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Abstract

This dissertation presents a collection of protocols for coordinating. transactions in a
distributed information system. The system is modeled as a collection of processes that
communicate only through message passing. Each process manages some portion of the data
. base, and several processes may cooperate in performing a single transaction.

" The thesis presents a model for computation in a distributed information system in
which the sites and communication links may fail. The effects of such failures on the
computation are described in the model. The thesis discusses implementation techniques that
could be used to limit the effects of failures in a real system to those described in the model.

A hierarchical protocol for coordinating transactions is presented. The accesses to be
performed during a transaction are pre-analyzed to select the protocols needed to coordinate
the processes that participate in the implementation of the transaction. This analysis can be
used to guide the organization of the data base 50 as to minimize the amount of locking
required in performing frequent or important transactions. An important aspect of this .
mechanism is that it allows transactions that cannot accurately be pre-analyzed to be
performed and correctly synchronized without severely degrading the performance of the
system in performing more predictable transactions.

"A novel .approach to the problem of making updates at several different sites
atomically is also discussed. This approach is based on the notion of a polyvalue, which is
used to represent two or more possible values for a single data item. A polyvalue is created
for an item involved in an update that has been delayed due to a failure. By assigning a
polyvalue to such an item, that item can be made accessible to subsequent transactions, rather
than remaining locked until the update can be completed. A polyvalue describes the possible
values that may be correct for an item, depending on the outcome of transactions that have
been interrupted. by failures. . Frequently, the.sest:impartant affesss of a transaction (such as
the payment of money) can be determined without knowing the exact values of the items in
the data base. A polyvalue for an item that is accessed by such a transaction may be
sufficient to determine such effects. By using polyvalues, we can guarantee that a data item
will not be made inaccessible by any failure other than a failure of the site that holds the
item.
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A strong motivation for the development of these prowcols is the desire that the
indiv:dualmﬁammmmw i dy. and that a site or a
group of sites be able to continue local processing | ations when a fallure has isolated
them from the rest of the sites. Many of the previous coordination mechanism have only
considered the continued operation of the sites that remain with the system to be important.
Another motivating mmmwmormwummmaany

apphumﬂ:epnm? exhibits 2 of of reference, in
only 2 small number of sites. By structuring the coordination
mhammm* adtage of this focality of wuh&m that are
simple, efficient, and rebust for the particitar application.

keywords: distributed data bases, synchronization, message passing systems, reliability.
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Chapter1
Introduction

Recent developments in electronic technology have made practical the interconnection
of a large number of computer systems to form what I will refer to as a gj__;&mg

Lg_f_g;m___im system. Each of the computer systems. (ar gites, as they are more frequently
called) in the mumng system maintains, some _infarmation . md tools for accessing that

system.may not be under the
control ,pf a single administrative authority. A distributed information system allows any

~user -of any of the individual sites controlled access to the entire body of information

fnanaged by the system, while it allows each of the individual computer systems to_control

the use of the tools and information that it holds.

1.1 Reasons Fer Distribmtion

There are several good reasons for choosing such an orgmlutlon for an information

- system. rather than pladag all of the information. in-a single- laxgn, shared computing facmty
‘I.will discuss some of these reasons briefly,

LLI Autonomy

A very important reason for choosing.a distributed otganluuen for.an information
system is the autonomy of the individual sites.. A me:mmoumm ‘has: shown that
the ability to partition .the authoﬂty and mpomtbm for: infermation management. in a

: distr;but_ed system is.the most important reason for mybmmmmdmbuted
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information syatemns. in a distributed system, each site has control over the information that
it manages, and can 9st #ts own policies for controlling the avatiability of that information.
As we shall see, autenomy thas important implications for the assumptions that can be made
about the cooperation of individual sites in the execution of processing operations, and‘for
the protocols that can be msed to coordinate such operations.

112 Refiabitity

A second reason for distribution is reliability. There =~ two ways in which a
distributed information system tan be made more relisbié than a central facility. One way to
achieve greater reliability in a distributed system is to rephicate information, storing it at two
. or more of the sités in n distributed system. Replication mm the availability of
information in a system with unreliable sites. A single failure does not make replicated
information inaccessible.  Unfortunately, mmmmm is much more
" difficult than medifying non-sedundantly stored information. Wihile a great deal of research
has gone into the development of ;protocols to upme replicated data, the problem remains
difficult, and such upiates are costly in that they require ‘extensive communication between

sites, reducing the economic advantage of distribution.

_ " A second source of increased reliability, and ene which 1 .consider to be much mere
’ imponént; is the the failure of a singli_ site or communication #ink dees not necessarily make
the entire system fail, while in a single, centralized system, the failure of a single component
frequently interrupts all processing in progress. The individual sites in a distributed
information system will be smatler and simpler than a single farge computer system with
storage and ‘processing power ‘equivalent to the total of that 0f ‘the individual sites. This
simplicity should ‘mean that the sites in a distributed system fail less froquently than the
single machine of a centralized system. Thus if a distributed 'systemn:can be constructed 30 as
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" to limit the effects of a failure at one site to the interruption of processing that- Mﬁlres
information at that site, the reliability of a distributed information system as seen by any

individual user will be substantially better than that of a"siﬁgle shared machine.

1.1.3 Economics

e

A third reason for oistribution is an eooootnlc_ advm;*ge that makes a group of
small computer systems less costly to manufacture than an equivaient slngle large machine.
A single computer with a certain procesing rate and uonge capaclty costs submnthﬂy more
than a collection of smaller machines with the same aggregm proceuing rate and storage

size. In addmon to the computing hardware, commniunon and somnre development

contrnbute to the cost of a distributed lnformation system quuently, the informat!on to be

- mmanaged. can be partitioned in such a way that.mest-of the:processing operations do not
rre'quire information from more than one of the partitions. Exch partition can be assigned to
a smﬂl:oomputer system capable of performing tive Muqlmed for the information

| in that partition. The cost of mmmunmmbemm sites> i such a symmld be

-refatively smail. ‘If the extra cost of developing mgreferwdiuﬂm ‘information system

can be kept small, & distributed: information:systeny amay:be substantially Jess costly than an
equivalentl‘cenml'fadmy.

1.1.4 Flexibility

A fourth reason for distribution is ﬁexibility. Changes in the amount of information
to be managed by the system can require increasing or decreadng the stouge and processing
capacity. In a central system, this may require rép

different capacity. In the distributed system, eapadl'} ehurgu an Muenﬂy be

ating ¢ theemlre machine with one of a



accomplished by adding or deleting sites, with minimal impact on the sites not being
changed. |

Consider, for example, a corporation that has just acquired a &grnw. and needs to
modify its administrative information management system to manage the new subsidiary.

Merging the information management systems of the parent company and the subsidiary

g»%%§§f<ﬁa§# nmarugggé-wg
being used by the corporation is distributed, however, the merger can be accomplished by
vﬂa?&gnﬂ.gusa.rgn:raigu ‘ o C

" 1.2 The Concurrency Control Problem in a Distributed Information System

_ m@aﬂ~§§n¥§§§8§i;§ﬁ?§
system as easy to wse 252 g?@a The subject of this thesis; and: what 1 believe to be
. %:ﬁ%g%g% controlling the sequencing of user specified processing

operations. gg%vﬂ?ﬁ!«gg%ggg?.
same a ggiq‘g;?iig § this problem

- can be discussad in detadl, we must bavea 2 mare preciee definition of the wmy in which stored

information can be manipuiated. For this purpose, I adopt terminciegy that has commenty
been used in data base systems. .

1. In rare cases, the existing information systems of . ggsﬁ?%‘g«v«
compatible, requiring virtually no effort for the merger. Even if the information

management xﬁsanwaxg«i&ng%ﬁ@g the parent’s
distributed system, this effort should be less than that required 1o merge both into a single
shared factlity.




-13-

The stored information consists of a set of individual duta items, each of which
represents some independently accessible piece of information. For ®ch' data item there is a
current value that is the information that that ltem currently eunmm,l A 9-.!-‘& base state is
a mapping‘ from the set of items that makes up the danbue to the set of values. specifying

_the current value of each item in the data base.

The high-level opérations that are to be performed on stored information are known

‘as transactions. A transaction can be viewed a3 function Hiapping one ‘data base state to

another. Each transaction is performed as a sét of primitivé operdtions, caffed accesses, on
indiﬁidual dat'a.items. Some accesses to "alt itern”cause the“éuttenit value of that item to:be
changed, and are known as updates. The set of items whose values are changed: by ‘the
o transaction‘ are the output items of the transaction.2 The new values producet:l by the
- transaction for these items are known us:the:dutput values of the tnnsactlﬁtt. Eacﬁ _
‘transaction computes its output values based on the valuu of the ttems In the data base state
that is the input to the tunsaction The items that m_und éby the tranuction ln computtng :
’the output values are refered to as _gm _@_, andwtheir v;alues u supplied to the

transactions are the ngug __lg_gg of the tnmaction

~ The user of a distributed informatioa system views sach mm as a simple,
complete operation, such as "depwit £50 i account number:136427. - Each: transaction 9@"
the effects of previous transactions in the values that it obtains for its input ltems. A
problem arises when several transactions are performed ooncurret\tl; | Each tnmactlon ntay
see the effects of the othets on.the shared data isems::In oeder to peeserve the illusion that a

transaction is a simple, tomplete opmtim, the trandactions shust be gtomie, in that each

. The term “version” has also been used for what I will refer to as a value
(Reed78,Stearns76] '
2. This has also been refered to as the write set of the transaction [Bernstein77].
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transaction sees sither all or nome of the effects of each other transaction on the data items
that it accesses. The definition of atomic will be made more precise in a later chapter.

The problem of insuring that transactions which are run concurrently are atomic is
known as concurrency cemtrel aad is common to both distributed systems and to centratized
data base systems, where transactions are run concurrently to increase the utilization of
resources. While there is a great deal of Hierature op this general problem, the particular
control, and make many of the mechanisms that have bean devaloped 1o solve this problem

system.

13 Basic Assmptions aad Geals

_ Tmmw@hminmtmkugawmhaﬂm»uﬂnawmp@expwbhnm
ummmmmmummmmmmmuabmﬂn'
effects of fakares. mmmmmmmmmmmmm
: mwahuumprmmmmmm Theuuwmmdgukmy

muwﬁtﬂwwlme&nﬁqmmmm for many
uses of a distributad information system a3 described above.

1.3.1 Implications of Delay

- A characteristic of distributed information ‘systems. is that communication between
sites is slower, more costly, and iess reliable than communication within a site. An
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implication -of this characteristic is that unnecessary inter-site communication should: be

minimized, even if this requires more computation or more storage at each individual site!

' A second implication of communication delay is‘that no-one site can: readily obtain.a
view of the global state of all transactions in progress: State information:from:remote sites is
" delayed in communication ano may be out of date. ‘Thelack of glebal state information

makes: concurrency control schemes in which seme decisions:(such as déadleck detection and
*back‘up) are"oude based on ‘gloﬁal information awkwazd -fér-use in idmbun&fmfm
| system. Thus, ideall; the protocols used: fwmmm afiow ench site
“ito bm its-actions on its local state:only;

A third impllation of delay ls that any operation lnvolvlng several sltes may be
delayed for a long period of time before it can be completed Thls means that the
information should be organized such that frequent or important operations an be
| 'Ioacompmmd -!ocally ‘at some site. - While: [ :will.uiot diseuss the: task of jpartitioning
information tn detail, I assume ﬂ\attheopendomaoheﬂkm!dﬁhibua high degres of
":»bcauty of referenoe. Each operation requires only a saail amount of the: total informetion
“available, - and ‘the information can be pastitioned s0 Mw&wopmw require

information from two or more sites.

This assumption is necessary to make a disributed tnformatien system practical. It
' .seems quite reasonable for many applications, tnthdhg management information - &ptoms.

1. T am not addressing the concept of a "multi-microprocessor” distributed system consisting
of a large number of small processing and storage elements linked with very hlgh bandwidth
communication



- 4.3.2 Partisl Operability

As nated above, the individual sites in a distributed fnformation system should fail
~less often than a single centralized system. of equivalant provessing power .and storage
“Faibed site; then a trarsaction involving only a amall wasmber of sives showid be less likely to
be affected by & failore tw 2 distributed inferination systom tran & would be in & centralized
system. Thvus as a goul, the mecanian for perforrming tranusecins should allow a group of

sites that are mumng and can communicate With each otber: W-perform transactions lacal
to that group. 1 refer to this goal as partis] opecabdiily. The most important aspt:tof
partial operability is to mw any transaction that is mtmty lﬁetl ) om of the sites to be
performed whenever that site is operating and the requw to perm ﬁae mnuawn can be

communicated to that sm

This is a very different form of enhanced reliability from that ashieved with
replicationr, as described by Atsbery et al. [Alsberg™] | believe thit the goil of pariial
operability more: accorately reflects the needy of most W’* We shall sen later thiat
both replication of daws within one site snd replication of disti 1ot at severnl sites fit
naturally into the mechanism that I am proposing. | |

An implication of partisl operabiiity is that the dependence of orie site on another o
perform purely local transsctions must be minimized. - Postotols requiring. a s to receive
e-xtema'i authorization to perform local tnmmm a8 that ueed by Tmm
[Thomas76], shoukd be avoided. B




. brought up to date on recovery.
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A more important implication of partial opetability is that error detection and

recovery are concurrent with the execution of transactions. “Backward error’ recovery

- strategies [Randell78], which stop processing new transactions. ‘""e" .an error is discovered

and cause the data base state 1o be "rolled. back” t0 2 previuly saved state known to be

4 _Wlng, continues
", that it may not be

consistent, do not achieve the goal of partial aperability. . Recauy

during .error recpvery, a site that encounters an error can, "gey behin

‘iaware of recent transactions. For example, a site l,wlqmg, a my of 3 redundatp,t data base

sransacion that wverfomm ave «w Tm M"«mmr mxhwmm"*

record any information.sent to a site during a failure of that site, 30, that the site can be

S e e

1.3.3 Autonomy

As noted above, the autonomy of indhzidual sites in a distributed information system

is an important reason for choosing such a system over one with a central shared facility.

" One implication of autdrfomycdnsfstent with the goaY o partial operibitity ‘i "thit”‘i‘hdivldual

sites should not be depétident on the systefti‘hs' a-Whole i°that thiey shoukl be capabie-of

. O

catioh 'with ther sites; Tias ‘We cannot

performing local transactions when not in
assume that a site which is not in communication with any other sites stops all ang. as

is done by SDD-I [Bernstein77].

Another mplimtion of autonomy is that eacip site eontrolsthe opentions that cn be

performed on the data items that it holds. Thus oy mg may remse to perform some

operation at any time. One method of dalmg with this goulbility is m require that uch
transaction obtain permission ta perform all of its component °P""“°"’ before any of these
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oper;tioﬁs is carried out This can substantially mcfu:ethncmtof petformihg some
transactions, by increasing the need for locking (see Chapter 4).

For nﬁny transactions, the administrative policies of all of ‘the sites that must
cmpaatemkmnhﬁﬁmmdmmmedmmfm«Mium will
cooperate in performing a particular transaction. Verifying that a transaction will not
encounter access restrictions is simifar in principle to verifying that ntnnualon preserves
consistency constraints (i.e. ttm it always maps one consistent state to anather). 1 will assume
that even though the sites are autenomous, they will cooperate i performing a large class of
common tnnncthm Tmmmyam.mmabm,aamm»bemun be
simply verified before it is run, and will not interfere with synchrenization. Dymmica“y :
changing access restrictions must be checked as a transaction is run, and will add to the cost
of perforrhmg and synchroniting transactions.

1.4 Related Work

The work of this thesis concentrates in two main areas: concurrency contral in data

base systems, and reliability techniques. 1 will discuss the previous research in these areas
separately first, and then relate it to this thesis |

1.4.1 Concurrency Control

Several papers [Bernatein77,Gray7,Gray7lStearns76] discuss the problem of
controfling the concurrent execution of transactions 50 that each sees a consistent version of
' the data base. Gray et al. [Gray75] give definitions for four different levels of consistency
and discuss locking stravegies to achieve each. Atomic transactions as 1 have defined them
maintain the highest fevel of consistency (level 3) defined in that paper. This is the level
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that places the greatest constraints on concurrent execution of transactions! The locking
strategies presented by Gray are efficient, in that they allow the data base to be constructed

so that a high degree of concdrr,ency may be obtained with ittle k;cking overhead.

A second paper by. Gray-[Gray77] discusses a mechanism for concurrency contral in a
distributed syﬁtem thit makes use of the locking . strategies described in. the first paper
While this mechanism performs transactions .correctly }gnlgu:hlghly -.improbable failures
.’ occur, it fails to meet two of the go.nls -puilines. above. .- The_ locking strategy,-allpm
| transactxons to dcmdlock requiring some mechanism to detect.deadlock and, abort one of the
‘ tfansactnons involved in a deadlock in order:to allow. the, others to proceed. Dcadlock
E detection requires a view of thegbbalmdallamnm& in progress, Vi?!&!mx}h'

condition of making decisions based on local information.

| The two-phase cdmmlt protacol used by Gray and others insures that a transaction is
atomic, no matter what failure occur during mma K.a failure occurs at the wrong
time, however, one or more of the sites involved in a transaction may be obligated to hold

onto -locks_set by the tramiaton until the failure is recovered, preventing the gj(ecu;ipn of
trdn'sactm Ioc#l to that site that set locks which, conflict with those set by the transaction
suspended by the failure. This viplates our goal of pamal operability. |

1. While the authors claim that forcing all transactions to see level 0 or level | consistency
allows transactions to be constructed to sée higher levels of onsistency; and may save-locking
overhead by allowing many transactions to run at the lower levels of consistency, they also
point out that output vafues produced’ by a tranbiction refiéct the %vel ‘of conslstency that
that transaction-saw. These low-level consistency. values are propagated by any transaction
that reads them, so that transactions desiring a high level of consistency can never read
values produced by those abserving a lower level; .- Thus low-level of consistency transactions
would appear to have very limited use.




-9 -

A wtedly by Swewrms and Rosencrantz [Stearns?6] ‘discusses a ‘model for distributed
data ‘bases mMMMwwmm muﬂ mhmam:tien isperfoﬂmd
by a process that migrtes among the sites that hokl the values that the transaction accesses.
Each site is ‘responsibile ‘for controliing the exewuon of transactions t that site, and the sites
comsmicatte ‘orly wiien ' Trevsaciten s ‘movell amd When & traniation. i completed. The
authors describe & s uf ‘control ‘algoritims ‘thet werk By asiighing an order to the
m"'l’ang ‘to acerss the sume dam, passibly by uberting -and m them. The necessity
of ‘restarting some ‘travsuttion ‘that s compidtetl ‘2 subsancixl -amount of processing 13

Several papers IMMWMIWTB,RM discuss the SDD-1 database system
in which the set of TraTactions o ‘be performed on the data base it-analyzed 10 determine
the amount of ‘locking weeded. Tratisactions are-Gividell into cases by the sets of iterms that
~ they read and ‘write, and ‘trarsactions in the same ¢lass are performed serhilly with respea to
each other. Trumsactions in different classes can be performedl ‘concurrently. The conflicts
between the sets of ivems read and written by differemt clusses are used ‘to select
iynchmnintion protocols to ‘be used to coordinate concurrent mcm from -different

classes. Frequently, transactions can ‘be run concurrently with litthe synchronization overhead.

The approuach used in SDD-1 of pre—anatyzmg the set of expected transactions to
mm:mtuﬂnaymhmmmmd fwﬂnmm 1 uactions seems to be very
promising. The ;proot that this technique works, (ie. that all trai « tions are atomic),
however, ‘is ‘so long mﬂ ‘vomplicated as to ‘e untonvincing. Waking SDD- robust in the
event of failures also appears difficult. The mmmmwm frequently
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involve waiting for messages that may be delayed by failures. The techniques used to insure
that delayed messages do not cause excetsive "‘delayf_;iﬁ" the processing of transactions are
extremely complicated, and may reduce some of the éﬁ‘lciaﬁcy of this ﬁﬁchrohihtioﬁ scheme

by requiring additional message exchanges.

The rgliability goal of SDD-1 is also somewhat diffe;gm;frqn that of this thesis. The
goal in SDD-1 is to keep the system as a whole ruhning, even if this means that sites that are
separated from the network while involved in a transaction that spans several sites must

stop. Thus SDD-1 does not achieve our goal of partial operability.
1.4.2 Reliability

The work in reliability is perhaps less developed than that onooncurrency control.
An_important paper by Johnson and Thomas Uohmmldwibes an; algorithm for
N updating redundantly storeddata such that all copigs mnvgrge to the same final value. The
paper um the notion of a timestamp, whichexprwthe“d" 1'1 which updates should, be
pe;fofme_d, so that all copies converge to the same final value, even if the updates are
_delaycd; duplicated, or arrive out of order. Timestamps have been used in many. protocols
for reliable synchronization. This paper does not discuss tbgpmwnof syn;_hrdnm;tm for

concurrent updates.

‘Thomas [Thomas76] proposed an extension of the ideas in that’ paper to provide
synchronizatlon An algorithm was developed to allow updates to be performed as long as
more than half of the sites were functioning. The algorithm is complex and several flaws
}_ were found in the early versions. Another major problem ‘with the Thomas algorithm 1s that

it applies only to cases where the entire data base is stored at each site.
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Alsberg and Day {Alberg76] have developed a robust muki-copy update aigorithm
with a somewhat different approach. They designate one copy as the primary, and insist
that all accesses occur through the primary copy. The other copies serve only as backups in
case the primary fails. This strategy eliminates ane of the major advantages of replication of
l, data, that of greater concurrency in access. The algorithm does, however, seem applicable

whcre the only concern is greater reliability, and not gmm mncurmu:y

A fomvcommg paper by Lampson and Sturghs [I.ampm‘lsl presents a general
discussion of performing atomic transactions in a distributed system. The paper presents a
method of storing and updating information in a single machine, such that it is preserved
and updated correctly even if crashes occur during upd:m This storage technique i; useful .
for implememtng an atomic update within one site. | |

Thellst panwnmpwpugim an algorithm for performing updates at several
vdtfferem sites. atomically. kwnpmm!dpmuw wdmmmewdmnm to
each site, such that durimg most of the procadure, each site carr independenily decide to abort |
the update if messages are sfow in arriving. There is stilf, hemer & time window in which
a site must wait for the arrival of mesage from offer another site, and cannot decide
whether or not to abost the update if such. a message 15 slow in artiving. This algorithm is
similar to the two-phue commit protocol described by Gray [Gray77] and that used bf Reed
[Reed78]l The Lampson and Sturgis algorithm makes the ‘tl;m_n window during ma. a site
can not abandon a transaction interrupted by a failure quite smaill by insuring that all of the
computation done by the tms#tim will be completed before any site is- ,pteven&t! from
abandoning the transaction. This is accomplished via extra steps in the protocol and extra
message exchanges. Chapter 5 discusses commit protocols in much gmterdettn.
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Reed _[Reed78] is also working in the area of robust i}ﬁéhibniiition mechanisms. He
has developed a scheme in which each value assignied to an item can be named as a version
- of fhat item. The scheme allows a transaction to obtain.a set of mutually consistent values
~ for the items that it accesses by choosing the progervmionngrgs& This scheme is subject
‘to the same limitations as the Stwmandkomntzs;hmin that a.transaction may
- Need to be aborted to avoid deadlock. This problem is solyed by having all of the updates

performed by.a transaction (by creating new. yersions). be.
. _has been completed.

nal until the transaction

This same mechanism of conditional transactions is used to solve the atomic
distributed update problem. The mechanism is simple and convincing, but still leaves a time

, _wtndow,in: which a failure can.cause delay in pro

1.4.3 Relationship of this Thesis to Previous Work

This thesis presents a model for dtsmbuud computiog that specifies the effects. of

nputasio %W>»h¥@'§z“m§uahh;§m in
which components can fat&.and failures effect z)nmm..afetbg pz,immu operations of the
model. The thesis discusses implementation techniquu that can be used to insure that the

LHeWitt76 JHewitt77]., The model describes co

actual effects of failures conform to their effects as described ln the model The technlquu
'used build on the work of Lampson and Sturgis [Lampson?&] and Gny [Graym -

-While much research has been done on. theprqblunspfynch, Vizatio)
based models of -computation. WMMMmh of this work has
centered on developing, primitive synchronization techniques, that. achieve mutua).exclusion.

. in message
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abort unie of the transacsiens to ressive the Oeatdiott xnd allow the tthers 1o groceed. The
concurrency shan many ser desdiock avoiding syachishisation schemes, by postponing the
acmalmmgmfammm&kmaddmmhmuawﬂmmthm

conflicting transaction which meeds that resource. mWnMsummry locking

that restricts concurrency.

urderinwhmnmmmmd Wﬁ&emm«mmmv
efficient use of the kints of commmication MMMMMWM;
, mmmmmmmmmmm

The mhmquenndmmrdmmmcﬂmimdmmmﬂym&mem
pattern wwm:mummmtmmmmMWanat more fine
grained in that the actual derivation wmwﬁammmmmm
every outptt of 2 ¥ransaction depends on every rpe as 45 oW N SBDA. mmm
Shows 'how to structare the synthronization scheme 30 that freqoent-8r important transactions
ﬁn be performed with minimal overhead dueto the synchronization.
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The thesis includes a proof ‘that ‘i‘t""{s' impossible to solve the “atomic distributed
‘upda'te." praoblem for.all cases in a way that achieves ;b;e_v;;gqgl,of partial operability, given the
semantics of tﬁe ng presented here. The Pproof applies, pm;mems advanced by [Grgxm

,,,,,,

A novel approach’ to the atomic distributed update préblem' is presented. This
~ approach inyohies keeping several ‘current values for some data ‘items, and builds on the
version naming synchronization schemes of Reed [Reed78] and Stams et al. [Stearns76]
_.Tﬂhi_,sg‘approach .l,s‘po/t limited mzhemniwwsmmmganmth dlscused lri this

thesis, but is applicable to any of the synchronization schemes discuss

| above.
To sﬁﬁi&tarize, I feel that the 'imborfant contributions of this thesis are:

- A model for distributed. computing in which, Met,;‘em of failutu‘
- are well specified and implementaﬁon techmqua for meetlng these

- specifications vkl

-A ‘vtechnique for ‘coordinating what ‘1 refer t0: a5 -an “atomic
broadcast” that can be implemented efficiently in the kinds of

~ computer networks ciitrently used to cofivect ‘sites in distributed
information systems .

A technique for analyzing a set of transactions to be performed to
determine which ones can be performed without locking

- A mechanism for locking data items at' several sites in order to
~ perform a distributed atomic update without allowing a fallure to
" delay actess to ‘the locked datd indeﬁntafy in'most cases
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1.5 Thesis Pian

utirig that is used
aiben thit befaves as

throughout thé thesis.
specified by thé prsehls mdei dre distuised,

formulated in terms of thik ifiodél. The chapter discussés severil ways in which the order of
execution of transdctions cin be coritrolied, arid shows that ofilj one of these achieves the
goal of partidl operability. |

" Chapté 4 disési & imple syncioHizition probiéh tRit Eonsiii OF coordinating
bbbkl ki kisiie Groicise AbthiBiies 4 t oF missighd o
& set of receivers siich that the order in which any one receiver séés messages from several

what 1 refer tb &é i kgl

such broadcasts is consisterit with the order ifi which the brosdeai
other recetver. A Siiple mibchifilii ts petohn thik ik W Brésémed. * This mechanism
Snlzation mecharism fot concirét ms discussed in
s of this mechanism that. mmmm of m synchronizatior
constraints imposed by the commﬁnldtion netwhtk are disc ¥
distribute the messages with very litte overhead mriﬁﬁiimé t6 thE “Enforcement of »

synchrohizitihﬁ eoHstHiints.

s are received by any

forms the basis of the syrich
Chapter 4. tmpkmen of

itnplementmons

Chapter 4 discisses the problem of synchronizing éransactions. A technique for
analyzing 4 set of traRsdctions to détermine whﬁtsybcﬁmﬁinﬂnngraocois are needed is
‘discussed. THis ahalysis is used to show that oorrect synchrohiution of all transactlons
cannot be accomphsﬂeﬂ with 4 prbtocol that achieves the goal of partial opmbmty Three
different classes bf trahsactions are distinguished, on the basis of their access patterns. A
mechanism that buikds dh the atomic broadcait Mechinism of Chapter 3 is presented to

perforim. tranéactions. This mechafiism can be tailored to minimize the cost of synchronizing
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transactions that are expected to be performed frequently. The mechanism is general,
however, in that any transaction, expected or unexpet.fted.‘ will be correctly synchronized.
Unexpected transactions have little impact on the efficient operation of the synchronization

mechanism for the expected transactions.

Chapter 5 considers the implications of the need for locking on the goals of partial
;operibi!ity and autonomy. These goals dictate that a site that has set a lock for some
transaction should.be able to decide to abort that transaction if a failure interferes with the
prompt completion of the transaction or if the transaction violates the access policy of the
site. I show thit‘ there is no protocol that can be used to insure that no fﬂllure can prevent a

“functioning site from promptly completing or aborting a transaction requiring Iockihg.

As a solution to this problem, I propose a novel mechanism that allows locked data
b_items to be made available to other transactims before the completion or abortion of the
Iocking transactnon is decided. This. mechanism is appropmte for systems in which the
ability to perform transactions in real time, without long dehys waiting for locks to be

"released is important. |

. Chapter 6 presents a comprehensive example showing how to apply the techniques of
this thesis to a typical distributed information system. The example is an inventory control
‘system described in a report on SDD-1 [Bernstein77]. The technlques of this thesis are used
.. to develop a robust synch_roniution scheme >for this example with little overhead due to the

synchronization.

Chapter 7 summarizes the new ideas in the thesis and discusses areas for future

research.
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Chapter 2
The Process Model of Distributed Computing -

» _This chapter presents the model for distributed ‘oo,t‘nputing that will be used in
discussing synchronization in a distributed information system The first section presents the
model which includes specii‘ications of the efrects of failures on oomputation expressed in the
model. Implementation strategles for ‘Himiting the- impsa erseeuni failures to the to the
failure effects specified in the model are discussed The seoond section poses the problem of
performing transactions (as described in Chspnr i) stommuy irt the fr;mework of the
model. Various techniques that could be used for synchronintion are discussed to show that

' only one of these can be u’sed by a system m«mm goﬂd‘pertmwpenbility

© 9.1 The Model

- Based on the assumptions and goals set forth in the previous chapter I will now

descnbe a model for computation in a distributed informstion system. In order to centralize
the description this chapter presents aii oi‘ the model even though some of the concepts will
” not be used untii much later in the thesis This model inciudes tuo forms of oommuniatim
message passing, and changes in state observsble by hter oompuntions. Message passing
may occur between sites or within one site. Communication through state changes, however,

‘occurs only withina single site.



