
~1 IT /LC S/ TR-20 B

A MJ NI C: mti'll 'l'ER NETh'ORK S l~1LJ Lt\Tl ON SY STE~l

Br (\c k C:. Kr iz nn

·- -- ··-~--~·--- · ·· -- -- -· · .

This blank page was inserted to presenie pagination.

CAMBRIDGE

MIT/LCS/TR-208

A MINICOMPUTER NETWORK SIMULATION SYSTEM

Brock Collins Krizan

September 1977

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

A MINICOMPUTER NETWORK· SIMULATION SYSTEM

by

Brock Collins Krizan

Submitted to the Department of ElectricaL·~ngineering
on June 25, 1977 in partial fulfillment of the
requirements for the Degrees of BachelQr .. ~,..; ,Sc4eace
and Master of Science in Electrical ·Engineering.

ABSTRACT

The design, development and use of cost-effective
computer networks require informat~on ab<;)ut system::beJlavior
given a variety of network structures and operational
policies. Because computer n~t.WQ,tkc~:are. RP,1.0Pl!lt~. system~, .~hose
behavior is generally not intuitively understood, there is a

, need for system analysis tool.-,., \t,c P:tPV:iQe; a wide ra"9e of
performance information. · ·

This. thesis dejicribes a &imuJ.•tic>~ sv-.tem that gene.rates
behavioral intormation for a class of minicomputer network
systems. This simulation system is modularly designed with
modules for network modelling, specification of the network
processing 1<>4:dr •.Jld sj.aulation. <•~ d~•t.~::~vtnt si••l•tcn>.
The network modelling done with the simulation system is based
on a general ~r~e cUscr.e~e~ ~~·lliAt:. ciJ..e.pi.pline. F11!!t'ible
network model building blocks made fr·om the basic modelling
discipline structures are p~O--V;~de,4 t,~. -.~, •.imulation:, •rstem
user. To prepare a simulation experiment the user assembles a
network model from Ute· puilciling b~~s anf. s~~if ies • petwork
processing load. To generate performance information the
network model and load ~cif ic.ttt011 · a:r:e. input to the
simulator along with simulation control parameters. On
completion of the simulation experiment the generated
performance information is output in a palatable form to the
user. Overall this simulation 3-YllW•,J-4&: .. iJ.:.-convenietlt and
flexible system analysis tool for minicomputer networks.

Thesis Supervisor {Academic): Liba Svobodova
Title: Assistant Professor ,of Electrical Engineering

and Computer Science

Thesis Supervisor {VI-A Company): William Gimple
Title: Section Mal)ager, Hewlett-Packard General

Systems Division

2

-

-

TABLE OF CONTENTS

ABSTRACT

TABLE OF CON'l'&NTS

LIST 'OF of'lGll,MlS

ACKNOW.IIBDGBMBNTS

CHA PTE.R l .: IN!r.ROOUCTI ON

CHAPTER 2 .: ::B~~UNO

2.1

2.2

2.3

3.1

3.2

3.2.l

3.2.2

4.1

4.2

4.2.1

4.2.2

4.3

Si4.11twlaition Modelling

Simula~tj.on System ·oesiqn

Cooap~,r 0Network S··imult~i-pn $'~~- ;Jxamples

MOti·vat.ion· For ·The D•~.etrt o~: ~s

r;J)eYel()ptnent Of MNSS

!'he HK Networ-k Archite"Cttl'i:·e

'lhe KNSS Modelling Discipline

The Struc.tur.e Of MNSS Models

1'·he :P.reees sing S ub•oai! 1

The Communications Submodel
{:"'

Simulation Usi:nq The ifPC S}'$t~m 'Model

3

2

3

6

7

8

20

23

28

28

'31

32

'3'5

3.8

3:9

46

47

56

62

CHAPTER 5: MNSS IMPLEMENTATION ANP USE 65

5.1 Overall Structure Of A MNSS Inplementation . 65

5.2 Representation Of A Simulation Experiment 68

5.3 MNSS Simulator Characteristics 73

CHAPTER 6: VERIFICATION OF THE MNSS IMPLEMENTATION 77

6.1 Simulation Model Parameters 79

6.2 MNSS Functional Verification 82

6.2.1 Process Switching 83

6.2.2 Remote Request Functioning 84

6.2.3 Store-and-Forward Functioning 86

CHAPTER 7: MNSS EXPERIMENTS 88

7.1 The MNSS Experimental Process 88

7.2 Two Simulation Studies 90

7.2.1 Incremental Network Expansion 90

7.2.1.1 Experiment Results One 93

7.2.2 Four Node Network Expansion 97

7.2.2.1 Experiment Results Two 99

CHAPTER 8: CONCLUSIONS 103

8.1 Limitations Of MNSS 104

8.2 Extensions To MNSS And Further Study 106

APPENDIX A: THE MNSS/3000 IMPLEMENTATION 108

APPENDIX B: VERIFICATION EXPERIMENT 111

4

APPENDIX C: EXPERIMENT RESULTS

REFERENCES

5

113

119

LIST OF FIGURES

2.1 Communications Subnetwork Models 25

4.1 MNSS f4odelling Structures 42

4.2 A Job Processing Model 44

4.3 General HPC System Model_ S tructl:lre 48

4.4 Processing Submode! 49

4.5 Communications Submode! 57

5.1 MNSS Implementation Organization 67

5.2 Experiment Representat_ion Bre.akdown 70

5.3 MNSS Probability Distributions 72
• ;·. ~ '"'.:i' : ,,

5.4 MNSS Simulator Characteristics 75

7.1 Remote Request Level Table 94

7.2 Incremental Network Ex.pansion Experiment Results 95
h"; c

7.3 Four Node Network Experiment Results 100

_,

6

........

-

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the many

people who have assisted in the creation of this thesis. First

of all, tbanks go to Hewlet t-Packad! and fts employees 1 to Jim

Cockrum, Bill Gimple, Eric Ha and John Hawkes for their

managerial and technical support, and.to John ~illiams for his

help in ~roducing a polished copy of this thesis. Special

thanks go to ;Liba Svobodova for her invaluable advice and

encouragement, provided from inception of the-thesis project

to complet·ion of the thesis docume·nt. Appreciation is extended

to John ·Tucker for his enlirihtened manage1ntent of the 6A

program 11h'ich made possible the author's engineering

intern-ship at Kewlett-Packara. And finally, thanks 90 to Karen

Doyle for 'her personal support during the many months df work

which went ·into thi·s thesis •.

7

--- -----------

CHAPl'ER 1

A network is an interconnected or interrelated group or

system. Network systems have been developed for railroads,

telephone communications, mail services and electric power. In

each case the development of a network from previously

independent components has broug·ht improved service at lower

cost.

Based on this tradition of success in the- development of

network systems, it is not surprising to see a ·wor·-ldwide move

towards the use of data processing-oriented communications

networks (ie. computer networks). These networks are generally

formed by the interconnection, via ccauriunications links, of

computer systems. Among the goals in the move to develop

computer networks are to provide information security,

processing reliability and cost-effective processing services.

The physical disribution of. processing services in a

computer network can be exploited in provldin~ the ap,ropriate

degree of information security to interaeting processing tasks

with different security requirements. One way to do this is to

customize each node in a network to provide a different level

of security (in terms of operating system safeguards, physical

protection of the computer, etc.). Thenpyocessing tasks can

be assigned to the computer system ··'with the appropriate

security and at the same time retain a communications

capability to tasks with other security requirements. The

network approach to security can be more effective than

8

placing all tasks within the security structure of a single

computer.

The

redundant

network.

network approach to reliability is based on the

processing capability inherent in a computer

If ~ii~ computer system iri a iletwotk fails, the other

systems in the network can be used to dynamically recover from

the failure. Optimally, the processinC;J load of the system that

failed can bf) shifted wi tbout pena.lty to other systems and the

globally Ob$i!n7'ed operation of the network is unchanged. In

most cases though, it must .be expected that a degradation of

network petforinance will occur aftet a sin9le system failure.

This gradual degradation of services, made p0ssible through

networking, is one way to avoid abrupt and total

discontinuatlons C>f Service (ie. when the processor fails in a
c6mputer systia with no backup processor).

P~rha~i the most important feature of com1>uter networks

is the ~otential to provide tost~e££•ctive processihg

~ervice~. ~here are a numbet ot ways to realize this

potential. Sharing of hardware, software and information

resources can be done with a netw'ork of computers of different

characteristics. A user can a·ccess costly resources without

having those resources associated with the locally available

computer system (eg. an expensive peripheral need be located

on only one system in a network) • Another way a network can be

cost-effective is by allowing local data processing at the

site of data acquisition and use, while at the same time

9

maintaining

bank with

application).

data

many

This

links to remote processing centers (eg. a

branches would be a potential network

arrangement yields significant savings in

communications costs over a completely centralized processing

facility. Yet another cost-effective characteristic of

networks is the allowance for a gradual and - consistent

expansion of the processing capabilities as they are required

by an application. Networking can offer a range of processing

capabilities more expansive than is offered by any single

computer line.

While computer networks have great potential in providing

a variety of data processing capabilities and services, they

also pose difficult design and implementation problems. A

network system is inherently more complex tha'n the individual

components that are linked together in the system. In so far

as the behavior of a computer system is difficult to predict

for a given user environwent, prediction of the behavior of a

computer network system can be mind· boggling. But this

behavior must be anticipated to some extent in order to

develop effective data processing systems.

There are two primary phases in the development of

computer networks. First, communications hardware and

software must be developed to allow a computer system to

function in a network environment. Modems, communications

processors, programs to maintain communications protocols, and

a host of other computer communications components must be

10

-

, ...

designed and implemented. The second phase of network

development involves selecting the appropriate (:9mputer and

communications options in order to fill specific data

p;r9Cese~ng needs. ·· Dur i119 both phi,lses a network designer needs

in,sigibt ~Q1:o tM °'h9vi9r: of .ne.twork ~Y:st•ms.

System ilnal.ysis tools provicie i:nformat~C>Ji to supplement a

designer '1:1 intui1:ive understanding of network behavior. These

tools j..ncluQf! hardware and softwa.re monitors for system

measure•n~, analytic models, •md system simulators .• Most
,. ·-,

analysis tools are restricted in their application to

par ti.cul;u: filS~cts of network beh•v ior. The complexity of

netwe>~k Sfll~,D\s, .coupled with the inherent J..iJlli tat ions of t.he
j

analy.si~ tOQJ..15 c•.u.$e this res tr ic;tiop. Therf!:~o.re, in order to

cop• with ne.:w j;.yp.es ()f networ-ks, there is a contim,1ing need

to.r new ne~)l;.P.tJ< a11~lY~is tools.

Tb;is ttl,e_,;i.s d~scr ,ipes the d•velopment of a simulation

system to be used for analysis of the behavior of a

minicompu·ter network system. The following chapters trace the

developm.en.~ pf ,the Minicomputer Network Simulation Syste,m
-~ : . . }

(MNSS). Chapters 2., 3 .and 4 review the research _into, and ttie

design of a flexible network model of a particular class of

system (designated Hewlett-Packard Computer

e;ystems 0;r HPC systems). Chapters 5 and 6 de.scribe the design
' '

and impl-"'entation of an effective ,interacti_ve simulator that

uses HPC network models. Chapter 7 pr,ovides a summary of some

simulation experiments designed to demonstrate the

11

----~-----··"-· ·-----

capabilities of MNSS. Chapter 8 reviews the progress made by

this thesis project and the potential for further work.

12

-

-

CHAPTER 2

BACKGROUND

There is a rich background of work concerned with

computer aystem analysis. From this backqround are drawn the

techniques that are used to develop computer network analysis

tools. These tQOls include analytical models, performance

monitors, and simulation syste1fts. Analytical models are

usually very efficient but are limited in application to

relatively simple, well characterized systems. The use of

performance monitors in network analysis is aimed at getting

very accurate and specific information. A fundamental

limitation of performance monitors is the necessity to have

available a working version of the system to be analyzed.

simulation systems ca·n be used to do system analysis at any

stage in sy.stem development. In addition, a network system can

be analyz-ed in as much detail as is necessary. The efficiency

of a simulation system in analyzing network behavior is in

general lower than that of an analytical model and the

behavioral information derived with simulation is less

accurate than that gathered by a performance monitor.

Simulation systems, performance monitors, and analytic models,

by having differe.nt operational characteristics, provide the

capabilities for a range of computer network analysis at

various stag~s in system development and use.

The following sections review the most pertinent

13

-- -------------~-·--·---·-------~--

-·

background to the development of MN~. This includes

simulation modelling techniq.ues and the i.mpl•e~ta.tion,anq,, \lSe

of computer network simulators. The pr.inciples behind the

design of simulation ·Systems in general, a11d MNSS in

particular, can be distilled f roni the sea of:.work that .has

been reported. This work can be characteri~ed .· i~t;o two groups

corresponding to the principle staqes in :the ~s ,4evelppJJtent

process. Initially models of 111inig()llput~u: ,network S¥Steau; bad

to be designed to describe all signiCicant fe•tures~ Tben an

effective simulator had to be designed, and implemented.· ;hat

uses these network models.

2.1 Simulation Modelling

A representative model of a system is required to do

simulation. Models used for simulation can be divi4ed into two

general classes: structural mod,e~ and fu.nc:tio11i1l models (271.

Individual system component•. and their connections are

represented in a structural . model. This l~vel of detail is

appropria.te for tasks such as Jogic simu~ation of digital

systems (SJ. A functional model provides a mqre abstract

representaion of a system than a struptural model. It

describes how a sy.stem operates a.nd can be used for

mathematical or empirical system analysis. Extensive use of

functional models, in the form of flowchart·- models (2),

finite-state models {10], parallel nets [22) and queuing

14

..

models (23}, is made in simulating complex hardware and

software coniputer system structures.

The effectiveness of a si•ulation model can be gauged by

its ability to represent all significant aystem features ·and

·at the ·same tilb mtnbtize the effort t•quiad to use it for

system simulation. In the process of constructing a

simulation lltOdel there are a number of factors that impact its

effecti~eness. These factors involve characteristics of the

modelli·nq lafl<Juage used to descrftbe the model, and various

qualities of the mode 1. Specifically they include:

1. the flexibility of the modelling language (ie. the model

descrip.t ion language) in abstracting real system

structures,

2. the efficietu::y ef the modelling lan9uage in a simulation

context;

3. the eas-e with which a model eaflbe adapted·to changes in

the structure of the system modelled, ·

4. the· le'Ml of detail that is used· in a model to represent

siqnifica·nt system features (that may be at different

levels of detail in different par'ts of the system

str uctute) , and

5. the effort re~uired to verify and validate the model.

Work is continually being done on modelling languages and

methods in order to deal with these factor:s.

