
MIT/LCS/TR-164

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

David Patrick Reed

June 1976

The research reported here was sponsored in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. Fl9628-74-C-Ol93.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

MASSACHUSETTS 0213.9

ACKNOWLEDGMENTS

A very large number of persons and organizations deserve my thanks for
helping me complete this research. I am sure there are some who I -will forget
to mention, so let me apologize in advance for any omissions.

Professor Schroeder, my thesis supervisor, contributed a great deal of
time and effort to help me develop and clarify a large set of ideas. I am
especially grateful for the quick turnaround he has given the many drafts of
chapters I have given him in the last hectic weeks of thesis preparation.

Professor Saltzer and Dr. David Clark provided much inspiration along the
way, and helped crystallize a number of the ideas in the thesis.

Raj Kanodia, Bob Mabee, Doug Wells, and Bernie Greenberg helped by
providing a sounding board for my early ideas at innumerable luncheon
discussions.

Phil Janson and Doug Hunt have helped me understand the issues involved
in structuring an operating system. Phil's work on abstract type structures
especially helped in the development of some of the central ideas in the
thesis.

Bob Frankston has taken the time to read several of the drafts of my
thesis, and has been very helpful in designing the implementation of some of
my ideas.

The CSR Volleyball Crew has helped me keep in shape mentally and
physically through all the trials of thesis preparation.

The final two people I would like to thank are Lynn, my spouse, and
Colin, my newborn son. They both have put up with my non-stop pace during the
last days of the thesis. Without their love and understanding, I doubt if I
would have succeeded in finishing the thesis.

This research was performed in the Computer Systems Research Division of
the M.I.T. Laboratory for Computer Science. It was sponsored in part by
Honeywell Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No. 2641,
which was monitored by ISTAO under contract No. Fl9628-74-C-Ol93.

- 2 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM *

by

David Patrick Reed

ABSTRACT

This thesis presents a simply structured design for the implementation of
processes in a kernel-structured operating system. The design provides a
minimal mechanism for the support of two distinct classes of processes found
in the computer system -- those which are part of the kernel operating system
itself, and those used to execute user-specified computations. The design is
broken down into two levels, one which implements a fixed number of virtual
processors, which are then used to run kernel processes, and are multiplexed
to provide processes for user computations. Eventcount primitives are
provided, in order to provide a simple unified interprocess control
communication mechanism. The design is intended to be used in the creation of
a secure kernel for the Multics operating system.

THESIS SUPERVISOR: Michael D. Schroeder
TITLE: Assistant Professor of Electrical Engineering

*This report is a minor revision of a thesis of the same title submitted to
the Department of Electrical Engineering and Computer Science on June 14, 1976
in partial fulfillment of the requirements for the degree of Master of
Science.

- 3 -

TABLE OF CONTENTS

ACKNOWLEDGMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES

1. Introduction

1.1
1. 2
1.3
1.4
1.5
1.6

Brief Statement of Problem and Results
Example System •........••.••••..••••••.•••..•.••••..•...•.•••..•
Abstract Types
Layering of Abstract Types •••.••••••••••••.•••••.•••••••••
Related Work•...................
Plan of Thesis

2. Model of Processor Multiplexing

2. 1 Definition of Processor
2.2 Definition of Process • • • • • • • • • •••••••••••••••••••••
2.3 Processor Multiplexing ••••••••••••••••••••.••••••••
2.4 Processor Multiplexing Model •••••••.•••••••••.••••••••••••••

2.5
2.6
2.7
2.8

2.4.1 Centralized Control of Processor Multiplexing
2.4.2 Distributed Control of Processor Multiplexing
2.4.3 Comparison of Distributed and Centralized Control

Processor Reconfiguration
Interprocess Control Communication •.•••••••••••••••••••••••
The Virtual Processor Stopped State •••••••••••••••••••••••••••••
Summary•.....................•...

2
3
4
7

9

11
15
17
19
21
25

29

30
32
33
36
38
40
42
44
49
57
59

3. Multiple Levels of Processor Multiplexing in a Layered System ••••••••• 61

3.1
3.2
3.3
3.4
3.5
3.6

3.7

The Cache Management Pattern of Type Extension ••••••••••••••••••
Building Two Levels of Virtual Processors •••••••••••••••••••••••
Disentangling Virtual Memory from Processor Multiplexing ••••••••
Use of Processes as Abstract Type Managers •••••••••••••••••••••.
Two Levels of Scheduling
Problems of a Processor Hierarchy • • • • • • • • • • • • • • • •••••••••••
3.6.1 Efficiency of Multiple Levels of Scheduling .•••.••
3.6.2 Protection of Low-level Type Managers from Level 2 •••••••
3.6.3 Cross-level Interprocess Control Communication •.•••••••••

3.6.3.1 Level 2 Advance and Await Algorithms ••••••••••••••
3.6.3.2 Inward Signalling
3.6.3.3 Outward Signalling

Summary•.........•...............•...•.•...•......•.

- 4 -

62
66
70
71
79
80
80
82
84
86
87
87
90

4.

5.

6.

Level

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4 .11
4.12

Level

5.1
5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9

Level

6.1

1 Virtual Processor Interfaces • • . • • • . . • . • • . • • • • . • . • • . • • • • • 91

Level 1 Virtual Processor Interface ••.....••.•••••.•••••..•..••• 92
Limited Supply of Level 1 Processors •••••.••..•••..•••••••••.••• 94
Multiprogramming of Real Processors Among Level 1 Processors •.•. 95
Execution States of Level 1 Processors .•.••••••.••••••.••••..•.• 96
Scheduling Controls . 99
Changing the Bindings of Level 1 Processors ••..•.••.•••••••.•••. 100
Interprocess Control Communication •••••••••..•.•....••.•.••••••• 102
Special Eventcounts ... 104
Fault Interface •.•.••••.•••...••••••••••.•.••••..••...••••••..•• 105
Processor Interrupt •.•••••.•..•.•••..••.••••••••••.•.••••••••.• 107
Processor Reconfiguration ••••.•••.•..•.•••••.•••••••.•••...•.•. 108
Parameter Passing To Level 1 Processor Operations ••••.••••••••• 109

1 Processor Implementation .••••.•.•••.••••••.•••••....•••••.•.•• 113

Overall Structure of the Implementation •••.••••••.•••..•...••••• 114
Hardware Architecture .•.•••••..•...•.•.••.••...••..•.......•.••• 118
5. 2. 1 The Processor Control Processor • . . . • . . • • • . . • . • • . • • . • • • . • . 119
5.2.2 General-Purpose Processors •.•.••...••.••..•••••.••..•.••• 120

Da.ta Bases .•..•..••••••..••••••••••••••••..•.•••••..•.••••••.••• 127
Operation of the Processor Control Processor •...•.••..•...•.•••. 130
GPP operation ... 139
Implementing Level 1 Processors on Traditional Hardware •.•..•... 146
Simulating the Processor Control Processor ••••...•••.•••.••.••.• 146
I/O Devices That Send Interrupts •••.•...•.•.•••..••••••..••...•. 149
Summary • . • • 15 O

2 Processor Interface and Implementation .•••• , ••.•.•.••••.•..••. 151

Level 2 Processor Interfaces ..••••.••.••.•.....•..•.•••••••••••. 152
6.1.1 Creation and Deletion of Processors ...••.••.••••.•••...•• 153
6.1.2 IPCC Interfaces .•••...•••.•••..•.•••••••.••....•.•••••••. 155
6.1.3 Processor Interrupts ...•.••.•••••••.........••••••.••.... 157

6.2 Structure of the Second Level Processor Manager .••••.•.•..•••••• 161
6.2.1 Level 2 Data Bases ••..•....••.•••.•••.•.••.•......•••••.. 163
6.2.2 Processes of the Second Level Manager ..••..••..••••.....• 167
6. 2. 3 Eventc oun t Implementation . . . • • . • • . • . • • . • • • . • . • 171

6.2.3.1 Advance ... 171
6.2.3.2 Await ... 173
6.2.3.3 Set_yrocessor_interrupt .•.••.•••••••••••.•.••.•••• 175
6.2.3.4 Outward Signalling ••.••.•..•.••••.....•.•••••••.•. 175

6.2.4 Scheduling Policy•..•.•••.•..•..•••••••••••••.•.•• 176

- 5 -

7. Using

7 .1
7.2
7. 3
7.4
7.5

Level 1 Processors in the Operating Sys tern • • • . . • 181

Permanently Bound Processes•...••••..•...•••.•.•••........ 182
I/O Device Management •••...••.••....•••.••••.••.....••..••....•. 183
Kernel Type Managers as Processes•...•.••....•••...•....... 187
Explicit Recognition of Parallelism in the System Design ...•. •·· 190
Resulting Structure•.•••••....•.••...........•..•••.•• 192

8. Conclusions and Suggestions for Further Research .•..•...•.......•.•... 195

BIBLIOGRAPHY ..•.••..............•••.•....•...•..•..••••••.•.....••...•••. 201
Appendix A: Summary of Level 1 Interface .•.••••........•.•..•••..•.••••.• 205
Appendix B: Summary of Level 2 Interface •.•.••..........•..•••..•..••.•.• 207

- 6 -

LIST OF FIGURES

Figure 1.1: Removing Mutual Dependencies • • • • • • • • • • • • . • 13
Figure 1.2: Type Extension Hierarchy for VM Objects •••••••••••••••••••••. 19
Figure 2. 1 : Multiplexing 2 Real Processors . • • • • . • 34
Figure 2.2: Processor Multiplexing Loop ••••••••••••••••.••••••••••••••••• 37
Figure 2. 3: Processor Reconfiguration States • 4S
Figure 2.4: Processor Multiplexing Loop with Reconfiguration •••.••••••••• 46
Figure 2. S: Processor Multiplexing Loop with IPCC . • • • • • • . • • • • • • • • • . • . • • . • SS
Figure 2.6: Processor Multiplexing Loop with Stopped State ••••••••••••••• S8
Figure 3.1: Cache Mgmt. Pattern for Page Object •••••••••••.•••••.•••••••• 63
Figure 3.2: Cache Mgmt. Pattern for Virtual Processor •••••••••••••••••••• 6S
Figure 3.3: Two Level Processor Hierarchy ••• , • , , • •• • • • • • • . • • • • • . • • • • . • • • • 67
Figure 3 .4: Two Level Processor Multiplexing Loop •..••••••••••• , • • • • • • • • • 69
Figure 3.S: Permanently Bound Type Manager Processes ••.•••••••.••.•••••.• 78
Figure 4 .1: States of Level 1 Processor , ••••• , •• , • 97
Figure 4.2: Level 1 State Data ••••..••••••••••••••••••••••••••••••••••••• 100
Figure 4. 3: Level 1 Fault Data •.•••••••.••• , •••••••••••.•••••.••••••••••• 106
Figure S.1: Processor Communication in Level 1 Implementation .•••..•••••• llS
Figure S. 2: Priority Queue and Await Table 116
Figure S. 3: Hardware Communication Paths 120
Figure 5.4: GPP Internal Memory •.••••.•••••.•••••••••••••••••••.••••••••• 121
Figure 5.5: Level 1 Processor State Block 124
Figure 5. 6: Basic GPP Cycle . 126
Figure 5. 7: PCP Algorithm Flow Chart •••••••••••••••.••.•.••••••.••••••••• 132
Figure S.8: GPP Responses to UNBIND and INVOKE-LEVELl ..•••••••••••••••••• 141
Figure 6.1: Processor Interrupt Model 1S8
Figure 6.2: Processors and Data Bases of Level 2 ••••••••••••••••••••••••• 162
Figure 6.3: Level 2 Processor Table Entry 164
Figure 6.4: Await Table Structure ••••• , .•• , , •••••••••• , , ••••••••• , •••••.• 166
Figure 6.S: Actions of the Binder/Scheduler and Unbinder ••••••••••••••••• 168

- 7 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 8 -

Chapter One

Introduction

A major goal of current research on computer systems is ensuring the

correctness of operating system software. Although many complex operating

systems have been designed and built, the best that can be said of these

systems is that they seem to work correctly. It is not yet possible to prove,

or otherwise ensure, that a complex operating system such as Multics (19)

works correctly -- in fact, specifying what correct operation means in the

case of systems like Multics is very difficult. One important part of

specifying and proving the correct operation of a system like Multics is

simplifying its design to a point where its operation is easily understood. A

clear understanding of the basic operating system mechanisms and

implementation techniques is a prerequisite to achieving this simplification.

The research reported here is an attempt to understand the impact of

processor multiplexing on the design and operation of an operating system.

The processes created by processor multiplexing serve two purposes in the

design of an operating system. First, they are used to isolate user-specified

computations from each other in order to prevent unpredictable or undesirable

interactions. Second, they can be used as a tool for structuring the

algorithms of the operating system itself. A clear understanding of the

design and implementation of processor multiplexing mechanisms that support

- 9 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

these purposes is a necessary part of the understanding needed to simplify and

structure the design and implementation of _qperating systems.

The research reported here is part of a project to design a security

kernel [28] for the Multics operating system. The sec"!-~ity ~rnel of an

operating system is a part of the operatin~ system that, ;1.f correct,

guarantees that the operating system as a lolbole enforces constraints on

information flow that prevent unauthorized release (t9 users) of information

stored in the system. In Multics, individual -user computations ~re i~ql•ted

from each other as distinct processes executing on distinct virtual

processors. This isolation is used as a. tool for controlling the propagation

of information within the system; consequently, the proces~r multiplexing

mechanisms that implement the virtual proces_sors must be .Part of th~ security

kernel of the system. By simplifying the mechanisms of processor

multiplexing, the security kernel is made sim{>ler and easier to prove corre~t.

The security kernel also can be simplified by structuring it as a set of

looseJ.y coupled processes. Consequently, a simp,le proces,spr multiplexing

mechanism that enables the construction of the kernel, ut a set _of processes
•• c,

contributes to the goal of kernel simplification.

- 10 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

1.1 Brief Statement of Problem and Results

In virtual memory operating systems such as Multics [19), TENEX [1], and

VM/370 [8] , the management of processors and the management of virtual memory

cannot be considered separately. The processor multiplexing algorithm calls

upon virtual memory management functions to perform such operations as loading

into primary memory the environment description (1) of a process so that a

processor can execute the process. The virtual memory management algorithm

uses various functions of processor management in order to obtain resources to

run, and to organize the mechanism processes use to wait for pages to arrive

from secondary storage.

The initial goal of the research described in this thesis was to

disentangle this mutual dependency. The first step has been described by

Huber [10). He has developed an implementation of part of the virtual memory

system of Multics that runs in special processes created by the operating

system. By slightly extending his work, the virtual memory algorithms can be

built so that they need not use features such as interrupt masking and

busy-waiting, which interact strongly with the operation qf processor

management.

(1) In Multics, the environment description is the descriptor segment.

- 11 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERA.TING SYSTEM

In order to completely disentangle virtual memory management from

processor management, however, the dependency of processor management on the

virtual memory must be removed. The major sourcQ of this '.dependency is the

need for processor management to load and unload per-process data bases that

1BUst be in primary melllOry,.Vhile 'the process is"f!~cdti~g on a processor, but

are too large and too mnnerous to be pe'ffianelitly c resiffent · f:n primary memory •.

- ;: __ ~'

To remove the mutual dependency be~ween_processor mu~~i~lexing ~n4
: -_O' ~: " , • - '-· ~- . - ' - ,.e:' ;' i , ~· -

virtual memory, processor multiplexing is done at two levels, in t,he design

proposed in this thesis. The first level of processor multiplexing does

short-term multiprogramming among a small set of proces~es. The _per-process

data bases for these processes are in primary memory.
~-:--" ; .- _! ,_, ~

This first level thus

simulates the existence of a small number of virtual process.ors that

subsequently will be called level 1 processors. Since at level 1 all

per-processor data bases are in primary ~cy,· there' ::is no. need ·for level 1

to depend .on the virtual memory inanag~n~~IgHrith11ls.

The second level multiplexes these level 1 pro~essors to create.level 2

virtual processors that are used to run user processes. Leyel 2 is
' -··_i •. ": i·

responsible for loading the per-process data bases into pri~~ry ~emory when a

process is loaded into the level 1 processor. Level 2 thus d~pends on the

virtual memory algorithms.

The virtual memory algorithms themselves are built out of special

processes,_ called kernel processes.. that are permanently loaded into level -1

Chapter 1 - 12 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

proces.sors. The second level of processor multiplexing does not multiplex

level l processors running kernel pr:ocesses, so k.eruel:' procesrre& a·re· not

dependent on the second level of processor mul~·ip1exing. ·sy this strategy9

the dependencies between proc-essor multiplexing and viTtual memory management

have been changed from that shown in figtae h la, to. ~hat ·show in figure

(a) ··' . OH
Figure 1.1

Removing Mutual Depend4!llcies

The two-level structure has other advantages. It allows elimination of
. - 'i "'l'

interrupt-driven code from the 1/0 device management part of the syste•.
-, _)"-':.

Instead of running I/O device management at interrupt time, I/O devices can be
f'

managed by from high-priority kernel processes running on level 1 processors,

thus isolating and simplifying the control structure of such algorithms.

- 13 - Chapter· 1

PROCESS-OR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The i~t;eractions ~f processor reconfigur~ion wittl other functions <>f the

operating sys,tem have been limited also by: thi.l!l'•truct:tte. Only the first

level of. processor mult,ipl.exing neeci..b:e coguizant of the number of physical

processors on th.e system. Additions.and deletions· of physical processors can

occur at any time,-, except when processors. are in the middle of switching from

one level 1 processor to another.

Since the second level of processor multiplexing only deals with user

processes, it is possible Co allnw··its scheduling policy to be modified by an

administrator of a particular system installation, without interfering with

the actions of kernel ..p'tocesses. Thus the op~raiinS -s)'~_fea · c&Q.. J>~ designed to

operate correctly, without having to constrain ~-trehedti.ling g'olicy for user
\ .··~ :,s:.:~1 S: K. -· J

,.

processes.
'-

A final result of the.-researeh described in this thesis is a single
- ' - i

unified interprocess con~rpl_commontcation mechanism suitable for use at all

levels of the operating system-.- ''Ibis mechanism is an implementation of the

eventcount model proposed by,Kanodia and Reed [12]. Since this mechanism

encompasses the capabilitiesc..-Of .Ost,,Jr.nown :lnt.e~prbc.es'- control communication

mechanisms, it is flexible enough for all operating system and user

interprocess control communication. In addition, the virtual memory is

adequate for storage and protection of eventcounts. 'nle processor
1 ' ·-' :.- '.

multiplexing algorithms do not have to implement special objects for the
1·

purpose of interprocess control communication.

Chapter l - 14 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The proposed design is described in terms of abstract types. Janson [11)

has provided a structure for the virtual memory of Multics based on an

abstract type structure. This mode of description is quite natural for

discussion of the modularization of a computer system, and causes the

intermodule dependencies to stand out. I have extended his work a little bit,

to deal with the problems of multiplexing processors to produce new abstract

objects called virtual processors.

1.2 Example System

At times in this thesis, it will be useful to talk about an example

operating system. A very simple system, modeled after Multics, will suffice.

I will consider an operating system that provides a large number of user

processes that can operate in a shared virtual memory. The virtual memory is

composed of segments, built out of fixed-length pages. The data contained in

pages resides permanently in a set of records on disks. The data is accessed

by a demand paging algorithm that brings the contents of disk pages into

primary memory as desired. Several hardware processors provide processing

power for the system. In order to allow the processors to access the memory

using virtual addresses, each processor has a hardware address translation

mechanism, called a map. (1) The map is loaded with a set of (virtual

-~----~~--~-

(1) The map consists of some hardware like the Multics address appending
hardware, and some data that is interpreted by the map hardware such as the

- 15 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPDARWG SYSTEM

address,primary memory addre8$) pairs, so that if the' map is presented with a

virtual address that h the fi"t'St component of a pa1ri it will give back the

second component as the actual primai-y meme.x,.,:address to access. If a virtual

address is presented that is not in the map, the pro~essar will stop executing

the current instruction. forcibly transferring· control to a' predefined address

called the fault handler.

Processor multiplexing in this system will be done at two levels, for the

reasons discussed earlier. The first level of processor multiplexing creates

a set of virtual processors that can be used either to run processes directly,

or to produce the next level of processors by a second level of processor

multiplexing,. Th,ts second level -implements the prroe-eseors for user processes,

called user virtual ,proc~rs.

I/O is done from primary memory buffers accessible to both the general

purpose physical processors of the system, and to special purpose I/O

processors that actually perform I/O. I/O processors communicate status

information back to the general purpose physical processors through special

buffer areas called mailboxes, and send interrupts in order to get their

attention.

Multics descriptor segment and page tables., The data can reside in primary
memory, and may be shared by several processors.at once.

Chapter l - 16 -

PROCESSOR MULTIPLU:ItfG IN A LAYER.ED OPF.Rl\TING SYSTEM

1.3 Abstract Types

An abstract type is a class of oMeco j.n ~he., systelll for which there, is ·a

defined set of operations. The d~fferenee between ~n abstract ~ype and the

classic notion of type is that the user of an abstract type need not know the

representation of the object, or the algorithms used to implement operations
; ·'.

defined on the type. Further, the only operations allowed to be performed on

the objects are specified by the definition of the type.

The concept of ~bstract type is quite, atti:aetive ,for the st'ructuring of ·

large systems becaYSe the actual illlplementatton of ;a type of "object ls hidden

str1,1cturing prescribed by, Parnas' s "information lli4ing .principle" [21}, for

dec-0mposing a system .into modules. FU'rther., .abnrao1: :types fi.t naturally into

the structure of an operating system since a major job of an operating system

is to multiplex a set of physical resources to produce a set of virtual

resources that can be viewed as objects of abstract type. I will show that

this is exactly what happens in processor multiplexing.

An abstract type consists of a set of objects and a set of operations.

The set of operations defined on the objects of the abstract type is

implemented by algorithms collectively called the (abstract) type manager.

Only the type manager algorithms are allowed to manipulate the representation

- 17 - Chapter l

PROCESSOR MULTIPLEXING IN A LAttRED OPERATING SYSTEM

of the objects. The type manager may be actually implemented as a set of

closed subroutines, or as a process (or set of processes) to which messages

may be sent, or as macros (open subroutines) which are expand~d into' the code

of programs using the abstract type. It is important to emphasize this point,

because I Will-show later·that it is s<>lletimes:u&eful to inlplement type

managers using one.or many of these techni4aes.

In the example system, there are several objects that can be viewed as

having abstract type. A disk block, for example, is an object that has two
... -·

defined operations -- read-block, which reads a block of data out of the disk

block returning a string of bits of fixed size, and write-block, which takes a

string of bits and moves it into'the disk. A word in·vtrtual melllOry is also

an abstract object. Two operations that can be- cat'rted out ··by instructions -in

user processoes are read-word, whidl obtains tlie e-Ont:elits of· a '*°rd named by-a

particqlar virtual me1QOry adclres-s, and writ~vord,· which takes a bit: -string

a-ru::l stores it in the object specified by a particvlar ?Virtual me11l0ry address.

Processors, both real and virtual, can be viewed as objects of abstract

type. Viewing processors as objects that can be controlled by operations on

the processor objects is basic to the structuring method I use in this thesis.

Chapter l - 18 -

PROCESSOR MULTIPLUlMG IN A LAYBUD OPBBATING SYSTEM

1. 4 Layering.,of !bstract Types

The abstract type idea clearly furnishes .a useful way to view the virtual

objects seen at the external interface of an operating system,_ but for the

design of a large operating system the abstract type idea is equally important

in structuring the internal implementation of the system. Janson [11]

discusses how this structuring might be applied to a system like Multics. For

Figure 1.2
Type Extension Hierarchy for VM Objects

example, see figure 1.2, wtlich shows the hierarchy of objects out of which the
. ~' '

virtual memqry of the e~ample s~stem is))uil.t.. Eael,i. o~. the circles in the

figure shows a type manager, l~eled by the type. of, object il\lplemented. The

- 19 - Chapter l

PROCESSOR MULTIPLEX'.l'lfG IN A· LAYERED OPERATING SYSTEM

arrows between the circles indicate that objects of the type at the tail of

the arrow are represented in terms of objects of the type at the head of the

arrow. (1) At the bottom, the physical storage oltjects bf the syst~ are

shown. Pages, fixed size blocks of virtual storage, are implemented from

these basic objects. Then out of pages and rott blO<!ltS that: hold' map data,

segments are built.

This is an example of using type managers inside the system for the
- ; '

structuring effect alone, since the lower level abstractions of the system are
_,,;

not visible to the user of the system. The use of abstract types at these

levels, though invisible at the system interface; is still quite important
- :.!'-

because of the information-hiding effect of 'the type interfaces. Because the

only module allowed to manipulate obj~ts of _a .p~;ti.~ular type is the type

manager, the effect of a paxt_icular algoritluit< ill, some t.n!f)•an11ge.r can be
le~ -

localized.

. ,

It is relatively simple to understand: ea_ch plirt of a syst.enr structured in

such a hierarchical manner. Each ~lass_ of objects is i~~ented in terms of

a small set of other types of objects.· In order t() understand the

implementation of a particular class bf- objects, one need only consider the

behavior specified for objects of that class and the behavior specified for
.·-t;

\ ~. '

(1) The representing object participates in this representation either as a
storage container for objects, , a mapping -funcfton ~«>:-tan.slate· the· extern•l.
name of the abstract object into the names of objects in its representation,
or as an agentc to perforit the:-operattons that: iBltti~nt' the dstract · ·
operations on the object.

Chapter 1 - 20 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

objects in the classes used in the representation. It is not necessary to

consider the implementation of objects used in the representation. Thus the

implementation of each abstract type may be considered separately.

In this thesis, processor multiplexing at two levels is described in

terms of abstract types and type managers. The abstract type structure of an

operating system is used to show the interdependencies between modules of the

operating system. The interdependencies between processor multiplexing and

the rest of the operating system are shown clearly in this model. The

problems resulting from these interdependencies can thus be discussed easily.

1.5 Related Work

There are several classes of related work. First of all, there is a

large body of literature on concurrent processes. Second, there is some

literature which talks about the implementation of concurrent processes by

processor multiplexing on various systems, including Multics. Third, there is

a growing body of literature on the use of abstract types to structure system

design, and some recent work applying these ideas to hierarchical design of

operating systems. Finally, the use of processes within the kernel of an

operating system has a small body of associated literature.

It is not worthwhile to list here all possible references to literature

on concurrent processes as a model for parallel, asynchronous computations.

- 21 - Chapter 1

PROC~SSO~ ;MULTI~LEXJ,JiG IN A LAYERED QPEBATING•iiYSTBM

The work .Q_f. several authors in ,cbe .~licatioa of tlMM mod.tls to aperati:~

systems p:tobleata is directly relevant; otmer wot'k on the lllOdeling ef parallel

computations is not specifically related to :the w«'ll iu this theris.· · Dijkstra

[6] defined the notion of a sequential process, primarily as a mechanism for

dealing with simultaneous activities. Dennis [5] among others has described

the utility of the process concept in guaranteeing that independent

computations do not interfere with each other. Saltzer [25} has described how

processes can be used as a way of controlling the allocation of processor and

memory resources to users of a computer system.

Actual implementations of the process concept also abound, so again I

will only touch the high points. Saltzer [25) also outlines the basic

algorithms of processor multiplexing. Rappaport (231 describes an early

version of the Multics process implementation in his thesis, and discusses

many of the engineering tradeoffs involved in its design. The Virtual Machine

concept implemented in IBM's VM/370 (formerly CP/67) operating system [17} is

also a form of the process concept.

Work on. abstract types and their use in •stl"Ucrttl'ing· systems is

progressing rapidly., SIMULA [4) and CLU'. (131· •r., pr"*ailllllng· languag~s that

include abstract type- definition as basic structuring· t-00ls. Liskov [141 is

currently investigating the structuring· ·of "Pro«raas· Utring abstract types.·' Th'e

Hydra operating system kernel [30] is designed to support abstract types that
,' : . .< _, ..

can be used to build operating systems. Janson [11] has investigated the use

of abstract types in structuring the design of operating system kernels, and

Chapter l - 22 -

PROCESSOR MIJLTIPLBXING· IN A LAYERED OPERATING SYSTEM

described the cache manag~ent pattern of type extension that is ext~nded t-0

processor multiplexing in this thesis.

The area of literature closest to the topics discussed in this thesis

describes the use of processes to structure the.kernel· of an operating system.

Dijkstra's THE system [1J · w~s the fi~st kernel i~ which; .:th~- pro~ess concept

was introduced at a low level in the kernel. Unfortunately, there is little

refere.nce .:ln the ava,Uctl>le literat-ure on. t:he i~E sy,st-. tp sh~w: how processes

are ~ctual.ly ,i1se.G .in tl;>.e kernel. µJJlJ~ .the pesign pr9,~e4~~laei;~, .. t#e~ proe~

imp.lementation is a,.t a lower level in· tb.e THE s~._ t.1}._~< ~he. virtual memory•

Consequently, the _per-pra~s.. 4a,ta. must. J'emain p~~~tJ,.y J.pa,4.ed into primary

memo_ry, so the number of P:".ocesses allow~ iAJ ~yerely,µ~t"~ : J'.>iij~tra ..

proposes the idea of s t.ructuring,.an operating. ~ystem i~to fll9GU.les. .in. a

hierarchy. based on frequency of use of the tl0dc!11e.f-. L~ th• des.is.a propott~d .

here, the two levels of p.roces,sor 11U,lltiplex1.ng, s•U.ty ,t\lis criterion.

Brinch-Hansen [3] has described an operating system for the RC4000
;-. ··• ~· .,; . ! ,-

computer that uses processes communicating via messages to structure the

kernel.
" ·-c· ~ ..- ; ~-- ~ .

Sturgis [29] , in describing the CAL TSS system, shows how processes

are used to structure the kernel of that system. Rowe, of the University of

California at Irvine, [24] has described a di.~tdbuted operating system where
..

processes are used as building blocks to make up the kernel, and where control
.-.:i.---

of the communication paths among the 'processes-·is used to' pro..:ride reliabilfty.

