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Abstract

The thesis of this dissertation is that an understanding of the ordering constraints that
are introduced among events of parallel processes is essential to the understanding of
synchronization and that therefore any language for specifying synchronization of parallel
processes should be based on a theory of such orderings. While it is possible to write
specifications for systems of communicating parallel processes by reference to the time ordering of
some global clock external to the system, such specifications cannot be as useful as ones which are
in terms of orderings derivable within the system. Specifications should place constraints on
intended behavior of the computer system itself rather than on the possible observations of the
system's behaviors from some global viewpoint which may in fact be totally unrealizable.

The dissertation is a development of a specification language. It is based on a model of
computation in which an individual process is represented by a totally ordered set of events.
Synchronization properties of systems of independent processes are guarantees that in fact the set
of events in the system can be ordered by a partial order which properly contains the union of
the processes’ total orders. This system ordering can be caused by the presence in a system of
side-effect primitives or of synchronization primitives. Thus this model applies equally well both
to busywaiting synchronization based on coordinated use of storage cells by independent processes
and to non-busywaiting synchronization such as that induced by semaphores and structured
synchronization primitives. In addition to applying to a range of types of synchronization, the
specification language is also used to define a programming language. The meaning of a
program is the specification of the behavior of the system into which that program is compiled.
Specifications can be written for synchronization problems and for their implementations in terms
of various primitives.

Thesis Supervisor: Carl Hewitt

Title: Assistant Professor of Electrical Engineering and Computer Science



mmm&:} &: ;’em&s% '

tabur}

TS




Contents

Abstract ... ... 2

Acknowledgements ............ ... ...l 3

Contents ... ... ... . . 4
1 Introduction ......... .. ... . . .. 6
11 Physical Constraints on Computer Systems . . ............ ... iiiinirneennn.n. 6
1.2 Choosing a Model . ... ... ... . e 8
1.3 Specificalions . ... .. ... .. e 9
1.4 Relation to Programming Language Semantics and Alternative Models . ............ 12
1.5 Informal Specifications . . .......... ... . e 16
1.6 Presentation ... ... ... .. it e 17
2 A Model of Computation.......................... ... ........ 19
21 ACIOTS L e e 19
2.2 Behaviors . . 20
23 Continuations .......................... e 22
2.4 The Data Abstraction . ... ... . . i 23
25 Level of Detail ... ... ... e e e e 24
26 Specifications of ACtOrs . ... ... ... .. . . e 26
2.7 Time Orderings .. ............................ P 31
3 Specifications of Cells......... .. ... ... ... ... 34
31 A Definition of the Cell ... ... . ... .. 34
32 The Causal Relations Induced by Cells . . ........... ... it 10
33 Uses of Cells ... ... .. e 42
34 The Orderings . .. ... .. . e e 46
4 Synchronization ... ... ... ... ... ... .. 48
1.1 Mutual Exclusion as a Time Ordering Specification . .................. (P 48
4.2 A Synchronization ACtor . .......... .. e 50
4.3 Properties of Protected Data Base................. ... ... .. ... i i 53
4.4 Synchronizing Axioms, Causality, and Partial Orders . .............. ... ... ...... 55
b Comparing Problem and Solution Specifications........... 58
51 Re-interpreting Protected-date=base . . .................... ... ... ..o il 58
5.2 The Problems of Reading and Writing ina Data Base......................... 63
53 Writer Priority Specifications .. ............. .. 71
5.4 Properties of the Solution Specification ...................... . ... i, 76



103

Kinds of Specifications . ........... ... .. 79
Comparing Solution and Program Specifications.......... 81
How to Realize Synchronization Solution Specifications . ........................ 8l
A Monitor-like ACIOr ... ... e 83
A Program for Writers Priority ... ......... ... ... i i 87
Properties of a Proof of Correctness...............ccivuiiiiiiiiiiiinneennn.. 93
The Monitor as Structured Synchronization ........... ... .....ooiiiiiin.... 96
Unstructured Synchronization................................ 99
A Definition of the Semaphore . .............. ... ... ... i i, 99
The Semaphore Implementation of Protected Data Base ........................ 107
An Unfair Semaphore . ......... .. ... 110
Using Unfair Semaphores . ...... ... ... ... i i 112
Unstructured Synchronization ................ .. . i i e 114
Using Unfair Synchronization............................... 115
The Original Problem .. ... ... ... . .. . . i 115
The Courtois, Heymans, and Parnas Program ...................oiiiiiiin... 118
An Alternative Interpretation . ......... ... ..t 121
Relative Power of Unfair Primitives............ ... ... o it 123
A Power Difference . ....... ... ... . e 126
Properties in Run-time Environment . ........... ... i i 129
Busywaiting Synchronization................. ... ... ..o 132
The Structure of the Dijkstra Solution . ................ ... ... ot 133
A Proof of Properties of the Dijkstra Solution .......... TR 136
The Knuth Solution . ... ... .. .. i ens 143
A Proof of Properties of the Knuth Solution . ..................... ... ....... 145
High Level Properties of Busywaiting Solutions . ........................0.... 148
Conclusions and Future Research........................ ... 1650
Time Ordering Specifications . ........... ... ... .o i ... 150
Why Specifications . .. ... ... ..o i i e 154
Future Research ....... ... ... ... ... . . i 157



1 Introduction

The thesis of this dissertation is that an understanding of the ordering constraints that
are introduced among events of parallel processes is essential to the understanding of
synchronization and that therefore any language for specifying synchronization of parallel
processes should be based on a theory of such orderings. While it is possible to write
specifications for systems of communicating parallel processes by reference to the time ordering of
some global clock external to the system, such specifications cannot be as useful as ones which are
in terms of ordering derivable within the system. Specifications should place constraints on
intended behavior of the computer system itself rather than on the possible observations of the
system'’s behavior from some global viewpoint which may in fact be totally unrealizable.

In this chapter we describe the goals of our research. As the goals are outlined, they
will be contrasted with those of related work in semantics of programming languages and parallel
processes. We will explain why the underlying semantics of communicating parallel processes has
not been well represented in previous theories as well as our reasons for chosing the model on
which this research is based. Our theory of semantics is developed to be the basis for a
specifications language. Therefore we include some discussion of what specifications are and
how this work will differ from certain other work in semantics and verification. The chapter

concludes with an outline of this document.

LI Physical Constraints on Computer Systems

Qur theory of parallel processing, based on the mathematics of partial orders, can have



as its model any kind of parallel processing system. The kind of computer systems from which
we have learned the most about underlying semantic concepts are multi-processor systems and
computer networks. This is because they expose the importance of a part of the thesis of this
dissertation which is that unmotivated assumption of global constraints should be avoided in
describing computer systems. In timesharing on a single processor, since at some level of detail
there really is only pseudo-parallelism, global views may be meaningful for representing certain
properties of that system. By contrast, multi-processor systems, particularly distributed multi-
processor systems on networks, do not fit a global state theory as well. In fact, we will claim that
part of the difficulty that has been encountered in formalizing properties of these systems arises
from just this mismatch between the global state assumptions and the actual time and distance
constraints in computer configurations. For most purposes, interesting relations among
independent parts of a computer system must be realized in terms of some physical connection
between them. It is reasonable to write prescriptive specifications relating operations on
computers in, say, San Francisco and New York, if it is understood that some communication will
have to take place to enforce it. It is not reasonable to describe an existing system in such a
manner unless means for such communication exists.

Partial orders are appropriate for characterization of computer systems since, using
them, orderings that must exist among certain operations can be expressed without the
hypothesizing of total orders over all operations. Some operations may not be related due, for
instance, to lack of physical connection between the processors on which they occur. Other
operations, while they can be ordered as they occur, will in fact occur in unpredictable orders each
time the computer system is run. Even though quantifying over all possible orders of operations
in all parts of a system may in some sense be guaranteed to capture all possible properties, it can

in fact obscure the important properties. The important properties will generally be the

1 Or even timesharing systems at the level of abstraction at which users generally deal with them.
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properties of ordering relations which are common to all of the postulated total orders. Such
common properties should be abstracted from the set of all possible total orders and expressed

directly, as a partial order.

1.2 Choosing a Model

The actor model of computation on which this specification language is based, has
several properties which relate well to the physical realities of parallel processing. A single
sequential process is represented by a totally ordered set of events. Systems of parallel processes
are represented by partially ordered sets or events. These ordered sets of events are the behaviors
of systems.

Events represent the receiving of a message by an actor. The event of receiving a
message is dissociated from both the act of sending and the sender. This avoids the relativistic
difficulties that can result from identifying time of sending a message with time of its arrival at
its destination. This will be important to the physical reality of the ordering relations specified
for actor systems, and will have implications for the realizability of specifications and visibility of
properties of systems. For instance, the fact that messages can be guaranteed to be sent in one
order does not in general imply anything about the order in which those messages can be
expected to arrive at their destinations. In real computer systems the speed at which the messages
travel would be a factor. In the actor model that factor cannot be relied on, making it impossible
to write specifications for systems which could be realizable only in limited kinds of environments
(e.g. on particular computer configurations.)

Individual actors are specified by causal axioms which are properties that will hold for
any behavior of any actor system of which the particular actor is a part. They specify relations

among events. These relations are then the properties of the behaviors as partial orders.
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Besides the sound foundation for a partial order theory of parallel processing, the actor
model has properties that are compatible with additional requirements that must be met for
development of a specification language. The message passing metaphor together with the
uniformity of ob jects in an actor system (all ob jects are actors) will be useful for treating ob jects
as "black boxes” for purposes of definition of externally visible properties of systems. Also, when
it is necessary to specify implementation approaches or program, we will rely on another feature
of actor systems, namely, the flexibility of level of detail of descriptions of behaviors. Behaviors,
being partially ordered sets of events, can be described at any level of detail. System properties

are properties which at some particular level of detail are common to all behaviors.

1.3 Specifications

The results of the behavioral and causal semantics will be a language for writing
specifications for communicating parallel processes. We will be emphasizing uses of specifications
for aiding in the problem solving and programming process, etc. but will not treat derivation of
specifications from programs, automatic generation of intermediate assertions, or formulation of
proof rules for automatic verification. By the writing of simple high level specifications for
commonly used terms in synchronization we will illustrate the compatibility of a specifications
language about time orderings to our intuitions about systems. Fuller causal axioms of actor
systems, specifying how they can affect behaviors of systems of which they are a part, will be
shown to relate to important physical properties of computer systems and to determine their
realizability. By ordinary reasoning, causal specifications of programs or program parts can often
be shown to realize high level specifications. Capturing the meaning of parallelism will not
necessarily require the specifications of full details of programs. However, given such details, we

can prove compatibility with high level specifications to show relative correctness. Consistency of



10

specifications can also be investigated largely by relying on information about orderings.
Synchronization can be described independently of programming language properties [Hoare,
1972], or implementation details [Milner, 1973] about systems.

In addition to the general need to accurately communicate both the desired properties
of computer systems to be built (prescriptive specifications) and the actual properties of existing
systems (as documentation, description, etc.), the main reason for wanting formal specifications is
that they will then allow formal reasoning. In this érea our ob jectives are somewhat different
from those of others.

