 -

The following chapter, Chapter 8, presents a specific memory module design,
consisting of a number of hardware modules that communicate by passing
messages. The chapter pays particular attention to the questions of
synchronization and flow control.

Finally, in Chapter 9, we present conclusions.

- 18 -

-19 -
2. Objects

Most current programming languages. are based on the notions of variables
and values. Values are mathematical values, such as integers, characters, and.
sequences. Variables are cells that contain vahgs. - Assignment copies a value
into a variable, destroying the preyioqs:coigtgpts of the variable. .

‘A number of languages, such as LISP, Simula, and CLU, are based on the
notion of objects. In this chapter, we describe this notion of objects and its
extension to a very large universe of objects. We discuss. the programming
advantages and some of the implementation implications. of the object-oriented
storage model.

2.1 Description

The concept of objects is best explained by @eseribing properties of objects.
First of all, objects are the ‘inforiation-contsining: entities that are created and
~ manipulated by prograrnis: Thus, t:ttegers, strm#. am:, “and’ proeedum are all

examples of objects. o

Second, the information content of an object may include other objects.
Although somie objects (e.g, integers) aré normally ‘thought of as being
unstructured, -others (e:g., arrays) are normally ﬁteught -of ‘as hawmg ¢omponentsj
that are themselves objects. , o A '

Third, a single object can be a component of many objects or be denoted
by (be the "value" of) many ‘variables.' For emmpié, in a4 gwen program, two
variables x and y can both denote the integer- 3 '

-20-

Fourth, an object, once created, exists forever. There is no concept of the
"extent” of an object. An object exists as long as the program needs it; it is up
to the language implementation to determine wheaﬂiemnse for an object can
safely be reclaimed. R :

So far, all of these properties hold for thi¢ valees in common programming
languages. Such * values, ~beirg mathumﬁcafvamet, ecd exist *forever
conceptually.- It is certainty true-that an array valve i thposed ‘of " element
values and that a single va!uecanbemeeompmen‘tofmyatmetured values
and can be the value of many variables. R " o

What distinguishes objects from’ values s thatobjectscanhma
time-varymg information content, or sfate. Objects with a - time-varymg
information content are called mutable objects. Objects wath a constant
information content are called constanrs, and are equwalent to values in

traditional programsming languages. o SRS |
~ For example, ia .CLU,. integers, chumandttmgsm all- oonstaats
CLU arrays, however, are mutable. - The.igl m conjaat of .an array. includes.
some number of element objects. An array object can be mod:ﬁed by mse. -of the
store operation, which replaces one olemeat of she arsay. with.a new object. For
example, if ¢ deaotes an acray that containg.the elemeats 3, 4, and 7, then the
effect of store (g, 1, 6)»&&@4;9%1&%%*30\7 6. (a now

contains the elements 6, 4. and 7). S
~ In a (strict) value-ogiented language aﬂmut&mxmnuthermit of
assignment. = The: xmlp; gﬁ tb& yperation : invocation m(a,l 6) is the

assignment a[1] = 6. This asignment would: be,viewed sithes. st asigning a new

-21-

array value (equal to the old one except at index 1) to the array variable a or
(in a more complex model) as assigning & new.integer ‘value td ‘the integer
variable -afl1]. e o ,
 The addition of mutable objects gives new meaning to the properties listed
above. Note that a mutable object has an:identity above and beyoiid -its ‘current
state. Two different arrays can. both contain the same ‘elements, but if a store
operation is performed on one of them, the other one will-not chinge. However,
if a single array object is denoted hy two variables x and y, then a modification
to the array made via one. vasiable will- be visible via the other variable:: The
array is. said to be shared by the variables x-.and y.- -Assignment inan
object-osiented langusge causes & varisbie to denote-theobject resuiting from the
evaluation of the right hand side. An sssigament:of the form: x := y, where x
and p are-vasiables, causes x and. y %o share:the-object:guiginally-denoted by y. =
Mutable objects are not. always. structured,nor are:all-structured: objects
necessarily mutable. For example, one Could; defimé. -couness i thut: are ‘mutable
objects. similar to integers. One: gould also-have Mmmé) sequences, which-
are immutable analogs of arrays. SRR - NS S L '

2.2 Implementatxonlmplications

"~ The possxbnhty of havmg sliared mutable objects has sxgmt" cant

not particularly useful. If two variables % and y both’ denote a sequence value
v, then one could say that the sequence value v is shared by x and y. However,
because v is a constant, the implementation is free to khaye. separate copies of v,
one for each variable that denotes it. With side effects on v impossible, no one
can tell if multiple copies are being used or not.

-22-

Thus we arrive at the traditional implemeatation techmique . for
value-oriented languages. [Each value is represeated by a constant bit string.
Each variable is represented as a container that can coantain a bit string.
Assigning a value to a variable is implemented by <copping the Dbit - string
representing the value-into the W representing the variable. There is no
problem determining when to throw vahuway‘ whea: a variable is deleted
(upon block exit), its contents are deleted. .- : R R

Inan:mplmentamaofmobpetmmdw&erembemlym
copy of each mutable object. A VM&%M*W -object will contain a
reference to the object. A reference is a bit string that logically eomtains two
items of information: One item is a Iype code; the type oode-indicates e type
of the object to which the reference refers. (The type code would be integer,
string, etc; in many implementations, 4 full ‘type code is:not required)) The
second item is the dare pers;-it in some manner identifies or nimes one
particular object of the specified-type. Typically, the data:part & the addréss of
a block ofsmgmwmmmafﬁuapthm Asﬁmmteop:ela
reference to an object, not the object itself. R o

The property that an object exists forever has a non-tnvul meanmg for
mutable objects. There may be many referencés to an object. as long as thefe wi
at least one reference accessible to the program, the object must be retained.
Thus, some form of automatic storage reelammon (e8+. garbage collection). is
necessary to nnplement an object-oriented language. .

-23-
2.3 Example

Figure llShowi. an mmweuf&huﬂm,_#v y, and i are local
variables of some process. - Local variables are showa as cells -allocated: in a stack.
(Although the stack;looks like an object and may be implesuented as an object, it
is not directly accessible to the program.) Variables sestain references to the
objects they curreatly denote; in the figwure, references are depicted as arrows.
The variables- x and. p both denote the same-asray object, whose. current state:
contains three elements, the integers 1, 2, and 3. The variable i also currently
denotes the integer 3.

2.4 Advantages

Object-oriented languages have a‘number -of “advantages. The primary
advantage is direct support for mutable ﬁjecﬁ ”Fhe m of mutable obﬁcts _
common in programiming.- However, ‘traditicnal valus-oriente ; iangﬁages dc noti

Figure 1. An example of objects.

program stack

-24 -

support mutable objects well. As we shall describe below, strict .value-oriented
languages have to be extended to provide the facilities needed to use mutable
objects. The resulting: languages are-unnecessarily éomplex and error prone.:

In addition, most value-oriented languages provide completely separate
mechanisms for accessifig "permanent" data stored irf a file system.” A file system
is most naturaly described as 2 shared; mutable dats ‘structure (the file
directories) containing mutable ‘or immutable objects (the data files). The fite
system is a permanent data structure; the creation sid deletion of ‘files do not
correspond to any stack discipline. An-object-oriented ‘storige model allows the
permanent file system and the temporary data of programs to bé unified ifi a

's.ingle universe of objects. . _

Object-oriented languages allow mutable data abstractions to be direcily
modeled. In an objest-oriented language, mutable objects are "first-class
citizens." They can be created, assigned $0 variables, passed to.proceduces, and.
rcturned by procedures. The allocation: and duuounon dm is eomplemy
handled by the- language implementation.

In a value-oriented language, the closest thing to a_mutable object is a
variable. However, to use a variable a5 a mutable object, one must be able to
share the variable, at the very least between callmand ‘called procedures.
(Otherwise, no procedure could ever modify a mutable lqumt object, in which
case one could not use procedures to mxp!ement opermons on mutable data
abstractions.) Thus, the concept of caﬂ%y-reference &5 introduced. To allow
arbitrary sharmg of mutable objects, a generﬁ m type must be mtroduced
in addition to the ablhty to explicitly create new vambles, While a reference |
type allows list structures and the sharing of objects in data structurcs, it also

introduces problems of dangling references. In most common programming
languages, variables are deleted either implicitly upon block exit or explicitly by

-25 -

user command. In either case, it is possible that references to the deleted
variable still exist.! If one attempts. ‘tyo, use a .dangling reference, the system
should ;;}rcvent the attempted use and report an egror. - However, in most systems
such checking is deemed too. expensive and is omitted,-in -which case use of a
dangling reference is likely to cause havoc. .

In an object-oriented language, dangling. rcﬁemces are unpossxble, as
objects are deleted. only by the system wheg they are no-longer accessible. In.
addition, the concept of a refereace is implicit .in the. semantics of am
object-oriented language. No explicit reference . type is. meeded, nor . is
call-by-reference. When a procedure. is invoked,.it is passed. a pumber of objects
as_arguments. These, objects .are astigned. 10:.the formal arguments of the
procedure; they are.thus shared betweeq the.calling and. galled. proceduses. If an
argument object is mutable, then it may be modified by the called procedure;. if
it is_constant, then of.course it can sever be .modified. Because. there is no
reference type, there is no possibility of:referer to.. Jocal |
variables of one procedure can. befmple&dx mw&m agcess by any other
procedure. In an object-oriented language,: variables can simply be local names.
used within a single procedure to refer to its.objects.

As we stated carlier, in the xmpkmntw%ot an object-onented language.
mutable objects are accessed via references. While it is not aecessary- to do.soy it
is quite convenient to access all objects by, fivedsize. references? (We do not
mean to imply that integers must be allocated in a free-storage area. .Because

'In Algol 68 [34] dangling reférences to hnbﬁc:ffi-dc’fétod foc” viriables are prevented by
scope rules that forbid, a reference to a varisble of ‘newssr” scope from .being: assigned to a
variable of "older” scope (the "newer" the scope, the sooner the varisble will be deleted). Such
scope rules tend to be excessively restrictive.--For exsmple, these-scope rules make it impossible
for a procedure to create a new object and insert it into a previously-existing structure passed to
it as an argument. To overcome these limitatiops, Algal 68 also ptowdes "heap variables, which
are smular to objects (except that references are exphglx). , I ; _

- 26 -

" integers are constants, the data part of an integer reference can be the integer
~ value itself. This technique can be uséd for ‘all constants whose information
content will fit in a reference.) If all objects are accessed’ via fixed-size
references, then each variable is simply a cell-that can contain a ‘reference.
Because all variables are the same size, the "size" of an objeét bécorties much less
important than in a - value-oriérted hwwherc ‘the” "size™ of a value
determines the size of the varidble that must hold it. - In ‘particular, a compiler
for an object-oriented language does not have to be concefnéd - with the sizes of
objects when generating code. ' :

- One result of using fixed-size references is thist it is ‘easy: to provide ob)ects
(e.g., arrays) that can grow #nd shrink ‘dynamie y- to ‘whitever size ‘is' needed.
Use of such dynamic objetts eliminates tnneébsary size Hmits -in programs and’
also probably saves space: instead of aflocating a ‘imakisiuny size (which is selected
in the hope that it will never be exceeded), only the ‘diount of sterage actuaily
needed is allocated. Simflarly, it is possitile to- efficientty ifphement "uabounded”
integers in an object-oriented language:: Sitiall integers can’ be represented by
references that contain the integer valneLifgermwgersm be ‘répresented by
references that pomt to separawy-aheate& storage. ~The. use: of nﬂbbnnded'
mﬂegets would remove a major mméfmdepeadmythatmﬁ in' most
programming languages. |

‘In ‘addition, use of fixed-size references for all- objects facilitates separate-
compilation -of modulés. “In a langaage where a- medﬁemyéeﬁne # data type,
modules that use the data type can be compiled before a_ jon has been
chosen for the data type. The compiler cin mmm es objects of
that data type thhout havmgtoknowhow ”ug" thaeb;acuue. Sumhrly.

2This implementation teclm:que cun ‘of course be und for vduo-crhimd l.ngungu & well s
obpct-onentod languages, but it usually isn't. ' ,

- 27 -

implementation of parameterized modules is ‘facilitated. = An example of a
parameterized module is stack[¢], where ¢ is a type parameter that specifies the
type of the objects in the stack. A compiler can generate a single (possibly
parameterized) object code moduile for stacks that will work regardless of what
type of element is actually being used Finally, bwause all’ variables are alike, it
_ is possible to have a type any. A“"ﬂim_'iable of typew is allowfed to refer to any
type of object, thus providiﬁg an escape mechanism tao run-time type éhecking.
Such a notion is impossible m aﬂ trradition‘alr implementation of a value-oriented

language, where the size of variables is not bounded.
2.5 A Universe of Objects

As we stated in the Introduction, most ?implgmefntations of object-oriented

languages provide a single space of objects for each program or process. Each
space of objects is usually small, and mo:communication. of objects between
different spaces is possible. We are proposing to-extend the netion of abjects by
providing a single, very large space of objects that would be shared by all
processes in the system. This: universe -of objécts: weuld iaclude not only the
temporary objects used during the execution of programs; ibut: would also include
"permanent” objects normally stored in a file system. - - - RSP

- Figure 2 shows an example of a (small) universe of objects. In this

example, there are two process stacks representing two rumning processes. In
addition, there is a small. file system attached: to a root node. - Nute that some
objects-are both part.of the file system and-referred:to. by processes.

Having a single system-wide universe of objects has-a number of advantages:
compared te current systems. The first advantege is uniformity.. All.of the data
in'the's_ystem, both local data used by -progeams and permanent .data, are objects.
All such data are treated the same (except that objects that may be shared by

Figure 2. A universe of objects.

"Hu‘;wciu'

1

progran [program

stack ‘ ’ - . stack

muitiple processes may require synthronizstion). &Mtsysm&hmar’e
two kinds of data: varisbles and files. mmmaaummuy
different characteristics. - : :
Themdmmumphdty Petmmtdmah;ecuareomted_
umdmﬂy,wi&emmm mmdtlmwuwfmby
the programmer; no conversions are needed. umwmmm
beacoessedon!ybygafommewmllOtemmw«vam&u. In
wxmmmkmmwmfmtadmf
extemalfomat(e:tlmusmngcfbmorasman) '
"The thxrdadnmgesmaﬁ@ Mmmmmwhatkmls
of objects can be permanently stored. For exsmple, ont miy store large sumbers
ofsmaﬁvb;ectsorobpctxﬁwtmvdnhtwgmhm Oafrentsystm
gemaﬂyéamwyumtmﬁﬁuimuwm&ummbkw

-29.

programming language objects, i.e. 1 to' 100 words)." In addition, few systems
permit pointers to be stored in files. Data structures that involve pointers must
be converted to some other form before they can be storcd in a file.

Similarly, there are no restrictions oh what kg;:éiq of objects can be passed
between procedures, between proecsses, or between proggams Conventional
systems generally limit the "arguments" that can be given to programs
(subsystems) to constant values, mally stnags. In an Wted system,
there may be no need for a coneept of a’ pro;;a;n A program is: simply a
procedure; normal argument passing. can be used (w:thout restﬂctlon) for
communication. b

- The net effect of these,advanfagel is that the useof iongahved data bases is
encouraged and made easier (and, we assume, mog eFficie; 1)y An example of
the kind of data base we are thinking of is thé CLU ‘?’Brary {22] The CLU
library is a data base containing information about progams Each module of a
program (e.g., a procedure or a data. tyw) ?ould haw‘uemmwve in the

= umt would contain,

library called a description unit (sce Fxgt’;reji.s A
among other things, a specification of “the ’typc mtefface ‘of the fodule. A
procedure dcscnptxon unit would contain the number and types of the procedui'e
arguments; a data’type description unit: would contsin interfate: specifications of
the operations- of the data -type: - Note ‘that ‘the- inteiface specification of a

procedure contains data types and thus ‘may refér ‘to ‘data’ type description units. |
The interface specifications would be -used by tb«CLW‘comﬁier to type-check
intermodule references (e.g,; calls of one procedure by -asother). :

The CLU library can naturally: be describod-as.a set” of objects with
inter-object references. Unfortunately, ‘couventisnal -systéms :do not directly
support such a notion. Implementing the CLU library on a conventional machine
is difficult, particularly because of the relatively large numbers of small objects

Figure 3. The CLU library.

involved. Fu:thermumg such an _implementstion. is. difficult because the
information stored in the library must be:convented from the exteenal file form
into the internal. object format wsed by the.compiler. In. a system. supporting @
universe. of objects, the CLU library could be implemented directly as a
collection of objects. These objects could-be: sccessed- direetly by the compiler,
without conversions. For example, the type descriptions used-in the library could
be exactly the same as the type descriptions used interaally by the compiler. .

-31-
3. An Object-Orieated Maclum Am

In thls chgpter, we descnbe thc vxsnbk arch;tecturc of the machme (the
"machine language") and the ph:losophy of its dmgn. .Our_purpose is not to fully
specify the arclntecture, but merely to peavide a_context for later chapters, which
describe the 1mplemtatloa of the machine. Magy. of the decisions.made here
ial to the major ideas presented

represent personal preference and are not essenty
in the rest of the thesis.

3.1 CLU

~ The primary infleence on-the design: of the- muchine architecture has been
the programming language CLU {22]. - CLW: i¢ ‘an ‘object-oriented Jangaage that
has been- " designed : to - facilitate the ‘construction’'of ‘programs that are
understandable, reliable; and maintainsble.>:Fiss: yoal is: accomplished primarily
by providing language -constructs that suppoet-the: use-of ‘abstraction: in program
design: and implementation (21}, - ‘Three. forms of ‘stitriction’ are ‘supported:
ptocedural abstraction - (“pfoeeduna), ‘control :abstraction - (iterators), and’ dsta
abstraction. ' e : ' a
Of these, the most interesting form:is data abstraction, the definition and
use of abstract data types. ‘A data type in CLU: consists-of:a et of objecrs sind
operations. . The operations completely -chiaracterize the: behavior: of the ‘objects:
they are the only direct means:of creating:objects;:obtsining: information from
objects, or modifying objects. CLU provides a number of primitive types, such as
~ integers, booleans, characters, strings, arrays, and records. In addition, CLU
allows the programmer to define new data types.

-32-

A new data type is defined by writing a module: called a cluster.. In a

cluster, the programmer specifies a representation for objects of the new abstract
type by giving a representation type. For mmpie, a type sefl 1) ‘may have a
representation of arrayl1] (¢ is a type parsmeter specifying the type of élements
in the sets), meaning that each object of type seitr] i ‘actually reptesented by an
object of type array{r] 1In-addition, impkmmtznons at‘ the operations of the
abstract type are given in the form of ptowuru thut opente.upon objects of
the representation type. These procedures (only) are given the power to convert
objects of the representatmn type into objects of the abstract type and v;ce yersa. '
Thus only the operations of the type may directly create objects of the type.
.- Fo ensure that the -behavior of an object of an:abstract type is: conipletely
defined by the operations of the type; one smmt not.allow the object to be
operated upon as an abject of the. representation type. - This restriction can be
enforced by checking each procedure imvocation to»makcfm that mcaetnal
argument objects are of the types-expected by the procedure. - - . -~ . .

.CLU has been designed: so that complete type-checkiag can be peﬁofmed at
eomplle-tlmt. - Each variable in a CLU. progeam. is declared :as to. the type of
object it may denote; each CLU procedure is declared as to the number and
types of objects it accepts ss arguments aad returss:as results.:-Since CLU
expressions are compased of variable references and procedure invocations, the
check that all asignments and invocations are typecorrect.: .. .© e

-33-

CLU also provides a type any, .which. allows a variable, pracedure
argument, or return value to be declared to be:of any type. . An expression of
type any can potentially evaluate to any type of ebject.-.CLYJ has been designed .
so that in this situation. explicit run-time. type discrimination must be performed
before the object can actually be used,

3.2 Architectural :If;llilos;(/ilihy .

.Our intention’ is ‘to desigh a- machine that will effectively support the
implementation of a language similar ‘to CLU. However, we are not proposing
that the machine directly execute CLU progrm Enstead the machine will
interpret’ programs 'in some intermediate langusge prodited by a compiler. There
are a number of-reasons for making this thoice. ~ Interpreting an intermédfate -
language is simpler and more ‘efficiént. - Furthérhore;’ ak&eécnbeﬁabove, a
compiler can play an important role in the early detection - ef errors. (Beca'ase _
this “intermediate” Ianguage ‘is directly ‘implerhentéd by ‘the mithine, "it shall
henceforth be called the machine language.) '

- The next issue is to determine the relationship between the machine
language and CLU. One possibility is for the rachine fanguage to be simply a
parsed form of CLU, with essentially the same semantics. However, we have
decided that the machine language should fiot be semantically ‘egtivatent to CLU,
but instead be at a lower level. The ‘primary reasor for ‘this decision is to take
advantage of CLU’s ability to support comipléte compile
Except where the type any is used, it is not necessary for abstract types to exist
at run-time. Thus, it is not necessary that “the machine directly support
user-defined data types. As a r&sult, the machine can be simpler and probably

time “type checking.

more efﬁcnent

-34 -

Although the machine language is not intended for direct use by
programmers, we believe it should” provide 2 simple and- well-defined interface. '
Although it need not-support user-defined ‘dats types; it should ‘provide a fixed
set of types, and alf primitive operations should- performi ‘complete (runitime) type
checking of their arguments. Similarly, whaefekvsuttﬂ* #ﬁaﬂﬁ%"opéraﬁoﬁsf

.N¢n

should be defined in terms of the machine languge there should be no result
that can be explained only by . referring. to. details . of the .underlying
implementation. . The machine thus. forms an.opaque. level that serves as a base’
for higher (software) levels that would implement such things as. abstract data
types - A system constructed.in this maaner as.a hierarchy .of .opaque levels is
likely to_be both more understandable and.more. robuss; faults. resulting. from
compiler errors: or hardware malfuncti w&mmbemm“rlm and by
higher levels of the system.

The machine hnguagewdlbedengmdmsug:mcmwearemtrymg

to design a machine language that would. be- geaerally .useful: for -implementing

any programming language.. Thus, the machioe language types.should be wuseful
for implementing the primitive CLU types. , However, they need not be exactly
the same as. the CLU types. For example, theCLUm type is parameterized:
each array. may hold objects of oaly one, type. - The ¢ ding type in the
machine language need not have this restriction.- o .

Certain decisions about the machine language. must he made that go. bcyond
the current design of CLU. For example, we miust specify some mechanism for -
the creation of multiple processes and the. sharing of -objects. among multiple
processes. Other unresolved issues, such as.intersmodule. linking, multiple
implementations of types, and protection, will be lgnored

-35.
3.3 The Machine Language

The machine language provides a fixed set:of data types, each with a fixed
set of primitive operations: Of these data - types, :two are ~of particular
importance, procedures and processes. IR g

A mmdanwaaohwthateanbembythemwhine A
‘procedure accepts a fixéd number of objects as srgumeats:and produces a fixed
number of objects as-results. The maching provides:somne number ‘of primitive
procedure objects, mest corresponding to operstions: of"the- primitive “types. In
addition, the machine provides a way in which new ‘pracedare objects can -be
created. These user defined procedunes: corvespond to machine language

: prbg-rams. - When -invoked, such procedures-are-interpreted-by the machine. ‘The
basic actions that can be performed by a machine language .procedure . are
defining and assxgnmg to local vartables, mvokmg procedures, and performmg

time the procedure was created Thae known oblects would mclude the
procedure objects that are to be mvokegl by the perm (A p0§§1ble machine
language is presented in: Appeqdn L . sy W mp

A process is an object that represent;s the potenhiﬂy concurrent execution
of a procedure Process creation is similar to prooeduregmm A procedare
object and a set of argument objects are spemf ied; the 1s invoked Wlth
the specified arguments. (As in the case of normal procedure mvocatton, the
argument objects are shared by the caller and the ealled procedurei However,
instead of returning the results of the mvoked prceedufe, the - ‘process creation

operation immediately retursis to its caller & process’ objecr: - The execution of the

- 36-

invoked procedure will proceed concurreatly with, the execution .of the caller.
Process opemuonscanbeperfo:medontheprmobpct'operamm
-provided to start or stop the execution- of : the imveked -protedure and to
- determine whether . the procedure has: terminated. and,- if so, what the result
objects are (see Figure 4).

One run-time evaluation stack: perpemuuad by the machine to store
procedure arguments aad local : variables. m these stacks are implicit in
~-the. semantics of the machine language and are not- directly. accessible to

_procedures. . We-asume; that whea. the maching is: initialived, ‘a single process is
- automatically e:ﬂndmemmmwmmmm We do not
specify how.an initial vaiverse of objects is created. ' S

Figure 4. Process o’em e e

Pfocws‘.State = oueof {
stopped: null, -
killed: null,
terminated: “nyhnﬂu % the rewlt ob’cu g the ptocedur:

j'rumtmg nun % fidne oft‘he
1 b

create = proc (p: procedure, args: arraylany]) returns (prooess)

% The new process is created in thé sopped-state. -
start = proc (p: process)
il sigmls (proees.temmated) % If proeas mmw or killed.

: klu proc (P m) |
state proc (] proees) retnru (prooes..tute)

bk’ck prec 0 .
'%Mksm‘mﬂmmm:m’gm
wakeup = proc (p: process) °"“°d
%W“““Pmswmwmfw

-37 -

The other machine-language types are ordifiary ditta types that correspond
in some firanner to the primitive CLU ddta types. Thus, we would expect the
machine to 'support integers, booleans, characfers, and strings, plus “some
structured objects. A number of types of structured ob)ects could be. provnded
such as fixed-length structures (corresponding to CLiJ record:) and
variable-length structuces (corresponding .to. CLU grrays).... The exact choice of
types is not particularly important for the purposes of this thesis.

- The set of accessible objects. includes, all mm {or rumnable) processes.
In addition, we assume there is a single distin d -phject, called.the root of
the file system, that is always. accessible. Th:ww is. theroot. of a tree-like (or
graph-like) directory structure that contains the "permanent” objects of .the
system, e.g., programs and data bases. - Natwrally, any-.objest. that is referred to
by an acgessible: object . is itself accessible. .. All other .objects are by defipition
inaccessible -and their starage subject to being zeslaimed by.the system.