15

..,.,

A number of approaches have evolved for developing

effective modelling languages. One approach is to have the

modelling language be identical to the simulator programming

language (ie. the programming language used to implement the

mechanism for simulating the model) (11]. While this approach

can yield efficient simulation processing, the process of

abstracting a system in this t¥pe of modelling language may be

very difficult. An ever expanding set of instructions may be

needed to handle new and evolving system structures. A second

approach to developing a modelling language is to have only a

partial correspondence with the simulator programming language

(eg. using a simulation language such as SIMULA or GASP to

implement a modelling language) (16]. With this approach the

simulator programming language performs simulation

housekeeping chores and well defined activities such as table

construction. System representaion in the modelling language

can be done with more ease than in the first approach, but the

conversion to the simulator language is more complex. Another

approach is to use a general purpose language (FORTRAN, APL)

(23] to implement the simulator, and have a separate modelling

language which specifically deals with the structures of the

system to be modelled. Representing system structures in the

modelling language becomes increasingly straightforward at the

cost of more effort to implement the simulator.

Whatever the relationship between the modelling language

and the simulator language, it is advantageous to have the

16

modelling lanquage provide convenient model description

buildinq blocita [7). The bUilding blocks may vary from the 56

instructions in <lPSS-5 to the two principle structures in

DYNAMO. By having an effective set of building blocks a

modE!llinq la·ftilf'U*!Je eart be us~d to represent a range of

different types of systemsJ a modeller can be spared the task

of master·ing several limited (special purpose) languages. In

addition a nte>del constructed usin9 a well known set of

buildinCJ blocks can be understood by more people than one

constructed using specialized, one-of-a-kind structures.

The COJllplexity of a modelling langua9e can be gauged by

the number and types of the associated buil.ding blocks. In

general a ntodellinq language becomes more difficult to use and

understand with larger numbers of building blocks. The degree

of correspondence between building blocks and re·al system

structures also influences the complex! ty of language use· .. A

modelli.n9 language for a limited and well defined set of

systems can incorporate just a few very specific building

blocks and be very easy to use. But a modelling language used

for general classes of systems must either have a great number

of specif ie build·ing blocks or a smaller number that a.re very

general. In either case the generalized modelling language is

harder to use than a specific modelling language.

Given a particular modelling language, the effectiveness

of a model is affected by the technique of the modeller.

Modelling techniques that promote the development of effective

17

models include top-down development, modular design, and

submode! organization.

Top-down development is extensively used in software

development to facilitate debugging, functional verification,

and maintenance. It is not surprising that top-down

development has been constructively applied to simulation

modelling [6]. Design and verification activities can be

integrated together during top-down implementation of a

simuation model. Since the conceptual model is usµally derived

in a top-down manner, this is a natural and efficient

approach.

Modular design allows a modeller to adapt a model to

changes in a system structure by making localized changes to

the model. The model can be effectively used in simulations in

which both parametric and structural system characteristics

vary (24]. Parametric characteristics are subject to variation

by changing single, usually numeric values~ structural

characteristics involve functional aspects of a system and are

varied by changing the functional modules that make up the

model description. For example, with a modularly designed

network simulation model, not only can the line speeds and

message frequencies be varied (parametric characteristics),

but also the network configuration, communications protocols

and processor scheduling algorithms (structural

characteristics) can be changed. Modular design makes a model

easier to develop and adaptable to structural variation for

18

-

-

simulation studies.

Submode! organization is a hign level application of

modular design (several modules may be included in a submode!)

which is facilitated by the decomposition of a system into

several syst•• components or subsystems. The simulation of a

system is restricted by time and cost limitations when a model

is developed at a very fine level (low level) of detail. By

using a su:bmodel organization, different levels of detail can

be u·sed in individual subnrodels to ease simulation

restrictions while maintaining the accuracy of the model

representation (21). Submode! representaions may range from a

decision table to a highly detailed model (subject to

simulation apart from the rest of the model). By using a

decision table or a simple function to directly generate

submode! outputs 'from the inputs, then analytical results,

measurement data, and previous simulation results can be

utilized to reduce needless simulation. Where a detailed

representaion of a subsystem is needed for modelling accuracy,

simulation on the desired low level of detail can be limited

to the specific submode!. Excessive simulation is avoided by

not having to model all subsystems at the same low level of

detail.

A submode! organization can also be exploited in model

validation [3]. Each submode! can be exercised and compared to

the corresponding real subsystem. The submodels will be less

complex than the complete model and easier to validate. Once

19

each submode! is shown to operate correctly then submode!

interactions can be proven correct (or redefined to become

correct). This stepwise approach to validation avoids many of

the problems of working with large and very complex models. It

is especially valuable where there is a model comprised of

many duplicate submodels (eg. a homogeneous network model with

each node being a submode!).
···,

2.2 Simulation System Design

A computer simulation system provides facilities to build

a simulation model, takes as input a workload description, and

uses a sim~lator mechanism to perform experiments. The

simulation model and workload description determine the

behavioral information that is generated and recorded for

performance analysis by the simulator. Once a simulation model

or the build.ing blocks necessary to form a set of related

simulation models have been developed, the next steps in the

development of a simulation system are the design and

implementaion of an efficient simulator and a comfortable

user-simulator interface.

Computer network simulators can be classified according

to the form of the workload description they use; among the

mos~ common classes are stochastic and trace driven (27). For

a stochastic simulator the workload is described by

probabilistic distributions; resource demands are generated as

20

...

-

..
random variables from these distributions. tn contrast, a

trace driven aimulat·or operates with a workload represented as
. . .

a dete·rmin·lstic sequence of resoui:ee deaands. Trace driven

simulation is very useful in tuning a system 'tor well defined

applications. It canno't be used for a·n application that cannot

be represented accurately by a determihistic . sequence of

resou·rce demands ·or where exact resource demand information is

not availableJ in these cases stochastic simulation may be

approptiate. Both types of simulation can be used to examine

the performance of new system d•si9ns, alternative system

eonf igurations and resource manaqement stta'teqles.

An efficient performance ·analysis simulator generally

simulates ·only those events that change the sysi:ein state. such

simulators-; called discrete event simulators, jump f rem event

to event in simulated time. The length of· the jumps (le. the

real time that would elapse between two events) does not

ef feet the processing required to do a sillulatlon·:, rather the

total nuaber of events is the ltey factor. Clearly the

efficiency of the simulator is directly re1a·t-ed to the level

of detail of the -simulation model. Increased detail is bought

at the cost of more events being generated dur iri9 simulatio·n,

and con.cequently more simulation proc::essinq.

Macoougall's BASYS simulator [i9] for a disk-based

multiprogrammed computer system is a prime example of a

discrete ev&nt simulator. It does stoehastic simulations and

is based on a queuing model. Events corr~SPond to the

21

assignment of a job to the CPU, the release.of the CPU to wait

for the completion of an I/O request, etc. Handling of the

events is implemented in the simulator as ev.ent routines •. Each

event routine peJ:forms the actions, which correspond to the

associated event and also predicts followup eyents (ie.

schedules event routine executions).. ,Event handling is

maintained by the simulatpr through the use of an event list

(that reflects the time se.quence of events yet to. occur),

queue information structures, and a ·d~ table. Though the

BASYS simulator is used to simula~ a simpl~ system, its

operating principles can be adapted to do more complex

simulations.

The character of the user-simulator interface. often plays

a large part in determining the effectiveness of a simulator.

Given an efficient simulator and an accurate simul~tion model,

the user should be able to easily set up,, run, and get back

the results of simulation expe~riments. This dictates a

flexible interactive environment, not b(Ltch pr·ocess.ing. The

Computer Networks Si.mulation System developed.· at the

Qniversity of Waterloo (14] p,rovide.s an example of a

comfortable user-simulator interface. Network topology and

traffic characteristics are input via a .converS;ational dialog.

Simulation o~tput is available with or without data ar:ialysis.

In addition, message delay information can be displayed during

the simulation run.

22

-

2. 3 Cotllputer Network Simulation System Examples

One way to review computer n.etwork simulation systems is in

terms of the degree to which oetwork components are

repres.ent•d in the correspondinq si•ul.ation model. A

simulation model Qlay focus on a pat:ticular component of a

computer nettwor~ (eg. the communica·tions links) and represent

the rest Qf the network system at a ve.ry high le.vel. A

simulation s.ystem that incorporates such a simulation JR()del is

used to examine component behavior as opposed to overall

network bebvior. A simulation syat•m tha~ ilJ used· to e-xamine

overall networ:k behavior requiree a simulati&n model that

represents oll network compo~nt.s at sa5 n<>rrtr ivial level.

An import.IN'lt simulation system de•i.'§n d•.cision. is to decide

how completely the system is to be •·i•ulated.

Many eiiwl•t.ion systems have beet developed that focus on

the conmnwic•tions subn•twork in a packet sw·itching networ:k

(7 ,12.,13.,261. The communications subnetwork inclµdes a number

of ded:iee·ted co111111unications processors b1terconnected by

communications links. !:ach communications processor receives

messages from one or more atta-che.d host devices ('computers,

termi11al concentrators, etc.), routes mesaa~'8 throuqh the

communic•tions aubnetwork, and delivers mesaaqes to attached

host devieea w~n appropriate. The simulation ayst-e•s that

simulate this activity use simulation models that range in

detail in representing the structures (eg. communications

23

links, communications processors) of the communications

subnetwork. The contrast between several simulation models is

shown in Figure 2.1.

The simulation model used at the University of Waterloo

to study CIGALE (the packet•switchinq cOlmnunications

subnetwork of the CYCLADES computer network) is illustrated in

Figure 2.la. The objective of this study was to observe the

behavior of CIGALE under various traffic conditions. To do

this line speeds, line delays and buffer utilization were

accurately modelled. The lines were assumed to be error free

and the communications processor service .time (to do packet

routing and buffer handling) was modelled as a constant. These

simplifications give an indication of how insignificant detail

(in light of the modeller's objectives) is kept out.of the·

simulation model representation.

Figure 2.lb shows a simulation model, used at the Ecole

Polytechnique in Montreal [12), which can be considered an
'

enhanced version of' the waterloo model. A more sophisticated

host device-communications processor interface is included,

representing message seg.mentation into packets (eg. messeqes

are allowed that are larger than the maximum packet aize.) and

message reassembly at the destination. Also packet

transmission acknowledgement and retransmission in case of

nonacknowledgement (eg. line errors or insufficient packet

buffering at.the destination) is represented in the simulation

model. Overall, this simulation model can be used by a

24

-

a. Model of a Packet Switch (WaterldO)
free buffers

,~----
. I

-- - --:-... ,
I

I

--.., ~
~ 111

input Input
u . .,. •. ~·

"

-·--

~
I

~~
~·

output
queues

output
1 Ines

"

----~ IIE-- :: _,, ... _
.2.· IMP Packet Processing (Ecole Polytechnique)

c. A Unified Hodel for Simulation of COR111Unicatlons Pro~es.sors
r..,...-outp~t -------,

t
Buffer•
in Hain
Me1110ry

Buffers
in Main
Memory

I !Iran. pihsion I
H~~~tt::l ~ I
·~-c:i i.. I
....___.Q ,.. I

I .oMultiple Single I server' Queue•

I
I

rndicatea the c0111pletion
of a Transaction

Figure 2.1 Communications Submetwork Models

25

simulation system to generate more detailed packet (message)

traffic information than the waterloo system.

A significant variation of the previously discussed

simulation models is shown in Figure 2.lc. This simulation

model, developed at the Network Analysis Corporation [7], is

intended to be used in simulations of communications

processors

simulation

in general.

model is the

handling (routing, buffer

The interesting feature of this

detail used to represent packet

management). This detail can be

contrasted with the constant service time for packet handling

in the Waterloo model. In focusing attention on the operations

of the communications processor as opposed to network message

traffic, a detailed computer system representation for the

communications processor was required.

A fundamentally different computer network simulation

system was developed by Linsenmayer and Ligomenides [17].

Their simulation model combines a communications subnetwork

model (such as those in Figure 2.1) and models of the computer

systems attached to the communications subnetwork. In

representing in some detail all major components in a computer

network, the Linsenmayer model can be used to simulate

computer networks as interdependent combinations of

hardware/software elements and user job environments. In

particular,

global job

studies are planned to examine various aspects of

allocation in a computer network. The ultimate

justification of a complete network simulation model, in light

26

of its inefficiency relative to limited models (eg. those in

Figure 2.1), is its usefullness in generating overall network

behavior.

MNSS is used for studying the overall behavior of a class

of network systems. As such, it is closest in design

(functions and limitations) to the Linsenmayer and Ligomenides

system.

27

.....

-

CHAPTER 3

DEVELOPMENT OF A SIMULATION' B'YS'l'BM

The development of another simulation system is justified

in light of the inadequacies of existing simulation systems in

generating the behavior of constantly evolving network

structures. Even where simulation systems accurately generate

network behavior, there are often limitations in the

user-simulation system interface. The success of MNSS as a

network system analysis tool rests on its capability to

provide a friendly user environment from which interesting

network behavior can be studied. Each step in the MNSS design

process was directed at achieving these goals.

This chapter outlines the development of MNSS and

identifies those features that make the effort worthwhile.

The primary reasons for MNSS development will be presented,

followed by a description of the network system to be studied

and a general overview of the design of the corresponding

simulation system.

3.1 Motivation For The Development Of MNSS

The motivation for the development of MNSS is based on

two primary desires: the desire to study the behavior of HPC

network systems and the desire to build a. 'better' simulation

system.

28

-

-

The design of a comp~ter syste.m (composed of one or more

computers) i• b .. •d to acae extent oo ·the i¥*:icipated behavif,>r

of the system in aelected envirouents. The system design may

be optimized for throughput, responee ti•, security or so.me
··.(.

special requir• .. nt. In all but simple environments, the

behavior of most computer systeaa ·is too complex to be der iveg

by intuition and mental wizardry. ff PC network syatems are

under development and there is a need for an analysis tool to

study the complex network behavior generated by alternative

designs. In the initial stages of development some of the
...

areas of interest are protocol design and resource management.

Once network structures have been developed, the performance

of HPC networke of various configur•tions under realistic user

loads hes to be examined. This must b4it a.one to optimally

customize HPC networks to user specifications.

Simulation was chosen as the system analysis tecnniq\le

because of its capabilities in 9eneratin9 behavioral

information of complex EJysteias at various stages in system

development. The fundamental choice of simulation over

measurement was based on practical considerations. Wh!le

measurement is more accurate than simulation in deriving

behavioral inforaation, it cannot be used during early

development whel"l HPC networks do not exiat in measureable

form. In addition, there are non-trival logistical problems in

trying to measure the performance of lar.ge network system$

that operate with a variety of configurations and user loads.

29

~-------------------·-----------------

The advantage of simulation versus analytical modelling is

based on the limitations of mathematical models of complex

sytems. A workable mathematical model of an HPC network system

could not be developed to derive the scope of behavioral

information that is required. In general, simulation is

flexible, accurate, and efficient enough in generating HPC

network system behavior, to be effective as an analysis tool.

As was indicated in Chapter 2 many simulation systems

have been developed, with a wide range of capabilities, for

the study of computer network systems. Despite this abundance,

there do not seem to be any available simulation systems that

could be used to analyze HPC network systems. This is due,

in part, to the uniqueness of the HPC network architecture

(described in Section 3.2.1). Another reason to develop a new

simulation system is the inpracticality of adapting an

existing simulation system to a new operating environment

(potentially different programming languages, processing

capabilities, and i/o facilities). A third compelling reason

to develop MNSS is the need for a simulation system that is

useable in a commercial environment. There is a need for a

better simulation system than has been previously offered.

