
tt MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

(formerly Project MAC)

MIT/LCS/TR-173

COORDINATION OF PARALLEL .-PROCESSES ·.
IN THE ACTOR MODEL OF COMPUTATION

Nathan Goodman

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSEITS 02139

This blank page was inserted to presenie pagination.

CAMBRIDGE

MIT/LCS/TR-173

COORDINATION OF PARALLEL PROCESSES IN THE ACTOR
MODEL OF COMPUTATION

Nathan Goodman

December 1976

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

(formerly Project MAC)

MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

Coordination of Parallel Processes in the Actor
Model of Computation

by

Nathan Goodman

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 1976, in ,partial fulfillment of the requirements for the Degree
of Master of Science. ·

ABSTRACT

Two algorithms for the mutual exclusion problem are described and
proven to operate correctly. The algorithms are unique in that they use
very simple synchronization primitives yet are fa1r and retain their
fairness even if the number of parallel processes in the computer system
increases unboundedly over time. One of the algorithms uses simple cells
of read/write storage as ttte primitive; the algorithm is similar to the
classic algorithms for this problem proposed by Dijkstra and Knuth, but is
generalized to handle an arbitrary number of processes. The second
algorithm uses extended cells of storage that model read/modify/write
(e.g. test-and-set) instructions. While it is well known how to use read/
modify/write instructions to achieve unfair mutual exclusion, their use in
a fair algorithm is novel.

The results prove that cells of read/write storage are sufficiently
powerful primitives to achieve coordination of parallel processes. There
is no theoretical necessity for a model of computation to include more
sophisticated synchronization primitives such as semaphores and serializers.
But while cells are sufficient, the algorithms are very inefficient; more
sophisticated primitives are desirable for that reason.

Thesis Supervisor: Carl E. Hewitt

Title: Associate Professor of Electrical Engineering

This empty page was substih1ted for a
blank page in the original document.

·-- -~. -----~.-- ---,-~-

'

TABLE OF CONTENTS

1. Introduction .. Page 2

·1.1 Basic Elements .••.••..••..••.••.•••.•.•••••.•. :.......... " ·4

2. Busywaiting Synchronization Algorithm Using Cel 1 s ••••.••• ~. " . 18.

2.1 The array of cells solution ••..••.•.••••••••••••••••.. ~~- " 19

2.2 Formal proof of the solution • • • • • • . • • • • • . • . • • • • • • . • • . • . • • " 38 ·

2.2. l Handshaking between proces·ses •.•.••.•.•.••..• .'......... " · 42

2.2.2 Refonnulatfbn of the algorithm using handshakes •..•.•. · 11 56

2.2.3 Proving the theorem using handshakes • • • . • .. • • •t 72
' -

3. Busywaiting Synchronization Algorithms Using Extended Cells u 96

4. Cone 1 us ion•...•....•...••. · .. ' · .••.•••... ·• . • • " 11'2

Bibliography · · · · · "· · · ·" "· " 1·15

-2-

l. Introduction

In this thesis we present two unique algorithms that solve the mutual

exclusion problem and we prove that the algorithms operate correctly. The

mutual exclusion problem is typified by a situation in which there is SOllle

critical resource that will not work correctly if it is accessed simultaneously

· by multiple processes. For example tha cri~~c•l reSAW'ce mi;ght be a

data-base; if two processes were to modify t~ dAt:a7base at the same time the
.

resulting infonnation could very well be inton.sis.tent. The. function Qf a
•: ' ~

mutual .exclusion algorithm is to coordin~te .t~e .. sev~r~l professes i,nvolved

so that no two of them wi 11 ever access the resource c9n~µ.rrently. Al so • . ·;, ·, .

mutual exclusion algorithms are usually required ~q be fair meaning that

a 11 processes that try to access. the re$ot.tr~ w.ilil be all01'!ed to do so
< - • • - '· '"·' ·, ~) f , '; . "

eventually. That is, the algorithm must not be able to lock out some or

all of the processes indefinitely. Both algorithms that we present are . .

fair.

Mutual exclusion algorithms block the attempts of processes to enter

the critical resource while the resource is being referenced by a previous

process. The algorithms that we present here are called busywaiting

algorithms. This means that when some process that wishes to enter the·

critical resource is blocked -- i.e. when the process must be prevented

from proceeding because the resource is busy -- the process waits in a loop

testing the value of some memory location. This is in contrast to devices

-3-

such as semaphores [Dijkstra, 1968] or serializers [Hewitt,.1975] that block

processes by suppending their activation.

The first algorithm that we present uses simple cells of read/write

memory as its synchronization primitive. The only instructions that these

·cells are assumed to implement are update instructions and read-contents

instructions. The algorithm is modelled after the classical ones by

Dijkstra [Dijkstra, 1965) and t<nuth [Knutb, 1966] in that:i·t requires an

array of mem6ry cells proportional in. size to· the number of processes i:n the

system. Unlike the previous work, our algorittn gerte.ralizes so as to apply

to systens where th~ mnber of processes may grow unf>Oundedly over time.

We prove the corre<:tness of our algorithm using the actor model of

computation~

The second mutual exclusion algorithm tt.at we·study uses an exteftded

type of cell as the synchronization primitive; the ceHs ·ar-e utended so as

to model read/modify/write type instructions that are cOlllOOnplace in real

computers. It is well known how to implement uftfair mutual exclusion with

read/modify/write instructions: this is the standard test-and•set loop on

a binary lock variable. We show how the unfllir algorithm call be extended

to be fair and how the algorittvn may be used in systetas with an increasing·

number of processes.

We shall, in the rest of the Introduction, review the ba$1c elements

of the actor model. That section primarily is intended to introduce the

syntax and basic definitions we will use in the thesis, and to amplify those

elements of the model that are most relevant here.

-4-

Chapter 2 presents the cell-based algorithm and'~ formal proof of its

correctness. Chapter 3 studies the extended-c~il soiuti~n and informally

proves that it works properly.

1.1 Basic Elements

The actw- QtOdel of coltlputation as u•i'• ·1:41$ •sis. ori,ginated with

Carl Hewitt [Hewitt, 1973:}; many th.eor'let·ka:l 4~ ~· ~ model were

extensively Qeveloped .9y4r~ Gre-1f iA,~ nce.i4'1-.rUtion .[&".eif, 1915].

Every computatiooa l. eot.i.ty in an ~ '.S,._·ii&: aft ~tor. Taere. is

no distinction 4rawn be.tween data and t>~res ~· botb :a.re aotors.

Information is passed between actors by an operation called messate tl'.aDS:­

miss ion, which is.ratber t:nalogous to af'91.111Mit:•S«lttg·ane•ret:iuntin9·in

convention.al systems. I.t should be note•:.:tt.t. ~.-... transmission" .does

not ref-er to any sOJ't of inte.r~ess, ~~iett; ·1'M\em! t,s ORl:y one

locus of ·C011t~l tn A message. transmi:tsion _. ftti.~~~·•i•h ttle message form

sour~ to target. ··A$ acto,rs Me .t\he ·®1'-Y·•ttt.145 :}U\ ilft ,actor ;System., '-and

sirn;e they i'frteract s1>'1ely by means of me$Slse 't~smi&Si.Gns, ther~fore

message traosntisS'ions are the only acti:vi•tie's 1lftat,can :1:ak•Lfll&ce itn . .an ·.

actor system. Message transmissions are called events.

An actor is defined i11 t-erms . o,f :tlite messages 'bt: aaoepts and the

messages it §enerates in. response. MoStt a¢torsaQQePt only a n&rrow class

of messages: the addition actor. for exanJ11lt:., a.ccef>;l;s :mes~ge-.s contai.niag

a sequence of numbers only; a. list acto,r ~c~pts nu~$:>ages wch as 'first' 9

------ ·-----------------------

-5-

'rest', and 'cons'; and so forth. If an actor receives a message it

doesn't like, it is expected to send an error-message to a special actor

called the complaints department. We shan't deal with errors or complaints

in any detail in this thesis.

When an actor receives an acceptable message ft may generate a very

large number of events as a result of this stimulus.* Usually we are not

interested in specifying all the messag~ sen,t in response; since message

transmissions are the only activities that o~cur amongst actors, a ~pecificatfon

of all messages would require specifying the entire actor down. to the level .
of primitives. Instead we just sp~cify a sub-set of the events.generated .
by the actor. The c00tnon strategy for suppressing unwanted detail is to

ignore most messa ~ transmissions, except those whese target~ are of interest.

Greif calls the set of interesting tarQE!t actors the "di.stinguished set".

Input/output specifications correspond to a distingui-Shed set containing

(l} the actor being called and (2) the actor; expected to receive the output.

A specification c1>.1c1~rned with side-effects-. ~ight have all cells be in the

* We will see later that in some sen$e th~ ac~r g~r .. tes the entire future
of the process. Here we mean the more limited set of messages obtained by
regarding the actor as analogous to a called sub-procedure.

-6-

distinguished set. And so forth.

Consider as an .example of actor specification, the addition actor.

We wish to convey that plus accepts messages containing two numbers and

returns their sum as its answer. The specification starts with the message

received by plus, and then states what messages result:

Event l: plus receives a message con.tatning nl and n2,

where nl and n2 are both numbers.

Event 2: ? reci!ives a message contai·Mng nl + n2

There is a question-mark in event 2 because we have not stated

anywhere the identity of the actor which is to receive the answer. In most

programming languages there is an imp1 ici·t control structure that governs

what happens to the results of expressions. Typkally, if an expression

like (+ 2 3) were embedded in another expression, ·e.g. (f (+ 2 3)), then the
result of {+ 2 3) is implicitly caused to be the argument to f. In the

actor model, such control structure is not impltcitly present; if one wishes

to receive an answer to a message an ~xpHcit continuation actor must be

present in the message. The activity whereby an actor "returns a value"

reduces to just another case of message transmission -- namely sending a

message containing the value to the continuation actor.

The ~ actor must be defined so as to require that a continuation

actor is present in the original message:

If there is an event in the history of the form

event 1: ~ receives a message containing n·l and n2
where nl and n2 are both numbers, and
a continuation, called cont

-7-

then there is an event of the fonn .

event 2: cont .receives a. message containing nl + n2,

This specification is at a high level .and says nothing Clbout how .21!!!
does its job. The actor may use the hardware ad.d in$truction. in SClllle .cases

and multiple precision string. addition in other ~a~e.s, or whatever. There

may be many, many events between event l and event 2, the specification

leaves all that unspecified. But if event. 1 does happen then event 2

will happen.

This latter interpretation of thf;! actor def1nftion. J$ mo~t importan-~~

The relationship between event 1 and event 2 is cal led the actor caysa1 it)', .

relationship: we say, event l causes event 2. Tbe "h9W" of this ~usality

is not specified -- merely that if event 1 ~ppens. then .. that ~auses event 2

to happen later.

The generalness of the causal 1 ink is, reflected .. :in the -fOnJl of the

event statements. Event 2 is the activity of l!J!! answer;-ing_the caller.

Intuitively this event might be described as, "plus se11ds nl+n2 to cont";

however, the way the event actually descrit:led there lsd'lf> mention of plus

at a 11. This is because plus may have deleg._ted the Job of sending the

answer to some sub-actor or a_cquaintance. In a. ,model where control is fully

nested -- e.g. in LISP -- the answer would have to be passfK! baf;k up from the

sub-procedure through ~on its way out to the original caller. However.,

in the actor model the control structure is represented explicitly in message

continuations; Rlus could very easily tell the sub~•ctor to generate the

answer and send it directly to the original .·continuation.

-8-

As it happens, this non-nesting of contro·l occurs coirinonly in actor

definitions. Strictly s·pea·ting, a sitlg'le' actor may never generate more

than one. messa9e in any given process. .Jf 'tfte· CtllllPUtation at ftand requires

that several messages be seftt -- a·s hr a ~·of sequential statements

or a nested ex-press ion -- a· whole slew Of-' sutBi.c:M•1'".Y' actors are created, one

for eactt message transmission. The ftnal l.d;()r· created Will typically

be specifi;ed to Stild tflre answer to the· ori·g1nal cailer. Nb multi-processing

is implied by this plethora of actor crea.tion;. it is mostly a device for

simplifying the forma·l notation. It etlso helTJS at,Qfd problems with the

values of lo.cal variables. Each actor- ts· borrr With the values of other

actors "frozen in" in a manner similar to the· prognnuhing language POP~2

[Bu..stalT, Callins, POf>Plestone, 1911], arid5e·tf\e'f"tis no need for such

things as stack fra.nes as forma 1 devices,. et a'l.

The only case in which the originally;~c:at·led ·a~tor iS the one that

actually sends the result back happen~ if'tfteactot- does no visible

computation. T~ actoY- c.aimot even· cfo ariy,.l"Yft'..;time argument type checking.

Such an actor must always be a primitive.; primftive~· actors; however• can 'be

of this form and actually do useful things.

Events are the basic computational Ulf.its in the actor model and we

sha 11 refer to them repeatedly. A more convenient syntax fo.r events is

desirable therefore. Events will usually: be wrftten· in the following

format:

<target receives message [in activator]*·>

*This field is optional, it will be used in multi-process cases.

,,,,. ',.
,>!~' -·,.· ,~. '•

-9-

The fonnat of a messag~ is

(mes sage:. sequence-of-arguments

(reply-to: continuation))

,,,.

For example, the event of calling plus with the arguments 2 and 3

would be written

event 1: <plus receives (message: (2 3]

(reply-to: cont)) >

and plus's response would be

event 2: < cont. receives (message·: [5]) >

As we have defi'ried them, actors are devices that map an event ·into a

sequence of events: they. map the event whe~ they are c·al led . into ;the

sequence of lle~.Si19e transmbsions they cause. Aft-~' sequence Of neats

is called a behavior. The sequence of events.caused by an actor is ·called

the actor 1 s behavior.

If an event corr~sponds to a. procedure call .. _ he~ it is. of ,the fonn

. event 1: < procedure receives (message: [:-·at'guments-.;. l

(reply.~to:. retum-pt)) >,

then it will cause many events but eventually, hopeftilly, there- will be an ·

event~

event n: < return-pt receives. {message: [--res1.1lt of procedure--])>

Of course, return-pt is itself an actor and it will map event n into some

subsequent ev~nts n+l, n+2, .•.

-10-

For example, consider the following program fragment:

factorial (5) ;

print (1 done')

The ca 11 to procedure f actori a 1 corresponds tq the event

event l: < factorial rece.tve.s (JRessage: [5]

(reply-;to: return-pt}) >.

Factorial will do many things internally, cbut assuming it is a well ~defined

function, it will evtmtually retut-n to the continuation. retu~pt. That

event would be

event n: <return-pt receives {apply:[--countdown's value..:-])>

Now, what does the actor return-pt do? factorbl·has just finished

and the next thing the program text says ,t() do ;s "pr-fot ('done'); 11
•

Furthennore; the program says to do that no matter what factorial did. The

actor return-pt must be· 4efi.ned as :follows: ,

event l: <return-pt receives?>

causes

event 2: < print receives (message: ['done']

(reply-to: retur~-pt-2))>.

The question mark in event 1 means that return-pt cares not what its input

is; it does the same thing no matter what. The continuation in event 2 must

-11-

be an actor 1ike return-pt that performs the step after print ('done'} in the

program.

Pluggfog return-pt's specification into the.program fragment yields

the following scenario:

event 1: <factorial receives (message: [5]

(reply-to: return-pt))>

event n: <return-pt receives (message: r--f~ctorial's value--])>

event n+l: <print receives (message: t•done']

(reply-to: return-pt-2))>

The dot-dot-dot after event n+l reflects the fact that program keeps on going.

Print wi 11 cause many events, eventua 1 ly return-pt-2 wi 11 receive a message

and it will cause the next step of the program to be run, etc. Io paraphrase

an old homily, event n+l is the first event of the rest of the program's life.

It seems intuitively appealing to break the behavior between events n

and n+ l. All the events between 1 and n inclusiv,e are reasonably

attributable to factorial; they may reasonably be called "Factorial's behit;Vior".

The events from n+l onward are more naturally called "the rest of the program".

This division of behavior is quite useful in many cases. It allows

us to talk of an actor's behavior, or the behavior resulting from an event,

-12-

in a compact and more or 1 es.~ precise way*. . We will use this natura 1

terminology often.

really arbitrary.

·It is important to note, though, that the division is

The events n .and n+l have no loc~ll¥ observable
' , ' • • ' • > '

characteristics that distinguish them from the events before or the events

after.

If we decide, therefore, not to break the behavior between events n

and n+l, a different interpretation emerges. The behavior resulting from

an event may be regarded as all the future behavior of the process. This
.

view interprets behaviors as more than descriptors of the past performance

of an actor system; beh~viors are also prescriptors of the future of the

system.

Almost all actors are pure in the sense that their behavior does not

vary of time. Given the same input message at two different times, the

actor will cause the same sequence of "next" events both times. If all

actors in the system were pure there could never be. any time varying behavior

in the system -- everytime the system were started up it would inevitably

produce the same answer in the same way. There is only one primitive actor

*It is quite hard to make the notjon fqrmally precise. though. What is the
resulting behavior of an event without-a continuatiOn? Even if there fs a
continuation. we have ~o assurance th~t a message wjll ever be sent to the
continuation. , , •.•

-13-

whose behavior is not fixed over time and that is the- cell of read/write
' -·------ . . .

storage.

Cells are defined to respond to two kinds of -messages: ~me RHlSsage

of the fonn {message: [1 contents? 1
] (reply-tp.:. cQnti.nuit~on)) and the other

message (message: ['update' to new-value] .. (r~l_y-tQ; tont·inuat.ion)). The

first message asks the cell for its contents anc;l the.cell responds by sending

back the value stored in the most recen.t updJtemessage. The event following

a ' contents? 1 query wi 11 a 1 ways be of the form

Ecell 's-contents: <continuatf on receives :(111e5$1Qe:[cell' s-contef,lts])>.

