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A CASE STUDY OF INTERMODULE DEPENDENCIES IN A VIRTUAL MEMORY SUBSYSTEM• 

by 
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ABSTRACT 

A problem currently confronting computer soient!Sts is to develop a 
method for the production of large software systems that are ea::sy to 
understand and certify. The most promising .}l~et.~d~ ·involve ~eC,OJ!ll>QSing a 
system into small modules in such a way that tn•_~e ~art,·tew intermddule 
dependencies. In contrast to pre'V'ious·resea~on'; 'tbis:tli~sis,f~uses on the 
nature of the intermodule dependencies, with tt)~ gpal:':'fidentifyin,g and 
eliminating those that are round to '.b~ u~,i:ieqe~_-ary ~ · it1Jp& ·~ ·vlrtual memory 
subsystem as 'a case study'· the thesis de$Qr1~ea a .s~r'\(otq~~ in which apparent 
dependencies can be eliminated. ~~n'4 to· the' nature' 9.~ v!rtuaQ. .. memory 
subsystems, many higher level functlons can be performed by lo\fer level 
modules that exhibit minimal interaction. · The atructuririg methods used in 
this thesis, inspired by the structure _o.(' t}le LI~'.P, ~,9r:1.d Q,f "~oaµc objects, 
·depend on the observation that a subsystem oan maintain a copy or the name of 
an object without being dependent upon the object manage!" •.. Sino.e the case 
study virtual memory su~syst'em is similar to. 't,lla_t. ·qr 't:h,, MuHiqs system, the 
results reported here should aid in the design of slmi,lar so})liisticated 
virtual memory subsystems ip the future. 
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Chapter I 

Introduction 

1.1 Introduction 

This thesis focuses on the interactions between certain components of an 

operating system. Our goal is to show that a nontrivial subsystem, a virtual 

memory (VM) subsystem, can be organized as a set of modules that are related 

to each other in particularly simple ways. The thesis presents the view that, 
•'. 

owing to the nature of VM subsystems, the supporting modules need interact 

only in a few stylized ways. 

1.2 The Problem 

The research reported here is devoted to one a.s~ct of the problem of 

providing correct and reliable components for large-4c~+e co~puting systems. 

The general problem h that it is difficult to maintain and modify, and it is 

particular+y difficult to verify, the correct Q.peratiAJ:i .of. large general-

purpose systems. This general problem is due, in .p&J'.'.t, to an excess!'fftlY hi.gh 

degree of connectivity between system modules. The nature of the interaction 

between two modules is such that the correct operation or one module depends 

upon the correct operation of the other. These interactions are thus evidence 

of intermodule dependencies. 

This thesis treats one aspect of the general problem by examining 

intermodule dependencies in the context of a case study virtual memory 

subsystem. The reason ror limiting the problem in this way is to rely upon 

characteristics that are inherent in VM subsystems to provide guidelines for 

determining classes of dependencies· that may be essential in that context. 
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The specification of the case study VM is based on tbe specifications of the 

Multics [Bensoussan72, Organick72, Multic87~], CAL (Sturgis74, Lampson76], 

Hydra [Wulf74, Jones75], and Stanford Research Institute (SRI) [Neumann75, 

Robinson75] VM subsystems. These virtual memory subsystems, as well as those 

of the Plessey 250 [England72], TSS/360 [Lett68]. and HITAC 8800 [Nakazawa72) 

systems, support shared segments or segment-like objects. Each of these 

subsystems is a relatively complex operatins system component. This study of 

intermodule dependencies in a sophisticated VH subsystem should aid in the 

design o.f similar subsystems in the future. 

The modular structure of a subsysteJI sho~ld have the following 

properties: 1) no one module should be particularly large, 2) the 

interconnections between modules should be simple and few in number, and 3) 

the intermodule dependencies should form a partial order. The primary goal of 

this thesis is to show, in the context of the case study, how such a 

constrained modular structure can be obtained. A secondary goal of the thesis 

is to introduce some novel methods for obtaining this modular structure that 

can be applied to other areas of system design. 

1.3 Method of Solution 

The method of solution relies on established structuring methodologies, 

as well new methodologies developed during the course of this research. The 

established methodologies are described in. this section; the new ones are 

described in the next section, which summarizes the results of this thesis. 

One approach to achieving a modular structure that can exhibit the three 

properties above is called the ob1ect-orienteg approach, in which each module 

is a subsystem that supports all computational objects of a particular type. 

Page 8 



The only way to carry out an operation on a particular type of object is to 

invoke the corresponding managing subsystem. In general, a module that 

supports a certain type of object depends on other modules that support other 

types. Dependencies among these modules are straightforward, since they must 

correspond to the interfaces of the object manager subsystems. 

A second approach for structuring subsystems is the layering approach, in 

which a subsystem is regarded as an ordered set of layers, or abstract 

machines, such that each layer uses the environment provided by layers below 

it in the ordering to implement a more sophisticated abstract machine. The 

important characteristic of this approach is that since each layer is designed 

to operate in an environment provided only by those layers below it, no layer 

embodies knowledge of any higher layer. Assuming that layers are separated by 

protection barriers, the correct operation of a given layer depends only on 

that of lower layers. 

These two approaches illustrate different aspects of modular structure. 

A system organized according to the object-oriented approach appears to be a 

collection of data abstractions. Modular structure is achieved because, by 

assumption, the procedures that are most likely to interact strongly are 

precisely those that serve to produce the same data abstraction. These 

procedures are grouped within distinct type managers. Hence the object

oriented approach should yield a structure in which intermodule invocations 

are relatively infrequent. A layered system appears to be a collection of 

progressively more sophisticated abstract machines. In this case, modular 

structure is achieved because, by assumption, the difference between any two 

adjacent machines in the ordering is rather small. Therefore a module 

comprising only a small collection of procedures should be sufficient to 
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produce a given abstract machine from the.preo~ding one. The layering 

approach should yield a structure consisting of small modules. 

The object-oriented and layering design metnodologies are not 

incompatible; a subsystem can have a str'1Ct11re that is both object-oriented 

and layered. The most straightforward intersection of these two methodologies 

results in regarding each module as both a manager of an object type and a 

layer. In this thesis we do not insist on a one-to-one correspondence; for 

example, some case study VM layers contain several obj~t manager subsystems. 

It is possible to structure a subsystem by either of these methodologies 

so that intermodule dependencies form a Partial order. If the dependencies 

form a partial order, then the process of verifying correct operation can be 

decomposed in a natural way. Since there are no dependency loops, there must 

exist modules that depend on no others. The correct operation of these 

modules is verified first. Thereafter, any module that depends only on 

already-verified modules can be verified. (1) 
'· 

To retain this structure that 

is desirable for verification, we shall inaist on a d•pendency relationship 

among VM modules that is a partial ordering. Since the term "layer" connotes 

a total ordering, we prefer to use the term region. However, wherever the 

context is not sufficiently restrictive, we will use these terms 

interchangeably. 

The intermodule dependencies are classified according to their effects. 

If a specification of module A that does not take time into account can be 

violated by incorrect operation of module B, we say that A has a stropg 

(1) Dependency loops among modules complicate the verification process. A 
technique for breaking dependency loops, called llR!hfjMipa, is described by 
Parnas [Parnas76]. 
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dependency on B. If A does not have a strong dependency on B, but a 

specification of A that takes time into account can be violated by incorrect 

operation of B, we say that A has a weak dependency on B. For example, in a 

layered subsystem a lower layer is, by design, not strongly dependent on a 

higher layer. As another example, two regions that interact only through a 

shared semaphore are mutually weakly dependent. In this thesis, we are 

concerned much more with strong dependencies than with weak dependencies, 

since failure in the case of weakly dependent modules implies only a denial of 

service. We shall use the term "dependency" by itself to mean "strong 

dependency", and "independent" to mean "not strongly dependent". 

Although some novel notions for implementing a VM subsystem do appear in 

this thesis, such notions are not an end in themselves. They serve as a means 

of illustrating a structuring methodology. In fact, there is an assumption in 

this thesis that the machine architecture supporting the case study VM is 

rather conventional. As a consequence some tempting but irrelevant 

mechanisms, often mentioned in footnotes, were not included in this analysis. 

The approach taken in this thesis is to understand and classify the 

dependencies among the case study VM modules. A measure of the success of 

this approach is the extent to which each dependency can be explicitly 

justified. 

1.4 Results 

We observe in this thesis that two kinds of operations are fundamental to 

the functioning of the case study VM subsystem. The first kind of operation 

is one that can associate and dissociate two computational objects. The 

second kind of operation is one that fetches attributes of a computational 
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object when given its name. We derive two atructuring techniques -- one for 

each kind of operation -- that implement each operat.ion in such a way as to 

reduce the number of strong intermodule dependencies'. These techniques are 

patterned after the view taken by the designers of' LISP [HCCarthy62] towards 

the LISP world of atomic objects. By adapting their point of view to the 

problem at hand, it becomes simpler to ident1ff superfluous intermodule 

dependencies. 

Corresponding to the operations that associate and dissociate objects are 

the LISP operations of' binding and unbinding. The obiet virtue of the binding 

notion, from the point of view of this thesis, is that it is a one-way 

relationship: the behavior of object B is unaffected if object A is bound to 

it. Treating the association between two objects as a binding makes explicit 

the nature of the dependency between the corresponding subsystems that 

implement them. 

Corresponding to the operation that caps object names to attributes ·1s 

the LISP notion of a property list. The significant observation concerning a 

property list is that the module that associates the data the·rein wit.h an 

object need place no interpretation on the data. Accordingly, if module c 

associates an object of module A with an object of m'odule·B, its behavior need 

not depend (except possibly weakly) upon the behavior of module A or module B. 

Additionally, we suggest a structuring method that serves the engineering 

goal of achieving economy of mechanism. We refer to this method as the 

principle of the greatest common mechanism. Even in subsystems that are 

well-structured according to the above criteria, a number of modules may 

contain similar or identical functional subsets. For example, the 

specification of several case study VM modules reveals that, given an object 
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name, they return a particular attribute. A supporting module that implements 

this mapping function for the other VM modules could be provided. If the 

supporting module were too small, in the sense that its mapping mechanism were 

not sufficiently general to provide a service for each of the other modules, 

then economy of mechanism would be sacrificed since at least one of the other 

modules must implement. Hs own mapping function. If the supporting module 

were too large, in the sense that it not only provided the necessary mapping 

functions for the other modules but also provided specialized functions for 

some of the modules, then the correct operation of all the modules would 

depend upon the correct operation of these specialized functions. In order 

that the supporting module not err in either direction, it should provide the 

greatest common mechanism, which would consist of the intersection of the 

functionalities required by the dependent modules. 

The principle of greatest common mechanism should be distinguished from 

the principle of least common mechanism, originally suggested by M. o. 

Schroeder and described by Popek [Popek74]. The principle of least common 

mechanism is relevant to the design of a system that contains a aeggri\¥ 

kernel [Schroeder75]. A security kernel is an encapsulated set of programs 

and data that implements the security policy of an operating system. 

Typically, a security policy specifies conditions that must be met before 

information can pass between two users, or between a data reposi:tory and a 

user. The kernel should allow information flow only W'h•n· the specified 

conditions are met. An error in any encapsulated program may allow 

information flow that. is contrary to the policy. One method for reducing the 

likelihood or such errors is to remove all mechanisms not relevant to security 

from the kernel. Although such mechanisms may be common mechanisms, they do 
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not require the high degree of privilege that kernel mechanisms do, and errors 

in their operation may violate the security policy. The least common 

mechanism principle states that such mechanisms should be excluded from the 

security kernel. Popek mentions the subsystem that supports a user I/O 

interface as an example of a mechanism that is often included in the most 

privileged part of an operating system, even though it does not require such 

privilege. According to the principle of least COllllllon mechanism, this 

subsystem should not be included in a security kernel. The principle of least 

common mechanism is thus a means for reducing the likelihood of unauthorized 

information flow, whereas the principle of greatest co1111on mechanism is a 

means for achieving economy of mechanism. These principles are not 

incompatible. For example, the first principle states that the user I/O 

facility should be outside the kernel, and the second principle states that it 

should be a common mechanism. Both objectives can be met if the user I/O 

facility is a common mechanism, outside the security kernel. 

1.5 Rtlated Research 

In the past few years bo.th layered aru;l object..,oriented general-purpose 

systems have been built, providing evidence t_.t these structuring techniques 

can be used in a practical context. More reeently reaearcners nave sought to 

specify and verify the correct operation of syst.em components. As part of 

these efforts, some re.searchers have focu.aed on the nature of modules and 

their interdependencies. 

The layered approach to structuring was employed in the development of 

the "THE" system [Oijkstra68]. More recent exaDQ>les of lay•red systems 
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include the CAL [Lampson76] and Venus [Liskov72] systems, as well as the 

family of systems described by Pa.rnas [ Parnas76]. 

The object-oriented approach was employed in the CAL system, and more 

recently in the Hydra system [Wulf74]. A specification for a layered, 

object-oriented system [Robinson75] has been produced by Robinson and others 

at SRI. However, none of the object-oriented systems has carried this 

structuring approach all the way down to the hardware interface; the CAL 

effort was perhaps the most successful attempt to do so. 

In order to verify correct operation, it is necessary first to define it. 

Naur [Naur66], Floyd [Floyd67] and Hoare [Hoare69] showed that small programs 

can be proved to satisfy a set of assertions. Researchers at SRI, building 

upon these efforts and the work of Parnas [Parnas72] in the area of program 

specification, are developing a methodology for proving properties of larger 

collections of programs. Among the many kinds of assertions that programs may 

be shown to satisfy, assertions about the secure operation of systems [Bell74, 

Neumann75] have probably received most attention. 

Assertions made in the following chapters about intermodule dependencies 

can be justified without recourse to a formal notion of correctness. There 

is, however, an assumption about correctness that is fundamental to this 

thesis: the correct operation of a layer may be determined without regard to 

its use [ Habermann76]. For example, an errant program may appear to "misuse" 

a computer hardware layer if it attempts to divide by zero. However, as long 

as the hardware behaves as specified in this and in other "erroneous" 

situations, it is said to be correct. 

Currently, there are a number of research efforts under way that are 

related to the design of verifiable, general-purpose systems. At SRI, a 
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system design methodology that supports sellli-automated correctness proofs is 

being developed [Robinson75). In an effort described by Schroeder 

[Schroeder75], parts of the Multics operating system are being restructured, 

with the goal of making manual verification possible. Parnas [Parnas76] 

describes a notion of intermodule dependency that serves as the basis for 

structuring a family of operating systems. 

The SRI system design effort is part of a larger effort to develop a 

methodology for designing verifiable systems. The operating system design 

serves as a case study for the methodology. Currently, there are no plans for 

producing an implementation of the operating system design. A significant 

feature of the SRI methodology is that proof of correct operation can be 

carried out as part of the design process. Global assertions, based on the 

specifications of a high-level module, can be proved before the supporting 

low-level modules have been specified. Thus certain classes of 

inconsistencies can be detected as the system is being.specified. As part of 

this effort, the SRI research team has developed se~i-automated tools for 

checking the consistency of module specifications. 

The Computer Systems Research Division of the H.I.T. Laboratory for 

Computer Science is nearing completion of a project that supports development 

of a certifiable security kernel for the Multics system. (1) One activity in 

the scope of this project involve·s a restructuring of the system software that 

manages processor and memory resources. As part of this effort Reed (Reed76] 

has .described a design to simplify t-he management of processor resources in 

(1) Other participants in this project, sponsored by the Air Force Electronic 
Systems Division, include Honeywell Information Systeas .Inc., the MITRE 
Corporation, and Stanford Research· Insti.tute. 
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Multics. In this design, the processor management function is distributed 

over two layers. The virtual processor abstraction provided by the lower 

layer can be used to structure the system supervisor. Janson [Janson76] 

describes a way of restructuring the Multics virtual memory so that the 

resulting modules are 1) responsible for managing distinct data abstractions, 

and 2) small enough to be subject to manual verification. Huber [Huber76] has 

shown how the use of dedicated virtual processors can simplify the structure 

of the Multics virtual memory. These restructuring efforts are all aimed at 

establishing a more coherent layered structure within the Multics supervisor. 

A distinctive aspect of this project is the emphasis on viability: the 

restructuring efforts must be carried out within the constraints imposed by a 

commercially available system. 

Work on a family of operating systems by Parnas and his colleagues 

represents the first total system design effort in which intermodule 

dependencies have received careful scrutiny. Modules interact according to 

the "uses" relationship: module A~ module B if A, in order to function 

correctly, requires the presence of a correct version of B. The system 

structure can be represented as a directed acyclic graph whose edges 

correspond to the "uses" relationship. The "uses" relationship is thus a 

partial ordering among modules. Assuming that assertions about correct 

operation in the Parnas family of systems include assertions about elapsed 

time, then the "uses" relation contains the strong dependency relation, but is 

contained by the union of the strong and weak dependency relations. For 

example, there are weak dependency relations that are not "uses" relations: 

if, by invoking module B, module A can cause another entry to be put into a 

hash table that is maintained by B, then A may be able to cause long hash 
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table searches and resulting degraded service from module B. In this case B 

is weakly dependent on A but does not "use" A in the sense of Parnas. 

In contrast to previous work, this thesis investigates conditions under 

which a module simply maintains bindings to objects, without any embedded 

knowledge of the semantics of the objects. U these conditions are satisfied, 

then the module maintaining the bindings cannot be strongly dependent upon 

those modules that implement the objects. 

1.6 Plan of the Thesis 

The specifications of the case study virtual lllemory subsystem are 

presented in chapter II. First, the notions of an a&stract object and an 

abstract type manager are reviewed. The next section of the chapter describes 

the capability and access control list models of protection, with an emphasis 

on the latter model. Additional terms are then defined, and assumptions that 

further refine the scope of the problem are stated. The final sections of the 

chapter deal with particular issues relating to type &ttension in the case 

study VM, including the relationship of' access control lists to extended type 

objects, and the treatment of directories as extended type objects. 

Chapter III is devoted to the lower layers of the case study VM. The 

mechanisms in these lower layers multipl~x main medloi"y. we present an 

abstract model of a memory multiplexing implementation, based on the 

manipulation of bindings between autonomous, low-level objects. Each type of 

low-level object is shown to be related to the other types in a simple way 

that follows directly from the description of the memory multiplexing model. 

Although one application of the simple model provides a correspondingly simple 

VM environment, additional (i.e. recursive) applications provide progressively 
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more sophisticated environments that approximate segmented address spaces. 

The dependencies among the VM modules that support this recursive design are 

analyzed and justified. 

In chapter IV, the higher layers of the VM are considered. These layers 

are intended to support objects with implementation-independent names and with 

an arbitrary collection of attributes, as well as to support dynamic type 

extension. To provide confidence in the viability of the VM structure, there 

is a section of chapter IV devoted to a description of how this VM structure 

could support any of several possible segmented addressing environments. An 

important common function of the higher VM layers is the mapping of object 

names to object attributes. A layer that serves as a common mechanism for 

supporting these mappings is described. Applying the LISP-inspired property 

list notion and the principle of greatest common mechanism to the 

specifications of the higher VM layers results in a design that eliminates 

unnecessary dependencies. 

