
MIT/LCS/TR-174

A CASE STUDY OF INTERMODULE DEPENDENCIES

IN A VIRTUAL MEMORY SUBSYSTEM

Douglas H. Hunt

December 1976

This research was supported in part by Honeywell Info~ation Systems Inc., and
in part by the United States Air,Force Information $11!ftem$ 'Technology
Applications Office (ISTAO) and the Advanced Research Projects Agency (ARPA)
of the Department of Defense of the Unite<i States under ARPA Order No. · 2641,
which was monitored by ISTAO under Contract No. F 19628-74-C-0193.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(Formerly Project MAC)

MASSACHUSETTS 02139

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis supervisor, Jerry Saltzer,

for providing critical commentary on the drafts of this thesis. During the

past few months, I could give him a draft copy on a given day and expect to

see his written comments the following morning.

Both Dave Clark and Dave Reed commented on earlier drafts, and for their

efforts I am grateful. Dave Reed also cheerfully consented, on many

occasions, to help evaluate my evolving thesis ideas.

A number of my colleagues, namely Art Benjamin, Jeff Goldberg, Rick

Gumpertz, Phil Janson, Raj Kanodia, and Allen Luniewski offered useful

suggestions during the course of the thesis research. More important than

that, they provided interesting lunchtime discussions during our Subcommittee

meetings, and comradery on the volleyball court.

Finally, I would like to thank Tom Fuller, who, aided by the wisdom of

H. W. Fowler and Wilson Follett, carefully reviewed my use and abuse of the

English language in this thesis.

This research was supported in part by .Honeywell Information Systems lnc.,

and in part by the United States Air Force Information Systems Technology

Applications Office (ISTAO) and the Advanced Research Projects Agency (ARPA)

of the Department of Defense of the United States under ARPA Order No. 2641,

which was monitored by ISTAO under Contract No. F 19628-74 .. c;..0193.

Page 2

A CASE STUDY OF INTERMODULE DEPENDENCIES IN A VIRTUAL MEMORY SUBSYSTEM•

by

Douglas Hamilton Hunt

ABSTRACT

A problem currently confronting computer soient!Sts is to develop a
method for the production of large software systems that are ea::sy to
understand and certify. The most promising .}l~et.~d~ ·involve ~eC,OJ!ll>QSing a
system into small modules in such a way that tn•_~e ~art,·tew intermddule
dependencies. In contrast to pre'V'ious·resea~on'; 'tbis:tli~sis,f~uses on the
nature of the intermodule dependencies, with tt)~ gpal:':'fidentifyin,g and
eliminating those that are round to '.b~ u~,i:ieqe~_-ary ~ · it1Jp& ·~ ·vlrtual memory
subsystem as 'a case study'· the thesis de$Qr1~ea a .s~r'\(otq~~ in which apparent
dependencies can be eliminated. ~~n'4 to· the' nature' 9.~ v!rtuaQ. .. memory
subsystems, many higher level functlons can be performed by lo\fer level
modules that exhibit minimal interaction. · The atructuririg methods used in
this thesis, inspired by the structure _o.(' t}le LI~'.P, ~,9r:1.d Q,f "~oaµc objects,
·depend on the observation that a subsystem oan maintain a copy or the name of
an object without being dependent upon the object manage!" •.. Sino.e the case
study virtual memory su~syst'em is similar to. 't,lla_t. ·qr 't:h,, MuHiqs system, the
results reported here should aid in the design of slmi,lar so})liisticated
virtual memory subsystems ip the future.

THESIS SUPERVISOR: Jerome H. Saltzer

TITLE: Professor or Computer Science and Eng,ineering

•This report is based upon a thes'is of the_ sge tit~~e ji~bai.~~-"'~ .. j;o the
Department of Electrical ·Engineer!~' and t~u~'l",,$.O~ri~~:, >tas,aachWJet.ts
Institute of Technology, on. ~ceml>4)r 21, 1916 1 1n par~lar rulf.:J,ll.nt of the
requirements for the degrees·or·Master of Science and Electrical.Engineer.

Page 3

·1

TABLE OF CONTENTS

ACKNOWLEDGEMENTS • • • • • . • • . • • . • • • . • • • . . . • • 2
ABSTRACT . • . • • • • • • • • • • • . • • • . . • • • • • . • • • • • • • • • • • • . • • . • • • • • • • • • • . • • • • • • • • . • • • 3
TABLE OF CO NT ENT S • . • .• . • • . • • • • 4
LIST OF FIGURES AND TABLES • • . . • . • . . . • . • . . . • • • . • • . • • • . • • • . . • • . . • 6

Chapter I

1.1
1.2
1.3
1.4
1.5
1.6

Chapter II

2. 1
2.2
2.3
2.4
2.5
2.6
2.1
2.8
2.9

Introduction . 1

Introduction . 7
The Problem • • . . • • 7
Method of Solution •...................... 8
Results . • • . 11
Related Research • • • • • • 14
Plan of the Thesis • . . . • . • • • • • • • • • • . • • . • . . • • • . • • • . • • . • • . . • • • . . • . 18

The Case Study Virtual Memory Subsyatem •...•••.•..•..••..... 20

Introduction . 20
Types and Type Extension . . • • • • • • • . . • •. • • • • • • • • . • • . • • . • • . • . . • . • • • 20
Protecting Object Types . • . • . • • • • • • • • . • . • . • • • • • • • . . • • • • • • • • • . • • . 26
Related Terminology and Assumptions • • . • • . • • . • • • • • • • • • • . . • . . • . • • 29
Authority Hierarchies •.••.•.•• : ••••••••••••••.••..•.••.••.. , . . • 31
Protecting Extended Type Objects in an ACL·Based System •••••••• 32
ACLs Versus capabilities iri Ext;~naible Sy$tems .•••••••••••.•• ~. 33
Directories as Extended 'l'ype O))jects ····!······················ 34
Summary _ ••••. • • • • • • • • • • . . • • . . • . • • 35

Chapter III Treating Objects as Bindings •..•••••••••••...••••••••.•••••. 36

3. 1
3.2
3.3
3.4
3,5
3.6
3.7
3.8
3.9
3. 10
3. 11
3. 12
3. 13
3 .14
3 .15
3 .16
3.17
3. 18
3 .19

Introduction
Removing Unnecessary Dependencies in the Lower VH Layers•••
Plan of the Chapter •...••..••...•••••••. ~ ••••.•..••......••.•••
The Lowest Layer of the Case Study VM Subsystem •.•......•.••..•
Overview of Memory Multiplexing •...•..•.•.••••..•••.••.....•...
A Model of Memory Multiplexing •.•.••..•...•.•••..•.•.•.........
The Block Abstraction •....••.••.••.••..•.••...•••....•.......••
Overview of Block Layer Implementation ..•••...•...•.•...•.•....
The Addressing Environment of the Block Layer •••••••••..••....•
Handling Frame Faults
Dependencies of Regions With.in, the Slock Layer ••.•..••••.•••...
The Next Layer in the Virtual ·Memory ••...••....•..••••••....•..
Dependencies Between the Block and Home Allocation Layers
Specification of Large Block Objects .•.•.•.•..•.••••........•..
Implementation of Large Blocks ...•••••••.•.......••....•...••.•
Further Aspects of Large Block :(mplementation ••..•..•.•..••.•••
The Relation of the Large Block and Home Allocation Layers
One More Application of the Block and Home Allocation Layers •..
Summary •...••............••.•..• ~ •••.•. · •••••........••••••••...

Page 4

36
36
37
38
39
40
43
47
50
51
57
60
62
63
64
69
70
72
74

Chapter

4 .1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4. 10
4. 11
4. 12
4. 13
4. 14
4. 15
4. 16

Chapter

5. 1
5.2
5.3
5.4

IV

v

Treating Objects as Elements of a Property List •••.......••. 76

Introduction . 76
Removing Unnecessary Dependencies in the Higher VM Layers .,. .•.• 76
Plan of the Chapter . 77
Extending Large Blocks to Segments • . • • . • • . • • • • • • • • • • • • . . • • • • . . • 78
The Map Layer•........ ·. 80
Dependencies of the Map Layer • • . • • • . • • • • . • • • . . • • • • . • • • . . • . • . • . • 83
Alternative Addressing Modes for Segments ..••...•••.•••••...••• 84
The Access Control List Layer • • • • • • • • • • • • • • • . • • . • • . • • . • . • • • . . • • 89
Eliminating Potential Dependencies by Using Property Lists ·.•••• 92
A Layer to Support Dynamic Type Extension ••••.•••••••••.••••••• 99
The Extended Type Manager Layer Interface ••..••..••...•.. :• 100
Support of the Extended T.ype Manager Lay~r by the Hap Layer . • . . 102
Dependencies of the Extended Type Manager Layer••••..•..... 104
Represenation of an Authority Hierarchy ·• • • • • • t05
Directories as Extended Objects .•..••.•.•.•••.•...•....•.. ·· . • . . 107
Summ.ary · • • • • • • • • • • •. • • • • • • . . • . • . • • • . • . . . • 108

Conclusions and Suggestions for Further Research ••...•••.••• 111

Introd·uct ion 111
Results•.•....•......•...•..•...•..•.•.•....••..•..•• 112
Comparison of Object Bindings and"Property Lists •.••••••.••.•.• 113
Remaining Problems and Future Research Directions .•••.••.•..••• 115

BIBLIOGRAPHY ... 118

Page 5

Figure 2-1

Figure 2-2

Table 2-3

LIST OF FIGURES AND TABLES

The Three-Level Tree of Object Types ••••••••••••••••••••••••

Extended Type Objects and Represeatat1on Objects •••••••••••.

A Sample Domain ..

22

24

26

Table 2-4 A Sample Access Control List •••.•.•••••••.....•••••......••• 28

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Bindings Between Objects of the tkltiplexing Hodel .••..••••• 42

Tables Representing Frame and Molle Bindings •••••••••..•••.•• 47

Binding States During Frame Claiming and Freeing ••..•••••.•. 55

Dependencies Among Block Layer Modules •••••••••..•......•••. 61

Data Structures Supporting a Large Block Space •••••••••••••• 65

Interaction of Two Layers Over Pl"atle Oltjects •.•.••••••..••.. 67

Figure 3-7 Data Structures Supporting a Space of Large Block Spaces .••• 73

Figure 3-8 Dependencies Among the Lower VM Layers .•..••••••.••••...•... 75

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Contents of a B-tree Node

Mappings Managed by Three Different Layers .•..•••......•..•.

Possible Representation Objects for Segments•.•••.•...

Actual Representation Objects for Segments•...........

82

85

94

96

Figure 4-5 Revised Format of a Map Entry • . . . • • . • . • . . . • • . • . . • . . • . • • • 102

Figure 4-6 Map Entries for an Extended Type and a Component Object ••..• 104

Figure 4-7 Contents of an Access Control List ...•••.•.••••.....••.•.•.. 106

Figure 4-8 Dependencies of the Higher VM Layers . . . • • • • • . • • • . . • • 109

Page ·6

!··;.,,;

Chapter I

Introduction

1.1 Introduction

This thesis focuses on the interactions between certain components of an

operating system. Our goal is to show that a nontrivial subsystem, a virtual

memory (VM) subsystem, can be organized as a set of modules that are related

to each other in particularly simple ways. The thesis presents the view that,
•'.

owing to the nature of VM subsystems, the supporting modules need interact

only in a few stylized ways.

1.2 The Problem

The research reported here is devoted to one a.s~ct of the problem of

providing correct and reliable components for large-4c~+e co~puting systems.

The general problem h that it is difficult to maintain and modify, and it is

particular+y difficult to verify, the correct Q.peratiAJ:i .of. large general-

purpose systems. This general problem is due, in .p&J'.'.t, to an excess!'fftlY hi.gh

degree of connectivity between system modules. The nature of the interaction

between two modules is such that the correct operation or one module depends

upon the correct operation of the other. These interactions are thus evidence

of intermodule dependencies.

This thesis treats one aspect of the general problem by examining

intermodule dependencies in the context of a case study virtual memory

subsystem. The reason ror limiting the problem in this way is to rely upon

characteristics that are inherent in VM subsystems to provide guidelines for

determining classes of dependencies· that may be essential in that context.

Page 1

The specification of the case study VM is based on tbe specifications of the

Multics [Bensoussan72, Organick72, Multic87~], CAL (Sturgis74, Lampson76],

Hydra [Wulf74, Jones75], and Stanford Research Institute (SRI) [Neumann75,

Robinson75] VM subsystems. These virtual memory subsystems, as well as those

of the Plessey 250 [England72], TSS/360 [Lett68]. and HITAC 8800 [Nakazawa72)

systems, support shared segments or segment-like objects. Each of these

subsystems is a relatively complex operatins system component. This study of

intermodule dependencies in a sophisticated VH subsystem should aid in the

design o.f similar subsystems in the future.

The modular structure of a subsysteJI sho~ld have the following

properties: 1) no one module should be particularly large, 2) the

interconnections between modules should be simple and few in number, and 3)

the intermodule dependencies should form a partial order. The primary goal of

this thesis is to show, in the context of the case study, how such a

constrained modular structure can be obtained. A secondary goal of the thesis

is to introduce some novel methods for obtaining this modular structure that

can be applied to other areas of system design.

1.3 Method of Solution

The method of solution relies on established structuring methodologies,

as well new methodologies developed during the course of this research. The

established methodologies are described in. this section; the new ones are

described in the next section, which summarizes the results of this thesis.

One approach to achieving a modular structure that can exhibit the three

properties above is called the ob1ect-orienteg approach, in which each module

is a subsystem that supports all computational objects of a particular type.

Page 8

The only way to carry out an operation on a particular type of object is to

invoke the corresponding managing subsystem. In general, a module that

supports a certain type of object depends on other modules that support other

types. Dependencies among these modules are straightforward, since they must

correspond to the interfaces of the object manager subsystems.

A second approach for structuring subsystems is the layering approach, in

which a subsystem is regarded as an ordered set of layers, or abstract

machines, such that each layer uses the environment provided by layers below

it in the ordering to implement a more sophisticated abstract machine. The

important characteristic of this approach is that since each layer is designed

to operate in an environment provided only by those layers below it, no layer

embodies knowledge of any higher layer. Assuming that layers are separated by

protection barriers, the correct operation of a given layer depends only on

that of lower layers.

These two approaches illustrate different aspects of modular structure.

A system organized according to the object-oriented approach appears to be a

collection of data abstractions. Modular structure is achieved because, by

assumption, the procedures that are most likely to interact strongly are

precisely those that serve to produce the same data abstraction. These

procedures are grouped within distinct type managers. Hence the object

oriented approach should yield a structure in which intermodule invocations

are relatively infrequent. A layered system appears to be a collection of

progressively more sophisticated abstract machines. In this case, modular

structure is achieved because, by assumption, the difference between any two

adjacent machines in the ordering is rather small. Therefore a module

comprising only a small collection of procedures should be sufficient to

Page 9

produce a given abstract machine from the.preo~ding one. The layering

approach should yield a structure consisting of small modules.

The object-oriented and layering design metnodologies are not

incompatible; a subsystem can have a str'1Ct11re that is both object-oriented

and layered. The most straightforward intersection of these two methodologies

results in regarding each module as both a manager of an object type and a

layer. In this thesis we do not insist on a one-to-one correspondence; for

example, some case study VM layers contain several obj~t manager subsystems.

It is possible to structure a subsystem by either of these methodologies

so that intermodule dependencies form a Partial order. If the dependencies

form a partial order, then the process of verifying correct operation can be

decomposed in a natural way. Since there are no dependency loops, there must

exist modules that depend on no others. The correct operation of these

modules is verified first. Thereafter, any module that depends only on

already-verified modules can be verified. (1)
'·

To retain this structure that

is desirable for verification, we shall inaist on a d•pendency relationship

among VM modules that is a partial ordering. Since the term "layer" connotes

a total ordering, we prefer to use the term region. However, wherever the

context is not sufficiently restrictive, we will use these terms

interchangeably.

The intermodule dependencies are classified according to their effects.

If a specification of module A that does not take time into account can be

violated by incorrect operation of module B, we say that A has a stropg

(1) Dependency loops among modules complicate the verification process. A
technique for breaking dependency loops, called llR!hfjMipa, is described by
Parnas [Parnas76].

Page 10

dependency on B. If A does not have a strong dependency on B, but a

specification of A that takes time into account can be violated by incorrect

operation of B, we say that A has a weak dependency on B. For example, in a

layered subsystem a lower layer is, by design, not strongly dependent on a

higher layer. As another example, two regions that interact only through a

shared semaphore are mutually weakly dependent. In this thesis, we are

concerned much more with strong dependencies than with weak dependencies,

since failure in the case of weakly dependent modules implies only a denial of

service. We shall use the term "dependency" by itself to mean "strong

dependency", and "independent" to mean "not strongly dependent".

Although some novel notions for implementing a VM subsystem do appear in

this thesis, such notions are not an end in themselves. They serve as a means

of illustrating a structuring methodology. In fact, there is an assumption in

this thesis that the machine architecture supporting the case study VM is

rather conventional. As a consequence some tempting but irrelevant

mechanisms, often mentioned in footnotes, were not included in this analysis.

The approach taken in this thesis is to understand and classify the

dependencies among the case study VM modules. A measure of the success of

this approach is the extent to which each dependency can be explicitly

justified.

1.4 Results

We observe in this thesis that two kinds of operations are fundamental to

the functioning of the case study VM subsystem. The first kind of operation

is one that can associate and dissociate two computational objects. The

second kind of operation is one that fetches attributes of a computational

Page 11

object when given its name. We derive two atructuring techniques -- one for

each kind of operation -- that implement each operat.ion in such a way as to

reduce the number of strong intermodule dependencies'. These techniques are

patterned after the view taken by the designers of' LISP [HCCarthy62] towards

the LISP world of atomic objects. By adapting their point of view to the

problem at hand, it becomes simpler to ident1ff superfluous intermodule

dependencies.

Corresponding to the operations that associate and dissociate objects are

the LISP operations of' binding and unbinding. The obiet virtue of the binding

notion, from the point of view of this thesis, is that it is a one-way

relationship: the behavior of object B is unaffected if object A is bound to

it. Treating the association between two objects as a binding makes explicit

the nature of the dependency between the corresponding subsystems that

implement them.

Corresponding to the operation that caps object names to attributes ·1s

the LISP notion of a property list. The significant observation concerning a

property list is that the module that associates the data the·rein wit.h an

object need place no interpretation on the data. Accordingly, if module c

associates an object of module A with an object of m'odule·B, its behavior need

not depend (except possibly weakly) upon the behavior of module A or module B.

Additionally, we suggest a structuring method that serves the engineering

goal of achieving economy of mechanism. We refer to this method as the

principle of the greatest common mechanism. Even in subsystems that are

well-structured according to the above criteria, a number of modules may

contain similar or identical functional subsets. For example, the

specification of several case study VM modules reveals that, given an object

Page 12

name, they return a particular attribute. A supporting module that implements

this mapping function for the other VM modules could be provided. If the

supporting module were too small, in the sense that its mapping mechanism were

not sufficiently general to provide a service for each of the other modules,

then economy of mechanism would be sacrificed since at least one of the other

modules must implement. Hs own mapping function. If the supporting module

were too large, in the sense that it not only provided the necessary mapping

functions for the other modules but also provided specialized functions for

some of the modules, then the correct operation of all the modules would

depend upon the correct operation of these specialized functions. In order

that the supporting module not err in either direction, it should provide the

greatest common mechanism, which would consist of the intersection of the

functionalities required by the dependent modules.

The principle of greatest common mechanism should be distinguished from

the principle of least common mechanism, originally suggested by M. o.

Schroeder and described by Popek [Popek74]. The principle of least common

mechanism is relevant to the design of a system that contains a aeggri\¥

kernel [Schroeder75]. A security kernel is an encapsulated set of programs

and data that implements the security policy of an operating system.

Typically, a security policy specifies conditions that must be met before

information can pass between two users, or between a data reposi:tory and a

user. The kernel should allow information flow only W'h•n· the specified

conditions are met. An error in any encapsulated program may allow

information flow that. is contrary to the policy. One method for reducing the

likelihood or such errors is to remove all mechanisms not relevant to security

from the kernel. Although such mechanisms may be common mechanisms, they do

Page 13

not require the high degree of privilege that kernel mechanisms do, and errors

in their operation may violate the security policy. The least common

mechanism principle states that such mechanisms should be excluded from the

security kernel. Popek mentions the subsystem that supports a user I/O

interface as an example of a mechanism that is often included in the most

privileged part of an operating system, even though it does not require such

privilege. According to the principle of least COllllllon mechanism, this

subsystem should not be included in a security kernel. The principle of least

common mechanism is thus a means for reducing the likelihood of unauthorized

information flow, whereas the principle of greatest co1111on mechanism is a

means for achieving economy of mechanism. These principles are not

incompatible. For example, the first principle states that the user I/O

facility should be outside the kernel, and the second principle states that it

should be a common mechanism. Both objectives can be met if the user I/O

facility is a common mechanism, outside the security kernel.

1.5 Rtlated Research

In the past few years bo.th layered aru;l object..,oriented general-purpose

systems have been built, providing evidence t_.t these structuring techniques

can be used in a practical context. More reeently reaearcners nave sought to

specify and verify the correct operation of syst.em components. As part of

these efforts, some re.searchers have focu.aed on the nature of modules and

their interdependencies.

The layered approach to structuring was employed in the development of

the "THE" system [Oijkstra68]. More recent exaDQ>les of lay•red systems

Pase 14

include the CAL [Lampson76] and Venus [Liskov72] systems, as well as the

family of systems described by Pa.rnas [Parnas76].

