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ABSTRACT

Two algorithms for the mutual exclusion problem are described and
proven to operate correctly. The algorithms are unique in that they use
very simple synchronization primitives yet are fair and retain their
fairness even if the number of parallel processes in the computer system
increases unboundedly over time. One of the algorithms uses simple cells
of read/write storage as the primitive; the algorithm is similar to the
classic algorithms for this problem proposed by Dijkstra and Knuth, but is
generalized to handle an arbitrary number of processes. The second
algorithm uses extended cells of storage that model read/modify/write
(e.g. test-and-set) instructions. While it is well known how to use read/
modify/write instructions to achieve unfair mutual exclusion, the1r use in
a fair algorithm is novel.

The results prove that cells of read/write storage are sufficiently
powerful primitives to achieve coordination of parallel processes. = There
is no theoretical necessity for a model of computation to include more

sophisticated synchronization primitives such as semaphores and serializers.

But while cells are sufficient, the algorithms are very inefficient; more
sophisticated primitives are desirable for that reason.
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Title: Associate Professor of Electrical Engineering
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1. Introduction

In thfs thesis we present two unique algorithms that solve the mutual
exclusion problem and we prove that the algorithms operate correctly. The
mutual exclusion prob]em is typified‘by a 5ituation in which there is some
critical resource that will not work correctiy if it is accessed simultaneously
- by multiple processes. For example tbe,criggca] resource might be a
data-base; if two processes were to modify the data-base at the same time the
resdlting information cpu]dﬁvery well be incgp§js¢ent, . Thezfuqctjon,qf a
mutual exclusion algorithm is to coordingtg_tge?sgveral processes involved
so that no two of them wi1]rever‘access the;requ;ce gpngurrently. | A];o,z
mutual exclusion algorithms are usually reqqfrad to be fair meaning that
- all processes that try to access the resoupéeiwjf1vbe g}]gyed‘to do so
eventually. That is, the algorithm must not be éble to lock out some or
all of the processes indefinitely. Both algorithms that we present are
fair. o

Mutual exclusion algorithms block the attempts of processes to enter
the critical resource while the resource is being referenced by a previous
prbcess. The algorithms that we present here are cailed busywaiting
algorithms. This means that when some process that wishes to enter the:
critical resource is blocked -- i.e. when the process must be prevented
from proceeding because the resource is busy -- the process waits in a loop

testing the value of some memory location. This is in contrast to devices




| such as semaphores [D1jkstra, 1968] or ser1allzers [Hew1tt 1975] that block
processes by suppend1ng their act1vat1on |
The f1rst algorithm that we present uses s1mp1e ce1]s of read/wr1te
memory as 1ts synchron1zation primit1ve The only instructions that these
-cells are assumed to implement are update instructions and read-contents
instructions. = The algorithm is mode11ed after the class1cal ones by
Dijkstra [Dijkstra, 1965] and ¥nuth [Kputh; ‘19667 in~that~it:vequires an
array of memory cells proportional in size to the number of processes in the
system Unlike the previous work, our algorithm geriéralizes so as to appTy'
to systems where the number of processes mdy grow unboundedly over time.
We prove the correctness of our algorithm using thE“dctor model of
computation. ; ,
The second mutual exclusion algorithm that‘wéastudyeuseSwan extended
type of cell as the syachronization primitivegﬁthe‘CeJTS”afe extended so as
to model read/modify/wrfte‘type instructions that are commonplace in real
computers. It is well known how tosimplement unfair mutual.exc1usion with
read/modify/write~instructions: this is the»standavdftest-and—sei loop on
a binary lock variable. We show how the unfair algorithm can be extended
to beyfeir and how the algorithm may be used in systems with an increasing
number of processes. | _
We shall, in the rest of the Introduction, review the basic e1ements‘
of the actor mbde]. Thai section primarily is intended to introduce the
syntax and basic definitions we will use in the thesfs, and to amplify those

elements of the model that are most relevant:here.



Chapter 2 presents the cell-based a'lgorithm and a forma] proof of 1ts
correctness. - Chapter 3 studies the extended-cen so?utwn and mformaﬂy

proves that it works propeﬂ y

1.1 Basic Elements

The actor model of computation as used 4n this thesis originated with
Carl Hewitt [Hewitt, 19‘73}%%*1]’ theoreticﬂ:mmaf the model were
extensively developed by lrene Greif in her receet dissertation [Greif, 1975].

Every computational entity in an actor System. is an 3cter. There is.
no distinction drawn between daaiand procedures -- both are actors.
Information is passed between actors b,y' an operation called message trans-
mission, which is rather analogous to argument ﬂ:ﬁ:ﬁm and returning in
conventional systems, It shouid be noted.that "mﬂsm transmission” does

not refer to any sort of inter-pr

cess commmicatien; there is only one
locus of control in a message transmission amd it fliows with the message form

source to target. As actors are the -only entities in an.actor ss_ys—tem>,_‘aand~
| since they imteract solely by means of mé%m teansmissions, therefore
message transmissions are the only activities that can take ;ﬁlm n.an .
actor system. Message transmissions are called events. | |

An actor is defined in terms of the messages it accepts ,an'd.the-

messages it gemerates. in response.  Most acters accept only a narrow class
of messages: the addition actor, for example, accepts messages containing. .

a sequence of numbers only; a list actor accepts messages such as 'first',



.

'rest', and 'cons'; and so forth. If an actor recewves a message it
doesn't like, it is expected to send an error-message to a spec1a1 actor
called the comp]a1nts department. We shnn‘t deal w1th errors or cqmp]aints
in any deta11 in th1s thes1s -

When an actor receives an acceptab]e message it may generate a very
large number of events as a resu]t of this stimulus.* Usually we are not
interested in specifying gll the messages seat in response; since message
transmissions are the only activities that occur emongst actofs, a specification
of all messages would require specifying the entire ector,doWn,to the level
of primitives. Insteadee Just specify a snb-set,of the events_generated
by the actor. The common strategy for suppressing unwanted detail is to
ignore most messa @ transmissions, exceptvthose whose targets are of interest.
Greif calls the setrnf interesting target actors the "distinguished set®.
Input/output specificationsecorrespond}to a distinguished set containing
(1) the actor being called and (2) the actor expected to receive the output.

A specification coacerned with side-effects might have all cells be in the

* We will see later that in some sense the actor generates the entire future
of the process. Here we mean the more limited set of messages obtained by
"regarding the actor as analogous to a called sub-procedure.



distinguished set. And so forth.

Consider as ah‘example of actor speéification,;the addition’actor.
We wish to convey that plus accepts messagés éontaihiﬁgvtwd numbers and
returns their sum as its answer. The specificatioh’ starts with the message
received by plus, and then states what messages fesultﬁ

Event 1: plus receives a message coﬁtainihg~n1 and n2, .
where nl and n2 are both nufibers.

Event 2: 7 receives a message containing nl + n2
~ There is a question-mark in event 2 because we haVe not stated

anywhere the identity of the actor which is to receive the answer. In most
programming languages there is an imp1icftfconfrol structure that governs
what happens tb the results of expressions. TypiédTIy,}if an exphession
like (+ 2 3) were embedded in another expression, e.g. (f (+ 2'3)), then the
result of (+ 2 3) is 1mplicit1y caused to be the argument to f. In the
actor model, such control structure is not imp1fcit]y'preseht; if one wiéhes

to receive an answer to a message an explicit continuation actor must be

‘present in the message. The activity whereby an actor "returns a value"
reduces to just another case of message transmission -- namely sending a
message containing the value to the tontinuation‘actor.

The plus actor must be defined so as to require that a continuation
actor is present in the original message:

If there is an event in the history of the form

event 1: plus receives a message containing nl and n2
where nl and n2 are both numbers, and
a continuation, called cont




then there is an event of the form .

event 2: cont receives a message contatnzng nl +n2

This specification is at a high level and says noth1ng about how plus.
does its job. The actor may use‘the,hardware<addfin;truction»1n.some.cases=
and multiple precision string addition in other cases, or whatever. There -
may be many, many events between event 1 and event 2,Q£he specification
leaves all that unspecified. But if event 1 does happen then eyenilz',
will happen. , :, :

This lattef interpretation of the actor definition is most impbrtant,,

The relationship between event 1 and event 2 is called the actor causality .
relationship: we say, event 1 causes event 2. .,Ibewhhpw“ of.this;ca&sality ;
is not specified --»merely.that}if event 1 bappens,'thenqthat.causeSzevent'2_
to happen later. '

The generalness of the causal link is reflected in the form efwthe“
event statements. -Event 2 is the activity of plus answering the caller.
Intuitively this event might be describéd‘as, ?glgg,éends nl+n2 to cont";
however, the way the event actually described there is.no mention of plus
at all. This is becausé plus may have delégated~tbevjobwof sending the
answer to some sub-actor or acquaintance. 1n,a;model where control is fully
nested -- e.g. in LISP Q- the answer woﬁld have to beﬁpassgd back up from- the
sub-procedure through plus on its way out to the original caller. However,
in the actor mdde] the control structure is represented explicitly in message
continuations; plus could very easily tell the sub-gactor to generate the

answer and send it directly to the original continuation.
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As it happens, this non¥nesting'of'caﬁtro1 occurs commonly in actor
definitions. Strictly speaking, a single actor may never generate more
than one message in any given process. IF the computation at hand requires
that several messages be sent -- as in a program of seﬁuéntialystatEments
or a nested expression --‘a*whOTe‘S]ew\offsnﬁsié¢&hifactbrs are created, one
for each message transmission. The final actor created will typically
be specified to send the~answer_to‘the'or?gﬁnal caller. No multi-processing
is imp]fed by this plethora ofvactor creation; it is mostly a device for
simpTifying'thé formal notation. It also helps avoid problems with the
values of local variables. Each actor is born with the values of other
actors “"frozen in" in a manner similar to thefprograwmﬁng'iangﬁage POP-2
[Burstall, Collins, Popplestone, 1971], and so there is no need for such
things as stack frames as formal devices, et al. | | ‘

The only case in wh%th'the.origfnail&“éé??edfaétor is the one that
actually sends the result back happens if the actor does no visible
comphtation. The actor cannot even do any-run-time argument type chécking.
Such an actor~must‘a?Ways,bé a primitive;‘primfthe’&ctors;‘hbwﬁver, can be
of this form and actually do useful things. |

Events are the basic computational units in the éétnr model and we
shall refer to them repeatedly. A more convenient syntax for events is
desirable therefore. Events will usually be written #n the'foliowing
format: |

< target receives message [in activator]* >

*This field is optional, it will bé used in\multi-process cases.



The format of a message is

(message: sequehce—of—arguments
(reply-to: continuation))

For example, the event of calling plus with thé'érguments 2 and 3
would be written B
event 1: < plus receives (message: [2 3]
(reply-to: cont)) >
and plus's response would be | S
event 2: <-cont.recéiVQS’(mes§ag95'[5])’>
As we have defined them, actors are devites that map an event into a
sequence of .events: they. map the event:whe&éby'thgy'are'called,into:the
sequence of message transmissions they cause. vAhaoﬁﬂtaadaseqnence of eveats
is called a behaviér. The sequence of events,caused“by‘an actnrxis-callad
the actor's behavior. | |
If an event cprrasponds‘to a procedure call -- i.e. it is of .the form
_event 1: < procedure receives (message: [r-dtgumenisf-] v
: '(replyrto::return—pt)) >,
then it will cause many events but eventually,}hopeﬂ&ily,atherévwi]] be an wu,'
event: | | | |
event n: < return-pt recéivesp(messagei [--result of précedure—-])}
0f course, return-pt is itself an actor and it will mﬁpweﬁént.n into some

subsequent events n+l, nt2, ...
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For example, consider the following program fragment:

factorial (5) ;
print ('done') ;

.

The call to procedure factorial corresponds to the event
“event 1: < factorial receives (message: [ 5]

. {reply-to: return-pt)) >.

Factorial will do many things‘internallygiﬁut assuming it is a well-defined
function, it will eventually return to the continuation, return-pt. That
: eveni'wouldube

event n:  <return-pt receives (apply:[--countdown's value--])>

~ Now, what does the actor returﬁ~pt’do? factorial has just finished

and the next thing the program text says to do is "print (‘done');".
Furthermore, the program says to do that no matter what factorial did. The
actor réturn—pt must be defined as follows: .

event 1: < return-pt receives ?7>

| causes |
event 2: < print receives (message: ['done']
(reply-to: return-pt-2))>.

The question mark in event 1 means that return-pt cares not what its input

is; it does the same thing no matter what. The continuation in event 2 must
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be an actor like return-pt that performs the step after print ('done') in the
program ! : . . ) : . . T . .
Plugging return-pt's spec1fication into the pregram fragment ylelds
the following scenario:
event 1:  <factorial receives (message:~[5]

“(reply;tof‘return-pt))>

- ‘event n: <return-pt receives (message. [—-factorial s value--])>
event n+1: <print receives (message: [’done 1 | '

(reply-to: return-pt-z))>'

The dot-dot-dot after event n+l reflects the fact that program keeps on. going.
Print will cause many events, eventually return pt-z w111 receive a message
and it will cause the next step of the program to be run, etc " Ta paraphrase
an old homily, event ntl is the f1rst event of the rest of the program's life.
It seems intuitively appealing to break the behavior between events n
and n+1. All the events between 1vend n inC?ustye.are_reesonebiy |
attributable to factorial; they may reasonably be called "Factorial's behavior".
The events from n+1 onward are more naturally called “the rest of the program";
This division of behavior is quite useful in nany cases. It allows

us to talk of an actor's behavior, or the behavior resulting from an event,
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in a compact and more or less precise way*. 1ye.ﬁillkuse this natural
terminology often. It is important to note, though, that the division is
really arbitrary. The events n and n+1 have no locally observable
characteristics that distinguish them from the events before or the events
after. | |

If we decide, therefore, not to break the behavior between events n
and ntl, a different interprefation emerges. fhe behavior resulting from
an event may be regarded as gll_the future behavior of the process. This
view interprets.behaviors as more than descriptors Qf‘ihe,past performénce
of an actor system; behaviors are also prescriptors bf the future of the
system. |

Almost all actors are pure'in the sense that their behavior does not
vary of time. Given the same input message at two-differént’times, the |
actor will cause the same sequence of "next" events both times. If a11
actors 1n the system were pure there could never be any t1me vary1ng behavior
in the system -- everytime the system werehstarted up it would 1nev1tap1y

produce the same answer in fhe same way. ‘There is only onekprimitive actor

*It is quite hard to make the notion formally precise, though. What is the
resulting behavior of an event without a continuation? Even if there is a
continuation, we have.no assurance that a _message w111 ever be sent to the
continuation.
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whose behavior is not fixed over time and that is the cell of read/write
storage. |

Cells are defined to respond to two kinds of messages: one message .
of the form (message: ['contents?'] (reply-to: continuation)) and the other
message (message: ['updatg' to new-va]ue],(rgply-tq;l¢ontinuat16n)). The
first méssage asks thg cell for its contents and the cell responds by sending
back the value stored in the most recent update message. The.event'following.
a 'contents?' query will always be of the form

Ecell's-contents’ <continuation receives jmessage;[ce}]fs-contentsl)>.
However the actual content of the event will vary as the contents of the cell
varies. | |

Whenever the behavior resulting from an event is time varying that
means a side-effect has occurred. By localizing all side-effects to the
actions of one particular kind of actor, the cell, reasoning about the time .
variability of behaviors is greatly simplified. Of.course, since actors may
be defined by users that utilize arbitrary aumberslof_qells in arbitrary
algorithms, no generality is lost through thg;gimp]ifigation,

