A SECURE AND FLEXIBLE MODEL OF PROCESS INITIATION

FOR A COMPUTER UTEILITY. .

Warren Alan Montgomery

June 1976

The research reported here was supported in part by the National Science
Foundation, through a graduate fellowship, in part by Honeywell Information
Systems Inc., and in part by the Air Force Information. Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-T4-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE : MASSACHUSETTS 02139

Acknowledgements

I would like to thank some of the people who helped in this research. I
would llke to thmnk professor Saltzer, my thesis supervisor, for help in
defining the topic and guidance throughout the projeset. Mamy of the members
of the Computer Systems Research group gave helpful suggestions as the ldeas
for this thesis were beginning to forsm. Ken Pogran and Doug Wells of the
Computer Systems Research group, and Paul OGreen of Honeywell Information
Systems provided great assistence in the design and debugging of the test
implementation. Professor M. D. Schroeder, and Dr. D. Clark provided many
valuable suggestions on drafts of asome of the-sections of the thesis. Most of
all, I would like to thank my wife, Carla, for inspiration throughout the
project, for help in preparing the thesis, and for patience during three long
years of graduate study. . ‘

I would also Yike to thank the National Science Foundation (NSF) for
funding for graduate study under the NSF Graduate Fellowship Program.

This research was performed in the Computer Systems Research Division of
the M.I1.T. Laboratory for Computer SBoilence. It was sponsored in part by
Honeywell Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No. 2641
which was monitored by ISTAC under coatract No. F19628-74-C-0193.

-2-

A SECURE AND FLEXIBLE MODEL.OF PROCESS INITIATION
FOR A COMPUTER UTILITY®

by

Warren Alan Montgomery

ABSTRACT

This thesis demonstrates that the amount of protected, privi;eged code
‘related to process initiation in a computer utility can be greatly reduced by
making process creation unprivileged. The creation of processes can . be
‘controlled by the standard mechanism for controlling edtﬁy to a domain, which
forces a new process to begin execution at a controlled looation.(Login of
‘users can thus be accomplished by an unprivileged creation of a process in the
potential user’s domain, followed by authentication .of the user by an
unprivileged initial procedure in that domain. '

: The thesis divides the security constraints provided by a computer
utility into three classes: Access control, prevention of unauthorized denial
of service, and confinement. We develop a nodel that divides proceas
initiation into five independent fuhbtivme: - Priceess - oreatidn, domaln
changing, resource control, authentication, and environment initialization.
We show which classes of socurity constraints depend “on ‘"~ each of these
functions and show how to implement the functions suoh that theae are the only
dependencies present.

: The thesis discusses an implement&tioﬁa of process initiation for the
Multics computer utility based on the model. The major pvdblems encountered
in this implementation are presented and discussed. ‘We show that. this
implementation is substantially simpler and more flexfbie'than ‘that -used in
the current Multics system.

*This report is based upon a thesis of “the sade t1tle submitted to" the
Department of Electrical Engineering and Computer Scionce, Hasaachusetts
Institute of Technology, on May 13,7 ‘1976:°4n" partial Tulfiliment of the
requirements for the degrees of Master of Science and Electrical Engineer.

-3-

SECTION
ABSTRACT
TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER 1. INTRODUCTION
1.1 The Problen
1.2 Method of Attack
1.3 Results
1,& Thesis Pian

1.5 Related Work

CHAPTER 2. A MODEL FOR PROCESS INITIATION
,2.1 Security Goﬁls-
2.2 A Layered Security Kernel

2.3 A Model for Process Initiation

CHAPTER 3. AUTHENTICATION
3.1 Properties of Authentication Mechanisms
3.2 Authentication Forwarding

3.3 Example of our Authentication Scheme

CHAPTER 4. RESOURCE CONTROL

4.1 Issues of Resource Control

4.2 Primitive Operations for Resource Control

4.3 Limitations on Resource Control Poiicy_

wl

PAGE

10
12

13

15
15
20

22

27
27
3
36,

39
3§
42
46

4.4 Limitations on Security Constraints

CHAPTER 5. MECHANISMS FOR AUTHORIZING DOMAIN CHANGES
5.1 Introduction to Domain Changing
'5.2 Four Mechariisms for Authorizing Domain Chariges
5.2.1 Exact Specification
5.2.2 Paftiél Specification
5.2.3 Last Component Specification
5.2.4 Appending Specification
5.3 Domain Changing and Confinement =

5.4 Evaluation of Domain Changing Mechanisms

CHAPTER 6. THE TEST IMPLEMENTATION
6.1 Brief Introduction to Multics
6.2 The Implementation

©.6.3 Evaluation of the Test Implementation -

CHAPTER 7. EVALUATION AND CONCLUSIONS
7.1 Comparison of the Model to Other Schemes
7.2 Summary of Conclusions

7.3 Areas for Future Research
APPENDIX A. DETAILS OF THE IMPLEMENTATION

REFERENCES

46

48
48
49
50
54
58
60
63
68

70
70
75
88

93

93

- 99

102
103

123

Number

Table 2.1

Figure 5.1

Table 5.1

Figure 6.1

Table 6.1

Table 6.2

Figure 7.1

FIGURES AND TABLES

Process Initiation Functions in the Security Kernel

Domain and Domain Gate Objects in a
Hierarchical File System

Examples of ACL Term Matching

A Typical Process Initiation

Impact of the Model on the Number of Lines of
PL/I Code in the Kernel

Impact of the Model on the Number of Programs
in the Kernel

Hierarchical Process Creation for
Mutually Suspicious Subsystems

-6-

Page

26

56

61

77

90

90

98

CHAPTER 1

INTRODUCTION

1.1 The Problem.

Proce
sSuppo

funct

1)

2)

3)

4)

5)

This thesis is concerned with process initiation in a computer utility.

ss 1initiation consists of all those functions that are pefforme& to
rt the creation of processes. In the Muitics ‘cbmpﬁteb' utility, fhesg
ions are: | |
Process Creation: The addition of a new process to the set of»prooesses
being managed by the system.
Resource Control: The assignment of resources. (GPU. tcycles, memory
pages, and the use of I/0 devices) to a pew-process.
Authentication: The identification of the user who will ‘control the new
process.
Domain Changing: The assignment of a Principal ID, whiéh will ’bgl used
in determining the process’sracéess to objeéts ih the fiie system, to a
new process. |
Environment Initialization: The initialization of Qéchanisms needed to

support the computation performed by the new process.

As can be seen from the above list, process initiation includes a wide

variety of functions. Some of these functions -must énforce security

constraints, while others are unrelated to security. In the Multics computer

Chapter 1 ‘ Page 7

utility, and in man¥y others, the mechanisms that implement the functions that
we include in process initiation are poorly .organized and heavily
interdependent. This interdependence not only makes all of these mechanisms
more difficult to prove correct, but-alsc makes the security of the computey
utility dependent dn a larger set of mechanisms than the minimum set that is
necessary to implement the desired security constraints.

The primary goal of this thesis i3 to devise an organization for the
mechanisms ﬁﬁat implement process initiati&n fhat is simple and mipimizes
unnecessary dependencies. Néw mechanisms will be developed to pefform some of
the functions listed above in thét organization.

A second goal of the thesis is to produce an organization for process
initiation that can-easily be used for any situation in which processes must
be created for users. Processes are a 'powarful tool for struecturing
computation and a process initiation mechanism that 1s simple and inexpensive
encourages the use of processes. An impleméntation of prooess initistion for

the Multics computer utility will be used to test the proposed organization.

1.2 Method of Attack.

| We will be*ﬁost’inte;ested in reducing the number of mechanisms on which
the’security of the computer utility depends, and in reduciﬁg the complexity
"of those mechanisms. We extend»the notion of a security kerﬁel [Se75] to a
kernel with severﬁl 1ayers. Eéch layer 1is résponsible for enforcing a
different set of secﬁrity constraints. Ail ‘of tﬁe‘mechanisms that must
funetion correctly to enforce a particular set of constraints :are inside of

the kernel layer for that set.

Page 8 : Chapter 1

The principle of least privilege [Sé75] is used as a guide to,deteﬁmine
the functions that are 1mp1emented' in each kernel layer. This bripeiple
states that each mechanism should be givenren;yrthose privileges needed to
perform its function. Thus, each kernel layen should ”cqntgin only thoge
mechanisms needed to enforce the security cens;raints_for'wh{ch that layer 1is
responsible. The principle of leastryrpeivilege'ﬁﬁreduees unnecessary
dependencies. B 1

Another important structuring technigue gsedA 1h‘ ﬁhis thesis 13 to
implement each function with a small program Jge@uie, ‘end‘ to minimize the
interactions between modules. By clearly:definingfthezfengtien'performed'by
each such module,‘we make each module easy to verify. By minimizing' the
interactions between modules, webmake the structure of the system simple and
thus easy to verify.

An important goal of this thesis is the minimization of common mechanism.
By this we mean making the set of mechanisms on whith all users must depend as
small as possible by removing mechanisms that don‘t need to be shared and by
simplifying those that remain. Such common mechanisms must be included in the
security kernel. Any mechanism that a user need not depend on need not be
certified, as a user who is not satiafied that such a mechanism ‘is correctly
implemented can avold using it. ‘The etructuye?“gbeqenteq »for process
initiation in this phesis has very little mechanism on yh1eh a}l users must

depend.

Chapter 1 Page 9

1.3 Results.

‘This theéis demonstrates that the security kernel of a computer utility
can be simplified 67 mhking‘prOQesa creatioﬁ'unpriviléged. The authorizatibn
for process creation is provided by the ddmﬁiﬁ’cﬁangihé mechanism, which
forces a new prdééas to begin 'exébutiOﬁ' at a 'céﬂtbolled location. An
dnpfivileged prdcesa can fhus be usedyﬁomereaée a érdcéis for a potehtiai user
in that user’s domain. Authentication of the user 18 performed by an
unprivileged initial procedure inhthétVAEEaiﬁ. The remainder of this section
describes these results iﬁbsémewhgf‘greAteﬁ’detailj

A security kernel with three layers is used in the thesis. The layers

provide:

1) Access Control: Restrictions on the‘ operations that‘,pbocesses can.
perform on objects.
- .. 2) Prevention of Unauthorized Denial of Service: A guarantee that each
user recelves a fajir sharg of the available resources.
3) Confinement. A guarantee that . JInformation stored . in the comouter
utility 1s released only to users who are .authorized to see that

information.

The thesis partitions prbcess’ 1nit1ation'<int6 ‘the_ five functions

changing, and environment initialization. Each function is implemented in thé
kernel layer that provides the least privilege required to perform that
function. The thesis considers three. of the functions (domain changing,

authentication, and resource control) in detail.

Page 10 Chapter 1

The domain changing mechanism for process initiation, ‘which_ cgntygls a
newly created process’s access to objec;sﬁimust per{ppp gisﬁmilar funqtion to
that of mechanisms used to control the calling of protected subsystems. The
desired‘-charaeteristics for a domgin cbang;ng'gqchggism_gnap will serveupoth
purposes in an access control list orignted ,3y3§§¢1 vgqch as Multics, are
presented and discussed. We present severa] doma;q:qhénging_mechanisms,;hgt
can be used for both purposes. |

The thesis shows that authenticgtioq can be pemqved» from the access
control and denialv of service layers ’éf thg kggne}{l‘This removal can be
accomplished by allowing eéch user to hselecqu:h;s_ own rauthengiqagion
procedures. The thesis also shows how agthen;iéqtiqn“gan be_remdyed from the
confinement layer by allowing different authgﬁticatgqn mechghisms poxguqrd:the_
release of different pieqes‘of confined infofmatiégij_ |

The thesis also presents the concég@}of;authgnpicatign<forwarding. which
allows information obtained through authentlication to be shared in a secure
way. Authentication forwarding 1s a natural model ;fOr ‘dealing :twith
authentication information. Authentication forqgrging allows processes to
make use of authenpication procedures performgd by the sxsgqmrwithout forcing
every user to be dependent on the correctneés‘of such procedures. | |

The test implementgtion of = process _;Rigia§199 done for the Multics
computer utility demonstrates that the functionality _qf Qrocess‘.;gitiat;gn
provided by Multies can be achieved:with a mugh §i@pl¢r stpqctuve:than that
currently used. The implementation also makes thg sqp,of programs that must
function correctly in order to enforce a part;cu}§g secur1ty,constraint much

easier to distinguish.

Chapter 1 Page 11

1.4 Thesis Plan.

The'first three sections of thisiohspter have provided a brief overview
of the work done in this thesis.? rhé remainder of'thisiohapter discusses
previous work in the areas of oomputer security and prooess initiation.

The second chamter presents the model for eonputer proteetion mechanisms
that is used in this thesis.‘ This mtdel is used to define more precisely the
notion of a layered security kernel, ?"d to define clearly the layers used in
this thesis. The ﬁive.functions of prooess initistion:are described, and each
function 1s assigned to a layer pf ‘the kernel aceording to the privileges
required to perform that function.

Chapter three considers the probiem' of vsuthentiostionn We show that
authentication falls outside the aoeess control and denial service layers of
the kernel in our protection model, and show how to remove authentication from
the confinement layer. We present the concept of authentication forwarding.
and discéuss the funotions thatnxmustA be performeo by an authentication
forwarding mechanism. | k |

Chépter four considers the proolem of resource control. We discuss the
issues involved in performing resour#e oontroi:néndehon how many policies of
resource control can be implemented‘b$ progrsms executing in an environment
that does not provide”privilegesitnat would allow tnose programs to violate
“the constraints provided by the aceess oontrolllayen:\ |

Chapter five presents four mechanisms’for autnorizing domain ohanging.
‘ﬁroperties of donsinﬁchénging mechanisns desirsbieyfonéorocess initiation end
protected subsystem oalling'are diséussed}: The sdGSntsges ‘and ?disaduantages
of each of these mechanisms are evaluated. before choosing the mechanism used

in the test implementation.

Page 12 | Chapter 1

Chapter six discusses an implementation of proceg;dvinitiation for the
Multics computer utility. A brief description of Mq;t}csvig presented, with
special emphasis on the properties of the current process 1initiation scheme.

o : : . RN s S I i

We describe an implementation of process initiation for Multics based on our

b

model, and show that that implementation is SupstantiallyAsimpler,than'the one

£y
ERL J o)

currently used. A more detailed deséripﬁion:of the }mplemengatipnmgppegrs in
Appendix A. | S) 7
Chapter seven evaluates the usefulness of_;pg ”gqqellin strectvrins
process initiation. The model is compared with two e;mﬁon‘process initiation
schemes 1In three situations in which. a process 1s created. The chapter
summarizes our conclusions about the model and discusses topics for further

research in process initiation.

1.5 Related Work.

This thesis dfaﬁs heavily on previous"wobk on ‘computér protection
mechanisms. Tﬁe concept of protéction domains introduced by Lampson [Lé?”]
forms the basis for the access control scheme used by this thesis. The desién
of a confinement mechanism for the thesis~was 1nfluenced‘by much previous work
on the confinement problem [AnT74,Be73,La73,Ro74,S¢75,We69]. The domain
changing mechanisms of Jones [Jo72] and Schroeder [Sec72] strongly influenced
the design of the mechanisms for authorizing domain changes in the thesis; A
study of these two theses first lead to the idea that process creation could
be made unprivileged.

This thesis 1is part of a research effort described by Schroeder [Sc75] by
the Computer Systems Research group of the M.I.T. Laboratory for Computer

Science to simplify the security kernel of the Multics computer utility. = The

Chapter 1 N ~ Page 13

Multics system [Or72] is idéal for such study because it contains
Sbﬁﬁistiéated habdwlne'gﬁd'softwa}; brotectioh mechahisms. Some recent theses
[Br75,JaTi] havé:éhnwn that varidﬁé funéﬁibns »could bg removed from tﬁe
security kernel. 1‘0£her ’wé}k [Be?j;ké?ﬁ,ﬁu?ﬁ]. has démonstrated that the
Schrity\kernel can. be sUbstéﬁiiaiiy si&piified‘by'structuiing the functions
that it performs. This thesis shoﬁS‘tha£ some of’the funections of process
initiation can be remeved from the khrnel, and presents. a structure that

51mp11fieé“those that remain.

Page 14 ' ‘ , ' Chapter 1

CHAPTER 2
A MODEL FOR PROCESS INITEATION

i

In this chapter, 'we shou how to perform prccess initiation in a ‘Secure
computer utility. First we define more Drecisely what is meant in this
thesis by “secure" by defining‘three security goals Ue then examine briefly
the mechanisms used to enforce those security goals to see how they interact
with process initiation We show that the security goals can be enforced by a
security kernel with three layers Finally, we examine each of the five

process initiation functions and show in which layer of the kernel each

function should be implemented.

2.1 Security Goals..

In this section, we define three security goals for a computer 'utilitjé

1) Access Control - The contrcl of the‘operations’thatvcan_beﬂperformed on
objects in the"computer utility. - .

2) Prevention of Unauthorized Deniali’ofﬂ Service' - A guarantee that
authorized operations can actuaiiy be’performed.‘

3) Confinement - The prevention of the release’of_infornation stored in a

computer utility to users not authorized to’see that information.

Chapter 2 Page 15

Accegs Control.

As stated above, the goal of access control is to provide control of the
operations that can be performed on objects. Such control allows the user or
users responsible for an object to.protect the integrity of that object. To
provide access control, we use the conespt of protectidon domains [LaTi].

Each process in the computer utility is associated with a protection
domain by a gggggggrggmgig _ingigg a binding made in a system-wide context
The domain of a precess determines the operations that that process can
perform on objects in the computer utility The domain of a procesa

represents the authority reaponaible for the activities of that process

The details of how the operations that. a .process can perform are
determined from the domain of the proceas are not important in this chapter
We can lmagine that there 1is a two-dimensional matrix, which for each domain
and object specifies the operations that a process in that domain can perform
on that object. - In chapter five, we consider access control meechanisms in
greater detail.

In order for such an access control mechanism to provide protection for
objects, the association of a process with a domain nust be controlled If a

user could obtain control of a proceas in any domain then the access oontrol

-echanism ‘could not deny that user the use of any object This th351s refers

Sy A e s
PR

to the problem of authorizing changes in the process-domain binding as domain
ghanging.‘ Domain ohanging is desoribed in greater detail in a 1later section

of this chapter and in ohapter five

Page 16 Chapter 2

Prevention of Unauthorized Denial of Service.

The goal of prevention of unauthorized denial of}sepvice is to keep one
user from 1nterferiogiwith the use'of the computer ut;lity by other users.
One oommon example of denial of service occors when a user can exploit a flaw
in the operating system of the.computer utilioy to ceuse the computer utility
to fail. Such a ‘failure denies service io‘all users while the system is
restarted, and may cause work in progress at'the time of the failure to be
lost.

Many less severe examples of denial of,service exist. In,eome computer
utilities, one user can capture ; suffieiently ;1§rng peroentage of the
avallable computing power or memory, that ohe uee of ohe>system oy other;psers
is impaired. In this thesis, deﬁial of service general;g refers to the denial

of the right to use a process.

Confinement.

Simply stated, the goal of confinement 1s to provide control over the set
of users who are allowed to observe a piece of 1nformation in the computer
utility. (1) Confinement has been used to prevent the release of classified
military information [We69]. Copfinement has al:o beeo‘ ueed to protect
p;oprietary information that must be\oead by an pneertifiedéprogrgm [RoT4].

There are two defin;tione‘ of toe} confinement ’problem:' message
confinement aod total éggﬁ;gggggg; Messageﬂvooofinemenﬁ [An74] consists of

preventing the transfer of confined information”to unauthorized users through

(1) The term "piece of 1nformation" can represent a wide varlety of things.
It can mean the contents: of ‘an object such as a filé, or the 'name of an
object, or even just the presence of an object. Any of these may convey
information that may need to be concealed from some set of users, '

Chapter 2 Page 17

the operations perférmed on objects. Total confinémono'consists of preventing
‘the transfer of cofifined information to unauthoriied users through apy means,
‘hHowever slow or obscure. (This »inclﬁdes tﬁe ooﬁero channols of Lampson
[La73], which transfer information through the obsofvation of ‘the‘ use of
shared rosources.) The necnanisms discussod in tho nont section are intended
to provide message confinement. In ordor to proﬁideifooél confinement, the use
of shared resouroéa‘mnst be confrolloo oo.as ‘to block information transfer
through covert channels. Several researchers have proposed mechanisms to
achieve confinement in a computer ntiiity.> fAn?h;Be73,Ro7u,we69] These
mechanisms all tag theﬂobjeets in the oompnter nnility nith somo indication of
the confined 1nforma£ion that they reprosent, aﬁé use the tags toxrestrict the
distribution of information to uoors. Tnore are’two‘wayo in which the tags

have been used to provide confinement:

1) The high water mark. [Ro74] In these mechanisms, each operationv that
modifies an obJect and may add confined 1nformation to that objeet
changes the tag of that object to reflect the eonfined information that
could have been transfered. e o |

'2) The *-probert;. [(Be73] 1In these mechanisms. an operation that modifies
an ‘object" ié 'hbﬁ allowed unless that object 1s already tagged as

containingvany oonfined information that the operation could add.

