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SECTION I ABSTRACT 

This paper presents precise versions of some "Jaws· that must be satisfied by computations involving 
communicating parallel processes. The laws take .the form of stating plausible restr~ions on the 
histories of computations that are physically realizable. The laws are very general in that they are 
obeyed by parallel processes executing on a time varying ~ber of distributed physical processors. For 
example. some of the proces5ors might be in orbiting satellites. The laws are justified by appeal to 
physica.I intuition and· are to be regarded as falsifiable assertionl about the kinds of computations that 
occur in nature rather than as proved theorems in mathematics. The laws are intended to be used to 
analyze the mechanisms by which multiple processa can communicate· to work effectively together to · 
solve difficult P,roblems. 

The laws presented in this paper are intended to be applied to the design and analysis of systems 
consisting of large numbers of physical processors. The development of such systems is becoming 
economical because of rapid progress in the development of large scale integrated circuits. 

We generalize the usual notion of the history of a' computation as a sequence of events to the notion of 
a partial order of events. Partial orders of events seem better suited to expressing the causality 
involved in parallel computations than totally ordered sequences of events obtained by "considering all 
shuffles" of the elementary steps of the various parallel processes [21.221 The utility of partial orders is 
demonstrated by using them to express O\lr laws for distributed.computation. These laws in turn can be 
used to prove the usual induction rules for proving properties of procedures. They can also be used to 
derive the continuity criterion for graphs of functions .studied in the Scott-Strachey model of 
computation. The graph of a function is simply the set of all input output pairs for the function. We 
can prove that the .graph of any physi~Hy realizable procedure p that behaves like a mathematical 
function i~ the limit of a continuous functional F such that 

In other words the graph of pis the limit of the n-fo1d compositions of F wtth itself beginning with the 
empty .graph. 
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SECTION II INTRODUCTION 

In programming languages such as SIMULA-67 0'71 SMALLTALI< [18], and CLU (20), the emphasis 
has changed (compared to Algol-60) from that of procedures acting on passive data to that of active 
data processing messages. The actor model is.a formalization of these ideas that is independent of any 
particular programming language. Instances of SIMULA and SMALLTALK classes and CLU clusters 
are actors. However, actors have been designed to tnclude the added effects of .parallelism so that 
instances of monitors[42,41l envelopes{1Sl and serializers[MJ are also actors. 

The actor. message passing theory can be used to model networks of communicating processes which 
may be as close together as on the same LSI chip or as far apart as on different planets. It can be used 
to model processes which communicate via 1hared memory(l2l packet-switched networks[IS,2-tl 
ring-networks[23], boolean n-cube networks[11), or Batcher sorting nets£25l 

SECTION III ACTOBS and BVBNTS 

The theory presented· in this paper attempts to charactertz.e the behavior of procedural objeets called 
actors [active objects] in parallel processing systems. Acton and events are the fundamental concepts in 

. the theory. Actors interact with .each other through one actor tending a me11enger to another actor 
called the target. The arrival ~f a messenger at a tarcet ii an event. and these events are the basic 
steps· in this model of computation. A key point in the actor model of computation is that messen.cers 
a re themselves actors. The actor model is therefore an Uft-typed theory whkh is a generalization of the 
1..-calculus of Church. 

Actors can be created by another actor as part of the second actor's behavior. lndeed, almost every 
messenger is newly created before being sent to a target actor. 

Events mark the steps in actor computations; they are the fundamental interactions of actor theory.· 
Each event is instantaneous and indivisible taking no duration ·in time. Every event E consists of the 
arrival of a messenger actor, called tne11en1er(E), at a !!!K!l_ actor, ca11ed tar1et(E). 

We will often use the notation: 

E: [T <-M) 

to indicate that E has messenger Mand. target T. 

The time of an event is the arrival of the messenger of the event rather than the sending of the 
messenger because a messenger cannot affect the .behavior of ._.actor until that attor receives it. 
If the sender wishes a reply, an actor (called. the con ..... tl!!) to whom any reply should be sent should 
also be carried by (as a component of) the messenger. 

Intuitively, the arrival of the mt;ssenger M at the target T makes M's information available to the target 
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for the purpose of activating additional events. The arrival of M at T does not in itself cause any 
change te> either Mor T. 

For each event E we define acquaintanc .. E(T) and ..,.mtenc .. e<M> to be the vector of immediate 
acquaintances of T and M, respectively. The immecltate accptaintances of an actor x are the other actors 
x directly "knows about" at a given instant. ·The refatton ii asymmetric in the sense that it is possible 
for an actor x to know about.an actor y without it being the cue that y knows about J. An actor may or 
may not "know abou~" itself; if it does, it can directly send itself messages! 

Law of Finite Acquaintances: For all actors x and events E 1uch that x i8 the tar1et or menenaer of E, 
tM vector acquaintanc .. E(x) has finite left&lh. 

The above law state$ that an object can only be directly connected to finitely many other ~jects. 

All of the actors which are definable within. the lambda calculus of Church have the property.that their 
acquaintances cannot change with time; i.e. if x is defined by a lambda expression, then for all events 
E1 and E2 in which x is the target or messenger, it wtU be the case that 

In order to ·implement interprocess c~unication between parallel processors it is necessary to use 
actors whose vector of acquaintances changes over time. The Purpo!! or' this paper is to axiomatize the 
fundamental Jaws which govern the behavior of !UCh actors. 

I 4 

An important example of an acto~ whose immediate acquaintances c;hange with time i$ a ~ A cell is 
an actor which at ·any given time has exactly one immediate acquaintance--its contents. When the cell 
is sent a messenger which consists of the mnyge, ·what ii your CODMmts?•, and a entinuation--another 
actor which will receive the cpntents-·the cell is gu.aranteed to deliv.er its contents to that ·continuation 
(while also continuing to remember them). AH this might be very boring if the contents of the cell were 
constant. However, upon arriv.al of a messenger which has the menage •update your contents to be x· 
and a continuation, the cell is guaranteed to update .its contents to be the actor x (whatever that may be) 
and inform the continuation that the update has been performed. The b,ehavior of cells will be 
axiomatized later in this paper after we have presented enough of the a~tor model to make this 
possible. 

The target(E) and the menen·ger(E) and their immediate acquaintances will be called. (immediate) 
participants of an event E. The immediate participants of an event are exactly those actors which can 
be accessed without sending a~y messages. 

participants(E) = (tarcet(E), m ... enger(E)J U ~tanc-e(tar1et(E)) U ecquaintancesE(messen1er(E)) 

Finite Interaction Law: For each event E, the immediate participants in E are finite. 

