MIT/LCS/TR-181

FOR PGTRI METB

Ernst Wilhelm Mayr

June 1977

This report wae prepared with the eupport of the Mational Science
Poundation reearch grant Mos74-12997-A04 and DAND (German Academic
Enchage Service) grant mo. $430-402-559-7$.

Masachusetts Institute of Technology
Laboratory for Computer Science
(formarly Project MAC)

THE COKPLBXITY OF TEE FINITE CONTAIMNENT PROBLMM FOR PETRI NETS
by
Henst Wilhels Mayr

Submitted to the Department of Electrical Magineering and Computer Science on Yay 12, 1977 in partial fulfillnont of the requirements for the Degree of Master of Science.

ABSTRACT

If the reachability set of a Petri net (or, equiralently, rector addition systen) is ilimite it can be effectively constructed. Furthermore, the finiteness is decidable. Thus, the containment and equality,prablen for finite reachability eets bocome solvable. We investigate the complexity of decision procedures for these problens and show by reducing a bounded version of Hilbert's Tenth Problem to the finite contaiment problem that these two problems are oxtremely hard, that, in fact, the complexity of each decision procedure exceeds any primitive recursive function infiaitely often. The finite containment and equality problem are thus the first uncontrived, decidable problems with provably non-primitive recursive complexity.

THESIS SUPERVISOR: AIbert R. Meyor
TITLE: Professor of Computer Science and Fingineering

Acknowledgements

I wish to thank ny thesis supervisor, Professor Albert R. Meyer, for his helpful euggestions during the preparation of this thesis.

This research was aupported by DMAD (German deadeaic mxchange Service) grant No. 430-402-559-7, and by the National Science Foundation research grant MC874-12997-A04.

Table of Contents

I. Introduction 5
II. Basic definitions and properties 7
III. Two concepts for Potri net computers 19
IV. Recureive construction of an IPIC for A_{n} 29
V. Boundable WPNCis for polynemials 40
VI. Tro modificatione of poiymomial WPIC's 47
VII. Reduction of BPI to FCP 54
VIII. Conclueion and open problems 60
IX. Reforences 63
I. Introduction

The containment problem for Petri nots is the problem to determine of any two given Petri nets whether one reachability set is contained in the other. By reducing Hilbert's Tenth Problem concerning integer solutions of diophantine equations, which is known to be undecidable [13], to the containment prom blem, Rabin has shown the unsolvability of the latter (see [3]). The situation changes, however, when one considers subclasses of the general problem. A result by Karp and Miller [11] yields the decidability of the problem whether the reachability set of given Petri net is finite. It also gives an algorithm to enumerate finite reachability sets. Hence, the finite containment problem (FCP), i.e. the problem to determine of any two given Petri nets whether their reachability sets are each finite and one is contained in the other, 18 decidable by exhaustion. This thesis deals with the come plexity of decision procedures for FCP. We show that all those procedures are necessarily enormously complex, specifically, that they are non-primitive recursive.

The intrinsic complexity of the decision procedures is not due to the fact that the reachability sets have to be tested for finiteness. Even if the decision procedure is supplied with the answer to this subproblem the remaining complexity still is non-primitive recursive.

To establish this result we will present in section II a bounded version of Hilbert's Tenth Problem whose complexity we know is non-primitive recursive. To reduce it effectively to FCP two versions of Petri net computers are introduced in section III, weak computers for polynomials and a more restricted class of 'iterative' computers for functions defined by primitive recursion. Section IV cantains the recurbive construction of such computers for sequence of functions closely related to Ackermann's function [1]. Section V and VI then discuss a property of the polynomial computers introduced before which makes it possible to reduce the subspace inclusion problem for reachability sets to the inclusion problem while preserving the finiteness of the reachability sets. Two modifications of the polynomial computers exploit this property and serve to reduce the bounded version of Hilbert's Tenth Problem effectively to FCP. In section VII the reduction is carried out and the main results of this thesis are proven.

II. Resic definitions and properties

In this section we shall give precise definitions of Petri nets and related concepte like marking of a Petri net, firability, firing sequence, and reachability set. We are then going to formally state the probleme whose complexity we want to examine, and we shall also give the definition of that bounded version of Hilbert's Tenth Problem which will be reduced to FCP.

We assume that the reader is familiar with the notions like the free nonoid $\Sigma^{\prime \prime}$ over a finite alphabet Σ, the set Σ^{+} of all non-enpty words over Σ (the empty word will be denoted by λ, the length of a word $\alpha \varepsilon \Sigma^{\prime \prime}$ by $|\alpha|$), the concept of the free comutative monoid generated by Σ which we will write $C(\Sigma)$, and basic concepte of algebra like the semiring $N\left[x_{1}, \ldots\right.$..., x_{n}] of polynomials with nonnegative integer coefficients in the unknowns x_{1}, \ldots, x_{m}.

Definition 1:

a) A Potri net ${ }^{\rho}$ is a 4 -tupel (S, T, in, out) with the properties

1) S is a finite ordered set;
ii) T is a finite set, $S \cap T=\varnothing$;
iii) in is a multiset over $S \times T$; iv) out is a multiset over $T \times S$.
b) A marking of ρ is a mapping

$$
\alpha: S \longrightarrow \mathbb{N} \quad(\mathbb{N}=\text { set of nonnegative integers })
$$

The elements of S are called the places of ρ, the elements of T are called transitions. In diagrams, places are drawn as small circies, transitions as bars, and elements of in or out are denoted by directed arrows. If the multiplicity of elements in in or out is greater than 1 this is indicated in the diagram by the corresponding number attached to the arrow. If $(s, t) \in$ in, s is called an input-place of t, and if $(t, s) \in$ out, an output-place of t. A transition t is said to be controlled by a place s if s is both an input and output-place of t, connected by an arc in each direction of multiplicity one. In order to simplify the pictures this will be.represented by a double line connecting s and t.

Let $8_{1}, \ldots, 8_{m}$ be the elements of S. Sometimes it will be convenient to write a marking α of ρ as

$$
\alpha=\prod_{1=1}^{m} s_{1}^{\alpha\left(s_{1}\right)}
$$

and consider it as an element of the free commutative monoid $C(S)$ generated by S.
A Petri net \mathcal{P} together with a marking α of \mathcal{P} will be denoted by the pair $(\mathcal{\rho}, \alpha)$.

Definition 2:

Let $P=\left(S, T\right.$, in, out) be a Petri net, and let $\nu_{\text {in }}(s, t)$ denote the multipicity of $(s, t) \varepsilon S \times T$ in in, $\nu_{\text {out }}(t, s)$ that of (t, s) ETXS in out.
a) 1 transition $t \in T$ is firable at a marking α of P and takes α to the marking β (writton $\alpha \xrightarrow{t} \beta$) iff

1) $(\forall s \in S)\left[\alpha(s) \geq v_{\text {in }}(s, t)\right]$, and
ii) $(\forall s \in S)\left[\beta(s)=\alpha(s)-\nu_{\text {in }}(s, t)+\nu_{\text {out }}(t, s)\right]$.
b) firing seguence τ is an vlement $\tau \in T^{+}$.
c) A firing sequence $\tau \in T^{+}$is firable at a marting α of ρ and takes α to the marking β (wititon $\alpha \xrightarrow{r} \beta$) iff
$\left(\exists r \geq 1 \exists t_{1}, \ldots, t_{r} \in T\right)\left[\tau=t_{1} t_{2} \ldots t_{r}\right.$ and

$$
\left.\left(\exists \beta_{0}, \beta_{1}, \ldots, \beta_{r}\right)\left[\alpha=\beta_{0} \wedge \beta=\beta_{r} \wedge(\forall 1 \leq i \leq r)\left[\beta_{i-1} \xrightarrow{t_{i}} \beta_{i}\right]\right]\right] .
$$

The sequence $\left(\rho_{i}\right)$ osisr is called the marding sequence generated by τ.
d) A marking β of $\mathcal{P}_{\text {is said }}$ to be reachable from a marking α of $P\left(\right.$ written $\alpha \xrightarrow{m} \beta$) if $\alpha=\beta$ or $\left(\exists \tau \varepsilon T^{+}\right)[\alpha \xrightarrow{\tau} \beta]$.

Of course, the relations $\xrightarrow{*}$ as well as $\xrightarrow{\tau}$ and \xrightarrow{t} depend on the Petri net \mathcal{P}. It will however, always be clear from the context which Petri net is being considered.

Definition 3:

The reachability set of a Petri net \mathcal{P} with initial marking α is the set of all markings reachable from α :

$$
R(\mathcal{P}, \alpha):=\{\beta ; \alpha \xrightarrow{m} \beta\} .
$$

If we are given two Petri nets \mathcal{P} and \mathcal{P} with initial markings α and α^{\prime}, resp., we may ask questions about relationshipe between the two reachability sets, e.g. whether they are equal or one is contained in the other. To be able to do this we have, of course, to set up a 1-1 correspondence between the places of the first and the second net.

Definition 4:

Let $P_{i}=\left(S_{1}, T_{i}, \underline{i n}_{i}\right.$, out $\left._{i}\right)$ be a Petri net with initial marking $\alpha_{1}(i=1,2),\left|S_{1}\right|=\left|S_{2}\right|$, and let $\bar{K}: C\left(S_{1}\right) \longrightarrow C\left(S_{2}\right)$ be the semigroup-isomorphism generated by the order-preserving bijection $h: S_{1} \longrightarrow S_{2}$.
a) $R\left(\mathcal{P}_{1}, \alpha_{1}\right)$ is contained in $R\left(\mathcal{P}_{2}, \alpha_{2}\right)$ (written $R\left(\mathcal{P}_{1}, \alpha_{1}\right) \subseteq_{h}$ $R\left(\mathcal{P}_{2}, \alpha_{2}\right)$) if

$$
\bar{h}\left(R\left(\rho_{1}, \alpha_{1}\right)\right) \subseteq R\left(\rho_{2}, \alpha_{2}\right)
$$

b) $R\left(\mathcal{P}_{1}, \alpha_{1}\right)==_{h} R\left(\mathcal{P}_{2}, \alpha_{2}\right) \propto_{\text {def }} \bar{h}\left(R\left(\mathcal{P}_{1}, \alpha_{1}\right)\right) \subseteq R\left(\mathcal{P}_{2}, \alpha_{2}\right)$ and

$$
R\left(\mathcal{P}_{1}, \alpha_{1}\right) \subseteq \kappa^{-1}\left(R\left(\mathcal{P}_{2}, \alpha_{2}\right)\right)
$$

To simplify the notation, we will omit the subscript for the 1-1 correspondence h between the places of the two nets.

