'MASSACHUSETTS

LABORATORY FOR ~ INSTITUTE OF
COMPUTER SCIENCE \ TECHNOLOGY

(formerly Project MAC)

7z

MIT/LCS/TR-165

HIGH LEVEL EXPRESSION OF SEMANTIC INTEGRITY

SPECIFICATIONS IN A RELATIONAL DATA BASE SYSTEM.

Dennis. J. McLeod

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by .the Office of Naval Research under
contract no. N0001l4-75-C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-165
High Level Expression of Semantic Integrity Specifications
in a Relational Data Base System
Dennis J. McLeod

September 1976

Massachusetts Institute of Technology

Laboratory for Computer Science
(formerly Project MAC)

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

e AR g ey e S b

Semantic Integrity Specification 2

ABSTRACT

The “semantic integrity” of a data base is said to be violated when the data base
ceases to represent a legitimate configuration of mhmn environment it is intended
to model. In the context of the relational data itis le to identify muitiple
levels of semantic integrity information: (1) the description of the domains of the data base,
as abstract sets of atomic data values (domain definition), (2) the specification of the
fundamental structure of the relations of the data base (relation structure specification), (3)
the definition of the abstract operations which are meaningful in terms of the application
environment (structured operations), and (4) the expression of additional semantic
information not contained in the structure of the relations nor in the identities of their
underlying domains (relation constraints). T

A high level, nonprocedural domain definition language facilitates the description of
domains. Such a language allows the specification of the properties of the values
constituting a domain, and the action that is to occur if an attempt is made to update a
column entry such that it does not belong to the underlying domain of that column. The
specification of relation structure and structured operations can also be accomplished by
means of high level integrity (sub)ianguages.

A relation constraint has three components: (1) the assertion (a predicate on the state
of the data base or on transitions between data base states), (2) the validity requirement (the
occasion(s) at which the assertion must hoid), and (3) the violation-action (the action that is
to occur if the assertion does not hold at a time when it should). Relation constraint
specification can be related to an expression framework (classification scheme) which is
- useful for the construction of a relation constraint language and specification methodology.
- Assertions are more than expressions of some relationships among different values in a
data base; an assertion singles out the data that is constrained, and states the properties
that this data must possess. A classification is provided of the various predicate types used
to identify constrained data and to state the properties that they are to possess.

A semantic integrity subsystem (of a gemeralized relational data base management
system) can support the generation and maintenance of integrity specifications, verify that
these specifications are met by the data base, and take appropriate action if violations are

This empty page was substituted for a
blank page in the original document.

Semantic Integrity Specification 3

ACKNOWLEDGEMENTS

The author is most grateful to Professor Michael Hammer of MIT for his
enthusiastic suppport and guidance, and for his many and varied contributions to the
contents of this thesis. Many others have helped greatly, providing ideas, comments, and
criticisms, including: Jack Aiello, Sheldon Borkin, Daniel Carnese, Arvola Chan, Marvin
Essrig, Richard Grossman, Professor Barbara Liskov, Professor William Martin, Professor
David Redell, Arnold Schiemann, and Sunil Sarin (all of MIT); Dr. Donald Chamberlin,
- Dr. Edgar Codd, Dr. Kapali Eswaran, Dr. Frank King, Dr. .James Gray, and Dr.

Bradford Wade (all of IBM San Jose Research); Professor Michael Stonebraker (of the
University of California, Berkeley). Although many of the ideas in this thesis belong to
these persons, all of the mistakes belong to th§ author. Finally, the author would like to
thank Mary Rykowski, for her moral support, for polishing the prose of earlier drafts of
this document, and for being an inspired and unending critic.
| This research was sponsored by the Advanced Research Projects Agency of the
Department of Defense and wu monitored by the office of Naval Research under contract
number N00014-75-C-0661.
This report is a slightly revised version of a thesis submitted to the Department of
Electrical Engineering and Computer Science in June 1978, in partial fulfiliment of the
degree of Master of Science.

This empty page was substituted for a
blank page in the original document.

Semantic Integrity Specification 4

TABLE OF CONTENTS

~ ABSTRACT
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

1. INTRODUCTION

L1 Semantic Integrity

1.2. The Data Model)
13. The Relational Data Model

2. SEMANTIC INTEGRITY

2.1 Background

2:2. An Approach to Semantic Integrity Specification
3. DOMAIN DEFINITION

3.1. Describing Sets of Atomic Data Values
3.2. A Domain Definition Language

321 Language Details and Examples
8.3. Implementation Considerations

3.4. Extensions

4. RELATION STRUCTURE
“41. Additional Column Information

4.2. Comparability

4.21. Domain Conversions

5. STRUCTURED OPERATIONS

B B2 O 9 0 s w N

B IR g5

5. Semantic Integrity Information in Structured Operations 14

This empty page was substituted for a
blank page in the original document.

5.2. The Definition of Structured Operations
6. RELATION CONSTRAINTS
6.1. Whither Assertion Structure?

6.2 Relation Constraint Assertions

6.2.1; éimple Assemom

622, Identification of the Constrained cam o

628, Tuple Assertions

6.2.4. Set Assertions

625, Scope of Assertions

63. Rélation Constraint Validity Requirement
6.4. Relation Constraint Violation-Action

65. ihplementation Considerations

66. Remarks

s SRR

Semantic Integrity Specification 5

2L BN G

N I

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSY'STEM.

7. Components of a Semantic Integrity Subsystem
72. The User’s View of the Integrity Mechanism

7. Some Thoughts on Integrity Subsystem Implementation
73.. The Use of Inversions in Relation Constraint Checking (An Example)

8. REMARKS AND DIRECTIONS
REFERENCES AND BIBLIOGRAPHY

n

N

74

8

Semantic Integrity Specification 6

LIST OF FIGURES

I-L)Rélation EMP

1-2. Example Data B‘ase |

1-3. A Possible Set of Relational Primitive Operatlons S
3-1. Selected Example Data Base Domain Definitions T
3-2. Syntax of the Domain Definition Language

6-1. Some Simple Assertions (for data base in figure I-2)

6-2 Local Tuple Predlam |

6-3. Nonlocal Tu‘ple Predm

6-4 Local Sef Predicates |

6-5. Nonlocal Set Predicates

106
107
108

.
L
e

m

Semantic Integrity Specification 7

L INTRODUCTION

Rather than just a collection of values, a data base should be a model of some
application environment. When a data base ceases to represent a valid configuration of
that application environment, the semantic integrity lof the data base Is violated. The
purpose of this thesis is to examine the problem of describing and preserving the semantic
integrity of a data base in the context of a generalized data base system. The general goal
is to pravide a first approximation to a “theory” of semantic inteér.ity (particularly in the
context of the relational data model), and to provide a basis for a semantic integrity
specification methodology. This includes an overview of the relevant issues as well as a
description of a particular approach to the problem, with emphasis on the high level,
nonprocedural expression of semantic integrity requirements.

Data base systems (data base management systems) are intended to assume the tasks

of facilitating data storage; manipulation, and retrieval. The data base system should also
be responsible for maintaining the correctness of the data in a data base, as well as
providing users with appropriate abstract views of the data. This is particularly important
for large data bases, as ad Aoc and "hand” checking is impractical.

- By way of background, it might be useful to place the notion of semantic integrity in
perspective, and to better define the meaning of the term as used in this thesis. There are
a number of ways in which the soundness of data in a data base may be compromised:

L. The reliability of data may be compromised by errors due to hardware failure, as
well as those due to failure of the operating system and data base. system software.
Hardware reliability (in the context of data base systems) haS been considered
elsewhere [Fossum 1974, Wilkes 1972). Software reliability is a very prominent

research concern at present, as exemplified by the work of those concerned with

Semantic Integrity Specification 8

establishing the correctness of programs. In the area of data base systems,
Hawryszkiewycz and Dennis [Hawryszkiewycz 1972, Hawryszkiewycz 1973] have
developed a format semantic model of 2 relatiomal’ dixta baze fystem, defined data
base primitive operatiows ‘in terms of ‘this riodel,and ‘proven the correctness of the
operation definitidns xbstract programs). Weber {Weber 1978] has further developed
2. The concurrent consistency ‘of dutx -y be vidlated due to the effects of
improperty controtiel wecessés to shared ditu by riniliiple’ concurrent users (processes).
It is desirable to provide:each-user with' a consistéht view of a data base, shielding
this user Prom. interféring effects due to the sctivities of othier ‘Uers, while at the
same time: remiming a Mhximam xmount of legidimiite cohcitrent activity. Eswaran,
Gray, Lorie, and Traiger [Eswaran- 1974} 'likvé ‘deicéibed & high level scheme for
concurrent: consistency control in a relationsl dats base system. Hawrystkfewycz and
Dennis [Hawryszidewyez 1972, Hawryskiewytz 1978) developed-a Tower level model of
concurrent conslstency based on a formal semaritic model’ef a rélational data base
8. Data security may be dompromised by a faiture 1o pf”b’béﬂi‘*(zdministratt?‘e”l‘y)
restrict the:matinerin-which & given usér firky Recess’ihd matipulite a data base. A

good ‘deal of pioneerig effort in the-arex ‘of se€iirity arid’ protection has been
accomplished in' the-conseks of sperating systems. Bome of this work has beén
extended to dath buse sysems; e.g:, the wetk of Chiinfberliti, Gray, and Traiger
[Chambertin 1978), and'Stonebraker and Wty [Stohebraker 197441

- 4. The semantic iritegeity-of daw is: violated when the dati Basé ceases o represent a
legal configuration of the application environment it Is ‘intetided to odel. ‘Semantic
integrity errors may be introduced by’ uurfm.hci*ar ‘uhderstanding, malice, etc.

- Semantic Integrity Specification 9

(Cinadvertent, impreper, or malicious updite® [Stondiuker 1974¢)). In fact, Hardware'
cause the semantic integrity specifications of a data base t'Se-violated. ‘Fer example; -
~some user:may, becaiiss of a failure of ¥he disk Base:Wieurity inechaiism, make an
unsuthorized change, such as raising hisown salarj fiemn §20,600 to: $30,000; this

© unauthorized change cin'then cause & semiantic intagrity censtraint‘¥o be violated,
This thesis deals specifieatly with the Fourth'hapect 6F the soundness of a-dabi-base;
namely semantic integrity. In what follows, iu assume that hw'.md softivre -
reliability are gunsantoed (5§, by the epersting systei) - We wise assuthe: theb concurrent
consistency is assured; it is sufficient to assume, without loss of generality, that s single user
is interacting with the system at any glvm time. mmwuammea |

11. Semantic Integrity

- Adaa.base is meank to serve as-a mods! of some limited universe; ‘at-any given time,
the vajues in the dats base:repressnta’ partipuiar cohfigumtion.of that: upplication:
environuent. Evary such world has its own interidciogics a mdwlmspmsymg what -
constitutes a legitimate:and plausible-configuration iof.thategiivansaent Floreatin: 1804} It
should be the function of the:data base syster 10 inswbe that shiase: reles are nat violated
and. therefors that the data: base.is fiot ina iemhntieatly dncomsistenit stite. .

A basic premise. we wilk adept is thatas noted by: Minsky: [Minsky:1974a “the -
fundamental-property of & date: base.is that it Kasan:intsissicimesndngiwhich s invasiant
of its intéraction with users”. . The semantic integriey: spcifientions for-a- dats base capture
this intrinsic meaning: The data.-base:apstem:shauld: factlimbe the -precise oxpression of -

Semantic Integrity Specification 10

these integrity specifications. We assume.that some persan (or committee of persons), |
known as the data base admininrator, is respansible for stating the semantic integrity
specifications for the dasa.base.

It is possible and indeed desirable for the-data base system to support multiple
abstract logical views of a data base. These views syust however be-constructed-from and
consistent with the semantic integrity specifications (ie, the data base administrator’s view -
of the data base). Even providing a view of the data base which. censiats of a subset of
that data. base is difficylt, becanss of the “m‘&b&m the subset and other
elements of the data base.

Avariuydamwmkmamwundmmmngﬁtyofadau ;
base, including'

L. inaccurate data recording or entry,

2. inadvertent alteration of data during some transmission or transcription process,

8. deliberate falsification of data,

4. loss, omission, or delay of data.

The ramifications of permitting incorrect data to permeste »s-,im ‘base may indeed be far
reaching. . Crucial decisions: may be wmgly ,isfm.,mmﬁdwu in the system
destroyed, and the reliability mm.&‘ the systemyidegraded (including
application. programs and packages:as well as the-dats-base spstem itself). -

It is generally recognized shat-the:problem of bad data:indata-bases is a serious one.
Unfortunately, the state of the art in eixor. checking: in.dam:base- systems is quite dismal. -
Most semantic: integrity checking: is currently accomplished: by means of application
programs; data checkingnmedum‘;amuabqlmmvm :ppkaﬁm programs. Special
purpose data base "audit” routines are alsa sometimes used to:check data integuity. - Existing
commercial data base systems perform limited types of integrity' checking, if any. This

o SRR e

Semantic Imegrity Specification 1l

checking is. nearly always mnl:ed ta simple data.format checks. I any.cnse, ummtlc
integrity i“&?ﬂ"&ﬂ% and becking is usually. unsirustured,and: isembedded in application
programs in an ¢d A manner [Gosden, 1974} fusthacmpcn, na-diecipline i impgsad an the
semantic integrity specification process; . This-lack.of strugtumeand distiplineshas the
following consequences; . |
- L. The mechanism by, whmmmmmMdeam
2. Semantic integrity specifications are not md}ymedifm.
~ 3. The abatraction defined: by mwmmmum s iftended
to c‘ozrespond.;q.,‘ the ut of rules in the applisasion. eavironment, is difficult to
understand. | o
4. Inconsistencies and redmgancus can_Dbe:-present. in the semantic imegmy
specifications, which may be difficult ta, locate. ... s T ;
5 It is difficuk to. make the semantic integrity checking: wm efficient -aither by
means of manual cr,;utomuicgp;im&am Comand oeeE na o w ewo Tl

- The data model upon. whlc@ adan bm«sym:; hased. num hene to.consis of
the ,typﬁ($) of data structures uted.ta represent information: in the daia lmze, alnag: with. the
set of primitive operations which. can be used: 1o, mlm mm Flie-nature
of the data model underlying.a duta base system has.a.yery mmant effect:on the
manner. in which one describes the semantic integrisy: of ;8 daia-base in- that system. As
described below, some semantic integrity information is often in fact embedded in the
structures usgdjuthedmmmgm m&»“mlm g

There have been three: principal data models: proposed : for gétieralized data base
systems [Date 1975}

12. The Dan Model

Semantic Integrity Specification 12

" 1. For historical and other reasons, the hierarchical appronch is a very popular one.
Examples of hiefarchical dati’ buse systeras and data sul o3’ nanguages for
wm;‘,ana manipulating data bases) include IMS TBMY, HQL [Fehder 1974, Data
Language [Maritl 1978) and System 2000 IMRI 983 In the hierarchic approach,
some semantic integrity information is expressed in the formof ‘ohe-to-many
iare’ expresssd By appropriately

R

¥

relationships (trees). Thus, one-to-many’constii
constructing the data base hierarchy.
2. The:network approach is typified by the Codasyl DBTG proposal [Codasyl 1971a)
and the work of Bachman fBachman 19781 An example of a‘network data base
sysfem is Adabas [Software AG 19741 In the network data model, some semantic
integrity information is expréssed ‘via many-to-mafy Maw::htps. this is done by
appropriately constructing the network m#ﬁe‘ﬂiﬁ base.
3. The refational approach was introdirced by Codd tt:oad mo] [Codd 1974al.
Examples of rehtional data base systents “and’ ity mntmgu include ALPHA
[Codd 1971a), INGRES [MCDomld 19743. McDomld IS‘Mb Held 1975b), MACAIMS
[Goldstein 1970), Qpery by Example {Zloof 1974, Zioof 1975l Zioof® 19756], RDMS
E tsuum 1974), R1SS [McLeot 1975}, SEQUEL: moyce mﬁ Chamberlin 1974b,
Chamberlin 1975), and SQUARE [Boyce 19735, Boybe sl In'the refational data
- model; functional-dependencies are’ normally included in the smfhtlbh of the ba_slc
structure ‘of relations. However, a3 discusied 't seetfou 13, tHese functional
. dependencies may be easily separated from the ‘basicstruenire of the relatiohs of the
Several (higher level) sefmntlc ‘dats models have been rebemly proposed [Chen
1975, Schmids 1998, Senko.10%, Smith 1876, Tsichritzis 175 Thesé ‘higher level

models attempt to incorporate more semantic integrity information in the basic

Semantic Integrity Specification 13

structure of a data base. Structﬁres in these data models are intended to represent
' objects, attributes of objects, and relationships Batween objicts (in the applicition
~ ‘environment). Semantic dpefations on these structures repnrm ngtimte changvs in
the application environiment. LTRSS e

It is not the purpose here to analyze these data medels in detail, altRough many
of the fteas developed herein are-quite closaly'Fikited to"Work on semantic data
" models. Rather, and for réasihs to be explained tatéf, thé refational data’ ‘model will
be used herein, as a baiis for the discuiiion of dati*bise semantic integrity.
Although the ideas discaised”in this thests aré’ appﬁdﬂﬁ“%o*dmm systems in
‘general, the discussion 1s coiiched in terms of the Felitional model of data.

13. The Relatiorl Data Model e
The retationat dawd modél "appears to be the simplest data Striicrure consistent
* with the semantics of information and whith provi&es a ik ‘degree of ‘data
relational approach there exists an ifterface at’ which thitocdlity of Tormatred data in
a data base can be viewed as & coltectioti of nontievitchit rélitions of -asforted
degrees on a given collection of simple d6mains (domatiis ‘Whose eleniems ‘are not
decornposable as f&r as the dats base managerent syitem is éincerned).™
For the purposes of- this thesis, a (refitionat} duta bise is defined to be a
collection of normalized reh@s (relations in first normal-#iitm TClodd 19707 'and a
coflection of domafns. (Phe rekitions present i #hie dars biksé are spiiifically called
base refations) A doumm is an abstract set-of atomit"duth VaRiey (db jects). Dor
are defined independently of refations. A fiormalized relatioh’ Wiy Beviewed as a
table, wherein each row of the table corresponds to i ‘tuple of ‘the réfation; and the

PN "" AS

Yains

Semantic Integrity Specification 14

entries in a column belong to the set of values constituting the upderlying domaio of
that column. (An. entry is the value in some yamhrcommnfor a given row of a
relation.) The domain underlying a column consists of theduly those ob jects which
can appear as entries in that column; any value in the underlying domain of a
column can appear in that column, and every value in the underlying domain is a
plausible entry in that column. Note that domain and relation. names are unique with
respect to a data base, and that a domain and a relatipn cannot have the same name.

Consider, for example, a data base which cantains information about some
company. Assume that a relation calied EMP contains data on the employees of the
company. EMP is shown in figure I-], described by its table representation. The
rows of the table correspond to tuples of the ‘r'emm‘,(i{gggtds),_xand the columns
correspond to instances of particular domains of. the data base. (Loasely speaking, a
relation corresponds to a “flat” file, a tuple to a xeoord, and ncaumn to a data field.)

Each data base relation is created by naming the-rslation. and each constituent
column, and specifying the name of the underlying domain: of each column. More
than one column in a relation may have the same underlying domain. Column
names are unique within a relation. Spedfm the name q‘x‘che underlying domain
of each column defines the set.of values from which. entries in that column may be
selected; that is, the set of entries in a column is always a subset of the underlying
domain of that columa. ;

Figure 1-2 contains a. description of an example data base. The name of each
domain and refation _pf the data base is listed therein (in upper case chara;ters). For
each relation, the name of each of its cansﬁmemmk:mmigspmned {by one upper
case character followed by lower case characters), as is the underlying domain of each

column. Relation EMP contains information on the employees of the company,

Semantic Integrity Specification 15

SALES records information on the supplies of iféms Tor the company, ORDERS
records order information, and BUDGET conmns the uluy budget for each
 deartent of e company, . et T
Figure 18 contains a list of some example primitive opérations Which may be
used to interact with a relational data bue.h i Kistimed ﬁzitfntd&hhnm these
" operatiods, ' high level, nosiprocedural query anguage ii provided (eg., sz’dum.
[Chamberlin 1874b), Q,UEL D16 F9SBY. oF Qjery By tﬁunpa (zioér 1675.3)
The advintagés of the relstional dath modsl Tiave besh previosly
[Codd 19Mc, Codd 1978b, Baié 9%), and ‘wii nck Bé Hépeated heve in detall. For our
purposés; the following attributes of the relational Mo‘f Mm mﬂgniﬁa.nt.
'LMp;uummwmmmrm%"é‘f&u R)
2. The data model is condudve to (rehﬂvcly) nonproadml‘dah scfcctlon query ‘and.
. It is possible to cleanly isolate the different lévels o:f“‘séﬁiiii”éié"mt*i.g*}*i‘ty"iﬁ the
relational data model, as disclissed in chapter 2. Fot examplé, if'thé hierarchical and
“network ‘dstk models, certafn types of ‘Integrity conitfainth’dré dalibérately built into
the data structure itself (eg., the owner-coupled set construct in the network bdel).
" integrity reyiireménts fiom the' complexitis of the datk’ iructiire.
relational data model, “the dm bm ‘adiintitraior fias amy‘m typebfstmcmre to
consider, and a very simple coordindte sysiden (dentititatioh é¢ ‘refitions and columns
" by name and rows by cohtent] By which ﬁc my t‘ﬁ‘éﬁ%iﬁy lndlvldual itém or
poruonornuutman. mmm ' SR

. Howeveér, in the

: . Semantic Integrity Specification 16

2. SEMANTIC INTEGRITY

In the context of the relational data model, it is possible to identify four principal
levels of semantic integrity: .