Huber (10] has described how processes might be used to simplify the structure

of part of the virtual memory implementation in Multics, and has made use of a

- 23 - ChapteJ:.· l

PROCESSOR. MUL1'IPLEXING IN A LAYERED OPERATING SYSTEM

primitive version of the kernel processes deSigned in 'ttits · thesis. 'Hoare {9]

has described the implementation of a virtual naeniOry syst~ as a set of

processes where each page is assigned a process -- w!1ile this is probably not

practical as a way of implementing a virtual memory interface, nonetheless it
-, ._-_ ,:,; -~ - . ~ ··: -2.

suggests several potentially practical ways of ~mplemep,t.ing a virtual \Demory

system.

More recently, at SRI- a st-ruetured design for the kernel of a complex

operatiug- system was comp-leted. In this deaign, d~scribed by Neumann et. al.

[20) , processes are ·implemented at a l«>W l'ever; and then entranced at a higher

level. 'This idea is quite similar to· the dengn di:ttusfta' in the present

thesis, bot: unfort:umrteoly· the SIU design is only- a ·specification and does not

incorporate any notion of a reasonable illp'lementati'on ~ or even What· thE!·

algorithms executed by the implemerttation-might be.--- -Th-e SRI design is

concerned only with structuring of the &ystem,'ftot with the performance costs

or efficient implementation of their design. Bredt and Saxena [2] have

described the algorithms of a layered system similar to the SRI design where

two levels of virtual memory implementation are interleaved with two levels of

process implementation. As in the SRI design itself, a framework is provided_

for a two-level process implementa~ion, bu~ incorporati~g such features as

multiple real processors, interprocess interrupts, and variable scheduling
- f ' , ~- •

policy is ignored. 'They do not discuss the problem described later in the
.-: - ,

thesis as the outward signalling problem, which seems to be an ~nherent

problem in a layered operating system design. Another problem_with their

- 24 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

paper is that ~hey do not take into account the other uses to which processes

might be put in an operating system, such as I/O device multiplexing, and the

peculiar requirements imposed on the design of processes by those

applications.

1.6 Plan of Thesis

The material presented in the rest of the thesis falls naturally into

three parts. The first part, covered in chapters two and three, will discuss

the issues involved in the design of a process implementation at an overview

level. The second part, covered in chapters four, five, and six, discusses

the functionality of the proposed design and describes a particular

implementation for the Multics operating system. Finally, chapter seven

discusses the effect of the design in simplifying the rest of the operating

system, and chapter eight summarizes the thesis, suggesting areas of further

research.

Chapter two specifically covers the basic model of process implementation

used in the thesis -- that of multiplexing a relatively small number of

functional processing units (either actual hardware processors or software

virtual processors) among a larger number of processes. I define several

terms, including processor, virtual processor, and process. The model

developed in this chapter will be used as the basis for the model of processor

multiplexing at two levels, and to describe the design proposed in chapters

- 25 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED,OPERATING SYSTEM

four, five· and six. In addition to processor multiplex·ing, processor

reconfigura~ion and int:erproees-s c<>n'trol co.Ui'li.cation' 'art inc0rporated in the

model.

Chapter three develops the two level processor multiplexing structure. I

show how the implementation fits the cache management pattern of type

extension describeq by Janson [11]. I also model the actions·of·the·

implementation in terms of the model developed in chapter two. '11lree problems

that can·result from this structure, having'tO do Wi.th•efflciency and

interaction. between the· levels, at~ 'dt!sctUt8a;)llnd d\H't solutions are 'shown to-·

be 0 possible tfithin the strueture •.
-r:.

Chapter four begins the discussion of the actual design. It contains a
-·"; -, : ; ... - =-.

complete description of the interface presented by level 1 virtual processors.
'_,<_,

Chapter fiiTe completes thediscuas:ton·of level l, 'by discussing

implementations that can·achieve,the level 1 interface efficlelit!ly on·a

computer system such as Multics. A new hardware architecture is proposed toe

simplify the control of proce~sor multiplexing. Mechanisms for simulating
~·-'. ~ 0 ::_-'L'>- ~··:

this architecture on a more conventional architecture are described, to show

that level 1 can be built on more conventional systems~

Chapter six describes the interface and i,.Plemetttatton of level 2

processors. '11le functionality of lri4!r'2''proceiisors iiffers cfrom level cl;

these 'differences, such as administrstiveij variable scheduling polfCy;

creation .aad deletion of 1.evel 2 ·'procetl&Ors~ proeessor interrupts, and eutward

signalling eventcounts are described.

Chapt&r·l - 26 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Chapter seven shows how an operating system is built on the basis

provided by level 1 processors. The use of level 1 processors within the

operating system to provide resources to abstract type managers and to I/O

device management is described. The advantages of using processes running on

dedicated level 1 processors inside the kernel of the operating system are

briefly described.

Chapter eight summarizes the work done, attempts to give an indication of

the difficulty of integrating an implementation into the present Multics

system, and the benefits deriveable therefrom. It also discusses how closely

the initial goals of the project were met, and the impact of the general

approach taken in this design on future development of kernel-based operating

systems.

- 27 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 28 -

Chapter Two

Model of Processor Multiplexing

In order to understand how two levels of processor multiplexing can work,

one must thoroughly understand what processor multiplexing does. In this

chapter, the concepts of process and processor are carefully defined. From

this basis, a model of processor multiplexing is developed, showing clearly

how real processors can be multiplexed to provide multiple virtual processors

for the execution of processes.

Along the way, reconfiguration of processors and interprocess control

communication are incorporated into the basic processor multiplexing model.

In the next chapter, the model of processor multiplexing is extended to

two levels of processor multiplexing. To enable the extension to be made, the

model developed here incorporates the idea of a stopped virtual processor

whose state can be manipulated.

- 29 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.1 Definition of Processor

In this thesis, several kinds of processors are discussed. 'lbese

entities are all called processors because they share certain properties. To

make certain that my assumptions are understood, I take the trouble to define

processors here.

The basic function of a processor is to perfora,a,.8e.quenc.i! of <>.perations

on objects in its environment. The environment of a processor is a set of

objects. For example, the environment of a physical processor is that portion

of melllOry that it can access through its address mapping hardware. Typically

the ewiromnent,. is spec.ifien 'by an :nhject~ ~a&-;-the, itulpics descriptor

segment, that in turn naia.es ,11110~1' ~bj.ect.,., 'L.abaH.: .assuae that;: the o.bj-ects

that specify enviromnents can be shared among s~a):n)J»J!eBISQrs,, tbWJ. giving

the processors identical accessing environments. 'H-)

A processor has internal memory, ·called its state, that it uses to pass

information from one operation to the next. The processor determines the next

operation to perform by interpreting an instruction, found in the processor's

environment by an instruction pointer that is part of the processor state.

(1) This does not imply identical access permissions, however. 'nle access
rights specified in the environment specification are interpreted relative to
the domain of execution (part of the processor state), as in the Multics
descriptor segment.

Chapter 2 - 30 -

PROCESSOR MULTIPLF.llNG IN.A,LAYEREJ;> OPERA.TIN.G SYSTEM

The environment specification used by the processor is named by a value in the

processor state. Also included in the processor state is the name of the

current protection domain in which the processor is executing.

Each operation performed may modify the contents of the processor's

internal memory. In particular, it chang~s tne instruction pointer to select

the next instructiori· to be 'interpreted.

As an object of abstract type, a processor may b~ .part of the environment
;:- • • ~ ' ~ c • ..: ~ : • ' ~·

of other processors. The operations that can be perfo~ed on a procesl!IQr

object are: loading a new state into the processor, extracting the current

state from the processor, causing the processor to rU:O.I> and causing the

processor to stop.

A processor can be a physical object, such as ~he Honeywell 68/80 CPU

that is used to implement Multics. The processor re~isters comprise the state

of that processor. The environment of the processor includes all of the

primary memory that is accessible through the processor's descriptor segment.

In this thesis, two other kinds of processors are described. These

processors are virtual processors meaning that they have no direct hardware

manifestation. Instead, they are simulati.ons of processors, achieved by using

physical processors to interpret the instructions to be executed by the

virtual processor.

- 31 - Chapter 2

PROCESSOR' MUV!f PLF!XING IN A LAYERED OPERATING SYSTEM

2.2 Definition of Process

The word process ~as been used in many l!Jellses ~~ the l,iterature of

computer science. Usually, it has been U;sed to re!e;:,tq_,on.~ of two,th:l,ngs

a virtual processor as defined above, or what is called a process in this

thesis. I make a careful distinction in this 'thesis between the meanings of
"·

the words process and processor to avoid confusion.

A process is the. sequence of actions taken by soDle pt;ocessor. In other_

words, it is the past, present, and future "history" of the states af ,t}le

processor. Each processor, be it virtual or physical, has one associated
- -

process for the duration of its existence. Thus,- the 'process associated with

'. - -
a physical processor is the sequence of operations that have been performed by

that processor since its creation and that will be performed up until its

destruction.

The act of logging in to a computer system can be viewed as creating a

processor for the user. The user can then caus~ this processor to perform

operations on his behalf. The history of these operations will be called the

user's process. If there is but- 'one physical pro~essor in the computer

system, it will carry out the operations of all of the users' processes. The

process associated with the physical processor is thus a merging of the

operation sequences that make up the users' processes.

Chapter 2 - 32 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Quite often, the words process and processor can be used interchangeably

this is the source of the confusion between. the words. For example,

consider the modification of a particular file by a processor·. This can also

be said to have happened as part of the process (in the process) being

executed by the processor.

The major difference between a process and a processor is that a process

is a sequence of actions while a processor is an actor. A processor is an

object in the computer system and subject to opeTai:ions that may be executed

in the system, while a process is just a view of the actions taken by the

system that can be ·imposed- in retrospect. A process results from the actiorts

of a processor.

2.3 Processor Multiplexing

The two levels of virtual processors in the design are created by a

technique called processor multiplexing. This technique originated in the

first multi.programming computer systems as a way of achieving more efficient

use of scarce processor resources. Saltzer {25) has.modeled.the mechanisms of

processor multiplexing in his Ph.D. thesis. I will recapitulate the basic

issues here.

Processor multiplexing is the-simulation of a number of distinct virtual

processors by a Stllaller number of real proce'ssors. Each of the virtual

- 33 - Chapter 2

- __ , ~ - .-~

PROCESSOR. MULTIPLEXING IN. A LAYERED OPERATING S~STEM ...
pr-0cessors executes a sequence of operat.ioryi_.;Lµ. time. These !2equences are

actually performed by the real procesaorl!J. The-many pl'ocesses of the virtual

processors are actually merged together •. cr~aU.ng the· proce:saes of the real

processors.

The result of any one of this merging is that the operations of any one

of the virtual proces,sors are carried .out in the· Hiile" t~ral sequence that

they would have been', had the virtual pr~uor beef,\.. r.eal. . Successive

operations of the same virtual pro,cesSQr may be s~rated by a· gap of time

during which operations of another virtual proce&,Sor are·b~ing exectited by the

real processors. Successive operations of~ yirtual·J>f~eJ:;sor may also be

Real Processor 1

I f I I i RPl : :RP2 I RPl .,. ____ .,., I I I t-1 ----..)

I I I I 1 I

Virtual Processor 1

I I t •. ' t t; ~ ;..
Virtual Processor 2 RPl I RP2 1

1
I I I I _________ _._ ,., --.. ,. I I I I

I if I I I I
I I J I I

It I t. ~"f 1 I rtltPl ~rur
I .----f"'"i I I
I ~ I L1 . I . t I .

Virtual Proc_e_s_s_o_r_4 ____ R_P_2 ___ f ! RP2 : :RPl: ! : RP2
·1· I· -~ .. · It .

I I I I

Virtual Processor ~

>
t I I Real Process_o_r __ 2 ____________ _..1 ____ __ _..._..1_· _ _..

1
,___.1 ___ ~>~

Figure 2.1
Multiplexing 2 Real Processors

time

executed by different real processors. Figui-e -2~1 ~ws 'h,ow the operati~s of

4 virtuai processors might be mapped i.nto the ·Operat.i~ .,s~~~e~ of 2 ""l'e&l

processors.

Chapter 2 - 34 -

··PROCESSOR .MULTIP.LEXING IN A LAYERED OPERA.TING SYSTEM

To define a term used frequently in this thesis, a virtual processor

being simulated by a set of multiplexed real processors is bound to one of the

real processprs whene~er it.s pr.0Cess .i;s being ex.cttted bey a real processor.

Thus virtual processor nwaj)er :t_wo is bound ,t.Q ·;real processor riumb&r one during

the fir.st,,time iq.,~rva.l in figur-e 2.-1. _.ttor.e lQOS;ely, .one: can o6ay that a

process is bound to a processor wh~n t.bat proeessOI'' ~is carrying out -actions

that are part of that process. A process is permanently bound to a processor

when that processor can only execute operations of that process (the process

is thus the process defined by the sequence of actions of the processor).

There are co.ncrete aspec.ts to tfi:is binding. When rea'l. prDcessor A is

current state. Similarly, processor A a~s-es. objects. th-rough S's

environment. When S is not bound to a real processor, its state is stored in

a piece of memory from which it can be loaded later into an real processor's

internal memory.

In addition. to providing. the operatic:ms of the real processors to the

virtual processors, processor multiplexing can create new functionality. The

vi_rtual. processors can execute an operation that~ causes execution of future

operations to be delayed·until some future'.e-tent happens. They alao can

execute an operation that signals such an event~ Such operations are called

interprocess control communication. The wait operation is not a[\ operati9n

that requires real processor resources -- it is rather an operation that

inhibits use of real processor resources by the virtual processor.

- 35 - Chapter 2

PROCESSOR MUL'Ui»LEXIN:G IN A LAYERED OPEKATING-SYS!EM

Processor multiplexing also requires a ~liay. Given a number of virtual

processors to which an real processor may ha '.bO'und t at arty one time the

processor can -only execute one. Th• cho~ -t)f. 'tl\e .'..pr&c'e!tst>~ to· choose· is made

PY some. algorithm, called. the· proceaftr wlt'1pJ.~ pol!e},. :algorithTii: 'ffiis

chooses which one is to run· and for ·huv lohff. " ~ 3 '

2.4 Processor Multiplexing Model

In o:r:der to discuss two levels of processor multiplexing, one needs to

understand how processor multiplexing at one £evel fg ~':; 'fn this sedt:foD.,

I will provlde :a model of this· behavi-Or.

I assume that the real processors are capable of executing all of the

instructions that appear in virtual processors, except those that control

processor multiplexing and interprocess control communication. (1) In some

cases, there will be more than· one real·pT"Ocenor, although the number of

virtual proces!;lors will usually exceed the number of real J*'<>cessors given. I

also assume that a real processor can store the contentli of its private·state

memory,. and load a new set: of values· into 'this priv.ati! enaory ·from main

memory. The effect of loading the private me!IK)ry of·the real processor is to

(1) In particular,. the structure of the en"11t'Oldleat descriptid8 in tlie real
and virtual processors will be the same, and the addressing mechanisms will be
the same. Since real processors ·can on11 dlrectly.,·attdtess-priaary"memory9 the
same will be true of virtual processors.

Chapter 2 - 36 -

PROCESSOR MULTtPLEX'.ING IN A LAYERED OPERATING SYSTEM

cause it to interpret a new' s,equence of instrudtion:s specified by the newly

loaded state.

Real processors and virtual processors go through the cycle detailed in

' .

processors
executing

irtual processors

P'igure 2. 2 ·
Processor Multiplexing Loop

figure 2. 2. From the point of view of a rea.l processor,. it is bound to (and

executes) a virtual processor until some time at which it is unbound. l'he box

labeled "unbind" represents the unbinding of a real processor from its

assigned virtual processor. Unbinding results in placing the virtual

processor state in memory in a pool of virtual.pro~essor~tates.· The.real

processor is then placed in a pool of available idle processors. The "bind"

operation in the figure then takes a real processor from the· po,ol of idle real

processors and a runnable virtual processor fro~ the pool of runnable virtual

- 37 - Chapter 2

PROCESSOR MULilPLEXING IN A LAYER.ED OPERATING SYSTEM
' . . , --- "_- ,_-.; - .•

processors_ (selected by the real proc,essor IUll-~i.J_).l~g J>Q)..ic~) and binds the

two together.

A real processor bound ~o a virtual processor enters the unbind qpe~ation
_,. _- - :. . ,. ! - - -·

under several conditions. The policy algorithm may decide that another

virtual processor should be run by that xe,al-_processor, or that the virtual
_,.re ~

processor has exceeded its allotme~t of:coaputift&..!esources. The virtual
_; ~ -~-'

processor itself might desi-re-to watt-·~il~~ ev;~t"i~"i-g~alled by another
::t-,_ ~.:. .;__ "..: ~ ---4',

virtual processor .r the_ virtual processo!'.,~~ for~JJ:J,.y.,-st~~ped-- or deleted
• ·-•• ,~T ...::-:.::.~ • • ,_:.e•.:.-:-~ .,...,-,, < -~ ~-~ 'l:. - .o•_,.~=- ~ _ft/o' • •

by another virtual processor. ~ ~J. proce9Sar' '1ight be removed; from the
... _~,,,.~~'°-'--'---

r __ .,.

- ""<.0.::f~-~--

system due to a crash -er reconfigur~_1oJL(tQ,~ 4-~cussed lateJ; -cfn this
-·-~- - -- r"''-. - _. - - - ._.·: ~..,. _ .. ./·

chapter).
,._ _ _ _...,.,..

In this model, no indication is given that specifies the actual agent

that causes the bind or unbind operati~n~, -Gl'~etlle agent that executes the

actual processor multiplexing policy algorithm. ntis is intentional, since in

the d~sign I propose later in the thesis, the agent will vary from level to
_ _,,_.

level. -However, I would like to discuss here the alternatives that are

possible.

-". r

2.4.1 Centraliz~ Control 9f Pro~ei;Jsor Multiplex!ng-

One scheme for ,the control. o_~ pro!:~sspr ~:Hip).~xi93 is~ based.on .the :f..d~a

of a ceµtral agent. This agent is respon,.i_bl~c~Ql"" th,,bill4ing o-f virtual

Chap~er 2 - 38 -

PROCESSOR MUL'tlPLKXING IN Al..A¥ERED OPERATING SYSTEM

processors to real processors. All binding of virtual processors to real

processors is cauaed by the action of the central agent, 111hile unbinding of

real processors from: virtual processors a!sb·may be controlled by the <:entral

agent •. Of course~ the virtual processors· the11.selvesha•e-influence over the

unbinding decision, since a virtual proceaaor tha~ chooses, to wait or

otherwise gb•es up- Hs need f()r a real processor can ·e.ause real processors to

stop running that virtual proe.essor. The· central agent,is;. however,- notified

if such- an-event occurs, so the central- agent.interacts"oaeaqh'binding-and

unbinding of a rea1 processor-.

Typically the central agent is a computation carried out in the computer
;;·

system. Cases where the central agent is a human operator fit this model, but

are not of interest here. The central agent can be viewed as a process, since

it is a sequential computation that• perfortd typetatit°*tr ••' the· s-tat:e o.f ·the

system. The agent cannot, of course, be the process of a virtual processor,

9imte it must make dee is1.ons about . virtual ~ocewors<i.flt\eti they are· not

running. If the -agent unbowid itself,. then it:' i::ouU aever make· the decision.

to rebihd itself. For this reason•; the cent talc age1\.t -in th Ur scheme of -

processor multip:lexi:ng must be permanently executin8 00-.,. dedicated real

proce&&or~ (l) ·

(1) This real processor does not have to be a general purpose processor such
as the ones bein& multiplexed• It: iS no-t .W:lttpld.ed.J· amfr-performs a fixed,
function. Consequently it could be a hard-wired processor, or a
microprocessor executing a firmware algorithm. As is shown later in the
thesis, the effect of a dedicated processor can be obtained by cheating a
little bit.

• l ""l

- 39 .;.;. Chapter 2

PROCESSOR MULTIPLEXING. IN A.LAYEllED Ofu.A'I!JiG. SYSl'gtt

Given this constraint, the central age~t_·may iP1Pl~11Jellt aq.y arbitrary

policy for scl).eduling the binding of virtplproeesa'1rs to. real p~oce~sors.

The implementation of such. policies will ~ually require SOiie kiad of

coDUllunication channel b~tween the real proces"ra and t:he, central agent. The-­

primary reason for such a communication chan.wl is that the virtual processors

being scheduled by the agent need to be able to wait for.other virtual

processors to do cer£aia things. While the ageat can.reasonably bind a

waiting virtual processor to a real processor, such a dec:ision is quite

wasteful, since the virtual processor will unbind· it:ael.f immediately. ·lb.is· -

would reduce the economic justification for doing processor multiplexing,

since real processor time would be wasted doing non-useful work.

2. 4. 2 Distributed Control of Prpeessor Multit>J.exing . .

An alternative scheme for the con:trol of ~<>cessoraultiplexing is one in

which the functions are accomplished by a distribtlted algorithm executed by

all real procesirnrs. In this schetDe, the pol-iey ,_sed to select a. new virtual

processor for a real prpeessor in the bind op•l'atiOll ,.i,a illlple~nted on each

real processor, as is the policy used to control which real proceesors to -

unbind. Through careful coordination, real processors unbind themselves when

they choose to, send recommendations to other real processors to unbind

themselves, and choose which virtual processor to next bind to.

ehapte:t 2 - 40 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Please note that in this scheme it is not the case that control of

processor multiplexing is done in the virtual processors being implemented.

If this were the case, the virtual processors could become unbound in the

middle of telling the real processor which virtual processor next to bind

itself to. Often an algorithm, such as that used by the current Multics, is

described as being so distributed among the virtual processors. In fact the

computations of such an algorithm are only executed when the real processor

cannot change its execution point to another stream of instructions (inhibited

mode), and so are done exactly as if they were unit operations in the real

processor. I assume that the special privileges needed to control processor

multiplexing in each processor are only accessible in a special domain found

in each real processor's environment.

In the distributed control scheme, it is possible that each real

processor can implement a different policy in assigning itself to a new

virtual processor. Thus, the set of policies that can be implemented is

apparently richer. As noted above, there needs to be a communication channel

between the real processors and the policy-implementing algorithms. In the

distributed case, each real processor must be able to send information to all

other real processors.

In the distributed case, interlocking between different instances of

policy algorithms becomes necessary since real processors may come unbound, or

choose to bind themselves to virtual processors, simultaneously. This is just

one aspect of the general need for harmonious cooperation among the policy

algorithms executed by each real processor.

- 41 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM
-· t

2.4.3 Comparison of Distributed and Centralized Control

Although no algorithm for control of processor multiplexing will match

one of these extremes precisely, it is instructive nonetheless to stvdy the

advantages and disadvantages of the centralized and distributed control

schemes.

The 111ain advantage of the centra1ized 'a~goritbm i's unity. Since the

centralized scheme is executed as a process- ~anehtly:bouitd to one real

processor; 1:t can be described by a -single pn>gra• tnat:cmakes one decis1:on 'at

a time. Such a description has an obvious et~ec1:'.·on: the ease of understanding

the programs of the processor multiplexing policy, by makin~ them sigiply
=--~ ,- :2 -_ • ' ' ~' <, : ' ~ • - - '>- -1

structured. Also, since in dynamic execution, o?e decision is made at a time,

it is fairly easy to model the state transition of bindin~s o~ virtual

processors being implemented, since there are no simultaneous transitions •
.,

Thus the system can be treated as a synchronous system, at least as far as the
-I'_ t .:;

binding and unbinding of real processors to/from virtual processors is

concerned.

The main advantage of the distributed scheme is autonomy. As mentioned

earlier, each real processor can control its destiny relatively independently

of the other real processors. The policies implement~d by di~~erent real
;_, ~ -' -- . .

processors may vary. Also, the autonomy afforded by a distributed system can

Chapter 2 - 42

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

increase the amount of parallel activity possible in determining policy. Thus

the fact that a real processor is busy finding another virtual processor to

execute need not prevent another real processor from doing the same. To the

extent that these activities can be carried on in parallel, and to the extent

that the real processors can execute in parallel, this can be an economic

advantage.

The advantages of each scheme are disadvantages of the other. In the

centralized case, the lack of autonomy prohibits the parallelism afforded by

the distributed scheme. In the distributed case, the autonomy makes it

potentially very difficult to understand the interactions of the different

algorithms executed by different real processors.

It is possible, however, to incorporate parallelism into the centralized

scheme to achieve more rapid execution of the central agent. The parallelism

is achieved by implementing the central agent as a group of cooperating

parallel processes (implemented on dedicated real processors) that take

advantage of any inherent parallelism there is in the centralized policy

algorithm. The sequentiality of bindings and unbindings must be preserved in

this case, but the time required by the central agent to perform each action

can be reduced, thus reducing the economic cost due to real processors waiting

to be rescheduled by the central agent.

The distributed scheme, in general, seems to have the greater

disadvantage. I am predominantly interested in simplifying the structure of

- 43 - Chapter 2

PROCESSOR MULTIPLEXING IN_ A LAYERED .OPERATIN(; _SY~';[~
,, .- ·- - ~ ' -· .

the processor m_ultiple~ing algorithms, ratb,er than improv_in~ their

performanc~. Performance is an issue, of cou!se~ but the m~in goal of .this

work is to understand the clearest and siplplest structure that achieves ~h~
< ' : •• • - -"": ; - - - '. - - ~ ' : - • ~;

desired effecta,, and then to prop~a,e wa.1~ of improving performance within th~t

structure if necessary.

2.5 Processor Reconfi~uration

and deleted .from the COlllPUte_r_ system wt\i_le it is runJl;ing_. Yor ex~mple,. ~~ai ·- . -~ - --

processors may be shared between two computer syst~s. In this exampl~. one . -_. - ~ . . . - -

real processor can be moved from one system to the other in order to balance

.-_ . - ; - :--- . - - '. --. -- "-/~--:~-- - .

the computing resources on each syl'ffem· to- the presented loads. Another

example' would be the automat:fo· deletion of a fauity rul ptocesso·r wheri the

malfunctionihg :is detected. The faulty pr;,cessor thenc ({~-be rep~ired -and

added baci to the computer system While the rest of the system has continued

to run. Processor reconfiguration is a requfredfeJtture:of any system that

hopes to become a c'omp\lter -utility that remains· up-Withl>ut• 'interruptfon all-

day.

Schell [27) has developed a model of processor reconfiguration. In it
- -~ -

the two real processor _states, bound (to a virtual processor) and unbound, are

each split into two st~t'es '(s'ee "Ft'kure 2. 3l~ ;ac'cordh1g to ac s~~ond' cdterion.

This criterion is whether the real processor is- available -fo'r multiplexing or

Chapter 2 - 44 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

bind

unbind

unbind

Figure 2.3
Processor Reconfiguration States

not. In figure 2.3 it is seen that deconfiguration of a real processor

consists of marking it as unavailable, and then unbinding it. Adding the real

processor back consists of marking the real processor available, and binding

it to a virtual processor.

Processor reconfiguration fits nicely into the model of processor

multiplexing. A real processor can be deleted from the system by marking it

unavailable, then causing the real processor to execute unbind, which takes

special action on an unavailable real processor and places it in an

unavailable real processor pool. An unavailable real processor can be added

to the system by causing it to enter the processor multiplexing loop as if it

had just become unbound from a virtual processor, as an idle real processor.

Figure 2.4 shows the revised processor multiplexing loop.

- 45 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPD:ATING:&YSTEM

_real pr_oces$or~
-· ' =ex:-ec·tit:tng ';; · -
virtua~ proc~!i¥1~>s

Figure--2. 4
Processor Multiplexing Loop with R fi econ_ gur<jttion ,

At each processor reconfiguration, the policy algorithm must be made

aware of the new state of the reconfigured processor. For example, the policy

being implemented might be an assignment of static priorities to virtual

processors such that the highest priority virtual processors are guaranteed to

run when they are runnable. In this case, deconfiguration of a real processor

that is running a virtual processor of higher priority than some other virtual

processor that is assigned to a real processor will require reshuffling of the

processor assignments. The policy algorithm must thus be brought into action
. .

whenever a real processor is deleted. Similarly, when a real processor is

added, the policy algorithm must specify what to do with the new processor.

The policy algorithm specifies this by controlling the choice made by the bind

operation.

Chapter 2 - 4f>- -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A concept closely related to processor reconfiguration is the

initialization and shutdown of the computer system. Luniewski, in his

master's thesis (15], has discussed how to view most of the tasks of system

initialization as adding additional system resources to a minimal system.

Processor multiplexing may be initialized by starting with no real

processors and a set of virtual processors to run. Obviously, this is a

system at rest, with no changes being made to objects in the system. One can

then add processing units, in exactly the same way that processors are added

in reconfiguration, binding them to virtual processors in the processor

multiplexing loop. (1) This reconfiguration proceeds until all the available

processing units are added to the computer system. The system continues to

execute the computations specified by the virtual processors of the system as

this reconfiguration proceeds. The only effect of adding real processors will

be to increase the effective speed of the system.

Processor multiplexing can be stopped and the system shut down by

deconfiguring all of the real processors from the system until there are no

real processors left bound to virtual processors. The system will then remain

at rest until the real processors are added again. All of the state of the

system will then reside in the descriptions of the virtual processors, and the

state of the deconfigured real processors will be irrelevant.

(1) With a centralized agent, there is no difficulty in adding the first real
processor (other than the agent, which is expected to always be part of the
system) because the central agent performs additions. In the distributed
processor multiplexing case, though, adding the first real processor is
slightly more tricky than adding the later ones.

- 47 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAfi!IlED OPERATINCSYSTEM

A system crash that is due to a software detected·etror is just another

deconfiguration of processors~ as far as processor multiplexing is concerrted.

(1) In a system crash, all real processors are deletea·. this view of a

system crash is important, since it defines the fact that the state of the

system is completely represented in the vi~tual processo~ states, and no
" .

relevant information is l~ft in evanescent ~~~l 1 p~ocess9r re~isters. For this

reason, if the cause of the crash is ~epairable, the _systen1;_ stat~ can be

restarted at the point of the crash. An example of this might be a brief

power-line failure, detection of a parity error in memory that can be
- -· ' . ' -

corrected from redundant information, or other possible sistem states.

