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communication mechanism. The design is intended to be used in the creation of 
a secure kernel for the Multics operating system. 

THESIS SUPERVISOR: Michael D. Schroeder 
TITLE: Assistant Professor of Electrical Engineering 

*This report is a minor revision of a thesis of the same title submitted to 
the Department of Electrical Engineering and Computer Science on June 14, 1976 
in partial fulfillment of the requirements for the degree of Master of 
Science. 

- 3 -



TABLE OF CONTENTS 

ACKNOWLEDGMENTS 
ABSTRACT 
TABLE OF CONTENTS 
LIST OF FIGURES 

1. Introduction 

1.1 
1. 2 
1.3 
1.4 
1.5 
1.6 

Brief Statement of Problem and Results 
Example System •........••.••••..••••••.•••..•.••••..•...•.•••..• 
Abstract Types ................................................. . 
Layering of Abstract Types •••.••••••••••••.•••••.••••••••• 
Related Work . . . . . . . . . . . . . . . . . . ...........•................... 
Plan of Thesis 

2. Model of Processor Multiplexing 

2. 1 Definition of Processor . . . . . . . . . ................... . 
2.2 Definition of Process • • • • • • • • • ••••••••••••••••••••• 
2.3 Processor Multiplexing ••••••••••••••••••••.•••••••• 
2.4 Processor Multiplexing Model •••••••.•••••••••.•••••••••••••• 

2.5 
2.6 
2.7 
2.8 

2.4.1 Centralized Control of Processor Multiplexing 
2.4.2 Distributed Control of Processor Multiplexing 
2.4.3 Comparison of Distributed and Centralized Control 

Processor Reconfiguration ................................. . 
Interprocess Control Communication •.••••••••••••••••••••••• 
The Virtual Processor Stopped State ••••••••••••••••••••••••••••• 
Summary ......•.....................•... 

2 
3 
4 
7 

9 

11 
15 
17 
19 
21 
25 

29 

30 
32 
33 
36 
38 
40 
42 
44 
49 
57 
59 

3. Multiple Levels of Processor Multiplexing in a Layered System ••••••••• 61 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 

3.7 

The Cache Management Pattern of Type Extension •••••••••••••••••• 
Building Two Levels of Virtual Processors ••••••••••••••••••••••• 
Disentangling Virtual Memory from Processor Multiplexing •••••••• 
Use of Processes as Abstract Type Managers •••••••••••••••••••••. 
Two Levels of Scheduling . . . . . . . . . . . . . . . . . . . . . . . . .......... . 
Problems of a Processor Hierarchy • • • • • • • • • • • • • • • ••••••••••• 
3.6.1 Efficiency of Multiple Levels of Scheduling .•••.•• 
3.6.2 Protection of Low-level Type Managers from Level 2 ••••••• 
3.6.3 Cross-level Interprocess Control Communication •.••••••••• 

3.6.3.1 Level 2 Advance and Await Algorithms •••••••••••••• 
3.6.3.2 Inward Signalling 
3.6.3.3 Outward Signalling 

Summary ............•.........•...............•...•.•...•......•. 

- 4 -

62 
66 
70 
71 
79 
80 
80 
82 
84 
86 
87 
87 
90 



4. 

5. 

6. 

Level 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.10 
4 .11 
4.12 

Level 

5.1 
5.2 

5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 

Level 

6.1 

1 Virtual Processor Interfaces • • . • • . . . . . . • . . • . • • . • • • • . • . • • . • • • • • 91 

Level 1 Virtual Processor Interface ••.....••.•••••.•••••..•..••• 92 
Limited Supply of Level 1 Processors •••••.••..•••..•••••••••.••• 94 
Multiprogramming of Real Processors Among Level 1 Processors •.•. 95 
Execution States of Level 1 Processors .•.••••••.••••••.••••..•.• 96 
Scheduling Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
Changing the Bindings of Level 1 Processors ••..•.••.•••••••.•••. 100 
Interprocess Control Communication •••••••••..•.•....••.•.••••••• 102 
Special Eventcounts ............................................. 104 
Fault Interface •.•.••••.•••...••••••••••.•.••••..••...••••••..•• 105 
Processor Interrupt •.•••••.•..•.•••..••.••••••••••.•.••••••••.• 107 
Processor Reconfiguration ••••.•••.•..•.•••••.•••••••.•••...•.•. 108 
Parameter Passing To Level 1 Processor Operations ••••.••••••••• 109 

1 Processor Implementation .••••.•.•••.••••••.•••••....•••••.•.•• 113 

Overall Structure of the Implementation •••.••••••.•••..•...••••• 114 
Hardware Architecture .•.•••••..•...•.•.••.••...••..•.......•.••• 118 
5. 2. 1 The Processor Control Processor • . . . • . . • • • . . • . • • . • • . • • • . • . 119 
5.2.2 General-Purpose Processors •.•.••...••.••..•••••.••..•.••• 120 

Da.ta Bases .•..•..••••••..••••••••••••••••..•.•••••..•.••••••.••• 127 
Operation of the Processor Control Processor •...•.••..•...•.•••. 130 
GPP operation ................................................... 139 
Implementing Level 1 Processors on Traditional Hardware •.•..•... 146 
Simulating the Processor Control Processor ••••...•••.•••.••.••.• 146 
I/O Devices That Send Interrupts •••.•...•.•.•••..••••••..••...•. 149 
Summary . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . • . . . . . . . 15 O 

2 Processor Interface and Implementation .•••• , ••.•.•.••••.•..••. 151 

Level 2 Processor Interfaces ..••••.••.••.•.....•..•.•••••••••••. 152 
6.1.1 Creation and Deletion of Processors ...••.••.••••.•••...•• 153 
6.1.2 IPCC Interfaces .•••...•••.•••..•.•••••••.••....•.•••••••. 155 
6.1.3 Processor Interrupts ...•.••.•••••••.........••••••.••.... 157 

6.2 Structure of the Second Level Processor Manager .••••.•.•..•••••• 161 
6.2.1 Level 2 Data Bases ••..•....••.•••.•••.•.••.•......•••••.. 163 
6.2.2 Processes of the Second Level Manager ..••..••..••••.....• 167 
6. 2. 3 Eventc oun t Implementation . . . • . . . . . . • . • • . • . • • . • • . . . . . • . • . • 171 

6.2.3.1 Advance ........................................... 171 
6.2.3.2 Await ............................................. 173 
6.2.3.3 Set_yrocessor_interrupt .•.••.•••••••••••.•.••.•••• 175 
6.2.3.4 Outward Signalling ••.••.•..•.••••.....•.•••••••.•. 175 

6.2.4 Scheduling Policy .......•..•.•••.•..•..•••••••••••••.•.•• 176 

- 5 -



7. Using 

7 .1 
7.2 
7. 3 
7.4 
7.5 

Level 1 Processors in the Operating Sys tern . . . . • • . . . . . . • . . • . . . . . . 181 

Permanently Bound Processes ......•...••••..•...•••.•.•••........ 182 
I/O Device Management •••...••.••....•••.••••.••.....••..••....•. 183 
Kernel Type Managers as Processes .....•...•.••....•••...•....... 187 
Explicit Recognition of Parallelism in the System Design ...•. •·· 190 
Resulting Structure ..........•.•••••....•.••...........•..•••.•• 192 

8. Conclusions and Suggestions for Further Research .•..•...•.......•.•... 195 

BIBLIOGRAPHY ..•.••..............•••.•....•...•..•..••••••.•.....••...•••. 201 
Appendix A: Summary of Level 1 Interface .•.••••........•.•..•••..•.••••.• 205 
Appendix B: Summary of Level 2 Interface •.•.••..........•..•••..•..••.•.• 207 

- 6 -



LIST OF FIGURES 

Figure 1.1: Removing Mutual Dependencies • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • 13 
Figure 1.2: Type Extension Hierarchy for VM Objects •••••••••••••••••••••. 19 
Figure 2. 1 : Multiplexing 2 Real Processors . • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • 34 
Figure 2.2: Processor Multiplexing Loop ••••••••••••••••.••••••••••••••••• 37 
Figure 2. 3: Processor Reconfiguration States • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4S 
Figure 2.4: Processor Multiplexing Loop with Reconfiguration •••.••••••••• 46 
Figure 2. S: Processor Multiplexing Loop with IPCC . • • • • • • . • • • • • • • • • . • . • • . • SS 
Figure 2.6: Processor Multiplexing Loop with Stopped State ••••••••••••••• S8 
Figure 3.1: Cache Mgmt. Pattern for Page Object •••••••••••.•••••.•••••••• 63 
Figure 3.2: Cache Mgmt. Pattern for Virtual Processor •••••••••••••••••••• 6S 
Figure 3.3: Two Level Processor Hierarchy ••• , • , , • •• • • • • • • . • • • • • . • • • • . • • • • 67 
Figure 3 .4: Two Level Processor Multiplexing Loop •..••••••••••• , • • • • • • • • • 69 
Figure 3.S: Permanently Bound Type Manager Processes ••.•••••••.••.•••••.• 78 
Figure 4 .1: States of Level 1 Processor , ••••• , •• , • • • • • • • • • • • • • • • • • • • • • • • • 97 
Figure 4.2: Level 1 State Data ••••..••••••••••••••••••••••••••••••••••••• 100 
Figure 4. 3: Level 1 Fault Data •.•••••••.••• , •••••••••••.•••••.••••••••••• 106 
Figure S.1: Processor Communication in Level 1 Implementation .•••..•••••• llS 
Figure S. 2: Priority Queue and Await Table ............................... 116 
Figure S. 3: Hardware Communication Paths ................................. 120 
Figure 5.4: GPP Internal Memory •.••••.•••••.•••••••••••••••••••.••••••••• 121 
Figure 5.5: Level 1 Processor State Block ................................ 124 
Figure 5. 6: Basic GPP Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 
Figure 5. 7: PCP Algorithm Flow Chart •••••••••••••••.••.•.••••••.••••••••• 132 
Figure S.8: GPP Responses to UNBIND and INVOKE-LEVELl ..•••••••••••••••••• 141 
Figure 6.1: Processor Interrupt Model .................................... 1S8 
Figure 6.2: Processors and Data Bases of Level 2 ••••••••••••••••••••••••• 162 
Figure 6.3: Level 2 Processor Table Entry ................................ 164 
Figure 6.4: Await Table Structure ••••• , .•• , , •••••••••• , , ••••••••• , •••••.• 166 
Figure 6.S: Actions of the Binder/Scheduler and Unbinder ••••••••••••••••• 168 

- 7 -



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

- 8 -



Chapter One 

Introduction 

A major goal of current research on computer systems is ensuring the 

correctness of operating system software. Although many complex operating 

systems have been designed and built, the best that can be said of these 

systems is that they seem to work correctly. It is not yet possible to prove, 

or otherwise ensure, that a complex operating system such as Multics (19) 

works correctly -- in fact, specifying what correct operation means in the 

case of systems like Multics is very difficult. One important part of 

specifying and proving the correct operation of a system like Multics is 

simplifying its design to a point where its operation is easily understood. A 

clear understanding of the basic operating system mechanisms and 

implementation techniques is a prerequisite to achieving this simplification. 

The research reported here is an attempt to understand the impact of 

processor multiplexing on the design and operation of an operating system. 

The processes created by processor multiplexing serve two purposes in the 

design of an operating system. First, they are used to isolate user-specified 

computations from each other in order to prevent unpredictable or undesirable 

interactions. Second, they can be used as a tool for structuring the 

algorithms of the operating system itself. A clear understanding of the 

design and implementation of processor multiplexing mechanisms that support 

- 9 - Chapter 1 
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these purposes is a necessary part of the understanding needed to simplify and 

structure the design and implementation of _qperating systems. 

The research reported here is part of a project to design a security 

kernel [28] for the Multics operating system. The sec"!-~ity ~rnel of an 

operating system is a part of the operatin~ system that, ;1.f correct, 

guarantees that the operating system as a lolbole enforces constraints on 

information flow that prevent unauthorized release (t9 users) of information 

stored in the system. In Multics, individual -user computations ~re i~ql•ted 

from each other as distinct processes executing on distinct virtual 

processors. This isolation is used as a. tool for controlling the propagation 

of information within the system; consequently, the proces~r multiplexing 

mechanisms that implement the virtual proces_sors must be .Part of th~ security 

kernel of the system. By simplifying the mechanisms of processor 

multiplexing, the security kernel is made sim{>ler and easier to prove corre~t. 

The security kernel also can be simplified by structuring it as a set of 

looseJ.y coupled processes. Consequently, a simp,le proces,spr multiplexing 

mechanism that enables the construction of the kernel, ut a set _of processes 
•• c, 

contributes to the goal of kernel simplification. 

- 10 -
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1.1 Brief Statement of Problem and Results 

In virtual memory operating systems such as Multics [19), TENEX [1], and 

VM/370 [8] , the management of processors and the management of virtual memory 

cannot be considered separately. The processor multiplexing algorithm calls 

upon virtual memory management functions to perform such operations as loading 

into primary memory the environment description (1) of a process so that a 

processor can execute the process. The virtual memory management algorithm 

uses various functions of processor management in order to obtain resources to 

run, and to organize the mechanism processes use to wait for pages to arrive 

from secondary storage. 

The initial goal of the research described in this thesis was to 

disentangle this mutual dependency. The first step has been described by 

Huber [10). He has developed an implementation of part of the virtual memory 

system of Multics that runs in special processes created by the operating 

system. By slightly extending his work, the virtual memory algorithms can be 

built so that they need not use features such as interrupt masking and 

busy-waiting, which interact strongly with the operation qf processor 

management. 

(1) In Multics, the environment description is the descriptor segment. 
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In order to completely disentangle virtual memory management from 

processor management, however, the dependency of processor management on the 

virtual memory must be removed. The major sourcQ of this '.dependency is the 

need for processor management to load and unload per-process data bases that 

1BUst be in primary melllOry,.Vhile 'the process is"f!~cdti~g on a processor, but 

are too large and too mnnerous to be pe'ffianelitly c resiffent · f:n primary memory •. 

- ;: __ ~' 

To remove the mutual dependency be~ween_processor mu~~i~lexing ~n4 
: -_O' ~: " , • - '-· ~- . - ' - ,.e:' ;' i , ~· -

virtual memory, processor multiplexing is done at two levels, in t,he design 

proposed in this thesis. The first level of processor multiplexing does 

short-term multiprogramming among a small set of proces~es. The _per-process 

data bases for these processes are in primary memory. 
~-:--" ; .- _! ,_, ~ 

This first level thus 

simulates the existence of a small number of virtual process.ors that 

subsequently will be called level 1 processors. Since at level 1 all 

per-processor data bases are in primary ~cy,· there' ::is no. need ·for level 1 

to depend .on the virtual memory inanag~n~~IgHrith11ls. 

The second level multiplexes these level 1 pro~essors to create.level 2 

virtual processors that are used to run user processes. Leyel 2 is 
' -··_i •. ": i· 

responsible for loading the per-process data bases into pri~~ry ~emory when a 

process is loaded into the level 1 processor. Level 2 thus d~pends on the 

virtual memory algorithms. 

The virtual memory algorithms themselves are built out of special 

processes,_ called kernel processes.. that are permanently loaded into level -1 
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proces.sors. The second level of processor multiplexing does not multiplex 

level l processors running kernel pr:ocesses, so k.eruel:' procesrre& a·re· not 

dependent on the second level of processor mul~·ip1exing. ·sy this strategy9 

the dependencies between proc-essor multiplexing and viTtual memory management 

have been changed from that shown in figtae h la, to. ~hat ·show in figure 

(a) ··' . OH 
Figure 1.1 

Removing Mutual Depend4!llcies 

The two-level structure has other advantages. It allows elimination of 
. - 'i "'l' 

interrupt-driven code from the 1/0 device management part of the syste•. 
-, _)"-':. 

Instead of running I/O device management at interrupt time, I/O devices can be 
f' 

managed by from high-priority kernel processes running on level 1 processors, 

thus isolating and simplifying the control structure of such algorithms. 
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The i~t;eractions ~f processor reconfigur~ion wittl other functions <>f the 

operating sys,tem have been limited also by: thi.l!l'•truct:tte. Only the first 

level of. processor mult,ipl.exing neeci..b:e coguizant of the number of physical 

processors on th.e system. Additions.and deletions· of physical processors can 

occur at any time,-, except when processors. are in the middle of switching from 

one level 1 processor to another. 

Since the second level of processor multiplexing only deals with user 

processes, it is possible Co allnw··its scheduling policy to be modified by an 

administrator of a particular system installation, without interfering with 

the actions of kernel ..p'tocesses. Thus the op~raiinS -s)'~_fea · c&Q.. J>~ designed to 

operate correctly, without having to constrain ~-trehedti.ling g'olicy for user 
\ .··~ :,s:.:~1 S: K. -· J 

,. 

processes. 
'-

A final result of the.-researeh described in this thesis is a single 
- ' - i 

unified interprocess con~rpl_commontcation mechanism suitable for use at all 

levels of the operating system-.- ''Ibis mechanism is an implementation of the 

eventcount model proposed by,Kanodia and Reed [12]. Since this mechanism 

encompasses the capabilitiesc..-Of .Ost,,Jr.nown :lnt.e~prbc.es'- control communication 

mechanisms, it is flexible enough for all operating system and user 

interprocess control communication. In addition, the virtual memory is 

adequate for storage and protection of eventcounts. 'nle processor 
1 ' ·-' :.- '. 

multiplexing algorithms do not have to implement special objects for the 
1· 

purpose of interprocess control communication. 
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The proposed design is described in terms of abstract types. Janson [11) 

has provided a structure for the virtual memory of Multics based on an 

abstract type structure. This mode of description is quite natural for 

discussion of the modularization of a computer system, and causes the 

intermodule dependencies to stand out. I have extended his work a little bit, 

to deal with the problems of multiplexing processors to produce new abstract 

objects called virtual processors. 

1.2 Example System 

At times in this thesis, it will be useful to talk about an example 

operating system. A very simple system, modeled after Multics, will suffice. 

I will consider an operating system that provides a large number of user 

processes that can operate in a shared virtual memory. The virtual memory is 

composed of segments, built out of fixed-length pages. The data contained in 

pages resides permanently in a set of records on disks. The data is accessed 

by a demand paging algorithm that brings the contents of disk pages into 

primary memory as desired. Several hardware processors provide processing 

power for the system. In order to allow the processors to access the memory 

using virtual addresses, each processor has a hardware address translation 

mechanism, called a map. (1) The map is loaded with a set of (virtual 

-~----~~--~-

(1) The map consists of some hardware like the Multics address appending 
hardware, and some data that is interpreted by the map hardware such as the 
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address,primary memory addre8$) pairs, so that if the' map is presented with a 

virtual address that h the fi"t'St component of a pa1ri it will give back the 

second component as the actual primai-y meme.x,.,:address to access. If a virtual 

address is presented that is not in the map, the pro~essar will stop executing 

the current instruction. forcibly transferring· control to a' predefined address 

called the fault handler. 

Processor multiplexing in this system will be done at two levels, for the 

reasons discussed earlier. The first level of processor multiplexing creates 

a set of virtual processors that can be used either to run processes directly, 

or to produce the next level of processors by a second level of processor 

multiplexing,. Th,ts second level -implements the prroe-eseors for user processes, 

called user virtual ,proc~rs. 

I/O is done from primary memory buffers accessible to both the general 

purpose physical processors of the system, and to special purpose I/O 

processors that actually perform I/O. I/O processors communicate status 

information back to the general purpose physical processors through special 

buffer areas called mailboxes, and send interrupts in order to get their 

attention. 

Multics descriptor segment and page tables., The data can reside in primary 
memory, and may be shared by several processors.at once. 
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1.3 Abstract Types 

An abstract type is a class of oMeco j.n ~he., systelll for which there, is ·a 

defined set of operations. The d~fferenee between ~n abstract ~ype and the 

classic notion of type is that the user of an abstract type need not know the 

representation of the object, or the algorithms used to implement operations 
; ·'. 

defined on the type. Further, the only operations allowed to be performed on 

the objects are specified by the definition of the type. 

The concept of ~bstract type is quite, atti:aetive ,for the st'ructuring of · 

large systems becaYSe the actual illlplementatton of ;a type of "object ls hidden 

str1,1cturing prescribed by, Parnas' s "information lli4ing .principle" [21}, for 

dec-0mposing a system .into modules. FU'rther., .abnrao1: :types fi.t naturally into 

the structure of an operating system since a major job of an operating system 

is to multiplex a set of physical resources to produce a set of virtual 

resources that can be viewed as objects of abstract type. I will show that 

this is exactly what happens in processor multiplexing. 

An abstract type consists of a set of objects and a set of operations. 

The set of operations defined on the objects of the abstract type is 

implemented by algorithms collectively called the (abstract) type manager. 

Only the type manager algorithms are allowed to manipulate the representation 
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of the objects. The type manager may be actually implemented as a set of 

closed subroutines, or as a process (or set of processes) to which messages 

may be sent, or as macros (open subroutines) which are expand~d into' the code 

of programs using the abstract type. It is important to emphasize this point, 

because I Will-show later·that it is s<>lletimes:u&eful to inlplement type 

managers using one.or many of these techni4aes. 

In the example system, there are several objects that can be viewed as 

having abstract type. A disk block, for example, is an object that has two 
... -· 

defined operations -- read-block, which reads a block of data out of the disk 

block returning a string of bits of fixed size, and write-block, which takes a 

string of bits and moves it into'the disk. A word in·vtrtual melllOry is also 

an abstract object. Two operations that can be- cat'rted out ··by instructions -in 

user processoes are read-word, whidl obtains tlie e-Ont:elits of· a '*°rd named by-a 

particqlar virtual me1QOry adclres-s, and writ~vord,· which takes a bit: -string 

a-ru::l stores it in the object specified by a particvlar ?Virtual me11l0ry address. 

Processors, both real and virtual, can be viewed as objects of abstract 

type. Viewing processors as objects that can be controlled by operations on 

the processor objects is basic to the structuring method I use in this thesis. 
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1. 4 Layering.,of !bstract Types 

The abstract type idea clearly furnishes .a useful way to view the virtual 

objects seen at the external interface of an operating system,_ but for the 

design of a large operating system the abstract type idea is equally important 

in structuring the internal implementation of the system. Janson [11] 

discusses how this structuring might be applied to a system like Multics. For 

Figure 1.2 
Type Extension Hierarchy for VM Objects 

example, see figure 1.2, wtlich shows the hierarchy of objects out of which the 
. ~' ' 

virtual memqry of the e~ample s~stem is ))uil.t.. Eael,i. o~. the circles in the 

figure shows a type manager, l~eled by the type. of, object il\lplemented. The 
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arrows between the circles indicate that objects of the type at the tail of 

the arrow are represented in terms of objects of the type at the head of the 

arrow. (1) At the bottom, the physical storage oltjects bf the syst~ are 

shown. Pages, fixed size blocks of virtual storage, are implemented from 

these basic objects. Then out of pages and rott blO<!ltS that: hold' map data, 

segments are built. 

This is an example of using type managers inside the system for the 
- ; ' 

structuring effect alone, since the lower level abstractions of the system are 
_,,; 

not visible to the user of the system. The use of abstract types at these 

levels, though invisible at the system interface; is still quite important 
- :.!'-

because of the information-hiding effect of 'the type interfaces. Because the 

only module allowed to manipulate obj~ts of _a .p~;ti.~ular type is the type 

manager, the effect of a paxt_icular algoritluit< ill, some t.n!f)•an11ge.r can be 
le~ -

localized. 

. , 

It is relatively simple to understand: ea_ch plirt of a syst.enr structured in 

such a hierarchical manner. Each ~lass_ of objects is i~~ented in terms of 

a small set of other types of objects.· In order t() understand the 

implementation of a particular class bf- objects, one need only consider the 

behavior specified for objects of that class and the behavior specified for 
.·-t; 

\ ~. ' 

(1) The representing object participates in this representation either as a 
storage container for objects, , a mapping -funcfton ~«>:-tan.slate· the· extern•l. 
name of the abstract object into the names of objects in its representation, 
or as an agentc to perforit the:-operattons that: iBltti~nt' the dstract · · 
operations on the object. 
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objects in the classes used in the representation. It is not necessary to 

consider the implementation of objects used in the representation. Thus the 

implementation of each abstract type may be considered separately. 

In this thesis, processor multiplexing at two levels is described in 

terms of abstract types and type managers. The abstract type structure of an 

operating system is used to show the interdependencies between modules of the 

operating system. The interdependencies between processor multiplexing and 

the rest of the operating system are shown clearly in this model. The 

problems resulting from these interdependencies can thus be discussed easily. 

1.5 Related Work 

There are several classes of related work. First of all, there is a 

large body of literature on concurrent processes. Second, there is some 

literature which talks about the implementation of concurrent processes by 

processor multiplexing on various systems, including Multics. Third, there is 

a growing body of literature on the use of abstract types to structure system 

design, and some recent work applying these ideas to hierarchical design of 

operating systems. Finally, the use of processes within the kernel of an 

operating system has a small body of associated literature. 

It is not worthwhile to list here all possible references to literature 

on concurrent processes as a model for parallel, asynchronous computations. 
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The work .Q_f. several authors in ,cbe .~licatioa of tlMM mod.tls to aperati:~ 

systems p:tobleata is directly relevant; otmer wot'k on the lllOdeling ef parallel 

computations is not specifically related to :the w«'ll iu this theris.· · Dijkstra 

[6] defined the notion of a sequential process, primarily as a mechanism for 

dealing with simultaneous activities. Dennis [5] among others has described 

the utility of the process concept in guaranteeing that independent 

computations do not interfere with each other. Saltzer [25} has described how 

processes can be used as a way of controlling the allocation of processor and 

memory resources to users of a computer system. 

Actual implementations of the process concept also abound, so again I 

will only touch the high points. Saltzer [25) also outlines the basic 

algorithms of processor multiplexing. Rappaport (231 describes an early 

version of the Multics process implementation in his thesis, and discusses 

many of the engineering tradeoffs involved in its design. The Virtual Machine 

concept implemented in IBM's VM/370 (formerly CP/67) operating system [17} is 

also a form of the process concept. 

Work on. abstract types and their use in •stl"Ucrttl'ing· systems is 

progressing rapidly., SIMULA [4) and CLU'. (131· •r., pr"*ailllllng· languag~s that 

include abstract type- definition as basic structuring· t-00ls. Liskov [141 is 

currently investigating the structuring· ·of "Pro«raas· Utring abstract types.·' Th'e 

Hydra operating system kernel [30] is designed to support abstract types that 
,' : . .< _, .. 

can be used to build operating systems. Janson [11] has investigated the use 

of abstract types in structuring the design of operating system kernels, and 
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described the cache manag~ent pattern of type extension that is ext~nded t-0 

processor multiplexing in this thesis. 

The area of literature closest to the topics discussed in this thesis 

describes the use of processes to structure the.kernel· of an operating system. 

Dijkstra's THE system [1J · w~s the fi~st kernel i~ which; .:th~- pro~ess concept 

was introduced at a low level in the kernel. Unfortunately, there is little 

refere.nce .:ln the ava,Uctl>le literat-ure on. t:he i~E sy,st-. tp sh~w: how processes 

are ~ctual.ly ,i1se.G .in tl;>.e kernel. µJJlJ~ .the pesign pr9,~e4~~laei;~, .. t#e~ proe~ 

imp.lementation is a,.t a lower level in· tb.e THE s~._ t.1}._~< ~he. virtual memory• 

Consequently, the _per-pra~s.. 4a,ta. must. J'emain p~~~tJ,.y J.pa,4.ed into primary 

memo_ry, so the number of P:".ocesses allow~ iAJ ~yerely,µ~t"~ : J'.>iij~tra .. 

proposes the idea of s t.ructuring,.an operating. ~ystem i~to fll9GU.les. .in. a 

hierarchy. based on frequency of use of the tl0dc!11e.f-. L~ th• des.is.a propott~d . 

here, the two levels of p.roces,sor 11U,lltiplex1.ng, s•U.ty ,t\lis criterion. 

Brinch-Hansen [3] has described an operating system for the RC4000 
;-. ··• ~· .,; . ! ,-

computer that uses processes communicating via messages to structure the 

kernel. 
" ·-c· ~ ..- ; ~-- ~ . 

Sturgis [29] , in describing the CAL TSS system, shows how processes 

are used to structure the kernel of that system. Rowe, of the University of 

California at Irvine, [24] has described a di.~tdbuted operating system where 
.. 

processes are used as building blocks to make up the kernel, and where control 
.-.:i.---

of the communication paths among the 'processes-·is used to' pro..:ride reliabilfty. 