2.1.1 Definitions:

The basic unit of the modél is a proess’ A process can be viewed as the unit
within which communication through state changes can occur. A process consists of a local

state, a set of jnput ports, and a set of process siep sperifics
performed byapmsukmplminamlesofmm A process step maps an

The computation
'lnput local muandasetofinputmgesinmmwwhalmandamofomput
messages. Mpmmmmwnuwmuamm.bymmg. i

A set of Input ports for the step. Qnem»mﬂudbym'
step from each port in this set.

The outp Iou!mteuammtion ofthe input localmand the‘

Amufw@ntmg»mdthdrdmmm Both the

fonienis . and  de o posts. be Jpecified as.
mmmuwmwmmu»m%mm

An important point to note about a pracess step is that it compures its output
messages and output local state. Thusasingkprmmpanbeuudtoperform
-mmnmmmwmwmewmmmmauwvd nthcrthanslmply
retrieving information from the local state or storing information in the local state in
responsetomeuages Thisc&paﬂmyofapmessupmpammnundmme'
lmplementaumnfatnmwm nmudmmmcmmu |

. The word process has been used to denote a number of il specified concepts in the
literature. My use of the term pracess is not inconsistent with the common usage of the term,
however the reader should realize that the term has 3 very specific meaning in this thesis.
Other terms that have been used for very similar concepts are Actor [Hewitt76], and message
handler {Reed78].
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Conceptually, each process resides at one 3ite, its home site. The home site of a '

process is the location of the process state of a igrocess. IMMsmalso is responsible for
carrying out process steps. The fact that each process is implemented at a single site will be

used in determining the effects of failures on. the execution of process steps in this model.

~ Each of the process steps of a process is atmmc with respect to the other steps of that
process. The output local state of one process step becomes the input local state of the next
step in the sequence. The execution history of a process consists of the sequence of: steps
that have been performed by that process.“jFor each process p, there is an ordering <ﬁ on
the steps of p, such that s; <p %9 if 5; preceded sy in the execution history of . .

~ The set of messages that a process has received in uch of its prooess steps and the

’ initiai locai state of the process i‘orm a complete descriptlon of its execution history l'-'rom

the messages received at each step and the process step speciﬁcstions. one can deduce the

' messages that are produced and the chmges made to the process sute The input messages
‘to each step can be represented by asetlof [message.port] psirs describing the messages
. received and the pom at which they were received.

anure 21 shows an example of an execution hiseory The figure shows a Iist
describmg the input messages to the process steps of P The ﬂrst prooess step of P is
represented by the bottom entry in the iist, with subsequent process steps higher in the list.
This list may be thought of as a log that records the mesnges rereived by P. When a
process receives messages.at a single port only, the execution history can be represented by a

list of messages received, as each step receives a single message at that port.



Figure 3.1
The Execution History of a Precess

~Thehmlmﬁapsmhyﬂmuummnﬂmaﬂyhdaagﬂby
.pmmofﬁmm mwmmmuammmm
the messages sent to that port! The ek of Wamuwmwm'
"pmgmﬂymmmmMMdpmmaWW |

mmmmgammmmmwmm
uchprmumMthmmmdmmm&eMﬂutt
pmmnmmmwm hpm&mmywmwmﬂn _
describadabmreism"y Mumdmfum?mmm
myMWM»WuMMM&Mm»MWW
wquenmimm |

1. Note, however, that several processes may send messages to the same port.
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_ One can view the execution of a process as belng performed by ini ‘interpreter that
carries P“tﬁ,',‘: §xgcuum of all of the procesuﬂn a system. Thu interpreter maintains a
loéal state for each procus and a set of messages for uch Inéut port. VOne cﬁle of this
interpreter selects a pmcess step specification of some process, nlacu a message from uch of
the input ports for that step, and carries out the sehmd step. The inmpreter dele:u the '
received messages from,the sets of messages for the input pom,changu the local mte of the
process, and adds any output messages produced to the seg of ptnding muugcs for the
- appropmte ports. |

The inmpretatim can be distributed (me lneerpreter ﬁor mh prooas) m‘m the
n '_‘_,,;‘lsthe nnding

pwuofmotherpm_'l‘hu
betweentindmﬂbuud

“of output messages. .ptoduoed by process: to Inpy
 interaction can easily be_accomplished by _message passin

- 'iuurpmers.

: 2.1;2'sze¢u'of. Failures in the Model |

The procm step speciﬁcations completely spedﬁcy any oomputauon ukmg phce in
: the absence of failures of the underlytng rmchanism thtt carrm ‘out the | proeess steps. This

. vsection discuue: the kinds of failures that can ame ina dnmlmnd lnfomltlon sym imd :
thelr efrect on the execution of process steps and on muuge pusing betwéeﬁ proceuu. “Two
- extensions of the process model to include a :pecmauon of the effecu of flllum on

B mpuntion are praenud



2.4.21 zm.: Fatinens

Twamumkm;armmmmmm.mmwmmi
'jfanum.mdeommmmm Amﬁmnwwmmmdmuw
-pmmmumatmwuwﬂm ‘Vimﬁmmmumw
damaged. Ammmwwnhmmm

" damaged, or delivered 1o the wrong reciplent. Mia: M miques can be used
_whmweMﬁﬁMimamm ’

An«mdmmdc.wdmuam.mbeuwwdmmgumnhawm |
| mcedordeﬁvmdmmmmm ‘White it is inpiisib nmmm«m‘
the probabifity of undetecied communicalion ersers cin be 1 de afbitrin ”

.- increasing the proporsien of aach mesagt devousd b errer deliction. | il theretors make
 arbitrarily small, but nen-zero probability of an undetscted ervor. If any mesage that is
-MmuumnmmmmyMWmmm |
lutormmmumz

, Themanmmaﬁ‘&afamwmum__;
__:WWMMde ompiatio nmm;utheumeufm
f-mmuwbem ﬁammmwmmmmdamm ﬁm

uﬂutmeis

'lNommmumdmmmuMWkammua
communication failure will catise 2 message t0 be transformed sbtht it ppears 40 e correct:
to the error detection sechanism bt does not correspend to the original message. -

2. Many communication systams exhibit anuther (aiture mode in which a message is
duplicated. In designing a csmmunication pretocol, one has a cheice as t0 whether to
guarantee that all mesages are deliversd reliably, possibly delivering some twice, or to
guarantee that each masege arnives st most once, and that some messages may be lost. |
have chosen the jatter akernative. In the aext section, I intreduce the concept of robust -
WWMM%M‘M“MM&W ‘
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step might be left partially completed, with the focal state of the process corresponding to
- neither the input state nor the output state of that step.’ Thistanbe prevented by using a
" robust storage management tachnique for storing the local state of a process. Such a
~technique aflows a group of updates to be made amhﬂy to fiiformation stored at one stte.
such that if a failure occurs either-all or none of the Updates nte place.” The atomic stable

storage mechanism of Lampson and Sturgis [Lampson76] is such a technique. A description

of all of tﬁe updates to be performed, known as an intentions s list, is formed and written to
-permanent storage in a single operation before any of the updates are carrled out. A failure
occurlng before the intentions list is gmeed or-one ngmm the wﬂmng out of the
_ intentions list causes none of the updates to be performed. Ont¥:the hitentions st has been
writteni, however, the error recovery mechanisny can Use it to insure that all'of thie updates
specified will be made, even if the site making: the updates fafls after having partially
completed them. The write-zhead-log protocol of Gray [GriyT? slso provides the same
capability for making a collection of updates atomicaily, by writirig out a description of the
updates to be made to a log tape before any oftheme: are mude. .

Each process step can be nmplemented as an atomic update to stable stonge Thls
implementation insures that a site failure leaves the local state of a process executlng a
process state -either at the input state to that step or:the: mutfm of that tep, and not

some imrmediate state or mixture of the two.
2.1.2.2 Two Ways to Include Failure Effects in the Process Model

By using the low level implementation techniques discussed above, one can constrain
the way in which faitures affect executbnafprocem rocess . "By stigmentirig the definitions of the
process model to include specifications of the effects. of fuilures, we can produce a modet that
 describes computations in a “real” distributed information system in- which " site- and
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communication failures caan occur. The choice of the specifications of the effects of failures
should be made 50 as to reduce the effects of actual failures on the model, but also to be sure
that an implementation of processes in which the effects of failures are limited to the
specifications can be obtained. IMMMWW@M&&,
.mmmmmmuhmummmmmmmaatmam
severely.

2.12.2.1 Simple Processes

Using basically the techniques described above, one can build an implementation of
processes in which the effects of a site or communication. fatlere are limited to lost or delayed
messages. This is done by using error detecting codes. to. detect communication errors and
 discard messages that are i orror, and storing the local.state of esch process in. atomic stable
storage. Some care must be taken in the implementation of 2 process step 10.insure that no

.mlbhfaMuaummummwmwdmwagmmda

process step to be repeated. lfapmuuepurmmd.ammmhﬂymphmd
then xtmymdmmeammesagetm(mmemmmdmmm,

_ may modifymhca!muasiﬂt had reoeiveddveummmgem

These undesirable effects can be avoided by pe!iamdag a process step in three
stages. First, delete any record of the input messages to the step so that.a site failure
occuring at this pbim would cause them to be lost. Then, perform the process step and
update the local state of the process to reflect its completion. Finally, distribute the ‘output
message's.,of the process step to their destination ports. A site failure occuring hcfom the local
state of the process is updated can result in the process step mthctug performed, or an
apparent loss of all of the input messages to that step. A failure after this point may cause
output messages dﬂu@mhebst No failure causes the local state of a process to be



SONAEROY ML L YRR PR

-37- |
modified as if a process step were performed twice, or ciuses the messages produced by a

process step to appear to be duplicated.

A less likely result of a site failure is that the information stored at a site in
permanent stable storage is damaged. This can be detected, with high probability, through
the use of error detecting codes. As with communications Taikires. however, it is impossible

to detect all such errors. The local state of a process can b replicated within one Site to
decrease the probability that a failure will destroy all copies. A process step-is implémented
" as an atomic uﬁdate to all of the toples of the process state. Aty cdpy of the local state of a
pfocéss that survives a site failure can thus be used to becoié the current local stite of the

process.

To summarlze. the effects of a site failure can be limmd to lost messages (through a
' “process step that was aborted after receiving messiges), or de!ay of processes at that site.
_This is achieved by using atomic stablé storage to ‘représent the local state of processes,
replicating local states, using error vin error dém{ng-maé ;tc'détéct‘da'n\ige to a local state,
and .'indeﬁnitély_su'spéndin_g any process for which no valid local state can be found.

Limiting the‘effects of failures to lost Mmessages or dehyed execytion can easily be
achieved without excessive communication or pmssmgovgrhud Many applications
'reqmre a higher degree of reliability. In the next section, I discuss a different
implementation of processes that gives a greater degree of réuibluty with greater overhead.
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The effects of failures on simple processes are well specified, but stifl undesirable for
- most applications. For many applications, guaranteed delivery of all messages sent by a
process to a port is desirable. This is 3 very difficuk mmwmmummr
. of the delivery of any. particuler message by a cocwmupication failure cannot be prevented.
In order to clarify whas I mean by guarantesd delivery, | will-introduce a constrant that |
from ome process  t5 3 port ¢ are received at ¢ in the sume order in which they were sent
by p. Robust Wmu in addition that o messages are lost.

 For each port q define the ordering <, o the messages received at port q to be the

total order in which those messages. were received. For gach. process p the ordering <) on
the process steps of p dexcribes the order of occurrence of thoes steps. What 1 mean by
q, the order < in which the messages sem by # ave received at q is exactly the same as the
 order in which the seps that produced those mesages, are orersd by <, This meams not
~ only that the messages are received at q in the same order in which they were produced, but
also that there are no gaps in the sequence of messages received. Reception of message m
‘sent byphoqmﬂmzf&rmeptm dmynmgem’fmwmchm'?m. ) -

Robust sequenced processes can be implemented by

parating the execution of
process steps from the actual communication of messages from one site to another. This ean

be done by mmtatlmngzmd_:_{_m__sgfprmhpm The process database for a
process p contains the local state of p, an jnput message quewe for each input port to p, and
an Mwmfwm port to which § has sent a message. Each output
message queue contzins a list of messages and a transmit sequence ggm (TSN). The
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input message queue for a port'q contains a list of messages ahd a set of receive sequence
~ numbers (RSNs), one for each process that hias sewt-a*ihessagé'to g’ ‘A process ditabase is
stored using. atomic: stable storage, so that a sicé failure dwm does not' catise a

process database to be Ieﬂ in some intermedmte state

A process step of p can now be implemented ‘23’ an atemic: update to the process
database of p, which removes the messages ‘Teteived: by thet step from the: input message
queues, changes the local stata of p, and appends the messages profuced by thitt stép to'the
 output message queues. (if there is no queue for some destingtion port, & new onie 1 created).

Clirm L et

‘Messages can be trahsfereo from ;n' output message queue 'of ﬁa p‘rocess p for a
.destination port q to the input message queue for q with a robust communication protoool
usihg the sequence numbers RSN and TSN. Briefly, each siss: periodially ‘attempts-to send
the first message in any non-empty output queue. atuching the TSN of that queue to the

message sent. When the site holding port q receives a message sent from p it vertfies that
“ the sequence number attached to that message is equal to the RSN of q for p and tf s0
_updates the process database of the process assocutod with port q to add the message
received to the end of the input queue for-q, and ‘to- increment the RSN of port q for p.
Whethe_ri or not-the. sequence number of the message received isToorrect, the receiving. 3ite
‘sends.an - acknowledgement to:the site_holdiag $ containing.the RSN of q. for p. This
- acknowledgement - informs the sender of the 'mast. recently . received: “message.:- ‘The
_,acknowledgement cither .acknowledges : receipt..of a m - tnﬁouns the sender that
retransmission of some message may be required. When the site holding p receives such an |
acknowledgement. it vmﬁes that the sequence nugaber: in fths'a:hnwhdgm is the same
_as the TSN of the messa,ge queue for q in theptooeudatahua pf pnand tfso dalens the .

first message in that queue and increments the TSN.



-
| I will not at this point explain how the message queues are initially set up when two
processes first begin t& communsicate with- each other. ‘This I semewhat complicated and will
be discussed at longsh in Chaptar 3, where a use for rebust sequenued: processes is- discussed.

This implementation of processes gulrlmw' delivery of inter-process ﬁiessiges in

sequence. The cost of.the-pratocol is- the eura messages {acknowledgernente) ased, and the
storage required for the message mmw nambers: - This ¢ost 1s st if esch
Pmmac with selatively few proceses, and if Messuges in: the mmtn
promptly forwarded.! I the synchwonization. protocols nselt ) this- thesis; each. process
converses direcay with mw fwuh«pmm.%thﬂofmmmm

is sman.
213 A mmm Tivis Model

Anumbetcfn»dekh&vebeen propmed fordimtbuudmuﬂng Ifui that the

modeldescribedzbovebeurefkmrhegukmd:mmpﬂmﬁdthekmdofdmﬂbamd”

information system discussed in Chtpm L

wmmamhummmmmwmnmm
modet [Kiskov 77 Saltver78) hwmmmwmwwm

Fo;r each type of disjecy,. there it & set ‘of operations, Suth: as oW subtrars; muMiply, and

divide for imteger objects, wirich' can be used wsmmmarmw Tei addition
Vo primitive objects, sach-us dntegers or buolsens; A7y Uk MY Gefine ¥ ew type of objeets,

L Amy site that does met wish to devote space to: large input oF ettput riessige queues can
refuse to execute a process step for a process with nom: ‘}memmm
to ackmowledge a3 Messdge Wt to & port With & ridh-Sinpe Fhese mdo.
hmv«,mmmmuydd«dmifm . buffe :
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describing the operations that can be performed on objecu of the new type and a
representation for ‘objects of the new type. Compumlon is’ perhrmed as sequenees of
opentiomonthesetsﬁf'objects '

While the object model is a very natural one for many users, several problem; arise
in the applicatlon of the object model to distributed compuua% The most_serious of these
) problems is that it is unclear what the approprlate-semantlcs for aocessing remotely managed
_objects should be. Many suggestions have been made, including’ treuting all ohject references
uniformly, whether’ focal or remote, treating references ‘fo ‘rémote objects specially and’
~ maintaining a local copy of the remote Objec’t;'aﬁd %iﬁllowmg referencesto remote 'objects.

and instead using meisage oriented comdnunicition’ between sites. The first of these

‘suggestions is difﬂcult to impkmem. while the othefs vbﬁte ‘the eonwptual :lmplicity of the
' object mudel ' ‘ | .

The uniform object model (in which a user computation does not distinguish
between *references to local and to remoteﬁbjeds)ls “difficult to” implement reliably.
‘Operaribri‘s that involve ‘objects at different sltes can fail ‘in“different ways (due to the
possibﬂity of communication failures) than opentiom on objecu all at one site Hidlng the
“different failure modes from the user is difficult or impoutble. f‘urdng the user ho deal with
the problem of determining what the outcome of a seqwnce of operattons on objects will be

if failures Interfere with their normal oompletion

Several similar semantic models bmd on message passing: have been developed for
distributed computing. These include Actors (Hewitt76], the u-cakulus [Halstead78], and
‘data flow [Dennis75l. These models in their pure form all describe computation such that
the only communication between primitive computation events .ls through explicit message

passing.
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Tmmmmammawmmmmtmm
35 a group of ¢YEmS wsck event being the reception of 5 mwsage by an Actor. Ome
problem with mmm is that exactly which Actors are priitive, aplementing their
effects directly rather than sending messages to other Actors to achieve ther ‘effects, is left

umspecified. ﬂmkﬁma&mﬁmdﬁ%tﬁewm“muamn_

mmdaww znyﬁvdthacywdm

'.Wsmdmmmnmmmmwmwmw

This primitive mechanisny can be used farmodm omputatk

n in which; the processing to

be applied to some message s ok known in advance and is dependent on some futare event,

such as sioring  data item for later transactions. Cells are yiso used to nglement events in

which two or more messages are Iogictl!y "received” (by using cells to store messages), as the

Actors model does not allow an Actor to receive two or more messages in 2 single event.

Thé p-caiculus is similar in principle to the actors mm k. however, provides a
mechanism for introducing primitive functions that are not implemented by message, puliug

wsammmstmmwummmmmmm‘mmm,

'vmecbamsm called a m is. mmduad to provide a way for a pair oﬁmelnges o be

received in one event. wmm token mechanism is, more mﬂ using a

cell, it is stilt mher m to uademmd Moreover, the im

) 1:-,

systembasedmmmmdmk(andmfsatmpmupmwdform

tokers.

of & dlstﬂbuted

- cells and
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Data ﬂow schemas have frequently been used as a tool for describing repetitive
processing, such as computing a Fourier transform. A data flow schema provides a natural
mechanist for events in which two or more mesiages are received, unlike the above models.
Unfortunately, ‘computations in which the processing to be llpglbd to some message depends
highly on the contents of the message are hard to describe in data flow Recursion and

iteration are somewhat difficult to express natur:_t_lly,ﬁ and gmtlgadd to the difficulty of
implementation. A data flow description of computation where a lot of information is stored

for later (unknown) use, such as a data management system, is awkward.

* The process model previously described is an attempt to bririg together some-of the
good- features of the models described above, without the disﬁvantaga The two different
forms'b of ‘communiczition provided in the process model represent the properties of
' communi'ation in a distributed system better than either 'obnervatlon of state changes or
_ message pessing alone It is easy to specify the effects of a failure in a system based on
processes and to build an implementation of processes that meets the specifications.
Distinguishing between intra-process and inter-processoommuniation encourages the user to
plan his applicationucarefully %0 as to minimiuVQQWQ go(mnunigation between sites,

and to plan for site or communications failures.

The process. model also captures the concept of aiit‘on‘o‘my.v. ARl stored datx’ is'.
represented by the local stites of the processes. No process can ’be “toerced" ifito performing

~ some function for - any other process. Al access'to stored Infodiaton is mediated by some
process that can implement its own access control policy. Thl: allom the problem of access
- control to be largely ignored in the model, as each process can provide its own access oontrol
policy. At the same time, theprocess‘ stepspecifications of a processspe;ify the access oontrol

policy of that process by stating what the process does in response to the messages that it
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receives. T'hus & e ifmplenventing “some ‘ypplication -can examine ‘the process step
specifications «of [processss (providing ‘services that ‘e wishes to use and ‘an in many cases
determirre whetiser or ot aceess ‘restrictions will be encoungersd in ‘his mpmum

B Fiso ‘iritrerent in 'the ;pracess ‘model is the ‘notion that ‘some prwmmg activities can’
e performet ‘simgly 'by one site. ‘Kithough each process ‘has an versil specification of its
operation, 1n-a Tes] aystem most processes will:be inplemened from smabier preces. T will not
specify Wit ‘Hiose ipleces ‘are, ‘us ‘the ‘Implementition 6f a ‘process ‘coull ‘be ‘based on a
© ‘message ‘passing ‘aystem, 'a Tonveritiona] programming language, or the object model,
 hiowever, one need not
deal with ‘the :special ;problems ‘of ‘a distributed information gystem, a8 ‘each process ‘is
 executed solely at owe site. |

depending on whatis ideermd ‘most conventent. ‘Within one;

The ‘mechariism ‘usetl ‘to specify a ;processing ‘event thit logically receives messages
from two ‘ot “‘mioTe ‘sources ‘(multiple jports) seems ‘much ‘more ‘nasural in ‘the process ‘medel
than the mechanisms using célls 'or wkens. As events in which ‘two or more messages are
received are commun iin:many xpphications and ‘cin ‘be:construcred Mm ‘the primitives in the
Actors or u-calctilus rodéls, there seems to be o reasonnot to inclutle thls lmpbnam spwidl
‘case in the ‘model. ‘Inclusion -of this: mpubihsy dentifres for the imphmnwr of the symm
the cases where :two Tessages are ‘being ‘received by what xwaymdp;muap This

‘makes it simpler ‘to Tonstsuct an ‘efficient and mlmt in n than if the multizport

Teceive were yimulnted using some more.general mechanism.

“The association ‘of severs] independently named pom with ‘one process is a very
useful fuawre of the process ‘miode€l. It can be used to grwp several’ lndép@ndmt proeessing
activities that wish to communicate via a shared data base in a singte proms Such
processing activities can ‘be implemented as independent process -ugp spédﬂmnom of the
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same process,' each of which receives its mﬁﬁ: messages tﬁrough a different set of input ports.

This use of processes is similar to a monitor (Hoare74] or a critical section.

A second, more important feature of ports is that they praéiae a way to classify the
messages sent to a process before messages k’a‘re reoei'ved ' One 'nppiiution “of ‘this "&Sﬁbility
would be a process with several queues of pending Mmessages that are serviced with some
' priority algorithm, not necessarily in the order in which the messages arrived. Ports also ,
allow a process to temporarily igniore one class of messages’ ﬁvﬁile exchahging messages with
other processes to complete some proeessmg a&vity “1Yils use of ports will be demomtrated _
by the locking strategy discussed in Chapter 4.

The differences between my model and the others are a reflection of different goals.
' My model is an’ attempt to provide a way to express applicauons for a’ distribated
information sysuém clearly, such that the effects of fillures afé well specified. Others have
been more corcerned with formality and minimization of the prifitive concepts. ‘

2.2 Atomic Transactiong Revisited

Thissection examines the problem of performingtunnctions atoi’nically as expressed
in the framework oi‘ the prooess model. We show how the slnple deﬂnitions of tnnsactions
given in Chapter l can be stated in terms of the process model and show how to express the
property that transactions are performed atomiaily as oonstninu on the order of execution
of process steps Several mechanisms that could be used to oontrol this order of exewtion to

achieve atomic transactions are discussed.
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. 2.2.1 Expressing Transactions in the Process Model

Recall that a transaction is a set of accesses to siored dita items. The definitions of a
data management system given in the previous chapter can be mapped omo the process
model by using several processes (at lcast one for each site) which I refer to as dats
managers. Each data manager maintains some of the data fterus a3 components of its local
_ process state, T"ihev process steps of a data manager perform the meo the data jtems
held by that manager. If a data item is replicated, with several sites having copies, then
several data manager processes maintain capies of that item. o |

A transaction in t‘he.process model consists of a set of process steps of the data
manager processes which together carry out the accesses needed to perform the transaction.
Each data manager may perform several steps in carrying out a single transaction. If
communication between managers is required to_perform a transaction, then the. ou:put
magesofmeofunpmmthupetform thatmnucﬂm will be used as input
messages in some of the other process steps performing the same transaction.

In addftion to the data Mmanager processes, which lﬂ\th accesses to daﬁ items,
there are transaction m which perform the function of mmhtlng from a high level
description of the transaction to a set of messages to be sent to the data managers These |
~ messages direct the data managers to perform the necessary accesses to urry out the
transactions A more detailed description of the mnction of the data managers and
transaction processes is g!ven in Chapter 1, Whlch discu:m mechanisms for performlng

tl’lnS&CthﬂS.




-47-

©999 Petforming Transactions Atomically

. Intuitively, a trapsaction is atomic if. sither all or nqm of . its- effects are visible to
+, other transactions. There.are two ways in which one transaction. may.observe the effects of

‘other transactions: messages sent by. steps. of one Uransachion -that are received by steps. of
.,another transaction, and the modifications of local progess: states. that are made by steps of

one transaction and later observed by steps of another transaction. .. .

- . The first method of observation, direct message PaAssipg, rargly -ogcurs. This is
q .,bega,u,te a tra‘n.sacti.qnv is.a complete, mdgnnd:ntprming m;tiygq and.does not in general
communicate gixgg}y with other transactions. The: exception tn this case is.that the user, ?‘h'.i
_submits a transaction, (by sending a MFMMAWMi@W system) may
knaw of other transactions by having received. messages. sent .from other {ransactions.
_ﬂContrﬁllmg'  sequencing of transactions so that the ordet of tpansactions as. mlved from
e’xpli_dt message’ passing is consistent with their order as perceived from. gbservations of
Mifimtims to jocal state is relattvely simple. For the moment, I wil] presant a definition of
atomic transactions that ignores this method of observing ordering. Chapter 3 discusses this

| problem further

- The secqnd s,qurce- of communication between tgggts;gttmg‘ the local process states, is
much more important in most applications. ~Recalf ‘that fora“ch pi‘ooasp there is an
ordering relanonshlp <I' that defines the rehtive order of occprrence of process steps of p.
These local ordenng relattonships can be used to deﬁne an ordertng of the transacttons as
7 follows

Transaction Ty < Ty iff there is a process p and process steps s; and
89 of p such that s is a part of Ty, and sy is a partof Tg and s; <p
52. TE i ] oo :
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Thus two transactions are ordered if both mta@! steps of the same process, This gderinz
is a reflection of which transactions may Inv;:dincsly obnrnd affoctsof whkh other

transactions. A transaction Ty can also observe the effétrs of sokie transaction Ty indirectly
if there is some transuction Ty such that Ty « ?,munwmm« ofprécw steptof
some process p) and Ty < Ty foecause of the ofiéi- of piticess Weps’of some othér process ¢.

 Indirect observation can ocear becitise the effects ‘of & thildcain mify deperid on the vailiies

| that that transaction saw.

| The condition that we require for  transucticn i be atomic 15 that either all or none
transactions is performed atomically, thén the ¥ffvcti ‘of those transactions (modifications
made to the values of dats ftems and meitigés profuckd by th trmsilctions) are the ime as
I the transactions were petforssed serially in som ‘séquenice: Wit exch transaction béing

~entirely cormpleted before the next transiction i thie sequencs 1 Bégu i, “This requirément
anbeexpnmduneﬁﬁdkhnmrhe<mhﬁmmmwm “of
Mﬂsﬁﬁm‘“llms: o B IR R BT Trws £0 0 ‘

Transaction t is atomic with respect to a set of transactions T if
- there is no sequence of transactions t;, ., t,, in T such that t; < t;;
Cforiienandt, <t<ty Equinhuly.asuafmnucﬁom:is )
atomic if the transitive clsurél of the & drdeﬂng e' i a*""‘pii—‘ufa“l-'
order on that set of transactiops. . i e

In order to insure that a set of transactions ls performed aomlcally, we must insure
that the < orderlng r»uttmg from any eoncurrem execuuoh of tlme mnuctiom is cycle free.

~ One way to insure this is by choosing the assignment of data itm to data managers mch

K

L Throughout this thesis, 1 will use the wpamgm 3 wdmte a nﬂquve transmve
closure (i.e. x <* x for any x).
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‘that for each transaction there is a single data manager that can perform that transaction.
+ Thus each‘ transaction isseenby only one data manager,.and 9 cycles in the < ordering can

- arise.

This approach can be re]ected because the lssignment of data items to managers is
not soleiy under control of the system designer The autonomy of individual sites dictates
that certain items must be managed by prooesses at minsitu. Some trannctions may need
to access data items from several different sites. Because each process must be executed at
‘one site, there.is no way to have one: deumme:fpm@ufom a transaction at several

sites. 1

» Perhaps a more serious objection to this propoui is that it makes the addition of new
?transactions, which access items in patterns that were not plenned ﬂifficuit or impossible.
Adding a new transaction may require oomplete redesign of the system s0as to allow  new
transaction to be performed by a single process. l’ T

| We therefore must show how to coordinate transactions that involve process steps

from several different processes. This can be aooompiishd by oontmmng the order in which
the data managers perform the process steps which perform accesses of transactions. The
."'next section discusses four primitive mechanisms that could be used n ooordinating the

32{4 TR 5 «ﬁ«'u’:,

process steps of the data managers.

ot

L Recall that the specification of the effects of failures on the execution of a process was
greatly simplified by the fact that each process is executed it’ohe site: “Therefore, we dé not
wish to abandon this assumption.
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2.2.3 Primitive Synchronization Mechanisms in the Process Model

There are several mechanisms avatiable in the process model that could be used to
conistrain the order in which processing operations are performed by processes. These
_ mchanimscwubeuwdwmmawmmmmwhnofmmucﬁom
atomicaily, inmhtuummyummwchummﬁkm&]u
'.Mmamsmmmnlmmmmwmmwmmmm
problems.

