
SllMlfllG, •
••••• u:

ltf•nlu·9'l1.·

2

Semantics of Communicating Parallel Processes

by

Irene Greif

Submitted to the Department of Electrical Engineering and Computer
Sciences on August 26, 1975 iii partial fulfillment of the requirements for
the Degree of Doctor of Philosophy.

Abstract

The thesis of this dissertation is that an understanding of the ordering constraints that
are introduced among events of parallel processes is essential to the understanding of
synchronization and that therefore any language for specifying synchronization of parallel
processes should be based on a theory of such orderings. While it is possible to write
specif 1cations for systems of communicating parallel processes by reference to the time ordering of
some global clock external to the system, such specifications cannot be as useful as ones which are
in terms of orderings derivable within the system. Specifications should place constraints on
intended behavior of the computer system itself rather than on the possible observations of the
system's behaviors from some global viewpoint which may in fact be totally unrealizable.

The dissertation is a development of a specification languag·e. It is based on a model of
computation in which an individual process is represented by a totally ordered set of events.
Synchronization properties of systems of independent processes are guarantees that in fact the set
of events in the system can be ordered by a partial order which properly contains the union of
the processes' total orders. This system ordering can be caused by the presence in a system of
side-effect primitives or of synchronization primitives. Thus this model applies equally well both
to busywaiting synchronization based on coordinated use of storage cells by independent processes
and to non-busywaiting synchronization such as that induced by semaphores and structured
synchronization primitives. In addition to applying to a range of types of synchronization, the
specification language is also used to define a programming language. The meaning of a
program is the specification of the behavior of the system into which that program is compiled.
Specifications can be written for synchronization problems and for their implementations in terms
of various primitives.

Thesis Supervisor: Carl Hewitt

Ti tie: Assistant Professor of Electrical Engineering and Computer Science

~~·.1t~.?=~~J~~<'l,'\)l':•11i!~-~--JJ:lfl,,~~J •• J'l.ll~ll•!IQLJU$JJ.J ,,Jg,,fJJJ11f91~U2£!h¥.#iP)i X;tBJQ. :;:;.s•~,ll!~!J!!'
I . ' ·, ' ;· ' .. ;.t> '

'

.{:;(7!-wlil
. /'Kn·,~~.

. , ; ~-~L:!.f:UF1f§;"'O~)
;mtt))S't5i>.d£' iih'>O :;rr1 ..

:1.,.~-~,rJ 1v
" . ~ iOfli\, ~;~ ~.-·.L

¥>H~1;). 'k1 ~it(J.tJ~-.::\fi,b~.q~~
r.,,o :nb ~ro noi1rn1 ,::;,,

~f!Ot!~,~ '

"'jft) ! --r :-;· <. .~
-~Q~~ OOLtij·:. ;0·1t~~fi l·,

b~~ ~~~,r,;,tii'(J :~~~~/'1:.!~:i11~:·:;_,,~:;;;,~~
,;:.~.

"' ~

Contents

Abstract .. 2

Ack now ledgemen ts .. 3

Contents .. 4

1 Introduction .. 8
I.I Physical Constraints on Computer Systems . 6
1.2 Choosing a Model .. 8
1.3 Specifications .. 9
l.i Relation to Programming Language Semantics and Alternative Models 12
1.5 Informal Specifications . 16
1.6 Presentation ... 17

2 A Model of Computation 19
2.1 Actors . 19
2.2 Behaviors .. 20
2.3 Continuations ... 22
2.i The Data Abstraction . 23
2.5 Level of Detail .. 2i
2.6 Specifications of Actors ... 26
2.7 Time Orderings . 31

3 Specifications of Cells .. 34
3.1 A Definition of the Cell . 34
3.2 The Causal Relations Induced by Cells . iO
3.3 Uses of Cells . 42
3.4 The Orderings .. 46

4 Synchronization ... 48
i.I Mutual Exclusion as a Time Ordering Specification 48
4.2 A Synchronization Actor . 50
4.3 Properties of Protected Data Base ... 53
4.i Synchronizing Axioms, Causality, and Partial Orders 55

5 Comparing Problem and Solution Specifications 58
5.1 Re-interpreting Protected·date·base .. 58
5.2 The Problems of Reading and Writing in a Data Base. 63
5.3 Writer Priority Specifications ... 71
5.i Properties of the Solution Specification . 76

5

5.5 Kinds of Specifications . 79

8 Comparing Solution and Program Specifications 81
6.l How to Realize Synchronization Solution Specifications . 81
6.2 A Monitor-like Actor ... 83
6.3 A Program for Writers Priority . 87
6.4 Properties of a Proof of Correctness ... 93
6.5 The Monitor as Structured Synchronization.................................. 96

7 Unstructured Synchronization 99
7.l A Definition of the Semaphore ... 99
7.2 The Semaphore Implementation of Protected Data Base . 107
7.3 An Unfair Semaphore .. 110
7.i Using Unfair Semaphores. 112
7.5 Unstructured Synchronization .. 114

8 Using Unfair Synchronization 115
8.l The Original Problem .. 115
8.2 The Courtois, Heymans, and Parnas Program . 118
8.3 An Alternative Interpretation .. 121
8.4 Relative Power of Unfair Primitives .. 123
8.5 A Power Difference . 126
8.6 Properties in Run-time Environment .. 129

9 Busywaiting Synchronization 132
9.1 The Structure of the Dijkstra Solution . 133
9.2 A Proof of Properties of the Dijkstra Solution 136
9.3 The Knuth Solution . 143
9.4 A Proof of Properties of the Knuth Solution . 145
9.5 High Level Properties of Busywaiting Solutions...... 148

10 Conclusions and Future Research 150
10.1 Time Ordering Specifications . 150
10.2 Why Specifications .. 154
10.3 Future Research . 157

Bibliography... 159

6

1 Introduction

The thesis of this dissertation is that an understanding of the ordering constraints that

are introduced among events of parallel processes is essential to the understanding of

synchronization and that therefore any language for specifying synchronization of parallel

processes should be based on a theory of such orderings. While it is possible to write

specifications for systems of communicating parallel processes by reference to the time ordering of

some global clock external to the system, such specifications cannot be as useful as ones which are

in terms of ordering derivable within the system. Specifications should place constraints on

intended behavior of the computer system itself rather than on the possible observations of the

system's behavior from some global viewpoint which may in fact be totally unrealizable.

In this chapter we describe the goals of our research. As the goals are outlined, they

will be contrasted with those of related work in semantics of programming languages and parallel

processes. We will explain why the underlying semantics of communicating parallel processes has

not been well represented in previous theories as well as our reasons for chasing the model on

which this research is based. Our theory of semantics is developed to be the basis for a

specif 1cations language. Therefore we include some discussion of what specifications are and

how this work will differ from certain other work in semantics and verification. The chapter

concludes with an outline of this document.

1.1 Physical Constraints on Computer Systems

Our theory of parallel processing. based on the mathematics of partial orders, can have

7

as its model any kind of parallel processing system. The kind of computer systems from which

we have learned the most about underlying semantic concepts are multi-processor systems and

computer networks. This is because they expose the importance of a part of the thesis of this

dissertation which is that unmotivated assumption of global constraints should be avoided in

describing computer systems. In timesharing on a single processor, since at some level of detail

there really is only pseudo-parallelism, global views may be meaningful for representing certain

properties of that system. By contrast, multi-processor systems, particularly distributed multi

processor systems on networks.I do not fit a global state theory as well. In fact, we will claim that

part of the difficulty that has been encountered in formalizing properties of these systems arises

from just this mismatch between the global state assumptions and the actual time and distance

constraints in computer configurations. For most purposes, interesting relations among

independent parts of a computer system must be realized in terms of some physical connection

between them. It is reasonable to write prescriptive specifications relating operations on

computers in, say, San Francisco and New York, if it is understood that some communication will

have to take place to enforce it. It is not reasonable to describe an existing system in such a

manner unless means for such communication exists.

Partial orders are appropriate for characterization of computer systems since, using

them, orderings that must exist among certain operations can be expressed without the

hypothesizing of total orders over all operations. Some operations may not be related due, for

instance, to lack of physical connection between the processors on which they occur. Other

operations, while they can be ordered as they occur, will in fact occur in unpredictable orders each

time the computer system is run. Even though quantifying over all possible orders of operations

in all parts of a system may in some sense be guaranteed to capture all possible properties, it can

in fact obscure the important properties. The important properties will generally be the

1 Or even timesharing systems at the level of abstraction at which users generally deal with them.

8

properties of ordering relations which are common to all of the postulated total orders. Such

common properties should be abstracted from the set of all possible total orders and expressed

directly, as a partial order.

1.2 Choosing a Mode!

The actor model of computation on which this specification language is based, has

several properties which relate well to the physical realities of parallel processing. A single

sequential process is represented by a totally ordered set of events. Systems of parallel processes

are represented by partially ordered sets or events. These ordered sets of events are the behaviors

of systems.

Events represent the receiving of a message by an actor. The event of receiving a

message is dissociated from both the act of sending and the sender. This a voids the relativistic

difficulties that can result from identifying time of sending a message with time of its arrival at

its destination. This will be important to the physical reality of the ordering relations specified

for actor systems, and will have implications for the realizability of specifications and visibility of

properties of systems. For instance, the fact that messages can be guaranteed to be sent in one

order does not in general imply anything about the order in which those messages can be

expected to arrive at their destinations. In real computer systems the speed at which the messages

travel wou Id be a factor. In the actor model that factor cannot be relied on, making it impossible

to write specifications for systems which could be realizable only in limited kinds of environments

(e.g. on particular computer configurations.)

Individual actors are specified by causal axioms which are properties that will hold for

any behavior of any actor system of which the particular actor is a part. They specify relations

among events. These relations are then the properties of the behaviors as partial orders.

9

Besides the sound foundation for a partial order theory of parallel processing, the actor

model has properties that are compatible with additional requirements that must be met for

development of a specification language. The message passing metaphor together with the

uniformity of objects in an actor system (all objects are actors) will be useful for treating objects

as "black boxes" for purposes of definition of externally visible properties of systems. Also, when

it is necessary to specify implementation approaches or program, we will rely on another f ea tu re

of actor systems, namely, the flexibility of level of detail of descriptions of behaviors. Behaviors,

being partially ordered sets of events, can be described at any level of detail. System properties

are properties which at some particular level of detail are common to all behaviors.

1.3 Specifications

The results of the behavioral and causal semantics will be a language for writing

specif 1cations for communicating parallel processes. We will be emphasizing uses of specifications

for aiding in the problem solving and programming process, etc. but will not treat derivation of

specifications from programs, automatic generation of intermediate assertions, or formulation of

proof rules for automatic verification. By the writing of simple high level specifications for

commonly used terms in synchronization we will illustrate the compatibility of a specifications

language about time orderings to our intuitions about systems. Fuller causal axioms of actor

systems, specifying how they can affect behaviors of systems of which they are a part, will be

shown to relate to important physical properties of computer systems and to determine their

realizability. By ordinary reasoning, causal specifications of programs or program parts can often

be shown to realize high level specifications. Capturing the meaning of parallelism will not

necessarily require the specif icatlons of full details of programs. However, given such details, we

can prove compatibility with high level specifications to show relative correctness. Consistency of

10

specifications can also be investigated largely by relying on information about orderings.

Synchronization can be described independently of programming language properties [Hoare,

1972], or implementation details [Milner, 1973] about systems.

In addition to the general need to accurately communicate both the desired properties

of computer systems to be built (prescriptive specifications) and the actual properties of existing

systems (as documentation, description, etc.), the main reason for wanting formal specifications is

that they will then allow formal reasoning. In this area our objectives are somewhat different

from those of others.

There has been a growing demand for the ability to prove "correctness" of programs

which has led to very close ties between language definition and "proof rules" for correctness,

leaving expression of program meaning implicit in or entirely separated from the effort to

represent the language semantics. For example, using Floyd or Hoare type assertional semantics

[Floyd, 1967; Hoare, 1969), one defines a programming language by defining how its primitives

relate assertions that are made about the programs' meanings. The language for the assertions,

generally predicate calculus, is not the subject of verification research. Instead the effort

concentrates on formulation of rules for going from assertions about a program to a theorem (or

group of theorems) that must be true if the program is correct (relative to the original assertion).

The rules are based on blind passing of assertions across statements, with structure of the

program being considered only implicitly as the transformations on the assertions are made.I

Similarly, semantics based on mathematical approaches rests on relating programs to

functions about which formal reasoning e.g. in Milner's LCF [1972), can be done to compare

programs or to compare programs and descriptions of the functions they are to realize. Once the

semantics are given, reasoning can proceed mechanically and be left to an automatic verifier.

This is cited as an important part of the goal since, to quote Cadiou and Levy [1973), " Proofs

carried out manually are probably just as likely to contain bugs as the original code."

1 Note that proof rules do not tell you how to prove this theorem but rather how to find it.

11

Milner [1972) and Bekic [1971) also consider well-defined rules of composition as essential

to semantics. For functions this seems to be an appropriate goal since the resulting object is also

a function. However, in order to extend this to parallelism, one apparently must restrict oneself to

very detailed, low level description. There are times when full details of composition of programs

in parallel (represented as all possible interleavings of steps in each program) should be

examined. However, this should not be the only representation of the parallel programs available

in the formalism.

The goals of our research differ somewhat from the above in that we do not

particularly intend that automatic verification be relied on for proving unduly long or unintuitive

theorems. We are not even convinced that given formal descriptions of all parts of a complex

system we automatically have a satisfactory description of their behavior as a whole. We wish to

concentrate on the counterpart of the assertion language in the Floyd proofs to be sure that the

language is well-suited for expressing the concepts on which the "meanings" of our systems are to

rest. We would like to be able to talk about such meanings in varying amounts of detail and with

some hope of being able to relate mo.re detailed specifications to the high level goals expressed in

the less detailed specifications. However, we will not expect the task of doing such reasoning to

be in any sense mechanical. Neither will we require that it be any more precise than the usual

mathematical logic.I One reason for this is that we do not believe that proofs should be carried

out by machine in a form which is incompatible with natural human reasoning. While oor

arguments will not be trivially mechanizable, they hopefully will be understandable. Whatever

progress is made in mechanizing mathematical reasoning can be put to use in an interactive

system where programmer and "understander" work together in analyzing programs, only if the

formalism is understandable to the programmer.

1 Most proofs will be about properties of partial orders. We will rely on ordinary mathematical
reasoning to prove them. This may be in contrast to what has come to be understood in
verification work as formal, namely, checkable by machine.

12

Thus we will be developing a language for talking about meanings of systems of

communicating parallel processes. In addition, by reference to interactions among parts of systems

the causality involved can be captured. A rule for composition by interleaving all events is clearly

available. Means for comparing high level synchronization specifications to properties which can

be guaranteed to hold by causal properties of components will generally prove more important in

programming and in analysis, since it relates abstractions to details. We do not expect the

abstractions to be an automatic result of composition.

There has been some previous work on specifications. One effort is the work of

Robinson and Holt [1975]. It relies on the notion of state described by an invariant on variables.

Our reasons for preferring the behavioral approach are discussed in Chapter 6.

The work of Parnas [1972, 1975) on system modules is also meant as a specification

language without consideration of proof techniques. It emphasizes what we refer to as external

specifications, namely specifications of externally observable properties independent of such

internal specifications as particular algorithm used for implementation or full implementation

details. Internal definitions become more difficult to understand once side-effects as meaning are

introduced. Most people know how to use functional abstraction to deal with side-effect-free

function definition by algorithm (an internal definition saying how to compute the definition). It

is less obvious how to extract the right side-effect or synchronization properties from a

description of an implementation. Therefore techniques for external definition may become more

important.

1.4 Relation to Programming Language Semantics and Alternative Models

As long as programs are written for computers, programming language semantics will

remain a subject of interest and importance. Specifications of binding, scope, environments and

13

closures constitute a large part of this subject. For certain kinds of programs, the mapping of

programs and parts of programs onto functions, and the realization of a semantics with a well

def ined rule of composition (see (Bekic, 1971; Milner, 1973)) is important. However, as interest in

implementing programs on multi-processor computer systems increases it also becomes important

for formal semantics to extend to programming languages which include primitives for parallel

processing. As Milner (1973) has pointed out, when programs with side-effects include primitives

for parallelism, specifications of program meaning must sometimes include more details than

input/output specifications. For programming languages with primitives for parallelism and side

effects, 1/0 relations alone no longer fully describe a program. Two programs with identical 1/0

specifications might have quite different "meanings" as components of a system of parallel

programs, depending on what side-effects they cause while computing output. In fact, it may be

that the program is actually being used because of its side-effect and the effect that it can have

on the computations of other programs. The 1/0 relation then becomes less interesting than the

spe~ification of these side-effects.

Our view is that, in order to write specifications for languages with side-effects and

parallelism semantics of programming languages must reflect semantics of communicating parallel

processes. Programs that are meant to be run in parallel should be analyzed in terms that apply

to the most general multi-processing environment in which it could run, rather than by artificial

mappings onto other formal objects such as functions which may bear no relation to the physical

realities of communicating parallel processes. In developing our specification language we will

emphasize development of terminology for direct expression of communication among parallel

processes rather than programming language issues. When a programming language is formally

defined it will be in terms compatible with specifications of parallelism. This will produce no

new results for applicative parts of languages, but wilt allow direct reliance on the theory of

parallel processing in describing imperative, synchronization and parallelism primitives of the

11:

language. This approach is a deliberate departure from chat of modifying or extending previous

work on semantics of sequential programming languages co apply to additional primitives for

side-effects and parallelism.

For instance, representations of one side-effect primitive, a cell of read/write storage in

a single processor system, when extended co multi-processing environments, can result in a limited

representation of a cell's possible uses. Burstall [1972) has proven the correctness of a program for

reversing a list. The list is implemented by pointers and cells. In the style of Floyd [1967], he

places assertions on programs. His assertions maintain a description of storage cells and pointers

with their interpretations as lists. Changes in pointers (values of cells) can be reflected in this

description. By tracing pointers from list names one can see the overall result of any single

change in value of a pointer. Thus this is a model based on the assumption that there can be a

complete description of the state of memory at all times.

Using this approach for parallel processing requires the recording of several possible

descriptions -- one for each possible interleaving of the steps of each process. This has the

problem of causing a combinatorial explosion in the amount of information that has to be

available co specify the meaning of a parallel processing system. Also, it may not represent clearly

which information is important to the behavior and which is not. Some changes to storage are

important enough to~ further changes in the behaviors of other processes.

Similarly, the extension of mathematical semantics to parallelism, as in Milner [1973),

represents parallel composition of processes by the set of all possible interleaving of steps of all

the processes. This notion of the meaning· of two programs run in parallel can capture some

aspects of non-determinism. However, since the only expression of the meaning of parallel

programs is in the set of all detailed histories, it is difficult to abstract a property which holds for

all those histories. In general, if a system has interesting properties, they will take the form of

simpler properties true of all the histories. They may not be at all obvious in the details of

15

interactions. This is true even if the details must occasionally be examined to prove that the

common properties hold.

M ilner's approach also has the property that further uninteresting details must always

be included to specify how the interleaving is to be accomplished. Parallel processes are run in

pseudo-parallel in accordance with oracles which are infinite strings of "process names." Each

time the oracle is questioned (examined) it designates the next process to be run. Only fair

oracles should be consulted (where fair oracles are ones that always give each process another

chance in the future). If new processes are created, the creation of a new oracle which includes

the new process will have to be done explicitly.I As a result, while the method can be used to

state and prove properties of busywaiting synchronization programs [Cadiou and Levy, 1973),

there is no means for expressing synchronization without details of busywaiting. We consider it

to be important that a theory of parallel processing encompass both busywaiting and forms of

synchronization without busywaiting as in systems built from semaphores.

The main approach to parallelism not mentioned so far is Petri nets.2 While they may

afford some insight into causality by graphic representation of interconnections, we contend chat

the understanding of those interactions is founded on the same notions of ordering and causality

as are used here. Particularly since there is no obvious means for increasing or decreasing

amount of detail shown in a net, it may be convenient to make any abstractions about high level

properties of nets in statements in another language such as ours. What is more, many

usumptions about physics implicit in the Petri net model make it impossible to describe certam

things (and perhaps make it too easy to describe possible unrealizable things). A particularly

1 Milner expects that extensions of the work of Scott [1972] (on which Milner's approach is based)
to relations will eliminate the need for oracles, but the currently available papers report only the
work which depends on the oracle.

2 One source of references on Petri nets, as well as a short discussion is an Appendix of
Tsichritzis [1974).

16

notable limitation is the inability to refer to cells of storage (other than those with complex

indivisible access operations, namely semaphores) which in fact can play a role in synchronization.

Although a model which rests entirely on busywaiting for expression of synchronization was the

object of criticism above, the alternative of not being able to express busywaiting at all is clearly

not acceptable, since busywaiting does arise and must be dealt with at some level of detail in

many computer systems.

1.5 Informal Specifications

The area we are moving into, systems of communicating parallel processes, has certainly

not been at a standstill due to lack of a formal specification language. On the contrary, many

problems have been posed and solved. Some have even been proved "correct" relative to

informally stated specifications.I

Thus part of our task will be to sort out these informal specifications and to see

whether we can make acceptable formal statements of their meanings.2 This will lead to some

further discussion of exactly what limits our choice of model may have placed on the kinds of

properties that can be specified. We do not write specifications based on speed of machines,

relative ordering of arbitrary (possibly unrelatable) occurrences, or relative speeds of

implementation. The kinds of properties that can be stated are properties which, if they hold,

hold independent of how processors run or where they are located. We will see that informal

specifications often confuse such specifications with properties that cannot be invariant over

implementations. While both can be of importance, they require separate formulation. This is

1 Even if primitives in programs are specified formally as in Haberman, [1970], the specifications
of problems are so closely related to the primitives used in the solution that they could scarcely be
called problem specifications.

2 Clearly this is the best we can do since no precise statement was made previously.

17

analogous to semantics of prognmming languages. Programming languages and therefore the

programs written in them are generally considered to have some meaning independent of specific

compiler used. Compiler dependent properties may also be important and in fact programmers

often rely on them. Thus it may be important to be able to express those properties. However,

unless the nature of these properties, i.e. compiler dependent, is made explicit, a program can be

proved correct and then when used in a different environment (e.g. compiled by a different

compiler) have incorrect behavior. We are carefully making the same kind of distinction in

starting to write specifications of parallelism and are concentrating our first effort on

environment invariant properties.

1.6 Presentation

Chapter 2 is an introduction to the actor model of computation and the definitions of

many of the terms which will be used in the following chapters. Chapter 3 contains

specifications of a side-effect actor, the cell, and an example of how the cell can be used for

communication of time ordering information between two processes. An example of another kind

of actor which can affect time ordering is presented in Chapter 4 along with high level

specifications of a commonly required kind of synchronization, mutual exclusion. At the end of

Chapter 4 there is a review of the uses that have been made of partial orders to that point.

Chapters 5 and 6, through the example of the readers/writers problem, illustrate the

different kinds of specifications one might encounter in analyzing a single problem. They range

from high level problem specifications to detailed program specifications. The program in

Chapter 6 is written in terms of a so-called structured synchronization primitive, and therefore its

presentation is followed by some discussion of what structure this might refer to.

Chapter 7 contains definitions of two kinds of semaphores. Examples of

18

implementations of synchronization actors using semaphores are used to relate the structures of

problems (as described in earlier chapters) to structures of programs. In Chapter 8 we consider

the adequacy of the the completeness of specifications of programs and primitives on which

judgements about power of primitives rest. It also brings us to recognition of areas for related

future research into specifications of run-time environment dependent properties of

synchronization.

Chapter 9 is a return to the subject of cells for synchronization using busywaiting. It

contains proofs of properties of two previously published programs by Dijkstra and Knuth.

While it is important that there be a format definition of a language for formal

arguments about programs which are implementations of specifications, for the most part, in this

dissertation, the formal language definition serves only the function of formality and will add no

insight into parallel processing. Examples will be written in an Algol-like language. Reasoning

about those programs will rely on informal definition for all primitives except variables (cells)

and synchronization primitives. We hope that this use of familiar programming notation will

ease the reading without suggesting inappropriate models of computation.

19

2 A Model of Computation

The properties of computer systems which interest us are easily formalized in the actor

model of computation. The model is presented in this chapter with references to the sources of

the concepts on which it is built and explanation of their importance for the purposes of this

research. The fin al section is a preview of the way in which the thesis research builds on the

actor model to develop a specification language for systems of communicating parallel processes.

2.1 Actors

All objects are called actors. In general, collections of actors will be used to represent

computers systems. Such collections are actor systems. We will often refer to an actor system as

an actor since at some level of abstraction a collection of actors is a single object. Activity in an

actor system is in the form of one actor being sent to another actor. The sources of energy for

these transmissions are referred to as activators and correspond roughly to processes. Any group

of actors can be referred to as an actor system. An actor system can have arbitrarily many

activators providing energy for the transmissions.

An actor can be thought of as a script to be followed by an activator. The basic

activity described in a script is the passing of one actor (the transmitted actor) to another (the

target). The activator does this and then follows the script of the target, with information from

the transmitted actor available. By virtue of the fact that a script can call for transmissions

among other actors, it is clear that an actor also implicitly "knows about" other actors. The actors

in any actor system may know about other actors in the system and about other actors not in the

system.

20

Activators are assumed for our purposes to be unlimited sources of energy. Thus we

will always be in a multi-process world in which no scheduling of processes onto a smaller

number of processors has to be done. The advantage of this property of the model for our

purposes is that it will eliminate the possibility of depending on properties such as the number of

processes in specifications or in proofs of properties of specif ications.1

2.2 Behaviors

An actor system is characterized by its behavior where a behavior consists of the events

that take place and the causal relations among those events. All events in any actor system are

transmissions of an actor to a target actor by an activator. These events can be characterized as

follows:

Definition: An event is a four-tuple, <t m a ec>, where t is a target actor, m is the
transmitted actor, a is an activator, and ec is an integer called the event count.

The event count is required in order to distinguish among sets of events of one activator which

involve identical actors. The events of a single activator can be considered to be totally ordered.

Therefore such events are distinguished by their places in the total order of events of the

activator a and are represented by events <t ma ecp and <t ma ec2> where eel I ec2. What is

more, if there are two events <t 1 m1 a ec> and <t2 m2 a ec> then t1 • t2 and m1 • m2. I.e. there

cannot be two different events in the same place in the order of a single actor.

If ec l < ec 2 then <t m a ec 1> --> <t m a ec2>. The ordering --> is ref erred to as the

activator ordering. At a particular level of detail the count after ec is ec'.2 Thus when two events

occur successively (with no intervening events at a particular level of detail) they are represented

1 Such dependencies can exist and may be relied on, but they are not in the scope of this research.

2 Occasionally, when several sequential events are referred to, the number of primes will be used
so that ec"' is represented by ec< 4 >.

21

by <t1 m1 a ec> --> <t2 m2 11 ec'>. The event <t 1 m1 111 ec> is said to be an event of activator a1.

If E1 and E2 are of activators a 1 and 112, respectively, where a 1 ;t a 2, then E1 and E2 are events

of different activators. Since any set of events in a is totally ordered by -->, we can define the

past of the activator 11 with respect to an event E with event count ec to be the totally ordered

subset of those events with ec 1 < ec. Similarly, the future can be defined for any E. These terms

can be applied to any totally ordered set of events.

Activators and/or actors can be "created in events." If <t m a ec> is an event in which

«1 is created, then <t ma ec> --> <t 1 m1 a1 ecp for all t1, m1, ecr Details of how the activator is

created are not dealt with in this model.I An example of a target actor which can cause creation

of an activator is a fork actor which creates new processes. Section 2.6 contains specifications

for such an actor.