1. Domain definition is the description of abstract sets of atomic data values, which
are to be lmcl to ~sp¢clfy the: set of values from whlchﬁ entries ig gg_olumr,,_ls of relations
can be selected. This can be accomplished by lmeaas of va\ “high level domain
definition language [McLeod 1976a, McLeod 1976b). Far example. the domain
SALARY may t be defined as consisting of positive integers. less than 100,000.

2. Relation structure specification is the description of the fundamental structure of
the base relations. This includes namlng each mnstiggent qolugrlp of a'relation, and
stating the underlying domain of thit column. |

3. Structured operations are abstract operauons. which are meaningf ul in terms of the

application environment. Structured operatiomg_desc;lbe,data, base transactions, and
are used to capture the conceptual types of mmlpulatlons that are meaningful for a
data base (such as, for the example data base é,f figure 1-2, an operation HIRE-
EMPLOYEE). |

4. The r _g_gti___ constraints level is. concerned with relationships among data base
components. Relation constraints are used to define all additional semantic properties
of and relationships between the relations of a data base. For example, primary key
[Codd 1970] (and third normal form (Codd 1971b, Codd 197Ic)) specification is
accomplished by appropriale relation constrainul._lﬂgwﬁvelf. relation ‘constraint; go
far beyond merely supporting functional dependencies; they provide the capability to
define a very rich variety of types of data prcperr_les. For example, relation

constraints may disallow inconsistencies between column entries of a single tuple or

Semantic Integrity Specifiation 7

between a tupleaad other tuples in the same or othes- nhuon(t). Fhey may:also. ..

preclude some global patterns in some set of- mm:»m»m:&m baseasa -

whole, or mydulkm ceemin types of missing.datw:(such 23 m tuples; obyolete

- alaes, etr.) : ‘ L

_ Before fm<WMWM-w m&-m"mm ts taken inthis -

thesis, we briefly examine other work-that has been-tene:dn the m« mm
in data, base sym ‘

2.1. Background ;
In.general, there are two major:approaches to-the dpécification of the semantic -
“"Wef adambase: i 0 o » R AR 'us By T s

Llnaw%uppmch mmmmmmm ‘biise: statds 4ro

pesmissible (valid states). The data biseysem % wmm:memﬁ the
- datm basets:always i valid state. (A3 discussed W3 IR chiwper, it may-be

‘mecessary to aflow the data base 1o teporarily:plisstRGisEh Oné of>more invalid

" 2 In a.gtate sransition approach; the set of legat dats busi opiersaions s specified.

- Depending on the'daia-base stute, only cemain:operatiins (yalid opérations) are.
allowed to be performed an‘that state: :These operitiohsare:guarsntesd 1o praserve:«:
- the integrity-of the data: base.
.. A sate snapshot approach td describing. the semantic idfbgely spepifications for -
data base invalyes the expression of.logical constraints; whiichctan be: viewsd: as predicates -
on the state of the data ba:e.;«n'ﬂmumwnwmﬁemﬁ a dulichase-to thoseithat
conform-to some exprassed limitations. - Several; mnffmuy«m. Eswaran 1975,
Stonebraker 1974c, Stonebraker 1975¢,:Zioof 19¥b]}-hawe disqussed: seriantic integrity

Semantic Integrity Specification 18

assertions in the context of the relational data model. Graves [Graves 1975} has also
considered the problem of semantic integrity. -

More xﬁeclf,ic&ﬁy. Boyce and Chamberlin [Boyce 1978a) introduced the use of
SEQUEL predicates for expressing integrity assertions. For an -operation which makes a
data base change to be allowed, the predicates must hoid on the data base state which
results as a consequence of the execution of that-operation.: E!Wl!;m and Chamberlin

[Eswaran 1975) have discussed the functional requirements of a semantic integrity subsystem
and have examined semantic integrity in the context of SEQUEL and System R
[Chamberlin 1975, Eswaran 1375). Stonebraker and Wmé have considered semantic .
integrity in terms.of the INGRES system and the language QUEL [Stonebraker 1974c], and
introduced the concept of query modification as a tool for the implememﬁomof a semantic
integrity subsystem [Stonebraker 1975c). Consider the following example of query
madification: a data base operation is attempted which states "increase the salary of each
employee in the sales department by 108"; assuming the existence of an itngmy assertion
which states that "each employee salary is less than $30,0007; query medification would
transform the operation into one which specifies “increase the salary of each employee in
the sales department by 108, if that increase results in his salary. being less than $30,000"
Zloof has studied the problem of semantic integruy'-w-i&h respect to the expression of
semantic integrity specifications in. Query by Example: [Zloof: 1875b). |

In these approaches, facilities are provided to allow the-user to state preditates
(expressed in SEQUEL, QUEL, or Query by. Example) which sire to hold on the data base.
Assertions must be satisfied by the resuk of a datx base change. for that change to be
allowed. ' Several significant prablems exist with these approaches:: |

1. They do not deal with the entire problem of semanticiintegrity in a relational data

base, but rather focus primarily on relation constraints.

Semantic Integrity Specification 19

2. They are inadequately flexible with regard to when, assctions are.

3. The types of actlons pouibleupon de@ctiongf i%ggﬂ;x vtnlaclons are
limited.

4. No structure is placed on the semantic lnteg:it; specif iug&o%skﬁ§§8ﬂhﬂs are
arbitrary predicates on the state of the data base or on transitions from one, dm base
;tatetoanother _ ; . e e
A state transition appmch to semantic lntegqty mmn consiss of gdescribing
the set of legal operations which may be performed on a data base. In this appraach, the
user is confmed to intem::ing wlth the data base by means of. t) limited set of op:

Semannc integrity lnformation is thus procedurallz embedded in the ogcmiﬂns, This
approach has been suggeste by Minsky (Minsky 19743, Minsky 57481 i the context of
data base systems. Relmd weri in ithe erea of thedeﬁnnion of abstract data, types (eg.

the work of Liskov and Zilles [Liskov 1974]) has much in common with this operational
approach.) | N
Some of the most signifxant prohlems with the m;e trans;;lon gpg;;nach are: |
1. Semantic integrity information is :,emm#gg {n procadures 10 ap unspciured
nianneg. and is consequently hard toqulfylm¢wyyt dundant, inco

and incomplete

2 The conceptuz,l semantic model of a data ba,se is dlfficu!; 1o abs;m‘.t t‘mm the :
procedurally embedded semantic integ'rity information. . . .
8. It is difficult to verify the correctness of the semantic integrity information. as it is

scattered through the operatlons.

lons which are

©3 [
c"ﬂ 14

4. It is not always poulble to precisely chancteﬂ%e the sgg of
meaningful for a data base at the time the da.ta base i; c;eated, Dm is. often kept in
a data base before uses for it are dlscovered or at least before all of it potential uses

Semantic Integrity Specification 20

are discovered; nevertheless, it is often possible to describe the semantic integrity of
this data by means of propertles it must satisfy (c.g.. assertions which must hold on
the data).

5. Different data base "views" (external schemas) may include very different sets of
semantically meaningful operations, while still couched in terms of a single data base
schema (con&pmal schema). It is difficult to insure the consistency and completeness
of the semantic lntegrlty checklng which is performed by the operations in different
views,

6. Some data base operations are not meaningful in terms of the semantic integrity of
a data base, but are nonetheless required in'prdcticé (e.g..an operation to change a
person's dm of ‘birth, the value of which was orlglnauy incorrectly entered into the
system). o '

2.2. An Approach to Semantic Integrity Specxfication

The major goal of this thesis is to provide a ﬁm approximation to a “theory” of
semantic integrity, particularly in the context of the r‘eﬁt!bml data model. In so doing, it is
hoped that a basis for a semantic integrity specification methodology will be developed.
This methodology should assist in the formulation of the semantic integrity rules of a given
application environment, and direct the selection of those rules which will constitute the
semantic integrity specifications of a data base (e.g.. in the face of implemenmion cost
tradeoffs).

A semantic integrity subsys:em must be capable of performmg

1. semantic integrity checking (error detection),

2. semantic integrity violation focalization (de:ermlning preclseiy which data values

are in error),

s

Semantic Integrity Specification 21

8. semantic lntegnty violation-actlon (reportlnglresponse)
The semantic lntegnty speclficatlon language(s) must provlde the user wlth the ability to
state all information required to perform these taslu. (Thu lncludes. of coutse. a precise
specification of the semantic lntegrlty rules themselves.) e

Actually. it is deslrable not only to encapsulate (ln the data base semantlc integrity
specifications) knowledge about the semantlc mtegrlty of a data base, but also knowledge

about how users will interact with the data base. The meanlng ol‘ a data base lncludes the

l’ 4, ‘3“2.»

manner in which users interact with it semantic lntegrlty and user abstractlon are closely
related issues. |

Some semantlc integrlty lnformatlon is best expressed vla a state snapthot approach

5

while other informatxon is best expressed in terms of state transitlons The approach

Gt ripens e

described in’ thls thesls includes both state snapshot and state tunal%n aspects.
. Baslcally. then. the approach to semantlc lntegrlty talten l\el:e ;has several ma jor |
objectxves.’ T E
LI hould be possxble to express semantlc mtegrity spetlflcations.
| a.ona hlgh level,
b. declaratwely. rather than procedurally, |
c. in a structured manner,
d. abstractly, in a way relevant to the application environment.
2. These specifications should be:
a. easily modifiable,
b. nonredundant,
C. consistent,

d. complete (as a model of the application environment), |

3. Semantic integrity checking should be:

Semantic Integrity Specification 22

a. the responsibility of the system (but the system may sometimes need to ask
for advice i‘rom the user),
b. flexible. ailowino' appropriate speciﬂation oi‘ when checking is to be done
(eg. after primitive data base change, after concepmai m\nnction etc.).
c acoeprabiy efficient in terms of the oveuii performmoe of the dau base
system.
4. Semantic innegrity vioiation-action should be:
a. flexibie. aiiowing an appropriate vioiation-action to be specified (eg - |
inciuding error reporting corrective action, etc.). _
| b. suﬁ’icientiy ‘locaiized so as not to geneme dme-eonmming, expensive and
potentiatty deuructive side effects”.
The approuch o semantic imegriry described in this thecis may in far.t be vxewed as
a generalized approach to deu basé design andlor dtra dei‘inition That is, we are
attempting to provide a framework by which the data ina dau base may be described
Additionally, the fnmework described herein may prove immi u a base ianguage into
| which specifiatiom in terms of a higher level data model (such us those described in
[Chen 1975, Schmidt 1975, Senko 1975, Smith 1975, Tskhﬁtzis 1975}) mly be trlnslated

Semantic Integrity Specification 23

8. DOMAIN DEFINITION .

The purpose of this chapter is to discuss dornain defmition. one ievei of sem:tntic
ek halr pat
integrity in the context or the reiational data model. Specificeiiy. the precise definition of
) fa42 K ST "! e * R ST
domains. viewed as sets of atomic data vaiues. is considered. This includes a review of the

HESRE R TS S5 % e R

functional requirements for deoling witii the prob\em of domain dei‘inition. 2 discunion |
and evaluation of other work that has been done in the nrea, end the description of 2
specific soiution to the dotnain definition probiem.

‘\'?i
;;;;;

It is impomnt to note that a domain is different from 2 unary reiation Domains are | |

wods winhin oo .
abstract sets of atomic dm veiues. and my in fact contain anginfiniie number of eiements.
s omoa el wid o fwiedd grolov

A relation by contrast, must contain a fimte ntimber of tupies. Abstnctly. relations are
ﬂ' 57 5 BRI ; B

sub ject to change (eg” by the sddition oi ‘new tupiec) but domains are changed oniy wiien)

g2 LRI

the associated abstraction changes To a crude first agproximation. the set oi‘ vniues
% I IR Tt g R
constituting a domaun is fixed at the time the data base is defined (piie time") while
- ”‘,‘ B 3 i 3RS la 'v’";f' e
the set of tupies ina rehtion is normaiiy changed during the dny-to-day operation of the

data base system ("run time")

' o " : .\i‘!ﬂ-'aé‘; RN e o .
Domain semantic integrity errors. ie.. errors which involve the preeence of entries in
i FE S SR E T USRI AR

some colurnn of a reiation which do not beloné to}‘the domlin tmderiying that miumn.

occur i‘requently enough to justii‘y a facility to hendie them. Specific experience wsth a

S opo AN EE T

pamcular dan base appiication environment has shown tiut. for an experimental sampie |

‘‘‘‘‘

P £

of user-dau base interactions. a large percentage of errors disoovered a.re domain semanticw |
. 1 e g oxgy
integrity errors [McLeod 19751

LT 7 E

Semantic Integrity Specification 24

3.1 Describing Sets of Atomic Data Values

As discussed in cﬁapter 2, several approaches to semantic integrity for relational data
bases have been recently presented As noted in that chapter. all of these approaches
essentially deal wlth relation commlnts, ie, facmtlu are provided that allow the user to
state prediatu (exprmed in SEQUEL, Q,UEL, or Qpery by Example) which are to hold
on the data base

The requirements of domain deﬁnition are not adequately mpported in these systems.
They lack the capabiltty to a!low domains to be precisely deﬂned as abstract sets of atomic
data values. Al of these symms allow the data type of each oo!umn of a relation (not each
domain of the data base) to be defined, but the possible types are limited and very
representation-oﬂentad It should be possiblt. fo: exampie to def ine domams like
SOCIAL_SECURITY_NUMBER and GEO COORDINATE, mther than being Iimlted to
such domains as INTEGER md CHARACTER STRING It is desnrable to be able to
descﬂbe a mptml class of data values. This abstnct descnptton b quite different from
a mere specmcnt!on of the physxcal repraentation of the valuu ina domain. rather, the
semantic propertles of the domain are pronounced The work of Llskov and Zitles [Liskov
1974) conoernlng abstraot data types is related to thls notion. in that chsses of abstract data
ob jects (values) are belng described. |

Boyce and Chambertin [Boyce 197331 have proposed attnchmg attributes to each
column of a rehtion ("column descriptou") One of these attrlhutes is the scope of a
column, which spedﬂu the m of permlsuble values for entries in that column. eg., salary
is a positive integer less than 20000. Similarly, Zloof [Zloof" lQ’ISb]»has indlcated that
provisions should be made for facilitating the specification of entry "formats” ("their type,
size, etc,”).

A detailed scheme is needed to facilitate the precise description of domains, and to

Semantic Integrity Specification 25

integrate the domain definitions with the structure of the:velational data base. Suchia
scheme should (at least) satisfy the following criteria: =~ = . v
L facilitate the precise and detailed description of ets of atomic data values, as -
subsets of one of the pataral demaing: real number and chawmiug (these
"natural” domains are the primitive domains: which are used: n,'mmm .other
domains),
2. provide for the proper abstraction of defining domains independent of their use as
underlymg.mof -colmng:in one of mese relations; .
-3, force a domain definition to be a single moduie, so-that demain semantic integrity..
information is localized, o o -
4. faciliate autamatic-domain definition checking and flexible: types of action which
are to ocour upon-detection of & domain defintion: vielation, ‘
B support specifications that describe when-and-how domain-values can be compared.
(e.g., when two values being compared are.feom the same domain, and when the;two .
vajues are from different domains), and converted (g, ‘when it is: desired te.convert
the value in one domain into and "equivatent” value:in unotier dm)_ :

- 32. A Domain Definition Language

.A high level, nonprocedural language.can:be used to express domain dafinitions. In
this language, each domain in a-data base is described-by a single-domain definition
(domain: definison module). The definition of 2 domain - "insuiied” (bound) &t the time
the domain is created. Domain creation may be viewed:ds the compilation of the <domain
definition ‘module. Note that a domain d‘a&_kﬁunn,wm‘zmswt;&@ﬁgsm:oﬂmmic
values. Domains are not dynamic as are unary relations; rather, they constitute fixed
abstract sets of data values. The definition of a domain may be modified, but this occurs

Semantic Integrity Specification 26

only when the abstraction has changed.

As noted by Hammer and McLeod [Hammer 1975), three types of information are
required by the semantic integrity subsystem to deal with domain definitions:

L a specification of the set of atomic data values constituting the domain,

2. information describing when the domain definition is to be checked, .

3. a specification of the action that is to occur if the domain definition is not

satisfied.
Since we shall assume that domain definitions are checked whenever an entry in some
column of a relation is created or altered (e.g., by an operation which inserts or updates a
row), the specification of when a domain definition is to be checked need not be explicit.
Thus all that need be explicitly expressed in the statement of a domain definition is the
precise description of the set of values comprising the domain, and the action that is to
occur if an entry in some column of a relation is created or modified so that it does not
belong to the underlying domain of that column.

Each domain definition therefore consists of the following four components,
represented as clauses in the domain definition language:

1. Domain name

2. Description

The description clause allows the set of atomic data values constituting a domain to

be specified. The set of values constituting a domain is defined as some subset of

one of the two natural domains: real number and character string. Every domain is

thus defined and represented as a subset of the real numbers or of the set of

(varying length) character strings. This specification may be accomplished by:

a. enumerating the domain values,

b. decomposing the domain values by specifying the subunits of which they

Semantic Integrity Specification 27

are composed,

c. placing restrictions on the set of values by stating predicates that de;cribe a

subset of one of the natural domains, |
or a combination of the above. The special data value "null” (undefined) is present
in each domain. This is to allow missing data tovbe represented in the data base. (It
may sometimes be useful to distinguish an "unknown'_value from a value which
"does not make sense” [Florentin 1976), but this distinction is not made here.)
3. Ordering
The ordering clause is used to indicate how domain values are 6rdered with regard
to comparisons with other values in the same domain. This iriformation i‘s important
in identifying the semantic properties of a domain. One type of ordering
specification is that the values in a domain inherit the (total) ordering of the natural
domain of which the domain is a subset. Inherited ordering may also be by subunit
(e.g., the primary ordering is by one subunit, the secondary ordering by another
subunit, etc). Inherited ordering is numeric for domains which are defined as
subsets of the real numbers and lexicographic for domains which are defined as
subsets of the character strings. Another type of ordering specification is that no
ordering exists, in which case only equality comparisons are meaningful. An external
procedure (ie., a procedure in some programming language other than the domain
definition language) can also be used to define the ordering specifications for a
domain; this procedure is called whenever two values in the domain are to be
compared. Such a procedure accepts two domain values (which are to be compared)
and returns the value that is first in the ordering sequence.

4. Violation-action

The violation-action clause specifies the action that is to occur if an entry in some

Semantic Integrity Specification 28

column of a relation is created or changed in such a way that the entry does not
belong to the underlying doman of that column. Types of violation-action include:
a. the change may be refused and an error signaled.
b. a particular value, either constant or calculated from the erroneous value by
means of operations (such as substring. oonatenate, ehc.) may be substituted as
the new value of the entry,
¢ a call rnay be made to Aan external procedure. the erroneous value being
passed as the argument to the procedure. and the procedure returning the new
value of the entry , ‘
System-generated or user-specified messages may be optiomlly returned to the user or
calling program Note that in cases b and ¢, it may be necessary to recheck the
domain definition after the oorrected value of the entry has been determmed
At this point it should be noted that the use of external procedures for ordering and
violation-action spedfimtion should be minimized insofar as possibie. The capabnhty for

such use of external procedures is provided for generaiity and oompleteness.

321 Language Details and Exarnples

Figure %1 contains domain definitions for some of the example data base domains.
An indentation-oriented syntax is used in this figure Examples of values in each domain
are listed (in parentheses) to the right of the corresponding domain dei‘inition. |

Figure 3-2 contains a specification of the 3y}.ea£ of the domain definition language.
In figure 8-2, syntactic classes are denoted by lower case strings,whxle keywords are in
upper case; actually, the language should include both upper andiower case keywords.
Optional parts are enciosed in “0° and alternatives are separated by """ |

In figure 8, the description clause of the NAME domain defmition specifies that it

Semantic Integrity Specification 29

consists of (character) strings, each of which is composed of a string followed by a %, *,
followed by another string. In this description clause, data values are decomposed into
subunits; the first and third are variable subunits, while the second is constant. Subunits
may be labeled, so that they may be referenced elsewhere in the domain definition. As
stated above, external to a domain definition, the data values constituting a domain are
either atomic numbers or atomic strings. The rule is, if a description clause of a domain
contains only number subunits (variable or constant), then the values in that domain are
numbers, otherwise they are strings. Number and string subunits may be mixed, and if so,
number subunits are converted to string form to yield the string values constituting the
domain. For example, domain MONEY is defined to consist of strings of the form
"$25,000". Values in domain MONEY have two subunits, the first of which is the string
constant “§", and the second of which is a positive number. Values in domain MONEY
are thus represented as strings; the number subunit of any value in domain MONEY is
viewed as a number (and can be manipulated as such, eg., by "+") when the subunit alone is
considered, but it is viewed as its string "equivalent” with regard to the domain value as a
whole (and can be manipulated by string operations).