- We will define :all-primitive operatians. 40 be atemi..-By. atamic, we mean |
that any set of primitive. operations. performed coacurrently: must. be aquivalent to
performing the same: set of operations. in. some order. . This-definition. follows
from our desire that the behavior of machine language peograms be -welk-defined.
Its implication is that the machine mmﬁmwﬂﬁm ‘mutable
objects to ensure consistency. e s o

Of course, providing. synchroxm&tmn for the primitive . types will not
eliminate the need for explicit synchronization. of- user-defined ;o
CLU provides ‘no . synchronization mechanism. (it is & equential
number of synchronization mechanisms. have been proposed

~as :semaphores, monitors, eventcounts, and serializers. However, the search for
the "best" synchronization mechanism is a subject of current researf:h.

in. the literature, such

Therefore, rather than choosing one of these mechanisms, we will provide the

- 38 -

most basic synchronization primitives, block and wakewp (28] (see Figure 4).
Together thhsha:edobgects,thuemmcan,' iplement any of the proposed
mechanisms. L

34 A Simplificatim:r |

Although we believe ‘that the machine language’ shouk} provide data typcs
that are similar to the primitive CEU iypes. the implementation of such types
womiémvo!veafm mddeﬁﬁﬁstmﬁmhouﬁulpnfpo*m this

Bstrings are constant (immmtable) fixed-length bit strings. ~ The length of
bstrings will bechuwawthﬁabstnngvﬁuembentaﬁéaﬁﬁiyinﬁ\edata
part of a reference; thus, no additional storage is needed to implement bstrings.
(The subject of reference size is discussed ‘n-Chapter 5.)' Bstrings aré cssentially
equivalent to the untyped data: mawipiulatéd by ‘convention mchim The
operations on bstrings would be the ususl arithmetié' and logiéal operations; the
exact choice of operations i not m&thmﬂ pu:peues
However, there would be no cmm Névbt&m:wlauarem&dby
performing operations on old values. We assume thiit bitrings sre uitmalely :
created by 170 ‘devices.. Naturally, bétiings can befiampm s chmcters,
booleans,ormﬁmwgersastheneedm ‘ '

- Vectors are fixed-length, mutahleoo&etwmofobkcs,simhr to arrays in
most programming languages. ‘We assumé that the ‘elements are numbered
starting from zero.: We will place an upper bound on-thie maximum size of a

AL g

-39 -

vector. The exact dmice_‘isr a matter for. the tyst;cm designer and is dependent
upon a number of factors (see Chapter 7). The maximum vector size will likely
be in the range from 128 elements to 4K clements.

The vector operations are listed in Figure 5. The .create operation creates
a vector with a given number of elements, all of which are initialized to some.
distinguished bstring object. (In a real system supporting:many primitive -types,
this object. would be the unique uadefined abject; whosé puspose is to permit
detection of use of -uninitialized variables and- vector elements.) The size
argument is a bstring that is interpreted as an iateger. - -¥f the size argument is.
less than zero or greater than the maximum size of a vector; then an exception: is
signalled, (We assume that the machine -lsaguage: supports- some férm of
exception handling similar to that in CLU-{23}) - Similasly, -an exception .is
signalled if -there is imsufficient storage available to’ satisfy the. request. In all
cases we:assume that-an meptmnxmgmﬂedtfan object of -the wrong eypen_,

given to a primitive operation.

Figure 5. The vector operations.

create = proc (size: bstrmg)
’ “returns (vector)
. sigaals (negative_size; size_too_large, no_storage)
equal proc (vl, v2: vector) returns (bstrmg)
size = proc (v: vector) returns (bstring)
fetch = proe (v: vector, index: bstring) returas: énny) dm {bounds)
store = proc (v: vector, index: bstring, element: any) signals (bounds)

- 40 -

The egual operation returns true (a particular:bstring) if its two vector
arguments are the same:vector object, and: returns false” (» different bstring)
otherwise. (Two vectors are not equal just becsuse they currently have ‘the same
contents; each invocation of the create operation returns a:vector that is distinct
from any previously created vector.) ' ‘

The ' size operstion returns & bstring (imerpreted :as an integer) - that
specifies the number of elements in the vector. The fereh operation returns an
element of a vector given its index. The stere operation:modifies the vector to
_ contain the: given clement. Both ferch and-srore:signal bowads -if the index is
less than zero or greater than.or equal to the size of the vector.

These: types are quite:primitive and. would seem to contradiet many of the
' clmmd advantages of object-oriented languages given in Chapter 2. However, we
are not proposing-that a-real machine provide only thesétypes, or that it would
provide ‘these types at all. Wehwebmﬁmtyputosmplfy&he
‘presentation in the remainder of the thesis.

The bstnagandveetortypesmmmthatheycouldbeused
internally to a machine to construct more useful types- For _example, larger
structured objects could be constructed by using two levels of vectors: the object
would be represented by a single top-level vector con‘iammg references to
lower-level vectors that store the actuat object:: eimeats.. Ihs usage would be
equivalent to the use of page maps m currgnt pagmg systems. Dynamtcf
structured objects (objsts ﬁm CAll.EIOW Of thmk) can mhe tmphaunwd by
using two levels of vectors. Addmg of deleting storag can be performed by
adding, deleting, or replacing the lowerevel vectors. This mp!ementauon is

- 41 -

equivalent to our current implementation of CLU arrays on a conventional
machine. Unbounded integers could be implemented by using bstrings for small

integers and vectors of bstrings for larger ones.

-4l -

-43 -
4. System Structure: an Overview
Id this chapter we providé an WeMéw of the destznof a machine to

implement the language described in the previous chapter. We begin by
reviewing the functions that the machm mugt petform

4.1 Machine anctidns

The primary functions: of the machine ‘sre to implement the four machine
language types: processes, procedures, vectors, aad: bstrings..: The implementation
of processes involves. the managemient of a :collection ‘of concurreat - activities.
The machine must assign resousces to those aotivities im:some: remsonable way.
The machine will eed to maiatain state information for each process. Naturally,
the various process operations, mcludmg block and wakeup, must be
1mplemcnted oo T I eI IR L .
- The ‘implementation of procedures involves -primarily ‘the interprétation of
machine language code. This interpretation will invelve: the: mmnmuon ‘of an
evaluation-stack-and the invocation of the primitive operations.

The implementution of “vectors-involves ' the aliocation, masagement, and
automatic reclamation of storage. The amount of storage provxded is sufﬁcxently
large that a multi-level memory system is required. Impfementmg the vector
operations also requires that the machine. be able to map from a.vector. reference
to the actual storage for the vector. In addition, the various .vector operations
must be synchromzcd so that they behave as atomic operations.

Vectors are the basic storage type of the machine. . They can be used to
plementation of processes and procedures. - A
procedure can be repwsentcd by a vector containing instructions (eneoded -as
bstrings) and references to "Known™ objects (literals and other procedureﬁs)_. A

store mformatxon needed fmf the impl

- 44 -

process can be represented by a state vector, which contains.such information as
the currently active procedure, the instruction counter (which identifies an
instruction in the active procedure), the eva!uat:on “stack, ﬂus scbedulmg
information. A procedure or process reference would ﬂaus actually be a reference
to the corresponding vector representing fhé procediire or process. These uses of
vectors would not be apparent at the machine language level. el
The implementation of bstrings involves simply nnplementmg the bstnng
operations. No additional "storage” is needed; since (by. definition, see Section
3.4) the value of a bstring can be completely .contsined-in-its reference.! The
implementation of bstrings is thus_trivial, and can be pesformed. directly by ‘an,y
hardware module. - For. example, the: invocation of ::bstring: operations by
machlm-langaage gmmuﬁmmmmmm
interpreter. : o , .
There are some other funct:ons that the machine must perform thtl: are not
directly related to the implementation of any: particular data-type. For enmplc,
reconfiguration. In addition, the system must provide some form of 1/0. The
implementation of these functions is not.discussed-in this-thesis. - - |

4.2 Design st’rategia

In this secttonwedacnbesomeofthedeagnstntmesusedtomakethe
machine as simple and" understanéabie as' possitde. The primary techm:;ue used
to minimize the complexity of the machine is modularity: spltt‘ting the machine
into separate modules with well-defined iriterfaces. A modulsr design is easier to
understand beeanse it is oompmed of a m of psru of a mhofe manageable

"l‘he actual storage is prov:ded by vectors (whon demena may be bstnny) and by hml\\varef
~ registers.

-45 -

size, each of which can be examined. and understood separately. In a good
modular decomposition of a system, each module can.be viewed as'a "black box"
at the system level. That is, when viewing the system as ‘a whole, one need
understand only the interface of each module, and: not the internal construction
of the module. Similarly, when viewing the-interaal construction of a module,
one need only relate it to its interface specification; the other modules in the
system can be ignored. This approach- can deapplied hisrurchically, as any
module can itself be constructed out of a number of internal modules, |

There are certain strategies that can be used to obtain a modular
decomposition of a system. -One strategy iy separation of function: providing a
separate module for cach function that-muet be:performed by the:system. - This
idea is related to our desire to minimize the use of meleiplering in the systeris:
In conventional systems, multiplexing often involves tiseuse:of a sirigle module to
perform many functicns.. - For ‘example, a- single::processor is multiplexed to
interpret-user programs, implement the victual mémory, xad eontrel 170 devices.

A useful technique for-identifying functions that-cah beimplemented by
modules is the ‘notion:of data types. - A’ module ‘that -implenients a data: type
encapsulates knowledge about-the-implementation of the: objects ' of -the type.
Other modules can use the objects without knowmg any details of their

implementation. The objects are identified by references, however, the referenoes
are mterpreted only hy the type module, whxch performs operations. uyen the
objects at the request of other modules L , , .
As we descnbed above, many of the funct:ons of the machme correspogd to
gfoced;u'es, vectors, and_
bie ,cand»date for

the 1mplementatnon of partlcular data t;pes {grg
bstrmgs) Except for bstnngs, each of theae types is & reasor

S

46

implementation by a separatt module.. It may be convenient in the
implementation of. these types to intraduce: subndnry typu, for mmpie, in the
unplcmentatwnofvectors,atypepqemyb&mfnl. e B
An important problem area in the design of most computer systems is the
proper synchronization of coacurrent activities. The system: should be designed
so that there are no undesirable race conditions and no possibility of
uninteational deadigck. The methods used-to implement syachronization should
be both efficient and easily understood. The use of data types can be helpful
here. Because all _operations on an object are actually performed by a single
module (the type module), that module is in an excellent position to: supervise the
concurrent execiition of operations to ensure comsistency:- We wilk discuss this
issue further in later chapters. = = : : .
One useful depign goal is that: all module interfaces be speed-independent.
Speed independence means that the system will work regandless of the time taken
to transmit data from ione module to another or-the time taken for a module to
respoad to an input. Speed-independence is 2 method-of avpiding race conditions.
If some action happens to- ukeakam&ewf«mw&ﬂ:em;m may:
be degraded, butthemaehmewdlstﬂkfwmn"nom '

4.3 High-Level System Stmtnre

We are now readytodescnbetheoveraﬂstmctureofthesystem Ourfirst
decision was to separate the nnplementaﬁon of proeedures (mstmctlon
intef pretation) ftom the mpkmeataﬁon of vecﬁots. We spht the system into two
major parts, a procamug modile (PM), whwh mtnrpreu ptocedures and supports
multiple processes, and a memory-module ‘(MM), which '
Figure 6).

- 47 -

Figure 6. High-level system structure, -

Processing:
- Module

The _ interpretation of procedures involves performing explicitly invoked

vector operations. . In: addition, as described abewe;: both: proeedures and ;processes

are actually represented-by vettor objects. Thus, the PM: uses the MM-to- assist
in the implementation of proceduresiand:processes. 353 : ,

The communication -between: :these. . two madules consists * primarily -of
requests seat from the PM to the MM and:replies seat from the MM to the PM.
fetch, and store. Each request message consists of a fixed amount of
information, which includes; an identification .of the-operation: to. be- performed,
plus object . references for the argumeats of t&opsamn - Reply - messages
contain the status of the reply (normal or e:w:pnwl mmmm), plus ob)ect.
references for any results of the operation. '

For example, suppose a procedure invokes the.vector creafe operation to
create a five-element vector. When this invocation is executed by the PM, it will
send a create request t&tht MM The MM wxll create a new vector, initialize it,

......

~the result of the mvocatnon The request and reply messages are shown in Figure

-48 -

7. (The notation r#d indicates an object reference with type code ¢ and-data’
d. In the case of a vector referenee, the exact data value is not pred:ctable, nor
is it relevant outside the MM) | '
Additional details of -the PM-MM- interface-are: presented below and in
Chapter 8. Note, howeves that we ,:re not. 8t Ahis pmht comtraxmng the
PM-MM interface to consist of a: -single . physxcaf riet ;' . The interface
allows multiple requests to be submitted to the MM and pmwssed cencurrently
Splitting the system up inte thesetwemajotaeddu has a number of
advantages. The primary advantage is that the structure of the system is
simplified, - compared 10 ‘conventional ‘systems.- . AltBough - the::module diagram
above ‘may ook like @ conventionsl system, thers :is. a-cruciak difference. - A-
primary memory. in-a.cosventional system-is a2 lowdevel: liardware unit that is but
one piece of the implementation:of:the :wistasl--address space: seen: by -user
programs.:. . While & conventiosal primary-memory has a- well-defined task and a
sxmme interface) the relevant function.:(thé- aéepiisi '*iimlmy) is-not
ua;:kmenud by a single module, but by mma@mmw
system processes: . L e
mmmmmhmwmﬁmywmnﬁatm
very similar to:those manipulated by user programs: mmmpmlmsau
knowledge of how vectors are implemented;: including :the implementation of the.

1 ~ex Tiny . [ppaT
B3 SR S SR T

Figure 7. An example request and reply. -

" Request: . S . Reply: '
name: create. status posmal
mm#s - o - remlt.vector#?

-49 -

multi-level memory, storage allocation, and automatic storage reclamation. The
MM assumes full responsibility for implementiig vectoss. . Aay processing power
needed to perform this function will be provided. within the MM.

. IhesolefunctmofthePsttombmtprocedummdprm
Unlike conventional systems, the PM executes #o "privileged”: machine-language
code to support the multi-level memory system. The interface between the PM
and the MM is clean and. high-lpyel, comsisting: basically: of invocations. of :the
vector operations. ' There is esseatially oaly one:"rule” that the PM must obey: it
must not create or modify vector references.. If this rule-is- obeyed, then there is
no way that the PM (and. therefore, user. pw&rnms) can interfere with the correct
operation of the MM. . R S A , .

_Actually, there is one addmaall interaction. bm ctheuPM &ld the MM
The PM must cooperate with the MM to allow; the MM 10 . determine. which
objects are needed and which can be reclaimed. In partlcular, at certam times
the MM will request the PM to discard #ft“0f ‘its veetor references’ (except
references to the root vector, whrch is permanently aecessrble) One way for the
PM to satxsfy thrs request 1s to store lts referenoes m the M\d, m vectors
accessxble from the root When there are no vector references outsrde the M\d
then we say the system is m qutercence Durmg qutescence,q the MM can
examme the entrre collectlon of access1ble vectors, wrthout mterference from the
PM. (Exactly what the MM does is the sub;ect of Chapter 6) The \dM
mforms the PM when it 1s fmtshed The PM wxll then read back all needed data
from the M\/I and resume normal operatlon

: Thls addttlonal mteractron bet\veen the PM and the MM 1s not desxrable,
but is probably the best alternattve 'I'he defimtron of qutescence 1s easy to
understand, and venfymg its correct 1mplementatwn should be stranghtforward
Cooperatxon between the PM and the MM is needed because the nnplementatnon

- 50 -
of automatic storage reclamation requires that all vector references be accounted
for, regardless of where they are in the system. The need for cooperation can be
eliminated only if vector references -never leave the: MM, as in an architecture
proposed by Baker-[2]. In such a solution, soie means must be provided te allow
the PM to identify particular“vectors in its requests ‘to ‘the MM :in Baker’s
proposal, the PM would specify one-of a nutnber of special registers in the MM.
The effect is to introduce a new "address: space” (eig, register numbers) used
instead of references -outside the MM. These "sddresses” ‘are -iriférior to
references for a number of reasons. For one thing, the' relationship bétween
addresses and “objects is tﬁne-varying:anadérw is 'viilid’ only as long as the

.. register is unchanged. In addition, it is impossible to name myexutmg isting object at

any time (the problemofregxsterallooﬂioassm Formesereasons,we
consider such solutions Ris desirable. e -

4.4 Multiprocessing Philosophy

Our system uses multiple processors to unplement multlple processes Thts
section descnbes our motlvatlon for usmg multrple processors and explams the
reasonmg behind a number of related decrﬂons (l) to not swltch processes on
secondary storage accesses (page faults), (2) to store proms state vectors m the
vnrtual memory, and (3) to prolnblt the preempuon of a process while wartmg for
a reply from the MM. ,

Our goal in using multnple processors is not so much to /increase the
capacity of the system, but to reduce the need for processor multlplexmg
Current systems attempt to maxnmze ‘the utxhuuon of the (usually smgle)
processor through the use of rhort—lerm xlledulmg [27]. Short-term schedulmg is
a techmque by whrch a processor 1s mult:plexed among a small number of
processes (called the eItg:ble processes) Whenever the currently executmg'

-51-

process must wait. (e.g., for disk 1/0), another eligible process is quickly selected
for execution. For maximum processor utilization, the time required to switch
the processor from one eligible process to another should be small. The number
of eligible processes is selected to satisfy -two. constraints: (1) There should be
enough eligible processes that at least one is always ready -to run. (2) There
should be sufficiently few . eligible processes that their working sets can all be
contained.in primary storage. Short-term scheduling is .distinct from.-long-term
scheduling, where the primary goal is. the fajr. distribusion of resources to
processes (possibly of differing. priorities). Long-term- scheduling operates by
determining the set of eligible processes;.this set. changes at relatively. long
mtervals (on the order of 100.milliseconds).

If processors are:relatively inexpensive, theamduﬁegtecessors can be used,
and processor utilization becomes less impoetant. - Instead of using short-term
scheduling to multiplex- a single processor among- & -set of eligible processes, we
can run each eligible process on a separate processor. Process switching will still
be necessary to support ong-term scheduling; we would always expect- the humber
of active processes to be Jarger than the pumber of processors. However, the rate
of .process switching will likely be less, so .that the time required to switch
processes will be less important. :

The performance emphasis in this »degign-is:aotwwmsotuﬁliution,sbm
the execution speed of .individual processes. Improved execution speed is obtained
by providing additional processors:and .assigning each-process to a processor for
longer periods of time. During that time, the process will’ obtam greater use of
its processor, as the processo; is not bems lhued thh other processes. In
.addmon, the longer a single process occuptes am the mo:e effective use it
can make of a local cache in the processor o '

-52-

.Using multiple processors increases the demmind on the MM. If the MM
bandwidth is inadequate, processes will be deltyed becavise 'of men :
Adequate MM bandwidth can be provided “uing &
conventional interleaving, described in Section 8.6. =

Once we abandon short-term ‘scheduling; it no-longer thakes miuch seme: to
Conventional systems preempt a process when it takes a’'page fault so that
another process can bemwhﬁetheﬂrnummg‘fwthepage to be brought
into primary storage. ‘Becust we are assamitiy sedondary: storage devices that are
significantly- fastéf than eurrent secondary itécasb deévices; the délay caused by
accessing secondary storage will be much- ma&ww than in ‘carrent
systems. Thus, switching ‘processes en‘pagefmt&m ‘sot resilt in ‘much
 improvement in: proceéssor utilization. sermore, ‘as described above, we do
not demmdthatprmr wutilizgtion be maximi Tbn!ete,there m‘*aoneed

Ihedmwmmmwmmmw systems
requires that all information needed to performi:u provessswitch be available in
primary storage. If process switching could produée u pige fault, then processor
utilization could be degraded. More importantly, the system would have to be
designed. to handie page: fauits in the page fault handier. Switching & processor
and reading information -from the mew proorss: state wector. Current systems

Lz

IWe use the term page fault to indicate the situstion where a request to the MM requires
accessing secondsry sérage. If we wanléd tp switch prodessds o sicOndary storage sccesses, we'
would have the MM nonfy the PM when a request initiates a secon stora
would then hive the opportmity 1o begin m m process, Unfike conventional
systems, however, the PM would not have to) e 10 & pege fault. The page-
fault notification would simply be advice wtgmd to allow mptoved performance. Regardless
of that the PM did, the MM would pufornﬂnaco@yﬂmgcmsndeth
requested operation.

-53.
avoid these problems by ensuring thztthe state: vectors of all :processes (or all
eligible processes) are."wired-down" in ‘primary storage, so'that accessing a state
vector ¢an never generate a page fault.

In our sysuem,wedonotmtchprocmseapage faults. It is thus possible
to store process state information in ordimary objects in:the: MM, This decision
avoids the need for a special mechanism to provide wired<down storage for
process state vectors. - In addition, it avoids the need .to place a limit on the
number of existing processes. -We would like to encourage the use of processes
wherever natural. In particular, we would like to. encourage the use of large
numbers of long-lived processes that spead.inost of ‘the. time waiting for some
event to occur. -Although process switching may..occasionally: be delayed because
of secondary storage accesses, the. average process:switching time should not be
degraded,asactnmmﬁa&v&twsmﬁmmmwmn in
primary storage. o - P '

~In summary, we have decided (1) not ta switch processes on page faults
and (2) to store process state vectors in virtual memory (no "wired-down"
vectors). Given these decisions, it is reasonable to go one step further and
disallow preemption of a process while it .ix waiting for. a reply from the MM.
(Any- preemption would be delayed until the MM has replied.) In effect, all
requests to the MM are like uninterruptible procedure calis.. This decision leads
to a significantly simpler system structure. ‘As far as the PM .is concerned, there
is no such thing as a page fault. Some requests to the MM are answered quickly,
and some take more time. Interactions between page faults and process
management are a major source of com;ﬂexxty in: eurmtt systems In our system,
there are no such interactions.}

- 54 -

The disadvantage of prohibiting preemption of. processes waiting for replies
from the MM is that the worst case preemption tisne becomes longer.! To avoid -
the need for fast preemption, we will assume that-all I/O-devices are interfaced
mseparatecontrolluxthatmhtewymmmmu&m ‘the:rest of
the system through the use of buffering. S S .

The area of interruptibility-is a problemn in nntmukxmmmedsysm
When a process is: preempted, its state must_be saved:so that it cam later be
resumed. The best- time to preempt. a- process -is--when it is “between:
instructions,” that is; when there are no.activitics ii-progress in the processor and
the process state is..well-defined.. If a process is preempted ‘while imstruction
execution is if: progress; thes additional stmste: information - miy need 0 ‘be saved
to record the progress of the -interrupted instruction.. In: addition, if the
process should not be preempted until the shared object is released. :Otherwise,
the preempting (highee priority) process may-hang waiting for the: object to be
released, possibly causing: deadlock: This laster: mm occur -in curreat
systems when a process executes-a "supervisor call” instrustion. '

~ If rapid mmtmpmnmtwhdbvumpmwly
"betweeri instructions” is acceptalile; provided the. instruction exeoution time has.a
reasonable upper bound. In our case, we must:easure that . all primitive
procedures (those implemented . diseetly. by ‘the mmchine) will terminate in a
reasonably short time. “Thus, for casmple, we hmdet'md the vector - create

3a mmlar posmon “has been taken by ‘the desngnors of ths MLT. LISP machme {4]. In that ,
machine; the virtual memory fetch and stové:opetanions ‘sre:unisierruplidle :microcode: rostines.
This decision was based on a desire to simplify the implemengation aad encourage the use of the
virtual memory by all parts of the system. (Routines that cause i A% are more dﬂ’ﬁtlﬂt Yo
use especially by routines that handle interrupts.)

‘The worst case involves transferring large (e.g., 4K-word) peges into primary storage. At a
transfer rate of two words per microsecond, the page fault service time could be s high as two
mllhseconds

-85 .

operation to raise an exception if igsufficient storage is available, rather than
waiting until the request can be satisfied. As the availability of additional
storage ‘may depend upon the actions of other, proeesses, there is no guarantee
that additional storage will become avaﬂﬁbfe mﬁmr agy fixed time. If desired, a
machine language procedure can be wntten that calh create repeatedly (at
suitable intervals) until storage becomes ava@lé.

‘There is one essential exception to our restriction that all primitive
procedures terminate in a bounded length d’ mme the block primitive. The
block procedure does not. return ﬁnttl a- eorresmadmg :wakeup has been
performed by some othes-process, which may in fact. neverzoetur. Thus, block
could not be made uninterruptible. However, mq motivation for block is
led pending the occurrence
of the wakeup; if this were not the casey huy waiting would be sat:sfactory
Therefore; block-is necessarily handied as a speciat-cuse. e

explicitly to cause the executing process to e sspe “

45 The Processing Module

‘The PM consists of one comtrol. procegsor (CP) plus some ‘number of
instruction processors (IPs), connected by af:interpiceessor communication (IPC)
bus (see:Figure 8). The function-of wa-IP:is-to interpret :precedures:* An IP
performs the computation of a single process (at-a time); that process is said to
be bound to the IP (and: vice versa).. A¥ anytipse, each:IP may be bound to at
most one process, and each precess may-be bousid ‘toft plost one IP.

" The function of the CP is to manage the execution of multiple processes.
The CP performs scheduling and controls the binding of processes to IPs
accordingly. To perform scheduling, the CP maintains some database (e.g., a
priority queue) that contains references to the (state vectors of) processes that
are unbound and runnable (not terminated, blocked, stopped, or killed). Because

- 56 -
Figure 8. Processing Module block diagram.

unrunnable processes are not "held onto” by the: Cp, t&cy are wbject to. bemg
~ reclaimed should they become inaccessible. A m;rped or blocked process can be
made runnable oaly by performing an operstion on the. praceu object, which can
happen only if the process objectis aocessible.. = .~ ° . -

‘The CP and the IPsare-each. cannected toasqm'atepott ‘of the MM.
Each port accepts request messages one. at & time; a processor must: wait for a
reply before sending another request.. Réquests submitted to different ports: are
" processed concurrently by the MM; the order of -acrival of requests on diﬂmf
ports is isrelevant.

-57 -

An IP sends requests to the MM to perform vector operations invoked by
the process it is execntmg. It also accesses the MM to fetch instructions and
operands. The CP accesses the MM to mampula,tg process.state vectors. and its
scheduling data base. L .