A 'better' simulation system is one that is developed

according to the principles reviewed in Chapter 2. Using those

principles a simulation system can be made easy to use,

flexible enough to perform a wide variety of simulation

experiments, accurate in generating network system behavior,

30

-

and cost/effective as

features ean, be found

an

in

analysis

currently

tool. Any one of these

available simulation

systema, but few sytttems inteCJrate them~ all into an ef fectiv'e

package. A 9,oal of the MNSS development effort is to provide

an in,teqrated syst.em in which all facets of the system ref le ct

general desiqn goals of flexibility, accuracy, e,ase of use,

and eff ieiency. This applies to the simulation model,

simulator, and user interface.

3.2 Development Of MNSS

MNSS was developed to incorporate features that ai:e

advantageous for a general purpose simulation system. The

modelling discipline, simulator, and user interface are not

fundamentally restricted to the simulation of any one class of

compute.r sys·tems.. The primary use of MNSS though, is to

simulate the behavior of HPC network systems. The HPC network

architecture that: is particularly suited to the formation of

minicanputer networks. Therefore, 'Minicomputer' Network

Simulation System (MNSS) is an appropriate designation for the

simulation system described in this thesis report. The

followinq two sections present the 9eneral characteristics of

the HPC network architecture and an overview of the MNSS

implementation and use.

31

-

3.2.1 The HPC Network Architecture

There are two basic aspects to the HPC network

architecture: 1. the architecture of the individual HPC

systems, and 2. the way in which network communications is

handled by an HPC system.

An HPC system supports a multiprogramming environment in

which several independent programs can be executed

concurrently. A program is made up of one or more processes: a

process is composed of the software control structure for a

particular execution of code. Code and data may be shared

between processes within a program. All contention for system
;. '

resources (eg. CPU, memory, etc.) occurs at the process level.

The process control software uses a priority-ordered

preemption scheme to arbitrate resource contention.

Time-slicing is used to delegate usage of resources such as

the CPU among processes of equal priority.

There are two basic types of processes: user processes

and system processes. User processes are the principal agents

of a user in getting work done on an HPC system. The priority

level of user processes may vary, but typically it is fixed at

a particular level. User processes can be associated with

several forms of activity, including code execution

(processing), short wait operations, long wait operations, and

remote processing operations. The distinction between short

wait operations (eg. disk i/o operations) and long wait

32

....

-

operations (e9. terminal i/o) is made because long waits force

a process to lose control of contested refSources such as the

CPU, whereas short waits do not. Remote processing operations

relate to remote process activity that is initiated by a
'c

remote requesct. A process will make a remote request in order
"•

to do work on a remote system in an HPC network. This may

include accessing a ne·twork database or running a program that

works only on a par·ticular system in a network. A user process
" .,,

'waits'" for a remote request to complete before it resumes

local activities {ie. processing, wait activities).

A system process is generated by the HPC operating system

to support user acitvities. Thro119h system processes, u.sers
'i;

can utilize HPC hardware and software resources that cannot

be accessed by us'9r processes directly. The reasons for using
;:,"J

system process intermediaries are to maintain the independent

activities of concurrently existin9 processes, to act as

agents for user process communication activities, and to

relieve users of the complications of low level HPC

operations. System processes are at higher priority levels
,, ..

than user proc.esses and consequently preempt user processes in

cases of resource contention.

In a network environment the system processes most often

seen are associated with communications activities. These
1:

system processes handle communications request/response
, ,

initiation and network store-and-forward operations. Once

communications system processes gain CPU control (by waiting

33

in line behind other system processes or by preempting a user

process), they do processing, short waits, and link control

operations to perform a commun~cations function. There is no

long wait activity and, due to the brief time it takes to
'

perform a communications function, the communication~ system

process is not preempted (by anottier system process) from CPU

control.

HPC networks can be arbitrarily connected in locally or
' . ·' ,. . .

geographically distributed configurations. Store-and-forward

facilities are used whenever informat~on must be transferred

between HPC systems that are not d irect~y conn~cted. The

communications links in an HPC network may be half or full

duplex, and can transfer informat,iQn at a variety of baud

rates (1200, 2400, •••). System processes maintain the

protocols (eg. SDLC, x.25) that are used to control the links.

There are three types of information transferred through

an HPC network: request messages, response messages, and link

control messages. Request and response messages are generated

by a system process for a user process. The transmission and

routing of these messages is also handled by a system process.

A request message is generated when a user process seeks to do

work on a remote HPC system. When it arrives at the

appropriate destination, a user process is started to do the

requested work. When the work is complet~p, a response message

is generated. This message is then sent back to restart the

waiting initiator user process. Link contr~l messages are used

34

'

primarily to acknowledge the transmission of request/response

mes11aqes •n4 to aid recovery from. link etrors.

All CQ111l\unications overhead · (eg. use of CPU and memory

i;esourcea) ia handled by the 'host" systems in an HPC network 1

there a,r• no · Q091munications front end processors or network

store-and-forward machine$. System proces•••• which share

resourcelf with. user processes, are used to do network

communications. The performance of an BPC system is degraded

for loca.l activi.ties in orde.r to provide network

connnunicat.iona c::apabilities. This is a reasonable tradeoff in

a minicomputer network where an investment in dedicated

communications hardware is not cost-effective. The HPC network

architecture is, therefore, prhaatily an architecture for

providing low cost communications •ervices for a network

caapoaed of mini.c~uters.

3.2.2 MNSS Design And Use

The two key steps in the MNSS de9elopment effort were,

first to formulate flexible mocf'els to represent HPC network

systems,

models.

dictated

and the.n to . build a simulation system using these

The guidelines for the·· deveit>Pment effort were

by the goals set forth in Section 3.1, and reflected

many of the pr in.cit>les discussed· ln Chapter 2. ·

MNSS mOdels, which are representations of HPC network

systems, are built up from a basic model of an HPC system.

35

Inherent in

relationship

·,:,.

the HPC system model is an interactive

of the representations of processing and

communications mechanisms. This relationship is essential to

the HPC network architecture. Overall, MNSS models can be

characterized as complete network models. This is true because

all major network components (ie. local processing and network

communications) and their interactions are represented

non-trivally. MNSS models are described in a functional

modelling language that has a small number of building blocks

to represent HPC network system features.

MNSS is implementated on an HP3000 OQmPuter in SPL, an

Algol-like programming language. MNSS incorporates a

discrete-event simulator and an interactive interface. The

simulator uses an SPL version of an MNSS medel to generate HPC

network behavior. The MNSS user· interface· is implemented as an

interactive dialog. In many cases the user picks from a menu

of alternatives in order to run a simulation experiment and

get back results.

There is a wide range of behavioral information that can

be generated by the simulator (due to a large extent to the

completeness of MNSS models). The user can request the

following results to be displayed by MNSS:

1. processing statistics broken down by node and process

type (eg. system process, locally or remotely initiated

system processes),

36

-

2. c-mulative T·eJDOte processing initiated by local

proeeJJ- at each node,

J .• queui119 s'tatiat-ics (eg. aaxi.- length., mean length,

.. xiama we,it, mean wait) f.or user procea,•e• in the CPU

wait quen,

4. queuiftllJ statistics for •••••l•• in the link wait queue.,

5. CPU utili1a·tion statistics brok911 darn by node and

proceasor state (eq. •Y•te111 or user p·roceas control,

idle, pl'oceea handling overhead),

6. link u.tilia.ation statistics _broken down by link state

(eg. i41e-. transmitting) ,

7. the n•ber of user process launchi1lC)s (intiate CPU

.control) per node , and

a. the mmber and ave-ra<fe size of tranannissione per

link.

This information gives a user the ability to do sophisticated

studies of llPC network systems.

37

---------~-- ----------- -------~

Chapter 4

MNSS MODELLING

The simulation of a system initially requires that a

model of the system be conceived. MNSS utilizes a set of

related models that are abstract representations of HPC

network systems. The development of these models (refered to

here as 'MNSS models') was based on two general design

criteria. First, the models had to be applicable for use in a
' "'

simulation system. Essentially the cost, iri terms of human and

processing resources, to develop the simulation system and to

run simulation experiments had to be minimized. This required

reasonably high level models of HPC network systems and a

straightforward procedure for the implementation of these

models in a simulation framework. The second design criterion

was that the models be made to contain the variables and

relations that are significant in representing the behavior of

HPC network systems. This design criterion was balanced

against the first design criterion, insuring that important

detail was not purged from the model in order to simplify

simulation system development and use.

The effort to design and implement MNSS models ran within

the framework established by the design criteria. The first

step was to develop a modelling discipline. This involved the

development of a modelling language and a technique to

conveniently map 'real life' system structures into the

38

-

abstractions o.f the modelling languaqe. The next step was to

construct hi9h level building bl-eeks from modelling language

structures that could then be used to build MNSS models. T'he

structura·l similarities of HPC networks facilitates the use of

these building· blocks; this avoids st:ai;ting from serat:ch in

modelling each different network. The final step in the

modelling effort was to develop a syst•matic procedure to map

modellim:J s·t:ructures into structures in the simulation system

pr09ramminq language.

4.1 The MNSS Modelling Discipline

The MNSS modelling discipline fae~litates the development

of f unct:ional models of systems. It represents a

generalization of· techniques used in tinite-state modelling

and que·ueinq network modelling. Ml!l$S modellin9 structures have

close analogs in the st.ruct.ures of these modelling

d isciplin.-s. The five basic MlfSS model structures are

entities, group·s, group transitions, entity sources and entity

sinks.

An 'entity', in the contex.t of the MNSS modellincg

discipline, is an object whose behavior is of interest. It

could be a shoppe·r in a supermarket model or a query in a data

base model (note that the MMSS mode!ling discipline is general

enough to be used to describe models of syst~ms other than HPC

computer networks). Associated with an entity is information

39

about those entity characteristics that have a bearing on its

behavior in the system to be modelled. Entities can be

classified according to common choract~ristics into 'entity

classes'. Entity classes are used as a convenient way to deal

with entities (particularly the i~form4tion associ~ted with

entities) durning the construction of a moQel.

A
, ,
group is a colle~tion of entities showing a

particular form of behavior: the behavior of an entity over

time can be described by .the sequence of groups it was in. A

group can incorporate a variety of orqe(ings on the entities

{of one or more entity classes) th~t oc9u~y it at any point in

time, ranging from no ordering to a s·oph.isticated queue

ordering (eg. FIFO, according to entity class, based on

priority information associated with a.n entity, etc.) • For

the supermarket model a group could be defined for the

shoppers waiting to be checked out or th~ shoppers being

checked out. The waiting line {a FIFO queue) is. the ordering

in the 'waiting' group.

Entities can come into existence in a model of a system

in a number of ways. They may be defined to exist in a

particular group when the model is initialized (in general as

permanent entities in a closed system model) r alternatively an

entity may be created and injected into a group in the mode 1

from an 'entity source'. Associated with an entity source is

information that identifies the class of entity to be created:

this information that is used to generate entity

40

---------- - ------------ -- -----·

.

...... '

·-

characteristics. An entity can cease to exist in a model by

being aba<!:>rbed by an 'entity sink'. :By using entity sources

and entity sinks, models of open systems (ie. systems that

interact with their environment } can be formulated.

A 'group tr.ansi ti on' is a path from one group to another

group, from an entity source to a group, or from a group to an

entity sink. Each group transition has associated with it an

event routine. The event routine identifies the consequences

of an 'ent.ity leaving a group or entity source via the group

transition. The consequences of a group transition may include

provocation of other entities to unaer90 group transitions

(immediately or at some future time), changes to group entity

orderings, or modifications of entity information. For

example, in the supermarket model a shopper leaving the 'being

checked out' g·roup will cause: another shopper to do a group

transition to that group from the 'wa.iting' group, a group

transition to be scheduled for the new occupant of the 'being

checked out' group (when all that shopper's groceries have

been checked out), and the 'waiting' group to be reordered.

In order to provide a convenient mapping between a 'real

life' system and a model of that system, a symbolic notation

has been defined for the MNSS modelling structuresi this

notation is illustrated in Figure 4.1. The presence of an

entity class symbol within the symbol for a group, entity

source or entity sink indicates that entities of that

particular class can occupy the group, source or sink. One or

41

0

0
• •

0

entity class "E"

group (with entity classes E or El ... En)