Chapter V presents a summary of the research reported in this thesis. 

The assumptions underlying the structuring methods of the thesis are reviewed, 

together with the particular characteristics of a VM subsystem that have made 

them readily applicable. We contrast the structuring approaches of chapters 

III and IV, showing why the former is more appropriate for the lower VM layers 

and the latter is more appropriate for the higher layers. Following this 

summary of the thesis results, we mention some problems that remain, and offer 

suggestions for further research. 
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Chapter II 

The Case Study Virtual Memory Subsystem 

2.1 Introduction 

It is the purpose of this chapter to !!Jpecify the case study virtual 

memory (VM) subsystem. This specific•tion will .serv:e as the context for the 

analysis given in later chapters. The. ca~ study VH has not been. implement.ed; 

rather it is a design inspired by existing VM subsystems, namely those of 

Multics [Bensoussan72], CAL [Lampson76], and Hydra [Wulf74], as well as the VH 

of the system being designed at SRI [Robinson75]. 

Since the VH is expected to support •xt~nded type objects, we begin by 

reviewing the notion of type extension. We then describe how extended type 

objects can be protected by access control lists. Throughout this chapter we 

refer to related work on extensible systems and protecti()n· We include a 

brief description of the representation or autboritY. hierarobies, and of the 
' - ,. ' . ' , L. 

treatment of directories as extended type objects. Tbe next two chapters 

introduce methods for structuring an implEpmentation or this case study VM 

subsystem. 

2.2 Types An.SI.~ Extension 

This section reviews the notions of object types and abstract type 

managers. These notions are fundamental tO the obj'eht-oriented structuring 

methodology employed in this thesis. 

The entities that are manipulated during the course or a computation are 

called ob1ects. Each object is defined by a set of operations. For example, 

a "message queue" object might be defined by the operations "enqueue" and 



"dequeue". The set of objects can be partitioned into equivalence classes, 

such that objects with the same set of operations form a class. Each 

equivalence class is called a ~· Thus "message queue" is the name of a 

type, and there may be many message queue objects that are instances of this 

type. 

Associated with each object type is a subsystem called an abstract ~ 

manager, or ~ manager. A type manager comprises a set of procedur·es that 

implement each of the operations of a type. For example, an "enqueue11 request 

for a given message queue object would be directed to the message queue type 

manager. The type manager would then manipulate the data that represents the 

given message queue object in such a way that the enqueue operation is 

effected. 

There are two particular operations, "create" and "delete", that are 

applicable to many object types. Since it is difficult to regard these 

operations as ones that affect the state of an object, we consider them 

instead to be operations on the type manager itself. This suggests that the 

type manager is an object in its own right. 

The view that "types are objects" was introduced by Jones [Jones73] and 

is summarized here. According to this view, the set of all objects forms a 

tree that is three levels deep. Figure 2-1 is an illustration of the 

three-level tree of objects. A given object has, among other attributes, a 

name and a type. The type attribute is generally the name of a different 

object, one level higher in the tree, that is the type manager for the given 

object. Leaf nodes, such as "message queue 26 11 , correspond to instances of a 

type. Interior nodes of the tree, such as "message queue manager", correspond 

to type managers. The root node corresponds to a special object that has a 
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type attribute equal to its own name attribute. The root node object is, in 

effect, a manager of type managers. It is not only possible to create and 

delete instances of objects, but it is also possible to create and delete type 

managers. Creation of a new object instance is accomplisped by invoking the 

"create" operation of a, type manager. SimilarlJ, creation of a new type 

manager is accomplished by invoking the "create" 01>19ration of the root node 

object. A system that provides for creation or tyf)e managers (Le. the 

definition of new types) is said to support dYna;iO ·!l.11! greation. The CAL, 
' -. ,_ '"' ~ "',5 ' 

Hydra, and SRI systems all support dynamic type creation. The VM of this 

thesis also supports dynamic type creation, not only for the flexibility that 

this feature .provides to users, but more iaportantly because the VM itself is 

organized as a set of type managers so much common mechanism for supporting 

user-defined types already exists. 

In general, the representation Qf an object comprises a set of other 

objects, and a catalog namil'ig ·each member of that .set. We refer to the 

objects in the representation as reprueptation ob tuts, COjponent op.1§t1, or 

components, and to the catalog as the map. An object that is built out of 

other objects is called an extended ~ ?bJec~ (ETO), and its. type manager is 

called an ~xtended ~manager (ETH). 
. . . 
Thus the set or exten~d type managers 

are a proper subset of the set of abstract type m~agera. The notion of type 

extension can be applied recursively, ao a component object may it~elf be an 

ETO. These relatiQnships ape shown in Figure z.;.;2_. Figures 2-1 and 2-2 both 

depict a tree-structured' relationship among objects. These two tree 

structures are independent. The basis of the ~elationship ih Figure 2-1 is 
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type: each child node corresponds to an instance of· the type managed. by the 

parent node. The basis of the relationship in Figure 2-2 is representation: 

each child node corresponds to a representation object o'f the parent node. 

In order to prevent endless recursion, u: ls appropriate· to regard 

certain •1ow level" objeets as being at.omie. Su'oh obj:eots are called base 

level obJepts. Of course, such a distinction is an· arbit.rary bne, since any 

object in a representation tree could ·be chosen· to a base level object. In 

the case study VM, it iit reasonable to consider sepent ob'jeots to be base 

level objects. Even though segments are implemented by more primitive 

objects, subsystems outside the VM cannot access these prbnitiVe component.s. 

The segment object wats described first· by Denrti8 ·· [D$nnls'65], and since that 

time many operating systems. have provided segments or ~im~lar abstractions .. · A 

segment is an ordered ct)llection of storage cells (typicaily words or bytes) 

with an associated name. The address of a oell'within a segment is an integer 

that denotes the position of the cell relative to tl\i beginning of the 

segment. The length Of a segment is equal to the number of cells it contains, 

. which may vary during the course of a computation. The name e>f. a segment is 

location-independent; segment names in the case study VM are non-reusable 

unique identifiers. Since segments may contain elther data or executable 

instructions, the operations defined on segments include "read", "write", and 

"execute". Segments may have a number of attributes, such as "date created", 

and "name of creator". 
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2.3 Protecting ObJect TYJ!e§ 

This section reviews protection mechanisms found in contemporary 

operating systems. The aceess contr.oJ. l.iat 1'8a·ban.1•, :to be provided as part 

of the ca·se study VM, is· described in greater .Aet&U. 

The VM of this thesis provides a meoG&n...._ to. ~s and enforce 

protection policies relating to ot>jects. .Nr:we ;preciely., the VM supports 

protection policies for segment objects and tor all ,£f-Oe aonstructed 

(recursively) out or segment objects. .Aeoeu. t.o an Gi>ject .ts expressed in a 

straightforward way: each operat.ion on an objec.t hae .an associated 

permission. The name of tbe permission is t.ile -.... ae .tbe name of the 

operation. For example, there. are "enqu•n•., and. ""4ueue" permissions for a 

message queue object, and "read", "writ·e"., and."ex•.ute!' permissions for a 

segment object. A collection of acoeaa permissions fQ~ objects is called a 

domain [Lampson69]. A program executing 11 iR a d-in" is constrained to 

perform only those operations that are specified in the domain. Table 2-3 

illustrates a domain comprising ~ocess pe~11ia8101ua f&r three objects. 

permission 

enqueue 

enqueue, dequeue 

read , execute 

Table 2-3 

A Sample Domain 

o.biect ~ 

MQ....23 

MQ.;_31 

segment_16 



The domain model of protection is suft'ioient ,to characterize the 

protection facilities of most current gener-al-PUl"il9~ isystema. In one .. 

realization of the domain model, a d0main is represented as _a set of 

caoabilities [Dennis66]. A capability has two parts: a name of an object, and 

a set of access permissions. ( 1) In order that ihe protection policies not be 

circumvented, capabilities are tamperproof. Presentation of a capability 

specifying a given permission is a prerequisite for performing the 

corresponding operation on an object. Capabilities can be passed from one 

domain to another in order to achieve sharing. 

In a capability system it is not necess~ry that the agent attempting to 

access an object be identifiable; mere possession of an appropriate capability 

indicates proper authorization. In another realization ot the domain model, 

which makes use of agcw contrql l.1JjtA (Sal-t~r75], each ~gent is . . 

identifiable, and has a global.ly recogniz~ llaa,te. ):n acoeas, 1opntrol list 

(ACL) systems, an agent that has the potential to access, .obj~ote is called a. 

principal. A principal JDaY be cbaraclter1z4:t(l ~-- t~ J.nter~ manife-st~tJon of 

authority in a computer system. F.ach princi~ .i,s id;entiO.ed l>y a name kaQ.wn 

as a principaJ, j.dentifier. Every, object has .an as~Q~ted access control list 

that contains ordered pairs of 1) access pera~a'1ons and 2) pr:ineipal 

identifiers. Every time that a principal atte.-pt.s to ref~erute .an object, the 

assoc;J.ated access control list. is searched to det.erm~ wbetber tbe type of 

access that tl'le principal is attempting is allowe<l. (2) tf it is not allowed, 

( 1) The name p~t of a capability may also contain type infona.tion. 

(2) In this thesis we shall use the term- "prino~p-1" in.formally, to replace 
the more precise phrase "processor executing a program on behalf of a 
principal". 
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the attempted reference is aborted. A sample access control list for a 

message queue object appears in Table 2-'t. 

pennission 

enqueue 

enqueue, dequeue 

dequeue 

Table 2-4 

Rtinoip§l 

Smith 

Jones 

Brown 

A Sample Access Control List 

If the ACL shown in Table 2-4 were associated with •MQ_31n, this would 

indicate that the principal named Jones could perform both enqueue and dequeue 

operations on "HQ._31 " • 

The relative mer-its of the capability and AcL· protection mechanisms have 

been described in the literature [Fabry74, Saltzer75]. The VM of this thesis 

provides for protection of objects (i.e. segments as well as ETOs) by ACLs. 

The primary motivation for choosing the ACL mechanism is that a working 

ACL-based system, namely the M.I.T. Multics system, is available for 

inspect.ion and comparison by the author. An additional motivation is that the 

use of ACLs as a means of protecting extended type objects has not been 

explored in the research literature; current extensible systems use 

capability-based protection mechanisms. Providing for variable-length (and 

potentially large) ACLs is a design issue that is not encountered in 

capability-based VM subsystems. 

Page 28 



2.4 Related Terminology and Assumptions 

The purpose of this section is to introduce additional relevant terms, as 

well as some underlying assumptions. The terms introduced here are related to 

those defined in preceding sections. 

We define a protected subsystem to be a set of programs and data that is 

encapsulated so that other programs may invoke those in the set only at 

specified entry points. Programs outside the set are prevented, by the 

encapsulation, from causing arbitrary transfers of control to or from 

encapsulated programs, and from directly accessing the encapsulated data. 

Each extended type manager in the case study VM is implemented as a protected 

subsystem. 

We wish to allow for the case in which each protected subsystem may 

execute in a distinct domain. Accordingly, we specify a one-to-one 

correspondence between protected subsystems and domains. Given our informal 

use of the term "principal", each protected subsystem assumes the role of a 

principal. Consequently subsystems such as type managers that are not 

ordinarily associated with "end users" nonetheless have principal identifiers. 

To summarize, we are assuming in this thesis that "principal", "protected 

subsystem", and "domain" can be used interchangeably. Further, we assume that 

each extended type manager is implemented as a distinct protected subsystem. 

In general, this brief description of the nature of a domain, a 

principal, and related concepts will suffice as a basis for understanding this 

thesis. A more detailed description of the naming of these entities is not 

necessary here. We do assume, however, that each protected subsystem has a 

low-level name that has the form of a system-provided unique identifier. Such 

a name may be the same as the name of a canonical component, or it may be 
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associated with the protected subsystem as a whole. Possible representations 

for the principal identifier names that appear in ACL4 inclcude single unique 

identifiers or a sequence o!' unique identifi«u"'a.. A further discussion of the 

naming of principals, domains, and protected aubaystema appears in.the work of 

Saltzer [Saltzer74) and Montgomery [Montgoaer-y76]. 

Associated. with each object type are two classe.s or principals. First, 

there is a class of principals that are QQWHM£1 of objects of a given type. 

A consumer of a type is any principal that inYolres .tbe corresponding type 

manager. Second, there is a class of princ..ipala {:wi.th only one member) that 

are §W?Dlier;i of a given object type. The supplier of an ETO is the 

corresponding ETH. Using the terminology introduced here, we can charact~rize 

each ETH as the supplier of one object JJPe and the. oonsumer of at least one 

object type. 

In this thesis we do not assume an;v particular relationship between a 

protection context and-an execution sequellOe. Thu,a,_ we wish to allow for the 

possibility that there can be 1) one-to-uny~ 2) one-to-one, or. 3) many-to-one 

relationships between domains and virtual procesaorth ( 1) In particular, we 

generally will not specify the nuat>er of vi~ual prooeasors that support a 

given ETM. 

We do not consider the details of an. interd~in c.OIUlunication mechanis 

in this thesis. However, we do assume that tor any such mechanism, the 

unforgeable identity of the invoking princ.1~1 ia supplied.to the target 

domain. 

(1) A virtual processor may be either a real processor or an abstraction 
provided by multiplexing a real processor. 
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2.5 Authority Hitrf.rohi!§ 

The authority structure represented in an access control list is not 

expected to be static. In this section we summarize one approach, to be 

supported by the case study VM, for implementing a hierarchical authority 

structure in an ACL-based system. 

The operations to di$play and update the contents of ACLs must be 

controlled. Controls can be applied 'if each ACL has an ACL if its own. This 

second ACL might contain permissions for such ope~ationsas "display" and 

"update". ( 1) Controlling access to an ACL via another ACL suggests a 

hierarchy of access control lists. Rotenberg [Rotenberg7~] describes a 

special protected subsystem, called an oftiOe, that can embody the access 

control policies that are likely to be expressed in such a hierarchy.· Every 

ACL is under the control of',exadtly one office, which we shall call its 

controlling office. An office will determine, according to some internal 

policy, whether a given principal (or 'group of prtneipals) can perform some 

operation on an ACL under ·its control. The 'esoape meobanima provided by 

offices eliminates the need tor a hierarchy of' ACLs. 

---------------------~--( 1) We do not specify any controls on the operation of searohing an ACL. 
Rather, we· asst.Ille tbat any prinolp•l~can seal'oli anf ACL. Were this not the 
case, it would be neoessary to determine, by searchina the ACL of the given 
ACL, whether the given ACL could be searched. Clearlh·in order that any 
reference to an object not result in an infinite loop of ACL searches, there 
must exist ;so1tae ultimate, ACL for wl\i(!tl .earehtq il'i \lans4:t'icted •· we specify 
that the ultimate ACL be the same as the original ACL. For those oases in 
which the intornultion in ACLs •at be exploited'' a• a oovel't in-formation channel 
[Lampson73], non-discretionary controls [Saltzer75, Whitmore73] can be used to 
prevent. a principal from Obtaining; such ,tn~oraation.; · ' 
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2.6 Protecting Extended~ Objects .!n !!). Ak1i..,ll!t~§¥~~'1' 

The use of access control list,, ra~r. tnan o~pabil:~ti,es, for protecting 

extended type objects is novel~ This seotioa apeoifi,es the role of ACI..8 in an 

extensible system. 

For every reference to an ETO, at least two ACI..8 •re co~sulted. For 

example, suppose that Smith wi.shes to 4o ·Jn "enqlil4tue", on :MQ...~6, ai_id that the 

(only) component of HQ._26 is SEG_14. Upoa beinc inv~, the ~TM for message 

queues searches the ACL of MQ....2.6 to see if .-n~ ~ enqueue aoQess. Asswaing 

he does, the E'tM searches its map for MQ....2o a,gd .fin4J SEG_l4. To carry Ol;lt 

the enqueue request, the ETM must write into. S.J;~ .... 14.. lt !~yokes the type 

manager for segment objects, which in turn 11~arehe~ t·bo ACL. of SEG_t4 to see 

if the message queue manager has. writE) aaoess,. In general, tbe height of the 

ETD representation tree is a lower bQun~ on tn..n~Jile17_ot distinct ACL 

searches. 

Each extended type object correspond• to the r()f)t nod~ of a 

representation tree. Any other object "X" ifl.;t.he ~r~e·must be .a component of 

some object "Y". We observe that only tee type.manager for Y.mu~t be able to 

reference X. Therefore the only principal that should appear on the ACL of X 

is the principal for the type manager of Y. An ACL with only one principal is 

sufficient for every object in the tree except the root node object. We refer 

to this simplified form of ACL as a degenerate ,A&b. A degenerate ACL can be 

searched fast.er than a normal ACL; thus cl;leoltiftg acc••s~:~o rtPf'eeentation· - , 

objects can be optimized. 

In an AGL-based sys~em, every ETH pert9nas three. b~ic mapping funotiQ~s 

on the name of an argument .. object. First, u,,,eapa the object name to the 

object type, to be sure that the object pas&•d .te it !s one of its own. 
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Second, it maps the object name to the associated ACL, to see if the consumer 

has appropriate access for the requested operation. Third, it maps the object 

name into the set of component objects, in order to carry out the requested 

operation. 

2.7 ACLs Versus Capabilities in Extensible Systems 

The effectiveness of ACLs and capabilities in extensible systems is 

contrasted in this section. An important difference between these two 

mechanisms is that the capability mechanism includes a means for exercising 

dynamic constraints on the invoked ETM. This is because, in a capability 

system, a type manager must derive its permission to access component objects 

from the capability that it inherits for the ETO. Two methods for obtaining 

access to component objects in a capability system are: 1) amplification of 

access rights [Jones73], and 2) unsealing a sealed capability [Redell74]. 

The amplification method is used in the Hydra system. In Hydra, the 

capabilities for the component objects of an ETO are stored in the "capability 

part" of the ETO. Consumers of an ETO have capabilities that express certain 

access privileges; however the capabilities of consumers do not contain 

privileges allowing them to load from or to store into the capability part of 

an ETO. When the supplier of an ETO is invoked, it obtains via amplification 

these "load" and "store" rights that are necessary for manipulating component 

objects. 

The method of sealing and unsealing was pioneered in the CAL system, and 

is used in the SRI system. In the SRI system, each ETM is the sole possessor 

of a special capability -- called a "type" capability -- that permits it to 

perform "unseal" operations on certain other capabilities. Whenever an ETM is 
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passed a capability for one of its own ETOs, it can present that capability, 

together with its type capability, to a lower layer in the system and obtain 

all the component capabilities for the ETO in return. This operation is 

called "unsealing". Since other subsyst8fls d-0 not possess the particular type 

capability, they must regard the capabiltty frW t,be ST-0 •a being n.sealed"". 

Both the amplification and tbe sealt-s ·vtb&d·s pr.ov~~ a finer degree of 

access control to component &bje<}ts tun a ICL~i!!ed ayat:em could provide. 