The object-oriented approach was employed in the CAL system, and more

recently in the Hydra system [Wulf74]. A specification for a layered,

object-oriented system [Robinson75] has been produced by Robinson and others

at SRI. However, none of the object-oriented systems has carried this

structuring approach all the way down to the hardware interface; the CAL

effort was perhaps the most successful attempt to do so.

In order to verify correct operation, it is necessary first to define it.

Naur [Naur66], Floyd [Floyd67] and Hoare [Hoare69] showed that small programs

can be proved to satisfy a set of assertions. Researchers at SRI, building

upon these efforts and the work of Parnas [Parnas72] in the area of program

specification, are developing a methodology for proving properties of larger

collections of programs. Among the many kinds of assertions that programs may

be shown to satisfy, assertions about the secure operation of systems [Bell74,

Neumann75] have probably received most attention.

Assertions made in the following chapters about intermodule dependencies

can be justified without recourse to a formal notion of correctness. There

is, however, an assumption about correctness that is fundamental to this

thesis: the correct operation of a layer may be determined without regard to

its use [Habermann76]. For example, an errant program may appear to "misuse"

a computer hardware layer if it attempts to divide by zero. However, as long

as the hardware behaves as specified in this and in other "erroneous"

situations, it is said to be correct.

Currently, there are a number of research efforts under way that are

related to the design of verifiable, general-purpose systems. At SRI, a

Page 15

system design methodology that supports sellli-automated correctness proofs is

being developed [Robinson75). In an effort described by Schroeder

[Schroeder75], parts of the Multics operating system are being restructured,

with the goal of making manual verification possible. Parnas [Parnas76]

describes a notion of intermodule dependency that serves as the basis for

structuring a family of operating systems.

The SRI system design effort is part of a larger effort to develop a

methodology for designing verifiable systems. The operating system design

serves as a case study for the methodology. Currently, there are no plans for

producing an implementation of the operating system design. A significant

feature of the SRI methodology is that proof of correct operation can be

carried out as part of the design process. Global assertions, based on the

specifications of a high-level module, can be proved before the supporting

low-level modules have been specified. Thus certain classes of

inconsistencies can be detected as the system is being.specified. As part of

this effort, the SRI research team has developed se~i-automated tools for

checking the consistency of module specifications.

The Computer Systems Research Division of the H.I.T. Laboratory for

Computer Science is nearing completion of a project that supports development

of a certifiable security kernel for the Multics system. (1) One activity in

the scope of this project involve·s a restructuring of the system software that

manages processor and memory resources. As part of this effort Reed (Reed76]

has .described a design to simplify t-he management of processor resources in

(1) Other participants in this project, sponsored by the Air Force Electronic
Systems Division, include Honeywell Information Systeas .Inc., the MITRE
Corporation, and Stanford Research· Insti.tute.

Page 16

Multics. In this design, the processor management function is distributed

over two layers. The virtual processor abstraction provided by the lower

layer can be used to structure the system supervisor. Janson [Janson76]

describes a way of restructuring the Multics virtual memory so that the

resulting modules are 1) responsible for managing distinct data abstractions,

and 2) small enough to be subject to manual verification. Huber [Huber76] has

shown how the use of dedicated virtual processors can simplify the structure

of the Multics virtual memory. These restructuring efforts are all aimed at

establishing a more coherent layered structure within the Multics supervisor.

A distinctive aspect of this project is the emphasis on viability: the

restructuring efforts must be carried out within the constraints imposed by a

commercially available system.

Work on a family of operating systems by Parnas and his colleagues

represents the first total system design effort in which intermodule

dependencies have received careful scrutiny. Modules interact according to

the "uses" relationship: module A~ module B if A, in order to function

correctly, requires the presence of a correct version of B. The system

structure can be represented as a directed acyclic graph whose edges

correspond to the "uses" relationship. The "uses" relationship is thus a

partial ordering among modules. Assuming that assertions about correct

operation in the Parnas family of systems include assertions about elapsed

time, then the "uses" relation contains the strong dependency relation, but is

contained by the union of the strong and weak dependency relations. For

example, there are weak dependency relations that are not "uses" relations:

if, by invoking module B, module A can cause another entry to be put into a

hash table that is maintained by B, then A may be able to cause long hash

Page 17

table searches and resulting degraded service from module B. In this case B

is weakly dependent on A but does not "use" A in the sense of Parnas.

In contrast to previous work, this thesis investigates conditions under

which a module simply maintains bindings to objects, without any embedded

knowledge of the semantics of the objects. U these conditions are satisfied,

then the module maintaining the bindings cannot be strongly dependent upon

those modules that implement the objects.

1.6 Plan of the Thesis

The specifications of the case study virtual lllemory subsystem are

presented in chapter II. First, the notions of an a&stract object and an

abstract type manager are reviewed. The next section of the chapter describes

the capability and access control list models of protection, with an emphasis

on the latter model. Additional terms are then defined, and assumptions that

further refine the scope of the problem are stated. The final sections of the

chapter deal with particular issues relating to type &ttension in the case

study VM, including the relationship of' access control lists to extended type

objects, and the treatment of directories as extended type objects.

Chapter III is devoted to the lower layers of the case study VM. The

mechanisms in these lower layers multipl~x main medloi"y. we present an

abstract model of a memory multiplexing implementation, based on the

manipulation of bindings between autonomous, low-level objects. Each type of

low-level object is shown to be related to the other types in a simple way

that follows directly from the description of the memory multiplexing model.

Although one application of the simple model provides a correspondingly simple

VM environment, additional (i.e. recursive) applications provide progressively

Page 18

more sophisticated environments that approximate segmented address spaces.

The dependencies among the VM modules that support this recursive design are

analyzed and justified.

In chapter IV, the higher layers of the VM are considered. These layers

are intended to support objects with implementation-independent names and with

an arbitrary collection of attributes, as well as to support dynamic type

extension. To provide confidence in the viability of the VM structure, there

is a section of chapter IV devoted to a description of how this VM structure

could support any of several possible segmented addressing environments. An

important common function of the higher VM layers is the mapping of object

names to object attributes. A layer that serves as a common mechanism for

supporting these mappings is described. Applying the LISP-inspired property

list notion and the principle of greatest common mechanism to the

specifications of the higher VM layers results in a design that eliminates

unnecessary dependencies.

Chapter V presents a summary of the research reported in this thesis.

The assumptions underlying the structuring methods of the thesis are reviewed,

together with the particular characteristics of a VM subsystem that have made

them readily applicable. We contrast the structuring approaches of chapters

III and IV, showing why the former is more appropriate for the lower VM layers

and the latter is more appropriate for the higher layers. Following this

summary of the thesis results, we mention some problems that remain, and offer

suggestions for further research.

Page 19

Chapter II

The Case Study Virtual Memory Subsystem

2.1 Introduction

It is the purpose of this chapter to !!Jpecify the case study virtual

memory (VM) subsystem. This specific•tion will .serv:e as the context for the

analysis given in later chapters. The. ca~ study VH has not been. implement.ed;

rather it is a design inspired by existing VM subsystems, namely those of

Multics [Bensoussan72], CAL [Lampson76], and Hydra [Wulf74], as well as the VH

of the system being designed at SRI [Robinson75].

Since the VH is expected to support •xt~nded type objects, we begin by

reviewing the notion of type extension. We then describe how extended type

objects can be protected by access control lists. Throughout this chapter we

refer to related work on extensible systems and protecti()n· We include a

brief description of the representation or autboritY. hierarobies, and of the
' - ,. ' . ' , L.

treatment of directories as extended type objects. Tbe next two chapters

introduce methods for structuring an implEpmentation or this case study VM

subsystem.

2.2 Types An.SI.~ Extension

This section reviews the notions of object types and abstract type

managers. These notions are fundamental tO the obj'eht-oriented structuring

methodology employed in this thesis.

The entities that are manipulated during the course or a computation are

called ob1ects. Each object is defined by a set of operations. For example,

a "message queue" object might be defined by the operations "enqueue" and

"dequeue". The set of objects can be partitioned into equivalence classes,

such that objects with the same set of operations form a class. Each

equivalence class is called a ~· Thus "message queue" is the name of a

type, and there may be many message queue objects that are instances of this

type.

Associated with each object type is a subsystem called an abstract ~

manager, or ~ manager. A type manager comprises a set of procedur·es that

implement each of the operations of a type. For example, an "enqueue11 request

for a given message queue object would be directed to the message queue type

manager. The type manager would then manipulate the data that represents the

given message queue object in such a way that the enqueue operation is

effected.

There are two particular operations, "create" and "delete", that are

applicable to many object types. Since it is difficult to regard these

operations as ones that affect the state of an object, we consider them

instead to be operations on the type manager itself. This suggests that the

type manager is an object in its own right.

The view that "types are objects" was introduced by Jones [Jones73] and

is summarized here. According to this view, the set of all objects forms a

tree that is three levels deep. Figure 2-1 is an illustration of the

three-level tree of objects. A given object has, among other attributes, a

name and a type. The type attribute is generally the name of a different

object, one level higher in the tree, that is the type manager for the given

object. Leaf nodes, such as "message queue 26 11 , correspond to instances of a

type. Interior nodes of the tree, such as "message queue manager", correspond

to type managers. The root node corresponds to a special object that has a

Page 21

I
I

I· lll81laget" manager
I
, __,. _____ _,,, ____ _
I
t

I ~ manager.

I
I

' ' ' '
manager manager I mmager manager

--------~--~~----
I
' I

message queue manaeer I
I ------------1·

/
/

/

message queue manager

message queue 26

directory manager

' ' '
d·irectory manager

Each node in the tree represent& one object.
The upper half of each nod'e contlifJ:mr ttae: type of the object,

and the lower half ~&Urs t;ba ~.

Figure 2-1

The Three-Level Tree of .Ob;ject types

type attribute equal to its own name attribute. The root node object is, in

effect, a manager of type managers. It is not only possible to create and

delete instances of objects, but it is also possible to create and delete type

managers. Creation of a new object instance is accomplisped by invoking the

"create" operation of a, type manager. SimilarlJ, creation of a new type

manager is accomplished by invoking the "create" 01>19ration of the root node

object. A system that provides for creation or tyf)e managers (Le. the

definition of new types) is said to support dYna;iO ·!l.11! greation. The CAL,
' -. ,_ '"' ~ "',5 '

Hydra, and SRI systems all support dynamic type creation. The VM of this

thesis also supports dynamic type creation, not only for the flexibility that

this feature .provides to users, but more iaportantly because the VM itself is

organized as a set of type managers so much common mechanism for supporting

user-defined types already exists.

In general, the representation Qf an object comprises a set of other

objects, and a catalog namil'ig ·each member of that .set. We refer to the

objects in the representation as reprueptation ob tuts, COjponent op.1§t1, or

components, and to the catalog as the map. An object that is built out of

other objects is called an extended ~ ?bJec~ (ETO), and its. type manager is

called an ~xtended ~manager (ETH).
. . .
Thus the set or exten~d type managers

are a proper subset of the set of abstract type m~agera. The notion of type

extension can be applied recursively, ao a component object may it~elf be an

ETO. These relatiQnships ape shown in Figure z.;.;2_. Figures 2-1 and 2-2 both

depict a tree-structured' relationship among objects. These two tree

structures are independent. The basis of the ~elationship ih Figure 2-1 is

Page 23

segment
manager

I

I
I

segment
23

segment
53

I

employee
file

31 employee
file·

62

I '\
\

I \
I \

file

"' '\
message queue

I
I

I
I \

\
\

I i. message
queue

36

I

I
I

~
L_J

---...... -
segment

16

message
queue

45

map

' I
J

I
-................ /

....... . / __ __..

Figure 2-2

Extended Type Objects and Representation Objects

Page 214

type: each child node corresponds to an instance of· the type managed. by the

parent node. The basis of the relationship in Figure 2-2 is representation:

each child node corresponds to a representation object o'f the parent node.

In order to prevent endless recursion, u: ls appropriate· to regard

certain •1ow level" objeets as being at.omie. Su'oh obj:eots are called base

level obJepts. Of course, such a distinction is an· arbit.rary bne, since any

object in a representation tree could ·be chosen· to a base level object. In

the case study VM, it iit reasonable to consider sepent ob'jeots to be base

level objects. Even though segments are implemented by more primitive

objects, subsystems outside the VM cannot access these prbnitiVe component.s.

The segment object wats described first· by Denrti8 ·· [D$nnls'65], and since that

time many operating systems. have provided segments or ~im~lar abstractions .. · A

segment is an ordered ct)llection of storage cells (typicaily words or bytes)

with an associated name. The address of a oell'within a segment is an integer

that denotes the position of the cell relative to tl\i beginning of the

segment. The length Of a segment is equal to the number of cells it contains,

. which may vary during the course of a computation. The name e>f. a segment is

location-independent; segment names in the case study VM are non-reusable

unique identifiers. Since segments may contain elther data or executable

instructions, the operations defined on segments include "read", "write", and

"execute". Segments may have a number of attributes, such as "date created",

and "name of creator".

Page 25

2.3 Protecting ObJect TYJ!e§

This section reviews protection mechanisms found in contemporary

operating systems. The aceess contr.oJ. l.iat 1'8a·ban.1•, :to be provided as part

of the ca·se study VM, is· described in greater .Aet&U.

The VM of this thesis provides a meoG&n...._ to. ~s and enforce

protection policies relating to ot>jects. .Nr:we ;preciely., the VM supports

protection policies for segment objects and tor all ,£f-Oe aonstructed

(recursively) out or segment objects. .Aeoeu. t.o an Gi>ject .ts expressed in a

straightforward way: each operat.ion on an objec.t hae .an associated

permission. The name of tbe permission is t.ile -.... ae .tbe name of the

operation. For example, there. are "enqu•n•., and. ""4ueue" permissions for a

message queue object, and "read", "writ·e"., and."ex•.ute!' permissions for a

segment object. A collection of acoeaa permissions fQ~ objects is called a

domain [Lampson69]. A program executing 11 iR a d-in" is constrained to

perform only those operations that are specified in the domain. Table 2-3

illustrates a domain comprising ~ocess pe~11ia8101ua f&r three objects.

permission

enqueue

enqueue, dequeue

read , execute

Table 2-3

A Sample Domain

o.biect ~

MQ....23

MQ.;_31

segment_16

The domain model of protection is suft'ioient ,to characterize the

protection facilities of most current gener-al-PUl"il9~ isystema. In one ..

realization of the domain model, a d0main is represented as _a set of

caoabilities [Dennis66]. A capability has two parts: a name of an object, and

a set of access permissions. (1) In order that ihe protection policies not be

circumvented, capabilities are tamperproof. Presentation of a capability

specifying a given permission is a prerequisite for performing the

corresponding operation on an object. Capabilities can be passed from one

domain to another in order to achieve sharing.

In a capability system it is not necess~ry that the agent attempting to

access an object be identifiable; mere possession of an appropriate capability

indicates proper authorization. In another realization ot the domain model,

which makes use of agcw contrql l.1JjtA (Sal-t~r75], each ~gent is . .

identifiable, and has a global.ly recogniz~ llaa,te.):n acoeas, 1opntrol list

(ACL) systems, an agent that has the potential to access, .obj~ote is called a.

principal. A principal JDaY be cbaraclter1z4:t(l ~-- t~ J.nter~ manife-st~tJon of

authority in a computer system. F.ach princi~ .i,s id;entiO.ed l>y a name kaQ.wn

as a principaJ, j.dentifier. Every, object has .an as~Q~ted access control list

that contains ordered pairs of 1) access pera~a'1ons and 2) pr:ineipal

identifiers. Every time that a principal atte.-pt.s to ref~erute .an object, the

assoc;J.ated access control list. is searched to det.erm~ wbetber tbe type of

access that tl'le principal is attempting is allowe<l. (2) tf it is not allowed,

(1) The name p~t of a capability may also contain type infona.tion.

(2) In this thesis we shall use the term- "prino~p-1" in.formally, to replace
the more precise phrase "processor executing a program on behalf of a
principal".

Page 27

the attempted reference is aborted. A sample access control list for a

message queue object appears in Table 2-'t.

pennission

enqueue

enqueue, dequeue

dequeue

Table 2-4

Rtinoip§l

Smith

Jones

Brown

A Sample Access Control List

If the ACL shown in Table 2-4 were associated with •MQ_31n, this would

indicate that the principal named Jones could perform both enqueue and dequeue

operations on "HQ._31 " •

The relative mer-its of the capability and AcL· protection mechanisms have

been described in the literature [Fabry74, Saltzer75]. The VM of this thesis

provides for protection of objects (i.e. segments as well as ETOs) by ACLs.

The primary motivation for choosing the ACL mechanism is that a working

ACL-based system, namely the M.I.T. Multics system, is available for

inspect.ion and comparison by the author. An additional motivation is that the

use of ACLs as a means of protecting extended type objects has not been

explored in the research literature; current extensible systems use

capability-based protection mechanisms. Providing for variable-length (and

potentially large) ACLs is a design issue that is not encountered in

capability-based VM subsystems.

Page 28

2.4 Related Terminology and Assumptions

The purpose of this section is to introduce additional relevant terms, as

well as some underlying assumptions. The terms introduced here are related to

those defined in preceding sections.

We define a protected subsystem to be a set of programs and data that is

encapsulated so that other programs may invoke those in the set only at

specified entry points. Programs outside the set are prevented, by the

encapsulation, from causing arbitrary transfers of control to or from

encapsulated programs, and from directly accessing the encapsulated data.

Each extended type manager in the case study VM is implemented as a protected

subsystem.

We wish to allow for the case in which each protected subsystem may

execute in a distinct domain. Accordingly, we specify a one-to-one

correspondence between protected subsystems and domains. Given our informal

use of the term "principal", each protected subsystem assumes the role of a

principal. Consequently subsystems such as type managers that are not

ordinarily associated with "end users" nonetheless have principal identifiers.

To summarize, we are assuming in this thesis that "principal", "protected

subsystem", and "domain" can be used interchangeably. Further, we assume that

each extended type manager is implemented as a distinct protected subsystem.

In general, this brief description of the nature of a domain, a

principal, and related concepts will suffice as a basis for understanding this

thesis. A more detailed description of the naming of these entities is not

necessary here. We do assume, however, that each protected subsystem has a

low-level name that has the form of a system-provided unique identifier. Such

a name may be the same as the name of a canonical component, or it may be

Page 29

associated with the protected subsystem as a whole. Possible representations

for the principal identifier names that appear in ACL4 inclcude single unique

identifiers or a sequence o!' unique identifi«u"'a.. A further discussion of the

naming of principals, domains, and protected aubaystema appears in.the work of

Saltzer [Saltzer74) and Montgomery [Montgoaer-y76].

Associated. with each object type are two classe.s or principals. First,

there is a class of principals that are QQWHM£1 of objects of a given type.

A consumer of a type is any principal that inYolres .tbe corresponding type

manager. Second, there is a class of princ..ipala {:wi.th only one member) that

are §W?Dlier;i of a given object type. The supplier of an ETO is the

corresponding ETH. Using the terminology introduced here, we can charact~rize

each ETH as the supplier of one object JJPe and the. oonsumer of at least one

object type.

In this thesis we do not assume an;v particular relationship between a

protection context and-an execution sequellOe. Thu,a,_ we wish to allow for the

possibility that there can be 1) one-to-uny~ 2) one-to-one, or. 3) many-to-one

relationships between domains and virtual procesaorth (1) In particular, we

generally will not specify the nuat>er of vi~ual prooeasors that support a

given ETM.

We do not consider the details of an. interd~in c.OIUlunication mechanis

in this thesis. However, we do assume that tor any such mechanism, the

unforgeable identity of the invoking princ.1~1 ia supplied.to the target

domain.

(1) A virtual processor may be either a real processor or an abstraction
provided by multiplexing a real processor.

Page 30

2.5 Authority Hitrf.rohi!§

The authority structure represented in an access control list is not

expected to be static. In this section we summarize one approach, to be

supported by the case study VM, for implementing a hierarchical authority

structure in an ACL-based system.

The operations to di$play and update the contents of ACLs must be

controlled. Controls can be applied 'if each ACL has an ACL if its own. This

second ACL might contain permissions for such ope~ationsas "display" and

"update". (1) Controlling access to an ACL via another ACL suggests a

hierarchy of access control lists. Rotenberg [Rotenberg7~] describes a

special protected subsystem, called an oftiOe, that can embody the access

control policies that are likely to be expressed in such a hierarchy.· Every

ACL is under the control of',exadtly one office, which we shall call its

controlling office. An office will determine, according to some internal

policy, whether a given principal (or 'group of prtneipals) can perform some

operation on an ACL under ·its control. The 'esoape meobanima provided by

offices eliminates the need tor a hierarchy of' ACLs.

---------------------~--(1) We do not specify any controls on the operation of searohing an ACL.
Rather, we· asst.Ille tbat any prinolp•l~can seal'oli anf ACL. Were this not the
case, it would be neoessary to determine, by searchina the ACL of the given
ACL, whether the given ACL could be searched. Clearlh·in order that any
reference to an object not result in an infinite loop of ACL searches, there
must exist ;so1tae ultimate, ACL for wl\i(!tl .earehtq il'i \lans4:t'icted •· we specify
that the ultimate ACL be the same as the original ACL. For those oases in
which the intornultion in ACLs •at be exploited'' a• a oovel't in-formation channel
[Lampson73], non-discretionary controls [Saltzer75, Whitmore73] can be used to
prevent. a principal from Obtaining; such ,tn~oraation.; · '

Page 31

-~

. :

2.6 Protecting Extended~ Objects .!n !!). Ak1i..,ll!t~§¥~~'1'

The use of access control list,, ra~r. tnan o~pabil:~ti,es, for protecting

extended type objects is novel~ This seotioa apeoifi,es the role of ACI..8 in an

extensible system.