entity source

[D>< entity sink

~~~~~->~ group transition 

Figure 4. 1 MNSS Modelling Structures 

42 



i 
I 

'.""" 
I 

i ...... 
I 

-

more entity classes can be associated with a qroup, source or 

sink. MNSS modellill9 structures (and the symbols shown in 

Figure 4 .1) are connected together according to the following 

rules: 

1. Groups can be connected together by a group transition 

as long as they have at least one entity class in 

001tmon1 

2. An entity source and a group" can be connected by a 

group transition, leading from the source to the 

group,. as long as they have at least one entity class 

id common1 

3. A group and an entity sink can be connected by a group 

tran·sition, leading from the 9roup to the sink, as 

lonq as they have at least one entity class in common1 

4. One or more transitions can lead to and from a group, 

from an entity source,. or to an ent.ity ;sink1 

5. A path in a model established by the connection of 

groups associated with a particular entity class must 

be either a closed path or a path from an entity 

source to an entity sink. 

A job p-rocessing model created using the MNSS notation is 

shown in Figure 4.2. A job (an entity in the model) comes 

from an external job source and CJOeS into a FIFO queue ordered 

processing-wait group. A job is t-ransferr.ed to the processing 

43 



I 
3 

>~ J0> ~~ <0J 1 2 4 

Job Processing-wait Processing Job 
Source Group Group Sink 

Group Transitions Entity Class 

1. job introduction 

0 Jobs 
2. job processing begins 

3. job processing suspended 

4. job processing completes 

Figure 4.2 A Job Processing Model 

44 



-

-

'""' 

' I'-
' 

group when it is at the head of the FIFO queue and the 

proces·siDCJ group is unoccupied by any other job. A job stays 

in the procea.sing group until it either completes the 

processing it has to do, in w.hich case it is absorbed by the 

job sink, or it uses a system allocated aaount of processill9 

time ( ie.. occ.upies the processift9 group for that amount of 

time), in which case it returns to the pcocesaing-wait group. 

This model is . very simple and not very us.eful (it assumes 

alllOD;J other thiftC)a that there is *'over.bead a81JOciated with 

movin9 a job in al\d out of the proceaeing group). In order to 

get a more detailed model, additional groups could be added, 

more descriptive information could be asaoeiated with jobs 

( ie. the aJROUnt of memory required), a·nd the group transition . ,, ~ 

' event routines could be made more sophisticated (eg. taking 
. . . 

into account job semory requirements, job handling overh.ead, 

etc.) • 

In general the following procedure should be used in 

modelling a system: 

1. Isolate the system of interest and identify all 

interactions between the system and its environment1 

2. Ident.ify those objects in the system whose behavior is 

of interest and set up entity classes (with entity 

characteristic information) 1 

3. For each entity class identify the types of behavior 

that are possible and establish a network of groups 

45 

•. 



for the significant aspects of thi~ behavior1 
- ~ : 

4. Consolidate the groups that ~re essentially the same 
\ 

but that have different entity classes1 

S. Oef ine group transition event routines for each group 

transition in the model. 

4.2 The Structure Of MNSS Models 

MNSS models are designed to accomodate the behavior of 
. ·' 

' '. 
user processes, system processes and messages in BPC network 

systems. The composite behavior of these objects encompasses 
·. -~ ,: 

I; 

all interesting system behavior as identified in Chapter 3. 

Accordingly user process, system process and message entity 
, • • ,_·' ~ > ,..,, ,.. 

classes have been defined. For an MNSS model, entities from 

these classes exist i~ a network of groups, entity sources and 

entity sinks structured to represent all si9nif icant entity 

behavior. 

MNSS models can be built using an HPC system model as a 

basic component. As such, the BPC system model has to be 

adaptable to arbitrary communications configurations (ie. 

network environments) • A submode! structure has been developed 

to enhance the flexibility of the HPC system model. The 

submodels that have been constructed are essentially another 

(lower) level of MNSS model components. 

Two submodels make up an HPC system model1 they are the 

processing submode! and the communications submode!. The 

46 



processing aub11odel represents the behavior of user and system 
<" 

processes. · The behavior of these proceaaea is affected by, 

and affe<:ts, the flow of messages in the COllmunications 

subaodel. The interactions between the two aubmodels emanate 

from each submodel's group transition ev.nt routines. There 

are no group transitions between the processing aubmodel and 

the communications aubaaodel, but a group transition in one 

subllOdel •Y trigger (by way o.f an event routine) a group 

transition in the other. 

To form a complete MNSS model, the communications 

submodels of several HPC system models are connected together 
,. 

by group transitions. If two HPC systems are tied together by 

a CODURunications link in the network to be modelled, then the 

corresponding communications aubmodels are connected. 

The overall structure of an BPC system model model is 

shown in Piqure 4.3. The details of subaodel organization and 

interaction are discussed in the following sections on the 

processincJ submodel and the communications submodel. 

4. 2.1 The Proce·ssing Submodel 

The processing submode! is illustrated in Figure 4. 4. 

This submodel consists o.f four groups, two entity sources, two 

entity sinks and eight group transitions. These structur.es 

are arranged to provide a representation of an HPC system 

which describes the significant behavior of user and system 

47 



-

.... 

several groups 
with 

~ '----G)_u _G)____..__<m 

~ submode! lnteta.;tlons 

several groups 
with 

••• state transitions 

communications submodels 
representing other HPC systems 

Entity Classes 

© -user process -system pr~ess 

Processing 
Submode I 

Commun J cat tons 
Submode I 

-message 

Figure 4.3 General HPC System Mode·} Structure 

48 



·-

-

user process 
source 

system process 
sou roe 

CPU-wait 
group 

CPU 
group 

long..-.wait 
group 

reme:te-wat t 
group 

Figure 1+.lt Processing Submodel 

'+9 

user process 
sink 

system process 
sink 



-

processes. The entities that flow through the submodel are, 

naturally enough, user processes and system processes. Each 

process entity has information associated with it which, along 

with group ordering and transition information, determines 

when group transitions are to occur. The nature of the 

information associated with a particular process entity is 

based on it's entity class. 

The following items of information are associated with 
1[ 

each user process entity: 

1. The 'user process type' identifies the user process as 

being either locally or remotely initiated. 

2. The 'complete time' is the processing time (le. 

residence in the CPU group) required for user process 

completion. 

3. The 'long wait time' is the processing time until the 

user process initiates a lon:J wait or, if the user 

process is doing a long wait, the time when the long 

wait comple.tes. 

4. The 'remote wait time' is the processing time until 

the user process initiates a remote request (for a 

locally initiated process) or a completion response 

(for a remotely initiated process). For a remotely 

initiated process this item is equivalent to the 

complete time. 

5. The 
, 
process time distributions' are the time 

50 



distributions from which information items 3 and 4 are 

generated (eg. when a user process terminates a long 

wait the processing time unt'il the next long wait is 

generated using the appropriate process time 

distribution) • 

6. The 'memory requirement' specifies the amount of 

primary memory needed to hold the user process code 

and data (ie. the information that needs to be brought 

into primary memory to allow the process to run). 

7. The 'remote destination distribution' is the 

distribution that is used to generate the destination 

of a remote request for a locally initiated user 

process, o.r the response destination for a remotely 

.initiated user process (in the latter case the 

distribution deterministically generates the source of 

the remote request) • 

8. The 'message size distribution' is used to generate 

the size of a remote request message or a completion 

response message. 

9. The 'remote process distributions' are defined for 

locally initiated processes only. They are used in the 

generation of a remote user process that is initiated 

as the result of a remote request. These distributions 

include the process time distributions and the messag.e 

size distribution (for the reply generated by the 

remote process). 

51 



' ••. ~" _! '' ••• • ' 

A system process exhibits much simpler behavior than a 

user process1 a system process doee not do l_ong waits,.and 

also does not initiate remote reque•ts. Consequently, the ' . 

information .associated with a system process entity is a 

subset of that associated with a user process entity. The 
. ''--? 

following information items are defined for each system 

process entity: 

1. The 'system process trpe' identifies the task of the 

system process as either initiatin~ a remote request 

communication or handling a message from a remote 

source (ie. routing it through the communications 

system). 

2. The 'complete time' is the processing time necessary 

to complete the appropriate system process task. 

The four groups in the processing submode! are designated 
- . , . 

the CPU group, the CPU-~ait group, the long-wait group, and 

the remote-wait group. The CPU ~roup can be occupied by a 

single entity from the system process entity class or the user 

process entity class. A process in the CPU group has control 
-• • ·' - ' ' ''"'> .-, r,. ' 

of the HPC CPU. The process may be doing either processing or 

a short wait, which does not result in a switch of CPU control 

to another process (as discussed in section 3. 2 .1) • When the 

process is preempted from CPU control~ completes, initiates a 

long wait, or initiates a remote request,· an appropriate group 

52 



-

transition from the CPU group will occur. Preemption will 

cause an entity transition to the CPU-wait grOupi a long wait 

initiation results in a transition to the long~wait group, the 

initiation o.f a remote request by a process brings about a 

transition to tbe remote-wait group; and when a process 

completes it is swept away to an entity sink (user processes 

to the user process sink, system processes to the system 

process sink). 

The three 
, 
wait' characterize the behavior of g roupe a 

process entity when it is not in control of the CPU. If a 

proceas e,ntity is in the CPU-wait group then the process is 

waiting to gain control of the CPU. The CPU-wait gr,oup has a 

dual FIFO queue ordering for , system and user processes. 

System processes and user processes are kept in seperate 

queues. When the CPU group is unoccupied and the CPU-wait 

group is 'Occupied then a process will make a group transition 

from the CPU-wait group to the CPU group. The process that 

,makes the transition is taken from the system queue if it is 

nonempty, else it is taken from the user queue. The presence 

of a system process in the CPU-wait group causes a user 

proceS'S in the CPU group to be preempted. The user process 

undergoes a group transition to the CPU-wait group and is 

positioned at the head of the user process queue, becoming the 

next user process to be served. In addition, a user process 

can be preempted from the CPU group if it has done a 'user 

slice' of processing and there ~re other user processes in the 

53 



CPU-wait group. 

placed at the 

CPU-wait group. 

In 

tail 

this case the p~eempted user process is 

end of the user process queue in the 

The long-wait group and the remote-wait group can only be 

occupied by user process entities {system process entities do 

not exhibit the behavior these groups represent). The 

long-wait group is occupied by a user process entity when the 

entity is doing a long wait. This group has an ordering of 

user processes based on the length of time each process must 

remain in the group. When the long wait of a process has 

completed the process undergos a group transition to the 

CPU-wait group and is placed in the user process queue. The 

remote-wait group is occupied by a user process when the user 

process has initiated a remote request. The remote-wait group 

does not impose an ordering on the entities that occupy it. 

When a remote request has completed {ie. a response message is 

received at the HPC node), the user process that initiated the 

request is removed from the remote-wait group, and placed in 

the CPU-wait group. 

The process entities that 

submodel can generated at 

flow through the processing 

MNSS model initiation to 

represent a permanent user load, or they can be generated 

dynamically to represent a user load that changes over time. 

The processes generated as part of a permanent user load are 

always user processes and are placed initially in the CPU-wait 

group {when the model is used for simulation, care should be 

54 



..... 

taken to avoid biasing CPU-wait queue statistics as a result 

of this initial condition); system processes a·re generated as 

a result of the actions of user processes and as such cannot 

be in existence at model initiation when no action has tak.en 

place. Processes are generated dynamically at the system 

process source and the user process source, and are injected 

(via group transitions) into the CPU-wait group. The user 

process source generates user processes with all the 

associated in.formation (complete time, etc.) • The user 

proces.s generation capacity of the user process source, 

coupled with the group transition event routine (for the 

transition from the user process source to the CPU-wait group} 

that dictates the frequency of entity generation, can 

completely represent a dynamic user load on an HPC system. 

The user process source also generates user processe·s to 

satisfy remote requests. The transition of this type of user 

process into the CPU-wait group is tri99ered by the completion 

of the system process that handled the incoming remote 

request. 

The system process source generates system processes to 

handle communications processing. The processing may be 

required for the initiation of a remote request or for 

handling the arrival of a response. A remote request is made 

by a locally inJtiated user process entering the remote-wait 

group. The completion of a remotely initiated process (ie. the 

process is absorbed by the user process sink) signals the 

55 



....... 

-

initiation of a remote response. Both the remote request and 

response cause identical communications processing and hence 

the same type of system process is generated (ie. with the 

same completion times). A different type ·Of system process is 

. generated by the system process source to band.le the 

communications processing . for netwol"k message routing. This 

processing is triggered by a grQup transition in the 

canmunications submodel (to be discussea in the nex·t section 

in detail along with other interaction~ between the processing 

subiaodel and the Cetllmunications subli~tl). 1 

4.2.2 The Communications Submod•l 

The communications submodel provides a r~present,ation of 

the important behavior of the communications message flow. 

This submodel is flexible enough to be ~dapted to a wide range 

of communications configurations. Two variations on the 

communications submodel are shown in Figure 4.5. This Figure 

illustrates how half and full duplex communications 

capabilities are integrated into the s_upmodel. In general the 

submodel incorporates three types of groups (two of which are 

duplicated for each. .communications lJnk modelled), an entity 

source, an entity sink, and five principle 9roup transitions. 

The entities that flow through the. submodel beloD} to the 

message entity class. 

The information associated with a message entity controls 

56 



..... 

-

Half Duplex 

1 ink-wait 
group 

r--
1 

mess~g~-tn 
group -, 

I 
I 

message 
sink 

·message-in 
group 

I 

L..---.:..........., ® !?--------! G) 1'-' ______..__! ---< 

\.... J v 
another communications 

submode} 

Full Duet ex 

Hnk 1 ink-wait J 
I group group I 

L-----------------~ 
ha 1 f dup 1 ex grotip or1fan t za.t ion 

r--------I message-in 
l I group 
I J 

1 ink-wait ~ 0 group I 
1 ink I 

I group L _______ -, 
I 
I 

~} /©k I message-in 
<E I group 

I 

~ 
link link-wait J 
group group I 

another communications L ________________ ..,..I 
submodel full duplex group organization 

Figure 4.5 Coinmunications Submodel 

57 

message 
source 

~ 
message 

sink 

<0l 
message 

sink 



.... 

the message flow through the communications submodel. This 

information is used by group tran .. ition event routines to 

direct the message to its local or remote destination. In 

addition, once a message reaches fts destinat1cm· tbe entity 

information is used to determine the correct gr~:nip transition 
. ' 

action to be taken (eg. restart a . local user process or 

generate a remotelly initiated user process). The message 

entity information· includes the following itelas: 

1. The "message type" classifies the message as either a 

remote request message or a response message. 