Process creation is implemented by sendmg a crmte message to the CP over
the IPC bus. Contained in the create message is a. requacc to a vector that
contains all information needed to initialize the new process.. . Upon receipt of a
create. message, the CP will create a. process state vector, ipitialize it, and return
the process reference to the requesting IP.. . , ,

‘When the CP binds a process. toanLPa it passes the process x:cfetcmc to
the IP in a bind message. . While the process cemais Jouad to. the P, only the
IP can directly- p:;fom‘-ngmnops upnudx 5% state vector. . Thus, although
process state vectors are shared, they.are omly: accessed by .one. processor at.a.
time (either. the IP to which the process is.bouad or.the, CR;if the. process. is
unbound). | o . '
: The various operations on processes, -siarl,. stop,. kill, state,: and mkeup.
are performed by broadcasiing a-message containing the process reference on-the.
IPC bus. .(A process.seference is really a reference to the: progess. state vector,
except with a differeat -type code. . Type checking of .inyocations of primitive
procedures prevents improper .access.to process state wvectors) If the. target
process is bound to an IP, that IP will accept the message (by matching the
process reference) and perform the indicated operation. .(If the IP is busy and
unable to buffer the message, it will refuse the message, indicating to the
requesting - processor -that it should resend. the message at: some . later time.)
Otherwise, no IP will accept the message, in which case it will be delivered to the
CP, which will perform the specified operation on the process state vector. The
CP may also modify its internal scheduling database; for example, if the process

-58 -
becomes runnable as the result of start or ‘wakeup, then the process will be
added ‘to the CP’s queve of runnable processés. Duritg the transition between
being unbound and ‘being bound to an IP, thé CP aid the TP will refuse all
messages directed at the process, causing the requests to be retransmitted until
the transition completes and the ‘new “owner” of the' procest ‘begins acceptmg
messages for the process. Inthwwxy,thehndandm&ﬁdumappear
mstantaneoustootherpmcusors,mmmm e ‘
" “‘Unbinding ‘& process is performed by ‘the TP to which the process is bound.
The unbinding is instigated either as the result of &ii operation’ performed by- the
TP (block, wait; stop,or Kill), because the protess terininated, or because the CP
preempted: the Wmm“wwﬁwﬁﬁem “After’ the ‘TP’ has
. updated “the process state vector appropriftely, 7t will sotify the: CP that it has
unbound - its process ‘and Ts “available 1o be bound to’ another process. If the
- protess-is. rannable (it was préempres ﬂ:in«t&(:?wm 3dd'it to iﬁ?qm ot'

“runnable processes.
Eachipma&edmmwﬁé&nwkﬁcmmmmﬁonof
instructions. - This focal memory can alsd ‘be-vied & » taché to redice the rate
of requests to the-MM. ' For exiiiple, when ‘s process it boutid to an IP; ‘the 1P
can'réad the process state from the process state-Vectr it its Jocal niemory. In
addition, it can read the top elements of ‘the eviliibtion stack - into “itslocal
memory, -avoiding further actess to’ ‘the “"real” “#ack ' object unless the 'stack
changes greatly in #ize. It can t&ouehe emedits of immutable objects
(particularly procedures). A m e
Figure 9. The cache would "be sssociitively & ,
Tﬁeloca!manoryofml?is*mtwdedwdyuaamhdn its use must
not affect the semantics of the machine lsnguage. ~ Diffitulties could ‘arise in the
case of shared, mutable objects, as' side effects performied on: # focal copy of an

-59 .-

object would not be visible to other IPs. Thus, we restrict the objects that may
be wholly or partially copied into an IP’s local memory to immutable objects
(e.g., procedures), objects that are not shared (e.g., the evaluation stack), and
objects whose sharing is specially-controlled (e.g., the process state vector).

When a process is unbound, the IP must write the process state back into
the process state vector in the MM. It also must update the process stack in the
MM by writing the "stack pointer" and all (changed) stack elements back into
the corresponding objects in the MM. Encached contents of immutable objects
can be retained, since all processes operate in the same address space.

When quiescence is established, the process state and the stack contents
must be written into the MM, as described above. However, in addition, all IP
caches must be cleared, so that the IP contains mo references. During
quiescence, the MM may reclaim some objects. Any references to a reclaimed
object remaining in an IP cache would then be invalid. If the reclaimed object is
later reused (a new object is created whose reference is identical to that of the |
reclaimed object), an IP could erroncously use old information in its cache to
perform fetch operations on the new object. For this reason, all cache entries
should be cleared at quiescence.

Figure 9. IP cache of immutable object elements.

object element index contents
vector#?1 0 ' bstring#tn
vector#?1 1 bstring#m

vector#72 0 vector#73

- 61 -
5. The Implementation of Objeet References

The next three chapters are concemed thh the xmplcmentatmn of storage
ob jects. A storage object is one whose representation re.qmm storage in addition
to that provided by the object reference. xtself In our samphﬁed system, vectors
are storage objects, whereas bstrings are not. For conumence, we will use the
term object in these chapters to mean stnragnabpct. .

We begin in thxs chapter by exploriog the basac issues. mvolved in
implementing objects accessed via references. = The next chapter discusses the
implementation of automatic storage reclamm Chapter. 7 deals with storage
allocatxon

51 ':T‘h‘e‘ Problem

When an operation such as'vector create i called to créate a new object, it
allocates storage to hold the representation of the object; dnitializes the storage,
and returns an object refererice. This reference iid-a fined length ‘bit string that
in some manner must identify the newly-created object so that when the
reference is subsequently passed to other operations, it will be possxble to locate
the representation of the object. lktetm the form of object references is a
major design problem. o e , |

The problem is oomphcated by the use cf a muluvleul memory system. At
any partxcular time, the object. t;prasentatwn Jnay. exist.in primary.or secondary
- storage, or both. However, an object can be. operated wpon only while. it resides
in primary storagef When an operation is .performed. on.an object, an object
reference is passed to the Operatién. E:o@,that reference, the machine must. be
able to determine whether or not the object currently‘resides in primary storage.

-62 -

If so, it must determine where the objéct resides in primary storage, so that it
can perform the operation. Othe:wxse, it must determine where in secondary
storage the object resides; so that it cdn’ Gopy the“objéct Tnto pnmary storage.

- It is thus necessary to be able to map from object références to pnmai‘y
and -secondary storage addresses. ~This problém is slmilar ‘to those faced by
conventional virtual memory systems. ~The major difféfence is that we are
prevndmg a single, unstructured address space’ oonmﬁnt of 'y very large number
of (mostly) smmall objects. Most' comnw viftual ‘memory systems provnde
relatively ‘small, structured adtfres spws congistin & r!hﬁvel’y ’large, t'ixéd size

BT

pages. As we shall see; our im

‘‘‘‘‘‘‘

that the mapping time be abeut the same as (and hopefuily faster than) the
actual primary storage access time. -Othor.isapartant. ¢onsiderations are the size
of any deta base needed to.implement: the. mapping :s0d the effects .of the
reference representation dacision 0n: paging - fﬂfoma-é sfotage-allocation. -

52 Our Solution

After comparing various: methods of implementing ob]ect references
(reviewed in Section 55). based on our design goals aad tasic gssuing W
decided that object: réferénices should Soiitiisi “the pliysical” address of’ the' object
representation’ in ‘secondary storage. 'Wé “assutne’ ‘thit an’ abpct mpreuentation
consists of ‘a single; contiguous block of stovige. ‘I -netilkar ' e
contain references to other objedts, o' no- gentrality’ & logt. (This internal

-63-

When a new object is created, space is allocated for the object in secondary.
storage. This secondary storage area is used to bold the object represeatation
whenever the object is not resident in primary storage.. The address of this
storage is used as the data part of the object reference,: which is returned. as the
result of the create operation. .

~ An associative memory is used to map from the secopdary storage address
of an object in primary. storage to its primary storage address. When an
operation is performed on an object, the secondary storage address of the object
is obtained from the reference. and is. looked up in the associative memory. If
there is no matching associative memofy eatry, then the object is copied from
secondary storage to primary storage and an eatry is added to the associative

memory. (The secondary storage address is already amleble, so no addmonal

k3 ';;?

mapping is needed.) Otherwise, the primafy
obtamed from the assocratwe memory entry

|) The assocnatlve memory performs a functxon smular to a page map m a
conventxonal vnrtual memory system However, a ooaveattonal page map contams
entrres for all addressable pages, whether m prxmary or secondary storage Our

Tl

assocratlve memory contams entnes only for objeets that are m prrmary storage

Nevertheless, because the average ob;ect sxze rs'llkely to be qurte small (perhaps
only four words), the number of entnes m the assocxatxve memory wrll be qulte
large. If each entry occupxes two words, then the assoctatwe memory could be’
one—half as large as the primary storage 1tself ‘ ,

Many conventxonal vtrtual memory systems prov1de address spaces that are
either sufﬁclently small or sufﬁcxently stmctured so that dxrectly mdexed tables
can be used. For example, the Multics segmented vrrtuel memory [5] 1s orgamzed
so that each addressable page can be_ ideatified by, t*o mll mtegers, a segment
number and a page number within the segment. The page table entry for a page

- 64 -

can be found by using the segment number as an index into the descriptor
segment to obtain a page table, then using the pigé number as an index into the

page table to obtain the page table entry.) “This solution works because the
number of segments used by any one process is rehﬁvely small, and the number
of pages in each segment is also fairly small. : .

-~ 'Our virtual address space, on the other hand; is very large and without
internal structure. Thus, it would not be’ practical to use any form of
directly-indexed page map. Instead; we riiust-use. a true associative memory. The
practicality of our scheme depends upon the fessibility of building an associative
memory that performs the desired mapping Weuph'ethismue i’ the mext

sectxon

Our assoc:atwe memory eontams one entry for each object currently’
rwdmg in pnmary storage Each entry coatams the pnmary and secondary
storage addresses of the object, plus a small amount of eddxtwnal control
mformatxon Each entry thus oocuptes approitmately two words "The size of the
assoclatlve memory should appromnate the average number of ob]ects that can
ﬁt in pmnary storage. For a pnmary stonge of 1 xmlhon words and an average
ob)ect size of 4 words, the asocumve memory wn!l contun 256K entnes and
occupy $12K words of additional storage.

Building a full assocnatwe memory of tlns sme 1s xmptact;cal Luckdy, it is
not necessary The hehavwr of our assoeuttve memory can be closely

approxamated by a set assocmtnve memory [91 whtch u mnch ewer to bmld

. "The actual mappi ngnsmoroeompl icated, 4, & it desci riptor segment s Ttself paged.

- 6% -
Figure 10. The logical structare of a ee‘t assoclitive memeory.

A set associative. memory with NS entnes B logncally eqmvahmt to0 S full
associative memories, each containing N entries (see Figure 10). -The-domain of
key. values. (in our. case, secondary storage addeesses) is partitioned into S sets by
a hashmg functlon h(k) that maps each key into. a_ sel number ranglng from O to
S-1. Each assocxattve memory AM holds the entnes whose keys hash to 7. To _
search for an entry ngen a key k only AM,,(k)ivneed be searched Searchmg a
set assoc:atwe memory in unit time thus reqmres only N compansons, mstead of
NS for a full assocxatlve memory of the same sme o ,

A set assocxatnve memory can be xmplemented usmg N ordmary random
access memones (RAMs), each contalnmg § entries, plus N assoctated controllers
(see Figure 11). An entry with key k will be stored in a RAM at mdex h(k)
To search for an entry w1th key k, each controller read—swthe entry at mdex h(k)
from its associated RAM and compares 1ts key wnth the ngen key. If the keys
match, then the entry is returned to the master controller, the matchmg entry

may be updated by subsequent opexatxons ’l'he advauta;e of the set assomatlve

- 66 -
Figure 11. Set assoclative memory implementation. . - -

Master
Control

RAM, | | m‘

orgamzatnon is that a fast search can be puformed, yet the amount of speclal
purpose logncandtheamountofpardﬂacﬁwty:sadypwpomonaltoﬁ the
set size.

"~ The corr&spondxng dlsadvantage of the set assocutxve orgamzat:on is that at
most N keys from any partlcuh: set can be stored in the set asoc:atlve memory'
at any one tnme When a new entry m tdded to the set assocumvc memory, if
the correspondmg AM is full, then one of the enmes in AM must be removed
“to make room forthenewentry Inourcase,xfmoretﬁanNobjects from one
set are in acnveuse,thenasetassocuuvemapwﬂp:oducemoremm(page
faults) than a fully assoc:atxve map ‘of the same m.‘ a8 b .

‘The expected miss rate is a functloa of the set sze, ‘N. A larger N will
reduce the mxssrate.buthllalsomcreasethc‘eoﬁdt‘tbeasoctahvememory
Smith [31] has shown that if the hashing function is sufficiently random,’ then

good (average) performance can be obtained with a small set size. In particular,

-67 -
Smith shows that for reasonably large associative memories using LRU
replacement within each set, the set associative“m_‘,egnor;g rmss rate will be greater
than the full associative memory miss rate by a factor of only N/(N-1). A set
associative memory with a set smoﬁlﬁwouldmmmmomy about 7%
worse than a full associative memory. We doubt that a set size of greater than
16 would ever be needed. o P
. Assuming a set size of 16, a 256K entry set. associative memory. would be
constructed out of 16. RAMs, each containing. léx entrm of approxrmately 64
bits each. Using 16K X 4 bit memory. chips, only 16. chips would be required for
each RAM. Only 16 controllers are thﬁc are sufficiently simple to be
mtegrated on the RAM chips. Thus, the bulk of the set -associative memory
could be constructed using 256 identical chips. 3 R

e 0:,;;

Because of the large amount of memory reqmred to rmplement the
associative memory, ‘we would expect xt to be coastructed usmg memory
technology sumlar to that used for the pnmary storage. I so, then the lookup '
time will be approxrmately equal to the pﬂmary storaae éccess tlme, resultmg m a
substantral ‘overhead on each access to pnmary storage However, this sltuatron is
really no different than in conventional virtual memory systems ‘where page tables
are stored in prrmary storage, and the solution i is the same: use a fast translatlon
lookaside buffer (T LB) [30l A TLB rs srlaply a small, fast assocratrve memory
used as a cache to speed up repeated acceeses to recently used page map entrxes
It would be xmplemented usmg ‘faster (r e., more expenswe) technology than the
main associative memory, and could also be set assocratrve Of course, our TLB
must be larger than a conventlonal TLB to obtam the same hit rate. Because we

2A. random: . hashing . function for aeconrlarx storage addresses can be. obtained by
exclusive-or'ing the low-order and high-order bits “of the secondary storage address together.
Because of the storage allocation method used (descrited in "Chagter 7);-Just swlecting either tlie
low-order or high-order bits would probably not be sufficiently random.

- 68 -

are mapping smaller objects (compared to convéntional pa’ges),’ our working sets
will contain more elements. How many more depends’ upoa pfogram behawor,
but would be at most a factor of 100" (the raﬁoofthe"page" sizés).

In summary, we conclude that an associative memofy‘of sofficient size and
speed can be built at an acceptable ¢ost. - The associstive mémory would be
expensive, but only because it is large. Its cost could b& one-half that of the
primary storage, dependmg upon the average object” size. 'Hmver, to some
extent, the large associative’ memoty couki "pay for ftseff,™ as we would éxpect
the swapping of small objects to result in more effective use of primary s’torage,‘
as only needed dhta will be swapped in, rathér‘thmf ﬁho& pages - '

54 Evaluatlon

The pnmary advantage of our method of nmplementmg ob)ect references xs
that the mappmg from an ob;ect referenoe to the current physxcal locatnon of the
ob_pect is fast The mappmg is performed by a smgle teafch of an asocultwe
memory As descnbed in the prmous sectwn, the auocumve memory can be
xmplemented so that thxs search can be petformed in a ttme no greater thao the
pmnary storage access ttme ‘

One nnportant factor in the maopmg speed is that the mappmg data base is
small enough to be stored entu'ely in- fast memory lt can be stored in fast
memory because it contains entnes only for ob)ects that cur.rently res:de in
primary storage If the map contamed entnes for every object in the system,
then, because of the small expected average object s:ze, the map would be
comparable in size to the entire secondary storage Such Ah:semap, in addition
to representmg a iafge storage overhead, wénw a&o xmpoce gmter delays because
of addxtsonai secoMary storage. accesses: '

-69 -

- Another advantage is that object references can be compact. A reference
size of 32 bits could provide 5 type.code bits:and 27-:address bits, supporting
256M words of secondary storage (assuming object sizes that are multiples of 2
words). Because of the small expected average objeet siie, the reference size will
be close to the theoretical minimum. , j '

Our method also has disadvantages. One dsadv&nﬂse already mentioned is
that its speed is obtained wusing a costly associative - memory:] Another
disadvantage is--that -identifying - objects by Msemdazy storage addresses
makes it difficult to move objects in secondary storage.-

The ability to relocate an object in- secondary storage is useful in the
implementation of secondary storage .alioeation: Whenever -one attempts to
allocate contiguous blocks of storage of different sizes. from a single area,
fragmentation can occur. Fragmentation occurs when a request-for 'storage ican
not be satisfied, even though there is enough free storage avallable, because the
free storage consists only of fragments that ‘are smaller than'the desired ‘size.
Fragmentation thus results in reduced utxhzat:on of ‘the storage area.
Fragmentatxon can be overcome if the allocated blocks can be moved so that
free blocks can be combined to form larger blocks.

Because we identify objects by. their secondary storage addresses, moving an
object in secondary, storage requires either (1).that all references to the object be
changed to reflect the new secondary stegm.»adm‘. or (2) that information
about the move be recorded so that subsequent agcesses to that object will be
redirected. to the new secondary storage location.’ .

3One must also be sure thut any new ob;ects allocawd in the old locltnon wﬂl be dastmgu:shablc
from the old object. '

-70 -
Finding all references to an object is difficult. In general, it requires a
complete scan -of the virtual memory (similar. to ‘thut pesforimed during garbage
collection). Such a scan would be quite. timecossuming. - The redirection method
is intended to be used as a temporary measure until sli of the: references can be
converted, either by a garbage coliection or by comversion -upon usé. (In this
latter case, reference counts would be used to. détermine that all references had
been converted.) However, the overhead of redirection, both in time and:space,
is - likely tooutwetghmybeaeﬁtmmmymeuM-
obtamed by moving objects.. . : B
| Thuwrdmmwm&ymw&urmémwwdrm
will hkely result in-:decreased - secondary storage wtilization;, becawse of
fragmentation. Tmmawmmmsdm—
further in Chapter 7. - o

5.5.1 Capabilit'y Systems

A number of other mechmhw&éeepropueéer :mplemeuted that
cwwuuwdeMﬁwm m«mmm
were designed for systems - wing cqpebifftier for - controlling access to
resources [20]: - Many capability systesus are sisilar to ours i that capabilities are
used like refereaces as ‘a mieans of aaming ‘objects.t “The primary’ functional
difference is that most capability systems: aire-desighed 1o support the explicit
deletion of objects, via explicit invocations of delete opeumns, x opposed to our
automatic deletion of ob;ecu perfomed by the sym “after an obpct heoew;

-1 -

inaccessible. Another difference is that most capability systems are designed
under the assumption that objects are either large {e.g., segments) or special (e.g.,
I/0 devices); thus, they can tolerate a larger overhead pér object than we can.

- One such system is the capability architectare proposed by Fabry [14]). In
his system, each object is identified by a wunigue identifier' (UID), which is a
fixed length bit string guaranteed to be different than the UID of any previously
created object. (UIDs could be obtained Frotii a- higa resohition clock or an
object creation counter that is never reset.) - '

Two mapping tables are used to implement "this method. One table
contains an entry for every existing object; the entry ‘contains (at least) the
current secondary storage address of ‘the-object:: The other-table is similar to our
associative memory: it cotitains ‘an entry for every objéét currently in primary
storage; the entry comtains (at least) the-cutrent ‘primary ‘storage:address of the
object. The ptimary storage map is consulted on éach-reference to an object. If
no entry is found, the aecondafy Btorage mapii consulted t6 locate the: ob;ect i
secondary storage.’ Lo '

The primary motivation for xdentxfymg objects by UIDs is to support
explicit object: deletion. 'When :an object is ‘déléted, alt-entriés for the object are
removed from the maps. If the object is subsequently acoessed (via a ‘dangling
reference), no entry will be found in either map (because UIDs are never reused).
The reference is thus identified as dangling; an exception can be raised.

YThis use of capabilities is called capability based addressing by Fabry [{4]. Capabilities usually
also contain rights that control specific kinds of access, e.g., read access and write access. Such
rights could easily be added to our references. _

SFabry suggests that the primary storage map also contain secondary storage map entries for
objects recently removed from primary storage. The idea is to reduce the number of accesses to
the secondary storage map, which would be stored entirely in secondary storage.

-72-

Another advantage is that UlDs are distinct from secondary storage:
addresses, allowing complete freedom in moving objects ie secondary storage to.
combat fragmentation. .Other advantages of the .indirection provided. by the
maps, ¢.8. implementing growing or shrinking ijeets, can .be provided in our
system using explicit indirection (one object comtaining: a refesence to amother).
In our system, however, indirection weuid be used oaly. !!hete:n,eeded-

. The UID method shares our.disadvantage of haviog & large primary storage
map that must be consulted on every access to an. object. - 1a:addition; however,
the UID.method requires a htgg&gcmduymmp Jmap.-contsining an entry for
every object in the system. If objects-are as small and qumerous as we predict,
then this secondary storage map would..oogupy. a-significant fraction-(eg., 25%).
of the secondary storage. . More importastly, consulting. the secondary storage
map could easily double the number of secondacy.storage aceesses. : .- . :

Fabry discusses a number of other capability. systems. - Mﬁnyofthesedo
not support object references-in their-full: generality, . Qthers use two forms of:
capabilities, one a special form used only for capabilities in primacy storage, with:
the goal of speeding up-access or- reducing the number. of: aocesses. to the primary
storage map. . Because our associative memory..is adequasely fast; we-do not
behcve that the added qverhead ofeonmbmmﬁormofcapabskm
is justified.

-73-
55.2 Paged Systems

ere our system, most capability systems transfer mdmdual objects between
primary and secondary storage. The altesnative; :as exemplified by Bishop’s
ORSLA [7], is to transfer fixed-size pages. In ORSLA, an object reference
contains the address of the representation of the obyect in a large, linear virtual
address space. Bishop recommends a size of at least’ Q&B words for this’ virtual
address space. .

The virtual address space is 1mplemented usmg a paged, multl-level memory,
similar to conventlonal vrrtual memory systems. A pnmary storage map maps
vrrtual page numbers mto prnmary storage page numbers for each v:rtuaL page
currently in prrmary storage A wondary storage map maps vxrtual page
numbers to secondary storage addresses.‘ The main dtfference between;ORSLA’ .
virtual memory and a conventional virtual memory is that OiiSLA brovrdes a
single, very large virtual address space Thns, the pnmary storage map is
assocxatrve, rather than dlrectly mdexed Howem because of the large page srze
Ce. 8 512 words), the pnmary and secondary swrage maps represent a relatxvely
small storage overhead

As we explamed in Chapter 1 a system that transfers ftxed srze pages
between prlmary ‘and secondary storage must somehow_ "arrange thmgs 50 that

each page contams a reasonable amount of) ted tnformatton Otherwme,'
pnmary storage utlhzatxon wxll be poor, extra ‘secondary storage accesses wrll be
needed and secondary storage bandwndth wxll be wasted ORSLA explo:ts spattal 1

HEWGT

locahty by allocatmg related objects m contrguous areas m the vrrtual address_

SA secondary storage map is needed: 1o silow:the user 1o:sliorate: virmual storage without
allocating "any corresponding physical storage. Bishop uses. this feature to implement
“unbounded” objects, e.g., stacks. A secondary storage map can also be used to turn a non-linear
secondary storage address space (one with "holes’) into a linear virtusl address space.

-74 -

space and by using a compacting single-area garbage collector. Note that even
though ORSLA ie paged, storage aﬂocauon is non-trivial, becamse small objects
must -be packed together on pages and large -objects. must be sliocated in
contiguous. virtual pages. Themedlectormmobpctsao cosiibat
fragmentation. : e

We have chosen to mvest:gate systems that do not need to expkut spatxal
locality. We are propoemg a system “that swaps mdmdual objects between
primary and secondary storage. However, gweu our mmpttont about fa:st-acceszs:t
secondary storage devices, it is appro;mate to eomder the merits of a paged
system with a very small page size that dou not try to explo:t spanal local;ty
Could such a system perform bettet than oun, or perform equal!y weil
but be sxmpler? R o .

Forthebestcompansonwnhoursystem,wewmchooseapagesxze
approxxmately equal to the average object swe, say 4 words. Thus, the ynmary:
storage map of this paged system will contain about the same nmnber of entnes':
asourassocxatxvememory mthentnesonlyshghﬂymaller Wewxllmume
that the secondary stonge devxces pnmde a natnnl haeer paged address space,
sothatnosecondarystoragemapnsneeded |

"~ One possxbihty is to xmpiement each object as some mtegral number of
pages, similar to a Multws sement. An object that ﬁts m one page would be
identified by the secondary storage adams of that page. A larger object would

1dentxfied by ‘the mondary storage address of a paae table, whxch would

-75 -

object. The page table, if larger than a page, would itself be paged, etc. With
such a small page size, the number of levels of page tables quickly becomes large
for a moderate sized object, resulting in many extra secondary storage accesses.

The advantage of this scheme is that storage allocation is trivial. However,
since the page size is approximately equal to the average object size, internal
fragmentation due to rounding up each object to an integral number of pages is a
major problem, as is the storage and time overhead of the page tables. For these
reasons, we believe this scheme to be unworkable. |

The alternative is to use a linear, paged virtual address space, allocating
each object in a logically contiguous region of the virtual address space (not
nécessarily aligned on page boundaries). This system would be similar to
ORSLA, except that (1) the page size would be much smaller and (2) no attempt
would be made to group related objects together. An object would be identified
by its virtual storage address, which would be equivalent to its secondary storage
address. |

This scheme reintroduces the storage allocation problem and fragmentation.
In addition, it is likely to have poor paging performance. When an object smaller
than a page is referenced and must be transferred to primary storage, the entire
page must be transferred. However, the rest of the page is not likely to be useful
to the program. Thus, for objects smaller than a page, this paged system will
access secondary storage just as often as a system that transferred individual
objects, but will make less effective use of primary storage. For objects
occupying multiple pages, the paged system will most likely make many more
secondary storage accesses than a system that transferred individual objects.
Thus, using a paged, linear address space without utilizing spatial locality is not

reasonable, even with a small page size.

-76 -

-17-
6. The Implementation of Automatlc Stmge Reclamation

The sccondary storage for an object is exphc:tly allocated by some primitive
operation, such as the vector. create operation. This storsige can not be reclaimed
as long as some process might perform:an operation oa the object. To maximize
secondary storage utilization, the storage should be reclaimed as soon as possible
after the object becames inaccessible. - It is up-to the system to determine when
an object becomes inaccessible and'to reclaim: the storage accordingly. - How. the
system detects and reclaims. inaccessible objects is. the subject of this chapter.

6.1 Accessible Objects

Theoretically, an object can be reclaimed umnedlately after xt xs last used.
In practice, we must define some notion of acoessibihty ‘that can easxly be
implememed The system must obey the property that any ‘inaccessible object is
guaranteed not to be used agam, 5o that its storage can be reused to unplement
some other object o .