For every reference to an ETO, at least two ACI..8 •re co~sulted. For

example, suppose that Smith wi.shes to 4o ·Jn "enqlil4tue", on :MQ...~6, ai_id that the

(only) component of HQ._26 is SEG_14. Upoa beinc inv~, the ~TM for message

queues searches the ACL of MQ....2.6 to see if .-n~ ~ enqueue aoQess. Asswaing

he does, the E'tM searches its map for MQ....2o a,gd .fin4J SEG_l4. To carry Ol;lt

the enqueue request, the ETM must write into. S.J;~ 14.. lt !~yokes the type

manager for segment objects, which in turn 11~arehe~ t·bo ACL. of SEG_t4 to see

if the message queue manager has. writE) aaoess,. In general, tbe height of the

ETD representation tree is a lower bQun~ on tn..n~Jile17_ot distinct ACL

searches.

Each extended type object correspond• to the r()f)t nod~ of a

representation tree. Any other object "X" ifl.;t.he ~r~e·must be .a component of

some object "Y". We observe that only tee type.manager for Y.mu~t be able to

reference X. Therefore the only principal that should appear on the ACL of X

is the principal for the type manager of Y. An ACL with only one principal is

sufficient for every object in the tree except the root node object. We refer

to this simplified form of ACL as a degenerate ,A&b. A degenerate ACL can be

searched fast.er than a normal ACL; thus cl;leoltiftg acc••s~:~o rtPf'eeentation· - ,

objects can be optimized.

In an AGL-based sys~em, every ETH pert9nas three. b~ic mapping funotiQ~s

on the name of an argument .. object. First, u,,,eapa the object name to the

object type, to be sure that the object pas&•d .te it !s one of its own.

Page 32

Second, it maps the object name to the associated ACL, to see if the consumer

has appropriate access for the requested operation. Third, it maps the object

name into the set of component objects, in order to carry out the requested

operation.

2.7 ACLs Versus Capabilities in Extensible Systems

The effectiveness of ACLs and capabilities in extensible systems is

contrasted in this section. An important difference between these two

mechanisms is that the capability mechanism includes a means for exercising

dynamic constraints on the invoked ETM. This is because, in a capability

system, a type manager must derive its permission to access component objects

from the capability that it inherits for the ETO. Two methods for obtaining

access to component objects in a capability system are: 1) amplification of

access rights [Jones73], and 2) unsealing a sealed capability [Redell74].

The amplification method is used in the Hydra system. In Hydra, the

capabilities for the component objects of an ETO are stored in the "capability

part" of the ETO. Consumers of an ETO have capabilities that express certain

access privileges; however the capabilities of consumers do not contain

privileges allowing them to load from or to store into the capability part of

an ETO. When the supplier of an ETO is invoked, it obtains via amplification

these "load" and "store" rights that are necessary for manipulating component

objects.

The method of sealing and unsealing was pioneered in the CAL system, and

is used in the SRI system. In the SRI system, each ETM is the sole possessor

of a special capability -- called a "type" capability -- that permits it to

perform "unseal" operations on certain other capabilities. Whenever an ETM is

Page 33

passed a capability for one of its own ETOs, it can present that capability,

together with its type capability, to a lower layer in the system and obtain

all the component capabilities for the ETO in return. This operation is

called "unsealing". Since other subsyst8fls d-0 not possess the particular type

capability, they must regard the capabiltty frW t,be ST-0 •a being n.sealed"".

Both the amplification and tbe sealt-s ·vtb&d·s pr.ov~~ a finer degree of

access control to component &bje<}ts tun a ICL~i!!ed ayat:em could provide.

In the capability systems, ·E'fHs can acee•• t~. ~~t objects only for the

duration of their invocation. Cohen [Cobeo7'5l ~ils tbis prop&rt-y

conservati2n, and describes circumtttattCes under 1(1hie it •Y 'f)l'OVe useful. In

addition, Cohen shows how consumers in ~apabilllty sr&tells may f'ur,ther

constrain the operation of ETM8 by deli~ly e,cc·lU4in:g certain rights from

parameter capabilities. In an ACL•based stet.em, &~ ~1namio oonstrainta

could be enforced only if the interdomain OQIW\Uli(l¢!t,m mechanism lfere

enhanced to allow cortsumers to express tn.u .e.9ne~r~int.s.. Schroeder

[Schroeder72] has proposed such enhancements £GI' $1'1 Ji:n~rdomain communication

mechanism. The VMof this thesis doeis not ~d or;i t}leifi5e enhancements, but

neither does it preclude them.

2.8 Directorf e§ il §!tenged ~ ObJepts

Although this case study VM is strongiy inspired by the Multics VM, one

of the significant differences is tbat it supports dynamic type extension. In

particular, directories are ETOs, as in the Hydra and SRI systems.

A directory object contains a variable nuinber of entries, each of which

contains a symbolic name and a machine .. orien.ted nue. Operations on a

directory object inc.lude mapping symbolic name$ into machine .. oriented names,

Page 34

and adding and deleting entries. Sinoe directories are objects themselves,

the machine-oriented name of one directory may appear in another.

Consequently, directories may be arranged in a tree-structured hierarchy.

The directories of this case study VM, are implemented as extended type

objects, with segments as the representation objects. Segaenta are a natural

choice tor the representation since, like directories, they are

variable-length objects. Additional moti'f'allioa for ilipleaenting direotories

as ETOs is provided in the work of Redell [Redell74] and Bratt [Bratt75].

2.9 Snparx

The case study virtual me11ory subsystem ot this thesis is baae4 ·on tbe

tt.lltics, CAL, Hydra, and SflI virtual memory subsystems. As such, it should

provide a nontrivial and practical context for the analysis of the n411xt two

chapters. 'lbe major objective of the next two chapters is to specify

intermodule relationships in the VM. A secondary but necessary objective is
; ' ; ~' . ' "

to justify the particular modular decomposition of the VM, which is described

in these chapters.

Page 35

Chapter III ·

Treating Objeotaaa.8~1-as

3.1 Introduotign

In this chapter we apply the LISP notion ot oeject bindings to the

structuring of tbe case study virtual raeaoey (VM) aubsy111tea. To begin, we

propose that the memory multiplexing tunot1ont. vhich is fundamental t<> a VM

implementation, should be provided at the lowest level. We then develop an

object-oriented model of memory multiplexing, in which the objects of the

model are related by bindings. The utility of this binding model is that,

even though objects may be related by bindings, the respective object managers

may be independent. Huch of the chapter is devoted to a description of an

implementation of the memory multiplexing model that preserves the

independence or type managers inherent in the raodel. Certain dependencies,

such as dependencies on an addressing environment, are intrOduced in an

implementation, however. Finally we show that not one, but several, VH layers

carry out a 111emory multiplexing function that can be oharaoterized by the

model. Consequently, observations about an impleeentation, and.about

dependencies, apply to a number of the layers in the oaae study VH.

3. 2 Removing Unnecessary Dependencies 10. 1b!, Lour Jl ,1.vers

In the model for memory multiplexing the operations being carried out are

merely the manipulations of bindings between objeots. The operations on these

objects are thus no more complex than the operations defined on LISP atomic

objects. We show that there are type managers in the lower. VH layers that

need embody no knowledge of the semantics of certain other types. Rather,

Pa .. 36

these type managers simply store the names of objects of other types in their

internal data bases. The binding and unbinding operations, which are

sufficient to characterize memory multiplexing, are implemented as the storing

and fetching of object names. This chapter concentrates on the parts of the

VM that provide abstractions more primitive than segments, primarily because

the application of the proposed techniques for eliminating classes of

dependencies is most apparent in these lower VM layers. The VM abstraction

provided by the VM layers of this chapter can be characterized as a

potentially large number of spaces containing a potentially large number of

potentially large objects.

3.3 Plan .Qf the Chapter

The first section of this chapter justifies the choice of a simple memory

multiplexing layer as the lowest layer in the VM. This layer provides the

abstraction of a simple paged addressing environment. The implementation of

the multiplexing function is modelled as a collection of type managers that

can associate their own objects with others via explicit binding and unbinding

operations. We show that these type managers can be partitioned into regions,

so that the correct operation of one region does not depend on the correct

operation of another. Next, we describe another layer of the VM that provides

a memory abstraction that is like a primitive segment. Like the lowest layer,

this second layer carries out a simple multiplexing function. Consequently it

can also be structured as a collection of modules with few interdependencies.

Finally, we describe a third layer that contributes to the VM abstraction by

providing for a large number of spaces of primitive segment objects. The

specification of this layer -- to carry out a simple multiplexing function

Page 37

is quite similar to that of the first and second layers. Since the

specifications of the three layers are quite si111lar, the internal structures

can be as well. Thus the structuring teclmiqu4ta that are based on the memory

multiplexing model of thil!S chapt.er can apply io eaeh ot these layers.

3. 4 Th~ Lowest J;.axer .2! the ~ ~t\l~X Ill ~outs
As mentioned in Chapter I, it is neceuary to juotify the particular

modular structure of the case study VM. Since we will specify the case study

VM in a bottom-up fashion, we first justify the ftmetion$lity of the lowest

layer. The lowest layer provides for the aultiplexing of' main memory. \

In order to support a large number of objects -- whether they be segment

objects or other abstract object types it is necessary to provide a way of

multiplexing limited primary memory resources. The representation for an

object is located somewhere in a hierarchy or storage devices, but during any

short time interval only a subset of all the ot>ject repfiesentations is

contained in primary memory. A memory multiplexing mechanism, by moving data

between primary memory and the various stcn•ate devic~us, provides the illusion

that all the representations are contained in pri.llary memory. The memory

multiplexing strategy can be justified as long •s 1) computations exhibit

locality of reference, 2) there is a spectr1.111 of storage devices that

comprises large, slow, inexpensive-per-bit devices at one end and small, fast,

costly-per-bit devices at the other; and 3) the cost of moving informatio.n

from one part of the hierarchy to another is relatively low.

We are claiming that memory multiplexing 1a necessary to support a large

number of objects. In addition, it may be neeesaary to multiplex main memory

among different parts of the representation or any single object, if that

object is large. For these reasons we consider a VM model with a simple

memory multiplexing facility at the lowest layer.

3,5 Overview of MemorY Mµltiplexing

The abstraction provided by multiplexing ean be 'deacrtibed in terms of

several sets of objects. The first set is a large set et state objeots, and

the second set is a small set of operational objecta. Multiplexing is a means

for simulating a third set sooh that: 1) the size of ·the third set equals the

size of the first set, and 2) the elements of the third set ar.e operational

objects like those in the second set.

In· a VM implementation, the first set oort'eaponds to addl!'essable sections

of secondary memory and the second set corresponds to addreasable sect1ona of

pri.Jilary memory. In this thens we refer to the firat set as the set ot .b.Q!n.

objects and to the second set as the set of ·fttat objects. -Tbe set of home

objects is assumed to be-larger; 1.e. we aaswn tlle •<>Wit of ,secondary memory

is greater than the amount of primary memor.y. · Howevw; only the frame ob Jee ts

ar~ operational objects -- only they can be referenced directly under program

control without any real-.time delays. The frames .aNt multiplexed among the

homes to produce a third set of abstract 1nformat1on,eontainers. We refer to

this third set as the set of block objects. By assumption the home, frame,

and block objects are all the same size; i.e. they o.ont.ain the um.e number of

bits. In this pure mellOl'y multiplexing model, there is a one-to-one

correspondence between·. block objects and home objects. (1)

(1) This pure memory multiplexing model is arbitrarily .restricted to a
two-level memory architecture. The model could be extended to accommodate a
mult•1level memor-y archit.eot.ure if the higher level o-e ·avery two devices were
regarded as primary memory and ·the lower regarded as secondary memory.
However, explicit consideration: of' multilevel memories is beyond the scope of
this thesis.

Page 39

3.6 .! Model .2f Memory Multiplexing

We now examine the objects in the memory multiplexing model in detail.

Like LISP atomic objects, these objects in the model have bindings, and

operations to manipulate these bindings.

To complete the description of memory multiplexing, we need to introd.u.ce

a fourth kind of object called a mA object. A data object is a fixed-sized

collection of bits -- the &ame size as hoae, frame, and block objects. It is

strictly an abstract construct, so there is no correaPQnding physical

representation. The concept of a data object is necessary for our

object-oriented description of memory multiplexing. The name of a data object

is equal to its contents. Thus, if data objects contain K bits, then there

K are 2 data objects, each with a distinct tc-t>it o,ame. Data objects have no

bindings, and there are no operations defined on tum.

The home object is an abstraction of an add.veesable section of secondary

memory. A home object has a name and a binding. The name of a home object

corresponds to a secondary memory address. i'er example, in a system that1 uses

disks to provide secondary memory, the name of: a home object might correspond

to the union of: 1) a controller number, 2) a device number, 3) a cylinder

number, 4) a track number, and 5) a record number. The binding of a home

object designates a data object. Every home object is bound to some (lata

object; in general more than one home object may be bound to the same data

object. Since the (only) binding of a home object designates a data object,

the binding is called the data binding of the home object. There are two

operations on a home object, called the fetch and store operations. However,

these operations are defined jointly on home and frame objects, so they will

be described together with the other operations on fraine objects.

Page 40

The frame object is an abstraction of an addressable section of primary

memory. A frame object has a name and two bindings. The name of a frame

object corresponds to a primary memory address. In an implementation the

frame name would be the absolute address of the first addressable unit (e.g.

the first word or byte) of the section of primary memory. A frame object has

a data binding and a home binding. The data binding designates a data object.

More than one frame object may be bound to the same data object. The home

binding designates either a home object or a special object called NULL. We

impose a restriction on home bindings of frames that is necessary for·the

correct behavior of this memory multiplexing model: non-null home bindings

must designate distinct home objects. Examples of binding relationships are

depicted in Figure 3-1. The data, home, and frame objects in this figure are

the atomic objects of the memory multiplexing model. A reference to the

information "in" a frame or home object is an informal way of referring to the

data object designated by the data binding of the frame or home object.

The operations defined on frame objects are

1) assign (frame_name, home_name),

2) release (frame_name),

3) read (frame_name, data_name) ,

4) write (frame_name, data_name),

5) fetch (frame_name) , and

6) store (frame_name) .

The assign operation sets the home binding of "frame_name" to "home_name". It

enforces the constraint mentioned above, that no two frame objects may have

the same home binding. The release operation sets the home binding of

"frame_name" to NULL. The ~ operation returns "data_name", the current

Page 41

I I
I I

data 1('· ··1
I ---· ~ t:= •• ..

frame

. . •
. . .

I I
I I

home 1+----1 frame

I
I
I
I
~

. . , .. · . · .. · · .. · • · · -> = d.a-ta binding

home

I ,•
I • ,.·
I

. .

.
: . .

- - - - ~ = home binding

Figure 3-1

I l , ··········>· I I

Bindings Between Objects of the lllltiplexing Model

data

. . . .

frame

I
I
I
I
t

NULL

data binding of "frame_name"' while the write operation sets the data binding

of "frame_name" to "data_name". The effect of each instruction in a processor

instruction set on the objects of the model can be represented as a

combination of read and write operations. Tt'e fetch and store operations

correspond to the I/O operations of fetching information from secondary memory

into primary memory, and storing information from primary memory into

secondary memory, respectively. Neither the fetch nor the store operation

requires a home name as an argument. The appropriate home binding is
I

implicit, since it must have been set by an assign operation before any fetch

Page 42

or store could take place. The fetch pperation replaces the. data binding of

"frame_name" by the data binding of the implied home name. The store

operation replaces the data binding of the implJed home name by that of

"frame_name".

The fetch and store operations are defined jointly on home and fr~e

objects. F.ach operation requires access to t.he d.at~. _bind in~ .of both a home
.. '.r ; , i.

object and a frame object. T)'le assign operation, in contrast, is defined only
'=.' " . ' : . ; . . ;, - i i ' \ .

on a frame object. It require.s the name of a home oqjeot as a parameter, but

it pl.aces no interpretation on this name. n,ie ft9tch ,and ~tore oper~tions

could be deoo~posed further; e.g. the retch operation ~nvolves: . 1) obtaining

the data binding of a h91'e object and 2) se.tti~g ,.the data binding of a frame
- . ~. -t \. \ ' ; . .;'· . . .

9qject. However, treating fetch and stQre as indivisible operations more
' ; , __ ' ', ",_ '. 1 ,,, ~~:~:. : ' • ,. •. , . '

closely reflects t~e behavior of actual 1/0 commands.

3. 7 ·. Ih§. Block ,Abstr1ctton

Up to this point we have described the obje6ts that serve 'I.a codlponent

objects· tor the block object. The subsystem that acts gs· the 'type manager for

block objects, which we shall call the block· llYtr·, lianipulates the bindlrigs

of these component objects to produce the block obj'eot. This section provides

a specification of block objects.

As we have mentioned~ in the pure meli101"Y multiple'Xihg model there is a

one.;..to-one correspondenoe between blocks and homes:.: .. Por exampl~, the set o.f

home names could also· serve u the set of block· riaes ln a pure memory

multiplexing scheme. Howver, if a one-to-one correspondence exist.s, the set

of block names will be as large as the set of home names, and ·tmt1v1Uual block
',· . ,:- ~, , '

names will be quite long. If block name$ were short' (on the order of ten

Page 43

bits) rather than long (on the order of t.wenty bits) then the main memory

requirements for programs that manipulate block objects could be significantly

reduced. To economize on main memory usage, we abandon the one-to-one

correspondence of the pure memory multiplexing model and specify that the set

of block objects be smaller than the set of holle objects. ln this case, we

reference block objects with shorter names (called 10911 ma9hine-oriented

names by Bratt [Bratt75]) and provide operations· to aasociate block and home

objects. The cost of periodically re-estabU.ahing aeaooiations between block

and home objects is acceptable, assuming that prograaa using block objects

exhibit locality of reference. (1) Unlike the pure memory multiplexing model,

the model we have chosen involves two kinda ot multipl'.exing. First, there is

multiplexing of main memory: the small set or traae1f is multiplexed among the

large set of homes. Second, there is multiplexing ot the block name space:

the small set of block names is multiplexed among the large set of home names.

Block objects ~ave two bindings that are visible above the block layer

interface: a home binding and a data bin~.... 1be tlolle binding may designate

a home object or HULL. To allow_ sharing, more thanpi,ie block object may have

the same home binding. Thus there is no r•&tr!ction .. on ~tie houae binding, as

there is in the case of frames. A consume!" of a blQCk object ~ay invoke the

block layer to set the home binding of a blocJc. Thereafter, a consumer can

reference (Le. read and write) the block d1re°'tly. Ea,Qll r.ef'erence to a ~lock

object either returns or c~es the data bind.in&.~ Eao,h block object has one

hidden binding, called the frame binding. The teral. lfhidden." is used. here a.a

(1) The general strategy of assigning short, tempc)rary local names to objects
that already have long' peraanent global. na.a~· 1& employed in wany
general-purpose operating systems, including the ttlltics, Hydra·, and CAL
systems.

Robinson has defined it [Robinson75], meani~g that consumers of block objects

cannot determine the existence of the franie binding. The frame binding

designates either a frame object or NULL.

The block layer provides not just one, but rather several, spaces' of

block objects. These spaces of block obj~ct~, ~alled q,9ck fPfCfS, form the

addressing environments for various subsy~~eas in the system supervisor. (.1)

In particular, some subsystems in the VM execute .. ~n a block space addressi~

environment. Other subsy~tems in t~e case stud1 VM rely on more sophisticated

memory abstractions such as segmentation.

1)

2)

3)

4)

There are four visible operations defined on bloo.k objects. These are

init.iate (block name, hQme name),
, -- ,._,··,. ~ '··

terminate ~block_name),

read (block_name, data name), and
~,.

write (blook_name, data name). -· ~, '.

These four operations, unlike all the operations defined on frames and homes,

can be invoked by programs outside of the block layer. In the case of each of
' +:,, ,.

these operations, the particular block space is an implicit additional

argument .. The iniq.ate operation replaces the home binding_ of ~block_name" by

"bome_name". The termtn•~-e o_peration replaces the home binding of
; ;;y·. '

•block_name" by NULL. A principal can therefore control which homes are bound

to blocks in its block space by means of the initiate and terminate

operations. The ·.tnsl and wfitg operations an· anal.ogous to the read"'and write
. ' ' . - ,. . ' .•. . " ~. '' . ' '"' . . - - . . -.· " . ~ ..

operations on frames. Any instruction referencing a block (e.g. "exclusive OR
;H.f.

(1) A "level one processor" in the two-level iaplement.ation of virtual
processors described by Reed [Reed76] is an exaapll;'·-C)t"a 'subsystem that may
make use of a block space as an addressing environment.

Page 45

to memory") is implemented in terms of the read and write operations. 'nle

two operations for manipulating the (hidden) frame binding of a block are

1) connect (block_name, frame_name), and

2) disconnect (block_name).

The connect operation sets the frame binding or "blook_name" to "frame_name".

The disconnect operation sets the frame binding of "blook_name" to NULL.

These two operations can be invoked only by programa irt the block layer.

Any processor instruction that references a block object does so using a

two-part address of the form

(block_name, offset).

The offset is typically given in units of words or bytes. 'nle value of the

offset is irrelevant in this memory multiplexing model; all write operations

on a block change the data binding and all read operations leave it unchanged.