Huber (10] has described how processes might be used to simplify the structure 

of part of the virtual memory implementation in Multics, and has made use of a 
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primitive version of the kernel processes deSigned in 'ttits · thesis. 'Hoare {9] 

has described the implementation of a virtual naeniOry syst~ as a set of 

processes where each page is assigned a process -- w!1ile this is probably not 

practical as a way of implementing a virtual memory interface, nonetheless it 
-, ._-_ ,:,; -~ - . ~ ··: -2. 

suggests several potentially practical ways of ~mplemep,t.ing a virtual \Demory 

system. 

More recently, at SRI- a st-ruetured design for the kernel of a complex 

operatiug- system was comp-leted. In this deaign, d~scribed by Neumann et. al. 

[ 20) , processes are ·implemented at a l«>W l'ever; and then entranced at a higher 

level. 'This idea is quite similar to· the dengn di:ttusfta' in the present 

thesis, bot: unfort:umrteoly· the SIU design is only- a ·specification and does not 

incorporate any notion of a reasonable illp'lementati'on ~ or even What· thE!· 

algorithms executed by the implemerttation-might be.--- -Th-e SRI design is 

concerned only with structuring of the &ystem,'ftot with the performance costs 

or efficient implementation of their design. Bredt and Saxena [2] have 

described the algorithms of a layered system similar to the SRI design where 

two levels of virtual memory implementation are interleaved with two levels of 

process implementation. As in the SRI design itself, a framework is provided_ 

for a two-level process implementa~ion, bu~ incorporati~g such features as 

multiple real processors, interprocess interrupts, and variable scheduling 
- f ' , ~- • 

policy is ignored. 'They do not discuss the problem described later in the 
.-: - , 

thesis as the outward signalling problem, which seems to be an ~nherent 

problem in a layered operating system design. Another problem_with their 
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paper is that ~hey do not take into account the other uses to which processes 

might be put in an operating system, such as I/O device multiplexing, and the 

peculiar requirements imposed on the design of processes by those 

applications. 

1.6 Plan of Thesis 

The material presented in the rest of the thesis falls naturally into 

three parts. The first part, covered in chapters two and three, will discuss 

the issues involved in the design of a process implementation at an overview 

level. The second part, covered in chapters four, five, and six, discusses 

the functionality of the proposed design and describes a particular 

implementation for the Multics operating system. Finally, chapter seven 

discusses the effect of the design in simplifying the rest of the operating 

system, and chapter eight summarizes the thesis, suggesting areas of further 

research. 

Chapter two specifically covers the basic model of process implementation 

used in the thesis -- that of multiplexing a relatively small number of 

functional processing units (either actual hardware processors or software 

virtual processors) among a larger number of processes. I define several 

terms, including processor, virtual processor, and process. The model 

developed in this chapter will be used as the basis for the model of processor 

multiplexing at two levels, and to describe the design proposed in chapters 
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four, five· and six. In addition to processor multiplex·ing, processor 

reconfigura~ion and int:erproees-s c<>n'trol co.Ui'li.cation' 'art inc0rporated in the 

model. 

Chapter three develops the two level processor multiplexing structure. I 

show how the implementation fits the cache management pattern of type 

extension describeq by Janson [11]. I also model the actions·of·the· 

implementation in terms of the model developed in chapter two. '11lree problems 

that can·result from this structure, having'tO do Wi.th•efflciency and 

interaction. between the· levels, at~ 'dt!sctUt8a;)llnd d\H't solutions are 'shown to-· 

be 0 possible tfithin the strueture •. 
-r:. 

Chapter four begins the discussion of the actual design. It contains a 
-·"; -, : ; ... - =-. 

complete description of the interface presented by level 1 virtual processors. 
'_,<_, 

Chapter fiiTe completes thediscuas:ton·of level l, 'by discussing 

implementations that can·achieve,the level 1 interface efficlelit!ly on·a 

computer system such as Multics. A new hardware architecture is proposed toe 

simplify the control of proce~sor multiplexing. Mechanisms for simulating 
~·-'. ~ 0 ::_-'L'>- ~··: 

this architecture on a more conventional architecture are described, to show 

that level 1 can be built on more conventional systems~ 

Chapter six describes the interface and i,.Plemetttatton of level 2 

processors. '11le functionality of lri4!r'2''proceiisors iiffers cfrom level cl; 

these 'differences, such as administrstiveij variable scheduling polfCy; 

creation .aad deletion of 1.evel 2 ·'procetl&Ors~ proeessor interrupts, and eutward 

signalling eventcounts are described. 
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Chapter seven shows how an operating system is built on the basis 

provided by level 1 processors. The use of level 1 processors within the 

operating system to provide resources to abstract type managers and to I/O 

device management is described. The advantages of using processes running on 

dedicated level 1 processors inside the kernel of the operating system are 

briefly described. 

Chapter eight summarizes the work done, attempts to give an indication of 

the difficulty of integrating an implementation into the present Multics 

system, and the benefits deriveable therefrom. It also discusses how closely 

the initial goals of the project were met, and the impact of the general 

approach taken in this design on future development of kernel-based operating 

systems. 
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Chapter Two 

Model of Processor Multiplexing 

In order to understand how two levels of processor multiplexing can work, 

one must thoroughly understand what processor multiplexing does. In this 

chapter, the concepts of process and processor are carefully defined. From 

this basis, a model of processor multiplexing is developed, showing clearly 

how real processors can be multiplexed to provide multiple virtual processors 

for the execution of processes. 

Along the way, reconfiguration of processors and interprocess control 

communication are incorporated into the basic processor multiplexing model. 

In the next chapter, the model of processor multiplexing is extended to 

two levels of processor multiplexing. To enable the extension to be made, the 

model developed here incorporates the idea of a stopped virtual processor 

whose state can be manipulated. 
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2.1 Definition of Processor 

In this thesis, several kinds of processors are discussed. 'lbese 

entities are all called processors because they share certain properties. To 

make certain that my assumptions are understood, I take the trouble to define 

processors here. 

The basic function of a processor is to perfora,a,.8e.quenc.i! of <>.perations 

on objects in its environment. The environment of a processor is a set of 

objects. For example, the environment of a physical processor is that portion 

of melllOry that it can access through its address mapping hardware. Typically 

the ewiromnent,. is spec.ifien 'by an :nhject~ ~a&-;-the, itulpics descriptor 

segment, that in turn naia.es ,11110~1' ~bj.ect.,., 'L.abaH.: .assuae that;: the o.bj-ects 

that specify enviromnents can be shared among s~a):n)J»J!eBISQrs,, tbWJ. giving 

the processors identical accessing environments. 'H-) 

A processor has internal memory, ·called its state, that it uses to pass 

information from one operation to the next. The processor determines the next 

operation to perform by interpreting an instruction, found in the processor's 

environment by an instruction pointer that is part of the processor state. 

(1) This does not imply identical access permissions, however. 'nle access 
rights specified in the environment specification are interpreted relative to 
the domain of execution (part of the processor state), as in the Multics 
descriptor segment. 
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The environment specification used by the processor is named by a value in the 

processor state. Also included in the processor state is the name of the 

current protection domain in which the processor is executing. 

Each operation performed may modify the contents of the processor's 

internal memory. In particular, it chang~s tne instruction pointer to select 

the next instructiori· to be 'interpreted. 

As an object of abstract type, a processor may b~ .part of the environment 
;:- • • ~ ' ~ c • ..: ~ : • ' ~· 

of other processors. The operations that can be perfo~ed on a procesl!IQr 

object are: loading a new state into the processor, extracting the current 

state from the processor, causing the processor to rU:O.I> and causing the 

processor to stop. 

A processor can be a physical object, such as ~he Honeywell 68/80 CPU 

that is used to implement Multics. The processor re~isters comprise the state 

of that processor. The environment of the processor includes all of the 

primary memory that is accessible through the processor's descriptor segment. 

In this thesis, two other kinds of processors are described. These 

processors are virtual processors meaning that they have no direct hardware 

manifestation. Instead, they are simulati.ons of processors, achieved by using 

physical processors to interpret the instructions to be executed by the 

virtual processor. 
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2.2 Definition of Process 

The word process ~as been used in many l!Jellses ~~ the l,iterature of 

computer science. Usually, it has been U;sed to re!e;:,tq_,on.~ of two,th:l,ngs 

a virtual processor as defined above, or what is called a process in this 

thesis. I make a careful distinction in this 'thesis between the meanings of 
"· 

the words process and processor to avoid confusion. 

A process is the. sequence of actions taken by soDle pt;ocessor. In other_ 

words, it is the past, present, and future "history" of the states af ,t}le 

processor. Each processor, be it virtual or physical, has one associated 
- -

process for the duration of its existence. Thus,- the 'process associated with 

'. - -
a physical processor is the sequence of operations that have been performed by 

that processor since its creation and that will be performed up until its 

destruction. 

The act of logging in to a computer system can be viewed as creating a 

processor for the user. The user can then caus~ this processor to perform 

operations on his behalf. The history of these operations will be called the 

user's process. If there is but- 'one physical pro~essor in the computer 

system, it will carry out the operations of all of the users' processes. The 

process associated with the physical processor is thus a merging of the 

operation sequences that make up the users' processes. 
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Quite often, the words process and processor can be used interchangeably 

this is the source of the confusion between. the words. For example, 

consider the modification of a particular file by a processor·. This can also 

be said to have happened as part of the process (in the process) being 

executed by the processor. 

The major difference between a process and a processor is that a process 

is a sequence of actions while a processor is an actor. A processor is an 

object in the computer system and subject to opeTai:ions that may be executed 

in the system, while a process is just a view of the actions taken by the 

system that can be ·imposed- in retrospect. A process results from the actiorts 

of a processor. 

2.3 Processor Multiplexing 

The two levels of virtual processors in the design are created by a 

technique called processor multiplexing. This technique originated in the 

first multi.programming computer systems as a way of achieving more efficient 

use of scarce processor resources. Saltzer {25) has.modeled.the mechanisms of 

processor multiplexing in his Ph.D. thesis. I will recapitulate the basic 

issues here. 

Processor multiplexing is the-simulation of a number of distinct virtual 

processors by a Stllaller number of real proce'ssors. Each of the virtual 

- 33 - Chapter 2 



- __ , ~ - .-~ 

PROCESSOR. MULTIPLEXING IN. A LAYERED OPERATING S~STEM ... 
pr-0cessors executes a sequence of operat.ioryi_.;Lµ. time. These !2equences are 

actually performed by the real procesaorl!J. The-many pl'ocesses of the virtual 

processors are actually merged together •. cr~aU.ng the· proce:saes of the real 

processors. 

The result of any one of this merging is that the operations of any one 

of the virtual proces,sors are carried .out in the· Hiile" t~ral sequence that 

they would have been', had the virtual pr~uor beef,\.. r.eal. . Successive 

operations of the same virtual pro,cesSQr may be s~rated by a· gap of time 

during which operations of another virtual proce&,Sor are·b~ing exectited by the 

real processors. Successive operations of~ yirtual·J>f~eJ:;sor may also be 

Real Processor 1 

I f I I i RPl : :RP2 I RPl .,. ____ .,., I I I t-1 ----.. ) 

I I I I 1 I 

Virtual Processor 1 

I I t •. ' t t; ~ ;.. 
Virtual Processor 2 RPl I RP2 1

1 
I I I I _________ _._ ,., --.. ,. I I I I 

I if I I I I 
I I J I I 

It I t. ~"f 1 I rtltPl ~rur 
I .----f"'"i I I 
I ~ I L1 . I . t I . 

Virtual Proc_e_s_s_o_r_4 ____ R_P_2 ___ f ! RP2 : :RPl: ! : RP2 
·1· I· -~ .. · It . 

I I I I 

Virtual Processor ~ 

> 
t I I Real Process_o_r __ 2 ____________ _..1 ___ ....._ __ _..._..1_· _ _..

1
,___.1 ___ ~>~ 

Figure 2.1 
Multiplexing 2 Real Processors 

time 

executed by different real processors. Figui-e -2~1 ~ws 'h,ow the operati~s of 

4 virtuai processors might be mapped i.nto the ·Operat.i~ .,s~~~e~ of 2 ""l'e&l 

processors. 
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To define a term used frequently in this thesis, a virtual processor 

being simulated by a set of multiplexed real processors is bound to one of the 

real processprs whene~er it.s pr.0Cess .i;s being ex.cttted bey a real processor. 

Thus virtual processor nwaj)er :t_wo is bound ,t.Q ·;real processor riumb&r one during 

the fir.st,,time iq.,~rva.l in figur-e 2.-1. _.ttor.e lQOS;ely, .one: can o6ay that a 

process is bound to a processor wh~n t.bat proeessOI'' ~is carrying out -actions 

that are part of that process. A process is permanently bound to a processor 

when that processor can only execute operations of that process (the process 

is thus the process defined by the sequence of actions of the processor). 

There are co.ncrete aspec.ts to tfi:is binding. When rea'l. prDcessor A is 

current state. Similarly, processor A a~s-es. objects. th-rough S's 

environment. When S is not bound to a real processor, its state is stored in 

a piece of memory from which it can be loaded later into an real processor's 

internal memory. 

In addition. to providing. the operatic:ms of the real processors to the 

virtual processors, processor multiplexing can create new functionality. The 

vi_rtual. processors can execute an operation that~ causes execution of future 

operations to be delayed·until some future'.e-tent happens. They alao can 

execute an operation that signals such an event~ Such operations are called 

interprocess control communication. The wait operation is not a[\ operati9n 

that requires real processor resources -- it is rather an operation that 

inhibits use of real processor resources by the virtual processor. 
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Processor multiplexing also requires a ~liay. Given a number of virtual 

processors to which an real processor may ha '.bO'und t at arty one time the 

processor can -only execute one. Th• cho~ -t)f. 'tl\e .'..pr&c'e!tst>~ to· choose· is made 

PY some. algorithm, called. the· proceaftr wlt'1pJ.~ pol!e},. :algorithTii: 'ffiis 

chooses which one is to run· and for ·huv lohff. " ~ 3 ' 

2.4 Processor Multiplexing Model 

In o:r:der to discuss two levels of processor multiplexing, one needs to 

understand how processor multiplexing at one £evel fg ~':; 'fn this sedt:foD., 

I will provlde :a model of this· behavi-Or. 

I assume that the real processors are capable of executing all of the 

instructions that appear in virtual processors, except those that control 

processor multiplexing and interprocess control communication. (1) In some 

cases, there will be more than· one real·pT"Ocenor, although the number of 

virtual proces!;lors will usually exceed the number of real J*'<>cessors given. I 

also assume that a real processor can store the contentli of its private·state 

memory,. and load a new set: of values· into 'this priv.ati! enaory ·from main 

memory. The effect of loading the private me!IK)ry of·the real processor is to 

(1) In particular,. the structure of the en"11t'Oldleat descriptid8 in tlie real 
and virtual processors will be the same, and the addressing mechanisms will be 
the same. Since real processors ·can on11 dlrectly.,·attdtess-priaary"memory9 the 
same will be true of virtual processors. 
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cause it to interpret a new' s,equence of instrudtion:s specified by the newly 

loaded state. 

Real processors and virtual processors go through the cycle detailed in 

' . 

processors 
executing 

irtual processors 

P'igure 2. 2 · 
Processor Multiplexing Loop 

figure 2. 2. From the point of view of a rea.l processor,. it is bound to (and 

executes) a virtual processor until some time at which it is unbound. l'he box 

labeled "unbind" represents the unbinding of a real processor from its 

assigned virtual processor. Unbinding results in placing the virtual 

processor state in memory in a pool of virtual.pro~essor~tates.· The.real 

processor is then placed in a pool of available idle processors. The "bind" 

operation in the figure then takes a real processor from the· po,ol of idle real 

processors and a runnable virtual processor fro~ the pool of runnable virtual 
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processors_ (selected by the real proc,essor IUll-~i.J_).l~g J>Q)..ic~) and binds the 

two together. 

A real processor bound ~o a virtual processor enters the unbind qpe~ation 
_,. _- - :. . ,. ! - - -· 

under several conditions. The policy algorithm may decide that another 

virtual processor should be run by that xe,al-_processor, or that the virtual 
_,.re ~ 

processor has exceeded its allotme~t of:coaputift&..!esources. The virtual 
_; ~ -~-' 

processor itself might desi-re-to watt-·~il~~ ev;~t"i~"i-g~alled by another 
::t-,_ ~.:. .;__ "..: ~ ---4', 

virtual processor .r the_ virtual processo!'.,~~ for~JJ:J,.y.,-st~~ped-- or deleted 
• ·-•• ,~T ...::-:.::.~ • • ,_:.e•.:.-:-~ .,...,-,, < -~ ~-~ 'l:. - .o•_,.~=- ~ _ft/o' • • 

by another virtual processor. ~ ~J. proce9Sar' '1ight be removed; from the 
... _~,,,.~~'°-'--'---

r __ .,. 

- ""<.0.::f~-~--

system due to a crash -er reconfigur~_1oJL(tQ,~ 4-~cussed lateJ; -cfn this 
-·-~- - -- r"''-. - _. - - - ._.·: ~..,. _ .. ./· 

chapter). 
,._ _ _ _...,.,.. 

In this model, no indication is given that specifies the actual agent 

that causes the bind or unbind operati~n~, -Gl'~etlle agent that executes the 

actual processor multiplexing policy algorithm. ntis is intentional, since in 

the d~sign I propose later in the thesis, the agent will vary from level to 
_ _,,_. 

level. -However, I would like to discuss here the alternatives that are 

possible. 

-". r 

2.4.1 Centraliz~ Control 9f Pro~ei;Jsor Multiplex!ng-

One scheme for ,the control. o_~ pro!:~sspr ~:Hip).~xi93 is~ based.on .the :f..d~a 

of a ceµtral agent. This agent is respon,.i_bl~c~Ql"" th,,bill4ing o-f virtual 
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processors to real processors. All binding of virtual processors to real 

processors is cauaed by the action of the central agent, 111hile unbinding of 

real processors from: virtual processors a!sb·may be controlled by the <:entral 

agent •. Of course~ the virtual processors· the11.selvesha•e-influence over the 

unbinding decision, since a virtual proceaaor tha~ chooses, to wait or 

otherwise gb•es up- Hs need f()r a real processor can ·e.ause real processors to 

stop running that virtual proe.essor. The· central agent,is;. however,- notified 

if such- an-event occurs, so the central- agent.interacts"oaeaqh'binding-and 

unbinding of a rea1 processor-. 

Typically the central agent is a computation carried out in the computer 
;;· 

system. Cases where the central agent is a human operator fit this model, but 

are not of interest here. The central agent can be viewed as a process, since 

it is a sequential computation that• perfortd typetatit°*tr ••' the· s-tat:e o.f ·the 

system. The agent cannot, of course, be the process of a virtual processor, 

9imte it must make dee is1.ons about . virtual ~ocewors<i.flt\eti they are· not 

running. If the -agent unbowid itself,. then it:' i::ouU aever make· the decision. 

to rebihd itself. For this reason•; the cent talc age1\.t -in th Ur scheme of -

processor multip:lexi:ng must be permanently executin8 00-.,. dedicated real 

proce&&or~ (l) · 

(1) This real processor does not have to be a general purpose processor such 
as the ones bein& multiplexed• It: iS no-t .W:lttpld.ed.J· amfr-performs a fixed, 
function. Consequently it could be a hard-wired processor, or a 
microprocessor executing a firmware algorithm. As is shown later in the 
thesis, the effect of a dedicated processor can be obtained by cheating a 
little bit. 

• l ""l 
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Given this constraint, the central age~t_·may iP1Pl~11Jellt aq.y arbitrary 

policy for scl).eduling the binding of virtplproeesa'1rs to. real p~oce~sors. 

The implementation of such. policies will ~ually require SOiie kiad of 

coDUllunication channel b~tween the real proces"ra and t:he, central agent. The-­

primary reason for such a communication chan.wl is that the virtual processors 

being scheduled by the agent need to be able to wait for.other virtual 

processors to do cer£aia things. While the ageat can.reasonably bind a 

waiting virtual processor to a real processor, such a dec:ision is quite 

wasteful, since the virtual processor will unbind· it:ael.f immediately. ·lb.is· -

would reduce the economic justification for doing processor multiplexing, 

since real processor time would be wasted doing non-useful work. 

2. 4. 2 Distributed Control of Prpeessor Multit>J.exing . . 

An alternative scheme for the con:trol of ~<>cessoraultiplexing is one in 

which the functions are accomplished by a distribtlted algorithm executed by 

all real procesirnrs. In this schetDe, the pol-iey ,_sed to select a. new virtual 

processor for a real prpeessor in the bind op•l'atiOll ,.i,a illlple~nted on each 

real processor, as is the policy used to control which real proceesors to -

unbind. Through careful coordination, real processors unbind themselves when 

they choose to, send recommendations to other real processors to unbind 

themselves, and choose which virtual processor to next bind to. 
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Please note that in this scheme it is not the case that control of 

processor multiplexing is done in the virtual processors being implemented. 

If this were the case, the virtual processors could become unbound in the 

middle of telling the real processor which virtual processor next to bind 

itself to. Often an algorithm, such as that used by the current Multics, is 

described as being so distributed among the virtual processors. In fact the 

computations of such an algorithm are only executed when the real processor 

cannot change its execution point to another stream of instructions (inhibited 

mode), and so are done exactly as if they were unit operations in the real 

processor. I assume that the special privileges needed to control processor 

multiplexing in each processor are only accessible in a special domain found 

in each real processor's environment. 

In the distributed control scheme, it is possible that each real 

processor can implement a different policy in assigning itself to a new 

virtual processor. Thus, the set of policies that can be implemented is 

apparently richer. As noted above, there needs to be a communication channel 

between the real processors and the policy-implementing algorithms. In the 

distributed case, each real processor must be able to send information to all 

other real processors. 

In the distributed case, interlocking between different instances of 

policy algorithms becomes necessary since real processors may come unbound, or 

choose to bind themselves to virtual processors, simultaneously. This is just 

one aspect of the general need for harmonious cooperation among the policy 

algorithms executed by each real processor. 
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2.4.3 Comparison of Distributed and Centralized Control 

Although no algorithm for control of processor multiplexing will match 

one of these extremes precisely, it is instructive nonetheless to stvdy the 

advantages and disadvantages of the centralized and distributed control 

schemes. 

The 111ain advantage of the centra1ized 'a~goritbm i's unity. Since the 

centralized scheme is executed as a process- ~anehtly:bouitd to one real 

processor; 1:t can be described by a -single pn>gra• tnat:cmakes one decis1:on 'at 

a time. Such a description has an obvious et~ec1:'.·on: the ease of understanding 

the programs of the processor multiplexing policy, by makin~ them sigiply 
=--~ ,- :2 -_ • ' ' ~' <, : ' ~ • - - '>- -1 

structured. Also, since in dynamic execution, o?e decision is made at a time, 

it is fairly easy to model the state transition of bindin~s o~ virtual 

processors being implemented, since there are no simultaneous transitions • 
., 

Thus the system can be treated as a synchronous system, at least as far as the 
-I'_ t .:; 

binding and unbinding of real processors to/from virtual processors is 

concerned. 

The main advantage of the distributed scheme is autonomy. As mentioned 

earlier, each real processor can control its destiny relatively independently 

of the other real processors. The policies implement~d by di~~erent real 
;_, ~ -' -- . . 

processors may vary. Also, the autonomy afforded by a distributed system can 
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increase the amount of parallel activity possible in determining policy. Thus 

the fact that a real processor is busy finding another virtual processor to 

execute need not prevent another real processor from doing the same. To the 

extent that these activities can be carried on in parallel, and to the extent 

that the real processors can execute in parallel, this can be an economic 

advantage. 

The advantages of each scheme are disadvantages of the other. In the 

centralized case, the lack of autonomy prohibits the parallelism afforded by 

the distributed scheme. In the distributed case, the autonomy makes it 

potentially very difficult to understand the interactions of the different 

algorithms executed by different real processors. 

It is possible, however, to incorporate parallelism into the centralized 

scheme to achieve more rapid execution of the central agent. The parallelism 

is achieved by implementing the central agent as a group of cooperating 

parallel processes (implemented on dedicated real processors) that take 

advantage of any inherent parallelism there is in the centralized policy 

algorithm. The sequentiality of bindings and unbindings must be preserved in 

this case, but the time required by the central agent to perform each action 

can be reduced, thus reducing the economic cost due to real processors waiting 

to be rescheduled by the central agent. 

The distributed scheme, in general, seems to have the greater 

disadvantage. I am predominantly interested in simplifying the structure of 
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the processor m_ultiple~ing algorithms, ratb,er than improv_in~ their 

performanc~. Performance is an issue, of cou!se~ but the m~in goal of .this 

work is to understand the clearest and siplplest structure that achieves ~h~ 
< ' : •• • - -"": ; - - - '. - - ~ ' : - • ~; 

desired effecta,, and then to prop~a,e wa.1~ of improving performance within th~t 

structure if necessary. 

2.5 Processor Reconfi~uration 

and deleted .from the COlllPUte_r_ system wt\i_le it is runJl;ing_. Yor ex~mple,. ~~ai ·- . -~ - --

processors may be shared between two computer syst~s. In this exampl~. one . -_. - ~ . . . - -

real processor can be moved from one system to the other in order to balance 

.-_ . - ; - :--- . - - '. --. -- "-/~--:~-- - . 

the computing resources on each syl'ffem· to- the presented loads. Another 

example' would be the automat:fo· deletion of a fauity rul ptocesso·r wheri the 

malfunctionihg :is detected. The faulty pr;,cessor thenc ({~-be rep~ired -and 

added baci to the computer system While the rest of the system has continued 

to run. Processor reconfiguration is a requfredfeJtture:of any system that 

hopes to become a c'omp\lter -utility that remains· up-Withl>ut• 'interruptfon all-

day. 

Schell [27) has developed a model of processor reconfiguration. In it 
- -~ -

the two real processor _states, bound (to a virtual processor) and unbound, are 

each split into two st~t'es '(s'ee "Ft'kure 2. 3l~ ;ac'cordh1g to ac s~~ond' cdterion. 

This criterion is whether the real processor is- available -fo'r multiplexing or 
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bind 

unbind 

unbind 

Figure 2.3 
Processor Reconfiguration States 

not. In figure 2.3 it is seen that deconfiguration of a real processor 

consists of marking it as unavailable, and then unbinding it. Adding the real 

processor back consists of marking the real processor available, and binding 

it to a virtual processor. 

Processor reconfiguration fits nicely into the model of processor 

multiplexing. A real processor can be deleted from the system by marking it 

unavailable, then causing the real processor to execute unbind, which takes 

special action on an unavailable real processor and places it in an 

unavailable real processor pool. An unavailable real processor can be added 

to the system by causing it to enter the processor multiplexing loop as if it 

had just become unbound from a virtual processor, as an idle real processor. 

Figure 2.4 shows the revised processor multiplexing loop. 
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_real pr_oces$or~ 
-· ' =ex:-ec·tit:tng ';; · -
virtua~ proc~!i¥1~>s 

Figure--2. 4 
Processor Multiplexing Loop with R fi econ_ gur<jttion , 

At each processor reconfiguration, the policy algorithm must be made 

aware of the new state of the reconfigured processor. For example, the policy 

being implemented might be an assignment of static priorities to virtual 

processors such that the highest priority virtual processors are guaranteed to 

run when they are runnable. In this case, deconfiguration of a real processor 

that is running a virtual processor of higher priority than some other virtual 

processor that is assigned to a real processor will require reshuffling of the 

processor assignments. The policy algorithm must thus be brought into action 
. . 

whenever a real processor is deleted. Similarly, when a real processor is 

added, the policy algorithm must specify what to do with the new processor. 

The policy algorithm specifies this by controlling the choice made by the bind 

operation. 
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A concept closely related to processor reconfiguration is the 

initialization and shutdown of the computer system. Luniewski, in his 

master's thesis (15], has discussed how to view most of the tasks of system 

initialization as adding additional system resources to a minimal system. 

Processor multiplexing may be initialized by starting with no real 

processors and a set of virtual processors to run. Obviously, this is a 

system at rest, with no changes being made to objects in the system. One can 

then add processing units, in exactly the same way that processors are added 

in reconfiguration, binding them to virtual processors in the processor 

multiplexing loop. (1) This reconfiguration proceeds until all the available 

processing units are added to the computer system. The system continues to 

execute the computations specified by the virtual processors of the system as 

this reconfiguration proceeds. The only effect of adding real processors will 

be to increase the effective speed of the system. 