In the capability systems, ·E'fHs can acee•• t~. ~~t objects only for the 

duration of their invocation. Cohen [Cobeo7'5l ~ils tbis prop&rt-y 

conservati2n, and describes circumtttattCes under 1(1hie it •Y 'f)l'OVe useful. In 

addition, Cohen shows how consumers in ~apabilllty sr&tells may f'ur,ther 

constrain the operation of ETM8 by deli~ly e,cc·lU4in:g certain rights from 

parameter capabilities. In an ACL•based stet.em, &~ ~1namio oonstrainta 

could be enforced only if the interdomain OQIW\Uli(l¢!t,m mechanism lfere 

enhanced to allow cortsumers to express tn.u .e.9ne~r~int.s.. Schroeder 

[Schroeder72] has proposed such enhancements £GI' $1'1 Ji:n~rdomain communication 

mechanism. The VMof this thesis doeis not ~d or;i t}leifi5e enhancements, but 

neither does it preclude them. 

2.8 Directorf e§ il §!tenged ~ ObJepts 

Although this case study VM is strongiy inspired by the Multics VM, one 

of the significant differences is tbat it supports dynamic type extension. In 

particular, directories are ETOs, as in the Hydra and SRI systems. 

A directory object contains a variable nuinber of entries, each of which 

contains a symbolic name and a machine .. orien.ted nue. Operations on a 

directory object inc.lude mapping symbolic name$ into machine .. oriented names, 
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and adding and deleting entries. Sinoe directories are objects themselves, 

the machine-oriented name of one directory may appear in another. 

Consequently, directories may be arranged in a tree-structured hierarchy. 

The directories of this case study VM, are implemented as extended type 

objects, with segments as the representation objects. Segaenta are a natural 

choice tor the representation since, like directories, they are 

variable-length objects. Additional moti'f'allioa for ilipleaenting direotories 

as ETOs is provided in the work of Redell [Redell74] and Bratt [Bratt75]. 

2.9 Snparx 

The case study virtual me11ory subsystem ot this thesis is baae4 ·on tbe 

tt.lltics, CAL, Hydra, and SflI virtual memory subsystems. As such, it should 

provide a nontrivial and practical context for the analysis of the n411xt two 

chapters. 'lbe major objective of the next two chapters is to specify 

intermodule relationships in the VM. A secondary but necessary objective is 
; ' ; ~' . ' " 

to justify the particular modular decomposition of the VM, which is described 

in these chapters. 
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Chapter III · 

Treating Objeotaaa.8~1-as 

3.1 Introduotign 

In this chapter we apply the LISP notion ot oeject bindings to the 

structuring of tbe case study virtual raeaoey (VM) aubsy111tea. To begin, we 

propose that the memory multiplexing tunot1ont. vhich is fundamental t<> a VM 

implementation, should be provided at the lowest level. We then develop an 

object-oriented model of memory multiplexing, in which the objects of the 

model are related by bindings. The utility of this binding model is that, 

even though objects may be related by bindings, the respective object managers 

may be independent. Huch of the chapter is devoted to a description of an 

implementation of the memory multiplexing model that preserves the 

independence or type managers inherent in the raodel. Certain dependencies, 

such as dependencies on an addressing environment, are intrOduced in an 

implementation, however. Finally we show that not one, but several, VH layers 

carry out a 111emory multiplexing function that can be oharaoterized by the 

model. Consequently, observations about an impleeentation, and.about 

dependencies, apply to a number of the layers in the oaae study VH. 

3. 2 Removing Unnecessary Dependencies 10. 1b!, Lour Jl ,1.vers 

In the model for memory multiplexing the operations being carried out are 

merely the manipulations of bindings between objeots. The operations on these 

objects are thus no more complex than the operations defined on LISP atomic 

objects. We show that there are type managers in the lower. VH layers that 

need embody no knowledge of the semantics of certain other types. Rather, 
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these type managers simply store the names of objects of other types in their 

internal data bases. The binding and unbinding operations, which are 

sufficient to characterize memory multiplexing, are implemented as the storing 

and fetching of object names. This chapter concentrates on the parts of the 

VM that provide abstractions more primitive than segments, primarily because 

the application of the proposed techniques for eliminating classes of 

dependencies is most apparent in these lower VM layers. The VM abstraction 

provided by the VM layers of this chapter can be characterized as a 

potentially large number of spaces containing a potentially large number of 

potentially large objects. 

3.3 Plan .Qf the Chapter 

The first section of this chapter justifies the choice of a simple memory 

multiplexing layer as the lowest layer in the VM. This layer provides the 

abstraction of a simple paged addressing environment. The implementation of 

the multiplexing function is modelled as a collection of type managers that 

can associate their own objects with others via explicit binding and unbinding 

operations. We show that these type managers can be partitioned into regions, 

so that the correct operation of one region does not depend on the correct 

operation of another. Next, we describe another layer of the VM that provides 

a memory abstraction that is like a primitive segment. Like the lowest layer, 

this second layer carries out a simple multiplexing function. Consequently it 

can also be structured as a collection of modules with few interdependencies. 

Finally, we describe a third layer that contributes to the VM abstraction by 

providing for a large number of spaces of primitive segment objects. The 

specification of this layer -- to carry out a simple multiplexing function 
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is quite similar to that of the first and second layers. Since the 

specifications of the three layers are quite si111lar, the internal structures 

can be as well. Thus the structuring teclmiqu4ta that are based on the memory 

multiplexing model of thil!S chapt.er can apply io eaeh ot these layers. 

3. 4 Th~ Lowest J;.axer .2! the ~ ~t\l~X Ill ~outs 
As mentioned in Chapter I, it is neceuary to juotify the particular 

modular structure of the case study VM. Since we will specify the case study 

VM in a bottom-up fashion, we first justify the ftmetion$lity of the lowest 

layer. The lowest layer provides for the aultiplexing of' main memory. \ 

In order to support a large number of objects -- whether they be segment 

objects or other abstract object types ...... it is necessary to provide a way of 

multiplexing limited primary memory resources. The representation for an 

object is located somewhere in a hierarchy or storage devices, but during any 

short time interval only a subset of all the ot>ject repfiesentations is 

contained in primary memory. A memory multiplexing mechanism, by moving data 

between primary memory and the various stcn•ate devic~us, provides the illusion 

that all the representations are contained in pri.llary memory. The memory 

multiplexing strategy can be justified as long •s 1) computations exhibit 

locality of reference, 2) there is a spectr1.111 of storage devices that 

comprises large, slow, inexpensive-per-bit devices at one end and small, fast, 

costly-per-bit devices at the other; and 3) the cost of moving informatio.n 

from one part of the hierarchy to another is relatively low. 

We are claiming that memory multiplexing 1a necessary to support a large 

number of objects. In addition, it may be neeesaary to multiplex main memory 

among different parts of the representation or any single object, if that 



object is large. For these reasons we consider a VM model with a simple 

memory multiplexing facility at the lowest layer. 

3,5 Overview of MemorY Mµltiplexing 

The abstraction provided by multiplexing ean be 'deacrtibed in terms of 

several sets of objects. The first set is a large set et state objeots, and 

the second set is a small set of operational objecta. Multiplexing is a means 

for simulating a third set sooh that: 1 ) the size of ·the third set equals the 

size of the first set, and 2) the elements of the third set ar.e operational 

objects like those in the second set. 

In· a VM implementation, the first set oort'eaponds to addl!'essable sections 

of secondary memory and the second set corresponds to addreasable sect1ona of 

pri.Jilary memory. In this thens we refer to the firat set as the set ot .b.Q!n. 

objects and to the second set as the set of ·fttat objects. -Tbe set of home 

objects is assumed to be-larger; 1.e. we aaswn tlle •<>Wit of ,secondary memory 

is greater than the amount of primary memor.y. · Howevw; only the frame ob Jee ts 

ar~ operational objects -- only they can be referenced directly under program 

control without any real-.time delays. The frames .aNt multiplexed among the 

homes to produce a third set of abstract 1nformat1on,eontainers. We refer to 

this third set as the set of block objects. By assumption the home, frame, 

and block objects are all the same size; i.e. they o.ont.ain the um.e number of 

bits. In this pure mellOl'y multiplexing model, there is a one-to-one 

correspondence between·. block objects and home objects. ( 1) 

------------------------
( 1) This pure memory multiplexing model is arbitrarily .restricted to a 
two-level memory architecture. The model could be extended to accommodate a 
mult•1level memor-y archit.eot.ure if the higher level o-e ·avery two devices were 
regarded as primary memory and ·the lower regarded as secondary memory. 
However, explicit consideration: of' multilevel memories is beyond the scope of 
this thesis. 
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3.6 .! Model .2f Memory Multiplexing 

We now examine the objects in the memory multiplexing model in detail. 

Like LISP atomic objects, these objects in the model have bindings, and 

operations to manipulate these bindings. 

To complete the description of memory multiplexing, we need to introd.u.ce 

a fourth kind of object called a mA object. A data object is a fixed-sized 

collection of bits -- the &ame size as hoae, frame, and block objects. It is 

strictly an abstract construct, so there is no correaPQnding physical 

representation. The concept of a data object is necessary for our 

object-oriented description of memory multiplexing. The name of a data object 

is equal to its contents. Thus, if data objects contain K bits, then there 

K are 2 data objects, each with a distinct tc-t>it o,ame. Data objects have no 

bindings, and there are no operations defined on tum. 

The home object is an abstraction of an add.veesable section of secondary 

memory. A home object has a name and a binding. The name of a home object 

corresponds to a secondary memory address. i'er example, in a system that1 uses 

disks to provide secondary memory, the name of: a home object might correspond 

to the union of: 1) a controller number, 2) a device number, 3) a cylinder 

number, 4) a track number, and 5) a record number. The binding of a home 

object designates a data object. Every home object is bound to some (lata 

object; in general more than one home object may be bound to the same data 

object. Since the (only) binding of a home object designates a data object, 

the binding is called the data binding of the home object. There are two 

operations on a home object, called the fetch and store operations. However, 

these operations are defined jointly on home and frame objects, so they will 

be described together with the other operations on fraine objects. 
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The frame object is an abstraction of an addressable section of primary 

memory. A frame object has a name and two bindings. The name of a frame 

object corresponds to a primary memory address. In an implementation the 

frame name would be the absolute address of the first addressable unit (e.g. 

the first word or byte) of the section of primary memory. A frame object has 

a data binding and a home binding. The data binding designates a data object. 

More than one frame object may be bound to the same data object. The home 

binding designates either a home object or a special object called NULL. We 

impose a restriction on home bindings of frames that is necessary for·the 

correct behavior of this memory multiplexing model: non-null home bindings 

must designate distinct home objects. Examples of binding relationships are 

depicted in Figure 3-1. The data, home, and frame objects in this figure are 

the atomic objects of the memory multiplexing model. A reference to the 

information "in" a frame or home object is an informal way of referring to the 

data object designated by the data binding of the frame or home object. 

The operations defined on frame objects are 

1) assign (frame_name, home_name), 

2) release (frame_name), 

3) read ( frame_name, data_name) , 

4) write (frame_name, data_name), 

5) fetch ( frame_name) , and 

6) store ( frame_name) . 

The assign operation sets the home binding of "frame_name" to "home_name". It 

enforces the constraint mentioned above, that no two frame objects may have 

the same home binding. The release operation sets the home binding of 

"frame_name" to NULL. The ~ operation returns "data_name", the current 
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data binding of "frame_name"' while the write operation sets the data binding 

of "frame_name" to "data_name". The effect of each instruction in a processor 

instruction set on the objects of the model can be represented as a 

combination of read and write operations. Tt'e fetch and store operations 

correspond to the I/O operations of fetching information from secondary memory 

into primary memory, and storing information from primary memory into 

secondary memory, respectively. Neither the fetch nor the store operation 

requires a home name as an argument. The appropriate home binding is 
I 

implicit, since it must have been set by an assign operation before any fetch 
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or store could take place. The fetch pperation replaces the. data binding of 

"frame_name" by the data binding of the implied home name. The store 

operation replaces the data binding of the implJed home name by that of 

"frame_name". 

The fetch and store operations are defined jointly on home and fr~e 

objects. F.ach operation requires access to t.he d.at~. _bind in~ .of both a home 
.. '.r ; , i. 

object and a frame object. T)'le assign operation, in contrast, is defined only 
'=.' " . ' : . ; . . ;, - i i ' \ . 

on a frame object. It require.s the name of a home oqjeot as a parameter, but 

it pl.aces no interpretation on this name. n,ie ft9tch ,and ~tore oper~tions 

could be deoo~posed further; e.g. the retch operation ~nvolves: . 1) obtaining 

the data binding of a h91'e object and 2) se.tti~g ,.the data binding of a frame 
- . ~. -t \. \ ' ; . .;'· . . . 

9qject. However, treating fetch and stQre as indivisible operations more 
' ; , __ ' ', ",_ '. 1 ,,, ~~:~:. : ' • ,. •. , . ' 

closely reflects t~e behavior of actual 1/0 commands. 

3. 7 ·. Ih§. Block ,Abstr1ctton 

Up to this point we have described the obje6ts that serve 'I.a codlponent 

objects· tor the block object. The subsystem that acts gs· the 'type manager for 

block objects, which we shall call the block· llYtr·, lianipulates the bindlrigs 

of these component objects to produce the block obj'eot. This section provides 

a specification of block objects. 

As we have mentioned~ in the pure meli101"Y multiple'Xihg model there is a 

one.;..to-one correspondenoe between blocks and homes:.: .. Por exampl~, the set o.f 

home names could also· serve u the set of block· riaes ln a pure memory 

multiplexing scheme. Howver, if a one-to-one correspondence exist.s, the set 

of block names will be as large as the set of home names, and ·tmt1v1Uual block 
',· . ,:- ~, , ' 

names will be quite long. If block name$ were short' (on the order of ten 
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bits) rather than long (on the order of t.wenty bits) then the main memory 

requirements for programs that manipulate block objects could be significantly 

reduced. To economize on main memory usage, we abandon the one-to-one 

correspondence of the pure memory multiplexing model and specify that the set 

of block objects be smaller than the set of holle objects. ln this case, we 

reference block objects with shorter names (called 10911 ma9hine-oriented 

names by Bratt [Bratt75]) and provide operations· to aasociate block and home 

objects. The cost of periodically re-estabU.ahing aeaooiations between block 

and home objects is acceptable, assuming that prograaa using block objects 

exhibit locality of reference. ( 1) Unlike the pure memory multiplexing model, 

the model we have chosen involves two kinda ot multipl'.exing. First, there is 

multiplexing of main memory: the small set or traae1f is multiplexed among the 

large set of homes. Second, there is multiplexing ot the block name space: 

the small set of block names is multiplexed among the large set of home names. 

Block objects ~ave two bindings that are visible above the block layer 

interface: a home binding and a data bin~.... 1be tlolle binding may designate 

a home object or HULL. To allow_ sharing, more thanpi,ie block object may have 

the same home binding. Thus there is no r•&tr!ction .. on ~tie houae binding, as 

there is in the case of frames. A consume!" of a blQCk object ~ay invoke the 

block layer to set the home binding of a blocJc. Thereafter, a consumer can 

reference (Le. read and write) the block d1re°'tly. Ea,Qll r.ef'erence to a ~lock 

object either returns or c~es the data bind.in&.~ Eao,h block object has one 

hidden binding, called the frame binding. The teral. lfhidden." is used. here a.a 

( 1) The general strategy of assigning short, tempc)rary local names to objects 
that already have long' peraanent global. na.a~· 1& employed in wany 
general-purpose operating systems, including the ttlltics, Hydra·, and CAL 
systems. 



Robinson has defined it [Robinson75], meani~g that consumers of block objects 

cannot determine the existence of the franie binding. The frame binding 

designates either a frame object or NULL. 

The block layer provides not just one, but rather several, spaces' of 

block objects. These spaces of block obj~ct~, ~alled q,9ck fPfCfS, form the 

addressing environments for various subsy~~eas in the system supervisor. ( .1) 

In particular, some subsystems in the VM execute .. ~n a block space addressi~ 

environment. Other subsy~tems in t~e case stud1 VM rely on more sophisticated 

memory abstractions such as segmentation. 

1) 

2) 

3) 

4) 

There are four visible operations defined on bloo.k objects. These are 

init.iate (block name, hQme name), 
, -- ,._,··,. ~ '·· 

terminate ~block_name), 

read ( block_name, data name), and 
~,. 

write (blook_name, data name). -· ~, '. 

These four operations, unlike all the operations defined on frames and homes, 

can be invoked by programs outside of the block layer. In the case of each of 
' +:,, ,. 

these operations, the particular block space is an implicit additional 

argument .. The iniq.ate operation replaces the home binding_ of ~block_name" by 

"bome_name". The termtn•~-e o_peration replaces the home binding of 
; ;;y·. ' 

•block_name" by NULL. A principal can therefore control which homes are bound 

to blocks in its block space by means of the initiate and terminate 

operations. The ·.tnsl and wfitg operations an· anal.ogous to the read"'and write 
. ' ' . - ,. . ' .•. . " ~. '' . ' '"' . . - - . . -.· " . ~ .. 

operations on frames. Any instruction referencing a block (e.g. "exclusive OR 
;H.f. 

(1) A "level one processor" in the two-level iaplement.ation of virtual 
processors described by Reed [Reed76] is an exaapll;'·-C)t"a 'subsystem that may 
make use of a block space as an addressing environment. 
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to memory") is implemented in terms of the read and write operations. 'nle 

two operations for manipulating the (hidden) frame binding of a block are 

1) connect (block_name, frame_name), and 

2) disconnect ( block_name). 

The connect operation sets the frame binding or "blook_name" to "frame_name". 

The disconnect operation sets the frame binding of "blook_name" to NULL. 

These two operations can be invoked only by programa irt the block layer. 

Any processor instruction that references a block object does so using a 

two-part address of the form 

(block_name, offset). 

The offset is typically given in units of words or bytes. 'nle value of the 

offset is irrelevant in this memory multiplexing model; all write operations 

on a block change the data binding and all read operations leave it unchanged. 

The block space addressing environment is similar to that provided by the 

TENEX system [Bobrow72]. (1) 

The objects of the memory multiplexing model, and the operations on them, 

have now been defined. Each of the operations, except fetch and store, 

involves only the manipulation of a binding designating some target object. 

In verifying the correct operation of a module that manipulates a binding* the 

(1) In TENEX the blocks, which are 512 words in size, are considered to be 
concatenated so that they form a single linear space. To reference 

(blockname, offset) 

in TENEX, a single address with the value 

blockname • 512 + offset 

is presented. 
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semantics of the target object are irrelevant. ?here ta· ·no strorig -depe.ndenoy 

on the module managing the targ.et object;. 

3.8 Overview 51.f.. B!ogk Laxer Implementation. 

We now consider how the bindings of home, frame,. and block objects might 

be implemented. It. is the intent in this sect.ion, as well as in following 
'-··, .. 

sections that describe some aspects of the implementation in greater detail, 

to show that the modular independence inherent in the multiplexing model oan 

be preserved in an implementation. 

