CAMBRIDGE

MIT/LCS/TR-182

A Framework for Processing Dialogue

Gretchen P. Brown

June 177

This research was supported by the
Advanced Research Projects Agency of the
Department of Defense and was monitored
by the Office of Naval Research under
Contract Number N000i4-75-C-0861.

Massachusetts Institute of Technology
Laboratory for Computer Science
(formerly Project MAC)
" MASSACHUSETTS 02139

Abstract

This report describes a framework for handling mixed-initiative English dialogue in a
console session environment, with emphasis on recognition. Within this framework, both
linguistic and non-linguistic activities are modelled by structures calied metdods, which are a
declarative form of procedural knowledge. Our design focuses on units of linguistic activity
larger than the spesch act, 50 that the pragmatic and semantic context of an utterance can be
used to guide its interpretation. Also important is the treatmant of indirect speech acts, eg., the
different ways to ask a question, give a command, etc.

Given the static model of dialogue embodied in the methods, the problem is to find the
correct method step that relates to a particular input. We handle this problem through a
combination of careful structural distinctions and the use of multiple recognition strategies.
The dialogue methods are used to generate expectations dynamically, special structures are used
to facilitate matching, and a basic distinction between four major utterance classes is used to
determine which of several overall matching strategies shouki be used for a given expectation.

Acknowledgements

This research was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research under Contract Number N00OI4-
75-C-0861. The specifications for Susie Software wers developed by Professor William Martin,
and many of the ideas presented here grew out of discussions with him and with the L.CS.
Knowledge Based Systems Group. My thanks to B. Bruce, C. Bullwinkle, L. Hawkinson, R.
Krumiland, E. Lewis, W. Long, W. Mark, A. Sunguroff, and P. Szolovits for their help and
advice.

Contents

10

3.1
3.2
3.3
3.4

6.1
6.2
6.3

7.1
7.2

A Framework for Processing Dialogue

Introduction .c.ccceverecrncasenccnccocscaccaanns
Keeping Dialogue Manageablecccvcvsocccccess
Conversational Exchangesc.cocceveeccccconse
What They are and How to Model Themc00000e
Core MethodsScvevercerncncecsocvessososnsnces
Basic Utterance TypPe8 ..ceceveescecccccancocscccs
Analyzing the Sample Dialogue;..............
An Introduction to the OWL Systemcccc0cce.
An Outline of Recognition Strategyccoecceee
Recognizing When a New Task is Initiated
The Problem .cceceesoesscesessecscccsanscsssosons
Initiator Keys icicecsveeerasceasssccccsssonsasss
When Not to Match Against Initiator Keys
Fitting a User Input to Open Tagksc.000..
EXPectations c.eveeeersocscesserscosssccnvenssans
WAY Evaluator8 ..cccessveconnssnsssacsavnncscsane
The Best-Laid Plans: Recognition in Failure
Situations ' |

. Metadiscuss8ionccccescesrcseserncsrcsancsaces

COﬂClusions 008600880 0000600800000000000sEBNRICEITBIPOEEEEDS
References ® 9 6066000060000 0080080800000 00sssrsrssRsS

Appewix 600800006008 PPOLPSNIEBNOOOONLSEEEINGEOCEETLTEOEEIDN

4

8
11
11
16
19
23
25
32
38
38
42
46
48
48
52
56

59
62
64
66

1. Introduction

In recent years, increasing attention has been given to expert systems in domains such as
management information, medical records and diagnosis, algebraic manipulation, and automatic
programming. The expert system has some specialized knowledge and capabilities, and its user
is usuaily assumed to be knowledgeable in the area of application, although not necessarily
knowledgeable about computer operations or computer hnguagd. There is a good deal of
support for the premise that a flexible, reliable natural language interface would increase the
usefuiness of expert systems and widen their user community. The task of constructing such
an interface, however, has turned out to be a difficult one.

This paper describes a framework for such an English language interface, using
automatic programming as the area of system expertise. The user would come to the system
with an idea of the input/output behavior he or she wanted from a computer program, and the
expert system would produce the program to these specifications. Automatic programming is a
good domain for the purpose of exploring user/expert system interfaces because it demands
relatively complex linguistic capabilities: in the normal course of writing a program not only
are questions asked and answered, but descriptions and explanations must be generated as well.
Any natural language interface for this domain, then, is forced to deal not only with individu;l
sentences but also with several sentences relating to each other and to the rest of the dialogue.

The framework that will be presented is designed for typed, rather than spoken, English
dialogue in a mixed-initiative console session environment. The basic approach taken has been

to model dialogue as a process. Knowledge of how to carry out a dialogue is represented

ok b S e te R B s e e ke e e

explicitly in the system, primarily in the form of Mu called methods. Methods are written
in. OWL, a language for representing knowledge; their function is to provide a dxhﬁﬂv;
representation for procedural knowledge. Methods are used to represent both linguistic and
non-linguistic activities. In addition, they are used to represent both knowledge about
particular tasks (such as writing a program for someone else) and more general knowledge
about dialogue (for example, the sequences of activity that correspond to asking and answering
a question, asking for and giving a description, and so forth). The similar treatment of task
knowledge and general dialogue knowledge stems from the conviction that although the two
areas differ in some respects, activities from both areas contribute directly to dialogue
production.

The introduction of a set of methods is not, however, enough. We also need mechanisms
that enable us to use methods to model particuler dialogues. Theremtwosidutothu
problem: a system must be able to relate a user input to the ongoing dialogue, and it must be
able to generate an output. This paper will focus on the former requirement, which amounts to
language undersianding. We do not underestimate the difficulty of language generation, but it
appears to be easier to achieve a minimal level of usefulness in a generator than in an
undersundlng» module. ‘

The ideas presented here have been implemented in a prototype system called Susie

Software} The system currently performs the internal manipulations necessary to support the

l. Susie Software is embedded in the OWL-I system, which runs on a PDP-I0 under ITS. OWL
is being developed at M.LT’s Laboratory for Computer Science by the Knowledge Based
Systems Group under the direction of Wiliam A. Martin. Development of the Susie Software
dialogue facility began in 1974.

e e A T RS B R e e s g

sample dialogue given in Figure 1. There and in other examples of dialogue, asterisks indicate
lines typed by the user. Note that the prototype system currently inputs and outputs OWL
expressions rather than English ones; the boundaries of the implementation will be discussed
further in the course of the presentation.

In terms of current artificial inteiligence research, OWL methods correspond roughly to
Minsky’s frames (1] or Schank and Abelson's scripts (14] akhough the highly centralized
control structure of the OWL Interpreter differentiates it from many existing implementations.
The dialogue environment that we have chasen is similar to that described by Deutsch [5] for
the workstation domain and also that described by }S. Brown etal (2) for the SOPHIE system,
but our work differs from both of these in the incorporation of an explicit model of dialogue
activities. Finally, the methods that ‘are used to model dialogue resemble the social action
paradigms of Bruce [3] as well as the representations of dialogue games described by Levin
and Moore (8] Tbomtmpomntenhmmmchodlon the one hand and social
action paradigms and dhmgmmm‘mumcdmmm between standard path
method steps and recovery path steps. This distinction, which is strongly motivated by access
considerations, will be discussed in more detail below.

In the sections that follow, we look first at the ways that the Susie Software environment
was constrained in an effort to limit the problem. Section $ then discusses the use of methods
to model dialogue activities, and Section ¢ gives a brief introduction to the OWL-I system.
Focussing on recognition, Section 5 summarizes the approach taken, and sections 6 through 9
discuss recognition for individual utterance typu. Finally, Section 10 considers the prototype
system in the light of the requirements of a practical working environment.. An introdhctlon to

OWL-I notation can be found in the appendix.

1

10

Hello, I am Susie. What is your name?
+ Bill
* I need a program to manipulate blocks written.

I can help you write a prognm which builds a scene using the blocks from another scene.
+ That is what [want.

OK. Ineadadmlpﬂonofthetnmalmdﬂmlm
. Thefimlmmutm&bloch:m.&mdns

OK.
s What else do you want to know about the final scene?

What are the positions of Bl, B2, and BS with respect to each other?
» Bl is on top of B2 and BS is on top of BL

OK.
» Initially, all of them are on the table.

OK.
+ Can you write the prognm from that?

I have enough information to start writing the program. I can't determine
all of the information which I will need until I write the program.
¢ OK.

Do you want me to decide implementation issues such as what hand to grasp a block with?
¢ Yes

I have finished the program. Do you want me to describe it?
s Yes.

Using my left hand, first I put Bl on top of B2, and then I put

B3 on top of Bl
+ Good-bye.

Figure I. A sample dialogue with Susie Software.

2. Keeping Dialogue Manageable

In the Susie Software effort, we have explored ways to achieve a level of dialogue
flexibility without sacrificing processing reliability and while keeping response time within
reasonable bounds. Unfortunately, the experience in computational linguistics has been that
even relatively small amounts of flexibility in a natural language system can lead to grave
combinatorial difficulties. To keep the dialogue problem manageable, Susie’s environment was
carefully constrained along the following dimensions: |

(1) communication channel

(2) choice of application area

(3) number of tasks performed

(4) complexity of semantic domain
Along the first of these dimensions, communication channel, the limitation to typed input and
output has already been mentioned. We are also assuming that input is free of spelling errors
and gross grammatical inaccuracies (although full sentences are not required). Finally, there is
a slight control bias on the side of the system, since the user may type only when an asterisk is
output by Susie and then only a single sentence or sentence fragment at a time.

The second constraint is the chot& of application area. Here, the decision to construct a
task-oriented environment (in the sense used by Deutsch [5]) as opposed to, say, a system to
model casual dialogue already acts as a constraint. For example, a task environment defines
the aspects of user ’lnput that are important, 3o that the problem of deciding why a piece of
information was input is greatly reduced. Beyond this, the structure of the primary task area

chosen for Susie Software — programming — allows us to exploit strong expectations once a

specific task is underway. At any given point in the course of producing a program there are
only a small number of basic ways that the user and the system may interact (aithough the
content of these interactions, of course, will vary considerably).

Third on the list of constraints is the number of different tasks performed. Susie’s
projected abilities are limited to writing programs and answering user questions abﬁut system
capabilities and previous activities. This means that the range of user requests for new tasks is
relatively small. The limitation on tasks turns out to be particularly helpful in a mixed-
initiative environment where any user utterance may theoretically be the start of a new task.

The fourth and final constraint is on the scope of the semantic domain. We have been
working with the world of 2-dimensional toy blocks, a common starting point due to the
simplicity of the domain and its clearly defined semantics. We envision a system built along the
principles found in Susie Software to be useful in areas such as business payroll processing,
inventory control, etc. These domains are not trivial ones, but they also are not as complex as
some others.

Besides constraining the environment in the four ways discussed, we believe it is
necessary to embed a significant amounf of knowledge in a system.. This knowledge is of two
basic types: knowledge about the semantic domain and knowledge about dialogue in general.
Taking the semantic domain first, we feel that it is essential that the domain be spanned in
order for a system of this type to be practical. By 'sp;nned' we do not necessarily mean that
every possible user question can be answered or every possible program prbduced. Instead, we
mean that the system should have a good enough model of itself so that questions or requests

that cannot be handled can be given appropriate responses. A sl:ﬁple “I don't understand”

10

would not be considered adequate in most cases. Note that at present no attempt is made to
span the semantics of the blocks world, and correspondingly the implementation lacks
robustness; the domain-specific kpowlddgc that is in the system, however, seems to be a
representative sample.