" All definitions of accessibility rcly on the fact that an object reference is
created oniy at the time the object is create& “from then” on, the réference can
only be copied or destroyed. Thus, an object remains accessible only while there
remain accessible references to the object. Usually there.is at Jc@ttme exception
to this principle, namely, the roor of the tree of objects (The cbﬁéction of
objects actually forms a graph, or a tree: with- 'ar;bité#y sharing. We use the
term free for convenience.) The root object .is: always accessible,: regardless of
whether or not references to it exist. (We assume some-primitive operation can
construct a reference to the root whcneverneedsd.):

-18 -

Most definitions of accessibility . define. .the set of accessible objects
recursively as consisting of some set of immediately accessible objects, plus all
objects that are components of accessible objects. In the case of a static tree of
objects, there is a single immediately ‘accessible object, namely, the root of the
tree. However, in our system; which consists of ‘a -sumber of Haidware modules
storing and transmitting references, we fmust assaine ‘that:any reférence outside
the actual stored tree of objects (eg., in an) ntight be wsed. Thus, any objéct
with a reference outside the stored- tree of objects i -comsidéred immediately
accessible: - This definition places a heavy burden:on. the implementation. - - The
implementation must keep track of every referenoe m every module and all
references in transit between modules. If the system is ih operat:on, then the
unplementatnon of storage reclamatmn _must gvoid A9y conﬂm&s with, normal
operatlons that could result in referenes bemg overlooked o

The best solutlon to thns problem 1§ to d the ;ystcm 50 tbat object
accessibility is computed only when the sxstem is.in_quiescence (see Secnon 4. 3)-
In quiescence, no references exxst except in the stored tree of ob;ects in_the MM
Under these conditions, race conditions with normal operations are mposabk and

the entlre set ofaccess;ble obJeetscanbecompptedleqkm;only a;obgcctsm the

6.2 Simp!e Gar’bage Coﬂecﬁon :

The simplest method: for wlumm; automatic storagesredamam is ‘the
mark-sweep garbage collector {19].. A garbage collection ' is usually performed
when: an attempt: to create- an object fails because -of imsufficient ‘free storageé:
however, garbage collection can’ aiso:be invoked: explicitly. In cither case, nofmial
system operation is suspended while the garbage collection is being performed.
Thus, the garbage collector can compute the set of accessible objects by simply

-79 -

starting at the root and tracing the tree of accessible objects, marking each
object seen. After this mark phase is completed, each accessible object has been
marked. The garbage collector then examines eack existing object: - if the object
is not marked, it is reclaimed. The set of existing objects is fouind by sweeping
through the entire storage area.

A number of variations of the mr:k&smep«aﬁorithm -exist, differing
primarily in their use of auxiliary storage. In addition, there ‘are other garbage
collection algorithms using more or fewer phases. ::However, all of these
algorithms involve accessing at least every accessible .object. - In our system,
accessing every accessible object would reguire a substantial number of secondary
storage accesses. Although we are assuming a fast secondary storage, we are also
assuming a large secondary storage. Thus, the time: required to .perform a
garbage collection will be significant, msking: garbage “collection unacceptable
except at infrequent, scheduled iatervals. (In Section 6.10 we suggest a garbage
collector. implementation that requires on ‘the opdér of ten ‘misutes to: run.
However, even this time is-too: long for. an unscheduled-intesruption in service.)

~ The interval at which garbage collection wmst. oocur: deponds upon the rate
of object creation .and the desired secondary storage utilization. If the average
secondary storage utilization is 80%:. (i.e., after garbage collection, 20% of
secondary storage is unused),.and. the system greates objects at: a rate of 5000
words/second (see Section 6.8), then:a:100-'million’ word system will run: for only
about an hour between garbage collections. -Simple garhge collection of a. large
virtual memory is clearly inadeguate.

- 6.3 Alternatives

- There are a number of alternative methods of implementing automatic
storage reclamation. One. possibility is a paraliél garbage collector, one that runs
during normal system operation [32, 35, 13]. Because:a parallel garbage. collector
does not require that the system be stopped, the garbage collection time and the
garbage collection -interval are less significant. In fact; a . paraliel - gnbage
collectar could be run continuously. -

However, paraliel garbage ooilecton have some disadvantages. The maj_ar
disadvantage is that since the garbage collector .runs in parallel with aormal
system operétion., its opesation-is much-more. difficult. to understand or prove
correct [15]. = Another disadvantage is increased overboad, becsuse of memory
contention and competing use of primary storage. -

A related alternative is an-incremental :garbage collector, as proposed by
Baker [2]. - An incremental garbage collector distributes -the garbage: collection
time by performing. a-small part of the gatbage collection eachi: time storage is
allocated. ~ Although the total- garbage collectien time-is -not decreased by this
method, the disruption of normal activity is, sice each interruption caused by
performing more: garbage collection is short. - An incremental -garbage collector |
avoids the complexity -disadvantage of the paraliel: gatbage collector, since normal
activity is effectively stopped while the garbage coliector runs. However, there
are disadvantages. Pesformance':degradution resuiting - from. competing use of
primary storage is still a problem. More . importantly, the use of Bakei's
algorithm cuts secondary storage utilization }by one-half. Such a perforinahce ‘
penalty is reasonable only where uhinterrupted service lsessentml In addition, it
is not clear how an incremental garbage collection algorithm can usefully be
adapted to work in a multiprocessor system. '

-81 -

Another alternative is a single-area .garbage collector, as in Bishop's
ORSLA. Garbage collecting single areas is reasonable because, during any short
interval, only small portions of the virtual memosy will-be modified. -Only these
areas are likely to contain much garbage. By focusing garbage collection on the
active areas, the total long-term garbage collection time can be reduced.
Furthermore, in ORSLA, only those processes using the garbage collected areas
need be stopped during the garbage collection.:: Because garbage collecting a
single area can be done in much less time than:garhage collecting the entire
virtual memory, stopping the proceses will generally be agceptable.

To garbage collect a single area, the system: must know which objects in
the area are referred.to from outside the:ared. (These are assumed to be the
root objects of .the tree of accessible objects in the area.) However, keeping
track of inter-area references. is complex. - Alse, ‘as discussed in the Introduction,
we prefer not to introduce areas into the visible machine architecture.

‘The fourth alternative, which: we--have chosen,.is: reference counts. We |
explore this alternative in the next section.

6.4 Referehce Counts

The basic idea of reference courits is io associate a counter with each
storage object to count ‘the number of exxstmg réferences to the ob]ect Wheén
an object is created, a single reference to the ob;eét is created; and the reference
count of the object is set to one. ‘Whenever a teferenpeﬂto the objectv-r ls cop:ed
the reference count is mcremented Whenever a referenoe to the ob)ect is
destroyed (e.g., by overwmmg it w:th a new. refemnce). the reference count is
decremented. Whenever the reference count reaches zero, the object is
inaccessible and can be reclaimed. (When an object is reclaimed, all contained

-82-
references are effectively omwﬁtten, causing -the reference counts of the
associated objects to be decremented. Wé assuine M»the sysiem permlmenﬁy'
contains a reference to the root object.)

.One problem with the reference count scheme is ‘that the reference counts
of some inaccessible objects may not be gero, preventing those objects from being
reclaimed. This problem results from cycles of references. If a group of objects
contains a cycle of references, then each object in the ¢ycle will hiave a reference
count of at least one, aithough the éntite group may be inaccessible. ‘A similar
problem arises if refereiice counts are limited in size. If a bounded reference
count ever reaches its maximum value, it must resaain at’ that value forever, lest
the object be reclaimed prematurely.’ For ressonable referdnce count sizes (c.g., 8
bits), this case will be relatively insignificant. We will: use: the term cychic
garbage to refet to all inaccessible o’bm not reclaitnnble by reference counts
alone. , :

A system using reference counts: thus requites garbage vollection- tovreclaim-
cyclic garbage. However, because the rate of gemeration of cychic: garbage will in
general be much less than the total rate of garbage genernnon, gzrbage collectlon
in a system using reference counts can be much less frequcnt ‘than in a system‘
age collection occurring at
scheduled mtervals on the order of qnce per day or once per week. ‘With such
intervals, stoppmg the system to perform prbage collection is- probably

without reference counts We would agticipate garba

FThese problems can be avoided in systéms where all objicts sre ifimutable. Such systems can
be designed so that cycles of references cannot be crasted,. Furthermore, if the reference count
of an immutable object becomes too high, one can siways copy the object (producing & “new"
reference) instesd of copying the (old) refetence, without any effect on-1he Sbservadblé behevior
of the system. A system with these chanctcmtacs has chn dm;néd by Won; 37}

-83 -

acceptable, so that we can use a simple, marksweep -algorithm. It would also
probably be useful to combine the garbage collection with a salvaging operation
that checks for errors in the file system.

6.5 Conventional Reference Count Implementat_iois -

Reference counts have not often been used to the extent we are proposing.
The primary reason is that the conventional implementation of reference counts
incurs a large overhead. Each time a reference to a storage object is copied or
destroyed, a reference count must be updated. In a system like ours, these events
occur at an enormous rate. Each assignment to a variable that denotes a storage
object will cause a reference count operation. ' Every time a procedure is called,
the reference counts of the argument objects must'be incremented. ‘When the
procedure returns, the reference counts of the argument ohjects and ' the
procedure’s local objects must be decremented. It is easy to 1magme a system .
spending 25-50% of its time updating reference counts.’. =~ Because garbage
collection. is needed .anyway to. reclaim cyclic garbage, it is difficult to justify the
use of reference counts unless it reduces the averbead. of performing automatic
storage reclamation.- : , : e

The other disadvantage of the conventional reference count implementation
is complexity. In a system like ours, references are continuously being copied and
destroyed in many system modules. Somehow,:the net-result of all this activity
must be that every object has the correct reference count. -A referegce count too

“In a system using reference counts, a low rate of cyclic garbage generation is the mark of a
well behaved: program; just as a:low rate of fotal garbage: generation is the mark of a ‘well
behaved program in garbage collected systems Mature programs will be tuned to minimize theu‘
rate of cyélic garbage generation.

3The Smalltalk-76 system, which xmplements reference counts in microcode on a minicomputer,
is estimated to spend about 40% of its CPU time on roference count operatnons [18]

-84 -

small ‘could lead to the object"being- reclaimed prematurely, which could allow
later errors to occur. A reference count too large wilt prevent the object from
being reclaimed before the next garbage collection. 'In a systerfi supporting
concurrent operations, one must be sure there are no race conditxons that could
cause a reference count to transiently become 2610, cavsing the object to be
reclaimed prematurely. (An example of this prablem is given in Section 6.7.)

These problems occur because .the, reference coynts are counting every
reference to an object anywhere in the ;yucm, The advantage of this approach
is that the reference counts are continuously "valid™; whenever a reference count
becomes. zerq, the object is known to be inaccessible and can be reclaimed. The
disadvantage, as we have seen, is that the cost and. complexity of keem
reference counts continuously valid are high.

6.6 Queued Reference Counts

The alternative approach is not to count every rﬁerenee in the system.
Instead, our reference counts will count only refersnces stored ‘as components of
objects in-the MM. References outside the MM, or on their way in or out of the
MM, will not be counted. (The root object will permanently have a non-zero
reference count, regardless of the namber of reféresces 46 it'stored in objects.)

- One effect of this decision is to substantislly redeée the number of cvents
that cause reference count operations. The only evemts that- can cause reference
count operations are those that change the contenis of objects in the MM. These
events are stmply the MM sfore request, wiuch modf’u the eonmu of an
object, and object rechmauoa. which. (in. e&act) Mmys the coatents of an
object. (In our proposed architecture, the vector create oper&tion creates an
object containing no references to storage objects, so that ‘object creation does

not cause any reference count operations.) Note that the manipulations of

. 85 -

references performed by processors now do not change reference counts. For
example, operations performed on that part of the évaﬁiéti&x‘i' stack stored in an
IP cause no reference count operatxom. “Most” accesses to procedure arguments
and local variables will fall in this category.

Of course, if reference counts do not count all referenoes to an object, we
can not reclaim an object just because its référenice count has becomie zero.
After all, some references to the object may still exist in a processor and may
later be used. To sctually reclaim ‘objects, we ‘must force the system into
quiescence. In a quiescént state, af references are stored as the contents of
objects in the MM. Thus, during quiescetice, otir reference ‘¢ounts are valid and
can be used to detect insecessible dbjects. a o

One way to locate- all objects’ with zero reference counts is to scan the
entire ‘memory looking at every object. - However, “a much better ‘method is
possible; The objects: that we-are looking for are objects witose reference counts
have become zero siice the last quiescent ‘period. Therefore, whenever the
reference count of an object x beconies zero: (inclading when it is created®), we
can add an entry- discard(x) on a queut of suspectéd garb: e GQ. At the end
of the GQ cycle, when quiescence is next forced, evety object with a zero
reference count will have a discard entry on the GQ. The objects with zero
reference counts can thus be identified by proeewng the GQ and checkmg the
actual reference counts. S

‘When an object is created, a reference is created, but until. (and uniess) that reference is
explicitly stored in the MM as a component of some object, the reference count of the newly
created object is zero. It lsmssqtotdi‘aMmr?“‘tom@Qwhm an object is
created so that the object can be located and r md in the case where the reference is
discarded without ever having been stored in the *-his” situistioti is likely to arise Wwith
transient objects whose references are stored only in tho process stack cache in an IP and are
discarded before the process is unbound.

- 86 -
While the above method is much faster than acapning the entire virtual
memo:y,‘ it requires the system to remain in quiescepce until the set of
reclaimable objéctg has been determined. Because a reference count can be zero
at one time and then later be incremented (if the scle reference to the object -is
first outside the MM but later stored in the MM), some objects with entries on
the GQ may. not have a zero refecence count. Determining the set of objects to
with entries on the GQ, which can be done only during quiescence. .
The need to examine the actwal seferenos counts. of objects can be
eliminated by adding an additional eatry resurract(x) to-the GQ whenever the
reference count of the object x goes from aera: 4o & ‘agu-zero valye, Together
the discard and resurrect. catries allow ons-to compute whether -the reference
~ count of an ohject was zero or nonzero @f-the time quisscence was esigblished. X
the last entry for an object in the GQ is-a discard sntry, then the reference
caunt of that object must haye been zero. 1€ the last eniry:is o resurrect cniry,
the reference count was ponzero. If an obijeet-has a peso.reference count during
quiescence, then the object is truly insccassible. and ¢an be reelaimed.
 Using resurrect entries it is not necgssazy t0-keep the-system in quiescence
while the GQ is being processed. Instoad, after quieacepon is established, the old
GQ is passed 1o a apecial GQ processor for processing. . A sew, empty GQ- is
created for future use, and normal system operation is resumed. Meanwhile, the
GQ processor is processing the old GQ to determine. which. objects -were
inaceessible during the quiescent period. Azfy objacts iuacceaibie then are
macmnblcnowaadmbemhmod. (Rdwnd.th@@pxmrm doubie

-87 -

object is reclaimed, the reference counts of its component objects must be
decremented. Any discard entries so produced must go on the new GQ, not the
old one being processed.

Using this method, GQ processing is overlapped with normal system
operation and the system is essentially uninterrupted. Putting the system in a
quiescent state is similar to unbinding all running processes. In general, there will
be some minimum rate of process switching needed anyway to maintain
interactive response. As long as the GQ cycle time is longer than the process

time quantum, there need be little performance degradation.
6.7 A Note on Ordering

In a conventional reference count implementation, it is essential that
reference count operations be performed in the proper order. Reference count
operations are partially ordered in that the increment operation caused by the .
creation of a new reference always occurs before the matching decrement
operation caused by the destruction of that reference. If this ordering of
operations is not preserved, a reference count could transiently become zero,
which would cause the object to be discarded prematurely.

Consider the following example, and assume that our system uses a
conventional reference count implementation. Suppose that the reference count
of an object v is initially one. Then suppose that the following two operations

are performed "concurrently" by two IPs:

vector$store (v, i, v)
vector$store (vl, i, 0)

If the srore operations are performed by the MM in the given order, then two

reference count operations on v will be generated internally by the MM, one to

- 88 -

increment v's reference count, and one to decrement it. . If for some reason the
second reference count operation. is. performod first, then the reference count of »
will be zero for a short time. In a multiprocessor MM mplsuenution such as
the one described in Chapter 8, presarving. the ordesing of refereace count
aperations requires additional synchronization. ST -

Using the queued reference count scheme, it is not. mnnal that mference
count operations be performed in the correct arder. All that matters is that the
final reference count values at the end of each GQ cycle be correct. If the
ordering of reference couat operations is pot preserved, hawever, then it .is
possible for a reference count to become iransiently negative. The exarnple above
demonstrates this possibility, assuming that the reference ‘count of v s originally
zero (because the only references to v are in an IP). |

The only change needed to allow the queued reference count mechamsm to
handle negatwe reference counts is to e:eend the mcrement and decrement
operatrons to work for negative reference count values. Be¢ause negatzve
reference counts are a transient condmon, GQ enmec need be geaerated only for
transrtrons between zero. and one A mmrmum refereme count value must be
chosen. Decrement operattons on a rmmmum valued reference courrt wrll “be
ignored; once a decrement operatron m mnored, the object can be reclaxmed only
by the garbage collector Because negatrve reference counts are not very hkely
race condxtxons in the user’s prrgrams), a xmmmum reference count value ot' -1' |
would probably be sufficient.)

-89 -

 section; the order of GQ
entries /s important, as the decision on whether or_not to reclarm an object was

According to the description in the :

based on whether the /last GQ entry for that ob;ect was. a discard or a
resurrect entry. There is, however, an alternatwe Md processmg the GQ
that does not depend on the ordering of entnes L

The GQ entries for ‘any ﬁuméuhr ebject \wu consist of a sequence of
alternating discard and resurrect entries, always «begmmng with a discard entry.
If the object is accessible at the end of a GQ cycle, then the;e will be an even
number of entries, ending with a resurrect entry. If the objett is inaccessible,
there will be an odd number of entrres, endmg mth e diuerd entry Thus, an
alternative method for compntm& the set_ of “ﬂe objects involves simply
determining whether the number’ of GQ entﬂes for each object is even or odd.

This computation can be performdamkmg wtwo sequential scans of the GQ
and using two mark bits per ob;ect (eee Fr;ure 12). During the first scan, one
mark bit is used to count (mod 2) the number of GO entries for each object. At '
the same time, the other mark bit is used to detect multiple“ener»ie‘sfaior an object;
all but the first entry for each object is removed from the GQ (or overwritten).

During the second scan, all objects whose frrst mark bit is on are reclarmed

Other objects have therr mark brts reset. Removmg duphcate entrres is needed to
avoid attempting to reclarm an object more than once - o

The mark bits are stored in a header word assocrated wrth each vector. In
addltlon to the mark bits, the header word wrll contam the reference count, size
mformatmn, type mformatton, etc. The mark brts are used only for GQ
processrng and garbage collectron (descnbed below) there is no mterference with
normal operatlon If the mark bits were used durmg normal operatron (e g, to
avoid placing duplicate entries on the GQ m the frrst place), then the system

would have to remain in qurescence until the mark bits were reset to avoid

- 90 -
Figure 12. GQ Processing chrlthu.

process.sq proc (gq: m-y[voctor])
Sfirstscan -
~ forizintin emy[vector]&mdexn (u) do
© v vestor m gafi]- S
v.mark] = ~v.mark| &ma;mz ;
if v.mark2 then % have seen before

84li] = undafined % remove.aatry-from GQ

vkl w-true
end ' .
ond
% second scan
for i: int in lruy[vector]&ndexn (gq) do
vivecter @ g} : R
ifVNundeﬁnedtheaﬁlgmom\mmmum‘ _
Hvmark] Mﬁoﬁmm e
vectorirecigim (v) | '
ehe%mtthiﬁﬁrm
: vepuithl o flen
v.nark2 = fabe
ond o L, L s
end
end ‘
end process.gq

mterference ‘Note that ueing mark bits wecludes concurreat pfocemug of
multnpleGQs anewGQcyclecannotbegmunultheddGQhubeenproceued
and the mark bits reset.

“This method of GQ procemng depeads only upon the number of GQ
entnes and not on their order It thus ;:ermm entnes to be added to the GQ m
any order. In addmon. it ehmmaws the need to du&n;mh between dlscerd and
resurrect entries. Thu method might :eem les rotmt than the originally
proposed method as the new method w:ll make the wtong decmon if my single
GQ entry is lost, whereas the old method \vxll make tbe wrong dmwn only rf

-9f -

the last entry for an object is lost. However, we believe this. difference to be
insignificant, since most attempts tomtmwely claim an.-object can be
prevented by first checking that the actual stored reference count is zero. ;
‘We lgéwe shown that both reference count operatigns :and. additions to the
GQ can be performed in any order. All that..matters. are the. final- reference
count values and the total pumber of GQ eatries for each object at the end of
cach GQ cycle. As we shall see in. Chapter 8, this property allows. significant
freedom .in the actual implemestation. Removing ordering constraints reduces
the need for internal synchronization in the MM and makes the system easier to

understand. One less constraiot simply means one less way to go wrong!
68 Queued Reference Count Pe"f"m

When the GQ prooessor reclaims an' object, the ‘ reference counts of the
component * objects -must be' decréimented. < GQ eritries “produced by “these .
reference count opérationis will b¢ placed on the new GQ; which is not processed
until the next GQ cycle.” ‘Thus, the recisnition ‘of a-tree of objects is performed
breadth-first; one level per GQ" cycle A’ tree of depth ‘N will requtre N GQ
cycles to be completely reclaimed. AT a :

- The maximum- number of GQ entfies ‘that:can be produced by the GQ
processor while reclaiming-a set of objects duriig-one’ GQ ‘cycle - equafs* the
number of references stored in thosé objects. (The worst case is where every
object: Gompotient: is ‘the solé- existifiy referenct ‘1o sdme storage’ ob)ect) “The
need to-use temporary storage can be ivdided by stoting these GQ entries in the |
rechaned objécts themselves. - (If ﬂsarf m& rmrred' éntrf!s ‘aré not

-92.-
distinguished, then a GQ entry is simply a reference.) “The reclaimed objects can
be chained together using their header words, which ‘are bepuate ‘from the actual
object components. :

It is important that the GQ cycle time be as short as possible without
introducing excessive overhead from forcing ﬁe’syztem'inﬁb‘“qtﬁécence; A short
GQ cycle time will minimize the sizes of the ‘GQs, minimize' the amount of
primary ’sto‘ra'ge»wasted by inaccessible objects mot yet reclaimed, and maximize
“the probability that the ob;ecu accessed by the GQ pmomr are still i in primary
storage. '

Let us assume a GQ cycle time of 100 miﬂileeonds, similar to current
processor multiplexing intervals. How large mll the GQ: be? How much storagc :
will be occupied by inaccessible objects? .

‘We will assume a steady state where. objects are created and destroyed at a
rate of T objects per 100 milliseconds. . We will also assume throughout this
analysis that the probability of a: reference count transiently becoming zero is
negligible. A reference count can transieatly become zero only if all references
to the object are moved out of the MM, tthM -copies..of . the -wferenees- are
overwritten, and a reference is later wntten back-into the MM. ' |) S

DurmgcachGQcycle, Tobjectswaﬂhem&ymr proeessesand T
objects will become inaccessible. Of the T obaect&md, some: fraction -F(T)
will become inaccessible. during the nquQoycle. Forthesgobjects there will
be either 1 GQ entry (discard) or 36Q. entries. (Mﬂl; resurrect, . and
discard) generated, depending upon whetber refereace. to the. object were ever
stored in the MM. . The remaining T+F(7} new objects survive the cycle,
producing 2 GQ entries (discard and resurrect). o

-93.

The number of objects created before the current GQ cycle that become
inaccessible during the cycle must also be T-#(T) in the steady state. Each of
these objects will generate a single discard eatry: : The rethaining objects; created
before the current GQ cycle and surviving that:cgcle, generate no GQ entries.

If we assume that objects created and discarded within the cycle generate 3
- GQ entries (the worst case), then the number of GQ eatries generated during

each GQ cycle will be 3T, independent of -FfT).. The next question to ask is
what the rate of object creation is. likely to be.. To ‘answer this question, we
measured the object creation rates of ‘three CLU" programs, running on a DEC
PDP-10 (KA processor). (As in our: proposed system, objects in: this CLU
implementation have m&er words, which are included:in -all measurements of

object sizes.) e

‘The first program measured was the: CLU: compiler, producing CLUMAC

code (which .consists: of -assembly language macro calls) for a: fairly large source
module. . The compiler ran for :139 seconds of 'CPU time -and “created 26766
objects of total size 79777 words. - Fhe: object creation: .rate -was 192
objects/second (one object every 5.2 milliseconds) sand 574 wordsfsecond “The
average size of -4 new object: was 3. words. . - - SR : o
-~ The second program measured was the CLUMAC assembler, assembling the

CLUMAC output produced in the-first step. - The: program:ran for 165 seconds
-of .CPU time and created 29637 objects: of :size 94637 words. . The ~object
creation rate was 180 objects/second (ons: obiject every: 5.6 milliseconds) and 556
words/second. The average new object size was:again 3 words. . R

-94 -

To estimate the worst case, we: wrote a program that did: nothiag but
create objects, in this case PDP-10 words (which: are :two-word storage: objects in
this implementation). We ran this program for 24:1 CPU.seconds, in which time
it created . 100059 objects; for a .rate of 4150 W (one: abbet overy
241 microseconds). B e

Thus, we find -an object creation rate oﬁapmatdy 200/sec for real
programs and 4000/sec for a worst«<case program. We suggest 1000/sec as a
conservative estimate. .For a- mose powerful -system (faster and multiple
processors), the estimates must be sealed up; for cxample to :2000/sec (real),
40000/sec (worst-case), and. 10000/sec- conservative). We:will base our analysis
on this last fianrc,whtchw:omcwmwduwdedmry
100 microseconds.

Fwa%mmdlmmmmmﬁm 3 entries
for each of 1K.objects, a-total of ;3K .entries otcupying 3K words of storage.
then there are effectively 5 generations of garbage strectures in existence at-any
one time, for a total number of about SK abjeea.fmli-ﬁltwordsof
storage. - (All of this storage ds: mmm dtisis best that the: ob;ects
remain in primary storage:until. they are reclsimed.)

- We conclude, thérefére, that a rate of 10 GQcyciu per second will pmwe'
adequa&e performance, il terms of -the amount of storage: neéded -to hold: the GQs
and the garbage objects. ' Of ‘course; if the object creation rate. is less ‘than we
have predicted, then the GQ cycle time can be increased accordingly. ‘However,
there is not much to be gained by increasing the GQ cycle time, since the

SIt is difficult to estimate & number here short of comstructing a CLU simulator that uses
reference counts.

-905-

quiescent state is more or less equivaleat to unbinding ali processes, and processes
are likely to be unbound at a rate no slower than once every 00 milliseconds for
scheduling reasons.

