MIT/1.CS/TR-168

SEMANTICAL CONSIDERATIONS ON

FLOYD-HOARE LOGIC

Vaughan R. Pratt

September 1976

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

£ AR 0L T e AR

SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC

Yaughan R. Pratt
Massachusetts Institute of Technology
Cambridge, MA 02139
August 1976
ABSTRACT

This paper deals with logics of programs. The objective
is to formalize a notion of program description, snd to give both
plausible (semantic) and effective {(syntactic) criteria for the
~notion of truth of a description. A novel feature of this
treatment is the development of the mathematics underlying
Fioyd-Hoare axiom systems independently of such systems. Other
directions that such research might tske are also considered.

This paper grew out of, and is intended to be usable as, class
notes [27) for an introductory semantics courss. The three
sections of the paper are:

1. A framework for the logic of programs. -

Programs and their partial correctness theories are
treated as binary relations on states and formulae respectively.
Truth-values are assigned to partisl correctness assertions in a
plausible (Tarskian} but not directly usable way.

2. Particular Programs. : '

Effective criteria for truth are established for some
programs using the Tarskian crileria as a benchmark., This leads
directly to. a sound, complete, effective axiom system for the
theories of these programs. The difficulties involved in finding
such effective criteria for other programs are explored. The
reader's attention is drawn to Theorems 4, 16, 18 and 22-24,
as worthy of mention even out of the context in which they now
appear,

3. Variations and extensions of the framework.

Alternatives to binary relations for both programs and
theories are speculaled on, and their possible roles in semantics
are considered. le discuss a hierarchy of varieties of programs
and the importance of this hierarchy to the issues of .
definability and describability. [Modsl logic is considered as a
first-order alternative to Floyd-Hoare logic. UWe give an
appropriate axiom system which is complete for loop-free programs
and also puts conventional predicate calculus in a different
light by lumping quantifiers with non-fogical assignments rather
than treating them as logical concepls.

This research was supported by the Nationsl Science Foundation
under contracts DCR74-12997 and MCS76-18461.

1

SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC

1. A framework fbt_‘ the logic of programs.

1.1 Semantics: what a program is

In this paper we restrict our attention to. programs that
primarily manipulate and test their environment, in contrast say
to the pure lambda calculus, whose semantics need not depend on
the notion of a changing environment. Floyd-Hoare logic is aimed
at the former kind of program, which does not readily lend itself
to direct description using classical logic. Lambda calculus and
pure LISP programs fare much better with classical logic.
However, the manipulate-and-test paradigm dominates the
programming milieu, and the popularity of the Floyd-Hoare method
for dealing with this situation makes a foundational study of the
method worthwhile. '

The term semantics will connote for us the relation
between word and object. Two such relations appear below, as
concrete program and abstract program (cf Scott [31]), and as .
formula and truth-value (cf Tarski [34]). When necessary we will
refer to these respectively as [J-semantics and k-semantics.
These reflect what we feel should be the two main concerns of
theoretical semantics, namely abstract programs and their logics,
This section (1.1) deals with the former, although we do not -
explicitly discuss concrete programs. (Section 3.1 rsises the
possibility that the concrete/abstract dichotomy is too narrow a
point of view for {J-semantics.) The role of section 1.1 is to
provide a rigorous foundation for the remainder of the paper,
which is concerned (except for section 3.1) with logics of
programs.

Binary Relations. We shall use binary relations for
programs along lines proposed by Eilenberg and Eigot [13], de
Bakker [(9,10,11]1, and (with relations replaced by functions)
Scott [9,31). HWe find it convenient to use them also for partial
correctness theories of programs.

We define a binary relation R from a set A (the domain
of R} to a set B (the range of R) to be a subset of AxB [10]

{as opposed to a function from 2A to 2B {13}, which is not as
convenient for our purposes). He further define:

aRb (a,b) ¢ R

aRbSc aRb A bSc

RuS, RNS, R-S as for any sels, infinite union and intersection
included

R-S o {(a,c) |3b(aRbSc]} (composition)

2

R™ : {(b,a) {aRb} (converse)

XRb AxaRb for XcA

ac
aRY bAyaRb' for YcB ‘

€
XR {b}JaeX(aRb]) ' for XcA

, (exception: R = F)

RY {a|3bcY[aRb]) for YcB :
XE {P|XEP) (this is an exception to XR above)

Symbols. Central to the notion of environment is the
symbo! and its value (or interpretation, or denotation). Ue
shall confine our attention to function symbols, predicate -
symbols, and logical connectives, interpreted respectively as
functions, predicates, and either boolean functions or binary
relations (see (2) below), all of fixed arity. He denote the
collections of such symbols as 3 , P , and G respectively,
and use subscripts to identify the collections of a given arity;
thus 32 is the collection of binary function symbols. € will

always include A, ~ and 3Ix for all xedg lice. first-order

quantification, though very little of what we prove changes if we
permit 3Ix for all xeJ), while @ will always include = . Ue
let D denote the (single) domain for the functions and '
predicates,

We adopt the foliowing notations.

A-B the set of all functions from A to B 5
f: A-B f ¢ A9B :
Ak AxAx...xA (Cartesian product of k A's) j

Expressions. Expressions are trees whose vertices are
labelled with symbols such that:
{i) each symbol's arity equals the out-degree of the vertex it
labels;
(ii) going from the root to a leaf, the sequence of symboli-types
encountered forms a contiguous substring of C¥P3I*,

le use the following concepts and notations.

Formula An expression whose root's label is in CUP;

Term An expression whose root's label is in 3

F 4 The set of expressions;

& The set of formulae of 2 ;

tt The set of terms of £ 3

Ground Describes an expression containing no modalities.

Useful abbreviations and their expansions are:

PAQ ~(-PaA~Q) (mutatis mutandis for >, =, ¥x)
true X=x {mutatis mutandis for false)
E (Ey,er e Ep) |

E=F Ey=Fy A ooo AEF
9FE (9E,,...,%E)

3s 351352”'35k
RAEEL

(PE,,Fy), ... PELFD) .

Interpretations. lle now assign meaning to expressions,
along the lines spelled out by Terski [34]. An interpretation 3
(which for us will play the role of an environment) specifies for
each symbol A the value As of A in 9. Given 3, we can

then infer the value in 3 of an expression E = A{E) . The value
will be written SkE (slightly generalizing the usual usage), and
is defined by ‘

FAE) = AglRE) . Y
Note that the argument F on the left becomes E on

the right regardiess of what A is. Under this condition we say
that A is referentially transparent [28). '

The only exception to {1) is when A is a modality,
which is a unary logical connective whose interpretation A
(independent of 3) is a binary relation on interpretations.
(Alternatively we could say that its interpretation As is a set

of interpretations depending on g , namely those accessible from
3 via A, in which case 9A§ would be written § ¢ As) The

definition becomes
9kAP) = v $EP (2)
84S

This asserts the existence of an interpretation § , accessible
from 3 via A , in which P is true. It is Kripke's [20]
semantical interpretation of what is written 0 by '
modal logicians. Such an A is not referentially transparent;
we then say it is referentially opaque [28]. An immediate
application is to the definition of modalities of the form Ix

where x ¢ 35 and 3x is interpreted as the equivalence relation

relating pairs of interpretations differing only in their
assignment to x . The section on programs as. binary relations
will suggest a further application,

Given a set X of interpretations we shall write XEP .

for SAXQ’:P » XE for {P|XEP} (the theory of X) and EP for
(.

{3|39kP} .

Programs as binary relations on states. We have thus far
defined only conventional concepts from logic, using more or less
conventional definitions. UWe now define a transition to be an
ordered pair of states, where a state is defined to be an

&

interpretation. Intuitively a transition represents an initial

and a final state. Following deo Bakker {3,10,11}, we define a
program to be a set of transitions, i.e. a binary relation on
stales.

Note that this definition makes the interpretation of a
modality a program. Given a program a we let <a>. denote the
modality whose interpretation is a, and abbreviate -<a>~ to
tal , in imitation of the symbols of classical modal logic. A
little thought reveals that [a]lP means essentially "after
executing a, P holds," or more precisely, "every transition from
this state leads to a state satisfying P," while <a>P means
“there exists a transition from this state to a state satisfying
P." In this light, another way of viewing our interpretation of
3x is as a program that non-deterministically assigns an
arbitrary element of D to x .

Restrictions on interpretations. 1f every symbol were
always to have the same value there could be but one state and
hence but two programs, the identity program 1 and the empty
program ¥ . Useful assignment statements would not be possible.
Conversely, if no restrictions (save those of arity and type) are
placed on the possible values of symbols (as in pure predicate
calculus) , a wealth of programs is possible. We would then be
studying uninterpreted program schemes. Uith the exception of
Theorems 16-18 (and in some sense Theorems &4 and 5), our
results are independent of where one lies in this spectrum. When
we use familiar symbols (e.g. A, ~, Ix, =, <, 0, 1, 4+, -, ...),
these will always be assumed to have their standard
interpretation (which in practice is a function of whether D is
the natural numbers, integers, reals or whatever). The universe
U of possible states is thus a function solely of D, 3, ¢ and
whatever restrictions are in force on interpretations of symbols.
When UFP we shall say that P is valid.

We distinguish between symbols with a single fixed
standard interpretation, symbols whose interpretation can be
changed by a program, and symbols in neither category, by calling
them respectively standard symbols, assignables and labels. None
of these distinctions are relevant to the statement or proof of
most of the theorems of Section 2, but they are important in
interpreting those theorems. For example, knowing that & symbol
is a label means that we know it cannot change during program
execution, and hence it can safely be used to name, say, input
values in both the antecedent and the consequent of a partial
correctness assertion.

1.2 Logic: _how to describe a program

So far we have said what a program is, a [J-semantical

'S

concern. We now consider ways to talk sbout programs, a concern
of logic.

Partial correctness assertions. A parlial correctness
assertion (pca) is an ordered pair of formulae of tf , called

respectively the antecedent and the consequent. Pca's were first
studied carefully by Floyd (14] , who called them verification
conditions. They were later further popularized by Hoare [16].
Though they do not constitute the only possible description
language, as we shall see in section 3, and also are lop-sided in
their ability to discuss termination (they can only discuss
non-termination}, they are nevertheless of considerable practical
and theoretical interest. We shall refer to program-oriented

logics whose language is t,z as Floyd-Hoare logics.

