
--·...;,,,··

tt MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-204

REAL-TIME CONTROL STRUCTURES

FOR BLOCK DIAGRAM SCHEMATA

Thomas J. Teixeira
•

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was

monitored by the Off ice of Naval Research under
contract no. N00014-75-C-0661

545 TECHNOLOGY SQUARE, CA~BRIDGE, MASSACHUSETTS 02139

This blank page was inserted to presenie pagination.

MIT/LCS/TR-204

REAL-TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA

by

Thomas Joseph Teixeira

August 1978

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

© Massachusetts Institute of Technology

Cambridge Massachusetts 021 39

by

Tholua· Joseph :Teixeira

This report Is a minor revision of a thesis submitted to the Department of Electrical
Engineering and Computer Science on January 30, 1978 In partial fulfllment of the
requirements for the Degree of Mastel' Of se1..-.

ABSTRACT

Block diagram schemata model computation systems In the context of an
external environment. The environment Imposes various conatraints on the real-time
performance of any lmptetnentatlon of a block diagram sch911ta. The modet ls used
to provide precise deftnltlons of real-time performance. The portion of the
lmplemantatlon that affects the rea .. tinte perfomtance la caned the control
structure.

This research Investigates several strategies for •ynthesizlng control atructuras
to satisfy the externel real-time spectftcattona. The Mpleat atrataay ls to
execute all the block• In the diagram In __. fixed order. Control structures of
this· type have been somewhat Ignored for tllfte crttlcal app11catlons. The synthesis
problem Is shown to be solvable ·In the sense that acyclle control atructurn do not
need to be considered. A branch-and-bound aynthMls .._,m.- Is presented which
requires exponential time In the woret case. Afthou9" no etnctent synthesis
algorithm was found, the conjecture thet the problem la NP-complete Is not proved.

The other strategy for lmplementfnG control structures makes use of the fact
that In some appftcatlons the Input values change at dlscrete times. Under this
assumption, block diagram schemata are elmllar to tradttlonal lllOdels of real-time
computations. An aftlclent algorithm for asalOnlnG fixed priorities to independent
tasks Is presented that guaranten the real-time specHlcatlona wlll be met. This
algorithm relaxes prevtoue restrictions of the deadllne for a task belnO colncidai'lt
with Its next request.

Finally, some of the issues Involved with rnultiple procesaor control structures are
discussed, although no specific algorlttuna are lnveattgated.

Key Words and Phrases: reaHlme scheduling, ~riorttY -~·Chedullng, deadline-driven
scheduling, control struct'8(-.a .

Acknowledgements

Steve Ward has been indispensable as an advisor in transforming my rather hazy

Ideas about real-time programming Into a workable reselJJ'.ch. tQPiC. HJs enth~siasm

kept this research progressing at many points when I was stuck or otherwise

sidetracked.

Thanks are due to John Pershing, Al Mok and Jay ,Wtlbid for their work In ~

providing a test bed for some of the Ideas expressed In this thesis. Al Mok has

also been especially helpful with his knowledge about scheduling theory and

algorithms.

The entire Domain Speclftc Systems Reeearch group has · at some time

contributed to the computer facilities that m41d,e ,the act...ol production of. this
': . . ' ·' ·, .

document as well as the research possible, eapeclaJly" .·~. Pwshlng and Terry

Hayes.

Flnally, I wish to thank GHllan Teixeira for her emotional and moral support

throughout the course of this research.

This research was supported by the Advanced Research Projects Agency of the

Department of Defense and was monitored by the Ofiic~- :Ol tjl4v41 R4]MSSarch under

contract No. N00014-75-C-o661.

-3-

1 : Introduction

1. 1 : Previous Work
1.2: Statement of the Problem
1.3: Thesis Overview

2: Block Diagram Schemata

Table of Contents

2. 1 : Real-Time. Performance and Specifications
·2.2: Functionality of Blocks
2.3: Example

3: Static Control Structures

3. 1 : Existence of Cyclic Control Structures
3.2: Generating Real-Time Control Structures
3.3: A Branch--and-Bound Method for Generating Control Structures

3.3. 1 : Determining the R•latlve Frequency Of Constra1nt Patha
3.3.2: Strategies for Combining Solutions
3.3.3: Performance of the Atgorlthni.
3.3.4: Speeding up the Algorithm
3.3.5: Practlcaf txpenence

3.4: Heuristics for Generating Control Structures

4: Static Priority Interrupt Control Structures

4.1 : Dynamic Control Structures
4.2: Model for Static Interrupt Control Structures
4.3: Assigning Priorities to Independent Tasks
4.4: More Complex Models

4.4. 1 : Schedultng O\lerhead
4.4.2: Non-preemptive Control Structures
4.4.3: Non-DJattn'ct Priorities

4.5: .Applications to the Control Structure Problem
4.6.1: Chains of Independent Tasks
4.5.2: More Complex Task Relations
4.6.3: Combining Static and Dynamic Control Structures

6: Multiple Processor Control Structures

6. 1 : Assigning Control Structures to Multiple Processors
6.2: Dynamic Assignment of Processors

I: Summary and Conclualona

References

e.

6.
10.
11.

13.

15.
18.
21.

26.

27.
33.
38.
38.
40.
46.
48.
60.
52.

64.

64.
66,
60.
62.
82.
83.
83.
64.
64.
65.
67.

•••
72.
74.

76.

78.

List of Figures

2-1 : A block diagram schema requiring a multi-processor control structure 1 7.
2-2: A Block Diagram Containing a Cycle 20.
2-3: Typical block diagram scherr.a 21.
2-4: Latencies for static control structures 22.
2-5: Latencies for dynamic control structures with static schedulers 24.

3-1 : Typical Laxity Table 31 .
3-2: Counter-Example to Least Laxity Scheduling 37.
3-3: Block Diagram Where All Constraints Appear More Than Once 41.
3-4: Regions of a Critical Window 45.
3-5: Counter-Example to Slack as a Dominance Relation 46.

4-1: Counter-example to priority = 1 I latency 61.

5-1 : A simple multi-processor control structure 70.

-5-

Reaf. Time Control Structures for 81ock Diagram Schemata

1:

There are many applications for computers ~~tJhe ~eal-tbne pe~or~_ance of

the program Is critic al. These application~ . .,_ ln~olv~ a$Y,.tj~s lntera~tion wltfl
. . . - :. . . - ... ~ . . ! ' . '\ ., ~ ~ - - .

the external environment and It Is this environment that. 11.ftP()Ses the real-tlmtJ
·-' ' ~,_ ' - ' .~ .

restrictions. For exar_nple, d~vlce ~rivers ·.Iii .. ()porattnG . sy~~ •1t4~f r~pqpd . t(>
- . ~ - ·' . ..,. - . ~ . " . . ';_..; ~' - - ·- - .

Interrupts before the inform-.tJ®. .if ~t. ,Anot1:ter~ ilPPIH;;aliOn : is,, 1ri '·: d1i-.Elct · C!1g1ta1

control and process monitoring.

However, most high-level languages ara not c;lesigoed tor _producing time crltlcl1J

programs. The languages allow the user to deftne appropriate functional and data

abstractions for his problem, but have no notion of real-time or asynchronous

Interaction with the real world. Instead, the user must design a control structure

for his problem suitable for a single sequential process that will satisfy all the

real-time constraints.

1.1: Previous Work

Many operating systems do have notions of real-time and external Input and

output, but they are supported at a fairly low level [19, 20]. The appHcation

program typically has to deal with priorities, setting real-time alarms, and responding

to interrupts. These actions may be necessary to satisfy the constraints, but they

do not bear a close relationship to the constraints. For example, It Is seldom

obvious what priority must be assigned to a task that must complete In ten

mllllseconds and uses one millisecond of CPU time.

Earty work on applications oriented real-time operating systems was done by

Previous Work Section 1.1

Fiala [5]. Fiala proposed a model of real-time processes characterized by three

parameters per process.

(1) P 1 the maximum CPU time used by process I.

(2) DI the-maximum ~y allowed 0from .. the. time process l requests service

. to the completton of' servicing that riiquest.

(3) T1 the mtnlinum period between·ra~ts for ·proeess I.

Fiala proposes three scheduling algorithms for thts model. The first (and

simplest) executes the process that must complete the soonest. I.e. the process

with the earliest deadline. This algorithm la optimal in the sense that If any
• - ' I

schedule satisfies the deadline requirements for all the processes, so does the
:)·

- . . -

earliest deadline schedule. However, this result is proved In the context of

process switching requiring negligible overhead.

Ftala's second algorithm is a modification of the earliest deadline scheduler that

minimizes the number of process switches . while retaining the optlmaUty condition of
• ,.,_> •.. ,.

the earliest deadline algorithm. Thia is accomplished by having the scheduler check

to see 1f the current process must be preempted when a process with an earlier

de•dllne req~eata service. Thi• Is done by ~lmul;tlng the action of the scheduler

on the current requests. Unfortunately, this atgorlthm would require extensive

computation whenever a proceas requests service. Accordingly, Fiala~s third

algorithm pre-computes a lower bound on the expression required by the minimum

switching algorithm. With the lower bOund, the extra computation required by the

third algorithm requires an extra comparison at process request time. The algorithm

Is also optimal In the same sense and requires less overhead than the simpler

-7-

Previous Work Section 1.1

earliest deadline algorithm.

However, Fiala makes no attempt to Integrate his model and scheduler Into a

real-time language system. One such approach Js controi 'robotics developed by

Dertouzos [a] and Gelger [6]. · A control rcmottcs prog11am 18 ·argantz'ed as a set of

daemons which continuously monitor some condition an(I , . ~.ut~ t~ body (a

corrective procedure) wtien the condition. Is true. Tb,:t rqa~~ veciftc•tlon$ for a

daemon are the delay from when a condition becomes true to when the program

detects the condition (the recognition time) and the delay from ~tectlng a

condition and executing the body (the response time). Geiger's Implementation of

control robotics periodically samples the condition with a period slightly less than

the recognition time (the slightly higher rate will allow for preemption by other

daemon conditions). The daemon bodies are scheduled using an earliest deadline

scheduler.

One weakness of control robotics la that no guarantee of satisfying the reaHlme

constraints la made at compile time. Thia could be done If the uaar declared a

minimum period between executions of a daemon body and the compiler determined
-~ ~ ; ; .- -~. , .~

the computation time of the daemon bodies. Since It la impossible to determine the

computation time for an arbitrary procedure, the compiler may require declarations
'f .- • ' ·;. ~ ---~ . -~

to determine the computation time.

A more substantial problem of Geiger's Implementation Is the assumption that the

conditions for daemons are Independent of the execution of other daemon bodies.

Therefore, complex structures of daemons whose conditions depend on variables .. '

changed by other daemons could result in much unnecessary computation. All in all,
~--

control robotics does not provide any more of a model for real-time programming

·8-

Previous Work Section 1.1

than Flala's work beyond sµggeatlng aonte",~yn_t.x for identifying tasks and

•P,ec,fylng J;llelr d~adHnes.

Another system· thJl! deals with real-ti~e ~ptu~l~a~a at. the user level la

TOMAL (Task Ori,entad .Mlcr<>P;~~ss01. L~~} {12],. Ollrthe surf-.ce TOMAL is a

combination ,of a ~rn· blogk structured progrlURlldng. l&ngJ:lage and a typical 1111"t

computer 'real-time' <>Jilerating system. However, In addition to aaalgning •tatlc

priorities ... to tasks, a response .ume m•y b~ ~c;lfled. fQr. • ~- t• r..aponp

"me la similar to~ the recognltJon time for ~~rol tobfl>t~ •· .-~ the -maximum

delay between a request for a task activation and the Inf~ .. of . that ask.

Anotner feature .of TOM.AL Is that iQterr.upt routlnN on&¥ re~••t task activation and

do not reapond to the interrupt l!t. any sut>•tantive way. Thia reducee the alftount

of object code that does oot run under the task acheduler. ana. allQwa tlae TOM,AL

system to check the ~•tency of the-i:e.at-U... conatrakl~:for the_entir.e eyatetn.

However, T9MAL m.tas . no. attempt to ve,ity rea ... tilne ~ftcatirme on .. rvlee

times for tasks.