The block space addressing environment is similar to that provided by the

TENEX system [Bobrow72]. (1)

The objects of the memory multiplexing model, and the operations on them,

have now been defined. Each of the operations, except fetch and store,

involves only the manipulation of a binding designating some target object.

In verifying the correct operation of a module that manipulates a binding* the

(1) In TENEX the blocks, which are 512 words in size, are considered to be
concatenated so that they form a single linear space. To reference

(blockname, offset)

in TENEX, a single address with the value

blockname • 512 + offset

is presented.

Page lt6

semantics of the target object are irrelevant. ?here ta· ·no strorig -depe.ndenoy

on the module managing the targ.et object;.

3.8 Overview 51.f.. B!ogk Laxer Implementation.

We now consider how the bindings of home, frame,. and block objects might

be implemented. It. is the intent in this sect.ion, as well as in following
'-··, ..

sections that describe some aspects of the implementation in greater detail,

to show that the modular independence inherent in the multiplexing model oan

be preserved in an implementation.

The representation of any data binding is impl!Cit, in tne sense that. t-he

data binding of an object.!!. the contents of the object. The remaining

bindings, on the other hand, are implemented in distinot. data structures. One

straightforward way of implementing these bindings is to use tables such as

those shown in Figure 3-2. The block soace table of Figure 3-2a represents

block space table framelist

0 HULL HN;..42 I NVW. I.
I
I

NULL NULL . HN_21 I
I
I
I

2 FN_5 HN 16 llI · H_,-33 I - . .I
I
I

3 FN_4 HN_67 HN :: home name .JijU.. I
t

I
4 FN :: frame .name ~ .. 67 I

1.
I
I .,

. ; 1 .HN_t6 I
t . ,.~ I
I Figure 3-2 I I
I I I

~
Figure 3-2 a ~

Ftgure 3-2 b

Tables Representing Frame an4.HQ11e ~indirlgs

Page 47

the home and frame bindings of each blook in a block apace. The framelist

table of Figure 3-2b represents the home binding of'Qeh frame in prillary

memory. There is one framel 1st , but. ther• are aa many block space tables as

block spaces. Because these two kinds of tables support distinct object

types, they are managed by distinct subsystems within the block layer. The

subsystem that manages the bindings of block objects, by manipulating entries

in block space tables, is called the b:J.oolc Ublu•r. The subsystem that
(~ '

manages the bindings of frame objects, by zaanipulating entries in the

framelist, is called the fru9 puplaxer. The frame sublayer performs fetch

and store operations, so it manages data binding• or home objects as well.

Block layer programs can reference these tables as b.look objects, since the

addressing environment of the block layer (to be deaeribed in the next

section) is a restricted form of block a.pace.

We can now describe the effects of the initiate, te1'111inate, assign,

release, connect, and disconnect operations on the data basea of the block

layer. It is not necessary to consider the eff'eota of read, write, fetch, or

store operat.ions since these operations reference only data bindings, and

therefore do not affect the data bases of Figure 3-2.

A block space table that. containe N ordered pair• of the form

<frame name, home name>

can describe a block space of N &locks. Initially, 1"llY of th~ ordered pairs

in a block space table may consist of two null ooaaponents. (1)

(1) Even in a "new" block space, however, sonae blocks will be associated with
common utility procedures and procedures that serve as toeholds to the block
layer. Similarly, the· diatrfbuted ·aut>ervi&Or· of tbe··fikll'tios· system appears in
every newly-created Multics address space.

Initiate operations set the home name parts of the ordered pairs;

initiate (3, home_name_67)

sets the home name part of the 3rd ordered pair in the. block space of the

caller to "home_name_67"; i.e. the home binding of block 3 is now the name

11 home_name_67 11 , as shown in Figure 3-2. The frame name part of the ordered

pair is set by the connect operation. Performing the operation

connect (3, frame_name_4),

sets the frame name part of the 3rd ordered pair in the block space ta.ble to

frame_name_4, as shown. Entries in the framelist are set by the assign

operation, so performing the operation

assign (frame_name_4, home_name_67)

sets the 4th entry in the framelist to home_name_67, as shown in Figure 3-2.

The respective inverse operations -- terminate, disconnect, and unassign -

set values of bindings to NULL.

As mentioned, block space tables are implemented as blocks and tnerefore

have underlying frames. The frame name of the block space table associated

with an executing principal is stored in a special processor register.

Virtual addresses of the form

(block_name, offset)

are converted to absolute addresses by the simple calculation

address = frame_name_part (table + W*block_name) + offset;

in which "table" denotes the frame name of the block space table and W denotes

the number of words occupied by each entry in the block space table. The

value of "address" is simply storage location number "offset" in the desired

frame name. Thus read and write operations on blocks are mapped into read and

write operations on frames.

Page 49

As mentioned above, the block layer "18as ~l.:OCk s.pac,es for its addressing

environment. The procedures and dat.a »•.:siea of the bl.Q.Clc lafer are addressed

as blocks. The particular block spaces Uaed Of .t~e b,lock layer are called

basic block spaces.

The addressing environment of the baa~c plo'ck s~ce is preset; programs

executing in the basic block space do not ;perfOl"m ini:tiate or terminate

operations. Furthermore, the frame bind.ing .CJi! ev.!fAry .block is· guaranteed to be

fixed and non-null. Since blocks in the be,sic block ~pace have fixed,

non-null frame bindings, they do not need (.or ·ba.v:,e) non:"'null home bindings.

Only the data bindings of the blocks (and µnd.er:lying ·frames) in a basic block

space can change. As a con,sequence, the bl~k ~yar never need be invoked to

manipulate its own addressing environment. Unlike ·the block space abstraction

that the block layer provides, the basic bloc.k space that tt· uses is

completely static. The motivation for int.$r~4tittg th'is static environment as

a set of blocks is merely to achie.ve e-001lQl!Y of .hard.ware (or firmware}

mechanism. Just as there are a number of 'lr~l} blOO:k spaces available to

support supervisor subsystems, so are thel'e several basic block spaces

available in order to isolate functi0:nal <>empounts of t.he block layer.

The basic block space addressing enviromaent .is e·ssentia.lly the same as

the environment provided by "level 011 in P.arnas' fam-ily of operating systems.

It is also quite similar to the environment provided by Multics "unpaged

segments". (1)

(1) Multics unpaged segments are.not of uniform length. Rather, the length is
dictated by function, to conserve primary:memory •. Biocks in a basic block
space may also be allowed to be differ•nt lengths, without complicating the
supporting mechanism.

Page'.,50

3.10 H&Ddling Frame Faul&s

In preceding sections we have described tlle objects of the memory

multiplexing model, and suggested an under~ying impleJUntation. The block

sublayer implements the ,bin4ing.s of block obj~cts, and the frame subh.yer

implements the binding!! of fraJlle and hom~ ob~eots. lo aodition to these

subsystems that serve as type managers for objects of the_ mult:1,pl.exing model,

there are additional t>loc.k lay.er subsystems th~ ,,fnv.Pke these type managers.

These subsystems, which allocate frames on demand to support consumers of

block. objects, are described in this section~ ,

If a principal references .a block with a null fr~e. binding (but with a

defined hoiae binding) then a frpe fp.µlt occurs. In thi~ thesis we, choose to
''·. -

mod.el the handling of a. fr81Jle fault· by two cooperat.1{\& principals: a
I ' ' ' ~ '~~ ' • ~ '

frame-claiming principal a,nd a frame-f'reeipg principal. . ~o.h of these

principals executes in a buic block space. The. fr~e oJ.aim~r l>rovid.e!' the

faulted block with a supporting frame. The frame freer wrests frames away
' . .

fro• blocks,, in an orderly manner~,. (1) . ' "'·• .,,

Providing ~1.i~tinct pr)Acipal,s t.hat ha,ndle fr~e tau~~;, is, oonsist:ent with

the principle of least privUege 1Salt.~er74J, since h~J.ing a. frame fault
- ' - • ' < :,. ·' - :· • • ••• ··-:-· •• ·.,: • ,. "' •

does not require access to programs or <l~ta of the f'~u~tw principal.
. ', "-~ . ' ' . . '

Furthermore, if the frame cla1-er and frame !rear ar,e ~l,uented as . ("

lo.o.aely'"!'coupled virtual pro~e.sa<;>r~,.:.system p~tor~oe may, _improve a:s .a resijlt

or their parallel activity. , other ~van,.t~~ _o! -~Pl-..~t,w thesEl:, two VM

mechanisms in distinct virtual proc'1Jssor:s are . .gj..Vf#n QJ .. ·~~~ LRee476].

------------------------(1) An experimental version of the Multics paging softwar-e developed by Huber
[Huber76] makes use or a dedicated virtual processor for the frame freer.

Page 51

The frame claimer and frame freer are deacribed briefly. The intent here

is not to show algorithms in detail, but. rather to lndicate how these two

principals invoke the block and trame sublayer• to manipulate the bindings of

block, frame, and home objects. Although ,mulU.ple 'tcra.me claimers and freers

could exist, this description is sufficient only -ror a single fral!le claimer

and a single frame freer.

An explanation of some terms and notation is necessary, before listing

the steps followed by the frame claimer ams frame freer. Each step in the

frame claimer and in the frame freer corresponds to one invocation of either

the block or frame sublayer. The steps below tbat invOke the block sublayer

begin with "[B]", and those that invoke the ~sublayer begin with "[F]".

Some of the steps correspond to utility ftmctions provided by the block or

frame sublayers. The remaining ste,ps corr.spond to bind'ing manipulation

operations, such as the "connect" operation, that h&'f'e been described

previously.

A frame is called a free frame if its hone binding is null. The list of

free frames is implemented as a thread running tbroUgh the framelist.

Associated with each frame is a list of ordered pair's called a trailer list.

The first component of each pair designates a block space table, or

equivalently, a block space. The first cOllli)onent can be implemented as the

frame name of the block space table. The second component is a block nt11t?er,

or block name, in t.he given block spac-e. A tr•1ler list indicates those

blocks (in respective block spaces) that are bound to a frame.

Page 52

First we sketch the operation of the frame claimer. Any principal that

takes a frame fault invokes the frame claimer. The fll'guments passed to the

frame claimer are a (block space, block name) pair. The frame claimer carries

out the following steps.

1. (BJ Obtain the home binding of the (block ~pace, block name) pair,

i.e. get a home name.

2. (F] Determine if there is any frame that is boµnd to this home. If

so, get the name of this frame and go to step 7.

3. (F] Get the number of free frames. If this number is less than a

certain threshold value, signal the frame fr~er. If there are no free

frames, wait for a signal from the f.~ame freer.

4. (F] Select a free frame.

5. (F] Assign the home name of step 1 to the frame name or st~p 4. This

decrements the number of free frames.

6. (F] Perform a fetch operation on the chosen frame name. This updates

the data binding of the frame.

1. (F] Add the (block space, block name) pair tp the trailer list of the

chosen frame.

8. (BJ Perform a Q_~D~tsit operatiori, which sets the frame binding of the

block in the (block sp~ce, block name) pair to the chosen frame.

Page 53

The frame freer is activated whenever the frame claimer detects that more

frames should be freed . The frame f'reer car-ri•• out the following steps.

1. [F] Get the number of free frames. lt ttte Mltber is greater than

zero, signal the frame claimer. lt tbe nUll>ber is greater than the

threshold value, wait for- a signal f'i'Glr. the rrae claimer.

2. [F] Select a frame that is not free. At least one block must be

bound to this frame.

3. [F] Find a (block space, block n:aae} pair in the trailer list or the

chosen frame.

4. [B] Disoonnect the chosen frame troa tbe t>lock found in step 3.

5. [F] Remove the (block space, block nae) pair found in step 3 from

the trailer list of the chosen frame.

6. [F] If the trailer list is not empty, go to step 3.

7. [F] Perf.orm a store operation on the choan rrue name. This updates

the data binding of the associated. home.

8. [F] Perform a releate operation on the chosen frame. 'nlis increments

the number of free frames. Go to step 1.

The binding states that correspond to steps in th.e claiming and freeing

sequences are shown in Figure 3-3. Initially,. a ~!Ven block, frame, home, and

data object are in state A. In state A, the various bindings are as they

should be following an initiate operation. The trame claimer operates on a

collect.ion of objects that is in state A. Steps 5, 6, and 8 of the frame

claimer cause state transitions to states B, C, and D respectively. The

respective operations performed in these stepa are assign, fetch, and connect.

The frame freer operates on a collection of objects that is in state D. Steps

4, 7, and 8 of the frame freer cause state tranaitions to states C, B, and A

,,------
/ --~

BBB • .
• I

I ,•

.
I

------ .. \

A s··" ,,,... . 4

!blo~ J I frame t->B
.....------

I bl:::1 B->f ~· · 1
I •
• r

, .
data· ~ ·· .·

r ·data I<"""

--- ..---~ --- ---

. . .
. . .

~
. r*~· -~

8

. B~ ·.. ,.'·,.
c

--bl_o_c_k_, l fr,.,.~ b->[;]
' . . : : . . ,

' t' '
' ""'1... ~,J I . ~ .
"·····>! data ~-··/

m
- - _;_ - + = home binding

----->,. = frame binding

···········::> =data binding D

_Figure 3~,3

~:i,nding St_a~_ea Ouring Frame cia,.t!l!ng and ',Enf)eing

Page 55

respectively. In this case, the respeotiv• operations are diaoonneot, store,

and release. (1)

Of the sixteen steps listed above, six oorresp()nd to binding manipulation

operations. The other ten are utility fun·otiona pro¥1ded by the frame or home

sublayers. These utility functions require their own supporting data

structures. For example, step 2 of the frame claimer must locate the frame

that is bound to a given home. It oan. do so efficiently by searching a

balanced tree (Knuth73], with as many nodes as there are fratMJs, in which each

node maps a home name into a fraaie name. As ~other exEllllf)le, the frame freer

must have an efficient way of unbinding a traae ()ISJ.Ct rroa a set of block

objects. The trailer list provides an efficient way of locating the blocks

that are bound to a frame. (2) The trailer list provides an efficient way of

locating these block objects. Of course, these dat..'· straoturea that support

the utility functions are accessed only by the appropriate type managers; e.g.

only the frame sublayer accesses the trailer list.

(1) If a block in a block space has a non.null frame binding, then the home
binding of that block may be found either 1) in the block space table entry
for that block, or 2) in the framelist entry tor _.. n-a. <triigna\ed by the
frame binding. Although this redundant inroraation.Q.n.be, toierated in a VM
model, it cannot be in a practical iraplttmentation, since it wastes memory
space. In an implementation, a block space table entry would contain either a
home name or a frame name. The connect operation would replace the home name
by a frame name, and the disconnect operation would replace the frame n•e by
its home binding, to be found in tne frala~list.

(2) This method of recycling fr~s, by rnoving their names from block space
tables, is similar to the method used in Multics. Another strategy for
managing the bindings between blocks and frames would be to put unique
identifiers, rather than frame names, in the block space tables. These unique
identifiers could be mapped into frame names using a central, hardware
supported associative memory. In this case a fraae could be unbound from a
set of block objects merely by deleting the corresponding (unique identifier,
frame name) pair from the associative memory. Building an associative me$ory
of the required size and speed seems within the state ot the art.

Page 56

3.11 Dependencies of Regions Within the Block Layer

In the preceding sections we described four subsystems that are part of

the block layer: the block and frame sublayer and the frame claimer and

freer. In this section we examine the interdependencies among these four

subsystems, and show that only a few strong dependencies exist.

The strong dependencies that do exist include dependencies on an

addressing environment. Each of the four subsystems executes in a basic block

space. Since, as mentioned before, the basic block space environment is quite

static, only the data bindings of the supporting objects ever need to be

changed. Other bindings do not change; for example, a block in a basic block

space is permanently bound to a particular frame. Only the read and write

operations on blocks, provided by the block sublayer, and the read and write

operations on frames,. provided by the frame sublayer, are needed to support a

basic block space. Thus any principal that executes in a basic block space

strongly depends on the parts of the block and frame sublayers that support

the read and write operations.

These parts of the block and frame sublayers, on the other hand, do not

depend on any other parts of the block or frame sublayers. The read and write

operations for frames merely manipulate data bindings of frames. The read and

write operations for blocks map block names into frame names. Although the

mapping relies on parameters from block space tables, these block space tables

are referenced only to effect read and write operations for blocks in a basic

block space. The remaining parts of the block layer never reference these

block space tables since the basic block space environment is a static one.

In summary, each subsystem jn the block layer depends on the mechanisms

that provide read and wrjte operations for block and frame objects. The

Page 57

correct operation of these nrechanistns, -on tlte other hand, does not depend on

any other block layer facility. It ttten aeema reasonable to separate these
,. '

read and write mechanisms from their respective block and frame sublayers,

since they represent a greatest common aechanlsm. Since these mechanisms

would be implemented in hardware in a praatlcal system, they would be

protected from interference by block Slibl&fet" and frat1e sublayer programs.

We now consider whether the frame tAer anci' f'rae claimer depend strongly

on the block and frame sublayers. They ~talaly depend weakly on the block

and frame sublayers, since their rate of progress ls cotitrolled by the values

of arguments returned by those sublayet's. The interface to the block and

frame sublayers can be specified in such a way that their erroneous operation

would only delay the progress of' the rraM clalller and.freer. Designing the

interface in this way can ~ useful; tor ex•ple, the t'rame claimer and frame

freer could be implemented, and then tested Q81ng dwmny arguments, before the

block and frame sublayers were implemented. tf eur,specification Of the frame

claimer and freer were that they manipulated waintetopreted arguments, then

they would not depend strongly on the bloo-k and true sublayers. However we
'

specify that the frame claimer must coerce frue objects from the free state

to the claimed state, and the frame freer 11ust etteot .the reverse transition.

The frame claimer and freer cannot satisfy this specification unless the

underlying block and frame sublayers operate correctly. Hence, the frame
. '

claimer and freer depend strongly on the block and frame sublayers.

It may seem tempting to specify that subsystetas such as the frame claimer

and frame freer simply manipulate uninterpreted arguments. the block and

frame sublayers have been given such a specification. As one moves up in a

hierarchy of abstract machines, however, What a~pears to be uninterpreted data

Page '58

at a given layer can and generally should be considered to be an abstract type

at a higher layer. If many modules in a complex system are insensitive to

errant behavior, it becomes extremely difficult to isolate the erring modules.

We emphasize that we are not attempting to eliminate every intermodule

dependency; this is neither possible nor desirable. We are trying to

eliminate unnecessary dependencies, and loop dependencies in particular.

With the exception of the strong dependencies just described, there need

be no other strong dependencies between subsystems in the block layer·. The

block sublayer does not depend on the frame sublayer, and vice-versa, since

neither interprets bindings to objects managed by the other. Even the utility

functions that are performed, such as the traversal of a trailer list, are

carried out without interpretation of object bindings. In addition, the frame

claimer and frame freer do not depend strongly on each other, since their only

interaction is to synchronize their progress.

The block layer itself is strongly dependent on all of its components.

The block layer depends on the block sublayer to maintain the proper

correspondence between a block object and a frame object. If the block

sublayer returned some other frame name, the data binding of a block object

would be affected in a way that would not correspond to the specification of

read and write operations for blocks. In particular, a read operation on a

block might, in violation of the specification, cause the data binding of the

block to change. Similarly, the frame sublayer must always choose the home

name corresponding to a given frame name when undertaking a fetch or store

operation. If it chose some other home name, the data binding of a block

object could be changed even though a write operation had not been performed.

The block layer is strongly dependent on the frame claimer and frame freer as

Page 59

well. By operating incorrectly, either of these two subsystems in the block

layer could change the value of an object b1ndib&. &tch an erroneous

modification would prevent the blaek lay•r from meeting its specification.

The dependencies among block layer modules are· 1llwrtrated in Figure 3-4.

The block layer provides not only a ,Primitive virtual memory for the

layers above it, but also the heart of the mee~ni• netQ.ed to impleQlent the

segment object. In this section we desc~~be anot~r reaion in the case study

VM that is necessary for the support of segments.

The block space abstraction can be chareacterized as a S111all number of

spaces containing a large number of small obj_eots. In contrast, the

abstraction specified at the beginning of this a chapter is a potentially

large number of spaces containing a pot~ntiallJ l~g• nuiaber of pot,enti•lly

large objects. To extend the block space ab•traQtion to the desired

abstraction, there must exist facilities tor: 1) making large spaces (or

objects) out of small ones, and 2) growing and al'lrinking the size of spaces

(or objects). The first facility is provided ~1 ~he block layer subsystem.
' '

We now describe the second fac~lity. It provides for the allocation and

freeing of home objects. Allocation and treeing ot home objects is an . . . ' : .

economic necessity since the number of ~ome obJects is finite. We refer to

the layer that performs these functions as the llt!a!. tlle$1~1on layer or ~
~ ;

allocator. The two operations provided by thi' ;ayer are

allocate (home_name), and

free (home_name) •

i The home name is an output argument in the first operation and an input

Page 60

I
I

I
I
I
I
t

I
I
I
I

frame
claimer

I
I
I
I
I

I
I

7
I

I

block
sublayer

operations to
read and write

blocks

block layer

frame
freer

frame
sublayer -- --- ------......

......_ --- ----~ ---------_ --- .-- --_ operations to
...._~read and write

frames

Figure 3-4

Dependencies Among Block Layer Modules

Page 61

argument in the second operation. The specification of the home allocator is

quite simple: to change the state of "home_name• troa free to allocated, or

vice-versa, on any invocation.