There is similar lack of detail about creation of an actor. It can best be understood by

analogy with the closure in programming languages. Interpreting code for a lambda expression

((>.(x) (>.(y) (...))) g) involves binding x to g and using the closure of (>.(y) (...)) with that

binding in future computation. Similarly, a target actor's script can contain an actor-creating

script, analogous to (>.(x} (My} (... }}}, but the creation of the closure actor cannot occur until the

target actor is sent a message to which it can bind variables. The target actor can create a

different closure for every message it receives.

Activator orderings for all the activators form a partial order on all events in a system.

The same symbol --> is used to denote the transitive closure of the union of the total orderings

for each individual activator and the relations between events of different activators due to

creation of an activator. It is still referred to as the activator ordering. A behavior is a set of

events partially ordered by -->. For an actor system, a set of n initial events with targets in the

1 Thus in an implementation of a computer system that corresponds to an actor system, one must
decide on a primitive for process creation and depend on it.

22

actor system and with n distinct activators (the initial conditions) will begin one or more

behaviors. Any property common to all behaviors under all initial conditions can be considered a

property of the actor system. Thus if we ref er to properties of an actor's ordering or of an

actors's behavior, we refer only to properties that are common to all orderings of all behaviors of

that actor.

2.3 Continuations

The basic activity of messag·e passing operates without any control superstructure.

There is no implicit memory of what actor or actors caused any given transmission. Thus control

structure must be provided for explicitly. The convention for including control information as in

the control structure of functions and returns is to structure the transmitted actor in the following

way:

(apply: message (then·to: continuation)).

The actor message is the argument to the function and continuation is the actor to which another

actor can be sent. Thus the usual programming language function call with implicit return, as in

the call to fin 1 • f(x), can be implemented by explicitly sending the continuation to the function

along with its arguments, as described in the event:

<f (apply: x (then-to: (~(y) (1 • y)))) a ec>.

The explicit continuation, (My)(l • y)), is an actor which will take the result of f(x) and add it to

1. This does indeed correspond to the intended computation of 1 • f(x).

In addition to functional behavior more general control structures can be represented.

For instance, an actor might create a new process a to do some printing, not caring to hear from

that process again. In that case an actor without continuation might be sent:

23

<print (apply: 3) er 0>.1

There are actors which even when sent an explicit continuation, can choose to ignore

that continuation and instead transmit actors to some favored actor of their own. This can

produce a control structure similar to a jump out of a procedure body.

The continuation can be important in programming language semantics as

demonstrated by Reynolds [1972]. Fischer [1972]. and others. The control structures which will be

used the most in the following chapters are simply function (procedure) calls and sequential

execution of statements in a program. The second example in Section 2.6 illustrates the

representation of sequential code in continuation semantics. This example is important since all

discussions of "behaviors of programs" in this paper assume translation of sequential code to

continuation semantics.

For the purposes of the development of the specification language, the importance of

the continuation is the fact that it allows one to take the event view of behaviors, without any

other mechanism. A control structure such as sequential execution of statements in a program can

be expressed [as well as jump, coroutines, and parallel processing] without reference to program

counters or other devices. The ability to characterize systems by orderings on events, and thus

most of the work to be reported in this paper, rests heavily on the incorporation of the semantic

concept of the continuation into the actor model.

2.4 The Data Abstraction

Another programming semantics concept which has been developed independently and

which is relied on in the actor model is the data abstraction. The cluster in CLU [Liskov, 1974]

1 The first event in an activator has event count 0.

24

and the class in SIMULA [Dahl, 1972] are instances of data abstractions in existing programming

languages. In a data abstraction, data objects are defined by specifications of all relevant

operations and properties of that data rather than by such details as how they are to be stored in

a machine. Actors are defined by the relations they introduce into a system depending on the

messages they receive. Thus if the different messages to which an actor can respond are

considered as procedures or properties in that actor, then the actor can be seen very naturally an a

class-like object.

The concept of data abstraction will be relied on in the writing of specifications.

Chapter 6 is about a programming language primitive based on the data abstraction, namely the

monitor [Hoare, 19741

2.5 Level of Detail

In describing the behavior of a system one has to decide on a level of detail of interest.

Only events which represent activities deemed of interest for the current purposes are included.

Although one standard use of level of detail is to successively fill in more and more details of

implementation, levels of detail of descriptions of a single actor system do not necessarily form a

linear hierarchy. If the details of interest in two different descriptions of an actor are not related,

then the behaviors at the corresponding levels of detail may be incomparable.

The "filling in of details" way of thinking of levels of detail is as a choice between

information about input/output properties of an actor and information about the means for

producing that input/output property. Thus an actor, t, which is generally expected to receive a

message and a continuation could be described at the I/0 level of detail by describing the

message sent to the continuation in the "next" event. To describe the actor in more detail would

require the filling in of other events between the event with the actor t as target and the ·output•

..

25

event. The further level of detail could simply be a direct implementation revealing techniques

used (such as storage in local temporaries, etc.) or it could expose unsuspected behavior such as

some side-effect of the computation.

There is another way to think of variation in level of detail which is useful for actors

that don't have behavior of functions with the well-defined notion of I/O relation. This involves

the notion of a boundary around a collection of actors. There are actors YI in the and actors fB

out of the collection. The highest level of detail of description is one in which only events

corresponding to crossings of the boundary are included. This includes only events <t m « ec> in

which t E W and m E !8 or vice versa. Also, for two successive events <t 1 m 1 er ec> ->

<t2 m2 er ec'>, if t 1 E YI and m 1 E !8 then t2 E !8 and m2 E YI. This requirement would prevent

inclusion at high level of non-essential events like transmissions of the original message to some

other internal actors. Thus the events included at highest level represent a conversation between

the actor system and the outside.

The way to examine an actor system in more detail is to choose a set of distinguished

actors within it and to include all events involving the distinguished actors. Once specifications

can be written at varying levels of detail one can define equivalence of actor systems relative to a

set of distinguished actors. Then one can distinguish among actor systems which are equivalent

(i.e. have the same behaviors) at a high level of detail, according to whether or not they are

equivalenc in further detail. Two actor systems are equivalent with respect to some set of

distinguished actors if and only if they have identical behaviors with respect to that same set of

disting·uished actors. The choice of distinguished actors can make a difference in equivalence of

actor systems. For example, two programs for factorial can be equivalent at the level of input

output transformation (i.e. with no actors distinguished) even if a larger set of distinguished

actors would reveal one to be a "counting-up" factorial and the other to be "counting-down.·

Consider computation of 1! by both of these factorial actors. If multiplication, represented by *·

26

is considered to be a distinguished actor then in any behavior of one factorial there might be a

series of events showing successive multiplication of the partially computed value by the numbers

1, 2, 3, 4:

<• (apply: [l l] (then-to: c 1)) a ec>
-->

<* (apply: [2 1] (then-to: c2)) a ec'>
-->

<* (apply: [3 2] (then-to: c3)) a ec">
-->

<* (apply: [4 6] (then-to: c4)) 11 ec"'>.

In the other there might be a series showing multiplication by 4, 3, 2, 1:

<* (apply: [4 1] (then-to: c5)) a ec>
-->

<* (apply: [3 4] (then-to: c6)) a ec'>
-->

<* (apply: [2 l 2] (then-to: c7)) a ec">
-->

<* (apply: [1 24] (then-to: cg)) 11 ec"'>.

2.6 Specifications of Actors

The properties of a particular actor are specified by axioms which must be satisfied by

behavior of any actor system which contains that actor. Thus the actor addl corresponding to an

instruction in some programming language for computing the successor function has behavior

specified by the axiom:

If the event

<add 1 (apply: x (then-to: c)) a ec>

is in a behavior then, the next event in that activator a is

<c (apply: z) or ec'>

where z • x + 1.

27

That is, in any behavior of any actor system which contains addl, if

<addl (apply: x (then-to: c)) or ec> is in the behavior then so is <c (apply: z) er ec'>.

This will often be written as either

<add 1 (apply: x (then-to: c)) or ec> --> <c (apply: z) or ec> where z • x + 1

or as

<addl (apply: x (then-to: c)) er ec>

causes

<c (apply: z) or ec'> where z .. x + 1.

This last form can best be understood if a behavior is thought of as a dynamically increasing set

of events. Then the axioms tells what events can be added to that set next. The presence of

<addl (apply: 4 (then-to: c)) or ec>

in the behavior, means that

<c (apply: 5) or ec'>

can be included in the set ~s well.

This axiom distinguishes addl from arbitrary functions f for which one can only state

what the next event will be, if there is one. This next event cannot be guaranteed to occur. In

other words, addition has been defined as a function which always terminates, whereas, in

28

general, functions may or may not terminate. For functions which are not known to terminate,

the most that can be said is that if <f (apply: x (then-to: c)) er ec> is in the behavior, then if there

is a next event at this level of detail it will be <c (apply: z) er ec'>.

Notice that in the statement of the axiom the fact that actor z can be characterized

simply by the mathematical notation z • x • l has been used. In general, actors which appear in

events in axioms can have arbitrary behavior. When that behavior is not conveniently

expressible in conventional notation, its properties must be specified by axioms for its behavior.

The following actor, (~(x) ((f x) ; (g x) ; (h x))) causes events which involve newly

created continuation actors. These continuations are in turn defined by axioms about their

behaviors. Intuitively, this actor sequentially performs the function calls (f x), <1 x), and (h x)

after a value to be bound to x is sent to it. The axioms for this actor are:l

<(Mx) ((f x) ; (g x) ; (h x))) (apply: z (then-to: c)) e1 ec>

causes

<f (apply: z (then·to: c 1 *)) er ec'>

where c1 is defined by:

<c 1 (apply: x 1) er ec p

causes

<g (apply: z (then·to: c2 *)) er ec />

where c2 is defined by

1 In axioms, symbolic names of newly created actors are marked by an asterisk in the first events
in which they appear. Composite actors will not be so marked. For example, if c1 is a new actor
then the actor (apply: x (then-to: c1)) must also be newly created since it "knows about" the newly
created actor c 1.

29

causes

<h (apply: z (then-to: c)) a ec 2'>

Thus the continuation of each statement (i.e. each function call) is the "rest of the sequence of

instructions." The value (if any) computed by the preceding statement is ignored, but the value

of the last statement is treated as the value of the sequence and returned to the original

continuation.

The fallowing actor def in it ion includes creation of new activators and illustrates a type

of causal relation by which sets of events are related. It is a definition of the way in which the

function (X (f g) ((f x) • (g x))) computes (f x) and (g x) in parallel once it is sent a pair of

functions [F G] to which to bind f and g. On receiving the values of the computations of (f x)

and (g x), it adds the two values. Thus transmission of a message to the actor

(~ (f g) ((f x) • (g x))) causes two events. The axioms are:1

<(>.(f g) ((f x) • (g x))) (apply: [F G] (then-to: c)) a ec>

causes

<F (apply: x (then-to: cl*)) "1 0> and <G (apply: x (then-to: c2 *)) cr2 0>

The newly created actors c1 and c2 are defined by:

1 The notation [x 1 x2] indicates an actor which knows about (in the sense that its script refers to)
a sequence of other actors, x1 and x2. It can distinguish between them in the sense that it knows
that x 1 is first and x2 is second.

30

<c 1 (apply: v1) tJ1 ecp and

cause

<• (apply: [v 1 v2] (then-to: c)) «11 11 0>.
IJ l i!J2

These axioms illustrate several points, some conceptual, others notational. The event count of 0 is

used to indicate that the activator is newly created and that this is its initial event. The use of

new activator names, cr1, cr2, tJ1 and tJ2. in the axiom about c1 and c2 is necessary for the general

case in which additional parallelism is introduced in the computation of (F x) or (G x). (F x) or

(G x) could generate several activators operating in parallel. The actors c1 and c2 have the

property that for every pair of values returned, application of the function + to those values will

proceed. In each case the continuation actor used is the same, namely, c, the one which was

originally sent as the explicit return point to the function (). (f g) ((f x) • (g x))). However, should

it be the case that several different applications must proceed it is necessary at least abstractly to

provide for multiple activators to carry them out in parallet.l Thus the activator "lli ,tl
2

is needed

to carry out the application based on the evaluations reported from processes tJ1 and tJ2.

An implementation of these actors might actually represent a special case such as the

f ollowmg one. Process er might create a new process a2 to do (G x) while doing (F x) itself.

Thus "l = a. Also, the computations might create no further parallelism in which case eventually

the events <F (apply: x (then-to: c1 *)) "l 0> and <c 1 (apply: v1) tJ1 ec1> occur in er and

<G (apply: x (then-to: c2*)) a2 0> and <c2 (apply: v2) tJ2 ec2> in cr1. In this case "llt .6
2

might be

er itself resuming computation.

1 Otherwise these axioms would be inconsistent in the following sense. If the events <+ (apply: [v1
v2] (then-to: c)) «11 11 0> were simply required to be the next event in a as in <• (apply: [v1 v2] !Ji i!J2
(then-to: c)) a ec'>, then the axioms could require two events <• m1 er ec'> and <• m2 er ec'> where
m1 ;l!m2.

31

2.7 Time Orderings

The actor model can be called a behavioral or event-oriented approach to semantics.

The most important f ea tu re for the purposes of semantics of parallel processing is that with this

approach, a system is characterized by partially ordered sets of events. This feature is so

important because it serves as a basis for characterization of systems of parallel processes by

partial orderings other than the activator ordering. As stated in the introduction, the underlying

concept of synchronization is the imposition of additional ordering constraints in a computer

system. This section is about some kinds of orderings on actor systems which a,re important to

synchronization semantics.

An important ordering for expressing high level properties of parallel processing

systems is the time ordering, written •>. Using it one can state desired properties such as "E1 must

always happen before E2" which is stated "E1 •> E2." Another property,"E1 and E2 cannot be

allowed to happen in parallel" can be stated "E1 •> E2 V E2 •> E1 ." Since •> is meant to

correspond to some physically meaningful notion of ordering in time, it will be assumed that it is

not possible that there are events, E1 and E2 such that CE1 •> E2 I\ E2 => E1).1

A kind of time ordering property which will be stated frequently in this paper is the

ordering of sequences of events.

Definition: S is a sequence of events if 5 • {E1, ... , En} and E1 --> ... --> En·

Definition: s1 •> 52, where s1 and 52 are sequences of events {E 11 , ... , E1n} and

{E2 , ... , E2 }, respectively if E1 --> ... --> E1 •> E2 --> ... --> E2 .
1 m 1 n 1 m

This ordering is used in specifications for several kinds of synchronization.

Using .. > one can write arbitrary time ordering specifications, without concern for their

1 Proof that a set of specifications for an actor would cause such an ordering is proof of
inconsistency of the specifications in the sense that no physical device could realize the
specifications.

32

realizability. As a part of the specification language, => is useful for writing high level

prescriptive specifications, expressing desired ordering properties. However, as emphasized in the

introduction, it is also important to be able to express the means through which orderings can be

achieved. This must be expressed in such a way that its relation to the high level specifications

can be examined, and so that realizability can be analyzed.

A first example of an ordering which can be used to realize time orderings is the

activator ordering -->. If s1 => s2 is specified, it may be realized by s1 --> s2, i.e., by building a

single processor system which first does S 1 events, then does s2 events.1 The activator ordering is

an enforcible ordering and thus can be used to realize desired time orderings. Every system has

its own time ordering (also denoted by =>) derivable from ordering information such as -->. If

this derived .. > has the specified properties then the system realizes the high level specifications.

Another physically meaningful way to build orderings is based on communication of

parallel processes through common actors. For instance, if events E1 and E2 are of different

activators, but both have the same target, t, then it may be physically meaningful to order those

events. It will be possible to order them whenever the causality of the actor t (as embodied in Its

axioms), is based on the order in which t receives messages. An example of this kind of actor is

a cell of read/write storage. It causes behaviors to reflect the order in which messages were

received by the cell. Even if the two events E1 and E2, corresponding to updates of the cell to

different values, were unordered by -->, the contents of the cell would be left with one value or

the other, not both. That value is the value stored in the last update where last is defined with

respect to the order in which the messages were received by the cell.

For any actor t, the ordering, •>t, is a total ordering on the events in the behavior with

t as target. Orderings such as =>t will be referred to as actor orderings. For any behavior this

1 That is, providing the specifications did not require parallelism. I.e., the specifications were for
sequences of events <t 1 m 1 ~ ec 1 > --> ... --> <t 1 m 1 1 ec 1 > and <t2 m2 1 ec 2 > --> ... --> <t2

1 1 l n n n 1 1 1 n
m2 1 ec 2 I> where activator identity was not important.

n n

33

ordering can be thought of as arbitrary up to consistency with -->. That is, for any E1 and E2

which both have t as target, if E1 --> E2• then E1 •>t E2.

If ti are actors which cause behaviors to depend on their =>t., then for any actor system
I

containing the actors ti, that system's time ordering is derived from combining the actor orderings,

•>t·• and the activator ordering -->. In following chapters actors are defined by axioms that
I

depend on actor orderings. Each chapter either introduces an actor with a new kind of causality

or investigates the way in which a previously introduced actor can be used as part of an actor

system to satisfy high level time ordering specifications.

34

3 Specifications of Cells

This chapter contains the definition of an actor which is a cell for storing arbitrary

values. The cell is an example of an actor which causes behaviors to depend on an actor

ordering. The definition is followed by an example of how the cell can be used as part of a

system to cause a particular time ordering property to hold for all behaviors of that system.

3.1 A Definition of the Cell

A cell is created with some initial contents. It is possible to ask for the contents of a cell.

Update messages to that cell can change its contents. Thus it is possible that several events in a

single behavior can have identical targets (namely the cell) and identical transmitted actors and

yet cause different events to occur.1 This occurs when events E1 and E2 are events

E 1 • <celli (apply: 'contents (then-to: c)) er ec p2
E2 • <celli (apply: 'contents (then-to: c)) fJ ec 2>

to a cell, celli, whose contents have been changed due to some update event, El, where El occurs

between E1 and E2. Thus the actor c is sent different actors after E1 and E2, respectively as in

the behavior in Figure 3.1.

1 The difference we ref er to is in the target or message in the events. Clearly, even with side
effect-free primitives, one must allow for differences in activator and event count.

2 The actor 'contents is a "quoted" actor, the result of quoting a symbolic name contents.

35

Assuming the contents of cell; is 3:

<celli (apply: 'contents (then·to: c1)) er ecp

<c 1 (appl~ 3) a ec />

<cell; (apply: [.. 4] (then•to: c2)) a ec 2>

<c2 (apply:tell;) a eci'>

<cell; (apply: 'contents' (then-to: c1)) a ec2">

<c1 (applyf4) a eci'">

Figure 3.1: An Update Causes Side-effect Behavior

Cells correspond to side-effect primitives in various languages. Therefore, it is likely

that most readers have relied on them in programming. Also, it is likely that for any

communication between parallel processes one has to rely on cells or something like them. Exactly

what properties are being relied on for communication will be brought out in the behavioral

definition of a cell.

The actor cons·cell creates a cell when it receives a message, namely, the initial contents.

Informally. the properties of cons-cell and of the cells it creates are:

(I) Creation of a cell (or allocation of space for a cell) with its initial value should be

an operation guaranteed to take only a finite amount of time. This is also a desirable property of

updates and contents queries. (Any argument that a given program which contains assignment

statements always terminates is based on these properties).

(2) Initially we expect contents queries to find the original contents in the cell. This

should be true until an update transmission is sent.

36

(3) Once an update transmission is sent, say[.. y], we would expect to find yin the cell

until there is another update, where y is the contents stored in the cell in the "last update event."

The "last update event" can be defined with respect to the total ordering •>cell· as
I

follows:

Def mmon: For the event E, the last update event for a cell, celli, with respect to a total
ordering, •>cell·· is defined to be the event E0 where E0 is an update event, Eo •>cell·

I I

E and there is no other event E3 updating celli such that Eo •>cell· E3 •>cell· E.
I I

The use of "last update event" in the cell def in it ion cannot simply be defined with

respect to the activator ordering -->. The following example is presented as evidence of the fact

that our intuitive use of "last update event" is indeed with respect to the cell's ordering •>cell··
I

In a behavior such as that in Figure 3.21 can the message place marked by 't be said to

definitely be 3?

<cons-cell (apply: [2] (then-to: c)) a ec>

~ * ' <c (apply: cell 1) a ec >
~ ~

<cell 1 (apply: [.. 3] (then-lo:

('1t ,
<c 1 apply: cell 1) al ec1>

c1)) a 1 ec1> <cell 1 (apply:[.. 4] (then-to: c2)) «2 ec3>

i ' <c2 (apply: cell 1) cr2 ec J >

'1t
<cell 1 (apply: 'contents (then-to: c3)) al ec2>

-Jt
<c3 (apply:?) a 1 eel>

Figure 3.2 Parallel Updates

1 In all such examples we will assume that the behavior segments given show all activators that
have access to the actors of interest (in this case cell 1). This is an important fact about a

behavior segment involving side-effect actors, since if there could be other updates to cell 1 in
parallel with this segment, we could not meaningfully discuss the set of values that ? can possibly
have.

37

No, it cannot. In fact it can be either 3 or 4 depending on which was the last contents stored in

the cell with respect to m>cell·· According to--> the two update events occur in parallel. Bue since
I

they both involve a common actor, the target actor cell 1, the ordering of those events with respect

to the arrival of messages at celli affects system behavior in the answer to the contents query.

Thus this system has two behaviors which are consistent with the partial order so far specified by

the consistency with -->. They differ only in the identity of ?.1 In a representation of the

behavior including only-->, there does not seem to be any reason for the two different behaviors,

or means for predicting which will occur. Indeed from the point of view which does not include

actor ordering, this system is non-deterministic. However, after •>cell· is included In the
I

representation, the cause of the difference is clear. Two possible orderings are illustrated in

Figure 3.3. [There is a third.]

1 That is, it can have two behaviors even given identical lnltlal condtttons [as defined in the last
chapter] each time.

38

<cons-cell (apply: [2] (then-to: c)) er ec>

~
<c (apply: cell 1 *) a ec'>

J/ ~
<cell 1 (apply: [... 3] (then-to: c 1)) a 1 ec p < <cell 1 (apply: [... i (then-to: c2» "2 ec J>

<c 1 (apply' cell~• t ec /> i <cz (1pply' call 1) •z ec; '>

<cell 1 (apply: 'contents (then-to: c3)) al ec 2>

-Jr ' <c3 (apply: 3) a 1 ec2 >

<cons-cell (apply: [2] (then·to: c)) a ec>

<c (apply: *111 *) a ec'>
~ ~

<cell 1 (apply: [... J] (then·to: c 1)) a 1 ec p ><cell 1 (apply: [.. 4] (then•to: c2)) "2 ec ;>

~ , I ~ , <c 1 (apply: cell~ a 1 ec 1 > ~ <c2 (apply: cell 1) a 2 ec; >

<cell 1 (apply: 'contents (then-to: c3)) «1 ec 2>

'11
<c3 (apply: 4) "l ec2'>

Figure 3.3 The Cell Orderingl

As stated in Chapter 2 actor orderings have to be consistent with -->. This requirement

prevents ? from being 2. A '">cell i such that 2 is the last contents stored before the contents

query would lead to forming a time ordering "'> which has a loop, i.e., in which there are two

events E1 and E2 such that E1 '"> E2 /\ E2 => E1. This loop is directly traceable to the

1 In figures we generally indicate the parts of •> that are not in --> by •>.

39

inconsistency of that "'>celll with -->. Such loops obviously should never happen given the

interpretation of •> as a time ordering. In fact, in proofs of correctness, undesirable behaviors

can often be proven impossible by showing that they could only occur with impossible •>

orderings.

A further constraint, namely, the constraint that in systems with more than one cell, celli,

the orderings •>celli must all be mutually consistent with -->, prevents other pathological •>

orderings. For example in the behavior segment in Figure 3.4 since cell2 is known to have

contents 6, cell 1 must have been updated to 5 and the only possible value for ?1 is 5.

<cons-cell (apply: [3] (then-to: c 1)) a ec i>

<cl (apply: fell 1 *> a ec />
t

<cons-cell (apply: [4] (then-to: c2)) a ec2>

~ * , <c2 (apply: cell2) a ec 2 >
~ ~

<cell2 (appl~ 'contents (then-lo: c3)) a 1 ec ;> ~ <cell 1 (apply: i 5] (then-to: ?)) "2 ~>

<c3 (apply: 6) a 1 ec ;'> <cell2 (apply: [t- 6] (then-to:?)) «2 ~>

~
<cell 1 (apply: 'contents (then·to: c4)) «1 ec4>

t
<c4 (apply: '! 1) a 1 ec/>

Figure 3.i: Two Cell Behavior

An alternative in which cell 1 contains 3 leads to the inconsistent behavior of Figure 3.5.

40

<cons·cell (apply: [3) (then-to: c 1)) er ec p
t

<c 1 (apply: cell 1 *) a ec />
y

<cons-cell (apply: [4] (then-to: c2)) a ec 2>

t
<c2 (apply: cell2 *> a ec i'>

IL"' ~
<cell2 (appl~'contents (then-to: c3)) "l ec;>~ <cell1 (apply:~ 5] (then•to: ?)) «2 1>

<c3 (apply: 6) a 1 ec ;'> <cell2 (apply: [t- 6] (then·to: ?)) cr2 1>

t
<cell 1 (apply: 'contents (then-to: c4)) "1 ec4>

t
<c4 (apply: 3) cr1 eci>

Figure 3.5: An Impossible Behavior Segment

3.2 The Causal Relations Induced by Cells

The full statement of the axioms for cells follow. The cells are defined by a causal

relation between the set of events involving cells (and therefore ordered by •>cell) and the single

event which is the response from the cell. This can be interpreted as a definition of the cell by

how it operates as part of a running system. For any behavior of a system containing a cell, if

the events occur in the order required by the precondition of an axiom, then events in the

postcondition are included in the behavior.

(1) Creation of a cell is guaranteed to terminate, producing a cell, celli.

11

<cons-cell (apply: [z] (then-to: c)) a ec>

causes

<c (apply: celli*) a ec'>

where celli induces the following causal relations among events:

(2) Updating a cell is guaranteed to terminate and to cause return of the cell to the
continuation.

<celli (apply: [t- y] (then-to: c)) a ec>

causes

<c (apply: celli) a ec'>

(3) Until the first update, the initial contents is returned in response to any contents
query.

E • <celli (apply: 'contents (then-to: c5)) cr5 ec,>
where there are no updates before E in •>cell·

I

causes

<cs (apply: z) a 5 ec .5>.

(i) Once there has been an update, the last contents stored is returned.

42

E 1 • <celli (apply: 'contents (then•to: c2)) «2 ec 2>
and E2 = <celli (apply: [+- y] (then·to: c3)) cr3 ec ;>

where E2 is the last update before E1 in •>cell·
I

cause

<c2 (apply: y) a 2 eel>.

The formality of axioms such as the above depends on the fact that phrases such as

"E2 is the last update before E1" can be stated precisely. That particular phrase has been defined

earlier. "There are no updates before E in =>cell·" can be stated formally as "..., (3 Eo 3 Eo is an
I

event of the form <celli (apply: [+- ?] (then-to: ?)) ? ~> /\ Eo =>cell· E)." Throughout the paper
I

similar phrases will be used in place of their full definitions. Definitions will be stated only when

a phrase to be used is judged to be significantly different from ones previously defined.