We have noted that the past behavior of a_system,;qgéther with all the
actor definitions in the system prescribe the future course of that system,*
Suppose we have an actor systém, A, which has been running for a whi]e. A

will, therefore, have a behavior B. As long as the actor system is running

* Though if there is pakal]e]iém, there may be many possible future courses.
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its behavior will contimue to grow. If we were to “freeze" the actor
system at a point in time, the behavior would of course stop expandingkand‘
would have a last event, E, ... In Ordérfto'?ekumé ﬁﬁé%tdﬁpuiktiﬁﬁ all
we need is E;_ .., becaiise the behavior that vesuTts from Elast is all the
future behavior of the process #s described above. i
Behaviors are the concrete réaTiiathn’of'prb%é§sé§ in ‘the actor model,
+analogous to such things as stack frames in more conventional models of
computation. Consider the mode] suggested'by'Bﬁbrbw and Heigbreit [Bobrow
& Weigbreit, 1974] for instance. As a process runs it maintains a pash -down
stack of stack frames each of whith 1nc1uﬁes a program counter, local |
var1ab1e bindings and all the contro] structure information necessary for the
" running procedure to reference nﬂn Yocal variab?es and to return to its
caller. To freeze a process in the Bobrow and Wetgbreit model we would stop
it after some program step. The stack “frame fbr the’ ruﬁn1ng procedure and -
all its predecessors on the stack are at that point poised, ready to ‘execute
the next step in the progran. “R11 that s reqdiééd’ﬁb'resume i'ﬁe p;-ogaam
A11 models of*cOmputation need'scmé methéd togcdﬁcreté1y incarnate °
running processes. In the Bobrow and Weigbreit model, the stack and most
particularly the “current” stack franes play that rote. In the actor models it
* In the model the program counter is assumed to be updated after each

program step. For a real running system the stack frames only simulate
the model and usually don't update the PC after each instruction.




ey AR R e s Wi D e

~15-

is behaviors and their last event.
The actor model of computation 1s largely mot1vated by an’ interest
in describing systems of mu1t1p1e processes The model as deve]oped SO
far here has dealt only W1th s1ng1e process systems, though The formal
machinery deve]oped for the sing1e process case must be extended ever so
sTlightly to embrace multiple processes ‘ |
Behaviors are the concrete realization of processes in the actor model.
For each process in the actor system there w111 be a dwstxnct behavior
describing its act1v1t1es since creat1on. The union of a11 the ind1v1dua1
behaviors is also called a behavior: it is the behavior of the actor system
as a whoie If the processes never 1nteract then that is the end of the
story. If, however, the processes do 1nteract then we need a little more |
formal machinery. | | | o o
| If two processes interact we often wént to compere:an event or events
in the behavior of one process with events in the’beheVior'ot the‘other |
In order to tell wh1ch events go with which process al] events are 1abe11ed
with a name called an act1vator The activator is more or 1ess equ1va1ent to a
process name. |
Events that include an activator are written
event: <target receives neSSage in activator$‘.
Our nomenclature for activators will norma11y'be‘a possibly with a subScriptr'
Phrases 11ke, “event E, in “data base" will be used as a shorthand for

"event E, in the behavior of the process whose act1vator is a data-base".
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Multiple process systems may be 1mp1emented in numerous conf1gurations:
all the processes may actual]y run on the same computer with on]y s1mu1ated
para11e11sm, or each process may have its own processor, or some may be one
way and some the other way. We w1sh for oyr theory, at least in 1ts
fundamental form, to be applicable to a11 forms of paralle] processes
1ndependent of how the para11e11sm is ach1eved Ne make no assumpt1ons
therefore about the relative speeds of var10us components of the system One

‘component m1ght be a human.being performing 1nstruct1ons off a wr1tten sheet
and another component m1ght be an IBM 370/168 The human be1ng mlght have
an effect1ve execution speed of one 1nstruction per second as. compared to the
machlne s 60 m11110n 1nstruct1ons per second

Also there may be arbitrary and uneven delays between events even in the
same process.  We may have an a]gorlthm part of which executes on the
370/168 ‘and part of wh1ch requ1res human process1ng Though the algorithm
represents one single sequence of steps -~ 1i. e. 1t 1s a s1ngle process -~
some. events there1n are separated by 160 nanoseconds wh11e others are spaced
a second apart '

Nor do we assume the ex1stence of a globa] tlme standard with which
activities may be t1me-stamped. G]oba1 t1me stamp1ng of events that
transpire‘in separate processes is fea51b1e for 1oca11y-execut1ng processes
but is often hard to achleve w1th geographically d1str1buted systems Atra
minimum, the existence of a common t1me standard for a]] processes requ1res

careful planning ahead, both to acqu1re the common c]ocks and to make sure
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-all programs use the time iﬁformation‘properly. There are some problems
where global time-stampfngvseems an invaluable aid and others where it adds
as many«difficulties as it solves.* At this timefﬁe'arerinterested~in seeing
how far asynchronous, non-time based models can go.

The impact of these assumptions is that~events'ih separate processes
- are npt usually comparable -- i.e, it is not usually possible to-tell which
event happened first. Concretely, the impact of these assumptions is that

in general, between any two eventSuinnbneﬂprocess—there may occur arbitrary

numbers of events in other processes.

* Satellite ALOHA networds are a positive example of timg¥stamping,
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2. Busywaiting Synchronization Algorithms Using Cells.

We shall study in this chapter the problem of enforcing mutual exclusion
of an arbitrary number of processes with respect to some particular critical
or protected actor. The mutual exclusion preblem has been investigated
exhaustively in the literature. Genera!lyﬁwbrk in this area may be classified
according to the primitive synchronization facilities that are assumed to be
available. In this hontext the~phraséfﬂprjuﬁtdve:facﬁi1ty“ means that the
operation involved occurs indivisibly, as if it were a.single instruction or

_micro-instruction'in the instruction set of a hardware machine.

NaturalIy the more sophisticated the primitives are that are assumed
to exist, the easier it is to solve the mutua]lexclusion problem and related
problems such as the readers/writers problem. Some common synchronization
primitives include semaphores [Dijkstra, 1968], mbnftors [Hoane, 1974}, and

- serializers [Hewitt, 1975]. These primitives all achieve mutual exclusion
of arbitrary numbers of processes.

Cells may also be used as the synchronization primitive of a mutual
exclusion algorithm as is well khown. Dijkstra [Dijkstra, 1965] and Knuth
[Knuth, 1966] developed the classic algorithms along these lines. Their
algorithms only work, though, if the number of proéesses in the system does
not increase over time beyond a fixed maximum; it remains unproved whether
mutual exclusion of an arbitrary number of processes, where the number is not

fixed over time, can be achieved using cells. ~We will prove that it can be
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accomplished. ‘

We have elected to study mutual éxcfﬂsiﬁh per se becausé it is the
fundamental synchronization activity needed to:protect actors ‘from harmful
multi-process comcurrency. ‘Using a mutual exélusiauVOﬁeratoﬁ as a[buf1ding
block, other more saphisticated ‘actor protection mecﬁéﬁﬂsmé Caﬁieasi1y'be7

~built.  These more saph*stﬂcated*mechanisms:may-imp?éhent«bettgrischeduTihgv

Aalgorithhs than are possible in the simpleﬂmwt&a14éxciusﬂdn operator; also
they may be able to recognize situations where total mutual exciuSTGn of
pracesses is overly restriétive;aand they may aﬂwaﬁsoMerc¥aSS of prbcessé%
mamﬁsmewmmmdwmrmﬂwﬁMwaWmﬂm“TMSH&&!MM-
oration corresponds to the well~known ne;dersywriters“ﬁrdbiéhfahd‘fts
extensions. _ | | " ' |

In theafo]lowing,sectian4we=describe'the"algnrithm‘ahd*demonstrafé‘ S
informally that it works correctly. A formal préof in the actor model is

presented in the section.following.

2.1 The array of cg]ls splution

The algorithm that we present here is based on the approach proposed.
by Dijkstra in [Dijkstra, 1965]. The key ingrediemt of this épproach is
that the mutual exclusion operator maintains én array of cells that must be
;t least as large as the number of processes;thatque th»9perator., Each

element of the array is indexed by the "name" of a process.
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The basic form of the Knuth and Dijkstra algorithms is this: When a
process wishes to pass through the mutual exclusien guardian it changes the
value of its entry in the cell array to indicate to all other processes that
it wants to get through. Then some Eampuﬁat%un,is ﬁerformed on every other
entry in the array; the actual computation varies from algorithm to algorithm,
but in all cases the purpose,of the computation*iinn indﬁcate'whether or not
there is another-process already executing inside the critical region. Only
if this predicate answers that no processes are in the critical region may
the current process proceed to pass through the guardian. If the new process.
is not permitted to enter the critical region now -- i.e. if the computation
it performed on the array said, “No!;'-- the process must wait. It does so
by looping, each time cdmputing~the entraacesprndjcate;untii the answer is
"Yes!i". | L |

Algorithms that follow this approach have been proven correct by
previous researchers. In particular, Greif [Greif, 1975] has proven that
a similar algorithm proppsed'by Knuth [Knuth, 1966] indeed does work.
Correctness of mutual exclusion algorithms has two components: First, it
must be the case that two processes never execute in the critical region
concurrently -~ this is a minimum spéciffcation; and sécond, the aigorithm
must be fair -- i.e. it must be guaranteed that all pkocesses that attempt
to pass through the guardian will make it through eventually.

The algorithm of Knuth is known to work, but only if the number of.

processes in the system does not exceed the size of the array of cells.
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We will show how this limitation can be circumvented, thus proving that fair
mutual exclusion can be achieved for an7arbitréfy number of proéesses using
cells as the primitives. o )

The original atgorithms presented by Dijkstra«andlknuth}arg prétty

5

complicated. The algorithm we describe here is similar to theirs in
essence, but it is much easier to understand, and muéhvéaﬁier tbifeaséﬁ about.
First we present the simple case of the éTgor%fhm where the number of proéesses
is assumed to remain fixed. - Then we will extend the ébﬁroaéh to‘héndié?l
-arbitrary numbers of processes. - - o B

Consider the i11ustratiVe'diagr%m-beToQt

an array of cells,
state-array

a, ' . _ v P
, protected-actor
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We will call the array of cells required by the algorithm, state-array; we call

the actor being protected, protected-actor. Also, we assume the presence of

a special process, o .o s Whose job it is to mind the store. Whenever an
external process Qs wishes to access the protected-actor, it changes the value

of state-array [i] and then waits. in its idle mode loops continually

“mutex
scanning the state-array; eventually o .. Will note the changed value of
state-array [i], and inform a; that it may enter the protected-actor. This
algorithm is intended to bg fair and we will prove that it is, though by no
- means is it FIFO. This means that while all processes that try to pass through
the mutual exclusion device are assured of getting through, no attempt is made
to service requests in thé order they are made.

The operation of the device is reguiated by the value in state-array.
Each e]emenf of state-array reflects the state of one process in its efforts

to get through the guardian. The elements of state-array range over four

values:

idle -- o, does not wish to enter;

request -- o5 requests permissibn to enter protected-actor;

grant -- oy is granted permission to enter protecte&Factor;
~done -- a, has finished its iﬁteraction;
and idle, again, indicating that the interaction is complete from Usrg point
of view and Yutex's

any state value to the next is always in the province of either a; or amutéx

viewpoint, too. It isiimportant that the transition from

but never both. The transitions are controlled as follows:
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idle to request -- by oy when it decides to enter,A
request to grant -- by a mutex_ when it al]ows @ to enter,
grant to done -- by a1 when 1t has finished with protected-actor,

done to idle -- by o when it notices that oy is done.

utex

Each external process must*f511qw~ad;é;tabfigﬁgarprbtbc¢1»fh‘its dealings
with the protected-actor. The}mutualvexclusjq@igpgrgtgyhtanron1¥,be;asSured
of working properly 1t the}pfotocol is adheréd to“dutifuily every time the
protected-actér is feferénced} In order to 10ca];ze the 1mp]ementat10n of. this
protocol, we will ut111ze the concept of "e nca; nt” put forward by Greif |
[Greif, 1975] and Hewitt [Hew1tt 1974J ) o
We wil] 1magine that the actor being protected is. fulIy enc]osed,

encased, within another actor that serves as an alias for it. A1l other actors
know only the alias; they do not know the protected-actor itself. Hhéﬁever’
an actor wishes to send a message to the protected—&ctor. it sends it instead
to the alias-protécted-actor; the alias observes the”protacol, and retransmits
the message to its ward when'the protocol alliows it. A11a54protéCted-dtt6r |
is spectified by the algorithm written descr1pt?ve1y be1ou (the aTgor1thm is
specified formally in LISP: shortiy hereafter)

alias-protected-actor =

(1) receive argument, and call it thééinput4message

(3) update state-array [i]: ﬁ"request‘

(4) loop waiting for state-array [i] to be ‘grant', as follows

e i TR A T e s
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(5) ask state-array [1] for its contents, and 1et state = the contents
(6) there are two cases for state: -
- (6-1) state = request' -— repeat from step (4)
(6-2) sfate 'grant' -Q proceed wwth step (7).

(7). send message (message: the- -input-message (reply-to: step -(8)- ~-below))
to protected-actor

- (8) when finished referencing protected-actor, update state-array [i]:='done’
(9) loop waiting for state-array [i] to be *idie’, as follows
(10) ask state-array [i] for its contents, and 1et state the contents
(11) there are two cases for state: |
(11-1) state = 'done' -- repeat‘froﬁ étép (9)

(11-2) state = 'idle' -- exit to externa11y supplied continuation
with answer received from. protected-actor in step (8).

END:

The storekeeper process, o mutex’ follows a different regimen. O utex
may be thought of as running in two modes, a scan -mode and a wait mode. In
the scan mode, Unutex circulates through thewstate~array_scanningfeach element
in turn.  When it reads a state~array[i]:whose;yaIue is 'request', it stops
its scan. It changes the element, state-array[i] to be grant', and enters
its wait mode. In wait mode, %mutex loops testing the same element of the
array over and over. When that element becomes 'done’, Crutex changes it

back to 'idle', and resumes scanning.  Importantly, amﬁtex-a1ways resumes
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its scan with the array element after state-array[i] ;

The algorithm that %nutex executes 1s embodied in the actor described
below, an actor that we call regulate-mutual—excius1on. Steps (2), (3), (9),
(10), and (11) compr1se the scan mode of the algor1thm, steps (14) - (18)
implement the wait mode. (Th1s actor is specified fbrmal]y in LISP f0110w1ng
the description).

regulate-mutual-exclusion =

(1) set cell i:= first process name known |

(2) ask state-array[i] for its contents, and set state = contents

(3) there are two cases for state: |
(3-1) state = 'idle' -- go to end of loop, step‘(Q), to conminue scan
(3—2)vstate = 'request’' -- proceed with step (4) o

(4) update state-array[i]:=: ‘grant’

(5) loop waiting for state-array[i] to be 'done', as follows .

(6) ask state-array[i] for its contents, and set state = contents |

(7) there are two cases for state:

(7-1) state = 'grant' -- repeat from step (5)
(7-2) state = 'done' -- proceed with step (8)
(8) update stete-array[i]:= 'idle'

(9) resume or continue scanning the state-array as follows
(10) there'are two cases for the process name index, i:

(10-1) i = last process name known -- update i:=  first process
name known
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(10-2) else, update i:= next process name after i
(11) repeat from step (2).

END

The two actors alias-protected-actor and regulate-mutual-exclusion
specified formally in a LISP-1ike notation on the following pages. A
certain license with LISP syntax is taken in that we write array references
in the ALGOL-ish form

array [index]
rather than the LISP
(get 'array index)

and (store 'array index value).
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(defun alias-protected-actor (the-input-message)

(prog (i state answer)

Step-2  (setq i (the-name-of-the-process))

- Step-3  (set state-array[i] 'request') ‘
Step-4 ;; loop waiting for state-array[i] te be"grantf
Step-5 (setq state state-array[i] |
Step-6  (cond ' | | ,
Step-6-1 ({equal state 'request') (goto step-4))
Step~6-2  ((equal state 'grant'),(gotg‘step:?))