The representation of any data binding is impl!Cit, in tne sense that. t-he 

data binding of an object.!!. the contents of the object. The remaining 

bindings, on the other hand, are implemented in distinot. data structures. One 

straightforward way of implementing these bindings is to use tables such as 

those shown in Figure 3-2. The block soace table of Figure 3-2a represents 

block space table framelist 

0 HULL HN;..42 I NVW. I. 
I 
I 

NULL NULL . HN_21 I 
I 
I 
I 

2 FN_5 HN 16 llI · H_,-33 I - . .I 
I 
I 

3 FN_4 HN_67 HN :: home name .JijU.. I 
t 

I 
4 FN :: frame .name ~ .. 67 I 

1. 
I 
I ., 

. ; 1 .HN_t6 I 
t . ,.~ I 
I Figure 3-2 I I 
I I I 

~ 
Figure 3-2 a ~ 

Ftgure 3-2 b 

Tables Representing Frame an4.HQ11e ~indirlgs 
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the home and frame bindings of each blook in a block apace. The framelist 

table of Figure 3-2b represents the home binding of'Qeh frame in prillary 

memory. There is one framel 1st , but. ther• are aa many block space tables as 

block spaces. Because these two kinds of tables support distinct object 

types, they are managed by distinct subsystems within the block layer. The 

subsystem that manages the bindings of block objects, by manipulating entries 

in block space tables, is called the b:J.oolc Ublu•r. The subsystem that 
( ~ ' 

manages the bindings of frame objects, by zaanipulating entries in the 

framelist, is called the fru9 puplaxer. The frame sublayer performs fetch 

and store operations, so it manages data binding• or home objects as well. 

Block layer programs can reference these tables as b.look objects, since the 

addressing environment of the block layer (to be deaeribed in the next 

section) is a restricted form of block a.pace. 

We can now describe the effects of the initiate, te1'111inate, assign, 

release, connect, and disconnect operations on the data basea of the block 

layer. It is not necessary to consider the eff'eota of read, write, fetch, or 

store operat.ions since these operations reference only data bindings, and 

therefore do not affect the data bases of Figure 3-2. 

A block space table that. containe N ordered pair• of the form 

<frame name, home name> 

can describe a block space of N &locks. Initially, 1"llY of th~ ordered pairs 

in a block space table may consist of two null ooaaponents. (1) 

(1) Even in a "new" block space, however, sonae blocks will be associated with 
common utility procedures and procedures that serve as toeholds to the block 
layer. Similarly, the· diatrfbuted ·aut>ervi&Or· of tbe··fikll'tios· system appears in 
every newly-created Multics address space. 



Initiate operations set the home name parts of the ordered pairs; 

initiate (3, home_name_67) 

sets the home name part of the 3rd ordered pair in the. block space of the 

caller to "home_name_67"; i.e. the home binding of block 3 is now the name 

11 home_name_67 11 , as shown in Figure 3-2. The frame name part of the ordered 

pair is set by the connect operation. Performing the operation 

connect (3, frame_name_4), 

sets the frame name part of the 3rd ordered pair in the block space ta.ble to 

frame_name_4, as shown. Entries in the framelist are set by the assign 

operation, so performing the operation 

assign (frame_name_4, home_name_67) 

sets the 4th entry in the framelist to home_name_67, as shown in Figure 3-2. 

The respective inverse operations -- terminate, disconnect, and unassign -

set values of bindings to NULL. 

As mentioned, block space tables are implemented as blocks and tnerefore 

have underlying frames. The frame name of the block space table associated 

with an executing principal is stored in a special processor register. 

Virtual addresses of the form 

(block_name, offset) 

are converted to absolute addresses by the simple calculation 

address = frame_name_part (table + W*block_name) + offset; 

in which "table" denotes the frame name of the block space table and W denotes 

the number of words occupied by each entry in the block space table. The 

value of "address" is simply storage location number "offset" in the desired 

frame name. Thus read and write operations on blocks are mapped into read and 

write operations on frames. 
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As mentioned above, the block layer "18as ~l.:OCk s.pac,es for its addressing 

environment. The procedures and dat.a »•.:siea of the bl.Q.Clc lafer are addressed 

as blocks. The particular block spaces Uaed Of .t~e b,lock layer are called 

basic block spaces. 

The addressing environment of the baa~c plo'ck s~ce is preset; programs 

executing in the basic block space do not ;perfOl"m ini:tiate or terminate 

operations. Furthermore, the frame bind.ing .CJi! ev.!fAry .block is· guaranteed to be 

fixed and non-null. Since blocks in the be,sic block ~pace have fixed, 

non-null frame bindings, they do not need (.or ·ba.v:,e) non:"'null home bindings. 

Only the data bindings of the blocks (and µnd.er:lying ·frames) in a basic block 

space can change. As a con,sequence, the bl~k ~yar never need be invoked to 

manipulate its own addressing environment. Unlike ·the block space abstraction 

that the block layer provides, the basic bloc.k space that tt· uses is 

completely static. The motivation for int.$r~4tittg th'is static environment as 

a set of blocks is merely to achie.ve e-001lQl!Y of .hard.ware (or firmware} 

mechanism. Just as there are a number of 'lr~l} blOO:k spaces available to 

support supervisor subsystems, so are thel'e several basic block spaces 

available in order to isolate functi0:nal <>empounts of t.he block layer. 

The basic block space addressing enviromaent .is e·ssentia.lly the same as 

the environment provided by "level 011 in P.arnas' fam-ily of operating systems. 

It is also quite similar to the environment provided by Multics "unpaged 

segments". ( 1) 

(1) Multics unpaged segments are.not of uniform length. Rather, the length is 
dictated by function, to conserve primary:memory •. Biocks in a basic block 
space may also be allowed to be differ•nt lengths, without complicating the 
supporting mechanism. 
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3.10 H&Ddling Frame Faul&s 

In preceding sections we have described tlle objects of the memory 

multiplexing model, and suggested an under~ying impleJUntation. The block 

sublayer implements the ,bin4ing.s of block obj~cts, and the frame subh.yer 

implements the binding!! of fraJlle and hom~ ob~eots. lo aodition to these 

subsystems that serve as type managers for objects of the_ mult:1,pl.exing model, 

there are additional t>loc.k lay.er subsystems th~ ,,fnv.Pke these type managers. 

These subsystems, which allocate frames on demand to support consumers of 

block. objects, are described in this section~ , 

If a principal references .a block with a null fr~e. binding (but with a 

defined hoiae binding) then a frpe fp.µlt occurs. In thi~ thesis we, choose to 
''·. -

mod.el the handling of a. fr81Jle fault· by two cooperat.1{\& principals: a 
I ' ' ' ~ '~~ ' • ~ ' 

frame-claiming principal a,nd a frame-f'reeipg principal. . ~o.h of these 

principals executes in a buic block space. The. fr~e oJ.aim~r l>rovid.e!' the 

faulted block with a supporting frame. The frame freer wrests frames away 
' . . 

fro• blocks,, in an orderly manner~,. ( 1 ) . ' "'·• .,, 

Providing ~1.i~tinct pr)Acipal,s t.hat ha,ndle fr~e tau~~;, is, oonsist:ent with 

the principle of least privUege 1Salt.~er74J, since h~J.ing a. frame fault 
- ' - • ' < :,. ·' - :· • • ••• ··-:-· •• ·.,: • ,. "' • 

does not require access to programs or <l~ta of the f'~u~tw principal. 
. ', . . . . . "-~ . ' ' . . ' 

Furthermore, if the frame cla1-er and frame !rear ar,e ~l,uented as . (" 

lo.o.aely'"!'coupled virtual pro~e.sa<;>r~,.:.system p~tor~oe may, _improve a:s .a resijlt 

or their parallel activity. , other ~van,.t~~ _o! -~Pl-..~t,w thesEl:, two VM 

mechanisms in distinct virtual proc'1Jssor:s are . .gj..Vf#n QJ .. ·~~~ LRee476]. 

------------------------( 1) An experimental version of the Multics paging softwar-e developed by Huber 
[Huber76] makes use or a dedicated virtual processor for the frame freer. 
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The frame claimer and frame freer are deacribed briefly. The intent here 

is not to show algorithms in detail, but. rather to lndicate how these two 

principals invoke the block and trame sublayer• to manipulate the bindings of 

block, frame, and home objects. Although ,mulU.ple 'tcra.me claimers and freers 

could exist, this description is sufficient only -ror a single fral!le claimer 

and a single frame freer. 

An explanation of some terms and notation is necessary, before listing 

the steps followed by the frame claimer ams frame freer. Each step in the 

frame claimer and in the frame freer corresponds to one invocation of either 

the block or frame sublayer. The steps below tbat invOke the block sublayer 

begin with "[B]", and those that invoke the ~sublayer begin with "[F]". 

Some of the steps correspond to utility ftmctions provided by the block or 

frame sublayers. The remaining ste,ps corr.spond to bind'ing manipulation 

operations, such as the "connect" operation, that h&'f'e been described 

previously. 

A frame is called a free frame if its hone binding is null. The list of 

free frames is implemented as a thread running tbroUgh the framelist. 

Associated with each frame is a list of ordered pair's called a trailer list. 

The first component of each pair designates a block space table, or 

equivalently, a block space. The first cOllli)onent can be implemented as the 

frame name of the block space table. The second component is a block nt11t?er, 

or block name, in t.he given block spac-e. A tr•1ler list indicates those 

blocks (in respective block spaces) that are bound to a frame. 
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First we sketch the operation of the frame claimer. Any principal that 

takes a frame fault invokes the frame claimer. The fll'guments passed to the 

frame claimer are a (block space, block name) pair. The frame claimer carries 

out the following steps. 

1. (BJ Obtain the home binding of the (block ~pace, block name) pair, 

i.e. get a home name. 

2. (F] Determine if there is any frame that is boµnd to this home. If 

so, get the name of this frame and go to step 7. 

3. (F] Get the number of free frames. If this number is less than a 

certain threshold value, signal the frame fr~er. If there are no free 

frames, wait for a signal from the f.~ame freer. 

4. (F] Select a free frame. 

5. (F] Assign the home name of step 1 to the frame name or st~p 4. This 

decrements the number of free frames. 

6. (F] Perform a fetch operation on the chosen frame name. This updates 

the data binding of the frame. 

1. (F] Add the (block space, block name) pair tp the trailer list of the 

chosen frame. 

8. (BJ Perform a Q_~D~tsit operatiori, which sets the frame binding of the 

block in the (block sp~ce, block name) pair to the chosen frame. 

Page 53 



The frame freer is activated whenever the frame claimer detects that more 

frames should be freed . The frame f'reer car-ri•• out the following steps. 

1. [F] Get the number of free frames. lt ttte Mltber is greater than 

zero, signal the frame claimer. lt tbe nUll>ber is greater than the 

threshold value, wait for- a signal f'i'Glr. the rrae claimer. 

2. [F] Select a frame that is not free. At least one block must be 

bound to this frame. 

3. [F] Find a (block space, block n:aae} pair in the trailer list or the 

chosen frame. 

4. [B] Disoonnect the chosen frame troa tbe t>lock found in step 3. 

5. [F] Remove the (block space, block nae) pair found in step 3 from 

the trailer list of the chosen frame. 

6. [F] If the trailer list is not empty, go to step 3. 

7. [F] Perf.orm a store operation on the choan rrue name. This updates 

the data binding of the associated. home. 

8. [F] Perform a releate operation on the chosen frame. 'nlis increments 

the number of free frames. Go to step 1. 

The binding states that correspond to steps in th.e claiming and freeing 

sequences are shown in Figure 3-3. Initially,. a ~!Ven block, frame, home, and 

data object are in state A. In state A, the various bindings are as they 

should be following an initiate operation. The trame claimer operates on a 

collect.ion of objects that is in state A. Steps 5, 6, and 8 of the frame 

claimer cause state transitions to states B, C, and D respectively. The 

respective operations performed in these stepa are assign, fetch, and connect. 

The frame freer operates on a collection of objects that is in state D. Steps 

4, 7, and 8 of the frame freer cause state tranaitions to states C, B, and A 
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respectively. In this case, the respeotiv• operations are diaoonneot, store, 

and release. (1) 

Of the sixteen steps listed above, six oorresp()nd to binding manipulation 

operations. The other ten are utility fun·otiona pro¥1ded by the frame or home 

sublayers. These utility functions require their own supporting data 

structures. For example, step 2 of the frame claimer must locate the frame 

that is bound to a given home. It oan. do so efficiently by searching a 

balanced tree (Knuth73], with as many nodes as there are fratMJs, in which each 

node maps a home name into a fraaie name. As ~other exEllllf)le, the frame freer 

must have an efficient way of unbinding a traae ()ISJ.Ct rroa a set of block 

objects. The trailer list provides an efficient way of locating the blocks 

that are bound to a frame. (2) The trailer list provides an efficient way of 

locating these block objects. Of course, these dat..'· straoturea that support 

the utility functions are accessed only by the appropriate type managers; e.g. 

only the frame sublayer accesses the trailer list. 

(1) If a block in a block space has a non.null frame binding, then the home 
binding of that block may be found either 1) in the block space table entry 
for that block, or 2) in the framelist entry tor _.. n-a. <triigna\ed by the 
frame binding. Although this redundant inroraation.Q.n.be, toierated in a VM 
model, it cannot be in a practical iraplttmentation, since it wastes memory 
space. In an implementation, a block space table entry would contain either a 
home name or a frame name. The connect operation would replace the home name 
by a frame name, and the disconnect operation would replace the frame n•e by 
its home binding, to be found in tne frala~list. 

(2) This method of recycling fr~s, by rnoving their names from block space 
tables, is similar to the method used in Multics. Another strategy for 
managing the bindings between blocks and frames would be to put unique 
identifiers, rather than frame names, in the block space tables. These unique 
identifiers could be mapped into frame names using a central, hardware
supported associative memory. In this case a fraae could be unbound from a 
set of block objects merely by deleting the corresponding (unique identifier, 
frame name) pair from the associative memory. Building an associative me$ory 
of the required size and speed seems within the state ot the art. 
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3.11 Dependencies of Regions Within the Block Layer 

In the preceding sections we described four subsystems that are part of 

the block layer: the block and frame sublayer and the frame claimer and 

freer. In this section we examine the interdependencies among these four 

subsystems, and show that only a few strong dependencies exist. 

The strong dependencies that do exist include dependencies on an 

addressing environment. Each of the four subsystems executes in a basic block 

space. Since, as mentioned before, the basic block space environment is quite 

static, only the data bindings of the supporting objects ever need to be 

changed. Other bindings do not change; for example, a block in a basic block 

space is permanently bound to a particular frame. Only the read and write 

operations on blocks, provided by the block sublayer, and the read and write 

operations on frames,. provided by the frame sublayer, are needed to support a 

basic block space. Thus any principal that executes in a basic block space 

strongly depends on the parts of the block and frame sublayers that support 

the read and write operations. 

These parts of the block and frame sublayers, on the other hand, do not 

depend on any other parts of the block or frame sublayers. The read and write 

operations for frames merely manipulate data bindings of frames. The read and 

write operations for blocks map block names into frame names. Although the 

mapping relies on parameters from block space tables, these block space tables 

are referenced only to effect read and write operations for blocks in a basic 

block space. The remaining parts of the block layer never reference these 

block space tables since the basic block space environment is a static one. 

In summary, each subsystem jn the block layer depends on the mechanisms 

that provide read and wrjte operations for block and frame objects. The 
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correct operation of these nrechanistns, -on tlte other hand, does not depend on 

any other block layer facility. It ttten aeema reasonable to separate these 
,. ' 

read and write mechanisms from their respective block and frame sublayers, 

since they represent a greatest common aechanlsm. Since these mechanisms 

would be implemented in hardware in a praatlcal system, they would be 

protected from interference by block Slibl&fet" and frat1e sublayer programs. 

We now consider whether the frame tAer anci' f'rae claimer depend strongly 

on the block and frame sublayers. They ~talaly depend weakly on the block 

and frame sublayers, since their rate of progress ls cotitrolled by the values 

of arguments returned by those sublayet's. The interface to the block and 

frame sublayers can be specified in such a way that their erroneous operation 

would only delay the progress of' the rraM clalller and.freer. Designing the 

interface in this way can ~ useful; tor ex•ple, the t'rame claimer and frame 

freer could be implemented, and then tested Q81ng dwmny arguments, before the 

block and frame sublayers were implemented. tf eur,specification Of the frame 

claimer and freer were that they manipulated waintetopreted arguments, then 

they would not depend strongly on the bloo-k and true sublayers. However we 
' 

specify that the frame claimer must coerce frue objects from the free state 

to the claimed state, and the frame freer 11ust etteot .the reverse transition. 

The frame claimer and freer cannot satisfy this specification unless the 

underlying block and frame sublayers operate correctly. Hence, the frame 
. ' 

claimer and freer depend strongly on the block and frame sublayers. 

It may seem tempting to specify that subsystetas such as the frame claimer 

and frame freer simply manipulate uninterpreted arguments. the block and 

frame sublayers have been given such a specification. As one moves up in a 

hierarchy of abstract machines, however, What a~pears to be uninterpreted data 
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at a given layer can and generally should be considered to be an abstract type 

at a higher layer. If many modules in a complex system are insensitive to 

errant behavior, it becomes extremely difficult to isolate the erring modules. 

We emphasize that we are not attempting to eliminate every intermodule 

dependency; this is neither possible nor desirable. We are trying to 

eliminate unnecessary dependencies, and loop dependencies in particular. 

With the exception of the strong dependencies just described, there need 

be no other strong dependencies between subsystems in the block layer·. The 

block sublayer does not depend on the frame sublayer, and vice-versa, since 

neither interprets bindings to objects managed by the other. Even the utility 

functions that are performed, such as the traversal of a trailer list, are 

carried out without interpretation of object bindings. In addition, the frame 

claimer and frame freer do not depend strongly on each other, since their only 

interaction is to synchronize their progress. 

The block layer itself is strongly dependent on all of its components. 

The block layer depends on the block sublayer to maintain the proper 

correspondence between a block object and a frame object. If the block 

sublayer returned some other frame name, the data binding of a block object 

would be affected in a way that would not correspond to the specification of 

read and write operations for blocks. In particular, a read operation on a 

block might, in violation of the specification, cause the data binding of the 

block to change. Similarly, the frame sublayer must always choose the home 

name corresponding to a given frame name when undertaking a fetch or store 

operation. If it chose some other home name, the data binding of a block 

object could be changed even though a write operation had not been performed. 

The block layer is strongly dependent on the frame claimer and frame freer as 
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well. By operating incorrectly, either of these two subsystems in the block 

layer could change the value of an object b1ndib&. &tch an erroneous 

modification would prevent the blaek lay•r from meeting its specification. 

The dependencies among block layer modules are· 1llwrtrated in Figure 3-4. 

The block layer provides not only a ,Primitive virtual memory for the 

layers above it, but also the heart of the mee~ni• netQ.ed to impleQlent the 

segment object. In this section we desc~~be anot~r reaion in the case study 

VM that is necessary for the support of segments. 

