SRR MASSACHUSETTS
/ll INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

R

MIT/LCS/TR-204

REAL-TIME CONTROL STRUCTURES

FOR BLOCK DIAGRAM SCHEMATA

Thomas J. Teixeira
[y 1

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research under

' contract no. N0O0014-75~C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-204

REAL-TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA

by

Thomas Joseph Teixeira

August 1978

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science
© Massachusetts institute of Technology

Cambridge Massachusetts 02139

REAL-TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA -

by
Thomas Joseph Taixeira

This report is a minor revision of a thesis submitted to the Department of Electrical
Engineering and Computer Science on January 30, 1978 in partial fulfiiment of the
requirements for the Degree of Master of Scienge.

ABSTRACT

Block diagram schemata model computation systems in the context of an
external environment. The environment imposes various constraints on the real-time
performance of any implementation of a block diagram schema. The model is used
to provide precise definitions of raal-time performance. The portion of the
implementation that affects the resltime performance is called the control
structure.

This research Investigates several strategies for synthesizing control structures
to satisfy the external real-time specifications. The simplest strategy is to
execute all the blocks in the diagram in some fixed order. Control structures of
this type have been somewhat ignored for time critical applications. The synthesis
problem is shown to be solvabie In the sense that acyclic control structures do not
need to be considered. A branch-and-bound syntheeis algorithm Is presented which
requires exponential time Iin the worst case. Although no efficlent synthesis
algorithm was found, the conjecture that the problem Is NP-complete Is not proved.

The other strategy for implementing control structures mekes use of the fact
that in some applications the input values change at discrete times. Under this
assumption, block diagram schemata are similar to traditional models of real-time
computations. An efficlant algorithm for assigning fixed priorities to independent
tasks is presented that guarantees the realtime specifications will be met. This
aigorithm relaxes previous restrictions of the deadiine for a task being coincident
with its next request.

Finally, some of the issues Involved with muitipie processor control structures are
discussed, aithough no specific algorithms are investigated.

Key Words and Phrases: reaktime scheduling, prioﬂty “scheduling, deadline-driven
scheduling, control structyres T

TR : I vt

Acknowledgements

Steve Ward has been indispensable as an advisor in transforming my rather hazy
ideas about reaktime programming into a workable raseer‘ch,tqgic.' His enthg;iasm,
kept this research progressing at many points when | was stuck or otherwise
sidetracked. }

Thanks are due to John Pershing, Al Mok and JaS/ Wahid ;fd_r their work In
providing a test bed for some of the ideas expressed In this thesis. Al Mok has
also been especially helpful with his knowledge about scheddling theory and
algorithms. ' - A '

The entire Domain Specific Sys"temé Research group h#.s:; at some tl‘ri;e
contributed to the computer facilities that mu;to _the dct&gl _production of this
document as well as the research possible, ,eapaciailf Jphn Pershing and Terry
Hayes. o o

Finally, | wish to thank Gilian Telxeira for her emotional and moral support

throughout the course of this research.

This research was supported by the Advanced Reseqrd'h Provjectsv Agency of the
Department of Defense and was monitored by the Oﬁceaf Naval Besearch under

Contract No. NOO0O14-75-C-0661.

Table of Contents

1: Introduction

1.1: Previous Work
1.2: Statement of the Problem
1.3: ,Thesis Overview

2: Block Diagram Schemata

2.1: Real-Time Performance and Speclﬂcatmns
2.2: Functionality of Blocks
2.3: Example

3: Static Control Structures

3.1: Existence of Cyclic Control Structures

3.2: Generating RealTime Control Structures

3.3: A Branch-and-Bound Method for Generating Control Structures
3.3.1: Determining the Relative Frequency of Constraint Paths
3.3.2: Strategies for Combining Solutions
3.3.3: Performance of the Algorithm -
3.3.4: Speeding up the Algorithm
3.3.5: Practical Experience

3.4: Heuristics for Generating Control Structures

4: Static Priority Interrupt Control Structures

4.1: Dynamic Control Structures
4.2: Model for Static Interrupt Control Structures
4.3: Assigning Priorities to Independent Tasks
4.4: More Complex Models
4.4.1: Scheduling Overhead
4.4.2: Non-preemptive Control Structures
4.4.3: Non-Distinct Priorities
4.5: Applications to the Control Structure Problem
4.6.1: Chains of Independent Tasks
4.6.2: More Complex Task Relations
4.56.3: Combining Static and Dynamic Control Structures

§: Multiple Processor Control Structures

6.1: Assigning Control Structures to Multiple Processors
6.2: Dynamic Assignment of Processors

6: Summary and Conclusions

References

10.
11.

13.

15.
18.
21.

28.

27.
33‘- .
38.

40.
46.
48.

62.

55(
860.
82.
82.

83. .
84,
64.
85.
e7.
69.

72.
74,

76.

78.

List of Figures

2-1: A block diagram schema requiring a multi-processor control structure
2-2: A Block Diagram Containing a Cycle

2-3: Typical block diagram schema

2-4: Latencies for static control structures

2-5: Latencies for dynamic control structures with static schedulers

3-1: Typical Laxity Table

3-2: Counter-Example to Least Laxity Scheduling

3-3: Block Diagram Where Ali Constraints Appear More Than Once
3-4: Regions of a Critical Window

3-5: Counter-Example to Slack as a Dominance Relation

4-1: Counter-example to priority = 1 / latency

&6-1: A simple multi-processor control structure

17.
20.
21.
22.
24,

31.
37.
41.
45,
46.

61.

70.

Real-Time Control Structures for Block Diagram Schemata

1: , introduction

There are many applications for coinputers wherethe rlfe’al-t[me" perf;&i@"ance of
the program iIs critical. These applicatlonsaﬂlnvolveasynchronom ;ln'ter_a?ﬁcin with.
the external environment and it is this environment tha,t,»_,lmpo_s{er_§ thg rgakgime
: r'esﬁictions. For example, device drlverslnopemtinq sy,q,tamsmyst requndto
interrupts before the information is lost.. Another,appllcatbnlslndlrectdlgltal :
control and process monitoring.

However, most high-level languages arg not desléged fgr,prpducing time critical
programs. The languages allow the user to define appropriate functional and data
abstractions for his problem, but have no notion of realtime or asynchronous
interaction with the real world. Iﬁstead, the user must design a control structure
for his problem suitable for a single sequential process t_hat will satisfy all the

real-time constraints.

1.1: Previous Work

Many operating systems do have notions of realtime and external Input and
output, but they are supported at a fairly low level [19, 20]. The application
program typically has to deal with priorities, setting real-time alarms, and responding
to interrupts. These actions may be necessary to satisfy the constraints, but they
do not bear a close relationship to the constraints. For example, it is seidom
oﬁvious what priority must be assigned to a task that must complete in ten
milliseconds and uses one miliisecond of CPU time.

Early work on applications oriented reattime operating systems was done by

-6-

Previous Work Section 1.1

Fiala [6]. Fiala proposed a model of real-time processes characterized by three
parameters per process.

(1) Pl the msximum CPU time used by process /.
(2) D; the-maximum delay allowed from. the time process | requests service

. to the complétion of servicing that request.

@ T, the minfmum period between requésts for process /.

Flsls proposes three scheduiing eigorithms for this model. The first (and
slmpiest) executes the process thst must compiete the soonest i.e. the process
with the esriiest deadline. This algonthm is optimsi in the sense thet if sny
schedule satisfles the deadline requurements for ali the processes. s0 does the
earliest desdiine scheduie However, this result is proved in the context of"
process switching requiring negiigibie overhesd

- Fiala's second algorithm is a modification of the earllest deadline scheduler thst
minimizes the number of process switches whiie retsining the optimslity condltion of
the eariiest deadline slaorithm This is sccomplished by hsving the scheduler check
to see if the current process must be preempted when a process with an earlier
-deedilne requests service This is done by simuieting the sction of the scheduier
on the current requests Unfortunstely, this sigorithm would require extensive
computation whenever a process requests service. Accordingiy, Fiala’s third
algorithm pre—computes a iower bound on the expression requlred by the minimum
switchlng algorithm With the lower bound the extrs oomputstion required by the
third slgorithm requires an extrs compsrison at process 'r;ouest time. The slgorithm

Is siso optimsl in the same sense snd requires Iess overhead than the simpier

-7-

Previous Work Section 1.1

earliest deadline algorithm.

However, Filala makes no attempt to integrate his model and scheduler Into a

Dertouzos [3] and Geiger [8]. A control robotics program s organizad as a set of
daemons which continuously monitor some condition and execute the hody (a
correctlve procedure) when the condition is true. The rgaktime. speclﬂcntlons for a
daemon are the delay from when a condltlon becomes true to when the progrem
detects the condltlon (the recognltlon tlme) and the delay from detectlng a
condition and executlng the body (the response tlme) Gelger’s lmplementetlon of
. control robotics perlodlcally samples the condltlon wlth a perlod sllghtly less then
the recognition time (the slightly hlgher rate wlll allow for preemptlon by other
daemon conditions). The daemon bodies are scheduled using an earliest deadllne
scheduler | | - o .

One weakness of control robotlcs Is thet no guarantee of setlsfylng the reel-tlme
;constrelnts ls made at compile tlme This could be dme if the user declared a
minimum period between executlons of a deemon body end the compller detennlned
the computetlon tlme of the daemon bodles Since lt ls lmposslble to determlne the
computation time for an arbitrary procedure, the compller mey requlre decleretlons
to determlne the computetlon time

A more substentlel problem of Gelger’s lmplementetlon Is the assumptlon thet the
condltlons for daemons are Independent of the executlon of other deemon bodles
Therefore, complex etructures of daemons whoee condltlons depend on verlebles

chenged by other deemons could result in much unnecessery computntlon All ln all,

control robotics doss not provlde any more of a model for real-tlme progremmlng

-8-

Previous Work Section 1.1
than Fiala’s work beyond suggesting some. syntax for identifying tasks and
specifying their deadiinas.

Another system that deals with real-time specifications at. the user level is
TOMAL (Task Oriented Microprocessor: Language) {12]. On.the surface TOMAL is a
comblnation of a modern block structured programming language and a typicalt mink
c,omgdter ‘real-time’ operating system. Howsewver, in addition to assigning static
priorities .to tasks, a response time may be specified for a teask. This response
time is simiiar to.the recognition time for control robotics and specifies the maximum
delay between a request for a task activation and the initiation of .that task.
Another feature of TOMAL is that interrupt rodtinu only request task activation and
do not respond to the interrupt in any substantive way. This reduces the ameunt
of object code that does not.run under the task scheduler. and aliows the TOMAL
system to check the consistency of the.real-time constraints.for the entire system.
However, TOMAL makes no attempt to verify reaktime specifications on service
times for tasks.

Data flow schemata deserve mantion as a reahtime system since one proposed
applications Is digital signal processing [2, 22].. it is designed to faciutaie highly
parallel computation and statements may be executed as soon as -aii their input
variables have been computed. If several statements are executable an arbitrary
statement is chosen. However, with the addition of real-time constraints to mediate
this decision, data flow would be A powerful real-time system. The other major
drawback of data-flow is that is not suited for implementation. on conventional

computer architectures.

1.2: ‘ Statement of the Problem

The goal of this research is to develop theory that is applicable to the
impltementation of a programming system designed to the restricted domain of time-
critical applications. The main criterion of the “duftabflity ‘of the ‘language to this
domain.should be that smal changes in the real-time specifications should resuft in
émali; obvious changes In the source program. It 'is cunceivable; and lndeed
desirable, that these changes could have a dramatic effect on the object program
produced. This reorganization of the object program Is precisely the process that
should be automated.