3.3 Uses of Cells

The time ordering => of a behavior derived from --> and '">cell· can relate events of
I

different activators other than the events involving the cells. Thus besides being used to store

information for its intrinsic value in such a way that arbitrary processes can share it, the cell can

be used as a means for enforcing an ordering on otherwise unordered events or for synchronizing

otherwise independent processes. In order to characterize the u.se of cells for synchronization, one

can state properties of the ordering => which hold for every behavior of that system. This kind

of statement can be made as a specification for a progr~m.

In order to realize such an intention, the cells must be used to cause appropriate derived

time orderings as the system is running. For example, imagine a system in which a cell is

initialized to some value, and in which there can be exactly one other update (to a different

43

value) in any behavior of the system. Then a contents query finding the initial value can be

interpreted as indicating that the update has not yet occurred, while one finding the second value

indicates that it has occurred. The example in this section illustrates how by the strategy just

described one can use properties of •->cell· and --> to guarantee that an ordering on events of
I

independent parallel processes holds.

The strategy depends on information about •>cell· being determined by contents queries.
I

In the Algol-like program of Figure 3.6, a cell is used to enforce a system ordering in which some

"important computation" by process 2 is always done before some "other computation" of process I.

cell 1 :• 4;

parbeginl
process 1:

loop: if contents of cell 1 ;111 5 then goto loop else other steps ;
end;

process 2:

end;
parend;

important steps;
cell1 :• 5;

Figure 3.6: A Synchronizing Program.

A sample behavior of this program might be that in Figure 3.7.

1 Starts process I code and process 2 code in parallel. I.e., they are executed by separate activators,
cr1 and a2.

<cell 1 (apply: [t- 4] (then-to: c)) er ec>

~
<c (apply: cell 1 *) er ec'>

//

~
<cell 1 (apply: [.. 5] (then-to: ?)) «2 ?>

Figure 3.7: Sample Behavior.

The system defined by the program in Figure 3.6 can be said to have behavior in

which

important events .. > other events.I

The reason that it can be shown that this time ordering is realized by the program is that if the

contents of cell 1 is 5 then <cell 1 (apply: [t- 5] (then-to:?)) er2 ?> must have occurred, and what is

more, it is also known from the activator ordering, the "important events" must have occurred.

Thus --> and •>cell i together cause sufficient ordering on events other than those involving cell 1

to realize the time ordering property.

The justification that this program has this property is in terms of the axioms for

behaviors involving cells and properties of the programming language. Besides properties of

cells, a proof depends on a definition of the if - then • else construct that allows one to deduce

that other events occur iff the contents of cell 1 is found to be 5 by process one. This information

1 Recall that this means that for the sequence of events Ei , ... , Ei called "important events" and
1 n

the sequence of other events E0 , ... E0 , Ei --> ... --> Ei •> E0 --> ... -> E0 .
1 m 1 n 1 m

45

is combined with the fact that if any behavior has a contents query which causes a 5 to be sent to

the continuation (referred to as ctest), then that behavior has a total ordering on c•ll 1 events

satisfying

<cell1 (apply:[... 4] (then-to: c)) a ec> -->

<cell 1 (apply:[... 5] (then-to: c2)) «2 ?>

<cell 1 (apply: 'contents (then-lo: c3)) a 1 ec p -->

<ctest (apply: 5) a 1 ec/>.

Regardless of the number of contents queries in the actual behavior this part of the total ordering

necessarily is the same [see Figure 3.8]. Since the activator ordering also says that

important events--> <cell1 (apply:[... 5] (then-to: cl)) «2 ?>,

and

<ctest (apply: 5) «1 ec/> -->other events,

any ordering, •>, constructed from --> and •>cell will have important events •> other events.
1

Thus this reasoning is independent of the particular behavior examined and is valid for any

behavior of that system.

46

<cell 1 (apply: [t- 4] (then-to: c)) a ec>

..Jt * ' <c (apply: cell 1) er ec >

<call 1 (apply• '<onlonls Uhon-~lostll •11> ~ ~
«tosl (appl~ 4) •t '> J

<cell 1 (apply: [t- 5] (then-to: ?)) cr2 1>

<cell 1 (apply: 'contents (then-to: ctest)) "1 ~>
~

t
<ctest (appt S) "1 1>

~
Figure 3.8: Extended Sample Behavior.

The most interesting f ea tu re of the system defined by the program in Figure 3.6 above is best

described in terms of the time ordering, •>. It describes a property that holds over a class of

behaviors which would not be distinguishable by -->alone. The "meaning" of the use of cells in

the program is the strategy for ordering sequences of events. This is the structure of the

program.

3.i The Orderings

In summary, this chapter contained the definition of a cell, a side-effect actor which can

be used to select a behavior from among several possibilities which would be consistent with the

activator orderings and the initial conditions. Given orderings •>cell· for all cells in a system,
I

47

each different behavior can be seen to have been caused by differences in the orderings of events

involving cells. Each of these behaviors can be more completely characterized by a time ordering

derived from --> and .. >cell··
I

Proof that of a system satisfies a time ordering specification can be done by proof that

there are properties common to all derived time orderings of all behaviors of that system.

Further examples of this kind of reasoning for systems with cells are contained in Chapter 9.

Some comments can be made on possible physical intuition about •>cell· It can be

viewed in one of two ways. First, given the constraints already placed by activators on the events

in a behavior and their orderings, =>cell· can be thought of as an incidental ordering, not
I

completely determined by the system. Events of independent processes involving a single actor as

target can be incidentally ordered as a system runs, by the order in which the messages of these

events arrive at that actor. Then strategies such as the one above can be thought of as making it

possible to find out at run time about these incidental orderings and make use of them.

Alternatively, one might note that since two messages could arrive simultaneously, in

order for a cell to satisfy its specifications, it may have to be able to arbitrate between them.

Thus the cell itself may occasionally determine that ordering. Then rather than simply b~ng an

arbitrary ordering given at run time, •>cell· may be an ordering computed by celli, with the
I

constraint that it is a total order on all events with celli as target and is consistent with -->.

Either interpretation leads to identical deductions in the important events example. As

long as '">cell· totally orders all cell events and the place in the ordering is associated with
I

performance of the operations requested in the message, the cell gives the same basis for

reasoning about causal links. In Figure 3.8, while cell 1 contains 4 one can deduce nothing about

important events. Cell 1 containing 5 implies important events must have occurred and says nothing

about whether events after the update to 5 have occurred. Regardless of exactly how "'>cell· was
I

formed, its consistency with --> indicates a causal link between the important events and the other

events.

48

4 Synchronization

This chapter contains an example of another kind of actor which can be used to form a

derived time ordering =->. The first section introduces a time ordering property which must often

be relied on in programming for parallel systems. After that the causal axioms for a

synchronizing actor, protected·data·base, are given and it is shown that this actor can be used to

realize the time ordering specification. The properties of these axioms as statements about

causality will be discussed. The chapter ends with a review of the language for ordering

specifications as it has been developed to that point as well as its relation to partial orders.

4.l Mutual Exclusion as a Time Ordering Specification

One means of protecting a resource from simultaneous use by two processes is "mutual

exclusion." This informally means that at most one process can be using the resource at any

given time. A precise statement of mutual exclusion can be made in terms of time orderings. If,

for instance, the resource to be protected is a data base, the sequences of events between sending a

message to the data base and the response from the data base (i.e. the events in one operation on

the data base) are the important events. Such sequences can be denoted by

where

and

Ex. • <data-base (apply: x (then-to: c)) a ec>
rn

E • <c (apply: y) a ec(m+l)>
Xout

49

E --> E --> ... --> E --> E .
xin x l Xm Xout

At the highest level of detail of examining this data base operation, one would see only Ex. and

'"
Ex and therefore we will generally use the following notation to represent a data base

out

operation:

such that

The definition of mutual exclusion for a system is that the time ordering must have the

property that in any behavior of that system, for all sequences s1, s2 in that behavior

This means that in no behavior of that system is it possible for the events of any S 1 and S2 to be

interleaved.

The property of mutual exclusion is important even in cases where the resource being

shared by a group of parallel processes is only a single cell. If for instance several processes are

sharing a count of some value in a common cell, there must be limitations on how that cell can be

accessed if its contents are to remain consistent with the intended value. Due to the restricted

means of communication with a cell in which asking for its contents and updating it are separate

events, two processes can both find the contents of a common cell to be x and update it to x + 1

when the intended result is an update to x + 2. That is, each should have independently added l

to it. What is needed is a means for guaranteeing that during the entire time that any one

process is performing its sequence of events for examining the cell, computing a new value and

50

updating it, no ocher process can be communicating with the cell. For this reason the property S 1

•> s2 or s2 => S 1 could also be interpreted as making the operations Si "indivisible" operations.

In contrast with the important event example of Chapter 3 in which the specifications

required important events => other events, in this case, while the sequences must be ordered, they

can be ordered either way. It is much more difficult to realize the specifications for mutual

exclusion using only cells than it was to implement the important event ordering. If the number

of processes is fixed, there are ways to enforce mutual exclusion using cells. Two such programs

are examined in some detail in Chapter 9. The next section contains axioms for an actor from

whose causal axioms the mutual exclusion time ordering can be derived. If this actor can be

relied on as a primitive (or implementaed with primitives other than cells) then the complex cell

solution can be a voided in practice.

4.2 A Synchronization Actor

The synchronization actor to be defined is cons-protection, an actor which when sent

another actor, data·base, creates a new actor protected-data-base from it. It is actually this last

actor, the one created by cons-protection, which has the interesting causal axioms. If protected

data-base is used in a system instead of the actor data-base, then that system will have the time

ordering required for mutual exclusion of data base operations. This is accomplished in the

manner conveyed graphically in Figure 4.1. Requests will be sent to protected-data-base and they

will be transmitted to data-base. At the end of the data base operation the result is again

transmitted through the protective actor, by means of a specially constructed continuation actor.

requests
<E)".....,.. x

results
(Ex)

end

51

protected-data-base

check i
(Ex.

'"
ata-base

Figure 4.1: Protected Data

The events in a single request and performance of the requested operation are then:

Ex • <protected-data-base (apply: x (then-to: ci)) "i ect>

Ex· • <data-base (apply: x (then-to: sc· *)) «j ec/>
rn r

Ex • <sc. (apply: y) "i e /'>
out r

Ex d • <ci (apply: y) "i ec{'>.
en

The actor sc· is a newly created actor that knows about ci. It is essential to the synchronization as
I

will be shown below. The actor y is defined by the properties of data-base which specify

responses to the actor x. We will assume that the data base always responds by sending a message

to the continuation supplied with the request. The desired effect of protected-data-base in one

activator is that Ex in the behavior is guaranteed to be followed by Ex. --> Ex --> Ex . That
rn out end

is, Ex --> Sx --> Ex where Sx is the sequence of events in the data base operation. However, in
end

general Ex alone must not be sufficient for causing Ex. or there would be no synchronization.
rn

The actor protected-data-base causes orderings Ex. •> Ex. to be introduced. The
1out Jin

way it does this is by creating a new actor sc for each process let in to the data base and causing

the event in which sc is sent a message to be necessary to the admission of other activators. This

results in orderings Sx. •> Sx.·
I J

The axioms for cons-protection are:

52

<cons-protection (apply: data-base (then-to: c)) a ec>

causes

<c (apply: protected-data-base*) « ec'>

where protected-data-base has the causal axioms given below. They are also axioms for the actors

•ci created by protected-data-base. We write '">pdb for the ordering •>protected-data-base of the

actor protected-data-base.

(a) If Ex
1

is the first request to the protected data base, then Ex
1

is served first.

Ex
1
, where Ex

1
is the first event in the ordering •>pdb

causes

(b) If two requests are ordered at the protected data base then the exit of the first is
required for the entrance of the second.

cause

The axiom (b) is the new type of axiom characteristic of synchronizing actors. It states

that the ordering Ex •> Ex will be added to the ordering formed from •>pdb and ->.
1out 2in

Protected-data-base differs from a side-effect actor in that, rather than causing

53

different events depending on "'>cell• protected-data-base causes different orderings depending on

•>pdb· How this ordering is enforced is not at issue. The use of a synchronizing actor

guarantees that the ordering will be enforced, and how it is enforced need not be dealt with at

the level of detail at which the synchronization actor is viewed as a primitive operation (i.e. at

which we don't look inside it).1

The additions to the derivation of •> represent causal chains of --> and •>1. To form

a time ordering for a system containing protected-data-base one must use -->, •>pdb• and any

additional properties of •> added directly. Presumably at some level of detail "inside" the actor,

sequences of events occur from which this new => is derived. Thus this is an abbreviation for a

causal link, and Ex must occur before Ex . Since (b) is true for all Ex. that precede Ex , all
1out 2in 1 2

corresponding Ex. must occur before Ex . Once all added conditions are met Ex will occur.
'out 2in 2in

4.3 Properties of Protected Data Base

In a system in which only a protected data base is used, data base sequences Sx contain

the events

Ex. • <data-base (apply: x (then-to: sc.*)) «j ec/>
rn 1

Ex • <sc. (apply: y) «j ec/'>.
out r

It can be shown that the time ordering caused by protected-data-base has the property that for all

Sx
1
, Sx

2
in a behavior of the system

1 Of course, whether or not protected-data-base is realizable will depend on the implementation of
that causal link. Chapter 7 shows an implementation in terms of a synchronization primitive
which does exist in real computer systems. Chapter 9 shows an implementation in terms of cells.
Thus these axioms are consistent in the sense that there are objects that are described by these
axioms.

51

All sequences Sx. are preceded by requests Ex. 3 Ex. --> Sx,. All requests are ordered by •>pdb·
I I I I

Therefore for any Sxl' Sx in the behavior, Ex -->Ex -->Ex and Ex
2

--> Ex
2

--> Ex
2 2 l lin lout in out

are in the behavior and either Ex
1

•>pdb Ex
2

or Ex
2

'">pdb EX(

Asssuming first that Ex •>pdb Ex , by (b), Ex •> Ex and therefore Sx
1

•> Sx
2

·
l 2 lout 2in

Similarly, if E
2

=>pdb Ex
1
, Sx

2
=> sx

1
. Thus operations on the data base are mutually exclusive.

This reasoning is trivial given the similarity of the high level specifications and these

actor specifications. The point is merely that the derivation of •> from -->, •>pdb• and •> does

indeed give the result; thus an actor so defined can be used to cause the mutual exclusion

ordering.

Another property of any system with protected-data-base is that if Ex is in the behavior

then it is followed by Sx. It means that, in addition to enforcing mutual exclusion, the protected

data base uses fair synchronization in the sense that the synchronization can never lock out any

activator and all requests are served. This can be stated as

Ex i~ the behavior :::> Sx is in the behavior

Fairness does not require that Ex be the sole cause of Sx, but only that all requests do get served.

It means that the synchronization used to achieve the mutual exclusion ordering must be fair in

that it cannot ignore any request that it receives. Not all synchronization is fair. Chapters 7 and

8 are about unfair synchronization.

In the current case it can be shown that for any Ex, if Ex is in the behavior then, since

all additional constraints can be met, Sx is also in the behavior.

(I) If Ex is first in '">pdb then, by (a), Ex. is in the behavior.
'"

:. Sx is in the behavior because of the .axioms for data-base ..

(2) Assume Vt ~ n, if Ex. is the ith request, then Sx· is in the behavior. Then let Ex be
I I

the n+lth request. Since by induction V Ex. =>Ex Sx is in the behavior, all Ex. 3 Ex •> Ex are
I n 'out t

in the behavior and :. by (b), Ex· is in the behavior.

'"

55

:. Sx is in the behavior.

i.i Synchronizing Axioms, Causality, and Partial Orders

In general, for axioms like those for protected·data·base it can be arbitrarily difficult to

decide what all the additional constraints on an event's occurrence might be. Unless the set of

conditions which is implicitly defined by the axioms can be correctly stated explicitly, it may be

easy to make errors in arguments which depend on finding the set of necessary and sufficient

conditions for events.

One approach to clarifying the necessary and sufficient conditions for the occurrence of

an event due to synchronization is to refine axioms such as those given above to equivalent ones

which apply to unique events. Thus replacing axiom (b) by (b') below makes it possible to view

these specifications as rules for "transference of causality."

(b') Each request other than the first in enabled by the
completion of the preceding request.

cause

By a simple inductive argument one can see that (b') implies (b) and thus the time ordering

derived from (a) and (b) is equivalent to that derived form (a) and (b'). The formation of •>

from (a) and (b') relies more heavily on =>a and on the fact that the transitive closure will totally

order all data base operations if the axioms order successive pairs. One difference between (b)

and (b') is that fewer constraints were explicitly added in (b').

56

This also means that in (b') Ex
1

and Ex transfer causality to Ex , in the sense that
2 lout

now Ex causes Ex , i.e. if Ex , Ex are in the behavior then Ex in the behavior is
1 out 2in 1 2 lout

necessary and sufficient for Ex to be in the behavior. It can be important to be able to
2in

interpret the axiom this way and therefore we would like to point out the reason why this

interpretation is valid.

Ex and Ex are of the same activator and the axiom adds E •> Ex , where E is of a
2 2in 2in

different activator. Therefore the axiom is about requirements in addition to activator properties

necessary for the occurrence of a next event in that activator. What the event Ex can be is
2in

already determined, but there are additional conditions on whether it will occur. The

precondition involves a uniquely specified pair of other events, Ex and Ex . They are the
1 1 out

only other events referred to, by virtue of the uniqueness of the definition of "first request after.·

Since =>pdb totally orders events Ex
2
• there can be at most one Ex

1
for each Ex

2
. Except for the

Ex
2

which is the first event in =>pdb there will be exactly one such event. The axiom states that

once Ex and Ex have occurred, Ex is a necessary and sufficient condition for the occurrence
1 2 1 out

of Ex
2
.. This is in contrast with the statement (b) from which one has to deduce the set of events
In

necessary and sufficient for Ex .
2out

These axioms also should be viewed as statements about partial orders. In chapter 2,

we suggested that axioms for single activator causality could be viewed as rules for adding events

to behaviors. If partially ordered sets of events are viewed as sets of ordered pairs of events,

then axioms can also be viewed as rules for adding pairs to the partial order. Even in single

activator cases, when the partial order is in fact a total order, the axiom

<add 1 (apply: x (then-to: c)) a ec> --> <c (apply: z) a ec'>

says that the pair (<add 1 (apply: x (then-to: c)) a ec>, <c (apply: z) « ec'>) can be added ~o the

activator ordering -->. According to this interpretation the activator ordering is formed from the

transitive closure of the pairs determined by the axioms for the actors in the actor system.

57

When there are multiple activators and cells, behaviors can be specified by their partial

orderings, =>. The ordering, =>, is formed from the union of •>cell and -->. Thus, using, {•>},

the set representation of =->, we can state

{ .. >} is the transitive closure of {=>cell} U {-->}.

Since these may be several different sets of events that correspond to possible behaviors of a

given actor system with cells, such systems are characterized by sets of partial orders or by

properties of => common to all those partial orders. These later properties are generally partial

orders on events other than the cell events which are common to all behaviors, e.g. important

events and other events in Chapter 3.

The axioms for protected-data-base specify pairs that are to be added to the set of pairs

from which the transitive closure is taken. Thus if we ref er to the parts of •> added by axioms

as '">new• the ordering {m>} is the transitive closure of {-->} U {=>pdb} U {=>newl· Using the

•>new of either axiom (b) or (b') results in formation of the same transitive closure. If the pairs

in {-->} U {,.>pdb} U {•»newl are considered as generators of •>, differences among alternative

specifications are evident in the size of the set of generators it produces.

To summarize, the new kind of axiom of this chapter introduces further causality,

denoted by additional constraints on =>, the derived time ordering. Thus in deriving ,.> for a

system involving a synchronization actor s, one uses -->, =>8, and => added in axioms. The

axioms for synchronization are different from the axioms for cells in that the properties of •>1

do not directly affect what events will be in the behavior but rather what causal relations wi11

hold on events, if they do occur.

58

5 Comparing Problem and Solution Specifications

Reinterpretation of the protected data base of the last chapter will reveal stilt more

fundamental statements which can be made about data bases. A totally external definition (one

in which the data base is treated as a primitive) of a reliable data base can be given. The actor

protected-data-base is then seen as an implementation of that data base. By weakening that

definition one can look at alternatives which correspond to a well-known synchronization problem

- the readers/writers problem. We develop specifications analogous to those for mutual exclusion

which are formal statements of four versions of the readers/writers problem.

Following that, one version is specified more concretely by the writing of its solution

specifications. These solution specifications are a step in the direction of implementation. Since

they are written as causal axioms of synchronization actors, they include explicit reference to the

causality used to achieve the specified orderings. Thus the solution specifications in a sense

define the algorithm or structure to be used in programming an implementation. A program with

the same structure will generally be more easily compared to the solution specifications than to the

problem specifications written in terms of •>. For this reason the proof that these solution

specifications are sufficient for realizing the high level specifications is an interesting result. It

ensures that any program checked only against these solution specifications will indeed also satisfy

the high level specifications. Once again the chapter will conclude with a summary of the

ordering information used so far.

5.1 Re-interpreting Protected-date-base

One property of a data base which could be desirable is closely related to a property of

59

cells. The property is that every time a record is read, the result is an actor that was stored by the

last write in some total ordering. Since data base operations are generally long sequences of

events, a data base may not have this property under all circumstances. If two writes overlapped

(or if a read and a write overlapped or even any two operations, depending on implementation)

the result of a later read could be a record that was never deliberately stored by any write. It is

not usually considered interesting to specify all possible mistaken records that could occur under

all circumstances. Therefore data bases are generally specified either by implementation,

explaining just what steps are taken in doing an operation, or by expected effect given no

interference among operations.

In the specification language we can also wnte axioms like those of the cell for a data

base. They specify a data base which always returns meaningful values, i.e. values that were

deliberately stored. An example is the actor rdb, a reliable data base, defined by the following

axioms:

(1) A reliable data base is created by create-data-base to have records x; with initial
contents Yi·

<create-data-base (apply: [[x 1 y i] ... [xn y nll (then-to: c)) 11 ec>1

causes

<c (apply: rdb*) 11 ec'>

(2) Writes always result in return of the record.

1 Note that in the protected data base specifications of Chapter 4 details such as reference to
parts of the data base, the x;. or to the value to which co update, the Yi· were omitted.

60

<rdb (apply: ['write xi z] (then-to: c)) er ec>

causes

<c (apply: z) er ec'>

(3) Initially, reading record xi finds Yi· the initial contents.

Er • <rdb (apply: ['read xi] (then-to: c)) er ec>
where there is no <rdb (apply: ['write xi z] (then-to: ?)) ? ?> preceding Er in •>rdb

causes

<c (apply: Yi) er ec'>

(1) If a record has been written into, a read of that record finds the last record
stored.

Ew 11 <rdb (apply: ['write Xj z] (then-to: ?)) ~ ~>

and Er • <rdb (apply: ['read xi] (then-to: c)) er ec>
where Ew is the last write in xi before Er in the ordering •>rdb·

causes

<c (apply: z) a ec'>

What can this mean? Let us reconsider the cell definition and the reasons why we

accepted it. While it specified a useful behavior, our acceptance rested on postulating that a cell

could be built with that property. That is usually an accepted assumption about access to

memory. M emery is fast enough for it to be unlikely that two operations would ever interfere

with each other, or if two do occur simultaneously, a sufficiently good arbitration scheme can be

61

incorporated in memory accessing to prevent interference. Of course, as machines get faster this

assumption can break down. If we had to implement the cell under conditions that would make

cell operations lengthy relative to their use, how could we realize the specifications? For instance

if, in an implementation, updates require bit by bit updating, and reads, destructive bit by bit

read followed by restoring of the contents, part of the implementation specifications would have

to be the mutual exclusion of the events which at a lower level of detail occur between the cell

event and the event in which the continuation is sent a response. If a behavior contains

sequences of the form:

<cell (apply:? (then-to: c))? ec> --> E1 --> ... -->En--> <c?? e/n+J»

then all sequences E1 --> ... --> En must be ordered with respect to one another.

Thus •>cell as an external property of an actor can be the result of deliberate

computation at a lower level of detail, i.e., the computation that can enforce the mutual exclusion

of the implementation of the operation. We have decided to accept cells as primitive and

therefore to accept .. >cell as being close to the order in which messages arrive at the cell.

However, for actors which are not claimed to be primitive specifications relative to •>1 must be

interpreted as a restriction on the class of implementations possible.

For instance, as an actor, a reliable data base, rdb, has an ordering =>rdb and properties

as illustrated above. This specification requires that if in an implementation the operations are to

be side-effect operations, they will be mutually exclusive and will be done fairly (all events with

rdb as target get ordered and serviced on a FIFO basis). Thus the actor protected-data-base,

which can enforce fair mutual exclusion and cause data base operations, is one means for

implementing such a data base. If protected-data-base is the only actor to which data base

requests are sent, then at the level of detail at which only events of the forms

<protected-data-base (apply: ? (then-to: c)) ? ?>

62

and

<c ? ? ?>

appear, the protected-data-base acts like a reliable data base with all requests ordered consistently

with --> and all reads finding the result of the last write.

In terms of an ordering =>rdb• fairness means that all events with rdb as target are

ordered by =>rdb and that therefore all are followed by next events. Thus in "computing" •>rdb•

rdb cannot ignore a request. For •>cell• an ordering of a primitive actor, we assumed all cell

events were ordered. For computed orderings, we may wane to specify which events are ordered.

One might actually be interested in the cases where ">rdb does not have to include all

events with rdb as its target. While it may always be important to find a last update, rather than

garbage, it may not matter how last is measured (i.e. with respect to what order). Therefore one

might just require that the ordering =>rdb have the property that if at the level of detail at which

rdb is a black box, Enext is the event after E then

E with rdb as target is ordered by •>rdb iff Enext is in the behavior

rather than that all events with rdb as target be in the ordering. Together with the axioms given

above this can be interpreted as a specification for a data base in which one always finds a last

contents stored but in which some requested operations might not be performed. In implementing

a reliable data base with this weaker ordering specification, if side-effect operations are used,

mutual exclusion might still be necessary. However, it would not have to be enforced fairly.

Similarly, if, for instance, it were known that certain operations, say reads, would not be

side-effect operations we might only require =>rdb to be a partial order such that writes are

ordered with respect to other writes and writes and reads are ordered with respect to each other.

Given this constraint one can still meaningfully find the last write from any read operation. For

63

any read the value found should be the value stored in the last write. This kind of data base is a

readers/writers data base and is the subject of this chapter. The puzzling readers/writers

problems are specifications for determining which requests must be served and which can be

locked out.

5.2 The Problems of Reading and Writing in a Data Base

just as in the previous chapter fair mutual exclusion was used to realize a fair reliable

data base, properties related to mutual exclusion can be used to realize other kinds of reliable

data bases with readers/writers scheduling-. Readers/writers scheduling is defined in relation to

the readers/writers problem and two of its variants which were first introduced into the literature

by Courtois, Heymans, and Parnas [Courtois et al., 1971]. The most important part of the problem

is that since writers presumably perform sequences of side-effect actions in the data base, it

becomes necessary to protect the data base to preserve its consistency. However, since readers are

not ordinarily side-effect operators and therefore cannot interfere with each other, mutual

exclusion is generally considered too restrictive. Instead a property which shall be referred to as

the Readers/Writers Property is required. Informally, it is the property that there be mutual

exclusion of write operations in the data base and that there be mucual exclusion of groups of

read operations and single writes.