Definition 5:
a) The containment problem CP is the problem to decide for two Petri nets \mathcal{P}_{1} and \mathcal{P}_{2} with markings α_{1} and α_{2}, resp., whether the reachability set of the first net is contained in that of the second:
$\left.C P:=\left\{\left\langle\mathcal{\rho}_{1}, \alpha_{1}\right),\left(\mathcal{P}_{2}, \alpha_{2}\right)\right\rangle ; R\left(\mathcal{P}_{1}, \alpha_{1}\right) \subseteq R\left(\mathcal{P}_{2}, \alpha_{2}\right)\right\}$.
b) The Inite containent rroblem FCP is $F C P:=\left[\left\langle\left(\rho_{1}, \alpha_{1}\right),\left(\rho_{2}, \alpha_{2}\right)\right\rangle ;\left|R\left(\mathcal{P}_{2}, \alpha_{2}\right)\right|<\infty\right.$ and

$$
<\left(\rho_{1}, \alpha_{1}\right),\left(P_{2}, \alpha_{2} D \in C P\right\}
$$

c) The finite equality mroblem FGP is
$F B P P:=\left\{<\left(\rho_{1}, \alpha_{1}\right),\left(\rho_{2}, \alpha_{2}\right) ;\left|R\left(\rho_{2}, \alpha_{2}\right)\right|<\infty\right.$ and

$$
\left.R\left(\rho_{1}, \alpha_{1}\right)=R\left(\mathcal{P}_{2}, \dot{\alpha}_{2}\right)\right\}
$$

The proof that FCP and FEP are non-primitive recursive proceeds by effectively reducing to FCP a special, bounded version of Hilbert's Tenth Problem dealing with the ranges of values of polynomials with nonnegative integer coefficients. Though the main results of this thesis hold for any reasonable encoding of the data involved (i.e. polynomials and Petri nets), we choose for definiteness particular encodings and corresponding notions of the size of encodings. Thus, we want to encode Petri nets by first writing down the number of places, and then for each transition a pair of sequences of places (designated by their number in the ordered set of places) which contains in the first component all input
and in the second component all output-places of this transition, enclosed in brackets and preceded by the multiplicity of the connecting arc if the latter is greater than 1. Transitions which are not connected to any place are disregarded. Markings will be encoded by writing down their values on the places in order. We assume that all numbers are written in binary. It is easy to see how a code over the alphabet $\{0,1\}$ alone could be obtained by encoding the symbols of our code by short words over $\{0,1\}$.

Example: The encoding for the Petri net of figure 1 together with the marking ($0,0,1$) indicated by dots in the places may, therefore, look like (numbers written in decimal):

$$
3,()(1),(1,3)(4(2)),(1,3(2))(1,3),(3)(), 0,0,1
$$

(The code for the Petri net is followed immediately by the code for the marking).

Figure 1:

Considering, in general, the length of this encoding, the following definition is motivated.
Definition 6:
Let $\boldsymbol{P}=(S, T$, in, out) be a Potri net, α a marking of \mathcal{P}. Then size(in) $:=\sum_{0}\left\lceil\log \left(\nu_{\text {in }}(0)+1\right)\right\rceil$, where the aum is taken over the different arcs in the multiset in. Similarly size(out).
size(${ }^{(\rho)}:=(\operatorname{size}(\underline{1 n})+\operatorname{size}(\underline{\text { out }})+1) \cdot \log (|S|+1)$;
$\operatorname{size}(\alpha):=|s| \cdot \max \{\log (1+\alpha(i)) ; i=1, \ldots,|s|\} ;$
$\operatorname{size}(\rho, \alpha):=\operatorname{size}(\rho)+\operatorname{size}(\alpha)$.

The length of the encoding discussed above is bounded by a constant times size (ρ, α), as easily can be seen.

Likewise, we are going to describe an encoding for multivariable polynomials with nonnegative integer coefficients. The code for such a polynomial will be a sequence of codes for its monomial constituents, separated by apecial delimiters. We may assume that the variables of the polynomial are $x_{1}, \ldots, x_{\text {m }}$ for some meN. Then the code for a monomial is the sequence of integers obtained by writing down first the nonzero integer coefficient of the monomial, then the nondecreasing sequence of integers from $\{1, \ldots, m\}$ in which each $j \in\{1, \ldots, m\}$ occurs just as often as the degree of x_{j} in the monomial indicates. Again, delimiters are used to separate the numbers. If, for example,
| denotes the dolimiter for separating monomials and - that for separating numbers within monomials then the code for the polynomial

$$
4 x_{1} x_{3}+x_{1}^{2} x_{2}+3 \varepsilon \mathbb{N}\left[x_{1}, x_{2}, x_{3}\right]
$$

looks like (numbers written in decimal)

$$
|4 \cdot 1 \cdot 3| 1 \cdot 1 \cdot 1 \cdot 2|3|
$$

By writing the numbers in binary and then encoding each of the four symbols $1, \cdot, 0,1$ by a combination of two symbols from $\{0,1\}$, binary code for multivariable polynomials with nonnegative integer coefficients is obtained. Let

$$
p c: \bigcup_{m \geq 0} N\left[x_{1}, \ldots, x_{m}\right] \rightarrow\{0,1\}^{*}
$$

denote this encoding.

Definition 7:

Let $p \in \mathbb{N}\left[x_{1}, \ldots, x_{m}\right]$ for some $m \in \mathbb{N}$. Then

$$
\operatorname{size}(p)!=|\mathrm{pc}(\mathrm{p})|
$$

Hilbert's Tenth Problem is the problem to decide whether a multivariable polynomial $p \in \mathbb{L}\left[x_{1}, \ldots, x_{m}\right]$ has a zero $\left(a_{1}, \ldots, a_{n}\right) \varepsilon$ \sum^{m} (\mathcal{L} is the set of integers). It is not difficult to see (and we won't prove it here) that this problem is equivalent to asking whether a polynomial has a nonnegative integer solution. Matijasevic [13] has shown that for each recursively onumerable set $M C N$ there exists a polynomial $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ for some $m \in N$, such that
$a \in M \Leftrightarrow\left(\exists b_{2}, \ldots, b_{m} \in \mathbb{N}\right)\left[p\left(a, b_{2}, \ldots, b_{m}\right)=0\right]$.
As there are r.e. sets in N which are not recursive Hilbert's Tenth Problem is undecidable.

On the other hand, if we fix $N \in \mathbb{N}$ and restrict ourselves to asking whether any given polynomial $p \in \&\left[x_{1}, \ldots, x_{m}\right]$ has a zero $\left(a_{1}, \ldots, a_{m}\right) \in\{0,1, \ldots, N\}^{m}$, this problem becomes decidable by exhaustion. More generally, we might make N a function of $n \in \mathbb{N}$ and investigate the complexity of finding zeroes of polynomials as above, bounded by $N(n)$.

Adleman and Manders [2] have proven results which imply Lomen 1:

Let $\mathrm{g}: \mathbf{N} \longrightarrow \mathbb{N}$ be a (monotone) recursive function which majorizes the primitive recursive functions. Then the problem to decide whether a $p \in \mathbb{E}\left[x_{1}, \ldots, x_{m}\right]$ (for some $m \in \mathbb{N}$) has a zero $\left(a_{1}, \ldots, a_{m}\right) \in\{0,1, \ldots, g(\text { size }(p))\}^{m}$ requires, for any primitive recursive function pr , more than $\mathrm{pr}($ size(p)) steps on a multitape Turing machine, for infinitely many p.

Remark: Let \mathcal{F} be a class of functions from \mathbb{N} to N. A function $g: N \rightarrow N$ is said to majorize \mathcal{F} iff $\left(\forall f \in \mathcal{F} \exists n_{0} \varepsilon \mathbb{N} \forall n \geq n_{0}\right)[g(n)>f(n)]$.

Proof of the lemma: See theorem 5 of [2] and note that if a function $h(n)$ doesn't majorize the primitive recursive func-

We are now going to define a epecial fast growing function which satisfies the conditions of the leman, but which nonetheless can be computed by reasonmbly small Petri nots, in a sense which will be made precise in the next section.

Definition 8:

Let $A: N \longrightarrow \mathbb{N}$ be the function defined by

$$
\begin{aligned}
& A_{0}(x): 2 x+1 \\
& A_{n+1}(0):=1 \\
& A_{n+1}(x+1):=A_{n}\left(A_{n+1}(x)\right) \\
& A(n) \quad:=A_{n}(2)
\end{aligned}
$$

A function similar to A is atudied in [6]. A result about that function which immediately applies to A is

Lemma 2:

A majorizes the primitive recursive functions.

Proof: See [6], pp. 144-149.

We are now able to define a problem which is related to the bounded version of Hilbert's Tenth Problem described in lemma 1.

Definition 9:

The Bounded Polymomial Inequality Problen BPI is
BPI := $(T, q, n) ; p, q \in \mathbb{N}\left[x_{1}, \ldots, x_{m}\right]$ for somem $\in N$, and

$$
\begin{aligned}
& \left(\forall\left(y_{1}, \ldots, y_{m}\right) \varepsilon\{0,1, \ldots, A(n)\}^{m}\right) \dot{[p}\left(y_{1}, \ldots, y_{m}\right) \\
& \left.\left.\leq q\left(y_{1}, \ldots, y_{m}\right)\right]\right\} .
\end{aligned}
$$

From leamas 1 and 2 we obtain the result that BPI is extremely complex, for any reasonable complexity measure for the triples (p, q, n). Nonetheless, for definiteness, we set

Definition 10:

$$
\operatorname{size}(p, q, n):=\operatorname{size}(p)+\operatorname{size}(q)+n_{0}
$$

Theorem 1:
BPI is non-primitive recursive.

Proof: It suffices to prove

Leman 3:

The bounded version of Hilbert's Tenth Problem of lemal 1 with A as upper bound is polynomial-time-reducible to BPI.