However the actual content of the event wi 11 vary_ as the contents of ttie ·· cell

varies.

Wheneyerthe behavior resulting from an event ii tiAJe vary1~9 th.et
I •

means a side-effect pas occurred.. By .loc~l izin~ all side-eff~ts to the

act.ions of one particular kind of actor, the cell, reasonj_ng about the ti111e

variability of behaviors is greatly simplified. Of;CO!Jrse, since.actors 1114.)'

be defined by users that utilize arbitrary 8Umbers of ~ells in arbitrary

algorithms, no generality is lost through the:simplific;atioo.

We have noted that the past behavior of a ~yst~ tQQether with all the

actor definitions in the system prescribe the future_c~rse of that system~*

Suppose we have an actor system. A, which has be.en run.ning .for a while. A

will, therefore, have a behavior B. As long as the actor system is running

*Though if there is parallelism, there may be many possible future courses.

-14-

its behavior will contirtue to grow. If we were to ~freeze" the actor

system at a point in .time, the behavior would of course stop expanding and

would have a last event~ Elast· 'In t>rder to resume the' computation, all

we need is Elast, because the befravi'or that ~esults frbm Elast is al 1 the

·future behavior of the proces'S as· descrft1ecr ibov~.·

Behavi-ors are the cd'ntrete realitatton of' prot@ss~s in 'tne actor mpdel,

1ana1ogous to such things as ·static framf!'S in ttbl'e eotweratibrial models of

computation. Consider the model suggestetf by Bb'brow' aft<l Weigbreit [Bobrow

& Weigbreit, 1974] for irrsthnce. As a ·pt-oce'ss ful1:s it maintains a push-down

stack of stack frames each' of whith includes a progriril tounter, local

variable bindings and all the control structure information necessary for the

running; procedure to tefererice noh-lncal •~~1ables o(fto're'turn to its

caller. To freeze a process in the Bobrow ana· We1gbre11t modet we would stop

it after some program step. The stackfrinte'fb~ t~'ruftning procedure and

all its predecessors on the stack are ·at thit' point pois~d, ready to.exec~t~

the next step iri the program.* 'All triat;'1s requited:~b resume the program

is to cause the machill! to contintie execoting out'of<the'frozen stack frame.

All models of computation need some mettiod to 'ccmtretely incarnate'

running processes. ln the Bobrow and We1gbre1t model, the stack and most

particularly the t•current" stack franes play that rofe.''ln the actor model t it

* In the model the program counter is assumed to be updated after each
program step. For a real running system the stack frames only simulate

the mode 1 and usua 11 y don't update the PC after eacil. f "struct iQn •.
- - - ·- •,:· . " ' ' :-~ ~.~.-~:~:-4 .·. ·.

.. 15-

is behaviors and their last event.

The actor model of computation is largely lnotivated by an interest

in describing systems of multiple processes. The.model·. as developed so

far here has dealt only with single process systems~' though. The fonnal

machinery developed for the single process case must bf!.extended ever so

slightly to embrace multiple processes.

Be_haviors are the concrete realization of processes in the actC)r mod.el.

For each process in the actor system there will be a disti.nct behavior
. .

describing its activities since creation. The union of all the individual
. ,.

behaviors is also called a behavior: it is the.behavior of the actor system
. .

as a whole. If the processes never interact then that is the end of the

story. If, however, the processes do interact then we need a little more

formal machinery.

If two processes interact we often want to compare an event ot events

in the behavior of one process with events in the behavior of the other.

In order to tell which events go with which process, all events are labelled

with a name called an activator. The activator is more or less equivalent to a

process name.

Events that include an activator are written

event: <target receives message in activator> .

Our nomenclature for activators will normally be a possibly with a subscript.

Phrases like, "event E, in adata-base" will he used as a shorthand for
' . ~

"event E, in the behavior of the process whose activator is a data-base".

......

-16-

Multiple process systems may be implemented in numerous configurations:

all the processes may actually run on the same computer with only simulated

parallelism; or each process may have its own processor; or some may be one

way and some the other way. We wish for our theory. at least in its

fundamental form, to be applicable to all forms of parallel processes

independent of how the parallelism is achieved. W~ make no assumptions

.therefore about the relative speeds of various components of the system. One

component might be a human.be~ng performing instructions off a written sheet

and another component might be an IBM 370/168. The human being might have

an effective execution speed of one instruction per second.as compared to the
. ',· . ' . '

machine's 60 million instructions per second.

Also there may be arbitrary and uneven delays between events even in the

same process. We may have an algorithm part of which executes on the
/ T ~:; ' ., .

370/168 and part of which requires human pro~ess·ing. Though the algorithm

represents one single sequence of steps -- i.e. it is a single process --
. >' .,

some events therein are separated by 160 nanos~onds while others are spaced

a second apart.

Nor do we assume the existence of a global time stand9-rd with which

activities may be time-stamped. Global time-sta~ping of events that

transpire in separate processes is feasible for locally executing processes

but is often hard to achieve w1th geographically distributed systems. At a

minimum, the existence of a common time standard for all processes requires

careful planning ahead, both to acquire the common clocks and to make sure

'-·. ·~ "

-17-

all programs use the time information properly. There. ilre some problems

where global time-stamping seems an invaluable aid and others where it adds

as many difficulties as it solves.* At this time< we arce interested· in seeing

how far asynchronous, non-time based models cafl g0.

The imp-act of t~se assumptions is that events in separate processes

· are not usually comparable 1.e~ it is not usua.lly possible to· tell wh4ch

event happened first. Concretely, tt1e impaet of these assumptiofls is that

in general, between any two events·. in one proces$ there may occur arbitrary

numbers of events in other processes.

* Satellite ALOHA networds are a positive example of ~ima ... stamping.

-18-

2. Busywaiting Synchronization Alg'orittins Using Cells.

We shall study in this chapter the t>rohlem of; enforcing rutual exdusion

of an arbitrary number of .processes -with reapec.t to some ,partircular critical

or protected actor. The mutual e~clus.~on pn&Me111 M5 been investigated

exhaustively in the literature. Generally 1W0rk in this a:Fea may be cl•ssified

according to the primitive synchronizat:ion fac·iH:tias that are ·assuned to be

available. In this context thft-phra-se 0 pri11i'tive.fac;rllity" means :that the

operation involved occurs indivisibly, as .if it were a:.single instructton or

micro-instruction in the instruction set of .a hardware machine.

Naturally the more sophisticated the primitives are that are asst.111ed

to exist, the easier it is to solve the mutual exclusion problem and related

problems such as the readers/writers problem. SQme comnon synchronization

primitives include semaphores [Dijkstra, 1968], monitors [Hoane, 1974], and

serializers [Hewitt, 1975]. These primitives all achieve mutual exclusion

of arbitrary numbers of processes.

Cells may also be used as the synchronization primitive of a mutual

exclusion algorithm as is well known. Dijtstra [Dijkstra, 1965] and Knuth

[Knuth, 1966] developed the classic algorithms .along these lines. Their

algorithms only work, though, if the number of processes in the system does

not increase over time beyond a fixed maximum; it remains unproved whether

mutual exclusion of an arbitrary number of processes, where the number is not

fixed over time, can be achieved using cells. We will prove that it can be

-19-

accomplished.

We have elected to study mutual ~xclusion per· se beeaus·e it is the

fundatnental synchronization &ct1Yity needed t&1:ftf-otect aetors from hannfu·1

Rlllti-process ooacurrency. ·t1s,in9 a mutual exclu'Siett operatol' as a. buflding

block. o.ther more sophisticated :actor protecti*i mecHaWJ~ms cat\ ~asfly be ·

built. These more sophtst:fca~ted mechanisms' may 1MJ>T•nt better 'scheduling

· •lgorithms than are possible 1n the simple' mutual -et<c1usion operator; also ·

they may be able to recogntn situations whette total tnutual exclusion of .
prqc-esses is overly restrictive, . .afld they may allow' some class 0-f processes

to access the protected actor collection eonc~ently~ · Ttris· latter E!lab- ·

orat1on corresponds to the well-known r-eaUerS./wrfters"prob:lenr··and its

exten$ions.

In the fol lowing. sectien we·flescribe the· altot'lthlft and demonstrate

infonnally that it works correctly.

presented in the section.follewing~

2.1 The array of cells splution

A formal proof in the actor model is

·-, '

The algorithm that we present here is base.don thtt.aPP~~ach proposed

by Dijkstra in [Dijkstra, 1965]. The key 1ngredie~t of this approach is

that the mutual exclusi_c:>n operator maintafos ap ar.r,a.y ~f cells that "1l.J$t be

at least as large as t~e number of processes.t~t.us~ .the oper•tor. Each

element of the array is indexed by the 11 nam.e" of a process.

-20-

The basic form .of the Knuth and Dijckstra algorithms is this: When a

process wishes to pass thr~gh the tmltual exclusten guanH.an it changes the

value of its entry in the cell array to indicate to all other· processes that

it wants to get through. T~n some computation is performed on every other

entry in the array; the ~ctual computat:ion varies frtJla algorithm to algorithm,

but in all cases the purpose of the computati>on i!s: ··to indicate whether or not

there is another proc~s already executing insi.cte,ttw·critical region. Only

if this predicate answers that no processes are in the critical region may

the current process proceed to pass through the· gUardian. If the new process

is not pennittee to enter the. cr:lti:cal region now -- i.e. if the computation
~

it perfonned on the array said, "No!" -- the pfl'Ocess must wa.it. It doeS so

by looping, e•ch ti~ computing the entraace,predlU<te:unti1 the·answer is

"Yes! 11
•

Algorithms that follow this approach haw been proven correct by

previous researchers. In particular, Greif [Greif, 1975] has proven that

a similar algorithm prop9sed by Knuth [Knuth'• 1966] indeed does work.

Correctness of mutual exclusion algorittvns has two components: First. it

must be the case that two processes never execute in the critical region

concurrently -- this is a minimum specification; and second, the algorithm

must be fair -- i.e. it must be guaranteed that all processes that attempt

to pass through the guardian wil 1 make it through eventually.

The algorithm of Knuth is known to work, but' only if the number of

processes in the system does not exceed the size of the array of cells.

• • •

al

a2

0
r.

-21-

We will show how this limitation can be circumvented, thus proving that fair

mutual exclusion can.be achieved for an arbitrary number of processes using

cel 1 s as the prilni tives.

The original algorithms presented by D1Jkstraand Knuth are pretty

complicated. The algorithm we describe here is·~~nii1ar to' theirs in

essence, but it is ll'llCh easier to understand, and much easier to reason about.

First we present the simple case of the algorithm where the number of processes

is assumed to remain fixed.
·' : j ~ ~ ', .f ~ ' , '

Then we wfll extend the approach to handle

·arbitrary numbers of processes.

Consider the illustrative diagr'ain below:

an array of cells,
state-array

-"
·~

protected-actor ~ ,

• • •

)

-22-

We will call the array of cells required by the a.lgorithm, state-array; we call

the actor being protected, protected-actor. Also, we.asswme the presence of

a special process, a.nutex' whose job it is to mind the store. Whenever an

external process a 1, wishes to access the pr-otected·a¢tor, it changes the value

of state-array (i] and then waits. '\nutex in i~s idle mode loops continually

scanning the state-array; eventually ~tex will note the chan~ v,alue of

state-array [i], and inform a1 that it may enter the.protected-actor. This

algorithm is intended to be fair and we will prov~ that. it is, though by no .
means is it FIFO. This means that .while all Aroe:esses that try to pass through

the mutual exclusion device are assured of getting through, no attempt is made

to service requests in the order they are made.

The operation of the device is regulated by the value in state-array.

Each element of state-array reflects the state of one process in its· efforts

to get through the guardian. The elements of state-array range over four

values:

idle -- ai does not wish to enter;

request -- ai requests pennission to enter protected-actor;

grant -- a1 is graRted pennission to enter protected-a~tor;

done -- a1 has finished its interaction;

and idle, again, indicating that the interaction is complete from ai's point

of view and amutex's viewpoint, too. It is important that the transition from

any state value to the next is always in the province of either ni or amutex

but never both. The transitions are controlled as follows:

-23-

idle to request -- by a1 whe~,i~ decides to enter;

request to. grant -- by amutex when ft al,lows a; to enter;
- . ' ' ,. ' ·, . . ' ~-- . ' •. ' ' ' '

grant to done -- by a1 when it has finished with protected-actor;
. l '. . . ' . ,.. . ·. . • . .. {, ... · ...

done to idle -- by amutex when it notices t.hat a1 is done.
• ' • '~ , •, { ' • I

Each external process lllSt :follow art" estabfis .. sf protocol i'n its dealings

with the protected-actor. The mutual exclusiof1 9pjrf't9tJ:an. onl,y. be; issured
. ',·-.' . - - . ' . ' .

protected-actor is referenced. In order to localize the impJ~ptatioo of this
' . . ·1 - :· ' !,·· t :.: 2

• (__ ¥ • "

protocol, we will utilize the concept of "enca,~n.l'' .~t for~rdr by Greif

[Greif, 1975] and Hewitt [Hewitt, .1974].
•. . ' .

We will imagine that the actor b~ing prot~c,:ted is fully enclosed,
~ . . i

encased. within another actor that senes as an a'i'ia~ 16~ it. All other actors

know only the alias; they do not know the protected-actor itself. Whenever

an actor wishes to send a message to the protected-actor. it sends it instead

to the al ias-protected ... actor; the alias obseries the''protocof;, and retransmits

the message to its ward wherfthe protocol allows 'ft. ' Alias~protected-actor

is specffied by the algorithm written descript~v&ly below (the algorithm is

specified fonnally in LISP -~·hortly hereafter):

alias-protected-actor =
(1) rece-ive argument, and ca 11 it the.~ input-message

(2) set local -identifier i = 'the name of the proc'ess

(3) update state-array [i}: '= •request'

(4) loop waiting for state-array [i] to be 'grant', as follows

-24-

(5) ask state-array [i] for its contents, and let state = the contents

(6) there are two cases for state:

(6-1) state= 'request' -- repeat from step (4)

(6-2) state= 'grant' -- proceed with step (7).

(7) send message (message: the-input-mesuge {reply-to: step -(8)-below))
to protected-actor

(8) when finished referencing protected-actor, update state-array [i]:='done'

(9) loop waiting for state-array [i] to be 1 idie 1 , as follows

(10) ask state-array (i] for its contents, and let state = the contents

(11) there are two cases for state:

END:

(11-1) state = 'done' -- repeat from step (9)

(11-2) state ,;,, 'idle' -- exit to extel"'llllly supplied continuation
with answer received fr01t-prot.cted-a¢tor in step (8).

The storekeeper process, amutex' foll.ows a diff~r~nt regimen. amutex

may be thought of as running in two modes, a scan -mode and a waft mode. In

the scan mode, <1nutex circulates through the state .. arr-.y scanning each element

in turn. When it reads a state-array[i] whose value is 'request', it stops

its scan. It changes the element, state-array[i] to be 'grant', and enters

its wait mode. In wait mode, ~utex loGps testing the $ame element of the

array over and over. When that element becomes 'done',. 'inute'X changes it·

back to 'idle', and resumes scanning. Importantly, '1nutex always resumes

-25-

its scan w1th. the array element after state-array[1].

The algorithm that '1nutex executes 1s embodied in the actor d~~cribed

below, an actor that we call regulate-mutual-exclusion. Steps (2), (3), (9),.

{10), and (11) comprise the scan mode of the algorithm; steps {14) - (18)

implement the wait mode. (This actor is specified formally in LISP. following

the description).

regulate-mutual-exclusion =
(1) set cell i := first process name known

(2) ask state-array[i] for its contents, and set state ~ contents
; ,: ' ~· .·. .

(3) there are two cases for state:

(3-1) state= 'idle' -- go to end of loop, step (9), to continue scan

{3-2) state = 'request' -- proceed with step (4)

(4) update state-array[i]:;:, 'grant'

(5) loop waiting for state-array[i] to be 'done', as follows

(6) ask state-array[i] for its contents, ·and set state = contents

(7) there are two cases for state:

(7-1) state= 'grant' -- repeat frOQl step (5)

(7-2) state = 'done' -- proceed with step (8)

(8) update state-array[i];= 'idle'

(9) resume or continue scanning the state-array as follows

(10) there are two cases for the process name index, i:

(10-1) i =last process name known -- update i := first process
name known

-26-

(10-2) else, update i:= next process name after

(11) repeat from step (2).

END

The two actors alias-protected-actor and regulate-mutual-exclusion

specified formally in a LISP-like notation on the following pages. A

certain license with LISP syntax is taken in that we write array references

in the ALGOL-ish form

array [index]

rather than the LISP

(get 'array index)

and (store 'array index value).

-27-

(defun alias-protected-actor (the-input-message)

(prog (i state answer)

Step-2

Step-3

Step-4

Step-5

Step-6

Step-6-1

Step-6-2

(setq i (the-name-of~the-process)J

(set state-array[il 'request')

; ; loop waiti~ for stat~-a.rra.y[i] to be· 'grant'

(setq state state-array[i]

(cond

((equal state 'request') (got<;> ~'·g-4))

((equal state 'grant') ,(goto. step .. 7))

(else (error})

Step-7 (setq answer (protected .. actor ,tbe-illput-.message)}

Step-8 (set state-array[il 'done'.}

Step-9 ;; loop waiting for state-array[i] to. be ';dle'

Step-10 (setq state state-array[i])

Step-11 (cond

Step-11-1 ((equal state 'done') {goto step-9))

Step-11-2 {(equal state 'idle'). {return·an$wer))

(else (error)))))

-28-

(defun regulate-mutual-exclusion nil

(prog (i state}

Step-1 (setq i (first-process-name-known))

Step-2 (setq state stat~ ... aY.ray[iJ) ,

Step-3 (cond , ' •

Step-3-1 ({equal state 'f-dle'}(1Joto step--4)')

(e 1 se {error)))

Step-4 (set state-array[i] 'grant')

Step-5 ;; loop waiting for state•array[f] to·~ 'done'

Step:--6 {setq stat~ state ... array[iJ)

Step-7 (cond

Step-7-1 ((equal state 'grant')(goto step-5)')

Step-7-2 {(equal state 'done')(got~ ·~p-8))

(else (errorH)

Step-8 (set state-array[i] 'idle')

Step-9 ;; resume or continue scanning the state-array

Step-10 (cond

Step-10-1 ((equal i (last-process-naa-'known})

{setq i (first-process-name-known))}

Step-10-2 (else (setq i (next-process-name-after i))))

Step-11 (goto step-2}}}

.. ':"'.