2. The "message source' identif1es the 'u"ser process which 

initiated the remote request and caused the message to 
, . ~ ' .. 

be generated (for a response message the message 

source is the user process that originally initiated 

the remote request). 

3. The "message destination" is an identification of the 

HPC system to which the message ls dir.ected. 

4. The 
, , ' , • '". ,~ >'. _,, " '-~ 

message length is the length of the message in 

bytes. 

The three types of groups in the communications submodel 

are designated the message-in group, th• link-wait group and 

the link group. There is only one message-in group per 
.-

communications submodel, but there can be duplicates of the 

link-wait group and the link group. Essentially the 'link 

58 



-

section', blocked off in the subqiodel illustrations of 

Figure 4.5, is duplicated for each communications link (half 
r· 

or full duplex) attached to the HPC system being modelled. The 

flexible structure of the communications aubmodel lends itself 

to representation of a wide variety of HPC system 

communications configurations. 

The messaqe-in group can be occupied by multiple messages 

with no order in9 enforced on the messages. Messages occupy the 

message-in group when they have been received by the HPC 

system and are be in9 proc.essed. This means that a for each 

message in the mess~e-in 9rQu~. ,• sys.1::4:1ft process, generated 

when the message entered the mess~e-in group, is active in 

the processing submodel. The system processing to be done 

upon arrival of a message into the message-in group is for 
, , ~ <:."'; 

message routing activities. This includes determining the 

message destination1 if the destination is that particular HPC 

system . then the appropriate use.r processing action is taken, 
" -·t , :~ ~ 

else the messaqe is started on the way. to its remote 

destination. 

The action taken on a messaqe, and the accompanying group 

transition from the message-in . group, occurs when the 
~ .' 

corresponding 
' . 

system process in the processing submodel 

completes and is absorbed by the system process sink. If the 

message is directed to a remote de8'tination, the message will 

make a group transition to an appropriate link-wait group. The 

particular link-wait group chosen is determined by a routing 

59 



.. 

algorithm incorporated into the group_ transition event routine 

(the link-wait group is selecta.d suc,h that the message will be 

routed correctly to its destination .over the link associated 

with the link-wait group). If the mes•age is dir.Etcted ~p the 
.... . . . ; ~ - . ~~' .: 

local HPC system then a transition will Qccw: to the. message 
' - . . . ~ ; ' 

sink wl\ere the message will be absqrbed-. If. the IQes~aqe is a 

response to a remote request, .this transitio1' will trigqer a 

transition in the proc.~ssing . submodelrt:i:~ .the remote-wait 

group to the CPO-wait group for the user process that 
,· ' ~ 1 

originally initiated the remote .. ~eque11t. Qtherwise the 

message is a remote request an~ .. a remqtely initi•tE!d QSer 

process will be generated by 

injected into the CPU-wait group. 

the ue'r Pre>cess source and 
. . c' 

A message will be launched.from the message source to a ,, 

link-wait group when the syatea pr;oQes• ini.tiatt:4 to handle a 
' :. . :·· 

remote request completes ( ie. the process is ab~orbed bY the 
' . 

. system sink). The message generated by .the messag4! source will 

be assigned descriptive infor1114tion (source, 4esti~ation, 

length) based on information associJted with th• user process 

making the remote request. 

In general the interactions between the processing 

submode! and the communications submode! 99cur in conj~pction 

with transitions bY messages to an<) frOQl the meesacae-in group 

and transitions from the message source. Tbese int~actions, 

which are designed into the even~ routin~s. are the key to 

modelling communications overbead in the l;IJ?C .. syste11t. 

60 



·-

·-

The key 

configurations 

organization of 

to 

is 

modelling a variety of communications 

the f le.x ibility to customize the 

the link and link-wait groups in the 

communications model. 

'l'he link group can be occupied at any time by at most a 

single m.easage. A me$Sage in the link grOup is in the process 

of being transmitted (physicaliy) from one HPC system to 

another. Consequently each link group is part of two 

commun.ications submodels1 it is the hr idcJe that ties together 

the models of individual HPC syste111s to form MNSS models. A 

message leaves the link group and enters the message•in group 

in the o.oamunications submode! of the HPC system to which it 

was transmitted when the transmission has completed. The time 

of transmissiion is based on the length of the message (a 

message entity information item) and the speed of tne link 

(taken into account in the link to messaqe-in group transition 

event routines). Corresponding to every link. group in the 

communications submode! there is a link-wait group. Messages 

in the link ... wait group are ordered in a FIFO queue. When the 

link group becomes free for entry of a message (ie. there is 

no message in it and the delays due to physical link control 

have elapsed) the head message in the link-wait message queue 

makes the transiton to the link group. 

The event routine that is associated with the group 

transition from the link-wait group to the link group models 

the link control protocol used on the corresponding link in 

61 



the real network system. For every variety of control 

protocol there is a distinct event routine.· For example, a 

half duplex link control event routine would be concerned with 

delays in turning the link around and in switching a link from 

an idle to a transmit-ready disposition. On the other hand, a 

hard-wired full duplex link would have an event routine that 

is only concerned with whether the link is free or not (the 

link is always transmit-ready and oriented in the right 

direction) • 

Once the 

protocol has 

appropriate event routine for a link control 

been defined, the next step in modelling a link 

in the communications submodel is to make the appropriate link 

and link-wait group connections. The differences in the 

conections for a half and full duplex link can be seen in 

Figure 4.5. 

4.3 Simulation Using The BPC System Model 

Several features of the HPC system model enhance its 

potential as a simulation model. Amor¥J these are the types of 

structures used in the model, the model's levels of detail in 

representing sign if leant HPC behavior, and th,e flexibility of 

the model as a building block for MNSS models. 

The structures defined by the MNSS modelling discipline 

and used in the HPC system model can be . conveniently 

manipulated in the context of a simulation system. The 

62 



-

....... 

information associated with MNSS mOdelling structures can be 

illlplettented as data structures in the simulation proqramming 

language. For example, each entity class can have an 

in format ion table, with each entry in the table corresponding 
i ~ 

to an active entity in the. tnodel. The 9r:oap trafisi tion event 
"! ~ < 

routines that control the action in the moael . can be 

implemente·a as procedures (pieces of code that are callable on 

demand tly the main simulator prC)cJrasn). A 9roup transi'tion 

occuring i'n t.lre si-mulation model then reaul'ts in execution of 

the appropriate transition procedure. In 9·e11ieral, MNSS mOdel 

structures can be systematically con~erted to the programming 
- ! ~·' ~-" 

languaqe i!Stru<:tures of ttle simulation system. 
,.. " 

Another factor that affects the ci>nversion of a model for 

use in 'Simulation is the level to ;hich the model represents 

a system's 'beha'Vior. A model can fail to be an eftective 

simulation model if it reprea:ents a system with too much or 
;. - ' ~ 

too little detail. too much detail (le, the model represents 

some sys'tem behavior at too low a level) can make th1! model's 

use in slarulation a torturous exe'rcise in overkill. on the 

other hand, a mOdel which does not represent certain aspects 

of a system in enou9h detail would not be of use in simulati119 

all t'he sl9nif icant system behav-ior • 

The HPC system model utilizes two primary levels of 

detail to product! a valid 
. ' -. 

and effective model of ah HPC 

system. The processing submoael represents one level of 

abstraction of system structures. The contaunications submodel 

63 



represents structures at another, higher level. The message 

in the communications submode! is an entity that is created, 

manipulated and destroyed by the proce!J'i!Ses of the processing 

submode!. 

By modelling messages separately from processes, easy 

correspondences can be made between HPC network communica~ions 

structures and structures in the HPC system model (eg. 

communications links and protocols). This multilevel 

modelling technique also avoids the complexity and 

inflexibility of representing communications in a processing 
.. :. .-,. > :' , r. 

model (in particular the group transition event ·routines would 

be very hard to define). 

Perhaps the key feature of the HPC system model is the 

way it can be used as a building block for MNSS models. This 

capability was shown in Section 4.2.2 in the discussion of the 

use of the link group in connecting HPC system models 

together. Basically a network of communications submodels is 

formed, with each communications submodel hav~ng a 

corresponding processing submode!. The simulation system 

implementation of this network model structure is facilitated 

by adding node and link qualifiers to the MNSS model group 

names. These additional qualifications are necessary since 

there are several copies of each group in a network model made 

up of several submodels. With each group in a network 

unambiguously identified, simulation system data structures 

can be easily implemented and managed. 

64 



-

-

-

..... 

CHAPTER 5 

MNSS IMPLEMENTATION ~D US.E 

There is a great deal of latitude in implementing MNSS. 

The detail.s o.f a particular implementation may be shaped by 

the specif iations of the computer system on which MNSS is 

implemented, or .by the needs of the network analyst who is to 

use MNSS. On the other hand there are a number of essential 

features that should be common to all effective 

implementations. These features involve the overall structure 

of an MNSS implementation, the representation of a simulation 

experiment, and the basic characteristics of the simulator. 

By nature they are both useful and feasible within the 

restrictions of any particular iq>lementation. Therefore an 

accounting of these features should be made to guide MNSS 

implementors. 

The following sect.ions provide a discussion of important 

MNSS-implementation independent featur.es. Appendix A 

supplements this discussion with a brief description of some 

interesting aspects of a particular MNSS implementation. 

5.1 Overall Structure Of A MNSS Implementation 

The overall structure of a MNSS implementation should 

reflect an emphasis on top-down and modular organization. One 

possible structure that does this is modularized based on MNSS 

65 



-

functions. 

Figure 5.1. 

A graphic view of thie structure is given in 

Five major MNSS functions have been identified: 

l. create a simulation experiment- specification, 

2. recall a simulation experin.ent specification, 

3. modify a simulation experiment specification, 

4. save a simulation experiment specification, and 

5. run a simulation experiment. 

These functions represent effective tools for performing 

simulation experiments. A simulation experiment specif !cation 

is created by first initializing all relevent information 

tables and then, through user interaction, building a basic 

network specif icatiQn (ie. the number of nodes in a network 

and how they are connected) • Once an experiment specif !cation 

has been created it can be modified interactively to produce a 

variety of related specif !cations. In particular network 

configuration information (eg. link speeds) and user load 

information can be manipulated. It is possible to create 

non-volatile copies of an experiment specif !cation, that is, 

copies that do not disappear when MNSS use is terminated1 

experiment specif !cations can be saved and recalled later when 

they are needed. A user can choose to run a simulation 

experiment at any time with the avail~ble experiment 

specifications. 

66 

------------- ----------------------------



'"' 

-

-

select 
major 
option 

lllOdlf y 
elq)erl•nt 

..,. _____________ subfunct tons------+--------~,,,. 

Input 
s hnulat ion 
parameters 

simulate 
·network 

output 
results 

~·---.---- sub-subfunct Ions-----........ :. 

Figure 5.1 HNSS Implementation Organization 

67 



-

Each of the major MNSS functions can be implemented as a 

super module containing numerous subfunction modules (each of 

which may contain sub-subfunction modules, etc.). This 

modularization according to subfunction is shown in Figure 5.1 

for the major function 'run experiment'. 

At the top of the top-down or9anization shown in 

Figure 5.1 is a module which acts as a switch between the 

major functions. In particular this module is implemented to 

switch control, at the request of the user, between the five 

major functional modules: the only exception is when MNSS is 

first started up, in which case the user only has the freedom 

to create or recall an experiment specification. Any other 

function would be invalid because of the lack of an experiment 

specification to operate on. 

5. 2 Representation Of A s imu lat ion Experiment 

The items of 

representation of a 

characteristics of 

information that are needed in the 

MNSS experiment are dictated by the 

the HPC network models. For example, the 

network representation must include the number of nodes and 

links, the connectivity of the network, and link descriptive 

information (eg. half or full duplex, link speed, etc.). The 

management of these 

MNSS-irnplementation 

management policies 

information items is to a large extent 

dependent, but there are some information 

that are generally useful. Two such 

68 



policies deal with providing alternative representations for 

individual information items and minimization of the 

information redundancy in an experiment representation. 

In most cases a MNSS experiment representations will 

contain a large amount of redundant information if the user 

load for each node in the network is reptesented seperately. 

This redundancy often results from the use of a standard user 

load that is specified for more than one node in the network. 

To reduce redundancy,. information can be kept in 'common' 

areas where it can be accessed by (ie. linked to) higher level 

information structures in the experiment representation. 

Information items or structures that are potentially used more 

than once in an experiment are candidates for 'common' status. 

This applies to everything from distribution specifications to 

complete process specifications. 

Figure 5.2 illustrates an experiment representation 

breakdown with common process characteristics and common 

distributions. The common process characteristics, that might 

be grouped together and shared by processes, include process 

time distributions, memory requirements and message size 

distributions. A separate table(s) could be used to store 

distribution specifications. Entries in this table(s) would be 

pointed at by entries in the process table and the common 

process characteristics table. 

The success.of the common information item representation 

scheme rests on three factors. One is the storage requirements 

69 



·-

-

-~ 

characteristic 
features 

table 
process 

I nforma t I on 1 table 

1 2 

3 3 

" 
• 

• 
• • 
• • 

n 

m 

referances 

u 
distribution tables 

• 
• 
• 

constaftt 

~ 
• 
• 
• 

special 

~ •·· .. ·~ 
.. 
• 
• 

exponential 

Figure 5 .. 2 Experiment Representation Breakdown 

70 

~ 



... 

-

-

-

of a reference link relative to the requir:-ements of the common 

information: item. If an information item needs more storage 

than a 1 ink to that i.tem, then the information item may be 

best kept in a common table. The -second f actoe is the number 

of references made to. an infor~~io·n it-em .. tn general, the 

smaller the storage difference between the i tea and a link to 

it, the larger the number of references thaii are needed to 

justify common status. The third factor for ;success is the 

specif !cation time that can be nved .by a -user in creating 

simulation exper i1Dents with standa:rd process specifications. 

Modifications of ex istin9 simulation exper intents can also be 

greatly simplified .. For most foreseeable MNSS implementations 

a cammol'l information item organization for experiment 

representations is attractive in terms of system efficiency 

and user .convenience. 

Alternative representations for individual items can be 

provided in a MNSS implementation by allowing a user to select 

from a var.iety of d istr ibutlon types. These ty~s could 

include constant, special, uniform and exponential 

distributions. Figure 5.3 illustrates the ~various dist{ibution 

functions. 

The constant, uniform and exponential distrib.u~ions are 

commonly used in modelling and simulation. The' function used 

for the exponential distribution is taken from MacDougall's 

tutorial paper on simulation [19). This function can be 

adapted to generate a finite range of values by specify! n9 a 