The meaning of a pca is defined as an extension to the
Tarskian definitions (1) and {2} (k-semantics). Ue extend F

so that it is defined not only on Uxf but aiso on uzxzf , a8
follows:

- (G,PEP,QM = (9P > $:Q) 3)

That is, a transition satisties a pca, or the pca is true of the
transition, when the truth of the antecedent before the

transition implies the truth of the consequent after. Ue refer

to these two usages of k as unary and binary respectively; more
generally, we distinguish conventional logics from Floyd-Hoare

logics by calling them respectively unary and binary logics.

Unary logics deal with static situations, binary logics with

dynamic situations.

For a set a of transitions (i.e. a program), ak(P,Q)
means that (P,Q) is true of every transition in the program a;
we then say (P,Q) is true of a , and that a satisties (P,Q) .
Similarly, ak denotes the set of pca’s true of a , which we
shall call the partial correctness theory of a, abbreviated to
€a) (following Hoare [16], but using boldface to distinguish { 3
from set brackets { }). Since {a) is a set of pairs of formulae
we can treat it as a binary relation on tf and write P{a3Q for

ak(P,Q) .

One can think of (P,Q) as providing an upper bound on
programs, in the sense that the programs satisfying (P,Q) are
just the subsets of K{(P,Q) . In this role, {P,Q) can assert
non-termination, but because ¥=(P,Q) for any (P,Q}, it cannot
assert termination.

The Duality Principle for Programs. In static logic
there is a duality between true and false. In dynamic logic a
similar duality obtains between forward and backward execution of

8

programs. The (easily checked) Duality Principle for a program
a is

a7} = ~fa)~ (D)

where =(P,Q) is defined as (-P,~Q) . Thus PEa"2Q is
equivalent to -0{a}-P . This principle can occasionally

simplify discussion of forward execution by reducing it to
backward execution or vice versa, The axiom of modus tollens in
static logic (apb = -bo-a) can be thought of as the duality
principle applied to the program 1 .

Weakest Antecedents and Strongest Consequents. MWe
observed earlier that [alP could be interpreted as "after
executing a, P holds." It follows that {([alP}€al}P holds.
Moreover, no weaker antecedent than [alP will permit the
consequent P; indeed, if ¥ [alP then Jk<a>-P , so there exists
3 satisfying dad such that $¥P . He call any formula logically
equivalent to [alP a weakest antecedent (Dijkstra [12]) of P
via a . This is summarized by

PEal0 =Ff > (a10))

By the duality principle (D), all of the above holds
equally well for -P{a~}(~[alP) , and hence for Pfa}{<a™>P) .
We call any formula logically equivalent to <a™>P a strongest
consequent (Floyd [15]) of P via a . The dual of (W) s

Pa)0 =z ga>P > Q) (S)

Though we have given syntactic characterizations of
weakest antecedent and strongest consequent, these translate
immediately into semantic characterizations by virtue of our
having already specified the semantics of modalities. This
approach is slightly more convenient to work with than defining
the concepts directly in terms of interpretations, particularly
since we need the concept of modality for other purposes.

Tidy Programs. Including the modality <a> in G is
not really cricket, since the whole idea of Floyd-Hoare logic
becomes superfluous (see section 3.2 for details). UWe shall
limit @ to A, ~ and 3x for all x<30 « In this case we may

ask whether &, contains any formula logically equivalent to [alP.

If for a given program a the answer to this question is yes for
all PcE;, we say that a is backward tidy. (Schwarz {32] uses the
terminology "backward exactly connected".) The dual epithet is
forward tidy (Pratt [27] and independently Schwarz [32]). Note
that the concept of tidiness finds no application in de Bakker's

and Meertens' [11] [I-semantical treatment of partial

correctness, where for an "antecedent” Vcl they define the

~ strongest "consequent" via a to be Va , which will always be

7

defined. MWhile elegant, this is not logic, that is, the concept
of language does not appear; they are talking about a different
though closely related problem.

A program that is either forward or backward lidy we
shall call tidy; when it is both, we shall call it very tidy.

When a is forward tidy it is convenient to have a
function a=> : f,'-»t' , such that a=> takes P to a strongest

consequent of P via a . We call a=> a forward tidiness
function of a . [f there exists a recursive a=> we shall say
that a is recursively forward tidy. For convenience we will
sometimes treat a=> as a binary relation, writing it as (a=>) .
A backward tidiness function of b (if any) is written <=b 3
{<=b) will denote the converse of the relation corresponding to
the function <=b . The following facts formalize this.

JA(P(a=>)0 A Q=<a™>P) if a is forward tidy (F3)
YA (P(a=>)Q > Qz<a™>P) , (FY)
JP(P(<=b)Q A P=(blA) if b is backward tidy (83)
VP (P(<=b)Q > P=[blQ) - (8Y)

A program may have many tidiness functions, any one of
which will serve our purposes. The following is useful,

Tidiness Duality Lemma (TDL): Program a is forward tidy if
and only if a~ is backward tidy.

The following lemma supplies one valuable role for
tidiness; see Theorem 7 below for another equally valuable role.

Tidiness Characterization Lemma (TCL):
{a) Let a be forward tidy., Then €a} = (a=>)-£1} .
{b) Let b be backward tidy. Then £b3} = £13-(<=b) .

With this lemma, to know a tidiness function of a is to
know the theory of a , or at least to reduce the problem to
knowing the theory of €I} in the sense of Theorem 12 below.

We have now completely specified the notion of truth for
pca's with respect to a given program. Note that this definition
is plausible (what simpler rigorous yet direct definition of
truth could there be?), but not accessible (evaluating the truth
of PLalQ directly from the definitions may bog down in the
infinities of either the set a of transitions (when checking
tk(P,Q) for each t ¢ a) or the universe’ U of states (when
evaluating 3x[P1)}. Hence we would like to trade off
plausibility for effectiveness, leading to an axiom system for
€a} that is sound, complete and effective. This trade-off has
its analog in unary logic. ‘In both logics this gives rise to the
need to distinguish truth and proof.

8

In general €a} is not accessible in the above sense;
however, in some simple yst useful cases, (a2} is quite
accessible. The following section focuses on such special cases.

2. Particular programs
2.1 Basic_Programs.

The Identity and Empty Programs. The emply relstion
¥ , containing no transitions, and the identity relation Iu ’
which we shall henceforth abbreviate to | , are two simple
programs of particular interest. These are characterized by the
properties aU® = YUa = a2 , 2P = Poa = ¥ and ael = [eca = a .
Thus they resemble - and in fact are - the additive and
multiplicative identities respectively of a semi-ring {ring with
no additive inverses) with addition operator U and
multiplication operator - .

{(All proofs in this section are relegated to sn appendix.)
Theorem 1. (¥} = tz .

Theorem 2. €13 = {(P,Q) |Ur(P>0Q)) .

For convenience, rather than referring to Uk when we want
to talk about the set of valid formulae of unary logic we shall
use €13 . Though this implies a restriction of L to

implications, this is a trivial restriction in our case. (Recall
Floyd's remark [15] : "One might say facetiously that the subject
matter of formal logic is the study of the verifiable

interpretations of the program consisting of the null

statement. ")

Tests. A test is a formula P of £ , and denotes
the program

P2 = I,MEP) (mn
= {(9,9) |9¢U A %P) .

Thus [EP3 will execute (without side effects) just when P is
true. (The L 3 is borrowed from Scott [311.) Though we have
reserved the word "test" for P itself, we shall also refer to
IP3 as a test when the meaning is clear. Observing that | =
Ctrued and ¢ = Lfalse] allows us to subsume many theorems or
axioms about | and ¥ under those about tests.

Theorem 3. Let R be a test.
(a) <ERI>P = RAP . [(Forward tidiness)
(b) [ERIIP = R>P . (Backward tidiness)

9
The Tidiness Characterization Lemma allows us to deduce -
the remainder of (IR1} . ‘

A ground test has no modalities, and corresponds to the
sorts of tests permitted in, say, ALGOL. Though the above
theorem did not rely on tests being ground, when we come to
exhibit particular programs to make a point or prove a theorem,
we will restrict ourseives to ground tests.

Assignments. An assignment is a peir of terms (F(S),T)
of £ , corresponding to the left and right sides of a
conventional assignment statement. No loss of generality ensues
from parsing the left-hand side as F(3); all expressions can be
so written. UWhen § is a O-tuple we have simple variable
assignment; otherwise we have array assignment. Since the array
arguments are not constrained to be integers, this encompasses
the notion of record as in, say, Pascal [35]. For Floyd-Hoare
logic no distinction need be drawn between funclions and arrays.
The corresponding program is a function of type UsU , which of
course is just the special case of a binary relation on U where
each element of U appears in the relation as the first component
of a pair just once. It may be defined with the aid of A-notstion
thus.

IF(S)eTT = A8.2A.if A4F then As (A)
else As.if 3 £ S then As(,:._)

else =T ,
(Note: s and S agree in arity.)

It will help in following this definition to keep in mind
the following types of functions:
EF (S)«T3: U-U
g: 3-+{D*-D) (at least in this case, with only terms involved)
9k t‘-»D

It should be remarked that this is not meant as an
interpretive definition of assignment in the sense that to
execute an assignment one executes the body of the definition.
Rather we are defining a mathematical object, which the body
uniquely specifies given U. No detail of this object may be
changed without doing violence to the intent of our definition,
though of course as in any definition the wording of the
definition may be varied.

Before proceeding to a characterization of €EF (5)«T13
‘we introduce the notion of substitution, suitably generalized to
handle arrays. UWe define ’[T/F(Z)JP {abbreviated as. P'), the
result of substituting the expression T for the subtrees in P
with root F , as follows.

10

FIE)' = [E/QT : {S1)
AE)' - A(E") non-modal A& (S2)
(3P)' = Jy(lly/xIP)') newy - (83)

S1 performs the substitution for F 3 its right side
simplifies to T when F s zeroary. Clearly E' is
(El',... ,Ek') + Substitution of this for Z in T means

substitution of the whole tuple wherever Z occurs in T . Zis
not a tuple of £ but rather a place-holder (for the arguments
of F) that we shall employ below in instances of T .

S2 caters for referentially transparent symbols. The
only modality we provide for is 3Ix as in 53, which is
sufficient for our purposes. (It is easy to check that 3 may
be replaced by Y in S3 with no other modification since =~ is
referentially transparent and covered by S52.)

