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ABSTRACT 

SEMANTICAL CONSICERATICWS ON FLOVD-K>ARE LOOIC 

Vqhan R. Pratt 
Massachusetts Institute of T echnofoay 

Cllllbridae, M 02139 
Ausust 1976 

This paper deals with loaics of proerams. The objective 
is to formalize a notion of program description, and- to 1ive both 
plausible {semantic) and effective (syntactic) critwia for the 
notion of truth of a description. A novel feature of this 
treatment is the development of the mathematics under'lyins 
Floyd-Hoare axiom systems independently of such systems. Other 
directions that such research Mish' take .,.. al$o considered. 
This paper grew out of, and is intended to be usable n, class 
notes [271 for an introductory semantics course. The three 
sections of the paper ares 

1. A framework for the logic of programs. 
Programs and their partial correctness theories are 

treated as brnary relations on states and formulae respectively. 
Truth-values are assigned to partiel correctness anertions in a 
plausible Harskian) but not directly usable way. 

2. Particular Proarams. 
Effective criteria for truth are established for some 

programs using the Tarskian criteria as a benchmark. This leads 
directly to a sound• compfete, effective axiom system for the 
theories of these proarams. The difficulties invQlved in finding 
such effective criteria t0r other programs are explored. The 
reader's attention is drawn to Theoretns 4, 16, 18 and 22-24, 
as worthy of mention even out of the context in whkh they now 
appear. 

3. Variations and extensions of the. framework. 
Alternatives to binary relations for both proarams and 

theories are s~ulated on, and their possible roles in semantics 
are considered. IJe discuss a hierarchy of varfettes of proarams 
and the importance of this hierarchy to the issues of 
definability and describability. tlodal lotic is considered as 1 

first-order altern1tive to Floyd-Hoare logic. Ue give an 
appropriate axiom system which is complete for loop-free pro1rams 
and also puts conventional predicate calculus in • different 
light by lumping quantifiers with non-fosical assian.ent• rather 
than treating -them as logical concepts. 

This research was supported by the National Science Foundation 
under contracts OCR74-12997 and rt:S76-18461. 
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SEMANTICAL CONSICERATIClfS Ct4 FLOVO-t«JARE LOGIC 

1. A framework for the logic of eroarams. 

1.1 Semantics: what a proaram is 

In this paper we restrict our attention to proarams that 
primarily manipulate and test their environment, in contrast say 
to the pure lambda calculus, whose semantics need not depend on 
the notion of a changing environment. Floyd-Howe fo&ic is aimed 
at the former kind of proaram, which does not reldily 1end . itself 
to direct description usinc classical lotic. Lambda calculus and 
pure LISP programs fare much better with classic8' loaic. 
However, the manipulate-and-test paradi11n dominates the 
programming milieu, and the popularity of the Floyd-Hoare method 
for dealing with this situation makes a foundational study of the 
method worthwhile. 

The term semantics will connote for us the relation 
between word and object. Two such relations appear below, as 
concrete program and abstract progrlllft (cf ~ott (31)), and as . 
formula and truth-value (cf Tarski (341 ) • Uhen necessary we will 
refer to these respectively as []-semantics and t=-semantics. 
These reflect what we feel should be the two main concerns of 
theoretical semantics, namely abstract proarams and their logics. 
This section U. U deals with the former, although we do not 
explicitly discuss concrete programs. (Section 3.1 raises the 
possibility that the concrete/abstract dichotomy is too narrow a 
point of view for U-semantics.) The role of section 1.1 is to 
provide a rigorous foundation for the remainder of the paper, 
which is concerned (except for section 3. U with fo&ics of 
programs. 

Binary Relations. &Je shall use binary relations for 
programs 'along lines proposed by Eifenberg and Eliot C13J, de 
Bakker (9, 10, 111 , and (with relations replaced by functions) 
Scott (9, 31 J • f.Je find it convenient to use them also for partial 
correctness theories of programs. 

We define a. binary relation R from a set A Uhe domain 
of Rl to a set B Uhe range of ff) to be a subset of AxB ClOJ 

(as opposed to a function from t to tJ U3J, which is not as 
convenient for our purposes). We further define: 

aRb 
aRbSc 
RUS, Rns, R-5 

(a,b) ( R 

aRb " bSc 
as for any sets, infinite union and intersection 

included 
{ (a, c) I 3b CaRbScJ} (composition) 
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{(b,a)flRb} (converse) 
" aRb for XcA 

1cX -
" aRb for YcB 

b<Y -
{bl3HXCaRbJ> for x~ 

(exception: R = f=) 
<1l3bcYCaRbJ} for Ysf:J 
<PI )(l:::P} <this is 1n exception to ><R above) 

Symbols. Central to the notion of environment is the 
symbol and its ·value (or interpretation, or denotltion). I.le 
shall confine our attention to function symbols, predicate · 
symbols, and logical connectives, interpreted respectively as 
functions, predicates, and either bootean functions or binary 
relations (see (2) below}, all of fixed arity. Ue denote the 
coUections of such symbols as J , f , ind 6 respectively, 
and use subscripts to identify the collections of • aiven arity; 
thus J2 is the collection of binary function symbols. e will 

always include "' .., and 3x for alf xcJ0 (i.e. first-order 

quantification, though very little of whit we prove changes if we 
permit 3x for atl xcl), while P will always Include • • lole 
let 0 denote the {single) domain for the functions and 
predicates. 

A~B 

t:A..S 

A°" 

~ adopt the following notations. 
the set of alt functions from A to B 
f c A...S ; 
AxAx ••• · xA (Cartesian product of k A's) 1 

Expressions. Expressions are trees whose vertices are 
labelled with symbols such that: 
( i) each symbol ' s arity equals the ou~ -dearee of the vertex it 
labels; 
(ii) going from the root to a leaf, the sequence of symbol-types 
encountered forms a contiguous substring of C*fl*. 

Formula 
Term 
t 
tf 
t, 
Ground 

"'8 use the following concepts and notations. 

An expression whose root's label is in OUf; 
An expression whose root' s I abet is in l 
The set of expressions; 
The set of formulae of t. ; 
The set of terms of t. ; 
Describes an expression containina no modalities. 

Useful abbreviations and their expansions are: 

PvQ ., (.,P"...Q) lrru!!!!!!. mutandis for ::>, :, Vxl 
true x=x (mutatis mutandis for false) 
~ <E1, ••• ,Ek> 
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~t~~L 

El *1 I\ • • • " Ek=fk 
{$El, ••. ,st=Ekl 

3s1~· .. 3s~ 

fP{El'Fl) , ••• _,P(Ek,FkU • 

3 

J nterpretations. I.le now nsian meaning to expressions, 
along the ·lines spelled out by Tarski t34J. An interpretation S 
{which for us will play the role of en environment) specifies for 
each symbol A the value As of A in 8 • Given 8 , we can 

then infer the value in 8 of an expression E • A tfJ • The value 
will be written Sl=E (slightly 1enerallzing the usual usaaeJ, and 
is defined by 

St=A <E> • As <St=El • . {1) 

Note that the argumeflt E. on the left becomes Sl=f on 
the right regardless of what A is. Under this condition we say 
that A is referentially transparent 1281. 

The only exception to U J is when A is a modality, 
which is a unary logical connective whose interpretation A 
(independent of S> is a binary relation on interpretations. 
(Alternatively we could say that its interpretation A8 is a set 

of interpretations depending on S , namely those accessibie from 
S via A , in which case SAi would be written I < A8 • ) The 
definition becomes 

st=A(P) • v IM' 
SAi 

(2) 

This asserts the existence of an interpretation I , accessible 
from 8 via A , in which P is true. It is Kripke' s C20J 
semantical interpretation of what is written 0 by 
modal logicians. Such an A is not referentially transparent; 
we then say. it is referentially opaque C281 • An immediate 
application is to the definition of modalities of the form Jx 
where x ( J0 and .3x is interpreted as the equivalence relation 

relating pairs of interpretations differing only in their 
assignment to x • The section on proarams as binary r•lations 
will sug~est a further application. 

Given a set X of interpretations we shall write Xt=P 
for " 8t=P , Xt= for <PI )O:P} (the theory of )() and t=P for s(x 
<818t=P> • 

Programs as binary relations on states. We have thus far 
defined only conventional concepts from logic, using more or less 
conventional definitions. IJe now define a transition to be an 
ordered pair of states, where a state is defined to be an 
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interpretation. Intuitively a transition represents an initial 
and a final state. Following de Bakker CS,10,111, we define a 
program to be a set of transitions, i.e. a binary relation on 
states. 

Note that this definition makes the interpretation of a 
modality a program. Given a proaram a we let <a> denote the 
modality whose interpretation is a, and abbreviate -.<a>-. to 
Cal , in imitation of the symbols of classical modal logic. A 
little thought reveals that (a) P means essentially "after 
executing a, P holds, 11 or more precisely, •every transition from 
this state leads to a state sattsfyina P, 11 while <a>P means 
Hthere exists a transition from this state to a state satisfying 
P. H In this light, another way of viewin& our interpretation of 
3ic is as a program that non-deterministically assigns an 
arbitrary element of 0 to x • 

Restrictions on interpretations. If every symbol were 
always to have the same value there could be but one state and 
hence but two programs, the identity program I and the empty 
program ., • Useful assignment statements would not be possible. 
Conversely, if no restrictions (save those of arity and type) are 
placed on the possible values of symbols (as in pure predicate 
calculus) , a wealth of programs is possible. Me would then be 
studying uninterpreted program schemes. With the exception of 
Theorems 16-18 (and in some sense Theorems 4 and 5) , our 
results are independent of where one lies in this spectrum. IJhen 
we use familiar symbols (e.g. "• -., 3x, =, <, O, 1, +, -, ••• ) , 
these will always be assumed to have their standard 
interpretation (which in practice is a function of whether 0 is 
the natural numbers, integers, reals or whatever). The universe 
U of possible st ates is thus a function solely of 0, l, P and 
whatever restrictions are in force on interpretations of symbols. 
When Ul=P we shall say that P is valid. 

We distinguish between symbols with a single fixed 
standard interpretation, symbols whose interpretation can be 
changed by a program, and symbols in neither category, by calling 
them respectively standard symbols, assi&nables and ..l!.b!!!.· None 
of these distinctions are relevant to the statement or proof of 
most of the theorems of Section 2, but they are important in 
interpreting those theorems. For example, knowing that a symbol 
is a label means that we know it cannot change during program 
execution, and hence it can safely be used to name,. say, input 
values in both the antecedent .!!!I. the consequent of a partial 
correctness assertion. 