To state this formally read operations are distinguished from write operations. Sr is a

sequence of events in a read operation, Sw a sequence in a write operation. Throughout this

chapter subscripts of r or w on events or sequence symbols denote reader or writer events or

sequences. Therefore the sequences and events have the following form:

64

Sr • {Er. ' Er t} 3 Er· --> Er t
In OU In OU

where
Er. • <data·base (apply: ['read x;] (then·to: c)) er ec>

'" Er • <c (apply: y) er ec'>
out

and
Sw • {Ew. ' Ew t} 3 Ew. --> Ew t

In OU In OU

where
Ew. • <data-base (apply: ['write x; z] (then-to: c)) er ec>

'" Ew • <c (apply: z) a ec'>
out

The readers/writers exclusion property is that for every behavior, the ordering •> has the

property that

'ti Sr, Sw in the behavior, Sr=> Swor Sw =>Sr
and 'ti Sw

1
, Sw

2
in the behavior, Sw

1
=> Sw

2
or Sw

2
•> Sw

1

This says that all reads and writes must be ordered with respect to one another, and all writes

must be ordered. However, it is not necessary for the set of all read sequences to be totally

ordered by =>.

This property is sufficient for proving that a reliable data base is implemented.

External properties of a reliable data base as described in section 5.1, can be derived, if we can

define "'>rdb to be the following order over events Ex. such that Sx is in the behavior:
1n

Ex •>rdb Ex iff Sx •> Sx ·
1 in 2;n 1 2

Then Ex· is ordered by =>rdb iff Sx is in the behavior (i.e. if Ex is in the behavior and
'" out

therefore the request was served) and •>rdb partially orders those events such that there is a wett-

def ined last write for every read. This is the property suggested at the end of 5.1 as the

"problem" in the readers/writers problem.

While this property is the minimal property required for preserving consistency of a

data base, it does not yet correspond to any of the popular definitions of readers/writers problems.

65

What is missing are requirements for either fairness or priority in the serving of requests.1

Generally some correspondence between time ordering of requests and of operations is required

and considered pan of the readers/writers problem.

Informal priority requirements are statements to the effect that one kind of operation

can be performed before another, etc. That priority can be stated formally only if it is stated

relative to some total order on events. If requests arrive in one order and are served in another,

then one may be able to say that priority is being given to one kind of request. If there is no

measure of the "natural order" from which one is diverging, then there can be no sense in which

the claim to actively be giving priority can be made. Thus all the priority specifications will be

given relative to a solution structure in which one can ref er to the order of events at an actor and

then base priority requirements on order of service relative to order of arrivaJ.2

Using a scheme similar to the one for protected·data•base we can define the solution

structure which will enable us to write priority specifications. In Figure 5.1, the activator

properties of a readers/writers data base can be seen to include a request event for each operation.

1 In terms of the rdb, what is missing is the definition of which requests are in •>rdb·

2 At the next level of detail the actor order may or may not be given. At some level, •>5 , the actor
order of a synchronizing actor, s, approximates the order in which messages arrive at s. As long
as an actors order is fair, we will assume that we can use that actor as primitive. The
specifications are relative to that ordering.

readers-writers-data-base

E
Xout

66

data-base

~ .___ ____ __,

Figure 5.1: Reader/Writers Data Base

Fairness or absence of lockout can be stated as

Er in the behavior ::) Sr in the behavior
Ewin the behavior ::) Sw in the behavior

[Fairness to readers]
[Fairness to writers]

Not all of the readers/writers problems are intended to be fair. When fairness to readers or

writers is intended we will state it explicitly. The rest of this section contains specifications for

various readers/writers problem in terms of "'>.

The easiest readers/writers problem to express is Readers/Writers with Q.ueuel which

serves in the order of requests. It is fair to both readers and writers. Its other specifications are

simply:

1 The names used to ref er to these problems are this author's. This version is not used elsewhere
in the literature. For the next three, references are given.

67

Thus in satisfying the Readers/Writers Property, behaviors of the Reader/Writers with Queues

Data Base will have ordering 2 > such as that described in the following scenario. If the requests

in order are:

then the behavior will contain the following sequence of events and ordering .. >:

The rest of the versions have other properties which in fact amount to giving priority

to reads or writes. In all versions the specification

[Write Ordering]

wtll be assumed ,as well as the readers/writers exclusion. Only specification of additional

properties will be stated.I The kinds of priority special to each problem will be illustrated f1rn by

a scenario of possible ordering constraints. This will be followed by definitions of any terms to

1 This will make all of our specifications somewhat different from several of the published
descriptions, since the problem has most often been described so that it could be implemented
with available primitives. Generally there were no primitives that could enforce this order. See
Chapters 7 and 8 for discussion of such implementations.

68

be used in the specifications and then by the specifications themselves.2 The most interesting

property of a II of these specifications is that in order to express them, one must refer to orders on

events with different targets. The sub-orderings on sets of events corresponding to requests and

ends of operations are depended on. This is important later in the chapter in the causal axioms

for actors that realize the time ordering specifications.

In a Write Priority Data Base2 priority must be given to write requests and the

solution must be fair to writers. Consider the following ordering of requests:

It can result in any of a number of behaviors depending on the order in which ends of

operations occur. For example, if the ordering of ends of operations is

then Sw
1

•> Sr
1

•> Sw2' On the other hand, if the ordering is

Ewl' Erl' Ew2• Ewl 'Ew2 'Ew3• ...
out out

then Sw
1

•> Sw •> Sr •> Sw since the request Ew will be given priority when Ew occurs.
2 l 3 2 lout

Most important is the fact that in the following ordering Erl can be "locked out"

indefinitely:

In other words, the reader will only get in at such time as no writer is in the data base and no

write requests are waiting.

1 Definitions in this chapter will be given once in English, followed by predicate calculus.

2 This is related to but not identical to the second readers/writers problem of Courtois et al. [1971],
due to different interpretation of the informal specification "as soon as possible." See chapter 8
for the Courtois approach.

69

Definition: The data base ts empty (or open) for E if all preceding requests have
finished already.

The data base ts empty (or open) for event E if 'tJ Ex (Ex •> E) :::> (Ex •> E).
out

Definition: E opens the data base to reads if E is the end of the last write request.

E opens a data base to reads if 3 Ew 3 Ew •> E, Ea Ewout' and 't;/ Ew
1

((Ew
1

•> E) A

(Ewl ?! Ew)) :::> (Ew .. > E).
1 out

Definition: A data base ts open to reads at E if no write requests have arrived since
the last event that opened the data base to reads.

A data base ts open to reads at E if 3 E1, E1 => E, E1 opens the data base to reads and
....., (3 Ew 3 E1 => Ew :s> E).

Definition: Er ftnds a data base open to reads if the data base is open to reads at Er·

The specifications of Writers Priority Data Base are stated as restrictions on fairness to reads.

Reads only have to be served if no writes are making demands.

Sr is in the behavior iff Er is in the behavior and either
Er finds the data base open to reads

or
3 E 3 Er :s> E
f\ E opens the data base to reads.

The following are two other possible specifications for priority in a readers/writers data

base. No later sections ref er to them so that the reader who is not interested m all ~1ble

variations and their expression in this language may safely skip the rest of this section.

In a Read Priority Data Base [the first readers/writers problem of Courtois et al. [1971]],

the readers are given priority in the sense that writers only can get in if there is no competitions

from a read. The solution should be fair to reads. If requests are (in order)

then the ordering

70

Er 1 ' Er 1 ' Ew 1 ' ...
out

will result in Sw
1

•> s,
2

because the write came while no reader was waiting.

The ordering E, , Ew , E, , E, , E, results in s, •> Sw
1

since E,
2

found no
1 1 2 1 out 2out 2

obstacle to its entrance. Note that there are orderings involving more reads in which that write

never gets in.

Def init1on: A data base ts open to wrttes by E if there are no read requests preceding
it that have not finished.

A data base ts open to wrttes by E if V E, (Er •> E) ::> ((E, •> E) V (Er t • E))
out ou

The Read Priority specifications are:

Sw is in the behavior iff Ew is in the behavior and either
the data base is empty at Ew

or
the data base becomes open to writes sufficiently often after
Ew to let all preceding writes and then Sw in.

[More formally, 3 E 3 Ew => E 3 the data base is
open to writes at E and V Ew 3 Ew => Ew

I I
either Ew •> E

1 out
or Ew ,. E.]

1 out

The Fair Readers/Writers Data Base [Hoare, 1971] has alternation between readers and

writers when both are waiting, so that no lockout can occur. It is fair to both readers and writers.

However, the alternation does not necessarily satisfy the Reader/Writer with Queue specifications

because when it becomes a reader's turn, all waiting reads are let in.1 For instance if requests are

then with ends of operations in the ordering as follows:

1 This was more natural to implement with Hoare's primitive than the Readers/Writers with
Q.ueue, but is more difficult to specify.

71

Ewl' Erl' Ew2' E, 'Ew ' ...
2 lout

ic is the case that s, •> Sw and s, •> Sw .
1 2 2 2

Definition: It is a wrtters turn at E if E ends the last of the reads that were in the
data base and there is a write waiting.

It is a writers turn at E if 3 Ew 3 (Ew .. > E) /\ .., (Ew .. > E) and E is the last of the
out

events in the set

{Er I Er 3 E, •> Ew where Ew is first unserved write request preceding E}.
out

The specifications of the Fair Data Base are:

Sw •> Sr iff Ew •> Er and either
Ew finds the data base empty

or 3 E, Ew •> E •> Er and
either it is a writers turn at E and there

are no writes before Ew which are waiting
or E ends a write and there are no reads before

it or writes before Ew which are waiting.

5.3 Writer Priority Specifications

In this section we will write causal axioms for one version of the readers/writers

problem, the Write Priority Data Base. With causal axioms we can be specific about the

transference of causality required to guarantee derivation of a time ordering with the four

properties of Write Priority, Readers/Writers Property, Fairness to Writes, and Write Ordering.

Section 5.2 contained writer priority data base specifications for guaranteeing that reads get in

only if no writes are trying. They did not specify what event would enable a waiting read.

Similarly, in cases where reads are enabled, it is not clear from those specifications how the

ordering of th~se read operations with respect to following writes is achieved. The following

axioms will specify the causality necessary to achieve the four properties at once.

Since the properties of Writer Priority depend on a total ordering on the requests and

the ends of operations, i.e. on events Ex and Ex , the axioms will be written to depend on that
out

ordering. Recalling the forms of those events:

Ex • <wpdb (apply: ? (then-to: c)) a ec>
Ex • <sc (apply: ?) a ec">

out

shows that the ordering of all events Ex and Ex is an ordering over all events with either wpdb
out

or an sc· as target. [This might be ref erred to as •>wpdb&s .] Since the sc. are all created by
I Cj I

wpdb, it is possible that this could be a physically realizable ordering just as an ordering •>• for

one actor a can be. How it would be realized is not the issue at this level of detail. However, the

fact that it can be realized will have to be part of a proof of correctness of a particular program

for implementing these specifications. For conciseness we will use •>wpdb for •>wpdb&sc:
I

Terms such as open or open to reads when used in these axioms are meant to be

defined with respect to =>wpdb rather than to => and are repeated here with that substitution.

Definition: The data base ts empty (or open) for E if all preceding requests have
finished already.

The data base ts empty (or open) for event E if V Ex (Ex •>wpdb E) ::> (Exout •>wpdb E).

Definition: E opens the data base to reads if E is the end of the last write request.

E opens a data base to reads if 3 Ew 3 Ew •>wpdb E, E • Ewout' and V Ew1 «Ew 1
•>wpdb E) I\ (Ew ;t Ew)) ::> (Ew =>wpdb E).

1 1 out

Definition: A data base is open to reads at E if no write requests have arrived since
the last event that opened the data base to reads.

A data base ts open to reads at E if 3 E1, E1 =>wpdb E, E1 opens the data base to
reads and -, (3 Ew 3 Ei =>wpdb Ew •>wpdb E).

Definition: Er ftnds a data base open to reads if the data base is open to reads at Er.

The causality introduced by the wpdb actor is defined by the following axioms.

<cons·write·priority-data·base (apply: data-base (then-to: c)) er ec>

causes

<c (apply: wpdb*) er ec'>

where wpdb, the write priority data base actor, has the following properties:

(l) Newly created data bases are open to readers or writers

(a) Ew 3 Ew is the first event in =>wpdb

causes

(b) Er 3 no Ew precedes Er in "'>wpdb

causes

(2) A data base which is opened at Eout has properties similar to a new data base for
readers or a write

74

(a) Ew 3 Ew is first after an Eout which opens the data base

causes

(b) Er which finds the data base open to reads

causes

(3) When the data base is not open, time ordering must be introduced.

(a) If a read arrives before all preceding writers are finished then the
read must wait until such time as the

data base becomes open to reads.

causes

E 2 > Er.
in

where E is the first in =>wpdb of the
events in the set

{Ew t I Er •>wpdb Ew and the data base is open to reads by E._ }1
ou out out

1 Note that this event, E, may not exist. All that this axiom says is that if it does occur then it
causes Er. . If not, Er· does not occur.

'" '"

75

(b) If a write arrives before all preceding writes are finished
it must wait until the last write before it fin is hes.

causes

Eout => Ew.
'" where E is the last write request preceding Ew.

(c) If the preceding write did finish already and thereby enabled some reads, the
new write request must be held up until all of the reads leave the data base.

causes

E => Ew.
In

where E is last in =>wpdb of the events in the set

{Er I Er =>wpdb Ew }. out

These axioms state the causality of the wpdb actor. Part (3) deals with waiting and

transference of causality to specify how the operations are later enabled. It handles the special

conditions of write priority and fairness to writers. The preconditions specify the same situations

referred to in the high level specifications. I.e., for writer priority, one situation that lets a reader

in before a writer is that the data base was open to reads for the request. This is specified in (3c).

However, in Section 5.2 only the correspondence between this situation and the ordering Sr •> Sw

was specified. The causal axioms specify exactly which event will be the one which now causes

Sw• so that the ordering can be derived. This is the reason that solution specifications will be

useful criteria against which to measure a program. They indicate a plan for implementation (i.e.,

what to cause and what event is the cause, without the details of how to cause it).

76

Note that these really are very specific solution specifications which add very few

ordered pairs to the ordering '">. This is due to the fact that although the motivation for

introducing "'>wpdb&sc was the need to express priority, it has been used, as well, to define "open•

data base, thereby rendering unnecessary the addition of constraints in part (2). If the

preconditions of (2a) or (2b) hold, then ordering of operations holds already. A similar approach

could have been taken in defining protected-data-base. What this amounts to is that additional

constraints are added only when "waiting" is involved, i.e. only when the additional requirements

are known not to hold already. If, accidentally, the data base has been emptied before a request

and if the request can discover that, then there is no need to plan [in planning a program] to

implement a causal link between the last operation that was in and the current request.

In other words, minimizing the number of additional constraints means attempting to

add only ordering not already available from =>wpdb or-->. If as the system is running "the fact

that the data base is empty is derivable from '">wpdb• it is not necessary for any further

synchronization to be used. In solution specifications, this minimality of added constraints is

desirable, even if it lengthens the specifications, since it constitutes a fairly refined plan (relative

to problem specifications or axioms with more added constraints) for implementation. The plan

is to check the "state" of the system and to add constraints if there is danger of interference.

5.4 Properties of the Solution Specification

This section contains a proof that the specifications for the Writer Priority Data Base

are satisfied by the derived ordering of any system which accesses its data base through an actor

wpdb created by cons-write-priority-data-base. That is, Fairness to Writes, Write Ordering, Write

Priority and the Readers/Writers Property are enforced by wpdb.

Property /: The wpdb actor causes Fairness to Writes:

77

Ewin the behavior ::> Sw in the behavior.

Proof: By induction on the number of preceding write requests.

(i) If Ew is the first event in =>wpdb• Sw is in the behavior [by (la)].

(ii) If Ew is preceded only by read requests, then there are a finite number of read
requests ahead of it. Once they have all finished Sw gets in by either (2a) or (3c)

(iii) If Ew is preceded by exactly one write request, that write request gets in (by ii).
Therefore by either (2a), (3b) or (3c) [since there can be at most a finite number of
reads enabled when Ew occurs], Sw is in the behavior.

(iv) Assume that if any Ew is preceded by n writes, Ew , ... , Ew , then that Ew gets in.
1 n

If Ew is preceded by n+J writes, Ew , ... 1 Ew , Ew , then by induction, Ew
1

gets
0 1 n n•l n•

in and by either (2a), (3b), or (3c) Ew
0

gets in. 0.

Property //: Write Ordering:

Ewl •-> Ew2 ::::> Swl •> Sw2·

Proof: As corollary of proof of Property I. 0.

Property II I: Writer Priority:

s, is in the behavior iff Er is in the behavior and either
Er finds the data base open to reads

or
3 E 3 Er•> E
/\ E opens the data base to reads.

Proof: If Er is in the behavior, then by (la), (2c), (3a) clearly the writer priority holds.
0.

Property IV: Readers/Writers Property:

(!Va) V Sw
1
, Sw

2
either Sw

1
=> Sw

2
or Sw

2
•> Sw t'

' (!Vb) 't;J Sr, Sw either Sr .. > Swor Sw => Sr

Proof (of (!Va)): Assuming Ew
1

•>wpdb Ew
2

or Ew
2

•>wpdb Ew
1

proof is

straightforward by induction on number of writes between them. 0.

78

Proof (of (/Vb)): Note first that Sr, Sw in the behavior implies Er, Ew in the
behavior, where Er--> Sr and Ew --> Sw. Now either Er •>wpdb Ew or Ew •>wpdb Er·

Assume Ew .. >wpdb Er.

There are two cases possible [Others are ruled out by activator properties]

(i) Ew •>wpdb Ewout •>wpdb Er in which case clearly Sw •> Sr.

(ii) Ew "'>wpdb Er =>wpdb Ew out

Then Er cannot find the data base open to reads, since this would violate
the definition of "open to reads."

Therefore Er· must be caused by some event Eout• Er •>wpdb Eout and 3

'" Eout opens the data base to reads (as in (3a)).

By definition of opening a data base to reads, either Ew t • E0 ut or
OU

Ewout •>wpdb Eout·

In either case Ew· •> Eout .. > Sr and therefore Sw •> Sr·

'"
Assume Er •>wpdb Ew·

Again there are two cases.

79

(ii) Er •>wpdb Ew •>wpdb Er ouf

There are three axioms about enabling reads, and thus three cases.

(a) Er enabled as in (lb). Assume there is no write preceding Er in •>wpdb· In
this case, let Ew be the first write after Er. Then Ew is caused by the Eout

1 1 in
which is last in the set {Er I Er "'>wpdb Ew }. Therefore either Er t • Eout

1 out 1 1 ou

or Er =>wpdb Eout· Thus Er => Ew and therefore Sr •> Sw .
out out 1 in 1

If Ew
1

• Ew then Sr => Sw. Otherwise, by Property II, Sr => Sw
1

•> Sw.

(b) Er enabled as in (2b). If 3 E 3 E opens the data base and E •>wpdb Er

•>wpdb Ew •>wpdb Er and there are no write requests between E and Er, then
out

similarly, find the first write after Er, and use it as in the last case to show that
Sr•> Sw·

(c) Er enabled as in (3a). Er· is caused according to (3a), then 3E 3 E opens the
In

data base to reads, Er •> E and E causes Er· . Since E opened the data base to
1n

reads

either E ">wpdb Ew

or Ew =>wpdb Ewout .. >wpdb E.

In the first case Sr •> Sw

Otherwise Sw => Sr. [Ew· enabled as in (3b) or (c)] 0.
In

5.5 Kinds of Specifications

In summary, we have analyzed the readers/writers problem and written formal

specifications for it. The specifications for priority are explicitly written relative to the order of a

synchronizing actor. The next step towards implementation is the refinement of the specifications

to the form of causal axioms. The axioms specify causal properties of an actor which can cause a

system to have the desired time ordering properties. This is a realizable solution specification

because as we shall see in the next chapter there are primitives available which allow us to

implement •>wpdb&sc· Causal axioms were presented in Section 5.3 for an actor implementation

of one version of the problem and were then shown to properly meet all the requirements of the

time ordering specifications. Since the time ordering specifications consisted of four separate

80

requirements the proof is of interest in showing that the axioms specify one actor which can

realize all four specifications. The next step is program specification, the subject of the next

chapter. The steps from the general criteria for reliability assuming side-effect-free reads, to the

four properties of '"» to the causal axioms, correspond to a process of refinement of problem

statement from properties for consistency of the data base to partial solution specifications

including details of priority.

One last note in reference to the reinterpretation of protected-data-base is that the

chapter is also about the notion of a computed actor order and its specification relative to another

actor's total order. All "scheduling" or "priority" specifications that are written in this language

are written relative to some total ordering. The realization of these specifications then depends

on the use or implementation of an actor which has axioms that refer to its own actor order.

Without the relative specifications it is not clear that we are making meaningful statements. This

point will be discussed again in Chapter 8 when we compare these specifications with published

informal specifications.

81

8 Comparing Solution and Program Specifications

This chapter is about the further refinement of solution specifications to program

specifications. Given solution specifications for the writer priority data base, in which the

approach of defining a single actor which is the readers/writers data base is already indicated, it

is natural to try to write a program for that actor. One way to do this is to use one of the

·structured synchronization primitives" which have already been introduced into the

synchronization literature [Dijkstra, 1971; Hansen, 1972a; Hoare, 1974; Hewitt, 1974]. First we will

re-examine the solution specifications to see how one might expect to implement the actor and

what properties one would like a programming language primitive for structured synchronization

to have. That is, we will discuss an appropriate program structure.

Once this structure is established, we can look at a primitive that enforces the structure.

The primitive chosen, the monttor, can be used to implement the solution.

The reasons for defining such programming language primitives in terms of behaviors

become evident on consideration of a proof that a program which uses this primitive satisfies the

readers/writers specifications. The chapter ends with some discussion of the sense in which the

monitor is a "structured synchronization primitive."

6.1 How to Realize Synchronization Solution Specifications

Once one has a program and compares it to solution specifications, one would like to

show that all properties of the solution specification are realized. When these properties are

synchronization properties -- namely the adding of ordering constraints based on actor orderings

82

-- the easiest way to realize properties is to use a synchronizing primitive which has the same

properties. However, this strategy cannot always be used unless for general solution specifications

there are arbitrarily many special purpose synchronizing primitives available. For instance, for

implementation of the writers priority data base one cannot expect to have a primitive which

distinguishes two classes of requests and their terminations and favors one type of request in

precisely the required way.

Given that there will be limitations on synchronization available the way to proceed is

to divide the ordering information about behaviors into two classes -- information which can be

picked up by a general purpose synchronizer, and information for which the synchronizing

mechanisms will have to be programmed. For this latter class the technique to use is the

recording of "state" information in cells which are local to the program. Then the numbers •.:

requests of the two sorts can be recorded, updated and referred to, and ordering information can

be left to primitive synchronization.

The important considerations in writing the program for a write priority readers/writers

data base (or later in proving it correct) are

(1) How to preserve orderings of requests whether delayed or not. [Use synchronization

primitives.]

(2) How to map behaviors into states recorded in internal variables. [Use cells.]

(3) How to protect sequences of operations which correspond to state changes or to state

references, so that the record of the state and all observations of the state are valid. [Mutual

exclusion of operations.]

(i) How to obtain the ordering over both requests and ends of operations. IThe

ordering a>wpdb&sc in the solution specifications.]

We clearly can define actors to facilitate the programmer's doing any one of (I), (2), or

(3) separately. Certain structured synchronization primitives will allow us to do all three and (4)

83

combined.I This structure will allow mapping of sequences of events in program execution into

single events of the solution specifications. I.e., the program is being structured to correspond to

the picture in Figure 5.1.

6.2 A Monitor-like Actor

Hoare [1971] defined a primitive, the monitor, which is used here to illustrate the

completion of a program for the solution specifications. The exact form defined incorporates

some of the simplifying assumptions which Hoare suggests. Also, we take some liberties with

syntax, mainly in bringing initialization of variables to the beginning of the monitor.

A brief informal definition at this point can be used to show immediately that the

monitor can facilitate (I) - (i) above. Further argument is required to actually show that a

particular program realizes the full details of readers/writers solution specifications, since that

relies on correct programming within the monitor. The syntax of the monitor is shown in Figure

6.1.

1 This can also be accomplished by disciplined use of unstructured primitives discussed later.

84

class monttorname : monitor
begin declarations of data local to monitor ;

initialization of data ;

end;

procedure procname 1 (... formal parameters ...) ;

begin ... procedure bodyl ... end;

procedure procnamen (... formal parameters ...) ;

begin ... procedure bodyn ... end ;

Figure 6.1: The Syntax of the Monitor.

Stated informally the main property of a monitor is that at most one of the contained procedures

can be active at a time. Thus mutual exclusion of sequences of events corresponding to execution

of procedure bodies is enforced. What is more, it will be enforced by fair synchronization. If the

local variables (cells) are used to record state information, then, due to the synchronization,

sequences of events which correspond to state changes are totally ordered. Thus there are obvious

means both for the recording of the state information [consideration (2), above] and for its

protection [consideration (3)). Both the operations implementing checking in and those

implementing checking out should be procedures in the same monitor, since both must change the

state information. The fact that both requests and ends go through the monitor will implement

the assumed ordering over both kinds of events [consideration (4)] used in the solution

specifications.

In order to provide for the preservation of ordering of requests [consideration (I)], more

than just the guarantee of fairness of the monitor as a whole must be provided for. As all

85

requests will get into the monitor, the state can accurately summarize the behavior -- i.e., it can

take into account all requests. The only difficulty is that a request may get into the monitor while

the state requires delay. In the write priority case a read request discovering a writer in the data

base would have to wait. However, it cannot wait within the monitor, i.e. while maintaining its

status as "the one process in the monitor." If it did this, no end of operation~ could get into the

monitor and therefore the state could never be visibly changed and the system would deadlock.

To allow for a process' releasing the monitor without "losing its place in the ordering"

Hoare includes "condition variables" among the kinds of data which can be declared local to the

monitor. A condition variable is a synchronization actor which on receiving a "request" message

causes additional ordering to be added to the behavior (i.e. it has no open state as do protected·

data-base and wpdb). "Requests" correspond to the event

<condi (apply: 'wait (then-to: c)) a ec>

represented in code as condt.watt. The ordering added is of the form

E •> <c (apply:) ~ ~>

where E is of the form

<cond; (apply: 'signal (then-to: ?)) ~ ~>.

Specifying exactly which event E is required is somewhat complex. In fact, this part of the

"structured" monitor can only be considered a very unstructured synchronization primitive.

Detailed specifications of a related unstructured primitive, the semaphore, appear in Chapter 7.

The formal specifications of conditions include both the waiting properties of a synchronization

and additional releasing properties related to the overall monitor synchronization.

Several important properties of conditions are stated in the precise condition

86

specifications. First, the conditions are defined to preserve the orderings to which the monitor

was exposed. That is, if two read requests Er
1
, Er

2
are received at the monitor in the order Er

1

•> E and both find a writer in the data base, then their "wait requests" to the relevant r2

condition

Ee
1

• <eond (apply: 'wait (then-to: x 1)) er 1 ?>

Ee
2

• <eond (apply: 'wait (then-to: x2)) er2 ?>

will be ordered Ee
1

=-> Ee
2

. This is because er2 cannot even get into the monitor, let alone have

Ee
2

. until after Ee t'

Furthermore, the events Ee· which are events with conditions as target, and the events
I

with targets that are continuations of such events, act as delimiters of sequences of events which

are mutually exclusive. Thus if a procedure body has statements cond.watt or cond.stgnal [we

assume that if cond.stgnal occurs, it occurs only as the last statement in the procedure body1l then

the "indivisible" sequences of events are those for code segments such as A, B or C in the

following schemas:

or

begin

end

begin

end

A
cond.watt;
B

c
cond.stgnal

One final property of great importance is that If

<eond (apply: 'signal (then-to: c)) er ec>

1 This is the only form that Hoare used and so far no problems have been shown to require more
general assumptions.

87

occurs while there is a process waiting on the condition, it will not release the monitor but will

instead directly hand it over to the continuation of the waiting process, i.e., a sequence of type B

in some procedure body. Thus, in addition to the fact that sequences of events in executing type

B code are ordered with respect to all other sequences of type A, B or C, it is also the case that

once signalled, B sequences get priority over processes waiting outside the monitor (i.e. sequences

of type A or C).1

6.3 A Program for Writers Priority

Figure 6.2 contains a program for the monitor for writer priority.