For this thesis. the second type of mechanism is chosen. Rotenberg
[RoT74] snows how the changing of the tags that occurs with the high water mark
mechanism can 1itself be wused to convey confined information. It therefore
seems extremely difficult to achieve total eonfdnement with a high water:- mark

mechanism

Page 18 Chapter 2

The . model of confinement used in this thesis tags each object process,
and user with a confinement set. A confinement set is a set of confinement
attributes. Each confinement attrigute is used to represent some class of
information, such as a military security classification, or a proprietary '
project. The confinement set of an object identifies the confined information
that that object contains. The confinement set' of a process indicates the
confined information that that process 1s allowed’ to ‘observe. The confinement
set of a user représents the informaticn .that the user may ‘observe. Three

rules are used to enforce confinement:

1) A process is allowed to perform an operation that observes an object
(i.e. one whose outcome depends on the contents of the object) only if
the confinement set of the object is a subset of that of the process

2) A process is allowed to perform an operation that modifies an object
only if the confinement set of the object containsvthat of the Drocess

3) A process can direct the output of an object to a user only if the
confinement set of the user contains tbe confinementyset of the object,

and that of the process.

These rules taken together enforce what is refefréd to'eélsewhere as the
#.property. (1)
Process initiation interacts with confinement ‘in several ways. The

process initiation mechanism must assign a confinement set to each newly
1

,,,,,

(1) Some mechanisms use a level and catégory set; similar to a ‘military
classification, to objects, processes, and users. [Web69]. By using one
confinement attribute- for each’ “level and eadh ocategory, the mechanism
presented above can be made to enforce the same constraints as a level and
category mechanism. ' The above mechafitsm was chbdsén’ “beéhfiSe’ the rules '{the
#*_property) are significantly simpler with this approach. :

Chapter 2 ' ~ Page 19

created process. This assignment must be done in such a way that confined
infobmation is not meleased. The process initiation mechanism must also
prevent the use of process creation as a signalrtc transmit information to a

user who is not authorized to see\that inforhation.

2.2 A Layered Security Kernel.

The set of mechanisms that must function correctly in order to provide
security is known as the .gecurity kergel. One design goal for a secure
computer utility is to make the set of mechanisms in the kernel small and
simple, thus making the kernel easier to verify. The notion of a security
kernel can be extended to a kernel with several laye;a.”Each icyer of such a
kernel includes all of the programs ﬁcedec‘to'ehfohce a different set of
security constraints. | U

| A kernel with multiple layers is uséful becahse it indicates:cléarly the
mechanisms capable of violating each security ccnStfaiht; The Specifications
for each layer of the kernel need not includewahy icdiccéionvthat that layer
does not violate the security ’constraints providcdtcf lcﬁervlayers. This
reduction in specification simplifies the task of‘vebifyicé the kernel.

In this thesls, we .choose three kernel layers corresponding to the three
security goals described above. The innermost layer of the kernel provides
access control, the second layer prevents denial .of service, -and the outer
layer provides confinement. The layers were.chosen to minimize the number of
mechanisms that fall'iﬁ each layer.

The access comtrol layer is placed below the denial of service layer
becaﬁse the dehial ‘of service 1ayér,'céﬁ,make,bctter,nse of the functions

provided by the access contcol‘layer than vice versa. The dgﬁiai of service

Page 20 Chaptef 2

layer must provide some form of acceﬁs control in oider'tq_keep the actions of
users from interfering ‘with each other. The’aécess céntrol.layer need not
prevent denlal of service. (1) Thus if the‘acgéss contréll layer . ia placed
below the denial of service layer the denial of ~Service layer can be
simplified, as it can make use of the‘aqcese éontrol‘ prévided by the lower
lﬁyer; For this réaadn, we place the access control layer below the denial of
sérvice layer. |

The confinement .layer is piaced above the»denial Qf‘;ervice layer fqr a
similar reason. The éonfinement layéf must p;event sdme:types of denial of
service. A denial of service cannot be allowed'to convéy confined 1nforma£ion
in violatioﬁ of the ‘-property; For thi; reason, we plaée the deqial of
service layer below the confinement layer. |

The layers chosen in this thesis are by no means the only choice
possible. Other researchers [Be73] have chosen to place at the core of the
kernel a layer ;hat coptains a simple access control mechanism that enforces
the #*-property for operations. performed on objects (message confinement).
This layer does not enforce total confinement, as actions such as denialx-of
service can still be used to convey confined infoéormation in violation of the
*-property. These so-called covert channels [La73] can be used very

effectively in many computer systems.

(1) Interruptions of the processing done by the access control layer (either
through denial of service or through failure .0f ‘the hardware) must not result
in the failure of that layer.

Chapter 2 Page 21

2.3 A Model for Progess Initiation.

We now descv&he a model for”.process iniéiaﬁion meccanisms. Such
mechanisms change the set of processesa the. séé of doﬁains, andv the
process;domain binding' We. want the modei to be as general as possible, so
that it can easily be used for any situation in which processes must be
created. | o T |)

Our model separates process initiation into five functions° process

cregtion. domain ch y resgugce ontrgl gtngnticggigg and environment
initialization. In this chapter, we discuss briefly what each of these

functions does, and: in which of the kernel layers previously discussed each
mechanism lies. Later chanters consider some of these mechanisms in qreater

detaill.

Process Creation.

Process: creation .consists. of creaiingr,ana initdal process: state. . A:
process state describes: the -charaeteristics of a: prpcess. A process state
contains: the domain . of the process; the. confinement set of the process. ‘the
execution point of: the process;. the mschine registers of the process. and'a:
description of: the: address space of: the process.

Because process creation alters~the.prnsessﬁdousinwbinding; it must be
performed within the kernel layer that provides access control. A second
reason for'including process creation in the kernel layer for access control
is that each process may at some point in its lifetime execute functions
inside the access control layer. If the process state of such a »process is
not correctly 1nitialized by process creation, then that process'may not be

able to perform those functions properly

Page 22 Chapter 2

Domain Changing.

Domainvchaeging in this thesis really means the euthogigap;op‘JQf domain
changes. The process creation mechanism actually makes ﬁhe domain changes by
altering the processédoﬁain binding aceordiegbto inetpueﬁions reeeived from
fhe domain changing mechanism. The bfegleqlofﬂguthorizing,domein changes has
‘been extensively-studied; Schroeeer-[5c12],”§mong oghere,ﬁ‘concludes that a
domain‘ changing »hechenism must insure theé the,{iret peoeegqre executed by a
process that enters a given eomaih is an acceptaele initial procedure for that
domain. This is the only function that the domain changing mechanism - must
perform in order to prévide.access control. (1) = Chapter ‘five dicusses the
details of controlling domain changing.

The domain changing function must be performed in the Kernel layer that
provides access control. The domain changing furiction "~needs to alter the
process~domain bindiné. and thus could violate access control constraints'if

oy

not correctly implemented.

Resource Control.

The resource control function assigns the'reseurees necessary to begin
the exeeution of a process; In the Hultics,eemputer qﬁi;;py,jtheseyresources
consist of CPU eycles end memory pagee, as welleas the e@e;ee:‘of whether;'er
not to allow a procese to be created’at a;l. The assignment of resources to
processes 1; made aqcoreing to a resegroehfcontrol poliey ‘that attempts to

insure that each user receives a fair share.

i

(1) The initial procedure . can control the computation performed by the
process, and thus prevent misuse of access rights or resources availlable to
the domain. '

Chapter 2 : Page 23

Resource control clearly lies within the kernel layer for prevéntion of
unauthorized denial of service. The Eesource cont;al rmechénism caﬁ deny a
‘user the riéht tb create a procéss ’bﬁ requing to a}locate the neéded
resources. In thé'deSign of many currentivSystems;' tﬁe resodrce control
mechanism also lies within the kernel iayér that'ﬁro;ide;.écceés control. in
'chaptér four, we show how the resource éogérol fﬁnctidﬁp can ’bé impleﬁe;téd

outside of the access control layer, thus simplifying that layer.

Aggheggigat;gn,

An authentication mechanism is responsible for determining the identity
of a user. If a user can control the operations pepformed by a process (by
communicating with a command interpreter exeouting in that procesa). then thé
user must be identified to insure that he is authorized to use the. domain of
that "process. In the Multics qqmpuben_ﬁti&ityl a process that is created to
serve a user has an initial procedure that calls a command processor to gilve
the user control of the process. The identity of the user is determined
through authentication before the process is created. -

In chapter three, we show how td‘remové\.authentic;tion from ali three
layers of our securit} kernei. This ﬁéﬁo;ﬁi‘is aeédhpiished by‘éiloﬁiné each
user to choose his own authentication Mééﬁénism. ‘Aﬁy error in one :QSer's
authentication mechanism is no more sérioué than én errﬁb in any other brogram
that that user chooses to call. Each user can bfbtéét hihsélf“from‘faiiurés
of the authentication mechanisms of other"ﬁseré. ’ChgﬁterAthrée describeé how

the three sets of security constraints can be provided without depending on

authentication.

Page 24 Chapter 2

Envirghgent Initialization.

Enviroﬁment initialization consists of the initialization of ‘mechanisms
that support the execution of a process. In the Multics system, envifonment
initialization includes the creation of certain working storage segments for
the process, the initialization of error handling for the process, and the
initialization of stream I/0 for that process. Environment initialization is
performed by the igitial procedure of a process, and the procedures that it
calls.

Environment initialization requires no special privileges because all of
the functions that 1t performs ahe local to the process beihg created.

Environment initialization need not be included in the security kernel.

Summary .
This chapter has presented a brief deacription of the five functions that

are included in process initiation. Each function has been_ assigned to a
layer of our security kernel based on the privileges required to accomplish

that function. Table 2.1 summarizes these assignments.

Chapter 2 Page 25

Table 2.1

Process Initlation Functioms in the Security Kernel

Fugct;gh: K Layer:
Process Creation Access Control
Domain Changing Access Control
Resource Control ~Denial of Service
Authentication (none)
Environment Initialization (none)
These assignments were madé only on the basis of 1least privilege. The

implementation ‘described in chapter six shows fﬁat each of the functions can
actually be implemented in'thé layer éhown above, without undue Acombiéxity.
Such an implementation insures that each kernel layer contains the minimum
number of process initiation functions.

The next three chapters of this thesis explore three of these functions
(Authentication, Resource Control, and Domain Changing) in greater detail.
These chapnters describe mechanisms that can be used to provide those functions

in the kernel layers shown above.

Page 26 Chapter 2

CHAPTER 3

AUTHENTICATION

This chapter discusses how authentication is» related . to process
initiationi“ The chapter begins with a discussion of the properties of
authentication mechanisms These .properties shape the attitude toward
authentication that is taken by this thesis We show that authentication need

not be performed by the security kernel We also present the concept of

A3

au hentigatig _gzggggigg which can be used to allow the sharing of

information obtained through authentication Authentication forwarding can

reduce the number of times that a user must undergc authentication, by

allowing the information obtained from the user ‘s first authentication to be
shared among the processes with which he must communicate

In order to discuss authentication a model of how users communicate with
a computer utility is needed For this purpose we adoptv the eoncept cf a

strggm. We use a stream to represent a two-way communication channel ~We
refer to the user who communicates with the computer utility through a stream

as the souggg of that stream The time during which a user is communicating

with the computer utility will be refered to as a ggggigg

3.1 Properties of Authentication Mechanisms.
An authentication mechapism is a mechanism designed to determine the

identity of an unknown usér. ° Such mecharisms usually require the user to

Chapter 3 Page 27

produce some plece af data (password, encryption key, etc.) that must match a
value kept by the @emputer utility. Protection mechanisns enforce security
constraints withim a computer utility, while an authentication mechanism can

~ be used to identify users for the processes executing on the computer utility.

CUT T ALY
SRV AV IEIOARE I AT S

Three important properties of authentication mechanisms are:

wox L Fagmiarad tup wort esiagnalt hena -
1 No authentieatian mechanism is perfectly reliable. An authentication
i oo caliw omolgad ot

mechanism identiftes a user by a sequence of bits (password or encryption

) . 3 st g s
st B G imannig sparil

"key) supposedly tncwn only to that user. Because any user can produce such
R Prcenton dend wofes el cebaadd elny vl neolgd BE T ISP U DL
a sequence. any such mechanism can be fooled into nisidentirying a user.
VIR EEE S Cranstrg onio ol L Saaves witiaooes sndt o ISR B 0
2) A security conscious user can always devise an authentication mechanism
i o owoelie Grepps s 8o nnlow Wk LAk

that is more rexiable than a syatcn/providad autnentication mechanism.d The

TR coobtpatinedtus ghanoidl bhan

G TBTBIIN

‘H‘probability that a user will be able to fool an authentication mechanism by

i Dus GmInbLL mom Tiann B fmlt osmemly o osOmuill v
guessing the password or key decreases as the length of the password or key
bTh et iaatus Jeald e asnn sdd moal benksido aobdamaniel e sl o
1s increased Thus a security conscious uaer can obtain greater
atsulbog o e wd doldw ddlw zaopanong sl mooms ovTR
reliability by using a longer pasaword or key, at the expense of having to
e samay W o Pelem o p e ldacioasfdus negesds oo unlein o
remember more intormation
‘a At danhe ey L arogron nio et Jhebasn 2 vy vennae o B
3) Each use of an authentieation ueehanism rele&ses information that aids an
EEY GO RGINIENG S U aW-owT g dpsasyged of mesaie o Ay 2 s
imposter in determining the paasword or key. In general, the stream
ctian ! woorteo s eAriEsy vwsyomon 31 adiw eslpobosmman o rsan wil o MRS
through which a user communicates with the computer utility passes through
T T oy dnirw moteth o amtd edl Lmsdirle deni io o i
“some insecure channel (such as a telephone line) that an intruder may be

g enood heasTer od [Liw Qiblisg gsfuagmss oo
able to monitor. Encryption based schemes are less vulnerable to such

monitoring than password schemeSey: in.iyolf noldssiinniin s o ous o oanond

et oy ornoiale ot hapglesc @RInsfosm 8 RS

.. These thrﬂﬂ broperties influencs. the way in.whiok this thesis deals with
authentication. Points one and two suggest that it 1is not necessarily

Lo

ﬁgééﬁﬁai ‘ ' éhapﬁer”3

desirable for all users to rely on one system-widerauthentication mechanism.
Such a méchanism cannot be guaranteed always_to make éorrect‘ identifications,
and no métter what mechanism is used, a better one aiwgyslggh be found.

Point rtwo suggests that different users‘ mighf want to use Qifferent
authentication mechanisms. Different users havg different security
réquireménts and thus some users might be willing to sﬁénd/a éreat deal (1n
terhs §f extra commuqiqation. extra computatién, and the overhead of
remembering more information) to insure that they cannpt be 1mpersonated.v All
of the users of the‘co@puter utility might hot waﬁt'to‘pay the cost of the
security requirements of these few. - | |

Point three suggesés that authentication should be performeq only when
neceséary. Thus the results of authenticatioﬁ should peuremgmbéred. 80 ﬁhat
each new process or domain that enéoﬁnters a stream ¢9e$ not necessarily ‘have
to perform authenticatioh. Authentication Forwafdiné‘ié‘intfoduced to gro?ide

this memory.

Aythentication and Secunity.

In this section, we examine how authentication‘hust be ‘used to enforce

the security constraints of our three kernel layers.

1) Access Control.

The innermost layer of Our'kernel is responsible for providing protection
for objects in the computer utility. The definition of the security provided
by this layer of the kernel was carefully chosen to avoid the notion of a
user. This layer of the kernel insures that objedts can be accessed only by
authorized domains. This ceonstraint can be enforced without ‘using

authentication to identify users.

Chapter 3 ' Page 29

By ensuring that a process can enter a domain only through a contfolled
initial procedure, we allow the ihitial'procedd}e to guard the domain. The
initial procedure can authenticate a user before allowing that user tdrcontrol
the process.

In many computer utilities, each user is authenticétéa: soon after he
contacts the utility. An authenticabed‘user is theh éilowed to change’the
authentication hroeedure to be used forﬂ fhtuhé sessigﬁs (by changing ‘ﬁié
password,) and taVQpeeify from‘his terminal the opefétions that the computer
utility Qill perfonmvfor him dﬁring.the éurrent sesSion. In the organizatio;
used in this thesls, a user who contacts a cb;ﬁqter must chbose an initial
domain. He then musat satisfy ﬁhatever autgenbicafion.mééhanism is used'by the
initial procedure‘df‘that domain. Even affer>suecessfulA authentication, 7the
initial procedure may lmpose limits on the‘operatioﬁs that:wili‘be\penformed
for the user,. | - .

The organization used in this thesis allows a user who requires ai high
degree of security to specify his own authentication procedure in the initial
procedure for the domain that he will use (as will be shown in chapter 5). It
also allows for limited service users, a oconcept that has proved useful in{

current computer utilities.

2) Denial of Service.

Whether or not authentication is required to prevent unauthorized denial
of service depends on whether the utility guarantees service to users, or
whether it guarantees service to domains. If a computer utility guarantees
each user a fair share of the avallable resources, users must be authenticated

to insure that one user cannot monopolize the: resources of the computer

Page 30 Chapter 3

utility by requesting services from many terminals simultaneously. Domains
can be guaranteed a falr share of the available resources by imposing
restrictions on the resource use of processes. The resource controller,heed
not be aware of the fact that some of the processes are performing_ operations
on behalf of the users of‘thevcomputer utility

The initial procedure of a domain can be used to allocate the resources
guaranteed to that domain to users, much the same as the initial procedure is
used to insure that the access rights granted to that domain are not abused
The Multics computer utility uses a resource control scheme that assigns
resources to processes based on their principal lD.‘ As we show in chapter
six, this resource control scheme can be implemented »without .relying on

authentication.

3) Confinement.

Authentication 1is required in some form in order to achieve confinement.
lhis is because the purpose of confinement is to prevent a Eﬁg{lfrom*obtaining
information that he is not entitled to. There are several ways in - which
authentication can be incorporated into the -mechanism that enforces
confinement.

One way to provide confinement is to muthenticate ‘each user who 'contacts
the computer utility and to 4insure that each process with which the user
communicates has a confinement set that 1s smaller - than < ‘that of ' the user.
This scheme has the disadvantage of 'system-wide - ‘authentication schemes
mentioned before, namely that 4t does rnot allow different authentication
mechanisms to be used for different usersliith?differént'security needs.

Because different confinement attributes proteet different informatiocn, it 1is

Chapter 3 Page 31

likely that some of that information is mbre valuable.than ﬁhe rest and
thebefore a user should be forced to péss a horé rigorous authentication
before gaining access .to such inforhation.’ Tﬁe following scheme allows
different authentiéation mechaniéms to be ﬁSéd to obtai; different confinement
attributes. - | ‘

‘ ‘Each terminal that contacts the computer uiility isﬂinitialy assigned an
empty céhfinehent set; A brocess thatrwishes torcommﬁnicate with a terminal
méy diséover that 1ttcannot do so bécausarthe:cénfinémené-Set of thg terminal
>does not contain the ebﬁfinement se£ of the proéess.‘ The orocesé must call on
ah‘ authentication mechanisﬁ:to identify the ugér at thewterﬁinal. After the
authenticationumechanism has identified the dsér, itvchanges the confinement
set of the terminal to include the confinement set of the authenticated user.
Each authentication mechanism 1s only authorized to supply some of the
possible . confinement attributes, so that different authentication mechanisms
can be used to grant different confinement attributes.

_ This scheme also has the advantage that the responsibility for devising
.and maintaining the _authentication :mechanisms can be distributed among the
users who wish their information to be protected by confinement. TheuGOmputegv
utility need only provide some means of allocating the - confinement set
attributes and eatablishing the authorized authentication mechanisms,

The major disadvantage. of the above soheme is that a user with a large
gqnfinement sets may have. .to be. authenticated mseveral times during the same
session in order. to obtain access to all of the information that he needs.
Current applications of confinement mechanisms do mot 'tend to have users with
large confinement. sets. ~Also, a user rarely needs accéss to all of the

information that he is potentially entitled to in any one session. Making it

Page 32 : Chapter 3

awkward or costly for a user to obtain access to all of the information that
he could potentially see may have the beneficial effect 'of encouraging each

user to obtain only the privileges that he needs for his current task.

Encryption.

Much recent work on authentication has been devoted to the developement
of authentication mechaniams.basedv on - encryption.. - Such :schemes have ‘the
advantage over passwords that the sensitive identifying information (password
or encryption key) is not sent through the atream, and thus~1s less-#ulnarable
to being stolen. Some of the protocols require thnbxaaohfprdcess that talks
to a stream know thevencryption kay'for‘thatnatnaami“ﬂThe scheme developed by
Kent [KeT76] usea;bne key for authentication and one .key -to provide . secure
communication through the stream once authentication has been performed. The
second key must be known. by each process that eommunioates: with the stream.
The authentication forwarding mechanism described below is well suited for the

distribution of such keys.

3.2 Authentication Forwarding.

We say‘ that a prbcess that relies’ on :a previoﬁsly performed
authentication to determine the idéntity of the sourcé of a.stream 1s using a
forwarded authentication. QThus in most cdﬁbdtér syStemé, where a system-wide
mechanism authenticateslusers when the; firéé:contﬁct tﬁé sy#tém; eaéh process
relies on a forwarded authentication (from fheLSystemFHide mechanism) for rthe
source of the stream from whieh‘it draws coﬁﬁands.‘ - h

Forwarded authentications are a very common phehoménon outside of the
computer utility. Identification cards represent forwarded authentications.

Anyone who determines the identity of a person from an identification card (or

Chapter 3 Page 33

driver’s 1license wr credit card) is actually relying on the authentication
performed by the issuer of the card. Unfortunately. identification cards can
be lost, stolen; or forged. éoruarded authentications maintained inside a
computer utility can be protected, making them unforgeable and unstealable.