In addition to knowledge about the semantic domain, we mentioned knowledge about
dialogue. We believe that a flexible, reliable, and efficient dialogue processing system needs a
sound model of dialogue structure. In a sense, this model is the grammar of dialogue, although
the model that will be discussed here is a computational one, not easily reduced to a set of rules.
(No such attempt has, in fact, been made) The term structure is used for what others might
il the syntax of dialogue. Many “structural® phenomena are semantic in flavor (akhough
they do not necessarily vary according to the specific semantic domain), and the use of the term
syntax might be misleading. For .eumple, the fact that questions get answers is easily enough
called “dialogue syntactic” but the fact that answers may have associated stipulations ("Yes,
if..") or qualifications ("Yes, but.") begins to stretch the connotations of the term syntactic. The
model of dialogue to be discussed will therefore be referred to as a structural one.

The Susie Software environment, then, has two properties that we consider crucial for a
first pass at flexible, pm:thl. man-machine dialogue. First, it is carefully constrained, and,
second, the system contains a model of the structural aspects of dialogue. It is this structural

model that will be the topic of the rest of this paper.

11

3. Conversational Exchanges

3.1. What They are and How to Model Them

Looking at the sample dialogue, we can pick out groups of lines that appear to belong
together. A simple example of such a unit would be a question plus its answer:

What is ‘your name?
s Bill

This is an example of what we will call a conversational exchange. At the more complex end of
the conversational exchange scale (;lthough outside the scope of the Susie system), would be an
exchange like formal debate. A debate progfam might consist of several subsections and many
' steps. The conversauonal.exchmge is a structure at the interpersonal level of dialogue. This
places it at a higher level th;\n the speech act (Searle {i6]), which does exist in a conversational
environment but which is camed out by a single lgent. For example, promising and accepting
the promise would be two speech acts, but they would form a single conversational exchange.
The notion of a conversational exchange is similar in spirit to the ideas of sequence and
ad jaceﬁcy pair formulated by Schegloff and Sacks [15] In both cases the concern is to establish
a structural unit with associated expectations, so that it is possible, among other things, to
account for a situation where some conversational event does not occur.

This is not to say, of course, that dialogues can only proceed by relentlessly completing
conversational exchangés. Many dialogues are much less orderly, their structure influenced by a
set of competing goals. In Carbonell (4] we see an example of a conversational exchange (a

question-answer sequence) that remains temporarily unoompleted:'

12

Approx what is the area of Argentina?

sTell me something about Perus

Peru is a country.

It is located in South Ameria.

The capital of Peru is Lima.

Now answer the question you didn't answer before.

¢The area of Argentina is 1,100,000 square miles.s

Thus, while the notion of a conversational exchange is an important one, it should not be
rigidly applied in modelling a particular dialogue. We. will see that the Susie Software system
uses the expectations set up by a conversational exchange in attempting to understand a user
input, but these expectations m‘und ina ve:;y flexible way.

Conversational exchanges are modelled using OWL-I methods. Since the question-answer
exchange is a relatively simple exﬂt'nph. we will pursue it further. An English transiation of
the OWL-I method for the question-answer exchange is given in Figure 2. The actual method,
along with an introduction to OWL-I notation, can be found in the appendix. Methods have
three main parts: a header, argument spcdfkmom. and proeedun steps. The header is the
method’s unique name, the argument specifications, organized into semantic cases, are used for
typechecktngofmpuummcmhwwwwymefomdwtpumw procedure steps,
along with their associated input case assigniments, form the body of the method, The steps
come in two varieties, standard path and recovery path. This distinction will be discussed
further later on, but, bukauy. standard paths represent the ways that an exchange can "go
right,” while recovery pathi give some of the possible measures to be taken when an exchange

gets "off the track.”

13

The structure of OWL-I methods is reflected in Figure 2. Here, "ask-and-answer”
corresponds to the header of the actual method. ASK-AND-ANSWER, which is an OWL-I
concept. (Concepts, the basic unit of OWL-I, will be discussed in Section 1; here and
throughout this paper OWL-I concepts will appear in capital letters) The argument
specifications for this example consist of input cases only; output case specifications describing
the resukts of methods do occur frequently, but none were used for ASK-AND-ANSWER.
Looking at the ob ject case specification ln.l-'lgdro 2, we see that ASK-AND-ANSWER handles
all questions besides how- and why-quutkni These other two Qamuu of question are
handled by ASK-ANDJ)MRIBE and ASK-AND-EXPLAIN, two methods that will be
discussed further later on in this section. Two other semantic cases used for ask-and-answer

are the agent and co-agent, corresponding to the participants in the exchange. By convention,
the agent of an entire dialogue method is the agent of the first step, so that we can identify the

agent of the method with the participant who starts it of f.

The standard path steps for the question-answer exchange are steps 1 though 4 in Figure
2. The ask-and-answer method also has two recovery paths, alithough more could be written
easily enough. The first handles the situation where an answer can only be given if there is an
associated stipulation, eg., if line i9 of the sample dialogue were, “Yes if / can ask you about
them later?” The second recovery path handles the case where no answer can be found. Both
of these failures occur in the process of flridlng the answer, step 3, but the recovery path is
associated with the ask-and-answer method. A different recovery path would be used if the

find-answer routine were called in another context, eg., reasoning.

An important point about the ask-and-answer example is that it contains the parts played

14

ask-and-answer

ob ject: the question to be asked

(not a how- or why- question)
agent: a person or computer system
co-agent: a person or computer system

method:

L. The agent asks the question.

2. The co-agent now knows what the question is.

8. The co-agent finds the answer.

4. The co-agent gives the answer and the agent gives an
(optional) acknowledgement.

recovery path I if a stipulation is found along with the answer
RLI The co-agent states the stipulation.
R12 The agent agrees to it.

recovery path 2: if the answer is unknown
R21 The co-agent says that he doesn’t know the answer.

Figure 2. An English representation of a method for asking a question and getting
an answer.

15

by both speakers and is intended for use by the Interpreter whether it is Susie or the user who
is the one to initiate the exchange by asking the question. we will call this latter property
speaker independence. If ask-and-answer and the other dialogue methods are speaker
independent, then it is up to the Interpreter to determine whether a particular utterance is to be
generated or understood. There are, in fact, three possible modes of interpretation for a step

in a dialogue method:

() Carry out the step (eg., ask a question).

(2) Recognize that a step has happened (eg., that an answer to ywr question has been
given). |

(3) Assume that a stepy has happened (eg., if your conversational partner gave the

answer, then he had to perform the mental procui of finding the answer first)

Given the input case settings in a call, the Interpreter uses a set of simple rules to determine the
mode of a step. Modelling the actions of both participants in a single method simplifies
programming, reduces the total number of methods to be written and maintained, and increases
the usefulness of methods, since they @y alo be used in‘a pure recognition situation, where
the hearer is not a participant in the dialogue.

One final general point about the dialogue methods is their abbreviated form. For any

given speech act, only production s represented explicitly, and the activities of the other

2. A difference of terminology here. Throughout this paper, the words interpret and
interpretation will be used to indicate actions of the OWL-I Interpreter. The meaning of
interpret found in natural language interpretation (as opposed to natural language generation)
will be conveyed by recognixe and its variants.

16

partner are left implicit. Thus, although the Susie programs are speaker independent in the
technical sense defined, they are not without a bias: it does not matter who is specified as the
agent of a communication step, but, wh@v« is, the "story” is told from his point of view3
“Listening™ steps are left implicit not because they are unimportant, but because the form and
timing are predictable. Where a joint model of communication was necessary (eg., when
misunderstandings occur) the system would be expected to expand the abbreviated model

expressed in the dialogue methods. -

3.2. Core Methods

In addition to the ask-and-answer method, the Susie Software system currently contains
thirty other methods needed either to run the sample dialogue directly or to provide a rich
enough environment to test the procedure saslection and matching routines. Recall that the
method representation - conventions do not require the OWL-I programmer to distinguish
between methods designed solely for dialogue, methods that use dialogue to ga_thef information
in order to get other work done, md‘ non-dialogue methods such as block manipulation
routines. It is useful, however, to duun;uuh domain dependent methods that will necessarily
grow as the system is extended from the set of domain independent methods that can be
programmed once and for all, requiring only minor modifications thereafter. This domain
independent group of methods which consists of dual-participant methods built around speech

acts, will be called core dialogue methods.

8. In describing the "active” bias of the method representation style, we do not mean to imply
that the rest of the system shares this bias. In fact, it does not.

17

Since core dialogue methods are organized around speech acts, let us start with the
treatment of speech acts in the Susie Software system. The current implementation
distinguishes three categories which are represented by their corresponding OWL-I concepts as
COMMAND-REQUEST, ASK, and TELL. COMMAND-REQUEST encompasses the full
range of requests for a nonverbal activity, ranging over the different authority relationships
from ordering to pleading. Besides nonverbal activities, it also handles requests for speech acts
for which the requester is not to be the destination (i.g., *Tell Harry what you told me.”). ASK
conveys a request for information, and TELL is the act that conveys information. This is a
very simple taxonomy, and as a system became more complex we would wanlt to see it enriched.
Searle, in [17], sugjests five categories that would be useful as a top level of speech act
organization for implementation: representatives (to commit the speaker to the truth of a
proposition), directives (to get someone to do something, either verbal or nonverbal),
commissives (to commit the speaker to some future course of action), expressives (eg., thank,
apologize, welcome), and declaratives (institutionalized speech acts such as christening a ship or
declaring war). These categories are paefuL but it is the next, more specialized, level in the
taxonomy that is of most interest to us here, since this is the level that would'begin to have
corresponding core dhlogue methods. Let us consider each of Searle’s classes in turn, looking
at the class members important to the Susie Software imi:hmnuﬂon and their corresponding
core methods.

In a task-oriented system, the representative of mast interest is TELL, since this is the
speech act that makes statements. The ﬁm’upondlng core method is STATE-AND-

ACKNOWLEDGE, which is a TELL activity followed by an optional acknowledgement on

18

the part of the hearer. Moving on to directives, three varieties are of interest: SUGGEST,
COMMAND-REQUEST, and ASK. SUGGEST conveys a request that the hearer entertain
an idea (and so‘ this type of request must also be ruled out of the range of COMMAND-
REQUEST). SUGGEST and its corresponding core method SUGGEST-AND-ACCEPT are
not used by the implementation at this time.

Two' important core methods associated with COMMAND-REQUEST are
COMMAND-AND-RESPOND and ASK-FOR-AND-HELP. Each starts with a
COMMAND-REQUEST for an activity within the range of this speech act. The difference
between the methods is that in COMMAND-AND-RESPOND the fequuter does not expect to
do any of the task, while in ASK-FOR-AND-HELP the task is divided up between the
requester (agent) and the hearer (co-agent). Thus, ASK-FOR-AND-HELP has an explicit
substep for dividing up the task ippmpruuly.

The third directive, ASK, has three usocmed core methods, ASK-AND-ANSWER,
ASK-AND-DESCRIBE, and ASK-AND-EXPLAIN. As mentioned above, ASK-AND-
ANSWER handles most what-, where-, whether-, and when-questions. Why-questions are
handled by ASK-AND-EXPLAIN, and how-questions are split between ASK-AND-
DESCRIBE and ASK-AND-EXPLAIN depending on the type of information that seems
appropriate. ‘Of course ASK-AND-DESCRIBE and ASK-AND-EXPLAIN can also be
triggered by a direct request for a description or explanation, respectively. The motivation for
distinguishing ASK-AND-DESCRIBE and ASK-AND-EXPLAIN fr@ ASK-AND-ANSWER
is that the first two will tend to be involved with longer answers that require more selection

and organization of the information. ASK-AND-DESCRIBE and ASK-AND-EXPLAIN are

- - PR A i e L R Ll

19

distinguished from each other by the aspects of the topic that are considered relevant; for
ASK-AND-EXPLAIN, the emphuis is .on causal relationships.