Proof of the lemma: Let's assume we are given $n \in \mathbb{N}$ and a polynomial $p \in \Sigma\left[x_{1}, \ldots, x_{m}\right]$ for some $m \in \mathbb{N}$. Then p has a zero $\left(a_{1}, \ldots, q_{m}\right) \in\{0,1, \ldots, A(n)\}^{m}$ iff $p^{2}\left(x_{1}, \ldots, x_{m}\right)-1 \geq 0$ does not hold for all $\left(x_{1}, \ldots, x_{m}\right) \in\{0,1, \ldots, A(n)\}^{m}$. Ihe latter, however, is equivalent to $\left(q^{-}, q^{+}, n\right) \notin B P I$, where q^{+}(resp. $-q^{-}$) is the sum of the monomials of $p^{2}\left(x_{1}, \ldots, x_{n}\right)$

- 1 with positive (negative) coofficients, 1.0. $p^{2}\left(x_{1}, \ldots, x_{m}\right)-1=q^{+}\left(x_{1}, \ldots, x_{m}\right)-q^{-}\left(x_{1}, \ldots, x_{m}\right)$ and $q^{+}, q^{-} \varepsilon N\left[x_{1}, \ldots, x_{m}\right]$. Obviously, $\left(q^{-}, q^{+}, n\right)$ can be obtained in polynomial time from (p, n). q.e.d. If we had a primitive recursive decision procedure for BPI we could by means of the polynomial reduction in the proof of the lemma construct a primitive recursive decision procedure for the A-bounded version of Hilbert's Tonth Problem, in contradiction to lemal 1 (The relevant properties of polynomial-time-reducibility used here are discussed in [15]). This proves theorem 1.
q.e.d.

III. Two concepts for Petri net computers

Several ways have been studied, o.g. in $[7,8]$, to use Petri nets to compute number theoretic functions. A straightforward approach is to designate some places to contain numbers of tokens representing the arguments of the function and obtain the function value by counting how often a transition can fire or by the length of the longest firing sequence possible at the given initial marking. As firable transitions may fire or not, we can in general not expect that each firing sequence represents the computation of a function value. It turns out, nowever, that the following concept which Rabin called "weak come putation" works for quite a large class of functions.

Definition 11:
Let $\mathcal{P}=\left(S, T\right.$, in, out) be a Petri net, and let $s, i_{1}, \ldots, i_{m}, 0$ $\in S$ be $m+2$ designated places (also called the set $S_{i p}$ of interconnecting places) such that $s, i_{1}, \ldots, i_{\text {m }}$ are not outputplaces and 0 is not an input-place of any transition in T. Let $p \in C\left(S \backslash\left\{3,1_{1}, \ldots, i_{m}, 0\right\}\right), D \subset \mathbb{N}^{m}$, and $f: D \rightarrow \mathbb{N} \cup\{\infty\}$.
ρ is a 2 -mank-Petri-net-c omputer ($p-W P N C$) for iff $\left(\forall\left(n_{1}, \ldots, n_{m}\right) \in D \forall k \in N\right) \mid 0 \leq k \leq f\left(n_{1}, \ldots, n_{m}\right) \Leftrightarrow$ $s \prod_{j=f}^{m} i_{j}{ }^{n_{j}} p \rightarrow 0^{k} \alpha$ for soma $\alpha \in C\left(S \backslash\left\{i_{1}, \ldots, i_{m}, 0\right\}\right) \quad$. $\left(f\left(n_{1}, \ldots, n_{m}\right)=\infty\right.$ is interpreted as $\left.(\forall k \in \mathbb{N})\left[f\left(n_{1}, \ldots, n_{m}\right) \geq k\right]\right)$.

If we do not want to emphasize the marking ρ, we also call ρ simply a WPNC.

WPNC's essentially as defined above have been investigated in [7] and [8]. It is easy to see that the functions computed by WPNC's are closed under addition and composition, and multiplication, as a WPNC for the product $f\left(n_{1}, n_{2}\right)=n_{1} n_{2}$ can be constructed (see [8], and section V of this thesis).

We want to construct WPNC's for the functions A_{n} in definition 8. The structure of this definition suggests doing this recursively, i.e. obtain a WPMC for A_{n+1} from one for A_{n}. In such a WPNC for $A_{n+1}(m)$, the embedded WPNC for A_{n} would be restarted m times, since by definition $A_{n+1}(m)=A_{n}^{(m)}(1) \quad$ ($=$ the m-th iteration of A_{n}). In general, after a computation of a WPNC some tokens may be left on non-designated places. Those remaining tokens can affect the subsequent computations if the WPNC is restarted, so we have to refine the concept of a WPNC as stated in definition 11. In order to be able to start a WPNC iteratively, we basically make sure that the successive computations are properly separated and that in a computation which produces the maximal number of tokens on the output-place no 'garbage'-tokens are left on the non-designated places. This does not mean that there are no tokens at all left on the non-
designated places. Rather, the WPNC under consideration usually is a ρ-WPNC for some $\rho \neq \lambda$, and we want to ensure that after each computation ρ is conserved or can easily be restored We, therefore, introduce the following concept of a conservative marking.

Definition 12:

Let $\mathcal{P}=\left(S, T\right.$, in, out) be a WPNC with designated places $S_{i p}$. and for any $S^{\prime} S S$ let the projection $f\left(S^{\prime}\right): C(S) \longrightarrow C\left(S^{\prime}\right)$ be the homomorphism defined by

$$
f\left(S^{\prime}\right)(p):= \begin{cases}p, \text { if } p \in S^{\prime} \\ \lambda \text { otherwise. }\end{cases}
$$

$\rho \in C(S)$ is conservative iff there is a set of "control places", $S_{C p} S S \backslash S_{1 p}$, such that

1) $p \in C\left(S_{c p}\right)$;
ii) $(\forall \alpha, \beta \in C(S))\left[\left(f\left(S_{c p}\right)(\alpha)=\rho\right) \wedge(\alpha \xrightarrow{n} \beta) \Rightarrow\left|j\left(S_{c p}\right)(\beta)\right|=|\rho|\right]$;
iii) $(\forall \alpha, \beta \in C(S))\left[\left(j\left(S_{c p}\right)(\alpha)=\rho\right) \wedge(\alpha \xrightarrow{n} \beta) \Rightarrow\right.$

$$
\left.\left(\exists \tau \varepsilon T^{*}\right)\left[j\left(S_{c p}\right)(\beta) \xrightarrow{\tau} \varphi\right]\right] .
$$

For a given ρ the set $S_{c p}$ of control places needn't be uniquely determined. Condition ii) states that the sum of the tokens on the control places is constant for any firing sequence starting at a marking which agrees with ρ on the control places. It could be replaced by the slightly stronger condition 111) $(\forall \alpha, \beta \in C(S))\left[(\alpha \rightarrow \beta) \Rightarrow\left(\left|j\left(S_{c p}\right)(\alpha)\right|=\left|j\left(S_{c p}\right)(\beta)\right|\right)\right]$

Without restricting the class of WPNC's we have in mind. Condition i11) finally says that from any marking ρ^{\prime} on the control places which had been produced starting from a marking extending ρ, p can be restored by using only transitions in the subnet defined by the set of control places. This follows at once from the observation that each firing of a transition in T which produces tokens on control places, also has to consume the same number of tokens on control places because of 11).

We can now proceed to refine the concept of WPNC to what we call "iterative-Petrinnet-computer". We will first state the technical definition and explain it afterwards.

Definition 13:
Let $P=(S, T, i n$, qut $)$ be a Petri net, $f: \mathbb{N} \longrightarrow \mathbb{N}$ a number theoretic function. P is an iterative-Potri-net-computer (IPNC) for iff
i) there is a set $S_{i p}=\{8, i, 0\} S S$ of interconnecting places and a conservative $p \in C\left(S_{c p}\right)$ for some set of control places $S_{c p} S S \backslash S_{i p}$ such that ρ is a $\rho-W P N C$ for f, and
ii) $\operatorname{let}_{,} S_{o p}:=S \backslash\left(S_{i p} \cup S_{c p}\right)$ be the so-called operational places and define

$$
\begin{gathered}
R C_{\phi}:=\left\{\rho^{\prime} \in C\left(S_{c p}\right) ;(\exists \alpha, \beta \in C(S))\left[f \left(S_{c p}(\alpha)=\rho \wedge f\left(S_{c p}\right)(\beta)=\rho^{\prime}\right.\right.\right. \\
\wedge \alpha \rightarrow \beta]\} .
\end{gathered}
$$

Then

IC1: $\left(\forall \alpha, \beta \in C\left(S_{O p} u\{1,0\}\right), \forall \rho^{\prime} \in R C_{p}\right)\left[\left(s \alpha q^{\prime} \rightarrow \beta q\right) \Rightarrow\right.$

$$
|\rho| \leq f(|\alpha|)] .
$$

IC2: $(\forall n \in \mathbb{N})\left[\mathrm{si}^{n} \rho \xrightarrow{n} 0 \alpha \rho\right.$ for some $\alpha \in C(S) \Rightarrow \alpha$ doesn't contain s] and
$\left(\forall \alpha, \beta, \gamma \in C\left(S_{o p}\right), \forall \rho^{\prime}, \rho^{\prime \prime} \in R_{\rho}, \forall I_{1}, I_{2}, I_{3}, k, k^{\prime}, n_{n} n^{\prime} \in \mathbb{N}\right)$

$$
\left.\wedge\left(n^{\prime}<n\right) \Rightarrow\left(1_{3} \leq 1_{1}-1\right)\right] .
$$

Because of IC1, ρ is called an iteratively congervative initial marking of ρ.

Informally speaking, ICl onsures that no more tokens than necessary for the output are produced during a computation of an IPNC, and IC2 meane that no output can be produced without a start-token s, and that input and output phases of an IPNC alternate and are controlled by $8,1 . e$. to produce any (additional) output at all a taken of s has to be consumed, and if another computation is to follow thereafter, yet another starttoken s has to be used. IC1 together with the fact that ρ is iteratively conservative ensures not only that the initial marking ρ of the control places can be restored, but also that there is no gain in not restoring it.

The IPNC's constructed in this and the next eection will have the standard structure of figure 2. The places u and v are used to establish IC2. Choosing $\varphi=v$ and $S_{c p}=\{u, v\}$ it can be seen

Figure 2:

$\rho:$

that P is conservative: The token on V can only be transported to u and back to v, and no additional tokens are added by any transition to the places in $S_{c p}$. Further, if the token on v is transported to u it can be restored on v by firing t^{\prime}, with a marking of eoro tokens on all the other places of the net. Alsa, IC2 holds if we assume that the subnet \mathcal{J}_{c} in figure 2 , which
 using 'input-tokens' from i. Under this condition, t has to be fired first, thus consuming the token on s. In a phase in which tokens are produced on the 'output-place' 0 , a token has to be present on ∇. If euch a phase is to be followed by transitions consuming tokens from i, u first must receive the token from v by a firing of t, which uses a token from s. Thus, the two conditions of IC2 are satisfied.