(else (error)) | | R
Step-7 (setq ansWer (prqtgcted—actorvﬁhaeinputvmessage))
Step-8 (set State-arnay[i]?'done') |
Step-9.  ;; loop waiting for state—array[i] to bei'id]e'
Step-10 (setq state state-array[i]) -
Step-11  (cond _ » T
Step-11-1 ((equal state 'done') (goto step-9))
Step-11-2 ((equal state Tidle}).(returhianswer))

(else (error)))))
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(defun regulate-mutual-exclusion nil
(prog (i state)
Step-1 (setq i (first-process-name-known))
Step—zl (setq state state-array[1])
Step-3 (cond
Step-3-1 ((equal state 'idle’)(goto step-4))
(else (error)))
Step¥4 (sef state-array[i] 'grant') '
Step-5 3; loop waiting for state-array[f] to be 'done'
Step-6 (setq state state-array[i})
Step-7 (cond
Step-7-1 ((equal state ‘grant')(goto step-5))
Step-7-2 ((equal state 'done‘?(got&*ﬁiepAé))
‘ (else (error)))
Step-8  (set staté-array[i] ‘idle')
Step-9 ;; resume or continue scanning the state-array
Step-10 (cond
Step-10-1  {{equal i (last-process-name=known))
(setq i (first-process-name-known)))
Step-10-2 (else (setq i (next-process-name-after i))))

Step-11 (goto step-2)))
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The proper operatlon of this mechanxsm is apparent assumlng that
the system starts out in 1ts natural" 1n1t1al cond1t1on | That 1s all o
entries of the state—array must be 1n1t1allzed to 'idle ; no external process
may be referencing protected-actor 1nit1ally, and “mutex must start execut1ng
regulate-mutual-exclus1on at step (l) we shall expla1n the correctness of
this solution 1nformally at th1s time; a formal proof is presented in the
next section. - o B }:f ' B

There are two aspects to the correct operation of a fa1r mutual
exclusion operator First does lt even implement mutual exclusion - 1 e.
does it prevent the s1multaneous access of two processes to the protected-
actor. The second aspect is the fairness of the device, w1ll every process
that attempts to reference the protected-actor be allowed to do S0 eventually. |

We w1ll demonstrate first that the system here does lndeed achleve -
mutual exclusion Proceed1ng from the stated 1n1tial condit1ons, 1t is
-'clear that no process w1ll ever reference the protected-actor unless al1as-
‘protected first sees the state array element equal to grant' - Also, after v
' the process is done, and not before, al1as-protected-actor changes the grant'
state to 'done'.  Thus 1f no other actor ever mod1f1es a state-array element
that equals 'grant', we may be sure that no process w1ll.access the protected—
actor unless its state array element is grant' T o

Furthermore, each process that w1shes to enter the protected region first
sets its state element to be request' and does not set 1t to be grant'i |
The anly actor that does set states to grant"1s the actor regulate—mutual-

exclusion, that actor w1ll only set one state to grant' and no more untll
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that state-array element cycles to 'done' first. It follows that no more
than one state-array element w1ll equal 'grant‘ concurrently and therefbre,
that no more than one process will reference protected»actor concurrently
‘ Fa1rness of the operator may be 1nferred from the scan algor1thm

‘employed assum1ng that the operat1ons in step (lo) of regulate-mutual-exclus1on
are all well defined, one-to-one funct1onslv That is, there must be a un1que
first process name, a unique last process name, and the funct1on ggét_applied
1terat1vely starting w1th the first name must yield all the names known to the
system exactly once. G1ven all this, 1t is clear that 1f no process ever
requests entry then each state-array element will be scanned once before any
element is scanned tw1ce |

If one process sets its state- array element to request', regulate—mutual-
exclus1on will note the fact the next time that element is scanned. The
.scann1ng will then be interrupted and steps (4) - (8) attempted, and the
state—array element uill be Set‘to 'grant‘ ' lhe soecification of alias-pro-
tected actor makes it clear that once state-array[i] 1s set to request', the
entwre sequence of the protocol must 1nev1tably occur Thus it is a foregone
conclus1on that the state element will eventually become"done Regulate-
mutual-exclusion detects the 'done' state and,resets it to 'idle' thus
completing'the cycle. |

The important fact is that the entire‘tnterlude from step (4) to
step (8) does not affect the scan parameter, it Thus)providing that all the
steps (4) - (8) do occur the scan wlll resume as iflthereuhad been no inter-

_ ruption. And as we have noted, the interaction,betueen the two processes
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does insure the campletion of those steps. Thus o ... will scan all the
ather elements of state-array before it.scaus;thggeae‘just let through .
again. Therefore all the elements. of the array will -get.a “next! shot . -
through to the protected-actar and none can be locked out, l.e. the operator
is fair, |

This algorithm for mutual exclusion only works so long as the number

of processes that may wish to access the protected-actor does not exceed

the size of the state-array. Of course, nothing in either alias-protected-

actor nor regulate-mutual-exclusion prohibits the use of a variable size

structure in place of an actual fixed size array. Suppose statefgrray were
physically implemented as a list. Whenever a new process sought to join the
crowd of processes with rights to the mutua1 exclusion operator, a new entry

could be cons'ed onto the front_of the state—array 1ist, and the variable pointing
to the front of the Tist could be updated to include the new entry.

In this model the identifier "state-array" will be used to name the list
of state-array elements. The notation -- state-array[i] -- must be understood
as a symbolically indexed reference into the list pointed at by'state-array.

We may continue to assume that the expression state-array[i] returns a pointer
to the cell that the ith process must twiddle in order fo pass through the
mutual-exclusion operator; therefore the statements like

(set state-array[i] 'request’)
that appear in the actor alias-protected-actor will still work eﬁen thdugh

state-array is changed to a list.
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The algorithm for regulate-mutual-exclusion though references all the
entries of state-array sequentially and it is more convenient to rewrite that
actor using car's and cdr's than it is to try to make the array notation
work. A version of requlate-mutual-exclusion that is particularized for

the case of state-array being a 1ist is presented on the following page:
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(defun regulate-mutual-exclusion nil.

(prog (i-state state)

Step-2

Step-4

Step-6

Step-8

Step-9

(setq i-state state-array)
(setq state (car i-state))
(cond o
' ((equal state 'idle')(goto step-9))
((equal state.'request’ é(goto stgarﬂd)
(else. (error)) S et ymie

(rplaca i-stateé 'grant') B
;3 loop wa1t1ng for state-array[i], i e. i-state. to be ’done'
(setq state {car i- state)) S
{cond |

((equal state 'grant')(gotoistep—ﬁ))

((equal state 'done )(goto step—a))

(else (error))

~(rp1aca i-state"idle')

33 resume or cont1nue scanning the s&aie~array
(cond ; if at end of state-array 11st
((nu11 (cdr i- state)) $ then reset i~state to.begwnning
(setq i-state state-array) -
(else (setq i-state (cdr i-state))))
; else set i-state toknext;ehtry

(goto step-2)))
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The operation of creating a new process may add the new process to the
state-array by cons'ing a cell for the new process onto state~array Thxs
procedure is described in algorithms for attors fork and expand-state-array
below: o

fork =
(1) receive argument and call it new-process

(2)  do whatever has to be done in the: innards ef‘the system to create
a new process . , ;

(3) ’expand -state-array for the new- process (see below)
(84) exit to externa11y supp11ed contwnuation
END

expand-state-array =
(1) receive argumeht and call it new-process

(2) allocate a new cell and call it new-state Update new-state's
initial contents to be 'idle' \ '

(3) Cons new-state onto state-array and let new-state-array = the
returned value

(4) store new- state in the bowels of the system in a manner associated
with new-process

(5) :update state-array:= new-statesafray

(6) exit

'END .
The actor expand-state-array is expressed formally in LISP on the

following page:
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(defun expand-state-array (new-process)
(prog (new-state new-state-array)

Step-2 (setq new-state ‘idle')

Step-3  (setq new-state-array (ebns new-state state-a?ray))
Step-4 (... store new-state in the system...) -
Step-5 (setq state-array new-state-array)))

There is a potential timing error asSociate&iuith the actor éxpand—state-
array if it is executed concurrently by mu1t1p1e processes A possible

behavior involving two concurrent executions of the actor 1s illustrated below:

Process-l‘  Provess-2

(2) new-state :¥ 'idle’ (2) new~state = 'id1e
(3) new-state-array := (3) new-state-array =

(cons new-state state- array)

(cons new-state state-array)

@ ... | T .
(5)  state-array := neu-state-a%?ay' (5) state-array := new-state-array
That is, both processes could create the new-staté-array using the

same previous state-array resulting in a structure Tike
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‘state-array

new-state-array for

process-—1

new-state-array
for , :
process-2

Whichever process updates sfdte-array in step (5) last is the one that

will win out in the end. Its new-state cell.will‘hﬁ.included in the
state-array list; the other entry, while notigacbggg nor possessing a dangling
reference, will never be referenceable from state-arkay.

- This bug would be avoided, however, if the operation of adding processes
tb state-array were a mutually exclusive operétion. There would be no problem
with extending the state-array list to arbitrary size, if only the operation
were restricted to one process at a time. In the actor model, new processes

do not arise through spontaneous generation; aside from the processes that are




stipulated as existing in the system's initial conditions,“ali othéh{
processes are created by events. Events,sof'ceurse,:ahé'activitieshin some
_process that a)readyrexists. | |

If we assume that all initial processes are represented in thé"
state-array then we may specify that process creation‘occurs in a mdtua!ly
exclusive manner by protecting the actor'forkwwith preciselyfthe utual
exclusion operator that we'héve described here. That is we may-define
an actor alfas-fork that is identical to aTias—pﬁétéEted-actor. except it
relays the fnput messages to fork fnsfeaﬂfbf‘ﬁfbfécfeﬁJactdh.  In other
words we may use state-array to protect the actor that expands sfateAarhayl'

There is one other trouble-spot in exfén&iﬁg'thé”"iﬁiaj‘of“celis""
solution to arbitrary mmber of précesses ‘- the processes being added to
the staté-array may be very prolific and may'théﬂselves'créate'mOré new
processes. These additional new processes will hagg;to be added to the
state-array, too, of course. And they too mdy bé vghx,érplific. ,

| Subpose that when hew processes are added to stéts-array ‘that they are

addcd at the end. And suppose that when each passes through to the protected
region it creates a new process that 1mmed1ate1y attempts to pass through |
the mutual exclusion operator itself. ~ Under these cond1t1ons the scan may
be stuck in an 1nfin1te]y grow1ng morass of fast breed1ng processes Ahyv
requests entered closer to the beginn1ng of the array w0u1d never be served

This bug may be avo1ded though, by the s1mp1e strategen ‘of extending
the array at its front. Now, even though the array might grow w1thout bound

over time, every request that is entered wou]d be scanned and a1lowed through
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eventually. This is because no process created during one scan of the
state-array would itself be attended until the next scan.

Thus, the "arréy of cells" solution to the mutwal exclusion problem may
be extended to handlé.thevmost general case of wnbounded numbers of processes.

2.2 Formal proof of the solution

We shall prove the correctne$s of the algorithm in two stages. First,
we will prove that mutual exclusion per se is implemented; then we will prove
the fairness of the a?goriéhm. For the first part it doesn't matter whether
or not the number of processes remains constant. The extension to handle
arbitrary numbers of processes need only be considered inf;he fairness proof.

Before proceeding, let us state precisely what is;being‘prbved,

Definition: a normal returning actor

Let protected-actor be an actor which includes in its specifications
the following fact: if the event '
E

.t < - i
enter-i protected a¢tor‘rece1ve;

(message: any-message
(replys;o:'continugtion)) in a,>
appears in the behavior then the event

E : <continuation receives

exit-i° | ;
(message: any-answer) in o>

will appear later in the behavior.
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Then protected-actor will be called a normal returning actor.

This first definition ensures that the actors being protected are all
“well-behaved and/act:like“normal'sub-rodtihés.‘ If we send a message to the

protected-actor we expect it to answer and not fly 9ff;°“ its own someplace.

Definition: mutua?]y exclusiye reference -

Let protected-actor be a normal returning actor.
Then protected-actor is sa1d to be referenced in a mutually exc1u51ve ‘

fashion if and only if for,a]l quadrup]es.of events

(€ E ,E

enter-i* “exit-i’ “enter- J exjtrj)’@j?i_,x
one of the fol1ow1ng two order1ngs holds |

either (1) E before E before E

before E exit- j

enter-i exit-i - . epter- J

or  (2) Egnter-y before Eoyye r._...._._Pefm Enter-1 before Eexit-i

Definition: fair encasement

Let protected-actor be a normal returning actor. ;’Ahd‘ﬁgtMglias-protected-
actor be another actor. | | | D
Alias-protected-actor fairly encases protaéted—gcton,ifganq only if
a behavior has the following event in it: ‘
Ehe1]°_i:’<alias—prbtected-actor reeeives__ o
(message any-message o ‘
(rep]y to: continuation)) in a1

Then it also has the following events in the stated order

¢
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E <protected-actor receives

“enter-i’
(message: any-message
(reply~to:.alias~continuation)) in ;>
Eayit-j: <alias-continuation receives
(message: any-answer) in a;>
| Ebyebye-i: <continuation recelyes

(message: any-answer) in ag>.

Definition: fair mutual exclusion actor

Let protected actor and a11as-protected~actor be actors and suppose

that alias- protected-actor fa1r1y encases protected-actor

Then alias-protected actor is a fair mutual exclusicn actor for

protected-actor if and only if for all histories which contain

E

E E

hello-i’ Eentek-i’ exit-i
i#j

_ > Ebyebye -i? be]]o-i’ enter-j°
Eexit—j? and Ebyebye-j

“one of the fo110wing'two orderings holds:

“either (1) E before Eex1t i before E before E

enter -] ———— “exit-j
befOre E: befere E

nter i

or (2) Eenter _j before ‘before Eex1t

enter -i exit-j’
In particular these order1ngs ho]d even if Eheno -j -were between Ehel]o -

and Ebyebye g or the converse.




The theorem we shall prove is thfs:

Theorem: G1ven the actor a]1as-protected actor as spec1f1ed 1n sect1on

2.1 above and any actor protected—actor wh1ch satisfies the consta1nts in the

def1n1t1on here Also. given the actor reguIate-mutual—exc1u51on and the

process %nutex as specif1ed in section 2.1
Suppose that the spec1f1ed system starts out 1n the fo110w1ng 1n1t1a1

conditions:

(1) each element of state-array equals '1d1e I

(2) .no event of the form E has yet occurred,

enter-i
(3) “mutex has not yet begun to execute regulate-mutua]—exc]us1on but

it will execute the actor from the beginn1ng once the system is started up

Then, alwas protected~actor is a fair mutual exc]usion actor fbr B

protected-actor.

The proof of this theorem will be faci]itated by the concept of an

"inter-process handshake" describing the lnteraction between the external

process and Oputex: . 1he actors a11asfprotected—actor and regulate-mutual-
exclusion 1nteract by means of a protoco] with the fol1ow1ng character |
one process sets the ce11, state—array[1] to some part1cu1ar state value
.and then busywalts until state- array[1] changes to some other va]ue The
other process meanwh1]e is already set to ]ook for a partzcular va]ue in
state-array[i]; when it sees that value it "shakes hands" w1thethe f1rst

process by causing the next transition of state—arrayti]} In this’way the
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two processes coordinate each other's act1v1t1es and 1ead each other through
the algorithm in a step-by-step sequent1a1 manner | o

In the fo11OW1ng sub-section we will formalize the concept of inter-
process handshaking. After that the mutua] exclusion algor1thm will be
reformulated in terms of handshakes and we w1TT use the reformulated version

to prove the main theorem.

2.2.1 Handshaking between processes

The concept of handshaking will be deffngd by;spe;ifying an actor that
implements it. Then we prove several useful theorems regarding the properties
% of handshake actors.

The actor handshake receives messages of the fbrm

(message: (shake: cell
(set-to: value-T)
(then-wait: value 2))
(rep1y—to cont1nuat1on))
handshake will update the cell to value-1 then 1oop busywa1t1ng until the
cell's contents become value-2. At that time, handshake rep11es to the
continuation.  The algorithm for handshake is describéa”be1ow:' A formal

version of the actor in LISP follows ith'

Handshake =
(1) receive input message of the form
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(message: (shake: cell
| (set-to: value-1)
(then-wait: value-2))
(reply-to: continuation))
(2) update the contents of the cell to value-l.
(3) busywait for ‘the contents of the cell to become value-2 as follows:
(4) read contents of cell and let 'state = the contents.

(5) there are two cases for state:

1}

(5-1) state = value-2 -- repeat from step (3);

value-2 -- proceed with step (6).

 (5-2) state
(6) exit to the continuation

END.

The actor is specified formally below:
(defun handshake (shake-cell value-1 value-2)
(prog (state)
Step-2 (setq shake-cell value-1)
Step-4 (setq state shake-cell)
Step-5 (cond ((not (equal state value-2)){goto step-4)))))

Definition: completion of a handshake

A handshake is completed when a reply to the continuation occurs. That

is, given the event
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Efandshake-1-2° <handshake receives
(message: (shake: cell
- {set~to: value-1)
(then~-wait: value-2))
{reply-to; continuation-1))in o >.
Ehandshake—]-z is completed by the next. event, if any,..of the form

E <continuation-~l receives.

comp%ete-l-?‘

(message:~2)ain.aa>,.