The home allocat.or maintains a data baA that indicates whether or not

any home object is allocated. 'n\is data bue, cal.l.e<t'tlle h9f1!lia\, may in

general be large enough that only portions ot it oocl,lpy, primary memory at any

time. (1) A natural way to multiplex priaary .-ory ..Ong portions of the
',~

homelist is to implement the hollelist aa a set of bl-oak object.:s. The home

allocator is thus a ecmaumer of the abstreotion provida\t by the block layer.

3.13 Depenge$1,s• Bflwe•n lha Blgck Jml Jim. Alil&S'MlMW» '-axerp

As mentioned Def.of'&, ·the addressing •virot..Jt of" Ute block layer is

static. The bloolc layer does not need to ·,...u.eat tbe allo0ation or freeing of

homes. Hence it does not depend on the bQae allocator. The home allocator,

which is a consumer of blook objects, doel depeftd on the block layer .
. i . ~_;.· • 't ·~ . ,

To see how the home allocator might depend on tbjl block layer, we need to

consider: 1) how the home allocator uaes bloek objeC!ts, and 2) the failure

'
modes of the block l.a,.r. Since th' blooa rorminl the nomelist are supplied

by the bloc:k layer, and.&ince the bloc:k la,.er migbt;:Qail"to aaaage object

bindings properly, the bomelist could bec:oa• garbled. Conseq~ently the

"allocated" attribute of a home may no longer be corTectly represented. The

home allocator might therefore allocate tbe saae borae object twice, without

any intervening "free" operation. Siaee~,tl\e home allocator programs could not

detect a garbled homeliat (unless Ndwi<h•t int...-ton .were kept in the

--~------------·---------
(1) The M.I.T. Multics data base that correaponda to the homelist currently is
about 500,000 bits in size.

Page 62

homelist or another data base), they could continue to ,ope.rate \.Ulperturbed.

In a narrow s.ense, the bome allocator would be operating "9orre~tly" siiice a

failure of the block layer would not cause it to "b::J..ow i.iP".. However, a

failure of the block layer can cause the speoificatioq of .tbe home allocator

to be violated. According to our <!efinition ot (~tr:ona> dependency, the holl!S
• • ' , ,/ ~ • , • < ·~ ' • ,

allocator thus depen<ls upon the block layer.

3.14 Soecification .2f. Large Block Ob1ects

The block layer together with the 'home illocation layer produce an

abstraction that can be characterized as a small number of spaces containing a

pot.ent.ially large number of small objects. We now extend this abstraction, to

one that can be characterized as a small n~ber 'or ap.6es. containing a

potentially iarge number~ or p()tentliu.ly large objects~ "l'hese objects, called

large blocks, are addressed just like block objects, Le. via 2-part

addresses. The maximum length of a large block, ho'"9ver, is much greater than

the small, fixed length of a' block object. Since large bloek8 are to be

variable-length objects, we specify an operation,

set_length (large_block_name, length),

that can grow or shrink the current length or·a large block. '!be initial

state of a large block (which includes a current length) is specified in an

initializing operation

initialize (large_block_name, initial_attributes).

By definition the initial contents of any part of £tie large block between the

beginning and the current length is zero. Reading or writing a large block at

a point beyond the current length causes an error.

Page 63

3,15 Implementation of barge Blocks

Each large block can be represented by a table called a lam block

table, (LB table) which contains M ordered pairs of the form

<frame name, home name>.

The home named in the i-th pair contains the data of the i-th piece of the

large block, and the frame named in t.he i•th pai.r designates the current ·

primary memory frame (if any) for the data. A large block table may contain,

in addition to the ordered pairs, certain attributes of the corresponding

large block object.

Although there is a considerable difference between the block and the

large block abstractions, there is a significant common mechanism for

supporting them. Many of t.he operations that need to be performed on a large . . ' .

block table to support large blocks are the same as those that must be

performed on a block table to support bloc-ks. For UBllPle, 1) adding a new

block to a block space and 2) adding to the amount of (nonzero) information

in a large block can both be supported by "initiate" operations that change

the appropriate underlying tables.

Since there may be nwnerous large block tables, it. is a design objective

that only a subset of them need be in primary memory at any time~ A natural

way to achieve this objective is to implement each lat'ge block table as a

block object. Thus, a large block space is realized as a space of blocks,

each of which contains a large block table. Each large block table, in turn,

describes a collection of homes (and possibly frames) that form the large

block. In the context of large block space implementation, we shall refer to

any block space table that describes a spao-e of large block tables as a large

block space (LBS) table. These data structures are shown in Figure 3-5.

I
I

B

space table large block

/
/

/

'' ··:, /

~

----+- e binding = hom
e binding = fram _

Structures Data .

Figure 3-5

Lara1' Block . Support :i ng a. .. .· . ·.

Page 65

' ble ·,, block ta large

I
/

Virtual addresses of the form

(L , O),

in which L is a large block name and O is an ortaet . ., are translated by the

hardware as follows.

1. LB_t.able = frame_name_part. (LBS_t.a:ble + V • L)

2. frame = frame_name_part (LB_table + W • [O/F])

3. address = f'rame + MOD (O,F)

Here, "Y" and "W" are tbe runber of words per entr7 Jin an LBS table and an LB

table respectively, and "F" is t.be frame size tor a ,p.taoe .of. a large blooJt.

Since LB tables ar-e implemented as block objects, U is possible. to take

a frame fault either in step 1 or in st.ep 2 o.t tbe virtual address translation

sequence above. We wish to 418ting.uisb between the incarnattons of the block

layer that deal with leaf nodes of the large block iaplementation tree and

those that deal with t.tie interior nodes (large_ block tables) of the tree. We
I

shall refer to the former as the lV&$ bj.pgk (LI.) le!tt and to the latter as

the large blook space (LBS) laxer. The LBS layer is responsible for handling

frame faults that. occur whenever any 1..B table, repre.sent.ing one large block in

the LB space, must be moved into primary meaor:y. The t.B lay.er handles frame

faults for pieces of large blocks. (1)

There are some small differences between the e>perat.ion of t.be LBS layer

and the previously deaGribed operation of t:be block layer. In particular, the

frame freer of the LBS layer cannot art>itrarUy free frames that contain LB

tables. To see this, we refer to the e~ampl• in Figure 3-6. For clarity, we

(1) We can relate these t.wo layers to the Mult.tcs 'VM as follows: the LB layer
corresponds to the ~ltics page fault. handl:er, and the LBS layer would
correspond t.o a subsystem that handles page fa.ult.a on page tables.

0

1

2

3

4

rramelist
for

large
block
tables

HN 61

block table large

fn_3 hn_ 14

null null

fn_6 hn 26 ...
null bn 43 ·-

FN_2

---+ ·11st = trailer

.Q

1

2

3

t'ramelist
ror

leaves

null

m~ll

. null

HN_14

4,. ,, null

5 HN_65
'j.

6 ·· HN_2&

Interaction

Figure 3 .. 6 .

.. . Objeots over Frame 'rtf' Two Layere

Page 67

-

[~
I

6
L;,;-J

use upper case "FN" to mean "frame name" in the case of frames that. contain LB

tables, and lower case "fn" to mean "frame name" ror the leaf node frames. In

the figure, we show two framelists one tor each clase of frllllle objects.

Suppose that the LBS layer chose to free tN_2, depicted in Figure 3-6. The

frame FN_2, however, contains the frame bindihgs tor several pieces of a large

block; e.g. the frame binding for the first piece is f'n-3. When the frame

freer· of the LB layer s~lects fn_3 tor f~ing, it must be able to caws& any

reference to fn_3 that appears in an LB table to be d•leted. It would be too

costly to retrieve an LB table from secondary memory merely to set one of its

frame name parts to NULL; therefore as long as an'LB table has any non-null

frame name part.s, it should remain in prill,~Y llellOl"Y.

We propose that the LBS layer have the option of freeing a frapie, sucll as

FN_2, that appears in a trailer list. It could do so by signalling the LB

layer to undo ~ppropriate bindings. In this example, the LB layer would

replace both fn_3 and fn_6 by NULL, and reaove tN_2 from the trailer lists or

fn_3 and fn_6. Following these steps, the LBS layer could perform a store

operation on FN_2.

home is not lost;

the framel i~t .

The correspondence between a frame, such as fn_3, and a

th1'8 . correapondtn<ie ia at ill t'fltatned, t>y the LB layer) in

The LBS layer supplies operational obj~cta -- blocks that. contain the

representation of large block objects. If the LBS layer claims a frame, ~uch

as FN_2, that supports one of these blocks, Abel does ao without informing the

LB layer, the LB layer can fail to mee·t 1ta 8jJeeificat1on. The LB layer is

therefore strongly depend.mt on the LBS l•V~. ffewev.et",, tbe LBS layer

operates independently of the LB layer. It simply supplies i~for~ation

containers to the LB layer.

3.16 Further Aspects .2! Large Blgck Imple1ent1tton

For completeness ·we include a brief ·description of the Part of ttie LB

layer that. supports the growing and shrinking 'or large blocks. ·The role of

this sublayer is to interpret a "raw"' LB table in such :a way that it produces

a variable-length object with the properties that we specified<earlier; e.g.

that the initial value of any· part of the· LB with address iess than the

'
current length is zero. We inclUde this aecti.on prflaarily ta i11ustrate that,

to provide a variable-length object, only a small: amoiint or' mechanism need be

built on top of the comon mebhanism shared by the LBS and LB layers.

There is a sublayer of the LB layer that distinguishes among several·

types of "NULL" that may appear· in.the frame name part or aniB table~ In

particular, three kinds or·•MULL" are

1 • NULL (1) : no corresponding home name;

2. NULL(2): there is a corresponding home name; and

3. NULL(3): beyand the current length.

We provide a scenario to illustrate how these interpretQd. values of NU~L are
'-·' -. :

used. Initially, an LB table would have the first K frame name parts

containing NULL (1) and the remaining M-K containi~ NULL (~) • (1) Suppose that

a write operation occurs, directed towards a piece of the LB that falls within

the scope of a NULL(1). In this case, a new home nee.ds to be allocated. Note

that. if a secondary storage quota checking mech&'1ism exi~t~, it should be

(1) The granularity of the current length measure is only as fine as the frame
size of the leaf node frames.

Page 69

invoked a:t this time. Asswling sutfic-ient quota, the La layer does an

allocate operation to get a home name, and then does an initiate operation,

associating the home with the appropriat:e .Pieoe ot .tlfe. large bl·OOk. At this

point, the frame-olaimin,g (and freeing) ._.tt,.._. are 11\~oked .to provide a

frame for this piece of the large .bloek. At. a-. ~l' tbJe, it tbe frame is

freed, the frame. name part would. contiun JfULL,.(2).

A read operation in the scope of a JIUU.(1) r'&turna a value of zero,

Whereas a read in the scope of a KULL(2) pn.erai.a a tN•e fault.. A read or

write operation in the $Cope of a HULL(3) ~er.tea an ~rror .comtttion.

The set_length oi>fration mer.el)' OtOTes ~he'- N .. J: between the IULL(3)

entries and the other NULL entries .. Sh~inltiDf t~ l~h of a large block llaJ

involve some terminate operations, sinoe .. bemea aaJ ••• t>een. asaoeiated with

the section of the large block beipg truno.n.s.

The LB layer can provide objects that >•re ,~le aftel shrinkable; and

that are intplemen·ted using substantially ~he ...,;:dAt-a · Stl'•tures that support

objects of non-varying length. The meen.nia. ~bat Stafjports. the block

abstraction is also the greatest common 11.c~ni~,fQt the LBS and LB layers.

3 .17 The Relation 9.! !lW, i.mte- Bl.Wk .11!'1. lml.t jl.1jjjt.1on 1,pers
I

Like the block layer, the large block layer da111iy lllanipulates the names

or frame and home objects. However, part of the data base of the LB layer

namely the set or LB tables must: 1) ul.timat~lf t'eside in secondary

memory due to its size, and 2) grow and Shr.tnk dynasioally sinoe large blocks
. .

can be allocated and freed. Thus, unlike the f:Jlook layei", the LB layer relies

on the home allocation layer to llianage the rnoat'oes o~ of Which some of its

dat·a bases are built. If the home allodator were ·t;o . .a~locate tne s~ home

Page 1(J

;.

-

twice, to two different large blocks, the specification of th~ LB layer would

not be met.

The home allocation layer, however, does not depend on the LB layer. The

home allocation lay~ executes in a bl0ck spalle, and ·eJllbodil!lS no knowledge of

large block objects. As mentioned before, though, the h~e 'allocation layer

does depend on the block layer.

Although there is no intrinsic reason why the home alloeator should

depend on the LB layer, there is a possibilit't of acoi.aental dependency

because both layers' are oohs'umers of the block layer. ' ibis ls a specific case

of the more general problem in which' two 'layeri del)end on the block layer to

provide an addressing environment. Either layer ~buld irlit.iate a block that

properly belongs to the other layer and modify it_..;. tbi.aa introducing a

two-way dependency. It two layers' intentionaily' share 1.ilformation, and each

trusts the other to "do 'the right thing" with t~' data', they are neceaaar'lly'

interdependent. In this oal!le, it may be arg~ed ·that ib~y ar~: really one

layer. This form ot dependency is obviously intrin;ic. On -the 'other hand,

system designers may Wish to p~ovide mechaniims tti•t pre~ent accidental

interactions am<>ng layers. Consumers of' a VM subsystem may rely on ACLs as a

mechanism to prevent accidental interaction. Aowev~r, in the lower layers of

the VM itself, where ACLs are not: available·~ -anothet .ee:;tul'ni;;m· must be used.

The mechanism we propose is the storage protESction key meahizif;_, whi~h exists

in the IBM 3TO series [IBM73]. VM laf~~s suoh as the LB l~yer and the home
~ -~ . '

allocation layer would have an asdociated key, and eaeb hOllle object would have

an associated mask. The mask oould be stored!;. t6J~example, eos a head'er word
·' ·~ '' l' ,. ' •

preceding the first data word in the home obj4itc't. - A layer could associate a

Page 71,

home wit-h a block in its block si>ace only it' the key and mask satisfied some

predefined relation.

3.18 QM li2rJl AJ,?Rliq&U.gn Sll.. 1D1. BlRQk .1Wi Jal.. AJ,liS¥J•t;Lqp. Ltprt

An objective of this chapter is to d~aci:»>e A ,part.icular ilij>leaentat.;i.on

of a VM abstraction that can be characterized a,, .a po_tentiaily large n1.mber or

spaces cont.aining a potentially large mnber of pot~ntially large o_bjects. At

this point, it. should be apparen~ that one aore a,pplication of the block ucl

home allocation layers should yield an impl.aent~t . .S.O~ o,f t_his abstraction.

In this case, each LBS table that de~ribee a aet of LB ~•bles shoµl.d be

implemented as a block object. Tbus, we add orie •or,~ level to the

implementation tree, as shown in Figure 3-7. The, j.Qpai;o•tAon or the blook

layer that manages blocks _containing LB$ t-abJ.e~ ._is -~•U•d tbe J,ICU. gl99k ~

;pace goacF (LBSS) layer. That is, it •~•••.a.s~qe of largo:.blook 1spaoes.

As mentioned previously a small numper Qf prinoip•l• that are JHlrtof the
- ·' ' ' ' . . . " ~-. ., .. •, ' - , .

supervisor may use a block space for an addreaft~qg enr~om,.«;tt. A second set

of principals uses an L,B spaoeas an ad.dreasin,g envirQ~ent. There is a

one-to-one correspondence between each principal in tpis second set and ~ .LBS
- . ' ' ·' ·~·; - . '

table. There is thus a need to allocate and fr,ee homes tbat contain ~B~ . - ' •. - . '

tables corresponding to principals. The home ulocatio~ lax:~ perforas this
' ' \" ' -· . . . '

function. Accordingly, the LBS layer depend.a (l!l ttie ~e allocation. J.ayer.

The block layer mech_anism descrtbed, j,.n this o•pter ser.v.es as a greatest

common mechanism for the LB, LBS, and LBSS layer,s. ,Since the ,st..ructure of t-tae
' .. '-· ·. • . ~" • . ' • ~ . ~ ' '. ' ! ~ .. .

LBSS layer is, by design, like th&t of the .J.8.S and L,B layera, previous

observ-ations regarding intra- and inter-l4yer .d•-~cies a,J>'.ply to the LBSS

Page .. 7:2

table describing
a space of

Jarge block spaces

null null

D- -0

null

.0
null

/ / D,, /
/

/
/

/
I

I?

c:J /
/

I
I

~

D
KEY

H = home

F = frame

-----+ = home binding

= frame binding

large
block
space
table

...0

null null

I
I
\
\

large
block
table

null null

....0
/L----+---1

/ null null

null

'
0 \c:J 'tJ
q

\

' ~
D
0/ /

D-
Figure 3-7

large
block
table

....()

null null

null null

-0

F

[]

Data Structures Supporting a Space of Large Block Spaces

Page 73

layer as well. The dependencies that relate each or the regions described in

this chapter are shown in Figure 3-8.

3.19 Summary

In the lower layers of the case study VM,, the :pr.imary function is the

multiplexing .of either real main ID'el;QrY 01" virtuaiJ.. ~Y obj.-e.ts. 1fe have

developed a model that characterizes aemory 'llui't-±ple1dng as the manipulation

of bindings among a few sd;mple obJec·t types.. !'!!om :the -viewpoint or the model

it is apparent that a type manaaer f'or 8'1,Y;Of :tfteae ed.mple objects need not

embody knowledge of the semantics of ·the othet' ·types.. A feature of tbe

multiplexing model is a high degree of modular irldepend·ence.

Proceeding from the model, we show tbat a tltt"aigtrt:.forward implementation

preserves much of ·the desirabl-e independc11ie.. This implementation can be

supported by a hardware arohitecture 1dmilar to archit.ectures of contemporary

systems. Future architectures, which may innor.porete hardware-assisted

associative searching, should be able to auppeM. 'impl:eaentations that are

truer to the model, i. e. there should be fewer :laplaeintation-induced

dependencies.

The intermodule dependencies of t.he VM layers described in this chapter

are either: 1) weak (i.e. timing) depend:encies, 2) dependencies on an

addressing environment, or 3) dependencies that occur because the

specification of a layer embodies assumptions a~put. objects tbat ,the lay,er

references; for example, there is an assumption in the block layer

specification that the data binding of a block object will not. change unless a

write operation occurs. The dependencies t.hat do exist form a partial order

among the modules of the case stwdy VM subaysten.

Page '74

large
block
layer

/
/

/
/

/

large
block space

layer

/
/

/
/

~
large

block space
space
layer

Figure 3-8

\
\

\
\
\
\
\
\
\

\
\
\

\
\
~

home
allocation

layer

I
I
I
~

block
layer

Dependencies Among the Lower VM Layers

Page 75

Chapter IV

Treating Objects as Elements of a Property List

4.1 Introduction

In the previous chapter we described an object-oriented structure for the

lower layers of the case study VM, in which relationships between objects took

the form of LISP bindings. Even though bindings may exist between two

different object types, the correct behavior of their respective managers can

be independent.

In contrast, the higher layers of the VM resemble a hierarchy of type

managers in which the correct operation of the manager of a type depends on

the correct operation of the managers of its component objects. This chapter

explores a method, based on the LISP concept of a property list, to minimize

intermodule dependencies and achieve economy of mechanism in the higher VM

layers.

4.2 Removing Unnecessary Dependencies in~ Higher VM Layers

We observe that many of the operations in the higher layers of the VM are

mapping operations; i.e. a significant function of each layer is merely to

return the attributes of an object given its name. To minimize unnecessary

inter-layer dependencies, it might appear that each layer would need to

implement its own mapping function. However, we show that many layers can

rely on a common layer to provide multiple mapping functions. This scheme

certainly provides a greater economy of mechanism, and at the same time, the

scheme can be implemented in such a way that the common layer does not depend

Page 76

on the other layers. The common layer treats the range of values of each

mapping function as el~ments of an uninterpret.e4 property lht, rendering it

insensitive to anomalous behavior of the other layers. Of cour~e, the other

layers do depend on the common layer. In this sense t.his scheme is not. as

powerful as the binding sche11e of chapter II~,, w~ioh na~ the pot .. ntial of

eliminating all dependencies between object managers. On the other hand, the

property list scheme seems more general,ly applical)le thap 1fhe b~nding' sqheme.

The goal of this chapter is to present a strqcturing ~eth()d that is 11ore

appropriate for reducing inter-region dependenci~s ip. tbe h1.gQ.~r VM.layers.

4. 3 Plan .2£ ~ Chapter

In this chapter we just.ify the desirabliity of implementation-independent

object names, and in particular the desirability of sooh names for segment

objects. We describe a layer, called the m lax1r, -'that asso~iates the

implementation-independent names with the segment representations. The

segment is represented by large block (LB) objects. Since the map layer

manipulates some potentially large data bases, some form of underlying memory

managemant function is needed. We show that t.he block and home allocation

layers, described in chapter III, are suff~o.ient as wel:J. as convenient •.

The next section of the cl')apter deaoribes hQW the map and LB layers

together provide a viable su:bstruct.ure for any of iMtV-ilr•l reasonable ·.senent

addressing mechanisms. Sinc.e addressing mecbt1U1:1Jsms like tboae ·.described exist

in current systems, this section should provid4 .i,nareased.confidence in the

viability of the VM layers described in precedini. ~ectioris of the thesis.