1 Note the monitor requires for implementation several of the very properties for which it will be
used in prognmming. That is, it has mutual exclusion and priority. Given the monitor properties
we can implement wpdb, but this may appear a vacuous result if the monitor is as hard to
implement. Implementation of the monitor discussed in Chapter 8 and in Hoare [1974] in terms of
still more primitive synchronization shows that this implementation is possible.

88

cJass2 writer prtortty monitor
begin

end

readcount, wrttecount : integers ;
busy : boolean ;
readers, writers : condutons ;
readcount : • 0 ; wrttecount : • 0 ; busy : • false ;

procedure startread
begin

if wrttecount > 0 then readers.watt ;
read count : .. readcount + 1 ;
readers.signal ;

end ;
procedure endread

begin
readcount : • readcount - 1 ;
if readcount '" 0 then wrtters.stgnal ;

end;
procedure startwrtte

begin
wrttecount : • wrttecount + 1 ;
if readcount > 0 V busy then writers.watt ;
busy : • true ;

end ;
procedure endwrtte

begin
busy : = false ;
wrttecount : .. wrttecount - J ;
if wrttecou.nt .. 0 then reader s.stgnal else wrtters.stgnal ;

end ;

Figure 6.2: Write Priority Monitor.

This monitor contains the checking in and checking out procedures for readers and

writers, namely startread and endread for reads and startwrtte and endwrtte for writes. Its

operation is based on the following correspondence between the state information in the cells and

2 The class statement according to Hoare [1971] allows us to define many separate instances of the
same monitor. We will use this in the next figure.

89

the behavior desired of the solution in terms of events Ex, Ex. , and Ex . All are stated such
1n out

that if this state is observed while executing code corresponding to Ex or Ex then the
out

corresponding statement about the Ex. and Ex. that preceded Ex or Ex tis true.
I 'out OU

(writecount .. O) • (number of Ew • number of Ew)1
out

(writecount > O) • (number of Ew > number of Ew)
out

[this could mean writes in data base and/or waiting]

(readcount • 0) • (number of Er such that Er enabled • number of Er t)
OU

[this does not include waiting reads]

(readcount > O) • (number of Er that were enabled > number of Er .)
out

busy

[whenever this is observed there are no Er that are not enabled]2

• ((number of Ew > the number of Ew)
out

/\ (number of Er that were enabled)) •

(number of Er)
out

-, busy • ((number of Ew • number of Ew) V
out

(number of Er that were enabled)) >

The states which are checked for are

writecount > 0
readcount • 0
readcount > 0 V busy
writecount .. 0.

(number of Er).
out

1 This is an abbreviation, as are all, for the "number of preceding Ew" .. number of
preceding Ew ." It also can be seen as implying 'ti Ew 3 Ew •> E implies Ew t •> E

out ou
where E is the event at which the state is being checked. Similar interpretations of the
other statements hold.

2 There is a time inside startread at which this is not true since technically all Er on
queue are enabled, but not all get signals instantaneously. Since the monitor is not
released until it is true, this identity does hold at any time when the contents of
readcount is examined.

90

These correspond to states which are preconditions to one or another of the axioms for the

solution and therefore a program based on these tests can have sufficient information about

behaviors to implement the actor.

A program for a writer priority data base should declare its own local instance! of this

writer priority monitor and use the monitor's procedures explicitly as checking in and checking

out routines surrounding its data base operations. That will provide for the required "activator"

properties in the program corresponding to those in the solution actor. Once a correspondence

between events in the solution and segments of code in the program is made, a proof that the

program induces the appropriate behavior can proceed. The ability to map sections of code into

single events in the solution specifications comes from reliance on the monitor to implement

mutual exclusion such that sequences of events for executing such sections of code are totally

ordered and therefore are as "indivisible" as a single event. Figure 6.3 contains this program

1 In some languages there is a question as to how to accomplish this private declaration. See
discussion in [Hoare, 1975).

readers-writers-data-base ii!

begin
wpdb : wrtter prtortty ,.2
procedure read

record y;
begin

wpdb.startread ;
y : .. (read operations) ;
wpdb.endread ;
return y ;

end;
procedure wrtte

record y ;
begin

wpdb.startwrtte ;

91

y : • (write operations) ;
wpdb.endread;
return y ;

end;
end

If startread corresponds to Er, then sending a messages to the continuation (which is the rest of

the sequence starting with the data base operation) does correspond to Er· . What is more, the
. m

continuation in Er. includes the call to wpdb.endread and therefore the continuation enables

'"
ordering Er and E,. l Finally, Er has continuation that can return the result to the

o~ o~

continuation which came with the original request (by definition of procedure call). Thus due to

a combination of the activator properties enforced by sequential code and the monitor properties,

the required ordering =>wpdb&sc is formed.

Details of a proof now depend on validity of the state updates and use of condition

definitions to ensure proper transitions once a state is recognized by a test. Now that the program

is so strongly committed to the solution structure of wpdb, the easiest approach is to show that the

2 This is Hoa re's syntax for declaring wpdb to be an instance of the writer priority monitor. It is
declared private to the readers-writers-data-base.

1 This corresponds to the continuation sc in the solution specifications.

92

separate axioms hold. Implicitly this relies on the proof that those causal axioms realize the high

level specifications.I The proof will depend on arithmetic operations for updating states, the

correspondence of values and states, and the ability to give priority to waiting processes internal

to the monitor.

The following are examples of some of the axioms.

(la) Ew 3 Ew is first causes Ew·
in

If Ew is first, it finds initial conditions, i.e. it finds readcount • 0 /\ busy • false.

:. by property of conditionals and sequential code, this write gets through to the data
base

:. this events causes Ew.

'"

causes

E '"'> Er· where E is the first in the set
1n

{Ew ti Er a'>wpdb Ew t and the data base is opened to reads by Ew }.
OU OU O~

This is equivalent to entering startread and finding number of Ew > number of
Ew , i.e. finding wrttecount > 0.

out

By definition of conditionals this causes readers.watt.

Now by definition the reader has to wait until it gets a signal.

Its signal could be from endwrlte or startread.

If from endwrtte it is due to Ewout 3 wrttecount • 0 i.e., 3 the number of Ew
1

•

number of Ew. .
1out

:. the signal is due to opening of the data base.

To show that it is due to the first opening of the data base, note that once the first

1 In a sense the causal axioms correspond to lemmas we would have to prove if trying to prove
high level specifications directly. Thus the solution specifications show our ability to express such
intermediate level properties. They are not necessarily easy to formulate or derivable
automatically.

93

such signal to readers occurs then due to startread and properties of conditions, all
readers on the queue get off the queue before the monitor is released again.

:. the first opening is sufficient for enabling this read. This covers the case of its
being signalled from startread because that also could only happen if the data base
became open to reads.

causes

E0 ut =>wpdb Ew. where Eout ends the last write before Ew.

'" The precondition is equivalent to wrttecount > 0.

If wrttecount > 0 then busy .. true.

:. the writer gets onto the writers condition queue.

:. the one before it on the condition queue goes before it (by definition of the
condition).

If no write is before it on the condition, the one in the data base has to do the signal
and since that one is the last write before it, the condition holds.

:. this causes Ew •> Ew. where Ew is the last write before Ew.
1 out '" 1

In this manner one can show that the explicit causality of each axiom is enforced by the program.

The solution specifications give structure to a proof of the properties. This separates the

adequacy of causality arguments (Chapter 5) from implementation of causality arguments

(program correctness relative to solution specifications).

6.i Properties of a Proof of Correctness

The proof may seem no more or less revealing than other proofs of properties of

programs that the reader has seen. However, there is at least one important way in which this

proof differs from others about the readers/writers problem. That is in the fact that we are

proving that a behavioral specification is satisfied by this code given behavioral definitions of

the programming language.

94

The reader may be wondering why the use of behavioral specifications is stressed given

that final implementation depends on finding a state description. In fact even the solution

specification depended on the notion of state, since the definitions of the data base being open at

E is the def in it ion of a state of the data base. The reasons for favoring the behavioral approach

are based on comparison with attempts at specification of readers/writers problem by description

of possible states of the system. This is done by means of invariant relations which must always

be true of the variables in which the state is encoded. An example of an invariant which applies

to the writer priority data base might be:

(readercount 2 0 I\ writecount ~ O) V (readercount > 0 I\ -.. busy)

meaning that either a writer and no readers are in the data base or reads are in and no writers

are in.

One problem with the state approach is evident in the use of this style of specification

by Robinson and Holt [1975] for write priority. The priority property must be stated in terms of

state transitions in order to constrain the situation is which a waiting read can be changed to an

active read and allowed into the data base. Robinson and Holt can do this by adding the ability

to talk about two values of each variable, such as 'readcount' and readcount, the first being the

original value, the other the value after the change. For instance he states the condition

min(l, readcount - 'readcount') ~ 1 - min(writecount,1)

so that state change increasing the number of readers can occur only if writecount is 0, i.e. if there

are no waiting writers. Thus they are not realty totally depending on properties of states rather

than behavior. If the properties were based on sequences of state changes longer than one

change. the Robinson and Holt specifications may not be at all useful.! At the very least they

would encounter notational difficulty.

1 One might also question whether use of min and max etc. has any intuitive value for high level
specifications.

95

Indeed recognition of possible states in which a system can be is an important

abstraction. However, there is a correspondence between states and behaviors which allows one to

define the states of a system as an equivalence relation over the possible behaviors. States as

abbreviations for classes of behaviors are convenient notations whereas be ha vi ors as sequences of

state changes can lead to notational difficulties as in Robinson and Holt. Therefore this work

emphasizes the reliance on behavior with states as abbreviations. This is particularly important

for systems of communicating parallel processes in which specifications are so often about

behavioral properties. Especially in dealing with actors such as the less structured

synchronization in Chapter 7 one will need to write specifications dependent on behaviors that

correspond to long sequences of "state transitions." For such definitions the behavioral approach

is simplest and most direct for implementation independent specifications.

The reason for taking this view is related to our reasons for suggesting that

programming language primitives should be defined as systems, and relates to a second problem

with the state invariant specifications. In proofs of correctness, state invariants are often used as

the assertion which must be shown true of the program [Hansen, 1972; Hoare, 1971]. The danger

is in the misinterpretation of such invariants. The invariant as a statement about waiting

requests and served requests is about meta-variables of a system (such as numbers of actual

requests, etc. to the program being examined). Thus, the invariant should be a property of this

relation among the numbers of events of various sorts. Instead, the invariant is almost always

interpreted as a property which must hold for explicit program variables which contain state

information. Then as long as these variables can be shown to be kept in a consistent state, the

program is considered correct. This is independent of the properties of the program as a

synchronizer due to synchronization primitives used. Therefore, even if unfair synchronization is

used, the program can be proved correct. Although a write request may be locked out of the data

base indefinitely by an unfair synchronization, as long as reads are served only when the

96

program variable for waiting writes is equal to 0, there need be no consideration of this actual

waiting write. This approach enabled Hansen to prove correctness of his readers/writers solution

using the unfair conditional critical regions [1972) although writer priority within the program

can be superceded by lockout at the critical region. This flaw in his program is noted by

Courtois et al. (1972).

For the above reasons we find that the behavioral approach is better suited to semantics

of synchronization than is a state invariant approach, even at the program level. The proof of

correctness of the monitor solution to readers/writers includes reference to the properties of the

program as it would appear as part of a system which is relying on it for data base protection. It

proves correctness as a synchronization device, not just as code for keeping an internally

consistent picture of an internal state. It is based on system state rather than data base state and

proves the relevance of the program's internal state to the state of the system of which it is a part.

6.5 The Monitor as Structured Synchronization

In examining the details of how a proof of properties of the monitor implementation of

readers/writers would be completed, it becomes clear why Hoare (1974] could not extend his proof

technique to apply to many monitors. His attempt to find and prove an invariant relation for the

monitor as a whole is not well-founded since in practice, the preservation of the invariant may

depend on uses of the separate procedures. Thus while a procedure as it is used in the system

may not invalidate the invariant, it may also be the case that this cannot be deduced from the

invariant alone.

There is a question of what structure the use of the monitor can impose on programs.

One measure of the structure of a program is the modularity of the code. The ability to take a

block of code, prove it satisfies an invariant and then only use that invariant in place of the code

97

for proof of correctness of the rest of the program indicates the validity of that module as a

block in the semantic as well as syntactic structure. Apparently for this reason Hoare wishes to

prove invariants of monitors, thus emphasizing their meanings as modules in a system. However,

there are intersecting logical divisions of the program as seen in the program (Figures 6.2 and 6.3)

which foil this plan. For the purposes of mutual exclusion startread, endread, startwrtte, endwrttt

must all .be in one monitor. However, for the purposes of preserving reasonable properties of the

data base, the blocks

startread ; read ; endread

and

startwrtte ; wrtte ; endwrtte

are appropriate "modules." When data base invariants for these block are proved relative to the

synchronization properties of the monitor as a module, the program can be proved correct.

However, no interesting invariant about variables private to the monitor need be provable for the

monitor as a whole.

The invariant~

(readercount ~ 0 /\ writecount • 0 /\ busy • false)
V (readercount • 0 /\ writecount ~ 0 /\ busy • true)

might be a reasonable property to be maintained over the variables in the monitor. However.

endread itself cannot be proved to preserve ~. This is because if a process could enter endrea.d

when readercount • 0, then readercount could be reduced to less than 0. In fact, by the structure

of the program in Figure 6.3 if we ever enter endread at all it is only under the condition

(readercount ~ 0 ...). This is not a property of the monitor but rather of the program which

98

forces the monitor procedures to be used appropriately. The invariant is true but it is not strong

enough for proving that the invariant will be preserved.

Unless the program is structured so that all read operations are forced to be of the form

startread ; read ; tndread, we would have to prove that for all instances scattered throughout the

system of operations for checking in and checking out there is a stronger ~· such that

{~'} endread {~}

and ~· always is true for endread. Thus the localization of this synchronization structure can

seriously change the difficulty encountered in understanding a system. This part of the structure

is the part most important for realizing goals of structured programming relating to producing

understandable code.

99

7 Unstructured Synchronization

This chapter contains a definition of the semaphore. The definition is independent of

implementation and illustrates the "Jack of structure" of this primitive, in the sense that 1u

presence alone in a system does not introduce easily abstracted time ordering properties such as

mutual exclusion as does the presence of protected-data-base or wpdb. It can be used to build

systems which do cause interesting time ordering properties, and one program for such a system is

discussed.

Another definition, that of an unfair semaphore, i.e. one that can continually overlook

some waiting requests, is given as well. By restricting the ways in which it can be used in a

system one can see that structure and even fairness can be achieved under certain carefully chosen

conditions.

The purpose of this chapter is to show first that the specification language so far

developed is not prejudiced towards definition of structured synchronization, and second that the

language is sufficiently powerful to give truly implementation independent specifications of this

primitive. The value of such specifications is made evident by their use in specifying properties

of programs which use the primitive. These specifications can convey the structure of the

program directly without details of the implementation of the semaphore.

The chapter ends with a discussion of structure of synchronization as discussed here

and Hs relation to properties of "structured programming language synchronization primitives·

and the programs which use them.

7.l A Definition of the Semaphore

100

The reader can find a number of definitions of a semaphore in [Dijkstra, 1968;

Tsichntzis, 1971; Shaw, 1971; Hansen, 1972a; Haberman, 1970). What most have in common is a

dependence of the description on an implementation, generally in terms of "indivisible" sequences

of events for updating and testing a cell's values.• As long as the cell's value is greater than 0

that value can be decremented. Its value can always be incremented. A general semaphore is

usually defined first and a binary semaphore, one which has maximum value I in its internal cell,

given as a restricted semaphore. However, in implementing semaphores, the binary semaphore is

usually built first [Shaw, 1974) from cells (or test and set)2 operations and the general semaphore

from it.

The binary semaphore contains the basic locking and unlocking which is characteristic

of synchronization primitives and is the one we will examine. As a "gate," the semaphore

becomes "locked" by any process that passes through. When locked, the semaphore causes others

to wait. The gate remains locked until someone unlocks it. Unlocking an open gate has no

eff ect.3

A fair binary semaphore, s, can be defined behaviorally, by reference to ordering

relations induced on events of the following forms:

Ep .. <s (apply: 'P (then-to: c)) a ec i>
Ev • <s (apply: 'V (then-to: c)) a ec 2>

Since all events EP' Ev have s as target they can all be ordered by =>5 . In a single activator if

there are further events then

1 Haberman [1970] is most like our definition by behavior since it summarizes history in an
in variant and meta-variables. However, it is not clear that the meta-variables correspond to
numbers of any physical events in a system. Also, he must have difficulty with a binary
semaphore where the order of "events" (real or not) is of more importance than the numbers.

2 An indivisible group of updates with no conditions for waiting or queuing implicit, thus more
primitive than a semaphore.

3 In a genera 1 semaphore unlocks can be "saved" so that if n unlocks are done while the gate is
open, n processes can get through the gate before it will become locked again.

Ep --> <c (apply:) a ec />
Ev --> <c (apply:) a eel>.

101

We will refer to these events as EP and Ev , respectively. Ev always causes a next event, but
next next

for any EP, there may be additional events required to cause EP . These depend on the "state"
next

of the semaphore where the state is as usual a class of (pasts) histories.I Unlike the cell in which

one only has to look back as far as the last update to determine its state, with a semaphore one

often has to look back over its entire history. The update to a cell changes its state and that state

is stable and determines responses until the next update. Similarly, if the semaphore is "unlocked"

or "open" then the response of an EP is clear. However, the designation of all other histories as

putting the semaphore in a "closed" state is less useful. It can stay closed indefinitely. In that case

the effect of an EP or an Ev is determined not by the fact that the semaphore is closed, but rather

by the order of events since the last time it was open.

Not only must the total history be relied on, but in addition, no simplifying assumptions

about this history can be made to facilitate its description. The kinds of assumptions that one

might want to make are things like the fact that there will be no unlocks before there are locks,

that all activators that get through a gate take responsibility for unlocking it later, or that no one

unlocks a gate unless he locked it, etc. These are assumpt10ns which are reflected in possible

orderings of P's and V's in histories. What is more they are the kinds of assumptions on which

structured specifications rend to rely. With protected-data-base or wpdb rather than data-base

certain properties of => hold in any behavior. I.e., those properties would hold independent of

the system of which the actor was a part and the kinds or numbers of messages it received.

This is not true of the semaphore. While it does have inherent properties which can be

1 As per discussion in Chapter 2, when a set of events is totally ordered (in this case by •>1) we
can refer to rhe set of totally ordered events as a history, the events before an event E in •>1 as
the past, those after it as the future.

102

specified, any abstractions that can be made about behaviors of systems containing a semaphore

are extremely dependent on the system of which that semaphore is a part. Whether or not a

system has interesting time ordering properties will depend on whether the semaphore is used in a

manner that enforces the orderings.

A standard way to enforce a property such as E1 •> E2, where E1, E2 have different

targets, and are in different activators, is to have an event, E
1

, after E1 which must be necessary

to the occurrence of an event, Eb, before E2. With a semaphore one might have E1 • Ep and Eb ..

Ey. However, unless the semaphore is guaranteed to keep E2 waiting until after E1, no guarantee

abou: '.tme ordering can be made. For instance if a system with a semaphore has a process thar is

in a loop continually sending V's to that semaphore, then it is unlikely that anything can be s.a1d

about the orderings imposed elsewhere in the system by that semaphore. If another process can

unlock the semaphore, the ordering of E1 and E2 is not enforced.

Protected-data-base and wpdb had no control over how many or what kinds of requests

they receive, but once they received messages they had complete control over setting up possible

unlocking messages. Each sc was good for one unlock and meant the end of the data base

operations (this last depends on assumptions such as no parallelism in the data base, etc.). In

other words, they imposed structure on locking and unlocking. The semaphore by itself is subject

to receipt of arbitrary messages in arbitrary order with no structure necessarily imposed. Whether

or not this means semaphores are "bad" is a subject for debate related to structured programming.

The point of concern here is that since no pattern of the "locking" and "unlocking" messages in

the history of a semaphore can be assumed, definition independent of a particular use and

independent of implementation is a somewhat complex task.

First of all, since unlocks (V's) can no longer be assumed to mean "end of operation"

and therefore to correspond naturally to some previous request, a means for talking about the

effect of a V must be introduced. If the semaphore is locked, it is locked due to some P being let

through. Thus the V terminates the locking due to that P.

103

Definition: E1 terminates E2 [written E1 • Z(E2)] if

(I) E2 is first EP in =>sand E1 is first Ev after E2

or (2) EP
1

is the last EP before E2 and E1 is first Ev that is both after !l(EP
1

) and

3 f~er E2.

Defin1t1on: E2 1s a terminating V event iff 3 EP 3 E2 = Z(Ep>·

Examples of Ev's that are not terminating V events are Ev
1
, Ev

6
and Ey

7
in the following

sequence where Ev
1

is first event in "'>s:

Evl, EPl' Ev2• EP2' EP3' EP4' Ev3• Ev4• Ev5• Ev6' Ev7• EP5' ...

where Z 1s:

Ev2 • t (EPI)

Ev3 = t(EP2)

Ev4 = t(EP3)

Ev5 = t(EP4).

The definition of semaphore will illustrate causality as "a relation between relations."

Not only can sets ordered by =>6 be in preconditions. Now the relation of Ev .. !l(EP) is used. In

a sense this kind of relation was implicit in the wpdb specifications, where Ew and Ew were
out

simllarly related. However, since the event, Ew , was itself identifiable as the "matching" end,
out

no expllrn def1111t1on of the relation was necessary. In order to refer to an Ew 3 !l(Ew> was in the

behavior, we simply 'spoke of an Ew 3 Ew was in the behavior.
out

One further difficulty arises when attempting to define the semaphore to be "fair."

The definition of fairness is somewhat complicated by the fact that there is no guarantee in the

semaphore itself that there will ever be V operations.I If there are only P operations then clearly

1 This contrasts with the other aspect of the lack of structure, namely the lack of matching
referred to earlier in due to which there can be too many V's, some of which will not be
terminating V's

104

all activators but the first will be stopped forever (i.e., will not have Ep 's and therefore will
next

have no further events). Thus one cannot say the semaphore is unfair simply because there are

conditions under which there can be events EP with no EP in a behavior. However, in any
next

behavior in which there are a "sufficient number" of Ev's it must be the case that all Ep's are

followed by EP . "Sufficient" may be defined relative to some bound on the number of Ev's
next

that occur after EP such that EP may still not be in the behavior. This bound may be a
next

function of the number of EP's in the past. For any behavior in which 3 E 3 EP
1

•>s E and the

number of V's between EP
1

and E is greater than 18 (n) where n is the number of unenabled Ep's

before EP , then EP is in the behavior.I For instance, as we shall see in section 7.2, given a
1 1 next

structure in which every EP eventually causes an Ev, there should be no EP that is not followed
next

by an EP .
next

The easiest way to anticipate fairness criteria for any use of semaphores is to rely on

the actor ordering =>5 in specifying the choice of the next process to be let in.2 In section 7.3

we will discuss the alternatives.

The axioms for a semaphore are:

<cons-semaphore (apply: (then-to: c)) er ec>

causes

<c (apply: s*) a ec'>

1 Guy Steele has a defined a "fair" semaphore for which 18 is a function of all P's and V's, not
just the unenabled ones.

2 For a primitive, this corresponds to a FIFO queuing algorithm based on time of arrival of
request. It also corresponds to !8(x) = x. Since all P events are of the same form there is no other
grounds for providing fair selections in a semaphore. There can be fair algorithms other than
FIFO provided other properties are visible, either by extending the model or by having events of
differing forms. We have seen a non-FIFO, but fair algorithm in Hoare's fair readers/writers
which while it doesn't necessarily serve requests in order, does serve all requests. When
algorithms other than FIFO are used, argument that the algorithm is indeed fair is required.

105

where the following properties of s hold.

(a) V's always are completed.

causes

Ev .
1 next

(b) A new semaphore is open.

E1
where E1 is the first EP m =>s

causes

E
1 next

(c) Every V that ends a P enables the next P. V's that don't end P's have no effect. [The Y

that ends a P either reopens the semaphore or releases the next waiting P.]

causes

This last clause includes the orderings Ev => EP which could have been derived from •>,.
1 next

I.e., 1f V EP =>s EP , '?(EP) =>5 EP , then EP causes EP . However, since all we care about in
1 1 1 1 next

this def in it ion of semaphore is being able to characterize the => it induces, and not a description

106

of when an implementation would have to actually add constraints, this definition suffices. The

reason that we are only interested in this kind of definition is that the semaphore will only be

used as a primitive in this paper. Therefore all that need be known are the time ordering

properties that can be relied on if it is used. The definition by causal axioms clarifies the

reliance on the actor's ordering to assure that all EP and Ev events are ordered in any time

ordering derived from a system including semaphores.

The reliance on the definition of :l(EP) to pinpoint the "matching" unlocks is essentially

the point on which our distinction between structured and unstructured synchronization hangs.1

With the protected-data-base defined previously we could predict the form of the enabling event

to the extent that 1t was known to correspond to the termination of. an operation. In the

protected-data-base we knew exactly which event it would be. The end of the preceding operation

would occur in a predictable activator, etc. With a semaphore all that is known about the

terminating V is that it will be of the form Ev.

A point to note about these specifications is that while they rely on more than just what

preceding events occurred, (i.e., they rely on relations among those events), the fact that all these

events haves as target should ensure the realizability of the specifications. An implementation of

the semaphore has to be able to recognize the fact that a past EP has been terminated. Since the

recording of the number of Ev's is not sufficient to derive that presumably a record of the

relation must be kept. Although the record of this relation is theoretically ever increasing in size

as more pairs are added, one should note that this does not have to imply a requirement of ever

increasing space in an implementation. The recording of this relation can be implemented in any

of a number of ways. A queue from which EP is removed once :l(Ep> occurs could be used.

Then "EP on queue" = "EP 3 :l(Ep) has not occurred yet." Similarly, if being implemented using

only cells doing busywaiting, the responsibility is shifted. The "recording of the relation" could

1 It will be seen again in the definition of the condition in the monitor.

107

be implemented by the fact that process a of EP ceases its busywaiting examination of cells once it

finds an appropriate condition is set [i.e. once '.?(EP) occurs].

7.2 The Semaphore Implementation of Protected Data Base

The semaphore can be used to implement the protected data base by using it in a

program such as that in Figure 7.1.

procedure protected-data-base (x)
semaphore s ;

end

record y ;
P(s) ;
y : .. data-base (x) ;
V(s) ;
return (y);

Figure 7.1: Semaphore Implementation of Protected Data Base.

Thus when protected data base is sent a request, x, with continuation c, it sends a message 'p with

continuation, ci, to the semaphore. This ci is the rest of the sequence of statements in the

procedure body. On receiving acknowledgement from the semaphore, in the form of the message

(apply:), ci causes transmission of x to the data base, followed (on return of response put into y)

by V'mg the semaphore, s, and returning y to the original continuation, c.

