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Abstract 

This thesis presenu formal speciftcatiOn ancf·verifkation techniques for both serial 
and para11el programs written in SIMULA-like object oriented languages. 

These techniques are based on the notion or states or Individual objects which are 
defined untf ormly in serial and parallel computations. They can specify and verify the 
beha vtor of data and procedural objects in multi-process environments. thus overcoming 
some of the diff tcukies in dealing with parallelism which characterized previous work on 
formal specifications .for abstract data types. Among others. the specifications and 
verifications of a bounded buffer and air line reservation systems are given. 

Using a model of a simple post office, we Illustrate our specification and 
verification techniques for ·systems, such as operating systems and muki-user data base 
systems, which are characterized by complex Internal concurrent activities. It Is 
demonstrated that the· lpedfltatlotts « the overaff ftlftCttoni of the systerri which we call 
task specifications can be del'tftd· l'rem-~tt&ns·,of the'tndi.tduat behavior and 
mu tu a I interaction of the subsystems. 

A method of .defining states qf indi~idual objects as mathematical functions ls· 
suggested. · 

Thesis Supervisor: Carl Hewitt 
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1. Introduction 

1.1 Formal Specifications and Verifications 

A program specification is a description of the desired program behavior. It is 

necessary to specify what task the program is supposed to perform and what effects 

(side-effects) are caused by carrying out the intended task. 

Program specifications can be written in languages of varying degrees of 

formality. Although informal languages, such as natural languages, diagrams, and· 

combinations of these, help people to convey intuitive ideas about program behavior, their 

inherent ambiguity is a drawback. In order to rule out the possibility of ambiguous 

interpretations, program specifications should be written in formal languages. When 

formal specifications might be difficult to understand, they may be accompanied by 
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informal descriptions of program behavior. 

Formal specifications play an important role in the construction of reliable 

software. They also provide designers and programmers with an exact communication 

meciium for discussing the· properties of program modules in various phases of software 

construction, such as initial design and coding. Funhermore, they can be used as 

documentation during the maintenance phase. A formal specification can be viewed as a 

contract which describes the agreements between the implementors of a program module 

and its users. The users of a module rely only on the properties derived from its formal 

specifications, while the implementors need only satisfy the requirements stat.eel in the 

specifications. 

Program vtri.ficatton is the process of proving that a given program 

(implementation) meets its formal specifications. When a program module M is built on a 

collection of submodules, their formal specifications can be used in the verification of M. 

Actual programs (implementations) of the submodules need not be used. 

1.2 A Model of Parallel Computation 

This thesis is concerned with the rechatques for f orma1 spectrtcation and 

verification of both serial and parallel computatlllns. 

In order to dncuss spedf'Jcatton and wrlficatlOrr: techntques. we must tlearly define . 

the computation model on whk:h the encutian of· programs 1s IJ:Uiid. The computation 

model used in this thesi1 is the actor model of mmputattonCOrelf·Hewttt75.-H"ewttt-BakerT1l. 

which can be roughly characterized as one obtathed bJ genera:lzfng the computation model 
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used in SIMULA-like object-oriented languages• to include parallili.sm. 

The fundamental objects in our model of computation are actors, which unify 

procedures and dat~ structures. An actor is a potentially active object which becomes active 

when it receives a message. No actor treats other actors as objects to operate on; instead it 

sends messages (which are also actors) to other actors. Actors behave like data or data 

structures as well as functions or procedures. For example, a push-down-stack actor pops 

up and returns its top element when it receives a (pop:) message (if it is not empty), and 

when it receives a (pu.11t: e) message, it stores • as its new top element. A factorial actor 

returns 6 when it receives 3. 

The only activity possible in the model is message passing among actors. More 

than one transmission of messages may take place concurrently, which models parallel 

computations. Since processors and processes can be viewed as actors, multi-processor 

information systems and computer networks are modelled by actor systems. In particular, 

distributed systems2 and communicating parallel processes can be easily modelled by actors 

or systems of actors[Yonezawa-Hewitt77, Hewitt-Baker77l 

The concept of an event is fundamental in describing the model of computation 

precisely. An event is the receipt of a message by an actor. A computation is expressed as 

a partially ordered set of events, where the order relation represents the temporal "precedes" 

relation. Unordered events can take place concurrently. Thus the partial order of events 

natura11y generalizes serial computations (which are totally ordered sets of events) to parallel 

l. Besides SIMULA-67[Dahl-et-al70], CLU[Schaffert-et-a175], ALPHARD[Wulf-et-a175] and 
SMALL-TALK[Learning-Research-Group76) are examples of such programming 
languages. 
2 .. Distributed systems are multi-processor information processing systems which do not rely 

on the central shared memory for commun.ication. 



computations. 

1.3 Loeal State ApprOec:h 

.In this thesis. we propose -an apprach. :called ·the 1*1 1tat1 4/1""'4tla. for 

specifying the. behaviOr:of actors (objeets); Jn ~ • ... ..,,..,. an actor in re'Jponse 

to a message ~~s~ Uf*l •he ,asr ltillory of masaps reaei_, :bjt'llie actor. Bj defining 

the s.tate of an actor A as lfJd'IJaln&u; t:iasuJ~_.. 'tbie ,,_. 1W1t16ap lttstortes' ·e1· A. ~ can 

specify the behavior of A in response to a message M in terms of: . 

(I) the-~te of -A .,-.,.. A realives M1 

(2) a .set of mutually catCUnent e¥elltl caused by the. nem where A recetYes M and 

(3) the Qte of A after.A NDeive M. 

Since. we assume. in the rnedel 111 mmpatataaa. that • order or message arrivals 

at the same actor is always total. the etate of an actor ts always ....,...... In bath 1erial 

and parallel computations. ConsequendJ, die .,._.iDr el a acmr In both serial and 

parallel computations _an be specifiecl in,a unifonn a.nner. 

We use the •• ·1otaf' .to .emphasila that our .,,.._ch does not rely on the 

notions. of the globat~k anG Ute global atata el • 1yamlThe use of''glabill states is 

often motivated br .~.~of non·churmtatltk _... ·mmputattons ·u t1nF1mdfrfytng 

semanuc model for paraUel ~tians. Thts lauls to munter-lncatU.e serialization of . 

unrelated concurrent event$ anct a large number of possible cua In analyzing properties of 

I. The global clod is the unique time reference available wkhin the entire system. The 
global state of the system at a given time t (by .the global clock) Is a vector of the, Jtates of 
system components determined at the·ume 8nw: t. · 
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the system. 

In our approach, the behavior of a system. is specified in terms of the tndtvtdual 

behavior of system components and their mutual interaction. Such behavior and 

interaction are described by the states of the system components determined at their local 

times. 

1.4 Contributions of the Thesis 

Based on the notion of local states, the work presented. in this thesis has made 

several contributions to the area of program specification and verification. 

(I) Formal specifications of Abstract Data T'Jpts with Paralltltsm. and Stdt-tfftets 

The importance of abstract data types[Llskov-Zilles7i] in the construction of 

reliable software has been recognized and two approaches to the formal specification 

technique for abstract data types, i.e. algebraic axiomatic[Zilles74, Spitzen-Wegbreit75, 

Guttag75] and abstract model[Hoare72, Liskov-Berzins77] approaches, have been proposed. 

Yet none of the techniques of these approaches are able to deal with parallelism and 

side-effects. These techniques are only applicable to data objects without side-effects and 

they fail to .specify the behavior of data objects which are used in parallel computations 

(multi-process environments). Our specification techniques have overcome these limitations. 

Formal specifications for an air line reservation system and bounded buffers wilt be given · 

as illustrations of our techniques. 

(2) Conceptual Representations 

We have developed notational devices called conctptual rtprtstntattons to describe 

the states of individual actors (objects, and data structures) at various levels of abstraction. 
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The use of conceptual representations reinforces the nation of data and procedural objects, . . . 

as abstract entities whose internal structures are l!klden. BJ aeparattng' the lta~ of an 
, - : ~'. - - - '·- •. - -~ .'~- '. - :")~ t~ -.., • :- . - ; . - -

object from its identity, conceptual representations can express sharing among objects in an 
. . .~ . '" ::·\=~;· - ,·: -~ .:~- - --~-" ' ' 

intuitive, yet rigorous manner. Thus our spectf~tton ~ ,,,.~ i~. ~~ of c:uncq>tual 
, .., . • • c '; -, • • - 7" • 

representations has flexible and powerful expreuiveneu. 

(3) Symbolic Evaluation of Programs written in Object-Oriented Languages 

S 1mbolic nallUJtllm is a process whkh abstractly executes programs on abstract 

data. As the major tool for program verifkation, we ttWYe lli'fetdpi!cf' a Method" f c>r 

symbo1ic evaluation of programs written in SIMULA-like objlct-oriented languages. Our 
.,. ~ . '-

formalism based on conceptual representations enables us to deal with the difficukies due 
~~ ~ 

to object sharing which often arise in verlf~tion ot programs written in ob Jett-oriented 

languages. 

(i) Specifications of Systems with High Internal Concurrenq and Task Specifications 
-_.,. 

Little work has been done on· specifying and verifying the behavior of a system 

characterized by complex concurrent activities of its subsystems. Operating systems and 

muki-user data base systems fall into this ·category. In order to illustrate our techniques for 

d~Ung with such systems. we give a model of a itmple post office where a number of 

customers and .mall-collettors are represented ~ lntemal concurrent activities. We show 

that the specifications of the over-all functtOns of such a system. which we can tasl 

sfHctftcations, are derived from the spedfkatiOl'll of the ~ndtvidual behavior and mutual . 

interaction of its subsystems. 
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1.5 Outline of the Thesis 

Chapter 2 introduces conceptual representations. which are extensively used in the 

work presented in this thesis. The precise syntax Gf Con(eptuat representations and their 

uses in writing format 1ipeeiftt!i:tlons of abstract data types without paraOellsm and 

side·effects are exemplified. Further, algebraic axiomatic and abstract model approaches to 

the specification of abstract data types are discussed In the light of our approach. (Th ls 

chapter does not use the actor model of computation.) 

Chapter !4 gives a precise account of the actor computation model on which the 

discussion in the subsequent chapters ls based. It also describes certain characteristics of the 

behavior of actors which must be considered In the development of specification 

techniques. 

Chapter i presents our specification techniques for serial computation. The 

separation of the identities of objects from their stat.ea ls explained and how this is 

incorporated into our formalism is illustrated before our specification languag~ ls 

introduced with examples of formal specifications. Several other approaches to program 

specification are reviewed. 

Chapter 5 describes our method of symbolic evaluation and Illustrates our 

verification techniques for serial computations based on the symbolic evaluation method. 

The application of symbolic evaluation to other domains ts also discussed. 

Chapter 6 extends the specification language introduced in Chapter 4 to cover · 

parallel computations and illustrates our techniques for writing formal specifications of 

abstract data types with pa.rall1llsm and sttlt-eff«ts. The notion of local states of actors 

(objects) is discussed i~ detail ·1n the beginning of the chapter. 

Chapter 7 presents our verification techniques for parallel computations. The 
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verifications of air ii.ne reservation systems and bounded buffers are IHustrated . 
• ~ • '< 

Chapter 8 contains an actor model of a simple post office. which is an intuitive 

example of a system with high internatc;onCQrrenq. \f&show ta.t dte-, internal activities of 

the post office meet its task spectficationa. 

Chapter 9 mak_CJ the concluding remaru and auem l•re raearch. 



-17 -

2. Conceptual Bepresentatlons 

Conceptual representations occupy ·the central role In the rormal speclrtcatlon and 

verification techniques presented in this thesis. In this chapter, we will explain the basic 

idea of conceptual representations by illustrating how specif lcations of conventional data 

structures are written using conceptual representations. However, as will be seen In the later· 

chapters, conceptual representations are used to describe states of actors of a wide variety. 

In the later part of this chapter, existing specification techniques for data structures (data 

types), such as algebraic axiomatic ones, and an abstract model approach, will be dlscusSed 

in relation to the techniques based on conceptual representations. 
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2.1 Introduction 

We will use conceptual representations to speclfJ a wide range of data Jtnl(tUres at 

various levels of abstra~. The. motivation In dnelaptng canceptual representations ls to 

provide a specification language whkh serves as a good Interface between programmers 

and the computer and also between usen and trnpleinintofL··· A'~ ~ce bguage 

should allow programmers to easllJ express and understand their intuitive concept of a data 

structure and how It behaves for various operations. For example. the "language• of 

diagrams using boxes and arrows is a very good ianguage in whkh people can exchange 

their intuitive ideas about the sharing relationships among objects. However, such a 

language Is not rigorous -enough for the computer to understand without many hidden 

assumptions. The specification language baaed on conceptual representations Introduced in 

this chapter is rigorous and yet able to express graphkal intuitions about data structures. 

Different degrees of awareness about the Implementation of a data structure are 

required In the different activities of implementing a system such u the Initial design, 

coding, and the subsequent evolution. Conceptual representations are flexible enough to 

express only the details whkh are Important In each activltJ. As mentioned above, 

conceptual representations are not confl~ed to ~fytng data strucblrea." They are used to 

describe states of both procedural and data objects and also used to express views and 

summaries of behaviors of such objects. Examples~ IUCh ~representations wtD 

be found in the later ci.a,ten (e.g., Chapter 6anclChapter11 ".· . 
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2.2 Conceptualization of Data Structures 

In this section, we explain syntactic constructs of conceptual representations uslng 

simple examples. The BNF syntax of conceptual representations is given in Figure 2.1 at 

the end of this section. 

2.2.1 Keywords and C-packages 

Let us consider a simple data structure, a cell, whlch contains information that can 

be retrieved and updated. In order to express a cell which hu its contents, say 10, we use 

the following notation 

(CBLL (co111e111c 10)). 

This ts a conceptual representation of the ce1t. When this cell ls updated wlth new . 
contents, 12, its conceptual representation becomes 

(CBLL (eon1e11u: 12)) 

A word .. CELL.. in the above conceptual representations ts an example of the U,Words 

which express the conceptual types of data structures. The keywords are always spel1ed In 

itaUc capital letters·. 

In addition to keywords, another syntactic construct, conetptu.al pad.a.gts 

(abbreviated as c-pad.a.gts)1 is used to express more detailed information about data 

structures. A notation ·ceon1ent1: •.• ,- in the conceptual representations for cells ts an example 

of c-packages. C-packages are useful to distinguish conceptually different kinds of 

I. The syntax of c-packages are borrowed from that of pack.ages In PLASMA 
[Hewitt-Smith75. Hewitt77l 
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components of a data structure. For example.,,!,,~ .Ill~.~ c('.~ISP ~ two 
.;- . .,_, ," . ' -. ~ ,,,__ . -· 

conceptually different kinds of companenta. the car-put and the air-put. The f ollowlng 

eo1aptual utpnrsaetattan 

0 expresses a node whose car-part and air-part are IO and 12, r.pectlffly. ec.r: 10) and 

(e4r: 12) are c-packages. Seledor1 of pacbges (e.g • ..,. and -..) are alwaJI spelled in. the 
: .. ' ,. , -'~ .. -::; '- . . -: . ~~ 

lower cue italic letters followed by a colon. 

Whelt the. daall• ~ fJI. ............... ._··et a d&ta· ltl'UclUre are 

unlmpaltant, bot their flldllelltlt ilt thnla.a lb'rilflV ,..>i9ii•ttoiat,....,._. "*4s may 
be placed in conc:eptual npraentattons. F• example, Whlll we want fD : ... a ·Rade'·· 

whose car-part Is IS, but air-part may '"'~g. .. 
may be used. We can the question marks Ulld'tlr:WS hy ...,..,_ ~-

2.2.2 C-aequences 

There are many data atructures which are naturally Ylewed u a U...,. ~·of 

components at some levels of ·~·,._, ~ ~, .. ~~ tablll ~ etc. are 

examples of such dU. structuftS. ",To~. ~I,~•·..- of mmpanents In 

data structures. we use a 1~ ~ ~ ~ ~iatecl as 

C-Sdfun&e•s)) 

I. Spedftca,Uona of fontU In ALPHIJU)[Wulf'~] ate ...a In amms of ~I 
ob jeCts such as aequ8nces Uld 1et1. ·· · ·· · · · · · 
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Let us consider queues to see bow c-sequerlceS ~re used. ·Programmers envisage a 

queue as a linear.aequence of elemenu whtclfare ~ at 8ne .a .... cteqt,euea· from 

the other end. Suppose that we have a queue constsdng of three elements. I, 2, and S, where 

I is its front dement ud S Is its l'llll' elemeM.: Ullllg a ~· [l: 2 SJ. this queue Is 

expressed by the f ollowtng canceptlal r1Pfesentatlen. 

WUBVBP23D 

When a new.element <l l1.eq1..- at·the nu atcl GI dtta ...._ ttwts ..- ls expressed as: 

(()UBVB (1 2 3 4J). 

2.2.s Unpack Operation• and Dot Notlona 

In order to express a queue whkh has an Indefinite number (Including zero) of 

elements, we use a c-sequence variable, say x. in ~I npramtatlonl as follows: 
-.. '<'. .-

. (QUBUB ClxD 

!xis an abbreviation of the •unpact.• operattoa an-. 

In general, l<..,,••i•n>. ~ .equ;tva,Jent ........ :GUI aR.<Df· :* • nenta at the 

c-sequence denoted. by <eJlllr:••••m iftdivklaallf.. :1cm~•.,..llJJ1 Fl'H tltat • ...... a 
c-sequence [2 3 4). Then 

(1 Ix) • [1 1(2 3 4ll • (1 I 3 4J 
~ . 

whereas 

(1 x] = [1 (2 3 4ll ,. (1 2 3 4). 

When y denotes an empty c-sequence ll 
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[l IYJ • (1 1JJ • [1~ 

Thus (Q(/EUE;[lyJ>.ls equivalent tD CQIJMlll lD'•hkh -~ .. COIKEpbAI ...... don or: 
an ~yqueue. 

Let us look at llKll'e ·elaborate aampta el cancepblal· ~ of .-mes 

which use unpack operations and c-sequenca•....,. n. . .-~a·~ . . 

((}VlfUB (I lzD aad · if(/Bf/S [la tJ> 

express a queue whose front element ts 61 ....... ·bythe tlai!.,..d' a and a 4'8e •hose 

last element ts 9, respectively. 

(QUBUB [Ix I ly)) 

expresses a queue which has 8 as one of its elements. When the elements before and after 

8 (I.e. !x and ly) in the queue are uninteresting, the rOnowlni ~·~·~representation may 

be used. 

covrv1 c- • -J> 
-· . 

• ... • inside the c-sequence is called a dot notGllon: In general. dot notations are used to 

Indicate only the existence of an lndefUtlte """"'*: (indtldlng zero) or etemenu whose 

spectficatlan ts t1ot important tn·a i.........- or c-<rMetttan. (Cf. U4 ) DumnlJ element 

notations mar be u• u .tawsts el c~ FOr aalnple, a ~I reprell!ftladDn 

(QUaJB [T 3 4 ID 

describes a queue whose front elemellt ls unknown ( or unimportant), and the rest of whole 

elements are 3, f and 5. In this order. 
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2.2.4 C-collection1 

. . 
Another syntactic construct of conceptual representations is conti/Jlu.al colltctton.s 

(abbreviated as c-colltcttons) which are used to represent a conceptual ~p of compooents 

in data structures. C-collections are different from c-sequences In that the order of 

elements in c-collections is unlmPortant For enmpie, a c-coliectkJn · 12 3 7} Is equivalent to 

both {2 7 3} and {7 3 2). • C-collectlons are also dirt.- r~ ~thematlcal sets In that 

multiple occurrences of the same elements In c··collec;t.tont, •,important. I• example, a 

c-collectlon {2 2 7) Is not equivalent to (2 7). 

A simple example of conceptual repr~'-tlDn4 -..c.-collecttons ts 

(SIT 13 4 !S}) 

which expresses a data structure of the type •set• whose elements are S, 4, and 5. An 

indefinite number of eleinents ·Or a c-collediofta' earl bl :eXpfessecl by ·~ unp&clt operations 

and c-collection variables. Thus a general form of the ~f ~resentatlon for the 

data structure •sec• may be expressed u 

csrrttxJ>. 

C-collections may be described by using dummr ellftllftt n....,.. T add dat netatlons • -·· 

in the same way as c-sequences. 
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2.2.5 P•ttern M•tchhtg 

Unpack operations are extremely urdul In pattern rnatchillC of C'."'~ and 
. ,., -~~ - - '' . . 

c-collectlons. Below we wlO give buic examples o1 paaem ~. lftltad of ~ting 
- ' -oo'. - <'-- ~~ - - - -

the matching algorithm. 

Suppose that a c~ ol fciur nu~ [1 _9 I 4) ~, apimt the foQowlng 
-: . ~- " ; --.: ; -'~ :;_"_-·. ·:·-_· \~·-__ ?,·,-;, -~ ~- - _- ·', 

patterns, where u, v, and w are ~ttem. (or f~) ·~ ~: c ,.,.._... 

(1) [1 la). 

(2) 

(3) 

(4) 

(5) 

(!v I 4). 

[lw). 

[!u I Iv), 

(1 9 I 4 lu), 

v .... h(91·4). 

y....., .. (11). 

·, w ..,.:w (1,IS:4J 

UeM Y ........ u •J~,(4),,...JIHlf..ay. 
u..,.6e[). 

Suppose that the same c-sequ~ matcbes aca•;~.r~ ~ w-.,u and N 

are pattern (or free) var._.,les on numbers. 

(6) [M lu], 

(7) [lu NJ, 

. . . 
M.U u 1111U16e l .M (II 4),rn,_.,,917. 

u .U N ...., h"ll:t •ltllll 4, ,.,,.,.1.My. 

But (1 9 a 4J does not much . ....- the fellowlftg .,...._ 

(I) [MN]. 

Some patterns may have more than one matching cue. Far example, when (1 9 I 4] 

· matches against 

I. The use of pattern matching In our specif kation and verifkation techniques will be 
exemplified tn the process ol 1ymbolk evaluation In Chapter I. 



(9) (1 !u M !v], there are three matching catea: 

Ca1e-l: u = [], M = 9, v = [8 4). 

Caie-2: u = [9), M = 8, v = [4]. 
Ca1e~3: u = [9 8), M = 4, vs:(]. 



« 

<keyword> ::- i • ~ .. IM.,... -- .... .,... I 

<eonceptual-constttuents> ::- can-entity> I c-sequence> I <C'Gllledlan> I ~ 

can-entity> ::• I • ..,..,_ .,....,.,.._, _,,._ tsMeA .. .,._ e1i _.I 

cc-sequence> ::• [ <juxtapodtian> ] 

cc-collection>::• { <juxtapolatian> J 

cc-package-sequence> ::• «-package> I «-package> ~ 

<juxtaposition>::• <element> 1-celement> <juxtapmldan> 

<element> ::• <empty> I <an-entity> I ~ I c-c:Dllecdon> 1 · 
cc-package> I <Uf!packed-c-sequence> I 41ot-notadan> I CllllllnJ elmnent110b1.tion> 

<empty> ::• I - ••"'Y """• I 

cunpacked-c-sequence> ::• lcc-aequenc:e> 1 lc....,.a-nrlable> 

<dot-notation> ::• _ 

<dummy~lement-notatlon> ::• T 

<e-sequence-vartable> ::• I a Wndfler fa aAe,...,.,. ,.... ,_, S 
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2.3 Specifications of Data Structures 

In this section, we exemplify how conceptual representations are used In 

specifications of data structures. An abstract data type D..lsk.ov-Zi11es74] or a data structure 

is specified by the functionality (domains and ranges) of the applicable operations and the 

effects of these operations. If the data structure may be created by users, how it ls created 

must be also specified. In specifying functionalltles. a notation •nror• ts used to denote a 

set of error messages which warn users of operations that an error has occurred. We 

assume that data structures are not changed by operations which cause error·messages. 

2.3.1 Q.ueues 

Ai suggested In the previous section, we use conceptual representations of the 

following form to express a queue. 

A complete speclficatlon of queues ls given In Ftgure 2.2. 



Ftc. 2.2. A Spedflcadem el (bletla 

nJNCTIONAUTY: 

i) ~TE-QMl&llt . --> .... 
jjLI ............... 
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H) ENQUEUE& ~ x Una --> """' .. 

;enqueues&, MW Item at the.rtU md of the ...... 
'! . CL"'- ..., "' < 

lH) OEQlEEa ""'" -> ltnl x .. fll'U . .. ,,,., ;trtes•.._. the,,_,......_ or d.e .-... 

;if the queue II '!"PlY• an .... m mp II,....._.. 

Iv) IS-EM'TYs fU1W -> toalMa 

tchecb ........ ar nclt the ...... II ..J. 

«Fl'ECTS: 

CU CREATE-QUEUEO -> tl}VWS OJ 

(2) ENQUEUEC((J(laJa (Ix]), A) -> fl,JfmfJa [Ix AJJ 

(4) DIQlE.E(C(JUBUS (A Ix))) -> <A , WJ(Jala (lal> 

CS> IS-Dl'TYCC(l(l.UB ())) -> ftUB 
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2.s.2 Sets 

A typical use of conceptual collections In canceptual representat1an1 II the data type 

•set•. The following four operations are a11Ddat84\-·Che *type:·· 

FUNCTIONAU'IT: • 
I) CREA TE·SET1 -> Sit 

H) INSERTs 1lllftnlt JI sit -·> sit 

:tries to inmt an elemenJ, 
;tf the element ta already In the 11t, no .rrm. 

IH) DELETE: 1lllftnlt J1 sd -> sit w mw 

:tries to delete an element from a llC. ,--. . , 

;if the element ia not hf die 11t, error. 

Iv) INTI 1lntnt x Sit -> 6ool1Cft 

.-checks whether or not an element II a ll'lllRber or a a 

The effects of these operations are formally dela1bed In Ftgure 2.9. Note that the 

membership of an element in a let ia apnued IUCdncdy by clGt ~ In c-collectlons. 
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Fir. 2.1. A Spedflcatloa ef Seti 

BFFBCTS: 

(1) CREATE·SETC>- -> .warn>. 

(2) INSERT([, (Sri" {Ix))) 

if x • ( - E - ) -> (Sn' {Ix))-. 
if x .. ( - E - ) -> (SD' It. ~J 

(3) DELETE([, (Sri" (Ix))) 

ifx • {ty E lz) -> CSBrllJ.9')) 
ifx .. { - E - ) -> BllllOJf~' 

(4) INT([, (Sri" {Ix))) 

if x • { - E - ) -> .t'RUB 
if ... ,_£_) ->. ,., ... 
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2.1.1 Arrays 

The f ollowlng five operations are UIOdated with the array type. 

FUNCTIONALITY: 

f) CREATE•ARRAYs lnt1pr· x lfttlpt' ~> """'I or nrw 

;tries to create an empty array with the lptdfled tdel- and upper baunda. 

;the first Integer should not be peats than tht,~~~~~ 
.. :... • <. • :;.•'"-: • • 

Ii) STOREs 4"tl/J x tnt1pr x Una -> .,,., or m'fW 

;trill to store an Item with the specif led 'ltdei: 

;the Inda ..._... be"wtddit lhi-.... 
IU) FETCHs •rrt//I x tnt1pr -> . U'-91 or . "1• 

;tries to fetch an Item with the specified index 

;the Index should be wtlMn •......, 

Iv) 80TTOMt """' -> ,.,,,., 

;returns th.e lower bound. 

v) TOPs 4"tl/J -> lnt1pr 

;returns the upper bound. 

To express arrays, we use conceptual representations of the followk.g form: 

(ARRAY U.. I) CW,A: h) W....,. 1...(1 A)-))) 

where I and hare the lower and upper bounds, respecd•ely, and an Item A with the Index I 

ts expressed as a c-sequence p A] In the c-col1ecttan of the W.-• ) c-padtage. The 

effects of the operations applicable to an array ls ctven In Figure 2.-f. 

Multi-dimensional arrays can be expnaed tully by modifying c·aequences In 
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Fig. 2.4. A Speclficatioll of Arn71 

Bl'l'BCTS: 

(1) CREATE·Af'RAY(I, h) 

if IS h, -> (ARRAY,.. IJ CMirlir h).W..,-0
{})) 

if I > .tt. . -> I~ " , . " · , . 

(2) STORE((llRRAY u .. I) lM•'= h) w. .... liXJ>~ I, A) 
If I > h or I < I, --> BllBOlf 

·if ISIS h tind x •(let [I !JW} 

. ........... 
-> CARR.tf U.. Q .... ,:ftld•r11 traQd (tiA) le2))) 

if I S i S h tind x w' ( -· [I!) - ) I"'- 1M HA_,....., '-- ..a ..U.. 

-> CARRlt ... il~h>W~-~•lL:OAiJ)f'. 

(3) FETCH((ARRAY U..: I) CW.It: h) ~!'llf.lf•,~Jl ..... ·1,. 

if I > ti or I < I, -> BRROR 

-> a 
................ 

If I S I S h tind x • ( - [i 8) - ) 

If I S I S h .afttl x ti ( - [I f) - } -> BRIOR ................. ..__ u w /-..L 

(4) BOTTOM((ARRAY (lw: I) CM•'= h) W••••.c (_)))) . -> :. I . 

(5) TOP((ARRAY (I._ I) CM6A: h) We.-.:(_}))) -> h . . ~ ~: - - . ,-

/ 
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the (elenaenu: ) c-paclage to include more than one index. For example. a two-dimensional 

array may be expressed by a~tual representation of the foftowlng form 
••• • ' • ,". >. 

2.5~4 .Symbol Tables 

As an example of speclficattona for n-. -.111:aa.1 dita"ltl*CtUfes. we give a 

spectfica_tlon of sym"1 ~~ [Gu~?S. ~~"1'11761 §~~·~~ten .used in 
",.. .... , - - .. ' 

writing compilers for programming languages which have ALOOL-ltke block structures. A 
~ f .__i ~ 

symbol table records pairs of an ldentli'tet and 'ttl a~ The ame identifier may have 

different attributes dependqllpml ...... the ............. ~.~-'tiloc:l ~. we· 

assume the followtng six operations are l.fJPIP'* I~ symbol table. No aperatlona except 

ENTER-BLOCK are allowed before the most global black. la .-.s. The aeatlan of a symbol 
~ , ~. . ,-~ "f- - , 

table does n0t tmpty the eriterifig or the MOit global black. 

FUNCTIONALITY: 

I) CR£ATE-SYMIOL•TA8Lit --->.jl)Su:Wl.tlt 

;creates.an empty •Jlllbol table.. 

;no block hu been entered yet. 

Ii) ENTER-Bl.()CK} !Jlftbol·tabll ~:-_-> ~..,..,. .. , 
;set up a new local naming scope. 

HI) LEA~·Bl~ """'°'·tabl1 -> l'Jllfllol.fc6ll or mtW 

;tries to leave the current block. 

;If the current block ts outside the mGlt clabal one, then error. 

;otherwise discard the current black and reactlftte the ·most prnlous sa>pe. 
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Iv) ADDI s,.W-t"'111 x Id x attr111Kt1 -> J711fbol-tdl1 er, ,,,-,,, 

;tries to add a pair of an Identifier and its attJ'lbua . 
;if the current scope Is outlkle the mo.t global block, then error. 

;if the Identifier ·Is alrelidf det1ared 'lft the curttht-b10cl. then error. 

v) ~IEVE: s,.W-tabl1 x Id ·-> attr.lbut1 or ,,,,,, 

;tries to retrieve the attribute of an Identifier in the most recent 

;block in which the identifier Is dtdand. 

iif It Is aot .. faunll,dMltl error. 
. . 

As a conceptual representatian for the syrribOI table. we 11111 the f ollowlng notation: 

(SYMBOL-TABU [lxJ> • 

• ts .• c-sequence •hole elemmta are empty or .c-pMbges er 1he fmm 

which conceptually repr~ts a block. .The order of ,c-pacbgel ~. ~. corresponds ,to the 

order of blocks. That ts, the last c-pac:kage in x corresponda to the most ~t1y entered 

block. y ts a c-sequence whose elements are pain of an Identifier and itl attribute. SUch 

pairs are expressed by a c-sequence. F• ellllnple, tuppme t1lat a. lliriie'1»1od. Identifiers A 

and B are declared to be real and Integer, rapedlftfr~ · Then the canCeptaal representation 

for this symbol table looks like: 

(SY MBOL-TABU [ --- (-(A NII) - (l·~~ .... J _j) _J). 
, . 

Using ~tual representations of this form, a spedf'k:atian of aymbol tables II written u 

depicted in Figure U 
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Fig. 2.5. A Specification of Symltol Tabla 

EFFECTS: 

(1) ·cREATE·SYM80l·TAILE() -> (SYM.80£-TA81.&DJ 

(2) ENTER-BLOCK((SYMBOL-TABLE (luJ) -> (SYM.m£-J'Mll,&[18C61•• [)))) 

(3) LEAVE-BLOCK((SYMBOL-f'ABU 0)) -> BRICOR 

;leavtnc the mO.t global block (•ithout enl.tnc>-

(4) LEAVE·BLOCK((SYMBO£-TABl.I: (lw (tlod: [-]JD) -> (BFMllO£-TA8U [lw]) 

(5) ADO((SYMBOL-TABLE []),ID, ATT) -> l:UOR 

;a~ding an id-attrilMlte pair wtthourCtlliitftC tile molt etnbal block.· 

(6J ADO((SYMBOL-TABLB [Ir C61eei: [IP*IJ>JJ. ID, Am ... 
--> ERROR ;ID .. alradJ declared In the ~mnt .,lock. 

~ ' ·' '• ~ ' '' ' ' ' , 

if pllin " ( ... [ID f] - ] 
-> CW M.89£-TABU: [Ir .,_. [f1111lra(IO AnDJJ> 

(7) RETRIEVE((SYMBOL-TABLI: [It]), ID) 

if t " [-.C61oci: ( . ..(ID ?]-)) ... ] --> BRROR 
,· 

;the identifier Is not found In an1 b~ 
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2.4 Relatl ...... p to Ott.. Wark 

In this section, we discuss the relationship of our lfMldf icatian techntques ror data 

structures presented In thb ch.,.t:11f-Othet . ..-t.'in"tlte -...aftlt. "\We-fiaft·Chosen . 
to consider an algebralt axtomatk appraach and an ablb'act madel approach became these 

two appr0ac:INS ltft'·IR deaf~ t0 odtl· Md allii.n; ~fats .. :An .. t survey: of 

spedficatlon techntques for abatrad data tJPll b rounc1 In -~-Zt,..m . Other 
-· - ~ -. .,: .· ·: i--, '- . :-,, --''; ·- -· .. < - -..."" '-~"' 

approaches such u Pa.mu's •state. machine ~,:~?'a-:,;~ ¥o reviewed in 
.· . ... . :I 

ll.tsk.ov-Zilles'75l 

· 2.4.1 Algebraic Axiomatic Appraeda _ 

Algebraic _axtoma&k ....,_. . ._. ,.,... .. ndtllil .'f»J ··a nutrlber Gf researchers 

CZilles7f, Spttzen-Wegbrett'75. Guttag'15, W~?&l In. thb .~, tM ~fects 
·.-··o-;- -.~:·,· ~.- .. :~~-:t"¢'-·-~:- .··~-:..,f1.:'1·-"'. - ·_ ,,-i'."~' ·-.~ · ... !/ •• 

of operatlon.s on an object of_ t~ data 'type-~ 'lpecarled ~ ~p~ in terms of 

equatiOns .· ~ lhe operattons." .. t"o". ~ tt.ek . .,,,.,_.. ~ °"""'we ,~,'. t1'C) 
~ I. ' - / -

algebraic axiomatic ~jql~ ~ /'lf _quf!tl9.-~;~-•··:tt;.madlfted venion of 
-· > • - • ····" -

CSpltzen-Wegbrett75D tn Figure 2.6 and the other for IJnlbul tables (w"kh a slightlJ 
• -__ ~ ~ ~ -·!_ ·- .-,, ~ ... _:~_:, _-.. ~~-~r~, .___~ -~ ~- -
simplified version of [Guttag75D in Fipre 2.7. 

All the axioms given tn their spedftcattani in Figure 2.8 and_ Figure 2.7 are easily 
.. -·- .t:·f~-~ ·;--:.: ·~ !. :·~r:...>:. -. ~-· : ~- ~ .i • L. -: . -~; 

derived from our spedfkattons of queues tn Figure 2.2 and 11111bol tables in ftgure 2.5. 

[For the dertvatton of ttt. ~tam f.n· itf :Papte' d: ~,_.,.l~bt "Yi We"belteve that · 

specifications using conceptual representations are often easier for programmers to both 

l. In this chapter, we assume that data atructures or data tJPll are alwaJI med in serial 
computations. Our techniques for data ltrUdUres (or abllnd: data tJpeS) With ~ 
and sUU-eff«ts wan be pr_..lat tn the Ider chaplma. 
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Fig. 2.6. An Algebraic Axiomatic SpectflcaU.. of Qf1e9e1 

FUNCTIONALITY: omitted. 

AXIOMS: 

(1) IS-EMPTYCCREATE-QUEUE()) • TICUI 

(2) 15-EMPTYCENQUEUE(Q, A)) • F ~£SB 

·. 
(3) DEQUEUE(CREAtt-QUEUEm • SRROR ...................... ,,,y ...... 

(4) lf IS-EMPTY(Q) t"7a . ~(ENQumttQ, A))• <A, 0> 

(5) lf -.JS-EMPTV(Qt A O!QumE(Q) • <I, Q'> 
tJ.111 OEQUEUECINQUEUE(Q, A))• <I, ENQUEUE(Q', A)) 

construct and understand than algebraic axiomatic spectficatlanl, because In the conceptual 

representation approach we describe dif!Qlx UKt .,...., •~II effects take place in data 

structure.a (at the conceptual level) when the operations are applied, whereas the algebraic 

axiomatic speciflcatlons· describe the effects of .. the-.opera.tlfns indkectly· and Implicitly In 

terms of relations (or equations) among the operaUana.. In partlcular. -~ aJdGm Cl) for . 
symbol tables in Figure 2.7 i~ expressed m terms· of a,....._ of ~ Such lncUrect 

specif lcations are often difficult to grasp. ThUJ the autw Jac1. reader, or an algebraic 

axiomatic specification of a. data type may be ._ ~ftdtnt -... to w,.._ er not the 

spectfication completely describes t~ datredproperl,ttl of the• type. 

Recently .. a serious . problem In the . atpbralc ~ hu been pointed 

out(Majsterm The problelR ls that there are sonw. ~ of abltract data lypel which 

cannot be specified by a finite set of axloma ror the operations (equat1on1 of the 
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Fig. 2.7. An Algebraic Ax .... tlc Speclflcattem of S7•llol Taltlll 

' ' ; 1io' .IJ. 

IVNCTIONAU'IT: ondtled. 