Processor multiplexing can be stopped and the system shut down by 

deconfiguring all of the real processors from the system until there are no 

real processors left bound to virtual processors. The system will then remain 

at rest until the real processors are added again. All of the state of the 

system will then reside in the descriptions of the virtual processors, and the 

state of the deconfigured real processors will be irrelevant. 

(1) With a centralized agent, there is no difficulty in adding the first real 
processor (other than the agent, which is expected to always be part of the 
system) because the central agent performs additions. In the distributed 
processor multiplexing case, though, adding the first real processor is 
slightly more tricky than adding the later ones. 
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A system crash that is due to a software detected·etror is just another 

deconfiguration of processors~ as far as processor multiplexing is concerrted. 

(1) In a system crash, all real processors are deletea·. this view of a 

system crash is important, since it defines the fact that the state of the 

system is completely represented in the vi~tual processo~ states, and no 
" . 

relevant information is l~ft in evanescent ~~~l 1 p~ocess9r re~isters. For this 

reason, if the cause of the crash is ~epairable, the _systen1;_ stat~ can be 

restarted at the point of the crash. An example of this might be a brief 

power-line failure, detection of a parity error in memory that can be 
- -· ' . ' -

corrected from redundant information, or other possible sistem states. 

An important facet of processor tlftilt!plextng is ·t:hat tbe dependence of 

the system on having a particular ·numb'er oi" ae1: of real pto~·essots can: be 

reduced to a minfmUt11. Ttiere is no-need for virtual' ·praeesso'rs to be aware of 

reconfigurations of real procesftO'r8, other·th'an in tenils~of th~ total amowit 

of processing power that can be delivered to the set of running virtual 
'-- ~ ·~' 

processors in a fixed period of time. 

~ .-

{l) Obviaus'ly, some system mshea "cannot' be Y'!eWed,. dec~orlf:f:guiatlmui'. Of a:ll 
processO'rs. Most cra8he11 in the ·Multtc's 8ysri!m,~ hOVever, -take the f'orm·of · 
orderly- shutdown of -the system by software. ·· " ~- , 
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2.6 Interprocess Control Communication 

It is the responsibility of the computer system to provide mechanisms for 

communication between cooperating processes. There are really two different 

kinds of communication that processes must be able to achieve. There must be 

a way for processes to exchange data in some way. This mode of communication 

will be called interprocess message communication (IPMC) in this thesis. 

There must also be a way for processes to wait for data prepared by other 

processes, and for processes that prepare such data to signal that it is 

available. This mode of communication is qualitatively different from 

communication of data. Since the effect of such communication is purely to 

reenable a waiting control point, it is called interprocess control 

communication (IPCC). Together, IPMC and IPCC are called interprocess 

communication (IPC). 

In a computer system that allows sharing of virtual memory segments 

between processes, there is no need for a special interprocess message 

communication facility to be built into the processor multiplexing algorithm. 

Shared virtual memory segments provide an extremely high bandwidth data 

communication channel between the processes sharing the segments. The 

protection facilities provided by the computer system for shared virtual 

memory segments will suffice to handle interprocess message communication. 
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Further, shared segments are sufficiently primitive that any protocol for 

interprocess message communication can be built using them. For these 

reasons, I assume that interprocess message•coauaunication·wi:ll he,hand'led 

outside of the scope of this thesis. 

Interprocess control communication, on the other hand, is intimately 

related to the structure of the processor multiplexing mechanism. nte ability 
·,, 

of a virtual processor to indicate that it does not need real processor 

resources until a particular event happens is basic to the economic advantage 

of processor multiplexing. If a dedicated real processor were actually 

available for each virtual processor, busy-waiting (1) would be an adequate 
1"': ' ... __ 

interprocess control communication mechanism. 

In order to keep processor multiplexili8 simple9. :lt is desirable t·o have a 

very simple interpracess.control·coDllllunicatiou mechanism. Saltzer (251 has 

discussed the general .:ptoblem in det.aiL,UFliis ,Pb~D •. : thesis. · 'The essence of 

the problem is to be able to communicate to a virtual processor that is 

waiting for an event to happen one bit of information that indicates that the 
• J 

event has happened. The information that the event waited for has happened is 

stored as a single bit in the memory of the system, known as the 

wakeup-waiting switch. The wakeup-waiting switch is initially off. When the 

event occurs, the wakeup-waiting switch is set on. In order to wait for an 

event, the virtual processor indicates to the processor multiplexing algorithm 
, - ~-

(1) Busy-waiting is repeatedly testing the state of a shared memory word in a 
loop. 
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that it cannot run until the wakeup-waiting switch is turned on, and then 

unbinds itself from the real processor executing_ it. 

In Saltzer's thesis, there is one wakeup•waiting switch per virtual 

processor, which represents the "Current E!Vent being waited· for. Thus, the 

virtual processor wakeup-waiting swit~h is"·multiplexed to represent many 

different events as its process proceeds, with the requirement that when a 

virtual processor restar~s after waiting, it must clear the wakeup-waiting 

switch for the next wait. 

This multiplexing of the meaning of the wakeup-waiting switch of a 

virtual processor make$ it more dif flcult to' ensure tliat virtual processors· 

are awakened at the right time. If virtual processor A can wakeup virtual 

processor B, there is no guarantee that the reason virtual processor B is 

waiting is the reason virtual processor A wakes B up. Virtual processor A's 

wakeup will then be misinterpretedoy B, or ignored by B. In the first case, 

B will proceed under the false assumption that the event awaited happened, 

while in the second case, B will lose the wakeup (1) even though it may be 

meaningful to B at a later time. These problems can be serious for system 

security, if the wakeups are intended for a protected system operation in B's 

virtual processor, because a wait operation executed outside ?f the protected. 

part of the system can receive IPCC signals intended for the protected part. 

The arrival of an IPCC signal can carry privileged system information. An 

(1) This is the "lost wakeup" problem described by Saltzer. 
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unprotected receiver may either gain unauthorized access to privileged 

information, or prevent it from reaching its proper destfnation. These 

occurrences cannot be prevented b~catJS~ B is ~ultiplexing the meaning of his 

wakeup-waiting switch, and so mu,st al.low A to wake him ue at all times, even 

though B waits for A's event only sometille$. 

Another interprocess control communication meehanism is the semaphore. 
. . . . 

This is quite similar to the mechanism described by Saltzer, except for the 

fact that the semaphore is a wakeup-waiting switch that.represents a class of 

events independent of the events of interest to one virtual processor-. It is 

possible to give a semaphore a semantic meaning because new sema.p9ores can be 

created for each semantically different class of events. In order to 

implement semaphores in the model, the prQcessor multiplexing algorithm must 

be informed of all V operations to semapho~es, and muat. keep track of the set 

of virtual processors that are waiting for each se ... phore to indicate that the 

event has occurred. 

Unfortunately, semaphores have several disadvantages. First, they are 

limited to cases where the occurrence of an event will allow a fixed ntDDber of 

virtual processors to proceed out of the waiting state. ' Second, because of 

this limitation, the ability to proceed past a P operation on a semaphore 

automatically becomes a kind of scarce resource that can be used as a 

communication channel among processes that wait on the semaphore. 
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This latter point is quite important in Ii secure sy~tem design. Although 

communication of information is inherent in the IPCC mechanism be~ween the 

virtual processor that causes an eyent and the virtual processors that await 

the occurrence of that event, there is no inherent requirement that virtual 

processors waiting for the same event to occur should have a communication 

' ' path among themselves. 

For these reasons, along with the need to deal with synchronization in 

distributed systems, Kanodia and Reed [12) have. developed an rrcc mechanism 

that is in some sense more general than either semaphores or block-wakeup, but 

is still very simple. I will briefly describe the mechanism here, and 

indicate how it fits into the model of proce~sor multiplexing. 

An eventcount is an object in the system that represents a class of 

events that will eventually occur. This class of events is ordered, so that 

by the time event N occurs, all events numbered.from Oto N-1 will have 

occurred. Consequently, the set of events that have occurred at any 

particular time can be represented by the number of the last event to occur . . , 

This number is known as the current value of the eventcount. 

There are three operations which may be performed on eventcounts. One 

may read an eventcount to obtain the 'current value. One·may advance an 

eventcount. This will increment the current value by one, and serves to 

indicate that a new event in the class of events represented by the eventcount 

has occurred. Finally, a virtual processor may await a particular event in 
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the class associated with the eventcount. This last operation requires that 

the eventcount, and the number of the event be specified. Await will prevent 

'the virtual processor from proceeding until the current value of the 

eventcount exceeds the number of the event. 

The eventcount IPCC mechanism has the useful property that two virtual 

processors waiting for events in the same class (thus recorded in the same 

eventcount) do not have an inherent intercommunication path. ·the enabling of 

one virtual processor to proceed does not automatically disable any other 

virtual processors from proceeding, and allows broadcasting events to multiple 

virtual processors -- a function not easily achieved using semaphores. 

Consequently, this mechanism is more desirable for use in a secure system. 

Further, the implementation of eventcounts is not inb~rently m9re difficult 

than that of semaphores. 

The eventcount mechanism fits into the processor multiplexing model quite 

simply. The processor multiplexing loop is modified to have a pool of waiting 

virtual processors, as well as a pool of ready-to-run virtual processors. 

Figure 2.5 shows this modification. The name of the eventcount and the value 

await~d must be stored with the virtual processor state. A special kind of 

unbind operation will put the virtual processor, in the. waiting pool instead of 

the ready-to-run pool if the awaited eventcouqt ba~~'t. yet been advanced to 

the awaited value. The advance operation inform~ the processor multiplexing 

algorithm of the new value of the advaQced eventcQµnt, causing.any v~rtual 
- ' - - -

processors in the waiting pool waiting on this eventcount to be moved to the 
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real processors 
executing 

irtual processors 

Figure 2.5 
Processor Multiplexing Loop with IPCC 

ready-to-run pool. In this implementation, the only storage required is the 

ability to remember the names and values of eventcounts that are actually 

being awaited by virtual processors. A way to search the waiting pool on each 

advance operation for virtual processors waiting on the advanced eventcount is 

required. ( 1) 

(1) This search can be done in time proportional to the logarithm of the size 
of the waiting pool, at least, if a balanced tree scheme, such as AVL trees is 
used for searching. If hashing is used, one may be able to do better 
(although frequent deletions usually reduce the efficiency of a hash table). 

- 55 - Chapter 2 



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

An alterngtive implementation of eventcounts would include in them a list 

of the virtual processors waiting for changes to the eventcount. Along with 

the name of the waiting virtual proce~sor would be tQe -value waited for. The 

await operation would then just add the current virtual processor to the list 

associated with the eventcount awaited, and then unbind t~e process from its 

real processor indicating that it should not be run. When the eventcount is 

advanced, any virtual processors _that at'e waiti-ng for the new value are 

removed from the list, and placed in the ready-to-run pool so that they may be 

run. 

This latter implementation can require more storage (a list pointer per 

eventcount, whether a virtual processor awaits it or not). The first 

implementation may have a certain cost due to searching the waiting pool on 

each advance operation for virtual processors awaiting the advanced 

eventcount. 

The first model implementation has the nice property that if a s~gment 

were used to store the eventcount, only the advance-operation would have to 

modify that segment. Thus, if segments have individual permissions for 

inspection of values and modification of values, the segment access control 

may be used to guarantee the security of both the IPMC mechanisms of the 

system (implemented in segments), and the IPCC mechanisms of the system. 

Using this implementation thus makes the protection mechaniams of the system 

more uniform and simple to understand. Stapping a virtual processor is also 

made simpler, because the eventcount itself need not be modified. 
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2.7 The Virtual Processor Stopped State 

In order to multiplex virtual processors as discussed in the next 

chapter, a mechanism is needed to change the state of a virtual processor, 

just as there is a mechanism for changing the state of a real processor. In 

the model as so far described, the state of a virtual processor is sometimes 

kept in the waiting pool, sometimes in the ready-to-run pool, and sometimes in 

some real processor. To simplify matters, I introduce a new state of a 

virtual processor, called the stopped state. When a virtual processor is in 

this state, its private state memory can be changed and examined by other 

virtual processors. The stopped state is added by modifying the processor 

multiplexing loop to include a pool of stopped virtual processors. Figure 2.6 

shows the stopped modification. A virtual processor enters the stopped pool 

when some virtual processor executes a stop operation specifying this 

processor, or when the virtual processor stops itself because it has exceeded 

a resource limit. A virtual processor can enter the stopped state directly 

from the ready-to-run pool or the waiting pool, or it can be marked as 

to-be-stopped and unbound from its real processor if it is running. The 

unbind operation puts virtual processors in the stopped pool if they are so 

marked. 
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real processors 
executing 

vir.tua.1 

·· Figure i~·6 
Processor Multiplexing Loop_ with Stopped State 

- , -.- ;,: - - . 

A virtual processor in the stoppe<l c.S_tatt! caµ.. b~ .started again when' 

another virtual processor executes a ,atar-t.~rati.on specifying the stopped 

virtual processor. The start ope~;ttion p.._ts. ~be vil\.t11ak;proo.ess0r0 in the 

ready-to-run pool. 

One special point should be made here about the await operation -- the 

virtual processor private memory while a virtual processor is in the waiting 

pool looks as if the await operation has not commenced. Thus stopping a 

Chapter 2 - 58 -



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

waiting virtual processor, and restarting it later, will cause the await to be 

re-executed. Since the await operation is a pure predicate, with no 

side-effects, re-execution cannot cause any problems. Re-execution is chosen 

in order to avoid having to show in the state of a virtual processor that is 

in the stopped state which eventcounts are being awaited. The awaited 

eventcounts are forgotten in the transition from waiting to stopped. For 

consistency, the advance operation will cause re-execution of the await 

operation, also. 

2.8 Summary 

In this chapter, a number of terms are defined, and a model of processor 

multiplexing is developed. This model will be extended in chapter 3 to a two 

level processor multiplexing structure. Several important features are 

incorporated in the model. The model applies to: 

1. Systems having multiple real processors, with small private 
memory for state, and a large shared memory with address mapping 
hardware to restrict the environment. 

2. Systems where processors can share access environments. 

3. Systems that allow reconfiguration of physical processors. 

4. Systems that allow either centralized or distributed control of 
processor multiplexing. 

5. Systems that allow the scheduling policy to be altered 
independently of the the rest of the operating system. 

6. Systems in which the states of virtual processors are altered by 
a second level of processor multiplexing. 
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Chapter Three 

Multiple Levels of Processor Multiplexing in a Layered System 

In this chapter I explore what it means to do processor multiplexing at 

two levels, creating two kinds of virtual processors •. To start, processor 

multiplexing is described in terms of a common pat.tern of type. extension, 
.,, :, <f • .1·.,. 

cache management, that applies to operating systems structured 1:1ccording.to 
j. - < ' ~- •• _:"; ! ; .- " ,_ ;;;. ',.._ ,-. - - --~ ·- : .. 

abstract types. This pat tern' and the model developed in chapter two' are'' . 
. ;, '!:'" . .' •" . .. .. .. ·' 

then extended to handle two levels of processor multiplexing. 

Having thus described the structure of the interfaces and implementations 
- . .., -:~;·; _ <..; 

of each level of processor multiplexing, I then show.how ~his stFucture helps 

simplify the structure of the operating. system.~ I discuss how the mutt,1al 

dependency between virtual memory implement~ti~n and virtual processor 

implementation is eliminated. I also indicate how the level 1 processors can 

be used to execute "kernel processes" that p_royide proce,ssing po~e_r to 
~·- : 

abstract type managers that are part of the kernel of the_operating system. 

To close the chapter, I discuss three problems that arise from the t~o 
. . ,· 

level structure and appropriate methods to solve them in the context of a real 
. tJ 

computer system. The first problem is that inef f~ciency can be caused by 

multiple levels of scheduling algorithms. The second problem is that 
- •• - ' •• 7• •• < --~ ? ~ ,_: 

processor multiplexing can interfere with intermediate states of abstract type 

managers, violating the hierarchic dependency structure. The third problem is 
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that a mechanism for coordinating ~the 14ctivities of different levels of 

virtual processors is needed. 

3.1 The Cache Management Pattern of Type Extension 

. Frequently the basic task perf oraed by a higher level type manager in 

implementing its type out of lower level types is cache management. Janson 
i :.-.r. _: 

[ 11] has described the basic issues· of cache m~n~geme~t in a virtual 1le1ll0ry 
. ,, 

system based on abs.tract types. The cache management pattern is ubiquitous in 
., ,. 

'.1: 

his design. 

_ . .__ 

The cache management pattern involves creating a new abstract type that 
c ~:..: €-~ ·:· -; -:-:....!:- ~. 

is repres~nted in terms of two existing types, the cache !I2!_ and the encached 
'-;~ ~- '"'t . ~ ;;:: ' ---

.!:I.I?!.· The new type created is quite sinliiar to the cache type in 
: • '-~ ,,_~£:. ~--

functionality. There are usually a limited supply of objects of cache type, .. 
•. 

so they are multiplexed among the objects of the new type. The encached type 

generally serves the function of providing a relatively large amount of 

storage for holding the state of objects of the new type • 

.. 
For example, see figure 3.1, showing the type-managers for blocks of 

.. 
primary melllOry (coreblock), records on secondary storage (diskblock), and 

pages of virtual memory. Here, the major function of the page type manager is 
... ' ' .. ; ~· .c . '] •.. ' .. , 

·,_ 

to manage the coreblocks available to it as a cache for the information in 

dtskblOcks. The only oper~tions on diskblockS are read-block, which 
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read-word 
write-word 

Figure 3.1 

read-word 
write-word 

read-block 
write-block 

Cache Mgmt. Pattern for Page Object 

reads the contents of a whole diskblock, and write-block, which replaces the 

contents of a whole diskblock. The coreblock has more fine-grained 

operations which allow selective reading and writing of words of the 

coreblock. 

Since the page manager implements fine-grained read and write operations 

on the page, the most effective way to achieve these is to implement the page 

as a coreblock. On the other hand, there are more pages than coreblocks, so 

they must be permanently stored in diskblocks. The fine-grained operations 

can be achieved by copying the information of a page into a coreblock, where 

the operation is performed. At some later time, the information in the 

coreblock can be copied back to disk. 

Processor multiplexing can be viewed as just such a cache management 

algorithm. Given a group of real processors and a set of memory blocks that 

can hold processor states, a new abstract type can be implemented, called a 

virtual processor. Real processors are viewed here as objects implemented by 
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a real processor type manager. The operat;Qn~ permitted on a processor 

consist of loading a state into it (bind(ng)" ad, running it, and stopping it 

and storing its state (unbinding). The v:lrt.t.wrt.,processor type manager 

provides four operations, bind, run, stop and unblnd, that are similar in 

effect to the two real proce~r control operations. )me.virtual processor 

has the bind and run operati-0ns., and the stop and un]#ttd·operations, decoupled 

for simplicity. The stop and run operations affect the use of real processors 

in implementing the virtual processors, whil•Lthe :t.tiid'-lltld unbind operations 

affect the process~r states in atorage only~ 

Another difference between virtual processors and real processors, 

however, is that virtual processors interpret the instructions encountered 

during the run operation some11iiat differently. For example, there is an 

iASt:ruction recognized by the virtual prt>ee-ssor :t-0 mean ··a118ft some eventcount. 

No corresponding instruction exists in the real processor -- await is 

implemented by a sequence of instructi.ons on· the real prbCessor that has the 

properties of an instruction to the vH:tual processbr (once started, it is 

COlllpleted, and no intet'mediate states can be observed by virtual processors). 

The virtual processor type manager has a very simple task ~ it just 

treats the real processor type objects as caches for processor-states. Figure 

3. 2 shows thia structure. The virtual processor ma1ui~r"' s bind operation is 

performed by writing the state of the virtual ptocessor in a memory block 

called a processor-stat:e. The virtual pr0eessor manager unbind operation is 

performed by reading the value in a processot~state obj~ct. (lt is an error 
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stop 
run 
q.nbind 

Figure 3 .. 2 

bind 
µnbind 
run 
stop 

Cache Mgmt. Pattern for Virtual Processor 

read-state 
write-state 

if unbind is attempted when the virtual prtlc'~ssor is not stopped.) The stop 

operation ensures that the virtual processor state is not being interpreted by 

a real processor. The run operation enable~ the co~tents of a processor-state 
" . 

to be bound to a real processor and run, using the real processor bind-and-run 

operation. 

The processor-state objects are veryHmited~in the set of operations 

that may be performed on th.em. ·Only read· and ·write operations are performed 

by the virtual processor mana~r •. On t:lle 'other nad.d; die ·virtual processor 

manager uses the real pt-oees.sor te- execute the state, ortce the state is bound 

to a real processor. This situation empb:asfzes strongly the different roles 

played. by the cache and encached typ'es i~ a· type ·defined by a cache manager. 

In the storlige system example previousl)r deseribed ,· both tlie corebi"ock and 

disk.block are quite si111Uar - ·both are passive storage containers, with read 

_and write _9perations defining their basic capabilities. The virtual processor 

type manager provides-, as its 'prf111ary functiun, an _ifit~·tpreter for an 
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instruction stream specified by loading.·tlie s~te of a virtual processor with 

a particular set of values. This fun~ti~4aifty 1s obtained by using real 

processors to perform the instruetiotyJ require,J!. by the virtual processors. 

The processor-state object;s do not participate in th.is function; instead they 

serve only to hold the states loaded into virt~al proces~ors while the real 
~ . . . - . ' . 

processors are occupied wit;h computations oil behalf \>~'-other virtual 
' .. ~ ... 

processors. Thus the cache type objects ~re~ used to petforu1 the primary 

function, and are quite similar in capability to the type implemented by the 

cache manager, while the encached type obj ~cts serve, only:·~· storage. 

3.2 Building Two Levels of Virtual Processors 

As shown in the previous section, processor multiplexing may be seen as 

providing a new abstract type ,oLprocesaor,, by ~•agiq, the :real processor 

type of objects as a cache :(or processor states, ilh;\c\\ . .are stored in 

processor-state objects while not actually b~ing·-lll4nipulated by a processor 

object. The set of virtual processors prodt.&Ced~ by: proeeasor multiplexing in 

this way also can be multiplexed to. :p.roduce. yet aa-0th•r new :.abstract type of 

processor. (1) The solid arro~ in figu.r~ 3.3 show .bow the resulting type 

hierarchy would look~ for two levels of proce"or multiplexing. The basic 

algorithm performed by .each level in this hier"8.rchy,is &imilar,.. with the. only 

(1) These can in turn J>e_ .multiplexed, and the-pat.tern c::an- 'be carried out 
repeatedly, yielding a hierarchy of abstract types all of which perform a 
processor function. 
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Figure 3.3 
Two level Processo'r Hierarchy 

difference being the type of objects that play the ro~e of cache objects and 

encached objects. 

The model of processor multiplexing·develC1ped in the i:ast ell.apter can be 

extended to show how the two levels of P't'<1c_fi!sort'multtplexing fit -_together. 

Just as the bind-and-run and stop-and-unbind operations used in the fi_rst 
• -, ' .·- - . ~ -; : ' > ' 

level of processor multiplexing change the internal menrory of real processors, 

so the second level Bf processor multiplexing use's b'irid 'and unbind operations 
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to change the states of level 1 processors. ·This manipulation is done on 

level 1 processors that . .are in the a~oppedJstate. The level 1 unbind 
-~· 

·, 

operation used in level 2 extracts the con~ents of the internal state memory 

of a level 1 processor, leaving that process•r idle. The level 1 bind 

operation used in leve.L2. puts a new state in an idle level 1 processor. In 

figure 3.4, the two levels of processor multipl~ing are exact duplications of 
-- ~- ~ 

the model. The create and delete operations of ,the level 2 interface are 

analogous to the bind-and-~run and the stop-and-unbind ~pe~ations of level 1. 

Although this hierarchy is very elegant, it is not ·clear whether or not 

it is useful. As I remarked in an earlier chapter, there is no reason to use 

processor multiplexi~g if there are sufficient real processors with the right 

capabilities. Consequently each level of -processor mult iplil!xing .. in the 
; 

' hierarchy must be motivated by a lack o-f s.hfficient quantity of processors at 

the lower level, o~ by a lack of capability of the lower level processors. In 
. -

this thesis, I propose a design that uses _twp:~levels .oJ: processor multiplexing 

to create a processor hierarchy of three levels: real processors, level 1 

(virtual) processors, and level 2 (virtual) processors. There are several 

good reasons for this choice, as opposed to the single level of processor 

multiplexing usu~lly founcj in operatin!J systems. Th~ c1'~&<>ns are:_ 

1. It dis~nt8:ngles ~he tnte1;4~~en4ellCe.be.tllJ~n-'t!b~.d,mple1Jleqt.tion of -
virtual memory objects and virtual processor objects. 

~} ~ \. ~ 

2. The utility of structuring the operatin8 system, particularly 
type ·~Cinagers, as a set .of copPer.at.iJ;I& proee,s~~· _ 

3. The distinction betw~en sl!ort- and long .... t•m solu~duling pol-icy. 
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Figure 3.4 
Two Level Processor Multiplexing Loop 
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I will discuss each of these in turn. 

·~:.;.}£:; 

3.3 Disentangling Virtual ~mory f;~ P~ocessor Multiplexing . _, ~ . 

As I notetl earlier in the example of usi"°8 ~t~~t types to structure 
-->·'°' ~ --·~·- ....,.,.'-.., -..;; •• -"'·-·· ~ 

.;. ,_. ; 
the storage system of an operating, ~y.tem, there is a/hierarchy of types in 

/ 
. • . . ._, - r- ~ ~ ' . : .I' 

the implementation of the -sto¥age ~. The prQ.e'essor-state objects of a - --~ ~ ,,-
·~ - ,,.. ... "" ·.- ·~ 4· J-- .i: ...... 

virtual processor abstract type tilatillllge~ e~~ ~implemeJ!_ted directly in terms 
- ~- "'"" - --... ,,., 

" , ... -,·_:',; .. -. -' ',L - .. ., 
of any one of these storage opjects ~;'" Ginc:.e p.-r'OC'-lfSOr nrultiplex;lng requires 

fairly frequent accessing e>f.]>tcic~sor-s~~e obj"'e'et'e;-~e obj e~ts should 

' ~- .• t·· ~ 

have fast access. 
-- -~- .. ~-"",;;;;_ >'.'"~~ 

the processor states colji;e.iJ~g to the: -~<:Pser ptooeeae-s of ---....,___ .. ,. -_ 
hold all of 

the system. The virtu,;il Jaerlory objects, e.g. ~~~~;~or'1Je&••&t1J1 --J'foviaed by 
-- .~ -~ ·- - - --- ~- -

::r ~ '_"} ~-> f ~ l 

the system are clearly the objects of choice for ~"fpose-~ 

On the other hand, the v~r.t.ua-r··8'emorr_ m~nt algorithm~ benefit 
; .. : ~~ 

greatly from being "implementeci.:U. pro~e!JJle&-i (1) $ince p>eCesses require - . 
"""' ---~~~ ..... ~:-~ 

processors, the virtual memory processes teq~iP either a .. set of dedic;ated 

real processors, or a set pf dedicated vii'tual pr~~-s·. Dedicating several 

~~ >;: 

today's hardware, so we are enco~11.g~ .~ US4' vktul processors implemented 
.... - -

·-· -..,--,.:. 

by processor multiplexing to achieve the virtual 1lle0l0ry management functions. 

(1) See Huber [10]. 
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Using virtual memory to implement virtual processors and vice versa leads 

to a system with cyclic dependencies. This can be overcome by splitting the 

implementation of virtual processors into two stages, where the first 

implements virtual processors whose processor-states are represented using 

primary memory objects, and the second stage multiplexes the first stage 

virtual processors and uses virtual memory objects to hold the 

processor-states. The virtual memory management processes can then be 

implemented on first stage virtual processors. This structure has been shown 

before in figure 3.3. The dotted line indicates the dependency of the page 

type manager on the level 1 processor type manager, which provides processors 

to execute page manager algorithms. 