-29-

',,

The proper operation of this mechanism is apparent assu1Rin9 that
.._.,,.

the system starts out in its "natural 11 initial condition. That is; all
·"~~ " • .I' r ~ ''. :

entries of the state-array must be initialized to 'idle', no external process
. ' :

may be referencing protected-actor initia~ly. and· <;outex._must 'start.ex~~~~~~~g
regulate-mutual-exclusion at step (1). We shall· explain the 'correctness of
this solution informally at this time; a formal proof is presented in the

next section.

There are two aspects to the correct operation of a fair mutual
. - l ~ ~. '

exclusion operator.
' :~ '>: -

does it prevent the simultaneous access of two processes to the protected-,

actor. The second aspect is the fairness of the device; will every process
"•·'

that attempts to reference the protected-actor be allowed to do so eventually.
f,

We will demonstrate first that the system here does indeed achieve
' > ~ ; •

mutual exclusion. Proceeding from the stated .initial conditions, it is
• ' ,!. -.,'' ,. 1 • - '

clear that no process. will ever reference the protected-actor unless alias-
' ·. ' ~ .. ~ . ~ :·

protected first sees the st~te-array element equal to 'grant'. Also, after
' ;~" ,.,,

the process is done, and not before, alias-protected-actor changes the 'grant•
;'' '

state to 'done'. Thus if no other actor ever modifies a state-array element
' that equals 'grant', we may be sure that no process will access the protected·

actor unless its state-array element is 'grant'.

Furthermore, each process that wishes to enter the protected region first
• .:i.'

sets its state element to be 'request' and does not set it to be 'grant'.

The only actor that does set states to 'grant' is the actor regulate-mutual-
;.

exclusion·, that actor ·will only set one state to 'grant' and no more until

-30-

that state-array element cycles to 'done' first. It follows that no more

than one state-array element will equal 'grant' concurrently and, therefore,

that no more than one process will refer~nce protected-actor concurrently.

Fairness of the operator may be inferred from the scan algorithm

employed, assuming that the operations in step (lO) of regulate-mutual-exclusion

are all well defined, one-to-one functions. That is, there must be a unique

first process name, a unique last process name, and the function next applied

iteratively starting with the first name must yield all the names known to the

system exactly once. Given all this, it is clear that if no process ever

requests entry then each state-array element will be scanned once before any

element is scanned twice.

If one process sets its state-array element to 'request', regulate~mutual­

exclusion will note the fact the next time tha.t element is scanned. The

scanning will then be interrupted and steps (4) - (8) attempted, and the

state-array element will be set to 1 grant 1
• The specification of alias-pro­

tected-actor makes it clear that once state-array[i] is set to 'request', the

entire sequence of the protocol must inevitably occur. Thus. it is a foregone

conclusion that the state element will eventually become 'done'. Regulate­

mutual-exclusion detects the 'done' state and. resets it to 'idle' thus

completing the cycle.

The important fact is that the entire interlude from step {4) to

step (8) does not affect the scan parameter, i. Thus providing that all the

steps (4) - (8) do occur the scan wi 11 resume as if there had been no inter-

ruption. And as we have noted, the interaction.between the two processes

-31-

does insur~ the camp let ton of those steps~ Thus "'1utex wi 11 scan 0:11 the

other elements of state-arr"-Y before ~~ scarJs; tftELa~ just let throt;Jgh .

again. TherefQre all tbe elements.of the array will_,g~t a un•~ti• ·s.hot

through to the protected-actc:>-r and n°'ne c~~ .. ~. l;~~~t~t out.. .I.e .. the. opeP.atQr

is fair.

This algorithm for mutual exclusion only works so long as the number

of processes that may wish to access the protected-actor does not exceed

the size of the state-array. Of course, nothing in either alias-protected­

actor nor regulate-mutual-exclusion prohibits the use of a variable size

structure in place of an actual fixed size array. Suppose state-array were

physically implemented as a list. Whenever a new process sought to join the

crowd of processes with rights to the mutual exclusion operator, a new entry

could be cons'ed onto the front of the state-array list, and the variable pointing

to the front of the list could be updated to include the new entry.

In this model the identifier "state-array'' will be used to name the list

of state-array elements. The notation -- state-array[i] -- must be understood

as a symbolically indexed reference into the list pointed at by state-array.

We may continue to assume that the expression state-array[i] returns a pointer

to the cell that the ith process must twiddle in order to pass through the

mutual-exclusion operator; therefore the statements like

(set state-array[i] 'request')

that appear in the actor alias-protected-actor will still work even though

state-array is changed to a list.

-32-

The algorithm for regulate-mutual-exclusion though references all the

entries of state-array sequentially and it is more convenient to rewrite that

actor using car's and cdr's than it is to try to make the array notation

work. A version of regulate-mutual-exclusion that is particularized for

the case of state-array being a list is presented on the following page:

-33-

(defun regulate ... inutual-e~clusion nil

(pro9 (i-state.state)

{setq i-state sta"-array)

Step-2 (setq state (car i-state))

(cond

((equal state 'idle')(goto step-9))

((equal st•te. 'r.equest'Hgoto ste~)

.(else (err.or).), ;

Step-4 (rplaca i-state 'grant')
,-, ·;

; ; loop waiting for state~array[i], Le
1

• i-state. ·to be 'done'

Step-6 (setq state (car i-state))

(cond

({equal state 'grant')(goto step-6))
''

((equal state 'done• }(goto step-8))

(e 1 se (error)) ·

Step-8 · (rplaca i-state 'idle')

;_' ' \. " .
Step·-9 (cond ; if at end of state-array list

({nu 11 (cd r i -state) f ; then resd,, ·i !">-state ,110. beginning

(setq i~stat-e si.t"-tr,rr1y'.}0• •

(else (setq i-state (cdr i-state))))

; else set i-state to next.entry

{goto step-2)))

-34-

The operation of creating a new process may add the new process to the

state-array by cons'ing a cell for the new process anti> state-array. This

procedure is described in algorithms for attars ft>rt'; and e~state-array

below:

fork =
(1) receive argument and call it· new-precess

(2) do whatever has to be done in ttte.innards ef the system to create
a new process

(3) expand-state-array for the new-process (see below)

(4) exit to externally supplied c~tinuation

ENO

expand-state-array =
(1)

(2)

receive argument and call it new-process

allocate a new cell and call it new-state.
initial contents to be 1 idle' ·

Upda.te new-state's

(3) Cons new:-1state onto state-ar"ray and let new-state-array = the
returned value

(4) store new-state in the bowels of the systepi in a manner associated
with new-process . . .

(5) update state-array:= new-state--array

(6) exit

'END

The actor expand-state-array is expressed formally in lISP on the

foll owing page:

-35-

(defun expand-state-array (new-process)

Step-2

Step-3

Step-4

Step-5

(prog (m~w-state new-state-array)

(setq new-state 'idle')

(setq new-state-array (c6ns new-state state-ar?ay))

(... store new-state in. the system •••)

(setq state-array new-state-array)))

,< -,-·

There is a potential timing error associated\,.,ith the actor expand-state-
- :-.

array if it is executed concurrently by multiple proc~ses. A possible
•.

behavior involving two concurrent executions of the actor is illustrated be-low:

(2)

(3)

(4)

(5)

Process-1 Provess-2

new-state := 'idle' (2) new-state := 'idle' ,
r=- --···;:., .

new-state-array := If 3) new-state-array := .

{cons new-state state;..array):! {cons new-state state-array)
__ _Ji./ . ---···~;:;.:{ 4}

state-array := new-state-afray ·. fS) state-array := new-'state-array

That is, both proce,ses could create the new-state•array using the

same previous state-array resulting in a structure like

new-state-array for
p~es -1 ~-------

new-state-array
for ,
proces_s..,.2

-36-

state-array

-

Whichever process updates state-array in st$p (5) .!!!!. is the one that

will win out in the end. Its. new-state cell will be included in the

state-array list; the other entry, while not garbage llOr possessing a dangling

reference, will never be referenceable from state-array.

This bug would be avoided, however, if the operation of adding processes

to state-array were a mutually exclusive operation. There would be no problem

with extending the state-array list to arbitrary size, if only the operation

were restricted to one process at a time. In the actor model, new processes

do not arise through spontaneous generation; aside from .the processes that are

-37-

stipulated as existing in the system 1 s initial conditions, -all other

processes are created by events. Events, of cou-rse, are activities in some

process that already exists.

If we assume that.all initial precesse$ are represented 1n the

state-array then we may specify that process creation occurs in a mutually

exclusive manner by protecting the actor fork with precisely the mutual

exclusion operator that we have described here. That is we may define

an actor alias-fork that is identical to alias-protected-actor. except it

relays the input messages ~o fork tnstea'd of ·protected.:actor. In other

words we may use state-array to ptotect the actor that expands state-arrayl

There is one other trouble•spot in extendin·g th~, "atray of cells"

solution to -arbitrary number -of prbcesses ;.;_._ the proc~n~~ bei·ng. added to

the stat~-array may be very prolific and may themselves create more new

processes. These additional new processes will hay,e to be added to the

state-array, too, of course. And they too ma.y be v{!ry prolific.

Suppose that when new processes are addf!d t~ si,te.-array t~a~ they are

added at the end. And suppose that when each passes through to the protected

region it creates a new process that i1TU11ediatelyattempts to pass through

the mutual exclusion operator itself. Under these conditions, the scan may

be stuck in an infinitely growing morass of fast breeding processes. Any

requests entered closer to the beginning of the array would never be served.

This bug may be avoided. though, by the simple strategen·of extending

the array at its front. Now, even though the array might grow without bound

over time, every request that is entered would be scanned and allowed through

-38-

eventually. This is because no process cnated dut"ing Ofte scan of the

state-array would itself be attended untf1 t~ ~xt seaa.

Thus, the "array of c·el ls" solution to the •'811 uc1usi0ft problem may

be extended to handle the most genera I c1se of -~ n.a&ers ef processes.

2 .2 Formal proof of the solution

We shall prove the correctness of the al$Grithll ill two stages. First,

we wi 11 prove that mutual exclusion per se is implemeJated; then we will prove

the fairness of the algorithm. For the first,,part it doesn't matter whether

or not the number of processes remains const....t. Tbe extension to handle

arbitrary numbers of processes need only be. consicJer,ed in .the ftlimess pro.of.

Before proceeding, let us state precisely whit is: being, prG¥ecl.

Definition: a normal returning actor

Let protected-actor be an actor which includes in its specifications

the following fact: if the event

Eenter-i: <protected-actor receives

{message: a.ny-message

{reply~to: continuation)) in ai>

appears in the behavior then the event

Eexit-i: <continuation receives

{message: any-answer} in a.>
1

will appear later in the behavior.

-39-

Then protected-actor will be called a norma'f'returning actor.

This first definition ensures· that the ·aetors being protected are all

we 11-beha ved and ·act like normal s:ub-routines. If we send a message to the

protected-actor we expect it to answer and not fly off on its own someplace.
t • -; f;

Definition: mutual Jy exclu§irYG .refer§D£e· -

Let protected-actor be a normal returning actor.

Then protected-actor is said to be referenced in a mutually exclusive ·

fashion if and only if for .all quadruples of events

(Eenter-1' Eexit-i' Eenter":"j' Ef!xit~j)', j=i
. . .. -- ,, . ' .·

one of the following two orderings holds:

either (l) Eenter-i before_ Eexit-i befor~ . Eep,te~"7j befo~e, E~it•j
' - '"" ,- •'.' >

or (2) Eenter-j before ~exit-j .before Eenter-i before Eexit-i

Definition: fair encasement

Let protected-actor be a nonnal·returning actor. And l~t alias-protected­

actor be another actor.

Alias-protected-actor fairly encases protected~Cletor. if 11l4 only if

a behavior has the following event in it:

Ehello-i: <alias-protected-actor re¢eives

(message: any-message

(reply-to: continuation)) in a1>

Then it also has the following events in the stated order:

-40-

~enter-i: <protected-(lctor receives

(message: any-mess•

(reply-to: ali&~tinuati1>n)) in a1>

E · <alias-continuation receives exit-i'
(message: any-at\swer)' 1n ai>

Ebyebye-i: <continuation receives

(message: any-answer) fo a.i> ..

Definition: fair mutual exclusion actor

Let protected-actor and alias-protettecf .. ~ctor be actors and suppose

that alias-protected-actor fairly encases erotected-actor .
. i

Then alias-protected actor is a faiT'mutual exclusion actor for

protected-actor if and only if for all hi$tori~s Which COf)tain

Ehello-i' Eenter-i' Eexit-i' Eb~bye-i' Ebello-i' Eenter-j'
' . •' , ~ '

Eexit-j' and Ebyebye-j i~j

one of the following two orderings holds:

either {l) Eenter-i before Eexit-i before Eenter-j before Eexit-j

or (2) Eenter-j before Eexit-j; befbre E~nter-i before Eexit-j.

In particular these orderings hold even if Ehel lo-f were between Ehello-i

and Ebyebye-i or the converse.

.. .,.,_,_,,_ . ,._.,.,: ~~~~-~"':;.•;, .. ; .,,..·.-'~;.:,_" "

t' ' :-,_ ·: .·\".!'

-41-

The theorem we shall prove is this:

Theorem: Given the actor alias-protected actor as specified i~ section
. ' : ' . . : _, ".·'').; ,,t., , .. :

2. l above .and any actor, erotected-a,ctor which satisfies the cpnstaints in the

definition here. Also, given the actor regulate-nnt~ual-exclusi,on a~d the
. , ~

process amµtex as specified in section 2.1

Suppose that the specified system ~tarts out in the following initial

conditions:

(1) each element of state-array equals 'idle';

(2) .no event of the form Eenter-i has yet occurred;
< • -. • ~ ' • ; ' ••

(3) '1nutex has not yet begun to execute regulate-mutual-exclusion, but
• ~ • • ' <I , - ' ' • ' .': ~ ' : • • ' , • '.

it will execute the actor from the beginning once the system is started up'.
J:' • ·-.;. .' '"

Then, alias-protected-actor is a fair nutual exclusion actor for

protected-actor.

The proof of this theorem will be facilita~ed bY, the concept of an
.j

"inter-process handshake" describing the interaction between the external
. ,,. : ; -:~ ~~~ }

process and '1nutex· The actors alias-protected-actor and regulate-mutual-
. . ·. ·. * . ·, : ...) .

exclusion interact by means of a protocol with the following character:
' . ; .~, ·', { ... : ~

one process sets the cell, state-array[i], to some particular state value
·-. -

and then busywaits until state-array[i] changes to some other value. The
• ·- l

other process meanwhile is already set to look for a particular.value in

state-array(i]; when it sees that value it "shakes hancts" with the first

process by causing the next transition of state-array[i]. In this way the

-42-

two processes coordinate each other's activities and lead each other through

the algorithm in a step-by-step sequential manner.

In the following sub-section we will fonna11ze the concept of inter­

process handshaking. After that the mutual exclusion algorithm will be

reformulated in terms of handshakes and we will use the reformulated version

to prove the main theorem.

2.2.1 Handshaking between processes

The concept of handshaking will be defined by specifying an actor that

implements it. Then we prove several useful theorems regar,ding the properties

~of handshake actors.

The actor handshake receives messages of the fonn

(message: (shake: cell

(set-to: value-1}
• (then-wait; value 2})

(reply-to: continuation)).

handshake will update the cell to value-1 then loop busywaiting until the

cell's contents become value-2. At that time, handshake replies to the

continuation. The algorithm for handshake is described below. A fonnal

version of the actor in LISP follows it.

Handshake =
(1) receive input message of the form

-43-

{message: (shake: cell

{set-to: value-1)

(then~wait: value-2))

(reply-to: continuation))

(2) update the contents of the cell to value-1.

(3) busywait for ··the :Contents of the ceH to beeome value-2 as fol lows:

(4) read contents of cell and let ·state= theconterrts.

(5) there are two ca~es for state:

(5-1) state= value-2 -- repeat from step (3);

(5-2) state = value-2 -- proceed with step (6).

(6) exit to the continuation

END.

The actor is specified fonnally below:

(defun handshake (shake-cell value-1 value-2)

(prog (state)

Step-2

Step-4

Step-5

(setq shake-cell value-1)

(setq state shake-cell)

{cond ((not {equal state value-2))(goto step-4)))))

Definition: completion of a handshake

A handshake is completed when a reply to the continuation occurs. That

is, given the event

-44-

E · <handshake receives handshake-1-2·
(message~ (s-t1a1't: cell

· ($et-to: value-1)

(then...wait: value-2))

'reply-:to; cortt'lnuation-l))in aa>.

Ehandshake-l-2 is compl-eted by the .next. eYeflt,1 if itnf ,-:of the f-0rm

Ecomplete-l-2: <continuation-l .recejv~,

(message: 1)· in aa> ..

Definition: matching a handshake

Let Ehandshake-l-2 be an event of the form

<handshake receives

(message: (shake: cell

(set-to: value-1}

(then-wait: value-2))

(reply-to: cOAUnvaticm-1}) in aa>.

Let Eupdate-2 be an event of the. form

<cell receives

(message: ['update' to value-2]

(reply-to ?)) in ttb>.

Then Eupdate-2 is said to match the handshake Ehandshake-l-2. ·

,. __ ,, ..