This accounts for the core methods used in the current implementation, aithough it is
easy enough to write additional ones, such as PROMISE-AND-ACCEPT to correspond to the
commissive PROMISE. In addition, we would probably want to add separate concepts and
core methods for expressives such as GREET and GREET-AND-RESPOND, TAKE-LEAVE
and TAKE-LEAVE-AND-RESPOND, APOLOGIZE-FOR and APOLOGIZE-AND\-
RESPOND, and THANK-FOR and THANK-FOR-AND-ACKNOWLEDGE. All of these
speech acts are used in the implementation, although they are currently handled by TELL, with
any response also conveyed using a’ TELL. Searle’s fifth class, declaratives, seems to be less
relevant for a console session environment.

The core methods described constitute a good working set for the Susie Software
environment. The reader should keep in mind, however, that core methods are only part of
the total set of dialogue methods. Later on in this section, core methods and other methods will

be combined to analyze the sample dialogue.

3.3. Basic Utterance Types

In analyzing dialogues, it is useful to distinguish four basic types of utterance. Several of

) L]

these have been mentioned previously, but it is time to give them a more formal introduction.
Viewed in terms of methods, the first two categories of utterance correspond to types of rpethod

steps, and the third category contains deviations from the normally expected path or paths,

20

with the deviations, again, having corresponding method steps. The fourth categpry contains
ﬁtteunces that specify how other utterances fit into the ongoing dialogue.

In a task environment the tasks must begin in some way, and we will call the class of
utterances that may start off a task initiators. Reﬁll that in the Susie Software environment
there are two types of tasks, program writing and question answering. (Each of these may of
course be compondof subtasks.) In this environment, ;hen. initiators are either requests for a
program or for information. Not all conversational exchanges are started off by initiators. An
utterance corresponding to the first step in STATE-AND-ACKNOWLEDGE, for example,
will be called a lead-in; it is not an initiator, however, sinoe it would not st!art off one of Susie’s
two top level activities. Note that initiator and lead-in utterances are not necessarily prgduced
by the first steps of methods; instead, they are produced by the first speech act steps. A mental
process step, for example, might be the first step in a method but would not produce any
verbal output.

The next utterance type is the standard path summorr step: an utterance may correspond
to a step in a task that is already underway. Examples would be the answer to a question or
the acknowledgemeni of a statement. Standard paths are the normally expected sequences of
events for an activity. When a description of an activltyAis given, it is the standard path steps
that are included. If deviations from the standard path(s) are described at all, it is only the
most important ones that are given. This indicates that the standard paths of an activity
embody the minimum of necessary information about it. Further justification of the notion of
standard path is found in [1}

A third basic utterance type is recovery discussion. The standard paths of a dialogue

21

method are intended to specify the relatively small number of ways that an exchange can be
concluded successfully. This is fine as long as the dialogue goes as intended and no
expectations are violated. In practice this will probably not be long, and recovery discussion
will result. Let us look at an example from the sample dialogue:
6 O.K. Ineed a description of the initial and final scenes.
¢ The final scene contains $ blocks: Bl, B2, and B3.
OK.
¢+ What else do you want to know about the final scene?
10 What are the positions of B, B2, and BS with respect to each other?
+ Bl is on top of B2 and B3 is on top of BL

OK.
¢ Initially, all of thern are on the table.

In line 6 Susie asks for a description and in line 7 the user starts to give it. This is represented
by the method ASK-AND-DESCRIBE. At line 9 the user indicates that his model of what
Susie wants to knbw is insufficient. When this happens, a recovery path is entered to
accomplish the same goil by assuming less knowledge on the pm of the user. This is reflected
in line 10, where Susie asks a question, thereby communicating what it is she wants to know.
By line 12, the difficulty has been cleared up, and the dialogue is back on the standard path of
the ask-and-describe exchange.

Among the failure conditions that will generate discussion, we have concentrated on lack
of the information necessary to make a decision, since this is the case that comes up in the
Susie dialogue. Other recovery discussion may come up as a result of contradictions (in a sense,
the overabundance of information) and misunderstandings. Of the structures needed to model

recovery discussion, one, the recovery path, has already been introduced. Recovery paths are a

22

very local way to model recovery discussion, and they are not expected to be useful for all cases
where expectations are violated. A more generil mechanism is also necessary, and for this we
“look to autonomous OWL-I methods for handling particular fallures. Such autonomous
methods are part of the general OWL-I failure mechanism. Note that the sample dialogue does
not contain any lines that have been modelled with the general failure mechanism, so that this
possibility will not be considered in detail in tm; paper.

Turning from recovery discussion, the fourth basic utterance type is metadiscussion.
Utterances classified as metadiscussion deal with the conversational situation itself. These
utterances are used to change the flow of activity in a dialogue or clarify the current flow of
activity. Based on the dialogues we have looked at, it appears that true metadiscussion
involves a relatively narrow range of utterances. Many utterances that one wouid initially class
as metadiscussion because they deal with the conditions of conversation turn out, on closer
examination, to be better classified u recovery discussion. For the Susie Software environment,
we have found only three categories of utterances that are purely metadiscussion. The user can
either suspend an activity ("Let’s stop this for now.”), reopen a suspended or closed one ("I want
to go back to the first program you wrote.”), or specify what he or she is going to do next
('wa I'll tell you about the final scene.”). Note that the sample dialogue does not contain any
examples of metadiscussion as we have defined it, although metadiscussion has been handled
in the design of the recognition process.

This finishes the discussion of the four basic utterance types: initiator, standard path
successor step, recovery discussion, and metadiscussion. The distinction will be important to the
system when it comes time to develop structural expectations about the form of a user input,

and this distinction will form the basis for the approach to matching for recognition.

23
3.4. Analyzing the Sample Dialogue

Given the dialogue rﬁethods and the four basic utterance types, we can describe the
conversational exchange structure of the sample dialogue from Figure 1. The sample dialogue
is first of all a console session, so we have the{ method ((PARTICIPATE IN) CONSOLE-
SESSION). - (The significance of parentheses in OWL-I concepts is explained in the appendix.)
The first steps of this procedure handle the greeting and introductions (lines 1-2) and the last
step handles the closing (line 23). In the middle of this method is the call to carry out one of
Susie’s two top level activities, writing a program or answering a quéction, a step that may be
repeated an indefinite number of times. The sample dialogue shows one of the top level
activities: lines 3-22 contain a program writing exchange.

We turn now to the program writing exchange, with line 3 as the initiator. This line
triggers COMMAND-AND-RESPOND. In lines 4-5 Susie finds that her capabilities are not
as broad as the user's general request, and an attempt is made to get a more specific idea of
what the user wants. These lines are treated as a temporary departufe from the COMMAND-
AND-RESPOND method onto a recovery path.

Once the user’s request is clarified, the system enters the (WRITE PROGRAM) method.
In this procedure, conversational steps are intermtxed‘ with non-conversational ones, i.e. the
actual program-writing calls. Susie’s first step in writing a program is a call to (GET
DESCRIPTION), where there are currently two alternatives. If the user probably has no idea
of the properties of the input and output that are of interest, he or she ;an be guided through

the description by a series of ASK-AND-ANSWERs for which Susie generates questions. If the

. 24

user is assumed to know the relevant aspects, as is the case in the sample dialogue, then a .
subcall is made to ASK-AND-DESCRIBE. In the sample, the réquest and the subsequent
description constitute the exchanges from lines 6 to 17. In the course of the description 'the user
finds he does not know exactly what Susie wants to know, and a recovery path is entered, as
discussed previously. This is done instead of a more general reselection of strategies, which is
a more difficult process to contro]. When the dlffkulty is past, the dialogue returns to a
normal descriptioh-glving process, which is brought to a close (iﬁplidtly) by the user question
and its answer, lines 15-17. | |

With input and output conditions‘ described, Susie can now go on to write the program.
More information is needed, however, so she returns t§ the user with a questioq—answer
exchange haﬁdled by ASK-AND-ANSWER, lines 18-19. When the program is ﬁnishei'l, Susie
notifies the user and then does an ASK-AND-ANSWER to find out whether a dcscrlptipn of
the program is wanted (lines 20-21). Since in this case the user does want a description, that
becomes the final step of the (WRITE iPROGRAM), method (line 22). At the same time, this
utterance completes the open COMMAND—AND-RESPOND activity and the activity for
achieving a top level task.

We have seen how the idea of a conversational exchange and the corresponding OWL
methods can be used to analyze the structure of a dialogue. This is only part of the story,
however, since mechanisms are needed to choose the part&l.uhr methods that model each line.

These mechanisms will be introduced in the sections that follow.

25

4. An Introduction to the OWL System

The Susie Software system is embedded in OWL-I. A general understanding of the aims
and operation of the OWL-I system is necessary for an understanding of the recognition
mechanisms that will be described, so a brief introduction will be given here. OWL-I became
operational in September 1975; since that time, a new version of the system, OWL-II has been
under development. The OWL system is continually evolving toward two goals: first, to provide
an environment for the representation and use of expert knowledge and, second, to do limited-
domain processing of natural language. It is our belief that the paths to meet these two goals
are not completely disjoint and that some of the organizational principles and structures used to
handle English will carry over to the structuring and use of expert knowledge as well. This
sections surveys the major modules of the OWL-I system; see the appendix for an explanation
of OWL-I notation.

Figufe 3 shows the ma jor modules of the OWL-I syuem.* The Linguistic Memory System
(LMS) is described in [7] and (18], and is used to build and maintain the knowledge base. For
our purposes her?. it is sufficient to say that OWL representations are made up of data
structures called concepts, using the opmnom of specialization and modification. Specialization
is the subcategorization operation used for hierarchical ordering of concepts. Modification
allows properties, including complex structures such as procedures, to be associated with

concepts. Both the immediate specializations (called brancAes) of a concept and its properties

4. LMS was implemented by Lowell Hawkinson, and implementations of the Interpreter’s
Carry-out, Evaluate, and Whether modules were done by Alexander Sunguroff, William Long,
and William Swartout respectively. The generator was done by William Swartout, and the
parser is currently being developed by William Martin and Peter Szolvits. Other modules were
implemented by the author.

26

ENGLISH PARSER | | 'ENGLISH GENERATOR
| I - T
REFERENCE MATCHER | - PRE-GENERATOR
OWL INTERPRETER
|carrv-our | | recocnize ASSUME
EVALUATE WHE THER
_ .
]
:
LINGUISTIC | concepT
MEMORY - TREE
SYSTEM (LMS)

Figure 3. The major components of the OWL-I system.

27

are found on its reference list.

The backbone of the knowledge base is the concept tree. The OWL-I concept tree, which
was constructed by William Martin, contains concepts for the words of Basic English (Ogden
(I12]) plus other concepts of general :ppucabm:y.' among them a set of semantic cases. The
concept tree is used by every module in the system, although much of the original
organizational impetus was the attempt to reflect regularities perceived in English usage. Each
expert system embedded in OWL would bring its own set of concepts to add as specializations of
the already-existing tree, and this augmented tree would then be used in both natural language
processing and reasoning operations. The concept tm is one (but not the only) place where the
analysis of natural .hn‘uqc organization is applied to the problem of organizing expert
knowledge. Individual concepts will be explined as they come up in the course of the
discussion. |

Note that the OWL system has opted for a tree rather than a more general hierarchy.
This reflects a simplification for purposes of computational efficiency, but it does not constitute
a restriction on computational power. While each concept is assumed to have only one primary
superclass, other class memberships can be entered on the concept’s reference list. For example,
the concept representing an individual person would be a specialization of the concept
HUMAN (although not necessarily a branch), but it might have on its reference list the various
roles and properties of the individual, eg., ADULT, LISP-PROGRAMMER, YEGETARIAN,
(AGENT (MOVE BLOCK-A)), etc.