3.4 Use of Processes as Abstract Type Managers 

Although the common view of an abstract type manager is as a collection 

of closed subroutines that manipulate a data base, this view is not 

necessarily the best way to view the implementation of abstract types in a 

situation where operations can proceed in parallel. With parallel operations, 

there must be interlocking of some sort between the different operations on 

objects of the type. This interlocking is not apparent from an implementation 

of the operations as pure closed subroutines. 
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Let us consider an example in the context of the example system. There 

is an abstract type manager Whose job it ls' to multiplex' a connection to a 

message-switched communications system' such as the'AR.PANET [16]. The abstract 

objects created by 'the type ~anager are connections'~on Which operations such 

as create-connection, destroy-connection, send.::message, and receive-message 

may be performed. The type manager must take the responsibility for 

~equentiali:ting simultaneous requests 6n the same connection ob.:f ect. A 

destroy-connection ca:nnot be allowed to proceed simul::hineously with 

send-message, for example. Since tne·se operations will actually be decomposed 

into a sequence of operations on lower lev-'el objects, such as the buffers, I/O 

channels, etc.' there is a possibility of incorr·ect operation if the steps of 

two operations on the same object are interleaved. 

One way to prevent such interleaving· and achieve sequentiality is to 

associate a lock with each object, requiring that the lock be set by each 

operation before any modifications to the object are attempted, and that the 

lock be reset after the operation is complete. Equivalently, a process can be 

associated with each object to perform all of the operations on the· object by 
-

accepting re.qilests for operations that are placed in a queue. The important 

thing here is that two operations on an object are ne~er performed overlapping 

in time. This tactic is not sufficient, however, if operations on one object 

can interfere with operations on other objects. An ever~ptesent.example of 

this kind found in operating systems is the need to manage a small set of 

resources that are multiplexed among different objects of a particular 
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abstract type. In the example system, assume that a fixed amount of memory 

resources is available to the connection type manager for use as I/O buffers. 

When a send-message is executed, a buffer must be allocated to hold the 

message while it is being accessed by the I/O device. Other send-message 

operations on different connections may be attempted simultaneously, resulting 

in possible interference between buffer allocation operations. In general, 

operations on different objects implemented by a type manager that multiplexes 

some lower level resource may need to be sequentialized. For this reason, 

viewing objects as individual sequential processes is not very useful in 

solving all of the problems of objects in the presence of parallelism. 

Another possible view is looking at the operations performed on all 

objects in the class implemented by a type-manager as a sequential process, so 

that no two operations on objects in the class can be performed in parallel. 

This view actually can be realized in an implementation of an abstract type 

manager by building the manager as a process, with requests for operations 

being sent to it through a queue. (1) In the example above, the connection 

manager would be implemented as a process that performed the actual I/O 

operations and buffer management. The obvious disadvantage of this view is 

that it sequentializes operations on different objects even when this 

constraint is unnecessary. (2) 

(1) Or alternatively, by using a single lock to protect all operations of the 
type manager. 

(2) Unnecessary sequentialization can be especially bad if an operation on a 
particular object can take arbitrarily long to complete, or may never 
complete. In operating systems, however, operations are usually short, and 
must complete. 

- 73 - Chapter 3 



PROCESSQR MULTlPLEXING IN A LAYERED' UPERATING . SYSTEM 

The sequentiality ean be reduced, while retaining the ability to 

sequentialize ope~ations on different objects, by buflding' the type manager as 

a collection of cooperating processes. There will b~ a single process which 

accepts requests for operati'ons and then caus~s the other processes in the 

type manager to carryout the· operations in as 1S4rallel a: fashion as possible 
' . 

under the constraint of correct operation. This view can be applied to the 

operation of the page abstract type manager as has' been done l>y Huber [10). 

In his implementation, tnere is one proces-s (repr~sent~d b}i the page table 

lock) which accepts reque8ts in a sequential ~(;t"der. · rt:· tneri. cau8es other · 

processes to carry out operations required 'by the request·&· in' a parallel 

fashion. 

As noted above, it is possible to implement the S:~quential processes 

required to construct such an abstract twe· managet in two ways.· A server 

process can always be simulated by cod'fi· that·ls" encuted;' in each requesting 

process under a lock. As long as the 1oektng conv~nl:io'li' is obeyed, there. is 

no interfet~nce between operations 'performed undei) tile 'tock due to parallel 

execution. Alternatively, the . server proc~as can actually be .implemented on' a 

dedicated processor of its own. 
-' -~ : 

Use of a lock to create a process can reduce ~he cl~f~tr of the code and 

create problems that are not found i~ the process executing on a dedicated 

processor. An operation that tak~ .place.~n t~e r~~e~~ing P,t:ocess is_ not 

easy to protect from the peculiarities of the requesting process environment. 

Fo:t example; the request-'itig process Jitay not h,4-*~ ~ff_~~\jint · sche41!ling 
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priority to complete the operation quickly, resulting ·in delay to other 

processes waiting to perform.successive operation-s. The meaning of the 

instructions and addresses in each requesting process may vary, so that the 

operation must be specially coded to successfully'operate in environments 

where the handling of overflow- faults n\ay v>ary, ·fot e:X!bple. ·In addition, 

each operation must be ~eined to ensure :ka tdlliitration, for non-termination 

of one operation can cause. all other operations be±ng' carried out under the 

lock not to terminate. If th-e operat:ions at'\! distribul:ed through the system, 

it is much more difficult to bring all operations together to inspect them for 
. 

termination. It is also less likely that a programmer implementins. the . 
· abstract type will be able to oversee all the operations to ensure 

termination. 

Til.ese arguments suggest it is often much simpler to construct abstract 
' ~ ' . 

type managers as pr_ocesses that execute on their own _processors. 

In order to use -processes for implementing· abstract type managers, it is 

necessary to have-enough processors to implement all of the·processes. 

Sufficent processors can be produced by multiple1C:flfg. At eac:h level in the 

operating syst.em type hierarchy, there must be sufficient processors available 

for each type manager implemented at that level. Til.e issues- of using 

processes in implementing the storage system generalize to the case of other 
~:;: 

type managers in the system. 'lllere must be a low-level type of processor to. 

implement processes for low level type managers. Higher level type managers 

will benefit from the additi-0nal quantity and capabilities of higher level 

processors. 
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Many abst.ract type managers should oe: 1.mplemeatM on lower-level 

processor ~bstractions in order to guaraatee moreco.p:lete cbntrbl over the 

hardware~ In the example system, the coanection type 11anager may need to be 

scheduled rapidly when a message arr~ves, in-order.to get th~t messag~ to the 

receiving process prom~tly if nec:essary. ·~If .svcli ~a,,proeesa:wete '-implemented 

several levels of scheduling by different p~eaao:e~111\fltipl~xing algorithms. 

Consequently, it shou1d be implemented on: a releri~ly 1W'1.evel processor. 

In a system with two levels of processor multiplexing, most of the 

' ' 

abstract tyPe managers for system objects will be built out of the first level 

of virtual processors for this reason. 

The type manager processes inside the operating system must always be 

capable of servicing requests, if it is required that the system not deny 
'·- < 

service to users. For this reason, it should be impossible for the type 

manager processes to be put-into a stat._ that will i8ft()t'e requests for service 

forever. Th.us, the ahstract type manager process must al¥ay8 have a 

processor. F}lrther, such abstract type sa.anager: praceseora 1Mr8l: always have 

p_riority for physical processor resour-ces- "OVet: all :user coaputations. 

Consider the example system. If the processors on which the page 

abstract type manager is implemented had lower priority than user 

computations, user processes that did not require service by the page manager 

could effectively deny service to user processes that did require service by 
-~-.. ' -
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the page manager. By saturating the real physical proces~or resources, _uset 

computations could prevent the page manager fr~m runnitlg for arbitrar~.periods 

of time. 

Abstract type managers implemented on virtual processors provided by the 

first level of processor multiplexing·shouid not be.affected by the second 

level of proc·es'sor multiplexing that' implements user virtual processors. 

There are t'WO reasons for this. First, the second level of processor 

multiplexing, Which depends on abstract' type mana'gers'implemented on virtual 

processors~ cannot be allowed to manipu~~te the'.v~~tual processors of those 
., 

type managers. This would lead to a cyclic ~d~eridency where the type manager 

process depended on the second level processo~ multiple;cing algorithm that 

depends on the type mana&_er. Second, the type mattagex..a of the operating 

" 

system must be guaranteed service. ahead of the ttser computations scheduled by 

the second level processbr manager. 

•· 

A mechaniSm whereby a process executing an a virtual processor can attach 

' itself firmly to its virtual prQC-essor is r~uir~d, so tthat it cannot be 

removed from the virtual proc:essor by the . .second: la.Ye!. processor multiplexing 

manager. In addition, virtual processo~~ executing abstract type managers 

inside the operating system must have priority for computational resources 

over the virtual processors executing user computations. 

Looking back to figure 3.3, let me emphasize these points. The level 1 

processors implemented by the level 1 processor type manager are used in two 
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ways. Some of them are multiplexed by ttie·l~vel 2 proce~sor type manager to 
-:~.:.~r ~~I 

lllake level 2 processors. Some others are used to used in implementing the 

system type managers, such as the page type manager, the connection type 

manager, and the level 2 p~oces$or manager it~~lf, to perform various 

management functions, isolating and $,eqU,e.llt.:f..al.izing th4il system type manager 
.• :· ·-.. -.>,.? -

operations. These latter level. 1 pro~~SSf?J;~ are p~~eu,tly 00.Wld-:to the 

processes of the page manager. They, al.~o }\ave scheduling pri.D:ri~y over thoae 

level 1 processors used to :lmplemeµt Level .2 pi;oc~sso:rs. The., resulting 

level l procr:J+-0 · ·· ·l1evel 2 processors 

permanently 
bound 

level 1 
processors 

~ 
~ ~ 

J 
l 
I 

. J. 
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Permanently Bound Type Manager Processes 

structure is shown in figure 3.5. 
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3.5 Two Levels of Scheduling 

There is a natural hierarchy in scheduling policy that is found in many 

operating systems. In Multics, for example, there is a short-term 

multiprogramming policy that multiplexes processors among a small number of 

user computations. The goal of this algorithm is to achieve maximum use of 

the processors, and thus maximum throughput in the short-term. Multics also 

incorporates a long-term scheduling policy that controls the set of user 

computations that participate in short-term multiprogramming. The goal of the 

long term policy is to achieve control of the responsiveness of the system. 

The scheduling hierarchy is easily incorporated into the two level 

virtual processor hierarchy. The first level of processor multiplexing 

provides level 1 processors that have a built-in short-term scheduling policy 

that is designed to maximize throughput. The second level then provides level 

2 processors that have an administratively variable scheduling policy that is 

designed to control the responsiveness of the system for each class of users. 
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3.6 Problems of a Processor Hierarchy 

Having mentioned. the advantages of ·a processor hierarchy, I will now 

describe the potential -disadvantages of the hierarchy~ There are three such 

problems. They are inefficiency due to multiple l~s of processor 

multiplexing, potential i.nterference by t:he level 2 achetfuler' in the internal 

workings of. a type manager at a lower. lfWel~ and the need for IPCC between 

processes implemented at different lev•ls,ia the·hie'l"archy. 

3.6.1 Efficiency of Multiple Levels of Scheduling 

Having two levels of scheduling going on at one tiiae can be very costly 

in terms of scheduling overhead. For e~anaple, if the frequency of scheduling 

decisions at the second level were the same as the frequency of scheduling 

decisions at the first level, and each scheduling· decisicm had -a fixed 

overhead cost in processor time, then the total aao.unt of processor time 

wasted in scheduling decisions would be twice that of a single level 

scheduler. 

Extra scheduler overhead is not a problem with the two level scheduler, 

however. The reason is that the scheduling policy implemented at the second 

level makes long-term decisions. Thus the second level decisions are made far 
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less frequently than the short-term multiprogramming decisions made at the 

first level. Consequently, the overhead of scheduling at the second level 

will be insignificant compared to the overhead of the scheduling decisions at 

the first level, assuming that decisions at the second level cost the same or 

less than decisions at the first level. Furthermore, most of the work done by 

each level would have to be done in a single level, anyway. Extra overhead 

only arises if the second level duplicates the effort of the first, so that 

the same work is done twice, or if the interface through which the second 

level controls the first is more costly than that which can be achieved in a 

single level design. The short- versus long-term distinction eliminates 

duplication of effort. The interface overhead problem is mitigated by the low 

frequency of interactions between the first and second levels relative to the 

frequency of interaction between the first level and the real processor level. 

Although the second level of scheduling does increase the time overhead 

of processor multiplexing slightly, another cost is actually reduced by 

introducing the second level. This cost is the cost of memory to hold 

processor states. At the first level, primary memory must be used. (1) At 

the second level, cheaper virtual storage can be used instead of primary 

memory. 

(1) The major use of primary memory in the level 1 implementation is to hold 
envir-0nment descriptions. Only level 1 processors that are in use (i.e., not 
stopped) need have their environment descriptions in primary memory. Level 2 
is responsible for ensuring that the environment descriptions are in primary 
memory. 
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3.6.2 Protection of Lo-w-level Type Managers; fro11 Level 2 

Cons;ider the operations of the page type manager,, whose position ih' t1te 

system type hierarchy- il'I sho.wn in £igure 3. J •. Oifer«:tiontt-'prOVided by the ·pag~ 

processors that ex.acute user computations, since both use ·pages for holding 

their data bases. Some of .the -operations· on !>ages .anipulated by level 2 · 

processors can be implemented .as:'. -euitroutines or in-lin~ code 0 r that can be . 

executed. by level 2: processo-rs whi-le bcuncl to. level l' processors. lf the· 

designer 9f the sy$t.em is not car.eful 9 it may· ha possUlle for a lavel 2' · 

processor to .be.cone. unbo\lnd from its :level 1 · processer·i.h the *t'1ddle of 

executing the sequence of instructions that implement a page operation. 

Having. started executing an operation o'(: a ·level ·below tl\e 1.evel 2 

processor illlplemeatat;ion, tbe process must bedalloWecl to finish -that operati()tt 

before it-can be unbound frOID the level 1 procesaor. If U: were preven~ed 

manager could modify the private memory (e.g., the instruction pointer) of the 

fl) The expansion into subroutines or in-line code of the type manager 
operations should• ..:of course, he .·transparent to the·.uaer,·of· the system •- he 
should not know ~bat type manager. ope~ations are actually sequences 0£ 
lower.,.level instJ;'uctions. .rresuaably, 'the user will :be prevented from· 
actual:l,y writing eo4e t<> •~nipulat-e the type ~manager "data· bases by a run-time 
or compile-time protection mechanism. 
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level 2 processor, and then rebind the level 2 processor to a level 1 

processor. This modification would interfere with the subsequent correct 

operation of the type manager. Second, the level 2 processor manager could 

prevent the operation from ever completing, thus leaving the data bases of the 

manager in a possibly inconsistent state (e.g., it might have a lock set in 

it). Both of these problems violate the hierarchic structure of the system, 

since they can cause type managers at lower levels to depend on the level 2 

processor manager for correctness. 

Allowing the level 2 processor manager to unbind a level 2 processor in 

the middle of a lower level operation can lead to deadlock of the level 2 

processor manager, as well. The deadlock can arise because the data bases 

being manipulated by the interrupted abstract operation are used in the 

implementation of the level 2 processor manager. For example, the interrupted 

page manager operation may have set a lock on some part of its internal data 

bases to prevent parallel manipulation of those data bases by other processes. 

The level 2 processor manager, when it handles the unbinding of the level 2 

processor that is stopped, may call upon the page manager to obtain 

information about the level 2 processor for rescheduling. The request of the 

level 2 processor manager will be forced to wait until the level 2 process 

being rescheduled finishes the current operation, since the lock is set by the 

level 2 process. The process cannot finish its operation until it is 

rescheduled, therefore there is deadlock. 
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To prevent violations ~f the type hierarchy and aeadlocks, operations of 

type managers at;. lower level'S than the lttei · 2 processor manager should appear 

to be indivisible to the level 2 processor manager~· '!be level 2 processor 

manager will only be able· to unbind a prdceits from'the level 1 processor 

before or after, but not during an abstta'.ct type.op~tadon. · 

~ : ' \· 

In the design, this indivisibility is ac}ti~v~cLby }\~vinJLablili.,_ract type· 
r ~ . . ;-- . - - ·- --~ ~ .. . • ~ ~ - -

___ , 

managers inform the level 1 processor manager wt\_e_q _tq~y .sta.rt a.QA. fini-sb. _ 
• - - ·- J • ~ • • • - • - • -.-

indivisible operations. Between the start and finish of indivisible 
;. 

operations, the level ·1 proces8or manager witr'no't allow the level 1 processor 

to enter the stopped state. Since 1.e\ffil i can o"itly fn~pect and ·alter the 
l ; ~ .- •. I" 

states-of· sto.pped level l processors, the· desired indivisibility is achieved. 

~ j _, -

A very simple method for deciding when an·operatiq~csho.uld be iodt;visibUc 
. - -~ ..,, . - . 

at level 1 arises from the hierarchy. All operat;iol)s Qf type 11uu14gers below:· 
' l .) .; :: ' ""': .-. ".. .- _; -· • 

the level 2 interface in the type h_ier~~c~.r ,s~o~~~"~~ fWH!~~~ble •. If ":type 

manager is below level 2, level 2 u~es ~t~and c;tepen,,dse:>~,it~_fPrreftness. It 
. . . '. . : _, ~. . . '~ -

is a violation of the abstract type model _for .level 2 ~p.J>,~ ,able tQ, interfere 
. .· . .l1 l •• < - ; 

with the operations of types that it depends on •. 
"':'" - .:._, ·.;,. ' 

.,.- j 

3.6.3 Cross-level Interprocess Control Comaunication 

Each level of processor provides its oWll mechanism for communicating 

between computations running on those processors. It will occasionally be 
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necessary to design the syatem so that a'computation expressed in terms of 

level 1 processor operations (such as the page type.manager) can signal a 

computation expressed in terms of level 2 processor operations, or vice versa. 

Consider the example system of figure ·3.3·. If the page manager were 

implemented as a process permanently bound to a level 1 processor, then level 

2 processors requesting the services· of the page manager would have to signal 

the page manager someho\i, and be signalled h,ack~eP.. tl;1e . request is finished. 

The level 1 page manager processor cannot us.e the J..r.CC primj.otives itnpl~.inented · 
-:F . 

in the level 2 processor type manager, because the level 2 prpc.e.ssor 1114nager 
~ - - . "":: - . ) .'. . , - . - -

~ . - ,' . 
depends on the page ·mahag'ei:. fO:t various services,. such as i!"PJ~taenting its 

~ ~ - • • ' • ,. < - - •• ,· ~ • ' 

tables and moving the envirctl:ir.!nt 'description~' of level 2 proce~sors in and 

out of primary memory. A cyc~~c ?ependen~y would resu+t if the page maµager 

processor attempted to use the level 2 pr~~e~sor ~PCC _11~rimiU:y~s •. Oil th~ 1 

other hand, the level 2 processor requestin~ service must b~ able to aw~it ~t 

level 2 if the level 2 scheduler is to retai~ co'l.t,i;ol ov7r: tl).e resour~e. usage 

by level 1 processors. In this case, then, a le'9'el 2 aqvan,ce by the level 2 

requesting processor needs to awaken the page manager processor that awaits at 

level 1 (an inward signal) , and later a level 1 advance by the page manager 

processor needs to awaken the requesting level 2 processor that awaits at 

-level 2 (an outward signal). 

What is required in gener-al i& a ·way t-o·,,errorm an ~actvan<:'f! operation at 

one level .that .• causes_ await operatioils ii;i,pr~j,:~~~'..~i,.. t~ ,@t~er. level to 

proceed,. just asTf the advance were' 'dohe at .th.at .. l~v~l. l n~w present the 

i .. :· 
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algorithm for level 2 advance and aw~it, an.d tl_leu ducuss how inward and -

outward signalling are implemented. 

3.6.3.1 Level 2 Advance and Await Alg~rithms 

The algorithm for await at level 2, in terms of level 1 a.w~t, is: 

1. mark current level 2 processor as~ awaiting the nanae,d ~events. 
2. do a level I processor' await on 'the same eventcounts. (1) 

The algorithm for level 2 advance is: 

1. -do -a level l advance on the spec if ied event count • 
2. mark as not waiting, any level 2 p}:o~_ess.(>,rs wJ;i.oaa .eventcounts included 

the oneadvanced. This wi11·cau8e ttlein to- become assigned to level 1 
processors (if they are not a.}.ready so_b9~'1);.,~8J'•'theywill 
discover that the current await immediately proceeds. 

It is absolutely necessary to have the computation-re-execute the await 
·i-i-< __ . 

instruction at level 1 whenever a level 2 processor that was awaiting at level 
- - -

1 f s reassigned to a new level 1 processor by the level 2 processor abstract 
, · · ' i_·F 

type manager. Re-executing the await guarantees that step 2 of the advance 

algorithm works properly. 

(1) In chapter six, I will show that the level. 1 await here nee,d not be Q.11 the 
same eve'ritcounts. T ha-<ie silllpllfli!d the- atg'orith'ti .her~'· beca~~ th~ added 
complexity discussed in cha~ter six is i.H~Lev-~nt to .tb,e ,ou~ward sigaalling 
mechanism. 
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3.6.3.2 Inward Signalling 

Inward signalling, an advance at level 2 starting processors that are 

awaiting at level 1, works correctly in the level 2 advance algorithm above. 

Level 2 eventcounts are implemented in terms of level 1 eventcounts, so that 

an advance at level 2 is performed by an advance at level 1 plus some 

bookkeeping to handle processors awaiting at level 2. 

3.6.3.3 Outward Signalling 

Outward signalling, an advance at level 1 starting a processor that is 

awaiting at level 2, is more difficult than inward signalling. While an await 

at level 2 is performed by invoking await at level 1, it is possible for the 

processor awaiting at level 1 to become unbound from its level 1 processor, so 

that it is now waiting only at level 2. 

Unbinding from level 1 is possible for await operations that need not be 

a part of a level 2 atomic operation. For example, when a level 2 processor 

is waiting for a page to be brought into primary memory it can be unbound from 

level 1 since the correct operation of the system does not depend on the level 

2 processor to actually reference the page after it is brought in. 
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Unbinding a level 2 processor while it is awaiting at level 1 is 

desirable for an economic reason. The real processors of the system may not 

be used to full capacity if level 1 processors are al:j.,,awaitill3 events. Since 

there will be relatively few level 1 processors (since level 1 processors take 

up large amounts of expensive primary m,emory), -if rit ::Ls possil>.le to unbind 

waiting level .2 processor~,. it is eepn~~a,ltly -a,dvan~_us to d-0 sa. Short · 

waits are not as m:uch of a probl,em ,4~ lol}S ~a_.., . ·" 

Basically,· the ditfi~ulty of outward signalling , is that the level 1 
t• T,-• '""""':: ~ ; _; ~ 

processor advance primitive cannot kno~ all of the processors awaiting at 

level 2 that are to be awakened when an eventcount is advanced. If the full 

economic advantage of unbinding level 2 processors a~~d.JJ&.level.J advan~es 

is to be obtained, the level 2 processor manager should not rebind a waiting 

level 2 processor to level 1 before it will b~ ~..+e. t.p p.fQC~ed ·through the 

await. Thus, the level 2 processor manager mu11~,)>e ·Mf&r~:of a(Wances to 

eventcounts that are done at level 1 with the,_~utenti(;lll ~.1tig-ualling 

processors at level 2. 

Detection is not easy, since all eventcounts are potential channels for 

outward signalling. The t:ask may be restricted sj..ce i!}any,par:ticular system 

only a few eventcounts wil,l be usecJ fot"·Out"f&:t;'d~ si.aaal.U.ng •. In the example 

system, there will be a fixed set of eveat~o14nt~ .. t1Ja~.jaz;:~ ~!palled by each - ' ~ ·- ·. ' , ~ . -- , - ,_ 

kernel type manager -- the. page, 11l4Il4ger will -hav,~ -a ·Jm'1t ~fl~t of events that 

it signals, and so will e~c;h other type p048er ~ ;~e-:-«>eerattog aystm.r By 
-1 -

structuring the system so that the level 2 processor manager knows this set, 
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and can efficiently search it for modified eventcounts, we can solve the 

outward signalling problem. 

The level 2 await primitive recognizes eventcounts that can be outward 

signalled because they are all stored in the same segment. This is a simple 

way to design the system so that the level 2 manager need not be changed every 

time the set of eventcounts signalled outward by lower level type managers is 

changed. Eventcounts in this segment will be treated specially by the level 2 

processor await primitive -- the level 2 processor manager will periodically 

poll the value of these eventcounts to see if they have changed. 

How frequently the level 2 processor manager checks will determine the 

responsiveness of the user processes to outward signalled events. The 

checking can be triggered by a real-time clock ticking at a certain rate 

(chosen for the desired responsiveness). Alternatively, the checking can be 

done every time an eventcount in the outward signalling eventcount segment is 

advanced in order to ensure maximum responsiveness. This latter strategy 

requires a small amount of help from the level 1 processor manager, in the 

form of a special eventcount that is advanced by level 1 every time any 

outward signalling eventcount is advanced by the level 1 advance operation. 

The level 2 processor manager (which is permanently bound to a level 1 

processor) can then await this special eventcount. 
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3.7 Summary 

In this chapter, I have shown how two levels of processor multiplexing 

can work together. The model developed in this chapter, and the solutions to 

the three problems discussed, will be used in chapters five and six as a basis 

for a detailed design of a system where two level processor multiplexing is 

used. 
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Level l Virtual Processor Interfaces 

In this chapter, we begin discussion of a proposed operating system 

design that incorporates two levels of processor multiplexing, as in our 

model. Here we discuss the interface of level l virtual processors. 

The description of level l is divided into two chapters. This chapter 

describes and motivates the interface of the level l processor. Incorporated 

into this interface are many features that are important in a real system such 

as Multics. Examples from the Multics system are used to motivate the design. 

Chapter five describes an implementation of the level l virtual processor 

manager. 
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i 

4.1 Level 1 Virtual Processor Intetlface 

Level 1 processors are quite ~mil.ar to real physical processors. ·They 

execute instructions in basically *e· ~-e way, hav# similar internal statee, 

and have the same addres.s 111appin& tp addr~s N~i#aary m911lOrY• There are some 

differences from hardware processor~, though. They can execute several new 

operations that are implemented by ~he l~vel 1 processor manager. Their rate 
,, 

i 
of execution is controlled by the l~vel 1 processor manager. They cannot be 

'! 
.,. 

added to or deleted from the systemt We describe here those differences. 

Th.e operations that the level ~ ,pro~essot: e.an pe:rfona that cannot be . 

performed by real processors serve four different purposes. Some of the 

operations allow level 1 processors: to do interprocess control communication. 

Some of the operations allow level f processors to control the bindings of 
I 

level 2 processors to other level 1 processors. These operations are 

structured so that the level 2 proc ssor manager may be built as a central 

agent out of several dedicated leve 1 processors. Some of the operations are 

concerned with virtualizing the har ware facilities of real processors, such 

as fault handling. • i 
Finally, there 're operations to change the hardware 

resources being used by level 1, tolallow for reconfiguration. 

I 
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To facilitate description, operations of the level 1 processor are 

described as if they were subroutine calls;; The names of each operation will 

consist of the prefix "VP1$" to indicate that it is an operation of the level 

1 virtual processor manager. The data input and output from the operation are 

specified by parameters to the call. Parameters that represent input values 

appear normally, output parameters are underscored. In the actual 

implementation, these operations all act as if they are non-decomposable 

machine instructions. It is not possible to stop a level 1 processor during 

the execution of one of these operations. Also, the level 1 operations must 

not be interrupted in the middle by a fault. Consequently, each level 1 

operation ensures that all of its parameters are in primary memory and 

accessible to the level 1 processor before performing the required opera~ions. 

If the parameters are not in primary memory, a fault will be reflected to the 

level 1 processor. The level 1 processor can then handle the fault, and 

restart the operation from the beginning. Accessing of parameters is 

discussed more fully later in the chapter. 

There are certain operations that are use4 on.ly by,the second level 

processor multiplexor. These operations are specially p't'otected; so that only 

the level 1 processors that are used to implement the level 2 processor 

manager may execute them. Protected operations will be-marked in the.text by 

an asterisk following the parameter list when their calling sequence is 

described. 
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In any case, the level 1 operations are all internal to the kernel of the 

operating system, and can be used only by programs written as part of the 

kernel of the operating system. 

4.2 Limited Supply of Level 1 Processors 

The level 1 processor manager creates virtual processors that perform 

computations for higher levels in the system. There is a fixed, small number 

of level 1 processors in the system. The limitation on the number of 

processors arises because level 1 processors are implemented at the lowest 

level of the system. The level 1 processor states and environments are stored 

in primary memory. Since primary memory is expensive and of limited supply, 

the number of distinct level 1 processors that can be implemented is limited. 