The place o_{c} in figure 2 may or may not have an arrow pointing into ρ_{c}.

We want to remark that functions $f: N \rightarrow \mathbb{N}$ for which an IPNC $\boldsymbol{P}=(S, T$, in, out) with designated places $s, i, 0$ exists are strictly increasing, i.e. $(\forall n \in \mathbb{N})[f(n+1)>f(n)]$. Otherwise assume $n_{0} \in \mathbb{N}$ is minimal with the property that $f\left(n_{0}+1\right) \leq f\left(n_{0}\right)$. But then

$$
81^{n_{0}^{+1}} p \rightarrow 10^{f\left(n_{0}\right)}{ }_{p \alpha}
$$

for some $\alpha \in C(S)$ and an iteratively conservative submarking ρ,
as P is a $\rho-W P N C$ for f and, therefore, can produce $f\left(n_{0}\right)$ tokens on 0 by using up n_{0} tokens on 1 (note that 1 is not an outputplace for any transition in T. Applying IC1, we obtain
(*) $\left|10^{f\left(n_{0}\right)} \alpha\right|=|\alpha|+f\left(n_{0}\right)+1 \leq f\left(\left|i^{n_{0}+1}\right|\right)=f\left(n_{0}+1\right)$, and, hence, $f\left(n_{0}\right)<f\left(n_{0}+1\right)$, contradicting the choice of n_{0}. By the same argument, we get for all $n \in \mathbb{N}$ that $\left.\operatorname{si}^{n}{ }^{n} \longrightarrow 0^{I(n}\right\}_{\alpha}$ for some $\alpha \in C(S)$
implies that $\alpha=\lambda$.

Pigure 3 shows two examples for cores of the net in figure 2 and gives the corresponding functions computed by the IPNC of figure 2 where the core is plugged in for \mathcal{P}_{c}. As we shall use the first example later on we state

Leman 4:

The Petri net of figure 2 with the net of figure 3a) replacing ρ_{c} is an IPNC for $f: N \longrightarrow N$ with $f(n)=k n+f(0)$ $\left(k \in \mathbb{N}^{+}, f(0) \in \mathbb{N}\right)$.

Proof: The resulting net is clearly a V-WPNC for f, and so it only remains to show that IC1 is satisfied. IC1 follows from the observation that any m tokens distributed among the places i, 0 , and the operational places of the net can obviously produce the maximal number of tokens on 0 if all m tokens are initially on place i; moreover, there cannot be produced more to-

F1pure 3:

Pranple 1:

$$
f(n)=f n+f(0)
$$

$$
\left(k \in \mathbb{N}^{+}, \mathrm{f}(0) \in \mathbb{N}\right)
$$

Rempile 2:

kens on 0 if the initial marking of the control places is $\varphi^{\prime}=u$ and not $\varphi=v$ (note that $R C_{Q}=\left\{Q, Q^{\prime}\right\}$) as there is no feedback from o_{c} into the core.
q.e.d.

IV. Recursive construction of an IPNC for A_{n}

In this section we are going to show that the class of functions which are computed by IPNC's is essentially closed under iteration. Exploiting this fact, we are able to construct small WPNC' B for the functions $A_{n}, n \in N$. In particular, let \mathcal{F} be an IPNC computing a function
$\mathbf{f : N} \longrightarrow \mathbf{N}$
with $f(0)>0$, and let $g: N \longrightarrow N$ be defined by
i) $g(0)=1$,
11) $g(n+1)=f(g(n)) \quad \forall n \in N$,
1.e. $g(n)=f^{(n)}(1)$ is the n-th iterate of f at 1 . Now define the Petri net y as givion in figure 4. Essentially, a foedback mochanism is added to \mathcal{F} which allows to transfor the output of \mathcal{F} back to its input-place as many times as there are tokens on the input-place i_{1} of y. The other additional places (u_{1} and v_{1}) are part of the standard structure and ensure IC2 for \%. The dotted line indicates the core of 4 , corresponding to figure 2. To denote corresponding places in and its subnet \mathcal{F}, we use the same letter and index 0 for $\mathcal{F}, 1$ for the additional places in $\}$. As in figure 4 for \mathcal{F}, we will in simplified diagrase only draw the interconnecting places and indicate the rest of the net by an oval-shaped line.

Lema 5:

Let f, g, \mathcal{F}, and $\}$ be as above. Then y is an IPNC for g.

Figure 4:

Proof: Let ρ_{0} be an iteratively conservative marking of \mathcal{F} such that \mathcal{F} is a $\rho_{0}-W P N C$ for f, and let $S_{i p}^{0}=\left\{s_{0}, i_{0}, 0_{0}\right\}, S_{c p}^{0}$, and $S_{o p}^{0}$ denote the set of interconnecting, control and operational places, resp., of \mathcal{F}. With $\mathcal{F}=\left(S^{0}, T^{0}\right.$, in 0, out $\left.^{0}\right)$ and $y=\left(S^{1}, T^{1}\right.$, in 1, out $\left.^{1}\right)$ set

$$
\begin{aligned}
& s_{1 p}^{1}:=\left\{s_{1}, i_{1}, o_{1}\right\} \\
& s_{c p}^{1}:=s_{c p}^{0} \cup\left\{u_{1}, v_{1}\right\} \\
& s_{o p}^{1}:=s^{1} \backslash\left(s_{1 p}^{1} \cup s_{c p}^{1}\right)
\end{aligned}
$$

(i.e. the operational places of y are all places of \mathcal{F} except the control places, together with an additional place p).
It can easily be seen that $\rho_{1}:=\nabla_{1} \rho_{0} \in C\left(S_{c p}^{1}\right)$ is conservative: When the token on ∇_{1} is transforred to u_{1}, it can always be restored to ∇_{1}. The sum of the tokens on the two places u_{1} and ∇_{1} is constant as no token can be deposited on any of them without removing at the same time a token from the other place, and vice versa. As $\rho_{1}=v_{1} \varphi_{0}$, and $\rho_{f} C\left(S_{c y}^{0}\right)$ is itself conservative, 80 1s Q_{1}

Now let $\left.g^{*}: N \longrightarrow \mathbb{N} \cup \operatorname{lo}^{\prime}\right\}$ be the function for which y is a ρ_{1} WPNC. As property IC2 of definition 13 is onsured by the standard structure of 6 , it suffices to show (i) IC1 for g^{*} in place of f, and (ii) $g^{*}=g$.
(1) If $p^{\prime} \in \mathrm{RC}_{\rho}$ ($=$ set of all submarkings on $S_{c p}^{1}$ reachable in y
from any marking that agrees with ρ on $S_{c p}^{1}$) contains u_{1} instead of ∇_{1}, first some or all tokens on i_{1} may be transported into the core, then the u_{1}-token 18 transferred to ∇_{1} and $t^{\prime \prime}$ can fire, restoring the token on u_{1}. As each firing sequence which is firable at some marking is also firable at any bigger marking, the maximal number of tokens obtained on o_{0} or o_{1} does not depend on whether ρ^{\prime} contains u_{1} or ∇_{1}. Hence, we may assume w.1.g. that $\rho^{\prime}=\nabla_{1} \rho_{0}^{\prime}$ for some $\rho_{0}^{\prime} \in R C_{\rho_{0}}$. It follows imme diately from the structure of y that $R C_{\rho_{0}}$ is independent from whether it is computed w.r.t. \mathcal{F} or w.r.t. $\mathcal{F}, 1 . e$. independent from whether reachability is considered in f or its subnet \mathcal{F}. Thus, we have to show $\left(\forall \alpha, \rho \in C\left(s_{o p}^{1} \cup\left(1_{1}, o_{1}\right)\right), \forall \rho^{\prime} \varepsilon \nabla_{1} R C_{\rho O}\right)\left[s \alpha \rho^{\prime} \xrightarrow{*} \beta \rho_{1} \Rightarrow\right.$

$$
\left.|\beta| \leq g^{*}(|\alpha|)\right]
$$

$\Lambda_{s} o_{1}$ is not an input-place for any transition in T^{1} we may assume w.I.g. $\alpha \in C\left(S_{o p}^{1} \cup\left\{1_{1}\right\}\right)$. Let $\alpha=\gamma \delta \neq \lambda$ with $\gamma \varepsilon C\left(\left\{1_{1}, p, s_{0} \mid\right)_{\text {, }}\right.$ $\delta \in C\left(S_{O p}^{0} \cup\left\{1_{0}, 0_{0}\right\}\right)$ (see figure 4).

Case 1: $\gamma=\lambda$
As \mathcal{F}_{18} an IPNC for f we have for $\beta \in C\left(S_{o p}^{1} \cup\left\{1_{1}, o_{1}\right\}\right)$ and $p^{\prime} \varepsilon$ $v_{1} \mathrm{RC}_{\rho_{0}}$ with $\mathrm{a}_{1} \mathrm{\delta}_{Q^{\prime}} \rightarrow \beta \rho_{1}$, that
$|\beta| \leq 1+f(|\delta|)-f(0) \leq 1+f(|\delta|)-1 \leq f(|\alpha|)$, as there is no token on s_{0}. We now show by induction for $n \geq 1$:

$$
f(n) \leq g^{*}(n)
$$

$n=1: g^{*}(1) \geq f(1)$ as $t^{\prime \prime}$ produces a token on 0_{0} which can be transferred to 1_{0}. The token on i_{1} is first used to enable this transport and then to start \mathcal{F} on input $1_{0^{\circ}}$ $n-1 \rightarrow n: g^{*}(n) \geq f\left(g^{*}(n-1)\right)$ as the $n-t h$ input-token on i_{1} may be used to start Fonce more on the output 80 far accumulated on 0_{0}, which is at most $g^{*}(n-1)$. As f is strictiy monotone and has no fixed points $(f(0)>0)$ we obtain from the induction hypothesis: $f\left(g^{*}(n-1)\right) \geq f(f(n-1)) \geq f(n)$.
Hence, $|\beta| \leq g^{*}(|\delta|)=g^{*}(|\alpha|)$.
Case 2: $|\gamma|=m>0$
4 firing sequence of y leading from $s_{1} \alpha \rho^{\prime}$ to $\beta \rho_{1}\left(q^{\prime} \varepsilon v_{1} R C_{\rho}\right.$) has W.I.g. the forms

$$
\begin{aligned}
& \xrightarrow{\varphi} \underbrace{\boldsymbol{p}_{2-1}}_{=: \alpha_{2}} \delta_{0,2}{ }^{\nabla_{1}} \xrightarrow{t^{\prime}} p^{m-2} \delta_{0} \delta_{2} \rho_{0,2} 2^{\nabla_{1}} \rightarrow \\
& \text { - }
\end{aligned}
$$

with $\delta_{1} \in C\left(S_{o p}^{0} \cup\left(1_{0}, 0_{0}\right\}\right), \rho_{0,1} \in C\left(S_{c p}^{0}\right)$ for $1=1, \ldots$, m, or can trifially be simulated by such a sequence if γ already contains tokens on so. Informally speaking, this decomposition is obtained by breaking any firing sequence $s_{1} \alpha \theta^{\prime} \xrightarrow{m} \rho_{1}$ whenever t' is fired.