There has been a growing demand for the ability to prove "correctness™ of programs
which has led to very close ties between language definition and “proof rules” for correctness,
leaving expression of program meaning implicit in or entirely separated from the effort to
represent the language semantics. For example, using Floyd or Hoare type assertional semantics
(Floyd, 1967, Hoare, 1969], one defines a programming language by defining how its primitives
relate assertions that are made about the programs’ meanings. The language for the assertions,
generally predicate calculus, is not the subject of verification research. Instead the effort
concentrates on formulation of rules for going from assertions about a program to a theorem (or
group of theorems) that must be true if the program is correct (relative to the original assertion).
The rules are based on blind passing of assertions across statements, with structure of the
program being considered only implicitly as the transformations on the assertions are madel

Similarly, semantics based on mathematical approaches rests on relating programs to
functions about which formal reasoning eg. in Milner's LCF [1972], can be done to compare
programs or to compare programs and descriptions of the functions they are to realize. Once the
semantics are given, reasoning can proceed mechanically and be left to an automatic verifier.
This is cited as an important part of the goal since, to quote Cadiou and Levy [1973], " Proofs

carried out manually are probably just as likely to contain bugs as the original code.”

1 Note that proof rules do not tell you how to prove this theorem but rather how to find it.
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Milner {1972] and Bekic [1971] also consider well-defined rules of composition as essential
to semantics. For functions this seems to be an appropriate goal since the resulting ob ject is also
a function. However, in order to extend this to parallelism, one apparently must restrict oneself to
very detailed, low level description. There are times when full details of composition of programs
in parallel (represented as all possible interleavings of steps in each program) should be
examined. However, this should not be the only representation of the parallel programs available
in the formalism.

The goals of our research differ somewhat from the above in that we do not
particularly intend that automatic verification be relied on for proving unduly long or unintuitive
theorems. We are not even convinced that given formal descriptions of all parts of a complex
system we automatically have a satisfactory description of their behavior as a whole. We wish to
concentrate on the counterpart of the assertion language in the Floyd proofs to be sure that the
language is well-suited for expressing the concepts on which the "meanings” of our systems are to
rest. We would like to be able to talk about such meanings in varying amounts of detail and with
some hope of being able to relate more detailed specifications to the high level goals expressed in
the less detailed specifications. However, we will not expect the task of doing such reasoning to
be in any sense mechanical. Neither will we require that it be any more precise than the usual
mathematical Iogic.l One reason for this is that we do not believe that proofs should be carried
out by machine in a form which is incompatible with natural human reasoning. While our
arguments will not be trivially mechanizable, they hopefully will be understandable. Whatever
progress is made in mechanizing mathematical reasoning can be put to use in an interactive
system where programmer and "understander” work together in analyzing programs, only if the

formalism is understandable to the programmer.

I Most proofs will be about properties of partial orders. We will rely on ordinary mathematical
reasoning to prove them. This may be in contrast to what has come to be understood in
verification work as formal, namely, checkable by machine.
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Thus we will be developing a language for talking about meanings of systems of
communicating parallel processes. In addition, by reference to interactions among parts of systems
the causality involved can be captured. A rule for composition by interleaving all events is clearly
available. Means for comparing high level synchronization specifications to properties which can
be guaranteed to hold by causal properties of components will generally prove more important in
programming and in analysis, since it relates abstractions to details. We do not expect the
abstractions to be an automatic result of composition.

There has been some previous work on specifications. One effort is the work of
Robinson and Holt [1975]. It relies on the notion of state described by an invariant on variables.
Our reasons for preferring the behavioral approach are discussed in Chapter 6.

The work of Parnas [1972, 1975] on system modules is also meant as a specification
language without consideration of proof techniques. It emphasizes what we refer to as external
specifications, namely specifications of externally observable properties independent of such
internal specifications as particular algorithm used for implementation or full implementation
details. Internal definitions become more difficult to understand once side-effects as meaning are
introduced. Most people know how to use functional abstraction to deal with side-effect-free
function definition by algorithm (an internal definition saying how to compute the definition). It
is less obvious how to extract the right side-effect or synchronization properties from a
description of an implementation. Therefore techniques for external definition may become more

important.

1.4 Relation to Programming Language Semantics and Alternative Models
As long as programs are written for computers, programming language semantics will

remain a sub ject of interest and importance. Specifications of binding, scope, environments and
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closures constitute a large part of this subject. For certain kinds of programs, the mapping of
programs and parts of programs onto functions, and the realization of a semantics with a well-
defined rule of composition (see [Bekic, 1971; Milner, 1973]) is important. However, as interest in
implementing programs on multi-processor computer systems increases it also becomes important
for formal semantics to extend to programming languages which include primitives for parallel
processing. As Milner [1973] has pointed out, when programs with side-effects include primitives
for parallelism, specifications of program meaning must sometimes include more details than
input/output specifications. For programming languages with primitives for parallelism and side-
effects, /O relations alone no longer fully describe a program. Two programs with identical I/O
specifications might have quite different "meanings" as components of a system of parallel
programs, depending on what side-effects they cause while computing output. In fact, it may be
that the program is actually being used because of its side-effect and the effect that it can have
on the computations of other programs. The /O relation then becomes less interesting than the
specification of these side-effects.

- Our view is that, in order to write specifications for languages with side-effects and
parallelism semantics of programming languages must reflect semantics of communicating parallel
processes. Programs that are meant to be run in parallel should be analyzed in terms that apply
to the most general multi-processing environment in which it could run, rather than by artificial
mappings onto other formal ob jects such as functions which may bear no relation to the physical
realities of communicating parallel processes. In developing our specification language we will
emphasize development of terminology for direct expression of communication among paraliel
processes rather than programming language issues. When a programming language is formally
defined it will be in terms compatible with specifications of parallelism. This will produce no
new results for applicative parts of languages, but will allow direct reliance on the theory of

parallel processing in describing imperative, synchronization and parallelism primitives of the
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language. This approach is a deliberate departure from that of modifying or extending previous
work on semantics of sequential programming languages to apply to additional primitives for
side-effects and parallelism.

For instance, representations of one side-effect primitive, a cell of read/write storage in
a single processor system, when extended to multi-processing environments, can result in a limited
representation of a cell's possible uses. Burstall [1972] has proven the correctness of a program for
reversing a list. The list is implemented by pointers and cells. In the style of Floyd [1967), he
places assertions on programs. His assertions maintain a description of storage cells and pointers
with their interpretations as lists. Changes in pointers (values of cells) can be reflected in this
description. By tracing pointers from list names one can see the overall result of any single
change in value of a pointer. Thus this is a model based on the assumption that there can be a
complete description of the state of memory at all times.

Using this approach for parallel processing requires the recording of several possible
descriptions -- one for each possible interleaving of the steps of each process. This has the
problem of causing a combinatorial explosion in the amount of information that has to be
available to specify the meaning of a parallel processing system. Also, it may not represent clearly
which information is important to the behavior and which is not. Some changes to storage are
important enough to cause further changes in the behaviors of other processes.

Similarly, the extension of mathematical semantics to parallelism, as in Milner [1973],
represents parallel composition of processes by the set of all possible interleaving of steps of all
the processes. This notion of the meaning of two programs run in parallel can capture some
aspects of non-determinism. However, since the only expression of the meaning of parallel
programs is in the set of all detailed histories, it is difficult to abstract a property which holds for
all those histories. In general, if a system has interesting properties, they will take the form of

simpler properties true of all the histories. They may not be at all obvious in the details of
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interactions. This is true even if the details must occasionally be examined to prove that the
| common properties hold.

Milner's approach also has the property that further uninteresting details must always
be included to specify how the interleaving is to be accomplished. Parallel processes are run in
pseudo-parallel in accordance with oracles which are infinite strings of “process names.” Each
time the oracle is questioned (examined) it designates the next process to be run. Only fair
oracles should be consulted (where fair oracles are ones that always give each process another
chance in the future). If new processes are created, the creation of a new oracle which includes
the new process will have to be done explicmy.l As a result, while the method can be used to
state and prove properties of busywaiting synchronization programs [Cadiou and Levy, 1973],
there is no means for expressing synchronization without details of busywaiting. We consider it
to be important that a theory of parallel processing encompass both busywaiting and forms of
synchronization without busywaiting as in systems built from semaphores.

The main approach to parallelism not mentioned so far is Petri nets2 While they may
afford some insight into causality by graphic representation of interconnections, we contend that
the understanding of those interactions is founded on the same notions of ordering and causality
as are used here. Particularly since there is no obvious means for increasing or decreasing
amount of detail shown in a net, it may be convenient to make any abstractions about high level
properties of nets in statements in another language such as ours. What is more, many
assumptions about physics implicit in the Petri net model make it impossible to describe certain

things (and perhaps make it too easy to describe possible unrealizable things). A particularly

I Milner expects that extensions of the work of Scott [1972] (on which Milner's approach is based)
to relations will eliminate the need for oracles, but the currently available papers report only the
work which depends on the oracle.

2 One source of references on Petri nets, as well as a short discussion is an Appendix of
Tsichritzis [1974).
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notable limitation is the inability to refer to cells of storage (other than those with complex
indivisible access operations, namely semaphores) which in fact can play a role in synchronization.
Although a model which rests entirely on busywaiting for expression of synchronization was the
ob ject of criticism above, the alternative of not being able to express busywaiting at all is clearly
not acceptable, since busywaiting does arise and must be dealt with at some level of detail in

many computer systems.

L5 Informal Specifications

The area we are moving into, systems of communicating parallel processes, has certainly
not been at a standstill due to lack of a formal specification language. On the contrary, many
problems have been posed and solved. Some have even been proved "correct” relative to
informally stated specifications.l

Thus part of our task will be to sort out these informal specifications and to see
whether we can make acceptable formal statements of their meanings.2 This will lead to some
further discussion of exactly what limits our choice of model may have placed on the kinds of
properties that can be specified. We do not write specifications based on speed of machines,
relative ordering of arbitrary (possibly unrelatable) occurrences, or relative speeds of
implementation. The kinds of properties that can be stated are properties which, if they hold,
hold independent of how processors run or where they are located. We will see that informal
specifications often confuse such specifications with properties that cannot be invariant over

implementations. While both can be of importance, they require separate formulation. This is

1 Even if primitives in programs are specified formally as in Haberman, [1970), the specifications
of problems are so closely related to the primitives used in the solution that they could scarcely be
called problem specifications.

2 Clearly this is the best we can do since no precise statement was made previously.
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analogous to semantics of programming languages. Programming languages and therefore the
programs written in them are generally considered to have some meaning independent of specific
compiler used. Compiler dependent properties may also be important and in fact programmers
often rely on them. Thus it may be important to be able to express those properties. However,
unless the nature of these properties, i.e. compiler dependent, is made explicit, a program can be
proved correct and then when used in a different environment (e.g. compiled by a different
compiler) have incorrect behavior. We are carefully making the same kind of distinction in
starting to write specifications of parallelism and are concentrating our first effort on

environment invariant properties,

1.6 Presentation

Chapter 2 is an introduction to the actor model of computation and the definitions of
many of the terms which will be used in the following chapters. Chapter 3 contains
specifications of a side-effect actor, the cell, and an example of how the cell can be used for
communication of time ordering information between two processes. An example of another kind
of actor which can affect time ordering is presented in Chapter ¢ along with high level
specifications of a commonly required kind of synchronization, mutual exclusion. At the end of
Chapter 4 there is a review of the uses that have been made of partial orders to that point.

Chapters 5 and 6, through the example of the readers/writers problem, illustrate the
different kinds of specifications one might encounter in analyzing a single problem. They range
from high level problem specifications to detailed program specifications. The program in
Chapter 6 is written in terms of a so-called structured synchronization primitive, and therefore its
presentation is followed by some discussion of what structure this might refer to.