Conventional languages already provide faciiities for functional and data
abstraction, and numerous researchers are already working in this area. Therefore,
this research wili focus on the globat contro! atructure for programs. This Includes
issues such as the number of processors to use In an implementation, deciding
what interrupt structure (if any) is necessary, decomposing the program into tasks,
and assigning parameters required Gy the appropriate task scheduler.

Since normal language semantic issues are being avoided, the description of a
program can be made extremely simpie. The intuitive model for a'reaktime program
Is that of continuous time analog block diagrams. The graph defines a precedence
relation among operators identical to the data flow in the diagram. The program wilt
be specified as a directed graph of actions to be performed and their functional
dependence, with arcs of the graph representing data paths. The graph must be
acyclic since cycles in a block diagram represent feedback systems. Automatically
producing an object program that solves the feedback equation would require more

detailed semantics for the programs as well as other disciplines outside the scope

-10-

Statement of the Problem Section 1.2

of this research. However, in some special cases, cycies can be handles by
rearranging- the block | diagram. A strict upperbound ‘' must be pldced on the
computation time required for each action. . Th# realktime constraints specify upper
bounds of the propagation delays through the: block: diagram and of the bandwidths

of the input and output signais.

1.3: ' Thesis Overvlev; ”

Chapter 2 develops the block dlagram mode! of computation The block diagram
model |s a progrcm schematlc model slmller to data ﬂow However, realk-time and an
extemal envnronment are explicit in the model In addltlon, the block diagram model
separates the data—ﬂow of the schema from the control ﬂow which is embodied In
the control structure. The control structure specrﬁes the executlon order of the
blocks at object time. The research problem may be formalized as finding control
structures for block diagram. schemas which satisfy the given realtime
specifications. The major use of the model is to define the semantics of the real
time specifications.

Chapter 3 investigates various static control structures (control structures that
are Independent of the data values at object time). Aithough static control
structures may be used widely in specific applications (particularly in small,
dedicated systems such as those implemented on microcomputers), they have been
ignored by designers of real-time programmlna systams, mainly because their real
time perforrrlance in the general case has not been studied.

Chapter 4 investigates extended semantics where the externa! inputs do not

change continuously. In this situation, a dynamic control structure may be used. A
-11-

Thesis Overview : Section 1.3

dynamic control. structure is a contrgl structure that does depend on the data
values at object time. The chapter investigates ‘a subclass of dynamic control
structures, namely static priority interrupt control structures. The prototypical
example is an interrupt system where the system does nothing untii- an input
changes, although it includes systems without physical intcr‘rupts where the inputs
Qre sampled. The priorities are static as opposed to the earliest deadline
scheduler where the priority of a task is a functhn of time.

Chapter 5§ discusses some of the Iissues that arise when more than one
processor is available for the implementation. The réalitime perfofmanée of
multiprocessor systems are ana]yzed and‘ ihe fea‘-ﬂme performance of A bb;:k
diagram schema is bounded. Some techniques foAr dlstribuﬁng the processing am;mg

several processors are suggested, although specific algorlth‘ns‘are nofstudled.

2: Biock Diagram Schemata

Most models of computation do not capture the notion of a "real-time" system
which monitors continuously changing inputs from some axternal environment. Block
diagram schemata model the external environment explicitly and recognize the
existence of real-time specifications placed by the ernvironment on-the computing
mechanism. They are based on the Intaitive model ot the convéntional analog:-block
diagram whose inputs -and outputs are changing continuously. An (m,n) block
dIagr&m schema consists of an {m,n) block diagram modute, a control structure, a
configuration ~ and an envifomment which -manipulates the - configuration
asynchronously with the control structure. Within ‘the modetl, it is assumed that
values change continuously. Obviously, the computations ‘cannot be ‘performed
continuously on a digital computer. The reaktime specifications determine how
often the control structure must compute new values, as well -as how fast it must
compute them.

An (m.n) block diagram module Is a directed graph whose nodes are either
blocks or links. The terms predecessor and successor will be used with the
conventional -definitions. Data is stored in the lnks while the blocks perform the
actual computation. Accordingly, only one are may point to each link. The graph
must be proper in the sense that ares may not-point from links to links or from
blocks to blocks. Upper-case letters will be used to denote blocks and lower case
letters to denote links. Thé predecéssor -of a sk is called tha specifler of that
fink and the successors of a link are called the watchers of the link. The
predeceassors ‘and successors of ‘a block are calted the /nputs and outputs of the
block respectively. -

“An (m,n) module has m links with no input arcs {/nput links) and n links with no

output arcs (output links). The Input links receive their values from an external,

-13-

Block Diagram Schemata) Section 2

continuous time function called the /input signal. The values at the output links
define an external, continuous time function called the output signal.

The model assumes the existence of a global clock which defines the passage
of real time. Hewitt argues against the use of global clocks since they cannot be
implemented in distributed systems [9]. While Hewitt’'s objactions against global
clocks are valid, assigning times within Hewitt's framework of local orderings would
be more complicated. This complexity Is unnecessary since the events being timed
are always ordered by one of Hewitt’s local orderings.

A configuration is an assignment of tokens to the links of a schema. The token
contains a value and a set of labels of the form (ink, birth). These. labels indicate
when the token arrived at the input link limk. Each link always contains some
token, since signals are always defined in a continuous time block diagram.

The computation of a block diagram schema is described by a series of
snapshots. A snapshot consists of a block diagram module and an associated
oonﬂguraﬁon. The initial snapshot assigns null valuss to -ali tokens except for
tokens on the input links of the schema which are assigned the current value of
the input signal. The label set of all links is Initialized to {{link, 0)}. The
computation: proceeds from one snapshot to the next through the #ring of blocks.
The control structure is the strategy for choosing which block to fire next. The
fired block accesses the tokens on its input links, and replaces the tokens on its
output links, The label set for the output token becomes the union of the old label
set of the token and the label sets that were assigned to the tokens on all the
input links of the block. The time in the .label (4t) for the link / at each input arc

of the fired block is replaced by the label (/time), where time is the ocurrent

-14-

Block Diagram Schemata . Section 2

contents of the global clock. This action occurs after any tokens have been
replaced on the output links, but the. time for the new label sets Is immediately
after the input tokens were accessed. .In addition, if / is an Input link, its value is
set to the current value of the input signal. The blockqaed, not replace any output
tokens. This differs from data flow since tokens are not removed from the input
links After a block is fired. The data flow restriction Is not appropriate since the
value of a token Is defined at all times.

The amount of comput&tion time used by block A is denoted tA. if the control

structure fires block A on some processor at time t, that processor will complete

and replace the output tokens on that block. by the time t+t,. The computation

timas used will be upper bounds either computad by whatever language processor

Is used to create the primitive blocks or declared hy the:user.

2.1: RealTime Performance and Specifications

A block diagram schema is an apphxlmatlm to a cmtihdous'tlme block diagram.
There are many factors affecting ihé quallty of fthe abpr;klmation. However, the
factors influeniced by the control structure are how long the schema takes to
compute the values of output tokens from the Input tokens, and how often it
performs these computa-ﬂons. The reaktime ‘spacifications will place bounds on
these quantities. A control structure that satisfles all the real-time specHications is
calted a feasible control structure.

The age of a token with respect to a link / at time ¢ Is defined as t-t, If «, to)
is in the label set of the token, and undefined otherwise. The latency between

-1&

Real-Time Performance and Specifications . Section 2.1

links a and b is denoted la'.b and-is the upper bound of the age at any time of
tokens at b with respect to link a. The user can specHy an upper bound on the
latency between two links. The first link will'bé ‘an inputlink of the schema and
the second link will be an-output Hink.

Latency specifications can also be expressed in 'téhﬁs of continuous-time

functions:

BO=Flat-a@), ---), aWsly, (@D
Here B(t) is the function whose valdé is Jthe value of the token ;lt link b at time t;
a(t) Is the function whose value Is the signal at link a at time ¢; a(t) correaponds
to the age of the tokens at link b. Notice that A(t) is generally not Ednsﬁnt, but
is bounded. The user knows how close b(t) must be ‘to b(t) =F(a(t), ---). Using
information about the magnitude of £ and a and their derivatives, the user can use
equation (2-1) to calculate the latency specifications necessary to achieve the
desired accuracy of b(t).
The other measure of real-time performang:»e_‘ -lbs how often new values are

computed. The bandwidth from link a to link b (notation "'Ba.b) is the maximum rate

at which the control structure must.compute new values at.b from velues at a. The-
bandwidth specification is not easlly expresaible .in- terms of continuous-time
functions. It may be thought of as a requirement on how often the value of S(t)

must change.
The bandwidth specification may seem superfiious since the latency

specifications also implies -how often the: valuk ~ot£(t)~elnnm. Howevaer, it is

poasible for a multip_le processor copt;ol structute to exhibit Jbandwidth performance

-16-

Real-Time Performance and Specifications Section 2.1

that exceeds the rate implied by the latency specification. An example is shown in

figure 2-1,

tA = 10msec
tB = 10msec

Ba,c =75/sec

x I a,c = 40msec

A block diagram schema requiring a multi-processor control structure
Figure 2-1

in this example, both A and B require ten milliseconds of computation time. A
single processor control structure that executes ABABAB - -- can guarantee a
latency from a to ¢ of forty milliseconds and a bandwidth from a to ¢ of fifty per
second. However, if processor one executes AAA --- and processor two
executes BBB - - -, then the latency from a to b is still only forty milliseconds but
the bandwlidth increases to one hundred.

While the block diagram model is useful for defining performance for real-time
programs, it does not yield many insights into the problem of synthesizing a feasible
control structure. The gr~aph itself resembles a partial order on a set of tasks, but
the semantics of block diagram schemata are not as restrictive as this partial
order. In most schematic models, a task must not be executed until all its
predecessors have been executed since (presumably) it would not have data

available at all its inputs. The block diagram model has no such restriction and as

-17-

Real-Time Performance and Specifications - o S - - Segtion 2.1

a result is able to execute some parts of the schema more often than-other parts.

On the other hand, there are certain executlon orders that can be ruled out.
gsince they are obviously inefficient.- For exampie;,-once a block has been fired, it
need not be fired again until one ‘of its predecessors has been fired again since all
its inputs will be unchanged. Therefore, it outputs will notg"change. Similarly, if no
successor of a block A is fired between firings of A, the previous execution of A
was unnecessary since no block Iooked at:t:he previous values of the tokens on
the output links of A.

If these restrictions are combined, each firing of a block must be surrounded (in
time) by at least one predecessor and at least one successor Equivalently, the
allowable exeacution sequences may be found by shuﬂling all the paths from an
input link to an output Hnk. These paths wili be referred to as constraint paths or

just constraints.

2.2: Functionallty of Blocka

The semantics of block diagram schemata make some useful block functions
awkward to implement For example, a b!ock that performs dm‘erentlation is
essential for applications in real-tlme process monltor!ng and control In classlcal
direct digital control, the system is discretlzed by sampnng at some speclﬂc period
Dlﬁerentlators are replaced by unit delays and the feedback gains are adjusted
approprlately This is possible only because the inputs are sampled at a known
frequency. o

In block diagram schemata there is no guarantee of periodic execution. The

bandwidth specifications set a lower bound on how often a block must be
-18-

Functionality of Blocks Section 2.2

executed, and a different lower bound may be implied by the latency specifications.
They do not' place any upper bound on -how often the block .is executed.
Therefore, it is lmpagslbie- to tell a priorl when and:- how often a black will be
executed. This would seem to :rule out..any blocks that would require state
variables, but this is not true. A white:noise generator could be implemented using
a pseudcrrmdom -number generator. This would use -a state: variable, but it would
not run into any problems by not knowing how often it is executed. But most other
functions ‘that need to produce or transform a time.dependent sequence of values
will be Impossible to implement.