To achieve the goal of partial operability, the synchromization scheme for
transactioni must allow a transaction that is purely local to one data mtmger 0 be
performed whenever  request to perform that transaction ummmammmg« Thus
synchromution mechanisms that do not' allow such transactions eo bo pufurmed prompﬂy
'should be avoided. The goal of partial opmbﬂlty wm thm serve as » guide in umg
synchronization techniques for transactions.

One synchronization techmque that has a!rudy been tntmduced is the sequencmg of
messages sent between processes. Sequencing consists of guarameeing that messages sent

t‘romoneprocmtoaportarereceivedatthntponmthenmeu‘dermwhi:htheywere, ’

produced by the process. As we shall see in the next chapm robust and sequenoed message
communication is sufficient to provide proper synchrmlntm of mny kinds of tnnsuctions.

Sequencing alone does not compromise the goal of partial operability. The only case
in which the constraiﬁt of sequencing prevents a message sent from a process p to a poi't q
from beiﬁg promptly recetved and acted upon is the case in that there is a previous message
from p to q that ‘has not yet been feceived at q. Using the lmplementatlon of robust
sequenced processes described earlier in this _chapt;er.}_this'"siu'xiﬁon‘ s qulcklyraﬂedied
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whenever it occurs. Unfortunately, as we wilt dertonsrate in Chapm 4, sequencing alone'is

not sufficient to perform all transactions atomically.

A second technique that could be used' to’control the order of exécution of
transactions is one that 1 calt expicit: focking. ‘Expﬁdt"ﬂmg consisés’ of postponing the
Chapter 4 will discuss focking in greater detailand will infroduce tfmicmm for explicit

locking into the process mode.

A synchronization scheme using exphcit locking doee not achieve the goal of partial
operability Using explicit locking, a data manager could postpone the receptlon of a request
“to perform some focal transaction until that dati’ ‘iianager had received ‘other messages.
" Expﬁclt fockln‘g could  cause the locat transaction toibe d‘eﬁye'd' indefinitely.

‘Se«

Sequencmg and explicit lockmg both conmj:l the order of processing operatlons by
contromng the order in which messages are received by pmeaes. Another appmch to the
control of the order of execution of processing operations is to conirol Whitt‘action is taken by
a process on recelving a message. The following two- imdmuuwdimthua use this

approach.

One way in which a process can postpone the processlng opeution requested by a
message that that process receives is to ‘record the measage tn the Ioal state of the process.
The stored mes;a_ge can be retrieved and acged on in a later process prowu step. One could

* call this technique squirreling.

" Using squirreling, a transaction local t one dati ‘anager can be delayed indefinitely
because the request to perform that transaction can’be’iduirreled away iridefinttely by that
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data manager, panding mefmwnrw Tmmmmmm
thcgoaiofpcma}opcwﬂuy

Another mechanism that can be.used to.postpone. the, pracessing requested by a.
message is.to have & process that receives a mesyge that the process should not yet act on
send mmmmmrm other process mayld either. - ' on the message, or
pass it on again, pessbly Wack to the tst process,, This, teshalque coukd be refered to a3
MM!!!!. Buck passing also does not achieve the goal of partial operability, as a -
rquesttoperformamacﬂmcwld bedeferndmmmwbdngpludfrmpw

to process.

© Both buck pasing and. squirceling are what could be called implicit Jpsking
(because request messages are not explicitly pasiponed,. but the requested. processing  is
postponed) lmphcitlockmg is characterized bythehathnmwmpmmpsofthc

data mamger reccivmg a requmt are used to perform the | procedsing reqlnmd by a mange.

When two or mepxmmpcfamgu(;wue used tna.rry Qut a
transaction, the gosl of partia) aperability.is not-achjeved, If two or.more process steps carry
out accésses for a transaction, mmmmawtham::mm-amm those
steps may have to be excluded from occurrtng between the two steps. If a failure delays the
ction, then transactions local

second step of a data mmf Pﬁ‘farmtng for s trin
to that data manager that must be excluded may be imm MY“ If only one I

nep(oftwomme)afadaumagap«krmmhmmm tbén_some

R ITarE

“by the Tirst step of the

condition must be preventing those accesses from being
data manager. The manager must in effect be waiting for some. mesage before it will

 perform the accesses for the tramsaction. That mesuage coukd be delayed indefinitely,
delaying the transaction.
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To summarize, the sequencing mechanism is the only one of the techniques for
controlling concurrency in the process model that ichieves the goal of partial operability: In
Chapter 3, we will demonsirate 3 mechanism that uies sequencing to provide control for
‘many processing operations. In Chapter 4 Nmsm‘*'“wﬂ'!z alone s insufficignt
“ for c°°rdination of allpossible transa.ction, andshowtbgt.’s'omeg ‘u!ncha)ni:m in Whichtwo

process steps of some process are used to perfarm one traisaction is needed.

JETRETA Y 0 A *

2.3 Summary

This chapter preoents a semantic model for a distributed information system in which
 the effects of failures are well specified. The model combines features of Actors, Data Fiow,
. and the Object Model. The model makes a strong distinction between two forms of
' cmnmuniéation: inter-process messages, and intra-process  communication thrnugh shared

state information.

| Two different classes of failures in a distributed information system wefe discussed:

site failures and communication failures. We showed two ways in which the procéss model
could be extended in order to include a specification of how computation is affected by such
failures. One extension (simple processes) was ensy to implement, but allowed failures to
‘have .relativ"eiy severe effects. A second extension (robusi sequenoed processes) limits the
~ visible effects of failures, but requires more overhead in its implementation. The remainder
| .of_ this thesis will make use of robust sequenced processes in d_c!velnping algorithms for

. performing transactions.

The problem of performing transactions atomi_éa’li_y is transhted into the terminology
of this model, and a plan for an implementation of a distributed information system based
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on the model is given. A condition for determining whether or not a transaction is atomic is

Finally, techniques for controlling the order of executhn ofprou:s steps were
discussed. OmdmmmuMng)mﬁmnwum'nhwrgoﬂof
 partial operability. . Other ‘techiques allow & faflure to delay ihe completion of a local
_ pmu:ngwmm,hn:snmaﬁmhmlim‘mnm
coordination of some kinds of transactions.
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from the execution history of p. For a process that receives messages at one port only, the
v'uxmmmmmmwmu;mamwmm.ummmmu
| This representation can be viewed as a log, rmmhmgemandbyputtu
received. The most recently received message in the execution history is at the top of the list.

Ideﬁneammmkame{mmammmmm A
'bmdmzmumumbyam«mmw,lmwmmmm,u_
’amemge.andp‘is:hemeuhepmhndm)wmnmtum Thundividual
messages that mkeupu bmm;mnfmdwumwoﬂhobmdm The
order in which a gmp ot‘meivtng processes receive a group cfbmdcut muuges can be
derived from the order in whkh the mpmmuof thoum are uuind by the
»indivtdualprocesus. meﬂafmbmduuwlim%udeﬁndu&<lg
1fB,mmmammgem,mmapmmﬁwnzmmammzuhomtmp, _
and my <, mg. This definition: is compietely analagous ta-the definition: of ke .« ordering

i oag. 3 S Ty
AT S [

Eigumi-&l
The Abbreviated Excoution Histery st a Process -

S N Rt U

S my <4 m2“<P my :
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Chaptes' 8
AtomiovBroacicswftin‘g- N

etan BT

: Many transactions performed by a dnstnbuted informatlon system mn be decomposed ‘

£ € 38

into independent component operations, each of which is performed at one slte and does not
" depend on any other site. In the model of the prevlous chapter eech component of such a
transaction is performed by a single process step. AII of the messeges thnt form the inputs to
: these process steps can be constructed in advance. before eny step ls performed The

ordering of such a transactton relative to other transact!ons is eontrolled by the order ln

5,

which these messages are recelved

BN

n this chapter, I introduce a mechanism-for stomic beencastig, which distributes
‘a set of messages to a set of destination ports so that they are receivéd atomically with respect
to other such sets. If an atomic broadcast is.used to distribute the input messages for a

transaction with independent components, that izansiction is- performed. atomiically. Atomic
broadcasting is a simpler problem than that of coordinating arbitrary transactions.

3.1 Deﬁnltions

For convenience, T assume that all messages and all ports are uniquely identified.
Many processes receive messages at a single port only. For such prooesses. I will use one
identifier such as‘ p to refer both to.a process and the port at which that process receives
m'essages.‘ Recall that for each process p there is an ordering <p on the messages sent to p
that reflects the order in which those messages are received. Each message m is included in

the order <p when it is received by p The ordering p for a process can be determined
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on transactions. Similarly, a broadcast message M is atomic with respect to some set of

broadcast messages if the < ordering on those mess;

* Figure 3.2 illustrates the reception of three bmdcast n"‘msigu”'tha't were not atoniic.
By incIudes two component messages "‘IX for X and” m]y “tor V. Simﬂaﬂy 32 and 33
" contain components for X and Z, and for ¥ and 2z respectively “In fhls exdmpie. X receives a
'icomponentofBl before one from Bo, ¥ reoeivesaoanponentofbgbeforemefromBz.and
| Z receives a component of By before 33 These orderlng relatlonships constitute a cycle

mnld be msl@ered to be ordered is |
f the sender of one message was one of the receivers of the gther. For the moment, 1. will
_ignare _thiis; kind ot_‘ o;dmng relationship. A Ia.negmmexmds mqmgfanamic
br'oadq\s'ti dcsd.ih,ad hcre to include such relationships. =

A secongl way in whichtv_zpﬁbroadcast

Figuro 8.2
Non-Atomlc Broulcutlng
| _ Bl - {(ml xX),(ml y:.Y)}
32 {<m2 x.X>.<m2,z.Z)}
Bs - {(M3 Y,Y).(ﬁls z.l)}
MoX My | 1 sz
Mix : _ My Mz

B2>Bl Bl’“! Bs)nz



- 58 -
32 An lustration of Atomic Broadcasting

The independence of the process steps to be coardinated in an atomic broadcast (the
steps that receive the messages that make up the broadcast message) makes coordination of
atomic broadcasts simpler than coondinaton of more geners]eperaion. A imple rea werld
amldgy may mp to illustrate this point. Consider anomu.ln which atlmnuniatton is
 through interoffice memos. Sending some important ngtice to all cmplopu about a change
in working procedures is an instance of an atomic bmdcut. The mtlee should be sent
atomically, 30 that employees working on and camnuniathg abant the same project receive
the notice at the same point in their work. This cirf be ctomplished relatively easily
through the office mail system. At one instant, ail of the noticeé are entered into the mail
system and take their places in the queues of mail Waiting to be delivered to arid' read by the
employees. After that, each empbyee wm find tﬁenm:tmempam (rmtm to other
mail) in_his list of messages. ltdoesnotmtter tbatsomeempbyeeon vacation may not see
.the memo for a month or more, as hewill euntmllymuin tinpropumumnhﬁve to

other mail.

Compare this situation with that of a group project, whidl raqimu a jom Ms;ien
by agroupofempbyea Tommplenesuchapmmuum-!ym Mtoathcr work
in progress effectively requires that each group  member set ukh a certain time for the
discussion. Scheduling the meeting is a much more dimcuk ppbhm than phcing a notice
in each employees in basket. A md. more serious problem is that if the meeting has to be
suspended for some reason, the members of the group can not M@my other project that
may conflict with the group effort, as the effects of such work will mot be known to other

members of the group.
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This -analogy ‘is “crude, but’ gives a feeling ‘of the dﬂ'ferencu involved. The

distribution of the memo as an atomic act'is easy, Deciuse theré-are no- chstritints on when

the recipients actually read’ the ‘memo. "It is' sufficlent ‘(O"'p&"& ‘Hye! thémo in the correct

:_sequence'in‘ each employee’s mail.

‘3.3 A Mechanism for Atomic Broadeasting -

~ In this séction,- I present a mechanism for coordinating atomic broadcasting that uses

~ robust sequenced communication between procésses to distribute the”‘éovﬁponent messages of a
broadcast message to their destination ports. The sohmon “uidsTprocesses that I reféf to as

message forwarders to distribute these meisages. Each méssage Forwhrder receives messages

| _at a single input port A message forwarder hasa siriﬁle‘ procelsi stepsped cification Which can
 be descrlbed by a finction M) = {lm,p1}, mapping ach muuge reoeived to a st of output»

- SE

The messages received or_ sent by a message forwarder each contain a set of
component messages and destination ports. The mthponenu of each such message .fgr{m;a

‘subset of the messages that comprise some atomic broudcut. Each process step of a message

forwarder recelves some input message ahd partitions thé components of thiat mésuge among

the output messages that it produces. For each suth’ s&p thé" oﬁtput esmgethcr

contaln exactly the same set of compénenﬁ as the fnput meiﬁgc t that uq‘)

IE

The protocol for atomic bmdqsﬁgg Wﬂ% a,!;l of ;he procga;u -in the system,
n processes, and data managers), ina bierarchy.. Each process
# has a unique parent f in the hierarchy. I will also describe this relationship by saying that

p is a child of /. I say that p and g are relatives if either p is the parent of ¢ or ¢ is the
parent of $. In the hierarchy used for this protocol, each process f that is the parent of some
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other process is also a message forwarder, and there is-a single message forwarder r which is
the root of t,he,hiem‘;hy. and is an ancestor danmm . The transaction processes.

~and data managers: form the leaves of this hierarchy.  Any hieratchy of message forwarders

can be used to perform atomic broadcasting. As we shall see, bawever, the organization of
the hierarchy determines the number of messages that must be sent to distribute each
broadcast, and should be made with some knowiedge of the expected communication

patterns.

- In order to send an atomic broadcast, a process formuhus a sin;lg message

containing a set of components, each of which specifies a message

to be sent gnd a

destination port. This single message is sent to any message forwarder that is above all of

YeSIRgs fwhmﬂ partmoni the

components of the message received among the output messages produced. Each message
forwarder sends output messages only to its children in the hierarchy. On receiving a

‘message, a message forwarder partitions the components of that message such that each

component is sent to the child that is above the deéstinition port of that component in the

~ Figure 3.3 illustrates the operation of this protocol in distributing the three broadcast
messages showﬁ in Figure 3.2. The processes are organized in a thme-level hierarchy, whm
fis rthe parent of processes ¥ and .Z. and 7, the yoot, is the parentof fand X. Figure 33 a
shows the orderings for all processes after B; and By ﬁave been received by 7 and B, has
been received by f. Figure 33 b'shbws an intermediate state ih thé distribistion of messages
0 X, ¥, and Z. Figure 33 shows the final state when all compatients of all three broadciists
have been received. ‘ - |
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Figure 3.3
Coordinating Atomic Broadoaits with Message Forwarders

By = {my x.XMmy vV} 3.3a
By = {[mg x.XHmg 7.Z]}
Bs = {[m, Y.YMII‘3 1.2]) The Initia.l Exooution Bt.t‘

E4Ca
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Figure 3.3b

An Intermediate State
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Figure 8.830
" The Execution Sta_tayAqftrcrr Delimy 61"2;31. FVBg. and 33
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B
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A brief argument for the correctness of the solution is given here. A more detailed
.andmeformtpmdwinmappmdixmghum Mymbmdaunmugu
_ Blaw%ammMWbymMpWththge
forwarder receiving messages connected with both broadcasts. - Because the message stream
betweenanytwopmusequenoed theorderofmbmsqmeedbyamuage.
- forwarder is preserved as the messages connected vdth those brosdcasts travel down the
hierarchy toward their destinations. This sequendng mw thlt no pair of broadasts in
the<orderingcanformacych (ie. thereatimmgaforvhkhll By and By < By).

The proof that no hrger cycles can arise is substantialty more complicated. The
proof of the melugemﬁer protoco! given in the Wix.;*e_ayen cycles of all sizes.
This proof uses the properties of the hierarchy to show that no cycles can be achieved
without a violation oi'uqamtng between a process and its parent in th’c hierarchy.

There are sexeraf desirable properties of this protocol that are not obvious. One is
that each process executes a single process step for each broadcast. This meehanum does not
‘use locking as defined in Chapter 2. "The solution insures that all promvinduding the
‘Message forwarders, receive the W mmdismbuung a brmdanm:m:ally ,
 The transaction " synchronization mechmum described in the next chapter makes use of this

praperty.

Another point to note is that the protocol works for structures of message forwarders
other than hierarchies. 1 will use the term synchronization metwork for the logical

~ organization of processes used in the protocol. A synchronization network is simply a

directed graph that describes the parent - child relationships among processes. The proof of
the message forwarder protocol given in the appendix depends on the synchronization
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network only in that it requires that there be at mostoneptth 4in the synchronization

network between any two processes. This property is,.of course, satisfied by a hlerarc_hy.

A second requirement that must be imposed on the synchronitation network used in

the distribution of a broadcast B is that the destinations of the components of B must have a

common ancestor in the synchrqgl{z\_ation‘netjmrk._ If this were not the case, there would be

no way to distribute B using the protocol, because there it no’pfoces! to which B can be sent

| inmally If we are designing a synchroniution network capable of coordinating any

- broadcast message mvolving a group of processes, then we must tmure that all of those |

processes have a single common ancestor. Thls requirement, taken 'together with the
. requlrement that there be Aat most one path between processes ln the network  means that
~such a synchronization network must be a hierarchy. If, however, the set of broadast
. messages (or at least their destinations) is known, and a synchirohtiation network is‘being
designed specifically to distribute those messages, then it #s posible that's non-hierarchical
etwork could be used. This is ifiustrated by the exampi i Chipter 8. 0

"8.4 Other Ordering Restrictions on Broadcast Messages

| ‘The above protocol insures that each process recelvtng\a mppnmt of a broadcast
4 ret:eive\‘s'y that component in the same order relative @.tme?f—;%hﬂ broadcasts. Thus a
broadca.,-st_’is: atomic as viewed by the receivers, Recall, however, that there l:g,notherwayin
~which the processes may perceive ordering among broadeasts, in that the sender of one
broadcast may have been a recipient of otherlu;oadmts.

In general, each process step that produces a broadcast may have received some
knowledge about other broadcasts. This potential knowledge can be described by the should

follow relationship among messages described below. Each message m sent by a process p in
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a process step s should follow a message m’ received by ¢ whenever:
~ a) There is a message m"' received by ¢ in pmemmpsof in a step
that preceded s, and m' and m”™ are components of the same
OR

b)Thereisamsagem recetvedbyptnmp;orinampthat
preceded s, and m” should follow m',

This relatiomhip describes ordering constraints among memgu that must be enforeed in
order to prevent the system from behaving anomalously if the correct klzerpreutlon of a
messagemsent byapmmpma-pquw;mquvm'Mnd meuagu
containing information that was dulnd from broadcasts nmivcd by p b-fen p sentm.

_ chxamph.wlmuldinmamubmdannndmypnchxkmbcdeposuadat :
the bank and checks drawn on my account to pay menthly billa, i would be disturbing to me
if when one of those checks was sent to my bank to.be cashed, hgamm.m the deposit.
This kind of behavior does not violate the definition of an atomic broadcast given above.
In this example, there are two separate actions: my distribution of. thcdepom and payments,
and my creditor’s sending of t.he check to the bank to be cashed. Each of these could be sent |
ina separate atomic broadcast, however they cannot be pa‘rf_éf the sarie atomic broadcast, as

the debtor’s action is not known until the check is méived Nothlng in the definition of
‘atomic bfoaddisting prevents these two broadcast messages froin being aqumced in the
apparently anomalous order, ‘because the. causal’ re&tmdaip ‘between the two events that

»

produced these broadczst messages is not rawgnmd
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Unfortunately, the protocol described above allows such anomalous sequencing to
occur. Consider the hierarchy shown in Figure 33. A mque m,mt to both X and ¥
must be initially sent to the message forwarder r. It is posslble for X to receive its
comgongqt. and construct and send a message to ¥, and haye thjs new message received by

Y, before the component of m sent to VY is received at Y.

'A simple extension of the message forwarding systém described above provides
correct sequencing. Each broadcast B must initiafly be sent to 3 ‘message forwarder £ in the
~ hierarchy that is an ancestor of the sender of B as well of #i 41l oftheibr&eﬁésaﬁodated

with the destination ports of B.

Notice that if a component of some broadcast B has been received at any port, then
any cornponent of B that is destined for a process p and has not yet| been recelved by P must
be awaiting reception at the input port to some process. th;t s an ancestor of b The
extended protocol prevents anomalous nquencing by tnsurlng that 2 message B enters the
‘hlerarchy above all of the messages that B should follow The sequmclng of messages
between the message forwarders then insures that any message that B should follow wm be
received at its ultimate destination before B. A more detailed proof appears in the appendix.

'_I‘hls sdldtjon to anomalous sequencing is very simple (though the proof that this
solution works is somewhat complicated), and easily implemented. Therefore, I will only
consider the implementation of the more complete solution.
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3.5 Implementation

In this section, T wifl present two simple implementations of the synchronization
advantage of communication technology that makes distribution of one mesiage to several
reoeivmrehtlvely inexpensive. There mm’y optlmuthm that- could be used to
improve these hnpmmu. I present them m\elymshw that such .a system could
easily be implemented, and that 1 have not ignored any difficul problems by making.
, unmammmmmmﬁmm

3.5.1 Atomic Broadcasting Using Point-to-Point Communication

inchmmxmmanmmmmdmw-
communication. mukmumnmumddmmmwm
Rmawmmmmmmmmﬁmamgcfmrdam-'
some port:arrin in the sequence in which they were produced, and are not tost. In wdditicu
'mpropﬂmm;wmmmmmdmefuwudeumbe_

‘maintained.

Aur@n'mamepmmmw:mef«muugefmmmuma
"each process that sends a broadcast message must know the hcation in the hienrchy, of
uchofthedaﬂnaﬁmofthcc«mmof&nbm Thukmwhdgeunmryto
mtamgewm«ma'above‘aﬂufmm Asmdpmbiemisthat
each process may send messages to a large number of ports. Thisisexpemiveusmgthé
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implementation of processes described in Chapter 2, because message queues must be

maintained for each such port.

~ I solve these problems by changing the protocol for distributing the components of a
~ broadcast slightly so that each process need onlycommunidtewith its parent and children
in the hierarchy. This is accomplished by changing the“i:rocess ‘step specification of a
message forwarder so that if all of the components ‘of a message received by a message
forwarder are bound for descendants of that mesuge forwarder. the message is partitioned
among the children of the message forwarder as before. If, however, the destination of some
component is not a descendant of themessageforw;rder. the message is sent, intact, ;o the

~ parent of the message forwarder.

~ Tosend a breadcast u;iri_g this ‘modified’ protocol, a process "formuletes a message

containing a list of the component messages of the broadcast, and sends that. message to its
‘} parent in the hierarchy This message rises in the hlerhrchy untll it is above all of the
. Qestmation ports of the components of the broadaast (as ‘gell as its sender). When the
~ message reaches a message forwarder that is above all of the destinations, it is dismbuted as
. before. Each process communicates dlrecgyﬁonly with its immediate nelghb}ors‘ in the
hierarchy, thus the nuqber of message queues neededto l_!'!!l‘?"! _ro‘blg‘st\ sequenced

communication is small.

We can now consider how the necessary information about the hierarchy could be

~ maintained. Each message forwarder f must know WHhich ‘processes fie below ‘each of its

Ippvi

children in the Hieriréfiy. This knowledgé could be built into each 'm forwarder, or be

built into the structure of process names. If the life of the hierarchy exey‘eeds:tﬁe usefulness of
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individual processes, however, we must expect that processes will be created, deleted, or even
~ moved in the hierarchy, and that these changes must be reflected to the message forwarders.

In showmg‘howmaddapfm lwiﬂmmammforgmtm ‘unique
prooessmm.andwﬂmmm%&ep@hﬂmamma«eﬂwtﬁe
,’ hieurchymyahudybepaﬂdit. msemmwnupmsbhwgwmmtma
lponmmewhkhprmmivumsgxesutham This k

 allows the message
fmumnmdmmmmmrmssdammefmmm port.

 To add a process p to the h‘iéﬂrchy", some mgefcrmtderf is selected to be the
parent of p. Process p.Wmfof this choite by sending & ‘w for adoption” message.
This message establishes the message queues and sequence namn fbrmdlng messages
| from pto f. Message ﬁmnrd«fanreply to p either by mwnj«:ﬂmtm nquest. '

If the request is accepted, themhmunmmmmagafmfmpis
estabhshed with the sending of the reply, and p an begin to ‘send and receive atomic

- bBroadcast messages. Message forwarder £ sends a muug‘e to its parent wmdh is propagated
up the hierarchy informing all processs.thit are now ancestors 6 p of the presence of p.
Before any message can be sent to p, the sender must be informed of the existence of p. Any
message that could inform a process of the presence of p must either have been sent by por

should follow (as defined in the previous section) some message sent by p. The messages
| that inform the message forwarders of the presence of p will always precede any message sent
by # (and therefore any message that should follow a mey p) at the anceszté;;'of
~ p. because of the sequencing - Thus any message forwarder encountering a message with a
component sent to p is guaranteed to know whether or not $ is one of its descendants. |
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Special care must be taken when ‘the request for adoption is  rejected.
Communication failures can cause either the request for-adoption or the reply to that request
to 'oe .losL. We must be sure that loss of mes;ege_r@hnot cause p and f to become confused
such -that one thinks that the krequest-was ;ucces.syfhlv whiletheother does not. Sg_u_t:h copfuglpn
. ’i‘s particularly likely if 'the request is re-transmitted by p ng S does not respond promptly.
This problem is _similar to that of initiating a connection in a communication protocol, ;u;h.

as TCP [Cerf74] or DsP {Reed76). The solution that I am usln; is similar to that of DSP.

. When a message"rorwa’rder} rejects a request for idopt'i&n’.“ it may be doing so because
it has insufficient resources to esteblish communication wfthanew child, If this is the case,
we do not wish to'bur‘deri the message forwarder with the task of remembering that it has
rejected a request. 'fherefore, rve must keep in mind thatif a message vforwar;‘lerg S is sent a
request for adoption ‘several times (because the sender of the request re-transmitted the
request when f did not reply promptly with an acceptance), then f may first reject thcyre,qsl‘est '
and subsequently accept it. (Once a request has been accepted, however, the message
forwarder can know to accept-any subsequent re-transmmlons*of that request) This means
that a process that has sent a request may not negotme with another potentlal parent if it
receives a rejectxon or no prompt reply.. If the original . m (or a re-transmission of the
ongmal request) were later accepted, this coulkd allow one prooea eo have two parents in the
hierarchy. Thus we require that if a process receives a rejectlon (or no reply at all), it must
either keep trying (re-transmitting. its reqnest) unm it is aeeeped or cm:rse a new unique

name and attempt to establish communication with another parent.

This approach may result in a message forWarder adoptmg aproce,u that no longer
exists (because that process has chosen a different name), but this does not cause a probiem.

No messages will ever be sent to or from such an abatidoned process. An abandoned process
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will be detected and deleted from the hierarchy through. the same mechanism that deletes
| _ processes that is described in the following paragraph.

A process can remove itself from the hierarchy bylnﬁébng a message to its parent
notifying its parent of is intention to leave the hierarchy. Wihen a messsge forwarder
receives sich a request, or a message forwarder can relfably determine that one of its child
| processes no longer exists then thatmgemmmmmemgequmfor
that process and mformthcam:ofthemgeMﬁtbe disappearance of the
- process. omumm,mmhmy,mwmamgwmmmwm
_unless it can be determined that no process remembers the old name.

A process p can be moved from one location in the hierarchy to another location in
the hierarchy in a series of smail steps of the fwmshowninﬂgme 34 Each suchstep
changestheparentofffr«nfwg,wherefhthepamﬁg.erguthep&wmofj ‘Both
camareessemmlystmiht mlwmmiydwihetbefcm o ' ' |

_ l)pw\dsammggwf(memw,q{ﬂm
movemt.mdmpsmdmgamgumf

2)freoeivesﬂusrequeu.andperfmmsanamicmdmattonofiu

state with the follewing changes: A requiéiit to'close is Put-at the end
of the output message queue for p, p’smga&tspu_uptheog@ut’

message quéue for g, and f's view of the hierarch hmncedw- |
reﬂactpsmom . ‘

Qprewxes&emqumsforcbcfmfdmiummm
ofmemgesiorf pnowmdsanqmufer&doptmmg

v - .
4)greceimtherequutﬁmfmblhhuaqnmforp and
acceptspsrequestformm gmugd:minviewofthe_
hierarchy to include p -

The last two steps take phce_,in_‘e‘kjther order, depending on. the relative timing of the
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Figure 3.4

Moving a Process
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messages sert from f to # and g. No knowledge of the move must be propagated beyond f
and g N«ezhotmmemm{wmwﬂbewmaummpremgfm
refusmg the request for adoption. '

3.5.2 Atomic Bmdcuﬂng with a Broadcast Medium

In mnymhﬁmanhhmru,nnmmmsﬂywmdamgema set
of receivers than waslnﬂtdesmmm AMMMuaﬂng network
(Farber72] or an Ethernet [Metcatfe76] has this property, s daa ‘communication through
‘shared memory on a single site. Our scheme for atomic bruﬁasting can be modified to
take advantage of this ability to distribute component mam of a broadcast to several

receivers.

In the absence of errors, a broadcast network acts like a message forwarder. Each
site presents its messages to the network. The network receives one message at a time, and
distributes that message to the intended receivers. Musﬁ;u sent through the network zre
totally ordered, just as messages sent through a forwarder. |

To send an atomic broadcast message o a set of receivers om the same:network, all of
the component messages of that brgad’cast are packaged into a-f; single . message for the
network. If the packet size of the network is too smail to hold all of this, the contents of each
componeht 'message can be pre—dlaributed‘ to its intended receiver. The sender picks a
unique idmtiﬁer for the broadcast and attaches it to each component message, sending the
com'poneﬁt messages singly or in groups to the intended receivers. When such a ooinpone'nt

| message is received, it is saved by the receiver and not placed in the stream of incoming
messages. When all components have been distributed, Ath_e sender sends a message
containing the unique identifier to all receivers using the broadcast capability of the
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. communication network. The unique identifier is used by the receivers to identify the
component message that was pre-distributed and insert thatmeesage into its stream of
incoming messages The broadcast networks designed thus far all have a packet slze Iarge |

enough to accomodate such a unique identifier.