There are two facts that any process using a ' forwarded “authentication
. must know: - The olaimed identity of the wuser:, #wnd the ‘muthentication procedure
used. Both - of -these facts & can ' be .provided bY allowing a process that
performs authentication ‘to record zecurely the %dentity 'determined for the
user. In order to allow the authenticatton méchanism used to de determined,
sufficient information to islentify the author of eath Forwarded authentication
must also be. recorided, - With our - model, tive ' necessary’ information "is the
process, ~domain;'and7yrouedune:thatfsece?dedﬁtheE%esﬁit*bfiénzauthenticatiOn,
and: the time of recording. This information allsws’ a ' process that uses a
forwarded - authentication -to:ddentify the 'authéntieation mechanism used, just
as the distinctive format of an identification card allows the issuer ' of the
card to be identified.

Identification cards sometimes become invalid | due to‘changes in the
information that they contain In the computer utility. ‘a” change in ntheﬂ

source' of a stream invalidates previous authentications forﬂthat stream The

computer utility cannot always detect each case in which the source of a

i

F o et o T R
s 3 R IeT R I

stream changes (1) In the case of streams with finite lifetimes, such as

Rt e D NS [ETRRIEE ¥

telephone or other network connections, the oomputer utility can detect when a

user 's stream has been disconnected and should forget any authentications

(1) One case in which.:it ‘s difficult: to -deteot i chdnge 'in “'the source of a
stream occurs when a user walks away from a terminal and a second user takes
over without either one informing the computer utility of the change.

Psgeﬁéh' Chapter 3

performed for such a streami The authentication forwarding mechanism should
délete the forwarded: authenticationév féri a"Stréam ;h§ﬁ thaf stream is
disconnected. A stream can bé disconnected aﬁd reconneéﬁed Setween thé time.
when a process performs an authentieatién‘ and thé tiﬁe-when that procesﬁ
records the authentication, leading to an 1néorrect forwardéd authenticaiioﬁ.

One solution to this problem is tb‘hﬁvevthe compﬁieb utility main£aiﬁ-;
count of the number of times that a stream has been connected. The process
performing authentication can then obtain ﬁbis connection count before
perfdrming authentication and present the connection count 7 to bhé
authentication forwarding mechanism along with the forwarded authentication.
The authentication forwarding mechanism eankthgn~obbuin,£ha¢§u§rent connegtion
~count in order to determine whether or no€ the feruardéd - authentication is
valid. The connection count is used as thexevéntcounxswof Kanodia and Reed
(KaT6].

A forwarded authentication for a stream is useful only to the processes
that can read from or write to that streanm. _Ic'thgrefore'seems desirable to
allow only those processes that can read or write. a streém - to - read the
forwarded authentications for a stream. We also allow only those processes
that can read from a stream t0 record forw;edad authentications for that
stream. These restrictions allow the computer utility to limit the resources
expended ih”keeping forwardéd authentications, by 1limiting the number of
authentlications k;pt for each stream, without .allowing one process . to
' monopolize these resources by recording forwarded authentications for streams
that 1t canfiot use. The above restrictions are not necessary for security
reasons, because the information recorded with a forwarded authentication

identifies the author of that authentication and'préwents'fohgery.

Chapter 3 : Page 35

We must, however, keep authentication forwarding from becoming a coyert
channel for confined@ information. This can be done by assigniﬁg a confineﬁént
sét to each forwarded authentication and forcing the reading of forwardgd
authentications to obey the "-property. Each forwarded authentication is

given the confinement set of its author. (1)

3.3 Example.

The following section shows how processes are created for users of a
computer utility using the ideas on -authentication of this chapter. The
scheme described 18 compared with a wmore commonly used scheme - for
incorporating authentiéation into process creation.

A user who contacts a computer utility for service 1nforms the computer
utility of his identity. Based on this identity, the computer utility selects
a domain in which to create a process to serve the user. The computer utility
may or may not authenticate the user to verify his right to use the requested
domain, perhaps by demanding a password. If authentication is performed, then
the result of that authenticatién is recorded as a forwarded authenticatlon
for the stream that represents the user’ s terminal. ‘A process is then created
for the user, beginning execution in the chosen domain in one of the wvalid
initial procedures for that domain. It is the responsibility of the initial
procedure to determineé whether or not to serve the user. This decision could

be based on the forwarded authentications recorded for ‘the user 's stream.

(1) An alternate scheme would be to give each forwarded authentication the
confinement set of the corresponding stream. This scheme would not work well
for a system in whiech ‘the confinement sets of streams changed, such as the
authentication scheme described above where a satream gains confinement
attributes after its source 1s authenticated.

Page 36 Chapter 3

If the user desires access to confined information, then he must make
contact with a process with the desired confinement set (either by specifying
that his initial process be created with a non—null confinement set, or by
asking his initial.process.to try tolchange its eonfinement set or give his
stream tovsome process with the desired confinement'set). Such a process will
discover that it cannot communicate with the user, and muSt select one or more
authentication meehanisms to oall on to 1dentify the user depending on the
attributes that the confinement set of the user’s stream is missinz Each of
these authentication mechanisms in turn records forwarded authenticatiOns for
the user’s stream; and some of these mechanisms may rely on adthentications
forwarded from others. |

We contrast .this scheme with the authentication seﬁeme used - in most
computer systems today, which uses'a‘system-wide authenticat;on mechsnism to
identif& each user who contacts the system. _An authesticated user can then
create and control processes‘in any domain that hevis authorized to use;

Notice that the scheme presented in this chapter oen be made to Dbehave
like the more common SQheme (by performing authentication for all users who
contact the computer utility, and having all initial procedures make use of
the forwarded authentication from the system-wide mechanism). Thus a user who
does not require a high degree of security need sot generate pis own
authentication mechanism and can instead rely on the systemewide mechanism. A
highly privileged domain, however, can be guarded by an arbitrarily secure
authentication mechanism.

One of the most important differences between our scheme and the more
commonly used one is that the process that responds to a user who contacts a

computer utility (called the 1istener, logger or monitor, in some computer

Chapter 3 v Page 37

Systems), needs no special privileges in order to creape processes for users.
We therefore can remove this prbceas from the security kernel. This pfocess
generally executes complex programs, because it must be capable of dealing
with several users cdncurrently. and work with a large variety of ports on the
computer.

Notice alsco that several procesées can be used to walt for users to
contact thé computer utility. Different processes can be used to respond to
different types of streams (telephone connections versué netﬁork connections),
and thus the complexities of dealing ﬁith a particular tybe of stream can be
isolated in one process. A utility with parallel processing capability may
also want to make use of multipleiprocesses to increase the rate at which new
users can be handled. \ |

In chapter six, we show how thiS authentication scheme‘can be implemented

for the Multics computer utility.i Chapters six and seven summarize the

advantages and disadvantages of this scheme.

Page 38 A Chapter 3

CHAPTER 4

RESOURCE CONTROL

This chapter discusses how resource contrél “is related to process
initiation: We begin with a discussion of the issues involved in‘ controlling
resource -use - in a ocomputer utility. We theén present a ‘set of operations
through which the use of resources in the computer utility can be 'ébntrdlled.
and show that the use of these obeﬁétiohﬂ é4n not violate access control
constraints. - The éhapter concludes with a discussion of the kinds of resource
control policies that can be implemented using our set of operations, and the

security constraints that can be violated through the use of these operations.

4.1 Issues of Resource Control.

A resource is a service provided by the domputer utility. Thus resources
can include physical devices ' (YIne printers, card readers etc.), abstract
devices (virtual processors, memory pages, etc.), or'{eveﬁQ‘bbograms*”(hatrix
inverters, etc.). This chapter is most concerned with the resources needed to
initiate a process. In Multics, these resources are the process itéelf} and
the CPU cycles and memory pages needed to execute_&phei 1nitia1 procgdgrgf
Resource control consists of the distribution of re;éﬁrqea fo érocesges,.and
recording the_use of résources by prqqesses‘for acqounting.

In thisksection. we ppesénf sqﬁe of ghe‘iagpégfiﬁvolvegin the control of
resource usé in a computer util}ty;‘ These }ga;es. gp}de__tﬁe way in which

resource control is included in the model of process initiation. We consider

Chapter 4 Page 39

two issues: The distinction between mechanism and policy and the general

scheme of resource sontrol used (hierarchical or central).

Policy and Mechanism.

Recent research [Jo72,AnT4] has stﬁeséed the importance of distinguishing
policies from the mechanisms u;ed to 1implement those policies inside a
computer utility.. The separation éf mechanism - -and . pelioy is particularly
important 1in the area of rescurée control, singe different resource controil
policies may be appropriate for different resources of the same. system.
Different policles hayk also be needed . for different _usérsu~ A flexible
resource control mechanism can implement a wide variety of policies.

This chapter is most concerned with the interface between mechanism and
policy. The interface should be chaesen 30 that the mechanism can be
implemented with a‘_small, simple, and easily verifiable set of program
modules. At the same time, thﬁ interface ahdﬁId.aﬁ§§S§é'a.ﬁid; #apiéty of
resource control policies,. without allowing the wviolation of aocess control
constraints through. the uss of the. operations proslded by the interface. Such:
an. interface allows the removal of the most complicated and variable portion

of,neaouree-gcntnql (the policy) from the access. contpol layer of the security

kernel.
Resource Control Philosophy.

Two common approaches to resource control are the hierarchical and
centralized systems of controi. In the céhtraliiéd Sysfém,‘there is a central
authority known as the resourge gontroller that 1s responsible for the

assignment of resources to all’pboeesbes.' Inythe hie}érchical éeheme, (éaéh

process is responsible for fulfilling thevresource needs of the prdcesses'that

Page 40 Chapter 4

it creates. Thus each_.processv;ects as rresource; contro1ler for its
descendents.

The hierarchical system has thevsdvantage that the creetor of a process
has more knowledge of the anticipated resource needs of that process than a

‘

'centralized resource controller, and thus oan make»a better decision‘ of the
resources to assign. The hierarchical‘systemuis also quite’flexiblebbecause
each process can implement its own policy of¥resource 9°“?f°1f

However,‘the‘hierarchical Scheme regniresﬁthst‘eaoh process that creates
processes perform resource control. Thisyduplieatioh makes 1t difficult to
add a new type of resource, because severél‘slgorithys msy_need\to be modified
to deal with the new resource In the central scheme, only the central
- resource controller need be modified to add a ‘new_ type of ~ resource.
Duplication of mechanisms also increases the chance of error.

The hierarchical scheme does not respond well to nﬁﬁﬁoihes4w4thsferrdtic}
time-varying resource requirements. Resourcdes assigned to meet a ‘Sudden
demand by suchi a process may have to pass'thronghfresonrcéVoSﬁtrol algorithms
in several processes. - These algorithis may be unwilling or"unabie"td*néet
suc¢h a demand.

‘Anothér disadvantage of the hierarchical scheme is “that iit"does' not
provide for a process and its creator to be mutually ‘suspicéious. Each process
must ‘trust its creator to assign thé resources that that'brocess needs. In
turn, each process must trust its descendents ‘not- to‘vqsste_‘their .sssigned
resources hy not performing the desired task. ‘The centralized Scheme does not
share this difficdlty. as each process 1§n dependent,ley on the,central
resource controller for its resources. A proeess and its creator can be

mutually suspilcious, because neither must depend on the other for resources.

Chapter 4 Page 41

1

A fourth problem with the hierarchical scheme 1is that it does not
interact well with confinement In a computer utility with hierarchical

ccntrol the resouvces that a process assigns to 1ts descendents can be used

-,

as a covert communication channel to pass“confined 1nfornetion.' In addition,

oy -

each process can signal 1nformation to its creator through 1ts use of the
assigned resources.’t Both of thcse channels are difficult to block with the

hierarchical resbuncc control If neither of the channels 1s blocked, then

each process must he assisned the same confinenent set as 1ts creator, so that

£ o o

neither channel osn be used to violate confinement.A Such an assiznment of

JRE maupead oo : :
confinenent sets would torce ail proeesses to nave the same confinement set.

P

Because mutual suspicion and confinement are both considered 1mportant in
.ﬁr.‘ ,&b i - Covn SRS Coe

’this thesis, ‘we chocse centralized control.

;.0 this section, .we present.and disguss.a et of.primitive-operatiens
téﬁ?)enéble a .gentralized. authority..te -perfaopm..resgurce oontrel. These
operations form the -interface hefween mechanism.and poliey. diacussed .above:
We show that the operations do not allow the resource controller: to . .:violate
aggess control .constraints, byt de.allow.the resourae controller to implement
a wide varisty of resoyrce confrol palieles..... ..: i e -

We use the following set. of prigitiye qperstions.for resource control:

1) The resource controller will be allowed to control the distribution of

gap s omeirwciian

" ‘pesources to all processes
"'2) The resource controller will be allowed to monitor the use of all

" resources by all processes.

Page 42 Chapter U4

L T R T Rl g TR A T e

3) The resource controller will be allowed to observe a fixed setr of
parameters of a proposed process initiation (such as theminitisl

procedure or domain), and veto the creation of a process,

At

4) The resource controller will be allowed to destroy any process

The first of these operations is cle&r2y>ﬁeeded#to implement a resource
gontrol policy... Different types of ‘contiiol areé ' Heeded for different
resources. - Some resources, - ‘such' ‘as line printers or¢ard readers, are
assigned to a process for a relatively long time peffod (minutes at léast):
Primitive operations .that: allow the rescurce controller ‘to assign ' such
resources to processes should be provided. Some resources, ‘such ‘s the'use of
the CPU or memory, must be rapidly switcled among Processes in order to
provide rapid response to requests from users. - A sma¥l, ‘simple, and fast
control mechanism 1is generally provided [for ‘iucn*?esources.*The resource
controller: controls the distribution cf-such*resouroesﬁbyfspeéifying .to this
control mechanism the set of processes in contention for the résource and the
priority. of eaech process.. : | B

The second operation allows the resoureeé: controller “to observe the
resource use of each process even if the actual assignment of resources is

e o
made by a lower level meohanism (as in the sssignment of CPU cyoles and _memory
pages described above). This primitive allows the r:source controller to ~
record resource use for accounting o N | | |
The last two operations allow .the resource controller to control the
total number of processes.(Each process may consume_ space in tables that
Yo :

contain the state of that process, and the amount of_such space may be

limited. The performance of algorithms for multiplexihg the available

Chapter 4 | Page 43

processors‘ and meﬁoby among procesSea dégbades as the number of processes
1hcreases. The resnﬁrce control policf‘of'thé cdﬁpdter_utility mﬁy therefore
dictate that the numﬁerkof processes be limited. Anot;er reasoﬁ.for limiting
the number of processes is to pfovi&e goodvr;;bénsé’toraudden changes in the
-resouree requirements of progesses. If the resources are divided among too
many processes, it may be diffiault for the nesource ocotfnitroller to gather all
the resources needed to meet a large demand by one process. -Thé resource
controller is allowed to observe certain charaeteriastics of each process that
is created, so as to have somoybabis.for-dscidﬁn;.whn&her or not to allow the
areation of that process. S e
We now show that none of the four . operations allows the resource
controller to violate the acceas .control oonstraints of the kerneli. This
property allows ‘a” n§aourQe controller tha;Aadepands only. ot the above
operations -in order .to perform control. to b?rimnizntnted outside of the access
control layer of the kernel.
There are three ways 1n which one of our primitives might violate the

constraints of the agcess: contro)- layer: ...

1) It might perfdbm an 6peration not authoriieﬁ ;by thé access control
mechanism. ni o ‘ o - | |

2) It might alter the process-domain bih&igg;

3) It might change the relationship that éééérmiﬁés the ’épérétions ’that
each domain can perform on eacbvbbj;ct:iflé the case of Multics. the

. : R
access control lists.)

Page 44 ' Chapter 4

The first of the primitives contro;g lthe»_qagiggment -of resoyrces to
processes. The primitive does not élf?r:thé’pioéeq;édqég;q;bin¢ing._nqr does
it alter the sqt of opérations that each domain 1s ’gllowedAﬁtoJ:pegfqgg, it
fherefore does'nét violate theigonspr;ints of the_gqgg@s control 1ayerl(1),_

| The ossérvation of reéouyce use gleahlf capnppialtgn access pontnol
1ﬁformation. It may; however, allow the Eeqource controller to observe the
objeets being used.by a process even if the domain of the rgaourcq_ggntrollgr
does not authorize the Eésourée controller fo'seeuthogg ‘queéts. Th;s does
not violate acéess control, aé .ﬁb pfoqggs can be qupeiledﬂ@okgivg away.
information in this manﬁef. It does, however, allow the resource 3ontgpller
to‘ violate confinement, which 1s‘one’reason thgtvthgnrgsoutce control}er is
includéd in the kernel 1ayeb th#t’enforces confinepent,

The resource controller can change the 'procegpgnggiy. binding by
rejecting a pfocess creation request, or'by dga;rgj}nguq;gyogggg. The change
does noﬁ, however, allow the resource contro%lerlyo gain _quqthprized access
to objects. , | |

Thus the four operations do not allow the resource controller to violate
the access control conatfaints of the kernel. They ;go,gjhowévgp, give the
resource(controller knowlqug of théyresourge use»gfiq;l processes, and total
control of all resource allocation. fhe#é abilities allow a wide variety ~of

resource control policies to be implemented.

FALEE

(1) We must be very careful, however, that ‘resource assigriments do not affect
the functioning of the access control layer. In a system with a distributed
supervisor, the withdrawal of' resources may stop a process that 1s modifying
access control information, and may leave that information inconsistent.

Chapter 4 o Page 45

4.3 Limitations on Resource Control Policy.

There are limitations on the resource control poliéies that can be
implemented with these primitives. As noted before, tﬁé resource controllér
does not know the didentity of the useéa'whd‘contrdliﬁhé proceaséé of ££e
domputer utility. Thus the resource controller cannot base resource
allocation decisions on the knowledgewa which déerwvill éontrol the process
that receives the resources. We::suggé;ted éhflier’fﬁhgi- the resource
coniroller use the initial domain of a prbcé#s.to détermihé'the resourcesrthat
the proceﬁs will receive. This seems;a satisfactory sﬁbstitute in most cases,

We have also made no provision for the resource controller to find out
the detﬁils of the computation being perfdrmed by a pfocess;’ Allowing the
resource controller to observe more ébdut the executibn of a proeeés makes 1£
more difficult for d'prOQess to conceal the contents of tﬁe objecté that 1t
uses from the resource controller. Such observation may be needea in order to
implement some resource control policies, such as a policy that g;ants higher
priority to a process when that process 1s performing certain tasks.(The
barameters that the resource controller is alloged4£oﬁbﬁsérvé ﬁﬁeﬁ’the pfocess
is created may help the resource controller to determine thé task that a
process performs, but they do not aliow the reéaugéégcoﬁtroller fo distinguish

among several tasks performed in the same process.

4.4 Security L;g;ggg;gn_.

There are also limitations on the security constraints that can be
enforced without ' certifying the resource controller. Although we have shown
that we can remove the resource controller from the kernel layer that

implements access control, it 4s clear ‘that the four ‘operations give the

Page 46 : Chapter U

resource controller the power to deny service, and thus must be in the kernel
layer that prevents denial of service. We also saw that the operations allow
each process to transmit information to the resource controller, and that the
resource controller can transmit information to any process through the
resources that it allocates. Because of these irnformation channels, the
resource controller must be certified not to violate confinement

A less obvious problem is that of revocation. The ability to revoke
access to objects may be very important to the functioning of a computer
utility. A denial of servioe can prevent a process from revoking access.
Although this does not violate the access control constraints (the right to
revoke access 1s not guaranteed), it may ceuse inconvenience to the users of‘

the system.

Supmary

We have shown how a centralized scleme of resource control can be
implemented with four prinitive operations. These eﬁerations allow a wide
variety of resource control policies to be implemerited. The primitive“
operations do not allow the resource controller, which implemerits thé resource
control policy, to violate access control constraints, Chapter six shows how
the complicated resouroercontrol policy of the Multics computer utility can be
implemented in this manner. This implementation substantially simplifies the

access control layer of the kernel.

Chapter 4 : Page 47

CHAPTER 5
~MECHANISMS FOR. AUTHORIZING. DOMAIN ‘CHANGES -

This chapter considers ﬁwohanisma’ to | at;a\thorizesk domain changes in a
computer utility" The chapter aasumee a liat-ox;ie;tted 1mplementation of”
-access control, such as that. of Multica [0r72] The meehanisma diseussed user
the access control nochaniam of t.he computer utility to authorize domain
changes. Each mhanﬁsn 1s evaluated f‘or use in authorizing process-'

1

initiation and for-use 1n ‘the calling of" pmtacted subsystems.

5.1 Introduction.

The domain chang:.ng- mechahism" needed in process initiation performs-
si‘mila‘r_ f‘unctipns to the mechanisas ngadod. 50 aﬁthovizes'~tahe‘~':'~ca»11mg.:"of‘ a-
protected subs'ys,tem“.ﬁ, We therefore desire to have one mechanism that will
serve for both purposes..