AXIOMS: 

Ct) LEAVE-BLOCIC(CREATE-SYMIOL·TAILEO>.• l'BDR 

Cl) RETRIEVECAIJD(qMtlb, Id, .tin), ldt) 

If Id• ld1, 
tAn lffra 
d1'aEIRR~Wl) 

operations). To avoid this prablem,'they rmnt uie atoa ·~ tmrad ot Infinitely 

many axioms. Thll •to1ate1 the ftnlBlesi · f4 ·tie uiain u • whleh fl an·· important 

assumptton of the umlertylng·theOrf tor alpbfaic ~tlithn1ques. Our mkeptu~l 
· representation appreach doel nor ba'V~ tud\. a pl'Cltitem, ~·ill. ~'dalMid ~Y' .Olar _ 

techniques destrlbe expltddy what effects tfle '.Cljieratlanl ·Clute tb data. ltrUdUres. (In 

appendix II, a data type whtdt cannot le .Xpreaed by a flrille iilt ot a1gltwaic uloms of 

operations IS spedfted bf Wing CIDftalPCUlll~) 

Furthenncn. the mrrmt alplftlc ad ·dllmitlc .......... dO nat capture an 
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important diff erer:!ce between data structures wttbout Hde=effecg and data ltrUCtUres !!llh 

side-effects. (This difference will be explained in Chapter 1¥-,,·# wll·be- la'Ohapter 

-f, the specif tcation technique using conceptual npramtadonl can easily express this 

difference. For further dbcussionl on the alpbralc appraach. .. S«tlan f.i:l t:ttapter f. 

B. Liskov and V. Berlins 0..iskov-Berztns'TQ,.._ve ban developing an abltnct 

model approach in the area of specification of abstract data lJP& The mmtructlon of Its 

mathematical foundation ls underway CBerztns76l lit lfdl apprac:h, flnt a certallf set' of 

well established data types and mathemattcal objectl [e.g .. 11t1, .......-. tuples and etc.) t1 
._, "':' '-~ '_ . :_ - ) .,,. . ' •' 

chosen. Then new abstract data types are spedfl!ill In terms_ of MICh chOlell data types or 

already defined abstract data types. 

As an example, we give an abstract model spedfkatlan of arrays cited from 

CLiskov-Ber:dns77J In Figure 2.8. Objectl of the type .....,P] are repre.nted bl the 

following tuple: 

tupleClow: intepr,. 
high: tntepr. 
e1eliw!iwtii:·~: integer, value: t]]] 

Comparing the specification in ftgure I.I wtm the OM'JIYtn In Figure 2.f which Is based· 

on the conceptual representations. one Is struck by the nmtlaritf. In fact. In representing 

objects of ··a new data type. the roles of sequence, lltl and tupta In their approach 

correspond to those of c-sequences. c-collections and c-pacbps In our appnach. However, 

in the abstract model approach, the operations applicable ID ob jlctl or a n~ data type are 
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FIJ. 2.8. Aa Abstract Model SpedflcaU.. flf Ana71 

FUNCrlONAUf'Y: omitted. 

OPBRATIONS: 

alloc(il, 12) • tf II s 12 then {low: ti, high: 12. elemel* <>} 
else error("bad array ui 

ro •••••• ... ..,.,, •••".• ~ (..} •••• •. ..,,_, .. 

bottom(a) • a.low 

top(a) • a.htgh 

store(x, i. a) - If a.low s I s Lhlgh . 
then { low:· .. ~ 

high: Lhtgh 
elements: add(USt((Anda: I, value: x). a.elements) } 

f etch(l, a) • tf a.low s I s a.high then getvaKa.elements. I) 
else error("lndex out of bounds, 

getval(elements, I) • If length(elements) > 0 then 
If elementlf·tracMa • Uhll'I elementlf.Yalue 
eta ...,.....,1-.(rhFllmtl), I) 

else UNDEFINED 
,etementsa ...., ,.._ /fnl ..._--t • n111 •11 •11111.t ~ "ekane11ts• 



- 41-

specificed In terms of proe1du11s defined on pre-defined data types. Getval, addf lrst, and 

butfirst in Figure 2.8 are examples of such procedures. In the conceptual representation 

approach, we do not use such procedures in specifying the eff ecu or the operations. 

Instead, we rely on pattnn mttknl.nns of k~s, c~ c-collecUons •nd 
·: ' . . ,, ,,_ ·, ~ ; . __,,. ~ :~ ,;_ - '-, f"' < •• • •• ; , 

c-packages, which have been nemphtled by a number of specifications. 

As was pointed out In the previous IUbaection, our appreach is extended easily to 

cover data structures wkh side-effects. The exlmdablUty of the abltract model approach 

remains to be seen. 
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3. Behavlora of Aotora <A Modal.of O°""pa~~lon> 
~ .. '. -'. - ' 

In this chapter, we introduce the model of dftnrnlnlstU computation on which the 

discussion in the rest of this thesis ts based. The first section mainly contains definitions 

and intuitive accounts of various concepts and notations employed in the model of 

computation. The second section . describes the characteristia which must be consider~ in 

trying to construct formal specifications of computations in the model This section 

contains the classification of interactions among actors. 



3.1 The Actor Model of Computation 

The fundamental objects in our.model of mnpulatton are·cttors. Computations 

are carried out through meuage passing betwnn actorL ·An·aaot ls•• ·potent1a11y active 

object (procedure) which becomes active when it receives a message. . Each actor decides 

itself how to respond to messages sent to il No actor can treat other actors as objects to 

operate on: it can only send a message to other actors.I 

M.essages are also actors. An actor may be created in the course of computation or may 

exist in the beginning of a computation. More than one transmission of a message at a 

time in an actor system may take place. 

A coHection of actors which communicate and cooperate with each other in a goal 

oriented fashion can be implemented as a single actor. A system of actors can model 

various· kinds of information processing schemata from ordinary sequential arithmetic or 

symbolic computations to highly distributed parallel computations including computer 

networks of varying scales. Furthermore, it can model problem solving activities by a 

society of expertsEHewittm 

A number of concepts in programming systems can be captured by simple concepts 

in the actor model of computation. For example, traditionally different kinds of entities 

such as data, data structures, files, and procedures are unified as a single kind of object, the 

actor. Control structures such as recursion, iteration, and coroutines can be viewed as 

particular patterns of message passing CHewtttm Furthermore. calling a procedure~ 

returning a value, retrieving and updating data strudllffs. and synehr0nilati~ and 

co_mmunication of cooper.ative parallel processes are achieved by message passing. 

I. For example, to get the i-th elemeilt or an array A. an U-ak) message is sent to A instead 
of doing a fetch operation A[il 
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An implementation of the actor model of ~~ "-' ~ realized as a 
.l._ ' ~ - 1 ·- ~ 

programming language PLASM ACHewitt-Smlth75. Hewttt'Tll The syntax of PLASM A is 

so designed tbat its unc:kriying ....ma :ts traa.,. .. tJ·: · · · 

The a~ve •ntuitive aCCOllftt fll the madel" d~ canpu.._ Will be made more 

' ,_ .. - . ,~ 

5.1.1 Actors 

An actor consists of two parts. sat/JI ( aaitm) and Glf1Ud711•nus. Its script is a 

description of how it should respond to messages 1e11t to it. Each actor has a fixed set of 
-~. : ' . ' 

messages by which it can be acti!ated. When a ~ that ~ not be'°",& ~ this set is 

sent to an actor, the response of the actor ii undefined .. The ac:qua1.-~nces ~.an actor are 
- . - .... • • -- ff: , - '~ • - • ' ~.- • .. > : , 

a finite collection of aCtors that it directly lnoarJ ""°"'· An actor A can send a message 
' • ~ ,- ,_ -0 ' - - • • 

directly to an actor B only when B belongs to ~e acquainta~ of A. The script of an 
- . ' . ':. ~ . : - . - .... -· - •, 

actor can be realized by a PLASM A program for the ~· The ,acquaintances of a newly 

created actor C are the set of actors which are denoted by free icimtifiets in the PLASM A 
. -- . I , 

program for C at the time of creation. 

5.1.2 Events 

An ~vent Els defined to be the'"''"' of a.~; .. M bya llU'fll actor T~· 
The event E is expressed by a nQtation of the foma 

I. We use the terms •recetpt• and •ar~va1• of a meuage 4nterc"'•~~IJ t~JhOUt the 
theSis; · · · · ., ·· · · · 



[ T <•• M ]. 

A message contains a request of what the target actor is asked to do and it may also 

contains a continuation actor which is the destination where the reply to the request is 

supposed to be sent. Messages are often expressed by notations of the form 

[requ.e.i: <request> reply-to: <continu1tion>]. 

The request usually consists of a tag which indicates a task to do and the data necessary to 

accomplish the task. PLASM A packages are often used as requests. For example. to request 

a queue-actor to enqueue some actor A at the end of the queue. the package (enqu.eu.e: A) is 

used. :ro request a queue-actor to send back its front element. the package (tlequ.eue:) is 

used. The continuation actor may be omitted in the message when it is unnecessary. For 

example, when the purpose of a message is to return the result of a task, or the reply to a 

request, the message need not contain a <continu1tion>. In such cases. messages are expressed 

by notations of the form 

[reply: <result>] 

When a continuation C in a message is unimportant or obvious from the context of 

discussion, we make only the request part explicit in expressing an event. So the following 

abbreviated form is used 

[T <=<request>] for (T <== [reque•t: <request> reply-to: C]]. 

Furthermore, when it is obvious from the context that a message contains only a replying 

result, we use the following abbreviated form. 
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· [T <• <result>] for [T ~ tn,ir. <rmtt>O· 

Not~ that the above abbreviated forms '"' .. 1jng1' ,shJfted ~• ·<-~ iDltead of double 

shafted arrows·< .. ". In the sui)~t presentatiap qf tbi$ ~!h•._.... ~request" and. 

"message" will be used Jnterchanpablfwhen ~~·~:An the qenUnuatioB-in a 

message. 

A primttiut nmt is an even& whtch activates enctly one immediate reply without 

causing any interrnedi~te events. From this definition, w.e can.,~efi.ne_prin;Ytive actors~ ~ 
- . - - . , ;· . -: - - ,; L. - " ~ ~ -·," ~ . -

f'Timltivt actor is ar:t actor which always causes a primitive event 1'bfl) U is sent a rne$S&le. 
. -·- · ~ -<- . ·": ·-·;· • ;-:~-.;; P- fl·_. 0 

; _ :·., • • 

As we have noted above, different control structu~ in PJ'Ol!'amming langu~ges 
: ' _; ~- :- '- ~-- .. : ; .. .,. ~ ~ ' ·= . - - - . 

are viewed as different patterns of message passing tn the actor model of computation. In 
- - ~ ~ -. ' * 

fact, such different patterns of message passing correspond to different patterns of 

continuation in messages. The patterns of continuation for ~nion •. _and iie...tion are 

found in [Hewitt77l and for coroutines In [Oreif·Hewttt'lll The fact_ that continuations are . ":" :. 

sent together with requests allows the unification of control f1ow and da~ flow into a 
<· - ; ' 

universal flow of information, message transmission. Consequently, thts unification allows 

us to describe computations solely ln terms of events.· 

3.1.3 Computations 

A computation is defined as a partl4ll7 ordered set or events. where the ordering is 

strict and transitive.· A physjQl tntuit• for the:..,.. lf<~.an event E pr1c1d1s 

another event E'. We call this ordering the 11rtu1Us ordn and denote it by "->·. Then a 

computation i$ a pair <EV,·-->·> where· Ev is' as« of events. The strictness of the ordering 

imposes the constraint that any event E does not pr1iceda· itself: · ·' · 
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V E, ...(E --> E). 

The partialness of the ordering allows that some events E1 and E j do not precede each 

other, which means that E1 and Ej may take place concurrently. We assume that each such 

ordered set of events always has the maximal events in it. This means that every 

computation has a· set of initial events. 

Our assumption to model physically realiiable computations requires two kinds of 

finiteness properties. First, for any two events Ei and Ej which are ordered by "-->", only 

finite numbers of event can take place between Ei and E i I.e., the set {EIEi --> E --> E j} is 

finite. Second, each event E has finitely many immediate successor events. These two 

finite properties do not rule out non-terminating computations: they only exclude infinitely 

fast computations.I 

The precedes ordering has two suborderings which reflect more detailed physical 

properties of computations. Suppose that E is an event in which a target actor T receives a 

message actor M. Then the event E triggers a response (or action). This response is a 

finite set C of events. We can view that the event E activates the events in C. Thus we 

ca 11 this type of ordering the activation ordtring and denote it by "•.ct·>". So V EE in C, 

E -act-> EE. The activation ordering is intended to describe the notion of causality in 

computations. 

Suppose that more than one message is sent to a single actor A in a computation. 

In our computation model we assume that one message arrives before another. I.e., no two 

messages arrive at the same actor simultaneously. Since each arrival of a message at A is 

an event by definition, if we fix a target actor, we can always introduce an ordering among 

I. Hewitt arid Baker gave an proof for the impossibility of such infinitely fast 
computations in [Hewitt-Baker77l 
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events which have A as a target actor by antM tlllt. We call this ordering the arrival 

ordntng witla:r•s/lftl i. A and.clellote_it.by •"WP>t;· - . 

The importanl property of the urtYal aallring is that it iS '• totel order: ach 

event in a c;omputation,an haYe at mmt'OM llnmldtltl ••H•• event tn terml of the 

arrival ordering, whereas it may have more than one lmalMHlli1• tuaaes• evenc-tn ·terms of 

the activation ordwing. 

A n1stltl acttoity ii a computati~ statting.wtth.a ....-·evat R(lef' the form 

and ending with the Corresponding replf etenr- RP 

The set of evenu consisting of the nested activity ii the set: 

When a· continuation is not contal~ in the ~e. ~ ~ ~~ity is undefined. 

There are many activities in operating systems and distributed computing. syltems 
. . 

that are not nested. It ~hould ~rpointed QUt tta.~.~1119Jincl~J ~activities 

in the real world. The R)Odel of a post. off~ l#Jtll '.Jta ~....- • ta ... ...,.1e 9f "auch 

non-nested activities. 
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J.1.4 Level of Detail 

The behavior of an actor system can be described at varying levels of d~~ail. 

Computing the factorial of S can be viewed as a process to input S and to output 6 at some 

level of detail. At this level of detail, an iterative way and a recunive way of computing 
. . 

the factorial of 3 are viewed as the same ~~·~, ~ !li:(f~ betweeq. two''· 

implementations of the iterativ' factorial may be detected at some finer level of details. 

There may be many implementattans of. an ·tctor'WMc•atwr•·'glferi''spedflcation~ Such 

implementations are viewed u the: same lmpfemerlt'atiGK at brrec· llWl' and' different c>nes at 

another level At a finer level, some computations which may be viewed as a serial 

computation at a less fine level may be revealed to be .,_,.altl ceawp_utatlGns. 

In order to describe the ~havior of an a.c:tor sy~ ~ n~. ~:chooae a level of 

detail according to the purpose of ~escription. The description of t~e ~~~vior of a_n actor .. 
system at the lowest level of detail is given as a axnp.1tation <Eve>·->:~~ where Evo is a set 

' '- j - . '·- , ~' ' . 

of a 11 events which take place in the a~or s7'em. A_ -vel of deta~I is dec~ed b.Y criteria 
. . 

with which a subset Ev is chosen from E~Q-· Since!f1l~~~:E1,and EJin Ev are also in 

Evo- if 'Ei ~~d, E j are ordered by·~->· In Ev()t the same ordff !'!~t~ hqlds in Ev. Thus a 

partially ordered set of events Ev Is a ·sub•-computation of Evo- Choosing a subset from 

Evo is done With various criteria which are decided by the purpose of descript,lon. For 

example, ftnt we select actors from. the set of ab :actors in the system, and then all events 
• T< • • 

where the selected actors are involved as target& bf.;messagei are chosen from Evo- Another. 

example of the criteria is to select ewenu which meet aome patterns such as the beginning 

and ending events of nested activities. 

The notion of primitiveness defined in the previous $Ubsectioif is. relative to t~e 

level Of detait chos~n. Tile event where> the ,..~~. ;;~Ctor receives s ts primitive at,~he 
level of detail where no events taking place before the arrival of 6 at the continuation are 
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counted. An event where a data base receives a query can be viewed aJ a prlmitlv.e event 

at a very high level of detail Thus a data bue can be COftlidered as a prlm.ltl~~ ,actor at 

that level. 

3.2 Time Variant Bet.aviors· of xet ... 

Io thi,s $«lion .. we. ~~ ~ ~~d ladiY ... Laaon which must be · 

taken into account. in. fonr.DJ-~~fying &he behaYiar el -~--•tan. 

J.2.1 Pure Actors and lalpwe Aden 

An attors are clalsifted.into two categories ~Ing~ thei~ beha.vlor. Actors 

which belong to one category never change their behavior. Thel always give th'~ same 
·c i"- . 

- . 1 

reply to the same request. They are called /!Krt Odors. Acton which be~g to the other 
• - - ~- • • •• _ - ~- ;· < _-": '~ '· ~~ ~ 

category are called. impur1 aitors and their ~viol' ·may charlee with time. They d9 not 
- ".:. .,,, ··, (,·;: '>c·: ".·· '; ... ,· :.:! ',; .. •: ,, .,, , 

always give the· same reply tO the· same r9quest. "the following mere precise c:te(lnitiQ(lS are 

given in terms of nested adlviua.t . . .. -. ' . - . ' . ·-

An actor T is pu.r1 if, for the same m,essage ~. the «Yent [T <•• 'tt1J 
always causes (precedes) t~ same.reply ~enL , 

I. The definitions can be viewed as behavioral deftnitlqns of taJmut,able an4 mutabll: 
objects. ··· ·· · · · · 



- 51 -

An actor T is impurt (not pure) if there is a message M such that the event 

[T <== M] does not always cause (precede) the same reply event. 

The "sameness" in the above definitions is used. in the following sense: two actors are the 

"same" if they are bthaviorl'J tquivaltnt.l Two events are the same if they have the same 

target actor and the same message actor. 

From this definition, it can be said that a pure actor behaves like a matlttmattcal 

function. An actor which generates random numbers is impure because it returns a random 

number in response to the same message (ne~t-ranclom-number:). A cell-actor is another 

example of a simple impure actor. A cell-actor accepts a message (updale: <new-content>) 

which updates its contents and a message (content•:) which retrieves its contents. A 

cell-actor may change its behavior because it can· give different answers to the (con1ttnui') 

message, depending upon what it contains at the moment. An actor which behaves like a 

function + is a pure actor. The plus-actor always returns the same number, which is the 

sum of two numbers sent to it. Another example of a pure actor is a sequence-actor. One 

can retrieve elements of a sequence-actor, but one cannot change its elements; instead a 

completely new sequence-actor must be created. So a sequence-actor is pure. 

3.2.2 Pure Queues and Impure Queues 

To illustrate the difference between pure actors and impure actors, let us consider a 

pure actor and an impure actor, both of which behave like a queue. Both pure 

queue-actors and impure queue-actors accept the same two kinds of messages: one is (nq: x) 

I. For example, number actors which behave like I are behaviorly equivalent each other, 
but their identity may be distinct. The LISP functions, EQ and EQUAL, are impure and 
pure, respectively. 
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which is a request to enqueue a new elements x, and the other is (dq:) which is a request to 

take out the front element of the queue and return it with the remaining queue. However 

if the queue is empty, it returns a complaint message (adau1ced:). The important 

difference between a pure queue-actor and an impure queue-actor is whether or not a new 

queue-actor is created when (nq: ... ) and (dq:) are sent. When (nq: x) is sent to a pure 

queue-actor PQ, a new pure queue-actor PQ.: which has x as the last element of the queue is 

created and returned. The original queue-actor PQ..still has the same elements as before. 

When (nq: x) is sent to an impure queue-actor IQ, xis absorbed inside IQ.and enqueued at 

rear of the previous elements. So IQ.itself is extended and returned. No new queue-actors 

are created. (See Figure 3.1.) 

When (dq:) is sent to a pure queue-actor PQ.. (which is not empty), a new pure 

queue-actor PQ.'. whose elements are all elements of PQ. except the front element of PQ. is 

created and the front element of PQ.. and the new pure queue-actor PQ.'. are returned. 

Again the original PQ.is intact and has the same elements as before. When (dq:) is sent to 

IQ..(which is not empty), then the front element of IQ.and IQ.itself which now has the rest 

of the original elements are returned. No queue-actors are created. 

It might be helpful to see a LISP analogy in understanding this difference 

between pure queues and impure queues. Suppose that a queue is implemented as a list L. 

Then sending (nq: x) to a pure queue-actor corresponds to (app.nd L (list x)), whose result is 

a totally new list constructed from a copy of L and x. Sending (nq: x) to an impure 

queue-actor corresponds to (nconc L (list x)) whose result does not consist of a copy of L. 
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Fig. 3.1. Behaviors of pure queues and impure queues 

IQ 

~r:--b-c-a-CJ 

a b c d 
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3.2.3 Sources of Impurity and Uses of Impurity 

The change of behavior of an actor A ts caused by the change of information 

used in computing the reply for a request to A. The change of such information is caused 

by the computation taking place before the reply event occurs. 

Roughly speaking, the sources which may change the behavior of an actor A can 

be divided into two kinds. One is the activation of A initiated by messages which have 

been sent to A. The previous activations of A change the information stored inside A. For 

example, a random number generator usually keeps some internal values used to generate a 

random number. For the generation of the next random number, such internal values are 

changed during the generation of the previous random number. In the case of impure 

queue-actors, the history of the previous enqueuing and dequeuing operations determines 

the reply for the current dequeuing request. 

The other kind of source is the computation initiated by messages which fil not 

sent to ~ but to some other actor B. When the computation initiated by a message sent to 

B changes information snared by both A and B, the subsequent behavior of A may change. 

Sharing of information sometimes happens inadvertently. When an actor A is created, 

some internal constituents of A might become known to other actors outside .. For example, 

suppose that a new array-actor A is created by extending the upper bound of an existing 

array-actor B. If B receives a request to change one of its elements, the computation 

initiated by the request will change the subsequent behavior of A, because all elements of B 

are shared by A. There is another way in which internal constituents of an actor A become 

accessible. After an activation of A, the some internal constituents might be released 

outside as a result of the activation. Such released constituents become directly accessible 

from outside and information stored in them could be changed without sending legitimate 

requests to A. 



- 55 -

Uses of an impure queue-actor are "destructive" In the sense that each enqueuing 

or dequeuing messages sent the actor changes the current atatui of the queue. If one wants 

to update the queue and still keep the previoul status Of the qu«te, the behaYior of pure 

queue-actors is desirable even if it is COJdy in terma of both spaee and time. SOmetimes the 

impurity of actors are necessary. For example; in order for coneurrently.runnlng processes 

to commu~icate with each other. they need . .ame· actor which behaves as information 

storage through which they may exchange Information. Such tnformatton storage may be 

contained inside each process or external common map to whkh concurrent processes 

have access. This kind of impurity of acton is indispensable for communicating parallel 

processes. 

3.2.4 Four Types of Interactions between Acton 

Suppose that an actor M ts sent u the ....... part of a message to a target actor 

T. This event initiates a computation where M a~ T are tnv.<alved [I.e. an lnttractton 

between M and T]. After this computation, there will be no changes in the behavior of M 

or. T if both M and T are pure actors.. If M or T, however, are impure actors. the 

.subsequent behavi9r of M or T may. be different. JnteracriOnl beween two actors M and 

T are classified into four types, depending upon the presence or absence of change in their 
. . 

future behavior. 

No-Change-Type: Neither M nor T change their .,.havior. 

The interactions initiated by the following ~ents: 

[ f .ctorill <• 3] 

[ create•U'ray <- 4] 
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( mer1• <= [ARRAY•l ARRAY·2,Q 

are examples ~f this type. The Gb jldtve fll this type or tnteractkln Is creation ·of 

new a~tors. Neil.her tAe . ._.... KtDrc·ner .. ~ ............ ctor J. change their 

behavior. but tM result of tilt; mmpuaitld*,c:a ~ ·6. · ii created and 

ret~rned. The ~s .,.,..acblr-atwytic em11 • •fl'IY'W the itte specified by the 

request message.·· The ..., ... actar'cra•a new lidMCl· anays whose fleilllelats are 

th• of the two sorted arrap.ARRAY.1'-'.~MRAT-~~ ·lft this'~ neither· 

ARRAY•! nor ARRAY.Z dollOldlanp.- ~ 

Target-Change-Type: T changes iU behavior, but M does not. 

This type of interaction often takes places to modify information stored in actors 

which behave like data structures. For example, 

[CELL <- (a,;.r.,c A)] 

[IMNtE41 .. •W.aaw B)] . · 

are of this type. The behavior ot A~ a·do not change after the interactions. 

M gnge-Chance:Ixpe: M changes tu behuiOr, bat T dOl!I .._ · 

Exampn Gf thil tp of mtsactmn me:ittltiited by;wtnt.ldeh as: 

( IOrt <• ARRAY] 

(empty<= IMPURE-QUEUE]. 

When an array-actor ARRAY Is '•t to the' .rt aam~ tt.e· iame array-actor ARRAY 

whose elements are sorted is tetllnred. tfi· if lilftRar · W&y,"n.uit£~ is emptied 

but the empty actor does not chanp. ita ~viqr''! 
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Target-Message-Change-Type: Both Mand T change their behavior. 

Examples of this type of interaction are often found in situations where some 

information is removed from one actor and transfered to another. In Chapter 8; we 

will model the activities in a simple post off ice in terms of actors. The interaction 

among customer actors, collector actors, and a mail box actor in the model is of this 

type. 
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4. Specifying Seri~l (Jo111,putatlou 

I.n this chapter, our specification techniques for serial computations are presented. 

Since our model is so constructed that serial computation is naturally extended to parallel 

computation, most of the concepu, notations, conventions and techniques introduced in this 

chapter are not only valid but also necessary for the specification and verification of 

parallel computations. In the first section, we introduce basic tools for describing the time 

variant behavior of actors. In the second section, we briefly discuss the role of conceptual 

representations in our model of computation. In the third section, our specification 

language for seria I computations is explained and some issues of specifications related to 

"side-effects" are discussed. In the fourth section, examples of spectfication1 written in our 

language are given. 
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4.1 Capturinc Time Variant Behavior of Actors 

In order for a formal specification language tO be effective for our model of 

computation, it must be able to describe the time variant behavl0r of actors. The ability of 

our specification language to deal with this aspect of actor behavior is based on concepts 

introduced in this section. 

4.1.l History of Messages and States of Actors 

As we have seen in the previous chap&er, one source of the time variant behavior 

of an actor is the history of computations initiated by, mesages Jent to ahe actor. If the 

whole past history of messagea sent to an actor A is known. the aubsequent behavior of A · 

in response to a given message should be predictable. Thus. It ls desirable to know the 

·hjstory of messages .to specify the behavior of A. Howeffl', it ts not practical to enumerate 

all possible histories of rnem,ges. Two actors widt different pat histories (sequences) of 

incoming ~~ges sometimeS show the 1&1n1 IUblequeM bet.•lor. Thus we can partition 

the set of histories (sequences) of messages amt to A into equtftlence classes according to 

the subsequent behavior of A. By such equivalence classes; we can define the notion of 

states of an actor. That is, the state of an actor A at a given point in time is defined as 

equivalence classes on the past histories (sequences) of messages sent to A. If A is in the 

sa:me state at a different time, the subsequent behavior of A will be always the same. 

The state of an actor which behaves as an information storer ls often defined by 

the contents of the stored information. For example, the state of a cell-actor C at a time is 

defined by the contents B of the cell. Th ls definition of states is a special case of our 

definition by equivalence classes on past message hl$torla. For the contents or the ce11 can 

be viewed as the most recent ·update message C.plate: &). The C.J"I•••: 8) message 
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represents the class of histories (sequeK:eifof '~'lil!littct'C'"Tlhfth have an (llplaee? 8) 

as the most recent update message. 
_,, ~ - • > -;I; 

Some kinds of states are "°,' natun.~'r expressed .,~Y. the, contents of uored 

information. For example, states or a data bw, w,hkh is being accessf;d by a number of 
: - ' ,· j ' ; ,, -.: ~:: :--; •• - : - ;- • ~ .' . • < ·--.:: ~. - ~- ':. ":' ~ i : . . • . 

concurrent processes are not expressed naturally by tome stored informa~ in th' data 
• r:··< ~:r:J'·· · · .. , .. '.· 

base. The states where processes are updating or rettle~ing information in the data base 

may be expressed as certain monitoring mechanbms attached to the data base, but such 

mechanisms are dependent on the lmp~~~-:;~~~7d~t>baJe. "wt.en the ~ta ·of. .a 

data base- are detined externatly li.4':fn...........,,.,~ ............... i~our definition of 

states is quite useful. The: srate (If, an w ·tme ~ Jf••IM daalaed' in Chapter & and 

that of a post ott•1ft-Chapler a are nampla-ef .._ fll ,...,... whkh, a.. WUld ·by 

concurrent processes.. 

Equwalence reiattons which determine. am (&c.e. ~·-eta.-) are '.chosen 

according ro the pul'polB and level fll· the 1Maili'Of the:'~· • Stafes·· which are 

diffettnt at some levels of the detail°" dalf8:iltcatimunay•·t11e·aame arodter leftk. · 

In Section&.•. Chapter 6, we will ~"&It attemaetwwa1 of defining states of 

actors bJ continuGUs functions. 

4.1.t Situations 

To incorporate the notion of states into the formalism for specification and . 
~ . . . 

verification, we need a notion of sttruutons. A situation is the -state of an aaor system 

at an instance of the local ti~.I A notiOn of si~ations,whic!-
0

•~~ the global state and 
• ! - ~ • 

global time reference has been proposed in ·the area of Artificial 
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Intelligence[McCarthy-Hayes69, Hewitt75l Our medel of computation allows parallelism 

wh~h is rea Uzed by conc;~rrent message pauing. Since ,in.ncessaf concurrent message 

passing (i.e. events) may take place totaUy independently, ii ts quite'1JftnatUral to assume the 

global Orne refere11ce and global staces. d -the-tylllll'D.>•ll.ocal mmputatiOns carried out by a 

PDP-10 at CMU are irrelevant to computMiatU carrte:hut bJ L.PJ>P!IO:at StafGrd even if 

two computers are connected through the ARPA networkJ 

In our formalism, states of' actors and. actor sySt'ems are al~ays used with reference 

to situations. From this viewpoint, situations ~rt .be ~ ~1t~'f~~s of tbF 'ocal 

time. For example, the contents of a cell-actor C changes from time to tlrne.,~~dlng_ l9, the 

update messages which have been most recently sent to C. Suppme that the contents of C 

is 3 in a situation 8 W~ C ·receiVU (u'"'* 4) ~ Theft· lft·-the> heXt situation S' 

where C receives the messag• (con1en1~)1 t~ ~U • C i1·4. ~~)::jptre 4_.J) 

By using a symbol S to denote a situation, we express the contents of C in the 

situation in the following manner 

(con1e1111 C) • 3 in S 

We ca 11 a symbol such as S, which is used to refer to a situation, a sttlUlttonal tag. 

Fig. 4.1. 

[C <= (u,.ace: 4)) 
> 



Uses of lituationaL tags canstclerably iActea• die expr8St¥e power or our 

formalnm. for exa~ tuppose·tha< wt tlatt fil!HtlmfntN cpatlie att0rt. ..,. ... 1 and 

queue-2. and that some event takes ·pta« m·a.·si--.-s,.... ·. Ut'8p0st denote the 

situation after that.event ·Thu rbe•e1tta11~••~•.CtotteoifWhJtlllltor ftat"'the length of· 

....,...1·1u!qliatco that: of' ~U..-2 in 8P6st ii ..-uftllaW& · 

, . (~engda queue•t) • Ue111th .--,:~! ~ .• pait 

By 'distribUtihg tli~' sicuatidhai· tag Spost''tht ···-~can ~ ·n.~e in the following 

'two different.ways: .·· 

((lan,-11. .,....1) Ill 8,_> • .. (Cl_,.., .... la &post~ or 

(lan6cta (qwut1•1 u Sf>osi» ·' '(t~-.0, ~1<111 ·~)) 

Since situational tags a11ow·us to relativize facts. relations ~.f~heacltqg• QiUenmt 

situations can be easily stated in our formalism. . For example. an auertion that the length 
. - . ~ \• . 

of queue-1 in .spost is grater than the length of ....... 1 in &pre is stated as: 

This. kind of assertion is quUe useful to show the termination or pR1grams. Furt~ a 
\ 

questk>rt about the i~enttty of the queues is easily stated as: . · 

Situations are frequently referred ~as~- ~i~'of """'P.,•rrival..namely at the 

time when an e~~t takes place. We use the following notatlonl to refer ~ ~.fituations. 
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Sit(T <== M]), SU(<event>) 

4.1.1 States, Identities and Conceptual Repraentation1 

An actor may change its state from -situation to situation and different actors may 

have the same state in the same situation. Thus, in developing a specification language. we 

must distinguish the state of an actor from its t.dmtU,.I 

In order to describe states ·of ac:ws in o0r. spectficadon language, we use 

conceptual representations introduced in Chapter 2. Identities of actors are expressed by 

syntactic constructs different from conceptual representations. The most general form to 

express the fact that an <actor> has a state ~!'P~ by a <conc.ptUll representation> in a 

<situation> is as follows. 

(<1etor> i•-• <c9f0ptull·repr...m.tion)) tn <aituation> 

For example, suppose that the state of an impure queue-actor Q which has three elements A 

B and C is expressed by a conceptual representation: 

(/ M PURE-QUEUB (A B CJ) 

Then the fact that Q has the above state in a situation 8 is expressed as 

(Q u-o (/ M PURB-QUIUB [A 8 CJ)) tn S 

It is very important that the role of conceptuat repr.111n&ati0ns in our specification 

I. We assume that the identity of an actor never changes. 
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language is to describe only~ of acto_rs, but not to represent identities of actors. [When 
~ • • - ' r 

we introduced conceptual repraentations to glv~ t~I specifications of data structures in 

Chapter 2, the separation of states from identities was not made clear J 

A predicate ·1a-a• is used to associate the .state ef an,,~ _with itt jdentity. Jn 
_?·:-~-. ::'1-"'=.-~·--~'? ·~;::·:··~,--~;:(>] .. <: ;· .. ~ ... 

order to differentiate identities of actors. a predicate ·u-.,,• and its neptton form ·noa-eq• 

are Used. Sinet many ahOrs may have the';lami1 ~··ift tW ame unaatton, when the 

fo110,_itng assertton holds, · ' · · 

it may or may not be the case that 
.. r 

When the sharing of actors is involved, the separation of states from identities in 

the formalism considera"My stmpHfies the pr0Cfiis·ott~tia4 4)f ci.""es in situations. 

For example, suppose that two different cell-actors ~ a~ H contJin the same impure. 
•: -~~s:•r,' ~ ff_' "4 

.-, :;• "·.,·' ; ' 

queue-actor Qin a situation S. This is expressed as:. 
•. 

(H b-e (CELL (eoat•u: Q))) 

(Q ia-a (IMPURl-OUBUI (A I CJ)) 

-.. ~ 

Then in the situation S, an actor D is enqueued at the rear of Q. A description of the next 

situations: can.be obtaintll~ bJ"chM.iliol IM.am:'Of Qinlo 

(Q u-a (IMPURB;()IJBUB.(A.B C DJ)) 
' "-' ,-
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and the assertions about G and H need not be modified.I This is an example of our 

technique of manipulating assertions which will be discussed e~tt;r:a~ively in the next 

chapter. 

4.2 Types, Views and Conceptual Representations 

Before going i.nto the details of our specification language. it would be interesting 

to consider the roles of conceptual representations in the aaor~ta « comp~tation. 
Actors are the only objects in the f!M>del of computa~on._. Actors are untyped. We 

do not assume that actors are intrinsically classified into su~tegories such as types and 

modes. There are two reasons for this. One is that acton are Qbjects '" an abstract model 

of computation, not objects in programming a.f!luages whkh of'ren have types an~ modes 
' ~~- ' . . . --- .. 

for reasons of reliability and implementation efficiency. Another reason, which is more 

fundamental, is that we like to emphasize the IH/tnloral view of actors. That is to say, we 
. d. F ··. 

like to be able to use two actors interchangeably and indistinguishably as long as they show 

the same behavior with respect to some purposes and en'ltronments where they are 

primarily used. Also the same·actor should be able to behave qutte-ilifferent1y for different 

purposes and in different environments. fn. Other words. we- should be able to take a 

multiple view for individual actors. We betieve··that such mutiplf::Yiftrs'ei1mUrage one to 

emplo.y flexible distributltn .of computing power ·and· Int~ melt as polymorphic 

opera,tors[Greif-Hewitt75] and- the nepttatiOh .ey1e~W-'~ng using coroutines in 

writing programs for distributed systems{Yonezawa·Hewltt?7l Hd Aritfldal Jntethgence 

I. To insure the validity of these assertions in S'. we need certain rules which will be 
discussed in Section 5.U, Chapter 5. · 

• 
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research[Hewitt75]. Thus it seems beneficial to allow a single actor to have a broad role 

which W:ould be'narrowed by imposini a strict tJpe On it. ' '"' •,. 

Conceptual repr~~eritatloni pr~vide' us With the means to'~xp~ess not only states of 

actors, but also multiple views and summaries of behaviors SUch views and summaries 

expressed by conceptual representations facilitate the understanding and Implementation of 

the behavior of actors. 

4.3 A Specifjcation l.anl~ll 

In this section, we explain l)asic constructs of oUr specific:atiCJn language for strtal 

computati'o'ns arid also discuss some issues of the thM vartant behavior 'or actors related to 

specification 13nguages. The specification lanP.P' presented' :i~ ~hb sect1on will be 

extended to include paralfel computation• in' cf1aP .. ' 6.' 

.f.S.I Specifications of Even ta 

A ·specificatiOIJ• Qf an ev• ls a. formal oacription ctf:9fecD- caused· by an event 

whic;h takes place in an ~r q.scem. Roup.ly: ~ .~,iefledS af 'an e•ent E af'e 

described by tl\e next event caused by E and usertianl• whidl llollt m tM situMten where 

the next event t•s place. The choice of the Mitt event fmm &be Rt of the subsequent 

events caused by E is deter•i,.. DJ the leYel of dailand: &he~d· the.speclf iad0n. 

A general form of Jpeei(ka"- fw .,.,._.. ill.our ,lf*l'kaUDn language Is 

written in ~he following notations: 



<eHnl: E 

. 
(Casa-I: 

<pre-confl: 
<caateef-eue111: 

<po1t-confl: 

- 6"1 -

- nsertionl -
E' > 

... ....mo. ... 

) 

) 

>) 

E is the event whose effects are described. Since the effects of E may vary depending 

upon the situation where E takes plate, the descrlptlGn of the effect may be divided into 

more than one case. The assertions in the <,,n-eoM:-> c~use state the prerequisite which 

has to be satisfied in the situation where E takes place. When the prerequ,isite is satisfied, 

the event E' in the <e .. uefl·etHt111: •• .> clause always l!Y! place and the assertions in the 

<1>0111-r.ond: ••• >clause hold In the situation where E' takes plact.- More formaU:y, 

for E, 

if <1ssertions•in-precond> in SU(E) 

thtn J E' 
such that E --> E' a.nd <nsertionl-in-pos&col\d) in .tU<E~) 

The prerequisite stated in each (Ca1a-i: ... ) clause must be mutually exclusive. From this, the 

above notation can always specify the effects of an event deterministically. The <eoent: ... > 

clause need not contain all possible cases where £ might take plKe. Oh other words. the 

logical union of the prerequisites for each case need·not be untwnally trueJ ~en E does 

not takes place in any of the stated cases, we assume lhat:the caused lffecta are undefined. 