71 



prob 

prob 

constant 

prob 

x 

value = x 

uniform 

.......... 
)( 

A 

~. 
~-5 
ro 
> 

L. 
0.. 

x1 x2 

special 

x1 

value 

exponential 

p2 

x 

1 Pn 

••• 

Xn 

r = a random number 
between 0 and 1 

value -xmean ( 109e ( r) ) 

Figure 5;3 MNSS Probability Distributions 

72 



maximum and minimum value. Values generated outside this range 

are either discarded or replaced by the closest valid value. 

This modification of the exponential distribution function is 

useful because information items do not always range in value 

from zero to infinity (note that constant and untform 

distributions have limits). 

The special distribution is use~~tl for· information items 

with values that can only be generated from an unusual 

distribution (ie. not constant, uniform or exponential). A 

spec.ial distribution consi:sts of a finite n~ber. of values, 

each of which has a probability. The sum of the value 

probabilities is one. The number of values in a special 

distribution is dictated by the experiment specification 

requirements of the particular simulation study in which the 

special di&tribu·tion is used. In general ,a special 

distribution can be used to approximate any distribution and 

is the alternative when con·stant, uniform or exponential 

distributions are inadequate. 

5.3 MNSS Simulator Characteristics 

An event-driven simulator is especially suited to the 

simulation of sys·tems characterized usi119 the MNSS modelling 

discipline. Events in the MNSS modellin'g discipline describe 

the effects of the state chanqes of entities in a system 

model. These events can be easily eonve·rted to the events of 

73 



-

.... 

an event~driven simulator. Another valuable feature of an 

event-driven simulator is the capability for pseudo-coincident 

simulation activity. This is required for network si}Jlulation 

where several computer system nodes may be operating in 

parallel. 

An event~riven simulator can easily be implemented with 

a clearly defined modular strueture. This structure is 

illustrated in Figure 5.4a. The module.a can be divided into 

two groups: those that maintain the event list 

(initialization, event selection, event scheduling and event 

removal) and those that do event activities (the event 

procedures)~ The event list maintenance modules are 

independent of the type of system being simulated. The event 

procedures on the other hand are specific to a particular type 

of system (eg. HPC network systems). By insuring the isolation 

of system dependent features, the simulator can be 

straightforwardly adapted whenever the system is modified. 

The structure of the event list is the key to 

pseudo-coincident simulation activity. It is the place where 

the simultaneous activities occuring throughout a simulated 

network are merged into a serial stream .of events. The MNSS 

event list structure is shown in Figure 5. 4b.· Each event list 

item carries enough information to identify the event type and 

where in the network system the event is to occur. The event 

list is linked together with the next event to occur placed at 

the head of the list. The foremost event is pointed to by a 

74 



-

-

-

a. The Event List 

nex even 
pointer 

b. MNSS Simul.ator Structur--. ___ _ 
in it 
tables 

event 
(initial) 

select 

••• 

clear 
event 

t 
l 

event 
lete 

exit 
s I mu lat or 

• • • 

figure 5.4 MNSS Simulator Characteristics 

75 

event 
procecfores 



'next event pointer'. Event list items that identify 

coincident events are arranged with the first-scheduled events 

being foremost in the event list (ie. first to happen by way 

of the event procedures) o This procedure yields an adequate 

ordering of events for MNSS studies of HPC network systems 

(where events are frequent and limited in scope). 

Appendix A discusses the MNSS/3000 implementation which 

incorporates the ideas presented in this chapter. There is 

also additional generally applicable information on the 

implementation of MNSS. The MNSS/3000 implementation is used 

to provide the simulation results that are used in the 

following chapters on verification and experimentation. 

76 



CHAPTER 6 

VERIFICATION OF THE MNSS IMPLEMENTATION 

In order for simulation results to be useful they must 

represent a verifiable picture of the behavior of the system 

being simulated. Clearly it is not realistic to compare the 

results of every simulation experiment to measurements of the 

corresponding real system. This would defeat the purpose of 

the simulation system to be more adaptable for study then a 

real system. In addition a simulation system may be used to 

anticipate the behavior of a system yet to be developed. In 

this case no measurements are possible, hence other 

verification techniques must be applied. 

Effective verification procedures utilize a limited 

amount of information about the predicted or measured behavior 

of a system in order to prove that simulation results (in 

general) are valid. Among the procedures that are often used 

are the identification and verification of simulation model 

parameters and the functional verification of simulation 

system operations. 

Simulation model parameters represent real system 

constants that can be isolated from complex system 

interrelationships. They may be anything ranging from the 

speed of a communications link to the time it takes to do a 

particular task (eg. start an execution of a process once it's 

in main memory). The verification (where it is necessary) of 

77 



-

,i 

,.. ':'. ~ ~ .- . . ' , •\ '.' '~ 

parameters used in the simulation mpdel can be done through 

measurements or the prediction of system behavior. 

The functional verification of the simulator requires 

matching behavior in the simulated syste~ to behavioral data 

produced by simulation. This can be done by first insuring 

that basic behavior patterns in tpe simulat~d system are 

represented in the simulation model1 if action 'x' always 

follows action 'y' in the simulated system then the same 

sequence must be represented in the model. Then the behavior 

pattern results produced by the simulator are verified in view 

of corresponding results g~ne.:ated by the simulated system. 
: . ' ~ . .. ' 

Functional verification can be done at two levels. 

First, fundamental behavior pattern re~ults can be predicted· 

for a particular system and then confirmed for the simulation 

system. This · verification can be done to the extent that 

fundamental behavior patterns occur in a system and produce 

predictable results. Another level of functional v~rif ication 

. can be done through 

Unpredictable behavior 

c:ompared to simulation 

functional verification 

the use of system measurements • 

pattern rest,ilts can be identified and 

experiment results. This form of 

must be done with discrimination 

because there are potentially an infinite number of behavior 

patterns. 

The following two sections of this chapter will describe 

the procedure by which MNSS is verif~ed in light of HPC system 

behavior. Because HPC network systems are in a development 

78 

- ---------------- ~----·~------



-

stage, no measured results are available, but measurement 

experiments are specified for later use. For now verification 
·' 

of critical model parameters and functional behavior are 

dependent on predicted system behavior. 

6.1 Simulation Model Parameters 

For the HPC system model three groups of parameters have 

been identified: 

1. system process completion times, 

2. process switching overhead,· 

3. operating system constants. 

The values of the parameters in these three groups are either 

constants or determined by a known function (of environmental 

factors). 

There are · two types of communications system processes 

represented in the HPC system model. In an HPC system these 

system processes have associated modules of code that do link 

control and message handling. The generation of a system 

process results in a reasonably predictable execution path 

through the code modules. By taking into account the code 

execution times of an HPC system and the nature of the 

execution paths, a prediction can be made for the system task 

completion times. Based on this procedure the following 

79 



completion times have been derived; 200ms for the message 

generation system process, and lOOms for the message routing 

system process. 

In order to get more accurate values for system process 

completion times, measurements could be done on an HPC network 

system when HPC systems and measurement tools become 

available. The measurements would require a message source, a 

software monitor, and at least a three node HPC network (to 

have message routing). The software monitor would take timings 

at the end points of the execution paths through system 

process code 

times) would 

modules. These measurements (repeated many 

yield representative values for system process 

completion times. 

Process swi tchirig overhead can, in general, be 

represented by the following expression: 

Tov = Cl + C2*Min + C3*Mout 

In this expression, process .switching overhead (Tov in units 

of time) is a function of the memory requirements of the 

processes involved in the switch (Min and Mout in units of 

space), and the system code that must be executed to do memory 

management (C2 and C3 in units of time/space) and CPU control 

transfer (Cl in units of time). System code execution times 

can be predicted based on an examination of the execution 

paths associated with process switching. For the first 

80 



-

implementaion of the HPC system model ( ie. the implementaion 

ref erred to in this thesis) a standard memory requirement is 

assumed for all user processes so the expression for process 

switching overhead reduces to a constant (lOOms is the derived 

value of the constant). This simPlif ication of the overhead 

function is necessary because of the difficulty to predict its 

value in general. 

Measurements on an HPC system will be needed to 

accurately define the parameters in the overhead function. 

These measurements will require · an BPC system, a software 

monitor, and a control.led user process load on the system. 

The measurement procedure would involve generating ~wo user 

processes with a known memory requirement and then allowing a 

specified number of process switches to occur. By measuring 

the overhead associated with a variety of process memory 

requirements enough values could be generated to identify the 

overhead function. 

Operating system constants are set to a specific value 

when the operating system is implemented. Therefore no 

measurements of HPC system operations are needed. Some 

operating system constants are fixed for all HPC system 

implementations. For example, the minimum CPU control time for 

a user process before it can be preempted by another user 

process (ie. the 'user slice') is set to SOOms. On the other 

hand some constants are particular tp an installation and must 

be redefined for each different HPC network. The window size 

81 



-

for a half duplex communications line is an example. 

6.2 MNSS Functional Verification 

There are a number of fundamental behavior patterns that 

are inherent in an HPC network system. These include: 

1. continuous CPU bound execution with a standalone user 

process (ie. there is no process switching overhead), 

2. long wait initiation by a proce~s, removing the 

process from contention for CPU control, 

3. process switching and the consequent overhead, 

4. system processing resulting from network message flow, 

5. the startup of a remote user process after receipt of 

a remote request, 

6. the completion of a remote user process resulting in 

the generation of a remote response message, 
/''I . 

7. local user process r·estart on receipt of a remote 

response, 

8. store-and-forward message traffic in networks that are 

not fully connected. 

Each of these behavior patterns should be duplicated in the 

behavior of the simulated HPC network system. To show that 

this is indeed true specialized simulation experiments can be 

defined that focus on a particular pattern of behavior. The 

82 



......... 

. ...., 

-

experiment specifications must describe a system whose 

behavior can be predicted. If the simulation experiment 

re·sults are as predicted then the fundamental behavior pattern 

that produced the results is verified. The experiment 

analysis that follows is part of the process to functionally 

verify MNSS. 

In order to verify the functioning of process switching, 

remote request operations and store-and-forward mechanisms, a 

standard simulation experiment has been specified. For each 

MNSS function to be verified, appropriate user process 

definitions are added to this specification. Appendix B gives 

a summary of the standard experiment in the MNSS descriptive 

notation. 

6.2.1 Process Switching 

The simulation experiment used to verify process 

switching has two CPU bound (no long waits) user processes 

competing for CPU control. Neither of the user processes ever 

makes a remote request so all activity in the simulated system 

takes place at one HPC network node. The activity in the 

system can be described by the following state-time sequence: 

time > 
Process l 
Process 2 

* lOOms * SOOms * 
* wait * CPU * 
* wait * wait * 

lOOms * SOOms * 
wait * wait * 
wait * CPU * 

actions repeated 
• 
• • 

The time intervals that occur when both processes are in the 

CPU-wait state represent the times when there is process 

83 



switching overhead. Given this sim~le behavior pattern and 

knowledge of the length of time the 'simulation spans, it is 

easy to pred!ct CPU utilization and CPU-wait statistics. For 

example, durning a one minute· period the process switching 

overhead is derived by dividing 60000ms by 600ms (the period 

that includes one process switch) and multiplying the result 

by lOOms (or the time calculated to do one process switch for 

the two processes involved) • 

equal to lOOOOms. 

The overhead in this case is 

The predictions are confirmed by the statistics generated 

by an MNSS experiment (given in Appendix C). Thus the 

fundamental 

experiments. 

process switching mechanism works for MNSS 

6.2.2 Remote Request Functioning 

There are eight distinct phases to the cycle of behavior 

a user process exhibits. in making.remote requests: 

1. a user process does local activity. (processing and 

long waits), 

2. the process initiates a remote request and an 

appropriate message is generated, 

3. the remote request message is , transmitted to its 

destination, 

4. a remotelly initiated process is generated, 

84 

---- -------------- ~------ ------·----~-



...... 

s. the remotelly initiated proces~ runs to completion, 

6. the remotelly initiated process caapletes and a remote 

response message is generated, 

7. the remote response message is transmitted to the node 

of the remote request originator, 

8. the remote request originator is restarted for local 

activities. 

Remote request behavior can be isolated and verified by 

an experiment with a CPU bound process making remote requests 

to a neighbor in9 node ( ie. no store-and-forward) • Given a 

remote request interval of SOOms, message sizes of 100 bytes, 

a link rate of 8000 baud, and a remote process completion time 

of SOOm·s, the following cycle can be predicted: 

Time(ms) > 600 * 200 * 100 * 100 * 600 * 200 • 100 * 100 
l>hase > 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 

Using this cycle, system statistics can be derived for a one 

process, two node system. For exampl.e, du,rninq a· one minute 

period this cycle (2000ms) would be repeated thirty times. 

Therefore local user CPU processing and overhead (phase 1) 

should be 30x600•1800ms and remote CPU processing and overhead 

{phase 5) should also be 18-00ms. These and other predicted 

"phase" statistics verify the simulation expe-riment results 

(Appendix C). 

85 



6.2.3 Store-and-forward Functioning 

The experiment used in Section 6.2.2 can be modified to 

show store-and-forward behavior. Instead of having remote 

requests sent to a node connected directly to the originator's 

node, they can be sent to their destination through an 

intermediary. Phases 3 and 7 of the behavior cycle given in 

Section 6.2.2 have to be expanded to account for 

store-and-forwarding: 

1-2 ••• 

3. transmit request message to intermediary node, 

3-1. process message and rout it to the appropriate link, 

3-2. transmit message to request destination node, 

4-6 ••• 

7. transmit response message to intermediary node, 

7-1. process message and rout it to the appropriate link, 

7-2. transmit message to response destination. 

The remote request cycle time is lengthened to 2400ms 

(using the Section 6.2.2 system parameters) with the changes 

to phases 3 and 7 shown below: 

Time> •• 100 * 
Phase> •• 3 * 

100 * 100 * 100 * * 100 * 100 * 100 * 
3-1 * 3-2 * 4 *··* 7 * 7-1 * 7-2 * 

100 
8 

The modified remote request cycle can be used to derive 

statistics for a system that has store-and-forward behavior. 

Durning a one minute period the cycle would be repeated 25 

86 



.... 

times. This means that the store-and-forward system 

processing overhead (3-1 and 7-1) is equal to 2x100x25•5000ms. 

This verifies the statistic for system processing in the 

store-and-forward node generated by simulation (summarized in 

Appendix C) • 

Functional verification experiments must be used 

initially to verify the simulation system and then whenever a 