The block space abstraction can be chareacterized as a S111all number of 

spaces containing a large number of small obj_eots. In contrast, the 

abstraction specified at the beginning of this a chapter is a potentially 

large number of spaces containing a pot~ntiallJ l~g• nuiaber of pot,enti•lly 

large objects. To extend the block space ab•traQtion to the desired 

abstraction, there must exist facilities tor: 1) making large spaces (or 

objects) out of small ones, and 2) growing and al'lrinking the size of spaces 

(or objects). The first facility is provided ~1 ~he block layer subsystem. 
' ' 

We now describe the second fac~lity. It provides for the allocation and 

freeing of home objects. Allocation and treeing ot home objects is an . . . ' : . 

economic necessity since the number of ~ome obJects is finite. We refer to 

the layer that performs these functions as the llt!a!. tlle$1~1on layer or ~ 
~ ; 

allocator. The two operations provided by thi' ;ayer are 

allocate (home_name), and 

free ( home_name) • 

i The home name is an output argument in the first operation and an input 
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argument in the second operation. The specification of the home allocator is 

quite simple: to change the state of "home_name• troa free to allocated, or 

vice-versa, on any invocation. 

The home allocat.or maintains a data baA that indicates whether or not 

any home object is allocated. 'n\is data bue, cal.l.e<t'tlle h9f1!lia\, may in 

general be large enough that only portions ot it oocl,lpy, primary memory at any 

time. ( 1) A natural way to multiplex priaary .-ory ..Ong portions of the 
',~ 

homelist is to implement the hollelist aa a set of bl-oak object.:s. The home 

allocator is thus a ecmaumer of the abstreotion provida\t by the block layer. 

3.13 Depenge$1,s• Bflwe•n lha Blgck Jml Jim. Alil&S'MlMW» '-axerp 

As mentioned Def.of'&, ·the addressing •virot..Jt of" Ute block layer is 

static. The bloolc layer does not need to ·,...u.eat tbe allo0ation or freeing of 

homes. Hence it does not depend on the bQae allocator. The home allocator, 

which is a consumer of blook objects, doel depeftd on the block layer . 
. i . ~_;.· • 't ·~ . , 

To see how the home allocator might depend on tbjl block layer, we need to 

consider: 1) how the home allocator uaes bloek objeC!ts, and 2) the failure 

' 
modes of the block l.a,.r. Since th' blooa rorminl the nomelist are supplied 

by the bloc:k layer, and.&ince the bloc:k la,.er migbt;:Qail"to aaaage object 

bindings properly, the bomelist could bec:oa• garbled. Conseq~ently the 

"allocated" attribute of a home may no longer be corTectly represented. The 

home allocator might therefore allocate tbe saae borae object twice, without 

any intervening "free" operation. Siaee~,tl\e home allocator programs could not 

detect a garbled homeliat (unless Ndwi<h•t int...-ton .were kept in the 

--~------------·---------
(1) The M.I.T. Multics data base that correaponda to the homelist currently is 
about 500,000 bits in size. 
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homelist or another data base), they could continue to ,ope.rate \.Ulperturbed. 

In a narrow s.ense, the bome allocator would be operating "9orre~tly" siiice a 

failure of the block layer would not cause it to "b::J..ow i.iP".. However, a 

failure of the block layer can cause the speoificatioq of .tbe home allocator 

to be violated. According to our <!efinition ot (~tr:ona> dependency, the holl!S 
• • ' , ,/ ~ • , • < ·~ ' • , 

allocator thus depen<ls upon the block layer. 

3.14 Soecification .2f. Large Block Ob1ects 

The block layer together with the 'home illocation layer produce an 

abstraction that can be characterized as a small number of spaces containing a 

pot.ent.ially large number of small objects. We now extend this abstraction, to 

one that can be characterized as a small n~ber 'or ap.6es. containing a 

potentially iarge number~ or p()tentliu.ly large objects~ "l'hese objects, called 

large blocks, are addressed just like block objects, Le. via 2-part 

addresses. The maximum length of a large block, ho'"9ver, is much greater than 

the small, fixed length of a' block object. Since large bloek8 are to be 

variable-length objects, we specify an operation, 

set_length (large_block_name, length), 

that can grow or shrink the current length or·a large block. '!be initial 

state of a large block (which includes a current length) is specified in an 

initializing operation 

initialize (large_block_name, initial_attributes). 

By definition the initial contents of any part of £tie large block between the 

beginning and the current length is zero. Reading or writing a large block at 

a point beyond the current length causes an error. 
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3,15 Implementation of barge Blocks 

Each large block can be represented by a table called a lam block 

table, (LB table) which contains M ordered pairs of the form 

<frame name, home name>. 

The home named in the i-th pair contains the data of the i-th piece of the 

large block, and the frame named in t.he i•th pai.r designates the current · 

primary memory frame (if any) for the data. A large block table may contain, 

in addition to the ordered pairs, certain attributes of the corresponding 

large block object. 

Although there is a considerable difference between the block and the 

large block abstractions, there is a significant common mechanism for 

supporting them. Many of t.he operations that need to be performed on a large . . ' . 

block table to support large blocks are the same as those that must be 

performed on a block table to support bloc-ks. For UBllPle, 1) adding a new 

block to a block space and 2) adding to the amount of (nonzero) information 

in a large block can both be supported by "initiate" operations that change 

the appropriate underlying tables. 

Since there may be nwnerous large block tables, it. is a design objective 

that only a subset of them need be in primary memory at any time~ A natural 

way to achieve this objective is to implement each lat'ge block table as a 

block object. Thus, a large block space is realized as a space of blocks, 

each of which contains a large block table. Each large block table, in turn, 

describes a collection of homes (and possibly frames) that form the large 

block. In the context of large block space implementation, we shall refer to 

any block space table that describes a spao-e of large block tables as a large 

block space (LBS) table. These data structures are shown in Figure 3-5. 
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Virtual addresses of the form 

(L , O), 

in which L is a large block name and O is an ortaet . ., are translated by the 

hardware as follows. 

1. LB_t.able = frame_name_part. (LBS_t.a:ble + V • L) 

2. frame = frame_name_part (LB_table + W • [O/F] ) 

3. address = f'rame + MOD (O,F) 

Here, "Y" and "W" are tbe runber of words per entr7 Jin an LBS table and an LB 

table respectively, and "F" is t.be frame size tor a ,p.taoe .of. a large blooJt. 

Since LB tables ar-e implemented as block objects, U is possible. to take 

a frame fault either in step 1 or in st.ep 2 o.t tbe virtual address translation 

sequence above. We wish to 418ting.uisb between the incarnattons of the block 

layer that deal with leaf nodes of the large block iaplementation tree and 

those that deal with t.tie interior nodes (large_ block tables) of the tree. We 
I 

shall refer to the former as the lV&$ bj.pgk (LI.) le!tt and to the latter as 

the large blook space (LBS) laxer. The LBS layer is responsible for handling 

frame faults that. occur whenever any 1..B table, repre.sent.ing one large block in 

the LB space, must be moved into primary meaor:y. The t.B lay.er handles frame 

faults for pieces of large blocks. ( 1) 

There are some small differences between the e>perat.ion of t.be LBS layer 

and the previously deaGribed operation of t:be block layer. In particular, the 

frame freer of the LBS layer cannot art>itrarUy free frames that contain LB 

tables. To see this, we refer to the e~ampl• in Figure 3-6. For clarity, we 

( 1) We can relate these t.wo layers to the Mult.tcs 'VM as follows: the LB layer 
corresponds to the ~ltics page fault. handl:er, and the LBS layer would 
correspond t.o a subsystem that handles page fa.ult.a on page tables. 
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use upper case "FN" to mean "frame name" in the case of frames that. contain LB 

tables, and lower case "fn" to mean "frame name" ror the leaf node frames. In 

the figure, we show two framelists ..... one tor each clase of frllllle objects. 

Suppose that the LBS layer chose to free tN_2, depicted in Figure 3-6. The 

frame FN_2, however, contains the frame bindihgs tor several pieces of a large 

block; e.g. the frame binding for the first piece is f'n-3. When the frame 

freer· of the LB layer s~lects fn_3 tor f~ing, it must be able to caws& any 

reference to fn_3 that appears in an LB table to be d•leted. It would be too 

costly to retrieve an LB table from secondary memory merely to set one of its 

frame name parts to NULL; therefore as long as an'LB table has any non-null 

frame name part.s, it should remain in prill,~Y llellOl"Y. 

We propose that the LBS layer have the option of freeing a frapie, sucll as 

FN_2, that appears in a trailer list. It could do so by signalling the LB 

layer to undo ~ppropriate bindings. In this example, the LB layer would 

replace both fn_3 and fn_6 by NULL, and reaove tN_2 from the trailer lists or 

fn_3 and fn_6. Following these steps, the LBS layer could perform a store 

operation on FN_2. 

home is not lost; 

the framel i~t . 

The correspondence between a frame, such as fn_3, and a 

th1'8 . correapondtn<ie ia at ill t'fltatned, t>y the LB layer) in 

The LBS layer supplies operational obj~cta -- blocks ...... that. contain the 

representation of large block objects. If the LBS layer claims a frame, ~uch 

as FN_2, that supports one of these blocks, Abel does ao without informing the 

LB layer, the LB layer can fail to mee·t 1ta 8jJeeificat1on. The LB layer is 

therefore strongly depend.mt on the LBS l•V~. ffewev.et",, tbe LBS layer 



operates independently of the LB layer. It simply supplies i~for~ation 

containers to the LB layer. 

3.16 Further Aspects .2! Large Blgck Imple1ent1tton 

For completeness ·we include a brief ·description of the Part of ttie LB 

layer that. supports the growing and shrinking 'or large blocks. ·The role of 

this sublayer is to interpret a "raw"' LB table in such :a way that it produces 

a variable-length object with the properties that we specified<earlier; e.g. 

that the initial value of any· part of the· LB with address iess than the 

' 
current length is zero. We inclUde this aecti.on prflaarily ta i11ustrate that, 

to provide a variable-length object, only a small: amoiint or' mechanism need be 

built on top of the comon mebhanism shared by the LBS and LB layers. 

There is a sublayer of the LB layer that distinguishes among several· 

types of "NULL" that may appear· in.the frame name part or aniB table~ In 

particular, three kinds or·•MULL" are 

1 • NULL ( 1 ) : no corresponding home name; 

2. NULL(2): there is a corresponding home name; and 

3. NULL(3): beyand the current length. 

We provide a scenario to illustrate how these interpretQd. values of NU~L are 
'-·' -. : 

used. Initially, an LB table would have the first K frame name parts 

containing NULL ( 1 ) and the remaining M-K containi~ NULL ( ~) • ( 1 ) Suppose that 

a write operation occurs, directed towards a piece of the LB that falls within 

the scope of a NULL(1). In this case, a new home nee.ds to be allocated. Note 

that. if a secondary storage quota checking mech&'1ism exi~t~, it should be 

(1) The granularity of the current length measure is only as fine as the frame 
size of the leaf node frames. 
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invoked a:t this time. Asswling sutfic-ient quota, the La layer does an 

allocate operation to get a home name, and then does an initiate operation, 

associating the home with the appropriat:e .Pieoe ot .tlfe. large bl·OOk. At this 

point, the frame-olaimin,g (and freeing) ._.tt,.._. are 11\~oked .to provide a 

frame for this piece of the large .bloek. At. a-. ~l' tbJe, it tbe frame is 

freed, the frame. name part would. contiun JfULL,.(2). 

A read operation in the scope of a JIUU.(1) r'&turna a value of zero, 

Whereas a read in the scope of a KULL(2) pn.erai.a a tN•e fault.. A read or 

write operation in the $Cope of a HULL(3) ~er.tea an ~rror .comtttion. 

The set_length oi>fration mer.el)' OtOTes ~he'- N .. J: between the IULL(3) 

entries and the other NULL entries .. Sh~inltiDf t~ l~h of a large block llaJ 

involve some terminate operations, sinoe .. bemea aaJ ••• t>een. asaoeiated with 

the section of the large block beipg truno.n.s. 

The LB layer can provide objects that >•re ,~le aftel shrinkable; and 

that are intplemen·ted using substantially ~he ...,;:dAt-a · Stl'•tures that support 

objects of non-varying length. The meen.nia. ~bat Stafjports. the block 

abstraction is also the greatest common 11.c~ni~,fQt the LBS and LB layers. 

3 .17 The Relation 9.! !lW, i.mte- Bl.Wk .11!'1. lml.t jl.1jjjt.1on 1,pers 
I 

Like the block layer, the large block layer da111iy lllanipulates the names 

or frame and home objects. However, part of the data base of the LB layer 

namely the set or LB tables must: 1) ul.timat~lf t'eside in secondary 

memory due to its size, and 2) grow and Shr.tnk dynasioally sinoe large blocks 
. . 

can be allocated and freed. Thus, unlike the f:Jlook layei", the LB layer relies 

on the home allocation layer to llianage the rnoat'oes o~ of Which some of its 

dat·a bases are built. If the home allodator were ·t;o . .a~locate tne s~ home 
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twice, to two different large blocks, the specification of th~ LB layer would 

not be met. 

The home allocation layer, however, does not depend on the LB layer. The 

home allocation lay~ executes in a bl0ck spalle, and ·eJllbodil!lS no knowledge of 

large block objects. As mentioned before, though, the h~e 'allocation layer 

does depend on the block layer. 

Although there is no intrinsic reason why the home alloeator should 

depend on the LB layer, there is a possibilit't of acoi.aental dependency 

because both layers' are oohs'umers of the block layer. ' ibis ls a specific case 

of the more general problem in which' two 'layeri del)end on the block layer to 

provide an addressing environment. Either layer ~buld irlit.iate a block that 

properly belongs to the other layer and modify it_..;. tbi.aa introducing a 

two-way dependency. It two layers' intentionaily' share 1.ilformation, and each 

trusts the other to "do 'the right thing" with t~' data', they are neceaaar'lly' 

interdependent. In this oal!le, it may be arg~ed ·that ib~y ar~: really one 

layer. This form ot dependency is obviously intrin;ic. On -the 'other hand, 

system designers may Wish to p~ovide mechaniims tti•t pre~ent accidental 

interactions am<>ng layers. Consumers of' a VM subsystem may rely on ACLs as a 

mechanism to prevent accidental interaction. Aowev~r, in the lower layers of 

the VM itself, where ACLs are not: available·~ -anothet .ee:;tul'ni;;m· must be used. 

The mechanism we propose is the storage protESction key meahizif;_, whi~h exists 

in the IBM 3TO series [IBM73]. VM laf~~s suoh as the LB l~yer and the home 
~ -~ . ' 

allocation layer would have an asdociated key, and eaeb hOllle object would have 

an associated mask. The mask oould be stored!;. t6J~example, eos a head'er word 
·' ·~ '' l' ,. ' • 

preceding the first data word in the home obj4itc't. - A layer could associate a 
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home wit-h a block in its block si>ace only it' the key and mask satisfied some 

predefined relation. 

3.18 QM li2rJl AJ,?Rliq&U.gn Sll.. 1D1. BlRQk .1Wi Jal.. AJ,liS¥J•t;Lqp. Ltprt 

An objective of this chapter is to d~aci:»>e A ,part.icular ilij>leaentat.;i.on 

of a VM abstraction that can be characterized a,, .a po_tentiaily large n1.mber or 

spaces cont.aining a potentially large mnber of pot~ntially large o_bjects. At 

this point, it. should be apparen~ that one aore a,pplication of the block ucl 

home allocation layers should yield an impl.aent~t . .S.O~ o,f t_his abstraction. 

In this case, each LBS table that de~ribee a aet of LB ~•bles shoµl.d be 

implemented as a block object. Tbus, we add orie •or,~ level to the 

implementation tree, as shown in Figure 3-7. The, j.Qpai;o•tAon or the blook 

layer that manages blocks _containing LB$ t-abJ.e~ ._is -~•U•d tbe J,ICU. gl99k ~ 

;pace goacF (LBSS) layer. That is, it •~•••.a.s~qe of largo:.blook 1spaoes. 

As mentioned previously a small numper Qf prinoip•l• that are JHlrtof the 
- ·' ' ' ' . . . " ~-. ., .. •, ' - , . 

supervisor may use a block space for an addreaft~qg enr~om,.«;tt. A second set 

of principals uses an L,B spaoeas an ad.dreasin,g envirQ~ent. There is a 

one-to-one correspondence between each principal in tpis second set and ~ .LBS 
- . ' ' ·' ·~· .. ..; - . ' 

table. There is thus a need to allocate and fr,ee homes tbat contain ~B~ . - ' •. - . ' 

tables corresponding to principals. The home ulocatio~ lax:~ perforas this 
' ' \" ' -· . . . ' 

function. Accordingly, the LBS layer depend.a (l!l ttie ~e allocation. J.ayer. 

The block layer mech_anism descrtbed, j,.n this o•pter ser.v.es as a greatest 

common mechanism for the LB, LBS, and LBSS layer,s. ,Since the ,st..ructure of t-tae 
' .. '-· ·. • . ~" • . ' • ~ . ~ .... ' '. ' ! ~ .. . 

LBSS layer is, by design, like th&t of the .J.8.S and L,B layera, previous 

observ-ations regarding intra- and inter-l4yer .d•-~cies a,J>'.ply to the LBSS 
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layer as well. The dependencies that relate each or the regions described in 

this chapter are shown in Figure 3-8. 

3.19 Summary 

In the lower layers of the case study VM,, the :pr.imary function is the 

multiplexing .of either real main ID'el;QrY 01" virtuaiJ.. ~Y obj.-e.ts. 1fe have 

developed a model that characterizes aemory 'llui't-±ple1dng as the manipulation 

of bindings among a few sd;mple obJec·t types.. !'!!om :the -viewpoint or the model 

it is apparent that a type manaaer f'or 8'1,Y;Of :tfteae ed.mple objects need not 

embody knowledge of the semantics of ·the othet' ·types.. A feature of tbe 

multiplexing model is a high degree of modular irldepend·ence. 

Proceeding from the model, we show tbat a tltt"aigtrt:.forward implementation 

preserves much of ·the desirabl-e independc11ie.. This implementation can be 

supported by a hardware arohitecture 1dmilar to archit.ectures of contemporary 

systems. Future architectures, which may innor.porete hardware-assisted 

associative searching, should be able to auppeM. 'impl:eaentations that are 

truer to the model, i. e. there should be fewer :laplaeintation-induced 

dependencies. 

The intermodule dependencies of t.he VM layers described in this chapter 

are either: 1) weak (i.e. timing) depend:encies, 2) dependencies on an 

addressing environment, or 3) dependencies that occur because the 

specification of a layer embodies assumptions a~put. objects tbat ,the lay,er 

references; for example, there is an assumption in the block layer 

specification that the data binding of a block object will not. change unless a 

write operation occurs. The dependencies t.hat do exist form a partial order 

among the modules of the case stwdy VM subaysten. 
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Chapter IV 

Treating Objects as Elements of a Property List 

4.1 Introduction 

In the previous chapter we described an object-oriented structure for the 

lower layers of the case study VM, in which relationships between objects took 

the form of LISP bindings. Even though bindings may exist between two 

different object types, the correct behavior of their respective managers can 

be independent. 