The scope of names and variables in the above notation is always local to each (CaU-f: .. ) 

clause. That is, the same names and variables in different CC.N-i: ... )clauses do not have 

to refer to .the same object. Names and variables appearing In the expression which 



represents the event E are global to each <Cae-i:-) clause. 

Though the above notation is braadly applicable, we often use abbreviated forms 

for events which initiate nested activities (cf. Section SJJ. ChaJ>l!t~ Suppose that the 

event E ts of the form: 

[T <- c,... ... : M ,.,,,run c)l 

and the corresponding caused event E' is of the form: 

. ,_. 

where R is the actor which is received by tmt Continuation 'Ktor C in the message of E. 

<Held: (T OI M) 

(C..ae-i: 
(prreMe': - ....,..... ...) 

<re111111: R > 
<po11.:e.wi _ .... , ...... ->f " 

) 

For example, the effect.of an -.entwhde auU aaw.e·~ hu·cttemntents & receives 

the retriev .. n:teuage ec ...... , jJ wrtttm u .. daabbtwlllteOfeml a:ronow. {Note that. 

there is only one case to IM specified tn tltU ......,... :,ao ..- (Ql11 .... , n ... tiOft can be 

onuttedJ ' -· - -
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<event: I[ C <= (conte11u:)] 

<pre-cond: (C ia-a (CELL (contenu: 8))) > 
<return: B > 
<po1t-cond: (C ia-a (CELL (content•: B)))» 

Other abbreviated forms are obtained by omitting <pre-coml: .• .>, <cauaad.-avent: ... >, 

<return: ... > or <po.,t-cond.: ... > clauses. When an event has no prerequisite, the <pre-cond.: ... > 

clause may be omitted. For example, the creation of a cell-actor does not have any 

prerequisites. Its specification is written as follows: 

<event: [create-cell <= A] 
<return: c* > 
<poar-cond: (C i1-a (CELL (con&enu: A)))» 

where create-cell is an actor which creates a new cell-actor and A is its initial contents. 

In general, in our specification language, underlined words such as create-cell are 

constant symbols which always denote a fixed actor. Non-underlined words which denote 

an actor are free variables and can be used as pattern variables in the process of symbolic 

evaluation which we will discuss in the next chapter. The notation <actor>* means that an 

<actor> is newly created and is not i1-eq (cf. Section 4.U) to other actors created before. 

When one is not interested in the assertions holding in a situation where the 

caused event takes place, the <po11-cond.: ... > clause may be omitted. Furthermore when one is 

not interested in the caused event, the <cau1ed-aven1: .. .> or <re&urn: .. .> clauses may be omitted 

too. For example, when the contents of a cell-actor is updated, what event is caused or · 

whether the caused event might take place or not are sometimes not important. In such 

cases, a specification of the update event may be written as follows. 
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(etMM: ( C <- (ap4.,r. A)) 

<,,..e-eo"':c ~~. JQ~ M¥@'-~~i»1 ~» 
- ~,'I,~..._ c· -· ~· -,.J -CO- >.~-:....,.. ·:~- - ·,_ • - .__.., ,f,,_~~-

<po1a-e1Jlll.: (C U-. (CBU "*"-'a: A)» » _ , - ;:-... ', 

4.s:2 Specifications of Act0n (Cont1'acu) 

Every actor has its OW!' finite f~.xecl set of ~~e.t~ ~t it.~n.a~~~-: For 

example, a cell-actor accepts two types of~~ -~••..a•) af!4. ~·&e: <new~lement>), 
+.- ... ·-"J~~.-- :." ·'l;"-:·'< '""'f C "'h •. :-:" r .... • ~ < • • 

and a queue-actor accepts two types of messages. (nq: <Mw•lement» and (4q:). A 

specification of an actor A must contain the spb~_Jlf:c'&ltnMllt,.each of which is 
'•-/ -- -

the receipt of one type of me5$Ues that /\ -~ a~~ ·· if'·~ld also contain the 
·~- '" ..'--· .,.__ . t_ .. · -';_ .. - --~ : - : :~ '-:.::·-.,.,.--

specification of the event where A is created, if it is possible to create A during 

computations. 

As an example, let us specify the behavior of pure queue-actor (cf. Section S.2.2, 

Chapter :J) in our s~ificatton language. "First, we deicrlbe' the crea~on of a pure 

queue-actor. 

<naa:(c 
<reftanl: Q* ) 
<poa-eorlJ/ CQ £i1 CPU1f1.<)utut a>) » 

This tells us the following three things: 

I) A new pure queue-actor Q is created by an event where the create-pure-queue actor 
.# • -

receives an empty Jeq\lence actor U 

2) The creation event has no prerequisite. 

3) States of a pure queue-actor is expressed by conceptual representations of the form: 

(PURK-QUEUK(_]) in the specification. 
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Next, we specify the enqueue event where a pure queue-actor receives (nq: <element>). 

This tells us that: 

<event: ( Q <= (nq: A)] 
<pre-cond::~ia-a (Pl/RB-OUBUl.(la))) > 
<retarn: QQ* > 
<po1t-co111l: 

(QQ ia-a (l'URE-QUBUE [Ix A])) 
(Q is-o (PURB-QUEUI [Ix])) » 

I) A new pure queue-actor QQ ls ueatecl and returJ\«l, 

2) A becomes the last element of QQ and the rest of .QQ's elements are the same as those 

of Q, and 

3) The state of Q does not change. 

The specification of the deq\Jeue even~ can be written in a Jimjlar way. 

In addition to specifications of events a$$0Cia~ with an actor A being specified, 

the specification of A may include some related information which is necessary or helpful 

for using and understanding the specification. Definitions of auxiliary conceptual 

· representations used in the specification, def initiPM of ... ibutm .or ·proptenies of ·A and 

certain rules1 concerning the v.alidity of assertion~ used In the specification are e1(amples of 

such information contained in the specification. In the case of a pure queue-actor~ for 

example, the following definition of a property "length" may be given in the specification . . 
<pro~r1y: len1tlt-o/(Q)E l•n1th[!x] 

whe.ro (Q ia-o (PURl-QUBUB U1tD) > 

l.r.nK•h-af is the newly defined property of ·a pure queue-lctor and lencth is a function 

I. Such rules will be explained in the next chapter. 
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predef in~ on conceptual sequences. This definition says that l••••la-ol of a pure 

queue-actor in ~ situation ~here its 'ntel is ekprfssed as CQ. u...''cruRE-OUWB [!xD> is 

obtained by· cakulating tenclh[lx]. 

We often use the terin ~raa• msleld dr,,..~•·te> emphasize the fact 
_ .. ~nr, ~r"tl' ,__ -

that it is an agreement or a •treaty• between the impaemeni..,~_of:Mactor (module) and its 

designers or clients, and also between Its tmpMl.,.}'*41 its'Wlin. Users of a module M 
'. _.: '-; . -~· _- A ... ~ ._, ; .:::· -:.~' ~;-1 

should rely only on properties stated iri the centtaet of M. On the other. hand. when 

implementors construct the module M, they are required to satisfy only what is- stated In th.e 

contract of M. In the process of sytnt;otk mtOaliGft'of' ·a pn,cttiidtrtlkf. bsei a inodule N, 

only properties of N wltklt are derived tn.lflht:t:Ofttratt Or W"dlekald be used. In Figure 

4.2, we give a contract of pure queue-actors. It shoukl be noted that the sco~ of names 

and variables in contracts are always local to specifkatMin¥0t eVtrtt(deflnltions, 'and rules. 

For example, Q in the ftr• ~:-.> clause in Ffpri"4'1 &JiS··n«-necess&rily denote the 

same actor as Q in the second <ndld:...> clause. 

4.S.I Validity of ~io• in Speclfi....._ 

Th~re are two iinportant UsuinptlonS about uSertion in spetifications of events. 
-' ~ --·-~ - -, - r ~ ··:-·,. 

One assumption is that states ot actors which are not explicitly stated in s~ifications are 

unknown. That is, we ass'ume that we do" not knoW how an event E effects actors which are 

not mentioned in the specification of the.ev~~ ,E. ~ ~"~es that effects of 

an event should be stated in specifkationa u apiftdt1y ft·-peaiMf Jn accordance with the 

level of detail of the ~ifiqtton4., T~e_other -~\lpQptiqn, .__dlial -.eat"'- an! uaally . 
. ' .-- ,.. '· ,,. .;. ~ ~ ~ : . -:.; . 

valid only in the situations where they are stated. If the state of an actor A is given in a 

<pra-coml: ... > clause of the specification of an eJenJ J; .,ncl the ltate of A is not given in the 
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Fig. 4.2. A Contract for Pure Q.ueues 

<ot1cnt: [ cr!!te:pur1-.1Y1 (w Ill 
<re1arn: Q*) 

<po1i~am1: (Q u-c <PUlf B-QuEUB Cl» > > 

<at1enl: [ Q <= (nq: A)]. 
<pre-canfl: (Q i1-o (PURE-QUEUE [!x))) ) 

<ral.u.rn: QQ* > 
<po•l-canfl: 

(QQ U-.. (l'URE-QUBUB tlx AJJ) 

(Q i1-a .(PURl-Q(JIUB UaclU , ~ > 

<at1en1: [ Q <• (flq:)] 

(ca.a-I: 

<pre-cond: (Q ia-a (PURE-QUIWE (])) > 
<ro1u.rn: (e.rltaa11n:) > 
<po11-canfl: (Q U-. (PURI-QUEUE E-Jn. >) · 

· (ca.se-J: 

<pre-cond: CQ U.-e (P(/RB-{}UIUB{B Jy))) > 
<relun: (fleqaeaecl: BB (re.,:QQ*)) > 
<pod-ooritl: 

·'-·:. ,-, ... 

(QQ ia-o (PU~,flJJ»· 
(Q i1-c (PURE-QUBUB [B lyJ)) > )> 

<property: len611a-of(Q) Ii leftsth[lx] 
.,,,..,,.. (Q U-. (PURE-QUBUE [Ix))) > 
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corresponding <po11-confl: • ..> clause, we auume that ~. ~,Qf .A ~flef the event E iJc 
. .. ;_ f."· .. 

unknown. It may or may not remain unchanged. For example, the state of a pure 

queue-actor after the enqueue event doet.Jiot clnll* '~D!alld in''me>contract of pure 
·fy :i;.--.~· ~ ~ 

queue-actors in Figure of.2, the asserJiQll ~bout,"11 J4ate ~ •• ~ ~ctor: 
-1: : • • ~:~\--. - ., !:~· ~- -~-: -.·-- .- ,,. ... ~ ·. · .. _-.. .. '- --

(Q U-e (PUMB-OVBUt O•Jt>' 

is repeated in the <po11-eoni:_.> clause. Since a pure ~Ct& 'C:l0a not change its state 
~~;e- _ .. - ~. ,,.. . . 

after the creation [from the definitican~of ~par#.J'\ .. npeslt•(Of' the assertion may be 
. .,, • ,. ~ "i ~_..:- . ""':'~ • • 

superfluous. But there is no way ot kn.\la1t:Wtftltrei ijf i*/ the' lctor being specified is 
pure. 

4.4 Example• of Specificattona 

In this section, several .other dMtadirildc enmp.-\or-~kations (contracts) 
,_ =~-: f_;.L- - -·-'"':.~:·.-"".'.'.,.- (. 

writt~n in our specification language are given. Some of t·.~~tiOns given here are 

followed by the corresponding PLASM~ tll¥hfiiidffa81a._ · " 

4.4.1 A Contract for Impure Q.ueues 

In contrast to the contract for l!Yl!. queue-acton In Figure 4.2, we give a contract 

for impure queue-actors in Figure 4.S. As disa1ssed tn Section 5.2.2. an impure queue-actor 

never creates a new queue-actor in respon• to "'9:-> or Ucr:) masages: lnltead It changes its 

own state. 
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Fig. 4.3. A Contract for Impure Q.ueue1 

<evtmt: [create-impure-queue <= []] 
<rr-turn: Q* > 
<1,011-t:ondilion1: (Q ia-o (/ M PURE-QUEUE [])) > > 

<event: [ Q <= (nq: A)] 
<pre-condition•: (Q ia-a (/ M PURE-QUEUE [Ix])) > 
<return: Q > 
<1,01t-condition1: (Q ia-a (IM PURE-QUEUE [Ix A])) > > 

<~vent: [ Q <= (dq:)] 

(ca1e-I: 

<pre-condition•: (Q ii-a (IM PURE-QUEUE [])) > 
<rr-turn: (e:dtauated:) > 
<po1t-condition1: (Q b-a (/ M PURE-QUEUE [])) > ) 

(caie-2: 

<pre-condition•: (Q ii-a (/ M PURE-QUEUE [B ly])) > 
<return: (dequeued: B (real: Q)) > 
<po11-condition1: (Q il-o CI M PURE-QUEUE [ly])) > )> 

4.4.2 A Specification for a Message-Change Interaction 

As an example of specifications for the Message-Change Type interaction (cf. 

Section 3.2.i, Chapter 3), a contract for an actor which empties the elements of one impure 

queue-actor into another impure queu~-actor is given in Figure 4:f. A PLASM A 

implementation of an actor which satisfies the contract above is given in Figure <f.5. This 

implementation will be verified against the above contract by the technique of symbolic 

evaluation in Chapter 5. 
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Fig. 4.4. A Contract for etnpty-one.....,.........enother 

(etM11t: [ .... ,, ......... =if:do:anoth!r <- (Ql Q2]) 
<pnt-eeu: 

"' - ' ·':.. 

(Ql i.-. (IM PURB-(Jtl£VB (lxl])) 

(02 U-..-U If l'(/QilU,fUl ,l~))l 
(01 ...e.:e., 02> . >' .• . . ,· . 

<reaanr: (4....: 101 Q2D > 
(pelt-coUf 

(Ql u-.. Cl jf PURB~BUB an 
(Q2-~-~Hx2.Jlc~J>> >>- . 

Fig. 4.5. A PLASMA of ....,ty-oM-.~ ~. 

(empty-one-queue-into-......,. ii 

C=> (•ql =q2) .;1 .. intpaN ·~ ~,....._, b,~.._, ... ue-into-9"0\her. 

(rules (ci1 <• (tfq:)) 

(s> (rrho11ahHI:) 

(cfonf!: [qt q!})) 
(~) (tltrq1&etaffl affontwof-q1 

(real: •clequewcl-ql)) 

_.., '-M •• 411 •"' q2. 

~-·---~ .. UMlll toql. 
;if ctl u ••ply, IM .,.,,.,,,,..., rrae ... p u rocttitHJd 

;tM• .. ,.,w -.1..r est.detl q2 eN retu.rud. 
#.'1'""• ....._,,_.,____ . .....,.. of.ql.allfl . 

illte "',,.....,., ,,.... ere reeoitmfi 

.. "' halll'i• trone11.q1 .-.... ~i. 
(q2 <= (lhJ: ff"ont-ef-ql)) 1hnl ll'iil Ja .... , •• et ,.... o/q2. 
(empty-one-...--into-wthw <• (diq......,...1 q2J)) ) )) 

;dequeued-qt erel ..z ... ...., so ..-pty,,.......,.-into-enother. 
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4.4.3 A Specification for a Target-Message-Change Interaction 

As an example of specifications for the Target-Message-Change Type interaction 

(cf. Section 3.2.4, Chapter 3), we give a specification for an interaction between a vender 

who sells some goods and a customer who buys the goods. The state of a vender who has 

some amount of money and goods with him is expressed by conceptual representations of 

the form 

(VENDER (bill.: ( ... })(good.: ( ... })) 

The state of a customer who is carrying some amount of money and belongings is expressed 

by conceptua I representations of the form 

(CUSTOM ER (bilb: { ... })(belonging•: {.:.})) 

Their interaction is described by the event specification in Figure -..s. 

Fig. 4.6. · A Specification for an Interaction Between a Vender and a Customer 

<cvmu: [V <= C] 
<prc-cond: 

(Vis-a. (VENDER (bilb: {!bs}) (good•: {!g !s}))) 

(C i14-a. (CUSTOM ER (bilb: {!be !m}) (belonging•: (Ip})))> 

<rcturii: C > 
<poict-cond: 

(V is-a. (V ENDER (bilb: {lbs Im}) (gooth: (!1}))) 
(C is-a. (CUSTOMER (bilb: {!be}) (6elon1in1•: {Ip 11}))) 

(worth[!s] = total-1111ount[!m]) » 
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4.4.4 Contracts for Ceaerators 

A generator is an actor which ·behaves like a sequence of the possible answers to 

some problem. When it receives a ·· (11ni:) message, a ·nut answer ts generated. As 

examples. we consider two actors Which sumssiYely generate i~ squares. One is a 
' ,..._ ~_., 

pure gennator-actor, ca~· a •port"6f"-squares•, and the other ls ·.r. impure one, called a 
. . 

•stream of squares·. A contract for each gerieraror ls given in. Figure 4.'I and Figure 4.8. In 

the first event specifications in both contracts, I and u denote the lower bound and the 

upper bound, respectively. 

Fig. 4.7. A Contract for Port-of.Squara 

(t!t1r.n1: [ creete-port-of-...• <- [I uD 
<prr.-concl: (I .S u) > 
<rt!lurn: PS* > 

. <po•,-cond: (PS i.t-e (l'ORT-OF-SOUAllBS u .. I)""•"= u))) » 

<r.fJf!nl: (PS <= (ftn-1:)] 

(Ca.a--1: 

<prC!-CoU: (PS u ... (POR_T-QF-BOf;/AlfllS u .. k)·(M,.A: k))) > 
<re111r11: ~etl:J > · . 
<po111-eonfl: CPS i.t-e CPORT-OF-SOUARBS u .. 8') (M•le: k))) >) 

cc. .. e-J: 

<pre-r.onfl: 

CPS U-a (P0RT-OF-&(Jf.1AUS .._ t) W•At 11))) 

(I < v) > 
<relarn: . (12 PSS*) > 
<poai-concl: 

(PSS b-a (POlfr-01'-JOUJIHS U.-1+1).....,., u))) 

(PS ~ trfMT-0#'-60UMf,U·U.-·IJ w.A: •I)> t·> 

' 
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Fig. 4.8. A Contract for Stream-of-Squares 

<twf!nt: [ crute-stre...Of•sgu.,.. <• [t u]) 
<pre-contl: (I $ u) > 
<return: ss* > 
<poac~confl: (SS la-a (STREAM-OF-SQUARES h I) Wilt: u))) » 

<nvf!nt: [SS <= (nesc:)] 
(Cue-I: 

<pre-cond: (SS ii-a (STREAM-OF-SQUARES Clos kl (lti1lt: k))) > 
<ratu·rn: (esluuute4:) > 
<po.,-cond: (SS N-o CSTREAM-OF-Bf}UARIS Unn ll) CM11t: 9'))) >_) 

(Ca•o-2: 

<pra-contl: . 

(SS b-a (STREIJM-OF-SovARBS Uet1: I) W6#t: u))) 

(I < u) > 
<return: (12 SS] > 
<po•&-contl: 

(SS ii-a CSTREIJM-OF-SQUARBS (l..: I + 1) ~It: u))) >) > 
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4.4.5 A Contract for aver•&• 

In this subsection, we give a c~ {« ~Whole~tor'· dfpends directly on 

the history of mcoming messages. Obviously such actors a~ ~in!f>~~c_. ·.~"!'.example given 
~ ; ·-~ - . ~" 

here is a contrac~ .for,,t,,he ·av~ge• acter, .1r1h•~,._.s the.aftagt of all "lhe numbers 

which have been sent to it. The contract is given in Figure~.i, ~-

The conceptual representation (IJVBRllCE [ ... )) for the actor explictl'ty·represents 

the history (sequence) of aft;the fitimbet~ wKltla h~v~·bien ~i~ed~ythe act~. This idea 
" : ~~~" - .. . ".,,: -. 

is similar to that of Cli.ntf.l9'!3l l1f,tJq hn~ta:'~ ...... -j1Pllldewn·stack~- to have the 

history recorded as a kind of commenu in program texts to aid the::. --verlFication of 

programs. The function averqrot in the_~~~~ i~ Flgu~ 4.9 is defi~ ~conceptual 
'-1 :-- , ' ~ :'":'. '.. ••• "'.'.' : ~ '!, ' 

sequttnces. 

Fig. 4.9. A Contract f0r average 

<r.~n•: [ crHte-avera&• <• I] 
(N!lurn: A* > 
<po11-co11': (A U... (llVBRllCe [ID)) » 

<r.w.n1: [A <• Cnnr-elemf111a: N)] 
<pro-corul: (A i.-. (AV BRACE (Ix))) > 
<rr.tunt: A > 
<po1c-r.offfl: (A ii-a (/JV BR/ICE [Ix NJ)) » 

<r.vr.n1: [A <• (awna•e:)] 

<P':r.-r.ond: CA ii-a (IWERllCB (Ix])) > 
<rr.turn: averqe-of(lx] > 
<pos1-co11tl: ~ i.-a (IJVBRllCB [Ix))) » 
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4.5 Relationship to Other Work 

At this point in our exposition, it would be useful to discuss our specification 

techniques for serial computation in relation to other work in this area.· 

4.5.1 Behavioral Specifications 

Based on the actor model of computation, I. Greif and C. Hewitt [Greif-Hewitt75, 

Greif75] h,ave developed the behavioral approach to the specification technique. In their 

approach, the behavior of an actor (or an actor system) is specified in the form of axiom 

about events and the precedes order relatton. Axioms describe the kinds of events that can 

or must take place and the order in which these events can or must occur. Axioms describe 

conditions which must be satisfied by computations. 

This approach can deal with the time variant behavior of actors and para11e1ism, 

but makes no use of the notion of states of an actor A [which we have defined as 

equivalence classes of messages sent to Al Therefore, for example, in writing axioms which 

specify responses to a message sent to A, the previous history of computations of A must be 

written out explicitly. The lack of the notion of states in their approach makes 

specifications long and difficult to understand. In particular, axioms for the behavior of 

impure actors which behave like data structures tend to be very complicated and unnatural. 

[Imagine the axioms for impure queue-actors.] The reader of such specifications of a data 

structure could understand only through reinterpreting axioms in terms of his intuitive 

notion of states of the data structure. In our approach, states of actors play the central rotes 

in. specifications and they are described by conceptual representations concisely, clearly and 

yet rigorously. 
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4.5.2 811rstaWs Work 

By extending Floyd-Hoare(Floyd67. Hoare69] approach, R. Bursta11Cl972] has 

proposed some specif icati~ and verification techniqu~ \vhich are able to deal. with list 

processing languages with ·side-effect• primitives such as rptaca and rplacd. To cope with 

the problem of side-effects in list structures, he uses a special notation for linear list 

structurn. For example. a list structure: 

x y 

I 
I 

'----->11 I I .....J..>1 I I . I• • ····>I c tS;:I 

js expressed in his notation as follows. 

(x -•·> ., _lt_c_> llfl) 

Though one might find some similarity between Burstalfs notations and those based upon 

conceptua I representations. it is difficult to aa:ommadate his notations to a wide variety of 

data structures . 

.f.5.3 Rich and Shrobe•a Work 

C. Rich and H. Shrobe have developed a specification language for LI$P which is 
I ·~· 

used in their LISP understanding systenl[Rtch-Shrobe"l&l In their. system, the reasoning 

techniques used to deal with the problem of side-effects In LISP are along the same lines as 

ours. However. the cJear separation of Identities of objects from states of objects (cf. 



Section i.1.3) is not realized in their formalism. Thus specifications in their ~nguage tend 

to be long and are difficult to use for other programming languages. For example, let us 

look at an example of specification given in CRich~Shrobe'76l 

(Spec-for: SWAP 
(Input: PAIR-1) 
(Output: PAIR-2) 
(Assert: 

CID PAIR-1 PAIR-2) 
(I.EFT PAIR-2 [RIC/IT.PAIR..;l]) 
(RICllT PAIR·1 [LEFT PAIR•1)))) 

SWAP operates on a LISP pair to exchang~ kl left element and right element. No new pairs 

are created by this operation. In the specification above, nalMS'~l aftd PAIA•2 denote 

the same pair object P, which is stated by the fint Ul'llttan jn the CAss,,t; . .) clause. The 

reason why they need t9 use two <Utferent names for the one object P is kt distinguish the 

state of P before the operation ·from that of P after. the operltlen• In our specification 

language the SWAP operation can be writ"91 MtlK>ut introducing" a dlff«ent name for P. 

Using a conceptual representation which d~ribes the state of a pair object, a specification 

for SWAP is given as follows. 

<event: [SWAP <= P] 
<1,re-cond: (P b-a (PAIR (le/i: A) (ri,.,,,: B))) > 
<poat-cond: (P b-e {P MB"(lefe:&J <ril•e: A))l » 
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.f.5 . .f Floyd~Hoare Approach 

The traditional floyd-Hoare approach[Floyd67, Hoare69, Hoare72, lgarashi-et-al75, 
·. . ~ - - . . 

Suzuki75] to the specification and verif.~~- of p~~'~ .~ It~ in its ability to 
~ ' . ' 

deal with programs which change their behavior. For example, the sharing of data 

structures in simple ALGOL-like languages u difficult to treaif' 'F$uppose that in the 

following code x and y are EWO- and one-dimensional ~ ~VelJw 
i ... 

y .. x(3,]; 

x[3, 4) .. ~3, 4).+ lf.: 

, ''" ~ 

Their assignment rule cannot derive the correct value of y[4] after the above code is 

executed. The reason. iS that the value (i.& 11ate~ ·of ali pfagram variable is not 

distinguished from Its identity. · 

Furt~errnore. the lack Gf ttae separattolt .t srates from identities makes it difficult 

for the•r approac., to deal with spectftcaUan and' Wrtflcatkln of programs written in 

SIMULA-like object-oriented languaps. For mmpte. their f.ennallsm is Inadequate to 

dear with the following simple piece of SIM.ULA code: 

queue•l : - !!!!! create-imp1We..,...C); 

queue-2 : - queue-1.e-.....-(2); 

queu.-2.....,....(3);. 

In the next chapter we·wm d~te hQw c~ ~:of a.de la tlJ!alld in our formalism. 

I. Jn the traditional Floyd-Hoare approach, variables in assertions denote literal program 
variables. Thus the value of a program variable should be c:onUdenld u its ltate. 
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4.5.5 Algebraic Specification Techniques 

As discussed in Section 2.4.1, Chapter 2. algebraic techniques CZilles?i, Guttag75] 

have been developed for the specification of abstract data typetILISkov-Zmes74l In the' 

algebraic approach, all operations and procedures are specified u fuflttlons, which leads to 

a serious problem; the purity and impurity (cf. Section S.2.1, Chapter S) of data structures 

cannot be easily distinguished. 

As an example, let us consider an algebraic specification of queues given in 

[Guttag75]. Important operations on a queue are ADO and REMOVE, whose functionality is 

as follows. 

ADD : Qu1u1 x lnt1gn --> QIUIU 

REMOVE : Qutut -- > ~"'"' 

The essential part of the specification is given by the following equation: 

REMOVE(AOO(q, i)) = AOD(REMOVE(q), I) 

where q is not an empty queue. In their interpretation, operations such as ADD and REMOVE 

always create new· objects and cause no side-effects to the objects that they operate on. 

Equations of operations such as (•) define congruence relations over the word algebra 

constructed· from the operations and objects. Thus in their approach, algebraic techniques 

are used to specify the behavior of only pure actors (immutable objects). 

There is another interpretation. If we consider the domain and range of 

operations as sets of states of objects, equations (axioms) of the operations can define 

congruence relations over the states of objects. In this interpretation, algebraic techniques 

can be used only for impure actors (mutable objects) 
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In either interpretation, the algebraic approach has difftcukies in dealing with 

both pure actors and impure actors simukaneously. TechnlqUes~ clweloped by J. Spitzen 

and B. Wegbreit [Spitzen~WegbreiC"li, Wepreit-$pit1ee'1&l have the mne problem of 

dJstinguishing the purity and impurity of' data .......,.. 
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5. Verifying Serial Computations 

In this chapter, our verification techniques for serial computations are presented. 

The first section describes the method of symbolic evaluation which is the major 

instrument in our verification techniques. It also contains a detailed explanation of our 

reasoning method which can be employed in environments where computations may cause 

side-effects. The next two sections describe our verification methods, each of which is 

applied to different types of actors. Then; to close the chapter, we reflect on our method of 

symbolic evaluation and discuss its application to other areas. 
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5.1 Symbolic Evaluation 

In this section, we will describe our buic method of symbolic evaluation, the major 

instrument of our verification techniques. A simple example of symbolic evaluation of 

PLASM A code which involves sharing of actors with side-effects is given at the end of the 
... ,. " '. ... "i..' ' . ·' :. J , , ' '.. . ' : ' .. ' ' ' 

section. Although in this thesis we constder symbOiiC evaluatloo primarily as a tool for 

program verification, it is also useful for other purposes such as program testing, 

debugging. optimization, dependency analysis, perturbation analysis etc. The chapter 

concludes with a discussion of some potential applications. 

5.1.1 OvPrview 

Symbolic evaluation is a process which abstractly [symbolically] executes programs 

on abstr~ct [symbolic, as opposed to •concretej data. When a program takes numerical 

input, the symbolic evaluation of the program does not deal with concrete numbers such as 

123, 1776, and 1984, but rather with symbolicaHy expressed numbers such as •n1•, ·n2·. and 

"m". 

Though symbolic evaluation is an extenstoa. of ordinarJ ~ of programs, it 

differs from ordinary e~eQJtion jn ~· ~~~g ~-

O? The only.properties o_£ inp'4t that~ be ufed a.re-·the ones . .spedfked as the 

prereq_u1sites of a module ,being,~· _-yaluatld. [E.g., input numbers are · 

required to be po.Utive jnteg~r.1.] 

(2) When the symbolic e~~ of aAT..-Nie M encounter1 an invocation of some 

module N, the specifiJ;atiqn .. [contraaJ of'bil ii Ufeci to cerdinue the symbolic 

evaluation. The implementation of Nb not used. 
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Symbolic evaluation can be viewed as a mechanization of the process of a human 

programmer tracing a program without using concrete values to understand the 

computations expressed by the program. 

In symbolic evaluation, the code of a module is interpreted step by step according 

to either pre-defined semantics of language primitives or specifications of modules invoked 

in the module. Each such step is triggered by the symbolic evaluation of an expression in 

the code which corresponds to an event [cf. Section 3.1.2, Chapter 3]. The state of the 

program [code] at each moment before and after an interpretation step is _referred to as a 

situation. The symbolic evaluatorl has a data base to record what events occur, what facts 

hold and what is assumed in each situation. Facts that hold in a situation S are recorded 

as assertions associated with S. 

Since each expression is interpreted on abstract data, when a conditional expression 

is interpreted, the subsequent symbohc execution path must split in the usual . 

fashion[Deutch 1973). For example, consider the symbolic evaluation of 

if (P x) then ... ella .... 

After the symbolic evaluation of the expression (P x), the symbolic execution path splits into 

two branches: one for the then-clause and the other for the else-clause. To start the 

subsequent symbolic evaluation, (P x) must be assumed for the then-clause and ... (P x) for 

the else-clause. If the evaluation of (P x) has no side-effects, the assertions holding in the _ 

situation where (P x) is evaluated are inherited for both clauses. 

In essence, symboiic evaluation is a process which abstractly evaluates the code 

I. In this chapter, we assume that symbolic evaluation is carried out by a hypothetical 
system. 
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Fig. 5.1. A Situational Tree 

forward a long the execution path al'\d produces _a,,u. ltrUChlre whole .ftodeS <:orrespand to 

situations. At each node of the tree, assertions which hold in thtnerreifMlllldmg situations 

are entered. We caU this wucture a sUlultlntll trcc.c:{$ee; ficare 6J~] The assertions 

entered in the situational. tree are used uthe'j>rimary ..-.reed: infamatton for answering 

questions about the implementatiOn. AJ.we shall lats,tee.0 ..,..ttori ofitnPlelnentations is 

carried out by using such situational trees. 

5.1.2 Partial Descriptions of Situations 

In order to illustrate how assel'tJGnl are handled in . a situational tree, we 
•. 

symbolically evaluate the following ~ Qi code. 

-s
(queue-1 <= (nq: I)) 

- S'
(queue·1 <= (nq: 8)) 

-s9'-
;queue-1 ,.... .. , ........ (nq: 8) 
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S, S', and S" denote situations before or after the events corresponding to 

statements in the code. We assume that two distinct impure queues, queue-1 and queue-2 

have been created before the situation S and assertions about states of the two queues are 

already entered at the node for S in a situational tree. See the diagram below. 

I 
S : (gueue-1 b-a (IM PURE-QUEUE [3 7 11])) 
I (gueue-2 i~-a (IM PURE-QUEUE [2 4])) 

I 

With these assumptions, the first statement in the code which expresses an event 

[ queue-1 <= (11q: 6)] is interpreted. To know what effects are caused by this event, the 

symbolic evaluator first looks for an assertions about the state of queue-1 at the node for S 

in the situational tree. It finds that the state [or conceptual type] of queue-1 is expressed as 

(/ M PURE-QUEUE [3 7 11]) 

From the form of the conceptual representation [i.e., from "IMPURE-QUEUE"], the contract 

for impure queues in Figure 5.2 is referred to. 

The event expression [ Q <= (nq: A)] in the second <event: .. .> clause in the contract 

for impure queues in Figure 5.2 matches against the event l[gueue-1 <= (nq: 6)]. Also the 

assertion 

(Q b-a (/Al PURE-QUEUE [!x])) 

in the <mJ(!1tt: ..• > clause matches against the assertion 

(gueue-1 ia-a (IMPURE-QUEUE [3 7 11))) 

which has been entered at the node for S. Thus the whole second <event: .. .> clause can be 

instantiated as follows. 
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Fig. 5.2. A Contract for Impure Q.ueues 

<rw.n1: [ creat••impure-caueue <= []] 
<rrlurn: Q* > 
(ptNC-cud: '°;..... (IMPURM-f(JBUB:tm ·) ) 

<Pw.nt: ( Q <= Cftq: A)] 
<prtt-co1td: (Q U... (IM PURE-QUEUB [Ix])) > 
<rf!lur1t: Q ) 

<1HHl-contl: (Q ia-ca (/ M PUU~ {11t A)t)·,) > · · 

<ntH!nl: [ Q <• (dq:)] 

(ca1r.-l: 

<pre-eontl: <O ia-. (/ M PURI-OU BUB DU > 
<rr.llarn: Ces-ltoau&etl:) > 
<,,011-eowi: CO iHI CIMPURE-OUBUE (])) > ) 

(coir.-2: 

<pra-cou: (Q g;... (lJf PURB-()UEUr(B'ly])) ) 
<rPlurn: (dttqaeued: B (rear: Q)) > 
<poat-cond: (Q i.-. Cl M PURl-(JVWB fly]J) > )> 

<fft1rn1: (queurl <= (nq: 6)) 
<prr.-r:ond: (queue-1 ia-.. (/ M PURE-QUEUE [3 7 11)))> 

<rr.1urn: qU.ue-1 > 
<p•ut-cond: (qmue-1 ii-a (IMPURE-QUEUE [3 7 11 &]))» 

The symbolic evaluator enters the assertion ill the abowe <,,.ar-cou:".> clause at the node 

for the next situation S'. Also it records what event ~k place between the two situations. 

See the upper diagram in Figure 5.3. The second statement in the code expresses an event 

[queue-1 <= (nq: 8)], which is interpreted in the same way as above .. The effect of this 

event is recorded at the node for the next situation 8" u lhown ·In the lower diagram of 
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Figure 5.3. 

An important point in the manipulation of assertions described above is that the 

assertion about the other impure queue actor, queue-2, is left untouched, neither copied nor 

modified in going from S to S' and S". As the diagrams in Figures 5.3 show, the 

situational tree thus generated by the symbolic evaluation does not contain assertions about 

the states of queue-2 at the nodes for S' and S" .. In general, a situational tree generated 

Fig. 5.3. 

~ 
S : (queue-1 is-o (I ltl PURE-QUEUE [3 7 11])) 

(queue-2 is-o (/ M PURE-QUEUE [2 4])) 

[ queue-1 <= (nq: 6)] 

I "' 
S' : (queue-1 b-o (IMPURE-QUEUE [3 7 116])) 

--------------------------------------------

I 
S : (queue·l is-o (I !ti PURE-QUEUE [3 7 11))) 
I (queue-2 is-o (I JI PURE-QUEUE [2 4))) 

I 
[gueue-1 <= (nq: 6)] 

I 
S' : (gueue-1 is-o (lltlPURE-QUEUE (3 7 U 6))) 

I 
[gueue-1 <= (nq: 8)] 

I 
S" : (gueue-1 i1-o (IMPURE-QUEUE [3 7 11 6 I])) 
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by symbolic evaluation is only a partial description or situations. When one needs to know 

states of actor~ or relations holding in a situaiioR. which are ,.,explicitly asserted at the 

corresponding node in the situational tree. one ..a rely on the miming method described 

in the next subsection. 

5.1.3 The M-ethod of Rea50ning (Uses of the Tranwituational Rules) 

In this subsection, we will illustrate how situational trees are used for the reasoning 

in our formalism. In general, questions about a given situation are answered by reasoning 

backward. That is, to answer questions such as w~h~r: -sqme ~~ions hold in a situation 

S or in what states some actors are in 8, a situational tree is looked at from the node for S 

to previous situations. 

For example, suppose that a situaUon•I tree:-sJto~n if\ ,figure 5.i i.$ give'l and we 

want to know the sta..te of Q in a situation 8 7. First we try to find some assertion which 

describes the state of Q at the node for the situation 8 7. Since the given situational tree 
~ • D. -~ ~""' ' ' - "" 

does not have any assertions about Q at the node for 8 7, we look for assertions about Q _ 

backward along the branch of the situational tree. [See the dotted line in Figure 5.iJ An 

assertion 

(Q ia-a (UIPURE-QUEUE (2 5 4])) 

is found at the node for 8 3. However, all we know at this point is that the assertion holds 

in 8 3. but we are not sure that the assertion hotds tn ·s7• beeiuse s0rne events which 

destroy the validity of this assertion in 8 7 might have occured ~Wftll 8 3 •nd S,. So we 

must check on such events. 

In order to know what events nullify the validity of assertion, each event 
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Fig. 5.4. Reuoning Backward 

specification in the contract for impure queues shown in figure 5.2 is examined. If in the 

specif ic;ation for an event E the state of Q stated in the <pt'fl-dfl#.: •. .> clause is different from 

the one in the corresponding <po1t-contl: .. .> -clause, the event E nullifies the validity of the 

assertion. In fact, [Q <•('~:)]and [Q <• (nq:-l] tum out to be such nu11ifying events. 

The process of finding the nullifying events can be saved If the contract contains 

an explicit statement which indicates such events. For this purpose, we may add the 

following ctause to the contract for impure queues.1 

<f or-auertion: (Q ii-a (/ ltf PURB-.QUEVB [.-.))) 
<only-afleclin1-etJOnla-ore: 

{[0 <= (nq~~;.)), ['Q <- U.,:J]} » 

This· statement says that the validity of assertions of the form 

(Q ia-o (UI PURl-{)UBUI [-))) 

1. <for-tu1ertion: ... > clauses do not have to be placed in contracta for actors. They can .be 
placed in some globaJ place to which the symbolic evaluator have access. 
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is destroyE'd only by the set of evenu appearing in the <llrtlrcff•,....;>·daua.2 

In our formalism, assertions of the form . - " -,~ 

can be mherited from an ancestor situatiott 8i to ·~escendant situation sj if the following 

two conditions are met: 

(J) The events specified in the corresponding </Ol""~ion:...> clause do not take 

place between Si andSj. 