(When P contains assignment modalities (not the
case in this paper}, a difficuity arises in extending S3, namely
that of generalizing renaming of bound variables. The reader
interested in pursuing this further might consider the supposedly
valid formula X=0 o [X+1/Y] [X«X42] (Y=1AX=2) , which is in
fact not valid if the substitution is performed naively. This
may be transformed to X=0 o IX+1/Y] [ZeX+2] (Y=1AZ=2) to avoid
this problem, along the lines of S3, but is this desirable? . The
reason this is not a problem for 3X thought of as <X«RANDOM>
is that RANDOM is independent of X , so renaming it to
<Z<RANDOM> , or for that matter renaming <Xel> to <Zel> , is
not' as distressing as renaming <XeX+2> to <ZeX42> . Clearly
we cannot rename it to <Z«Z+2> without renaming other
occurrences of X possibly outside the scope of the
substitution, as in the example where we have X=0 . It would
appear that renaming to <Z«X+2> is our only option. But then
what happens in the case of array assignment? UWe would
appreciate seeing a solution to this problem.)

In addition to substitution we need a temporary addition
- to 33 , namely IF-THEN-ELSE, a peculiar symbol taking a formula

for its first argument and terms for its second and third

arguments. It is removed (in order to yield an expression of £)
by the following transformations, which move it up the tree using
the first two transformations until all its arguments are

formulae, permitting application of the third transformation.

G(IF_R THEN E. ELSE F.)

» IF R THEN G(E) ELSE G(F) for G ¢ JuP ;
E - IF R THENE ELSE E ; {to facilitate preceding rule)
IF R THEN SELSE T - (RAS)v(-RAT) for S,T ¢ L .

IF lemma. Evaluating 89U when W is a formula containing
1F-terms vyields the same truth value whether IF s first

11

removed by the above transformations or left in place and
_evaluated using - :

FUFP THEN S ELSE T) = if SFP then kS else 9ET.
The following reports joint work with R, Hsle (27].

Theorem 4. Let F(S)«T be an assignment.
(a) <EF(Q)eTI>P 2 sIP' A s=§' A Fls)=T']

where E' = [{IF Z=5 THEN t ELSE F(Z))/F(Z)]E
{b) {TF(Q)TRIP = P* :

where E" = [(IF Z=5 THEN T ELSE F(Z))/F(Z))E .

When F is O-ary, IF Z=s THEN t ELSE F(Z) can be
simplified to t , giving Floyd's [15]1 construction of the most
general consequent of an assignment statement as a special case,
and IF Z=5 THEN T ELSE F(Z) cen be simplified to T , giving
Hoare's [16] backward substitution rule for assignment as a
special case, namely that '

IXTIP = (T/XIP . _

{(Ue shall often abbreviate (E31 to [1.) Fortuitously [XeT]
and [T/X] are much alike, and we rely on « versus / to
disambiguate them. Actually, since they are equivalent, the _
only reason one would want to distinguish them is when one wants
to stress that ([T/XIP is an abbreviation for something in £
while [X«T}P is an unabbreviated formula of modal logic. Thus
[X<T] is semantic inasmuch as it has an interpretation. under k,
while . [T/X] is syntactic in that it specifies a transformation

on an expression.

Lambda-calculus adherents will note the obvious
similarity between [X«T]JP and (OX.P)T ; our above equivalence
corresponds to the syntactic beta-reduction rule of the
lambda~calculus, Our generalization to array assignment gives the
appropriate rule for a lambda-calculus with arrays where single
array elements can be bound, as in Aaly).alx)+l , where due
regard needs to be given to whether x=y .

_ Second-Order Assignment. UWe may call the above programs
first-order assignments because individuals of D are being "moved
around.” A second-order assignment might be a pair of function .
symbols of the same arity, and would permit wholesale assignment
of a function to a function symbol of the same arity. Thus if F
and G were both binary, FeG would change the whole interpretation

of F, not just its value at one point. The program [F<GI would
then be

A9.2A.if A£F then AS else Gs .

This notion of second-order assignment is not as genefal
as it might be. For example, one might want to perform Fe«G-H

12

where F,G,H are all unary., However, this would introduce higher
type functionals (in this case composition) into the language,
which would make matters more complicated than we are willing to
allow here. {This is not to imply that EFeGeH3 is nmot tidy -
it is backward tidy, by a variation on the argument in the

proof of the following theorsm, that EF«<G1 is backward tidy.)

Thinking of the first order quantifier Ix as
<x<RANDOM> , we can think of the second-order quentifier 3 as
the second-order assignment <f«RANDOMFUNCTION> . This
illustrates just how close our use of “second-order" is to the
conventional use. '

Theorem S. Let FeG be a second-order assignment. Then
({IF<GIIP = [G/FIP

(IG/F] is a convenient abbrevistion for [G(Z)/F ({})].)

Hence second-order assignment is backward tidy. :

Open problem. Is Fel always forward tidy?

2.2 Loop-free Programs.

Union. We have already defined the union of two binary
relations as being conventional set union, taking advantage of
the representation of relations here as sets of transitions..

Theorem 6. €aubl = Cadnfbl .

Note the exact analog of this binary logic theorem in unary
logic: in both logics, "the theory of the union (of two subsets

of either &, or £ is the intersection of the theories.” In

contrast, there is no analog of the following theorem in unary
logic, in line with the idea that composition is a dynamic rather
than a static operation,

Composition. Again, we have aiready defined the |
composition of two binary relations.

Theorem 7A. €a-b} > al-{b) .

The > cannot be strengthened to = without knowing
more about a and b . For example, let VU .have no P ¢
L, satistying kP = V . Let a = lv = {(9,9)|9¢V} and let b =

Ij_y » so that aub = I,, and anb = ¢ . Then a-b =¥, so

{a-b} is vacuously £f2 , the set of all pca's, including
(true,false) . But by the construction there can be no P
simultaneously satisfying true{a}P and PEblfalse , so
(true,false) cannot be in {al-{bl} , whence Ca-b3 > {al-{bl .

13

Neither a nor b in this example is tidy, and in fact
we can strengthen theorem 7A as follows. ' :

Theorem 7. Ca<b} = {ad-(b} when a is forward tidy or b Is
backward tidy.

Theorem 8. -
(a) If a,b are forward tidy, so are aUlb and a<b ;
(b) If a,b are backward tidy, so are aUb and a-b .

Loop-free programs. The significance of union and
composition is that, together with tests and assignments, they
allow us to synthesize the abstract programs that correspond to
loop-free flowcharts. The correspondence between the two may be
formalized as follows. Define a flowchart to be a directed graph
with edges fabelled with tests and assignments (cf [17]), and
having a start vertex and a set of final vertices. Take the
corresponding binary relation to be the union, over all paths p
from the start vertex to a final vertex, ‘of the composition of
the sequence of instructions along p . In the case of loop-free
flowcharts, i.e. directed acyclic graphs, there can only be
finitely many such paths, so such an abstract program can be
synthesized from tests, assignments, finite union and
composition. The foregoing theorems then tell us:

Corollary 3. Al loop-free assignment-and-test programs are very
tidy (possibly excepting forward tidiness for second order
assignment},

So far we have considered only the programming constructs
of tests (subsuming | and ¢), assignments, finite union and
composition. e could proceed to consider further constructs
such as if-then-else along the same lines. However, our
preference in this case is to consider “if P then a else b" to be
an abbreviation for “IPJ-a U E-PJ-b" , much as we considered
¥xP to be an abbreviation for -3x~P . Similarly, we would
regard the goto construct as a notation for describing flowchart
. programs textually, provided this gave rise to acyclic
flowcharts, allowing us to further translate the flowchart into a
program involving only tests, assignments, finite union and
composition. (e discuss the case when the goto gives rise to a
loop later, under the heading of regular programs.)

If one wanted to be more formal one might distinguish
translational semantics from [B-semantics, classifying our
definition of if-then-else as being of the former kind. The
economies of description possible with such translational
definitions do not need stressing.

Recursiveness. Tidiness by itself does not guarantee
usability of the tidiness functions. MUWe say that a is forward

14

(backward) recursively tidy when a=> (<=a) is recursive. In
the following we use "many-one reducibility” [30]: we say
Xs,Y when there exists a recursive function f such that x ¢ X

iff f{x) ¢ VY.
Theorem 10. €aub} < = Cadx(b} (Cartesian product).

Theorem 11. A
(a) It a is forward recursively tidy, Ca-b} Sy 03 .

{(b) It b is backward recursively tidy, Ca-b} Sy (33 .
Theorem 12. If a is recursively tidy, (al S i1 .
Theorem 13. Instructions are recursively very tidy.

Theorem 14. If a,b are forward (backward) recursively tidy,
so are alb and a-b .

By themselves thesb theorems are somewhat dull. Taken
together, however, they yield the following interesting resuit,
used to advantage in King's thesis (18], using backward tidiness.

Corollary 15. If a is a loop-free assignment-and-test program,
€ad< (13 . (Note that €137 = €IMxCIdx...xCI} s €I},

for any n, since the n questions about membership in {1} can be
rephrased as a single conjunction.)

This asserts that to decide whether (P,Q) is true of a,
it suffices to ask whether a given first-order predicate calculus
formula holds.

It follows that the theory of programs without loops is
no less tractable than the "theory of the underlying logic."

Axiom Systems. The above results are quite strong,
promising recursive reductions to €I} . [f we do not mind
weakening this to recursive enumerability, we can write out a
simple non-deterministic enumerator (or axiom system) for the
pca's true of a given loop-free program.

Al. €I} . (i.e. we take all of €I} as axioms.)

A2. PtalQ, P{b3Q + P€aubla .

(This is equipollent with Hoare's P{a)Q, P'{b)Q' F

PAP' €aub3va'.) ‘

A3. Pta}d, QblR | Pfa-blR .

A4, QEPIPAQ (or PSQELP3Q).

AS. PEF(S)eTIys(P' A $=5' A Fig)=T'] for P"CF(ST)IP)
where E' and E" are defined as in Theorem 4.

AB. ((G/FIQ)EFG3Q {second order assignment).

An issue we do not resolve here is whether the object

15

inside € 3} is a program or a concrete representation of it. If
the latter, then we also need a rule: ' '

A=. PCa)Q ' P{a'30 provided a and a' represent the same
program.