The only general soluﬂon to the problem is to have a real-time clock as part of
the system. Thén a differentiation block could remember bofh its previous input and
the time it was last executed and compute the obvious ﬂ?st order approximation.
The major difficulty is that the real-fiﬁe ‘t:lock' WOqld havé to provide much- finer
resolution than the 60 cycle clocks founa in t)}plcal computer systems.

The user should be able to deﬂne‘iﬁh own time dependent functions since any
selection of primitive blocks will probably turmn out to be too limited for some
application. - Therefore, it becomes . necessary -to prbvl&e some primitive blocks
. which would probably lead to nonsénslcai programs if used carelessly. In particular,
if the user had a unit delay block and access to the real-time clock he could define
arbitrary approximations to differentiators, although undisciplined used of the unit
delay block would result in useless programs.

Implementing integratloh would still be a problem since the block diagram for a
first order Integrator would contain a cycle (see figure 2-2). The problem with

cycles is that it is uncleai whether the cycle represents use of a state variable,

-19-

Functionality of Blocks " . Section 2.2

as in data flow, or implied solution of simultaneous equations,-as in continuous time
block diagrams. In the case of integrators it is clear that the cycle represents -use
of a state variable, since the cyecie contains ‘a unit -delay biock. In this case, the
cycle can be broken at the Input to the delay block. - The delay block is treated as
a watcher of link e, even though it gets its input- from link f. This transformation
aﬁers the order in which the blocks ate ‘executed by changing. the constraint
paths. 'Unit delays were handled by a. similar transformetion in BLODI [11], a
system for simulating ‘discfete -time ‘block diagrams, and. would be handled in the

same way by a programmer [21].

time

v

A Biock Diagram Containing a Cycle
Figure 22

Example Section 2.3

2.3: Example

The interaction between the real-time: specifications and the control structure
can be illustrated by a series of examples. In these examples the block diagram
module is left unchanged while the latency and bandwidth specifications are varied.
These varlations will necessitate changes:.in the control structure used to

implement the block diagram schema. The biock:diagram module itself is shown in |

figure 2-3.
b
—> A B —>
a Cc
D +———>
c f
d e
tA'1°
tB,fS
tc-10
tD-S

Typical block diagram schema
Figure 2-3

The simplest control structures to consider are cycles that repeatedly execute
the blocks in some fixed order. There 3! (= 6) ways of executing four blocks once
per cycle (Ilgnoring starting transients). For a small example likke this it is feasible

to enumerate all such cycles and test them to see If they satisfy the latency

-21-

Example Section 2.3

constraints1. All these control structures are independent of when new tokens
actually arrive. The worse-case assumption is that & new token arrives immediately
after the previous token Is marked old. * This assumption Is used in calculating
worst-case latencies, which are shown.in figure 2-4. Notice that aithough ABCD is
better than ACBD and ADBC Is better:than 'ADCB, there '3 no best control structure.
in fact, we can choose latency: specifications such that only one of the control
structures will work. The first six control structures in figure 2-4 sample the inputs
once per cycle, i.e. once every 30 time units. However, if any of the bandwidths

8 B ar O Bd ¢ is greater than 1/30 then some other control structure must be

a,c’

used.

Control i i i
Structure | ac | 'af | d.f
ABCD 46 | 60 | 46
ACBD . 866 | 80 | 80
ACDB 860 | 66 | 45
ADCB 60 | 456 | 60
ADBC 60 | 46 | 66
ABDC 45 | 60 | 80
ABDCD 60 | 66 | 50
ADBCD 66 | 60 | 60
ABCABD 40 | 656 | 75
ACDBCD 76 | 70 | 40
ADBADC 86 | 40 | 70

Latencies for static control structures
Figure 2-4

A slightly more complicated class of contro} structures Is cycles whera some

blocks may be executed more than once. For example, the control "struc'ture

1. However, such an algorithm is not practical since the computation time tnken by
such an algorithm would grow exponentially with the number of blocks.

-22-

Example . Section 2.3

ABCABD has worst-case latencies as shown in figure 2-4. This control structure will

satisfy Its bandwidth constraints if 'Ba c is less than one every twenty time units
and B a.f and Bd g are less than one every forty-five time units.

The next class of control sfructures to consider are dynamic control structures
with static priority scheduling. These control structures make use of the current
environment to determine which blocks to fire next. The dynamic control structures
assume that the values of tokens at input links do not change continuously. When
the value of a token at an input link changes, a request is made for a set of tasks.
The request is serviced by firing a fixed sequence of blocks as specified by the
task. Since the processor is generally busy when a request occurs, the requests
are remembered until the processor is idle, when one of the requested tasks is
selected to be executed. Each task is assigned an integer priority. The task with
the highest priority Is serviced next. The scheduler is static since the priority for
a task is always the same relative to other tasks.. The earliest deadline scheduler
is an example of a dynamic priority scheduler, since the priority of a task depends
on its current deadline. If the task being serviced can be temporarily suspended,
the control structure is preemptive.

A dynamic control structure need not be interrupt driven. For example, the
control structure could sample the inputs between executing blocks. However,
preemptive control structures cannot be implemented without interruputs.

In the example of figure 2-3, there are many ways to construct tasks to be
requested by changing inputs. One such task system is to fire ABD (or ADB) when
the vaiue at a changes, and CD when the value at d changes. The worst case

occurs when the values at a and d change simultaneously. The latencies for this

-23-

Exampie . Section 2.3

case are shown In figure 2-5. These latencles can be sustained only if the
bandwidths -at a and d are both less than once every 35 time anits (otherwise the
control structure would fall behind). In a sustained worst case, new tokens arrive
once every 35 time units. A trace of block firings ‘would seem to indicate thﬁt the
static control strgcture ABDCb is »beinzg executed, which hqs latencies 156 to 20
ﬁnlts larger than those for the dynamic control i.r?.:tructure. Howe\(qf, in the dynahlc
case it is known exéctly when the inguj: §igna| chénge. In partk;ulaf, the éro;:essor
will be idle if more than 35 time upits elaprerske; betwaeq a changé in input slgm:ls, so
the processor will be able to respond to a char!gev ln;medi;t;ly. In a statlc qontfol
" structure, the change would nét be responded to until the contrpl structure gqts

around to it.

Task String i
) Priority 2 o ’a,c ,»..l.', ' lu’ff
ABD | CD 30 | 28] 16
ADB cD 36 | 30 | .16
cD ABD 16] 20 | 86
cD ADB 20 | 16 | 356

Latencies for dynamic control structures with static schedulers
Figure 2-5

3: Static Control Structures

The main function of the control structure in a schema is to specify when to fire
each block. If the control structure is independent of the configuration (i.e.
unaffected by changes made by the environment).it is a static control structure.
An axample of a static control structure is a loap which fires all of the blocks in
the schema cyclicclly. Control structures wnich rnakc, use of conﬁguration (e.g. via
interrupts) are called dynamic control structures

The latency speclﬂcatton from a to b will be satisfied only if all the blocks along
all paths from a to b are fired at least once during each time Intefval of duration
lg,p time units. Otherwise there would be time Intervals longer thén lo,p When the
&label at b wm not cnan_gé and therefore thc cge with res;;cct to ‘cwof the token at
b will be gréatar than th,b. Similarly, the bandwidth specification from a to b will be

satisfied if and only If the interval between firing the blocks along the constraint

paths Is less than 1 / Ba,b'

For slnglo procossor control structures it Is possible to construct a trace of the
blocks thut are ﬁod by the control structure The trace Is a string over an
alphabet Z whose elements corrcspond to tne blocka o‘ftthe achenia. Each element
. A of Zis assigned a Welght (notcticn IAi) cgucl to t,. The Welght of a string is
defined to be the sum of the weight of its elements. A string S, contains S, If ali

the elements of S, appear in S, In the order they appear in S,. For example, the

string ABCDE contains the string 8D, even though BD is not a substring of ABCDE.

Regular expressions will be used to denote sets of strings. In particular, If S is a

string, s” denotes the set of strings S, SS,V SSS, *- - as well as the empty string.
It is nacessary to model Intervals in continuous time of arbltrary origin and

duration, slnce the Iatency speciﬂcations require gl intervals of speclﬂc duration to
-26-

Static Control Structures : ‘ Section 3

contain the corresponding constraint path. Therefore the weight of the initial and
final elements of a string may be ‘counted at fess ‘than their nominal welghts: For

example, If |a, ---a,|=w (weighting 2; and a, at |a,]| and |a,]), then
[csrrl ek] is a string of welght less than w since both s1 snd ak are welghted
at less than la,| and |a, |. However, if the Inltiel cr ﬁnsl elements do not have

full weights, the may not be_r‘lncl:ee,ed as part of}gny_gpnt_s&r\ed stringf.ﬂ Weightinq
these elements at less than their full values corresponds Yo shrinking an Interval of

size w in continuous time: if the mtervel sterts sfter a1 sterts executlng, then the
interval does not contain a, resdlng its lnputs A stxing wlll be. preceded by a’l

or followed by a ‘T if the first or last element in the strlnalswelohted at less than
its nominal value.

A slngle processor ststlc control structure is cmpletdy speclﬂed by Its trace,
which Is determlned at complle tlms (hence the name stetlc contm| structure) The
real-time speclﬂcstions oh the control structure csrrbe rephresed as constralnts on
its trace. In psrtlculer, the latency speclﬁcetlon from a to b h sstlsﬂed lf end only

If all the constraint paths from a to b are conteined in every substrlng in the trece

of weight I, . The bandwidth specification is satisfied if and only If the welght of
ell substrings between occurrences of th'e":cerrstrslﬁt'%psﬂis ‘are less than 1/ :Be b
At this point it is possible to deal exclusively with the trace of the control
structure and the constraint paths. Constraint peth 1 ‘wiil be denoted CI\ with
latency speciﬂcetion 'i and bandwidth speclﬂcstlon Bi If c, is a psth from a to b, ‘

= | and B’.-B

i

a.b ab it will also be necessary to deal with the talls of the

-26-

Static Control Structures Section 3

constral\nt paths. If cl - cl.1ci,2 "t Cin where cl’jez tt?en the jth tail of CI is

C1j =y e1 " Chn |

Since the contrel structure must satisfy the realtime spuihtions for all time,
the trace corresponding to the cﬁoﬁfrol struéture will be a iﬁﬂnitély long - string.
Since the control structure can be implemented only if the\"fr"ace"can be generated
using a finite program, it would be very avgkwgrd ¥ ‘the Anly fe‘aslble control
structures were ac;ycll_c. Fortunately, it can.ba proved tha}_:[f any feasjib!e .control
structure exists, then there exists a'ﬁasibic control gstructure. that fires. the blocks

In some cyclic order.