The above law, which is intended to capture the physical intuition that only finitely many objects can 
interact in a. single event, is an immediate corollary of the Law of Fi,.ite Acquaintances. 
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SECTION IV PARTIAL .OBDBBINGS on BVENTS 

In order to develop a useful model of parallel computation, we have found it desirable to generalize the 
usual notion of the history of a computation as a sequence of events. In this paper a history of a 
computation will be expressed as a partial order which .records the causal and incidental relations 
between events. The partial orders constrain the maximum amount of parallelism that can be ,used in 
an implementation. Any two events whtch are unordered can be executed concurrently using separate 
processors. However, there is no requirement that an implementation do this. Events can be executed 
in any time sequence that is consistent with the, partial order. 

IV.I --- ACTIVATION OBDBBING 

One important strict partial ordering on events in the history of a computation is derived from how 
events activate one another. Suppose an actor x1 receive a ,,._.ger m1 in an event E1 and as a 
result sends a messenger m2 to another actor x2. Then the event E2, which is the arrival of the 
messenger m2 at x2. is said to be actinted by E1. We call the tramitive .clostire of tt•is :activates• 
relation the activat.ion wd~rinc and if .E1 pr~es £a in this~· tben we write: 

In gent"ral ·ar.1-> is only a partial ordering because an event E ·might activate several distinct events 
E1 ..... En· thereby causing a "fork". 

IV .I.a --- Primitive Actors 

Labeled sequences are one of the most important kinds of primitive actors. An example of a labeled 
sequence is [rral: 3,.imoR'inary: s) which is a sequence with two acquaintances 3 and x which are labeled 
'""': ·and imflginary: respectively. We allow labeled sequences with numerical labels to be abbreviated 
using position a 1 notation so that [J: 3, J: y] can be abbreviated as [3 y]. 

A simple example which illustrates the use of •ac1-> is a computation in which integers 3 and 4 are 
added to produce ·1. , We suppose the existence of a primitive actor called + which takes in pairs of 
numbers and produces the sum. In this case + receiva a meuenger of the following form: 

[requeac: (3 4], replrto: c] 

which specifies that the message in the request is the argument tuple [3 4] and the rep.ly which is ,the 
sum should be sent to the continuation c when it has been caimputed. Thus the history of the 
computation contains two events: 
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l: a req~st event with target +and messenger that speclfla the numbers to be added and 
an actor c to which the sum should be sent; 

2: a. reply event with target c and messenger that specificl the sum of the numbers. 

These two events are related as follows in the activation ordering: 

[ + <- [reqN•: [3 4), replrao: cD 
I 

act 
I v 

[c ("'"'[reply: 7D 

The activation ordering can be used to define the notion of a 1i•P primitive actor as follows: 

Definition: An actor x will be Hid to be a simelel erimitiH !f!or if wh1R1ww • event Ei of the form 

appears in· the history of a computation then there ii a unique event E2 .t the form 

such that Ei ·nr.1-> E2 and there are no events E "'!Ch that E1 -001·> E -.et•> E2. Simple primitive actors 
a re one-in one-out procedures. 

Complaint .processing can easily be incorporated into the scheme. The history that results from 
div;ct.[3 O] which attempts to divide 3 by 0 is shown below: 

[divide <"'"' [reqan1: [3 OJ, replr10: cD 
I 

act 
I 
v 

[ c <"'"' [com,l.W: [.....-.liae: 3))] 

Since complaint processing does not have any profound implications for the results in this paper, we 
will not say anything more about the matter. 

------------------------- ----·------
1: Later in this paper we will ne examples of primitive actors such a fork llftd join primitives which are not 
simple. 



ACTORS Hewitt Ind 81Mr 5 

The history of the computation of f.ctorill[3] using an iterative implementation of fKtoritl illustrates 
how the activation ordering can be used to'iliwtrate properties of centrol structures: We will suppose_ 
that h•ctorial knows about an actor called loop which ii lelld tuples of the form [index product] where the 
initial index is 3 and the initial product ls 1. WheneYs loop ncetv. a tuple [index product]. where index 
is not 1. then it sends itself the tuple [(index• 1) CiMell •,.-.met)]. 

[ fKtorial <..,.., [rr.qur.•I: [3], rr.ply-&o: cl] 

I 
act 

I 
v 

I[ loop <..,.., [rr.qur.st: [3 1], rf!ply-&o: cl] I . . 
act 

I 
v 

[loop < ...... [rf'q1&as1: [2 3]~ reply-10: cl] 
I . 

act 
I 
v 

[ l0op < ...... [Mque.a: [1 6], reply-&o: c]] 

I 
act 

I 
v 

[ c <-- [rf'ply: 6]] 

The actor loop is iterative because it only recav'tra the amount of working store2 needed to store the 
index and prodUct. Note that only 2!!!. reply ts sent ro the mntinUalion c even though c appears as the 
continuation in several request events. · 

IV .l.b --- Laws for the Activation Ordering 

It is not possible for there to be an infinite number of evats in a chains of activation between two 
given events in the activation ordering of the hhtorJ of a -.Ua:ation· Thb law implies· the nistence 
of primitive actors. Stated more formally, 

law of Finite Activation Chains between two Eventt: If C ii 1 ehlin of. events in the ectivetion orderifta froM 
E1 to E2, then C is finite. 

2: The careful treatment of the stone• required for this ........ ii pven in [2']. 

3: A chain is a totally ordered sequence of events 
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The law of finite activation chains between events ·ts in.tended to express the fact that "Zeno 
machines"--i.e. machines which eompute infinitely fast-cannot be physi~lly constructed. For example, 
consider a computer with your favorite instruction set which aecutes its first instruction in I 
microsecond, its second in 112 microsecond, its third in l/4 microsecond, and so on. Thi'> machine not 
only could compute everything normally computable tn less than 2 mtcroseconds, but could also solve the 
"halting problem". It could do thll by simulating a normal compucerrunntng on some input, and if the 
simulation were still running after 2 microseconds, it .could conc1ude that the simulated machine does 
not halt on that input. 

Intuitively each ·event can directly activate only a finite number of other events. The events directly 
activated by an event E are called immediate suscepon of E (under the activation ordering •ae1•>). The 
immediate successor set of E in the •aca·> ordering, written· ............. ._.,,.>(£), can be defined 
formally: ' 

immedi•te•succ.4 .,1.:.(E) • {Eil E ·ac•·> £1 lftCI -il Ez 'such that E -aca•> Ez -cc•-> E1J 

Then we have.the following law: 

L•w of Finite lmmedi•te Successors in the Activation Qrderinc: 
For ell events E, t~ Ht lwdi.....,.ucc.._..>(E) is finite. 