Data ftow •cheanata deaerve mention aa a. reak~ &)tstem since one proposed

appH~tlons is digital ;•ignal Proceetlino [2, 22] •. · Jt is deelenad to f~Qttate hf9hly

parallel computation &f'\f;t statements may t,e execui.d .. as .aOOA.U .a their Input

variables tiav~ been canputed. If aever.a ••tements are ~uteble an arbitrary

statement Is cilosen. However,· with the addition of .rea,._~ constraints to mediate

this declslon, data 1'ow would be a powarful r•rtlma sysU:tm., The other major

drawback of data-flow is that Is not sufted for Jmplente11tetlo1i on conventional

computer archlte.ctures.

.g..

1.2: Statement· of the Problem

The goal of this research Is to develop theory that is appHcabfe to the

tmpfementatton of a programming. syste11f deelgned to -the TeStrft:tid domain of ttme

crttlcaf appllca1:Jons. The main criterion of the · gtiftabllity :of :the ·language to this

domain. should be that ·smaH changes fn the reaHlme-specltk:atlons··shoutd resutt In

smaH1 obvious changes In the source ·'program. It ·Is cdncei'v&bie, ·end Indeed

destnlble, that these changes coutd have-a dramatic effect on the object program

produced. Thfs reorgant2atton of the object pN'Jgl'am Is prectaety the process that

should be automated.

Conventional languages already provide facmttes for functional and data

abstraction, and numerous researchers are already working In 'this area. Therefore,

this research wtH focus on the globat control structure ·for programs. This Includes

Issues such as the number of processors to use In an IMpletnentatlOn, deciding

what Interrupt structure (If any) ts necessary, decompoalng-·tfnl P..<>Oram Into tasks,

and assigning parameters required by the appropriate task scheduler.

Since normal language semantic laaues are ·being avofded, the description of a

program can be made extremely slmple, The lntuft1ve IROdef for a ·f'8a .. tlme program

Is that of continuous time analog block diagrams; The graPh ·defines a precedence

relation among operators Jdenttcal to the data fl6W In the dta:oram. The program wDt

be speclfted as a directed graph of actions to be performed and their functional

dependence, with arcs -of the graph representing data paths. 1119 graph must be

acycnc stnce cycles In a block dlatiram represent feedbactc system~. Automatlcafly

producing an object program that solves the feedback equation would require more

detailed semantics for the programs as well as other dlsclpllnes outside the scope

·10-

State1119nt of the Problem Section 1.2

of this research. However, In some speGiat cases, cycles can · be handles by

rearranging· tbe block ' dtegram. A strict upJtePeboumt muat ·be ;placed on t.he

camputation time requtrect for each· action. l'he r.eabtlme constraints specify upper

bounds of the propagation d•ys- through the bk>ck ·diagram .anlt of the bandwidths

of the tnput.and-output.algnata.

1.3: Thesis Overview

Chapter 2 develops the bloclf. diagram model of computation. The block diagram

model Is a program schematic model similar to data flow. However, real-time and an

external environment are explicit in the model. In addition, the block diagram model

separates the data-flow of the schema from the control flow, which is embodied In

the control structure. The control structure specifies the execution order of the

blocks at object time. The research problem may be formalized as flndlng control

structures for block dlagram schemas which satisfy the given real-time

specifications. The major use of the model Is to deftne the semantics of the real

tlma specifications.

Chapter 3 Investigates various static control structures (control structures that

are Independent of the data values at object time). Although static control

structures may be used widely In specific appUcatlons (partlcularly In small,

dedicated systems such as those Implemented on microcomputers), they have been

Ignored by designers of real-time programming systems, mainly because their real

time performance In the general case has not been studied.

Chapter 4 Investigates. extended semantics where the external Inputs do not

change continuously. In this situation, a dynamic control structure may be used. A

-11·

Thesis Overview Section 1.3

dynamic control structure is a control 'Structure that daea depend on the data

values at object time. Ttte chapter investigates -a subclass_ of dynamic control

structures. namely static: pi'lority Interrupt controt sttuctures.. The pfOtOtVpicaf

examp1e Is an interrupt system Where the system doea notblng until- an input

changes, although It Includes systems without physlo.t interrupts where ·the inputs

are sampled. The priorities are static as opposed to the earliest deadline

scheduler where the priority of a task Is a function of time.

Chapter 5 discusses some of the Issues that arise when more than one

processor Is available for the implementation. The real-time performance of

multiprocessor systems are analyzed and the real-tJtne performance of a block

diagram schema Is bounded. Some techniques for distributing the processing among

several processors are suggested, although specific algorlth1118 are not studied.

-12-

2: Block Diagram Schemata

Most models of computation do not capture the notion of a 11real--time 11 system

which monitors continuously changing Jnputs from some external· environment. Blook

diagram schemata model the external envimnment eXpllcltly aftd· · tecognt:ze the

existence of real-time ...,ciftOatlons· placed by tfte envit'Oftment on ·the computing

mechanism. They are based on the 1ntuttive IROdel of tlte fl0rt\/41rrtional analog block

dlagr•m whose inputs ·and outputs are changing oontlnuously. An (m,n) bloc/<

dlagFam Schema COAslsts of an (m.n) blool< diagram """1U19,, a ·cont.rol structure, a

contlgurat.fon and an enwll"Otfmflnt which mantputates the· configuration

asynchronously with the contt« structure. Within 'ttte model; It' la' '«SStJmed that

values change cont1nuousty. · Obvlousfy, the colliputatk>ns ·cannot be ·performed

c0ntlnllously on a digital computer; The reaf'.time apectficatiOfts determine how

ofteft the control structure must compute ·new values, as wet u hoW fast It must

compute them.

An (m.n) bloc/< dlag,am module la a directed graph whose nodes •re either

bloO/f.s « llnAs. The tenns pred~ and· succesaor wllf be used With the

convent1onal deftnttions. Data ts stored In the tiftk:s Whtie the btocks perform the

actual computation~ Accordingly, only one arc may polnt to each· link. The graph

must be ·~ In the sense that ares may not--,point from llnks to Hnks or from

blOcks to b)[jckS, Uppel"'case letters will be -used to -denote block• and lower case

letters ·to denote llhks. The predecessor "()f a tlmt • ts ce.lled the specifier of that

link and ·the ttuccessors of a Rnk are called the watchers ·of the link. The

pred.C.ssors ·aFWI suocessont of ·a bff>dc are -catted the Inputs and outputs of the

blOck' f'eapectlvefy.

· An (m,nl module has m Hnks with no input arcs (Input lint.a) and- n ltno with no

output area (output 11""8). The Input Hnks receive their values from an external,

-1a-

Block Diagram Schemata Section 2

continuous time function called the Input signal.. The values at the output links

define an external, continuous time function celled the Glltp#Jt signal.

The model aaaumes the existence af a global $ek wJ;¥ch defines the passage

of real time. Hewitt arguea against the use of global cloc:ks since tney cannot be

implemented in distributed syste1RS [9]. Whll• .Htlwltt'• ob~tlons against global

clocks are valid, assigning times within Hewitt's .. fra•ework of local orderlnge would

be more complicated. Ttu complexity Is unnec..-.ry. AS&nca the events being timed

are always ordered by one of Hewitt's local ordadnp.

A configuration Is an assignment of .tol<em to the links of a schema. The token

contains a value anci a set of labeia qt the form. (linA, birth). These labele ~te

when the token arrived at the input Hnk """· Each link always contains SOllt8

token, since signals are always defined In a continuous time block dlagrem.

The computation of a block . diagram schema 18 deearJbed · by a series of

anapshot.s. A snepshot consists of a block-. cHe.oJ•m~ .adule and an ueoc&atad

configuration. The Initial snapshot assigns RUii v.lues to :.a tokens except for

tokens on the Input links of the schema whk:h are d the current vmue .of

the Input signal. The label set of aH links 18 lnitiellzttd to {(UM, O)}. The

computation prooeeda from· one snapshot to the next through the lrlno of blocks.

The control structure la the strategy for ~- which block to tire next. The

fired blQck accesses the tokens on lts Input "'*8, and replaoes the tokens on tts

output Hnka. The label set for the output ti>lten bec°"88 the unloa ,of the old label

set of the token and the label sets that were assigned to the tokans on al tlle

Input Unka of the bloc,k.. The time in the·. label (l.t) for the Unk · I 4t e•cb Input arc

of the fired block is replaced by the laeel (I.time), where time la the C1,Jnent

-14-

Block Diagram Schemata Section 2

contents of the global clock. This action occurs a.fter any tokens have been

replaced on the output Unks, but th•_ time .for the new l~b~ ~~- .Is inunediately

after the Input tokens were accessed. In .addition,. If I is .•n lnpyt liok, its value .is

set to the current value of the input signal. The '1QCk ,~~no~~ r.~la.ce any outpµt

tokens. Tru.s differs from data flow since token8 are. no\ removed from the input

links after a block is ftred. The data ftow restriction Is not appropriate since th~

value of a token Is deflned at all times.

The amount of computation time used by block A is denoted tA . If the control

structure fires block A on some processor at .time t~ that .. prq~e~sor will complete
- ' --· ' - . _'- - .

and replace the output tokens on thai block. by the time t+~A· The computation

times used will be upper bounds either compt,Red by wh'"ever langµage processor

la used to create the primitive blocks or d~ .. rad b.Y. the:~·

2.1: Real-Time Performance and Speclflcations

A block diagram schema Is an approximation to a continuous· time block dJagram.

There are many factors affecting the quality of the approximation. However, the

factors lnftuefteed by the control structl.tre are hOw long the schema takes to

compute the values of output tOk-ens from ttte Input tOlcens, · and how often It

performs these computations. The r•aHlme 'SfHlclficatlOM wtH phlce bounds on

these quantities. A control structure that satisfies all the real-time speoHtcatlons is

celled a feasible control structure.

The tl(J.e of a token wt-th respect to' a link I at time t Is detlned aa t-t O If (/, to>

Is In the label set of the token, and undefln-ed' otherWls~. The /at.ency betWeen

Real-Time Performance and Specifications Section 2.1

links a and b is denoted 18,b and . is the upper bound of the age at any time of

tokens at b With respect to Hnk ll. The U$ef cari specify an· uP.,er bound on the

latency between two links. The ftrst Hnk wltt tii 'an lnput'1ink. of ·the schema and

the secood Hnk WRI be an'"'output Hnk.

Latency ·specifications can also be expressed In terms of continuous-time

functions!

b(t) - F(a(t-A(t)), ..•). A(t)sl~,b (2-1)

....
Here b (t) Is the function whose value Is the value of the token at link b at time t;

a(t) Is the function whOse valUe Is the slgrial at Unk·a at time t; A(t) c0rre8.,oncis

to the age of the tokens at link b. Notice that A(t) Is generally run constant, but

Is bounded. The user knows how ctose·b(f) lllUSt be'to b(t)•F(a(t), • • •). Using

Information about the magnitude· of F ·and 11 and their dertvatlvea, · ttKf user can use

equation (2-1) to calculate the latency specifications necessary to achieve the

desired accuracy of b (t).

The other measure of real-time perfol'mance Is how often new values are
• - • -> ~

computed. The bandwidth from link a to Unk b ('10tationB_..,,) Is t,he maximum rate
. .

bandwidth speclfk:ation is not easily expr••llitJte ·.in tenu 9f · ce>ntlnuoue-tltae

....
functions. It .may be thought of u a requir;Ulent· on how.dtea the value of b(t)

must change.

The bandwidth specification may seem s...,..,...,.., aince the latency

spec111catlons alan i1nptlee how oft• ttteo· valmt of b(t') · dMngae. HOwevw, It Is

possible for a multiple processor control atructuc9 to exhibii b.,,dwldth. perfor111ance

·1tS·

Real· Time Performance and Specifications Section 2.1

that exceeds the rate implied by the latency specification. An example is shown in

figure 2-1.

tA • 10msec

t 8 ... 10msec

Ba,c .. 75/sec

18 ,c .. 40msec

)

c

A block diagram schema requiring a multi-processor control structure
Figure 2-1

In this example, both A and B require ten milliseconds of computation time. A

single processor control structure that executes ABABAB • • · can guarantee a

latency from a to c of forty milliseconds and a bandwidth from a to c of fifty per

second. However, If processor one executes AAA • · · and processor two

executes BBB · • • , then the latency from a to b is still only forty milliseconds but

the bandwidth increases to one hundred.

While the block diagram model Is useful for defining performance for real-time

programs, it doe5 not yield many insights into the problem of synthesizing a feasible

control structure. The graph itself resembles a partial order on a set of tasks, but

the semantics of block diagram schemata are not as restrictive as this partial

order. In most schematic models, a task must not be executed until all its

predecessors have been executed since (presumably) it would not have data

available at all its inputs. The block diagram model has no such restriction and as

-17-

Reti-Time· Performance and Specifications Seotlon ~ 1

a resutt is able to execute 80ID8 parts of the,schema~ often thllfN>ther parts.