Now set $\alpha_{1}:=p^{m+1-1} \delta_{1} \quad$ for $1=1, \ldots, m, \alpha_{m+1}:=\beta$.
It suffices to show
(*) $\left|\alpha_{1}\right| \leq g^{*}(|\delta|+i-1)+m+1-1 \quad$ for $1=1, \ldots, m+1$ 。
For $1=1$ this comes from case 1 and property IC 2 for F, as no token of y is consumed and, therefore, no additional tokens on o_{0} can be generated. Shuffling tokens from o_{0} to 1_{0} which is made possible by tokens on p does not affect the argument in case 1. Thus

$$
\left|\alpha_{1}\right| \leq g^{*}(|\delta|)+m_{0}
$$

Assume that ($\boldsymbol{w}^{(1)}$ is established for all i with $1 \leq i<1_{0} \leq m+1$ 。 Consider the subsequence

$$
\begin{aligned}
& \alpha_{1_{0}-1} \theta_{0,1_{0}-1} \nabla_{1}=p^{m+1-\left(1_{0}-1\right)} \delta_{1_{0}-1} \rho_{0,1_{0}-1} \nabla_{1} \xrightarrow{t^{\prime}}
\end{aligned}
$$

We have $\rho_{0_{0,1}} I_{0} \in \mathrm{RC}_{\rho_{0}}$ and, as ρ_{0} is conservative, we may assume that $Q_{0, i_{0}}=\rho_{0}$.
From IC1 for \mathcal{F} we obtain, then,

$$
\left|\delta_{1_{0}}\right| \leq f\left(\left|\delta_{1_{0}-1}\right|\right)
$$

and hence

$$
\begin{aligned}
\left|\alpha_{1_{0}}\right| & =\left|\delta_{1_{0}}\right|+m+1-1_{0} \\
& \leq f\left(\left|\delta_{1_{0}-1}\right|\right)+m+1-1_{0} \\
& \leq f\left(\left|\alpha_{1_{0}-1}\right|+1_{0}-m-2\right)+m+1-i_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \leq f\left(g^{*}\left(|\delta|+i_{0}-2\right)\right)+m+1-1_{0} \quad \text { (1nd.hyp.) } \\
& \leq g^{*}\left(|\delta|+i_{0}-1\right)+m+1-1_{0}
\end{aligned}
$$

The last inequality comes from the fact that with an addition$a 1$ token on s_{1} (orp), F can be applied once more to the tokens so far collected on 0_{0}, and that the traneport of tokens from 0_{0} to o_{1} can be postponed, in any case, to the very last. For $i_{0}=m+1$ we obtain, therefore,

$$
\left|\alpha_{E+1}\right|=|\beta| \leq g^{*}(|\delta|+m)=g^{*}(|\alpha|)
$$

Hence, IC1 holds for y.
(1i) We obviously have

$$
g^{*}(0)=1=g(0) \text { and } g^{*}(1)=f(1)=g(1) \text {. }
$$

assume that $g^{*} \neq g$. Inspection of the net \hat{y} shows that clearly $g^{*} \geq g$ as we Hight first fire $t \prime$, traneport all tokens of i_{1} to p and then, as long as there are tokens on p, shuffle all ton kens from o_{0} back to i_{0} and apply \mathcal{F}, consuming one of the to kens on p. In this way, we can iterate \mathcal{F} as often as n times if if initially had n tokens, and as \mathcal{F} iteratively computes f and we start off with one token on o_{0} (after firing $t "$) we obtain oy this firing sequence at least $f^{(n)}(1)=g(n)$ tokens on \circ_{0} (and thus also on o_{1}) after the last iteration of \mathcal{F}. Let, therefore, $n>1$ be minimal such that $\mathrm{s}_{1} \mathrm{i}_{1}^{\mathrm{n}} \rho_{1} \xrightarrow{T} \beta \rho_{1}$ for some $\beta \in C\left(S^{1}\right)$ with $|\beta|>g(n)$ and some $\tau\left(T^{1}\right)^{+}$. τ is W.I.E. of the form $s_{1} i_{1}^{n} \phi_{1} \rightarrow p^{2} \delta_{1} \nabla_{1} \phi_{0}^{\prime} \xrightarrow{t^{\prime}} p s_{0} \delta_{1} v_{1} \phi_{0}^{\prime} \xrightarrow{\tau_{1}} p \delta_{2} \nabla_{1} \phi_{0}^{\prime \prime} \xrightarrow{\tau_{2}} p \delta_{3} v_{1} \rho_{0}^{\prime \prime} \xrightarrow{t^{\prime}}$
$\xrightarrow{t^{\prime}} s_{0} \delta_{3} \nabla_{1} \rho_{0}^{\prime \prime} \beta Q_{1}$,
with $\delta_{1}, \delta_{2}, \delta_{3} \varepsilon C\left(S_{0 p}^{0} \cup\left\{1_{0}, O_{0}\right\}\right), Q_{0}^{\prime}, Q_{0}^{\prime \prime} \varepsilon R C_{\rho_{0}}, \tau_{1} \varepsilon\left(T^{0}\right)^{+}$such that the first transition of τ_{1} romoves s_{0}, and $\tau_{2} \varepsilon\{t\}^{*}$, as it suffices to have one token on s_{0} at a time and as, because of IC2 for \mathcal{F}, the firings of t can be collected in τ_{2} after τ_{1}. We may also assume that δ_{1} does not contain \circ_{0} because shuffling them to 1_{0} (enabled by p) would certainly yield a bigger output. As, reaching $\mathrm{p}_{2} \nabla_{1} \rho_{0}^{\prime \prime}$, the last token on p actually was not used, and as n is minimal, we have

$$
\left|\delta_{2}\right| \leq g(n-1)
$$

Case 1: δ_{2} contains tokens on 0_{0}.
These tokens were placed on o_{0} by τ_{1}. Because of IC2 for \mathcal{F} we, therefore, have $\left|\delta_{3}\right|=\left|\delta_{2}\right|$, and because of IC1 for \mathcal{F}

$$
|\beta| \leq f\left(\left|\delta_{3}\right|\right) \leq f(g(n-1))=g(n) .
$$

Case 2: δ_{2} contains no tokens on 0_{0}.
Then $\tau_{2}=\lambda$ and $\delta_{2}=\delta_{3}$. IC1 for \mathcal{F} yields again

$$
|\beta| \leq f\left(\left|\delta_{3}\right|\right) \leq g(n) .
$$

Together with the romark at the beginning of (ii) we thus have shown

$$
g^{*}=g .
$$

q.e.d.

We want to remark that the construction of \mathcal{F} from \mathcal{F} is not op-
timal concerning the number of additional places and transitions. One might observe that the places u_{1} and v_{1} are not necessary, thus obtaining the net of figure 5a) which is, of course, no longer an IPNC. Ueing transformations discussed in [14] this net can be simplified even further (figure 5b)). We note that the net of figure 5b) has only one more place than \mathcal{F}_{0} Without proof we state that both nets of figure 5 are WPNC's for 6 (rith the modification that i_{1} and o_{1} are no longer only input resp. output-places of transitions of the net), and that the construction by which they are obtained from \mathcal{F} can be applied recursively, yielding WPNC's for the iterate of g, its iterate etc.. We think, however, that the standard structure facilitates the proof of leman 5 and unifies the recursive application of the construction.
We sumarize the results of this section in

Theorer 2:

i) $\left.(\forall n \in N] \&_{n}\right)\left[A_{n}\right.$ is a $\lambda-W P N C$ for A_{n} with designated places

$$
\left.s_{n}, 1_{n}, o_{n}\right]
$$

ii) $\operatorname{size}\left(d_{n}\right)=O(n \cdot \log (n))$;
iii) $R\left(d_{n}, s_{n} i_{n}^{2}\right)$ is finite.

Proof: (1) Using the IPNC of lemma 4 for $f(x)=2 x+1$ and applying the construction of lemma 5 recursively n times we obtain by lemma 5 an IPNC for A_{n} (with iteratively conservative

Figure 5:

b)

marking $\theta_{n}=\prod_{1=}^{n}\left(\nabla_{1}\right)$. Inserting botweon B_{n} and the transition correaponding to t" in figure 4 an additional place and a transition which initializes the marlage of ve then get a λ WPNC h_{h} for h_{n}
(1i) 1s imediate from definition 6 as in oach step of the recuraite construction a constant number of places and arcs is added.
(111) Ench itoration of \mathcal{F} in y consumes a token from s_{0} and thus properiy decreases the number of tokens on i_{1}, p and s_{0}. We may assume inductivaly that \mathcal{F} pernits only finite firingsequences (the IPNC of leama 4 for $f(x)=2 x+1$ certainly does 80). But as the $100 p$ between u_{1} and v_{1} in f conmumes tokens from s_{1} ve conclude that the reachability aet of y, and hence recureively, that of f_{n} is finite for the given initial marking.
q.e.d.

V. Boundable WPNC's for polymomials

In this section we are going to construct WPNC's for multivarlable polynomials with nonnegative integer coefficients with the special property that they are boundable, i.e. the number of tokens on any place in the markings of marking sequonces of computations can essentially be bounded by the size of the input. The besic multiplier nets have also been introduced in [7].

Leman 6:

Let $p\left(x_{1}, \ldots, x_{i}\right)=\sum_{i=1}^{\nabla} a_{i} \prod_{j=1}^{n} x_{j}{ }^{e_{i j}}$ be a polynomial with poestive integer coefficiente a_{i}, and $\theta_{i_{j}} \varepsilon N$ for $1=1, \ldots, V, j=1, \ldots, m$ Thore exists a λ-WPIN \mathcal{P} for p.