1. 2 Logic: how to describe a program 

So far we have said what a program is, a []-semantical 
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concern. IJe now consider ways to talk about programs, a concern 
of~. 

Partial correctness assertions. A partial correctness 
assertion (pea) is an ordered pair of formutae of t.f , called 

respectively the antecedent and the consequent. Pea' s were . first 
studied carefully by Floyd Cl41 , who called them verification 
conditions. They were later further popularized by Hoare C16J • 
Though they do not constitute the only p0ssible de$cription · 
language, as we shall see in section 3, and also are lop-sided in 
their ability to discuss termination Uhey can only discuss 
non-termination) , they are nevertheless of consider~ practical 
and theoretical interest. Me shall refer to program-oriented 

logics whose language is t.~ as Floyd-Hoare foaics. 

The meaning of a pea is defined as an extension to the 
Tcirskian definitions (1) and (2) lt=-semanticsL IJe extend t= 
so that it is defined not onty on Uxt. but also on u2xt.~ , as 

follows: 

That is, a transition satisfies a pea, or the pea..!!. true of the 
transition, when the truth of the antecedent before the 
transition implies the truth of the consequent after. IJe refer 

(3) 

to these two usages of I= as unary and binary respectively; more 
generally, we distinguish conventional logics from Floyd-Hoare 
logics by calling them respectively unary and binary logics. 
Unary logics deal with static situations, binary logics with 
dynamic situations. 

For a set a of transitions (i.e. a program), F(P,Q) 

means that (p ,Q) is true of every transition in the program a; 
we then say (P, Q) is true of a , and that a satisfies (p, Q) • 

Similarly, al= denotes the set of pea's true of a , which we 
shall call the partial correctness theory of a, abbreviated to 
(a) Hollowing Hoare C16J , bu' using boldface to distinguish ( ) 
from set brackets { } ) • Since Cal is a set of pairs of formulae 
we can treat it as a binary relation on t.f and write P(a)Q for 

al=<P,Q) • 

One can think of (P ,Q} as providing an upper bound on 
programs, in the sense that the programs S1tisfying (P ,Q) are 
just the subsets of I= (P, Q) • In this role, (p ,OJ can assert 
non-termination, but ·because rt= (P ,a> for any (P ,a> , it cannot 
assert termination. 

The Duality Principle for Programs. In static logic 
there is a duality between true and false. In dynamic logic a 
similar duality obtains between forward and backward execution of 
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programs. The (easily checked) Quality Principle for a program 
a is 

where ., CP, Ql is defined as hP, .,(]) • Thus p(a-JQ is 
equivalent to .,Q(a).,p • This principl~ can occasionally 
simplify discussion of forward execution by reducing it to 
backward execution or vice versa. The axiom of modus tollens in 
static logic (a:>b = .,b:>.,a) can be thought of as the duality 
principle applied to the program I . 

Weakest Antecedents and Strongest Consequents. We 
observed earlier that [a) P could be interpreted as 11 after 

(0) 

executing a, P holds. 11 It follows that ( CaJPJCaJP holds. 
Moreover, no weaker antecedent than [a] P will permit the 
consequent P; indeed, if 8~ [a] P then 8t=<a>.,P , so there exists 
3 satisfying Sa3 such that 3lii!P , IJe call any formula logically 
equivalent to Cal P a weakest antecedent <Dijkstra Cl21 ) of P 
via a • This is summarized by 

PCaJQ = t=~ ::> Cal a) OJ> 

By the duality principle (Q) , all of the above holds 
equally well for .,pea-) h Cal Pl , and hence for PCaJ «a->Pl • 
We call any formula logically equivalent to <a->P a strongest 
consequent <Floyd £151) of P via a • The dual of (IJ) is 

Though we have given syntactic characterizations of 
weakest antecedent and strongest consequent, these translate 
immediately into semantic characterizations by virtue of our 
having already specified the semantics of modalities. This 
approach is slightly more convenient to work with than defining 
the concepts directly in terms of interpretations, particularly 
since we need the concept of modality for other purposes. 

Tidy Programs. Including the modality <a> in C is 
not really cricket, since the whole idea of Floyd-Hoare logic 
becomes superfluous (see section 3. 2 for details). We shall 

(S) 

limit C to · ", ., and 3x for all xc J
0 

• In this case we may 

ask whether ff contains !m'.., formula logically equivalent to Cal P. 

If for a given program a the answer to this question is yes for 
all Pc ff, we say that a is backward .llih'.:_. (Schwarz (32] uses the 

terminology "backward exactly connected".) The dual epithet is 
forward .lli!Y_ <Pratt C27J and independently Schwarz (321). Note 
that the concept of tidiness finds no application in de Bakker' s 
and Meertens' Cll J []-semantical treatment of partial 
correctness, where for an "antecedent" V£U they define the 
strongest "consequent" via a to be Va , which will always be 



7 

defined. While elegant, this is not logic, that is, the concept 
of language does not appear; they are talking about a different 
though closely related problem. 

A program that is either forward or backward tidy we 
shall call tidy; when it is both, we shall call it very tidy. 

When a is forward tidy it is convenient to have a 
function a=> : t.1-+t.1 , such that •=> takes P to a strongest 

consequent of P via a • We call a=> a forward tidiness 
function of a • If there exists a recursive a=> we shall say 
that a is recursively forward tidy. For convenience we will 
sometimes treat a=> as a binary relation, writing it as (a=» • 
A. backward tidiness function of b (if any} is written <=b ; 
l<=b) will denote the converse of the relation corresponding to 
the function <=b • The following facts formalize this. 

30 <P (a=>) Q " O:<a->Pl if a is forward tidy ff3l 
VQ(P(a=>>O ~ O:<a->P) (FV) 
3P <P «=b) Q " P: Cbl Q} if b is backward tidy (03l 
VP CP «=b) Q ~ P: Cbl Q} CBVl 

A program may have many tidiness functions, any one of 
which will serve our purposes. The following is useful. 

Tidiness Duality Lemma fTOU: Program a is forward tidy if 
and only if a- is backward tidy. 

The following lemma supplies one valuable role for 
tidiness; see Theorem 7 below for another equally valuable role. 

Tidiness Characterization Lemma CTCU: 
Cal Let a be forward tidy. Then Cal = Ca=» °Cll • 
(b) Let b be backward tidy. Then Cb) = Cll 0 «=b) • 

With this lemma, to know a tidiness function of a is to 
know the theory of a , or at least to reduce the problem to 
knowing the theory of Cll in the sense of Theorem 12 below. 

We have now completely specified the notion of truth for 
pea's with respect to a given program. Note that this definition 
is plausible (what simpler rigorous yet direct definition of 
truth could there be?J , but not accessible (evaluating the truth 
of PCalQ directly from the definitions may bog down in the 
infinities of either the set a of transitions (when checking 
tt= (P, Q} for each t c a J or the universe U of states (when 
evaluating ]x CPJ J J. Hence we would like to trade off 
plausibility for effectiveness, leading to an axiom system for 
Cal that is sound, complete and effective. This trade-off has 
its analog in unary logic. In both logics this gives rise to the 
need to distinguish truth and proof. 
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In general (a) is not accessible in the above sense: 
however, In some simple yet ucefut cases, (1) Is quite 
accessible. The following section focuses on such. special cases. 

2. Particular proarams 

2. 1 Basic Programs. 

The Identity and Empty Proarams. The empty relation 
f , containing no transitions, and the identity relation Iu , 
which we shall henceforth abbreviate to I , are two simple 
programs of particular interest. These are characterized by the 
properties au, • ~a = a , a•' = •·• • , and a• I • I• a • a • 
Thus they resemble - and in fact are - the additive and 
multiplicative identities respectively of 1 semi-ring (rins with 
no additive inverses) with addition operator U and 
multiplication operator • • 

(All proofs in this section are relqated to .n appendix. ) 

Theorem 1. <•l = i, . 
Theorem 2. (I)= {(P,OlJIJt:(P:>Q)}. 

For convenience, rather tha.n referring to lJ:: when we want 
to talk about the set of valid formulae of unary foaic we shall 
use (I J • Though this implies a restriction of t1 to 

implications, this is a triviat restriction in our case. (Recall 
Floyd's remark USJ : •one· miaht say facetiously that the subject 
matter of formaf logic ·is the study of the verifiable 
interpretations of the program consisting of the null 
statement.") 

Tes ts. A test is a formula P of t , and denotes 
the program 

CPJ = lu ~ O=Pl {Tl 

= <lS,SlfScU ~ Sl=P}. 

Thus CPJ will execute (without side effects) just when P is 
true. Hhe [ J is borrowed from Scott (31J.) Thouah we have · 
reserved the word "test" for P itself, we shall also refer to 
[Pl as a test when the meaning is clear. Observina that I = 
Ctruel and , = [false] allows us to subsume many theorems or 
axioms about I and ' under those about tests. 

Theorem 3. Let A be a test. 
(1) <CRr>P = A~ • (Forward tidiness) 
(b) CCRJJP 11 R::>P • <Backward tidiness) 
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The Tidiness · Characterization lemma allows us to deduce 
the remainder of ([RJJ • 

A &round test . has no modalities, and corresponds to the 
sorts of tests permitted in, say, Al.Gel.. Thouah the ·above 
theorem did not rely on tests beina around, when we come to 
exhibit particular proarams to make a point or prove a theorem, 
we wiH restrict ourselves to sround tests. 

Assignments. An assisnment is a peir of terms (F (~) , l) 
of t. , corresponding to the left and rjaftt sides of a 
conventional assignment statement. No loss of aenerality ensues 
from parsing the left-hand side as F (1): all expressions can be 
so writt.en. Uhen ~ is a 0-tuple we have simple variable 
assignment: otherwise we have array •sicnment. Since the array 
arguments are not constrained to be integers, this encompasses 
the notion of record as in, say, Pascal C35l • For Floyd-Hoare 
logic no distinction need be drawn between functiont • arrays. 
The correspe>nding proaram is a function of type U..U , which of 
course is just the special case of a binary relation on U where 
each element of U appears in the retation as the first component 
of a .Pair just once. It may be defined with the lid of ).-notation 
thus. 

[F(~}.-TJ • >.S.>.A.if Aid! then As (A) 

etse ).!.if ! '- St:~ then A8 t1J 
else St=T • 

(Note: ! and ~ agree in arity. ) 

I t will help in following this definition. to keep in mind 
the following types of functions: 
CF(S).-TJ: U..U -S: J-+lD*..Ol (at least in this case, with only terms involved) 
St=: tt...O 

I t should be remarked that this is not meant as an 
interpretive definition of assignment in the sense that to 
execute an assignment one executes the body of the definition. 
Rather we are defining a mathematical object, which the body 
uniquely specifies given U. No detail of this object may be 
changed without doing violence to the intent of our definition, 
though of course as in any definition the wording of the 
definition may be varied. 