This chapter then focuses on the implement$Uon pf aocess _control lists,

as an example of a class of nontrivial segment attributes. The ACL is

Page 77

nontrivial since it is a potentially laf"g• ett.·rt·~.e.. We de~eribe a layer

called the ACL layer that suppof'ts t.be vviou.:s tCL 9pe!"ations. As will be

shown, some functione that are logicall' part of ttMt ACL layer may nonet.heless

be Pf'OVided by the rnap layer wit-bout causifl& ~be 11lt!ter· layer t.o depend on the

former. These observat.ions regarding ACLe can tae &.neral1zed to other object

attribut.es.

We next. show that the VM layers that. baY.e ·~ especified up to this point

can provide effective support for a generalized tfP,e ext.en.sion facility. This

is because a common mechanism for support.~ £1IM8 nae already been provided

for the support of segment .and ACL objects. As •nt.ioned in chapter II, a

function that every ETM must perform is to •i\P &am4UI to attributes. The map

layer can provide this common funct.ion witho.ut n.oo11'i.r;lg dependent on any ETM.

For completeness, we conclude this C'bapt_. with .a brief discussion of 1)
·, ' - - ' .

the representation of authority hierarehie.s .in ·tb.is VM structure, .and 2) the . c . . .

implementation of directories as extended t.i~ o.b,;.cts. These two features

can be provided without complicating the st.r.uot.ure .a.f t,be supporting VM

layers.

4.4 Extending Lg.rge Blocks tg, Segents

The VM a~st.ract.ion provided by ·the aecbaniams .in ob.apter III can be

charaoterized as a potentially laT"ge nuntber ·of ep'acee eontaining a potentially

large number of potentially large objec,ts. ·FJH"t;h_., layers of the VM to be

described in this chapter extend the above at>et'f'action t.o that of a segment

object. Before describing U1e additional layers, we review some

characteristics of a segment object, as de'fined in Chapter II, that still need

to be provided.

Page TB

First, the names of segment objects, unlike the names of LB objects, are

implementation - independent. In particular, we are considering a segment

name to be a unique identifier (UID), derived by reading a high-resolution

clock. A segment UID may be bound to some representation object or objects

in this case a home object containing an LB table. The advantages of such

implementation - independent names are several. Since naming is distinct from

implementation, the implementation can be changed "underneath" the names.

Thus, a facility for backup of segment objects [Stern74, Benjamin76] can move

the representation of the segment from one secondary storage device to another

in a manner that is invisible to consumers. In addition, once a segment is

deleted, the resources devoted to its implementation may be freed. It matters

not if consumers retain the UID of the deleted segment, since implementation

resources will never again be associated with that UID. The segment UID is an

example of a non-recyclable name. A discussion of other advantages of using

UIDs as segment names appears in Bratt [Bratt75] and Fabry [Fabry74]. (1)

Second, segment objects are expected to have a set of attributes.

Examples of segment attributes are the name of the creating principal, and an

access control list (ACL). The ACL is an example of an attribute that is

potentially large. Although such an attribute requires more support mechanism

than an attribute that is small and does not vary in size, we must be able to

(1) A less obvious advantage becomes apparent in the context of secure
systems. If an objective of the system design is to minimize unauthorized
information channels, then UIDs derived from clock readings are a good choice
for object names. If the object name contained any information about the
implementation or number of existent objects, then a user might be able to
infer whether any objects were created between the times that he created two
objects. Thus such a naming scheme would provide an unauthorized information
channel (called a covert channel by Lampson [Lampson73]). The UIDs, on the
other hand, provide no information to the creator other than the time of the
creation.

Page 79

support it, as it is part of our specification or a segment object. The

underlying large block layer may indeed provide attributes, such as the

current length value described in chapter III, that show through to the

segment interface. However, the LB layer would not be expected to provide any

potentially large attributes for LB objects, since t.he LB objects that it

implements are precisely the most primitive objeot.s that could conveniently

support these at.t.ributes. Thus it is up to the higher VM layers, as consumers

of the LB layer, to provide these attributes for segment objects.

There are other characteristics of a segment. t.hat appear in some

implement.at.ions, such as automatic increase or the current length by a write

operation, that can be built. on top of the large block abstraction. We shall

concentrate, however, on segment naming and segment attributes in this chapter

since 1) it is our belief that these are two of the most distinctive

charact.eristics of segment objects, and 2) we are able to describe an

implementation of these characteristics that exhibits .few interdependencies

with other regions.

4.5 ~11!12. Laver

The next VM layer to be described, t.he map layer, provides support for

segment naming as well as for segment attributes. The map layer may be a

consumer of abstractions supplied by layers that we have already described.

However, the map layer is not a consumer Of segment objects. If it were,

there would be a circular dependency wit.hin the VM structure since the map

layer and the type manager for segments would be mutually dependent. Such a

circular dependency does occur, for example, in t.he ~lt.ics system since

dil"ectory object.s, which are built. out of segment.a, implement. the mapping from

Page 80

segment names to segment representations. The case study VM, with its map

layer, has no such dependency.

For purposes of explanation we begin by describing a mechanism that can

support the segment naming function, and later extend that mechanism to

support segment attributes. Thus the present concern is to describe the

mechanism that maps each segment name, i.e. UID, into a corresponding home

containing the appropriate large block table.

The map layer maintains a data base that associates segment UIDs with

home objects. Following the terminology of Redell [Redell74], we refer to the

data base as the Map. We have chosen here to use the capitalized form of the

word, to distinguish this data base from any other data base that can be

described by the generic term "map". The main requirement that the Map must

satisfy is that any given lookup be rapid; although efficient insertion and

deletion are desirable, they are of secondary importance. The Map must be

able to provide the UID-to-home association for a very large number (say at

least 10 mill ion) of segments. Consequently it is an example of a large data

base that must ultimately reside in secondary memory.

There are viable alternatives for the implementation of the Map. The

Hydra system employs two hash tables. One hash table is in primary memory and

the other is in secondary memory. The CAL system made use of a "master object

table", residing in the extended core storage of a CDC 6400. Among other

things, CAL capabilities contained indices into the master object table,

providing for fast access to representation objects. In the case study VM, we

suggest a B-tree [Knuth73] as the implementation of the Map. A B-tree is a

balanced n-ary tree for which searching, insertion, and deletion operations

have a guaranteed worst-case efficiency. It is a data structure that is

Page 81

well-suit.ed for external searching since eacb node ean be .implemented as one

secondary storage record.

To maximize economy of mechanism .. , tbe lower VM layers already described

should be employed to multiplex main memory among t,be .B-t,ree nodes. Each

B-t.ree node is accordingly implement.ed ae a home object.. The leaf nodes of

the B-tree are simply homes that contain LB tales. Tbe interior nodes are

homes containing data with the format shown in Figure 4-1.

<home name> <UID> <home name> <UII>> • .• • · <UIID <home name>

Figure 4-1

Contents of a I-tree node

Each home name in an interior node is the name of some other node. The UIDs

surrounding a home name in Figure 4-1 are t:he lo.war and upp.er bounds on all

UIDs reachable in the subtree with the given home ·name as the root node.

The B-tree structure suppo.rts a !llap for a lar:ge number of objects at low

cost. For example, suppose that the Map must acoommo4ate 100 million segment

objects. The home corresponding to a given U!tD can :be located in 3 references

to secondary storage if the B-tree is of' Oftder 100 '(or more) , and if the root

node is already in primary memory. The a:v-erage sear~h time can be reduced if

an associative memory containing {UID, home) pairs is provided.

The map layer can t.reat. each o-r t.he '$-it!"~ nod•s as blocks in a block

space. For example, whenever it selects a home ,name from one or the interior

Page ·82

nodes during a tree search, it invokes the +nitiate operation t() bind a block

to the selected home. It. then references the bloQk direot.ly to find the next
j·' '

home name in the sequence. The map layer can.manage Us block space so that

nodes near the root of the B-tree tend to ·remain bound to blocks.

It is possible to regard the map layer as a -type· manager; it. manages a

collection of objects of t.ype "name". The relevant ·operati<)ns are ·to make

names known or unknown to t.he map layer, and to add, delete, or retrieve

attributes of the known names.

4.6 Dependencies .2f the HilP. L1yer

The block and home allocation layers described in chapter III are

sufficient to provide the memory management support for the. DJap layer. No

special-purpose memory manager is needed.

The map layer strongly depends on the block layer since e~ch node of a

major data base of the map layer (Le. the Hap it.self) is implemented as a

block object. In addition, the map layer depend~. on the home allocation layer

since it. must allocate new homes to grow the map. The strong dependencies of

the map layer are thus the same as those of the large block layer {see chapter

III) even though the specifications of these layers are quite different.

Since the addressing environment of the map layer is a block space, the

map layer and other layers that use this addressing envi_ronment could become

interdependent. To provide some controls on the contents of a.bloc.le spape,

st.orage protection keys, described in chapter III, can be used to prevent any

layer from accessing programs and data privat.e to ot.her layers.

We emphasize that· although the leaf nodes of the Map are data bases

manipulated by the large block layer, the map layer doff not depend on the

Page 83

large block layer. The role of the map layer is merely to return the name of

a home containing such a data base. The actua.l dat.a &ue is never referenced

by the map layer.

4.7 Alternative Addressing Mgge; ,tsu:. SeSIWDtA

The purpose of this section is to illustrate t.he viabilit.y of the case

study VM mechanisms. These mechanisms can support. any of several segment

addressing modes, including those of the Hult.ics and Plessey 250 systems.

We have described two mechanisms that, when used· together, allow a

consumer to reference the contents of a sepertt object given it.s UID. The

first mechanism is the map layer, which returns the home containing the LB

table for a segment, given Us UID. The second mechanism is the LB layer,

which associates an LB object wit.h such a home, and which provides an

interface for referencing the contents or the LB. There are a number of ways

that the facilities provided by these two layers may be combined to provide an

interface for addressing segments. At one end of the spectrum of choices, all

references to a segment object would be by its UID. At the other end of the

spectrum, a local machine-oriented name could be associated with the UID, and

thereafter all references to the segment object (from within that local

context) would specify the local name. (1) We illustrate how the VM layers

described so far can support several addressing modes chosen from this

spectrum of possibilities.

The home containing the LB table for a segment is in essence an

underlying state object; t.he large block that is used to contain the

(1) The justification for local names, as well as a disoussion of alt.ernat.ive
scopes for local names, appears in the work of Bratt (Bratt.75].

Page 8-4

!" --· ··- --··-------·-----

information in a segment is an operational object:. Together th~u;JA objects are

used to provide a segment object. .Since a segme,nt is named by UID, there must

be a way to reference the. supporting operational object. given the UID. A

mapping must be provided from segment name. to supporti9g l.af'&e block object.,.

We define the segment laxer to be the layer t.hat performs tbis; mapping, sllql!fn

in Figure 4-2.

UID

KEY

Mappings managed by

·large block layer =
map layer =
segment layer =

-- ----- ' -----..._

----~--·---f!J>

----+.

Figure 4-2

---.....·_

I
I

I
I

I

large
block
object

/

Mappings Mana~ -b)* ·'thPee ·l>trretient ·Layers

Page 85

.,
I

I ,

home
object

i.'.
I

I ,

The segment layer is the type manager for segment objects. Given the

name of a segment, it- retrieves the comPonent.a. It. supp·orts operations on

segments (i.e. read and writ.e) by associat.ing underfying operat.ional and state

objects, and mapping segment operations int.o operat.tons' 'bn ·the underlying

operational object .•

The implementation of the segment layer may rely on some opf imizations to

achieve efficient operation. For example, instead of mapping U!Ds to large

block names, the segment layer could map UIDs to frames cont.aining large block

tables. In order to support t.his more efficient mapping, the LB layer would

need to include in its interface to the segment layer, an operation that, given

an LB name, would return the corresponding,frame name. Such an interface

would cause the LB layer to become dependent on the seSB:lent. layer, since the

segment. layer would read and write frames directly aJi<1 thus change the state

of a large block. The problem is not very severe in this case, however,

since: 1) the segment layer will hide frame names trom all layers above it.,

and 2) the segment layer (which is expected to be implement.ad in hardware) is

exceedingly simple and therefore the aasertion that. it. hides frame names

should be easy to verify.

As mentioned, a possible addressing environment. is one in which segments

are named by UID. This addressing environaent, somet.imes called a universal

address space, has the advantage that segment. names are context-independent.

The name of a segment can be passed, without any translation, as a parameter

or in a shared data base from one subsystem to anot.ner. The universal

address space is the most flexible addresatng scheme in the spectrum. As

Bratt. [Brat.t.75) points out,. t.he reasoaa for.on.•.W. aome other point along

the spectrum are technological, not intrinsic.

Page 86

There are no implement~d systems, des.cri.bed in the research literature,

that support a universal address apace •.. Such systenus, however, haye been

proposed. In a recent report, Radin and Schne_ider. [Rac:Un76] describe a

machine interface that includes a u.niv~rsal adqr~ss space. Redell [Redell74J

has suggested an implementation of a universal address space that relies on

hardware- (or firmware-) supported mappings from object. UID to object.

representation. The suggested hardware support consists of a hash table

supplemented by an associative mempry. The representations of relatively

active objects appear in the hash table, and the representations of the most

active objects appear in the associative memory. In this case, t.be

associative memory would associate on UIDs, returning a frame for an LB table.
:•· ' .. . '~

The hash table would also map UIDs into frames contain:f..n~_LB tables ...

Together, these two structures would i!;IPle~ent the s•pent layer.

An alternative addressing environment that is QIJite similar t.o the

universal address space makes use of register numb~rs for local

machine-oriented names. The processor wo~l~ provide a set of base registers

that could be loaded with ~egment U!Ds (and. pert}aps with offsets as well).

Programs could then load segment. U!Ds into the regia~ers and refer to segments

by register number. The mapping from register numbers to U!Ds is _carried. out.

explicitly by programs referencing segments. An advantage of this alternative

over the previous one is that programs can use short~r segm~qt iqentifiers.

However, an identifier in this case is context-dependent so it l!IUst be

translated if the object it designate~ is to be refereqced in .another conte~t.

Fortunately, the translation from UID to regist~r 9umber -- or vfoe versa

is an inexpensive operation (i.e. a "load register" or ."store register"

instruct-ion).

Page 87

This scheme requires some form of hardware 'si.lpport, such as the

associative memory and hash table of the previous section, t.o map segment UIDs

int.o frame names. Alt.ernatively, shadow regist.ers .associat.ed wit.h each of the

base registers can be loaded with frame names of LB tables on demand. In

eit.her case, t.hese forms of hardware support. provide the function of. the

segment layer. This method of using base registers is similar to the approach

adopted for the Plessey 250 syst.em.

Finally, we mention the alternative of allowing large block names to be

visible above the segment. layer. In this case, programs would invoke an

"initiate" primitive similar to that of the LB layer:

initiat.e (local_segment_name, UlD),

in which "local segment name" is an input parameter, i.e. a segment index in a

local segment space. Thereaft.er, all machine instructions would reference the

se~ent by its local name. The shortcut employed in this case to make segment

referencing efficient is to ensure that the underlying LB name is the same as

the local segment name. A consequence of using this shortcut is that the role

of the segment layer is diminished. It simply implements this high-level•

init.iat.ion primitive as follows:

1 • it. invokes the map layer t.o get. a home name, H, given the parameter "UID",

and

2. it. invokes the LB layer to associate an LB name, namely

"local_segment_name", with the home H.

The important observation here is that since the local segment name and the

underlying large block name are arranged to be the same it. does not matter, in

the case of executing programs, whether this common name is bound to the

segment UID. That is, after a segment object has been initiated, read and

Page 88

write operations can be interpreted directlJ.bY the LB l,~yer as.read and write

operations on an LB object. It. is necessary to retr,ieve the UID oply if a

context-independent name for the segment is desired. 'l'hi:s alterru~tive offers

an advantage over the previous one .. in that. t;he s~t· of lOCjl;L names would be

larger, since the number of large blocks in an ~B spaoe is assumed to be

larger than the number of processor - supported ~as• ,r,.,:l.sters for sepent.

UIDs. On the other hand, the cost of determi!l.in~ .the .Ut,.D .that is boull4, to a

local name is greater in t.his case than in the pre.ce(llng ,ca&e, sinc.e t.his

operation invokes VM layers th.at would prob.ably: Qe ilJll>leqaented i,i soft.ware.

In order to relieve s.egment consumers .of the necessity of man1tging local

segment names, a siJ11ple layer can be built on top.of (or in) the s~$Bent

layer. This simple layer would implemen.t aoJDe po.lioy. of ~ss.tgnin$ local

segment names to UIDs, and woulci represent this assJ.g~ent. in a table that
- . ' ' ; ' . '. - ~ . '

corresponds to each. large block sp~ce table. Such a J:~~e 1104J.d be simila,r in

function to the Known Segment Table in the,,.Hult.ics sy~~\~llJ.. [Ben.soussan72,

Bratt75] ..

It has been the purpose of th~s sect.ion to describ.e no)l the. ;lap and large
\ - ... ; ',

block layers, described previously, can be usecl. by h~er layers. to provide

any one of sever.al VM addre$8ing environment·;" ~hat arJa, fo.und in currMt and
!. ·'· • ; -- <

planned general-purpose systems. This des.~ipt.ion i~ !JlOtiyated by a secondary

goal of. this thesis: to provide some justi,f.ication t~t the oaa~ st.udy VM is

a viable one.

4. 8 In!. Acce.s:r ·control 1'!!t Laxer

Our definition of a segment object includes the presence of an access

cont.f'Ol list. (ACL) att.ribute. An ACL has a properly in coinmon with a segment:

Page 89.

it- is potent.ially large. This suggests that t.ne m~ban1sm tor providing this

property oan be common to the implement.at.ion ot both ACLs and segments. We

present a design ror the support or ACLs tbat. uintaina economy of mechanism

on the one hand, and preserves strict layering aOd.W.aruy on Uie other. The

design for the support or ACL!I is general t!iougb tut it. can support. any

attribute that. is potentially large.

Methods for implementing small segaent attributes are not appropriate for

ACLs. In t-he case ar the small attribute, the val~ could be stored in the LB

table or in an $Xpanded Map·. entry . for the. sepent.. For example' the current

length att-ribute descril)ed in chapter III is repneent.ed in the LB table.

However, since Map entries as well as LB tables are data bases that are small

(Le. they are implement.ed using blook objects), they ~annot contain the

represent.at.ion of an at.tribute like ai{ A.ct.. !Yen tho\igb an .ACL could be

small, it. may be as large as any segment object: Henelit' the representation

for an ACL cannot., in general, be stored eitner in a Map entry or in an LB

table. Of course, the Map entry or LB table could contain some kind of

pointer to the repre&entat.ion of a large attribute.

It. is more diffi.Cult to implement. a potent.tally large object, like an ACL

or segment, than .tt. is to implement. one that is eitber large but constant size

or variable length but small. Large representation object~ will suffice for

objects in the first class' and small reproe·sentatlbn object'.s will suffice, for

objects in the second. If an object may be either Slll&ll or large, the

supporting mechanism must be able to concatena1:-.e. --11 obJ~ts, .a:s necessary,

to effect an im.plementat.io~.

The subsystem t.hat. implements ACLs, ¥bj.oh we ~11 oall t-he ~ laxer. or

ACL region, uses large block objects as the representation objects. Although

Page 90

a segment object is a variable-length container that could represent an AGL,

segments have AGL attributes of their own, so such an implementation would

introduce a circular dependency between the segment and AGL regions. Even if

this circular dependency were tolerated, some fixed. point must be established.

The large block object suffices as the fixed point since it is a potentially

large container that has no AGL attribute. As a consequence of choosing the

LB object to serve as the representation for ACLs, no circular dependency is

introduced. This method for decomposing potential circular dependencies is

called sandwiching by Parnas [Parnas76].

Access control list objects that are small can waste space in the

supporting LB tables and home objects. However since the ACL layer allocates

large blocks, as necessary, to represent AGL objects, it can represent many

ACLs in the same large block. This strategy would eliminate the wasted

resources caused by breakage, but it would require that there be a dynamic

storage allocation facility within the AGL layer.

This method for implementing ACLs treats each AGL as a distinct object.

Such a treatment is quite natural: any attribute of a given object may, at

some lower level of abstraction, be considered a distinct object. The

operations that can be performed on an AGL are search, display, and update.

The search operation is invoked to determine whether a given principal can

perform a particular operation on the associated object. The display

operation lists AGL entries, and the update operation changes them.

On each segment reference, a principal must invoke the AGL layer to

search the corresponding AGL. To provide for efficient reference to the AGL,

part of the AGL layer is implemented in hardware. Corresponding to each

principal's large block space table is a parallel table that comprises access

Page 91

rights fields. Each access rights field cont.ains a bit-encoding or the

principal' s access rights to t.he corresponding aepent object. Every machine

instruction reference t.o a -segment is checked against the approt>riate field of

encoded accees rights. (1) The access right.a field 18 inU.ialized the first

time a principal references a segment. On tile r1-rst"!"eferenoe, the hardware

part of the ACL layer causes a processor fault, and the following steps are

performed.

1. The ACL object corresponding to the SegMftt obj~t that. was faulted upon

is located in a system-wide table.

2. The ACL layer initiates the laroge block reS>reaenting the ACL, if

necessary, and searches it.

3. If access is not. allowed, the ACL layer signals an access violation.

4. Otherwise, it sets the access rights t'1eld to contain the proper encoding

·of rights for the referencing principal.

4. 9 Eliminating Potegtial Qtetn~tOQ~•' . .U. Yli'M .~Jcwrtx J,.ists

In this section we consider two mappings, defQ.ri~ in st.~P.4' 1 and 2 of

the preceding section, and illustrate how the ~ 14t~r, qan be used as a
,~ '

greatest common mechanism to support both of t~. The two mappµigs are

1. the mapping that, given a segment object n~, r,et.~ns the a,sociated ACL

object name, and

2. the mapping from ACL objects to t.heir representation (LB) object.8.