The questxon .of whether the GQ prooessor can reclaim garbage as fast as
user programs generate - garbage is dWinSeoﬁm 74. Should the GQ
processor fall behind, and the: GQs become “tvo large”, the IPs would have to be
stopped until the GQ processor cauglit up. -

6.9 Garbage Collection

As descrrbed above, we have chosen to use the stmple mark-sweep algorrthm
to perform mfrequent, perrodrc garbage collectron for the purpose of reclarmmg
cyclic garbage. Thrs algonthm rdentrﬁes all eceemble ob;ects by tracmg the tree
of accessible obJects and markmg each object seen. It then sweeps through the
set of all ob;ects, reclarmmg all unmarked ob}ects and resettmg the mark brts
This algorithm assumes that all mark brts are rmtully cleared However, if
desired, a preliminary sweep can be made to verrfy that all mark brts are cleared
before beginning the mark phase. -

The primary functron of the garbage collector is to reclarm cychc garbage
In domg so, the garbage collector wrll be destroymg references, some of wluch
may pomt to accessible objects The reference counts of those objects should be
adjusted accordmgly

Using the normal reference count mechamsm to adjust reference counts
durmg garbage collectron would probably not work, as both the garbage collector

'and the GQ processor could attempt to reclann the same ObjCCtS Instead the

- 96 -

garbage collector should directly adjust the refereace counts-of accessible objects
as referepces in garbage objects are destroyed, without generating any GQ
entries. |

However, a better- solution. is to have the. garbage -coliector - completely
recompute all reference counts. In addition to reflecting changes resulting from
cyclic garbage reclamation, this method will correct any erroneous reference
counts resulting from hardware faults or. system crashes, befare additional damage
can be caused.

A garbage collector that computes reference counts can ‘be obtained by a
simple extension to the standard algornthm When an ob;ect is frrst marked, its
reference count is set to one; when addmomi referenm to the object are seen
durmg the mark phase, the reference count ts mcremented accordmgly Because
the mark phase sees each acceesxble reference exactly once, thls method will

~ compute the correct reference counts. (The mark bit is not needed if a

preliminary phase resets all reference counts to zero. Note that the standard.
mark-sweep algonthm can be viewed as a specral case of thls one, with the mark
bit equwalent to a reference count whose maximum value ts one)

An 1mplementatlon of the mark phase is shown in Flgure 13. Here we
assume only two types of ob;ects, betnnp and vectors The ‘vector_incr
operatron mampulates the reference oount and mark blt of a vector The normal
size and fetch operations can be used as they do not cause refereuce count
operations.)

- This mark phase algonthm reqmres temporary storage in the. form of a
stack containing the states of suspended procedure actmmm 'l'he maxrmum

size of this stack is proportwml to the maximum depth of the tree of acceesrbk

-97-
Figure 13. Recursive Mark Phase Algorithm,

recursive_mark_phase = proc (root: vector)
vector.incr. {root) % sets reference count of reotto 1
trace (root)
end recutsive_mark_phase -

trace = proc (v: vector)
% V is a vector whose reference count has just been set to 1.
% Trace the referencesin V,
in.mt.-vectodsm(v) ' .
i: int := 0 % 'T’ elements of V have been exemmed
while i < n do % examine all elements of V
e: any := vectorSfetch (v, i) -
imiel
ve: vector :=-force[vector] (¢) % test type-of B
except when wrong_type: % if not a vector
continue % next teratioh of loop
end
if vector_inct (ve) % increment rofefmce count
then um(ve)%wmthamm L
end
~ end
end trace

vector.incr = proc (v: vector) returas {(bool) }

% Increment the reference count of V. If the new roferenco
% count is-{, retura true, indicating that:the veetor should
% be traced. Otherwise, return false.
if ~v.mark then % if not marked ’ ;

v.mark := true % then mark'it= -

v.rc = | % set reference count

return (true) % tracing is neoded

end o e . !
VI := v.Ic + 1 % increment reference count (unlus at. maximum value!)
return (false) % tracing already started '

- end vector_incr. - : :

objects, which is bounded only by the total number of accesslble objects Thus,
in theory, this garbage collection algornthm could fall to operate because of
msufficnent temporary storage.

- 98 -

The need for temporary storage can 'be sliminsted by storing the
intermediate state of the computation in the tree of obpcts melf a technique
introduced by Schorr and Waite [29} - The:state ‘of each- pmcodure activation
consists of v, the object currently being traced, and i, the number of elements of
v that have been traced. | |

The number of components / can be stored in v itself. As shall be
explained in Chapter 8, during garbage collectlon the w field of v can be used
to store the element counter .

A reference to the vector v can be s‘toréd in the vector v[/] when tracing
v[i], in whatever element of v[i} is currently being eatmned The effect is to
reverse the chain of references from the root to the node being traced. This
reverse chain allows the procedure to find the proper node.to return to when
tracing of the current node is cmpheda AR imwveveﬁonof this algorithm is
presented in Figure 14. .
| In practice, it is probably best to combine these two methods. using a
fixed-size stack and resortmg to modxfymg the free only: wheu the stack ‘becomes
full. For most cases, a small mak (eg-: lK dmau) m& t\lfﬁes.

6.10 Garbage Collection Performam

The primary factor in the performmce of the garbage collector is the delay
caused by accessing secondary storage, as both phasu of the garbage collector
access most or all of the secondary storage. Compar;d tothe mary storage
delays, computation time will be relatively insignificant. |

.In evaluating the mark phase. we will assume ‘that the maxunum depth of
the tree is sufficiently small that the garbage collector stack will not overﬂow
and all of the objects on the stack will fit in pmmry storage By modxfymg the
garbage collector code to occasionally touch all of the objects on the stack we

.99 .
Figure 14. Iterative Mark Phase A;'goﬂthu.

iterative_mark_phase = proc (root: vector)
vector_incr (root) % sets reference count of root tol
v: vector = root % V is the vector currently being traced.
vf: vector := root % VF is nomully-thn father of V.
% However, if VF=V, then V is the root.
% This convention, mnd to detect tctmlngmon
while true do
ve: vector := vector. current_element (v) % get. vector element-of V
except when none: % if all components of V have been traced
if vfev then return end % finished tracing root
ve = v; v = vf % pop up one level
vi = vector. euch.ref (v, ve).
% store element back-into V, o!mm old VF from v
continue % next IW of loop
end
if vector_incr (ve) % increment rcfuemn count
then % we need to trace VE
vector_exch_ref (v, vf) % save father where son was
vf 1= v; v 2= ve % down one level in tree
end
voctor.sktp.dmat (v) % done mtk.xhst componem
end. ,
end lterttm.muk.p&se

vector_incr = proc (v: vector) returns (bool) ,
% Increment the reference count of V. If the new reforouco count is l.
% set things up for tracing and return trys, indicating that the vector
% should be traced. Otherwise, return false,
1 nf ~v.mark then % if not marked
v.ohark 1= trie % then mark it
»uc;-&%mmegum Y
save_size_info (v) % prepare to reuse size ﬁeld
‘v.ize O % initislize slement counter
return (true) % tracing is needed
end
v.rc = v.rc + 1 % increment reference count (unless at maximum value!)
~ return (false) % tracmg already started
~end vector -incr

vector_current_element = proc (v: vector) returns (vector) signais {nofie)
% Return the first vector element of V not previously returned.
% If none left, restore the state of V and signal none, :
% Causes no apparent side effects on V.

- 100-

size: int 1= compute_ true_size (v) % compute size from redundsnt information
while v.size < size do % look for first vector component
@: any := v{vsize] % E is the component
ve: vector := force{vector] (e) % test typs of E
except when wrong_type: % if not a vector
vaize s vaize + 1 % proceed to next slement
continue % next mﬂﬁm ‘of loop .
end
return (ve) % return vector component
end
‘% When loop terminates, v.size has been romrcd!
signal none
end vector_current_slement

vector_sxch_ref = proc (v: vector, e: vector) returns (vector)
% Store E as the efement of V just mum-d by‘voeto: current_element,
% Return the old vilué of that ele
old: vector := v{v.size)
v{v.size] := ¢ % no reference count opomaom!
return (old)
end vectort. mh..nf

vector_skip_element = proc (v: vector)
% The elementof V last returned by mwcﬁmuﬁmmhn been
% processed. Updm:htmd\!iothathmfdlto .
v.size ;= v.au + l
end vector_skip_slement -

can ensure that all of the objects on the. stack wﬁl remam mpnmaty storage. In
this way, we can guarantee that a seeondury W m ‘€4n occur only going
down the tree (away from the- mot%), andaw whaa mrmng up the tree
(towards the root).6

SIt is not clear that thumatogymhobm.bunfnot,hatbmpromdosmuppo:boundonma
number of secondary storage accesses. Ifourm\mpﬁonabomﬁnmofﬁnmkmdtho
" objects on ::mnmmmmummwmhmmmumofm‘

- 101 -

If all reference counts are one, then there is no sharing in the tree. Each
reference examined will refer to an object not encountered previously. Because
we can assume no relationship between the traversal order and the locations of
the objects' in secondary storage, each objéct “examined will require an
independent access to secondary storage. In this case, the number of secondary
storage accesses will equal the number of objects. The number of objects (and
thus the number of secondary storage -accesses) can be predicted given the
secondary storage size and the expected-average object size.

If there is sharing in the tree, then a reference may refer to an object
previously encountered. This object may or may not still be in primary storage
when the subsequent access occurs. Because sharing mduires cooperation, much
sharing can be expected to occur within moderate sized subtrees, in which ‘case.
the shared objects will remain in primary storage while the subtree is being
traced. In the worst case, however, the number of secondary storage accesses will
approximate the number of accessible references, which will be larger than the |
number of accessible objects.

To estimate the number of references in a system, we examined some CLU
programs. We found the number of references to exceed the number of objects
by about a factor of 2. We believe this number to be too high. Most of the
sharing was in code (shared procedures) and related objects (linkage and
debugging information). Data created by programs had lower ratios, generally
less than 1.5.7 Ina iarge file system, we would expect data to predominate. For
this reason, and because locality of reference és relevant here, we estimate that
the number of secondary storage accesses will exceed the number of accessible
objects by at most 25%.

TMeasurements by Cla(k [8] on data in LISP programs showed almost no sharing of list cells.

- 102 -

In a system with 100 million words ofmd&ymmd an average
object size of 4 words, there will be at most 25 million accessible objects and (we
estimate) 30 million accessible references. If the sverage time to swap in an
object . from secondary storage -is 100 mmouds. then a mark .phase that
performed 30 million secondary storage accesses in sequeace would run for about
one hour.

The perfprmancc of the mark phase can be grenﬁy tmprwed if multiple
secondary storage requeasts can be processed concurseatly, If multiple secondary
storage requests are outstanding to a single secondary storage device, then the
average access time can be reduced by processing requests: in ‘the proper order.
The effective access time can. also be reduced by using multiple secondary storage
devices 50 that a aumber of trassfers can proceed in paraliel. -

If enough concurrent requests.can. be generated, and there. are enough
secondary storage devices, the limit oa - the -processing sate will not be the
secondary storage access time, but will be the primary starage: bandwidth and the
overhead of initiating transfers. A factor of 10 impeovement would involve
transferring at most 40 ‘words per 100 ‘microseconds or .1 word every 2.5
microseconds, assuming an average object size of 4 words.: This rate is similar to
secondary storage transfer rates in. current systems and should: present no
difficulty. The factor of 10 improvemeat cowld probably habtamedusmgAto ,
8 secondary storage devices, assuming appeoximately & facter of: 2. improvement
from reordering requests to .esch device. Careful consideration mustbe paid to
designing the systems to migimize the overhead:of perfornving: transfers. We: refer

therudermadmbyAcketmnianthmyw
module [1].

- 103 -
A factor of 10 improvement yields-a-mark phase time:of only about 5

minutes. Obtaining this improvement depends upon generatmg lan:ge numbers. of
concurrent secondary storage requests. Fo:tamtely, the amaunt of potentlal
parallelism in the mark phase is practicallx nalnmted Traang a vector involves
tracing the components of the ‘vector, all of wi‘uch can be traced concurrently
The sequential mark phase algomhm can ewly be modlfied to fork a new
process to trace a partxcular vector ‘wheaever - the toﬂi number of garbage
" collector processes is less than'the desired pumber. S

Such an algorithm: is- presentéd m Flgnre 15 This‘ algorithm simulates
multiple processes using an explicit state array. It uses a simple-cyclic scheduling
algorithm and exphc:t polling of pendmg secondary storagp réquests. In this way,
we avoid many of the problems of m:plemenﬁng a“general process mechanism,
such as synchroixizatioa andm&.rmpﬂbnhty This approach is possible because we
believe that a éiﬂgb processor xssufﬁctent to drive the secondary storage devices
at the desired rate. , |

The only special operatlon used- by* ihe multiptocess mark phase algorithm
is vector_touch. This operation will subtmt a: wnadary storage request for the
vector, if needed. In any case, it returns ~l,mqumtely .with an indication of
whether or not the vector is currently in pmnary storage. Vector_touch is used
to overlap computation with secondary storage -accesses; when vector_touch
indicates that a vector is not yet in prnnary storage, the mark phase will turn its
attention to another process. Vector_touch is used only before accessing a new
component of a vector bemg traced as that is where secondary storage accesses
are most likely. All other vector opentxons wait for any needed secondary

storage accesses, as before.

. 104 -
Figure 15. Iterative Multiprocess Mark Phase Algorithm.

multiprocess_mark_phase =~ proc (root: vector)
vector_incr (root) % sets reference count of root to |
maxn: int ;= 10 % maximum number of procm
n: int := | % current number of "processes” -
iz int := | % the current "process”
% The following two arrays store the proecss states.
% Only the elements in the range {.N sre:valid,
v: array[vector] := array{vector]$fill (1, maxn, root)
- % V{i] is the vectof currently being traced by process I
- vf: array[vector] := array[vector]§fill (], maxa, roof)
% VFi] is normally the father of V[i]. However, if VHi)=V[il
% then V[i] is the.root of the subtres being traced by ptocess L
% This corwenuon used to detect tmmnmon.
while true do - s '
ve: vector := vector_current_element (v[x]) % get vector element of V[i]
except when none: % if il components of V[i] have been traced
if vi{ij=v{i] then % finished. iracing root of subtree :
if n=| then return end % all processes done
v{i} s vin} vifi].oe viin} n 3 n-1 % delete process
i m i+L; if >n then i := | end % select new process
continue % next iterstion of loop
end
ve := V{i} v]i] := vfi] % pop up one level
vili] := vector_exch_ref (i} ve)
% store element back into V[i}, obtain old VHi} from V[n]
continue % next iverstion of loop
end
if ~vector_touch (ve) then % VE not in prisiary storage
iz i+l; if >n then i = | end % select new process
continue % next iteration of loop
end : ,
if vector_incr (ve) % increment reference count
then % we need to trace VE
if 8 < maxn then % fork a new process
f := n+l; v{n] = ve; vi{n] = ve
vector_exch_ref (i} vﬁi}) % save father where son was
vifi} :» oi} ¥{i] 3= ve % down one level in tree

end
end
vector_skip_element (v{i]) % done with that component
end

end multiprocess_mark_phase

- 105 -

The sweep phase will always perform at least as well as the mark phase.
The sweep phase examines every object in the virtual memory. However, it can
exainine the objects in any order, in particular, in whatever order will minimize
the access time. If there are multiple secondary storage devices, it can sweep
each device concurrently. If we assume that the sweep phase takes the same time
as the mark phase, then the total time of the garbage collection will be about ten
minutes. Clearly any time of.this magnitude is acceptable for infrequent

scheduled garbage collections.
6.11 Evaluation

Qur proposed mechanism using queued reference counts and occasional
garbage collection has a number of advantages. Because reference counts will
detect most garbage, garbage collection need occur only infrequently at scheduled
intervals. At such intervals, stopping the system to perform garbage collection is
often acceptable. =We can thus use a relatively simple garbage collection
algorithm, which can easily be modified to perform a salvaging function. In
addition, because we can devote the entire resources of the system to performing
the garbage collection, the garbage collection time can be quite short.

The queued reference count scheme has both simplicity and performance
advantages. The set of counted references is well defined. The set of events
that can change the reference counts is easily derived. Problems of race
conditions and synchronization to preserve ordering are avoided. The rate of
reference count modification is substantially reduced, and most reclamation
activity is performed concurrently with normal processing. The overhead of using
reference counts is thus minimized. The one functional disadvantage of queued
reference counts is that the reference counts cannot easily be used by primitive

operations or user programs, for example, to allow the representation of unshared

- 106 -

immutable objects to be modified (without first being copied). . This disadvantage
would be serious in & system that supparted coly immutable objects, eg. &
data-flow architecture 11}

. The queued reference count schcmc is sumlar in. smtcsy to a mechanism
proposed by Deutsch and Bobrow (12}, That, mechanism was designed for a
standard single-process LISP system. References in. the. evaluation stack are not
counted, thus reducing the number of reference count operations. - Unlike our
mechanism, the reference counts are not stored in the objects, but in separate
tables. These tables are arranged so that no storage is required for reference
counts whose value is one, the most common case. The user process does not
directly access reference counts. Instead, all reference count operations are
qucued in a transaction file (TF) and prooessed in batches. When the TF is
processed a copy of the current evaluation stack is gwen to the transaction file
processor (TFP) so that references in the evaluation staCR Wl“ be consldcred
This actlon of passing the current evaluation stack and TF ‘and crcatmg an
empty TF for future use is equwalent to the quwscent state in our mechamsm
Once the TFP has begun processing the TF, the user process can be resumed
After the TFP has finished processing the TF, the referenoe count tables will
contain the true reference counts at the time the TFP vm started. The TFP
can reclaim any object that has a zero reference count and is not referred to by
the evaluation stack. Because the TFP has sole access to the reference count
tables, it can directly perform any reference count operatxons resultmg from
object reclamation "It can thus dlscard entu'e structures at once (lt' desu'ed),
rather than one level per cycle. The duadnntage of tha mechanum is that 'f'F

- 107 -

entries are generated for every reference count transaction, not just those
between zero and one. The number of additional TF entries will depend upon

the amount and activity of shared objects.

- 108 .

- 109 -
7. The Implementation of Storage Allocation

" There are actually two storage “allocation problems, secondary storage
allocatron and primary storage allocation. Secondary storage is allocated as part
of the vector create operatlon, secondary storage is deallocated when a vector is
reclaimed (by the GQ processor or by the garbage col!ector) Prlmary storage is
allocated when a vector is created or swapped m, prrrnary storage is deallocated
when a vector is removed from pnmary storage (as part of reclamatxon or to
make room for other vectors). We will begtn by constdermg secondary storage
allocation, which is a more serious problem ' ,

A note of termmology Because the units, of storage allocated and
deallocated correspond to the umts of mformatxon transferred between primary
and secondary storage, we will call thue storage units (pnmary storage or
secondary storage) pages. Unlike most conventwnal paged systems, these pages

come in many dtfferent sizes.
7.1 Secondary Storage Allocation

The secondary storage allocator must satisfy a aumber of constraints.
First, it must be prepared to satisfy arbitrary sequests for storage. ranging from
one word to some maximum value chosen by the system:designer. In response.to
a request, it must allocate (at least) the desired amount of contiguous secondary
storage. ; o

Second, most allocated pages cannot be relocated in secondary s'tor'age
without stopping the system. ‘The secondary storage allocator thus cannot depend
upon being able to perform compaction, except as part of periodic system
maintenance. One should expect that free storage ’wi_vll' be. scattered throughout

- 110 -

secondary storage. It is important that storage usderutilization caused by
fragmentation be controlled Tlus problem rs especrally serious because
compactmn can not be used.
~ Note that with respect to a single syrrem, storage underutilization is

meaningful only when a request for storage ‘fails. Storaze is underutilized if free
storage exists but cannot be used to satisfy the faﬂmg reqﬁest Alternatrvely, the
degree of storage underunllzatron will determine how much secondary storage rs
needed to allow a given computatnon to be performed In this case we are in
effect comparing multtple systems with drfferent rtorage mes to find the smallest
system that can perform the computauon '

| Finally, because secondary storage allocatxon performed frequently, it is
nnportant that allocation and deallocation be fast Here we are concerned
primarily with mmimrzmg the number of secondary storage accesses, although
processor time is also important. The free secondary storage pages will lxkely be
identified by chaining them together on free lists. We must reject any method
that involves searching through free storage lists. to perform allocation or
deallocation, because such searching would likely incur multiple secondary storage
‘accesses. - Many standard storage allocation algicithms involve searching a free
list to find a free page large enough to satisfy -a request or to find adjacent free
pages tomergewrthamebungdedm Mdmthmrarenot
acceptable.

7.2 Zoned Allocation

Given the above constraints, we conclide that the proper strategy is to
divide secondary storage into a numbet of Zonis, eath of ‘which provndes pages of
a smgle size.! (For the time being, asiume that the number of zones (page sizes)
equals the number of possible vector sizes and that the maximum vector size is

- 111 -

sufficiently large that the overhead of using multilevel structures is insignificant.)
Within each zone, storage allocation can be handled much as in a conventional
paged system. The available secondary storage address space can be split up into
pages, each of which is either allocated or free. The free pages can be chained
together on a free list. Allocation and deallocation require at most one
secondary storage access to read or write the free list pointer in the page being
allocated or deallocated. Within each zone, there is no fragmentation, as all
pages are the same size.

While there is no fragmentation from the point of view of each zone, there
can still be storage underutilization from the point of view of the system as a
whole. If a particular zone becomes full, it is possible that a request for storage
will fail even though free storage exists in other zones. If free storage exists in a
zone that provides larger pages, then a larger page can be used (at a cost of
introducing internal fragmentation). Ultimately, however, a 'request will arrive
when free storage exists only in zones providing smaller pages. Unless the
relative zone sizes can be adjusted (unlikely if allocated pages cannot be moved)
or there exist contiguous free pages that can be combined to form a page of
sufficient size (ultimately unlikely, and probably an undesirable solution in any
case, as it adds complexity and defeats our method of determining the size of a
page from its reference), the request will fail. Any free storage in other zones
will be useless.

The amount of storage underutilization resulting from partitioning
secondary storage into zones depends on the variation over time of the
distribution of the sizes of allocated pages. Each zone must be large enough to

handle the peaks in the number of allocated pages of the corresponding size. If

'The term zonme is borrowed from the Smalltalk-76 implementation, which uses a similar
secondary storage allocation method.

- 112 -

the size distribution remains relatively coastant, then each zone will have similar
utilizations. Should a.zone become full, the other zones will be nearly full, so
that the amount of wasted storage is small. On the other hand, if the size
distribution varies wildly over time, then the wtilization of -the most utilized zone
at any one time will likely be much greates than the wtilization of the other
zones at that time, resulting in significant storage uadesutilization. .

The amouat of storage underutilization will in general increase as a
function of the number of zones. There are two reasons for this relationship.
One reason is that the relative effect of the one-full 20ne (the one rejecting a
request for storage) is greater for smaller numbers of zones. If there are oaly
two oqually sized zones, thea the storage. underutilization can not be more than
50%, regardless of the variations in the utilizations.of the two zones. The worst
case storage underutilization for tea equally. sized zones is 90%. | *

The other reason is that reducing the numbes of xones will tend to smooth
out the time variations.in the distributions of aliocated page sizes. If the aumber
of zones is reduced, some requests-that would: bave ;goae to different zones will
now go to the same zome. Variations in the oumbess of pages. previously
allocated from the different zones will tead t@-eanael’out when the zones are
merged, resulting in less variation-in the overali distribution of page sizes.

- There are two ways to reduce-the numbes-of- zones- (the:pumber of page
sizes), each of which has an associated cost. One way is to reduce the maximum
page size. The cost of this reduction is an increase in the aumber of objects that
must be represeated by multi-level structures,: which-will increase the amount of

- 113 -

the percentage of objects larger than 128 words was less than 1% for each
program. Thus, for maximum page sizes of at least 128 words, the overhead of
page tables will be insignificant.

The other way to reduce the number of zones is to provide only some of
the possible page sizes in the range from two words (one header word plus one
data word) to the maximum page size. Requests for other page sizes in this
range would be satisfied by allocating pages of the next larger supported size.
The cost of this method is that it introduces internal fragmentation, storage that
is wasted because it is allocated as part of an object but never used. The
amount of internal fragmentation can be controlled by proper selection of the
supported page sizes. For example, one could provide page sizes that are powers
of two. For the same four CLU programs, we found that providing the powers
of two from 2 to 128 words would result in 17-19% internal fragmentation.
Better results can be obtained by matching the page sizes to the expected size
distributions. For these programs, adding page sizes of 3, 96, 5, and 48 words |
would reduce the internal fragmentation to about 7%.

In a real system, storage is used for a number of purposes. Most storage
will probably be used for "file" storage that changes at a relatively slow rate.
Other storage is created and discarded at a relatively rapid rate by processes.
The total storage usage is the sum of all activities. In a multiprocess, multiuser
system, we would expect a relatively stable, slowly changing distribution of
allocated page sizes. A slowly changing distribution can be handled by adjusting
the relative zone sizes as part of periodic maintenance. What can’t be handled in
this manner are the dynamic ups and downs caused by the activities of processes.
For example, a particular program may create a large number of objects of a
particular size, which are all discarded when the program terminates. These

variations can be handled only by providing extra storage in each zone. We

- 1l4-

would expect the variations caused by running processes to be a small percentage
ofthetotalﬁoragsasage,sothattheamntefmnnd«unhsm“wiﬂbe
tolerable. ' *'

73 Block Allgcation

To 1mplement a number of storage zones, we will dmde secondary storage
into fixed size blocks. Each block will be asugned to a parttcular zone and wnll
therefore provide a smgle page size. The block slze will probably be a multlple
of the maxnnum page size, chosen to muunuze the amount of storage wasted
when a block is carved up into pages of any of the supported page sizes. The
block size may also be affected by the addressmg charactensucs of the secondary
storage dev:ces, as we requnre conttguous eecondary storage addresses wrthm each
block. Blocks will be identified by block numbers, whose cholce wnll agaln be
related to the addressmg charactenstrcs of the secondary storage devxces.
(However, for each secondary storage devwe, the block numbers should be
reasonably compact, to allow the use of device tables indexed by block number)
A secondary storage page will be wentlﬁed by a devxce number, a block number
on that device, and an offset within the btock 2 (T lus secondary storage address
| wxllbeused asthedatapartofavectorreferenee) o

 Each secondary storage device will have an associated table in fast storage
mapping block numbers to zone numbers (A d;rectly indexed table requxres only
4 bnts per secondary storage page, assummg 16 or fewer zones) ‘I‘he tables can

2Alternatively, the page number within the biock can be used umud of the offget. This
method saves one bit of eddrea length where odd page am are ueed. usumlng s mmlmum page
size of two words, T c

- 115 -

be used to determine the size of a secondary storage page given its address. This
ability is needed so that the proper amount of primary storage can be allocated
before the contents of a page are transferred from secondary to primary storage.