When the fair semaphore as defined above is used in this manner, the mutual exclusion

of data base operations is implemented. What is more, there can be no lockout. This property is

derived partly from the semaphore definition and partly from the particular use here. The fact

that every P operation that is released will eventually be followed in that activator by a Y

operation, combined with the knowledge that V's ~only happen under that circumstance, (i.e.

after a P), makes two points clear. First, there will always be more V's in the "future" than there

108

were unenabled P's in the past, allowing· any process that does a P operation to continue. Also, V

EP' ~(EP) is now easily identified, making a description of how this program works considerably

simpler than that of the semaphore to write.

These points can be shown to be true as follows. Since it is the case that

<s (apply: 'P (then-to: c)) a ec> -->data base sequence of events--> <s (apply: 'V (then-to: r)) a ec<x»

we can also say that

causes

<s (apply: 'V (then-to: ri)) "i ec / x» ;,.> <cj (apply:) "j ec 2'>

where <s (apply: 'V (then-to: ri)) cri ec / x» is the first V in "i after that P operation.

If the first V after EPI in the same activator is ref erred to as EP then this can be stated
I out

EPI =>s EP2

causes

EP => EP
I out 2next

I.e., if EP
1

in "i is Ex then the event Exout is the event <s (apply: 'V (then-to: ri)) «j ec / x» which

releases the next EP. This clearly is related to the protected-data-base structure axioms and should

be recognizable as mutual exclusion specifications. It can also be interpreted as a specification of

the structure of a mutual exclusion solution. That is, the crucial events which delimit the critical

sections are mentioned and causal relations among them which are necessary for enforcing mutual

exclusion are specified. This specifies the structure of a program. The implementation of the

109

causalHy can then be left to semaphore which can cause waiting and addition of dependencies.

What this specification says is exactly where the semaphore operations should appear in the

program.

The structure of the program guarantees that there could be no other Ev in the

behavior 3 EP
1

'">s Ev =>5 EP . This axiom shows clearly that this program enforces mutual
1 out

exclusion of data base operations. There also can be no extraneous V's, since due to the fact thac

all V's occur only after P's, it can be shown quite easily that every Ev is a terminating V event.

Fairness in the sense of protected-data-base, namely that every request is served, can also

be shown ro hold. The argument is based on the activator properties due to the structure of the

solution and the properties of the semaphore as it was defined in terms of .. >5 . By induction all

EP 's preceding any EP have t(EpJ Therefore the conditions for EP are always met and the
1 1 next

data base operation can proceed. The structure of the program ensures that at any point in the

history of the semaphore the number of V's in the "future" is always greater than or equal to the

number of unenabled P's in the "past." This, combined with the fact that the semaphore was

defined to be fair relative to that condition, ensures fairness of the structure synchronization here

enabled.

To repeat, the structure of the program is the structure of mutual exclusion. The

proper:y

causes

is a property of this program. It is not the high level mutual exclusion specification. Nor is it

simply the definition of a semaphore. It is a description of the events of this particular program

110

which involve the semaphore -- a description of how the semaphore ts betng used in this case. It

captures the meaning of the program template

procedure ...
semaphore s ;
P(s);

V(s) ;

end.

7.3 An Unfair Semaphore

Often in definitions of the semaphore it is only said that if processes are waiting when

a V operation occurs, then that V will enable ~ waiting process (e.g. [Courtois et al., 1970)).

The point is to avoid committment to any particular scheduling algorithm. However, if one

cannot even assume that the algorithm that will be used is in any sense fair then the usefulness of

the semaphore might be impaired.

Taking the statement of choice literally, a behavioral definition of a semaphore can be

written in which V messages simply cause the enabling of one of the set of already waiting

processes. We can then investigate the resulting restrictions on the properties of the semaphore

which can be relied on.

With the fair semaphore the choice was by first in '">s of a set of elements EP 3 there is

no X<Ep) in the behavior. Each time an Ep was chosen, the next Ey became X<Ep), therefore EP

was removed from the set. If instead some arbitrary element in the set is chosen, the FIFO

discipline is eliminated and in fact the semaphore so defined is demonstrably unfair. If every V

in a behavior finds more than one EP waiting there is no guarantee, even given an unbounded

future number of V's, that all P's get through. [I.e. there is no such thing as a sufficient number

of V's] The ordering

Ill

can cause behavior in which EP never occurs if the following relation is defined:
3next

Evl ,. '.?(EPl)

Ev2 = '.?(EP2)

Ev3,. '.?(EP4)

One way to represent the choice of next enabled P which a '.? (EP) makes is to define another

relation Ev .. !R (EP). It is defined in the axioms for s, and depends on a definition of the set

W(Ev) of waiting events and a revised definition of '.?.

Definition: E1 = X(E2) if either

(1) E2 is first EP' and E 1 is first Ev after E2

(2) E2 finds the semaphore open and E1 is the first Ev after E2

or (3) E2 is such that E2 => !R(E2) and E1 is the first Ev after !R(E2).

Definition: EPl e W(Evl) if EPl '">s Evl and

(I) EP
1

is not the first EP in "'>s

(2) the semaphore was not open for EP
1

and (3) not 3 Ev 3 ((Ev "'>s Ev
1
) f\ !R(EP

1
)).

Then the axioms for the unfair semaphores are:

(a) The first P always gets in

causes

E 1 next

112

(b) If all preceding P's are terminated, and the semaphore is open, the first P gets in
and the last V that terminated a P is the releasing V.

E1 3 E1 is not the first EP

and 'tJ Ep, Ep => E1 :> t(EP) =>5 E1

causes

E
1 next

and Ev last in the set {t(Epl I EP "'>s E1 } is !Jl(E1)

(c) A terminating V that finds waiting P's releases one of them

causes

EP for unique EP e: W(Ev)l
next

E
Ynext

and Ev • !Jl (EP).

Note that this definition implies that if W(Ev) = {Ep} then EP is released by Ey. I.e., whenever

exactly one process is waiting it is enabled by the next V. Also, whenever no process is waiting, a

terminating V opens the semaphore and therefore the next P is guaranteed to get in. Thus the

only way in which a process can get stuck at a semaphore is if there is always more than one

process waiting.

7.i Using Unfair Semaphores

The same protected data base implementation as in section 7.2 can be done with unfair

1 Compare to Parnas' (1975) hidden functions definitions which depend on set operations.

113

semaphores and clearly the solution cannot be proved fair. If the specifications were simply

"guaranteed mu tu a I exclusion," this might be satisfactory.

Unfair semaphores can cause ordering properties identical to those of a fair one for

certain restricted behaviors. If, due to properties of the system causing messages to be sent to the

semaphore, it can be guaranteed that at most one P will ever be waiting at a locked semaphore,

then V operations are always guaranteed to release that one P.l Within this restricted set of

histories a terminating V always releases the "next" P after the one it is terminating. Examples of

this kind of use might be in a semaphore being used in mutual exclusion style to protect a

resource which is held for an extremely short time relative to the times involved in computations

outside the resource and known frequency of use of the resource.2 Such assumptions can break

down, and a system built with unfair synchronization and relying on appropriate use, can begin

to have "incorrect" or undesirable behavior once usage changes. If fairness is important, then

such a system cannot be considered correct except relative to certain conditions. It is not

guaranteed to behave correctly in all environments and under all conditions of use.

The next chapter contains a program of Courtois et al. [1971) which relies on unfair

semaphores for certain properties. In order to guarantee certain properties extra semaphores are

used to ensure that at a certain key semaphore at most one process will ever be waiting. This

restriction of behaviors involving that semaphore is independent of usage of the program as a

whole. Thus that semaphore can process the messages it receives exactly as if it were a fair

semaphore.

1 Simtlarly, fairness although not necessarily FIFO, can be guaranteed relative to any usage
guaranteed to bring the number waiting down to zero arbitrarily often in any behavior.

2 This is the assumption Hansen makes in conditional critical regions solutions for which fairness
is not guaranteed. He claims that the only reasonable assumption about usage is that variables
determining use of the data base are not scarce resource [Hansen, 1973]. I.e. that it is not likely
that lots of waiting would occur for access to variables determining the state of the data base.

114

7.5 Unstructured Synchronization

The semaphore is an unstructured synchronization primitive in the sense that while it

has "lock" and "unlock" operations, there is no relation enforced by the primitive itself between

the locking and unlocking. I.e., there is no property comparable to that of protected-data-base or

wpdb which allowed prediction of what event would unlock the synchronization for a waiting

process. In protected-data-base it was always the end of the last data base operation. Thus the

entire event, including its activator, could be predicted. By contrast, with a semaphore, all one can

say 1s that a ·v· operation, if it occurs, will enable a waiting activator. What is more, the

property of whether an event represents a waiting process or not can no longer be indirectly

specified by whether or not its ending event has occurred. Events must be designated as having

ended particular P operations.

The information available in these other actors (protected-data-base and wpdb) can be a

property of a program in which semaphores are used in a particular manner, but they cannot be

said to be properties of the semaphore itself.

115

8 Using Unfair Synchronization

This chapter contains an analysis of a program meant to solve a Writer Priority

Readers/Writers Problem using semaphores which cannot be assumed fair. The specifications of

this program and of the solution it implements are quite different from those stated in Chapter 5.

The differences and the reasons for them are discussed. Some formal properties of the solution

specifications can be shown to hold. Other properties are environment dependent specifications

which the high level behavioral semantics given earlier were not meant to anticipate. The wide

range of specifications that could be relevant to evaluating synchronization programs is sampled

with consideration of how our specification language might have been used had the particular

points about the running environment been included in the writer's picture of his needs.

The chapter continues with an examination of another solution written with

synchronization primitives which have been specified with varying degrees of formality and

"completeness." Implementation of environment dependent specifications, comparison of power of

various primitives, and styles of programming are discussed.

8.1 The Original Problem

Courtois et al. set themselves a problem, defined carefully to be implementable with

semaphores which could not be guaranteed to be fair. Specifically, they did not require that any

sort of fairness hold, since they knew that there was no guarantee that their semaphores could

provide it.1

1 They mention explicitly that if they did not restrict themselves to simple semaphores with no
fairness guarantee they might be able to accomplish more.

116

In terms of :a> it is still the case that 'tJ Sr, Sw in a behavior Sr •>Sw or Sw •> Sr and 'ti

Sw
1
, Sw

2
in any behavior Sw

1
=> Sw

2
or Sw

2
•> Sw

1
. However, there is no guarantee of

fairness to readers or to writers and no guarantee that requests of either class can still be totally

ordered. The only requirement in addition to the readers/writers property is the following

statement of writer priority: "Once a writer is ready to write, he performs his 'write' as soon as

possible to meet this requirement a reader who arrives after a writer has announced that he is

ready to write must wait even tf the wrtter ts also watttng."

The phrase "as soon as possible" is a typical informal problem specification phrase

which does not convey sufficient information by itself to be implementable. There is no

specif 1cat1on of the notion of "time" being used or of what comparisons are to be made in

determining that the amount of delay has indeed been minimized (or speed maximized). There

could be many interpretations of this phrase. If readers are already in the data base when a

writer announces, then it may be that the "quickest" way to serve the writer is to interrupt all the

reads and let the writer in immediately after. Ir may be faster to let him in immediately and to

simply warn all readers that were in the data base that they probably got bad information

[Lamport, 1974) and that they should reread.1 Courtois et al. evidently did not mean to maximize

speed m this sense. Also, since they explicitly accepted the fact that once a writer has announced,

that writer may still get locked out if many other writes are waiting, they clearly did not even

mean by "as soon as possible" to imply guarantee of writing.2

This 1s an example of mixture of program specifications and specifications of runtime

properties. There is no sense of "as soon as possible" which will be meaningful for this program

over all possible running situations. Some interpretations of "good" solutions can be specified but

1 No fairness to reads is required so that there is no need for concern over the fact that this could
potentially keep readers rereading forever as new writers appear.

2 Regarding this property, the best that can be said is that as long as a writer is trying, some
writer (not necessary the one trying) gets in.

117

no one solution is particularly specified by this informal phrase. For the time being we will

analyze the program relative to the solution specifications implicit in the statement • ... a reader

who arrives after a writer has announced that he is ready to write must wait " To do this we

must specify how writers announce that they are ready.

The main point besides the reader/writer property to be captured in the Courtois

specifications is the fact that the solution is deliberately not meant to assume a single actor

solution. Readers and writers have their own entrance actors which happen to use a common

channel of communication for checking writer priority. All writers must be announced and all

readers must check. Writers cannot be prevented from announcing (even if a particular writer

can be locked out).

Thus Courtois et al. really were specifying the use of a communication channel between

readers and writers as well as mutual exclusion of writers. The communication channel must be

used in a particular way. If properly used, the communication channel will cause the following

properties to hold. If Eaw is the event in which a group of writes announce themselves and Er

the one in which a read checks for writes:

(I) Sr is in the behavior iff Er is in the behavior and either Er found no
announcement or was released due to there being no writers still claiming the data
base.

(2) If Ew 3 Ew •> Ew => Ew and Ew
1

is an Eaw• then no reads that didn't
1 1 out

precede Ew
1

get in before Ew.1

This last requirement could be realized by the following property, where •>c is the ordering

observed at the communication channel.

I All reads are ordered with respect to announcing writes. Therefore all reads either
do or do not precede Ew

1
.

118

and the requirement that all writes either announce themselves or satisfy themselves that wrnes

are announced. Thus the requirement (2) is

If Ew 3 Ew •> Ew •> Ew and Ew is an E1w, then Sr •>Sw iff Er •>c Ew
1 1 out 1

Write announcements can cause reads to wait, but if a read does check before a writer announces,

then that read can get in. There is no implication in such specifications of total ordering of all

requests or of fairness to any individual request. The priority can be passed along from write to

write by letting each write that arrives while writes are still in the data base "inherit" the current

announcement. Thus writes only have to race with reads for the common channel when the data

base has no waiting writes. By having writers communicate through the same channel when

giving up the data base, the events necessary for Sr to be in the behavior, i.e. the "unannouncing"

of writer. can be specified and causal specifications given. A particular solution would have to

include a communication channel through which a read can relinquish the data base after it gets

it.

8.2 The Courtois, Heymans, and Parnas Program

The solution that Courtois et al. present requires cooperation of the following sorts. All

writers must use a single semaphore to achieve mutual exclusion and readers and wrirers must

announce themselves through some common semaphore so that priority can be achieved. Since

the program is written in terms of semaphores which may be unfair, readers and writers cannot

simply pass through one common semaphore. If they did, then whenever a group of readers and

writers were waiting, there would be nothing that could be said about which was selected next

after a V operation. No priority could be given, since any attempt in the program to give priority

to writers would be foiled by the possibility of writers accidentally never getting through the

common semaphore. Thus Courtois et al. go to great lengths to guarantee that at most one

process can ever be waiting at any common semaphore. The solution is presented in Figure 8.1.

119

The only common semaphores, r and w, must be protected so that at most one process

can be waiting at either. Thus mutex 3 is used to let only one reader at a time to the common

semaphore r. M:itex l protects the readcount variable, mutex 2 the wrttecount variable. The

semaphore w 1s used to indicate that the data base is busy. The data base can be busy either due

to some readers or one writer. The semaphore r is used for writes to announce their intention to

take priority. Reads all check for that and are stopped if writes are already waiting. If the first

in a set of reads and a wnter are both making progress towards entering, due to r, only one will.

Thus the ordering at r can determine which gets through first (this only applies in cases where

the data base 1s opened instantaneously and is used in deciding whether the data base is

recaptured by the wrners or not.) No more than one of that group of reads can get m before the

competing write, once both get tor. Readers can only examine readcount, writers only wrttecount.

To implement a solution in which both kinds of processes examine both variables, a common

semap hare wou Id have to be used reintroducing the lockout problems.

120

integer readcount, wrttecount; (initial value• O)
semaphore mutex I, mutex 2, mutex J, w, r; (initial value .. I)

READER
P(mutex J) ;

P(r) ;
P(mutex I);
readcount : • readcount + I ;
if readcount"' l then P(w);
V(mutex I);

V(r);
V(mutex J);

reading is done

P(mutex I) ;
readcount : • readcount - 1 ;
if readcount ""0 then V(w);
V(mutex l);

WRITER
P(mutex 2);

wrttecount : .. wrttecount + l ;
if wrttecount ,. 1 then P(r) ;

V(mutex 2);
P(w);

writing is done

V(w);
P(mutex 2) ;

wrttecount : • wrttecount - 1 ;
if wrttecount • 0 then V(r);

V(mutex 2);

Figure 8.1: Courtois, Heymans and Parnas Solution to Second Readers/Writers Problem

Note that only the first in a group of readers and the first in a group of writers communicate

through both of the common semaphores. (All reads go through r but only first through w, all

writes go through w but only the first through r.) Since the state variables containing numbers of

readers (readcount) and numbers of writers (wrttecount) are used only by readers and writers,

respectively, a reader does not check explicitly for number of waiting writers. It only checks the

number of readers and coordinates with writers through the semaphores.

The arguments required for proving that this program satisfies the specifications

depend on the def in it ion of a semaphore and properties of the particular uses of semaphores

within this program. To prove mutual exclusion of writes the mutual exclusion pattern of P(w)

and V(w) in the writer program must be recognized and it must be shown that the P(w) and V(w)

in the readers program cannot cause mutual exclusion to could be violated. In particular, while

121

the reader's P(w) can hold up writers, the reader's V(w) can never occur while a writer is in the

data base and therefore cannot cause violation of mutual exclusion of writers.

Now before the communication channel property can be handled, some properties of its

use must be checked. This requires proof that at most one process can ever be waiting at r and

that writes always either go through r or check that some other write did. Due to properties of

cond it1ona Is and the fact that writes are ordered at wrttecount, if wrttecount is greater than 1 then

there is an E1w preceding the write. Given these facts, proof of the following are

straightforward:

Er •>r Eaw => Sr •> Sw

Eaw •>r Er => Sw •> Sr

'V Ew 3 E1w is its announcement, Sr a> Sw iff Er •>1 Eaw·

Thus with appropriate filling in of details in the preceding outline, one can prove that

this program does satisfy those communication requirements that we can extract from the

informal Courtois specifications and formalize. The question remains whether these extracted

properties are all the specifiers had in mind. Presumably even a single person writing

specif 1cations and implementing them can make a mistake and not implement his intended

specifications. If the implementation is taken as the precise statement of the meaning then it

cannot be incorrect. If the precise meaning simply was not well expressed in the informal

specifications, and the program is meant to implement some precise specifications, how can we

judge correctness? The following section notes one interpretation taken by readers of Courtois

specifications by which the solution is inadequate.

8.3 An Alternative Interpretation

As a result of the placement of communication operations in the sequence of operations

122

m entrance code there can be some discrepancy between the orderings by which one might

naturally try to Judge performance and orderings acknowledged by the system. If one assumes

that, by some global clock, a read coming to mutex J can be ordered with respect to a write

coming to mutex 2. then one can find fault in this solution since a writer can request entrance (by

coming ro mutex 2) before a read does and yet fail to enter the data base before that read does.

[The reader should be able to see this happening when exactly one writer has been in the data

base and is checking out while these requests appear.JI This violates the scheduling specification

which states that a reader cannot get in while a writer is waiting.2

To evaluate this "failing" we must consider what specifications we are using. If the

high level specifications were of the Chapter 5 variety in which priority was defined relative to

some total ordering on all requests, indeed this solution may be incorrect. However, the authors

specifically said they did not expect to have readers and writers go through a common semaphore.

Thus they deliberately used independent actors leaving this program with no physically

meaningful basis for an ordering =>mutexz&3.3 This ordering is not a system property and cannot

be used to determine time orderings.

If the high level specifications require relative ordering, then this solution could be

1 This timing sequence was pointed out to the author by Ellis Cohen.

2 The reader could compare this to the situation in the monitor solution in which at a time when
a write is finishing, a queue Er, Ew, ... is farmed outside the monitor. The read, being first, will
enter to find the data base empty and will get in even though there is a writer waiting on the
queue. Somehow waiting on that queue is still not equivalenc to ·waiting." Similarly, it should be
clear that Courtois et al. did not intend writers waiting· at the semaphore mutex 2 [or even writers
simply inside their first critical section] to be considered "waiting writers." Those semaphores are
there for preserving the validity of the current count of waiting writers. Only after a writer has
both changed this count and explicitly put itself into a waiting state on one of the semaphores for
communications (r or w) is it recognized as waiting (i.e., has it "announced" its readiness to write).

3 Compare to =>wpdb&s . There we were writing prescriptive specifications and requiring that
c;

wpdb and sc. be implemented by actors that had common ordering. In this case we would be
I

taking two independent actors which already have specifications (they are unfair semaphores) and
basing descriptive specifications on =>mutex2&3. There is no basis for that in the specifications
of the primitive.

123

ruled out on the grounds that the two independent semaphores do not implement such an

orderrng. However, recall that this is just one possible interpretation of what the "real" high level

specifications are. In the next section we consider programs which are claimed to satisfy the

stricter specifications.

8.i Relative Power of Unfair Primitives

With only the unfair semaphore available Courtois et al. had to set fairly modes.t

requirements in stating their problem. However, even those requirements, when interpreted as.

stated above, have been are used in support of arguments that semaphores are insufficiently

powerful to solve this readers/writers problem. The basis for this power difference is not related

to fairness but rather to the number and kinds of operations that can be performed as single

operations. One standard "extended" semaphore is the compound semaphore where P(s1,s2) is

completed 1ff s1 and s2 are both greater than zero. Similar primitives can be made available in a

programming language or can be programmed using a monitor. In this and the next section an

ex tended semaphore solution to the readers/writers problem is examined for how well 1t satisfies

the Courtois specifications. This section contains an unfair synchronization version, the next a

fair one.

No claim has been made that if one takes the view that the priority spec1ficat1ons are

relative to a single total ordering on requests, unfair semaphores can solve the readers/writers

problem. However. there are claims [Presser, 1975; Lipton, 197i] that solutions with more powerful

pnm1t1ves can "solve" the readers/writers problem.

For instance, using his own representation of a primitive up/down which can test and

chang·e arbieranly many variables in one step, Lipton presents the following solution: [Each line

has an indivisible operation on it.]

121

READERS

(I) if s • 0 /\ b • 0 then a : • a + 1 ;
(2) read
(3) a : • a - l ;

WRITERS

(4) s : "" s + l ;
(5) if a .. 0 /\ b .. 0 then b : • b + l ;
(6) write
(7) b : • b - l ;
(8) s : - s - l ;

This program satisfies the following specifications: (1) "stops" (I), bur (l) cannot stop (4). Taking

this as a spec1f1cationl Lipton shows that no semaphore program can have two steps with that

property.2

Our main question about the claim that semaphores cannot solve the readers/writers

problem is whether the up/down primitive as specified does in fact enable a better solution. The

possible misleading factor in this is that no specification of scheduling is made for up/down.

The reason that this may be important is that certain implementations of the up/down can be

subject to the same criticisms that can be directed at Hansen's conditional critica·I regions.

Cond1uonal critical regions are primitives for programming in which the programmer can specify

tests and operations to be performed on shared variables with mutual exclusion enf arced but in

which he has no scheduling faciliues. The conditional critical region enforces mutual exclusion

1 It 1s not clear whether it is meant as a full specification of readers/writers or as a single property
common to all programs for readers/writers.

2 Thus Lipton is implicitly only accepting implementations of stopping specifications in one step.
Results might be different if he allowed for the stopping of sequences by sequences of steps.
Lipton and Snyder are currently working on generaliung their definitions to include such
solutions, with measures of the distance of such solutions from single step ones.

125

of any regions that access common variables, but scheduling of waiting processes is deliberately

totally uncontrolled and unfair.

The reason the up/down primitive must be similar to the conditional critical region is

that 1t too provides for mutual exclusive access to variables (a, b, s in this case) without scheduling

spe'(1f1ed The program can be rewritten to emphasize the relations among the independent

blocks of code due to access of common variables.

READERS

(I) shared s,b,a
if s • 0 I\ b • 0 then a : • a + 1 ;

(2) read
(3) shared a

a:•a-1;

WRITERS

(i) shared s
s:,,.s+J;

(5) shared a, b
if a .. 0 I\ b • 0 then b : • b + l ;

(6) write
(7) shared b

b:-b-1;
(8) .shared s

S:•s-1

G 1 ven th is representation we can see that there must be mutual exclusion among (I), (i) and (8)

due to access ro s. Now the reader can see that if exclusion is enforced unfairly, the program has

exactly the same race as noted in the Courtois solution. That is, if the last write in the data base

1s check mg out and is doing (8), a write can precede a read at the synchronization for (I) and (i)

and yet due to unfair scheduling the reader could proceed first with (I). Its test will succeed (a

and bare 0) and a read will have won an advantage over a write.

126

Thus the "stopping" property of the up/down solution, given no scheduling algorithm,

is a property of execution of the step, not of attempt at execution. Within a system of readers

and writers, accessing a data base through these procedures, the priority arrangements can be

overridden due to both readers and writers implicitly passing through a common unfair

synchronization. I

Thus while the up/down seems to have more "expressive" power in that it allows

expression of the indivisible operations necessary for readers/writers, it is not clear that it has any

associated increase in power as an implementation mechanism since it does not allow for statement

of those details necessary to ensure that this program can be a useful part of a system.

8.5 A Power Difference

If instead the up/down primitive could be defined with a fair scheduling algorithm, two

other points, should be considered. First, specifying a fair algorithm may prove sufficiently

difficult as to render 1t an impractical device regardless of its apparent power. Second, it is only

reasonable to compare the fair up/down to a fair semaphore. Once released from the constraints

under which Courtois et al. operated, there may be better semaphore programs. Thus while we

do not claim to disprove the Lipton results we may introduce properties of synchronization not

considered in their model that may bear weight on grounds of practicality against the literal

interpretation of the result favoring up/down. What is more, given that a fair semaphore is still

not adequate, we can show that the full power of the extended semaphore or up/down is not

required for the· readers/writers problem. In fact, only that part least likely to produce serious

1 In fact, this may be seen as a sacrifice in clarity of a program due to using a more structured
primitive. Since the synchronization mechanism is implicit, It is harder to see this flaw than it
would be in a semaphore program in which all entrance code involved passing through a
common semaphore (i.e. if the Courtois program had only one semaphore mutex in place of mutex
J and mutex 2.)

127

pracrical 1mplemenrarion difficulties is actually necessary. We will deal with the implementation

by fair semaphores first.

Given fair semaphores one can have all requests and ends use the same semaphore for

protection. Since all four operations can be made mutually exclusive both the readcount and

wrttecount variables can be accessed m each. Every requesr can have access to a record of the

complete history and no ordering between reads and writes can be lost. The reader might like to

rry his hands at the fair semaphore solution . There is no reason why it should fail in the

manner described by Lipton. I.e., writes can always stop later reads.I

There 1s a difference between semaphores and extended semaphores which will

probably become apparent in any fair semaphore solution to this problem. The most obvious fair

semaphore solution to this problem 1s to build a monitor from semaphores and to use the monitor

solution for the rest. Hoare shows how to implement the monitor given semaphores. We would

like to point out the following problem, however. If one expects now to be able to fully realize

the original solution specifications, one would be depending on the ability to guarantee that order

of waiting on internal queues corresponds to order on external ones (see Section 6.2).