Chapter 7 contains definitions of two kinds of semaphores. Examples of
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implementations of synchronization actors using semaphores are used to relate the structures of
problems (as described in earlier chapters) to structures of programs. In Chapter 8 we consider
the adequacy of the the completeness of specifications of programs and primitives on which
judgements about power of primitives rest. It also brings us to recognition of areas for related
future research into specifications of run-time environment dependent properties of
synchronization.

Chapter 9 is a return to the subject of cells for synchronization using busywaiting. It
contains proofs of properties of two previously published programs by Di jkstra and Knuth.

While it is important that there be a formal definition of a language for formal
arguments about programs which are implementations of specifications, for the most part, in this
dissertation, the formal language definition serves only the function of formality and will add no
insight into parallel processing. Examples will be written in an Algol-like language. Reasoning
about those programs will rely on informal definition for all primitives except variables (cells)
and synchronization primitives. We hope that this use of familiar programming notation will

ease the reading without suggesting inappropriate models of computation.
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2 A Model of Computation

The properties of computer systems which interest us are easily formalized in the actor
model of computation. The model is presented in this chapter with references to the sources of
the concepts on which it is built and explanation of their importance for the purposes of this
research. The final section is a preview of the way in which the thesis research builds on the

actor model to develop a specification language for systems of communicating parallel processes.

2.1 Actors

All ob jects are called actors. In general, collections of actors will be used to represent
computers systems. Such collections are actor systems. We will often refer to an actor system as
an actor since at some level of abstraction a collection of actors is a single object. Activity in an
actor system is in the form of one actor being sent to another actor. The sources of energy for
these transmissions are referred to as activators and correspond roughly to processes. Any group
of actors can be referred to as an actor system. An actor system can have arbitrarily many
activators providing energy for the transmissions.

An actor can be thought of as a script to be followed by an activator. The basic
activity described in a script is the passing of one actor (the transmitted actor) to another (the
target). The activator does this and then follows the script of the target, with information from
the transmitted actor available. By virtue of the fact that a script can call for transmissions
among other actors, it is clear that an actor also implicitly "knows about” other actors. The actors
in any actor system may know about other actors in the system and about other actors not in the

system.
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Activators are assumed for our purposes to be unlimited sources of energy. Thus we
will always be in a multi-process world in which no scheduling of processes onto a smaller
number of processors has to be done. The advantage of this property of the model for our
purposes is that it will eliminate the possibility of depending on properties such as the number of

processes in specifications or in proofs of properties of speciﬁcations.1

2.2 Behaviors
An actor system is characterized by its behavior where a behavior consists of the events
that take place and the causal relations among those events. All events in any actor system are
transmissions of an actor to a target actor by an activator. These events can be characterized as
follows:
Definition: An event is a four-tuple, <t m « ec>, where t is a target actor, m is the
transmitted actor, a is an activator, and ec is an integer called the event count.
The event count is required in order to distinguish among sets of events of one activator which
involve identical actors. The events of a single activator can be considered to be totally ordered.
Therefore such events are distinguished by their places in the total order of events of the
activator a and are represented by events <t m a ecp and dma ecy> where ec; # ec). What is
more, if there are two events <t| m; a« ec> and <ty my @ ec> then t; s {5 and m; = my. le. there
cannot be two different events in the same place in the order of a single actor.
If ec; < ecy then <t maecp --> < maecy>. The ordering --> is referred to as the

activator ordering. At a particular level of detail the count after ec is ec’2 Thus when two events

occur successively (with no intervening events at a particular level of detail) they are represented

l'such dependencies can exist and may be relied on, but they are not in the scope of this research.

2 Occasionally, when several sequential events are referred to, the number of primes will be used
so that ec’” is represented by ec(?).
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by <t} mj @ ec> --> <ty mp aec’>. The event <ty my ay ec> is said to be an event of activator aj.
If Ey and Ej are of activators a; and ap, respectively, where a; # ay, then E| and E; are events
of different activators. Since any set of events in a« is totally ordered by -->, we can define the
past of the activator a with respect to an event E with event count ec to be the totally ordered
subset of those events with ec; < ec. Similarly, the future can be defined for any E. These terms
can be applied to any totally ordered set of events.

Activators and/or actors can be “created in events." If <t m a ec> is an event in which
a; is created, then A ma ec> --> <t my a; ecp for all ty, mp, ey Details of how the activator is
created are not dealt with in this model.! An example of a target actor which can cause creation
of an activator is a fork actor which creates new processes. Section 2.6 contains specifications
for such an actor.

There is similar lack of detail about creation of an actor. It can best be understood by
analogy with the closure in programming languages. Interpreting code for a lambda expression
((Mx) (My) (.. ) g) involves binding x to g and using the closure of (Xy)( ..)) with that
binding in future computation. Similarly, a target actor’s script can contain an actor-creating
script, analogous to (A(x) (My) ( ..))), but the creation of the closure actor cannot occur until the
target actor is sent a message to which it can bind variables. The target actor can create a
different closure for every message it receives.

Activator orderings for all the activators form a partial order on all events in a system.
The same symbol --> is used to denote the transitive closure of the union of the total orderings
for each individual activator and the relations between events of different activators due to
creation of an activator. It is still referred to as the activator ordering. A behavior is a set of

events partially ordered by -->. For an actor system, a set of n initial events with targets in the

1 Thus in an implementation of a computer system that corresponds to an actor system, one must
! mpl p Y : P y
decide on a primitive for process creation and depend on it.
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actor system and with n distinct activators (the initial conditions) will begin one or more

behaviors. Any property common to all behaviors under all initial conditions can be considered a
property of the actor system. Thus if we refer to properties of an actor’s ordering or of an
actors’s behavior, we refer only to properties that are common to all orderings of all behaviors of

that actor.

2.3 Continuations

The basic activity of message passing operates without any control superstructure.
There is no implicit memory of what actor or actors caused any given transmission. Thus control
structure must be provided for explicitly. The convention for including control information as in
the control structure of functions and returns is to structure the transmitted actor in the following
way:

(apply: message (then-to: continuation)).

The actor message is the argument to the function and continuation is the actor to which another
actor can be sent. Thus the usual programming language function call with implicit return, as in
the call to f in I + f(x), can be implemented by explicitly sending the continuation to the function

along with its arguments, as described in the event:

<t (apply: x {then=to: (A(y) (1 + y)) )) a ec>.

The explicit continuation, (AMy)(1 +y)), is an actor which will take the result of f{x) and add it to
1. This does indeed correspond to the intended computation of I + f{x).

In addition to functional behavior more general control structures can be represented.
For instance, an actor might create a new process a to do some printing, not caring to hear from

that process again. In that case an actor without continuation might be sent:
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<print (apply: 3) « 051

There are actors which even when sent an explicit continuation, can choose to ignore
that continuation and instead transmit actors to some favored actor of their own. This can
produce a control structure similar to a jump out of a procedure body.

The continuation can be important in programming language semantics as
demonstrated by Reynolds [1972], Fischer [1972], and others. The control structures which will be
used the most in the following chapters are simply function (procedure) calls and sequential
execution of statements in a program. The second example in Section 26 illustrates the
representation of sequential code in continuation semantics. This example is important since all
discussions of "behaviors of programs” in this paper assume translation of sequential code to
continuation semantics.

For the purposes of the development of the specification language, the importance of
the continuation is the fact that it allows one to take the event view of behaviors, without any
other mechanism. A control structure such as sequential execution of statements in a program can
be expressed [as well as jump, coroutines, and parallel processing] without reference to program
counters or other devices. The ability to characterize systems by orderings on events, and thus
most of the work to be reported in this paper, rests heavily on the incorporation of the semantic

concept of the continuation into the actor model.

2.4 The Data Abstraction
Another programming semantics concept which has been developed independently and

which is relied on in the actor model is the data abstraction. The cluster in CLU [Liskov, 1974]

L The first event in an activator has event count 0.
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and the class in SIMULA [Dahl, 1972] are instances of data abstractions in existing programming
languages. In a data abstraction, data objects are defined by specifications of all relevant
operations and properties of that data rather than by such details as how they are to be stored in
a machine. Actors are defined by the relations they introduce into a system depending on the
messages they receive. Thus if the different messages to which an actor can respond are
considered as procedures or properties in that actor, then the actor can be seen very naturally an a
class-like ob ject.

The concept of data abstraction will be relied on in the writing of specifications.
Chapter 6 is about a programming language primitive based on the data abstraction, namely the

monitor [Hoare, 1974].

2.5 Level of Detail

In describing the behavior of a system one has to decide on a level of detail of interest.
Only events which represent activities deemed of interest for the current purposes are included.
Although one standard use of level of detail is to successively fill in more and more details of
implementation, levels of detail of descriptions of a single actor system do not necessarily form a
linear hierarchy. If the details of interest in two different descriptions of an actor are not related,
then the behaviors at the corresponding levels of detail may be incomparable.

The "filling in of details” way of thinking of levels of detail is as a choice between
information about input/output properties of an actor and information about the means for
producing that input/output property. Thus an actor, t, which is generally expected to receive a
message and a continuation could be described at the 1/O level of detail by describing the
message sent to the continuation in the "next” event. To describe the actor in more detail would

require the filling in of other events between the event with the actor t as target and the '6utput'
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event. The further level of detail could simply be a direct implementation revealing techniques
used (such as storage in local temporaries, etc.) or it could expose unsuspected behavior such as
some side-effect of the computation.

There is another way to think of variation in level of detail which is useful for actors
that don’t have behavior of functions with the well-defined notion of I/O relation. This involves
the notion of a boundary around a collection of actors. There are actors ¥ in the and actors B
out of the collection. The highest level of detail of description is one in which only events
corresponding to crossings of the boundary are included. This includes only events <t m @ e¢> in
which t € ¥ and m € B or vice versa. Also, for two successive events Ay mpae> —>
<ty myaec, if t; €M and m| € B then t; € B and my € A. This requirement would prevent
inclusion at high level of non-essential events like transmissions of the original message to some
other internal actors. Thus the events included at highest level represent a conversation between
the actor system and the outside.

The way to examine an actor system in more detail is to choose a set of distinguished
actors within it and to include all events involving the distinguished actors. Once specifications
can be written at varying levels of detail one can define equivalence of actor systems relative to a
set of distinguished actors. Then one can distinguish among actor systems which are equivalent
(i.e. have the same behaviors) at a high level of detail, according to whether or not they are
equivalent in further detail. Two actor systems are equivalent with respect to some set of
distinguished actors if and only if they have identical behaviors with respect to that same set of
distinguished actors. The choice of distinguished actors can make a difference in equivalence of
actor systems. For example, two programs for factorial can be equivalent at the level of input-
output transformation (ie. with no actors distinguished) even if a larger set of distinguished
actors would reveal one to be a “"counting-up” factorial and the other to be "counting-down.”

Consider computation of 4! by both of these factorial actors. If multiplication, represented by ¥,
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is considered to be a distinguished actor then in any behavior of one factorial there might be a
series of events showing successive multiplication of the partially computed value by the numbers

1,2,3, 4

< (apply: [1 1] (then-to: c|)) a ec>
->
<x (apply: [2 1] (then-to: ¢5)) a ec
->
< (apply: [3 2] (then-to: ¢3)) a e
->

<k (apply: [4 6] (then=to: cg)) @ ec”.

In the other there might be a series showing multiplication by 4, 3, 2, I:

<x (apply: [4 1] (then-to: cg)) a ec>
-=>
< (apply: [3 4] (then-to: cg)) a ec
-->
<x (apply: [2 12] (then-to: ¢y)) « ec™
-->

<x (apply: [1 24] (then-to: cg)) a ec™.