This brings us to the OWL-I Interpreter. The Interpreter executes methods, for

example the OWL-I representation of the ask-and-answer dialogue method discussed in Section

28

31. It is the job of the Interpreter module Carry-out to go through the steps of a method, first
evaluating them with respect to the current environment. It then matches these evaluated calls
against the available methods to find appropriate subprocedures. Restrictions on what can fill
each input case associated with a method are used in this matching process. The fact that
method selection is a matching process means that it is sensitive to additions to the method
library, even though no change is made to the call. The use of the evaluated call in matching
allows the choice of method to be routinely dependenf on the current operating environment,
which introduces considenblevflexibﬂity. It also means that one cannot predict @ priori which
method will be selected for a call. This fact has significant implications for recognition, as we
will see in Section 7.1 Note also that in the OWL-1 system no attempt is made to simulate
distributed control, eg. in the use of demons. Execution of methods is highly centralized,
guided by a single control loop in the Interpreter.

A record of the execution process is kept in the event tree, which is also used by the
Interpreter in making control decisions. The events on the tree correspond to the substeps of
the methods executed. Past events are not removed from the tree, so that they are available for
inspection, question answering, resumption (in the case of uncompleted events), etc. It is
important not to confuse the event tree with the concept tree. The former is built by the
Interpreter as a record of methods executed in the course of a console session, while the latter is
a part of the knowledge base, embodying the first cut at organizing all of the concepts known
to the system, not only the events. In this regard, the event tree can be thought of as
intermediate term memory.\'used to record the current problem solving session and organized
chronologically. The concept tree can be thought of as long term memory and is not organized

chronologically.

29

Several Interpreter modules shown in Figure 3 come into play in the course of carrying
out a method. The module Evaluate takes OWL-I forms and returns instantiations with respect
to some environment, for example when a call is evaluated before the search for a method to
carry it out. The module Whether takes predicates and tells whether or not they hold in the
current operating environment. To do this, it uses a combination of built-in strategies and
user-supplied procedures.

Two other Interpreter modules, Recognize and Assume, were added specifically to handle
dialogue. Recognize develops and maintains expectations, using these to fit user inputs into the
ongoing dialogue. This recognition process will be discussed in detail in the sections that
follow. The Assume module handfes method steps that are carried out by the user but which
have no corresponding input to the console, eg., reasoning steps. There are a number of
complex and interesting issues that surround assumptions about the knowledge and mental
processes of others, especially those issues surrounding level of detail. The approach taken in
the system module Assume is that routine assumption mode processing should be minimal; if,
however, failures occur, it may then be necessary to go back and make assumptions in more
detail. For example, in order to point out an error in reasoning it might be necessary to have
fairly detailed assumptions about the reasoning process involved. The implementation reflects
‘the routine part of this approach, but right now detailed assumptions are implemented in only
a very limited way. In routine situations, the Interpreter notes an assumption mode cali on the
event tree by putting it on the subevent list of the event of which it is a subcall, without
making a separate event or doing any method selection. This gives the Interpreter an

unbroken record of the paths taken through the methods that have been executed. If later on

30

it becomes necessary to expand out an assumption, then the call can be used and the expansion
can be done, primarily using the procedures in Carry-out. |

Two other major modules shown in Figure 3 are the parser and the generator. Since the
dialogue routines are not currently interfaced to these modules, they will not be discussed in
detail in this paper. The parser and generator do, however, bring u’p an important distinction
between interpreter level and :urfau :mmu OWL-I representations. As the name implies,
interpreter level representation is used by the Interpreter and is the stuff of which methods are
made. Surface semantic representation is output by the barser and is also input by the
generator. The major difference between ;he two is that interpreter level representation has
undergone more canonicalization than its surface semantic counterpart. In general, where a
surface semantic representation will look very much like its surface English counterpart, an
interpreter level version of the same utterance will have referents substituted for referring
expressions and will have undergone more lexical standardization.

This distinction means that the outpﬁt of the parser and the input to the generator are
not at the same level of representation as that used by the Interpreter. Two intermediate
modules are necessary to provide the transiation between them: the reference matcher and the
pre-generator. The reference matcher takes the surface semantic representation output by the
parser and looks for corresponding‘ interpreter level referents, both substantives and events.
The pre-generator goes in the other direction, taking interpreter level concepts _nnd finding
descriptions for them and ways to express them so that the user will be able to identify the
sense intended. A reference matcher is cuﬁently implemented, but a pre-generator is not; the

implementation, then, currently inputs a surface semantic-type representation and outputs

31

interpreter level representation. We have been careful to include information necessary for
generation at the interpreter level, and the input representation is close to the output of the
prototype parser, so that we would not anticipate an actual English interface to cause ma jor
changes to the current design.

This accounts for the major OWL-I modules, and we are now ready to consider

recognition mode.

32

5. An Outline of Recognition Strategy

Given an English language input, Susie Software must relate it to the ongoing dialogue;
that is, Susie must find and instantiate an appropriate interpreter level representation, since this
level of representation is the one used to model the structure of dialogue. Within our
framework, then, the transition from English to interpreter level OWL-I constitutes the
recognition process. In this section we will outline the strategy used for recognition, starting
with a closer examination of the problem.

The basic problem for recognition is the overabundance of alternatives. In the Susie
Software system recognition is divided into three subprocesses: parsing, reference matching, and
expectation management. The parser may produce more than one surface semantic
representation for an input, and the results of a parse may contain referring expressions that
match more than one referent. In addition, there are several degrees of flexibility that enrich
the set of possible structural expectations. The mixed-initiative environment moves Susie
Software in the direction of normal conversation, since, if either participant may change the
flow of control, the other participant will have less than complete knowledge about what will
happen at any given point. In addition, activities in the Susie environment are not rigidly
ordered and disposed of. A new activity may be begun before the old one has been completed,
and an activity may be reopened after it has been assumed to be finished. Furthermore, the
kinds of exchanges that may occur make it harder to find the boundaries between activities.
Giving a description for example, is open-ended in a way that a muitiple choice answer would

not be. Finally, as we have seen, discussion may occur on more than one level. We not only

33

have utterances that relate to a task directly, but also utterince; that report failure conditions in
the ongoing task and metadiscussion, that is, utterances that explicit_ly alter or clarify the flow
of activity.

Given these degrees of freedom, it is clear that processing of an input must be caréfully
controlied. The parsing strategy developed by Szolovits and Martin [10] intentionally limits the
extent of processing. For example, the concepts in the surface semantic representations that are
output are chosen to minimize the number of decisions that must be made by the parser. In
particular, the parser does not ampt to make distinctions that are not needed to complete the
parse. This philosophy is similar to the approach taken by Marcus [9], but it goes beyond it in
the extent to which decisions are delayed.

To illustrate the decision-delaying Mn of the mrfa& semantic representation, we can
consider the different ways to say that one understands some lnformition. One informal way
is to say, "I get it." Now, "I get it" in isolation is ambiguous (eg. Q, "Do you know anyone who
gets this journal?® A. I get it"). A transformation within the parser would have to expand
GET into its alternatives, say RECEIVE and (GET IDEA), which is not in the spirit of a
decision-delaying surface representation. It thefefore seems best to use GET in the surface
semantic representation, then depend on interpreter level semantic structures to make further
distinctions.

In the reference matcher, too, care must be taken to kup‘ processing under control. Recall
that the reference matching process starts with the output of the parser which contains, among
other things, concepts corresponding to pronouns and definite descriptions. The reference

matching process relates the surface semantic representation to an interpreter level one,

34

resolving references along the way. The basic philosophy for reference matching has been to
exploit both the structure built up on the event tree and the structural expectations (especiaily
the current set of possible standard path successor steps). The implementation currently
matches referents present explicitly in the structural expectations, but it does not yet handle
referents found elsewhere in the dialogue or referents that are part of general knowledge,
independent of the dialogue. We would expect the event tree to be useful in structuring the
search for those referents not given explicitly in the expectations (see [5] for such an approach).
Whatever the case, for all types of reference matching the process would be driven by
structural expectations; whether particular referents are present explicitly or not, the Interpreter
will always be matching a user input against some structural expectation. Thus, while parsing
happens in an identifiably separate pass, reference resolution occurs as needed within the
general process of matching surface semantic reforuentations against interpreter level forms.

Having looked at the parsing and reference finding strategies, we can now outline the
way that structural expectations are managed by the system. Recall that distinctions among
basic utterance types were made in Section 33. Fbm special patterns that will be described and
from the dialogue methods, the system can derive a set of structural expectations at any given
point in the dialogue. The question is, what should the system do with these expectations?

The first issue for expectation matching is the choice between a try-all-possibilities and a
stop-on-success strategy. Our original strategy for handling the different recognition mode
alternatives was to try all possibilities, and then apply a decision procedure if more than one
match was found. Without parallel processing, this approach appears to be infeasible, and we

hypothesize that a stop-on-success scheme will be sufficient as long as the match attempts are

o

35

ordered carefully. The change in strategy is worth discussing, because it points up some
important aspects of the recognition procu;.

“First, in a try-all-possibilities environment, the burden is phced on disambiguation, while
in a stop-on-success environment it is placed on ordering. When trying all possibilitis. if
matching leaves ambiguities then there are two main sources of information: heuristics and the
conversational partner. The goal of a stop-on-success scheme, then, should be to incorporate
these information sources. If this can be done (at least a large part of the time), then the stop-
on-success scheme can perform as well u trying all possibilities and save time in the process.

Looking first at information from the conversational partner, for a disambiguation
process the standard ‘mechanism would be to ask for clarification. A stop-on-success scheme, on
the other hand, would depend on the partner’s ability to catch incorrect interpretations from
the responses given. For our constrained environment it appears that it will be possible to
frame responses in such a way that the user will know whether or not his intemionsv were
interpreted correctly. If a misinterpretation does occur, the user’s next utterance will be
something on the order of "That’s not what I meant.” A general failure method, or a small set
of them, could be used to handle this situation.

The second information source is heuristics, and we can give two examples here. The
first is a redundancy heuristic: a speaker should not (and therefore usgally will not) interrupt a
coﬁverntional exchange to initiate an mentially identical exchange. This redundancy heuristic
is very much like one for entities in a description: if there is no information to the contrary,
similar definite descriptions can usually be assumed to have identical referents. A second

heuristic can be called the “inertia” heuristic: all else being equal, a context will tend to persist.

oo o R AN sl T e

36

Now, in a try-all-possibilities scheme, h@uristics of this sort would be built into the
disambiguation routines. On the other hand, in a Mpﬁ-wm scheme the heuristics would
be reflected in the ordering rules chosen. For example, both heuristics given can be
incorporated into an ordeting scheme easily enough by requiring that standard and recovery
path expectations be checked before initiators. This insures that the right match will be found
first most of the time. |

Since ordering choices are crucial to a stop-on-success scheme, the last topic for this
section will be a motivation of the choices made in the system. The following list sums up the
ordering of recognition possibilities used in the current implementation if no failure discussion

is underway:

(1) Metadiscussion

(2) Standard path successor :teps
(3) Recovery path lead-ins

(4) Initiators

(5) General failure method lead-ins

Once a recovery path or general failure ‘lud-in has been processed (eitherl recognized or
generated) then the relevant successor steps become expectations and are checked second, in
place of standafd path successor steps.

Metadiscussion is checked first, since this class seems to be constrained enough that a
relatively small number of patterns need be matched. The alternatives are also generally well

marked, so that mismatches will tend to be detected rapidly. Next come standard path successor

37

steps and recovery lead-ins. These are the expectations that vary most as the dialogue
progresses. Given the two heuristics above, we want these two classes checked before initiators.
Since there are many more ways that things can go wrong than right, the standard path
successor steps are checked first. It may be desirable, however, to try interleaving recovery path
lead-ins with the standard path successors, so that a standard path successor would be checked
and then any recovery paths related to it before the next standard path successor was tried.