The actual number of level 1 processors created in an implementation will 

depend on the available memory, and the need for level 1 processors at higher 

levels of the system. For a Multics configuration such as the one installed 

at M.I.T., with two processors and 384K words of primary memory, I estimate 

that about fifteen or twenty level 1 processors will be sufficient. This 

estimate is based on two facts. The number of processes actually 

participating in multiprogramming at any one time in the M.I.T. Multics never 

exceeds six. Six level l processors can thus be allocated to the second level 

processor multiplexor to implement user processes. The remaining nine to 

-~ fourteen are allocated to executing kernel processes that manage various 

,--.--: 
kernel resources such as virtual memory, multiplexed I/O devices, etc. 
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4. 3 Mult !programming of Real Processors 'Ana()'rtg Level 1 Processors 

UnlJ.~ phy!Jical processo-rs, tevel 1 processors do not execute 

instruct~ons. at:.a constant rate (~ue to· thef1llft'' that they are implemented by 

processor multiplexing) •. -, In ;ord~r to provid'e kernel Jitocesses ·with quick 

response to events, level 1 processors have fi~· 'pTHrrities for computing 

resources. Kernel processes that need f~st resp~rise, such'asI/0 device 

service processes, will be .. bound to ·high· priorit1 lev~n-1 processors. User 

processes will always be bound to level 1 processors of the lowest priority. 

The simple~t way ·to discuss the- affE!ct of·'pr{Cirid:es iS to describe the 
-;..- ., 

- ' ' ' . ; f ., .. ·: ,-

effect of the priority mechani'sm on the as'S-ignllten:t·of·real processors to level 

1 processors. Real process.ors will al.Ways be assigned· tti the hlghest priority 

runnable (1) le.vel 1 processors. If two level· 1 proce~ssors have equal 

priority values, the one that has been computing :·the longest will have 

priority. This implies that scheduling of processors of equal priority will 

be approximately FIFO. It has been the experience in Mult~cs that FIFO 

scheduling during short-term multiprogramming was the most effective means of 

achieving good throughput and avoiding thrashing. This choice of policy 

implements th4t experience. ~·· 

(1) By runnable, we mean non-waiting and non~stopped. 
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4.4 Execution States of Level 1 Pr9cess~s 

From outside the level 1 .processor -1-plell\~_ation,· a lievd 1 procf!ssor is 

either executing (running or waiting) or s.t~ped~'~Wit:hout ob'servfttg·the side 

effects of execution, sµ_ch as .cha.ngejl t9 stiared)eembry~. it i-s not possible to'-: 

tell whether a!l executing level. l pro~-S.$C>J' J.•· aetuall.y· execoting·on a re~l 

processor or oot. As we have shown.in chapters two and ~h~ee, the stopped 

state of a level 1 processor ~xists to.allow,cbangine~the binding of the 

processor safely. 

processors in order_ t:<?. ~,ul~ipl.ex "tP~-~ Sin~e the lievel: 2: .'proe.essGr manager 

will be constructed out. of level 1 pr,,,o.t';~Jl'SOrs·,_ the;,l.ev.el 1 p~ocessot' manager 
-. , E-; • 

must provide operations that allow one level 1 proc.easor to cha11ge the 

execution state of anO~~er. There ~~e two such.operations. 

VP1$run (llproc) * 

changes t~e state of the level 1 processor naaed llproc from stopped to 

executing._ If llproc is already executiq.g, ·the ·opemat.ion has no· effect. 

VP1$stop (llproc) * 
l 

causes< the level 1 processor named llproc to stop as SOOfl as~ossihle. If the 

level 1 processor is already stopped, the operation has no effect. 
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The binding of a level 1 processor may only be "changed when it is in the 

stopped state. A level l processor only enters the stopped state in between 

atomic operations. So that operations on -system object~ can be implemented on 

level. l processors as atomic operations, a facility is provided that allows a 

sequence of instructions to be treated as an atoliiic operation. Executing the 

operation 

VP1$begin_atomic_operation () 

indicates that an atomic operation is to be beg-illt. · Once 

VP1$begin_at;()IJlic_oper,ation is executed, the level 1 processor cannot enter the 

stopped st4te. The ope.ration 

VP1$end_a~-omic._operation () 

ends .the current atQJllic operation. Atomic operat'1'6ns may be nested in time; 

the le~r.d l processor can Dnly be stopped aft'E!r the 'final call On 

end atomic 
operat on 

atomic 
operat on 

begin atomic begin atomic 
operation operat on 

Figure 4 .1 
States of Level l Processor 
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VP1$end_atomic_operation. Figure 4.1 shows how the actual execution state 

changes in response to state changing operations. 

The operations VPl$begin_atJ>111.ic_;,,oper•t-j.on and VP.1$end_atomfc_operation 

are similar to a facility already existing in the Mulrics operating system. 

The Multics mechanism for assu~ing that vir~tµpl processors executing system 

code do not get pre-empted in the middle of a system operation is to mask the 

., 

physical processor from getting timer runouts or-pre-empt interrupts.while 

executing in the supervisor dom(lin._ '.rhe Mult.ics,aechaaiam is· flawed, however, 

because some code executed .in the systeia .d~in is not 5par.t· of an-j brnel' 

abstract operation. A particular example is the copy:l!l\g of Ugullfelit values 

into the kernel domain from the user domain. The copy.lag_is done by-code 

executing in the k~rnel domain, but accessing user. data structures. It i.s 

possible to put the processor into a Joop wh:i.le executing; an (incUvi.sible) 

operation in the kernel, by mod!-fying the user data as :f..t··-is copied. 

Using the proposed primitives, the indivisible_~pera~ion ~uld begin only 

after copying the arguments. These primitive• -allow attl)h. -~· fine-gtained 
~ z 

control of the parts of the system that imp!~t indtvi.!jbl,e operat:lons. 
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4.5 Scheduling Controls 

The level 2 manager will be implemented on level 1 processors. In order 

to control the amount of real processor time'used·by the level l processors it 

multiplexes, the level 2 processor manager must be able to stop level 1 

processors after they use up a short-term allocation of proc~ssor time. Ttiis 

function must be provided by level 1, since level 1 controls the allocation of 

real processor resources to level I processors. Level 1 thus associates with 

each level I processor the accumulated processor time used since VP1$run was 

called, and a limit on this usage called the quantum. When a level I 

processor exceeds its quantum of processor time, the level I pro~essor manager 
- ) - --

effectively calls VP1$stop on that processo.r, causing it to stop after the 
I 

current atomic operation is completed. ;, 

Since level I processors exceed tneir quanta independently of the 

execution of the level 2 processor manager, the l~vel 2 implementation needs 

some help to know when level I processo1;1:1 _ ttOp·, and which level 2 processors 

have stopped. Each time a level I processor stops, a special eventcount 

managed by level I, called the stop even-tcOUl'lt:,"iS advanced. The level 2 

processor manager can then await this eventcount to di~cover when level I 

processors stop. To let the level 2 processor find the stopped level I 
. • 4 ~ . l 

processors easily, the level I processor manager maintains a queue of stopped 
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level 1 processors. When a level 1 processor stops, it enters the queue. A 

level 1 processor operation, 

VP1$next_stopped (llproc} * 
returns the name of the next stopped level 1 processor in the queue, deleting 

it from the queue. The level 2 pr~cessor ·~~ager can use ~bis operation to 

find all of the stopped processocs. 

4.6 Changing the Bindings of Level 1 Processors 

The 'second level processor manager needs to be able to change the 

bindings of level 1 processors it multiplexes. To provide this function, 

there are two operations that allow the internal state of stopped level 1 

prdcessors to be extracted and loaded. The state description used in these 

CRs 

DSEGP 

IP 

Figu?le 4.2 
Level 1 State Data 

·- -

interfaces' is shown in figure 4. 2: · ·nie state consists of the values of the 

' computational registers (CRs}, the address of an environment specification 

(oSECP}, the current value of the i~struc~ion p~inter in the environment (IP), 
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the address in the environment to which the IP will be set when a fault occurs 

(FIP), and the amount of resources remaining until the level 1 processor is 

automatically stopped for exceeding its «toht:um ("(fl'Ml)'".'' -' · ·· 

The operation 

VP1$bind (llproc, state, error) * 

sets the state of level 1 processor llproc from its state argument. The 

operation succeeds, and error is set to false if llproc is sto~ped, otherwise, . . . .... - ~-· . 

the operation fails and error is set to true. A level 1 proces~or may be 

unbound by the operation 

VP1$unbind (llproc, state, error) * 
that returns the new state of the level 1 processor in the variable state. If 

llproc is stopped, error is set to false and the operation succeeds, else 

error is set to true, and no data is copied into state. 
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4.7 Interprocess Control ~unicat!Pn 

The level 1 processor manager provides operations to perform interprocess 

control communication using eventcounts. At this level, eventcounts are 

implemented simply as primary memory words. In order to allow these 

eventcounts to be shared among several virtual processors, each of which has a 

different local° name for it in its environment, we need a global name for each 
•f,_. 

memory word. It is possible to use the absolute primary memory address for 

this purpose. Using the primary memory address would not allow these 

eventcounts to b~ managed by the virtual memory manager, though, because the 

virtual memory manager can move the eventcount from one address to another, or 
. ~};_. i 

to disk. To allow the virtual memory manager to move the pages containing 

eventcounts in and out of primary memory freely, the environment description 

for each level 1 processor contains an additional value for each page of 

primary memory. This value is the unique name of the page in the virtual 

memory as a whole. Given the name of a page within the environment of a level 

1 processor, the level I implementation can determine both its current primary 

memory address (if in primary memory) and its unique name. Level l can use 

this unique name to name eventcounts in the page, no matter how they move 

about in primary and secondary memory. 
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The level l processor manager implements th.e two operations, 

VP1$await (eel, valuel, ec2, v~lue2, ec3, value3) 

and 

VP1$advance (ec). 

VP1$await actually allows up to three eventcounts to be awaited 

simultaneously. It thus takes from 1 to 3 pairs of arguments (3 pairs are 

·' 

shown in the calling sequence). The ec arguments are passed by reference, 

using pointers in the environment of the caller. 11le level 1 implementation 

perforrils the translation. to unique syste~~wide n:m'e. The operation VP1$await 

only returns to the caller after on'e of the eventco~nts eel' ec2, or ec3, 

-< ·-

exceeds the corresponding value specified as valuel, value2, or value3. A 

level 1 processor could simulate the effect of waiting on multiple eventcounts 

by spawniflg three separ~te level 1 processors to wa.,t~ pn each event:count 

separat~ly, then wait1:~&. fo.i; on~. of them to advance a shaJ;.e,d eventcount. 

Spawning prc;>c~ssors this w_ay is cumber_som~ so it is useful tG all<>w. multiple 

eventcounts t<:> be awaited siraultaneou,sly. T4~ nUJ!lber of. eventcount..s that can 

be awaited is limited to three hec~use the level l pt;.qces.sor., ilaplementatwn 

can use only a fixed amount of storage to reuiemlun: -!:ha.eyentcQun£s being 

awaited. Three is not a magic number, but seems sufficient for all purposes I 

have investigated. 

Outward si~nalling eventcounts are suppor~ed ~~c~~lly l>y the VP1$advance 

operati<;>n. Whenever an outwar.d signalling eventcoun.t. is ,advanced, a special 

eventcouqt called the outward_signals event~unt ,is, ~l~,:¢vanced- implicitly. 
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Outward signalling eventcounts are recognized by the advance operation because 

they are all implemented in the same virtual memory segment. Thus, by simply 

checking the unique name of the eventcount, outward signalling eventcounts can 

be recognized. 

4.8 Special Eventcounts 

We have already described two special eventcounts that are advanced by 

the level 1 processor manager itself: the stopped and outward_signals 

eventcounts. There are two other kinds of special eventcounts that are 

provided by the level 1 processor interface. 

In order to have processes that synchronize themselves in real time, we 

provide a special eventcount that is advanced proportionally to real time. 

The clock eventcount is advanced once every delta microseconds, where delta is 

a reasonably large value, like 50,000. This allows reasonably fine-grained 

scheduling of processes that have to deal with real time events, such as 

timeouts on communications channels, etc. 

In order to provide for processes that control I/O devices, we need some 

mechanism for I/O devices to signal processes about interesting events, such 

as completion of an operation, errors, etc. Messages from I/O devices are 

stored in special regions of memory called mailboxes, but a mechanism for 

scheduling processes when interesting events happen is still needed. A very 
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natural mechanism is to associate with each device mailbox an eventcount that 

is advanced by the I/O device (with the help of the level 1 processor manager) 

each time a message is put in the mailbox. A device control process can then 

simply wait on the eventcount until this advance occurs, then inspect the 

message. 

4.9 Fault Interface 

Certain hardware operations signal errors by causing faults. On typical 

hardware processors, a fault is handled by saving the instruction pointer at 

the time of the fault and transferring to a special address. In creating 

level 1 processors, we virtualize fault handling to allow each level 1 

processor to specify its own private fault handlers. As part of the state of 

each level 1 processor, there is a pointer called the fault transfer pointer. 

Upon encountering a hardware fault, the level 1 processor will save the 

processor state at the time of the fault, and transfer control to the fault 

transfer pointer. An operation provided by the level 1 processor manager is 

used to obtain the processor state at the time of the last fault. This 

operation is: 

VP1$get_fault_data (processor state) 

It gets the processor state of the most recent fault. The processor state 

returned by this operation is shown in figure 4.3. The data of the processor 

state contains the values of the computational registers at the time of the 

fault (CRs), the instruction pointer at the time of the fault (IP), and the 
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CRs 
;. '.\ 

IP 

FCODE 

Figure 4.3 
Level l Fault Data 

type of fault (FCODE). The other data of the level l processor state, such as 
....~ . ~ -· - . 

DSEGP, QTMR, and FIP, are not kept for faults because the data is constant in 
- - :-.. . : 

the level l processor.' 

Faulting instructions may be restarted_by restori~g the processor state 
- _! --; ' ~ . -- _-__ - ' ~ 

data using a level l proc~ssor operation: 
--

VP1$restore_yrocessor_state 5processor_s~ate) 

If a level l process-or takes a second fau1t be.fore extrl:lcdng the fa
0

ult 

data of the fir-st, the level -1 proces-sor 11lanager·'wilf "crash the: system by 

deconfiguring al-1 of the real processors,- so that the-problem can be debugged. 

In order to allow extending existing processor instr~ctJo!ls in type 

managers above level l by providing special fault handlers to incre;ase the 

effective functionality of instructions, there must be a way for the fault 

handler to appear to be part of the same atomic o~ration that caused the 

fault. For this reason, taking a fault in a level 1 processor implicH:ly 

causes a VP1$begin_atomic_operation to be executed. So that it is pos~ible to 

protect the whole sequence, from faulting instruction to restart of the fault, 
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the VP1$restore_processor_state operation implicitly executes a 

VP1$end_atomic_operation. The fault handler need not, of course, remain 

unstoppable throughout its execution. It can execute VP1$end_atomic operation 

in the middle of its execution, as long as it executes 

VP1$begin_atomic_operation before restoring the state. Such an action must be 

performed if the fault taken is to be reflected to a program at a level above 

the second level processor implementation. The fault handler that is 

specified by FIP in the level 1 processor state must be a program in the 

kernel of the system below the level 2 processor manager. 

4.10 Processor Interrupt 

In Multics, there is a mechanism whereby one virtual processor can cause 

another to take a special fault, called a "process interrupt". This mechanism 

is used to implement the function of interrupting a computation by hitting the 

attention key, for example. In order to implement this in level 2, we need a 

mechanism whereby the level 2 procesor manager can cause a level 1 processor 

to take a special fault, called the "processor interrupt". We don't wish this 

interrupt to happen during an atomic operation, or in a kernel process. 

Consequently, we introduce a mechanism that allows this fault to be set only 

in a stopped virtual processor. The primitive 

VP1$set_processor_interrupt (llproc, ..!:!.E,Or) * 

will cause llproc to take a special fault when the level 1 processor is next 
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run. If llproc is not stQpped, the ~pei:•tion,does not_- prooeed and the errar 

argument is set,~rµe, other,.q.se error is, set to false. 

To cause a level 1 processor interrupt to occur in a level 1 processor 
--. ,: . - ! .... : __ :_,_ 

that is not stopped, it must first be stopped, then the processor interrupt 
~~ ! • - _. ~ ~ 

must be set, and then the processor m.ust be run. 'nlis is a somewhat clumsy 
J :.;:·, • { ,·:-·,·· 

interface, since VP1$stop does not take effect illl1lediately. Since the 
-, 

VP1$set_yrocessor_interrupt operation is used only in the level 2 manager, the 

clumsiness is not a real serious p~oblem. I have chosen this particular 

interface because it simplifies the design of the level 1 implementation, even 

though it makes level 2 some'What more complex. 

4.11 Processor Reconfiguration 

- __ , -t • 

Level l has to deal with reconfiguration of physical processors. It 

p~ovides thre~ operations for this purpose. The operation 
c - '_-; ~- _- -

VP1$add_cpu (cpu_id) 

adds the physical processor named cpu_id to the system. The operation 

VP1$del_cpu (cpu_id) 
- . . -· . 

deletes the physical processor named cpu_id from the system. 'nle operation 

VP1$crash_system () 

'' 
., 

eliminates all physical processors from the level 1 multiplexor, and forces 

one of the processors to execute a special debugging program. The other 

processors are made to stand by idle~ 
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The reconfiguration primitives are accessible to all parts of the system 

kernel. Outside the system kernel, these operations are not directly usable, 

in order to prevent user-written programs from denying service to other 

programs. 

4.12 Parameter Passing To Level l Processor Operations 

All data operated on by level l processor operations must be in primary 

memory. If an object is not in primary memory, the real processor will 

generate a missing-page or missing segment fault, indicating that the 

instruction cannot be performed. The software operations of the level l 

processor behave exactly the same. The data provided as parameters to the 

level l processor implementation must be in primary memory. If the data is 

not in primary memory, the level l processor implementation reflects this 

condition as a software-generated missing page or missing segment fault. 

Two other alternatives to generating software "faults" could have been 

used in the level l interface. First, the level l manager could crash the 

system if its parameters were not found in primary memory. With this 

alternative the level l processor invoking the operation would be required to 

insure that its parameters were in primary memory. For frequently executed 

level l operations, having to wire-down parameters to primary memory by 

calling the wire-down primitives of virtual memory can be quite expensive. 

The second alternative would be to reflect an error to the level l processor 

- 109 - Chapter 4 



PROCESSOR MULTIPL&XING IN A LAYERim OPERATING SYSTEM 

in some manner other than a fault. Reflecting the error requires some way to 

transfer :tnformation back to the level I processor that an error has occurred'. 

The fault mechanism is such a way, inventing·aribther mecllani8m serves no· 

useful purpose. 

The implementation of the level 1 primitives must be able to access the 

parameters. Since the level l proces80r itself accesses data in ·ni'emory 

through a map, the level 1 processor implementation DlUSt be able to interpret 

. the map to find the parameters. The map can be cmodified asynchronously by the 

processors of the virtual memory manager·,. 80 there iaatist be somE! way to ilisure 

that such modifications do not interf.ere with the' -correct· .o1>eration of the 

level 1 processor manager. 

The level 1 processor operations operate logically by first determining 

whether the parameters are in primary memory. If not,_ a fault is reflected to 

the appropriate fault handler, which presumably will handle the fault by 

moving the parameters into primary memory. The test will be repeated until 

the parameters are a1·1 in primary memory. (1) Then, ·the ·parameters a:re 

accessed to perfo.na the required operation~ ··The dtta· catmot be moved from 

primary memory during t:his accessittg. There must be a special mechanism :for · 

(1) Note that the method of accessing parameters used by the level 1 
implementation does not generate an upw&rd itepeftdencf- on-' t:be virtual memory 
mechanism. 'lbe specification of the level 1 interface is that it reflects an 
error and do.s not do the operatioo if it.a' pA:ra11eten are tr0t:,· in primary 
memory. No matter what the virtual memory manager does, it cannot cause a 
level l operatiOtl. to fail to meet its: specification ·~fthe't''by Cio1h8· the 
operation or reflecting an error status. 
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handling the asynchronous modification of the map during an operation of a 

level 1 processor. 

It is instructive to investigate the similar problem found in the 

physical processor instructions. The physical processor operates by 

converting the addresses found in instructions through the map into real 

addresses, then accessing the real addresses directly during the instruction. 

The modification to the map is thus not reflected immediately in the 

processor's accessing, but must wait until the processor stops using the 

converted address. The processor converts all addresses to real addresses 

before actually accessing the data operated on by the instruction. 

Discovering a fault is thus done before the instruction has taken irreversible 

steps, so the instruction can be restarted from the beginning. 

There is, however, a problem in the physical processor accessing of 

memory. The main reason for changing the map is that a page or segment is 

moved from primary to secondary memory or vice versa. When the page is moved 

to secondary memory, it must be guaranteed that no processor has outstanding 

references to it. This guarantee is provided by marking all maps that refer 

to the page so that a fault will be generated when the page is referenced. 

However, for a short period of time the physical processor may have a 

translated real address that refers to the page. The moving of a page from 

primary to secondary memory proceeds as follows: first, flag all maps 

referring to the page, then, wait until all physical processors stop using the 

translated real addresses they were using at the time the flags were set in 
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safely. 

For the software parts of thl!- ·revel I p~w-sot= nUltlager, -similar' : 

mechanism must be ptovi-ded. · ''l'He software parts· Will first translate the 

addresses of parameters- usi.ng the 1liap :ib'to the address spaci-of the level 1 

manager. the l~vel l mtnager address space cannot be mocfified by higher 

levels in the system. Any faults i.n accessitig'·pa:rame'-t~rs are discovered and 

reflected oori.ng the ·trarrslation, so that· aft~r l:r~ns-i~tin'n i-s complete the 

parameters .are guaranteed •to be acceseible.· 'l'h'e\t~~ ihel' level 1 milnager wi.11 

use the transla<ted addresses· to refereiice)priary m4!!iaot'f •. Before' tbe--: page 

manager can· move :anything in p·rimary 'liemoey, it uiu$t.'ftrst; flag the map, then 

wait until any transtate(f addresses being' used '111 1eve1. l' oper1tlott:s are done 

with. The level 1 processor must have a spefial mechanism_ to achieve th~s 

waiting. This mechaniS111 is a level l instruction, 

VP1$propagate map change(), 
~ - . 

that causes the invoking level l processor to st~p executing further 

instructions until all other processors having t~an_slated _copies of, ad~~esses. 
~ !-OJ 

finish their current level 1 processor operation~ (1). 
: -.! 

(1) In many real processors, translated primitty·1tf!liorj addresses are held 
between operations in an associative memory built into the processor. In this 
case, finishing the'eilrrent' level· I prttce.aur 6petatton·; ie irtsufficlent to 
guarantee that no translated addresses at"e being hel,d by theproces!Jor. 
Consequently; the operation ·vP1$propagate ·a.ap 'ifiaftjti·1aiao":h•s to cauae 'all 
associative memories on all processors to-be cleared. 
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Level l Processor Implementation 

(The reader who is not interested in the details of an implementation of 

level 1 processors may choose to skip this chapter, without much loss of 

continuity.) 

In this chapter, two implementations of level l processors on a 

multiprocessor, shared primary memory computer system are described. The two 

implementations are actually closely related. The first version of the 

implementation relies on a slightly non-traditional hardware that uses a 

specialized processor as a central agent to control the multiplexing of the 

other processors of the system. Within this architecture, the implementation 

of level 1 processors is quite simple to describe. The second implementation 

shows how, with extra complexity and a small loss of efficiency, the 

specialized processor can be simulated on general-purpose processors such as 

those of Multics. 

The first implementation is not intended just as a basis for developing 

the second, however. Adding a microprocessor to the architecture of a system 

such as the Honeywell Level 68 to implement level 1 processor multiplexing 

would not be at all difficult or expensive. The changes that must be made to 

the general purpose processors to implement the binding and unbinding 

functions in hardware amount to simplifications of structure; they would, 

however, be relatively expensive to retrofit into current processors. 
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The proposed hardware architecture is relatively simple to incorporate 

into newly designed mul~iproc.assor syste1R$. J11corpoTating the ideas about 

architecture described here should be worthwhile in terms of simplifying the 

design of multiprogramming operating systems. 

5.1 Overall Structure of the Implementation 

The level 1 processor implementation follows the model of processor 

-
multiplexing presented in chapter two, using a central agent to control 

processor multiplexing. The central agent is implemented on a dedicated 

processor called the Processor Control Processor. It controls the 
'- '.'.: ~, _. 

general-purpose processors (GPPs) of the system by controlling their binding 
- - ;; ' ~ 

to level 1 processors. Within the implementation, level 1 processors are 
- - -

represented by level 1 processor states stored in primary memory. The central 

agent is also responsible for implementing the IPCC mechanisms, coordination 

the GPPs, since IPCC, I/O events, and reconfiguration may indirectly require 

reassignment of GPPs to .a .d,ifferent,.set of l~v~. L ~ssot'li,. 

-- -~~. 

Figure 5.1 shows the pattern of communication among the processors in the 
.- { '. - . --, -~ -.. 

system. Level 1 processors are executed on the GPPs. The PCP communicates 

. - . ~ - -. --
with each GPP to control its assignments to level l processors. The 

'"'" ', ·-· 
operations- desctibed in chapter four that allow lc~vel 1 processors to affect 

other level 1 processors are all implement~d in the PCP. When a level 1 
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queue 

of 

requests 

Figure 5.1 
Processor Communication in Level 1 Implementation 

processor executes one of these operations, its GPP actually communicates a 

request to the PCP, which performs the operation. 

The PCP actually handles one request from a GPP at a time. Successive 

requests are queued. In order to keep the GPPs as busy as possible, once a 

GPP has queued a request, it can proceed to execute, without waiting for the 

request to be processed by the PCP. In the case of operations like VP1$run, 

VP1$stop, and VP1$advance, the GPP proceeds to execute the level 1 processor 

that executed the operation. Other operations, like VP1$await, require that 

the GPP not continue executing the level 1 processor executing the operation. 

To prevent the GPP from being excessively idle during periods when a 

burst of requests are sent to the PCP, the function of choosing the next level 

1 processor to run on a GPP is distributed among the GPPs. There is a shared 

priority queue that all GPPs can access containing all runnable level 1 

processors in priority order. Figure 5.2 shows this queue. When a GPP 
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priority 

I', 

iiglq.:~ . ? •j2 -
Priority Queue and Await Table 

await 
table 

determines that it cannot continue running its curreqt level l processor, it 

will take the highest priority runnable level 1 processor fr,om..th:f.~queue, @ti 

run it. 

The PCP controls the bindings of level 1 pr6cessors to GPPs indirectly. 

The queue of runnable level 1 processors is altered by the PCP to reflect any 

changes in the runnability 9f the level 1 processors. After such a change has 

been made, the GP.Ps must be reassigned. The-PCP-acco.;.pfishe~ th~ reassignment 

by determining the GPPs that are improperly assigned, ,and forcing them to 
" ~ t . 

unbind themselves from the current level 1 processor, and r;eas11;Lgn themselyes 

based on the newly altered queue of runnable level 1 processora. 
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Also distributed in each GPP is the handling of the quantum for each 

level l processor. Each GPP keeps track of the time it spends executing each 

level l processor, so that when the level l processor quantum is exceeded, the 

GPP informs the PCP and reassigns itself to a runnable level l processor. 

Interprocess Control Communication is centralized in the PCP. The PCP 

maintains a table, called the await table (see figure 5.2), that keeps track 

of the level l processors that are awaiting along with the eventcount names 

and values awaited. An advance operation proceeds by having the GPP executing 

the advance increment the value of the eventcount, then transmit to the PCP 

the name of the eventcount and its new value. The PCP then processes this 

information by finding all of the level l processors that should be awakened, 

and awakening them. The special eventcounts (stopped, clock, I/O eventcounts, 

outward_signals) are not advanced by GPPs, but are handled within the PCP. 