On the other hand, there are certain execution orders that can be ruled out

since they are obviously lne1ltclent. - . For example,- once a block has been ftred, It

need not be fired again until one of itS predecesSt>rs has been fired again since all

Its inputs will be unchanged. Therefore, It outputs wiU not':'change. Similarly, if no

successor of a block A Is fired between ftrlngs of A, the previous execution of A

was unnecessary since no block looked_ at· the previous values of the tokens on

the output links of A.

If these restrictions are combined, each firing of a block must be surrounded (In

time) by at least one predecessor and at least one successor. Equivalently, the

allowable execution sequences may be ·foUnd by ahutning all the paths from an

Input llnk to mt output Ink:. These paths ·wllt be refeoed to as oonetl'altrt paths or

just comlUalnts.

2.2: Functionality of Blocks

The semantics of block diagram schemata make some useful block functions

awkward to Implement. For example, a block that performs dlft'erentlatlon Is

essential for applications In real-time process lll<>nltorlng and control. In classical

direct dlgltal controt, the system la discretized by sampling at some speclftc period.
'

011ferentlators are replaced by unit delays and the feedback gains are adjusted

appropriately. This Is possible only because the Inputs are sampled at a known

frequency.

In block diagram schemata there Is no guarantee of periodic execution. The

bandwidth specifications set a lower bound on how often a block must be

-18-

Functionality of Blocks Section 2.2

executed, and a different lower bound may be Implied by the latency specifications.

They do not place any upper bouftd on how often th9 block is executed.

Therefore, It Is Impossible to tell a prl0trl .when· and, how often a l:>lock will be

executed. This would seem to·: l'U\e out .. any. bkleks · 1h•t woukt require .state

variables, but thl$ Is not true. A white:noise gemarator e<;NJld be implemented using

a paeudo-random number generator. Thia would use a state: varl , but it would

not run into any problelRs by not knowlng.,how often it ls..•xec1.1.t_ed. But most other

functlona ·that need to produce or transfanlt, a ·tllne ,:lfependent. aeQM4lnce of values

will be Impossible to implement.

The only general solution to the problem Is to have a real-time clock as part of

the system. Then a differentiation block could· remember both its previous input and

the time it was last executed and compute the obvious first order approximation.
i

The major difficulty Is that the rea .. time 'Clock would hav• to provide much ftner

resolution than the 60 cycle clocks found In typical computer· systems.

The user should be able to deftne' tHs own time dependent functions since any

selection of primitive blocks wHI probably tum out to be too limited for some

appHcation. Therefore, It becomes, nece~ry to provide some primitive blocks

which would probably lead to nonsenslcaJ programs If used carelessly. In particular,

If the user had a unit delayi>lock and access to the real-time clock he could deftne

arbitrary approximations to differentiators, although undisciplined used of the unit

delay block would result In useless programs.

Implementing Integration would still be a prOblem since the block diagram for a

ftrst order Integrator would contain a cycle (see figure 2-2). The problem with

cycles Is that It is unclear whether the cycle represents use of a state variable,

Functionality of Blocks Section 2.2

as In data 11ow, or Implied sofutlon of eiMultaneous equationa,,as In continuous time

block diagrams. In the case of lrrtegrator& tt: ia clear U.at tlle cyole represents WSIB

of a state varlat>te, since the cycl& contains a unit cdelay ·black. In this cue; the

cycle can be broken at the Input to the delay,bloek. ·. T>be delay block is treated -as

e watctJer of Untc. e, even thoUgh It gets Its ·input from link f. This transtorution

alters the order In which the bloeks are ;executed ey changing the oonatrai11t

paths. 'Unit delays were handled by &o •, tr•ntdol-tion In 8LODI [11], a

same way by a programmer [21].

ti me

a

b

D

g

A Block Diagram Containing a Cycle
Ftoure 202·

·20-

f

a

Example Section 2.3

2.3: Example

The interaction between the reat-time specifications and the control structure

can be illustrated by a series of examples. In these examples the block diagram

module Is left unchanged while the tatency and bandwidth .specifications are vMied.

These varJations wlH necessitate cha1l98s . in- the control structure used to

implement th& block dlfl9'8rn · schellla. The bloek·, dt..-.am lllOdule itself is shoWn ·in

figure 2-3.

~

a

__,,. ,,

d

A

c

b

e

tA • 10

t 8 -s
tc -10

t0 -s

~ B ,,.

__,,. ...
D _.... ,,

Typical block diagram schema
Flgufe 2-3

_.... ,,

c

__,,.
f

The simplest control structures to consider. are cycles that repeatedly axe.cute

the blocks In some nxed order. There 3! (= 6) ways of executing four blocks once
' - - .

per cycle (Ignoring starting transients). For a small example like this It Is feasible

to enumerate all such cycles •nd test them to see If tbey satisfy the latency

-21-

Example Section 2.3

constraints 1 . All these control structures are independent of when new tokens

actually arrJve. The worse-case assumption ts that il new token amves Immediately

after the previous token Is marked .old. -, Uds assumption 18 used In catcutattng

worst-case •atencies, whlcti are shown -In figure 2-4; ·Notice that although ABCD is

better than ACBD and AOBC Is better than' ADGBt there ·:S nO best contn'Jt· structure.

In fact, we can choose tatency speclkatlofta SUCh that ·only one of the conirol

structures will work. The first six control structures in figure 2-4 sample tbe Inputs

once per cycle, i.e. once every 30 time units. However, If any of the bandwidths

Ba,c• 8
8
,f or Bd,f is greater than 1/30 then some other control structure must be

used.

Control
la.c •a.r 1d,f Structure

ABCD 45 80 46
ACBO. 66 · eo 60
ACDB 80 66 45
ADCB 80 46 80
ADBC 60 46 55
ABDC 45· 60 80
ABOCD 6c> 55 60
ADBCD 66 60 60
ABCABD 40 86 75
ACDBCD 76 70 40
AOBADC 8fj' 40 70

Latencies for $1:atlc . control structures
Figure 2•4

A slightly more complicated class of control structures Is cycles where some

blocks may be executed ·more than once. For example, the contrOI structure

1. However, such an algorithm is not practical since the computation time taken by
such an algorithm wo0fd grow exponentlally ·With the numb~ of blOcks.

Example Section 2.3

ABCABD has worst-case latencies as shown in figL•re 2-4. This control structure will

satisfy Its bandwidth constraints if Ba,c is less than one every twenty time units

and Ba,f and Bd,f are less than one every forty-flve time units.

The next class of control structures to consider are dynamic control structures

with static priority scheduling. These control structures make use of the current

environment to determine which blocks to flre next. The dynamic control structures

assume that the values of tokens at Input llnks do not change continuously. When

the value of a token at an Input link changes, a request is made for a set of tasks.

The request is serviced by firing a fixed sequence of blocks as specified by the

task. Since the processor is generally busy when a request occurs, the requests

are remembered until the processor is Idle, when one of the requested tasks is

selected to be executed. Each task is assigned an integer priority. The task with

the highest priority Is serviced next. The scheduler Is static since the priority for

a task is always the same relative to other tasks. The earliest deadline scheduler

Is an example of a dynamic priority scheduler, since the priority of a task depends

on its current deadline. If the task being serviced can be temporarily suspended,

the control structure is preemptive.

A dynamic control structure need not be interrupt driven. For example, the

control structure could sample the inputs between executing blocks. However,

preemptive control structures cannot be implemented without lnterruputs.

In the example of flgure 2-3, there are many ways to construct tasks to be

requested by changing inputs. One such task system is to fire ABD {or ADB) when

the value at a changes, and CD when the value at d changes. The worst case

occurs when the values at a and d change simultaneously. The latencies for this

-23-

Example . Section 2;3

case are shown In figure 2·5. These latencies ean be sustained only If the

bandwtdths at a and d are both less than once evet')' 35 ttme units (.U.erwtse the

control structure would faH behind). !n a sustained .. wor~t .oase, new- tokens arrive

once every 35 time units. A trace of block firings would seem to Indicate that the

static control structure ABOCD is being executed, which has latencies 15 to 20

units larger than those for the dynamic control structure. However, In the dynamic

case It is known exactly when the input signal change. In particular, the processor
.,,,: 1

wHI be idle if more than 35 time units elapse between a change in input signals, so .,

the processor will be able to respond to a change immediately. In a static control

structure, the change would not be responded to until the control structure gets

around to it.

Task Strln..11_
Priority '•.c. ···'

1d,f
1 2

ABO CD 30 as 15
ADB CD 3ti -~~ , u;;
CD ABO 16 36
CD ADS 2Q 1_§. 35

Latencies for dynamic control structures with static schedulers
Figure 2·5

81 Static Control Structures

The main function of the control structure in a schema Is to specify when to fire

each block. If the control structure Is independent of the configuration . (i.e.

una1Tected by chlltlges made by the environment) .. it is a static control structure.

An example of a static control structure is. • loop which flr•s all of the blocks In

the schema cyclically. Control structures which make. use of configuration (e.g. via

Interrupts) are called dynamic control structures.

The latency specification from a to b will be satisfied only If all the blocks along

alt paths from a to b are 'ftted at least once chJrf~g e~ch t1me Interval of . duration

•a,b time units. otherwise there would be tim~ lnteniats·' tonger than •a,b when the

e-label at b will not change and therefore the age with respect to a of the token at

b wDI be greater thin •a,b" Slmllarty, the bandWldth apeclfleation from a to b wlH be

aattafted if and only If the Interval between firing the blocks along the constraint

paths Is less than 1 I Ba,b.

For single processor control structures It Is possible to construct a trace of the

blocks that are ftred by the control structure. The trace Is a string over an

alphabet J whose elements correspond to the blocks of the schema. Each element

A of Z Is assigned a weight (notation IA I) equal to tA. The weight of a string Is

defined to be the sum of the weight of Its elements. A s~rlng S 1 contains S 2 If all

the el•ments of S 2 &J>P~ar In S 1 In the order they appear In S 2 . For example, the

string ABCDE contains the string BD, even thoueh BD Is not a substring of ABCDE.

Regular expressions will be used to denote, sets of strings. In particular, If S is a

* string, S denotes the set of strings S, SS, SSS, • • · as well as the empty string.

It Is necessary to model Intervals In continuous time of arbitrary origin and

duration, since the latency specifications require All Intervals of specific duratton to

-26-

Static Control Structures Section 3

contain the corresponding constraint path. TMW•fbre the weight of the Initial and

flnal elements of a string mey be 'COUnt9d at ~ 'thart their noftllttal wefil'ts: 'for

example, If la 1 • • • aA l - w (weighting a 1 and aA ·at fa 1 l and I•" I), then

[a 1 • • · all] Is a string of weight less than w sine~ both. a 1 and all are weighted

at less· than I a 1 I and I al< I · However, If the Initial er ftnal elements do not have
' . ..~

full weights, the may not be lnclt.ld•d 8" part of any qontalned string~ .Weighting.
• • • r.· -· - * - 0 '!- ~ ".:- ·~ . • ' ' -. - • ·. :

these elements •t less. than tttelr fuU velue~,~~"8~)~.'~~~g ~Interval of

size w In continuous time: If the interval starts. atte,r a 1 ~~ executing, then the

Interval does not contain a 1 reading lta Inputs._ A ,.f~ ~ be ,pre~eded by a 'r

or followed by a er If the first or last elemer)t tn u.. ~irtna ts wel9.tt~.d at less than
, - - ' ! ~ ' -

lta nominal value.

A single processor static control structure la completely specified by lta trace,

which Is determined at compile time (hence the name aut.lc control structure). The

real-time speclftcationa on the control structure can be rephrased as constraints on

Its trace. In partlcufar, the latency specltlcatlon from • to b Is satisfied If and only

If all the constraint paths from a to b are contained in every substring In the trace

of weight 1
8
.b. The bandwidth specification IS aatlat18d If arid Only If the weight of

all substrings between occurrences of the constraint. paths:.,. lees than 1 ie .. .b.