If very large messages are sent, it would seem that.we are not ebtaining any benefit
from the availability of the broadcast mechanism over the point-ta-point scheme descrihed
above Note, however, that if we were to use the point-to-polnt scheme for coordinatlng
atomic broadcasts among the processes executlng on sites connected by a broadcast network
. then in general eech component of a broadcast message would have to be mnsmitted over

,,,,,

o destination. The protocols of this section transmit each oomponent of a broadcast message

‘exactly once,’ thus savmg extra message transmissions.

. If the network and sites were completely reliable,!m:luding all components of an
atomic broadcast in a single message would be. sufficient uq)_?distribhte _the component
messages atomically. Unfortunately site failures or slmplelackof buffering can cause a site
to miss a message from the network. To solve this problem, there must.be a mechanism that
uniquely orders the broadca_st messages, even if failures occur during the transmission of a
broadcast; Such a mechanism would allow each site mknow the.order in w‘hlc'h incoming
“broadcast messages should be processed by that site, even if failures cause some of the
transmissions to the site to be lost or to arrive nut of sequence. A mechanism must also be

provided to allow a site that has missed a message to obtain a cbpy of that message.

. This excludes re-transmissions necessitated by errors. . _ °
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This can be ‘acmupushad by appointing one site as the coordinator of the
broadcasting. The coordinator has the responsibmty for arbitrating the bmdust messages
on the network and does s0 by assigning a sequence number to each. To send an atomic
" broadcast, a site assigns a unique identifier to that bmdcut md trammits the oomponenu
~of that broadcast in one or more transmissions on the broldast net_work. Each transmission
_is identified with the unique identifier, so that the receivers can identify the transmissions
that are used to distribute an atomic broadcast. " |

‘These mmsmlssions are seen by every node on the bmdcut netwm'k including both
the recipients and the coordinator site. Each recipient reeeivu and stores its component of
‘the broadcast from the transmissions used to distﬂbute tlnt oampmmt. This _stored
component is not yet mcluded in the input message queue of the receivlng process at that
site. The coordinator receives and stores all of the components. When the coordlnuor has
received all of the components of an atomic broadcast, the coordinator assigns a sequence
number to that broadcast and transmits 2 mesiage’ to all” sties cofitiining ths sequence
number, the mme of the sending site, andtbe!mdmg :ﬂe’tumqudmﬁﬂer for the
broadeast. This message informs afl recelvers of Wwﬁm brosdcast of the proper
xquminwhkhmnbmdanuwbemmmdmwfmahabmdmts

N 2T i

The message from the cnordinator also serves as an-
broadcast that the broadcast has béen distributed aid the sender can delete it from tu‘oucp/ut

‘message queues,

It is rehtivdy simple to see that this scheme works if no errors occur, as it is
essentially the same as the scheme for distributing large broadcasts in the absence of errors
described above, with the exception that the mordlmtot distﬂbmes the single message that

demands all receivers to include the broadcast m their input munge queues, rather than
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having the sender of the broadcast do this. To see how this scheme also works in the event

that messages are lost on the broadcast netwotk, htusmﬁderthepouilﬂemrs

One error that can occur is that one of the transmlmom used to distribute the
components of the broadcast is not received by one or more sites. If lt is the coord!nator that
misses one of these trinsmissions, then the coordinator wifl riever detéct the broadcast as
being comPle&. and wilt not senid the sequence number messige. Aﬂera suitable- timeout
interval; the sender of the ‘broadcast can dmﬂmmmg ktmia (beausé.l; does not
receive the message-from the coordinator) anid can retransmit the components. Any site that

received the components correctly the first tirrie can- fdefitt

y and’ discard the retransmission
because of the unique identifier assigned by the sending site.

" If one of the receivers fails to receive a cw\pohemwre&!y, ‘but no-other errors
occur, then eventually the coordinator will transmit the sequetité number for the broadcast.
The recetver will discover that it has not stored the component Yor the broadcast identifted
in the me:sage'sém by the coordinator, and tan request fé‘tmrnmmﬁhﬁfthatmponentby
the coordinator. Thus the coordinator also acts as a- bickup fdrﬂbﬁinmg copfes of lost

messages.

Another error that can oceur is that the the message sent by the coordlnator may be
mlssed by one or more sites. If the sender of the broadcut doa not see thls -message, it will
begin a needless retransmission, which »a‘gain’ can be d!scove_rgd( and discarded by the

receivers. The coordinator can rétr;nsrnit its mes;

Age to acknowledge the distribution of the

broadcast to the sending site.
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~ If one of the receivers misses the coordinator’s muagz.thismlymahe immediately
‘detected. The receiver will detect that it is out of date when it next receives a message from
the coordinator That receiver can then reqnest retransmission of the musagu that it has
missed from the coordinator. | L

The prowcol described above for atomic brosdeasing using a broadcast
. coﬁimuﬁ%_wion network is relatively simple, makes Mﬂﬁiﬁmmﬁ O errors
occur, and works correttly if messages are loxt. or duplicated by the network. There are
‘several points about this. protocol that.must be clarified belore it cap be.used as the basis for
a practical implementation of atomic brosdeasting. -

The coordinator site must récord alf of the bréadcast mestages, and must keep each
 broadcast untit it kngws that that broadeast has. been received by all receivers. In order to
.avoid having to save broadcasts forever, we can have.each. site Wmﬂy send, 3. message
cantaining the sequmnumbetof .the MWWMW%‘M«W received
saved broadeast message; and when a site i3 out of date and shouldbe sent nformation
" about one of the saved broadcasts. The message sent by the coordinator must idum:,; which

of the sitcs are receivers of the broadcast. This mformation aan be dmrmmed from

: m the message by using a
bit vector with one bit for each sité indicating whether or not that site is a recéivef of the

* examining the components of the broadcast, and éan be

broadcast. The bit vector is used by a receivi?ng site in order to dete whether or nct
that site shouid have reeeind a mmem of t‘he broadeast.  This in turn tefls the sne

whether or not it mtssed the transmission of the component by ﬁn ﬁn&er
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Each site must keep track of the most recent sequence number sent by the coordinator

~that has been seen and correctly processed: by:the site.:.dn a typical application of this
protocol, it might bethe case that eac,h site is a recetmin relatively -few of the:atomic
'Abraﬂdmt&~~ If athisnis the case, it may. be necessary to filter thiecmessages sent by the sender
c.and. by the cagrdinater in the receiver’s. nmkmdn arder to aveid: interrupting the
_receiver. unnecessariiy This could be done by maintaining:a register in.a site’s .network

. interface, which contains.the sequence number of the mest Mzbimduwthu that site has
correctly processed. When a message from the coordinator is seen by the-mkm it -‘
examines the message to determine whether or not the muence number in that message is

“one greater than that in the register in the network interi'aee. I this is so, and if i:he message

does not describe a broadast in which the site is a receiver. then the register is incremented

l’

’ and the receiving site is not interrupted if a message i'rom the eoordinator does not meet
. T T RAE FIR 1 3 €2 ot 2L S
these conditions then it is reported to the receiving site, which either detects that the

BT

' sequence number indicates that the receiving site is out of date. or that the message pertains
to the receiving site. If the message pertains to the receiving site. then the receiving site
incorporates the broadeut described by the message into ;its input message queue (in stable
| storage) and then updates the sequence number in its J&Q«ﬁﬁérfm.‘ Otherwise, the
receiver requests retransmission oi‘ the missed meuage(s) from the coordinator

1. Netice that if a second message comes in before a message received by a site has been

. Ancorporated, the. sequence number in the.netwack interfase of .the alte:may be out of date.

" This causes no problem, as the site detects that it has missed the second message and

-+ immediately-obtains it.: The sequence number:cannot:be uptigsed :before the ‘message has
been recorded in the input message queue, as a failure of the site may cause the message that
has been received butnotyetreoorded in the queue to be lost.
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3.5.3 Use of Broadeast Netwetks md Point-to-l'oint Commnieetioa ’l'ogetlser

The schemes for pmidhg synchronization of atomic broudcasts usinig a broadeast
network can be used in conjunction with ' the message - provitols for :ﬁa:» to polnt
micxwon in a network with a number of different physical emimifiication Mﬁl To
dosomoetemmnﬂy wwmmmmmmwsmnmm
should be made children of & single message forwarder represnting the métwork. Other

- bmdast networks und sites are Hinked Mswm“ L il iI"!“”Y‘
connecting networks. :

To see how thns is done. consider the physicel oommunlatlon topology shown in
‘Figure 35. The physlcal cnnﬁgumion is three broedast subumvorks. with sites F and G
acting as gateways between thl and N:tz and betwm Naz and thi respecnvely One
}possnble efficient hierarchy for this network is shown in thure 3.6 This ﬂgure is a skeleton
hierarchy showing one message forwarder for each siae The proeesses at a slee would be
descendants of the single message forwarder shown for thst stae. C.onsider a bmdcsst
'.message sent by a process at site gto processes at s:tes D, E H md I Site G would use the
broadcast network Net2 to distribute components to sites D, E and F This message
forwarders at D and E would route their components to the proper desunstlon processes.

The message forwarder atF would use Net3 to distrlbute the messages for H and L

3.6 Evaluation

The algorithm described here for coordination of an atomic broadcast I3 only one of
many that could have been used for this purpose. 'ﬂw &uirubmﬁy of ‘thls a%orithm as
posed to the others depends main!y on the: extent tg: wm tm hmnhy of mesnge
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Figure 3.6

A Physical Communication Topology
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Figum 8.6
A Logio&l Topglegy tov thp Hotmk n( Flgurc 3.5

o/é ol o/c'»\o

forwarders reﬂects the logical ‘and physical mmumauqn paths in the distributed

- informatlon system

I have already arguéd that many applications for a distributed informtim system
exhibit a strongly hierarchical organization. This is a reflection of hierarchical management
policies. If the hierarchy of message forwarders is chosen so that processes that need to
communicate frequégtly’ are nearly always children of the same message forwarder, the
message fbrwa?det scheme involves little extra message passing beyond direct cdmmunlcation '

_between processes.



-83 -

This is particularly true if the physical communication network is also ‘hierarchical.
If the physical communication network is hieﬁrthic?af (oountingbroadcast networks as a
single node in that hierarchy), then the atomic broadcasting mechanism descﬂbed here is as
reliable as any other communication mechanism. “Each message follows the shortest path in
the hierarchy between its source and destination. Two transmiisions take place for each link
in the h'ierarchy.that a message traverses (one carrying the message and one cirrying an
acknowléd_gement). This’ is the minimum number of messages nee;led to deliver a message

reliably, and the synchronization adds no extra messages.

If, however, the physical communication ‘nétwork is strongly non-hierarchical, with

many alternate paths“ﬁe'twem any two sites, imposing a logical ‘hierarchy may cause

communication between some sites to be very inefficiént, Where a direct link between those

sites exists. This problem can be alleviated to sofrie extent by sending the contents of all

large message‘s.‘over the shortest possible route, and sending a',nieﬁge"ﬁad‘er through the

h_ierarc_hy to ‘designate, when the pre-distributed message contents are to be included in the

incoming message stream of the receiver, as was done for broadcast net}work_s_wlth small

pacicet sizes. This technique reduces the communication overhead due to the hierarchy, but

| does not reduce the vulnerability of the hierarchy to failures. If much communication is
lodl, however, this vuinerability may not be a problem.

- The message forwarder scheme has several advantages over other synchronization
mechanisms for distributed systems that could bé used to coordinate’ atémic broadcasting.
One advantage is its simplicity. The message forwarder protocols can all be described by
simple statements. Each step is deterministic, and the .only source of non-detprniinlun is the

order in which two messages sent to the same process are received.
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- The inability of two processes to determine reliably whmrmnotmemgenm
between them was received does not cause a problem in the message forwarder schewe.
Using the protocols described above, once a mesage has been 3ont, the sender assumes that
that message coukd have been received, and does. nat take any action inconsistent with that

assumption.. mammmmuummmkm
through

Another interesting feature of this solution is that the sender of a broadcast need not
participate in the completion of a broadcast. Once the broadcasi message has been delivered
to a message forwarder, it will eventually be delivered to alt receivers, even i the sender
mm. The sender of a Mmm homumkmmm broadcast will be
delivered, as that depends on the availability of the memssage forwarders and receiving ports,
and on the order in which messages are received by thse ports, The brosdcasts from one
sender are, however, delivered in the same order in which they were sent. |

A third distinctive feature s that the order in which a breadcast s received relative
mmhucmﬂkﬁngbmmummmmmm The decision is distributed
mgmMeMnmmghmdemwMMd
‘which performs some arbitration. 1naummmmwamm
concurrent memges;dnceatMmphubmamdbtmge its order relative to
other messages has been fixed. Posponing this decision by distributing. it among the
message forwarders provides greater flexibiliy that can b important. in same circumstances.

Even after some of the component messages of 2 bmadtut have been received by
their destination ports, other messages from the same broadcast may stilt be heid by the
earlier. This flexibility is important if the communication network connecting ports
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_ partitions, in that broadcasts local to one or tne other of the partitions can continue io'tdke
~ place, even if there are messages from more “global” broadca;ts th;t have not yet been

delivered. . The extended protocol and the implementation -Above guarantee that

IR L B A

_this flexibility does not allow messages to arrive out of erder, intM!ﬁlponanViﬁx a
message B will have received any message that the sender.of B. could haye been aware of
beforg-‘receiving B.

The message forwarder scheme takes advantage of "loaﬁty of reference® in
communication- more effectively than many other synchronization schemes that could be
applied to atomic broadcasting. Some schemes, such' as those using timestamps, require
| periodic communication among all of the sites. Such a :cheme would be expensive for a
' -distributed infoﬂnation system in which most operations invoive only one or a fow sites.
Sending an atomic broadcast using message forwarders, in contrast, tequiruv only the
partici'pation of the sender and receivers, and possibly a few additional sites holding message

‘forwarders.

One point that remains to be explored is to determine exactly what kinds of
operations can be performed using an atomic broadcast. This question will be answered in

the next chapter.

3.7 Summary

This chapter has discussed one simple synchronization problem in a distributed
information system: that of sending a set of messages to a set of destinations "atomically”. A
mechanism was ‘developed to provide the proper synchronization by using message

forwarders to distribute atomic broadcasts to their receivers. The mechanism was extended
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to prevent anomalous behaviour if correct interpretation of one message depends on prior

reception of some message.

implementation that was independent of the physical communication network, using robust
moved within the hierarchy of message forwarders. A more efficient implementation that

s
W

takes advantage of a broadcast communication network was also outlined.
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Chapter 4
Atomie Transactions in the Proom Model

~_In this chapter, the problem of performing transactions atomically in a distributed
information system described by the process model of Chap&r 2 is considered in greater
detail. A method is presented for describing the data flow that 2 transaction auséiam_ong
the items that it access?s. The difficulty of coord!mt'in'gf transactions to be performed

atomically is shown to be dependent on the interaction of their data-flow descriptions.

‘A synchronization scheme consistent with the goals set forth in the first chapter is
developed. This scheme makes use of the hirarchicki ‘mechanism for atomic broadcasting
described in Chapter 3. The mechanism is simple, efficient, and frequently avoids locking.’

4.1 Analysis of Transactions

The té’chniques needed for synchronizing a set of concurrent transactions are
-dependent on the data flow among data items caused by performing the transactions: The
set of input items .to each transaction and the way in which those inputs are reflected in the
updates made by that transaction affect the way in which transactions interact. I will use an
- abstraction wl.\ich. I refer to as a transaction graph to describe the data flow between items

caused by performing a particular transaction.

A transaction graph is a directed graph in which the nodes are the data items in the
data base. These arcs show how the output items of a transaction are \QQrtyed from the

input items to that transaction. The transaction graph for a particular transaction T
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contains directed arcs pointing at each item that is updated by T. For each such item i,
there is an arc running from each item | such that the new value ‘lﬁm to i by T depends on
the value of j seen by T.

Figure 4.1 shows the transaction graph for a simple banking transaction. This
transaction modifies the values of three items, x, y, 2. The mnuction }poruld represent a
bank’s action on cashing a $50 check for a customer, where x upmthc amount of cash
disbursed by the Sank, y represents the account balance, and 2 represents the customer’s

“overdraft protection” loan account!

Figure 4.1 ,
A Bimple Transaction Graph

® @D

T_hd- Transaction T:

Set x = x-50;
If y <50 then do;
Setz=2+y-50
, Setyi-o;
end,
else Set y = y-50;

1. In this simple example, we assume that the overdraft protection is unfimited and ignore
any other bookkeeping that must be done by a “real” banking system. =
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The transaction graph depicts the way in ‘which the odt'puts of the transaction are
. computed. The arc from y to z in the transaction graph of T reflects the fact that the value
for y must be obtained bcfbrel the value ’produ"'ced'by T for z can be determined. Such arcs
 describe constraints on any impMntim of a transaction it that the access to an item that
is the source of some arc mﬁst be performed before the access to the item that is the

destination of that au'c.l

In the process mode_l of a distributed infofmatioﬁ syste"m.{a trahsaction is car_rled out
as a set of process steps. A transaction graph can be {iséd to construict a slmlﬁr’ibstracﬂdn‘,
IWhid{ I refer to as an activity' gr_a_Lh_, describing the data flow among the process steps tﬁaf 3
implment a transaction. Two points cause an ‘activity gnph for a transaction to differ from

its transaction graph:

1) Several of the items accessed by a transaction may be held by a
single data manager, allowing all of the accesses to those items to be
- performed in a single process step.

2)‘Some data items may be replicated, with copies held by several
sites. This mexns that one xccess in the tramsuction: graph may be
performed by several process steps in the activity graph.

The nodes of an activity graph are the processes that participate in performing the
transaction. For each arc from an item X to an item y in‘the transaction graph for T, the
activity graph contains one arc pointing to each rhanager that hokls a copy of y from some
r_nahager holding a copy of x. Arcs connecting a process to ftseif are not shown. If an item x
- Which is the source of some arc in the activity graph of T is. replicated, then we have a

choice of which copy of.x_to use in computing the output of T dependent on x. This choice

1. Note that if a transaction graph contains a cycle, thls means that some item in the cycle
must be sccessed at least twice in any implementation. '
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is reflected by the arc in the activity graph of T connecting some process holding a copy of x
to the process that holds an item whose new value dcpend:on x. If transactions are run
atomically, then all copies of a replicated item seen by a transaction have the same value, and
thus the choice of which one to use wi}i not effect the output values produced by the

transaction.

Figure 4.2 shows the activity graph for an implementation of the transaction depicted
in Figure 41, in which each of the items i3 replicated at two.of the three data managers.
iplementation of T. M; holds copies
“of items x a.nd y. The new values produced for these ltcms “depend only on their previous

values,so a decision has been made so that M 1a tp compute the new values for its copies of
t,heQe items from their previous vilue# at M. Similarly, M, is to use the old values of the

- The graph indicates several decisions made about the

copies of y and z that it holds to compute their new values. M 3, however, holds a copy of z,
but no copy of y from which tooompute thenewnlueﬁ!z. Am hasboen made that
M, is to obtain this informauon from the copy of y held byMz.

Notwe thut in this mmple. aH three mmm m iuthe eamputauon of the
outputs of the transaction. This muiu in some dupucauon of effort. as, for example, both
- Mj;and M; compute new values for x. We could have censralized the computation of the
outputs of the transaction in one of the three.managers.and distributed the results to the
other managers, which would have lead to a radically MM activity graph.

The model of a transaction used in this thesis, in which’ "Vaf:loﬁs parts of a
transaction are performed in parallel, is different from the modeél used by n'.nny' other
researchers in which the accesses required to carfy out a trtnactim take place in some well
defined sequence. Aﬂowing for paraliel execuum of variws pum of a tranm:mn not only
allows the transaction to be completed m hm abo, W%ﬂn task of &mdlmlm
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because the synchroniution mechanism can choose the order in which two pam of a

transaction that are logically independent (such as those performed by M 1 and M 2 in this

. example) are performed

The arcs in an actlvlty graph represent comtuints on the order in which the process
steps used to perform a transaction can occur. Some step of a prooess that is the source of

one of these arcs must be completed before some step of the pmoess that is the destination of

_that arc. Recall that performing a transaction atomically. with: respect to other transactions
also_constrains the order in which process sieps oceur. The difficulty of coordinating a

group of transactions to..be performed atomically. depends on the interaction among their
activity graphs. |

- For a group of;transactions.'we can construct a joint activity graph, which is a
merger of the activity graphs of the individual transactions. The joint activity gnbh
contains an arc between ;woprqces;es whenezer\me{;gtgv;t'y%mph\of s0me transaction in the

Flgurs 4.2
An. Aotlvity Graph For- nlnﬂm&hﬂou of T

® G

Assignment of Items to Managers

My xy My:yz _ My: Xy
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group contains such an arc. Each arc is labeled with the names of the mmacttons that
contribute that arc. Figure 43 shows an examp!e of mch a gnph for three nmple

*tnnuctions.

Each of the thrae transactions is respomible for one of the three arcs in their joint
activity graph. This ts because each tramactlon mmfm lnform:uon for an item held by

‘one manager to an _imm heid by some other manager.

Activity graphs and joint activity graphs ca‘njbé viewed as finer gratned versions of
the ‘L-U graphs used to describe transactions in Sﬁb‘!{m’rﬁ " The ih’alysl’s of
transactions {h SDD-1 does not examine the derivation of outphts from inputs, but instead
assumes that each output of a transaction may depend on any of the inputs. In fact, each
output mﬁy. depend on only a small subset of the vahm @d. afact thg; is represented in.

activity graphs.

Activity graphs provide a simple way of descﬂ&lngthe way in which input values
seen by a transaction affect the wtpm values produced The arcs in an ’a.ct'ivvity gnph also
describe ordering refationships among ﬂvepmwmps that carry out a transaction in that |
~ the process stép- at the source of same arc must NWW*MM scep that is

the destination of that arc.

The next 'sectio'n of this chapter examines the impact of the. pattems of accesses of a
group of transacttom, as described by their joint activity graph, on the synchroniution |
techmques that must be used to mdimte those transactions. |
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Figure 4.3

A Joint Activity Graph

Transactions:

TpSetB=BsA
Ty:Set A=A+B
Ty SetC=Cs A

Assignment of Items to Managers:
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4.2 A Simple Approach to Transaction Symmiutioa

vln the previous chapter, I presented a Mﬂmhmm to distribute a set of
messages to a set of receivers as an atomic broadcast. This mechanism could be used to
distribute a set of input messages to the process steps of a transaction. In this section, I
explore the applicability of the atomic broadcast mechanism to the problem of performing
transactions atomically. I show that that mechanism can be used only when the joint activity
énph of the group of transactions to be performed does not contain a cycle.

The simple synchronization scheme developed for atomic broadcasting cannot be.
used directly éo ooordume a transaction that has an ictivky graph mmmng an arc
comiectiﬁg two processes. This is because there is no mywd’cxribesm:h atnMM ina
| set of independent messages to be delivered ta the data managers as an atomic broadcast
" The process step at the source of an arc mustbemhmmeamugeducﬂbm the‘
access to be performed by the process step at the dmuwof that arc can be formulated.

One might expect that the atomic broadcast protocol could be nndiﬁed somehow in
order in to synchromu a group of transactions using sequuchg of mulages between
processes to control the order of process steps. If the jom activity graph of the mnucttem
does'not contain a cycle of arcs, then this can be done, as wmbcsmmmefolbwhg
section. If, however, the joint activity graph of the set of transactions to be performed
contains a cycle, any protocol for coordinating the transactions must use some form of
locking, as will be shown subsequently. | |
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4.2.1 Synchronization of Transaction Croups Without Cyclu' )

- First I will show how to ooordmate a group of tramactlons whose Joint activity graph
contains no cycles. The approach I will use is to modify the message fomrder scheme of
the last chapter to allow a process to act both as a message, forwarder and a data manager.

Such a process receives a message and produces a group of messages for. its, chlldren in_the

hierarchy in each process step. The messages produced need not be a simple partitlonlng of
the message received; but can depend on the local state of the-feceivirig’ process.

One can perform the translction depicted-in Figure 4.2, for ‘example, by making
process M 5 the parent of both M and M 3 in-the hierarchy. ‘The transaction could then be
performed by . sending a message oescribing the transaction to* Mz using* the atomic
broadcast protocol described in Chapter 3. ThuMpW thifough the hierarchy
until it reaehes M} When this message is received M, that data mamager performs ‘the
specified updates to its copies of y and z. In the same process step My fomnis the portion
performed on x and z for M. M 2 includes the current vahle ot; y in the messgge sent to

»lncloding some of the data managers as message forwarders: iﬁ‘the hi¢rarchy atlows
some of the process steps of a transaction to be petformed beforé the input messages sent to
other steps are constructed, while retaining the hierarchk:al structure of message sending.
Recall that the message forwarder protocol of Chapter 3 lmures that all of the prooesses.
message forwarders and data managers ahke, see 2 W os atomic. The requect to
perform a transaction in this scheme is treated Iike an atomic broadust, and thus is seen as

atomic by the data managers.
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A group of transactions can be performed atomically with the modified message
forwarder scheme whenever a hierarchy of message forwarders and data managers can be
constructed so that the arcs in the joint activity graph always run from a process to one of its
descendants. This can be done whenever the joim activity graph contains no cycles. In a
later section, T show how assignment of data m'mdiann be chosen 30 as to
eliminate cycles from the joint activity graph of any cxfndod grenpof transactions.

4.2.2 Synchronization of Transactions with Cycles in the Joint Activity Graph

If there is a cycle in the joint activity graph of a group of trensactions, then there is
no way to construct a hierarchy so that a process that is the.seurce of some arc is always an
ancesto;'ofthedeumanon process of that arc. Tmmmm«pmm
be used. The following paragraphs give an argument o Wmmm any protocol
that correctly coordinates a group-of transaction whose jaint activity graph contains a cycle
must use'bﬁkiug, |

_ Consider first a group of two transactions that form a cycie. such as Ty and Ty in
Figure 4¢3. The execution of a transaction consists of i set ofpfooes: weps. The arcs in the
joint activity graph indicate that Ty must be performed by a set of process steps in which a
process step of M ; precedes a process step of M. Similarly, in performing Tg, a process step
of M, must precede a process step of M.

To perform the two transactions atomically, either both steps performing Tl must
precede both steps for Ty, or vice versa. To peiform the trmuc:ﬁm without locking, recall
from chapter two that at most one process step of each data mamger can be used for each

transaction, and that the sequenceing of messages between pm is the only restriction
| that can prevent a message that has been sent from being recelvedpromptly | We vtvmm
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therefore prevent, somehow, the situation that the process step of Ty at M; and the process
step of Ty and M are both completed before either transaction is oompleted This can be
shown to be impossible by demonstrating that this undesirable situation can be forced to
occur in an execution of any protocol for the sy’nthrnnizatidn‘nf Tl and 'l'z that does not use

some form of locking.

- Consider the state of the system during the execution of Ty in which M, is
: p‘erforming its process step of Ty. If Ty were begun. at this point, the synchxpni;ation
protocol must prevent the execution of the process step of M, related to Ty from preceding
~ that which accomplishes the completion of T}. Without using locking to control the order in
which messages are received, the only way to control the order in which M o receives the
messages pertatni-ng to the two transactions 3o that the undesirable order is avoided is to
have both messages sent by M, and use sequencing of messages between M 1 and M, to

force the messages to be rec!ived in the correct order.

Thus to force the execution of the process step of M, that completes Ty to precede-

that that begins Ty, both of these process steps must be triggered by messages sent from M.
This means that the execution of Ty must include two process steps of M, J» one that precedes
- the step of M, and orie that follows that step. Using two steps o of one process to perform
one transaction is a form of locking, therefore it is impossible to coordinate the cycle of two

transactions without hcking.

This argument can be extended to cycles of any size by demonstrating that unless
locking of some form is used then it must be possible to reach a state in the execution of the
system in which each transaction has completed a process step in one of the processes in the
| cycle, making it impossible to complete the exemtion of the tnnuctiom atomicafly. We are

left with the conclusion that some other mechanlsm must be needed in order to synchroniz.e a
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cycle of transactions. The locking mechanism used in this thesis u explicit locking. This
locking mechanism consists of delaying the reception of S muuge until some other memge
Jfrom some other process is meived.l Locking is to be avqidgd w!nrwcr possible, because a
failure of the sender of the expected message, or of the mmm network, may delay
processing of mesngu from other sources. This violates our ngl ofpmal operabmty, as
now a group of functioning sites cannot necessarily carry out a transaction purely local to
those sites; because one of the processes involved in the tramaction may be lcked, waiting
for a messige from some other site. %ﬁmwﬂﬁmmmdeuﬂm
Chapter 5.

The particular mechanism that I will use for locking in the process madel is to place
a pre-requisite on the process step specification of a process step. A pre-requisite ls 2
predicaté that may include variables in the local state of the process. A process step is not

ng 2 pn-rcqum on all
process steps that receives messages from one of the input ports of a procm, one can inhibit

performed unless the pre-requisite for that step is samtkd. - By placii

‘the reception of méxsages at that port until some condition is met. =

With this locking mechmtsm, we can now exmd themuctim synchronization
~ mechanism in the previous section to coordinate ubi;nry Waf transactions.

1. Note that in sequencing, it ispm:ih&etha@ﬂnpm dnmhmmt
only until a message sent from the same sending prooess is recetved
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43 Classes of Transactions =

On the basis of the activity graph of a transaction. we can group trapsactions into

\\\\\\

terms of the mechanisms needed.
431 :Trans'actions with Independent Components

The slmplest class is that of transactions whose activity graphs contain no arcs. |

mm_. A transaction
with an activity graph with no arcs can be perforied atomically using only sequencing by

refer to ‘these transactions as tnnnctiog g

using the hierarchical protocol described in the preyious section, st_tqh,n transaction places
no constraints on the organization of the hierarchy, as any hierarchy can be ysed. The
_hierarchy can be chosen to optimize locality of reference, without gotgcem for introducing .the
neod for locking in theso transactions. |

~ An example of stich a transaction would be a transaction which adds 5% interest to
all of the savings accounts in a bank. The new value of éaéh account depends only on its

| pretrlout value. No matter how the accounts are distriblited among data manager processes,

each manager can compute the new batiinces of the accounts that it' holds solely from their

previous balances.!