An important facet of processor tlftilt!plextng is ·t:hat tbe dependence of

the system on having a particular ·numb'er oi" ae1: of real pto~·essots can: be

reduced to a minfmUt11. Ttiere is no-need for virtual' ·praeesso'rs to be aware of

reconfigurations of real procesftO'r8, other·th'an in tenils~of th~ total amowit

of processing power that can be delivered to the set of running virtual
'-- ~ ·~'

processors in a fixed period of time.

~ .-

{l) Obviaus'ly, some system mshea "cannot' be Y'!eWed,. dec~orlf:f:guiatlmui'. Of a:ll
processO'rs. Most cra8he11 in the ·Multtc's 8ysri!m,~ hOVever, -take the f'orm·of ·
orderly- shutdown of -the system by software. ·· " ~- ,

Chapter 2 - 48 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.6 Interprocess Control Communication

It is the responsibility of the computer system to provide mechanisms for

communication between cooperating processes. There are really two different

kinds of communication that processes must be able to achieve. There must be

a way for processes to exchange data in some way. This mode of communication

will be called interprocess message communication (IPMC) in this thesis.

There must also be a way for processes to wait for data prepared by other

processes, and for processes that prepare such data to signal that it is

available. This mode of communication is qualitatively different from

communication of data. Since the effect of such communication is purely to

reenable a waiting control point, it is called interprocess control

communication (IPCC). Together, IPMC and IPCC are called interprocess

communication (IPC).

In a computer system that allows sharing of virtual memory segments

between processes, there is no need for a special interprocess message

communication facility to be built into the processor multiplexing algorithm.

Shared virtual memory segments provide an extremely high bandwidth data

communication channel between the processes sharing the segments. The

protection facilities provided by the computer system for shared virtual

memory segments will suffice to handle interprocess message communication.

- 49 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERSIJ -OPEIATUIG SYSUM

Further, shared segments are sufficiently primitive that any protocol for

interprocess message communication can be built using them. For these

reasons, I assume that interprocess message•coauaunication·wi:ll he,hand'led

outside of the scope of this thesis.

Interprocess control communication, on the other hand, is intimately

related to the structure of the processor multiplexing mechanism. nte ability
·,,

of a virtual processor to indicate that it does not need real processor

resources until a particular event happens is basic to the economic advantage

of processor multiplexing. If a dedicated real processor were actually

available for each virtual processor, busy-waiting (1) would be an adequate
1"': ' ... __

interprocess control communication mechanism.

In order to keep processor multiplexili8 simple9. :lt is desirable t·o have a

very simple interpracess.control·coDllllunicatiou mechanism. Saltzer (251 has

discussed the general .:ptoblem in det.aiL,UFliis ,Pb~D •. : thesis. · 'The essence of

the problem is to be able to communicate to a virtual processor that is

waiting for an event to happen one bit of information that indicates that the
• J

event has happened. The information that the event waited for has happened is

stored as a single bit in the memory of the system, known as the

wakeup-waiting switch. The wakeup-waiting switch is initially off. When the

event occurs, the wakeup-waiting switch is set on. In order to wait for an

event, the virtual processor indicates to the processor multiplexing algorithm
, - ~-

(1) Busy-waiting is repeatedly testing the state of a shared memory word in a
loop.

a.apter 2 - 50 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

that it cannot run until the wakeup-waiting switch is turned on, and then

unbinds itself from the real processor executing_ it.

In Saltzer's thesis, there is one wakeup•waiting switch per virtual

processor, which represents the "Current E!Vent being waited· for. Thus, the

virtual processor wakeup-waiting swit~h is"·multiplexed to represent many

different events as its process proceeds, with the requirement that when a

virtual processor restar~s after waiting, it must clear the wakeup-waiting

switch for the next wait.

This multiplexing of the meaning of the wakeup-waiting switch of a

virtual processor make$ it more dif flcult to' ensure tliat virtual processors·

are awakened at the right time. If virtual processor A can wakeup virtual

processor B, there is no guarantee that the reason virtual processor B is

waiting is the reason virtual processor A wakes B up. Virtual processor A's

wakeup will then be misinterpretedoy B, or ignored by B. In the first case,

B will proceed under the false assumption that the event awaited happened,

while in the second case, B will lose the wakeup (1) even though it may be

meaningful to B at a later time. These problems can be serious for system

security, if the wakeups are intended for a protected system operation in B's

virtual processor, because a wait operation executed outside ?f the protected.

part of the system can receive IPCC signals intended for the protected part.

The arrival of an IPCC signal can carry privileged system information. An

(1) This is the "lost wakeup" problem described by Saltzer.

- 51 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYE;RED OPERATING SYSTF.M

unprotected receiver may either gain unauthorized access to privileged

information, or prevent it from reaching its proper destfnation. These

occurrences cannot be prevented b~catJS~ B is ~ultiplexing the meaning of his

wakeup-waiting switch, and so mu,st al.low A to wake him ue at all times, even

though B waits for A's event only sometille$.

Another interprocess control communication meehanism is the semaphore.
. . . .

This is quite similar to the mechanism described by Saltzer, except for the

fact that the semaphore is a wakeup-waiting switch that.represents a class of

events independent of the events of interest to one virtual processor-. It is

possible to give a semaphore a semantic meaning because new sema.p9ores can be

created for each semantically different class of events. In order to

implement semaphores in the model, the prQcessor multiplexing algorithm must

be informed of all V operations to semapho~es, and muat. keep track of the set

of virtual processors that are waiting for each se ... phore to indicate that the

event has occurred.

Unfortunately, semaphores have several disadvantages. First, they are

limited to cases where the occurrence of an event will allow a fixed ntDDber of

virtual processors to proceed out of the waiting state. ' Second, because of

this limitation, the ability to proceed past a P operation on a semaphore

automatically becomes a kind of scarce resource that can be used as a

communication channel among processes that wait on the semaphore.

Chapter 2 - 52 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

This latter point is quite important in Ii secure sy~tem design. Although

communication of information is inherent in the IPCC mechanism be~ween the

virtual processor that causes an eyent and the virtual processors that await

the occurrence of that event, there is no inherent requirement that virtual

processors waiting for the same event to occur should have a communication

' ' path among themselves.

For these reasons, along with the need to deal with synchronization in

distributed systems, Kanodia and Reed [12) have. developed an rrcc mechanism

that is in some sense more general than either semaphores or block-wakeup, but

is still very simple. I will briefly describe the mechanism here, and

indicate how it fits into the model of proce~sor multiplexing.

An eventcount is an object in the system that represents a class of

events that will eventually occur. This class of events is ordered, so that

by the time event N occurs, all events numbered.from Oto N-1 will have

occurred. Consequently, the set of events that have occurred at any

particular time can be represented by the number of the last event to occur . . ,

This number is known as the current value of the eventcount.

There are three operations which may be performed on eventcounts. One

may read an eventcount to obtain the 'current value. One·may advance an

eventcount. This will increment the current value by one, and serves to

indicate that a new event in the class of events represented by the eventcount

has occurred. Finally, a virtual processor may await a particular event in

- 53 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the class associated with the eventcount. This last operation requires that

the eventcount, and the number of the event be specified. Await will prevent

'the virtual processor from proceeding until the current value of the

eventcount exceeds the number of the event.

The eventcount IPCC mechanism has the useful property that two virtual

processors waiting for events in the same class (thus recorded in the same

eventcount) do not have an inherent intercommunication path. ·the enabling of

one virtual processor to proceed does not automatically disable any other

virtual processors from proceeding, and allows broadcasting events to multiple

virtual processors -- a function not easily achieved using semaphores.

Consequently, this mechanism is more desirable for use in a secure system.

Further, the implementation of eventcounts is not inb~rently m9re difficult

than that of semaphores.

The eventcount mechanism fits into the processor multiplexing model quite

simply. The processor multiplexing loop is modified to have a pool of waiting

virtual processors, as well as a pool of ready-to-run virtual processors.

Figure 2.5 shows this modification. The name of the eventcount and the value

await~d must be stored with the virtual processor state. A special kind of

unbind operation will put the virtual processor, in the. waiting pool instead of

the ready-to-run pool if the awaited eventcouqt ba~~'t. yet been advanced to

the awaited value. The advance operation inform~ the processor multiplexing

algorithm of the new value of the advaQced eventcQµnt, causing.any v~rtual
- ' - - -

processors in the waiting pool waiting on this eventcount to be moved to the

Chapter 2 - 54 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

real processors
executing

irtual processors

Figure 2.5
Processor Multiplexing Loop with IPCC

ready-to-run pool. In this implementation, the only storage required is the

ability to remember the names and values of eventcounts that are actually

being awaited by virtual processors. A way to search the waiting pool on each

advance operation for virtual processors waiting on the advanced eventcount is

required. (1)

(1) This search can be done in time proportional to the logarithm of the size
of the waiting pool, at least, if a balanced tree scheme, such as AVL trees is
used for searching. If hashing is used, one may be able to do better
(although frequent deletions usually reduce the efficiency of a hash table).

- 55 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

An alterngtive implementation of eventcounts would include in them a list

of the virtual processors waiting for changes to the eventcount. Along with

the name of the waiting virtual proce~sor would be tQe -value waited for. The

await operation would then just add the current virtual processor to the list

associated with the eventcount awaited, and then unbind t~e process from its

real processor indicating that it should not be run. When the eventcount is

advanced, any virtual processors _that at'e waiti-ng for the new value are

removed from the list, and placed in the ready-to-run pool so that they may be

run.

This latter implementation can require more storage (a list pointer per

eventcount, whether a virtual processor awaits it or not). The first

implementation may have a certain cost due to searching the waiting pool on

each advance operation for virtual processors awaiting the advanced

eventcount.

The first model implementation has the nice property that if a s~gment

were used to store the eventcount, only the advance-operation would have to

modify that segment. Thus, if segments have individual permissions for

inspection of values and modification of values, the segment access control

may be used to guarantee the security of both the IPMC mechanisms of the

system (implemented in segments), and the IPCC mechanisms of the system.

Using this implementation thus makes the protection mechaniams of the system

more uniform and simple to understand. Stapping a virtual processor is also

made simpler, because the eventcount itself need not be modified.

Chapter 2 - 56 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.7 The Virtual Processor Stopped State

In order to multiplex virtual processors as discussed in the next

chapter, a mechanism is needed to change the state of a virtual processor,

just as there is a mechanism for changing the state of a real processor. In

the model as so far described, the state of a virtual processor is sometimes

kept in the waiting pool, sometimes in the ready-to-run pool, and sometimes in

some real processor. To simplify matters, I introduce a new state of a

virtual processor, called the stopped state. When a virtual processor is in

this state, its private state memory can be changed and examined by other

virtual processors. The stopped state is added by modifying the processor

multiplexing loop to include a pool of stopped virtual processors. Figure 2.6

shows the stopped modification. A virtual processor enters the stopped pool

when some virtual processor executes a stop operation specifying this

processor, or when the virtual processor stops itself because it has exceeded

a resource limit. A virtual processor can enter the stopped state directly

from the ready-to-run pool or the waiting pool, or it can be marked as

to-be-stopped and unbound from its real processor if it is running. The

unbind operation puts virtual processors in the stopped pool if they are so

marked.

- 57 - Chapter 2

--.:=-·;-_-c-

PROCESSOR MULTIPLEXING IN A LAYERED Ol?ERA~l""NG '.SYSTEM

real processors
executing

vir.tua.1

·· Figure i~·6
Processor Multiplexing Loop_ with Stopped State

- , -.- ;,: - - .

A virtual processor in the stoppe<l c.S_tatt! caµ.. b~ .started again when'

another virtual processor executes a ,atar-t.~rati.on specifying the stopped

virtual processor. The start ope~;ttion p.._ts. ~be vil\.t11ak;proo.ess0r0 in the

ready-to-run pool.

One special point should be made here about the await operation -- the

virtual processor private memory while a virtual processor is in the waiting

pool looks as if the await operation has not commenced. Thus stopping a

Chapter 2 - 58 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

waiting virtual processor, and restarting it later, will cause the await to be

re-executed. Since the await operation is a pure predicate, with no

side-effects, re-execution cannot cause any problems. Re-execution is chosen

in order to avoid having to show in the state of a virtual processor that is

in the stopped state which eventcounts are being awaited. The awaited

eventcounts are forgotten in the transition from waiting to stopped. For

consistency, the advance operation will cause re-execution of the await

operation, also.

2.8 Summary

In this chapter, a number of terms are defined, and a model of processor

multiplexing is developed. This model will be extended in chapter 3 to a two

level processor multiplexing structure. Several important features are

incorporated in the model. The model applies to:

1. Systems having multiple real processors, with small private
memory for state, and a large shared memory with address mapping
hardware to restrict the environment.

2. Systems where processors can share access environments.

3. Systems that allow reconfiguration of physical processors.

4. Systems that allow either centralized or distributed control of
processor multiplexing.

5. Systems that allow the scheduling policy to be altered
independently of the the rest of the operating system.

6. Systems in which the states of virtual processors are altered by
a second level of processor multiplexing.

- 59 - Chapter 2

PROCESSOR MUL TIPLEXTNG IN A LAYERED OPERATING SYSTEM

- 60 -

Chapter Three

Multiple Levels of Processor Multiplexing in a Layered System

In this chapter I explore what it means to do processor multiplexing at

two levels, creating two kinds of virtual processors •. To start, processor

multiplexing is described in terms of a common pat.tern of type. extension,
.,, :, <f • .1·.,.

cache management, that applies to operating systems structured 1:1ccording.to
j. - < ' ~- •• _:"; ! ; .- " ,_ ;;;. ',.._ ,-. - - --~ ·- : ..

abstract types. This pat tern' and the model developed in chapter two' are'' .
. ;, '!:'" . .' •" ·'

then extended to handle two levels of processor multiplexing.

Having thus described the structure of the interfaces and implementations
- . .., -:~;·; _ <..;

of each level of processor multiplexing, I then show.how ~his stFucture helps

simplify the structure of the operating. system.~ I discuss how the mutt,1al

dependency between virtual memory implement~ti~n and virtual processor

implementation is eliminated. I also indicate how the level 1 processors can

be used to execute "kernel processes" that p_royide proce,ssing po~e_r to
~·- :

abstract type managers that are part of the kernel of the_operating system.

To close the chapter, I discuss three problems that arise from the t~o
. . ,·

level structure and appropriate methods to solve them in the context of a real
. tJ

computer system. The first problem is that inef f~ciency can be caused by

multiple levels of scheduling algorithms. The second problem is that
- •• - ' •• 7• •• < --~ ? ~ ,_:

processor multiplexing can interfere with intermediate states of abstract type

managers, violating the hierarchic dependency structure. The third problem is

- 61'-· chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

that a mechanism for coordinating ~the 14ctivities of different levels of

virtual processors is needed.

3.1 The Cache Management Pattern of Type Extension

. Frequently the basic task perf oraed by a higher level type manager in

implementing its type out of lower level types is cache management. Janson
i :.-.r. _:

[11] has described the basic issues· of cache m~n~geme~t in a virtual 1le1ll0ry
. ,,

system based on abs.tract types. The cache management pattern is ubiquitous in
., ,.

'.1:

his design.

_ . .__

The cache management pattern involves creating a new abstract type that
c ~:..: €-~ ·:· -; -:-:....!:- ~.

is repres~nted in terms of two existing types, the cache !I2!_ and the encached
'-;~ ~- '"'t . ~ ;;:: ' ---

.!:I.I?!.· The new type created is quite sinliiar to the cache type in
: • '-~ ,,_~£:. ~--

functionality. There are usually a limited supply of objects of cache type, ..
•.

so they are multiplexed among the objects of the new type. The encached type

generally serves the function of providing a relatively large amount of

storage for holding the state of objects of the new type •

..
For example, see figure 3.1, showing the type-managers for blocks of

..
primary melllOry (coreblock), records on secondary storage (diskblock), and

pages of virtual memory. Here, the major function of the page type manager is
... ' ' .. ; ~· .c . '] •.. ' .. ,

·,_

to manage the coreblocks available to it as a cache for the information in

dtskblOcks. The only oper~tions on diskblockS are read-block, which

Chapter 3 -.62 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

read-word
write-word

Figure 3.1

read-word
write-word

read-block
write-block

Cache Mgmt. Pattern for Page Object

reads the contents of a whole diskblock, and write-block, which replaces the

contents of a whole diskblock. The coreblock has more fine-grained

operations which allow selective reading and writing of words of the

coreblock.

Since the page manager implements fine-grained read and write operations

on the page, the most effective way to achieve these is to implement the page

as a coreblock. On the other hand, there are more pages than coreblocks, so

they must be permanently stored in diskblocks. The fine-grained operations

can be achieved by copying the information of a page into a coreblock, where

the operation is performed. At some later time, the information in the

coreblock can be copied back to disk.

Processor multiplexing can be viewed as just such a cache management

algorithm. Given a group of real processors and a set of memory blocks that

can hold processor states, a new abstract type can be implemented, called a

virtual processor. Real processors are viewed here as objects implemented by

- 63 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYBRED·OPERA.Tt:NGSY'STEM

a real processor type manager. The operat;Qn~ permitted on a processor

consist of loading a state into it (bind(ng)" ad, running it, and stopping it

and storing its state (unbinding). The v:lrt.t.wrt.,processor type manager

provides four operations, bind, run, stop and unblnd, that are similar in

effect to the two real proce~r control operations.)me.virtual processor

has the bind and run operati-0ns., and the stop and un]#ttd·operations, decoupled

for simplicity. The stop and run operations affect the use of real processors

in implementing the virtual processors, whil•Lthe :t.tiid'-lltld unbind operations

affect the process~r states in atorage only~

Another difference between virtual processors and real processors,

however, is that virtual processors interpret the instructions encountered

during the run operation some11iiat differently. For example, there is an

iASt:ruction recognized by the virtual prt>ee-ssor :t-0 mean ··a118ft some eventcount.

No corresponding instruction exists in the real processor -- await is

implemented by a sequence of instructi.ons on· the real prbCessor that has the

properties of an instruction to the vH:tual processbr (once started, it is

COlllpleted, and no intet'mediate states can be observed by virtual processors).

The virtual processor type manager has a very simple task ~ it just

treats the real processor type objects as caches for processor-states. Figure

3. 2 shows thia structure. The virtual processor ma1ui~r"' s bind operation is

performed by writing the state of the virtual ptocessor in a memory block

called a processor-stat:e. The virtual pr0eessor manager unbind operation is

performed by reading the value in a processot~state obj~ct. (lt is an error

Chapter 3 - 64 -

PROCESSOR MULTIPLEXIN'G INA LA'YtlEO OPERATING SYSTEM

stop
run
q.nbind

Figure 3 .. 2

bind
µnbind
run
stop

Cache Mgmt. Pattern for Virtual Processor

read-state
write-state

if unbind is attempted when the virtual prtlc'~ssor is not stopped.) The stop

operation ensures that the virtual processor state is not being interpreted by

a real processor. The run operation enable~ the co~tents of a processor-state
" .

to be bound to a real processor and run, using the real processor bind-and-run

operation.

The processor-state objects are veryHmited~in the set of operations

that may be performed on th.em. ·Only read· and ·write operations are performed

by the virtual processor mana~r •. On t:lle 'other nad.d; die ·virtual processor

manager uses the real pt-oees.sor te- execute the state, ortce the state is bound

to a real processor. This situation empb:asfzes strongly the different roles

played. by the cache and encached typ'es i~ a· type ·defined by a cache manager.

In the storlige system example previousl)r deseribed ,· both tlie corebi"ock and

disk.block are quite si111Uar - ·both are passive storage containers, with read

_and write _9perations defining their basic capabilities. The virtual processor

type manager provides-, as its 'prf111ary functiun, an _ifit~·tpreter for an

..;. 65 - Chapter 3

PROCESSOR MULTIPI..EXING IN A LAYEUP· OP&RATIN~~ SYSTEM
-. ' , -::. ;

instruction stream specified by loading.·tlie s~te of a virtual processor with

a particular set of values. This fun~ti~4aifty 1s obtained by using real

processors to perform the instruetiotyJ require,J!. by the virtual processors.

The processor-state object;s do not participate in th.is function; instead they

serve only to hold the states loaded into virt~al proces~ors while the real
~ . . . - . ' .

processors are occupied wit;h computations oil behalf \>~'-other virtual
' .. ~ ...

processors. Thus the cache type objects ~re~ used to petforu1 the primary

function, and are quite similar in capability to the type implemented by the

cache manager, while the encached type obj ~cts serve, only:·~· storage.

3.2 Building Two Levels of Virtual Processors

As shown in the previous section, processor multiplexing may be seen as

providing a new abstract type ,oLprocesaor,, by ~•agiq, the :real processor

type of objects as a cache :(or processor states, ilh;\c\\ . .are stored in

processor-state objects while not actually b~ing·-lll4nipulated by a processor

object. The set of virtual processors prodt.&Ced~ by: proeeasor multiplexing in

this way also can be multiplexed to. :p.roduce. yet aa-0th•r new :.abstract type of

processor. (1) The solid arro~ in figu.r~ 3.3 show .bow the resulting type

hierarchy would look~ for two levels of proce"or multiplexing. The basic

algorithm performed by .each level in this hier"8.rchy,is &imilar,.. with the. only

(1) These can in turn J>e_ .multiplexed, and the-pat.tern c::an- 'be carried out
repeatedly, yielding a hierarchy of abstract types all of which perform a
processor function.

Chapter 3 - 66 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Figure 3.3
Two level Processo'r Hierarchy

difference being the type of objects that play the ro~e of cache objects and

encached objects.

The model of processor multiplexing·develC1ped in the i:ast ell.apter can be

extended to show how the two levels of P't'<1c_fi!sort'multtplexing fit -_together.

Just as the bind-and-run and stop-and-unbind operations used in the fi_rst
• -, ' .·- - . ~ -; : ' > '

level of processor multiplexing change the internal menrory of real processors,

so the second level Bf processor multiplexing use's b'irid 'and unbind operations

- 67 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

to change the states of level 1 processors. ·This manipulation is done on

level 1 processors that . .are in the a~oppedJstate. The level 1 unbind
-~·

·,

operation used in level 2 extracts the con~ents of the internal state memory

of a level 1 processor, leaving that process•r idle. The level 1 bind

operation used in leve.L2. puts a new state in an idle level 1 processor. In

figure 3.4, the two levels of processor multipl~ing are exact duplications of
-- ~- ~

the model. The create and delete operations of ,the level 2 interface are

analogous to the bind-and-~run and the stop-and-unbind ~pe~ations of level 1.

Although this hierarchy is very elegant, it is not ·clear whether or not

it is useful. As I remarked in an earlier chapter, there is no reason to use

processor multiplexi~g if there are sufficient real processors with the right

capabilities. Consequently each level of -processor mult iplil!xing .. in the
;

' hierarchy must be motivated by a lack o-f s.hfficient quantity of processors at

the lower level, o~ by a lack of capability of the lower level processors. In
. -

this thesis, I propose a design that uses _twp:~levels .oJ: processor multiplexing

to create a processor hierarchy of three levels: real processors, level 1

(virtual) processors, and level 2 (virtual) processors. There are several

good reasons for this choice, as opposed to the single level of processor

multiplexing usu~lly founcj in operatin!J systems. Th~ c1'~&<>ns are:_

1. It dis~nt8:ngles ~he tnte1;4~~en4ellCe.be.tllJ~n-'t!b~.d,mple1Jleqt.tion of -
virtual memory objects and virtual processor objects.

~} ~ \. ~

2. The utility of structuring the operatin8 system, particularly
type ·~Cinagers, as a set .of copPer.at.iJ;I& proee,s~~· _

3. The distinction betw~en sl!ort- and long t•m solu~duling pol-icy.

Chapter 3 - 68 -

PROCESSOR MULTIPLBIING IN A LAYERED OPERATING SYSTEM

level 2
interface

real,proeessot's
executing

level l processors

Figure 3.4
Two Level Processor Multiplexing Loop

- 69 -

real
processor
interface

Chapter 3

-::•. ------ _- ·~-.

c,_PROCESSOR· MVLTIPLHKING IB A LAYE&ED OPEMTIMG SYSTEM

I will discuss each of these in turn.

·~:.;.}£:;

3.3 Disentangling Virtual ~mory f;~ P~ocessor Multiplexing . _, ~ .

As I notetl earlier in the example of usi"°8 ~t~~t types to structure
-->·'°' ~ --·~·-,.,.'-.., -..;; •• -"'·-·· ~

.;. ,_. ;
the storage system of an operating, ~y.tem, there is a/hierarchy of types in

/
. • . . ._, - r- ~ ~ ' . : .I'

the implementation of the -sto¥age ~. The prQ.e'essor-state objects of a - --~ ~ ,,-
·~ - ,,.. ... "" ·.- ·~ 4· J-- .i:

virtual processor abstract type tilatillllge~ e~~ ~implemeJ!_ted directly in terms
- ~- "'"" - --... ,,.,

" , ... -,·_:',; .. -. -' ',L - .. .,
of any one of these storage opjects ~;'" Ginc:.e p.-r'OC'-lfSOr nrultiplex;lng requires

fairly frequent accessing e>f.]>tcic~sor-s~~e obj"'e'et'e;-~e obj e~ts should

' ~- .• t·· ~

have fast access.
-- -~- .. ~-"",;;;;_ >'.'"~~

the processor states colji;e.iJ~g to the: -~<:Pser ptooeeae-s of ---....,___ .. ,. -_
hold all of

the system. The virtu,;il Jaerlory objects, e.g. ~~~~;~or'1Je&••&t1J1 --J'foviaed by
-- .~ -~ ·- - - --- ~- -

::r ~ '_"} ~-> f ~ l

the system are clearly the objects of choice for ~"fpose-~

On the other hand, the v~r.t.ua-r··8'emorr_ m~nt algorithm~ benefit
; .. : ~~

greatly from being "implementeci.:U. pro~e!JJle&-i (1) $ince p>eCesses require - .
"""' ---~~~ ~:-~

processors, the virtual memory processes teq~iP either a .. set of dedic;ated

real processors, or a set pf dedicated vii'tual pr~~-s·. Dedicating several

~~ >;:

today's hardware, so we are enco~11.g~ .~ US4' vktul processors implemented
.... - -

·-· -..,--,.:.

by processor multiplexing to achieve the virtual 1lle0l0ry management functions.

(1) See Huber [10].

Chapt.er 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Using virtual memory to implement virtual processors and vice versa leads

to a system with cyclic dependencies. This can be overcome by splitting the

implementation of virtual processors into two stages, where the first

implements virtual processors whose processor-states are represented using

primary memory objects, and the second stage multiplexes the first stage

virtual processors and uses virtual memory objects to hold the

processor-states. The virtual memory management processes can then be

implemented on first stage virtual processors. This structure has been shown

before in figure 3.3. The dotted line indicates the dependency of the page

type manager on the level 1 processor type manager, which provides processors

to execute page manager algorithms.

3.4 Use of Processes as Abstract Type Managers

Although the common view of an abstract type manager is as a collection

of closed subroutines that manipulate a data base, this view is not

necessarily the best way to view the implementation of abstract types in a

situation where operations can proceed in parallel. With parallel operations,

there must be interlocking of some sort between the different operations on

objects of the type. This interlocking is not apparent from an implementation

of the operations as pure closed subroutines.

- 71 - Chapter 3

PROCESSOR MBLTIPLEXING IN A LAYERED OPERATi'AG SYSTEM

Let us consider an example in the context of the example system. There

is an abstract type manager Whose job it ls' to multiplex' a connection to a

message-switched communications system' such as the'AR.PANET [16]. The abstract

objects created by 'the type ~anager are connections'~on Which operations such

as create-connection, destroy-connection, send.::message, and receive-message

may be performed. The type manager must take the responsibility for

~equentiali:ting simultaneous requests 6n the same connection ob.:f ect. A

destroy-connection ca:nnot be allowed to proceed simul::hineously with

send-message, for example. Since tne·se operations will actually be decomposed

into a sequence of operations on lower lev-'el objects, such as the buffers, I/O

channels, etc.' there is a possibility of incorr·ect operation if the steps of

two operations on the same object are interleaved.

One way to prevent such interleaving· and achieve sequentiality is to

associate a lock with each object, requiring that the lock be set by each

operation before any modifications to the object are attempted, and that the

lock be reset after the operation is complete. Equivalently, a process can be

associated with each object to perform all of the operations on the· object by
-

accepting re.qilests for operations that are placed in a queue. The important

thing here is that two operations on an object are ne~er performed overlapping

in time. This tactic is not sufficient, however, if operations on one object

can interfere with operations on other objects. An ever~ptesent.example of

this kind found in operating systems is the need to manage a small set of

resources that are multiplexed among different objects of a particular

Chapter 3 - 72 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

abstract type. In the example system, assume that a fixed amount of memory

resources is available to the connection type manager for use as I/O buffers.

When a send-message is executed, a buffer must be allocated to hold the

message while it is being accessed by the I/O device. Other send-message

operations on different connections may be attempted simultaneously, resulting

in possible interference between buffer allocation operations. In general,

operations on different objects implemented by a type manager that multiplexes

some lower level resource may need to be sequentialized. For this reason,

viewing objects as individual sequential processes is not very useful in

solving all of the problems of objects in the presence of parallelism.

Another possible view is looking at the operations performed on all

objects in the class implemented by a type-manager as a sequential process, so

that no two operations on objects in the class can be performed in parallel.

This view actually can be realized in an implementation of an abstract type

manager by building the manager as a process, with requests for operations

being sent to it through a queue. (1) In the example above, the connection

manager would be implemented as a process that performed the actual I/O

operations and buffer management. The obvious disadvantage of this view is

that it sequentializes operations on different objects even when this

constraint is unnecessary. (2)

(1) Or alternatively, by using a single lock to protect all operations of the
type manager.

(2) Unnecessary sequentialization can be especially bad if an operation on a
particular object can take arbitrarily long to complete, or may never
complete. In operating systems, however, operations are usually short, and
must complete.

- 73 - Chapter 3

PROCESSQR MULTlPLEXING IN A LAYERED' UPERATING . SYSTEM

The sequentiality ean be reduced, while retaining the ability to

sequentialize ope~ations on different objects, by buflding' the type manager as

a collection of cooperating processes. There will b~ a single process which

accepts requests for operati'ons and then caus~s the other processes in the

type manager to carryout the· operations in as 1S4rallel a: fashion as possible
' .

under the constraint of correct operation. This view can be applied to the

operation of the page abstract type manager as has' been done l>y Huber [10).