There seems to be a difficulty in the implementation of monitors with semaphores

which prevents this, and which in general makes it necessary to release shared semaphores before

P'ing private ones. Hoare implements his monitor using a semaphore mutex for the "outside" of

the monitor, and semaphores condttton for conditions. Thus to implement the wait operation one

must do

V(mutex);
P(condltton) ;

1 Of course, if Er, Ew are on the queue, Er will be treated depending on past behavior and not
2

taking into account the fact that a write is waiting behind it on the queue. The only published
solution which apparently gives "complete" priority to writes in the sense that a write only has to
wait for preceding writes is Lamport's [1974).

------- ____ .. ____ ______ ___ _

128

Clearly the opposite order would not work since if condttton is locked, while the process waits

mutex could not be released and deadlock results. However, with this ordering there can be no

guarantee that another process does not get ahead on the condition.I

Thus the semaphore does have a weakness in the separation of these two operations. A

single operation for enqueuing on one semaphore and releasing another would be a more

powerful primitive than the semaphore for the purpose of achieving the fairness property.

Since this increase in power over the semaphore does produce a correct solution it

appears to be sufficient to solve the readers/writers problem. What is more, the added power of

general up/down may come only at unduly high cost. The reason for this is in the difficulty in

defining up/down to ensure fair synchronization. Depending on the particular use of up/down

this can become arbitrarily complex.

In an extended semaphore which allows indivisible P and V on arbitrary groups of

semaphores, scheduling is difficult enough. Then a P operation part in, say, [P s1 ... sk V s1 ... sm),

causes waiting if any of s1 ... sk are 0. Other V operations may change the values of arbitrary

si's. If for instance s1 and sg are I, s2 and s4 are 0 and P(s1, s2), P(s2, s3), and P(s2, s4) occur in

that order, who should be enabled by the sequence of operations V(s4); V(s2)? What is a fair

algorithm for a particular set of semaphores and what is a general fair algorithm over all

possible extended semaphores? It would appear there should be one queue for each set of values

waited for and an algorithm for rotating among those queues when a single value is changed.

In this case all P's simply require non-zero values. With up/down (or conditional

critical region) arbitrary predicates can be required. We refer the reader to Hansen [197~a. 197~b)

for discussion of possible implementation of scheduling. It may be that reliable programming of

synchronization by relinquishing all power to program scheduling may in fact generally cost too

1 If Hoare meant this to be his definition then the ordering correspondence was not at issue.
However, if his informal specifications (or our Chapter 6 interpretation of them) are to be the
criteria, this 1s an error.

129

much m efficiency and m clarity due to heavy reliance on implicit scheduling. Even if the

programmer who is concerned about "good" as well as "reliable" programs does not decide to rely

on semaphores alone, we suspect he is unlikely to go further in the structured direction than the

monitor.I The monitor makes only the first level of synchronization implicit and has facilities for

programmed scheduling. If the programmer codes in deadlock or some other undesirable feature

at lease his code 1s subject to debug·ging. With unscheduled primitives he has no recourse when

the program proves ineffective.

8.6 Properties in Run-time Environment

Some properties of run-time environment are quite deliberately excluded from our

language by choice of model. Most notable is the deliberate representation of processes by

sequences of events leaving each process with no measure the passage of time finer than the

event count.2 This is important because while at a given level of detail the events in a behavior

of a system should be identical independent of the physical machine used as activator, the time

for any two machines may be grossly diff erent.3 Therefore if we state and prove a property of a

system program, it holds over all possible speeds at which that program runs, including arbitrary

relative speeds of its parts.

There are some timing properties in terms of numbers of events between events that

1 In fact in (Hansen, 19nb] Hansen suggests similar means for introducing ability to schedule.

2 Another deliberate choice is co associate events with receipt of message rather than sending.
Imumvely. two messages could be sent in one order but received in another depending perhaps
on the channel over which the messages travel. For this reason the two occurrences, namely
sending and receiving, cannot both be represented in one event without rendering the model
inapplicable to real systems. Receiving rather than sending is chosen in this model to avoid
dealing with properties internal to the sender.

3 Time for a process on the same machine could be different from one use to the next if the
process is part of a timesharing system.

130

can be stated in our language and which may be of interest in specifying system. For instance,

there is a difference between the Courtois and monitor solutions to the readers/writers problem

that is not measured by the current specifications. However, if more is acknowledged about

implementation, it can be expressed. The difference relates to the time involved in enabling a

waiting read. In the monitor solution once the data base is opened to reads !U_ reads on the

condition queue are let in. This was in keeping with our specifications that said that all waiting

reads were enabled by the opening of the data base. If that could be accomplished

instantaneously, then that would be a fine specification and the monitor program an adequate

implementation. However, in that program, the monitor is kept closed while the read loops

through a sequence of signals and additions, letting one at a time of(the queue. If a large

number of reads were waiting it is quite likely that writes are accumulating outside the monitor

during the releasing. By contrast, Courtois et al. who have all reads but one pile up "outside" can

account for this actual time involved m releasing by checking with writes (through r) for each

read. If duration of instruction execution is taken into account, comparison of these two solutions

could show the Courtois one to be better in the sense that when reads and writes are competing,

on the average it lets writes in sooner. Startread in the monitor defined in Chapter 6 cannot be

modified to check for newly arrived waits without giving up the monitor. Then if there are no

wrnes :here would be no way to get back in to release waiting reads.

The fact that enabling is not instantaneous in implementation could be represented by

distinct events for requests and being acknowledged as waiting. The solution specification for

this improved solution could allow for this timing problem by considering the separate events in

which reads request and in which reads are enqueued.I The specifications would be about events

Er• Er , Er. , Er , Er . Er causes Er only when no reads or writes are still waiting. Erenq
enq in out end enq

1 The Courtois program specifications have separate events, namely, the mutex J or mutex 2
events and the P'ing of r.

131

causes Er. only when no writes are ahead. Therefore the readers check twice at Er and Er on
rn enq

whether they can proceed. If a write comes along before the second check, it loses. This can be

done m the Courtois style with the first check being for preceding reads and the second for

writes. This leaves some reads and writes unordered. Since proceeding from Er to E is
renq

independent of the number of writes, Er need not be ordered with respect to writes.

Nested monitors can be used to pre-order reads, letting only one at a time be order with

respect to writes and conditions. This solution is not significantly different from the Courtois

solution if fair semaphores were substituted and may yield a better performing data base than

one which uses the fair semaphore (or monitor) to totally order all requests.I

Given more preme notions of the measure of "as soon as pomble" we can specify

beha v 1oral properties that must hold to satisfy specifications. Speed requirements phrased m

terms of events are within the range of expressible properties of our language. Whether or not

these properties will be observable when measured by arbitrary external criteria is dependent on

the running environment of the programs. In any of these solutions, if writers are running m

machines wh!Ch are significantly slower than the reader's machines then even priority may not be

apparent to the user. [See related discussion at end of Chapter 9).

1 Hansen's patch to his conditional cnt1cal regions solution [1972a] is similar.

132

9 Busywaiting Synchronization

This chapter does not continue the development of the specification language. but

instead steps back ro the uses of cells. It contains two busywaiting solutions to the problem of

mutual exclusion of critical sections. They are analyzed carefully for correspondence of parts to

conditions in the mutual exclusion specifications given in Chapter 4. Also, the properties of

dead locP-.-f ree and absence of lockout are stated formally and proofs that these properties hold are

outlined. This serves the purposes of utilizing the definition of cells and giving further instances

of mapping of specif 1cations onto details of implementation. Reasoning about partial orders is

the basis for most arguments.

Whether or not one programs busywaiting synchronization probably will depend on the

level of derail of computer system implementation one is concerned with. Many computer systems

are in fact based quite heavily on busywaiting.1 Even for the programmer who will never have

to write busywaiting code since he will always use languages containing synchronization

primitives, scudying a few busywaiting implementations may still be important for full

understanding of synchronization. For one thing, such examples provide a good basis from

which to abstract the causality of synchronization actors, as represented by the direct addition of

•> to orderings. The busywaiting solutions show how that order can be added.

These programs have both been proven correct already (Dijkstra, 1965; Knuth, 1966].

However, in neither case was a f orma I statement of the property which had to hold for

"correctness" made. Thus these proofs are interesting in that there is a precise statement and it is

compatible with our language for understanding programs and for reasoning about them.

1 Guy Steele has pointed out that ITS uses busywairing almost exclusively, that it works and that
people understand it.

133

9.1 The Structure of the Dijkstra Solution

Dijkstra [1965] published a solution which without synchronization primitives enforced

mutual exclusion of critical sections in "A Problem in Concurrent Programming Control." To

represent the fact that in general processes may need to enter critical sections arbitrarily often, the

structure he chose was for each program to be in a loop performing operations some of which are

designated as critical, others not. W1th the additional constraint that only one process at a time

may be executing its critical section, there is need for communication among processes before and

after the critical section. Thus the solution takes the form:

Lt: entrance code ;
critical section ;
exit code;
remaining code ;
goto Lt ;

It 1s properties of the cells which are updated and queried in the entrance and exit code sections

that are relied on to guarantee the enforcement of the desired ordering. Thus the critical section

ordering will be due to a property like:

1f entrance events in er 1 •> entrance events in er2

then exit events in er 1 :.> critical section events of er2.

We will abbreviate "critical section events of m" by "CS in m."

The particular solution Dijkstra wrote is to be analyzed here in the two process case and

is shown in Figure 9.1. In it each process has "semi-private" variables, bl and ct, i.e., ones which

are readable but-not writable to other processes. Both processes share a common variable k. The

variable k points to one process (by containing the number t of the process)l and has some

1 Note that these cell solutions require knowledge of number of processes and their "names" (i.e.,
the numbers) whereas for synchronization primitives the ability to name processes (an arbitrary

134

relation to which process is in its critical section. Each process i tries to set k to t before getting

into its critical section. The bt can be interpreted as signalling whether a process is in its

remaining code or not. (The alternative includes being in any of entrance, critical section or exit).

The variable ct indicates whether or not process i "thinks" it has the go ahead. Entrance code

consists of setting bt to false and then trying to establish k = t. While doing this c, must be true

and the process can potentially stay in a loop (between Lil and Ll3). Once the process i finds k. •

t it sets ct to false (to say it thinks it is set to go) and then checks that no one else thinks they can

go (l1{1 Failure (finding a conflict) results in failing back to the beginning (Lil). The exit code

consists of setting both variables to true. Since the program in Figure 9.1 is JUSt for two processes

all the polling of other processes is simplified.l

LIO:
L/J:
Ll2:

LlJ:

b1:•false;
if k ;II! 1 then

else

begin c1 true;
if b2 then k : • l;

goto Lil
end

Ll4: begin c 1 : = false;

if not c2 then goto Lil;
end:

critical section;
c1 : .. true; b1 : .. true;

remainder of cycle;
goto LJO

L20: b2 : • false;
L21: if k ;111 2 then

L22: begin c2: • true;
l2J: if b1 then It : • 2;

goto l21
end

else
l24: begin c2 : • false;

if not c 1 then goto l21;

end;
critical section;

'2 : • true; b2 : • true;
remainder of cycle;

goto L20

Figure 9.1: Mutual Exclusion of Critical Sections.

This solution has the property that one process can loop forever in its entrance section while the

number of them in fact) was assumed as primitive and internal to the actor whose external
behavior we were defining.

1 For process 1, instead of checking all processes ;111 I it can simply check process 2, etc.

135

other does an arbitrary number of critical sections. The ways in which the entrance and exit

codes enforce ordermgs can be analyzed in terms of events.

In order to enter a critical section an activator must have the events:

<ci (apply: [t- 'false] (then-lo: x1)) er ec> -->

<x 1 (apply: ci) a ec'> -->

<cj (apply: 'contents (then-to: x2)) a ec"> -->

<x2 (apply: 'true) a ec"'> where i ~ j.

The event counts indicate that these events must happen successively. There must be no event

E3 = <ci (apply: [t- 'true] (then-to: ?)) a '>
such that E1 --> E3 --> E2
where

EI = <c; (apply: [t- 'false] (then-to: x1)) a ec>
E2 = <cj (apply: 'contents (then-to: x2)) a ec">.

This means process i must set its ci to 'false and find cj is 'true without looping back to Lil. Thus

for every process which enters a critical section, there is such a sequence of events in the behavior

before each mr1cal semon. This is the property of the solution that can be said to hold for each

activator. (Analogous to activator properties of synchronization actors of earlier chapters.) Each

be ha v 1or segment corresponding to entrance events which succeed in entering the critical section

ends m this sequence.

Due to the properties of cells it can also be said that if two processes contain such

sequences they can be ordered with respect to each other. Thus if E 1, E2, E3 and E4 are in the

behavior where

E1 = <ci (apply: [t- 'false] (then-to:?))«; ec1>, E2 = <cj (apply: 'true) «j ec/"> and j ~ i

E3 = <ck (apply: [... 'false] (then-to:?)) erk ec2>, E4 = <c1 (apply: 'true) erk ec['> and I ~ k

then either E1 => E2 => E3 "'> E4
or E3 => E4 => E1 => E2.

136

What 1s more, if E1 •» E2 => E3 => E4 then E2 => Es => E3 => E4
where Es ,. <cj (apply: [t- 'true] (then-to:?)) ai ~>.

This says that this program causes correspondences in orderings •> over tvtnts of

dtffert'nt activators (the ordering of E1, E2 is related to the ordering of E3, E4), and that it uses a

release mechanism for enforcing that ordering (Es in the case of the first ordering). It does not

say that every process that wants to get into its critical section does get in. It is not the case that

having

E 1 • <b 1 (apply: [t- 'false] (then-to: !)) a1 ec>

in a behavior necessarily implies that E1 -->CS in cr1 in that behavior. This solution can lock out

a process indefinitely.

The ordering property just described is one of the program as an actor, not of the cells.

It is not the same as the overall intention either. That statement was that all critical sections

should be executed in some order. This says something about how that ordering is achieved.

9.2 A Proof of Properties of the Dijkstra Solution

Dijkstra stated in English four conditions for correctness of this solution. He then

proceeded to prove its correctness. However, this proof must in fact be considered at most an

informal argument of correctness since the statements of the things to be proved were so vague.

It is not clear that all of the requirements can be formalized.

In the actor model there is a formal interpretation of the statements in this program,

and of the meaning of a cell as a communication device.1 Also, some of Dijkstra's intentions can

1 One might note that models for parallel processes such as Petri nets can model semaphore
communication, but cannot model directly this use of cells for communication. Petri nets model
control structure and would reveal only the sequential and loop control structures of these
programs, not the implicit interprocess control.

137

be formalized, and it can be proved that these intentions are realized by the program. This

solution can be proved correct quite formally, but once again only details pertaining to cells are

given. Ochers can be filled in by using the full formal translation of the Algol language to actor

code. The interesting reasoning depends on the cell as defined above. The rest is based on

definitions of sequential control and if·lhen·else.

Dijkstra's additional conditions are:

"(a) The solution must be symmetrical between the N computers; as a result we

are not allowed co introduce a static priority.

(b) Nothing may be assumed about re la ti ve speeds of the N computers; we

may nor even assume their speeds to be constant in time.

(c) If any of the computers is stopped well outside its critical section, this is not

allowed to lead to potential blocking of the others.

(d) If more than one computer is about to enter its critical section, it must be

impossible to devise for them such finite speeds, that the decision to determine which

one of them will enter its critical section first is postponed until eternity. In other words,

constructions in which 'After you' - 'After you' - blocking is still pomble, although

improbable, are not to be regarded as valid solutions."

As far as (a) is concerned, there is no explicit fixed priority. However, there appears to

be some priority implicit in the numbering of processes even in Dijkstra's solution. Since we

cannot interpret chis restriction clearly enough to see why Dijkstra felt he was observing It, we

will ignore 1t. The assumption (b) 1s taken care of by the use of the actor model in which one can

talk only about events and not about the "time" it takes to carry out an action or the "time" that

elapses between events. For the two process case, condition (c) simply requires that if either

process runs alone in the state m which the other process' variables are all set to "true," then that

process can get into its critical section as often as it likes. This is because (assuming ct, bt are not

138

accessed m the remainder code) when a process stops in its remaining code section its variables

are left in this state. A process i stopping in its remainder section will be represented in the actor

model by the possibility of there being no further events in cri after an event starting the

remaining code section. It can be interpreted as meaning that either program running alone can

have infinite behavior. which is easy to confirm.

Condition (d) is quite interesting to prove. It can be stated, formally, as:

For every set of critical section events, CSi• there is another set of critical section
events CS j such that CSi => CS j·

This simply means that in any behavior in which at least one of these programs is running, there

will be an infinite number of critical section events. It can't be the cue that no process can get

into its critical section. This of course is based on the fact that the remainder of the cycle cannot

have infinite behavior at any given level of detail. For our purposes here, we can represent that

remainder by a single event with a target actor that is not known to always send a message to its

continuation. If it does, that continuation is the code corresponding to the code following the

label Lil.I

Theorem (Mutual Exclusion): The Dijkstra solution has the property that

Proof: The argument for mutual exclusion is straightforward. We start with the events known

by the activator ordering to precede and succeed the critical sections and then build •> from

observing the requirements of the axioms for cells. Thus the behavior fragment in Figure 9.2 is

the basis for our reasoning:

1 This assumption might appear to contradict the assumption that a process could "stop" in its
remainder code unless we assume that "stop" refers to an activator property rather than an actor
one as in the experiments for parallelism.

139

k:
bl •b21c 1,c2 " true

~
<c1 (apply: [... 'false] (then·to: ?)) cr 1 ecp

w " <c2 (apply: 'contents (then-to: cond 1)) a1 eel >

\JI "' <cond 1 (apply: 'true) aJ ec1 >

critical events (t'c (4) to ec 3 l

<c1 (apply:(... ,;fuel (then-to:?)) a 1 ec;'>

<b1 (apply: [.... ;k'e] (then·to: ?)) cr 1 ec ;''>
\ii

<rest 1 (apply: [] (then-to: all o» er l ec ;"'>

<c2 (apply: [.. 'false] (then-to: ?)) «2 ec 2>

w) " <c J (apply: 'contents (then-to: cond2) «2 ec 2 >

<cond2 (apply:'krue) «2 ec2"'>

critical events (ec (4) to ec4

<c2 (apply: [... 'true'fcthen·to: ?)) a2 ec/>

<b2 (apply: [t- 'truj{then·to: ?)) «2 eel'>

\JI "' <rest2 (apply: [] (then-to: al20)) «2 ec4 >

Figure 9.2: Mutual Exclusion Behavior.

It is quite easy now to see that the only possible orders derivable from •>cl and •>c
2

are the ones

in Figure 9.3. In either of these cases the two sets of critical section events are ordered by •>. D

1 I.e. the first event in this sequence has event count ec / 4) and the last ec)·

140

b 1,b2,c 1,c2 • true

IL ~
<c 1 (apply: [t- 'false] (then-to:?)) 111 ecp ~ <c2 (apply:[.. 'fals~ (then-to:?)) «2 ec2>

<c2 (apply: 'contentf(then·to: cond 1)) 111 ec /'> <c 1 (apply: 'contents (then-to: cond2)) «2 ec 2">

~ ~
<cond 1 (apply: 'true) cr1 ec/"> <cond2 (apply: 'true) cr2 ec2"'>

critical events (ec (4) to ec en 1ca events (ec (4) to ec4

\} .
<c2 (apply: [.. 'true] (then-to: !)) cr2 ec4 >

t .
<b2 (apply: [.. 'true] (then-to: 't)) «2 ec4 7>

~
<rest2 (apply: [] (then-to: al20)) «2 ec/">

'-JI •
<c 1 (apply: [.. 'true] (then-to:?)) 111 ec; >

~
<b1 (apply:[.. 'true] (then-to:?)) cr1 ec;''>

v ...
<rest 1 (apply:[] (then-to: 'LIO)) 111 ec3 >

bl •b21c 1,c2 • true
// ~

<c1 (apply:[... 'false] (then-to:?)) 111 ecp~ <c2 (apply:[.. 'false] (then-to:?)) «2 ec2>

<c 2 (apply: 'conten~(then-to: cond 1)) 111 ec{> . <c 1 (apply: 'contents (th;k·to: cond2)) cr2 ec2">

't "' ~ ... <cond 1 (apply: 'true) 111 ec1 > <cond2 (apply: 'true) 112 ec2 >
~

r-c~r-it-ic-al_e_v-en-ts (ec (4) to ec
3

\l-'
<c 1 (apply: [.. 'true] (then-to: ?)) 111 ec ;'>

~
<b1 (apply: [t- 'true] (then-to:?)) 111 ec ;''>

't
<rest 1 (apply:[] (then-to: 'LIO)) 111 ec ;'">

critical events (ec/4> to ec4)

. \J'
<c2 (apply: [.. 'true] (then-to: ?)) cr2 ec4'>

<b2 (apply: [.. 'true] (the±to: ?)) •2 eel'>

<rest2 (apply: [] (then-to: *20)) «2 ec/">

Figure 9.3: Orderings for Mutual Exclusion.

Iii

The way to prove that there is no deadlock is to prove the impossibility of both

processes looping forever. We would like to prove that as long as there are events E1 •

<b1 (apply: [t- 'false] (then-to:?)) cr1 ecp and/or E2 • <b2 (apply: [t- 'false] (then-to: c2» 112 ec2>

(i.e. the first events in the entrance code) in a behavior, then there is some CS in the behavior

where EI --> CS m er 1 or E2 --> CS in cr2. l Which process gets in seems to be independent of both

the order m wh1Ch E 1 and E2 occur and the value of k. 2 However, once both processes have

gotten as far as statement Lii and then still had to loop the choice is determined by the value of

k. The following Lemma is a statement of that fact.

Lemma: In a behavior in which the following events and orderings prevail,
whatever value z has is the value of the next activator to get into its critical section.

<c 1 (apply: [t- 'false] (then-to:?)) cr1 ec1> <c2 (apply: [t- 'false] (then•to: ?)) «2 ec2>

<c2 (apply: 'conte*'s (then-to: x1)) cr1 ec{~ (apply: 'contents (~en•to: x2)) «2 eci''>
'} ~

<x l (apply: 'false) er 1 ec /"> <x2 (apply: 'false) er2 ec 2"'>

~ t
<k (apply: 'content~ (then·to: x3)) cr1 ec /"'> <k (apply: 'contents (then·to: x4)) cr2 ec i''">

'Y -}
< (I) '"" (I) '"" x3 app y: z cr 1 ec 1 > <x4 app y: z er2 ec2 >

I.e., then there is CS in cr2 in a following segment of the behavior.

Proof: Process z will now be looping between the test of k (Lll) and the test of cj, j- z (after Lli),

waiting for cj • true. Meanwhile process j ;I! z now has to try to change k to j. In doing so it

1 I.e. as long as there isn't a failure in remainder code, so that there is a next attempt at entrance,
there will be another critical section.

2 This does not necessarily mean that given particular timing constraints the solution is completely
unbiased. However, since we know nothing about timing between events, all we can refer to is
~he fac that for any combination of ordering of E1, E2 and value of k there are timings such that
either process can get m first.

142

changes cj to true so that eventually process z can get to its critical section. Thus if z • I the

beha v 1or is:

<c I (apply• (~ 'It•] (then-too ?)) •1 tc 1> ~ <cz (apply: [~ 'f1lc1 (then-loo ?)) •z tcz>

<c2 (apply: 'contents (then-to: x1)) a 1 ec(> <c 1 (apply: 'contents (then-to: x2)) a2 eci''>
~ {

<x 1 (apply: 'false) er 1 ec /"> <x2 (apply: 'false) cr2 ec i'">
~ ~

<k (apply: 'contents (then-to: x3)) cr1 ec/"'> <k (apply: 'contents (then•to: x4)) "2 tei'"'>

(I 1) -..J_, ""' (pl I) { '"" <x3 app y: cr 1 eel > <x4 1p y: cr2 ec2 >

... // "z (apply• c~ ~ii (then-too?)) •2 tcz""">

<c1 (apply: [t- 'false] (then•to:?)) cr1 ec ;> /
• I~

(' v () ,, t;;?---< c 2 apply: contents then-to: x1) •1 ec; >

~ "' <c1 (aply: 'true) cr1 ec; >

critical events

In the unspecified (...) part of a 1 there may be arbitrary repetitions of the first 5 events (or

none) in all of which the contents query to c2 precedes the update in cr2. 0

Now to prove that the program is deadlock-free it is necessary to show that if both

processes are looping they cannot avoid the situation in the hypothesis of the Lemma.

Theorem: The program is deadlock-fee.

Proof: Assume that both processes are looping indefinitely. The value of k cannot keep changing

indefinitely while cr1 and cr2 loop since once both are in their entrance sections, both bi are false

li3

and both rests that have updates to k in their continuations fail. Thus at some point one process,

say i, finds k • i and goes to Lii. If it passes the rest it gets out of the loop. Since we are

assuming that both loop it must be the case that process j got to Lji, changed c j to false and

caused process i ro fail. S1milarly, if j is to continue looping it must fail. But then we have the

condition for the Lemma and some process will get in. 0

In this example the reasoning and arguments used were quite similar to those originally

used by Dijkstra. The difference is that they now have meaning in a formal model and are

being used to prove a result which is stated formally about that model.

9.3 The Knuth Solution

Knuth (1966] wrote a solution to the mutual exclusion of critical sections using only cells.

His solution has the property that there is no lockout. Any process which starts the entrance

protocol gets into its critical section. Knuth's solution for 2 processes is shown in Figure 9.i. In

this solution each process has a single private variable, c,. This variable can have one of three

values: 0, interpreted as being in the remainder section; 1, interpreted as just being in the

entrance code; and 2, interpreted as thinking k • t. After finishing a critical section a process i

changes the value of k to f ;e t.

LIO: c 1 : .. 1;

LI I: if k == I then goto L/2;
if c2 = 0 then goto Lll;

L/2: c1 :=2;

if c2 = 2 then goto LJO;
Ll3: k :=- l;

critical section;
k : .. 2;

L/4: CJ O;

Ll5: remainder;
goto LIO;

end

IH

l20: c2 :•I;
l2/: if k • 2 then goto L22;

if 'J ;i11 0 then goto L21;

l22: '2 : - 2;
if CJ• 2 then goto L20;

l2J: k.:-2;
critical section;
k. : • 1;

L24: c2 :• O;
L25: remainder;

goto L20;
end

Figure 9.4: Knuth's Mutual Exclusion Solution

Besides enforcing mutual exclusion this solution has the property of no lockout:

For all i, if E1 • <ci (apply: [.. 1] (then-to: ?)) «j ec> (the first event in an entrance) 1s

in the behavior, then so is a series of events CS in «j 3 E 1 --> CS.

However it still cannot be said that there is a guarantee that certain obvious measures of ordering

of attempts guarantees an order of entrance. For instance if E1 and E2 are the following events

E 1 = <c 1 (apply: [.. 1] (then-to: ?)) a 1 ec i>
E2 • <c2 (apply: [.. 1] (then-to: ?)) a2 ec 2>

it cannot be said that E1 .. > E2 (where •> is built from '">cell.) means that process 1 gets into its
I

critical section before process 2 does. The reader can see that this does noc hold by thinking

about how this ordering information could be made available to the system. It simply is nae

available in some cases. In others it is not used consistently. For instance, in the case where k. • 2.

one place where the value of c2 is checked is in "if c2 ! 0 then goto Lt 1 ;." At this point c2 • 0

would say that indeed E1 •> E2. However, by the next time c2 is tested process 2 could have

chang·ed the value of c2 to 2 causing process I to loop. I. e., process 2 could get to its critical

section first since k pointed to it, even though it can be known to have tried later. Similarly, if k

pointed to I, process one would have the advantage regardless of ordering information which is

explicitly checked for.

li5

Therefore, this first event in a sequence is not the sole measure of who is let in first.