Before proceeding to a characterization of ([F (~) .-Tll 
we introduce the notion of substitution, suitably aeneralized to 
handle arrays. I.le define · CT /F (f) JP (abbreviated as P'), the 
result of substituting the expression T for the subtrees in P 
with root F , as follows. 
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F lf) I = [~; /~JT {$1) 

A(~)' • A(~' J non-modal A'F · CS2J 
(Jxp) ' = 3y ( { (y/xJP) ') new y (53) 

51 performs the substitution for F its ri1ht. side 
simplifies to T when F is zeroary. Clearly ~' is 
CE1 ' , ••• ,Ek') • Substitution of this for i in T means 

substitution of the whole tuple wherever Z occurs in T • Z is - -not a tuple of f. but rather a place-holder (for the arguments 
of F ) . that we sh1;1ll employ below in instances of T • 

52 caters for referentially transparent symbols. The 
only modality we provide for is 3x as in S3, which is 
sufficient for our purposes. (It is easy to check that 3 may 
be replaced by V in 53 with no other modification since ., is 
referentially transparent and covered by 52.) 

(When P contains assignmen• modalities {not the 
case in this paper} , a difficulty arises in extending 53, namely 
that of generalizing renaming of bound variables. The reader 
interested in pursuing this further might consider the supposedly 
valid formula X:O ::> CX+l/YJ CX+-X+21 (Y=ll\X=2} , which is in 
fact not valid if the substitution is performed naively. This 
may be transformed to X=O ::> CX+l/Yl CZ+-X+21 <V=ll\Z=2> to avoid 
this problem, along the lines of 53, but is this desirable? The 
reason this is not a problem for 3X thought of as <X+-RANOOM> 
is that RANDOM is independent of X , so renaming it to 
<Z ... RANOOM> , or for that matter renaming <X ... l> to <Z+-1> , is 
not· as distressing as renaming <X+-X+2> to <Z ... X+2> • Clearly 
we cannot rename it to <Z ... Z+2> without renaming other 
occurrences of X possibly outside the scope of the 
substitution, as in the example where we have X=O • It would 
appear that renaming to <Z ... X+2> is our only option. But then 
what happens in the case of array assignment? We would 
appreciate seeing a solution to this problem.) 

In addition to substitution we need a temporary addition 
to :J3 , namely IF-THEN-ELSE, a peculiar symbol taking a formula 

for its first argument and terms for its second and third 
arguments. It is removed (in order to yield an expression of f. 
by the following transformations, which move it up the tree using 
the first two transformations until all its arguments are 
formulae, permitting application of the third transformation. 

GUF R THEN Ei ELSE Fil 

... IF R THEN G<E> ELSE GlFl for G £ :JUf : .... -
E ... IF R THEN E ELSE E ; <to facilitate preceding rule) 
I F R THEN S ELSE T ... (R"S) v hR" TJ for S, T £ f.f • 

IF lemma. Evaluating 8t=IJ when I.I is a formula containing 
IF-terms yields the same truth value whether IF is first 
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removed by the above transformations or left in place and 
evaluated using 

sti: U F ~·p Tt£N S ELSE TJ ~ • if tt=P then S1=S else SI:= T. 

The following reports joint work with R. HM [27). 

Theorem 4. let Fli>+-T be an assi1nment. 
{a) <[f(~)t-Tr>P • 3t1CP 1 "!·~· "f (1>•T'l 

where E' • [(IF l=t 1lEN t ELSE F <l)} /F(l) l E 
(b) CIFfiJ .. TJJP iii p• 

where E" = ( (IF l=i Tt£N T ELSE F ({l) IF <ll J E • 

\Jhen · F is 0-ary, lF l•! llEN t ELSE F (l) can be 
simplified to t , giving Floyd's ClSJ construction of the most 
general consequent of an assignment statement as a special case, 
and IF i=~ HEN T ELSE F <l) can be simplified to T , civing 
Hoare' s Cl6J backward substitution rule for assi&nment as a 
special case, namely that 

cx .. TJP = CT/XJP • 
<We shall often abbreviate ([]] to CJ • ) Fortuitously ()( .. TJ 
and CT/)(] are much alike, and we rely on .. versus I to 
disambiguate them. Actualty, since they are equivalent, the 
only reason one would want to distinguish them is when one wants 
to stress that CT /XJ P is an abbreviation for something in f, 
while [)( .. TJ P is an unabbreviated formuta of modal logic. Thus 
[)( .. Tl is semantic inasmuch as it has an interpretation. under I=, 
while . CT/)() is syntactic in that it specifies a transformation 
on an expression. 

Lambda-calculus adherents will note the obvious 
similarity between [)(c-TJP and (:>JC.PH ; our above equivalence 
corresponds to the syntactic beta-reduction rule of the 
lambda-calculus. Our generalization to array assi&nment aives the 
appropriate rule for a lambda-calculus witt, arrays where sinale 
array elements can be bound, as in >.a(y) .a(x}+l , where due 
regard needs to be given to whether x•y • 

Second-Order Assignment. IJe may call the ~hove programs 
first-order assignments because individuals of 0 are being "moved 
around." A second-order assignment mi&ht be 1 pair of function . 
symbols of the same arity, and would permit wholesale assignment 
of a function to a function symbol of the same arjty. Thus if F 
and G were both binary, Ft-G would change the whole interpretation 
of F, not just its value at one point. The program [f..GJ would 
then be 

>.S. >.A. if Al:F then As else G8 • 

This notion of second-order assignment is not as general 
as it might be. For example, one might want to perform F..G 0 H 
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where F, G, H are all unary. However, this would introduce higher 
type functionals (in this cese composition) into the language, 
which would make matters more . complicated th., we we wilting to 
allow here. (This is not to itnply tNt lFtoG~HJ is not tkfy -
it is· backward tidy, by a variation on the ar1ument 'in the 
proof of the following theorem, that [f..(;J is ba(kward tidy.) 

Thinking of the first order quantifier 3x '5 
<xt-RANOOM> , we can think of the second-order quantifier 3f as 
the second-order assi1nment <fWWGl'FtKTI CJb • This 
illustrates just how close our use of •second-orcfer• Is to the 
convention.a use. 

Theorem S. Let Ft-G be a second-order assig""*'t. Then 
ClFt-GJJP s CG/FJP 

(CG/Fl is a convenient abbreviation for CG ({J If({) 1 • ) 
Hence second-order assianment is beck ward tidy. 

Open problem. Is F+G always forward tidy? 

2. 2 Loop-free Programs. 

Union. I.le have already defined the union of two binary 
relations as being conventional set union, taking lldvantace of 
the representation of relations here as sets of trMSitions •. 

Theorem 6. (aUbl = CalnCbl • 

Note the exact analog of this binary loaic theorem in unary 
logic; in both logics, "the theory of the union (of two subsets 

of either ff or f~ is the intersection of the theories. " In 

contrast , there is no analog of the foffowma theorem in unary 
logic, in line with the idea that composition is 1 dynamic rather 
than a static operation. 

Composition. Again, we have already defined the 
composition of two binary relations. 

Theorem 7A. (a 0 b) 2. (a} 0 (b} • 

The 2. cannot be strengthened to • without knowing 
more about a and b • For example, let Vg.J have no P ( 
ff satisfying l=P = V • Let a .. Iv • { (S,SJ IS(V} and let b = 

lu-v , so that aub = lu and anb = , • Then a•b • , , so 

Ca 0 b} is vacuously t..f , the set of all pea's," includin& 

Urue, false) • But by the construction there can be no P 
simultaneously satisfying true(a}P and P(bl.!!!!!.. , so 
Urue,false) cannot be in (aJ•(b} , whence (a•b) :> (a)•(b} • 
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Neither a nor b in this example is tidy, and in fact 
we can stren1then theorem 7A as follows. 

Theorem 7. {a•bl = hl•{bl when a is forward tidy or b is 
backward tidy. 

Theorem 8. 
(a) If a, b are forward tidy, so are .Ub and a• b ; 
(b) If a,b are backward tidy, so are aub and a•b • 

Loop-free programs. The significance of union and 
composition is that, together with tests and assisnments, they 
allow us to synthesize the abstract programs that correspond to 
loop-free flowcharts. The correspondence between the two may be 
formalized as follows. Define a flowchart to be a directed graph 
with edges labelled with tests and assi1nments (cf Cl 71 ) , and . 
having a start vertex and a set of final vertices. Take the 
corresponding binary relation to be the union, over all paths p 
from the start vertex to a final vertex, 'of the composition of 
the sequence of instructions alona p • In the case of loop-free 
flowcharts, i.e. directed acyclic graphs, there can only be 
finitely many such paths, so such an· abstract program can be 
.synthesized from tests, assignments, finite union and 
composition. The foregoing theorems then tell us: 

Corollary 9. All loop-free assignment-and-test programs are very 
tidy (possibly excepting forward tidiness for second order 
assignment) , 

So far we have considered only the programming constructs 
of tests (subsuming I and '), assi1nments, finite union and 
composition. t.le could proceed to consider further constructs 
such as if-then-else along the same lines. However, our 
preference in this case is to consider •if P then a else b 11 to be 
an abbreviation for "[PJ0 a U [.,P]•b" , much as we considered 
VxP to be an abbreviation for .,Jx.,P • Similarly, we would 
regard the goto construct as a notation for describing flowchart 
programs textually, provided this gave rise to acyclic 
flowcharts, allowing us to further translate the flowchart into a 
program involving only tests, assignments, finite union and 
composition. (IJe discuss the case when the goto gives rise to a 
loop later, under the heading of recular programs.) 

If one wanted to be more formal one mig!it distinguish 
translational semantics from []-semantics, classifying our 
definition of if-then-else as bein1 of the former kind. The 
economies of description possible with such translational 
definitions do not need stressing. 

Recursiveness. Tidiness by itself does not guarantee 
usability of the tidiness functions. IJe say that a is forward 
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(backward) recursively tidy when •=> {<:111) is recursive. In 
the following we use "many-one reducibility" C30J 1 we say 
><sm V when there exists 1 recursive function f such that x < )( 
iff f (x) ( v • 

Theorem 10. (aUb) Sm (a)x(b} <Cartesian product) • 

Theorem 11. 
(a) If a is forward recursively tidy, (a•b) Sm (bl 

(b) If b Is backward recursiveiy tidy, b•b) Sm Cal 

Theorem 12. If a is recursively tidy, (a) Sm CIJ 

Theorem 13. Instructions are recursively very tidy. 