We define immediate predecessors in the activation ordering in a manner similar to that used for 
immediate successors. We postulate that an event is either an initial event, in which case it has no 
predecessors, or it is activated by a unique predecessor' event 

L9W of Unigu!nna of Immedi.te Pr!d!c....,. in the Activ1tion Orderinc: 
For ell event. E, the set iwdi...,,ecl.ce1->CE) has Ill MOit .!!!!. ~ 

This law is based on the physical intuition that two distinct events cannot both be the immediate cause 
of another event. This is because an· event which immediately activates another event must have l>een 
the sender of the messenger for that second event Thus each event E has at most one activat0f'4 

which if it exists wi11 be denoted as ectivator(E). · 

Note .that the activation ordering analyzes the causality of the classical •fork-join• structure of parallel 
computations in an asymmetric manner. The reason ts that the last event to arrive at the join is the one 
which activates the remainder of the computation. Later in this paper we will introduce another partial 
order on events [called the continuation order] which treats •fork-join• control structures in a symmetric 
fashion. 

i: This usage of the term "activator• is somewhat in conflict with the usage of the term in Greif and 
Hewitt(-40). The usage here has the advantage that lt ls more firmly grounded' in the physics of 
computation. 



ACTORS HewittwBlker 7 

IV.2 --- ARRIVAL OBDBBINGS 

Intuitively, the activation ordering can be identified with "causality" in which each event is '"caused'" by 
its activator. However, the activation ordering. ls not enough to specify the actions nf actors with 
"side-£'.ff ects", such as ~- For this reason, we intrad~ the arrival ordering -o"·>x for an actor x 
whose behavior depends on the order of arrival-of the meuenprJ •t to x. The physical basis for 
defining the order o.f arrival is a hardware devke called an atltlter. Note that there are only a few 
primitive actors s.uch as cells and synchronlzati9n prtmtttves whole behavior actually depends on the 
order in which messengers arrive. Such actors artt C.lliid .... daJencle!t. AH other actors are~ 
independent and do not need to use an arbtter since they can be freely copied to make as many 
instances as desired. 

Due to the totality of the order of arrival of messengers at an order dependent actor x (which will be 
discussed in more detail below), the notion of a "local time" for x is welktefined. Therefore, when 
talking about a single actor, we can talk rigorously about the changes in Its vector of acquaintances over 
time. 

IV .2.a --- Laws for Arrival Orderings 

. 
The _arrival ordering for each order dependent actor x is required to be a total ordering on all events 
which have x as their target. This policy is enforced by arbitration in acarn such as synchronization 
primitives which need to observe the order in which their me18ps arrtve. 

Arriv•I Orderinc L•w: If E1 llilEz md ter1etCE1 Jct•sete£i>-x, 
then either E1 -on->x Ez or E2 -.rr->x E1 

This law says that the messenger of E1 arrives at x before the messenger of E2 or vice-versa. The 
arrival ordering is defined by the arbiter for x. 

Note in connection with arrival ord~rings that there is no necessary l'elation between the a~rivals of two 
messengers at a target and the ordering of their activator events. Suppose that events E1 and E2 have 
the same target x. Then, in general, the circumataftee that £1 ...,.,...>x E2 does not imply that 
E1 •ar.1·> E2 since E1 and E2 might be distinct events of two asynchronous processes that both happen 
to send messengers to the same actor. Furthermore. the fact that .UV ... CE1> .._,.> ectivator(£2> is no 
guarantee that E1 ·arr·>x E2; i.e. the messenger of Ez might atiH arrive at the target actor before. the 
messenger of E 1. 

Each actor is created at some point in time. This fact is embodied in the follewing law: 

L•w of Finite Predec.Sson in an •rrivel orderinc: 
For •II events E' 

f El E ·arr•>tariet(E') E'} is finite. 
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Given an event E1 of the form [T <"""" M1] and an event Ez of the form [T <- Mz]. there are only a 
finite number of events between these two events in the arrival ordering ..,,...>r· Stated more formally: 

Corollary: Law of Finite Ch1in1 between two Events in en ArriYll Orm!n&• 
For alt events E1 and Ez SilCh that t1r1etC£1> • l•se«Ei> • x, 

{El E1 •arr·>x E •arr·>x Ez} ls finit~. 

The above law implies that anomalous behavi<>r like the following is not physlcaly realizable: a cell 
r~eives the infinite sequence of •store" messages: [11..-c ll [llen: 1/2), [ltor« 1/4), [11ore: 1/8]. etc. and 
then receiving a "contents?" message. What is it to reply? Zero? But zero was never explicitly stored 
into the cell! · · 

The law of Finite Chains in the Arrival Ordering allows us to define immediate predecessors and 
immediate· successors for the arrival ordering in a manner similar to the one used for the aclivation 
ordering. It guarantee that the arrival ordering for ea~h Jctor is toral over iCS domain, successors and 
predecenors are unique when they exist. If an .event E has an imfnedlate predecessor ln -arr->tariel(E) 
then it will be called the precurlOr of E and will be denoted by ,,._.....(£). The law guarantees that 
the process of repeatedly taking the precursor of an event with target I wm find the creation event fort 
in a finite number of steps. 

SECTION·v CBBATION ·of AOTOBS 

The actor message passing model differs from most other theories of computation in that it explicitly 
deals with the issues .involved in creating new objects. · 

Intuitively the creation of an actor x must precede any use of x. Jn order to precisely state the above 
intuition as a law we must be more precise about when actors are created. For each actor x which is 
created in the course of a computation, we shall require that there is a untque event creation(x) which 
caused x to be created. · · 

Let created(E) be the set (possibly empty) of actors created by the event E--i.e. the set of actors which 
claim E as their creation event. Note that x is !!!!ta partlctpant in credon(x) because x does not come 
into existence until after creation(x) has occurred. 

Definition: created(Et' • lxl crHtion(x>-£} 

The intuition that a. single event can only create finitely many objects ls formalized as follows: 

Law of Finite CrHtion: For each event E, cr..a.cl(£) ia finite. 

Note that the elements of crHted(E) might be mutual acquaintances of one another and that mutually 
recursive procedures can be created in this way. 



ACTORS Hewitt ind Biker 

SECTION VI OBLLS 

v 1.1 --- Axlom for Cell• 

The axiom for ce11s has two parts: involving their creation and use which can be stated as follows: 

Creation: There is a simple primitive actor, called cr .. t.-cell, such that 
whenever it is sent a tuple of the form [i]. it creates an actor 1 which is a new 

. storage cell with initial contents the actor i. More formally, for each event E1 
of the. form E1: [create-cell < ...... [MJK..a: [t), reply-10: cl] there is a unique 

event E2 of the form E2: [c <- [Nply: 1)] such that I is a newly created 
simple primitive actor and E1 • ectiV1tor(E2). Furthermore cre.ted(E1> • {•} · 
which says that the only acter created by the event £1 Is the storage cell 1. 

Thus each storage cell that is returned by crette c.U differs from all previously 
created cells. The storage cell 1 always hu exactly one acquaintance which is 
initially i. If E is an event which has 1 as its target we wm use the notation 
contentsE(•) to denote this acquaintance auhe time of the event E. 

Use: A storage cell 1 can only be sent messages of the form [eo111e11u?] which 
requests the "current" contents and [•plate: x] which updates the contents to be 

• I x. . 