At this point it Is possible to deal exclusively with the trace of the control

structure and the constraint paths. Constraint path I wlil .· be denoted c / · with

latency specification 11 and bandwidth specH'lcatJon Br If c1 Is a path from a to b,

11 • 1
8
.b and B; - Ba,b. It wUI also be necessary to deal with the talfs of the

·2&

Static Control Structures Section 3

constraint paths. If c1 - c1, 1c;, 2 · · · c1,n , where c1,1er. then the jth tail of c1 is

Since the control structure must satisfy the reaf.time speciftcetions for aff time,

. .
the trace corresponding to the control structure wlll be a Infinitely long string.

Since .the control structure can be Implemented .only If the trace can be generated

using a finite program, It would be very awkward If the only feaslble control

structures were acyclic. Fort11nately, It can be proved that If any feeslble control
- ~, '. . . : ·.

structure exists, then. there exlats a feasible oontro,I :structl,tre that ftraa. the blocks

In some cyclic order.

3.1: Existence of Cyclic Control Structures

The theorem proved In this sectton can b•t statec:t as:
• Supposa there ex&11ta .a atriJ1,g • • e 1a2"3 • • · eJ . och that,., aatlsftes

the real-time constraints. Then there alao exlats a ftnlte string - such that
• the string I . atao ..U.tlea the,,......, ... apacltlOattans. ,_

De11oitiQo; A critical window of a control structure ot for the constraint C / ts a

substring f / • al< • • • •m of • that contains two occurrences of C 1, but

[# 1] contains no occurrences of Cr

The most critical window for c1 is the crltlcal window with the greatest

weight.

Ll!nnm• a-1: The string • sattsfles the latency· spectfk:atkms for c1 tf and only if

1#'1 I~, for the. mo.t crlt)c;al wJndow # / --- •·

·27-

Existence of Cyclic Control Structures Section 3.1

frggfi
only If: Assume .. satisfies the real-time specifications. Then any substring
of .. of weight I / contains C;. In particular... the sUl>string

[all · · · amam+l] of weight I; must contain C;- Since [#;f doeS not

contain c,. the substring c~, of weight ., ,..., where ... arbltt'arilV steJI

contains one occurrence of· C 1• Therefore, If / J ~ I;+., • > 0.

1fi Assume the most crltica1 window #; has wetg.ht gr~ter than •r Let"

be any substring of Cf / l where h I • •r " exists since:

IC+1ll- lf1 1-11>1,
Since •; is a critical window, then [f 1] contains no occurrences of C 1•

But " la a substring of r•, 1 and al8o ... not. contain c,.'' Henee, " is a

substring of .. of weight 11 that does not contain the constraint path.

Therefore, .. does not satisfy the latency specHlcatlons. •

Corollary; Since f / contains two occurrences of c1, the period between

successive occurrences of c1 must be lass than 11 - IC1 I·

This lemma shows there la a Ullte limit between ~ .starts of successive

occurrences of C 1• The bandwidth speclftcatlana ell ectty llldt this Interval.

Therefore, it will be assumed that the latency specHlcationa we • .,,.e eevere than

the bandwidth specifications. If not, the latenc~ .apecltlcationa can .,. adjusted so

that:

1
•1 :5:91c,1

I

The time remaining until the start of the next appearance of a constraint peth Is

caUed the laxity of that constraint. Given a control structure, we can construct a

table of laxities for each position in the CQll'espandlng string 11 . with the . property

that the table entries are non-negative If and only. if • Satlsftes the latency

apecl1ications. The only diftlculty 18 In accurately determining the start of an

occurrence of a constraint string. This will be handled by keeping laxities for the
-28-

Existence of Cyclic Control Structures Section 3.1

tails ·of the constraint strings. The true laxity for a string will be reflected in the

laxities of la tails if the start of tbe. constr~int path is f.aJsely idenijfied.

An e_lement of the table d[l,j,1<] Is the laxity for the path C;,j just before al< Is

fired. The table should be thought of as rectangular with _columns labeled by

elements of The entries in the first column are:

(3-1)

since the constraint path c1 must occur by I; - I c1,1 I· The remaining columns can

be fitted in by simple recursion rule.s.

If the next element In .. Is not the same as the first element In a constraint

path, the laxity for that path decreases by the weight of that element:

(3-2)

There are two posslbftlties if the next element In the solution Is the same as the

first element In a constraint path. If this la the start of an occurrence of a

constraint path, the laxity for the tail of .that path shoukt be no more than the

current laxity for the constraint path. It Is possible that the tall will already have

a more severe laxity since different constraint paths can have Identical tails. In

addition, the laxity for the whole constraint path will become the original limit the

"
Instant after the first element appears. Therefore, the laxity becomes the original

laxfty minus the weight of the first element.

However, If a/f,, Is mrt the start of an occurrence of c1,j, the laxity should

decrease by la/(I· Fortunately, this problem will be ,handled automatically by

assuming that an occurrence of c1,j starts whenever a/f,, = ci,j" If it is not part of

an occurrence of c1,j' ci,j will appear again before all of c1,j appears. When this

·29-

Existence of Cyclic Control Structures Section 3.1

happens, the laxity for c/,J+1 will have decr~"8d by .the amount the laxity for

CI ,J should have · decreased If the start of the path· had not· been lncorrecity

Identified. When ci,j appears again, the laxity for ci,}+1 will be less than the

laxity for cl,)" Therefore:

{

d[/,j+1,1<+1] = mln(d[/,J~].d[i,j+1,l<]-la1t I>
a •c ~ d[.] I J (3-3) 1< 1,J 1,J.1<+1 ·•1- c1,1J-la"

Equations (3-2) and (3-3) can be transformed to prod4.1.ce rules for computing the

1'+1 st column of the laxity table from th~ Jtth column:

d(/,j,1'+1] -

•1-IC;,J 1-lal< I
m1n{d[1.1-1,1c], d[l.JJcJ-1•" I>
d(i,J,1<]-laA I

If ak•cl,j

If ak •cl,j-1

If a...tfc. ,c
. ~l'l . #~/ l,J-1

(3-4)

As an example, figure 3-1 shows the taxfty tabte fOr the control structure ABCD

and the block diagram moc:lute from ftgUre 2-3.

In this table, the laxities at time 60 are Identical to the laxities at time 30. The

next column In the table would be identical to the column at time 40. The rest of

the table becomes periodic, and all the entries are non-negative. The periodicity

• lllf

allows us to .IIDlll§ that (ABCD) will satisfy the latency 4SP8c111c•tion8 for aU time.

This Is formallzed In the following lemmas:

Lemma 3-2: If:

v1,j d[l,J,m] ~ d'[l,J,1<] and ak - •'m

then:

-30-

Existence of Cyctic- Control Structures

A B
J_O) 110)

AB -~Q 20
B 40 30

co 30 20
0 40 30

AD 46 85
0 55 45

c D A B 'c
(151. (251 _(301 _(_40]_ _(451
16 . 5:..:. .o '.i~~"" 15
36 25 20 0 :·'36 \.

16 20 15 5 0
25 15 36.. 26· 20
30 20 15 35 -3'o
40 30 50 15 10

tA - 1 o, t8 - s.. 'e - 1 o t0 - ~

IAB • 46 ICD • 45 IAD • 60

Typical Laxity Table
Figure 3-1 ·

v1,1 d[i,/.m+1] ~-d'[i,/){+1]

Section 3.1

D A
(55..l J.60_1_

5 0
25 20
20 15

0 35
20 16

0:'. I 60'

fmQf_;, From case analysis of (3-4) and elementary alge_bra. •

Lemma 3-3; Let:

• .. a1 · · · 111'-1

- ••If. · · ··•m-1

If.,• fl'6t satisfies the latency specifications and:

v1,1 d[i,J.ll] ·'d[1,j,m]

then:

... -"""
- a' a' · · · 1 2

alao satisfies the latency spectftcations.

fmsID Construct the laxity table d' for ,,,, :

Y1.Jfl[l.J,O]• t1-,ICl,j I• cl[l,j,0]

Since a 1 • a' 1, (3-4) leads to:

-31-

...
J.70]_
...
...
...
. ..
...

' .. '. ..

Existence of Cyclic Control Structures

Y/,jcl[I,/, 1] • d[/,j, 1]

Similarly:

Therefore

v1,1c1c1.J.m] • "f.l.J,I(].

From lemma 3-2:

v1•1ct[l,J,m+1] ~ d'[l,J.A+1]

- d[1,J,A+1 }:t 0

Similar reasoning wlll show:

v,,Jct[/,j,2m-l<-1] ~ cl[/,j,m-1]

- d[l,J.m-1]~0

Now a'2m-I< •am, so lemma 3-2 sttn appllea:

v1,1c1[1,J,2m-1<] ~ d[l,J.m] ~ o

Inductively:

Yl,J,l~m cl[l,JJ+m-1<] :ii': d[l,JJ] ~ o
Combining (3-5) and (3-6):

Y/,j,/cl[l,j,/] ~ O

Section 3.1

(3-8)

Therefore, from lemma 3· 1, .,, satlsftea the latency epeclflcations. •

Corollary: Let • - a 1 · · · a/<_1, •·a" · · · am-l' and ,. - a,,, · · · . If • - ..,

satlsftes all the latency speclftcationa and d[l,J.I<]- cl[l,J.m] for some
1111 ,.,

I< < m, then -tJ .also satisfies the latency speclftcattona. The proof la by
Induction. •

The main theorem can now be proved by showlng that any laxity tabJe will have

duplicate columns and applying lemma 3-8:

Theorem 3-4: If any string ., satisfies the latency spedftcations then there exists a
1111

string of the form - which also satisfies the late~. specifications.

-32·

Existence of Cyclic Control Structures Section 3.1

fJ:QQf;. Construct the laxity table for "'· There are a finite number of
possibilities for each table entry since each entry is I; - IC; I minus a sum

of a finite number of I al< I's. The number of different I ak I's is limited by

the number of blocks in the block diagram schema. The number of terms in
the sum must be finite since each I ale I is greater than zero and the laxity

entry is also greater than or equal to zero. Therefore, the possibilities for
each column are limited and eventually some column in the table will be
repeated and k and m satisfying the conditions of lemma 3-3 exist.

Ill
Applying the corollary to lemma 3-3 says a solution of the form •fJ exists.
However, d[i,j, 1]-= 1.-IC- ·I:<!: d[i,j,k], for all k (the rules for filling in the

I l,J

table never increase the laxities except to set d[/,j,I<] to 11-IC;,j I·
Ill

Applying lemma 3-2 shows that fJ is also a solution. •

The major implication of this theorem is that only cyclic strings need to be

considered for static control structures. These strings can be enumerated, so the

problem of finding a static control structure Is in principal solvable. Since the proof

also places an upper bound on the length of the cycle (equal to the total number of

possible laxities at any position), so an algorithm that generated all possible strings

would be effective In the sense that It would always halt In a finite amount of time.

However, It would require computation time that grows exponentially with the

complexity of the schema, so the problem would be computationally intractable if

this were the only algorithm.

3.2: Generating Real-Time Control Structures

The problem of generating a feasible control structure is a scheduling problem.

The problem Is deterministic since the parameters of the problem are strictly

bounded as opposed to being unbounded random variables. A wide varieties of

special cases of the general scheduling problem have been studied, and some

results are surveyed by Gonzalez [7], though relatively little work has been done

-33-

Generating Real-Time Control Structures Section 3.2

on scheduling in the presence of deadlines.

Gonzalez and Soh . d-.veioped a simple algorlthtn that minimizes the number of

processors used to schedule Independent tasks. The tasks are statically assigned

to processors and always run to completion. The ~dlines ,for each task

correspond to the period of the requests for that task and IRUSt · be a power of

two. Their algorithm Is not optimal if the pertoda are not a power of two and no

optimal algorithm Is known. although sever.a .. heuristic algorlttuns have been

Investigated.

Uu and Layland considered the . problem of scheduling . independent tasks on a

single processor (14]. Each task requests sandoe periodically with- a deaclHne for

service coinciding with the time for the next r:equest. They preaent a method of

assigning' static priorities to the tasks that. wilt meet the deadlilMs If any static

assignment of priorities wilt. In addition, they prove the schedule which executes

the task whose deadline la earliest is opU.at in tl1e aense tt wlll meet the

deadffnes if any adaedule will. They then prove necessary and sutlicient conditions

for a set of tasks to be scheduled b)' the ·earliest deadline <ED) algodthm -to meet

all Its deadlines, and conclude that ED algorithm allows. 1004' utilization of the

processor as opposed to figures as low as 70~ for static priority algorithms.

Gelger extended _the proof of the optimality of ED scheduling to include the case

were the requests are not periodic [6]. Fiala presented the same basic proof and

also derived necessary and sufficient conditions for the ED scheduler with a mix of

periodic and aperiodic tasks [5].