We are left with initiators and lead-ins to general récovery methods. The order given is
probably the desirable one, although general recovery methods were not udd for the sample
dialogue, so our experience is limited. It appears that general r?covery lead-ins will tend to be
difficult to detect, so it is reasonable to leave these for last. Note also that if no tasks are
currently underway then this ordering Mm initiator patterns to be tried right after
metadiscussion patterns, which is whaf we would want.

This winds up the discussion of ordering. Throughout, the basic recognition strategy
has been chosen to keep processing under control. The parser delays as many decisions as
possible, the reference matcher takes advantage of expectations developed from the dialogue
methods, and match attempts are carefully ordered. Another very important element of the
recognition strategy is the mixed matching scheme that has been devebped. This scheme is
based on tﬁe distinctions between the basic utterance types thit have been presented, and it is
the topic of the next sections.

A final note on the discussion that follows: I will " make the simplifying assumption that
only one surface representation has been produced for an input. Whgn more than one surface
representation is output by thc- parser, attempts would be made to match each of them against

the relevant structural expectations.

38

8.R nizi W‘ ew Task is Initiated

6.. The Problem

At any time after the initial greetings, the user is permitted to type an initiator, that is, to
start up a new top level task, either asking a question or requesting a program. The basic
problem for initiator ptoegsmg. therefore, is to recognize when one has occurred. To do this,
Susie takes the user's utterance and tries tolfo.rm a chain of event nodes connecting the top of
the-event tree (or, more precisely, an event corresponding to the method step that satisfies user
task requests) and the speech act event that corresponds to the user’s utterance. If such a path
can be built, then the user’s utterance is assyumed to be an initiator. (The most likely competing
possibilities will, however, aiready have belen‘tmd; see Section 5) This path-building process
occurs in an environment of incomplete kquledge, since in most cases the initiator will be the
only indication of gthe user's goals and since many surface forms of initiators are ambiguous.

For an eximple of initiator processing in recognition mode, assume that the only
currently open method is to have a console session and the parser gets the input "Can you pick
up the block?”. The task of the Interpreter would be to find a speech act step (in the current
implementation, ASK, TELL, or COMMAND-REQUEST) that could have produced this
utterance, as well as a chain of events thati connect the current environment — the participate-
in-console-session activity — with the speech act step chosen. Figure 4 gives a representation of
one such event chain. The purpose of filling in intermediate nodes on the event tree is to
allow prﬁcessing to continue normally after a recognition step. In the example in Figure 4, once

recognition is completed, then the next stepltn the ASK-AND-ANSWER method can be carried

40

(6) I want (need) a program to manipulate blocks written.

(7) I want (need) a program to manipulate blocks.

(8) I would like you to write a program to manipulate blocks for me.
(9) I would like a program to manipulate blocks written.

(10) I would like a program to manipulate blocks.

(1) T request that you give me a program to manipulate blocks.
(12) Give me a program to manipulate blocks.

(13) Would (will) you give me a program to manipulate blocks?
(14) Could (can) you give me a program to manipulate blocks?
(15) I want (need) you to give me a program to manipulate blocks.
(18) I would like you to give me a program to manipulate blocks.
(17) Write me a program, would (will) you?

(18) Write me a program, could (can) you?

(19) Give me a program, would (will) you?

(20) Give me a program, coukd (can) you?

This is not necessarily a complete list, but it does give an idea of the number of request forms
that might come up. These examples would have very different surface semantic
representations, but they all would match the same interpreter level COMMAND-REQUEST
step. Utterances (8) to (20) are generally called indirect speech acts, since the surface form does
not correspond directly with the intended speech act. Considering this list, it is clear that the
first problem for initiator recognition is the range of forms that an initiator may take.

The problem of relating utterances such as (1) to (20) to their intended speech acts has
received a fair amount of attention in the linguistics literature. One approach is that taken by
Gordon and Lakoff [6]. Concentrating primarily on requests, Gordon and Lakoff propose a set
of four sincerity conditions and then give a single powerful rule to account for the different
ways that a request can be framed. There is some question, however, whether this rule is too

powerful, admitting utterances that are not legitimate requests. Sadock [13] responds to Gordon

and Lakoff by criticizing the approaches that try to account for the variety of ways to frame a

41

speech act by using sincerity conditions and general rules. He distinguishes between the case
where an utterance has a speech act as its meaning and the case where the utterance means one
speech act but entails another. An example of th§ first case would be the utterance of “It’s cold
in here” to convey information, while an example of the second case would be the use of this
same sentence to convey a request for someone else to close a window.

With respect to the handling of the surface realizations of a speech act, the Susie
Software implementation bears more similarity to the ideas of Sadock than to those of Gordon
and Lakoff. Utterance forms corresponding to sentences (1) to (20), for example, are associated
with an interpreter level COMMAND-REQUEST representation (or, in the case of ambiguous
forms, a procedure which returns COMMAND-REQUEST as one of its values). The way that
this association s done is discussed in the next subsection; the association itself can be
considered to assign meaning for these forms. Entailed speech acts, on the other hand, would
require another level of association, probably between the two speech a& themselves, possibly
taking the surface form into account secondarily. Note that entailed speech acts are not now
handled by the implementation, although we do not forsee significant problems in adding
them.

Having outlined the problem of muliple surface forms, we can turn now to the second
problem for initiator recognition, ambiguity. The utterance "Can you pick up the block?” could
be either a question, as it was interpreted above, or a request for action. Many surface forms
can be ambiguous in this way. In fact, the use of related questions, commands, and statements
to signal a speech act all but guarantees ambiguity, since the signals can also be interpreted

literally. This ambiguity of forms ’hu social utility since speech acts can be attempted and, if

42

resistance is met, the speaker can fall back on a less adventurous’ alternative interpretation (a
question instead of a command, for example). This dimension is not, however, particularly
relevant in our environment, so that ambiguity is viewed here essentially as a problem.

To recognize an initiator, then, it is necessary to construct an appropriate event tree path.
The primary difficulties that confront the system tﬁ this effort are the existence of a variety of

indirect speech acts and the inherent ambiguity of particular forms.

6.2. Initiator Keys

In the Susie Software mvimMg context is not particularly useful in predicting the
nature of new tasks, so the initiator reéogmtton scheme is essentially bottom-up; that is, the
event corresponding to the user's utterance is determined first, then superior events are
deter;nined until the entire path has been accounted for. To facilitate this process, special
structures called Ae¢ys are used; the main purpou of keys is to provide patterns for matching
initiators and constructing the appropriate context. In the current implementation, keys are
represented using a special type of OWL-I concept called a relation. The important attribute of
relations is that they can have an associated valus, which is assigned using a left arrow. The
relations used for initiators are specializations of the concept INITIATOR-KEY; later on we
will see another kind of key used for metadiscussion.

Initiator keys come in two varieties: terminal and non-terminal. Terminal keys are used
to match a surface semantic representation (i.e. parser output) against the actual speech act step

in a dialogue method (eg., the "understand” event in Figure 4), while non-terminal keys are

43

used to fill in the intervening events between the speech act step and fhe console session event
on the event tree (eg., the get-answer and ask-and-answer events in Figure 4). Note that
although the Susie environment is restricted to two top level activities (program writing and
question answering), the patterns in the keys are more general than this; they match requests for
information of any sort and requests for any sort of activity with the user as beneficiary. So,
although the keys are special-purpose patterns, their usefulness is not restricted to the Susie
Software environment.
Terminal keys take the following form:

(<key type> <a subsurface level forms) <— <a method call>

The first two parts, enclosed in parentheses, are represented by a single OWL-I relation, with
the third part represented by another concept that becomes the value of that relation. The
relationship between the parts will be discussed in more detail below, but first we must clarify
what is meant by “subsurface level" A subsurface level form is, as the name implies, at a level
of representation intermediate between surface semantic .and interpreter level. Subsurface
representations have only been used in the special matching patterns and for records kept in
the recognition process. (They would also be used as input to the pre-generator, if this were
operational) There is not space here to go into the difference between subsurface level and the
other levels of representation in detail, but, basically, subsurface representations differ from
surface semantic level ones in that they may contain variables that may be bound as part of a
matching process. They differ from interpreter level forms in that they mirror the surface

form of an utterance rather than its underlying speech act. For example, I want to know the

44

color of Block-A" would match a subsurface form that is a specialization of the concept (SAY
DECLARATIVE), reflecting the declarative nature of the surface form, but the underlying
speech act would often be interrogative, a request for information. Thus, the interpreter level
form that matched this utterance would be a specialization of ASK. One identifying
characteristic of subsurface forms is the fact that they are represented as specializations of
SAY, while interpreter level forms of speech acts are currently represented as specializations of
TELL, ASK, and COMMAND-REQUEST.

Returning to the basic form of terminal keys, the system matches the output of the parser
against the keys’ subsurface level forms. If a match is found, then the value of the matching
key, the method call, is retrieved. This method call is either an inte}preter level representation
of the underlying speech act or a call to a special OWL-I disambiguation method. If there is no
ambiguity, then the key relation’s value can be used for the next stage of the match against
non-terminal keys, which will be discussed. If, on the other hand, a call to a disambiguation
method is found, then the procedure is executed to return a speech. act representation, which
can then be used for the next match stage. (More on disambiguation methods is given below.)
Note that the structure of keys shown here is the form produced by the programmer. When
the keys are loaded into the system, the LMS Reader adds them to the concept tree,
automatically creating a key subtree which can be used in matching. (See Hawkinson [7])

Once the event for the speech act has been found. non-terminal keys are used to fill in
the higher events on the path. The basic form for a non-terminal key is as follows:

(<key type> <a method call>)

<= <either: a call to the method that contains this step

on the initial path of a top level activity
or: a call to a disambiguation method>

45

Both the first method call and the value of a non-terminal key are interpreter level
representations. The system mfu with the result of the terminal key match (or the result of
processing the associated disambiguation method) and matches this against the method calls in
non-terminal key relittom. Just as for terminal keys, wheﬁ a match is found the value is
retrieved, and it can be used either to form a higher event on the event tree path or to call a
special disambiguation method to choose the correct higher event. Matches against non-
terminal keys are repeated until the value retrieved can form a subevent of the general console
session event, completing the path.

We can now return to the topic of disambiguation. In the last subsection we observed
that indirect speech acts are by nature ambiguous, since they can be used either for the
underlying speech act or for the speech act qoﬁveycd explicitly in the suﬁ'ue form. A system
therefore needs a mechanism to handle this routine sort of ambiguity. For initiators we have
used special OWL-I methods, all of which belong to the class DISAMBIGUATE. The fact that
disambiguation routines are coded in OWL-I means that they can be examined and explained
by the Interpreter. This is part of the general policy that takes as many choices as possible out
of black boxes, allowing inspection and évahmim. It also means that the reasoning processes
needed to do disambiguation can be done by the Interpreter module Whether. The
disambiguation methods are flexible, with several different strategies available for use, among
them a last-resort request for further clarification by the user.

This almost concludes the discussion of initiator reéognition. Remember that initiator
keys are used only for initiators, which are lead-ins to the two top level tasks. Thus, not all

procedures and utterance types will have associated initiator keys — just those that lie on the

46

first event tree branch of a top level task. Although the set of top level goals could be
extended, there would still remain substeps and procedures without associated keys. Thus, one
Jjustification for using a special matching structure rather than a more general search procedure
is that initiators are a subset of the possible lead-ins to dialogue methods. Using this special
structure, the Interpreter will not try to construct paths that are known a priori to lead to
deadends. Similarly, a general bottom-up search mechanism that tried to construct a path from
initiator to top level activity would be slowed down considerably by the fact that initiators are
not necessarily produced by ‘the first step in a method. (Recall that they are produced by the
first step executed in recognition mode when Susie is not the agent of the method.) Given the

way that OWL-I method steps are linked, the fact that a path could not be reliably constructed

from first steps would make a general search mechanism without special structures inefficient.
Initiator keys, then, perform three functions. First, they provide an efficient way to find

the event tree path between an utterance and the console session activity. Second, and related

to this first point, keys provide calls to disambiguation procedures at ;ppropriate points.