2.6 Specifications of Actors

The properties of a particular actor are specified by axioms which must be satisfied by
behavior of any actor system which contains that actor. Thus the actor addl corresponding to an
instruction in some programming language for computing the successor function has behavior

specified by the axiom:

If the event

<addl (apply: x (then=to: ¢)) a ec>

is in a behavior then, the next event in that activator « is
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<c (apply: 2) a ec»
wherez=2x + 1.
That is, in any behavior of any actor system which contains
<add! (apply: x (then=to: ¢)) a ec> is in the behavior then so is <c (apply: z) & ec™.

This will often be written as either

<add] (apply: x {then=to: c)) a ec> ~~> <c (apply: 2) @ ec> where 2 = X + |

or as
<addl (apply: x (then=-to: ¢)) a ec>
causes

<c (apply: 2) @ ec’> where z = X + 1.

addl, if

This last form can best be understood if a behavior is thought of as a dynamically increasing set

of events. Then the axioms tells what events can be added to that set next. The presence of

<add! (apply: 4 (then-~to: ¢)) a ¢¢>

in the behavior, means that

<c (apply: 5) a ec”>

can be included in the set as well.

This axiom distinguishes add! from arbitrary functions f for which one can only state

what the next event will be, if there is one. This next event cannot be guaranteed to occur. In

other words, addition has been defined as a function which always terminates, whereas, in
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general, functions may or may not terminate. For functions which are not known to terminate,
the most that can be said is that if <t (apply: x (then=to: ¢)) a ¢¢> is in the behavior, then if there
is a next event at this level of detail it will be <c (apply: 2) & ec”.

Notice that in the statement of the axiom the fact that actor z can be characterized
simply by the mathematical notation z = x + | has been used. In general, actors which appear in
events in axioms can have arbitrary behavior. When that behavior is not conveniently
expressible in conventional notation, its properties must be specified by axioms for its behavior.

The following actor, ( A(x) {{f x) ; (g x) ; (h x)) ) causes events which involve newly
created continuation actors. These continuations are in turn defined by axioms about their
behaviors. Intuitively, this actor sequentially performs the function calls {f x), (g x), and (h x)

after a value to be bound to x is sent to it. The axioms for this actor a\re:l
<O Mx) ((f x) 5 (g x) 5 (h x)) ) (apply: z (then~to: ¢)) a ec>
causes

<¢ (apply: z (then=to: cl*)) aec’d

where ¢ is defined by:
<cy (apply: x1) a ecp
causes

<g {apply: 2 (then~to: cz*)) a ec1’>

where cj is defined by

1 In axioms, symbolic names of newly created actors are marked by an asterisk in the first events
in which they appear. Composite actors will not be so marked. For example, if ¢ is a new actor

then the actor (apply: x (then-to: ¢;)) must also be newly created since it "knows about” the newly
created actor <.
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<cp (apply: x2) a ecp>
causes

<h (apply: z (then-to: c)) a ecy?

Thus the continuation of each statement (i.e. each function call) is the "rest of the sequence of
instructions.” The value (if any) computed by the preceding statement is ignored, but the value
of the last statement is treated as the value of the sequence and returned to the original
continuation.

The following actor definition includes creation of new activators and illustrates a type
of causal relation by which sets of events are related. It is a definition of the way in which the
function (X (f g) ((f x) + (g x)) ) computes (fx) and (g x) in parallel once it is sent a pair of
functions [F G] to which to bind f and g. On receiving the values of the computations of (f x)
and (g x), it adds the two values. Thus transmission of a message to the actor

(Nt g) ((f ;() + (g x)) ) causes two events. The axioms are:l
<ONE g) ({f x) + (g x)) ) (apply: [F G] (then~to: ¢)) a ec>
causes

<F {apply: x {then-to: cl*)) ap O and <G (apply: x (then-to: cz*)) ap o

The newly created actors ¢; and ¢, are defined by:

I The notation [x| x2] indicates an actor which knows about (in the sense that its script refers to)
a sequence of other actors, x; and xp. It can distinguish between them in the sense that it knows
that x; is first and x, is second.
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<cy (apply: vi) 8] ecp and <cp (apply: vp) B3 ecp>
cause

<+ (apply: [v] vp] (then=to: c)) %, 8, .

These axioms illustrate several points, some conceptual, others notational. The event count of 0 is
used to indicate that the activator is newly created and that this i§ its initial event. The use of
new activator names, aj, ap, 8; and By, in the axiom about ¢; and ¢ is necessary for the general
case in which additional parallelism is introduced in the computation of (F x) or (G x). (F x) or
(G x) could generate several activators operating in parallel. The actors ¢; and ¢, have the
property that for every pair of values returned, application of the function + to those values will
proceed. In each case the continuation actor used is the same, namely, ¢, the one which was
originally sent as the explicit return point to the function (A {f g) ((f x) + (g x))). However, should
it be the case that several different applications must proceed it is necessary at least abstractly to
provide for multiple activators to carry them out in parallel.1 Thus the activator g, 8, is needed
to carry out the application based on the evaiuations reported from processes 8; and 8.

An implementation of these actors might actually represent a special case such as the
following one. Process a might create a new process ap to do (G x) while doing (F x) itself.
Thus aj = a. Also, the computations might create no further parallelism in which case eventually
the events <F (apply: x (then-to: ¢, *)) a; 0> and <c; (apply: v{) By ec» occur in a and
<G (apply: x (then-to: CZ*” ap 0> and <cp (apply: vp) By ecp> in ay. In this case “51-52 might be

a itself resuming computation.

1 Otherwise these axioms would be inconsistent in the following sense. If the events <+ (apply: ["1
va] (then-to: c)) “ﬁlvﬁz 0> were simply required to be the next event in a as in <+ (apply: [v] va]

(then-to: c)) a ec’, then the axioms could require two events <+ m; a ec’> and <+ my & ec’> where
mp =mj.
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2.7 Time Orderings

The actor model can be called a behavioral or event-oriented approach to semantics.
The most important feature for the purposes of semantics of parallel processing is that with this
approach, a system is characterized by partially ordered sets of events. This feature is so
important because it serves as a basis for characterization of systems of parallel processes by
partial orderings other than the activator ordering. As stated in the introduction, the underlying
concept of synchronization is the imposition of additional ordering constraints in a computer
system. This section is about some kinds of orderings on actor systems which are important to
synchronization semantics.

An important ordering for expressing high level properties of parallel processing
systems is the time ordering, written =>. Using it one can state desired properties such as “E; must
always happen before E;" which is stated "E; => Ep." Another property,’'E; and E cannot be
allowed to happen in parallel” can be stated "E; => Ep V Ep => E,.” Since => is meant to
correspond to some physically meaningful notion of ordering in time, it will be assumed that it is
not possible that there are events, E; and Ej such that (E| => E; A Ep => El).l

A kind of time ordering property which will be stated frequently in this paper is the

ordering of sequences of events.
Definition: S is a sequence of events if S = {Ej, .., E,} and E| --> .. --> Ep,.

Definition: S; => S5, where §| and S, are sequences of events {Ell' . Eln} and

{Ezl, .y Ezm}, respectively if Ell =-> . > Eln => Ezl -=> .. > Ezm
This ordering is used in specifications for several kinds of synchronization.

Using => one can write arbitrary time ordering specifications, without concern for their

I Proof that a set of specifications for an actor would cause such an ordering is proof of
inconsistency of the specifications in the sense that no physical device could realize the
specifications.
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realizability. As a part of the specification language, => is useful for writing high level
prescriptive specifications, expressing desired ordering properties. However, as emphasized in the
introduction, it is also important to be able to express the means through which orderings can be
achieved. This must be expressed in such a way that its relation to the high level specifications
can be examined, and so that. realizability can be analyzed.

A first example of an ordering which can be used to realize time orderings is the
activator ordering -->. If §; => S, is specified, it may be realized by §| --> S5, i.e, by building a
single processor system which first does §; events, then does Sp events.] The activator ordering is
an enforcible ordering and thus can be used to realize desired time orderings. Every system has
its own time ordering (also denoted by =>) derivable from ordering information such as -->. If
this derived => has the specified properties then the system realizes the high level specifications.

Another physically meaningful way to build orderings is based on communication of
parallel processes through common actors. For instance, if events E; and E, are of different
activators, but both have the same target, t, then it may be physicaily meaningful to order those
events. It will be possible to order them whenever the causality of the actor t (as embodied in its
axioms), is based on the order in which t receives messages. An example of this kind of actor is
a cell of read/write storage. It causes behaviors to reflect the order in which messages were
received by the cell. Even if the two events E} and Ejp, corresponding to updates of the cell to
different values, were unordered by -->, the contents of the cell would be left with one value or
the other, not both. That value is the value stored in the last update where last is defined with
respect to the order in which the messages were received by the cell.

For any actor t, the ordering, =>, is a total ordering on the events in the behavior with

t as target. Orderings such as =>; will be referred to as actor orderings. For any behavior this

I That is, providing the specifications did not require parallelism. Le, the specifications were for
sequences of events <tll m‘l ? ec11> > > <tln m ? “In) and (tzl mzl ? ec21> R <t2n

ma ? ecy 1> where activator identity was not important.
n n
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ordering can be thought of as arbitrary up to consistency with -->. That is, for any E; and Ep
which both have t as target, if E; --> E5, then Ej =>4 Eo.

If t; are actors which cause behaviors to depend on their =t then for any actor system
containing the actors t;, that system's time ordering is derived from combining the actor orderings,
>t and the activator ordering -->. In following chapters actors are defined by axioms that
depend on actor orderings. Each chapter either introduces an actor with a new kind of causality
or investigates the way in which a previously introduced actor can be used as part of an actor

system to satisfy high level time ordering specifications.
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3 Specifications of Cells

This chapter contains the definition of an actor which is a cell for storing arbitrary
values. The cell is an example of an actor which causes behaviors to depend on an actor
ordering. The definition is followed by an example of how the cell can be used as part of a

system to cause a particular time ordering property to hold for all behaviors of that system.

3.1 A Definition of the Cell

A cell is created with some initial contents. It is possible to ask for the contents of a cell.
Update messages to that cell can change its contents. Thus it is possible that several events in a
single behavior can have identical targets (namely the cell) and identical transmitted actors and

yet cause different events to occur.! This occurs when events E| and E, are events

E| = <cell; (apply: 'contents (then-to: c)) a ecl>2
E, = <cell; (apply: 'contents (then=-to: c)) 8 ecy>

to a cell, cellj, whose contents have been changed due to some update event, E3 where Eg occurs
between Ej and E;. Thus the actor ¢ is sent different actors after E; and Ep, respectively as in

the behavior in Figure 3.1.

I The difference we refer to is in the target or message in the events. Clearly, even with side-
effect-free primitives, one must allow for differences in activator and event count.

2 The actor 'contents is a “quoted” actor, the result of quoting a symbolic name contents.
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Assuming the contents of cell; is 3:
<cell; (apply: 'contents (then-to: ¢|)) a ecp>
<) (apply:. aey
<cell; (apply: [« 4] (:thon-to: c2)) aecy
<cp (apply: cell) a ey’
<cell; (apply: ’contents: (then-to: ¢[)) a ecp™>
<c (apply: 8) a ecy”

Figure 3.I: An Update Causes Side-effect Behavior

Cells correspond to side-effect primitives in various languages. Therefore, it is likely
that most readers have relied on them in programming. Also, it is likely that for any
communication between parallel processes one has to rely on cells or something like them. Exactly
what properties are being relied on for communication will be brought out in the behavioral
definition of a cell.