3.1: _ Existence of Cyclic Control Structures

The theorem proved in this section can be stated as: -
Suppase there exists a string o=~ ,a8q " " s.,z", such that. ¢ satisfles
the real-time constraints. Then there also exists a finite string 8 such that
the string 8 aiso satisfles the reaktime specifications. -

This theorem will be proved using several lemmas.
B Definition: A critical window of a ‘control structure » for the constraint C, is a

substring ¢; =&, - - - a, of « that contains two occurrences of C,, but

[v ;] contains no occurrences of C i

The most critical window for C; is the critical window with the greatest
Lamma 3-1: The string w satisfles the latency specifications for C f #f and only if
I¥; Isl; for the moat critjcal window ¥, in.w.

-27-

Existence of Cyclic Control Structures v Section 3.1

Proof: ,
only if: Assume w satisfies the realtime specifications. Then any substring
of w of weight 'i contains c,.. In particular, the substring

[a, ---a,a . 4] of weight |, must contain C,. Since [#;] does not
contain ci,,tho substring ["i of weight |, ~+, where « is arbitrarily small
contains one occuirence ofici. Therefore, {#;] <1,+, ¢>0.

if: Aasume the most critical window 'l has weight greater than 'i‘ Let v
be any substring of [‘l] where |y| =1,. v exists since:

| "}l]l =921
Since ¥; is a critical window, then [#;] contains no occurrences of C,.
But v Is a substring of [&,] and also dees not contain C,.wﬂsnc’e,v is a

substring of ¢ of weight 'l that does not contain the constraint path.
Therefore, @ does not satisfy the latency specifications. &

Corollary: Since *i contains two occurrences of C,, the period between
successive occurrences of C; must be less than |, - |C, |.

This lemma shows there is a time limit bstween the starts of successive

occurrences of C;. The bandwidth specifications directty fmit this interval.

Therefore, it will be assumed that the latency specifications are more severe than
the bandwidth specifications. If not, the latency spetifications can be adjusted so
that:
Iy < %—-ﬂc, i

The time ramalntnh until the start of the next appearance of a‘constralnt path is
called the /axity of that constraint. Given a control m, we can construcf a
table of laxities for each position in the corresponding stﬂqg_ » with the;property
that the table entries are non-negative If and only if » satisfles the latency
sﬁeclﬁcations. The only difficulty is in accurately determining the start of an

occurrence of a constraint string. This will be handled by keeping laxities for the
-28-

Existence of Cyclic Control Structures ' Section 3.1

tails of the constraint strings. The true laxity for a string will be reflected in the
laxities of its talls if the start of the.constraint path is falsely identified.

An element of the table d[/,j,k] is the laxity for the path C,. j just before a, Is

fired. The table should be thought of as rectangular with polumns labeled by

elements of w. The entries in the first column are:

d[‘l,]',‘O]-II—IC,J | (3-1)

since the constraint path C, must occur by IA,. -|c i‘ J |.' The remaining columns can

" be filled in by simple recursion rules.
If the next element In @ Is not the same as the first element In a constraint

path, the laxity for that path decreases by the weight of that element:

ak#ci,jéd[l,],kﬂ]-=*d{i,].k]e|ak| A (3-2)
There are two possibilities if the next element in the solution is the same as the
first element in a constraint path. |If this jg the start of an occurrence of a
constraint path, the laxity for the tail of that path should be no more than the
current laxity for the constraint path. it Is possible that the tail will already have
a4 more severe Iaxity)SInce different constraint paths can ‘haVe Identiﬁal tails. In
addition, the laxity for the whole constraint phth will become the original limit the
Instant after the first element appedrs. ' Therefore, the Iaxity becomes the original
' laxity minus the welight of the first element.

However, if a; is pot the start of an occurrence of C, j? the laxity should
dacrease by |ak|. Fortunately, this problem will be handled automatically by
assuming that an occurrence of Ci i starts whenever a, =¢; i If it is not part of

an occurrence of c, j? C;

i will appear again before all of Ci j appears. When this

-29-

Existence of Cyclic Control Structures Section 3.1

happens, the laxity for Cl j+1 will have decreased by the amount the laxity for
C,; should have decreased If the start of the path had not been incorrectly

identified. When 'cl. i éppears agaln, the laxity for C; j‘+1‘ will be less than the

laxity for C Li Therefore:

d{/,j+1,k+1] = min(d[i, }k}. dli.j+1.k]}-|a, |)

%"C1y > |dliske11=1,-1C, |- lay) (3-3)

Equations (3-2) and (3-3) can be transformed to produce rules for computing the

k+1st column of the laxity table from the kth column:

Ii"ci,jl—lak| | if 4%"%,)
d[i.jk+1] = { min(d[1,j-1.k]), ol JRY -|ay [) ifay=c; (3-4)
d[i.J kT |ay | i 8x#C), 11,11

As an example, figure 3-1 shows the faxity table for the control structure ABCD

and the block diagram module from figure 2-3.

in this table, the laxities at time 60 are identical to the laxities at time 30. The
next column in the table would be identical to the column at time 40. The rest of

the table becomes periodic, and all the entries are non-negative. The perlodicify

allows us to prove fhat (ABCD)* will satisfy the latency specifications for all time.
This is formalized in the following lemmas:

Lemma 3-2: If:
vi,j dfi.j,m]2 d'[i,j,k] and a - a'm

then:

Existence of Cyclic: Control Structures ' - Section 3.1

A B c D A] B | ¢ D A

(0) | (10) | (16) | (25) | (30) | (40) | (45) | (66) | (B80) | (70)
AB| 30| 20 16 5] o0 l.20.] 16] & o] ---
B 40 | 30 85 25 20 0 *‘f'fsaf:i“if 25 20
coll 80| 20 16 20 15 5 0 20 16
D 40| 80 25 16.] 35 | 26 | 20 0 35
AD 46 | 35 30 20 16 | 86 | 80 | 20 16 | -
D]] 66| 45 40 30 50 15 10 o4 60| -

t, =10t =61, =10 t, =6

.I‘é-45 ICD-45 IAD-BO

Typical Laxity Table
Figure 3-1 '

2

v, ; OL.Lm+1]2 dTi.fk+1]

Progf: From case analysis of (3-4) and elemeni:ary aigebra. ®
Lemma 3-3: Let:

o« = a1 . e ak_1

p- b

1-am---

If @ = @By satisfies the latency specifications and?
v, 4Li1k]=dl11m]
then:
u;-- oy
cargay e
also satisfies the latency specifications.

Proof: Construct the laxity table d' for «':

Since a4 = a',, (3-4) leads to:

-31- -

Existence of Cyclic Control Structures Section 3.1

v, o] - dfi,j,1]
Simitarly: |
Vi.jd<m®Liid1=dli.)20 | (36)
Therefore .
v, j@Li.jm]= &0l jk]

From lemma 3-2: .
Vi &[i.[.m+1)2 ETLjR+1]
=d[/,/k+132 0
Similar reasoning will show:
v),jOLi-02m-k-1]2 &'[i,jm-1]
=-d[/,j,m-1]20
Now a'Zm—k =a _, s0 lemma 3-2 still applies:

v, 90h).2m-Kk]2 d[1,jm]2 0

inductively:
vl.],lzmd["”"'m'k] 2d[1,j1]120 (3-6)
Comblining (3-5) and (3-6):.
vl de'U-IJ]Z 0

Therefore, from lemma 3-1, «' satisfies the latency speclﬂcabons »

Corollary: Let «=a,---a, ., ﬂ-ak--- -1 and Yy=a, . If w=afly
satisfles all the latency speclﬂcatlons and d[/,jk]=d[/,j,m] for some

k<m, then -0 also satisfies the Iatency specifications. The proof is by
induction. ®

The main theorem can now be proved by showing that any laxity table will have
duplicate columns and applying lemma 3-3:

Theorem 3-4: If any string « satisfies the latency specifications then there exists a
string of the form p" which also satisfies the }atancy‘ specifications.

-32-

Existence of Cyclic Control Structures Section 3.1

Proof: Construct the laxity table for ©. There are a finite number of
possibilities for each table entry since each entry is I, - |C; | minus a sum

of a finite number of Iak I’s. The number of different |a, |’s is limited by

the number of blocks in the block diagram schema. The number of terms in
the sum must be finite since each |ak| is greater than zero and the laxity

entry is also greater than or equal to zero. Therefore, the possibilities for
each column are limited and eventually some column in the table will be
repeated and k and m satisfying the conditions of lemma 3-3 exist.

Applying the corollary to lemma 3-3 says a solution of the form ¢ﬂ* exists.
However, d[i,j,1] = Ii—ICi J | 2d[i,j,k], for all k (the rules for filling in the

table never increase the laxities except to set d[/,j,k] to l,—lcijl.

Applying lemma 3-2 shows that B* is also a solution. ®

The major implication of this theorem is that only cyclic strings need to be
considered for static control structures. These strings can be enumerated, so the
problem of finding a static control structure is in principal solvable. Since the proof
also places an upper bound on the length of the cycle (equal to the total number of
possible laxities at any position), so an algorithm that generated all possible strings
would be effective in the sense that it would always halt In a finite amount of time.
However, it would require computation time that grows exponentially with the
complexity of the schema, so the problem would be computationally intractable if

this were the only algorithm.

3.2: Generating Real-Time Control Structures

The problem of generating a feasible control structure is a scheduling problem.
The problem is deterministic since the parameters of the problem are strictly
bounded as opposed to being unbounded random variables. A wide varieties of
special cases of the general scheduling problem have been studied, and some

results are surveyed by Gonzalez [7], though relatively little work has been done
-33-

Generating Real-Time Control Structures : ‘ Section 3.2

on scheduling in the presence of deadlines.

Gonzalez and Soh daveloped a simple algorithm that minimizes the number of
processors used to schedule independent tars..ks.v The tasks are static'ally assigned
to processors and always run to completion. The m&ines for- each task
correspond to the period of the requests for that task and must be a power of
two. Their algorithm is not optimal if the poﬂods are not & power of two and no
optimal algorithm is known, aithough several . heuﬁsﬂc “algorithms have been
investigated.

Liu and Layland considered the problem of scheduling independent tasks on a
single processor [14]. Each task requests service periodically with- a deadline for
sarvice coinciding with the time for the lnext request. They present a method of
assigning static priorities to the tasks that will meet the deadiines If any static
assighment of priorities will. In addition, they prove the schedule which executes
the task whose deadline is earliest is optimal in the sense it wil meet the
deadiines if any schedule will. They then prove hecessary and sufficient conditions
for a set of tasks to be scheduled by the earliest deadiine {ED) algorithm to meet
all its deadlines, and conclude that ED algorithm allows. 100% utilization of the
processor as opposed to figures as low as 70% for static priority algorithms.

Geiger extended the proof of the optimality of ED scheduﬁng to include the case
were the requests are not periodic [6] Fiala presentad the same basic proof and
also derived necessary and sufficient conditions for the ED scheduler with a mlx of
periodic and aperiodic tasks [5]. |

Mok investigated schedulmg independent tasks on multiple ldentical processors

[16]. Mok shows that no optimal algoﬁthm exlsts for this problem unless the

-34-

Generating Real-Time Control Structures ‘ Section 3.2

deadlines, computation times and at least some fulire request times are known. An
algorithm related to the ED aigorithm is presented which k shown to be optimal if
all requests are simultaneous. This algorithm.execgutes those tasks Mth the least
laxity, where the /axity pf a task js the deadline. for the task minus its remaining
computation time. Unfortunately, both the least laxity: and ED schedulers are shown
to be vnon-optimal even for tasks with pqugdic requests. ﬂowevgr, the least laxity
scheduler Is optimai for periodic de{adlines‘ whgre 4ta‘ys,|;vs may be efx‘ecuted at any
ﬂme (l.e. if the deadlines are coincident with the next request, the least laxity
sched;nler is optimal if It is allowed to »execwute tasks before they have vbeen
raqueéted).