The description clause of the domain SEX indicates that it consists of two data
values: "female” and "male” (in addition to the ever-present “null”). This is an example of
description by énumeratlon. |

For domain MONEY, the subunit labeled “value" must be greater than or equal to

zero, as specified by the subunit where restriction. A subunit where restriction contains a

predicate that is to be true for the subunit and involves only that subunit; that is, this
predicate is a restriction on the set of numbers or strings which values for this subunit may
have. It is thereby possible to express properties of number subunits involving comparators

(such as "=" and ">") and number constants. It is also possible to state that a number is an

Semantic Integrity Specification 30

exponential (exponential notation) or an integer (as for domain DATE). For string
subunits, a size (lengzh) specification can be made, the's& of characters pérmisslble in a
string can be defined (as for domain ITEM), mda phic ord '
(such as =" or *>") with -constants can be stated.

A global where restriction ‘permits expression of ‘properties involving multiple
subunits, as welt as those on domain values viewed as a tnit. ‘A global where restriction
contains a predicate that ‘may involve a domain valie, subunit values, operations, and
comparators. String operations can be employed ‘to ‘generate mbstriﬁgs. clculate Iengtﬁ‘s.
perform concatenations, etc. Number operations iriclude the’ ‘usual arithmetic operations
onof domain MONEY, the
global where restriction states that-domain values (Viewed as string:) must either have two
digits to the right of the decimal point or else' have no ‘decimal point. Here, ﬂght(¢ .
1)" evaluates to the right substring of the domain valie (which is referenced by “"), 1 startmg

and "maximum” and "minimum®. For example, in the descri

at'the character after the occurrence of “*(This form of the “right™ operation takes two
arguments: a string whose right substring is to be akufated, and another string whose
index in the first string is calculated to deterinine at which character of the first string the
right substring is t6 begin.) The operation “present® yields “true” if the first string
specified contains an oceurrence of each of the foﬁuwing'strmgs, otheriisé it yields .“f alse”.
The global where restriction of domain ITEM illustrates the speclfia.ﬁon of the number of
times some contiguous group of subunits can repeat |

A where restriction may also contain a call of an external Boolean procedure (as for
domain ITEM). If this procedure call is in a global where restriction, the procedure is
invoked with the domain value in question as its argument; ‘the procedure returns "true” if
the value is present in the domain, otherwise it retutns 'fa’fsé“:.”'lf{tﬁre(‘ﬁ?&édufé allis in a

subunit where restriction, the procedure is invoked with ‘the subunit vafue in question as its

Semantic Integrity Specification 31

argument; it murns “true” if the subunit value is legal, otherwm i; retums "false" | |
Boolean combinations of the above typss. of whete mtrictiqn are aliowed in bo:h .
subunit and global Where restrlcuom. as are cond)uomls (as tor domain DATE) l";,
addition, an' “or" may | be used to mdlate that the domuln aom;tm valuu that come in more
than one form, ie, that the domain consists of thq union of two or maore sets. of values. |
uchofwhich isdd‘inedsepmtely , e R
The second clause in a domaln deﬁnition Is thc ordcqngﬂchnu. 'l"bis may specifx
that no ordermg exisrs on values in the domaln ("none"). wmch means that only equaluy

comparisons are a]lowed {as fofdonuln SEX) An orderin; tpeclf

fPryaiy s

of “atomjc” ‘means
that valua in the domain are ordered by the uml numerlc or léxi@mphic ordering,
vnewmg the domain vatues as atomk: numbm or Mngs (u for doqain QUAN) The
ordering clause may also contain an ordered st of labels (qubugm mmes). indicating that ﬂ
domain values are ordered according to the valua of the spec;;‘led subunlu. The usual |
numeric or lexicographic ordering on these subunits is used. md thé suQuniu are takeﬁ in
sequence: primary otdeﬂng mdary ordcﬂng. etc. (u for domw;s NAME MONEY
and DATE). Finally, an cxtemal procgdure cn he uud to the grder he
values in a domain This procedure is passed the two valyes bdr;z oomwed. and reurns
the value that is first in the ordering sequence gas fo: domain_ ITEM) “ o ‘,
The third clause in a domaln deﬁnmm ls the vlohtion-action clause. As discussed }

above, it may specify that an error is to be signaled, indicating tha,t the data base change
specified by a user is incorrect and should be re jected. A sym-genmaqd or useNpedﬁedj
message may be opﬁong}!x returned ;tg the,pgg; or aningproggm.’rglf is ;!;g,,trug for ;hg
other types of_l violatlon-actlon If the vxohnon-action lsspeglﬂed as, "error':.ﬁ then an error.
is signaled and a system-gcnemed message .is returned i(a:‘s‘ for domains NAME and DATE).

Domain SEX has a violation-action clause that specifies error signaling with a user-

Semantic Integrity Specification 32

specified error message. If a system-generated message were desired the specific message
could be replaced by "SYSTEM-GENERATED". A system-genmted message can be of
the form “the definition of domain SEX is violated”, or can bear more information if the
system is a bit smarter (eg. “the definition of domain SEX is violated, it consists of only
the two values 'female’ and ‘male™). The “substitute® violation-action atlows a constant
value to be substituted as the new value of the entry being created or changed (as for
domain MONEY). A calculated value, obtained via string or number operations, can also
be substituted (as for domain ITEM). In the specii‘icatlon of | this éﬂleulation. "y" represents
the value that is being checked.to determine if it is in the domain The caliulated value is
then checked to ‘make sure that it is in fact a vaiid domam valie; if not, then an error is
signaled (to avoid infimte recursion) “The defmition oi‘ domain QUAN of fers an example

of an external procedure all vioiation-action u

33. Implementation Considerations

The domain defmition languag gro‘ces trimsiates domain defimtions into an

responsibiiity of determining what checicing is to be done whenever some dan base change
request is issued by a user. It fust also assume the responsibiliiy of performmg this
necessary checking. Whenever a new entry is created In 2 colimn (eg by an insert row
operation) or an existing entry in some row is changed (e.g by an update row operation),
the system must ‘make sure that this new entry beiongs to the underlying domain of the
column in which it occurs. The information in the descripridn chiise of the underlying
domain of the coiumn is used for this purpose. If the domain ducription is violated, the
information in .the ‘\riniatidn-ai;'tidn? clause is used. Theordering'infbrmation is used when

comparing two values in the same domain, as disciissed In chapter 4.

S PRRETNN Lo e L S e e ezt s N I w0 o R - PEESERNEE R

Semantic Integrity Specification 33

A domain definition may be used no obtaln tho gnformation Recestary to construct

i ii,‘- i Hel®

several internal relations, which are used by the semantic tntegﬂty subsystem to facmme
domaln deﬂnltlon checking-

L The domaln definltlon relag contains a slngle tuple for ach domain of the data
base; this relation has the following oolumns (mth primaty ke! domain name)-

a. domain mme.

By

b. descripnon type. which is simple w the domain has qne nonhbcbd subunit
with no where mtriction otherwise oomplex .

¢ global whm reurtcuon
d. viola.tion-octlon type. which is error" "substi:ube or call'

o4 !c' e iy o T i
e violation-acnon modlfler which for vlolatton-octlon type substitute ls the
LA agtisha R

value (constant or calculated) to be substimted for catl" ls‘ the name of the

external procedure to be called, otherwise "null”, »

f. error/warning message, which is e!ther a eomtant (uscr-q:edﬁed message),

sys;em—genented or "null", o ‘

g orderlng type, which is atoml none \ bumt (for subumt specified
- orderlng).or el (forexterml proadurecall ordcﬂng). o

h. ordering procedure name, which ts the name of t}}: externral ‘ordermgw

procedure lf the ordering type is all" otherwise nu!l" . ‘
2. The subunlt def gmon rehtion concains a tuple for uch subunit of each domain. _

this relation has the followtng oo!umns (mth pnmary key domaln nome, oobunlt |

index)- |) |

' a. domain name, | i 71‘! i : o
b. subunlt index.v which is the ordinal number of the subunit in the domain
def imtion. |

Semantic Integrity Specification 34

c. subunit type, which is either "constant” or "variable®,
d. label, which for constant subunits is "null”,

e va_riable'subunit- class, which is "number”, "string”, or "oneof”, and "null” for
constant subunits, '

f. subunit where restriction, "null" if none exists,

g. ordering index, which is the ordinal number of the subunit in the ordering
clause, and "null” if this subunit is not referenced in the ordering clause.

3. The oneof constant relation contains a tuple for each constant in a "oneof”

description of domain values or domain subunit values (for each domain in the data
base with such a "oneof” description); this relation has the féllowing columns {with
all columns in the relation as primary key):
a. domain name,
b. subunit index,
¢. oneof vconstant, which is a constant in the “oneof” list for the subunit
identified by the subunit index (for the domain specified by the domain name).
Domain definitions may be utilized to automaﬁcally determine the appropriate
physical storage type to be used to represent values in a domain. For strings, a fixed length
character string representation can be used when possible, such as when domain values are
enumerated (via "oneof™), or when an upper bound is placed on the length of string values
in the domain. In other cases, varying length character strings can be used. For numbers,
it may be necessary in many cases to make a compromise for efficiency. Integers ("number
where i\nteger") may be represented by a fixed binary storage scheme (eg., single word
binary), but it must be clear that this is only an approximation to the domain definition. A

similar situation exists for real numbers: a float binary representation may be used for

storage.

Semantic Integrity Specification 35

3.4. Extensions

LoCalnt
oA

Important issues to be considered in future research ondomain definition include'

LItis possible to extend the domain definition language 0 that previous!y deﬂned
o sy TRy R i
domains may be used as subunlts in the det‘inition of a new domain If this

T

hierarchic approach is used, care must be taken by the system to retain domaln

RhY

definitions until they are no longer referenced in any other domatn definitlon

‘ 9 “}f"""{’w TR G 2 }\3
2. It may be useful to mtroduce mg_m In this approach operations are
BT e i Bedd R WILFLAs LS tEg

defined for each domain. and manlpislatlon of values in the dcmain is restricted to
‘%u;;;;aé,? puiin Tl

the spedt‘led operatlons This approach islsimilar to the notion of absts:act data types

;' SR T ‘L?*H % BEEA TSNS A t 2 .

of Liskov and Zilles D..iskov 19741 It may be argued that the agpmch faken in this
: '. tH 5& -}.r Q e ihs
paper is stm too representatton-oriented For example, v;lues in the domain
i : 3+ sy OF fals
MONEY may be strings or numbers. but this is irrelevant with respea to abstractlon.

e AT TR S e84 pimimy U,

The important properties of the values constituting a dqsnain may be best
characterized by specrf ymg the oneratit:nz tth;t a;e det‘inngon* thervaluesin the
domain. of course, in this case a dornain u;il}l ;oﬂbnée!r be defined as a subset of
one of the natural domains (string and real number), and the standardized set of
domain operations (such as ">", “=", "+", etc) will probably no longer be appropriate.
8. It may be advantageous, in some cases, to defer the checking of domain definitions,
and not report violations at the time the data is actually entered into the system. For
example, in the case where a data base is being "bulk loaded” or updates are being
"batched”, it may be desirable to report all violations of domain definitions at a later
time, say to an interactive user or as part of a summary report.

4. The modifiability of domain definitions is a very impartant issue. It should be
possible for the definition of a domain td be changed as the corresponding

abstraction changes. If this is allowed, then it is necessary to verify that all entries in

Semantic Integrity Specification 36

columns having a given. underlying domain satisfy the new definitior\ of that‘
domain. | | o |
5. It is possible to call an external procedure td ydrifj'that a value in question belongs
to 2 domain. An extemei‘rrrdeedure call i&ay ilso be used in the ordering and -
violatlon-acnon specifiutions. However. we have no guanntee that the external
procedure is correct. Some reﬂabttity is nonetheles guanmeed by the fact that this
external procedure must use the normal dau bue system inrerface. In addrtion. the
domain deflnmon is agun checked after the external procedure has terminated.
" 8. The problem of tmpwmenung the domaln deflnitlon scheme and evaluating its
effectiveness and efficiency has yet to be fully eddressed)

7. It may be usefu! to comider the automatic genmuon of domain def initions by
| attempring to genmllze upon afew examples of domein values which are glven by a
user. This ls, of course. a part of the general problem of the demled spedfnanon of
rhe user mterface wmch suppom the construcﬂon of domaln deﬂnmons

- Semantic Integrity $pecification 37

4, RELATION STRUCTURE

Relation structure specification is the description of the fundamental structure of the:
(base) relations of a data base. When a relation is created, at least the follonin@mb&
done:

1. The relation must be given a name, which is unique with respect to.all-names of

reht;om in the dan base.

ZThenumbgrofeolumminthcnhtwanustbewN‘ b,

3. Each column of the relation must be assigned. a unique name (wnique. with respect

to the names of the calumns of thezelation). o

4. The name of the updarlying damain of each calumn mt:ht specified. A

definition for each domain thus referenced must exist at the time the relation is

created. | - ,

It is possible to include other types of information as a part of the.fundamental
structure of a relation. For example, the primary key,(Codd 1970} of the relation. may be
identified. Howevef. at the level of abstraction at which.our. discussion of semantic:
integrity is focused, the identification of the primagg key ma
relation constraint (and expmsed a such). Furthumq;e.ﬂwg is no.compelling reason far
distlnguishing the primary key from other candidate keys [Codd 1870) It is most logical for
a primary key spaglﬂnpqn to be viewed as a relation constraint, as is the.case for ather
types of functional dependencies.

.be viewed as a type of

Many higher level semantic models for data base design.and abstraction (data
definition), e.g., [Smith 1978), consider certain types of relation. constraints (such as

functional dependencies) to he special. Functional.dependencies are one important type of
constraint, but there are other types which may be equally imporsant (in.some application

Semantic Integrity Specification 38

environment). We believe that it is essential to provide:for a broad spectrum of relation
constraint types, and to integrate the formulation of these constraints with the process of
data base deugrf and-abstraction. In chapter 6, ourhppmnch to réfation constraints is
further d%hcusud IR

4l. Additional Column Information -
In addition to the column name and the name of its unéetlyinf domain, it is useful
in practice to allow two additional-atiribuces to de assicited’ with each column:
1.2 natrative description bf the column, for dottiifieritition purposes,
2. an indicator speéifying whether "null® {ubidefinedy values fnay be present in the
column: (thus alowing “null" valdes to be ielécvaly préhibited from colimns).

4.2. Comparability

Ttie kinds of compatisons and- mianipulaﬁbﬁs of ‘column entries that are allowed
refates to the semantic integrity requirements of a dita Bise. “The’term comparability is
used herein to refer to the géneral problem of ditetniining when and how two or more -
column entries may be oompired or otherwise manlpum’ed by strdduféd operations. There

are two basic types of comparisons:’ intradom__[u_ cﬁtﬁg ;j s and interdomam
comparison o yre
Intradomain comparisons are those in which two values from the same domain are

compared. In this case, the information in the ordering clause of the domain definition is
sufficient to determine hiow the comparison is to bé made. |

Interdomain compaFisonis are those in which two Valtes from different domains are
compared. In this case, values are compired as atoinic stringé 6r numbers using a domain

conversion, as defined below.

Semantic Integrity Specification 39

4.2.1. Domain Conversions

A data base has associated with it a set of wg_ EELSL&M Each domain
conversion is specified by means of a Qm Wmm i‘aﬂt mh mverslon is
a specification ,ﬁpf how values in a given domain are converted into nquinkm\. valyes in
another domain, and vice versa. Explicit specification of domain conversions is necessary
because values in dlfferent dom&;m belong to different abstract sets, and. converting a
value in one domain into an "equivalent” value in lnothu' requires. kmwlodgc of the
precise hature of the abstract sets corresponding to ehetyo dwmins imrolvnd For example,
both FEET and INCHES are riumbers, but they anm,bgzmr&m_ly added without the
use of an apprapriate conversion. o |

Domain conversions are defined independent of the domms (md nhﬂoss) of a
data base, in the sense that domain conversion modules-have no access to the internal
details of a domain definition; domain conversions thus map,atomic. valugs in pne domain
into atomic vajues in ino:l_g«. - Domain conversion modules can.he dmamically. created,
deleted, and modified, with the resmaibm that:

conversion is crated , o ;

2. if either of the domains referenced in the domain canversian is deleted, the

domain convemon u deleted. , ‘.

For the purposes of this thesis, it is assumed tha: -domain. conversion modules are
written in some high level programming language. This language may be a specialized
on}e. similaf; to the dom;m deﬂnltion language. For generality, it is permissible to.allow this
language to invoke external procedures written.in 2 high level general purpose
programming language. o |

For example, a conversion for domain. QQLLARS and

Semantic Integrity Specification 40

THOUSANDS_OF_DOLLARS can be defined as:
“domain conversion DOLLARS, THOUSANDS_OF_DOLLARS
DOLLARS = THOUSANDS OF_DOLLARS ¢ 1000
THOUSANDS_OF. DOLLARS « DOLLARS:/ 1000
Conversions may be unidirectional as well as bidirectional, ind this is the reason for
the- seemtng%y redundant specification in the above e'nmp!e. ‘For more complex types of
conversiom. external procedures may be used; for cxamph; we' m:y ‘have:
domain conversion DATE, JULIAN_DATE ’
"DATE = pi(JULIAN_DATE)
JULIAN_DATE = pXDATE) -
where pl and p2 are external procedures. |
Structured operations may perform various types of domain c‘ompifabmty operations
on entries in‘a data base. The standardized set of sich domain operations includes "=",
“rvat, %% et < Teat, NN %0, Y ", and string mdwdmned opemions For
example, some structured operation may check to' et if, for :aﬂnup!e in refation R, thc"”

entry in column A is-arger than then entry in eoinmh .4 ﬁz i3 §ssume
A and B contain numbers.)

Whether or not valués from different domam;ﬁﬁy be uttiized together (compared or
otherv)isc manipulated) depends upon the nature of the domains arid the particular tjpe of
operation that is to be performed on thelvalues in those domains. Tn order to establish a
first approximation to a set of comparability rules {for the’ standardized set of domain
opeérations), three ty;fe’: of comparability are distingulshed: = o

1. equality-type, which is invoked when one of the foﬁowhé types of manipulations

 accurs: o | P ,
* . values are compared for equality ("=") or inequatity ("~="),
| b. numbers are added ("+") or subtracted ("), '

c. sets of numbers are manipulated via set operations, such as “faximum” and

‘Semantic Integrity Specification 41

“minimum?’, 4 v . |
d. sets of values are manipulated by “unicn’, “intessecsion”, or "difference’,

2. ordering-type, which is invoked when values are compased via "«" "¢s", " or

>’ D ,

8. mixed-type, which is invoked when values are manipiiated: via multiplication ("s"),.

division ("/"), exponentiation ("w"), or any momﬂan or user-defined aperation.

Equality-type comparisans are always allomd if thctwgnmb&ng compared (or.
manipulaed)mfm:bemdm‘u,rtmvmesmfmﬂumwwmn or
from columns with the same undcxlytng domain, . if the values are nol.from the same
domain, i.e, they are from distinct columns with different underlying domains. then they
may. be compared. ifandonlytfadnmam conversion exists between. thase domains. (AU
domain conversions must be explicitly defined.) The domain conversion is wsed to convert
the value in one of the domains into an “squivalent” value in the.other domain, and the
resulting values are then compared. (Another type of .conversion could be supported, by
assigning units to each column, and defining units conversions [MclLead 1876b]) -

Ordering-type comparisons are allowed if two yalies are from the same underlying
domain and the ordering nl that domain is nat “none”. The W;men in the
domain definition uﬂu:d;‘m determine how the values are to be:compared. Ordering-type
- comparisons are also allowed if the two vaiucs_;rq from diffemntcolqmn;,:hesemlumns
have different underlying domains, and a domain conversion exists between those two
underlying domains. In thjs case, the values are compared by uslng the domain conversion,

as for equality-type comparisons, In any other case, ozdgx;ug—;gpccompanmns are not
allowed. ;

Mixed-type comparisons are always allowed.. Values can always be manipulated by a
mixed-type operation (with no restrictions). Values that are numbers may be multiplied,

Semantic Integrity Specification 42

divided, and exponentiated with no limitations, except of course for the requirement that
the values be numbers. -AKhough numbers may be-atdded and subtracted only when they
have the same "urilts"',"m&lﬂpncaﬁon. division, and exponenttition can be performed
without any such restriction. It presumably makes sense to divide a value in domain FEET
by a value in domain POUNDS, but it is (normaliy) not sensible to idd these two values.
For mixed-type-comparisohs, ¥ahies being miniptitated are tieatsd as atomic and domain
conversions are not ‘used. Note tﬁnt if user-defined domain operations are allowed, they
may be placed in this category by defiul. More genératly, it miy'be bust to allow the user
to specify the comparabitity type (equality, ordeting; ot mixed) 6f each user-defined domain
operation. | t s '

If the user wishes to state an unusual type of query, such a§ asking for all employees
whose name is the same as the name of their department, the user may be altowed to “force”
the comparison, by explicitly overriding the restrictions. Entries in the two columns are
then compared using the default numeric or lexicographic ordering, treating the values as
atomic numbers or strings, respectively. The idea is to perniit the system to be flexible and
not to allow comparability rules to get in the way when ﬂteyshmldmt The best approach
may be to warn the user that an operation may be mesnitgless; but allow it to proceed if he
demands it. (The semantic integrity of the data bate is not really in' danger anyway).