Third, keys contain information about the indirect speech act forms taken by initiators.

6.3. When Not to Match Against Initiator Keys

The last topic for this section is whether initiator matches must always be attempted. Are
there types of inputs for which matches against initiator keys are clearly ruled out? First, in
typed dialogue it appears that for two sorts of input the initiator possibilities need not be tried
at all: |

(1) Sentence fragments, including placeholders such as 0.X.

B T T T S

47

(2) Complete sentences beginning with yes and no°

For these two categories of user input, there is no need to match against initiator keys.

5. The only exception to (2) appears to be when y¢s is used to establish a helping or
command relationship (eg., “Yes, I'd like to know when the 515 train gets in to
Portland.”). This seems to be in answer to an assumed "Can [help you?" This special
case should be easy to screen, since it is always found at the beginning of the
conversation after the hello-ing is done.

48

7. Fitting a User Input to Open Tasks

Susie Software uses the dialogue methods to generate structural expectations that are
dependent on the course of the console session to date. In this section we consider the situation
in which execution of one or more methods is already in progress and the next step on a
standard path is to be executed in recognition mode. To perform the appropriate match, the
Interpreter first needs the ability to detect possible next steps, and, second, it needs to do the
actual matching as efficiently as possible. These two topics are discussed in the subsections that

follow.

7.1. Expectations

For a given step in a method, how many possible standard path successor steps are we
talking about? There is, of course, the possibility of branching within a method, using the
OWL-I conditional IF-THEN. In addition, an IF-THEN that is not inside the scope of an OR
effectively makes the consequent an optional step, so that the Interpreter must be ready to
recognize either the optional step or its successor. Another complication arises from the fact
that the ends of some steps are not always clearly marked (eg. in giving a description). The
Interpreter must be ready, then, to detect the completion of a step by matching against steps
that continue methods higher on the event tree.

This seems to exhaust the possibilities, since there are some sorts of situations that

probably do not come up. In the specifications for Susie Software, we admit the possibility of

49

carrying out two activities (e.g., writing two programs) by alternating steps. To switch from one
activity to another and back, however, it appears that the rules of dialogue require the use of
metadiscussion. The user would have to specify which task a particular utterance applied to.
Similarly, to re-open a previously completed or suspended activity, the user would have to state
his intentions explicitly. Neither of these situations, then, would have to be handled by the
normal standard path expectations mechanism. We are therefore left with a relatively small
number of possible standard path successor steps; ten possibilities probably borders on
pathological for this environment.

With such a small number of possible standard path successors, how could the system
possibly run into trouble? Unfortunately, there is not far to look. Two difficulties come up
here. First, as with initiators, there may be a varlety of indirect speech act forms used to
convey a single interpreter level standard path successor. Second, the OWL-I Interpreter’s
method selection mechanism presents special problems for recognition. The first issue is
considered in the next subsection, while the second is discussed below.

Recall that OWL-I method selection involves a match on the call evaluated in the current
operating environment so that it is not in general possible to predict @ priori which method will
be selected to carry out a particular call. Compared to other processes in the system, the method
selection process is a relatively expensive one. The problem for recognition is that a standard
path successor step will not necessarily be a simple speech act step (currently, TELL, ASK, or
COMMAND-REQUEST) but may instead be a call to a general dialogue method which
effects, at some level of embedding, the simple speech act. We will call standard path successor

steps that are not themselves simple speech acts non-terminals. For example, when Susie asks

50

the user for a description of the input and output conditions of the desired program, she
executes a COMMAND-REQUEST step. The recognition mode step that follows is not, .
however, a TELL but instead a non-terminal all to STATE-AND-ACKNOWLEDGE which
itself contains a call to TELL. In general, it may be necessary to go through several layers of
calls and procedure selection processes before the actu#l speech act step is found.

The dialogue system has gone thhugh several different implementation phases in an
attempt to deal with this problem. ﬁﬂdly. the fact ﬁm method selection depends on matching
in the current operating environment makes it difficult to compile mM: into simple speech
acts so that non-terminal calls would effectively be eliminated. It is also not clear that
compilation presents a long term solution, because intermediate event tree nodes may convey
important information for the purposes of reference resolution. A second alternative is a
straight top«down} expansion of the non-terminal call at recognition time; however, the fact that
method selection is a relatively quvc operation makes this unattractive, since the worst case
occurs when the utterance ‘mu to match the 'expmuon at all. Finally, although the core
methods do not tend to take advantage of the full power of the OWL-I method selector, this

does-not help us in recognition, since these problems come up for any OWL-I method that has,

~ at some level, a simple speech act as its lead-in.

The non-terminal recognition scheme currently implemented is a mixture of top-down
and bottom-up matching that relies on the programmer’s ability to predict the set of dialogue
methods that will be possible matches for the non-terminal call, and then continue this
prediction process on substeps until speech act mps’ are found. The set of possible lead-ins for

a method is specified using the OWL-I relation LEAD-IN, which takes the form:

51

(LEAD-IN <method-1>)

<.<the speech act steps that are lead-ins to method-1>
Note that method-l above need not have the speech act steps as immediate substeps; this
situation, in fact, is one in which the special LEAD-IN structure is particularly useful. Given a
LEAD-IN relation, the input utterance is matched against the values in turn. If no matd;u are
found, then this standard path successor step can be abandoned, thereby minimizing the time
taken for many of the non-matches.

If the input matches one of the values of the LEAD-IN relation, then the Interpreter can
construct an event for the basic speech m step and an event for its containing method, which
is recoverable from any variables in the matching LEAD-IN value, due to the way that OWL-I
variables are constructed (see the appendix). The construction of the events for the basic
speech act step and the containing activity is the bottom-up part of the process, and once this is
done an attempt is made to attach the new events to the event tree. If, however, intervening
events are still needed, then the event path is constructed top-down until the bottom-up event
fragment can be attached. Note that the new path constructed is not attached to the event tree
until it is completed, in case this path turns out to be incorrect and must be discarded. In the
methods for the sample dialogue and in other examples considered, calling depth for non-
terminals and substep fan-out was limited enough to keep the top-down expansion phase under
control. It is not clear at this time whether this scheme will continue to be sufficient as the
library of methods grows.

One other problem that is always with us is ambiguity. For standard path successors, at

52

least within the framework of the current matching scheme, it does not appear that we will find
disambiguation mechanisrﬁs to be as important as they are elsewhere in the system. With a
stop-on-success matching scheme, ambiguities among possible standard path successors are not
detected directly; where one occurs, the system must rely onb the user to detect any errors made.
In a try-all-possibilities scheme, on the other hand, disambiguation plays a more prominent role,
in that more than one standard path successor could match an utterance. But, even in this case,
it appears that oﬁr domain is structured in such a way that few ambiguities will occur between
standard path possibilities and most will occur across types (e.g., an utterance might be either
an initiator or a standard path successor). To the extent that standard path ambiguity is
detected by the system, the remedy would seem to be the uSe of a few general purpose
disambiguation procedures (such as asking the user for more information) rather than
depending on special purpose methods. This is because it will not in general be possible to
predict the sorts of ambiguities that will occur between standard path successor steps in the
same way that it is for, say, initiators.

Given this géneral discussion of expectation management for standard path successors,

we can now consider the handling of indirect speech acts.

7.2. WAY Evaluators

Just as for initiators, there will tend to be several different ways to phrase a next-step
utterance. To access these different utterance forms, we can use a method type called an

evaluator; the similarity between this name and the Evaluate module is intended. An evaluator

53

is an OWL-I method with a header that is a relation and a standard path that gives criteria for
choosing between possible values. The evaluators that are used here ire WAY evaluators,
which give alternate ways to convey the same interpreter level message. The use of WAY
evaluators will be explined for 'poognition. but they are also intended to be used for
generation..

Figure 5 gives an English translation of a WAY evaluator. This particular example is a
relatively simple one, but it is useful for illustration. It is intended to apply to situations where
a statement has just been made and the acknowledgment given is meant to convey that the
statement has been understood. Among the ways to phrase the acknowledgment are, "O.K." °I
understand,” "I see,” and "I get it." There are no doubt more possibilities and the conditions
for each could be tightened up, 5ut this example is enough to sketch out the approach that has
been taken. What the WAY evaluator offers is a link between certain interpreter level
representations (eg., the representation for acknowledging a statement) and a set of subsurface
level forms (eg., the representations for the ways to frame the acknowledgement). In the actual
OWL-I method, the alternative forms would be assigned to the output case PRINCIPAL-
RESULT, so that a given choice would be considered the result of the method. In its primary
use the WAY evaluator woukd be run as part of the generation process, to select a basic
subsurface semantic form for a speech act call in the current environment. The phrase in tAe
current environment is important here because it justifies the use of a procedural form;
otherwise, a simple list of the possibilities would be sufficient. The subsurface form supplied
by the WAY evaluator would be passed in to the pre-éenerator to start the generation process.

For recognition mode matching, the Interpreter will be starting with an ASK, TELL, or

COMMAND-REQUEST step. Using this step, the recognition module constructs an OWL-I

54

find a way to acknowledge a statement
ob ject: a variable for the ways to acknowledge a statement

agent: a person or computer system
method:

either
(1) If the context is informal and it was a routine process
to integrate the statement in with existing knowledge,
sy "OK."

(2) If the context is informal but the integration process
was not routine, say "I get it.”

(8) If the context is formal and the integration process
was quite difficult, then say "I see.”

(4) If the context was formal and the integration process
was not routine, then say "I understand.”

Figure 5. An English representation of a method for chooslng a way to
acknowledge a statement.

55

method call, then uses the Interpreter's method selection routine to choose an appropriate WAY
evaluator. The PRINCIPAL-RESULT alternatives of the evaluator found can then be used to
match against the surface r?pmentation of the user's input. Either one subsurface level
alternative will be found to match or, if none do, then the successor step can be eliminated as a
possibility altogether. Once a match is found, the implications of a user’s choice can be derived
by an inspection of the path of tests leading to that particular result. While these implications
are not particularly important for our purposes right now (since many center on politeness and
authority relationships), they are important in human-to-human interaction ind might prove
useful as we try to fine-tune the system.

To sum up, WAY routines are limited 'in their uses and simple in their structure, but
their style is important. They are special-purpose structures to perform a function that might
be done by a general deduction mechanism in other systems. By differentiating among the
sorts of inferences that must be made, we can isolate special bits of knowledge and know
exactly when they are to be accessed. Finalljv. note‘that part of the information present in
WAY evaluators is also found in initiator keys. The information is represented in different
ways, ﬁowever. reflecting the hybrid approach taken in successor step matching as compared to |

the essentially bottom-up approach taken in initiator matching.

56

8. The Best-Laid Plans: Recognition in Failure Situations

The next topic is what happens when a failure situation either occurs for the user or is

detected by him. The user either reports the failure explicitly or the failure is implicit in an

utterance, and it is the job of the Interpreter to do the necessary recognition. How can this be
done? We first discuss the access of expectations for failure conditions and then look at
matching. A more general discussion of failure handling in a conversational environment is
given in [11

In section 3.3, recovery discussion was divided into two types, that represented by recovery
paths and that represented by general OWL-I recovery methods. Naturally, access of failure
expectations will differ with the type of representation. Recall that autonomous recovery
methods are not needed for the sample dialogue, so this area of the design was not emphasized.
Existing mechanisms could be used to access and match these recovery methods, but it is not
clear that this will be adequate if the number of recovery methods is large. At this time,
however, only a small range of failures seem to require the generality of recovery methods, so it
seems better to delay any speculation about the sort of access mechanism that would be required
until more experience has been accumulated.