The problem Qf scheduling tasks related by a pgftial order on multlple identical
processors has been studied ﬁy Manacher [16]. Dgadiln'estqfe spercmed\ for any or
all tasks in the system. Manac»her“s glgoﬂthm(dg;lve»s deadlines for Aal,\l tasks In the
system by using the observation that a task must~ cqmplrate_ gxgcqtlng in time to
allow its successors -to executed banre their deqdlinesj The schedqler then
executes those task# with the earllest} 'de,avdgipes that have had all their
pradecessérs executed. This Elgoréthm is not optimal, and does not consider either
periodic requests or multiple start-times. However, it is a reasonable heuristic,
especially as the number of processors increase.

Unfortunately, none Vof these resQlts ge}ne‘rallkzev to the s_tati:crcontrol structure
problem, even for a single processor, although controlv structures could be
constructed which would meet the conditions of the p’ar‘tléhlér ‘special case and
satisfy the reattime constraints. For examplé, If the Block diagram consisted of

unconnected (independent) blocks, the eafliest deadilne schediler could be used

-36-

Generating RealTime Control Structures Section 3.2

with task / being block / and the request period for each task being the minimum of

i /2 and 1 /BI‘ The pericd between requests would have.to be less than t, /2

since (in the absence of other information) It is possible for the task to be
executed immediately after 6ne“‘request arrd immedidtely before the following

deadiine. Lemma 3-1 says this time interval must not be greater than 1.

On the other hand, these» heuristics areliablé to be overly resfrictivé, particularly
since they tend to deal with Independeht tasks. It would be posstbie to derive
independent tasks from a block diagram schema by treating the constraint paths as
independent, but at the cost of introducing new blocks and much hnnéceésary
" computation. One promising approach for deriving a static control struétufe is fo
simulate some mdre general control structure until a cyclé ‘in the ;truce of that
control structure is found. An obvious choice of a more déneral control structure is
a least laxity scheduler (using laxities as defined for block diagram schema) which
follows the partial order for the tasks (bb&i;) based on the constraint paths.
More precisely, the scheduler wouid build ‘a Iaxity table, with starred entries
indicating constraints strings which cannot be firad Sec.u;e' of the partial order.
The scheduler chooses the first block of the unttafré&oons‘raint string with the
smallest laxity to head the next column. If two constraints have the same laxity,
either can be fired next. Figure 3-2 shows such a laxity table for the bilock

dlagranf schema from figure 2-3 using the same latency specifications as figure 3-1.

At time 40, none of the latency specifications have bsen violated. However,
since there are now two constraints with laxity O, at least one entry in the next

column will be negative. By firing C at time 10, an- additional request for C is

-38-

Generating Real-Time Control Structures Section 3.2

A C D B A ?
.1 (0) (10) | (20) | (25) | (30) | (40)
AB 30 *20 *10 *5 0 *x20
B 40 30 20 16 35 0
CcD 30 | 20 *20 186 10 0

D 40 30 20 356 30 20
AD 45 *36 *25 20 156 *35
D 66 45 35 50 45 15

tA=10 tB=5 tc'-=10 tD=5

'AB =46 lep =45 1yp =60

Counter-Example to Least Laxity Scheduling
Figure 3-2

created with deadline 50. In the control robotics environment, the existence of
tﬁis request makes scheduling impossible. However, if B is fired and C is delayed
until time 15, the additional request also gets delayed to a point where it is
possible to schedule all the requests. The least laxity algorithm simply does not
deal with interactions between requests and deadlines.

It Is Interesting to note that the least laxity scheduler fails for this even If the
constraint path AD is ignored. The remaining constraint paths A8 and CD are
independent, yet they cannot be scheduled using the ED algorithm using the worst-

case period of 'l / 2. If periods are kept at Ii - }Ci |, the tasks still cannot be

scheduled by the ED scheduler if the individual blocks are scheduled separately.
The failure in this case can be viewed as an inability of the ED scheduler to derive
the proper phase relation between the tasks.

The schedule shown in figure 3-3 is not the only least laxity schedule. For
example, at time 25 CD has the same laxity as B and therefore C could be fired

instead of B. However, the reader can verify that all the least laxity schedules for

-37-

Generating Real-Time Control Structures ‘ .- Section 3.2

this example fail to satisfy the latency spacifications.

3.3: A Branch-and-Bound Method for Genarating Control Structures

Rather than generating acyo!ic control st‘i‘uotures" and bokmg for a cycle, the
algorithm described in this section worﬁs,by?’geheriﬂng a é&cﬂc control structure
that satisfies the realtime specifications for one of the constraint paths. The
odutions for other constraints paths are cbmb}ned to form a control structure that
satisfies all the reat-time specifications.- The ‘basic semantics of firing blocks rules
out control structures that are not shufﬂes of the constralnt paths since these
control structures perform redundant computations Therefore, this algorlthm shouid
not miss any solutions. There are two major problems that the algorithm has to
deal with: (1) How many times must each constralnt path appaar in one cycle of
the total control structure. (2) How should the constralnts paths be comblned into

one cycle.

3.3.1: Determining the Relative Frequency of Constraint Paths

The first step in the algorithm is to determine how many times each constralm
appears in one cycle of the total solution. Upper and lower bounds can be derived
from the length of the cycle and the basic latency, spacification. Consider the

lower bound on the number of appearances of constraint i: let J&, be_the number of

appearances of C; in one cycle of the solution «. Let w, - ']ci[and ¢ = |e].

Since the latency speclfication for-c, requires C ; to appear at least once every

.a&

Determining the Relative Frequency of Constraint Paths Section 3.3.1

ll.~w,. time units:

c

I,.—wl

k, 2 (3-7)

This leaves ¢ (the length of the cycle) to be determined. However, if C’. appears

k,. times:

czkw, (3-8)
More precisely, the algorithm starts with the assumption that each block and

constraint appears once and that ¢ = ZtA. This approximation is used to derive k,
A

for all constraints in the schema. If any k, increases, this is used to update the

minimum number of times each block in the constraint must appear, which in turn

may cause ¢ to Iincrease. This process continues untii all ki are consistent with c.

In practice, this only takes a few iterations.

Theorem 3-4 places an upper bound on the number of blocks in a cycle, but this
bound is not directly applicable to the branch and bound algorithm since the
branch-and-bound algorithm does not try all cycles of a given length. An upper
bound on the number of appearances of any constraint can be easily derived if the
number of appearances of the other constraints is held constant.

First, an upper bound on the length of a cycle can be derived by applying
equation 3-7 to all constraints except constraint /. Then the minimum weight of a

cycle containing kj appearances of Cj can be computed for all i # j. Letting C max

be the maximum allowed cycle weight and ¢ be the minimum cycle weight (not

including constraint /), the minimum weight of a cycle containing ki appearances of

-39

Determining the Relative Frequency of Constraint Paths ~ Section 3.3.1

C, is:

c+kw; (3-9)

Therefore, the upper bound on ki can be derived by restricting the resuitant cycle

weight to be less than c max'

k; < max (3-10)
This ignores the possibllity of blocks in C / aiready appearing in the cycle as part

of other constraints. However, Including more appearnncés of ‘con‘stralnt i Mll
eventually cause the minimum cycle length to excesd ¢ max'

This still does not bound the number of appearances for all constraints, since
constraint / can appear more often if constraint j sppears more often, etc. Placing
an arbitrary bound on one constraint will also bound the number of appearances of
all other constraints. For example, requiring at least one constraint to appear only

once places a fairly tight bound on all constraint.. However, It is not true that a

solution of this type always exists. An exampie Is shown in figure 3-3.

3.3.2: . Strategies for Combining Solutions.

Once the number of appearances per cycles of each constraint path is known,
the constraint paths can be permuted to form a control structure which satisfies all
the real-time specifications. Many of the technlques for improving the efficiency of
‘branch-and-bound’ optimizatnon algorithms can be applied to this problem even

though it is not an optimization problem. An optlmlzation problem seeks a

-40-

Strategies for Combining Solutions Section 3.3.2

g
—f A d
a
E
h
—_— B F >
b e J
—_ C
c f
tA-tB-fc=tD=tE=tF=1
'a.g < 1
'c,j < 10

Control Structure: (ABFDECBFADEBFCF)"

Block Diagram Where All Constraints Appear More Than Once
Figure 3-3

permutation of n objects that maximizes an evaluation function f of the .

permutation.

A ‘branch-and-bound’ algorithm for this problem generates permutations for a

-41-

Strategies for Combining Solutions . . - Section 3.3.2

subset of the objects and extends thegse :permuta_tioﬁs to larger subsets. The
permutations to the subsets are called partfa/ solutiogns, and are arranged in a tree.
Nodes in the tree correspond to partial aolutlons:aé‘dvthe'desce‘ndg‘hts of a node
are the extensions of that partia! solutlpri.”?Branch-_and-bound aigorithms Are often
more efficient than dlrecf ~enumeration since It is often unnecessary to examine the
éntire saearch tree. The key to pruning the search tree is the dominance relaﬂon
on nodes of the tree. The evaluation function f can be extended to arbitrary
nodes of the search tree by defining the value of ﬁ non-terminal node to be the
maximum value of its descéndants. Then node A domlnateé node B if and only if
f(A) > f(B). The branch-and-bound algorithm may prune any subtree whose root
node is dominated by some node of the tree that has already been explored.

In general, the dominance relation for a partlcula; 9ptlmlzation Mhm cannot be
computed without examining the entire tree. Howaver, it is 6ften easy to compute
some weaker relation. These weaker relations are usually referred to as
dominance relations in the literature, so we will use the term strong dominance
relation to refer to the dominance ‘relation that relates A to B if and only If
f(A) > r(B).

Branch-and-bound aigorithm vary In the order the trae Is searched and how the
dominance relations used to prune the .g,earéh tree. Kohler and Steiglitz classified
branch-and-bound _algorlthms and_r initiated the theoretical study of dominance
relations [13]. They demonstrated the surprising result that pruning based on a

" stronger dominance relation does not always improve the efficiency of the algorithm.

However, Ibaraki showed that stronger dominance relations do lead to more efficient

-42-

Strategies for Combining Solutions : Section 3.3.2

algorithms for several common classes of branch-and-bound algorithms T10].

Branch-and-bound algorithm as defined by Kohler and ‘Steiglitz also make use of a
function g that places a upper bound on the vaiue of f at each node. If Lis the
maximum f(A4) for jeaf nodes 4 encountered, pruning sub-trees with g(4)<l can
only improve the efficiency of the -algorithm. However, the upper bound function
can allso be. viewed as a particular dominance. relation.

The control structure problam as stated is not an optimization problem. However,
it is still possible to define a dominance relation between nodes of the search tree:
node A strongly dominates node B uniess B leads to a valid control structure and A
does not. . Assuming the nodes at each level are generated in a random
(lexicographic) order, the best pruning for the algorithm to use is to retain the node
at each level which dominates the other nodes. If this dominance relation can be
easily computed, the algorithm can generate a valid control structure without
backtracking.