Mok investigated scheduling independent tasks on multiple Identical processors

[16]. Mok shows that no optimal algorithm exists for this problem unless the

·34-

Generating Real-Time Control Structures Section 3.2

deadlines, c:omptitatlon times and at least some future request times are known. An

algorithm related to the ED atgoritftm Is f)resenteu whk:h lis Shown to be optimlrl if

all requests ~e sJmultaneous. This alg.ori,tbm ,exec:;utes thQfe tasks ~th the least

laxity, wh,re toe laxity Pt a task~· the ~~lin~. for ~e ta~ gi~ its r.emaining .. .

computation .time. Unfortunat_ply, .both tbe.Jeast laxity and .ED 'fChec;lulels are shown

to be non-optimal even for tasks with PE!rlodic requests. However, the least laxity
' . - - :: ' '

scheduler Is optimal for periodic deadlines where tasks may. be executed at any

time (I.e. if the deadlines are coincld.ent with the next request, the least laxity

scheduler Is optimal If It is allowed to execute tasks btfQre they have been

requested).

The problem of scheduling tasks related by a partial order on multiple identical

processors has been studied by Manacher [1 5]. Deadlines are specified ~or ,any or

all tasks In the system. Manacher's algorithm de~ves deadlines for _all tasks In the

system by using the observation that a task must complete executing in time to

allow Its successors . to executed bef9f'e their deadlines. The scheduler then

executes those tasks with th~ earliest dea~nes that have had all their

predecessors executed. This algorithm is not optimal •.. and does nqt consider either
. . - , . ., .-. ·-r

periodic requests or multiple start-times. Howev~r, it is a reasonable heuristic,

especially as the number of processors Increase.

Unfortunately, none of these results ge!1erallze to the static control structure

problem, even for a slngle processor, although control structures could be

constructed which would meet the conditions of the particular · special case and

satisfy the real-time c0nsttatnts. For example,: If the bk>ct diagram c0nslsted of

unconnected (independent) blocks, the earliest•· :cteadllne schedtilEir could be used

-3&-

Generating Reat-Time Control Structures Section 3.2

with task i being block I and the request P•.lod for. each task being the minimum of

11 I 2 and .1 I Br The period between requeets would Nve- to be>les$ than 11 I 2

since (in the absence of other informatlOrt) It is possible tor the taste to be

executed Immediately after one Tequest arfd intnledUitely' before the ~

deadffne. L811HM 3-1 says this time interval muat-notbe'gntater than •r
On the other hand, these heuristics areliable to be overly restrictive, particularty

since they tend to deal with Independent tasks. It would be possible to derive

independent tasks from a block diagram schema by treating the constraint paths as

Independent, but at the cost of introducing new blocks and much unnecessary

computation. One promising approach for deriving a static control structure is to
. ;

simulate some more general control structure until a cycle In the trace of that

control structure is found. An obvious choice of a more general control structure is

a least lax1ty scheduler (using laxities as defined for bJoCk diagram schema) which

follows the partial order for the tasks (baoCks) based on the constraint paths.

More precisely, the scheduler would bund a laxity table, with starred entries

tndl~ating constrillnts striilgs which cannot be fired because of the partial order.

The scheduler chooses the ftrat block of the unstarred constraint string with the

smallest laxity to head the next column. If two constraints have the same laxttY.

either can be fired next. Figure 3-2 shows such a laxity table for the blOck

diagram schema from figure 2-3 using the same latency specHlcationa as figure 3-1.

At time 40, none of the latency speclfica.lioll8 have ltaen violated. However.

since there are now two constraints wtth. ktxltY O, at least one entry In th-. next

column will be negative. By ftring C at time 1 o. an. addltlonal request foe C Is

Generating Real-Time Control Structures

AB
B

CD
D

AD
D

A
(0)
30
40
30
40
45
56

c D B A
110) (20) 125) (30)

llt20 llt10 ioc5 0
30 20 15 35
20 ioc20 15 10
30 20 35 30

iit35 "'25 20 15
45 35 50 45

tA = 1 o t8 = s tc = 1 o t0 = 5

'AB .. 45 'co = 45 'AD .. 60

?
(40)
llt20

0
0

20

"'35
15

Counter-Example to Least Laxity Scheduling
Figure 3-2

Section 3.2

...

...

...

...

...

...

...

...

created with deadline 50. In the control robotics environment, the existence of

this request makes scheduling impossible. However, if B is fired and C is delayed

until time 1 6, the additional request also gets delayed to a point where it Is

possible to schedule all the requests. The least laxity algorithm simply does not

deal with interactions between requests and deadlines.

It Is Interesting to note that the least laxity scheduler fails for this even If the

constraint path AD is ignored. The remaining constraint paths AB and CD are

Independent, yet they cannot be scheduled using the ED algorithm using the worst-

case period of 11 I 2. If periods are kept at 11 - I c1 I. the tasks still cannot be

scheduled by the ED scheduler if the Individual blocks are scheduled separately.

The failure in this case can be viewed es an inability of the ED scheduler to derive

the proper phase relation between the tasks.

The schedule shown in figure 3-3 Is not the only least laxity schedule. For

example, at time 25 CD has the same laxity as B and therefore C could be fired

instead of B. However, the reader can verify that all the least laxity schedules for

-37-

Generating Real-Time Control Structures SectiQn 3.2

this example fall to satisfy the latency sp.aciftcations.

3.3: A Branch-and-Bound Method for Generating Control Structures

Rather than generating acyclic control structures and fooktng for a cycle, the

algorithm described In this section works_ by=- teneraftng a C)tcllc control structure

that satisfies the real-time speciflcatlonS fot one of - the constraint paths. The

solutions for other constraints path& are eomt>Hieci to form a control structure that

satisfies all the real-time specifications. The baSfc s~ -of firing blocks rules

out control structures that are not shuftles of the constraint paths since these

control structures perform redundant computations. Therefore, this algorithm should

not miss any solutions. There are two major problems that the. algorithm has to

deal with: (1) How many times must ~ach constraint path appear In one cycle of

the total control structure. (2) How should the constraints paths be combined Into

one cycle.

3.3.1: Determining the Relative Frequency of Constraint Paths

The ftrst ·step lrt the algorithm Is to detennine tMJW 111any times each consttalnt

appears in one cycle of the total solution.. Upper ~ k>wer ~ds can be c;lerived

from the length of the cycle and the bJl.Slc Jatenc)I, speclflc4ltl0n. Consider the

lower bound on the number of appearances of constcalnt /: let Jl.1 be the number of . - - . -
appearances of C; In one cycle of the solution • . Let w1 .. JC1 f and c • J•I·

Since the latency spectftcatlon for c1 requires c1 to appear at least once every

--

Determining the Relative Frequency of Constraint Paths

lrw; time units:

c "'1 ::<!: -,-_; w,

Section 3.3. 1

(3-7)

This leaves c (the length of the cycle) to be determined. However, if Ci appears

k; times:

(3-8)

More precisely, the algorithm starts with the assumption that each block and

constraint appears once and that c = :Et A. This approximation is used to derive k1 A

for all constraints in the schema. If any 1t.1 increases, this is used to update the

minimum number of times each block in the constraint must appear, which in turn

may cause c to Increase. This process continues until all k; are consistent with c.

In practice, this only takes a few iterations.

Theorem 3-4 places an upper bound on the number of blocks in a cycle, but this

bound is not directly applicable to the branch and bound algorithm since the

branch-and-bound algorithm does not try all cycles of a given length. An upper

bound on the number of appearances of any constraint can be easily derived if the

number of appearances of the other constraints is held constant.

First, an upper bound on the length of a cycle can be derived by applying

equation 3-7 to all constraints except constraint /. Then the minimum weight of a

cycle containing k j appearances of C j can be computed for all i ~ j. Letting c max

be the maximum allowed cycle weight and c be the minimum cycle weight (not

Including constraint i), the minimum weight of a cycle containing k; appearances of

-39-

Deterlftining the Relative Frequency of Constraint Paths Section 3.3.1

c
1

is:

(3-9)

Therefore, the upper bound on lf.1 can be derived by reetricting the resultant cycle

weight to be less than c max=

cmax-c
/(.' ~ .

"'1
(3-10)

This Ignores the possibHity of blocks In C / already appearing In the cycle as part

of other constraints. However, lnclud1ng 1110re appearances of constraint I wlll

eventually cause the lftlnintum cycle lengttl. to exceed c tnax•

This still does not bound the number of appearances for· all constraints, since

constraint I can appear more often If constralRt J ·appears .,... often, etc. Placing

an arbitrary bound on one constraint will -~ bound th• number. of appearances of

au other constraints. For example, . re~ulrlng at least amt constraint to appe(ll' only

once places a fairly tight bound on all constraint. However, lt Is not true that a

solution of this type always exists. An ex4111ple Is shown In. 1'JUre 3-3.

3.3.2: Strategl~ for Comblnlog Solutions.

Once the number of appearancH per cycles of each constraint path is known,

the constraint paths can be permuted to form a contrQI structa.we which satis11es all

the real-time specifications. Many of the techniques. for ltnproving the efticlency of

'branch-and-bound' optimization algorithms can be applied to this problem even
"

though It Is not an optimization problem. An optlmi7atlon problem seeks a

--

Strategies for Combining Solutions 8ection 3.3.2

a

b

c

~ 0 ~

g
_,,J A _,,J d ,. .,,.

....
"? E -

h

__.,,. B ~ F .. ,.
rl

e

--"" c --,.

f

•a,g s 11

'a.J s 16

lb. ,j s 7

•c,J s 10

Control Structure: (ABFDECBFADEBFCF)
Ill

Block Diagram Where All Constraints Appear More Than Once
Figure 3-3

...... ,

j

permutation of n objects that maximizes an evaluation function f of the .

permutation.

A 'branch-and-bound' algorithm for this problem generates permutations for a

-41-

Strategies for Combining Solutions Section 3.3.2

subset of the objects and extends th9se permutetions to larger subsets. The

permutations to the subsets are called partfa/ solutlQ,ns, and Me arranged in a tree.

Nodes In the tree correspond to partial solutions · a•d the · descendeilts of a node

are the extensions of that partial solution. : Branch-•nd-bound algorithms are often

more efflclent than direct enumeration since It Is often unnecessary to examine the

entire search tree. The key to pruning the search tree Is the dominance relation

on nodes of the tree. The evaluation function f can be extended to arbitrary

nodes of the search tree by defining the value of a ~temtlnal node to be the

maximum value of Its descendants. Then node A domlnat&S node B If arid only if

f (A) > f (8). The branch-and-bound algorithm may prune any subtree whose root

node is dominated by some node of the tree that has already been explored.

In general, the dominance relation for a particular optimization problem cannot be

computed without examining the entire tree. How•ver, It la often easy to compute

some weaker relation. These weaker relations are usually referred to as

dominance re/at.Ions In the literature, so we wlD l.iae 1he term st.rong dominance

re/at.Ion to refer to the dominance ·relation that relates A to 8 If and only If
•,·

f (A)> f (B).

Branch-and-bound algorithm vary In the order the tree Is searched and how the

dominance relations _used to prune th~ uarch tree .. _ Kohler and Stelglttz classified

branch-and-bound algorithms and_ . Initiated , the th90f'etlcal study of dominance

relations [13]. They demonstrated the surprising result that pruning based on a

· stronger dominance relation 'does not a1ways ·1~prove the eftfclency of the algorithm;

However, lbaraki showed that stronger dominance relations do lead to more e1'1Clent

-42-

Strategies for Combining Solutions Section· 3.3.2

algorithms for several common classes of braneh-ancH>our.d algorlthms110].

Branch-an&bound atgortthm as defined by Kohler and ;Stelglitz also make use of a

function g th•t places a upper bound on the vatua ·of f at each node. tf L la the

maximum t (A) for bat nodes A encountered, .pruntnv &ub-tr'9es with g (A) s L can

only improvtl the e1flciency of the ·algorithm. However., the upper boUnd function

can also be. viewed as a particular dominance. t'elatlon.

The control structure problem as ·stated la not an optlmiatlon problem. However,

It is still possible to define a dominance relation between nodes of the search tree:

node A strongly dontJnates node B unless 8 teads to a· vald control structure and A

does not. Assumiflg the nodes at each. level are generated tn a random

(lexicographic) order, the best pruning for the algorithm to use Is to retain the node

at each levat which dolllinates the other nodes. If this domtnaf1C8 relation can be

easily computed, the algorlthm can generate. a valid cantrol structure without

backtracking.