-45-

The reader should note·that matching of handshakes is purely a

syntactic matter. The matching event is not in any sense guaranteed to

satisfy the busywait loop in the handshake and thus lead to the completion

of the handshake; indeed an event that matches a handshake may even occur

before the handshake!

Definition: completion-causing event of a handshake

Given Ehandshake-l-2 as in the previous defini.tions, and given an

event EuJ14ate-2 that matc,he.s Ehan~shak~-1 _2 .

Consider the event

<cell receives

(message: ['update' to value-1]

(reply-to: step (3) of handshake)) in aa>

occurring after Ehandshake-l-2 but before the reply to continuation-1; call

this event Eset-to-l·

Consider the class of events

<ce 11 receives

(message: ['contents?']

(reply-to: step (4) of handshake)) in ab>

also occurring after Ehandshake-l-2 but before its completion. Call these

events Ewait-for-2.

i ', I

-46-

Let £clobber be any event of. t~e, form

Eclobber= <cell receives

(message: .[•update' to not-value-1]

(reply-to: ?)) in «t>

Where not-value-1 ~ value-1.

The event Eupdate-2 is a completion-causing event of Ehandshake-l-2
" ;: .

if and only if Eupdate-2 appears in the ·behavior after Ehandshake-l-2' and
'

no event of the form Eclobber is b~tweflif'fupdate-i ·ancf'the next ocetrM"ence ·

of Ewait-for-2·

Theorem: Completion-causing event causes completion of a handshake

[ThiS theorem expresses the fact tttat cO.p1ett~·-c~using; ffents

are aptly named; 'that a handshake will' c()mp1ete if and only if

a completion-causing event is pr~sent.] '

Given an event Ehandshake-l-2 as above and any event Eupdate-2 . } . . ,.

that is a completion-causing event of Ehandshake"."l_2.

Then Ehandshake-l-2 wi1 l be completed ~- i.e. handshake will reply

to the continuation -- if and only if solne eve~t £update-2 1s present in

the behavior.

Proof: This result folldws directly frontthfi-!tJttcified algorithm for

handshake and the axioms for cells. Handshake will reply to the continuation

in step (6) of the algorithm if and only if it read the contents of the cell

-47-

via an event of the fonn Ewait-for-2 and fQUad,tbe oont~nts to be value-2.

From the axioms of the cell we see that this condition ·requires

that the most recent upda~e event in the target ordering of the cell.must

be of the form Eupdate~2 .

A simple but important c:orollary of thts t"'61'81l' applies when the

"set-to" value does not equal the 11 then-wa.it." value of a handshake. . First

we define a bit of terminology.

Let Ehandshake-l-2 be a handshake event as abov.e of the fonn

Ehandshake ... 1-2: <h~$hak~ receives

(messag.e: (shake : . ,cel 1

(set•to: value-1)

(then·,..,.:it: va1ue ... 2))

(reply-to: continuation}) in a >

Ehandshake-l-2 is called a proper handshake _i(a.nd only if valu~-1

• value-2.

Corollary: completion causing event of a, proper handsha.ke

Let Ehandshake be a proper handshake ev~nt in ah.

Then no completion causiflQ event of Ehandshake can be an event in <lh,also.

Proof: All completion causing events of Ehandshake must be events that

-48-

update its cell between Ehand·shake and the completion of the handshake; also

the event must update the cell to value-2.

The only event ·;n the handshake that updates the cell is the "set-to:"

event therein and that event updates the·tell to valile-l-; Since value-1

value-2, the 11 set-to: 11 event cannot be a completion, causing event of the

handshake. And since no events occur in ah other than events that pertain

to the handshake until its cOIRpletfon, .no e"1!rits n• :ah ·ean cause the

completion.

The property expressed by the corollary is important because it ensures

that proper handshakes do cause the runnint ~ess to· wait for some spedfied

events in another process. Hereafter we shall assume that all handshakes

are proper.

Another interesting property of handshakes is that they Pity be chained

one after the other resulting in a inulti-prt>eess sequencing of events as we

wil 1 see shortly. First we need to make definitions similar to the ones

above but involving inter ... process handshaking instead of simple updating

of events.

Definition: a matching handshake

Let Ehandshake-l-2 be an event of the form

E · <handshake receives hand shake-1-2 ·
{message: {shake: cell

(set-to: value-1)

(t~nwwait: value-2))

(reply .. to: continuation-1)) in a
8
>

...... . ~ ,. ' . . ' .. "'~·
· .

.. 49-

Let Ehandshake"".2_3 be an event o-f the fonn

<handshake receives

(mess.age: (shake: ce 11

(set-to: value-2)

(then-to: value-3))

(reply-to: contimation .. 2)) in ab>.

Then, Ehandsttake-2_3 is sai.d ·to be a matching ~~dst\ike for Ehand.~hake-l-2 •

Definition: cpmplt!tion-causing handshoke .

Given Ehandshake-l-2 and Ehandshake-2_3 as in the previous definition.

let Eset-tQ-J and Ewait-for .. 2 ·~ events related to Etiandsflake-l-2 as in tht

definition of a compl~tion causing event of a lland9hake.. And Jet Eclobber

be any event that updates the cell to a value not eqtMl .. to value-2.

Then, Ehandshake-2_3 is a completion-causing handshake of Ehandshak.e-l·Z

if and only if the following conditions hold:

(1) Ehandshake-2_3 is after Eset-to-l and before the completiQn of

Ehandshake-1-2;

and (2) Tnere are no events £clobber between E·sat-to-l 'and the completion

of Ehandshake-1-2·

.. Theorem: completion-caus.ing handshakes cause ®HPletfon.

Given an event Ehandshake~l-2 as above and let..Ehandshake .. i-J be any.

-50-

completion causing handshake of Ehandshake-1-2.

Suppose also that there is no other event Eupdate-2 of the form

Eupdate-2: <cell receives

(message: ['update' to value-2]

(reply-to: ?)) in a1>

between the event Eset-to-l (related to Ehandshake-l-2 as in the previous

definitions) and the completion of Ehandshake-2_3.

Then, Ehandshake-l-2 'will be completed -- i.e. handshake will reply

to the continuation -- if and only if some event Ehandshake-2_3 appears in

the behavior.

Proof: Let Eset-to-2 represent the class of events between each Ehandshake-2_3
iand its completion wherein the cell is updated to value-2.

I.e. each Eset-to-2 is of the form

Eset-to-2: <cell receives

(message: ['update' to value-2]

(reply-to: step (3) of handshake))in a1>.

By supposition the events Eset-to-2 are the only events between Eset-to-l and

the completion of Ehandshake-l-2 that update cell to any value whatsoever. Not

all the events Eset-to-2 need occur in the range between Eset-to-l and the

completion but any that do are completion causing events of Ehandshake-l-2, and

thus fulfill the "if" part of the theorem.

-51-

The "only if" part follows from the.observation that those Eset-to-2
events that are comp~etion causing events of Ehandshake-l-2 are its only

completion causing evf3tltS.

A useful corollary to the above theorem ap(lHes.to chains of

completion causing handshakes. Given a ;sequence of handshake events where

each handshake but the first causes the comp1etion of its predecessor; if

the first handshake does fo fact occur. then all of the«haftdshakes except

the last one will complete one by one in sequence. Though the handshakes

appear in separate processes it is as if there were an activator type causal

link between them.

Definition: chains of completion-causing handshakes

•••• Ehandsbake-n~m
each be handshake events. Let Ehandshake-l•2, Ehandsttate ... 3_4, ••• be events

in process aa and let the others be fn proce~s ab. a
8

t- ab. Suppose further

that Ehandshake-1-2 is before Ehandshake-3'°!4 is before Ebandshake'-5-6 ••• in the
aa activator ordering and that the events of ~· are or~ered si~i14.rly.

Let Eharutshake-2_3 be a completion-causing ha.nds~ake of ~handshake-l-2 ;

let Ehandshake..J-4 be a completion causing handshake of Ehandshake-2_3 ; etc.

Finally assume that there are no events µpdating the handshake cell other

the "set-to:" events in the handshakes, between Ehandshake-l-2 and the event

Eset-to-n' where Eset-to-n is the "set-to:" event in. ~hilndshake-n-m·

Then, the sequence of events Ehandshake .. 1 ... 2 , ~andshake•2-J '· Ehandshali:e-3-4'

. . . , Eh d h k is called a chain of completion .. causing handshakes . an s a e-n-m ·

-52-

Corol lar.y: chain of cornpletion-ca'lsing h~nd$hakce$

Gi·ven a chain of completion•causing hMdJhake$:Ewand$A&M:..:f.-2'

Ehandshake-2·-3' · · · ' Ehand"1aJc:e-ri.-•

Then each of the haf)dsh,t;ke.s ~t .the lA-St o .. wi Jl ~plete fo ~-

1. e. Ehandsna~e- l -:2 wi 11 comp 1 ~t• . bef,f>J"e ~s--:...2 ... 3 ~lch •i 11

complete before Ehaa4$~.;3 .. 4,, et~~ E;~ ... n~ !ri,U •t· '*'Plete. but

it wil 1 start.

Proof: This corollary follows from successive applications of the previous

theorem that states that completion causifti handshakes cause completion.

In general. given a chain of completion causing .handshakes occurring
:· ' ! . ., t'f,

in activators aa and ab, there may be many ~ts between the collPletion of

one handshake in one !)rocess and ·the start ,ef. the<·~ .h.ttdstutlt' ·tn that

same process. For example~ supPQ$e aa's··eodfoibution to a hanashake chain

includes the' events Eharidsha~-1 ~2 and Ehands~ke-J-4" These tw& events
' \• ~ . ,• . ' ~~ :: '_-·~ r'-,. ,, .- . -·

are part of 'a l1rger pfeee of aa ts ~'aeltavfdr'tlM:t ar• frte1u4es 'the fellowing

events and re1at1onshi'ps:

Ehandshake-l-2 before the compteti,c>n of EbandstJake-l-2
before··an arbit~ary.'s~e ;of eve~tS'

before Ehandshake-3-4"

Let' s ca 11 the hamtshake e\'t!ht 1 n ab that lj nks ;Ehandshake-l - 2 to

Ehandshake-J-.4 in the chain, Ehandshake-2_3. An imp&rtltnt' fact ·is that the

-arbitrary sequence of events in- aa ne>ted··-above on1y occurs between Eham;lshake-2-3

-53-

and its completion. Ttte handshaking causes the arbitrary events in a
8

to be·

placed in a time envelope demarked by Ehandsha.~-Z-J and its completion.

This relationship is illustrated below:

Ehandshake
1-2

set-to wait-for
1 2 c

arb:ltrary
sequence
of events

Ehandshake
3-4

set-to
3

___ _,.,.) ••im .. _ ~. _ _,.,. - -- .. .,, - -- ~ 4. ----li•. - ---

Ehandshake
2-3

--~-··· - -'."9-- time of
arbitrary

sequence
o~ events

wait- or

envelope demarked by Ehandshake-2_3 -----

L..t1m~

c
~-

The dashed lines represent the busywait loops present in the n.ndshake a~tor.

-54-

Definition: inter-handshake gap

Let Ehandshake-1 .. 2' Ehandshake-2-3'. Ehandshake-3-4' • · ·'

Ehandshake-m-n, be a chain of completion eaVS-1rif hand'Sha'kes in processes

aa and ab. Suppose that events Ehandshaf<e .. 1-·2·, £handshake-3-4, ••. are

the events i'n aa.

We will represent a general pair of successive handshake events in

either process by the notation

Ehandshake-i-j; Ehandshake-k-1
where if we continue to use the subscript conventfon followed so far, i,j,k,

and 1 are successive integers.

Let us call the completion event of Ehandshake-1-j. Chandshake-i-j.

Then the sequence of events in the activato;M ord!tfng of Chandshake .. i-j'

after that event and before the event Ehandshake-k-l is called the inter-handshake

gap between j and k; that sequence will ba;.denoted gap-j-k.

The first event of gap-j-k -- i.e. the. very next event in the activator

ordering following Chandshake-i-j -- is called Egap-j-IC The last event of

the gap -- i.e. the event preceeding Ehandshake-k-l -- is called the cQIRf>letion

event of the gap and will be written Cgap-j-k·

Definition: parallel inter-handshake gaps and handshakes

Let Ehandshake-1-2' Ehandshake-2-3' Ehandshake-3-4' · · ., Ehandshake-m-n
be a chain of completion causing handshakes. Let gap-2-3, gap-3-4, .•. ,

gap-(m-1)-m be the corresponding inter-handshake gaps.

-55-

Then we will sa~ that t,he pairs (Eha,ndshake-J•4, g~p .. 3 .. 4>, · · · •
(Ehandshake-(m-1)-m, gap-(m-l)-m) are each parallel inter-handshake gaps

and gaps.

Theorem: the envelopment of inter-handshake gaps

Let Ehandshake-1-2' Ehandshake-2-3'. p' Eh,ndshake"'flt-n be a ch~in of
completion causing handshakes. Let.gap-2-3, gap ... 3-4, ..• , gap·(m-1)-m be

the corresponding inter-handshake gaps.·

Then for any inter-:-handshake gap, gap-j-k, and its .parallel handshake

Ehandshake-j-k' the following relationsips hold:

Ehandshake-j-k before Egap-j-k

before cgap-j-k befor-e chandshake-j-k"
Of in other mrds, the gap is enveloped in a time perfod' demarked by its

par.llel handshake.

Proof: It follows from the definition of inter-handshake gaps that

Chandshake-i-j, i = j-l -- the completion event .of the handshake preceeding

the gap -- is before Egap-j-k" And similarly Cgap-j-k is before the first

event of the next handshake, Ehandshake ... h-l, 1 = k+l. We shall prove the

theorem by proving that

Ehandshake-j-k is before Charidshake-i ... j

and Ehandshake ... k-1 is befor.e Chandshake-j-k

which y;elds the overall relationship

-56-

Ehandshake-j-k. before Chan~fshake-1-j befOre Egap-j-k

before Cgap ... j-k before Ehahdshake-h-1 before Chandshake-j-k

Ehandshake -j-k is before Chandshake-i-j because Ehandshake-j-k is a

completion-causing handshake ·of Ehandshake-i ~j. Fur'thennore, Ehandshake-i-j

may not complete before Ehandshake-J•k ac.;u~s by virtue of the "chain of

completion-causing handshakes" cord11aty.

Similarly Ehandshake-k-1 is before'Chandshake-J-k betause Ehandshake-k-1

is the completion-causi~·hand$hatce of £hand~hake .. j-k:

The two results of most relevance to us here are these:

(1) If we can establish that two P!Geesses int•~&et as a chain of

completion-causing handshakes, then the tnte ... process interaction once begun

will complete up to the last handshake.·· If tie last hands.hake can be

completed, also, through some separate mechanism then the entire interaction

will complete.

(2) The events in one process's inter-h~ndshake gaps wi 11 always be

enclosed timewise in a handshake in t~ other process.

2.2.2 Refonnulation of the algorithm us1!!9 handshakes

In this section we will restate the algorithms that constitute the

actors alias-protected-actor ~nd regulate"'fn\Jtua1'-$ttlusion replacing the

explicit busywaiting loops in ~hqse algoritflr11l by invocations of the

handshake actor. We wi 11 prove that the interactions of those two actors

does take the form of a chain of completion-causing handshakes and therefore

the major theorems of the previous section do apply to these actors.

The reformulated algorithms are presented below. The equivalence of

-57-

the original algorithms to thj!se r~vised ones is a.pparent bi)' even a ·textual . . ' ·· .. , ,,' .

substitution of the body of the handshake actor for each call to it. As

usual we first present an informal description followed by a formal. speci­

fication in LISP.

alias-protected-actor = (revised)

(l) receive arg~nt a,nd call it the-input-mes~a9e.

(2) set local identifier i = the name .9f the process.

(3) send handshake the message

(message: (shake: state-array [1] ,

(set-to: 'request')

(then-wait: 'grant'))

(reply-to: step (4))).

{4) send protected-actor the message

(message: the-input-message

(reply-to: step (5)).

(5) send handshake the llle$.Sage

(message: (shake: state·array [i l

(set-to: 'done')

(then-wait: 'idle'})

(reply-to: step (6))).

-58-

(6) exit to exterrtal continuation with the alt$wer received from

protected-actor in step (4).

END

regulate-mutual-exclusion = (revised)

(1) set cell i:= first process name known.

(2) ask state-array[f] for its contents and let state = contents.

(3) thre are two cas~s for state:

(3-1} state = 'idle' -- go to end of loop, step (6), to
continue scan's

(3-2) state = 'request' -- proceed with step (4).

(4) send handshake the message

(message: (shake: state-array [i]

(set-to: 'grint')

(then-wait: 'do~e')}

(reply-to: step (5))).

(5) update state-array [i]:= 'idle'.

(6) resume or continue scanning the $'tate-array al follows:

(7) there are two cases for the process name index, i:

(7-1) i = last process name known -· upctete i := first process
name known;

(7-2) else, update i:= next process name after i.

(8) repeat from step (2}.

END

-59-

{defun alias-protected-actor (the-input-message) ; revised ·
" ' . ,

Step-2

Step-:3

Step-4

Step-5

Step-6

(prog (i answer)

(setq i (the-process-name)

(handshake state-array[i] 'request' 'grant')

(setq answer (protected-actor the-input-message))

(handshake state-array[i] 'done' 'idle')

(return answer)))

(defun regulate-mutual-exclusion nil

(pro.u (i state)

;revised

Step-1

Step-2

(setq i (first-process-name:...known))

(setq state state-array[i])

Step-3 (cond

Step-3-1 ((equal state 'idle') (goto step~))

Step-3-2 ((equal state 1 request t) ·(goto step•4))

Step•4

Step-5

Step-6

Step-7

(eise (error))

(handshake state-array[1] ·•grant' 'done'')

(set state .. array[i] 'idle')

;; resU1Re or continue scanning the state•atray

(cond

Step-7-1 ((equal i (last-process-name~knownH

(setq 1 (first-proeess-name~known)))

Step-7-2 (else (setq i (next-process-trame.i.after i))))

Step-8 (goto step-2)})

-60-

In order to use our actor/behavioral proof techniques to prove properties
:-·,'._.··,

of these programs we must first establish some corelation between steps in

the algorithms and events in the behavior of the sys~em that results when

the programs are executed. ·This corelation 1~ somewhat ~omplicated by the
• •» '·;_ .. <J ' -

repetitive character of the programs; we may expect that a process will
...

attempt to enter the protected-actor many times during its execution a~d so
.,; • .> ,- "

each program step will be executed many times even for one particular process.
. . .