This axiom system is a good approximation to the one
proposed by Hoare [16). Theorems 1 to 8 provide immediate
confirmation of its soundness and completeness. Note the absence
of Hoare's "Rules of Consequence” P>, G{a)JR PCalR - and
its backward dual P{alQ, QR F PCaJR. Ue achieve its effect by
using l-a = as]l = a . Then Hoare's Rules of Consequence can be
derived from P€13Q, Q€a)R F PCl-a)R |- PCadR , and dually.

We draw the reader's attention to our efforts to separate
"competence" from "performance” {(cf [6]) in the above. MHithout
mentioning axiom systems, we established some properties of
theories of programs (competence) from which we could readily
infer the "correctness” of a non-deterministic system
(performance, in this case as realized by the given axiom
system}. UWe feel that such a separation has some merit, and
would like to see it applied more frequently in all domsins where
the dichotomy makes sense, including everyday programming.

2.3 Regular Programs.

We now consider a larger class of programs by including
transitive closure as an operation. The reflexive transitive
closure a* of a is the least x (with respect to ¢)
satisfying aUluUxUxex = X, which can be shown to be
u{a"|n20} , where a' = acae...-a i times. We call
the closure of the set of assignments and tests under U, - and %
the class of regular assignment-and-test programs. The
connection with flowcharts is as for the loop-free case, except
that the infinitely many paths that arise when loops are
permitted are disposed of by using Kleene's transformation of
such graphs into regular expressions. (Because we have union as
one of our constructs, permitting non-deterministic programs, the
obstacle raised by Ashcroft and Manna (3] for directly
transiating deterministic flowcharts into deterministic
"structured” programs involving just assignment, composition,
if-then-else and while-do does not arise here.)

We may summarize the results of this section as follows.
Regular programs do not in general have as tractable theories as
loop-free programs. Even when F is completely uninterpreted
and €1} is r.e., the innocent looking program [XeF(X)3* does
not have an r.e. theory. However, as a sort of consolation
prize, invariance theories (sets of pca's of the form (P,P)) turn
- out to be well behaved with respect to *

16

It is easy to find a regular program without an r.e.
theory. Let O ¢ 30 and +1,-1 ¢ 31 (successor and predecessor),

all with their standard interpretations on the natural numbers.

Let a be a program implementing Minsky's universal two-counter
machine [26]. Then if €a) were r.e., the halting problem could
be solved by simultaneously running a and looking in €a3} for
(P,false) where P says that the counters initially describe

'x (x) . .This capitalizes on the fact that though pca's cannot in

general assert termination, they can assert non-termination,

When all function symbols are uninterpreted, €al} as
described above is still not r.e., though to prove this takes a
little more care. The idea is to say enough in the antecedent P
referred to above to constrain the domain to have a substructure
isomorphic to the natural numbers with 0 and successor.

The fact that a is a universal program plays an
important role in these proofs. Thus the following theorem is of
considerable interest.

Theorem 16. Let |30| 24, |31I 23, l33l 21, with

V¢ 30 s, F ¢ 31 . Let the symbois of 3 and P {excepting =)
take on all possible interpretations in the universe U . Then
{IVeF (V)I*3 is not r.e., despite €13 and (EVF(V)I} both

being r.e.

Corollary 17. UWhen €13 is r.e., EKVF(V)IIX is not recursively
tidy.

(After Theorem 24 we will be able to strengthen this by dropping
"recursively. ")

. The proof of Theorem 16 appears to take advantage of the
fact that F is uninterpreted, by -allowing us to say "if F were
interpreted as a single-stepper for a universal machine,

then... ." The following lends credence to that view,

Theorem 18. If s ¢ P then TEX<X+13%} is recursively very tidy.
Invariance Theories. A sense in which X s tractable

can be found in the invariance theory of a , written () ,
which is {a]f\ltf , the pca‘'s (P,P) that express invariance,

Theorem 19. (¢} = {I) = Itf .

Theorem 20. (aub) (ink) .

Theorem 21. (a-b) > (a)-(b) = (aAdnib) .

This inequality > cannot be strengthened to = even if
we make a and b tidy or make a=b , as witnessed by

17

= b = EIXF(X)D where F is uninterpreted. For let 0 =
P(X)AVYy [P{y)=-P(F(y))] . Then Qa-a}Q but not Qda)Q .
Compare this with the way tidiness came to the rescue in Theorem
7. An amusing consequence of Theorem 21 is:

Cbro"arx 22. For a given program a, the structure

(€€a™ |n20},) is a homomorph of the natural number division
lattice (N, |} , with (a) as the ieast element and (I} as
the greatest. Further, when a = (Xc-f X})3 with F unmterpreted,
the homomorphism becomes an momrphasm.

Considering that invariance theories fare less well with
- than do full theories (as per Theorem 7), we should not be too
surprised to find in view of Theorem 16 that invariance theories
run into difficulties with * as well. This however is not the
case.

Theorem 23. (%) = (a)
He can now add to our axiom system:

A7: PfalP F P(a¥P ,

We note in passing that an apparent limitation of the
method of proving flowchart programs correct by labelling
between-instruction points in the flowchart with assertions is
that the only assertions one can make about loops are invariance
assertions (in contrast, say, to being able to write Pfa*3Q in
Hoare's notation). (le are again thinking of flowcharts as state
transition diagrams, i.e. as directed graphs with edges labelled
with instructions.) Theorem 23 strikes an optimistic note of
sorts by seeming to claim completeness given this limitation on
what one can claim about loops. This completeness is
unfortunately a mirage, since the limitation is a mirage; one can
in fact make other than invariance assertions about loops by the
device of having c¢-transitions (edges labelled with the identity
program 1) leading to and from the loop. This however does not
change the fact that Floyd's induction rule for flowchart
programs [15] cannot be stronger than our A7.

Cook [7] has recently found a situation where Corollary
15 can be extended to regular programs. The following theorem
distills a key idea in Cook's proof.

Theorem 24. (Star Interpolation Theorem). Let a* be tidy,
with PEa*JR . Then there exists Q satisfying P>0oR and
Q€a3Q . (An equivalent statement of the theorem is that if a*
is tidy, €a*} = €1}-(a)-£13 ,)

(We like the name "interpolation theorem" for this
theorem because of its vague resemblance to the celebrated Craig

18

Interpolation Lemma (81, which states more or less that if PoR
is valid then there exists Q such that P>OoR is valid and Q
contains only predicate symbols common to both P ~and R .)

The significance of this theorem is that to prove . PTa*JR
it suffices to prove Qfa)d for the O whose existence is
‘guaranteed by the interpolation theorem, then infer ({e*30
(e.g. by our A7), and then use P>OoR and Hoare's Rules of
Consequence (or our Az)., Cook has shown that when {13 is
sufficiently "expressive", as is the case when 0,1,+,x ¢ 3 and
have their standard interpretations, then all regular programs
are tidy, allowing the Interpolation Theorem to be applied.

(Cook actually showed this for what one might call "context-free"
programs, namely the class of programs with recursion, which
translates in our case into the closure of the regular programs
under the operation of tsking fixed points of those first order
functions on programs definable by first-order lambda

abstraction.)

In the following we need the notion of snumeration
reducibility [30), written AseB , which roughly speaking means
that given an enumeration of B , A can be effectively
enumerated. Thus if ASeB and B isr.e. then A isr.e. .

Corollary 25, When all regular programs are tidy, {a}se(l}.

Corollary 26. Under the conditions of Theorem 16, if €1} is r.e.
then LVeF (V)}I* is not tidy.

We remark in passing that programs such as operating
systems that are intended to run forever can be handled quite
elegantly using * . At first this seems impossible since a
program that never terminates is semantically equivsient to the
empty program, for which all pca's hold. Indeed, when we
transiate the program

while true do a
into

{(Ctrued-a) *-Lfaisel :
we immediately observe Hfalse] = ¢ and x-¥ = ¢ . However, if
we simply remove the offending "-Lfalsel" , we are left with a
program that simplifies to a* . Then P{a*3Q teils us that if
at some time during the running of the program (e.g. at start-up
time) P held, then after every execution of a , no matter how
long this continues, Q will hold. Thus although we were unable
to use the theory of the original program, it being ¢ , the
theory of a closely related program furnished us with precisely
the information we required. This is a good example of how
Floyd-Hoare logic can be more useful than might at first appear.

19

3. Extensions.

The theory of sections 1 and 2 is based on quite
simplistic notions of program (binary relation on states) and
theory (binary relation on formulae). Dealing with other program
constructs than union, composition and reflexive transitive
closure may not always be possible in this framework. UWe explore
this in section 3.1 as the definability problem. For example, :
the notions of concurrent process, block structure, and
call-by-name, seem not to be definable for binsry-relation
. programs. UWe broaden the usual notion of “mathematical
semantics” as "1/0 semantics” to embrace a variety of notions of
"abstract program.” In section 3.2 we look at one approach to
the problem of extending the descriptive adequacy of Floyd-Hoare
logics, which is handicapped by its ability to be only an upper
bound (with respect to inclusion) on programs.

3.1 A Program Hierarchy

In this section we cease to identify programs with binary
relations on states, for we will be considering a hierarchy of 7
kinds of programs. . In order of decrsasing information, this
hierarchy is

{i) Grammars (Permits finite programs)
{ii) Languages (Permits sophisticated control)
Liii) X-ary relations (Permits paralielism)
{iv) Multiweighted binary relations
(Preserves complexity information)
(v) Weighted binary relations (Ditto)
{vi) Binary relations (Preserves 1/0 information)
(vii) States (Preserves termination information)

" This hierarchy is not intended as some hard-and-fast
structure, but rather as some interesting points in the partial
ordering (by information content) of varieties of programs. The
following is also not meant to be so much prescriptive as
descriptive, and we will often use "might be" in place of "is."”

Let us begin with grammars. To motivate this, we can
start with the following program for computing- factorial (X).

A:=1; while X>0 do begin A:=XxA; X:=X-1 end.

This program serves to control a processor that emits a string of
instructions. As such it serves the same function as a grammar.
While this program may not iook much like a grammar, if we
rewrite it as a regular expression with alphabet Z (the set of
tests and assighments of section 2), we might have

Acl: (X>0; AeXxA; XeX-1)%; X<O

as the regular expression generating all possible execution

20

sequences, where we have written ; for concatenation. Another
way to generate this set is with a finite-state transition

diagram, which would be a flowchart program of sorts, though with
the usual roles of edges and vertices interchanged. See R.

Karp's Ph.D. thesis [17] for an early example of this
state-transition style of flowchart. Context-free grammars can

of course be used for parameter-less recursion [10,11].