In contrast, the higher layers of the VM resemble a hierarchy of type 

managers in which the correct operation of the manager of a type depends on 

the correct operation of the managers of its component objects. This chapter 

explores a method, based on the LISP concept of a property list, to minimize 

intermodule dependencies and achieve economy of mechanism in the higher VM 

layers. 

4.2 Removing Unnecessary Dependencies in~ Higher VM Layers 

We observe that many of the operations in the higher layers of the VM are 

mapping operations; i.e. a significant function of each layer is merely to 

return the attributes of an object given its name. To minimize unnecessary 

inter-layer dependencies, it might appear that each layer would need to 

implement its own mapping function. However, we show that many layers can 

rely on a common layer to provide multiple mapping functions. This scheme 

certainly provides a greater economy of mechanism, and at the same time, the 

scheme can be implemented in such a way that the common layer does not depend 
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on the other layers. The common layer treats the range of values of each 

mapping function as el~ments of an uninterpret.e4 property lht, rendering it 

insensitive to anomalous behavior of the other layers. Of cour~e, the other 

layers do depend on the common layer. In this sense t.his scheme is not. as 

powerful as the binding sche11e of chapter II~,, w~ioh na~ the pot .. ntial of 

eliminating all dependencies between object managers. On the other hand, the 

property list scheme seems more general,ly applical)le thap 1fhe b~nding' sqheme. 

The goal of this chapter is to present a strqcturing ~eth()d that is 11ore 

appropriate for reducing inter-region dependenci~s ip. tbe h1.gQ.~r VM.layers. 

4. 3 Plan .2£ ~ Chapter 

In this chapter we just.ify the desirabliity of implementation-independent 

object names, and in particular the desirability of sooh names for segment 

objects. We describe a layer, called the m lax1r, -'that asso~iates the 

implementation-independent names with the segment representations. The 

segment is represented by large block (LB) objects. Since the map layer 

manipulates some potentially large data bases, some form of underlying memory 

managemant function is needed. We show that t.he block and home allocation 

layers, described in chapter III, are suff~o.ient as wel:J. as convenient •. 

The next section of the cl')apter deaoribes hQW the map and LB layers 

together provide a viable su:bstruct.ure for any of iMtV-ilr•l reasonable ·.senent 

addressing mechanisms. Sinc.e addressing mecbt1U1:1Jsms like tboae ·.described exist 

in current systems, this section should provid4 .i,nareased.confidence in the 

viability of the VM layers described in precedini. ~ectioris of the thesis. 

This chapter then focuses on the implement$Uon pf aocess _control lists, 

as an example of a class of nontrivial segment attributes. The ACL is 

Page 77 



nontrivial since it is a potentially laf"g• ett.·rt·~.e.. We de~eribe a layer 

called the ACL layer that suppof'ts t.be vviou.:s tCL 9pe!"ations. As will be 

shown, some functione that are logicall' part of ttMt ACL layer may nonet.heless 

be Pf'OVided by the rnap layer wit-bout causifl& ~be 11lt!ter· layer t.o depend on the 

former. These observat.ions regarding ACLe can tae &.neral1zed to other object 

attribut.es. 

We next. show that the VM layers that. baY.e ·~ especified up to this point 

can provide effective support for a generalized tfP,e ext.en.sion facility. This 

is because a common mechanism for support.~ £1IM8 nae already been provided 

for the support of segment .and ACL objects. As •nt.ioned in chapter II, a 

function that every ETM must perform is to •i\P &am4UI to attributes. The map 

layer can provide this common funct.ion witho.ut n.oo11'i.r;lg dependent on any ETM. 

For completeness, we conclude this C'bapt_. with .a brief discussion of 1) 
·, ' - - ' . 

the representation of authority hierarehie.s .in ·tb.is VM structure, .and 2) the . c . . . 

implementation of directories as extended t.i~ o.b,;.cts. These two features 

can be provided without complicating the st.r.uot.ure .a.f t,be supporting VM 

layers. 

4.4 Extending Lg.rge Blocks tg, Segents 

The VM a~st.ract.ion provided by ·the aecbaniams .in ob.apter III can be 

charaoterized as a potentially laT"ge nuntber ·of ep'acee eontaining a potentially 

large number of potentially large objec,ts. ·FJH"t;h_., layers of the VM to be 

described in this chapter extend the above at>et'f'action t.o that of a segment 

object. Before describing U1e additional layers, we review some 

characteristics of a segment object, as de'fined in Chapter II, that still need 

to be provided. 
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First, the names of segment objects, unlike the names of LB objects, are 

implementation - independent. In particular, we are considering a segment 

name to be a unique identifier (UID), derived by reading a high-resolution 

clock. A segment UID may be bound to some representation object or objects 

in this case a home object containing an LB table. The advantages of such 

implementation - independent names are several. Since naming is distinct from 

implementation, the implementation can be changed "underneath" the names. 

Thus, a facility for backup of segment objects [Stern74, Benjamin76] can move 

the representation of the segment from one secondary storage device to another 

in a manner that is invisible to consumers. In addition, once a segment is 

deleted, the resources devoted to its implementation may be freed. It matters 

not if consumers retain the UID of the deleted segment, since implementation 

resources will never again be associated with that UID. The segment UID is an 

example of a non-recyclable name. A discussion of other advantages of using 

UIDs as segment names appears in Bratt [Bratt75] and Fabry [Fabry74]. (1) 

Second, segment objects are expected to have a set of attributes. 

Examples of segment attributes are the name of the creating principal, and an 

access control list (ACL). The ACL is an example of an attribute that is 

potentially large. Although such an attribute requires more support mechanism 

than an attribute that is small and does not vary in size, we must be able to 

(1) A less obvious advantage becomes apparent in the context of secure 
systems. If an objective of the system design is to minimize unauthorized 
information channels, then UIDs derived from clock readings are a good choice 
for object names. If the object name contained any information about the 
implementation or number of existent objects, then a user might be able to 
infer whether any objects were created between the times that he created two 
objects. Thus such a naming scheme would provide an unauthorized information 
channel (called a covert channel by Lampson [Lampson73]). The UIDs, on the 
other hand, provide no information to the creator other than the time of the 
creation. 
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support it, as it is part of our specification or a segment object. The 

underlying large block layer may indeed provide attributes, such as the 

current length value described in chapter III, that show through to the 

segment interface. However, the LB layer would not be expected to provide any 

potentially large attributes for LB objects, since t.he LB objects that it 

implements are precisely the most primitive objeot.s that could conveniently 

support these at.t.ributes. Thus it is up to the higher VM layers, as consumers 

of the LB layer, to provide these attributes for segment objects. 

There are other characteristics of a segment. t.hat appear in some 

implement.at.ions, such as automatic increase or the current length by a write 

operation, that can be built. on top of the large block abstraction. We shall 

concentrate, however, on segment naming and segment attributes in this chapter 

since 1) it is our belief that these are two of the most distinctive 

charact.eristics of segment objects, and 2) we are able to describe an 

implementation of these characteristics that exhibits .few interdependencies 

with other regions. 

4.5 ~11!12. Laver 

The next VM layer to be described, t.he map layer, provides support for 

segment naming as well as for segment attributes. The map layer may be a 

consumer of abstractions supplied by layers that we have already described. 

However, the map layer is not a consumer Of segment objects. If it were, 

there would be a circular dependency wit.hin the VM structure since the map 

layer and the type manager for segments would be mutually dependent. Such a 

circular dependency does occur, for example, in t.he ~lt.ics system since 

dil"ectory object.s, which are built. out of segment.a, implement. the mapping from 
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segment names to segment representations. The case study VM, with its map 

layer, has no such dependency. 

For purposes of explanation we begin by describing a mechanism that can 

support the segment naming function, and later extend that mechanism to 

support segment attributes. Thus the present concern is to describe the 

mechanism that maps each segment name, i.e. UID, into a corresponding home 

containing the appropriate large block table. 

The map layer maintains a data base that associates segment UIDs with 

home objects. Following the terminology of Redell [Redell74], we refer to the 

data base as the Map. We have chosen here to use the capitalized form of the 

word, to distinguish this data base from any other data base that can be 

described by the generic term "map". The main requirement that the Map must 

satisfy is that any given lookup be rapid; although efficient insertion and 

deletion are desirable, they are of secondary importance. The Map must be 

able to provide the UID-to-home association for a very large number (say at 

least 10 mill ion) of segments. Consequently it is an example of a large data 

base that must ultimately reside in secondary memory. 

There are viable alternatives for the implementation of the Map. The 

Hydra system employs two hash tables. One hash table is in primary memory and 

the other is in secondary memory. The CAL system made use of a "master object 

table", residing in the extended core storage of a CDC 6400. Among other 

things, CAL capabilities contained indices into the master object table, 

providing for fast access to representation objects. In the case study VM, we 

suggest a B-tree [Knuth73] as the implementation of the Map. A B-tree is a 

balanced n-ary tree for which searching, insertion, and deletion operations 

have a guaranteed worst-case efficiency. It is a data structure that is 
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well-suit.ed for external searching since eacb node ean be .implemented as one 

secondary storage record. 

To maximize economy of mechanism .. , tbe lower VM layers already described 

should be employed to multiplex main memory among t,be .B-t,ree nodes. Each 

B-t.ree node is accordingly implement.ed ae a home object.. The leaf nodes of 

the B-tree are simply homes that contain LB tales. Tbe interior nodes are 

homes containing data with the format shown in Figure 4-1. 

<home name> <UID> <home name> <UII>> • .• • · <UIID <home name> 

Figure 4-1 

Contents of a I-tree node 

Each home name in an interior node is the name of some other node. The UIDs 

surrounding a home name in Figure 4-1 are t:he lo.war and upp.er bounds on all 

UIDs reachable in the subtree with the given home ·name as the root node. 

The B-tree structure suppo.rts a !llap for a lar:ge number of objects at low 

cost. For example, suppose that the Map must acoommo4ate 100 million segment 

objects. The home corresponding to a given U!tD can :be located in 3 references 

to secondary storage if the B-tree is of' Oftder 100 '(or more) , and if the root 

node is already in primary memory. The a:v-erage sear~h time can be reduced if 

an associative memory containing {UID, home) pairs is provided. 

The map layer can t.reat. each o-r t.he '$-it!"~ nod•s as blocks in a block 

space. For example, whenever it selects a home ,name from one or the interior 
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nodes during a tree search, it invokes the +nitiate operation t() bind a block 

to the selected home. It. then references the bloQk direot.ly to find the next 
j·' ' 

home name in the sequence. The map layer can.manage Us block space so that 

nodes near the root of the B-tree tend to ·remain bound to blocks. 

It is possible to regard the map layer as a -type· manager; it. manages a 

collection of objects of t.ype "name". The relevant ·operati<)ns are ·to make 

names known or unknown to t.he map layer, and to add, delete, or retrieve 

attributes of the known names. 

4.6 Dependencies .2f the HilP. L1yer 

The block and home allocation layers described in chapter III are 

sufficient to provide the memory management support for the. DJap layer. No 

special-purpose memory manager is needed. 

The map layer strongly depends on the block layer since e~ch node of a 

major data base of the map layer (Le. the Hap it.self) is implemented as a 

block object. In addition, the map layer depend~. on the home allocation layer 

since it. must allocate new homes to grow the map. The strong dependencies of 

the map layer are thus the same as those of the large block layer {see chapter 

III) even though the specifications of these layers are quite different. 

Since the addressing environment of the map layer is a block space, the 

map layer and other layers that use this addressing envi_ronment could become 

interdependent. To provide some controls on the contents of a.bloc.le spape, 

st.orage protection keys, described in chapter III, can be used to prevent any 

layer from accessing programs and data privat.e to ot.her layers. 

We emphasize that· although the leaf nodes of the Map are data bases 

manipulated by the large block layer, the map layer doff not depend on the 
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large block layer. The role of the map layer is merely to return the name of 

a home containing such a data base. The actua.l dat.a &ue is never referenced 

by the map layer. 

4.7 Alternative Addressing Mgge; ,tsu:. SeSIWDtA 

The purpose of this section is to illustrate t.he viabilit.y of the case 

study VM mechanisms. These mechanisms can support. any of several segment 

addressing modes, including those of the Hult.ics and Plessey 250 systems. 

We have described two mechanisms that, when used· together, allow a 

consumer to reference the contents of a sepertt object given it.s UID. The 

first mechanism is the map layer, which returns the home containing the LB 

table for a segment, given Us UID. The second mechanism is the LB layer, 

which associates an LB object wit.h such a home, and which provides an 

interface for referencing the contents or the LB. There are a number of ways 

that the facilities provided by these two layers may be combined to provide an 

interface for addressing segments. At one end of the spectrum of choices, all 

references to a segment object would be by its UID. At the other end of the 

spectrum, a local machine-oriented name could be associated with the UID, and 

thereafter all references to the segment object (from within that local 

context) would specify the local name. (1) We illustrate how the VM layers 

described so far can support several addressing modes chosen from this 

spectrum of possibilities. 

The home containing the LB table for a segment is in essence an 

underlying state object; t.he large block that is used to contain the 

(1) The justification for local names, as well as a disoussion of alt.ernat.ive 
scopes for local names, appears in the work of Bratt (Bratt.75]. 
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!" --· ··- --··-------·-----

information in a segment is an operational object:. Together th~u;JA objects are 

used to provide a segment object. .Since a segme,nt is named by UID, there must 

be a way to reference the. supporting operational object. given the UID. A 

mapping must be provided from segment name. to supporti9g l.af'&e block object.,. 

We define the segment laxer to be the layer t.hat performs tbis; mapping, sllql!fn 

in Figure 4-2. 

UID 

KEY 

Mappings managed by 

·large block layer = 
map layer = 
segment layer = 

-- ----- ' -----..._ 
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The segment layer is the type manager for segment objects. Given the 

name of a segment, it- retrieves the comPonent.a. It. supp·orts operations on 

segments (i.e. read and writ.e) by associat.ing underfying operat.ional and state 

objects, and mapping segment operations int.o operat.tons' 'bn ·the underlying 

operational object .• 

The implementation of the segment layer may rely on some opf imizations to 

achieve efficient operation. For example, instead of mapping U!Ds to large 

block names, the segment layer could map UIDs to frames cont.aining large block 

tables. In order to support t.his more efficient mapping, the LB layer would 

need to include in its interface to the segment layer, an operation that, given 

an LB name, would return the corresponding,frame name. Such an interface 

would cause the LB layer to become dependent on the seSB:lent. layer, since the 

segment. layer would read and write frames directly aJi<1 thus change the state 

of a large block. The problem is not very severe in this case, however, 

since: 1) the segment layer will hide frame names trom all layers above it., 

and 2) the segment layer (which is expected to be implement.ad in hardware) is 

exceedingly simple and therefore the aasertion that. it. hides frame names 

should be easy to verify. 

As mentioned, a possible addressing environment. is one in which segments 

are named by UID. This addressing environaent, somet.imes called a universal 

address space, has the advantage that segment. names are context-independent. 

The name of a segment can be passed, without any translation, as a parameter 

or in a shared data base from one subsystem to anot.ner. The universal 

address space is the most flexible addresatng scheme in the spectrum. As 

Bratt. [Brat.t.75) points out,. t.he reasoaa for.on.•.W. aome other point along 

the spectrum are technological, not intrinsic. 
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There are no implement~d systems, des.cri.bed in the research literature, 

that support a universal address apace •.. Such systenus, however, haye been 

proposed. In a recent report, Radin and Schne_ider. [Rac:Un76] describe a 

machine interface that includes a u.niv~rsal adqr~ss space. Redell [Redell74J 

has suggested an implementation of a universal address space that relies on 

hardware- (or firmware-) supported mappings from object. UID to object. 

representation. The suggested hardware support consists of a hash table 

supplemented by an associative mempry. The representations of relatively 

active objects appear in the hash table, and the representations of the most 

active objects appear in the associative memory. In this case, t.be 

associative memory would associate on UIDs, returning a frame for an LB table. 
:•· ' .. . '~ 

The hash table would also map UIDs into frames contain:f..n~_LB tables ... 

Together, these two structures would i!;IPle~ent the s•pent layer. 

An alternative addressing environment that is QIJite similar t.o the 

universal address space makes use of register numb~rs for local 

machine-oriented names. The processor wo~l~ provide a set of base registers 

that could be loaded with ~egment U!Ds (and. pert}aps with offsets as well). 

Programs could then load segment. U!Ds into the regia~ers and refer to segments 

by register number. The mapping from register numbers to U!Ds is _carried. out. 

explicitly by programs referencing segments. An advantage of this alternative 

over the previous one is that programs can use short~r segm~qt iqentifiers. 

However, an identifier in this case is context-dependent so it l!IUst be 

translated if the object it designate~ is to be refereqced in .another conte~t. 

Fortunately, the translation from UID to regist~r 9umber -- or vfoe versa 

is an inexpensive operation (i.e. a "load register" or ."store register" 

instruct-ion). 
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This scheme requires some form of hardware 'si.lpport, such as the 

associative memory and hash table of the previous section, t.o map segment UIDs 

int.o frame names. Alt.ernatively, shadow regist.ers .associat.ed wit.h each of the 

base registers can be loaded with frame names of LB tables on demand. In 

eit.her case, t.hese forms of hardware support. provide the function of. the 

segment layer. This method of using base registers is similar to the approach 

adopted for the Plessey 250 syst.em. 

Finally, we mention the alternative of allowing large block names to be 

visible above the segment. layer. In this case, programs would invoke an 

"initiate" primitive similar to that of the LB layer: 

initiat.e (local_segment_name, UlD), 

in which "local segment name" is an input parameter, i.e. a segment index in a 

local segment space. Thereaft.er, all machine instructions would reference the 

se~ent by its local name. The shortcut employed in this case to make segment 

referencing efficient is to ensure that the underlying LB name is the same as 

the local segment name. A consequence of using this shortcut is that the role 

of the segment layer is diminished. It simply implements this high-level• 

init.iat.ion primitive as follows: 

1 • it. invokes the map layer t.o get. a home name, H, given the parameter "UID", 

and 

2. it. invokes the LB layer to associate an LB name, namely 

"local_segment_name", with the home H. 

The important observation here is that since the local segment name and the 

underlying large block name are arranged to be the same it. does not matter, in 

the case of executing programs, whether this common name is bound to the 

segment UID. That is, after a segment object has been initiated, read and 
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write operations can be interpreted directlJ.bY the LB l,~yer as.read and write 

operations on an LB object. It. is necessary to retr,ieve the UID oply if a 

context-independent name for the segment is desired. 'l'hi:s alterru~tive offers 

an advantage over the previous one .. in that. t;he s~t· of lOCjl;L names would be 

larger, since the number of large blocks in an ~B spaoe is assumed to be 

larger than the number of processor - supported ~as• ,r,.,:l.sters for sepent. 