Theorem 14. If a,b are forward (backward) recursively tidy, 
so are aub and a0 b • 

By themselves these theorems are somewhat dull. Taken 
together, however, they yield the followina interestina result, 
used to advantage in King's thesis C18J, using backward tidiness. 

Corollary 15. If a Is a loop-free assignment-and-test program, 

{a)S ()} • (Note that ())n .. (Jlx()Jx ••• x(IJ :5 (IJ , m . m 
for any n, since the n questions about membership in (I) can be 
rephrased as a single conjunction.'> 

This asserts that to decide whether (P, Q) is true of a, 
it suffices to ask whether a given first-order predicate calculus 
formula holds. 

It follows that the theory of programs without loops is 
no less tractable than the "theory of the underlyinc logic." 

Axiom Systems. The above results are quite strong, 
promising recursive reductions to CI) • If we do not mind 
weakening this to recursive enumerability, we can write out a 
simple non-deterministic enumerator (or axiom system) for the 
pea' s true of a given loop-free proaram. 

Al. ((} (i.e. we take all of (IJ as axioms.) 
A2. P(aJO, P(b)Q ... P{aub)Q • 
<This is equipollent with Hoare's P(a)Q, P'(b)Q' ... 
P/\P'(aUb)QvQ',) 
A3. PCalO, QCblR r P<a·blR • 
A4. Q(PJPAO (or P:>OCPJQ). 
AS. P{F(~)~TJ3y1£P' A !=~· A F(!)=T'J (or P"{F(~~T)JPJ 

where E ' and E" are defined as in Theorem 4. 
AG. (CG/Fl Q) (Ft-GJO (second order assignment). 

An issue we do not resolve here is whether the object 
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inside { ) is a program or a concrete representation of it. If 
the latter, then we also need • rules 

M~. PCaJQ t- ·p(a'}Q provided a and a' represent the same 
program. 

This .axiom system is a good approximation to the one 
proposed by Hoare U6J • Theorems 1 to 8 provide immediate 
confirmation of its soundness and completeness. Note the absence 
of Hoare' s •Rutes of Consequence• P::>O, Q(alR t- P(alR and 
its backward dual P(aJQ, CbR t- PC.JR. We achieve its effect by 
using l 0 a • a•I .. a • Then Hoare's Rules of Consequence can be 
derived from PCIJC, CCaJA t- PU 0 aJR t- P(alR , and dually. 

We draw the reader's attention to our efforts to separate 
"competence" from "performance• (cf C6J} in the above. l.lithout 
mentioning axiom systems, we established some properties of 
theories of programs (competence) from which we could readily 
infer the "correctness" of a non-deterministic system 
(performance, in this case as realized by the 1iven axiom 
system) • IJe feel that such a sep•ation has some merit, and 
would like to see it applied more frequently in all domains where 
the dichotomy makes sense, includina everyday proaramming. 

2. 3 Regular Programs. 

We now consider a larger class of programs by including 
transitive closure as an operation. The reflexive transitive 
closure a* of a is the least x (with respect to g 
satisfying aUIUxUx 0 x = x , which can be shown to be· 
u{an I n~O> , where ai = a•a• ••• •a i times. IJe call 
the closure of the set of assignments and tests under U, 0 and * 
the class of regular assignment-and-test programs. The 
connection with flowcharts is as for the loop-free case, except 
that the infinitely many paths that arise when loops are 
permitted are disposed of by using Kleene' s transformation of 
such graphs into regular expressions. (Because we have union as 
one of our constructs, permitting non-deterministic pr.ogrants, the 
obstacle raised by Ashcroft and Manna ·[3) for directly 
translating deterministic flowcharts into deterministic 
"structured" programs involving just assignment, composition, 
if-then-else and while-do does not arise here.} 

IJe may summarize the results of this section as follows. 
Regular programs do not in aeneral have as tractable theories as 
loop-free programs. Even when F is completely uninterpreted 
and C IJ is r. e. , the innocent lookin1 proaram [)(..!= 00 l* does 
not have an r. e. theory. However, as a sort of consolation 
prize, invariance theories (sets of pea's of the form (P ,P)) turn 
out to be well behaved with respect to * • 
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It is easy to find a reaular pro1ram without an r. e. 
theory. Let 0 c :J0 and +1,-1 c :i1 (successor and predecessor), 

all with their standard interpretations on the natural numbers. 
Let a be a program implementina Minsky's universal two-counter 
machine C26J • Then if (al were r. e. , the haltina problem could 
be solved by simultaneously running a and looking in (a} for 
(p •false) where P says that the counters initially describe 
f' x (x) • This capitalizes on the fact that though pea's cannot in 

general assert termination, they can assert non-termination. 

J.lhen all function symbols are uninterpreted, (al as 
described above is still not r. e. , thou&h to prove this takes a 
little more care. The idea is to say enouch in the antecedent P 
referred to above to constrain the domain to have a substructure 
isomorphic to the natural numbers with 0 and successor. 

The fact that a is a universal proaram plays an 
important role in these proofs. Thus the following theorem is of 
considerable interest. 

Theorem 16. Let llol ~ 4 , 1311 ~ 3 , 1:131 ~ l , with 

V c :i0 , F < :J1 • · Let the symbots of l and P (excepting => 
take on all Possible interpretations in the universe U • Then 
{[V ... F(V)J*l is not r.e., despite (J) and ([V..f (V)J) both 
being r.e. 

Corollary 17. i.lhen (I) is r.e., [V..f (V)l* is not recursively 
tidy. 

(After Theorem 24 we will be able to strengthen this by dropping 
"recursively. " ) 

The proof of Theorem 16 appears to take advantage of the 
fact that F is uninterpreted, by ·allowina us to say "if F were 
interpreted as a single-stepper for a universal machine, 
then... • " The followin1 lends credence to that view. 

Theorem 18. If :S < P then ([)( ... )(+ll*l is recursively very tidy. 

Invariance Theories. A sense in which * is tractable 
can be found in the invariance theory of a , written (a) , 

which is (a}nl# , the pea's (P,P) that express invariance. 
~f . 

Theorem 19. ('I) = (J) = I tt . 

Theorem 20. CaUb) = (a) n (b) 

Theorem 21. (a 0 b) 2. (a) o Cb) = (a)n (b) 

This inequality 2. cannot be strengthened to = even if 
we make a and b tidy or make a•b , as witnessed by 
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a = b = CX~ (XJ l where F is uninterpreted. For let Q = 
P(X)AVyCP(yh.,P(F(y))J • Then Q(aoa)Q but not Q(a)Q • 

Compare this with the way tidiness cime to the rescue in Theorem 
7. An amusin1 consequence of Theorem 21 isl 

Corollary 22. For a given program a, the structure 

( { <a"> I n2:0}, s) is a homomorph of the natural number division 
lattice {N, I ) , with (a) as the least element and Cl) as 
the greatest. Further, when a • Df (X)J with F uninterpreted, 
the homomorphism becomes an isomorphism. 

Considering that invariance theories fare less well with 
0 than do full theories (as per Theorem 7J , we should not be too 
surprised to find in view of Theorem 16 that invariance theories 
run into difficulties with * as weff. This however is not· the 
case. 

Theorem 23. Ca*> .. Ca> 

We can now add to our axiom system: 

A7: P(aJP ~ P{a*lP • 

We note in passing that an apparent limitation of the 
method of proving flowchart programs correct by labelling 
between-instruction points in the flowchart with assertions is 
that the only assertions one can make about loops are invariance 
assertions (in contrast, say, to being able to write P(a*lQ in 
Hoare' s notation). (We are again thinking of flowcharts as state 
transition di<!lgrams, i.e. as directed graphs with edges labelled 
with instructions. ) Theorem 23 strikes an optimistic note of 
sorts by seeming to claim completeness given this limitation on 
what one can claim about loops. This completeness is 
unfortunately a mirage, since the limitation is a mirage; one can 
in fact make other than invariance assertions about loops by the 
device of having c-transitions (edges labelled with the identity 
program I} leading to and from the loop. This however does not 
change the fact that Floyd's induction rule for flowchart 
programs C15J cannot be stronger than our A7. 

Cook £71 has recently found a situation where Corollary 
15 can be extended to regular proarams. The following theorem 
distills a key idea in Cook's proof. 

Theorem 24. (Star Interpolation Theorem). Let a* be tidy, 
with PCa*lR • Then there exists Q satisfying P::>Q:>A and 
Q{a)Q • (An equivalent statement of the theorem is that if a* 
is tidy, Ca*l = C Jlo <a> o{I l • J 

(We like the name "interpolation theorem" for this 
theorem because of its vague resemblance to the celebrated Craig 
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Interpolation Lemma C8l , which states more or less that if P::>R 
is valid then there exists a such that P::>O:::iR is valid and Q 
contains only predicate symbols common to both P · and R • ) 

The significance of this theorem is that to prove P(a*lR 
it suffices to prove Q(a}Q for the a whose existence is 
guaranteed by the interpolation theorem, then infer Qb*lO 
( e • g. by our A 7) , and then use P:>Q::>R and Hoare' s Rules of 
Consequence (or our A:). Cook has shown that when (I) is 
sufficiently "expressive", as is the case when 0,1,+,x c J and 
have their standard interpretations, then ell regular programs 
are tidy, allowing the Interpolation Theorem to be applied. 
(Cook actually showed this for what one might cell "context-free" 
programs, namely the class of programs with recursion, which 
translates in our case into the closure of the reaufar proarams 
under the operation of taking fixed paints of those first order 
functions on programs definable by first-order lambda 
abstraction.) 

In the following we need the notion of enumeration 
reducibility C30J , written As.ea , which roughly speaking n:ieans 

that given an enumeration of B , A can be effectively 
enumerated. Thus if As

8
B and B is r.e. then A .is r.e. 

Corollary 25. IJhen all re1ular proarams are tidy, (a) Se ( ll. 

Corollary 26. Under the conditions of Theorem 16, if Cl} is r. e. 
then CV +-F {V) ]* is not tidy. 

We remark in passing that programs such as operating 
systems that are intended to run forever can be handled quite 
elegantly using * . At first this seems impossible since a 
program that never terminates is semantically equivatent to the 
empty program, for which all pea' s hold. Indeed, when we 
translate the program 

while true do a 
into 

([true]., a) * 0 [f alse] 
we immediately observe Cfalse] = , and x•' = ' • However, if 
we simply remove the offending "•lf alser , we are left with a 
program that simplifies to a* • Then· PCa*JO tells us that if 
at some time during the running of the pro1r1m (e.g. at start-up 
time) P held, then after every execution of a , no matter how 
long this continues, Q wifl hold. Thus although we were unable 
to use the theory of the original program, it being ' , the 
theory .of a closely related program furnished us with precisely 
the information we required. This is 1 good example of how 
Floyd-Hoare logic can be more useful than might at first appear. 
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3. Extensions. 