I 

The contents of 1 when it receives one of these messages In an event E can be 
axiomatized using the arrival ordering for 1 as follows: 

contentsE(s) = 
if E laoa on immeciioht Pf'tttl.ece1.ar an 1/te fllritHJI orderin6 for e 

then 
if precunor(E) ii 0-/ 1/ee form (1 <- [reqae11: [•,.4••: x], reply-10: ... ]] 

1/ten x 

ebfl. content•precursor(E)(I) 
"'"' i wbiela ii 1/ut octor aenl lo cre.te-cell 10 creole 1 

If E is an event of the form [1 <- [reqaell: [contenu1] reply-10~ cl] then there 
is· a unique event E' of the form E's [c <-[reply: contenh£(1)]) such that 
E = ectivator(E'). 

9 
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Vl.2 -- Bua7 Waltly 

Busy waiting is the kind of waiting used in some multi~processing systems. In this kind of waiting, the 
contents of a cell is continually checked and, if lt ls unchanged, the proceuor branches back to check 1t 
again. This kind of waiting is used when one proceuor cannot cllpatd upon another to ·wake it up• 
when the contents change. Busy waiting depends upon the pAJpil'tJ of Finite Chains between Events in 
the arrival orderings of cells. 

For example suppose that a new storage cell 1 is created whose initial contents are 0. Furthermore 
suppose that the contents of 1 are updated exactly once by a process whldt sends 1 the message 
[111uln1m 1]. Now another process might busy wait until the COftlllntl of the cell c change to 1 by 
executing a procedure of the following form: 

loop: if content1(1) = 0 

1 ''"'" If t>I a loop 
"b" ... proceed ... 

The property of Finite Chains between Events in the arrival ordering for 1, guarantees that the code 
... proceed ... will eventually be executed since otherwise there would be an infinite number of ·contents?• 
messages before the taPfla1e: i] message in the arrival ordering of 1. 

The use of the arrival ordering in the actor model .of computation seems to help overcome one of the 
major lim.itations of other theories of the semantics of communicating parallel processes based on the 
Scott-Strachey model of computation [5,6l The. Scott-Strachey model ts a deep mathematical study of 
functions that are minimal fixed poin~ of •continuous• functionals. As currently developed the 
Scott-Strachey model seems to be a special case of the actor model in. that it only deals with actors which 
behave like mathematical functions to the exclusion of acton siich as cells and synchronization 
primitives whose behavior depends on the arrival ordering of messages sent to the actor. 

SECTION VII LA. WS of LOCALITY 
I 

We would like to formalize the physical intuition that computation ls local and there can be no "action 
at a distance". The laws of locality presented in this leCtion are intended to capture these intuitions. 

The initial acquaintances of an actor are a subset of the participants in its creation event and the actors 
created by its creation event: 

Initial Acquaintances Law1 If an 1etor z i1 the tar1•t of en event E 
such that E is the first event in the arrivll orderifta of z then, 

acquaintanc•E(z) ~ participanhecr-tion(a)) U crelledCcretUonCz)) 

The acquaintances of an actor can increase O¥er its previous acquaintances only by the acquaintances of 
tht> menf'ngers which it receives and the actors which it creates. 
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Precursor Acquaintances Law: If 1n actor z is the tar1et of an event E 
such that E has • precureor in the arrival orderins of z then, 

acquaintancesE(z) ' p~tcip.m.(pre...,(I)) U creltedCprecunor(E)) 

11 

An actor x can only be the target or messenger in an event E lf x ls newly created or is an immediate 
participant in activator(E). 

Activator Acquaintances Law: For .. ch event E which is not an initial event 
tarcet(E) E participant1(1etivator(E)) U createctYctlv.aorCE)) 
messencer(E) E participants(1ettvatorCE)) U ••dlacliv.,(E)) · 

These laws of locality can be used as the foundatiOn on which to build theories of information flow in 
computer systems. Using the formalism, a theory can be developlld to show how the imposition of 
initial constraints can be used to eliminate undesirable information paths. In this way, protec•ion 
problems, such as the Confinement Problem may be.$Olved. The Jctor message passing: model can be 
used as the foundation for formalisms (such as Strong Dependency [fl}) for describing inf ormalion 
tra.nsmission in computational systems and for piovtng that informatton Is not transmitted over certain 
paths. 

SECTION VIII --- OOMBJlllD OBDIBING 

To make sense out of the activation and arrival orderings. and to relate them to a notion of ·ume•, .we 
introduce the precedes relation ·-->": 

Definition: --> is a binary relation on events which Is the transitive closure of the union of the 
activation ordering •act•> and the arrival orderings ...,.,...>x for every actor x. 

In order for --> to function as a notion of ·precedence, we require that the activation and arrival 
orderings be consistent. This is guaranteed by the Law of Strict Causality for actor systems which 
states that there are no cycles allowed in causal chains; i.e. it ts never the caM that there is an event E in 
the history of an actor system which precedes itself. Stated more f'onnaUy the law of causality is that 
the combined ordering is also a strict partial ordering: 

Law of Strict Caunlity: For no event E does E -> E. 

Suppose that we have events in a computation described as follows: 
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E1: [x <"'"' m1] 
E2: [ y <.., ... m2] 

E3 : [y < ...... m3] 

E4: [x < ...... m4] 

Ei -art-> E2 ;arrival of m1 1t x causes the wrivll of mz It y 
E2 -nrr->y El ;m2 arrives 1t y before "'3. 
E3 -art-> E4 ;arrival of MJ 1t y ctu1e1 the wriYll of m4 1t x 
E4 -nrr->x Ei ;m4 arriv" It x before mi 
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The Law of Strict Causalit.Y states that the history of the compu.tation given above is physically 
impossible to realize even though it ls locally reasonable in the sense that any proper subset of the 
orde1'ings can be realized. The above example of an impossible computation is due to Ciuy Steele. 

Now we can define immediate predecessors and successors of an event E under··>. Note that an event 
E of the form I[ t <"'"' m] has at most two immediate predecessors in the relation ··> one of which is the 
activator of E and the other is the precursor of E in the arrival or~ering -w;•>t· 

We would like to formalize the intuition, that between any two events which are causally related, that 
there are only finitely many events in a causal chain that connects the events. This intuition is 
formalized in the following law: 

The Law of Finite Chains between events in the Combined Orderinc:5 
Th•re are no infinite chains of events ~tw"" two events in the 1trict partill orderin& ··>. 

Actually we qrn express a much stronger property about the activity tha.t can occur between two events: 

Corollary: Law of Finitely Many Events betwHn two event. jn the Combined Orderinc: 
For all event E1 and E2 the set {El E1 - .. > E .. -> E2} is finite. 

The above law is easily proved using Konig's Infinity Lemma and the law that there are no infinite 
cha ins between two events. Note that the Law of Finite Chains between two Events in the Activation 
Ordering and any·Arrival Ordering are immediate corollaries of the above law. 