Two methods can be used to assign blocks to the various zones. Using
static assignment, the expected distribution of page sizes is determined in advance
(e.g., by measuring existing programs), and blocks are assigned to zones
accordingly during system initialization. Using dynamic assignment, all blocks
start out empty and not assigned to any zone. When a page of a given size must
be allocated and there are no free pages of that size, an.empty block is assigned
to the corresponding zone and is split up to form pages of the desired size. The
ultimate zone sizes thus will reflect the actual page size distribution, rather than
a predicted page size distribution.

Additional flexibility can be gained using dynamic assignment if blocks are
removed from zones when the blocks become empty. (This ability requires the
frge lists to be organized so that each block in effect has its own free list, to ‘
allow the free list to quickly be adjusted when a block is removed from a zone.)
Dynamic unassignment permits some adjustments in zone sizes in response to
changing size distributions. The effectiveness of dynamic unassignment depends
upon how many blocks become empty when the number of allocated pages in a
zone decreases. The probability that a given block will become empty decreases
rapidly as the number of pages per block increases. Dynamic unassignment is
thus most helpful when storage usage shifts from large pages to small pages and
least helpful when storage usage shifts from small pages to large pages. For
dynamic unassignment to be useful, the block size should be minimized.

Dynamic unassignment does not solve the problem of storage
underutilization, but it does offer some help in recovering from a storage

unbalance. Nevertheless, the best strategy is to make sure there is enough free

- 116 -

storage in each zone to handle anticipated usage. "An obvious source of difficulty
here is the possibility that a. program will maliciously or erroneously allocate a
large number of objects of a.particular size. Here dynamic. assignment and
unassignment perform worse than static assignment. Static assignment will stop
the program when the particular zone becomes full. If the objects can be

reclaimed, then the system can resume normal activity without much disruption.

Dynamic assignment and unassignment will allow the program to run longer,
possibly reducing the free storage levels i all zones to near zero. Furthermere,
even if the program is stopped-and the objects reclaimed, there is-no guarantee
that the blocks that were dynamically assigned to the zone can.be emptied and
so be made available again to the other zoses. It is likely that these blocks will
also contain a small number of objects created concurreatly by other processes.
These objects may prevent the storage unbalaace. from being.corrected.

The solution to this problem and othesrs like it must be a resource
allocation mechanism that limits the ability of -isdividual users to obtain more
than an appropriate share of the system’s resources. We will examioe this issue
in Chapter 9. |

7.4 Evaluation

In this section we evaluate the block allocation method with ‘respect to the
two criteria of storage underutilization and ‘alloeation /dealiocation speed.

There are two sources of storage underutilization. One is imternal
fragmentation, resulting from rounding up request sizes to the next supported
page size. Our evidence indicates that a proper choice of about 11 page sizes
matched to the expected object size distribution can limit storage underutilization
caused by internal fragmentation to under 10% of the total secondary storage.

- 117 -

The other source of storage underutilization is external fragmentation
resulting from partitioning secondary storsge into zones. “The magnitude of this
underutilization depends upon the amount of short-term - variation in: the
distribution of object sizes. We ‘have no basis for making specific estimates, but
we believe that in most cases external: fmgmemuon will be a small peroeatage of
the total secondary storage size. o SEAEE

It should be noted that conventional file:systems.also- have fragmentation
problems, particularly interaal fragmentation resulting from allocating files -as
integral numbers of fairly large pages or blocks. The large page size, plus the
overhead of directory entries, makes large:numbers of -small-files prohibitively
expensive. - Where small -objects. -are. desired; our:system: will -utilize secondary
,storage more. efficieatly than conveational systems. - :

With respect to allocation and deallocation speed, the block -ailocation
method requires at most one secondary storage -access per allocation and
deallocation. Is this. good eneugh? We have conservatively estimated an object
creation/reclamation- rate of 10000 objects per-secend.:-.If = mdarystom
access requires an average of :100 miotm\,&e&aperforming 20000 secondary
storage aceesses i sequence would: .require. two: secondst At this rate, -every
second of user computation would cause two secands ef secondary storage access
delay, limiting the system to at best 50% of mtended capacrty |

There are a number of reasons why thmgf dre not really this bad. For one
thing, many secondary storage requests can be performed concurrently. Object
reclamatron is performed concurrently wrth normal System operation. The GQ
processor can easily be designed to submrt multrple dgallocatron requests in
parallel. Storage allocatxon is performed by multiple processes, so there will likely

- 118 -

be concurrent allocation requests. By having separate free lists for each
secondary storage device and by reorderiag multiple requests to-each device (see
Section 6.10), we can process requests in paraliel much faster than in sequence.
Another - factor is that ‘the . secondary storage -access performed during
allocation serves only to obtain-the new free list pointer from the -allocated page.
The allocation operation can thus "return" theadérelsef -the: newly allocated
page immediately, without waiting for the secondary storage request to complete
(as long as the secondary storage request is guaranteed to be: performed before
any other operation: on that secondary storage -page). Thus, the requesting
process will not be delayed unless it submits smother allocation request to the
same device before the secondary storsge operation completes. In this manner,
much of the secondary storage access delay can be overlapped with user
computation. : . S o ' _
" Finally, because much of the aliocation and deallocation activity results
from the continual crestion and reclamation of tramsicnt-objects, the number of
secondary storage requests-can.be reduced substantially by mauintaining the "top”
portion of the free list in fast storage. Whea the rates of object allocation ‘and
deallocation are in (short-term) balance, most secondary storage page allocation
and deaumammmmﬂhehltﬂhdm‘nyméuyemngem

7.5 anary Storage Allocation :

Compared to secondary storage aﬂocatibn, pmmry storage allocation is
trivial. When allocating pnmary storage, we do not have to be concerned with
minimizing the number of accesses to storage. Furthermore, because objects are
not fixed for all time in specific primary storage locations, fragmentatxon is much
less of a problem. Any of the traditional storage allocation algorithms can be
used. To keep things simple, we suggest using the same zoned allocation scheme

- 119 -

for primary storage. Because primary storage usage reflects short-term program
behavior, the zone sizes will occasionally need adjusting. Adjusting primary
storage zone sizes is easy: one can swap objects out to secondary storage to free
up blocks for reassignment. At worst, one could simply swap out all objects and

start from scratch.

- 120 -

- 121 -

8. System Structure: the Memory Module

The purpose of this chapter is to present an actual design for a memory
module based on the ideas presented in the previous three chapters. The design
will consist of a collection of hardware modules and interconnections. The
functions of the modules will be described, as will the various kinds of messages
transmitted between modules. Particular attention will be paid to questions of

synchronization and flow control.
8.1 Vectors and Pages

The previous chapter introduced the notions of primary and secondary
storage pages. At this point, it is convenient to introduce a third kind of page,
called a virtual page. All pages are structured, mutable "objects" containing
fixed numbers of elements. Unlike true objects, pages are explicitly deallocated,
via dealloc operations. Thus, in some sense it is improper to call a page an
object; however, for convenience we will continue to do so. In addition, as
described in the previous chapter, pages come in only a few different sizes.

A secondary storage page resides in secondary storage and is identified by
its secondary storage address. A primary storage page resides in primary storage
and is identified by its primary storage address. A virtual page resides in virtual
storage, that is, it normally resides on secondary storage but will be copied into
primary storage as necessary to support fast access. Virtual pages are the basic
"objects" provided by a virtual (multilevel) memory.

Virtual pages are implemented using secondary storage pages and primary
storage pages. Each virtual page is represented by a secondary storage page,
which provides the "long-term" storage for the contents of the virtual page. A

virtual page reference will be equivalent to the corresponding secondary storage

- 122 -

page reference, that is, it will contain a -secomdary storage address. When a
virtual page is being used, its contents will be temporarily stored (cached) in a
primary storage page. The correspondence befween vu'tual pages and primary
storage pages is maintained by a page map. '

Vectors ‘will be implemented using virtual pages, hencet‘orth sxmply called
pages. Each vector will be represented by a single' page. ‘Element 0 of the page
‘will be the vector header word, which is a bstring value composed of a number
of fields, described in Figure 16. The remaining elements of the page ‘will store
the elements of the vector. A vector reference wlll in- effnct cantain the
reference of the page that represents the vector. In pamcular, the vector
reference. will contain the secondary storage sddress oiﬁt page. The type code
will indicate that the reference is a vector: reference. . (No page type code will be

Figu;e 16. Fields of a vector header word.

type code Identifies the page as bemg allocated and ‘as representing a
vector. :
ref count Counts the number of refetences to the vector m the graph of

mark bit 1 Used duhngf GQ proceﬁmgto count (mod 2) the GQ entries for
Co this vector. wammmmmnmﬂmw
~mark accessible vectors. .

mark bit 2 Used dunng GQ processing to identify duplicate GQ entties for
this vector. Used during the garbage. collection mark phau to
indicate that the vector swe 1s one lw than the page size (the

- page is “full”™). -

size Normally, the aumber of elements in the vector Durmg the
- wbmecﬁacﬁoamm&phﬂe.the ofvectwar eiemems
that have been examined. .

- 123 -

stored in a vector reference, as the representation type,jskimplied by the abstract
type.) Only the vector implementation will be allowed to convert between a
vector reference and the corresponding page reference.

- In.section 6.9, it was mentioned that the vector size field in the header
word can be used as an element counter by the garbage collector. This "trick"
depends upon the ability to determine the size of a.secondary storage page (and
therefore a virtual page) given its secondary. storage addgress (see Section 7.3). If
we know that the page representing a vector is full, meaning that the vector size
is equal to the page size less one (the header word), then the vector size can be
computed directly from the page size. Othetwise; the: vector size can be stored in
the last word of the ‘page while the vector 1s bemg traced. All we need to do is
be able to tell whether the page is full or not We can use the second mark blt
in the vector header word for this purpose.

Figure 17. Memory nodlule structure,

Module

— Vector
Module

'If the memory module supported large or dynamiic vbjects, then such an object could be
represented by a top-level page containing referamww pages. - Using pages (rather
than vectors) for the-lower-lpyel compe g pomible: bacause:the eptire-structuge is:viewed as
a single object outside: the: ‘MMz it mu be dmdedu a upit, Thus, ssparste reference counts
for the internal components are not feeded.

-124 -

The distinction’ between vectors and pages allows a similar division in the
design of the MM. The MM will be split into two modules, a page module,
which implements pages, and a vector module, which implements vectors in terms
of pages. This structure is shown in Figure 17. The page module performs
~storage allocation, 'reference mapping, synchronization, and implements the
multi-level ‘memory. The vector module ' implements automatic storage
reclamation. This separation of function helps to improve the orgamzatxon of the
design, making it simpler and more understandable.

8.2 Vector Module Specification

The exphcnt function of the vector module is to nnplement the pmmtwe
vector operations described in Chapter 3. For convemence, these operauons are
hsted again in anure 18.

In addition, the vector module has one unphctt functxon it must
automatically reclaim the storage of objécts that- have become inaccessible. As
described in Chapter 6, this function requires that the vector module update
' refereﬁce counts, construct the GQ, process the GQ to identify inaccessible
objects, and reclaim the storage of those objects. The vector module is

Figure 18. Vector mgdule external ope;_-ationf.

create = proc (size: bstring)
. returns (vector)
signals (negative_size, size_too_large, mMage)
equal = proc (vl, v2: vector) returns: (bstring) - -
= prec (v: vector) returns (bstring) '
fetch = prec: (v: vector, index: bstring) returns (any) signh {bounds)
store = proc (v: vector, index: bstring, element: any) ﬁmls (bmmds)

- 125 -

responsible for initiating the quiescent state and coordinating the establishment of
quiescence with the processing module. The -wector- module .is also responsible for
performing garbage collection, at the request of the control processor.

In performing storage reclamation,. a.aumbes -of "iaternal" operations are
performed upon vectors by the vector-module. itself. These operations. were
described in Chapter 6-and are listed in: Figure 19. . (For cosvenience, we assume
only one mark bit, rather than twe.) For the remainder.of this'chapter, we will
not distinguish between external and internal-operations.

The specification of the vector operations. requires that the operations be
atomic, which means that any sequence. of - vector - operations performed
concurrently must. produce .a result equivalent to. gerfogming the aperations -in
soin,e order. Actually performing.only ene operation st a time would guarantee
atomicity, but would be unnecessarily inefficient. Some.operations -will take a
relatively long time to perform, because substaatial pracessing is being dene (e.g.

Figure 19. Vector medule internal operations. -

incr_r¢ = proc (v: vector) returns (bstring)

decr_rc = proc (v: vector):petarns (bstring)

reclaim = proc (v: vector)

mark = proc (v: vector) -

unamark = prec {v: vector) :

marked = proc (v: vector) returns (bstrmg)

touch = proc (v: vector) returns (bstring)

incr = proc (v: vector) returns (bsteing) % used by:trace phase
current_element = proc (v: vector) returns (vector) s signals (none) |
exch_ref = proc (v: vector, & véctor) re‘inrns (vecﬁér‘) '
skip.element = pree (v: vector) , .

- 126 -

- create), or because data must be transferred between primary and secondary
storage. We would like other operations to proceed -in parallel with these lour
operations.

Allowmg concurrent operations requires us to analyze the effects of
concurrent operations to see where explicit syachronization is needed. Here, we
are primarily concerned with the effect of two operations being performed on the
same vector. (Other conflicts, such as concurrenitly: credting two vectors, involve
simultaneous access to internal data bases; these synchronization problems are
discussed in the description -of the page-module.) We can immediately eliminate
all of the garbage collector operations, on the assuniption that we are using the
pseudo-parallel implementation (se¢ Figure '15), ‘which “performs all vector
operations in sequence. The results of an andlysis:of the remaining operations is
presented in chart form in Figure 20. ~This chart inclades one entry for-each
combination of operations. A letter indicates thut ‘thére can ‘be no - conflict
between the two operations; a number indicates a possible conflict. |

As the figure shows, there are only five:kinds of potential conflicts. These
potential conflicts can be eliminated by the followin means: Conflict (3) involves
conflicts between operations that modify 'the hieader word and the store
operation, which modifies other page elements. This conﬂuzt can be ehmmated
by providing fetch and store operations on pages that M ‘each element of the
page to be read or written mdmdually. wmtput mtc:fm thh other clements
of the page. Conflict (1), interaction- between: veotor: fetct and store, can be
eliminated by making the pagc fac[! and ;lore ope:mons atbmlc Confhct (2)
involves the vector store operation, which may have to- .dacfelaent the reference

count of the object whose reference was overwritten. To make sure that the
correct reference count is decremented, we simply have the page sfore operation
(which is atomic) return the overwritten reference. Conflicts (4) and (5) involve

- 127 -

Figure 20. Synchronization analysis of vector eperations.

R

C E F § S I D M U M
r q e t i n e e a n a
¢ u t 0 z c c ¢ r m r
a a c r e r r 1 k a k
t l h e - - & r e
e r r i k d
¢ € m
Create A - - - - - - - - - -
Equal A B - - - - . . - - .
Fetch A B B - - . . - - - -
Store A C 1 2 - - - - - - -
Size A B B C B - . - - - -
Incr_rc A C C 3I C 5§ - - - - -
Decr_rc A C ¢ 3 ¢ 5 5§ - - - -
Reclaim A A A A A A A A - - -
Mark A C C 3 C 4 4 A A - -
Unmark A C C 3 C 4 4 A A A
Marked A B B C B C C.A A A A

A: no conflict; concurrent operatxons mvolvmg any parttcular vector are not .
possible

B: no conflict; both operations are reads. ,

C: no conflict; no intersection between bits read and bits wntten

1: read /write conﬂxct read must get either old or new value N

2: stores must be performed in sequence; each store must obtain the old
(overwritten) value so that its reference:count can bedecremented-

3, 4: the operations write disjoint bits; synchronization . is needed only if the
writes are 1mplemented as updates, eg, updatmg a whole word to wme a

: sirigle' bit

5: update conflict; both operauons write a new value based on the old value;

peratlons must be performed in sequence

operations that medify parts of the header word. These conflicts can be
eliminated by providing atomic page operations to perform the appropriate
manipulations on the header word (element O of the page).

- 128 -

' What we have just done is to push all of the ‘vector synchronization
problems onto the page module, wluch now must support a number of atomic
operations of its own. As a rorult, we ehmmate the need to have any explicit
synchronization in the vector module itself. While adding reference count and
mark bit operations to the page module is somewhat distasteful, the elimination
of a second level of synchronization simplifies the design considerably. As an
aside, although we will name these new page operations after their vector
counterparts (i.e, incr_rc, decr_rc, mark, and - unmark), their actual
specification would not be in terms of referenoe couats and mark bits (smce
pages don’t have reference counts or mark ﬁts), hut in terms of manipulating the
contents of the bstring object that s the eonﬁents of element O (the vector
header word). : :

8.3 Vector Module Design

A block diagram of the vector module is shown if Figure 21. The
connection to the proceesmg module consists of a m:mbef of Mxrecuoml ports.
one for each instruction processor and one for the control processor Each
processor sends requests to the vector module “and ‘receives replies via its
assocratedport lerequuuwwthwmdukmmpmdto
invocations of the external vector opermons. A pfoeeﬁbr send's a smgle request
at a tlme, always waiting for the reply before sendmg another requuh (The
rationale for this arrangement is pmented in Sectlon 4#) '

On the other side are a number of bsdlrecuonal ports connectmg thc vector
module to the page module. These ports aré used by the vector module to send

requests to the page module and receive the correspoading replies. Again, each

- 129 -

Figure 21. Vector module block diagram.

o signal . W
Vo¢ 3 Reclamation je——
F Processor
r
(¢~)[Vector Processor 4
O RC Processor Je——-> # g
: o
-5 n
§) 4
@ signal . §.
" { e "
= —1 _
£)! Vector Processor l‘——->

) RC Processor | 'b—? J

port supports only one outstanding request at a time. Thus, the number of ports

corresponds to the maximum number of concurrent requests being processed by
the page module.

The vector module itself consists of a number of vector processors, plus a
reclamation processor. Each vector processor listens to a single input port. Its
function is to perform each incoming request by submitting one or more requests
to the page module through its output port. The function of the reclamation
processor is to process the GQs and to perform garbage collection. These two

activities are never p_erformed at the same time.

- 130 -

Associated with each vector processor is a referemce count processor, whase
function is to perform ‘any reference count operations resulting from the
processing of vector opetatxons Each refetence @unt prooessor has. 1ts own port
to the page module, allowmg it to petfomr page operatxons in parallel with the
vector processor. This ‘concurrency is important, as the execution of a store
request may generate reference count operations on two other vectors (the vector
whose reference is being stored and the Yectox: whose reference is overwritten).
There is no need to hold up the reply to. the‘ongnal request. while wamng for
_the reference count operations to be performed (whach might involve waiting for
the affected vectors to be swapped into prt'mary storage) The page module can
be designed to always select a tequest from a vector processor before selectmg a
request from the corresponding reference count processor, if both ports contain
requests. The idea is to minimize the mterfemaee ‘with vector operat:ons caused
by reference count operatlons ‘ n -

The reference count processor contams an mtemal queue to hold reference
count operations waiting to be.perforsmed. M»ﬁm because the reference count
operatxons resulting from a store operm are not performed as part of a single,
atomic operation, reference count operatnons gene.rat:d by dnfferent vector
processors can-be performed out of order. Ax déséritied in Section 6.7, Teference
count-operations in our system do not have to be-peffortied in tﬁe same ‘order as
the generatmg sfore operations. |

* In- addition, each reférence count processor maﬁmms its own queue of GQ
entries. As described in Section*6.7; only the total’ ‘famber of GQ entries for
each oﬁmtmmwmmmmmhvmmmmmpmed Thus,
each reference count processor can colleet GO ‘enfries on its own ‘sepafate queue.
At theardoftheGQeyele,aﬂ’ofﬁesequummbepassedtothe
reclamation processor to be processed ‘togétlier. Having a separate GQ for each

- 131 -

vector processor rather than a single GQ for all vector processors eliminates the
need to synchronize access to a shared dmbm and allows: GQ ‘operations from
different vector processors to be performed ooﬁwrroaﬁy (to the extent permitted
by the page module).-

The various GQs will be implemented as lists of pages, linked together by
their first elements. The queue entries will simply be vector references; note,
however, that these references aré mot counted iri the réference counts! Unused
elements in these pages can be initialized to some distinguished wndefined value.
A reference count processor will obtain new'quéué pigées from the page module
as needed and chain them into the list. Using shared memofy to implement the
GQs eliminates the need to have a separate intermodule communication
mechanism. ‘ g oy ‘

The decision to begin a new GQ ecycle is made by the reclamation
processor. A mew GQ ¢cycle cannot begin-uatil- the ‘previous GQ “has’ been
processed by the reclamation processor. The rectamation processor will begin a '
new GQ cycle sometime after it finishes procesding the previous GQ.

The procedure for establishing quiescence and beginning a new GQ cycle is
as follows: The reclamation processor “notifies- ﬁw -eontrol “processor of its

intention- to establish quiescence via a special asynchronous’ comrtrol line, labeled

"signal" in Figure 21. Upon receipt of this signal, the control processor will cause
all references in the processing module to be stored m _the memory module
After all the references have been stored and rephes have been recelved for all
recl_amanan processor ‘,t;hat,;t is donc via thcsamecontml lme Atﬁ this point, no
more operation requests will be received by.the vector processors.

- 132 -

The reclamation processor. then notifies the . vector . processors that
quiescence is being established, using another asynchronous control line. After
pending . requests have beea fully processed (including all - reference count
opcrations) and replies have been received for all requests sent to the page
module, each vector processor will notify the reclamation provessor by storing a
reference to its GQ (a reference to the -first page in the list) in a special GQ
table page (GQTP). The eclements of the GQTP are initially set to some
distinguished wndefined value. The reclamation processor caa determine that the
vector processors are ready by waiting for them to stoge GQ:references in the
GQTP. (The reclamation processor is busy-waiting, which seems acceptable in
this situation.) | S |
| After all activity ceases in the vector processors and the reference count
processors, the: reclamation processor can obtain the various GQs and begin to
process them. The reclamation processor must wait until ali activity. ceases to be
sure that the GQs have reached their final states. - After the :reclalaatiou-
processor obtains the GQs, it can reset the GQTP elements to wndefined. It can
then notify the control processor to resume operation, using the asyachronous
control line. . Each vector processor, when it receives its next request from the
processing module, will allocate a new GQ in which subsequent GQ entries will
be stored.

8.4 Page Module Specification
The function of the page module is to implement a number of primitive -

operations. The page module receives requests from the vector module on a
number of bidirectional ports. - Each request corresponds to an invocation of one

- 133 -

of the page operations. For most requests, the page module will eventually
deliver a reply to the corresponding port. No additional requests can be
submitted on that port until that reply has been delivered.

The page operations are listed in Figure 22. Most of these operations have
an obvious correspohdence with the vector operations previously described. One
difference is that page sizes will be identified by size numbers (zone numbers)
rather than the actual size. Two new operations are sweep_reset and sweep_next.
These operations are used by the reclamation processor to perform the sweep
phase of the garbage collection. The sweep_reset operation is used to reset an
internal counter in the page module at the beginning of the sweep. Then,
sweep_nex! is called repeatedly; on each call it returns a reference to the "next"
pége in the virtual memory. (The order can be chosen to optimize the
performance of the sweep phase.) Both allocated and free pages will be returned.
The reclamation processor can determine whether a page is allocated or free by _
examining the first element of the page; we assume that header words and free
list pointers can be distinguished from each other and from anything else using
some type code bits. |

All of the page operations are atomic. Any set of page operations
processed concurrently by the page module must produce a result equivalent to
performing the operations in some order.

Not all possible sequences of page operations are valid. In particular, once
a given page "object" has been deallocated, it is improper to perform additional
operations on it. Of course, eventually the same page "object" will be
reallocated, after which time operations on that page may again legally be
performed. Because the page module cannot check the intent of a request (was
it intended to be performed on the "current" use of a given page or one that was

previously deallocated?), there is no way for the page module to detect all invalid

- 134 -
Figure 22. Page module operations.

alloc = proc (size_number: bstring) returns (page) signals (no..storage)
dealloc = proc (p: page) % No-Reply - A

equal proc (pl, p2: page) returns (bstnng)

size = proc (p: page) returns (bstring)

fetch = proc (p: page, index: bstring) returns {any) sigaals: {bounds)

store = proc (p: page, index: bstring, clement: any) signals (bounds)

incr_rc = proc (p: page) retarns (bString) % Returns old valte of reference count
decr_rc = proc (p: page) returns: (bm.nx) % Returns new vilue of reference count
mark = proc (p: page) _
unmark = proc (p: page)

touch = proc.(p: page) returns (bstring)

sweep_reset = proc ()

sweep_next proc () returns (page) sign&lf (no.more)

sequences of operation requests. Instead, we must sxmply requzre that all
sequences of page operations be vahd where multiple operattons are subnutted
“concurrently, we must require that any ordermg of those operat:ons be a valxd
sequence. This requirement is simply a cdndmon of correctness of the system. if
this requirement is not satisfied, the system cannot be com:dered correct.

There is really only one new restriction mpowd by tlus requu'ement No
page may be deallocated if there are pendmg operatwns on that page. (The
touch operation is the oaly operatxon ‘that may initiate a swapm w:thout waatmg
for it to complete. For convemence, we will consider a touch operatxon to be
pending until some other operation (e g., Setch) is performed on the page.) This
restriction is interesting because it means that the page module does not have to
be prepared for conflicts between deailocauon and other operattons, it does not
have to worry about someone deallocatmg a page while it ls bemg swapped in.
The restriction is easy to satxsfy Only the reclamauon proeessor performs

- 135 -

deallocation; it does so only when the page is inaccessible to all other modules.
Thus, there should be no possibility of concurrent operations on a page being
deallocated.

- 8.5 Page Module Design

~ This section describes the design of the page module. We begin by
presenting a block diagram and describing the functions of the various ‘internal
modules. Next, we describe the operation of the page module by considering how
it processes the various kinds of input requests. ‘Finally, we discuss a number of-

specific issues, including page replaceinent; synéhrenization, and flow control.

8.5.1 Page Module Organization

A block dlagram of the page module is presented m anure 23. The page
module consists of a number of modules that wmmumcate v1a messages sent over -

umdlrect:onal or b:dlrectxonal channels The pnmary storage module and the

Filgure 23. Page module biock aingram.