This leaves the problem of recognizing recovery path lead-ins. When recovery paths are
accessed in carry-out mode, a search up the event tree path is done, using the type and site of
the failure to select the appropriate path. Where more than one match occurs, the one highest
on the event tree is chosen, allowing context to affect the selection in a modest way. For

recognition mode, however, the failure is not available (since it occurred for the user), so it is

o R R

57

necessary to check the lead-in for each recovery path on the event tree path, matching it
against the'incoming utterance. There may be a fair number of recovery paths to be inspected,
but the number will be far smaller than the total set.

The access mechanism’ is com?liated slightly by the existence of assumption mode steps.
For example, Susie asks a question. The user then tries to understand the question and finds
the answer. The user’s next standard path successor step would be to give the answer, and tﬁis
is Susie’s first recognition mode step. If, however, something has gone wrong, then the user’s
next utterance may be part of a recovery path. The failure could have occurred in the
understanding process (e.g... "I don't know what you mean by.."), in the answer- finding process,
or it could be related to the process of giving the answer. Thus, i¥ is necessary to check
recovery paths related to assumption mode steps as well as steps executed in recognition mode.
Where more than one possible site of the failure exists, we have been ciaecklng the possibilities
in the temporal order specified by the methods, since this seems to be as good as any.

One feature of feoovery paths that was mentioned in passing above is that they may be
associated with higher level methods (those methods that call the method in which the failure
occurs); therefore, the particular recovery paths available for a given failure become context
dependent. This feature causes no special difficulties for recognition, and in fact it sometimes
provides an advantage. If a failure occurs inside a step executed in assumption mode by Susie,
then it may be necessary to go back and add an event and subevents for the assumption step to
the event tree, in order to get at recovery paths. If, however, a recovery path associated with a
higher event is the one used, then this expansion will not be necessary.

The next topic for this section is matching. Basically, recovery path lead-ins can be

58

handled in a manner similar to standard path successor steps, i.e. by matching on PRINCIPAL-
RESULTS of WAY evaluators. The mechanism used for handling non-terminal standard path
successor steps was also adopted here. The only difference between standard and recovery path
recognition steps seems to lie in the WAY evaluators themselves. Some utterance types seem
exclusively failure-related, such as 'the statement of a lack of information as a way }to request it
(eg. I don't know X.") Moreover, the connotations of some utterances seem to differ
according to whether they are used as recovery path lead=ins or in other contexts. These two
facts together indicate the need for at least some independent structure for WAY evaluators for
recovery paths. Where independent recovery path WAY evaluators entail too much
duplication, a combined structure could be used, with properties distinguishing exclusively
failure-related usages from others.

Recognition of recovery discussion, then, is a relatively straightforward process. We
have concentrated on the use of recovery paths, where access is similar to that for carry-out

mode, and matching is similar to that done for standard path successor steps.

59

9. Metadiscussion

Metadiscussion is used to change the flow of activity in a dialogue or clarify the current
flow of activity. In the system, metadiscussion recognition is done using a set of patterns called
metadiscussion keys. These are similar to initiator keys, except that metadiscussion keys are not
a reflection of other structures (i.e. method steps) in the same way that initiator keys are;
instead, they themselves are the primary structure.

In the Susie Software environment, three sorts of metadiscussion are possible: either an
activity is suspended, a previously suspended or completed activity is reopened, or a description
of what is to come next is given. Accordingly, the concepts for metadiscussion keys are'
specializations of the relation METADISCUSSION-KEY, with this category divided into three
subcategories marked by the concepts SUSPEND, RESUME, and INFORM. The basic form

of a metadiscussion key is as follows:
(<key type> <a subsurface level representation>) < <the corresponding method call>

The matching process for metadiscussion keys is similar to that for terminal initiator keys. (See
Section 6.2.) The surface semantic representation output by the parser is matched against the
subsurface level forms of the keys until a match is found, and then the associated value is
picked up. The value of a metadiscussion key is an interpreter level call to a method, for
example a call to the method to resume an activity. Because of the way that keys are
represented, a match against the subsurface level form causes the appropriate binding of its

variables and at the same time causes the method call in the value to be appropriately

60

instantiated, so that the normal Carry-out method selection process can be applied to it. Once
recognition of the user’s utterance is complete, then, the value of the metadiscussion key can be
used to guide Susie’s response.

So far, metadiscussion processing seems to be quite simple, but there is one complication.
The operational definition of metadiscussion used in the system is that it is a sentence or
phrase that changes the way other sentences or phrases are interpreted, in particular by
changing in some way the set of pattern matches that is tried. Note that, as we are construing
it, not all metadiscussion is sentential. Some seems to be phrasal, as in By the way, While we're
on the mbjc:ct. Coming back to the last program, etc. Besides these more or less stock phrases, it
appears that general time phrases can be used as metadiscussion. Consider the following

example from Deutsch (5}

A:] have the jaws around the hub. How should I take it off now?
E: Tighten the screw in the center of the puller..that should slide the wheel off the shaft.
A: OK. Its off.

A: A little metal semicircle fell off when I took the wheel off.

Deutsch observes that the phrase when I took the wheel off is used to reopen an already
completed subtask. In our framework, this phrase would be classified as metadiscussion
associated with the reopening of a task to initiate a recovery procedure. Time phrases are not,
however, restricted to this usage; for example, "After you pulled the plug, did the water run
out?”. Within our framework, the difference between the two uses of time phrases is that in

the first case, once a subtask has been closed by a successful recognition step ("O.K. It's off.%),

CHp N

i A B

61

associated recovery procedures are no longer directly accessible. The time phrase is therefore a

necessary cue to the system to return attention to the event named, making the patterns needed

~ to interpret the rest of the utterance available. In the second example, however, the necessary

patterns (in this case, initiator keys) are routinely available. The time phrase is necessary to
answer the question, but it is not necessary for finding the correct pattern in the first place.

When metadiscussion forms a complete utterance, the system can match the appropriate
metadiscussion kgy and then carry out the call given in the value. When metadiscussion is
phrasal, on the other hand, the system will again be matﬁhlng metadiscussion keys, but the
activities given as values for these keys will have to specify further matching operations in
order to complete the processing of the utterance and, in doing so, verify that the phrase was
actually acting as metadiscussion.

P T

62

10. Conclusions

This paper has described a framework for processing mixed-initiative typed dialogue,
Wiﬂllpedllmnmognm Recognition is done using a set of dialogue methods
mnoﬂLluﬁMImanmmmhmhmgmwgm The
dWMMmmmMmmemMnlumsm
of which are developed dynamically. The task-oriented natre of the environment means that
the structural expectations will be a relatively good source of information, and this in turn
allows a good deal of flexibility to be incorporated into the Susie Software system.

The important question for a natural language system of this sort is its extemibility.l
mmwmmu@wfmmmumm&uhmumqm?

First, the dialogue methods indudc both semantic domain dependent plans (eg. the
program writing one) and domain independent ones, the core methods. If we were to add new
tasks to the Susie Software environment the core dialogue methods would continue to be
applicable. Moreover, taking Searle’s speech acts as a guide, it is probably possible to write a
mpuumdmdhh‘mm (The number of these would be on the order of a
hundred and certainly less than a thousand) Beyond the accompanying recognition patterns
and methods, no new structure would have to be added to the system to accomodate these new
core methods, and at one level we could then say that we had a very general system.

There is more to dialogue, however, than domain independent structures, and the
question of extensibility is more problematic witkéa the domain that has been chosen. In order

- to provide users with a working system, we would have to span the semantic domain. This

B S IS :
O

63

requires more domain dependent dialogue methods, which would be relatively straightforward.
Beyond this, it requires special structures and a good deal of built-in knowledge to handle
reasoning, reference resolution, and the framing of messages for genmuon Crucial to this is
also a facility for modeiling the knowledge of the user. These issues have not been ignored in
system development, but more work, some of it theoretical, would have to be done before we
could start to talk about Susie Software as a practical system.

thg these reservations in mlnd; we feel it is fair to say that the Susie Software
design constitutes a step in the direction of flexible, reliable, task-oriented dialogue processing.
The design incorporates different kinds of knowledge needed to model dialogue, and it
accomodates discourse phenomena such as indirect speech acts and intersentential reference.
Our experience with the prototype system has been positive, and we feel that the approach

taken in Susie Software is a promising one.

]

4

1))

()]

[}

o)
-0

a2)
0s]
04

64

References
Brown, G.P. Failure and recovery in natural language dialogue, in progress.

Brown, JS, Burton, RR, and Bell, AG. SOPHIE: A sophisticated instructional
environment for teaching electronic troubleshooting (an example of Al in CAI), BBN
nwmmmmmmmmnmmmum

Bruce, B.C. Belief systems and language understanding, BBN Report No. 2973 (jamury
1975), Bok, Baranek and Nowmn Inc, Cambridge, Mass. ,

Carbonell,]. Mlx«l—lamwu Man-Computer Instructional Dialoguss, Docxonl thesis,
EWIWDQL.M.LT Cambridge, Mass. 1970.

Deutsch, B. G. The structure of task oriented dialogs, Proceedings IEEE Speech
Symposium, Carnegie-Melion University, Pittsburgh, Pa. (April 1974).

Gordon, D. and Lakoff, G. Conversational postulates, in: Cole and Morgan (Eds.) Syntax
and Semantics, vol 3, Academic Press, New York, 1975. ‘

Hawkinson, L. The representation of concepts in OWL, Advance Papers of the Fourth
International Joint Comferemce on Artificial hudltpna Tbilisi, Georgia, USSR
(September 1978).

Levin, J.A. and Moore, J.A. Duloguc : meta-communication structures for natural
language interaction, ISI/RR+77-58 (}tmmy om, Uscnnformtion Sciences Institute,
Marina del Rey, Clhf ,

Marcus, M. Diagnosis as a notion of grammar, TAeoretical Issues in Natural Language
Processing, An Interdisciplinary Workshop in Computational Linguistics, Psychology,
Linguistics, and Artificial Intelligence, Cambridge, Mass. (June 1975).

Martin, W. A. A computational approach to modern linguistics, in progress. |

Minsky, M. A framework for representing knowledge, in: Winston (Ed), Visual
Information Processing, MIT Press, Cambridge, Mass. 1975.

Ogden, C.K. Basic English, Harcourt Brace and World, New York, 1968.
Sadock, J. M. Towerd a Linguistic Theory of Spesch Acts, Academic Press, New York, 1974.

Schank, R.C. and Abelson, R.P. Scripts, plans, and knowledge, Advance Papers of the
Fourth International Joint Conference on Artificial Intelligence, Thilisi, Georgh. USSR

(September 1975).

65

(18] Schegloff, E. and Sacks, H. Opening up closings, Semiotica, 8 (1978).
016] Searle, J. R. Speech Acts, University Press, Cambridge, 1969.

(171 Searle, J. R. A taxonomy of illocutionary acts, in: Gunderson (Ed.), Minnesota Studtes in
the PAtlosophy of Language, University of Minnesota Press, Minneapolis (forthcoming).

(8] Szolovits, P, Hawkinson, L., and Martin, W.A. An overview of OWL, a language for
knowledge representation, to appear in: Proceedings of the Workshop on Natural
Language for Interaction with Data Bases, International Institute for Applied Systems
Analysis, Laxenburg, Austria.

e

66

i

Appendix
For readers interested in more detail, we include a brief survey of OWL-I notation, along

with an example of an OWL-I method.