It is instructive to see jutt how large this class of transacttons is. All "query

transactions 'which do not perform any updates to the data bue. fall lnto this chss. A

. query transactton can .always be performed by mdlng out a sgt ot‘ roquelts to the data -

L In this simple example, I have d&libemwlv ignored. otlur processing that such a
transaction may be required to perform in an actual banking system, such as accumating: a
total of the accounts or of the interest paid.
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managers as an atomic broadcast in order to obtain a consistent "snapshot” of the data base!
Such requests can be sent as an atomic broadcast, using the mechanism of Chapter 3, in
order to obtain a snapshot that reflects either ail or-none of the effects of any other
transaction. The sender of the requests can then gather the rcpliu and use them to satisfy
the query 2

A second class of transactions that always have independent components are
transactions that only make‘ updates to the dgublsg. lfthenew yallgg,that a transaction
gives to items ire completely independent of the previous state of the data base, such a
transaction has independent compoﬁents.

| A third class of transactions that always have independent components are
transactions in a fully redundant data base, such as that considered in (Rothnie77,Thomas76l.
Many. of the protocols that have been developed forsynchrmiuﬁon 'of_itvrans'actim: in a
distributed data base work only for the fully redundant case. ‘This point suggests that
synchronization of transactions in a fully redundant data base may be somehow easier than
synchroniiation in a data base in which each site holds only a‘,pg,ma'l subset of all of the
_data items. In fact, the fully redundant casé is easier, becauge all of the transactions in a
 fully redundant data base have independent components, allowing synchronization to be
accomplished without locking.

1. If the data needed to satisfy a query cannot be accurately predicted in advance, this may
be a very large set of requests. An exampieofmch aquerymh be “tell mie the value of
the record that this record points at.”

2. Alternatively, the requests can ask the managers to make copies of the data items
involved in the query, and the copies can be processed to satisfy the query in any efficient
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Actually, a fully redundant data base violates the assumption made about locality of

reference, as all transactions that update the data base involve all of the sites. All such

~ transactions must be sequenced by the root node of any hjerarchy used for the hierarchical

synchronization scheme.| A much more interesting case is that of a data base that is not
completely redundant, but still has the property that all of the input items to a transaction
exist on any site that holds an item updated by that transaction. All tramactiom in such a

| :syst'er'n have independent components, and may also exhibit locality of reference.
4.3.2 Transactions With Predictable Data Flow

A second class of transactions based on activity graphs is those with activity graphs
with well defined arcs. I call this the class of transactions with predictable data flow. Some

of the 'prbcesS steps that perform such a transaction must)be mpletedbefore the input

messages to other steps can be produced. A transaction i this class cannot be performed
atomically using the atomic broadcast scheme in every hlenrchy. but instead requlm that
‘each process' that is the source of some arc in its activity graph be an ancestor of the process

that is at the destination of that arc.

" An example of such a transaction would be the simple check cashing transaction
depicted in Figures 41 and 42. Any implementation of this transaction requires that an

access to the iiem‘y precede the access that updates the value of z.

l. Note, however, that query transactions can always be lmpmnted as belng local to one
site and run efficiently without locking.
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4.3.3 Unpredictable Transactions

A third class of transactions, partiafly distinguiched from the second, is those for
which it is impossible to predict which fteis wifl be accessed ahd how until some of the
accesves are performed If we were to construct an activity graph for a transaction whose
access pattern is completely unpredictabk, that graph must indu&em arc between each ﬁair
~ of managers. Such a transaction would cause a great many cycles in when included in a
jﬁim activity graph, even though the probability that each arc is used in any particufar

invocation of the transaction would be mn This suggests  that such transactions need

special consideration 3o that they do not add to the cost of p«forming more predtcnbte

‘mnsactions

| An ex_ahp!e of such a transaction would be a transaction following a finked list of

fecords. performing some processing on each entry in the list.- lfof_u;ch a ‘tn_ma'ct-m, it is
impm;iblg to predict which records will be accessed beibre the mmlction Bl run. The
transaction could potentially access any record'in the file Oonmﬂiﬂg the limked list, and
might tran;fér information from any of those records to any other record.

| It shéuld first be noted that unpredictability comes in degrees. Frequenﬂy.‘d'ne can
- Iimit the set of items fhat a mr;saction could access, for example to the records in a
particular file. Even relatively crude bounds can reduce the numb& of arcs in a
transaction’s activity graph to the point where it could reasonably be tmbed as predictable.
The assignment of data items to managers can greatly afféct the 'impad of unpredictable
transactions. If all of the items that could be targets for accesses of suéh a transaction are
under the control of a single manager, the unpredictability d;sapp_ean. Thus if
unpredictable transactions are frequent, the choioe of the mtgnment of data items to

managers should be made with this in mind.
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The three classes of transactions discussed above are'a categorization of transactions
according to the difficulty of performing them atewieally. ‘1 '&m assuming; and this
assumption appears to be consistent with current practioe, that the most frequent transactions
- will be thase of the first two classes. In fact, in many current ‘applwltions of distributed
“information systems queries are much more frequent than npdfatu, making the transactions

with mdependent components the most frequent. With this uwmption in mind I have
| ’designed a mechanism to provrde correct synchronlutton for atl three cluses of transactions
that is substantially more efﬁcient and robust for tranuctions in the ﬂrst two cluses. Thts

mechanism is the subject of the next section.

4.4 A Hierarchical Scheme for Transaction Syuehroni_ution

_J(‘ CIE R RS

In this section I present a mechanism for syncbmmﬂon of tmasactions in a

distributed information system that makes extensive use of tl’se ideas d 4 above and in

Chapter 3. The mechanism is described in terms of rutrictions on the potterns of message
passing that can occur. during the execution of ammn. ln merieitt seetion I consider

the implementation questions in greater detail.

 The mechanism that T will use for synchronizing translctions ts an extension of the
message forwarder mechanism described in Chapter 3, The prooesses are organized in a
hierarchy inciuding both data managers, which hokd items, and message forwarders, which
merely relay messages. Some of the data mamgers mey act as message forwarders as well.
Each process in this hierarchy now has two types ofpom..a mg& port, and some M
door ports The front door ports are ‘used for reeeiving requests peruining to new
transactions, while the back door ports provide a rmchanism that aliows a process to receive

additional messages pemining to the current tnnssction tmlwut enabling reoeption of
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requests from new transactions. This mechanism, together with the wse of pre-requisites on
process steps, will be used for locking.

A transaction can be initiated by any process by formuhdng a message describing
. the accesses to be performed. This me:sage invokes a set of proeeu steps that together
perform the mtended transaction. Some of these proms sups are invoked by messages
received at the front door of some process, while others are tnvoked by back door message
reception Mesugesummthefrmtdwrofmpmmmfdbwaumihrpmmlm
that used in atomic broadasting

Messages sent to the front door may only be sent to the relatives (in
the hienrchy) of the sender.

A process recewlng a message from one of its chudm through the
front door may either send the message intact to the front door of its
“parent; wmmmqmmsm«nmpafommy

processing desired on thcmuagemd;muwfm the
fromt doots of its children.

'A process receiving a message from.its pamt Ihrough ‘the front

: dwrmpmmmma:ﬁMWth

front door ports of its children.
Messages sent to the front door follow the curea route in the hierarchy between the
~ process that initiates a transaction and the déu mangers thatperform the transaction. The
same argument -thSt was used to prove A.tﬁat the hi&irﬁhy of message fmm correctly
synchronizes atomic bmdum can be used to show that the mmutims are atomic as
ned_ entirely
‘with front door message receptions, however A back door message is requimd whenever the

aaaaa

ordered by front doot message rewptions Not atl transactions can be _perfor

isnotoneofitsancestors. Inmwpreventtheuepnnvohdbymwmfm
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introducing ordering refationships that would ‘make ‘transactions 'ﬁm-amic. several

restrictions must be applied to back door messages:

Any process involved in a transaction may send a message to the
back door port of any other process involved in that transaction.

Thermp;jonofamngeummmqapmm,,
conjunction with some transaction must be preceded by the

reception-of some: message: mmm at the front
doorofthatpmm

: yanoecur
. ‘door about the

No steps recelving messages at the front door of a pi
between the stép that recéives & v
transaction and the steps that receive mesy
about the same transaction.

These restrictions uken together. lmure«tbu &uafgmwofaprmnhndma*
partlcuhr maqﬂmmmnwunmﬂwmmw@msmumwdwa

| -tnnsacuon is invoked through the front door. .Thus. the. mwaﬂmm»u

‘observed through all message receptions is the same as that obmved only through the
Wﬂmdmuatthefmtdmmmmmmmmm
atomical!y

“Thie restrictions on back door messages require advance planning before a back door
| message Thus'the:m&i"ge sent to the ﬁb‘nt“édoar of a pro&atlm will wbsequmﬂy be sent
a back door message must contain a mm which cautes that process to stop receiving
‘Thessages at its front door until the expected back door fessege 18 received. ‘The next section
describes how the messages are constructed and routed to achieve this effect.
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This section discusses several details refated to the lmpmuon of the hierarchical
locking scheme. FimlmwmmWMH the . implementation of a
: transaction are constructed from the description of the transaction. This is the responsibility
of the transaction pnau. :!m;b tive individuat dm mmgm m nbo send messages as
outputs of GMMW they: pam. MW%W ooordination of
mugumm“hﬁd&mmmmwmmdm lnthepmliws
- section. mmwummxmmmm be sent to a
large number of processes witkou actually deﬁvcrhg t‘be npem in. mou cases. This
implcmmtanm makes it practical to run unpredictable transactions using this mechanism.
* Finally, T discuss the probliri of choostg: the hierifthy of prooesses. "This vietarchy should
" be chosen 50 a3 to m cloiely to thé physical comfmication etwork topalogy; to' reflect
"locality of reféfonce” in: the transactions to be rum, ‘"‘:”"WL‘W- o

V4‘.5.l} Constructing the Messages

We must now show how a transaction process can perform its function of translating

e that wm'

from a_high level dw}ption of a tnnsactlon to be ggrfomd into a messa
evmtually cause the desired transaction to be performed in mrdmee with the
| synchroniutim rules described above. | wﬂl first oonsidgr .the class of maactiom with
predictable data flow, for which it i possible for the tranuctlm
accesses to be performed (or at least the manager pmu that perform those accesses) in
advance. Later, I witt show how the scheme cau be extended tomam with

ep,kn;owslw,m.of

‘unpredictable flow.
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For a transaction with predictable data flow, the transaction process can know in
advance what accesses are to be performed and thus' could formulate a message’ to-be
~ distributed to the managers deccribing those accesses. Two steps must be carried out in
'formulating the set of messages. First, the m wmm muu be derived from the
high Ieve_l description of the transaction,v and then the set of mngeuo ?be,.distributed to the
managers must be constructed. The.first of these tasks is performed by the transaction

~_ process.

The second mk requires knowledge of the hierarchy as. well as knowledge of the
transaction. We could require each transaction process to have this kno\ilgdge.. allowing it to
formulate the set of messages described below, however it seems more natural to delegate this
task to a process in the hierarchy that is above ell of the duta manegers that are to

|participate in the transaction.

~ The transaction process formulates a description of the trannction that describes the '
accesses to be performed This description may be similar to a tranuction graph for the
‘transaction. The transaction process then sends a message containing this description to its

parent in the hierarchy.

Each process receiving such a description of a tranuction to be performed examines
- _the deccription to determine whether or not all of the daia ihems acoecsed by the transaction
are held by data managers that are below the receiving proceu in the hierarchy. If not, the
'de_scription is forwarded intact to.the parent of the reoeiver.f‘:it afl of the data managers that
are to participate in the transaction are below the: receiving process in the hierarchy, the
receiving process' has the knowledge to generate tlie-w ‘necessary to perform the
" transaction. | The receiving process formulates a duaiption of the transaction in a set of



:Wrmamum ' '

Eachmmgerhguvmadmmmofmmmnuw

perform. TWis decription way be ot any Tevel that i@

description of what messages are W be produced and their

Each manager that must produce input for its descandants in the
MyMafumhmmmn given 2
description of the input to be produced. .

Tmmmmummmwamamﬂmnm
rw&ved&mghlnfmdmmmmwmwhm Ewchmch

}meuageupmmndum

A-MMquaWthmhmmmmm~wm
wm:fitmkuawfwﬂ If not, the message is partitioned according to the
'mgewaMamﬁcm3demmmofM lfthe
mag!muauampmfuu thmMukuuMuxthemge.

The action taken dqnmm whether or not:the compenent of that message destined
- for M contains a jock request. If it does not, then A peeforens svhatéver acoess is-specified (it

s guanmud to have sufficient infermation %0 do se), ‘pessibly mm other
_mmnﬁﬂuwu%dmnhuhwﬁ*mmm
dtnribumﬁnmpmmdthemugemmcbmmmdmwtheamk



- 109 -
broedcas_tlng protocol. Any back door messages to be-sent by: M are ako sent by the same

prt)cess step.

If the message comtains a lock request for M, then M- cannot. perform all of its
accesses until it receives additional information: Seme-of the sccesses to. be performed by M
depend ‘on receiving additional information frem tome ether peece'u. M dmzibutes the

componentsofthe meuagetois nhi&mtpodﬂymmdmmmn to
;.include values efdete items held by M), snd: tendeeayln:km meueges that. are

~requested. M then stops receiving messages at its front daor until necessary back door
- messages are received. When M receives all of the-back.door mesmges associated with the

, trmsaction that sent the Jock request, ummmm.mw re-eaeble
message reception thrulgh the front door. | ‘

‘Some. care must be taken with back door menaﬂtoenidcmmem The back

‘door messages of several concurrent transastions for-some process may become intermingled,
caunng a back door mmarxinnupmbm&emmdhg Jock: reqaLm.
~ The simpleet so!uﬂonaothi: probhmisteusetsepente bltk door pert- for euh
transaction. The transaction process.initiating & transaction: choses an identifier for each

, transaction. This identifier can be combined with.a process:name to;ferm?e ‘unique back -

door port for each transaction and each prooess involved in that tramaction A process that
has received a lock request can then enable meuage mtbn only through the beck door
for the particular transaction being performed -



. 452 Coordinetion of Gnpredictable Transaction

Two problems must be overcome in applying this mechanism to transactions with
unpredictable flow. Each process that could receive a back door message in performing a
| transaction must beuma bck nqmst. Because the set of data mmrs involved in a
transaction cannot be predicted until some of the transction has been performed, all
potential participants:im » mmmu mmm This allows the
back deor of the approprixte manager when the access to be porformed is knewn, The |
messages dependent on the items that the manager hokds and the information it receives in
. »the'bad door messages. Anjmmtmmbepummm&m. |

The second probieny comes in determining when a transaction has been completed, so
~ that the data managers sent lock requests can release: those locks. Because the set of accesses
to be mwmmuvvm:m‘m mmamw does not
" know when it has received all of the messages connected with the transaction that it will ever
recetve and thus when to release its lock. Each manager must remain locked until it has
 received alt ufmémangw pm:in to the:transaction that sent the lock. request.

A simple solntmn to the problem ¢ determimng when an unpredictahle tranuction
has been completed is to have some process moniwr the progress d that tnnaction When
the transaction has been complewd, the monitoﬂng process can mdv out b;ck door messages
" to all of the recipﬁmts of locks to release the locks. This strategy may sound very inefficient,
however the next section discusses the 'problem of distributing the lock requuts. and
describes an efficient implementation of locking for unpredictable transactions based on the
approach of this section.
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The progress of an unpredictable transa¢tion 1§ ménitored by having each procéss
that finishes some portion of the transaction report to'a monitor process. ' Any process can act
- as the monitor for a transaction, however coinmunicationf wilf probably be minimized if the
" highest process in  the merarchy involved in. performing the' transackion permmn the

monitoring function. -

Each message (front door and back-doer) sent in perferming a transaction carries a

completion weight. A pmimmgatmmﬂymigmmmﬁamn weights
- to thehessagaehatnsendssomatthwwmumwm Each process step
redinrtbum the completion weight of the- mesiage: that'it vYecelves among ‘ the  messages
~ produced by that step. No message is ever assbgned a oompletlon welght of zero. and every
message sent by each process is given some compietion weight.l lf a step produce: no output
-‘f.mess_agcs for other processes involved inwthe::tmm. t-instend produces an output
message for the monitor containing the entire completion weighp Teceived at that step. Thus
cqmpletion weights are gradually returned tothe wmw process as ‘th?‘vatﬁus _
' process stepsofthetransuﬁon are completed. - “The transaction hdmwmnthcmpkﬁon
weights in the messages sent o the monitor.sum toone? .

I. An optimuatlon of this scheme would be to recognize the spedal case of a a message
containing ‘enly fock requests. In performing an “inpredictable tFansiction, many of the lock -
requests that are sent may be completely unneo \and. need not be delivered befare the
transaction is completed.” We can speed up" ‘the  recognition’ of the oompletlon of the
transaction by assigning, any message. containis . lpgk- requests a.compintion -weight - -of
zero. If the locks in that message are nmry, some other message with a non-zero
completion weight -will be forced to wait uhtil the:necessary:jocks;ave:veceived. The mext
section describes a scheme in which the number of messages that must be sent to perform an
" unpredictable transaction can be substantially reduced by postponing or eliminating delivery
of unnecessary lock requests.

2.- The arithmetic on completion weights must be done carefully so as to avoid loosing or
- gaining completion weight due to round off error. One could maintain completion weights

- as rational numbers rather than as floating point solution 30 as to avoid round off error.
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through the hierarchy, being forwarded only when “pushed” by subsequent messages or the
completion of the transaction setting the lock. -

This can be accomplished by ;y@n, modifying the impiemenmion of the processes

" in the hierarchy. Recall that each such process rminnim a queue of messages to be
_ delivered to each of its relatives in the hierarchy. The implementation described in Chapter
2 attempted to forward message from each of these queues whenever they were non-empty.
One could instead construct the implementation so that messages are forwarded from a
queue only when the queue contains a message which s not purely a Iock request.

Consider the hierarchy and transaction depicted in Figure 44. The transaction uses
the values of data stored at M to update data at M. Ms's only particlpation is to take the
‘value produced by M; and use it in.an upd_nte. This transaction would be implemented by
sending a message containing components for both M; and M5. When this request reaches
My, these components are separated. The component for M, travels quickly down the

‘. contains oniy the lock request,

. hierarchy to its destination The compmém for My [}
“and will not be sent from M4 to M4 until pushed by edditionel requests. Thus it is Iikely.
~ that while M is compuﬂng the value to be sent UQ M,. the lock request will be held up
awaiting delivery to.Mg. This allows M to continue to participate in tnnsections local to
the right hand half of the hierarchy while T is being peri‘ormed at M,

This examnie raises another problem that must be solved: that of insuring that the
lock request for a transaction does arrive eventually, and arrives before the back door
| messages of the transaction. This problem is partially solved by using a unique port for
receiving back door messages related to each transaction, as oneethe back door message

'arrives. it will wait at its unique port until the corresponding lock request arrives. It would
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be desirable if the lock request could be delivered promptly once the transaction has
produced a message for the back door port. This can be achieved in onve of two ways.

The implementation of a process could notice whén a message is waiting at the back
dt:m'i port and send a request up the hierarchy to forward:uny fock requests. This strategy
would be effective, but may requires additional :message sending. - If -the communication

metwork topology closely oorresponds to the synchronization hierarchy,  tecond swategy may

. be more gffective. _

If the communiatﬁ network topo‘logyvclosely parallehﬁ the topology of the hierallchy,

then any message, including the back door messages, must essentially ﬂow along the arcs in
| the hierarchy to reach its destination. We can take advﬁajgéofz:tbu=&ct to provide for
prompt ferwardtné of lock requests when appropriate. - Each process that-is not'a leaf node
in the hierarchy now has a third type of port, a-pais: threugh port. Each:mch process is
- always ready to receive messages at its pass through port, and .pass them on: to one of -its

refatives in the hierarchy. The pass through ports. providers:methanism to send back door.

messages from one process to another in the hierarchy through intervening processes. Each
such message is identified with its ultimate dm«&mmech port of
‘the parent of the sondar When a process: meitawmu:gcat its puathrough pert it
passes it on either to the pass through port of ‘one of its-relatives. or, if the ukimate

destination is a relative of the receiving process, to the ultimate destination port.

The pass through ports provide a mechanism to allew each process in the path of a

back door message to notice its progress. A protess can matth ® fock fequest-with bnck door
messages that it is also forwarding by the unique port 1D of the destinution back door. port.
When a process has a back door message to be-forwarded to'one of its refatives, it checks its
queue of front door messages to be forwarded te the same relative for a corresponding lock
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request.. If such a request is found, then the back door message G be combined with that
request snd seplacas i vs qewe of front deor massages. This. will caee that request. to be
promptly forwarded, as it 16 mew not solely a Jock request.

'ompmammum If the Jock request is contained in a message
MMMWM““M”WKWMM%W
mumwmmmumw m»mmm
to which the lock mMMmmyh&w:M'ern.wMﬁhmhnmv
modifyn. Mmhpmmmmwwmummmbutm
yetacknwledged. |

In the mmpleut Figure 4.4, when M has. finished. computing the value that it
sends to Mg, it sends it s = buck M message. This messnge W up-the hisrarchy
hrough the pass through perts of My and M. When M, siterpts to-forward. this message
to Mg, it motices the comespanding lock sequest. It combines the bak door message with the
lock request, and snds. the: comibined message 1o the front deor of Mg When M.y receives
the combined messuge, it pesforms the specified umm realises that its role in the

'ﬁtmnmmném:mnwmmm if; however,
Mg mmwm%wmmmmmumﬂ
‘remain locked until thase messages were received.

Pass through ports also provi&e i mechanism to opttmne the" exécuti_on of
* unprediciable transactions. In an unpredictable transaction, a.goeat. many processes may be
sent lock requests, and later Jock reieases and not pasticipate i, pesforming the transaction.
Using the scheme for forwarding lock requests described above, most-of. these -requests will
ot be delivered until the transaction has besn complesed, and will await forwarding at some
level of the: Wierarchy. Thus while an unpredictable transaction may send. out a great many
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Yocks, few will actually be received. ‘When the transaction is completed, however, lock release
| messages‘wiil be sent ot for all of the partictpants in the triénsaction. Because these are sent
" ouit &s back door mesnga, the processes forwarding the lock reléase-meisages will attempt to
combine them with the Jock- requests stilt awaifing fonni'ﬂitig “Whe' 2 Tock request is-
combined with a.lock release, it is known that the lock is unneceisary and both messages can
be discarded. -

* Usifig this implementation, it isiﬂt"ety that most ¢k requests will be retained at a
- high level ifi the hierarchy. Most'of the unriecessary fock ‘réquests Wil becanceled at a high
 ‘level, efore much effoft as been expended in delivering théin to their destinations. This

. implementation makes it practical to run transactions that are véry unceftain and must lock a

" large number of martigers but in fact perform very few sccisses. If, a3 ussumed throughout

 “""this thesis, most of the traisactions involve managers with tmﬁma &tow level of

' the hierarchy, then running a transaction’ that ‘sets many urmetessary-locks interferes very

little with the execution of most of tre transactions, &3 the lock Fequests that aré not needed
_never reach the level in the hierarchy at which they would interfere with the more frequent

transactions.
4.5.4 Choosing the memchy

Several considenticm should guide the choice of a :ynchroniution hierarchy for a
distributed informatiqn system. The higrarchg should reﬂect the patterns of Iocality of
reference inthe expected transactions. There are frequently natural boundaries of the
" applicition, such as the focal and regional offices of an ofganization using a distributed

" information systerh for inventory control, which can guide this cholce.



In many cases, the Wy of the mnunication network closely panlléis ihe
pattcmsofhuutybfm Thuubma&mkumﬁgrme;m ;that must .

wnmm nnmud |
) humummmmwm

4,498 4n, thy 9ad. seen by;the

mmmror thve expected transactions, one can estimate
ce of the mestage traffic through each ., Thess showld, be used
in evaluating whiether or hot a ptrﬂdahr orgmizmon is suitable, by imuﬂng that each site

' ol ‘eildge wralfit 4R that' Very imporum
otmemmm:y afmuuumﬁmmhuhmw |

tran‘s'actims do not dep

Another factor to be considered is the dulre to, gvpigl lod;tng chklngc is

undesirable both because it increases ;he number or messages, that must be sent (the lock

' request messages), and viohm the goals of autonomy and pamal operabihty A process that
' has received a lock request is dependent on other processes to complete the transaction and
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refease the lock before it can continue processing other transactions. In the next Chapter, I
wm present a mechanism that provides a solution to this probie‘m allowing a process that
‘has teceived a lock request to continue processing other trinsactions Before the outcome of
' :he"‘”mnsactfbn sending the lock is known. It is stifl désirdble, h&%ever to reduce Id‘ékihg.
and to choose the hterarchy so that frequent trinsdctions do not’ require locking, dnd
" processes mnaging frequently used data are rarelyfocked. V

4.6 A Rejected Alternatiye Solution

This solution is of oourse‘onl»y one of many that could be used for the problem of
controlting transactions. There are several solutions that provide correct synchronization
with simpler protocols. “In this section, I distusé Briefly oné of these akternatives ind the

" réasons for its rejection. e

Considerable complexity is introduced :gtd the scheme by the ability to begin a
transaction at any level of the hierarchy. If we had required all transactions to begin with a
reque:t sent to the root of the hierarchy, it would be ‘easy to 1ck a farge portion of the

h h’i:'htlerﬁ.rc.l‘iy in order to perform some mnsacﬂon‘fmsowldbed“meafoll‘oﬁs o

| 'a_nfcl-p.a,ms, ;,on,,-;he components of ,t.hﬂ

, tolht;hildmu beforp. ._,ltj the process
_hccess, or if one of the |

rquires input_from one of its children to compbtg its
requests forwarded cannot be completed solely based on the information in that request. the |
© process sets a lock and stops receiving new messages until it can comple_te its requested action
and distribute all of the necessary information to each of its chikdren. Each process makes a
local decision about locking and there is no difficulty detecting when a transaction has been

completed.
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Figure 4.5
‘ :Gomnrrency Restriotions Due ¢s Hierazehival Structure
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sipsions and Bummary

mnmmmmmmnm O s theb- e Sargesoimber of

o transactiom can be performed without locking. The hlcnrchy can be arranged 30 that the

- transactiom expemd to be most
problem of deadhck detection and prevention, and the "distribuee
 described in the next chapter, do not asise:

atomic update problem”

A mﬂ point i3 that deadlock is impossible in :msm The lncks are set in
~ messages- disributed in an agmi hmdqat m If any lock set by a transaction Ty
 precedes a lock mbyl Ty 2ll d‘thelwb,[ T;MMM“T,M
Ty will m;mmmmm«m deadlock. “

Anothor point was nhmnd, by Etgu;rfﬁ WIm hckwhmmd frequently the
semngoflockmn bsmmmmmwmammmmm The
scheme presented does this by delaying ordering decisions, and distributing the decision of a

Thg htmrr.hm n

operabillty to W ». ;,’ IEhout locs ‘

forming transaction achieves the goal of partial
g, 3 tra mhmuhngnﬂlof
| thepmmqandmmmmunkatMNemmmmmpmmt must
communicate in perfotmlng the transaction are mmm \ﬂmn this does not completely
achieve the goal, a3 it is possible that two processes vml be prevented from perfoming some
transaction because of the unavailabilisy of their parsmt in the hiararchy, the hierarchy can
be tailored to make this circumstance unlikely. | | |

'aomidwhmm Without locking, the
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Locking introduces the possibility that a process will be prevented from performing
- local operations because a failure has delayed the transaction setting a lock. In the next

chapter, I present a mechanism to deal specifically with this problem.

This chapter introduced a method for analyzing the pafterm of the accesses
~ performed by a transactions, namely transaction graphs and activity graphs. Using'these
transaction graphs, we demonstrated that sequencing of messages betweep processes is not
_itsglf shfﬂdent to provide synchronization for some sets of concurrent transactions. Three
classes of transactions were discussed. Many of the transactions that we expect to be
- performed in information system fall into either the class of transactions with_independeﬁt :
components, or the.class of transactions with predictable data flow. (The transactions in the
éxample system discussed in chapter 6 are nearly all in the first class.) These are the simplest

transactions to synchronize.

A meéhanlsm was presented to coordinate concurrent transactions using the atomic
broadcasting mechanism devek;ped in Chapter 3. This mechanism correctly synchronizes
-transactiohs of aII- ‘three ?:Iasses, but works most efﬂciuitly .(in terms of the number of
‘messages needed) on transactions in the first two classes. The mechanism can be optimized
| to perform those transactions that are known to be important at the time of the design of the

system.

The impl'emeniation of this mechanism was considered to show how the messages are
generated from a description of the transaction, aﬁd how the processes ire impiemented.
This ,.impl'ementation demonstrated techniques to reduce the amount of overhead caused by
transactions requiring locking. Finally, the important properties of this solution were

summarized.
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‘oonﬂlc;tmg with_that lock until the locking transaction is.

L1085 -
- Chapter®
Polyvulues. A Mechanism for Pesfernming Atomio B‘pdam to
Distribntoé Data

In this chapter, I consider the implications of using locking on the problem of

“achieving the goal of partial operability. First, I'show that no systern that uses locking can
 achieve this goal. A mechaniiéi is preséhted that solves thl's“ﬁ"ebk‘tn. by-i‘llnwln*g/a process
~that is participating in 4@ transaction and has st s 16k to install theresultt of that

transaction conditionally, so that it can release the lock ‘shd continue processing other
transactions before knowing whether or not the transaction setting the lock will be completed.

5.1 Motivation ('rhe"l"rdu'élef"ivi‘tﬁ*l.ociéii}) -

In the previous chapter, it was demonstrated ttug. some. Jorm of bcklng is necessary
for synchronulng certain groups. of transactions, - anorxumul’ bcking oompmmlses the
goal of partial operability, as a site that has received a lock cangt, perform local transactions
E .. One could imagine a

~ solution to this problem in which a site that has req@ygd a lock oould abandon thlt lock,

aborting the transaction settlng that lock. This must be done in such a way that if a fock is

‘ abandoned all of the sites ptrtlclpating in the transiction Which set that lock will decide to

ET:

abort that transaction

To achieve the goal of partial operability, each site must be able to decide whetber .
or not to complete the transaction without consulting other sites. In this chapter, I refer to

the decision of whether or not a transaction has been completed as the outcome of the



mm&%ﬁﬂs

dad iied eoinaansTt

Y oasrasts s ol

assiz 1sdo gavtuenes Tuodliw nOLREAET 343 siigmns o7 0N 10

r v a8 AOIDEINAY § K00 10 eribdw 10 noizicab el




| -1 | |

In order to achieve the goal of partial. operability, IM:MV'MUS&‘,W exclude
transactions local to procass. X..or to ¥V indefinitely. . feﬂuev of -X or of Y. or ofthe
communication. petwork: conpecting them may, howsvar, delay-any mesmge. sent between the
two 'indefinltely.e This means that each process must at.any;peint. be-able-to decide whether
or not to abort the. tram.acuo,n,inp:ogrw uummmm other processes, .