As a first step towards computing a domlnanéa relation, define the slack for each
constraint to be the difference between the Klyaﬁtendy requ;;ement and the latency
actually achievéd by the control sfructure‘. “The conhstraint with the least slack is
the most critical constralnt (MCC). The slack in the MEC could alsg be used as a
value function to be maximized. If no gontrol structure satisfles the real-time
constraints, the control structure maximizing the slack in the MCC is probably a
good ‘clbée’ solution. Also, the slacks mdy be used t6 evalluate any heuristic
algorithms for deriving control structures. |

The latency achieved by a static control structure for a constraint c, is the

weight of the most critical window for Ci. Adding a block to the cycle of the

-43-

Strategies for Combining Solutions) : Section 3.3.2

control structure cannot increase any slacks since the weight of some critical
window will-be increased.. The . only- exception would be if:the new block:completes
an. additional occurrence of some. constraint -path, thereby - creating - new critical
windows. This cannat happen if the biocks being added are elements :of some
other constraint path, since no constraint path is conmlned in. another constraint
path. Therefore, the MCC slack..can: be uesed ‘as an:upper Bound function in-a
branch-and-bound aigorithm to maximize the ‘MCC slack. Upper bound functions afe
also often used to guide the. search in:branchandbound sigorithms. For example,
the algorithm could always expand the node with the greatest upper bound:

If the slacks in each constraint are reduced by the :same amount when a new
block is added to the cyecise, thanthepnrhalm with :the :greatest MCC slack
would be a dominant solution. Unfortunately, this is not generally the case.
Consider dividing a cycle w of the control structure & Into reglons ¢ andi; , as
shown in figure 3-4. The ¢” regions oontain one occurrence of c,, but [0]
contains no oncunence of ci,' The crltical wmdows of c, are 6, 151.1‘ ij+1
Therefore, adding blocks to a 1‘ j region increases .tt;g:wajghtipt &f 4 and adding
blocks to a O,] region increase the weight of. i,’]_ff’lﬁd‘-"#*,'-]. “Even If N”{
increases, the slack Tor C, will not decrease unless’ |¢'i J |= max]&l, j' |. The slacks
can not be used to oompute a dominance reiation slnce the interdependence of
constraint paths may force new blocks to be added withln the most crltlcal wmdow
of some constraint, while another solution with a smaller MCC slack might have a

critical window of the right size in the right place.

-84

Strategies for Combining Solutions , Section 3.3.2

le 4, -l
%1 &1 %2 &2 %23
- *1'2 >
Regions of a Critical Window
Figure 3-4

Keeping vectors of slacks for each constraint path does not correct the problem.

Consider the example shown of figure 3-3 with fhg latency specification as shown

in figure 3-5. It can be easily verified that (ADEFCADBC)" is a feasible control

structure for this schema. It is also the oaly feasible control structure .

AD and
CF must appear at least twice in one cycle of the solution. Figure 3-5 shows

slacks for this constraints for two partial control structures The merging of
(ADAD)" and (CFCF)" that leads to the solution is (ADFCADFC)". However, the
slacks for CF in (ADCFADCF ‘)* are larger and the slacks for AD are the same, so

(ADCFADCF)* would dominate (ADFCADFC)* even though It doesn’t lead to a

solution.

3.8.3: Performance of the Algorithm:

Assume each constraint path contains an average of k blocks. The slack of a
constraint path in a trial cyclic solution can be determined in at most k scans of
the cycle. If there are n constraint paths there wﬂl be o{nk) scans of each trial

solution generated by the algorithm. The trial cycles will be;o(_nrk) blocks long (this "

1. This was verified by checking ali cyclic control structures that might be
generuted by a branch-and-bound algorithm assuming that the least critical
constraint only appears once per cycle.

-46-

Performance of the Algorithm ’ : Section 3.3.3

'a g .s 7
s 14

'lj.,i <

'b. j < 12

lc. i < 10
Control | Stack
Structure Constraint
ADFCADFC 1 2 - -
AD(;EADCF, . 1 " 4 - -

Counter-Example to Slick as & Dominance Relation
Figure 3-6
ignores the possibility of a 'constr#lnf app§arfng se?efa! t:imes iﬁ oﬁe dycle); The
overail time complexity of the algorithm will be o(n2k2) tlmee the \numberiof ¥rial
cycles generated per problem. : h |

Assume the tflal cycle contains m 4 blocks a‘nd‘ the n§x{ constraint path cohtalné
m , blocks. There are (m 4 +m 2—1)! cycles contalnlng all the ‘blocks, but we are
only interested in one of the m1! permutations of the blocks in the old cchIAo!,‘ and
(m,-1)! permutations of the blocks in the new constraint (l.e. we must consider
m , different phase relations of the two cycles). Therefore, the number of differant

trail cycles generated at this step Is:

(m +m ‘1)' m +m _i
172 - 1M,
my¥m D (m) @)

Of course, if some blocks of the new constraint are already contained in the old
cycle, or if the next constraint ‘appears more than once, not all of the generated
cycles will be distinct. However, it is rather difficult to avoid generating these

-46-

Performance of the Algorithm Section 3.3.3

cycles. There will be relatively little extra cost to the algorithm as long as it does
not Investigate cycles that are identical to cycles that have already lead to
failures. Therefore, the number of trial cycles generated by the merging algorithm
when it finds a solution without backtracking is approximately:
3 k(K1) (3-12)
i=2
Equation (3-12) is o(knk+1) since the binomial term in the sum is o(nX) and there
are n terms.
If the merging algorithm fails to find a solution, then it must have backtracked

through each trial solution and the total number of cycles generated is:

ek (K1) (e - ek (K1) L (3-13)
which can be approximated:

o & ("’k”) (3-14)

i=2
Equation (3-14) is o((kn*)") or o(knk™), and is exponential in the number of
blocks in the schema. This is a very loose upper bound and would only be
achieved If all generated solutions were plausible except when the last constraint
was being merged in. However, this bound is achievable if the first n-1 constraint
paths had relatively large latency specifications whlle the last constraint path had
relatively small latency specifications. This situation can be easily avoided by
starting with the path with the smallest latency constraints relative to the weight

of the path.

-47-

Performance of the Algorithm Section 3.3.3

3.3.4: o Speeding up the Algorithm

There are many ways the average performance of the algorithm could be
improved. For example, if we Lad a tighter lower bound on the slack in the MCC,
we could prune more subtrees. We can get a tighter bound by determining what
new blocks must be added to the control structure. Adding a new block always
increases the size of some critical windowfor a constraint by at least the weight
of the block. Therefore, If the sum of the slacks for a constraint is less than the
total weight of blocks that must be added to the control structure, at least one of
the critical windows for that path will exceed the. latency specification for that
path. This tighter bound has no effect on the performance If no backtracking is
necessary. However, If no solution is found, using the tighter bound is roughly
aquNalent to reduclngb n, since fewer constraiﬁts needf;tbr be combined before the
control structure is recognized as infeasible. |

7 Notgce that the performance of the. glg’prlthm would not be of polynomial
complexity even if there were ar déminarice relation that totally ordered the
possibilities ét eaéh level. The problem Is that the numbei of baftlal solutions that
must be generated by a naive ﬁigoﬁiﬁm can ;grou} eXponentlaHy wnth thé comp!exify
of the schema. Theréfore, ﬁnding'ﬁ good domlnance rélatlon‘lst nbt as impérfant as
finding Va se?rch function that ganerates. nodesthat are "tvnost'll:k;lywtb lead toré
solutbn first. | o | o
| Since the weight of the critical windows increase when new blocks are added,
we imight: try meflng in new cdné;ifaih:f pathssc thatnné; new» blocks dre a&ded
before trying more general mergings. This will improve the performance if the

solution is an extension of this type of merging, even If the algorithm must

-48-

Speeding up the Algorithm Section 3.3.4

backtrack since fewer nodes are generated on that level. If the algorithm must
backtrack through all the control structures of this type, the performance of the
algorithm is somewhat worse. The effect of this heuristic may be approximated by
reducing k, since the length of the strings merged into the current control structure
will be reduced.

The. other way of improving the performance of the algorithm is to reduce the
complexity of the problem. This can be done by replacing sub-graphs of the block
diagram module with new blocks. Whenever the new block is fired, the blocks
comprising the subgraph replaced by the new block are fired in some fixed order.
This replacement can dramatically reduce k, and would improve both the best- and
worst-case performance. However, combining blocks in this way can result in a
schema which has no feasible control structures even though the original schema
does.

Since the process of generating a control structure can be so time consuming, it
would be extremely useful to quickly identify realtime specifications that are
Impossible to satisfy. One way of dcing this is to compute the percentage of CPU
time required by each block. If thé sum of this percentage over all blocks in the
schema Is greater than 100%, the latency speclfications are obviously unsatisfiable.

The percentage of the CPU required by each block is easily computed: each

constraint C, must be executed at least once every Ii—|c'.|+t time units.

Therefore, each block ¢, ; in C; must be executed at least once every li—|cl. | +e

oJ

time units and its corresponding CPU percentage is:

Speeding up the Algorithm Section 3.3.4

eyt 0 (3-16)
=16 bre - :

if an block appears I(__ sevenll con§traints, |ts CPU pq;gaq;ag; ls the lr_qax'lmumrof
the percentage implied by each constraint the block _sppears in. Using the
maximum rather than the sum corresponds ‘to assuming m;t each time the biock is
fired it. will help satisfy all the constraints it appears in. Alihough this is not
necessarily the case, it is a lower bound on the ‘CPltl_Qsage.

Another quick test for unsatisfiable latency specifications Is that the slack in
each latency specification must b,e_ larger than theoomputation time (f,or gllfbloc\ks
not contained in that constraint path. Otherwise, the ¢ portion of some critical

window for that constraint will be too large (refer to figure 3-4).

3.3.5: Practical Experience

A branch-and-bound 'algorithm simflar o the -one described above has been
implemented as part of a system for implementing continuous-timé block diagrams on
conventional micro-processors. The implementation ruhs on a PDP-11/70 under the
UNIX timesharing system. The block diagram ‘is described using an interactive
graphics editor developed by John Pershing [18] " The branch'and-bound algorithm
Is only responsible for choosing the order to axecute the Biocks. The object code
for the block diagram Is producéd by a separate program.

The program uses ail of the heuristies: mnﬁoncd above except- it does not
combine sub-graphs into new blocks. The progtam.is able to find control ;ﬁuqt!{rg;
to satisfy most latency specifications for smalli block diagrams using less than a
minute of CPU time. So far, only one set of latency constraints has been found

-850~

Practical Experience Section 3.3.5

where a valid control structure exists but no control structure was found by the
program (see figure 3-3). Some latency specifications require more time to find a
valid control structure.

In the absence of a fast optimal algorithm, it is preferable to have a fast
algorithm which yields ‘good’ control structures quickly. Heuristic algorithms are
genefally evaluated one of two ways: one approach chooses a fixed algorithm and
derives an upper (or lower) bound on how far the algorithm’s solution is from the
optimal solution. For example, Graham's’a|gorithm for scheduling independent tasks
on multiple processors executes tasks which require more processing time first.
The resulting schedule is no more than 4/3 times as long as the\optimal schedule
[8]-

The other approach develops a family of algorithms each requiring polynomial
time. As the degree of the polynomial increases, the solutions found by the
programs are closer to optimal. The family of algorithms is monotonic in the sense
that the an algorithm taking more time never produces a poorer solution than one
taking less time. If the degree of the polynomial were increased to infinity the
algorithm .would be optimal. However, it would also no longer be polynomially time
bounded. An example is a serles of scheduling algorithms employing limited
lookahead [1].