(2) At the node for the descendant situatl~ S,r no a5:Rrtions about the <actor> 

have bee'1 entered which use the _wne form of ~,npraentation as wed in 

the assert.ion b~ing inherited from S;. 

By virtue of the. second condition, we do Mt .ha,ve -to keep adding events to the 

<f or-tu$cr1io11 ••• > dat;a:se. ev~ry titrur we implement a new. ~ .. whid> chaqg1!$·the state of the 

<.ctor> .. For example, suppose t~tan -•"°L~.)'in&.,...... wh~~·the elements of 

an impure queue-actor is implefJlented and ~t its ~!,cation 6- ~U:follows: 

<m1rnt: [emptying-queue <= Q] 
<1wr.-r.onfl: (Q ia-a (lllPURR-QUEUE [!x]))> 

<poal-r.onfl: (Q i•-• (/JI PUR~aM fl»» · 

When the PLASM A expression (•fnPl~n1~~- <• Ql i$ _17'"4>1ically interpreted in a 
• '~ " ·, •· .. - • - ' - - ' './f .~_lo 

situation S where (Q ia-a (IJIPURE-QUWE (1 2 3))) holds, the assertjon 
-~ ;~ ·:,~ . -~ ; ·! .f " -:.:-;.,· 

(Q i11-a (IM PURE-QUEUE [])) is entered at the node for the next litUaUon 8 9
• If we did not 

' - -. ". .:~ ~' : ~- . ; 

have the above condition (2), the assertion (Q ii-. (IMPURE.(}UEUE [1 2 3))) coukl be 

2. Note that this reasoning is valid only for serial wmputations. It is not valid,if there are· 
concurrl'nt events. 

'. 
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inherited to S'. To prevent this invalid inheritance without the condition (2), we would 

need to add the event [emptyinrqueue <= Q] to the list of nullifying events. 

In general, the rule which indicates what conditions guarantee valid inheritances of 

assertions from one situation to another is catted a tnnu·sUuatlonal rul1. For particular 

assertions or particular forms of assertions. approprQ.trans•sit"'-tional rules are necessary 

for correct reasoning. The </or-a11erdon: .. .> clauses given in contracts are one type of 

trans-situational rules. In Section 5.1.5, some examples of trans-situational rules are listed. 

The reasoning using trans-situational rules described here is ll proceclural approach to 

~cCarthy's frame problem [McCarthy-Hayes69l We wiH discuss this issue in Section 5.4 . 

. !U.4 Variables and Identifiers 

In this subsection, we will explain how names for actors are handled in symbolic 

evaluation for programs written in PLASMA. The technique given here allows us to deal 

efficiently with the problem of both identity and sharing of actors. 

Names in PLASMA faU into two cta.es: oerldl11 arid i4nttljlns. A variable x 

can be declared and also initialized with the -value of an eKpress1Un <El> by the folk>wing 

form of statements 

(lea (x inidally <El>) ... ) 

The value of JC can be c~anged only ~y executing expressiQns of t~.~~rm. 

(x ~ <E2>). 

Occurrences of JC in programs except in the above form stand _for the value of x. A 

variable JC is usually implemented by a cell accor, but iA that case an expression x .in code 
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does not stand for the cell actor itself~ but r~ther for the ~ of the cell actor. In 

symbolic evaluation, to state that a <var~ebl9> ~an ~tor> as iU V.lue in some situation, 

asst>rlions of the f oJlowing form are used. 

When the symbolic evaluator interpteu an expression 

(x .. <E>). 

in a situation S, the following assertion 

is entered at the node for the next situation, where Bis the value of <E> in S. 

An identifier is declared and bound to an actor in th~ course of p~ogram 
. " - -~ 

execution. To express that an <identifier> is bound to an <.tor>, we use assertions of the 

form 

(<identifier> ii <1etor>) 

In the symbolic evaluation of a module ~ .,i idenOf•r •used In the code of M can be 

always regarded as the ~r lh~t it is ~11'1 to.,~ one idenlifier is.: not bound to more 

than ont> actor throughout the symbolic evaluation of M. This is guaranteecl-by: 

(I) the restriction on the syntax¢' PLASM~ th.at no names are declared more than 

once inside a module, and 

(2) the fact that lymbotlc evahlatlon Jpisses: over each expression in a module 

exactly once.I 

1. This f t1ct is true only when symbolic evaluation iJ used far prog...- verifkalion. 
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When more than one symbol [here, symbols mean ones denoting actors in contracts 

(such as Q in Figure 5.2) as well as indentifiers in programs] denotes the same actor, we use 

assertions of the form 

(<symbol-1> i11-aq <symbol-2>) 

As an identifier can be regarded as the actor that it is bound to, the relation "i11-cq" and "=" 

can be used indistinguishably. Since the relation "il-aq" is an equivalence relation, it forms 

an equivalence class of identifiers in programs and symbols denoting actors in contracts. 

Every member of such an equivalence class denotes the same actor. In symbolic evaluation, 

one identifier (or symbol) is chosen from each class [e.g., the one which is first used among 

the members of the class] and any uses or occurrences of other members in the same class 

a re always considered as those of the chosen one. To record the state of an actor A, the 

symbolic evaluator always uses the one chosen identifier or symbol for A throughout all the 

situations. This arrangement eases the handling of shared actors in symbolic evaluation. 

To illustrate the use of identifiers and symbols explained above, let us consider 

the following piece of code. This code is a PLASMA version of the SIMULA code given 

in Section 4.5.4, Chapter 4 as an example which is difficult for the Floyd-Hoare technique. 

- So -

(fot (queue-1 = (create-impure-queue )) 

then - S 1 -

(/P.t (queue-2 = (queue-1 <= (nq: 2))) 

then - S 2 -

(queue-2 <= (nq: 3)) 

- S3 -

S 0 , ... ,S3 denote situations before or after the events corresponding to statements in the 
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code. In what follows, the notation 

means that <assertion>s are entered at the node for S in a situationaltree . ... 
The event [ create-imeur•:s"!ft <= ID takes _place in 8 0. By virtue of the 

contract for i~pure queues in Figure S~2. we know an empt1_ impur~ queu.e-atiqr is creat.ed. 
, • - -·: • - ..,. - >-o • ~; - • ' • , • '.. :.~ ',- ·, .< .. - ' ~ :. ~ . • 

Then the lr.1 statement binds the identifier ...U.·_l}O the;emptY.,Ci~eue-actor. ·.We may use 

a symbol Q for the newly created actor and record thil event by_ two usertjons 

(Q i1-a (Ill PURB-(JUBUB [D) 

(QL!!UJ• l 5 Q), 

but one assertion suff ica. Namely; 

The second statement of the above PLASM.A code ii interpreted by using the 
- ' ""; ·, ~, 

fallowing event specification instantiated from the 'clause in the contract for impure qu~es 
. ' - - . ' 

(f"1~nr: [ gueu.""1 <• (Rff: 2}] 
<prr.-coml: (queue-1 i1-a UM PURE-QUEUE OU> 
<rr.turn: gueue-1 > 
<p<ut-r.ontl: (gueue·l ii-ca (I JI PURE-QUEUE .[Z]))» 

The state of queue-1 is changed as described by the assertion in the (po11-cortd: .. .> clause 

and queue·l is returned. The lo& statement tells urthat·:tht Nl8nMd ~· is bound to 

queue-2. Thus 

in 82 : (queue-1 i1-a (IMPURE-QUEUE [2])) 
(queue-1 b-eq queue•2) 
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In interpreting the third statement, since we know that queue-2 and queue-1 denote 

the same impure actor, the event [gueue-2 <= (nq: 3)] stands for [gueue-1 <= (raq: 3)]. 

Thus the change in the state of queue·l is recorded as 

in 8 3 : (gueue·l iJ-a (IM PURE-QUEUE [2 3])) 

Any references to queue-2 in the interpretation of the subsequent statements in the code are 

treated as the references to queue-1. 

5.1.5 Examples of Trans-Situational Rules 

In this subsection, we will give the trans-situational rules which will be used in the 

examples of symbolic evaluation in this thesis 

(::.) Assertions of the form (<identifier> = <1ctor>) 

which state that <identifier> is bound to <1ctor>, can be passed unchanged between any two 

situations within the scope of <identifier>. 

(•::} Assertions of the form (<actorl> i•-eq <1ctor2>) and (<actorl> not-eq <actor2>), 

which state the identity of actors, can be always inherited from one situation to another 

without any conditions. 

(:::) Assertions of the form 

(<c·sequencel> = <c-sequence2>) and (<c-sequencel> ,. <c•sequence2>), 

which state the equality of conceptual sequences appearing in conceptual representations, 

can also be inherited without any conditions. [Note that <c•1equence1> and <c·sequence2> 

are not sequence-actors but mathematical sequences. All mathematical facts can be 
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inherited without any conditions. This ts a special case.1 

(.>) Assertions of the form (<1Ctor> b-o, (SK(JU«AOfflt]JJ. 

which state that <1etor> is a sequence·aetOr whose etemeftu are ix. an be inherited without 

any conditions because a sequence-act()r 11,' pure actor wbtc;\1 never ch~nges its.state. 
. ·' . . . ~ . . '- -· ~ ~. - ~ , . . . . _:. - > 

<~·> Assertions of the form (<v.,iable> lta.-.al•• <ldor>) 
. ;-

which state that <variable> has <actor> as its value in some situati~ •• Qn be inherited to a 

situation T if no assignments to this <variable> take place between S and T. (Cf. Section 

5.1.i.) 

5.2 Verification of Actor• Behavtn1 as Proce1iurea 

Met hods of verification reflect methods of specification. Roughly speaking, two 

methods have been employed in the speciflcation technique p~ted in the previous 

chapter. 

One method is to specify the behavior of an actor A in terms of the states or the 

changes in the state of other actors wbi~~, are sent ~o A. or whi4J are created during the 

invoc~tlons. of A. In this method, th~ ~te,of' A is ~ot u~ irl ~fying the.behavior of 

A. Most actors which behave purely. as •procedures• are specified ~y t~ me~. A 

typica I example of such actors is empty-one-queu.-into--.other. [See Section i:t.2, Chapter . 

4.] In general, this method applies to the specifications of the~ whleh are targets in 

the No-Chang.e-Type and M~nge--Ttpe tM«ac:Uons introduced tn Section S.2.4. 

Chapter S. 

The other n•hod u to specify lhe behariR" of an actOr B In Nrms of the changes 
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in the state of B itself. Actors which behave as "information storage", such as data 

structures and generators, are specified by this method. 

In this section, we will illustrate our verification techniques for actors behaving like 

procedures, whose behaviors are specified by the first method mentioned above. The 

verification techniques corresponding to the second specification method will be discussed 

in the next section. However, since actors are essentially procedural objects whose 

implementations are written as programs, most of the techniques that will be discussed in 

this section [such as the handling of recursion, loop, case splitting and convergence) are 

necessary bases for the verification of information-storage-like actors. 

5.2.1 Symbolic Evaluation in the Context of Specifications 

In order to verify an implementation of an actor against its specification, symbolic 

evaluation of the implementation [i.e. code or script) is carried out in the context of the 

specification. In our formalism, a specification of an actor which behaves like a procedure 

is expressed by a specification of the event which initiates the invocation of the actor. A 

specification consists of the preconditions for the incoming message [i.e. input], and the 

postconditions to be satisfied by the result of the invocation. Thus the symbolic evaluation 

of the implementation is started with the assumption that the preconditions are satisfied. 

Under this assumption the symbolic evaluation is carried out and then the results of the 

symbolic evaluation are examined as to whether they satisfy the postconditions given in the 

specification. 

Below we will demonstrate the verification of an implementation of 

empty-one-queue-into-another [hereafter empty] against its contract. Its contract and 

PLASM A code are given in Figure 5.5. The code is augmented with situational symbols 
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Fig. 5.5. A Contract and Implementation of empty-one ........ nto-tnOtMI' 
~ • >. • ,. • • ·' ' 

<ttt,.,nl: ( emply-one~-1bfr;~~JQ_1_;!)~1] 
<pre-confl: 

(Qt -f.-o (fJtl'Ultfr-(Jtl&Uff ttitJJ) 
(Q2 ~:41111>(/~ ""2-1> 
(Qt noa-eq Q2) > 

<rc1W'ft! (tlou.i [Ol.Q2'J)-.> 
(polft~f 

(Q1 b-o (I JI PURB-!JC!~I, W> . . . 
(Q2 b-1. (I JlrURB-OUEvl [ixz~;lxl])) » 

·-------------------------·----··----·-·-··-·-----·-·--_.-··-·-··-·-·-·-··-·-· -·-··------
(empty-one-queue-into-...other s 

<=> [=ql =q2) ;uao impare q1M1Ut1.,.. receiwfl 6y empty-one...,.ue·into-another 

- sreceived-queun -

(ru&es (q1 <• (fb,:)) 

<=> ("%/m1u1ofl:) 

• S exhf&alttd--ql • 

(~one: [qt q2}) ) 

;aM q1 - q2 .,. ...... ,, ...... 

(;;;;> (nn1: =tron~1 pf 411 u ..., eapey, front-of-qt 

(r~Jlt: =doq~~-ql)) ' ........ uecJ-ql 
;are bou.ntl lo &Jae f ronl element of ql anti a/le renuaillin• q.-., re•pecdwly. 

- sdequeued-ql -

(q2 <= (nq: fr0nt-of-q1)) ;front-Gt-qt u enqaeaefl 01 rear of q2 •. 

• S enqueued-q2 • 

(empty•one-queue·i,.to•another <•. Cct...--q1 q2J»l J) 
;dequeued-qt anfl q2.,.. Niii 10 empty-one-queue·into-.nother. 
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which denote situations before/after events corresponding to each statement. Note that this 

implementation contains a conditional branch and a recursion, the handling of which will 

be explained below. 

First, the preconditions of empty in its contract are entered in the data base. 

in S initial : 
(Ql is-a (HI PURE-QUEUE [!xl))) 

(Q2 is-a (I !ti PURE-QUEUE [!x2J)) 

(Ql 1101-e.q Q2) 

After the symbolic pattern matching is performed, identifiers ql and q2 are bound to Ql 

and Q2, respectively. So this is recorded in the data base as the following assertions. 

in sreceived-queues: 
(gl_ E Ql) 

{~ E Q2) 

Then the PLASM A expression (ql <= (clq:)) in the rule1·statement is interpreted. The 

dequeuing message (dq:) is sent to Ql that ql is bound to. To know the result of this 

event, the symbolic evaluator must consult the <evane .. .> clause for the dequeuing in the 

contract: 

<r.vent: [ Ql <= (dq:)] 

(case-I: 

<pre-co11d: (Ql is-a (IMPURE-QUEUE[])) > 
<retur11: (erhaustecl:) > 
<post-co11d: (Ql i1-a (I !ti PURE-QUEUE [])) > ) 

(casr.-2: 

<prr.-cond: (Ql is-a (U.IPURE-QUEUE [B !y])) > 
<retttrn: (ruirt: B (ra1t: Ql)) > 
<post-cond: (Ql ia-a (I !ti PURE-QUEUE [!y])) >) > 
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[Note that the above clause is an instantiation of the <evenl...> clauae for the dequeuing in 

the contract for impure queues in Figure ~.2, wllic)l ii obtaU.ecl b.y _ sub¥ituting Ql Jor Q.l 

Now the symbolic evaluator has to consider two cases: where Ql is empty and w_here Q1 is 

not empty. (See the situational tree for this example in Figure ~.6.) 

. ', . ' 

Case t .(Q!_i.-o (IMPURE-QUEUE llll 

In this case, the contract specifies that the Ces--..n:l ~ sbould be returned. This 

message matches against the first <=>-->-statement iniide the (tua.s~) statement. To follow 

this path, x1 = [] must be assumed. So at the node for Sexhlul~-1• the following 

assertions are -entered. 

in S exhausted-qi : 
(xl = [J) 
(Ql h-a (IJIPURE-QUEUE [])) 

Then the result of the invocation, the message (.lone: [ql q2]), is returned in Sexhauatect-q1· 

For this result, there are thr-eepostcondUionsstatedintheconnct oCempty: 

Fig. 5.6. 

ilnlUlll 

/s,~ 
s ....... tod-q1 s7 

Benqueuect-q2 
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rl: (dn11r.: [Ql Q2]) must be returned 

r2: (Ql b-a (/ M PURE-QUEUE[])) must hold, and 

r3: (Q2 i1-a (/ M PURE-QUEUE [lx2 lxl])) must hold. 

It is easy to show that each postcondition is satisfied. in Bexhaulted-ql: 

(::c) for rl, since the trans-situational rules for binding allow th~ inheritance of the 
~' ' " t . . . 

assertions (gl = Ql) and (92_ = Q2) from sreeeived-queue1 to s.xh•usted-ql• 

the required message is returned in 'BfiXhaulted-ql, 

c~ .. ) for r2, the assertion (Ql ,u-e (IMPURE-ff/ll}B (]J) is entered at the node f'or 

8 axhaustad-ql• and 

(•:•) for r3, the two facts guarantee that the requirement is satisfied: . . 

(1) (Q2 i11-a (/If PURE-QUEUE [!x2])) can be inherited from Siniti•I to 

saxhaustad-ql by using the trans-situational rule for 

(Q2 b-a (IM PURE-QUEUE [ ... ])) [~hich is of?tail)td. by instantiating the 

<for-aHeriion: .. :> clause in the contract for impure queues. Cf. Section 5.1.3.). 
. . 

This inheritance is legitimate because neither [Q2 <= (nq: ... )] nor 
-

[Q2 <= (dq:)] have happended and no assertions of the form 

(Q2 i11-a CUI PURE-QUEUE [ ... ])) have been entered at the node for 

S axhaustad-q 1 · 

(2). [!x2] = [!x2 !xl] holds in s .. tMu.ted-ql because xl • [] holds in 

S axhausted-q 1 · ( [!x2 !xt) w [!x2 I[)] s [lx2) ) 

Therefore (Q2 i1-a Cl M PURE..()UEUE [!x2 lxl))) holds in a • ...,.1...._1• Thus Case-I is 

verified. 
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In this case, the contract for impure queues tells us that (u.-e: B (re": QO) iS the result of 

(ql <= (clq:)) where the following assertions are assumed. 

(xl = [B !y)) 
(Ql ia-a (I JI PURE-QUEUE [ly))) 

The result (nr.x1: B (rca1: Ql)) is match~ .a.ain$t .~·paU.ent Jn U\e·JeCOad ·'5> ... ) statement 

inside the (rules ... ) statemenl At- the ·JKlde r.r(a~i1•'t·t· Ute· 8i:Dding . information is 

also entered together with the above assumption. 

in sdequeued-ql : 
(front-of-qt • 8) 

(dequeued-gt ii Ql) 

(xl = (B !y]) 
(Ql ia-a ti JI rtlf(lt;~DJB [!y))) 

Then the PLASM A expression (q2 <• (nq: front-of-q1)) is interpreted in thia situation. 
; ~ -. . . - " --· ' .. "...-

Since q2 is bound to Q, and front-of-qt is bound to B [from the trans-lituational rule for the 
.. - ,- . .- . 

bindingl the event taking place is [Q2 <11: "'9: B)] ... T.o).,.. t~ effects of this event, the 

system refers to the second <eNnt: •. .> clause in the Q>ntrad for impure qu~ in figure 5.2. 

The state of Q2 in Sctequeue-ql is . obeail)ed, from the assertion 

(Q2 i11-n CUI PURE-QUEUE[!x2])) at the~ node ~.or ,,.,.,.., ~t:tie, ~t can be il\herited to 

sdequeued-ql for the same reason as explained above in the case of its inheritance from 

sinitial to Sctequeued'!ltl• ... ThUJ the aecond-<effal:_;) clame·v· .... ntiated as fellewL [Not~ 

the substitutions of Q2 for Q, x2 for x and B for A.] 
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<event: [ Q2 <= (nq: 8)] 

<prc-cond: (Q2 ia-a (/JI PURE-QUEUE [lx2])) > 
<return: Q2> 
<po11t-co11d: (Q2 ia-a (IM PURE-QUEUE [!x2 BJ)) » 

The assertion in the <po•t-cond: ... > clause is entered at the node for Senqueued-q2· 

in Senqu~ued·q2: (Q2 b-a (IMPURE-QUEUE [!x2 BJ)) 

Now the last PLASM A statement (•mpty <= [dequeue-ql q2]) is interpreted. From the 

binding information, the corresponding event ts [empty<= [Ql Q2)]. To know the effects 

of this event, the contract for empty in Figure 5.5 is referred to. Since we are trying to 

verify the code against this contract, this is a ·recursive·• use of the contract. The 

preconditions stated in this contract must be satisfied before it can be used. In fact, the 

assertions: 

(Q1 i11-a (IMPURE-QUEUE [!y])) and (Ql noa•eq Q2) 

can be inherited from sdequeued•ql by the trans-situational rules for 

(Ql ii-a (!JI PURE-QUEUE [ ... ])) and (<actorl> reoa-eq <ector2>), 

respectively. Thus the following assertions hold in S•nqueue-q2 

(Ql i11-a (IMPURE-QUEUE [!y])) 

(Q2 is-a (I !ti PURE-QUEUE [!x2 B)]) 
(Ql not-eq Q2) 

Therefore the preconditions of empty are satisfied. Now the postconditions of the contract 

for empty guarantee that (done: (Ql Q2]) is returned and that the following assertions: 

I. Recursion and iteration in symbolic evaluation are discussed in Appendix III. 
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(Ql b-a (IJIPURB-()UEUB CD) and 
(Q2 b-a (/If PURB-QUEUB [l[lx2 Bl ly])) hold. 

hold in the situation following s ..... ~ Jradl~~ 
. • • '= :.·_ 

[![!x2 BJ IY] ~ [lx~8 lrJ. 
(!x2 B !y] • [lx2 lxl), if x1 • (8 ly]. 

are used to st.raplify,lhe above-assertions. That.is, since x1 • [B ly] can be inherited from 

sdequeued-ql by the trans-sib,lat~l ~a.Jar -~ ..... -.-1~,~ ~..,~~.it follows 

that 

(Q1 ia-a UMf(JR~~BUE O>l ·. 
<oz·,,._,.. Cl lr1'1JRB-oiJBflK ffx2 lxt])). 

Thus rne·posr-c0nditi0ns for .m,tY1M~~ are allo satisfied in. Case-2. 
: -: - -f - # , ,,;;-

' 
Though it has been shown that both Case-i and Case-t meet the postconditions for 

empty, we cannot conclude that the implementation of ..,ty in Figure 55 satisfies its 

contract, because tt. convergence :of the · ift•tkJl't: Gr 'the 1mpllrnentatlon is not 

guaranteed, although it &. apadtly ,.iffd ~ the 'CDRnct. Mecan the meaning of 

<r,,turn: ... > clause~ given. in the pr~v~ c~J for •ffet,""'*'8 into two cases at the 

(rules ... ) statement, the symbolic evaluatiQ!lt for.bf,)ch.~J,-~.~ t.1resutniec1 under tlle 
. . - ~ ' 

assumption that the control has reached the points corresponding to s.xhausted-q~ and 

Sdequeued-ql· Therefore, to demonstrate that tht ~~·~ l~ alwa1s g.~aranteed 
- ·~ :;_-: .: _-: ' - _~\) ~ /~ _,-. - . --

is another part of the ~erification procas. Thia issue ii diacuued ift;
0
Appendjx JV. 



- Ill -

5.3 Verification of Actors Behaving as Information Storage 

In this section, we will present our specification techniques for actors whose 

behaviors a re specified in terms of their own states [or changes in their own states). 
• 

Specifications of actors which behave as "information storage" such as data structures and 

generators [Section i.i.4] are often written in terms of their own states. For the verification 

of implementations of these actors, symbolic evaluation is still the major instrument and all 

the techniques presented in the previous section are still employed. In addition, however, 

special considerations are necessary in dealing with conceptual tepresentations of the actors 

being vltified. We will discuss such considerations in the next subsection . 
. '!c 

5.3.1 Implementation Invariants 

The specification of impure queue actors in Figure 5.2 is written in terms of the 

changes in their states before and after their invocations, and their states are expressed by 
" 

conceptual representations of the following form. • 

(IMPURE-QUEUE[ ... ]) 

When some program which contains invocations of impure queue actors is symbolically 

evaluated, conceptual representations of the above form are used only to record states of the 

impure queue actors. One need not pay attention to what those conceptual representations . 

really stand for, as long as they represent the states of the impure queue actors at the 

conceptual level. However, when an implementation [script or code] of an impure queue 

actor Q itself is verified against its specification, what the conceptual representation 

expresses in terms of the implementation, or more precisely, how the state of Q expressed by 
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the conceptua I representation cormponda to the atata of . lhe conltllUenU of its 

imp~~ntation, mull be conaklered. 

Supp05e that.the PLASMA: implementation of·tn impu~ qt;eue actor given in 

Figure 5.7 is to be ver:if .. -aga;mt tM a.net In 'Fifure U. In 'this ltnplernentatJon, the 

ele.ments of the queue are .kept. as the elements. or a 114umee·actor thatis the value of the 

variable queuees. This ·couW be expressed bJ ·diifi dfalnlM ift :ftgure 5~,' where' ~·es 
represent actors aod .arrows express the knew.alMJt' rtlatkard.· ·This diagram is only a 

partial and.static. description of ·the·i .......... ; yer lt 'llkiltratm an iMariant or 

Fig. 5.1. A PLASMA Implementation of an ~lntpu~ (baai~Actor 

(cre•te-impure-queue E 

<=> (] 
(l,.r (queuees initially[]) 

''"'" (the-queue-itself & 

(cases 
<-> Cnq: =new-.tement) 

;cr..te-.ure...,.. reeeiw• 011 empty 1equence. 
,_ ..,....,. queueH u tlecloretl 

;oH ,,.,...,. .... j,....,,. - .. ,_ .... ne.. 
,_ , ... .-.cc.,. ,...,. 67 tM.....,.-itfflf ii fle/ined 

· , · 'l "7,,.. Niii ,,. ..... ...,. flwn 6ei. •. 

;•An u a9aei&e ..,,..,.. •• -''' on elenaefll u receitlfld, 
.............. w.M ,., iAe .,.,,. ..... 

(queue•• ~ [lqueuHt new-element]) :- w ...,....,.._ior ..,..,. elemenu are 

.. --~~- .,., ... , ....,. .. •"' ................ 
... ... ,. .. , ,,oretl ill ....... 

the-queue-itself) ; ...... ~_,.~la'rer~. 

(ii) (fl,,:) ..,,.,. • ,.,. ............ Nffit1efl, 

(f'.._ •••• ·-- ;i/ i'8. f1filia'e ot queuM8 
<=> [] (e~l•muael:) ) p ••1117t •••u~ _,~ iU r:e1....-. 
(a> (afront I.,~) ;I/ It ~ • ...,.....,,.,. _,...., front .,., r .. t 

';eH HaN te ii• /Int ileillM:W:'IM • '9/ k.-eleifte1111, re1peedvely. 
(queuee1 ~ rnU ,_.,_. ..._..,....,...uu.,,4atflfl. 
(nas-r: front (re11: the.........,)) ) )) )))) .;~t:...) u ,.,~-'· . _: ... ..,, ;; '' ' 
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integrity condition which must be satisfied amonga>natituentl of the.implementation. The 

following implU1Untation inHrU.lat statement can a press the diagram m0re formally. 

<I mplementalion-lnvonan1: 

if (the=gu!&le-i1!!1f U-. (IMPURl.;c}UWB (le])) 
tlt1n 

(queUHS leoa-tlfJlae S) 

(S u-e (SK(HJBNCB ti.])) > 

This says: when the state of the actor denoted by t~f is expressed by the 

conceptual representation 

(IM PURB-QUWB (11]), 

the variable queue• has the value which ls always some aequl!ftce actot S ·whose elements 

are expressed by [11]. (SBl)UENCB [11J) is the conceptual tepreMntation for such a sequence 

queuees 

s 

• • • 
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actor. 

An implemen~tion invariant d~Jba the myptngfM'the smes of an actor 

{the "specification space~)· to ttte states of the CDftltillllldl el .a &'lfflf lmp1emtntatton for the 

actor (the ·implementation space;.' Suppose that the behivior of an actor A is specified by 
- c.. ,-"<-

the state of A before or after its invocaUOn ... Theq .aq .. ~~ -~v•riant is used in 
.'. < '"- -_ ' - -· '. :· - ' ' -- - __ • - --

the verification of A in the following way. 

First, the state S of A before the invocation ts traHlated into th_. state ll(S) of the 

constituents of the implementation by a g}v~ imp~~tion lnv~riaot 1,1! Then tbe 
: ,,:--;-.·~~- ""-~::::, ·-::-~~~~-,_ .,_ ->·. , ---~ ·~· 

implementation [code] is symbolically evaluated and the states ~ the,tqll~~t~nt$ af~er 

the invocation are ·obtained. Next, by using the implementation invariant again, the 

state S' of A, specified as the one ~fter the ~v~tion, is translated into the state 11(5') 

of the constituents. Finally. the states of the censdiaencl' obcatnect,lly tt* symbolic 

ev.a luatio9 are chedteg ·to .fee :if .they satisfy tltose tranatatllld ...... (See Figure 5.9.] 

ht-general, gtven ·a state T of" an aaor A ancf an lmplernentation I for A, an 

implementation invariant for I tells us the rtlatttnu which must be satisfied by the states of 

the constituents of I to realize the state T. Therefore implementation invariants may be 

one-to-man' mappings. In such a case, when symbolic evaluation of an implementation is 

started, only such relations (holding among the states of the consti~uents of an 

implementations) are assumed: exact states of each constJtuent are !l2l used. An example of 

the one-to-many mapping cases is found in Section 7.4.t;_:Chapter 7. Implementation 

invariants are similar to the inverse of Hoare's abdrtlet fartttltnu CHoare72l and also serve 

as concrete (representation) tnvarlanls which he-used additionally in proving correctness of 

I. A state jn the implementation space ·u a vector of stata of the constituents of the 
implementation. 
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Fig. 5.9. Verification of an actor A Behaving like Information Storage 

<Invocation>~ 

s S' 

<S /Jfctftcatton S fxltl> 

<lmf>l1m1ntatton S /J'UI> 

ymboHc evaluation>~ 

• 
II(S) ll(S') 

. representations of data structures. lnt1rprttatlon functf.ons between two formal theories 

studied by R. Nakajima [Nak.ajima-et-a1771 ~ closely related to implementation 

invariants. 

5.3.2 Establishing Event Specifications 

An implementation of an actor which behaves as "information storage" is verified 

by establishing each event specification associated with the actor. In this subsection, we will 

illustrate this by using an impure queue-actor as an example. 
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The verification of the 1fY!plementatton of an impure queue-a,ctor ii ca.r:ried QUt by 
' ~~ - . . ~ 

symbolic evaluatioll~ To ~id i~ the··~xpc;s.tl°'1 Or the symbolic evaluation, we augment the 

PLASM A ~ode in Figure 5.7 wjtb $it~~ion,al _~yrnbols as shown in Figure 5JO, This code is 

verified against the e,'il"tra~t in Figure 5.2. Be~ 1" w~ll establish the two <et1ent:-.> clauses 

in the contract, whic~ specify the_ creation and en~ueing events. The deqt.ieuing event 

can be established sifnilarly. 

In the first <neni:: . .> 'clause in the.m1ifad in .. Figure 5.2: 

<atiena: · [ crHte•impure=gueue <= [)] 
<ree.na.: Q*) > 
<poaa-confl: (Q u-a (IM PURE-OUBUI OH », 

there are no pr~tt0ns for ·this event .Thus no·~.•re entered in the da" base 

for the initial situation. 

in S pre-creation 1 

The lei statement in ,the.code declares and· inittatim a .............. With an empty 

sequence NS.. To.rea>rdtltis.·the following .......... are9Kilrecl. 

in S initi•lized-queUHS : 
(queuteS leoa-Nlae NS) 
CNS ia-a '5BQUBNCB [])) 

Then in this situation an actor whose script (i.e. code) ls given as the Cc .... _) statement 

after (thPqueue,.. • .•. · ii newly created -al\d retilm«I. This actor is denoted by 

the-queue-illelf. The conu.t fOr ttte aattott~riqufh!s:tWi'1hlftP. (1) that the returned 



Fig. 5.10. 

(create-impure-qua!'• = 
<=> [] 
(IP.t (queuaes inilially [)) 

t l1r.n 

- S initialized-queuees -

(the-queue-itself = 

(cases 

<=> (nq: =new-.lament) 

- S raceived•nq -

- U7 -

;cre1te~..,_.,. tocav01 on empty ar.quence. ;a......,,,., queuHS ia declared 

;onfl inidclilled lllidt on •fl!-P'Y •tr7u.enca. 

;a qaeae-ocaor deno1etl lty the-qU.ue•itself i1 dr.finr.d 

;6y 11te cou1-1ta1emen1 givr.n hr.loUJ. 

;when an •ltCJl&elM' • ..,.,.., lli1ft on elamenl i• rr.cr.itmd, 

;new-.letMnt b 6oand 10 ll1e elP.ment. 

(queueff t- (!Cfuewff MW1lement)) ;a ftnJ #qMRCfl-acior 111lto1e elemr.nu 

- S updatad-queuee1•nq -

the-queue-itself) 

<=> (dq:) 

- S recaivad-dq -

(rules quaueas 

<=> [] 

- S empty-queuees -

· (edauated:) ) 

<=> [=front !=rest] 

;f.ll'ff alte anpcaclc o/ llte Hlf!.•,of ~ and new-element 

;i1 creeaid enfl b 11orttd in queuees. 

;and alten the-queue-itself i• retu.rnr.tl. 

;if alte t1alue of queuees 
,,. an eaply Mqu.ancr., 

;if ii u a ,..,... .. ,,., ~ front and resl 
;are bound 10 iu fir•I elemelll and alte ,..,, of iu elemenu, reapeclivaly. 

- S non-empty·queuees - , ,. 

(queuees .. rest) "1te .,.,_. •I queuees i• updo1ed. 

- S updlled-que~•-dq -
(tlnquau.r.d: fr«!n.t (rr.11: the·queue•it1elf)) ) )) )) )) ;(nes-1: ... ) ia rou.r.rned. 
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actor Q be newly created and (2) that CQ b-a CIMPURl..()UBUI [])) holds. Since the 

returned actor is the-queue·ilHlf, what we need to show is that 

(the·qu11ue•itseH i1-a .~f~IPURE-QLIECJJ!J)) holds. This assertion ls translated into the 

following assertions using ·the assertions in the so6errc:lause in the imp1"nle11tadoft inYariant 

sta.tement given in the previaus subsection. [Note that the userttons in the lo#tere-clauJe 

are in~~a~Uat~ .bY sµb!ljtutjnJ a.n emplJ ~ .. Q for 11.l 

(gueUHS laa.-..lae S) 

($ ·u-. tsllt}UlfNCM.. UH 

These two assertions are matched against the two assertions enter~ a.t Ute .. node for 

Sfttialized~· Therefore.it is concluded tbit the;ntuflled...., ...... ,.. .. If has 

the correet' internal sttuctufe. prescribed by tile' im~tation invariant. So the result of 
- --., ~ . '.: ;· . .. . 

the event [ cre•te-impure-gueue <• []) meets its specification. 

Establishin& ~ ENQUEUJNQ pciDqtion 

From the instantiation of the event specification for enqueuelng: 

<eumtt: · (the-queue-itself <• (119: A)] 
<pre-confl: (the=gu!V!-Hsetf U-. UMl'fJRB-()UBUll [Ix))) > . . 

<rf!lurfta: the-gueue-itnff > 
<poli-ffddtit=au!W~ U-. (IMPURB-()UllUll [11 A]))» 

which is obtained by substituting· tt....,....taelf for Q In the contract for 

U JI PVRE-QUEUK [ ... ]) in Figure 5.2. it is assumed that 

Rhe=gueue-itnff. iH C/ M PURE-(}UBUE [Ix))) 

holds in the initial situation. By the implementation invariant 1Ca1ll!i'Mnft thll' MSUmption is 

translated into the following two wertiOliS:" [N-_,. that x is; .ilittituted. for • in the 



invariant statement.] 

in S initialized-queuees : 
(queuees 1'a1-value S)) 

(S i11-a (Sf;QUENCE [!x])) 

- 119 -

Now the message (nq: A) is sent to the·queue•itself. This message matches against the first 

clause of the case statement. So new-element is bound to A. 

in S received,.nq : (new-element =A) 

Then the value of queuees is updated by a newly created sequence-actor NS with its 

elements [!queuees new-element}. The value of queuee1 in Srecelved•nq is obtained by 

inheriting from sinitialized·queuees• because no updating events took place between the two 

situations. Thus the value is a sequence-actor S. !queue•• is the result of the unpack 

operation on S, which is !x. [Note that the sequence actor is pure. Therefore its state can be 

inherited from Sinitialized·queuees.] So the state of the new sequence-actor NS is expressed 

by (Sl~QUF.NCR [!x A]). For the assignment of NS to queuee1, the new assertion 

(queuees htu-tJtaluP. NS) is entered in the data base. So the following assertions hold in the 

next situation. 

in S updated·queuees·nq : 
(queuees ha1-value NS) 

(NS i11-a (SEQUENCE [!x A])) 

The code tells us that the-queue-itself is returned in this situation. The specification for the 

~ nqueuing requires that the·queue·itself be returned and that 

(the·queue·itself i1-a (IMPURE-QUEUE [Ix A))). 
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So· this assertion is translated into the following assertions by the implementation invariant. 

(queuees haa-t>tdue S) 

(S i11-a (S1':QUENCE [!x A])) 

These assertions are obviously matched against the QSeJ'tiOftt eMlred -at the node for 

Supd•l•d-queuees-nq· So the enq~euing event ~}~-~fication. 

5.4 Discussions Related to Symbolic Evaluation~ ·-

The method of symbolic evaluation presented In this chapter'" has many interesting 

facets and significant implic3tions for other rettnh' ateas ~ program verification. In 

this section, We first reflect on our approadt to vertftatt• bued-Oll'iiJlftbOlic evaluation in 

the light of other txisting approaches. w~ tflerfllilcuss "the lpplitations of symbolic 

evaluation. Finally, 0ur reasoning methOd employed. in tymbobt evaluatioo will be 

discussed inithe-comext orMtearthy,·fra:ine'pfoblem. 

S.4.1 Sit~1ational Descriptions vs. Predicate Tr1nlfonnation1 

Program verification methods based on the FloJd·H~r~ J>.~f ru~ !Ftoyd67, 
- . - ~' '2..:, :_ : - ,·,. ~ •. ' 

Hoare69] or predicate transformers [Manna69, Dijkstra76]an ·W:esultlmal'tad as follows: 
;>< > -:- _' ""\ _,...~ ·, :: ; ~ •• 

Given a set of predicates P holding in a situation S, the proof rules or the pr~icate 

transformer generate a set of predicates P' cf rom' pf' which< hold in the next1 situation 

I. For the case of the proof rules, the next situation is the temporal successor situation, and 
for Dijkstra's predicate traasf.rmtn. ltis:,~•l!•tf lk~."":: 
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S'. 