A protocol of message exchanges between X and 14 that decldes the outoome of a
_transaction can be viewed as series of process steps in :ach proceu. Each of these steps is
: triggered-by a meu,age,that may. be delayed indefinitely; so:that after each step, each process

must be 'p-repared to, decide whether ormmammmm ‘This.decision. must be
based only on the information that that.process had: before beginning the-protocol and:the
“infarmation gained from messages received. while performing:the protocol. . Both processes
. must make the same decision at.any point in;the protocol.

If a failure delays messages after the first step of the protocol is performed in each of
the piocess‘es; at least one of the processes mu;tdedﬁem abort. the transaction, - This is true

because the transaction being performed requires locking, and a transaction requiring

lockmg cannot be performed with a single process uep in each prooess. Therefore, after each
process has performed ore step of the protocol. at. least one ‘of the processes must have

insufficient information to complete the transaction, and thus must decide to abort.

e
If the execution of the protocol is not delayed. by a failure, a step .must be ruched

aﬂer whlch one process. would decide to complete the transaction lf the next message in the

protocol were delayed by a failure. Let the first step of either process afber whlch that
process decides to complete be known as the commit point of the transaction and assume
that it is a step of process X. After the commit point, X would decide to complete the

transaction if a failure delayed the completion of the protocol.
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~ Now consider the decision made by prosess ¥ if & failere were to prevent
step of ¥, ¥ cannot be-effucted by the completion of that: tep; S Wehce Triust minke thi same
decision befure the commit paint a3 after. This is would be a toradiétion, s ¥ rust either
decide to complete befure: the commit point, violkting: the: LaNsmption - that the commit point
wastheﬁrststepaﬁerwhicheﬂh«prmdecﬁedmmnpi&u.or)’mstdeddetoabm

after the commit point, nwmng in an inconsistent du:idon. H

-transaction requiring lacking, and mmmmu W6 'Way 60'athieve the goal of partial
. .| \ m " ine ¢ o mmmmm st & .”‘ | on the
limited to one procus. and that the observation of ‘the ‘complition -of mﬂp by any
other process may be delayed indefinitely.

'B.L2 Approaches to the Probilem of Abortable Locking

There are several appmémlmag can be used eo reduce the ’prqb‘_a.pil}nryl that a
}failure' during the. execution of a trannction requmng Iockmg wtﬁ cause mdeﬂmtc delay.
ﬂ'f‘h.ese' aﬁproacha provide only a partial salutton to thgproblun of zchtevlngtbe goal of
partial operabimy because a failure or mmbimtmn of fatlures during the execution of a
transaction can cause indefinite delay of transactions ‘that mz compmtf ml to a -
mmMgmeorammmeumm consistent |
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~ 5.1.2.1 Accepting Inconsistency

‘One possible ‘sofution that has not been- emnively used is to aceept a small

‘ probabimy that a tranuction requiring locking will:hot ‘be' pérforied atomicatly: if a faiure
occurs at the wrong time. This approach is hot sppropriste for ¥R gpplicitions, as strange,
: transaction promptly dre worse than the consiqaendes of & syfichiohization ‘efrer, (is ‘woeld

be the case for a tranzaction controlting the Tadinig of an AIFphné);then It may be desireble

to use a protacol in wmch a failuré ‘at the wrong tife uunt’tﬁnactimw be pattiafly
performed, or may cause the transaction to be incortectly sequénced’ with “other ~tfamiaiéﬁs.
This kind of strategy has been used in inage protesdifeg systehis in which the data base'Ras
st incoristsvent state. To'my

‘a gfeit-deﬁl‘ﬁf,redm" dancy that allows'any obsefver to tolk
* kniowledge, there are'1io distributed data mansgetiint systeis that use this appreach.

. 5122 _Av'o‘iding Locung

_ Another approach ‘is to use synchronizquon promools that minimize the need for
| loclung The protocols pmemed in Chapter 4 of this thesis and :tme used by the SDD-1
| distributed data base sym[Bemstemm are two exumpies of this appmch In Chapter 41
examined the problem of organmng the data bue 50 as to reduce the amount of locking
required, Locking cannot be ‘avoided entirely, howéver; iinléss the daita base'is r@p]lawd 50
clfminites lockirig, but makes all
transactions that update the data base require the pmlclpiiiﬁirﬁ‘n!l of the sites, elimimting

“that each sité has a complete copy. Such re fica

transactwns that are local to one site.
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5.1.2.3 Minimizing the Windew of Vulnerability

The approach mast frequently taken to lacking in a distribyjed. system ia to minimize

the time. interval during, which a failute Gauses indefinite debay... One example.of this

approach is the twe-phase commis - protecol . desssibmd. b GMIGNUL Each site

. participating in- a teansackion goes theaugh. two, phases; a mmm which Jocks are set
-and the site.computes the saslts of the Lran:

40 make the updates. raques

_does not yet know the outcame. 1f a falure daiays thy, sompletion of,the Jock phase at.a site,

~the site can deside.on its,own. 1 abort the transaction, and, afl e, will aventually decidg on

" their own to abort.or Jae takd. of the decision te aport, 1 fuiure dslays, messages during the

| wait phm however, a site must mmﬂ it receives }M@ lgdmﬁbl wm of

the tramaction

hxthcmmmwmmmmmsm but

Figure 5lgivuaﬁnm state machine demlptbnof thcamonofoncofthe sites in
tocol.  The sows Tour ‘s Hecutio wﬁ.m m.uma

_ In the Jock state, a site waits for messages. mnmq@géhe lpfmgg:
. complete its portion of the. transaction by determining the new yalues for the items at that
,alte updated by the tranmaction. Alter thess have been receiyed, the. site enters. the wait
phase and sends an acknowledgement message indicating this. fact.  If a (ailure. dejays. the
reception of messages by a site in the lock phase, that site can abort the transaction by

sending an abort message and entering the abort state, discarding any computation done by
the transaction. In either the abort or the done states, the site is ready to accept new




o
transactions. The acknowledgement and abort roessages sent by the Mmmumuhtdby
a coordinator for the transaction until either ail sites WW:=Q¢W§¢. or any
site has sent an abort. The coordinator then genmm donc or lbort meuages for all of the

pamcipants -

“The mvm behind this protocol is that the e that sach.sitg spends during its
lock phase computing the results of the transaction is Ilkely to be longcr than the time spent
during the wait phase. This is not necessarily true, as one site n?iy uke much Ionger than

e N

Flgur, 5.1
A Two-Phuth Pml

Receive New Values [
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the others to complete Ha pertion of the transmesoh, caveing the ther sites to remain in the
wait phase for s long peviod of time.

| Lampson and Sturgh [umml present another commit protocol that includes an
extra round of mage exchanges to avoid this problem. In their protocol, no site enters its
wait phase until &% of the computation of the transaction has besit comple

o at Aif sites.
5.1.2.4 The mynm _A'wmeh

’l'he motivation behiad preventing a transaction from hoiding on to a lock
indefinitely is to be able to run other tnmamom that Med w m the dan that hu been
‘locked without indefinite delays. quenﬂy the mulu produced by a transaction depend
only loosely on the input vakns seen by that trinsaction.” If the dutputs to be produced by a
transaction holding a lock are known but the outcome of the transaction is uncertain, there

are two possible sets of cumm values for the updated items. One could uﬁﬂm two sets of
values to determimkr some transaction wamng m mmw values, whether or not
that transaction depeads on which of the poulble sets of values is correct, Any transaction
that does not depend on which set of vaiues are used can be run using either set before the
outcome of the transaction with the Jock Is dwclded The polyvalue scheme dmrlbed in the

next section is a gmﬁmion of this idea.

5.2 The Polyvalue Mechanism for Avmihg Dday Due to Locking

| This section presents a mechanism that mmymmatheprw«uofmwrmg
that no transaction isdehmm«mmdydnemabckutbymomertmm
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5.2.1 The Polyvalue Concept

If a two-phase commlt protocol is used to perform a transaction. a site that has
'reached the wait phase knows output values of the transaction If those values could
somehow be conditionally installed, such that a transaction accessing one of the updated

items would see both values, then the locks on the updated items could be released This can
d be accomplished by mstalling what I refer to as a My_!_g_g i‘or ach updated item A
polyvalue is a bookkeeping tool for keeping track of several potential current values for an
item, dependmg on the outcome of currently pending transactions.

A polyvalue is a set of pairs, <v,c> where \ is a value and c is aco gggtion, which is
a predlcate on a set of identifiers for transactions The palr <vx> in a polyvalue for some
item 1 specifies that I has value v whenever c is true when c is evaluated ina model where
transactlon identifier T is erue if T has been comphted The conditions in a smgle
| polyvalue must be disjoint (no assignment of truth to the transaction identifiers makes two
conditions in the same polyvalue true) and complete (for any assignment of truth values, one

' condition is true).

Each transaction is assigned a unique transaction identifier. When a site that has
"r'.eached the wait phase for a particular transaction T cannet-determine: quickly whethier T
- will be completed or dborted, that site instails polyvalues for &t of the iterms-that T is trying

to update. The polyvalue installed for an item I has two pains, <v'; rs.sme-w,—‘r». where v
was the value of 1 before the execution of T, and v is the value produced by T. This
polyvalue describes the possible values that could be the current value of I, depending on

the eventual outcome T
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Before insauilntion, enth polyvaie iz simphified in thresstepe. Firet, individual pairs
are-expanded. Any pair «v.or where hfanW k»aphed by a m -of pairs.
Thisgmp m”pkmf the form: "”i“i”" Gor mh purmyw thlt-»m inv. Next,

| mdunkmp&sanm Tive:pairs aw,,q»nnd &W m u,a- vz.m mphmd by
the single: poir Mﬁfﬂﬁ? These sdundant pains mmm s pnlsihle that ‘several
 different pouibkoutconm of the peading traanctiem muld pmdme l:he same value for an

item. Fimﬂy thenmdmenmched unmh ;mr hwapmud,mdauy pttta.c»fnrwhlch
cis logmuyfazu is discarded. | |

_ Thts stmpuﬁmm pmudure reduces the potyvaluemmm to one in which mh
pair hasasmple vaim.m ﬂ:eamrofpamumwmiud Apolyuiuewtthasingle
pair <vie>, musth:vcamdmm < which Lshgiaﬁymu md umdmmhhable from a
simple value. Thus tbe prmadure for constmcting polyvﬂau !‘ar the mmlts of a pending
 transaction can bedexﬂbed withott zmung tbamm&emordd valuesofthe

\updated items mmmmm s speehl inw m

5.2.2 Performing Tmims on Polyvalues

» WMMW resuit, each of whids pasifies the seal <utpat xale
waduceu mmemafmm ;'Bhevm nmm |
- discussion afvdmmm ‘

Iwm ﬁmducﬂbethemplmnm phaxenfaplytnnmn m which input vﬂues

TN G S
are readandnuqmtsanmw Eachpdrmnm Tmuttafnmafmnve
v

tranact.ium T, each of :which performs the same transaction on a am:mm et vsluu for
inpn,t items. Each akternative transaction T, is tagged with a condition , wmch_is derived
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ftotri the canditions on the input valués read by T.. Each. polytransaction hegmewith a
_single alternative transaction T, which beginsmm items.. in- performing .the
~ transaction. Wherj an ;g]aternatty_’:e transaction T'c accesses an. item, whose __L.c\!l{!jﬂ'l‘t.yalucg»k__j.;‘ a
polyvalue v = {<vycp), T is partitioned. info. 3. sat of akernative transactions, {Teac ). each
of which has the 'same history as T, and each of whig}

copsses. one value v; from v.and
acquires the corresponding condition c;, in addition to thebprevmus ition, <. on T i

cAc; is logically false, then T, Ac; AN be abaodoned. and not taom(:l%tl!:eﬂl
 Thus the number of alternative transactionis” grows"as ’l potytransaction T is run.
~ Each of these aiternative transactions runs up to zhemtpm (¥ each runs uritif the
outputs have been computed and distributed to all of the e,ppropriate sites) Each site
: recewing outputs of T constructs a polyvalue for each Item l to be updated This polyvalue
contams the pairs <v,c> where v i the value produiced by T for l |
» If all alternative transactions of T produce outputs for some item I, then this set of
~ pairs will be complete and disjoint2 If, however, there are somme altematives of T which do
- not produce a value for I, then the conditions of the a‘temadvee which do produce ‘values
for T will not be complete. This can happen if ‘ibéf&‘&&iéﬁ"éi‘*iéﬁaﬁer'bffn&’f“‘ﬁpdate's I
depends on the input values seen by T. “Under ‘ani outcome of pending tranact!ons for
‘which T wifl ot produce a ‘new value for 1,1 would retain its prev’lous value. Therefore. if

the conditions on the’ alternatives of T which produce 2 'new value for I do 'not form a

1. ‘As will be shown; ‘outpiits produced by i akermative mnuction with a condition that is
logically false will never be used.

2. T begins ‘with a single akernative with condtnon frue. As the oomputatton phue of T
~ progresses, akernatives-of T are pactitionsd acearding Ao the :conditions: om.the palyvalues

that they access. Because the conditions on the pairs. of any. MuuuLpolyum are

complete and disjoint, the conditions on the altermtlm of T are: at my polnt oonwm and

disjoint. _ L - P o ,
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complete set, wother patr «v'.~C> s wdded m-«»mwmm and ¢ I the
Togical OR &mwummmmmml’ The wait phase of a
. polytransaction proceeds as described above. ShouM a cominunication failure interfere with
the wait phase, ummupmmm "“ammmmmm
mammmmmmmwm’

5.2.3 A Simple Exsmple

Let us consider a simple. example invelving three items at mm sites, and three
transactions on those items. Let A, B, and C be the itesns, and let.the transactions be:

Ty=10A 20then {A = A -100;B - B + K00
Tz-ﬂ'kmmm{g_n_m(z-c’m}

T3 «ifB >0 then B « 1058

Now assume that before the tnm are run, each item has vakse Iy Ha m!uré occurs
during the wait phase of T; preventing the site holding B fromiumm‘thtwmt af Ty

| then that site gives B a potyvam of {MTP’ dw.*oT,s} I T&u now.run, it \vﬂ! be run
i ~ as a polytransaction, because of the polyvaiue of B. T, would produce new. vﬂues for B and
C of {<I00T >, <0,~T p} and zoo If a fature mudurmgﬂnmu phase of T3 again
preyentiﬁg_ the site 'ﬁﬁfdiﬂg B from learning the-outcome of Ty, then, ;Mr simplification, B
receives a polyvaiue of {<0,~T AT 35, <J00(TJAT PV(-T (AT g)s, <2007 (AT g5} - Now, if
T3 is run, it is performed as three akernative tramsactions. Tw‘,of these. akernative
transactions produce updated values for B, while the am'w ﬂﬁ‘"ﬂ' ,A?‘z does fiot,
because the iupui value for B read by that MM cmm ts tod small. Thus the

. One could akernatively always add this pair, and rely on the simplification procedure to
discover that —’ is logically false when the other conditions are complete.
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- polyvalue assigned to B by TF; after simplification is {<0,~T AT 2>,
<105(T I/\T 2)V("1T 1 N-TF 2‘)>. <2|0,T'II\‘WT 2>}.

This example shows the mechamcs of manipulating polyvalues, to perform

W

transactlons. even after the occurrence of improbable fatiures. From this example it is hard
et At Tt

to see what has been gained as one cannot determine from inspection what the valuu in the

data base are, or what transactions have been oompleted

The answer is that in many cases, a polytransaction will produce -simple output
. values. This is true of many query transactions, which attempt to determine whether or not
the value of some item falls.in a certain range. In many cases, 2 query about an item can be
| answered without knowing the exact value of that item. A polyvalue can provide all of the
_ tnformation necessary to answer common queries. Consider. for exampie the test made by T,
on B. The decision made by this test s the same when appiied to both oomponents of the
poiyvalue for B. - | |

| Another area where polyvalues are useml is that of transactions that have real world
effects, such as authorizing transfers of money, or allocating a ral world resource. like a seat
on.an airplane For such transactions, it is frequently more important to know what the rul

world effect is than to know what the eventual values in the data base are. If such a

. transaction is run on an input set containing polyvalues. then the mi world effect can be

accurately determined when all alternatives produce the same effect. ln many applications.
.important real worid eﬂ“ects can be determined without knowing the exact values in the

database
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Cansider, for exampie-a. tranaaction. Which 13 to withdraw- m from a savings
| account for which thcm balance is represenited by & polyvalue, - The imporant effect
that the tmmmdummquMUnutmmumwvemeum
from the wnhdnul Cmpmmencﬂythembamhtmmaeed not occur
rapidly The tnm of ﬁmd: depends only loonly on the hchm in the ncnwnt in that it
needonlybedetmnined Mttmm&mtnmkmdpendmg
transactions, greater than the amount withdrawn. 'rhus in mmt cases the wuhduwul can be
quickly authosized. |

5.3 Recovery arm;‘rmuak&f -

Themhmhmduaibedahovehmlkpdyvahukrmemksdamnummr
' delayed in the wait phase by a temporary faikire. When that fallure is recovered, the wait
phaseofTumbemspkted mmwmmrnwumwwm Thul
the vamatmtmmmmmrammmmmmwnof
 polyvalues can then be determined. cL

Asitekammgofthecompknonortboruonofammfcmmm
polyvalues by re—evakmmg any cmdmon that depends on the wwome of T, mbstltuting
either trmorjg_fwrdmdungmmemmorm This
| substmmon umphflcs ound&mm that invoived T, md npm Mmaﬂm some of these
| conduwns may become logically false. Thus kmhdgcdﬂumpmor .bomm of
pending transactions can be used to reduce the number of Mn vaiues which a polyvalue- |
represents. Eventually, if the outcome of all pending transactions is known, each polyvahn
will have only one pair with a condition that is not logicaly false, and thus can be reduced



-139 -
to a simple value. Some mechanism must be provided, however, to propagate the knowledge
of the outcome of a transaction T to sites holding polyvalues with conditions- involving T.

Such a mechanism must insure that all sites that hold a polyvalue with a condition
dependent on a transaction T will eventuaily learn of the outcome oi‘ 1' We also desire that
knowledge of T be deleted when it isno longer necessary (ie when no condition involves 7).
~ The record of the completion or abortion of a pending transaction is similar toa commit
record [Reed78] for that transaction Unlike a cornmit record however, knowledge of the
outcome of a transaction may still be needed even alter all of the output values of the
_ transaction have been installed. Any polyvalue could pmntially refer to any pending

transaction.

One could have each site maintain a table of outcomes of pending transactions, and
use a system-wrde garbage collection strategy to delete entries that are no longer relevant. .
While this scheme would worlt it would be inefficient”in the case that dependence on the
.outcome of pending transactions does not in general spread very far Most sites do not need

to know the outcome oi‘ mast pending transactions ‘

Another possible mechanism is to give a site that creates a polyvalue for a pending
transaction the' responsibility of mamtaining a record of the outcome of that transaction until
- such a record is no longer necessary When a site wishes to reduce a polyvalue it must aslt
all of the sites that are responsible for maintaining a record of the outcome of the
transactions appearing in that polyvalue of those outcomes. To‘do so. ini‘ormation must be _
passed along with the polyvalue to determine the relevant sites to aslt This scheme is

similar to that used with possibilities by Reed [Reed78)
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Tthere are twe min qsoblems aish using this scheme fior keeping track of pending
transactions. mwumammm»mm the record of the
mﬂammmmww and some form nfm collection
may be necessary. AMpwhmmm&ewmtmmmshem
of a mmmmmam mthemmmmmmmk,mm mqumng
mmgemybeummqﬂmeﬂmimmhﬂmmﬂdmmﬁem)mme
» -omcmafﬂwmmm s determined. Tumwmmmm
pwblems byﬁmibnmthemmmyfm mmummg the outcome of a pcnding
 transaction :mMmMMWWmmtm

that it holds that curmmy ‘htw: jpolyvalues. Thts ubhb used 10 m all of rhe polyvalues
. that can be reduced wmm site mmiwuamuage indumg thewmne of some
pendmg transaction. A mm mmm itaeh me knwn ] memction table,
keeps track. nfmw:ufkmhdge afpendn;g tmmctm M entry of the

.transactian table comtains a transaction identiﬁer, tts mm: (comphwd aborted, or |
pending), Masmmmmmmmhnmmm dqamdlntm the outcome

of that transaction.

To maintain «dts transaction table, a site must :make an entry -for -each transaction
identifier that appears in a condition of a polyvalue at the time that that polyvalue is
installed] When a site sends a message containing a ;polyvalue to some -ée’her-aiee. it ‘must

1. No action is required if the site already has a table entry for that transaction. -



-l -
record the name of the site to which the polyvalue was-sent in the transaction table entry for
each transaction identifier that appears in a condition lﬁthltmudue

The information in the transaction tables in the various sites is used to control the
distrlbution of knowledge of transaction outcomes. Each site that receives a commlt or an
abort message for a transaction that it prevnously knew as pendtng can update lts table entry
for that transaction, and reduce any polyvalues that.depended on that mneactlpn. A site is
requnsl_ble for informing all of the sites that are listed in its transaction table entry for the
tra_nsactipn of the outcome. This list was constructed to include all of the sites that. were
given..-information dependent on the outcome of the transaction, and therefore may hold
polyvalues dependent on that outcome. Once all of these sites have peen informed, the table

entry for the transaction can be deleted.

With this scheme, knowledge of a pendlng fransaction pmpagates only. to those sltes
wh:ch have received polyvalues dependent on, the outcome of that transaction. If a great
deal of computation. has been based on the outputs of a pending transaction, then informing
.a,,il of the a'pproprlate sites of the outcome of thattranuctlon mpyrequtremany message
excha'ngg;l] lf the outputs of a ,pending transaction are pot uged.bmver. only tn_e?svlt‘es that
hold those outputs need be informed of the outcame of the transaction. | |

Figure 52 shows how this scheme works in the. e)tample described above. Let Ty
and T2 be the two transactions described earlier on items A, B, and C. Assume that these

items are held by sites 4, B, and C respectively. “The ﬂgure shows the values of these items

1. In fact, if the polyvalues depending on a pending transaction are used frequently. a site
may have to be informed of the outcome of that transaction Yeveraf'tiines. ' It is possible for a
+ site to receive a polyvalue dependent on the outcome of a tran on, after that site had been
informed of the outcome of that transaction and had forgotten that outcome. A site does not
need to remember transaction outcomes indefinitely. SR ,
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and the tables of pending transactions in the: sites uumm these items at several stages:

- initially; after Ty is suspended; sfter Ty is suspendett; ifver Ty is eventually compieted; and
after Ty is eventuaily aborted. | ' |

5.4 Use of Polyvalues in the Hierarchical Loek!ng&:bm

The discussion of polyvalues thus far has been at a refatively high level, 50 as to be
: applkable tp-ény distributed system Mwhichlbckhtg mm souifides &hyis nesded.
“The_polyvalue mechanism described above could eidily be inéorporated into most of the

N dtunbuied update algorithms that appear in the teratisr . "1"shall now consider how to -

apply these ideas specii‘kiﬁy o the distributed hcking ‘scheme déscribed in the pmam

chapter.

Recall that in-the Jocking scheme of the previous chapter, any process producing
outputs to a transaction depending mmammmmpmm is niot one
of its-ancestors tn' the hieratchy Is sent & Tock requiit méssagl. The lock rejuest thessage
catises the process t refise to receive any new mestages mm to Geher transacions mﬂ
the transaétion issulng the Jock 15 completed. The prodeiséi InvelVed in the transiction
exchange messages until each locked process has mﬂm&iﬂm mition to preduce itsodtpms
and release its lock. In order to apply the mwpt of polyvaluu. thh laclung strategy must
~ be modified so that each ocked process goes thmugh m _phases, a computing phase in

whnchthepmcmwabammbckandmmmwum and a wait
phase in which tbehcimnabezbam&med mmmmmm

I will first consider the cauoca predictable tnnum,wm theut of processes
making updates is independent of the data’ values seen bytbemm Thh amngmon

simplifies the task of deciding when a transaction can be compieted, as each process making
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Figure8.8- -

Recovery of Pending Transactions

1oo
Transaction Tables:

(empty)

Initial State

00 100

C  (empty)

A

{<°’TI>0 <IOO,'1T1>}' :

 Transaction Tables:

T ppending{}

After T 1 is Suspendéd

LS R c: Tl

{<200,T >, <100 =Tp} | . 100

Typendingdl . .. (empty)

A

. {<OTp, <100,-T 5}

After T is Suspended

Sl ; st ~,'1,»L' ,;';'m‘ﬂ!ﬁ’ § . L c

- Mﬂ)i\fﬂ*ﬂ'iﬂ*ﬂ'ﬂ R AR L T

| -Trinsacﬁon""riblci:' -

4

Tipending{C]  Tppendingi}



- {44 -

' After T'5 has been completsd; and A and B have been notified. -

A L B”

C
| ° T 20T ] {<100,~T 25, <200T >}
- Transaoction Tables: | | ‘ .
(empty) T ,m',,c, ',.2 pending.(
After C has been notified of TI‘-
And T has been aborted.
A o B c
o e "
Transaction Tables: .
o ey -

_ updateskm wmummmmmdm“ﬁmmmw

is known m:»dvame.

For eitdt n'mm. oneprm serves the function of transaction goordinator.
The mnudmmmmmmyhmmm‘dtﬁem

involved in thc mmhnmmmemnmn. Toqumomm,mugu

muhmmmdemmmmmmmammm
The protocoel of Chapter 4 must be slightly meodified to send svary poocess.tint.is.t perform
anupdmzh:hrwm ﬂthmWﬁMGMMW
mtytommmngusthtmmmmmmmm The extra
locking is needed in implementing polyvalues because we wish to be able to abort the
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' transaction if the completion of the transaction is delayed and thus cannot allow any

manager participating in the transaction to complete its portion of the tramaction before the

., decision to complete is made.

Each process performing an update thus receives a tock request. aiong with any other

" instructions: for completing the transaction. When a prooecs has enough ini‘ormation to

‘ perform its update it sends a rudy message to the ooordinator (For any process whose

update can be made ‘without inputs from other prooesses, this’ happens immediately) Before

 sending the “ready” a process can-decide, o abandon ity Jock at,Any point and cause the

transaction to be aborted. After sending she “repdy” mestags, & Figosss enters its waib phase

. and Qnm'abmdon ity Ioci; When all of the. processes thl;t m sent lock requests. have

answered "ready”, the coordinator decides to complete the transaction and, sends ' oomplpte

messages: to the back door ports of the processes which received locks. Upon reoeipt of the
" =completé” message, a process completes its update and énibles reoeption of new requests. If
“ too much“time élapses béfore the coordiator Tecéives ﬁ.a, messages from all locked
“"":processes. the coordinitor ‘can abort the update by sending abott" messages to all ‘I‘he

rudy"' compléte and “abort™ messages must “all ‘be identified with a unique identmer for

the transaction (probabiy assigned by the trihsaction pi‘ooea‘ihat initiated‘ the tramaction).

R 2

Each process in this protocol goes through two phases, 3 Ioc.k phase before sending
the ready message, and a wait phase after sending that message. After having sent a "ready”

' message,aprocess knowsthenewvamesthatmmmiulouistatewmtakeonasa

t*f;

ﬁresult of oompieting the update. The process ean, instead of waiting for a oomplete"

3

*abort” message, decide to install polyVaioes for these items. Each data nianager prooess acts
like a site in the polyvaiue scheme described in tbe i‘irst part of this chapter Messages sent



TS R R T L T B Tt LR

- 146 -
contain polyvalues as weil.

from data items can

Two problems must be overcome in extending this whm to atbitrary transactions.
First, mmﬂmmmmmbhmkmwmmemmmszMumem
ofpmmmklngmumkmmadnm Swogd,mm ;hatpamcipam
n themmwnmuahgahkmummmuhummngaf@ewma it
vmmveuamﬁmmmm»makmm Qu\m;phm

i
:

b2t AL E

mmammmmmmmcﬁspwi,mmmwm weight
-mmmm MmWM:ﬂ

tor can nlﬁo ‘act a8 the

BT

Wemmwmmwghtmmtmmmgmsbe
| _performed with a two-phase protacol. Mpmeus step of an pncertain transaction which
prepares a set of output values to be insiaid must reium some. completion weight 10 the
coordinator w%et&ar o7 mot i also sends messages 10 other. processes. Ttgg. mﬂm;or thus

receives messages containing completion weigm ﬂmggch process that has updated Atems to
be . mstaﬂed When the completion weight sent o the ouwdtnator mchu on.e. the.

A3

| _ooordinator sends out lock-release messages as before. These lock-relaue messagcs are
s m:mm»mm:acwwm S

In this protocol each mmager can at any pomt dedde w abandon lts lock and o
continue processing other transactims ~To do 30, a mmggr mﬂs any upda,tes that the .
transaction lns made as pslynhes md simp!y igneru any furtim meuagu about that
transaction (except for the Jock retease or abart metnga from the tnnac;ton ooordtn&tor)
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This action may or may not cause a transaction to abort, 4’dép‘¢nﬂing on whether or not that

transaction. requires. further participation by thgmn;ggt wpkhhughmdpged it. If the

lete. the transaction, then

eventually, the. completion. weight returned to_the.co

- will. sum to 1, assumipg no
other, manager decides. to abort. If, howevgr. the. manager deciding to abaudon _the

. transaction must. perform additional gmm complete. the transaction. (either by
. ;supplymg more mgms,vor making. updates, the mqumon WAL pot. complete, bacause the
q.portion of the transaction dependent on the abandoning manager can not_be completed.
.Eventually, the, coordinator will decide to ahotuhc transaction.

'T'hls scheme allows the polyvalue mechanism to be applied to the execution of

two phases, a lock phase before it is computed, and a wait phase after it has beén computed,
. and the manager _holding the updated item has replied ta the goordinator.