Domain conversions are also useful when a structiired operation retrieves an entry
from some column of a tuple in a relation and assigns it to be the new value of some other
entry (in a different column of some tuple in a relation). For example, suppose that the
date an item was shipped by some company (the entry in‘column Dite of refation ORDERS
in the example data base of figure 1-2) is to be copied. into the Date column of another
relation, say BIG_ORDERS. (BIG_ORDERS records all orders which request over $1000
of merchandise.) The Date column in BIG_ORDERS has undérlying domain

Semantic Integrity Specification 43

JULIAN_DATE (i.e, dates ot‘ the form '76184"). wh;le the Date column in ORDERS has
underlying domain DATE (l.e., dates of the form '1I2011976') Thus the domain conversion
from DATE to jULlANJ)ATE can be used to effect the dalred Jassignment.

The genenl rule for an assignment which taku the entry in a column (A) and
assigns it as the new value of an entry in another colum (B) isas follows:

LIfA and B haye the same underlylng domaln. the ment is p«formed with no

convemon.

2. If A and B have different underlying domaim, then:
a. ifa domain oonvmion exists from At B, thcconvemm is used to uffect
the assignment, _
b. if no such conversion exists, the aulgnmuu is not allowcd.

Semantic Integrity Specification 44

5. STRUCTURED OPERATIONS

A very important aspect of data base semantic integrity is the set of operations a user
may employ to examine and manipulate the data base. It is possible to describe a user’s
view of a data base as consisting of data structures plus operations. Alternatively, one may

conceptually characterize the user’s abstract view completely by a set of abstract operations,

as is done in abstract data types [Liskov 1974). These operations provide a behavioral
specif iétion of the semantics of the data base.

For these reasons, the co}lcept of a structured operation is included in our approach
to semantic integrity. The principal purpose of a structured operation is to embody a
conceptual data base transaction: an action which. is meaningful and permissible in the
‘context of the application environment. For the example data base of figure 1-2, structured
operations may include: hire_employee, fire_employee, raise_salary, place_order,

create_new_department, etc.

5.1. Semantic Integrity Information in Structured Operations

One approach to preserving the semantic integrity of a data base is impose the
restriction that the operations that may be performed on a data base are only those in some
given set. This set of operations should be defined so that it contains only meaningful
actions. However, the approach of allowing only semantically meaningful operations has
several problems:

1. Operations which are not semantically meaningful in the context of the application

environment must be allowed, e.g., to permit errors to be corrected.

2. The set of operations that are to be allowed may depend upon some characteristics

of the data base state. For example, the set of operations Ol may be legal if the data

Semantic Imegmy Specxficatlon 45

base is ln state Sl, but if the data base is in state 82. thegt nf leg;l operations may
be O2. ' '

8. The uses of a data basé are not fixed, but rather evolve with time. Operations
change and new operations need to be created. 1f the sd'mntrc lntezrlty information
is embedded in these operations, & scan of iﬁ diﬁ” operitions
to make such modifications.

4. Often data is maintained in a data bm bafore uses for it aré ducovmd Tbus it
is difficult to characteriie the data via a behaviaral mmiu approach. ln some Q,
sense the semantics of the data is known, but the uwm of Jh‘ uuti opemiom

'may be neoessary:

on that data is not.

5.2. The Definition of Structured Operations L

Despite the problems mentioned above, it is impomnt to be able to define a set of
abstract ope(;tions ona g;lvatn_ base. To this end, we allow structured operations to be
defined. Structured operations are cansiructed using: |

L. the primitive data base operations (eg., see figure I'8), |

2. statements in a very high level data. wm_(quqy) and data m‘ogmmdon

language, such as SEQUEL (or QUEL or. Query hy Example).
Structured operatlom are ordered lists of: primmve mndom, gtg.tqments in a data
selection and modification language, and previously defined. structured operations.
Allowing prevluusly' defined structured operations within ne:w;:”bpe}itmni enables a
hierarchic organization. ’ R o

'For the example data base of ﬂgure 12, a structured’ opmuon to raise an emptoyees
salary could be defined: ' R

Semantic Integrity Specification 46

operation raise_salary (employee_name, new_salary)
update EMP
where Name = employee_name
Salary = new_salary
This structured operation consists of a single SEQUEL-like statement, which updates the
Salary column of the tuple in EMP with a value in the Name column equal to the first
parameter of the operation (presumably there is one such tuple). The new Salary value is
specified as the second parameter.
Consider an operation to place an order (again in the context of the example data
base of figure 1-2):
operation place_order (customer_id, item_id)
insert_tuple (ORDERS)
Item = item_id
Customer = customer_jid
Date_shipped = date()
Order_number = generate_order_number()
In this example operation, a tuple consisting of all null values is first created, and then its
columns are given values. Note that two external procedures are called, one to return the
current date and the other to generate a unique order number. The types of names
(identifiers) used in the definition of the operation include those of parameters, a relation,
columns, and external procedures.
The operation check _credit_and_order could be defined as:
operation check_credit_and_order (customer_id, item_id)
if check_credit (customer_id)
then place_order (customer, item)
else error
The operations check_credit and place_order used in this definition are assumed to have
been previously defined. Note that this operation contains a conditional expression: a
useful construct we may include in the structured operation language. This of course
motivates the need for other types of constructs, eg. for iteration. We may for instance

want to have an operation that takes an arbitrary number of items as parameters and

Semantic Integrity Specification 47

places an order for each.

Thus, in general, it might be desirable to have a structured operation language which
has:many of the capabilities of a general purpose programming language.” We could
consequently allaw structured open_uons to-be written in m‘tdghilwel general purpese
programming language. The detalls of this are ot persued hore. .~ -

One important point to note in passing, is that: structiured operations are important
with regard to the specification of when relation constraint assertions’are to hold (be
checked). This is furthes discused in chapter 8.

Semantic Integrity Specification 48

8. RELATION CONSTRAINTS

The fourth aspect of semantic integrity in a-relational data base system concerns
relation constraints. In this chapter, the requirements:for: relation constraints are detailed,
and an approach to their specification is-presented.

‘Codd [Codd 197lb, Codd .197ick has identified. the "third normal form™ of refations
[Codd 1974a) "A relation. R is in third normal form if it.és dn-first normal form and, for
every attribute collection C of R, if any attribute not in € is functionally: dependent on C,
then all attributes in R are funttionally dependent on C.” Third normal f orm facilitates the
straightforward expression of some types of relation constraints, namely functional
dependencies. But the class of data properties describable via functional dependencies is
limited. B

Boyce and Chamberlin [Boyce 1973a) observed thgt a high level language, such as
SEQUEL [Chamberlin 1974b, Chamberlin 1975], may be used as a vehicle for the expression
of data properties other than functional dependencies. SEQUEL expressions were shown
to be useful in expressing such types of properties as “uniqueness of key", “functional
dependency”, "validity check”, and "inter-relational constraints”. ,

The integrity assertions of SEQUEL [Boyce 1973%a, Eswaran 1975), INGRES
(Stonebraker 1974c], and Query by Example (Zloof 1975b] are used to express varied types .
of data properties. However, these facilities basically provide for the unstructured
specification of arbitrary predicates. Although the assertion expression capabilities of
SEQUEL and INGRES are “complete”, they do not allow for the analysis of the types of
possible assertions. | | _

Fhrthermore. the assertions of SEQUEL and INGRES are rather inflexible with
regard to when they are to hold, and what action is to occur if they do not. In SEQUEL

Semantic Integrity Specification 49

and INGRES, if a data base change is specified which would: cause some assertion-to be
violated, the data base change is immediately rejected.and an error signaled [Eswaran 1975,
or the data base change is modified such that the assertion will be satisfied {Stomebraker
1975c1.

- In respanse to this latter objection, a. relation. mis herein defined as an
abstract statement, having three components:

1. the agsertion (a pmpmy).which lsapmuanthemd thcdanbmnr on

transitions between data base states,

2. the validity requiremert, which sptdﬁiu the aecasion(s) at which the-assertion is to

hold, e ' ,

S.they M which s the action that.is to occur: if the assertion Is not

saumedataﬂmﬂwhen it should be.

In respanse to the former.objection, a detailed chassification of: relation constraints is
presented below. The emphasis is placed on providing a structured framework, which may
be used to construct a high-level, :abmbaad, uﬁ-dhtud. i,ﬂd%\dﬁdpunedwrehtion
constraint specification methodology. In so deing; & principiligoal is:to impose some
structure on the problem of mne errors in data bases. In this approach; it-is. important
to keep “an eye &owa:d implementation”, although no specific mmaldm"um!dmtions

are included in this thesis.

6.1. Whither Assertion Structure?

We subscribe to the view that the assertion. component of a data base relation
constraint should nat be viewed as an arbitrary predicate of the first-order predicate
calculus, ranging over tuples of the relations of a data base. Rather, every assertion should

have a well-defined, uniform structure. There are several advantages to taking a

Semantic Integrity Specification 50

disciplined approach to assertion expression:
1. It provides the ‘data base administrater (or other -uthority responsible for
expressing the constraints) with a conceptual framework in terms of which to
organlzé his thinking and structure the formulation of assertion specifications.
Reducing abstract, problem-ariented limitations on’¢onfigurations of the application
environment to concrete restrictions on’vilies i’ the datx base is essentially a
programeming problem. By providing the “prograviirhet
general framework for his problem, it is possible to-significantly ease his task.
2. The issues of constraint specification’ which-ate’ aitd

*with a theoretical and

\¥y' 10 assertion expression,

namely the validity réqulrement and violation-action, cannot be satisfactorily
addressed in the absesice of the kind of strucwré proposed hetdin. The degree to
u;hlch a semantic integrity subsystem can respond Minteltgently” to a constraint
violation depends upen how wall the formalatien-ofithis constraint ¢aptures the intent
of tsexpressor. - = e
3. A useful conceptual framework for assertions will ‘ptovide some measure of the
complexity of: individual assertions, providing thile' sieprissor with a gulde to the cost
of their implementation. Indeed, the' sructore e a sisistioh can’ be used by ‘an
- implementation facility as.a guide to the: stravegy for the: ifiplementation of its
checking. o o
It is important to note that insuring that there is a single, unique specification of a
given conceptual constraint is not a major objective here. Rather, théemphasis is placed
on encouraging a "reasonable” formulation; one- which: accurutely models the application
environment abstraction and which is useable by an imphientation Taeiity. . -

Semantic Integrity Specification 51

6.2. Relation Constraint Assertions

The assertion component of a selation constraint is & logicsl predicate on the state of
the data base or transitions between data base states. It expresses somié semantic property of
the data base. | L

Each assertion is either a gimple assertion or a° combination of simple assertions (a
derived assertion). Simple assertions may be combined: using booléan operators and ether
connectors (such as “if thea else”). The remainder of this: section:'deals with simple
assertions; the generalization to derived assertions. is moweor-iess straighiforward. ‘When
no ambiguity is possible, "assertion” will be-used in plage of "simple assertion”

6.21 Simple Assertions

Every (simple) assertion may be viewsd as dalimiting cortain values of the data base
in terms of certain others. That is; an assertion: does not merely express some relationship
among different values in the data base. Rather, it singles sut certiln\-valués. and ‘identifies
them as being the constraiged gdata of the predicate. The-predicate delimits the legal values
of the constrained data in terms of the constraining date. Thus; every assertion constrains
some data with respect to some other; the two are'not béing bmwmi‘y restricted.

As a consequence, there are wo distingt steps in the predess of mﬁ’ng an assertion:

1. The data that is being constrained is described. - THis description is accomplished

in two sequential substeps, in Which the following are identified:

a. the set of all data objects in the data base that are being restricted (the -

constrained collection),
b. the precise aspect of each of these data objects that is being delimited (the

restricted expression).
Part a of step 1 utilizes data selection predicates. The predicate expression

Semantic Integrity Specification 52

capabilities of any data selection or query language may be-adspted to accomplish

this task [Chamberlin .1974h, Chamberlin - 1975, Cadd: KWHa, Codd 187, -Hall 1975,

McLeod 1976c, Held 1975h, Zloof 1974, Zloof 876a).+For-example, consider the

assertion that the salary of each employee in the sales department is less than the

sala:rx.‘of,hu,«mamgg:.-’\ Here, the .constrained collegtion: conaists of those tuples in
relation EMP which -have "smles” in the Department; calymn. The restricted
expression. is. the, Salary. eatry of .each such-iuple.. The mecessity of first identifying
_ the canstrained, collection asd then the; ressicted. sxpression s occasioned by more

rich and complex assertions, »s discussed-below. - “» s won o

2. The actual predicate of the assertion is stated, which asserts a restriction on the -

value of the restricted expression for each-member of the constrained collection. The

. predicates used. therein. -aré msmm ‘i -general, this restriction
depends on other qa:ainthe data base.. The ather data which participates in the
assertion is called the constraining daa, and:the exgression which computes the
precise delimiting. value.is called the. resiricting sxgesiuag. For example, for the
assertion above,.the constraining data. (for. each tuple).is she;tuple in relation EMP
whose Name entry: aquals the Manager entry. of the-constrained: tuple; the restricting -
expression is-the Salary entry of the constraining tuple, - o0 .-

Figure 6-1 contains same examples of simple assertions.. For each assertion, the
constrained collection and assertion predicate are identified. . Nete that the "language” used
to specify the assertion. predmtesu intended only to:be. illustrative, but is more-or-less
consistent with the "level” of (and directly translatable. inte) relational data selection
languages such as SEQUEL, QUEL, and Query by Example. . - =

Semantic Integrity Specification 58

6.22. Identification of the Constrained Collection
As introduced above, the first step in the specification of an assertion is. the

identifiaﬁon of the oonstrained golle;t;on: ,th§t whtch u cmcep;u;lly beiqg ‘d,‘elimited by
the assertion. In general, the constrained mlleaxon is a coliection of data ob jects, and the
assertion applies to each of them. In this sense, wmmﬁmi;;n:ffm an assertion
schema, which is instantiated for each slement of the. consrained collegion,

~ An assertion may either express a _property of an individual tuple(a tuple assertion),
or a property of a set of tuples considered as 3 whole @ &w In ﬁgure 6-1,
examples I-4 are tuple usemom, while examples 3-8 are set usenlons. : o

The constrained collection for a tuple assertion is a collection -of tuplo.s. to e;sh of

which the ammon ‘applies. Tha comtmned coueaim for am apserttaﬂ.y dmhrly. is a
callection of ' sets of tuples. Tbemmemon Agpuummhmplggqtlnthemnmlned
collection. An impartant (and frequent) special. case of 2. set assertion, is that in.which the
canstrained collection consists of a single ssc. Note the diffarence between this spacial case
and a tuple assertion: in the former, the asertion agplies tp the fupie set a3.3 whale, while
in the fatter it applies to each individual member of Qt. Thus, in gxa ‘C L.the constrained
eoilec:;o,n has many elemenss, each of which is a tuple.of the EMP relation; in example 5,
the consirained collection cenists of & single element, which is. the entire EMP, relatign; in
example 6.‘the constrained collection has sevenlehmum,mh o(‘ which is 2 subset of the
EMP relation, | |

Both for mphmdmumongwmwmmmmmqm begins with

identifying some set of tuples (called the updeslying relpsion of the assertion). This tuple
st can then be manipulated by means of data selection predicates, wa uimately define the.

constrained collection. : : . .
The underlying relation of an assertion need not be a relation defined as part of the

Semantic Integrity Specification 54

data base. In general, it may be any of the following:
1. a base relation (a relation explicitly present in the set of data base relations),
2. the cross pro&utt of two or rfiore base’ rdanons, i -
8. the unlon of two or miore base relations,
4. the cross pro@uct of tWo of mére rehations of typa Lands, a feast ane of which s
net & base refation, | | '
5. any relation whith ¢an be defined in térms of base rélations, not included in the
above (these relations ‘ay be’ consiructed using the vurious ‘selection ‘criteria and
 retrieval operators of 'a dataselection faniguiage)." o
For example, EMP is'% relation of type I EMP tross BUDGET is of type 2. An example of
a’relation 'of tjpé s Would' bé the Uintoh of relitiois’ CORRENT EMP and OLD_EMP
(where both hive the' skmd Striserure aizm)”mwmpﬁ&% i relation of type 5 is
SAL_T'OTAL (Départiient; Sain_sslaties); Where Suin_sktiiriés {5 the sum of the salaries of -
employees working for thé assoctited départment 7 7T T

The foregoing' classification of underlying relations is'tn ‘order of increasing
complexity, and exhibits the differenit Xinds of pebutibné to Whieh akseriions may apply. It
is ImpOrtait to observe that'sn axserfioh- Kedd riok nwf&a*s *r&tféﬂ éﬁ’pﬂcitfy presém (1
the data base’ but may hold fora’ deptved retifor: » -5 77 0 |

Once the underlying-relation is defined, the precise specification of the can‘Strdii‘iéd '
colfection can be accomphished. Tn the case'of tiple skertibhs; the constixined coftection is
obtained: from the ‘thderlying: retarion by wiéans ‘of “Bita Yetection predicates. The
commplexity of the selectionprocess cani’ be-described’ interms bf the opérators of the data”
selection language. Selection of the constrained collection is a problem in‘“the Sl:n'n:ﬂ‘tcmfi('mT
of a relation. ’ e &

However, in the case of set assertions, there is a need to specify a collection of tuple

Semantic Integrity Specification 55

sets; each such set is a member of the constrained collection. For illustration, consider the
following tentative taxdnomy of the first stage of the specification pracess for a constrained
collection which consists of tuple sets:
L. The constrained collection may oontain a single set of mples, Selected from the
underlying relation. (sigple sst)
2. A set of tuples n»\ax_be selected from the underlying relation, and then divided into
groups, eg., by common value in one or more tolymns or by: intervals of column
values (such as 21 < Age < 30, 31 < Age < 40, etc), Certain of these groups may then
be chosen based on proi:ertlgs they possess. The ﬁcgn:szmingg collection is thus a
collection of tuple sets, namely the grohps that were..fd chasen. The assertion then
applies to each tuplc set in the constrained callection.. (grpuped set)
3. A set of tuples may be selected from the underlying relation, and those subsets of it
which satisfy a specified property are chosen. An example.of such a property might
be that the number of tupks,in the subset equals three. These chosen subsets
comprise the constrained collection, and the assertion is applied cq each of them.
(property-defined set |
There is a naticeable degree of flexibility in the faregoing framework for ideﬁtifying
the constrained collection, in that it does not impase a rigid specification methodolagy on
the expressor of assertions. The criterion of completeness would not demand all the options
for the underlying relation allowed above; it is clear that any assertion can.be satisfactorily
specified by letting the underlying relation be the cross praduct of all the base relations and
performing various operations thereon to compute the constrained collection. However, in
many instances such an ‘Mg‘ approach would be cumbersome and unnatural. It
might be more convenient to follow a "top-down”, step-by-step approach and define a.

sequence of derived relations, the last of which is the underlying relation. This can

Semantic Integrity Specification 56

facilitate the straightforward expression of the assettion.
Consider the following wssertion: thé'sum of ‘salaries 6f° employees of each
department is less than the budget of that department. An all-at-once approach to
expressing this assertion would proceed to identify thé constrained coltectlon as the set of
tuples in EMP, grouped by common Department (grouged stk *Tle restrictéd expression
would be the ‘sum of the Salasies:(for ‘each group). The dssértidn predicate is then
“sum(Salary) < BUDGET Salary_budget whete BUDCET.Deépartment =
common._valise_of (Department) (in the constrainied iplé #)". “Fhus the constraining data
is the tuple in' BUBGET having the Department colushh etitry éqdil to the common value
of the entrits in"the Departmefit column for the-constrathdd’ wiple sét, 'éind’:ﬁé‘ restricting
expression is the Sahrymcolumn entry of the ’cﬁm ﬁlpfe. |
 A'top-down, stép-bystép approach to the skphésifoli 6F éhe above assertion may
proceed by noting that the assértion could b eipreised ‘A upié Alkerion, If there existed
a relation of ‘the form DEPART MtNTSz';(Biﬁfiﬂiéﬁ v‘ﬁﬁﬁiﬁfﬁﬁ\ﬁiﬂiiﬂries,
Salary_budget). If such afelation’existéd, the constteingd Gotlectioh would be each tuple in
relation DEPARTMENTS. The restricted expressién would“be: the column entry
Sum_of _emp_salaries. - Theé assertion” predicate” wodtd “be "Stm_of ‘emp_salaries <
Salary_budget”. -Heére the réRricting expression is the' coluttin efftry’ Sa?d‘y_b\!dget in ‘the
oiduaes o 'mpkm e :
However; the relaton DEPARTMENTS does' not edist “Consequently, it is necessary
to specify how it 13 to'be deérivedfrom existing base réfations. “Fhe uAiderlying relation of
the constrained collectivn 1s thus'a dérived relation, |.e; thé relition DEPARTMENTS. A
data selection: fangtiagé Wolsld be used to construct this ¢
specification could be n s SEQUEL-like lafiguages

constrained tuple; and the constraining duta is the'

ton; ‘for example, the

Semantic Integrity Specification 57

DEPARTMENTS (Department, Sum_of _emp_salaries, Salary_budget) =
select EMP.Department, sum(EMP.Salary), BUDGET .Salary_budget
from EMP, BUDGET
where EMP.Department = BUDGET .Department
group by EMP.Department
6.2.3. Tuple Assertions
It is now appropriate to examine more closely the structure of tuple assertions. In this
case, the constrained collection is a collection of tuples, obtained from the underlying

relation by the application of data selection predicates. The assertion predicate then applies

to each individual tuple in the.constrained collection. Tuple predicates are used to specify
tuple assertions. The restricted expression defines that aspect of each constrained tuple that
is being delimited. In the simplest case, the restricted expression is some column name of
the underlying relation. More generally, it may be an expression: an appropriate
.combination of column names, system-provided operators, and user-defined operators.