_ The wmechanisms- to be described all. meie use of two special types: of’
-objects in the coﬁpm;er utility, . domain objects :and. dommin gaté objects:
Access to a domain gate object is-required in.order to:.creats: a .process: or
call a protected subsystem, while access.to.a domain object: :is: reguired: for:
ﬁhe‘ creation of domain gate objects. These special.objects: are used: because
the access control mechanism of the compu‘ter utility can be used to authorize
domain changes, Jusﬁ as it 1is used to authorize operations performed on other
types of objects. There is a unique identi‘f:ler for each domain that we refer

to as a Domain Identifier (Domain ID). A Domain ID is used to designate a

Page U8 Chapter 5

domain in the same way that Saltzer uses a Principal ;Qvtp;gggigngtengﬁﬁdomain
(sa75). Each Access Control List gonsiétg of a 1ist of pepmﬁ,iAQL tebma)vthat
sbecify a Domain ID and a set of access rights. @,Ppogg§af§%aoceaa rights for
an object are determined by the term of the ACL for the object that matches
the Domain ID ijthe domain of the process. The matching algorithm used
depgﬁdsron thé particular domaih changing mechanism used.

The remgindgr of this chapter describes four mechanisms to control dbpgin
changing. These mgchanisps pepn§§en§ a. nupbe:4 inwayiwtqvcontrql‘dpﬂg;p
changing using the access eontrql megpanigpglgf the rcqmpuger, utility. They
1nclpdg mechanigms ges;gnég‘ for prpcesq_.ipitiggiqg @99 those designed for
ppoteétéd subsystem calls. Includgd‘1n‘th;§“sg§?o£,nggp§p;§ma:arer mechanisms
similar to those used by Jones [Jo72] and Schroeder [So'lalto gﬁgl;qrigc domain

changes.

5.2 Four Mechanisms for Authorizing Domain Chenges.

I have named the four mechanisms to be presented Exact Specification,
Partial Specification, Last Component' ~Specification, and Appending
Speciftcation. Exact Specification 1s the simplest’Sf the four mechanisms.
Partial Specification is sifightly more complicated, but can be uséd to
implement authorization schemes that .allow ‘several authorities to share
responsibility for a doma;n, such as the scheme used in the Multics coyputg?
ut;iity [0r72]; Last Compongnt >Sﬁ§§;f1é;£ién ;§ similar to the mechanism.
préSented in Schroeder’s thesis ‘to contral ‘tﬁg,‘é@éﬁﬁfou_:aad,,calling,fof,
protected subsystems. [Sc72] Appending’Sﬁé@%t#égtién,}hfg:ﬁuchgﬁpre;5ghérq1’
mechanism that allows the entire call history of a . progess ta be used in

determining the access rights of that ph°95§§p,“’f":

Chapter 5 .9383 49

5.2.1 Exact Specifigition.

The first mephanism for domain entry control'to be discussed will be
referred to as Exact Specification. Each domain éhdnge is authorized By a
domain gate objeot. A domain gate object specifies a Domain ID and an initial
procedure. A procesas makes a call to a procedure 1n another domain by calling
the "domain call® primitive (an opnratien provided by the security kernel) and
passing it the name of @ domain gate object. (13‘ If the proceas " has "call"
access to the domain gate object, the domaln of the prosess is changed by the
kernel to that specified by the don:ainv ‘gate and the 'proéessg ‘execut‘es *the
specified “initial’ proeedhbe " To create a process. one must call the process
creation primitive pasaing 1t the name of a domain gute object to which the
ocaller has "create" access. | i t

The "call" and “create" accesses deacribed above are determined froﬁ'the'
ACL of the domain gate. (2) |)] |

The ;oreatiqn"qff new dgmﬁin gates 1§,ggatrclled by the domain objects.
Each domain object specifies a Domain ID. A proocgas may create-a domain gate
by calling the "create gate" primitive, passing. it ihe name of a domaln object
and the nage' qf an,;ni@;al_prqquure._ Ihe.ggggqqg myst have "create_gates"™

access to the specified domain object,

(1) If an attempt to call the gate directly resulted in an error condition,
then the computer utility could detect attempts to call domain gates and.
invoke the domain call ‘primitive automatically. This scheme is similar to
dynamic 1linking. The calling procedure could then call the gate just as it
would call any procédure in the same domain.

(2) As noted before, the initial procedure for a domain can be used to guard
the access rights and resourceg of that domain. . Therefore, the "call" and
"create" access rights are unnecesssary, and only serve as a convenience. The
important function of the domain gate object is to bind together an initial
procedure and a domain.

Page 50 Chapter 5

The creation of domain objects must be cogtrolied,_;inde any process with
access to a domain object can create new gates for the _douainf that 1s
specified by thatvobjeéts. This control_canxbeyggcgnplispad by allowihgythe :
creation of a domain object oéiy if the Domain ID specified by v;hat domain
object haé not been previously used.

Itklis important to understand thé‘sygtem,of control heins*eqalqyad,in
‘this mechanism aé it is co@mon to all the mechgn;sms' digcussed in this
chapter. This system of control is very s;g;lﬁp to thg; uged by Schroeder
[SeT2] to ocy)ntbrol the ereai:i_on and . calling :o.t‘_ protected subsystems. The
creatién of new domains is an Aunprivileged oberatiog, as any procea&;is
allowed to create new domain objeets, while kthe creation of gates into a
particular ddmain is under the control inthNQQmain deeetffor tpgp_domain.

Nétice that access to a domain gate object is guffic;gat.toiusg_a domain
gate. Access to a‘domﬂin objgcf is not required. TbupzHg_ggnnot,,tthUgh,the
ACL of a domain obJect; revoke the right to use domain gates that ﬁerglgreated
using that domain object. Adding to the ACLAof'a;ngain objegt is in soae |
sense non-revokable. This non-revokability is true of all of the domain
changing mechanisms discussed by_ this chapter. Ue“ceuld providg‘;aéne
ﬁéchanism to destroy all of the domain éages created from a panticulaq“dbyqin
object. Because bdomain gates cannot be freely transferred or- duplicated, as
can capabilities, it i1s easy for the compupgn u@i}@§Y;§9 locate . all of the
démaih gateé that were created using a pqrtiqu;gr_domain‘onjact. L

Exact Specification could be used for both calling and process
ihitiation, as it is capable pf authorizing a dqmpin_gpgngg_ between any tuq
domains. It alsé seems relatively easy po 1mp1gment,;v1hggp ara;,hqweggr,-two

disadvantages to this mechanism that make 1t’1e§§ ;uitgble.

Chapter 5 Rage”§]

Using Exact Specification, a process that hasy“create_gates" access to a
domain object can use the corresponding domain by creating ‘getes 1nto that
domain. Thus in the case that‘there is a single“authority%responsiblekfor a

‘domain “that authority can use the domain obJect to control the use of the
domain. Several computer systems, including Multics. allow two or more
'independent authorities to share responsibility for a domain. ‘The .use of a
~domain in such a system requires the indcpendent approval of all of the
authorities that share responsibility for that domain. An example from the
Multics -computer utility Ashould'helpiillustrnte‘the use of snch a system of
N U S AP ET. . - : :
In the Multics domputer ‘utility, Principal IDs (Domain IDs in our
terminology) nave*ﬂé@rsbn“”éha“é%dﬁaci“Eéiébﬁékisyﬁ"fié*Ere;tiSH of a‘process
with a particular Principal ID requires the independent approval of both the
user ‘who corresponds to the Person component and the project administrator of
the project ‘that corresponds to the Projeot component.of that Principal ID
The Principal IDs “‘that’ eppear “in Access Control Control (ACL) terms are
allowed to contain (ILE components that match any value of the corresponding
aéémponént in a’ Principal ID “of a process. IThus the term "Jones ' . read"

Vo ireal

grents read access to any process that has “a Principal ID with e Person
aémporent of ‘*Johes™. ” s ””) -
Such 'ACL terms are frequently used to aliow all of the users of a given

project to use a particular program or data base, or to allow a user to have

acdéss to his private dats’ while working on any project.' In order to preserve

the meaning “of such’ terms while using Exact Specification to control domain
changing, we must carerully control the creation of a domain object with a

Domain ID that matches a previously created Domain ID in any component. For

Page 52 . Chapter 5

example, we could not allow the creation of a domain object with a Domain ID
of "Jones.new" if the Domain ID of "Jones, old" had aiready been used This is
because the domaln "Jones new" can gain acoess to objects through ACL terms
with a Domain ID of "Jones #" and therefore the use of that domain must be
authorized by thevperson corresponoing to‘"Joneeﬁ. A

The above problem can be solved>‘by ailoninéT only a‘trusted system
administrator.to create a domain objectv that‘ specifiee a“Donain ID that
matches a previously existing Domain ID 1n some component. This solution,
however, overly restricts the way in which users may create and use domains,
and forces all users to trust the system‘ administrators. The Pertial
Specification mechanism to be discussed later provides a:better way to allow
several authorities to.ghare responsibility for a Donainz

A second. difficulty with the Exact Speeification mechanism is that it
does not provide the proper control for thefoallingnof proiectedv subsystems.
When a process makes a call that changes its domain of execution, the called
domain must have access to the argunents of the ‘eall- 1in ‘order perform the
desired function. This access should be: revoked ' when the called domain
returns, so that the caller can: be assuredvthat:bheweellserwill not read or
modify the arguments at some later time. In a&ddition, the callee should have
some way of verifying that the caller has access to the arguments of the call,
so that the caller cannot trick the callee 1into reading or -modifying some
object to which only the callee has access.::

A domain changing mechanism 1intended for the calling of protected
subsystems should require that the callee and cealler share some access rights,
thus provid;ng some means to pass arguments, Exact Specification and Partial

Specification do not enforce such a requirement. Several researchers

Chapter 5 Page 53

[JoT2,RoTl,Sc72] present mechanisms designed specifically to deal with the
problem of passing arguments.betwéen domains. Any of these mechanisms could‘
be combinedeith Exact Specification or Partial Spgcification to form a domain
changing mechanism, by using the argument passing mechaqism to control access
to arguments of o¢ross-domain calls, and.using the A¢L‘mechanism to control
access to other objaets.} The’ Last Cqmponentﬂ Specifiggtiom and Appending
Specification mechanisms diséussed later in this chapterbboth provide partial
solutions to the problem of argument passing that may be significantly easier

to implement than the mechanisms of Schroeder and Jones.

5.2.2 Partial Specification.

The second mechanism for authorizing domain changes will be termed here
Partial Specificatibn. Pomain IDs: for this mechanism have-a fixed number of
components with implied meanings, just as did the Prineipal IDs of the Multles
computer utility described above. These aomporients represent thé independent
authorities responsible for each domain. A dom&in object in this mechanisnm
specifies one component of a Domsin ID. A Domain gate specifies a complete
Domain ID and an initial procedure as before. Domain gates are created by
passing to a kernel primitive the name of a procedure and ‘a list of names of
domain objects. Each of these domain objects must specify a different
component of a Domain ID, and all of them talken together specify the Domain ID
of the gate to be created. Domain gates are used 1ln ereating processes and
calling subsystemg a3 before. New domain objects that specify previously
unused Domain ID components can be created by calling the "create_domain®

primitive.

Page 54 Chapter 5%

Figures 5.1a and 5. 1b 5how one way to use this‘mechanism’to implement the
pattern of authorization used in the Multies computer utility as described
above. The figures show how the domain and domain gate objects could be
maintained in a hierarchical file system, sgeh that each such object is under
control of the proper: authority,Lwﬁgégg§£~fIgg Jhave two components,
corresponding to Person and Project. Domoiﬁ IDs speeifying the Person
component are of the form Person.#%, while those specifying thé“ProJect
component are of the form *.Project. A Project is cboatad by creating a
domain object that specifies component of a Bouain ID.fﬁ»new ueer can be
registered by creating a domain object that specifies the Person oomponent.
The ACL°s on these objeets determine who may use them. The following
abbreviations are used for acoeso rights in the figures:

S - (status) Allows a process to obtain‘ infvvnation about the obJjects
contained in a directory. =

a - (append) Allows a prooess to create more objeets in a directovy.

m - (modify) Allows a proceaa to modify inforuation n a’ diréctor} ’

(including the access control 1ists for the objects 1 that diréotory)

Notice that the domain Locksmith.Sysidmin is given modify access to the
directory ">Users". This access allows a process executing in that domain to
obtain access to any of the objects shown in both figures (hy modifying ACLs)

The Locksmith. SysAdmin domain will have special uaeu,las shawn later

Chapter 5 . Page 55

Figure 5.1a

| Domain and!Domain Gate Objects in a Hierabchical File System

'kRoof
o Userg . . . 1. Locksmith.SysAdmin sma
?'.' s Persons
Joneg/. ApJomes.* create_gstes
‘Jones.®
PlAdwin.Projl sma | i N:Proji
* Projt s ’ .

P&admin.EroJ1‘ersu£§;g§tésa;5 Proj1
Jones . ® create_gates.
'boﬁes." sma Jones
..-ijl. ‘8- : e
Key: . '3 [
— ACL

Directory

<:i:::>——» Domain Object
D/Domain Gate Object

Page'56> Chapter 5

Figure 5.1b

Domain and Domain Gate Objects in a Hierarchical File System

Users
Proj2 /. _R2Adwin,Proj2 sma
' - ® _Proj2 B3
- * ;‘s;}’t;\C’.“ o—— BRI NE]
P2Admin.®* create_gates
Jones.* (none)
roj2
% _Proj2
Jones,.* sma cooo o <N Jones: -
% Proj2 s = '
Jones.* call,create }_ . gate _
Joﬁes.PfoJZ
\listener_.

In Figure 5.1a, Jones has been given free access to projegt Projl, as he
may create new gates into it from any dowain with a Domain ID with his name as
Peraon component. These gates can be created by :pasaing the .objept

">Users>Persons>Jones" and the object “>Uaera)Projt>Proj1“1to,the create gate

primitive,

Chapter 5 ~ Page 57

Figure 5.1b shows the hierarchy below the Proj2 directory. Although
Jones cannot crea&é new gates into Proj2, he may enter the domain
"Jones.Proj2" by using the gate ">Users>Proj2>Jones>gate”. This gate had to
be created from the domain "Locksmith.SysAdmin®, as this is the only domain
that has T"create_gates" access to the domain objects required to create the
gate. The procedures of "Locksmith.SysAdmin" would presumably not create such
a gate without the approval of both Jones“égd_”bggi(ggministrator for Proj2.
The power of the Locksmith.SysAdmin domain should be uaed carefully.

Notice that 1f at'ahy future time the administraébr for Proj2 wishes to
allow Jones to create gatés to the projact;_he can do so by modifying the ACL
oh the object ">Users>Proj2>Proj2", without any help from Locksmith.SysAdmin.

Partial Speciﬁication'models the authorization scheme currently used in
the Multics ppmpytggﬁgt§lity quite well. ;t Ia'nét significantly more complex
than Exact Specification, and therefdre'ShQGId'be‘élmost as easy to implement.

This mechanism, however, has the sane~dnaubgek forhsqbsystem calls as
Exact Specification. The calling and‘called‘démain” are 'nbf constrained to
share access rights, so that-Soth«the caller and the callee Aust take special
action in passing the arguments»dflé call, and both must. bé aware of the

domaln change produced by the call,

5.2.3 Last Component Specificstion.

The third mechanism to be discussed T will -call Last Component
Specification. This mechanism cannot be used to authorize domain changes
between any two domains, and therefore 1s not suitable for use in authorizing
process 1initiation. The restrictions made on domain changing by Last

Component Specification do, however, make it a more attractive mechanism for

Page 58 Chapter 5

authorizing protected subsystem calls than the first two mechanisms considered
in this chapter, As before, Domain IDs have a fixed number of components.
Domain and domain gate objects specify only the last of these. (1)' A call to.
a particular gate causes the domain of the calling process to be changed. The
Domain ID of the process following the call is formed by replacing the last
component of the Domain ID of the calling domain with the component speciried
by the gate Thus if a process exeouting in the domain N"Jones Proj1 home"
made a call to a ga as its component the process would begin to execute the
initial procedure of that gate in the domain "Jones ProJ1 editor" New domain
objects can be created as before as long as they do not specify the same last
component as previously created domain objects. “ | | -
This mechanism is yery 'similar to that proposed in Schroeder's thesis '
[Se72] for controlling the calling of protected subsystems. . The last
component of a Domain ID can be used to specify a protected subsystem that
could be changed by calls during the life of a process. The other Azomponents
of a Domain ID can be used to specify attributes that remain constant
throughout the life of a process such as the Peraon and Projectﬂcomponents of
Multics. All of the subsystems called in a single process are exeouted in
domains that share some access rights (all access rights that can be obtained
by the process through ACL terms with n#n ag their last component) . Although
this does not totally solve the argument passing problem discussed before, it

does help somewhat by guaranteeing that all of the subsystems in one proeess

share some access rights.

(1) We could allow them to apecify any one camponent. - :The “specification of
only the last component will however, be adequate for the intended use of the
mechanism and simplifies the description.

Chapter 5 v Page 59

SZHWM

\The last mechanism I will refer to as Appending Specifioation This
mechanism is not well suited to process initiation. as it cannot authorize a
domain change between any two domains. The domain and domain gate objects
sﬁeoify Qnly one coamponent of a Domain ID as in Last Component Specification.
The Domain ID of the target domain of a call is formed by appending ‘che
component speciried by the gate to the DOmain Ib of the callingvdomgin.r’A
return causes the 1ast component of the Domain ID to be dropped Thus if a
process in the domain "Jones.Proj1.home" made a oall to a gate specifying
"editor" as its Domain ID, the domain of the process_ would become
"JoneS.Proj1.home.editorﬂ. | | | ‘

We cnnvsee that Domain iDs can have different numbers of components with
this_soheme. We iherefore need to augmonf the rules for‘ matching ‘of Domain
IDs and ACL terms to specify what happens whenzthe Domain‘IDs being matched
are of different lengths. | | |

Tne component "%#" has special significance in ‘onr ' matching dlgoriphm.
and is used to allow an ACL tenm to match DomainiiDs_of yarious lengths.
Before comparing the'bomein IDs of the proeess requesting access and the ACL
term, the matching algorithm checks to see if the Domain ID of the ACL has a
component of "R#nm_ Tf 55, and if the Domain ID of the process has at least as
many components as that of the ACL term, then the nidn component is replaced
by one or more "#" components so that the Domain ID of the term and that of
the process have the same number of components. If the Domain ID of the ACL

term has more components than that of the proocess, the the ‘"##% component is

Page 60 » : Chapter 5

deleted. We allow each ACL ﬁerm to contain at most one - "#%" oomponent. (1)
If the Domain ID of the ACL term does not have a nein component, or if it has
more components than that of the pchess;'thenmthe"fbllbwingi two rules may

apply.

1) If the Domain ID of the Process 13 longer than that of the. ACL term,
then they do not match.

2) If the Domain ID of the ACL term is longer nnqu that 6f the ,procesé.
then they match only if all‘of,thev"extrgrﬁcomp§gents of the ACL term

are "#nm

Table 5.1 illustrétesvthese'matching rules.

Table 5.1 .

Examples of ACL Term Matching

| Process D ain
ACL term ID | a.b.c.d | a.b.c E a.b.d 1' e |
e T
a.b.* l_no | ‘match | matoh | no
AL ot o I ne

b DO]

A process can grant access tovan:ybqqct about tp:belpassed_by a call by

putting a term with the Domain ID of the domain about to bg called followed by

(1) Allowing more than one "##" component makes the matching algorithm much
more complicated, and makes it difficult for a user to see which Domain IDs -
match a given tern. ,

v -

Chapter 5 Page 61

", %#%" on the ACL of the object. In this way, the object will be accessible to
.the subsystem to be called and any subsystems_ghat it calls. The ACL term
need not be removed following the call, as all of the domains that it matches
can only be reached by calling the same subsystem again. Thus in a sense the
Appending Specificaticn mechanism automatically revokes access following a
call.

This control of access to arguments is made possible by the way in which
Appending Specification assigns a protected subaystem to a domain. Using
Exact Specification or Partial Specification, each protected subsystem is
assigned to one domain. Any call to a particular subsystem always enters the
same domain independent of the domain of the caller or the process in which
the call is made. Thus using either of these mechanisms, the caller must
grant access to the callee prior to the call and must later revoke that
access. With Last Component Specification, the domain that a particular
subsystem enters depends on that process it 1s called in, but not on the
subsystem that makes the call. Thus some objects remain accessible to a
process throughout the.life of thc process.'anqvcah be used as arguments to a
call with no special handling. Hith-gppencing Specification. the vdomain in
which a protected subsyctem executes decendclcn~the accciatem that called it.
This allows very precisc specification of the access rights to be given to
each invocation of a protecced subsystem. | ‘

There are, ho;ever. some undesirable effects of not assigning a
particular subsystem to-the.same domain at each call. AS each subsystem can
be invoked in several domains in each process, Appending Specification will
tend to use more domains than the other mechanisms. Each domain requires a

certain amount of local storage for local variables. In addition, in a system

Page 62 Chapter 5

that performs dynamic 1linking, such as the Multics computer utility. the
'processor time required to 1link a subsystem in each domain may become
expensive. - | | .

In addition to the economic objections to not assigning a subsystem to
one domain always, one might argue that the environment that is provided by'
Appending Specification is more difficult to program in. One can have objects-
that are accessible only to one subsystem (by using ACL terms of the form
**.subsystem), only to one person or projeot (Person '*. or # Project.") 3 or
'only to one invocation (by specifying the exact domainvof that invocation in
the ACL term). A user must be very eareful in deciding the access that he '
desires for the working storage of the ,subsystem. Current programming
1anguages do not provide an easy way to specify all of the possible storage‘
classes. For these reasons, while Appending Specification is the most natural
‘of the‘ four mechanisms to use for the calling of protected subsystems, it

!

might not be suitable for all computer utilities. | h | |

|
i

5.3 Domain Changing and Genfinement.

In this section.;we discuss twe espects~ofedmmein changing in a fcomputer
utility that provides confinement. He—first»eonsiderihou to use the :domain
changing mechanisms of the computer utility to control the - assignment of
confinement sets to processes. We desire to controiAthe oonfinementvset that
a process receives because that confinement‘:set psrtiaily.idetermines Ethe
objects that the process can read. in somevappiiOationsrof.confinement

mechanisms to military security, the'confinement setbof the :process ‘may be

the only form of access control.