) | Page Handler ~ ~ Page Map
[Storage | — Secondary

Processor Storage Module

- 136 -

page map both behave as subroutines: a request is dccepted and a reply is quickly
returned over the sime channel. Othier modulés have separate input and output
ports and use a continuation model of communication [17). In this model, each
message (implicitly or explicitly) carries with it an mdtcatton of where the result
of the operation is to be sent and what is to be done thereafter For example,
when the storage processor sends a request to the secondary storage module, it
does not wait for a reply. Instead, when the secondary storage module finishes
processing the request, it will send another message to-the storage processor.
This message will be treated as a new request. by the storage processor; the
message will coatain all the information- nceded ta instcuct the storage processor
about what to do with the message. '

The continuation model of commuication is “espécially suitable for
implementing concurrent operatxons in hardware systems without a global state.
It removes the need for a callmg module (c.g., the storage proceesor) to mamtam
mformatlon about the state of the transactnoa after aen&ng a request to a called'
module (the seoondary storage module) It removes th; nmd for_the calling
module to match that state information mth the reply when the reply is recetved
from the called module. Instead, the state of the tramactnon is pM with the
request message:to the called ‘module. and. passed.buck in the reply to the calling
module‘ It mlght seem that this mpthod of comtnumcatton is less structured *than
the strict procedm call/multlple process medel, -since the calﬁng moihde is
dependent upon the called module to correctly i_ ‘ thropgh the ‘state
information. However;: the hxerarchtcatstructnre of the systea s not damaged
the calling module is always - dependent upoh the ca!led module (eg., to
terminatet); there is still no degendemy”by‘the;’aﬂed module upon ‘the calling
module.

- 137 -
8.5.2 Module Functions

In this section, we will briefly describe the functions of each of the internal
modules of the page module. The MUX .module .arbitrates: requests arriving on
the input ports. Whenever the page handler- is. ready. to receive a new request,
the MUX will select a waiting request from one of the input-ports. Each request
will include a port identification (supplied by the originatipg module), which will
later be used to address the reply to. the proper input port.

Replies may be generated by elther the page bhandler or the storage
processor. . Each reply contains a port address. When -either of these modules
sends a reply message. to the MUX, the message will be delivered. to the. specified
pdrt. Because each port may submit only one request.at a time, the designated
port will always be ready to receive the. reply. message. -

There is one additional input to the MUX, which is connected to an output
port of the storage processor. This channel is used by the storage processor to
send messages-to the page handler. It should: have .a highes .priority . than the
input ports. The MUX thus serves as the oaly -arbiter of-incoming messages to
the page handler. - o , S

The page handler processes mput requests .in seguence. It has exclusive
access to the page map, which it uses to determine the primary. storage addresses.
of pages being operated upon. In most. cases, the..page handler can. quickly
process a request and send a reply back through the MUX. For slow operations,
such as alloc and dealloc, the page handler- will. pass the request to the storage
processor for handling. , I

If an operation is performed on .a page that is not in primary storage, the
page handler will queue the operation on an internal request queue (RQ) and

send a swap_in request to the storage processor. When the swapin has

- 138 -

completed, the storage processor will notify the page handler and the page
handler can perform the queued requests for that page. Queuing requests on the
RQ is contrary to the Continuation model described in the previous section.
However, the alternative of sending the request along wnllthew_m request to
the storage processor is unacceptable, since additional requests received by the
page handler forapagbemgswxppedmdoaotm swap_in requests to be
sent to the storage prooessor.

The primary function of the storage processaris to perform primary storage
allocation and deallocation. In this capacity, the storage processor also serves to
initiate page replacement when the amount of free primary storage becomes too
low. In addition, the storage processor serves to direct traffic between the page
handler and the secondary storage module. Finally, the storage processor
maintains the counters needed to implement the sweep. reser and the sweep_next
operations. ‘

The page map maintains a mapping between the seemida‘ry storage addrss-
and the primary storage address of each page in primary storage. As discussed in
Chapter 5, the page map is organized as a large set mssociative memory (SAM),
along with a small, fast translation lookaside buffer (TLB). The TLB will use
store through,sothatwhenamenﬁystobeﬁﬂedwthen&anmtmg
entry can simply be discarded. ' ' '

Thesecondarystmmodnkperfomsseco&arywtﬂoam and
data transfers between primary and secondary storage. It processes requests
submitted by the storage processor and sends replies back to the storage
processor. It is assumed to be capable of performing a number of operations in
paralel to reduce the average secondary storage access time.

- 139 -

The primary storage module is a conventional addressable. memory
supporting read and write operations. Requests are submitted by the page
handler, the storage processor, and the secondary starage module. -

8.5.3 Page Module Operation

In this section, we informally describe the operation"of the page module as
it performs each of the vartous page operatnons A more complete, although still
informal, description of the operation of the various modules i glven in Appendix
IL ' V

All of the operations ferch, store, incr_i"c, decr.. rc',“ mark, and unmark are
processed in baSically' the same way. For example, when the page ‘handler
receives a fetch request, it will first look up the page in the page map. If there
is no entry for the page, then the page must be swapped in. The page handler
will enter a new entry in the page map. Thls entry “will mdtcate that the page is _
being swapped in, to prevent subsequent requests for the same page that arrive
before the swapin completes from mmatmg a second swapm “The page handler
will also send a swap_in request to the storage processor, askmg that the page be
swapped in. In addltlon, the page handler wxll queue the ortgmal request on the
RQ, to be processed agam after the page is swapped m (If the RQ is full, the
page handler can reject the request by sendmg a rejectton reply message to the
requesting module, informing it that the request should be resubmltted at a later
time.)

If there is an entry for the page, but it indicates that a swapin is in
progress, then the request is sunply queued on the RQ Otherwxse, the page
handler obtains the prlmary storage address of the page from the page map entry,
performs the ferch operatron, and sends the result back to the requesting module.

- 140 -

When the storage processor. receives a swap_in request, it first. sends a
message to the secondary storage module to find out what the size:of the page is.
(Recall that the size of a page can be determined by its seeondary storage
address, using a table that maps block addresses to zone numbers.) When the
reply is received, the storage processor then allocates a prtmary storage page of
the desired size and sends a swap_in request to the secondary storage module.
The secondary storage module will transfer the page and send a swap_.m_done
message to the storage processor, which forwards it to the page handler The
page handler updates the page map entry to include the primary storage address
and then performs any queued requests for that page.

There is one addmonal complenty in tins descngtton. Whenever a new
entry is added to the page map, it is poes;hle that the em'respondmg st of the set
be pushed out of the assocxatwe memory (and out of pnmary storage) (For
synehromzatlon reasons, we require that entnes for pages in transit not be forced
out of the page map. Should the set be full of m-trenat entnes, whxch is
unlxkely, the ongmal request must be re]ected The requestmg module would
then have to resubmnt the request at a later tnne) Whenever an entry is forced
out of ‘the page map, the yage handler wtll send the page map entry to tbe
storage processor in a .nv@_ow request. B . :

Pages must also occasnomlly be removed from pnmary storage to make
room for other pages to be swapped into prunary storage The dectsnon to '
remove a page from pnmary storage is made by the storage proeessor, as wlll be

i F 1
e -

described in the next sectton The storage processor sends a remove request to
the page handler, whxeh removes the page frorn the pag map and sends the page
map entry in a rwap_oul request back to the storage proeessor

- 141 -

Upon receipt of a swap_out request, the storage processor first checks the
attached page map entry to see if the primary storage copy of the page has been
modified. If not, all that needs to be done is to deallocate the primary storage
page. Otherwise, the primary storage page must be written to secondary storage.
In this case, the storage processor forwards the swap.out request to the
secondary storage module. The secondary storage module will write out the page
and then send a swap_out_done message back to the storage processor. The
storage processor will then deallocate the primary storage page. '

When an alloc request is received by the page handler, it simply passes that
request to the storage processor. The storage processor in turn passes the request
to the secondary storage module. The secondary storage module will allocate a
secondary storage page and pass its address back to the storage processor. Upon
receipt of this message, the storage processor will allocate a primary storage page,
initialize it, and send both the primary and secondary storage addresses to the
page handler. The page handler will enter this information in the page map and |
send the secondary storage address back to the requesting module.

When a dealloc request is received by the page handler, it looks up. the
. page in the page map. If there is an entry, it is removed, and the primary
stbrage address is sent along with the secondary storage address to the storage
processor. Otherwise, only the secondary storage address is sent. The storage
processor will pass the dea/loc message to the secondary storage module, which
will deallocate the secondary storage page. (No reply is returned to the storage
processor.) At the same time, the storage processor will deallocate the primary
storage page, if any. No reply is returned to the page handler or the requesting

module.

- 142 -

‘The egual operation is handied solely by the page handler, as all that is
involved is comparing the two references. The size operation, on the other hand,
is. passed via the storage -processor to the secondary ‘storage module, which
determines the page size using its block map.- The. my is sent via the’storage
processor to the requesting module. ' ’ ‘

The ftouch operation is handled similarly to the ferch operation, except
that if a swap-in is required, no request is queved: In-afl ‘cases, &1 immediate
reply is sent indicating whetherormtﬂaengeixm'pmntry storage. T

~ Both the sweep_reset and rweep.mrcpenthwmmeddtrecﬁytothe
storage processor, which replies directly to the requestmg modole. | '

8.5.4 Page Replaoenent

The functron of page replacement is to select pages to be removed from
prrmary storage to make room for other pages to be brought mto prtmary.
storage. In this sectron we present a sxmpie page. rephcement method that is
easily rmplemented
 As descnbed above, when a set of the set assoctattve memory (SAM)
becomes full and a new entry must be added to the set, some enstmg entry m
~ that set must be forced out of the page map. Thus, the set assocmlve memory
requnres a replacement algorrthm of 1ts own. The least recently used (LRU)
algorrthm is a lrkely choroe for the set assocratrve memm’y replncement algm;lthm,
because it is easily rmplemented and glves perfornunoe. L

LRU replacement can be unplemented as follows. Each entry in the SAM
can contain the stack position of the entry in the LRU stack [261. When a page
is accessed, the stack positions of the entries in the set are adjusted so that the
accessed page has stack position 1 (the top of the stack), and all entries
previously higher in the stack than the accessed page are moved down one (their

- 143 -

stack positions are increased by one). All of these operations are performed in
parallel. To find the least recently used entry, one simply searches for an entry
whose stack position equals the number of entries in the set. (If the least
recently used eatry were marked as in-transit, then the next least recently used
entry would have to be found, ete. It is-unlikely, although:not impossible, for all
the other entries in the set to have been accessed between the time that a swapin
was initiated and the time the swapin completes.))

Qur simple page replacement algorithm is based on that :mp}emented by
the set associative memory. Whenever we wish to select a page for replacement,
we choose a particular set (e.g, by keeping a couater that cycles through all set
numbers) and then force the least recently used not-in-tramsit member of that set
(if any) out of the associative memory (and therefore, out.of primary storage).
The only difference between this. action. and the normal LRU .action of the set
associative memory is that in this case the set.may not be-full:(although it is
likely to -be nearly full). Thus, the least recently used entry may be empty, |
forcing the. search to continue with the next least recently used -entry, as
described above. Page replacement-continues as long as the amount of available
primary storage is below some desired level,

The decision to cause a page to be removed from primary storage is made
by the storage processor, which is in charge of primary storage -allocation.: The
storage processor will send a remove message comtaining the selected set number
to the page handler. Upon receipt. of the: remeve -request, the:page handler will
request the page map to remove the least recently used not in-transit page in the
specified set. The page handler then sends a swap_our message to the storage

processor.

- 144 -

Our page replacement algorithm is an approximation of the LRU algorithm.
It differs from the LRU algorithm only in the relative ordering of pages in
different sets of the SAM. The obvious disadvantage of 'an LRU page
replacement algorithm in our system is that the: sizes of ‘pages: are not taken into
account. Suppose a free primary storage page of a particular size is needed. Our
algorithn may remove a number of pages ‘of other sizes before a page of the
desired size is removed. These unnecessary page remowvals could later result in
extra secondary storage accesses. On the other head; if :the ‘block allocation
scheme described in Section 7.3 is used for primary storage allocation, then it
may occasionally be desirable to remove particwlar pages of other sizes to create
empty blocks that can be reassigned to the desired ‘2one. Thus, while- the
proposed page replacement method will work, it is clearly not optimal. -

We have not attempted to find the optimal page replacement algorithm for
our system. However, it should be noted that cleverer schemes miay requife
additienal hardware or may take more time to perform. For example, the abi%ity-_
to remove a "not recently used" page of a:perticalar size probably requires that
each page map entry contain the zone number of the page. The ability to
remove specific pages to create free blocks réquires the ability to-find the page
map entry of a page given its primary storage nddress, which- probably requires
an additional data base mapping primary storage addresses to secondary storage
addresses. When evaluating other page replacement algosithms, the cost of
implementation must be balanced amxt the assumed benefit of a reduced
secondary storage access rate. tor

- 145 -
8.5.5 Synchronization

The_simplest method for ’impleme)_nzting_ atomic operetiom is to have all
operations performed By a 'single module that perferms only one operation at a
time, in sequence. We have tried to use this method. to the. greatest. extent
poss_lble. The page handler does process only one request at a time. In most
cases it will completely process the request "and send a reply to the requesting
module before_read‘it‘_i‘g the next request. Using this method, there is only one
point of s_ygchrenizétiop‘,y the MU'X, Becausethe page handler has exclusive
access to the page map, no synchronization is needed to control access to the
page map. , k
Unfortunately, stnctly £allowmg a one request at a txme dxsc;phne would
lead to poor performance. Therefore, some conCurrency is allowed. - Allocation
and deallocation are performed concurrently with other Qperatmns. - Swapins and
swapouts are. performed concurrently with other .operations. These concurrent
operations require additional synchronization.

The various allocatxon data bases. are synchromzed by makmg them private
resources of specxfxc modules. The storage processor has exclusive access to the
pnmary storage allocauon data base; the sccgndgry storage module has excluswe
access to the secondary storage allocation. data base. . Each module can ensure
consistent access to its. own data base. == . . . , :

Other synchromzatlon pmblems mvolve the coordmatwn of swapins and
swapouts with other activities. Swapins are, coordmated ,with other events using
the traditional device of .an in-transit page map entry. . When a swapin is. first
requested an entry is added to the page map . mdlgatmg that the page is in
transit. This entry is later modified when the swapin completes. Input requests

arriving in the meantime can tell from the in-transit entry that a swapin is in

- 146 -

progress and avoid starting a second swapin. Replace requests similarly will avoid
selecting this page to be swapped out. Because each of these state changes are
performedasatomwoperauombyﬁupnaehandier,nomcondmomare
possible. '
The synchromzatm of swapouts is a bit more difficult. There are two
problems that must be avoided: First,lfampoatlsmmedntelyfo%wedbya
swapin, the swapin must not read the oidswoﬁary storage copy of the page.
Second, if a swapout is immediately followed by a deaflocation, then the swapout
and the deallocation must not interfere. One possible solution to these problems
is to use state information in the page map, & was dosie 10 coordinate swapins.
However, this solution is not acceptable. When a swapin is requested, a new
éntry must be added to the page map. Addingfh’isuewemrymyforoeoutm
old entry, initiating a swapout. 'If the old entry ‘had to stay in the page map
until theswapautwefecompkted,theathemmncmﬂdnotbegmuntﬂthe
swapout had finished. Méanwhile,the pap mﬁ not ‘be able to process
any new requests. |
thevarwusmethodscouidbewedtomakethusduhoawork there is a
‘better solution. The interference between swapouts and other events can be
eliminated simply by ensuring ‘that all aeeonanry storage transfers for a given
secondary storage page are performed in the order that they were initiated by the
page handler. For example, we know that the m handlér will not generate
swapout ‘until afterthcpteviousmﬁnhswplm We know that the page
handkrwﬂ!notgmmwwaﬁnmﬂa&&itha‘amtwtthempom
request. chesecondarywwmmpﬂedbyth&wqmm
performed in that order, then tbeseeaad wxqiuwiﬂ obtain theoorrect dm

- 147 -

Similarly, we know that after the page haadler generates a dealloc request
for a page, no further requests will be gencrated for that page until after the
page is reallocated. Thus, any swap.out request must have been:issued before
the- dealloc request. If the secondary: storage transfers corresponding to the
swap_out, dealloc, and alloc requests are performed in that order, then first the
page will be written by the swap.ows, then it-will be written by the dealloc
(which writes the old. free pointer in the:first element of the page), and finally it
will be read by the alloc (which reads the free pointer). It is possible that the
primary storage page may be deallocated -before the. swap_out is completed, in
which case the swap_out transfer will write. gachage into: the secondary storage
page. However, the immediately following deallac transfer will write meaningful
data. :

8.5.6 Flow Control

 The page module consists of a number of modules that send“messages to
each other. Most of these modules can handle a number of concurrernit requests.
waever, each module can store only & limited number ‘of messages at any one
time. Should this limit be redched, it could 'not accept further input messages
until the processing of some of the stored message had béen completed.

If a module R is not accepting input messages, then another module S that
wants to send a message to R would not be able to. ‘Tt must either hang until R
is ready ‘to accept the message (until which time S will not accept additional
messages), Of it must queue messages for R internally until R is ready to accept
them. If § queues messages for R, it can eventually run out of internal storage,

in which case it again must stop accepting new input messages.

- 148 -

Thus we see that if one module stops:accepting messages, another module
that sends messages .to it may also be:forced to-stop accepting messages as a
direct-resuit. If the system contains directed gycles; thes deadlock may resuit, as
all ofthemodulcsmacydemaybeWMtgforanmmetoaecept
messages.

In our design, there are three directed cycles (not counting the
sabroutine-like connections to the page map ‘and the primary storage module).
We must check each of these cycles to be sure that deadlock can be avoided.

One cycle (actually a set of cycles) cesnsists of an imput: port -(connected to
a processor in the vector medule) amd:the page handler. (In -some cases, the
storage processor is also involved.) This ‘¢ycle is. no-problem because each
requesting processor can submit oxily one request at a time on a given port. For
those requests that generate replies (all generate replies except deallac), the
requesting processor is required to wait for the reply before sendmg anotherw
request on that port. We are thus guaranteed that any reply seat to nn;mput‘
port will be accepted. : S

Another cycle consists of the stprage p(oousot aud the _secondary storage
module. All messages seat from the secondary storage module to the storage
processor are in response to messages. sent from -the storage processor to the.
secondary storage module. Therefore, the WWM can . predict the
amount of storage needed to store anncxpatedrcphes from. the secondary storage
module. It can avoid sending a message to the secondary storage module unless
storage has been reserved for the reply. Thnrqﬂmmbcrcﬂgctedtothe“
input from the page handler: the storage processor can refuse to accept messages

- 149 -

from the page handler unless it can reserve enough space to completely process
the request, including storage to hold any replies to requests sent to the
secondary storage module. ,

The third cycle is the most complex,. It consuts of the page handler and
the storage processor. Most of the interactions. between the page handler and the
storage processor are initiated by the page handler. The swap.out and dealloc
requests generate no replies by the.storage processor. The glloc and swap_in
requests eventually cause reply messages to be sent from the storage processor to
the page handler. Other requests generate replies from the storage processor
directly to the requesting input port.

The storage processor. initiates only one. kind of interaction with the page
handler, using .the remove request. The page handler replies with.a swap_out
request. This message sequence is used to cause.pages.to be swapped.out to
make room in primary storage for oﬁxer pages. It may be necessary to swap out
a number of pages before the storage processor.can satisfy alloc -or swap.in |
requests. , L R

To avoid deadlock, we must ensure that 1f the storage. processor ever stops
accepting messages from the page handler, then thege is at least one request being
processed by the storage processor whase processing can. be fully completed
without requiring the page handler to accept additional messages. When this
message is fully. processed, storage will. be made available to allow a new message
to be accepted by the storage processor. (For simplicity, we assume that all
messages 'req‘uire an equal amount of internal storage.) By our assumption, this
new message also can be fully processed without. requiring the page handler to

accept additional messages. Included in this set of messages are replies to

- 150 -
previous requests from the storage processor to the page handler; such reply
messages allow pending requests to be completed by the storage processor, thus
reducing the number of requests pending in the storage pr&essor '

This requirement has two implications: - One implication is that the storage
processor must be able to process other requeits at the ame time it is attempting
to-send a message to an unresponsive page handler. A multi-process : storage
processor is thus necessary, as is the separate storiige processor port for sending
messages to the page handler. (Note, however, that 'this multi-process
implementation must not reorder requests on their way ‘to the secondary storage'
modulc’) ' B R '

The second implication is that the number of concurrent requests that may
 require the storage processor to send a message to ‘thie page hdndler must be .
bounded. ~ The requests that require messages to be sent from the storage
processor to the page handler are afloc and swap_in. Both messages require a
reply to be sent from the storage processor to the page handler; both may requn'e_
remove requests to be sent to the page handler. ‘

The number of concurrent alfoc requests is bounded by the number of
input ports, which are the ultimate source of the requests. Swap_in requests,
however, are not bounded by the number of input ports,-as a sequence of input
touch requests could generate virtually an unlimited number of ‘concurrent
swap._in requests. To control the number of :w_:nrequutswe must limit the
number of fouch requests that can be submitted before performing a real
operation on a touched page (which would force the requestor to wait until the
page had been swapped in). The fouch operation is used only by the garbage

- 151 -

collector; there is at most one pending swapin per garbage collector "process" (see
Figure 15). Thus, by restricting the number of ‘garbage: collector processes, we
can limit the number of concurrent requuts.pameét:byutowhmperations. R
In summary, the number -of concurrent alloc’ and: swap_inm requests is
bounded by the number of input ports plus the number of garbage collector
processes. These numbers can be fixed (maximum values chosen) by the system
designer. Avoiding deadlock is thus simply w matter of providing enough storage
in the storage processor to ‘allow the masiinum- aumber of such requests to be
processed concurrently, plus room for at least-one othér request. (For safety, the
page handler can keep a couat of: the number:of alloe:-and- swap_in requests
being processed by the storage processor. It can reject input :messages if the
count gets too high.) | el o :

8.6 | Improvements L

A number of improvements can be made to ‘the design presented in this
chapter to increase the performance of the system. In particular, there are a
number of ways that the system can be "tuned" to provide greater throughput
and to balance the capacities of the various parts of the system. For example,
because all requests pass through the page handler, it is likely that the page
handler would be a bottleneck, limiting the throughput of the memory module.
However, the throughput of the memory module can be increased simply by
providing more than one page handler (each with its own associated page map).
The technique is similar to conventional interleaving. The virtual address space is
divided into two or more subspaces, probably based on the same hashing function
used to compute the SAM set numbers. Each page handler handles pages in one
of the subspaces. Page operations directed at a particular page will be sent to

the corresponding page handler; alloc requests can be sent to any page handler,

- 152 -

as - they are simply passed to the (single) storage processor. To achieve the
maxitum performance improvement, the primary storage module should probably
also be interleaved in the conventional sense to provide sufficient throughput for
multiple page haadlers. It is also fairly easy to provide multiple secondary
storage modules if greater secondary storage bandwidth is aeeded. -

Another plausible improvement would be ‘to cache the first elements of
pages in the TEB. The first elements of most pages-are vector header words.
These elements are accessed frequently to perforsi bounds checking and update
reference counts. One could also pravide additional page module ports for use by
the reclamation processor, so that- it-could: perform: .8 number: of reference count
operations in -parallel. L SR .

In summary, the design is quite flexible in terms of -permitting: ad}ustments
to achieve better, more balanced performance. Exactly what changes should be
made would best be determined .after simulation studies or perhaps the
construction and measurement of 3 prototype. |

- 153 -

9._ Conclusions

This thesis has presented the design of a eomputer system that directly
supports an object-oriented machine lengunge The machlne provxdes a single,
large universe of objects shared by multiple processes ‘

The universe of objects is 1mplemented ustng a multt-level memory system.
Each object is represented by a single "page”; the system supports a number of
different page sizes. Objects (pages) are tdenttfled by thexr secondary storage
addresses and are transferred individually between printary and secondary storage.
A large set associative memory maps from the secondary storage addresses of
objects in primary storage to their primary storage addresses. Storage is allocatedd
from a number of zones; each zone provides pages of a smgle size and contams
its own lxst of free pages. Physrcal storage is divided mto fixed-slze blocks, each
block is (statically or dynanucally) assxgned to a smgke zone. Automatxc storage
reclamation is implemented using queued reference counts and occastonal garbage '
collection. ‘

An implementation of the system was descnbed in terms of a number of
specialized processor modules commumcatmg vta messages. Multlple processors
are used to improve performance and t_o achteve a more modular system

str ueture.
9.1 Evaluation

The major contribution of this thesis is a. new design for a computer system
that supports a single, large address space of objects. The proposed design has a
number of advantages, and some disadvantages,-in comparison with other designs
providing similar capabilities: |

- 154 -

The first advantage is that the machine supports a uniform address space.
There is no concept of areas or other groups of objects needed to allow
adequate performance While we do not clarm that object groupmg is inherently
evil, or that it could never be useful, any system that reqmres programmers or
users to think about grouping objects will be more complex and more dtff' cult to
use than one that doesn’t. The correspondmg disadvanuge ot‘ our design ts that
its performance is more severely limited by ‘the seeondary storage access tune
Whrle it is difficult to predtct how short the aocees time must be (among other
things, it depends upon how the system is used), it is ciear that a system that '
swaps groups of objects can achteve better pert‘ormance thh slower secondary'
storage ‘devices. '

| Another advantage of the proposed design is that it performs mcremental
automatic storage 'reclamation, using reference counts. Storage reclamatron 1sv
performed continuously, without requiring frequent or unptedrctable mterruptrons
of ‘service. However, periodic garbage collection is still requtred which (m our
proposal) requires the the system be stopped for short periods of time at
scheduled intervals. ‘A disadvantage of our desrgn is that the need for garbage .
collection depends upon program behavror (the rate of generatron of cychc
garbage).

Another advantage is that (we believe) the proposed design is capable of
good performance. The virtual memory mapping is p_erforrned sfficiently by a
hardware set associative memory. We have shown how a large set associative
memory can be constructed using a' minimal amount of special-purpose hardware.
In the propossd design, memory management sctivities, 'such as allocation and
swapping, -are performed concurrently with other opefations. - The secondary
storage allocation algorithm limits the number of nedded :secoridary storage
accesses to at most one per allocation and deallocation; many of these accesses

- 155 -

are easily eliminated by maintaining portions of the free lists in fast storage. The
use of queued reference counts reduces the time overhead of automatic storage
reclamation and allows most reclamation processing to be performed concurrently
with _normai operations. References are compact, e.g., 32 bits.