From grammars we move to the languages they generate.
The usual operations of union, concatenation and Kleene closure
apply here. Otherwise there is lijtle to say about them at this
point. '

To get from languages to *-ary relations we need Elgot's
[14] notion of fusion product. Let R,S be two binary
relations. Take their fusion product to be {(a,b,c)|aRbSc} .
The result is a 3-ary relation. Fusion product generalizes to
relations of arbitrary arity, . We define a *-ary relation to be a
set of k-tuples (for various k21) over some domain, call it U
since our application is to the domain of states. Let R and S
be two *-ary relations. Then their fusion product RS s
{{a,b,...,c,d,e,...,f,g)l{a,b,...,c,d}eR A (d,e,...,f,g)cS).
The union of *-ary relations is defined in the obvious way.
This system is a semi-ring (ring with no additive inverses) [2,4]
with addition operator U and multiplication operator - . The
reflexive transitive closure of R is defined, as for any
semi-ring, as the {(necessarily unique) least fixpoint of
Ax. RuluxU{xex) . (Here x is least when xUfzf for any
fixpoint f .} HWe call the elements of a *-ary relation a path,
each k-tuple being a path of length k-1 . This generalizes the
notion of transition used earlier in that the intermediate states
-are recorded as well as -the initial and final states.

The map from languages to *-ary relations is defined with
the help of the function & 1 , defined in section 1 for tests
and assignments (perhaps varied for tests so that it maps P to
EP). Extend @ 1 to strings by letting it map concatenation to
fusion product; thus if acZ* and |a| = n , Lal will be an
{n+1) -ary relation, It |a] =0 , take Lal to be U , the
set of all states, a unary relation. Extend L 3 to sets of
strings completely additively, so that for any set of strings L ,
finite or infinite, EULT = ULILB . This completes the definition
of £ 3 . A useful theorem is that [3 takes Kleene closure to
transitive closure, which follows from the complete additivity of
1.

We now throw away the names of the intermediates states
in the paths and consider just the path lengths. Thus the
{n+1) -tuple {a,...,b) becomes the triple {a,n,b}) . We call a
set of such triples multiweighted binary relations; each
transition (a,b) has a set of weights; each such weight w

21

corresponds to an element (a,w,b) in the multiweighted relation.
The intuition is that the weights represent the costs of the
possible transitions from a to b. In the variation where [P

is taken to be EP , only assignments enter into this accounting.

In the cost function, only one weight is associated with
each transition. Thus the cost function corresponding to the

multiweighted binary relation R is a function from U~ to

NU{w} which maps (a,b) to the least n such that (a,n,b) is
in R, or to » if there is no such n. The intuition is that

this function gives the fastest way of getling from a to b.

By composing the cost function with the function that
maps » to 0 and everything else to 1, we get a function from

U'2 to {0,1} that can be considered to be a binary
relation in the usual way. We have reached the binary relations
that we used in sections 1 and 2.

Finally, by projecting a binary relation onto its first
coordinate, we get the domain of that relation, namely those
states that lead to a final state. This supplies enough
information to discuss termination without getting specific as to
what state the program terminates in.

There is an interesting trade-off here between
definability and describability. As one moves down the
hierarchy', programs become more describable, but operations on
programs become less definable. The reason Floyd-Hoare theories
describe type (vi) programs easily is because these are so low in
the hierarchy.” A theory of termination applied to type (vii)
programs is even easier; the set of initial states that lead to a
final state can be described with formulae in f.f, with

truth defined via unary E as usual. On the other hand, there
are almost no proposals in the literature for languages suitable
for describing programs of types (i}-{v}, other than in the
trivial sense in which they describe the information in the
program preserved in the transition to level {vi). An exception
is Kroeger's (211 notion of "thickness," capturing running
time; this appears explicitly in his modal language, but no
formal semantics analogous to (2) of our section 1.1 or (3) in
1.2 is given in {211, and it is not clear to us how to construct
such a semantics based on our level (v}, This level is of
particular interest because it incorporates the minimum
information needed to describe the running time complexity of a
program.

In considering definability we will start with
determinism and totality, then turn to other operations. The
notions of determinism and totality depend on which kind of
program one is discussing. For example, if we are discussing
level (vi) programs, then a deterministic program would be a

22

function. UWe call this 6-determinism to correspond to Tevel

(vi), or more mnemonically and independently of our particular
hierarchy, 10-determinism (for input/output). At level (vii).
determinism is not definable. A reasonable definition of a -
G-deterministic (level (i}, G for Grammar) program writlen as a
flowchart (directed graph) might be that it satisfies:

(a) all final nodes are leaves (i.e. have out-degree 0), and

{b) if there exist distinct edges (w,u), (w,v) then they are
labetled with tests not simultaneously satisfiable.

Alternatively one could frame the same condition in terms
of domains of the instructions labelling edges:
(a) it u is final, all edges (u,v) have emply domains;
(b) distinct edges (w,u), (w,v) have disjoint domains.

To define 2-determinism (or L-determinism), it helps to
have the notion of the prefix tree of a language. For LcZ* ,
let #L. be {w(Z*|3acT(wacl)}, the immediate prefixes of L, and
let #*_ be the least L' satistying
LuL'uel' = L' ,
the prefixes of L . Then the prefix tree of L is the directed
graph T(L) = (eX., {(ww,w) jwer™}) . (Recall
that graphs are presented as (Y,E) where V is the vertex set and
“E the edge set.) Consider the edge (w,wa) (for acZ) to be
labelled a . Call those vertices of T{L) that are in L final,
Clearly all leaves are final, but the converse does not
necessarily obtain.

A program represented as a language has such a prefix
tree, which is the non-deterministic non-total analogue of
decision trees [29). Such a tree can be executed by starling at
the root (guaranteed to exist when the language is non-empty) and
following a path along which no tests evaluate to false, Halting
is permitted only at final nodes. Since we have produced from L
a (possibly infinite) state transition diagram that generates L,
we have an object to which we can apply whatever definition we
used for G-determinism to this graph. Hence we can say that a
program is L-deterministic just when the prefix tree of the
language representation of the program is G-deterministic.

Totality is definable at all levels, Extending our
notion of k-determinism in the obvious way, 7-totality (or
D-totality) simply means that the domain is all of the universe
U. For 3<k<B, k-totality seems best defined as D-totality,
whereas G-totality should be a syntactic notion that for a
flowchart would say that for every non-final vertex w there
should exist either an assignment edge (w,u) , or a set of edges
{(w,ull,... (w,uk)} whose labels are tests such that

Plv.. .ka is satisfiable. Alternatively, we could simply

require that for every non-final vertex w there exists a set of
edges {(w,ul),... (w,uk)} the union of whose domains is U.

23

Both these definitions are clearly stronger than D-totality. For
L-totality we can do as we did for L-determinism, namely apply
the definition of G-totality to the prefix tree of the language
representation of the program.

We now consider which other operations on programs are
definable at a given level, The less information in a program,
the fewer operations that can be defined. The operation of union
is ubiquitous, applying to all types of programs. Composition
applies to all but the last. An interesting programming language
~construct I have not seen proposed before is "fastest(a}"” which
computes a by the fastest possible method, in the sense that if
there is more than one way to execute the program a, as there
may be in a nondeterministic system, then the fastest should be
chosen. This operation is not definable beyond type (iv). An
operation useful in operating systems is that of merge (or
shuffle) , which forms ail possible order- preserving merges of
the strings of its two arguments. This operation does not seem
to be definable beyond type (ii). Recursion is definable at
level (vi} [101. In a program with recursion and block
structure, if each new activation of a variable is regarded as in
fact being a new variable (calling for a more sophisticated
grammar than a context-free one if the definition is to be
performed at level (i), e.g. indexed grammars [11), then the
concept of block structure is not definable beyond type lii}.
Call-by-value can be captured at level (ii) by combining block
structure with assignment, but call-by-reference seems to call
for either a very complex language (i.e. at level (i) a very
powerful grammar) or for a different kind of assignment from the
one we have been using, one that can interpret references. Once
call-by-reference is provided for, call-by-name can be handled in
imitation of the classic method of "thunks,"” but it too seems
not definable beyond level (ii). (It should be pointed out that
"is definable" means roughly "makes sense,” and does not at
present have a better defined meaning.)

When the restriction of the homomorphism from type i to
type j programs to a class C of type i programs is an
isomorphism, we call C an isj-preserving class. A program in
such a class contains no information that cannot be reconstructed
from its type | counterpart, at least for the purpose of
distinguishing it from other programs in C . Knuth [19]
(problem 1.2.1-13) describes a transformation on programs that
precedes every basic instruction by "TeT+1" where T is a new
variable. This transformation yields a program (i) whose type 5
version is in a 5-b-preserving class, and (ii} whose type B
version is identical to the type B version of the unmodified
program to within the effect on 7 . The importance of this
transformation is that in the transformed program the timing
information is not lost in the transition from type 5 to type 6 .
Hence a pca, which ostensibly only describes type B programs, can

24

in effect describe type S5 programs. Since pca's only supply
upper bounds on programs, this method requires some independent
guarantee of termination. Luckham and Suzuki [22]} develop this
idea further; it appears that this guarantee has to come in the
interpretation of the pca. They treat this as an application of

the "law of the excluded middle." :

3.2 Modal Logic

In this section we will ook briefly at an alternative to
Floyd-Hoare logic for describing programs, namely modal logic, a
significant advantage of which is that it allows one to talk:
about correctness and termination in the same first-order
language. (As might be guessed from section 1, we now need to
return to our convention that programs are binary relations.)

Part of this work was done jointly with R. Moore in 1974 [27]. A
similar proposal has been briefly sketched by Burstall (5], who
suggests that the classical modal logic S5 may be used to discuss
correctness and termination simuitaneously. Considering that S5
logics are those whose modalities have equivalence relations for
their interpretations, we may infer that either Burstall was on

the right track but had not developed the idea to the point where
S5 could be seen to be inappropriate, or had a considerably
different idea from us of how modal logic was to be applied to

the problem. Schwarz [33] has developed Burstall's work further,
with a definite commitmerit to S5. Kroeger [21] has also proposed
a modal approach to the logic of programs, in considerably more
detail than Burstall, and with a concern for k-semantics equal to
ours. A major difference between our approach and Kroeger's is
that where we regard programs as (interpretations of) modalities
(unary logical connectives), Kroeger regards them as

propositional variables, and has only one {program-independent)
modality. Both systems represent interesting applications of

modal logic, though the connection of ours with conventional
first-order predicate calculus is more readily established

through our program-oriented semantics of 3Ix.