The choice of predicates holding in S determines the generated set of predicates for S'. 

Those choices are made so that desired assertions may be shown to ho1d in S'. This 

approach is schematica11y described in Figure 5.11. Note that the predicate transformers 

work back wards. 

Fig. 5.11. ~Joyd-Hoare-Dijkstra Predicate Transformation Approach 

predicates 
holding 

in S 

<Proof Rules> 

Predicate Transformer)> 

predicates 
holding 

in S' 
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In contrast to the approach above, our approach is: 

Given a dtscription. D of a ~ituation s, sxmbJ)lk: ev•~ produces a tUSCTi;tton D' 

of the [fonvardly]n~t situation by tJ~,con~ ancOrana-:-sihlaUonal r..-. 

A ~Kription of a :Situation is-a ~: ot· ~- abaat state"Of actors whieh are 

expressed by conceptual representations. Predicates which hold in a situatiOn 1lte derived 

from the description of the situation. This approach, which we call the ·situational 

description" approach, is schematically described in Figure 5.12. 

Conceptual -repre5eniattons not only expms states, of indiv~~ J~ter.s in a system, 
,-- - - ' - . - . . , . 

but they can also describe how the individual aaors are interrelated at various levels. Thus 

the description of situations in terms of conceptual representationS is powerful in dealing 

with sharing. Furthermore, d~scriptions of .ea~h sitUation provide us with sources of 

various information about a program, which.ii ,quite useful for other applications in the 

areas of mechanical program analysis. 

5.4.2 Applications of Symbolic Evaluation 
. -.... 

Symbotic evat\lation based on formalisms different from oun has been studied for 

various purposes such as proving properties of program$ [Boyer-Moore75l program testing 

and debugging [Boyer-et-al75, King76l program transformation and improvement 

[Bursta II-Darlington~] etc. 

Our method of symbolic evaluation can be used in constr*1ing a software system 

called a Programming Apprentice [Hewitt-Smith75, Rich-Shrobt'76l which· aids expert 

programmers in varie>W aspetts of progr1:mming activities such as verification, debugging, 

and ·refinement of programs. In the Programming Apprentiee, the purpose of symbolic 
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Fig. 5.12. The Situational Description Approach 

PREDICATES 
holding 
in S 

description of S 
in terms of conceptual 

representations 

I 

CONTRACTS 

PREDICATES 
hqlding 
in s• 

description of S' 
in terms of conceptual 

representations 

<EVENT>------' 
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evaluation is not simply to verify programs against their specifications. By symbolic 

evaluation, we try to gather information about dependencies between program modules.· 

Such inf ormarion is used to understand implications of proposed changes in both 

specifications and implementations in the subsequent evolutional development of the 

programs. 

For insra~. suppose that the implementation of ~~~-,ther used 

as an example of progr--m vetification is sent 2Y.!! q~ actors ii~ ·or imp~re que~e 
actors. Using t.h~_ c;<>nJra<;ts for pure queue actors in Figure 4.2 in Chapter 4, our ~hod of 

symbolic t-valuation can easily trace and_ r~4 t~betta"l/ .. or the implfmentation. The 
·~ ' , .- -

situational tree producecJ._ clurmg .·the ~Uc eva~ .·aids w ":' modifying the 

implementation so that it ma.y accept both impure and pur;r"queue acto11: Another simple 
,,,. -- ~- - - - - ' 

example might be the analysis of the behavior of the same implementatlion when it is sent 

the same impure a~tor. [That is, one of the pftCOl1ditions. (Q1 Mc-ef Q2) is forgotten.] 

FurthermC?'"e, as reported in. [Y0n;zawa-Hewi~~l the~..Cfic~y--of the implementatiori Of 

impure queue actors in terms 8f consumed stOrage can be mealed bf. USinC aueruons of 

the form 

«•tor-1> -.... •••• Ucllrl>) 

in the process of symbOlic evaluation. 

The situati~~I description approach based on our method ot •symbolic evaluation 

appears to be quite ~erful m 1-.ur~uing these ends. The symbolic_ ;~aluator in C. Rich 
+-., ~· "- •• -

~ ~~ 

and H. Shrobe's system [J0Gh-Shrobe76l which understan_!is LISJV"~ is based on a· 
... ., -··· . ~ ,~~ ,,~.:::~_ .... _ ·-· . ~-

method similar to'ours. -
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5.4.3 The Frame Problem 

In the context of Artificial Intelligence, J. McCarthy and P. Hayes 

(McCarthy-Hayes69] pointed out a problem, called the frame problem, which arises in 

formalizing effects of actions or events taking place in a complex world. A typical example 

of the frame problem is found in formalizing the effects of actions of a robot in a block 

world where the robot carries out various physical tasks. Suppose that the robot has moved 

a block B to a certain location. With this action, the location of B changes, but most of the 

properties of the blocks, such as color, height, and volume, and relations holding among 

other blocks, do not change. To formalize the action "move", it is necessary to specify not 

only which of these properties· and relations will change [and how they will change], but 

also which properties or relations will not ·change. Since the robot is supposed to perform a 

number of different actions, for each action such changes in properties and relations in 

both positive and negative sense must be specified. In most cases, rather a small number of 

properties and relations change as the result of a single action, while the rest of them do 

not. Thus the number of such specifications will be unbearably large for a practical system 

if the tasks of the ·robot and the world in which it works become complicated. 

The same problem arises in the context of program specification and verification. 

In particular, the frame probiem becomes serious when one tries to construct program 

verification or understanding systems which must deal with actors whose behavior may 

change with time. To specify the effects of computations [or events], the no-changes as well · 

as the changes in the states of objects in a system must be described even if the objects do 

not participate in the computations. If we described the changes and no-changes of all the 

objects in the system in a straightforward way, the same serious problem would arise. 

As presented in the first section in this chapter [5.1.2, 5.1.Sl we take a procedural 

approach to this problem. Our reasoning method based on trans-situational rules is 
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powerful in coping with the problem in the domain of Artificial Intelligence as well. R. 

Wa ldinger has independently proposed an approach similar to ours for dealing with certain 

issues in program synthesis and has discussed its application to Artificial Intelligence 

(Wa ldinger77]. Those who are interested in comparative studies of the existing approaches 

to the frame problem should see [Sandwall72, Hayes7S, Hewitt75, Waldinger77l 
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6. Specifying Parallel Computations 

In this chapter, the specification language _,introduced in Chapter 4 is extended to 

cover parallel computation. Formal specifications of abstract data type objects which are 

used in multi-process environments are written in the extended language. Examples for 

illustrating our specification techniques include air line reservation systems and bounded 

buffers. An aiternative definition of states of actor (objects) is discussed at the end of the 

chapter. 
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6.1 Introduction 

In this section, we will discuss the characterisitics of parallel computation which 

make its specification method different from that for serial computation. Our specification 

techniques for parallel computations will be described in the subsequent sections of this 

chapter. 

6.1.1 Communicating Parallel Processes 

In a serial computation, activations of actors take place sequentially and one at a 

time. Thus it is modelled as a set of linear ordered events with each event causally related 

to one another. [Recall the definition of computations in Chapter 3.] In a parallel 

computation, however, more than one activation may take place concurrently. Some events 

are causally related to. each other, but some may not be. Therefore, a computation is 

modelled as a set of p~rtially ordered events. A sequence of causally related events can be 

viewed as a "process". From this view point, parallel computations involve multiple 

processes and serial computations a single process. 

If, in a parallel computation, concurrent processes do not interact with each other, 

i.e., no events are causally related between processes, the computation can be viewed as a 

collection of mutually independent serial computations. 

However, there are many reasons for the necessity of interac:tion between 

concurrently running processes: If arguments in a procedure call are evaluated in parallel, 

a process which executes the procedure body must wait until all the parallel evaluations of 

the arguments are completed. In air line reservation systems and inventory control systems, 

concurrenc processes interact with each other by retrieving and updating various 

information in data bases. In operating systems, concurrent processes interact through 
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sharing resources such as main/secondary memories and 1/0 peripherals. 

In order for such interactions [or cooperations] to be ~ffective and efficient, 
.. o, • 

concurrent proces5es must communicate and synchronize with each other. Therefore in 

specifying interesting behaviors of parallel computations, we need techniqu~ which are 

able to deal with communication and synchronization between processes. In our model of 

computation, such communication and synchronization is realized by changing !!!!!!. of 

certain !f!2!:!. [Cells, buffers and data bases are examples of such actors.] Therefore the 

centra 1 issue in the method for specification of parallel computations is to deal with the 

behavior of actors which are used for communication and synchronization. 
. ~ ~ , 

States of actors are extensively used in specifying parallel computations as well as 

serial computations. But states of actors in parallel computations_ [or muki-processor 

environments] need to be dealt with much more carefully than those in serial computations. 

We will discuss this issue in detail in the next suba«tion. 

6.1.Z Local Statu 

In describing behaviors of parallel computations, there have been many 

attempts[M i1ner73, Kahn?i, Ashcroft15, ci>heti75, -OwidU75, KeUeri. Owicki~Cries76. 
Flon~Suzuki77, Lamport77] to use the notion or the glObal states of an entire ·system. 'The 

global state of a system at a given time is expmsect~tiaUy by a :Y«t0r of states of the 

subsystems. The· use of·the global states Is often motivated by the use of non-d1tnmlnlstic 

serial computations for the semantic ·modef for parallel eomputations. In order to study 

proper~ies of a subsystem, this approach leads' 'to counter-intuitive· serialization of 

concurrent events'ta:kfhg:ptaci! ·1rruntetated subsjltenia and it foron ul to con~ider not only 
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changes in other subsystems but also the order in which such changes take place. Thus the 
- " ~ - -- < .- • , ' --

number of cases to be examined tends to be exponentially large. but almost all changes in 
- ~ ; ~~ 4 --

. ' 

other subsystems are irrelevant to the subsystem under consideration~ 
~,. '- .· 

Jn our approach. we do not rely on such notions as the g~al state a_n.d the global 

clock [uniform time referencel Rather we take a )gg! and l'!fatlvlftlc view. We assume 

only the local states of individual actors. [Cf. Section l.S, ~~ IJ T~e' ~l state of an 
'A .-:; 

actor is determined only at the local time associatd with the actor. Thus. when the state of 
. ~· -; ~ ' 

2• ,=j 

a computer at some site of a computer network Is determined. we do not assume that the 

states of computers at other sites can be defined. T~ sta~ d-'-~- actor Is det~in~ at the 
• f -:.· ~ -- - • - -- -

time when the actor receives a message. This timing Is particularly Important and useful in 
;- . -. -; ~ . .:: -- _.,. ,-._ . ' 

- - --
parallel computations because it is a well defined moment In a distributed system. cThe 

- ·-·-· _,__ !..- - - ' 
- - ---- -

moments of message transmission at scattered computer sites are difficult to compar~ with 
- , ' ,' .-4•: ~~ .:::-'\ :"~~: . . ---

each other.] Recall that the ordering of arrival of messages ~tth respect to a given actor 
. --: : •. -) . . : ; ,·· ~ ?- ' - '-. - .. ' - ... - .: .~ .. ; f • ·' • ·, 

[arr iv a I subordering] is total in our model of computation. [Cf. Section S.1.3. Chapter 3] 

In Section i.l.l. Chapter i, we have defined states of an actor as equivalence classes 

of past histories of messages sent to the actor. As discussed before, this definition 

subsumes, in serial ~putations, traditional definitions for data-storlnf objects, whose' 

states are determined by their current itafonQatiol) content. .. ~ JracUUonal defin•Uons are 
'• . - - .,_--~ '.-:. ,.. ! --· :. - ._ ~~. ' - ·~ ' -

inadequate.in parallel comput&Uons [or mulq~p.race~•c"1Y~,-; For eatnple.· imqlne 
- < • - ' • - ·- - >, - ... --- - -

a data base system wh_ich Is concurrently:~~- b.t:J -~~.Qf'::411G'J. If the-~ of the 

data base were dft'ined as iu stored da&t~ its scate at the tUn.e of' the .-rriv;d of an access 
- -- -· "'. - ' .. " ;_ - ' - . ·.~· ... ~;: .... . -. '~ ~ - = 

request c~uld not be determined. ~~5' th~~cr:f ~{If~,,_~ ~~--~Jal chanp;l ~J 

previously arrived requests .. Also d~~· t~, ln(~ma~ ~l. in,~e the _d• baie

at the time when a request arrives at the data fM~jJ lnconptible ,Wltb our l'elativistic v!ew 

introduced above. [Imagine a data ba~ SJ~- ~~.,.'1:~~-~,~--be. ~v~ by 
~ - ~- - - ,. ., C-· . -·-
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a computer site located at one side of the continent while actual data may stored at the 

other side.] 

States of an actor defined as equivalence classes of the past message histories are 

not affected by the aaual activations of the aaor. Also the 0rder of arrival of messages is 

linear (total). These two facts are essential to our apecifkation techniques for parallel 

computations because they guarantee that states thus defined are always well defined even 

if the actor is being activated by the previously arrtved messages. In the later sections, 

examples that illustrate the significance of our state definition will be found. In particular, 

a model of interaction between a post office and customers in Chapter 8 will provide an 

intuitive example. 

6.2 Extending the Specification LanaU81• 

Specifications of the behavior of actors in parallel compuuitkms are written in a 

way similar to that in which the behavior of aCtors in seria(iomputJtions is specified. 

That is, when given the state of an actw,. the .~vifW, .of the actor is specified by the 

resulting state changes and the subsequently caused events. -~owe!er~ t!te major difference 

lies in how the states of aaors change and J.aow· 1uCllu:hl11puweaptesseci. To distinguish 

such difference, the specification language introduced for_ ~Jal ~tations in chapter 'i 
: , ~ - ' " "':.', -y f; "' •!;:- ~ -~,.. '' 

needs to be extended. 
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6.2.I I 1ut~ntancous State Changes 

Let us try to write a formal specification of a cell actor. A cell actor is used to store 

information. It accepts updating messages of the form (apdate: <new-contents>) and 

retrieving messages of the form (content•:). Its behavior is expressed informally as follows: 

"In response to a (r.onte11u:) message, 
a cell actor returns <contents> which was contained 

in the most recently arrived (update: ... ) message if such a message exists, 
otherwise it returns its initial contents• · 

We would like to express this behavior by using the states of the ceu.1 To express a 

state of a cell actor, we use conceptual representations. For example, 

(CELL (contenu: A)) 

expresses the state which is defined as a class of histories of messages whose most recent 

updating message is of the form (update: A). If the cell were used only in serial 

computations, we could specify this behavior by the following two event specifications: 

<r.''"'": I[ C <= (co11tr.nu:)] 

<wr.-c:ond: (C ii-a (CIU.L (content.: A))) > 
<rr.tur11: A > 

<t't•t'IU: [ C <= (update: B)] 
<11rr.-r.ond: (C ii-a (CELL (contenu: A)))> 

<rr.turn: B > 
<1101ct-coml: (C b-a (CELL (co1uan1.: B))) > > 

Unfortunately, the above event specifi£ations do not precisely express the behavior of a cell 

in parallel computations, because the states of C expressed in the <po•t-cond: ... > clauses are 

I. I. Greif and C. Hewitt gave a specification of cells which is expressed by axioms about 
events in [Greif-Hewitt75, Greif75l 
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the states at the time A or B are returned, but the state of the cell may be changed by the 

updating messages subsequently arriving before A or B are returned. 

In order to eliminate this impreciseness in the above event specifications, the 

following two points should be made clear. First, states of a cell expressed by the 

conceptua I representations must be interpreted strictly in terms of equivalence classes of 

histories of incoming messages. They should not be interpreted to express the current 

contents of the cell. The second point, which logically follows from the first one, is that in 

order to be consistent with the def inJtion of the states expressed by the conceptual 

representations, the state of the cef1 must ·change instantaneqyslx when an (updatn: ... ) 

message arrives. 

In general, in specifying behaviors of actors in parallel computations through their 

state changes, the fact that states chan1e instantaneously must be taken into account. 

6.2.2 <Nr.%1-cond: ... > Clauses 

To express the instantaneous state changes in specifkadon~ we introduce a new 

specification language construct, <nese-eoal:. • .> dauses. 

specifications of the following form. 

<avonl: [ T <== M] 

<pre-concl: ) 

<ne%t-confl: ••. <assertion>... > 
<cau.aed-ewna: E » 

Thlf. is ;\IMJally -~ in event . 

This means: when an event [T <== M] takes p.lacea.Jf the pr«endition& are satisfied, the 

<assertion>s in the <no%t-coiul: ... > clause hold immediately after the event [T '(11• M] and 

continue to hold at least until one of the actors appearing in the <naertion>s receives the 
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next mttssage. For example.,if the <1s1ertion>s mentton Tor M. they continue to hold at least 

until T or M receives its next message. The assertions in the c<ness-co114: ... >_ clause can be 

viewed as the preconditions for the next event. A <nese-cen4:...> clause differs from a 

<po111-rnrid: ... > clause in that assertions in the_ <pod-cend: . ..> _clause hold at the lime ~e 

corresponding caused event take place, but may .not hold _before the caused event. When a 

<nrrt-rorid: ... > clause is used in specifying serial coc:nPUtations, i~ rneanifll. is idenUcal to 

that for a <,,0111-contl: •• .> clause. The event E in,t,be. <.:~~=~clause must take place 
. . ' '-' ·. ·-"-- _, ... -: - . 

eventually. It is often the case that concurrent evt!!'q •re-~~ by [:t <lllS M] .. In such a 

case, we use clauses_of the form <coalff-.... 11~a: :l:~-J>. o~.ir)tq-gre~ rules for 

event specifications, such as those for absent clauses, abbreviated forms and scope rules for 

symbols in clauses are the same as for senal ~~s. rµ-.. $ectiom i.3J and 'i.S.S, 

Chapter i] 

Using this new construct, a specification of the behavior of a cell in parallel 

Fig. 6.1. A Specification of a Cell 

<r.'"'"'i [ create:s.U <i: A] 
<return: c* ; . . . .· 
<po•t-e'Ollfli·tc u-o (CELL (eollienu: A)))·» 

<mtf'nl: [ C <• (coftlenu:)] . 

<prr.-contl: (C u-o (CELL (eoneeau: A))) > 
. <nr.1:1-t:ontl: (C u-c (CELL (eeaie1111: A))) > 

<rr.turn: A » 

<r.t~nt: [ C <• (uptlaer. B)] 
<,,,.r.-r.ontl: (C i.-. CCEl.L (ee11&elda: A))) > 
(JMrt-r.-4:. (C ...... ·.(CAL iet ..... am ) 
<rr.t&ll'n: ~ » · 



- 135 -

computations is written as depicted in Figure 6.1. <R.iclU'fl: .. .> clauses are used as an 

abbreviated ·form of a <caulf!d-al>ffn&:_.> clause. When a cell actor is created by the 

create-cell actor receiving the initial contents, we need not use a <nttS'C .. con4': ... > clause in 

expressing the state of the newly created cell, because before the new cell is released nothing 

can happen to change the state of the cell. It should be painted out that the equivalence 

relation defining the states· of a cell (which are expressed by conceptual representations) is 

expressed incr1m1ntall'J by the <pre-cond:...> and· <i.es-1....U,...> datua in the specification in 

Figure 6.1. 

6.3 Examples of Specifications 

In this section, we will discuss three specifications as examples. The first example 

is a specification of a simple air line reservation system. This example illustrates how the 

behavior of systems which process requests on a first-coine-first-served basis is specified by 

our technique. Jn the second example [a specification of semaphores], we will see how 

processes which have requested some actor for resource usage~ that have not yet been 

granted are dealt with in expressing the state of the actor. The third example is a 

completely external [i.e. implementation independent] specification of a bounded buffer 

which requires us to express "non.-!irst-com~first·Nr~~-,~edM1ing otr~ests. 

As was mentioned before, an actor model of a simple post off ice is studied in · 

Chapter 8. It is shown that overall task speclficat&Ons "of the post offiee can be derived by 

specifications of the individual behavio.r and mutual :illt.eractiQfl of act.on- in the model. 
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6.S.I Modelling an Alr Uae Raenatlon Syatem 

As an exampJe~ let us mnaider·an atr line reservatton system. For the sake of 

simphcity_. we assume that only one flight ts avatlabte in the system. A number of travel 

agenc1e1- [parallel processes] try to reserve-er cancel sntl for ·the flight conturrently. We 

model1 the air-.ame resenation system u t·Aipt attot Y wMch-·bellaves. u follows. The 

f bght actor f·accepts two kinds of messages, 

When F receives (ra•ertJCJ-a-•aaa:""), if free seats are left, the passenger name is appended to ·· 

the passenger name list for the flight and the number of free seats ii decreased by one, and 

a message (nk-i11-ra1erwfl:) is returned. Otherwise a message U.0-more-NOI.:) is returned. 

When F receives (eancal-0-1001: ... ), if the passenger na~' ts ftMmd·11fthe passenger name 

list, a message (nk-iu-cancelletl:) is returned and the passenger nai:ne is deleted from the 

passenger name list and the number of free seats is incrased by one. Otherwise a message 
' - ' - -~ ~ '. .. ,·~ ;. - t ~ . : - • 

(tlar.-paurn1tr.r-namft-no1-/oarul:) is retu_rned. F'!rthermore req~ ~ Cre..,..,._.·aee•::··> and 

(conr.rl-a-•f'tU: ... ) are processed on a first-come-first-lerved basis. 

To write a formal specification of the air line reservation system, we need to 
-- .-- ' c-. ' 

describe the states of the flight actor. For ·this purpme. we use the following conceptual 
. ..,, ~ - .; - - . 

representation 

which describes the state of .a flight aaqr. The pumber off~ •ts p <tn> and f!pnl} is 

I. E. A; Ashaoft[l"5} fave a'·ftOwCl1art prograin Whkft rftotlelt an air line reservation 
system. In his program, each user (or agency) has its own copy or the request handling 
program and all the copies are connected with a single forl operation. Furthermore, the 
num~r or users must be fixed. 
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the passenger name list for the flight The formal specification of the air line reservation 

system using this conceptual representation is depicted in Figure 6.2. 

Since the states expressed by conceptual representations in the specification are 

defined as equivalence classes of histories of messages sent to F, the number of free seats 

· and the passenger name list given in the conceptual representations does not necessarily 

correspond to those that are actually stored in the system.I Fro~ the view point of a 

message arriving at F, the states expressed by conceptual representations in <pro-cored: ... > 

clauses are virtual. That is to say, those conceptual representations express the information 

that will be true after all the messages previously arrived at F are processed, although 

currently some of those me~sages may be being processed or some may even be suspended 

in the request queue. Therefore, only air line reservation systems in which the reserve and 

cancel requests are processed on a first-come-first-served basis satisfy the specification in 

Figure 6.2. 

It is easy to specify the behavior of air line reservation systems which deal with 

rnore than one flight and can add and remove flights. To do so, one may use conceptual 

representations which express the flight jnformation for each flight. For example, 

(Rl~SF:RV /JTION-SYSTEAI { ... (flight-i: (1eot1-frea: <n>)(po11enger-nome-li11: {!pnl})) ... }) 

may suffice. In this case, the reservation system thus specified processes the reserve and 

cancel requests on a flight-wise first-come-first-served basis. This implies that requests for . 

different flights may not be processed on a first-come-first-served basis. The technique to 

specify the flight-wise first-come-first-served processing can be applied in specifying file 

I. If the processing of requests were so fast that each request might be processed before the 
next one arrives, the information expressed in the conceptual representations would 
correspond to what is actually stored in the system. 
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Fig. 6.2. A Sptcification of an Air Une RtMtYatlon S71tna 

<""""': [ create-flicht <= S] 
<1>rr-contl: (S > O) > 
<r,.t11rn: F*' > 
<1.,,u-r.on4: (F b-ta (/il.IGllT (1et11.:.f'*1: S)' (,....._...nem.-lw: {))))» 

<r1·~nc: {F <= (rP.aert>e-a-~: NAME)] 
(r.o sr• I: 

<prr-contl: (F i•-o (Fl.f(111T (IO&l•-fr-_: 0) ~...--.--lua: (lpnt))))> 

<nr1·1-r.ontl: (F ii-a (/iUCllT (HOU-/rer. O) (pene111fff'-Mru-lffi: {tpfta})))> 
<rr.turn: (1t0-ntMW-""11.:) · >) 

(r.asr-2: 

< 1>rr-r.oml: 

(f is-n (li"f.ICllr (~a1i-free: N) (poue,.,__ ... ....:u.;: (lpnl)))) 

(N > 0) > 
<11r1·1-r.01ul: (F is-a (/t'/.ICllT (1ea1.-/ree: N • 1) (peu.11,.er-:•fM:':I'-: flpnl NAME})))> 

(t'rturn: (olt-i1.1-resn~'=J ))> 

(P.J1rn1: I[ F <= (r.anr.P.l-a-atrnt: NAME)] 

knst>-1: 

<prr-ro1ttl: 

(F i.c-a (li/,/CllT C.P.Gu-frao: N) (pouen,...-a....U..:_UpnlJ))) 
(pnl .. "{. .. NAME ... })> 

<nru-r.ond: (F is-a (Fl.ICIJT (seou-/ree: N) ,,_.,.,..,,...,..,.....,;.,: {Jpnl))))> 

<rrlurn: 'tha-,,,,.....,.,,.......,....,..._f....r:J >) 
(r.tut>-2: 

<11rr-r.ond: 

(F ia-a (/t'l.ICllT (sral•-frao: N) (pouen1r..-•me-lilc: (Jpnll NAME !pn12})))> 

<nt>1·1-col1d: (f' b-o (Fl.tCl/T (Hoi~/foe: N + 1) (pU.11,.~llie-IU&: (lpnll !pnl2})))> 

<rfflurn; (elc-~la-c~l9fl:) ) ).). 
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systems, large data base systems, and disk-head scheduling systems [Hoare7i] as long as 

individual files and disk tracks are used on a first-come-first-served basis. 

6.3.2 A Specification of Semaphores 

The behavior of semaphores can be easily specified by our techniques. The state 

of a semaphore is described by conceptual representations of the following form. 

(SEM /JP /TORE (counter: <n>) (f.flGiting-q: [!q])) 

where <n> is the number of processes that can still enter the critical section it guan;ls and 

[!q) is the queue of processes waiting to enter the critical section. A specification of a 

semaphore is depicted in Figure 6.~. 

A message sent to a semaphore consists of a request [i.e., either P-operation or 

V -operation), and a continuation actor which will be activated when the request to the 

semaphore is granted. The continuation can be viewed as a process that will be awakened. 

As stated in the Crue-2 of the second event specification [for P-operation], when the counter 

is zero, no message is sent to the continuation. Hence the <carued-etl6ne: ... > clause has no 

events. In the CaRc-1 of the third event specification [for V-operation], two events, 

[ C <= (go-ahead:)] and [first <= (go-ahead:)] are caused concurrently. 



Fig. 6.3. A Specification of Semaphores 

<r1Jrn1: [ ~reate-semaphore <• H] 
<pre-cond: (N- ~ O) > 
(rt'lurra: s* ) 

- HO-

<1'°111-rand:. (S i.-a (S1':JllJPllORE (coa..ur. N) (INiiilJn: UJ)).» . ..~ . -· . 

(t'f't'HI: [ 5 <== (rr.qur.•I: (P-ep:), rctplrao: Cl) 
(Cn~r-1: 

. </Jrt'-r.nnd: 

(S i.•-a (Sf:AI IJPllOR1'; (cOKnler: N) (..Uilln: [J)) ) 
(N > 0) > 

<n"1-1-r.nnd: (S i•-a ($1':11/JPHORE Ccoallhr. N ~ 0 (.-..-.= IJ))) > 
<r.nu•""-r.t .. na: [C <• (,.o-aheetf:)] >) 

(Ca11r.-2: '. 

<prft-r.and: (5 u-• CSIUl/JPllORE ~M4};C-~i~[kJ)»-> 
<n,.x1-r.anfl: . (S i•-a (SKll IJPllORE (eotuur. 0) <-ltU.1-;q: [!41 CJ))) > 
<r.mut'd-r.11MtU: 0 > ) > 

<r.t•rn1: [S <a: [rr.qJAnc: (V-op:), replra.: CJ) 
<Ca•r.-1: 

<1,,.r-ra11d: ~ b-a 1.,..11\IUllJPllfJRE {c_.or: 0) (IN411an:.{Wll lr91tJ») > 
<11rxt-rontl: (S i•-a (Sl:ll IJPllORI Ccoanaer: O) c-ial•rr: [treat)))) > 
<r.au111r1..:r.w.ntr. t(C'~ (~iltftlf:>}~ [fintoa ~l] l>f 

(Ctur-2: 

<1irtt-r.nnfl: (S ia-o (Sl<:JI IJPllORE Ccoa1111tr: N) (..Uilt.-.: 0)))> 
<nr.1·1-~oittl: CS b-a CSRllAPllOU~rder: N + l) (1Miau;r'91 D»> > 
<r.au.rd-f!tlf!nl: [C <;a~:))) · )> 



- 141 -

6.3.3 A Specification of a Bounded Buffer 

As a simple example of specifications for actors which do scheduling of incoming 

requests, we specify a desirable behavior of a character buffer of a fixed size N with which 

concurrent processes communicate to one another. 

A buffer actor B accepts two kinds of requests, (remove:) and (append: <character>), 

and it can hold at most N characters. Characters are appended or removed from the 

buff er on a first-in-first-out basis. But requests are not necessarily granted on a 

first-come-first-served basis, because a character should be appended only when the buffer 

is not full and it should be removed only when the buffer is not empty. This implies that 

when the buffer is empty, (remove:) requests must be suspended until the buffer becomes 

non-empty by an (append: ... ) request arriving later. Similarly, when the buff er is fu11, 

(a11p<>11d: ... ) requests must be suspended until the buffer becomes non-full. Therefore, in 

determining external states of the buffer, we must tak.e into account such suspended 

requests (waiting processes). 

To express the states of the buffer, we use conceptual representations of the 

following form. 

WOUNDED-BUFFER (q
4

: [ •.• ])(q,.: [ .•. ])(ltring: [ ... ])) 

qa and qr denote queues of suspended messages for (append: ... ) and (remove:) requests, 

respectively. Strini< denotes the string storage used as a buffer. [Remember that the states 

expressed by the conceptual representations are defined in terms of the equivalence classes· 

of the past message histories. So qa• qr and &tring do not necessarily correspond to the 

queues of request~ which are actually suspended or the string of characters which are 

actually stored.] 

In figures 6.4 and 6.5, we give a specification for the behavior of this bounded 
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buffer. The first event specification in Figul'f" 6:1 describes how the buffer is created. 

Note that the ~wo queues q0 and fir u weH as the string stosap:are-9mplJ when the buffer 

is created. 

The second event specification in figure&.-tdacrmuthe·belta•ior of the buffer 

in response to a message M for a ""'"9:> request Note that the message M explicitly 

contains a continuaU°!' C. There are three cues depending upon the state of the buffer B 

at the time when the message M arrives. C-,...J ls the one.iJl. whj_ch the string storage is 

empty. and no messages .for falapeR&f:_.) requesu att suspended [i.e.. q
0 

• [)]. an~ messages 

Fig. 6.4. A Specification of a Bounded Buffer of Sise N (Creation and Removing a 
Character) 

<"""'": [ cre•te-boundecf-butfer (i: [)] 
(rf"lurrt: a~ 

<po.i-coml: (8 u-a (BOUNDED-BUFFER (q4 : []Ker,: (J)(aarilll': (DH » 

<t"11r.n1: [ B <= M] 

whr.re M = [reqae11: Cre•ow:) replrao: CJ 
(Caar.-1: 

<1,,.r-cond: (8 i•-• (BOUNDED-BUFFER (q4 : 0>Cq,: [!yJ)(l&rinr. [}))) > 
<rer."1-cond: (8 il-o (BOUNDBD-BUFFER (q•: Q)(q,: [ly M])(Jirin,.: [}))) > 
<cou.aed-f!fHtr;ta: U >) · 

(C,ur.-2: 

(·pnt-(!ortfl: (8 u-. (BOUNDED-BVF~ER'9,.: DK.,: (]Kaeri•r. [X !•})))) 

<nc:rl-:coml:,(8 fa-a (BOUND~p-IP.JFTBR C.•= DKt,.: D>~•= 11•)))) > 
<ca11aefl-nett1: (C (II (te---4: X))>) 

cea~.'= 
<pre-coad: 

(S i•-• (JIOUNDEIJ-:BUFFRR (qo= [MM. lx)Kcr,.: a>c.ir1 .. ,.: [X ••n» 
O•nath([X f•J> • N) · · · · · 

(MM = [requell: (appeu: XX) replrto: CC)) > 
<nr.xa~coml: (B ii .... (Bf)UNDED-BUFF£R. <.~ UxJ>w,: [])(11rin,.: Cl• XX]))) > 
<ca11aad-fftlff1tU: C[C <• CrerueM:. ~],[CC <a·~,.~.:U...:))) >) > 
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for (rmnovm) requests may or may not be suspended, [i.e., q, = (!y]l ]. In this case, the 

message M is enqueued at the end of q, and no events are caused. When the string storage 

is not. empty and both qr and q
0 

are empty (Caia-2), the first character X in the string 

storage is deleted and sent back to the continuation C as a reply message (rr.motJnd: X). 

Ca.~,..-.1 is the one in which the string storage is full [i.e., l•n1th([X Is]) = N), at least one 

message for an (apptmtl: ... ) request is suspended [i.e., q
0 

= [MM !x] ] and no messages for 

(r,..m01ir.:) requests are suspended. In this case, the following change in the state of B 

happens: the first element MM in q
4

, wliich is of the form 

[rf'q.uf'.~t: (appr.nd: XX) rr.ply-to: CC], is deleted from the queue, the character XX is added at 

the end of the string storage, and the first character X in the string $torage is deleted. 

Then, two events are caused concurrently: l[C <= (ramovatl: X)] where X is sent to the 

continuation C and [CC<= (append-tlo"e:)] where the acknowledging message for the 

message MM for an (append: ... ) request is sent to the continuation CC. (Cf. the remarks 

below.) 

The behavior of the buff er in response to messages for (append : ... ) reques.ts is 

described by the event specifications given in Figure 6.5. This event specification and the 

one for (rr.movr.:) requests in Figure 6.4 are symmetrical: By exchanging the roles of q0 and 

qr and the conditions expressing the upper bound and lower bound of the length of the 

buffer, one is obtained from the other. 

It should be pointed out that the six cases for the state of the buffer considered in 

the event specifications in Figure 6.4 and 6.5 are mutually exclusive and enumerate an cases 

of the states which the buffer can be in if it is created with q,.. q
0

, and the string storage 

l. Recall that [!y] can be an empty conceptual sequence. Cf. Sections 2.2.3 and 2.3.5, in 
Chapter 2. 
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empty. One should be reminded that the states of the buffer are defined in terms of 

equivalence classes of -past histories ()f Jr\eS$8.gts.,.scAt-~ ~.~-that the state changes 
~ ' - - -·- • - > •" • > • • -

described in the specification are inSf!ntanmui ~ they are e¥pr~ b1 asserti9n1 in the 

<11rr1-ro11d: ... > dauses. Thus, qr can be non-empty ooly •f ~•1 is empt¥ and q0 c:an be 

non-empty only if atrin1 is full~ and con~u.eotly. fr an(\ fa callJl~ be llOO-einpty at the 

same time. 

from the specification given in F:igures 6.<f and U. it is easy to observe the 

Fig. 6.~. -A Specification of a Bounded Buffer_ (Appemting a Character) 

<r11rn1: [ B <= M] 
t41hftre M • {-roqueai: Coppttnfl: X) nplrce: CJ 

(Ctur.-1: 

<11rr.-contl: 

. (B i.-a (HOUNDED-HUFFER (q0:[1x])(q,: U>Urriltf': [11)))) 

(len1th([!1)) = N) > 
<11rr1-contl: (B ia-a (BOUNDED-BUFFER '9a: [Ix M])(q,.: [))(Jtria1: [!1]))) > 
<r.oulmfl~•= n >) 

(Ctur.-2: 

<pra-r.ontl: 

(B i..-n (Rffl!NDED-BUFFER (q0: [))(if,: a>c.iaraaj: [11]))) 

<Jenct"Ut-l> < N> > , · -- · . ,, 
<nr.r1-cond: (8 ia-a (HOUNDED-BUFFER _(q_.: [))(9,.:_tJ)(aa!1n1: [11 X]))) .> 
<r.au.ar.tl-ctH!nl: [ C <= (oppenc-,olld:)] >) ' , · ' " · - . 

(C,.c.-~.l: ~ = ·-

<11ra-r.0111l: 

(B ia-o (IJOUNDED-BUFFER (q~: [])(q,: [MM lyj)(larin1: U»> 
(UM:: [""'1r&.01t-Cnrmowtln,.,reO: CCD > -:~ n .. C - • 

<ntJrt-contl: CB b-o (BOUNDED-BUFFER (q
0

: [J)(q,.: [!y))(airin1: [)))) > 
<car.uetl-eoenu: {[C <= (oppen,-uae:)], [CC-(ilw~:-x)]}>) > 

. . . - ~-": ~ . . " , - .. 



- 145 -

following property of the bounded buffer: It is always the case that the character removed 

in. response to the n-th (remove:) request is the one which was appended by the n-th 

(appt'11d: ... ) request. More formally, 

Property (First-In-First-Out) 

Let Ei = [ B <== [rcquc.u: (remove:), reply-to: C;l] 
denote the Hh event where B receives a (ramo11e:) request, and 

Ej = [ B <== [rr.qua .. i: (appand: X j), reply-lo: fJ] 
denote the j-th event where B receives an (appand: ... ) request. 

For any n > 0, if both Efi and E~ exist, 

then there exist an event E • [Cn <==[reply: (ramoved: Xn>l] such that E~ -act-> E. 

6.4 Behavioral Equations 

As noted in the beginning of the previous section, our specification method is 

roughly summarized as:1 

"Giv.en a state of an actor A, the behavior of A in response to a message M is 
expressed by the new state of A and the finite concurrent events caused by the 
event [A <== M]." 

The method suggests to us that a state of A can be viewed as a certain mathematical 

function FA whose domain is a set M of actors (or messages) and whose range is a direct 

product of a set SA of states of A and a finite power set P <T x M> of a direct product 

of a set T of target actors and M. [Note that T x M corresponds to a set of events.] 

I. For the sake of simplicity, we do not take into account the states of the message M and 
the actors involving in the caused events. 
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Whether or not the function FA exists as a well defined mathematical object needs 

to be proved, but we do believe that the following isomorphism would be shown to hold by 

a cert a in domain construction for SA similar to that for the lambda calculus done by D. 

Scott[l972l 

where ( ----> ) denotes a set of conttnuous functions with a specified domain and range. 

The construction of such domains will establish the mathematical meanings of actor states 

which are described by conceptual representations. 

The above isomorphism is inspired by the notion of processes proposed by R. 

Mi Iner [Mi lner73). Extending the work of D. Scott, R. Milner has expressed the meaning 

of a program by the notion of processes. He defines his notion of processes by the 

following isomorphism. 