Chapter 5 o Page 63

To control- the confinement set recelved by a newly createdAprocess, or
newly called orotected subsystem; e include in the oomain éate object the
specificatibn of a confinement set The confinement set assigned to a newly
created process or newly called protected subsystem must be contained in the
confinement set specified by the gate that was*used for process initiation or
calling In addition, we requirevtnat the confinement set specified by a gate
be a subset of that ofbthe creator of that:éate. These two rules insnre that
the assignment of a confinement set to a process is properly‘authorized. They
do not, however, prevent the domain changiné mechanisn from releasing confined
information. | ﬁ B |

We now consider how to keep our domain changing mechanisms from being
'used to release confined information. ’ Lampson [La73] suggests that the
‘cbannels that can be used to transfer confined infocmation be enumerated, so

ithat they can be individually closed In this acction we enumerate the
channels provided by our four domain changing mcchanisms, and suggest ways to
prevent these channels from being used to relesse confined information.

With each of the four mechanisms, there are six operations that could be

used to release confined information:

1) ﬁomain object creation.

2) Domain gate object creation.

3) Process initiation.

§) Calling of protected subsystems. -

5) Deletion of domailn obJects, or domain gate objects |

6)'Modification of access control information for domain objects or domain

gate objects.

Page 64 : A : Chapter 5

We now enumerate the channels produced by these six operations.

Domain creation can be used to transmit infbrmatinn in two nays:

1a) The domain object created could carry oonfined information
1b) The Domain ID used could carry confined information and could be observed

by other processes attempting to create domain objects.

The first of these channels can be effectively blocked by forcing the
creation and use of domain objects to follow the -property. We assign tov
each domain obJect the confinement set of the creator of that domain object,
and require that a process have a confinement set that contains that of the
domain object in order to use that domain object to oreate gates. (1)

The second channel is more difficult to close, as all of our mechanisms
depend on the fact that the Domain ID in a particular domain object is
different from the Domain IDs in all other domain objects.' One possiblev
solution is‘ to partition the space of poaaible Domain IDs among the possible
confinement sets. We require that the Domain ID given to a new domain object
be a member of the set of Domain IDs assigned to the confinement set of the
creator of tnét domain object. This can be done by including some designation
, of the confinémenilset of the creator in the Domain ID. ' Partitioning the
Domain ID space among confinement set; in this manner prevents the observation
of the use of a Domain ID by a process with a confinemenﬁ set not equal to
that of the user. Thus the use of a Domain ID cannot release confined

information.

e

(13 If‘;;.t'hmdgmimdnﬂidomimmtmptxmumgés ¥epte: s numnhmmnﬁug
system,14hen: the: eonfipement-set; of-1 thesdirsctony: bontaining a domadn’or:
demain-gatesean be:used:4o woﬂéﬂezahiafoo&tmlq*um f:mwcw"'w tam taartanlonon

Vlsanadn Janvos foss slss s 1o BBRL 9ps
Chapter 5 Page 65

SE T A wmst

Gate creation presents one channel for the release of confined

Anformation.
2a) The gate that 13 created could carry confined informatien.

This channel can be closed in the same manner as the channel described in 1a
above was: by enforcing the ¥*-property for the creation and’the use of domain
gates. (15‘ |

| Process initiation presents an additionalﬂ chanpel for the release of

confined information:

3a) The gate chosen for process initiation can convey information, even 1f the

- areated process has no means of communicating with its oreator.

To block this channel, we must reduire that the c¢reated process have a
confinement set that contains that of the'creatorf ‘fhere 1s no way to prevent
tﬁe gate chosen for prbcess 1n1£iation from conveylng iﬁformation. On the
other hand, our mechanisms provide né w;y for thé creator to obtain
information about the created brocess; Thergfore. there is no reason to force

the confinement sets of the creator and created process to be equal.

(1) Note that the confinement set associated with a gate in order to enforce
the *-property 1s different from the confinement set specified by the gate.
The confinement set specified by a gate was introduced earlier to control the
assignment of "a confinement set to a process created with that gate. The
confinement set introduced above controls the use of the gate, and prevents
the use of a gate as a covert channel.

Page 66 - ’ Chapter 5

The calling of protected Subsystems presents two possible oommunication

channels:

4a) The caller can pass information to the callee by the choice of a gate ' for
the call.
4b) There are a number of waYs in which the callee might be able to pass

information to the caller.

The first of these channels can be bloecked in the aameimanner as channel
3a above. This means that performing a call to a protected Subsystem bwill
never cause the confinement set of a procésa to decrease,

The problem of keeping a vsubsysten*from relessing information to its
caller is shared by all calling mechanisms, wLaﬁpsan ELa73]5$hows some subtle
ways in which information can be released in this way. Rotenberg [Ro74]
studied this problem in detail and propoSed é,pavtial_solution.: .This - thesis
does not discuss the probiem furthér. |

The deletion of domain objects and domain gate - objects, and the
manipulation of the ACLs of these objects are: operations that modify tﬁe
directory that contains the object being deleted or the ACL being manipulated.
Thus the confinement set of that directory is used to control those
operations. [Be73]‘

From the above discussion, we see that our mechanisms for authorizing
domain changes do not violate confinement. An examination of the methods used
to prevent the release of confined information reveala; however. that it is
impossible to create a gate that crosses confinement sets (1.e. one that is
accessible to a process with a cohfinenenﬁ set th#t is different from that

specified by the gate). As with other types ot-objéets in & computer utility,

Chapter 5 : ' : ~ Page 67

tﬁe confinement sets of domain objects and domain gate objects may nee§ to be
changed by some trusted authority in order to make the system usable. Such
"declassification" is needed with existing confinement mechanisms: [Ro7u;8e73]
as well, The intervention of a trusted authority (person) is needed because
programs lack the»Judgeaent needed to decide whether or not the object being

declassified conveys confined information.

5.4 Choosing Domain Chapging Mechanisms.

Of the four domain changing mechanisms that hafe been presented, we see
that none serves well both for authorizing process indtiation 'and oprotected
subsystem .calls - We .have already-suggésted one method of obtaining a domain
changing mechanism that performs both functions: by éombiﬁing' Partial
Specification with an argument paaaing<me§hanism similar to those of Jones and
Schroeder. Such mechanisms, however, are not easily impleémented in existing
computer systems.

A second way to obtainm a domain changing mechianism is to-combine ¢two of
our four mechanisms. Using Partial Specification for process initiation, and
Last Component Specificatlon for calls, we obtain a mechanism that performs
well for process Iinitiation, and providés some help in passing arguments.
These two mechanisms can easily be combined. Such 'a combination does not
provide the argument passing capabilities of the mecharilsms of Jones and
Schroeder, but is significantly easier to implement.

Another combination of domain changing mechanisms that 1is particularly
attractive 1s that of Exact Speeification for process ' initiation, and
Appending Specifieation for calls. With this combination, all processes are

initiated in a domain with a one component Domain ID. Additional components

Page 68 Chapter 5

are acquired by making calls to gates specifying those components. This
scheme allows each authority responsible‘for a particulan.domain to validate
attempts to enter that domain with the initial procedure for the gate that 1s
used to obtain the component corresponding to that authority. With Partial
Specification, all authorities must agree on a single initial procedure to be
used in validating attempts to enter a domain. This scheme, however has all
of the above mentioned problems of the Appending Specification mechanism |
The varlable length Domain IDs (which cause substantial complexitv in the
implementation of Appending Specification) could be eliminated by restricting
the depth of calls, and thus the number of components that a process can
accumulate. The current Multics implementation of ACLs allows only three
components, and would require substantial modification to increase that
number. Three componente ‘are not enough to implement the Person " and Project
authorization of Multics. and allow the coexistence of mutually suspicious
ubsystems in a single process.‘ At least four components (Person. Project
and one for each subsystem) would be required.‘ Any change in the number of
components would also require the modificetion of the ACLs on objects
currently stored by Multics | A- : |
Because of the problems mentioned above for Appending Specification. and
because Appending Specification would be very difficult to implement for then
Multics computer utility, we have chosen to use the combination of Partial
Specification and Last Component Specification for the test implementation
This choice was made primarily based on the characteristics of the Multics.
computer utility, ‘and should not be taken as an indication thatwthis choice is

inherently superior.

Chapter 5 , Page 69

CHAPTER 6

CTHE TEST IMPLEMENTATION

6.1 The ﬁgltigs _xgggg

In this chapter, I describe a test implementation of process initiation
for the Multics computer utility, based on the model of this thesis The
chapter begins with a brief discussion of the functions performed by the
present implementation ‘of process initiation for Multics, continues with a
description of the test implementation and concludes with an evaluation of
the test implementation For this discussion It is assumed that the xeader
has’ some familiarity with access—control-list based protection schemes,
segmented virtual memory systems, and multiulevel security systems ‘No
‘detailed knowledge of Multics is assumed | A -

The Multics process is implemented as an execution point in a segmented
virtual -address space. The segments are organized in a hierarchical file

bl
system. Each reference of a process to a segment is validated by three access
control mechanisms | the Access Control List (ACL) mechanism, rthe Ring
mechanism, and the Access Isolation Mechanism (AIM)

The ACL mechanism implements a list oriented protection scheme with
multi-component Principal IDs The two currently used components stand for
Person and Prgjgc , two independent authorities that must authorize the
creation of a process. The ACL meohanism is hierarchical. in that

modification of an ACL for a segment or directory is controlled by the ACL on

the directory that contains that segment or directory.

Pagev70 ’ : Chapter 6

The ring mechanism piovides 8 protection rings within each process. The
sets of segments that can be read orﬂﬁritten in these rings ére linearly
nested, with ring 0 being the largeSt set. The ring .meéhﬁnism is used
primarily to protect the Multics operating system. |

The AIM mechanism implements a multi-level security system that.attempts
to prevent the flow of information from a high classification to a lower
security classification. The technique used is to prevent operations that
spread information, as in our model of confinenent.nechanians.‘. The . security
classifications used are a combination of a level énd a compartment within a

level.

Process Initiation in Multies.

There are three types of processes created by Multics:

1) Interactive processes, which are creatéd to serve a usér at.a terminal.

2) Absentee processes, whiéh pérform a séries‘ofﬁdperations for a user from
a previously generated script. | o

3) Daemon processes, which perform system functions and: communicate with -

the operator.

All of these processes are created by a privileged brocess known as the
Initializer. (The Initializer 1s one of the Daemon‘processes énd is 1itself
created when the system is initilalized.) I will now discuss briefly how each

of the five functions of process initjation are performed by Multics.

Process Creation.

Processes in Multilecs are created by the‘Initializer process executing in

ring O. A process 1is chéatéd with the;Pbihéipal ib and initial procedure

Chapter 6 Page 71

specified by the Indtializer. A directory for the process in which temporary
segments for the pgrocess will be kept. and several segments in that direotory
that will be needed to support the process are created at the time that the

process 1is created.

Resource Controil.
The following resource control activities take place during process

initiation in theeoarrentfnultics implementation:

1) An account'to fund the activities of the new process i3 located.

2) The Initializer determines whether or not the new process will overload
the system and degrade service to other proocsstst

3) The scheduling parameters, whict determine the rate at which a process
consumes CPU and memory resources, are determined for the new process.

4) The mechanism that monitors the CPU and memory usage of all processes 1is

informed of the newly created process.

All of these activities take place in the Initializer process in the current
implementation. Additional resources may be given to a process after it has
been created, but such resource allocetions will not be considered here as

they are not part of process initiation.

The concept. of a domdin corresponds most closely with’the access rights
defined by one Principal ID on Multics. There 1is no aingle mechanism on
Multics that oontrols the Principal 1D given to a new process This control
is. accomplished by a complicated set of programs in the Initializer process

that decide the 1nit1a1 procedure and Principal ID of the process to be

Page 72 ‘ Chapter 6

created. An interactive process can be created with a given Principal ID only
1f a user who is authorized to use that Principal ID and has satisfied an
authentication performed by the Initializer requests such a process. An
Absentee process can be created with a given Principal ID only if an Absentee
request is received by the Initializer from a process with that Principal ID

A Daemon process with a given Principal ID can be created at the request of

the operator

Authentication.

As noted above. the Initializer must authenticate interactive users in
order to determine which Principal ID to assign to the processes that are
created for interactive users. This authenticstion is accomplished by a
passnord check Presentation of a correct password entitles a user to obtain
a process with any Principal ID with the .Person component that is
authenticated by that password. Each proJect has a project administrator who
is responsible for controlling access to that project The project
administrator maintains a list of users who may use his project This 1list

provides the authorization for the proJect component

© The standard indtial- procedures “for Intersetive, Absentee, and Daemon

processes -perform the following environment: initiaiizstion runctionsl"

1) Initialization of the error condition handling for the process.
2) Attachment of the terminal channel or Absentee script to a commandb

processor.

Chapter 6 ’ . Page 73

The proposed removal of the dynamic linking and name space management
algorithms from the aecurity kernel of Multics would add the initialization of
these mechanisms to. environment initialization. [Ja75 Br75] In addition o
these activities, one function of environment initialization is currently
performed by the Initializer. before a process is actually created The
Initializer creates a home directory for a process if such a directorr does
not already exist. The Initializer creates the directory, because the process
itselfl does not in general have sufficlent acoeas rights to do sv.:
§ggggrx.

| As can be seen from the descriptions above,! the meohanismsh of process
initiation for Multics are highly interdependent. Resource control domain
changing, and authentication are all performed bfkthe same set of programs in
the Initializer process and all use the same data bases (a list of authorized
hsers and their attributes. a list -of authorized projects and their
attributes, and the lists of authorized users for each project) At least one
part of environment initialization> is‘kaiso; performed by the Initializer
process and makes use of the same‘data bases.

In redesigning process initiation according to our sedel, we attempted to
keep these mechanisms separate, while maintaining the functionality of the
current implementation wherever possible. We were particularly interested in
showlng that process initiation for Multics can be implemented in a
multi-layered security kernel as argued in the earlier chapters of this

thesis.

Page T4 ‘ ~ Chapter 6

6.2 An Implementation of Process Initiation for Multics.

In the' test iﬁpleméntation;v each bf ‘the five :funétions of processv
initiation is provided by a small‘program module thét exeéutes indepehdehtly
of the modules that provide the other four functions. A sixth module 1s used
to coordinate the activity of the other five. Veibegin with' an overview of
the functions performed by each module, and a brief‘deséfiptiénkof how the
modules interact to perform process initiation. Later Séctions of this
chapter discuss the implementatioh‘issues”in eachvofAthé hoduleé.' Appendix A
contains a more detailed'deseription of the'pbbébéﬁs in éach.médule.

The process creation function in the new implementation 15 the same as
that of the current ihplementatidh._‘ Proeéés cpeﬁﬁion is berformédvby the
Initializer process in ring 0 as before. |

Resource control in the test implementation is also Veéy’similar to that
in the current ﬁultics implementation. The"fouﬁ resource control functions‘
described before are performed in the Initializer proceés. The brogramé
providing resource control in the test 1hbieﬁehtdtioﬂ have been simplified b&
the removal of codé that interpreted input from user terminals. “

The partial specification meehanism’deSétibed 1n chapter,five is used to
control domain changing. It is implemented as a type ﬁanageh for.domaih and
domain gate objects, and provides functions‘that Ereate ’and‘ ihterpret these
objects. Domain and‘domain’gate objects are implemented as segments that are
accessible only in rings 0 and 1. (These ﬁili"be :refefrea to as ring 1
segments). |

In the test implementation, authentication 1s the responsibility of fhé
initial pfooedure for a domain. The logger, which 1initiates processes fdr

interactive users, authenticates each user who contacts the computer utility

Chapter 6 Page 75

for service and records the result as $r4f§ywarqed authentication. The
Vstandard initial proceduré for interactive processes ~uses the forwarded
authentication to determine whether or not the user is authorized to use the
process. Avsecurity conscious user can write his own initial procedure, with
whatevér authentication mechanism he desires.

Forwarded authentications are also stored in ring 1 segments. They are
manéged by the authentication forwarding mechanism. The authentication
forwarding mechanism restricts acceas to the forwarQed aqthentications for a
stream to those processes that can read or,write that stream.

Environment initlalization is performed byk the 1initial procedure - as
before. In addition to the functions described earlier, the standard 1nitia1
procedure also scans the forwarded authentications as noted above.

In addition t§ the above modules, there is‘ a coordinator module that
coordinates process 1initiation. The coordinator serves as an interface
between modules, which allows the modules to function independently. The
coordinator‘ gathers information from the resource contrbller, the partial
specificatioh mechanism, aﬁd the process that requests process initiation (the
creator). The coordinator distributes this information to the process creation
module and the 1n1t1§l progedure for the new process. The information is held
in a protected data base while»prooess initiation is in progress.

Figure 6.1 illustrates a typical process initiation.

Page 76 | Chapter 6

Figure 6.1

A Typical Process Initiation

Creator’s Process Resource Controller s Process

Creator

aéaburcemControlier

call

signa

(Ring 4) (Ring 4)

R R L—— ' - F —
Coordinator : .

signal

Authorization of PR

Domain Changing call

(Ring 1) . (Ring 1)

: Process Creation
(Ring 0)

Ring .0

Chapter 6 Page 77

Process initiation begins when a process that wishes to create a process
{labeled the crgator in the figure) c#lls on the coordinator module. The
creator passes to the coordinator two data structures and the name of a domain
gate .object. One of these data structures describes the process to be
qreated. and the other contains information to be used by the initial
procedure of the new process in performing environment initialization.

The coordinator then calls the gomain changing mechanlsm, passing the
name of the domain gate specified by ithe creator. The domain chaneing
mechanism determines whether or not the creator has "create" access to the
specified gate, and if so returns thé name of the initial procehure and Domain
ID of the gate. |

The coordinator récords the initial procedure and Domain ID in a
protected data baSe, along with the two data structures passediby the creator.
The coordinator then sends a message to -the resource controller (which
executes in the Initializer process) that specifies some of the
characteristics of the process to be created (including the 1nitial procedure
and Domain ID). The coordinator £hen waits for the resource controlier's
reply. |

If the resource controller approves the creation of the new process, it
calls on the coordinator to complete process initiation. The resource
controller passes to the coordinator a data structure containing paramefers
for the mechanisms that schedule the use of memory and CPU cycles by the new
process.

The invocation of the coordinétor in the resource controller’s process
combines the information supplied by the resource controller with that

obtained from the creator and the domain changing mechanism, to form a

Page 78 Chapter 6

description of the process to be created. This description is passed to the
process creation mechanism The invocation of the coordinator in the resource
controller s process signals the completionhtof process oreation to the
invocation of the ooordinator in the creator ‘8 process

The above overview leaves many unanswered questions about the functioning
of the modules. Later sections) of ’this chapter describe each module in
greater detail, and consider the implementation issues in each module a
Process Creation.
| The‘process, creation module‘Tfora}the,.testq,imp;ementatipn; was taken:
directly from the ocurrent Multics implementation,. .. The: set5ofvfunctioas
performed by the process creation module of.. the current 1mplementatione-was

exactly the desiredAset, . , i

' As noted before, the ‘ourrent Multics implementation does not contain a
mechanism to authorize the use of a domain. The Partial Specification
mechanism described . in chapter five was used for this purpose in the test
implementation. Partial Specification was chosen because it models the two
authority authorization scheme used in Multics very well. It also required no'
changes to the existing ACL mechanism, as Appending Specification would have.
nor did it require that the "ACLs of objects already in the Multics hierarchy
be modified The domain changing mechanism of the test implementation adopted
the strategies discussed in chapter five to prevent the release of confined
information by domain changing. o R |

The module that authorizes domain changes is small and simple. ndirelies

on the Multics ACL mechanism in order to perform the authorization.

Chapter 6 Page 79

t

-Domain aﬁd domtin gate obJeets are represented:by ringpl segments in the
Multics hierarchy These segments are similar to those used to implement
other extended type objects, such as mailbcnes and nessage segments H‘Ihe
Access Control List assoclated with a ring 1 sezment _ determines which
processes can read or write that segment while executing in ring 1 Thus, the
ACL mechanism can be used tomcontrol the availability of domain and domain
gate objects to processes, just as it was in our description of Partial
Specification in chapter five.