Each program step genarates a class of events all of very similar fonn.
. .

For example each time the alias-protected-actor receives a message -- step (1)

of the algorithm -- an event of the form . ·

<alias-protected-actor receives

(message: tbe"'.".input4Dessage

' ;

(reply-to.: conti~t·ionH .in (ii>

occurs. We will find it useful to classify ev"1tS 8eth-by the program step

to which they correspoQ(j and by the valwt·Of U.1e index i appl icab1e to that

step. Thus the above event might be alas$ffied-·&S •an event resulting from

step (1} in alias-protected-actor with ,h,dex •d11
• c We shall adopt a 1DOre

succinct and mneumonic nomenclature along those lines. E•nts corelated

with steps in alias-protected-actor will be d•BOted by Esubscript-i, where

the subscript will ha¥e ~PJD'l mneumonic appeal; e¥ents resulting from

regulate-mutual-exclusion will be ~itte11. M~bs~rip't-i (the "M" is to remind

· us that regulate-mutual-exclusion is run by ~~tex only).

-61-

We remind the ~eader that appelations such as Esubscript-i name

classes of similar events. But where no confusion is likely to result

we shall use the same symbol to refer to specific events; when we must

refer to more than one event of a class, we will differentiate the names

with primes, e.g. E'subscript-i"

Definition: names of events resulting from tfte!, algorithms

*Let Ehello-i denote .the events wheretJy a.Has-protected actor receives

an input message:

Ehello-j: <alias-protected-actor receives

(message: the·iftPU't-rnusage

(reply-to: continuation)) in a·i>.

*Let Erequest-i be the handshake event at.step (3) of the actor:

Erequest-i: <handshake receives

(message: (shake: state-array[i]

(set-to: 'request')

(then-wait: 'grant'))

(reply-to: step {4))) in a.>.
l

*Let Eenter-i name the events whereby the-input-message is relayed to

the protected-actor. E is the first event that references the enter-i
critical protected-actor

Eenter-i: <protected-actor receives

(message: the-input-message

(reply-to: step (5))) in ai>.

-62-

'*Let Eextt-i denote events of protected-actor reP,1.~.i.ng to the alias.

Eexit-i:<:step (5) of alias-protected-actor receives

(message: the-answer) in a1 >.

*let Edone-i be the handshake event at step (5):

Edone-i: <handshake receives

(message: (slt.afte: s.tate...,~.{i]

(set"'!'t».: 'd.one'.)

'(then-wait: 'idle')) .

(reply-to: stea. '6.}H .in <i1>.

*And let Ebyebye-i denote the events wb.e'~ 4lias-protected-actor

transmits prot-ectedi-actor's·Mswer to the outside WPrld:

Ebyebye-f: <continuation recelv(!s

(message: the-anS.wer) .in ai>.

Now we define events.in reQulate~tuaJ-excly~ion.

*let Mscan-i be tbe event in step (~) tha.·t sccu)s st1te-array[i].

Mscan·i: <sta:te-•rra,v[i] receives

(~ss49~: ['contents?']

(reply-to: s~p (2J)) ~.!'.'. ~utex>.

*The event following Mscan-i takes two possible., fems. ·c~t'

Mnot-request-i be the response

Mnot-request-i: <step (2) of reg(t~ate-mutua1-e~lusion receives

(rnessage·: · •idle•) in <1nutex >;

; 1· •

-63-

let Mrequest-i be the other response

Mrequest-f: ..;step (2) of regulate-mutual-exclusion receives
.. '1''

(mes sage: ·. 'reques ~' l · fn amutex>.

*Let Mgrant-f be the handshake event at step (4):.

M-grant-i: <handshake receives

(message: (shake:. state-array[i]

(set-to: · 'gfa·nt')

(then-wait: 'done'))

(reply-to: ~t~p {S)l) ih. °""tex> ~

*let Midle-i denote events at step (5) that reset the element to 'fdle'.

Midle-i: <state-array[i] receives

(message: ['update' to 'fdle')

(reply-~o: step (6))). in <inutex>~
', . ' "~ ' ' - .

A significant order·ing rela.tionstrip BlllOftt' the n_..d events· 'fJf

al ias-prote<:ted-actor may be· inferred frotn the··ttrl"ignt""Utte, non-branching

Nture of the ac,tor's algoritlwl. . Since there, are no. branches in· the

4lgorithm at the level of abs;traction represented ·by .the revised version ·

here. if a 11 the named event$. occur. they'lnus1: occur irr order.

Theorem: straight line theorem for alias-protected-actC>r

Given the event class names defined abOve.

We may structure the event classes in an ordered seq\lence: ·

[Ehello~i' Erequest-i' Eenter, Eexit-j' E1Sone~i'El)ye.by~·iJ.~

-64-

If an event frOfll any class appears in an, actor system's behavior

then an event from each of the preceeding cJa_sse, fn the sequence must also

appea.r, in the same order as the events appear in the sequence. For example,
>':"''._,

if an event Ebyebye·i appears in a syst~:is behavi~.' then the following

events must also appear, before Ebyebye-f, in t~e. stated. order:
. . .

Ehello-f before Erequest':"i before Eenter•i before Eexit-i before Edone-i·

Furthennore, if two events of the same named class, call them
. . .

Eclass-i and E'c]ass-i ap~ar in the behavior, then an event of each other
. .

named cla·ss ntJst appear between Eclass-i and E'class-f"

Proof: The order used for the sequence of events is derived by inspection

of the stated text of the algorithm used by° ~lf;s-protected-~ctor.
The inviolabil 1ty of the ord.er expressed in the theorem follows from

the absencedf loops and branches in the algorithm for alias-protect~d-actor

at the levtl of abstraction pertaining· .to -the.naMCf·;events.

A $1m11ar t1teorer1, anay- be derived for the· ett"ts--of regulate-Rlutual­

exclusi•n, or a.t. lea.st the wait mode of the.;a1gOJ"'fttlft~· s.teps· (2} thrOUg'h (5).

With alias-protected-actor the theorem expla1Md.that the events pef"tain:ing

to some particulal"0 process. a1• happen s•Ha,11y.· ift,a well •de-fined sequence.

Regulate-mutual-exclusion. differs in thJt it int•rt¢ts.with.a11 the
. . ' . - ,. ; ·,• '. ~ ' . -' ; . '

external processes, not just o~e particular<i;·, ~t stq~e onJy one process

ever runs the actor, the events t~erein P.etrtaiotog.~o all P,r,ocesses will occur
• ' < ' A • ... ' ~ ' 0 0 < 0 0 ~. ·', ' 0 ' '

serially. This is the property that ~s funda1Jenta11y depended on for the

a 1 gorithm to provide mutiJa l · exc 1us1 on. ·

.~--- ----- ____,..---· ...

-65-

Theorem: stra_1ght line theorem for regulate-mutua1'-exclusio~·

Gtven the event class ncames defined atleve. . . ' ... ,

And given the ns~~mption that "8utex is the.f.P;t1.Y,.Pr~~$ that ever.

executes the actor regulate-mutual-exclusion.

We may structure the following even~ _cla>&ses •o 4n.J~rdered s~qJ.tence: ·

[Mrequest .. i' Mgrant-i' Midle-1].

If an event frolll any of the- classes ajlp~ars tn. a .syst•' s behavior

then an event from each of the preceeding ~lasses in the sequence must a150
" > •• ; ••• • •••• ,·

appear, in the same order as the.events appe~r ·int~ s~uence.
' ··1 ' '"~. ' ..

Furthennore, given two events Eclas~~i and Eclass~j~ where the wo.rd

"class" may be instantiated by one of "re~1:1est"~ "gra~t", or "ic:Jle" -- if
·' ,

E 1 . and E h c ass-1 class-j both appear in the behavior~.t~er).}t least t e

following other events must appear in order:

(1) the events after Ecla~s-L in the sequence;_

(2) the events before Eclas$-j in the, se~yence.. . .
. J

For examp 1 e, if the events M9r,nt·a andJ'ea~i ~~th o_~cur then

events Midle-a and Mrequest-z must also occur in tha~ order~

Proof: The fact that ~l.y one process ever execu*'$ r~ul•t~tual, .. excl.uJion

means that the behavior pertaining to it js a totfll ~rder anct ,ttNi! <>r4~r <>f
.' . ~-~ ' -· ;

events may be read off the text of the actor's algorithm.

The order ;s fixed and inviolable due to the absence of loops and

branches in that part of the algorithm giving use to Mrequest-i' Mgrant-i' and

Midle-i'

-66-

As a final result of this section we will prove thillt the two actors

interact as a chain of completion causing handshakes. There are three

handshake events involved in any interaetion, betweett al!fas-protected-actor

and regulate-ntYtual~exelusion -- they are Erequest-i, Edone-i, and Mgrant-i·

The chain that is formed in Erequest-i, Mgrant-i, Edone-i. We will prove

that as used in these progr-ams Mgrant-i a1ways causes the completion of

Erequest-i and Edone-i always causes the completion, of Mgrant-i• Thus the

three events form a chain of completion-caus'fngharldshakes.

Theorem: Mgrant-i causes coinpletion of Erequest-i~

Given the initial conditions stated for the main theorem, in particular

the fact that state-array[i] is initialized to 'idle'.

Then Mgrant-i is always a completion-causing handshake of Erequest-i"

Proof: From the definition, Mgrant-i is a completion caustng handshake of

Erequest-i if and only if

{l) Mgrant-i is a matching handshake for Erequest-i;

(2) Mgrant-i occurs after the event Eset~to-request-i' the event

within the handshake tllat tll>dates the cell to •request'; but before the

completion of Erequest-i;

and (3) there are no ev~ts Eclobber between Eset-to-request-i and the

completion of Erequest-i, where ,Eclobber is an ~v-ent of the form

- , .. ,

-67-

Eclobber:< state-ar:ay[iJ repeives;.

{message: ['update' to .?]

(reply-to: ?)) in az >, z ~ 'grant'.

The matching criterion is purely syntactic. Two nandshaki!s match if

the "then-wait:" of one equal,s the 11set-to·: 11 of the ,other. Erequest-f waits

for state-array[i] = 'grant' and Mgrant-i sets statci-array[i] equal to

'grant'; hence Mgrant-i matches Erequest-f"

The other two criteria are dependent on how tlje handshakes are used in a .
specific program. Our theorem states that Mgran~i llllSt always be a

completion-causin{I handshake of Ereque$t"'.'i' tnd so,We must prove that in all

executions of the actor system the proper orderings \tf 11 hold~

By the straight 1 ine theorem if Mgrant-f appears in the .behavior it

must be preceeded by an event Mrequest-i. Mrequest-i fs an event whereby

state-array[i] reports that its contents equal 'request'. The scan event,

Mscan-i' that sends the 'contents?' message to state~array[i] must occur,

while state-array[1] equals 'request'.

Since state ... array[1] fs initialized to •tclte•; M5c,n-~ in" this situation

must occur after an update event that updates t~e cell fo 'request•, and
. .

~fore any event that resets. state-array[i] to any ot:her value. A peru$al

of the algOJ"iittfts here indicates that the only events that 'update 'state-arra,y[i]

to 'request' are the "set-to:" events in Erequest-i• So the Mscan-i giving

rise to an Mrequest-i event may only occur after the "set-to:" event in

Erequest-i and before the state is further updated.

-68-

The ordering information· garnered s.o far fs iHw.strated below:

Erequest-i
set-to
request c

·-----'I~· - - - - - _, •.

amutex •
Mscan-i

' ' :,.. ,'

Mrequest ... i
')•

M grant-i

Now, we know that state-array[i] is not 11pd4ted i.o a handshake after the

11 set-to:" event; and once Erequt!st-i completes the va.lu:e. Qf :the cell wH l no

1 onger be •request' and wi 11 not be reset to 1 request• l£ntil another event of

the Erequest-i class occurs. Therefore,, the Mscaa-t J~di,Q9 t~ tae 1\-equest-i

event may definitely be placed in time betr1een tile 11 se~-to: 11 Hd· thtt completfmt .. .

of an Erequest-i type event:

·-69 ..

Erequest-1
set-to
request

c

a
mutex

..... -----')- . """".""

---...... >•
Mrequest-1

. -

M·~·
grant-i.

furthennore the handshake event. will not be completed until a completion­

causing event of the form

<state-array[i] receive$

(message: ['update' to · 'gr.ant']

(reply-to: 7)) in a 1 >

occurs. The only events ef that form in the actow- systell'f are the 0 set-to:"

events within the hand·shake Mgrant-i. We have therefore placed the time of

Mgrant-i and its 11 set-to: 11 event as before the completion of Erequest-i also:

E t . reques -i
set-to
request

-70-

. ____ __,,.. - ~ - - ... __., -- ... ·-
c

a mutex ---•) • ____ ,,.. - - - - """ - - - - - +•
Mgrant-1 set-to

grant

So we see that Mgrant-i must always occur between an event of the form .

Eset-.to-request-i -- the "set-to: •t event of a handshake, Erequest-i --

and the completion of the handshake. Mgrant-f thus always satisfies criterion

2 of the definition of completion-causing handshakes.

The final point that we must establish is that no event, Eclobber'

updating state-array[i] to value other than 'grdnt 1 .flt8y occur between

Eset-to-request-i and the completion of Erequast-i• There are three cases

to consider:

(1) that Eclobber is an event··in a process other than a1 or amutex;

(2) that Eclobber occurs in a1;

or (3) that Eclobber happens in amutex·

c

-71-

Case {_l) may be rejected due to our supposition that only the· actors

alias-protected-actor and regulate-mutual-exclusion are able ~o access the

state-array; alias-protected-actor makes it impossible for any process but

ai to reference state-array[i]; and by as,slll1.pt1on °mu~ex is the only pro~ss

that ever runs regulate-mutual-exclusion.

We have al ready noted that there ar~ no t!Pclate ev.ents i.n a handshake
. - ~ . "' ~ . ~ ' . '

after the nset-to:" event. Therefore there areno update events in a1

between Eset-to~request-i and the colllPletion of Erequest-i" .
As for amutex we have already proved that there are n~ events updating

state-array[i] between Erequest-i and Mgrant-i" After the e>ccurr~nce of

the event Mgrant-i its "set-to·:" event happens; this ·event ~pdates the. cell

but it updates it to the ~llowed' value, 1 9ra~t'. Between the "set-to:"

event and the completion of Mgrant-i there are no.events updating state-array[i]
. ·:' • ' •. ;· ·. c: .'

so if Eclobber occurs in ~tex it must happen ~fter the completion of Mgrant-i"

But ·Mgrant-i cannot complete until state-array[i] is updated. Since

that update does not happen in amutex .it mUsi happen in ai. But we've

Just shown that a1 cannot uJ)date· state-array[il fu~ther' uhtil Erequest-i

completes. So ~tex cannot clobber the state until a1 updat·es it a.nd ai

cannot update it until Erequ:~t-i completes~ I.e. there can be. no event

Eclobber in amutex prior to the completion of Erequest-i• and thus case (3)
. ;·,.''' ' .

is rejected also.

Having established that there can never be an ·event that clobbers the
. '

state-array element before Erequest-i is completed we have proved that the

third and final criterion required for Mgrant-i to be a completion-causing

-72-

handshake of Erequest.;i is always satisfied. This completes the proof

of the theorem.

Theorem: Edone-i causes completion of Mgrant-i

Edone-i is always a completion-causing handshake of Mgrant-i"

Proof: The proof of this theorem is similar to the proof of the previous

theorem.

Theorem: the handshakes fonn a chain of c;ompletion ... causing handshakes.

Given the actor system described in this section and the stated initial
• > ·' ~ • , •

conditions.

Then t~e sequence of events Erequest ... :f' '\ran~ .. p Edone-i always fonns

a, chain of completion-causing handshakes.

Proof: The previous two theorems stated that

(1) Mgrant-i is always a, completion-causf~~ handshake of Ereqnst-i

and {2) Edone-i is a complet.ion-causing handshak~ of Mgrant ... i.

The definition says that whenever these two relations hold then the events
. ·, . ' ·, , ·'

form a chain. Since the relations always hold in this actor system, the

three events always fonn a chain of completion-causing handshakes.

2.2.3 Proving the theoremusing handshakes

In the previous section we prQved that the interaction between alias-

-73-

protected-actor and regulate-mutual-exclusion always takes the fonn. of a

chain of completion causing handshakes. We shall use that result here to

prove the main theorem of this chapter: tt~t given the specified actor system

and the specified init'fal conditions alias-protected-actor is a fair

mutual exclusion actor for protected-actor.

The proof proceeds in two parts. The first part shows that all

references to protected-actor that are funnel~d t'hn>ttgh a·l ias~protected•actor

occur in a mutually exclusive fashion. The second step is to prove that

alias-protected-actor prov~des fair encasements of protected-actor. Combining

these two points yields the overall theorem.

We will see that Part I of the proof follows s~raightforwardly from the

handshake theorems developed in section 2.2.1. Part II has two sub-parts

one of which also follows from the handshake theorem; the s~cond sub-part,

though. involves proving the fairness of regulate-mutual-exc;lusion's scan

algorithm. It is in this last part that the potential for more proc~sses

being added to the system must be accounted for. Ttlis last sectlon does

not follow from the handshake theorem.

Part I -- Given the actor system and initial con<fitions stipulated in the

main theorem.

Then all referenees to protected-act9r that occur within elias..;protected­

actor occur in a Qitually exclusive fashion.