P ~ . <V ····> P x V> 

which says that a set P of processes is isomorphic to a set of continuous functions from a 

domam V of values to a direct product of P and V. There are fundamental differences 

between his approach and ours, due to the framework of the two approaches. Our 

approach is b~sed on the computation model in which a computation is defined as a 

pa rt1a lly ordered set of events and for each actor, a total order [called an arrival ordering] 

is defined. In M ilner's approach, a computation is defined as a composition of processes in 

which parallelism is expressed as a non-deterministic choice of processes by "oracles". The 

introduction of oracles forces us to consider uninteresting details of the interleaving of 

concurrent processes. Furthermore, the lack of arrival ordering makes it difficult to deal 

with the issues of fairness and starvation. 

C. Hewitt and H. Baker [Hewitt-Baker77) have shown that the behavior of a pure 
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cictor can be defined as the minimal fixpoint of a continuous functional. This result does 

not apply to the whole set of actors. Thus we hope that the approach exemplified by the 

above isomorphism will be able to deal with the whole class of determinate actors. 
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7. Verifying Parallel Computatlona 

In this chapter, our techniques for verification of actors which are used in parallel 

compurations (in multi-process environments) are presented. In the first section. a special 

class of actors which are used for synchronization and scheduling of requests is described. 

To illustrate the verification techniques, an air line reservation system and a bounded 

buffer which are implemented with such a class of actors are considered in the subsequent 

sections. 
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7.1 Introduction 

As noted earlier, if, in a parallel computation, concurrent processes do not interact 

with each other, the parallel computation can be viewed as a collection of mutually 

independent serial computations and its specificat4on is given as the collection of 

specifications for the serial tomputations. The verificatkm of such a parallel computation 

is. nothing but a repetition of the verifications. of serial computations. Consequently no 

special techniques in additiOn to those for serial computations are requtrecl. 

In the previous chapter, we have developed specification methods which are 

applied to computations in which interactions among concurrent processes are involved. 

Since interactions between processes are performed by aending meslagel to certain kinds of 

actors, our specification methods f.ocus upon the beh.,viora Of iuch· actors. We have given 

various specifications for such actors. But those- specifications merely express the behavior 

that users or implementors of such actors assume or hope· they have.· There is no guarantee 

that a ctua Uy implemented actors bebave .. correctly ·with ·respect to their specifications. 

In this chapter, we first discuss how IUch actors are implemented and then explain 

how they are v.erif ied. As examples. we- wiH verify impJementations of an air line 

reservation system and a bounded buffer.· 

7.2 Serializers 

In our model of computation, we use a _special. class of actors, called 

serialiurs[Atkinson-Hewitt77], to realize synchronization _and ~heduling of message 

transmissions in a uniform and modular fashion. In this section we explain the c_oncept of 
,.' ' . 

serializers and give precise specifications for their behavior. The language constructs for 
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serializers, and their relationship to other synchronization primitiva such as. m0niton 

[Brinch-Hansen73, Hoare7-tl are discussed in [Atk.inson-Hewitt77l 

7.2.1 Concept of Serializers 

The purpose of a serializer is to enforce orderlJ &neJ of' raource-like actors [such 

as I/O devices, message buffers, directories, fi"" data base •pt.ems= :e.t.c.] by-concurrently 

running processes: Some resourca muat be tQeel .. OQe-•t -• wne to guarantee .correct_ 

functioning of hardware, some should be used .on a cerGin priority ~sis for special 

demands and effjciency reasons, and aome shoukl r~e messages in a proper order for 

maintaining their integrity. 

l n order to control accus to a ruource; . we mcase the resource in a serialiier to 

intercept the messages $el)t to it. Any f{~eN.85 which need to use the msource can send a 

request message. to it freely, but all r~ are fklt- lltCliVed ·by -the serialiier. The 

serializer sends_ the requfiti to the r~rc;e, a' an +.-im U!!!t:depending upon the 

physical requirements. of tbe resour:ce and .l~,J.dledulial and priority. adopted for the 

resource. No request messag-e arrives at the the ~-directly. We call the arriv.al ef 

such a request message at the serializer, a s1rillliz1r-Jwqwst-.and:.&M arrival at the resource 

of a rt>quest message which is sent by the serializer, a r1soure1 T"flUSt. 

In order for a serializer to properly perform such synchronization and scheduling 

of requests, it must know various information such as what state the resouTC:e ti in, which . 

requests a re being suspended, and which are being granted. To keep such information 

accurate, the reply (or results) produced upon the completion of the use of the resource is 

first sent to the serializer, and .sOme of the information kept in the serlalizer is updated, and 

then the serializer returns the reply as a response for the original serializer request. We call 
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the former event a rtsourct rtpl7 and the latter a 11rtaltur r1f>17. 

serializer request 

resource request 

resource reply 
serializer reply 

....... 
• • .. ' ... 

Thus a typical sequence of events associated with the use of the resource encased 

by a seria lizer starts with a seria1izer requeit and then the resource request is made when it 

is appropriate. The resource reply fo11ows upon the completion of the use of the resource, 

and fina11y the serializer reply takes place as a response to the original seriahzer request. 

The diagram above shows this sequence of events. 

7.2.2 Behavior of Seriali:r:ers 

As was mentioned above, a serializer maintains certain kinds of information to 

make resource requests take place in such a way that desirable resource usage is. 

accomplished. To store and update such information, a serialier may have three types of 
. . 

information storage: queues, crowds and countns. Below we look into the behavior of a 

serializer in more detail by explaining the functions of such informatton storage. 

Queues in a serializer are used to store request rnatages which have arrived at the 
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serializer. but whose corresponding r~cce requ,ats h.v~ ~Qt Yet~~ place. They also 

record the order of the arrivals of such request mesuges. A sertalizer may have more than 

one queue to wrt out requeit meuag• ~1 their tJPf!I. a.or example, requests for reading 

data a re stored, in a queue different from the on' for -wo~ requesu.) Suppose that a 
. ~ 

message [rf"qtLc11: RQ rf!plr••: CJ arrivei: at- ,a .t!f•flier .c;. (This is a serializer request 

event) If the request RQ should not be sent to tt..; fdourte encased by G at that time, the 

message [rC!17ua;1: RQ rP-ply-ttr.. CJ is put at ihe tea~. of·~. queue in ~- Later o~. when the 
-. ' -

message is at the. front of the queue and terta',;n·· '°'1ditions for synchronization or 

scheduling are met, the message la ~~"1'~ ~,the queue and a new message 
-- ~- '· _ _,,_, ' -

[rr17ur.c1: RQ rr1>ly-10: BP] is created and sent to the resource. This is a resource request 

event. RQ is the request contained in .th_e original message sent to G. BP is a newly created 

actor, called a buck passer, which has the following special properties: 
• ~- c .. - • - ;-,:-· ~ • . "-

(I) BP remembers (knows about) the serializer G by which it is created. . ' . - - -..._ . - -~ , " .. ' 

(2) BP remembers the continuati~l C ~n~ined in the ~igl_nat message sent to G. 

(~) BP shares the sa~ a;ri~~l ord~i~g wi~~ ~~ ser~~izer' G.2 . . . . 
. • - ~ -··: f.-· -- -• «" ·"-, Ac' 

The third property means that the order between the arrival of a message at G and the 

arriva I of a message at BP is always defined. ·{More intuitively. BP and G share the same 

arbiter.] Since BP is sent to the resource as the continuation in tbe ~ge for the r~50u~ce 

request, BP eventually receives a reply from the resource, if the resource replies. This is a 

resource reply event Although we explained in the previous subsection that the reply from 

the re.source.is sent to the serializer G, the above account is more accurate. However, the · 

I. See Section.s 3.1.2 anp S.1.3. in Cha.pter 3 for the de(iJ1iti,QILof continuatiQO. 
2. The n1odel of computation defined in. Cha~r' s "Claes not assume this kind of 

"combined" arrival ordfiing. .This.~· is ID'lelf'cl81!C•'*"plidty of explanation. 
By letting the buck passer BP send itself to the_ serial~zer. G t()lether with the message it 
received, tl'lis aisumption·can ~etrmtnat*I:· see•pperidiJt V: .·.. . . · 
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previous explanation is justified by the property of the buck passer BP which shares the 

same arrival ordering with the serializer G. 

Crowds in a serializer are used to store buck passers which are created when 

requests are sent to the resource by the serializer. The existence of some buck passer BP in 

a crowd indicates that the corresponding use of the resource has not been completed yet, 

because BP is taken out from the crowd only when BP receives the reply from the resource 

(which means the completion of the resource usage). [It is the third property of a buck 

passer described above that allows the serializer to eliminate the buck passer from the 

crowd upon the arrival of the reply at the buck passer.] More than one crowd may be used 

in a serializer to distinguish the types of resource requests being granted. For example, by 

having two crowds, a serializer encasing some file is able to know whether the file is 

currently being read or written. 

Let us consider the behavior of a serializer in a resource reply event. Suppose that 

a buck passer BP in a crowd CR receives a reply RP from the resource. If certain 

synchronization and scheduling conditions are met, the serializer takes out the front element 

[rrqur.~i: RQ reply-to: CJ from one of the queues, and a new request message of the form 

[rrq11.l".~t: RQ rl"ply-10: NBP] is created and sent to the resource. When the new request 

message is created, a new buck passer NBP (which remembers C) is created and put in a 

crowd (which may be different from the crowd CR). At the same time, the old buck passer 

BP is deleted from CR. The serializer has another responsibility. It must send the reply RP 

(just received by the buck passer BP) to the continuation remembered by BP. This is the 

seria lizer reply event. Reca\I that BP is created for remembering the continuation originally 

contained in the message sent to the serializer. 

Counters in a serializer are used to record various numbers about events associated 

with the serializer. For example, a counter records the difference between the numbers of 
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resource reply events of _various k!nds. A simple exa11'ple of the u~ of a counter will ~ 

found in Section 7.'i. 

7.2.S One-at-at-Time Serlaiiur (An Example) 

rigor~t.uly specifi~ .in qt.ff fo~ 'f,c1}llu~-taow>-"*'"•M~-il upressecl in our 

formalism. we give .a formal -~~ _t,tf. !l ..... ..a..,-,_qUecl::one-at1.~ in 

Fig~re 7.1 .. A resource eocased by this ser;ilJllfl JI ...a.: at iUOlt,:by.GM .,roe.. at a ume, 
and on a f irst-c:ome-first·.serv.ed basil. 

The f}rst event _. ~'~-- ~n _ J~r. "7J ._,._ · lhat when- an actor 

create-one-at-a-time receives a resource R, it creates a aena1izer ~-whkll huone queue and 

one crowd, both oCwhich M' ini~Uy ~. 

The behavior pf Gin r~ to:& r..- message depends on the stateof G. If 

both the queue and ~rp~ct~r.e svtf,[(~~>-:p( ~:.-,_,.,.,.ifkation·in Figure 

7.ll a buck passer BP ts created and pyt _:iil·t•;~-... ,..._ ..,.._p cen~ing BP 

as_ the ~ont_irwation is sent to tll• resourceJl 1Qt._.,._ ~I:),~ . ..,_. message is 

enqu~ued a~ no.,vent is caUSfd. 

The third event ff>C!df~ ays,;&haS.'whm;&:btiGk-7pMllr IP which is inside the- -

crOIAlq of G receivt:J a reply masli~_-U: -d1edt.,_...r. $_cjl...,-.(C..-J:>.1 BP ii deleted 

I. Reing able to check whether or not the queue of Gls ~y relies ~ the assumption that 
the state of G caa be8termi .... at the-"1me wt.IDdw'biat'pMlet~-· ..awes a mmage. -
This assumption is implied by one of the genera~ p_~, .r, l!~!t ~~ ~t ~ tpudt 
passer shares the arrival ordering With the seril~"'--'Wltkti' f 1ii anted~ In Appendix 
V, a. specificatiCJl;l_ OL one-11-.-iime ..,...zer&.,~;~"'•telr:•dhil usumption is 
given. 
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Fig. 7.1. A Specification of a One-at-a-Titne Scheduler 

<m•r111: [ create-one-1t-e-1ime <= R] 
<rrlur11: G* . > 
<1w11t-r.m1d: (G i•-a (ONE-IJT-11-TIME (queue: [])(crowd: {})(reaource: R))) » 

<r1im1t: I[ G <== M] 
u,/,r.rr. M = [rr.queat: RQ reply-to: CJ 

(Cn11r-l: 

<prt>-r.ond: (G i•-a (QNE-IJT-11-Tlltl E (queue: [J)(cr-4: (J)(raource: R))) > 
<11r1'.t-r.ond: 

(G b-a (ONl<:-IJT-11-TUIE (queue: [])(crowd: {BP*J)(re....-ce: R))) 
(BP is-a (JlUCK-P/JSSER (condna&a&ioa: C)(Hrialuen G))) > 

<r.nuM~d-ct>ent: [ R <== [roqueat: RQ reply-to: BP]) >) 
(Cnsf!-2: 

<pr('-r.ond: (G ia-a (ONE-IJT-11-TllJ E (qaeae: (l~])(uotod: {Bl'))(reaoan:e: R))) > 
<rrr.rr-rond: (G is-a (ONE-IJT-A-TIME (quea« [Ix M])(crotN: {BP})(re10t&rce: R))) > 
<rnuar.d-r.tienta: {} >)> 

<rt•r11t: [BP <== [reply: A]] 
"''""" (BP ia-a (llUCK-PIJSSER (condna&tJdon: C)(Mrioliser: G)))) > 

(Cnsr.-1: 

<,,rr.-r.ond: (G ~•-a (ONE.,..IJT-IJ-TIJIB (qr&eae: [)~:-f8Pf)(NMarce: R))) > 
<11rrt-r.011d: (G b-o (ONE-IJT-11-1'/llE (q..-: tJ><u.~: &J)(NIOl&rCC R))) > 
<r.rw11r.d-:r11f?nt: [ C <= [reply: Al] >) · . 

(C•ur.-2: 

<1>rc-r.011d: 

(G ia-a (ON/<:-IJT-IJ-TUIE (queue: [WM !><}Kerowlf: {SPJ)(rnoarcr. R))) 
(WM = [rr.'1ue.1t: RQ reply-to: CC]) > 

<rrr.rt-cond: 

(G is-a (ONl<:-IJT-11-Tf/tlE (qaeue: [!-1)~~; '49P~})~~ R»> 
(NBP b-a (llUCK-PASSER (conlinu&ion: c:;c~.-:.G))) > . 

<r.au.11ed-ct1cni1: { [C <•=[reply: Al]:, [R <- (nq.-..,: RO replr10: NSP]] } >)> 
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from the crowd and the reply message is,sent:back to dlecontinuatkttt;(: remembered by BP. 

If the queue is not empty (Co1et-Z:), the front element WM wl*h- jS,~ swpended request 

message sent to G before is dequeued and a newly created buck passer NBP replaces BP in 

the cr~wd. Then a seriaJizer reply event [C (:a [,,;~~-Al] ~n~ a resource request event 

I[ R <== [rr1J1•r~1: RQ rr.ply-10: NBP]] take place concw:r~tly . . -:~ )_~ . 

Before ending this section, we shatikt :mention· several properties of the 

one-at-a-time serializer which are easily derived from th~ specification given in Figure 7.1. 

1 f a resource R is encased by a one-at-a-titlle" serializer wo..e- R becoines known to 

other actors, there is no way to access the resou;ee directly.I In order to ac~ess the resource, 

first a request must be se11t to the one-at•a-time '~tali&er. This p,...ry holds for !!!.I~ 
. ~ - " ':.~ - " - . - . . 

of seria lizer (not just for one-at-a-time serialiien). We caU this property the resource 

confinement of serializers. More formally, 

Property (Resource Confinement of SeriaUzers) 

Let Eo = [create-a-resource <-= [reqaffaa: I ,..,rt« cr1ate-a'""!'itlizerl] and 

E1 • [create-a-nriafft..- <==-[t4'qt&ed: Rnt,lfy-to:CJl Such ~at'' EO-a_ct-> Ea. 
where I is used for the creation of a new tesoUrce R. 

and let G be a serializer created by Ea· 
If there exists no event U.• (A <== [reqq.u R-rePr•~ fl] 

such that Eo ---> EE --> Er. 

then for any event ER • [R <== [reque11: RQ replrto: ?]], 
there always exu1t mevent £•'I~~ r~1t0 ...;~~~: tD 

. .· luch that'E;.j,tf,!;.'$1t .·, _, ~ '' '. ,. . -

We need to give the definition of an assertion (A IH&-4-Hrially) to state the 

properties of one-at-a-time serializers. If the assertion (A la-u.ael-Mrielly) holds, an actor A 

I. We assume that the creator of R does not release any information which makes it 
possible to have access to R. 
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does not receive any message until the current invocation of A is completed. Consequently, 

if the invocation is not completed, no more messages arrive at A. More formally, 

Definition (A i11-u11od-11f!rially) 

If there exists an event Ei .. [A<== [roquo.u: RQ; ropl:y-&o: C1]], 
then 

if there exists another event E j .. [A<== [raquea&: RQj reply-to: Cjl] 
such that i 114 j and Ei -arr-> A E j• 

then there must exist EEi • [ C; <== [raply: ?]] 
such that E i ---> EEi ---> E j· 

Property-I (Serial Use of Resource) 

If an resource actor R encased by a one-at-a-time serializer, then (R b-u•etl-aorially) holds. 

This property is derived from the fact that the number of buck passer actors in the crowd 

of the ser~alizer is always one at most. 

Definition (A i!l-guarantccd-to-reply) 

For an event E =[A<== [rcqucat: RQ rcpl:y-&o: C]], 
there always exists an event EE• [C <== [raply: ?]] such that E -act·> EE. 

Property-II (Guaranteed Resource Access) 

Suppose that the resource actor R encased by a one-at-a-time serializer G satisfies 
the f o11owing condition: if (R ill-u1atl-1arially), then (R b-guaranraatl-&o-raply). 

Then, for any event E • [G <== [reque&t: RQ reply-to: f]], 
there always exists an event ER• [R <= [requea&: RQ reply-to:?]] such that E -act-> ER. 

This property is derived from Property-I by induction on the number of messages that 

have already arrived at G. 
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Property-III (First Come First Resource Access) 

Under the same premise given in Property-II, 

for any E 1• Ej where Ek= [G <== [reque1t: RQk reply-to: Ck]], k a: i, j, 
if E1 --->G E j· 

then ER· ---> E · 
I J 

where ERk = [R <==[request: RQk reply-to:?]], k .. i, j. 

This property is derived from the fact that requests sent to G are recorded in the queue of 

which preserves the order of arrival. 
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7.3 Verifying Implementations of Actors I 

In this section, we discuss our techniques for the following class of verification 

problems. 

"Given an actor A which shows some behavior in serial computations (i.e., when it 
is used serially). Suppose that an actor B is implemented as a one-at-a-time 
serializer encasing the actor A. Then we would like to verify that even if B is sent 
messages concurrently, B shows the same behavior as A does in serial computations." 

This problem is not trivial because the states of A and B which are used to describe their 

behavior in specifications are expressed by different conceptual representations. The 

essentia I part of the verification is the use of the mapping (implementation invariant) 

between two different conceptual representations. The technique illustrated below is an 

extension of the one used for the verification of actors behaving as information storage · 

discussed in Section 5.3, Chapter 5. The verification of implementations using more 

complicated serializers is discussed in the next section (7.i). 

In what follows, as an example of such verification problems, we will demonstrate 

that the implementation of an air line reservation system given below meets its specification 

depicted in Figure 7.2 (which is the same one given in Figure 6.2 in Chapter 6). 

7.3.1 A11 lmplementatio11 of an Air Line Reservation System 

We implement an air line reservation system which is supposed to meet the 

specification in Figure 7.2 in two steps. First, we implement a flight data actor which 

satisfies the specification in Figure 7.2 as long as it is used serially. Then it is encased by a 

one-at-a-time serializer. [The flight data actor corresponds to the actor A in the above 

problem statement.] 

The code given in Figure 7.3 is an implementation of such a flight data actor. It 
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Fig. 7.2. A Specification of an Air Line Raenatioa ,,.._. 

<r.11p111: I[ cre1te-fli1ht <= S] 
<1~onrl_: (S > 0) > 
<r"lurn: F* > 
(/>nJU-rond: (F i•-o (lc•t.1CllT (aeei•-frH: 5) (p1WMt1er-M,,....li'4: (})))>> 

<"'"'"': [ F <= (,.e"'~-aeaa: NAME)]_ 
(rnJr.-1: 

<,,rt>-r.ond: (f ia-o (l,./.ICllT ~Jne: 0) 4~: UPfti})))> 

<11f'xt-rn11d: (F i•-• (Fl.IC/IT {aeoi1-/N« 0) (peao•er-•.....U.U {lpnl})})> 
<rPl11rn: (no-mof'e-ff.'flli:l )) . . . . . ' .. ,, '' 

(ra•r.-2: 

(/wr.-rnntl: 

(F i•-o CI•l.ICllT (.eau-/ree: N) (poae ... ..-..... .-1;.,: Upnl}))) 

(N > 0) > 
<nr1·1-r.nnd: (Fi•-• (Fl.IC/IT (Hoc.-frn: N • 1) ~M....-lia&: {lpnl ~})))> 

<rf'lr1rn: (ok-iu-ra~tl:) >)> 

<r.1m11t: [ F <= (r.ancel-e-~&: NAME)] 
(rtu4'!-I: 

<t•r~roml: 

(F i.c-a (J</,/CllT (MteU-/rae: N) (poa,e .. ~ • ....,.1"4: (lpal)))) 
(pnl ~ { ... NAME •.. })> 

<••,.1·1-contl: .(f u1 (ll/,16HT (lao11-free: NJ'c,.,,.....,._,..nw-iiaa: {lpnl}l))> 

<rr111rn: (tht?-ptUUllKH-llflrn.-Ml-f_,.:) >) 

(r.a.cP-2: 

< 1""4'!-rond: 

(F i.c-a (l•J./GllT (•r.nu-/rH: N) (poue11pr-no•e-li.a: UfH'l1 NAME lpn12})))> 
<nrx1-cru1d: Wi•~ (Fl.IGllT (MHd...,....,::ff +- U· ........ ~llie-li.r: flpnt1 lpn12})))> 
<rrl1Lr11: (ok-iU-e•neffllH:) > ) ) 
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Fig. 7.3. A Code For a Flight Data 

(create-flight-data =s) = 
(lrt (seats-free inirially s) :o voriabla se1ts·fr•• i• initializ:ed lo s. 

(passenger-name-list illitiolly (crHte-empty·set)) 

t /1(!H 

(cases 

;a variable passenger· it initializ:ed lo an empty act. 

(:;> (r<!.ct'rtJc-a-.ct!at: =name) ;wha11 a (ra•erva-..• ) meuagr. ia rcct!itJcd. 

;i/ the value of seats-free i11 0 

;than a (no-mora-•cai.:) ii rl!tur11r.d. 

;at hnruiiar. 

;Iha valu.a o/ 1Ht1•free ii dacraaJ1ed by otic 

;name i11 added to thr. li11t. 

;a meuaga (ok-iu-reaerved:) i" rr.tur11r.d. 

(rules (seats-free = 0) 

(::> yc11 (110-rnore-11cau:)) 

<=> 110 

(seats-free ... (seats-free - 1)) 

(add name to passenger-name-list) 

(ok-it .c-rc.ctJrvcd:)))) 

(:> (cm1cd-a-11t!at: =name) :when a (cancel-".) meuage i• rcceivr.d. 

(rules (name in passenger-name-list) ;if name i• found in the pautmgcr namP. li11t. 

(::> ycB ;tht!n 

(drlctc name from passenger·n1me·list) ;name ia delP.1ed from the liBt 

(seats-free ... (seats-free + 1)) ;tlte value o/ se1ts•free i1 increa/lt!d by 011P. 

(ok-itB-cancP.lled:)) ;(ok-iu-cancelled:) ii rcturricd. 

(::> no (rhe-pauenger-name-not-found:)) )) )) ;01laarwiu (d1e-pauenger-... ) b retur11nd. 

should be noted that if the flight data actor were sent more than one message concurrently, 

anomalous results would be caused. For example, if (re•arve-a-•eat: ... ) and (cancel-a-•P.at: ... ) 

message are sent concurrently, (no-mora-•aau:) message might be returned even if there are 

still vacant seats. Therefore this actor must be used serially. 

We give a specification of this actor in Figure 7.4. Though this specification looks 

similar to that for the air line reservation system in Figure 7.2, there are important 

dif ff erences. In this specification conceptual representations of the following form are 

used. 

(FUGIIT-DIJTIJ (Beau-free: ?)(pauenger-name-lbt: { ... })) 



- 162 -

Fig. 7.4. A Specification of A Flight Data Actor 

<m•rnt: [create-flight-data <= S] 
<,,rr-rond: (S > 0) > 
<rrt11rn: FD* > 
</>Mt-rond: (FD i11-a (1'"1.ICllT-DIJTIJ (1aau-free: S) (paHenar-name-liai: {})))» 

<r.1•r.11t: [FD <= (rtm?rvr.-a-.,r.at: NAME)] 
u:l1r.rr. (FD i11-u11r.d-acrially) 

(ra11r- l: 

<,,rr.-roml: (FD i11-a (1'"/,/CllT-D/JTIJ bcat1-frcc: 0) (pauengar-namo-li•t: {!pnl})))> 
<r"tt' rn: (110-morc-11r.au:) >) 

<1>0111-r.011d: (FD iic-a (Ff,/GllT-DIJTIJ (iccau-free: O) (paHenger-name-li1t: {!pnl})))> ) 
(r.a11r.-2: 

<1>rr-rond: 
(FD i.~-a (f'l.ICllT-DIJT/J beau-free: N) (pammger-name-li11: (!pnl}))) 
(N > O) > 

<rrtr•rn: (ok-itic-rr.11r.r1Jr.d:) > 
• 1 rn11d: 

(r D i.~-n WUGllT-DIJT/J (11cau-free: N • 1) (pammger-name-lbt: {!pnl NAME})))>)> 

<"''""': [FD <= (r.rmct?l-a-11r.at: NAME)] 
rrlirrP (FD i11-u11r.d-11erially) 

(rn .cf'- I: 

<11rr-ro nd: 
(FD i.~-a (ffl.IGllT-DIJT/J (11cat11-free: N) (pauenger-name-lbt: {!pnl}))) 
(pnl p! { ... NAME ... })> 

<rf't u r11: (t l1r.-pa1111r.111(r.r-munc-11ot-f ou11d:) > 
<110M-ro11d: (F i~-a (l'/,/CllT-DIJTIJ (11cau-frea: N) (paHonger-name-li11: {!pnl})))> ) 

(r.iur-2: 

< 11rr-r.011d: 
(FD i.~-a (F/,/GJ/T-D/JT/J (11r.au-free: N) (pauengar-nama-li11: {!pnll NAME !pnl2})))> 

<rrturn: (ok-iu-ranrr.llcd:) ) 
<1mM-r.011d: 

(FD i~-a (/<'/.IGllT-D/JT/J (11etu1-frea: N + 1) (pauanger-name-liat: {!pnll !pnl2})))>)> 
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Noti.ce that assertions of the form (FD ia-1uctl-1r.rially) are given in the "'hr.rr. clauses of the 

sec.and and third event specifications. Th-is means that those event specifications are valid 

only if FD is used serially. Furthermore, <po1&-co11': •• .> clauses are used instead of 

<11N:t-cmul: ... > ·clauses. This means that assertions in the <po11-eon4: ... > clauses hold at the 

time when the caused events take place. 

The following property holds for the flight data actor because an the <eoon1: ... > 

clauses have the corresponding <raaarn: .. ) clauses. This propaty l111sed in the verification 

in the next subsection. 

Property-IV: If (FO i1-u.1o4-aorially), then (F'O u-...,..nteetJ-te-teply). 

7.3.2 Verification of the Air Line Reffl'vation System 

The irriplemenration is completed by ,encasing the flight ·data actor by a 

one-at-a-time serializer. That is, the imptementatiOn of the 'trNtrfli1ht actor is expressed 

by the following PLASM A code: 

(create-flight •s) & (cre1te-one•1t•1-time (cre1te-fli1ht-dlt1 1)). 

Below we demonstrate that the above code meets the specification of the air line reservation · 

system shown in Figure 7.2. The symbolic evaluation of the c:ocle 

(crHte-one-1t·1·time (crHte-fli1ht-dlt1 1)) 

rev ea ts the following facU: 

(I) an actor FD is created by [cre1te·fli1ht-d1t1 <• 1] [from the specification in Figure 

7.4.], 

(2) a seriahzer G is created by [cre1te·one•1t-1-time <• FD] [from the specification in 
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Figure 7.1.] and 

(3) the two actors satisfy the following assertions immediately after the creation of G. 

(G ill-a (ONE-IJT-IJ-TIJ,I E (quaue: [])(crowd: {})(re1ource: FD))) 

(FD i11-a (FUCllT-DllTIJ (leau-frae: 1)(pa11anger-nama-list: {}))) 

We will establish that G satisfies the specification of the flight actor (air line 

reservation system) given in Figure 7.2. The specification of the flight actor G is written in 

terms of conceptual representations of the form: 

(Notice that F in the specification is instantiated as G.) On the other hand, G is 

implemented as a one-at-a-time serializer that encases the flight data actor FD, which is 

expressed by the following two assertions: 

(G i11-a (ONE-IJT-IJ-TUIE (queue: [ ... ])(crowd: { ... })(reaource: FD))) 

(FD i.,-a (FUCllT-DIJTIJ (aaat1-fraa: ?)(po11enger-name-li1t: { ... }))) (**) 

This means that we have~ views of G: an external view expressed by(*) and an internal 

1mplemenrat1on expressed by(**) above. In order to show that the implementation satisfies 

the specif 1cat1on written in terms of the external view, we must establish a certain relation 

between the two views. Such a relation is similar to implementation invariants used in the 

verification of an actor behaving as information storage [Cf. Section 5.3, Chapter 5]. 

The relation we need is: 

"If G satisfies the assertion 
(G i.,-n (/11./CllT (11cau-frr.o: N) (pauongor-nama-liat: {!pnl}))) 

in a situation where G receives a message [requa1t: RQ reply-to: ?], 

then FD always satisfies the assertion 

(FD ;,,-a (FUGllT-DIJTIJ (1Joata-froo: N) (pammger-name-liat: {!pnl}))) 

in the situation where FD receives a message [raque11: RQ raply-10: ?]. " 
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We actually prove the validity of this relation in the next subsection 7.3.3; this relation is 

:assumed in the subsequent discussion. The fo11owing is the formal statement of the above 

relation. 

<I m1>fomcntntfon-irwariarit: 

if (G i.~-a (FUG/IT (11cau-frce: N) (pammger-nama-liae: {!pnl}))) tn S 
u:l1crr. S = Sit([ G <== [reque1t: RQ raplrto: 7]]). 

then 

(FD i11-a (Ff,/GllT-DATIJ (aeat1-fraa: N) (pauangar-name-liae: {!pnl}))) in S' 
u1hcrc S' = Sit([FD <== [raqua1t: RQ raplrt{I: 7]]) >. 

Sit(E) expresses the situation where an event E takes place. The tmplemenation invariant 

can be viewed as the counterpart of an "invariant" in parallel process environments, which 

was first introduced by C.A.R. Hoare [Hoare 1972] to show correctness of implementations 

of data structures used in serial computations. (See the remarks in Section 5.3.1, Chapter 5.) 

Now let us demonstrate the verification of the implementation against the 

following event specification given in Figure 7.2. 

<"n•ru: [ F <= (rr.11crvr.-a-1cat: NAME)] 
(r<ur.-1: 

<prt'-rorrd: (F b-a (FT.IGllT (acau-frea: O) (pauangar-nama-li11: {!pnl})))> 

<rrt'xt-r011d: (F i.,-a (FLIGllT baat1-fraa: O) (pammgar-nama-li11: {!pnl})))> 

<return: (110-morr.-11cat1:) >) 

(r.a11r.-2: 

<prr.-c:o11d: 

(F i.,-a (Ff,IGllT (11cau-frr.11: N) (pauangar-nama-lbt: {!pnl}))) 

(N > 0) > 
<11<'xt-c:o11d: (Fis-a (F/.IGllT (11eau-fraa: N • 1) (paHangar-name-lilt: {!pnl NAME})))> 

<rct urn: (ok-iu-rc11r.rvcd:) > )> 

There are two cases to be considered. We only consider the (Caaa-2-). clause. The 
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one-at-a-time serializer G receives a (re1er1Ht-o-1eoc: NAME) request RQ. Since the flight data 

actor FD is guaranteed to reply if it is used serially (from Proi>e.rty-lV), the specification for 

a one-at-a-time guarantees that the (reaervo-a-HOt:. NAME) request ·R<J Is ·received b·y FD {from 

Property-II). To know the state of the flight data actor FD at the time of the arrival of RQ, 

the above implementation invariant is used. Since the state of G at ~~e time of th.' arriv•I 

of RQ at G is described al:-

(Gia-a (ll/,ICllT (1aau-frea: N) (poue111er-nome-lia1: {lpnl}))), 

the state ·or FD at the time of the arrival of Mat FD.iule.scribed as 

Then the (Ctur.-2: .• ) clause in the <awm: .. .> claaae ofth~fspecificatit>h for flight-data actors 

in Figure 7.+ is referred to; Since thepreconditiortttl~ Fl:finastbl! used senany is satisfied 

(from Property-I), the lcaae-J-) clause of the speciftotiOB-Nt ~t· d.ca aaon in Figure 

7.i tells us that 

(l) (ok-iu-rt?1t?rt1t?tl:) is returned, and 

(2) the state of FD is now expressed as: 

(FD i1-o (l'l.ICllT-DIJTIJ (Mfflt-/ree: N • 1) (pO..,,.,.,.~,.ome-lua: "lpnl NAME}))) .. 

demonstration. we must show that the assertion 
. ~ ... : 

(G iic-a (lt/.IGllT (lf!ol-/rnfl: N • 1) (po1•n1er-name-lw: {lpnl NAME}))) 
.- ': 

in the <11rr1-r.antl: ... > clause of the above event specification holds when G receives the next 

l. More precisely, (ok-i11-re1ertHtfl:) is first sent ~,the seriahzer G and then G returns it. 
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message RQ'. To do so, again the implementation is used. It translates the above 

requirement u follows: 

" (FD i.~-a (Fl.ICllT-DJJTll (,aat-free: H • 1) (po.-ft..,......rtN-li11: llPnl NAME}))) 

holds when FD receives RQ'. " 

This is guaranteed by, (2) because FD does nQt change its sta~ until the next message RQ' 

arrives at FD. Thus Case~2 is shown. Ca~l .qy :·~shown .aaatogously. The event 

specif ica ti on for [ G <= (cancal-a-1Mt: NAME))] is abo established anak,gousty. · 

The demonstration above assumes that no·.one ·can,have access to the flight data 

actor FD except through the serializer G. This USUfl>PUorJ.alwaJS.-hqld~ beca&¥e the flight 

data actor FD created by [ create•fli&ht=(l1t1 <= 1] is sent directly tc>Ch~ sre1t1:;5me•ef·1-time 
' "• e • 't, - .: <-

actor and never released outside the newly created one.I.,,.. teri&lizer G. [Cf. the 

PLASM A code in the beginning of this subsection and Property (R~rc.e Confinement of 

Seri a Ii zers).] 

7.3.3 Establishing the Implementation Invariant 

The verification in the previous subsection relies critically on the use of the 

following implementation invariant. in this sub~ we will esta~Hsh)he vafidity o~ this 

implementation invariant. 

<I mplr.num1a1ion-inwriant: 

if (Gia-a (F/,fGllT (1ao11-fraa: N) (po1H1t1or-narne-liat: {lpnl}))) ln S 
whare S = Stt([C (=:: [ra~: RQ nPzy-•~ ?]) . . 

then , 
(FD iic-a (/<LJCllT-DIJTlll.40f4l.-fnut: H) ~atnHN&: (!pnl}))) tnS' 

wlaara S's SU<(.fD ~ [mt1N1t:.RQ,reP1r10: !)) ... >. 

(Proof) The proof is done by induction on the number M of messages which have already 
arrived at G. 
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<Induction Base> 
M = 0: Since no message has arrived before, when the first mesiage 

[rt?quf'$t: RQ '"t>ly-10: C] arrives at G, G is in the same state as it was in at· the time of its 
creation. So the state of G is expressed as 

(G U"'.fl (Ji"UCll.T (,ecau,./ffe:;S~ .. ,..,. ...... ...,u.:nm. 
Since G is created as a one-at-a-time serializer and its queueencl-aowcLare initially empty, 
the state of G is also expressed as . .· . 

CG i.-a-(Slt:R/Ai;IUR;(qMue: OH~W:·O~e: FD)))' and 

(FD i•·a (Fl.IQIJ-T .. DIJM (Mu1-fHii SHpPrift~~lill: {}))) 
Then from the "guaranteed resourc;e access• property .of G (PropertJ·~I), the following event 
is caused. · · 

( FO.. <-= [nrq...a:JIQ reply-to: fl) i : 
When this event occurs, FD is still in the same state as it was in at the time of its creation 
because ·resource corifinernem• property Of seriaftzen·is·atisfild .. So the state of the FD is 
expressed as 

(FD i;-a (Fi.ICJIT-D/JTA {Hata-/rer. S)(pc1ui.,W..~me-li1t: I}))) 
Hence the induction base il provect 

<Induction Hypbthesis> 
M • k: We assu.me that the following relation holds. 
if (G i'-a (l•/.IGllT br.au-frea: N) (pa.,enger-nomo-li1c: {!pnl}))) holds 

in Sit([ G <== [rP.que•I: RQk reply-10: ?]]) 
then (FD i,-a (/l/.ICllT-DIJTIJ C.mat1-/ree: N) (,,....,,.wer-•nw-lilt: {lpnl}))) holds 

in Sit([FD <== [reque•I: RQk repl~nnflJ 

<Induction Step> ·-

M "" k + l: Let us assume that the ~nteceQ."n~t of ,the Jlld~~ tJJpoth~ ,lloJ<ls. Then. we 
must do a 'case analysis according to the type of the reqliest of k-th event 

Case-I: RQk = (rnaertM-a-aeaa: NAME), and N > 0. 

The state of G immediately after the k-th event [G <--~ff,~ reply-to: fl] is 
expressed as . , . 

(G iJC-ta (lfl.ICllT C.tiau-free: N - 1J.Jponen1er-no~lf~ (I~ NAME}))) 
(by the specification of the flight actor In Figiare~'-2): - ' -~ · - ·· 
This 1s the state of G when the k +I st message_.[n,q.e.c: ~H reply-to: fl] arrives at G. 
By the--"guaranteed ~resource,acceiS"propiri:y-bf'-G,~tlfeinent·, ' · · 

E • [FO ·<-:(.Wta,_tlOk' NjlirWi!) · 
always rakes place. From the induction hypothesis, the state of FD at the time of this event 
E is expressed -as · · :' · - ·· 

(FD i•-a (l</.ICllT-DIJTIJ (HO.u-/ree: N) {pcueng..-no....-li.c: {lpnl}))) 
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Therefore, by the specification for FD in Figure 7.i, the state of FD after the invocation 
initiated by the event Eis expressed as 

(FD is-a (Fl.ICIIT-DIJTIJ beau-free: N - 1) (pauengar-nama-li•I: {!pnl NAME}))) 
We now claim that this is indeed the state of FD at the time the k + J st message 
[rrqur.~t: ROk+l rr.ply-10: ?] arrives at FD. This claim is justified by the fact that no message 
arrives at FD between [reque&1: RQk reply-to: 7] and [raqua•t: ROk+l reply-10: 1]. This fact is 
guaranteed by two properties of a one-at-a-time serializer, the "Confinement of resource" 
and the "First Come First Resource Access" (Property-Ill). 