change is made to the structure of the simulation model. 

Therefore an extensive set of experiments is vital to insure 

correct MNSS operation. 

87 



...... ' 

-

CHAPl'ER 7 

MNSS EXPERIMENTS 

Properly implemented, MNSS provides a convenient tool for 

interesting simulation analysis. The goal of this chapter is 

to demonstrate the capabilities of MNSS (in particular 

MNSS/3000 see Appendix A). An experimental process is 

presented that meshes with the mechanisms of MNSS. This 

process, which is essentially the widely aclaimed 'scientific 

method', guides the MNSS user in doing effective 

experimentation. The latter section in this chapter presents 

an outline for two simulation studies that are interesting in 

light of c,ommercial computer network applications. Sample 

results from the two studies, produced using MNSS/3000, are 

given with brief analysis. 

7.1 The MNSS Experimental Process 

There are virtually an unlimited number of simulation 

experiments that can be done using a fully implemented MNSS. 

From this profusion of experiments the MNSS user must select 

those that most directly serve his/her purpose. This selection 

procedure can be formalized into the MNSS Experimental Process 

which, faithfully used, effectively focuses experimentation in 

an MNSS simulation study. 

The MNSS Experimental Process is summed up by the 

88 



following list of steps: 

1. Form a hypothesis dealing with the behavior of HPC 

network systems; 

2. Design a set of experiments that conceivably will 

demonstrate the veracity of the hypothesis; 

3. Build a number of key experiments that can be used to 

generate, by way of MNSS experiment modification 

facilities, the entire set of interesting experiments: 

and 

4. Run the experiments, analyze the results and determine 

the veracity of the hypothesis. 

These steps can be repeated 

adjustment of the hypothesis 

produced information. 

several times with continuing 

to account for experimentally 

The MNSS experimental process can be used to structure a 

broad range of simulation studies. For example, to explore 

basic networking structures a hypothesis might be: "Half 

duplex comrnun ications lines require significantly more message 

buffering for high message traffic than do fu 11 duplex lines." 

This hypothesis can be refined through experimentation to 

state exactly the relationship between line protocol, line 

speed, message traffic, and message buffering. Another type of 

study involves network performance optimization for a 

particular application. In this case the hypothesis might be: 

89 



-

..... . 

.... 

-

"For distributed data processing application 'N' the most 

cost-effective network configuration is a four node star, with 

9600 baud full duplex communicati~ns lines, etc." Refinement 

of this hypothesis leads to an application custanized network • 

7.2 Two Simulation Studies 

The following simulation studies were done using 

MNSS/3000. The goal of the experimentation was to demonstrate 

the capabilities of MNSS. Due to the li.mi ted nature of the 

verification of MNSS/3000 (Chapter 6) the results from the 

studies should be regarded with caution. The results reveal 

general forms of HPC network behavior and are not predictive 

of the exact behavior of any particular network. When 

MNSS/3000 is verified and tuned for a particular HPC system 

" (eg. HP3000) the simulation results generated will be more 

accurate and specific in showing forms of network behavior. 

7.2.l Incremental Network Expansion 

Hypothesis: The incremental processing increase achieved by 

adding a node to a network is sensitive to the 

network's line and node characteristics. 

This was an awesome hypothesis to confront head-on, so 

some simplifyin~ considerations were in order. First, only 

90 

-----~ - -~-~ 



-

... 

-

fully connected networks were examined; each node in the 
. ' 

networks of interest had to be linked to every other node by a 

communications line. Second, the c0mmunictions lines in a 

particular network all had the same specifications (ie. duplex 

type and line speed}. Third, identical standard user loads 
'.:.>: '· 

(based on a standard user process specification) were used at 

each node. Forth, the parameters varied in defining the user 

load at a network node were limited.to the number of permanent 
... 

user processes (formally described in Chapter 4, pp. 54) and 

the remote request level per user process. The permanent user 

processes were the agents of transaction data processing 1 they 

were continuously active (which assumes an infinite supply of 

transactions to be processed). All were defined with identical 

local processing. characteristics (ie. ·computation, short wait 

and long wait requirements}. In addition the destination of 
; .. 

remote requests oi:-iginated by a. permanent user process had 

equal probabilities of being any non-local nOde ·in the network 

(ie. a central database application load was not considered). 

Based on the hypothesis and the associatea limitations a 

set of experiments was designed with a variety of network 
' 

conf igura.tions, duplex types, line speeds, network processing 

levels, and remote request levels. Each experiment in the set 

was specified by drawing parameter values from the following 

list of alternatives: 

1. network configuration two, three and four node fully 

91 



'-. 

...... 

----~----------~--.. ----~·--··-· 

connected networks1 

2. duplex type - half and full duplex1 

3. line speeds - 1200, 9600 and 19200 baud1 

4. network processing level .. 12, 18 and 24 permane!lt user 

processes in the network1 

5. remote request level - low, medium and high. 

There are 108 potential experiments that can be built with 

different combinations of these alternatives. 

The low, medium and high ratings for the remote request 

level are based on the expected proc_essing.t,_hat occurs locally 

before a remote request is initiated (ie. the local processing 

time of a user process from the completion of one remote 

request to the initiation of another). The 'time between 

remote request' function is (1-P)T/P, where P is the 

probability of a remote request and T is the transaction time. 

The transaction time is the amount of time ( i_n milliseconds) 
.· 

required to do some basic amount of processing (ie. a . ,_ : 

transaction). Each 'transaction time' of processing done by a 

user process is directed either locally or remotely Cfe. a 

remote request). Single accesses to a database can be 

classified as transactions, taking a specific amount of 

processing to complete. The remote request probability is 

defined for each user process, and is the probability of a 

transaction needing remote processing (eg. one in five of the 

transactions originated by user process A requires remote 

92 



.._,. 

-

-

processingi this implies a remote request probability of .2) • 

Figure 7 .1 shows the table o.f user process specification 

values for the time between remote requests •. For the 

experiments at hand, a transaction time of 250ms was always 

used. 

7.2.1.1 Experiment Results One 

Some interesting experiment resui'ts are presented in 

graphical form in F iqure 7. 2 (a, b and c) • The simulation 

experiments that generated these results were run for a 
' 

simulated time of 600 seconds. Up to .20,000 events were 

·generated with the running of an experiment (four nodes, high 

remote request level, 24 user processes). Using a timeshared. 

HP3000 this took 20 seconds of real ti.me. For the results 

given here all networks were specified to have 9600 baud full 

duplex lines, and had loads of 12 or 24 user processes. 

The processing performance 6£ the networks studied can be 

measured in terms of transactions per second (ie. the network 

transaction processing throughput generated by the specified 

permanent user processes). Figure 7. 2a shows the relationships 

(simulation derived) between the number of network nodes, the 

remote request rate and the transaction processing throughput. 

Trend lines have been drawn in to highlight these 

relationships. These lines illustrate in a very rough way the 

functions associated with various groups of data points. 

93 



transaction 
times 
(seconds) 

remote request level 

LOW MED I UM 

.25 2.25 1.00 

.5 4.50 2.00 

9.00 4.00 

2 18.00 8.00 

HIGH 

.25 

.so 

1.00 

2.00 

~ 

I 
all values 
in seconds 

Figure 7. 1 Remote Request Level Table 

94 



--

....... 

-

a. 

10 

8 

t ran sac ti on 6 
processing 
throughput. 4 
(tran/see) 

2 

0 

!?.· 
100 

80 
network 60 
utilization 

40 % 
20 

0 

c. 
70 
60 
50 

network 40 
idleness 30 (% idle) 

20 
10 
0 

------ 12 user processes 

remote request level 

medium 

high 

2 3 

I nodes 

remote request level 

.. , --- - - =--r- - - -- - ----__ l"OW 
i e low 

2 

2 

..--

3 
I nodes 

------
3 

# nodes 

---

medium 

high 

remote request level 

----

low 
medium 

high 
_low 

24 user processes Lines: 9600 baud,ful1 

Figure 7.2 Incremental Network Expansion Experiment Results 
duplex 

95 



·-

-

Figure 7.2b puts the transaction processing throughput 

values shown in Figure 7.2a into perspective. Network 

utilization is measured as a percentage of the theoretical 
. ' 

maximum transaction processing_ throughput (where there is no 

system overhead due to communications or process switching). 

The maximum value for a 250ms transaction time is 1/.250 • 4 

transactions per second for one node or 4xN 

transactions/second for an N node network. 

The results given in Figure 7.2a clearly show that 

network transaction processing throughput increases with 

incremental network expansion, but that this increase is not 

proportional to the number of nodes added to the network. As a 

network increases in size, network transaction processing 

efficiency (per node) can decrease due to communications 

overhead or lack of work to do (assuming the number of user 

processes specified is a constant) • Figure 7. 2c shows that for 

the network situations examined here the falling utilization 

(with incremental growth) is due to some degree to idlenessJ 

not enough processing work was available to keep all nodes 

busy all the time. 

A partial solution to the idleness problem is also shown 

in the Figure 7. 2 results. An increase in the number of user 

transaction processes led to decreased idleness (especially in 

3 and 4 node networks) and increased network utilization. This 

illustrates the sensitivity of network utilization to the 

character of the network user load. 

96 



-

-

-

Another potential solution to the idleness problem was 

examined and found to be ineffective. This approach entailed 

increasing the line speeds in the network from 9600 to 19200 

baud, while maintaining a user load with 12 processes. If the 

idleness was due to communications delays then this would 

decrease idleness and increase network utilization. No 

significant increase in network utilization was shown when 

experiments were done1 the idleness was not due to 

communications delays, but rather to delays associated with 

system processing. 

7.2.2 Four Node Network Processing Characteristics 

Hypothesis: The total processing capabibility of a four node 

network is sensitive to node contiection 

characteristics and the applied user load. 

This is another sweeping hypothesis that had to be 

diluted in scope in order to design initial experiments. The 

simplifying considerations were the same as those of the 

'incremental network expansion hypothesis' with two 

exceptions. First, star and node configurations were used in 

addition to a fully connected configuration~ Second, the 

remote request destination distributions in some experiments 

were indicative of a centralized n.etwork database application. 

For these experiments one node was designated the database 

97 



processor (usually the central node in a star network and an 

arbitrary node in ring and fully connected networks), and most 

of the remote requests were directed to this tiode. In addition 

the user processes in the database node were primarily 

processor bound (ie. doing database maintenance) and 

infrequently initiated remote requests. 

The set of experiments based on the simplified 'four node 

network processing' hypothesis was designed with various 

network configurations, line speeds, network processing 

levels, remote request levels and remote request destination 

distribution types (indicative of centralized and distributed 

network databases). The experiments in this set were specified 

using the following list of alternatives: 

1. network configuration star, ring and fully connected 

four node networks1 

2. duplex type - full duplex1 

3. line speeds - 1200, 9600 and 19200 baud1 

4. network processing level - 16 and 24 user processes in 

the network1 

5. remote request level - low, medium and high1 

6. remote request distribution centralized and 

uncentral ized. 

Using these alternatives 108 different experiments can be 

built. The remote request level parameter is specified using 

98 

-----------~----------



...... 

the table shown in Figure 7.1, with a transaction time 

of 250ms. 

7.2.2.1 Experiment Results Two 

Selected results from 'four node network' experiments are 

shown in Figure 7.3 (a and b). The results given in this 

' section are drawn primarily from distributed database network 

experiments. The networks were specified with 9600 baud full 

duplex lines and had loads of 16 user processes. Experiments 

using centralized network database specifications yielded 

inconclusive results and need to be supp1emented by further 

experimentation. As with the results described in Section 

7.2.1.1 the results presented here were generated by 

experiments that ran for a simulated time of 600 seconds. In 

addition, the 'transaction processing throughput' graph in 

Figure 7.3a measures the same quantity, in the same units, as 

the graph in Figure 7.2a. 

The results shown in Figure 7.3 graphically illustrate 

the effect of communications overhead on transaction 

processing throughput. The effect is most noticeable when 

there is a high remote request level. With the star 

configuration there is a higher communications overhead than 

with a ring configuration, which in turn is higher than the 

overhead in a fully connected configuration (since in a ring 

the processor also has to perform message routing for messages 

99 



.. 

a. 

12 

10 

transaction 8 
processing 
throt.1ghput 

6 (trans/sec) 

4 

2 

b. 

5 

4 

CPU wait 3 
(seconds) 

2 

1 

·STAR 

low 

RING 

configuratJon 

med tum 

remQte request level 

. -' . 

FULL 

high 

remote 
request 
leve1 

low 

medium 

high 

STAR 
(central node) 

FULL 

STAR 
(point nodes) 

Lines: 9600 baud full duplex Loads: 16 user processes 

Figure 7.3 Four Node Network Experiment Results 

100 ' 



-

destined to other nodes). This is one cause for the 

relationships of throughput values in Figure 7.3a 

(particularly for the high remote request level relationship). 

There is a processing (system and user) bottle-l'leck in the 

center of a star configuration cau$ed by . ~1n1nications 

overhead. Figure 7.3b shows how lonq on the average a user 

process waits in the CPU queue before it gains control for a 

processing quantum. The wait in.the cctnter of a star network 

is significantly higher than the wait at the points of a star, 

or in any node in a, ful·lY configured network. At the center of 

a star there is a great deal of message traffic that results 

in C01Rmunioations processing and chronic p,reemption of user 

processing. 

The communications processing diaadvantages of the star 

conf igurati'<>n wane into insignificance when the remote request 

level is reduced. As is shown in 'Figure 7.3a, the star 

configuration is vfrtually equivalent in terms ef transaction 

proces1'ing throughput for a low remote request level. The 

di$appearence of 

remote requests 

Figure 7.Jb. 

the bottlenec* with' a decreasing level of 

is confirmed· by the results given in 

The results described in this section reflect only a 

small portion of .the information generated by 'four node 

network' experiments. For example, the results of experiments 

done with central database specifications indicate that a star 

network can sometimes operate as effectively as a fully 

101 



-

connected network even with high remote request levels (this 

is because most requests are directed to the central node). 

Further experimentation and ·analysis is needed to provide a 

clearer overall picture of network performance with 

centralized database applications. In any case the results 

documented here demonstrate what can be done when MNSS is used 

within the context of a clearly defined network analysis 

study. 

102 



...... 

CHAPTER 8 

CONCLUSIONS 

The development of MNSS led to a number of insigh_t.s and 

, accoapl ishaents that made the effort worthwhile. The initial 

careful examination of computer network systems identified a 
, "' ~ ... ~·. , ': 

need for analysis tools that could be used to explore the 

complex behavior associated with these ayatems. MMSS was then 

developed to help meet this need. 

MNSS is a multifaceted system that includes a modelling 

discipline, the building blocks for a set of minicomputer 

network models, and a simulator. The MMSS modelling discipline 

is simple to use but very powerful a• a method of providing 

abstract representations of system struct\l.re_a. Using the MNSS 

modelling discipline buildinq blocks were developed for set of 