Recall from section 1.1 the interpretations of [a]P and
<a>P . Under these interpretations the following formulae are
visibly valid:

[Xe11X=1
<Xel>true
- [X>01X>0
Y>0 > {X>01Y>0
X=0 > <X=0>true
<c¥*>true
X20 o5 <(XeX-1)%*>X=0

These particular valid formulae generalize in some

25
obvious ways, which we can call axioms,
Logical Axioms

All tautologies of Propositional Calculus.
{al (P2Q) > ({a)P > [2)Q) .

Logical Inference Rules
P,PakQ.
P+ [alP (subsumes P I ¥xP).

- Some theorems that follow from these axioms are:

[a] (PAQ) = {alPafalQ .
<a> (Pvl) = <a>Pv<a>Ql .
<a>(PA) > (<a>Pn<a>Q) .
{alP o (<a>Q > <a>(PAQ)) .
(al (P5O) > (<a>P><a>Q) .

Axioms for Basic Programs

¥xP > {T/x]P (any T ¢ ‘.'t) Universal Axiom.

P > ¥YxP unless xcP VY Frame Axiom.
where x¢A(B) = A#£3x A (A=x v xeB) (free occurrences).

[Pl = P>Q Test Axiom.

[F{S)TIP = [IF Z=S THEN T ELSE F(Z)IF(Z)]P Assignment Axiom.
(Here IF-THEN-ELSE is removed as in Theorem 4.)

The two quantification axioms assert that "x«RANOOM"
can change the value of x to anything, and that nothing but x
gets changed. Note the departure from conventional logic, where
both these axioms would be regarded as logical axioms. Because
particular programs are non-logical for us in the same sense that
the particular function denoted by + is considered non-logical
in conventional logic, and because 3Ix denotes a particular
program {(x«RANDOM), we prefer to think of axioms involving 3x as
non-logical. '

The -logical axiom [al (P>Q)} > ({alP>[alQ) and the
non-logical Y Frame Axiom are combined in Mendelsohn's [25]
system K as VYx{PoQ) o (Po¥xQ) wunless x¢P . Despite the
elegance of such a compression, we feel there is some intrinsic
merit in our separation.

Sample theorems that follow from these axioms are:

Tests . :

PP Theorem of Intent.
a>(Pla Theorem of Invariance.
P><P>true Theorem of Performance.

Assignments
$=Snt=T 5> [F(S}eTIF(s)=t tFéds, Theorem of Intent.

%

(P A y=F(§) N §'=§') >
(F(S)eTI LIF Zas THEN y ELSE F{Z)/F(Z)IP
Theorem of Invariance.
<F (S) «T>true Theorem of Performance.

The reader familiar with predicate calculus will
recognize in the logical axioms and rules, together with the
two quantification axioms, a sound complete axiom system for the
pure predicate calculus, which we can regard as a language for
talking about “assignment" programs of the form x«RANDOM . This
prompts the question, is the axiom system we have given sound and
complete when £ is extended to include test and assignment
modalities? This is easily answered in the affirmative, simply
because the axioms for assignments and tests involve a direct
equivalence with a formula not involving the command, unlike the
- axioms for quantifiers. The absence of such an equivalence for
3x considerably complicates the completeness proof; fortunately
for us, this difficult problem was solved long ago. MUith such an
equivalence, we know that the left side of the equivalence is
provable if and only if the right side is. Since the right side
does not involve assignment or test modalities, it is provable if
and only if il is valid, since our axiomatization of the pure
predicate calculus is sound and complete. Finally, the right
side is valid if and only if the left side is, by Theorems 3 and
4, Hence for any test or assignment a , [alP is provable if
and only if it is valid.

We now expand the system to include finite union and
composition. The following are obvious corollaries of Theorems &
and 7.

(alP A {bIP Union Axiom,
{al IblP Composition Axiom.

{aUblP
[a~b]P

All of the above axioms have already been established as
theorems in Section 2. If a is some loop-free program, the
axioms "specify" a series of transformations of [alP that
terminates with a formula of f.' . This says much the

same as Corollary 15, It also allows us to prove, by induction
on the height of programs, that these axioms keep the system
sound and complete even when & is augmented with modalities
involving U and - .

To deal with * | we have:

<a™>P 5 <a*>P Axioms of Intent.
P> lalP + P>[aX]IP Rule of Invariance.
IN+1/NIP > <a>P + P o <a¥*>[0/N]P Rule of Performance.

In the Axioms of Intent for * , n is a meta-variable
giving one axiom per natural number. In the Rule of Performance,

27

N is in 30 , and we require 0 in 30 and +1 (successor) in
31 . Besides = in the assignment axiom for non-zero arities,

this is the only rule {or axiom) requiring non-logical symbols, -
and then only when Ne¢P .

A word of caution is in order here about replacing - by
> in the Rule of Invariance for * . The meaning of (P>[alP) >
(P>{a*]1P) is that for any state 9 , if P>{alP holds in 9 then
so does P>[a*]P . A counter-example to this would be when P is
X<10 , a is EXeX+13 and J satisfies X=0 . "Running" a once
in this state will certainly preserve P , but running it ten or
more times will not. A similar warning holds for the Rule of
Performance for * , even if we rephrase it as the rule
YnlP(n+l)o<a>P(n)] F P(T) > <a®>P(0) . In this case one
counter-example would be to make 9§ satisfy X=2AY=l , and to
take P(n}) to be X=n and a to be XeX-Ye¥Ye0 . Then in 9 the
antecedent holds, but after running a once, X can no longer
decrease, and will thereafter remain stuck at 1 .

To see these rules in action, we may show with- their help
that the following program halts when X20 initially.

Y0 o (X£0 -
(X£0 o XeX-1 o YeY4l)% o X=0 -
Ye¥-1 o
(YAQ o YeY-1 o XeX+1)%X o Y=0)% o
- X=0

Manna and Pnueli [24] have proved that this program
haited, claiming that such a proof by Floyd's method of
demonstrating termination [15), namely showing that traversing
any loop decreased some well-founded quantity, would be very
complicated. They proposed another approach. Our modal logic
approach supplies yet another first-order approach with the added
advantage that it has an elegant semantical basis.

If we permit program modalities in tests, we are in
effect allowing behavior conditional on “what might have been,"
that is, on properties of hypothetical worlds accessed by
programs that leave behind no side effects after the test. This
gives us a quite simple foundation for the semantics of languages
like PLANNER and CONNIVER, where such exploratory tests are
possible.

4. Appendix
All theorems are re-stated here and proved if necessary.

Tidiness Duality Lemma (TOL): Program a is forward tidy if
and only if a~ is backward tidy.

- 28

YP3Q(Q=[alP)

YPIQ (Qz~<a>-P)

YPI (Qz<a>P) ~P P
YP3Q(Qz<a™">P)

a~ backward tidy. |

Proof. a forward tidy

WwomomoMom

Tidiness Characterization Lemma (TCL):
{a} Let a be forward tidy. Then £a} = {a=>)-{I} .
(b) Let b be backward tidy. Then &bl = €13-(<=b} .

Proot.

b) PELIR = P o> [bIR
> YQ@={blR > P>A)
5> 3(PCIXQ A OQ{<=b)R) (BI),Th 2
s P{1}-1{<=b))R

3Q(PLI3Q A G(<=b)R) > 30(P>Q A Q=[b)R) @vy),Th 2
> P> [bIR

Hence PBIR = P{L1)-(<=b))R

{a) a2}

= ~fa}” (D)
=z ={{])e(<=0™)" (b), (TOL)
2z ~{{<=a")"={13")
= ~f{<=a")" o 13
= (a=>)+£k1) {1} [|
Theorem 1. €93 = £2.
Proof., ¥E(P,Q) is true vacuously. [|

Theorem 2. €I} = {(P,Q) |UR(PxQ)) .

n

Proof. €3 = (P, (9,8 el > (kP > $EQA)Y (by (F))
= {{P,Q) |9¢U > (%P > %)} (def. of I)
= {{P,Q) |3cU > %(P2Q)} by (1))
= {(P,0Q) |UR(P>Q)} |

Theorem 3. Let R be a test.
(a) <ERI™>P = RAP . (Forward tidiness)
(b) [ERIIP = RoP . (Backward tidiness)

Proof
(a) It suffices to prove that 3Jk<IRI™>P = 9 (RAP) .
GARI>P = v $kP
§IR1Y

9ER A GEP
9k (RAP)

(b) (LRIIP ~<[RI>-P
~{Ra-P) (using (a), and IR3 = ERI")

RoP |

29

IF lemma. Evaluating 9l when W is a formula containing
IF-terms yields the same truth value whether IF is first
removed by the above transformations or left in place and -
evaluated using ‘

S=(IF P THEN S ELSE T) = if 3P then kS else JET.
Proof, Straightforward. (Use induction on depth of'!F-ferms.-)]

Theorem 4. Let F(S)eT be an assignment.
(a) . <EF(3)eTI>P =z Jys(P' A 3=5' A Fls)=T']

where E' = ((IF Z=s THEN y ELSE F(Z))}/F(Q)IE
(b) {F(Q)eTHIP = P"

where E" = [(IF Z=§ THEN T ELSE F(Z))/F{Z}IE .

Proof.
{a) We first prove the aging lemma.

Aging L emma. ‘Suppose As = A! for all symbols A4 , and
Faly) = Fstx)for all X.“ig » and Fs(ii) =xg - Then -
SEAB) = JFAB)'

Proof. By induction on the height of A(B). Assume 98 = JFB'.

Case (i). A=F.
Subcase (a), 3FB # $4
gF(B) = F3(35=B)
= F3(3l=B') (3#§££3, ind. hyp.)
= JFF(B') :
= JF (IF B'£s THEN F(8') ELSE x)
(§8' = #Q‘ga , IF lemma)

= JEF(B)' (def. of ')

Subcase (b}, 9B = s ¢
gF(B) = Fsiskg)
Fs (§_‘) {given)
Xg {given)
JFUIF B'#4s THEN F(B') ELSE x)
(§:8' -&Qaga, IF lemma)
= §EF(B)' (def. of ').

Case (ii), A=3x.
Ct. case lii) of 4(b).