Definition: matching a handshake

Let Ei - ndshake-1-2 D€ an event of the form

<handshake receives
(message: (shake: cell
(set-to: value-1)
(then-wait: value-2))
(reply-to: continuatien~1)) ina>.

Let E be an event of the: form

update-2
<cell receives
(message: ['update' to value-2]

(reply-to ?)) 1nVub>.

Then Eupdate-z is said to match the handshake Ehandshake-]-Z‘



-45-

The reader should note'that matching of handshakes is purely a‘
syntactic matter. The matching event is not in any sense guaranteed to
satisfy the busywaitlloop in the handshake_and thyé lead to the compietion
of the handshake;uindéed an.event that matches a handshake may even occur

before the handshake!

Definition: completion-causing event of a handshake
Given Ehandshake-]-z as in the previous dgfinj;ioqs,wand given an

event Eupdate-2~that ma;shas Ehaanhake-l-Z'
Consider the event

<cell receives
(message: ['update' to value-1]
| (reh]y;to: step (3) of haquhgke)) in a,>
occurring after E,_ .0 o1a_y_p but before fhe reply to continuation-1; call
this event Eset-to—l' |
Consider the class of events
<cell receives | |
(message: ['contents?'] |
(repiy-to: step (4) of handshake)) in ap>
also occurring after E .\ b1 o 1.p but before its completion. Call these

events £ ait-for-2-
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vagt Ec1obber be any event of the form i

E¢1°5§e?' fce11 receives ey |
| (message [ update' to not-value-]]

(rep?y-to. ?)) in o>

" Where not-value—1 = value-1.

The event Eupdate 2 is a comp]etion-causing event of Ehandshake 1-2
if and only if Eupdate 2 appears in the behavior affer Ehandshake 1-2° andp
no event of the form Ec]obbar is between { pdate z and the next occurrence

of E ait-for-2" : |

Theorem Completion- causing event causes campletion of a handshake
[This theorem expresses the fact that comp!etfon-caussng dvents
are aptTy named that a. handshake wi11 comp1ete if and only if
a completion-causing event is present ]
Given an event Ehandshake 1-2 38 above and any event Eupdate 2
that is a comp]et1on-causing event of Ehandshake—]-z
Then Ehandshake 1-2 will be completed -- j.e. handshake will reply

is present in

to the cont1nuation - if and an]y if some ewént Eupdate-z

the behavwor -
Proof: This result fdfidws directly from*theﬁébébifiéd algorithm for
handshake and‘the axioms for te?Ts Handshake will reply to the continuat1on

in step (6) of the algorithm 1F and. on?y 1f 1t read the contents of the cell
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via an event of the form E, 5 and‘fqund‘the'cantents:toibetvaiue‘z.

wait-for- _ ‘
From the axioms of the cell we see that this condition requires

that the most recent update event in the target onécﬁiag of the cell must

~be of the form Eupdate—z
A simple but important cerollary of this: hheorem app]ies when the

“set-to" value does not equal the "then-wait”~v&lue of a handshake. : First

we define a bit of terminology.

Definition: proper handshakes
Let Ehandshake-I—z be a handshake event as aboye,of.the-fbrm o

Epandshake-1-2° <handshake receives
(message: (shake cel}
(set-to: value-1)
(thehruait: value-2))
(reply to: continuation)) in o >
Ehandshake 1-2 is called a proper handshake 1f and only if value—l

# value-2.

Corollary: completion causing event of a proper handshake
Let EhandShake be a proper handshake even: in ap- |
Then np completion causing event Qf‘Ehandshakefga" be an;gvent in qh,daisp.-

Proof: A1l completion causing eyents of Ehandshake must be events that
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update its cell between E,. . . . and the completion of the handshake; also
~the event must update the cell to value-2.

The only event in the handshake that updates the cell is the "set-to:"
event therein and that event updates the cell to valtie-1.  Since value-1
# value-2, the "set-to:" event cannot be a comp]etion‘causing eVEnt of the
handshake. And since no events occur,iﬁ~dh'other“€han evenfs“that‘pértain
to the handshake until its completion, memts iha, can cause the
completion. | B

The property expressed by the corollary is imﬁortant because it ensures
that proper handshakes do c;use the running process to wait for some specified
- events in another process. Hereafter we shall assume that all handshakes
" are proper. S R -

Another interesting property of handshakes'is.that.they-m&y be chainedv
one after the other resulting in a multi-process sequencing of events as we
will see shortly. First we need to méké definitions similar to the'ones
above but involving inter~pracess~handshaking instead of simple updating

of events.

Definition: a matching handshake

Lgt Epandshake-1-2 be an evgnt of the form

Epandshake-1-2" <handshakevreceives“
| (message: (shake: cell
(set-to: value-1)
‘v(thénsﬁait: value-2))

‘(rep1y4to:’continuation—l)) in a,>




Let Ep.ndshake-2-3 D€ an event of the form

<handshake receives
| (message (shake cell
(set to: value-Z) |
(then—to value 3))
(reply-to continuation—Z)) in “b
Then, E handshake~2-3 is sa1d to be a match1ng handshake for Ehandshake 1-2°

| Def{"iti°"’”GDME}eti°"'°a“51Eﬂ;héndsqgke 'i

Give"‘Ehandshake-l-Z'a"d Ehandshake-2-3 25 in the previous definition.
set-to-3 and Eait-for-2
definition of a completion causzng,event of a handshake.  And let Ec]obber‘f

Let E be events related to Ehandshake }-2 a5 in the -

be any event that updates the cell to a value not edual %o value-2.
Then, E, . dshake-2-3 1S @ completion-causing handshake of Ehandshake—l~2
if and only if the fo]]ow1ng condit1ons ho?d

(j) Ehandshake-2-3 is after Esét-to-l and befgfe the completion of

Ehandshake-1-2}

and - (2) There are no events £, on betueen»Eset ~to-1 and the completion -
of Ehandshake-l-Z' |

_ Theorem completion—causmg handshakes cause complet:fon | :
Given an event Ehandshake 1-2 38 above and let Ehandshakeéz 3 be any
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completion causing handshake of Ehandshake-1-2

Suppose also that there is no other event E 2 of the form

update-

Eupdate—Z: <cell receives

(message: ['update' to value-2]
(reply-to: ?)) in a,>
between the event E ., . , (related to E,_ ., 1o 1 o 35 in the previous
definitions) and the completion of E . . pora o 3
Then, Ehandshake—]—ZQWi]] be completed -- i.e. handshake will reply
to the continuation -- if and only if some event E . ... . » 3 appears in

the behavior.

Proof: Let E represent the class of events between each Ehandshake—2—3

set-to-2
jand its completion wherein the cell is updated to value-2.

I.e. each E is of the form

set-to-2

Eset—to-Z: <cell receives

(message: ['update' to value-2]

(reply-to: step (3) of handshake))in a,>.

By supposition the events E_ . , , are the only events between E_ . , , and

the completion of Ehandshake—]-z that update cell to any value whatsoever. Not

all the events E need occur in the range between E 1 and the

set-to-2
completion but any that do are completion causing events of Ehandshake-]—?’ and

set-to-

thus fulfill the "if" part of the theorem.
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The "only if" part follows from the observation that those Eset to-2
~events that are comp1et1on causing events of Ehandshake ] -2 are its on1y
completion causing events. _ |

A useful corollary to the above theorem applies. to chains of
completion causing handshakes.  Given a Eéﬁuehce'df'bandshéke“eVenfs where
each handshake but the first causes the coﬁp1éti0n of its predgéesSo§;.if
the first handshake does in fact occur, then all 6f‘the%haﬂéshake$ ekcépt
the last one will complete one by one in sequence. | Though thé haﬁdghakes
appear in separate processes it is as if there were an act1vator type causa!

1ink between them.

Definitidn: chains of ¢ompletion—céusiqg;handshakésf.‘
Let E s » £ 2 +oos b
handshake-1-2 handshake-z 3’ “handshake~3-4 handshake-n-m
each be handshake events. Let Ehandshake 1-20 Ehandsh&ke-s .qe --- be events

in process @y and let the others be in process “b oy # O - . Suppose further

that E . in the

handshake-1-2 15 Defore Epoichake-3-4 15 bef°”e Ehandshake-ﬁ 6 °

oy activator ordering and that the events of abvare'ordered simjlarly.

Let Ehandshake 2-3 be a comp]etIOn-cauSIng handshake of Ehandshake 1-2%
let Ehandshake-3 -4 be a comp]et1on causing handshake of Ehandshake 2.3} etc.

Finally assume that there are no events updating the handshake cell other
the "set-to:" events in the handshakes, between EhandShake-]~2‘a"d the event

E » Wwhere E

set-to-n set-to-n

is the "set-to:" event in E,_ iopoio o oo
Then, the sequence of events Ey..jchake-1-2" Enandshake-2-3° Enandshake-3-4°

s Ehandshake-n-m is called a chain of completion-causing handshakes.
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- ¢ oro11arx chain of comp]et1on-caus1ng handshakgs
Given a chain of compietton~causing hanﬂshakes Ehanéshahe~%~2'

handshake 2-3* Ehandshaka -n-m*
Then each of the handshakes hut the last one. ulll campiete in sequence -

- 1. Epangshake-1-2 111 complete befre Eypcnape.p.3 which will
Cmp]ete bEforeEhiﬂasm'3"4’ etC- : Eﬂ 2 IIW ﬁ}’n‘ﬁ ﬁ‘g mt mlma m

it will start.

t

Proof: This coro]lary fol1ows from succe551ve applicatxons of the previous
theorem that states that completion caus:ng handshakes cause complet1on

In general, given a chain of completlan causing handshakes occurrxng
in act1vators a, and s there may be many events betnnen the coupietion of
one handshake in one process aad~the start4ef~thawﬁext hindshake #n that
same process. For example, suppbse a, cnnﬁrlbution to a handshake chain
includes the events Ehandshake ] 2 and Ehandshake 3_4 These twe events |
are part of a larger piece of}a g behevtdr thtt a?ﬂo fnc1uées ‘the fe!lauwng
events and relationships: | ‘ '

: Ehandshake 1-2 before the compietzen of Ehandshake 1-2
' before an arbitwary sequeﬂce ‘of events

before Ehandshake-3—4
Let's cal)l the handshake event in ay ‘that T1nks Ehandshake 1-2 to
Enandshake-3-4 in.the,cha1n Ehandshake~2—3 An 3mparthnt fact is that the

-arbitrary sequence_of'events Tn/aaanﬂted¥§§9Vé only vccurs bétwnep Ehanqshake—Z-B



and its completion. The handshaking causes the'arbitrdfy events in Oy to“bé"
placed in a time enve10pe demarked by Ehandshake 2 3 and its comp]et1on._

This re]atlonship is 111ustrated below'

E | j afbitrary

handshake set-to wait-for , sequence = ~handshake set-to
1-2 1 2 of events 3-4 . 3 :
Ga -——-—.—-—’oa---‘) t~—’r-— n—~~-‘---c'-.-ét—'-——é' L X

E

handshake setﬁ;o wait-For c

. 2-3 S o
time of :
arbitrary
sequence.
vf_ of events
e = e o e envelope demarked by Ehandshake~2 3 e e
L.,time._..,

The dashed 1ines represent the busywait loops present in the handshake actor.
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‘Definition: inter-handshake gap

Let Epandshake-1-2* Ehandshake-2-3* Ehandshake-3-4> * « *»

E be a chain of completion causing handshakes in processes

handshake-m-n’ .
a, and o, .  Suppose that events Ehandshake~1-z;ughandghake-3-4,' . . are

the events in ua; |
We will represent a genergl_pair of sﬂtpessive handshake events in

either process by the notation

Ehandshake-i—j; Ehandshake-k-1 -
where if we continue to use the subscript convention followed so far, i,j,k,
and 1 are successive integers. |

Lgt us call the completion event of Ehandshakeet-j’ chandshake-i;j.

Then the sequence of events in the activator ordéring of Chandshake-i-j°
after that event and before the event Ebanﬂshake—k—l is called the inter-handshake
gap between j and k; that sequence will be-deroted gap-j-k.

The first event of gap-j-k -- i.e. the.yery,nekt event in the activator |
‘ The 1a$f event of

ordering following C -~ s called E

handshake-1-j gap-j-k’ | |
the gap -- i.e. the event preceeding Epandshake-k-1 ~= 15 called the completion

event of the gap and will be written Cgap—jék'

Definition: parallel inter-handshake gaps and handshakes

E E

Let Ehandshake-]-Z’ handshake-2-3° “handshake-3-4> -~ * °? Ehandshake-m-n
be a chain of completion causing handshakes. Let gap-2-3, gap-3-4, . . .,

gap-(m-1)-m be the corresponding inter-handshake gaps.
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Then we will say that'th‘Pairsu(Ehandshake-BdQ’?gap-3e4)’ s
(Ehandshake-(m-l)—m, gap—(m—l)-m) are each parallel inter—handshake‘gaps.
and gaps.

Theorem: the envelopment of inter-handshake gaps

Let Epandshake-1-2° Ehandshake-2-3°""** Epandshake-m-n D& 2 chain of
completion causing handshakes. Lgt;gap-243,-gap-3~4,;..,igap~(m—1)~m be
the corresponding inter—handshakg‘gaps.'

Then for any 1nterThandshaké gap, gap-j-k, and its parallel handshake

Ehandshake—j-k’ the following relationsips hold:

Ehandshake-j-k before Egap-j-k
 before Copp_j-k before Cpondshake-j-k-
Of in other words, the gap is enveloped in a time perfod demarked by its
parallel handshake.

Proof: It follows from the definition of inter-handshake gaps that

Chandshake-i-4, 1 = j-l.;- the completion eveniuof»the hahdshake preceeding

the gap -- is before E ;k' And similarly C fs before the first

gap-Jj gap-j-k
event of the next handshake, Epoiichave 1 1= k. VWQ:Shaj?fPrOYe the

theorem by proving that

Ehandshake-j-k 'S PeTOre Changonake-i-g
and  Epandshake-k-1 15 Before Cpopichake-j-k

which yields the overall relationship
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Enandshake-j-k 2¢TOTe Chandshake-1-3 PEfore Egap ;.

Enandshake -j-k 15 PeFOr® Chapngshake-i-g DECASE Epopngspake-j-k 1S 2
completion-causing handshake -of Ehandshékeéiij. ‘Furthermore, E . i hake-i-j
may not complete before Enandshake-j-k %E6uTS by virtue of the "chain of
completion-causing handshakes® cordllary. o

Similarly Epandshake-k-1 15 PEFOFE Cpapgonake-j-k PeCaUSe Epopgchake-k-1
is the completion-causing-handshake °f“Ehahd§hakéoj-k‘

The two results of most relevance to us ﬁere'are these:

(1) If we can establish that two}p@écesseé“intgract as a chain of
completion-causing handshakes, then the inter-process interaction once‘begun
will complete up to the 1ast,hand§hake.i_ 1f the last handshake can be
completed, also, through some separate mechanism then the entire interaction
will complete. o

(2)'The‘events in one process's inter-handshake gaps will always be

enclosed timewise in a handshake'in the other process.

2.2.2 Reformulation of the algorithm using handshakes

In this section we will restate the algorithms that constitute the

actors a]ias-proteéted-actor and.regu}ateémutuaf—exc]usion-rep]acing the
explicit busywaiting Toops in those algorithms by invocations of the “
handshake actor. We will prove that the intEraCtions of those two actors
does take the form of a chain of completion-causing handshakes and therefore
the major theorems of the previous secfion do apply to these attbfsv

The reformulated algorithms are presenied below. The equivalence of
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the original algorithms to these revised ones {is appgrant_by even a textual
substitution of the body of the handshake}actof fohieaCh call to it. As
usual we first present an informal descripfion followed by avformal»specij

fication in LISP.

alias-protected-actor = (revised)', | |
(1) receive argument and call it the-input-message.
(2) set local identifier i = the name .of the process.