It may be possible to formulate a given conceptual assertion in different ways, with
different restricted expressions. For example, though the tuple assertions "Credit_line -
Debt < 50000" and "Credit_line < Debt + 50000" are logically equivalent, in the former case
the restricted expression is "Credit_line - Debt", while in the latter case it is just
"Credit_line". This flexibility enables the assertion expressor to precisely identify which
data values are to be regarded as dominant, and which as subordinate. In the first case, it
~is a combination of the entries Credit_line and Debt that is being delimited, while in the
latter case it is simply the Credit_line entry. This distinction contributes to the abstraction
power of assertion expression, and has implications for the implementation of constraints
and for the actions that are to be taken upon the detection of an assertion violation.

The value which delimits the restricted expression is the restricting expression, which
is computed from some data values which may reside anywhere in the data base. In

particular, these data values (the constraining data) may be outside the constrained tuple.

Semantic Integrity Specification 58

Tuple predicates may be classified on the basis of the ,r'ehﬂon;hi"p between the
constrained collectlon and the constraining data: ’

L. A tuple predicate is local (L) if the constraining dm is pment in the constrained.

tuple. That is, for a local tuple predicate, all data referenced in the predicate is.

within the constrained tuple itself. v o “

2. A tuple predicate is nonlocal independent (NI) if the constraining data is data

selected from elsewhere in the data base, but whose selection does not depend on any

data in the constrained tuple.

3. A tuple predicate is n __gg____ dependent (ND) if the selection of the constralningb

data does depend on data in the constrained tuple. 7
In figure 6-1, examples 1 and 4 involve L-type tuple predicates, example 2 is an Nl-type
tuple predicate, and example 3 is an ND-type tuple predicate. .

This classification is in order of irlxc-reasing complexity. For L-type tuple predicates,
one has only to look at the constrained tuple to denermine_ the restricting expression; the
constraining data is present in the constrained tuple itself.- For type-NI thple predicates,
this is no longer the case. The restricting expression is now computed from data arbitrarily
located in the data base, not confined :5 the constralneq tup,le. However. the data from
which the restricting expression is computed is the same for each tuple in the constrained
collection. Thus the restrictiné expression admits of a one-time computation, with the result
being used for each constrained tuple. For type-ND tuple predicates, the computation of
the restricting expression depends on data in the constrained tﬁple. It is therefore necessary
to recompute the restricting expression for each indiﬁdual constrained tuple.

There are two d‘imensions. by which we classify local tuple predicates. The first
dimension measures the complexity .of the restricting expression, and has three levels:

L. The restricted expression is compared via a scalar comparator to a constant, a single

Semantic Integrity Specification 59

column entry from the constrained tuple, or an expression involving several calumn

entries from the constrained tuple. (types 1-3)

2. The restricted expression is compared via a set comparator to a set of constants, a

set of column entries from the constrained tuple, a set of single-valued expressions

computed from entries from the constrained tuple, or some expression which yields a

set of values and depends on entries in the constrained tuple. (types 4-7)

8. The restricted expression is compared via a set comparator to a set of constant

tuples, a set of tuples involving entries from the constrained tuple, a set of tuples

~ composed of single-valued expressions computed from entries from the constrained

tuple, or some expression which yields a set of tuples and depends on entries in the

constrained tuple. (types 8-11)

The second dimension reflects the complexity of the restricted expression, and also
has three levels:

a. For types 1-7, the restricted expression is a column entry in the constrained tuple.

For types 8-1i, it is a subtuple of the constrained tuple.

b. The restricted expression is a single-valued expression. For types 1-7, the restricted

expression is computed from column entries in the constrained tuple, and yields a

scalar value. For types 8-ll, it yields a tuple composed of such column entry

expressions.

. The restricted expression is a set-valued expression. For types 4-7, it yields a set of

scalars. For types 8-11, it yields a set of tuples. (This level does not apply to types 1-3.)

Figure 6-2 illustrates this classification for local tuple predicates of types la-lla.
Consider the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying
domain real number and columns D, E, and F have underlying domain character string).

Some examples of local tuple predicates may be classified, as follows:

Semantic Integrity Specification 60

L A <15 (la),

2. A <B (22),

8. A < B/C (3a),

4. Atsin {"x", "y", "2"} (4a),

5. A is in {"x", E, F} (6a)

(This means that, for each constrained tuple, the entry in column A is in the set

containing the constant “x" and the entries in columns E and F) |

6.(D, E) isin {(‘x" "y") 2",)} (10a) -

(This means that for each constrained tuple, thc subtuple consnstmg of the entries

from columns Dand E equals either the tuple (“x" "y), or a tuple whose first

component is "z" and whose second component is the F entry of the comtramed

tuple.),) A -

7. A+ B <C(2b),

8. A+Bisin{Cs+1,Co+2 C +3(6b)

8. {D, E} intersect {"w", "x"} contains y" "z"} (4c)

(This means that the intersection of the sets mnsistiog of the entries'in columns D

and E ood the constants "w" and ';x'. is a superset of th; scficuntaining" the constants

"y" and "z) | o

As for local tuple predicates, nonlocal tuple predicates may be classified on two
dimensions. The first dimension _again consists of three levels:

I. The restricted ex}iiessioo is compared via a scalar compacator to a a single-valued

expression, which yields a scalar value (and whnch is computed f rom data elsewhere

in the data base) (type D

2. The restricted expression is compared via a set comparator to a set-valued

expression, which yields a set of scalars. (type 2)

Semantic Integrity Specification 6l

8. The restricted expression is compared via a set comparafor to a set-valued

expression, which yieids a set of tuples (type 3)

Ag'ain. the ueond dimension consists of three levels. | _ : ‘

a. l‘-'or types 1-2. the restricted expressson is 2 ooiumn entry Eor t,ype S.itisa tupie

of entries which constitutes a subtuple of the constrained mple. . L
| b. The restricted expression is a smgie-vaiued expression For types 1-2 this
expression is computed from entries in the constrpined tupie and }ields a scalar. For
type 3,it yields a tupie composed of such column entry expmsions. , .
¢. The restricted expression isa set-vaiued expression For type 2, it yieids a set of

scalars. For type s, it yieids a set of tupies. (’rhis ievei does not spply to type l.)
 Figure 68 illustrates this classification for nonlocal tuple prediates of types la-Sa.

Note that the compumion of the restricting expmsion (suhrval or setyal) is independent
of the constrained tupie for Nl-type tupie predicates. but dependmt for ND'type prediates.
The data selection hnguage must now serve the added roie of identit‘ying the constraining
data. For this reason, the ciassification Is coarser for nonlocal tupie predicates thap for

local tuple predicates.

6.2.4. Set Assertions }

For set assertions, the constrained coiiection isa collection of tuple sets, obtained from
the underlying reiation, as discussed in section 622 The assertion prediate then applie,s to
each tuple set in the constnined coliection Set g g are_issed to Specify set assertions,
The restricted expression is that aspect of each constramed tupie set that is being delimited.
In the simpiest case, the restricted expression is the set of entries in some column of the
underiymg reiation (eg, the set of Salary entries m EMP) Mqrg generaily. it may be an

expression: an appropriate combmation of coiumn names, system-provsded operators, and

Semantic Integrity Specification 62

user-defined operators. These operators include aggregate arithmetic operators which are
applied to sets of values. &

As for tuple assertions, the restricting expression is the value that delimits the
restricted expression. The constraining data may be, in general, data anywhere in the data
base. Again, as for tuple assertions, it may be possible to express a given conceptual set
assertion in several ways.

Set predicates may be classified on the basis of the relationship between the
constrained collection and the constraining data: |

1. A set predicate is local (L) if the constraining data is present in the constrained

tuple set. That is, the restricting expression may be computed solely from the

constrained tuple set.

2. A set predicate is nonlocal independent (NI) if the constraining data is data

selected from elsewhere in the data base, but where this selection does not depend
upon the constrained tuple set.

3. A set prgdicate is nonlocal dependent (ND) if the selection of the constraining data

does depend upon the constrained tuple set.

In figure 6-1, examples 6 and 8 are L-type set predicates, and examples 5 and 7 are NI-type
set predicates.

As for tuple predicates, there are two dimensions on which local set predicates may be
classified. One dimension reflects the complexity of the restricting expression, and the
other reflects the complexity of the restricted expression. The first dimension has four
levels:

I. The restricted expression is compared via a scalar comparator to a constant, an

aggregate function of the entries in some column of the constrained tuple set, or an

expression involving several such aggregates. (types 1-3)

Semantic Integrity Specification 63

2. As in |, except that the aggregate functions in the constraining expression are not
computed for a set of scalars, but for a set of tuples; namely, the collection of
subtuples obtained by projecting the constrained tuple set onto two or more columns.
(types 4-6)

3. The restricted expression is compared via a set comparator to a set of constants, the
set of entries in some column of the constrained tuple set, or an expression involving
several such sets. (types 7-9)

4. This is analogous to 3 in the same way that 2 is analogous to . That is, the
restricting expression does not deal with scalars, but with sets of subtuples of the
constrained tuple set. (types 10-12)

The second dimension consists of two levels:

a. For types 1-6, the restricted expression is an aggregate function. For types 7-12, it
is an instantiation of the fuhction "set”, which generates the set of values in some
column or the set of subtuéles for some group of columns, taken over the constrained
tuple set.

b. For types 1-6, the restricted expression is a single-valued expression computed
from two or more of the aggregate functions described above. For types 7-12, it is a
set-valued expression, computed from two or more instantiations of “set”, as described

above.

A special type of local set predicates, the column relationship predicates, are not

included in the above scheme. Column relationship predicates are used to express
properties such as one-to-one correspondences and functional dependencies. To state a
column relationship predicate, two groups of column names from the constrained tijple set
are specified. The relationsvhip between these two groups of columns is then stated. For

example, one may state that for the relation R (A, B, C, D, E, F), there is a one-to-one

Semantic Integrity Specification 64

correspondence between the column A and the column group (B, C). This means that there
is a one-to-one relationship between the entry in column A and the subtuple formed from
the entries in columns B and C. Note that column relationship predicates are always local.

Figure 6-4 illustrates this classification for local set predicates, types la-16a. For
example, for the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying
domain real number and columns D, E, and F have underlying domain character string),
various local set predicates may be classified, as follows:

L avg(A) < 15 (1a),

2. avg(A) < sum(B) (2a), °

8. count(D, E) < 50 (4a)

(This means that the number of tuples in the relation formed by projecting the

constrained tuple set on columns D and E is less than 50.),

4. set(D) contains {"x", “y", “z"} (7a),

5. set(D) properly contains set(E) union {"y", 2"} (%a),

6. set(D, E) is in {("w", "x"), ("y", "z")} (10a)

(This means that the set of tuples obtained by projecting on columns D and E is a

subset of the set of constant tuples containing ("w", "x") and e X

7. D one-to-one (E, F) (14a),

8. set (D) union set (E) is in set (F) (8b).

Nonlocal set predicates may be similarly classified. ' The first dimension has three
levels: "

1. The restricted expressi'ori is compared via a scalar comparator to a single-valued

expression, which yields a scalar value (and which is computed from some data in the

data base) (types 1-2).

2. The restricted expression is compared via a set comparator to a set-valued

Semantic !nugﬂty Specification 65

expression, which yields a set of scalars. (type 3). e

3 The“ rgstrlctgci expression is compared via a set comparator to a set-valued

expréssion. wﬁich yields a set of tﬁples. (type 4)

The second dimemion consists of two levels:) . : _—

a. For typeo 12, the restricted expression is.an wfuactj;om For typa it s

an instantiation of the function. “set”, which ganerases the sat of valuas in: some

column or the set of subtuples for some group of columps, taken aver the mnmimd

tt'lple~set.. | e LT
ued axpression computed

from two or more of the aggreg;te functm; dquhed Ahpvq. For types 34, itisa

b. For types -2, the restricted expression is.a. sing]

set-valued expression, computed from two.or, more instas
above. N
Figure 6-5 illustntes tl'us two dimensxonal classiﬂq:}gn for types] la-h. hlote that:the

computanon of the restrtctlng expresslon (scalarval or, }evgl) is lndc,,pendem of the

constrained typle set for NI-type sef predicates, bus dependent for ND-type predicates.

6.2.5 Scope of Assertions . N L ‘

It was stated in section 6.2.2 that each assertion is actuajl! an_ assertion sche.ma. an
assertion is instantiated for and applies to each element of the constrained collectiqn. But
there is another sense in which an assertion may be viewed as a schema. This is by
allowing described rather than explicit refmqggg@ relation and colymn names within an
assertion. o ‘ |

It may be desirable to state a second order assertlon. eg e;ch colnmn in some
relation of the data base which has underlymg domtn NAME must be a subset of the

Name column in relation EMP. This may be handled by,alvlgwing_co!,umn names. (and.

Semantic Integrity Specification 66

relation names) to be variables which range over the set of all columns or relations in the
data base (or some tpedﬁed subset thereof). This is basicilly 4 univérsal quantification of
second order. ' - R |

Without proposing a specific detailed solution to this problem of explicit scope vs.
described- scope, we may observe that such a solution must facilitate a sécﬁnd order
quantification, on'a:kveltabo‘ve» the constrained collection. ConSider the assertion that, for
each column in the data base named Cl, every pair of entries in this column sums to less
than 100. Here the constrained collection is a set of pairs of tuples. The property must hold
for each' element of the constrained collection. Furthermore, the assértion actually appnes to
each element in a set of constrained collections, viz., onewd-n constrained ooliection for each
column’ (in the data base) which is named Cl.

It has been stated that the scope of a relation constraint assertion can either be
explicit (apply to relations and columns which are constanits) or described (apply to relations
and columns which are variables whose rangbs”ii‘e desc"x‘ibed‘)v.. It is certainly valid to
question the desirability And‘pncucatliy of assertionsvmh ducﬂbedscope, and we shall not
take a position on this matter here. Rather, for the purposes of the remainder of this
thesis, it is sufficient to assume that we are dealing with usertions having expliclt scope,
although we believe that the extension to assertions having described scope is

straightforward.

6.3. Relation Constraint Validity Requirement

Another component of a relation constraint is the validity requirement(s) the
occasion(s) at which the assetion component of the constraint must hold.

One possibility is that an assertion must hold at al times, and consequently must be

checked after any data base change that may cause its viohiion. Such assertions must

Semantic Integrity Specification 67

theoretically be checked (verified) after every primitive data base change (such as update,
insert, or delete tuple).. Assertions actually need 10 be chiecked only if ‘some Value(s) aré’
changed which may cause the auértién to be violited: Some suctess has been achieved in’
automatically determining when an assertion actually needs verification' [Eswaran 1975;-
Stonebraker 1975c]. |

In some cases, it is necessary to specify than an assertion teed not hola during some
complex data base transaction(s), 'because it may not be meaningful to verify the assertion
until after the transaction(s) are compleied. Such assertions are cheécked only at the end of
these transactions. -

Suppose, for example, that there is an assertion for the example data base of figure 1
which states that exactly two employees in the sales department havea safary of more than
$15,000. Assume that at some time the assertioh holds, ‘us ‘employees “Smith” and *Jones”
beth have salary $20000 and work in the sales department. It Is how desired to transfer
employee "Smith" out of the hl«depirtmem. rephacing him with employee "D"avis"’ (with
salary $30,000). If the primitive operations update row, insert row; and delete row are the’
only operations available and the assertion is-clidcked after each prme operation, the
desired change cannot be legally accomplished. Thus the vérification of this assertion must
be deferred until the entire transaction (which consists of two primitive operations) is
completed.

Consequently, it can be semantically necessary and/or desirable”for the constraint’
expressor to specify ‘precisely when an assertion-is to be checked. For reasons of ef ficiency,
it is also important to have the ability to specify that an-assertion need only be checked at

certain Hmited times, because verifying it after every data biise change that could cause its

violation might be catastrophically expensive.

Accordingly, the validity requirement of a relation constraint should be exp.réssed in

 Semantic Integrity Specification 68

terms of structured operations. For example, the validity requirement 6f some assertions
—-might be that the assertion is to be checked after operation raise-s#lary. Each relation
constraint validity requirement should consist of a list of structured operations after which
the assertion component is to be checked. The special validity requirement "always” has the
function of assuring that the assertion will be checked after any data base change that may
cause its violation.

It may be necessary to check one or more relation constraint assertions after each data
base change is attempted (by a structured operation). The simplest type of data base
change is a primitive update, insert, or delete tuple operation. Slightly more complex is the
set-oriented tuple update, insert, or delete which may be expressed in the high level
nonprocedural data selection and modification language (eg. SEQUEL). Since structured
operations are hierarchically organized, it may be necessary to check some assertions after
each hierarchic structured operation. Consider, for example, the structured operation A,
which is defined to have the effect of executing a delete tuple ﬁperation. followed by the
execution of operation B. Operation B consists of a single update tuple operation. It may
then be necessary to check some assertions after the delete tuple operation, after operation
B, after the update tuple operation (in B), and after operation A.

A special treatment of "null” (undefined) values as column entries is required. As
noted by Eswaran and Chamberlin [Eswaran 1975, the checking of a relation constraint
assertion should be such that the presence of "null” values should never cause the assertion
to succeed if it would otherwise fail (be violated), and should never cause it to fail if it
would otherwise succeed. An exception to this rule is made for assertions which explicitly

reference "null®.values (eg., "Sex = null").

Semantic Integrity Specification 69

6.4. Relation Constraint Violation-Action

Associated with every occasion at which an assertion is to be checked, is a violation-
action to be taken if the assertion is not satisfied upon attempted verification. Several types
of violation-action can be specified:
| 1. An error can be signalled, and the requested dats'bsse_thgnge:ge;ead. A message
is issued informing the userv of the problem; _tﬁeinatutg Aoff_,this message may be
explicitly specified as a part of the violation-action, or it may be chosen by the
system. ‘ o v o R
2. A warning can be issued, but the illegal data base change allowed. The user may
be warned with a system-generated message, or & massage specified as part of the
violation-action. The warning may be persistent, in which case it appears whenever
the potentially bad dat is referenced. o | 1
3. A corrective action can be specified, which attempts to repair the error; the
assertion is then rechecked. This approach may be dangerous, but is appropriate in
some cases. There are several types of corrective action:

aa substitute value may be specified to replaoe the offmding data,

b. a structured operation may be performed,

¢ an external procedure may be called. ‘ _
If a corrective violation-action is attempted, the rehtim constraint assertion which
caused its invocation is rechecked after the corrective action is performed. It is
intended that corrected value and structured operation oorrectiveactions handle the
bulk of the corrective violation-action needs. Howevet.}it is possible to call an
external procedure (which is written in;s;ptnek hig;,}l;gg;el general purpose
programming langusge)‘ .; a corrective act.ion.,k This external procedure receives no

special privliges with regard to data base interaction. Tbereare of course other

Semantic Integrity Specification 70

problems which result from permitting such external procedures to be "bsed,hwhic’h

are similar to those disculsed in the context of domaln définifion violation-action (see

section 3.4). (A more far-reaching set of prob:‘“;;“: “of iiiis type is discussed by Minsky

[Minsky 19761) vl

The actual interface which reports relation conseraifit Viofations to the user should
actually allow this user to ¢ontrol the violation-attion. The user should be consulted, if
appropriate. For insmnce, assume that the user Wishes to peri‘&m an opention which gives

employee _]ones a 10% raise in salary. Assume also that there is a relation constraint

assertion which states that the sum of salatles of all the

PE ORI

n each’ departme nt of

Co ek 4R

the company must 'bg fods thiaid the budiet of that d

mefit. §uppose also that this
assertion would be violated if the salafy of *Jones*' s fheres i‘:y 10%. A reasonable

violation-action might be to Vraise the salary of "Jonés*'to "1ts maXimuim | permissible vaiue.
while reporting this to the user and asking for approvai before*a:tuniiy pcrfonning the

’ : Grryd ry f g
action.
e b Lerudy

In this scheme, the vioiation-actions are assochted with the assertiun. they are part
of the relation consuint. This means that vioiation-xction informtion is not a part of the
specification of the structured operations. AII iiii‘ormat'ion ngafding' the chécking of an

5, P i$

assertion is ioaiized in the relation constraint ‘I'his has the ’dgiﬁ‘ﬂie e}fect of eliminating '

bt l‘i il

the arbitrary proceduni embeddlng of viohtion-action information

LR A 3 oheiied S AT il oy oo

8.5, ‘Impfémentationr Considerations
A relation constraint language processor may ‘be used to oompiie reiation constraints

into an internal form. Relation' mnstnints may be added to ‘and deleted from a data base.