The clock and I/O processor eventcounts are handled by periodic polling of 

their values in the PCP. The stopped and outward_signals eventcounts are 

advanced by the PCP, and reflected to the level l processors. 
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5.2 Hardware Architecture 

Although the hardware architecture is slightly different than that of a 

traditional multiprocessor computer system, I have tried to make the nwnber of 

differences as few as possible. The GPPs of the system look very much like 

the physical processors of traditional computer systems. Most of the 

implementation of level 1 processor manager is in software. I have chosen a 

minimal set of hardware facilities needed to imple111-ent the le:vel 1 processor 

manager. These facilities are: 

1. A mechanism that allows the PCP to interrupt the GPPs. 

2. Shared primary memory to be used for communication of data 

between PCP and GPPs. 

3. A special mode of execution in the GPP used to allow the 

implementation of the GPP part of level 1 operations in software 

on the GPPs. 

4. A special instruction that translates addresses within the level 

1 processor environment into a version that is unaffected by 

changes made to the environment specification. 

5. A special instruction that allows the GPP to change its binding 

to a new level 1 processor. 

These features are discussed in detail below. 
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5.2.l The Processor Control Processor 

The processor control processor (PCP) is a highly specialized processor 

that controls the multiplexing of the general-purpose processors of the 

system. It need not be a high-speed processor, nor must· it have any of the 

facilities needed for handling general purpose computations, such as 

interrupts, faults, powerful instruction set, large memory, etc. It is 

probably best implemented as a microprocessor. 

The PCP communicates with the general-purpose processors of the system 

through the system's primary memory. The PCP can read and write primary 

memory, although it need not store either its program, or most of its data in 

primary memory. 

The PCP can also send a special signal, called UNBIND, on lines that 

connect the PCP to each individual general-purpose processor. Figure 5.3 

shows the communication paths of the system. The UNBIND signal is used by the 

PCP to cause a processor to stop doing what it is doing, and find a new level 

l processor to run. 

The UNBIND signal is the only interrupt-like operat,ion in the system. 

There are no interrupt signals for the PCP, since it operates by repeatedly 

polling the primary memory cells of interest to it. The I/O processors will 
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communicate with level 1 processors purely through memory. If an I/O 

processor needs to send a signal to a particular level 1 processor, it will 

increment a memory location treated by the PCP as a special eventcount, and 

the eventcount will be observed by the PCP and reflected to the level 1 

processor. Each GPP is able to send a control signal to each I/O processor to 

start it executing, by advancing an eventcount (actually a counter, since it 

is not handled by the normal eventcount mechanisms) that is polled by the I/O 

processor while the I/O processor is stopped. 

5.2.2 General-Purpose Processors 

The general purpose processors (GPPs) of the system are much like the 

general purpose processors of Multics, the IBM System/370, etc. They all 

access primary memory through address translation hardware that is controlled 
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by a data base in primary memory called a descriptor segment. Each GPP has a 

set of internal registers, some of which are used to perform computational 

operations of the level 1 processor, and some of which are used in the level 1 

processor multiplexing implementation. The structure of the internal memory 

CRs 

DSEGP 

IP 

FIP 

QTMR 

LlPSP 

unbind flag 

master/slave flag 

Figure 5.4 
GPP Internal Memory 

of a GPP is indicated in figure 5.4. Most items are familiar from chapter 

four. The bracketed items are explained shortly. 

The GPP operates in one of two modes, master mode and slave mode. In 

slave mode, the GPP is running a level 1 processor. Its instruction pointer, 

computational registers, descriptor segment pointer, and fault handler pointer 

are all used in slave mode. The slave mode instructions allow the processor 

to access memory through the descriptor segment, perform operations on its 

computational registers, transfer, and so forth. One additional slave mode 
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operation, INVOKE-LEVEL!, allows the GPP to enter master mode for the purpose 

of communicating with the PCP. 

Master mode in the GPP exists so that the level 1 processor operations 

that need to communicate with the PCP can do so. In master mode, the GPP has 

access to the data bases in primary memory that are shared with the PCP. 

Master mode would be unnecessary if all oi the level 1 processor management 

operations were built into the GPP hardware, but I pave attempted in this 

design to make the minimal hardware changes necessary for a clean design of 

the level 1 implementation. Consequently, the operations that allow the level 

1 processors to communicate with the PCP will be s~ftware operations run in 

master mode. 

Master mode executes in a distinct addressi0g..mode from the level 1 

processor environment accessed in slave mQde. The separate environment 

protects the code executing in master mode from errors in the level l 

processor environment. Since the level l processor environment is controlled 

at a level higher than the level l implementation, level l cannot depend on 

the correctness of the environment in any level l processor without causing a 

cyclic dependency. 

In the master mode environment, it must still be possible for the GPP to 

access parameters to level l operations that are stored in the level l 

environment. The simplest choice is to have the ~aster mode environment able 

to access absolute core addresses directly. An alternative would be to have 
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master mode use a different map, but the difficulty of converting addresses in 

terms of the level 1 processor map to the equivalent addresses in a distinct 

master mode map make this alternative unattractive. When in master mode, 

addresses in code executed by the GPP are interpre~ed as absolute core 

addresses. 

The special functionality of the GPP must now be discussed. The level 1 

processor state pointer in the GPP is a pointer (actually an absolute core 

address) to the level 1 processor state in primary memory that corresponds to 

the level 1 processor currently bound to the GPP. Ute GPP uses this pointer 

to store the state of the level 1 processor when the.GPP enters master mode. 

This pointer is also used to store .the fault .data when a level 1 processor 

takes a fault. 

The format of a level 1 processor state block in memory is shown in 

figure 5.5. The level 1 processor state block contains information that is 

available at the level 1 interface, and some that is not. The current state, 

containing computational register values (CRs), a instruction pointer (IP), a 

fault handler pointer (FIP), a quantum ti~er register value (QTMR), and an 

environment descriptor· pointer (DSEGP), corresponds to the s.tate information 

presented at the level 1 interface by the bind and unbind operations. It also 

corresponds to the state of a GPP. This is the state that is loaded into a 

GPP when the GPP is bound to the level 1 processor. The fault data, 

containing computational registers (CRs), instruction pointer, and fault code 

(FCODE), is kept here so that the VP1$get_fault_state operation can access it. 
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The GPP sets the fault state when a fault occurs, and also sets the flag that 

indicates that a fault has happened (FHH). If the FHH flag is already on when 

a fault occurs, the GPP unbinds itself as if the level 1 processor had 

executed VP1$crash_system. The rest of the data in the state block is not 

interpreted by the hardware and will be described in detail later. 
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In master mode, there are two special instructions that cannot be used in 

slave mode. The first, ACCESS, allows the GPP in master mode to interpret an 

address relative to a specifed descriptor segment. This instruction will be 

used to allow the GPP to translate data addresses from the address space of a 

level 1 processor into the master mod (that is, absolute core addresses). 

address space. If the ACCESS instruction encounters a missing-page or 

missing-segment fault, it will set a condition code indicating the fault that 

occurred, and proceed to the next instruction. The ACCESS instruction loads a 

register of the GPP with the address in the master mode address space that 

corresponds to the specified address in the specified descriptor segment. It 

also loads into another register the system-wide unique address, from the map, 

of the word. 

The other special master mode instruction is LOADSTATE. The LOADSTATE 

instruction allows the GPP to load a particular level 1 processor state from 

an address in the GPPs master mode environment into the GPP's registers. The 

master mode flag is then turned off, and the GPP begins executing the level 1 

processor. The level 1 processor state pointer of the GPP is loaded with the 

address of the level 1 processor state block named in the LOADSTATE 

instruction. 

Two other special registers are present in the GPP. The quantum timer 

register is a register loaded from the level 1 processor state that contains a 

value that is decremented once every microsecond. When the register reaches 

zero, it stops decrementing. 
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The unbind flag is set by the PCP UNBIND signal. The unbind flag is 

checked after executing each instruction when the GPP is in slave mode. A set 

flag causes the GPP to unbind itself from the level 1 processor it is 

currently executing. The GPP also unbinds itself from the current level 1 

processor when the INVOKE-LEVEL! operation is executed. The basic cycle of 

the GPP is shown in figure 5.6. 

INVOKE-LEVEL! 

instruction := IP->word 
opcode :• inatruc.tfon.opcode 

~ranch on opcode 

LOADS TATE 

no 

LlPSP :c instruction.add 
CRs, IP, QTR, FIP, DSEGP 

: = LlPSP -> 

IP :•IP + 1 

CRs, IP, QTR, FIP, DSEGP 
clear master mode flag 

execute instruction 

.---------~-~1-yes--~ 
CRs.req-type 

LlPSP -> 
:= CRs, 

IP, 
TR 

clear unbind, set 
master mode. 
IP := INVOKER 
(see figure 5.8) 
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:= crasli system 
no 

LlPSP -> fault CRs, 
fault IP := CRs IP 

fault FCODE :• <!ault' 

IP :• F!P 

Figure 5.6 
Basic GPP Cycle 
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5.3 Data Bases 

There are four data bases used in the level 1 processor implementation. 

They are the level 1 processor state table (LlPST), the PCP request queue 

(PCPRQ), the await table (AT), and the GPP control table (GCT). The first two 

data bases are accessed both by GPPs and the PCP, so .there is a locking 

mechanism required for each; the AT, however, is private .to the PCP, so no 

locking is required. The GPP data items are each only written in by one 

processor so there is no need for a lock. 

The level 1 processor state table consists of an array of level 1 

processor state blocks. The format of a level 1 proc.e$sor state block has 

been shown in figure 5. 5. Each level 1 processor st~t.e block sto~es all of 

the state information about a level 1 processor, along with certain 

information used to schedule the assignments of physical processors to level 1 

processors. All of the non-stopped level 1 processors are threaded into a 

list in order of decreasing priority. The stopped level 1 processors are 

either unthreaded, or threaded into a list called the next-stopped queue used 

to implement the VP1$next_stopped operation. Each level 1 processor state 

block has stored in it the state of execution of the level 1 processor; it may 

either be running, runnable, awaiting, stopping (a transient state on the way 

to stopped), or stopped. 
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The information not yet described in the level 1 processor state block is 

used as follows (see figure 5.5). The thread value is used to thread the 

block onto the priority queue or the next_stopped queue. The execution state 

is stored in the execution state value. If the level 1 processor is running 

on a GPP, the name of the GPP is stored in the state block. The atomic 

operation depth contains the nwnber of times a VP1$begin_atom_operation has 

been executed without a matching VP1$end_atomic_operation. The stop_yending 

flag is used to remember that the level 1 processor must be stopped after its 

atomic_operation depth reaches zero. The priority is permanently associated 

with a level 1 processor, and is used to find the right place to thread the 

level 1 processor into the priority quetie. 

The data in the level 1 processor state table is protected by a lock 

called the LlPST lock. The data in the LlPST will not change while the LlPST 

lock is set, with one exception. A level 1 processor state block that is 

marked in the running state can undergo certain modifications at any time. 

The stored registers, instruction counter, quantum timer register, fault 

information, and PCP request type fields may be modified by the GPP running 

the level 1 processor at any time while the level 1 processor state block is 

marked as running; none of the remaining data may be modified except by 

locking the LlPST lock. 

The PCP request queue is a FIFO queue used to send messages to the PCP. 

It is a fixed size block of storage, probably best managed as a ring buffer. 

A lock called the PCP request lock prevents more than one GPP from placing 
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messages in the queue at the same time. Its size should be chosen to minimize 

the amount of time spent waiting for the PCP to free up enough space for the 

next message, which waiting is done by busy-waiting in the GPP. The queue 

must be at least as large as the largest message placed in it. 

The await table is kept internally to the PCP and keeps track of the 

mappings from eventcounts awaited by level 1 processors to the level 1 

processors awaiting, and vice versa. Its format is unimportant to the current 

discussion, as long as it is possible to convert an eventcount name and 

current value into a list of the level 1 processors to awaken, and it is 

possible to delete the entries from the table that correspond to a particular 

level 1 processor. A simple form of the table mi~ht be a list of 

three-tuples: eventcount name, awaited value, and level 1 processor name. 

However, there are much more effective ways of obtaining the desired 

functionality than such a list. 

The GPP control table contains entries for each GPP. There are two data 

items in each entry. The first is a flag that indicates whether the GPP is 

available for use by level 1 or not, for reconfiguration. It is modified only 

by the PCP. The second entry is a counter incremented each time the GPP 

finishes executing an unbind operation, either due to an UNBIND signal from 

the PCP, or due to timer runout or INVOKE-LEVELl in the GPP. It is used in 

the implemen~ation of VP1$propagate_map_change; this use is described later 

with the impleme~tation of VP1$propagate..._map_change. 
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5.4 Operation of the Processor Control Processor 

The PCP has three functions to perform. First, it must manage the 

bindings of GPPs to level 1 processors. Second, it must do the work of the 

requests in the PCP request queue, calling for the PCP to run and stop level 1 

processors, add and delete GPPs, enter level 1 processors into the await 

table, and awaken the level 1 processors awaiting a particular advance. 

Third, it must implement the special eventcounts -- the outward_signals 

eventcount, the stopped eventcount, the clock eventcount, and the eventcounts 

associated with I/O processors. 

The PCP does all of these things by periodically polling the relevant 

data bases, and then performing the necessary actions. Basically, the PCP 

executes in a loop, first checking the PCP request queue for requests and 

doing the ones found in the queue, then checking the special eventcounts 

against the entries in the await table to see if any level 1 processors should 

be awakened, then checking the level 1 processor assignment table to make sure 

that all GPPs are properly assigned and issuing the appropriate UNBIND signals 

to correct any discrepancies. 

There are nine kinds of requests that are sent from GPPs to the PCP 

through the PCP request queue. Here the data associated with the requests and 

' the processing done by the PCP are described. A flow chart of the operational 

Chapter 5 - 130 -



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

cycle of the PCP appears in figure 5.7. 
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The add_cpu, del_cpu, and crash_system requests are sent by GPPs 

executing level l processors that call on the operations VP1$add_cpu, 

VP1$del_cpu, and VP1$crash_system. The add_cpu and del_cpu requests also have 

an associated data item, the name of a GPP. The PCP processes these requests 

by setting the availability flag of the particular GPP to available for 

add_cpu, and unavailable for del_cpu, then sending an UNBIND to the GPP. Tile 

crash_system request is executed by marking all GPPs unavailable, and 

broadcasting UNBIND signals to all GPPs. 

The propagate_map_change request is used as part of the implementation of 

the VP1$propagate_map_change operation. The associated data is the name of 

the processor originating the request. The PCP handles this request by 

issuing an UNBIND signal to all real processors, except the processor 

originating the request. The rest of the work of the VP1$propagate_map_change 

operation is done in the GPP originating the request. This will be discussed 

later. 

The run_level_l_processor and stop_level_l:._processor requests are sent by 

GPPs executing level l processors that call on the operations VP1$run and 

VP1$stop. The associated data with these requests is the name of a level l 

processor. The PCP processes these requests by locking the LlPST lock, 

altering the state of the level l processor to runnable or stopped, 

respectively, and rethreading the level l processor into the processor 
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priority list or the next-stopped list. (1) If the level 1 processor is being 

stopped, it also must have all associated entries removed from the PCP await 

table, so that the space can be reused. (2) The LlPST lock is then unlocked. 

The processing of the stop_level_l_processor request is not actually 

quite thi~ simple. If the level 1 processor is either running or is in the 

middle of an atomic operation (its atomic operation depth is non-zero), the 

level 1 processor cannot be stopped inunediately. In this case, instead of 

changing its state to stopped, a flag will be set _in the level 1 processor 

state block to indicate that a stop is pending. If the level 1 processor is 

running, it will be sent an UNBIND signal to ensure its speedy stopping. ·The 

pending stopped flag is interpreted by the GPP at the time of an unbind, and 

will cause the GPP to put the level 1 processor in the special stopping state, 

and then send a deferred_stop message in the PCP request queue. 

The deferred_stop message is sent to the PCP under .three c<;>nditions. In 

an unbind operation on the GPP, if the pending stop flag is found on in the 

current level 1 processor state blqck, and the lev~l 1 pr.ocessor at.omic 

operation depth is zero, then a deferred_~top is sent to the PCP. If the 

quantum timer runs out,_ and the atomic operati.o-n depth is zero, then a 

(1) Whenever the next-stopped list has a new level 1 processor added to it, 
the PCP increments the special stopped eventcount, The increment is observed 
later by the PCP when chec~ing the special ev-e.ptco~s,, al.Vi reflected then to 
the awaiting level 1 processors. 

(2) Please recall that exec~ting VP1$run on a stopped level 1 processor will 
cause the VP1$await instru~tion to be re-exec~~d~-: "°.that the information in 
the PCP await table will be regenerated at that time. 
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deferred_stop is sent to the PCP. If the level 1 processor executes a 

VP1$end_atomic_operation instruction that decrements the atomic operation 

depth to zero, and the stop pending flag is on, or the quantum timer has run 

out, a deferred_stop is sent to the PCP. 

The level 1 processor sending the deferred_stop message is put into the 

special stopping state by the GPP. The data contained in a deferred_stop 

message is the name of the level l processor being stopped. The PCP processes 

a deferred_stop message in the same way it processes a stop_level_l__processor 

request, except that it need not check to see if the level 1 processor is 

stoppable. 

The post_advance PCP request is sent by the GPP executing an advance 

operation to cause the level l processors awaiting the advance to be awakened. 

The actual incrementing of the eventcount is done by the GPP; the PCP need 

only search its await table for the level 1 processors to awaken, and perform 

the awakening. The data sent with the post_advance request is the system-wide 

unique address of the eventcount and the value of the eventcount after 

incrementation. The PCP performs this request by finding all entries in the 

await table that have the same system-wide unique address with awaited values 

less than or equal to the value sent in the post_advance request. It then 

locks the LlPST lock, finding all of the level 1 processors that are named in 

the above-mentioned await-table entries. 'nie state of each af these level 1 

processors is changed from awaiting to runnable. When the level 1 processor 

is next run, it will re-eiecute and find that one of the event~ounts has been 

advanced, so it will proceed. 
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The PCP also checks each post_advance request to see if the advance was 

on an outward signalled eventcount. If so, it increments the special 

outward_signals eventcount (the posting of the outward signals eventcount - .... 

occurs later). 

The last PCP request is post_await. It is sent by a GPP to the PCP after 

checking the eventcounts awaited in a VP1$await opera;ion, if none of the 
' ' ' 

eventcounts is greater than or equal to the values awa~ted. The data sent to 

the PCP are the name of the level 1 processor awaiting, and pairs of 

system-wide unique addresses of eventcounts and awaited values. (1) The PCP 

responds to these requests by adding entries to the PCP await queue for each 

of the eventcounts. 

After processing the PCP request queue, the PCP handles the special 

eventcounts. The system's calendar clock is read by the PCP and it decides 

whether to increment the clock eventcount. The PCP then reads each special 

eventcount, getting its current value. It then acts as if it received a 

post_advance for each special eventcount, searching the await table for 

awaiting level 1 processors, and awakening them. The PCP can always directly 

access the special eventcounts. There are only a few such eventcounts. They 

are the stopped eventcount, the clock eventcount, the outward_signals 

(1) Please note that the limit on the number of eventcounts in a VP1$await 
operation is associated both with the maximum size message that is sent 
through the PCP request queue, and with the maximum number of entries that can 
be placed in the PCP await table. The more eventcounts that a level 1 
processor can await, the larger these tables. 
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eventcount, and the I/0 device eventcounts. These eventcounts are handled 

specially in the PCP because the agents that increment the eventcounts do not 

use the PCP request queue, and so do not use post_advance requests to reflect 

the incrementing to level 1 processors. 

The final step of the PCP is to update the assignments of GPPs to reflect 

the changes in the level 1 processor states and bindings. This step is done 

by locking the LlPST lock, and inspecting the assignments of GPPs reflected in 

the level 1 processor states. The PCP then issues UNBIND signals to a set of 

GPPs so that the GPPs will reassign themselves to the correct set of level l 

processors, based on the priority ordering of the level 1 processors. 

The algorithm used to choose the GPPs to unbind is very simple. The PCP 

knows how many GPPs are on the system. By starting at the top of the priority 

queue in the level 1 processor state table, and counting running and runnable 

level 1 processors as the queue is traversed until as many are found as there 

are GPPs, the PCP can find the set of level 1 processors that should be 

running. If any GPPs are running lower priority level l processors, they 

should be preempted by sending an UNBIND signal. The PCP thus traverses the 

rest of the priority queue, sending UNBIND signals to GPPs running any lower 

priority level l processors. 
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5.5 GPP operation 

The way that level 1 processor operations are implemented on GPPs is by 

using the INVOKE-LEVEL! instruction. The INVOKE-LEVEL! instruction causes the 

GPP to enter master mode, and to transfer to the unbind handler. A flag is 

set in the level 1 processor state by the INVOKE-LEVEL! instruction to 

indicate that a INVOKE-LEVEL! has been executed. The type of level 1 

processor operation to be performed is tran~mitted in.a register, and the 

addresses of any data, such as eventcounts, etc., required by the operation 

are transmitted through registers. 

To simplify the discussion of the unbind operation, we must first discuss 

the handling of exceptions, such as missing page exceptions, in accessing the 

data associated with a particular operation. The data will be accessed by 

first using the ACCESS master mode instruction to convert the address of the 

data in the address space of the level 1 processor into an address that is 

reachable in the master mode address space. If the ACCESS instruction 

encounters a missing-page exception, it reflects this in the condition code, 

rather than faulting. If a missing page condition occurs, the code in the 

unbind sequence will abort the current operation, and update the level 1 

processor state to simulate a missing-page fault, moving the current copies of 

the computational registers to the fault data, along with the instruction 

- 139 - Chapter 5 



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

counter, and setting the fault code to indicate the type of fault encountered. 

The current instruction counter of the level 1 processor will then be set to 

the fault handler address. The GPP will then proceed with finding a level 1 

processor to execute. 

If no fault is detected by the ACCESS instruction, then the GPP can 

perform the rest of the operation correctly. Having determined the address of 

data in the master mode environment, the GPP can then proceed to access these 

objects, without fear of encountering faults. 

The unbinder that executes in master mode in all GPPs is described in the 

flowchart in figure 5.8. 
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Figure 5.8 
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The basic flow of the unbinder is quite simple. If the unbind is due to an 

INVOKE-LEVEL! instruction, the request is handled. Then, the LlPST lock is 

locked, and the level 1 processor is checked to see if it should be stopped. 

If it should be stopped, the level 1 processor is placed in the stopping state 

and a request is sent to the PCP. If not, it is marked as runnable. The GPP 

then searches the priority queue for the highest priority runnable level 1 

processor. It is marked as running, the LlPST iock is unlocked, and the GPP 

uses the LOADS TATE instruction to run·· the level l processor, having set up a 

simulated fault if a processor interrupt is to be sent to the level 1 

processor. 

The only exception to this basic flow is the handling of the PCP request 

associated with the VP1$await instruction. In order to ensure that an advance 

operation does not happen and get inserted into the PCP request queue between 

the time the eventcounts are tested and t~e time th~ ppst_await message is 

entered in the PCP request queue, the eventcounts are tested while the PCP 

request queue lock is locked. The GPP then decides whe.ther to enter the 

post_await message into the PCP request queue or not, and unlocks the PCP 

request queue. (1) If the post_await message is entered, the level l 

processor is marked as awaiting, otherwise, the instruction counter ts 

advanced passed the INVOKE-LEVELl instruction, and the unbind proceeds as 

before. 

(1) The problem I am solving here is the same critical race Saltzer [25] 
describes, which in his case necessitates a wakeup-waiting switch that is 
tested under a lock. The eventcounts themselves serve the same purpose as the 
wakeup-waiting switch in this implementation. 
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The advance operation is very simple. It simply increments the memory 

word of the eventcount, and transmits the new value, and system-wide unique 

address (obtained in the ACCESS instruction) through the PCP request queue, in 

a post_advance request. 

The propagate_map_change operation is fairly subtle in its operation. 

The implementation works by causing all GPPs other than the current one to 

unbind themselves, then waiting until tqey complete their next unbind 

operation. To know when each GPP finishes its next unbind operation, there is 

a table of counters, one for each GPP on the system. Each time a GPP 

completes an unbind operation, it increments its counter. The 

propagate_map_change operation is done in three steps. First, the GPP reads 

the current values of the counters associated with each other GPP. Second, it 

sends a propagate_map_change PCP request. Third, it busy-waits until each 

other GPP's counter is greater than the value of the counter obtained in the 

first step. By the time the third step is completed, all GPPs will have 

completed at least one unbind operation after the VP1$propagate_map_change 

operation started. Consequently, there will be no copies of absolute 

addresses obtained from the maps retained in the processors that were 

generated before the VP1$propagate_map_change started. 

The add_cpu, del_cpu, crash_system, run, and stop operations all consist 

of transmitting PCP requests of the associated type, with the arguments to the 

operations as data. 
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Several of the operations, however, are handled without the PCP's help. 

The VP1$get_fault_data operation is done by copying the data from the level 1 

processor state block. VP1$restore_fault_data copies ,its argument into the 

current state in the fault state block. VP1$begin_atomic_operation increments 

the atomic operation depth in the level 1 processor state, and 

VP1$end_atomic_operation decrements that value. After doing the work of any 

of these operations, the GPP proceeds to finish the unbinding operation 

normally, finding the next level 1 processor to execute. 

The VP1$bind, VP1$unbind, and VP1$set_;>rocessor_interrupt operations 

operate similarly. They all require that the level 1 processor they operate 

on be stopped. Consequently, they lock the LlPST lock, then test to see if 

the level 1 processor to be operated on is stopped. If so, the operation is 

performed. If not, an error status is stored in the status code of the 

operations. The LlPST lock is then unlocked. 

The final operation to be discussed is the VP1$next_stopped operation. 

This operation just locks the LlPST lock, gets the next level 1 processor on 

the next-stopped queue, and stores its name in the return value. The LlPST 

lock is then unlocked. ~· • 

With the exception of the await operation when it decides to send a 

post_await request, the instruction counter is always incremented by 1 after 

handling a INVOKE-LEVEL! instruct'ion, before finishing the unbind. This 

causes the instruction counter to skip over th~ INVOKE-LEVEL! instruction just 

executed. 
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5.6 Implementing Level 1 Processors on Traditional Hardware 

If it is not possible to have a dedicated processor to run the PCP, it is 

still possible to adapt this design to work. This adaptation is done by 

simulating the PCP on the general purpose processors that are available. 

Similarly, mapping the interrupts sent by I/O devices into increments on 

special eventcounts is not difficult. Both these ideas are discussed in the 

rest of the chapter, to show that the design can be easily adapted to 

architectures similar to the Honeywell 68/80 system th~t current.ly supports 

the Multics system. 

5.7 Simulating the Processor Control Processor 

The necessary qualities of the PCl1 for implementing the level 1 processor 

design given in this chapter are that it must have its own environment and 

state, and that it always must be ready when there are tasks for it to do. It 

must also be able to send an UNBIND signal to any other processor • 

. , 
While these characteristics are true of a. dedicated hardware processor, 

it is also possible to obtain them by other schellleS. The scheme used here 

will be to recognize that the PCP need not always be executing. When it is 

not executing, its state can be represented in primary memory. The same 
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techniques that make processor multiplexing possible will enable simulating 

the PCP on a multiprocessor architecture. 

The PCP's state (computational registers, descriptor segment pointer) 

will be stored in primary memory in a block called the PCP state block. In 

addition, the PCP state block will contain a loc.k. called the PCP lock, and a 

flag, called the PCP-has-work flag. 

Basically, we simulate the PCP by attempting to have the currently 

executing physical processor load the PCP state and run the PCP whenever the 

PCP is given more work to do, such as, for example, when a new request is 

entered into the PCP request queue. Some other processor may be executing in 

the PCP, however, so the PCP lock is used to prevent two processors from 

simultaneously entering the PCP. In order to enable any processor to run the 

PCP, each processor must be able to send UNBIND signals to all other 

processors. Further, when running the PCP, there must be some mechanism that 

prevents UNBIND signals sent to the current processor from taking effect until 

the processor stops executing the PCP. 

The detailed algorithm executed every time something is entered into the 

PCP request queue is as follows. The PCP-ha.s-work flag is set.. The processor 

attempts to set the PCP lock. If the lock is already set, the processor 

continues w~th what it was doing; presumably it is executing some version of 

the unbind operation shown in the previous design, so it continues to unbind 

itself. If the processor succeeds in setting the lock, it then cleB:rs the 
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PCP-has-work flag, and loads the state from the PCP atate block. When the PCP 

processes all of the work currently queued for it, it gives up the processor 

by storing its state in the PCP state block, unlocking the PCP lock, and then 

checking the PCP-has-work flag. If the PCP-has-work flag is on, some other 

processor has given more work to the PCP since the current processor started 

running the PCP. Consequently, the current processor tries to run the PCP, 

and gives up only if it finds the PCP lock already set. (1) 

In order for this simulation to work, it is necessary to run the PCP in 

this way whenever it must do some processing. As we have seen there are three 

kinds of processing that the PCP does. They are handling the PCP request 

queue, noticing changes in special eventcounts and handling the clock, and 

making sure that the assignments of processors to level 1 processors is 

correct with respect to priority assignments. Handling the PCP request queue 

is simple in the simulation. We just change the algorithm for sending PCP 

requests to always try to run the PCP after placing a request. 