(3) send handshake the message

(message: (shake: state-array [i] -
(set-to: 'request')
(then-wait: ‘grant')) |
(reply-to: step (4))).
(4) send protected-actor the message
(message: the-input-message
(reply-to: step (5)).
(5) send handshake the'message |
(message: (shake: state-array [i]
(set-to: ‘'done') B
(then-wait: ‘idle'))
(reply-to: step (6))).
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(6) exit to external continuation with the answer received from
protected-actor in step (4). |
END

regulate-mutual-exclusion = {revised)
(1) set cell i:= first process name known.
(2) ask state-array[i] for 1ts‘c0ntehts and iéf‘state = contents.
(3) thre are two cases for state: | - | E

(3-1) state = ‘idle’ -- go to end of loop, step (6), to
continue scan's " _ :

(3-2) state #"request' -- proceed with step (4).
(4) send handshake the message | o
- (message: (shake: state-array [i]
(set-to: 'grant')
(then-wait: ‘'done'))
(reply-to: step (5))).
(5) update state-array [1]:= 'idle'..
(6) resume or continue scanning the state-array as follows:
~ (7) there are two cases for the ﬁrOCQSS'name index, i:

| (7-1) 1 = last process name known .-- update i:= firét process
name known;

(7-2) else, update i£= nextvprocess name after i.
(8) repeat from step (2). |
END |
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(defun a]1as—protected-actor (the 1nput-message) : revised

(prog (i answer)

Step-2 (setq i (the-process-name) ‘
Step-3 | (handshake state-array[1] request' ‘grant ) |
Step-4t (setq answer (protected~actor the- 1nput-message))
Step-5 (handshake state-array[i] 'done' 'idle )
| Step-6 (return answer)))
(defun regulate-mutua]—exclusion nil “;reviééd
(prog (i state) | |
~ Step-1 (setq i (first- process-name-known))
Step-2 (setq state state-array[1])
Step-3  (cond |
Step-3-1 ((equal state 'idle') (goto step<6))
Step-3-2 ((equal state ‘request’') (goto step-4))
(eise (error)) |
Step-4 (handshakefstate—array[il ‘grant'”’done‘)
Step-5‘ (set state-array[i] 'idle’) | |
. Step-6 s resumé or continue scanning the state-array
Step-7 (cond |
| Step-7-1 ((equal {1 (last-process-name-known))
(setq 1 (first—process-ﬁaméfknOWn)))‘t“
Step-7-2 (else (setq i (next-process-ﬁ&meééftér?i))))
Step-8 (goto stepQZ)))
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In order to use our actor/behavioraI proof techn1ques to prove properties
of these programs we must first establish some corelation between steps in
the algorithms and events in the behavior of the system that resu]ts when
the programs are executed Th1s core1ation is somewhat complxcated by the
repetitive character of the programs, we may expect that a process will
attempt to enter the protected-actor many times during its execution and s0
each program step wi]l be executed many times even for one particular process

Each program step generates a class of events a11 of very s1m11ar form
For example each time the alias- protected—actor receives a message -- step (1)

of the a]gorithm -~ an event of the “form f"" '

<a1ias—protected-actor receives
(message: theﬁjnput—messege~;*
(rep]y:to;,contieuetion))sin oy>

occurs. We will find it useful to classify events:beth«by>the program step
to which they correspond and by the value .of the index i applicable to that
step. Thus the above event might~be«e]as;ified~;s;*en event resulting from
step (1) in alias-protected-actor witheiedex =-i".  We shall edopt a more
succinct and mneumonic nomenclature along those lines. Events corelated

 with steps in alias- protected—actor w111 be deeeted by E where

subscript-i°
the subscript will have some. mneuMonlc appea?, events resu1t1ng from

regulate-mutual-exc]us1on will be written M. (the "M" is to remind

subscript -1
“us that regulate-mutual-exclusion is run by~“mutex only).
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We remind the reader that appeiationSVSUéh as E ame

. subscript-i "
classes of similar events. But where no confusion is likely to result
we shall use the same symbol to refer to specific évents; when we must

refer to more than one event of a class, we will differentiate the names

‘With primes, e.g. E subscript-i

Definition: names of events resulting from the algorithms
*Let Ehel]o—i denote the events whereby alias-protected actor receives
an input message:
Ehel]o-j: <alias-protected-actor receives
(message: the-input-message

(reply-to: continuation)) in o>

*Let Erequest-i be the handshake event af'Stép (3) of the actor:
Erequest-i: <handshake receives |
(message: (shake: state-array[i]
| (set-to: 'request')
(then-wait: 'grant'))
(reply-to: step (4))) in o>,
*Lét Eenter—i name the events whereby theeinput?message is relayed to

the protected-actor. E is the first event that references the

enter-i

critical protected-actor
Eonter-j° <Protected-actor receives - .
(message: the-input-message

(reply-to: step (5))) in as>.
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denote events of protected—actor rep]ying to the alias.

et Eexit -1

E :<step (5) of alias- protected-actor rece1ves

exit-1
(message the~answer) in a1

*let E be the handshake event at step (5)

done-i

Edqone-i° <handshake receives

(message: (shake: state-arvayli]
(set-to: 'done')
(then-wait: 'idle')) .
(reply-to: step {6))) in ay>.
*And let Ebyebye-i denote the events whereby alias-protected-actor
transmits protected-actor's answer to the outside world:

-Ehyebye-1? <continuation receives

(message: the-answer) in a.>.
Now we define events in regulate-mutual-exc]usion

*Let M be the event in step (2) that scans state-array[1]
scan-i

M : <state-array[i] receives

scan-i°
(message: ['contents?']

(reply-to: step (2))) in oppe,>

*The event following M

scan-1 takes two possible.ferms. Let’
M | |

hot-request-i be the response

M

hot-request-i° <step (2) of regulate-mutual-exclusion receives

o, e Y )
(message: 'idle') in Ynutex
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let M i be the other response

request-

"reguest-t° sstep (2) of reguIate~mutua1~exc1usien receives

(message. request ) in « tex .
* et ngant i be the handshake event at step (4)

M- “grant-i’ handshake rece1ves |

(message (shake state-array[i]

- (set- to: 'grant )
(then-wait 'done ))
f(reply—to step (5))) in uhutex .

* et "1d1e 3 denote events at step (5) that reset the element to 'idle .

"idle i <state-array[1] rece1ves |
(message [‘update’ to '1d1e ] )
(reply—to step (6))) in “mutex .

A significant ordering relationship anongithe‘named*eventSfn@’
alias-protected-actor may be:inferred from thexstridghtéline, hbnsbranshing_
nature of the actor's,algonithm.' -Since there are no. branches in the
~algorithm at the level of absxraétion,representnd’byﬁthefrevised version

here, if all the named events;occur. they?must~0ccen-1ntofder.

Theorem: straight line theOrem for a11as—pretected—act0r
Given the event class names defined above. o

We may structure the event classes 1n an ordered sequence

[E, 170 5» E E
hello-i request-1 enter, Eexit i’ Edone i Ebyebye-i]Z




f an event from any c1ass appears in an actor system s behavior
then an event from each of the preceeding classes in the sequence must also
appear, in ‘the same order as the events appear in the sequence For example,

if an event E appears in a system s behnv1or, then the fo11OW1ng

byebye -i
events must also appear, before Ebyebye 1, in the stated order:

Eheno i before E - before E i befbre Eexit i before Edone i

request
Furthermore, if two events of the same named class, call them

[]
‘class-1 ?"d B class-i

named class must appear between E.

E eppear in the behevior. then an event of each other

i and £'

class c1ass 1

Proof: The order used for the sequence of events is derived by 1nspection

of the stated text of the a1gorithm used by aiias-protected-actor

The invioTabiIity of the order expressed 1n the theorem follows from
the absence’ of loops and branches in the algorithm fbr a]ias—protected-actcr
at the level of abstraction pertadning:to~the-naned events. ' |

A sim&lar theorem: may be derived for the events of regulate-nutual-

exc]usien, or at-least the wait. mode of the e1gnrﬂthm. steps (2) through (5).
With alias-protected-actor the.theorem~expla1ned«that'the-evehts pertaihing
to some particularaprocess,‘ait happen serially in-a well-defined sequente.
Re9u1ate-mutua1-eXCIusioﬂrdiffers 1n_that,jt.1gtere¢tsiw1th-311the o
external processes, not just one partituler,gi,f,,Bythsinge enly one process
ever runs the actor, the events“thereih perteining to all processes will occur
serially. This is the property that is fundamentaliy depanded on for the

algorithm to provide mutual exclnsion
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Theorem: straight line theorem for regulate-mutual-exclusion’

Given the event class names defined above.

And given the assumption that S utex is the _onrly.precess that ever
executes the actor regu]ate-mutua]-exclus1on

We may structure the following event classes in an.ordered sequence:-

["request-l’ Mgrant i’ 1d1e 1]

If an event from any of the classes appears in a- system s behavior .
then an event from each of the preceed1ng g]asses 1n the seqUence must also

appear, in the same order as the events appear 1n the sequence

Furthermore, g1ven two events Eclass i and Eclass -7 where the word
“class" may be instantiated by one of "request" “grant", or "id?e" -- if
Eclass-i 3 E both in the beh then at Teast th

B class-j Doth appear in the behavior, then a eas e

following other events must appear in order

(1) the events after E in the sequence;

class~i

(2) the events before E in the sequence.

For example, if the events Mgrant -a and nganth

must also occur in that order.

class-J n
both occur then

events Midle -a and Mrequest 4

Proof: The fact that only one process ever executes regulateqmutual~exclnsion
means that the behavior perta1n1ng to it is a tOtal order and'the order of
events may be read off the text of the actor's algorlthm.

The order is fixed and inviolab1e due to the nbsence of loops and
branches in that part of the algorithm giving use to M M

M

,» and

request-i® grant-i

idle-i-
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As a final result of this section we will prove that the two actors
interact as a chain of completion causing handshakes. There are three
handshake events involved in any'interac£TGN‘betweeh a1$as-protected-actor
Edone-i> and Mgrant-i'
We will prove

and regulate-mutual-exclusion -- they are E . .y i

The chain that is formed in Erequest—i’ Mbra"t_ij Edone-i-

that as used in these programs Mgrant-
E

request-i done-i 21ways causes the completion.of- "grantai‘

threée events form a chain of completion-causing handshakes.

i'aluaySACauses»the~c0mpletion of

and E Thus the

Theorem: Mgrant ; causes completion of Erequest _i

Given the initial conditions stated for the main theorem, in particular
the fact that state-array[i] is 1n1tia1iZed to tidle'.

Then M

grant-i is é?ways.a'compTetioh»caQSing'ﬁahdshake of E

request 1

Proof From the definltion M

grant-i is a completwon causfing handshake of

E if and only if

request-1i
(1) M

(2) Mgrant i set- to-request i
within the handshake that updates the cell to request' but before the

is a matching handshake for E

grant-i request-

occurs after the event E s, the event

completion of Erequest-1

and (3) there are no events E between E and the

set-to-request-i
is an event of the form

clobber

cemp]et1on °f‘Erequest;1 where Eclobber
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E < state array[i] receives. .

clobber’
(message [‘update' to z]

(reply-to. ?)) in “z's’ z ¢ 'grant’'.

The matching criterion is purely syntactic. - Two ﬁandshakes.match if

the “then-wait:" of one equals the "set-to:" of the other. E__ waits

requést-i

for state-array[i] = 'grant’ and M sets staté—array[i]‘equaT to

grant-i

‘grant’'; hence M matches E

grant-i request-i’
The other two criter1a are dependent on how the handshakes are used in a

specific program. Our theorem states that Mgrantﬂ

i and so.we must prove that in all

must always be a

complet1on-caus1ng handshake of Erequest

executions of the actor system the proper order1ngs;wi]1 hold.

By the straight 1ine theorem if M ‘appears in the behavior it

grant-i

- must be preceeded by an event M is an event whereby

request-i. Mrequest-i
state-array[i] reports that its contents equal"request'.' The scan event,

'Mscan i that sends the 'contents?’ message to state-array[i] must oceur.

while state-array[1] equals 'request’.

Since state-array[1] is initialized to 'idie*; Mscan § tncthts situetfon |
must occur after an update event that updates the cell to request'; and o

before any event that resets: state-array[1] to any other value A peru5a1
of the algorithms here indicates that the only events that update state—array[1]

to 'request’' are the "set-to:" events in E So the M_ 1 giving

request-i- scan
. ; " - U]
rise to an Mrequest-i event may only occur after the "set-to:" event in

Erequest-i and. before the state is further updated.



- ~-68-

The ordering information garnered so far is illustrated below:

set-to
Erequest—i request | o C
. Y - e : TR -
mutex o : M
Mscan—i, Mrequest»i oo ‘grant-1

Now, we know that state-array[i] is not g@d@tedzin a handshake after the

“set-to:" event; and once Erequest_i4comple§es_the;wa}ualofztha cell will no

longer be 'request’ and Will not be reset,tq"reqﬁest‘ until another event of
the Erequest-i clqss_oc;urs. | Therefqre, the Mscanaiileﬂd}pg to’the}Mquuest-i
event may definite]y bg placed in time;betwegn-the}“setéto;",andvthe;completiun

of an E

request-iktype event:
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set-to v C
E ,
request -1 request

.&——_—-————_9.”—————-—-——"_

a e
mutex . — r X e ad

Msoan*i“ Mrequest—1~- Mgrant»i

Furthermore the handshake event will not be cgmp_lqe,ted,until a completion-

causing event of the form

<state-array[i] receives |
(messa’ge : ['update’ to ‘grant']
(reply-to: ?)) fin d? >
occurs.  The only events of that form in the actor system are the "set-to:"
events within the handshake M___ . ;. ~We hayeftherefore‘p]aced the time of

gr

1} o hl ., g : .
Mgr‘ant-i and its "set-to:" event as before the cmpletwn of Erequest-‘i also:
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E set-to c
request-1i request :

ai ._—-‘-—-—-——-—-——-9.—_-‘ W Gwd sl sy ay ke wewy s ey S

Vi o E e e e
“mutex o ——> o -2 ok = >e
M g M 1 Mooty set-to c
scan-i reg- gra grant
So we see that M . must always occur between an event of the form

grant-i

- " Iy . i b —_—
Eset-to-request—i the "set-to:" event of a handshake, Erequest—i

and the completicn of the handshake. M i thus always satisfies criterion

grant-
2 of the definition of completion-causing handshakes.

The final point that we must establish is that no event, Eclobber’

updating state-array[i] to value other than 'grant' may occur between

Eset-to—request-‘i
to consider:

and the completion of E There are three cases

request-{°

(1) that E is an event 'in a process other than o, or o

clobber j mutex’

(2) that E occurs in a,;

c1qbber j
or  (3) that E

happens in o

clobber utex”
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Case (1) may be reJected due to our supposltion that only the- actors
alias-protected-actor and regulate-mutual»exclusion are able to access the
state-array; alias-protected-actor makes it 1mposs1ble for any process but
o to reference state-array[i]; and by assumptlon “mutex is the only process
that ever runs regulate-mutual-exclusxon ‘

We have already noted that there are no update events in a handshake
after the "set-to." event Therefore there are no update events in ai

between E 4 and the completion of E

set-to- request request-i-

As for utex "€ have already proved that.there .are no events updatIng '
. and M

state-array[i] between Erequest grant-i*

its "set-to:" event happens, this event updates the cell

After the occurrence of

the event "grant §

but it updates it to the allowed value, grant' Between the "set- to "

event and the completion of Mgrant i

so if E clobber OCCUrs in °hutex it must happen after the complet1on of "grant i

there are no events updat1ng state-array[ll

But Mgrant ; cannot complete until state-array[1] is updated Since

that update does not happen in o it must happen 1n ai | But we've

mutex

just shown that a; cannot update state- array[i] further until Erequest 5

completes. So. qmute cannot clobber the state until a updates lt and a,
cannot update it untll Erequest i completes T.e. there can be no event

E in o

clobber mutex
is rejected also.

pr1or to the completion of Erequest o ¢ and thus case (3)

Having established that there can never be an event that clobbers the

state-array element before E is completed we have proved that the

request- -1

third and final criterion requ1red for M to be a complet1on-causing

grant-1i
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handshake of E

request -4 1s always satisfied. 'Th1§ completes the proof

of the theorem

Theorem: Edone ; causes completion of "grant i
Edone ; is aiweys a comp]et1on—causing handshake of Mgrant e

Proof The proof of this theorem is simi]&r to the proof of the previous
theorem.