UIDs. On the other hand, the cost of determi!l.in~ .the .Ut,.D .that is boull4, to a 

local name is greater in t.his case than in the pre.ce(llng ,ca&e, sinc.e t.his 

operation invokes VM layers th.at would prob.ably: Qe ilJll>leqaented i,i soft.ware. 

In order to relieve s.egment consumers .of the necessity of man1tging local 

segment names, a siJ11ple layer can be built on top.of (or in) the s~$Bent 

layer. This simple layer would implemen.t aoJDe po.lioy. of ~ss.tgnin$ local 

segment names to UIDs, and woulci represent this assJ.g~ent. in a table that 
- . ' ' .. . . ; ' . '. - ~ . ' 

corresponds to each. large block sp~ce table. Such a J:~~e 1104J.d be simila,r in 

function to the Known Segment Table in the,,.Hult.ics sy~~\~llJ.. [Ben.soussan72, 

Bratt75] .. 

It has been the purpose of th~s sect.ion to describ.e no)l the. ;lap and large 
\ - ... ; ', 

block layers, described previously, can be usecl. by h~er layers. to provide 

any one of sever.al VM addre$8ing environment·;" ~hat arJa, fo.und in currMt and 
!. ·'· • ; -- < 

planned general-purpose systems. This des.~ipt.ion i~ !JlOtiyated by a secondary 

goal of. this thesis: to provide some justi,f.ication t~t the oaa~ st.udy VM is 

a viable one. 

4. 8 In!. Acce.s:r ·control 1'!!t Laxer 

Our definition of a segment object includes the presence of an access 

cont.f'Ol list. ( ACL) att.ribute. An ACL has a properly in coinmon with a segment: 
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it- is potent.ially large. This suggests that t.ne m~ban1sm tor providing this 

property oan be common to the implement.at.ion ot both ACLs and segments. We 

present a design ror the support or ACLs tbat. uintaina economy of mechanism 

on the one hand, and preserves strict layering aOd.W.aruy on Uie other. The 

design for the support or ACL!I is general t!iougb tut it. can support. any 

attribute that. is potentially large. 

Methods for implementing small segaent attributes are not appropriate for 

ACLs. In t-he case ar the small attribute, the val~ could be stored in the LB 

table or in an $Xpanded Map·. entry . for the. sepent.. For example' the current 

length att-ribute descril)ed in chapter III is repneent.ed in the LB table. 

However, since Map entries as well as LB tables are data bases that are small 

(Le. they are implement.ed using blook objects), they ~annot contain the 

represent.at.ion of an at.tribute like ai{ A.ct.. !Yen tho\igb an .ACL could be 

small, it. may be as large as any segment object: Henelit' the representation 

for an ACL cannot., in general, be stored eitner in a Map entry or in an LB 

table. Of course, the Map entry or LB table could contain some kind of 

pointer to the repre&entat.ion of a large attribute. 

It. is more diffi.Cult to implement. a potent.tally large object, like an ACL 

or segment, than .tt. is to implement. one that is eitber large but constant size 

or variable length but small. Large representation object~ will suffice for 

objects in the first class' and small reproe·sentatlbn object'.s will suffice, for 

objects in the second. If an object may be either Slll&ll or large, the 

supporting mechanism must be able to concatena1:-.e. --11 obJ~ts, .a:s necessary, 

to effect an im.plementat.io~. 

The subsystem t.hat. implements ACLs, ¥bj.oh we ~11 oall t-he ~ laxer. or 

ACL region, uses large block objects as the representation objects. Although 
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a segment object is a variable-length container that could represent an AGL, 

segments have AGL attributes of their own, so such an implementation would 

introduce a circular dependency between the segment and AGL regions. Even if 

this circular dependency were tolerated, some fixed. point must be established. 

The large block object suffices as the fixed point since it is a potentially 

large container that has no AGL attribute. As a consequence of choosing the 

LB object to serve as the representation for ACLs, no circular dependency is 

introduced. This method for decomposing potential circular dependencies is 

called sandwiching by Parnas [Parnas76]. 

Access control list objects that are small can waste space in the 

supporting LB tables and home objects. However since the ACL layer allocates 

large blocks, as necessary, to represent AGL objects, it can represent many 

ACLs in the same large block. This strategy would eliminate the wasted 

resources caused by breakage, but it would require that there be a dynamic 

storage allocation facility within the AGL layer. 

This method for implementing ACLs treats each AGL as a distinct object. 

Such a treatment is quite natural: any attribute of a given object may, at 

some lower level of abstraction, be considered a distinct object. The 

operations that can be performed on an AGL are search, display, and update. 

The search operation is invoked to determine whether a given principal can 

perform a particular operation on the associated object. The display 

operation lists AGL entries, and the update operation changes them. 

On each segment reference, a principal must invoke the AGL layer to 

search the corresponding AGL. To provide for efficient reference to the AGL, 

part of the AGL layer is implemented in hardware. Corresponding to each 

principal's large block space table is a parallel table that comprises access 
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rights fields. Each access rights field cont.ains a bit-encoding or the 

principal' s access rights to t.he corresponding aepent object. Every machine 

instruction reference t.o a -segment is checked against the approt>riate field of 

encoded accees rights. ( 1) The access right.a field 18 inU.ialized the first 

time a principal references a segment. On tile r1-rst"!"eferenoe, the hardware 

part of the ACL layer causes a processor fault, and the following steps are 

performed. 

1. The ACL object corresponding to the SegMftt obj~t that. was faulted upon 

is located in a system-wide table. 

2. The ACL layer initiates the laroge block reS>reaenting the ACL, if 

necessary, and searches it. 

3. If access is not. allowed, the ACL layer signals an access violation. 

4. Otherwise, it sets the access rights t'1eld to contain the proper encoding 

·of rights for the referencing principal. 

4. 9 Eliminating Potegtial Qtetn~tOQ~•' . .U. Yli'M .~Jcwrtx J,.ists 

In this section we consider two mappings, defQ.ri~ in st.~P.4' 1 and 2 of 

the preceding section, and illustrate how the ~ 14t~r, qan be used as a 
,~ ' 

greatest common mechanism to support both of t~. The two mappµigs are 

1. the mapping that, given a segment object n~, r,et.~ns the a,sociated ACL 

object name, and 

2. the mapping from ACL objects to t.heir representation (LB) object.8. 

( 1) The Multics system employs an encached t~rm. ot access control list ent.ry 
such as this .. In Nwt· 'tli1tics ~i.ateatatMti;, ~filt enoabbed' '1&cess rights and 
the encached addressing information are included in a single table .cal.led a 
descriptor· segment. 
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Providing the second of these two mappings is a function of the ACL 

layer, the type manager for ACL objects. It. is the standard mapping from 

object name to object representation. Providing the first mapping should 

really be a function of a layer that manages "ae .. ent-wit.h-ACL" objects. This 

layer would provide a mapping from each such object. into its two components: 

a "segment-wit.hout-ACL" object. and an ACL object. All of these mappings are 

shown in Figure 4-3. Providing distinct implement.at.ions of either or' these 

mapping functions appears to be a diseconomy of mec~nism, since there already 

exists a similar mechanism in the map layer that relates object names to 

object representations. Other layers could use this mechanism in the· map 

layer. Of course, neither the ACL layer nor any other .. lay:~ should be able to 

manipulate tbe Map directly in order to provide these ;mappinJ functions, as 

this would violate layering. 

We solve this problem by appealing to a technique that pre;serves. strict 

layering on the one hand, while maintaining economy of mechanism on the other. 

The technique is derived from the LISP notion of a property list -- i.e. a 
,· 

set of unint.erpreted .attributes associated,..w.1.tb. M obJ.~ct. There is no 

violation of layering it'a lower layer maintains·dat.a, in a property list, for 

a higher layer. The higher layer can attaph a particular interpretation to 

the data. The lower layer can provide a mapping of the form 

property name ----------> property value 

for the higher layer. The higher layer has precisely two ways to interface to 

the lower layer, which are 

' ' 

1. fetch_property ( object_name, property_name, value) , and 

2. store_propert.y (object_name, property_name, value). 

The only causes for error conditions are object names or property names 
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unknown to the lower layer. The correct operation or t.he lower layer, does not 

depend on the correct operation, or even the existenc~, of the higher layer. 

The map layer is in tact a layer that perrorms a 

property name ---------_.> property val.ue 

mapping for a higher layer, namely tor ttiE!' sEtgulent layer. In this case, the 

segment layer invokes the map layer to obh.frfthe -trrePt'e'sentation" property or 

a segment, by performing the operation 

fetch_property (segment_UID, representation, value). 

The value of "representation" returned by the aap layer is the home name of 

the underlying LB table for the segment. Of course,'the map layer places no 

interpretation on this value; rather it consid•rs it to be a property of the 

object named "segment_UID"; 

Since, as mentioned previously, the segment layer is the type manager for 

segment objects, we see that the map layer actually if'1plements the m4lPPing 

from object name to object representation for the segment layer. In our 

characterization of type managers in chapter II, we indicated t.hat every type 

manager is responsible, :given the name of one of its object.s, for locating the 

corresponding representation.objects. The segment layer thus relies on the 

map layer as a utility subsy$tem, for performing thi~ mapping. 

The map layer can also be used by other type maiaagers to locate 

represent.at.ions, given objeQt names. In particular, those mapping functions 

depicted in Figure 4-3 could be carried out by the map layer. However, not 

all t.hose mappings need be realized, since there is no need to reference 

either "segment.-without-ACL" objects or ACL objects directly. These objects 
. . . 

are of interest only insofar as they are attributes of "segment-with-ACL" 
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objects. Thus, a superfluous set. of n~es and uppings can Qe eliminated by 

treating both the LB representing a "segme!lt--vithOut~~CL" and the LB 

representing an ACL as t.wo repreaent.at.ion objecls of a "segment.-wit.h ... ACL". We 

can then rename the "segment.-with-ACL" object, simply c;alling 1.t. a segment, 

with the understanding that all segaaenta have .A:CL·· a.ttribut.ea. The nU11ber of 

mappings is now only two, as shown in figure i\...4. We cantben rely on the map 
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layer to implement the mapping to two representation objects of a segment.: the 
, , 

representation of the information part of the segment, and the representation 

of the ACL attribute of the segment. Each Map entry for a segment object is 

thus expanded to contain the home names of two large block tables. The ACL 

layer can then obtain the representation object for the ACL of a segment by 

invoking the "fetch_property" operation described previously. 

From the standpoint of the map layer, each segment object name has two 

properties: the ACL property and the representation property. The value of 

the ACL property, interpreted by the ACL layer, is the name of the home that . , ,, 

contains the LB table describing the ACL. The value of the representation 

property, interpreted by the segment layer, is the name of the home that 

contains the LB table describing the information of the segment. 

Some operations on a segment object, such as read and writ.e, are 

implemented by the segment layer. Other operations, .such as the operation to 

search an ACL of a segment, are implemented by the ACL layer. Operations on 
'· 

segment objects involve the segment and ACL layers as follows. 

1. The segment layer is invoked in order to determine what bit.-encoding of 

access rights corresponds t.o the operation (e.g. read) that is being 

requested. 

2. The segment layer invokes the "search" operation of the ACL lay~r, passing 

the bit-encoding, the consumer name, and the segment U~D as arguments. 

3. If the ACL . layer indicates that the search was successful, the segment 

layer performs the requested operation. 

We have, in this design, treated the ACL information for a segment. as a 

property in a property list. maintained by the map layer. This design 
,·~ ' ·' · - ~ 

technique preserves the layered structure of the· VM, since the ACL object -- a 
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good candidate for object.hood is indeed managed by its own type manager. 

At the same time, a duplicate mechanism for obtaining the names of 

representation objects has been avoided. 

Even though ACL objects do not have distinct implementation - independent 

names, the programs of the ACL layer can be written under the assumption that 

they do. The UID of the segment can be regarded by ACL layer programs as the 

unique identifier of the ACL object instead. The ACL layer invokes the map 

layer operation 

fetch_pr'operty (segment_UID, ACL, value), 

causing the map layer to return the value of the AGL property. This naming 

technique could be applied to other attributes of segments which, like AGLs, 

require distinct implementation objects. 

However, there are limitations to this approach. First, this approach is 

applicable only to objects that are used solely as attributes of other 

objects. For example, if an AGL were a free-standing object that could be 

referenced by arbitrary consumers, then it would need an implementation

independent UID for a name. Second, this approach is biased towards 

efficiency rather than towards generality. It is appropriate for supporting 

only a fixed number of attributes since, for each attribute, there must be a 

field in the Map entry of an object. To avoid inefficient Map searches, the 

format of a Map entry should be the same for all segments. Hence the size of 

a Map entry cannot vary, and neither can the number of attributes. In 

contrast, LISP systems are biased towards generality since they support large 

property lists for objects. Locating an arbitrary property typically involves 

searching a list structure, which would not be as efficient as referencing a 

Map entry. 
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4. 1 o .! Layer 1.2. Support Dxngic ~. Extemsigp 

This section illustrates how a layer for .supporti!18 dyriamic type 

extension can be built on top of the layers already described. The type 

extension facility represents the last. functional component of this case study 

VM subsystem. We intend to show that techniques for achieving modular 

structure and economy of mechanism at t.he same time, suoh as those employed to 

support the ACL layer, can also be used to support dynamic type extension. 
. . - ·;'• ·"'• . ,. 

As described in chapter II, each operat.ion on. an ETO causes 1) type 

information, 2) ACL information, and 3) component. objects to be referenced by 

the ETM. The ETM may rely on some other subsystem to fetch this information • . , - . •. ·. ~ ,-

Nonetheless, each or these three kinds of information are obtained on every 

ETO operat.ion. We specify a diat-inct. · layer:, called ttie ·extended· !:IR!! manager 

(ETH) layer, that supports t.hese common operat.ions'~ The !TM layer is the 

first layer we have described that plaoes ariy interpretation on t.ype . 

information. 

The ETM layer of this thesis is quite similar to the Extended Object 

Manager layer of the SRI system. The SRI Extended Object Manager is 

responsible for storing and retrieving the component objects (called 

implement.at.ion capabilities) for eaoh extended type object. The ETM layer of 

this thesis also stores and retrieves componertt objects. · In addition, it 

stores and retrieves both ACL and type information. Sinqe one of our goals is 

to describe a VM in which all types are protect.ed by ACLs, mapping from object 

name to ACL information is indeed a mec~anism common to all ETHs. (1) In 

order to reduce errors, the ETM layer also enforces twc:> policies: 1) a type 

(1) The preceding section described how the m,Ap layer could support such a 
mapping, but only for segment objects. . 
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manager may search only those ACLs of its own objects; and 2) a type manager 

may request. the component. ·names of Us own object.$ only. 

The ETH layer can be considered t.o be the type aanager for a data base 

object that contains type, ACL, and components information.· Higher layers 

call upon the ETM layer in order t.o enter· or to retrieve this information. 

In the preceding section, we showed bow the map layer can be extended to 

provide ACL information for segments. In followinc sections we show that t.he 

map layer can be extended further t.o assooiat.e object. UIDs with the above 

three kinds of information, for any object type. The map layer can thus serve 

as a common mechanism for the segment; ACL, and extended type manager layers. 

4. 11 .I!llt E;xtended .I.tRJ1. Man1ger Lper :tnt1C(IPI 

The three important interfaces to the ETM layer are listed below. Tbe 

first. int.erface could be invoked by any pr1n~1pal.; however only El'Hs vill , 

make use or the latt.er two interfaces. 

The first interface, t.he mapping from objeQt Ult> to type information, can 

be specified as follows: 

get_type (object._UID, type),. 

in which "type" is an output argµment. By invokiag, this interface, any 

principal may determine the type of any object. (1) 

( 1) As mentioned previously, attribut'.es 9f objects, and even .the existence of 
objects, may be viewed as covert. information channels. In appiications where 
this is import.ant, t.ype informat.ion shoul~tll()t. ~• •••ilable .to an arbitrary 
principal. this policy could be enforced· by non-discretionary controls. .. In 
this case if a principal unauthorized to know about. the exist:enc~ ()( an Object 
managed to guess the right . UID and pass 1t. es a par-.~~er to tbe.,above 
interface, it. would receive an error message ot the torm: "EU.her the 
specified object does not exist, or you are not allowd to know if it exists." 

Page 100 



~."' ~·.·,... --~.·-~~·\>"'"''·· ._, ·- .. 
...; .~. ,. <{, • .... ~, 

The second common interface returns ACL information. It is specified as 

search_ACL (object_UID, supplier_UID, consumer_UID, 

bit_encoding, boolean), 

in which a "true" value of the boolean output parameter would indicate a 

successful ACL search. Since the type of an object is implemented as the U~D 

of the managing subsystem, the ETH layer can check to make sure that the 

(unforgeable) value of "supplier_UID" equals the type of the object named 

"object_UID". This check ensures that only th_e type manager for an object 

will be able to search the corresponding ACL. If the UID of the supplier is . ., 

correct, the ETH layer can invoke the "searc~,....ACL" e~try of the ACL layer, 

just as the segment layer does. The ACL layer will perform the search . . 
operation for any principal. Thus the check performed by the ETH layer merely 

separates type managers, according to the principle of least privilege. 

The third common interface obtains component. object.a. It has the form 

get_components (object_UID, supplier_UID, components), 

in which "components" is an out.put param&t-er. Since the component objects of 

every ETO are either segments or other ETOs, the value of "components" is a 

set of UIDs. As before, the ETM layer checks that t.his mapping function is 

invoked by the correct type manager. Thia oheck is provided only for 

self-protection purposes, so that an ETH will not erroneously request the 

components of an object of another type. A_malicious ETH might guess the 

components of any ETO; however t.ftose components are protected from 

unauthorized access by ACLs. 
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4. 12 Support of the Extended ~ Manastr Layer la ~ Hil L.axer 

Some mechanism within or below the ETH layer must. suppo'rt. the mappings 

from object name to type, ACL, and represent.at.ion intormat.ion. The ACL 

information for ETOs is supplied by the ACL layer which, in turn, obtains it 

from the map layer. Type and component information for ETOs is supplied by 

t.he map layer . 

The map layer can treat the ETOs and associated attributes as a set of 

objects wit.h property lists. The Map itself will thus contain entries not 
. ' :.. ~ 

only for segment objects, but. for object.a of every type. Each entry in the 
, 

Map must then contain type information, in addition to the ACL and 

representation information previously specified. For any object, the map 

layer can return type, ACL, and representation properties. The revised format 

of a Map entry is shown in Figure 4-5. 

UIO 

type 

ACL 

l representation 
I 
..... ______ _ 

Figure 4-5 

Revised Format of a Hap Entry 
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For all objects, the "UID" field contains a system-wide unique identifier. 

For segment objects, the value of the "type" field is some flag indicating 

that the object is a segment, and the value of the "representation" field is 

the home name of the home containing the underlying LB table. For extended 

type objects, the "type" field contains the UID of the principal that is the 

type manager of the object, and the "representation" field contains the UID of 

some other object that serves as the representation object. (The 

representation object may, in turn, contain a list of UIDs of additional 

representation objects.) 