The above law has important consequences for models of actor systems. It implies that for each history 
of a computation that there. exist "time" functions that map events onto integers. In general there are 
many time functions that correspond to one history which are obtained by considering all the possibte 
total orders that observers fT!ight see. Such time functions have the following properties: 

-----------------------·- -·-·-·-··-··-----·- --

5: This law is a strict generalization of the other laws in this paf>!tr. We ori&inally conjectured that it could be 
proved using the Laws of Locality together with the r"t of the laws. Howe\fttf Will Clin1er [47) found • 
counterexample. Subsequently Valdis Berzins [41) ind1pendently fCMMI a very beeutiful symmetric form of the 
counterexample •• the solution to 1 clan exercite in MIT c1 .. &.135. 
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VE1 E2 i/ E1 --> E2 dean time(E1) < time(E2) 
VE1 E2 if time(E1>-timeCE2) ihen E1•E2-

We can use the combined ordering••> to exprels an important law about created actors. 

Law of Creation before Use: 
If en .ctor x is created in the coune of 1computationandEis1n event with pll'ticipent x then 

creetion(x) ··> E 

vuu --- NESTBD AOTIVITIBS 
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Since one of the aims of actor theory is to study patterns of passing messages, we must identify several 
common patterns. The two most common types of ""51eDfel'I are requests and replies to requests. A 
request has two acquaintances: the request message ,itlelf, and a c:antinUatlon actor which is to receive 
the reply. A reply to a request consists of a message sent.to the conttnuation; this reply usually contains 
an answer to the request, but may contain a complaint or excuse for why an answer b not forthcoming. 

We define the nest~ ac:tivity corresponding to a request event RQ in a computation to be the set of 
events which follow RQ in the combined,order but p~ any reply RP to the request. More formally, 
let E--~ denote the set of events which follOw E (including. E itself') and -tE denote the set of events 
which precede E (including E) in, the computation. In other words 

Definition: 

E-·~ a lEi EsE' or E ·-> E'I 
--~E I! l£1 EsE' ·or E' •·> EJ 

If an event E is of the form [ ... <"'"' [reqaea&: ""' reply-t•: ell then eny event E' of the form 
I[ c < ...... [rf'11ly: ... )] such that E •aec•> E' wilt be s.akl to be a mJI. to E. 

We can now define an activity to be a set of events as follows: 

activity(RQ) !! RQ--~ n U{··iRP I RP I•. reply to RQJ 

Activities embody the notion of the nesting of activities that ls produced by conventional programming 
languages. since we only include those events in an activity which contribute to a reply to that request. 
Note that if no reply is ever made to the request RO in the computation, then the activity corresponding 
to RQ is incomplete and therefore vacuous. 

If we let concurrent activities be those whose request events are unordered, then concurrent activities may 
overlap--i.e. share some events. However, this can only happen if the activities involve some shared 
actor which is called upon by both; if two concurrent activities involve only •pure• actors which by 
definition have no arrival ordering and can be freely copied to avoid arbitration bottlenecks, then 
activities are properly nested, meaning that two activities are either disjoint, or one ls a subset of the 
other. 
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The notion of activities allows one to vary the level of detail in using actors to model a real system. Let 
us define a primitive activity as the activity of a request which activates exactly one immediate reply, 
with no events intervening. Thus, a primitive activity always consists of exactly two events. A crude 
model for a system might represent an actor as primitive, i.e. one whose receipt events are all primitive. 
However, at a finer level of detail, one might model the internal workings 9f the actor as an activity in 
which a group of "sub"-actors participate. 

SECTION IX CONTINUATION OBDBRING 

The notion of nested activities can be used to help explicate several of the various notions of "process" 
that have been used in computer science. In particular it can be used to define an ordering on events 
that is important to defining the semantics of programming languages for parallel processing. This 
new ordering is the continuation· order and .will be denoted by -c•n•~>. The continuation ordering is 
important because it captures the usual operating system .notton of "process• in terms of partial orders 
on events. Later in this paper we will show how to. use the continuation ordering to provide a precise 
characterizatiQn of the relationship between the Scott-strachey nlodel and tf:te actor message-passing 
model. 

Definition: If E and E' are events then E •con&•> E' if 
1: There is some ec:tivity a such tlMlt E, E' • a 

and 

2: E ·-> E' 

Note that each event has only finitely many predecessors and finitely many immediate successors in the 
continuation ordering because -con&•> is a sub-ordering of ··>. 

IX.I --- Fork-Join Behavior 

In programming languages for para-Itel processing, it is ·quite common to provide primitives by which 
processing can "fork" creating more parallelism which can later join together. Parallel evaluation of the 
arguments of a procedure· provides a good example of fork-join behavior. All fork-join primitives have 
b;uical~ the same structure. Consider for example, the behavior of a procedure f which computes 
(x2 + y ) given arguments x and y. Below are the two possible histories for an activity of f which 
produces these results where--> is used for the combined ordering: 
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E1: [ f <"""' [roqaa11: [x y]. replrto: cl] 
I I 

----------act-~------- --------act-----------
1 I 
v v 

E2: [ * < ....... [rrqut1111: [x x], rt1plr10: c1J] E3s [ * <"'"' [reqae11: [y y], replr10: c2J] 
I 

act 
I 
v 

E4: I[ c1 <..,.., [re? ply: x2J] 

I 

. I 
act 

I v 
E51 [c2 <-[reply: y2J] 

I 
--------act•------~ 

I ·I v v 
~: [ + <"""' [req11011: [x2 y2], replrao: cl] 

I 
act 

I v 
E7: [c <"'"'[reply: (x2 + y2)l] 
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Note that in the history given above that Es -.ca•> Es whereas in the history given below that 
E4 •0"1·> E6. 

Ei: [ f <"'"' [raq11e11: tx y), replrao: cl] 
I I 

----------act--------- ----•---act-----------
I . I v v 

E2: I[* <..,.., [rt1qut11t: [x x], reply-to: c1J] 

I 
act 

I 
v 

E4: I[ c 1 <"""" [reply: x2]] 
I 
-----act------

1 
v 

£31 [• <- [req11e.11: [y y). reply-10: czl] 

I 
act 
I v 

E5: [ c2 <.,.., [reply: y2]) 

I 
-------------~-----
I 
v 

E6: [ + ·<"'"' [req11e11: [x2 y2]. reply-10: cl] 

I 
act 

I v 
E7: [c <~ ... [reply: (x2 + y2)l] 
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We shall say that £1 is a fork event and that £& is a loin event. In the above computation it will 
necessarily be the case that·E1 -oca-> £&since this ls the only way tbac £1 can be activated. Therefore it 
will be the case that either £4 -oea-> £& or Es ""Gel•> Et· The c:ontim.latton orclertnJ -cont-> enables us 
to present the history of the computation without having to be conc:erned as to :. f:lich ·of the above 
possibilities actually occured. Using the. continuation ordering tfle symmetry of the above fork-join 
computation ·is demonstrated. by the fact that the continuation ordering is the same for both of the 
above histories: 