Theorem: the handshakes form a ehain of compietioneceusing handshakes.
Given the actor system oescribed in this section and theeSteted‘initia]
~conditions. | |

M Edone- - e]ways forms

Then the sequence of events E grant-1’

request~i*
a chain of comp]et1on-causxng handshakes '
Proof: The previous two theorems stated that

()M
and (2) E

is always a completion*causing handshake of E

grant-i request-i

done-i. is a comp1et1on-caus1ng handshake of Mgrant §-
The def1n1t1on says that whenever these two relations ho1d then the events
_form a cha1n Since the re]at1ons always ho1d in thts actor system, the.

three events a]ways form a chain of completion—causing.handshakes.

2.2.3 Proving the theorem us1ng handshakes

In the prev1ous sect1on we proved that the 1nteract1on between a11as—
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protected-actor and regu1ate-mutua1-exclusfbn‘a]wﬁys take$-tbe form of a
chain of completion causing handsﬁakes; We shajl usé that result here‘to
prove the main theorem of fhis chapter: fﬁgt'given thé'specified actor system
and the specified initfal conditions alfas-protected-actor is a fair
mutual exclusion actor for protected-actor. |

The proof proceeds in two parts. The first part shows that all
references to protected-actor that are funneled through alias-protected-actor
occur in a mutually exclusive fashion. The second step is to prove that
hlias-protected-actorrprovides fair encasements of protected-actor. Combining
these two points yields the overall theorem.

We will see that Part I of the proof'followsvstraightforwardly from the
handshake theorems developed in'sectioﬁ 2.2.1.m Par; IIvhas two subfparts
one of which also follows from the handshake theérem; the second sub-part,
though, involves proving the fairness of Eeg&iate~hutué1-engusion's scan
algorithm. It is in this last part that_the poténtial for mdre processes
being added to the system must béracqounted for. This last section does
not follow from the handshake‘theorem;
| Part I -- Given the actor system and initial conditions stipulated in the
main theorem. | |

Then all references to protected-actor that occur within alias-protected-

actor occur in a mutually exclusive fashion.
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Proof: The defin1t1on of mutua]-exc]usion says the fbl]owwng.

Let Eenter i be an event of tbe ferm
Eenter«if <protected-actor receives
| - (message: any-message
(raply-tg: continuation)) in a.>
and let E ;. _; be the next event thereafter of the form
E

oxit-i’ <cont1nuat1onvrecedwes

(message: anyhaasaer?'inva{>’“
Then for all quadruples of events

(E o » E

enter-i® “exit-i enter -3’ exit-j) > = J_

one of the following two orders must hold
either (1) E befnre E

4 exit-i
or (2) E pefore Eex1t e before E

before E

before E exit-j

enter i entar ~J

Eenter-i before E

enter-j exit-i’

Given a pair of events -~ E_ . . .and E .. . - - arising from the

execution of a]ias-protected—actor the-ﬁ&raﬂght J-ine theorems for that

actor shows that the events must accurxbetwuen«an event Efequest ; and the
next event of the class Edone i Moreover Eenter j and Eexit i must

occur after the completion of E which is 2 handshake event. This

request -1°

means that E and E eccur in;the:ﬁntarrhaﬂééﬁake-gap between

enter-i exit-1i

Evequest-i M Edone-i-

We proved in the previous section that the sequénée of handshakes

E M_ .5 E

grant-i’> “done-i

request-i° is a chain of completion-causing handshakes.
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It follows that M is theTpéraITel handshake to the gap between

grant-i

Erequest i and Edone i Therefore, from the enve]opment of inter-handshake

L] -
gaps theorem, we know that Mgrant -4 ‘gnve1opes the gap 1 e. Mgrant L

» and the completion of Mgrant»i is after

j are within the gap, Myrpne ¢

before the completion of Erequest -3

Edone-i' And since Eeater i and Eexit

envelopes them too. See the 1llustration be]aﬁ§i~

ErequestAi ' C_ “Eenter—i ' >$§;jt~i rszdong—i .
a._ . s ‘-w-.-qfn»—-i--ih—d””wiummn-‘
mutex Mgraut—i
critica1 
region
L M, ant-1 '8 envelope —d

The straight-line theorem for the actor reguiate~mutua1—exclusion shows

that if an event Mgrant-i appears in the behavior, then no other event of the

class M . may appear until the completion of M appears. This

grant-j
leads to the following relationship:

grant-i
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Mgrant -9 before E

before M

before EEXTt i before comp1et1on of
hefbre E

enter i

M before E

grant-i grant J
for all values of i and Jj.

enter-j exit -3’

Embedded in that relationship is the re?at?onsh1p requ1red by the
hypothesis, and thus Part I of the theerem is proved

Part II -- Given the actor system and initial conditions stipulated in the
-main theorem. Then alihs5pr0tectedeactgcgntdxiﬁegffair-eﬁcasement for

protected-actor.

Proof: There are ‘two parts to the proof. = First we will show that if a
particular request is scanned then the associated message will be transmitted
to protected-actor and the answer will subsequently be retransm1tted to the
external continuation. This part of the-praof~$5fessentjally a continuation
of the previous proof of Parf I of the m@in theoren. ‘The second section

of this hroof establishes that the scanning of the array is. itself fair.

Part II-(a) -- Given the actor system and i»itiaavgonditidns-stipulated in
the main theorem. If an event of the form
Epel1o-i: <@lias-protected-actor receives
(me;sage: anyémessage
o (reply-to: continuation))‘in a;>
appears in the behavior, and it is\fo?Towed‘by‘an event of the form
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M step (2) of regulate—mutual—echustn receives

request-i°
(message. request 5 1n “mutex 3 |
then the following events a1so w111 appear in the behavior after :

M

request . and in. the stated order:

M

.2 < -
enter-i* protected actor recewves

(message any—message
(rep]y-to~ step (8))) in a; >
 before

Eexit—i' <step (8) of aT1as-protected-actor receives
| ‘ (message any-answer) in a1> o

" before |
Ebyebye 5 <continuation rece1ves

(message: any-answer) in o;>.

Proof of Part II-(a): Certain parts of the hypotheSis are true by inspection

andAare included here for comp]eteness. In part1cular, if E i occurs,

enter-~

then Eex1t - is required'to occur'hecause protected-actor 1s constralned to be

a norma] return1ng actor in the hypothesis of the main theorem.
If Ehello ; occurs then by virtue of the stralght 1ine theorem the next

named event E , is bound to happen. Also if M

request-1i request - oecurs’that‘

means that Mgrant i

we proved in the previous section that the sequence of events: E

will occur, too.

“request~1i

and M form a comp]etwon causing cha1n of handshakes and so

grant i® Edone -i



ifE both occur, then E, . _; Will occur inevitably

is the 1ast handshake in the chain it will not

request-i* 3" Mgrant-i

after. But since Edone B

become comp]eted by virtue of act1v1t1es in the cbain Edone j requ1res an
exp11c1t completion- caUS1ng event in order for ‘that handshake to terminate
and for the next step in alias-protected-actor to occur. By the same token

if Edone-i completes then the next step of the program will happen, too;

the step after the handshake is the step that replies to the external

continuation -- i.e. it is the step corresponding to Ebyebye L

So if there will be a' completion-causing event for Edone-i during every
execution the system then the theorem is proved. '
The state of affairs in effect when Ei j occurs is illustrated below.

We know that M always completes after the'“set—to:" in Ed because

grant-i one-i

E is a]ways a comp]etwon—cau51ng<handshake “f»ﬂgrantfi:

done-i

Efequest—i C Eenter—i Eexit—i Edone—i done

1 -———-3e—3. »e »o- R

C

a
mutex .
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The event ina utex after the eqmplettep Of»Mgrantfi is Mid1e$i:

Midie-i <state—array[1] receives
(message I update to ‘fdle ]
(rep1y-to step~(6))) in “mUtex .
We will prove that M, d]e i “Is aTways the one and onTy comp1et1on causing

event of E, . ;

idle-j Must satisfy three criteria in ordef to completion-causing-

event of E, . ° |

(1) Mid]e - Must metch Ed g -- which 1t does by 1nspect1on,.

(2) M1d1e i must occur after the “set to " event re]ated to. Edone R S
which it does because Edone i 1s always a comp]etiengcausing,handshakeaqf

’ "grant i which is before Midle H

and (3) there must be no other event updating state- array[1] between Ej o i1
set-to." event end‘the comp}etion:of gdone?i' This statement of the third

criterion ie stricter than the definition requires; if this statement proves to

be true then M, ... ; will always be the ppeyepd,ohgy coMpletion-causing event
of the handshake. | | ;‘}

| The third criterion is true as follows: The only prggesgesqtbgt‘may:

reference state-array[i] are o4 and o, ot

ex’
the "set- to " event of a handshake and 1ts complet1on and so no event 1n o

There is no update event between

i
may v1o]ate the criterion. There are no more events 1n amutex that update

state-array[i] after M1d1e i dur1ng this same cyc!e of the algorithm. If

Yutex updates state-array[i] further, that update may not occur until after



We have already proved that events of the Mrequest*i

clasS'handshake and therefore there

{
an event M request«i‘

class occur only during an Erequest i

: ‘ ' . -4
must be an event E' between Mid;e¢j‘qnd M ; also if the

request-1i request-i

alleged update event is to hgppen before the completion of E; .

must 11kew1se occur before the completion of Eyopa-i [N other

i then

E' request-i

3 g 5 ! .
words the supposition that we are making is that thene is an event E request-i

between E and its comp]et1on

done-i
The existence of such an event in that re1ationship leads to the

vollowing order1ng:

E before E' before eamplet1on of Edone - before E

done-i request-i byebye-i~*
This ordering of events violates the strafght 1ine theorem of a11as—protected-

actor. Hence there cannot be an event of the form E'

request 1 between E

done~-i
and its completion and the third criteria is upheld

So M will always cause the completion of E 41, the event

jdle-i done

E is assured of occuring,.and ‘Part I]s(a) of,the théorem is proved.

byebye-i
Now we must establish that the scanning of the array is itself done

fairly. Part II-(a) showed that any request that does get scanned will

get passed through to the protected-actor. Part II (b) shows that all

requests that are made will be scanned"

Part II- gbl -- G1ven the actor system and the 1n1t1a1 conditvons stipu]ated

in the main theorem If an event of the form
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Erel10-1+ @ ri-as-pr‘otected—actbr' recei ve;,,
: (Message any~message :

(reply-to continuat1on)) 1n a1

appears in the behavior, then it will be'followed by an event ofvthé form

M‘v

Prequest-i’ <SteP (2) of regulate-mutua!-exc]uszoh receives f

(message request ) 1n Yutex”

Also, if Eheno i happens and is followed by Mrequest i then there

~ will be no subsequentfevent M’ tai? unless there is

request-i -1 1ke ¥ request
n event E'hetao-i'?fﬁef EpelTo-t"

Proof:of.Pﬁrt.?:_(hl:  : Tth;ecahd_statem§h§;in tbé‘hxpgiﬁésis is qﬁitekgqsy
to establish and we will dispose of it first. Nhat the statement is'sayfhg
is that if a request is scanned dnce it’wif}:not-bé*scaﬁﬂedﬂagéin. In other
words the operation of lettihg afPeque%t intexthefﬁﬁotected-actof and'passing
the answer back out reinitfalizes=theistate-array element soméhow.

We have already shown that if an event }ike Mreﬁuest—if°¢c“rs it must be
immediately preceeded by an event M
state-array[i]. M

request-i _ }
were 'reqyest'5 | ;f.Mrequest—i does_happgn,thqnfﬂ%dw_1 iSQassured‘of‘qccurring

scan_i,that re@Qs:themqontgnts of

follows only if the contents of the state element

.and there cannot be another,Mscan i type¢eveﬂt jn;bétween.

M1dle o of course, sets state-array[l] to .be 'udle -There cannot be'
another event of the Mrequest-i class until and unless state-array[x] is. again-
made equal to 'request'. The only events in the system that do that are
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E . type events; E . events in turn only occur after

request-1i request-1i

Enelto-its» and only one B0 oct s Will followany gy, ; without an

intervening Ehello—i

So, what we have is this:

before E before E'} 11,7 Defore E'

n st Epetio-i

request-i request-i
. . " v
M Gputex’ Mrequest--i before Mid!e-i before M request-i
which says that if Erequest-i is before Mrequest-i_the" E.request-i must be
before M' oo est-i ™ i.e. the second statement is established.

The first statement in the hypothesis-is,stating that the scan of

- the array must be fair. Let M, .. . be an event of the form
Mecan-i’ <state-array[i] receives

(message: ['contents?']
(reply-to: step (2))) in A tex”
The scan algorithm is fair if and only if for each process in the system there
., and after each' M . event there is another one

sCan-1 scan-1

later. If those conditions hold then there will be an.M;can_i-eVent after each
E

is_a first scan event, M

request-i reduest-
Erequest-i event g]so. Since each Erequest-i*EVé“t is a direct result of the

event which implies that there will be an M ; event after each

preceeding Ere110-i €vent, this would meén‘that'eVery-Ehéjlo_i~wou}d be

followed by an M as required by'fﬁe theorem.

request-i
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Events M occur 1n.step(2) of

scan-1 ial-gxclusion. ~ The

value of 1 being scanned is controlled by step(lé anee\ -and- thereafter »

by steps (5) and (7) ~Assume for the. moment: that the_;gan is not. 1nterrupted
by any request, and Jet' s examine just the scan part of the algarlthm regulate~
mutua]-exc]us1on = (scan part only)

(1) set cell i:= first process namé kﬂogg,-,:;;; - |

(2) ask state-array[i] for its conten$s>@né,1et.Staee#svcontents. 4

(6) resume or continue scanning ﬁhe Statggannegeas:followséh;~

(7) there are two cases for the'prqcesSaname 1ndex;‘1:-

(7 1) i= last process name- kuoua - update o= first process: name known;

- (7 2) else, update 1:= next process name eiter i.

- (8) repeat from step (2) .

~END - |

If the state-array is static and dees net cheage size. wtth tfme then the

,first process name and the last proeess name are- each constants.v The scan
algorithm then has the form of two nested 10095 ‘the euter loop repeatediy sets
itoa constant initial value and the inner Toop updates 4 unt11 it reaches a
constant maximum value. This structure wil] result in fair scanning if the
/funct1on updating i has the following property start1ng w1th the first process
name knawn, successive application of tbe~functi¢nvmust yield all process names
known to the system; if the function is tkely funétianel,infthe‘mathematicall
sense then it will yield all process names;once befonefreiurnﬁng any name a

second time.
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If the scan is interrupted then some event M__. . will lead to an

"réquest-i event rather than directly going to step (9). But as we have

request ; happens then #11 the Steps of the actor

_ggulate-mutua1—exclusion myst- inevitab%y énsue Tead1n§ to M, in step

idle-i
(5). After step (5), the scan is resumed in stgp (6). Since\the~wait'.

mode interruption is guaranteed to termimate and to resume the scan, and
since it doés‘not'effect‘the Scan-p&fameter iin ahy”way.‘?9The interruption
cannot mod1fy the fairness of the scan algorithm.
Our argument for: fairness assumes that th& state-array 1s of constant
_ size. Let us relax that assumption and allow the ‘array to grow without bound
~over time. To do so requires that the:state-array be treated as a‘variable
sized structure instedd of a fixed size'itray * A¥so the index i must not be
interpreted as the usual kind of integer subscript* 1 is instead a possibly
symbolic index into the state-array structure.