The contents of the "ACL" field may take two forms. If the object is not 

a component of some other object, then the ACL field consists of the home name 

of the home containing the LB table for the ACL object. Otherwise, if the 

object is not a component of some other object, then the ACL field contains a 

degenerate ACL. The degenerate ACL, consisting of a type manager UID and mode 

bits, is sufficient in this case, as was pointed out in chapter II. In 

contrast to an ordinary ACL, it can be searched faster and requires no 

underlying potentially large representation object. 

To tie these ideas together we show, in Figure 4-6, typical map entries 

for an ETO and a component object. Let a message queue object, "MQ_26", be 

managed by the type manager "MQ_mgr". The only component object representing 

MQ_26 is the segment "SEG_14". Located in the home object "home_43" is the LB 

table for the LB that contains the (non-degenerate) ACL for MQ_26. The ACL 

for SEG_14 is a degenerate ACL containing the sole principal identifier 

"MQ_mgr". The LB object representing "SEG_14" is described by the LB table 

located in "home_31". The Map entries for the two objects named "MQ_26" and 

"SEG_ 14" are shown in Figure 4-6. 
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MQ._26 -> SEG_14 
I 

I 
MQ_mgr I segment 

I 
I 

home_43 I MQ_mgr 
I 

I 
SEG_14 home_31 

Figure 4-6 

Map Entries for an Extended Type and a Component Object 

4.13 Dependencies of the Extended~ Manager Layer 

The ETM layer depends on the ACL and map layers to support its mapping 

functions. It depends also on the segment layer (or possibly the large block 

layer) to support its addressing environment. 

A role of the ETM layer is to subdivide the set of all objects into 

types. Thus, it must associate types with objects. Based on type 

information, it makes ACL and component information available only to the 

appropriate type manager. If the underlying ACL and map layers incorrectly 

map an object name into an object attribute, the ETM layer cannot meet its 

specifications. It thus depends strongly on the ACL and map layers. 

The ETM layer may depend on either the LB or segment layers to support 

its addressing environment. Since the ETM layer is not necessary for the 
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implementation of segment objects, it could execute in a segmented addressing 

environment. In this case it would be dependent on the segment layer. (1) An 

alternative implementation is that the ETM layer execute in an LB space. This 

suggestion is based upon the observation that since much of the functionality 

of the ETM layer is already provided by the map layer, the ETM layer could be 

implemented as an upper sublayer within the map layer and thereby execute in 

the same LB space. Given this alternative, the ETM layer would depend on the 

LB layer. 

4. 14 Representation 91. .m Autgority Hierarchy 

The purpose of this section is to suggest how a itimple· aut·hority 

hierarchy, as specified in ohapter II, might be implement.ad in a way that does 

not complicate the VM structure we have described so far. .In chapter II we 

indicated that a special class of protected subsystems·, ealled &f-fices, can 

implement administrative control over access control lists. We can consider 

each office to be the consumer of a set of ACL ob~ects. 

The kinds of operations that an office performs on an ACL are to display 

and update the local authority structure represented in the ACL. The 

principal identifier (Le. a UID) of the controlling office of an ACL is 

contained in the ACL. A suggested ACL format. is shown in, Figure 4-7. The 

object-specific rights are in region 1 of the .ACL. "'Fop e_x~ple, in a segment 

ACt., rights for read, write, and execute would_ ~ppear in this region. The 

ACL-specific rights, display and update, appe~r in re~;~n 2. One 

interpretation of these rights is that a principal with display rights can 
\ ·, ·, . ~ '• . 

(1) Certainly, layers above the ETH layer must execute in a segmented 
environment since they may be provided by arbitrary users. 
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display the contents of all three regions, whereas a principal with update 

rights can change entries only in region 1. A principal at.tempting to perform 

some operation on the associated object will succeed only if it is named in 

region 1. Only the principal appearing in region 3, namely the controlling 

office, can update entries in region 2. The contents of region 3 cannot be 

changed. 

REGION 1 
I 
I 

I <---- objeot-Sl)«c1t1c ri&hts 
I ------· 

REGION 2 <---- ACL-speoitio righta 

REGION 3 <---- office name 

Figure 4-7 

Contents of an Access COntroi List 

In this implementation of an authority hierarchy, the ACL layer is the 

type manager for all ACL objects. The implementation details of ACLs are the 

sole responsibility of the ACL layer. However, the ACL layer will carry out 

the policy embedded in the controlling office of an ACL. the office, in some 

unspecified way, can determine that a display or update operation should take 

place, and invoke the ACL layer to effect it. 
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4.15 Directories.!§. Extendeg Ob1ect§ 

We have shown how access cqntrol lists can be incorporated, as distinct 

objects, into a VM structure that is ctia.racterizect by ') a sma.ll number of 

intermodule dependencies, as well as 2) economy of mechanism. In this section 

we sketch how direct.cries may be i,mplement.ed as ext4:mded type objects 1 while 

still preserving these two characteristics of the YM str.4?ture. 

As Redell [Redell 74) points out,. direot.ories are typically implemented as 

ETOs in capability-based systems. However, ip the. A~~-p~sed Multics system, 

directories are base level objects t~at conta;Ln physical ~escriptors,.as ,w,ell 

as ACLs, for other objects. Refere-0ces to ~ultics objec,t=5, me~iated by ACLs, 

necessarily involve the directory l~yer. In .a.ddit!on, r,eferences to directory 
' ~ . ~ ' ' ~ , .: . . ; . ' 

objects themselves are mediated by ACLs. The Multics. _<;firectory and ACL 

mechanisms are mutually dependent. In the case st~dy VM, we break this 

dependency by implementing dir~ctor.ies as ETOs, with ACL obJects implementeq 

in a lower layer. The ETM for directory obje9ts, the, ,siJ,.rectori la:ver, depends 

(indirectly through the ETM layer) on the A.CL layer, b~t not vice-versa. 

As indic'ated in chapter II, directory objects associate alpJlanwneric 

names with object UIDs. Like all ETO~, directories hay~ ACLs, The operations 

t.hat appear in directory ACLs inc.l.ude "append", "displiay", "search~, and 

"delete". Directory objects are implemented. in terms of s.egment objects. 

Since directories are implement;ed in terJllS of se~~nt:;s, the directory 

layer depends on the segment layer. Another reason for t_qis depend.tf~ce is 

that the directory layer -- a true extended type mana~er must ex~c.ute in a 

segmented addressing environment. 

Of greater interest are possible dependencies of lpwe~ VM layers on the 

directory layer. The correct operation of each individ.IJ.al layer up to and, 
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including the ETM layer is independent of the correct. operation of the 

directory layer, since no lower layer -invokes the direct.ory layer. For 

example, neither the segment layer nor t.tie ACL layer depends on the directory 

layer. 

The correct operation of the directory layer is nonetheless critical for 

carrying out int.ended naming and protect.ion policies. The directory layer is 

responsible for mapping user-readable nu.a into U!Ds. Consequent.ly incorrect 

operation of this layer may cause a coriswaer to read the wrong segment, or t.o 

update the ACL on the wrong message queue. If the directory layer associates 

names incorrectly, the lower layers that ·deal with objects named by UID will 

still function correctly; however the intende4 reqaest of some higher layer 

will not. have been carried out.. It should be eaphaaized that there is no 

difference bet.ween· ACL-based syst.ems and capab11Uy-based systems in this 

regard: directories in capability-based syst.81ls, such as t.he SRI and Hydra 

systems, are used to associate names wUh oa.pabilltiea and malfunction of this 

association may violate the naming intentions of a user. 

4.16 Suparv 

In contrast to the VM layers considered in the previous chapter, the 

higher VM layers considered here carry out mapping functions from object. names 

to object attributes. The challenge in this chapter is to 'describe a modular 

structure that both exhibit.a f'ew int.ermodule dej>endencies and also minimizes 

costly duplication or t.he mapping mechanism. To elillinate duplicate mapping 

mechanisms, a greatest common mechanism _..;, the map layer -- is included in 

this VM subsystem. 

The intermodule dependencies in the higher VM layers form a direct.ed 

acyclic graph, as sho'Wn in Figure 4-8. To achieve this structure, we have 
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Figure 4-8 

Dependencies of the Higher VM Layers 
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relied on the sandwiching technique, and, more importantly, on the LISP notion 

of a property list. The applications of t.he aandwicning technique described 

here are effect.ive, but seem to be ad hoc. I~ oontrast, the use of the 

property list notion seems t,o be a more gener•llY applicable technique for 

eliminating potential circular dependencies. 

Implementing ACLs as large block objects, rather than segments, .:is an 

example of sandwiching. Large block objects are an appropriat.e representation 

object since they are potentially large, but do not have ACLs as segments do. 

Maintaining the physical attributes of seaaent objects in tbe Map,. rattler than 

in some higher-level directory object, i• anot.her e•aaple of sandwiching. The 

functioning of the Map, unlike the f~U.9ning of direct.ory objects, does not 

depend upon correct behavior of tbe se~t- layer~ 

In this chapter we have shown now the map- layer, by treating the 

attributes of higher-level ot?Ject.s as elements of a· propert.y list, can avoid a 

strong dependence on the type managers for aueh objects. /lhis design 

principle is open-ended: the map layer cu associate Object.a and properties, 

for- an arbitrary collection of type managers. 
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Chapter V 

Conclusions and Suggestions for Further Research 

5.1 Introduction 

The purpose of this thesis has been to present techniques for 

understanding the structure of computer operating sys~ems. Techniques for 

achieving modular structure, such as layering and Qbjeat-orientation, were 

used in this thesis. The research reported here, ho.wever, goes beyond the u.se 

of such techniques. 

One reason that we strive to a,chieve a cle,~, 11Qd;ular st.ruct.1.We of a 

system is to make the system as a whole mor.e a.J!ler;t.able to verification• T.o 

verify the correct operation of a module, it is neces~y. to oone-ider 

intermodule dependencies. This thesis not opl¥. auggeats .. Jlow to achieve 

modular structure, but al~o presents a point of view that provides for 

straightforward identification of intermodule dependencies in the context of a 

case study subsystem. Using this point of view, we can determine which 

dependencies are necessary and which are superfluous. 

The framework presented in this thesis for understanding intermodule 

dependencies is derived from the LISP world of atomic objects. Atomic objects 

in the LISP world have bindings and property lists. A binding, in turn, is an 

atomic object, and each element of a property list is an atomic object. Every 

atomic object is characterized by its binding and property list. A collection 

of such objects can serve as a for>mal model for describing the structure of 

complex systems. In this object world there is a strong notion of modularity: 

the behavior of any one object can be characterized completely without any 
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knowledge of the objects designated by the property list or by the binding. 

In this thesis, we have considered a virtual memory subsystem to which this 

notion of modularity is applicable. The VM subsystem has not been 

implemented; however, it is patterned after virtual memory subsystems of 

several contemporary, general-purpose operating systems. There are several 

reasons for the choice of a VM subsystem as the case study. First, it 

provides a challenge: the actual VM subsystems that serve as a basis for the 

case study VM are quite complex. Second, the LISP notion of modularity is 

well-suited to a case study subsystem that includes memory multiplexing 

facilities and extended type managers. In this thesis, we model memory 

multiplexing simply as the manipulation of bindings among objects, and we 

model the mapping from an extended object to a component simply as a list of 

properties of the extended object name. 

5.2 Results 

We have shown how the notion of binding and the notion of property list 

may be used to make intermodule dependencies explicit. Application of the 

binding notion was considered in chapter III, and application of property 

lists was considered in chapter IV. 

Chapter III presented the point of view that the structure of a system 

can be simplified if the relations between objects are represented as 

bindings. If system designers exploit this binding notion, they should be 

able to identify and eliminate unnecessary dependencies. Since the memory 

multiplexing model presented in chapter III is a model of objects related by 

bindings, the multiplexing function should be able to be provided by a 

collection of modules that exhibit few interdependencies. In chapter III we 
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pointed out that not one, but rather several, of the layers of the case study 

VM carry out a multiplexing function. Higher layers multiplex abstract 

objects supplied by lower layers. Thus the structuring advantages provided by 

the memory multiplexing model can be applied to several of the VM layers. 

Additionally, much of the multiplexing mechanism serves as a greatest common 

mechanism for these VM layers. 

Chapter IV focused on the higher VM layers, in which mapping from 

extended objects to component objects, rather than memory multiplexing, is a 
' 

common function. We stressed that the subsystem that actually implements such 

a mapping need not depend upon the subsystems that manage either the extended 

object or the component objects. It is sufficient for one to regard the 

component objects (or any attributes that may be just a part of an object) as 

properties of the object name. Since several of the VH layers described in 

chapter IV require a mechan18' for mapping objects to attributes, a particular 
,If. ""' 

subsystem called the map layer can perform the mapping, serving as a greatest 

common mechanism. 

5. 3 Cg11parison .Q!. Ob,1egt iindtD&! s Ppourt;r. L11t1. 

The binding and property 11.at aotions o~reaPond to two somewhat 

different points of view about iate~pretat..lon. 00!> ob§eot1 names ·1n 

object-oriented sy.st;.ems. To see this, we ~ider :Se'feral scenarios. 

In an object-oriented system it is reasonable to expect that databases 

contain descriptors, or n•ea, or objects. In pat'.ticular, the name ·Of an 

object managed by type raanager A DlBY .exis.t in·a· database of type manager B. 

If B relies on the validity of this f!8.11&8, tn.n it will ~abJ.iY depend on A 

since A could inval !date the name. If A re:l:ies Gn tbe -val i'dit,- of the name, 

Page 113 



then it will probably depend on B since B manages the database. If both the 

above conditions exist, then there is a potential for a circular dependency 

between A and B. There are three other cases, which, by themselves, will not 

lead to a circular dependency. 

First, type manager A may not rely on the validity of the name (and 

moreover may not know of its existence). In this case A cannot depend on B, 

assuming there are no other causes for a dependency. This case is typical in 

computer software systems; for example, the manager of an object depends on 

the managers of the representation objects. 

Second, type manager B may not rely on the validity of the name. In this 

case, B is maintaining a property list for type manager A. Accordingly type 

manager B should not depend on type manager A. This case is probably 

encountered less frequently than the preceding one. A facility for storing 

and forwarding (but not interpreting) messages is an example of this case. A 

message is simply a property of a message container name. 

Third, neither type manager may rely on the validity of the name. This 

case corresponds to the situation in which type manager B maintains a binding 

to an object of type A. Accordingly, there need not be a dependency in either 

direction. Instances of this case probably occur infrequently in operating 

systems. The behavior of the object managers of the memory multiplexing model 

corresponds to this case. 

The latter two cases are those in which the maintainer of an object 

descriptor need not depend on the semantics of the object. This independence 

characteristic also applies to object managers in the LISP world of atomic 

objects. Although a situation in which one subsystem maintains a property 

list that is used by another corresponds only to "one-way" independence, it 
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should be able to be exploited frequent!~. A situation in which a subsystem 

maintains bindings to objects corresponds to a "two-way" independence, but it 

probably arises only infrequently. 

5.4 Remaining·rroblems JDS1. Future Research D1nctigM 

The goal of thi-s research has been t'O suggest.~·~a new poi-nt of view. that 

may be applied to the structuring of large sot'bW&reeySteme;. In this section 

we raise some questions about the assumpticins 'underi1!111 the research:· and 

about the generality ot the results~ In 'ilddlt:lon we su8ieat «:Ureotlons for 

future research that may answer'some of the'se'questtons. 

The object-oriented approach taken in ttlis- thesle has 'allowed· us to take 

a strict view of modularity;· It has the cfraWback; fu.sw..rer- 'that it is 

difficult to appiy in some cases. Operations tbat"'afflct ··lll<>re than one 

object, for example, cannot be modelled convenfenfty !. · !n chapter Ill we 

defined the fetch and stqre operat:tons 'to a'pply 'jointly. 'to hOllle . and . frame 

objects, since they affect the data bindings or both objects. Consequently 

the home and frame objects cartnot W ·aumaged''by dfisbinot type ·Mllaagers. 

Either these two types mlist be managed by a: single, l&rger type •manager ctr 

more than one subsystem must serve as a type•0 11m1agflti' tor a·'gi'fen object type. 

Neither alternative is desirable: in the first case,lt may be hard to show 

that unexpected interactions between the two obj~ot'-tJJtis .. cilrirmt exi'.St; i:n 

the second case, a subsystem that depend's on"one ot the contending type; 

managers probably must ae[>end on the oth~r as wefL -· W~ o'an conclude that the 

kind of modularity imposed by an object-oriented v1&w'li8' not always be 

appropriate for software systems-. Further inquiry· 'into ;tbe · riii'.ture of 

modularity in large software systems fs needed. 
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The structuring methods of this thesis have been applied to a case study 

virtual memory subsystem. Relevant questions about the applicability of these 

methods include 1) whether an implemented VM subsystem could actually be 

structured in this way, and 2) whether these methods have a wider range of 

applicability such as applicability to a file manager node in a distributed 

system or to the input/output facilities of a computer system. In chapter IV 

it was argued that a VM design, structured according to these methods, should 

be able to be carried through to an implementation without sacrificing the 

structure. The second question, however, has not been considered in this 

thesis, and is still an open research issue. 

Although the notion of correct module operation used in this thesis is 

informal, it includes some rather strong_ assumptions. As a result, in several 

cases one module was declared to be dependent on another even though, in a 

narrower sense, the former could operate correctly in spite of failures of the 

latter. 

A first approach to specifying correct operation, which we call the 

"accumulated semantics" approach, states that in order for a subsystem to be 

correct, not only must it manipulate some set of objects as specified, but all 

the type managers for objects in that set must (recursively) do so. The 

accumulated semantics approach focuses on the correct operation of an 

interface, rather than of any single module. 

A second approach to specifying correct operation, which we call the 

"isolated semantics" approach, states that in order for a subsystem to be 

correct, it is necessary only that it manipulate some set of objects as 

specified. Whether the objects in the set behave according to their 

specification is irrelevant. It is assumed that the subsystem can tolerate 
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errant behavior of any of the corresponding type managers. Even with this 

approach, though, there can exist interfaces for which correct operation 

depends on the correct operation of a collection of subsystems. 

At some points in this thesis we have favored the accumulated semantics 

approach since it is stronger and more generally applicable. None:theless, the 

isolated semantics approach appears ·to be·· a: uae:tul one. For example, 

subsystems like the block and frame sublayers, which are independent in this 

narrower sense, can be implemented and debugged separately. In addition, it 

should be easier to locate an errant module in a collection of modules that is 

independent in the isolated sense. Further reaeal'"ch into the nature of 'the 

correct operation of modular systems can help us'better apply a traditionally 

abstract notion to the engineering of' complex sottware systems. 

The goal of this thesis has been to enhanoe our.understanding of modular 

structure and dependency in oomputer software aystems. While we feel ·that 

these research results are applicable to a variety of such systems, further 

research will be required to determine the scope or these ~sults. We should 

develop the breadth and depth of our knowledge by improving our models of 

modularity and dependency. Research on these topics·sfiould lead to better 

methodologies for the desi~n of correct, reliable systems; it should help 

offset the rising cost or software production; and it should improve our 

ability to predict the performance of large systems. 
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