In his implementation, tnere is one proces-s (repr~sent~d b}i the page table

lock) which accepts reque8ts in a sequential ~(;t"der. · rt:· tneri. cau8es other ·

processes to carry out operations required 'by the request·&· in' a parallel

fashion.

As noted above, it is possible to implement the S:~quential processes

required to construct such an abstract twe· managet in two ways.· A server

process can always be simulated by cod'fi· that·ls" encuted;' in each requesting

process under a lock. As long as the 1oektng conv~nl:io'li' is obeyed, there. is

no interfet~nce between operations 'performed undei) tile 'tock due to parallel

execution. Alternatively, the . server proc~as can actually be .implemented on' a

dedicated processor of its own.
-' -~ :

Use of a lock to create a process can reduce ~he cl~f~tr of the code and

create problems that are not found i~ the process executing on a dedicated

processor. An operation that tak~ .place.~n t~e r~~e~~ing P,t:ocess is_ not

easy to protect from the peculiarities of the requesting process environment.

Fo:t example; the request-'itig process Jitay not h,4-*~ ~ff_~~\jint · sche41!ling

Chapter 3 - 74 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

priority to complete the operation quickly, resulting ·in delay to other

processes waiting to perform.successive operation-s. The meaning of the

instructions and addresses in each requesting process may vary, so that the

operation must be specially coded to successfully'operate in environments

where the handling of overflow- faults n\ay v>ary, ·fot e:X!bple. ·In addition,

each operation must be ~eined to ensure :ka tdlliitration, for non-termination

of one operation can cause. all other operations be±ng' carried out under the

lock not to terminate. If th-e operat:ions at'\! distribul:ed through the system,

it is much more difficult to bring all operations together to inspect them for
.

termination. It is also less likely that a programmer implementins. the .
· abstract type will be able to oversee all the operations to ensure

termination.

Til.ese arguments suggest it is often much simpler to construct abstract
' ~ ' .

type managers as pr_ocesses that execute on their own _processors.

In order to use -processes for implementing· abstract type managers, it is

necessary to have-enough processors to implement all of the·processes.

Sufficent processors can be produced by multiple1C:flfg. At eac:h level in the

operating syst.em type hierarchy, there must be sufficient processors available

for each type manager implemented at that level. Til.e issues- of using

processes in implementing the storage system generalize to the case of other
~:;:

type managers in the system. 'lllere must be a low-level type of processor to.

implement processes for low level type managers. Higher level type managers

will benefit from the additi-0nal quantity and capabilities of higher level

processors.

- 75 - Chapter 3

PROCESSOR MULT!rPLEXING IN A ~ERJID OPEl.illNG' .SYStEM

Many abst.ract type managers should oe: 1.mplemeatM on lower-level

processor ~bstractions in order to guaraatee moreco.p:lete cbntrbl over the

hardware~ In the example system, the coanection type 11anager may need to be

scheduled rapidly when a message arr~ves, in-order.to get th~t messag~ to the

receiving process prom~tly if nec:essary. ·~If .svcli ~a,,proeesa:wete '-implemented

several levels of scheduling by different p~eaao:e~111\fltipl~xing algorithms.

Consequently, it shou1d be implemented on: a releri~ly 1W'1.evel processor.

In a system with two levels of processor multiplexing, most of the

' '

abstract tyPe managers for system objects will be built out of the first level

of virtual processors for this reason.

The type manager processes inside the operating system must always be

capable of servicing requests, if it is required that the system not deny
'·- <

service to users. For this reason, it should be impossible for the type

manager processes to be put-into a stat._ that will i8ft()t'e requests for service

forever. Th.us, the ahstract type manager process must al¥ay8 have a

processor. F}lrther, such abstract type sa.anager: praceseora 1Mr8l: always have

p_riority for physical processor resour-ces- "OVet: all :user coaputations.

Consider the example system. If the processors on which the page

abstract type manager is implemented had lower priority than user

computations, user processes that did not require service by the page manager

could effectively deny service to user processes that did require service by
-~-.. ' -

Chapter 3 - 76 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the page manager. By saturating the real physical proces~or resources, _uset

computations could prevent the page manager fr~m runnitlg for arbitrar~.periods

of time.

Abstract type managers implemented on virtual processors provided by the

first level of processor multiplexing·shouid not be.affected by the second

level of proc·es'sor multiplexing that' implements user virtual processors.

There are t'WO reasons for this. First, the second level of processor

multiplexing, Which depends on abstract' type mana'gers'implemented on virtual

processors~ cannot be allowed to manipu~~te the'.v~~tual processors of those
.,

type managers. This would lead to a cyclic ~d~eridency where the type manager

process depended on the second level processo~ multiple;cing algorithm that

depends on the type mana&_er. Second, the type mattagex..a of the operating

"

system must be guaranteed service. ahead of the ttser computations scheduled by

the second level processbr manager.

•·

A mechaniSm whereby a process executing an a virtual processor can attach

' itself firmly to its virtual prQC-essor is r~uir~d, so tthat it cannot be

removed from the virtual proc:essor by the . .second: la.Ye!. processor multiplexing

manager. In addition, virtual processo~~ executing abstract type managers

inside the operating system must have priority for computational resources

over the virtual processors executing user computations.

Looking back to figure 3.3, let me emphasize these points. The level 1

processors implemented by the level 1 processor type manager are used in two

- 77 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

ways. Some of them are multiplexed by ttie·l~vel 2 proce~sor type manager to
-:~.:.~r ~~I

lllake level 2 processors. Some others are used to used in implementing the

system type managers, such as the page type manager, the connection type

manager, and the level 2 p~oces$or manager it~~lf, to perform various

management functions, isolating and $,eqU,e.llt.:f..al.izing th4il system type manager
.• :· ·-.. -.>,.? -

operations. These latter level. 1 pro~~SSf?J;~ are p~~eu,tly 00.Wld-:to the

processes of the page manager. They, al.~o }\ave scheduling pri.D:ri~y over thoae

level 1 processors used to :lmplemeµt Level .2 pi;oc~sso:rs. The., resulting

level l procr:J+-0 · ·· ·l1evel 2 processors

permanently
bound

level 1
processors

~
~ ~

J
l
I

. J.

' r ' -L __________ .J

I kernel processes I
J

page· l
manager I

I

OK)
I .

~
~

I

. proc:es~ : .
I
I . T:-/<f.

process I
, · !c

' I
'· · Fi~ure 3'~ 5

"';O ... _
. -- - - -

/.,,.. ... ,
..,"'-' l,.
'"\,,I~

~~u

·.,

Permanently Bound Type Manager Processes

structure is shown in figure 3.5.

Chapter 3 - 78 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.5 Two Levels of Scheduling

There is a natural hierarchy in scheduling policy that is found in many

operating systems. In Multics, for example, there is a short-term

multiprogramming policy that multiplexes processors among a small number of

user computations. The goal of this algorithm is to achieve maximum use of

the processors, and thus maximum throughput in the short-term. Multics also

incorporates a long-term scheduling policy that controls the set of user

computations that participate in short-term multiprogramming. The goal of the

long term policy is to achieve control of the responsiveness of the system.

The scheduling hierarchy is easily incorporated into the two level

virtual processor hierarchy. The first level of processor multiplexing

provides level 1 processors that have a built-in short-term scheduling policy

that is designed to maximize throughput. The second level then provides level

2 processors that have an administratively variable scheduling policy that is

designed to control the responsiveness of the system for each class of users.

- 79 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPEllATING,SYSTEM

3.6 Problems of a Processor Hierarchy

Having mentioned. the advantages of ·a processor hierarchy, I will now

describe the potential -disadvantages of the hierarchy~ There are three such

problems. They are inefficiency due to multiple l~s of processor

multiplexing, potential i.nterference by t:he level 2 achetfuler' in the internal

workings of. a type manager at a lower. lfWel~ and the need for IPCC between

processes implemented at different lev•ls,ia the·hie'l"archy.

3.6.1 Efficiency of Multiple Levels of Scheduling

Having two levels of scheduling going on at one tiiae can be very costly

in terms of scheduling overhead. For e~anaple, if the frequency of scheduling

decisions at the second level were the same as the frequency of scheduling

decisions at the first level, and each scheduling· decisicm had -a fixed

overhead cost in processor time, then the total aao.unt of processor time

wasted in scheduling decisions would be twice that of a single level

scheduler.

Extra scheduler overhead is not a problem with the two level scheduler,

however. The reason is that the scheduling policy implemented at the second

level makes long-term decisions. Thus the second level decisions are made far

Chapter 3 - 80 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

less frequently than the short-term multiprogramming decisions made at the

first level. Consequently, the overhead of scheduling at the second level

will be insignificant compared to the overhead of the scheduling decisions at

the first level, assuming that decisions at the second level cost the same or

less than decisions at the first level. Furthermore, most of the work done by

each level would have to be done in a single level, anyway. Extra overhead

only arises if the second level duplicates the effort of the first, so that

the same work is done twice, or if the interface through which the second

level controls the first is more costly than that which can be achieved in a

single level design. The short- versus long-term distinction eliminates

duplication of effort. The interface overhead problem is mitigated by the low

frequency of interactions between the first and second levels relative to the

frequency of interaction between the first level and the real processor level.

Although the second level of scheduling does increase the time overhead

of processor multiplexing slightly, another cost is actually reduced by

introducing the second level. This cost is the cost of memory to hold

processor states. At the first level, primary memory must be used. (1) At

the second level, cheaper virtual storage can be used instead of primary

memory.

(1) The major use of primary memory in the level 1 implementation is to hold
envir-0nment descriptions. Only level 1 processors that are in use (i.e., not
stopped) need have their environment descriptions in primary memory. Level 2
is responsible for ensuring that the environment descriptions are in primary
memory.

- 81 - Chapter 3

PR,OCESSOR MULTIPLEXING IN A LAYERED OP:F.RATING S.YST!M

3.6.2 Protection of Lo-w-level Type Managers; fro11 Level 2

Cons;ider the operations of the page type manager,, whose position ih' t1te

system type hierarchy- il'I sho.wn in £igure 3. J •. Oifer«:tiontt-'prOVided by the ·pag~

processors that ex.acute user computations, since both use ·pages for holding

their data bases. Some of .the -operations· on !>ages .anipulated by level 2 ·

processors can be implemented .as:'. -euitroutines or in-lin~ code 0 r that can be .

executed. by level 2: processo-rs whi-le bcuncl to. level l' processors. lf the·

designer 9f the sy$t.em is not car.eful 9 it may· ha possUlle for a lavel 2' ·

processor to .be.cone. unbo\lnd from its :level 1 · processer·i.h the *t'1ddle of

executing the sequence of instructions that implement a page operation.

Having. started executing an operation o'(: a ·level ·below tl\e 1.evel 2

processor illlplemeatat;ion, tbe process must bedalloWecl to finish -that operati()tt

before it-can be unbound frOID the level 1 procesaor. If U: were preven~ed

manager could modify the private memory (e.g., the instruction pointer) of the

fl) The expansion into subroutines or in-line code of the type manager
operations should• ..:of course, he .·transparent to the·.uaer,·of· the system •- he
should not know ~bat type manager. ope~ations are actually sequences 0£
lower.,.level instJ;'uctions. .rresuaably, 'the user will :be prevented from·
actual:l,y writing eo4e t<> •~nipulat-e the type ~manager "data· bases by a run-time
or compile-time protection mechanism.

Chaptei; 3 - 82 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 2 processor, and then rebind the level 2 processor to a level 1

processor. This modification would interfere with the subsequent correct

operation of the type manager. Second, the level 2 processor manager could

prevent the operation from ever completing, thus leaving the data bases of the

manager in a possibly inconsistent state (e.g., it might have a lock set in

it). Both of these problems violate the hierarchic structure of the system,

since they can cause type managers at lower levels to depend on the level 2

processor manager for correctness.

Allowing the level 2 processor manager to unbind a level 2 processor in

the middle of a lower level operation can lead to deadlock of the level 2

processor manager, as well. The deadlock can arise because the data bases

being manipulated by the interrupted abstract operation are used in the

implementation of the level 2 processor manager. For example, the interrupted

page manager operation may have set a lock on some part of its internal data

bases to prevent parallel manipulation of those data bases by other processes.

The level 2 processor manager, when it handles the unbinding of the level 2

processor that is stopped, may call upon the page manager to obtain

information about the level 2 processor for rescheduling. The request of the

level 2 processor manager will be forced to wait until the level 2 process

being rescheduled finishes the current operation, since the lock is set by the

level 2 process. The process cannot finish its operation until it is

rescheduled, therefore there is deadlock.

- 83 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATIMG SYSTEM

To prevent violations ~f the type hierarchy and aeadlocks, operations of

type managers at;. lower level'S than the lttei · 2 processor manager should appear

to be indivisible to the level 2 processor manager~· '!be level 2 processor

manager will only be able· to unbind a prdceits from'the level 1 processor

before or after, but not during an abstta'.ct type.op~tadon. ·

~ : ' \·

In the design, this indivisibility is ac}ti~v~cLby }\~vinJLablili.,_ract type·
r ~ . . ;-- . - - ·- --~ ~ .. . • ~ ~ - -

___ ,

managers inform the level 1 processor manager wt_e_q _tq~y .sta.rt a.QA. fini-sb. _
• - - ·- J • ~ • • • - • - • -.-

indivisible operations. Between the start and finish of indivisible
;.

operations, the level ·1 proces8or manager witr'no't allow the level 1 processor

to enter the stopped state. Since 1.e\ffil i can o"itly fn~pect and ·alter the
l ; ~ .- •. I"

states-of· sto.pped level l processors, the· desired indivisibility is achieved.

~ j _, -

A very simple method for deciding when an·operatiq~csho.uld be iodt;visibUc
. - -~ ..,, . - .

at level 1 arises from the hierarchy. All operat;iol)s Qf type 11uu14gers below:·
' l .) .; :: ' ""': .-. ".. .- _; -· •

the level 2 interface in the type h_ier~~c~.r ,s~o~~~"~~ fWH!~~~ble •. If ":type

manager is below level 2, level 2 u~es ~t~and c;tepen,,dse:>~,it~_fPrreftness. It
. . . '. . : _, ~. . . '~ -

is a violation of the abstract type model _for .level 2 ~p.J>,~ ,able tQ, interfere
. .· . .l1 l •• < - ;

with the operations of types that it depends on •.
"':'" - .:._, ·.;,. '

.,.- j

3.6.3 Cross-level Interprocess Control Comaunication

Each level of processor provides its oWll mechanism for communicating

between computations running on those processors. It will occasionally be

Chapter 3 - 84 -

PROCESSOR MULTIPLEXING·. IN A .LAYERED OPERATING SYSTEM

necessary to design the syatem so that a'computation expressed in terms of

level 1 processor operations (such as the page type.manager) can signal a

computation expressed in terms of level 2 processor operations, or vice versa.

Consider the example system of figure ·3.3·. If the page manager were

implemented as a process permanently bound to a level 1 processor, then level

2 processors requesting the services· of the page manager would have to signal

the page manager someho\i, and be signalled h,ack~eP.. tl;1e . request is finished.

The level 1 page manager processor cannot us.e the J..r.CC primj.otives itnpl~.inented ·
-:F .

in the level 2 processor type manager, because the level 2 prpc.e.ssor 1114nager
~ - - . "":: - .) .'. . , - . - -

~ . - ,' .
depends on the page ·mahag'ei:. fO:t various services,. such as i!"PJ~taenting its

~ ~ - • • ' • ,. < - - •• ,· ~ • '

tables and moving the envirctl:ir.!nt 'description~' of level 2 proce~sors in and

out of primary memory. A cyc~~c ?ependen~y would resu+t if the page maµager

processor attempted to use the level 2 pr~~e~sor ~PCC _11~rimiU:y~s •. Oil th~ 1

other hand, the level 2 processor requestin~ service must b~ able to aw~it ~t

level 2 if the level 2 scheduler is to retai~ co'l.t,i;ol ov7r: tl).e resour~e. usage

by level 1 processors. In this case, then, a le'9'el 2 aqvan,ce by the level 2

requesting processor needs to awaken the page manager processor that awaits at

level 1 (an inward signal) , and later a level 1 advance by the page manager

processor needs to awaken the requesting level 2 processor that awaits at

-level 2 (an outward signal).

What is required in gener-al i& a ·way t-o·,,errorm an ~actvan<:'f! operation at

one level .that .• causes_ await operatioils ii;i,pr~j,:~~~'..~i,.. t~ ,@t~er. level to

proceed,. just asTf the advance were' 'dohe at .th.at .. l~v~l. l n~w present the

i .. :·

- ss - ch~pter ;3·

PROCESSOR MULTIPLEXING IN A LAYERED OPERA~ING SY~TEM

algorithm for level 2 advance and aw~it, an.d tl_leu ducuss how inward and -

outward signalling are implemented.

3.6.3.1 Level 2 Advance and Await Alg~rithms

The algorithm for await at level 2, in terms of level 1 a.w~t, is:

1. mark current level 2 processor as~ awaiting the nanae,d ~events.
2. do a level I processor' await on 'the same eventcounts. (1)

The algorithm for level 2 advance is:

1. -do -a level l advance on the spec if ied event count •
2. mark as not waiting, any level 2 p}:o~_ess.(>,rs wJ;i.oaa .eventcounts included

the oneadvanced. This wi11·cau8e ttlein to- become assigned to level 1
processors (if they are not a.}.ready so_b9~'1);.,~8J'•'theywill
discover that the current await immediately proceeds.

It is absolutely necessary to have the computation-re-execute the await
·i-i-< __ .

instruction at level 1 whenever a level 2 processor that was awaiting at level
- - -

1 f s reassigned to a new level 1 processor by the level 2 processor abstract
, · · ' i_·F

type manager. Re-executing the await guarantees that step 2 of the advance

algorithm works properly.

(1) In chapter six, I will show that the level. 1 await here nee,d not be Q.11 the
same eve'ritcounts. T ha-<ie silllpllfli!d the- atg'orith'ti .her~'· beca~~ th~ added
complexity discussed in cha~ter six is i.H~Lev-~nt to .tb,e ,ou~ward sigaalling
mechanism.

Chapter 3 - ~6 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.6.3.2 Inward Signalling

Inward signalling, an advance at level 2 starting processors that are

awaiting at level 1, works correctly in the level 2 advance algorithm above.

Level 2 eventcounts are implemented in terms of level 1 eventcounts, so that

an advance at level 2 is performed by an advance at level 1 plus some

bookkeeping to handle processors awaiting at level 2.

3.6.3.3 Outward Signalling

Outward signalling, an advance at level 1 starting a processor that is

awaiting at level 2, is more difficult than inward signalling. While an await

at level 2 is performed by invoking await at level 1, it is possible for the

processor awaiting at level 1 to become unbound from its level 1 processor, so

that it is now waiting only at level 2.

Unbinding from level 1 is possible for await operations that need not be

a part of a level 2 atomic operation. For example, when a level 2 processor

is waiting for a page to be brought into primary memory it can be unbound from

level 1 since the correct operation of the system does not depend on the level

2 processor to actually reference the page after it is brought in.

- 87 - Chapter 3

P.ROCESSOR MULTIPLEXING,. ~N .A l.AYJUOO> OP~TING SJSl'BM

Unbinding a level 2 processor while it is awaiting at level 1 is

desirable for an economic reason. The real processors of the system may not

be used to full capacity if level 1 processors are al:j.,,awaitill3 events. Since

there will be relatively few level 1 processors (since level 1 processors take

up large amounts of expensive primary m,emory), -if rit ::Ls possil>.le to unbind

waiting level .2 processor~,. it is eepn~~a,ltly -a,dvan~_us to d-0 sa. Short ·

waits are not as m:uch of a probl,em ,4~ lol}S ~a_.., . ·"

Basically,· the ditfi~ulty of outward signalling , is that the level 1
t• T,-• '""""':: ~ ; _; ~

processor advance primitive cannot kno~ all of the processors awaiting at

level 2 that are to be awakened when an eventcount is advanced. If the full

economic advantage of unbinding level 2 processors a~~d.JJ&.level.J advan~es

is to be obtained, the level 2 processor manager should not rebind a waiting

level 2 processor to level 1 before it will b~ ~..+e. t.p p.fQC~ed ·through the

await. Thus, the level 2 processor manager mu11~,)>e ·Mf&r~:of a(Wances to

eventcounts that are done at level 1 with the,_~utenti(;lll ~.1tig-ualling

processors at level 2.

Detection is not easy, since all eventcounts are potential channels for

outward signalling. The t:ask may be restricted sj..ce i!}any,par:ticular system

only a few eventcounts wil,l be usecJ fot"·Out"f&:t;'d~ si.aaal.U.ng •. In the example

system, there will be a fixed set of eveat~o14nt~ .. t1Ja~.jaz;:~ ~!palled by each - ' ~ ·- ·. ' , ~ . -- , - ,_

kernel type manager -- the. page, 11l4Il4ger will -hav,~ -a ·Jm'1t ~fl~t of events that

it signals, and so will e~c;h other type p048er ~ ;~e-:-«>eerattog aystm.r By
-1 -

structuring the system so that the level 2 processor manager knows this set,

Chapter 3 - 88 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

and can efficiently search it for modified eventcounts, we can solve the

outward signalling problem.

The level 2 await primitive recognizes eventcounts that can be outward

signalled because they are all stored in the same segment. This is a simple

way to design the system so that the level 2 manager need not be changed every

time the set of eventcounts signalled outward by lower level type managers is

changed. Eventcounts in this segment will be treated specially by the level 2

processor await primitive -- the level 2 processor manager will periodically

poll the value of these eventcounts to see if they have changed.

How frequently the level 2 processor manager checks will determine the

responsiveness of the user processes to outward signalled events. The

checking can be triggered by a real-time clock ticking at a certain rate

(chosen for the desired responsiveness). Alternatively, the checking can be

done every time an eventcount in the outward signalling eventcount segment is

advanced in order to ensure maximum responsiveness. This latter strategy

requires a small amount of help from the level 1 processor manager, in the

form of a special eventcount that is advanced by level 1 every time any

outward signalling eventcount is advanced by the level 1 advance operation.

The level 2 processor manager (which is permanently bound to a level 1

processor) can then await this special eventcount.

- 89 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.7 Summary

In this chapter, I have shown how two levels of processor multiplexing

can work together. The model developed in this chapter, and the solutions to

the three problems discussed, will be used in chapters five and six as a basis

for a detailed design of a system where two level processor multiplexing is

used.

Chapter 3 - 90 -

Chapter Four

Level l Virtual Processor Interfaces

In this chapter, we begin discussion of a proposed operating system

design that incorporates two levels of processor multiplexing, as in our

model. Here we discuss the interface of level l virtual processors.

The description of level l is divided into two chapters. This chapter

describes and motivates the interface of the level l processor. Incorporated

into this interface are many features that are important in a real system such

as Multics. Examples from the Multics system are used to motivate the design.

Chapter five describes an implementation of the level l virtual processor

manager.

- 91 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYE~ OPERATING SYSTEM

i

4.1 Level 1 Virtual Processor Intetlface

Level 1 processors are quite ~mil.ar to real physical processors. ·They

execute instructions in basically *e· ~-e way, hav# similar internal statee,

and have the same addres.s 111appin& tp addr~s N~i#aary m911lOrY• There are some

differences from hardware processor~, though. They can execute several new

operations that are implemented by ~he l~vel 1 processor manager. Their rate
,,

i
of execution is controlled by the l~vel 1 processor manager. They cannot be

'!
.,.

added to or deleted from the systemt We describe here those differences.

Th.e operations that the level ~ ,pro~essot: e.an pe:rfona that cannot be .

performed by real processors serve four different purposes. Some of the

operations allow level 1 processors: to do interprocess control communication.

Some of the operations allow level f processors to control the bindings of
I

level 2 processors to other level 1 processors. These operations are

structured so that the level 2 proc ssor manager may be built as a central

agent out of several dedicated leve 1 processors. Some of the operations are

concerned with virtualizing the har ware facilities of real processors, such

as fault handling. • i
Finally, there 're operations to change the hardware

resources being used by level 1, tolallow for reconfiguration.

I

Chapter 4 92 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

To facilitate description, operations of the level 1 processor are

described as if they were subroutine calls;; The names of each operation will

consist of the prefix "VP1$" to indicate that it is an operation of the level

1 virtual processor manager. The data input and output from the operation are

specified by parameters to the call. Parameters that represent input values

appear normally, output parameters are underscored. In the actual

implementation, these operations all act as if they are non-decomposable

machine instructions. It is not possible to stop a level 1 processor during

the execution of one of these operations. Also, the level 1 operations must

not be interrupted in the middle by a fault. Consequently, each level 1

operation ensures that all of its parameters are in primary memory and

accessible to the level 1 processor before performing the required opera~ions.

If the parameters are not in primary memory, a fault will be reflected to the

level 1 processor. The level 1 processor can then handle the fault, and

restart the operation from the beginning. Accessing of parameters is

discussed more fully later in the chapter.

There are certain operations that are use4 on.ly by,the second level

processor multiplexor. These operations are specially p't'otected; so that only

the level 1 processors that are used to implement the level 2 processor

manager may execute them. Protected operations will be-marked in the.text by

an asterisk following the parameter list when their calling sequence is

described.

- 93 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In any case, the level 1 operations are all internal to the kernel of the

operating system, and can be used only by programs written as part of the

kernel of the operating system.

4.2 Limited Supply of Level 1 Processors

The level 1 processor manager creates virtual processors that perform

computations for higher levels in the system. There is a fixed, small number

of level 1 processors in the system. The limitation on the number of

processors arises because level 1 processors are implemented at the lowest

level of the system. The level 1 processor states and environments are stored

in primary memory. Since primary memory is expensive and of limited supply,

the number of distinct level 1 processors that can be implemented is limited.

The actual number of level 1 processors created in an implementation will

depend on the available memory, and the need for level 1 processors at higher

levels of the system. For a Multics configuration such as the one installed

at M.I.T., with two processors and 384K words of primary memory, I estimate

that about fifteen or twenty level 1 processors will be sufficient. This

estimate is based on two facts. The number of processes actually

participating in multiprogramming at any one time in the M.I.T. Multics never

exceeds six. Six level l processors can thus be allocated to the second level

processor multiplexor to implement user processes. The remaining nine to

-~ fourteen are allocated to executing kernel processes that manage various

,--.--:
kernel resources such as virtual memory, multiplexed I/O devices, etc.

Chapte.,r 4 - 94 -

fl

PROCESSOR MUL'fIPLEXINC IN A LAYERED OPERATING SYSTEM

4. 3 Mult !programming of Real Processors 'Ana()'rtg Level 1 Processors

UnlJ.~ phy!Jical processo-rs, tevel 1 processors do not execute

instruct~ons. at:.a constant rate (~ue to· thef1llft'' that they are implemented by

processor multiplexing) •. -, In ;ord~r to provid'e kernel Jitocesses ·with quick

response to events, level 1 processors have fi~· 'pTHrrities for computing

resources. Kernel processes that need f~st resp~rise, such'asI/0 device

service processes, will be .. bound to ·high· priorit1 lev~n-1 processors. User

processes will always be bound to level 1 processors of the lowest priority.

The simple~t way ·to discuss the- affE!ct of·'pr{Cirid:es iS to describe the
-;..- .,

- ' ' ' . ; f ., .. ·: ,-

effect of the priority mechani'sm on the as'S-ignllten:t·of·real processors to level

1 processors. Real process.ors will al.Ways be assigned· tti the hlghest priority

runnable (1) le.vel 1 processors. If two level· 1 proce~ssors have equal

priority values, the one that has been computing :·the longest will have

priority. This implies that scheduling of processors of equal priority will

be approximately FIFO. It has been the experience in Mult~cs that FIFO

scheduling during short-term multiprogramming was the most effective means of

achieving good throughput and avoiding thrashing. This choice of policy

implements th4t experience. ~··

(1) By runnable, we mean non-waiting and non~stopped.

- 95 ...

PROCESSOR MULTIPLEXING IN A-LAYERED OP~RATING SYST!M
' .•"

4.4 Execution States of Level 1 Pr9cess~s

From outside the level 1 .processor -1-plell\~_ation,· a lievd 1 procf!ssor is

either executing (running or waiting) or s.t~ped~'~Wit:hout ob'servfttg·the side

effects of execution, sµ_ch as .cha.ngejl t9 stiared)eembry~. it i-s not possible to'-:

tell whether a!l executing level. l pro~-S.$C>J' J.•· aetuall.y· execoting·on a re~l

processor or oot. As we have shown.in chapters two and ~h~ee, the stopped

state of a level 1 processor ~xists to.allow,cbangine~the binding of the

processor safely.

processors in order_ t:<?. ~,ul~ipl.ex "tP~-~ Sin~e the lievel: 2: .'proe.essGr manager

will be constructed out. of level 1 pr,,,o.t';~Jl'SOrs·,_ the;,l.ev.el 1 p~ocessot' manager
-. , E-; •

must provide operations that allow one level 1 proc.easor to cha11ge the

execution state of anO~~er. There ~~e two such.operations.

VP1$run (llproc) *

changes t~e state of the level 1 processor naaed llproc from stopped to

executing._ If llproc is already executiq.g, ·the ·opemat.ion has no· effect.

VP1$stop (llproc) *
l

causes< the level 1 processor named llproc to stop as SOOfl as~ossihle. If the

level 1 processor is already stopped, the operation has no effect.

Chapter 4 - 96 "'."'

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The binding of a level 1 processor may only be "changed when it is in the

stopped state. A level l processor only enters the stopped state in between

atomic operations. So that operations on -system object~ can be implemented on

level. l processors as atomic operations, a facility is provided that allows a

sequence of instructions to be treated as an atoliiic operation. Executing the

operation

VP1$begin_atomic_operation ()

indicates that an atomic operation is to be beg-illt. · Once

VP1$begin_at;()IJlic_oper,ation is executed, the level 1 processor cannot enter the

stopped st4te. The ope.ration

VP1$end_a~-omic._operation ()

ends .the current atQJllic operation. Atomic operat'1'6ns may be nested in time;

the le~r.d l processor can Dnly be stopped aft'E!r the 'final call On

end atomic
operat on

atomic
operat on

begin atomic begin atomic
operation operat on

Figure 4 .1
States of Level l Processor

- 97 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

VP1$end_atomic_operation. Figure 4.1 shows how the actual execution state

changes in response to state changing operations.