"“Another point_ that should be noted aboit the use of polivalues in the locking
scheme of‘Chapter 4 is that the protocols that allow abortable locking described above may
require that more lock requests be sent than the slmple protoools of Chapter 4. Note,
hbwever, that any transaction th'at.;lde's: not mquireglockingwﬁi’ththe simple protoools still

does not require locking, we are only increasing the number of locks sent for transactions
that already require locking. | |
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85 Restricting the Spread of Palyvalues

The polyvalue mechanis# s expensive in thit polyvahisi consiing'd gréat deal more
space than do simple Vales, and a polytransiction - may Tequire ¥“gfest det more
computation. The simpls anatysta of'tie polyvillié'ichema ahd & ilititon of the protocol
reported in an sppendix to thE théis deiwitabe that In Y Y’ bl uribeF of

polyvalues In a disiribisted Information e s ‘qutié sméil ™ $hodkd fifther contrt be
mecessary. any site ai préven the propagation of puyViast b nif sty paljvitits as

‘results dmwmm mﬂmm mﬂmmﬂmw Outcoriie of the

polyvalues

In a system with real time Tesponse requiiernents, wumir’_iﬂ’ ¥EbRAbIe b ‘ekpect that
the set of transactions that must be performed in order & gmdugahmg rejults at the
__proper. time will be kmwn A is gminly these trg igns that spoywl‘.bgw rformed as
:_pqutrgnsactm:, 0 :m i mmhlg, the peeded resuks qm@ e n&n{g{e@ despite uncertainty in

the database vaiyes q\ge,tqghe presence of pending transactions -H«B?‘l values, .

Consider a system controlling some mﬁnﬁfiﬁtﬂm * operation “in ' which sevénl
Alcitty focibed ‘neat’‘the
components th_at they mommr and control. Several different kinds of transactions act on the

'%f“

computers are used to control the manufacturing and are

data base. There are data entry tdm&ctiom that are run periodically to m&r data about
the operation being controlied into the databi;n. There are also monitoring tramuttions
which are run periodically to determine whether or not the database values indicate any
potentially dangerous conditions requiring immediate corrective action. The monitoring



-149 -
transactions are structured so that many examine only values local to some site th order to

insure that a communication failure cannot interféfe with monftoring.

In addition to these two kinds of transactions. there are control transactions that'

direct the completion of specific manufacturing tuks. There are also transactions that
“implement administrative decisions to change the M@uﬁﬁg process by modiﬁying items.
representing parameters to' the. contr& and moritortng trafisittions, and: transactions’ that
- vallow the state-of the manufacturing process<to be - exathined. “The mbdhitaring transictions
: .need'todn»perfmned in rexl time in-order to pmmmmmﬁepmuimmor _
 the mnufmurmgprm -oi*?‘bogc“sm mwmmﬁmma hagsrdous
si'tuationv. These monitoring transactions examine the values produoed by the data entry
transactiom and the parameters of the prooess to detect problems. Any normal set of

o fE

parameters and data inputs will not trigger corrective :ction B

| In order;co;imu‘m zhot_«.-th'e:momtoiﬁmg W"W?iﬁ:mimzpiyﬁbes.
- shouidzboiuoed for any data items: that might:be MWMmmmnm ~The
‘ -oontrol effects of the monitoring transactions shoukd be Wdﬂwm vmwthe
data-ftems. descrmiag:\the process, as long as. thesedata items: réflect normal qentim The
‘_'ﬂ«cramactiom which: dinct specific manufacturing tasks:and the transactions implementing
. administratlve decisions may involve updotes to data items at.several sites, and thus may
.require locking The Iocking peri‘ormed for such transactions should allow the creation of
" poiyvalues for their outputs if some faiiure preventi ti:e Iocksﬂ:om being quickly rcienca
- Trangactions representing administrative control of the manut‘octtiring process or
control of specific functions may be deemed less irriportant, and may not be executed as
polytransactions if necessary. Any process holding items accessed by the monitoring
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transactions, however, must be prepared.to install polyvajs
the monitoring transactions.are not delayed. .

, 5.6 Suvnu'm"y.

Thuewmmmm“am#m dwmw
-,woblem It was:shows: that. i is inepassible, givan the friuce semantics-of the process madel,
to -eomm_»;ct » protosel witich pesioems & diswtibwted pcdave atesnically while not delaging
- access, to. the updated- items ma,mym e, m‘fw,*“e
 discussed 10 avaid the distributed atomic update m*mmmmhm
The remalnderofthechapter pmamedamceptmf«d wua pdyvalue which'
may provide a practical solution to this probl«nbn mny cam. devaluu allow an update v
- to be performed conditionsily, such: that: mmwmm&mmswm are
presented to: subsequent tssmsactions. - In mmm ‘where the Mimpommt
effects of transactions depend only loosely on the exact valwes stored:ifs the dati base, the
| rpblymde scheme allum tmmm uudmw even when the
exact uiues of items: in the data hnmnmdmwmmmthu have been
started but not yet completed. |

Thls chapter pmenud some simple exnmples of the mechanics of manipulatlng
_ polyvalues and discussed a posslble application of polyvnluu in a process oontrol system
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Chapter 6
Appltoation of the Techuniques te:the. D.dgn of & Diltributod
Information System

of an overall

' The past four chapters of this thesis ha‘fy.éi pmmmdvamm,\ ect
approach to the problem of tobust synchronizatién i & “diseributed “fiforma
this chapter I present an example of a dmributod lnformaﬂon system and show how the

techniques;nt l have dcuhped can be applu mﬂamn gmmmn scheme that
- satisfies the goals set forth in Chapter L Thh aolution is compared with those using other

ion system In

distributed symroniuﬁoﬁ schm

' 61'Twe:Problem -

The chosen example is an inveﬁtory @ml system for a chain of ’ supermarkets. The
. problem is sdapied from an example given in. (Rermuein7) . The data base.is used to keep
~'track of mew of various products. Acans of. hgmmmpklnmetc.) on_hand, on
. order, of.jn tmansit at mh individual. market and at the waps ouses. that. mpply the markets.
..Fhe supplg «<hain of the supermarkets is MMawhm of. magkqu supplied by
local distributers, groups of local distributers suppued by- mdmﬂbnm m so forth.

" The following sections ducribe the data md the mnumom to be performed
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6.1.1 The Data Items

For ench location (warehouss ov superrgasket) the dams bise contiime-a iset of data
items describing each product. These are: N LIRS s

Quantity on Hand (QOH) -- The quantity of thit product stored at
that location.

DQOH) -~ Ttp ulafbowmchof

,mmmw

Re-order Quantity Threshold (RQT) ~ A minimum qumtlty of the
 protuct:ta-heeg on handi Wi QOM: mamm onder

is submitted to bring gpu up, toDQQH s e
Quantity on Qrder (QOO) - The ;M g mm }g}“
been ordered from the dmnbum for this location, but not ‘yet

been delivered.

Quantity in Shipping (QJS) ~ Theamount of the product that has

been shipped from the distributer for this location, but has not yet

bun dcltveml ,

(ie. there is no slngle trahsaction’ that W*inpue m Wb*m or ore
products), 301 will conitder only the items pettiming fo 4 single produtt: I ace, a ‘typical
‘supermarket fﬁay stock a tokl ‘of*10,000 différent pm mmmmm of these
" items exist ﬁ:r“ehgftmwm T T ST

The data items pertainifg to eath of the prwm dire: indep

o ind ‘_‘

The five ucms are maintained for each locauan, m;rku or warehouse To
distinguish between items describing different locations that are used by the same
transéc:ion. I will use subscripts, such as QOH@ to designate the level of the distribution
hierarchy to which an item pertains. Level 0 designates tﬁé local markets, while increasing
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subscripts designate more global distributers. Phis ‘is sufficient to dlmguﬂh ‘the items
‘because each transaction accesses items-pertaining to it most tWe: lecitions: 2’ location and its

~ supplier. AL

612 The -Tramhnt -

unloading of a truck to the data base, and to detemine wan some world action should

x;;‘\ a\‘

‘be: performed to keep NPPM of all product.s available. For each product there are four
- diffeten Kind§ S Henmctions mammw jd Recétviiy.

ERER ST U I H G

- Point of sale transactions (P mnncmns) update. the qunn:y on, hand $o reflect a
| customer purchase P tnnacums take phce only on the, ,QOH for the locations
. correspondlng to supermarkeu and nm on thou for ghe d}gﬂbnm For a typial

: supermarket, there a;e aboutzs,poo P tra__f pegdly S

Re—order ‘transactions (O transactions) gemme new orders for merchandue which
hasbeendepleted Ano:nnncnonumifmo,ou QOO, RQT, and DQOH for
some Iocation and prodpees x new WMQQQ Mw approxlm:mly 20(” o
_ transactions are performed per day to. dewmine which pmducu must be ordm

Shipping transactions (S transactions) reflect actién’ by a distributer to fill an ordtr
A shipping transaction exaenines the QGOH: of the distsisutar and the QJS and QOO of one
of its customers in order to dg;wg how much of the m to ship to that customer. The §
transaction updates the QOHOHMJMWM%@O of the customer to reflect the
shipping decision. S transactions are Mlt ﬂwriié*of about 15 per day per Iocauon

RS SO |
L
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location. Each R sransction adds the amount seceived t0-QON, and: subtracts it frem QIS
“and QOO. About 15 R transactions take place for each site each day.

‘ These transactions are mrim in Table 6.1. In the paper which is the. source-of |

this example, the authors were unconcered with the details of how sach transaction derives

" its outputs from iulnput vales. lhavethuefmmddm‘dmgum in deriving
amoremplecedm:pmnormmm e o

. are presumed wu,ke as a

Nae in pankuht dm the receiving. transaction
| panmthetmmoftheproductrecdved andwuuﬂm:mwmw«pdautheim
.QOO QJS, and QOH. An R transaction alwaphuimmdmtcmvpmmnbeuuse the
'new valueofmhafthelmupdwdepmdsaﬂymmpnﬂomummdmthe'
ptrameterQ Anmbupcubkmwpmtbnmﬁbewmunvammswmm
theamountreu!ved,thmmklngthemvﬂlmonOOmdQOHdcpmdel& 1

| Table84 . . |

Transaction o Dékcptdn S Frequency
P L QOH=QOHAQ) . . . 25000
o | | QPO, ~ O(QOH;, QOO; DQOHY RQT) 2600

R pe— |
QO0,; == QOOHQ) |




believe that my interpretation more closely 'res;emls,_!_gst.whas woyld ha

-‘5-

o ;Z-{Lr.!n ‘*"r“‘ ‘nvmmry

control system, as the parameter Q represents the amount actyally received, and may not

. correspond to QIS for variety of reasons.

Having a complete description of the data.base and.the transactions to-be performed,
we can now proceed to analyze the system.using the.tools devaloped.in Chapters 4.and 5.

62 Anlysii of the Transactions .

~ In this section, I present transaction graphs for the t'rinsamsbo be peri‘nrntéd 'by
the inventory control system. These are analyzed ta.suplore the ways in.which the
transactions interact with each ather. This analysis is:usest 40 determine the protocols needed

| ~to perform the‘mnadinm_ using several different.organizations of the data base (choices of

which items are held at each-site). The choice of the;synchagpization. netwerk for each of
these organizations is discussed. -Finally, I discuss-the use of polyvalues in shis distributed

- information system.

6.21 Tnnnc_tion Graphs for this Application

The transaction graphs for typical transactions from thue four classes are shown in

Flgure 61 The P transactlons are the simplest. as uch P mnuctlon aowsses and updates a

"single data item P transactions will have lndependent componems in any organlutlon of

the data base

_ The'R transactions are somewhat more complex;-as they access. and updats three
different items. * As noted in the previous section, however, the.new value af each of these

" items depends only on its previous . value. Therefore the. transaction graph of an R

transaction does not contain arcs interconnecting the three updated items.
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The O transactions update & single data el (QOO: Rir-some mxm do %0

 based on severaf inputs. As shown it W“’-WMMM 10 transaction

has arcs connrecting QOH, RQY, DQOH, and QOO 46 Q0O M

© The'S transactions are the most compler. BicH'S tranisction ipdates two:items (QJS
for some location andt QIOM: for its suppit), basel o e pAVIAES vakues of three different
items. mmmmmmmmmm«mmmw
QJS, QOH, and QOO to both- QIS snd QOH. Fhets cyclis: indicate that § transactions are
Moy 1o requieckng i s cganinton o the i b

The four kinds of sransactions taking phce a4 vastous-levets. of the hierarchical
organization of the'focations invierwct This ineracrion: i Welieated: by, Figure: 62, which
shows 3 Joint transection -graph for the transacions  teking. plucs: a3 three: lovels of the
hierarchy. "The Jolnt wanssesn graph is conmeucees frommishe Smcividusd tramsmction graphs
i the sume Wiy that & Joint scvity graph is coninebed rew-inidividust satvity grephs.
To distinguish between the transactions taking place at different levels: of: the  dissribution
| hierifchy; exch transaction idewtifier is given 2 subscript wm the level that that

acitiin petains oo P T

The mmmmgmemmommggat tm :bepmuuing tobeperfermed
exhibits a high degmofmutyofrefm Rmmangmpod sothataﬂofthe ‘
nmp«ummwambmanmmmdbyamkmmg« theonly
transactions that require the participation of more than one manager are the S transactions.
These wm reprosent O5% of The tomst volUmE SR IrEnseoNe 30" be risn-{though they
probably represent a igher proportion ammmmm move complicated
than the more frequent transmctions). - | |
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6.1a P Transactions

- 6.10 0 Transactions 8.14!8 Tmmtlou




A Joint Transastisn Graph of The laventeny Trenmotions

622 W the Data

In this section, lmumd«memidiffa%ntmys mummmim could be
assigned mdmmm &cbﬁthwmzlmnﬁbﬂ}fofm&hmudimsudm
mmcmmurmammmau%mmm“amm The
mu;ﬂ,,choicedunpmm would be based on the desired hvdd‘avuhbnny_forthe
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- data items as well as the cost of performing:the transactions and the processing and storage
-capacities qf thetsltugbpldin‘g the data mamgcr processes. - .
A slmple organiuuon for this dau bue would be to Mgn all of the items
W pertaining to one site to one data mamger proc& ;hit;hexecutu at that me. A jolnt
_activnty graph of the four transactions as performed in wch an organlution is deptcted in
figure.6.3. The graph shows:that kr:&his;orgtmum the: only type ofi transactions-requiring
| 'covnmﬁniaﬁonvb'etwm'dau' managers are the 8 :transactiéns.-' All of the other sranssctions
€an be performed by one of the managers-aione;sbectuse akof theiitems involved in any of
; thé«oﬂicr transactions are.under control.of & single data.-manager. ' - |

; | Flguro 6.3 i ; ,
An Activity Graph for s Sgn}plo gats Bm Orgqgllatjon :

Aﬁsignmont of l"tomsto 'ﬁmg vors:

Mo My Mg
QOH . QOH  QOHg
Q00 QOO QO0,
RQT, RQT, RQT,
DQOH, DQOH; DQOH,

QJSg QIS . QISg
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In this orgamication, most - transactiens: would m no inter-manager
synchronization at af, and the rave: 8 transsctions weaid:itéquire: locking ‘with sny
smhmmmkﬁmmemmﬁmmedwdmach‘
Smuaetml mnmmafmmmmuwg:mmnpmmmu

B S

‘ orgmiutm nm ﬁn M pombh mnge :pue.

. While the S tranenctions. sve infroqment, the wecessityof hacking wheile performing kn
s tianeaction is uadisirsbie Lacking: makes the 2w sites involved in pecfosming u S
transaction vuinerabie ta fulsees during the-sseentior of: the ansction: - Mafry systegtes
can be used to reduce this veinerabilicy Suan acteptaible ewel; suck: x5 wsig polyvatises {43
will be discussed in a later section), or running the § transactions at a time when there is
little other activity, such as after the stores have closed. We can avoid the necessity of
loeking for the 5 transactions by reerganizing the data base:

TMmmmnugmmnzmu,mmmmwMum
QIS ‘items at onie samages Sard o the GOF! Thevis ot 166 higher Vel Fanuger. We can
avoid zmm-m wmmmq;s,mwmmwum A
pmmumwhf&um segapization is siown mf!’iglgg‘.si

In tmmdmmWaﬁmwf@ the Sm:acuons
are agammmwmtnmd,smm,;; RRgErs. ‘mperformed by
twoofthemmm:admmmm Uwﬁkcthepmmorgmiuﬁen

£
however, Msmmm&my‘mmnihm&mbcmm

that anamzmdaq,mmsmmnmwm
locking. :
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Flg‘un 8.4

An Aotivity Graph for a more ofﬁolent Organizutlon of tho
Data SR AE e LTI

Assignmont of Items to Ma.ugor-. |

Mo. ‘ “1 Mg
QOH | QOH, QOH,
QOO0 QOO 1 QOO,
RQTy 7 RQT} RQTo
DQOH, DQOH, DQOH,

‘ Figure 6.4 shows the joint activity gnph for 3 locations in the hierarchy of |
distributers and supermarkets. Ina mhppllcation. there would be several supermarkets for
each local distributer, and several local dlstributer;. “This makes the joint activity graph
somewhat more complicated. as shown by Figure 6.5. | H

Flgure 6.5 shows the Joint activity graph for this organiutlon of the data, for a
system in which there are four supermarkets (Thus four M, mlnagm) being supplied by
two Iocal distnbgn_ers. Each manager and each transaction mhﬁekdwﬁh two subscripts, the
first indicating the level in the distribution hierarchy and the second indicating the location
" at that level to which the manager or transaction pertain,. The gn;;h &'hlergrchlul, with
an afc, from each manager to its parent. Notice, howev;;. sha using the Wrem hierarchy
in Figure 65 as the synchronization network would not albw tin transactions to be
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performedwuhwemhg Mmmmformnommgen)mun'mm
mfmmmmwmmmymmws nsactions. . If.the arcs in

Figure&.&mrwmmmemmmummmmgb‘ym .

the hierarchy in the joint activity graph as a synchronization netvmrk I will refer to an

'. activitygnphofthemef!’lgmﬂbasMMMWdtmﬂuh it from a
hienrcbk:zlgnph inwhkhtmumammmmﬁwahmmmhoﬂu
~ children.

N Flgm 6.5 :
A More Complete Activity anh
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Given this organization of the data base, we must: chose a synchrnnszation network
. that allows the transactions ta be performed with- thepruonaisafchapter 4.“While the four
~ classes of transactions described here.do.not invoive any transactions that:access a large
number of items, presumably in a real inventory control system there:wouid be other
transactions much less frequent than those in the four classes which perform functions such
as changing the parameters DQOH and RQ_T or allowing a user to obtain a snapshot of
the quantities of some item in the various Iocations. ln order to provide the ability to
synchronize any possible transaction on the data the organization of data managers must be

,;er\ hytt

. hierarchical

Any hierarchy of data managers that is consistent with the: imrted; ‘hierarchy
defined by the arcs in the joint activity graph must be some linear ordering of the nodes.
- The conditions that M 2,0 be a descendant of all managers. and that some process be an

ancestor of aII managers. and that there can be only one path between any pair of managers

14

. FNE
force a-linear ordering "This is not a very desirable organization for synchronizing the

transactions 'because the message sent from some manager Mt to M,, 1 in performing an §

G

transaction may have to be routed through many other managers that do not otherwise
i participate in that transaction This makes S transactions expensive and vulnerabie to
failures, owever a i'aiiure occuring during an S transaction does not unnecessarily deiay :

other transactions, because there is no locking

- Another alternative is to abandon the abili't; to performany arbitrary transaction
and restrict the synchronizatign mechanism to.acting .on thefourehmdwiqu above. If
we are only interested - in performing these four, ;traggagt_i_otta then the only commmnication
among managers that is needed is that described hp-the jolnt agilvity.g@ph of the four

transaction classes. A non-hierarchical synchronization network could be used to coordinate
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Jprocesses), mmaﬂmwm PN 10 Curry it transactions
. mmmm

Thm mmmwuw rganized mmmw hmhy Al

ofthe mmmmsummm amm unlym data manager.
"'.Tommsmawmummmwn,mumm
QOO;.. TMBMWMMWV&MQ'MMM“&&MWM;«
which holds QOH, 4 and QIS,. muwmmwmm»mmm
 transaction with wo decking.

. Thuwgmmmﬁmemugmschﬁymmmmﬁmeamtof
',amkmgmdmmermmmwmmwmwmmum
'mmofzmm mmmmmum;nmmmwm
kmmmwnuhmMm:MmymymMMuMmq
m&eﬂmﬁmwmmmmkmam mwammm
thetmnmﬂmsawdﬁndtﬂhuawprmmlyﬁxdmhnawm
' guidance system, mmm&mmdmmwwmmm
'thekmdwfmwmmmmmmmwnmapm

6.2.3 Replicated Organizations of the Data Base

The:twe crganisations of the duta ‘base described ibove:have 1 sifigle copy of each
duta iem. In Ohis section, Jmmmammw the' dita items are
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transaction will be delayed due to a site being inaccessible); or in order to efiminate locking

Sl nc

. - by making more of the transactions have indegerident coripoite

One could, by repliation; make all of the transactions have independent caﬁpmenu.

This effect could be achieved by making surethat whenever a maniger hokis a copy of

some item L, it also hokds copies of all of the ltoms meeded by the transactions thitt update I

in order to make that update. For each:item 1 held by mamager, mtmamgermm also

hold copies of alk items from which arcs:in the joint: tmm%nph point at-L Thus, in

~eﬂ‘ect, ueh mgsms;mpyd‘l mwmmpidﬂ alk:ftewls that are finked to I by

" .a chain of arcs.in the joint transaction graph: The: joint wangsetion ‘aph-of Pigite 6.2,

indicate that a site ‘holding a copy of the items QOH, or Q_OOi must'also hold eoplesbf“!‘he
items QOHj. QOOJ RQTj DQ_OHr and lej for all j S l. because of the chain of arcs
linking these items to Q,OHi and Q_OOi Thls pments an awkward problem as it means
‘that in order to make all tnnsactlom have lndependent mmponmu, 2 single site must hold
Vcopies of all of the ieems and therefore must partldpaee in all of the tnmactiom. It
‘ therefore does not seem pm:tical to avoid Iocking through thls tppmch

. This particular application appears to have-fitthé need for replication to increase the .
' -fava!hbu&y of data items. The transactions thitram*miuﬁﬁl‘im‘ perforiiv quitkly are the
P transactions and.the-©:tranaactions. ‘'While-we coift réphicite the' QOH,, items iii order to
increase the availability of these items, there seems to be little p?int iﬂ doing 0. Beause the
P transactions are by far the most frequent, repliating the QOH;*laems would tdd greatly to
the amount of communication and :possibly the:amownt of computation required. A more
appropriate approach mightibe-to make the sites which ‘hokd the QOH; ites highly
.. reliable. Another approach that could be used is to use several sités to hoki the data .lﬁe’ms
pe&ainlné to eieh supermafke:. partitioning the items so that for }uch product, there is one
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site that holds all of the items that. pertain. 10.that. product. - Thvia- approsch may allow the
individual sites to be mm.mmmma.m site: managing:all
items for a supermarket.

It would. also, presussabiy, be important that O transactions be-executed promply, to
vulnerable to failures, we - couk replicate.-the.: loms acesssed: by the © - tranaactions.
Unfortunately, the O transactions:at-each lecation acsess: many-of the:dtertis for that: location,
including the QOH .iteme. Thus, replicasing. s, 1 amake, Ot tammstions. more relisble
‘mldxukemy éMMMW&nMM%W the

mmmm«zmdanm:muwumnpmumms,md:
' QOOi uemssotlm MtaadM‘,,elch lnveeopbofboth m Flgmes.b sho\n ajoint
" activ:ty graph for this orpnim. In thts orgamnm M, aad H‘,, uch lnve copiu of
the items’ mmmmmmﬁmhummmu& m Thhwglniutiondoes not.
provide any reihbmty wdvamge over the ﬂrst orgunuum mﬁdend in performing the
four transactions. Having the QJS.aad. QOO iisow soplissigd: may; however, allow the
 human managers in charge. of shipping and. receiving A% the 3tes te determine the status of
 orders more easily, even if a faikise interrupts cormusiessien betwsen locations.

62.4 The Use of Polyvaues
Another way of increasing the availability of the datacitems: in the event of a fatlure

is to use the polyvalue mechaniam described: i Ghapter:5 - A% motsd: above;: the P
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_ Figure 6.8
" An Activity Graph for s Redundant Data Base Organization

Assignmont of Itoms to Msugors.

Mo. M1 , Mz .
QOH, QOH,  QOHy
QOO0 | Q00" QO0y
RQT, RQT; . RQTg
DQOH, DQOH, DQOH,
s, @y WSy
QS Qs
QO0, Q00,

base is rare, it is possible that a failure during one of the § mnsactlons could delay access to
“the items used by those fransactions. This coukd in turm delay wther transactions.

By uslng the polyvalue mechanism descrlbed in Chapnr 5, ‘we an avoid this dehy
Two factors suggest that the polyvalue mechanlsm would be effective in eliminating
unnecessary delay of transactions local to one site by failures of other-sites. : First, many of the
transactions depend only loosely on the actual data base vnlues The O tnnsactions. for
example, make a decision of whether or not to order that depends only loosely on the items
" read Second very few of the transactlons reqmre locking thus the probabllity that a

‘n,

transaction requiring locking will be lntermpted by a fanure ls unall.
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Notice also that most of the transactions Woukd not propagate polyvalues that have
been introduced into:the data. bage . The P trantactions and: R:tansactions de: pat propagate
information among items in the data base, while the other two types of transactions may
propagate a polyvaiue to at most one new item. This means that if a polyvalue is
introduced, tt'w'mmfmm;é'be mem base.

Whether or not the poiyvalm mechanism should be used for thh application
',depends on the actual cost of unpmang polyvahies (in m ar the extra checking that
| must be perfonned in the wum of performing a tnum m handle the possibility of
polyvalue inputs), and the concern for reliable operation, 'l'he cost of implamentiag
potyvaluaisnocmenmbemgh manbmeﬂnmnmyn&mn as 5o little locking is

performed mﬁmunpbmmmumm&eitm&dythnmpdynhnwmwerbe
produced.

6.3 Comparison with Other Heebuiﬂm‘

Several other mechanisms could. be used for perfoeming syachronisation of the
transactions in this example. This section bﬂcﬂy compam some of the uther mechanism:
‘that have appeared in the literature with the sohmon dumbed above.

6.3.1 Comparisen with SDD-1

As this eumpie is derived from one used for the SDD—i system for synchroniumm
.of distributed data bases, it seems namral to begin any oompmwn with SDD-I Thls
discussion presumes that the reader is basicafly famﬂm with the GDD-I mechmum md the
solution to this probhm ustng SDD-L



,sendlng-a message to each of the data

“data.

| complicated, and may. involve many exira
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'Using the analysis and protocols of SDD-1, ene concludasthat the P transactions and
the O transactions can be performed by the simplest. (p}) protacal. - This protocol; requires no

locking and in fact closely resambles.the protocol used 0. perfosm:these transactions: in the

solution described above. The ather two transaciion.classes, hawever, require the pd:protocol

o of SDD-1. This protocol performs hsking, by: forcing: the-Vaziows data-manpgers to perfarm
. transactions.in time-stamp order. Thus SDD-1 locks far: two of she. four transastion. classes

while my mechanism Jocks. for only one. The.reasn that Awp. of .the transaction classes

| ‘requi‘re Ioclting in SDD1 is becayse the analysis nmqmwbysm ot recognize

that' the R transactions actually have three independent oompmenu. Whﬂe these

.cornponents must be performed atomlcally wlth mpeu to other transactions, there ls no flow

of information among the three components, thus they can occur in any order with rupect m

each other. The more ﬁne-grained analysis used in the mechanlsm of thls thesls disoovers
this fact which allows these transactions to be perfomed wtthout locklng a | ‘

The locking protocol used by SDD-1 s similar in’cost to that used in ‘this thesis, if
the SDD-1 mechanism is implemented simply and without m to.failures. . .Both involve
rs which. wmmmxdm in mmwm '»
ONA), MELIAZON: 88 maudcd 10 move the

performinz,tb! transaction with as many ad

YR

The robust. mmmton of the . SDD-1 protocels [quner’l&].qu. is very
‘ ym»u quise difficukk.to_be
surethamemniameeﬁmmwmme‘m‘hm_
to stop all mm PWS o
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The robuse mplementsttors of  the: SDDW profocols: ssempts 1o minimize the
probabiiity that & fsflsre wilt-meke: daty inscorsibi¢ SIONgW-the use of abortsble locking,
and a. voting strategy o durmine when & transaction: paseses its comimit point. Using these
mmmymmmmwmmwummmmg
“Nesded o implement transactions wsing the focking prototdh. I contrast, using the
-mm-mmwmwavmammmuwddoamm
:Wtﬁemdmmmwwma*w Mmamm
mmmmmmaww

| Inmmry,zheprmhundinmbthuumﬁkdzmbeﬂghdylasandy(in
mmofprwesﬂngmmdmguum)muhknah ! |
',thantheprotooolsofsnn-! ThudwmmMmMnm”humb
~ than SDD-, as the cost of both mechanisms depends strongly mthetppliaﬂou |

nblehvdofrobusmas

6.3.2 Comparison with Cray's locking strategies

isin is-déacribed in 1 et of notes by

“to " perform’ Mukisite
transactions atomically. THis mechanisni:could be thed for this eximple, by assigning the

items in the data base to various sites.

The protecols used by Cray require locking Wwhenever ‘two of more sites are involved A
‘i ‘one transaction. Thwthe&md mewmm‘m this’ exampie.