(A constraint may be changed by deleting Jt'and sdding a'mm 'Mversion) Adding a

Y

: i.; TEES

relation constraint consists oi‘ its dompiiation and initixi

Normaﬂy the constraint

Semantic Integrity Specification 71

must be satisfied when it is added to the data base.
The internal form into which a relation constraint is compiled is used by the semantic
integrity subsystem to check the integrity of the data base, and to take appropriate action
“which violations are detected. Moreover, the integrity subsystem manages all four aspects

of semantic integrity, as discussed above and in chapter 7.

6.6. Remarks
The principal purpose of this chapter has been to imposevsome structure on the
problem of relation constraint ‘specification in the context of the semantic integrity of a
relational data base. Important issues to be considered in future work include:
1. a detailed analysis of the applicability of specific high level, nonprocedural data
selection languages to assertion specification (eg., SEQUEL, QUEL, or Query by
Example),
2. a complete description of a disciplined specification methodology for relation
constraints (including detailed example(s) of relation constraint specification),
3. specifications of the user interface of the semantic integrity subsystem, vis-a-vis
relation constraints,
4. an a.nalysis of the impact of the semantic integrity subsystem on othsr aspects of
the data base system (e.g., data security),
5. an assessment of the ramifications of various problems concerning relation
constraints, including: |
a. redundancies,
b. contradictions,
¢. circularities (because of correctiQe action side effects),

6. a study of implementation techniques for relation constraint checking.

Semantic Integrity Specification 72

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSYSTEM
The purpose of this chapter is to present some briei' comments on several important
aspects of the design of a semantic integrity subsystem The purpose of such a subsystem is

to manage the semantic integrity of a data base. as indicawd by the semantic integrity

specifications for that data base.

. Components of a Semantic integrity Subsystem T
We propose that a semannc integrity subsystem possess i‘our prmcipal components

L. The semantic gnty anguag grocessor‘\' translate ¢ specifiutions in the high
level semantic integrity linguages into internal f‘orms usef ui to the semantic mtegrity

FRE A

subsystem 'As discussed in this thesis, there are”four semantic integrity languages, for
domain definition relation structure, structured operations. and relation constraints. :

“

‘(Actually, these four langauges may be viewed as sublangusges of a single semantic
integrity language) o)
2 The semantic _gg_r_gy_ b_egke determines which domain definitions and relation

] A i R

constraints need to be cltecked after a given data base change is performed and

performs that checlting

8. The semantic ntggnty violation-actxon grocessor taltes appropriate action when a

domain definition or relation constraint is v;olfatfet;' ey

4. The relation relation constraint compatibility checker is responsible i‘or insuring that the set

of relation constraints currently extant for a data base is free i‘rom contradictions and

other undesirable properties. The compatabiltty checlter may be called by the relation
s

constraint - language processor when addmg 3 new relation constraint. to make sure

that it is acceptable to add it. The problem oi‘ designing and implementmg a

Semantic Integrity Specification 73

compatability checker involves general techniques of deductive inference, automated
theorem provers, etc. Only a very limited compatabimy‘;tgeékcr'coqld be practical at

the present time.

72. The User’s View of the Integ‘rity Mechanism | ,

. It is extremely important to provlde an effective user - dm b&se system interface,
especxally with regard to the creation, muntenance, and reporting ¢ of Semantic tntegruy
information There are actually three ma jor types of uurs wlth whlgh one, needs to be
concerned: ‘ | |

L. the data base administrator (DBA). whxch may in fact be a slngle person or many

person:, whose job is to create and maintain the semantic intcgrity specifications,

2. the nonprogramming user, who deals with the data base by means. of generalized

data selection and modification languges (eg. SEQL)EL. QUEL,. or Query by

Example) _ ‘

3. the applimtibns program, which calls upon data base system facilities. -
Of course, a single person may serve both as a DBA andy a (nonprogramming) user. The
dxstmguxsh the types .of oommummion with tbe semantic inytegri.tx sub;x;tgm w‘hic'h are
necessary. , | | | |

" The DBA should be provided facilities which allow the followmg types of actions:

1. add relation, o

2. delete relation,

8. add domain,

4. delete domain,

5. add structured operation, -

Semantic Integrity Specification 74

6. delete structuréd operati.on.

7. add relation constraint,

8. delete relation constraint.
It should also be possible for a DBA to change the structure of relations, and modify the
definition of domains, structured operations, ‘and relation oonstraints It is furthermore |
desirable to allow the DBA to ask quesnons about the semanttc integrity specxf ications,
especially the relation constraints. For exampte, it should be possible to ask which
constraints may possibly be violated if an entry in a given column BA’C;;nged. or which
constraints have a given column entry as constrained data. |

The nonprogramming user must be proyv'idééﬂ v'with htgh level 'reporting of semantic
integrity violations and violation-actions. In general a (nonprogrammmg) user sees a set of
data structures (domains and relations), a set of structured operations, and a set of relation
constraints. When a dbmain definition or relation constraint is found to be violated, the
user is either informed of this fact or an automatic corrective action is attempted In any
case, it must be’ possnble to provide the user with a high IeVe! crror message The
semantic integrity subsystem must not be completely sﬂent (eg. see [Stonebraker 1974d,
Stohebraker 1975¢]). It must also be possible for the user to interact wlth the semantlc
integrity subsystem to attempt to repaxr an error, should ‘that be appropriate -

The applications program must be provided with capabilities similar to those for
nonprogramming users; but all communication must be accompllshed via protedure call and

return, and message passing protocols.

7.3. Some Thoughts on Integrity Subsystem Implementatlbn
Although a detailed investigation of implementation techmques for semantic integrity

subsystems is an important research topic, little has been done on it to date. Stonebraker

Semantic Integrity Specification 75

and Wang [Stonebraker 1974d, Stonebraker 1975c) have: preposed & very clean “query
modification™ approach. to integrity checking, but this, scheme. has some limitations: (eg., -
some useful types of techpiques for the optimization of integrity checking.are not handled).
Sarin [Sarin 1976] is currently investigating this topic in .same detail. In this thesis, we are--
not principally concerned with the specifics of implementation techniques. However, we
shall discuss a few impartant aspects of semantic iRtegrisy, subsysiem lmplummum

First of all, it is impartant that a data base logging.and backup facility exist. This is
crucial in allowing the actions of a strugiured operation (transaction)-so be "backed out” and
"undone”, if occasioned by the violation of a domain definition or relation constraint.

It is sometimas the case that a data base change will cause several dmmfwinm@m .
and relation. constraints to be checked. (A data base change is accomplished by the
invocation of a primitive or. structured operation,) -A.scheme must bs developed for
determining in what order these are to be checked, One way to hwdk this is to assign
priorities to domain definitions and relation constraints; .this may be done by the DBA ar
automatically by the semantic integrity subsystem. Désnain; definitions should receive
priority over relation constrains (since they are always cbecked after primitive operations),
and the various types of relation constraints can'be ordered by their complexity, importance,
or some other metric.

Since relation constraint checking: is potentially a costly undertaking, it is crucial that
efficient checking techniques be developed. Much-pf the work: on-optimizing data selection
and medifiction languages is relevant. here. Heuristics iay be developed for determining,
on the basis of the patterns éf data base interaction, which access paths and aids to
maintain [Hammer 1876b). One type of useful hauristic. invelves the maintenance of
aggregate values. For example, if there is a relation constraint assertion which: states that

the sum of employee salaries is leis than $100,000, it may be helpful to maintain the sum

Semantic Integrity Specification 76

and update it as necessary, rattier than constantly recalculating ‘it when the assertion is
checked. Other types of heuristics may also prove useful,-eg., deafing with' characteristics
of individual types of physicat storage devices (such as data’ ctustering and page
arrangement), or dealing with the maintentnce and use of inversiohis (indices).

73.1. The Use of Inversions in Relation Constraint Checking (An Example)

As an example ilustrative of the usefulnen of lmemm: in relation constraint
checking, consider an example assertion. Suppose Mtheamm {for the example data
base of figure 1-2) ums that:for uch tuple B in m BWDGET, the entry in the
Satary_buéget mumn (B.Sﬂary_budget) is greater than or equﬁ te the sum of the entries
in the Salary column of the mples in EMP (EL, . En) wmch have Department =
B.Department. Several primitive operations which may' reqhﬁ'e this assertion to-be checked
are listed below, along with the method by which the fitcessary checking may be
accomplished and an indication of which inversions would be helpful in such checking:

L for some tuple B in BUDGET,, Salary_budgetilt changed:

a. find all tuples in EMP (El, .., En) which hawmpmment = B.Department,
b. calculate S « ElSalary + .. « En.Sahry.
C. check that S <= B.Salary_budget,
useful inversions: ‘Department in EMP (for step.a), -
2. for some tuple E in EMP, Salary is changed: - -
a. find all tuples in EMP (Ef; .., En) which ave Department = EDepartment,
b. calculate S = ElSalary + .. + EnSalary,
c. find the tuple in BUDGET (B) which Hes Departrent = EDepartment,
d. check that S <~ BSakary_budget, ' |
useful inversions: Department in EMP (for step a), Department in BUDGET (for

Semantic Integrity Specification 77

step),

3. for some tuple in BUDCET (B), bepartment is éh;ng;d: |

(same as 1),

4. for some tuple in EMP (E), Department is changed,

(same as 2), | " R

5. a new tuple is inserted into BUDGET (B),

‘(sanie as), - |

6. a new tuple is inserted into EMP (E),

(same as 2). | | | _ ‘
In this particular example, no checkmg needs to be‘ done when tuples are deleted f rom.‘
EMP, since that can only cause ﬁther suh '('S)i to dec@. Oof conrse. this is n&t true for all

assertions involving sums of this type.

Semantic Integrity Specification 78

8 REMARKS AND DIRECTIONS

The ma jor purpose of this thesis has been to provide a comprehensive. det:uled
analysis of the issues and problems associated with mamtaining semantic integrity in a
generalized (relational) data base system. The principal emphasis has been on the high
level expression of semantic mtegrity specificatiom The ma jor portion of the work
described herein has been concerned with providing a framork for semantic integrity
specifications. Both the functional requirements for a solution to the semantlc integrity
problem and a specific appmch to providmg such a lolution have been emphasized An
attempt has been made to indicate important directions for further work on semantic
intngriy, v e o | -

By way of conclusion, there are several important general directmnt for thereﬂxte'nsion
of the work described in this thesis. The following are most significant: |

1. an analysis of important integrity specification language design issues (eg., the

usefulness of constructs in fanguages like SEQUEL, QUEL, and Query by Example,

the adequicy of nonprocedural specification methodologies, the importance of
iteration and recursion, etc.),

2. the complete design of a language for semantic integrity specification, including

sublanguages for each of the four aspects of semantic integrity (in the relational data

model),

3. the development of a well-directed, structured, disciplined approach to data base

design (based on the semantic integrity framework), |

4. a comprehensive example of the application of the semantic integrity specification

methodology described herein to a "real” application domain, |

5. the implementation of the semantic integrity subsystem outlined in this thesis,

Semantic Integrity Specification 79

6. an inalysis of the cost of building, minniﬁing, and‘;ggniercing semantic integrity
rules,

7. a study of the relationship of semantic integrity issues with those of security,
concurrent. consistency, and -query processing.(including the use of deductive
techniques), ,
8. an evaluation of the ramifications of separating the four aspects of lntégmy to the
extent described above (6. an analysis of whether it is.necessary to allow the.

information within a domain definition to be referenced. in relation constraint.-
asseﬁlons), and a study of the appropriateness of this approach, - :

9. an evaluation of the applicability of a behavioral approach to the description of

data semantics in an integrated data base environment, ; ‘

10. the extension of the semantic integrity.scheme: to allow multiple "views” of a data -
base, | ; : o7

Il an evaluation of possible extensions to permit a-nanabsolutist approach to integrity |
(involving the notions of q_uantizéd truth and confidence measures [Zadeh 1975)),

12. a study of the ability of the approach to the semantic integrity problem described

in this thesis to improve the overall effectiveness of a data base system.

‘Semantic Integrity Specification 80

"~ REFERENCES AND BIBLIOGRAPHY

[Abrial 1974] |
Abrial, J. R, "Data Semantics”, Data Base Managehtﬁt.‘Norfh Holland, 1974.

[Aliman 1975}

Allman, E, M. Stonebnker. and G. Held, Embedding a Rthtinnﬁl Data Sublanguage ina
General Purpose Programming Language, Electronics Résearch” Labotitory iepon ERL-
M564, University of California; Berkeley CA, 10 October 1975,

[Aliman 1976)

Aliman, E., M. Stonebraker, and G. Held, ‘Embéddfngi’ Relational Data Sublanguage in a
General Purpose Programming Language”, Proceedings sﬁf ACM SIGPLAN/SICMOD
Conference on Data: Abstraction, Definition, and Stiticture, Sak Lake City UT, 22-24
March 1976. | - '

[Armstrong 1974]
Armstrong, W. W, "Dependency Structures of Data Base Relationships”, Information

Processing 74, North Holland, 1974.

[(Astrahan 1975)

Astrahan, M. M. and D. D. Chamberlin, 'Implementation of a Structured English Query
Language”, Proceedings of ACM SIGMOD International Conference on the Management
of Data, San Jose CA, 14-16 May 1975.

Semantic Integrity Specification 81

[Bachman 1973] ; ,
Bachman. C. W “The. Prognmmer as Navngator (:‘.ommunications of the ACM Volume

Y-
16, Number 11, November 1978,

[Bernstem 1975]
Bernstem P A.. _) R Swemon. and D C. Tsichriuu. A Untﬁad Approach to Functional }
Dependenciu and Relations Proceedings of ACM SIGMOD Inumatlonal Confcrence on'
the Management of Data, San Jose CA, 14-16 May 1

jomer 1973] v
B jomer. D, E. F. Codd, K. L. Deckert, and 1 L nger. The Gamma-o N-ary nelacional"
Data Base Interface Spectficatlons of Ob jects and Operations. IBM Research Report_
RJ1200, San Jose CA, 11 April 1973,

[Borgida 1975] i |
Borgida A T., Topics in tbe Undemanding of Englixh Sentenaes by Computer. Technical _
Report 78, Department of Gomputet Science Universlty of Tomm. Toromo. Canada.
February 1975.

[Boyce 1973a] o o o
Boyce, R. F. and D. D. Chamberlin, Using a Structured English Query Language as a Data
Defnition Facility, IBM Research Report R Ji818, San Jose CA, 10 December 1973 i

{Boyce 1973b) \ o e e
Boyce, R. F., D. D. Chamberlin, W. F. King III, and M. M. Hammer, "Specifying Queries as

Semantic Integrity Specification 82

Relational Expressions: SQ_UARE" Proceedlngs of ACM SIGPLAN-SIGIR lnterface
Meeting, Gaithersburg MD, 4-6 November 1978,

{Boyce 1975]

Boyce, R. F., D. D. Chamberhn W.F. King II[, and M. M Hammer. "Specifying Quenes as
Relational Expressions: The SQUARE Data Sublmgnage ' Communications of the ACM 7
Volume 18, Number 1i, November 1975,

[Bracchi 1972)

Bracchi, G. A, A. l-'edelx. and P. Paolim. "A Language for 3 Relational Data Base
Management System Slxth Annual Princeton Conferencc on Information Sciences and
Systems, Princeton N j 23-24 March 1972

[Bracchi 1974)
Bracchi, G., A. Fedeli, and P Paolini, "A Multi-Level Relatlonal Model for Data Base
Managemem Systems Dau Base Managemem. North Holhnd 1971. o

[Cardenas 1975]
Cardenas, A. F., "Analysis and Performance of Inverted Data Base Structures”,

Communications of the ACM, Volume 18, Number 5, May 1975.

[Chamberlin 174a]
lChamberhn D.D,R.F. Boyce, and L. L. Traiger, "A Deadlock-Free Scheme for Resource
Locking in a Data Base Envlronment Informauon Ptoceuing '74 North~Holland 1974.

Semantic Integrity Specification 83

[Chamberlin 1974b]

Chamberlin, D. D. and R. F. Boyce, 'SEQUEL: A Structured English Query Language”,
' Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
" Arbor ML I8 May 1974. " B

[Chamberlin 1675]

Chamberlin, D. D, J. N. Gray, and L L. Traiger, "Views, Authorization, and Locking in a
Relational Data Base System", Proceedings of Nationa! Computer Conference, Anaheim
CA, 19-22 May 1975. ' '

[Chan 1974] |
Chan, A. Y., Automatic Selection of Inversions in an Integrated Data Base Environment, S.
M. thesis proposal, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge MA, 18 December 1974.

[Chen 1975 R

Chen, P. P. S, “The Entity-Relationship Model: Toward a Unified View of Data®, ACM
Transactions on Data Base Systems, Volume 1, Number 1, March 197 (to appear). R
[Codasyl 1971a]

Codasyt Committee on Data System Languages, Codasyl Data Base Task Group Repoff.
ACM, New York NY, 1971. | | |

[Codd 1970)
Codd, E. F., "A Relational Model for Large Shared Data Banks", Communications of the

Semantic Integrity Specification 84

ACM, Volume 13, Number 6, June 1970.

{Codd 1971a)

Codd, E. F, "A Data Base Sublanguage Founded on the Relational Calculus”, Proceedings
of ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA,
197, | |

[Codd 1971b]

Codd, E. F., "Further Norm;lization of the Data Base Relational Model®, Courant
Computer Science Symposia 6, New York NY, 24-25 May 1971, in Data Base Systems,
Prentice Hall, 1971.

[Codd 197Ic] i ;
Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial”, Proceedings of ACM
SIGFIDET Workshop on Data Description, Access, and Contral, San Diego CA, 1971.

[Codd 1971d) S
Codd, E. F., "Relational Completeness of Data Base Sublanguages”, Courant Computer

Science Symposta 6, New York NY, 24-25 May 197, in Data Base Systems, Prentice Hall,
1971

[Codd 1974a]

Codd, E. F., "Recent Investigations in Relational Data Base Systems”, Information

Processing "74, North Holland, 1974.

Semantic Integrity Specification 85

[Codd 1974b] :

Codd, E. F, "Seven Steps to Rendezvous with the:Casual User”, Prooeedings of TFIP TC-2
Working Conference on Data Base Management Systems, Cargese, Corsica, I-5 April 1974;
North Holland, 1974.

(Codd 1974c] , _ .

Codd, E. F. and C, J. Date,.“Interactive. Support for. Non-Progtammaers: The Relational’
and Network Approaches”, Proceedings of ACM SIGFIDET Workshop onData-
Description, Access, and Control, Ann Arbor M1, I-8 May 1974.

[Codd 1975)
Codd, E. F.. A List of References Pertaining to Relationsl Data Base Management, IBM
Research Laboratory, San Jose CA, 1975. - '

[Codd 1975b)

Codd, E. F. (editer), "Implementation of Relational Data Base Management Systems”,
(Transeription of 1975 Natianal Computer Confersnce Panel. Discussion on Retitional Data
Base Management), FDT - Quarterly. Bullecia’of ACM SIGMOD, Volume 7, Nruber -2,
September 1975.

[Conway 1974]
Conway, R. W., W. L. Maxwell, and H. L. Morgan, "A Technique for File Surveillance”,
Information Processing *74, North Holland, 1974. |

[Date 1971a)

Semantic Integrity Specification 86

Date, C. J. and P. Hopewell, "File Definition and Logical Data Independence”, Proceedings
of ACM SICFIDET Workshop on DataDescription, Access; and: Contral, San Diego CA,
7. . | | '

[Date 1971b)

Date, C. J. and P. Hopewell, "Storage Structure and Physical Data Independence”,
Proceedings of ACM SIGFIDET Workshop on Data Descpiption;:Access,-and €ontrol, San
Diego CA, 1971

[Date 1972]

Date, C. J., "Relational Data Base Systems: A Tutorial®, Proceedings of Fourth Aneaual
Symposium on Computers and Information Science; -Miami:Beach FL, 14-16 December 1972,
Plenum Press, 1972. cUTeR LD il

{Date 1974]

Date, C. J. and E. F. Codd, “The Relational and Network Approaches: . Comparison of the
Application Programming Interfaces”, Proceedings of ACM SIGPIDET Workshop on Data
Description; Access, and Control, Ann:Arbor M, 8 May:164.

{Date 1975]
Date, C.], An Introduction to Data Base Systems, Addison-Wesley, 1975.

[Engles 1971] , :
Engles, R. W., "An Analysis of the April 1971 DBTG Report®, Proceedings of ACM
SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971.

Semantic Integrity Specification 87

[Eswaran 1974]
Eswaran, K. P, J. N. Gray, R. A. Lorie, and I. L. Traiger, The Notions of Con;istency and
Predicate Locks in a Data Base System, IBM Research Report R JI487, San Jose CA, 30
December 1974.

[Eswaran 1975}
Eswaran, K. P. and D. D. Chamberlin, "Functional Specifications of a Subsystem for
Database Integrity”, Proceedings of International Conference on Very Large Data Bases,

Framingham M A, 22-24 September 1975.

[Everest 1974a)

Everest, G. C,, "Concurrent Update Control and Database Integrity”, Proceedings of IFIP
TC-2 Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5 A"pril"
1974, North Holland, 1974.

[Everest 1974b)
Everest, G. C, "The Futures of Database Management”, Proceedings of ACM SICMOD
Conference on Data Description, Access, and Control, Ann Arbor MI, 1-3 May 1974.