The domain changing mechanism thus: prévides operations to create or
delete domain-and: domain gate objects, whiléisécess control for these objects
is ‘performed by the access control- mechanism - for segaenis.' Choosing to
implement domain and domain gate objects has the disadvantage ‘that each domain
or domain gate object must be allocated at least one page‘§36§§9£bits)jo§
storage, while in faot each domsin object requires only 720 bits and. each
domain gate requires 1260 bits.‘ The inefficient use of storage was tolerable
for the test implementation, but - may be a severe problem in a system that
supports a large number of domains

A second responsibility of the domain changing’mechanism is to insure the
uniqueness of the Domain IDs in the domain objects._’For this _purpose, the
domain changing mechanism maintains a data base that contains all of the
Domain IDs in use (contained in domain objects) The data base is protected
by a lock to prevent simultaneous updates that could cause duplication. The
data base 1s implemented as a linear‘list of partially specified Domain IDs,
corresponding to the partially specified Domain, IDs that are used in the
domain objeots. The linear list representation‘was chosen because searches of

(RS X 1]

the data base 'are infrequent (because domain creation is infrequent) and

Page 80 ' _ ‘ Chapter 6

because the linear search is much simpler and presumably easier to verify
correct than more efficient searching procedures. o .- |

Domain 1IDs are never deleted from this data base, so that trey cannot be
re-used. This means that the Domain ID data base i1s constantly growing 'as
more domains are created. The growth was .not g‘soxare-aroblem in the test
implementatibn, because the amount of space required for: each Domain ID 1is
small (56 characters), and the creatigﬁ orﬁdelebidn O£wdouainfobjeqts is
infrequent. |

We need not maintain in the Domain IB:data base any Domain ID phat' does
not appear in a domain object, a-.domain gate objeot, or-an- ACL term.- The
aésigﬂﬂﬁflt of such unused Domain - IDs to . mew domain objects’ cannot - cause
confusion. Thus the . file syatem;couldubewpeniadtﬁalkp;Scenned to determine
which of the Domain IDs in the Domgin ID data base wére actually in use. Sich
a check could be incgpporated in the program that scans the file system to
verify the integrety of the file system. ;

In order to implement the multiple authority authorization scheme of
Multics, domain objecta specifying only the. Person -component -or onily the
Project component are used. A project doua&n'phaect.by;convention 13 kept: in
the project directory for.that project. Thus the project administrator for a
project can control the use of the project by'modifying‘the;ACL-otxthe~doma1n
obJec;‘for that preoject. The pereon domain ob;en;l“pnnsentra. more difficult
problem, because the hierarchical aceess control of Multics makes it difficalt
to give each user exclusive control over the ACL.of his dannin object. In our
implementation, the person,domainwobjeets;are all-kept in a single directerya
(>udd>persons). Each has an ACL that allows. ealy the -eorrssponding 'ueerfl!

processes to create gates. Modification of.the AGL of a persen domain-object

Chapter 6 - Page 81

" requires administrative action. This use of the domain chgnging mechanism 13

illustrated by figures 5.1a and 5.1b

the atiopn. - - BRI S

The test implementation provides authentication forwarding as described
in chapter three. and connections made through the’ Arpa Network. |
. Chapter’ threga notes that eaeh forwarded-‘authentifcation should be
accompanied by 1identifying dinformation, so that the user of a forwarded
authentication can identify its duthér. Oup implesientation of authentication
forwarding records the Ppincipal:ID; ring nunber ;- and ‘proéess ID 'of the author
and -the .time of reeording for each forwarded autWeénticatioh. The Principal ID
and ring number: identify the domain :of the #yfhér, while the process ID and
time form a unique.index for the forwarded authentication. '‘Although it would
be desirable to:: record ' ‘the /proceédure that produted each Torwarded
authentication, fhis_information cannot ‘be :'wbtatned. - (A’ Multles procedure

cannot reliably identify dAtsc oaYler.) o low s Fariis oo
The - forwarded: muthentications - are ‘stored - “in ring 1 segments, so that
access to forwarded authentidations can be controlled.One such sepment is used
for each.Arpa Network Socket or ' Iv¢al terminal ' thannel 'that actually has
fonwarded: authentioations. & w5 Fuu i a0 AR
- The: use of -one: segment’ for' ‘eadh chanhel allows' the forwarded
authentications for each channel to:be -managed: indépendently “of those’ for
other channels. - Thus &’ proess-sannot interfare with the use of forwarded
authentications for anhy channel th&tﬂthatfpr%éES%*c&ﬁ*ndt use. Each forwirded
authentication. requires approximately 2000 bits:of 3torage. Thus, up to: 5000

forwarded authentications can- stored for: each ehsfinel:

Page 82 Chapter 6

As noted in chapter three, only those processes that may use a stream
should be allowed to read or record forwarded authentioations for that stream
Control of forwarded authentioations is! accomplished »in the test
implementation by checking the aoeessibility of the stream before recording or
reading forwarded authentications. The accessibility of a stream is checked
by requesting the connection status of f that -rstream ’ The“ Multios
implementation denles status information about a stream to processes that do
not have access to the stream. | ! |

Three strategies were adopted to insure that forwarded authentications

always refer to the current oonneotion of a stream.

1) anh process that has access to -@ stream may -delete the foruarded
authentications for that stream.

2) The forwarded authentications for a stream- are automatically deleted -
when that stream 1s disconnected. | | H |

3) A scheme similar to the oonnectiOn ooont soheme‘ described in ohaoter

three was implemented.

 Any process that believes that the forwarded. authentications for.a stream
that the process has been using are no longaragvalidtgoana thus - delete thpse
forwarded authentications. The second. strategy above insures that a forwarded
authentication never refers to a previous connection:of a stream.

The connection . count is not implemented,exactly;as,described in chapter
three. This 1s because we do not want to maintain conneotion -counts for
channels not in use, as there are many suohwohannelsae Instead, the time at
which the last call to connect a channel was made is uysed :as 'the connection

count of that channel. The time 1s expressed with sufficisnt precision that

Chapter 6 : Page 83

two connections eannot be made to the same chatnel at the same time. The use
. of the time of connection as the connection eount avoids the necessity of
_ Y
maintaining 1nformation for channela that are not connected.
| The 1mp1ementation of forwarded authentioationa very closely follows the
description of chapter three. The"prééééms tpat 1mplement_tfqrwarded
vauthentications are all small and simple ;_ o N

Authentication Forwarding 1s used to allow the 1ﬁitia1 procedure of an
intgractive process to make use of thq »standard aystemr authentipation
'mechénisﬁ. The logger process authenticates each usep yho contacts Multics.
and records the result as a forwarded authettication. The initial procedure
of an interactive process chooses whether or not to belleve the forwarded

authentication.

Bgééurge Control.

The resource controller for the teét }mpi?mé@tgtion was gdapted‘from
current Multics implementation of process 1titiétion.'.ij§“ Multiesk resource
controller was adapted to ctmmunicate with the coofdiﬁatof module (described
' later) rather than with a terminal channel, Absefiteé request, or the operator.
This change did not affect the‘funétlon performed by thé resource ' controller,
but merelyvchangeq its source of infofmation.

A second series of ohanges Wwas made to make the resource controller
reject a process creation ’éequeét~ that contsained unscceptable paraméters,
rather than attempting to correect those parameters. ' This cﬁange‘was made
primarily because the resource controller cahnot alter some parameters, ' such
as the initfal procedure and domain of ‘a new process. This change does not

alter the resource control ¢onstraints enforded by the résource controller.

Page 84 ' _ Chapter 6

The resource controller makes use of three privileged operations in order

to implement resource control constraints.

1) The resource controller is alloued~to.nomitmr‘thevcfﬂwandr»memory; usage
of all processes.

2) The resource controller can destroy any process. . .

3). The resource controller determines : the scheduling _paremetersa‘=whioh

- partially determine the rate at uhichuprocessee CONSUME T S0Urces.’

These operations do not alloﬁ the resourceﬁfcontroller”to violate accesa
control constraints, as shown in chapter M h T | B e

‘The Multios resource controller implements a very complex set of resource
control constraints which are designed to. give each user a fair share of the
computing resources of Multics. The fact that this complex set of constraints
can be implemented with only the above three operations suggests that our
model can be used for many resource control policies.

The resource controller is a very complex set of programs | Some of this
complexity arises from the fact that the resource controller has been adapted
from the current Multics implementation which had other responsibilities in
addition to resource control. A great deal of the complexity. however. is
inherent in the nature of the constraints being implemented. It is clear that
removing this oomplexity from the access control layer of the security kernel

will result in a simpler certification of that liayer.

Mﬂﬂl_l&&ll&é&m

In our model each domain is responsible for initializing its

environment. Environment initialization for a domain is performed by the

Chapter 6 | : ~ Page 85

initial procedures> for that domain. and therefore is under control of the
authority responsitle for that domain' An initial procedure for interactive'
processes that performed environment mciamasson»ma written for the test
implementation. This initial procedure is intended as & demonstration of
environment initialization in our model. P

.The -initial procedure performs all of the environment initislization
functions mentioned above (initialization of error*handling*snd“ettachment of
the terminal stream to the command prooessor) In addition it checks the

B

forwarded authentications for the source of the stream that represents the

AR S IAN

terminal channel. The forwarded authentications are checked to insure that the
T e oane

identity of the source of that stream had been verified by a trusted
authentication procedure, and that the authenticated user corresponds to the
Person component of the Principal ID of the new process The procedure that
was implemented trusted any process with the same Principal ID as that of the
new process and also trusted the logger process.v ‘ ‘

o The environment initialization performed by this initial procedure is
very simple and straight forwarded Notice that any desired authentication
check could have been 7 made, rather than relying on the forwarded

%

authentications.

' The coordinator gathers information from the domain changing mechanism;
the resource controller and the process that requests process initiation (the
creator). This information 1s combined to form the parameters given to the

process creation module and to the initial prooedure of the new process The

coordinator allows the creator, the domain changing nechanism. the resource

Page 86 Chapter 6

controller, and the new process all to funétion';nerendently. Several
strategles are adopted by the coordinator in ofderu ?o iﬁsure this
independence. | | | | | “ |

Each parameter produced by the coordinator is derived fbo@ the
information presented to the coordinator 1n a well defined manner. Thus the
domain changing mechanism is given control of the Prineipal ID ring number,
and initial procedure for the new process, the resource controller 1s given
control of the parameters that determine tha‘vabs'ét~whioh'the.neuQDEOOBss can
use CPU and memory resources, and the creator is allowed to pass additional
parameters to the new‘prooass-such as infermation about the task that that
process is to perform. |

As can be seen from figure 6.1, ﬁhe¥eoordinatnn,gathers 1n£ormation in
both the creator’s process and the resource controller’s process. The
creator’s and the domain changing mechanism’s inputs to .process initiation are
copled into a ring 1 data base before the resource controller is notified of a
process initiation attempt. Thus process initiation oan be completed even Af
the creator’s process is destroyed before the resource controller acts on the
request.

The resource controlier is given a limited time te:act on each request
before the request will be aborted and the information related to it purged
from the ring 1"data base. The time limit’ineures“that the -coordinator will
not have to keep a request indefinitely. It also insures that the resource
controller cannot cause oonfusion by delaying a process initiation attempt
until the task that that process was to perform is no longer relevant,

A unlque index 1s given to each procesa“initietion request so that the

resource controller and the coordinator do not become confused if two requests

Chapter 6 v Page 87

aée made for processes with similar characteristics or if the resbﬁrce
controller attempts to respond to a requeét that the coordinator has giﬁen up
on and aborted.

The coordinator 1s a large program, but is simple in sthucture. The size
of the coordinator is primarily due to the number of parameters that ﬁust be

generated from the available information.

6.3 Conglusions on the Iest Implementation.

This chapter has shown how process initiation was implemented for the
Multics computer utility. In this section, we compare this new implementation
with the current lmplementation of process initiation for Multics, to see the
advantages and disadvantages of our model.

Three advantages of the model are immedlately apparent. The first of
these 1s the reduction of the amount and complexity of the programs in each
kernel layer. In the current Multics system, any program executing in the
Initializer process could potentially oreate a process with any desired
initial procedure and Principal ID. Thus all of the programs that execute in
the Initilalizer process must be conslidered to be in the innermost layer of the
kernel. These programs include not only all of the process initiation
mechanism, but also other complicated programs such as those that handle the
scheduling of Absentee requests and those that implement the Telnet and FTP
protocols of the Arpa Ne’cwor-kf Also included in the programs executed in the
Initializer process are numerous programs that had been removed from 'ring 0
with the intent of removing them from the security kernel. In our
implementation, the set of programs in each layer of the kernel is well

defined and in each case smaller than the set of programs that are in the

Page 88 Chaptef 6

Initializer process in the current implementation. ‘ _

‘Tables 6.1 and 6.2 show the impact.of» the model on the size of the
Multies security kernel, both in terms of lines of PL/I code. and in terms of
the number of modules. The tables include all of the modules related to
process initiation, land all other prdgnknd‘?thnt are only included in the
kernel because they execute in the lnitializer process. The figures for the
kernel layers are cumulative. (i.e. The figures for the Denial of Service'
layer include those for the Access Control layer, Vand the' figures for the
Confinement layer include both the other layers.)

The first 1line of each table shows the current size of the kernel.
Because Multics currently has a single kernel layer that implements all of the
security constraints, only one number is shown. 'The .second .line . represents
the size of the kernel layers as measured in the test implementation. These

wf

figures show a great reduction in the access conrol layer, because many of the
programs in the Initializer process need not be included in that layer.

The test implementation did not:-take full: advantage of the simplification
that could be achieved by making process initiation unprivileged. Many of the
functions performed by the Initializer process in the test impiementetion>’do
not need to be performed there. The = third 1line of Tables 6 1 and 6 é
estimates the size of each kernel layer in an implementation that took full
advantage of the model of this’thesis, by remoying all unnecessary progrems

from the Initializer process, and by recoding those that remain to remove

functions not related to resource control.

Chapter 6 _ Page 89

Table G.i

' The Impact of the Model on the Number of Lines of PL/I Code in the Kernel

Unprivileged Acgeess - Denial of - Confinement
Control . Service
Current Multics fod RN S
Implementation : 150 <—-!~n-—-a‘--~ 12000 O A - - .. >
The Test Implementation 1150 825 10050 10050
A Full Implementation -
of .the Ideas of this - , e . TN _ :
Thesis 6600 - 825 3500 3900
Table 6.2

' The Impact of the Model on the Number of Progfamsyin the Kernel

.. Unprivileged . - -Access - = Denial:of Confinement
: , Control Service
Current Multics , : R ;
Implementation 3 Cmmmmemwsenne 4] ceceneenname=)
The Test Implementation 5 8 3 43
A Full Implementation
- of the Ideas of this . :
Thesis 17 8 23 27

A second advantage of the model is that every process can request the

creation of a new process, whereas only the Initializer can create new

Page 90 Chapter 6

processes 1in the current implementation. This limitation is the reason that
functions such as the Absentee system and the Telnet and FTP protocols of the
Arpa Network must be implemented in the Initializer process.' This can result
in a substantial reduotion of the kernel. as approximately 3000 lines of PL/I
code are used in the current implementation to provide theae funetions These'
functions, and any new function requiring the creation of prooesses,,need'not
be performed in the security kernei in:an impienentationﬁof sroceaaﬁinitiatiOn
based on our nodel. e | B
A third advantage of the model 1s that the authority reaponaible for a

¥

domain can control the use of that domain through the initial procedure of the
domain. The mechanisms for such‘“oontrol'arewieaa abbarent ‘in the current
implementation. | | : o M o

The test implementation doea; however, hanehfaererai: disadvantagea. ‘ he
have already noted that the 1mp1ementation of domain and domain gate objeota
is very wasteful of storage. At the time of this investigation the M I. T.
Multics system had approximately 2000 usera and 250 projects, and would
require a total of perhaps 5000 domain and domain gate objecta." These objects
would ocupy about 51 of the available pernanent storage space.; vThe atorage
requirement could be substantially reduced 1if the'donain and donain gate
objects were supported by the mechanism that implemente directories. The data
contained in a domain or domain gate object could be placed in the directory
containing that object, thus elininating the need to have a ahole segment to
hold the representation of such objects Such an implenentation would add
some complexity to the programs that implementﬂrdirectories. dne,to the

problems of maintaining the large central data base

Chapter 6 _ Page 91

The implementation of! fovwarded authentications also makes poor use of
storage if eaeh stream has only a small number of forwarded authentications
This 1nefficiency‘is’tolenable, because ﬁew streams are conneetedl to. Multies
at any one time, and forwarded authenéications need be maintained only for
connected streams, ”

The implementaﬁion based on the model is slightly slower than the current
Multics 1implementation. of process initiation Each process initiation
' requires about .1 CPU seconds moreyin our ;Qplementapigq. The extra t;me is
due to the time requiped to‘merge the daﬁa Stfpctures ;nq_the time required to
format and transmit the‘message to the resource controller.‘ The total time
required for prdcess initiation on Multiecs 1s approximately 4 seconds. (Mo;t
of this is spent by the resqurce oon@rqller.) »The tgst ;qplementation is thus
nqt signifiéantly slower than the éﬁrrént Multicswﬂimple@enpation of process
initiation. |

The hierarchical access ocontrol structure of Multics is in some ways
ineonSistent with the accegs'control needs for domain and'dpmain gate objects.
This inconsistency Igads to diffiéulty ;n_modelling eiaqfly the authorization
scheme used in Multics. _ 7 .)

Overall, the model has substantigliy sim?iified the 1layers of the
security kerﬁel and provided some additional funcﬁionglity at tbe cést of
using more sﬁoragé and CPU time, and of.fbroing ﬁsers'to bevcareful of the
effects of hierarghical access control. Beéause securlity is an important eoal
of the Multlcs system, this cost can be justified. The following chapter will
évaluate the model in the more general context of itsh ﬁse for any computer

utility.

Page 92 Chapter 6

CHAPTER T

EVALUATION AND CQNCLUSIONS

In this chapter, we eQaulate our "model as a whole and draw some
conclusions about its usefulness in'stbuctﬁrihé ﬁbéoeaﬁJiﬁiﬁiéfibn. We ‘beéin
with a comparison of the model with two~otberﬂp:pcgzs 1nip1at;onwschem§9¥
Following thisvcompérison,,we symmarize the pgogqlﬁg;ong‘ugbout“ the model.
'Finally, we discués topics for further research. in the area of process

initiation.

7.1 Comparison.

In this'section. we compare our mOdelkwitﬁ‘two common schemes for process
initiation: A hierarchical scheme, such as 'thaﬁx'used in the CAP system
[Wa73], and a scheme with centréi‘ control such ‘és'lfhe current Multics
implementation of process initiation. These are the most ééﬁmonl& used
schemes in icurrent computer systems. We'eoibéré the ease wiﬁhlwhiehftheSé

three schemes can be used to create processes in the following situatioﬁs#_f

1) Creating a process to act for an interactive user at a terminal.

2) Creating one or more processes to carry out some parallel processing
" algorithm. |

3) Creating a process to execute a subsystem that is mutually suspicibus

with its caller.

Chapter 7 _ . Page 93

In the hierarchical scheme, each process assligns a subset of its
resources and a subset §f its access rights to each process that it creates.
Each process 1s totally dependent on its creator for resources and access
rights. Each process 1is destroyed whefi iﬁs 'creﬁtor is destroyed. In the
centrally controlled schemé, oﬁlﬁidheJﬁroéésézisfailowed to create processes.
This pr;vileged process,contro;s comglete;y&§p§ access rig@@s and resources

granted to all'proeesses. The privilegag procg;gkpgvgyyterminates.

Process Creation for Interactive Users. -

The ~creation of processes for interactfve users was extensively studied
in chapter three. ‘Both the model and the centrally dontrolled scheme handle
this situation well. The model, however, offers mobe flexibility than the
centrally controlled scheme. With the model, different processes 93“H9§$ used
to create processes for ﬁsers -of different terminals. Ihisfcéﬁasiiity is
useful if the proﬁocols used ;o ta}k t°,u¢if£§§?“t @ggpiqﬁlg:(age diffgrent,
These logger processes need not pgncert;figg!cogr?gt in order to achieve the
secqrity‘gqals of the qompupgr uti}ity. qurhpngl g;squallows, a sggurity
conscious user to protect himself against malfunctions of most of the process
initiation mechanism. | 7

The hierarchical scheme of process initiation can also easlly be used to
create processes for interactive users. The process that responds to requests
for processes from interactive users' (the” Ydgeér process) must. however,
manage all of the.resources required by those users and must be given access
to all objects needed by those users. The’hierarchical scheme is not readily
extended to allow more than one process to create processes for users, as is

our model. The hierarchical scheme does not allow the security conscious user

Page 94 ‘ Chapter 7

to protect himself from the logger process, because the 1ogger has complete

control of the resources and access rights of user processes.

Parallel Processing.

The hierarchical scheme of process creation handles the creation of
processes to perform parallel procesaing for a single user very well. Once an
initial progess has been created for an_intoradtive user, thatvproeess,oan
create additional processes for thebuservtinerFOrm psrallel:ppgcessing.- The
resources and access rights assigned to - the !userfs-first process can be
distributed among these processes as needed.

The central scheme requires that each proeess be created by the
privileged process. The privileged process may not provide the resources or
access rights needed by the user, as 1t has less knowledge of the task to: be
performed than does the user's initial process;\ The central'schene does,
however, provide a better opportunity to control the total number of brooess
in the computer utility. As noted in chapter fcur. such control is needed to
insure that the resource controller can respond rapidly to demands for
resources. Most current computer systems impose limits on the totel number of
processes. | | o V ‘

The model shares some of the. drawbacks of bthe_centrel scheme, but -
provides somewhat more flexibility than that scheme."Like the central scheme.
our‘model has one central resource controller thath is .responsible for all
resource allocation. 'As before, theb'centralraresource allocator‘ must
participate in each process creation, and may nct provide exactly the desired
resources. The resource controller can, however, control the number of

processes in the computer utility, as in the central scheme

Chapter 7 Page 95

Access rights in our model, however, are nbt under Qontrol of a central
authority. The domain changing mechaﬁism proiides breci#e control over the
creation of processes, and over the assignment of access rightsﬁto_-orOcesses.
Thus the use of parallel processes by a user can be controlled by controlling
access to the domain and domain gate objects for that ‘user’s domain.. The
availability of parallel processing to a user may also depend on the task to
be performed, as the initial procedures specified by the gates into the user’s

domain may restrict the tasks that the user can perforn.