The theory of sections 1 and 2 is based on quite 
simplistic notions of program (binary relation on states) and 
theory (binary relation on formulae}. Dealing with other program 
constructs than union, composition and reflexive transitive 
closure may not always be possible in this framework. Ue explore 
this in section 3.1 as the definability probtem. For exampte, 
the notions of concurrent process, block structure, and 
call-by-name, seem not to be definable for binary-relation 
programs. Lole broaden the usual notion of "mathematical 
semantics" as "I /O semantics• to embrace a variety of notions of 
"abstract program." In section 3. 2 we look at one approach to 
the problem of extending the descriptive adequacy of Floyd-Hoare 
logics, which is handicapped by its abi1ity to be only an upper 
bound (with respect to inclusion) on programs. 

3.1 A Program Hierarchy 

In this section we cease to identify programs with binary 
relations on states,· for we witt be considering a hierarchy of 7 
kinds of programs. In order of decreasing information, this 
hieurchy is 

(i) Grammars <Permits finite programs) 
(ii) Languages (Permits sophisticated c:ontron 
(iii) *-ary relations (Permits p1raHelism) 
(iv) Multiweighted binary relations 

<Preserves complexity information) 
(v) Weig_hted binary relations (Ditto) 
(vi) Binary relations <Preserves I /O information) 
(vii) States (Preserves termination information) 

· This hierarchy is not intended as some hard-and-fast 
structure, but rather as some· interesting points· in the partial 
ordering (by information content> of varieties of programs. The 
following is also not meant to be so much prescriptive as 
descriptive, and we will often use "might be• in place of "is." 

Let us begin with grammars. To motivate this, we can 
start with the following program for computing f ac:torial (XJ • 

This program serves to control a processor that emits a string of 
instructions. As such it serves the same function as a grammar. 
While this program may not look much like a grammar, if we 
rewrite it as a regular expression with alphabet Z Uhe set of 
tests and assignments of section 21 , we might have 

A~l; (X>O; A~XxA; x~X-lJ*; XsO 

as the regular expression generating all possible execution 
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s.equences, where we have written 1 for concatenation. Another 
way to generate this set is with a finite-state transition 
diagram, which would be a flowchart proaram of sorts,. though with 
the usual roles of edges and vertices i~terchanged. See R. 
Karp's Ph. 0. thesis Cl 71 for an early example of this 
state-transition style of flowchart. Context-free crammars can 
of course be used for parameter-less recursion U0,111 • 

From grammars we move to the languaaes they generate. 
The usual operations of union, concatenation and Kleene closure 
apply here. Otherwise there is little to say about them at this 
point. 

To get from languages to *-ary relations we need Elgot' s 
Cl4J notion of fusion product. Let R,S be two binary 
relations. Take their l!!!l2n. product to be {(a,b,c) laRbSc} 
The result is a 3-ary relation. Fusion product generalizes to 
relations of arbitrary arity. IJe define a *-ary refation to be a 
set of k-tuples £for various k2!U over some domain, call it U 
since our application is to the domain of states. Let R and S 
be two *-ary relations. Then their fusion product R•S is 
{(a,b, ••• ,c,d,e, ••• ,f,g) I (a,b, ••• ,c,dhR" (d,e, ••• ,f,ghS}. 
The union of *-ary relations is defined in the obvious way. 
This system is a semi-ring (ring with no additive inverses) [2,41 
with addition operator U and multiplication operator • • The 
reflexive transitive closure of R is defined, as for any 
semi-ring, as the (necessarily unique) least fixpoint of 
AX.AUIUxU(x•x) • (Here xis least when xUf:sf for any 
fixpoint f • ) We call the elements of a *-ary relation a path, 
each k-tuple being a path of length k-1 • This generalizes the 
notion of transition used earlier in that the intermediate states 
are recorded as well as the initial and final states. 

The map from languages to *-ary relations is defined with 
the help of the function [ l , defined in section 1 for tests 
and assignments (perhaps varied for tests so that it maps P to 
t=P}. Extend [ J to strings by letting it map concatenation to 
fusion product; thus if ac %* and I a I = n , Cal will be an 
(n+ll -ary relation. If I a I = 0 , take Cal to be U , the 
set of all states, a unary relation. Extend [ ] to sets of 
strings completely additively, so that for any set of strings L , 
finite or infini1e, [UL] = U[LJ • This completes the definition 
of [ J • A useful theorem is that [ ] takes Kleene closure to 
transitive closure, which follows from the complete additivity of 
a: ] • 

We now throw away the names of the intermediates states 
in the paths and consider just the path lengths. Thus the 
(n+ll-tuple (a, ••• ,b) becomes the triple (a,n,b} IJe call a 
set of such triples multiweighted binary relations; each 
transition (a,b} has a set of weights; each such weight w 
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corresponds to an element (a,w,b) in the multiweighted relation. 
The intuition is that the weights represent the costs of the 
possible transitions from a to b. In the variation where [PJ 
is taken to be l=P , only assignments enter into this accounting. 

In the cost function, only one weight is associated with 
each transition. Thus the cost function corresponding to the 

multiweighted binary relatio;R is a function from u2 to 
NU{oo} which maps (a,b) to the least n such that (a,n,b) is 
in R , or to oo if there is no such n. The intuition is that 
this function gives the fastest way of getting from a to b. 

By composing the cost function with the function that 
maps oo to 0 and everything else to 1, we get a function from 

u2 to {0, 1} that can be considered to be a binary 
relation in the usual way. We have reached the binary relations 
that .we used in sections 1 and 2. 

Finally, by projecting a binary relation onto its first 
coordinate, we get the domain of that relation, namely those 
states that lead to a final state. This supplies enough 
information to discuss termination without getting specific as to 
what state the program terminates in. 

There is an interesting trade-off here between 
def inability and describability. As one moves down the 
hierarchy, programs become more describable, but operations on 
programs become less definable. The reason Floyd-Hoare theories 
describe type (vi) programs easily is because these are so low in 
the hierarchy." A theory of termination applied to type (vii) 
programs is even easier; the set of initial states that lead to a 
final state can be described with formulae in f.f, with 

truth defined via unary I= as usual. On the other hand, there 
are almost no proposals in the literature for languages suitable 
for describing programs of types m- (v) t other than in the 
trivial sense in which they describe the information in the 
program preserved in the transition to level (vi). An exception 
is Kroeger' s C21J notion of "thickness," capturing running 
time; this appears explicitly in his modal language, but no 
formal semantics analogous to (2) of our section 1.1 or (3) in 
1. 2 is given in £21] , and it is not clear to us how to construct 
such a semantics based on our level (v). This level is of 
particular interest because it incorporates the minimum 
information needed to describe the running time complexity of a 
program. 

In considering def inability we will start with 
determinism and totality, then turn to other operations. The 
notions of determinism and totality depend on which kind of 
program one is discussing. For example, if we are discussing 
level (vi) programs, then a deterministic program would be a 
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function. We call this 6-det49rminism to correspond to ·level 
(vi) , or more mnemonically and independently of our particular 
hierarchy, JO-determinism (for input/output>. At level (vii) 
determinism is not definable. A reasonable definition of a 
G-deterministic (level (i), G for Grammar) program written as a 
flowchart (directed graph) might be that It satisfies: 

(a) all final nodes are leaves (I. e. have out-decree 0) , .and 
(b) if there exist distinct edges (w,u), (w,v) then they are 

labelled with tests not simultaneously satisfiable. 

Alternatively one could frame the same condition in terms 
of domains of the instructions labeflin1 edges: 
(a) if u is final, all edges (u,v) have empty domains; 
(b) distinct edges (w,u), (w,v) have disjoint domains. 

To define 2-determinism (or L-determinism), it helps to 
have the notion of the prefix tree of a language. For l~ , 
let trl be {wcI*l3acl:Cwacl)}, the immediate prefixes of L, and 
let tr*L be the least L' satisfying 
LuL ' u .. L ' = L' , 
the prefixes of L • Then the prefix tree of L is the directed 
graph TCU = (.,*L, «trw,w) lw£tr*L}) • (Recall 
that graphs are presented as (V ,E) where V is the vertex set and 

· E the edge set. ) Consider the edge ( w, wa) Uor H %) to be 
labelled a • Call those vertices of HU that are in L final. 
Clearly all leaves are final, but the converse does not 
necessarily obtain. 

A program represented as a language has such a prefix 
tree, which is the non-deterministic non-total analogue of 
decision trees £291 • Such a tree can be executed by starting at 
the root (guaranteed to exist when the language is non-empty) and 
following a path along which no tests evaluate to false. Halting 
is permitted only at final nodes. Since we have· produced from l 
a (possibly infinite) state transition diagram that generates l, 
we have an object to which we can apply whatever definition we 
used for G-determinism to this graph. Hence we can s-ay that a 
program is L-deterministic just when the prefix tree of the 
language representation of the program is G-deterministic. 

Totality is definable at all levels. Extending our 
notion of k-determinism in the obvious way, 7-totality (or 
0-totality) simply means that the domain is all of the universe 
U. For 3sks6, k-totality seems best defined as 0-totality, 
whereas G-totality should be a syntactic notion that for a 
flowchart would say that for every non-final vertex w there 
should exist either an assignment edge (w,u) , or a set of edges 
{ ( w, u 1 ) , .•. ( w, uk)} whose I abets are tests such that 

P1v ••• vPk is satisfiable. Alternatively, we could simply 

require that for every non-final vertex w there exists a set of 
edges { ( w , u 1) , ••• ( w , uk)} the union of whose domains is U. 
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Both these definitions are clearly stronger than 0-totality. For 
L-totality we can do as we did for L-determinism, namely apply 
the definition of G-totality to the prefix tree of the language 
representation of the program. 

We now consider which other operations on programs are 
definable at a given level. The less information in a program, 
the fewer operations that can be defined. The operation of union 
is ubiquitous, applying to all types of programs. Composition 
applies to all but the last. An interesting programming language 

· construct I have not seen proposed before is "fastest (a}" which 
cQmputes a by the fastest possible method, in the sense that if 
there is more than one way to execute the program a, as there 
may be in a nondeterministic system, then the fastest should be 
chosen. This operation is not definable beyond type (iv). An 
operation useful in operating systems is that of merge (or 
shuffle), which forms all possible order- preserving merges of 
the strings of its two arguments. This operation does not seem 
to be definable beyond type (ii). Recursion is definable at 
level (vi) [101. In a program with recursion and block 
structure, if each new activation of a variable is regarded as in 
fact being a new variable (calling for a more sophisticated 
grammar than a context-free one if the definition is to be 
performed at level (i), e.g. indexed grammars [lJ), then the 
concept of block structure is not definable beyond type (ii). 
Call-by-value can be captured at level (jj) by combining block 
structure with assignment, but call-by-reference seems to call 
for either a very complex language (i.e. at level (i) a very 
powerful grammar> or for a different kind of assignment from the 
one we have been using, one that can interpret references. Once 
call-by-reference is provided for, call-by-name can be handled in 
imitation of the classic method of "thunks, tt but it too seems 
not definable beyond level (ii) • (It should be pointed out that 
"is definable" means roughly 11 makes sense, 11 and does not at 
present have a better defined meaning.) 