Handling special eventcounts is not so simple. We would like the PCP to 

run relatively quickly after a special eventcount is incremented. There are 

three kinds of special eventcounts. The stopped eventcount is simple to 

handle, since it is incremented only by the PCP itself, so the PCP is always 

running after incrementing the stopped eventcount. The clock eventcount is 

less simple. If there is a way to set an alarmclock in the system that will 

(1) The PCP-has-work flag is really a wakeup-waiting switch for the PCP, if 
you imagine giving up the processor by the PCP as a block. 
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send an UNBIND signal to some processor periodically, then the GPP can always 

check the current clock value at the start of the UNBIND handler to see if the 

PCP should be run. This solution can also handle the checking of the other 

special eventcounts incremented by I/O devices, since the alarmclock can be 

set to go off with a frequency that gives an optimal rate of polling of the 

special eventcounts. The major cost of si~ulating the PCP on the, other 

processors of the system arises from the need to unbind processors more 

frequently to handle the clock. 

5.8 I/O Devices That Send Interrupts 

Traditionally, I/0 devices send interrupts to the system to signal the 

completion of I/0 operations. Up to this point, we have been assuming that 

I/O devices signalled the completion of I/O operation_s, or other events 

requiring immediate attention of a level 1 processor, by incrementing memory 

words that the PCP then handled as eventcounts. The PCP then reflected these 

changes as advances, detecting them by periodic polling. 

If the more traditional method of having the I/O devices send interrupt 

signals to the GPPs is used, the incrementing of eventcounts can be simulated 

by having the interrupt handlers of the system do nothing but increment the 

appropriate memory words. The PCP will p~riodically poll these ~emory words, 

and reflect changes to them by awakening level 1 processors that await changes 

to those words. 
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Responsiveness is a question here. If the polling frequency of the PCP 

is controlled by a clock, as above, in order to get very fast response to I/O 

device signals, the polling frequency must be very high. This has a cost, in 

that most times the clock forces the PCP to run, there will be nothing for it 

to do. Consequently, the best choice is to run the clock so that it 

interrupts the processors only as frequently as necessary to cause the clock 

eventcount to work. The interrupt handlers, in addition to incrementing the 

eventcount associated with the device causing the interrupt, will attempt to 

run the PCP. This choice guarantees that when the PCP is run, it has 

something to do. 

5.9 Summary 

In this chapter I have shown how to implement level l processors using a 

structure based on a central agent. The first implementation is developed 

using a dedicated processor for the central agent. Then, for an 

implementation more suitable for traditional multiprocessor architectures, I 

showed how the dedicated processor can be simplated without a dedicated 

processor on the general-purpose processors of the systea. 

The simplicity of the implementation in either case derives primarily 

from the centralized structure. It is clear in this structure how the 

assignments of level l processors to GPPs is controlled. 
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Level 2 Processor Interface and Implementation 

The second level virtual processors are lU:Jed to run user computations in 

the computer system. In this chapter, the interface and implementation of 

level 2 processors are described. The level 2 interf~ce is quite similar to 

the level 1 interface, with a smaller number of ol>erati<;ms. 

There are three major differences between level 1 and leyel 2, however. 

First, since level 2 primitives are visible at the perim~ter of the security, 

kernel, protection mechanisms are very important to prevent unauthorized 

interference between level 2 processors. The level 2 interface is designed so 

that privileged information is not accessible at the interface. The 

authorization to use particular level 2 operations is provided by the ordinary 

access control mechanisms used to protect stored information. 

Second, the level 2 implementation is partitioned into two parts": a 

fixed mechanism for multiplexing level 1 processors, and a policy mechanism 

that controls the rate of resource usage by the level 2 processors. The 

policy mechanism is designed to be modifiable by a~.admin;istrator at an 

individual computer installation without the need to re-verify the security of 

data in the system. 
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Third, the IPCC mechanism provided at level 2 is more flexible than that 

of level 1. The await operation can await a la~ger number of eventcounts. A 

process interrupt facility is provided that is really just a special case of 

the await operation. The await operation also takes care of outward 

signalling eventcounts. The IPCC mechanisms are completely protected by the 

access control mechanisms that apply to segments containing eventcounts; 

there is no need for a special protection mechanism to prevent unauthorized 

interprocess control communication. 

In this chapter, the interfaces to level 2 are discussed first. The 

overall structure of the implementation then is discussed, and the isolation 

of scheduling policy from mechanism is explained. 

6.1 Level 2 Processor Interfaces 

At level 2 there are two sets of operations that allow control of level 2 

processors. The creation and deletion operations manage the set of level 2 

processors that are in existence at any time. The IPCC operations allow 

communication between level 2 processors. These two sets are the only 

operations that are provided at the level 2 interface for the control of level 

2 processors. 

Some internal interfaces are important because they form the interface 

between the scheduling policy and the scheduling mechanism in the level 2 
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implementation. These interfaces are discussed later in the description of 

the implementation. 

6.1.1 Creation and Deletion of Processors 

Unlike the first level processor manager, whi,ch implements a fixed set of 

processors, the second level processor manager allows for creation and 

deletion of second level processors. This facility makes the assignment of 

processors to user computations much simpler -- whenever a user wants to start 

some process (as when he logs in to the computer system) he can just have a 

new processor created on whiCh'tO run that process. 

Initiation of a process running on a level 2 processor requires 

fabricating an environment for the processor to execute in, creating ~ level 2 

processor to perform the process, and starting the level 2 ,processor running 

at a particular point in the environment. In this thesis, I assume t:hat the 

environment is created and maintained outside the level 2 processor 

implementation, by an environment type manager. Authorization to initia._te a 

process in a particular environment, with a particular initial execution 

point, is handled at a higher level in the system. Montgomery [18) has 

discussed a mechanism for protection of process initiation. His mechanism 

should be used in conjunction with my design. 
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The process initiation operation starts _by fii;st verify.ing the right of 

the level 2 processor invoking the kernel process initiation operation to 

create a process that starts with the particular initial execution point in 

the specified environment. This verification is done within Montgomery's 

model. Then, it creates an environment description (such as a Multics 

descriptor segment) for the specified environment, by calling on the 

environment description manager. Inside the security kernel, it then passes 
. . 

the environment description and initial execution point to the level 2 

operation that creates the level 2 processor and starts it running at the 

initial execution point. 

The level 2 operation that creates and.starts ~.level 2 processor running 

in a particular environment with a particular execution point is the operation 

VP2$create_processor (envptr, startptr, schedclass, procname) 

This operation takes a name of an environment (envptr), a point within the 

environment to start executing (startptr)' and a sche.duling class 

(schedclass). It creates a level 2 processor that is named procname, and 

starts it running at the initial execution .Point. The schedclass parameter is 
- "' '--

information passed to the scheduling policy mechanism of the level 2 processor 

manager to control the rate of resource usage of the created processor. 

Protection of level 2 processors from destruction is also at a higher 

level in the security kernel of the system th.an leve;L 2., The level 2 

operation used to destroy a level 2 processor is 

VP2$destroy_processor (procname, envptr). 
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This operation destroys the level 2 processor named procname. The level 2 

processor is not destroyed until it becoilres stopped at level 1, so that any 

kernel operations in progress will complete. VP2$destroy_J>rocessor does not 

return until the processor named procname is destroyed. The environment of 

the processor is not destroyed by this operation. The environment ptr 

(envptr) is returned so that the higher level process termination operation 

can destroy the envirorunent. 

6.1.2 IPCC Interfaces 

IPCC among level 2 processors, like IPCC among level 1 processors, is 

done using eventcounts. Eventcounts are implemented as words in virtual 

memory segments. Protection of eventcounts is accomplished by using the 

virtual memory protection mechanisms. An advance operation requires that the 

level 2 processor executing the advance have both read- and write-permission 

to the eventcount, while an await operation requires only read-permission. 

Since segment protection is used to prevent unauthorized release of and 

interference with (modification of) information sent throug.h the interprocess 

control communication mechanism, ensuring various security policies is 

simplified. To confine a level 2 processor from transmitting information to 

unauthorized receivers through both eventcounts and segments, one. only has to 

restrict the set of segments it has write-permission to. If the set of 

segments it can write cannot be read by unauthorized receivers, then the 
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confinement is assured. IPCC using eventcounts.-does not introduce a new 

information channel from the ~onfined processor. since sending information via 

eventcount IPCC requires advancing ev~ntcounts~ and thus modifying segments. 

Similarly, a level 2 processor can be protected from unauthorized 

interference with its IPCC, by preventing un,authorized level 2 processors from 

having modify-permission to eventcounts that it awaits. 

The await operation at level 2 has new functionality over the level 1 

await operation. First of all, it allows waiting on outward-signalling 

eventcounts. Thus, the eventcounts that can be awaited by level 2 await 

operations are those that are advanced at level 2, and those that are in the 

set of specially handled outward-signalling eventcounts (advanced at level 1). 

Second, the number of eventcounts that can be simultaneously awaited is not 

restricted to a small number in level 2. A level 2 processor can await a 

large number of eventcounts simultaneously. The difference in the number of 

eventcounts that can be awaited reflects the cost of storage used in the level 

1 and level 2 implementations. 

The operations on eventcounts at level 2 are: 

VP2$await (eel, value!, ec2, value2, ••• ) 

and 

VP2$advance (ec). 

VP2$await waits until ec~ is greater than or equal to value~, for some pair of 

arguments n. VP2$advance advances the eventcount specified. VP2$await 
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requires read permission on all of its parameters. VP2$advance requires both 

read- and write-permission. 

6.1.3 Processor Interrupts 

A common feature of many operating systems is to allow a process is to 

receive a pseudo-interrupt when certain external things happen. For example, 

a user of Multics can, by hitting the attention key on His terminal, interrupt 

the program he is currently running. The handler for this interrupt reads 

commands from the terminal, allowing the user to inspect the state of the 

program, modify its environment, and debug the program. The user can thus 

stop a runaway program, which might be executing in an infinite loop, and 

debug it. 

One way to model this processor interrupt mechanism would be to associate 

two level 2 processors with the user's computation. See figure 6.1. One of 

the level 2 processors, called the slave processor, runs the user's program, 

while another, called the control processor, waits for the attention key to be 

struck. The attention key being struck advances an eventcount associated with 

the attention key. The control processor then proceeds past the await, and 

causes the slave processor to stop (assume, hypothetically, that a level 2 

processor stop operation exists). Then the control.pr9cessor can read 

commands from the teletype and execute them, to ~ebug the stopped slave 

processor. The slave processor can then be restarted {us~ng a hypothetical 
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Figure 6.1 
Processor Interrupt Model 
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level 2 run primitive), and the control process can go back to waiting for the 

attention key to be struck. 

Directly implementing this model of processor interrupts is quite costly, 

since at any one time half of the level 2 processors are either awaiting an 

attention key to be struck, or stopped. Further, some mechanism would be 

needed to insure that the control processor is bound to a level 1 processor 

whenever its slave processor is. Otherwise, when the control processor needs 

to run, to stop the slave processor quickly, it can be held up if there is not 

a free level 1 processor to run the control processor. However., this model is 

useful in inventing a simple processor interrupt facility at level 2. 

Instead of stopping one processor and starting another to read commands, 

the processor intetrupt facility sim~ly forces a-fault to occur in the slave 

processor. The fault handler in the processor, upon determining that the 
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fault was a processor interrupt, will transfer to a processor interrupt 

handler. This processor interrupt handler can be thought of as a potential 

control processor that is awaiting some condition to occur. When the 

condition occurs the control processor is created, the slave processor is 

stopped, and the processor interrupt handler is executed in the control 

processor. 

The conditions under which the processor interrupt handler will be 

entered are specified as if the processor interrupt handler were actually 

executing an await operation on a set of eventcounts. Thus, there is an 

operation that a level 2 processor can perform, called 

VP2$set......Processor_interrupt (eel, value!, ec2, value2, ••• ) 

The effect of this operation is as if a level 2 processor were created in the 

same environment, that begins by executing a VP2$await operation on the 

eventcount-value pairs specified, and after the await returns, calls the 

processor interrupt handler. (1) When the handler returns, the stopped level 

2 processor will be restarted at the point where it was stopped by the 

interrupt. While the interrupt handler is executing, the stopped level 2 

processor cannot run. 

(1) The processor interrupt is initially received by the fault handler set up 
in the level 1 processor. I assume that this fault handler determines the 
fault type and reflects it to a set of higher level fault handlers. The fault 
handler for each type of fault can be changed through an interface that 
controls the level 1 fault handler called the fault manager. The program to 
be called upon a processor interrupt is specified through the fault manager 
interface. 
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Once the handler is entered, the interrupt conditions are reset, so there 

are no interrupts during the time the handler is de~iding what to do to handle 

the interrupt. The handler reenables interrupts by calling 

VP2$set_processor_interrupt again. At any _particu,lar poi.nt. in_ time, either ~o 

handler is set, or one has been set. At tempting to use 

VP2$set_processor_interrupt to set up two handlers that are invoked under 

different conditions causes the new handler to completely supersede the old 

one. 

In order to interrupt a process, then, one need merely advance one of the 

eventcounts specified in the call to VP2$set_processor_interrupt. Having the 

level 2 processor itself specify the conditions under which it is to be 

interrupted allows protection by the access control on eventcounts against 

malicious attempts to send interrupts. Further, programs running on the 

processor can be quite flexible in choosing the set of conditions that cause 

processor interrupts. The clock eventcount, I/O eventcounts, or any level 2 

eventcount can be made to cause an interrupt. 
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6.2 Structure of the Second Level Processor Manager 

The level 2 processor implementation is based on a relatively centralized 

processor multiplexing algorithm. The multiplexing _.of lev~ 1 processors 

among level 2 processors is done by two dedicated level 1 processors, called 

the unb inder and the bind er /schedular •. A third dedicated level 1 processor 

handles outward signalling of eventcounts. Not a11 of the work is done by the 

dedicated level 1 processors, however. the·creation and deletion operations 

are distributed in the processors that do the-initiation and termination of 

processes. The IPCC operations are distributed among the level 2 processors, 

to some extent. 

There are four data bases shared among the parts of the level 2 processor 

implementation. They are the level 2 processor ta~le, which contains the 

state of each level 2 proces~or, the level 2 await table, which keeps track of 

all of the eventcounts being awaited by level 2 pr.ocessors ,·'the level 2 

reschedule queue, which is a list of level 2 processors that! ·are ,candidates· 

for rescheduling, and the free level 1 processor list, that contains a list of 

level 1 processors that can be bound to level 2 processors. 

The processors and data bases of the level 2 implementation are shown in 

figure 6.2. The binder/scheduler processor executes in two domains. In the 

binder domain, the mechanisms for binding level 2 processors to level 1 
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level 1 processors 
multiplexed by level 

ueue 

lev~l: 2 
rocessor 

state 
table 

Figur~ 6.2 
Processors and Data Bases of Level 2 

processors are found. The scheduler domain is a less privileged domain that 

implements the particular scheduling. policy f6r 1:~ level 2 processors. The 

scheduler domain can call on a small set of primitives to control the actions 

of the binder doma~n. These primitives are discusjed· later in'this chapter. 

They are designed so that the scheduling policy·may be written without 

compromising the security of the system. 
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6.2.l Level 2 Data Bases 

Before describing the actions of the level l processors that make up the 

level 2 implementation, I describe in more detail the four level 2 data bases. 

All of these data bases are protected by a. s-ingle lock• called the level 2 

processor lock. Waiting for the level 2 processor lock to be unlocked is done 

by awaiting the level 2 lock eventcount that is a4vanced (using VP1$advance) 

each time the lock is unlocked. To ensure that-the leVel 2 operations 
,. 

operating under the level 2 processor lock do J\O.t deadlock, level 2 processors 

accessing these data bases must do so while q-nstoppable· at level 1. 

The level 2 processor table is a table-containing e>ne entry for each 

level 2 processor that exists. Its function is sim-1lar to the function of the 

level l processor state table. The data of the level 2 processor table is 

stored in a virtual memory segment. 

Figure 6.3 illustrates the format of a level 2 processor table entry. 

Each entry of tbe level 2 processor table qontains a sta~e description of the 

level 2 processor in a format suitable for CC!Jling ..the VP1$bind operation. 

Some of the data in this description is in a different form, however. The 

pointer to the environment description is not a primary memory address at this 

level, but a name that can be presented to the envit:orunent description manager 

operation that plaGeS the environment description in primary memory. In 
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addition to the state description, there is a value that represents the 

execution state of the level 2 processor running OD a level 1 processor, 
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runnable, awaiting some eventcounts (and not bound to a level 1 processor), or 

queued for rescheduling. Also in each entry are three flags that control .the 

action taken by the unbinder -- delete pending, processor interrupt pending, 

and pre-empt pending. The level 2 processor table also has two poirtters to 

lists in the await table, one for awaited eventcounts, and one for processor 

interrupt eventcounts. A private. eventcount. is stored in each processor 

table entry to be used .in the await operation described _shortly. Associated 

with each entry is a set of resource usage statistics maintained for use by 

the scheduling policy in making decisions. 

The await table is primarily a· mapping·· from eventcount names to level 2 

processors awaiting those eventcounts. Given an eventcount name, and a value, 

one can inspect the await table and find all level 2 processors that should be 

awakened when the eventcount is advanced to the specified value. A suitable 

representation for the await table is shown in figure 6.4. The await table 

consists of an eventcount map that converts an eventcount name into a list of 

await table entries. Each entry on the list contains a value awaited. 

Entries on the list are sorted in increasing order of value awaited, so that 
. • ! ~ 

the set of entries less than or equal to the current value of the eventcount 

can be found efficiently. Each entry also contains a pointer to a level 2 

processor table entry that indicates the processor that is interested in this 

particular value of the eventcount. A flag in the entry indic'ates whether the 

entry corresponds to an eventcount being· awaited~ by the i'evel 2 processor, or 

to an eventcount used iaVP2$set_yrbeessor_intei:-ruPt. ·Finally, all of.the 
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entries for a particular processor are threaded into two lists, one for 

awaited eventcounts, and one for processor interrupt eventcounts. All of the .., 

outward signalling eventcounts are also listed together in a special list, 

used by the level 2 processor that handles outward signals. The await table • is stored in a virtual memory segment. 

The rescheduling queue is a list of level 2 proceasors that are 

candidates for rescheduling. The level 2 processor table entries each have a 

thread pointer that allows level 2 processors to be threaded onto this list. 
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Associated with the rescheduling queue is an eventcount tha~ is advanced each 

time a level 2 processor is added to the queue. 

The free level 1 processor list is just a list of the level 1 .processors 

that are free for the binder to bind level 2 processors to. Level 1 

processors are added to the list each time level 2 processors are unbound from 

them. Binding a level 2 processor to a level 1 proces.~.or is done by selecting 

one of the free level 1 processors on t_he li~t, and binding to that level 1 

processor. An eventcount is associated with the free level 1 processor queue. 

It is advanced each time a level L propessor ts·: ·11tac'ed in the free queue. 

One other data base is used in the implementation, but i::tcompletely 

private to the scheduler domain of the binder/~chedular ·processor. It is 

called the scheduler queue, and is discussed in the description of the 

scheduler. 

6.2.2 Processes of the Second Level Manager 

The three processes that are part of the level 2 manager run on dedicated 

level 1 processors. Each of the.se pro~ess~s p~.rfqpn~ one particular class of 

operations, waiting for a particular event to hapP.en, then iqteracting with 
, _, . ... c~ ,,., · -, ; ~ i . 

the level 1 implementation and the level 2 data bases to Jle.rform its function. 

They are implemented on distinct processors for. two reasons -- their operation 

is only loosely coupled, so it would add. comp~~xity to. try to ,spec~fy the 
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order of their operations, and the tasks performed by each of these processors 

can proceed in parallel to a reasonable degree. 

The binder/scheduler and the unbinder processors implement the bind and 

unbind operations of the model of processor multiplexing described in chapter 

scheduling 
queues 

multiplexed level l 
processors running 
level 2 processors 

processor 
using 

VP2$create_ 

Figure 6.5 
Actions of Binder/Scheduler and Unbinder 

processor 
using 

VP2$delete_ 

two. Figure 6.5 illustrates the actions of the binder/scheduler and the 

unbinder. When a level 2 processor is stopped at level 1, due to exceeding 

its quantum or an explicit VP1$stop operation, the unbinder processor awakens 

and determines what to do with the level 2 processor. It uses the 

Chapter 6 - 168 -



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

VP1$next_stopped operation to get the name of the leyel 1 processor, and 

translates this into the name of the level 2 processor that is stopped. If 

the level 2 processor table entry fpr the stopl>ed processor indic:ates that a 

delete is pending, the unbinder performs the deletion. If a processor 

interrupt is pending, and rescheduling has not been explicitly requested by 

the scheduler, the unbinder uses VP1$set_processor_interrupt and VP1$run to 

cause the processor interrupt to happen. Otherwise, the level 2 processor is 

unbound ·fr<>m the level 1 processor, and placed in the rescheduling queue if it 

is not waiting, and marked as queued ·for rescheduling. If the level 2 

processor is waiting, it is marked as awaiting. 

The rescheduling queue is the means by which the binder/scheduler is 

informed of processors to be rescheduled for level 1 processors. The 

binder /scheduler is driven by two conditions -- the availability of free level 
, ~· > , ' - < ' i ~ 

1 processors noted in the free level 1 processor list, and the arrival of new 

level 2 processors to be rescheduled. These conditions are signalled by 

advances of eventcounts associated with each queue. It takes each new level 2 

processor that arrives in the rescheduling.queue, and enters this processor 

into an internal data base called the scheduling ·queue. As level 1 processors 

become free, the binder/scheduler chooses the best candidates from the 

scheduling queue, and binds them to the free level 1 processors. 

The binder/scheduler can also enforce scheduling polic~s that require 

pre-emption of level 2 processors from level 1 processors before their quantum 

is exceeded. Pre-emption of level 2 processors bound to level 1 processors is 
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achieved by marking the level 2 processor table entry as having a rescheduling 

requested, then using VP1$stop to stop the level 1 processor. When the level 

1 processor stops, the level 2 processor will be placed in the rescheduling 

queue by the unbinder. 

The binder/scheduler does not see levei 2 processors that are awaiting 

eventcounts. As part of doing the corresponding advance. the level 2 

processor is queued for rescheduling, from which queue the binder/scheduler 

can extract it. If the binder/scheduler pre-empts a level 2 processor that is 

awaiting, it will be unbound from the level 1 processor it is running on, but 

will not be placed in the rescheduling queue until the corresponding 

eventcount is advanced. 

The third processor of the level 2 processor manager is the outward 

signaller. The outward signaller's job is to periodically poll the outward 

signalling eventcounts that are being awaited by level 2 processors. It uses 

the list of outward signalling eventcounts in the await table to find out the 

names of all the outward signalling eventcounts being awaited. It uses the 

outward_signals eventcount to control the frequency of its polling, as I noted 

in chapter three. When the polling of outward signalling eventcounts 

indicates that a level 2 processor should be awa~ened, the outward signaller 

awakens the level 2 processor, just as if the outward signaller had 

incremented the eventcount itself. 
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6.2.3 Eventcount Implementation 

6.2.3.1 Advance 

The level 2 advance operation increments the eventcount by calling on the 

level 1 advance operation. By using level 1 advance, level 2 solves the 

inward signalling problem. Any level 1 processor that is waiting on the 

advanced eventcount is awakened by level 1. After using level 1 advance, the 

level 2 advance operation determines the level 2 processors that must be 

awakened (if awaiting) or sent a processor interrupt (if the advanced 

eventcount is part of the processor's processor interrupt condition). 

Finding the level 2 processors affected by an advance and performing the 

required awakening and setting interrupts is done by an operation that is 

internal to the level 2 implementation, called WAKEN. The WAKEN operation 

takes the name of the eventcount and its current value as input. WAKEN then 

uses the await table to find all level 2 processors that are to be awakened 

and interrupted. The WAKEN primitive is also used by the outward signaller 

processor to reflect all of the outward signalled eventcounts. 
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The level 2 await operation actually waits by using the level 1 await 

operation. Since level 2 can await a large number of eventcounts 

simultaneously, some method must be used to reduce the number of eventcounts 

awaited at level 1. The reduction is accomplished by associating with each 

level 2 processor a private eventcount that is advanced by the level 2 WAKEN 

operation to actually awaken the associated level 2 processor. The level 2 

await operation actually waits at level 1 by awaiting a change to the private 

eventcount of the waiting level 2 processor. 

The WAKEN primitive actually awakens a level 2 processor in three steps. 

First, all of the await table entries on the awaited eventcount list for the 

level 2 processor are deleted from the await table. Further advances on the 

private eventcount are prevented, since no await table entry for the processor 

will be found. Second, it advances the private eventcount. If the level 2 

processor is bound to level 1, this will cause it to run. Third, if the level 

2 processor is not bound to a level 1 processor, its state is changed to 

queued for rescheduling, and it is threaded onto the rescheduling queue so 

that the binder/scheduler sees it. 

The WAKEN operation also causes processor interrupts to happen. Await 

table entries that are to cause processor interrupts are specially flagged. 

The WAKEN operation causes the interrupt to occur in three steps. First, the 

list of await table entries associated with the level 2 processor interrupt is 

deleted from the await table. This prevents further interrupts from being 

set. Second, the level 2 processor table entry is flagged as having a pending 
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processor interrupt. Third, if the level 2 processor is currently bound to a 

level 1 processor, the level 1 processor' is stopped, using VP1$stop; and 

otherwise, the level 2 processor is marked as queued for rescheduling and is 

placed on the rescheduling queue. If the processot· is running at level 1, 

when it stops the processor interrupt will be set .by the unbinder processor. 

Otherwise, when the binder/scheduler binds .the processor ·to level 1, it will 

use VP1$set_processor_interrupt to set the interrupt. 

6.2.3.2 Await 

The level 2 await operation works by locking the level 2 processor state 

lock, then checking the eventcounts and obtaining their system-wide unique 

names. If any of the eventcounts is greater than or equal to the 

corresponding value, the processor state table is unlocked, and the await 

operation returns. (1) Entries are made in the await table for each 

eventcount-value pair, and the current value of the level 2 processor's 

private eventcount is obtained. Then the state table lock is unlocked, and 

the level 2 processor executes a VP1$await on the private eventcount, for the 

next higher value of the eventcount. 

(1) If a fault (other than a fault handled transparently below level 2, such 
as a missing page fault) occurs while accessing any eventcount (such as no 
access to ~~ad the ev-entcQUl)t);. the st:ate table:lock is unlGclted and the fault 
is reflected. When the fault is restarted, the lock will be relocked, and the 
await operation starts from the beginning again. 
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A processor interrupt can occur during the· await operation at level l. 

It is. desirable to allow processor interrupts to occur during level 2 awaits, 

so that a user can interrupt his program if by mistake an await is executed 

that never will finish. The interrupt handler can await also. Because the 

interrupt handler shares the same awaited eventcourtt list and private 

eventcount at level 2, there must- be some way that tbe interrupt handler can 

be allowed to use level 2 await, while ensuring that when the interrupted 

await is restarted it works correctly. 

To solve the problem of the interrupted await, I modify the basic level 2 

advance and await algorithms slightly. Essentially, the effect of my 

modification is that re·starting an interrupted await causes the await to be 

re-executed from the beginning. 

The WAKEN primitive, in interrupting a level 2 processor that is awaiting 

(it has an associated await list) does two extra things. First, the await 

table entries for all eventcounts on the interrupted processor's awated event 

list are deleted from the await table. Second, the private eventcount of the 

interrupted processor is advanced. Advancing the private eventcount ensures 

that the level l await operation in the level 2 await will return. 