Mutually Suspicious Subsystems.

Thé profecﬁion of mutually suspicious sﬁbéygtems is one »of the‘ most
interesting and difficult computer ﬁrotgct;pn problggs.} Sch;oeder presents a
mechanism that allows mutually suspiqious subsystéms to coopgraté in a shared
process. This mechanism does not guafantee each gubsys@em‘a’fair share of the
resources of the pbocess, and thus one suﬁsystem may denf_service-to others in
the same process. By providing separate proceéses foflsuch subsystems, we can
eliminate the pfoblem of denial of service.

The model of process initiaﬁion of this thesis is ideal for the creation
of processes to execute mutually suspicious subsystems. »The domain changing
mechanism allows the owner of a subsystem to éontrol‘the cal;ing of that
subsystem,.while the central resource control mechanism alloﬁs the resources
of the» caller and callee to be separatély managed. Thus neither the caller
nor calleé need trust the other.

In the centrél scheme, all ‘processes ‘are’ created’ by the privileged
process. Thus each création of a ﬁrocess for‘a‘protectéd subsystem involves

commdnication with the privileged process. The privileged process must

Page 96 ' ’ Chapter 7

implement some control over the creation of processes for protected subsystems
similar to that of our domain changing mechanism. There must also be a secure
communication mechanism that allows eaéh process to eommunioate requests'for
processes to the privileged process. Ail protected:subsystems must trust the
privileged process fo ‘provide the‘correct'acééssufiéht; ;;d'reéourcés. The
central mechanism allows the caller and callee to be independent, as does
model. | |

The hierarchical scheme for process initiation is'the'most difficﬁlt‘of
the three to use for the creation of a process for a protected subsyétém.
Because in the ‘h;erarchical scheme a process 1is totaliy dependent on its
creator to provide resources and access rights, a process cannot directly
create a process‘fdr a subsystem with whi@h 1tﬂiﬁuhutually suépicious. Each
process must‘instead appeal to some process ihat thq subsystem to be executed
trusts. '

Figure 7.1 shows a process hlerarchy includin%vtwo pr6cessesvthat are
mutually suspicious. - Subsystem X (in process 3) coulﬁ not_directly create a
process for subsystem Y, because they were.mutua11y~suspiciGUs. Subsystem X
had to locate a process that both it and subsystem f‘truateg~(process 1 in‘the

example) to create the process for Y.

Chapter 7 ' o Page 97

Figure 7.1

Hierarchical Process Creation for Mutually Suspicious Subsystems.

Process 1

Process 2 Process 4§

Subsystem Y

Subaystem X

As with the central scheme, secure communications are needed, and each
process that creates processes for protected subsystems must implement some
control scheme. If only the process at the top of the hierarchy creates
processes for mutually susplcious subsystems, then thils scheme reduces to the
centrally controlled scheme. The hierarchical and central schemes for process
initiation are both more awkward to use for the creation of processes for

mutually susplcious subsystems than the model of this thesis.

Page 98 Chapter 7

72_asl_u_igaa_aaatm._9§el

In this section we summarize the advantages and disadvantages of our
model. Some of these observations have been discussed at length in other
sections and are only briefly mentioned here.‘ﬂ }

As can be seen from the preceding section, the model handles the creation
of processes!for interactive users and for mutually suspicious subsystems very
well. It provides more flexibility than the other‘tuo schemes considered
while forcing users to rely on less of the process initiation mechanism of the
computer utility. The model performs less well than the hierarchical scheme
for the creation of processes for parallel processing. The model does.
however, provide contro] fhat the hierarchical scheme does not. The resource
controller of the model can easily control the totel number of processes 80
that it can respond rapidly to changing resource requirements and the domain
changing mechanism can be used to control the tasks for which each user may
use parallel processes, o ' | | |

Another benefit of our model is that it separates the mechanisms 'that
perform the five functions previously identified' Process creationL domain

i

changing, authentication, resource oontrol and environment initialization.

e Lt

This separation allows each function to be implemented in a small programv'
module, independent of the other functions. The structure achieved by using
small independent modules is easy to verify. and easy to modify

The model also shows the security constraints that can be violated by the
programs that implement each function. Thus we can clearly See which of the
modules must be certified correct in order to achieve‘the security goals of a

“5

given system In the test implementation for the Hultios computer utility, we

Chapter 7 | : Page 99

saw that the size® and complexity of the programs that must be certified to
achieve the security goals of Multics are both reduced in the implementation
based on the model. |

Another benefit of the}modulariaatiOh of the model is that it allows any
process to create processes. Unlike the hierarchical scheme, the setsb of‘
resources and acceds rights of a process are not restricted to be subsets of
those of the creator'of that process.> Thus any application that reouires the
creation of processes can easily be implemented 1in a computer utility using
our mode1; without mbdifying the process creation mechanism, or& the security
kernel. | R) - |

One of the primary drawbacks of the model is the problem of maintaining
the domain and domain gate objects for the domain changing mechanism in an
efficient manner. In our test implementation 4we chose to use very simple
management techniques that wasted a large amount of storage Objects with
small representations are inefficiently supported by ourrent hardware
technologyr This forces the implementor to abandon the hardware protection
mechanism for small objects if they must be efficiently implemented.
Providing equivalent protection in software greatly increases the size and
complexity of the programs that manage such objects Newer hardware
organizations, such as that of the CAP processor [Ha73], make better provison
for small objects. o

A second drawback 1s that the controlsvprovided by the model over process
initiation may be somewhat awkward to use. We saw in the test implementation
that the hierarchical access control mechanism of Multics made it difficult to
give each user complete control of his home domain Each user must be very

careful 1in creating domains and gates. TheA accessibility of’all of the

Page 100 _ ChapterVT

directories above a given object must be considered in‘ determining the
accessibility of that object. : | A |

The initial procedure of a domain must also be carefully-coded to ensure
proper use ‘of that domain The authentication forwarding mechanism allows the
initial procedure to trust a central authentication mechanism to ensure proper
use of the domain. Our model achleves a smaller and simpler security kernel
by allowing the user to protect himself. Thus there is a greater probability
that the protection facilities of the eomputer utility will be misused and not
‘provide the desired security constraints. |

Finally, the argument that authentication and environment initialization
can be removed from the security kernel in our model is somewhat deceptive
Clearly, in the test implementation the security of the entire system »depends
on the authentication and environment initialization.performediby the initial
procedure used to enter the Locksmith domain. (The existenoe of such
privileged domains forces all users to depend on the programs that execute in
those domains, much as the security of the entire system is dependent on the
compilers and editors used to produce the programs of the security kernel.
The privileged domains‘ are infreduently :used.' andG auditing the use of

privileged domains may be sufficient to provide security.

Chapter 7 . Page 101

7.3 Iopics for Further Research.

This thesié leaves several problems ln the area of process inifiation
unsol&ed. In this section, we briefly desc}ibe those problems.

Qur model identifies five independent functioné_}of process initiation.
The test implementatién demonstrates one way in which tﬁese five functions can
bé coordinated to perform pfocess initiation;; We did_hoﬁ explpre eitensively
other organizations. (One such organization’wouldvrequire iﬁhat ~each ‘process
begin execution in the domain of 1t§ creator. All_domainichanges would be
accomplished by cross-domain calls. Such an organizgtion méy‘ provide an
implementation of process initiation that ig even siméier thah that éhosen for
the thesis.) | | |

This thesis did not consider many qf the proplems associated with
allowing users to create processes. We did not presgnt_ a resource control
scheme to insuré that receives a fair: share of the available resources,
independent of the number of processes that he 1is usiné. The resoqrcg»control
iechanism of Multics does not providex thié guarantee.: ‘Devéloping such a
resource eontrdl scheme, and aeﬁonstratiné that it can be impléﬁented in ouf
process initiation structure wouid be an 1ntefe$ting resea;ch\pyoject.

The thesis presénts a novel authentication scheﬁe kfér confineient
systems. The test implementation did not test some of the ideas presented.
In addition, it 4is not entirely clear how this scheme interfaces with
autheptication mechanisms based on encryption. A recent masters thesis [Ke76]
investigated the use of encryption in providing secure communication channels.
The protocols developed fit well with the authentication scheme of this
thesis. Some further work may be needed, however, to bring together all of

the ideas about authentication in these two theses.

Page 102 Chapter 7

APPENDIX A
DETAILS OF THE IHPLEMENEATION

This appendix presents a. more datailed deaoription -of ..the test
implementation than is given in the text. . -The appendix 4s organized in
sections, each section devoted to.one»af;ths funetions of proceas initdiation
discussed in the text. Each section describes: the programs that 4dmplement the
corresponding function and the data - structupres:-that .are " used: by : those
programs.

Each of the programs described is a PL/1 procedure, possibly with
multiple entry points. The function performed by each entry point is briefly
described, along with the function of the entire program. The contents 0? the
data structures are described, but not the detailed format. -

Appendix A Page 103

Process Creation.

Programs:

hphes_$create_proc:

This 1s the entry to the programs that actually create processes. As
stated in the text, this funetion of proecess initiation was taken from
the current jimplementation. This program takes two data structures as
arguments, crente info, and pitmsg. 'The oreate ! thfo ‘structure describes

_the process (o0 be oareated and is'- deacribad beiow, while the pitmsg
structure is not used during - process oreation and is passed to the
programs ‘that perform envirosment imitialization. The pitmsg structure

- will therefore be described in the enviromment taitialization section.

Str '3

eriahe info.. '
The create_info structure eontains the following 1nfbrnation'

Principal ID for the new process,
" Initial and higheat ring numbers for process,
AIM clearance for process,

Maximum AIM clearance for proceas (not respecting the limit requested when
the process was created), .

Audit checking flags.

Process ID for new process (half specified by oreator and half filled in by
process creation),

Process 1D and trouble report channel,
Pointer to and length of the pitmsg structure for this process,
Record quota for storage in the process directory for the new process,

Location and maximum length of the linkage offset table, combined linkage
segment, and known segment table for the new process,

Scheduler work class for this process.

Page 104 ‘ Appendix A

Environment Initialization.
Programs:

user_

user_|

init_admin_:

This 1s the first program that gets oalled 1n the user ring in a newly
created interactive procesa. It 1s.an: assambly ;' language -program- whose
only function 1is to call user_real init_admin_ and process_. overseer_.
These calls are performed because “the first | program called:in a process
cannot return until the process terminates, and therefore leaves a-frame
on the stack for the life of the process. As, much . .of; the : work . of
environment 1initialization as is possible is done 1n programs that can
return and thus release their staok:frames. . .. “i. - . =, o
real_init_admin_: ‘

This | program. obtains a pointer to the pitmsg structure for the . proeess.
(This structure was placed in the process directory by process ereation)
The program also initializes the proceas’s commundcation okannel to the
user that requested the process, and finds the system process_overseer_
program, or a user specified process pyerseen, - uanw;mﬂtld&u&txadnln_
also establishes error handlers for certain error conditions that are
handled by the same programs througheut. the: life -of. the.process,
user_real_init_admin_ makes use of the information 1n the pitmsg data
structure that is described below. . - R TR L R N PSR L

process_overseer_: i

This 1s the standard initial procedure for 1nteract1ve processes. It
first establishes 3 handler for. any errer;cesditiens. sbet--occur: during
the 1ife of the process and are not handled by other progzams; Then, it
scans the list of forwarded authentications for the communication channel
of the process. If an authentication. thai..was: perfommsed ::ceither by a
trusted system procedure, or by a process with the same Principal ID as
that of the new process can be found, and 1if that authentication
identifies the correct user (the one who matches the first component of
the Principal ID of the new process), then execution proceeds. Otherwise,
the process is terminated. ,

If the authentication check is successful, then process_overseer_
prints the system message of the day, and executes the users "start up"
commands. process_overseer_ then calls the command listener to wait for
commands from the user.

Appendix A : Page 105

Qgta Structures:

pitmsg
The pitmsg structure contains the following 1nformation°

Proeesa Cype (interaotiva, abnantee or daemon),
Home director'y,
. Process creationztine,

Login time (may be different from above ‘1f several Pprocess are created for a
session with :one user),

vLogin line,
Name of terminal ehannal,

}W~I/0(module needed to use terminal channei,
}AIM access olasa of: tefminal eﬁannel
System control attributes of this proceeo.
Load control 1nformation for this proceas.

‘Summary of previous usage of the proceases account (supplied by the resource
: controllér?,

Additional 1nfornation for absentee processes.

Page 106 Appendix A

dm_ is a gate used to call the domain and donain gate obJect manasePS-
Below 1s a 1ist of the entries to dm_ and the. prograns that¢they call.

entry ‘ program called
dm_$create_domain domain manager Qgreate dOmain p
dm_$create_gate ' domain_ mapager 3cregt9*g§te
dm_$interpret_domain domain_managet . _$interpret. domain
dm_$interpret_gate domain_manager_$interpret_gate
dm_g$delete_domain domain_manager_$delete, dgzain
dm_g$delete_gate ; domain manégpf jdelete
dm_$add_dom_acl_entries domain_manager | ,“dd dom_pci entries

dm_$add_gate_acl_entries domain manasgr gatqﬁgclﬁpntr;es
dm_$delete_dom_acl_entries domaln_manager | detete: _dooracl e ntries
dm_$delete_gate_acl_entries domain_manag q,}de;etg ﬁs,aci;gntries
dm_$11st_dom_acl domain mnageg-__@;@j _gcl ‘
dm_$1ist_gate_acl domain_manager_$1ist __qu ael.
dm_$replace_dom_acl domain_manager_$ré ;aog,jou,gcl
dm_$replace_gate_acl domain_manager_$feplace gate acl
dm_$make_process initiatq_prooess #inlﬁtate process

domain_manager :

This program is the manager for objeets of ‘type domain, and . domain gate.
The program has several entry points thit allow thé creation, deletion.
and access control list manipulation of these qbjects. The program uaeg
the domain, domaiq_gate and domain_ lisn strﬁctu eg dgscribed Se ow..‘,'

domain_manager_ $create domain:

This entry point creates a domain’ obJeot. The entry'po;nt'takea the
directory pathname and entry name desired for the domain object to be
created, the desired ring number, and the desired Principal ID. The
Principal ID 13 checked to insure that it does not duplicate a previously
specified Principal ID in any component. For ~ this purpose,
domain_manager_ maintains a 1ist of all Principal IDs currently in use in

- the domain_list data base. - If the Principal ID 1s acceptable, then a

segment 1s created in the specified directory with the specified entry:
name suffixed by ".domain". This segment is accessible only in ring one
and contains the domain data structure described below.

domain_manager_$create_gate:

This entry point creates domain_gate objects. It takes as arguments, the
directory and entry name for the desired domain gate, a 1list of domain
objects that determine the Principal ID of the gate, a ring number, an
AIM authorization for processes created with the gate, and the name of an
initial procedure. If the set of domain objects correctly specifies a
Principal 1ID, then a segment is created in the desired location with the
desired name suffixed by ".domain_ gate". This segment is accessible only

Appendix A Page 107

in ring 1 and is used to contain the domain_gate structure described
below. The gate specifies the given initial procedure, the maximum of
the caller’s ring, specified ring, and the ring contained in each of the
specified domain objects. The AIM cleaprance specified by the gate is the

-~ minimum of ‘the caller’s clearance, the. specified clearance, and the
clearancds of all of the domain 6bjects.

domain_manager_$interpret_gate,

domain_manager $1nterpret domain:
These entry points return the information contained in domain and domain
gate objects, provided that the caller has the proper access (p for
gates, and ¢ for domains)

domain_manager_$delete_domain, domain manager _$delete_gate:
These entry points deléete domain and domain_gate objects.

domain_manager $add dom_acl_entries,

domain_manager_ Qaddﬂgate acl_entries,

domain_manager $delete dom_acl entries,

domain_manager $de1ete~gate acl entries.

domain_manager_$1ist_dom_acl,

domain_manager_: $lis% _gate_acl,

domain_manager_$replace_ gate acl,

domain_manager_: $rep1ace dom_acl:
These entry points perform ACL manipulation for domain and domain gate
objects. = They have similar interfaces to . the. entries in hes_ that
perform ACL manipulation for segments, ,

create domain,‘ create gate, delete domain, delete_gate, status, domain.

status_gate, list _acl_domain, 1ist acl_gate set_aocl_domain, set_acl zate
These are all entry points to a program that 1mplement$ user commands for
manipulaging domain and domain gate obJecta. They uill not ‘be described
in detai o

Page 108 Appendix A

Data Structures:

domain:
The domain structure is used to implement a domain object, and contains
the following information.

Person component of Principal ID for this domain (* meanarunspecified).

Project component of Principal ID for this doméin (* means unspecified),

Ring number of domain,

Creation time of domain.

domain_gate:
The domain gate structure 1s used to 1mp1ement domain gates and contains
the following information. . : , :

Person component of Principﬁl ID of the domain of the gate,

Project component of the Principal ID of the domain of thé gate,

Ring number of the domain of the gate, | |

AIM authorization specified by the gate,

Initial procedure of the gate,

Flag indicating whether or not the initial procedure should be called before
the I/0 attachments and static condition handlers of the procesa are
initialized (before user_real_init adnia is called).

domain_list: L ‘ o
The domain_l1ist structure is used to keep a record of the Principal IDs
currently in use. It has a header that.contains a lock and the number of
entries. Each entry contains the following information:

Person component of the Principal ID,

Project component of the Principal ID,

Pathname of the domain object ihat'specifies thia;Pfincipql-ID.

Appendix A | ' | Page 109

thentication F .
asm_ B | . o
asm_ 1s a gate used to access the authentication forwarding mechanism.
Below 1s a list of entries to asm_ andrthqlprogrqqstthat they call.

entry program called

asm_$tty_assert assertion_manager_ $tty_: assert
asm_$tty_read_assertions assertion_manager_$tty_read_assertions
asm_$tty delete_assertions assertion_manager_$tty_ delete. _assertions
asm_$ncp_assert assertion_manager_ $nop_assert '
asm_$nep_read_assertions assertion_minager_$nop redd_assertions
asm_$ncp_delete_assertions assertion_manager iﬁﬂg;ﬁﬁiete assertions
asm_$priv_net_assert assertion_manager_$priv_net_assert

hes_, net_, netp :
These are the gates through whioh the primitives that manipulate local
terminal channels and ARPA network channels are reached. Several entries
in these gates were changed to call’¥®ntries fh r?tﬁy instead. This is
done to maintain the index data bases used by r1tty » and to notice when
these channels are connected and disa%nneetda. The following entries
were changed:

entry ' program ealled
hes_$tty index ritty_$tty_index
hes_$tty_order ‘r1tbyf$$%y order
net_$ncp_activate ritty_$ncp_activate
net_$ncp_connect oo ritty_$nep_connect
net._$nop. order : - ritty_$ncp_order ¢ o
netp_$priv_net_activate ‘ 'r‘t*t%y &priv mﬁ: actwate o
assertion_manager_:

This program manages forwarded authentieations. It does so by
maintaining a segment for each channel connected to the system containing

_ the forwarded authentications for that' oha#hél.” 'The format of these
segments 1s described by the assertion_seg data base. These segments are
kept in = the “directories”’ >aystem contioi 1>assértions>tty_seg, and
>system_control_1>assertionsdncp_seg, and are accessible only in ring 1.
There are three entries to assertion_manager_ for each function, one for
local channels, one for network channels, and one for privileged
manipulation of network channels.

assertion_manager_$tty_assert,

assertion_manager_$ncp_assert,

assertion_manager_$priv_net_assert:
These entries record forwarded authentications. They take as input the
name of a channel, the asserted user name, and an uninterpreted string of
"extra" information. They call entries in ritty_ to translate from the

Page 110 Appendix A

name of the channel to the index for the channel needed to determine the
state of the channel. The state i3 then obtained 1in order to insure that
the caller has access to the channel. and that the .channel is still
‘eonnected. If these conditions are met, the foruarded authentication,
along with ‘information identifying its author, - is . recorded in the
assertion_seg for the channel.

assertion_manager_$tty_read_assertions,

assertion_manager_$ncp_read_assertions,

assertion_manager_$priv_net_read _assertions; A
These entries extract the forwarded authentications for a ohannel They
take the name of* a channel, and convert and verify. it as. above. If the
channel 1s accessible, as many forwarded authentications as will fit in a
list supplied by the caller of assertion_manager_ are returned, along
with a count of the total number of forwarded authentications present.
If the verification of the speoified channel reyeals that the channel 1is
disconnected, the assertion_seg for. that channel .15 deleted, -and an error
code 1s returned .

assertion manager _$tty_delete_assertions,
assertion_manager_$ncp_delete_assertions,
assertion_manager_$priv_net_delete_. assertions:
These entry points delete the forwarded Jauthentications for a . channel.
They are provided to allow any program that detecta that such
authentications are no longer valid to delete them. The same
verification procedure is used as before, and the appropriate
assertion_seg 1s deleted. L

ritty_: o
This program serves two purposes. First, it maintains data bases to
translate between channel names and channel indices. Second, it notices
requests to connect thannels and calls assertion_pmanager_ to delete the
assertion_seg for any successful attempt. It maintains two data bases,
>system_control_1i>ncpxs, and >system_control 1>ttyxs, that are described
below.

ritty_$get_ttyx, ritty_$get_ncpx: ‘
These entries obtain the index for a channel name. If the named channel
is not known to the system, an index of 0, which is invalid, is returned.

ritty_sget_tty name, ritty_$get_socket_num:
These entries return the local channel name or network socket number of a
given index. If the index is invalid, an invalid name or 'socket number
is returned.

ritty_$tty_index,

ritty_g$ncp_activate,

ritty_$priv_net_activate:
These entries record the index asaigned to a channel name. They call the
supervisor to obtain the index. :

Appendix A Page 111

ritty_ntty_order, ritty $ncp_order, ritty_¢$ncp_connect:
These entries check for orders to eonnect _channels. If such an order is
made, the assertion seg for the ehannel is deleted by a call to
asseértion_manawer . -

Data Structures:
ncpxs, ttyxs:
These two data bases are used to maintain the 1ndex mapping. Each

contains a lock, a length, and a list of entries giving the name for each:
index currently im use.

assertion_seg: o

An assertion_seg 1s maintained for eacb ‘channel with forwarded
authentications. = Each asSertion_geg contaigs a lock, the number of
forwarded = authentications, ~‘followed by a 1list of forwarded
authenticatlions. Each forwarded authentlcation contains the following
information.