Recall that there are two fundamental operations in OWL-I, specialization and
modification. Spdaﬂudom of & concept are represented using parentheses, eg., (NAME
FIRST) for "first name,” a specialization of NAME. FIRST is called the specializer of (NAME
FIRST). In OWL-], identical concept names correspond to identical internal stmcmra. 50 that
two different uses of (NAME FIRST) will have the same internal representation. To represent
the fact that a concept modifies another concept, we use square brackets to form a complex, eg.,
(PAPER OFFICE-SUPPLY] This says that the concept for papef has the concept for office
supply as a modification. Notc that OFFICE-SUPPLY is actually a labe! for a concept that
might abo, for example, be written as (SUPPLY OFFICE). In general, labels are used to
increase readability, and they are asigned using an equal sign, eg, OFFICE-
SUPPLY=(SUPPLY OFFICE). A special position on the reference list is reserved for values
of relational W such as EMPLOYER, SUPPLIER, LENGTH, WIDTH, etc. The

notation for value assignment is a left arrow; for example,
(EMPLOYER MARY-DOE) <~ UNION-CARBIDE

says that the employer of Mary' Dos is Union Carbide. A question mark may be used after a

relation to refer to the value, 5o that the following representations are equivilent:

AEMPLOYER MARY-DOE)R? (VALUE (EMPLOYER MARY-DOE))

67

The Interpreter can take either of these forms and evaluate them to return the current value of
the relation. Mechanisms exist to handle values that change over time and also to handle
values that are context or world model dependent.

As an abbreviation for specialization by the first concept (the subject) of a complex we

use colons. Thus,
[BLOCK-A COLOR: <~ RED]
is equivalent to:
[BLOCK-A (COLOR BLOCK-A) < RED]

Both say that the color of Block-A is red. The number of colons corresponds to the level of
embedding of the square brackets, so that on input the expression
[((PUT ENTITY) ((ON TOP) ENTITY))
INSTRUMENT: <~ [HAND:
(PART AGENT:) <~ :]]
would be equivalent to
[((PUT ENTITY) ((ON TOP) ENTITY))
(INSTRUMENT ((PUT ENTITY) ((ON TOP) ENTITY))) <—
(HAND ((PUT ENTITY) ((ON TOP) ENTITY)))

(PART (AGENT ((PUT ENTITY) ((ON TOP) ENTITY)))) <~
(HAND ((PUT ENTITY) ((ON TOP) ENTITY)

Both structures above express the constraint that the instrument case of the concept (PUT
ENTITY) ((ON TOP) ENTITY)) must be bound to the agent’s hand. Specialization by the
subject of a complex is used to tie concepts into larger structures. For the OWL-I Inierpreter.

colons most often indicate that a concept is to be used as a variable.

68

We are now in a position to look at the actual OWL-I representation for the method to
ask and answer a question, Figure 6. The subject of the whole complex (the method header) is
ASK-AND-ANSWER; this means that the other concepts that follow will appear on its
reference list. From the point of view of LMS, the concepts on the reference list of the ASK-
AND-ANSWER header differ by type, but they are basically semantically neutral. For the
Interpreter, however, there are important semantic distinctions between them, some of which
have already been mentioned. The first of these concepts is PLAN. The ASK-AND-
ANSWER concept is thus characterized as a PLAN, which makes it possible for the Interpreter
to distinguish it from individual ASK-AND-ANSWER events. Next in Figure 6 are .the
semantic case specifications; for methods, these come from a set of twenty cases (which may,
however, be further specialized). Before discussing the content of the case specifications in
detail, it is necessary to clarify the role of colons, numbers, and THE concepts in method
notation.

At the LMS level, we have said that colons are used to tie concepts into larger structures.
This also serves to distinguish different uses of a concept. For example, the concept AGENT
has a unique representation in LMS, so the uses of AGENT in [ASK-AND-ANSWER
AGENT <- ..] and [STATE-AND-ACKNOWLEDGE AGENT <~ ..] would refer to the
same concepL If, on the other; hand, we follow AGENT with a colon in these two complexes
then there are two different concepts: (AGENT ASK-AND-ANSWER) and (AGENT STATE-
AND-ACKNOWLEDGE). If this degree of distinction is not enough, for example if it is
necessary to distinguish between two concepts within a complex, then OWL-1 notation uses

specialization by a number. Thus, HUMAN:1 and HUMAN:2 in ASK-AND-ANSWER

69

[ASK-AND-ANSWER

PLAN
OBJECT: <-- [SUMMUM-GENUS:1 NON-HOW-WHY-QUESTION

' (COAL AGENT) <-- (KNOW (ANSWER u))

((BE (INFORMATIONALLY-NONSPECIFIC -SELF)
" (POR CO-AGENTY)))]

AGENT: <-- (OR HUMAN:1 YERBALIZER:1)
CO-AGENT: <-- (OR HUMAN:2 VERBALIZERS)

METHOD: ¢--
[{(ASK OBJECT:)
AGENT: <-—- AGENT:
DESTINATION: ¢-- CO-AGENT:], -

(BECOME ((BE (SPECIFIC -SELF)) OBJECT: (FOR CO-AGENT:),

[((FIND MENTAL)
([SUMMUM-GENUS:3 (ANSWER OBJECT:) <-- ::] SOME))
ACENT: <~ CO-ACENT:
BENEFICIARY: <~ ACENT:),

[(STATE-AND-ACKNOWLEDGE (SUMMUM-GENUS:3 THE))
AGENT: <~ CO-AGENT:
CO-AGENT: <-- ACENT:]

((RECOYERY-PATH STIPULATION) ((FIND MENTAL) SUMMUM-GENUS:3)):
[5 .
((TELL (AND (SUMMUN-GENUS:3 THE)
(STIPULATION (PRINCIPAL-RESULT
((FIND MENTAL) SUNMNUM-CENUS:3 THE))
AGENT:: <=~ CO-AGENT:
DESTINATION: <-- AGENT:],

[(TELL [SUNMUM-GENUS:4 AFFIRMATIVE)
AGENT:: ¢-- CO-ACENT:
DESTINATION: <-- AGENT:)

((RECOVERY-PATH (KNOW NOT)) (FIND MENTAL) SU“NUM—GENUSQ»S
[(TELL (AND (BE SORRY)
((KNOW NOT} WBAT (ANSWER OBJECT:)))
AGENT: <~ OO-AQENT:
DESTINATION= <~ AGENT:]]

Figure 6. An OWL-I representpiign for the prooui of asking a question and getting an answer.

70

expand to (HUMAN ASK-AND-ANSWER) 1) and (HUMAN ASK-AND-ANSWER) 2), two
distinct concepts. Finally, we can go further and speclauie by THE. This last distinguisher
will be discussed in more detail below.

Returning now to the contents of the semantic case specifications, in order for the ASK-
AND-ANSWER method to run the agent must be bound to a kind of person or computer
system, and so must th§ co-agent. The object case here is more complicated. The
representation starts with the concept SUMMUM-GENUS:|, which is straightforward enough.
SUMMUM-GENUS is the top concept on the tree, o that any sort of input will match. The
initial SUMMUM-GENUS, however, is further constrained, so that what the representation
really says is "any input such that ..". In fact, there are three constraints. First, is the concept
NON-HOW-WHY-QUESTION. This is defined to be a question about what, where, when,
who, whether, or how much; in short, anything but a question about how or why. This concept
must be a secondary characterization rather than a primary one (which would appear in place
of SUMMUM-GENUS:) due to the way the concept tree is currently arranged. As it stands
now, the question forms are split up under different concepts on the tree, so that their common
superclass includes other concepts that we would not group under NON-HOW-WHY-
QUESTION. This is a frequent occurrence when one is dealing with a tfem one set of
relationships must be chosen to be primary, and the rest will then become secondary
characterizations of concepts. |

The second constraint on the ob ject case says that the agent's goal is to know the answer
to the question. This points up the goal-directed nature of the exchange. The third, rather

involved, constraint on SUMMUM-GENUS: says that for the co-agent the object is

71

informationally nonspecific. This term means that on entry to the ASK-AND-ANSWER method,
the co-agent cannot bind the SUMMUM-GENUS:! to the question because he does not know it
yet. (A variable may also be existenrially nonspecific, Le. it cannot be bound because the
intended binding does not exist yet) The -SELF specializer is present because specificity is
treated as a property of variables, rather th;n their bindings; that is, INFORMATIONALLY-
NONSPECIFIC -SELF) is a property of SUMMUM-GENUS:|, not of a prospective binding.
Note that in tﬁe second step of the inethod, after the question is asked, the co-agent is assumed
to know the question, and an assertion is made about the new state of his knowledge base.

The semantic case specifications m followed by the steps in the method, separated by
commas. (Other notation — the use of THEN concepts connecting steﬁs — may be used when
the linear ordering supplied by commas is insufficient.) The steps of the method are calls to
other methods, and so they have associated input case assignments. To specify the values for
these assignments, the semantic case names from the containing method are used as variables.
For example, the first step is,

[(ASK OBJECT?)

AGENT: <— AGENT:

DESTINATION: <~ CO-AGENT]
When the Interpreter evaluates these case assignments, it finds that the agent of the step is the
current value of the agent of ASK-AND-ANSWER, and the destination of the step is the
current value of the co-agent of ASK-AND-ANSWER. OBJECT: in (ASK OBJECT?)
evaluates to the object case setting of ASK-AND-ANSWER, which is the question to be asked.
Thus, it is important not to confuse case specifications associated with methods and case

assignments associated with calls.

72

The steps in the ASK-AND-ANSWER method have been discussed in Section 3.1 where
Figure 2 gives a transiation of the content. There remain only a few more points about
notation. The SOME in the third step of Figure 6 indicates that the variable SUMMUM-
GENUSS is nonspedific (in this example, informationally nonspecific), that is, it will not be
bound until the FIND method has been carried out and the answer to the question has been
found. The SOME specializer is a signal to Evaluate that no binding currently exists for thi}
variable. Note that SOME is used to signal a nonspecific case assignment; specificity wa;
mentioned above for the object of ASK-AND-ANSWER, but this was with regard to a case
specification, rather than a case asﬂgnment.

Finally, we are in a position to return to the use of THE notation, for example in the
fourth step, (STATE-AND-ACKNOWLEDGE (SUMMUM-GENUS:3 THE)). Specialization
by THE is used to distinguish between concepts, so that SUMMUM-GENUS:3 and
(SUMMUM-GENUS:S THE) are, again, two different concepts. This time, however, the
Interpreter has special mechanisms to relate the two forms, so that both variables evaluate to
the same‘ binding. Thus, once SUMMUM-GENUS:S is bound to the answer in the third step,
(SUMMUM-GENUS:S3 THE) will evaluate to that answer. The reason for THE specialiiers is
somewhat subtle, but it relates to the highly interrelated nature of the OWL-I knowledge base.
The original SUMMUM-GENUS:S has associated with it & set of modifiers, in particular that
it is the answer to the question. Beuuse of the way that reference lists are constructed, if the
SUMMUM;GENUS:S in the fourth step were not made into a separ;.te concept, then that
STATE-AND-ACKNOWLEDGE concept would end up on the reference list of SUMMUM-

GENUSS. This could lead to some confusion in the Interpreter, especially when it came time to

73

bind SUMMUM-GENUS:S (whose binding was delayed because it is nonspecific). THE
specializations were introduced to keep miscellaneous steps and relationships on a uéante
concept, dudnguthg them from those modifiers that will be important in type checking for
variable binding. Specialization by THE assures that no extraneous related concepts are
retrieved when they are not wanted. '

This covers the notation necessary to understand the ASK-AND-ANSWER example.
From this it should be clear that OWL-I representations have different significance at dlfferent.
levels of the system, and that the notation, correspondingly, has more than one layer. LMS
deals in concepts, specializations, and complexes which the user represents with parentheses,
colons, square brackets, etc. The Interpreter, on the other hand, has a higher level, more
semantic, point of view, and it deals with semantic cases, procedure calls, variables, and so

forth.