When the restriction of the homomorphism from type to 
type programs to a class C of type programs is an 
isomorphism, we call C an i..,j-preserving class. A program in 
such a class contains no information that cannot be reconstructed 
from its type counterpart, at least for the purpose of 
distinguishing it from other programs in C Knuth C19J 
(problem 1. 2.1-13) describes a transformation on programs that 
precedes every basic instruction by 11 T +-T +l" where T is a new 
variable. This transformation yields a program (i) whose type 5 
version is in a 5..,6-preserving class, and (ii) whose type 6 
version is identical to the type 6 version of the unmodified 
program to within the effect on T The importance of this 
transformation is that in the transformed program the timing 
information is not lost in the transition from type 5 to type 6 • 
Hence a pea, which ostensibly only· describes type 6 programs, can 
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in effect describe type 5 programs. Since pea' s only supply 
upper bounds on programs, this method requires some independent 
guarantee of termination. Luckham and Suzuki C22l develop this 
idea further; it appears that this guarantee has to come in the 
Interpretation of the pea. They treat this as an epplication of 
the "law of the excluded middle.• 

3. 2 Modal Logic 

In this section we will look briefly at an alternative to 
Floyd-Hoare logic for describing pro1rams, namely modal logic, a 
significant advantage of which is that it allows one to talk 
about correctness and termination in the same first-order 
language. (.As might be guessed from section 1, we now need to 
return to our convention that programs are binary relations.) 
Part of this work was done jointly with R. Moore in 1974 [271. A 
similar proposal has been briefly sketched by Burstall CSJ , who 
suggests that the classical modal logic SS may be used to discuss 
correctness and termination simultaneously. Considering that SS 
logics are those whose modalities have equivalence relations for 
their interpretations, we may infer that either Burstall was on 
the right track but had not developed the idea to the point where 
SS could be seen to be inappropriate, or had a considerably 
different idea from us of how modal logic was to be applied to 
the problem. Schwarz (331 has developed Burst all's work further, 
with a definite commitment to SS. Kroeger C21l has also pro.posed 
a modal approach to the logic of programs, in considerably more 
detail than Burstall, and with a concern for t=-semantics equal to 
ours. A major difference between our approach and Kroeger' s is 
that where we regard programs as <interpretations of) modalities 
(unary logical connectives), Kroeger regards them as 
propositional variables, and has only one (program-independent> 
modality. Both systems represent interesting applications of 
modal logic, though the connection of ours with conventional 
first-order predicate calculus is more readily established 
through our pro1ram-oriented semantics of 3x. 

Recall from section 1.1 the interpretations of Cal P and 
<a>P • Under these interpretations the following formulae are 
visibly valid: 

[X ... lJ X=l 
<X ... l>true 
CX>Ol X>O 
V>O :> CX>OJ V>O 
X=O :> <X=O>true 
<c*>true 
x~o :> <(X~X-ll*>X=O 

These particular valid formulae generalize in some 
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obvious ways, which we can call axioms. 

Logical Axioms 
All tautologies of Propositional Calcutus. 
(a) (P::>Q) ::> ([aJP ::> [a)Q) • 

Logical Inference Rules 
P, P::>O J- Q • 
P J- CalP (subsumes P J- VXP } • 

Some theorems that follow from these axioms are: 

[a] (Pl\Q) : (a]P/\CalQ • 
<a>(PvQ) E <a>Pv<a>Q • 
<a>(Pl\QJ ::> (<a>P/\<a>O) • 
[a]P ::> (<a>O ::> <a>(Pllfl)) • 
[a] (P::>Ql ::> (<a>P::><a>O) • 

Axioms for Basic Programs 
VxP ::> CT /xJP (any T < tt l 

P ::> VxP unless xcP 

Universa1 Axiom. 

V Frame Axiom. 
where xcA (8) _ A'3x " (A=x v xc8) (free occurrences). - -CPJQ = P::::>Q Test Axiom. 

CF(~J.-TJP : CIF 1=~ THEN T ELSE F<~)/F(~)JP Assignment Axiom. 
<Here IF-HEN-ELSE is removed as in Theorem 4.) 

The two quantification axioms assert that "xt-RANOOM" 
can change the value of x to anything, and that nothing but x 
gets changed. Note the departure from conventional logic, where 
both these axioms would be regarded as logical axioms. Because 
particular programs are non-logical for us in the same sense that 
the particular function denoted by + Is considered non-logical 
in conventional logic, and because ]x denotes a particular 
program (xt-RANOOM}, we prefer to think of axioms involving 3x as 
non-logical. 

The ·logical axiom Cal (P::>Q) ::> ( Cal P::> Cal Q) and the 
non-logical V Frame Axiom •re combined in Mendelsohn's [25] 
system K as Vx (P::>Q} ::> (P::>VxQ) 1.!nless x<P Despite the 
elegance of such a compression, we feel there is some intrinsic 
merit in our separation. 

Sample theorems that follow from these axioms are: 

Tests 
CP J P Theorem of I ntent. 

O::> CPJQ Theorem of Invariance. 
P::><P>true Theorem of Performance. 

Assignments 
.!,=~t= T ::> CF(§_) ... Tl F <1> =t tilF "si Theorem of l ntent. 
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(P A y=F(S) A s=Sl ~ - --CF<~l .. Tl CIF l•! THEN y ELSE F<l>IFllllP 
Theorem of Invariance. 

<F (~) .-T>true Theorem of Performance. 

The reader familiar with predicate calculus wiH 
recognize in the logica1 axioms and rules, together with the 
two quantification axioms, a sound ·complete axiom system for the 
pure predicate calculus, which we can rqard as a language for 
talking about "assignment• programs of the form x..RANOOM • This 
prompts· the question, is the axiom system -. have given sound and 
complete when t is e><tended to include test and assignment 
modalities? This is easily answered in the affirmative, simply 
because the axioms for assignments and tests involve a direct 
equivalence with a formula not involving the command, unlike the 
axioms for quantifiers. The absence of such an equivalence for 
3x consider ably complicates the completeness proof; fortunately 
for us, this difficult problem was solved long aao. With such an 
equivalence, we know that the left side of the equivalence is 
provable if and onJy if the right side is. Since the right side 
does not involve assignment or test modalities, it is provable if 
and only if it is valid, since our axiomatization of the pure 
predicate calculus is sound and complete. Finally, the right 
side is valid if and only if the left side is, by Theorems 3 and 
4. Hence for any test or assignment a , Cal P is provable if 
and only if it is valid. 

'-le now expand the system to include finite union and 
composition. The following are obvious corollaries of Theorems 6 
and 7. 

[aUb)P = (aJP A CbJP 
(a .. b) P = (a) (b) P 

Union Axiom. 
Composition Axiom. 

All of the above axioms have lfready been established as 
theorems in Section 2. If a is some loop-free program, the 
axioms "specify" a series of transformations of {a] P that 
terminates with a formula of t1 • This says much the 

same as Corollary 15. It also allows us to prove, by induction 
on the height of programs, that these axioms keep the system 
sound and complete even when t is augmented with modalities 
involving U and .. • 

To deal with * , we have: 

<an>P :::> <a*>P Axioms of Intent. 
P::> [a] P +- P::> Ca*l P Rule of Invariance. 
CN+l /NJ P ~ <a>P I- P :::> <a*> CO/NJ P Rule of Performance. 

In the Axioms of 1 ntent for * , n is a meta-variable 
giving one axiom per natural number. In the Rule of Performance, 
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N is in lo , and we require 0 in lo and +l (successor} in 

31 • Besides = in the assignment axiom for non-zero arities, 

this is the only rule for axiom) requiring non-logical symbols, 
and then only when N(P • 

A word of caution is in order here about replacing t- by 
::> in the Rule of Invariance for * • The meaning of (P::> (a] P> ::> 
lP::> [a*J Pl is that for any state 8 , if P::> [a) P holds in 8 then 
so does P::> Ca*J P • A counter-example to this would be when P is 
X<lO , a is [Xt-X+ll and S satisfies X=O • "Running" a once 
in this state will certainly preserve P , but running it ten or 
more times will not. A similar warning holds for the Rule of 
Performance for * , even if we rephrase it as the rule 
Vn CP (n+U ::><a>P (n) l t- P (T) ::> <a*>P (OJ • In this case one 
counter-example would be to make S satisfy ><•21\V=l , and to 
take P (n) to be X=n and a to be Xt-X-V•V..O • Then in 8 the 
antecedent holds, but after running a once, )( can no tonger 
decrease, and will thereafter remain stuck at 1 • 

To see these rules in action, we may show with their help 
that the following program halts when x~o initially. 

Vt-0 • (X'O • 
(X'O • Xt-X-1 • Vt-V+ll* • X=O • 
Vt-Y-1 ° 
(V'O • Vt-V-1 • Xt-X+ll* • V:Ol* • 

Manna and Pnueli (24] have proved that this program 
halted, claiming that such a proof by Floyd's method of 
demonstrating termination USJ, namely showing that traversing 
any loop decreased some well-founded quantity, would be very 
complicated. They proposed another approach. Our modal logic 
approach supplies yet another first-order approach with the added 
advantage that it has an elegant semantical basis. 

lf we permit program modalities in tests, we are in 
effect allowing behavior conditional on "what might have been," 
that is, on properties of hypothetical worlds accessed by 
programs that leave behind no side effects after the test. This 
gives us a quite simple foundation for the semantics of languages 
like PLANNER and CONNIVER, where such exploratory tests are 
possible. 

4. Appendix 

All theorems are re-stated here and proved if necessary. 

Tidiness Duality Lemma nou : Program I is forward tidy if 
and only if a- is backward tidy. 
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: VP30 (Q: Cal Pl 
• VP3Q{Q:-.<a>...Pl 
l! VP:ll (Qs<a>P) 
= VP:Jl(Qm<a-->P) 
11 ,- backw1rd tidy. 