The operations VPl$begin_atJ>111.ic_;,,oper•t-j.on and VP.1$end_atomfc_operation

are similar to a facility already existing in the Mulrics operating system.

The Multics mechanism for assu~ing that vir~tµpl processors executing system

code do not get pre-empted in the middle of a system operation is to mask the

.,

physical processor from getting timer runouts or-pre-empt interrupts.while

executing in the supervisor dom(lin._ '.rhe Mult.ics,aechaaiam is· flawed, however,

because some code executed .in the systeia .d~in is not 5par.t· of an-j brnel'

abstract operation. A particular example is the copy:l!l\g of Ugullfelit values

into the kernel domain from the user domain. The copy.lag_is done by-code

executing in the k~rnel domain, but accessing user. data structures. It i.s

possible to put the processor into a Joop wh:i.le executing; an (incUvi.sible)

operation in the kernel, by mod!-fying the user data as :f..t··-is copied.

Using the proposed primitives, the indivisible_~pera~ion ~uld begin only

after copying the arguments. These primitive• -allow attl)h. -~· fine-gtained
~ z

control of the parts of the system that imp!~t indtvi.!jbl,e operat:lons.

Chapter 4 - 98 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.5 Scheduling Controls

The level 2 manager will be implemented on level 1 processors. In order

to control the amount of real processor time'used·by the level l processors it

multiplexes, the level 2 processor manager must be able to stop level 1

processors after they use up a short-term allocation of proc~ssor time. Ttiis

function must be provided by level 1, since level 1 controls the allocation of

real processor resources to level I processors. Level 1 thus associates with

each level I processor the accumulated processor time used since VP1$run was

called, and a limit on this usage called the quantum. When a level I

processor exceeds its quantum of processor time, the level I pro~essor manager
-) - --

effectively calls VP1$stop on that processo.r, causing it to stop after the
I

current atomic operation is completed. ;,

Since level I processors exceed tneir quanta independently of the

execution of the level 2 processor manager, the l~vel 2 implementation needs

some help to know when level I processo1;1:1 _ ttOp·, and which level 2 processors

have stopped. Each time a level I processor stops, a special eventcount

managed by level I, called the stop even-tcOUl'lt:,"iS advanced. The level 2

processor manager can then await this eventcount to di~cover when level I

processors stop. To let the level 2 processor find the stopped level I
. • 4 ~ . l

processors easily, the level I processor manager maintains a queue of stopped

- 99 - Chapter 4

PROCESSOR MULT!PLEXING !NA LAYERED OP~TINGSYSTEM

level 1 processors. When a level 1 processor stops, it enters the queue. A

level 1 processor operation,

VP1$next_stopped (llproc} *
returns the name of the next stopped level 1 processor in the queue, deleting

it from the queue. The level 2 pr~cessor ·~~ager can use ~bis operation to

find all of the stopped processocs.

4.6 Changing the Bindings of Level 1 Processors

The 'second level processor manager needs to be able to change the

bindings of level 1 processors it multiplexes. To provide this function,

there are two operations that allow the internal state of stopped level 1

prdcessors to be extracted and loaded. The state description used in these

CRs

DSEGP

IP

Figu?le 4.2
Level 1 State Data

·- -

interfaces' is shown in figure 4. 2: · ·nie state consists of the values of the

' computational registers (CRs}, the address of an environment specification

(oSECP}, the current value of the i~struc~ion p~inter in the environment (IP),

Chapter 4 - 100 -

PROCESSOR MULTIPLEXlNG IN A LAYERED OPERA.TING SYSTEM

the address in the environment to which the IP will be set when a fault occurs

(FIP), and the amount of resources remaining until the level 1 processor is

automatically stopped for exceeding its «toht:um ("(fl'Ml)'".'' -' · ··

The operation

VP1$bind (llproc, state, error) *

sets the state of level 1 processor llproc from its state argument. The

operation succeeds, and error is set to false if llproc is sto~ped, otherwise, - ~-· .

the operation fails and error is set to true. A level 1 proces~or may be

unbound by the operation

VP1$unbind (llproc, state, error) *
that returns the new state of the level 1 processor in the variable state. If

llproc is stopped, error is set to false and the operation succeeds, else

error is set to true, and no data is copied into state.

- 101 - Chap-t:er 4

PROCESSOR MlJLIIPLEX.ING IN A LA~: -OP~ttNG -SYSTEM

4.7 Interprocess Control ~unicat!Pn

The level 1 processor manager provides operations to perform interprocess

control communication using eventcounts. At this level, eventcounts are

implemented simply as primary memory words. In order to allow these

eventcounts to be shared among several virtual processors, each of which has a

different local° name for it in its environment, we need a global name for each
•f,_.

memory word. It is possible to use the absolute primary memory address for

this purpose. Using the primary memory address would not allow these

eventcounts to b~ managed by the virtual memory manager, though, because the

virtual memory manager can move the eventcount from one address to another, or
. ~};_. i

to disk. To allow the virtual memory manager to move the pages containing

eventcounts in and out of primary memory freely, the environment description

for each level 1 processor contains an additional value for each page of

primary memory. This value is the unique name of the page in the virtual

memory as a whole. Given the name of a page within the environment of a level

1 processor, the level I implementation can determine both its current primary

memory address (if in primary memory) and its unique name. Level l can use

this unique name to name eventcounts in the page, no matter how they move

about in primary and secondary memory.

C1lapter 4 - 102 ...

PROCESSOR MULTIPLEXING IN A LAYElED OPERATING SYSTEM

The level l processor manager implements th.e two operations,

VP1$await (eel, valuel, ec2, v~lue2, ec3, value3)

and

VP1$advance (ec).

VP1$await actually allows up to three eventcounts to be awaited

simultaneously. It thus takes from 1 to 3 pairs of arguments (3 pairs are

·'

shown in the calling sequence). The ec arguments are passed by reference,

using pointers in the environment of the caller. 11le level 1 implementation

perforrils the translation. to unique syste~~wide n:m'e. The operation VP1$await

only returns to the caller after on'e of the eventco~nts eel' ec2, or ec3,

-< ·-

exceeds the corresponding value specified as valuel, value2, or value3. A

level 1 processor could simulate the effect of waiting on multiple eventcounts

by spawniflg three separ~te level 1 processors to wa.,t~ pn each event:count

separat~ly, then wait1:~&. fo.i; on~. of them to advance a shaJ;.e,d eventcount.

Spawning prc;>c~ssors this w_ay is cumber_som~ so it is useful tG all<>w. multiple

eventcounts t<:> be awaited siraultaneou,sly. T4~ nUJ!lber of. eventcount..s that can

be awaited is limited to three hec~use the level l pt;.qces.sor., ilaplementatwn

can use only a fixed amount of storage to reuiemlun: -!:ha.eyentcQun£s being

awaited. Three is not a magic number, but seems sufficient for all purposes I

have investigated.

Outward si~nalling eventcounts are suppor~ed ~~c~~lly l>y the VP1$advance

operati<;>n. Whenever an outwar.d signalling eventcoun.t. is ,advanced, a special

eventcouqt called the outward_signals event~unt ,is, ~l~,:¢vanced- implicitly.

- 103 - Chap.teP 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Outward signalling eventcounts are recognized by the advance operation because

they are all implemented in the same virtual memory segment. Thus, by simply

checking the unique name of the eventcount, outward signalling eventcounts can

be recognized.

4.8 Special Eventcounts

We have already described two special eventcounts that are advanced by

the level 1 processor manager itself: the stopped and outward_signals

eventcounts. There are two other kinds of special eventcounts that are

provided by the level 1 processor interface.

In order to have processes that synchronize themselves in real time, we

provide a special eventcount that is advanced proportionally to real time.

The clock eventcount is advanced once every delta microseconds, where delta is

a reasonably large value, like 50,000. This allows reasonably fine-grained

scheduling of processes that have to deal with real time events, such as

timeouts on communications channels, etc.

In order to provide for processes that control I/O devices, we need some

mechanism for I/O devices to signal processes about interesting events, such

as completion of an operation, errors, etc. Messages from I/O devices are

stored in special regions of memory called mailboxes, but a mechanism for

scheduling processes when interesting events happen is still needed. A very

Chapter 4 - 104 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

natural mechanism is to associate with each device mailbox an eventcount that

is advanced by the I/O device (with the help of the level 1 processor manager)

each time a message is put in the mailbox. A device control process can then

simply wait on the eventcount until this advance occurs, then inspect the

message.

4.9 Fault Interface

Certain hardware operations signal errors by causing faults. On typical

hardware processors, a fault is handled by saving the instruction pointer at

the time of the fault and transferring to a special address. In creating

level 1 processors, we virtualize fault handling to allow each level 1

processor to specify its own private fault handlers. As part of the state of

each level 1 processor, there is a pointer called the fault transfer pointer.

Upon encountering a hardware fault, the level 1 processor will save the

processor state at the time of the fault, and transfer control to the fault

transfer pointer. An operation provided by the level 1 processor manager is

used to obtain the processor state at the time of the last fault. This

operation is:

VP1$get_fault_data (processor state)

It gets the processor state of the most recent fault. The processor state

returned by this operation is shown in figure 4.3. The data of the processor

state contains the values of the computational registers at the time of the

fault (CRs), the instruction pointer at the time of the fault (IP), and the

- 105 - Chapter 4

PROCESSOR MULTIPLEXING IN ·A LAYERED OPERATING SYSTEM

CRs
;. '.\

IP

FCODE

Figure 4.3
Level l Fault Data

type of fault (FCODE). The other data of the level l processor state, such as
....~ . ~ -· - .

DSEGP, QTMR, and FIP, are not kept for faults because the data is constant in
- - :-.. . :

the level l processor.'

Faulting instructions may be restarted_by restori~g the processor state
- _! --; ' ~ . -- _-__ - ' ~

data using a level l proc~ssor operation:
--

VP1$restore_yrocessor_state 5processor_s~ate)

If a level l process-or takes a second fau1t be.fore extrl:lcdng the fa
0

ult

data of the fir-st, the level -1 proces-sor 11lanager·'wilf "crash the: system by

deconfiguring al-1 of the real processors,- so that the-problem can be debugged.

In order to allow extending existing processor instr~ctJo!ls in type

managers above level l by providing special fault handlers to incre;ase the

effective functionality of instructions, there must be a way for the fault

handler to appear to be part of the same atomic o~ration that caused the

fault. For this reason, taking a fault in a level 1 processor implicH:ly

causes a VP1$begin_atomic_operation to be executed. So that it is pos~ible to

protect the whole sequence, from faulting instruction to restart of the fault,

Chapter 4 - 106 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the VP1$restore_processor_state operation implicitly executes a

VP1$end_atomic_operation. The fault handler need not, of course, remain

unstoppable throughout its execution. It can execute VP1$end_atomic operation

in the middle of its execution, as long as it executes

VP1$begin_atomic_operation before restoring the state. Such an action must be

performed if the fault taken is to be reflected to a program at a level above

the second level processor implementation. The fault handler that is

specified by FIP in the level 1 processor state must be a program in the

kernel of the system below the level 2 processor manager.

4.10 Processor Interrupt

In Multics, there is a mechanism whereby one virtual processor can cause

another to take a special fault, called a "process interrupt". This mechanism

is used to implement the function of interrupting a computation by hitting the

attention key, for example. In order to implement this in level 2, we need a

mechanism whereby the level 2 procesor manager can cause a level 1 processor

to take a special fault, called the "processor interrupt". We don't wish this

interrupt to happen during an atomic operation, or in a kernel process.

Consequently, we introduce a mechanism that allows this fault to be set only

in a stopped virtual processor. The primitive

VP1$set_processor_interrupt (llproc, ..!:!.E,Or) *

will cause llproc to take a special fault when the level 1 processor is next

- 107 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERAT~(;, SYSTIUI ,

run. If llproc is not stQpped, the ~pei:•tion,does not_- prooeed and the errar

argument is set,~rµe, other,.q.se error is, set to false.

To cause a level 1 processor interrupt to occur in a level 1 processor
--. ,: . - ! : __ :_,_

that is not stopped, it must first be stopped, then the processor interrupt
~~ ! • - _. ~ ~

must be set, and then the processor m.ust be run. 'nlis is a somewhat clumsy
J :.;:·, • { ,·:-·,··

interface, since VP1$stop does not take effect illl1lediately. Since the
-,

VP1$set_yrocessor_interrupt operation is used only in the level 2 manager, the

clumsiness is not a real serious p~oblem. I have chosen this particular

interface because it simplifies the design of the level 1 implementation, even

though it makes level 2 some'What more complex.

4.11 Processor Reconfiguration

- __ , -t •

Level l has to deal with reconfiguration of physical processors. It

p~ovides thre~ operations for this purpose. The operation
c - '_-; ~- _- -

VP1$add_cpu (cpu_id)

adds the physical processor named cpu_id to the system. The operation

VP1$del_cpu (cpu_id)
- . . -· .

deletes the physical processor named cpu_id from the system. 'nle operation

VP1$crash_system ()

''
.,

eliminates all physical processors from the level 1 multiplexor, and forces

one of the processors to execute a special debugging program. The other

processors are made to stand by idle~

Chapter 4 - 108 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The reconfiguration primitives are accessible to all parts of the system

kernel. Outside the system kernel, these operations are not directly usable,

in order to prevent user-written programs from denying service to other

programs.

4.12 Parameter Passing To Level l Processor Operations

All data operated on by level l processor operations must be in primary

memory. If an object is not in primary memory, the real processor will

generate a missing-page or missing segment fault, indicating that the

instruction cannot be performed. The software operations of the level l

processor behave exactly the same. The data provided as parameters to the

level l processor implementation must be in primary memory. If the data is

not in primary memory, the level l processor implementation reflects this

condition as a software-generated missing page or missing segment fault.

Two other alternatives to generating software "faults" could have been

used in the level l interface. First, the level l manager could crash the

system if its parameters were not found in primary memory. With this

alternative the level l processor invoking the operation would be required to

insure that its parameters were in primary memory. For frequently executed

level l operations, having to wire-down parameters to primary memory by

calling the wire-down primitives of virtual memory can be quite expensive.

The second alternative would be to reflect an error to the level l processor

- 109 - Chapter 4

PROCESSOR MULTIPL&XING IN A LAYERim OPERATING SYSTEM

in some manner other than a fault. Reflecting the error requires some way to

transfer :tnformation back to the level I processor that an error has occurred'.

The fault mechanism is such a way, inventing·aribther mecllani8m serves no·

useful purpose.

The implementation of the level 1 primitives must be able to access the

parameters. Since the level l proces80r itself accesses data in ·ni'emory

through a map, the level 1 processor implementation DlUSt be able to interpret

. the map to find the parameters. The map can be cmodified asynchronously by the

processors of the virtual memory manager·,. 80 there iaatist be somE! way to ilisure

that such modifications do not interf.ere with the' -correct· .o1>eration of the

level 1 processor manager.

The level 1 processor operations operate logically by first determining

whether the parameters are in primary memory. If not,_ a fault is reflected to

the appropriate fault handler, which presumably will handle the fault by

moving the parameters into primary memory. The test will be repeated until

the parameters are a1·1 in primary memory. (1) Then, ·the ·parameters a:re

accessed to perfo.na the required operation~ ··The dtta· catmot be moved from

primary memory during t:his accessittg. There must be a special mechanism :for ·

(1) Note that the method of accessing parameters used by the level 1
implementation does not generate an upw&rd itepeftdencf- on-' t:be virtual memory
mechanism. 'lbe specification of the level 1 interface is that it reflects an
error and do.s not do the operatioo if it.a' pA:ra11eten are tr0t:,· in primary
memory. No matter what the virtual memory manager does, it cannot cause a
level l operatiOtl. to fail to meet its: specification ·~fthe't''by Cio1h8· the
operation or reflecting an error status.

Chapter 4 - 110 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

handling the asynchronous modification of the map during an operation of a

level 1 processor.

It is instructive to investigate the similar problem found in the

physical processor instructions. The physical processor operates by

converting the addresses found in instructions through the map into real

addresses, then accessing the real addresses directly during the instruction.

The modification to the map is thus not reflected immediately in the

processor's accessing, but must wait until the processor stops using the

converted address. The processor converts all addresses to real addresses

before actually accessing the data operated on by the instruction.

Discovering a fault is thus done before the instruction has taken irreversible

steps, so the instruction can be restarted from the beginning.

There is, however, a problem in the physical processor accessing of

memory. The main reason for changing the map is that a page or segment is

moved from primary to secondary memory or vice versa. When the page is moved

to secondary memory, it must be guaranteed that no processor has outstanding

references to it. This guarantee is provided by marking all maps that refer

to the page so that a fault will be generated when the page is referenced.

However, for a short period of time the physical processor may have a

translated real address that refers to the page. The moving of a page from

primary to secondary memory proceeds as follows: first, flag all maps

referring to the page, then, wait until all physical processors stop using the

translated real addresses they were using at the time the flags were set in

- 111 - Chapter 4

PROCESSOR MuLTtPLEXING IN . A LAYERED· OPERATlrtG 'SYsTEM

safely.

For the software parts of thl!- ·revel I p~w-sot= nUltlager, -similar' :

mechanism must be ptovi-ded. · ''l'He software parts· Will first translate the

addresses of parameters- usi.ng the 1liap :ib'to the address spaci-of the level 1

manager. the l~vel l mtnager address space cannot be mocfified by higher

levels in the system. Any faults i.n accessitig'·pa:rame'-t~rs are discovered and

reflected oori.ng the ·trarrslation, so that· aft~r l:r~ns-i~tin'n i-s complete the

parameters .are guaranteed •to be acceseible.· 'l'h'e\t~~ ihel' level 1 milnager wi.11

use the transla<ted addresses· to refereiice)priary m4!!iaot'f •. Before' tbe--: page

manager can· move :anything in p·rimary 'liemoey, it uiu$t.'ftrst; flag the map, then

wait until any transtate(f addresses being' used '111 1eve1. l' oper1tlott:s are done

with. The level 1 processor must have a spefial mechanism_ to achieve th~s

waiting. This mechaniS111 is a level l instruction,

VP1$propagate map change(),
~ - .

that causes the invoking level l processor to st~p executing further

instructions until all other processors having t~an_slated _copies of, ad~~esses.
~ !-OJ

finish their current level 1 processor operation~ (1).
: -.!

(1) In many real processors, translated primitty·1tf!liorj addresses are held
between operations in an associative memory built into the processor. In this
case, finishing the'eilrrent' level· I prttce.aur 6petatton·; ie irtsufficlent to
guarantee that no translated addresses at"e being hel,d by theproces!Jor.
Consequently; the operation ·vP1$propagate ·a.ap 'ifiaftjti·1aiao":h•s to cauae 'all
associative memories on all processors to-be cleared.

Chapter 4 - 112

Chapter Five

Level l Processor Implementation

(The reader who is not interested in the details of an implementation of

level 1 processors may choose to skip this chapter, without much loss of

continuity.)

In this chapter, two implementations of level l processors on a

multiprocessor, shared primary memory computer system are described. The two

implementations are actually closely related. The first version of the

implementation relies on a slightly non-traditional hardware that uses a

specialized processor as a central agent to control the multiplexing of the

other processors of the system. Within this architecture, the implementation

of level 1 processors is quite simple to describe. The second implementation

shows how, with extra complexity and a small loss of efficiency, the

specialized processor can be simulated on general-purpose processors such as

those of Multics.

The first implementation is not intended just as a basis for developing

the second, however. Adding a microprocessor to the architecture of a system

such as the Honeywell Level 68 to implement level 1 processor multiplexing

would not be at all difficult or expensive. The changes that must be made to

the general purpose processors to implement the binding and unbinding

functions in hardware amount to simplifications of structure; they would,

however, be relatively expensive to retrofit into current processors.

- 113 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The proposed hardware architecture is relatively simple to incorporate

into newly designed mul~iproc.assor syste1R$. J11corpoTating the ideas about

architecture described here should be worthwhile in terms of simplifying the

design of multiprogramming operating systems.

5.1 Overall Structure of the Implementation

The level 1 processor implementation follows the model of processor

-
multiplexing presented in chapter two, using a central agent to control

processor multiplexing. The central agent is implemented on a dedicated

processor called the Processor Control Processor. It controls the
'- '.'.: ~, _.

general-purpose processors (GPPs) of the system by controlling their binding
- - ;; ' ~

to level 1 processors. Within the implementation, level 1 processors are
- - -

represented by level 1 processor states stored in primary memory. The central

agent is also responsible for implementing the IPCC mechanisms, coordination

the GPPs, since IPCC, I/O events, and reconfiguration may indirectly require

reassignment of GPPs to .a .d,ifferent,.set of l~v~. L ~ssot'li,.

-- -~~.

Figure 5.1 shows the pattern of communication among the processors in the
.- { '. - . --, -~ -..

system. Level 1 processors are executed on the GPPs. The PCP communicates

. - . ~ - -. --
with each GPP to control its assignments to level l processors. The

'"'" ', ·-·
operations- desctibed in chapter four that allow lc~vel 1 processors to affect

other level 1 processors are all implement~d in the PCP. When a level 1

Chapter 5 - 114 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

queue

of

requests

Figure 5.1
Processor Communication in Level 1 Implementation

processor executes one of these operations, its GPP actually communicates a

request to the PCP, which performs the operation.

The PCP actually handles one request from a GPP at a time. Successive

requests are queued. In order to keep the GPPs as busy as possible, once a

GPP has queued a request, it can proceed to execute, without waiting for the

request to be processed by the PCP. In the case of operations like VP1$run,

VP1$stop, and VP1$advance, the GPP proceeds to execute the level 1 processor

that executed the operation. Other operations, like VP1$await, require that

the GPP not continue executing the level 1 processor executing the operation.

To prevent the GPP from being excessively idle during periods when a

burst of requests are sent to the PCP, the function of choosing the next level

1 processor to run on a GPP is distributed among the GPPs. There is a shared

priority queue that all GPPs can access containing all runnable level 1

processors in priority order. Figure 5.2 shows this queue. When a GPP

- 115 - Chapter 5

PROCESSOR MUU:IPL!lCING IN A LAYERE:O·Oi''ERA1'11fc'sritEM

priority

I',

iiglq.:~ . ? •j2 -
Priority Queue and Await Table

await
table

determines that it cannot continue running its curreqt level l processor, it

will take the highest priority runnable level 1 processor fr,om..th:f.~queue, @ti

run it.

The PCP controls the bindings of level 1 pr6cessors to GPPs indirectly.

The queue of runnable level 1 processors is altered by the PCP to reflect any

changes in the runnability 9f the level 1 processors. After such a change has

been made, the GP.Ps must be reassigned. The-PCP-acco.;.pfishe~ th~ reassignment

by determining the GPPs that are improperly assigned, ,and forcing them to
" ~ t .

unbind themselves from the current level 1 processor, and r;eas11;Lgn themselyes

based on the newly altered queue of runnable level 1 processora.

Chapt.er 5 - 116 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Also distributed in each GPP is the handling of the quantum for each

level l processor. Each GPP keeps track of the time it spends executing each

level l processor, so that when the level l processor quantum is exceeded, the

GPP informs the PCP and reassigns itself to a runnable level l processor.

Interprocess Control Communication is centralized in the PCP. The PCP

maintains a table, called the await table (see figure 5.2), that keeps track

of the level l processors that are awaiting along with the eventcount names

and values awaited. An advance operation proceeds by having the GPP executing

the advance increment the value of the eventcount, then transmit to the PCP

the name of the eventcount and its new value. The PCP then processes this

information by finding all of the level l processors that should be awakened,

and awakening them. The special eventcounts (stopped, clock, I/O eventcounts,

outward_signals) are not advanced by GPPs, but are handled within the PCP.

The clock and I/O processor eventcounts are handled by periodic polling of

their values in the PCP. The stopped and outward_signals eventcounts are

advanced by the PCP, and reflected to the level l processors.

- 117 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.2 Hardware Architecture

Although the hardware architecture is slightly different than that of a

traditional multiprocessor computer system, I have tried to make the nwnber of

differences as few as possible. The GPPs of the system look very much like

the physical processors of traditional computer systems. Most of the

implementation of level 1 processor manager is in software. I have chosen a

minimal set of hardware facilities needed to imple111-ent the le:vel 1 processor

manager. These facilities are:

1. A mechanism that allows the PCP to interrupt the GPPs.

2. Shared primary memory to be used for communication of data

between PCP and GPPs.

3. A special mode of execution in the GPP used to allow the

implementation of the GPP part of level 1 operations in software

on the GPPs.

4. A special instruction that translates addresses within the level

1 processor environment into a version that is unaffected by

changes made to the environment specification.

5. A special instruction that allows the GPP to change its binding

to a new level 1 processor.

These features are discussed in detail below.

Chapter S - 118 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.2.l The Processor Control Processor

The processor control processor (PCP) is a highly specialized processor

that controls the multiplexing of the general-purpose processors of the

system. It need not be a high-speed processor, nor must· it have any of the

facilities needed for handling general purpose computations, such as

interrupts, faults, powerful instruction set, large memory, etc. It is

probably best implemented as a microprocessor.

The PCP communicates with the general-purpose processors of the system

through the system's primary memory. The PCP can read and write primary

memory, although it need not store either its program, or most of its data in

primary memory.

The PCP can also send a special signal, called UNBIND, on lines that

connect the PCP to each individual general-purpose processor. Figure 5.3

shows the communication paths of the system. The UNBIND signal is used by the

PCP to cause a processor to stop doing what it is doing, and find a new level

l processor to run.

The UNBIND signal is the only interrupt-like operat,ion in the system.

There are no interrupt signals for the PCP, since it operates by repeatedly

polling the primary memory cells of interest to it. The I/O processors will

- 119 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

read
write

read
write

PRIMARY MEMORY

Figure 5.3

read
write

Hardware Communication Paths

I/O
Processor

communicate with level 1 processors purely through memory. If an I/O

processor needs to send a signal to a particular level 1 processor, it will

increment a memory location treated by the PCP as a special eventcount, and

the eventcount will be observed by the PCP and reflected to the level 1

processor. Each GPP is able to send a control signal to each I/O processor to

start it executing, by advancing an eventcount (actually a counter, since it

is not handled by the normal eventcount mechanisms) that is polled by the I/O

processor while the I/O processor is stopped.

5.2.2 General-Purpose Processors

The general purpose processors (GPPs) of the system are much like the

general purpose processors of Multics, the IBM System/370, etc. They all

access primary memory through address translation hardware that is controlled

Chapter 5 - 120 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

by a data base in primary memory called a descriptor segment. Each GPP has a

set of internal registers, some of which are used to perform computational

operations of the level 1 processor, and some of which are used in the level 1

processor multiplexing implementation. The structure of the internal memory

CRs

DSEGP

IP

FIP

QTMR

LlPSP

unbind flag

master/slave flag

Figure 5.4
GPP Internal Memory

of a GPP is indicated in figure 5.4. Most items are familiar from chapter

four. The bracketed items are explained shortly.

The GPP operates in one of two modes, master mode and slave mode. In

slave mode, the GPP is running a level 1 processor. Its instruction pointer,

computational registers, descriptor segment pointer, and fault handler pointer

are all used in slave mode. The slave mode instructions allow the processor

to access memory through the descriptor segment, perform operations on its

computational registers, transfer, and so forth. One additional slave mode

- 121 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

operation, INVOKE-LEVEL!, allows the GPP to enter master mode for the purpose

of communicating with the PCP.

Master mode in the GPP exists so that the level 1 processor operations

that need to communicate with the PCP can do so. In master mode, the GPP has

access to the data bases in primary memory that are shared with the PCP.

Master mode would be unnecessary if all oi the level 1 processor management

operations were built into the GPP hardware, but I pave attempted in this

design to make the minimal hardware changes necessary for a clean design of

the level 1 implementation. Consequently, the operations that allow the level

1 processors to communicate with the PCP will be s~ftware operations run in

master mode.

Master mode executes in a distinct addressi0g..mode from the level 1

processor environment accessed in slave mQde. The separate environment

protects the code executing in master mode from errors in the level l

processor environment. Since the level l processor environment is controlled

at a level higher than the level l implementation, level l cannot depend on

the correctness of the environment in any level l processor without causing a

cyclic dependency.

In the master mode environment, it must still be possible for the GPP to

access parameters to level l operations that are stored in the level l

environment. The simplest choice is to have the ~aster mode environment able

to access absolute core addresses directly. An alternative would be to have

.Chapter 5 - 122 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

master mode use a different map, but the difficulty of converting addresses in

terms of the level 1 processor map to the equivalent addresses in a distinct

master mode map make this alternative unattractive. When in master mode,

addresses in code executed by the GPP are interpre~ed as absolute core

addresses.

The special functionality of the GPP must now be discussed. The level 1

processor state pointer in the GPP is a pointer (actually an absolute core

address) to the level 1 processor state in primary memory that corresponds to

the level 1 processor currently bound to the GPP. Ute GPP uses this pointer

to store the state of the level 1 processor when the.GPP enters master mode.

This pointer is also used to store .the fault .data when a level 1 processor

takes a fault.

The format of a level 1 processor state block in memory is shown in

figure 5.5. The level 1 processor state block contains information that is

available at the level 1 interface, and some that is not. The current state,

containing computational register values (CRs), a instruction pointer (IP), a

fault handler pointer (FIP), a quantum ti~er register value (QTMR), and an

environment descriptor· pointer (DSEGP), corresponds to the s.tate information

presented at the level 1 interface by the bind and unbind operations. It also

corresponds to the state of a GPP. This is the state that is loaded into a

GPP when the GPP is bound to the level 1 processor. The fault data,

containing computational registers (CRs), instruction pointer, and fault code

(FCODE), is kept here so that the VP1$get_fault_state operation can access it.