-74-

Proof: The definition of mutual-exclusion says the fol lowing:

Let Eent~r-i be an event of .the'forin

Eenter-i: <protected-actor recelves

{mes5'ge: .. af\Y:~S~a.g.e

(replY-t?: cpntlnuat.ton·~) in a 1>

and. let Eexit-i be the next event thereafter 1Jf .tfte .'for.·

Eexit-i: <continuation receives

(messqee: a~a~r} in a1>.

Then for all quadruples of events

(Eenter-i' Eexit-i • Eenter-j' Eexit-j) ' 1 = j

one of the following two orders must hold:

either (1) Eenter-i before.Eexit"'.i before ~'*'1t.•~'=j before Eexit-j

or (2) Eenter-j before Eexit-J before ,E~r".'J b~fore Eex.it-i.
' - - ' ·- .

Given a pair of '6Vents ·- Eenter-i "and: E-exit-i _.., arising from the

execution of alias-protected-actor, the· ~ght 1ifle theorems for that

actor shows that the events- must occur :.hetweerr im avM-t fr~quest-i and the

next event of the class Edone-i" Moreover Eenter-i and Eexit-i mtist

occur after .the completion of Erequest-i' wh.fch is fi·haftdshake event. This

means that E and E occur in ,the inter.:-ha.a.:· hake map between · enter-i exit-i ~

Erequest-i and Edone-i"

We proved in the previous section that the sequence of handshakes

Erequest-i' Mgrant-i' Edone-i is a chaih of completion-causing handshakes.

..
I

·'
.. ··r

-75-

It follows that Mgrant-l is the parallel handshake to the gap between

Erequest-i and Edone-1· Therefore,. frOf\1 the envelopi:nert of inter-handshake
·,, - ·' ' . ,

gaps theorem, we know that. ~grant-i "enveJ,~p~s 11 ~~ ga~ ~- j.e. Mgrant-i is

before the completion of Erequest-i' an~ the co.R~etion of M1rant-i is after

Edone-l· And since E811~er-~ and EexU•i. ~re with1?,the 9•P-.·~t-i

envelopes them too. See the. illustration below:

Erequest-1

M •--~ gra t-1

'

C · Eenter-1 Eex.1t-i Edone-1
--·'.-· ., •. '·:,' :·<tj

-·· ... ;- -:~ - '

•

critical
region

gap

Mgrant-i's·envelope

The straight-line theorem for the actor regulate-mutual-exclusion shows

that if an event Mgrant-i appears in the behavior, then no other event of the

class Mgrant-j may appear until the completion of Mgrant-i appears. This

leads tQ the following relationship:

-76-

Mgrant-i. before Eenter-i before Eexit-i before completion of

Mgrant-i before Mgr~nt-j before Eenter-j iefore ~exit-j,
for all values of i and j.

[mbedded in that relationship is the relattc:msh.ip required by the

hypothesis, and thus Part I of the theorem is proved.

Part II -- Given the actor system and initial conditions stipulated in the

main theorem. Then al ias-protected~ac~.tmvi.de •. ,fair ~asement for
,. " , . '

protected-actor.

Proof: There are two parts to the proof. First we will show that if a

particular reciuest is scanned then the associated' 111ess-e will be transmitted

to protected-actor and the answer will subsequently be retransmitted to the

external continuation. TMs ·part of the preof is,·es-senti:ally a continuation

of the previous proof of Part I of the •in theorent. The second section

of this proof establishes that the scannlng of the array h .itself fair.

Part II-(a) -- Given the actor system and iaitt-&1 conditions stipulated in

the main theorem. If an event of the fonn

Ehello-i: <alias-protected-actor receives

(message: any-message

(reply-to: continuation)) in ai>

appears in the behavior, and it is followed l>.)lan event of the form

-77-

Mrequest-i: step (2) of regulate-ritutual~exetuston receives

(mess.age: 'request.~} in ~tex ,

then the following events also.win appear in th~'6e'havfor after

Mrequest-i and in the stated order:

Menter-i= <protected-actor receives

(message·: any-message
·'

(reply-to: step (_8)}) in a.>
1

before

Eexit-i: <step (8) of aTias-protected-attor 'receives

(message: a~y-an~wer) in a.>
·. 1

'·

before

Ebyebye-i ::<continuation receives

{message: any-answer) in a1>.
J

. ''.:.

Proof of Part II-(a}: Certain parts of the hypothesis are true by inspection

and are included here for completeness. In particular, if Eenter-i occurs.

~hen Eexit-i is required to occur becau~e ?ro~ec:ed~~ctqr is constrained to be
~.

a normal returning actor in the hypothesis of the main theorem.

If Ehello-i occurs then by virtue of the stra;ght line theorem the next

named event, Erequest-i' is bound to happen. Also if Mrequest-i occurs that

means that Mgrant-i will occur, too.

We proved in the previous section that .the sequence of events Erequest-i

and Mgrant-i. Edone-i form a completion causing chain of handshakes and so

E

ai

-78-

if Erequest-i' and Mgrant-i both occur, then Edone-i will occur inevitably

after. But since Edone-i is the last hand~hake in .the chain it will not

become completed by virtue of activities in the chain; Edone-i requires an

explicit completion-causing event in order for that handshake to terminate

and for the next step in alias-protected-actor ·to occur. By the same token

i. f Edone-i completes then the next step of the pro~ram wi 11 happen, too;

the step after the handshake is the step that replies to the external

continuation -- i.e. it is the step corresponding to Ebyebye-i·

So if there will be a· completion-causing event for Edone-i during every

execution the system then the theorem is proved.

The state of affairs in effect when Eckme-i occurs is illustrated below.

We know that Mgrant-i always completes afte.r the "set-to:" in Edone-i because

Edone-i is always a completion-causing handshake of~grant-i:

request-i
c E enter-i E Ed .

set-to
exit-i one-1 done

-- ___ .,.
·~. >• ,. >·• __._

arnutex • --4 - -- - - - - - - - - - - - - - -
M t . set-to

gran -1 grant

- - ----- ~· c

-79-

The event in amutex after the completoit)Jl of Mgrant,..1 is M1dle~i:

Midle-i: <state-array[1J receives

(message: ['update' to 'fdle']

(reply-to: step· (6))) in ~tex> •

We will prove, that Midle-i is always the one and o~ly ~complet.ion-causing ·.

event of Edone-i.

Midle-i must satisfy three criteria in order to completion-causing

event of Edone-i:

(1) Midle-i must ~tch ,EdOfleo-'i -- which it does by illipection; .
. . ,_ -~ .

(2) M1dle-i Rl.lst occur ~fter.the "set-to:" event rel~ted to e:done-i

which it does because Edone-i is always a _complel1on~caus1ng han4shake q-f

Mgrant-i which is before Midle-i;

and (3) there must be no other eyent updating sta.te-array[i] ~tween Edone-i • s

"set-to: 11 event and. the completion of Er1one~i • Thi~ ~~tement of the tMrd

criterion is stricter than the definition requires; if this statement proves to

be true then Midle-i will always be the o~e.~nd only compl,tion-causing event

of the handshake.

The third criterion i$ true as follows:_ The onl.y pr9~~~s.th~t m1y

reference state-array[i] are a; and amutex· Therf! is no update event,~tween

the 11 set-to: 11 event of a handshake and its completion and so no event in ~;

may violate the criterion. There are n~ more events in a.nutex that update

state-array[i] after Midle-1.during this same cycle of the algorithm. If

~tex updates state-array[i] further, that update may not occur until after

-80-

an event Wrequest~i. We have already proved that events of the Mrequest-i

class occur only during an Erequest-i class·qnd,sbake and.therefore there

must be an event E'request-i betWEten MitHe•i ~$d M'request-i; also·if the

alleged update eve~t i.s to h~ppen before the completion of Edone-i' then

E'request-i must likewise occur before ~he ccm>letion of EdoRe-i· In other

words the supposition that we are making is that there is an event.E'request-i

between Edone-i and its completion.

The existence of such an event in that relationship leads to the

vollowing ordering:

Edone-i before E'request-i before e•letion of Edone-i before Ebyebye-i"

This ordering of events violates the straight 1.ine theorem of alias-protected-

actor. Hence there cannot be an event of the.,_.. E'request-i between Edone-i

and its completion and the third criteria it Upheld.

So Midle-i will always cause the cOOif)letion of Edone-i; the event

Ebyebye-i is assured of occuring~ and Part Il·{a) of the theorem is prqved.

Now we must establish- that the scanning of the' array is itself done

fairly. Part 11-(a) showed that any request that does get scanned will
. .

get passed tht'ough to the protected-actor. Part 'II-(b) shows that all

requests that are made will be scanned.

Part II~(b) -- Given the actor system and the initial conditions stipulated

in the main theorem. If an event of the form

-81-

~l lo-i ~ <talias-pr.otected~actor .. receiv~$

(Message:: Clny""Rlessage

(reply-to: contit'luation)) in a.1 ~

appears in the behavior, then it will be followed by an event of the form

Mreq&Utst-i: <ste~ (2) of regulate-mu:t~a.1, exclusion receives

(message: 'request~) in amutex>.

Also, if Eheno .. i hap.pens and is fol lowed by Mrequest-i, then there

wU l be no subsequent event M' r~st-·i cl 1ke Mreque~t-i' unless there is

an event E' he no- i &f;ter" ~ llo-i.

Proof of Part ll-(b): The .second statement. in ttle hypqthesis is quite ea.sy
I' ',.. ,•,, . '."1

to establish and we will dispose of it ffrst. What the statement is saying

is that if a request is scanned once it witl,oo't be scanriec:l again. In other

wrds the operation of letting a· Pequ.St 1nto.t~'~tected-actor and passing

the answer back out reinitializes the state-array ele1Jtent somehow.

We have already shown that if 4n ev.~mt .like t\-equl!St-i occurs it IJJUS1: be

inuediately preceeded by. an event Mscan-i ·'t.hat read~ the . .contents of

state-array[i]. Mrequest-i follows only if the co"~~J;tf.s. of the state e~ent

were • reQMest •. .If Mrequest-i does hapf>t" t~ :M.tdle-i is ·as$Ured of occurring

. and there cannot be anothe.r Mscan-i type .evcrnt. .in betwe.en.

Midle.;p of course, sets state-a.rrctyiiJ to.be 'i4le'. There c:aqnot. be

another event of the Mrequest-i class until and unless state-array[il is .again

made equal to 'request'. The only events in the system that do that are

-82-

Erequest-i type events; Erequest-i events in turn only occur after

Ehello-i's' and only one Erequest-i will follow any Ehello-i without an

interveni"ng Ehello-i.

So, what we have is this:

in a,: Ehello-i before Erequest-i before E'hello-i before E'request-i

in CX.,,,utex= Mrequest-i before Midle-i before M'request-i

which says that if Erequest-i is before ~equest-i then E'request-i must be

before M'request-i -- i.e. the second statepent is established.

The first statement in the hypothesis· is stating that the scan of

the array must be fair. Let Mscan-i be an event of the fonn

Mscan-i: <state-array[il receives

(message: [• conte1its? 1
]

(reply-to: step (2)}) in ~tex>.

The scan algorithm is fair if and only lf for each process in the system there

is a first scan event, Mscan-i' and after each·Mscan-i event there iS another one

later. If those conditions hold then there Will be an Mscan-i event aft'er each

Erequest-i event which implies that there will t>e an. Mrequest-i ev~t after each

Erequest-i event al so. Since e·ach Erequest-i event iS a direct result of the

preceeding Ehello~i event, this would me~n that ~ery Ehello-i would be

followed by an Mrequest-i as required by the theorem.

-83-

Events Mscan-i occur in. stf!p(2l of r@Su:Jt~l :@cly.§,1on. · The

va 1 ue of 1 betng scanned 1s controlled py •~ (1.-); o'"*•' end· thereafter

by steps {6) and (7). AsSUlle f~r the· riMllaent t~t t.he. ~~an: is not. interru,ted

by any request, ~nd let• s exUtine Just tn~ .SCtfl ,part of t•. algt>rithfl· regulate ...

mutual-e~clusion = (sc.an part Qnly)

(1) set cell 1:= .first process ~ kn•,

{2) ask state--4rray(i] for its conten,ts ·And le'I: ~t•te • contents •

. . '
{6) resUflle or coot1nue sc:onning the stat~'."aJ;r&y;as .follows:

(7) there are two cases tor the prQC•f£1MIRe inctex:, 1:

{7-1) i = last PJ'9Cess. name kR.qwf!I ~ .. -updt•e;'«i :• first process ·name known;

(7-2) else, update i :;:;; next proc:e$s name after ;f.

{8) repeat frm step (2)

END

If the state~~rr11 fs Sktic and dOe$,,ftQ1; ~ ge~.size with· time ·then the

first process name and the last process nae ire eaeb.const•nts. .The scan

a1gorith,m then has the fonn of. two .nested 10,opJ: the wter 1.op repeatedly set~·.

i to a constant initial value and the inMr loop u"'-t•·t until it reaches: a

c;onstant ~ximum value. This structure wHl re51Jlt·-in fa-ir sanniag if the

function updating i has the following property: startiftt witfl the first process

name known, successive appl i:cation of the function J'flt!St y·ield all process .names

known to the system; if the function is truly functiOnal in the mathematical

sen~e then it will yield all process names .once before retuf'ning any name a

second time.

-84-

If the scan is in~pted then some event Mscan-i will lead to an

Mrequest-i event rathet- thafl directly gof_ng to step '(9). But as we have

already setm, if Mrequest-i happens then ·•n the' steps of the" ac·tor

r!!J!!late-111Utual-exclusion 'llUSt< ine'l1tab1y- ensue le·acHn~ to Midle-i in step

(5). After step (5), the scan is resumed bl step (6). Sinc;e the wait

mode interruption is guarantef!Ct to t~iwate ndto ~sume the scan, and

since it does not effect the scan-paf"allletet" ! in any way. ·:·The interruption

cannot modify the fairness of the scan algorithm.

Our arg&1111ent for .. fairness assuines tf\at the state-array is of constant

size. Let us relax that assumptiOtt and· allowthe·irray to grow without bound

over time. Te do so requires that the;· stat.e-arra:f be treated as a variable

sized structure inst•ad of a ffx«Kt size array. Also the index i must not be

interpreted as the usual kind of integer subsc~ipt; ! is inst~ltd a possibly

symbolic index into the state-array structure.

The fairness argument ·heretiofcn'e was bis~ on the fatt that between two

successive scans of s'Ome state-array eltllMt tflere ·are a fixed nuhtber of other

elements to scan -- Hmely the' size of tht 'arW.ay mmus one~' To extend the

arguments we must replace th& notiort of a fi'xed .number of intermediate scans

by the notion of a bounded number. lf-t.e-tweert two suceesstve scans of the

same state-arr1;Y e.lement ... there lJ'e only • ;bounded· nuntber of other elements to

scan. then the second -success fve ·scan e.,_,t a: lways ~ l1 tta:f)pe'n and· the

algorithm will ·remafo fafr.

It turns out to be crucial where in th• state-array structure the newly

•• ;.·' <' •. -•,.,,_,

-85-

added elements are put. If they are added af~er ~be·~tp'rent scan point - ..

i.e. between the element currently being scanned an<t the end of the structure -­

then the scan algorithm no .longer is assµred o.f INtipg· fa.i·r. .fqr if elements

are added to the arr~y as fast as <lmutex is. able to. sc~r;a them or, .faster, then

'1nutex will never reach the end cf the array an4•ill nev~ wrap around to the

beginning. Thus no element of the array w111 •~r get scanned a 11next11 time.

Suppose, though, that the new elements are always added behind the scan -­

i.e. between the beginning of the array and.the ~lement being scanned currently.
'

In this. case there will always be a boUl'Jded number of .elements .between the
, ,,

current scan point and ~he last ~lement ,of the. array., Jhat is, although .the

beginning point of the scan algorithm may cha.~ D°'1J,-,~ _some behavior i.n the

middle may vary, the st.op rule for the algorithQI remain~ constant. So every­

time i is set to the first process narpe known we ma,y pr~ict tl\le number of

entries that must be scanned before reaching the ,constant, li,ist process n .. e.

Everytime i is reset to the first process we will say t ... t a neirt cycle of the

algorithm has begun. Let us call. the number ()f entri;es tttat,must be sca~ned
. . , ' .1 . ' '

in some particular cycle, size (cycle).

Now suppose that &n eveni Mscan-i for s~ parttcular i ~s just

occurred. We must prove that there will be,,cu1qt~r tY,•ntnM' scan ... i in the

behavior with.in a bounded number of. scan !tte11~... ~all the cycle durjng wMch

Mscan-i occurred cycle-a and the next cycle call cycle~a+l., - The ;{lumber of

scan events between Mscan-i and M'scan•i is lesS, than

size (cycle-a) -- the total number of s~an events in cycle-a

+size (cycle-a+l) ~-the total number of sc;an even+sin the next cycle.

-86-

Thus. if the array is expanded behind the current scan, each event of the·
. . .

fonn Mscan.,.; will be followed by another stlct\ event withir'l a bounded number

of scan events. The bound ts not known at- the tiftie tha·t Mscan-i happens;

it is, hoWever, known a bOut'lded time lat~r, whett the first J)Y'Ocess in the

state-array structu~e is ·next scanm!d. The seart a"lgorittrn therefore

remains fair even if the state-array is e*Panded Wftbout bound over ti•.

A specific algorittll1 for expanding the state-ar.ray:
' • • • < ' ;"/ ~ ... ~

A specific algoritt'ln for expanding the state-array was presented irl

the infonltal discussion of the theeren. :That algOr'itflm t~•ted the state·

array as a list rather than an array. In that' IWOftl the idf!ntf·fiar •·state-

array" is used to name the 1 i st of state-array · elentmts: · The ·notation -­

state-array[f] -- must be understood as a s~1tcally indexed reference into

the list that state-array pOints at. That.is, ·ttwe expression'

state-array[t]

may be assumed to return a pointer to the cell on the state-array list 'for

the ith process.