Proof: Wo shall build up $\mathcal{P}_{\text {in }}$ two steps from basic units which serve as multipliors and which can be connected to form weak computers for momomials. Several of those then constitute ρ. (i) The net \mathcal{T} of figure 6a) has the property that $n_{1} n_{2}=\max \left\{k ; i^{n_{1}} j^{n_{2}} r_{r} \rightarrow 0^{k} r \alpha\right.$ for sone $\left.\alpha\right\}$ for all $\left(n_{1}, n_{2}\right) \in n^{2}$. Obviously, $n_{1} n_{2}$ tokens on o can be achieved by transportizg all n_{1} tokens from a to o and u^{\prime}, and from u^{\prime} back to u, all ofton as a token on the control places r^{\prime} and then r onables the firing sequence $t^{n_{1}}$ followed by (t ($)^{n_{1}}$. This can happen oxactly n_{2} times which also shows that $n_{1} n_{2}$ is the maximal number of tokens reachable on 0 . As the number of tokens on i, u, and u '
cannot increase, and ae each 'cycie' (firing nequence) $\left.\varepsilon\{t\}^{+}\{t\}\right\}^{+}$ consumes a teken from j, an initial maricing of \mathcal{T} of the form $i^{n_{1}} j^{n_{2}} r$ pormite no infinite firing sequences.
(1i) Nor we comect d instances of T to form the not M in the way shown in figare 6b) where each box atande for the part of \mathcal{T} surrounded by a dotted line in figure 6a) (note that the in-put-places are connected to the provioue outprt-pleces). Let Q denote the product of the placee corroaponding to r of flgure 6a) in the instancen of J. Thon repeated appication of (i) yielde for \mathcal{M} :
$a \int_{j=1}^{d} n_{j}=\max \left\{k ; c^{a} \prod_{j=1}^{d} i_{j}^{n_{j}} \rho_{\rho} \rightarrow 0^{k_{\rho \alpha}}\right.$ for some $\left.\alpha\right\}$ for $\operatorname{all}\left(n_{1}, \ldots, n_{d}\right)$ $\varepsilon n^{d}, 1.0$. M vavkly computos the hemesencous manomial $a \prod_{j=1}^{d} x_{j}$ of degree d. Lakowiee, initial markinge of the form $c^{a} \int_{j=f^{d}} i_{j}^{n_{j}}{ }_{Q}$ have no infinite firing sequences.
(iii) In ordor to obtain a WPWC Pfor the polyncmial p, V mo-
 are combined sharing a common outpat-place o. The net P has in-put-places $i_{1}, \ldots . i_{n}$ (to avoid amblguity, we asume that the places in the momonial nots are given distinct manes), which deliver thoir tokene to as many input-places in each monomial net as the degree of the corresponding variable in the monomial indicatos. A monomial not for a constant momomial $a_{j}\left(a_{j}>0\right)$ conciste just of one place c_{j} and a transition connecting it
42

to 0 . The places c_{1} (11gure $6 c$)) are those correnponding to c in figure 6b), and the places referred to as 'left control places' are those corresponding to r in figure 6a). It is easy to seo that \mathcal{P}_{1} a λ-WINC for p and that oach marking $\prod_{j=1^{n}}^{1_{j}}{ }_{j}$ with $\left(n_{1}, \ldots, n_{n}\right) \in \mathbb{m}^{m}$ pernits only finite firing eequoncen.

$$
q . e . d .
$$

A very inportant obinervation about the multiplier net 5 of 11gure 6a) 1s that during a computation none of the 'interial' places $u, u^{\prime}, r_{,} r^{\prime}$ over contains more than $\max \left\{1, n_{1}\right\}$ tolens where n_{1} is the number of tokens initially on place 1. 41so, one cycle which outpate another n_{1} tokenc on 0 can be performed if just one token is avallable on j.

Let $N=\left(S, T\right.$, in, gat) be a Petri net, $S^{\prime} S S, \alpha$ a maring of N_{0} and τ a firing sequence of N starting at α. We aay that τ is bounded on Si by Ncitiff all markings of the marking sequence generated by τ contain at most N tokoms on any of the places in S^{\prime}.

Considering the above remark about the multiplier nets we are going to define a special class of functions. These functions have the property that they are computable by WPNC's by firing sequences which are bounded on the non-deelgnated places by a (simple) function of the arguments.

Definition 14:
Let $f: \mathbb{N}^{\mathbf{m}} \longrightarrow \mathrm{N}, \mathrm{g}: N \longrightarrow \mathbb{N}$ be functions. $:$ is g -boundable iff thore oxists a p-WPNC $\mathcal{F}=(S, T$, in, out) with designated places s, $1_{1}, \ldots, 1_{n}, 0$ for f such that
$\left(\forall N \varepsilon N, \forall\left(n_{1}, \ldots, n_{n}\right) \varepsilon\{0,1, \ldots, N\}^{m}, \forall k \varepsilon\left\{0,1, \ldots, f\left(n_{1}, \ldots, n_{m}\right)\right\}\right.$
$\left.\exists \tau \varepsilon \mathbf{T}^{+}\right)$
$\left[s \int_{j}^{m} i_{j}^{m} \tau^{m} 0^{k} \alpha\right.$ for ano $\alpha \in C(S \backslash\{0 \mid)$ and τ is bounded by $g(I)$ on $S \backslash\{n, 1, \ldots, \ldots, 1,0\}]$.

Sneeren 3:

Let $p \in \mathbb{M}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with nonnegative integer coofficionte, $|p|:=$ macimum of the coefficionte of p, and $\forall \mathrm{Nc}$: $: \quad \mathrm{g}(\mathrm{N})=\mathrm{N}+\|\mathrm{p}\|$.
Then pis g-boundable.

Pronf: Coneider the WPNC P of figure $6 c$). The input-places of the monomal components of \mathcal{P} receive tokene only from the placas s and $1_{1}, \ldots, 1_{1}$. Because of the structure of P, it suffices to show that for the monomial not \mathcal{M} of figure 6b) with initialised left control places, up to N tokens on each of the places $1_{1}, \ldots, i_{d}$, and at most $|p|$ tokens on c, there in a firing sequozee of \mathcal{M} producing the desired output which is bounded by $g(N)$ on all places but 0 . But, referring to the observation two paragraphs above about the multipiler nets, this can be achieved
by, recursively, firing a complete cycle in the rightmost Jcomponent of \mathcal{M} which has at least one token on its upper inputplace.
q.e.d.
VI. Two moilifications of molyperial WPICI

When reducing BPI to the comtainment problen for reachability sets of Petri nets only the martings of the designated places are of interest. In [8], a method is diacuased which onables us to forget about the noindesignated places in the general case vhore the reachability sets needn't be finite. This construction modifies the Petri net computers in auch a way that in an additional tage aftor a computation transitions are onabled which can feed in or congume arbitrarily many tokens on each non-designated place. However, this cometruction is not applicable in out case as it would produce Potri note with infinite reachability sets. But the result of the preceding section makes it possible to introduce two modifications of polynomial WFIC' which are aleo guided by the idea of factoring out the marking on the non-lesiganted places and which do preserve finitenees of the reachability sets.

Informally epealimg, in order to teat whether (p, q, n) \in BPI we construct appropriate WPNC's P and Q for p and q such that in ρ all non-designated places are suitably bounded whereas in Q the marking on those places may take on any value up to this bound, and only finitely many values above it.

Let $P=\left(S, T\right.$, in, out) be a λ-WPNC for the polynomial $p \in N\left[x_{1}\right.$.. $\ldots .0 z_{n}$], ws constructed in lemma 6, with denigneted places 8,
$1_{1}, \ldots, 1_{m}, 0$, set $0:=S \backslash\left\{0,1_{1}, \ldots, 1_{m}, 0\right\}$, and lot 0^{C} be a copy of 0 (disjoint from 8). The unique element in 0^{c} corresponding to $u \varepsilon 0$ will be denoted u^{c}.

Now define the Peri not $\rho_{\beta}^{\prime \prime}=\left(S^{\prime}, T \prime\right.$, in', put') as follows:

$$
\left.\begin{array}{rl}
S^{\prime} & :=S \cup O^{C}, \\
T \prime & :=T, \\
\text { in' } & :=\text { in } \cup\left\{\left(u^{c}, t\right) ; u \varepsilon 0,(t, u) \varepsilon \text { out },\right. \\
\text { out } & :=\text { out } \cup\left\{\left(t, u^{c}\right) ; u \in O,(u, t) \varepsilon \text { in }\right\} .
\end{array}\right\} \text { in the multiset- }
$$

Leman?:

 and $Q_{\text {雷 }}:=\prod_{u \varepsilon \delta^{\prime}} f^{u^{(N)}}$.
Then P_{1} is a $\rho_{\text {m }}$ win for p restricted to $\{0,1, \ldots, N\}^{\text {m }}$.

Proof: Because of the definition of in' and ont', the firing of any transition in Tr wilich removes tokens from a place ac 0 adds just as many toicena on n^{c}, and a transition which adder toneme to $u \varepsilon 0$, remover the ae number from u^{c}. This is ale true with 0 and 0^{c} interchanged. Then, the sum of the tokens on u and u^{c} always equals $g(H)$, for all u ε. . Further, each firing sequence of P starting at $\alpha \varepsilon C(S \backslash 0)$ which is $g(N)$-bounded on O, is also fixable in \mathcal{P}_{1}, tarting at $\alpha \rho_{\mathbf{N}}$, and conversely. But from therem 3 we know that p is g-boundable, and that, in fact, for each Input cupel $\left(n_{1}, \ldots, n_{n}\right) \in\{0,1, \ldots, N\}^{n}$ and each k with $0 \leq k \leq$ $p\left(n_{1}, \ldots, n_{m}\right), \mathcal{P}$ allows a firing sequence τ with $\prod_{j=1}^{n} i_{j}^{n_{j}} \tau \xrightarrow{l} 0^{k_{\alpha}}$
for some $\alpha \varepsilon C(S \backslash\{0\})$. which is bounded by $g(N)$ on O. Hoace, e $\prod_{j=}^{n} I_{j}^{n_{j}} \varphi_{M} \xrightarrow{\tau} 0^{k} \beta$ for some $\beta \varepsilon C(S I \backslash\{0\})$ also holds. Together with the fact that oach such firing sequeace of P_{2} can also be excecuted on P, etarting at $\prod_{j=1} I_{j} n_{j}$, the clatin followa.
q.e.d.