As a first step towards computing a dominance relation, define the slack for each

constra1nt to be the di1ference · between the latency requirement and the latency

actuaHy achieved by the control structure. 'ffle constr•lnt with the least slack Is

the most critical co11Btralnt (MCC). The alack In the MCC coukl also be used as a

value function to be maximized. If no gontrol s~ructur:e satisfies the real-time

constraints, the control structure maximizing the slack In the MCC Is probably a

good 'close' solution. Also, the slacks may be used to evaluate any heuristic

algorithms for deriving control structures.

The latency achieved by a static controf structure for a constraint C / Is the

weight of the most critical window for C / . Adding a block to the cycle of the

Strategies for Combining Solutions Section 3.8.2

control structure cannot increase 11ftY slack.a since· the weigllt of SOlll8 critical

windows. This cannot happen if the blocka beif11 added are elements of SGtRe

other constraint path, since oo constralat path··ia oont.alned· In. another·,constralnt

path. Therefore, the MCC $1.af& .. can::ba ueed as . .,.,~.bound functian In ·a

branch-and-bouftd algorithm to mexbnize the· MCC slactc. Upper bound functions are

If the slacks in each constraint are Nduced a.,, 1tte ~·. UIOUDt when a new

would be a dominant aolution. Unfortunately, ·. ttlla ta ·mt. genwaly · the case.

" '

COnslder dMdlng a cycle• of the cor'ttrd structure_, ··tntc·1'8gtons •i,J and t1,J' u

'
shown In ftgure 3-4. The + 1,1 regions contain one occ...,.ence of C 1, but [+]

contains no occurrence of Cr The criti~ windows or c1. are •i.Jfl.J.i,J+1·

Therefore, adding bJocks. to a -f;,j region Jncr~ .tb.4'. welflht ,o('I i~J, and •dding

blocks to a +1,1 region Increase th• weight of. f 1,1..:.1 :·9ftd+i;r ·Even If ff 1,1t

Increases, the slack for t:.1 wlll not decrea~ untesa If/,] J 'i. Tl#i,J I· The slacks
- , - ~ -

can not be used to compute a dominance relation since ,the Interdependence of

constraint paths may force new blocks to be a~ed with!" t!'• ~Lcrl~al window

of some constraint, while another solution with a smaUer MCC •ck might have a
: ., ' . ·-'

critical window of the right size In the right place.

Strategies for Combining Solutions

I ...
•1.1

f /, 1
f. 1 '· .

... I
•·2 '· I ...

f. 2 . ,, •·a '·
•1,2

... ,

Regions of a Critica1 Window
Figure .3-4

Section 3.3.2

Keeping vectors of slacks for each constraint path do.:ts not correct the problem.

Consider the example shown of figure 3--3- with the latency specification as shown

. .
In figure 3-5. It can be easily verifted ·that (ADEFCADBC) is a feasible control

structure for this schema. It is atso U';e Ollly feasible control structure 1 . AD and

CF must appear at least twice in one cycle of the solution. Figure 3·5 shows

slacks for this constraints for two partial control structures. The merging of

w ~ w
(ADAD) and (CFCF) that leads to the solution Is (ADFCADFC) • However, the

w
alacks for CF In (ADCFADCF) are larger and the slacks for AD are the same, so

(ADCFADCF)w would dominate (ADFCADFC)w even though It doesn't lead to a

solution.

3.3.81 Performance of the Algorithm.·

Assume each constraint path contains an average of I< blOcks. The slack of a

constraint path In a trial cyclic solution can be determined In at most I< scans of

the cycle. If there are n constraint paths there wffl be o(nl<) scans of each trial

ao&utlon generated by the algorithm. The trial cycles will be o(nlt) blocks long (this

1 • Thia was verified by checking all QYcUc control structures that might be
generated by a branc~and--bound algorfthm assuming · that the least crltlcal
conatralnt only appears once p.er cycle. .

Performance of the Algorithm

•a.g ~ 7

'aJ ~ 14·

lb -,J :Si: 12

•c,j s 10

Control Slack
Structure

Constraint
Al) -CF. f.Ef= Sf

ADFCAOFC 1 2 - -
ADCFADCF 1 4 - -

Count8"-Example to Staek -ea a Demtnance Relation · ·
Figure 3-6

Section 3.3.3

ignores the possibility of a constraint appearing several times in one cycle). The

overall time complexity of the algorithm will be o(n 21< 2) tlme,s the number. of trial

cycles generated per problem.

Assume the trlal cycle contains m 1 blocks and the next constraint path contains

m 2 blocks. There are (m 1 +m 2-1)! cycles contalnltlg, all the ·blocks, but we are

only interested In one of the m 1 ! pemtutatlons of the blocks In the old cycle, and

Cm 2-1)1 permutations of the blocks In the new constraint (I.e. we must consider

m 1 different phase relations -Of tile ·two cycteak TheNfore, the number Of different

trail cycles generated at this step Is:

Cm 1+m 2-1)! • m (m 1+m2-1)
m 1 f(m 2-1)! 1 m 1

(3-11)

Of course, If some blocks of the new constraint are already contained in the otd

cycle, or If the next cOiistraint appears more than once, not an of the generated

cycles will be distinct. However, it is rather dtftleutt ·to a~ generating ·these

Performance of the Algorithm Section 3.3.3

cycles. There will be relatively little extra cost to the algorithm as long as it does

not Investigate cycles that are identical to cycles that have already lead to

faUures. Therefore, the number of trial cycles generated by the merging algorithm

when it finds a solution without backtracking Is approximately:

(3-12)

Equation (3-12) is o(Jcnk+1) since the binomial term in the sum is o(nk) and there

are n terms.

If the merging algorithm fails to find a solution, then it must have backtracked

through each trial solution and the total number of cycles generated is:

(1 +Jc { 2Jck-1) (1 + . . . (1 +Jc { nK,; 1)) ...) (3-13)

which can be approximated:

8 #((#(/-1)
/=2 #(

(3·14)

Equation (3-14) is o((lmk)n) or o(knnkn), and is exponential in the number of

blocks in the schema. This is a very loose upper bound and would only be

achieved If all generated solutions were plausible except when the last constraint

was being merged in. However, this bound is achievable if the first n-1 constraint

paths had relatively large latency specifications while the last constraint path had

relatively small latency specifications. This situation can be easily avoided by

starting with the path with the smallest latency constraints relative to the weight

of the path.

·47-

Performance of the Algorithm Section 3.3.3

3.3.4: Speeding up the ~ithm

There are many ways the . average perfr;¥Jnance of the algorithm could be

lmproved. For exarJaple, if we b.ad a ~ter lower bQun.<I. on _the slack in the MCC,

we could prune more subtrees. We c.n. gel _a tighter ~d. by determining what

new blocks must be added to the control structure. Adding a new block always

. . .
increases the size of some critical winclow for a constr alnt by at least the weight

of tha- block. Therefor~, lf the sum Qf the slacks for a -CQllStraint Is _Jess than the

total weight of blocks that must be added to the control structure, at least one of

the critical windows for that path will. exc~. the. latel'\CY sp.:tc_i'ftcation for that

path. This tighter bound ha~ no e1fect, on the. P•-formanc.._ tf no .baoktr•Gkin~ Is

necessary. However, tf no solution Is found, using the tighter bound is roughly

equivalent to reducing n, since fewer constraints need-to be combined before the

control structure is recognized as infeasible.

Nottce that the performance of the flgprlthm would not be of polynomial

complexity even If there were a dominance relation that totaUy ordered the

possibilities at each level. The problem Is that the number of partial solutions that
. .

must be generated by a naive algorithm can grow exponentially with the complexity

;r~ ,

of the schema. Therefore, finding a good dominance relation 18 not as important as

..,. . .::.

ftnding a search function that generates nodes that are most likely to lead to a

solution ftrst.

Since the weight of the critical windows Increase when new blocks are added,

we might try merging In new constraint paths so that no new blocks are added

before trying more general mergings. This will improve the performance if the

solution is an extension of this type of merging, even If the algorithm must

-48-

Speeding up the Algorithm Section 3.3.4

backtrack since fewer nodes are generated on that level. If the algorithm must

backtrack through fill the control structures of this type, the performance of the

algorithm is somewhat worse. The effect of this heuristic may be approximated by

reducing /<, since the length of the strings merged into the current control structure

will be reduced.

The other way of improving the performance of the algorithm is to reduce the

complexity of the problem. This can be done by replacing sub-graphs of the block

diagram module with new blocks. Whenever the new block ls fired, the blocks

comprising the subgraph replaced by the new block are fired in some fixed order.

This replacement can dramatically reduce I<, and would improve both the best- and

worst-case performance. However, combining blocks in this way can result in a

schema which has no feasible control structures even though the original schema

does.

Since the process of generating a control structure can be so time consuming, It

would be extremely useful to quickly Identify real-time specifications that are

Impossible to satisfy. One way of doing this is to compute the percentage of CPU

time required by each block. If the sum of this percentage over all blocks in the

schema Is greater than 1 00%, the latency specifications are obviously um;atisfiable.

The percentage of the CPU required by each block is easily computed: each

constraint C; must be executed at least once every I;- IC i I +a time units.

Therefore, each block ci,j in C; must be executed at least once every l;-IC; I+,

time units and its corresponding CPU percentage is:

-49-

Speeding up the Algorithm

tc1,1 I
1,-1~, 1~

Section a.a.4

(3-15)

If an block appears If'.' several constraints, its CPU. percentaqe Is the maximum of
- ' . ..:-: '

the percentage implied by each constraint the bk>c.k appe•rs in. Using the
; . . . - ~ ;· ~" ' ·, . - ' . -

maximum rather than the sum corresponds to assuming that each time ~e bloc~ is
- ·" .

fired it will help satisfy all the constraints It _,pears In. Nthoogh this is not
. - '· '. ' ;; - . . - ~,- . - - ·- .· .. - - -·_ , ,-· ~: ~~. . - . -, __..:-

necessarily the case, It is a lower bound on the CPU ._age.
" •• ' • --o • _ ••

Another quick teat for unsatisfiable latencl' apttcHlcatlons Is that the slack In

each latency speciftcation must be larger than the compu~tlon time for all blocks
.' • r • • ' - • ..._ • - • • ~' ' ' .~

not contained in that constraint path. Otherwise, the I portion of some critical
- - . ,. . ·-. - ~ . . - '" - ~-

window for that constraint wiH be. tQO larp (refer to ftgure 3-4).

3.3.5: Practical Experience

A branch-and-bound algorithm silltflar to. th& cone . d'..Crtbed above has been

Implemented as part of a system for Implementing conun~tkfte block diagrams on

conventional micro-processors. The ~Uott niM on a pt)p.11 /70 under the

UNIX timesharing system. The block diagram ·;a deacr'lbed using an lnterac11Ve

grapllics editor developed by John Per8hfng [18J.-·'T~.:brancfiland-bound algorlttnn

la· only responalble for chOC>81rig the· OrdW to a'xecut& 'tfMl'Mocks~ The Object code

for the block diagram Is produc~d by a separMte' ptograin.

The progra• uses all of the heuristiea1 1118fttionad, ~e except- It doee not

combine sub-graphs Into new blocks, _Th.~ Pf_~ i4J ,~ ic>. ftnd cqntrol atruct~~

to satisfy most latency specification& for smaU block dlaarams using leas than a

minute of CPU time. So far, only one set of latency constraints has been found

-60-

Practical Experience Section 3.3.5

where a valid control structure exists but no control structure was found by the

program (see figure 3-3). Some latency specifications require more time to find a

valid control structure.

In the absence of a fast optimal algorithm, it Is preferable to have a fast

algorithm which yields 'good' control structures quickly. Heuristic algorithms are

generally evaluated one of two ways: one approach chooses a fixed algorithm and

derives an upper (or lower) bound on how far the algorithm's solution is from the

optimal solution. For example, Graham's algorithm for scheduling independent tasks

on multiple processors executes tasks which require more processing time first.

The resulting schedule is no more than 4/3 times as long as the optimal schedule

[8].

The other approach develops a family of algorithms each requiring polynomial

time. As the degree of the polynomial increases, the solutions found by the

programs are closer to optimal. The family of algorithms :s monotonic In the sense

that the an algorithm taking more time never produces a poorer solution than one

taking less time. If the degree of the polynomial were increased to Infinity the

algorithm . would be optimal. However, It would also no longer be polynomially time

bounded. An example Is a series of scheduling algorithms employing limited

lookahead [1].