The programs for manipulating state'.'"an-ay, alias-protected-actor and

regulate-mutual-exclusion, were written ·wfth the idea in mind that state-array

would indeed be an array. Now that state-array is ,to be a list those programs

might have to be modified.

All references to state-array that occur in alias~protected-actor always

refer to a specific element of it. Since tt\e express1on -- state-array[i] -­

returns a pointer to the appropriate celh therefe.-ences in.alias-protected-

-87-

actor will continue to work even though state-array is a list.

The algorithm for regulate-mutual-exclusion though references all the

entries of state-array sequentially and it is more convenient to rewrite

that actor using car's and cdr's than it is to try to make the array notation

work. A version of regulate-mutual-exclusion that is particularized for the

case of state-array being a list is presented on the following page:

-88-

(defun regulate-mutual -exclusion nil

(prog. Ci-state· state·~)

Step-2

Step-4

Step-6

Step-8

Step-9

(se·tq i--state state-array)

(setq state (car i-state)) ·

(cond

((equa 1 state • .idle l)(goto step .. 9H
({equal state trequest')(goto step ·4))

(else (error))

(rplaca i-state 'grant')

;; loop waiting for state-array[i], Le. i-state, to be 'done•

(setq state {car i ... state))

(cond

((equal state·'grant')(goto step-6))

((equal state 'done• }(goto step-8))

(else (error)}

(rplaca i-state 'idle')

;; resume or continue scanning the state-array

(cond

({null (cdr i-state))

;if at .end of state-array list

;then reset i-state to.beginning

(setq i-state state-array))

(else {setq i-state lcdr i-state))))

;else set i-state to next entry.

(goto step-2)))

-89-

The operati.on of creating a new process may add the new, process to the

state-array by cons'ing a cell for the new process onto state-array. This

procedure is described in algorithms for actors fork and expand-state array

below:

fork =

{l) receive argument and call it new-process

(2) do whatever has to be done in the innards of the system to create a

new process

(3) expand-state-array for the new-process {see below)

(4) exit to externally supplied continuation

END

Expand-state-array =
(1) receive argument and call it new-process

{2) allocate a new cell and call it new-state. Update new state's initial

contents to be 'idle'

(3) cons new-state onto state-array and let new-state-array = the returned

value

(4) Store new-state in the bowels of the system in a manner associated with

new-process

(5) Update state·array:= new-state-array

(6) Exit

END

-90-

The actor expand~state-array is expressed formally in LISP on the

fo 11 owing page:

-91-

(defun expand-state-array (new process)

(prog (ne·w-state new-state;..array}

Step-2

Step-3

Step-4

Step-5

(setq new-state 1 idle')

(setq new-state-array (cons new .. state state-array)).

(. ~· store new-state in the systetn. ~·.r)

(_setq state-array new-state...arrayl))

The scan algorithm in the revised regulate-mutual-exclusion here uses

the pointer in th_e cell st.ate-array as '1the'beginni_J)g of the scan".

The ex.pansi.on algorithm i.n expaAd-state-arr~.v ·alwaYs,.-ad(fs. new processes before

concurrently, it is apparent that hannful iA.teractions are quite possible.

let us call the events indicated by step (3) Econs-i:

Econs-i: ~state-array receives

(message: ['cons' new-stateJ

(reply-to: step (3)l) in a.>.
1

Also, let Eupdate-i represent the events in step (5);

Eupdate-i: <state-array receives

(message: [•update' to new-state-a·rray]

(reply-to: step (6))) in a1>.

Suppose that two processes, a,i and o.j' are executing ~xgan~-state-array_ at

the same time. The following ordering of events is possible:

-92-

in CXi :

At the time of Econs-j, state,-array has not yet been updated to

include a 1,
5

new entry. So both a. and a. would cr.eate the new-state-arra,.y ' l J < •

using the same pr~vious state-array. This leads to structures like

new-state-array for ·

new-state-array
for
a..

J "

••••

Whichever process updates state-array in. step (5) ~~ is the one that will win

out in the end. Its new-state cell will be included in the state-array list;

-93-

the other entry, while not garbage nor possessing a dangling reference, will

never be referenceable from state-array. The effect is that that process

will never be noticed by regulate-mutual-exclusion; i.e. requests from that

process would never be serviced. If we were to allow this situation, the

mutual exclusion operator would no longer be fair.

The solution as we noted earlier is to treat expand-state-arrax as a
. ·" .. ,, '•}'-: . '.

protected actor and only allow it to be accessed via an encasing alias actor

that provides fair D1Jtual exclusion. If we assume that all initial processes

are represented in the state-array then we may specify that process creation

occurs in a mutually exclus'he manner by protecting the actor fork with precisely

the mutual exclusion operator that we have_des-cribed here. That is we may

define an actor alias-fork that is identical to alias-protected-actor, except

it relays' the input messages to fork instead of protected-actor. In other
. .

wrds we may use state-array to protect the actor that expands state-array!

The final question we RRJst resolve is whether there can be any harmful

interactions between expand-state-array and other actors that reference the

state-array. Alias protected-actor only references elements of the state-array

and only that one element associated with the running process. Since expand­

state-array never modifies any existing components of the state~array structure

'there can be no hannful interactions between these two actors.
·'

Regulate-mutual-exclusion~ however, does more than reference the components

of state-array, it needs to reference the start of the structure every time a new

cycle begins -- i.e. every time the scan reaches the last element of the array. If

-94-

expand-state-array actually succeeds at. getting the newly added elements
·/··

'
included in the scan·, regulate-mutual-exclusion must· use the cell state-array

as th.e starting point of the array. That is, when the a_lg_orithm says to se~

i:= the first process known, that means setti_ng i such that state-array[i] will

point at the same entry that state-array points to.

Suppose that !. is set to state-array concurrent with some external process
' J , ; , ... ~ ' ~

executing expand-state.:.array. Can that lead to any harmful interactions?
, ~, , ~ --;') , ~· T

If !. is set after st~p (5) of the algorithm, then !. will acquire the; new
~~ '".~·: ',)'/·· ., . · ... '·.~-

value of state-array and the next element that will be scanned is newly added
. (, " : .-_ . r • ~- .

element. By the time step (5) happens a11 the processi~g associated with

expanding the array will have already been done -~ s~ep (5) is t~e _l~st ~ctiv1ty

in the algorithn except for the return. Therefore there is no difficulty with
,, 'f .. J. •,• ·,-,' ' .. ,·, ! .

the newly added element being scanned at this time.

If i is s.et to state-array before step (5). i.e. between steps (1) .and (5).
. • • ', . ~ ' ._ > - -

. then the value it obtains is the previous valu.e of state-arra,y._ Jn this case the
. . • .. '· ,, .. J •. ,.,.-1'1 ~;1~j" \~·

next element scanned will be an element added during a previous expansion of the
.; ·" ~ !": ' . ~ ,·· . , ! . .

array or an original member of the array, and will not ht! the element being•
1
ac(ded

"" :• "i > ;' ..: ~ ; ~j ~· ·;": .. ' ' ' j; ; . . '

now. Jn this case the newly added member will not be scanned until .a future c1cle
. . ','':"\ '

starts. We know that the element will be scanned in the future because the . '
" \ ' ~; :. • ' i ~ ~ '

scanning algorithm is known to be fair.

So, the state-array structure may be expanded safely with no possible

timing errors provided only that the expansion is done fo a mutually exclusive

fashion.

~--~ -----------~ ---

-95-

Conclusion of proof: We proved .in Part I t~t the system of actors

alias-protectecJ.:.actor 'and·regulate-mutual.;.exclusfon combine to form a

mutual exclusion operator for the actor pr.otes~ed.-actor. In part II' we

proved that the system of actors fairly enc~s~,protec;ted-actor; that is all

messages that are received by the ~Has are retransmitted. tq the protected ..

actor, and all of the protected .. actor's answers are delivered to the external

continuation.

Putting together Pcarts I and II establ hbe,s that al ias-protected~actor
t ·. . ~ • ''.' , , . .

is a fair mutual exclusion actor for protected-actor as required by the

main theorem.

-96-

3. Bus~itins Synchronization Al99rithms Usfng Extellded Cells

. .

In the previ.ous chapter we described an a_lgorithm that achieves fair

mutual exclusi.on of an arbitrary number· of processes usi_ng eel 1 s as the

synchronozation prim1tives. That.algorithm requires a relatively large

amount of storage though -- 1t requires an array of cells proportional in

size to the number of processes in the system. In this chapter we will

describe an a1gorittm that 1:1ses extended cells as.the synchronization

primitives; this algorittvn also achieves fair mutual exclusion but requires

only three extended cells of storage to do it.

An extended cell is a cell that is able to model the read-modify-write

instructions that are c011111onplace in present-day computers. These

instructions enable a process to both read and update the contents of a

memory locatfon in one indivisible activity. In other words. the mutual

exclusion that is provided by the computer hardware to guard against

simultaneous updates to a cell is extended ever so slightly to allow these

compound instructions.

Unfair mutual exclusion is trivially achievable using read/modify/write

instructions as is well known. by means of binary. lock variables. Suppose

we redefine eel ls so that they wi 11 al so respond to test-and-set messages.

In response to such a message, the cell will update its contents to l, and

return its previous contents to. the continuation. We will see the simple

unfair algorithm shortly.

-97-

Fair mutual exclusion algorithms need a wee bit more memory than just

a binary lock provides and hence we need an instruction that is a little

more powerful. That instruction is the add constant instruction. When a

cell receives a message of the form

(message: [•add constant' 27] .

{reply-to: continuatiori)) ·

i.t updates its contents to be its previous conten:ts plus the constant, 27 in

this case. The value retu'rned to the continuation 'iS 'the: new updated 'value.

We will use t.he add constant instruction in three specific configurations

only. It will be used to add l to a cell, to ·add-1 to a cell, and to test­

and-set a cell. test-and-set is simulated with add constant instructions by

means of the following algorithm:

test-and-set =

(1) a~d constant l to the cell. call the returned val._ue state.

(2) there are two cases for state:

END

(2-1) state~ l -- add .constant - 1 to cell and return 1 as the

value of the test-and-set.

(2-2) state = l -- return 0 as the value- of the test-and-set.

Hereafter we shall use the word increment .as a $j'OQnym for .add,constant

l and the word decrement for add constant -l. test-:(\nd-:~et will refer to the

-98-

algorith~ specified above.

Unfair mutual exclusion may be implemented by a simple algorithm that
.

loops trying to set a binary lock variable:

unfair-mutual-exclusion :

(1) test-and-set the cell, lock ... cel 1, 41~1.Llet · !ttte • .the returned

previous contents of lock.~11

(2) there ire two cases for· state~

(2-1) state 'I- O -- repeat from step {lJ

(2-2) state = O -- proceed with st,ep. (3)

(3) re.fe17~nce the protec~ed cri;tical reg1~ .as ~1.W'-1

(4) update lock-cell:=O

END

This algorittln is not fair for a very speeific reason. Let's define.

the word "sessi~n* to refe~ to 'those a'ctf~~~tieS 0ccU.~Hng in some particular

process, from the first time the process exec~fes step;tl1 abdve" until the

process is let into the critical region ·ot,C"e. arid cil.es ~ut of it. I.e. a

session corresponds to one interaction of.-:a p~ocess .;1th the critical region.

A session may last forever only because during one session of some process,

aa' an unbounded number of sessions for other processes may take place.

HOwever, at any given time t-here are'on~,>i a 'b0unci~d number ()f processes

existant in the computation system. So how ddes poor.ci
8

·manage to get stuck

-99-

in an infinite loop? There are two ways: either some proces-s-es ~re under-
. .

taking unbounded numbers of sessions -- e.g. they are in a loop wherein they
. ""

enter and exit the critical region; or some prQCesses are off somewhere busily

creating new processes in an unbounded fashion, and these newly created

processes are engagi_ng in sessions with the critical reg1'" over here. If

both these "session sources 11 could be muted so that during one session for a

only a bounded number of other sessions could take place, then aa could. not

get stuck. And indeed bot~ sources can be quenched by-a_scheme that requires

only three read/modify/write type cells, as we shall show.

Consider first the problem of repeat sessions. We need to achieve the

following specification: Suppose aa and ab are two processes waiting to

pass through the mutual exclusion operator; and suppose that ab makes it

through before aa· ~must not att~pt to pass through again until a
1

passes

through once. You may note that this spedficati'on, is .similar to the
. ~ ...

constraint satisfied by the scan algorithm presented in the previous section.

A sure way of keeping ~ ft-Oltl trying to reenter the compe,tit1on is_ to

keep~ locked.up inside the mutual exclusion' device until aa· gets through.

We imagine a device·with two "chambers", an input chamber and an output chamber.

Processes When they want to enter ~o into the input chamber to wait. They are

allowed out of the input chamber one by one and they pass through the critical

section. Afterwards, the processes are held up in the output chamber and

made to wait some more until the input chamber is empty. See the illustration

below:

input

chamb~r

-100-

critical
region

chanber

A device 1 ike this has the potential for f~irm.ess .. if all t~ waft loops in.

both chambers can be shown to be of bouQded du.t'ation.

An algorittvn along these lines is u-.-:ena~te¢ on the next two pages,

and described thereafter: The key to the :~lgaritba is that entering and

exiting operations are decoupled; whtle p.rocesses are allowed to exit the

device, none are allowed to enter. The cell. !!J?q/fill .. state. ~eeps trac~

of whether the device ; s being JP led or ~ti~.

-101 ...

(1)

(2)

(3)

announce --- increment input-counter J. '.·.

start of mutually
exclusive region

(4)

(5)

(6)

(8)

(9)

(10)

(11)

(12)

no

end of mutually
exclusive region

test-and~set lock

no

yes note that lock
now equals 1.

read empty/fill state cell

no --
update lock := 0

yes

referen e the
critical region

J,
increment output-counter

l
decrement input-counter

update l
yes -- update mpty/fill
state := 'empt ing'

:= 0

(13)

(l ll)

(15)

(16)

(17)

(18)

-102-

read

decrement

no

state cell

no

yes

yes -- update
empty/fill state
'filling'

~

-103-

fair-mutual-exclusion :: . (assumi.ng no new processes are created)

-- requires three read/modify/write type ce1ls:· ':

input-counter = number of processes either waiting to enter

cri.tical retion or in the· critical region.

output-counter = number of processes waiting to exit operator
1, : -' -

lock = 0 if no process is in cri-tical region

= l if a process is in critical region

·(1) announce desfre to enter by incrementing the input-counter

(2) test-and-set lock, and let lock-state = returi}ed previous value

{3) there are two cases for lock-state

(3-1) lock-state# O -- repeat from step (2)

(3-2) lock-state = O -- proceed with ·step {4) -- note that the

lock now equals 1. regardless

(4) read contents of a nonnal cell, called empty/fill-state, ancf let

state = contents

(5) there are two cases for state:

(5-1) state= 'emptying' -- update lock= 0 -- i.e. free the lock

and repeat from step (2)

(5-2) state = 'filling' -- proceed with step (6)

(6) process is now validly inside mutual exclusion operator; reference the

critical region as required

-104-

(.7) the process has finished referencfog the cr_itical region. It is n~ in

th.e "output chamber"

(8) increment the output-counter

(9) decrement the input-counter, and le~ CO\lnter = r~turned value
'\.,

(10) there are two cases for counter:

(10~1) counter ~ O .-- skip to step 02l below

(10-2) counter= O -- proceed with step (11)

(11) update empty/fill-state:= 'emptying'

(12) update lock:=O -- i.e.· free the lock
. .., ..

(13) read contents of empty/fill-state, and .let .state ~. cQntents
., ,,I

(14) there are two cases for state:

(14-1) state= 'filling' -- repeat from step .(13)

(14-2) state = •emptying' -- proceed ~ith step ns>
{15) decrement the output-counter. and .let counter • returned value

(16) there are two cases for counter:

(16~ 1) counter I- 0 -- skip to state (18) below

(16-2) counter = 0 -- proceed with step (17) .

(17) update empty/fill-state:= 'filling'

(18} exit to the outside world.

Mutual exclusion per se is provided b.v t.,_ binaFy lod:-cell. The

protecUon of the lock ranges frQqi step, (4} to. stet'. (}Z); cmly one process at
' . •. ·- .

a time will ever execute in that mutually exc}U;$iV•· Ngf;.on ... ,¥:ot:t.w111 note

that the decoupling state variable, empty/fill-state is only referenced within

-105-

that region and therefore there will never be any ambiguity as to the state

of the device •. We may study each of its modes separately.

In 'filHng' mode, processes may arrive at both the input and output

chambers of the device. In the input stage·<the processes will pile up in

the loop of steps (2)-(3), accumulating there while other processes are

executing in the critical section. At the output stage, processes also

must wai"t, here in the loop of steps (13} and (l4). ·This latter loop is

control led by the instructions at steps (9), {lO) and (11}, which control

the empty/fill state of the device by examining the fullness of the input

chamber.

During •emptying', processes may also accumulate at the input.gate

to the mutual exclusion operator, however they may' not enter the device.

In this mode the processes that are looping thr&ugh the output chamber

peel themselves off and return to society at large. Thus liberated, any

or all of the processes might inmediately turn around and try to get back

into the place, of course; however the decoupling,of the input from the

output due to the mode bei.ng 'emptying' prevents this feedback path from

becoming oscillatory.

The fairness of this algorithm .follows from the bounded duration of

all its loops. There are three loops in the program:

(l) the loop at steps (2)-(3) where each process tries to grab the lock.

(2) the loop at steps (2)-(5) waiting for the state to be 'filling'

(3) the loop at steps (13)-(14} waiting for the state to be 'emptying'

-106-

We shall analyze the$e three loops and show. etch to be of ·bounded dtiration.