E1: [ f <- [reqaea&: [x yJ. nplr10: ell 
I I 

-----------cont-------- --------cont----------
1 I 
v v 

E2: [ * (NN [requca&: [x xJ. ra,J.rao: c1D '3• [. <- [N9••11: [y yJ. reply-10: czl] 
I I 

· cont cont 
I I v v 

E4: [ c 1 <..,.., [rr.111 y: x2]] ES: [ cz <- [nply. y2J] 
I . I 
----cont------

1 
v 

£6: 

E7: 

-------cont--------
I v 

[ + <..,.., [reqaelt: [x2 y2J. replrar. cU 
I 

cont· 
I 
v 

[ c <..,.., [reply: (x2 + y2>D 

IX.2 --- Synchronization Betwffn Proowes 

The behavior of semaphores provides a simple example to illustrate the relationship ·between the 
activation and continuation orderings. Suppose that 1 is a newly created semaphore whose capacity 
(count) is initially 0 so that the first atlef!'Pt to perform a P operation will wait until a V operation is 
performed on the semaphore. Jn order to model the behavior of semaphores using message passing, we 
will suppose that P and V operation1 are implemented by sending [P:] and [V:] requests respectively. 
Suppose that Ep is the first event in the arrival ordering of 1 in which 1 receives a (P:] request and Ev 
is the next event in which • receives a [V:] request The &cti\latim and continuation relations between 
these events is shown below: 
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Ep: [ 1 <,.,.., [rnqu.C?al: [P:], rnply-to: c1]] 
I 

cont 
I 
v 

Hewitt end Biker 

E: [ c1 ("""" ~rnply: ... ]] <-act- Ey1 [1 <- [req .. d: [V:], reply-10: cz]] 
I 

cont 
I v 

[c2 <-[reply:'. .. )] 
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Note that Ev --> E since Ev •o'c1·> E but it is!!!! the case that Ey -cont•> E because there is no activity in 
which they are both elements.· 

SECTION X ..... PBOOBDUBES 

X.1 ... :Qehavlor of Procedures 

In this section we would like to characterize the behaviors of actors which behave like procedures. In 
order to do this we would like to use the notion of an ac:tiYity. · 

To make our discussion more concrete we '!Viii con~ the behavior of an implementation of the 
Fibonacci function defined as follows: 

(fib n) = 
(if 

(n = 1) 1/um 1 
(n = 2) 1httn 1 
(n > 2) thttn ((fib (n .. 1)) +(fib (n - 2)))) 

The following history is a partial order of some of the events that mtght resuk from evaluating (fib 4). 
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E1: [fib <"'"' [reqr&elt: [4). replr••: cJ] 

I I · 
I I 

----------cont----:.----- -... -------cont--..--------
1 

. I , 
v 

E2: I( fib < ...... [rPque1c: [3], reply-co: c1lJ 

I 
cont 

I 
v 

I[ c 1 <"'"' [rPply: 2]] 

I 
I 
----cont------

1 
I 
v 

I 
I 

.v 
E31 [fib <- (MrMlt: (2], reply-to: c2lJ 

I 
cont 

I 
v 

Es• [c2 <-[reply: 1)) 
. I 
I 

---~--cont---------, 
I 
I 
v 

fes [ + <..,.., [req .. •: [2 1). replrao: cl] 
I 

cont 
I v 

E7: [ c <"'"" [reply: 31] 
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We will use the notation {l(p <= m) -->YI~ to partially d.escribe an· activity which starts with an event of 
the form [p <..,.., [rP.quP.al: m, _rnply-10: c]] and finishes with an event of the form [c <- (rftply: y]). 

All of the events shown in the above diagram are contained in one activity (which we will name a) of 
fib whose starting event is E1 and whose finishing event is E7. Thus the activity Cl is of the form 
UUib <= [4]) --> lit. The diagram above shows two aub-atttvidel of 11 which we will call II and ,. such 
that the following relationships hold. 

fJ: {l(fib <= 3) --> 21} 

'Y= {l(fib <= 2) --> 11} 
start(6) • E2 
1tart(-y) • E3 

finilh(6) • E4 

finillt(')') • E5 

The activity fJ has events which are not shQwn in the above diagram. Some of these events are shown 
tn the diagram below: 
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E2a [fib (111111 [req••": [3], reply-ao: c1J] 
I I 
I I 

----------cont-------- ------~-cont----------
1 I 
I I v v 

E8 : [fib <..,.., [rPquftal: [2], replrao: c3]] 

I 
cont 

I 
v 

E10= [c3 <..,.., [rnply: 1]] 

I 
I 

Egs [fib<- [reqae11: [1), replr10: c4)] 

I 
cont 

I 
v 

E11: [c4 <-[reply. 1]] 

I 
I 

------cont---- ---~-----cont---~--

1 
I v 

I 
I 
v 

E12= [ + <"'111 [recr••": [11]. re,,lrao: c1D 
I . 

cont 
I v 

E4: (cl <"'"' [r«tply: 2D 

Thus we see that fJ in turn has sub-activities 'Y' and I such that 

"Y': {l(fib <= [2]) --> 11} 

cl": {l(fib <= [1]) --> 11} 
st1rt("Y') • E8 
1tart(f') • E9 

finilh("Y') • E10 
finithQ') • Eu 
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Notice that both "Y and "Y' both satisfy the partial dacription {l(fib <= [2)) -> 11} even though they are 
distinct activities which share no events in common. Uniquely identifying activities has the same 
problems as uniquely identifying objects and eventa: no finite IDcal description wiU serve as a unique 
identification. 
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An 'actor· f will be said to behave· like a procedure tf the following coridtttOn.s hold f0r al.I the histories 
~~ . . 

1: All of the m.s .. naen . of • e¥entt In the hiitory we eitlMir of the fonw 
[ ... <- (rf!qaeat:· ... , reply-10: •.. U or of the' form [- <- [repl,:J]. · 

2: If E Is a requett of the form [ ... <- [,......a: ..., •rt-= cD there ther~ Is at most ~e 
. event E' •,n whtch c ts the ~rget of £.and such an E' must be a rep~J to E . 

. 3: The 11ctiYitie1 of t 'are Pf'Ol*ly-.... I.E. ~· any· two ........ of t It la the UM tMt .tither 
one.llCtlvity is.• proper'aubeet of the other or the two ICMlel ... •Joint. 