Case (iii), Other A.
IFAB) = Ag(dEB)
Ag(3¢B") (Ag=Ag, ind. hyp.)
JEAB')
= JEA(B)" (def. of ') i

.30

Aging corollary 1. It JEF(S)«TI§, FF(G) = xg and &3 = 54
then JEA(B) = JFAB)' .

Aging corollary 2. Given J , if 3 is

AB.if BAF then 83
' eise Ay.if z‘ga then F:(y_)
else Xg

then JFA(B) = SEA(B)' .

Transition existence lemma. Given § , if J is as in the
previous corollary, 4 = S, and F3(§'3) = §ET' , then
JIF(S)eTR§ . (That is, constructing 9 from § in this way
guarantees a transition from 9 to § via EF(S)«T} .)

Proof. By aging corollary 2 we have g = %S , and
F3(3#§_) = 9T , '
Then JIF(S)eTR = AA.if A4F then Ag
eise Ax.if x£93 then Fgqlx)
else 3T

AA.if A£F then Aﬂ
else Ax.if x£9FS then F,(;Q
else F3(91=§)
(def. of 3 , g = &S , F3($I=§_) = 9ET)
AA.if A#F then A3 else l,)g_.Fz().()
AA.if AZF then A3 else F’ {y-reduction)
)\A.AS
= § (y-reduction) . |

n

He can now complete the proof of Theorem &4(a). It
suffices to show that

JE<EF(S}eTD™>P = JEIxsIP' A s=5' A Fls) =T'].
Now L.H.S. = 39[9FP A SIF(S)«TI§]

£ 39[3EP A JF(S)eTIF A Fa(SkS) = 3kT]
(third conjunct implied by second by def. of IF(S)«T1)

= 3)(3;3 {($P' A 33=3h§ n F3(§_3) = 3'|=T]
(>: take x4=9kF(S), sa=3t-‘§. c: take 9 as in a.c.2)
JEIxsP' A 5=5' AFl(g) =T')
R.H.S.

The preceding lemmas make it straightforward to verify each
step.

{(b) It suffices to show that for all 3 ,
JEP = 9kP'

31

else As.if § £ kS then Agls)
else ST .
~and. E' = [IF Z=S THEN T ELSE F@)V/FZNE .

We proceed by induction on the height of P = AB) .

We take as our induction hypothesis: _
Vy(SO-{F}(S"=y8 A JEF(Q)eTRE" > $'FP = §"EP’')
where 8=y1 means that 9 and § differ only in their

assignment to y .

Tase (i). A=F.

JEF (B) F3(3|=§)
= F3(3=§’)
= if SEB' = %G then T else Fs (%8')
= SF(IF B' = S THEN T ELSE F8'))

= SF(B) .

Case (i), A=3x,

JeP JE3yly/x1P (w-reduction)
33"(3":)1 A $"Ely/x1P)
g (3"=y3 A §"E{ly/xIP) ')
SEIy ({ly/xIP) ")
3P .

L B 1]

Case liii}. Other A.
FFAB) = A (3B)
= Agl%B')
SEAB') -
A . |

Theorem 5. Let FeG be a second-order assignment. Then
[IFGRIP = I(G/FIP ‘

(IG/F] is a convenient abbreviation for [G(Z)/F{2)].)

Hence second-order assignment is backward tidy.

Proof. Essentially the same as for Theorem 4 (b).
Theorem 6. (aubl = Caln€b) ,

Proof. PfaublQ

Y94 (d(aublg > (9,§1E(P,Q))

V94 ((dag v 9b%) > (4, PEP,D))

V4§ ((3ag > (9,EP,Q)) A (dbF > (4, $EP,D)))
P€a3Q A PCLIQ

P{€a3nfbd)Q . B |

wonomowmow

Theorem 7A. (a-b) > fal-fb3} .

32

Proof. PLa)-{blR

JAvIIK ((dag > (4,3)EP,Q)) A (K > (§,K)E(Q,R)))
3QVIIK ((da A §6K) > ({4, PEP,D) A (§,KIE@,R)))
3aY3IgK (dagbK > (4,K)E{P,R)) '

V44K (d{asb)K > {4,K)E(P,R))

PCa-bIR . i

Wwom Uy om

Theorem 7. Ta-b} = €a)-{b} when a is forward tidy or b
is backward tidy.

Proof. It suffices to show €a-b} ¢ {al-{b} .
(a) PLa-b3R
YK (d(a-b)K > (4,K)E(P,R))

g VYIK(II(dagbK A FP) > KER)

= VIK{(IbK > (39{daf A &FP) > KER))

= VIK(IHK > (Fk<a™>P > KkR))

2 <a >PIblR

z Pfad<a">PI(bIR since Pla)<a™>P

> P{fa}-tb)IR |

Theorem 8.
{a) If a,b are forward tidy, so are aub and acb ;
{(b) If a,b are backward tidy, so are aUb and a-b .

Proof.
(a) <(aub) ™ >P z <a Ub™>P
g <a >Pv<b™>P
s MR where (Oz=<a >P and R=<b™>P.
<(asb)™>P = <b”-a™>P
= <b™><a™>P
s <b™>Q where QOz<a >P
g R where Rz<b™>0.
(b) (aublP = [alPAlblP
s QAR where Q=z[alP and R=(blP.
[asb]P = [a] [b]P
= [al0 where Oz[blP
=R where Rz [alQ. | |

Corollary 3. All loop-free assignment-and-test programs are very
tidy (possibly excepting forward tidiness for second order
assignment) .

Proof. Use induction on the height of a program, together with
Theorems 1-8. : ' []

In the following few theorems, a useful result is:

Lemma 0. €al) %m 7).

. .33

Proot. (a3 = -fa’)" 0)
Sm La™} by the obvious calculation. | |

We note also that TDL can be strengthened to include the
word "recursively" before every occurrence of “tidy." If f s
the recursive tidiness function of a then the dual tidiness
function g of a~ is defined by g{P) = ~f{-P) .

Theorem 10. £aubl S {aXxtbl {Cartesian product).
Proof. faub) = {aingb} Th 6
. S {alx(bl]

Theorem 11. _
(a) If a is forward recursively tidy, €a-b} Sm {3} .

{b) If b is backward recursively tidy, Ta-b} Sm €a} .

Proof.

(a) {a-b) = (a)-fb) Th 7
= {a=>)(13(b} TCL
= {a=>)s{leb) Th 7

= (a=>) °(b)
Hence to test Pfa-bJR it suffices to calculate the Q
satisfying Pla=>)Q and test Q{bIR,

{b) fa-b} S fb™ 273 Lemma D
s) Th 11{a)
s €b} Lemma D. | |

fheorem 12. 1f a is recursively tidy, €a} Sm {1y .

Proof
(a) If a is forward recursively tidy,
{a} = fa-l}
s {13 Th 11(a).
m
(b) When a is backward recursively tidy,
(a3 < (a7} Lemma D
s, <13 TOL, 12(a). |

Theorem 13. Instructions are recursively very tidy.

Proof. The strongest consequents and weakest antecedents given
by Theorems 3 and 4 are easily calculated. ' B

Theorem 14. If a,b are forward (backward) recursively tidy, so
are aub and a<b .,

Proof. In all four cases of Theorem 8, the desired weakest
antecedents and strongest consequents are easily calculated. |

. 34

Corollary 15. If a is a loop-fres assignment-and-test program,
ad< {1} . ' ~
m

(Note that €137 = €13xCI3x...xC1) S (1} , for any n, since the

n questions about membership in €I} can be rephrased as 4 single
conjunction,) :

Proof. This follows by induction on the height of a program,
using Theorems 10-14. ' |

Theorem 16. Let (3] 2 4, 131 23, |35] 21, with
V¢ 30, F ¢ 31 . Let the symbols of 3 and P (excepting =)

take on all possible interpretations in the universe U . Then
CLVF(V)I*3 is not r.e., despite €1} and (EVeF (V)33 both
being r.e.

Proof, The idea is to make V encode the contents of the two
registers and the "program-counter” of a universal register

machine p (presented as a directed graph, one edge-traversal of
p corresponding to one application of F to V) . The basic
instructions labelling the edges of the graph will be XeX+1,

XeX-1, X=0, X£0, YeV4l, YeY-1, Y=0, Y£0. (See Minsky [26]
for a description of such a machine.) To define the program
counter, we number the vertices of p with distinct natural
numbers; the choice of numbers is unimportant. Let p's start
vertex be numbered s and final vertex f . Ue assume without
loss of generality that leaving each vertex v of p is either

an assignment edge or a pair of edges labelled with complementary
assignments (X=0, X£0 or Y=0, Y£0) . (If necessary, add
edges labelled X=0 and X£0 from f to f.) Now p may run for
ever, and halting will be defined by reaching state f , where it
then is forced to stay. It is important that where control goes
next be completely specified for every vertex, otherwise F may
take YV to a value that damages our theorem. Another property we
shall require of p is that it never attempt to decrement a zero
register, which is easily arranged. HUe shall also require that
when p has made up its mind to enter the final state, it sets

X and Y to O first.

The 3-ary function symbol C is used to encode X,Y and
the program counter. The following is the only property C
needs to work reliably as an encoder.

Yxy [Clx) = Cly) > x=y] .

Call this sentence PC . It says that encoding is 1-1 , i.e.
does not lose information.

We also want to say that 0, U and D are supposed to
behave similarly to standard 0, successor and predecessor. We
let PN denote

35
lU{x)£0 A DWUIX)) = x] .

We now force F to execute one step of p . HUe let
PF denote the and of a set of sentences, one per edge of p ,
whose elements are defined by the following table, where i,j
denote the numbers labelling the start and end of the
corresponding edge.

Instruction on edge (i,j) . Corresponding sentence

XeX+1 Yy F(Cx Ly, U'(0))) = Cla,y, U (0)))
XeX-1 Yxy (FICWd,y, U'0)) = Ctx ,y,u'(0))]
X=0 YIFICEG Ly, V'O =CO ,y,Ul0)]
X£0 Yxy FICWU(),y, U0 = CWH,y, U0 (01))

and similarly for Y .

Claim_1. Given any interpretation 3 satisfying PN , in which
all symbols save F are assigned interpretations, let N denote

{9EU"(0) |n20) and let M denote {3=U"(0)| m labels a vertex
of p} . Thus N is that subset of D reachable via
U‘9 from 03 , and M is that subset of D corresponding to the

vertices of the flowchart. Then the above table consistently and
completely determines Fs(Cs(x,y,z)) for all x,y ¢ N and

z ¢ N, except when ("z",i) is labelled with XeX-1 , in which
case it is undetermined when x = 03 , and similarly for

YeY¥-1 . ("2" is the necessarily unique natural number satisfying
UgZ (Og)=z .)