Tidiness Characterization Lemma (TQ.): 

... ...,p !I p 

I 

(a) Let a be forward tidy. Then (a) "' ia=>) •Cll • 
(b) Let b be backward tidy. Then (bl "' (IJ• l<=b) • 

Proof. 
(b) PCblR : P :> CbJR 

:> VQ(Q:CbJR :> P:::iQ) 
:> 3Q(PCIJQ ~ Q(<,,.b)R) (83),Th 2 
: PtCIJ•(<=bl}R 

JQ(P{IJQ ~ Ot<=blRl :> 3J(P:>Q ~ O•CbJRJ 
=> P :> CbJR 

Hence PCblR 1: P(CIJ•(<=b)lR 

(al 

Theorem 1. 

Cal 

2 
(f) = t., . 

= ~<ar 
= -.(Cll•(<,,.1-1-
= -.((<•a->-·CIJ-) 
• -.(<=·-·- • ...{fl­
= (a=» •{fl 

Proof. 'Pt: <P, Ql is true vacuously. 

Theorem 2. (I)= {(P,Qllll:(P::>Q)}. 

Proof. Cll = {(P,Olll8,3l<l :> (~ :> i~Q}} 
= <lP,OllScU => (.gt:p :> Sl=Q)} 

= {(P,OllScU :> Sl=(P:Xll} 
= <<P,Qlll.J::lP::>OJ} 

Theorem 3. Let R be a test. 
(a) <CRr>P = RAP • <Forward tidiness) 
(b) [(RJJ P ;,;; R::>P • (Baell.ward tidiness} 

Proof 

lBVJ, Th 2 

(Q) 

(bJ, nou 

(Q) I 

I 

(by (Fl> 
(def. of I> 
(by (1)) 

I 

(a) It suffices to prove that St=<&:Rr>P = 81= (R/\f>J • 
8t=<[RJ->P : v 3~P 

~RJS 

(b) 

= St=R " St=P 
= St= (Rl\f') 

C[RJJP : -.<CR]>-.P 
: ., (R"...Pl 
: R::>P 

(using (a), and [RJ • CRJ-) 

I 

------ ---------- - -··---- --
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IF lemma. Evaluating 81=1.l when \.I is a formula containing 
IF-terms yields the same truth value whether IF is first 
removed by the above transformations or left in place and · 
evaluated using 

SI= (J F P THEN S ELSE Tl = if St=P then Sl=S else SI= T. 

Proof. Straightforward. (lJse induction on depth of IF-terms.) I 

Theorem 4. Let F(~J .. T be an Bsignment. 
(a) . <[F(~_) .. Tr>P = 3y1CP' /\ 1·~· I\ F<1>·T'J 

where E' = ( UF {•! TI£N y ELSE F ({J) /F ({) J E 
(b) lCFfSJ .. TJJP : p• -where E" • C (IF {·~ 11£N T ase F <l» /F C{> J E • 

Proof. 
(a} Ue first prove the aging lemma. 

Aging lemma. Suppose As • "i for all symbols 

F s (:i) = FI tt>tor all t'!f , and F s<1i> = xi • 
st=A(8) "'3t=ACBl' - -

A~ , and 

Then 

Proof. Sy induction on the height of A<§) • Assume ~ • aFQ.' • 

Case (i). A=F. 
Subcase (1), SI=~ '13 . 

Sl=F lQ) = F S lSl=Bl 
= Fi<ll=B'l (~'ti• ind. hyp.) 
= ~F(Q_') 
=IF tlF B''s llEN F<B'J ELSE x) - -<lt=Q.' • ~!I , IF lemma) 

= ll=F f QJ ' (clef. of ' ) 

Subcase (b) , SI=~ = !I 
Sl=FtQ.l = Fs<Sl=~l 

Case (ii), A=]x. 

= F S <1i) (given) 

= x3 (given) 

= 31= UF @.' '1 Tt£N F <Q.' > ELSE xl 
f31=Q.' -Sl:t=1i• IF lemma) 

= 31=F <Q.>' {def. of '). 

Cf. case (ii) of 4 (b). 

Case (iii), Other A. 
Sl=A (~) = As <SI=~) 

= Al <II=@.' l 
= ll=A <Q.' l 
.. ll=A <Q.> I 

{As=AI, ind. hyp.) 

{def• Of I) I 
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Aging corollary 1. If SCF (~) .. Tll, Sl=F (~) • x1 end SF~ ~ !I, 
then SFA(~) =it-A(~)' 

Aging corollary 2. Given 3 , if S is 

>.B. if BM= then Bl 
else >.~.if x.'!i then FI {x_) 

else x1 

Transition existence lemma. Given I , if S is as in the 
previous corollary, !I • ~· , and FI <11) = IJ=T' , then 

Slf (~J .. TJI • <That is, constructing S from I in this way 
guarantees a transition from S to I via CF<il+-Tl • ) 

Proof. By aging corollary 2 we have 11 = St=i , and 

FI (SF~J = Sl=T • 

Then SlF(~J .. TJ "'>.A.if AM= then As 

else ).!•if !'8'=i then F S (!_) 

else lt=T 
= >.A. if A'F then As 

else ).!•if !'SFi then FI<!.> 
else FI (Sl=il 

(def. of S , !a "' St=§. , FI (SI=§,> = Sl=TJ 
= >.A.if A'-F then Al else >.!.Fl(!J 

= >.A. if A'-f then Al else FI <.-reduction) 

= >.A.Al 

= a (tt-reductionl. I 

l.Je can now complete the proof of Theorem 4 (al. It 
suffices to show that 

3t=<[f(~) .. TJ->P: 3t=Jx1CP' A s=i' A f(!) = T'J. 
Now L.H.S. = 3SCSt=P A S[f ($) .. TJIJ -= 3SCSl=P A S[f(~) .. TJI A F3<St=SJ = St=Tl 

Uhird conjunct implied by second by def. of CF (i) ... TJJ 

= 3x~3 c3t=P' A !a=lt=~· A F3<11> • lt=T'l 
b: take xa=St=F (~J, sa·SF~. c: take S as in a. c. 2J 

: 3t=3x1CP' A !=i' AF(!) = T'l 
: R.H.S. 

The preceding lemmas make it straightforward to verify each 
step. 

(b) It suffices to show that for all S , 
3t=P :: Sl=P' 
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where i • >.S. AA. if A/.F then A
8 

else >-1.it ! /. ~then A8 l1J 
else Sl=T • 

and. E' = CIF l=~ Tl-EN T ELSE f (lJ/F(lJlE • 

Ue proceed by induction on the height of P .. A (J!l 
Ue take as our induction hypothesis: 
VycJ0 -<F>(s•.Ys ~ s•cfli>~rii· :::> i•t:t> = s·t=P'J 
where S=yl means that S Ind I differ only in their 
assignment to y • 

":ase (i) • A=F. 
31=f (J!J = F1(it=@> 

= F 3 (St=Q_') 

= if st=Q.' • SI=~ then SI= T etse F S lSl=l' ) 
= St=HF @.' • 2 'OEN T ELSE Ft@')) 
a St=f (8)' • -

Case (ii). A=3x. 
3t:=3xP 11 3t=3y (y/xJP fe-reduction) 

3 JJ•<i·=yi A i•t=(y/xJP) 
- JS"(S"=yS A s•t=((y/xJP)'} 
: St=3y(((y/x1PJ') 
: St= £3xPJ • 

Case (jji). Other A. 
it=A<J!> = A3 <3F~) 

= As<St=Q_') 
= St=A (~') 
.. St=A (~)' • 

Theorem 5. Let F t-G be a second-order assignment. Then 
CCFt-GJJP = CG/FJP 

( CG/FJ is a convenient abbreviation for CG <{J /F Cl> J • ) 
Hence second-order assignment is backward tidy. 

Proof. Essentially the same as for Theorem 4 (b). 

Theorem 6. (aUbl = (alnCbl 

Proof. PCaUb)Q 
: V83(8(aUbl3 ~ (S,JJF(P,Q)} 
= V83<<8a3 v Sbll :::> tS,IJt=tP,QJ) 

I 

= V83{(8a3 ~ <8,3Jt=<P,Q)) A (Sbl :::> (8,3H=(P,Q))) 
_ PCala A P(b)Q 

= P<CalnCbllQ • I 

Theorem 7A. {aob) 2. {a} 0 (b} • 
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Proof. P{a) 0 {b)R 
: 3QV83K((Sal ::> <S,f>~<P,Q)) " (#bK:) (f,Kl~(Q,RJJ) 
::> 3QVS3K<<Sa3 "fbK) ::> ((8,f)~(P,O> A Cf,K)~(Q,R})) 
::> 30VS3K<Sa#bK :> (S,KJ~tP,RJ} 

: VS3KtS<a~b)K ::> <S,KJ~(P,RJ) 

= PCa•blR • I 

Theorem 7. ta 0 b} = {a} 0 (b} when a is forward tidy or b 
is backwlf'd tidy. 

Proof. 
(a} 

It suffices to show (a 0 bl s_ (a}•(b} • 
PCa0 blR 

: VSK(S(a 0 b)K ::> <S,KJ~(P,R)} 

: V11( {38 <SalbK " tl=PJ ·::> KJ:R) 
: V3K f 3bK :> (]S (8~ " St=Pl :> K~>) 
: V3K<3bK :> ll~<a->P :> Kl=RJJ 
: <a->PlblR 
= P(al<a->PCblR s1nce PCal<a->P 
:> P ((a) 0 {b)JR 

Theorem 8. 
(a) If a,b are forward tidy, so are aUb and a•b ; 
(b) If a,b are backward tidy, so are aUb and a•b • 

Proof. 
(a} < (aUbl->P = <a-ub->P 

= <a->Pv<b->P 

I 

= OvR where Os<a->P and R:<b->P. 

(b) 

<<a•bl->P : <b-·1->P 
: <b-><a->P 
= <b->0 
: R 

Caubl P = CaJ PA tbJ P 
: Q"R 

[a•blP = [a) [bJP 
= CaJO 
: R 

where O:<a->P 
where RE<b->0. 

where O!!CaJP and R:(bJP. 

where Q5 [b] P 
where R: CaJQ. I 

Corollary 9. All loop-free assignment-and-test programs are very 
tidy (possibly excepting forward tidiness for second order 
assignment) • 

Proof. Use induction on the height of a program, together with 
Theorems 1-8. I 

In the following few theorems, a useful result is: 

lemma 0.. {a} Sm Ca-) • 
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Proof. (a) = ,(a_)_ (0) 

:Sm (a-) by the obvious calcutation. I 

IJe note also that TDL can be strengthened to include the 
word "recursively" before every occurrence of •tidy. 11 If f is 
the recursive tidiness function of a then the dual tidiness 
function g of .- is defined by 1 (PJ = ,f hP) • 

Theorem 10. {aUb) Sm {a)x{b) (Cartesian productJ • 

Proof. {aUb) 

Theorem 11. 