- 123 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

CRs

DSEGP

IP

FIP

QTMR

CRs

IP

FCODE

FHH

thread

execution state

atomic operation
depth

processor assignment

stop pending

priority

Figure 5.5

T
level 1

processor
state

t
level 1

processor
fault

internal
level 1
data

Level 1 Processor State Block

The GPP sets the fault state when a fault occurs, and also sets the flag that

indicates that a fault has happened (FHH). If the FHH flag is already on when

a fault occurs, the GPP unbinds itself as if the level 1 processor had

executed VP1$crash_system. The rest of the data in the state block is not

interpreted by the hardware and will be described in detail later.

Chapter 5 - 124 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In master mode, there are two special instructions that cannot be used in

slave mode. The first, ACCESS, allows the GPP in master mode to interpret an

address relative to a specifed descriptor segment. This instruction will be

used to allow the GPP to translate data addresses from the address space of a

level 1 processor into the master mod (that is, absolute core addresses).

address space. If the ACCESS instruction encounters a missing-page or

missing-segment fault, it will set a condition code indicating the fault that

occurred, and proceed to the next instruction. The ACCESS instruction loads a

register of the GPP with the address in the master mode address space that

corresponds to the specified address in the specified descriptor segment. It

also loads into another register the system-wide unique address, from the map,

of the word.

The other special master mode instruction is LOADSTATE. The LOADSTATE

instruction allows the GPP to load a particular level 1 processor state from

an address in the GPPs master mode environment into the GPP's registers. The

master mode flag is then turned off, and the GPP begins executing the level 1

processor. The level 1 processor state pointer of the GPP is loaded with the

address of the level 1 processor state block named in the LOADSTATE

instruction.

Two other special registers are present in the GPP. The quantum timer

register is a register loaded from the level 1 processor state that contains a

value that is decremented once every microsecond. When the register reaches

zero, it stops decrementing.

- 125 - Chapter 5

---- -- ··~--- .-:<

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The unbind flag is set by the PCP UNBIND signal. The unbind flag is

checked after executing each instruction when the GPP is in slave mode. A set

flag causes the GPP to unbind itself from the level 1 processor it is

currently executing. The GPP also unbinds itself from the current level 1

processor when the INVOKE-LEVEL! operation is executed. The basic cycle of

the GPP is shown in figure 5.6.

INVOKE-LEVEL!

instruction := IP->word
opcode :• inatruc.tfon.opcode

~ranch on opcode

LOADS TATE

no

LlPSP :c instruction.add
CRs, IP, QTR, FIP, DSEGP

: = LlPSP ->

IP :•IP + 1

CRs, IP, QTR, FIP, DSEGP
clear master mode flag

execute instruction

.---------~-~1-yes--~
CRs.req-type

LlPSP ->
:= CRs,

IP,
TR

clear unbind, set
master mode.
IP := INVOKER
(see figure 5.8)

Chapter 5

:= crasli system
no

LlPSP -> fault CRs,
fault IP := CRs IP

fault FCODE :• <!ault'

IP :• F!P

Figure 5.6
Basic GPP Cycle

- 126 -

yes

LlPSP -> CRs, IP, QTR
:= C&s, IP, QTR

clear unbind, set
master mode.
IP, : • UNBINDER
(see figure 5.8)

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.3 Data Bases

There are four data bases used in the level 1 processor implementation.

They are the level 1 processor state table (LlPST), the PCP request queue

(PCPRQ), the await table (AT), and the GPP control table (GCT). The first two

data bases are accessed both by GPPs and the PCP, so .there is a locking

mechanism required for each; the AT, however, is private .to the PCP, so no

locking is required. The GPP data items are each only written in by one

processor so there is no need for a lock.

The level 1 processor state table consists of an array of level 1

processor state blocks. The format of a level 1 proc.e$sor state block has

been shown in figure 5. 5. Each level 1 processor st~t.e block sto~es all of

the state information about a level 1 processor, along with certain

information used to schedule the assignments of physical processors to level 1

processors. All of the non-stopped level 1 processors are threaded into a

list in order of decreasing priority. The stopped level 1 processors are

either unthreaded, or threaded into a list called the next-stopped queue used

to implement the VP1$next_stopped operation. Each level 1 processor state

block has stored in it the state of execution of the level 1 processor; it may

either be running, runnable, awaiting, stopping (a transient state on the way

to stopped), or stopped.

- 127 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The information not yet described in the level 1 processor state block is

used as follows (see figure 5.5). The thread value is used to thread the

block onto the priority queue or the next_stopped queue. The execution state

is stored in the execution state value. If the level 1 processor is running

on a GPP, the name of the GPP is stored in the state block. The atomic

operation depth contains the nwnber of times a VP1$begin_atom_operation has

been executed without a matching VP1$end_atomic_operation. The stop_yending

flag is used to remember that the level 1 processor must be stopped after its

atomic_operation depth reaches zero. The priority is permanently associated

with a level 1 processor, and is used to find the right place to thread the

level 1 processor into the priority quetie.

The data in the level 1 processor state table is protected by a lock

called the LlPST lock. The data in the LlPST will not change while the LlPST

lock is set, with one exception. A level 1 processor state block that is

marked in the running state can undergo certain modifications at any time.

The stored registers, instruction counter, quantum timer register, fault

information, and PCP request type fields may be modified by the GPP running

the level 1 processor at any time while the level 1 processor state block is

marked as running; none of the remaining data may be modified except by

locking the LlPST lock.

The PCP request queue is a FIFO queue used to send messages to the PCP.

It is a fixed size block of storage, probably best managed as a ring buffer.

A lock called the PCP request lock prevents more than one GPP from placing

Chapter 5 - 128 -

PROCESSOR MULTIPLEXING IN A LAYER.ED OPERATING SYSTEM

messages in the queue at the same time. Its size should be chosen to minimize

the amount of time spent waiting for the PCP to free up enough space for the

next message, which waiting is done by busy-waiting in the GPP. The queue

must be at least as large as the largest message placed in it.

The await table is kept internally to the PCP and keeps track of the

mappings from eventcounts awaited by level 1 processors to the level 1

processors awaiting, and vice versa. Its format is unimportant to the current

discussion, as long as it is possible to convert an eventcount name and

current value into a list of the level 1 processors to awaken, and it is

possible to delete the entries from the table that correspond to a particular

level 1 processor. A simple form of the table mi~ht be a list of

three-tuples: eventcount name, awaited value, and level 1 processor name.

However, there are much more effective ways of obtaining the desired

functionality than such a list.

The GPP control table contains entries for each GPP. There are two data

items in each entry. The first is a flag that indicates whether the GPP is

available for use by level 1 or not, for reconfiguration. It is modified only

by the PCP. The second entry is a counter incremented each time the GPP

finishes executing an unbind operation, either due to an UNBIND signal from

the PCP, or due to timer runout or INVOKE-LEVELl in the GPP. It is used in

the implemen~ation of VP1$propagate_map_change; this use is described later

with the impleme~tation of VP1$propagate..._map_change.

- 129 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.4 Operation of the Processor Control Processor

The PCP has three functions to perform. First, it must manage the

bindings of GPPs to level 1 processors. Second, it must do the work of the

requests in the PCP request queue, calling for the PCP to run and stop level 1

processors, add and delete GPPs, enter level 1 processors into the await

table, and awaken the level 1 processors awaiting a particular advance.

Third, it must implement the special eventcounts -- the outward_signals

eventcount, the stopped eventcount, the clock eventcount, and the eventcounts

associated with I/O processors.

The PCP does all of these things by periodically polling the relevant

data bases, and then performing the necessary actions. Basically, the PCP

executes in a loop, first checking the PCP request queue for requests and

doing the ones found in the queue, then checking the special eventcounts

against the entries in the await table to see if any level 1 processors should

be awakened, then checking the level 1 processor assignment table to make sure

that all GPPs are properly assigned and issuing the appropriate UNBIND signals

to correct any discrepancies.

There are nine kinds of requests that are sent from GPPs to the PCP

through the PCP request queue. Here the data associated with the requests and

' the processing done by the PCP are described. A flow chart of the operational

Chapter 5 - 130 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

cycle of the PCP appears in figure 5.7.

- 131 - Chapter 5

add cpu
del cpu

set
GPC. available
on/off for

GPP
of request

send UNBIND
to GPP of
request

crash_system

set
PC. available
off for all
GPPs

end UNBIND
to all
GPPs

PCP LOOP

no

get next request from
PCPRQ. req-type :=

request.type

branch on req-type

run level !_processor stop level 1 processor
- - deferred sl:op - --

Pl of request'
xecution state

: = runnable

rethread VPl
into priority
queue by priorit

set LlPST lock

branch on execu­
tion state of VPl

of request

runnable

exec.
state
·=

st~pped

e ete
AT
entries
for VPl

of
request

ncrement
stopped special

event count

hread

clear LlPST lock

ng

Figure 5.7
PCP Algorithm Flow Chart

- 132 -

special clock EC :=
r~d timeC)/delta

for all spectal ECs,
do post await as

aoove.

post_await post_advance propagate_map_change

add E names
values & VPl B ND
awaiting to GPPs save
AT from

re uest

set LlPST lock

chani;e state of
all VPl s in alist

to runna le

delete all AT entries
for VPl's in alist

clear LlPST lock

if EC in request is
outward signalling,

increment
outward signals

cle~r LlPST

count := count - l

clear LlPST
lock

send UNBIND :ptr := next(queue)
to all GPPs
ass:L,gµed
below ptr
in ueue.

send UNBIND to
all available GPPs
assigned to idle

_ 133 -·--------s~t-a~t•e•s;;.... ____ --1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The add_cpu, del_cpu, and crash_system requests are sent by GPPs

executing level l processors that call on the operations VP1$add_cpu,

VP1$del_cpu, and VP1$crash_system. The add_cpu and del_cpu requests also have

an associated data item, the name of a GPP. The PCP processes these requests

by setting the availability flag of the particular GPP to available for

add_cpu, and unavailable for del_cpu, then sending an UNBIND to the GPP. Tile

crash_system request is executed by marking all GPPs unavailable, and

broadcasting UNBIND signals to all GPPs.

The propagate_map_change request is used as part of the implementation of

the VP1$propagate_map_change operation. The associated data is the name of

the processor originating the request. The PCP handles this request by

issuing an UNBIND signal to all real processors, except the processor

originating the request. The rest of the work of the VP1$propagate_map_change

operation is done in the GPP originating the request. This will be discussed

later.

The run_level_l_processor and stop_level_l:._processor requests are sent by

GPPs executing level l processors that call on the operations VP1$run and

VP1$stop. The associated data with these requests is the name of a level l

processor. The PCP processes these requests by locking the LlPST lock,

altering the state of the level l processor to runnable or stopped,

respectively, and rethreading the level l processor into the processor

Chapter 5 - 134 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

priority list or the next-stopped list. (1) If the level 1 processor is being

stopped, it also must have all associated entries removed from the PCP await

table, so that the space can be reused. (2) The LlPST lock is then unlocked.

The processing of the stop_level_l_processor request is not actually

quite thi~ simple. If the level 1 processor is either running or is in the

middle of an atomic operation (its atomic operation depth is non-zero), the

level 1 processor cannot be stopped inunediately. In this case, instead of

changing its state to stopped, a flag will be set _in the level 1 processor

state block to indicate that a stop is pending. If the level 1 processor is

running, it will be sent an UNBIND signal to ensure its speedy stopping. ·The

pending stopped flag is interpreted by the GPP at the time of an unbind, and

will cause the GPP to put the level 1 processor in the special stopping state,

and then send a deferred_stop message in the PCP request queue.

The deferred_stop message is sent to the PCP under .three c<;>nditions. In

an unbind operation on the GPP, if the pending stop flag is found on in the

current level 1 processor state blqck, and the lev~l 1 pr.ocessor at.omic

operation depth is zero, then a deferred_~top is sent to the PCP. If the

quantum timer runs out,_ and the atomic operati.o-n depth is zero, then a

(1) Whenever the next-stopped list has a new level 1 processor added to it,
the PCP increments the special stopped eventcount, The increment is observed
later by the PCP when chec~ing the special ev-e.ptco~s,, al.Vi reflected then to
the awaiting level 1 processors.

(2) Please recall that exec~ting VP1$run on a stopped level 1 processor will
cause the VP1$await instru~tion to be re-exec~~d~-: "°.that the information in
the PCP await table will be regenerated at that time.

- 135 - Chapter 5

------~------~- ---

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

deferred_stop is sent to the PCP. If the level 1 processor executes a

VP1$end_atomic_operation instruction that decrements the atomic operation

depth to zero, and the stop pending flag is on, or the quantum timer has run

out, a deferred_stop is sent to the PCP.

The level 1 processor sending the deferred_stop message is put into the

special stopping state by the GPP. The data contained in a deferred_stop

message is the name of the level l processor being stopped. The PCP processes

a deferred_stop message in the same way it processes a stop_level_l__processor

request, except that it need not check to see if the level 1 processor is

stoppable.

The post_advance PCP request is sent by the GPP executing an advance

operation to cause the level l processors awaiting the advance to be awakened.

The actual incrementing of the eventcount is done by the GPP; the PCP need

only search its await table for the level 1 processors to awaken, and perform

the awakening. The data sent with the post_advance request is the system-wide

unique address of the eventcount and the value of the eventcount after

incrementation. The PCP performs this request by finding all entries in the

await table that have the same system-wide unique address with awaited values

less than or equal to the value sent in the post_advance request. It then

locks the LlPST lock, finding all of the level 1 processors that are named in

the above-mentioned await-table entries. 'nie state of each af these level 1

processors is changed from awaiting to runnable. When the level 1 processor

is next run, it will re-eiecute and find that one of the event~ounts has been

advanced, so it will proceed.

Chapter 5 - 136 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The PCP also checks each post_advance request to see if the advance was

on an outward signalled eventcount. If so, it increments the special

outward_signals eventcount (the posting of the outward signals eventcount -

occurs later).

The last PCP request is post_await. It is sent by a GPP to the PCP after

checking the eventcounts awaited in a VP1$await opera;ion, if none of the
' ' '

eventcounts is greater than or equal to the values awa~ted. The data sent to

the PCP are the name of the level 1 processor awaiting, and pairs of

system-wide unique addresses of eventcounts and awaited values. (1) The PCP

responds to these requests by adding entries to the PCP await queue for each

of the eventcounts.

After processing the PCP request queue, the PCP handles the special

eventcounts. The system's calendar clock is read by the PCP and it decides

whether to increment the clock eventcount. The PCP then reads each special

eventcount, getting its current value. It then acts as if it received a

post_advance for each special eventcount, searching the await table for

awaiting level 1 processors, and awakening them. The PCP can always directly

access the special eventcounts. There are only a few such eventcounts. They

are the stopped eventcount, the clock eventcount, the outward_signals

(1) Please note that the limit on the number of eventcounts in a VP1$await
operation is associated both with the maximum size message that is sent
through the PCP request queue, and with the maximum number of entries that can
be placed in the PCP await table. The more eventcounts that a level 1
processor can await, the larger these tables.

- 137 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

eventcount, and the I/0 device eventcounts. These eventcounts are handled

specially in the PCP because the agents that increment the eventcounts do not

use the PCP request queue, and so do not use post_advance requests to reflect

the incrementing to level 1 processors.

The final step of the PCP is to update the assignments of GPPs to reflect

the changes in the level 1 processor states and bindings. This step is done

by locking the LlPST lock, and inspecting the assignments of GPPs reflected in

the level 1 processor states. The PCP then issues UNBIND signals to a set of

GPPs so that the GPPs will reassign themselves to the correct set of level l

processors, based on the priority ordering of the level 1 processors.

The algorithm used to choose the GPPs to unbind is very simple. The PCP

knows how many GPPs are on the system. By starting at the top of the priority

queue in the level 1 processor state table, and counting running and runnable

level 1 processors as the queue is traversed until as many are found as there

are GPPs, the PCP can find the set of level 1 processors that should be

running. If any GPPs are running lower priority level l processors, they

should be preempted by sending an UNBIND signal. The PCP thus traverses the

rest of the priority queue, sending UNBIND signals to GPPs running any lower

priority level l processors.

Chapter 5 - 138 -

PROCESSOR MULTIPLEXING IN A LAYE&ED OPERATING SYSTEM

5.5 GPP operation

The way that level 1 processor operations are implemented on GPPs is by

using the INVOKE-LEVEL! instruction. The INVOKE-LEVEL! instruction causes the

GPP to enter master mode, and to transfer to the unbind handler. A flag is

set in the level 1 processor state by the INVOKE-LEVEL! instruction to

indicate that a INVOKE-LEVEL! has been executed. The type of level 1

processor operation to be performed is tran~mitted in.a register, and the

addresses of any data, such as eventcounts, etc., required by the operation

are transmitted through registers.

To simplify the discussion of the unbind operation, we must first discuss

the handling of exceptions, such as missing page exceptions, in accessing the

data associated with a particular operation. The data will be accessed by

first using the ACCESS master mode instruction to convert the address of the

data in the address space of the level 1 processor into an address that is

reachable in the master mode address space. If the ACCESS instruction

encounters a missing-page exception, it reflects this in the condition code,

rather than faulting. If a missing page condition occurs, the code in the

unbind sequence will abort the current operation, and update the level 1

processor state to simulate a missing-page fault, moving the current copies of

the computational registers to the fault data, along with the instruction

- 139 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

counter, and setting the fault code to indicate the type of fault encountered.

The current instruction counter of the level 1 processor will then be set to

the fault handler address. The GPP will then proceed with finding a level 1

processor to execute.

If no fault is detected by the ACCESS instruction, then the GPP can

perform the rest of the operation correctly. Having determined the address of

data in the master mode environment, the GPP can then proceed to access these

objects, without fear of encountering faults.

The unbinder that executes in master mode in all GPPs is described in the

flowchart in figure 5.8.

Chapter 5 - 140 -

Figure 5.8
GPP Responses to UNBIND and

INVOKE- LEVEL 1

false

curVPl's execution
state := runnable

no

req-type:.• curVP's request.register
ACCESS all ·par~meters for request
getting •ster 1D04e addresses & UIDs

c~rVPl's fault CRs:=&CRs
Fault IP:•IP, fault FCOU
:=page fault, IP:•FIP

curVPl' s execution
state := sto ing

clear LlPST lock
set PCPR{f loci,<

no exception

EALLY AWAITING
(fr;0m page 142)

none find highest priority
runnable VPl in "-~~~~~~~~-.i

priority queue

clear Ll:PST lock

LOADSTATE(curVPl)

found

curVPl:=.GPP idle stat

curVPl's fault CRs := CRs
fault IP : = IP

fault FCODE := processor interrup
IP :- FIP

- 141 -

\ HANPLE REOUES:f7
.... ,

lbranch 6n--re9-typel
I

aw!i.t- adv~nce · run, ~top begin at~~ oper~tion bind, unbind next stopped propagate map
add cpu, del cpu end atomic operation set pro- - 1 change- -

add to PCPRQ:
post advance,
EC U!'D & cur

s executton
: •·await in

- · - get f auTt data cessor inter- ··
restoreJ>r.cessor;-st~te

1

fjupt

perform operation
on curVPl PSTE

(such as incrementin
or decrementing

atomic depth, or
ault dat

:•

perate on
_:Igroc arg'.'
(copy from/
o state
:rg for ·
.rtblnd/bind

or
et proc in

fla

I-'
.i:­
N

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The basic flow of the unbinder is quite simple. If the unbind is due to an

INVOKE-LEVEL! instruction, the request is handled. Then, the LlPST lock is

locked, and the level 1 processor is checked to see if it should be stopped.

If it should be stopped, the level 1 processor is placed in the stopping state

and a request is sent to the PCP. If not, it is marked as runnable. The GPP

then searches the priority queue for the highest priority runnable level 1

processor. It is marked as running, the LlPST iock is unlocked, and the GPP

uses the LOADS TATE instruction to run·· the level l processor, having set up a

simulated fault if a processor interrupt is to be sent to the level 1

processor.

The only exception to this basic flow is the handling of the PCP request

associated with the VP1$await instruction. In order to ensure that an advance

operation does not happen and get inserted into the PCP request queue between

the time the eventcounts are tested and t~e time th~ ppst_await message is

entered in the PCP request queue, the eventcounts are tested while the PCP

request queue lock is locked. The GPP then decides whe.ther to enter the

post_await message into the PCP request queue or not, and unlocks the PCP

request queue. (1) If the post_await message is entered, the level l

processor is marked as awaiting, otherwise, the instruction counter ts

advanced passed the INVOKE-LEVELl instruction, and the unbind proceeds as

before.

(1) The problem I am solving here is the same critical race Saltzer [25]
describes, which in his case necessitates a wakeup-waiting switch that is
tested under a lock. The eventcounts themselves serve the same purpose as the
wakeup-waiting switch in this implementation.

- 143 - Chapter 5

_,

PROCESSOR MHLTIPLEXING IN A LAYERED OPERATING SYSTEM

The advance operation is very simple. It simply increments the memory

word of the eventcount, and transmits the new value, and system-wide unique

address (obtained in the ACCESS instruction) through the PCP request queue, in

a post_advance request.

The propagate_map_change operation is fairly subtle in its operation.

The implementation works by causing all GPPs other than the current one to

unbind themselves, then waiting until tqey complete their next unbind

operation. To know when each GPP finishes its next unbind operation, there is

a table of counters, one for each GPP on the system. Each time a GPP

completes an unbind operation, it increments its counter. The

propagate_map_change operation is done in three steps. First, the GPP reads

the current values of the counters associated with each other GPP. Second, it

sends a propagate_map_change PCP request. Third, it busy-waits until each

other GPP's counter is greater than the value of the counter obtained in the

first step. By the time the third step is completed, all GPPs will have

completed at least one unbind operation after the VP1$propagate_map_change

operation started. Consequently, there will be no copies of absolute

addresses obtained from the maps retained in the processors that were

generated before the VP1$propagate_map_change started.

The add_cpu, del_cpu, crash_system, run, and stop operations all consist

of transmitting PCP requests of the associated type, with the arguments to the

operations as data.

Chapter 5 - 144 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Several of the operations, however, are handled without the PCP's help.

The VP1$get_fault_data operation is done by copying the data from the level 1

processor state block. VP1$restore_fault_data copies ,its argument into the

current state in the fault state block. VP1$begin_atomic_operation increments

the atomic operation depth in the level 1 processor state, and

VP1$end_atomic_operation decrements that value. After doing the work of any

of these operations, the GPP proceeds to finish the unbinding operation

normally, finding the next level 1 processor to execute.

The VP1$bind, VP1$unbind, and VP1$set_;>rocessor_interrupt operations

operate similarly. They all require that the level 1 processor they operate

on be stopped. Consequently, they lock the LlPST lock, then test to see if

the level 1 processor to be operated on is stopped. If so, the operation is

performed. If not, an error status is stored in the status code of the

operations. The LlPST lock is then unlocked.

The final operation to be discussed is the VP1$next_stopped operation.

This operation just locks the LlPST lock, gets the next level 1 processor on

the next-stopped queue, and stores its name in the return value. The LlPST

lock is then unlocked. ~· •

With the exception of the await operation when it decides to send a

post_await request, the instruction counter is always incremented by 1 after

handling a INVOKE-LEVEL! instruct'ion, before finishing the unbind. This

causes the instruction counter to skip over th~ INVOKE-LEVEL! instruction just

executed.

- 145 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.6 Implementing Level 1 Processors on Traditional Hardware

If it is not possible to have a dedicated processor to run the PCP, it is

still possible to adapt this design to work. This adaptation is done by

simulating the PCP on the general purpose processors that are available.

Similarly, mapping the interrupts sent by I/O devices into increments on

special eventcounts is not difficult. Both these ideas are discussed in the

rest of the chapter, to show that the design can be easily adapted to

architectures similar to the Honeywell 68/80 system th~t current.ly supports

the Multics system.

5.7 Simulating the Processor Control Processor

The necessary qualities of the PCl1 for implementing the level 1 processor

design given in this chapter are that it must have its own environment and

state, and that it always must be ready when there are tasks for it to do. It

must also be able to send an UNBIND signal to any other processor •

. ,
While these characteristics are true of a. dedicated hardware processor,

it is also possible to obtain them by other schellleS. The scheme used here

will be to recognize that the PCP need not always be executing. When it is

not executing, its state can be represented in primary memory. The same

Chapter 5 - 146 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

techniques that make processor multiplexing possible will enable simulating

the PCP on a multiprocessor architecture.

The PCP's state (computational registers, descriptor segment pointer)

will be stored in primary memory in a block called the PCP state block. In

addition, the PCP state block will contain a loc.k. called the PCP lock, and a

flag, called the PCP-has-work flag.

Basically, we simulate the PCP by attempting to have the currently

executing physical processor load the PCP state and run the PCP whenever the

PCP is given more work to do, such as, for example, when a new request is

entered into the PCP request queue. Some other processor may be executing in

the PCP, however, so the PCP lock is used to prevent two processors from

simultaneously entering the PCP. In order to enable any processor to run the

PCP, each processor must be able to send UNBIND signals to all other

processors. Further, when running the PCP, there must be some mechanism that

prevents UNBIND signals sent to the current processor from taking effect until

the processor stops executing the PCP.

The detailed algorithm executed every time something is entered into the

PCP request queue is as follows. The PCP-ha.s-work flag is set.. The processor

attempts to set the PCP lock. If the lock is already set, the processor

continues w~th what it was doing; presumably it is executing some version of

the unbind operation shown in the previous design, so it continues to unbind

itself. If the processor succeeds in setting the lock, it then cleB:rs the

- 147 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

PCP-has-work flag, and loads the state from the PCP atate block. When the PCP

processes all of the work currently queued for it, it gives up the processor

by storing its state in the PCP state block, unlocking the PCP lock, and then

checking the PCP-has-work flag. If the PCP-has-work flag is on, some other

processor has given more work to the PCP since the current processor started

running the PCP. Consequently, the current processor tries to run the PCP,

and gives up only if it finds the PCP lock already set. (1)

In order for this simulation to work, it is necessary to run the PCP in

this way whenever it must do some processing. As we have seen there are three

kinds of processing that the PCP does. They are handling the PCP request

queue, noticing changes in special eventcounts and handling the clock, and

making sure that the assignments of processors to level 1 processors is

correct with respect to priority assignments. Handling the PCP request queue

is simple in the simulation. We just change the algorithm for sending PCP

requests to always try to run the PCP after placing a request.

Handling special eventcounts is not so simple. We would like the PCP to

run relatively quickly after a special eventcount is incremented. There are

three kinds of special eventcounts. The stopped eventcount is simple to

handle, since it is incremented only by the PCP itself, so the PCP is always

running after incrementing the stopped eventcount. The clock eventcount is

less simple. If there is a way to set an alarmclock in the system that will

(1) The PCP-has-work flag is really a wakeup-waiting switch for the PCP, if
you imagine giving up the processor by the PCP as a block.

Chapter 5 - 14a -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

send an UNBIND signal to some processor periodically, then the GPP can always

check the current clock value at the start of the UNBIND handler to see if the

PCP should be run. This solution can also handle the checking of the other

special eventcounts incremented by I/O devices, since the alarmclock can be

set to go off with a frequency that gives an optimal rate of polling of the

special eventcounts. The major cost of si~ulating the PCP on the, other

processors of the system arises from the need to unbind processors more

frequently to handle the clock.

5.8 I/O Devices That Send Interrupts

Traditionally, I/0 devices send interrupts to the system to signal the

completion of I/0 operations. Up to this point, we have been assuming that

I/O devices signalled the completion of I/O operation_s, or other events

requiring immediate attention of a level 1 processor, by incrementing memory

words that the PCP then handled as eventcounts. The PCP then reflected these

changes as advances, detecting them by periodic polling.

If the more traditional method of having the I/O devices send interrupt

signals to the GPPs is used, the incrementing of eventcounts can be simulated

by having the interrupt handlers of the system do nothing but increment the

appropriate memory words. The PCP will p~riodically poll these ~emory words,

and reflect changes to them by awakening level 1 processors that await changes

to those words.

- 149 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Responsiveness is a question here. If the polling frequency of the PCP

is controlled by a clock, as above, in order to get very fast response to I/O

device signals, the polling frequency must be very high. This has a cost, in

that most times the clock forces the PCP to run, there will be nothing for it

to do. Consequently, the best choice is to run the clock so that it

interrupts the processors only as frequently as necessary to cause the clock

eventcount to work. The interrupt handlers, in addition to incrementing the

eventcount associated with the device causing the interrupt, will attempt to

run the PCP. This choice guarantees that when the PCP is run, it has

something to do.

5.9 Summary

In this chapter I have shown how to implement level l processors using a

structure based on a central agent. The first implementation is developed

using a dedicated processor for the central agent. Then, for an

implementation more suitable for traditional multiprocessor architectures, I

showed how the dedicated processor can be simplated without a dedicated

processor on the general-purpose processors of the systea.

The simplicity of the implementation in either case derives primarily

from the centralized structure. It is clear in this structure how the

assignments of level l processors to GPPs is controlled.

Chapter 5 - 150 -

Chapter Six

Level 2 Processor Interface and Implementation

The second level virtual processors are lU:Jed to run user computations in

the computer system. In this chapter, the interface and implementation of

level 2 processors are described. The level 2 interf~ce is quite similar to

the level 1 interface, with a smaller number of ol>erati<;ms.

There are three major differences between level 1 and leyel 2, however.

First, since level 2 primitives are visible at the perim~ter of the security,

kernel, protection mechanisms are very important to prevent unauthorized

interference between level 2 processors. The level 2 interface is designed so

that privileged information is not accessible at the interface. The

authorization to use particular level 2 operations is provided by the ordinary

access control mechanisms used to protect stored information.

Second, the level 2 implementation is partitioned into two parts": a

fixed mechanism for multiplexing level 1 processors, and a policy mechanism

that controls the rate of resource usage by the level 2 processors. The

policy mechanism is designed to be modifiable by a~.admin;istrator at an

individual computer installation without the need to re-verify the security of

data in the system.

- 151 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Third, the IPCC mechanism provided at level 2 is more flexible than that

of level 1. The await operation can await a la~ger number of eventcounts. A

process interrupt facility is provided that is really just a special case of

the await operation. The await operation also takes care of outward

signalling eventcounts. The IPCC mechanisms are completely protected by the

access control mechanisms that apply to segments containing eventcounts;

there is no need for a special protection mechanism to prevent unauthorized

interprocess control communication.