minicanputer network models. The principle building block is 

an HPC system model. The modelled minicomputer networks are 

collections of HPC systems. The rising popularity of network 

systems (including HPC network systems) 11takes an understanding 

of their behavior a valuable collUltOdity. The MNSS simulator is 

the principle agent in providing HPC network system 

performance data. The flexible, easy to use characteristics of 

the simulator are what make MNSS a worthwhile system analysis 

tool. 

103 



8.1 Limitations Of MNSS 

There are a number of limitations to MNSS in its current 

state of development. These limitations encompass both easily 

correctable functional shortcomings and also more fundamental 

design problems. 

There is no formal procedure yet defined that can be used 

to initialize a network model in such a way as to avoid 

noticable transitory effects when the model is used for 

simulation. Currently with certain network situations the 

simulation statistics generated for maximum queue lengths and 

maximum queue waits reflect the initial setup of the model and 

not the overall system behavior that is of interest (eg. 

starting with all permanent user processes in the CPU-wait 

queue may produce a system state that does not occur under 

realistic load conditions). 

There are two potential solultions to this problem. One 

solution is to 'phase in' the permanent user load while doing 

simulation with a system model. This would entail inserting 

permanent user processes into the CPU-wait state over a period 

of time instead of all at once when simulation begins. For 

this to be successful the phase in time would have to be short 

compared to the total simulation time. A second solution is to 

begin gathering initialization sensitive statistics only after 

all startup effects have disappeared. The simulation time 

after the delay in statistics gathering should be sufficiently 

104 



- long to insure that the final simulation statistics are valid. 

The usefulness of MNSS results is now limited by the 

incomplete process of HPC system model verification. 

Canpletion of the verification procedure presented in 

Chapter 6 will result in proving the model correct for a 

particular HPC system; this is required before MNSS results 

can be used with complete confidence. In addition since the 

HPC 

( ie. 

system 

HP 

model can be used to re.present a class of systems 

produces a series of computers with related 

architectures), there must be an adjustment and verification 

of the model for each type of HPC system to be analyzed in a 

simulation study. 

There are a number of limitations in the current 

implementation of the HPC model description. These include: 

l. the model description lacks a specification for computer 

system primary memory sizes that can be used in 

calculating CPU-control process switching overhead, 

2. there is no convenient way to model networks of computers 

with different processing speeds (ie. all computers in a 

network must either have the same processing speed or the 

user load specification must be adjusted to account for 

differences), and 

3. the CPU-control process switching overhead does not 

directly take into account secondary memory to primary 

memory transfer rates (there should be a parameter to 

105 



specify this rate for each system). 

These 1 imitations can easily be overcome and will be 

eliminated with the next stage of MNSS development. 

8.2 Extensions To MNSS And Further Study 

With additional study and development a number of 

extensions to MNSS could be made to increase its capabilities. 

The extensions discussed in this section do not necessarily 

require major modifications to MNSS as it is currently 

implemented. 

With some changes to the user load specification part of 

the MNSS simulator, trace data canpiled by monitoring a 

particular application could be used directly to specify the 

user load for a simulation experiment. This feature would be 

very useful in doing a simulation study aimed at optimally 

configuring a ne.twork' for an ex is ting. application (that is the 

application is running on some available system). 

Selective submode! simulation is not now provided by 

MNSS. By extending MNSS to include this capability, users 

would have more control in do~ng simulation studies. MNSS 

could be used to simulate network message traffic with a full 

HPC network model or with only the communications submodels 

(messages 

frequency 

would be generated at message sources using 

distributions). The principle difficulty in 

106 



' ....... 

implementing selective submode! simulation is how to 

characterize the universe as seen by the selected submodel. 

This aspect of the universe must be reduced from an active 

simulation model to an analytic function or trace data (the 

most likely solution). This must be done dynamically when a 

user selects a submode! for simulation. 

Models are now described interactively using predefined 

building blocks made from the basic modelling discipline 

structures (eg. groups, entities, etc.). These building blocks 

(e9. processing submodels, half/full duplex communications 

structures, etc.) are integral parts of an implemented MNSS; 

there is no possibility of simulating different types of 

systems (e9. computer networks and supermarkets). Additional 

study into the conversion of MNSS into a generally applicable 

simulation system (GASS?) is a worthwhile endevt>r. In 

particular, capabilities to interactively describe simulation 

models using basic MNSS modelling discipline structures can be 

developed. If the capabilities of MNSS are extended in this 

way then a new range of simulation possibilities arise. The 

scope of these possibilities can be determined to some extent 

by determining the relationship of the MNSS modelling 

discipline to other discrete modelling disciplines. The MNSS 

modelling discipline is very general and may include many (or 

all) of the modelling capabilities of these other disciplines. 

The potential for enhancement and use of MNSS appears to be 

virtually boundless. 

107 



.... 

-· 

APPENDIX A 

THE MNSS/3000 IMPLEMENTATION 

MNSS has been implemented in SPLon an HP3000 computer 

system. SPL is an ALGOL-like laf19ua9e, which has constructs 

applicable to structured programming (eg. while ••• do ••• , if 

••• then ••• else ••• , etc.). These constructs are used 

extensively in the MNSS program for top-d·own structuring and 

modularization of function. The HP3000 on which MNSS was 

implemented supports software· such as SPL and mathematical 

library functions (eg. natural log, randan number generator ), 

and hardware such as disks, CRT's and linepr·inters. This 

support was necessary in order to take advantage of the 

interactive and simulation capabilities of MNSS. 

This implementation of MNss· (MNSS'/3000) has several 

characteristic features that reflect its versitility as a 

system analysis tool~ These features include the selection of 

MNSS function options from menus of alternatives, intelligent 

dialog interaction, disk storage of simulation experiments, 

and hard-copy MNSS information display. These features are 

needed not only for MNSS/3000, but also for any effective 

implementation of MNSS. 

A MNSS/3000 function menu is prefaced by the statement 

•sELECT OPI'ION•, 

with associated 

reply by a ">", 

and is composed of a list of alternatives 

numbers (0-n) • T'he user is prompted for a 

and selects an alternative by entering a 

108 



number. If the user enters a number that does not correspond 

to an alternative in the menu, then "INVALID RESPONSE" is 

output and the user is aqain prompted. A valid response will 

result in the activation of the corresponding alternative. 

Another form of interaction uae4. in the MNS~/3000-user 

interface is the responsive dialog. MNSS/3000 outputs a 

question, prompts the u.ser with ">" . and then waits for a 

. response. The response is evaluated by MNSS/3000 and a proper 

followup is output. The goal of the r~ponsive dialog is to 

channel information to and from MNSS/300.Q wi.th,out irrele.vent 

(dumb) questioning. 

The nature of the display and storage of simulation 

experiment information are very i1'>orta·nt in determining the 

usefulness of any simulation system. MllSS/_30-00 provides the 

capabilities to store and retrieve sj.J1lulation ex~riment 

specif icat-ions represented as disk files. A user can avoid the 

trouble o.f respecifying an experiment ea~h time it is to be 

run. In addition, there may be stand.•rd ex~riment kernels 

that can be built upon to produce .desired experime.nts. These 

kernels can be k~pt on disk and retrieved whenever necessary. 

Lineprinter output of MNSS/3000 infor~ation is provided at the 

user's direction to supplement the normal fo-i:m of interactive 

output. In many cases this is a desireabJ.e alternative to 

information display at interactiv~ station (eg. CRT's produce 

no printouts and teletypes often take ages to produce a low 

quality printout). 

109 



A MNSS/3000 experiment is constructed in line with the 

principles discussed in Section 5.2 ('Representation Of A 

Simulation Experiment'). It can be used by the simulator to 

generate behavioral information, saved for future use, or 

modified to yield related experiment specifications. 

110 



APPENDIX B 

VERIFICATION EXPERIM!lff 

* * * * * * * * * * * * 
* * * NE'JWOBl{ DESCRIPTlON·* 

* * * * * * * * * * * * 

NODE CNT•3 
LINK CNT-4 

LINK 
0 
1 
2 
3 

CONNECT 
0->l 
1->0 
1->2 
2->1 

DUPLEX 
FULL 
FULL 
FULL 
FULL 

• * * * * * * * * * 
* * * MESSAGE ROUTING * 
* * * * * * • * * * 

NODE 0 
TO 1 VIA 1 
TO 2 VIA 1 
NODE 1 
TO 0 VIA 0 
TO 2 VIA 2 
NODE 2 
TO 0 VIA 1 
TO 1 VIA 1 

RATE 
8000 
8000 
8000 
8000 

WSIZE DELAY 

Note: there are no uniform, special, exponential or destination 
distributions specified for the verification experiment 

111 



* * * * * * * * * 
* * * .CONSTANT DIS * 
* * * * * * * * * 
ENTRY 

0 
1 
2 

REFER VALUE 
1007 20000000 
1002 100 
1001 500 

* * * * * * * * * * * 
* * * CHARACTERIZATIONS * 
* * * * * * * * * * * 
ENTRY REFER CTIME CPUT 

0 1002 co co 
1 1002 C2 co 

LONG ·MEMC 
co 0 
co 1 

***·**** 
* * * tPROCESSES * 6.2.1 Process· Sharing 

* * * * * * * 

ENTRY NODE TYPE CHAR RDIS RDES"· RCBAlt. 
0 0 0 0 co 2 1 
1 0 0 0 co 2 1 

MSGL 
Cl 
Cl 

* * * * * * * 
* * * PROCESSES * 6.2.2 Remote Request Functioning 

* * * * * * * 
ENTRY NODE TYPE CHAR RDIS RDES RCBAR 

0 0 0 0 C2 1 1 

*t•~,· * * * * 
* * * PROCESSES * 
* * * * * * * 

6.2.3 Store-and;Forward Functioning 

ENTRY NODE TYPE CHAR RDIS RDES RCHAR 
0 0 0 0 C2 2 1 

112 



APPENDIX C 

EXPERIMENT RESULTS 

* * * * * * * * * * * * * * * * * * * 
* * * 6.2.1 PROCESS SWITCHING OVERHEAD * 

* * * * * * * * * * * * * * * * * * * 

* * * * 
* * * CPU * 

* * * * 

* * * * * UTILIZATION TIMES * * * * * 

NODE 
0 
1 
2 

* * * 
* 

SYSTEM 
0 
0 
0 

* * * * 
* 

* 
CPU WAIT 

* 
* * * * * * * 

NODE MAX-SIZE 
0 2 
1 0 
2 0 

LU SER 
50000 
0 
0 

HUSER 
0 
0 
0 

OVERHD 
10000 
0 
0 

MAX-WALL ENTRIES 
700 100 
0 0 
0 0 

113 

IDLE 
0 
60000 
60000 

TIME*LEN 
70000 
0 
0 

REMPR 
0 
0 
0 

TOT-WAIT 
69400 
0 
0 



* * * * * 
* * 
* 

LINK 
* 

* * * * * 

LINK CONNECT 
0 0-> 1 
1 1->0 
2 1->2 
3 2-> 1 

* * * * * * * 
* * * LINK WAIT * 

* * * * * * * 

LINK CONNECT 
0 0-> 1 
1 1-> 0 
2 1-> 2 
3 2-> 1 

IRMIT IDLE 
0 60000 
0 60000 
0 60000 
0 60000 

MAX-SIZE MAX-WAIT 
0 0 
0 0 
0 0 
0 0 

114 

ENTRIES 
0 
0 
0 
0 

TIME*LEN 
0 
0 
0 
0 

TOT-WAIT 
0 
0 
0 
0 



* * * * * * * * * * * * * * * * * * * 
* * * 6.2.2 REMOTE REQUEST FUNCTIONING * 

* * * * * * * * * * * * * * * * * * * 

* * * * 
* * 
* 

CPU 
* 

* * * * 

* * * * * UTILIZATION TIMES 

NODE SYSTEM 
0 9000 
1 9000 
2 0 

* * * * * * * 
* * * CPU WAIT * 

* * * * * * * 

NODE 
0 
1 
2 

MAX-SIZE 
1 
1 
0 

LUSER RUSER 
15000 0 
0 
0 

15000 
0 

MAX-WAIT 
100 
100 
0 

OVERHD 
3000 
3000 
0 

ENTRIES 
30 
30 
0 

115 

* * * * * 

IDLE 
33000 
33000 
60000 

TIME* LED 
3000 
3000 
0 

REMPR 
15000 
0 
0 

TOT-WAIT 
3000 
3000 
0 



* * * * * 
* * * LINK * 
* * * * * 

LINK CONNECT 
0 0->l 
1 1->0 
2 1->2 
3 2->l 

* * * * * * * 
* * * LINK WAIT * 

* * * * * * * 

LINK CONNECT 
0 0->l 
1 1->0 
2 1->2 
3 2->l 

TRMIT IDLE 
3000. 57000 
3000 57000 
0 60000 
0 60000 

MAX-SIZE MAX-WAIT ENTRIES ITEM*LEN TOT-WAIT 
1 0 30 0 0 
1 0 30 0 0 
0 0 0 0 0 
0 0 0 0 0 

116 



* * * * * * * * * * * * * * * * * * * * * 
* * 6.2.3 STORE-AND-FORWARD FUNCTIONING * 

* 
* * * * * * * * * * * * * * * * * * * * * 

* * * * 
* * 
* CPU * 
* * * * 

NODE SYSTEM 
0 7500 
1 5000 
2 7500 

* * * * * * * 
* * CPU WAIT * 

* 
* * * * * * * 

* * * * * UTILIZATION TIMES 

LUSER RU SER OVERHD 
12500 0 2500 
0 0 0 
0 12500 2500 

* * * 

IDLE 
37500 
55000 
37500 

NODE 
0 

MAX-SIZE 
1 

MAX-WAIT 
100 

ENTRIES 
25 

TIME*LEN 
2500 

1 0 0 0 0 
2 1 100 25 2500 

117 

* * 

REM.PR 
12500 
0 
0 

TOT-WAIT 
2500 
0 
2500 



* * * * * 
* * * LINK * 
* * * * * 

LINK CONNECT 
0 0->l 
1 1->0 
2 1->2 
3 2->l 

* * * * * * * 
* * * LINK WAIT * 
* * * * * * * 

LINK CONNECT 
0 0->l 
1 1->0 
2 1->2 
3 2->l 

IRMIT 
2500 
2500 
2500 
2500 

MAX-SIZE 
1 
1 
1 
1 

IDLE 
57500 
57500 
57500 
57500 

MAX-WAIT 
0 
0 
0 
0 

118 

ENTRIES 
25 
25 
25 
25 

TIME*LEN 
0 
0 
0 
0 

TOT-WAIT 
0 
0 
0 
0 



REFERENCES 

1. Adkins, G. and Pooch, u., "Computer Simulation: a 

Tutorial", Computer, April 1977, pp. 12-17. 

2. Anderson, J. and Brown, J., "Graph Models Of Computer 

Systems: Application To Performance Evaluation Of An 

Operating System", Proc. of the International Symposium 

on Computer Performance Modelling, Measurement and 

Evaluation, March 1976, pp. 166-178. 

3. Beilner, H. and Waldbaum, G., "Submode! Simulation", 

Proceedings of the 1973 Summer Computer Simulation 

Conference, pp. 167-171. 

4. Bowdon, E., Mamarch, s., and Salz, F., "Performance 

Evaluation In Network Computers", Proc. ACM SIGSIM 

Symposium on the Simulation of Computer Systems, June 

1973, pp. 66-75. 

5. Chappell, s., et. al., "Functional Simulation In The LAMP 

System", Proc. of the 13th Design Automation Conference, 

1976, pp. 42-47. 

6. Chattergy, R. and Pooch, u., "Integrated Design And 

Evaluation Of Simulation Programs", Computer, April 1977, 

pp. 40-45. 

119 



_, 

7. Chou, w. and McGregor P., "A Unified Simulation Model For 

Communication Processors", Proceedings of the 1975 

Symposium on Computer Networks: Trends and Applications, 

June 1975, pp. 40-46. 

8. Conant, G. and Wecker, S., "DNA: An Architecture For 

Heterogenous Computer Networks", Paper presented at the 

third International Conference on Computer Communication, 
1 • •p: 

August 1976. 

9. Cooley, P., "The Underlying Structure Of Simulation 

Problems And Simulation Software", Eighth Annual 

Simulation Symposium, 1975, pp. 45-55. 

10. Coop, D., "An Analytical Approach To Measurement, 

Evaluation, And Prediction Of C.omputer Performance", 

Ph.D. Diss., Department Of Electrical Engineering, 

University Of California, Berkley, 1971. 

11. Forrester, J., "Industrial Dynamics", M.I.T. Press, 1961. 

12. Hoang, H., "A Traffic Simulator For Packet-Switching 

,communications Networks", Proc. of the 1975 Summer 

Computer Simulation Conference, pp. 671-675. 

13. Ireland, M., "Simulation Of CIGALE 1974", The Forth Data 

120 



-

Communications Symposium: Network Structures In An 

Evolving Operational Environment, 1975. 

14. Ireland, M. et al, "Computer Networks simulation System", 

University of Waterloo CCNG Report E-25, May 1974. 

15. Jasper, D., "Principles Of Network Design•, Proc. of the 

IEEE Caaputer Society 1914 Symposium on Computer 

Networks: Trends and Applications, May 1974, pp. 1-5. 

16. Jayakumar, M. 

Microprocessor 

and McCalla, 

Emulation using 

April 1977, pp. 20-26. 

T.' "Simulation Of 

GASP-PLjf•, Computer, 

17. Linsenmayer, G. and Ligomenides, P., "'A General Computer 

Network Model", Trends and Applfcations 1976: Computer 

Networks, November 1976, pp. 155-161. 

18. Lynch, A., 

Problems", 

pp. 17-22. 

"Distributed Processing Solves Mainframe 

Data Communications, November/December· 1976, 

19. MacDougall, M., "Computer System Simulation: An 

Introduction", computing Surveys, September 1970, pp. 

191-198. 

121 



..... 

-

20. Mahmoud, s. and Riordon, J., •protocol Condiderations For 

Software Controlled Access Methods In Distributed Data 

Bases•, Proc. of the International Symposium on Computer 

Performance Modelling, Measurement and Evaluation, March 

1976, pp. 241-264. 

21. Merten, A. and Teorey, A., •considerations On The Level 

Of Detail In Simulation•, Proc. ACM SIGSIM Symposium on 

the Simulation of Computer Systems, June 1973, pp. 

137-143. 

22. Nutt, G., •Evaluation Nets For Computer System 

Performance•, APIPS Proc. PICC, 1972, pp. 279-286. 

23. Reiser, M., "Interactive Modeling Of Computer Systems•, 

IBM Systems Journal, 1976 no. 4, pp. 309-327. 

24. Schneider, G., •A Modular Approach To Computer Network 

Simulation•, Computer Networks: The International Journal 

of Distributed Informatique, September 1976, pp. 95-98. 

25. Schneidewind, N., •The Use Of Simulation In The 

Evaluation Of Software•, Computer, April 1977, pp. 47-53. 

26. Shiino, T., "A New Traffic Simulator For Network Systems 

SONET•, Proc. of the 1973 Summer Computer Simulation 

122 



Conference, pp. 113-118. 

27. Svobodova, L., "Computer Performance Measurement and 

Evaluation Methods: Analysis And Applications", American 

Elsevier, 1976. 

28. Wecker, s., "The Design Of Decnet - A General Purpose 

Network Base", Paper presented at ELECTR0/76, May 1976. 

123 