(Fadous 1975]

Fadous, R. Y. and J. Forsyth, "Finding Candidate Keys for Relational Data Bases",
Proceedings of ACM SIGMOD International Conference on the Management of Data, San
Jose CA, 14-16 May 1975.

Semantic Integrity Specification 88

[Fehder 1974]
Fehder, P, "HQL: A Set-Oriented Transaction Language for Hierarchically Structured
Data Bases”, Proceedings of ACM ‘Nationil Conferénte, San' Diego €A, November 1974.

[Fernandez 1975)

Fernandez, E. B, R. C. Summers, and T. Lang, 'ﬁefinitim of Access Rules in Data
Management Systems®, Proceedings of International Conference on Very Large Data Bases,
Framingham MA, 22-2¢ September 1975, ‘

[Florentin 1974]
Florentin, J. J., "Consistency Aﬁdmng' of Databasés;'. The 'Computer Journal, Volume 17,
Number 1, February 1974. ’ ‘

[Florentin 1976)
Florentin, J. J,, "Information Reference Coding”, Communications of the ACM, Volume 19,
Number 1, January 1976.

[Fossum 1974)
Fossum, B. M., "Data’ Base Integrity as Provided fof by a Partlcular Data Base

Management System", Data Base Management North Ho!land 1974

[Coldstein 1970]
Goldstein, R. C. and A. L. Strnad, "The MacAims Data Managemem System”, Proceedlngs ‘
of ACM SIGFIDET Workshop on Data Description and Access, November 1970,

Semantic Integrity Specification 89

- [Gosden 1974] | o
Gosden, J. A., "Large Scale Data Base Systems - Current Deficiencies and User

Requirements, Data Base Management Systems, North Holland, 1974.

[Gotlieb 1975] , , 4 S S ,
Gotlieb, L. R 'Computing _]oins of Relations®, Pm;gedjngs of.- AGM SIGMODJ ,
International Conference on the Management of Data, San Jose CA, 14-16 May 1975.

[Graves 1975) .
Graves. R. W, "lnnegrity Control ina Relanonal Data Deucrgpum Linguag; s Proceedmgs
of ACM Paciﬁc Conferena. San ancxsco CA, I-18 April 19?5. ‘

[Gray 1975] | _ et o

Gray, J. N, R. A. Lorle. and G R Putzoly, Granuh,ritx nf Locks ln 3 Shared Data Base",
Proceedings of Intemmom! Conference on Very Large Data Bases, Framingham MA, 22-
24 September 1975.

[Grossman 1975] o
Grossman, R. W,, 'Representing the Semanncs of Natural Language as Constraint
Expressions”, Working Paper 87, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge MA, January 1975,

[Grossman 1976] R :
Grossman, R. W,, Some Duu-bue A.pphcmons of Cvmtra{n& Expremuns. S. M. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Semantic Imegﬂty Specification 90

Technolbgy. Cambridge MA, January 1976,

[Guttag 1976] , 3 G

Guttag, J., "Abstract Data Types and the Development of Data Structures”, Proceedings of

ACM SIGPLAN/SIGMOD Conference on Data: Abstraction, Deﬁnition. and Stmcture,)

Salt Lake City UT, 22-24'March me e T rmes

[(Hall 1975]
Hall, P. A. V., S. J. P. Todd, and P. Hitchcock, An Algebra of Relations for Machine
Computation, IBM Scientific Centre keport UKSCOOSG Peterlee. ?:nghnd January 1975.

[(Hammer 1974]
Hammer, M. M., W. G. Howe, and L Wladawsky, An Interactive Business Definition
System, IBM Research Report RCiﬁSO Yorktown Henghts NY lé January 1974

R

[(Hammer 1975)
Hammer, M. M. and D. J. McLeod, "Semantic Integrity in a Relational Data Base System",
Proceedings of International Conference on Very Large Data Bases, Framingham MA. 22-

KN P AL R AN &

24 September 1975.

[Hammer 1976a]
Hammer, M. M. and D. J. McLeod, A Framework for Data Base Semantlc Integrity
Constraints, Very Large Data Bases Group Report, Laboratory for Computer Scnence. '

Massachusetts Institute of Technology, Cambridge MA, fannary 1976.

..

Semantic Integrity Specification 9l

[(Hammer 1976b)

Hammer, M. M. and A Y. Chan. "Index Selection ln a SeIf-Adaptlve Data Base
Management System", Proceedings of ACM SIGMOD International Conference on the
Management of l.ﬁat;. Wuhington D. C, 24 June 1976 (tg‘}pg&;r);;)

(Hammer 1976c]
Hammer, M. M., "Error Detection in Data Base Systems®, Proceedings of National
Computer Conference, New York NY, 7-10 June 1978 (to appear). |

(Hawkinson 1975] o .

Hawkinson, L., "The Representatlon of Concepts in OWL Proceedings of Fourth
International Joint Confcrence on Artificial Intelligence, Thilisi, Georgia. USSR, !-8 ‘
September 1975.

[Hawley 1975]
Hawley, D. A., J. S. Knowles, and E. E. Tozer, "Database Consistency and the CODASYL

DBTG Proposals, The Computer Journal, Volume 16, Number 3, November 1975.

[(Hawryskiewycz 1972]

" Hawryskiewycz, 1. T. and J. B. Dennis, "An Approach to Proving the Correctness of Data

Base Operations”, Proceedings of ACM SIGFIDET Workshop on Data Description, Access,
and Control, November 1972. |

[Hawryskiewycz 1973]

Hawryskiewycz, 1. T., Semantics of Data Base Systems, Massachusetts lnstltutg of ‘

Semantic Integrity Specification 92

Technology Project MAC Technical Report TR-112, Cambridge MA, December 1973.

[Heath 19711 |
Heath, I. J., "Unacceptable File Operations in a Relational Data Base”, Proceedings of
ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971

[Held 1975a)

Held, G. and M. Stonebraker, Storage Structures and Access Methoris in the Relational
Data Base Management System XNGRES Electronics Research Laboratory Report ERL-
M505, Untverslty of Callforma. Berkeley CA 3 March 1975

(Held 1975b]
Held, G., M R. Stonebraker. and E. Wong. "INGRES A Relational Data Base System)
Proceedmgs of Natnonal Computer Conference, Anaheim CA, 19-22 May 1975.

[Held 1975c] .
Held, G, Storage Structures for Relatlonal Data Base Management Systems Electronics

Research Laboratory Report ERL—M533 Umversity of California, Berkeley CA 1 Augustv
1975.

[Hewitt 19711 , ,
Hewitt, C. E,, Procedural Embeddmg of Knowledge in PLANNER Proceedmgs of

International Joint Conference on Artificial Intelligence 2, September 1971

[(Housel 1976)

Semantic Integrity Specification 93

Housel, B..C. and N. C. Shu, “A High Level Manipulation and q?clrx_l,;?gqggg for
Hierarchical Data Abstractions, Proceedings of ACM SIGPLAN/SIGMOD, Conference on
Data: Abstraction, Definition, and Structure, Salt Lake City UT, 22-2¢ M'arch_ 1976.

UBM]
IBM, IMSISGD Appltuum Dmigtion Mmual. GHW Whm Phlm NY

[Jervis 1974) | ‘ : |
Jervis, B. M., Query Languages for Relational Data Base Management Systems, S.M.

Thesis, Department of Compyter Science, University of British Columbia, Canada, May.
1974. | | " |

[Joyce 1974]
Joyce,). D,). T. Mumy.md M.R Ward ‘Dm Mmagement System Uaer Requlremcnts -
Data Base Mmgement Syms. North Holhnd Mt

[King 1974 ;
King, W. F. III, On the Selection of Indices for a me. IBM’ Rmh Report RJis4L, san i
Jose CA, January 1974.

[Liskov 1974] v '
Liskov, B. and S. Zilles. ‘Programming wuh Abstract Data Types Proceediugs of a‘

Symposium on Very ngh Level Languaga. Santa Monim CA. March 1974

[Lorie 1974]

Semantic Integrity Specification 94

Lorie, R. A, XRM - An Extended (N-ary) Relational M'emory. I‘BM Cambridge Scientific
Center Technical Report 320-2096, Cambridge MA, J‘"‘N’Y o4 S -

[Machgeels 1976]
Machgeels, C., "A Procedural Language for Expressing Integrity Constraints in the
Coexistence Model", Proceedings of IFIP TC- Conference on ‘Mode‘ling in Data Base
Management Systems, Freudenstadt, W. Germany, 59 _]une 1976 (to appear).

[Mariil 1975)
Marill, T. and D. Stern, “The Datacomputer: A Network Utility", Proceedings of National
Computer Conference, Anaheim CA, 18-22 May 1975.

[Martm 1975]
Mamn. J T. Compnter Data-Base Orgranizanon, Prentlce Hall. 1975.

[Maynard 1974]
Maynard, H. S., "User Requirements for Data Base Managemnt Systerm (DBMS)' Data
Base Management Systems. North Holland, 1974 ‘

[McDonald 1974a)
McDonald, N., M. Stonebrakcr, and E. Wong, Prehminary Deslgn of INGRES Part I -
Query Language, Data Storage and Access, Electromcs Research Laboramry Report ERL-

M435, University of California, Berkeley CA, 10 April 1974, ' -

[McDonald 1974b)

Semantic Integrity Specification 95

McDonald, N. M., M. Stonebraker, and E. Wong, Preliminary Design of INGRES Part II -
Protection, Concurrency and Graphics, Electronics Research Laboratory Report ERL-M 436,
University of California, Berkeley CA, 9 May 1974.

[(McDonald 1974c]

McDonald, N. and M. Stonebraker, CUPID - The Friedly Query Language; Electronics
Research Laboratory Report ERL-M487, Univerﬁity of California, Berkeley CA, 16 October
1974.

{(McDonald 1975a]
McDonald, N. and M. Stonebraker, "CUPID: The Friendly Query Language”, Proceedings
of ACM Pacific Conference, San Francisco CA, 17-18 April 1975.

[McDonald 1975b])
McDonald, N. H,, CUPID: A Graphics Oriented Facility for Support of Non-Programmer
Interactions with a Data Base, Electronics Research Laboratory Report ERL-M563,

University of California, Berkeley CA, 12 November 1975.

[McLeod 1974]
McLead, D. J, Relational Data Management in Minicomputers, S.B. Thesis, Department of

Electrical Engineering, Massachusetts Institute of Technology, Cambridge MA, February
1974.

[(McLeod 1975]
McLeod, D. J. and M. J. Meldman, "RISS: A Generalized Minicomputer Relational Data

Semantic Integrity Specification 96

Base Management System Proctedings of National Cornputer Conference, Anaheim CA,
19-22 May 1975, - |

[McLeod 1976a]
McLeod, D. J., High Level Domain Definition in a Relational Data Base System. IBM
Research Report ijs San jose CA. 9 February 197%6.

[(McLeod 1976b]

McLeod, D.], "High Level Domain Definition in a Relational Data Bise System"”,
Proceedings of ACM SIGPLAN/SIGMOD Conference on Data: Abstracuon. Definition,
and Structure, Sak Lake City UT, 22-24 March 19%. '

[McLeod 1976¢)
McLeod, D.], Query by Example and SEQUEL Translation and Compitibmty, IBM
Research Report RJI‘IBO, $an Jose CA, 197.

[Meltzer 1973)
Meltzer, H. S., Current Concepts in Data Base Design, IBM Report to GUIDE 37

Information Systems Division, 2 November 1973.

[Minsky 1974a}
Minsky, N., "On Interaction with Data Bases", Proceedings of ACM SIGFIDET Workshop
on Data Description, Access, and Control, Ann Arbor MI, 1-3 May 1974.

[(Minsky 1974b)

Semantic Integrity Specification 97

Minsky, N., Protection of Data Bases and the Process of User Data-Base Interaction,
Department of Computer Science Technical Report SOSAP-TR-1], Rutgers University, New
Brunswick NJ, September 1974.

[(Mommens 1975)

Mommens, J. H. and S. E. Smith, "Automatic Generation of Physical Data Base Structures”,
Proceedings of ACM SIGMOD International Conference on the Management of Data®,
San Jose CA, 14-16 May 1975.

[Morgan 1970)
Morgan, H. L., "An Interrupt Based Organization for Management Information Systems®,

Communications of the ACM, Volume 13, Number 12, December 1970.

[(MRI 1972)
MRI Systems Corporation, System 2000 General Information Manual, Austin TX, 1972,

[Mylopoulos 1975)
Mylopoulos,]., S. A. Schuster, and D. Tsichritzis, "A Multi-Level Relational System”,
Proceedings of National Computer Conference, Anaheim CA, 19-22 May 1975.

[Nijssen 1974)

Nijssen, G. M., "Data Structuring in the DDL and Relational Data Model”, Proceedings of
IFIP TC-2 Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5
April 1974, North Holland, 1974.

Semantic Integrity Specification 98

[Nordstrom 19761 4
Nordstrem, B., "An Outline of a Mathematical Model for the Definition and Manipu!ation
of Data®, Proceedings of ACM SIGPLAN/SIGMOD Conference on Data: Abstraction,
Definition, and Stmaﬁre; Salt Lake City UT, 22-24 March 1976.

[Notley 1972}
Notley, M. G., The Peterlee 1S/1 Syshem IBM United T(ingdom Sciennfic Center Report
UKSC-0018, England March 1972 ‘

[Olle 1974)
Olle, T: W., "Current and Future Trends in Data Base Managemmt Systems Information |
Processing 74, North Holland mu T
[Ozkaran 1974) _ ‘
Ozkaran, E. A, S. A. Schuster, and K. C. Smith, A'Data ste Processor. Technical éeport
CSRG-43, University of Toronto, Toronto, Canada, November 19747

[Ozkaran 1675]
Ozkaran, E. A, 5. A. Schuster, and K. C. Smith, "RAP: As Assoclative Processor for Data
Base Management”, Proceedings of National Qomputer Conference, Anaheim CA, 19-22
May 1975, | S | -

[Pfister 1974]
Pfister, G. F.,, The Computer Control of Changing Pictures, Technical Report TR-135,
Project MAC, Massachusetts Institute of Technology, Cambridge MA, September 1974.

Semantic Integrity Specification 99

[Redell 1974) |
Redell, D. D, Naming and Protection in Extendible Operating Systems, Technical Report
TR-140, Project MAC, Massachusetts Institute of Technology, Cambridge MA, November
1974,

[Reisner 1975) 4 :
Resiner, P, R. F. Boyce, ind D. D. Chamberlih. "Human Factors Evaluation of Two Data
Base Query Languages: SQUARE and SEQUEL’, Proceedings of National Computer
Conference, Anaheim CA, 10-22 May 1975.

[Robinson 1967] , . S CREIRt
Robinson, J. A, "A Review of Automatic Theorem Proving", Proceedings of Symposium in
Applied Mathematics, American Mathematical Society, Providence RI, Volume 19, 1967.

[Robinson 1975)
Robinson, K. A, "Data Base == The Ideas Behind. the Ideu -The Computer Journal,
Volume 18, Number 1, january 1975.

[Rothnie 1972] | , v
Rothnie, j B The Destgn of Generahzgd Data Managgment Systems. Ph. D. thesis,
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge MA,
September 1972. | '

[Rothnie 1974]

Semantic Integrity Specification 100

Rothnie, J. B, "An Approach to Implementing a Relational Data Management System”,
Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
Arbor M1, 1-8 May 1974,

[Rothnie 1975]
Rothnie, J. B, "Evaluaiing Inter-Entry Retrieval Expressions in a Relational Data Base

Management System”, Proceedings of National Computer Conference, Anaheim CA, 19-22
May 1975. | |

[Roussopoulos 1975]
Roussopoulos, N. and J. Mylopoulos, *Using Semantic Networks for Data Base
Management”, Proceedings of International Conference on Very Large Data Bases,

Framingham MA, 22-24 September 1975.

[Sarin 1976]
Sarin, S. K., Design of a Semantic Integrity Subsystem for Relational Data Base Systems,
S.M. Thesis Proposal, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge MA, 29 January 197,

[Schlotnick 1975]
Schlotnick, M., "Secondary Index Optimization®, Proceedings of ACM SIGMOD
International Conference on the Management of Data, San Jose CA, ‘i;}-lB'May 1975,

[Schmid 1975]

Schmid, H. A. and J. R. Swenson, "On the Semantics of the Relational Data Model”,

Semantic Integrity Specification = 10

Pr m“““ﬁ‘ of ACM SIGMOD Intematlonal Conferance on the Managemem of Daca, San
Jose CA, 1416 May 19% | it -

[Senko 1978])
Senko, M., E. Altman, M. Astrahan, and P. Fehder, "Data Structures and Accessing in Data
Base Systems”, IBM Sym Journal, Number 1, 1973- . - o ‘

[Senko 1975] |
Senko, M. E, "Specifications of Stored Data Structures and Daired Oﬁ!put Re;ulu m
DIAM II with FORAL" Pmceedings of International Conference on Very Large Data _
nases. anmgmm MA, 22:2¢ September 1975.

[Sibley 1974) _
Sibley, E. H., "Data Management System User Requirementé'. Data Base Management
Systems, North Holland, 1974.

[Smith 1976] _
Smith, _) M. and D C. P. Smith "A Semantics for Relatlonal Data Bases Founded on“‘
Abstraction”, Proceedings of ACM SIGPLAN/SIGMOD Conference on Data. Abstnctlon. |
Definition, and Structure, Salt Lake City UT, 22-2¢ March 1976.

[Sof tware AG 1974]

Software AG, ADABAS ADASCRIPT Uurs mnuat.‘kmn vi\. W
: N s S

[Steuert 1974]

Semantic Integrity Specification 102

Steuert, J. and J. Goldman, "The Réhtidml Data Mmiﬁement System A!?erspec;ive'.‘

Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
Arbor M], I-3 May 1974.

[Stonebraker 1974a)

Stonebraker, M. R., "The Choice of Partial Inversi'oni and Combined Indices”,

International Journal of Computer and Information Science, Volume 3, Number 2 J‘une
1974.

[Stonebraker 1974b) ' o
Stonebraker, M. R., "A Functional View of Data Indépendence"; Proceedihgi of ‘ACM
~ SIGFIDET Workshop on Data Description, Access, and Control, Ann Arbor MI, 1-$ May
o

[Stonebraker 1974¢]

Stonebraker, M. R., High Level Integrity Assurance in Relational Data Base Management
Systems. Electromcs Remrch Labmzory Report ERL-Mi'la University of Cahfornll.
Berkeley CA, 16 August 1974

[Stonebraker 1974d]

Stonebraker, M. and E. Wong, Access Control in a Relational Data Base Management
System by Query quificat_ipn, El%,ctronic's%_,Rgse;rch_, L;bpxgitpg'y?gsgqnj/ERL-MQSS,
University of California, NBerkeley CA. ﬁ May 1974. | o

[Stonebraker 1975a]

Semantic Integrity Specification 103

Stonebraker, M. R. and G. Held, Networks, Hierarchies, and Relations in Data Base
Management Systems, Electronics Research Laboratory Report ERL-M504, University of

California, Berkeley CA, 3 March 1975.

[Stonebraker 1975b]
Stonebraker, M. R., Getting Started in INGRES - A Tutorial, Electronics Research
Laboratory Report ERL-MSI8, University of California, Berkeley CA, 23 April 1975.

[Stonebraker 1975c]

Stonebraker, M. “Implementation of Integrity Constraints and Views by Query
Modification”, Proceedings of ACM SIGMOD International Conference on the
Management of Data, San jJose CA, 14-16 May 1975.

[Summers 1975)
Summers, R. C, C. D. Coleman, and E. B. Fernandez, "A Programming Language
Extension for Access to a Shared Data Base”, Proceedings of ACM Pacific Conference, San

Francisco CA, 17-18 April i975.

[Taylor 1974)
;I‘aylor, B. J. and S. C. Lloyd, "DUCHESS - A High Level Information System®,
Proceedings of National Computer Conference, Chicago IL, 6-10 May 1974.

[Thomas 1975)
Thomas, J. C, and J. D. Gould, "A Psychological Study of Query by Example”, Proceedings
of National Computer Conference, Anaheim CA, 19-22 May 1975.

Semantic Integrity Specification 104

[Tsichritzis 1975))
Tsichritzis, D., Features of a Conceptual Schema, Technical Report CSRG-56, Computer
Systems Research Group, University of Toronto, Toronto, Canada, July 1975,

[Valle 1975] o _
Valle, G, “Interactive Handlmg of Data Base Relations: Experiments with the Relational
Approach”, Technia! Report. University of Bologm. Bologna, Italy, March 1975.

[Weber 1976) |

Weber, H., "A Semantic Model of Integrity Constraints on’:.l‘ Relational Data 'Base'.
Proceedings of IFIP TC-2 Conference on Modeliing in a Data Base Management Systems,
Freudenstadt, W. Germany, January 1976. - o |

[(Whitney 1974]

Whitney, K. M., Rehuonal Dau Management Implemenmion Techniques Proceedings of
ACM SIGFIDET Workshop on Data Description, Awass, and Control. Ann Arbor MI, 1-8
May 1974. |

[Wilkes 1972)
Wilkes, M. V., "On Preserving the Integrity of Data Bases”, The Computer Journal,
Volume 15, Number 3, 1972. o |

[Zadeh 1975]

Zadeh, L. A., Calculus of Fuzzy Restrictions, Electronics Research Laboratory Report ERL-

Semantic Integrity Specification 105

M502, University of California, Berkeley CA, 19 February 1975.