The fairness argument ‘heretofore was based on the fact that between two
successive scans of:somefstaté—arfay e?anﬁﬁt-fﬁere?&re'af?xédfnuﬁber of other
elements to scan -- namely the«size of thﬁﬁdfécy;M¥ﬁu§ﬁone;‘ To extend the
arguments we ﬁust replace.the-notiéﬁ'oféayffxeg nﬁﬁb@r‘of intermediate scans
By the.notion of a bdunded‘ﬁumber;  If¥ﬁétweeﬁftwo successive scans of the

~same state-array element .there ave dn1y~i*boun&ed-ﬁumbef of other elements to
scan, then the second successive scan event aTways will happen and the 5
algorithm will vremain fair. o

It turns out to be Crucial'where in th&rstatE—array structure the newly
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‘added elements are put. If they are added after,;ﬁg,;urrent,5can point --
i.e. between the element current]y.béing scanneduaﬁdgthe end of the structure --
then the scan algorithm no longer is assured of being fair. For if elements
are added to the array as fast as umutex,is‘able.to,scan.them or faster, then
Gnutex will never reach tﬁe end of the,array.and,gﬁll neyar,wﬁap around to the
beginning.  Thus no element of the array will ever get scanhed.av"next“ time.
Suppose; though, that the'new elementS'are'alwaYS added behindvthe scan --
i.e. between the beginning:df‘fhe{array ahdféﬁé‘éfémeﬁtvbefng scanned currently.
In this,case‘there-will always be a bounded‘number«bffelémgnts;between the
current scan point and the lastﬂglemgntqu7ehe.arrayﬁ4.«Thét is,;althoughgihe
beginning paint of the scan algorithm may qhdagefng,aoﬁ_somagbghavior in the
middleVmay vary, the stop rule for the algorithm nemain§,const;nt. . So .every-
time i is set to the first process name known we may énggict the number of
entries that must be scénned before feaching3tbewcqnstant!A}ast,process name.
Everytime 1 is reset to the first process wevw§11 say that a new cycle of the
algorithm has begun. Let us ca11_the‘numben of entries that must be scanned
in some particular cycle, size (cycle). | o

‘scan-1

- occurred.  We must prove that there will be another event.M' .. .. in the

behavior within a bounded number of scan steps. Call the. cycle during which

Now suppose that an event M . fbr;seme.par;jcqlar_j.has Just

Mscan-i occurred cycle-a and the next cycle call cycle-a+l. - The pumber of

scan events betwee"~Mscan-i and M/scanAi is }ess»tbqn
size (cycle-a) -- the total number of scan events in cycle-a

+ size {cycle-a+1) -- the total number of scan events in the next CYCIe.
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-Thus if the array is expanded behind the current scan, each event of the

form M__,_; will be followed by another sich event within a bounded number

of scan events. The bound s not known at the tiﬁé'thit“"sgan-i happens;
it is, however, known a bounded time later, when the first process in the
state-array structure is next scanned. - The scan algorithm therefore _

" remains fair even if the state-array is eibahdéd%ﬁ*tﬁbut bound over time.

- A _specific algorithm fqr<ggpandin9 the state-array: ‘

A specific algorithm for expanding the state-array was presented in
the 1nfofma}~discussionfef'thefthédrém.’:fThatialgerithm trédated the state-
array as a 1ist rather than an array. “In that wode the identifier “state-
array" is uséd to name the 1ist of state-array eleménts. fhé*notatidﬁ --
state-array[f] -~ must be understood as a symbolically indexed refefence into
the 1ist that state-array points at. 'Thﬁflfs,‘%he;éxPrESSidw

state-array[i] o |

may be assumed to return a pointer to thefééil on the State—array list for
the ith process. | o v

The programs for manipulating state-array, alias-protected-actor and
‘regulate-mutual-exclusion, were written with the ideéx in mind that state-array
would indeed be an array. Now that state-array is to be a 1ist those programs
might have to be modified. | .

A1l references to state-array that occur in aliasip?etected—actor'always
refer to a specific element of it. Since the expression -- state-array[i] --

returns a pointer to the appropriate Ce13g‘the.referénces in aljas-protected-
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actor will continue to wark even though state-array is a list.

The algorithm for regulate-mutual-exclusion though references all the
entries of state-array sequentially and it is more convenient to rewrite
that actor using car's and cdr's than it is to try to make the array notation
work. A version of regulate-mutual-exclusion that is particularized for the

case of state-array being a list is presented on the following page:



-88-

(defun regulate-mutual-exciusion nil

(prog (i-state state')

Step-2

Step-4

Step—S

Step-8

Step-9

~ {cond

(setq i-state state-array)
(setq state (car i-state)) -

((equal state 'idle‘)(gbto'step~9§)'7
((equal state ‘request' )(goto step 4))
(else (error)) | |

(rplaca i- state graht')

33 loop waiting for state-array[i], i.e. i-state, to be 'done’

(setq state'(éar i-state)) -
(cond |
((equal state 'grant')(goto step~6))
((equa1 state 'done’')(goto step-S))
(else (error))
(rplaca i-state 'idle') |
;3 resume or continue scénning the state-array
(cond ' ;if‘at:end of state-array list
| ({(nu11 (cdr i-state)) = ;then reset i-state to beginning
(setq.i-state state—array))
(else (setq i-stéte,?cdr i-sgate))))
“ selse set i-state to next entry.

(goto step-2)))
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The operation of creating a new process may'adﬂ,the,new=proces§ to the
state-array by cons'ing a cell for the new process onto state-array; This
procedure s described in algorithms for actors fork and expand-state array

below:

fork =

(1) receive argument énd call it new-process ,

(2) do whatever has to bevdone in the innafds of the system to create a
new process | '_ , |

(3) expand-state-array for the new—proéess (see below)

(4) exit to externally supblied continuation |

END

Expand-state-array =

(1) receive argument and call it new-process |

(2) allocate a new cell and call it new-state. Update new staté's initial
contents to be 'idle' _

(3) cons new-state onto state-array and 1et.new-state-arréy = the réturned,
value ’ |

(4) Store new-state in the bowels of the system in a manner associated with
new-process | |

(5) Update state-array:= new-state-array

(6) Exit

END
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The actor expand-state-array is expressed formally in LISP on the

following page:
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(defun expand-state-array (new process)

(prog (new-state new-state-array)

Step-2 | (setq new-state 'idle')" e »

Step-3 (setq new—state-array'(cons new»state_stoté—array))'
Step-4 ' (... store new-state in the?syStem;::) |

Step-5 . {setgq staté—array-new-stoteeafroy))),

The scan algorithm in the reQised réguiotéémotualQesclusion here uses 
‘the pointer in the cell state-array as "the beginnlng of the scan“;i
The expansion algor1thm.1n expand-state-array. a]ways‘adds new processes before
the current value in state-array;f Therefore this method<ofradd1ng processes
to the list does not destroy the fairness of ihe scan élgorithm.

Howeyer, if multiple processes are aQ}e to exeCute'eipand;state-array

concurrently, it is apparent that harmful fhteractiohs are quite possible.

Let us call the events indicated by step (3) Econséi:

Econs i <state-array receives
(message: [* cons' new—state]
(reply-to: step (3)?) in a1>
Also, let Eupdate-i

E

represent the events in step (5):
update-i' <state-array rece1ves
(message: [ update' to new—state—array]

(reply to:. step (6))) in ;>

Suppose that two processes ay and aJ, are execut1ng expand state—array at

the same time. The following ordering of events is possxble.
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f:isupdate—i

. ] '/,.-v - .
in ag: Eéﬁhs_j,/’/gefore (Eupdate-j

At the time of E R state;—array has not yet been updated to

cons=-j: _ ,
include ayrg NEw entry. _ So both a; and aj would create the new-state-array

using the same previous state—arkay. - This leads to structures like

new-state-array for * ' staté-array¢?
a; A &
T iey | . - ;

> » o0

new-state-array
for ‘

ai
N N

Whichever process updates state-array in.step_(S) last is the one that will win

out in the end.  Its néwéstate'cell_wi11 be inciuded'in ihe state-array list;
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the other entry, while not garbage nor possessing a danglihg reference, will
never be referenceable from state-array. The effect is that that process
will never be noticed by regu]ate—mutua1-exc]usion, 1 e. requests from that
process would never be serv1ced If we were to allow th1s s1tuat1on, the
mutua] exc1us1on operator would no longer be fair

The solut1on as we noted ear11er is to treat expand state-array_as a

protected actor and only al]ow it to be accessed via an encasing a]1as actor
V}that provides fair mutual exc]usxon. If we assume that a11 in1t1a1 processes
are represented in the state-array then we may specify that process creat1on
occurs in a mutual]y exclus1ve manner by protecting the actor fork with precisely
the mutual exclusion operator that we have descr1bed here. That is we may
def1ne an actor alias- fork that 1s ident1ca1 to al1as-protected-actor. except
it relays the input messages to fork 1nstead of protected-actor | In other
uords we may use state-array to protect the actor that expands state-array!

The final question we must resolve 1s whether there can be any harmful

‘interactions between e *_pand-state array and other actors that reference the

state-array Alias protected-actor only references e1ements of the state—array

:'u.-

1

and only that one element associated W1th the runn1ng process S1nce qggggg:
- tate—array never mod1f1es any ex15t1ng components of the state array structure
= ‘there can be no harmfu] 1nteract1ons between these two actors 2
| Regu]ate-mutual-exclusion, however does more than reference the components
of state-array, it needs to reference the start of the structure every t1me a new

cycle begins -- i.e. every t1me the scan reaches the last element of the array. If
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expand- state-array actua]ly succeeds at getting the newly added elements

included in the scan, regu]ate-mutual-exclusion must use the cell state-array
as the starting point of the array That 1s. when the algor1thm says to set
= the first process known that means settfng i such that state—array[i] wili
point at the same entry that state array points to.,}_ |
Suppose that 1 is set to state-array concurrent w1th some external process

executing expand-state-array Can that lead to any harmfhl 1nteract1ons?

oy gt

If iis set after step (5) of the algorithm then i w111 acquire the new
" value of state—array and the next element that w111ybe scanned 15 neuﬂy added
element. By the ‘time step (5) happens a11 the processing associated with
expand1ng the array will have already been done - step (5) is the last activity
in the a]gorzthm except for the return Therefore there is no difficulty with
the new]y added element befng scanned at th1s t1me ' )

If i ds set to state—array before step (5), 1 €. between steps (l) and (5)
_then the value it obta1ns is the previous value of state—array . Inm this case the
vnext element scanned will be an element added during a previous»expansion of the
array or an original member of the array, and w1]1 not be the element being added
now. In this case the newly added member wil] not be scanned unt11 a future cycle
starts. We know that the element wi]1 be scanned 1n the future because the
'scann1ng a]gor1thm is known to be fair _ o

So, the state-array structure may be expanded safe1y with no poss1b1e
t1m1ng errors prOV1ded on1y that the expansaon is done in a mutua11y exclus1ve |

fashion.
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Conclusion of proof: We proved in Part I that thefsystem of actors

alias-protected-actor and regulate-mutual-exc¢lusion combine to form a

mutual exclusion operator for the actor protégtedeagtOrQ In part I we

proved that the system of actors fairly encase protected-actor; that is all
. messages that aré received by the alias are retrénémitted,tq the protected~.
actor, and all of the proteCteanctor's answers are de]ivered~to_the external
continuation. R

Putting together Part;ul and II gstab]1§h§§;thgtua]iaS~prqtectedaactqr
is a fair mutual exé]usion'aéfor for proteqted%apyor,as required,by the

main theorem.



-96-

3. Busywaiting;§ynchfﬁnizatibn;Algoritﬁms'Using_ﬁkténded Cells

~In the previous chapter we described an a1gorithm that ach1eves fair‘v

mutual exc1u51on of an arﬁitrary number of processes uswng cells as the .
synchronozation-pr1m1t1ves. " That a1gor1thm requires a relat1ve1y 1arge
amount of storage though -- 1t requires an‘array of cells propontionaT inv
size to the number of processes in the system.} “In this chapter we will
describe an algorithm that uses eXtenﬁed'ce1fs'asxtﬁe synenroniéation
primitives; this algorithm also éehieVes fair mdtnaltexclusion’bdt requires
only three extended cells of storage to do it. o

An extended cell is a cell that is able to mode1 the read-mod1fy-write
_ 1nstruct10ns that are commonplace in present-day computers. These
instructions enable a process to both read and update the contents of a
memory 1ecation in one indivisible activity. }In other words, the mutual
exC]usipn that is provided by the;computer'hardware to guard against |
- simultaneous updates to a cell is extended ever so slightly to allow these
compound instructions. | |

Unfair.mutual.exclusion is trivialiy achievable ustng read/modify/write
instructions as is well knonn, by means of binary. lock variables. Suppose’

we redefine cells so that they will also respond to test-and-set messages.

In response to such a message, the cell will update'itS‘contents to 1, and
return its previous contents to the continuation. We will see the simple

unfair algorithm shortly.
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Fair mutual exclusion algorithms need a wee bit more memory than just
a binary lock provides and hence we need an instructiOnﬂthat is a Tittle

more powerful. That 1nstruct1on is the’ add constant instruction When a

cell receives a message of the form

(messageﬁ [tadd constant' 27] .
(reply-to: continuatinn))*'
it updates its contents to be its previous contents nius the constant, 27 in
this case. The value returned to the contfnuationiié*theJnew-ﬁpdatgd‘va]ue.

We will use the add constant instruction in three specific configurations

only. It will be used to add 1 to a cell, to add-1 to a cell, and ﬁo test-

and-set a cell. test-and-set is simulated with add constant instructions by

means of the following algorithm:

test-and-set =

(1) add constant 1 to the cell. Call the neturned\yalye,stata,;

(2) there are two cases for state:

(2-1) state # 1 - add constant - 1 to cell and return 1 as the

value of the test-and set. _ ‘
(2-2) state = 1 -- return 0 as the value-of the test—and~set
END

Hereafter we shall use the word increment as a synonym for add constant

1 and the word decrement for add constant -1.  test-and-set wj]T refer to the




algorithm spec1fied above o A - } ‘
Unfair mutual exclusion may be 1mp1emented by 2 s1mp1e a1gor1thm that

loops trying to set a binary Tock variable.

unfair-mutual-exclusion =

(1) test-and-set the cell, 10ck~ce11. and. lat gggh_ = the returned
previous contents of lockscell
(2) there are two cases for state:
(2-1) state # 0 -- repeat from step (1)
(2-2) state = 0 -- prqceed.with.stepf(3);v\
(3) reference the protected critical region as irequired
(4) update Iock-ce11:=0 |
END

This algorithm is not fair for a very speciffc reason. Lét;s ﬂefine-
the word "session® to réfer to those ahffﬁ%iiégmdéidﬁFﬁng‘in some partiCUYAr
process, from the first time the process execntes step (T) above until ‘the
process is 1et into the critical reg1on once and cames out of it. I.e. a
session corresponds to one interaction of a process with the critical region.
A session may last forever only because ddrfhg'bnéTSEszbn o?’sdme‘pfdbess,_
a s an unbodnded number of sessfons for other processes may take place. N

However, at any given time there ékézbﬁfyra‘ﬁéuhﬁéalnﬁmber‘df proceéses

existant in the computation sySteh. So how does poof‘dg»haﬁége to get stuck



in an infinite loop? There are two ways: either some processes.erehunder—
taking unbounded numbers of sessions -- e.g. they. are’in a loop wherein they
enter and exit the critical- -region; or some processes are off somewhere bus11y
creating new processes in an unbounded fashion, and these newly created
processes are engaging in sessions with theycr1t1ca1 region. over here. If
both these "session sources" could be muted so that during one session for -

a
on1y a bounded number of other sessions could take place, then o_ could not

a
- get stuck. And indeed both sources cah,be quenched'by~avschemetthat reqdires
only three read/modify/write type cells, as we shall show. |

Consider first the problem of repeat sessions. - We need to achieve the
following specification: Suppose a, and a, are two processes waiting to
pass through the mutual exclusion operator; and suppose that o makes it
through before Oye O must not attempt to pass through again until 0, passes
through once.  You may note that this specification is svmllar to the
constraint satisfied by the scan a]gorithm presented in the prevxous sect1on

A sure way of keeping a from try1ng to reenter the compet1t10n 1s to
keep ab locked. up inside the mutual exclusion device unt11 u gets through
We imagine a device with two "chambers", an input chamber and an output chamber
Processes when they want te enter go into the input chamber to wajt. They are
allowed out of the input chamber one by one'and_they‘péss throughnthevcritica1
section. Afterwards, the processes are hetd up in the output chamber and
made to wait some more until the input chamber is empty. See the illustration

below:
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output

input

chanber

chamber

critical
“reglon

A device like this has the potentia] for fairness if all the wait loops in
both chambers can be shown torye ofAboundgd;éu;;tidn;

| :An algorithm alqng tﬁese lines is,ﬁfau:ehagtgq.on>th& next two pages,
and describéd thereaftér: The key ta thqu}gdrithm_is that entering and -
exiting operations are decoupled;vwhile prchSses ahegajiowed to exit the
device, none afe aTioyed to ehter. | Thé cell, empty/fill-state, keeps track

of whether the device is being,fi]}ed o;‘qut1Ed‘



(1)
(2)
(3)

start of mutually
exclusive region

(4)
(5)