In this chapter, the interfaces to level 2 are discussed first. The

overall structure of the implementation then is discussed, and the isolation

of scheduling policy from mechanism is explained.

6.1 Level 2 Processor Interfaces

At level 2 there are two sets of operations that allow control of level 2

processors. The creation and deletion operations manage the set of level 2

processors that are in existence at any time. The IPCC operations allow

communication between level 2 processors. These two sets are the only

operations that are provided at the level 2 interface for the control of level

2 processors.

Some internal interfaces are important because they form the interface

between the scheduling policy and the scheduling mechanism in the level 2

Chapter 6 - 152 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

implementation. These interfaces are discussed later in the description of

the implementation.

6.1.1 Creation and Deletion of Processors

Unlike the first level processor manager, whi,ch implements a fixed set of

processors, the second level processor manager allows for creation and

deletion of second level processors. This facility makes the assignment of

processors to user computations much simpler -- whenever a user wants to start

some process (as when he logs in to the computer system) he can just have a

new processor created on whiCh'tO run that process.

Initiation of a process running on a level 2 processor requires

fabricating an environment for the processor to execute in, creating ~ level 2

processor to perform the process, and starting the level 2 ,processor running

at a particular point in the environment. In this thesis, I assume t:hat the

environment is created and maintained outside the level 2 processor

implementation, by an environment type manager. Authorization to initia._te a

process in a particular environment, with a particular initial execution

point, is handled at a higher level in the system. Montgomery [18) has

discussed a mechanism for protection of process initiation. His mechanism

should be used in conjunction with my design.

- 153 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The process initiation operation starts _by fii;st verify.ing the right of

the level 2 processor invoking the kernel process initiation operation to

create a process that starts with the particular initial execution point in

the specified environment. This verification is done within Montgomery's

model. Then, it creates an environment description (such as a Multics

descriptor segment) for the specified environment, by calling on the

environment description manager. Inside the security kernel, it then passes
. .

the environment description and initial execution point to the level 2

operation that creates the level 2 processor and starts it running at the

initial execution point.

The level 2 operation that creates and.starts ~.level 2 processor running

in a particular environment with a particular execution point is the operation

VP2$create_processor (envptr, startptr, schedclass, procname)

This operation takes a name of an environment (envptr), a point within the

environment to start executing (startptr)' and a sche.duling class

(schedclass). It creates a level 2 processor that is named procname, and

starts it running at the initial execution .Point. The schedclass parameter is
- "' '--

information passed to the scheduling policy mechanism of the level 2 processor

manager to control the rate of resource usage of the created processor.

Protection of level 2 processors from destruction is also at a higher

level in the security kernel of the system th.an leve;L 2., The level 2

operation used to destroy a level 2 processor is

VP2$destroy_processor (procname, envptr).

Chapter 6 - 154 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

This operation destroys the level 2 processor named procname. The level 2

processor is not destroyed until it becoilres stopped at level 1, so that any

kernel operations in progress will complete. VP2$destroy_J>rocessor does not

return until the processor named procname is destroyed. The environment of

the processor is not destroyed by this operation. The environment ptr

(envptr) is returned so that the higher level process termination operation

can destroy the envirorunent.

6.1.2 IPCC Interfaces

IPCC among level 2 processors, like IPCC among level 1 processors, is

done using eventcounts. Eventcounts are implemented as words in virtual

memory segments. Protection of eventcounts is accomplished by using the

virtual memory protection mechanisms. An advance operation requires that the

level 2 processor executing the advance have both read- and write-permission

to the eventcount, while an await operation requires only read-permission.

Since segment protection is used to prevent unauthorized release of and

interference with (modification of) information sent throug.h the interprocess

control communication mechanism, ensuring various security policies is

simplified. To confine a level 2 processor from transmitting information to

unauthorized receivers through both eventcounts and segments, one. only has to

restrict the set of segments it has write-permission to. If the set of

segments it can write cannot be read by unauthorized receivers, then the

- 155 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING -SYSl'EM

confinement is assured. IPCC using eventcounts.-does not introduce a new

information channel from the ~onfined processor. since sending information via

eventcount IPCC requires advancing ev~ntcounts~ and thus modifying segments.

Similarly, a level 2 processor can be protected from unauthorized

interference with its IPCC, by preventing un,authorized level 2 processors from

having modify-permission to eventcounts that it awaits.

The await operation at level 2 has new functionality over the level 1

await operation. First of all, it allows waiting on outward-signalling

eventcounts. Thus, the eventcounts that can be awaited by level 2 await

operations are those that are advanced at level 2, and those that are in the

set of specially handled outward-signalling eventcounts (advanced at level 1).

Second, the number of eventcounts that can be simultaneously awaited is not

restricted to a small number in level 2. A level 2 processor can await a

large number of eventcounts simultaneously. The difference in the number of

eventcounts that can be awaited reflects the cost of storage used in the level

1 and level 2 implementations.

The operations on eventcounts at level 2 are:

VP2$await (eel, value!, ec2, value2, •••)

and

VP2$advance (ec).

VP2$await waits until ec~ is greater than or equal to value~, for some pair of

arguments n. VP2$advance advances the eventcount specified. VP2$await

Chapter 6 - 156 -

PROCESSOR MULTIPLF.XING IN A LAYERED OPERATING SYSTEM

requires read permission on all of its parameters. VP2$advance requires both

read- and write-permission.

6.1.3 Processor Interrupts

A common feature of many operating systems is to allow a process is to

receive a pseudo-interrupt when certain external things happen. For example,

a user of Multics can, by hitting the attention key on His terminal, interrupt

the program he is currently running. The handler for this interrupt reads

commands from the terminal, allowing the user to inspect the state of the

program, modify its environment, and debug the program. The user can thus

stop a runaway program, which might be executing in an infinite loop, and

debug it.

One way to model this processor interrupt mechanism would be to associate

two level 2 processors with the user's computation. See figure 6.1. One of

the level 2 processors, called the slave processor, runs the user's program,

while another, called the control processor, waits for the attention key to be

struck. The attention key being struck advances an eventcount associated with

the attention key. The control processor then proceeds past the await, and

causes the slave processor to stop (assume, hypothetically, that a level 2

processor stop operation exists). Then the control.pr9cessor can read

commands from the teletype and execute them, to ~ebug the stopped slave

processor. The slave processor can then be restarted {us~ng a hypothetical

- 157 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

user
~

slave
program I"" processor

7 \
stop

loop:
await (attn •••) !control ~-
stop(slave) "" p>rocessori !""" .

.

.
run(slave)
&oto loop

Figure 6.1
Processor Interrupt Model

-attention
key

level 2 run primitive), and the control process can go back to waiting for the

attention key to be struck.

Directly implementing this model of processor interrupts is quite costly,

since at any one time half of the level 2 processors are either awaiting an

attention key to be struck, or stopped. Further, some mechanism would be

needed to insure that the control processor is bound to a level 1 processor

whenever its slave processor is. Otherwise, when the control processor needs

to run, to stop the slave processor quickly, it can be held up if there is not

a free level 1 processor to run the control processor. However., this model is

useful in inventing a simple processor interrupt facility at level 2.

Instead of stopping one processor and starting another to read commands,

the processor intetrupt facility sim~ly forces a-fault to occur in the slave

processor. The fault handler in the processor, upon determining that the

Chapter 6 - 158 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

fault was a processor interrupt, will transfer to a processor interrupt

handler. This processor interrupt handler can be thought of as a potential

control processor that is awaiting some condition to occur. When the

condition occurs the control processor is created, the slave processor is

stopped, and the processor interrupt handler is executed in the control

processor.

The conditions under which the processor interrupt handler will be

entered are specified as if the processor interrupt handler were actually

executing an await operation on a set of eventcounts. Thus, there is an

operation that a level 2 processor can perform, called

VP2$set......Processor_interrupt (eel, value!, ec2, value2, •••)

The effect of this operation is as if a level 2 processor were created in the

same environment, that begins by executing a VP2$await operation on the

eventcount-value pairs specified, and after the await returns, calls the

processor interrupt handler. (1) When the handler returns, the stopped level

2 processor will be restarted at the point where it was stopped by the

interrupt. While the interrupt handler is executing, the stopped level 2

processor cannot run.

(1) The processor interrupt is initially received by the fault handler set up
in the level 1 processor. I assume that this fault handler determines the
fault type and reflects it to a set of higher level fault handlers. The fault
handler for each type of fault can be changed through an interface that
controls the level 1 fault handler called the fault manager. The program to
be called upon a processor interrupt is specified through the fault manager
interface.

- 159 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYER.ED OPERATING SYSTEM

Once the handler is entered, the interrupt conditions are reset, so there

are no interrupts during the time the handler is de~iding what to do to handle

the interrupt. The handler reenables interrupts by calling

VP2$set_processor_interrupt again. At any _particu,lar poi.nt. in_ time, either ~o

handler is set, or one has been set. At tempting to use

VP2$set_processor_interrupt to set up two handlers that are invoked under

different conditions causes the new handler to completely supersede the old

one.

In order to interrupt a process, then, one need merely advance one of the

eventcounts specified in the call to VP2$set_processor_interrupt. Having the

level 2 processor itself specify the conditions under which it is to be

interrupted allows protection by the access control on eventcounts against

malicious attempts to send interrupts. Further, programs running on the

processor can be quite flexible in choosing the set of conditions that cause

processor interrupts. The clock eventcount, I/O eventcounts, or any level 2

eventcount can be made to cause an interrupt.

Chapter 6 - 160 -

PROCESSOR MULTIPLEXING INA LAYER.ED OPERATING SYSTEM

6.2 Structure of the Second Level Processor Manager

The level 2 processor implementation is based on a relatively centralized

processor multiplexing algorithm. The multiplexing _.of lev~ 1 processors

among level 2 processors is done by two dedicated level 1 processors, called

the unb inder and the bind er /schedular •. A third dedicated level 1 processor

handles outward signalling of eventcounts. Not a11 of the work is done by the

dedicated level 1 processors, however. the·creation and deletion operations

are distributed in the processors that do the-initiation and termination of

processes. The IPCC operations are distributed among the level 2 processors,

to some extent.

There are four data bases shared among the parts of the level 2 processor

implementation. They are the level 2 processor ta~le, which contains the

state of each level 2 proces~or, the level 2 await table, which keeps track of

all of the eventcounts being awaited by level 2 pr.ocessors ,·'the level 2

reschedule queue, which is a list of level 2 processors that! ·are ,candidates·

for rescheduling, and the free level 1 processor list, that contains a list of

level 1 processors that can be bound to level 2 processors.

The processors and data bases of the level 2 implementation are shown in

figure 6.2. The binder/scheduler processor executes in two domains. In the

binder domain, the mechanisms for binding level 2 processors to level 1

- 161 - Chapter 6 ·

----~--- -------------~---------

PROCESSOR MULTIPLEXING JN A LAYEJl.ED OPIUtA.TlNG SYSTEM

level 1 processors
multiplexed by level

ueue

lev~l: 2
rocessor

state
table

Figur~ 6.2
Processors and Data Bases of Level 2

processors are found. The scheduler domain is a less privileged domain that

implements the particular scheduling. policy f6r 1:~ level 2 processors. The

scheduler domain can call on a small set of primitives to control the actions

of the binder doma~n. These primitives are discusjed· later in'this chapter.

They are designed so that the scheduling policy·may be written without

compromising the security of the system.

Chapter 6 - 162 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2.l Level 2 Data Bases

Before describing the actions of the level l processors that make up the

level 2 implementation, I describe in more detail the four level 2 data bases.

All of these data bases are protected by a. s-ingle lock• called the level 2

processor lock. Waiting for the level 2 processor lock to be unlocked is done

by awaiting the level 2 lock eventcount that is a4vanced (using VP1$advance)

each time the lock is unlocked. To ensure that-the leVel 2 operations
,.

operating under the level 2 processor lock do J\O.t deadlock, level 2 processors

accessing these data bases must do so while q-nstoppable· at level 1.

The level 2 processor table is a table-containing e>ne entry for each

level 2 processor that exists. Its function is sim-1lar to the function of the

level l processor state table. The data of the level 2 processor table is

stored in a virtual memory segment.

Figure 6.3 illustrates the format of a level 2 processor table entry.

Each entry of tbe level 2 processor table qontains a sta~e description of the

level 2 processor in a format suitable for CC!Jling ..the VP1$bind operation.

Some of the data in this description is in a different form, however. The

pointer to the environment description is not a primary memory address at this

level, but a name that can be presented to the envit:orunent description manager

operation that plaGeS the environment description in primary memory. In

- 163 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

CRs

IP

FIP

environment
descriptor

quantum
allocated

execution
state

delete
pending

interrupt
pending

pre-empt
pending

awaited EC·
list

interrupt EC
list

private EC

resched. queue
thread

resource usage
statistics

level 1
state

Figure 6.3

I
I
I
t
I ' .. ·:

~----- -- - .J

another
level. 2

processor
table entry

Level 2 Processor Table Entry

addition to the state description, there is a value that represents the

execution state of the level 2 processor running OD a level 1 processor,

Chapter 6 - 164 -

PROCESSO-R MULTIPLEXING IN A LAYERED OPERATING SYSTEM

runnable, awaiting some eventcounts (and not bound to a level 1 processor), or

queued for rescheduling. Also in each entry are three flags that control .the

action taken by the unbinder -- delete pending, processor interrupt pending,

and pre-empt pending. The level 2 processor table also has two poirtters to

lists in the await table, one for awaited eventcounts, and one for processor

interrupt eventcounts. A private. eventcount. is stored in each processor

table entry to be used .in the await operation described _shortly. Associated

with each entry is a set of resource usage statistics maintained for use by

the scheduling policy in making decisions.

The await table is primarily a· mapping·· from eventcount names to level 2

processors awaiting those eventcounts. Given an eventcount name, and a value,

one can inspect the await table and find all level 2 processors that should be

awakened when the eventcount is advanced to the specified value. A suitable

representation for the await table is shown in figure 6.4. The await table

consists of an eventcount map that converts an eventcount name into a list of

await table entries. Each entry on the list contains a value awaited.

Entries on the list are sorted in increasing order of value awaited, so that
. • ! ~

the set of entries less than or equal to the current value of the eventcount

can be found efficiently. Each entry also contains a pointer to a level 2

processor table entry that indicates the processor that is interested in this

particular value of the eventcount. A flag in the entry indic'ates whether the

entry corresponds to an eventcount being· awaited~ by the i'evel 2 processor, or

to an eventcount used iaVP2$set_yrbeessor_intei:-ruPt. ·Finally, all of.the

- 165 - Chapter 6

PROCESSO.R MULTIPLEXING IN A LAYERED OPERATING SYSTEM

table indexed
by eventcount

t
name

l
I
I

t
I

list sorted b increasi
---~~~~~~~.:......

value

event count
name

interesting
value list

outward
nalling

•

level 2
processor

table
entry

value

interrupt/
await

next value

level 2
processor

next entry
for processor

Figure 6.4
Await Table Structure

value

interrupt/ •••'t

next value

level 2
processor

next entry
for processor

another
value
entry

..

entries for a particular processor are threaded into two lists, one for

awaited eventcounts, and one for processor interrupt eventcounts. All of the ..,

outward signalling eventcounts are also listed together in a special list,

used by the level 2 processor that handles outward signals. The await table • is stored in a virtual memory segment.

The rescheduling queue is a list of level 2 proceasors that are

candidates for rescheduling. The level 2 processor table entries each have a

thread pointer that allows level 2 processors to be threaded onto this list.

Chapter 6 - 166 -

PROCESSOR MULTIPLEXING IN A LAYERED .. OPERATING SYSTEM

Associated with the rescheduling queue is an eventcount tha~ is advanced each

time a level 2 processor is added to the queue.

The free level 1 processor list is just a list of the level 1 .processors

that are free for the binder to bind level 2 processors to. Level 1

processors are added to the list each time level 2 processors are unbound from

them. Binding a level 2 processor to a level 1 proces.~.or is done by selecting

one of the free level 1 processors on t_he li~t, and binding to that level 1

processor. An eventcount is associated with the free level 1 processor queue.

It is advanced each time a level L propessor ts·: ·11tac'ed in the free queue.

One other data base is used in the implementation, but i::tcompletely

private to the scheduler domain of the binder/~chedular ·processor. It is

called the scheduler queue, and is discussed in the description of the

scheduler.

6.2.2 Processes of the Second Level Manager

The three processes that are part of the level 2 manager run on dedicated

level 1 processors. Each of the.se pro~ess~s p~.rfqpn~ one particular class of

operations, waiting for a particular event to hapP.en, then iqteracting with
, _, c~ ,,., · -, ; ~ i .

the level 1 implementation and the level 2 data bases to Jle.rform its function.

They are implemented on distinct processors for. two reasons -- their operation

is only loosely coupled, so it would add. comp~~xity to. try to ,spec~fy the

- 167 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

order of their operations, and the tasks performed by each of these processors

can proceed in parallel to a reasonable degree.

The binder/scheduler and the unbinder processors implement the bind and

unbind operations of the model of processor multiplexing described in chapter

scheduling
queues

multiplexed level l
processors running
level 2 processors

processor
using

VP2$create_

Figure 6.5
Actions of Binder/Scheduler and Unbinder

processor
using

VP2$delete_

two. Figure 6.5 illustrates the actions of the binder/scheduler and the

unbinder. When a level 2 processor is stopped at level 1, due to exceeding

its quantum or an explicit VP1$stop operation, the unbinder processor awakens

and determines what to do with the level 2 processor. It uses the

Chapter 6 - 168 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

VP1$next_stopped operation to get the name of the leyel 1 processor, and

translates this into the name of the level 2 processor that is stopped. If

the level 2 processor table entry fpr the stopl>ed processor indic:ates that a

delete is pending, the unbinder performs the deletion. If a processor

interrupt is pending, and rescheduling has not been explicitly requested by

the scheduler, the unbinder uses VP1$set_processor_interrupt and VP1$run to

cause the processor interrupt to happen. Otherwise, the level 2 processor is

unbound ·fr<>m the level 1 processor, and placed in the rescheduling queue if it

is not waiting, and marked as queued ·for rescheduling. If the level 2

processor is waiting, it is marked as awaiting.

The rescheduling queue is the means by which the binder/scheduler is

informed of processors to be rescheduled for level 1 processors. The

binder /scheduler is driven by two conditions -- the availability of free level
, ~· > , ' - < ' i ~

1 processors noted in the free level 1 processor list, and the arrival of new

level 2 processors to be rescheduled. These conditions are signalled by

advances of eventcounts associated with each queue. It takes each new level 2

processor that arrives in the rescheduling.queue, and enters this processor

into an internal data base called the scheduling ·queue. As level 1 processors

become free, the binder/scheduler chooses the best candidates from the

scheduling queue, and binds them to the free level 1 processors.

The binder/scheduler can also enforce scheduling polic~s that require

pre-emption of level 2 processors from level 1 processors before their quantum

is exceeded. Pre-emption of level 2 processors bound to level 1 processors is

- 169 - Chapter 6

•l ~

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

achieved by marking the level 2 processor table entry as having a rescheduling

requested, then using VP1$stop to stop the level 1 processor. When the level

1 processor stops, the level 2 processor will be placed in the rescheduling

queue by the unbinder.

The binder/scheduler does not see levei 2 processors that are awaiting

eventcounts. As part of doing the corresponding advance. the level 2

processor is queued for rescheduling, from which queue the binder/scheduler

can extract it. If the binder/scheduler pre-empts a level 2 processor that is

awaiting, it will be unbound from the level 1 processor it is running on, but

will not be placed in the rescheduling queue until the corresponding

eventcount is advanced.

The third processor of the level 2 processor manager is the outward

signaller. The outward signaller's job is to periodically poll the outward

signalling eventcounts that are being awaited by level 2 processors. It uses

the list of outward signalling eventcounts in the await table to find out the

names of all the outward signalling eventcounts being awaited. It uses the

outward_signals eventcount to control the frequency of its polling, as I noted

in chapter three. When the polling of outward signalling eventcounts

indicates that a level 2 processor should be awa~ened, the outward signaller

awakens the level 2 processor, just as if the outward signaller had

incremented the eventcount itself.

Chapter 6 - 170 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2.3 Eventcount Implementation

6.2.3.1 Advance

The level 2 advance operation increments the eventcount by calling on the

level 1 advance operation. By using level 1 advance, level 2 solves the

inward signalling problem. Any level 1 processor that is waiting on the

advanced eventcount is awakened by level 1. After using level 1 advance, the

level 2 advance operation determines the level 2 processors that must be

awakened (if awaiting) or sent a processor interrupt (if the advanced

eventcount is part of the processor's processor interrupt condition).

Finding the level 2 processors affected by an advance and performing the

required awakening and setting interrupts is done by an operation that is

internal to the level 2 implementation, called WAKEN. The WAKEN operation

takes the name of the eventcount and its current value as input. WAKEN then

uses the await table to find all level 2 processors that are to be awakened

and interrupted. The WAKEN primitive is also used by the outward signaller

processor to reflect all of the outward signalled eventcounts.

- 171 - Chapter 6

---- ------ -·-- ---

PROCESSOR MULTIPLEXING IN A LAYERED OPERA~ING SYSTEM

The level 2 await operation actually waits by using the level 1 await

operation. Since level 2 can await a large number of eventcounts

simultaneously, some method must be used to reduce the number of eventcounts

awaited at level 1. The reduction is accomplished by associating with each

level 2 processor a private eventcount that is advanced by the level 2 WAKEN

operation to actually awaken the associated level 2 processor. The level 2

await operation actually waits at level 1 by awaiting a change to the private

eventcount of the waiting level 2 processor.

The WAKEN primitive actually awakens a level 2 processor in three steps.

First, all of the await table entries on the awaited eventcount list for the

level 2 processor are deleted from the await table. Further advances on the

private eventcount are prevented, since no await table entry for the processor

will be found. Second, it advances the private eventcount. If the level 2

processor is bound to level 1, this will cause it to run. Third, if the level

2 processor is not bound to a level 1 processor, its state is changed to

queued for rescheduling, and it is threaded onto the rescheduling queue so

that the binder/scheduler sees it.

The WAKEN operation also causes processor interrupts to happen. Await

table entries that are to cause processor interrupts are specially flagged.

The WAKEN operation causes the interrupt to occur in three steps. First, the

list of await table entries associated with the level 2 processor interrupt is

deleted from the await table. This prevents further interrupts from being

set. Second, the level 2 processor table entry is flagged as having a pending

Chapter 6 - 172 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processor interrupt. Third, if the level 2 processor is currently bound to a

level 1 processor, the level 1 processor' is stopped, using VP1$stop; and

otherwise, the level 2 processor is marked as queued for rescheduling and is

placed on the rescheduling queue. If the processot· is running at level 1,

when it stops the processor interrupt will be set .by the unbinder processor.

Otherwise, when the binder/scheduler binds .the processor ·to level 1, it will

use VP1$set_processor_interrupt to set the interrupt.

6.2.3.2 Await

The level 2 await operation works by locking the level 2 processor state

lock, then checking the eventcounts and obtaining their system-wide unique

names. If any of the eventcounts is greater than or equal to the

corresponding value, the processor state table is unlocked, and the await

operation returns. (1) Entries are made in the await table for each

eventcount-value pair, and the current value of the level 2 processor's

private eventcount is obtained. Then the state table lock is unlocked, and

the level 2 processor executes a VP1$await on the private eventcount, for the

next higher value of the eventcount.

(1) If a fault (other than a fault handled transparently below level 2, such
as a missing page fault) occurs while accessing any eventcount (such as no
access to ~~ad the ev-entcQUl)t);. the st:ate table:lock is unlGclted and the fault
is reflected. When the fault is restarted, the lock will be relocked, and the
await operation starts from the beginning again.

- 173 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A processor interrupt can occur during the· await operation at level l.

It is. desirable to allow processor interrupts to occur during level 2 awaits,

so that a user can interrupt his program if by mistake an await is executed

that never will finish. The interrupt handler can await also. Because the

interrupt handler shares the same awaited eventcourtt list and private

eventcount at level 2, there must- be some way that tbe interrupt handler can

be allowed to use level 2 await, while ensuring that when the interrupted

await is restarted it works correctly.

To solve the problem of the interrupted await, I modify the basic level 2

advance and await algorithms slightly. Essentially, the effect of my

modification is that re·starting an interrupted await causes the await to be

re-executed from the beginning.

The WAKEN primitive, in interrupting a level 2 processor that is awaiting

(it has an associated await list) does two extra things. First, the await

table entries for all eventcounts on the interrupted processor's awated event

list are deleted from the await table. Second, the private eventcount of the

interrupted processor is advanced. Advancing the private eventcount ensures

that the level l await operation in the level 2 await will return.

The level 2 await operation must check the eventcount and value

parameters a second time after the level l await returns, becaus.e the level l

await can return for one of two reasons now. One reason, of course, is that

the level. 2 await is over -- in this case 9 ()lle of the eventcounts will be

Chapter 6 - 174 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

greater than or equal to the awaited value, and the level 2 await operation

will return to its caller. The other reason is that the await was interrupted

by a processor interrupt. If none of the eventcounts is greater than or equal

to the awaited value, the await must be restarted by re-entering the events in

the await table, getting the private eventcount value, and awating the private

eventcount at level 1.

6.2.3.3 Set_processor_interrupt

The VP2$set_processor_interrupt operation works similarly to await. The

state table is locked, and each eventcount is checked and its system-wide name

is obtained. If any eventcount exceeds its corresponding value, the state

table lock is unlocked. and the processor interrupt pending flag is set. The

level 2 processor then executes a VP1$stop operati-0n on itself. (1) If every

eventcount is less than the correspondiqg value,: then cthe processor state

table lock is unlocked and the set_processor_interrupt operation returns.

6.2.3.4 Outward Sign_~ling

As noted briefly above, the outward signaller handles outward signalling

eventcounts. Whenever a level 2 processor awaits or sets an interrupt

(1) Rather than simulating the fault, the mechanism in the unbinder is used to
cause the processor interrupt for simplicity.

- 175 - Ohapter-6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

condition that involves an outward signalling eventcount, that eventcount is

threaded onto a special list in the await table, called the outward signalling

list. The outward signaller periodically takes this list of eventcounts and

obtains the values of all outward signalling eventcounts on the list. Then,

it uses the WAKEN interface to cause the level 2 processors interested in the

outward signalling eventcounts to wake up or be interrupted.

6.2.4 Scheduling Policy

In a real computer system installation,· there are many requirements on

the the allocation of resources to individual user computations over time that

cannot be predicted in advance by the system builder. Consequently, the

system builder would like to provide for some flexibility in the resource

allocation policies he builds into the system.

For this reason, the second level processor manager would like to provide

an interface by which the administrator can control its 'resource allocation

policies. The most general mechanism is to allow the administrator to write

the program that makes the scheduling decisions for the second ~eve! processor

manager. In the second level processor manager, this mechanism is provided

for in a clean manner.

Chapter 6 - 176 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

We would like the policy mechanism to be modified by the system

administrator only in such ways that are safe. It would be unreasonable if by

introducing a slight bug in the resource allocation policy, the system's data

integrity and security could be compromised. Consequently, it is necessary to

encapsulate the administrator's policy control program in ah environment of

the least privilege necessary to do the tasks required.

Obviously, the resource allocation polfcy mechartism can, if malicious or

incorrect, deny resources to computations tha't can legitimately proceed. By

allowing the administrator to write such a program, then, we place the

capability for denial of service in his hands.

Through denial of service, or slowdown of service, of course, the

resource allocation policy has a subtle channel of communication with all of

the processes it controls. This can lead to unauthorized release of

information. However, to use these subtle channels requires much more than a

simple mistake on the administrator's part. So assuming the administrator is

not malicious, we can provide a degree of protection against unauthorized

release of information through this path.

The mechanism provided is implemented as a domain in the binder/scheduler

processor, called the scheduler domain. Encapsulated in the scheduler domain,

which only has access rights to call certain level 2 processor management

primitives will be the scheduling policy algorithm. The scheduling policy

algorithm will await an event of interest, such as the availability of a free

- 177 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPE.RATING SYSTEM

level 1 processor or the arrival of a new level 2 processor in the

rescheduling queue. The policy algorithm will then incorporate the new

knowledge into its po~icy and make scheduling decisions that it will

accomplish by calling on an interface that causes selected level 2 processors

to be bound to free level 1 processors.

There are three basic primitives available to the resource allocation

policy process. The first one, schedule, allows the process to name a level 2

processor to be bound to a free level 1 proces,sor and to specify a quantum of

resources. The level 2 processor will be assigned to a level 1 processor if

there is a free one, and the quantum for the level 1 processor will be set

from the specified value. The second primitive, next-rescheduling, extracts

the next level 2 processor from the rescheduling queue. It returµs the name

of the level 2 processor, and a summary of its resource usage information on

which a scheduling decision can be based. The third primitive, pre-empt,

allows the scheduling policy to pre-empt a level 2 processor already bound to

a level 1 processor. The pre-empt primitive marks the level 2 processor as

having a pending pre-emption, and if the level 1 processor is bound to level 1

it uses VP1$stop to stop it from running. The unbinder processor notices this

flag, and puts such a processor in the rescheduling queue. The flag is reset

when the processor is placed in the rescheduling queue.

Very simple checking ensures that the policy algorithm does not make

incorrect use of the level 1 and level 2 processor resources. The schedule

primitive makes sure that a level 2 processor of the specified name exists and

Chapter 6 - 178 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

is not currently assigned to a level 1 processor. It ensures that the

important data bases associated with the leve~ 2 processor environment

description (e.g., descriptor segment) are in core to make sure that the level

2 processor addresses memory correctly •. It also ensures that the process is

runnable and not waiting for some eventcount implemented at level 2.

Similarly, the unbinding of a level 2 processor and deallocation of in-core

resources, etc. is carried out outside of the domain of the scheduling policy

algorithm, in the unbinder processor.

With the 3 operations that the scheduler domain uses to control

scheduling, it can implement almost any policy, without the possibility of a

bug in the policy algorithm interfering with the operations of the level 2

processors being controlled by the policy (except by denying service). This

is accomplished primarily by storing the sensitive data about processes being

scheduled outside the domain of the scheduler. The sensitive data contained

in the level 2 processor state, etc. cannot be read or modified by the

schedule, next-reschedule, and pre-empt primitives.