The actor cons=-cell creates a cell when it receives a message, namely, the initial contents.
Informally, the properties of cons-cell and of the cells it creates are:

(1) Creation of a cell (or allocation of space for a cell) with its initial value should be
an operation guaranteed to take only a finite amount of time. This is also a desirable property of
updates and contents queries. (Any argument that a given program which contains assignment
statements always terminates is based on these properties).

(2) Initially we expect contents queries to find the original contents in the cell. This

should be true until an update transmission is sent.
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(3) Once an update transmission is sent, say [+ y], we would expect to find y in the cell
until there is another update, where y is the contents stored in the cell in the "last update event.”
The “last update event” can be defined with respect to the total ordering =>coll, 35

follows:

Definition: For the event E, the last update event for a cell, cell,, with respect to a total

ordering, >cell; is defined to be the event Eg where Eg is an update event, Eg =>cell;

E and there is no other event Eg updating cell, such that Eq =>cell, Eg ~>cell; E.

The use of "last update event" in the cell definition cannot simply be defined with
respect to the activator ordering -->. The following example is presented as evidence of the fact
that our intuitive use of “last update event" is indeed with respect to the cell’s ordering =>cell;

In a behavior such as that in Figure 3.2l can the message place marked by ? be said to
definitely be 3?

<cons~cell {apply: [2] (then=to: ¢)) a ec>
<c (apply: celll*) a e’
<celly (apply: [« 3] (then-to: ¢;)) aj ecp <cell; (apply: [« 4] (then-to: cp)) ap ec 3>
<cy (apply: cell|) aj ec;” <o (apply: cell;) ap ec3’>
<cell| (apply: 'contents (then-to: c3)} ay ecy>
<c3 (apply: ?) a; ecz'>
Figure 3.2 Parallel Updates

1In all such examples we will assume that the behavior segments given show all activators that
have access to the actors of interest {in this case celll). This is an important fact about a

behavior segment involving side-effect actors, since if there could be other updates to cell; in

parallel with this segment, we could not meaningfuily discuss the set of values that ? can possibly
have.



37

No, it cannot. In fact it can be either 3 or 4 depending on which was the last contents stored in
the cell with respect to >cell; According to --> the two update events occur in parallel. But since
they both involve a common actor, the target actor cell|, the ordering of those events with respect
to the arrival of messages at cell; affects system behavior in the answer to the contents query.
Thus this system has two behaviors which are consistent with the partial order so far specified by
the consistency with -->. They differ only in the identity of 2l Ina representation of the
behavior including only -->, there does not seem to be any reason for the two different behaviors,
or means for predicting which will occur. Indeed from the point of view which does not include
actor ordering, this system is non-deterministic. However, after “call; is included in the
representation, the cause of the difference is clear. Two possible orderings are illustrated in

Figure 33. [There is a third.]

I That is, it can have two behaviors even given identical intttal conditions [as defined in the last
chapter] each time.
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<cons=cell (apply: [2] {then=to: ¢)) a ec>

<c (apply: colll*) a e

174

<cell; (apply: [« 3] (then-to: ¢))) aj ecp g <ceil| (apply: [« 4] (then-to: €2)) ag ec 3>
<e; (apply: celll\l)/al ec;’> <cy (apply: coll|) ay ec3™>
<cell; (apply: 'contents (then=to: ¢3)) a; ecy>
<c3 (apply: 3) ay ec)?

"7 ccons-call (apply: [2] (then-to: N a e

<c (apply: celll*) a e

<cell) (apply: [« 3] (then-to: ¢|)) a; ecp:% <cell| (apply: [+ 4] (then=to: c3)) ap ec 3>
<cy (apply: cellj) a ec1’> / <cy (apply: cjl/ll) az ec;’)
<cell; (apply: 'contents (then-to: c3)) a; ecy>
<c3 (apply: 4) allec2’>

Figure 3.3 The Cell Orderingl

As stated in Chapter 2 actor orderings have to be consistent with -->. This requirement

prevents ? from being 2. A => such that 2 is the last contents stored before the contents

celll

query would lead to forming a time ordering => which has a loop, i.e, in which there are two

events E; and E, such that E| => E; A Ep; => E|. This loop is directly traceable to the

lin figures we generally indicate the parts of => that are not in --> by =>.
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inconsistency of that => with -->. Such loops obviously should never happen given the

cell;
interpretation of => as a time ordering. In fact, in proofs of correctness, undesirable behaviors
can often be proven impossible by showing that they could only occur with impossible =>
orderings.

A further constraint, namely, the constraint that in systems with more than one cell, cell;,

the orderings => must all be mutually consistent with -->, prevents other pathological =>

CO"i

orderings. For example in the behavior segment in Figure 3.4 since cell, is known to have
contents 6, ceil; must have been updated to 5 and the only possible value for ?; is 5.
<cons=cell {apply: [3] (then=to: c|)) & ecp>
<c; (apply: celll*) aec)>
<cons~cell {(apply: [4] (then-to: cz)) a ey
<c, (apply: collz*) aecy)
<celly (apply: 'contents (then-to: ¢3)) a) ¢c 3> <cell; (apply: [+ 5] (then-to: 7)) ap 2
¥ = V
<c3 (apply: 6) aj ec3™ <celly (apply: [« 6] (then-to: 7)) ap ?>
<cell; (apply: 'contents (then-to: cg)) aj ecpd
<cq (apply: ?1) ap ecy®

Figure 3.4: Two Cell Behavior

An alternative in which cell| contains 3 leads to the inconsistent behavior of Figure 3.5.
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<cons=cell (apply: [3] (then-to: ¢{)) @ ecp>
<c; (apply: celll*) aecy>
<cons-cell (apply: [4] (then-to: ¢c5)) a ec>
<cy (apply: cellz*) aecy
~A
<celly (apply: 'contents (then-to: ¢3)) a; ec 3> <cell; (apply: [« 5] (then-to: 7)) ap 7>
<c3 (apply: 6) a} ecy” <celly (apply: [+~ 6] (then-to: ?)) ap
<cell; (apply: 'contents (then-to: cg)) a; ecp>
<cq (apply: 3) ay ecy>

Figure 3.5: An Impossible Behavior Segment

3.2 The Causal Relations Induced by Cells

The full statement of the axioms for cells follow. The cells are defined by a causal
relation between the set of events involving cells (and therefore ordered by ->“") and the single
event which is the response from the cell. This can be interpreted as a definition of the cell by
how it operates as part of a running system. For any behavior of a system containing a cell, if
the events occur in the order required by the precondition of an axiom, then events in the

postcondition are included in the behavior.

(1) Creation of a cell is guaranteed to terminate, producing a cetl, cell;.
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<cons=cell (apply: [2] (then~to: ¢)) a ec>
causes

<c (apply: celli*) aec’y

where cell; induces the following causal relations among events:

(2) Updating a cell is guaranteed to terminate and to cause return of the cell to the
continuation.

<cell; (apply: [« y] (then-to: c)) a ec>
causes

<c (apply: coll;) & ec’>

(3) Until the first update, the initial contents is returned in response to any contents
query.

E = <cell; (apply: "contents (then-to: cg)) ag ecs>
where there are no updates before E in “cell;
causes

<cg (apply: 2) ag ecs™.

(4) Once there has been an update, the last contents stored is returned.
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E| = <cell; (apply: 'contents (then=to: c3)) ap ec>
and Ejp = <cell, (apply: [+ y] (then-to: c3)) a3 ec 3>
where Ej, is the last update before E| in >cell;

cause

<co (apply: y) ap ecoD.

The formality of axioms such as the above depends on the fact that phrases such as
"E, is the last update before E|" can be stated precisely. That particular phrase has been defined

earlier. "There are no updates before E in =>.." can be stated formally as "= (3 Eg 2 Eg is an

cell;

|
event of the form <cell; (apply: [+ ?] (then-to: 7)) ? > A Ej ”celli E)" Throughout the paper
similar phrases will be used in place of their full definitions. Definitions will be stated only when

a phrase to be used is judged to be significantly different from ones previously defined.

3.3 Uses of Cells

The time ordering => of a behavior derived from --> and =>cell, AN relate events of
different activators other than the events involving the cells. Thus besides being used to store
information for its intrinsic value in such a way that arbitrary processes can share it, the cell can
be used as a means for enforcing an ordering on otherwise unordered events or for synchronizing
otherwise independent processes. In order to characterize the use of cells for synchronization, one
can state properties of the ordering => which hold for every behavior of that system. This kind
of statement can be made as a specification for a program.

In order to realize such an intention, the cells must be used to cause appropriate derived
time orderings as the system is running. For example, imagine a system in which a cell is

initialized to some value, and in which there can be exactly one other update (to a different
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value) in any behavior of the system. Then a contents query finding the initial value can be
interpreted as indicating that the update has not yet occurred, while one finding the second value
indicates that it has occurred. The example in this section illustrates how by the strategy just
described one can use properties of =>cell; and --> to guarantee that an ordering on events of
independent parallel processes holds.

The strategy depends on information about =>cell, being determined by contents queries.
In the Algol-like program of Figure 36, a cell is used to enforce a system ordering in which some
"important computation” by process 2 is always done before some "other computation” of process 1.

celll = 4

parbeginl
process I
loop: if contents of cell; = 5 then goto loop else other steps ;

end;

process 2:
important steps;
celg -5,

end;
parend;

Figure 36: A Synchronizing Program.

A sample behavior of this program might be that in Figure 3.7.

I starts process 1 code and process 2 code in parallel. Le, they are executed by separate activators,
a; and aj.
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<cell; (apply: [« 4] (then-to: c)) a eC>

x important events

\L <cell; (apply: [« 5] (then-to: 7)) ag 2>

The system defined by the program in Figure 36 can be said to have behavior in

<c (apply: celll*) aec

loop: if contents of ce||l 5
then goto loop

Figure 3.7: Sample Behavior.

which

important events => other events.]

The reason that it can be shown that this time ordering is realized by the program is that if the
contents of cellj is 5 then <cell| (apply: [« 5] (then-to: ?)) a5 > must have occurred, and what is

more, it is also known from the activator ordering, the "important events” must have occurred.

Thus --> and =>cell together cause sufficient ordering on events other than those involving cell}
to realize the time ordering property.

The justification that this program has this property is in terms of the axioms for
behaviors involving cells and properties of the programming language. Besides properties of
cells, a proof depends on a definition of the if - then - else construct that allows one to deduce

that other events occur iff the contents of cell; is found to be 5 by process one. This information

I Recall that this means that for the sequence of events Eil' - Ej

the sequence of other events E°1' E°m' Eil > .. Ein => E°l > . >E .
m

called "important events” and
n
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is combined with the fact that if any behavior has a contents query which causes a 5 to be sent to
the continuation (referred to as ‘test)' then that behavior has a total ordering on cell; events
satisfying
<celi| (apply: [« 4] (then-to: c)) a ec> -->
<cell; (apply: [« 5] (then-to: ¢3)) ap 7 ->°°”l
<cell; (apply: 'contents (then-to: ¢3)) a ecp -->

<Cigst (2PPly: 5) ay ecp.

Regardless of the number of contents queries in the actual behavior this part of the total ordering

necessarily is the same [see Figure 3.8]. Since the activator ordering also says that

important events --> <cell| (apply: [« 5] (then-to: c|)) ap ?,

and

<Ciqst (aPPly: 5) aj ec/> --> other events,

any ordering, =>, constructed from --> and >cell| will have important events => other events.
Thus this reasoning is independent of the particular behavior examined and is valid for any

behavior of that system.
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<cell| (apply: [~ 4] (then~to: c)) a €C>

<c (apply: cclll*) aecd

K \
<cell; (apply: 'contents {then=to: ¢; 3)) a; important events
1 \J/ test// %1

<cigst (2PPly: 8) ap 7> J/
<cell| (apply: [« 5] (then~to: 7)) ap ?