The following theoren anmarizes the reaults.
meoren 4:
Let $p \in W\left[x_{1}, \ldots, x_{n}\right]$ be polynomial with nonnegative integer coefficients, and sot for all $N \in \mathbb{N} N(N):=N+\|p\|$. Then there exists a Potri net $\mathcal{P}_{f}=(S, T$, in, gut) with $m+3$ designatod placos $s, 1_{1}, \ldots, i_{n}, 0$, and $b \in S$ much that
(i) Pis a $b^{g(N)}$-WPNC with designated places $S_{1 p}:=\left\{0,1_{1}, \ldots, 1_{n}\right.$, of for prestricted to $\{0,1, \ldots, y\}$, for all $N \varepsilon N$.
(ii) Let, for $u \in S, n \in W,\langle u\rangle^{n}$ denote the set $\{u, \lambda\}^{n}$. Then $\left(\forall N \in N, \forall\left(n_{1}, \ldots, n_{m}\right) \varepsilon N^{m}\right)\left[R\left(P_{l}, \varepsilon \prod_{j=1}^{m} f_{j}^{n_{j}} g(N)\right) \subseteq\right.$

$$
\langle\Leftrightarrow\rangle^{1} \prod_{j=1}^{m}\left\langle i_{j}\right\rangle^{n_{j}} \prod_{u \varepsilon S}\left[s_{i p}\langle u\rangle^{(N)}\langle 0\rangle^{p\left(n_{1}, \ldots, n_{1}\right)}\right] .
$$

In particular,

$$
\begin{aligned}
& \left(\forall N \in N, \forall\left(n_{1}, \ldots, n_{n}\right) \varepsilon\{0,1, \ldots, N\}^{n}\right)\left[R\left(\rho_{f}, E\right]_{j=1}^{m} i_{j}^{n_{j}} g(N)\right. \text { is } \\
& \text { [1nite]. }
\end{aligned}
$$

(iti) size $\left(\mathcal{P}_{f}\right)=0(\operatorname{size}(p) \cdot \log (\operatorname{size}(p)))$.

Proof: Take the net $\mathcal{P}_{\beta}^{\prime}$ of lemma 7 and add a place b and a transition which has b as input-place and all $u \in 0^{c}$ as output-places. Call the new net \mathcal{P}_{f}. Together with lema 7 this implies (i). The number of tokens on o is bounded by the WPNC-property of $P_{\text {, }}$, and the number of tokens on each non-designated place $\left(=0 \cup 0^{C}\right.$ of ρ_{s}) is bounded by $g(N)$ by the construction of \mathcal{P}_{b} as noted in the proof of lema 7. As the designated places $8,1_{1}$,in and b are only input-places (ii) holds.
Condition (iii) follows from the obsorvation that both the number of arcs of multiplicity one and the number of places in \mathcal{P}_{f} are bounded by the sum of the degrees of the monomials of p times a constant and that the code for multiple arcs in P_{β} uses space proportional to the code for the coefficients of p.
q.e.d.

The second modification we are going to introduce has the purpose to 'blur' the marking on the unimportant places of a polynomial WPNC sufficiently, preserving at the same time, however, the finiteness of the reachability set.

Definition 15:
Let $f: \mathbb{N}^{m} \longrightarrow \mathbb{N}$ be a number theoretic function, $\mathcal{F}=(S, T$, in, out) a Potri net. F is a blurring WPNC for f iff $\mathcal{F}_{\text {hae }}^{m+5}$ designated places $s, i_{1}, \ldots, i_{m}, 0, c_{1}, c_{2}, \theta \in S$ such that
 ii) $\left(\forall N \in n_{1} \forall\left(n_{1}, \ldots, n_{n}\right) \in N^{m}\right)\left|\prod_{n \in 0}\langle u\rangle\langle 0\rangle\right\rangle^{p\left(n_{1}, \ldots, n_{n}\right)} \varsigma$ $\left.R\left(\mathcal{F}, \prod_{j=1}^{n} i_{j}^{n_{j}}{ }^{n}\right)\right]$, where
$0 \subseteq S$ in the met of nom-dengmated places
(Note that the remehable markdag comeldered in ii) don't comtain tokene on c_{1}, c_{2}, and \bullet).

Theoren 5:
Let $q \in \|_{[1}\left[x_{1}, \ldots, x_{1}\right]$ be a polymonial with monegative integer coofficionte. Then there exiate a Potri not $Q_{e}=(S, T$, in, out) such that
(1) Q_{0} is a blurring WPWC for q with decignated pleces s, i_{1}, \ldots

$$
\ldots, i_{n}, o, c_{1}, c_{2}, \bullet \in S ;
$$

(ii) $\left(\forall \in \varepsilon N, \forall\left(n_{1}, \ldots, n_{n}\right) \varepsilon\{0,1, \ldots, N\}^{n}\right)\left[R\left(Q_{8}, \varepsilon \prod_{j=1}^{n} i_{j}^{n_{j} N_{0}}\right\}\right.$ 1s finite];
(iii) aize $\left(Q_{g}\right)=0($ aize $(q) \cdot \operatorname{Iog}(\operatorname{size}(q)))$.

Proof: (1) Conetruct a λ-IPMC Q for Q, ae in loman 6, with designated placea m, $1_{1}, \ldots, 1_{n}, 0$. To obtain $Q_{6}, Q_{\text {is extended as }}$ followe (figure 7):
a) an oraming tranaltion is attached to each non-deaignated place u of Q, 1.e. a tranaition with input-place u and no out-put-place. Thia is indicated in the diagram by a tranaition

Figure 7:

in the bex for Q which has only an ontoring arc.
b) add the places c_{1}, c_{2}, and e, and the tranaitions shown in the diagram. When the net is started with one token on s this token enables Q to output tokens on 0 as long as the one token received on c_{1} from s romains there. As soon as it is transported to $c_{2} Q$ is frozen and cannot produce any more output. Now $t_{\text {. }}$ may fire up to N times if there are initially N tokens on e, thus gathering at least N tokens an all non-designated places of Q_{e}. Then, finally, orasing tranaitions can generate any number of tokens betweon zero and N on each of the non-designated places. Obviousiy, the erasing transitions don't affect the WPNC-property of Q as they only decrease the markings. By the construction of Q_{e}, if t_{e} ever is enabled, the output on 0 is frozen, so Q_{e} is an e^{N}-WPNC for q for all $N E N$, and it generates any number of tokens up to at least N on the non-designated places. Hence, Q_{e} is a blurring WPNC for q. (ii) For $\left(n_{1}, \ldots, n_{m}\right) \varepsilon\{0,1, \ldots, N\}^{m}$, let $M>0$ be a bound on the markings of the non-designated places of Q, reachable from s $\prod_{j=} i_{j}{ }_{j}$. Such a bound exists as the reachability set of Q at the given initial marking is finite. As Q is frozen when t_{θ} is enabled, $M+N$ is an upper bound on the markings of the non-designated places of Q_{e} which are reachable from $\left.s\right\}_{j=1}^{m} 1_{j}^{n_{j}}{ }^{N}$. But this implies (i1).
(iii) follows in the same way as (iii) in theorem 4.
q.e.d.

VII, Roduction of BPI to FCP

The results of the previous sections now onable we to reduce BPI to FCP efficiently. We prove

Theoren 6:

BPI is polynomal-time-reducible to FCP.

Proof: Given a triple (p, q, n) with $n \in W$ and $p, q \in \mathbb{N}\left[x_{1}, \ldots, x_{n}\right]$ for mome $m \in W$, we firat construct the two Petri nets \mathcal{P}_{α} and Q_{d} as indicated in figure $8 a$) and b). Bench net contains a copy of the λ-WPNC A_{n} for A_{n} of theoram 2 and the bounded version P. of a WPNC for p of theoren 4 reap, the blurring WEWC $\&$ for q of theoren 5 (The start-place and the inpat-placen of the latter have been prined in order to aroid confuelion with the corresponding places of A_{n}). The places e, c_{1}, and c_{2} of ρ_{t} are needed to match the corresponding places in Q_{e} of Q_{4} which don't get blurred in Q_{e}. W.1.g. we iay anaume that \mathcal{P}_{α} and $Q_{s t}$ have the same number of places. If this is not the case a priori one can add further duman places either to \mathcal{P}_{α} which aren't connected to any transition, or to Q_{4} within $Q_{c}, 1,0$. with orasing transitions attached to then and coanected to the transition t_{e} of Q_{e} (figure 7). The count-places in the two nets 'renember' the maximal input to the polynomial WPNC's. Clearly,
\mathcal{P}_{\checkmark} and Q_{y} can be constructed from (p, q, n) in polynomial time (note that in definition 10 the unary length of n was used to define size($p, q, n)$). To conclude the proof it suffices to show

Lemma 8:

$(p, q, n) \varepsilon$ BI $\Leftrightarrow\left\langle\left(\mathcal{P}_{\downarrow}, s\right),\left(Q_{\phi}, s\right\rangle \varepsilon\right.$ PCP.
Proof of the lemma: We assume that the two sets of places are ordered suitably, egg. as follows: first s, then the places of the A_{n}-copies (in the same order in both nets), then count, s', if,....,in, and 0 , followed by e, c_{1}, and c_{2}, and finally the remaining places in the polynomial WPNC's, in any order and independent from each other, including place b of \mathcal{P}_{α}.