It should be noted that the resource allocation policy process runs in a

level 1 processor, rather than a level 2 processor. This is necessary, in

order to prevent the resource allocation policy from having to schedule

itself.

- 179 ~ Chapter 6

PRCICF::SSOR '.•lULTIPLEXING IN A LAYERED OPERATI~G SYSTE'.1

- 180 -

Chapter Seven

Using Level 1 Processors in the Operating System

The level 1 processors provided by the level 1 processor manager are very

useful tools for structuring the kernel of an operating system. They can be

used wherever a scarce resource is multiplexed among a group of users of the

system to control the multiplexing. Level 1 processors can be used to manage

multiplexed I/O devices, the virtual memory, and even scarce resources being

managed by the abstract type managers of the kernel.

The isolation of environment and control point that level 1 processors

provide can be very useful in ensuring that parts of the system execute with

the least prbrileges necessary to accomplish the task. Putting I/O device

management in level 1 processors rather'thart interrupt handlers that execute

in any level 1 processor environment is. an example where using level 1 ·

processors can reduce the· privileges need~ed by parts of the kernel.

Using concurrently executing level 1 processors to implement uncoupled or

loosely coupled algorithms also simplifies specification u· the kernel. There

is no need to specify a particular order of operations where that order is

irrelevant to the tasks of distinct modules. Overspecification of the system

can lead to extra complexity, possible deadlocks, and more difficult proof.

- 181 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Finally, using level 1 processors to perform a particular task in the

kernel assures that there is always an agent capable of performing a task when

it needs to be done. For example, a virtual processor dedicated to handling

missing page faults generated in I/O processors will allow the I/O processors

to deal with virtual rather than real memory, and thus simplify the task of

interfacing user computations to I/O devices.

7.1 Permanently Bound Processes

Processes that implement parts of the kernel algorithms are best

implemented as computations that run on dedicated level l .processors. There

are a fixed, relatively small number of such processes. These processes

manage shared resources, and can cause bottleneck~i i~ the system resulti.ng in

denial of service to users if they are not. ,sc~le4 .properly. Most such

processes provide functions that must be correct in order .for the second level

of processor multiplexing to work. For tl}.ese ~easons, the processes used in

the kernel of an operating system with two levels of processor multiplexing

will permanently bound to level 1 processors.

Chapter 7 - 182 -

PROCESSOR MULTIPLEXING IN A LAYER.ED OPERATING SYSTEM

7.2 I/O Device Management

In traditional operating systems such as Multics, the operations of

asynchronously running I/O channels are controlled by interrupt handlers.

Such interrupt handlers are invoked on the .real processor, and execute in the

environment of whatever process was executing on the processor at the time,

This has two bad effects from the point of view of containing the effect of

bugs in the system. First of all, the interrupt handler, which may be quite

lengthy, has access to manipulate anything in the environment of the

interrupted process. If the interrupt handler has a bug, it may inadvertently

read or modify data that is not relevant to the reason for the interrupt. The

interrupt handler thus has more privilege than needed for its task, and

violates the principle of least privilege (26]. Just as the interrupt handler

has access to the data of the process, it also.has control of .the (:!~ecution

point, and may arbitraril,.y delay the interrupted process, although the process

may perfectly reasonably execute on another processor.

The other problem is that the existence of interrupt handlers forces

complex structures in the non-interrupt code of the system. First of all, all

processes must execute in environments that have sufficient access privileges

for all of the ~nterrupt handlers of the system. This is the other side of

the violation of the principle of least privilege mentioned above. A.11

- 183 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processes thus possess privileges to access a large number of shared data

bases that they normally would have no need to access. This large amount of

shared data is potentially a shared information channel between processes, at

least, and may contain information, such as typed passwords in I/O buffers

that can contribute to sabotage of the system if misused.

The parasitic nature of interrupt handler control points also forces

processes to use unnatural control structures. Since the interrupt handler

has no state of its own, it cannot wait for another process to complete its

action. Waiting could cause a deadlock if the process waited for is the one

that the interrupt handler is executing in. For this reason, all processes

that interact with data shared with interrupt handlers must never lock such

shared data unless provision is made to make sure the interrupt handler does

not interrupt the process doing the locking. This requirement makes handling

of I/O require unreasonably complex algorithms.

For these reasons, it is quite useful to associate kernel processes with

each I/O device. A device's kernel processor can await the eventcount

advanced by the device to determine wheri the device needs service. Only the

kernel process associated with a device need have privileges to manipulate

that device's buffers, mailboxes, or other device specific control data. This

reduces the privileges available to ordinary processes running user

computations. Further, the kernel device process need only have privileges to

resources that are needed to do the job of handling the device. The kernel

device process need not access any user data; its interface to the user can be

Chapter 7 - 184 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

through a ~ingle shared queue object. Thus both the ordinary process, and the

computations associated with handling a device have reduced privileges if the

1/0 device management is implemented in a process.

The control structure of the devicemanager and user can also be mlich

simplified. The simplification re-sults from the fact that the communication

is now symmetric; both the user and the device manager are running on

different processors, and each can communicate with and wait for the other in

the same way. No process is held up from executing because it handled the

interrupt even though there are free processors. Further, independent device

manager processes can be executing simultaneously, whereas lrt the interrupt

scheme, this is hard to achieve without increasing the complexity of the

interrupt structure of the system. Using level 1 processors for device

management can succeed in smoothing the load of device management over all

processing units available to the system.

The performance implications of running 1/0 management algorithms in

level 1 processors are likely to be good. The difference between running a

computation at interrupt level in a real processor, and scheduling a level 1

processor that has a h.igh'er priority than so:aie currently executing level 1

processor, is that in the interrupt scheme, the -st;ate of the running process

is stored and reloaded once per interrupt. In the process oriented scheme, in

order to get the device manager to run, the process state must be stored, and

the device manager's state loaded; when the device manger reaches a waiting

point, its state will be stored, and the old process's state reloaded. Thus

- 185 - Chapter 7

---- - - ----- ----------------------- ----------------------~

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

there will be twice as much saving and loading of states in the process

scheme.

If this were the only effect, there would obviously be a performance

degradation. However, there are other effects that very likely will balance

or overcome this defect. Firs~ of all, the.device manager process now has a

state that the interrupt handler had to encode in some way in its associated

data bases. This state specifies what the handler is to do next, so it is: not

necessary to program the device manager•to inteJ:pretively determine the

meaning of the most recent I/O signal. If taken advantage of, the state

information can replace the information used by the de•ice manager to keep

track of what it is doing. Another improve111ent is that complicated, expensive

locking and masking algorithms need not be used in the process scheme for

communication between the device manager and the user computation. Such

algorithms require both computation time, and memory resources in the kernel.

Consequently removing the need for such algorithms can improve performance.

In sum, then, if the cost of saving and restoring a process state is

comparable to the cost of maintaining the state of the I/O connection between

interrupts, then there probably w.ill be a net performance gain resulting from

removing complexity from kernel algorithms.

Chapter 7 - 186 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.3 Kernel Type Managers as Processes

There are a similar set of problems assoeiated with the implementation of

kernel type managers as subroutines callable by user processes. We have

discussed these in chapter three, but I will mention them briefly again.

First of all, without a domain mechanism that allows the user computation

and kernel to be mutually protected, a kernel type m~n.ager executing in a

user's process will have access to all of the user's d~ta. It thus operates

with more privilege than necessary. If the type managers of the kernel are

all protected from the user but there is no d~ain mechanism within the

kernel, the kernel domain in any user processor must haye access to all data

needed by kernel type managers available to that process. While it is

possible with domains to restrict the accessibility of such data, and to

restrict the access rights of abstract type managers to user data~ having the

kernel type managers execute in each user process still requires that each

user's address space contain all of the domains in the kernel. If the address

space is maintained in a per-process object such as a descriptor segment in

Multics, then many copies of the same data will exist and must be kept up to

date.

- 187 - Chapter_ 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

By structuring the abstract type managers in separate processes, each

abstract type manager need only have in its environment those obje~ts with

which the manager must transact. This both simplifies the structure of each

abstract type manager's environment, and eliminates the need for a separate

domain construct, with its additional complexity of implementation.

Implementing the kernel type managers in seP,arate processes can lead to

simplification of the part of the kernel that manages the environment

descriptions of processes. When kernel type managers are implemented in a

distinct domain of a process that executes user algorithms, the operations

that the user code uses to manipulate its environment description must ensure

that the manipulations done do not interfere with the part of the environment

used by the kernel type managers. Thus the kernel algorithms depend on the

environment manager, so the environment manager must be at a very low level in

the kernel. By separating out the kernel type managers into separate

processes, they may be executed in fixed environments that are not manipulated

by the environment manager. The environment manager can then be implemented t~~

at a higher level in the kernel.

Implementing an kernel type manager in a separate process also protects

the execution point of the kernel type manager from the resource controls on

the user processes. In chapter 3, we have discussed how this can help

guarantee that the kernel type manager never stops executing in the middle of

an operation. The proportion of the time during which an ordinary user

process cannot be interrupted can thus be reduced.

Chapter 7 - 188 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A reason that we have not yet discussed for putting kernel type managers

in separate processes is to provide the facilities of the type manager to

computations executing on dissimilar processors. Suppose we have several

kinds of specialized processors on the system for various functions such as

handling special I/O channels, or performing specialized computations such as

Fast Fourier transforms or associative searches. A simple way to pass data to

such processors is through shared data objects in the virtual memory. To have

a very specialized pro~essor perform the virtual memory operations itself upon

encountering a missing page or missing segment fault is probably impossible or

unnecessarily complex. The part of the kernel type manager that actually

handles a missing page can be easily invoked by such a specialized processor

if the page fault handling is implemented in an independent, dedicated virtual

processor. If it is normally done by code in each ordinary process, then some

special case mechanism must be used to handle page faults in a specialized

processor, with the result that the special case mechanism may not interface

correctly to the normal mechanism. Having two mechanisms to perform the same

action is probably always a bad idea in designing a system.

- 189 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.4 Explicit Recognition of Parallelism in the System Design

In an operating system like Multics, there are many operations that are

carried out in the security kernel of the system that do not require a

particular order of execution. An example of this is the page replacement

algorithm in the virtual memory. The page replacement algorithm operates by

choosing candidate pages in primary memory to move from primary to secondary

memory. The pages are then removed from primary memory. The removal of pages

from memory must anticipate the demand for space in primary memory for new

pages, because removal of pages that have been modified while stored in

primary memory requires an operation to write the data in the page to

secondary memory. This operation can proceed in parallel with the use of

other pages in memory. In order to efficiently free up pages in primary

memory, a process that is only loosely coupled to the executing user

computations must constantly keep ahead of the user computations, writing out

the data in pages that look like good candidates for removal.

If there is not an independent kernel process that does this look.ahead,

the page fault handler in each user computation must periodically do some

lookahead, so that writing of pages is ahead of reading of pages into memory

most of the time. Choosing the right point in time to do this look.ahead

{before reading the page in, or after?) and the right frequency of executing

Chapter 7 - 190 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the lookahead algorithm (every page fault or every third one?) as well as the

right amount of lookahead to do each time the lookahead algorithm is entered

(depends on the queuing facilities available for writes, the average frequency

of reads, and other factors) can be quite complex. The complexity of these

choices arises from the artificial constraint that the page removal algorithm

must be in lock-step synchronization with the handlfng·of page faults,

contrasted with the basic requirement that the page re1110val algorithm must run

ahead of the page fault handling for efficiency. Most of this complexity has

been removed in a design proposed by Huber [lOl,' ·by putting the page removal

algorithm in its own processor. The page removal algorithm then can be

relatively autonomous in its choice of how 'far to took ahead and how fast.

There are many algorithms in operating systems that are only loosely

coupled with user-requested operations. In Multics, such algorithms include

managing the paging pool (as in the example), managing the in-core copies of

page maps, moving data coming into the system on I/O devices and sto.red in

primary memory buffers into secondary memory, and up~ating the accounting

records stored in the virtual memory from accounting variables stored in the

primary memory by kernel type managers below the virtual memory level of the

kernel.

- 191 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.5 Resulting Structure

The result of carrying out the structuring spec!fied in this section will

be to create an operating system in which the kernel is made up of a set of

processes, each associated with a particular physical resource or, shared

abstract resource. These processes will all be implemented on.dedicated level

1 processors, where the environment of the virtual processor is configured to

exactly conform to the environment needed by the process. For example, the

disk manager process will have an environment ~hat includes only the

wired-down disk accessing code and data bases, and a wired-down message queue

with which it communicates to the virtual memory systems that control the

reading and writing of disk pages. The manager of the page data type will

have access to the disk queue, and wired-down page tables that it manages. It

will be controlled by a queue of requests provided by user processes that take

page faults, or by the segment manager, which may need to create or delete

pages.

A non-exhaustive list of algorithms of the Multics system that would

benefit from being implemented on a dedicated level 1 processor follows.

1. Device management (currently done by interrupt handlers). One
level 1 processor for each I/O channel.

2. Page removal algorithm. (Designed by Huber [10])
3. Page fault handler. Havig this processor would allow I/O devices

to access virtual memory as described earlier.
4. Environment descriptor manager. In the enviroruaent of the

environment descriptor manager, each environment descriptor could

Chapter 7 - 192 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

be known as a data segment. Thus manipulation of environments of
all user processes, needed to handle revocation of access to and
simultaneous sharing of environments is only done by one process.

5. System debugger. In Multics, the state of a crashed system is
inspected by a stand-alone program that is loaded on a crash into
the memory. An alternative would be to design it as a level 1
processor that awaits an eventcount that is advanced by a crash.
Since level 1 is fairly simple, and is the bottom level of the
system, it should rarely be the case that a system crash causes
the implementation of level 1 to fail. The system debugger can
then be designed in an environment where parallelism works.

6. Page table removal algorithm. For the same reasons that I
pointed out for the page removal algorithm, removal from primary
memory of page tables for segments is simplified by decoupling it
from operations explicitly called by user algorithms.

7. Salvaging of directories. Currently two separate mechanisms
handle salvaging the data in directories if the data is
discovered to be inconsistent. One mechanism is a stand-alone
program run by the system debugger while the system is crashed.
The other is a part of the kernel that is invoked when a direcory
manager operation discovers that the directory being manipulated
is inconsistent. These mechanisms could be merged into a program
that runs on a dedicated level 1 processor that awaits requests
to salvage directories. Like the system debugger, this program
could still run, even if most of the higher level programs have
stopped due to software failure.

8. Consistency checker. A processor could periodically check the
consistency of important system data bases, in the hope of
catching trouble before other software encounters it. For
example, a process could check to see that two distinct pages
were not assigned to the same disk block.

- 193 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 194 -

Chapter Eight

Conclusions and Suggestions for Further Research

To sum up the research described in the thesis, I first would like to put

in capsule form the major insights I have found in the progress of the

research. Then, I present a number of topics that I have not had the

opportunity to investigate fully, but which definitely deserve further

investigation.

The technique used to disentangle the virtual memory - virtual processor

mutual dependency was to break up the virtual processor implementation into

two levels, the first of which provided no new memory accessing capability and

could be used to provide processing power to the algorithms that implemented

the virtual memory. This technique is a special case of a method Parnas has

recently called "sandwiching" [22], that in general allows elimination of

mutual dependencies between two modules, A and. B, by splitting A into two

pieces so that the functionality B depends on is in the lower level of A,

while of the two pieces, only the higher level: of A depends on the

functionality provided by B.

In developing a design for the two levels of the virtual processor

implementation, I have avoided introducing new mutual dependencies between

either of the levels of virtual processors and the virtual memory. In the

case of the virtual memory - virtual processor mutual dependency, then, the

sandwiching technique has been successful in practice, as well as in theory.

- 195 - Chapter ~

-- -------------------------

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The use of abstract -type managers as a :metaphor for describing the two

level virtual processor hierarchy has given an unexpected.dividend in showing

that the cache management pattern of type extension first developed by Janson

[11] can be used to describe the structure of processor multiplexing

algorithms as well as the virtual memory ·i-111plementation. The cache management

pattern is a basic pattern in the design of operating systems because

operating systems create ab&tract types as ~ools to manage scarce resources.

As far as I know. the iuse of types as tools to manage scarce resources is not

yet well understood. However. the cache management pattern seems to play a

quite important role in using abstract types to describe the implementation of

operating systems.

In the design of both levels. a certain degree of simplicity arises from

centralizing the mechanism that does the actual multiplexing of processors in

one or more dedicated processors. As I have shown in 'the latter part of

chapter five, it is fairly easy to take a design that uses -a centralized

control and convert it into a design that has distributed'control. 'nle

inverse transformation is not easy, however. An algortthnr initially designed

to be distributed on the processors being '81Ultiple-xed, such ·as that presented

by Bredt and Saxena [2], tends not to be as clear because the legitimate

orderings of actions taken by the distributed algorithm is not directly

represented in the algorithms.

Chapter 8 - 196 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The use of eventcounts for IPCC in the design has had two effects.

First, protection of information transmitted by the IPCC mechanism is

guaranteed by the virtual memory protection mechanism. This eliminates the

need for a special access control mechanism on IPCC that would make the

implementation of the IPCC mechanism more complex. Second, because

eventcounts are simply words in the virtual memory, the same semantics apply

to the IPCC mechanisms provided at both levels of virtual processor

implementation. Further, because the storage for eventcounts is provided by

the memory, the same eventcount can be used by processors implemented at

different levels, allowing inward and outward signalling. Providing

semaphores as the basic IPCC mechanism seems to preclude outward signalling.

In Bredt and Saxena's design [2], which provides semaphores, it is required

that a level 2 processor that takes a page fault remain bound to the level 1

processor until the page fault is satisfied. In my design, a level 2

processor that takes a page fault can wait for the page fault to be satisfied

using level 2 await, and be unbound in the interim.

An important part of the design of the second level was providing an

administratively variable policy mechanism that could be varied arbitrarily

without compromising the correct operation of the kernel of the operating

system. While the mechanism proposed does not prevent denial of service to

users, the policy algorithm is run in an environment containing only the

privileges needed to make scheduling decisions. The actual integrity of the

virtual processors being scheduled and the data that they operate on cannot be

- 197 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

compromised by the scheduling policy mechani;.sm. In part, the policy mechanism

was easy to include in the design because the processes used to perform kernel

functions are protected from the policy mechanism by being permanently bound

to level 1 processors.

The design developed in the thesis has,. serendipitously, allowed the

kernel to be constructed as a set of cooperating parallel processes. Just as

decomposing the kernel into a set of modules that can be independently

understood and verified is aided by using abstract types, decomposing the

kernel into a set of loosely coupled or uncoupled parallel processes is a tool

that allows designing and verifying small pieces of the system independently,

because only the essential ordering constraints are sp~if ied in the design.

Further Research Topics

In this thesis, I have proposed a fairly detailed design for two levels

of processor multiplexing, and a much less detailed sketch of how the rest of

the system could be structured around the two levels. A very important step

in proving my results is the actual implementation of the two level processor

multiplexing design. Further, there is certainly much to be done in actually

structuring the design of an operating system such as Multics in terms of

dedicated virtual processors. Huber [10] has taken the first step in this

direction by designing and implementing a version of Multics page control that

runs in several dedicated Multics processes. However, using the level 1

processors of my design to replace the interrupt handlers used to manage I/O

Chapter 8 - 198 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

devices in systems like Multics promises to provide a great deal of

simplification. Some of the other suggestions for using processors made in

chapter seven seem to have promise also.

An important reason for actually implementing the two level design is to

verify that the two level design does not reduce the performance of the

system. I have given a brief argument in chapter three to show that

performance is not necessarily reduced, but only an actual implementation that

has good performance can actually prove that performance is not a problem.

In chapter five, I proposed a non-traditional computer architecture that

uses a dedicated microprocessor to control the short-term multiprogramming of

a multi-processor system. Actually constructing such hardware can simplify

both the hardware and software structure of a computer system, by eliminating

the need for complex interprocessor control mechanisms, such as interrupts.

In chapter five, the actions taken by the general purpose processors was

implemented by software. It seems to me that a hardware implementation of the

algorithms in the general purpose processor that implement level 1 functions

would greatly simplify and improve the performance of the system. Such an

implementation seems quite feasible for a microprogrammed general purpose

processor.

A final topic that requires more study is the relationship between type

managers and interpreters. The interpreter for each type manager in the

system is the real processor. The algorithms for all type managers are

- 199 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

expressed in terms of instructions that are executed on the real processor.

At the abstract level, though, each type manager can be viewed as an

interpreter for the operations on the type. Viewing the type managers as

algorithms to be executed on real processors is essential for developing a

design that is actually implementable on a small nwnber of real processors.

Processor multiplexing can be viewed as a mechanism for ensuring that the real

processor resources get distributed to all type managers that need such

resources. On the other hand, viewing each type manager as an interpreter of

its own operations seems to be much simpler. The relationship between these

two views in the design and implementation of systems deserves more study.

Chapter 8 - 200 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

BIBLIOGRAPHY

(l] Bobrow, D., et al., "TENEX - A Paged Time Sharing System for the PDP-10,"
~ l2_, 3 (March 1972), pp. 135-143.

(2) Bredt, T., and Saxena, A., "A Structured Specification of a Hierarchical
Operating System," Proceedings of the International:, Conference on
Reliable Software, Los Angeles, April 1975.

[3) Brinch-Hansen, P., "The Nucleus of a Multiprogramming System," CACM .!1.• 4
{April 1970), pp.238-41.

(4) Dahl, O.J., Myrhaug, B. and Nygaard, K., The Simula/67 Common Base
Language, Publication S-22, Norwegian Computing-Center, Oslo, 1970.

(5) Dennis, J., "Concurrency in Software Systems," Computation Structures
Group Memo 65-1, M.I.T. Project MAC, June 1972.

(6) Dijkstra, E.W., "Cooperating Sequential Processes," in Programming
Languages (F. Genuys, ed.) Academic Press 1968, pp.43-112.

(7] Dijkstra, E.W., "The Structure of the 'THE' Multiprogramming System," CACM
..!.!_, 5 (May 1968), pp.341-46.

[8] Field, M.S., "Multi-Access Systems -- The Virtual Machine Approach,"
Cambridge Scientific Center Report 320-2033, IBM Corporation,
Cambridge, Mass. (September 1968).

(9) Hoare, A., "A Structured Paging System," Computer Journal 1§_, 3 (August
1973)' 209-15.

(10) Huber, A., "A Multiprocess Design of a Paging System," S.M. Thesis,
M.I.T. Department of Electrical Engineering and Computer Science,
May 1976 (to be published as an M.I.T. Laboratory for Computer
Science Technical Report)

(11] Janson, P., "Using Type Extension to Organize Virtual Memory
Mechanisms,", Ph.D. thesis in preparation, M. I. T. Department of
Electrical Engineering and Computer Science (expected completion,
August 1976).

(12) Kanodia, R., and Reed, D.P., "Eventcounts: A Model for Process
Synchronization," in preparation.

(13) Liskov, B., "An Introduction to CLU," Computation Structures Group Memo
136, M.I.T. Laboratory for Computer Science, February 1976 (to be

- 201 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERAT!'NG SYSTEM

published in the ALGOL Bull

[14] Liskov, B., and Zilles, S., "Prog with Abstract Data Types,"
Proceedings of the ACM SIGP Conference on Very High Leve_] ..
Language&, SIGPLAN Not'ices 9 (April i'.-,74), pp. 50-59.

[15] Luniewski, A. L., "A Certifiable S stem Initialization Mechanism," S .• M
· Thesis in progress, M. I. T. L bm:ator)' ·for . COuii)uter Sc'ience.

[16] McKenzie, A. "Host/liost Protocol
~urrent Network Protocols, N
Research Center, ~stanfotd'' Re
8246, Jan. 1972).

or the ·ARPA Network, u ~- Network
twork ,In,(prmation Center, Augmentation
ear"cli Inifti~.~te,· Menlc> ·Park, ea. (NIC

[17 J Meyer, It. ~nd ,Seawright, .L., 11A v rtual Machine t:ime-sharing System," IBM
Systems Jou-rnal 9, 3, pp.· 1 -218· (l9JO').

[18] Montgomery, W. A.~ "A Secure and · l:!xible Model" fo'r · Sec..ure Process
Initiation in' a Comput:er Uti i{~/~ "' s-Jt. an~f ·E,~ E~. thesis, M. I. T.
Department of Electrical Eng neerj.ng ~nd~Co~puter Science (~~
l?l6); to be publ1sh1!i:t' · M. I. 'I. t.abot:~tory for Computer Science
Technical Report. ·

{19] Saltzer, J.H., "Introduction
Report TR-123, 1974.

[20] Neumann, P.G., et aL, "A Provabl
of SRI Project 2581, Stanfor
1975.

[21J Parnas, D., "On the Criteria to b
Modules," ~ ll• 12, Dece

Proje~~ MAC Technical

Secur~ Opetat:fog System," Final Report
Research tnstitµte, Menlo 'i>ark, CA. ,

Used in Decotilposing Sys.tem,s into
pp.1053-8~

[22] Parnas, D. 11 Some Hypotheses About the "Use·s' Hierarchy for Operating
Systellls," J'schbereich lnfon. tik,. Tectmisebl!flloch~hute l)armstadt,
Forschunasbe.l!'i:eht _!! 76/i.

[23] Rappaport, R., 11 Implementing Mult -Process Primitives ;ln a Multiplexed
Computer System, 11 S.M. Tbesi , M.1'.T~; M::t.T. ~t>Ject MA(; Technical
Report TR-55.

[24} Rowe, L.A., "The Distributed Comp ting Operating System," University of
California at Irvine Departm nt of Information and Computer Science,

;: t', -

Te.chnica 1 Report · 66. · ·

[25} Saltzer, J.H., "Traffic Control i a Multiplexed Computer System," Sc.)).
Thesis, M.I.T., M.I.T. P-roje t MAC T~chri'icai''aep'ort TR-30.

-, ~ -,, -

Chapter 8 - 2 2 -

PROCESSOR MULTIPLEXING IN A LAYER.ED OPERATING SYSTEM

[26] Saltzer, J.H., and Schroeder, M.D., "The Protection of Information in
Computer Systems," Proc • .!!!! g, 9, pp. 1278-1308 (Sept. 1975).

[27] Schell, R., "Dynamic Reconfiguration in a Modular Computer System," Ph.D.
thesis, M.I.T., M.I.T. Project MAC Technical Report TR-86.

[28] Schroeder, M.D., "Engineering a Security Kernel for Multics," Proc. ACM 5
Symposium on Operating Systems Principles, !9:!, Operating Systems
Review .2,, 5 pp.25-32 (November 1975).

[29] Sturgis, H.E., "A Postmortem for an Timesharing System," Ph.D. thesis,
University of California at Berkeley (1973), Xerox PARC Technical
Report TR 74-1.

[30] Wulf, W., et al., "HYDRA: The Kernel for a Multiprocessor Operating
System", ~ Q, 6 (June 1974), pp. 337-345.

- 203 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 204 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Appendix A

Level l Processor Interface Summary

Operations (underscoring indicates output arguments)

Used by level 2 implementation for control of multiplexing:

VP1$bind (llproc, state, error)
VP1$unbind (llproc, state, error)
VP1$run (llproc)
VP1$stop (llproc)
VP1$next_stopped (llproc)
VP1$set_yroc_interrupt (llproc)

Used by all level 1 processors:

VP1$await (eel, valuel, ec2, value2, ec3, value3)
VP1$advance (ec)
VP1$begin atomic operation {)
VP1$end atomic operation ()
VP1$get fault_data (.E._rocessor state)
VP1$restore_yrocessor_state (processor_state)

Used for managing lower level hardware:

VP1$propagate map change ()
VP1$add_cpu (cpu_id)
VP1$del cpu {cpu id)
VP1$crash_system-()

Special Eventcounts

Used in level 2:

stopped
outward_ signals

Used in all level 1 processors:

clock
I/O processor event eventcounts

- 205 -

PROCESSOR ~1ULTIPU:XING IN A LAYERED OPERATING SYSTEM

- 206 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Appendix B

Level 2 Processor Interface Summary

Operations (underscoring indicates output argtunents)

VP2$create__processor (envptr, startptr, schedclass, procname)
VP2$destroy__processor (procname, envetr)
VP2$await (eel, value!, ec2, value2, •••)
VP2$advance (ec)
VP2$set__processor_interrupt (eel, value!, ec2, value2, •.•)

Internal Interfaces for Scheduler Domain of Binder/Scheduler
schedule (level_2__processor, quantum)
next-rescheduling (level 2 erocessor,· nomore)
pre-empt (level_2__processor)

Event counts

reschedulings -- number of reschedulings that have happened.
free -- number of freed level l processors.

- 207 -

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date: _M.1 fl 1j[

Each of the following should be identified by a checkmark:
Originating Department:

0 Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) 0 Technical Memo (TM)

0 Other: -----------
Document Information Number of pages: il<16' ~J... 13-} /l\PGFs)

.. Not to Include DOD formll, printer intstlUCtions, etc ... original pages only.

Originals are: Intended to be printed as :

0 Single-sided or

~Double-sided
P..Q9t type:
~ TypeoM'ler

D Single-sided or

Q(Double-sided

D Laser Print

D InkJet Printer

D Offset Press

0 Unknown D other:.~~~~~~-
Check each if included with document:

D DODFonn

D Spine

D Funding Agent Fonn

~Printers Notes

0 Other:-----------­
Page Data:

D CoverPage

D Photo negatives

Blank Pages(by,...numbel): __________ _

Photographs/Tonal Material lbYs-ue numllet): ________ _

Other (nal8 clelcriplialJ.-ue numbel):

Description : Page Number:
1

4:°M"ci< M1'<L : c 1- slp 'K) Uitv*' <~ r.'\"'u- f A(it:', il-J..o 1 Y.J:J£: ~ BL.J"Nk.
'")

(;to')- J.13)~<AN<or=.1··n~.Ql 1 fR.;NTh'R'S' aoli5J TI:CT°S CJ J

Scanning Agent Signoff:

Date Received: l~t_I_\ I qs Date Scanned: _j_t ld-t..Ji Date Returned: _1_1 If t_li_

Scanning Agent Signature:. ___ ~..._--___.._..._._Iv......_., Gtlt.-........ -u.=--

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