An actor ~ wth be said to behave like a fuaCtlon If It Is order Independent arid bet,&Yes like a 
procedure. 

x.2 --- Limits of Coatlnuou l'gn!tloaala . '· 
i I 

.. The actor model or computation ts based on axlomatlllng the causal and tncldtnta1 relattons among 
computatlonal events. The SccJtt-Strac;hey model of c:amputatian II bUecl on the mathematkal analy•ls 
of continuous tunctton spaces. Sup.erf'tctally t"- two ftlGdelt mtgltt lllem to haYe little In c:aftwnon. ln 
this ~ection w~ will analyze the relattonshtp ..,._ dlele ma:d1ll al camputatloft. C>ur main reRllt ts 
that if an actor be.._aves like a mathemattcal fancttan th'91·tt11tM11n1t of a contan•s functlorial tn 
t_he. sense of S(C>tt.. This resuk f~ from tlM maw that each "tnt. has an1J fin~ many lmfnedlate 
successorS:, in the continuation .ordering and the .law or finite chains between two evenb trt· the · 
continuation otdetlng. 

Once again wt will make the d~ss~ concrete by ~Ing the behavior of an "'1plementatl0n of 
the Fibonacci funcu.on d~lned ~J the·folloWtng. procedure: 

(fib n) = 
(if 

(n = '1) thttn 1 
(n :::; 2)· thttn 1 

· (n > 2) thr.n ((fib (n - 1)) +(fib (n • 2)))) 

Definition: Supp0se' 11n 11etor f behattn like 11 IMlt.metlclll functloli IRd that <x y>4plph(f) .nd <x' y'>t1r.,..(t). 
Then <x' Y1> wiH be· Hid to be an imnwdiete fi!"a:!nd"' et <Jl y> ff · 

then~ is JOfM history oft w1.;ch has.._.. E .... E' et ... fonn 
· E: [ f <..,.., [req11e.i1: x, reply-lo: ... U 

E'f [ f <-- (reqae.e: x', reply-ao: ,;.J] 
. . such. tlllet E •act-> E' 
end it is not thll CllS• tMt there is "" event E of the form 

E: [ f <"""' [req~": · ... , reply-to:· ... ]) 
s~h that E -eoftl•) E ·ca1t1·> E' 
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For example <2 1> is an immediate fib-descendant of <3 2>. 

Definition: Suppose that <x y>E&nph(f) 
immediate•descendlntst«x y>) • {<x' y'>I <"' y'> ii lft inuntdiat• f-delcencNnt of <x y>} 

immediate·descendantsfib(<l 1>) = {) 
immed.iate-descendantsfib(<2 1>) = {} 
immediate·descendant'tib(<3 2>) • {<1 1> <2 1>} 
immediate-descendantsfib(<5 5>) • {<3· 2> <4 3>} 

21 

Lemma: If an actor f behaves like a mathematical function and <x y>E1raph(f) then 
immediate·descendants1(<x y>) is finite. 

Proof: Follows from the Law of Finitely Many Immediate SUCcessor1 in the Activation Ordering. 

Definition: If G is a set of input-output pain then 
Df(G) = {<x y>I <x y>E1raph(f) lftCI immedi.t ......... ,c<x y>) ~ G} 

Intuitively Of(G) is the set of all input-output pairs of sr.a.<t> that can be computed •imtnediatel( from 
the input-output pairs in G. For example ~ han the following results for our implementation of the 
fibonacci function 

Dfib({}) = {<1 1> "<2 1>} 
Dtib({<l 1> <2. 1>}) = {<1 1> <2 1> <3 2>} 
Dfib({<l 1> <2 1> <O 4>}) = {<1 1> <2 1> <3 2>} 
Dtib({<3 2> <4 3>}) = {<1 1> <2 1> <5 5>} 

Lemma: If an actor f behaves like a mathematical function, then Df is a continuous functional. 

Proof: From its definition o1 is clearly monotonic. We will use N to denote the natural numbers [i.e. the 
non-negative integers]. Suppose that {Xii iEN} is a chain of sets of ordered pairs so that Xi ~ Xi+t· To 
prove that o1 is continuous we shall prove that 

Clearly 

. by the monotonicity of o1. To prove the set inclusion the other way around suppose 

h f ollo~s from the definition of Dt that <x,y>f1r1ph(f) and 
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The.refore there exists a natural number n such that lmmedi ............. 11C<x,y>) s; Xn since the 
immediate f-descendants of <x,y> are finite.· Thus <x,y>fO,CXn> and 

Definition: A sequence <xi Yi> such that each <xt y1>Ear:IPh«> will be said to be a descending f-chain if 
each <xi+l Yi+l> is an immediate f-descendant of <x1 y1>. 

Example: The following are descending fib-chains 

[<6 8> <4 3> <3 2> <1 1>] 
[<7 13> <5 5> <3 2.> <2 1>) 

lemma: If <x y>f1raph(f) then there are only finitely many descending f-chains beglning with <x y>. 

Proof: Follows from the fact that there are only finitely many events between two events of the.form 
I[ f < ...... [r"'1"•u1: x, rr.11ly-10: c]] and [c <..,,;,,[reply. yl] in the contlnuatlGn ordering. 

Definition: If <x y>fgr1ph(f) then hei1ht(f,<x y>) will be defbled as the maximum length of the descending 
f-chains beginning with <x y>. · 

lemma: If <x y>E1raph(f) then <x y>EDthei1ht(f,<x Y»((}) where Dt" ts the n-fold composlUon of Dt with 
itself. 

Theorem: If an actor f behaves like a mathematical function then Dt ls a continuous f unctiona1 in the 
sense of Scott and 1raph(f) is the Umlt of Dt beginning wlth the empty graph () i.e. 

1r.,,tt(f) • u.tEN o,1m > 

where graph(f) is the set of input-output pairs of f. It immediately follows that 1raph(f) is the minimal 
fixed point of Dt since 

1raph(f) = o,<1raph(f)) 

The above theorem makes precise the physical basts for believing that the graph of every physically 
realizable mathematical function is the limit of a continuous functional: the Law of Finitely Many 
Immediate Successors and the Law of Finite Chains between two Events in the Continuation Ordering. 
As currently developed the Scott-Strachey theory does not account for the the properties of the arrival 
orderings of actors such as synchroniiation primitives and shared data bases. An interesting topic that 
is left open for future research is how the Scott·Strachey theory can be extended in a natural way to 
encompass the physical constraints imposed by the arrival orderings of actors. 
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SECTION XI -· PUTUBB WORK 

When we first began our investigation into messagt"'palSing system we developed the intuitively 
app~aling idea of "actors" as agents which communicate by paal• messages. This intuitive notion 
proved to be too naive a basis for precise technical work In the satnt ._,that the Jrituitive notion of a 
"set" as a collection of objects proved to be too naive .a basts in mat.._tics. The solution has been the 
development of the axioms in this paper whieh are intended to~ as the first step in developing 
axioms which capture the intuitive notion of actors as agents which communicate by sending and 
receiving messages. 

There remains a greaf deal of work to be done in the development of the theory presented iA this 
paper. The "completeness" of the axioms presented here needs to be tntensive1y studied to determine if 
they can be sign if icant1y strengthened. 