<cell; (apply: 'contents (then-to: cigc4)) a

(Ciost (app|\1/: 5)a; »

Figure 3.8: Extended Sample Behavior.

The most interesting feature of the system defined by the program in Figure 3.6 above is best
described in terms of the time ordering, =>. It describes a property that holds over a class of
behaviors which would not be distinguishable by --> alone. The "meaning” of the use of cells in
the program is the strategy for ordering sequences of events. This is the structure of the

program.

3.4 The Orderings
In summary, this chapter contained the definition of a cell, a side-effect actor which can
be used to select a behavior from among several possibilities which would be consistent with the

activator orderings and the initial conditions. Given orderings =>.g4y;. for all cells in a system,
i
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each different behavior can be seen to have been caused by differences in the orderings of events
involving cells. Each of these behaviors can be more completely characterized by a time ordering
derived from --> and “cell;
Proof that of a system satisfies a time ordering specification can be done by proof that
there are properties common to all derived time orderings of all behaviors of that system.
Further examples of this kind of reasoning for systems with cells are contained in Chapter 9.
Some comments can be made on possible physical intuition about =>.q). It can be
viewed in one of two ways. First, given the constraints already placed by activators on the events

in a behavior and their orderings, => can be thought of as an incidental ordering, not

cell,
completely determined by the system. Events of independent processes involving a single actor as
target can be incidentally ordered as a system runs, by the order in which the messages of these
events arrive at that actor. Then strategies such as the one above can be thought of as making it
possible to find out at run time about these incidental orderings and make use of them.
Alternatively, one might note that since two messages could arrive simultaneously, in
order for a cell to satisfy its specifications, it may have to be able to arbitrate between them.
Thus the cell itself may occasionally determine that ordering. Then rather than simply being an

arbitrary ordering given at run time, => may be an ordering computed by cell,, with the

cell;
constraint that it is a total order on all events with cell; as target and is consistent with -->.
Either interpretation leads to identical deductions in the important events example. As

long as => totally orders all cell events and the place in the ordering is associated with

cell;
performance of the operations requested in the message, the cell gives the same basis for
reasoning about causal links. In Figure 3.8, while cell; contains 4 one can deduce nothing about
important events. Cell; containing § implies important events must have occurred and says nothing
about whether events after the update to 5 have occurred. Regardless of exactly how =cell, Was

formed, its consistency with --> indicates a causal link between the important events and the other

events.
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4 Synchronization

This chapter contains an example of another kind of actor which can be used to form a
derived time ordering =>. The first section introduces a time ordering property which must often
be relied on in programming for parallel systems. After that the causal axioms for a
synchronizing actor, protected-data-base, are given and it is shown that this actor can be used to
realize the time ordering specification. The properties of these axioms as statements about
causality will be discussed. The chapter ends with a review of the language for ordering

specifications as it has been developed to that point as well as its relation to partial orders.

4.1 Mutual Exclusion as a Time Ordering Specification

One means of protecting a resource from simultaneous use by two processes is "mutual
exclusion.” This informally means that at most one process can be using the resource at any
given time. A precise statement of mutual exclusion can be made in terms of time orderings. If,
for instance, the resource to be protected is a data base, the sequences of events between sending a
message to the data base and the response from the data base (i.e. the events in one operation on

the data base) are the important events. Such sequences can be denoted by

Sy = {Ey, ) Expr oo Ex o By )

where

E"in a <(data=-base (apply: x (then-to: ¢)} a ¢0>

< : (mel)
E"out = <c {(apply: y) a e >

and
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Exin -> Exl —> L. Exm -> Exouf

At the highest level of detail of examining this data base operation, one would see only E"in and

E and therefore we will generally use the following notation to represent a data base

Xout
operation:
={E  ,E
Sx {"in "out}
such that
E,, ->E
Xin  “Xout

The definition of mutual exclusion for a system is that the time ordering must have the

property that in any behavior of that system, for all sequences Sy, Sp in that behavior

Sl => 52 or Sz a> Sl'

This means that in no behavior of that system is it possible for the events of any §| and S5 to be
interleaved.

The property of mutual exclusion is important even in cases where the resource being
shared by a group of parallel processes is only a single cell. If for instance several processes are
sharing a count of some value in a common cell, there must be limitations on how that cell can be
accessed if its contents are to remain consistent with the intended value. Due to the.restricted
means of communication with a cell in which asking for its contents and updating it are separate
events, two processes can both find the contents of a common cell to be x and update it to x + 1
when the intended result is an update to X + 2. That is, each should have independently added 1
to it. What is needed is a means for guaranteeing that during the entire time that any one

process is performing its sequence of events for examining the cell, computing a new value and
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updating it, no other process can be communicating with the cell. For this reason the property §;
=> S5 or Sp => § could also be interpreted as making the operations §; "indivisible” operations.
In contrast with the important event example of Chapter 3 in which the specifications
required important events => other events, in this case, while the sequences must be ordered, they
can be ordered either way. It is much more difficult to realize the specifications for mutual
exclusion using only cells than it was to implement the important event ordering. If the number
of processes is fixed, there are ways to enforce mutual exclusion using cells. Two such programs
are examined in some detail in Chapter 9. The next section contains axioms for an actor from
whose causal axioms the mutual exclusion time ordering can be derived. If this actor can be
relied on as a primitive (or implementaed with primitives other than cells) then the complex cell

solution can be avoided in practice.

4.2 A Synchronization Actor

The synchronization actor to be defined is cons-protection, an actor which when sent
another actor, data-base, creates a new actor protected-data-base from it. It is actually this last
actor, the one created by cons-protection, which has the interesting causal axioms. If protected=
data-base is used in a system instead of the actor data-base, then that system will have the time
ordering required for mutual exclusion of data base operations. This is accomplished in the
manner conveyed graphically in Figure 4.1. Requests will be sent to protected-data~base and they
will be transmitted to data-base. At the end of the data base operation the result is again

transmitted through the protective actor, by means of a specially constructed continuation actor.
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protected-data~base

requests check i
E| € 1

data-base

o

results check ou J
(E

end Xout

Figure +1: Protected Data

The events in a single request and performance of the requested operation are then:

E, = <protected-data-base (apply: x (then-to: ¢;)) a; ec)>
E"in = ¢(data-base (apply: x {then~to: sci*)) a; ec[)
E"out = (sci (apply: y) aj e />

E"ond = <¢; (apply: y) a; ec;”"">.

The actor S; is a newly created actor that knows about ¢;. It is essential to the synchronization as
will be shown below. The actor y is defined by the properties of data-base which specify
responses to the actor x. We will assume that the data base always responds by sending a message
to the continuation supplied with the request. The desired effect of protected-data-base in one
activator is that E, in the behavior is guaranteed to be followed by E"in -> E"out -> E"ond' That
is, E, --> §, --> E,(e"d where S, is the sequence of events in the data base operation. However, in
general E, alone must not be sufficient for causing E"in or there would be no synchronization.

The actor protected-data-base causes orderings E, => E,. to be introduced. The

{ Ji
out in
way it does this is by creating a new actor s, for each process let in to the data base and causing
the event in which s is sent a message to be necessary to the admission of other activators. This
results in orderings S, => Sy

! i

The axioms for cons=protection are:
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<cons-protection (apply: data=base (then-to: ¢)) a >
causes

<c (apply: protected-data-base®) a ec’>

where protected-data-base has the causal axioms given below. They are also axioms for the actors
S, created by protected-data-base. We write =>4, for the ordering =>p,otgcted-data-base of the

actor protected-data-base.

(a) If Exl is the first request to the protected data base, then Exl is served first.

E"l' where E,, is the first event in the ordering =>odb

1

causes

E
xlin

(b) If two requests are ordered at the protected data base then the exit of the first is
required for the entrance of the second.
Ey where E

' Exz' x| =>pdb Exz

cause

E => E

xlout 2

n
The axiom (b) is the new type of axiom characteristic of synchronizing actors. It states
that the ordering Exlout => Ex2in will be added to the ordering formed from =>p4
Protected-data-base differs from a side-effect actor in that, rather than causing

b and -->.
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different events depending on => ., protected-data-base causes different orderings depending on

cell
=>pdb: How this ordering is enforced is not at issue. The use of a synchronizing actor
guarantees that the ordering will be enforced, and how it is enforced need not be dealt with at
the level of detail at which the synchronization actor is viewed as a primitive operation (i.e. at
which we don't look inside it).!

The additions to the derivation of => represent causal chains of --> and =>,. To form

a
a time ordering for a system containing protected-data-base one must use -->, =>pqy, and any
additional properties of => added directly. Presumably at some level of detail "inside” the actor,
sequences of events occur from which this new => is derived. Thus this is an abbreviation for a

causal link, and Ey t must occur before E"Z- . Since (b) is true for all E"i that precede Ex2
ou in
corresponding E"i must occur before E, . Once all added conditions are met Ex2 will occur.
out in in

all

4.3 Properties of Protected Data Base
In a system in which only a protected data base is used, data base sequences S, contain

the events

E
Xin

E = <s. (apply: - ec,’.
xOUt ci ( ppiy Y) a €¢;

= ¢(data~base (apply: x {then=to: s‘i*” a ect'>

It can be shown that the time ordering caused by protected-data-base has the property that for all

Sy,+ Sy, in a behavior of the system

Xl' X2

S S ) S

x = x20r X9 => Xy

L Of course, whether or not protected-data-base is realizable will depend on the implementation of
that causal link. Chapter 7 shows an implementation in terms of a synchronization primitive
which does exist in real computer systems. Chapter 9 shows an implementation in terms of cells.
Thus these axioms are consistent in the sense that there are ob jects that are described by these
axioms.
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All sequences s"i are preceded by requests E"i 3 E, --> S"i' All requests are ordered by =>pqp,

Therefore for any le, S, _in the behavior, EX1 ->E -> E and E,(2 ->E ->E

- X X
X2 X1 in xlout 2in 2out

are in the behavior and eithef Exl =>pdb Ex2 or EX2 *>pdb E"l'

out and therefore le - Sx2.

=> le. Thus operations on the data base are mutually exclusive.

Asssuming first that E"l *>pdb E"Z' by (b), E"l - Exz'n
i

Similarly, if E2 =>pdb E"l' S,(2
This reasoning is trivial given the similarity of the high level specifications and these
actor specifications. The point is merely that the derivation of => from -->, =>pdpy and => does
indeed give the result; thus an actor so defined can be used to cause the mutual exclusion
ordering.
Another property of any system with protected-data-base is that if E, is in the behavior
then it is followed by S,. It means that, in addition to enforcing mutual exclusion, the protected

data base uses fair synchronization in the sense that the synchronization can never lock out any

activator and all requests are served. This can be stated as

Ex in the behavior o Sy is in the behavior

Fairness does not require that E, be the sole cause of S,, but only that all requests do get served.
It means that the synchronization used to achieve the mutual exclusion ordering must be fair in
that it cannot ignore any request that it receives. Not all synchronization is fair. Chapters 7 and
8 are about unfair synchronization.

In the current case it can be shown that for any E,, if E, is in the behavior then, since
all additional constraints can be met, S, is also in the behavior.