We assume, of course, ·that the. program s.tarts 'Outdn 1ts natural in1t1al

conditions: all counters = o, the lock = 0• 8J1Pt.v/fi11 = 'filling', and J

there are no processes inside -the operator inf ti ally. .Also reea 11 that

at this time we hypothesize that .AO new p~ are created ·fo the systeit;

we will extend the solution to cover that use.sftortly.

let's consider ~he loops ht reverse enter. starting With the loop

waiting for the state to become 'aaptying'. Ttte. 'ehd"-test for the loop is
.

satisfied when input-counter becQRtes o. . It 1's certafn1y the case that there

is a maximum value attainable by input-counter: it may never exceed the· '

number of _processes exbtant h• the. system. , Now. inpJ.lt;;.counter f s decremented

only within the mu.t'4a11y exclusive regien.·Whtch. Mltll ··tttat it may be decremented

only while processes are allpwed· into that. region:.. That f~, 'input-counter may

be decreme.nted only whlle the !Qutual e>.cclusion opei'ator 4s in 'filling* Rl()de.

During this, mode, though, no. processes are 1Hewechback out into the actor

society where they rpay increment. input-counter·•gain. Thus· during the phase

when input-counUar sqay b~ decr~ented, no·~rocess ·tft6t has bath incremented

it and decremented it corresondingly may increment it again.· 'Nor, of· course,

wi 11 any process increment .the< inp~t...counter .:twice ·wtt1krut, decrementing ·it

in between.

This implies that inpµt-counter may be tncrEtinented only a bounded number

of times per 'filling' mode.· Once all processes have incremented it one,

though its value may be far less than the maximum pos$ible value, there wi;ll

be no more increments until the mode switches to 'emptying'.

-~------- ------··--

-107-.

The acti.vity of letting processes into the critical region will go

on until there is a mode switch. Since there are only a bounded number of

increments possible until the mode s.wltches~ and sinc'e,each increment is

uniquely matched with a decrement, the switching of the mode is inevitable

and will happen in bounded time.

Thus loop (3) -- waiting for empty/fill-state to equal 'emptying' -­

is a loop of bounded duration.

Now let's examine th~ next loop up.the ehain, the loop at.steps (2)

through (5) waiting for the state to switch ba~k to 1 filling 1
• The transition

here is directly controlled by the activities of processes as they exit the

output chamber in steps (13) -(18).

·It is clear that while the output chamber is filling up, the value of

output-counter will increase to a maximum value. The operation of emptying

the chamber decrements the counter back to 0 ~ile maintaining a decoupled

relationship with the input of the device; during the emptying phase no processes

are allowed to enter the output stage and so the output-counter is not subject

to incrementing during that period. The opef\ation of decrementing a number

that is not bei_ng otherwise updated is an operation of bounded duration.
;i.;

Therefore the second loop, also, is guaranteed to terminate in a bounded

amount of time.

We should note before passing one important d~tail in the output

algorithm, a fragment of which is reproduced below:

-108-

(15) decrement the

(16)

is
returned value

=O
?

yes

t
(17) update empty/fill state := 'fiJ.ling"

no

It is quite important that the value tested in step (16) is the value

returned indivisibly by the decrement instruction, and that the value tested

is not obtained by an independent read contents message. The algorittwn as

it is results in there being a unfque' event that observes output-count = 0

and hence a unique event that resets the mode to 'fi 11 ing' . Were the test an

independent activity, several different processes could decrement the counter

before any tested it, and they all could observe output-count = O.

-109-

It is not harmful in and of itself for several events to update
•

state= 'filling'· redundantly. If, however, some one of the processes tarried

at length between step {16) -- the .test -- a~d step (17) -- the update -- it

might reset the state durfog the next pass of the program. after the state

had just been set to 'emptying' for another go round. ·If so, the emptying of

the output chamber would be aborted in mid-stream and if no more processes ever

entered the device, the output chamber woultt never .be. emptied.

The algorithm as specified does not allow tttis potential deadlock.

Finally we reach the loop at the front door of the mutual exclusion

device, the loop where processes vie with each other to grab the lock. This

loop, of course, is the embryo of the whole machine, the sequence of events

that assures mutual exclusion in the first place •. The boundedness of this

loop is implied by the bound on the loop encompa.ssing steps (2) through (5);

the larger loop encloses the former one.

We see then that the algorithm presented implements mutual exclusion

and does so without introducing unbounded loops in the behavior of any process.

The algorithm thus implements fair-mutual-exclusion as advertised. Furthermore

it does so using a fixed number of cells, albeit cells extended to model read/

modify/write instructions. This means that all synchronization primitives -­

semaphores, serializiers, what have you -- may be implemented using just the

nonnal, primitive memory arbitration schemes provided by most computer hardware,

with no extra software-induced indivisibility of operation.

Other interesting equivalences of power may be demonstrated using this

-110-

algorithm. The algorithm cannot be imp1ement$:1 u~ing unfair semaphores
. .

.and normal, unextended cells. This is because the'annt>tincement of

arriving· processes accomplUhed- by increilel1ting input-counter· ih~. step (1)

could not be assured with an unfair semaphore-;. Snt, 'tile algorf thm could

work given unfair semaphores that will 'ans•r the questibn, "Are any processes

at al 1 waiting to get through you?" - Given these ·~ather tri'~ially extended

semaphores, all the coun<ters in the algt>rithm Would :bt!com~ obsolete, and· the -

tests for zero would be f"eplaced tty the questtt)n:· · 1hat is'to say,.this

slightly extended unfa1or semaphore has equha19t't P&Wer tO tll! g1or1ous fair

semaphore.

The algorithm as presented wtll ottly work &()''long as the number of

processes in the syste111 remafhs boundecL Tf there ts' a pr"oeess source out

somewhere busily grinding out ne~ proeesses, tKen the:' fnf)ut-c6unter may be

incremented forever and the mode switch 1from •'ffHfog• to •emptying' may

never come about. Inth'is cas~ WE! would Mndstagrrant ~aols of processes

col lecti,ng in the output chambers of • 1ocics' in the system.
' .. . ', "' - ·; ~' ~:/' ·... . ·• • .·. ' : : . ·.. '4 ~-~·

A way must' be .found to pl"event newlY' createdl)T"Ocesses from compet1ng

with processes -already in existence untn the ofcft!r proc~ss~s get· th~o~gh

the mutual exclusion device once. One way'that"thfs tnay:be done is by

restrfct1ng the actor system to have ncf iRore thin one of the devices 'and

insisting that all process ereatioft hfpperi'behind that 'uhfque lock. Further,

each newly created process must mimic 'its parent ,and ~ait in the' output chamber

until ~entptytngt mode begins. This modiftcat'iorl nas the effeC:t,of keeping

-111-

the set of processes that are candidates for entrance into the mutual exclusion

device from acquiring any new members during any one filling session. The

boundedness of the loops in the algorithm depends on this fact alone.

This solution restricti.ng the system to one mutual exclusion operator

is extremely inelegant and clearly inefficient. However it does work -- it

does implement fair mutual exclusion for an arbitrary number of processes

which is the major theoretic.al concern.

-112-

4. Conclusion

We have presented two algorithms tbt·t iMp,1Ment, fa1r tmrtual exclusion

for an arbitrary number of processes.· Both 1:1gor1tmn use relatively sitn})le

synchronization primitives; the first solutfohutts cells and the second uses

cells extended so as -to model 1"ead/1nodffy/wt1tt tnstructions.

The celLbased solution utiltzed an array,.of fflh wfth one cell per

process. Similar algorithms have appeaNCt-~ifl 'ttte~Mmature prevfoosly

as we have noted; the uniq1.tecontribution that we make is to show how the

algorithm may be generalized from an array to a variable size date structure.

We presented an algorithm for expanding that structure through the addition

of newly created processes and proved that fair mutual exclusion could be

retained by the algorithm evenif the number of processes in the system were

to grow without bound over time.

We proved that the fairness of the solution in the face of proliferating

processes depends critically on where the new processes are appended to the

structure of cells. In our solution there is a definite order to the cells

in the structure and requests from processes to pass through the operator are

serviced via a scan algorithm that scans from the first to the last cell in

that order. If the new processes are added at the end of the data structure -­

i.e. after the last cell -- then the scan algorithm could get "stuck" in the

expanding, new portion of the structure. This would happen if new processes

were being added and each put in a request to pass through at a faster rate

than requests were being serviced.

' '"' .· . .. ' . ' . -~.. . . ' .,
, . ~ '

-113,..

However, if the new proce$ses are inserted· a~ t~ l,leg;inning of the

data S true tu re i , e, before the first prOQJSS ~.$ Ce 11 ... - thf!Jl the sc-anner

cannot get stuck. Whenever tile scan algorithm. fifl;ishes the hst process it

Pllst of course reset itself to the .. first.,prqct§s~, thus wrapping around. ·We

said that a new cycle of th' sc~n beg~n everyt,iRlf: the scan were reset in this

111anner. The important fact h that.if ,.ew pro~esses are.add•d at the beginning

of the structure, the size of eetch cycle is some. particul;ar fixed number. Two
. '

different cycles may very well be of different sizes, but once a cycle begins

its size does not change. Therefore once _a ¥.Y~l' begins we may be sure that

it will end in a bounded numbe.r of .st.f:ll),s and 1;, n,w,cye:le ;begun thereafter.

The fairness of the scanning opera.tiofl,,follows from the boundedness of ·

each cycle. Because that means that every'.time ·~·particular process is

scanned it will be scanned again in the future within a bounded number of

events.

The other point to be careful of in. expanding the data structure is to

make sure that only one proce~s .. expands it ctt a timEt.. That is, the operation

of expanding the eel l. structure to acco111Qdate ,newly (:.reated processes must ·

itself be done in a mutually exclusive fashion.

The second fair mutual ~clu$ion solution t~at ·~ presented used read/

modify/write type cells as the synchronization primitive. It is well known

how to implement unfair mutual exclusion with these extended cells, using a

test-and-set instruction and a binary lock variable. We prove that it is

possible to achieve fair mutual exclusion also using a small number of these

-114-

extended cells; 1n particular the number of·tetls re\Qirect is much l'ess than

the number of processes in the system.

However a serious defictency of thh algorithm is that it introduces

considerable. delay in the exeeution of prog~t>eyl>nd that 'required for

mutual e~clusion pe~ se. M\ftual extlusiori ilgbrfthms may always delay

processes that are trying to enter the critical, protected region; our sec0nd

algorithm he~. thoagh. also del*,ys the procedes as they try to exit from

the device~

From a theoretical standpoint ·it is 1ttteresting that fair mutual

exclusion of an arbitrary numbe~ of proc1!sses may he f.nplemented using su~;h

simple primitives. In this sense more sophisticated primitiV~s s·uch as

serializers have no more pawer than stmple little cells. · 8ut from a

practical point of view differences do emerge. · Both algot-itlvns that we

present have efficiency related drawbacks: lhe cell solution requires lots

of memory -- it needs one cell per process per mutual exclusion ·operator.

The extended cell solution is slow -- it tntroduces 1fpptoxirnately twice as

much delay on average than is required by mutual ext:'fosion per se. · So while

primitives like cells are complete synchroniiatfon primitives and a theory

does not need more elaborate primitives in orcter to coordinate parallel

processes, cell solutions are inefficient. More sophisticated synchronization

primitives are desirable for this reason.

-115-

BIBLIOGRAPHY

Bobrow, Daniel G. and B. Wegbreit (1973), A Moftl> andilt'kk lmpJ~tation
of Multiple Environments, Comm. of the ACM, Vol. 16, No~ ''10, pp 591-603,
October. 1973. ·

de Bruijn, N.6. (1968). Additional Connents on a Prbb1• in c<>Reurrerit Progranming
control, Comm. of the ACM, Vol. 10, No. 3, pp 1'37-138; March, 1968.

Burstall, Rod. M., J.S. Collins:, and R.J.. POJlpl<ettone (l97l). Progra"'9ing in
POP-2, Edinburgh' Univel'sity Press, l9tl." .~ ·

Courtois, P .J., F. Heymans, and D.L. Parnas (1971). Concurrent ContrQl with
uReaders" and 11Wrf:ter.s 11

:, Cemt:~ of the' MM; vot:~'-'14, No. lt>~ pp 667.;.668,
October 1971 . i • . · ·'

Dijkstra, Ed~gar W. (1965}. Solutioo of a f>rotl19111 in 'Concurrent Programming
Control, Comm. of the ACM, Vol. Bs NO\ 9, p 5'9·, !eptemtJer.1965.

Fennel, R.D. tnd V .R. lesser· (19.75). '-anllelfsm: in A~ f.. PrGf>lem Solvjng:
A tase Study of. ijeanay I I, DeparbMmt Of .. COlllputf!l" ·Sci encl!, · CftJ,
October 1975. · · · ·' ·

Goodman, Nat and C.C. (ioodrnan {1973). Introduction to LOGO a.8fietry, ~ionics
Research Report,· School of Artificfal,'la~ligence., lmiversitY''\Of
Edinburgh, June 1973.

Greif, Irene (1975). Semantks of Conaun1cat1ng Paranel Processes, MAC-TR-154,
M.I.T., September 1975. ·

Greif, Irene and c. Hewitt (1974,). Actor Senaantics·of ·Pt:ANNER-73, Artificial
Intel 1 igence Laboratory Wbrking, ,papet I .81, M. l.T~"·November 1974.

Habermann, A. Nico (1972). Synchronization of CC>11111Unicating Processes, Conm. of
the ACM, Vol. 15, No. 3, pp 171-176, March 1972.

Hewitt, Carl (1974) •. Protection and Synchronization in Actor Systems, Artificial
Intelligence Laboratory Working Paper II 83, M.I.T., November 1974.

Hewitt, Carl (1975). How to Use What you Know, Artificial Intelligence
Laboratory Working Paper # 93, May 1975 ..

Hewitt~ Carl and R. Atkinson (1976). Synchronization in Actor Systems, draft,
April , 1976.

/

---- -----
- ----~--------·-- -- -

- - -~ -----~-------- -~-~

-116-

Hill, J. Carver (1973). Synchroniefng P.n>cesses with Manory-Content-Generated
Interrupts. Conm. of the ACM, Vol-~-·11, No. 6, pp·350-351, June 1973.

Knuth, Donald E. (1966). Additional Ccuanents on a Problem in Concurrent
Progr~ing CQntrol. Cbllln.: of the IL'M, Ye:l .. ,.:;t, NO. s, pp ltl-322,
May 1966. . . . '·

Misunas, David P. (1975). A Computer Architect~re for Data-Flow Computation,
S.K. Thesis, Department •f £le¢•rital:Qtoihll!el"i_ng>and Computer?·~t~c'!,
H .. I. T. dune 1g.1s. ·

Parnas, ~avid L. (1969}. OD SitJt\ll~ting RebMOrtcs of: Pal-aHel Prooess6S in
Which Simultaneous Events.-*y Ocalf",. a...· of' the AOf,'· Vol. 12~ No. 9,
pp 519-531, September 1969

Pratt, Terrel!lce w. (1975).-,, Progreanint l•"l'lag~s:·DUtgn and·1..,,1-.entatfon,
Prentice-Hall Inc., Englewood Cliffs, N.J., 1975. . ' ·· .. · ··

Presser, Leott {1975) ~- Multi .-,rog-ramint Coordtnation, ,tbthputinv SU1'vey-s., Vol. 7,
No. l , pp. 21-44, March 197,S.~ ·

Schl~g,eter, Gwnter (1 ~75). Acces$. S1tl~tron~1atlon~ead:Deadl0cit Analysis 1tt
· O.ta~se SysU.s:. An Implementeti• Ot1~tl;ptoack•-.: ,lrrfordlation
Sys terns, Vo 1 . 1 , pp 97 -102, Pergamon Press, 1975. ' · · .·.

Shoshan.~, ~. an~)LJ. Bernstein .(1969)~ S.ratttt•nlildioa ift ahrallel­
Accessed Database, Comm. of tht ACM; YoL ·12.,.:'No. :11. Nov 1969.

Stansfield, James L. (1975). Programming a Dialogue Teaching Situation,
Ph •. D. Tht!sis, ~iverstty. of Edinbut'fh, ;daau.ity'.•1915. ·

Weng, Kung-Song (1975). Stream Oriented Computation in Recursive Data Flow
Scht!lm~s .. S.M~ ·-the$h, Oepartment:of El~tt"tcat-,EJtgineering and·
C-ompu ter Sc i·enc~ , M. I. t. , Septemt>at · ltl5. < : . ·

CS-TR Scanning Project
Document Control Form

Report # Les -TR - p.J

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
)i?(Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR}

D -Other:

D Technical Memo (TM}

Date : l!_j 3 (js

Document Information Number of pages: /J.o (1j.{-1 fY\RiCfS l
Not to include DOD forms, printer lntstructions, etc ... (;I01'nai pages only.

Originals are:

D Single-sided or

~Double-sided
Print type:

0 TypeMiter 0 Offset Press

Intended to be printed as :

D Single-sided or

~Double-sided

D Laser Print

D InkJet Printer ~ Unknown D Other:.~---~---
Check each if included with document:

D DOOForm

Xspine

D Funding Agent Form

D Printers Notes

~Cover Page

D Photo negatives

D Other: -------------
Page Data:

Blank Pages(byii.-numbel): __________ _

Photographs/Tonal Material tbYii.-numbel): ________ _

Other <nc1a dMaiploiolp.- number):
Description : Page Number:

::::Rn.AG(me.!f < (1' 5 2 u11tlt'0 (Oy'4fi, I ltl.Aek /\6'JTR!Cf.BL!yrJ~~PL(<;o.-.il.c~,
> J j '

((- 1'J-o) [AGIG fr) .(D J.- /IL

Scanning Agent Signoff:

Date Received: _l.iJ_l_I ~S Date Scanned: _/J_JJ}:L.J~s Date Returned: Jj_J J./ J cµ

~~,;~
Scanning Agent Signature:. ___ ~--......... =+--'-v-~ ---- Rev 111114 DSILCS Document Conlrol Fonn c:Abm.wd

- ---- -------------------

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Resear_ch Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