(6)

(8)
(9)
(10)

(11)

(12)
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. announce --- inéremant input-counter

test-and-set lock

no

yes -- hote that lock-
now equals 1.

d

read empty/fill state cell

no --
update lock := 0™

reference the
critical region

increment output-counter

decrement input—couhter

no

input-count

; yes -- update ¥mpty/fill
~ state :="emp§ying',

update lock := 0

end of mutually
exclusive region



(13)

(14)

(15)

(16)

(17)

(18)
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L

read empty/fill state cell &

no

'emptying'
f)

yes

decrement output-counter

is
returned
value

=0
?

yes —-- update
empty/fill state
"filling'
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fa1r-mutua1-exc1us1on (assuming no new processes are created)

-- requires three read/modify/write.type‘ceiISf'”f

input-counter = number of processes either wa1t1ng to enter
cr1t1ca1 retion or in the’ critical reg1on
output-counter = number of processes wa1t1ng to exit operator
lock = 0 1f no process 1s 1n crit1ca1 reg1on
=1 1if a process is in critica] region |
(1) announce desire to enter by 1ncrementing the 1nput-counter
(2) test-and-set lock, and let lock state = returned‘prev1ous va]ue |
(3) there are two cases for lock- state |
© (3-1) lock-state # 0 -~ repeat from step (2)
(3-2) lock-state = 0 - proceed w1th step (4) -~ note that the
Tock now equa]s 1 regard]ess
(4) read contents of a normal ce]l, ca11ed empty/fiII-state, and Tet
state = contents
(5) there are two cases for state: ) |
(5-1) state = 'emptying' -- update ]ock =0 -- . e free the lock

and repeat from step (2)

(5 2) state 'f1111ng - proceed with step (6)
(6) process is now valid?y inside mutual echusion operator, reference the

critical reg1on as required
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(7) the process has finished referencing the cfjticq} ;egidnﬁ m:It_is‘nqurin
the "output chamber“‘ | . |
(8) increment the output-counter ;
(9) decrement the input-counter, and let counter = returned value
(10) there are two cases for counter _
(10 1) counter # 0 - skip to step (12) below
(10 2) counter 0 -- proceed ‘with step (11)
(11) update empt¥/f111 state = empty1ng
(12) update lock:=0 -- i.e. free the lock i
(13) read contents of empty/f111-state, and . 1et state = contents .
(14) there are two cases for state: ’
(14-1) state = 'filling' -- repeat from step (13)
(14-2) state = ‘emptying - proceed uith step (15) |
(15) decrement the output-counter. und 1et counter = returned value
(16) there are two cases for counter:
(16 1) counter # 0 ---sklp to state (18) below
(16-2) counter = 0 -- proceed "1th,5t99.(17)-
(17) update'empty/fi]l-state:= 'f111f“9'eﬁ,?h,l |
(18) exit to the outside world. |
Mutual exc]dsich per se is provided by tbe,binary Tock-cell. The
- protection of the lock ranges frqm;step;(ﬁ),tn;stepgﬁ}zi; en}y one process at
a time will ever execute in that mutualty‘exclusiwelnegtonivtetouswi!} note

that the decoupling state variable, eﬁpty/fi11fstate_is only referenced within



~105-

that region and therefore there will never be any ambiguity as to the state
of the device. We may study each. of its modes separately.

In 'filling' mode, processes may arrive at both the input and output
~ chambers of the deyice. In the input stage*the’processéS“WTYI pité up in
the loop of steps (2)-(3), accumulating thére while other procesées‘afe‘
executing in the critical section. At the output stage, processes also
muét wait, here in the Toop of steps (13) and (14). “This 1atter'1oop is
controlled by the instructions at steps (9), (To)‘and~(l1); which:contro1
the empty/fill state of the device by examining the fullness of the input
chamber.,

During ‘emptying’, processes may also accumulate at the input gate
to the mutual exclusion operator, however they may not enter"the device.
In this mode the processes that are looping thrﬁugﬁ the output chamber
peel themselves off,ahd return to society at large. Thus liberated, any
or all of the processes might inmediately turn around and try to get back
into the place, of course; however the decoupling of the input from the
output due to the mode being ‘emptying' prevents this feedback path from
becoming oscillatory. |

The fairness of this a]gnrfthm‘fo11ows from the bounded ddration of
all its loops. There are three loops in the program: | 7
(1) the loop at steps (2)-(3) where each process tries to grab the lock.
(2) the loop at steps (2)-(5) waiting for the state to be 'filling'
(3) the loop at steps (13)-(14) waiting for the state to be 'emptying;
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~ We shall analyze these three loops and show each to be of ‘bounded duration.

We assume, of course, ‘that the program s&érts&oﬁ%r!u fté,natura1 initial
“conditions: all counters = 0, the Jock = Og'éaptyIQilliﬂ 'fi%iiﬂg‘, and
“there are no processes inside:theeaperator*initially. ATso reéall that

at this time we hypothesize that no new prneessus are created 'in the syst!m'
we will extend the salut1on to cover that case sbortly.‘

Let's consider the 1oops in reverse. erder, startfng with the loop
waiting for the state to become 'emptying'. The‘end~test for the loop is’
satisfied when input-counteﬁ becowmes 0. .’Itstccertafnly‘the case that there
is a maximum value attainable by input-counter: it may never exceed the
number of processes existant in thé,systam.'i~ﬂbw.'input=countbr is decremented
only within the'mutanly_exclusjvé.hegianaﬂhjchﬁagius‘thét«it?may’be decreﬁehted
'only While processes are allpued-into;that;regiaa;\» That is, ‘{nput-counter may
be decremented only while theimutual‘exclusion operator is in 'filling' mode.
During this_ mode, thddgﬁ,,noxprocesses-are:uiiow@debtckiout into the actor |
society where they may increment. inpyt-counter-again. fThuS*durihg'the phase
when input-counter may be decremented, .no:pvmce?ss ‘that has beth incremented
it and decremented it corresondingly may intrément it again. 'Nor, of course,
will any process incremgnt the;iﬁput#caunterptwieafuiﬁhéut?decwemehfing?it
in between. | | o B

~This implies that inputfcouﬁter may be incramented -only a bounded number
of times‘per "filling' mode. Onée all proteéses~havémincremehted it one,
though its value may be far less than the~maximpm poﬁSﬁbIe value, there wtll‘

be no more increments until the mode switches tof'emptyinng
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The activity of letting processes into the critical region will go
on until there is a mode switch. Since there are’onTy a bounded number of
increments possible until the mode sw?tches; and since. each increment is
uniquely matched with a decrement,'the switching of the mode is inevitable
and will happen in bounded time. _

Thus Ioop (3) -- waiting for empty/fiTl-state to equai"emptying' -
is a loop of bounded duration. _ | |

Now Tet's examine the next loop up.the ehain,jthenloop at;steps (2)
through (5) waiting for the state to switcnzbaqk'to 'filling'. The transition‘
here fs directly controlled by the activities of processes as they exit the
output chamber in steps (13) -(18). ‘,

It is clear that while the output chamber is f1111ng up, the value of
output-counter will increase to'a maximum value . The operation of emptying
the chamber decrements the counter back to_O_yh11e maintaining a decoupled
relationship with the input of the device; during the emptying phase'no processes
are allowed to enter the output stage and:sonthe‘ou;put-counter is not subject
to incrementing during that period. | The opevetion‘of’decrementing a number
that is not being otherw1se updated is an operat1on of bounded durat1on

Therefore the second Ioop, a]so, is guaranteed to term1nate in a bounded
amount of time. _ , o _

We should note before pass1ng one 1mportant deta11 1n the output

a1gor1thm, a fragment of which is reproduced be]ow. .
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(15) decrement the utput-counter

(16)

is
returned value
- =0

?

no

yes

- (17) update empty/fill state :=»'fiilihg*-

-

It is quite importaht that the va1ué tested in step (16) is the value

returned indivisibly By the decrement instruction, and that the value tested

is not obtained by an independent read contents message. The algorithm as

it is results in there being a unique event that observes output-count = 0
and hence a unique event that resets theﬁmode tb ‘f111ing‘.‘; Were the test an
independent activity, several different processes could decrement the counter

before any tested it, and they all could observe output-count = 0.
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It.is not harmfu] in and of itself for several events to update
state = 'filling" redundantly. If, however, some one of the processes tarried
at length between step (16) -- the test -- and step (17) -- the update -- it
might reset the state during the next pass of the program,-after the state
had just been set to 'emptying' for another go reund. -If so, the emptying of
the output chamber would be abo?ted in mid-stream and if no more processes ever
“entered the device, the output chamber'wduld nevervbe.emptied.

The algorithm as specified does not allow this poténtial deadlock.

Flnally we reach the 1oop at the front door of the mutual exclusion
device, the loop where processes vie with each other to grab the lock This
loop, of course, is the embryo of the whole machine, the sequence of events
that assures mutual exclusion in the first place. . _The boundedness of this
loop is implied by the’bound on the loop encompassing steps (2) through (5);
the larger loop encloses the former one. |

We see then that the algorjthm presented implements mutual exclusion
and does so without introducing unbounded loops in the behavior of any process.
The algorithm thus implements fair-mytual-exclusion as advertised. Furthermore
it does so using a fixed number'of cells, albeit cells extended to model read/
modify/write instructions. = This means that all synchronization primitives --
semaphores, serializiers, what have you -- may be~imp1emehted using just the
normal, primitive memory arbitration schemes provided by ‘most computer hardware,
with no extra software-induced indivisibility of operation. |

Other interesting equivalences of power may be deﬁonstrated using this
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algorithm.  The algorithm cannot be iMpiéméntéﬂ'uéing unfair semaphores
and normal, unextended cells. = This is because the  annbuncement of
arriving processes accomplished by incresenting input-counter in“step (1)
could not be assured with an unfair semaphore. But, the algorithm could
work given unfair semaphores that will answér the question, “Are any processes
at all waiting to get through you?" Given these rather trivially extended
semaphores, all the counters in the algorithm would become obsolete, and the
tests for zero would be replaced by the question.  That is to say, this
slight1yvextended unfafr1sémaphcra has equivalent power to the glorious fair
semaphore. | - IR SRR

The algorithm as presented wi11'0n19 work so Tong as the nuﬁﬁef of
processes in the system remains bbuhdéd;»“¥f:fheﬁé‘f§:a'pf0te55 source out
somewhere busily grinding out new'proceSSés; tﬁéﬁ5tﬁéffnbhtééBUhfer'may be
incremented forever and the mode switch*froﬁf“fﬁ??ihg"to temptying’ may |
never come about. - In this case We‘wo&Id*fihd~§ta§ﬁiht‘ﬁébls of processes
collecting in the output chambers of the 16Ek§'ih €hé;§y§tem. o

A way must be found to prevent newTyfc%eétééiﬁfbcésseé”beh competing
with processes already in existence uﬁti} the oTﬂ%r”pfbcéSsés3getzth?oﬁgh ‘
the mutual exclusion device once. Onme way ‘that this may be done is by -
restricting the actor system to;h&ve‘ndfﬁoré thén‘One‘ofithé devices and
insisting that all process creation happeri behind that unique lock. - Further,
each newly created process must mim1¢‘ftS‘paréhf*anﬁéﬁait in‘fhe“outpUt chamber

until 'emptying' mode begins. ~ This modiffcatfori has the effect of keeping
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the set of processes that are candidates for entrance into the mutual exclusion
device from acquiring any new members during-any one filling session. The
boundedness of the loops in the a]gorithm/depénds oﬁ thisffdct alone.

This solution restricting the system to one mutual exc)Usion oberator
is extremely inelegant and clearly inefficient. However it does work -- it
does implement fair mutual exclusion for an:arbitrary number of processes --

which is the major theoretical concern.
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4. Conclusion

We have presented two algorithms that 1mp4ementfféir”mutua1 exclusion
for an arbitrary number of processes. Both algorithms use relatively simple
synchronization ppimitiveszfthe'first¢solation'uééé ce!isiand‘éhe second uses.
cells extended so ae‘to mode read/Modtfy/u?ité-instruétidﬁs;' |

The cell,based,so1utionfutitized an,arréywef‘eells with one cell per
_process.  Similar algorithms have appeardd»vh5ﬁhé?vft@fature*prevfously
as we have noted; the unique contribution that we make is to show how the
algorithm may be genera1i2ed from an array td a varfable size date structure.
We presented an'aTgorithm for expanding that structure tﬁrough the additionv
of newlypcreated processes and proved that fair mdtualjexc1usion could be‘
retained by the algorithm evenif the number pf prodeéses in the system were
to grow without bound over t1me |

Ne proved that the fairness of the solution in the face of proliferating
processes depends critically on where the»new processes are appended to the
structure of cells. In our solution there is a definite order to the cells
in ihe structure and requests from processes to pass through the operator are
serv1ced via a scan algorithm that scans from the first to the last cell in
that order. If the new processes are added at the end of the data structure --
i.e. after the last ce]] -- then the scan a?gorithm could get “stuck" in the
expanding, new portion of the structure. ‘This\wou]d hdppeh if new proeesses
were being added and each put in a peduest to pass thfough at a faster rate

than requests were being serviced.
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However, if the new processes are inserted at the begﬁnning‘of the
data structure -- i.e. before the first process's cell -- then the scanner
cannot get stuck. Whenever the scan,a]gorithm{finﬁshgﬁ‘the last process it
must of course reset itself to‘the,fjrstgprch§54_» thuS«wrapping‘ardund. ‘We
said that a new cycle of the scan began everytime the scan were reset in this
manner. The important fact is:that_ifuqew:prggeSsesfare;addéd:at'the beginning
of the structure, the size of each cycle is some particular fixed number. - Two
different cycles may very well be of different sizes, but once a cycle begius |
its size does not?change." Tbergfore.dnce;a cycle beg$ﬂ3~ﬁe may be sure that
1t will end in a bgundéd numher ofjstgps andﬁ&:neugéyele;begun thereafter.

The fairness of the scanning opera;joapfpllows from the boundedness of
each cycle. Because that means thaﬁ-every;ime.§gma particu]ar'process is
scanned it will be scanned again in the future within a bounded number of
events.

The other point to be cdreful of ingexpénding the data structure is to
make sure that only one protess,expands it at a,time; That is, the operation
of expanding the cell structure to accomodate,neu]y;created proce55é5~must*
itself be done in a mutqaliy exclusive fashion.

The second fair mutual exclusion solution that we presented used read/
modify/write type cells as the synchronization primitive. . It is well known
how to implement unfair mutual exclusion with"these.extended,cé1ls,,using a
test-and-set instruction and a bihary Tock yariéb]e.-i We prove thét it is

possible to achieve fair mutual exclusion also'usihg a small number of these
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extended cells; in particular the number of cells required is much Yess than
the number of processes in the system. ‘

However a' serious deficiency of this algorithm is'thatvft introduces
considerab1e\delay in the execution of  progrim§“béy6hd:thatlfeQUired for
mutual exclusion per se. | Mutual exclusioﬁ'&?ébrfith‘mqy always delay
processes that are trying to enter the critical, protected region; our sécond
_algorithm here, though, also delays the processes as they try to exit from
the device. | | o ‘ | |

From a theoretical siandpoint“it‘13'1hteresting that fair mutual
exclusion of an arbitrary number 6f'broc§ssés mﬁffbé‘fmp1éméntedluSing:su£h
simple primitives. In this sensé more saphf%tfééted'pfimitiﬁés,SUch'és
serializers have no more power than simple tittle cells. ~ But from a
practical point of view differences do emerge. Botﬁ‘aigorifhﬁs'that we
present have efficiency related drawbacks: The cell solution requires lots
of memory -~ it needs one cell per process per mutual exclusion operator
The extended ce11 solution fs slow -- it introduces approximate]y twice as
much delay on average than is reguired by mutual exclusion pervse. Sp while
primitives Tike cells are cdmp]ete synchronization primitives and a theory
does not need more elaborate primitives in order to coordinate parallel
processes, cell solutions are inefficient. ‘More sophisticated synchronization

primitives aré desirable for this reason. |
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