(I) If Ey is first in =>p 4 then, by (a), E"in is in the behavior.

*+ Sy is in the behavior because of the axioms for data-base..

(2) Assume Vi < n, if E"i is the ith request, then s"i is in the behavior. Then let E, be
the n+lth request. Since by induction ¥ E"i => E, an is in the behavior, all E,, 3 E, =>E, are

lout

in the behavior and .. by (b), E,. is in the behavior.

Xin
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~ Sy s in the behavior.

4.4 Synchronizing Axioms, Causality, and Partial Orders

In general, for axioms like those for protected-data=base it can be arbitrarily difficult to
decide what all the additional constraints on an event's occurrence might be. Unless the set of
conditions which is implicitly defined by the axioms can be correctly stated explicitly, it may be
easy to make errors in arguments which depend on finding the set of necessary and sufficient
conditions for events.

One approach to clarifying the necessary and sufficient conditions for the occurrence of
an event due to synchronization is to refine axioms such as those given above to equivalent ones
which apply to unique events. Thus replacing axiom (b) by (b’) below makes it possible to view

these specifications as rules for "transference of causality.”

(b) Each request other than the first in enabled by the
completion of the preceding request.

Ey,, Ey,1 Where Ex2 is the first request after E"l in =>54p

1’ %2

cause

E => E

X
Lout X2,

in
By a simple inductive argument one can see that (b’) implies (b) and thus the time ordering
derived from (a) and (b) is equivalent to that derived form (a) and (b’). The formation of =>
from (a) and (b’) relies more heavily on =>, and on the fact that the transitive closure will totally

order all data base operations if the axioms order successive pairs. One difference between (b)

and (b’) is that fewer constraints were explicitly added in (b’).
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This also means that in (b") E"l and EX2 transfer causality to Ex1 , in the sense that

out
now E, causes E,_, ie if E, , E _ are in the behavior then E, in the behavior is
out in . lout
necessary and sufficient for Ex2 to be in the behavior. It can be important to be able to
in

interpret the axiom this way and therefore we would like to point out the reason why this
interpretation is valid.

E,(2 and E,(zin are of the same activator and the axiom adds E => Exzin, where E is of a
different activator. Therefore the axiom is about requirements in addition to activator properties
necessary for the occurrence of a next event in that activator. What the event E, _ can be is

n

already determined, but there are additional conditions on whether it will occur. The

precondition involves a uniquely specified pair of other events, E"l and E, They are the

l
only other events referred to, by virtue of the uniqueness of the definition of "‘f,;‘rtst request after.”
Since =>,4p, totally orders events E"Z' there can be at most one E"l for each E"Z' Except for the
Ex2 which is the first event in =>p 4, there will be exactly one such event. The axiom states that
once Ex1 and Ex2 have occurred, Exlout is a necessary and sufficient condition for the occurrence
of Ex2in. This is in contrast with the statement (b) from which one has to deduce the set of events
necessary and sufficient for E,

These axioms also shZ:tld be viewed as statements about partial orders. In chapter 2,
we suggested that axioms for single activator causality could be viewed as rules for adding events
to behaviors. If partially ordered sets of events are viewed as sets of ordered pairs of events,
then axioms can also be viewed as rules for adding pairs to the partial order. Even in single

activator cases, when the partial order is in fact a total order, the axiom

<addl (apply: x (then-to: c)) a ec> --> <c (apply: z) a ec

says that the pair (<addl (apply: x (then=to: c)) @ ec>, <c (apply: z) @ e¢’») can be added to the
activator ordering -->. According to this interpretation the activator ordering is formed from the

transitive closure of the pairs determined by the axioms for the actors in the actor system.
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When there are multiple activators and cells, behaviors can be specified by their partial
orderings, =>. The ordering, =>, is formed from the union of =>.q; and -->. Thus, using, {=>},

the set representation of =>, we can state

{=>} is the transitive closure of {=>cg)} U {->}.

Since these may be several different sets of events that correspond to possible behaviors of a
given actor system with cells, such systems are characterized by sets of partial orders or by
properties of => common to all those partial orders. These later properties are generally partial
orders on events other than the cell events which are common to all behaviors, e.g. important
events and other events in Chapter 3.

The axioms for protected-data-base specify pairs that are to be added to the set of pairs
from which the transitive closure is taken. Thus if we refer to the parts of => added by axioms
as =>pay, the ordering {=>} is the transitive closure of {-->} U {=>pdb} U {=>pew} Using the
=>new Of either axiom (b) or (b’) results in formation of the same transitive closure. If the pairs
in {-->} U {'>pdb} U {=>,ew} are considered as generators of =>, differences among alternative
specifications are evident in the size of the set of generators it produces.

To summarize, the new kind of axiom of this chapter introduces further causality,
denoted by additional constraints on =>, the derived time ordering. Thus in deriving => for a
system involving a synchronization actor s, one uses -->, =>;, and => added in axioms. The
axioms for synchronization are different from the axioms for cells in that the properties of =>¢
do not directly affect what events will be in the behavior but rather what causal relations will

hold on events, if they do occur.
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b Comparing Problem and Solution Specifications

Reinterpretation of the protected data base of the last chapter will reveal still more
fundamental statements which can be made about data bases. A totally external definition (one
in which the data base is treated as a primitive) of a reliable data base can be given. The actor
protected-data-base is then seen as an implementation of that data base. By weakening that
definition one can look at alternatives which correspond to a well-known synchronization problem
- the readers/writers problem. We develop specifications analogous to those for mutual exclusion
which are formal statements of four versions of the readers/writers problem.

Following that, one version is specified more concretely by the writing of its solution
specifications. These solution specifications are a step in the direction of implementation. Since
they are written as causal axioms of synchronization actors, they include explicit reference to the
causality used to achieve the specified orderings. Thus the solution specifications in a sense
define the algorithm or structure to be used in programming an implementation. A program with
the same structure will generally be more easily compared to the solution specifications than to the
problem specifications written in terms of => For this reason the proof that these solution
specifications are sufficient for realizing the high level specifications is an interesting result. It
ensures that any program checked only against these solution specifications will indeed also satisfy
the high level specifications. Once again the chapter will conclude with a summary of the

ordering information used so far.

5.1 Re-interpreting Protected-date-base

One property of a data base which could be desirable is closely related to a property of
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cells. The property is that every time a record is read, the result is an actor that was stored by the
last write in some total ordering. Since data base operations are generally long sequences of
events, a data base may not have this property under all circumstances. If two writes overlapped
(or if a read and a write overlapped or even any two operations, depending on implementation)
the result of a later read could be a record that was never deliberately stored by any write. It is
not usually considered interesting to specify all possible mistaken records that could occur under
all circumstances. Therefore data bases are generally specified either by implementation,
explaining just what steps are taken in doing an operation, or by expected effect given no
interference among operations.

In the specification language we can also write axioms like those of the cell for a data
base. They specify a data base which always returns meaningful values, i.e. values that were
deliberately stored. An example is the actor rdb, a reliable data base, defined by the following
axioms:

(1) A reliable data base is created by create~data-base to have records x; with initial
contents y;.

<create-data~base (apply: [[x; y|] .. [x, y,l] (then=to: ¢)) a e
causes

<¢ (apply: rdb™®) a ec”>

(2) Writes always resuit in return of the record.

1 Note that in the protected data base specifications of Chapter 4 details such as reference to
parts of the data base, the x;, or to the value to which to update, the y;, were omitted.
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<rdb (apply: ['write x; z] (then-to: c)) a ec>
causes

<¢ (apply: 2) a e

(3) Initially, reading record x; finds y;, the initial contents.

E, = <rdb (apply: ['read x;] (then=to: c)) a ec>
where there is no <rdb (apply: ['write x; z] (then-to: ?)) ? ?> preceding E, in =>4

causes

<c (apply: y,) a ec

(4) If a record has been written into, a read of that record finds the last record
stored.

E, 2 <rdb (apply: ['write x; 2] (then-to: 7)) ? 7>
and E, = <rdb (apply: ['read x;] (then-to: ¢)) a ec>
where E is the last write in x; before E, in the ordering => qp.

causes

<c (apply: 2) a ec”y

What can this mean? Let us reconsider the cell definition and the reasons why we
accepted it. While it specified a useful behavior, our acceptance rested on postulating that a cell
could be built with that property. That is usually an accepted assumption about access to
memory. Memory is fast enough for it to be unlikely that two operations would ever interfere

with each other, or if two do occur simultaneously, a sufficiently good arbitration scheme can be
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incorporated in memory accessing to prevent interference. Of course, as machines get faster this
assumption can break down. If we had to implement the cell under conditions that would make
cell operations lengthy relative to their use, how could we realize the specifications? For instance
if, in an implementation, updates require bit by bit updating, and reads, destructive bit by bit
read followed by restoring of the contents, part of the implementation specifications would have
to be the mutual exclusion of the events which at a lower level of detail occur between the cell
event and the event in which the continuation is sent a response. If a behavior contains

sequences of the form:

<cell (apply: ? (then-to: c)) ? ec> --> Ej > ... -=> En->¢?? ec(n*l))

then all sequences E; --> .. --> E, must be ordered with respect to one another.

Thus =>.q; as an external property of an actor can be the result of deliberate
computation at a lower level of detail, i.e, the computation that can enforce the mutual exclusion
of the implementation of the operation. We have decided to accept cells as primitive and

therefore to accept =>.q as being close to the order in which messages arrive at the cell.

cel
However, for actors which are not claimed to be primitive specifications relative to =>, must be
interpreted as a restriction on the class of implementations possible.

For instance, as an actor, a reliable data base, rdb, has an ordering =>,db and properties
as 1llustrated above. This specification requires that if in an implementation the operations are to
be side-effect operations, they will be mutually exclusive and will be done fairly (all events with
rdb as target get ordered and serviced on a FIFO basis). Thus the actor protected-data-base,
which can enforce fair mutual exclusion and cause data base operations, is one means for

implementing such a data base. If protected-data-base is the only actor to which data base

requests are sent, then at the level of detail at which only events of the forms

<protected-data-base (apply: ? (then-to: ¢)) ?
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and

??®

appear, the protected-data-base acts like a reliable data base with all requests ordered consistently
with --> and all reads finding the result of the last write.

In terms of an ordering =>4, fairness means that all events with rdb as target are
ordered by =>.4p and that therefore all are followed by next events. Thus in "computing” =>_4p.

rdb cannot ignore a request. For => an ordering of a primitive actor, we assumed all cell

cell
events were ordered. For computed orderings, we may want to specify which events are ordered.
One might actually be interested in the cases where =>4, does not have to include all
events with rdb as its target. While it may always be important to find a last update, rather than
garbage, it may not matter how last is measured (i.e. with respect to what order). Therefore one

might just require that the ordering =>,4, have the property that if at the level of detail at which

rdb is a black box, E,ext is the event after E then

E with rdb as target is ordered by => 4 iff Epo 4 is in the behavior

nex

rather than that all events with rdb as target be in the ordering. Together with the axioms given
above this can be interpreted as a specification for a data base in which one always finds a last
contents stored but in which some requested operations might not be performed. In implementing
a reliable data base with this weaker ordering specification, if side-effect operations are used,
mutual exclusion might still be necessary. However, it would not have to be enforced fairly.
Similarly, if, for instance, it were known that certain operations, say reads, would not be
side-effect operations we might only require =>,4, to be a partial order such that writes are
ordered with respect to other writes and writes and reads are ordered with respect to each other.