Other cases are shown in a similar fashion. (End of Proof) 

The above proof relies on the following facts: 

(I) When the one-at-a-time serializer G encasing the flight data actor FD is created, each 

component [such as &eat•-frae and pauangar-nama-lbt] of the· conceptua I 

representation expressing the external state of G is the same as the corresponding 

component of the conceptual representation expressing the state of FD. 

(2) As the specifications for G and FD show, such components of conceptual 

representations for G and FD change in the same way in response to the same 

request, provided that FD is used serially. 

(3) The serial use of the resource encased by a one-at-a-time seriaUzer. 

(i) The "Resource Confinement" property of seria1izers. 

(5) The "First Come First Resource Access" property of a one-at-a-time seria1izer. 

7.4 Verifying Implementations of Actors II 

In the previous section, we discussed the verification of implementations which use 

one-at-a-time serializers. The resource actor encased by a one-at-a-time seria1izer receives 

requests in the same order as the one-at-a-time serializer does. That is, the one-at-a-time 

seria lizer have the first come first resource access property [Property-Ill in Section 7.2]. In 
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this section, we will discuss the verification of implementations using aerialiiers which do 

not have the first come first resource access property. Th6 ht!&rt or' verif'tcation, in this case 

is the use of implementation tnvarianu, as it was in the d for implernentatrons using 

one-at-a-time serialiiers. To fmd ~n appropr.iate im.p~ invariant .for a given 

implementation requires human ingenuity. In whalfol10\t1fW'e will exptarn the verification 
- ~ , :·" . - . . 

of an implementation of a bounded buff•...- dle~lptd(Gtten depicted in Fipre 7.5. 

[This specification is identical to the one given trtFigures 6~.fand 6.5.l 

' 
7 . .f.1 An Implementation of A Bounded Buffer 

Namely, the bounded buffer of length N is implemented as a serialiier B which encases a 

string storage actor s where s ls created by t~~. ~ Cl] and B is created by . ,...,.._ 
' ' '--:~:· ~ £ -:' • 

[create-~uffer-scheduler <• S]. Note that S is enCased by B wlthout becoming known to 

other actors. Thus the resource confinement property of aerlaliiers ls satisfied. 

The behavior of the string storage actor, S iS cl~lbed by the specification in 

Figure 7.6. Its states are expressed by conceptual representations of the following form. 

(STRINC-STORACB C-l> 

When it is created, it contains no character. It lcceptS «•ltpe11if: <charect•r>) and (nr111ne:) 

messages. As stated by assertions of the form ($ b-u.IM·aeriell:r) in the •"ere clauses. the 
·- .,. - __ )_.·.; ': . - . 

behavior described in the specification is guaranteed only when S ._used serially. 
-. ·- ·- " .. 

The creation of the serialiier 8 is described by the following event specification. 
•• - - ' 4• - - ·:- ~ • ..~ - - - • • 4 -- • • •' 
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Fig. 7.5. A Specification of A Bounded Buffer 

<m1rn1: [create-bounded-buffer <= []] 
<rr.11u11: B*> 
<1m.~1-r.011d: (B is-a CllOUNDRD-llU/i'.FHR (q

0
: [Jt(q,.: (J)(ttrin•: EJ))) » 

<r.r•rnt: [ B <= M] 

u:lir.rr. M = [rr.quaat: (ramovr.:) reply-to: C] 
(Ca~t'-1: <prr.-cond: (8 ia-a (HOUNIJED-JJUFFER (q

0
: [))¥,,.: [ly))Wrin1: []))) > 

<11r.r1-c011d: (8 b-a (IJOUNDED-llUFfE&,(9
8

: [))(er,.: [!y M])(ltring: []))) > 
<cauar.d-r.flr.nu: {} >) 

(Ctur.-2: <prr.-cnnd: (8 i•-a (IJOUNDED-IJUl'FER 1q
0

: [})(q,.: [J)(11ring: [X Is]))) > 
<11r.xt-cor1d: (S i•-• (IJQUNDEf>.llUl'FJCR (q8::-£Jl(t,.: Q)C..rifl1: [!1]))) > 
<cau/lr.d-evt'IU: [ C <= (remowd: >()) » 

(Ca.er.-.~: <1>rr.-c01ul: (8 is-a (BOUNDHD-HUFFlfR (q
4

: (MM tx))(q,.: [])(ltring: [X !1]))) 

(length([X ltl> • N) 

(MM = [raqua•t: (appancl: XX) raply-to: CC]) > 
<11r.xt-cond: CB b-a CHOUNDED-IJUFFER f.J0f{tx))(q,: (])(11rin1: [Is XX)))) > 
<cau1r.d-r.0011u: {[ C <= (ramowcl: X)'), f CC <• (app.d..:-Jon.:)]} >) > 

<r1•r.11t: [ B <= M] 
u:lir.ra M = [r"'J•••t: (appand: X) reply-to: CJ 

(Ca .cc-/: <11rc-cnrul: (B b-~. (BOIJNDEIJ....IJUF FER (q,r. [lxJM.,.r U)(11rili1: [!s]))) 

(len1th([!1]) = N) > 
<11r.xt-coml: (8 ia:-a (BOUNDB~BUFFH (•4 : [Ix M]Kq,.: [])(•trin1: [!s]))) > 
<cauaad-cvt'nta: {} >) 

(Cast?-2: <1,,.c-coml: (8 is-a (HOUNDED-BUFFER (q
4

: {J)(q,.: [])(•Iring: [!s]))) 
(length([!s]) < N) > 

<nr.rt-r.ond: CB ia-a WOUND1Ur'BUFYRR (q0r[))(q,.: [])(11rin1: (11 X]))) > 
<cau1t!d-c11t'nt: [ C <= (tlpPf!nd-done:)] >) 

(Ca.er.-.~: <1>rr.-co11d: CB is-a (llOUNDIW-llUFFER (q
8

: [])(q,.: [MM !y])(aaring: []))) 

(MM • (r.,quen: (ra1110tlf!:) raply-10: CC)) > 
<nt'xt-corid: (B i11-a (IJOUNDE~BUTflNR (q~: (l)Cq,.: {!y))(airing: []))) > 
<cauacd-r.vcnu: {[C <= (crpPf!nd-clone:)], [CC<• (remow4: Xl]} >) > 
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fig. 7.6. A Specificatjon of a String Stor~ge of Length N 

<""""': [ create-strinc-1tor1ce <• []) 
<rr.lurn: s* ) 
<poat-contl: (Su-a <STRINC-BmRAGE (])) » 

(t'11t!n1: [ S <= (append: X)] 
whf?re (S is-ruefl-ar.rially) 

(Caae-1: <pre-celtfl: (S ia-a (STRI NC·STOIMCE [Ix])) 

(length(xJ < H) > 
<rf?lurn: (append-done:) > 
<ptui-cmul: ($ U-. CSTIUNG-STORllCB fix X])) >) 

(Caae-J: <pre-cfHJfl: (S iHa ·CST«INC-smRllCE Ur))), 

(length(x)? Nt > · '" 
(rf!l•rn: C.1«11i~fV.ll~) > 
<po111-cond: (S i•-a (STRI Nt--STORACB [fx])) >) > 

<mmni: [ S <= ~ntotJe:)] 
whf!rtt (S u-11.11u-Hrially) 

(Casa- I: <prr.-t:ond: (S i•-• (STRI NC-STORAGE [X Ix])) > 
<rf?lurn: (remowd: X) > 
<po111-cond: (S Ja-• (STRING-S'l'ORIJGE [Ix X])) >) 

(Caaa-Jc · <pre:-cottd:; ($ u-a (STRIN04TORIJCI {)}) » · 
<rt?lurn: (lliorage-empty:) > 
<pon-eond: (S ~ (Sf'ff tNC·STtMJICB [])J >) > 

<iwt'ru: [create-buff er-scheduler <• S] 
<t>l'"-cond: (S i.-a <STRING-S'l'Olf/IGB (~])) > 
<rt!lurn: e* ) 
<1>0.~1-cond: 

(B i11-a (SCillWUl.ER (coanter: O)(q._: [])Ci,: [J)Ce.-...l:-0)(re•11rce: S))) 

(Sb-a (STRINC-ST<J.µAGB [fx))) » 
' 
~ 

As expressed by the conceptual representation in the <,,0••-coRl:...> clause, this serialiier has 

a counter (initially 0), two queues, ~" and ~r (both are initially empty) and a crowd (also 

--------
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initially empty). The co1,mter is used to record the num~~r of c:h~racters ~ored in the string 

storage. The crowd is used to contain buck passers. Th~ exis~e~ce of. a f)uck passer .in the 

crowd indicates that the resource is being used. q
11 

and ;, are used to record suspended 

(app<>nd: ... ) and (rrmotJe:) requests, respectively. 

The behavior of the serialiier B in response to (append: ... ) and (ramow:) requests 

are described the event specifications depicted in Figure 7.7 and Figure 7.8, respectively. 

Let us look at the behavior of B when it receives a message M of the form 

· [mqaaat: Cappa1td: X) replrtot CJ. 

Case-I: if no (append:) requests are suspended [l.~. 1/._ is emptyl the string storage S is 
not being used [i.e. the crowd is emptyland there i·s room for the new chara~ter X [k < NJ, 
then the (nppmrd: X) request with a newly created buck passer BP which remembers the 
original continuation C is sent to S. The state change. of B r,Clects this: the counter is 
increased by one and the crowd now. contains the buck pa5ser SP: 

Case-2: if the conditions for Case-1 do 'not hold, the· message M is enqueued at the rear 
of q,,. 

Figure 7.7 also includes the specification of the event in which the reply 

(nf>J><'nd-donf':) from S in response to an ·(appa,..t:) request is received. by the buck passer BP 

which is currently stored in the crowd of B. When BP receives (appa11fl-done:), the request 

suspended in the front element of either ~r or ~. is pick«f up and sent to the string 

storage. If both queues are not empty, ;, hu pr.iorily onr $0., There ate three cases for 

th is event. Note that the counter k indicating the current length of the string storage 

cannot be 0 when BP receives an (append-cfo,.e:) reply, because a new character has been 

just appended before the reply is p.roduced. 

Case-I: if no (rr.mov~:) requests are suspended [i.e. ~r is emptyl an~ either the string 
storage is full [i.e. k = N] or no (appcml:.~) f4!'AUesta are .,peoQed [i.e.,~. is not empty], then 
the reply is returned to the original continuation re~ bJ tl~e buck passer P, but no 
message is sent to S. 

Case-2: if there are some swpended Cremot1e:) requests D.e. ~'is not empty], then the the 
front element M of 1'r is taken out, and the corresponding Cnt...0-:J request is sent to S with 



Fig. 7.7. The Behavior of the Scheduler in response to an (Appe11cl: .. ) Rfquest 

(f!1tt"fll: [ B <== M] uihcre M = [requea&: (appontJ: X) replr&o: CJ 
(C.M?-1: 

<prr-r011d: (8 i11-n (SClllWUI.l<:R (coun&or: k)(q•: [J)(q,: [ly])(crotod: l})(re.sourco: S))) 

(k < N) > 
<nri:1-rond: (8 ia-a (SClll<:DUU~R (r.ountor: k + 1)(~,.: [})('J,: [-ty])(cron: {BP*})(reJOt&reo: S))) 

(BP i11-a WUCK-PIJSSl<:R Ccon1inuado11: C)U,erisliQr: 8)))> 

<rau.o•d-,.111m1: I[ S <== {reque11: (append: X) replr&o: BP]] >) 

(Cu,.-2: 

<1>rr-r011d: (B i11-a (SCI/ l<:DUl.ER (cou.n&er: k)(q
0

:o[lx})(q.,.: [lyJ)(croll1d: {lz})(reaourco: S))) . 

(v (x ~ []) (z ,. {}) (k = N)) > 
<11r:r1-umd: (9 i11-a (SClll<:DUl.ER (counter: k)(q

0
: [!x M])(q,: [fy])(croll14: {!z})(raaource: S)))> 

<r.au 11r.d-r1•f!nl 11: {} > )> ' 

(P.titml: [BP <== [rr.ply: (a11po11d-clona:)]] 

u:l1rrf! (BP iic-a (llUCK-P IJSSER (con&inudon: C)(Nriali.wor. B))) 

(Casr.-1: 

<1>rr-r.011d: (8 i11-a (SCllEDUl.ER (counter: k)(q0: [!x])(q,: [J>(croll14: {BP})(reaource: 5))) 

(v (k = N) ( 0 < k < N. " x = [] ) ) > 
<11r:rt-r.n11d: (B iic-a (SCll f;DU/.ER (coun&er: k)(q

8
: [lx])(q,: [])(croll14: {})(re10t&rce: S))) > 

<r.nu.11rd-r.11r111: [ C <== [reply: (apponl-.lone:)l] >) 

(C.M?-2: 

<prr.-ro11d: (8 i11-a (SCl/.EDUl.l<:R (counaar: k)(q•: [!x])(q,: [M !y])(crotoci: {BP})(reaource: S))) 
(k > 0) 

(M = {requnaa: (remow:) reply-to: CC])> 

<11r:t:t-rn11d: (8 ill-a (SCllEDUl.ER (couniar: k • l)(q•: [lx])(q,: [lyl)(crotod: {NBP*})(re1ource: S))) 

(NBP i11-a UIUCK-P IJSSER (conlinaa1ion: CC)(1erioliser: B)))> 

<r.t1u.11rd-rt1r111.c: {[ S <== [rcqueaa: (rem..e:) reply-N: N8PJ] (C (1ss [reply: (crppend-tlone:)J] }>) 

(Cn.c,.-.1: 

<1>rt'-rn11d: (8 i 11-n (SCI/ IWU J.l<:R (counlar: k)(i 0: [M lxJ>(i,.: [J)(crototl: {BP})(reaourca: S))) 
(0 < k < N) . . 

(M = [rr.qur.ar: (append: XX) raplrio: CC)) > 
<11r.x1-ro11d: (B h-a (SCllEDUl.ER (counter: k + l)(q,.: {!x])(',.: a>Cerotocl: {NBP*})(re1ource: S))) 

(NBP i11-a (llUCK-PIJSSER (continudon: CC)(lerialiaer: 8)))> 

<r.au.~r.d-r1•mua: {[ S <== [reque11: (appe11tl: XX) roplr10: NBP]] [C (~ [replydappend-tlona:)]] }>)> 
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Fig. 7.8. The Behaviors of the Scheduler in response to a (Remove: .. ) Request 

<<'1'<'11t: [ 8 <== M] uilr<'r<! M = (rPqu<!.ct: (r<!mOtJ<!:) reply-to: C] 

(Cn ·'<'- l: 

<1>rr-rn11d: CB i.,-a (SC/I IWU/./.;H, (coulltor: k)(q a= [!x])(q,.: [])(croand: {} )(rr..courcr.: S))) 

Ck > 0) > 
<nrx1-ro11d: CB i.c-a CSCll IWUf.1-:R (r.ount<!r: k - l)(qa: [!x])(q,: [])(croand: {BP*}Hre.courr.<': S))) 

(BP i.,-a (llUCK-PIJSSER (co11tirtuatio11: C)(.cerialii-er: B)))> 

<r<m M•d-r.1J(mt: [ S <== [r<!que.,t: (r<!movt?:) rnply-to: BPJ] >) 

(Cn."•-2: 

<J>r<'-rond: CB i.c-n (SC/I IWUl.1-:R (counter: k)(q a= [!x])(q,.: [!y])(crowd: {!z})(rf!.courcc: S))) 

(v (y ~ []) (z ~ {}) (k = O))> 

< 11r1· t-r.m1d: (8 is-a (SCll EDU LBR (r.ounter: k)(q a: [!x])(q,.: [!y M])(crowd: {!z})(rn.cou.rcc: S )))> 

<rarurd-<'1·r11U: {}>)> 

<r11<!11t: [BP <== [r<!ply: (removed: X)]] 

u:l1rr<' (BP i.,-a (IJUCK-PIJSSER (co11ti11uatio11: C)(.cerialb:er: B))) 

(Ca.,f'-1: 

<pr!'-rond: (B i.,-a (SC/llWU/,ER (counter: k)(qa: [])(q,: [!y])(crowd: {BP))(reaource: S))) 

(v (k = 0) ( Q < k < N " y = []) ) > 
<nrxt-rond: (B i.c-a (SCll IWU/,ER (counter: k)(q 

0
: [])(q,.: [!y])(crowd: {})(resource: S))) > 

<rr111.,<'d-r1•r11t: [ C <== [reply: (removed: X)J] >) 

(Cn.,r.-2: 

<11rr-rm1d: (8 i.c-rz (SClllWU/,F,R (courucr: k)(q 
0

: [M !x])(q,: [!y])(crowd: {BP} )(re1ourcf!: S))) 

(k < N) 

(M = [rcqu<!.ct: (apperid: XX) reply-to: CC])> 

<rrrl:t-r.011d: (B i.c-a (SClllWUl.ER (counter: k + 1)(q
0

: [!x])(q,.: [!y])(crowd: {NBP*J)Creaourcr.: S))) 

(N8P is-a (IJUCK-P IJSSl.:R (c01uinuadon: CC)(.cerialii-cr: B)))> 

<rn11.,rd-r.11r.11u: {[ S <== [rt?que.ct: (appc11d: XX) reply-to: NBPl] [ C <== [reply: (removr.tl: X)]] }>) 

(Ca ,,r.-.1: 

<1,,.r-rn11d: (B i11-a (SCll/WU/,ER (r.ouriter: k)(qa: [])(q,.: [M !y])(crowd: {BP})(reAourct1: S))) 

(0 < k < N) 

(M = [r<!qut?llt: (rcmov<!:) rc,,ly-to: CC]) > 
<nr.l:t-r.nnd: (B i11-a (SC// EDU Lim (couriicr: k - 1)(q

0
: [])(q,.: [!y])(crowtl: {NBP*})(rasourcr.: S))) 

(NBP i.c-a (JJUCK-PIJSSRR (co11tiriuation: CC)(aerialber: B)))> 

<rarut'd-r11r.111.c: {[ S <== [rcque.ct: (remove:) reply-to: NBPJ] [C <== [raply: (removr.d: X)l] }>)> 



- 176 -

a new buck passer NBP and concurrently the r-eply ii sent to the odginal .continuation C. 
Case-3: if no (rP.rnotU?:) requests are suspended [i.e. :J, is emptyl there are some suspended 

(ap,,P.11d: ... ) request [i.e. q" is not emptyl·and there is room for a new character in S [i.e., 
0 < k < NJ. then the (append: •.. ) request at the front of ~a is granted and sent to S with a 
new buck passer NBP, and concurrently the reply is retUmed to the original continuation C. 

It should be noted that all the three cases are mutually excluuve and enumerate an 

cases of the states which B can be in when BP receives a [,_pl_y:J•ppenf.1-.tona:)] message. 

The behavior of B in response to (remow:) is described in Figure 7.8 in a similar way; the 

roles of q,, and :;, are symmetrical and conditions expressinJ the upper bound for the 

r.oun1rr is replaced by the lower bound. fa has. pr.tor.ity over tr when a bud passer BP 

·receives a (rr.mot>ecl: ?) from the string storage. 

7.4.2 Verification of a Bounded Buffer 

In order to show that the implementation of the bounded bllffer given in Figures 

7.7 and 7.8 satisfies the specification given in Figure '7.5, we need the implementation 

inva nant which is the mapping between the states of a bounded buffer used to write its 

specification and the states used for describing the implementatiOn. More precisely, we 

need che mapping from the set of states. called the "specification space•, expressed by 

conceptual representations of the form 

WOUNDED-BUFFER (q.( [_]Mq,: [-])(atria.-;[-)» 

co the set of states, called the "implementation space", expressed by conceptual 

representations of the form 

For this purpose, we use the following implementation invariant: 
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" If a bounded buff er B is in the state (of the specification space) 

which is expressed by the conceptual representation 

(llOUNDED-llUFFER (q
4

: [!x])(q,.: [!y])(atrirlg: [!s])) 

then 

B is in one of the states (of the implementation space) 
which are expressed by the conceptual representation 

(SCI/EDU /,ER (counter: k)(q 
4

: [!xx !x])(q,.: [ !yy !y])(crowd: {!z} )(rn.1ource: S )), 

and the following constraints must be satisfied 

(1) [!stored·in(S) !characters•appended(xx)] = [!ch1r1cten•removed(yy) !s] 
(2) length(stored·in(S)) = k " 

characters-appended(xx) means the sequence of characters that will be appended by the 

sequence of (a,,,,mu/: ... ) requests denoted by xx. ch1recter1·removed(yy) means the sequence 

of characters that will be removed by the sequence of (remove:) requests denoted by yy. 

stored-in(S) means the sequence of characters stored in the string storage S. 

Note that q
4 

and q
4 

share x and qr and q, share y at their tails. q
4 

and qr denote 

the queues of requests which are actually waiting inside the scheduler. Thus xx and yy in 

q a and qr denote the sequences of actually suspended requests that are considered (at the 

external specification level) to have already been processed. [x and y have not been 

processed yet.] The first constraint in the above implementation invariant says: the 

concatenation of the character string that is actually stored in S and the sequence of 

characters that will be appended by xx is equal to the concatenation of the sequence of 

characters that will be removed by yy and the character string that is considered (at the 

external specification level) to be stored in atring. The second constraint says that the 

counter k indicates the length of the character string stored in S. 

Since, for given x, y and s, only the relation (or constraints) that must be satisfied 

by xx, yy and k is specified, the above implementation invariant defines a one-to-many 
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correspondence from the specification space to the implementation space. (Cf. Section 5.3.l, 
. , . 

Chapter 5) Namely, for a given state U in the specification space, the implementation 
' -

invariant II give a set ll(U) of the corresponding states in the implementation space. See 

the diagram below. 

<Specification Space> U <Implementation Space> 

To verify .the implementation against the specification in Figure 71', for each event 

specification in the specification, the implementation must be verified. The diagram in 

Figure 7.9 i11ustrates the verification for an ev"1t .l: • [B (Ila M]. T a11d T' are. the- states 

of the bounded buff er B given in the <,.,.-coH:...> and <nest~~...> clauses (of the event 

specif 1ca tion for E). respectively. Il(T) .. and U(T') are the sets of states (in the 

implementation space) obtained by applying the implementation .invariant II to T and T', 

respectively. 

To establish the event specification, we must first show that if the bounded buffer · 

B is in a state belonging to U(T) before the event E, R is in a state belonging to ll(T') 

immediately after E. To shOw this, we do not have to deal with individual states in ll(T) 

and ll(T'). We use the relations among the constituents of the implementation which define 

ll(T) and ll(T'). [Of course, such relations are obtained from the constraints given in the 
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Fig. 7.9. Establishing an Event Specification 

E = \[B <== M] T' 
T 

<Specification Space> 

----- - ---------------
<Implementation Space> 

-- ----------
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amplem<'ntation invariant] By using the ciesqipUon of the implementation given an 

Figmes 7.7 and 7.8, we obtain (from the defining relation for ll(T)) the relation which 

defines the sec X of states in which B can be immediately after E. We check to see whether 

or not the obtained relation satisfies the defihing reJatiotf for ·H(T'). i,e., we check whethe;

or not X is a subset of Il(T'). If the obtained relation satisfies the defining relation for 

ll(T'), It is verified that the state of B immediately after the event E is T' in the 

specif 1ca t ion space. 

But this does not mean that the implementation satisfies the <ne%C-coml: ... > clause. 

We must show that the state of B in the specification space does not change until the next 

request message (either (appcntl: ... ) or (remotJa:)) arrives at B, because at the implementation 

level (i.e., when B is consider~ as a scheduling serialb:er), a buck passer in the crowd of B 

may recr.ive a reply message from the string storage S and consequently, the state of 8 
.. 

which is currently one of states belonging to X may not belong to ll(T') after such a reply 

event. Therefore we must also show that the state of B s~ys inside II(T'), which means 

that such reply events do not change the state of B in the specification space. To do so, we 

check if the relation defining the set Y of states in which 8 can be immediately after the 

resource reply event satisfies the defining relation forII(T'). 

To complete ,the verification of the event specifkation, we must show that the 
" 

events given in the <c~sccl-evenu: .. .> clause eventually take place. To do so, we use the fact 

that the sequence :Of requests XX in a0 and the sequence of .. requests yy in ~r are eventually 

removed and sent to S. This is easily done by checking ''tne implementation given in 

Figures 7.7 and 7.8 and the specification of the string storage given in Frgure 7.6. 
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8. Modelling a Post Office 

tn this chapter, we discuss an actor model of a simple post office which is an 

intuitive example of systems, such as operating syatems and multi-user data base systems, 

'which are characterized by complex concurrent internal activities. In the first section, an 

informal description of the post office is followed by formal Jp«lfications of the 

incUvidual behavior and mutual interaction of the components of the model. ln the second. 

section, the specification of the overall functions (task specifications) of the post office is 

stated formally. In the last section, we demonstrate that the task specifications are satisfied 

by the individual behavior and mutual interaction. 



-182-

8.1 A Model of a Simple Post Office 

In this section, we present the actor model of a simple post office. The behavior 

of each component in the model is described by our specification techniques and the overall 

properties and effects of the post office as a whole a~_~ted,l~t~Uy. Furttiermpre,.1;1sing 
'> - ~ - ;... - • • • • ' ~ 

this model as an example, we would like to shed light on some of the inter~ing issues 

related to distributed information processing systems. 

8.1.l Overview of the Model 

An informal description of activities in a simple post office is: 

A number of customers and mail collectors visit the post office, possibly simultaneously. 
The post office has only one door for customers and collectors. Inside the post office, there 
is a counter secUon which has several counters and a mail box comer which has a mail box. 
After a customer enters the post office through the door, if he needs stamps. he goes to the 
counter section, otherwise he goes to the mail box corner. At the counter section, a customer 
gets the stamps he needs and then, if he is carrying letters, he goes to the mail box co~ner, 
otherwise he goes out of the post office through the door. Customers are served at the 
counter section on a first-come-first-served basis, but the time spent at the counter varies 
from perJOR to-person. At the ntalJ>QlM•rner, • ~ puts.aN:::• letters-he:has been 
carrying in the mail box and goes out through the door. A collector also enters the post 
office 'throogh~ the door arid then gO@i'~to tfii'JMtthx' mrner;· Mttte malf .... ~mFner, the 

collector collect$ a)J the maU in th' maU bpx. _~i• ~i_til,Jl.Jn.\h,e~ q~Jf ther'. is_ one, and 
then he carries the collected mail out of the post off ice-tHi-ough ·the d<ior. Custc>mers and 
coH~tors make a single •• at tlw mail ·box allier Mld..;anfle and leaYe the comer on 
f irsHn-r irst-out. basis. 

W~ model this post office with five kinds of actors: customer actors, collector. 
: ' '~ .. 

actors, the door actor, the counter section actor, and the mall box corner actor. [See Figure 

8.1] The movement or customers and collectors ls modelled as message-passing where 
. . ' : ; . ':r:· ~ !-:..,.-, ; ;. :'" . > - • .-, -

messages are customer and collector actors and targets are the door actor, the counter section 

actor and the mail box corner actor. Components of the office, collectors and customers 
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have their own local time. Thus, arrivals of customers and collectors at these components 

are in general mutually independent Furthermore, we assume that the walking speed of 

·customers and collectors may vary from person to person. So, for example, a customer 

arriving at the door after another cuttomer may arrive at tlte counter section before him. 

This corresponds to the fatt that the actor·mocte1 Of competation assumes nothing about the 

duration of message-passing except its finiteness. Besides such concurrent events, services 

at different counters are carried out concurrently, and of course·depositing and collecting 

the mail in the mail box corner takes place independently of the .acti•ities- at the counter 

section. 

In the subsections that follow, formal specifications of the behavior of each actor 

wi11 be givt'n and we will state the task specifkattona that describe the overall properties 



• l&f-

and effects chat are created bf the interaclian and individual behavior or the component 

actors. 

8.1.2 lntt>ractions at the Door 

To forma Uy describe the activities in the, post off ice, first we need to define the 

states of actors in the model. 

For a customer. there are two internal factors which determine his behavior: the 

letters he carries and the number or stamps he needs at a given time. Thus we ex.press the 

states of a customer actor by cenceptual representations of twfQ&owiRg form.. 

CWSTOJI «R Ucuaen: {._)) (.-11 •• ,,.-...-M: ?)) 

For a coUeccor, t~ effecu of interactions with other actors are apressed by the collected 

mail. So the state of a collector actor is expressed by- cenceptual representations of the 

f oUowing form. 

(COIJ..ECTOR (eollecue-naoil: f _})) 

We cannot define the state of the post office~ a whole in terms of the states of its 

components, becau5e people can be in transit betwan the ~ts. Customers and 

collectors may be constantly entering and exiting through the doer while other customers 

and collectors may be changing the states ol the mail -box _comer bJ depositing and 

removmg the mail Only .the local states of the c;omponent acton are weU defined. 

However, we can use the state of the door actor to dacribe useful aspects of the state of the 

whole post office if it is defined as below. 

The state of the door actor mull be def.aaed u an equivalence class of histories of 

message sent to it. The informal description of the model tells us that customers and 



- 185 -

collectors arrive at the door when they enter and exit from the post office. So we assume 

that the door actor accepts four kinds of messages: 

ku.~tomer-mur.ring: <customer>), (customer-exiting: <customer>), 

(colfoctor-m1terillg: <collector>), and (collector-exiting: <collector>). 

Thus the states of the door actor are defined in terms of these kinds of messages. Since the 

states of customer and collector actors are well defined at the time they arrive at the door 

actor, their states can be used to define the state of the door actor. This means that the 

information available in conceptual representations for customer and co1Jector actors can be 

used. 

We define the state of the door act~r at the time of message arrival by 

(l) the set of all customers inside the post office, 

(2) the set of a ti collectors inside the post office and 

(3) the set of a 11 ma i I inside the post off ice. 

These three sets are sufficient to characterize useful aspects of the state of the post off ice as 

a whole and yet well defined as information local to the door actor, because, for example, 

the set of mail inside the post office is determined by the difference between letters brought 

in and letters taken out through the door by customers and collectors. We express the states 

of the door actor by conceptual representations of the following form. The key word, 

POST-OFF/Cl~. reflects the intention that they serve as the states of the whole post office. 

(POST-OFF ICE (mail: { ... })(cr.utome,.: { ... })(collactora: { ... }))) 

A formal specification of the effects of interactions between the door actor and 

customer and collector actors is depicted in Figure 8.2. One should note the 

<<"nu.$ed-ctJc11t: ... > clauses: After a customer actor arrives at the door actor, a message 

C1to-10-counter-$ection-if-nece1111ary:) instructs him to decide where to go next. Otl,ler 
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Fig. 8.2. A Specification of lnteraction1 at tM-Deor 

<r.r•rnt: [the-door <= (rua1omf!r-an1erin«: C)] 

<prr.-r.oml: 

(the-door i~-n (POST-0/iFfC1': (mail: {!m})(c1u1o~r1: Uc:s})(collecaora: {!els}))) 

(C i11-n (CUSTOM l.:R (fout!ra: {!l})(6-o/-11ampa-neeclel: N))) > 
<nrri-,.ond: 

(the-door i~-a (POST-Ol•F IC1': (mail: {!f!' !l})(c1.utomer1: {!cs C})(collecaora: {!els}))) 

(C i~-a (CUSTOM f;R (lcut!r11: {!l))(#-o/-1tomp1-neafled: N);) > , 
<r.nrur.d-r.1ir.11t: [ C <= (go-ro·co1U11er-1ectiotl-i/~ryt}] » 

<r1•r111: [the-door <= (tuatomer-t!1:iling: CJ] 
<1>rr.-rnnd: 

(sp-1) 

(sp-2) 

(the-door i11-n (POST-01'.FICE (moil: {!ml !I !m2})(ca1tomer.s: {!csl C !cs2})(collectcw.: {!els}))) 

(C i11-n (CVST<Ull-:1~ (l"u~a: {!1})(6-of-11~,mpa-neod~d: N))) > 
<nrx1-r011d: 

(the-door i.(-a CPOST-0/t'FICF: (mail: {!ml lm2})(cll1Comera: {!cal lcsZ})(colleciOl'I: {Ids}))) 

(C i11-n (CUSTOM li:R (letlt!r1: {!IJ)(#-0/-1tompa-11HdH: N))) > 
<r.au11r.d-r.1•r111: [street <= C] » 

<r.r•r.nt: [the-door <= (collcr.1or-f!nterin1: Cl)] 
<11rr.-rnnd: 

',_( 

(the-door i ~-a (POST-0F1• 1c1<; (mail: {!m))(cu1tomer1: {lcs})(col,lectora: {!ell}))) 

(CL i~-n (COi.i.ECTOR (r.ollH.tefl-moil: {!cm}))) > 
<nrrt-rnml: 

(the-door i.•-(1 (POST-OFFICE (moil: {!m !cm))('*'to,..,.a: (!cs))(col'-clor.: {kit CL)))) 

(Cl iA-n (CO/./,l•;C1"0R (r.oller.tefl-mail: {!cm}))) > 
<r.nrc11r.J•r11r11t: [ m1it-box-corner (m· (eoll;,eaor.: Cl)] » 

<m1r.11t: [the-door <= (t:ollector-ffsilinr. CL)] 
< /Jrr.-r.mul: 

(sp-3) 

(sp-i) 

(the-door i~-n (POST-Ot•F/Cft: (mail: {!mt !c:m !inZ})(cru;omer1: {!cs})(eollecrora: {lcls1 CL !cl2}))) 

(CL i.(-a {COl.l./~CTOR (r.ollf!r.ted-naoil: {!~m)))) > 
<nr.rt-rmul: 

(the-door i~-n (POST-01'·1'·1c1<: (tnail: {!ml lm2J)(caaomer1: {!cs}}(colleclora: {!cls1 !cls2}))) 

(Cl is-n (C:O/~l.l·:C1'0R (r.oll~•fffl-mflil: Ucml))) > 
<r.nusrtl-r.11r.nt: [street <= Cl] » 
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<rniurd-r11(mt: ... > clauses indicate where a customer or collector actor is sent after it arrives at 

the door. In particular, customers and collectors are sent to the street actor after they exit 

from the post off ice. 

8.1.3 Interactions at the Counter Section 

Upon entering the pQst office, a customer must decide where he should go, i.e. to 

the counter section or the mail box corner. The decision is made in response to a message 

(ao-10-cou11tf!r-.,ection-if-neceuary:), according to whether or not he needs stamps. This 

behavior of the customer is expressed by the following event specification. 

<m1mrr: [ C <= (go-10-couruer-1ection-if-naceuary:)] 

(Case-I: 

<1,re-cond: 

(C is-a (CUSTOM ER (leucr1: {!l})(#-of-11amp1-naadatl: N))) 

(N > O) > 
<next-cond: (C is-a (CUSTOM ER (lcucra: {!l})(#-of-1tamp1-naatlad: N)))> 

<caused-event: [counter-section <= (c1.utomer: C)] >) · 

(Ca.,e-2: 

<pre-cond: (C is-a (CUSTOM ER (leuera: {!l})(#-of-1tamps-naatlad: O))) > 
<next-corrd: (C i•-a (CUSTOM ER (leuera: {!l})(#-of-1tamp1-nf!ntlatl: O)))> 

<causrd-cvnnt: [ mail•box·corner <= (c1.utomar: C)] >)> 

(sp-5) 

Two points should be made. about the specification above. First, the customer C sends 

himself to the counter section or the mail box corner. Second, the customer C does not· 

change his state as described in the <rrera-cond: ... > clauses. 

The effects of interaction between customers and the counter section are described 

by the following simple event specification. 
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<r11r111: I[ counter·sedien <= V.uconu1r. C)] (sp-6) 
<prr.-cnnd: (C i•-a (CUS_TOJI t:R (leueri: {!l})(#-o/-11ainp1-naeded: N))) > 
<11r.-rt-t'mid: (C i1-a CCUST0jf 8R (leuer1: {ll})(.-o/-1tamp1-needocl: 0))) > 
<cauM?d-evmu: [ C <= (go-10-mail-bos-corner-if-neceuary:)] » 

This specification might look. too simple. Of course, by using conceptual representations 

for the counter section which include more detailed information, we could express various 

activities and interactions such as customers waiting irfa queue, and buying stamps at a 

counter. Also, we could define the state of the COWlter section in a way similar to that in 

which we defined the. sates of the door actor. But (or our present purpose, the event 

specification above is sufficient. 

When a customer leaves the counter section, he must again <l«ide where to go 

next, the mai1 box corner or the .door. The decision is made in response to a message 

(1rn-1n-111ail-'1ox-if-ncceHary:), according to whether or not he is carrying letters. This is 

expressed as follows. 

<,.,,,.,.,: [ C <= (Ro-10-mail-60¥-corner-i/-n~UOl'y:)] 

<Ctur.-1: 

<11rr.-r.ond: 

(C i~-a (CUSTOM f;R (letter.: {!l})(.-o/-11amp1-needed: N))) 

U!i}" OJ> 
<nrrl-CM«I: (C ia.:a (aJS7Y>Jf /l:R Ut!!tter.t: {IJ})(,..•f-•••111,,..-need..r: N))) > 
<rnu11(!d-r.t1cn1: [mail-box-corner<• (cal&Omet:' c>] >) 

(Crur.-2: 

<11rr.-co11d: (C i1-a (CUSTOM KR Uttt1er1: {})(.-e/-llamp1-needed: N))) > 
<11f"xt-t'ontl: (C ia-a (CUSTOJIER (leUef'c l})(.-o/-11emp1-nHded: N))) > 
<~nu1ed-r.Vf!nl: [the-door<= (ccuaomer-esid,.,: Cl] >)> 

(sp-7) 

Note that no c~nditioru are made for the number of stamps needed N in the 

preconditions in the above specification. (See, Section 8.lbJ 
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8.1.4 Interaction at the Mail Box Corner 

To complete the local specifications, we must specify the interaction between the 

mail box corner and its users. An important fact stated in the informal description of the 

model is that customers and collectors wait in the same queue before the mail box and that 

they deposit or collect mail on a first-in-first-out basis. This fact allows us to define the 

state of the mail box corner by the set of letters brought by the customers who arrived at 

the ma ii box corner after the collector who arrived most recently. Letters brought do not 

necessarily mean letters that are already put in the mail box. They may still be carried by 

customers in the waiting queue. We use conceptual representations of the following form 

for the mail box corner. (!tf 111 f,-nox-CORNER (po11tod-mail: { ... })) The interaction is 

described by the event specifications in Figure 8.3. · 

Fig. 8.3. A Specification of the Interactions at the Mail Box Corner 

<mi(!nt: [mail-box-corner <= (customt!r: C)] 

< 1>rc-cn 11 d: 

(mail-box-corner iic-a (M IHl~-BOX-CORNER (poicted-mail: {!m}))) 

(C i.~-a (CUSTOM 1m (fottor1: {!I} )(,..of-•tamp11-net!ded: N))) > 
<next-cnnd: 

(mail-box-corner iic-a (M /Jn-BOX-CORNER (JJo•tod-mail: {!m !I}))) 

(C i.~-a (CUSTOM RR (lcttor1: {})(,..of-1tamp1-nocdod: N))) > 
<cau.~ed-mJtmt: [the-door <= (r.1utomor-eriting: C)] » 

<ctJl!lll: [mail-box-corner <= (collectors: CL)] 

<pr<!-cnnd: 

(mail-box-corner iB-a (M An-BOX-CORNER (poated-mail: {!m}))) 

(CL i.~-a (COi.i.ECTOR Ccollcctcd-mail: {!cm})))> 

<nt!xt-cond: 

(mail-box-corner iic-a (!ti !Jlf,-BOX-CORNER (posted-mail: {}))) 

(CL iic-a (COU.l~CTOR (collected-mail: {!cm !m}))) > 
<cau11r.d-cve11t: [the-door <= (collcctor-e:iriting: CL)] » 

(sp-8) 

(sp-9) 
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8.1.5 A~.\umptions of No Implicit Interaction• 

In addition to the above specifications of local interactions, we must make the 

following assumptions of global nature to describe the post office model completely. 