A ma thema tica I characterization of the models· whieh satisfy the ax toms n~s to be developed. The 
characterization should include a description of a standard model obtained by a constructive method for 
enumerating all the computation histories of a system that Jalisfy the axioms in this paper. Eliot Moss 
and Henry Baker (50] have developed one such model which preves the tonsistency of the axioms in 
this paper as well as providing a standard model in whieh the axiOml can be interpreted. 

We would like to apply the semantic theory developed. in this paper in several directions. The 
semantics of programming languages for muki·proc:esaUtc problem solving languages such as KRL, 
OWL, PLASMA, SIMULA, SMALl:-TALK, AMORD, and the quaatif~tional cakulus need to be 
rigorously developed. In this way we hope to be able to make prcile technical contributions to the 
"declarative-procedural" controversy. 

There are a number of q~estions concerned with how effieiently actor systems can be implemented on 
networks of machines. Jn terms of the physical tra~ of information there are several ways in 
which an event can be implemented. The information in the messenger can be physically transported to 
the target; the target can be transported to the messenger, or the two can rendeivous at some other 
location. Under differing circumstances any one of the above pouibltittes might be more efficient. For 
example if the target is a smaU function which tnaitfS use ~ a large number of the extended 
acquaintances of the messenger then it is probably more efficient to transport the t~u-get to the 
messenger. On the other hand if the tar.get ts a larp data base Whtch ls searched according to the 
directions of a small query in the messenger, then tt ts ,.....,., . more effieient to transport the 
messenger to the target. Research is needed tO develop dyna'lftk mechanisms for deciding what 
information to transport for computations that are physicaly dlltr..,.._ on a network of machines. 
Hopefully some general mechanisms can be developed which, in prac:atc.. yield acceptable efficiency. 
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SECTION XII -- OONOLQIION 

In this paper we have presented some laws that must be obeyed by the computations of communicating 
parallel processes. These laws are expressed in the Janpap of first order set theory. The actor message 
passing model is based on axiomatizing the caual and Incidental relations between computational 
events where each event consists of recetvlng a meuage. An important advantage of the actor 
message-passing model is that specifications for actors can be expressed directly in terms of the events 
involving those actors. Our approach is different from the more usual one which ts to postulate the 
existence and "~airness" of. some underlying &!9!!! •Kheduler" (21] or "oracle" [221 Partial orders 
provide a means for concentrating on the caual relattons among event as opposed to time relationships 
that result from some arbitrary·interleaving. 

The development of histories in the actor model of computation u panial orders of events as a 
generalization of the previoUs development as sequenc:es of events bas proven to be very fruitful. The 
pa rua I orders -ne•"'.'>, -orr->x for each order deptndtnt act.or x, ...,.,.,.>, and ->. are all physically well 
grounded in the sense that if two ev"1U are o,bserved tobie ,_tedJn a.certain way tn some observa.tion 
frame then they will be. observed to be rela~ Jn the a.me •Yin all :ObservatiO,R frames. Each of t.hese 
different orderings serves tu own purpose. in the model. The followtng table sulhm8riies the partial 
orders which we have introduced to c:Jesertbe the hbtoriel ol computations: 

--> 

mctivatiOn 
arrival 
combined 
continuation 

c...atty between eYellll 
local time of ......., .. of ..... .,.. tent to x 
• ...., .. notion of .......... ,,.... ... .......,. 

""'" attivftiel 

Partial orders o'f historie~ have been used to develop specification and proof techniques for modular 
synchroniuuion primitives [32.Ml The machinery of partial orders of events provides the semantic 
glue needed to relate the specifications arid implementattonl of communicating parallel processes. 

This paper has traced some of the important relationships betw.n the actor message-passing model of 
computation and classical denotational, semantics,; It has beelt proved that every actor which behaves 
·like a mathematical function ls the limit of a cantJnuoul functklftal. Thii result provides a. physical 
basis for the treatment of continuity in the Scatt-Strachey theory of computation. The actor 
message-passing model has important applications for the Ml'lta.nticl of communicating parallel processes 
which will be explored in subsequent papers. 
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SECTION XIII AOKNOWL~QGBMBNTS 

The research reported in this paper was sponsored by the MIT Artlficlal Intelligence and Laboratory 
and the MIT Laboratory for Computer Science under the sponsors .. ip of the Office of Naval Research. 
A preliminary version of some of the laws in this paper were presented in an invited address delivered 
at the Conference on Petri Nets and Related Systema at M.l.T. in July 197&. Some of the notation for 
representing partial orders of events was developed at the Workahop on Language Features for 
Non-deterministic Programs whkh was held in Cambridge. Mass.*• August 197&. This paper is a slight 
revision of the one by the same title presented at the IFIP Working Conference on Formal. Description 
of Programming Concepts at St. Andrews. New BruftlWiek in July 197'7. 

Our research on actors is.an attempt to provide•~ ufldentancUng of constructs for supporting 
modular progra(lls that .have been developed In progfafiitmHlg' lanp•et and operat~ng systems. The 
original impetus for the raear~h came fron.a a~·..._ an~·~ with Alan Kay about the 
SMALLTALK language whkh .... Was .clesipmg. Hu idea • to base all ·computation. Qn 

communicating objects each of whid) can'..have the .....-.. of a, clag!Ja1 .:omputer. The desig11 of 
SM ALL TALK buHt on th~ ~Illa tnsta• di$ttneUoft Gr •IMULA, the 1ep&rati0n of goal language from 
method language in PLANNER, the c0ntro1ideastaDavid1....-s thesis (ft] and Seymour Papert's 
"htrle person" model of c:omputatton. We hatt -.ftti!d to a111atrua a theoni!tical model that encompasses 
these ideas in addition to similar abstractiOns wltleh ha•e been ...... ln lambda cakulus languages 
and for operating systems such as'clomains of proteccton and capabdldes. 

This paper builds directly on the thesis research of Irene Greif. Many of the results in this paper are 
straightforward applicatiO!lS or slight generalilationJ of results in her dissertation. For example our 
notion of an activity derives from the bra4eted sets of events in her thesis.· We are further indebted 
to Irene for the suggestion that the arrival ordertnc of an order clependent actor may be one of the 
fundamental differences between the ~ctor model of computation and the Scott-Strachey model 

Many of the ideas presented in this paper have emerged in the last three yea.rs in the course of 
conversations with Irene Gr~if, Robin Milner, Jack Dennis, Jerry Schwarz, Joe Stoy, Richard 
Weyhrauch, Steve Ward, and "Bert Halstead. BJll Ackerman. Valdis Berzins, Henry Lieberman, Ernst 
Mayr, Eliot Moss, John Moussouris, Bruce Schau, and Guy Steele made valuable comments and 
criticisms which materially improved the presentation and content of this paper. The arrow notation 
used for the different partial orclen is due to Gary Foatel. 
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