Time of recording of this authepticatidn;

Principal of the pecording procvess,

Process 1D of the recording pﬁocéSs.

Ring number of the recording process,

Authenticated user name,

Extra, uninberpreted information supplied by the author ‘of the forwarded
authenticationb

Page 112 Appendix A

Resource Control

Eiograms::h,"‘

user _process manager L

user~pnoccaa mgné

; user_process man;ggr ‘UDM_pequegt-f oA e

R I A L e T T

The current implementation of resource control ror Multics was adapted ;o
run ag...the.. resgurce eontro;lqguh of.;. ‘new, . impp] empotat on.
user_process_manager_ acts as the roaouroe eanirollor for the new
implementation. It calls on the resource esontrol programs of the old
implementation to perfornm specific resource oontrol fungt;gga* .,Some._ of
_ those . . programs ..are . briefly . desgriped . . this: :yaotion

usen_ﬁcnceag_ganasar ’ and ‘a1l of Xhe. gthar gggggggs e the. resource
controller make uge. gf a data@ggge &2ouz a8 the apaven., qb;e.1 is table
contains entries for each process éaaorihpﬂxﬁst ppoqeas s resource
limitations and allow the resource oontrollcr to obtdin ihe ‘resource
usage statistics for that process. In eddition, aogg\o: the programs
make use of the system, administrator s table . (SAT v. ;PRESER. nago table
(PNT), -and project éefinition table’ (PDT) lese data bases contain
resource control parameters for projects, ‘users, and specific
user. pgoject coub;nations. - : e .

N nit- o . B . ,
This entry inigﬁdffzas the reaounge ‘g;ppl “;t ga;;gutbg opprddnator
for process initiation to ‘establi itself’ as the resource control
process and to abort any process initiation attenpts in ppo;reas,

ey, T

This entfy point responds to a rédheat “t6 erog;p; a précess It
on other resource control programs to vurify that ;p@rg s an ;egqunt to
fund the progess. and to begin. acoqumgigg progpdur V% “afid_memory
usage by the new process. !%gntgallx,) hgbm“ij .1a§§9rpq,s eallgd to
finish the creation of the new proceas. IR

_user_process_manager. $upm_event:

l1g ctl_:

This entry point reaponds to events relevant }o n,prbﬂoﬂﬁ af@gr that
process has been created. It is invoked when messages are recieved from
a process’s trouble report event channel, which lqe:naaﬂ $9. report -

processes that. have; bpeome . damaged .or .have,;jlerginated. It is also
~ invoked _ when oth2 . resoyres, . 099t€9;;§r prograss “’gf » 1 tnrn;nate a
process. If the AIM rules allpw, vsep S, BANAERT. qrvar@g,qsasagas
that it recieves for a process to the trouqie report channel specified by
the creator of that process,

3w

This module locates the entries in the sar Pﬁ?* and PDT data bases that
apply to a particular process It applies &hp,;;q;t ound - in these
entries to determine whether o) gaga ‘ : a mgutlpn will
be ‘oreated. It alsc maintains a’ “base 111 processes. can read
that contains a 1ist of all currently executing processes. 1g ctl_ calls
load_ctl_ and act_ctl_ in order to insure that the proposed process will
_not overload the,. - system and. that it hqg.an,gagpun& tq,funq.its gru and

Appendix A MR e e Page 113

vxfi

memory usage. There are two entries to lg_ctl_: lg_ctl $upm in, which
is called by user_process_manager_ to check a process before it 1s
created, and 1g_ctl_$logout, which records the termination of a process.

load_ctl_: ' - AR
This ‘program limits the number of procésses on the system at any one
time. ERT S n ol

load_ctl $ldad ctl N ‘ AR ‘

"~ This entry point is called by 1g_pt1 ‘for each requést to create a
 process. It decides whether or not to allow” thé -new process to be
" created, and whether or not to pﬁeempt existing processes rar the

proposed new process.

' load etl’ $unload.
This entry point 15 ealled to record the terﬂihatien of a provcess.

act _ctl_: . ' s ’)
This program records the resource usage of all processes. The resource
usage information for a particular process is maintained in the PDT entry
corresponding to the person and project of" ﬁhaﬂ giecéééés Principal 1D,
There" are’ seveﬁal entry poiﬁts ‘to act cti

act_ctl_$check:
This entry point checks to see that a valid account exists for a proposed

process. It also checks that the accouut fbr a vrovosed process is not
yet out of funds.

act_ctl_$opén i accbunt. o ‘ o ' o
This entry point opens an account for ‘updates. It must be called before
account for a protess can be initiated.) .

act_ctl_$cp | . |
This entry point instruets act _ectl_ to begin monitoring the resource
usage of a process. St s e : !

‘aect_ctl $update. :
This entry point updates the resource usage statistics for all processes
being monitored. It is called’ periodicaily’ in ordar to keep reeords up
to date in’ the event ef a system failure L

act_ctl_g$dp: - '
This entry point informs act_ctl_ that a process has terminated and that
it should no longer monitor,that process.

~act_ctl_ $close account : s ‘ :
This entry ‘point closés an account and makes it unavailable for updates
until it is re-opened

- This program constructs the create_info and pitmsg structures for a
process. It fills in the resource control control items “in both

Page 114 . Appendix A

structures from information available in the answer table, SAT, PNT, -and
PDT entries for that process. .

Data Structures.

answer_table:
The answer_table contains one entry per proceag. and is used to record
information about that process. It also has a héader that contains
miscellaneous 4nformation and will not be described. Each answer table
entry contains the following infppmgpion. .

A state, that indicates whether the entry 1s free, in use by process
initiation, or used by a process that has already been created,

The sizes and locations of the linkage offset table, combined linkage
segment, and known segment table for this process,

The trouble‘réggr;‘eéept chabne;,

The process ID of the proceSs;

The time at which the request for this procésa was rqeeived,

Miscellaneous attribﬁtes of this process,] |

A pointer to the PDT entry for this process,

The scheduler work class for this process,

The person and project components for'this"pfocess;_‘ |

The name of the initial procedurg_fqr this process,

The time of the last acco&nting update of this process,

The CPU and memory usage of the prdcess up to thi“lhat“updaté;

The time to wait before preempting this pﬁoeéiﬁ“fbr‘anoéhbr;

SAT:

The SAT has a header that contains parameters used by load ctl_ to
determine how many users to allow on the system. In addition, it has one
entry per project that contains the following information: :

Project name, |

Pointer to PDT for that project,

Number of users authorized to use this project,

Maximum number of such users,

Appendix A « Page 115

Miscellaneous limlts on users of that project,
Default load_ctl_ parameters for processes from that project.

PNT‘ D
. The PNT is a 113t of 811’ of’the uiers who day s

 Multles. It has one
entry per user, that eontains ths_rol; “1qg An ‘

; {ﬁ;[cri.

AIM authorization for this user and all his proceases.”

5
LR

budlt f1ags for thig uper and his prosésses,
~ User name.

PDT:
There is one PDT data structure fqr Qgch prpjeot Each PDT contains
entries describing the users who may use “that project and charge to its
account. Each of these entries has the fg;%gging¢gggagtf

PR EEE TN G T S S N ooigs e e
RS L Ml T baee

Name of user,‘: ot
Number of processes that the uSerlgygpgqt;xwpgq%;;%J.dh
Miscellaneous limits on the uqqnigyprpqgggpg,} -

Limited initial oprocedure for uaer (Qﬁn bg ggngiried by the. project
administrator to 1limit the user s resource conanmption This does not

force the user to use that i al. praocedure, but deanies him the use of

the project unless he dbeaT’~v“q

Default home directory (used ohly 1f process creator dbesn t specify a home
directory), i . . i .

AIM authorizatien for user’'s processes, .

Summary of the resource usage of the user in the projsct. .

Page 116 ‘ Appendix A

Coordination.
Brograms:

proc_creat_: o BT
proc_creat_ is a gate used by the resource controller to call the
coordinator for process initiation. It 4is aocesaible only to valid
resource controller proceases. Below is a 1list of the entries to
proc_creat_ and the prograns that they call. s :

entry ' program called
proc_creat_$initialize : 1nitiatq‘prooabﬁgﬁininiai1ze :
proc_creat _$notify initiate_procesa_$notify
proc_creat_g$create inttiatg_prnnssa;ﬁﬂreate

initiate_process_:
initiate_process_ is the program that providea Qoorﬂination among ‘the
‘modules of process initiation. This-program assembles create_info and
pitmsg structures, to be used in creatisig & process, from data -supplied
by the domain changing mechanism, the -rescurce gontrgller, .and the
process that requested pracess initiation. There sre.four entry . points
to initiate_process_ that are described bedos. :

initiate_process_$initiate_process_: '
This entry point begins process initiation. I&. -ocan be called by any
process (through the dm_ gate) and takes three anguments: a. orsate_info
structure, a pitmsg structure, and the name. of -a domain_gate object. The
entry - point dm_$interpret_gate is called to determine whether or not the
calling process has "p" access to the gate:, and to extract: the Principal
ID and 1initial procedure from the gate. The supplied pitmsg and
create_info structures are then copied to a- protected .segment ' so . that
they - cannot be changed while the veaouppe‘controller decides whether or
not to allow fhe process to be created.. .Parameters from these structures
needed by fhe resource -controller ape . then placed in ..a pr.rqg . data
structure and sent to the resource ognﬁvo;ler k&hPOugh the use of the
Multics message_segment facility).
initiate_process_ then waits for a negsgge from the resource
controller, or a timeout. Because initiate_process_ executes in ring 1,
this effectively blocks the creating process until the resource
controller 1is - finished. This blocking reduces the chance that the
creating process will terminate before process initiation is complete.
(The implementation recovers from such an occurance, but it is unpleasant
and clearly undesirable.) The signal sent by the resource controller
contains an indication of the success or failure of the attempt ‘to
create a process. On receipt of the signal, initiate_process_ returns to
its caller. If the creation was successful, then the creating process
must send a signal to the created process in order to begin 1its
environment 1initialization. A new process 1s blocked until it receives
such a signal so that the creating process can pass resources (terminal
channels in particular) to the new process before environment
initialization is attempted. If the creating process does not send such

Appendix A ' Page 117

a signal, the resource controller will do so eventually to prevent the
new process from staying blocked indefinitely. initiate_process
maintains a l1ist of all pending process initiation in the pending_preates
data structure described below.

initiate process $create:

This entry point 13 called by the resouree controller to finish the
creation of an approved process. The arguments to this entry point are a
create_info structure, a pitmsg structure, and the 1index of a process
initiation request. The pitmsg and create_info structures supplied by
the creating process for the specified request are found and compared
with those supplied by the reésource controller. All of -the entries that
represent information supplied to theé resource controller in the pr_rg
message must match. This matohing 'is done to keep the resource
controller from becoming confused when requests are timed out by the
creating process, and because some of the resource controller programs
replace unacceptable parameters in a prooess creation request rather than
rejecting the request. The resource control attribtutes are then taken
from the resocurce controller’s pitmsg and create_ info data structures and
placed ‘in the structures copled from those‘supplied by the creating
process. lphcs_$create_proc is then omlled to ‘create the specified
process. If the creation is successful, then a sighal 4s sent to the
creating process. .

initiate_process_$notify:
This entry point 1is used by 'the resource - controller to abort an
unsatiasfactory nrequest for process initiation. It takes as arguments an
error code and a reguest index. The error ovode 1s signulled to' the
creating process for that reguest.

initiate_process_s$initialize:
This entry 1s -used by the resource dontroller to initialize process
initiation. It aborts all pending requests for processes and establishes
the calling process as the resdurce eontréller (so that the siznals will
be sent to the proper process).

Page 118 . Appendix A

Data Structures:
pending_creates:
The pending creates data base 1s used by 1nitiate_procees_ to keep track
of process creation requests that have been asignelled to the resource
controller and are awaiting approval. . - It has a header .that contains the
following information: ' :
A lock to prevent simultaneous access,
The process ID of the resource controller for signalling,
The next index to use for a brocess creation request,

The location of a directory in which to keep pitmsg structures.

pending_creates also has one entry per pending requeat These entries
contain the following information: :

A flag indicating whether or not this entry is in use,
The time at which thils request was made,
The index of this request,

An event channel to be used for signalling from the resource controller to
the creating process,

‘The process ID of the creating process,
A copy of the create_info structure supclied by the creating procesa with

attributes obtained from the domain_gate replacing the corresponding
attributes supplied by the creating process.

pr_rq:
This data structure 1s used to pass a request for prooess creation from
the creating process to the resource controller. ‘It ocontains the
following information:
The index of this request,

The trouble report channel specified by the creator (the resource controller
forwards trouble reports to this channel),

The process 1D of the creator,

Principal ID desired for the process,

Home directory for the process,

Appendix A ' » - Page 119

Initial procedure for the process,
Initial and highest ring numbers for the process,

Requested AIM authorization (minimum of authorization in the domain gate and
the authorization requested by the creating process.

Page 120 Appendix A

Te n Ha
rogr :

dialup_:
This. program oreates processes for uaeva uaing hhe TELHET protocoi of the
ARPA network to use Multics. It is. . dncluded . im ~this- ~desoription of
process initiation as an example of how the proceas 1nit1ation meehanism
can be used. . o

dialup_sattach: ' :
This entry causes dialup to use a network virtual terminal channel The,
number of such channels . in use at. .once determines the number: ' of
simultaneous TELNET connections that can be supported When a new TELNET
connection is made to Multies, one -of the: unuaeﬂ”virmual terminal
channels 1s selected to be used for that connection.

dialup_$dialup_: '

This entry point is called uhenever a. 0ixn&fiennt ‘event: occurs for a
terminal channel. dialup_ sends a greeting message to newly connected
channels, and waits for a response. The response is:parsed:. as ia -login
line and the name of a gate to be used to create a process is determined
from that line. Additional information-in:the login line:is used to:fill
in create_info and pitmsg structures for a process. dm_$make_process 1s
called to create a process, and if suecessful, control of the virtual
terminal 1s granted to the new process before the new process 1is
awakened. - :

dialup_$process_event: :

This entry point 1is called when a message is received from the trouble
report channel of a process created by dialup_. One of four possible
actions 1s taken, depending on the contents of that message. The
terminal channel can be hung up (if the proceas terminated voluntarily)
Another process can be created for that terminal (if the message
indicates that the previous process was damaged). A new greeting message
can be printed and a new login line accepted. Or, an error message can
be sent to the virtual terminal, if the trouble report ‘message indicates
some error, or 1s invalid.

Appendix A _ | , : Page 121

Data Structures:
ntbl: ‘
This structure is used internally by dialup_ to keep track of the virtual
terminal chamnels gurrently :in use. B« éhasf‘one**encry for each such
channel sthich enntains'ehe,foalouins intdﬁhat&dn
Terminal name (of the form netxxx).
Terminal state (dﬁalup expected login 11ne expected, or hangup expected)
>Pmcefsa state (na process, pvaeew being Gﬂat’w m'bcess txecuting), v
k~Event chamrel t‘or- 'cermiml channal eveﬁta, :
Trouble report channel for process,_ |
- Error code for operatim per’!'bﬂ:ed for- %Ma d‘mmal,?-_ B
" Index for this. euannel,k e
bPerson and Projnct fqn this ehannel,

' Home ¢ directory'(taken from 1ogan 11ne), Len

Gate name.

Page 122 .) Appendix A

References

[An74] Andrews, G. R., "COPS - A Protection Mechanism for Computer Systems,"
Computer Sci. Teaching Lab., Univ. pf‘wggh&,‘$echniqa1 Rgnpnt;73e07-12n
oy e, F Ny SecintenR : :

[Be73] Bell, D.E., and L.J. LaPadula, "Secure Computer Systema. A Mathemanieal
: Model," The MITRE CorpOration MTR-ZBH?. !bl i, Houember. 1973 '

[Br?S] Bratt R G., "Minimizing the Naming Facilities Requiring Protection in
a Computer Utility," M.I.T. Project MAC .Technioal Report, TR-156., 1975.

[(BH70] Brinch Hansen, P., "The Nucleus Uf“ a Hultiprogramming System "
Communications of the ACM 13, 4 (April 1970) pp..238-241.

[D168]) Dijkstra, E. W., "The Structure of the 1HE Hultiprogramming System._
Compunications of the ACM 11, 5 (May 1968), pp. 341-346.

(Hu76] Huber, A. R, "A Multi-process Implementation af‘a Pnging System, S
" Thesis, M.I.T. Department of Electriecal’ Engfheering and’ Computer- Scienee.
June 1976.

[{JaT4] Janson, P. A., "Removing the Dynamic Linker from the Security Kernel of
a Computer Utility," M.I.T. Project MAC Technical Report, TR-132, 1974.

[JoT73] Jones, A. K., "Protection in Programmed Systems;" Ph.D. Theslis,
Carnegie-Mellon University, 1973. -

[Ka76] Kanodia, R.K., and D.P. Reed, "Eventcounts: A New Model for Process
Synchronization," (to be published).

[Ke76] Kent, S. T., ”Encryption-Based Protection Protocols for Interactive
User-Computer Communication over Physically Unsecured Channels,” S.M.
Thesis, M.I.T. Department of Electrical Engineering and Computer Science,
June 1976.

[(La69] Lampson, B. W., "Dynamic Protection Structures," AFIPS Conference
Proceedings 35, (1969 Fall Joint Computer Conference,) pp. 27- 38.

{La73] Lampson, B. W., "A Note on the Confinement Problem." _ggmg_;_g_lggg of
the ACM 16, 10 (Oct 1973), 613-615. ' :

[LaTi] Lampson B. W., "Protection," QOperating Systems gxig 8, 1 (Jan, 1974)
pp. 18-24, '

[Or72] Organick, E. I., The Multics System: Aam_im.ﬁmgz Its Structure,
M.I.T. Press, Cambridge, Mass, 1972. :

‘[Re76] Reed, D. P., "Processor Multiplexing in a Layered Operatihg System,"
S.M. Thesis, M.I.T. Department of Electrical Engineering and Computer
Science, June 1976. : ‘ '

References _ Page 123

[Ro74] Rotenberg, L. J., "Making Computers Keep Secrets," M.I.T. Project MAC
Technical Report TR-115, 1974. P :

[8072] Schroeder, M. D., "Cooperation of Mutually Siuspicious Subsystems in a
Computer Utility," M.I.T. Project MAC Technical Report, TR-104, 1972.

{Se75] Schroeder, M. D., "Engineering a Seeurity Kernel for Multics,

Provesdings, Eifth W on mmmmm;ss. November
1975, pp. 25-32.

[Sh75] Saltzer J. H. and M. D. Schroeder. *"The Protection of Informption in

Computer8 Systems, " _gggggg;ngg of, ;ng ;§§§‘§3. 9. (September 1975) pp.
1278-130

[Ha?3] Walker R. D, H. "The Structure of a Well Protectgd Computer " Ph.D.
Thesis, Univerﬁity of Cambridge, 1973 o

{(We69] Welssman C. "Security antrols in. the ADEPT-50. ITime-sharing System.”
- - gonfers T ok g 35, (1869 Fall Joint. Computer Conference)

Page 124 References

CS-TR Scanning Project
Document Contro!l Form Date: X/) 143

Report # (<5 -th-(67

Each of the following should be identified by a checkmark:
Originating Department:

U Artificial Intellegence Laboratory (Al)
K Laboratory for Computer Science (LCS)

Document Type:

KTechniwl Report (TR) [J Technical Memo (TM)
0O other:

Document Information Number of pages: /34 (12 ~/na)
“ Notto include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
& Double-sided . Double-sided
Print type:
Typewriter [] offsetPress [] Laser Print
(] inkJetPrinter] Unknown [0 other:

Check each if included with document;

O pob Form O Funding Agent Form O coverPage
O spine E\Pn'nters Notes O Photo negatives
O other:

Page Data:

Blank PagesSy sage mmben:

Photographs/Tonal Material oy pege numbeq:

Other (v descriptonpage numbed:
Description : Page Number:

LTmaGE AP [1- 13) unlse TITLE ener | 3~ 13y
(125 129) S aneantnal o STards mincs, TREVS(7)

Scanning Agent Signoff:
Date Received: /) / 95 Date Scanned: 117495 pateReturned: _{ /1% /96

Scanning Agent Signature: W N C’“&» N o cabtorm e

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.LT
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darpirgt.wpw Rev. 9/94