Assumption-I 

Customer and collector actors do not receive any messages except those explicitly 

stated in the event specifications sp-1 to sp-9. 

Assumption-II 

The counter section actor and the mail box corner actor interact with only the 

customer and collector actors which have entered through the door. The door 

actor interacts with only the>(eueom""1diilt,:.tt) and (~olleeaii-e:ridng: ... ) messages 

which contain collector or customer actors which have enteJeci through the door. 

(No customer or collector actor can arrive directly at these actors without going 

through the door.) 

The first assumption implies that customer or collector actors do not change their states 

immediately after an event E until the event caused by E, where E is one of the events 

specified by sp-1 to sp-9. For example, immediately after the event 

[counter-section <= (r.u.atomcr: C)], the state of a customer C which is stated in the 

<nr>;t-rn11d: ... > c1ause of the event specification sp-6 do not c~ge until C receives the 

(pn-1n-nmil-l1nr-r.nrner ... ) message. Thus, in tne events s~ficatjOn sp-7, the number N of 

stamps needed (by the customer C) is z.ero, because it wu iero immediately after 

[counter-section <= (r.uatomf?r: C)] as stated in the <nast-cond: • ..> clause of sp-6. 
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8.2 Task Specifications 

We have specified the individual behavior and mutual interaction of actors in the 

post off ice model. These specifications are local in nature. In this section, we will state 

some of the overall [global] task specifications of the post office that should be implied by 

the local specifications. It is important that such task specifications be stated in terms of 

externally visible actors because the function of the post office should be specified and 

understood without knowledge of the details of what is going on inside. These actors are 

the door actor, and customer and collector actors which are outside the post office. 

Four task specifications of the post office are in order. For each task specification, 

an 111formal statement is followed by the formal one. 

The first task specification is expressed in terms of a customer's two states: one 

before he enters the post office and. one after he exits. This may be considered as a 

specification of the function of the post office from the view point of a customer. 

Task-I (Customer is Guaranteed to Return without Letters) 

If a customer visits the post office, he must eventually leave there. When he leaves the 

post off ice, he must not be carrying letters and he does not need stamps. 

<Pt1e11t: [the-door <= (cu&iomer-entering: CJ] 
<prc-cond: (C is-a (CUSTOM ER (letter•: {!l})(.-of-1ta.mp1-neadad: N))) > 
<caused-e11eru: [!!!:!.!!. <= c] > 
<posr-cond: (C i11-a (CUSTOM ER (letter.: {})(.-of-1tamp1-naeded: O))) » 

The second task specification is the collector version of the first one 
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Task-I I (Collector is Guaranteed Not to Lose Any Mail) 

If a collector visits the post office, he must eventually leave there. When he leaves the 

post off ice, he must be carrying the newly collected mail [which may be empty] in addition 

to the ma i I he brought into the post office. 

<r11rr11: [the-door <= kolfoctor-c1uering: CL)] 

<prr-cnnd: (CL is-a (COJ.LECTOR (collected-mail: {!cml}))) > 
<cauJ1rd-mie11t: I[ street <= CL )] > 

</Jn!lt-co11d: (CL i1-a (COi.i.ECTOR (collected-mail: { ... !cml ... }))) » 

The next task specification is expressed in terms of the interaction between 

customers and collectors through a set of letters. This may be considered as a specification 

of the function of the post office from the view point of individual letters. 

Task-JII (Guaranteed Collection of Mail) 

Suppose that a set {!m} of letters is brought into the post office by a customer C. 

Then 1f there is a collector CL who enters the post office after the customer C leaves, 

then there always exists a collector CLL (who may be the collector CL) who brings the set 

{ !m} of letters out of the post office to the street. 

For an event Ee-enter = [the-door <= (cr.utomer-enieririg: C)] 

where (C is-a. (CUSTOM /t;R (le1ter1:{!m})(.-o/-1ta.mp1-needed: N))), 

1f there exists an event Eel-enter = [the-door <= (collector-entering: CL)] 

such that Ee-enter ·act-> Eel-enter ·irr•>the·door Ee-exit 
where Ee-exit = [the-door <= (cruromer-e:riring: C)], 

then there must exist an event Ecll-street =[street <= CLL] 
such that (CLL ia-a. (COi.i.ECTOR (collected-mail: { ... !m ... }))). 

It should be noted that the mail of a customer C could be collected even if no collector 

enters the post office before C leaves. But in this case there must be some collector which 

arrives at the mail box corner after C arrives there. (Of course. this cannot be stated in the 

task specification because the mail box corner which is an internal component of the post 

office should not be mentioned in the task specifications.) 
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The next task specification is expressed in terms of the states of the-door (more 

precisely. sets of mail inside the post office) at different times. This task specification is 

derived from Task-III. 

Task-IV (No Stagnation of Mail) 

Let UM, UC and UCL respectively be the set of letters, the set of customers, and the set 

of collectors inside the post off ice in a given situation S. If there is a collector CL who 

enters the post off ice after all the customers UC and all the collectors UCL (who were 

inside the post office in the situation S) leave the post office, the set of letters which are 

inside the post office after the collector CL leaves does not share any letters with the set UM 

of letters (that were inside the post office in the situation S). 

Suppose that 
(the-door i.~-a (POST-OFF/Cf; (mail: {!m})(cuttomcr1: {!cs})(collectora: {!els}))) holds 

in S = Sit[[the·door <= M]]. 
If there exists an event E = [the-door <= (collector-entering: CL)] 

such that 

for any customer Ci in {!cs} and any collector CLj in {!els}, 

the following ordering relations hold 

Ee. ·arr·>the-door E and Eel· ·arr•>the·door E 
I J 

where Ee. = [the-door <= Cciutomcr-eddng: C;)] 
I 

Eel. = [the-door <= (collector-e:r:i•ling: CL j)], 
J 

then for any event EE = [the-door <= MM] 

such that E ·arr->the-door E' -arr·>the~door EE or E' = EE 
where E' = [the-door <= (collector-e:r:iting: CL)], 

it is the case that 
(the-door i$-a (POST-OFFICE (mail: {!mm})(c1utomera: { ... })(collectol'I: { ... }))) holds 

in Sit[EE] where {!m} n {!mm} = ; 



- IM-

8 .. 3 Verification for the-Task SpecificetitnS 

In this section we will demonstrate that the event specifications, whidi are given in 

Sect 8.1 as the description of the behavior of individua.I_ a~~s in the mo,del and t~eir 

interaction, sat~sfy ·the ,task. ~peciftcations it;t _.the. pntV~®J .. ~if:!R. Also. some of the 
. :: -· ' - ' -~~ ~ -,_' -~ . - . ;- . . . . 

n~tert'stjng .propefties of: t~: eYent specification• tiYen :tn -seGtton-a.t *"' a. revealed in the 

course of lhe vertffcation. 

8.3.1 Vt'rification for Customer's Cuatlntftd Return .withoirt Letters 

First we will verify the following task specification. ~. of the properties 

observed ii1 the process of the verification ~iU be used ..,. in the verification for other 

task specifications. 

Task-I (Customer's Guaranefed: Return without L:etten) 
<rt•r111: I[ the-door <= (cr.ucomttr-ctncerin•: ct) '· 

<1>rr.-cond: (C i11 ... (QIST{)JtBir-:(le11fii~£ {lfJMHN'.lmP,-Me41le4: N))) > 
<rnu.11f'd·r.Vf!nl: [jtr .. t.(s;C] ) - · ' - · 
<,,rMt-coml: ·· (C u-o (CUSTOMER Ueuerc_.&Jl~l-,,omp1-nee4tNl: 0))) » 

(Verification) This task specification is establishedbyiractng- sequences of events which 

involve a customer acto~. Such sequences are Obtain:ec:t~~~ctrecking, caus'al relations among 

events described by the 'event spectrications given"rri'-~-ecf 8.t t;act~g such a sequence can 

be done by cxamin_ing (local) states of ac~s parijqp~ting .. in each event, but certain 
' ·. - : , - , .. '-1· . ". . . . ' 

cautions a re necessary in deaiing with the state of the~ aeu>J" -!hich represents external . 
state of the whole post office. Furthermore,· it Should be noted in the f o1lowing 

demonstration that the reasoning from one event to another crucially depends on 

Assumption-I in Section 8.1.5. Namely, we assume that the state of a customer C does not 

change from an event E to the next event caused by E. Below this assumption will be used 

without bemg mentioned. 

First we assume that an event Eenter takes place as dacribed below. 
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Eenter: [the-door <= (r.u11tomcr-c11terilig: C)] 

where (C i.,-a (CUSTOM ER (k1ter1: f!m(1-o/-ar11mp,...Medntt: N))) 

(the-door i11-a (POST-OFFICE •nwtil: Hm})(cuatomttra: {!cs})(coll~tor11~ {!els}))) 

The event Eenter and the first assertion· are assumed by 'the task specification to be 

verif icd, and the second assertion is assumed in the <pre-cond: ... } clause in the event 

specification sp-1. Note that as sp-1 specifies, the state of the-door immediately after this 

event is expressed as 

(the-door i11-a (POST-0/<"FICJ<; (mail: {!m !l})(c1111omera: {!cs CJ)(colfocrora: {!els}))) 

which means that the customer C is now inside the p0st office. The <cou1ed-ftt1enr: ... > and 

<nrxt-r.ond: ... > clauses of sp-J tell us what will happen to C next and what state C will be in. 

Edecision+ [ C <= (po-10-coun1er-1nc1ion-if-nece11ary:)] 

where (C i.c-o (CUSTOM l.:R (leuer1: {!l})(.-o/-alempa-needecl: N))) 

To know what event will take place after Edecisio"'9'.l• the event specifkath>n sp-!J' is ref erred 

to. Two cases need to be considered: (I) Ecounter is caused if N > 0 and (2) Email-box is 

caused if N = O. 

Ecounter: [counter-section <= (r.rutomor: C)]. 

where (C i•-a (CUSTOAI 1':R (leuera: {!l})(.-of-11ompa-needetl: N))), (N > 0). 

The event specification sp-6 tells that the following event Edecision-2 is caused by Ecounwr 
and that the number of stamps needed becomes zero. 

Edecision-2: · [ C <= (go-10-mail-bo1:-corner-if-neca11ory.)] 

where (C i•-a (CUSTOM ER (lt1t1er1: {!l})(.-o/-atompa-needed: O))) 

To know what event will take place next, the event specification sp-7 is referred to. We 

need a case analysis: (I) Email-box is caused if I t111 {} and (2) Eexit is caused if I = {}. 
Ema i I-box: [mail-box-corner <= (cuatomer: C)] 

where (C i•-a (CUSTOM ER (leuer.: {!1})(.-of-atompa-noetletl: 0))) 

Not~ that Email-box is also caused by Edecision-l as well as Edecision-2· Both Edecision-1 
and Edecision-2 insure that the number of· stamps needed is zero. On the other hand, the 

letters {!I} the customer C is carrying may or may not be empty, because Edecision-2 insures 

that I is not empty, but Edecisiol'H does not. The event 1peciftcati0n sp-8 tells us the next 

event Eexit· 
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Eexit: [tho-door <= (r.ua1nmr.r-ftrilin1r:C)] 

where (C ia-o (CUS1'0Aflt;R Uttttara: U)(.-./-llO•,.,..needetl: N))) 

(the-door ia-a (POST-0/t'FJCE (mail: ( • ..J)(ca11011Nra: {. .. C".})(collactora: { ... }))) 

The first assertion is guaranteed by the <nnt-coml: . ..> clause of the event specification sp-8. 

The second assertion that the customer C is still inside the post office must hold in order 

for the event specification sp-2 to be applied. This. assertion is· guaranteed by the f o11owing 

facts: 

(I) Examining all the event specifications sp-1 through sp-9, events of the form 

[ the-doe>r <= (r.uaiomr.r-r.Jeiain•: C)) are the only way for C to exit from the post office 

(i.e. to eliminate C from the (eul1omer1: i ... }) component of the conceptual representation 
for the door actor). 

(2) An event of the form [the-door <= (cu11omer-esitin,.: CJ] have not taken place since 

C entered the post office. 

Now the event specification sp-2 insures the foltoWing event Estreet will happen and the 
assertion will hold. 

Estreet: [street <= C] 
where (C ia-o (CUSTOM ER (lauara: {})(,.,./-11a111pa-neHH: 0))) 

The causal relations among the events Eenter through Estreet are illustrated as 
follows 

Eenter ---> Edecision-1 ---> Email-box --> Eexit --> Estreet 
• ., ,, 
I .. 

I I 
, , 

I • ., 

Ecotfnter ---> Edecilioo'-2 

Since a II the event specifications used in the above discussion guarantee that the events 

given in their <r.nuaed-t!tH!HI: ... > clauses always take place, E$ll'ee& is guaranteed to take place. · 

And the state of the customer C in the situation Estreet is exactly what is required by the 
task specif icauon. . (End of Verification) 

The second task specification given in the previoul 11ttion can be verified in the 
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same way as above. Jn fact, applications of the event specifications sp•S, sp-9 and sp-4 in 

this order will do. It should be noted that in using the event specification sp-4, a 

justification similar to the one we made, in the rqsqning from Eexit to Estreet• for 

applying the event specification sp-2 is necessary. 

8.3.2. Verification for Guaranteed CoUection of Mail 

Task-III (Guaranteed Collection of Mail) 

For an event Ee-enter = [the-door <= (c11atom.,...en1e~1': C)] 
where (C i•-o (CUSTOMER (letier.1:(1m))(Na/'."a'4~: 7))), 

if there exists an event Eel-enter• [the-door<= (colloctor-en1erin1: CL)] 

such that Ee•9f1ter ·act·> Ee-exit ···>the•door Ect-.nter 
where Ec•exit = [the-door <= (ca1tomer-.sidn1~. C)], 

then the.re must exist an event E =[street<• CLL] 

such that (CLL ia-a (CO/.l.ECTQR (cqllec•n-moil: {".Im •. ~}))) holds. 

To verify this task specification, we rely on the foHowing lemma which is easily 

derived from the event specifications given in Sect 8.1. This lemma guarantees that if a 

customer .enters the post office carrJing a set (lij of letters, he always arrives at the mail 

box corner carrying the same set of maH. 

Lemma 

For an event Ee-enter= [the-door<= (c1111omer-r.n1erin1: C)] 
where (C b-a (CUS1'0JI ER (leuera: {!r})(.-o/-acamp1-needad: ?))), 

there always exists an event Ee•maiJ•box · = [ mail•eJc-corner <• (eaatomar: C)] 
where (C i11-a (QJSTOJI ER· (leuera: {tfj~/-aconapa""needad: ?))) 

such that Ee-enter -1et·> Ee-mail-box-

This was justified during the verification of the fir.It task specification. 

[Note that Eenter ---> Email-box in the demonstration of Task-I.] 
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(Verification of Task-Ill) 

Suppose that an event Ee-enter = [ thf-do!r <• (c111&o111.,,..:.enteriR,.: C)] takes place 

where 

(C ia-11 CCUST<JJt 1':R (11i1te!ra: (!l})C,.../-11amp1-nee4e4: ?))) 

holds. By the above lemma, an event Ee~ s, [m1il-box~Mr <= (cu•••~: C)] 
always takes place and the same assertion 

(C ia-a (CUST0"11':R (leuera: {!l})(.-o/-11cmp1-neefle4: ?))) 

still holds. Here we assume that the following assertion holds when Ec·m•il·box takes place. 

(mail-box-corner ia-c (M 11/L·BOX.;Q}RMM (podH·mail: {!pm}))). 

Then, by the event specification sp-8, the assertion 

(mail-box-corner ia-a (Jt/111.-BOX-CORNER (pauefl~mail: {!pm 11}))) 

holds immediately after Ec·m•it·boli ·and until the rtm message arrival at the 

mail-box-corner. Sp-8 ako guarantees that Ee-exit r[the"'cloOr <• (e1HtorMr-es-fdng: C)] will ., 
take place. 

Then suppose that the f011owing·event taesptace !fl!!: Ec1 xit 

Ecl•enter ii:( the-ddOf <• (totl~or-ftfieriit~:: a.)] 
where (Cl iit-(l (COl.l.1':CTOR (colleeted-maUt Utift>t>l !ioli:ls. By the event specification sp-3, 

Ect·mail·box. =· [ mail•bbX-C~~r' (le ·~tlecaorl: Cl.>] 
takes place where (Cl ia-a CCOLl~;CTOR .(co~-~ jlcM}))).:stil1 holds. At this point, 

the ordering of the events which have already occurred is expa:essed as follows. 
- : ' ~ ~ =---- . - - ~ : , 

The important fact here is that Ee·inail·box precedes Ecl·mait·bor We shall consider two 
cases: 

Case-I: If any collectors do not arrive at the mail box corne~. between Ec-meif.bwr 'Rd 
- - 4 • . - • . • -

Ec1-mail-box· the state of the mail box C()rr:ter at the,ti~Of ~--is. e~pressed as 
(mail-box-corner ia-a (~l_"/1.,-BOX-qJffNER (po.ift-,,..U: (...!ptn...!l-U)) 

because customers a rrivin$ b~tw~n E~~~U~~"~cf ta:1t111 li0x- only deposit, but never 

collect ma i I. Then as the event specification sp-9 states, .!he Q;>llecto! Cl collectJ aU the mail 
{ ... !pm.-!1...} and then go to the door. · .. · ' ' ,. · 

Case-2: If there are collectors who arriv.e atthe·mafl box corner between Ee-mail-box and 

Eel-mail-box• then the first one among such collecton, w•U collect the mail which includes {II} 
and {!pm} and then go to the door. 
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In both cases, some collector carrying {!I}, say CLL, arrives at the door from the 

mail box. To insure that the collector CLL goes out to the street, the two assertions given in 

the <w<!-rm1d: ... > clause of the event specification sp-4 must be satisfied. One assertion says 

that CLL must be one of the collectors who appear in the conceptual representation of the 

door actor at the time CLL arrives, namely, the following must hold. 

(the-door i~-a (POST-OFF/Cl~ (mail:{ ... } )(cu.11omer1:{ ... })(collr.ctor1:{ ... CLL...} ))). 

Assumption-II in Section 8.1.5 guarantees that this assertion holds, because it assumes that 

a II the collectors arriving at the door from the mail box corner must have entered through 

the door, so by sp-3 CLL must appear in the (collectori: ... ) component of the conceptual 

representation of the door. This completes the verification. Note that Assumption-I was 

used thl"oughout the above demonstration. (End of Verification) 

The last task specification "No Stagnation of Mail" can be verified by using 

already established task specifications. As was done in this task specification, Jet us suppose 

that the state of the post office is expressed by the following assertion. 

(the-door i~-a (POST-OFFICE<; (mail: {!m})(cu.1tomer1: {!cs})(collectora: {!els}))) 

Then it is the case that every letter I which is an element of the mail {!m} inside the post 

off ice is brought in either by a customer or by a collector. If I is brought in by a customer, 

we can use the third task specification which has been just established above. If I is 

brought in by a collector, the second task specification "Collector is Guaranteed Not to Lose 

Any Mail" insures that I will be brought out by the same collector that brought I into the 

post off ice. So both cases are proved. 
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9. Conclusions and Future Research 

In this thesis, we have presented the local state approa.d to specification and 

verification techniques for both serial and parallel computations. As stated in the 

Introduction (Chapter I), the work reported ·here has made four major technical 

contrabutions. In concluding the thesis, we would like to first review these contributions 

and then discuss their implications in the light of our projections for future research. 
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9.1 Summary and Conclu&ions 

· As was demo.nstrated in Chapters 4 and 6, the local state approach provides 

powerful and convenient specification techniques for abstract data t7pes with parallelism 

and side-effects with which previous techniques had failed to deal. 

As the post off ice model in Chapter 8 illustrates, specification techniques based on 

local states enable us to describe the complex internal concurrent activities of a system, such 

as an operating system or a multi-user data base system, in terms of the individual behavior 

of its subsystems and their mutual interaction. In order to express the overall functional 

behavior of such systems (task specifications), the use of local states turns out to be not only 

useful, but crucial. In addition, however, we sometimes need to state temporal ordering 

constraints among events that are difficult to express in terms of the state changes of 

·individual subsystems. For this purpose we have used an event-oriented specification 

language[Greif-Hewitt75, Hewitt~Baker77] in which the ordering concepts in the underlying 

computation model can be talked about directly. Thus, with the complementary use of the 

ordering constraint statements, the effectiveness and versatility of the local state approach 

in specifying the behavior of systems with high internal concurrency is strengthened. 

To describe the states of individual data and procedural objects, we have 

developed a system of notation called conceptual reprtstntationl. ·' Based on this notational 

device, we have presented a formalism for specification and vtrifieation. As was seen 

throughout the thesis, this formalism allows us to express states of. individual ob jectS 

dirl"ctfy and explicitly. Thus we believe that $pecifications written in our formalism are 

easy to understand and are less error·prone in their C011&pl•tniess and consisunc'J, as 

compared with those written in other formalisms. Moreover, the separation of the states of 

an object from its identity make.s it possible for conceptual representations to express 
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sharing ~cructures among objects and multiplt instanc1s of a class.of objects. 

The ability of our formalism to express sharing structures and multiple class 

instanr1ation enabled us to develop a method for symbolic evaluation of programs written 

in ob Ject-oriented languages, which has not been attempted berore. The developed method 

1s med for verification of serial computations arid has iuggestetf an approach to.mechanical 

program analysis (Section 5.i, Chapter 5). 

9.2 Future Research 

We have defined the states of an indivi(l\.lal oLl ject (actor) as 1qu.ival1nce tlass1s on 

the past histories of messages (operations) sent tot~ object._. Local states thus defined are 

expressed by conceptual representations which, mathematically .. comprise sequences, 

collections and tuples. On the other hand, the state of. an object can be identified with a 

mathematical function which is obtained as a. solution of the ~havioral equations 

mtroduced in Section 6.4, Chapter 6. _ So far t~ relation,hips '.betwten the above two 

mterpr('t~tio!ls of states have n~ bee';', i:nade clear. We. for~ that ~ _invest.igation of 

these relations will rev.eal very rich ~thernatical str-uctureJ a~ that. consequently, the 

propl:.'rtaes of impltWientation invari,a~s _(Sec;qon 5.3.1, Chapter. 5) which we hav-e left 

informa I will be unde.ritood precisely. 

The techniques exemplified by the modelof a simple post office can. be applied to . 

che specii ic<itlon and ver1fication of Various distributed information processing systems. 

Furthermore, the techniques used in this thesis hl'Ve a direa -application in the area of 

business ttutomation. We e>ipect that attOF->ltke-ptOcedura~objectl Will enormously increase 

the f Jexabihty and security of message and ~ment syams by ~lacing "paper• forms 
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and lecters and "paper" documents with "active" (procedural) counterparts that are sent to 

work stations in computer networks. Moreover, we can apply our techniques to the 

specification and verification of object-oriented simulation and system description 

languages such as the DELTA system[Ho1baek-Hassen-et-a177l 

The verification process for paralltl computations described in this thesis is 

informal. The formalization of such a process is desirable. For this purpose, a formal 

specification language in which both local stat~s of objects and ordering constraints of 

events can be expressed in a coherent fashion must be developed, together with sound and 

powerful infei·ence rules which are effective in dealing with the partial ordering of events. 

With such a formal system available, we will be able to construct practically useful software 

tools which assist us in the construction of paraLltl programs and distributed message 

pa,.,sing systems. Various imf>6rtant properties, such as no-deadlock, no-starvation, and the 

property that a system meets its specifications, wiU be mechanically analyzed with such 

software tools. 
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Appendix I - Derivation of Axiom (5) 

The following axiom which was given in the algebraic specification of queues in 

Figure 2.6, Chapter 2. 

A>\iom ~ 
if -.IS·EMPTY(Q) " DEQUEUE(Q, A) = <B, Q'> 

th.en DEQUEUE(ENQUEUE(Q, A))= <B, ENQUEUE(Q', A)> 

This is derived from the following specification of queues based-. on conceptual 

representations [which is identical to the one gi~en in Figure 2.2. Chapter 2. except that the 

functionality of the operations is omittedl 

(El) CREATE-QUEUE() ---->.(QUEUE[]) 

CE2) ENQUEUE((QU/<:UE [!x]), A) ----> (QUEUE [Ix A]) 

(EJ) DEQUEUE((QUEUE [])) ---·> ERROR 

(E4) DEQUEUE((QU/<:UE [A !x])) ----> <A, (QUEUE [Ix])> 

(ES) IS·EMPTY((QUEUE [])) ····> TRUE 

(E6) IS-EMPTY((QU/<:UE [A Ix]))·-·> FIJLSE 

(Derh·ation) 

(1) -.IS-EMPTY(Q) ;given as the premise of the axiom. 

(2) OEQUEUE(Q) = <B, Q'> ;given as the premise of the axiom. 

From (1) and (E6), Q must be of the form 

(QUEUE [front-element lre1t]) 

From (2) and (Ei), front-element • B and Q' contains [lr•t]. Thus (S) and (4) 



hold. 

(3) Q = ((JUHUI~ [B !rest]) 

(4) Q' = (QUl~Uf; [!rest]) 

(5) DEQUEUE(ENQUEUE(Q, A)) 
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= DEQUEUE(ENQUEUE((QU1<:u1<; [B !rHt]), A) 

= DEQUEUE((Ql/RU/<; [B !rest A])) 

= <B, CQUl~Uf; [!rest A]))> 

= <B, ENQUEUE((QUl~UE [!rest]), A)> 

= <B, ENQUEUE(Q', A)> 

;given in the c.onsequence of the axiom. 

;from (3). 

;from (E2). 

;from (Ei). 

;from (E2). 

;from (i). 

Hence, DEQUEUE(ENQUEUE(Q, A)) • <B, ENQUEUE(Q', A)> · (End of Derivation) 
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Appendix II - Limits of Algebraic Specification 

To show the existence of abstract data types which cannot be expressed by a finite 

set of axioms in the algebraic ~pproach, M. E. Majster[l9T7l gave a stack type which allows 

us to look at any stack elements by using a position fntorination i. The functionality of this 

type is as follows. 

CREATE: ---> staci ;creates an empty stack. 

PUSH: stack X item ---> stack or error 
;tries to insert an -item at the top. 
;if i is not pointing to the top, undefined 
;otherwise i points to the new top item. 

DOWN: stack. ---> stack or error 
;tries to increment i by one. 
;if i already points to the bottom item, error. 

POP: stack ---> staclc. or error 
;tries to remove the top item. 

;if i is not pointing to the top, error 
;otherwise, i points to the new top item. 

READ: stac1' ---> staci or ITrOT 

;tries to read the item pointed by i. 
;if stack is empty, error. 

RETURN: stack ---> sttuk or ITTOT 

;tries to cause i to point to the top item. 
;if stack is empty, error. 
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Unfortunately, the axioms for these operations cannot be characterized finitely. 

For example, we need infinitely many axio.ms expressed as follows. 

RETURN(DOWN)m(PUSH)"(i 1, ... ,in) • (PUSH)"(i1, ... ,in) 

for all m > 0 and m < n 

where PUSH"(i 1, ... ,in) = P~SH( ... PUSH(CREATE(), i1) ... , in) 

This data type can be easily specified by using conceptual representations of the 

following form. 

(ST /JCK (politio11: i)(iiema: [ ... ])) 

The (po.tition: ... ) component keeps the position information and the conceptual sequence in 

the (itf!m.~: ... ) represents stack elements. A specification based on the conceptual 

representations is given below. 

(1) CREATE() ---> (STIJCK(po1i1ion: 1)(iaem1: [])) 

(2) PUSH((ST IJCK (1,01itio11: i)(i1em1: [!s])), I) 

if i = 1 ---> (STIJCK(po•ition: i)(i1em1: [I !s])) 

otherwise ---> ERROR 

(3) DOWN((STIJCK(position: i)(itema: [!s])) 

if i < length[!s] ---> (ST/JCK(po1i1ion: i + t)(i1em1: [!s])) 

otherwise ---> 1<:RROR 
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(4) POP((ST/JCI\ (po.~i1io11: i)(itr.rn.t: [!s])) 

~( i = 1 and s = [I !rest] ---> (ST/JCK(po.tition: i)(ittJm•: [!rest])) 

rtl1cnoisc ---> l.:RROR 

(5) READ( (.ST/lCK (po.~itio11: ?)(itcnu: [])) ---> ERROR 

(6) READ((.ST/lC/\(po.~i1io11: i)(itcm.~: (!xl I !x2])) ---> I 

where length[!xl] = i - 1 

(7) RETURN((S'/'/JCK(po.~itio11: i)(itcm.s: [!s))) 

ifs = [] ---> ERROR 

ot hcrwise ---> (ST/JCK (position: 1 )(iicm.s: [!s])) 
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Appendix Ill - Recursion, Iteration and Loop Invariants 

The handling of recursive invocations of modules in symbolic evaluation has been 

illustrated in the example of empty-one-queue-into-another in Section 5.2.1, Chapter 5. In 

general, recursive invocations are treated as the same as ordinary invocations of modules. 

When a [recursive] invocation of a module M is encountered in symbolic evaluation, the 

cqntract of M is referred to and the specified results and postconditions are used to 

continue the symbolic evaluation after making sure that all the preconditions of M are 

satisfied. 

Iterations in implementations can be handled almost in the same way, because the 

iteration construct in PLASMA allows us to treat an iteration as a module. Thus if 

specifications of such modules are supplied, loops can be treated as ordinary modules. 

Another way of dealing with iterations is to rely on assertions which hold every 

time the control reaches the beginning point of a loop. Such assertions are called loop 

invariants or inductive assertions[Floyd67, Hoare69]. Since loop invariants are usually not 

derived from the process of symbolic evaluation, they must be supplied externally. 

Symbolic eva l_uation of the part of a code which follows such assertions is carried out under 

the assumption that the assertions hold in the situation corresponding to the beginning 

point of the loop. To illustrate this technique, we will consider a simple example. 



- 216 -

Fig·. Ill.I. An Iterative Version of empty-one-queurinto-.nother 

(empty-one-queue-into-another-• = 
(:> [=ql =q2] 

([ql q2] => 
(loop = 

<=> [=qql =qq2) 

** 
(rules (qql <= (dq:)) 

(:> (r.1·hau.uefl:) 

- s.xhM1St.d-qq1 -

(dn11r.: [qql qq2])) 

<=> [=front-of-qql =dequeued-qql] 

- S dequeued-qq 1 -

(qq2 <= (nq: front-of-qql)) 

(loop <= (Olqueued-qql qq2])) mm 

In Figure HI.I. an iterative version of empty-one--ueue·into-MOther•a is given. 

The loop mvariant for loop which holds at the point where•• is placed in the code is 

[!xxl lxx2] • [lxl !x2] 

where xx1 and xx2 are the elements of the impure queues which are bound to qqt and qq2, 

respectively, and x1 an9 x2 are the element-s of' the impure queues. bound to qt and q2, 

r.espectively. This invariant is expressed in our formalism as follows. 



<loop-/m:arirurt: [!xxl !xx2] = [!xl !x2] 
wlicrc 

in Sit[[ loop <= [QQl QQ2]]] 
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(QQl is-a (/ M PURE-QUEUE [!xxl])) 
(QQ2 is-a (IM PURE.:.Quf;UE [!xx2])), 

in Sit[[ empty-one-queue-into-another-a <= [Ql Q2]]] 

(Ql i.,-a (I !ti PUR/<:-QUEUE [!xl])) 
(Q2 i.,-a (/!ti PURE-QUEUE [!x2])) > 

Given the above invariant, it is easily demonstrated that the implementation in Figure IIl.1 

satisfies the contract for empty-one-queue-into-another given in Figure 5.5 in Chapter 5. 

The key point of the demonstration is that when the control reaches Sexhausted·qql• the 

impure queue QQ1 that qql is bound to is empty, i.e. xxl = []. Therefore, the elements of 

the impure queue QQ2 that qq2 is bound to, which are expressed as xx2, are equal to [!xl 

!x2] because [!xxl !xx2] = [!xl !x2] (from the invariant), and xxl = [] imply xx2 = [!xl 

!x2]. The rest of the demonstration can be carried out almost in the same way as that for 

the recursive version shown in Section 5.2.1, Chapter 5. 
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Appendix IV - Convergence of empty-oM-queue91nto-uother 

Most event specifications written in our specification language contain 

<r.nu.'<•d-r11m11: ... > or <rr.tu.rn: ... > clauses. As explained in Section "i.3.1, Chapter "i, the existence 

of these clauses in an event specification indicates that an event Estated in such a clause is 

required to take place. Thus, to verify an imp\emefltatiO{l against specifications, we have to 

demonstrate that the event E always takes place, as well as that the postconditions are 

satisfied. 

As an example, let us consider the convergence of the implementation of 
.'--

empty-onrqueue•into-another [hereafter empty] given in Figure 5.5 in Chapter 5. [The 

followmg discussion is based on the symbolic evaluation of the implementation presented in 

Section 5.2.1, Chapter 5.] For the demonstration of the convergence, we need to show that 
': :.-

the control always reaches the situation s.xhauat.d-ql• 'provided that the two actors sent to 

empty a re distinct and both are impure queue actors. 

If the impure queue bound to ql becomes empty during the recursive invocation of 

empty, S exhausted-ql can be reached. Thus it is sufficient to show that the length of the 

impure queue eventually becomes zero. Since the length of the impure queue is an 

arbitrary non-negative integer when it arrives at empty for the first time, we need to show 

that its length decreases at its every subsequent arrival at empty. What has to be shown can 

be stated in our formalism as follows. 

( '"111t•h-o/(q1) in sreceived-queues ) 
i.~-prt?ntf!r-thnn 

( /f'H,ll"th-of(dequeue-ql) in senqueue_d-cl2 ) 

To show this, the situational tree produced by the symbolic evaluation of the 

implementation is examined. un••h-of on impure queues is defined as 
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<wo11"rt y: lan11th-of(Q) = lenath(x) 

wlit!ra (Q i&-c (IM PURE-QUEUE [!x])) > 

By using assertions about Ql and Q2 in conj1.mction with the binding informa~ion for ql 

and dequeued-ql, we obtain the following facts. 

fo11nth-of(q1) = length(xl) in Breceived-queues• 

for11rth-of(dequeue-q1) 11: length(y) tn Benqueued-q2 

Since x1 = [B !y] holds, the desired relation (*)is shown. 

Note that the precondition that Ql and Q2 are distinct actors was used in obtaining 

the assertion about the state of Ql in Senqueue-q2. This precondition guarantees that [ Q2 

<= (nq: .. .)] does not change the state of Ql, a~d hence that assertion could be inherited 

from S dequeued-q 1 
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Appendix V - Another Specification of One-a-at-Time Serializera 
' ' 

Another specification of one-at-a-ttmt serializers is given as the following four 

event specifications. The first event specification is concerned with the creation of a 

one-at-a-time serializer. The second one describes the event where the serializer receives a 

request. A buck passer actor BP is created .and placed in the crowd. Note in (Ca1e-I: ... ) 

clause that BP is sent to the resource R as the continuation or the message in the caused 

event. A reply from the resource is always sent to a buck passer BP. This is d.escribed in 

the third event specification. Then the buck passer sends.the reply from the resource to the 

seria lizer G which created BP. The fourth event specification describes how the reply sent 

from the buck passer is handled by a serializer. 

<mumt: [create-one-at-a-time <= R] 
<rf'l11r11: G* > 
<pn.~t-roml: (G i1-a (ONl<J-IJT-IJ-TIJIE (queae: [])(crowd: {})(reMHU"Ce: R))) » 

<"''""': [ G <== M] 
1d1rrr M = [rf'qur.11: RQ reply-to: CJ 

(Ctr1'r- I: 

<prr-r.nml: (G i~-a (ON/<:-IJT-IJ-TIJIE (queue: [])(crollHlf: {})(reaoarce: R))) > 
<11r 1·1-rm1d: 

(G i.~-n (ONJ~-IJT-IJ-TI M Jt; (queue: [])(crowd: {BP*})CrelOIU'Cr. R))) 

(BP i1'-n (IJUCK-PIJSS/<:R (continuation: C)(leriali.car: G))) > 
<rn11 .~rtl-m•f'nU: [ R <== [rttque•t: RQ reply-10: BP)] >) 

(Cn.,r-2: 

<1>r••-r1rnd: (G i1'-a (ON/t:-IJT-IJ,..TIJIE (queue: [lx])(crotacl: {BP})(MIOW'ce: R))) > 
<HHt-rnml: (G i1-a (ONR-IJT-IJ-TIJIE {quae: [Ix M])(c....4: {BP))(re.aurce: R))) > 
<cn111'rtl-t'11rr111: {} >)> 



- 221 -

<r.11r.n1: [BP <== [reply: Al] 

<prr.-cnnd: (BP i11-a (llUCK-PIJSSER (continuation: C)(•erlalb:er: G))) > 
<rnu11r.d-m1r.nt: [ G <== [reply: (buck: A (r.ontinualion: C) (bac/c-pouer. BP))]]» 

<rvr111: [ G <== [reply: (buck: A (continuation: C) (buclc-pa•Hr: BP))]] 
(Crue-1: 

<prr-cnrrd: (G i11-a (ONE-/JT-IJ-TI "1 E (queue: [])(crowd: {BP})(re1ource: R))) > 
<11t>rt-rn11d: (G i11-a (ONE-IJT-IJ-TI "1 E (que11a: [J)(crolOtlf: {})(reMu&rce: R))) > 
<rnrurd-r.11r.r1t11: I[ C <== [reply: A]] >) 

(Cn.~r-2: 

<11rt?-cn11d: 

(G i11-a (ONE-IJT-IJ-TIAIE (queue: [WM !x])(crouid: {BP})(re10urce: R))) 

(WM = [rt?que111: RQ reply-to: CC]) > 
<11rrt-co11d: 

(G i11-a (ON1':-IJT-/J-TJAI E (queue: [!x])(crowd: {NBP*})(re•oarce: R))) 

(NBP i11-a (IJUCK-PIJSSER (continuation: CC)(.erlaliwr: C)))) > 
<rau11r.d-t?1>tmt11: { [C <==(reply: A]] , [R <== (req11eaa: RQ reply-ao: NBP]] } >)> 

' 
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