The locking mechanisms proposed by Cry ire a mélfiunis

each transaction at each site, and a deadlock detection
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focks in which no transaction can proceed. The cost of settmgthelocks needed to perform a
transaction is similar to the-locking mecharisrtis of SDD-F and this thesti: |

The problem of deadlock ‘detection, ‘Howevet; adds to the tost of Gray’s scheme.
- Deadlock detection requires amalysis‘of the sets of focks' ekt by alf transactions at all’Sites,
and may -be quite coitly in a large system. mmtﬁﬁwm detectionr ¢ait’”-be
pai'titioned. s0 that deadlocks among smah gﬂﬁpid‘ ‘sites canv be detected more ripidly and
“with less computatlon than dadlocks involvlng a hrge numberﬁ of sites. Thls strategy is
B Iikely to work rauonably well in this appliation as uch mnn;:ﬁm lmrolves only a small

A PSS S S

number of sites Deadlock detection still rmt, an m“ : oost in ung the
.-'z:."-‘-'. it T opq!»

system. over that of using the protocols of SDD-I md thls thuu whlch use pre-analym of

<
guY
[Ty

the transactions to avoid deadlock :ituationa

6.4 Summary

~ This application (the distributed supermarket inventory oyucm) is typical of the
kinds of distributed information systems which. this thesis addresses. The analysis shows
that the transacﬁons exhibit a strong degree of locality of reference, and that most of the
 transactions can be implemented without locking. The choice of which of the data base

organizations and synchronization hierarchies to use for this application depends on the

' cancern for reliability, and the desire to maintain flexibility to perform transactions other

-than those initially planned. The overhead of syndironlu_tlon in the organization in which
the hierarchy parallels the hierarchical organization of the locations is very small, as very
few transactions require locking, and no extra mesuges are used for the synchronization of

“transactions which do not require locking.
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 The polyvakie mechaniess described:in chapter five can be used in this application
to minimize the probabiy that a fasiure will delay transactions...

 The implementation of this ;ppmummmmmoonm thesls was

~.compared w&h two other  distributed data base congayres mmm Thu '
 comparison szwmmdmmwwmummmm
| ammmmmmuawmmm

| lnmw:mmumhmimnmhaMmdMMmbemwbceﬁkum
androbustfortms:ppuadm Mtheumumnnmmmmagmtdalof
” ﬂexibmty. lnmngthuym mmmmcmmmmwmapm
theabllkywmmumphmndmmmumy
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Chapter 7 °

'Conclusions and Areas for Further Research

Yol
ol

This thesis has presented 2 mode} of synchrosization.of transactions i 3. distribused
information, system, and seyeral mechanisms for. proviing,such synchronization. This
tant contributions. of the thesis tg;this field, and suggests some

~ areas for further investigation.

chapter summarizes the impg

71 Sﬁmnliry of Thesis Work

The work of this thesis has concentnted ln two areas: devebpment of A model of
computation ina distributed information syuem nnd devebpmcm of :pecmc mechanlsms for
concurrency control in such a system The major ldeas of thc thesh in each of these areas
 are summarized below. S ’

7.1.1 A Model for Diltrihu_ud Computing - . .

The process tnodel of distributed computing presentedin Chapter 2 lsai fnmwork
in .w'hvich computation i a distributed infermatios- Wg.um :'This model
. specifies. that ciae effects of site failures or cormmunication: failures -are: lost or delayed
messages. The thesis discusses techniques that could be used-te provide an.implementation
ofihcconeepuln ttnpmnwdcliorwhkhthed‘fmafﬂhmirem wtlnse
specifications.
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I developed two basic strategies for spachronizing transactions described in the
process model: locking and sequenciag.  Sequencing achieves the g0 of partial operability
defined m-cma ﬁthhckMgmyaﬁwa"Mudmemhwammmthu
is local to some other site. In Chapier 4, I demonstrated that locking was needed to correctly
coordtnaumemdmm Ciupwiymdwmrwmechunthn
#n any implementation of tocking, 2 tramaction’ 15cal to‘one’ Hie fmy Be Indefing
© by a failure at some other-site. ‘Taken together, these resuills: Jemoris

to achieve the gost of partial operability whilé corred

712 A Hierarchical Cencurrency Contro mnhgu_m |

cmsmmm«mmmahmmmmwmu
mnsam TMMMMWWMW Fmt.tthmsknphw
describe, and mmayammmm Many of the syachronization mechanisms
vdexribadmmeumum:ueqmmmpmmmm&mmm:n
very long and complicated. Tmmkmpmmufmpmhmwm
cmssm4qwm:mmmwwmu ‘
actual dmﬂbu&d hhrmﬁm system.

A mmm property of my scheme is thait it perférms well when the patterns
+of accesses 1o items i the distributed ‘data base show a-strawg Jecality of referenice. The
mechanism can be tailoced <30 that frequent transaceions’ cegire” fitthe overhead - for
. synchronisation. The mechanism can also be designod 10 4% 0. avoid lotking whenever
possible. The thesis describes analysis techniques that can be used to assess the cost of
performing the most frequent or important transactions. This analysis can be used to choose
an organization of tﬁe data and the synchronization network so that these mm; are
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performed efficiently and reliably. The mechanism provides cogrect synchronization for all
transactions, even those not anticipated in the design, however unanticipated transactions
n'iay be much more costly to perforni and more tikely to bedehyed by failures.

_ . t0. the, problem -of unavoidable
. delays caused by failures during the execution of a trapsaction.using locking. The polyvalue

Chapter 5 of the thesis presents: a novel solytio

mec_hanism; in many cases allows a transaction 9. be run eyen if the values.in the data base
accessed by that _tgagi;n;um can not be determined exactly, due to.a failure. With this '
" mechanism, important transactions that must be performed promptly are, in many ».,Mnot
deleyed by the locks set by other transactions. The protocols presented for manipulating
polyvalues again are most efficient if most of transactions are local to one or to a small
number of sites. This assumption of locality -of referenoeappelrs to be true of many

applications.

 The model and mechanisms of this thesis shed. some light on.what is a very. poorly
understood area of computer science. They do not by any means provide a complete solution
to.the problem, and in fact suggest several interesting. research problegas.

7.2 Areas for Fusther Research

There are a number of ways in which the work of this thesis could be extended to
provide a better understanding of synchronization in distributed systems. These include the
investigation of the applicabiiity of the prooess model bo ml physical systems. further
.investigation -of appliutions, betcer techniques for comtmcting the synchroniution
khierarchy. and implementation of the protocois. | A
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7.2.1 The Applicability of the Process Mode!

The results of this thesis are based on the semantics of failures in the process model.
In particular, many of the reiﬁlts are based on the notion ttnt there is no single event
detectable by two pmu& mﬂy Whike 1 wm tm this is true of any
sender of a message can knawfwmnwmthuamtﬁawmmd l“rthis is
the case, one m&gmwtbhwmmamwmam in ‘Chapter 5,
contrary t6 the arguments advanced in that chapter and T beveril othér papers in the

" Hterature,

 Ancther related area for investigation is that of ways of including the effects of
failures iﬁ a model of oompuutmn In tﬁe process model, I assumed that a failure could
delay any message indefinitely. It is possible that some less pessimistic assumption about
failures would lead to'a workable model for 'a distributed informmtioe systérh. One might,
for example, assume that no' more thari N sites: full Govurrently. Wil ¢ would be
impossible to implernent a system 30 as to conform to this asstiinption, if the probability that
the assumption is viokated is sufficiently small, then a distributed information system based
on the assumption may be acouptibly: retfable; mmyﬁem to implement.

7.2.2 Applications

Thts thesis makes extemive use of the anumpﬂm tlm appuatiom of a dlstributed
information system will exhibu !oaiity of refmce m thek use af dm Thu ammptlon
appears to be true of some planned appﬁathm. howem men areﬁﬂ mﬂm of actual
applications may be needed to confirm the vaﬂdky of this uwmpdon We may in fact



| m-
discover that the flexibility of a' distributed information symm wilt eneourage different
 organizations of information thﬂ"donotexhiﬁtthemm | o

7.2.3 Analysis of Trannetlons

The thests presented techniques for determining the cost of performing a transaction
(in terms of the number of memg"es“ requlred)’ uﬂhg virious béhlorgenlutiomofthe

. S

given a destripﬁon of the most frequent transactions to'bé' pefform "_’, were given. These

| 'guidelmes are not, _however, detailed algorithms that deslgn the | ;n;hmnuamn mechanism

Considerable effort and ingenuity may be needed in chonsing an gptimal. or near optimal
-.synchroniunon network and in choosing the auignment of data items m data mapager
. processes. These problems are simnar to many others that occur tn managigg resources in a-
fot deugnlng a dlstribuwd

--computer system, and it would seem likely that good
. im‘ormation system uslng the Menrchical synchronluuon mec!unhm of this them could be

derived _
7.2.4 Implementation of the Protocols

Finally, the thesis presented only a few simple impWNMS of the synchronization
_protocols Improvements on these lmplementatiom can no doubt be made. One area that
seems of particular interest is using the hlenrchlal synchronization protoools in a computer
tailored to managing data. The hierarchical Wammm pfenmd here fits
well with' the proposed.modsts of mesory for‘a- datx bese machiié: This fhechanism may
lead to & very efficient implementation of sucka mehine. v |
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 Another implementation issue that besrs further invemigation i the design of 2
communication network that supports atorais. beondcaming. - In Chapter 2, .techniques for
uMgabmdMMMwmmwmmMmpm
The need for a coordinator site is 2 weak pammthuthn.umhmdmemdimmr
site stops all amkbmm uummzmmgmm could be
implemented in each site’s network. interface, in such a way.that a siogle site failure would
broadcasting, it is Hikely that broadsasting could be made efficit and highly roliable.

' &vmtmbmhmhavebmdevebpedhmhﬁhmmﬂd«ﬁhlwpbofa
- redundant database. mmtncupmf thhmwwhmmmr

o Manthatofsynchmmingumnndmhﬁmmmmmhm'

has a copy of every item. Thmbtmﬂathnhmécmwmpnpﬁated
'&umﬂmmﬁﬁmmmmmdmmmawwmda
pmmmmMammmmmdam Applicationof .
mmmm&rmm@pmambammmmdmmmbe}
an interesting research problem, and would lead ta a_mece, tohost i Jon: of the

concurmcycmro%mhammmzed in this thesis.

This chapter has presented a.summary of the: results of: this thesis, mm
some of the open questions tat this theys leaves unanswerel. - Many of the conclusions of
this work are not decisive, however 1 hope that.my weork: Mmﬂlm‘t@m ‘
mamymurkyandpooﬂymdemoodﬁdd
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Proofs of the Protosols

This appendix glm a more formal deflriftion of somé of the oomqm in the body of
this thesis and proofs of some ofbth-e results. For nmpuchy of dwlption, the definitions and
preofs in this appendix are for the version of the atestage fofvarder protixcol in Whih'exch
broadcast message is sent imimediately to a process which- unmmofanofthe

0{ tbg Bm deacrtbed ln
Chapter 3, uch message may travel up the hicm:hy in several hops. Thk durerence does
not effect mmmmnmummwwm take place in
the diatribution of a breadcast after that broadcast has seashed wmm ancestor are
used in determinmg the < ordering. This condition is consistent with the use made of the

receivers and of the smder In the actual “"P

protocol by the concurrency control mechanism presented i Chagter 4, in which the process
lteps that ke pha"-ih,v:-tht MIMGaMC mwm@m the common
ancestor are the only ones which have,effect; that could be observed by process steps related

Al l-‘ormalintion of Atomic Bmdeum

definition: ‘Formhprmpthereumotdcrm; senttopwch
: thatm,<Pm2m‘m|wuraalvadstprcfmmzmsmlvedatp_
Eachmagemtopi:inchsdedin<,%iﬂsmcdved
Definition: A brogdcast B = {[b, :]Ibilsamuuge\vhichutobesmtto
' process p; as a part of B} | :
Definition; For each message m, let B(m) be the broadcast message from which m

was derived. The set {m[B(m) = B} for some particular broadcast B



Definition:

Def initio_n:
' Qefin_ition:
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then contains both the component messages of B and any other
messages that are received in distributing those components.

For broadcast messages B; and B, there-is' an-ordering <, which is
defmed as B; < 82 if Bp, bi' b2 such that B(bl) Blv and B(bz) 32,

Broadcasting is atomic iff < is cycle free.
Let ~ be the 1nchrogizgtion g relationship. which is a

relationship among pairs of processes andi musl:satisfy .the following
constraint. The graph defined by ~ must have no directed or

.undirected cycles, .Tthus,:there m DOt:e%48: 2. 361-0h three or . more

processes py, ..o, all distinct, such that either ft, f’tot of h.] ~
for all i<n, and p; and p; are-relasid by &

“With these definitions, we can now define the message formrder proeocol by defining the
process step ‘specifications of the forwarders.

Definivtion.

Definition:

The process step specification of a me&uge forwarder f is definéd by
a function F(B): e

F(B) = {[(X(B.p)$] | (f p) A The set xw) is non empty}

.where B is the message received in 3. process sep,-E(B).is the set of

pairs, each of which lists one of the output messages produced by that

step and its destination process. and: X(Bip) isch set:describing : the
contents of one of the output maugu of the prooeu swp which is
constructed as follows: - .

X(Byg) = {lbglilbgleBAp~*g .

Communication between message Mfdenobeys the constraint of
Sequencing, which can be stated as follows. If by <, bo for messages

by and by and message forwarder £, and i W’ £ € F(by, and [, p] -
€ F(bz) where F is the prowobl speci " forf then b’l ,, 32
after both b’} and b’y hambeesreuwdb;f '




- 184 -
A.2 Proof of Amw ‘

To.mmmmmmmmmmmudamu'
message atomically, mmshowmathe<muagtnmymmnmcmbkbym
execution ofmepnpedﬂedbyt!npmocoluqchme Todcan.lwﬁlmowthut‘ormy
mppmmmchm«nn«wdmmuqmmmmw then it will be
:oafterabo mmmmmmwmmm)hum
mycwmmuw&ﬂycy&fm,by Mwmmm by following
meprommnmmmgmauqmm

| Beforeprxeadmgwﬁhtheprodlwmﬁ%b“lmwmmm
protocolthuwmbeuseﬁslmmpmf Rtwmﬁgﬁqhnmm\wﬂa_
message derived from the same broadcast B, mentlmuaMtntMgnphdeﬁmdby
~nhmw’mm;pm'q.'2ad1mmmu‘puhmmomweda
r*mumgedemw from B. This is true because the graph has ito cycles, thus there is only one
puhb«mnpmdq.mdthepm&dﬂbmmﬁh&“%%thenﬁmhatm
point, from whichitmuumchallmdpmn. hhmw&rmwmhan
seen messages from a broadcast B umiess all of the protesses i’ the path betwsen those two
. processes have also seen messages from B. o

In each step of the protocol, some message m is received at some process g, possibly
~ adding ordering relationships of the form b(m’)-< ¥m) for messages m’ previously received
at p. We must show thatmmducmgﬂwrmmm')?b(m)fmmymgem'
~ previously received at p can net introduce a cycle. The proof will be divided into 3 cases,
depending on the origin of m and ' -

CASE I m was not sent from a process P such that P ~ p. In this case, m is the initial
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entrance of broadcast message b(m) into the network of message forwarders. Therefore,
before the reception of m, there were no ordering relatinshigh in'< iavoMng lm), so that
the receptionofmoouidn&ﬁﬁsodmacycle in< '

CASE 2: m and m’ wefe both sent by some process P such that P ~ p. In t»hisl case. the
process P must have reoetved a message-M suchi‘that é!I('M)f--f-"ﬂi'i'i)."'"am‘l tmusage M’ such
that B(M’)“= B(m) in the process 'steps which produced“m ‘and ‘'m’ Becsuse of the
 sequencing - of messages between P and p, the meshgei rivtind i ‘iirst ‘have been sent by P
~ in the same Ofder that they:were receiveld at p. , Fhus 8¢ erdering rehtlumhlpb(m‘) < B{m) |
' heldbeforethe reception of m (because of the:réceptions-of M aid M"at P) and- therefore,
by the ‘assumption thatm&y&e’ existed mmmwmmmu created.

. "z
N

CASE 3: M was sent by some process P for which P ~ P but m was not sent by P Thls is
the most difﬂcult case. To show that no cycle is introduced b] the ' reception of m in this
. case, I will assume that such a cycle is created and show that this usumptlon leads to a
contradiction o a violation of the conditions of the MI. .

Assume that the reception of m creates ncycle in the < orderigg ) Then prior to the
~ reception of m, it must be the case that there is a iequena of broadust messages <By, ..
By,> such that B; < B;,; for 1 <i <n,and By = B(m). and B, B(nf) Consider now the
‘set of processes pp - Pn- 13t which these broadcuts were ordemd Now by the observation
noted above. there exists a path in the network from each of these proouses to the next
process in the‘chain. - Also, there exists a pwtlkm py'awd - P, ‘as-both: have received
‘messages derived from b(m), and there exists a- pativ: betweew :p,_; and f:."fﬁ~‘b9th‘ Hive
“received messages. deﬁved fromy b{m’). Thus-becapse of thﬁ’»ctmﬁ*‘ of broadcasts, then ‘must
exist a path between P and p. If the path impw'tytm chsin 6f broadcasts does not go
through the direct link between P and p, then we have discovered a cytle in the
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syachronization netwark, violatiog the condiions of hesprotesel. § sl show that 4f that

. path does go theough the-disact link betwasn the two wacesses then sither the sequencing-of
messages between P and P has been violated, ar,a- cytie.snisted in dbe < selatinnship before
the mpum of matp. | |

Ifthe;pl&h betwesn P and ;mm;by;&hemaﬂf Mmm includes- &he
 direct lipk, then zome traadcast, <all it By, maust.haue been. seen by both P, and p, and

 furtharmore, we knew:shas.P:mu have sesebved & snesmge denbusd foare By, and s o result
~aent a mesiage 1o . The brondoasts B and. Bim) must have besn andersd by metage
 rocaptions 2t P, and Rim). < By, as stherwise thawe, ekt be a apule in She chale. of
broadcasts. New by sequencing, the vaception of a5 5 Rt precede mmﬁm-
mgewmmnrwhﬁhkimpmhh aweknwtwamgedeﬂved fmm Bj
must havebeenmimdatp Thummdmﬁmdmmﬁmithmwubbfora

ertE o { ’

cyc!etoarisefmmmewimefmnpffthem!ypm Pmdpismedirectﬁnk
" Thus another distinct pathmmtukt in the sfmhremm mor& betwnn P and p,

forming a cycle with the direct tink.

This com;ﬂem the: praofofthe third and hstmse.thmehesmhmmmn protoeol
of Chapter 3 torrectly coordinates atomic broadcasts.

i SN L R I St
A3:Correct Relative Sequencing of Broadivasts

In this -section, .1 damonstrate thiat:the sprobocol dessribed in /Chapter 3 for atomic
Joroadcasting ‘cormectly ‘erdess ;toraic ‘broadcass :such Shat &R0 nover aeceives -some
IHESSage:m Wmmm message:that: o "shoub: fellow”. ‘Tie:praof sill be for:the
simplified case.in-which she = selationship:s a simpletieraschy. .
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Recall that the “should follow” relationship among messages was defined as: Each
message m sent by a process p in a process step 5:should faliow a-message m’ whenever:
a) There is a message m"” received by p in process step s or in a step

‘that preceded .5, and m' and m": are:components-of the same -
broadcast. ’ '

OR

b) There is a message m” received by pin step sorina step that
preceded s, and m” should follow m’. - ‘e

A key factor in this definition is that if m should follow m’, then some process must have
recewed a message derived from b{m’). Using the meuage fonvarder protoool of Chapter 3,
if any process has received a message derived from a broadcast message B. then for any
,,proeesg . if p will eventually receive a message derived. from: B, then that message must be
represented in some me#age,awaiﬂng reception at $ or at one of the ancestors-of £. This is
true because each broedcast message enters: the. hierarchy once,and all-components flow
~ downward in the hiemchy fram the point of eatry. Naw an be received before
the message is entered in the hierarchy, and once & mesxge is entered, each component is
either above or at its ukimate destination.

T will now prave the claim that for any message m, there-can:-be no message m’ such
that m.should follow mY’, and the MW’*W‘ «containing m' is above
that for m in the hierarchy. This, combined with the observation about the:message
forwarder protocol described in the previous pangraph is sumclent to prove that when a
message m is recelved at a procecs p, no message m' that should follow m will subsequently
be received at p. -
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o Tbepmofofm&mmlhebymmmmmm is true, as there are
no messages. We must show that in amvy state for which the cli ix true, the reception of a
‘myma:ampumwmmmmmmmmmnu'
E There are two cases: mﬁmmmmbyhpmmdﬁwmﬂmmmmtby

©  some other process.

CASE I m was sent by some process P such that P ~ 5. When m was sent, all of the
messages that m should follow must have been int the hierarchy (or already received) and not
~ above P in the hierarchy. Tmmamwwmpm;mﬂ'
P, magesthatmshou&dtalmwmnctheabcvepinmm"chywhmmumlvedat
p.

'CASE2:m was not sent by the parent of p. In this use. weé mast consider the messages that
m shiould follow. These are #fl components of each. broadcast ‘mcssage B for which 5, the
sender of m; had received & compenent prior to the sending of i’ “T'he clatm was trire when -
m \Qu sent, 50 no M&m shouid foliow any of thése brondinats could' have been above
s at the time that m was sent. Therefore; beciuse § must be an ancsstor of s, there are no
messages that should follow m that are above p whet m'is recéived st p.

This eompms the proof of the claim, and thus the proof that broadcasts are
WWHMWMMWWtMM srnemm!nﬁon

network.

While the proof of correct sequencing of messages mding to the “should follow" '
relationshlp is somewhat involved, the principal of operation of the promaol is s}mple Each
message pushes the messages that it should follow along paths in the hierarchy as it goes.
The protocol works because there is only one path between any two processes in the
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hierarchy, so that no message can sneak ahead of its place in the sequence of messages going

to some destination process.
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An Anslysis of the Propogation of Pulyvalues

A major area of concern regarding the polyvalwe scheme presented in Chapter 5 of
this thesis is that failures may cause the number of items having polyvakies to become large.
This would waste storage space and cause a great deal of extra computation by the
polytransactions acting on the data base. This appendix presents a simple model of the
dynamic behavior of a distributed information system using the polyvalue schome. An
. _mly:hhgivmmshwthagwiﬂzmmbhm&tduwmlaﬂd
'&;hniamt&nmdwmmmmmmmquwmu A simulation of
me'systmagmweammmpmuedmn |

B.1 A Model for the Creation and Deletion of Pelyvalues

At any point in the execution of a distributed information system, we can calculate
cmexmnmﬁ'mmmamusummmmm:‘
?he expéaed-&nnm'aﬁdﬂiehwmmdﬂn.’w These rates can be
expreanas:. | ' ‘

Creation Rate = Propagation Rate + New Failure Rate
Deletion Rate = Recovery rate + Propagation Overwrite Rate

Propagation rate is the rate at which mmnmwmvmmtm resuits in
items which previously held simple values. New failure rate is the rate at which updates in
pmgreunuwspuded.uuﬂngpdyvﬂuesmbemhi Recovery rate is the rate at
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, Which failures which caused polyvalues to be produced are recovered. “Fimally, propagatlon

overwrite rate is the (probably very low) rate at Which. an ftem with -2’ polyvalie i3 updated
by a transaction producing a simple vakse: This ocours only if a transaction produces an
output that is independent of the previous vaiue of theupdated item. '

With some additional terminology, we can develop more precise expressions for the

" creation and deletion rates. I will use the following terminolegy :te describe: the data base,

the transactions, and the failure characteristics of the, system:

" U - Update frequency (Updates/Second). This is the“rate at which
‘updates to the data base (not transactions) are made. U an be
calculated from the overall trantattih tite, ‘the. |
transactions which make updates, and the average number of
updates per transaction. L

s f‘ .

. W - The probability of an update being delayed by failyze. W-can
be computed from the mean time between failures, the time window
in which an update can be dehyed by a faﬂure. and the update
rate ' S T :

I - The number of items in the data base ) ?

R - The recovery rate for failures This is the rec Erocal of the
* mean time ‘to recover failures (in seconds). ‘I'hé" description of
. failure recovery in this way assumes that the mean time. ip. recaver

failures is exponentially dlsmbuted with mean of llr

I

Y - Update mdependence Thls panmeter is the probabmty that

the new value of an updated item Wik net>depend on’ its exact

previous value. A value of 0 for Y indicates that the new value of

an updated item always depends on its prevlous value. Coe

D - Dependence of updated items on other data items. This

. parameter specifiss on the. average the nysmber of-data iems.in the -
data base on which each update depends. -
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 With these parameters, we can approximate the rates described sbove. In the
. cxpfustom\gw_ea.beb\i:fu the rates, r'Mqu pelyvalues in the data
base. This is—a ﬁmm approximation in whick the proportion of dats ltems in the data
base having polyvalues is asmumed 10 be smal; thus: teems: wolving ¢P/I)® Have: been
~ dropped. |

Propagation rate « U s D ¥ P/ T
New Failure Rate = U ¢ W
Recovery Rate = P ¢ R

Propaggqon Ovmtzerimé:ﬂ'ormvll -

These tmunbemmedwgivethecxmednuafmdthemmb«of
polyvalucshtﬁemmm ‘

%%- - u.w * !:hDaPIl--f Uoé'ﬂ'l_l - PsR

This is a simple linear differential equation for P which indicates that the number of
polyvalues would follow an exponential dmyftemtb initial valise 10 the sseady state value,

given that theparmmmm mmm mviar uninsym The steady state

expected numberofpdyvzksan bewmmd bymtﬁcmefcwqqmlmm

and solving for P. From this. wm

_ UsWal
P't+¢—t'

Several: m-mm of this. mm M te cum l"'lm. it would
seem that the dmmamhuwmmmmwmmﬂnMymumed
number of polyvalues to be infinite or negative. This situation arises when the propaguion
rate is equal to or greater than the rate at which polyvalues are removed through failure
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recovery or overvﬁritten. If this were the case, we would indeed expect the number of

polyvalues in the data base to become large In f;gg the number of polyvalues in the data
j base would ‘grow so Iarge that this snmple ﬂrst order analysis would no lpnger be correct, and
the number of polyvalues would be Iimited by second order effects which I haye ignored, (I
have, for example, ignored the possibility that an ltem involved ln a falled \update or the

target of propagation already has a polyvalue. and thus does not represent A new polyvalue)

A second feature of the equation which may. séem’ strange is that it depends ir a
nonv-trivial way on I, the number of items in the data base. This is because the creation and
deletion of polyvalues directly due to failures is not dependent on the data base size, while
the propagation terms depend on the ratio P/I. If I is very large compared to !". then the
effect of propagation is small, as the chance that items with polyvalues will be used by
transactions is small. If, however, the data base is small, then the chance that items with
poly'nalues will be involved in transactions is larger, and the propagation terms become more

 significant.

Another point to notice about these equations i that-they are stable, meaning that if
the current number of polyvalues is larger than the expected number, the expected change in

| the number of polyvalue: isa decrme This indicates that if aome catastrophe introduces a

.large number of polyvalues into the data base, the number ﬁtoulda eoon decreue to the
expected number, given that the values of W andqlt are no&!M by the catastrophe.

Table B.I gives some typical values for P. Seveulobservatlonsan be made about
_'\this data. [.)ecreasing R causes an increase in :t'he numberof po!yvatues, ai would be
et(pected Incrusing W causes a proportlonal increase !n the némber of polyvalues.
D,ecreasmg I causes the number of polyvalues to rjue The pgnmeters Y and D have little

effect, unless the values of the parameters are such that the denominator of the equatlon for




P is near zero.

Notkethuevmformablypuﬂmmmbnmm”wv«yﬂmthe
numberofpo!yvahammmmﬂ. mmmmm«mmnmm -
' ufusibleinadmribumdiﬂmwmdﬂmmtdunmoflmmwﬂu
'explomnoftheammofmnpmnnvcym Thnmmofmnappendix
mMameﬂamﬁmcmdpdmmmmm
pndManMqlmMm

| . Table Bd |
Typical Predistions of the Number of Polyvalues in a Database
U L AR R Y . o p
| 00001 1000000 0001 o 1 010
1 0O0G0L 4090000 - 6000 - O . 10 ol
10 00001 1000000 0001 0 1 101
100 000 1008000 OO ¢ i uu
10 00001 100000 0001 0 1 1
10 00001 100800 0001 o 5 2.0
0 00001 00000 000! 0 7 333
0 00004 100000 000 1 1 100
10 - 00001 20000 0000 0 1 200
10 0000 1AM 00K O e 100
10 000 1000000 0004 0 i 010
0 0005 £000000 G001 0 1 " 5030
10 0000 1000000 00001 o R _Ho0
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B.2 Simulation of the Use of Polyviues

In order to verify that the approximations made in analyzing the above model do
not lead to : an inaccurate description of the behavior of the polyvalue system, I constructed a
simulation of the manipulation of polyvalues in a distribuued information system which is

based on the above model, but not the approximations made in the analysis

' | The simulation assigns umque identifiersl to }each failure cruting a polyvalue. in
order to distinguish them. For each item in the data base, the simulatlon maintains a vector
containing the identifiers of the pending transactions on whichv tl'ia:\ltem depends, refered ho
as the state of the item. An item has a polyvalue if its state is non-empty (i.e. if that item

~ depends on a pending transaction).

. Updates are simulated at the rate U. Each such update selects a random inteker d

with mean D, and d random items from the data base. Some random item is selected as the
“target of the update. The state of the updated item is replaced with a merge of the states of
_ the selected d items. With probability (1-Y), the previous state of the npdated item is also

merged into its new state.

Witli a probability W, the update is chosen to fail. A failure is simulated by
selecting a new identifier, adding-it to.the state.of the updited.tem-and selecting a recovery
time for the failure Recovery times are exponentially distributed, with mean /R. When the
‘rec.overy time for a failure is reached, the identifier of that failure is removed i‘rpm all item

‘states.

The limits of the simulatmg program precent the mon ofvery large:data bases,
or very high update rates. However, for the patameters M an easily be simulated, the
simulation agrees well with the predictions of the model. Table B2 contalns the results of
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the simulation for some ssmple parameter settings. The nusbers of polyvalues obtained
 through the umuhmmmgmt somewhat smafier than unupredmd by the
| mlym. Thudiffa-mlsprmm,duewtmmmatﬂnmeuwhuhpdynhe:an
crueedumlkrﬁmtbupmnmdbytmmmmmdlmhdupdamm
-tMurgaofammmthvaeapdyvam

In conclusion, these results show that the polyum scheme is fetuble for preventing
dehyduewlocklng.pmm that mmbhmmhhuwmmmm
of ranum that introduce pdyvallm.

U w 1 R Y b P P
2 00l 10000 001 0o i 204 200
5 00t 10,000 0.0f 0 1 526 27
10 001 100000 00 e 1 o 95
0 000f 10000 0.08 0 i m 074
0 001 16000 00 ‘0 5 90 9.8
0 00t 10,000 0.01 [ 5 167 s
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