A disadvantage of using a set associative page map is that restrictions are
placed on the possible collections of objects ‘that can simultaneously reside in
‘primary storage. On average, these restrictions will have httie effect; however,
the potential exists for degradation of paging performance. ‘

Another advantage of the design is that it can be used in a multiprocessor
configuration (multiple IPs).- The ability to use multiple processors allows the
processing power of the system to be adjusted over a wider range to support the
computations performed on the data stored-in the virtual memory. The design is
flexible in that the -machine can be configured (by' the duplication of various
modules) to provide greater throughput and to balance the thmughputs of the
various components. |

Finally, and significantly, although -multiple processors are being used and
automatic storage reclamation is being performed in parallel with normal
computation, the basic concepts of the system are relatively simple. Using
queued reference counts, the set of events that cause reference count operations
is small, well-defined, and localized to the memory module. The notion of.
quiescence is easy to understand and verification of its correct implementation
should be straightforward. Furthermore, the reference -count implementation
avoids many synchronization problems. '

Three disadvantages of the proposed design have already been mentioned:
the need for fast-access secondary storage devices, the need for occasional garbage
collection, and the potential for degraded paging performance. The other
disadvantage of the design is that it entails a higher hardware cost, compared to

- 156 -

other designs. Additional hardware is required for the set asseciative memory,
the many hardware modules (processors), and the required module
interconnections. Other costs result from uaderutilization of - primary -and
secondary storage: T
~ Primary storag; utilization is redueed fne a number of reasons. The biggest
factor is the set assogiative memory, which i in-offect constructed out of primary
storage. The appropriate sizc of the set ameeiative memory depsnds upon the
expected average object size; the number of associstive memory eatries should
approximate the expected number of objects in primary starage. If the average
object size is ten woeds (nine elements per vector), then the set associative
memory should be onefifth the size of the agtual primary storage (assuming each
associative .memory entry occupies two words), for an overhead of 16%. If the
average object size is only four words (three elements per vectar), the overhead is
33%. Additional underutilization is cawsed by fragmentation. Internal
fragmentation occurs because extra storage is allocated to objects whose sizes: are
different than any of the supported page sizes; internal fragmentation can be
limited to 5-15% by choosing an appropriate set of supported page sizes.
External fragmentation occurs because blocks of storsge are dedicated to
providing particular page sizes; the amount of storage wasted beeause of external
fragmentation is difficult to predict. Additional primary storage i;'occupéi'ed by
the GQs (about 6K words) and by objects.on the GQa waiting to be reclaimed
(15-50K words, roughly). The actual ammnadcpendupentheute of garbage
generation and the GQ cycle time; to some extent, one 08a trade off storage for
time by changing the GQ cycle time. ; ~ ’
On the other hand, there are some factosrs that improve primary storage
utilization. First, the swapping of individual objects makes more effective use of
primary storage. Second, using reference counts; garbage will be reclaimed sooner

- 157 -

than in a system using garbage collection (although a traditional reference count
implemeatation would reclaim garbage -even sooner). Fhese effects could cancel
out some of the effects listed above. The main remaining factor is probably the
set associative memory. - Although- 33% : underutilization of primary storage is
probably more than in conveational systems,:it is: not overwhelming.

Reduced secondary storage utilization is: caused. by: three factors: internal
fragmentation, external fragmentation, and. acowmulating eyclic garbage. As in
the case of primary storage, internal fragmentation ¢an be limited to the range of
5-15% by proper selection of the supported.page -sizes. ~External fragmentation
and cyelic: garbage are more . difficult to predict, as they are- dependent upon
program behavior. Basically, extra secondary:storage must.be provided to allow
for changing object size distributions and.for: generated cyclic garbage. . The
amount of extra storage needed.depends upen: program behavior and the desired
rate of garbage collection, but not on the total secondary storage size. Thus, for
large secondary storage sizes, the fraction of wasted: storage should be low. '

Another contribution of this thesis is- that. it: demonstrates how multiple
processors can be used to simplify the structure and improve the performance of
a system that supports multiple processes and a large virtual memory. We use
the term processor here to include all of the major active hardware modules, not
just the instruction:processors.

The system is constructed hxcrarchwany out of modules that perform
well-defined functions. At the top-most:.jevel, the system is divided into two
major modules, the processing module and the memery-module. The processing
module interprets procedures and implements multiple processes. It consists of a
number of instruction processoss, which interpret procedures, plus a control
processor, which performs scheduling and controls the multiplexing of the

- 158 -

instruction processors. The memory medule -implements. the virtusl memory.
The memory moduicmtcrfmmmcfmefth ‘vector
operations. s | “ y

The memory module consists of . the vector module and the page module.
The vector module implements automatic storage recimmation. - It consists of a
number of vector processors, which: pﬁmmmmw by the
processing module;: plus. associated roference: count :praceseors; “which perform
reference count operations resulting from' vector -operations, plus ‘s reclamation
pracessor; which processes the GQus aad performs garbage collection.

- The page module implements the basie. virtual' (mutii-lewel) ‘memory. Its
interface consists of operations of the page-data type. The page module consists
of the page handler, the storage processor, ‘the secondary storage module, -plus a
conventional primary storsge: module. - The- page handler: maps page references:
(secondary storage. addresses) to- primiry storage addresses ‘and initigtes ‘swapins
of needed pages not in primary storage. (It has exclusive agcess to the mapping
data base, which is: the set -associative:memory. - The :page ‘handler receives
requests from the vector module wia a multiplexor, witich: arbitcates incoming
requests mdpmnummmnnmwﬁcmwh&wm processes:
requests sequentially. Lo

The storage processor performs primary storage aliecation and deallocation
at the request of the page handler and - initistes:page: replacement. - It has
exclusive access to the primary storsge . aliogstion’ dats base. - The secoadary
storage module performs- secondary storage allocation -and-:deallocation: and.
performs - transfers between primary storags :and secondary storage. It has
exclusive access to the secondary meﬂmwm hase. ‘

- 159 -

Splitting the system into modules in this manner leads to an organization
that is superior to conventional systems constructed out of a single general
purpose processor (or a small number of general’ purpose processors) and a
complex operating system kernel. The system can bé understood ‘as'a collection
of modules communicating via messages. The-interfaces between modules are
simple, often corresponding to operations of abstract data types. There are no
timing constraints on the speed at which messages are transmitted or acted upon.
Each module can be understood individually in terms of its interface to the rest
of the 'system. Many modules encapsulate important data bases (e.g., the page
map) and can easily control and-synchronize acoesses to those data bases.

~ While this or any multiprocessor ofganization can be simulated using
multiple processes on a single processor, \sing séparaté hardware modules has a
number of advantages. The most obvious advantage is better performance:
multiple processors allow true concurrency, which can-increase the throughput of
the system. Furthermore, any simulation of multiple” processors will involve
overhead. In our system, the rate of interaction between some modules is quite
high; the overhead of simulating this behdvior could be substantial. - Another
advantage is better isolation between modules. The only connections between
modules are the message channels; modules can interact only in well defined ways
via message passing. In a uniprocessor simulation, interprocess: isolation must be
proven. Proper isolation is difficelt to achieve without hardware support. Even
‘with hardware support, one must: be careful to avoid interactions via the process
scheduler. To maximize performance, uniprocessor systems generally use multiple
priority levels, preemption, and interrupts. In such systems, additional potential
exists for problems of unfair scheduling and deadlock not present in our

multiprocessor organization.

- 160 -
9.2 Further Work

- The biggest question left unanswered by this thesis is, will it work? If the
proposed system were constructed, would its performance be -adequate? There
are two methods that could be used to answer this question. One way, of course,
is to actually comstruct a system. The other way .is to use modeling and
- simulation_to estimate the performance. of .the system. This latter method is
preferable if it can prodyce meaningful reswlts using.less time and resources ‘than
would be required to actually. construct a machise. The difficulty is that the
proposed system is sufficiently different from current systems (in- particular, in
providing a single large virtual memory consisting: of sharable small objects) that
predictions based on data. derived from conventional:systems are likely to be
unreliable. It is difficult te predict how usess will -use anuncemtional system
short of giving them one snd observing -the. results. Obtaining: relevant data
‘without building a -real system would probably require a fairly .elaborate
simulation of the propesed architecture.

Both of these methods represent a substanml undertakmg and are clearly
outside the scape of a single thesis. What we have doae instead in this thesis is
to give plausibility arguments to show at Jeast that we are in the right ballpark.
Wherever possible, we have based our performance estimates on limited data
obtained from an esisting single process, small ‘address: space implementation of
CLU and on data from related systess. We do pat expect the reader to believe
that the system will perform adequately; however, we do hope to convince the
reader that further investigation of this kind of machine architecture would be
worthwhile, |

- 161 -

There are a number of areas where the proposed design is incomplete. For
example, the machine language has not been fully specified, particularly in the
area of control structures. No provision has been made for 1/0. A .number of
issues relatmg to the interface between. the machrne lmuage and user languages
(e.g, CLU) have not been explored, such as support for debwgging and
mechanisms for linking ‘pro.ced'ures, to:getherz;__; It 3 real f‘g,sy;s;terh were to be
constructed, one would also want to consider providing more hardware support
for specrfxc language features, e.8 exten,drble arrays. | B

- One major area that requires_ further {inyestigation is the subject of resource

allocation and control. There are a number of ways.in which the gross

performance of the system is dependent upon the behavior of individual processes.
Of particular importance in _thie system ,avre»: the rate of _A‘gyeoe,rgtionm of cyclic
garbage, which affects the rate at which garbage collection is required, and the
variability of the distribution of object sizes, which affects the amount of
secondary :storage fragoxentation and can fo‘rr:vef_ the system f,t‘o ‘be stopped to
perform compac,__tion. Of ‘c,o,g\rge,,ag“ig any. system,the total vsgorage usage is also
important. Th_ue, an indiridual process,by 1ts actrons, eou}d foroe the system
into a state where new objects could not be oreared, thur interfering with the
ability of other processes to execute successfully.

In many applications, this situation- would be unacceptable. The solution
must be some mechanism to limit the ahrhty of an mdmdual process (or user) to
acquire storage resources. The mechanism must take into account secondary

storage made unavailable by cychc garbage or external fragmentation. “There are

two reasons why resource allocation is a more difficult problem in an

objecr-oriented system, as opposed to a more coriventioﬁél s}siem:' One reason is
that objects can be shared; it is difficult to assign responsibility for a shared

. - 162 -

object in a fair manner. The other reason is that objécts: are large in number
and gererally small in size. Thus, traditionsl mi!ﬂiotﬁ may not be weeptabte
because of ‘excessive overhead per object. |
" Another area requiring further investigation is the fssue of off-line storage,
both for the purposu of réliability and archiving. Whea ‘an object is copaed onito
off-line storage, how tmuch of the graﬂ: of objects accessible from that object
should be written with it? (Suppose an object contaiiis reference to the root of
the file system - why not! Should the eittire fite’ systém be’ ‘eopiéd onto off-line
storage with it?) When the object and ary aseocisted objecu are read back into
the system from off-line storage, how are the dbjecs re-mtcgrated with the
ex:stmg collection of objécts? How is shaﬂnﬁ pieserved (or is it)? '

These problems are not umque to the proposed archttecfure, but are
problems that must be faced in ady object-omnted’ tystem " Moreover, these
problems also appear in conventional system Its jutt ﬁat ‘the problems are
more obvious and less easily solved in object oriented systéins where small o‘bjeCts-
are directly supported and where sharing and inw-object dependéncws are made
exphctt in the form of object referem N

93 A Perspective

It is important to recognize the relationship between effecttve system desxgn
and the characteristics of available technolosy Qur dwgn is pfedxeated on the
assumption that the desired vnrtual memory sxze is coas:stent with affordable
amounts of storage devices that prowde reiatxvely fast acces to small pxeces of
data. This situation is not true today, but will hkely become true with the
development of faster access secondary stomge devzees How long this situation

- 163 -

will then persist depends upon whether the need for larger and larger virtual
address spaces grows faster or slower than the ability of technology to provide
larger fast secondary storage devices. We will not attempt a prediction here.

It is relevant to consider the relationship between this work and the
growing popularity of "distributed computing." One likely form of a distributed
computing system would provide separate local address spaces at each node, in
addition to a distinct mechanism to support global addressing. We can easily
imagine our proposed system as a node providing a moderate sized (10-100M
word) local address space to a small group of bmperating users. We can also
conceive of our system being used as a rather powerful personal computer. (Even
a single user can utilize multiple concurrent processes.) While a multiprocessor
implementation as we have proposed is currently too expensive for either of these
uses, it seems clear that such will not always be the case.

- 164 -

- 165 -
Appendix I - A Possible 'Machine Language

In this section we describe a very simple machine language that could be
used to specify user defined procedures. This proposal omits a numbgr of
features that would be needed to support CLU, .eg, exception haadling and
iterators. It also ignores many possibilities for optimization.

1. Procedures

A procedure consists of two parts. One part, the code section, consists of
an addressable collection. of instructions. A set of possible instructions is
described below. The second part, the /inkage section, consists of an addressable
collection of arbitrary references. Included in the linkage section would be
(references to) all literals needed by the procedure, as well as: other. procedures
invoked by the procedure. We assume that the code section and the lmkage

section are both addressed by small, nonnegative integers.

2. Procedure Activations
A procedure activation is a collection of information that represents one

particular invocation of a user defined procedure. The informatien contained in

a procedure activation includes the followmg : ‘

e The procedure being mterpreted

e An instruction counter.

The instruction counter is an integer that identifies one barticular
instruction in the code section of the procedure being interpreted. That
instruction is the one currently being interpreted or about to be interpreted.

- 166 -
® A stack frame.

" The stack frame is an addressable collection of arbitrary references. It
contains the actual arguments of the procedure invocation, local variables of
the procedure, plus temporaries.” The stack frame is addressed by consecutive
integers, starting with zero. Elements can’ be M u' éeiéteﬂ from the high
end (the rop) of the :uek ftame. o

3. Instruction Set

The following instructions are allowed as part of the code section of a user
defined procedure. Instruction operands are writtenr in“italics.- Alf operands are
small nonnegative integers; the interpietation of operahids s dependent on the
particular instruction. 'Weé agsume that ‘all -accesses 10 code séctions, linkage
sections, and stack frames are checked for attmpu 10" acoess outnde the current
bounds af the collection '

The interpretation of instructions prooeﬁ! uequwtﬂﬂy" un!ess a smcxﬁc
next instruction is speclf ed by a branch instruction.

® apply nargs

The apply instruction causes a proeedure to be mvoked The top element
is popped off the stack frame; this object must be a procédure object. Nargs
clements are removed from the top of the stack frame; these objects will be
the actual arguments of the invocation (the first argument’ls lowest on the
stack). The specified procedure is then invoked with the specified argument
objects (see below); when the procedure terminates, the result objects are left
on the top of the stack frame .

When a user defined procedure s xnvoked a new prooedure acttvation is
created, including a fiew stack frame: The new ¥tack friime is initiatized to
contain the actual arguments. Interpretation of the code section begins with
the initial instruction.

- 167 -

When a primitive procedure is invoked, no procedure activation is created.
Instead, the machine directly computes the result objects and pushes them on
- the caller's stack frame. In the case of prisitive pfocedures, the machine also
checks each actual argument object to' make: sure it-is of the expected type
(one of vector, bstring, procedure, or process). -

return nobjs

The return -imstruction terminates: the execution of a user defined
procedure: Nobjs specifies the number of return:-objects, which are removed
from the top .of the stack frame. These objects are pushed onto the top of
the calling act:vatlon’s stack frame and tatergretam ef tshe calhng ‘activation
is resuined.
pushstack addr

- The pushstack instruction copies a reference from the stack frame element
spectﬁed by addr and pushes it onto the top of the stack. frame

pushlmk addr

The pushlink instruction copies a reference from the linkage section
element specified by addr and pushes it onto the top of the stack frame.

pop addr

The pop instruction pops a reference from the top of the stack frame and
stores it in the stack frame element specified by addr.

branch addr

The branch instruction causes interpretation to continue with the code
section element specified by addr.

oo 168 -
e f[branch addr

The fbranch instruction pops a reference from the top of the stack frame.
. If that re&rememnmtmﬂmmdmn&umtheoodnmnon
element specified by addr. .A ,

4. Notes

A number of represeatation details ‘have not: been specified, for example:
how procedures are- represented, how -instructions -ure-enceded, how procedure
activations are represeated, and how the:procedure -activations of ‘a single process
(including - all: ‘stack frames) can be implemented: . usitig:#:single - stick object.
These details (if done correctly) do not affect the semantics of the machine
language; they are invisible to the machine language program.

5. Example

Figure 24 shows a factorial p:wcdm m n OLU, abn with the
corresponding machine language program. Symbolic names have been used for
addresses into the stack frame, coatrol wctxon. and hnkusuctiom in-- the
traditional assembly Ianguage manner.

B A R

- 169 -
Figure 24. An example of the machlnve language.

Factorial in CLU:

fact = proc (n: int) returns (int)

f:int:=1

while n > 1 do
f=f*n
n:=n-1
end

return (f)

end fact

Stack offsets:

0 % the argument to fact
1 % a local variable

n
- f
Linkage section:

one: "the integer 1"

gt: "the procedure int$gt (greater than)"
mul: "the procedure intSmul (multiply)"
sub: "the procedure intSsub (subtract)”

Code section:

pushlink one

L1: pushstack n; pushlink one; pushlink gt; apply 2; foranch L2
pushstack f; pushstack n; pushlink mul; apply 2; pop f
pushstack n; pushlink one; pushlink sub; apply 2; pop n
branch L1

L2: return 1

- 170 -

- 171 -
Appendix II - Page Module Description

This appendix contains brief descriptions of the operations of three
submodules of the page module: the page handler, the storage processor, and the
secondary storage module. For each module, we list the possible requests that
may be received by the module and a description of the action taken upon
receiving that request. A message is written as command(argl,arg2,...), where
command is the request name and argl, arg2, etc., are message arguments.

1. Legend

rid = request port identification (from Vector Medule)

SPID = special rid indicating Storage Processor

sn = size number (encodes the page size)

sp = secondary storage page address

pp = primary storage page address

NILP = special NIL page id, in page map entry, indicates
that the page is being swapped in

mod = a boolean indicating that the primary storage copy
of a page has been modified ,

~ setn = a set number in the set associative memory

oper = [fetch,store,incr_rc,decr_rc,mark,unmark)

- 172 -

2. Page Handler (PH)

alloc(sn,rid)

send. alloc(sn,rid) to SP

, ueﬂtp-pmﬂd)

enter {sp,ppl in. page map R
if entry pushed out, send swap_out(osp.opp,omod) to SP
send result(sp) to RID

equal(sp l.spz.rid)

compare the addresses spl -and sp2
send result(eq) to RID

oper(sp,rid,...)

lookup page map entry

if no entry then
queue request
enter [sp,NILP] in page map
if entry pushed out, send mp.out(ocppppnned) to SP
send swap_in(sp) to SP

elseif e.pp=NILP %in_transit% then
queue request

else
perform request
send result(...) to RID

end

-173 -
e swap_in_done(sp,pp)

update page map entry with pp %not in_transit%
perform queued requests

e touch(sp,rid)

lookup page map entry

if no entry then
enter [sp,NILP] in page map
if entry pushed out, send swap._out(osp,opp,omod).to SP
send swap_in(sp) to SP
send result(false) to RID

elseif e.pp=NILP %in_transit% then
send result(false) to RID

else

~ send result(true) to RID
end

e replace(setn)

select page to replace from the speclﬁed set of the page map
remove entry from page map ,
send swap_out(sp,pp,mod) to SP

e dealloc(sp,rid)

lookup page map entry
if no entry then
send dealloc(sp,NILP) to SP
else
remove entry from page map
send dealloc(sp,pp) to SP
end

3.

-174 -
size(sp,rid)
send size(sp,rid) to SP
sweep_ reset(rid)
send sweep_reset(rid) to SP
sweep__next(rid)

send sweep_next(rid) to'SP

Storage Processor (SP)
alloc(sn,rid)

send alloc(sn,rid) to SSM
new(sn,sp,rid) | |
allocate primary storage page of given size
initialize primary storage page
send new(sp,pp,rid) to PH
swap_in(sp)

send size(spSPID) to SSM

-175 -
size(sp,i'id)
“send size(sp,rid) to SSM
size_is(sp,sn,rid)
if rid=SPID then % continuing swap_in
allocate primary storage page of given size
send swap_in(sp,pp) to SSM
else
send result(sn) to RID
end
swap_in_done(sp,pp)
~ send swap_in_done(sp,pp) to PH
swap_out(sp,pp,mod)

if ~mod then deallocate primary storage page
else send swap_out(sp,pp) to SSM

swap_out_done(sp,pp)
deallocate primary storage page
dealloc(sp,pp)

send dealloc(sp) to SSM
if pp~=NILP then deallocate primary storage page

- 176 -
. sweep_reset(rid)
flush page buffer (so that all free pages have identifiable free list
pointers in their header words)

reset internal sweep counter
send result() to RID

e sweep_next(rid) 4 o
get sp of next page to be yielded (update mternal counter), -

sp=NILP if no more
send result(sp) to RID

4. Secondary Storage Module (SSM)
3 alloc(sn.rld)

allocate secondary storage page of given m
send new(sn,sp,rid) to SP

e size(sp,rid)

determine size of page
send size_is(sp,sn,rid) to SP

e swap_in(sp,pp)

transfer page from secondary storage to primary storage
send swap_in_done(sp,pp) to SP

- 177 -
e swap_out(sp,pp)

transfer page from primary storage to secondary storage
send swap_out_done(sp,pp) to SP

e dealloc(sp)

deallocate secondary storage page

- 178 -

- 179 -
References

Ackerman, W. B. A structure memory for data flow computers. Rep.

+ TR-186, M.LT. Laboratory for Compw Scieace, 1977..

‘o

10.
11.

12.

Baker, Jr,, H. G. Actor systems for real-time computation. Rep TR-197,
M.L T Laboratory for Computer Science, 1978

Batson, A. P. and Brundage, R. E. Segment sizes and hfetnmes in Algol 60
programs. Comm. ACM 20, 1 (Jan. 197'1), 36-44. '

.. Bawden, A, et. al. LISP machine progress report. Memo 444, M.IT.

Artificial Intelligence Laboratory, 1977. :

Bensoussan, A., et. al. The Multics vn'tual memory concepts and desxgn
Comm. ACM 15 5 (May 1972), 308-318.

Birtwistle, G. M., et. al. Simula begm. Anerbach, Phdadelphna, 1973.

Bishop, P. B. Computer systems with a very large addtess space and garbage
collection, . Rep. TR-178, M.ET. Laboratory for. Gemputer Smenee, 1977. :

Clark, D. W. List structure: meawrements; algasthms, and encodings. Ph.D.
thesis, Dept. of Computer Science, Cameg:e-\dellon Umversxty, 1976.

Conti, C. J. Concepts for buffer storage IEEE Computer Group News 2, 8
(Mar. 1969), 9-13.

Denmng, P. J. The wo:kmg set model for progeam behavior. Comm. ACM
11, 5 (May 1968), 323-333. ‘

Dennis, J. B. First version of a data ﬂow procedme language. Lecture Notes
in Computer Saence 19, Springer-Verlag, N. Y., 1974, 362-376.

Deutsch, L. P. and Bobrow, D. G. An- effigient, incremental, automatic
garbage collector. Comm. ACM 19, 9 (Sept. 1976), 522-526.

13.
La.
15. G
16,
17.
18.
19.

20.

21.
22.

23.

- 180 -

Dijksta, E. W, et. al. On-the-fly garbage collection: an exercise in
cooperatlon Comm ACM 21, ll (Nov 1978), 966-975

Fabry, R. S. Capability-based addressing, Comm. ACH 17, 7 (uly. 1978),
403-412.

Gries, D. - An exercise in ‘proving parallel programs correct. Comm. ACM
20, 12 (Dec 1977), 921-930

Hatfield, D. J. Some expenments on the retmonshlp between page size and
program access patterns. IBM JRD 16 l (Jm 1972), 58-66.

Hewitt, C V:ewmg control structures as “patterns of passing messages.
Artificial Intel[;gence 8, 3 (June 1977), 323-364. ,

Kaehler, T. Private communication, 1978.

Knuth, D. E. The Art of Compuier Programming, Vol. 1: Fundamental

Algomhms Addnson-Wesley, Readm;, Ma,. 1968

Lampson, B. W. ' Protection. ‘ Proc. Flfth Pﬂmton Symposium on.
Information Sciences and Systems, Princeton University, March 1971,
437.441 Reprmteé in’ W' asm&, 1 ain 1974), 18-24

Liskov, B et. al Abstractmn mechamsms in CLU Comm ACM 20, 8
(Aug. 1977), 564:576. B

Liskov, B,, et. al. CLU reference manual. Compntatxon Structures Group
Memo 161. ‘M1 T. Laboratery: fof«camputei! 5 1978 :

ﬁ,.

Liskov, B. and Snyder, A. Structured exception handhng Computatxon

- Structures Group -‘Memo: tss-l M.t’!‘ stontory fu Computer Sc&nee,

24.

1978

Madnick, 8. E.. Storage H:erarchy' Symms ‘Rep.: TR-107, M{T Pm;ect
MAC, 1973.

25.
26.
27.
28.

29.

3l

J2.
33.
34.

35.

- 181 -

Martin, R. R. and Frankel, H. D. Biectm disks in: the l980’s Computer
8, 2 (Feb. 1975), 24-30. : , . »

Mattson, R. L., et. al. Evaluation techniques for storage hicrarchies. I1BM
Systems Journal 9, 2 (1970), 78-117.

Reed, D. P. Processor multiplexing in a layered operating system. Rep.
TR-164, M.I.'T. Laboratory for Computer Science, 1976.

Saltzer, J. H. Traffic control in a multiplexed computer system. Rep.
TR-30, M.I.T. Project MAC, 1966.

Schorr, H. and Waite, W. M. An efficient machine-independent procedure
for garbage collection in various list structures. Comm. ACM 10, 8 (Aug.
1967), 501-506.

Schroeder, M. D. Performance of the GE-645 associative memory when
Multics is in operation. Proc. ACM Workshop on System Performance
Evaluation (April 1971), 227-245.

Smith, A. J. A comparative study of set associative memory mapping -
algorithms and their use for cache and main memory. IEEE Transactions on
Software Engineering SE-4, 2 (Mar. 1978), 121-130.

Steele, Jr., G. L. Multiprocessing compactifying garbage collection. Comm.
ACM 18, 9 (Sept. 1975), 495-508.

Theis, D. J. An overview of memory technologies. Datamation 24, 1 (Jan.
1978), 113-131.

Van Wigngaarden, A., et. al. Revised report on the algorithmic language
Algol 68. Sigplan Notices 12, 5 (May 1977), 1-70.

Wadler, P. L. Analysis of an algorithm for real time garbage collection.
Comm. ACM 19, 9 (Sept. 1976), 491-500.

. Weisman, Clark. Lisp 1.5 Primer. Dickenson Press, 1967.

- 182 -

37. Weng, K-S. An abstract implementation of a generalized data flow processor.
Ph.D. thesis, Dept. of Electrical Engineering and Computer Science, M.I.T.,
forthcoming.