The ordering depends both on the orderings •>c. and on the ordering •>k. This ordering •>k
I

reflects who was in its critical section last.I

9.i A Proof of Properties of the Knuth Solution

One fact of use in proving absence of lockout is stated in the following Lemma (stated

here for Process I).

Lem ma: If process I can be established as trying before a critical section of process
~ ends, then once k contains I, process I can get in. What is more, process I will then
get into ICS critical section before process 2 does another critical section.

In terms of the behavior, if the following events are in the behavior

<c1 (apply:[.. 1] (then-to:?)) cr1 ec> •> <k (1pply: [.. 1] (then-to: ?)) cr2 ec p

then IC must also be the case that

<c I (apply: [.. 1] (then-to: ?)) cr1 ec> •> CS 1 in activator er 1

and that there is no cs2 in activator cr2 such that

<k (apply: [.. 1] (then-to: ?)) «2 ec i> •> CS2 •> CS l ·

We will carry out all arguments from the point of view of process I and omit the
symmetric argument for process 2.

Proof: The beha v 1or in Figure 9.5 has the events and the ordering postulated and then a possible

sequence of events for process 2 to have. We will show that that is the only se<]w• .u• of events it

could have until after process I has indeed done another critical section. If this is the sequence of

events, then it is possible for process I to get into its critical section without another critical section

of process 2.

1 In the Dijkstra solution ordering also depended on k but k's value was not as strongly correlated
with the identity of the last activator to be in its critical section.

146

<cl (apply: [~ 1] (then-to: x)) "I ec>

~ <k (apply: [~ 1] (then-to: xo)) 112 tco>
I

\Y
<c2 (apply: [~ O] (th~·to: ?)) "2 ~

<remainder (apply: [] (then-to: L l 0)) "2 tc i>

Cl)

[~ ' <c2 (apply: ~ 1] (then-to: x8)) cr2 ec 1 >
t

<k (apply: 'contents (then-to: x 1)) cr2 ec {'>
t

(1 a) <x 1 (apply: I) a2 ec /"'>

<c1 (apply: 'contents~then-to: x2)) "2 ec/""> (2)

t
(2)

(2a) <x2 (apply: z) a 2 ec /"'"> where z • 1 or 2.

~
<c2 (apply: c~ 1] (then-to: Xe)) "2 ~

Figure 9.5: Hypothesized Behavior

In (I) and (la) could k be found equal to 2? Not unless there is an update to k such that

.
<c I (apply: [~ I] (then-to: x)) 111 ec> ~ •

: ,-:;/ <k (apply:[~ I] (lhe;-to: "Oil •2 eco>

<k (apply: [~ 2] (then-to:?)) "I ~if ·
~ <k (apply: 'contents (t~en-to: x I)) "2 tc l" >

but that is only possible if process I did its critical section before the update. [Assumes no change

147

to k possible in remainder.]

Could c1 be 0 at (2) and (2a)? Not unless the behavior iS

<c 1 (apply: [t- 1] (then-to: x)) cr1 ec> ·•

: ~ <k (apply: (t- 1] (then-to: xo» cr2 tco>

«1 (•pply: !~OJ (then•to: f)) •1 1> ~ :

• <x 1 (apply: 'contents (then-to: x2» cr2 tc /">

and again that is only possible if process I did its critical section . .
So process 2 will have this loop of events until after process I does a critical section.

Clearly now process I will do a critical section since if it finds k • I, all it has to do is find c2 • 2

before entering. Once process 2 does <c2 (apply: (t- O] (then-to: ?)) cr2 ~ it cannot do an update

until process I does a critical section. Thus process I will eventually find c2 I 2 and the Lemma is

proved. 0

This property can now be combined with two more facts to prove the impossibility of

lockout. The facts are

(I) the activator property of each process which says that any (CS in "i) -->
<k (apply: j) cri ec'> where j I i.

(2) There is no deadlock in this solution.

li8

Theorem: There is no lockout in Knuth's solution.

Proof: By (2) some process always gets into its critical section. Thus if process i starts the

entrance protocol either it or the other process does get into its critical section. If it gets in it

hasn't been locked out. If the other process gets in, then once process i has started the entrance,

by (I) the situation in the hypothesis of the Lemma must eventually occur. Then by the Lemma,

the first process is to be lee in. Thus no process can be locked out of its critical section

indefinitely.I D

The proof of the deadlock free property is straightforward and will not be done here.

9.5 High Level Properties of Busywaiting Solutions

The definition of fairness of synchronization that we have been using is equivalent to

absence of lockout, i.e. every process that tries to get into its critical section will get in. It does not

necessarily correspond to a first in first out algorithm. In fact it is not clear in Knuth's program

how to measure who is first. One point in understanding Knuth's solution is that only ordering

that is computed is relied on. Therefore only once a process is verified as having started its

entrance code before another finished its critical section does the first take its place in line. In

fact, in the n-process case of the Knuth solution, the second process can get through its critical

section several times before the first gets its place established. [See Knuth, 1966]. As long as our

specif 1cat1on of guaranteed absence of lockout is met, the solution satisfies the criterion of

fairness. We would like to point the reader to other solutions such as Eisenberg and McGuire

[1972] or Lamport (1974] which do much better in terms of the number of critical sections of other

processes that can happen between start of entrance code of one and its entrance. These

differences are not reflected in our specifications and we think for good reason. As an

1 In fact, it can be shown that any process starting its entrance has to wait at most for one further
execution of the critical section of the other process.

149

experiment from outside the solution, one cannot tell anything about how "close to FIFO" a

solution is.1 While in Knuth's solution one can have to do arbitrarily many busywaiting steps

while the bounded number of other critical sections occurs, from the outside this cannot be

distinguished from very slow execution of the bounded number of steps required to secure a

waiting place in a better solution such as Lamport's. Since the place is not secured until that

point, one could see atl of the same behaviors from outside. Thus our specifications say the most

they can without making assumptions about machines on which programs are running.

This is not to say that considerations of use of resources may not make these interesting

measures. I.e., reducing the maximum number of critical sections of other processes could reduce

the amount of busywaiting a process will have to do. There should be means for formal

statement of the difference between, say Knuth, and Lamport solutions. However, since the

properties are not externally observable it may be necessary to go into more detail to specify

them.2 If a property can only be stated relative to internal properties then it will be shown to be

a property which is significantly different from properties such as fairness which we have

specified.

1 However, as per discussion in Chapter 8, we could express these properties in terms of events.

2 As in readers/writers where extra events of enqueuing reads must be used if we are to refer to
fact that internatly some effort is involved in enabling a waiting read.

150

10 Conclusions and Future Research

A specification language for time ordering properties of communicating parallel

processes has been presented. It was used to write precise specifications for several problems that

have not previously been adequately formalized. The time ordering concepts directly expressible

in the language are apparently adequate for stating high level properties in a form which is close

to intended meaning. A problem specification describes behaviors which we hope to realize

through a program or a system of parallel programs. The solution specification describes more

detailed behaviors (i.e. with additional events) which can be proved to realize the problem

specifications. This means the solution specification is complete. Consistency of solution

specifications is demonstrated by showing that the axioms for the primitive (at the current level

of detail) actors of the actor system are themselves realizable.

In this final chapter a concluding review and evaluation is made of the approach to

specification taken in this research. This is followed by consideration of some properties of

synchronization which have been exposed in the process of developing this language and

speculation on applications of this work in the understanding of both programs and computer

systems.

10.l Time Ordering Specifications

Two criteria for a language in which to write specifications for synchronization have

been applied throughout this work. They are that there be both means for expressing high level

properties and means for specifications about causality which emphasize physical realities of

151

implementation. Using the time ordering •> one can make arbitrary statements about time

orderings. Among these arbitrary statements are some which clearly correspond to typical

synchronization terms such as "mutual exclusion." Using a combination of activator orderings,

actor orderings, and causal properties of actors, we can also express the causes of orderings from

which derived time orderings can be built. Specifications of time ordering properties of an

existing actor system are about this derived time ordering. Specifications to be met by an unbuilt

system indicate desired properties of the derived ordering of the implementat10n. Solution

specifications in the form of causal axioms define the generators of the derived order •>. Proof

of completeness is accomplished by showing that desired time ordering properties hold for the

transitive closure of the union of the sets of generators associated with each actor in the system.

Specifications for an actor can be about the actor as it appears from the outside or

about its internal operations. From the outside, treating the actor as a black box, one can first

specify relations among events with the actor as target, and events outside the actor which are

caused by the actor (such as the event in which a response is sent to a continuation). The cell and

data bases were specified in this way.

Alternatively, one can give specifications about events internal to a system. These can

be given in varying amounts of detail. They may or may not have implications for the external

appearance of the actor. While there is no general way to abstract from a specification of

internal properties "all" externally manifested behavior, one can check whether a particular

desired external property does hold. Thus for the readers/writers actor, wpdb, derived m Chapter

5, the external property of "reliable data base behavior" (though not necessarily fair) is proved to

hold since the readers/writers property and the data base definition hold. That is, no operations

that can cause inconsistent results to appear are possible.

In addition, the actor does have relative write priority and fairness to writers. These last

two are internal properties. Priority (as in the readers/writers problem) is considered an internal

152

property since it cannot be observed (or specified) from outside. A difference such as that

between fair and unfair implementations may be observable from the outside, but it is not clear

how one could distinguish two different unfair algorithms, such as the monitor implementation of

writer priority and the Courtois one. Even though the priority algorithms are different when

compared in detail, their differences are not externally visible since there is no difference in their

behaviors excluding actor ordering information. All of the readers/writers solutions have the

property that the possible behaviors of systems involving them are identical (up to fairness). I.e.,

even if writers are being given priority, if Er and Ew are in parallel then if Er finds results of a

particular Ew it is not ch~ar if that Ew happened before Er because of priority or because of

timing accidents. Similarly, looking at any two fair solutions, say the one Hoare implemented and

the queued one defined in Chapter 5, no difference can be seen from outside. In both cases all

requests are served.

Our theory of parallelism is deliberately meant to include among its models the most

genera I form of parallelism, namely, distributed multi-processing systems. There may be

meaningful total orders in a case in which all processes are situated locally and perhaps even

sharing processors. However, ~n general this is not the case. This is the reason for our

concentration on properties which can be proved independent of machine configuration. Less

general properties of particular computer systems may be of interest as well, and perhaps should

be expressible. Statements of such properties should be considered as relative to the assumptions

about configurations, just as specifications for priority are given relative to an actor ordering

Only in systems in which this ordering is available can the priority specifications be met.

Very detailed timing considerations, such as those which might be related to a

specification "as soon as possible," may be considered optimization properties. In areas other than

synchronization, there is a distinction between "correctness" and such performance questions as

speed and use of space (perhaps even termination, although that is often considered part of

153

correctness). To date there are no very good means for specifying properties desired of optimized

code.I Yet optimization criteria are intuitively separable from correctness criteria. In sequential

code, assertions against which correctness is measured seem always to measure properties of

functions. One reason why side-effect formalisms are not as well understood as side-effect-free

ones (besides their difficulty) is that for functional programs, correctness independent of

implementation or optimization can generally be expressed in a side-effect-free form. For

sequential programs it may be reasonable for side-effects and the problems of dealing with

correctness given possible interference among side-effect operations to be put off as an issue for

understanding implementations of programs rather than their meanings. As long as their

meanings are embodied in relations between input values and the values produced, this

distinction works and prevents confusion of meaning and implementation. Once side-effects are

introduced and can be considered part of the meaning of a program, the separation of

"important" side-effects from ones which are simply "useful" for implementation becomes an issue.

In synchronization, no properties have yet been singled out as correctness properties.

All properties are intimately related to time orderings and various intuitive notions of time and

there is no distinction among correctness, partial correctness, implementation dependence and

optimizing considerations. Thus one of the considerations in beginning to formalize properties of

systems with synchronization is the delineation of types of properties. The properties dealt with

in this paper have been entirely of the sort that can be assumed to hold independent of physical

computer configuration. They are about time orderings related to causality not about time as a

measure of speed or efficiency. Care is taken to use only time ordering properties that are

meaningful even if extremes of distances and speeds are introduced.

As additional information becomes available, more properties relative to that

1 This is a serious deficiency which must be overcome if research in optimization is to develop
from the study of program transformation to program transformation towards a goal.

151

information can be stated. For instance, if it became possible to ref er to uses of resources such as

processor time, then a side-effect of the number of events at a lower level of detail, namely, the

amount of processing done, becomes visible. One might then want to be able to specify further

requirements about solutions to synchronization problems.1

10.2 Why Specifications

We have emphasized ability to express properties of communication among parallel

processes. As stated in the introduction, we have not produced the kinds of evidence usually

deemed important in justifying an approach to semantics. Reasoning about properties expressed

in this language is not trivially mechanizable, nor can we mechanically produce statements of

auxiliary properties that are required in proofs. While we have written specifications for various

stages of implementation of problems, we have not attempted to find automatic procedures for

formulating statements of one level of abstraction from statements which are descriptions at a

different level of abstractions.

What we have done is to develop a formalism which, due to its basis in event-oriented

semantics and the mathematics of partial orders, can be used to express precisely certain

properties of communicating parallel processes. The formalism is not so far removed from usual

informal characterization of systems as to require long informal justification of high level

specifications. That is, the representations of properties such as mutual exclusion and fairness

are not difficult to accept. This is important since there can be no formal justification at the

hig·hest level of abstraction that specifications do capture the specifier's intentions. As statements

of properties become harder to understand proofs that those properties hold become less

1 This increase in describable properties with increase in available information can be related to
similar observations in describing protection relative to externally observable information [Jones
and Lipton, 1975).

155

convincing as "proofs of correctness." Statements such as Robinson and Holt's specifications in

terms of the functions min and max [shown in Chapter 6) or the kinds of statements Cadious and

Levy [1973) make about functions and oracles, require more justification that they do capture the

intended meaning.

For analyzing programs one may not be able to avoid some amount of detail and

reliance on properties far removed from the high level goal. The subproblems of any problem

can require implementation specifications that are not as obviously related to intended high level

properties of the overall program. For this reason it is important to be able to show that high

level properties are realized by more detailed specifications. For properties of communicating

parallel processes this takes the form of deriving the time ordering of a system from the causal

axioms of its parts. Since this derived ordering is compatible with the time ordering of high

level specifications, comparison can be made. While abstraction from (or implementation of)

specifications is not automatic, it is possible to prove relations hold between specifications and

particular abstraction or implementations. Thus programming can be done by stepwise

refinement from high level specifications, with comparisons of more and more detailed

specifications making the conceptual transitions manageable. Also, even though examination of

all possible mterleavings of events may be necessary for analyzing a system, once it is analyzed, if

there is a property consistent for all behaviors, we can express it at a higher level. Thus we are

not limited to the detailed expression for description.

Detailed specifications are usually axioms for certain actors which will be in an

implementation (provided they themselves are implementable). They can be proved to realize the

high level specifications. The next consideration is whether these actors themselves are

implementable. We have suggested several criteria for realizability such as reasonable

assumptions about ordering, etc. However, all specifications depend on the implementability of

some primitives. Unless the primitives are physically impossible, the realizability of the

156

specifications must be analyzed relative to the specifications of the primitives. Thus in protected-

data-base we are assuming that it is physically possible to order events at pdb, in wpdb that there

can be an ordering on events with wpdb and sc. as target. These are realizable because pdb, wpdb,
I

sc. have no specifications other than this ordering which conflict at this level of detail. By
I

contrast, a specification of the Courtois program saying both that mutex 1 and mutex 2 events

should be ordered and that mutex 1 and mutex 2 are separate semaphore actors is inconsistent and

not realtzable.

The guiding principle in writing specifications that will be realizable is of course not to

overspecify. Having two different events of some activator with same event count is a conflict (a

danger in parallelism); inconsistent time orders is another. The clear nature of inconsistency

enables proof of certain properties (namely, impossibility of bad properties) to proceed. In this

paper we have illustrated the latter technique and not really exercised testing of specifications.

However, Chapter 3 has examples of common types of inconsistencies.

Another important point about specifications of flexible level of detail is that they

enable explicit statements about parts of programs and abstraction about program schemes

(templates or muctures). Thus they allow us to describe real code, as it is actually written, at all

levels. This is not always possible in formalisms which stick to one level of abstraction. We feel

the ability to represent separately the parts of a program is extremely important to the

understanding of programs. Besides clarity to humans, another goal of structured programming

is easy checking of code. Styles of programming which cause difficulties in placement of

assertions or in modularization are considered to contribute to "unrealizable" programming since

they make automatic verification techniques more difficult to apply. Our position is that rather

than restrict the kinds of programs one can expect to rely on, one should learn to express one's

understanding of code. People do write machine language code and know what it is about. Some

of it is even quite reliable. How is it understood? We suggest that in a formalism in which

157

various abstractions can be expressed, there is hope that by combining statements of different

levels one can express both how primitives (such as semaphores and goto) are being used (the

structure of the program) and what their properties are. In particular, if we are ever to deal with

low level code in which goto's and weird side-effects and semaphore-like primitives cannot be

avoided, we must learn to represent the programmers' understanding of his code, its structure, its

parts.

The structured programming approach and mechanizable proving approach attempt to

reduce hard problems to mechanical ones. We see no point in trying to represent parallel

processing as a simple subject. This work is an attempt co develop a full and precise theory of

the subject.

10.3 Future Research

Future research of three sorts can be projected. The areas are extensions of the uses of

this model to ocher problems, programming language issues relating to synchronization, and the

use of specification formalisms in the wide open field of development of programs that

understand programs.

We would like to try co use the notions of partial orders to analyze single processor

implementations of side-effect programs and coroutines. While we understand that side-effects

may be avoidable at some level of understanding of sequential code and coroutines, we feel that

in fact it may be beneficial to view procedures with side-effects or coroutines in the same way as

we do communication among independent processes. Side·eff ects as communication devices can

be viewed posieively and can perhaps be analyzed through partial orderings even in the absence

of true parallelism.

Other copies which bear further study are the full range of problem type and

158

implementation properties that can be expressed in the language. This would include

consideration of modifications of the model for applicability to particular known configurations,

introducing additional activator properties.

While using this language to specify problems and their solutions, we have touched on

severa I issues in programming of synchronization. Particularly important are relative power of

primitives, structure implicit in certain primitives. and possible misinterpretation of uses of

existing primitives (e.g., conditional critical regions and the semaphore implementation of the

monitor). The fact that through specifications in this language we have exposed or found

reasons for the difficulties indicates the power of this approach. We feel there is considerable

work to be done in understanding what is desirable in synchronization primitives, how existing

ones can be used, and how they can be implemented. Progress in this area will depend on both

precise and adequately expressive formalisms in which to specify the objects (primitives or

programs) under consideration.

Finally, we would like to see how this approach could be used as a basis for

implementing a theory of parallel processing. A program which can understand programs will

need to understand parts of programs and interaction among parts. If it is to be helpful as a

program manipulator [Knuth, 197i] it must have representation of both structured and

unstructured programming. Even if programmers are found to "think• better and to program

more reliably in structured languages it is unlikely that optimal code will ever be of the same

structured form. Some understanding of alternatives must be available if such code is to be

understood.

159

Bibliography

Bekic, H. 1971. Towards a Mathematical Theory of Processes. Technical Report
TR25.125. IBM Laboratory, Vienna.

Bursrall, R. 1972. Some Techniques for Proving Correctness of Programs which
Alter Dara Structures. Machine lntelltgence 7. ed. D. Michie. Edinburgh
University Press.

Cadiou, J. M.; and Levy, J. J. 1973. Mechanizable Proofs about Parallel Processes.
Proceedings of the 14th Annual Symposium on Swttchtng and Automata
Theory.

Courtois, P. J.; Heymans, F.; and Parnas D. L. 1971. Concurrent Control with
"readers" and "writers.N Comm. ACM 14 10. pp. 667-668.

__ . 1972. Comments on "A Comparison of Two Synchronizing Concepts." Acta
lnformattca 1. pp. 375-376.

Dahl, 0-j.; and Hoare, C. A. R. 1972. Hierarchical Program Structures. Structured
Programming. 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Academic
Press. New York.

Dijkstra, E. W. 1965. Solution of a Problem in Concurrent Programming Control.
Comm. ACM 8 9. p. 569.

1968. Cooperating Sequential Processes. Programming Languages. Academic
Press. New York.

1972. Notes on Structured Programming. Structured Programming. A.P.l.C.
Studies in Data Processing No.8. Academic Press. New York. pp. 1-81.

1971. Hierarchical Ordering of Sequential Processes. Acta lnformattca J. pp.
115-138.

Eisenberg, M. A.; and McGuire, M. R. 1972. Further Comments on Dijkstra's
Concurrent Programming Control Problem. Comm. ACM 1' 11. p. 999.

Floyd, R. W. 1967. Assigning Meaning to Programs. Proceedings of Sympostum tn
Applted Mathematics. Vol. 19. pp. 19-32. (ed. J. T. Schwartz) Providence,
Rhode Island, American Mathematical Society.

Fischer, M. J. 1972. Lambda Calculus Schemata. Proceedtngs of the ACM Conference
on Proving Assertions about Programs. Las Cruces, New Mexico. (Jan.
1972)

160

Haberman, A. N. 1970. Synchronization of Communicating Processes. Comm. ACM 1, 3. pp. 171-176.

Hansen, P. B. 1972a. A Comparison of Two Synchronizing Concepts. Acta
lnformattca I. pp. 190-199.

1972b. Structured Mult1-progamming. Comm. ACM 15 7. pp. 574-578.

1973. A Reply to Comments on "A Comparison of Two Synchronizing
Concepts." Acta lnformattca 2. pp. 189-190.

Hewitt, C. 1974. Protection and Synchronization in Actor Systems. MIT Artificial
Intelligence Working Paper.

Hewitt, C.; Bishop P.; and Steiger, R. 1973. A Universal Modular Actor Formalism
for Artificial Intelligence. IJCAl-73. Stanford, Calif. Aug, 1973.

Hoare, C. A. R. 1969. An Axiomatic Basis for Computer Programming. Comm. ACM
12 10. pp. 576-580.

1972. Towards a Theory of Parallel Programming. Operattng Systems
Techniques. Academic Press. New York.

197i. MoniCors: An Operating System Structuring Concept. Comm. ACM 17
10. pp. 519-557.

1975. A Structural Approach to Protection. Q.ueen's University of Belfast.

Knuth, D. E. 1966. Additional Comments on a Problem in Concurrent Programming
Control. Comm. ACM 9 5. pp. 321-322.

1974. Structured Programming with GOTO Statements. Computtng Surveys
Vol 6.

Jones, A. K. and Lipton, R. J. 1975. The Enforcement of Security Policies for
Computation. Department of Computer Science. Carnegie-Mellon
University.

Lamport, L. 1974. A New Solution of Dijkstra's Concurrent Programming Problem.
Comm ACM 17 8. pp. 453-455.

1974. On Concurrent Reading and Writing. Massachusetts Computer
Associates Report CA 7409-05ll.

Landin, P. J. 1965. A Correspondence Between ALGOL 60 and Church's Lambda
Notation. Comm. ACM 8. pp. 89-101, 158-165.

1966. A Formal Description of Algol 60 tn Formal Language Descrtptton
Languages for Computer Programmtng ed. T. B. Steel, Jr. North Holland
Publishing Company.

161

Lipton, R. J. 1971. Limitations of Synchronization Primitives. Proceedtngs of tl1e
Stxth Annual ACM Symposium on Theory of Computtng.

Liskov, B.; and Zilles, S. 1971. Programming with Abstract Data Types. Proceedtngs
of ACM S/GPLAN Conference on Very Htgh Level Languages. SIGPLAN
Nottces 91.

Milner, R. 1972. LCF Logic for Computable Functions -- Description of a Machine
Implementation. Stanford AI memo 169. Stanford University.

__ . 1973. An Approach to the Semantics of Parallel Prog-rams. Proc. Convegno dt
Informatica Teortca. Pisa.

Pa.mas, D. L. 1972. A Technique for Software Module Specification with Examples.
Comm. ACM.

Parnas, D. L.; and Handzel, G. 1975. More on Specification Techniques for Software
Modules. Technische Hochschule Darmstadt Fachbereich Informatik.

Presser, L. 1975. Multiprogramming Coordination. Computtng Surveys Vol 7 1. pp.
22-H.

Reynolds, J. C. 1972. Definitional Interpreters for Higher-Order Programming
Languages. Proceecitngs of the ACM Nattonal Conventton.

Robinson, L. and and Holt, R. C. 1975. Formal Specifications for Solutions to
Synchronization Problems. Stanford Research Institute.

Scott, D. 1972. Lattice-Theoretic Mode ls for Various Type-Free Calculi. Proc.
Fourth lnternattonal Congress for Logtc, Methodology, and Phtlosophy of
S ctence. Bucharest.

Scott, D.; and Strachey, C. 1971. Towards a Mathematical Semantics for Computer
Languages. Proceecltng of the Sympostum on Computers and Automata
Microwave Research Institute. Symposia Series Vol 21. Polytechnic
Institute of Brooklyn.

Shaw, A. C. 1971. The Logical Destgn of Operattng Systems Prentice-Hall.
Englewood Cliffs, New Jersey.

Tsichritzis, D. C.; and Bernstein, P. A. 1971. Operattng Systems. Academic Press.
New York.

--.... ,:

reuun,..w·ei1t11ntl1JiT1i•illrfih1i~.
't ·t.,,

rH.-·at.r

,·! i -[{ qv1,.,(.:":".'i «. u ;,r~ ~·(~ .,. 71'~ -:·r~ .~

·. fi <

' ' '

.;,_ ' .
. "

1 .. •

·~~ ;, 1-- ' ;~ .• , . ~-: , ~-: r:~-·~~tj o: b•Q1il {'",dk. , l,t

·· .. -.Wt~ IMl .. tWJli11l 11tt1•r ,-;,.:;,.
· t.:t; :.··,';"';-1-i:T-G-1q t1f~~J~*f~C'td:HlYl f0~~

ProjaWAC .

)tjL -~+ ?·-~ .

~- ~ .. : t:;(f ~ .' t

!; i i...,.-f . • : .. ~>C

~· (r.: C'!~ (l\•·.~.·~ :·:, :~,_r:;.qi:

• ·~·- ,> ·::::r~·~ i,~ ': -~ j

·.- ·~::~l4j;. ~lit~~ - ··--;

; ·v~. J·~~L::r,. 1V .• .1:.::: ·~·

1"1nt

.:; _,

CS-TR Scanning Project
Document Control Form

Report# Le:s-TR-·IStf

Date : _jJ_/ I{, I ~5

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR)

D Other:

D Technical Memo (TM)

Document Information Number of pages: 16~(I'1-i mf4CE5)

• Not to include DOD forms, printer intstructions, etc ... original pages only.

Originals are:

D Single-sided or

~Double-sided
Print type:
D Typewriter D Offset Press

Intended to be printed as :

D Single-sided or

~ Double-sided

D Laser Print

D InkJet Printer ~ Unknown D Other:. ___ ~~~~

Check each if included with document:

D DODForm

D Spine

D Funding Agent Form

D Printers Notes

'JS... Cover Page

D Photo negatives

D Other: ------------
Page Data:

Blank Pages(byi-uenumber): __________ _

PhotographsfTonal Material (by i-ue number): ________ _

J

Scanning Agent Signoff:

Date Received: _J}_/ _.!.!:_/ ~5 Date Scanned: I~! _!j_/ k S

Scanning Agent Signature: __ r t;J_·___..,__,~....__ 9 1\J 1 _C=~=·'"""'"""'.....,,_, _
\

Date Returned: IJ..1(),J 115

ReY llllM DSILCS Document ConlJol Fonn cstJform. \ISd

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