The level 2 await operation must check the eventcount and value 

parameters a second time after the level l await returns, becaus.e the level l 

await can return for one of two reasons now. One reason, of course, is that 

the level. 2 await is over -- in this case 9 ()lle of the eventcounts will be 

Chapter 6 - 174 -



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

greater than or equal to the awaited value, and the level 2 await operation 

will return to its caller. The other reason is that the await was interrupted 

by a processor interrupt. If none of the eventcounts is greater than or equal 

to the awaited value, the await must be restarted by re-entering the events in 

the await table, getting the private eventcount value, and awating the private 

eventcount at level 1. 

6.2.3.3 Set_processor_interrupt 

The VP2$set_processor_interrupt operation works similarly to await. The 

state table is locked, and each eventcount is checked and its system-wide name 

is obtained. If any eventcount exceeds its corresponding value, the state 

table lock is unlocked. and the processor interrupt pending flag is set. The 

level 2 processor then executes a VP1$stop operati-0n on itself. (1) If every 

eventcount is less than the correspondiqg value,: then cthe processor state 

table lock is unlocked and the set_processor_interrupt operation returns. 

6.2.3.4 Outward Sign_~ling 

As noted briefly above, the outward signaller handles outward signalling 

eventcounts. Whenever a level 2 processor awaits or sets an interrupt 

(1) Rather than simulating the fault, the mechanism in the unbinder is used to 
cause the processor interrupt for simplicity. 
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condition that involves an outward signalling eventcount, that eventcount is 

threaded onto a special list in the await table, called the outward signalling 

list. The outward signaller periodically takes this list of eventcounts and 

obtains the values of all outward signalling eventcounts on the list. Then, 

it uses the WAKEN interface to cause the level 2 processors interested in the 

outward signalling eventcounts to wake up or be interrupted. 

6.2.4 Scheduling Policy 

In a real computer system installation,· there are many requirements on 

the the allocation of resources to individual user computations over time that 

cannot be predicted in advance by the system builder. Consequently, the 

system builder would like to provide for some flexibility in the resource 

allocation policies he builds into the system. 

For this reason, the second level processor manager would like to provide 

an interface by which the administrator can control its 'resource allocation 

policies. The most general mechanism is to allow the administrator to write 

the program that makes the scheduling decisions for the second ~eve! processor 

manager. In the second level processor manager, this mechanism is provided 

for in a clean manner. 
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We would like the policy mechanism to be modified by the system 

administrator only in such ways that are safe. It would be unreasonable if by 

introducing a slight bug in the resource allocation policy, the system's data 

integrity and security could be compromised. Consequently, it is necessary to 

encapsulate the administrator's policy control program in ah environment of 

the least privilege necessary to do the tasks required. 

Obviously, the resource allocation polfcy mechartism can, if malicious or 

incorrect, deny resources to computations tha't can legitimately proceed. By 

allowing the administrator to write such a program, then, we place the 

capability for denial of service in his hands. 

Through denial of service, or slowdown of service, of course, the 

resource allocation policy has a subtle channel of communication with all of 

the processes it controls. This can lead to unauthorized release of 

information. However, to use these subtle channels requires much more than a 

simple mistake on the administrator's part. So assuming the administrator is 

not malicious, we can provide a degree of protection against unauthorized 

release of information through this path. 

The mechanism provided is implemented as a domain in the binder/scheduler 

processor, called the scheduler domain. Encapsulated in the scheduler domain, 

which only has access rights to call certain level 2 processor management 

primitives will be the scheduling policy algorithm. The scheduling policy 

algorithm will await an event of interest, such as the availability of a free 
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level 1 processor or the arrival of a new level 2 processor in the 

rescheduling queue. The policy algorithm will then incorporate the new 

knowledge into its po~icy and make scheduling decisions that it will 

accomplish by calling on an interface that causes selected level 2 processors 

to be bound to free level 1 processors. 

There are three basic primitives available to the resource allocation 

policy process. The first one, schedule, allows the process to name a level 2 

processor to be bound to a free level 1 proces,sor and to specify a quantum of 

resources. The level 2 processor will be assigned to a level 1 processor if 

there is a free one, and the quantum for the level 1 processor will be set 

from the specified value. The second primitive, next-rescheduling, extracts 

the next level 2 processor from the rescheduling queue. It returµs the name 

of the level 2 processor, and a summary of its resource usage information on 

which a scheduling decision can be based. The third primitive, pre-empt, 

allows the scheduling policy to pre-empt a level 2 processor already bound to 

a level 1 processor. The pre-empt primitive marks the level 2 processor as 

having a pending pre-emption, and if the level 1 processor is bound to level 1 

it uses VP1$stop to stop it from running. The unbinder processor notices this 

flag, and puts such a processor in the rescheduling queue. The flag is reset 

when the processor is placed in the rescheduling queue. 

Very simple checking ensures that the policy algorithm does not make 

incorrect use of the level 1 and level 2 processor resources. The schedule 

primitive makes sure that a level 2 processor of the specified name exists and 
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is not currently assigned to a level 1 processor. It ensures that the 

important data bases associated with the leve~ 2 processor environment 

description (e.g., descriptor segment) are in core to make sure that the level 

2 processor addresses memory correctly •. It also ensures that the process is 

runnable and not waiting for some eventcount implemented at level 2. 

Similarly, the unbinding of a level 2 processor and deallocation of in-core 

resources, etc. is carried out outside of the domain of the scheduling policy 

algorithm, in the unbinder processor. 

With the 3 operations that the scheduler domain uses to control 

scheduling, it can implement almost any policy, without the possibility of a 

bug in the policy algorithm interfering with the operations of the level 2 

processors being controlled by the policy (except by denying service). This 

is accomplished primarily by storing the sensitive data about processes being 

scheduled outside the domain of the scheduler. The sensitive data contained 

in the level 2 processor state, etc. cannot be read or modified by the 

schedule, next-reschedule, and pre-empt primitives. 

It should be noted that the resource allocation policy process runs in a 

level 1 processor, rather than a level 2 processor. This is necessary, in 

order to prevent the resource allocation policy from having to schedule 

itself. 
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Chapter Seven 

Using Level 1 Processors in the Operating System 

The level 1 processors provided by the level 1 processor manager are very 

useful tools for structuring the kernel of an operating system. They can be 

used wherever a scarce resource is multiplexed among a group of users of the 

system to control the multiplexing. Level 1 processors can be used to manage 

multiplexed I/O devices, the virtual memory, and even scarce resources being 

managed by the abstract type managers of the kernel. 

The isolation of environment and control point that level 1 processors 

provide can be very useful in ensuring that parts of the system execute with 

the least prbrileges necessary to accomplish the task. Putting I/O device 

management in level 1 processors rather'thart interrupt handlers that execute 

in any level 1 processor environment is. an example where using level 1 · 

processors can reduce the· privileges need~ed by parts of the kernel. 

Using concurrently executing level 1 processors to implement uncoupled or 

loosely coupled algorithms also simplifies specification u· the kernel. There 

is no need to specify a particular order of operations where that order is 

irrelevant to the tasks of distinct modules. Overspecification of the system 

can lead to extra complexity, possible deadlocks, and more difficult proof. 
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Finally, using level 1 processors to perform a particular task in the 

kernel assures that there is always an agent capable of performing a task when 

it needs to be done. For example, a virtual processor dedicated to handling 

missing page faults generated in I/O processors will allow the I/O processors 

to deal with virtual rather than real memory, and thus simplify the task of 

interfacing user computations to I/O devices. 

7.1 Permanently Bound Processes 

Processes that implement parts of the kernel algorithms are best 

implemented as computations that run on dedicated level l .processors. There 

are a fixed, relatively small number of such processes. These processes 

manage shared resources, and can cause bottleneck~i i~ the system resulti.ng in 

denial of service to users if they are not. ,sc~le4 .properly. Most such 

processes provide functions that must be correct in order .for the second level 

of processor multiplexing to work. For tl}.ese ~easons, the processes used in 

the kernel of an operating system with two levels of processor multiplexing 

will permanently bound to level 1 processors. 
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7.2 I/O Device Management 

In traditional operating systems such as Multics, the operations of 

asynchronously running I/O channels are controlled by interrupt handlers. 

Such interrupt handlers are invoked on the .real processor, and execute in the 

environment of whatever process was executing on the processor at the time, 

This has two bad effects from the point of view of containing the effect of 

bugs in the system. First of all, the interrupt handler, which may be quite 

lengthy, has access to manipulate anything in the environment of the 

interrupted process. If the interrupt handler has a bug, it may inadvertently 

read or modify data that is not relevant to the reason for the interrupt. The 

interrupt handler thus has more privilege than needed for its task, and 

violates the principle of least privilege (26]. Just as the interrupt handler 

has access to the data of the process, it also.has control of .the (:!~ecution 

point, and may arbitraril,.y delay the interrupted process, although the process 

may perfectly reasonably execute on another processor. 

The other problem is that the existence of interrupt handlers forces 

complex structures in the non-interrupt code of the system. First of all, all 

processes must execute in environments that have sufficient access privileges 

for all of the ~nterrupt handlers of the system. This is the other side of 

the violation of the principle of least privilege mentioned above. A.11 
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processes thus possess privileges to access a large number of shared data 

bases that they normally would have no need to access. This large amount of 

shared data is potentially a shared information channel between processes, at 

least, and may contain information, such as typed passwords in I/O buffers 

that can contribute to sabotage of the system if misused. 

The parasitic nature of interrupt handler control points also forces 

processes to use unnatural control structures. Since the interrupt handler 

has no state of its own, it cannot wait for another process to complete its 

action. Waiting could cause a deadlock if the process waited for is the one 

that the interrupt handler is executing in. For this reason, all processes 

that interact with data shared with interrupt handlers must never lock such 

shared data unless provision is made to make sure the interrupt handler does 

not interrupt the process doing the locking. This requirement makes handling 

of I/O require unreasonably complex algorithms. 

For these reasons, it is quite useful to associate kernel processes with 

each I/O device. A device's kernel processor can await the eventcount 

advanced by the device to determine wheri the device needs service. Only the 

kernel process associated with a device need have privileges to manipulate 

that device's buffers, mailboxes, or other device specific control data. This 

reduces the privileges available to ordinary processes running user 

computations. Further, the kernel device process need only have privileges to 

resources that are needed to do the job of handling the device. The kernel 

device process need not access any user data; its interface to the user can be 
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through a ~ingle shared queue object. Thus both the ordinary process, and the 

computations associated with handling a device have reduced privileges if the 

1/0 device management is implemented in a process. 

The control structure of the devicemanager and user can also be mlich 

simplified. The simplification re-sults from the fact that the communication 

is now symmetric; both the user and the device manager are running on 

different processors, and each can communicate with and wait for the other in 

the same way. No process is held up from executing because it handled the 

interrupt even though there are free processors. Further, independent device 

manager processes can be executing simultaneously, whereas lrt the interrupt 

scheme, this is hard to achieve without increasing the complexity of the 

interrupt structure of the system. Using level 1 processors for device 

management can succeed in smoothing the load of device management over all 

processing units available to the system. 

The performance implications of running 1/0 management algorithms in 

level 1 processors are likely to be good. The difference between running a 

computation at interrupt level in a real processor, and scheduling a level 1 

processor that has a h.igh'er priority than so:aie currently executing level 1 

processor, is that in the interrupt scheme, the -st;ate of the running process 

is stored and reloaded once per interrupt. In the process oriented scheme, in 

order to get the device manager to run, the process state must be stored, and 

the device manager's state loaded; when the device manger reaches a waiting 

point, its state will be stored, and the old process's state reloaded. Thus 
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there will be twice as much saving and loading of states in the process 

scheme. 

If this were the only effect, there would obviously be a performance 

degradation. However, there are other effects that very likely will balance 

or overcome this defect. Firs~ of all, the.device manager process now has a 

state that the interrupt handler had to encode in some way in its associated 

data bases. This state specifies what the handler is to do next, so it is: not 

necessary to program the device manager•to inteJ:pretively determine the 

meaning of the most recent I/O signal. If taken advantage of, the state 

information can replace the information used by the de•ice manager to keep 

track of what it is doing. Another improve111ent is that complicated, expensive 

locking and masking algorithms need not be used in the process scheme for 

communication between the device manager and the user computation. Such 

algorithms require both computation time, and memory resources in the kernel. 

Consequently removing the need for such algorithms can improve performance. 

In sum, then, if the cost of saving and restoring a process state is 

comparable to the cost of maintaining the state of the I/O connection between 

interrupts, then there probably w.ill be a net performance gain resulting from 

removing complexity from kernel algorithms. 
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7.3 Kernel Type Managers as Processes 

There are a similar set of problems assoeiated with the implementation of 

kernel type managers as subroutines callable by user processes. We have 

discussed these in chapter three, but I will mention them briefly again. 

First of all, without a domain mechanism that allows the user computation 

and kernel to be mutually protected, a kernel type m~n.ager executing in a 

user's process will have access to all of the user's d~ta. It thus operates 

with more privilege than necessary. If the type managers of the kernel are 

all protected from the user but there is no d~ain mechanism within the 

kernel, the kernel domain in any user processor must haye access to all data 

needed by kernel type managers available to that process. While it is 

possible with domains to restrict the accessibility of such data, and to 

restrict the access rights of abstract type managers to user data~ having the 

kernel type managers execute in each user process still requires that each 

user's address space contain all of the domains in the kernel. If the address 

space is maintained in a per-process object such as a descriptor segment in 

Multics, then many copies of the same data will exist and must be kept up to 

date. 
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By structuring the abstract type managers in separate processes, each 

abstract type manager need only have in its environment those obje~ts with 

which the manager must transact. This both simplifies the structure of each 

abstract type manager's environment, and eliminates the need for a separate 

domain construct, with its additional complexity of implementation. 

Implementing the kernel type managers in seP,arate processes can lead to 

simplification of the part of the kernel that manages the environment 

descriptions of processes. When kernel type managers are implemented in a 

distinct domain of a process that executes user algorithms, the operations 

that the user code uses to manipulate its environment description must ensure 

that the manipulations done do not interfere with the part of the environment 

used by the kernel type managers. Thus the kernel algorithms depend on the 

environment manager, so the environment manager must be at a very low level in 

the kernel. By separating out the kernel type managers into separate 

processes, they may be executed in fixed environments that are not manipulated 

by the environment manager. The environment manager can then be implemented t~~ 

at a higher level in the kernel. 

Implementing an kernel type manager in a separate process also protects 

the execution point of the kernel type manager from the resource controls on 

the user processes. In chapter 3, we have discussed how this can help 

guarantee that the kernel type manager never stops executing in the middle of 

an operation. The proportion of the time during which an ordinary user 

process cannot be interrupted can thus be reduced. 
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A reason that we have not yet discussed for putting kernel type managers 

in separate processes is to provide the facilities of the type manager to 

computations executing on dissimilar processors. Suppose we have several 

kinds of specialized processors on the system for various functions such as 

handling special I/O channels, or performing specialized computations such as 

Fast Fourier transforms or associative searches. A simple way to pass data to 

such processors is through shared data objects in the virtual memory. To have 

a very specialized pro~essor perform the virtual memory operations itself upon 

encountering a missing page or missing segment fault is probably impossible or 

unnecessarily complex. The part of the kernel type manager that actually 

handles a missing page can be easily invoked by such a specialized processor 

if the page fault handling is implemented in an independent, dedicated virtual 

processor. If it is normally done by code in each ordinary process, then some 

special case mechanism must be used to handle page faults in a specialized 

processor, with the result that the special case mechanism may not interface 

correctly to the normal mechanism. Having two mechanisms to perform the same 

action is probably always a bad idea in designing a system. 
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7.4 Explicit Recognition of Parallelism in the System Design 

In an operating system like Multics, there are many operations that are 

carried out in the security kernel of the system that do not require a 

particular order of execution. An example of this is the page replacement 

algorithm in the virtual memory. The page replacement algorithm operates by 

choosing candidate pages in primary memory to move from primary to secondary 

memory. The pages are then removed from primary memory. The removal of pages 

from memory must anticipate the demand for space in primary memory for new 

pages, because removal of pages that have been modified while stored in 

primary memory requires an operation to write the data in the page to 

secondary memory. This operation can proceed in parallel with the use of 

other pages in memory. In order to efficiently free up pages in primary 

memory, a process that is only loosely coupled to the executing user 

computations must constantly keep ahead of the user computations, writing out 

the data in pages that look like good candidates for removal. 

If there is not an independent kernel process that does this look.ahead, 

the page fault handler in each user computation must periodically do some 

lookahead, so that writing of pages is ahead of reading of pages into memory 

most of the time. Choosing the right point in time to do this look.ahead 

{before reading the page in, or after?) and the right frequency of executing 
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the lookahead algorithm (every page fault or every third one?) as well as the 

right amount of lookahead to do each time the lookahead algorithm is entered 

(depends on the queuing facilities available for writes, the average frequency 

of reads, and other factors) can be quite complex. The complexity of these 

choices arises from the artificial constraint that the page removal algorithm 

must be in lock-step synchronization with the handlfng·of page faults, 

contrasted with the basic requirement that the page re1110val algorithm must run 

ahead of the page fault handling for efficiency. Most of this complexity has 

been removed in a design proposed by Huber [lOl,' ·by putting the page removal 

algorithm in its own processor. The page removal algorithm then can be 

relatively autonomous in its choice of how 'far to took ahead and how fast. 

There are many algorithms in operating systems that are only loosely 

coupled with user-requested operations. In Multics, such algorithms include 

managing the paging pool (as in the example), managing the in-core copies of 

page maps, moving data coming into the system on I/O devices and sto.red in 

primary memory buffers into secondary memory, and up~ating the accounting 

records stored in the virtual memory from accounting variables stored in the 

primary memory by kernel type managers below the virtual memory level of the 

kernel. 
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7.5 Resulting Structure 

The result of carrying out the structuring spec!fied in this section will 

be to create an operating system in which the kernel is made up of a set of 

processes, each associated with a particular physical resource or, shared 

abstract resource. These processes will all be implemented on.dedicated level 

1 processors, where the environment of the virtual processor is configured to 

exactly conform to the environment needed by the process. For example, the 

disk manager process will have an environment ~hat includes only the 

wired-down disk accessing code and data bases, and a wired-down message queue 

with which it communicates to the virtual memory systems that control the 

reading and writing of disk pages. The manager of the page data type will 

have access to the disk queue, and wired-down page tables that it manages. It 

will be controlled by a queue of requests provided by user processes that take 

page faults, or by the segment manager, which may need to create or delete 

pages. 

A non-exhaustive list of algorithms of the Multics system that would 

benefit from being implemented on a dedicated level 1 processor follows. 

1. Device management (currently done by interrupt handlers). One 
level 1 processor for each I/O channel. 

2. Page removal algorithm. (Designed by Huber [10]) 
3. Page fault handler. Havig this processor would allow I/O devices 

to access virtual memory as described earlier. 
4. Environment descriptor manager. In the enviroruaent of the 

environment descriptor manager, each environment descriptor could 
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be known as a data segment. Thus manipulation of environments of 
all user processes, needed to handle revocation of access to and 
simultaneous sharing of environments is only done by one process. 

5. System debugger. In Multics, the state of a crashed system is 
inspected by a stand-alone program that is loaded on a crash into 
the memory. An alternative would be to design it as a level 1 
processor that awaits an eventcount that is advanced by a crash. 
Since level 1 is fairly simple, and is the bottom level of the 
system, it should rarely be the case that a system crash causes 
the implementation of level 1 to fail. The system debugger can 
then be designed in an environment where parallelism works. 

6. Page table removal algorithm. For the same reasons that I 
pointed out for the page removal algorithm, removal from primary 
memory of page tables for segments is simplified by decoupling it 
from operations explicitly called by user algorithms. 

7. Salvaging of directories. Currently two separate mechanisms 
handle salvaging the data in directories if the data is 
discovered to be inconsistent. One mechanism is a stand-alone 
program run by the system debugger while the system is crashed. 
The other is a part of the kernel that is invoked when a direcory 
manager operation discovers that the directory being manipulated 
is inconsistent. These mechanisms could be merged into a program 
that runs on a dedicated level 1 processor that awaits requests 
to salvage directories. Like the system debugger, this program 
could still run, even if most of the higher level programs have 
stopped due to software failure. 

8. Consistency checker. A processor could periodically check the 
consistency of important system data bases, in the hope of 
catching trouble before other software encounters it. For 
example, a process could check to see that two distinct pages 
were not assigned to the same disk block. 
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Chapter Eight 

Conclusions and Suggestions for Further Research 

To sum up the research described in the thesis, I first would like to put 

in capsule form the major insights I have found in the progress of the 

research. Then, I present a number of topics that I have not had the 

opportunity to investigate fully, but which definitely deserve further 

investigation. 

The technique used to disentangle the virtual memory - virtual processor 

mutual dependency was to break up the virtual processor implementation into 

two levels, the first of which provided no new memory accessing capability and 

could be used to provide processing power to the algorithms that implemented 

the virtual memory. This technique is a special case of a method Parnas has 

recently called "sandwiching" [22], that in general allows elimination of 

mutual dependencies between two modules, A and. B, by splitting A into two 

pieces so that the functionality B depends on is in the lower level of A, 

while of the two pieces, only the higher level: of A depends on the 

functionality provided by B. 

In developing a design for the two levels of the virtual processor 

implementation, I have avoided introducing new mutual dependencies between 

either of the levels of virtual processors and the virtual memory. In the 

case of the virtual memory - virtual processor mutual dependency, then, the 

sandwiching technique has been successful in practice, as well as in theory. 
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The use of abstract -type managers as a :metaphor for describing the two 

level virtual processor hierarchy has given an unexpected.dividend in showing 

that the cache management pattern of type extension first developed by Janson 

[11] can be used to describe the structure of processor multiplexing 

algorithms as well as the virtual memory ·i-111plementation. The cache management 

pattern is a basic pattern in the design of operating systems because 

operating systems create ab&tract types as ~ools to manage scarce resources. 

As far as I know. the iuse of types as tools to manage scarce resources is not 

yet well understood. However. the cache management pattern seems to play a 

quite important role in using abstract types to describe the implementation of 

operating systems. 

In the design of both levels. a certain degree of simplicity arises from 

centralizing the mechanism that does the actual multiplexing of processors in 

one or more dedicated processors. As I have shown in 'the latter part of 

chapter five, it is fairly easy to take a design that uses -a centralized 

control and convert it into a design that has distributed'control. 'nle 

inverse transformation is not easy, however. An algortthnr initially designed 

to be distributed on the processors being '81Ultiple-xed, such ·as that presented 

by Bredt and Saxena [2], tends not to be as clear because the legitimate 

orderings of actions taken by the distributed algorithm is not directly 

represented in the algorithms. 
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The use of eventcounts for IPCC in the design has had two effects. 

First, protection of information transmitted by the IPCC mechanism is 

guaranteed by the virtual memory protection mechanism. This eliminates the 

need for a special access control mechanism on IPCC that would make the 

implementation of the IPCC mechanism more complex. Second, because 

eventcounts are simply words in the virtual memory, the same semantics apply 

to the IPCC mechanisms provided at both levels of virtual processor 

implementation. Further, because the storage for eventcounts is provided by 

the memory, the same eventcount can be used by processors implemented at 

different levels, allowing inward and outward signalling. Providing 

semaphores as the basic IPCC mechanism seems to preclude outward signalling. 

In Bredt and Saxena's design [2], which provides semaphores, it is required 

that a level 2 processor that takes a page fault remain bound to the level 1 

processor until the page fault is satisfied. In my design, a level 2 

processor that takes a page fault can wait for the page fault to be satisfied 

using level 2 await, and be unbound in the interim. 

An important part of the design of the second level was providing an 

administratively variable policy mechanism that could be varied arbitrarily 

without compromising the correct operation of the kernel of the operating 

system. While the mechanism proposed does not prevent denial of service to 

users, the policy algorithm is run in an environment containing only the 

privileges needed to make scheduling decisions. The actual integrity of the 

virtual processors being scheduled and the data that they operate on cannot be 

- 197 - Chapter 8 



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

compromised by the scheduling policy mechani;.sm. In part, the policy mechanism 

was easy to include in the design because the processes used to perform kernel 

functions are protected from the policy mechanism by being permanently bound 

to level 1 processors. 

The design developed in the thesis has,. serendipitously, allowed the 

kernel to be constructed as a set of cooperating parallel processes. Just as 

decomposing the kernel into a set of modules that can be independently 

understood and verified is aided by using abstract types, decomposing the 

kernel into a set of loosely coupled or uncoupled parallel processes is a tool 

that allows designing and verifying small pieces of the system independently, 

because only the essential ordering constraints are sp~if ied in the design. 

Further Research Topics 

In this thesis, I have proposed a fairly detailed design for two levels 

of processor multiplexing, and a much less detailed sketch of how the rest of 

the system could be structured around the two levels. A very important step 

in proving my results is the actual implementation of the two level processor 

multiplexing design. Further, there is certainly much to be done in actually 

structuring the design of an operating system such as Multics in terms of 

dedicated virtual processors. Huber [10] has taken the first step in this 

direction by designing and implementing a version of Multics page control that 

runs in several dedicated Multics processes. However, using the level 1 

processors of my design to replace the interrupt handlers used to manage I/O 
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devices in systems like Multics promises to provide a great deal of 

simplification. Some of the other suggestions for using processors made in 

chapter seven seem to have promise also. 

An important reason for actually implementing the two level design is to 

verify that the two level design does not reduce the performance of the 

system. I have given a brief argument in chapter three to show that 

performance is not necessarily reduced, but only an actual implementation that 

has good performance can actually prove that performance is not a problem. 

In chapter five, I proposed a non-traditional computer architecture that 

uses a dedicated microprocessor to control the short-term multiprogramming of 

a multi-processor system. Actually constructing such hardware can simplify 

both the hardware and software structure of a computer system, by eliminating 

the need for complex interprocessor control mechanisms, such as interrupts. 

In chapter five, the actions taken by the general purpose processors was 

implemented by software. It seems to me that a hardware implementation of the 

algorithms in the general purpose processor that implement level 1 functions 

would greatly simplify and improve the performance of the system. Such an 

implementation seems quite feasible for a microprogrammed general purpose 

processor. 

A final topic that requires more study is the relationship between type 

managers and interpreters. The interpreter for each type manager in the 

system is the real processor. The algorithms for all type managers are 
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expressed in terms of instructions that are executed on the real processor. 

At the abstract level, though, each type manager can be viewed as an 

interpreter for the operations on the type. Viewing the type managers as 

algorithms to be executed on real processors is essential for developing a 

design that is actually implementable on a small nwnber of real processors. 

Processor multiplexing can be viewed as a mechanism for ensuring that the real 

processor resources get distributed to all type managers that need such 

resources. On the other hand, viewing each type manager as an interpreter of 

its own operations seems to be much simpler. The relationship between these 

two views in the design and implementation of systems deserves more study. 
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Appendix A 

Level l Processor Interface Summary 

Operations (underscoring indicates output arguments) 

Used by level 2 implementation for control of multiplexing: 

VP1$bind (llproc, state, error) 
VP1$unbind (llproc, state, error) 
VP1$run (llproc) 
VP1$stop (llproc) 
VP1$next_stopped (llproc) 
VP1$set_yroc_interrupt (llproc) 

Used by all level 1 processors: 

VP1$await (eel, valuel, ec2, value2, ec3, value3) 
VP1$advance (ec) 
VP1$begin atomic operation {) 
VP1$end atomic operation () 
VP1$get fault_data (.E._rocessor state) 
VP1$restore_yrocessor_state (processor_state) 

Used for managing lower level hardware: 

VP1$propagate map change () 
VP1$add_cpu (cpu_id) 
VP1$del cpu {cpu id) 
VP1$crash_system-() 

Special Eventcounts 

Used in level 2: 

stopped 
outward_ signals 

Used in all level 1 processors: 

clock 
I/O processor event eventcounts 

- 205 -



PROCESSOR ~1ULTIPU:XING IN A LAYERED OPERATING SYSTEM 

- 206 -



PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM 

Appendix B 

Level 2 Processor Interface Summary 

Operations (underscoring indicates output argtunents) 

VP2$create__processor (envptr, startptr, schedclass, procname) 
VP2$destroy__processor (procname, envetr) 
VP2$await (eel, value!, ec2, value2, ••• ) 
VP2$advance (ec) 
VP2$set__processor_interrupt (eel, value!, ec2, value2, •.• ) 

Internal Interfaces for Scheduler Domain of Binder/Scheduler 
schedule (level_2__processor, quantum) 
next-rescheduling (level 2 erocessor,· nomore) 
pre-empt (level_2__processor) 

Event counts 

reschedulings -- number of reschedulings that have happened. 
free -- number of freed level l processors. 
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