(1) The Multics system employs an encached t~rm. ot access control list ent.ry
such as this .. In Nwt· 'tli1tics ~i.ateatatMti;, ~filt enoabbed' '1&cess rights and
the encached addressing information are included in a single table .cal.led a
descriptor· segment.

Page 92

Providing the second of these two mappings is a function of the ACL

layer, the type manager for ACL objects. It. is the standard mapping from

object name to object representation. Providing the first mapping should

really be a function of a layer that manages "ae .. ent-wit.h-ACL" objects. This

layer would provide a mapping from each such object. into its two components:

a "segment-wit.hout-ACL" object. and an ACL object. All of these mappings are

shown in Figure 4-3. Providing distinct implement.at.ions of either or' these

mapping functions appears to be a diseconomy of mec~nism, since there already

exists a similar mechanism in the map layer that relates object names to

object representations. Other layers could use this mechanism in the· map

layer. Of course, neither the ACL layer nor any other .. lay:~ should be able to

manipulate tbe Map directly in order to provide these ;mappinJ functions, as

this would violate layering.

We solve this problem by appealing to a technique that pre;serves. strict

layering on the one hand, while maintaining economy of mechanism on the other.

The technique is derived from the LISP notion of a property list -- i.e. a
,·

set of unint.erpreted .attributes associated,..w.1.tb. M obJ.~ct. There is no

violation of layering it'a lower layer maintains·dat.a, in a property list, for

a higher layer. The higher layer can attaph a particular interpretation to

the data. The lower layer can provide a mapping of the form

property name ----------> property value

for the higher layer. The higher layer has precisely two ways to interface to

the lower layer, which are

' '

1. fetch_property (object_name, property_name, value) , and

2. store_propert.y (object_name, property_name, value).

The only causes for error conditions are object names or property names

Page 93

I
~

ACL

map

segment
with
ACL

I
I

I
I

large
block

---..... - \ -......... ../' I
------ If'

I
JI

large
block

I
I

segment
without

ACL

map

I
I

I
I

Figure 4-3

Possible Representation Objects for Segments

Page 94

unknown to the lower layer. The correct operation or t.he lower layer, does not

depend on the correct operation, or even the existenc~, of the higher layer.

The map layer is in tact a layer that perrorms a

property name ---------_.> property val.ue

mapping for a higher layer, namely tor ttiE!' sEtgulent layer. In this case, the

segment layer invokes the map layer to obh.frfthe -trrePt'e'sentation" property or

a segment, by performing the operation

fetch_property (segment_UID, representation, value).

The value of "representation" returned by the aap layer is the home name of

the underlying LB table for the segment. Of course,'the map layer places no

interpretation on this value; rather it consid•rs it to be a property of the

object named "segment_UID";

Since, as mentioned previously, the segment layer is the type manager for

segment objects, we see that the map layer actually if'1plements the m4lPPing

from object name to object representation for the segment layer. In our

characterization of type managers in chapter II, we indicated t.hat every type

manager is responsible, :given the name of one of its object.s, for locating the

corresponding representation.objects. The segment layer thus relies on the

map layer as a utility subsy$tem, for performing thi~ mapping.

The map layer can also be used by other type maiaagers to locate

represent.at.ions, given objeQt names. In particular, those mapping functions

depicted in Figure 4-3 could be carried out by the map layer. However, not

all t.hose mappings need be realized, since there is no need to reference

either "segment.-without-ACL" objects or ACL objects directly. These objects
. . .

are of interest only insofar as they are attributes of "segment-with-ACL"

Paa,;e 95

objects. Thus, a superfluous set. of n~es and uppings can Qe eliminated by

treating both the LB representing a "segme!lt--vithOut~~CL" and the LB

representing an ACL as t.wo repreaent.at.ion objecls of a "segment.-wit.h ... ACL". We

can then rename the "segment.-with-ACL" object, simply c;alling 1.t. a segment,

with the understanding that all segaaenta have .A:CL·· a.ttribut.ea. The nU11ber of

mappings is now only two, as shown in figure i\...4. We cantben rely on the map

sqment

I
I
I
~

large
block

I
I

I
I

representation
of
the
ACL

Figure 4-4

large
block

repl"esentation
of
the

information

Actual Representation Objects for Se$J1ents

Page 96

layer to implement the mapping to two representation objects of a segment.: the
, ,

representation of the information part of the segment, and the representation

of the ACL attribute of the segment. Each Map entry for a segment object is

thus expanded to contain the home names of two large block tables. The ACL

layer can then obtain the representation object for the ACL of a segment by

invoking the "fetch_property" operation described previously.

From the standpoint of the map layer, each segment object name has two

properties: the ACL property and the representation property. The value of

the ACL property, interpreted by the ACL layer, is the name of the home that . , ,,

contains the LB table describing the ACL. The value of the representation

property, interpreted by the segment layer, is the name of the home that

contains the LB table describing the information of the segment.

Some operations on a segment object, such as read and writ.e, are

implemented by the segment layer. Other operations, .such as the operation to

search an ACL of a segment, are implemented by the ACL layer. Operations on
'·

segment objects involve the segment and ACL layers as follows.

1. The segment layer is invoked in order to determine what bit.-encoding of

access rights corresponds t.o the operation (e.g. read) that is being

requested.

2. The segment layer invokes the "search" operation of the ACL lay~r, passing

the bit-encoding, the consumer name, and the segment U~D as arguments.

3. If the ACL . layer indicates that the search was successful, the segment

layer performs the requested operation.

We have, in this design, treated the ACL information for a segment. as a

property in a property list. maintained by the map layer. This design
,·~ ' ·' · - ~

technique preserves the layered structure of the· VM, since the ACL object -- a

Page 97

good candidate for object.hood is indeed managed by its own type manager.

At the same time, a duplicate mechanism for obtaining the names of

representation objects has been avoided.

Even though ACL objects do not have distinct implementation - independent

names, the programs of the ACL layer can be written under the assumption that

they do. The UID of the segment can be regarded by ACL layer programs as the

unique identifier of the ACL object instead. The ACL layer invokes the map

layer operation

fetch_pr'operty (segment_UID, ACL, value),

causing the map layer to return the value of the AGL property. This naming

technique could be applied to other attributes of segments which, like AGLs,

require distinct implementation objects.

However, there are limitations to this approach. First, this approach is

applicable only to objects that are used solely as attributes of other

objects. For example, if an AGL were a free-standing object that could be

referenced by arbitrary consumers, then it would need an implementation

independent UID for a name. Second, this approach is biased towards

efficiency rather than towards generality. It is appropriate for supporting

only a fixed number of attributes since, for each attribute, there must be a

field in the Map entry of an object. To avoid inefficient Map searches, the

format of a Map entry should be the same for all segments. Hence the size of

a Map entry cannot vary, and neither can the number of attributes. In

contrast, LISP systems are biased towards generality since they support large

property lists for objects. Locating an arbitrary property typically involves

searching a list structure, which would not be as efficient as referencing a

Map entry.

Page 98

4. 1 o .! Layer 1.2. Support Dxngic ~. Extemsigp

This section illustrates how a layer for .supporti!18 dyriamic type

extension can be built on top of the layers already described. The type

extension facility represents the last. functional component of this case study

VM subsystem. We intend to show that techniques for achieving modular

structure and economy of mechanism at t.he same time, suoh as those employed to

support the ACL layer, can also be used to support dynamic type extension.
. . - ·;'• ·"'• . ,.

As described in chapter II, each operat.ion on. an ETO causes 1) type

information, 2) ACL information, and 3) component. objects to be referenced by

the ETM. The ETM may rely on some other subsystem to fetch this information • . , - . •. ·. ~ ,-

Nonetheless, each or these three kinds of information are obtained on every

ETO operat.ion. We specify a diat-inct. · layer:, called ttie ·extended· !:IR!! manager

(ETH) layer, that supports t.hese common operat.ions'~ The !TM layer is the

first layer we have described that plaoes ariy interpretation on t.ype .

information.

The ETM layer of this thesis is quite similar to the Extended Object

Manager layer of the SRI system. The SRI Extended Object Manager is

responsible for storing and retrieving the component objects (called

implement.at.ion capabilities) for eaoh extended type object. The ETM layer of

this thesis also stores and retrieves componertt objects. · In addition, it

stores and retrieves both ACL and type information. Sinqe one of our goals is

to describe a VM in which all types are protect.ed by ACLs, mapping from object

name to ACL information is indeed a mec~anism common to all ETHs. (1) In

order to reduce errors, the ETM layer also enforces twc:> policies: 1) a type

(1) The preceding section described how the m,Ap layer could support such a
mapping, but only for segment objects. .

Page 99

manager may search only those ACLs of its own objects; and 2) a type manager

may request. the component. ·names of Us own object.$ only.

The ETH layer can be considered t.o be the type aanager for a data base

object that contains type, ACL, and components information.· Higher layers

call upon the ETM layer in order t.o enter· or to retrieve this information.

In the preceding section, we showed bow the map layer can be extended to

provide ACL information for segments. In followinc sections we show that t.he

map layer can be extended further t.o assooiat.e object. UIDs with the above

three kinds of information, for any object type. The map layer can thus serve

as a common mechanism for the segment; ACL, and extended type manager layers.

4. 11 .I!llt E;xtended .I.tRJ1. Man1ger Lper :tnt1C(IPI

The three important interfaces to the ETM layer are listed below. Tbe

first. int.erface could be invoked by any pr1n~1pal.; however only El'Hs vill ,

make use or the latt.er two interfaces.

The first interface, t.he mapping from objeQt Ult> to type information, can

be specified as follows:

get_type (object._UID, type),.

in which "type" is an output argµment. By invokiag, this interface, any

principal may determine the type of any object. (1)

(1) As mentioned previously, attribut'.es 9f objects, and even .the existence of
objects, may be viewed as covert. information channels. In appiications where
this is import.ant, t.ype informat.ion shoul~tll()t. ~• •••ilable .to an arbitrary
principal. this policy could be enforced· by non-discretionary controls. .. In
this case if a principal unauthorized to know about. the exist:enc~ ()(an Object
managed to guess the right . UID and pass 1t. es a par-.~~er to tbe.,above
interface, it. would receive an error message ot the torm: "EU.her the
specified object does not exist, or you are not allowd to know if it exists."

Page 100

~."' ~·.·,... --~.·-~~·\>"'"''·· ._, ·- ..
...; .~. ,. <{, • ~,

The second common interface returns ACL information. It is specified as

search_ACL (object_UID, supplier_UID, consumer_UID,

bit_encoding, boolean),

in which a "true" value of the boolean output parameter would indicate a

successful ACL search. Since the type of an object is implemented as the U~D

of the managing subsystem, the ETH layer can check to make sure that the

(unforgeable) value of "supplier_UID" equals the type of the object named

"object_UID". This check ensures that only th_e type manager for an object

will be able to search the corresponding ACL. If the UID of the supplier is . .,

correct, the ETH layer can invoke the "searc~,....ACL" e~try of the ACL layer,

just as the segment layer does. The ACL layer will perform the search . .
operation for any principal. Thus the check performed by the ETH layer merely

separates type managers, according to the principle of least privilege.

The third common interface obtains component. object.a. It has the form

get_components (object_UID, supplier_UID, components),

in which "components" is an out.put param&t-er. Since the component objects of

every ETO are either segments or other ETOs, the value of "components" is a

set of UIDs. As before, the ETM layer checks that t.his mapping function is

invoked by the correct type manager. Thia oheck is provided only for

self-protection purposes, so that an ETH will not erroneously request the

components of an object of another type. A_malicious ETH might guess the

components of any ETO; however t.ftose components are protected from

unauthorized access by ACLs.

Page 101

4. 12 Support of the Extended ~ Manastr Layer la ~ Hil L.axer

Some mechanism within or below the ETH layer must. suppo'rt. the mappings

from object name to type, ACL, and represent.at.ion intormat.ion. The ACL

information for ETOs is supplied by the ACL layer which, in turn, obtains it

from the map layer. Type and component information for ETOs is supplied by

t.he map layer .

The map layer can treat the ETOs and associated attributes as a set of

objects wit.h property lists. The Map itself will thus contain entries not
. ' :.. ~

only for segment objects, but. for object.a of every type. Each entry in the
,

Map must then contain type information, in addition to the ACL and

representation information previously specified. For any object, the map

layer can return type, ACL, and representation properties. The revised format

of a Map entry is shown in Figure 4-5.

UIO

type

ACL

l representation
I
..... ______ _

Figure 4-5

Revised Format of a Hap Entry

Page 102

For all objects, the "UID" field contains a system-wide unique identifier.

For segment objects, the value of the "type" field is some flag indicating

that the object is a segment, and the value of the "representation" field is

the home name of the home containing the underlying LB table. For extended

type objects, the "type" field contains the UID of the principal that is the

type manager of the object, and the "representation" field contains the UID of

some other object that serves as the representation object. (The

representation object may, in turn, contain a list of UIDs of additional

representation objects.)

The contents of the "ACL" field may take two forms. If the object is not

a component of some other object, then the ACL field consists of the home name

of the home containing the LB table for the ACL object. Otherwise, if the

object is not a component of some other object, then the ACL field contains a

degenerate ACL. The degenerate ACL, consisting of a type manager UID and mode

bits, is sufficient in this case, as was pointed out in chapter II. In

contrast to an ordinary ACL, it can be searched faster and requires no

underlying potentially large representation object.

To tie these ideas together we show, in Figure 4-6, typical map entries

for an ETO and a component object. Let a message queue object, "MQ_26", be

managed by the type manager "MQ_mgr". The only component object representing

MQ_26 is the segment "SEG_14". Located in the home object "home_43" is the LB

table for the LB that contains the (non-degenerate) ACL for MQ_26. The ACL

for SEG_14 is a degenerate ACL containing the sole principal identifier

"MQ_mgr". The LB object representing "SEG_14" is described by the LB table

located in "home_31". The Map entries for the two objects named "MQ_26" and

"SEG_ 14" are shown in Figure 4-6.

Page 103

MQ._26 -> SEG_14
I

I
MQ_mgr I segment

I
I

home_43 I MQ_mgr
I

I
SEG_14 home_31

Figure 4-6

Map Entries for an Extended Type and a Component Object

4.13 Dependencies of the Extended~ Manager Layer

The ETM layer depends on the ACL and map layers to support its mapping

functions. It depends also on the segment layer (or possibly the large block

layer) to support its addressing environment.

A role of the ETM layer is to subdivide the set of all objects into

types. Thus, it must associate types with objects. Based on type

information, it makes ACL and component information available only to the

appropriate type manager. If the underlying ACL and map layers incorrectly

map an object name into an object attribute, the ETM layer cannot meet its

specifications. It thus depends strongly on the ACL and map layers.

The ETM layer may depend on either the LB or segment layers to support

its addressing environment. Since the ETM layer is not necessary for the

Page 104

implementation of segment objects, it could execute in a segmented addressing

environment. In this case it would be dependent on the segment layer. (1) An

alternative implementation is that the ETM layer execute in an LB space. This

suggestion is based upon the observation that since much of the functionality

of the ETM layer is already provided by the map layer, the ETM layer could be

implemented as an upper sublayer within the map layer and thereby execute in

the same LB space. Given this alternative, the ETM layer would depend on the

LB layer.

4. 14 Representation 91. .m Autgority Hierarchy

The purpose of this section is to suggest how a itimple· aut·hority

hierarchy, as specified in ohapter II, might be implement.ad in a way that does

not complicate the VM structure we have described so far. .In chapter II we

indicated that a special class of protected subsystems·, ealled &f-fices, can

implement administrative control over access control lists. We can consider

each office to be the consumer of a set of ACL ob~ects.

The kinds of operations that an office performs on an ACL are to display

and update the local authority structure represented in the ACL. The

principal identifier (Le. a UID) of the controlling office of an ACL is

contained in the ACL. A suggested ACL format. is shown in, Figure 4-7. The

object-specific rights are in region 1 of the .ACL. "'Fop e_x~ple, in a segment

ACt., rights for read, write, and execute would_ ~ppear in this region. The

ACL-specific rights, display and update, appe~r in re~;~n 2. One

interpretation of these rights is that a principal with display rights can
\ ·, ·, . ~ '• .

(1) Certainly, layers above the ETH layer must execute in a segmented
environment since they may be provided by arbitrary users.

Page 105

display the contents of all three regions, whereas a principal with update

rights can change entries only in region 1. A principal at.tempting to perform

some operation on the associated object will succeed only if it is named in

region 1. Only the principal appearing in region 3, namely the controlling

office, can update entries in region 2. The contents of region 3 cannot be

changed.

REGION 1
I
I

I <---- objeot-Sl)«c1t1c ri&hts
I ------·

REGION 2 <---- ACL-speoitio righta

REGION 3 <---- office name

Figure 4-7

Contents of an Access COntroi List

In this implementation of an authority hierarchy, the ACL layer is the

type manager for all ACL objects. The implementation details of ACLs are the

sole responsibility of the ACL layer. However, the ACL layer will carry out

the policy embedded in the controlling office of an ACL. the office, in some

unspecified way, can determine that a display or update operation should take

place, and invoke the ACL layer to effect it.

Page 106

'

"~.·-:'>-i~.' , ~"'4:J;~~'t>~~~<·llo':'!:·' ... ·'·' ,, ;~·"'~_,
: ~ "-· :r . •'

4.15 Directories.!§. Extendeg Ob1ect§

We have shown how access cqntrol lists can be incorporated, as distinct

objects, into a VM structure that is ctia.racterizect by ') a sma.ll number of

intermodule dependencies, as well as 2) economy of mechanism. In this section

we sketch how direct.cries may be i,mplement.ed as ext4:mded type objects 1 while

still preserving these two characteristics of the YM str.4?ture.

As Redell [Redell 74) points out,. direot.ories are typically implemented as

ETOs in capability-based systems. However, ip the. A~~-p~sed Multics system,

directories are base level objects t~at conta;Ln physical ~escriptors,.as ,w,ell

as ACLs, for other objects. Refere-0ces to ~ultics objec,t=5, me~iated by ACLs,

necessarily involve the directory l~yer. In .a.ddit!on, r,eferences to directory
' ~ . ~ ' ' ~ , .: . . ; . '

objects themselves are mediated by ACLs. The Multics. _<;firectory and ACL

mechanisms are mutually dependent. In the case st~dy VM, we break this

dependency by implementing dir~ctor.ies as ETOs, with ACL obJects implementeq

in a lower layer. The ETM for directory obje9ts, the, ,siJ,.rectori la:ver, depends

(indirectly through the ETM layer) on the A.CL layer, b~t not vice-versa.

As indic'ated in chapter II, directory objects associate alpJlanwneric

names with object UIDs. Like all ETO~, directories hay~ ACLs, The operations

t.hat appear in directory ACLs inc.l.ude "append", "displiay", "search~, and

"delete". Directory objects are implemented. in terms of s.egment objects.

Since directories are implement;ed in terJllS of se~~nt:;s, the directory

layer depends on the segment layer. Another reason for t_qis depend.tf~ce is

that the directory layer -- a true extended type mana~er must ex~c.ute in a

segmented addressing environment.

Of greater interest are possible dependencies of lpwe~ VM layers on the

directory layer. The correct operation of each individ.IJ.al layer up to and,

Page 107

including the ETM layer is independent of the correct. operation of the

directory layer, since no lower layer -invokes the direct.ory layer. For

example, neither the segment layer nor t.tie ACL layer depends on the directory

layer.

The correct operation of the directory layer is nonetheless critical for

carrying out int.ended naming and protect.ion policies. The directory layer is

responsible for mapping user-readable nu.a into U!Ds. Consequent.ly incorrect

operation of this layer may cause a coriswaer to read the wrong segment, or t.o

update the ACL on the wrong message queue. If the directory layer associates

names incorrectly, the lower layers that ·deal with objects named by UID will

still function correctly; however the intende4 reqaest of some higher layer

will not. have been carried out.. It should be eaphaaized that there is no

difference bet.ween· ACL-based syst.ems and capab11Uy-based systems in this

regard: directories in capability-based syst.81ls, such as t.he SRI and Hydra

systems, are used to associate names wUh oa.pabilltiea and malfunction of this

association may violate the naming intentions of a user.

4.16 Suparv

In contrast to the VM layers considered in the previous chapter, the

higher VM layers considered here carry out mapping functions from object. names

to object attributes. The challenge in this chapter is to 'describe a modular

structure that both exhibit.a f'ew int.ermodule dej>endencies and also minimizes

costly duplication or t.he mapping mechanism. To elillinate duplicate mapping

mechanisms, a greatest common mechanism _..;, the map layer -- is included in

this VM subsystem.

The intermodule dependencies in the higher VM layers form a direct.ed

acyclic graph, as sho'Wn in Figure 4-8. To achieve this structure, we have

Page 108

segment
layer

diree!tory
layer

extended
type

manager
layer

\
\
\

---"' --._--._ access --- _.- - /
""' --__ control - / I

I
\
\
\
\
\

.........._ list ~ /
.........._ layer /

large
block
layer

......____ /

............. //
............. /

............. /
/............ .-'-<

/ -----~-.::: "-.. ""'
/ --- "

/ --- ""' / ,....- '
/ _..... '

Figure 4-8

Dependencies of the Higher VM Layers

Page 109

map
layer

I
I

I
I

I

relied on the sandwiching technique, and, more importantly, on the LISP notion

of a property list. The applications of t.he aandwicning technique described

here are effect.ive, but seem to be ad hoc. I~ oontrast, the use of the

property list notion seems t,o be a more gener•llY applicable technique for

eliminating potential circular dependencies.