The second approach does not seem applicable to the control structure problem.

Limiting the breadth of back-tracking yields a family of exponential time algorithms

with the exponent increasing with the amount of back-tracking. A family of

polynomlal algorithms would result if at most k. blocks were merged at a time with

no backtracking. However, these algorithms are very unsatisfactory if any

-51-

Practical Experience Section 3.3.6

constraint must appear more than once. If the .number.4Jf-b11Dcks in .the censtratnt

path Is less than I<, than all blocks 1or the second {and 81.llrJaequent) app&araftC:• of

the constraint wlll be merged coincident with the exlsting . .occurrences 'Of those

blocks. · it I< is increased- ,sp this. does not happen, 1:hll fllltrforlnence- of· the calgorithm

3.4: Heuristics for Generating Control Structures

Steve Ward has experimented with some quick, simple heuristics for generating
. :;-·· .- ~

static control structures. Baslcalty, the heuristic constructs control structures of

It
the form (.,t..,_. · · ·) where • Is the most critical constraint path and •· .,, I, et

cetera are taken from the other constraint paths. More specifically, blocks trom
, ' •. • :1 --.·-"> ··;, . --

the next most critical constraint are added to - with the restriction that I fl/Ja I la

less than '•· If more blocks remain In the constraint-~ are _added to., so t~at
- 1 '.. - - • - . ,

string Is a feasible contrd structute~

The heuristki Wiii ilfao! call l"t*etf:U81Ag the oumtnt SOlutton ·aa,.• SO the generated

solution may also be of the form:

((~ •••)I(~ •••)I ...)It

Since these heuristics construct a·· control. structure';a~ than ~earch for one,

they run very quickly. HoWeVer, they .~ d6 t1ot 1lnCI SolutJonS to a falrly large

number of latency spe'clticatfons, even f0r ~lnipte bk>ck diagrams; Still these

heuristics are more attractive as a basis for ·an approximate aloOrtthm, not only

Heuristics for Generating Control Structures Section 3.4

because of their speed but also these heuristics could be extended to handle

particular styles of block diagrams as the process of constructing control

structures becomes better understood.

-53-

4: Static Priority Interrupt CoAYG.' .. Strucl\trea

. In some applications, the tokens at the input links do nm change continuously. If

the control structure can ~etect ~ an inpu~ c'1•nges, "1,e real-:tilne performance

can bq Improved. Intuitively, th!S _ls p~slble ain9• If no in~uts tC>. a block have .. .• . . ~ ~ . . :..,

changed, that block does not need to be eX;ecyt,d.. On th"· :fVt;t,ra._Qf;t#, this type of

control structure ought to do less computation and therefore ought to have better

real-time performance. On the other hand, better average performance does not

guarantee better worst-case performance and specific questions of performance

must be answered with respect to a particular model.

Although the prototypical example of a dynamic control structure is Interrupt

driven, It is Important to realize that hardware Interrupts are not necessary. For

example, a control structure could sample the Inputs until one or more Inputs

change. After all the computation Initiated as a result of these changes had

completed, the control structure would continue to sample the Inputs. In general,

such a scheme would rlak mlsaing changes In the Inputs. However, the control

structure can use the real-time apectftcationa to guarantee thle wtH not happen.

4.1: Dynamic Control Structures

Many of the strategies for schedullng Independent tasks to satisfy real-time

constraints mentioned In the previous chapter use dynamic control atructurea. For

example, Liu and Layland use static priority Interrupts and consider the case (In out

terms) where the latency Is equal to the period between requests [14]. They

consider the earliest deadline scheduler only In this context although the earliest

deadline schedule Is optimal for any sequence of requests and deadlines. as

mentioned earlier.

Given an optima! scheduler, Is there any reason to consider a suboptimal

Dynamic Control Structures Section 4.1

scheduler? The answer will be yes if a good suboptimal scheduler exists which

uses less resources than the optimal scheduler. The earliest deadline scheduler

needs to find the highest priority task to execute whenever a task completes

(alternately, it needs to insert requests into the proper position in a task queue).

A static priority interrupt control structure also needs to find the highest priority

task to execute. However, this is done In hardware by many existing computers,

Including current microcomputers. Also, the earliest deadline scheduler requires a

real-time clock to compute the deadlines for each task from the request time and

the latency specification. Therefore, static Interrupt control structures are

sufficiently simpler than a earliest deadline control structure to deserve further

consideration.

4.2: Model for Static Interrupt Control Structures

A static Interrupt control structure associates a task. with each block In the

diagram. The tasks are related by a precedence relation consistent with the block

diagram. Each task has a priority and may be Idle, active, or requested. The

priority may be thought of as an integer with numerically greater priorities being

better.

When an Input changes, all tasks whose blocks are watchers of that Input

become requested. The control structures chooses the task with the highest

priority among the requested tasks. This task is active until the block complete

executing when alt' Its successor tasks become requested and the task Itself

becomes Idle. If the control structure allows active tasks to be suspended while

another task Is executed the control structure is call preemptive. Otherwise it is

-56-

Model for Static Interrupt Control Structures Section 4.2

non-preemptive. Urness otherwise noted conttdl structUres «re- assumed to be

preemptive.

The latency performance of any stattc Interrupt ctmtrOI stn:acture can · be'

determined for each task by adding the computattcn :tifne tor 0 ttiat task tc: the

maximum computation time used by hfgtier pt'forfty· tnl«s wMle • taslc. Is on the

ready queue. The dlfftculty In thts -anatysls Is In detWrminlntJ-how llllldh computation

might be used by other tastes.

The simplest case to constder 1s· when an the tasks are lnde/'eftdent. (eactt task

consists of exactly one b1ock). · Each tuk 1 requtres t 1 lif1ita Of oomputatlOR) and

r- - .

has priority p / , latency 11, and bandwidth 8 r Without io5s of generality, the 'tasks

can be numbered so that:

P1~P~ • · ·

The overhead of associated with lnteri'upts, \!Selecting ; a tad for execution, etc.

wHI be ignored for the time being. We shall also' aaaume ·:that . an priorities are

distinct.

The latency for task I when Its Inputs change discrete~ Is simply the ma.Xlmum

elapsed time between a change In an Input . and the termlrfatton of the task. This

must be less than t1 If the latency speclftcatlon for task I Is satls11ed. The

..

Interpretation of the bandwidth apeclftcatlon Is also almplifted. Instead of

specifying a minimum rate for sampUng inputs, the bandwidth specifies the maximum

rate at which an Input changes.
..

The latency specification for task i wlll be satisfted If and only If the btock for

task I can be completely executed during any time Interval of duration 1,. During

Model for Static Interrupt Control Structures Section 4.2

this interval, tasks with priority better than p. will also be run, and the amount of
I

CPU time used by higher priority tasks must be less than 11 - t
1

•

Notice that this model is equivalent to the model used by Fiala. Fiala's P;

corresponds to t1, D1 corresponds to 11, and r1 corresponds to 1 I Br Therefore,

for a single processor we have the obvious restrictions:

(4-1)

and:

n
z e1t; :s: 1

/=1
(4-2)

The summands in (4-2) are the fraction of CPU time used by task i. Obviously the

total fraction of the CPU used by all the tasks must be less than one. Equation

(4-1) can be derived from (4-2).

Lemma 4-1 : The amount of CPU time used by n independent tasks using a static
priority scheduler in a window of duration At does not depend on the
relative priority of the tasks.

Proof: The processor is always busy if some task is requesting service.
Changing the priorities of the tasks will never cause the processor to
remain idle when some task requests service, nor will it affect when the
tasks request service.

Since the control structure only executes a task if some input to the task

changes, task i cannot be executed more often than once every 1 /Bi time units.

Clearly, a task uses the maximum CPU time if any interval if it requests service at

this maximum rate.

Assume task i requests service at times 0, 1 /B 1, 2/B 1, • • • , and let C 1 (t) be

the maximum amount of CPU time used by task I in the interval (0, t). The highest

-57-

Model for Static Interrupt Control Structures Section 4.2

priority task (task 1) always star.ta executing llltm8dte.t.ty .after It requests service

and executes for t 1 time units, so !t wlH be executed l•1tl ~plate tim&li in th~·

interval. Let r • t - l B 1 t J be the amriunt of tlmw · at the end of · the window after

the last request for task 1. Task 1 win be executing durfng the· 1ntervai (t-r, t)

computation wlll be used so:

C1(tl• [B1tjt1+m/n(t1, 1- [::
1J] (4-3)

The 11taxlmum amount of CPU time used by task 1 in the interval (At, t+4t) Is:

C 1 (t+At) - C 1 (4t)

We wlll show that ttde la maximized when At • 0 by ahoWing:

C 1 (t +At) -C 1 (4t) ~ C
1
(t)

or

c 1 Ct +At) - c 1 (t) s c 1 (At) (4-5)

Since the requesta for task 1 occur wfth a regular period. C 1 (t) Is also periodic.

In fact:

C 1Ct+1/B1) • C 1Ct) + t 1 (4-6)

Therefore, we need only consider At between O and 1 /81, In which case:

(4-7)

This Is the maximum amount of CPU time used by any Interval of duration At

since the CPU time used cannot be greater than the duration of the interval nor

Model for Static Interrupt Control Structures Section 4.2

can It be greater than t 1 if the interval contains less than one period. Therefore,

the inequality in (4-5) holds since the left hand side is the amount of CPU time

used in an interval of duration At starting at t.

The worst case for a set of tasks will occur when all tasks request service at

time 0 and continue requesting service at their respective maximum rates. This is

true since the highest priority task will use its maximum amount of CPU time under

these conditions, and by lemma 4-1 , any task can be made the highest priority task

without affecting the amount of CPU time used by the set of tasks.

Define C; (t) by:

c1<tl- [B;tjt;+min(t;, t- t:;J]
The amount of CPU time used by tasks j and k. is not necessarily C 1 (t) summed

over j and /f.. The difficulty is that if requests for tasks j and /f. occur sufficiently

near the end of the window and of each other then only the higher priority task will

actually be executed. Therefore, It is necessary to determine a precise schedule

for the interval from 0 to t. However, if we are only interested In how much CPU

time Is used In this interval, lemma 4-1 assures us that we may assign arbitrary

priorities to tasks j and /f..

However, a sufficient condition for satisfying the latency specification for task i

is:

i-1
I. ;;:: t . + Z CJ (I .)
I I }=1 I

(4-8)

This equation can be made more intuitive if the time required by task j Is

approximated by:
-69-

Model for Static Interrupt Control Structures Section 4.2

(4-9)

Then equation (4-2) becomes:

/-1
I.~ t.+11 :Z B .ti
I I }•1 J

(4-10)

This can be rewritten as:

., ~ 1-1 (4-11)

1- % 81'1
}•1

The denominator tn equation •11 represenbl the fraction Of CPU time available to

task i. The effect of higher priority tasks is equivalent to reducing· the CPU speed.

4.3: Assigning Prtortttes to Independent Tasks

One of the weaknesses of tradltlonal ,....time aperattnQ syst81RS based on

static priority scheduUng la that the system dQe8 not veftfy that the priorities

assigned by. the user are consiatent with hi& r thae aped11cattens. · Even If the

system checked thue apeclftc41tlons, the user still ...,.t _... priorities_ which do

not have a s8nple relation to the real-tblle. apeclfk:ationa. The ot>Yloue .Vatagy of

assigning the highest priority to the tuk that requires the fastest response till!•

does not work. Consider the example In figure 4-1. Either task 1 or task 2 can

run at the best priority since 11 ~ t,. If Pi• 1-/l1, ttJen.-p1 > "2 and the the .latency

for task 2 Is:

Assigning Priorities to Independent Tasks

t2+ [12B1h +mi+1.12 [1!:1] l
• 12 + t 1: J 2 +min (2, 16-l 14

6 J 4)

• 12 + 8 + min(2, 0)

.. 20 ''2 = 16

However, the latency for task 1 if p
2

> p 1 is:

[l1
1

8
2J l t1 + l•1B2Jt2+m/n t2, 11- 82

• 2 + l ~= J + min (12, 15 - l ~~ J 24)

• 2 + O+min(12, 15)

•14~11=15

1 B =-
1 4

1
8 1 = 24

•1=15

•1 .. 16

Counter-example to priority = 1 I latency
Figure 4-1

Section 4.3

The algorithm successively finds a task that can satisfy Its latency

specifications while assigned the lowest priority. If there are several such tasks,

choose one arbitrarily. This task is assigned the lowest priority and removed from

the set of tasks. The next task selected will be assigned a priority higher than all

previously assigned priorities but lower than all tasks still unassigned. This

continues until no task remains or no task can be found that can execute at a

-61-

Assigning Priorities to Independent Tasks Section 4.8

priority lower than all other tasks. In this case, no assignment of static priorities
' ~ .

will satisfy all the latency specifications using onfY ohe processor. This algorithm

wllt never make a bad choice. Coosid~r the. sltuatlon .wh~m one or more tasks

remain yet no task can be assigned the lowest priority. Any task that could

possibly run at a lower priority has already been-,•ssJ~,a lpwer priority.