The secénd approach does not seem applicable to the control structure problem.
Limiting the breadth of back-tracking yields a family of exponential time algorithms
with the exponent increasing with the amount of back-tracking. A family of
polynomial algorithms would result if at most k blocks were merged at a time with

no backtracking. However, these algorithms are very unsatisfactory if any

-51-

Practical Experience - . Section -8.8.6

constraint must appear more than once. If the number .of blocks in .the censtraint
path is less than k, than all blocks for the second:(and ‘subaaquent) appearance of
the constreint will be merged coincident with the existing. occurrences of those
blocks. - k is increased so0 this does nat happen, the performance of the-algorithm

is only slightly better than the complete eigorithm with:no baecktracking. .

3.4: Heuristics for Generating Control Structures
Steve Ward has expenmented w1th some qulck simple heuristlcs for generating

static control structures. Basicany, the heurlstic constructs controi structures of

the form (afaryed - - -)* where a Is the most critical constraint path and 8, v, §, et
cetera are taken from the other constraint paths. More specifically, blocks from
the next most critical constraint are added to # with the restriction that |ee| is

less than 1. If more blocks remain in the constraint they are added to y so that

|eya] is less than ;s Once all constraints have.been werged. in this way, -the

latency specifications are checked. If they are aff.satisWéd then the generatéd
string is a feasible control structure.
- The heuristic ‘will also' call itself Using the current solution as « so the generated

solution may also be_ of the form:

(oo Moty e

~Since these heuristics construct ‘a” control structure rather than search for one,
they run véry quickly. However, they also donot find sduﬂong to a faldy large
number of latency specifications, even for simple block diagrams. Still these
heuristics are more attractive as a basls for an approxihate al’gbrithrn, not only

-62-

Heuristics for Generating Control Structures Section 3.4

because of their speed but also these heuristics could be extended to handls

particular styles of block diagrams as the process of constructing control

structures becomes better understood.

.53-

4: Static Priority Interrupt Control Structures

- In some applications, the tokens at the input links do not change continuously. If
the control structure can,getec; when an input ctggngeg. the rga&time performance
can b2 improved. Intuitively, this is : possible since if no inputs ,tp‘:a block have
changed, that biock does not need to be executed. On the average, this type of
control structure ought to do less computation and therefore ought to have better
reaktime performance. On the other hand, better ’a‘verage performance does not
duarantee better worst-case performance and specific questions of performance
must be answered with respect to a particular model.

Although the prototypical example of a dynamic control structure is interrupt
driven, it is important to realize _that hardware interrupts are not necessary. For
example, a control structure could sample tha_ inputs until one or more inputs
change. After all the computation initiated as a resuit of these changes had
completed, the control structure would continue to sample the inputs. In general,
such a scheme would risk missing changes In the inputs. However, the control

structure can use the realtime specifications to guarantee this will not happen.

4.1: Dynamic Control Structures

Many of the strategleé for scheduling Independent tasks to satisfy real-time
constraints mentioned in the previous chapter use dynamic contro} structures. For
example, Liu and Layland use static priority interrupts and consider the ca_sa (in our
terms) where the latency Is equal to the period between requests [14]. They
consider the earliest deadline scheduler only in this context although the earliest
- deadline schedule s épﬂmal for any sequence of requests and deadlines, as
mentioned earlier.

Glven an optimal scheduler, is there any reason to consider a suboptimal
-54-

Dynamic Control Structures Section 4.1

scheduler? The answer will be yes if a good suboptimal scheduler exists which
uses less resources than the optimal scheduler. The earliest deadline scheduler
needs to find the highest priority task to execute whenever a task completes
(alternately, it needs to insert requests into the proper pqsition in a task queue).
A static priority interrupt control structure also needs to ﬁ‘nd the highest priority
task fo execute. However, this is done in hardware by many existing computers,
including current microcomputers. Also, the earliest deadline scheduler requires a
real-time clock to compute the deadiines for each task from the request time and
the latency specification. Therefore, static interrupt control structures are
sufficiently simpler than a earliest deadline control structure to deserve further

consideration.

4.2: Model for Static Interrupt Control Structures

A static interrupt control structure assoclates a task with each block in the
diagram. The tasks are related by a precedence relation consistent with the block
diagram. Each task has a priority and may be /dle, active, or requested. The
priority may be thought of as an integer with numerically greater prlorities being
better.

When an Input changes, all tasks whose blocks are watchers of that input
become requested. The control structures chooses the task with the highest
priority among the requested tasks. This task is active until the block complete
executing when all its successor tasks become requested and the task Itself
becomes idle. |If the control structure allows active tasks to be suspended while

another task is executed the control structure is call preemptive. Otherwise it is
-66-

Model for Static Interrupt Control Structures Section 4.2

non-preemptive. Unless otherwise noted contrdl structures -are- assumed to be
preemptive.

The latency performance of any static Interript control structure can-be’
determined for each task by adding the computation ‘timé for: that task to the
maximum computation time used by higher priority tasks while the task Is on the
réady Queue. The difficutty in this analysis is in detérmining how much computation
might be used by other tasks.

The simplest case to consider Is when all the tasks are /ndependent (each task:
consists of exactly one block). Each task ? requires t; units bf-ecﬁnputcﬁan; and
haé briorlty p /s iaténcy I ,, and ban&wldth B /- 'Without ioss of generality, the tasks
can be numbered so that:)

PPy - -
The overhead of assoclated with Inferfupts, selecting ‘a task for execution, etc.
will be ignored for the time being. We shall also assume that all priorities are
distinct. o |

The latency for task / when Its inputs change discretely Is simply the maximum
elapsed time between a change in an input and the termimation of the task. This
must be less than 'I if the latency specification for task / Is satisfled. The
interpretation of t'he bandwidth speclﬁcntion is alsop 6lmpliﬁe&1 lnstead’ of
specifying a minimum rate for mgung inbuts, the bandwldéi vspaclﬂe& the maximum
fate at which an input chdnges. . N - o : 7

The latency specification for task /i will be satisﬂved- IVfA ;nd only l-f' fhe biock for

task / can be completely executed during any time Inteivhl of duration l,. ‘Durlng

-66-

Model for Static Interrupt Control Structures Section 4.2

this interval, tasks with priority better than P will also be run, and the amount of
CPU time used by higher priority tasks must be less than 'I - t,.

Notice that this model is equivalent to the model used by Fiala. Fiala’s P,.
corresponds to ti’ Di corresponds to I,, and Ti corresponds to 1/ Bi‘ Therefore,

for a single processor we have the obvious restrictions:

1
i
and:
n
z Bitl' <1 (4-2)
i=1

The summands in (4-2) are the fraction of CPU time used by task i. Obviously the
total fraction of the CPU used by all the tasks must be less than one. Equation
(4-1) can be derived from (4-2).

Lemma 4-1: The amount of CPU time used by n independent tasks using a static
priority scheduler in a window of duration At does not depend on the
relative priority of the tasks.

Proof: The processor is always busy if some task is requesting service.
Changing the priorities of the tasks will never cause the processor to
remain idie when some task requests service, nor will it affect when the
tasks request service.

Since the control structure only executes a task if some input to the task

changes, task i cannot be executed more often than once every 1/Bi time units.

Clearly, a task uses the maximum CPU time if any interval if it requests service at
this maximum rate.

Assume task /i requests service at times 0, 1/B,, 2/B,., -+, and let Cl(t) be

the maximum amount of CPU time used by task i in the interval (0, t). The highest

-57-

Mode! for Static Interrupt Control Structures Section 4.2

priority task (task 1) always starts executing immadiately aftey It requests service
and executes for t, time units, so it wil be executed l51t.]7,qompl6te,ﬁmes in the
interval. Let r =t~ lB1tj be the amount of time at the end of the window efter

the last request for task 1. Task 1 wiif be executing during the interval (t-7, t)

since task 1 has the highest priority. However, it r2ty, only t, units of

computation will be used so:

|B4¢]

(4-3)

C,(t)= lB1tJt1+min[t1, t-

B,
The maximum amount of CPU time used by task 1 in the interval (At, t+At) is:
C ((t+at) - C,(at) ‘ S (48)
We will show that this is maximized when At = Q- by showing:
C,(t+at) -C (at)sC ()
or b
C,(t+at) -C ,(t)< C,(At) (4-6)

Since the requests for task 1 occur with &'ﬂreoulir period, € 1(t) is also periodlc.
In fact:
C4(t+1/B4)=C () + (4-6)

Therefore, we need only consider At betwéen 0 and 1/31, in which case:

C 4(At) = min(t,, At) (4-7)
This Is the maximum amount of CPU time used by any Interval of duration At

since the CPU time used cannot be greater than the duration of the interval nor

-58-

Mode! for Static Interrupt Control Structures Section 4.2

can It be greater than t1 if the interval contains less than one period. Therefore,

the inequality in (4-5) holds since the left hand side is the amount of CPU time
used in an interval of duration At starting at t.

The worst case for a set of tasks will occur when all tasks request service at
time O and continue requesting service at their respective maximum rates. This is
true since the highest priority task will use its maximum amount of CPU time under
these conditions, and by lemma 4-1, any task can be made the highest priority task
without affecting the amount of CPU time used by the set of tasks.

Define C,. (t) by:

B¢

i

c,(t)= lBitJt’.+min t, t-
The amount of CPU time used by tasks j and k is not necessarily C,(t) summed

over f and k. The difficulty is that if requests for tasks j and k occur sufficiently
near the end of the window and of each other then only the higher priority task will
actually be executed. Therefore, It is necessary to determine a precise schedule
for the interval from O to t. However, if we are only interested in how much CPU
time Is used in this interval, lemma 4-1 assures us that we may assign arbitrary
priorities to tasks j and k.

However, a sufficient ;:ondition for satisfying the latency specification for task /

is:

i-1
I; zt,.+jz1cj(l,-) (4-8)

This equation can be made more intuitive if the time required by task j is

approximated by:
-50-

Model for Static Interrupt Control Structures . Section 4.2

'IBjtj (4-9)

Then equation (4-2) becomes:
i-1 :
ah zti+li]§18jtj (4-10)

This can be rewritten as:

Y
-1
1-]-:418111

The denominator in equation 4-11 represents the fraction of CPU time available to

|2 (4-11)

task i. The effect of higher priority tasks is equivalent to reducing the CPU speed.

4.3: Assigning Priorities to ln;!ependent Tasks

One of the weaknesses of traditional resitime operating systems based on
static priority scheduling is that the system does not verify that the priorities
assigned by the user are consistent with his realtime specifications. Evan if the
system checked these speacifications, the user still must essign priorities, which do
not have a simple relation to the realtime specifications. The. obvious strategy of
assigning the highest priority to the task that requires the fastest response time
does nothork. Consider the example in figure 4-1. Either task 1 or task 2 can

run at the best priority since I; 2 t;. if p, = 1/}, then-p, > p, and the the latency

for task 2 is:

Assigning Priorities to Independent Tasks Section 4.3

|1284]]

t, + l|281Jt1 +min[” |2—————-B1

16 , 16
12+ l 2 J?+mm[2, 16 l a J4)

=12+ 8 + min(2,0)
=20£I2=15

However, the latency for task 1 if Ps > Pq is:

148]

t,+ ll182Jt2 +min [tz, 11-—-———32

15 , 186
2+ 1241 +mln(12, 16 - 124J24)

=2+ 0+min(12,15)

~1451, =16
t,=2 B,=+ 1,=15
1 1”72 M
1
t2'=12 B1='2—4 |1=‘16

Counter-example to priority = 1 / latency
Figure 4-1

The algorithm successively finds a task that can satisfy Its latency
specifications while assiéned the lowest priority. If there are several such tasks,
choose one arbitrarily. This task is assigned the lowest priority and removed from
the set of tasks. The next task selected will be assigned a priority higher than all
previously assigned priorities but lower than all tasks still unassigned. This

continues until no task remains or no task can be found that can execute at a

-61-

Assigning Priorities to Independent Tasks Section 4.3

priority lower than all other ta:sks. In this case, no asélgnment of static priorities
will satisfy all the latency speciﬂcatbﬁs uslhﬁ onlyohe br&cessor. This algorithm
will never make a bad choice. Considér the _ situation ,Mgn one or more tasks
remain yet no task can‘ be assigned the West prlorlty. Any task that could

possibly run at a lower priority has already been;;assigngd;n lower priority.