Proof. Completeness follows from the fact that every vertex
labelled "i" has either an assignment leaving it, or a pair of
tests. In the former case Fs(Cs(x,y,i)) is completely
specified except for the decrement instructions. In the latter
case, FS(CSI(O,y,iH is specified, as is Fs(Cs(U(x),y,i)) ,
accounting for all elements of N . Consistency follows from
PC and PN which together ensure that each of the

above equations specifies F8 at a different element of the

domain.]

Claim 2. It x,y¢N and z¢M then Fslcs(x,y,z)) = Cs(a,b,c)
where, if p is started with "control" at vertex "z" and X,Y

(LIS LI L |

contain "x","y" respectively, then running p for one step

yields "a" in X and "b" inY , with control at vertex "c" .

Proof. Straightforward. |

.36

Now assume that (EV«F(V)I*} is r.e. Then we can
decide whether p started with i in register X and 0 in
register Y will ever halt, thereby solving the halting problem
for this universal machine, a contradiction [26]. To decide
whether p halts, run p and at the same time enumerate

CLVeF (VITXD looking for (PeaPyaPEaPy , V4C(0,0,u (0)) -

where P, is v=C(U'(0),0,U5(0)) .

The crucial observation is that we will find this pca if and only
if p does not halt, For certainly if we find it we know that
by Lemma 2 the machine cannot get into the state (0,0,f).
Conversely, it the machine cannot get into this state, then by
Lemmas 1 and 2 V£C(0,0,Uf(0)) will remain true no matter
how often F is applied to V . -

This completes the proof of Theorem 16. . |

Corollary 17. UWhen €13} is r.e., EVF(VII* is not recursively
tidy.

Proof. Suppose EVeF(V)E* to be recursively tidy. Then
(IVFIVIIXY = C€EVF(V)I%-1)

s, U3 Th. 11
but this would imply that €EV<F(V)}2%*} is r.e. ,
contradicting Theorem 186. : |

Theorem 18, If < ¢ P then TEVeV4+1I%} is recursively very tidy.

Proof. <IVeV4lI*>P = IninsvV A [In/VIP).
[{IVeV+13XIP = V¥Yn(Vsn > In/VIP). |]

Theorem 13. () = (1) = ltf

Proof. Straightforward. i
Theorem 20. (aub) = (adn(b) .

Proof. Straightforward. |
Theorem 21. (a-b) > (a)-(b) = (adnlb) .

Proof. Straightforward, [|

Corollary 22. For a given program a, the structure

(€™ |n203, c) is a homomorph of the natural number division
lattice (N, |} , with (8} as the least element and (I} as the
greatest. Further, when a = EX«F(X)1 with F uninterpreted, the
homomorphism becomes an isomorphism.

Proof. If min then (™ c (" .
Further, when a = IX«F(X)3 , if m{n then the formula

37

P(X) A ¥x(P(x) > wP(F(X))AwP(FZIX))A...AP(F"'(X)))
{which makes P hold once every m applications of F)
is an invariant of (strictly, is a projection of an invariant of)

a" but not of a" . B
Theorem 23. (a*) = (a)

Proof. This follows immediately from a* = U{a"|n20} , theorem
20 and corollary 22 (the part of the corollary that says that (a)

is the least element of {(a™ |0}),]

Theorem 24 (Star Interpolation Theorem). Let a* be tidy, with
P{a*3R . Then there exists Q satisfying P>OoR and Qfal}a .
(An equivalent statement of the theorem is that if a* is tidy,
€ax3 = €13-(a) {13 .)

Proof. MUWe need only treat the case when a* is forward tidy;

the other case is the exact dual. Choose Q = P{a*=>) . Then
QoR since Q is the strongest consequent of P, and P50 since
I us a* . Moreover (using an improved version of our original

argument suggested by R. Rivest)

PLa*30
50 P{a*-a3Q since a¥-a c a¥
S0 P(fa*3}-{a})Q Theorem 7; a* is forward tidy
s0 P{a*)S{alQ for some S ¢ tf
thus a-s P{a*])S and Q is strongest
whence 0€alQd Staja . B

Corollary 25. UWhen all regular programs are tidy, {a)se{l}.

Proof. UWe proceed by induction on the height of a regular
expression representing a. If a is an instruction, the resuit

follows from Theorems 12 and 13. If a is the union or

composition of two programs then Theorems 10 and 11 together with
the induction hypothesis apply. If a = b* then by Theorem 24 €a}
= {1¥e{b)-LI} . By induction, ali the components of this
composition are r.e. reducible to €1} , hence so is €a} . |

Corollary 26. Under the conditions of Theorem 16, if I} is r.e.
then EVeF (V)I* is not tidy.

Proof. 1If it were tidy, then by Theorem 24 {LV«F (V)13 would be
13- AVF (V)D -L13 , which is r.e. because all of its components
are r.e. But this would then contradict Theorem 186. [|

Acknowledgments

The material in this paper evolved during three semantics
courses taught by the author. Some of the students were of s
especial help: the key ideas in Theorem 4 are due to R. Hale,

38

while the connection between Kripke semantics and programs was
suggested by R, Moore. Several discussions with M. Fischer
proved valuable. J. Schwarz pointed out the absence of an
induction axiom in an earlier formulation of the modal axioms.

A. Meyer proved that CEX«F (X)3*} was not finitely
axiomatizable, prompting G. Plotkin to ask us whether it was r.e.
A. Meyer, R, Rivest and Y. Shestov commented helpfully on early
drafts of this paper.

References

[11 Aho, A.V. Indexed Grammars. JACM 15, &4, 647-671,
1968. :

21 e » J. E. Hopcroft and J.D. Uliman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading,
Mass. 1974, .

{3] Ashcroft, E. and Z. Manna. The translation of 'go to'
programs to 'while’ programs, STAN-CS-71-188, Stanford, CA.
1971.

{4) Berztiss, A.T. Data Structures. (2nd Ed.). Academic
Press, N.Y. 197S.

5] Burstall, R.M. Program Proving as Hand Simulation with a
Little Induction. [IFIP 13974, Stockholm.

(6] Chomsky, N. Aspects of the Theory ot Syntax. MIT
‘Press, Cambridge, Mass. 19865.

{71 . Cook, S.A. Axiomatic and Interpretive Semantics for an
Algol Fragment. TR-79, Toronto, Feb. 1975.

(8] Craig, W. Linear Reasoning, - A New Form of the
Herbrand-Gentzen Theorem. JSL 22, 250-268, 1357,

(9] de Bakker, J.W., and D. Scott. An outline of a theory
of programs. Unpublished manuscript, 1969. :

[10] cemeeene , and W.P. de Roever. A calculus for
recursive program schemes. in Automata, languages and
Programming (ed. Nivat), 167-196. North Holland, 1972.

{117 e , and L.G.L.T. Meertens. On the
Completeness of the Inductive Assertion Method. JCSS 11,
323-357, 1975.

(12] Dijkstra, E. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N.J. 1976.

.33

13 Eilenberg, S. and C. Eigot. Recursiveness. Academic
Press, N.Y. 1970. :

{14) = Eigot, C.C. Structured Programming UWith and Without GO
TO Statements. IEEE Transactions on Software Engineering, SE-2,
1, 41-53, March 1976.

[15] Floyd, R.UW. Assigning Meanings to Programs. in
Mathematical Aspects of Computer Science (ed. J.T. Schwartz),
18-32, 1967.

(161 Hoare, C.A.R. An Axiomatic Basis for Computér
Programming. CACM 12, 576-580, 1969.

[17] Karp, R.M. Some applications of logical syntax to
digital computing. Ph. D. Thesis, Harvard, 1953.

[18] King, J. A Program Verifier. Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, Pa, 1363.

§5:)) Knuth, D. E. The Art of Computer Programming, 1.
Addison-Uesley, Reading, MA. 1968.

[20] Kripke, S. Semantical considerations on Modal Logic.
Acta Philosophica Fennica, 83-94, 1963.

(21 Kroeger, F. Logical Rules of Natural Reasoning about
Programs. In Automata, Languages and Programming 3 (ed.
Michaelson, S. and R. HMilner), 87-98. Edinburgh University
Press, 13976, '

[22]) Luckham, D. and N. Suzuki. Automatic Program
Verification 1V: Proof of Termination within a Weak Logic of
Programs. STAN-CS-75-522, Stanford, October 1975.

{231 Manna, Z. HMathematical Theory of Computation.
McGraw-Hill, 1974,)

{24 ——--- , and A, Pnueli. Axiomatic Approach to Total
Correctness of Programs. Acta Informatica, 3, 243-263, 1974,

[25] Mendelsohn, E. Introduction to Mathematical Logic. Van
Nostrand, N.Y. 1364,

[26] Minsky, M.L. Computation - Finite and Infinite Machines.
Prentice-Hall, N.J. 1967.

(271 Pratt, V.R. Semantics of Programming Languages.
Lectur_e notes for 6.892, Fall 1974, M.I.T.

(28] Quine, W.V.0. UWord and Object. MIT Press, MA. 13960.

lv L) 40

[29] Reingold, E. M. On the Optimality of Some Set
Algorithms. JACH 19, 4, 843-653, April 1972.

(30] Rogers,‘H. Theory of Recursive Functions and Effective
Computability., McGraw-Hill, 1967.

{31) Scott, O. Toward a Mathematical Semantics for Computer
Languages. Symposium on Computers and Automata, Microwave
Research Institute Proceedings, 21, Polytechnical Institute of
Brooklyn, 13971,

{321 Schwarz, J.S. Semantics of Partial Correctness
Formalisms. Ph.D. Dissertation, Syracuse, Dec 1974,

[33] ~eeeee . Event Based Reasoning - A System for Proving
“Correct Termination of Programs. In Automata, Languages and
Programming 3 (ed. Michaelson, S. and R. Milner), 131-146.
Edinburgh University Press, 1976.

(36) Tarski, A. The semantic conception of truth and the
foundations of semantics. Philos, and Phenom. Res, 4, 341-376,
1944,

{351 Wirth, N. The programming language Pascal. Acta
Informatica, 1, 35-63, 1971.