4.4: More Complex Models

The model for static interrupt control structures made several simplifying

assumptions, such as Ignoring scheduling overhead, assuming preemptive scheduling

and distinct priorities. The model can be eaaily changed to account for dlft'erent

assumptions.

4.4.1: Schedullng Overhead

When a task requests service, the control structure must compare the priority of

the task with the priority of the currently executing task. If the priority of the

current task is higher, then new request must be queued In some manner. When

any task completes execution, the contrOI structure must select a new task to

execute. Also, switching the processor between tasks wlll generally involve

setting up some processor registers. However, an of theee actions wl1I ·occur for

every Instance of a task requesting service, so these overhead costs can be

Included In the maximum CPU time used by task 1 • t1. The basic ·•lgorithm of

finding a task which can be ·assigned the worse priority whlle still satisfying (4-6)

Is still correct.

-62-

Scheduling Overhead Section 4.4. 1

4.4.2: Non-preemptive Control Stl'Uctures

If the currently exac.a1ng task always runs to completion .!>efore , a new ,task Is

run, then the latency speclflc4ttion for a taek must. be large enough to allow for any

task with worse priority to execute u weff aa the CPA.I time used by tasks with

better prior~. Thus, (4-6) becomes,:

1-1 n
11 ::!!: t1 + % C .(t.) + max Ct1>

j•1 J I j•/+1
(4-12)

Again, the assignment algorithm does not require any changes. This is obvious if

the algorithm finds a valid asiilgnment of priorities. Increasing the priority of some

task relative . to task r moves a task Into the summation term In equation (4-1 2).

Since C /t> is greater than or equal to t1, maktng this change can only Increase

the right hand side of (4-12).

4.4.3: Non-Distinct Priorities

For various reasons It may be desirable to assign several tasks Identical

priorities. For example, the computer hardware may only support a limited number

of Interrupt priorities. Since the control structure Is free to execute any of the

requested tasks having the htgh•st prforfty, d t'9tm having the same priority as

task I must"be treated as If ttNty had· hlgtier pftormes.w11en··ehecking·the latency

apecHtcattons. Thia aMU1fte• that the coMtel ~l'tHrtliN only · 8'Cecutes' task· I when

However, this also makes the often unreadstlc assumption that a task can be

preempted by a task with equal prlorlty. Jf this Is not ttie case It Is necessary to

-63-

Non-Distinct .Priorities

simulate the control structure on the worst 'C888 Mq1Hmee of requests. It Is not

su1ftcient ,to treat these tasks as If they had· lower prlor4ly but are not preetRpttble

since a pair of tasks can· make a sequence of requeata so that one· of them

requests service- again whHe the other ia being executed. Thentfore, the ;tlrst t*8k

can be. executed twice white task i Is. waiting' for sentloe ·although taak I Is MWl1"

preempted.

4.6: Applications to the Control Structure Problem

Verifying . the real-time performance of a static priority scheduler on more

complex task structures is a straightforward. ~xtenslon of the veriftcatlon for

Independent tasks. A latency specification 11 la satisfied If and only If alt blocks in

the constraint path can always be executed durtng any Interval of duration 11• It

becomes sllghtly more oomplex to compute the amount of CPU time used by higher

priority tasks since soma tasks (bk>cka) wHI not be runnable when other tuka are

requested.

4.6.1: Chains of Independent Teska

If no block appears in more than ~ .~traJRt path, ttae CGRBtralnt paths can

be treated aa .~dent tutw.. :A tuk. wlll never be latenuptecJ by a request of

a predecessor If the r_..time apacificatlona are: ntet ·~ ,tl)e . period between

requests Is not less than the deadline for any one ~eat. ,

The priority assignment problem would be very much , more c:llfllcult If It were

necessary to consider assigning different priorities to individual blocks In a chain.

-M-

Chains of Jndependent Tasks Section 4.6.1

However, lt does not make senae to assitn -lower priorities to some blocks in- the

constraint path, since it makes no dttfarenbe: where In, the chain higher priority

tasks are altowed to lntem.tpt. Therefore, all the , tasks in the -chain can be

••signed the •ame priority as the task In the chain with 1:11e IMet priority.

In the pr~sence of overhead It Is more 81'ftieient;tl> :create :one ,\,uper-task' that

executes all the block• C<>Qsecutlvely rather than Incurring the overhead of a

request for each block In the chain. However, If the control structure Is non

preemptive It may be necesaary to create several smaller 'supe,...tasks' to reduce

the amount of time that must be spent waiting for low priority tasks to complete.

Deciding how many tasks to create and how large to make them could be made on

the basis of how. much CPU time needs to be freed up In order to find a task to

assign the currently worst priority.

4.6.2: More Complex Task Relations

There are fundamentally two ways dHferent constraint paths can have a common

block: the comrpon block can have: more than one successor or It can have more

than one predecessor. We wfft first consider _the simplest example of each type of

Interdependent constraints.

Consider a block diagram In which block A has successor~ 8 and C. The

constraint paths for this diagram are AB and AC. Since a request for A will always

cause requests for both B and C, BAB • B AC. Therefore, neither 8 nor C will be

Interrupted by requests for A as long as the. reat-UQ\e apeetftcattons are mat.

Now, If Ps >Pc then the sequence of blocks execu~ -.never A la requested

More Complex Task Relations Section 4.5.2

ts ABC. Othenvba the sequence N!IJ. will be executed. We can therefore replace

the tasks A, B, and C by a task that execut- eJtfter·· ABC .,,or ACB. The latency

apectftcation for the new- task should be ohasen so . that It wJH be satisfied If and

only if · the original latency apecffk:atlons . are aatlsfied. · Theae latency

specifications are satisfied tf and only If:

(4-13)

and

(4-14)

The CPU time used by interrupting tasks will be Identical for both the ABC and ACB
~ <..

sequence, except If ABC Is executed, then B muat be conaldered an Interrupting

task In equation (4-14), and similarly for C and equation (4-13). Therefore:

(4-15)

and

1ACB - mJn(IAC' 1AB-tc> (4-16)

and we should choose the sequence that yields the greater latency.

Now consider a block diagram In whrch C has two pradtlcessora A and 8. The

constraint paths for this block diagram are AC and BC. It ia &i8o · qtilte posstble to

receive a request for C while C is already requested or suspended. Hc>wever, If C

was flrst requested by A, the additional request wfli atways be from B and vice

versa. If this occurs the logical thing to do Is to have C executed only once, but

In general the sequence AC will be executed "whenever A Ts· requested and BC will

be requested whenever B Is requested.

It ts sufftcfent to replace A, 8, and C by two tastes which executed AC and BC

More Complex Task Relations Section 4.5.2

respectively, ignoring the possibility that at times C may not need to be executed

by one of the tasks. However, if no assignment of priorities Is found treating these

tasks as independent, it is not necessarily true that fill such assignment would

exist if the common block C were handled more carefully. The difficulty is that the

worst case sequence of requests becomes harder to construct.

4.5.3: Combining Static and Dynamic Control Structures

Rather than having the processor idle when no tasks are requested, it may be

possible to have the processor executing a static control structure for some

portion of the block diagram. In this case we would consider the static control

structure to be the lowest priority task. There are no real-time specifications on

this task in the usual sense, although we must still guarantee the latencies in the

static control structure. This can be done by modifying the latency specifications

so that even when the maximum amount of CPU time is used by the dynamic tasks,

the static control structure still runs often enough.

Consider a latency specification Ii for Cl' The blocks in C; must be executed

once in every interval of duration Ii. The trace of the processor is no longer

completely determined by the static control structure since the dynamically

scheduled tasks will interrupt the static control structure. However, the amount of

CPU time used by these tasks is known. Therefore, we need only choose new

latency specifications for the statically executed constraints according to the

following equation:

·61-

Combining Static o.nd Dynamic Control Structures Section 4.5.3

k.
I,' = Ii - . ? c

1
. 0 1)

J =1
(4-1 7)

Where constraints 1 through k. are executed by the static priority interrupt control

structure.

-68-

8: Summary and Conclusions

We have presented a model for real-time computations that provides precise

definitions of reaHlme performance. The model bas the additional advantage of

atrongly correspondlnQ to intuition. This makes the model · ideal for defining the

semantics of a reaa-.time programming language. The model also avoids close

association with any implementation~ Therefmre, the model ,Is applicable to a wide

variety of s.ystema. Conversely, a· lanouage based ·on this model should be easily

Implementable In a wtde variety of ways, without ucountering features of the

model too finely tuned to a particular implementation.

Several strategies for implementing control structures for block diagram systems

were investigated. . The ftrst strategy was to find a •ta tic execution order for the

blocks in the diagr•m. Contl'ol structuAla of this type have been somewhat ignored

for time critical application& An important result ia that any such contrel structure

could be .represented u a· finite cycle, althou9f'l the bounds on the length of the

cycle are so large that exptlctt enumer4tion la impractical as a synthesis technique.

A braActwmct-boumt. synthesis method·· wu developed;·· but unfortunatety it is also

Impractical for large problems. We suspect that the aynthesie · ,probtam 18 HP

completa (computationally Intractable), but have. hOt prdVed this COAjecture. In any

cue, · we believe it Is more . promising to Jnvastigate fast ~euristic atgorithms for

ay~ng,atatic control structures.

The next general strategy Investigated made use of the fact that In many

appllcatlons the Input values change at discrete times. Under this assumption,

block diagram schemata are closer to tr~lttonal models ef .re•tlme computations.

Previous researoh has found optimal- schedulers. for the .special case of one

processor and lndapeadent tasks~, However, .._.,,static priority scheduler& had

been ignored except for the special case,· of the latency specifications being

-7&

Summary and Conclusions Section 6

Identical to the bandwidth period. We developed .,. afltchlnt atgorithm for aaslgnlng

priorities to independent tasks when the latency ape~tion la less than the

bandwidth period, The synthesis techniques were mocltfted ·.to construct control

structures for block diaoram sc::h•mata'ift·whlch U.Mock&·werenot1ndependent.

Sine~ the analysis of the reaHlme perfonaance of b1octc. diagram schemata under

a static priority control structure is atmltar·· to the Malyaia of static priority

queueing systems, the priority .usignnent algorithm 'can also be apptled to· priority

queueing ayatema.

Anally; we dlscuased some of the Issues . that aMe when 1DOf'8 than. one

processor ta avattable to the . control· structure. Tim re8"'t11Re.' pet-fOI manoe of

multiproceasor control structures wu· analyzed, SIMI ..._....:bounds on the r-1-

tlme perfonnance for a bloclt· dlatr•• .a.- ·Wlit•. darlv.d. . ff' · tbe ·reaHlane

specHlcatlona can be met by a m~saor ·c~ atnmture, ·the oltjectlve

becomes mlnlml2lng the nu.._ ·ef J>l'GG 1 HON dleeded 11o· tmple-ftt ·• :fenlble

control structure. Several special c-. are ·.Jtnown to. be ~lete, so the

general · problea le also NP-conlpleta. However, ttwre a. f'888Gft to t..Ueve that

alntple ·algoltth1119 will produce CQRtral atract.,,..;~..tqg a :ftUl1lbar of proaeaora. tMt:

were Investigated.

Future work should probably concentrate an. either provinG vartoua syntheSla

problems to be ~late or tndlng. ellCI.- :al001ltlaaa. In the event die

problems Afil Intractable, the ·perfotwa of,·.tlldent ·tlel.lrt8ttci algmlttns should be

studied. Certainly any ltnptelft8fttation of • 1traetfcal systetn baaed an

block diagram schefR&ta. ahOuld attempt to ftlld-and lmprO¥e sudt·heurtatlc methods.

-78-

Summary and Conclusions Section 6

A practical system should a!so attempt make use of more of the special cases for

which efficient algorithms are known.

-77-