Assume first that (p, q, n) ε BPI and consider some marking α of $P_{\text {et }}$ reachable from s which contains c ', $n_{i}, \ldots, \ldots, n, k$ tokens on the places count, $i_{1}, \ldots, i_{1}, 0$, respectively. As the places i_{1}^{\prime},in received c^{\prime} tokens each from A_{n} and as those places cannot receive tokens from other places of $\mathcal{P}_{b}, \mathcal{P}_{b}$ used up c' $-n_{j}$ tokens from the place if (for $j=1, \ldots, m$). As P_{f} is a WPNC for p this implies $k \leq p\left(c^{\prime}-n_{j}^{\prime}, \ldots, c^{\prime}-n_{m}^{\prime}\right)$. The marking on the nondesignated places of P_{b} and on b, e, c_{1}, and c_{2} is bounded by $c^{\prime}+\max \{\|p\|,\|q\|\}$ because of the properties of \mathcal{P}_{b} (theorem 4). Clearly, as the A_{n}-components agree in P_{A} and $Q_{y+\prime}$ the same marking is reachable in Q_{d} as far as the places in A_{n} and s, s,
and count are concerned. Q_{e} may now use $c '-n j$ tokens from each of the places $1 ;, \ldots, i \frac{1}{\prime}$ in $Q_{f f}$, and output any number of tokens up to $q\left(c^{\prime}-n_{j}^{\prime}, \ldots, c^{\prime}-n_{m}^{\prime}\right)$ on 0 . But as $(p, q, n) \in B P I$, $k \leq q\left(c^{\prime}-n^{\prime}, \ldots, c^{\prime}-n_{m}^{\prime}\right)$. In the final stage of $Q_{\alpha f} s$ computation Q_{e} can blur all its non-designated places up to at least $c^{\prime}+$ $\max \{\|p\|,\|q\|\}$ and then reach a marking with no tokens on the places e, c_{1}, and c_{2} of Q_{4}, thus matching the given marking of ρ_{α}. As the reachability sets of \mathcal{A}_{n} and Q_{e} are finite and there is no feedback from Q_{e} to $\psi_{n},\left\langle\mathcal{P}_{d}, s\right),\left(Q_{d}, s D E F C P\right.$.
Now assume conversely that $\left\langle\left(\rho_{\downarrow}, s\right),\left(Q_{\psi}, s \triangleright \varepsilon F C P\right.\right.$. Then a forteriori the projection of $R\left(\mathcal{\rho}_{j}, s\right)$ on the places count, i_{1}^{\prime}, \ldots, $i_{m}^{\prime}, 0$ is contained in the corresponding projection of $R\left(Q_{4}, s\right)$. Consider such a submarking of \mathcal{P}_{\neq}with $c^{\prime}, n_{1}^{\prime}, \ldots, n_{m}^{\prime}, k$ tokens, resp.. As \mathcal{P}_{f} is a WPNC for p we have $0 \leq k \leq p\left(c^{\prime}-n_{1}^{\prime}, \ldots, c c^{\prime}-n_{m}^{\prime}\right)$, and each of these values for k is possible. But, as the same submarking is reachable in Q_{ϕ}, and as Q_{e} is a WPNC for q this implies that $q\left(c^{\prime}-n \mid, \ldots, c^{\prime}-n_{m}^{\prime}\right) \geq k$ for each k with $0 \leq k \leq$ $p\left(c^{\prime}-n_{1}^{\prime}, \ldots, c^{\prime}-n_{m}^{\prime}\right)$. As count may receive any number of tokens between 0 and $A(n)$ we obtain, therefore, $p\left(c^{\prime}-n_{j}, \ldots, c^{\prime}-n_{m}^{\prime}\right) \leq$ $q\left(c^{\prime}-n_{1}^{\prime}, \ldots, c^{\prime}-n_{m}^{\prime}\right)$ for all $c^{\prime} \varepsilon\{0,1, \ldots, A(n)\}$ and all (n_{1}^{\prime}, \ldots, $\left.n_{m}^{\prime}\right) \in\left\{0,1, \ldots, c^{\prime}\right\}$. Hence, $(p, q, n) \in$ PI.

We can now at once derive our main result:

Theorem 7:
FCP is decidable, but the complexity of each decision procedure for FCP exceeds any primitive recursive function infinitely often.

Proof: Each fast decieion method for FCP would yield a fact algorithm for BPI via the reduction of theoren 6, and would thus contradict theorem 1.
q.e.d.

Corollary: The finite equality problem FEP is decidable, but the conplexity of each decision procedure for FRP exceods any primitive recuraive function infinitely ofton.

Proof: Hack's reduction of the general inclusion problem for reachability sets to the equality problen [8, p. 122] preserves finiteness if the reachability sets of the two original Petri nets are finite. The reduction can be effected in polynomial time. Hence, the same argument as in the proof of the theorom applies.
q.e.d.

We remark that theorem 7 and ite corollary actually do not depend hearily on the oncoding used for Potri neta and polynomials as long as the ratio to the particular code chosen in this the-
sis is bounded by a primitive recursive function. In particular, we might use $\log (n)$ instead of n in definition 10 for size (p, q, n).

VIII, Conclusion and Open Problens

The Petri nots that wore constructed in the course of this thesis to demonstrate the computational complexity of FCP and FEP had a priori finite reachability sets. Rackoff's upper bounds for the boundedneas problem [16] shom that the complexity of the contaiment deciaion procedures does not increase substantially in the general case when this information is not given. Thus, the non-prinitive recuraive lower bound for FCP and FEP 1s intrinsically due to the contadment property for reachability sets which - as stated in the introduction - becomes undecidable when we conaider the class of general Potri nete.

FCP and FEP are the firat decision probleme that are uncontrived and whose decision procedures are known to be non-priudtive recursive (as far as one accopts Potri nots and vector addition systems as 'natural' concopts)(we conaider BPI as contrived because the non-primitive recursive complezity is obtained by explicitiy building in a mom-prinitive recuraive function as upper bound for the arguments; such a apecial 'device' does not appear in FCP or FEP).

Anothor subclass of the class of gomeral Petri nots for which the containment and equality problem are knom to be solvable are the reversible Petri neta. It is not difficult to see that the reachability set of a reversible Potri net is a soallinear
sot [9], and the results of Biryukor [4] and Taiciln [18] yield a constructive uniform mothod to obtain this senilinear set. As contadnmont and equality of somilinoar sots are decidable so are the corresponding properties for the reachability sete of reversible Petri nets. It is not known, however, whether these problems are also nom.prinitive recursive. In [5], it has beon shown that the roachability problem for reversible Potri nots is exponential apace complete undor logspace tranaformability.

The concopts used in this thosis do not apply to the reachability problen because WFNC's are not forced to produce some number of output-tokens, and no way is known to build 'strong' Potri net computers for polynomiale restricted to a finite domadn. In fact, the exdetence of unrestricted 'strong' Petri net computers for polynomials (or even only for the squaring fumction) vould imply the undecidability of the genoral reachability problom, contradicting the recent results of Sacerdote and Tomaey [17].

Othor important classes of Petri nots which have been atudied in detail are the persistent nete, and within this clase, the proper subciass of conflict iree Petri note [10, 12]. It is known [12] that the reachability sots of persietent nets are somilinear, but no algorithm has been found so far to obtain these somilinear sots. In [10], anong othora the complexity of
the reachability problem for the restricted class of 1 -conservative Petri nets (which have finite reachability sets) is shown to be polynomial space complete. Besides this special case, no nontrivial bounds are known for the finite reachability problem.

IX. Roforences

[1] Ackermann, W.: Zum Hilbortschen Aufbau dor reellon Zah1en. Math, Annalen, 29 (1928), pp. 118-133
[2] Mdieman, L., Manders, K_{0} : Computational Complexity of Decinion Procedures for Polynomials. 16th IRBE Ann. Ayman Foundations of Computer Science, 1975, pp. 169-177
[3] Baker, H. G.: Rabin's Proof of the Undecidability of the Roachability Sot Inciuaion Problem of Vector Addition Symena. Computation Structures Croup Meno 79, Project MAC, M.I.T., July 1973
[4] Biryukov, A. P.: Some Algorithaic Problems for Finitely Dofined Comutative Somigroups. Siborian Mathenatice Journal, Vol. 8, 1967, pp. 384-391
[5] Cardoza, E., Lipton, R. J., Moyer, A. R.: Exponential Space Complete Problems for Potri Nets and Commutative Somigroups. 8th Ann. ACM Symp. on Theory of Computing, May 1976, pp. 50-54
[6] Eageler, F.: Introduction to the meory of Computation. Acadenic Press, New York, London, 1973
[7] Hack, Mo: Decieion Problens for Petri Nets and Vector Addition Syotems. MAC-TM 59, Project MAC, M.I.T., 1975
[8] Hack, M.: Decidability Questions for Petri Nets. Ph.D. Thesis. TR 161, Laboratory for Computer Science, M.I.T., June 1976
[9] Jaffe, J.: Semilinear Sets and Applications. Master's Thesis. Department of Electrical Figineering and Computer Science, M.I.T., May 1977
[10] Jones, H. D., Lendiveber, L. H., LAen, Y.E.: Complexity of Some Problems in Petri Nets. To appear in Theoretical Computer Science
[11] Karp, R., Miller, Re: Parailel Progran scheatata, JCss, Vol. 3, 1969, pp. 147-195
[12] Landweber, L. H., Robertson, E. L.: Properties of Conflict Froe and Poreistent Petri Note. IR 264, Competer Science Dopartmont, Univeraity of Wiecomein, 1975
[13] Matijasevič, Ju. V.: Paumerable Sets are Diophantine. Soviet Math. Dokl., Vol. 11, 1970, pp. 354-357
[14] Mayr, E. W.: Binige Siitze über Deformungen und vorklemmungsfreie Führbarkeit bei bewerteten Petrinetzen. Diplomarbeit. Institut füri Informatik, Technische Universität München, West Germany (in Gorman)
[15] Meyer, A. R., Stockeyer, L.: the Equivalence Problen for Regular Frpressions with Squaring Requires Brponential Space. 13th IFEP Symp, on Switching and

Automata Theory, 1972, pp. 125-129
[16] Rackoff, Ch.: The Covering and Boundedness Probleme for Voctor Additioa Systons. To appear in Theorotical Computer Science.
; [17] Sacordote, G. S., Tomiey, R. L.: The Decidability of the Reachability Problem for Voctor Addition Systome. 9th Ann. ACM Symp. on Theory of Compring, May 1977
[18] maiciln, M. A.: Algorithaic Problons for Comutative Senigroupe. Soviet Math. Dokl., Vol. 9, 1968, pp. 201204

This blank page was inserted to preserve pagimation.

CS－TR Scanning Project

Document Control Form

Date：1113195
Report\＃Les－TR－181
Each of the following should be identified by a checkmark：
Originating Department：
\square Artificial Intellegence Laboratory（AI）
区 Laboratory for Computer Science（LCS）
Document Type：
Technical Report（TR） Technical Memo（TM）
\square Other： \qquad
Document Information Number of pages：65（70－imnrss） Not to induce DOD forms，printer instructions，etc．．．original pages only．

Originals are：
区 Single－sided or
\square Double－sided

Intended to be printed as：

\square Single－sided or
区 Double－sided

Print type：

Check each if included with document：

Other（note decciptionpreso member）：

\qquad
Scanning Agent Signoff：
Date Received：I113195 Date Scanned：11117195 Date Returned：11122195

Scanning Agent Signature： \qquad

Scanning Agent Identification Target

Scanning of this document was supported in part by the Corporation for National Research Initiatives, using funds from the Advanced Research Projects Agency of the United states Government under Grant: MDA972-92-J1029.

The scanning agent for this project was the Document Services department of the M.I.T Libraries. Technical support for this project was also provided by the M.I.T. Laboratory for Computer Sciences.