Implementing ACLs as large block objects, rather than segments, .:is an

example of sandwiching. Large block objects are an appropriat.e representation

object since they are potentially large, but do not have ACLs as segments do.

Maintaining the physical attributes of seaaent objects in tbe Map,. rattler than

in some higher-level directory object, i• anot.her e•aaple of sandwiching. The

functioning of the Map, unlike the f~U.9ning of direct.ory objects, does not

depend upon correct behavior of tbe se~t- layer~

In this chapter we have shown now the map- layer, by treating the

attributes of higher-level ot?Ject.s as elements of a· propert.y list, can avoid a

strong dependence on the type managers for aueh objects. /lhis design

principle is open-ended: the map layer cu associate Object.a and properties,

for- an arbitrary collection of type managers.

Page 110

~ . -·

Chapter V

Conclusions and Suggestions for Further Research

5.1 Introduction

The purpose of this thesis has been to present techniques for

understanding the structure of computer operating sys~ems. Techniques for

achieving modular structure, such as layering and Qbjeat-orientation, were

used in this thesis. The research reported here, ho.wever, goes beyond the u.se

of such techniques.

One reason that we strive to a,chieve a cle,~, 11Qd;ular st.ruct.1.We of a

system is to make the system as a whole mor.e a.J!ler;t.able to verification• T.o

verify the correct operation of a module, it is neces~y. to oone-ider

intermodule dependencies. This thesis not opl¥. auggeats .. Jlow to achieve

modular structure, but al~o presents a point of view that provides for

straightforward identification of intermodule dependencies in the context of a

case study subsystem. Using this point of view, we can determine which

dependencies are necessary and which are superfluous.

The framework presented in this thesis for understanding intermodule

dependencies is derived from the LISP world of atomic objects. Atomic objects

in the LISP world have bindings and property lists. A binding, in turn, is an

atomic object, and each element of a property list is an atomic object. Every

atomic object is characterized by its binding and property list. A collection

of such objects can serve as a for>mal model for describing the structure of

complex systems. In this object world there is a strong notion of modularity:

the behavior of any one object can be characterized completely without any

Page 111

knowledge of the objects designated by the property list or by the binding.

In this thesis, we have considered a virtual memory subsystem to which this

notion of modularity is applicable. The VM subsystem has not been

implemented; however, it is patterned after virtual memory subsystems of

several contemporary, general-purpose operating systems. There are several

reasons for the choice of a VM subsystem as the case study. First, it

provides a challenge: the actual VM subsystems that serve as a basis for the

case study VM are quite complex. Second, the LISP notion of modularity is

well-suited to a case study subsystem that includes memory multiplexing

facilities and extended type managers. In this thesis, we model memory

multiplexing simply as the manipulation of bindings among objects, and we

model the mapping from an extended object to a component simply as a list of

properties of the extended object name.

5.2 Results

We have shown how the notion of binding and the notion of property list

may be used to make intermodule dependencies explicit. Application of the

binding notion was considered in chapter III, and application of property

lists was considered in chapter IV.

Chapter III presented the point of view that the structure of a system

can be simplified if the relations between objects are represented as

bindings. If system designers exploit this binding notion, they should be

able to identify and eliminate unnecessary dependencies. Since the memory

multiplexing model presented in chapter III is a model of objects related by

bindings, the multiplexing function should be able to be provided by a

collection of modules that exhibit few interdependencies. In chapter III we

Page 112

.. •,

-' ' -.. ;~

pointed out that not one, but rather several, of the layers of the case study

VM carry out a multiplexing function. Higher layers multiplex abstract

objects supplied by lower layers. Thus the structuring advantages provided by

the memory multiplexing model can be applied to several of the VM layers.

Additionally, much of the multiplexing mechanism serves as a greatest common

mechanism for these VM layers.

Chapter IV focused on the higher VM layers, in which mapping from

extended objects to component objects, rather than memory multiplexing, is a
'

common function. We stressed that the subsystem that actually implements such

a mapping need not depend upon the subsystems that manage either the extended

object or the component objects. It is sufficient for one to regard the

component objects (or any attributes that may be just a part of an object) as

properties of the object name. Since several of the VH layers described in

chapter IV require a mechan18' for mapping objects to attributes, a particular
,If. ""'

subsystem called the map layer can perform the mapping, serving as a greatest

common mechanism.

5. 3 Cg11parison .Q!. Ob,1egt iindtD&! s Ppourt;r. L11t1.

The binding and property 11.at aotions o~reaPond to two somewhat

different points of view about iate~pretat..lon. 00!> ob§eot1 names ·1n

object-oriented sy.st;.ems. To see this, we ~ider :Se'feral scenarios.

In an object-oriented system it is reasonable to expect that databases

contain descriptors, or n•ea, or objects. In pat'.ticular, the name ·Of an

object managed by type raanager A DlBY .exis.t in·a· database of type manager B.

If B relies on the validity of this f!8.11&8, tn.n it will ~abJ.iY depend on A

since A could inval !date the name. If A re:l:ies Gn tbe -val i'dit,- of the name,

Page 113

then it will probably depend on B since B manages the database. If both the

above conditions exist, then there is a potential for a circular dependency

between A and B. There are three other cases, which, by themselves, will not

lead to a circular dependency.

First, type manager A may not rely on the validity of the name (and

moreover may not know of its existence). In this case A cannot depend on B,

assuming there are no other causes for a dependency. This case is typical in

computer software systems; for example, the manager of an object depends on

the managers of the representation objects.

Second, type manager B may not rely on the validity of the name. In this

case, B is maintaining a property list for type manager A. Accordingly type

manager B should not depend on type manager A. This case is probably

encountered less frequently than the preceding one. A facility for storing

and forwarding (but not interpreting) messages is an example of this case. A

message is simply a property of a message container name.

Third, neither type manager may rely on the validity of the name. This

case corresponds to the situation in which type manager B maintains a binding

to an object of type A. Accordingly, there need not be a dependency in either

direction. Instances of this case probably occur infrequently in operating

systems. The behavior of the object managers of the memory multiplexing model

corresponds to this case.

The latter two cases are those in which the maintainer of an object

descriptor need not depend on the semantics of the object. This independence

characteristic also applies to object managers in the LISP world of atomic

objects. Although a situation in which one subsystem maintains a property

list that is used by another corresponds only to "one-way" independence, it

Page 114

should be able to be exploited frequent!~. A situation in which a subsystem

maintains bindings to objects corresponds to a "two-way" independence, but it

probably arises only infrequently.

5.4 Remaining·rroblems JDS1. Future Research D1nctigM

The goal of thi-s research has been t'O suggest.~·~a new poi-nt of view. that

may be applied to the structuring of large sot'bW&reeySteme;. In this section

we raise some questions about the assumpticins 'underi1!111 the research:· and

about the generality ot the results~ In 'ilddlt:lon we su8ieat «:Ureotlons for

future research that may answer'some of the'se'questtons.

The object-oriented approach taken in ttlis- thesle has 'allowed· us to take

a strict view of modularity;· It has the cfraWback; fu.sw..rer- 'that it is

difficult to appiy in some cases. Operations tbat"'afflct ··lll<>re than one

object, for example, cannot be modelled convenfenfty !. · !n chapter Ill we

defined the fetch and stqre operat:tons 'to a'pply 'jointly. 'to hOllle . and . frame

objects, since they affect the data bindings or both objects. Consequently

the home and frame objects cartnot W ·aumaged''by dfisbinot type ·Mllaagers.

Either these two types mlist be managed by a: single, l&rger type •manager ctr

more than one subsystem must serve as a type•0 11m1agflti' tor a·'gi'fen object type.

Neither alternative is desirable: in the first case,lt may be hard to show

that unexpected interactions between the two obj~ot'-tJJtis .. cilrirmt exi'.St; i:n

the second case, a subsystem that depend's on"one ot the contending type;

managers probably must ae[>end on the oth~r as wefL -· W~ o'an conclude that the

kind of modularity imposed by an object-oriented v1&w'li8' not always be

appropriate for software systems-. Further inquiry· 'into ;tbe · riii'.ture of

modularity in large software systems fs needed.

Page 115

~--------------- ---~

The structuring methods of this thesis have been applied to a case study

virtual memory subsystem. Relevant questions about the applicability of these

methods include 1) whether an implemented VM subsystem could actually be

structured in this way, and 2) whether these methods have a wider range of

applicability such as applicability to a file manager node in a distributed

system or to the input/output facilities of a computer system. In chapter IV

it was argued that a VM design, structured according to these methods, should

be able to be carried through to an implementation without sacrificing the

structure. The second question, however, has not been considered in this

thesis, and is still an open research issue.

Although the notion of correct module operation used in this thesis is

informal, it includes some rather strong_ assumptions. As a result, in several

cases one module was declared to be dependent on another even though, in a

narrower sense, the former could operate correctly in spite of failures of the

latter.

A first approach to specifying correct operation, which we call the

"accumulated semantics" approach, states that in order for a subsystem to be

correct, not only must it manipulate some set of objects as specified, but all

the type managers for objects in that set must (recursively) do so. The

accumulated semantics approach focuses on the correct operation of an

interface, rather than of any single module.

A second approach to specifying correct operation, which we call the

"isolated semantics" approach, states that in order for a subsystem to be

correct, it is necessary only that it manipulate some set of objects as

specified. Whether the objects in the set behave according to their

specification is irrelevant. It is assumed that the subsystem can tolerate

Page 116

errant behavior of any of the corresponding type managers. Even with this

approach, though, there can exist interfaces for which correct operation

depends on the correct operation of a collection of subsystems.

At some points in this thesis we have favored the accumulated semantics

approach since it is stronger and more generally applicable. None:theless, the

isolated semantics approach appears ·to be·· a: uae:tul one. For example,

subsystems like the block and frame sublayers, which are independent in this

narrower sense, can be implemented and debugged separately. In addition, it

should be easier to locate an errant module in a collection of modules that is

independent in the isolated sense. Further reaeal'"ch into the nature of 'the

correct operation of modular systems can help us'better apply a traditionally

abstract notion to the engineering of' complex sottware systems.

The goal of this thesis has been to enhanoe our.understanding of modular

structure and dependency in oomputer software aystems. While we feel ·that

these research results are applicable to a variety of such systems, further

research will be required to determine the scope or these ~sults. We should

develop the breadth and depth of our knowledge by improving our models of

modularity and dependency. Research on these topics·sfiould lead to better

methodologies for the desi~n of correct, reliable systems; it should help

offset the rising cost or software production; and it should improve our

ability to predict the performance of large systems.

Page 117

BIBLIOGRAPHY

[Bell74] o. E. Bell, L. J. ~ Padula, "Sec.we ,Coaputer sr.stM~u Mathematical
Foundations and Model", nte MITRE Corl>oratton, Bedford, Mass., MT4-244
(October 1974).

[Benjamin76] A. J, Benjamin, "1-proviog lA.f~ation S~~--~ ~li•l;>ility Us~ng
a Data Network", M.I.T. Laboratory tor Computer Science Technical Memo
TM-78 (October 1976).

[Bensoussan72] A. Bensol18san, c. T. Cling8'), i! c. ~J.:.•Yr "~~ Mult:ies Virtual
He1110ry: Concepts and Design•, COlllllunioatione of the ACM 15, 5 (May
1972), pp, 308-318.

[Bobrow72] D. G. Bobrow, J. D! BW!chfiel, :D. L. rl>tl¥t R. s. Tomlinson,
"TENEX, a Paged Time Sharing Systea tor tbe ppp.10•, Co111Dunications of
the ACM 15, 3 (Maro.b 1972) ,. pp •. 135 ... 1113._ .

[Bratt75] R. G. Bratt., "Mini~izing the JlaltingJ"ao~lJ\i,es ~q~iriM fcro~otion
in a Computing Utilityu, H.I.T. Laborator1 tor COmputer Science Technical
Report TR .. 156 (Saptembfr 1975h. ,. ,

[Cohen75] E. Collen, D. Jefferson, "Prote.ctio.n .~n ~htt:HW• Operatig Sy-at.m",
Proceedings of the Fifth Symposium on Operating Systems Principles, ACM
Operating Syste1N Revie~ g, .5 (IOY-..-1~1~),, ..,, PU-160.

[Dennis65] J. B. Qennia, ~Sepentat,icm and ~- ~.a,$.an,of ,H\ll..tiprogr..-e<I
Computer Systems", Journal of the ACM 12, 4 (OCtober 1965), pp. 589-602.

0 ' •• •

[Dennis66] J. B. Dennis, E. G. Van Horn, "Programmina Semantics for
Mul t iprograued Coap.uta.tions" , COllPllWl ~~1~ of t.~ , ACM , 9 , 3 (March
1966), pp. 143-155. .

[Dijkstra68] E.W. Dijkstra, "The Structure of the.fHE Multiprogramming
Systelll", Communioations o.f tbe ACM; H, § <•1 1'9-J) ,, pp. 341 ... 346.

[England72] D. M. England, . "Arcbitectur,_1 Fe~t~Pc~f.,~ystem 2~()~, Infotech
State of the Art Report 14 (Operating Sys"11ae), Infoteoh Information
Limited, Maidenhead, Berkshire, England (1972), pp, 395-428.

[Fabry74] R. S. Fabry, "Capability-Based Addressing•, Communications of the
ACM 17, 7 (July 1974), pp. 403-412.

[Floyd67] R. W. Floyd, "Assigning Meanings to Prograas", Proceedings of
Symposium in Applied Mathematics, Volume 19, (ed. J. T. Schwartz)
American Mathematical Society, Providence, R. I. (1967), pp. 19-32.

Page 118

[Habermann76] A. N. Habermann, L. Flon, L. Coopride~, ".HQ4ularization and
l;lierarchy in $, Family of Operating .systeraa", Coaunicat.ions Qf t.he ACM
19, 5 (May, 1976), pp. 266-27.2. '

[Hoare69] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming",
Communications of the ACM 12, .10 (Oc~Qber 1969), AP· 576-SSO.

[Huber76] A. R. Huber, "A Multi-Process Design of a Paging System", M.I.T.
Laboratory for Computer Scienae Technical Report Ti-17J (December 1976).

[IBM73] International Business MaQ'h;tnes Corp0Patt0n, "S,stem./370 Princ·iples of
Operation", IBM Corporation Systems Reference Library GA22-7000-3 (1973).

• < • -

[Janson76] P. A. Jarison, "Using Type EXtension to Orgaqize Virtual ~ory
Mechanisms", M.I.T. Laboratory tor Computer Science Technical Report
TR-167 (September 1976).

[Jones73] A. K. Jones, "Protection ·1n Programmed Systems", Ph.D. Thesis,
Department of Computer Science, Carneg1e .. HeUon Unj,versity (June 1973). . ' . . .,,_,,.

'
[Jones75] A. K. Jones, w. A., Wt.Jlf, "Toward8. t~. Des~ :?t Secure Systems",

Software Practice and Experience 5, 4 (October~~oember 1975), pp.
321-336 .•

[Lampson69] B. w. Lampson, "Dynamic Protection Structures", AFIPS Fall Joint
Computer Conference Proceedings, Volume 35, AFIPS Press, Montvale, N. J.
(1969), pp~ 27-38~

[Lampson73] B. W~ Lampson, '"A Note on the Confinement P.roblem", Communications
of the ACM 16, 10 (October 1973), pp. 613-615. . ·

[Lampson76] B. W. Lampson, ii .. E. siurgis, "ReflectioJl,#1 ,on an Operating System
Design", Communications of the ACM 19, 5 (Hay 1976), pp. 251-265.

[Lett68] A. s. Lett, w. L. Konigsford, "TS~/36.0:. A .. TiDJS~a~ec,t Operating
System", AFIPS Fall Joint Co11Puter Conference.Prp~e'1incs. Volume 33,
AFIPS Press, Montvale, N. J. (1968), 'pp. 15...;28. · · · · "

[Liskov72] B. H. Liskov, "The Design of the. Venus O~rating .System",
Communications of the ACM 15, 3 (March 1972), pp. 144-149.

[Mc Carthy62] J. Mc Car thy,. P. W. Abrahams , D . ;J.. M~ard.s, T. P. Hart , M. I.
Levin, "LISP 1.5 Programmers Manual", second edition, The M~I.T. Press,
Cambridge, Mas~. (1962).

[Montgomery76] w. A. Montgomery, ftA Secure and Flexible Model of Process
Initifl.tion for a Computer Utility", M. I.l' .. LaboratOl'Y for Computer
Science Technical 'RePQrt TR--163 (June 1976). ··

[ti.lltics74] --- "Introduction to Multics", M.I.T. Laboratory for Computer
Science Technical Report TR-123 (February 1974).

Page 119

[Nakazawa72] K. Nakazawa, K. Murata, IC. ·Ishihara, H. twak11m1, ij. Horikostli, H.
Nishino, K. Noda, •The Development of t:t'le ·High $peed National Project
Computer System", First USA-Japan Coaput.er" Conrerenoe Proc .. dings,
Hitachi Printing Co., Tokyo, Japan {1972), pp. 173 181.

[Naur66] P. Naur, "Proof of Algorithms by ·General Sna]>shot.ait, BIT 6, 4 (1966),
pp. 310-316.

[Neumann75) P. G. Heumann, L. Robinson, IC. N. Levitt, ll. S. Boyer, A. R.
Saxena, "A Provably Secure Operating Syst•11", Stanford Research
Institute, Menlo Park, Calif. (June· ,197'L · ·

[Organick72) E. I. Organick, "The Multics. System: l.l} Jxamination of its
Structure" , ·The H. I. T. Press, Canibr14ge, Mass. (197;2) •

[Parnas72] D. L. Parnas, "A Technique for Software Module Specification with ·
Examples", Communications of the ACM 15, 5. (Hay. 1972), pp. 330-336.

[Parnas76] D. L. Parnas, "Some Hypotnese·s Abbut the •uaes" Hierarchy for
Operating Systems", Resear.ch Jieport BS l 76/1, Teqhnisa,he Hoohacbul.e
Darmstadt, Fachbereiob IntorlaattlC" (Karch 1°9T6J. · · .

' '!. • ' -.

[Popek74] G. J. Pepek, "A Principle of Kernel Design", AFIPS National Computer
Conference Proceedings, Volume 43, AFIP,$ Preu, Montv-1,e, N •. J. (.1974),
PP. 977 ... 978. . . . ' .

[Radin76] G. Radin, P. R. Schneider, "An Architecture for an _Extended Machine
With Protected Addressing", IBM Po\.lghkeep,.~e l..a.boratory, tephnioal Re.pQrt
TR 00.2757 (May 1976).

[Redell74] D. D. Redell, "Naming and Proteotipn in Ext~nsible Operatiqg
Systems", M. I. T. Laboratory for Compu.ter SC14mQe Teohpi9aJ. Report TR-140
(November 1974) •

[Reed76] D. P. R~ed, "Processor Multiplerin8 in a L•yered Oper~ting System",
M. I. T. Laboratory t'or Computer ScienQe. t•o.hnioal Rt.Port n..;16~ (JUne
1976). t • •. _ ••

[Robinson75] L. Robinson, K. N. Levitt, P. G~ N'9Utllann, A. R. Saxena, "On
Attaining Reliable Software for a Secure ()pe~il:ting System", Proceedings
of the International Conference on Reli_able Sortwar•, AC!i SlGPl..AN Notices
10, 6 (June 1975), pp. 267-284. · , .. · ' '..· ._ .. ·· . ·· . ·

[Rotenberg74] L. J. Rotenberg, "Making Computers Keep Secretstt, M.I.T.
Laboratory for Computer Sc.tence Technical. Rep9r_~ 'f~,"':'J 15 (February 1974).

[Saltzer74 l J, H. Saltzer, "Protection and t~e Cont.r·o1 or Informat.ion Sharing
in Multics", Communications of the ACM 17, 7 (JUiy 197.4), pp. 388-402.

Page 120

[Saltzer75] J. H. Saltzer, H. D. Schroeder, "The Protection of Information in
Computer Systems", Proceedings of the IEEE 63, 9 (September 1975), pp.
1278-1308.

[Schroeder72] H. D. Schroeder, "Cooperation of Mutually Suspicious Subsystems
in a Computer Utility", M.I.T. Laboratory for Computer Science T~chnical
Report TR-104 (September 1972).

[Schroeder75] M. D. Schroeder, "F.ngineering a Security Kernel for Multics",
Proceedings of the Fifth Symposium on Operating Systems Principles, ACM
Operating Systems Review 9, 5 (November 1975), pp. 25-32. '

[Stern74] J. A. Stern, "Backup and Recovery of On-Line Information in'a
Computer Utility", H.I.T. Laboratory for Computer Science Technical
Report TR-116 (January 1974).

[Sturgis74] H. E. Sturgis, "A Postmortem for a Time Sharing System", Xerox
Palo Alto Research Center, Palo Alto, Calif., CSL 74-1 (January 1974).

[Whitmore73] J. C. Whitmore, A. Bensoussan, P. A. Green, D. H. Hunt, A.
Kobziar, J. A. Stern, "Design for Multics Security F.nhancements"; United
States Air Force Electronic Systems Division, Technical Report
ESD-TR-74-176 (December.1973).

[Wulf74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, c. Pierson, F.
Pollack, "HYDRA: The Kernel of a Multiprocessor Operating System",
Communications of the ACM 17, 6 (June 1974), pp. 337-345.

Page 121