[(Zloof 1974] ,
Zloof, M. M,, Query by Example, IBM Research Report RG4917, Yorkiown Heights NY, 2
July 1974 . ‘ -

[Zioof 1975a) |
Zloof, M. M., "Query by Example”, Prbc’eédinﬁs of National Cdfhputér Conference,
Anaheim CA, 19-22 May 1975, °

{(Zloof 1975b)
Zloof, M. M., "Query by Example: The Invocation and Definition of Tables and Forms",
Proceedings of International Conference on Very Large Data Bases, Framingham MA, 22-

24 September 1975.

[Zook 1975)

Zook, W, K. Youssefi, P. Kreps, G. Held, and J. Ford, INGRES - Reference Manual,
Electronics Research Laboratory Report ERL-M5IS, University of California, Berkeley CA,
23 April 1975,

Semantic Integrity Specification 106

Figure 1-1, Relation EMP

column -> Name Sex Salary Manager Depar tment
under lying
domaini -> NAME SEX MONEY NAME DEPT

Jones, Richard male 812,888 Jones, Richard research
Phillips, Jeff male $18,888 Smith, Kathy sales

Smith, Kathy female 811,888 Jones, Richard sales

Semantic Integrity Specification

Figure 1-2, Example Data Base . -

Domains:
NAME QUAN
SEX ORBER_NUM
MONEY CusT
DEPT DATE
ITEM

Relations:

EMP (Name, Sex, Salary, Manager, Department)

_ NAME SEX -MONEY NAME - DEPT

SALES (Item, Department, Quantity_on_hand, Cost)
ITEM DEPT QUAN MONEY

ORDERS (Order_number, Customer, Item, Date_shipped)
ORDER_NUM CusT ITEM DATE

BUDGET (Department, Salary_budget)
DEPT MONEY

107

Figure 1-3.

create
delete
create
delete

insert
delete
update

domain
domain
relation
relation

tuple
tuple
tuple

add column to
relation

delete
from

column
relation

copy relation
intersection

union

di fference

join

Semantic Integrity Specification

A Possible Set of Relational Primitive Operations

(these operations allou domains and
relations to be defined and deleted)

(these operations allou changes to be
made to data in relations)

(these operations facilitate relation
modification and relational algabraic
manipulatkun of a data Uase)

108

Semantic Integrity Specification 109

Figure 3-1. Selected Example Data Base Domain Definitions

domain NAME
description
last: string

first: string

ordering
last, first
violation-action
error
domain SEX

description

ordering
none
violation-action

error 'sex must be female or male’

domain MONEY
description
’s‘

value: number where >=8

oneof 'female’, "male’

("Smith, John")

("female")

("$188")

where length(right(x, '." + 1)) = 2

or not present %, '

ordering
value
violation-action

substitute null 'value in error, null has been assumed’

domain ITEM
description

string where not has numerics,

ils -7

i2: string uhere not has alphabetics,

("AB-75-326")

“uhere repititions il through i2 >=1 and <=3

or

string uwhere call check_item

ordering
call compare_itenm
violation-action
substitute left(x, 5)

’vx#fgufé é-l.

domain QUAN

description

value: number uwhere integer
and >=0

ordering
atomic

violation-action
call fixup_quan

domain DATE
description
.month: oneof 1, ..., 12
ill -

Semantic Integrity Specification 110
(cohtihuéa)‘v

(17)

("1/28/1976")

day: number where integer and >=1 and <=31

*/197°

year: number'uhere integer ‘and >«5 ‘drid <=3 - ‘
where (if (month = 4 or =5 or =3 or =11) then day<=38)
and (if morth = 2 then day <= 29)

ordering
year, month, day

violation-action
error

and (if (month = 2 and year ~= 6) then day <= 28)

Semantic Integrity Specification 1ll
Figure 3-2. Syntax of the Domain Dcfin!tion Lanﬁuage

domain-definition ::= DOMAIN domain-name
WPT?IW LT
v deseriptlon-g fause ¢
[ORDERING
ordorlhg—clﬁul
[VIOLATION-ACTION
violation-action-clausel

domain-name $:= str!ng—cons‘tmt -

doscr iption-cl ause 1:= dmcrip:tc mn-subcl ause -
| description-claues -
OR

desgcripti on-subc| quu

description-subclause 3:= description
[uhare-mtmud

description 3:= [label:] subunit
| description
- Hinspei:] subunit

labe! ::= string-constant

subunit ss= STRING [WHERE string-boolean)
| NUMBER [WMHERE number-booisand . -
| ONEOF string-constant-list
| ONEOF nunbor-comtlnt-l!ut

string-constant-ilist. 11 ttring—constmt-mt
- | etring-constant-|ist, otring-comtant-conponont

string-constant-component 3= string-constant - -
| ALPHABETICS
| NUMERICS
| SPECIALS

number-constant-list ::= number-constant

| number-constant-list, W—mﬁtnt
string-boolean ::= string-boolean-term 7 ' =
| string boolsan:OR ttring-boéltm-tdn

string-boolean-torl 1= string-boolean-factor- -~ -
| string-boolean-tera: NO s!ﬂng-boolun—factor

Semantic Integrity Specification 112
Figure 3-2. (continued)

string-boolean-factor ::= stri ng-bool ean-_-preiiw
| NOT,string-boolean-primary

string-boolean-primary s:= string-predicate
| (string~boolean) -

string-predicate s:= compérator 4stéing—conat'ant :
| IF string-predicate THEN :string~pradicate
[ELSE string-predicatel |

| SIZE comparater nummumn
| HAS string-constant-iist - :
| CALL procedure

comparator si= = | = | >'] >w | < | <=

number-boolean 1:= number-boolean-term
| number-booiean OR number-—boolean-tern

number-boolean-term ::= number-boo! ean-fac tor
| number-boolean-term AND: mnbor-booim-factor

number-boolean-factor ::= number-boo!ean-primary
| NOT number-boo 1 ean-pr i maru

number-boolean-primary s:= number—predscatn
| (number-boo I:ean)

number-predicate n- comparator nunber-conotant

| IF numicau THEN- puntsr-predicate
. - {ELSE- potsar -predicate]
| INTEGER

| EXPONENTIAL
| CALL procedure

where-restriction ::= boolean

boolean ::= hoolean-term
| boolnn OR boolean-term

boolean-terms :3= boolean-factor
| boolean~term AND boolcan-factor

boolean-factor tt= boolean-primary
| NOT boolean-primary

boolean-primary s:= predicate
| (booiean)

Semantic Integrity Specification 113
Figure 3-2. (continued)

predicate ::= expression comparator expression
| IF predicate THEN predicate
[ELSE predicatel
| PRESENT expression, string-constant-list
| CALL procedure

expression ::= [addition-operator] unsigned-expression

unsigned-exprassion :3= arithmetic-term
| unsigned-expression addition-operator arithmetic-term

arithmetic-term ::= arithmetic-factor : _
| arithmetic-term multiply-operator arithmetic-factor

arithmetic-factor ::= subexpression
| (expression)

subexpreaession ::= atomic-expression

| set-function(expression-iist)

| APPEND (expression, expression)

| SUBSTRING (expression, expression, expression)
| LEFT(expression, expression)

| RIGHT (expression, expression)

| LOCATION (expression, expression)

| LENGTH (expression)

| REPITITIONS label THROUGH label

atomic-expression ::= |abel
| string~-constant
| number-constant
| %

expression-ligt ::= expression
| expression-!ist, expression

set-function s:= MAXIMUM | MAX | MINIMUM | MIN | string-cdﬁstant
addi tion-operator i:= + | -
multiplg-operatprrzz- % | /7 | %%
ordering~clause ::= ordering-list
| NONE

| ATOMIC
| CALL procedure

Semantic Integrity Specification
Figure 3-2. (continued)

ordering-list t:= label
| ordering-list, label

violation-action-clause ::= violation-action
| violatwn-actlan-cuuu
violation-getion .-

violation-action s:= ERROR
| ERROR message
| SUBSTITUTE expression |
| SUBSTITUTE expreaslmm
I m}ﬂ'm&‘ Vi e A ; vl
| CALL procedure nessage .

message t:= string-constant
| SYSTEM-GENERATED

procedure ::= string-constant

Notes:

The nonterminals. string-constant and mm«m kc not
further defined. RRRRT T

ALPHABETICS refers to the characters ‘A" through 'Z" and "a"
through “z", NUMERICS refers to the digits 8 through 3%
SPECIALS refars to all other charactere i

SIZE returns the length of a string subunit. ;HAS sl. sesy SN
returns "true® if a subunit has an occurrence of each of the
strlngs 8l, +.., 8n (otheruise "false"). szgﬁpaqsﬁﬁi.appoar
only in subunit where restrictions.

SUBSTRING (s,.i1, i2) returns the: suhg&ripg of :trsng Qxlﬁﬂrtang
at character il and extending i2 characters. LEFT(s,i) and
RIGHT (s, 1) return the left and right substring.{respegctiveliy)
of 8 having length i. SUBSTRING, LEFT, and R BHT nay also be
invoked with a second argument which is & etring.. khis:neans
that the substring is to start at the leftmost or rightmost
occurrence of the second string argument, e.g., "LEFT(x, ®.")"
and "LEFT(x, INDEX(x, '.’))" are equivalent. LENGTH{s) returns
the length of string s. APPEND(sl,s2) concatenates sl and s2.
LOCATION(sl,82) returns the index of the-.first ogcurpence of

s2 in sl (or B if 82 is not a substring of sl). REPETITIONS

sl THROUGH 82 returns the number of repetitions (of the domain
value) for subunits labeled sl through s2.

114

XY

1.

2.

3.

4.

S.

7.

Semantic Integrity Specification 115
Figure 6-1. Some Simple Auertions“(fqr data base In figure 1-2)

Note: CC means constrained col lsction, PR mna predicato

The salary of svery employes is less than SSG aaa
CC: each tuple in EMP
PR: Salary < 50089

The manager of each employes is also an nplouu.
CC: each tuple in EMP '
PR: Manager is prount in ut of ai:i Nuu fru itupiu
In EmP
The salary of sach employee in the toy dopartunt h lua
than the salaryief -his mansger. :
CC: each tuple in EMP uhere Oepartment &« 'tou :
PR: Salary. &“Sﬂwu of. the tupls mm - Nanugor
in constralned tuplo
The salary of an nploueo cannot m
CC: each tuple in EMP
PR: new Sslary >= old Salaru

The average employea salary is at least equal to the salary
of Robert Jones.
CC: set of tupiss in EMP »
PR: averags{Seisry) >= Salaru of tuplo mNm -
"Jones, Rovert’

Each departwent has at nst tup pnplouu. p&th] ularu of .
more than $50,0800.
CC: .set of. tuples in EMP where ﬁahru >M¢ mad
by common Department . '
PRt count{Nems) < 2:-

The number of: femals empioyees iq at #mtmu the tctal
number of employses. -

CC: set of tuples In EHP uhern Sex = 'female” -

PR: = count{Name) >= ;4 % count(lhn) fnr*tqﬂn: ln B’P

Ewployees names are unique.
CC: s8t of tuples in EMP
PR: multiset(Name) has no duplicates

Semantic Integrity Specification 116
?igure 6-2. Local Tuple Predlcateo

Types of Predicates (a):

la. col scalarcomp const
2a. col scalarcomp col
3a. col scalarcomp colexpr

4a. col setcomp {const-l, ..., const-m}

Sa. col setcomp {cod~i, ..., col-m} -~
6a. col setcomp {colexpr-l, ..., colexpr-m}
7a. col setcomp setexpr

8a. (col-1, ..., cal-n) satcomp {(const-ll. cves con.t~ln). cervy
(const-ml, ..., const-mn)}

Sa. (c°|"1' se0y cOl-rk) “tm “00'-11«' ooo' CO’*&"J. sebdy
{col-ml, ..., col-mn)}

18a. (col-1, ..., col-n) setcomp ((colexpr-ll. reey coloxpr-ln). cevs
(colexpr-ml, ..., colespr-mn)} - =

1la. (col-1, ..., col-n) setcomp setexpr

Definitions:

col: column name with optional "old" or "new"
(col=1, col-1l, etc., are cole; all ceols must
reference entries within the constralned: tuple)

const: constant from an appropriate domain

scalarop: o=y My, S, N, max, min, ett., oF B ui.r~dsflned
scalar operator

setop: unkon (also uritten as)}, mtorucﬁoﬁ. d’l ffersnce.
or a user-defined set operator :

colexpr: a legal combination of col, const. op, au& setop uhich
yields a single value

setexpr: same as colexpr except yields a set of values

scalarcomp: =, ~=, >, >=, <, <=, OF a usor-deflncd‘tcaiar
comparator e

setcomp: is in, contains, properlg is in. properlg contalns.

or a user-defined set comparator

Semantic Integrity Specification 117
Figure 6-3. Nonlocal Tupie Predicates

Types of Predicates (a):
la. col scalarcomp scalarval
2a. col setcomp setval
3a. (col-l, ..., col-n) sstcomp setval |

(In type 2a setval is a set of vaiues, and ln tupo -3a oetval
is a set of tuples.)

Definitions:
Definitions here are the sawme as figure 6-2, except:

séalarvalt a ocalér value computed from the data base
sstvals @ set value computed from thé dita base -

NO predicates are the same as NI predicates, except that the
process selecting scalarval and tatval uly roforuncu the ‘entries
in the constrained tuple.

Semantic Integrity Specification

Figure 6-4, Local Set Predicates

Types of Predicates (a):

la.
2a.
3a.

43,
Sa.
Ga.

7a.
8a.
9a.

10a.
11a.
12a.,

13a.
1l4a.
15a.
16a.

agafn(col) scalarcomp const
aggfn(col) scalarcomp aggfnicol)
aggfnicol) scalarcomp aggfnexpr

aggfnlcol-1, ..., col-n} -scalarcomp 'gonst
aggfnicol-1, ..., col-n} scalarcomp aggfn(col-l. ceey COl-m)
aggfnicol-1, ..., col-n) scalarcomp aggfnexpr

set{col) setcomp {const-l, ..., const-n}
set{col) setcomp set(col)
set(col) setcomp setfnexpr

set{col-1l, ..., col—n) setcomp ((conatwll, crey const—ln). enay
(const-ml, ..., const-mn)}

Bet(COI"l. veey mlm) sﬂtmﬂp ‘(m&l‘i, b-.. ml"lﬂ)‘y o0y
(col-ml, «.., col-mn)}

set{col-1, ..., col~n) satcomp setfneapr

col crel col

col crel (col-l, ..., col-m)

{col-1, ..., col=-n) crel col

(col-1l, ..., col-n) cre! (col-1, «u., COI-m)

Definitions:

{col,

in figure 6-2)

aggfn: set, max, min, avg, sum, count, or a user-defined
aggregate function (also al! these with "'", e.g.,
"set’", meaning duplicates are retalined)

crel: one-to-one, functionally-dependent, or a user-defined
column relationship comparator

aggfnexpr: a legal combination of aggfn, col, const, scalarop, setop,

setfnexpr: a legal combination of "set", col, const, scalarop, setop,

const, scalarop, setop, colexpr, scalarcomp, setcomp are as

and colexpr

and colexpr

"Set" returns the set of values in a column (or tuples in a group
of columns. It is an aggfn, but is also treated separately since
it yields a set value.

(Note that "max(set(Salary))" is equivalent to "max(Salary)".)

118

Semantic Integrity Specification 119
F!gure 6-5. Nonlocal Set Predicates

Types of Predicates (a):

la. aggfn{col) scalarcomp scalarval
2a. aggfnlcol-1, ..., col-n) scalarcomp scalarval

3a. setl(col) setcomp setval
4a. oot(col—l. ooy col-n) setcomp setval

{In type 3a, setval is a set of scalars, and in type 4a, setval
is a set of tuples.)

Definitions:
Definitions here are the same as figure B-4, except:

scalarval: a scalar value computed from the data base
setvals a set value computed from the data base

ND predicates are the same as NI predicates, except that the

process selecting scalarval and setval may reference the data in
the constrained tuple set.

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date: I/ Il %5

Report # LCSJR -|€S

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

X Technical Report (TR) O Technical Memo (TM)
O Other:

Document Information Number of pages: 134 (13! - imaGrs)

~ Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Iintended to be printed as :
O Single-sided or O Single-sided or
W Double-sided 2K Double-sided
Print tyre:
O Typewriter [J offsetPress [] Laser Print
O] inkJet Printer x Unknown [J Other:

Check each if included with document:

K DOD Form (Z) [Funding Agent Form X Cover Page
O spine O Printers Notes Photo negatives
O Other:

Page Data:

Blank Pageswy page numben:

Photographs/Tonal Material wypege numbes:

Other (vow descriptionipege numbed;
Description : Page Number:

Q) ZACK MAP? ({134 Y(awit 50 TTLK ¢ BLark CacK & iHBlk
7 ity GLK LR urt GLE 5)H WO Lk
(a5 13]) SenmcanTul Loy gr Donjg_ng\ 5(3)

® 1

Scanning Agent Signoff:
Date Received: /A/ /! 1% Date Scanned: _# /11 196 Date Returned: __/_ 18, %

J
Scanning Agent Signature: M / 7V “@%\« Row oot : ¢ Cortrot Form ostform ved

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

_ ey
g “ READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
7. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

MIT/LCS/TR-165

4. TITLE (and Subtitle) . _ . . 5. TYPE OF REPORT & PERIOD COVERED
High Level Expression of Semantic Integrity S.M. Thesis
Specifications in a Relational Data Base System 1975-1976

6. PERFORMING ORG, REPORT NUMBER
MIT/LCS/TR-165

F7 ACTHOR(S %. CONTRACT OR GRANT NUMBER(s)

Dennis J. MclLeod N00014-75-.C~0661
TP SRR e ORCANITATION NAME AND ADODRESS “WWSK—J
Massachusetts Institute of Technology AREA & WORK UNIT NUMBERS

Laboratory for Computer Science
545 Technology Square; Cambridge, MA 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency September 1976
Department of Defense
i‘l 0 Wilson Boulevard

3. NUMBER OF PAGES

. M 'erent from Controlling Office) 18.‘ gECURITY CL. ASS. (of this report)
Office of Naval Research

Department of the Navy Unclassified
Information SYStemS PrOgraﬁl 1 ISG. DEELASSIFlCATION7 DOWNGRADING
Arlington, Virginia 22217 : SCHEDULE

T B YRIBUTION ST ATEMENT (of this Report)

Approved for public release; distribution unlimited

] i7. DISTRIBUTION STA?EMENT (of the abetract entered in Block 20, i1 different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse alde if necessary and identify by black number)
Data base management, semantic integrity, error detection.and correction,
data base design, data definition, data semantics, very high level languages

P —————— . .
20. ABSTRACT (Continue on reverse side If necessary and identify by block number) ‘

The “"semantic integrity" of a data base is said to be violated when the
data base ceases to represent a legitimate configuration of the application
environment it is intended to model. In the context of the relational data
model, it is possible to identify multiple levels of semantic integrity
information: (1) the description of the domains of the data base as abstract
sets of atomic data values (domain definition), (2) the specification of the
fundamental structure of the relations of the data base (relation structure

e — ﬂ

DD . S3™. 1473 eoiTion oF 1 NOV 68 1S 0BSOLETE
: " S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

q.ec.um'rv CL ASSI Flcn'mn cl Tuls PAGE(When Data Entered)

spec1f1cation), (3) the definition of tha abstrictzdpnrations«uhtch are :

meaningful in terms of the application envfr1> m;,;ss yed operations),

| and (4) the expression of additional semantic tifarmation not contained in

‘the structure of the relations nor in the’ 1ghnt1t1es of their underlying‘ "
domains (relation constraints).

, ‘A high level, nonprocedural domain definition language facilitates the
description-af domgins. - Such a language 'allows thetspecification of the

properties of ‘the values constituting a 'domatn, and the dcttonithat is to

‘1 occur if an attempt is made to update a column entry such that it does not
belong to the-underlying domain of that column. The sgecification of , ~

“relation structure and structured operations can be accompTished by means of
high level integrity (sub)languages. , .

A relation constraint has three components: (1) the assertion (a

predicate on the state of the data base or on transitions between data base

| states), {2) the.validity requirement (the -eccas iﬁg(s at which the assert1on
‘must hold), and (3) the violation-actien (the. actf hat is to: o%cﬂr ff the
assertion does not hold at a time when it shoufd).” Rﬁfftion gdns :
specification can be related to an expression framework (cTassif{ dgtion

“scheme) which is useful for the construction of a re ktan constraint language
and spacfficatien;uethodology Assertions are more” "than’ qxpgessinns gt -Spme
relationships ameng different values in a data basei..aa-assertion singles

~out the data that i$ constrained, and states the gpre fes this dats. most
possess. A classification is provided of the vaplous.predicate-types used

- to 1dent1tx constrained data and to state the propng;ies that thay are. to
‘possess. U

| A semant1c integr1ty subsystem (of a gener&}t:edpralat}englﬂdata base

management system) can support the generation and maiptenance. of .integrity

| specifications, . verify that these specifications are met by the data base;
~and take appropriate act1on if violations are detected

SECURITY. CLASHFICATION OF THIS PAGEWI Dite Ehtored)

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.LI.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