4.4; More Complex Models

The model for static interrupt con\trol_' structures made several simplifying
assumptions, such as ignoring scheduling overhead», as#umhg preemptive scheduling
and distinct priorities. The model can be easily chkng_ed to account for different

assumptions.

4.4.1: Scheduling Overhead

When a task requests service, the control structure must compare the priority of
the task with the priority of the currently dxecutlng task. If the priority of the
current task is higher, then new request must be queued ln some manner. When
any task completes execution, the control structure mu#t select a new task to
executs. " Also, sw_ltching the processor between tasks will generally involve
setting up some processor registers. However, all of these actions will occur for
every Instance of a task requesting service, so these overhead costs can be

included in the maximum CPU time used by task / = . The basic -algorithm of

finding a task which can be assigned the worse priority while still satisfying (4-6)
is still correct. . cee -

-62-

Scheduling Overhead Section 4.4.1

4.4.2: Non-preemptive Control Structures

If the currently exacuting task always runs to completion -before.a new task is
run, then the latency vspoclﬂcation for a tqsk must be large enough to altow for any
task with worse priority to execute as well as the CPU time used by tasks with

‘better priority. Thus, (4-6) becomeas:

i-1 n ‘
I,2t,+ 2 C.(1,)+ max (t,) (4-12)
r<7i =1 4 jejer

Again, the assignment algorithm does not require any changes. This is obvious if
the algorithm finds a valid assignmént'of priorities. Increasing the priority of some
task relative to task / moves a task Into the summation term‘in‘équatlon (4-12).
Since ¢ J (i) is greater than or equal to t j,’mik‘ihg" this change can only increase

the right hand side of (4-12).

4.4.3: Non-Distinct PrMias

For various reasons it may be deslrablé fo assign several tasks Iidentical
priorities. For exampio, the computer hardware may only support a limited -nul;nber
of interrupt priorities. Since the control structure is free to execute any of the
requested tasks having the highest priority, all tésks having the same priority as
task / must be treated as if they had higher priorities when checking the latency
specifications. This assumes that the contrel structure only executes task / when

all other requested -tasks hawve: priorities strictly worse than: P

However, this also makes ‘the often unrealiéﬂé éséhmptldﬁ that a task can be

preempted by a task with equal prlof&y. If this Isnot the case It Is necessary to

-63-

Non-Distinct .Priorities - Section 4:4.8

simulate the control structure on the worst case sequence of requests. It is nét
sufficient to treat these tasks as If they had-lower priority but are not preemptible
since a pair of tasks can make & sequence of requests so that one of them
requests service again while the other is being executed. Therafore, the first task
can be executed twice while task / is waiting for service -although teask /is never

preempted.

4.5: ' Applications to the Control Structure Probiem 7
Verifying the realtime performance of a static priority schedular on more
complex task structures is a straightforward extension of the verification for

independent tasks. A latency specification I, is satisfied if and only if ail blocks in
the constraint path-can always be executed during any interva! of duration l,. It

becomes slightly more complex to compute the amount of CPU time used by higher
priority tasks since some tasks (blocks) wm nof be runnable when other tasks are

requested.

4.5.1: Chains of Independent Tasks

If no block appears in more than one constraint path, the constraint paths can
be treated as independent tasks. A task will nevar ba interrupted by a request of
a predecessor if the reaktime spacifications are met since the period between
requests is not less than the Qqu!!ne for any one request.

The priority assignment problem would be very much more q&ﬂjcult if it were

necessary to consider assigning different priorities to individual blocks in a chain.
-84

Chains of Independent Tasks Section 4.56.1

Howevaer, it does not make sense to assign -lower priorities to some blocks in the
constraint paih, since it makes no difference where in. the chain highar priority
tasks are allowed to interrupt. Therefore, all the tasks in the chain can be
assigned the same priority as the task in the chain with the least priority.

In the presence of overhead it is more efficiant to ‘create ‘one ‘super-task’ that
execdtes all the bilocks coqsecutlvely rathe; thnq Inc_:urring the overhead of a
request for each block In the chain. However; if the control structure is non-
preemptive it may be necessary to create sevaral smaller ‘super-tasks’ to reduce
the amount of time that must be spent waltlng for |ow prlorlty tasks to complete.
Deciding how many tasks to create and how Iarga to make tham could be made on
the basis of how much CPU time needs to be freed up in order to find a task to

ssign the currently worst priority.

4.6.2; More Complex Tgsk Relations

There are fundamentally two ways dl‘lferent coﬁstraint paths can hqve a common
block: the common blbck can have more than one successor or it can have more
than one predecessor. We will first consﬁk}e;_i,t’h‘,e simplest example of each type of
interdependent constralnts.

Consider a block diagram in which block A has successors B and C. The
constraint paths for this diagram are AB apd AC. Since a request for A will always

cause requests for both 8 and C, BAB - BAC,' Therefore, neither 8 nor C will be

Interrupted by requests for A as long as the real-time specifications are met.

Now, If pg > p, then the sequence of blocks executed whenever A is requested

-85

More Complex Task Relations - Section 4.6.2

is ABC. Otherwise the sequence AC&WBI be exacutad. We can therefore repiace
the tasks A, B, and C by a task that executes sither ABC-or ACB. The latency
specification for the new- task should be chosen so that it will be satisfied if and
only if the original latency spacifications are - satisfied.. These latency
specifications are satisfied if and only. if:

lag 2 ty+tg+(time lost to interrupts) (4-16)
and '

lac 2,4t +(time lost to interrupts) 7 (4-14)
The CPU time used by’interrupting tasks will be Identical for both the ABC and ACB
saquehce, except If ABC Is. executed, then 8 musté be oonilde;ed an interrupting

task in equation (4-14), and similarly for C and equation (4-13). Therefore:

Lase -mln(lM. IAC—tB) (4-16)

and

lacg = Mg Lag=tc) (4-16)
and we should choose the séquence that ylelds thé greater latency.

Now consider a block diagram In which C has two predecessors A and B. The
constraint paths for this block diagram are AC and BC. It Is aiso ‘quite possible to
receive a request for C while C is already requested or suspénded. However, if ‘C
was first requested. by A, the additional request wili aliways be from B and vice
versa. If this occurs the logical thing to do is to 'i\av‘! C executed only once, but
in general the sequence AC will be executed whenever 4 fs'ieqhested and BC will

be requested whenever B Is requested.

it is sufficient to replace 4, B, and C by two tasks which executed AC and BC

-66-

More Complex Task Relations Section 4.5.2

respectively, ignoring the possibility that at times C may not need to be executed
by one of the tasks. However, if no assignment of priorities is found treating these
tasks as independent, it is not necessarily true that no such assignment would
exist if the common block C were handled more carefully. The difficuity is that the

worst case sequence of requests becomes harder to construct.

4.5.3: Combining Static and Dynamic Control Structures

Rather than having the processor idle when no tasks are requested, it may be
possible to have the processor executing a static control structure for some
portion of the block diagram. In this case we would consider the static control
structure to be the lowest priority task. There are no real-time specifications on
this task in the usual sense, although we must still guarantee the latencies in the
static control structure. This can be done by modifying the latency specifications
so that even when the maximum amount of CPU time is used by the dynamic tasks,
the static control structure still runs often enough.

Consider a latency speciﬁcation,li for Cl. The blocks in Cl. must be executed
once in every interval of duration Ii' The trace of the processor is no longer

completely determined by the static control structure since the dynamically
scheduled tasks will inte.rrupt the static control structure. However, the amount of
CPU time used by these tasks is known. Therefore, we need only choose new
latency specifications for the statically executed constraints according to the

following equation:

-67-

Combining Static and Dynamic Control Structures Section 4.5.3

K

Iivzli—j§1cj(|') (417)

Where constraints 1 through k are executed by the static priority interrupt control

structure.

-68-

(-H Summary and Conclusions

We have presented a model for realtime computations that provides precise
definitions of reabtime performance. The model has the additional advantage of
strongly corresponding to intuition. This makes the modsl-ideal for defining the
semantics of a reaktime programming language. The model also avoids close
assaoclation with any implementation. Therefore;: the modetl-is applicable to a wide
variety of systems. Conversely, a language based -on this model should be easily
Impleﬁlentnb!e in a wide variety of ways, without eacountering features of the
madel too finely tuned to a particular implementation.

Several strateglies for implementing control structures for block diagram systems
were investigated. The first strategy was to find a-static: exacution order for the
blocks in the diagram. Control structures of this type have been somewhat ignored
for time critical applications. An important resuit is that any such control structure
could be represented as a finite cycle, although the bounds on the length of the
cycle are so large that explicit enumeration is impractical as -a synthesis technique.
A branch-and-bound synthesis method: was developed, but -»mfo&unaMy it is also
impractical for large probiems. We suspect that the synthesis problem is NP-
complete (computationally intractable), but have not praved this conjacture. in any
case; ‘we . believe i is more ,promfslno ‘to invastigate fast heuristic algorithms for
synthesizing :static control structures.

The next general strategy Investigated made use of the fact that in many
applications the input values change at discrete ﬁmes.vcr Under this assumption,
block dlagram schemata are closer to traditional models -of reaktime computations.
Previous research- has found optimal schedulers for the special case of one
processor and independent tasks.. However, simpier static priority schedulers had

been ignored except for the special case: of the latency specifications being

-76

Summary and Conclusions : . Section 8

Identical to the bandwidth period. We developed an eflldent algorithm for assigning
priorities to independent tasks when the latency: specification is less than the
bandwidth period. The synthesis techniques were -modiiied:to construct control
structures for block diagram schemataiim which the blocks ‘were not independent.

Since the analysis of the resi-time performance of block dlagram schemata under
a static priority control structure is simiar-to the analysis of static priority
queueing systems, the priority assignment algerithm -can also be applied to priority
queueing systems.

Finally, we discussed some of the issuss -that :arise 'when more than. one
processor is avaliable to the control steucture. Tha realktime.. performance of
multiprocessor control structures was analyzed, and sbsolute bounds on the real
time performance for a block diagram schema ~weite: derived. - if - the realtime
specifications can be met by a multiprocessor control structure, the objective
becomes minimizing the number of processors needsd %o implement a feasible
control structure. Several special cases are known: to: be NP-complete, so the
genera! problam Is also NP-complete. Howewver, there is reason toc believe that
simple ‘algorithms will produte control structyres: using a number of processors that
differs from the minimal number by a bounded factor, attheugh no specific algorithms
were investigated.

Future work should probably concentrate on either proving various synthesis
problems to be NP-complete: or finding eflicient -aigorithms. - In the ewvent the
problems are intractable, the perfoimance of efficlent heuristic algorithms should be
studied. Certainly any implementation of a practical language system based on

block diagram schemata. should attempt to find and improve such-heuristic methods.

76

Summary and Conclusions Section 6

A practical system should also attempt make use of more of the special cases for

which efficient algorithms are known.

-77-