• <alnCbl 
Sm (a)x{b} 

Th 6 

(a) If a is forwar~ recursively tidy, (a•bl Sm (b} 

{b) If b is backward recursively tidy, (a•bl Sm (a} 

Proof. 
(a) Ca•bl = (a)•(b) Th 7 

TCL 
Th 7 

• (a=» o{IJ•(b) 

= (as>) •Cl •bl 
-= (a:>)•{b) 

Hence to test PCa•blR it suffices to calculate the Q 
satisfying p (a•>) a and test O<bn. 
(b) 

Theorem 

Proof 
(a} 

(b) 

(a .. b} s {b-·a-l 
m lemma 0 

s {b-} Th 11 Cal 
s (b} Lemma O. 

12. If a is recursively tidy, Cal sm (IJ 

If a is .forward recursively tidy, 
(a} = (a 0 1l 

When a 
(al 

Sm (IJ Th ll(a). 

is backward recursively tidy, 
:Sm (a-) Lemma 0 

sm CIJ TOL, 12laJ. 

Theorem 13. Instructions are recursively very tidy. 

I 

I 

I 

Proof. The strongest consequents and weakest antecedents given 
by Theorems 3 and 4 are easily calculated.. I 

Theorem 14. If a,b are forward (backward) recursively tidy, so 
are aUb and a•b • 

Proof. In all four cases of Theorem 8, the desired weakest 
antecedents and strongest consequents are easily calculated. I 
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Corollary 15. J f a is 1 loop-free assignment-and-test proaram, 
(a}~m(I) • 

(Note that (IJn • (l}x{IJx ••• x(IJ Sm (I) , for any n, since the 

n questions about membership in (IJ can be rephrased as i sin&le 
conjunction. ) 

~· This follows by induction on the hei&ht of a program, 
using Theorems 10-14. I 

Theorem 16. Let llol ~ 4 , tl1 t ~ 3 , tJ3 t ~ 1 , .with 

V < J 0 , F < J 1 . Let the symbols of l and P (excepting => 
take on an p0ssible interpretations in the universe U • Then 
([V .. F(VJ:l*J is not r.e., despite (IJ and ([V..f(V)JJ both 
being r.e. 

Proof. The idea is to make V encode the contents of the two 
registers and the "program-counter• of a universal register 
machine p (presented as a directed graph, one edae-traversal of 
p corresponding to one application of F to V} The basic 
instructions labelUng the edaes of the 1raph will be x .. x+l, 
Xt-X-1, X=O, X,O, Yt-V+l, v .. v-1, Y=O, Vi'O. (See Minsky C261 
for a description of such a machine.) To define the program 
counter, we number the vertices of p with distinct natural 
numbers; the choice of numbers is unimportant. Let p's start 
vertex be numbered s and final vertex f IJe assume without 
loss of generality that leaving each vertex v of p is either 
an assignment edge or a pair of edges labelled with complementary 
assignments (X=O, X'O or V=O, Y'O) • (If necessary, add 
edges labelled X=O and )('0 from f to f. ) Now p may run for 
ever, and halting will be defined by reaching state f , where it 
then is forced to stay. It is important that where control goes 
next be completely specified for every vertex, otherwise F may 
take V to a value that damages our theorem. Another property we 
shall require of p is that it never attempt to decrement a zero 
register, which is easily arranged. I.le shall also require that 
when p has made up its mind to enter the final state, it sets 
)( and Y to 0 first. 

The 3-ary function symbol C · is used to encode X, V and 
the program counter. The following is the only property C 
needs ft> work reliably as an encoder. 

Call this sentence Pc ~ It says that encoding is 1-1 , i.e. 

does not lose information. 

IJe also want to say that 0, U and D are supposed to 
behave similarly to standard 0, successor and predecessor. I.le 
let PN denote 
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VxCU(xl'O A O(U(x)) • xJ 

IJe now force F to execute one step of p • IJe let 
PF denote the and of a set of sentences, one per edge of p , 

whose elements. are defined by the following table, wher:e i, j 
denote the numbers labelling the stert and end of the 
corresponding edge. 

Instruction on edge (i, j} Corresponding sentence 

Xt-X+l 

Xt-X-1 

X=O 
X'O 

Vxy{f(C(x ,y, tffO)}) • C(U(x),y,Uj(O))J 

VxyCFlClUbl,y, tff0))) •Cb ,y,Uj(Q))J 

Vy CF (C (0 ,y, d (0))) • CIO ,y ,ui (0)) J 
Vxy CF (C{UhcJ ,y, d(O) l) • C(U(x} ,y,ui (OJ) l 

and similarly for V • 

Claim 1. Given any interpretation S satisfying PN , in which 

all symbols save F are assigned interpretations, 1et N denote 

{tJFUn lOl I n~O} and let M denote <Sl=U" (0) I m labels a vertex 
of p} • Thus N is that subset of 0 reachable via 
Us from Os , and M is that subset of 0 corresponding to the 

vertices of the flowchart. Then the above table consistently and 
completely determines F,g<C,g(x,y,z)) for all x,y £ N and 

z c M , except when ("z" ,i) is ·labelled with Xt-X-1 , in which 
case it is undetermined when x = 08 , and similarly for 

Vt-V-1 • ("z" is the necessarily unique natural number satisfying 
"z" us (Os) =z • , 

Proof. Completeness follows from the fact that every vertex 
labelled "i" has either an assignment leaving it, or a pair of 
tests. In the former case F S (CS (x, y ,i)) is completely 

specified except for the decrement instructions. In the latter 
case, F

8
<c

8
<o,y,iH is specified, as is F

8
<C

8
(Uhrl,y,i)) , 

accounting for all elements of N • Consistency follows from 
Pc and PN which together ensure that each of the 

above equations specifies F 8 at a different element of the 

domain. I 

Claim 2. If x,y<N and z(M then F8 (c8 <x,y,z)) • c8 <a,b,c> 

where, if p is started with •control" at vertex "z" and ><. V 
contain "><", "y" respectively, then running p for one step 
yields "a" in X and "b" in Y , with control at vertex "c" • 

Proof. Straightforward. I 
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Now assume that ([V..f {VJJ*l is r.e. Then we can 
decide . whether p started with i in register X and 0 in 
register Y will ever halt, thereby solving the halting problem 
for this universal machine, a contradiction C26J. To decide 
whether p halts, run p and at the same time enumerate 

([V..F (V) l*l looking for <PcN"NN"F/\PI , V~ (0,0,tf (OJ J 

where P1 is V:C(Ui(OJ,O,Us{Q)). 

The crucial observation is that we will find this pea if and only 
if p does not halt, For certainly if we find it we know that 
by Lemma 2 the machine cannot get into the state (Q, 0, fl • 
Conversely, if the machine cannot get into this state, then by 

Lemmas 1 and 2 V'C {0,0,U1 
(Ot) will remain true no matter 

how often F is applied to V • · 

This completes the proof of Theorem 16. I 

Corollary 17. When (I) is r.e., (V..f{V)l* is not recursively 
tidy. 

Proof. Suppose CV ...f' (V) 1* to be recursively tidy. Then 
CCV...f'fVJJ*l = CCV..f(VJ:D*•ll 

Sm CIJ Th. 11 
but this would imply that ([V..f CVJJ*l is r.e. , 
contradicting Theorem 16. I 

Theorem 18. If s E: f then ccv .. V+ll*l is recursively very tidy. 

Proof. <[V .. V+lJ*->P : 3n(nsV ~ Cn/VJPJ. 
([V .. V+lJ*JP : Vn<Vsn ~ Cn/VJPJ. 

Theorem 19. Cf) = <U = lft 

Proof. Straightforward. 

Theorem 20. (aUb) = (a) n (b) 

Proof. Straightforward. 

Theorem 21. (a 0 b) 2. (a) .. (b) = (a)n (b) 

Proof. Straightforward. 
• 

Corollary 22. For a given program a, the structure 

I 

I 

I 

I 

({<an) I n~O}, £) is a homomorph of the natural number division 
lattice {N, I) , with (a) as the least element and (I) as the 
greatest. Further, when a = [)(..f {)() J with F uninterpreted, the 
homomorphism becomes an isomorphism. 

Proof. If m In then (am) £ (an) • 
Further, when a = [)( .. F ()() J , if mf.n then the formula 
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PlX) A Vx(P(x) ~ ,p(F(X))A,P(F2(X))A ••• ~(Fm(XJ)) 
(which makes P hold once every m applications· of F J 
is an invariant of <strictly, is a projection of an invariant on 
am but not of an • I 

Theorem 23. Ca*> = (a) 

Proof. This follows immediately from a* = U{an I n~O} , · theorem 
20 and corollary 22 <the part of the coronary that says that (a) 

is the least element of { <a."> In) 0} J • I 

Theorem 24 (Star Interpolation Theorem). Let a* be tidy, with 
PCa*JR • Then there exists Q satisfying P::>(bR and Q{aJO • 
(An equivalent statement of the theorem is that if a* is tidy, 
Ca*l = Cll• <a> o(IJ • J 

Proof. We need only treat the case when a* is forward tidy; 
the other case is the exact dual. Choose Q • P (a*•» • Then 
a~ since a is the stf'Ongest consequent of p, and P:>O since 
I U s.. a* • Moreover (using an improved version of our original 

argument suggested by R. Rivest> 

PCa*lQ 
so PCa* 0 a}Q 
so P(Ca*)•{a))Q 
so PCa*lSCaJQ 

thus a~s 
whence Q{a)Q 

since a*oa s_ a* 
Theorem 7; a* is forward tidy 
for some S c tf 

PCa*lS and Q is strongest 
SCalO • I 

Corollary 25. When all regular programs are tidy, {a):Se{Il. 

Proof. We proceed by induction on the height of a regular 
expression representing a. If a is an instruction, the result 
follows from Theorems 12 and 13. IJ a is the union or 
composition of two programs then Theorems 10 and 11 together with 
the induction hypothesis apply. If a = b* then by Theorem 24 {al 
= { Il0 Cb) • C IJ . By induction, all the components of this 
composition are r. e. reducible to { IJ , hence so is (al • I 

Corollary 26. Under the conditions of Theorem 16, if (IJ is r. e. 
then CV~F (V) 1* is not tidy. 

Proof. If it were tidy, then by Theorem 24 {[V~ (VJ]} would be 
C IJ 0 ([V ~F <V) ]) .. { Il , which is r. e. because all of its components 
are r. e. But this would then contradict Theorem 16. I 
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