Given this constraint one can still meaningfully find the last write from any read operation. For
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any read the value found should be the value stored in the last write. This kind of data base is a
readers/writers data base and is the subject of this chapter. The puzzling readers/writers
problems are specifications for determining which requests must be served and which can be

locked out.

5.2 The Problems of Reading and Writing in a Data Base

Just as in the previous chapter fair mutual exclusion was used to realize a fair reliable
data base, properties related to mutual exclusion can be used to realize other kinds of reliable
data bases with readers/writers scheduling. Readers/writers scheduling is defined in relation to
the readers/writers problem and two of its variants which were first introduced into the literature
by Courtois, Heymans, and Parnas [Courtois et al,, 19711 The most important part of the problem
is that since writers presumably perform sequences of side-effect actions in the data base, it
becomes necessary to protect the data base to preserve its consistency. However, since readers are
not ordinarily side-effect operators and therefore cannot interfere with each other, mutual
exclusion is generally considered too restrictive. Instead a property which shall be referred to as
the Readers/Writers Property is required. Informally, it is the property that there be mutual
exclusion of write operations in the data base and that there be mutual exclusion of groups of
read operations and single writes.

To state this formally read operations are distinguished from write operations. S, is a
sequence of events in a read operation, S,, a sequence in a write operation. Throughout this
chapter subscripts of r or w on events or sequence symbols denote reader or writer events or

sequences. Therefore the sequences and events have the following form:
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S s{E ,E E, —>E
r® Er Eroud 2 Brin > Brou
where
E"in = (data-base (apply: ['read x;] (then-to: c)) a ¢c>

E'out = <c (apply: y) a ¢

and

Sw = {Ey.

in' Ewout} >E

. —->E
Yin Wout
where
w-

E
in
Ewout = <c (apply: z) a ec>

= (data-base (apply: ['write x; z] (then-to: c)) a ec>

The readers/writers exclusion property is that for every behavior, the ordering => has the

property that

V S,, S, in the behavior, §, => S, or S, =>§,

and Vv Swl, Sw2 in the behavior, Swl =>8, orS

Wz w2 =S

Y1

This says that all reads and writes must be ordered with respect to one another, and all writes
must be ordered. However, it is not necessary for the set of all read sequences to be totally
ordered by =>.

This property is sufficient for proving that a reliable data base is implemented.
External properties of a reliable data base as described in section 51, can be derived, if we can
define =>4, to be the following order over events E"in such that S, is in the behavior:

Exlin =>,db Ex?-in iff le => sz-
Then E"in is ordered by =>.4, iff S, is in the behavior (ie. if E"out is in the behavior and
therefore the request was served) and =>4, partially orders those events such that there is a well-
defined last write for every read. This is the property suggested at the end of 5l as the
"problem” in the readers/writers problem.

While this property is the minimal property required for preserving consistency of a

data base, it does not yet correspond to any of the popular definitions of readers/writers problems.
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What is missing are requirements for either fairness or priority in the serving of requests.l

Generally some correspondence between time ordering of requests and of operations is required
and considered part of the readers/writers problem.

Informal priority requirements are statements to the effect that one kind of operation
can be performed before another, etc. That priority can be stated formally only if it is stated
relative to some total order on events. If requests arrive in one order and are served in another,
then one may be able to say that priority is being given to one kind of request. If there is no
measure of the "natural order” from which one is diverging, then there can be no sense in which
the claim to actively be giving priority can be made. Thus all the priority specifications will be
given relative to a solution structure in which one can refer to the order of events at an actor and
then base priority requirements on order of service relative to order of arrival2

Using a scheme similar to the one for protected-data~base we can define the solution
structure which will enable us to write priority specifications. In Figure 5., the activator

properties of a readers/writers data base can be seen to include a request event for each operation.

1 In terms of the rdb, what is missing is the definition of which requests are in =>,db:

2 At the next level of detail the actor order may or may not be given. At some level, =>, the actor
order of a synchronizing actor, s, approximates the order in which messages arrive at s. As long
as an actors order is fair, we will assume that we can use that actor as primitive. The
specifications are relative to that ordering.
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readers-writers-data-base
Ex
——
£ data=base
Xin
——
£ Xout
Xond
————

Figure 51: Reader/Writers Data Base

Fairness or absence of lockout can be stated as

E, in the behavior > §, in the behavior (Fairness to readers]
E,, in the behavior 5 S, in the behavior  [Fairness to writers]

Not all of the readers/writers problems are intended to be fair. When fairness to readers or
writers is intended we will state it explicitly. The rest of this section contains specifications for
various readers/writers problem in terms of =>.

The easiest readers/writers problem to express is Readers/Writers with Queuel which
serves in the order of requests. It is fair to both readers and writers. Its other specifications are

simply:

E, =>E, DS, = Sw

E, =>E DS, =5,

Ew, => Ey._ 2 SWl => SW2
1 The names used to refer to these problems are this author’s. This version is not used elsewhere
in the literature. For the next three, references are given.
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Thus in satisfying the Readers/Writers Property, behaviors of the Reader/Writers with Queues
Data Base will have ordering => such as that described in the following scenario. If the requests

in order are:

Er v Ergr Ergr Ew o Ergs Bus By By B

then the behavior will contain the following sequence of events and ordering =>:

S, S S
S;I
W
%

r4 W"S

N
Sw5

The rest of the versions have other properties which in fact amount to giving priority

to reads or writes. In all versions the specification

EWl => EWz > Swl x> '5W2 (Write Ordering]

will be assumed ,as well as the readers/writers exclusion. Only specification of additional
properties will be stated.! The kinds of priority special to each problem will be illustrated first by

a scenario of possible ordering constraints. This will be followed by definitions of any terms to

I This will make all of our specifications somewhat different from several of the published
descriptions, since the problem has most often been described so that it could be implemented
with available primitives. Generally there were no primitives that could enforce this order. See
Chapters 7 and 8 for discussion of such implementations.
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be used in the specifications and then by the specifications themselves.2 The most interesting
property of all of these specifications is that in order to express them, one must refer to orders on
events with different targets. The sub-orderings on sets of events corresponding to requests and
ends of operations are depended on. This is important later in the chapter in the causal axioms
for actors that realize the time ordering specifications.

In a Write Priority Data Base? priority must be given to write requests and the

solution must be fair to writers. Consider the following ordering of requests:

Wl' Erl' EWz' EW3

It can result in any of a number of behaviors depending on the order in which ends of

operations occur. For example, if the ordering of ends of operations is

E,  E , E

wl' wlout rl'

then 5, => => Sy

'l On the other hand, if the ordering is

2.
E E E y By o
EW rl Wz wlout Wzout W3

then '5wl => Sy, => S, =>§,,. since the request Ew2 will be given priority when Ewl occurs.

w2 1 3 out
Most important is the fact that in the following ordering E"l can be “locked out”

indefinitely:

Ew . E  ,E ., E E ., E  E

' ' ' y o
Wt W WL WS Ve e

In other words, the reader will only get in at such time as no writer is in the data base and no

write requests are waiting.

I Definitions in this chapter will be given once in English, followed by predicate calculus.

2 This is related to but not identical to the second readers/writers problem of Courtois et al. (1971},
due to different interpretation of the informal specification “as soon as possible.” See chapter 8
for the Courtois approach.



69

Definition: The data base is empty (or open) for E if all preceding requests have
finished already.

The data base is empty (or open) for event E if ¥ Ey (E, => E) D (E"Out => E).

Definition: E opens the data base to reads if E is the end of the last write request.

E opens a data base to reads if IE, 3 E, =>E E= E“Vout' and V EWl ((EWl => E) A

(E # Ew)) > (Ewl => E).

Y1 out

Definition: A data base is open to reads at E if no write requests have arrived since
the last event that opened the data base to reads.
A data base is open to reads at E if 3 Ey, E] => E, E| opens the data base to reads and
- (JE, 3E = E, = E)
Definition: E, finds a data base open to reads if the data base is open to reads at E,.
The specifications of Writers Priority Data Base are stated as restrictions on fairness to reads.

Reads only have to be served if no writes are making demands.

S, is in the behavior iff E_ is in the behavior and either
E, finds the data base open to reads

or
3E3Er=>E

A E opens the data base to reads.

The following are two other possible specifications for priority in a readers/writers data
base. No later sections refer to them so that the reader who is not interested in all possible
variations and their expression in this language may safely skip the rest of this section.

In a Read Priority Data Base [the first readers/writers problem of Courtois et al. [1971]],
the readers are given priority in the sense that writers only can get in if there is no competitions
from a read. The solution should be fair to reads. If requests are (in order)

Eryr Ewypr Ergr -

then the ordering
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E, , JEu .
r E'xou, wy’

will result in SWl => S,,2 because the write came while no reader was waiting.

The ordering E"l' Ew, '  E ., L E results in S, => SWl since E,.2 found no

2’ rlout r20ut r2

obstacle to its entrance. Note that there are orderings involving more reads in which that write

Wl'

never gets in.

Definition: A data base is open to writes by E if there are no read requests preceding
it that have not finished.

A data base ts open to writes by E if VE, (E, =>E) > ((E,  =>E)V ‘E'out = E))

Fout
The Read Priority specifications are:

S\ is in the behavior iff E,, is in the behavior and either
the data base is empty at E,,

or
the data base becomes open to writes sufficiently often after
E,, to let all preceding writes and then S, in.

[More formally, 3€ 3 E, => E 3 the data base is
open to writes at Eand V Ewl E) EWl =>E,

either E,, =>E
out
or EWl a2 E ]
out
The Fair Readers/Writers Data Base [Hoare, 1974] has alternation between readers and
writers when both are waiting, so that no lockout can occur. It is fair to both readers and writers.
However, the alternation does not necessarily satisfy the Reader/Writer with Queue specifications

because when it becomes a reader’s turn, all waiting reads are let inl For instance if requests are

Ew Erpr Ewg Erge -

then with ends of operations in the ordering as follows:

I This was more natural to implement with Hoare's primitive than the Readers/Writers with
Queue, but is more difficult to specify.
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E Ew. E, o E

Wl'Efl' W2' rz' Wi

y o
out

it is the case that §, =>§

3 wp and S,,2 a> §

Wz'
Definition: It is @ writers turn at E if E ends the last of the reads that were in the
data base and there is a write waiting.

It is a writers turn at E if 3 Ew 2 (E, = E)A - (EWout => E) and E is the last of the

events in the set

{E'Out |E, 3 E, => E,, where E,, is first unserved write request preceding E}.

The specifications of the Fair Data Base are:

Sy => S, iff E, =>E, and either
E,, finds the data base empty
or 3E E, = E=>E and

either it is a writers turn at E and there
are no writes before E,, which are waiting

or E ends a write and there are no reads before
it or writes before E,, which are waiting.

5.3 Writer Priority Specifications

In this section we will write causal axioms for one version of the readers/writers
problem, the Write Priority Data Base. With causal axioms we can be specific about the
transference of causality required to guarantee derivation of a time ordering with the four
properties of Write Priority, Readers/Writers Property, Fairness to Writes, and Write Ordering.
Section 5.2 contained writer priority data base specifications for guaranteeing that reads get in
only if no writes are trying. They did not specify what event would enable a waiting read.

Similarly, in cases where reads are enabled, it is not clear from those specifications how the
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ordering of those read operations with respect to following writes is achieved. The following
axioms will specify the causality necessary to achieve the four properties at once.
Since the properties of Writer Priority depend on a total ordering on the requests and
the ends of operations, i.e. on events E, and E"out’ the axioms will be written to depend on that

ordering. Recalling the forms of those events:

Ex = ¢<wpdb (apply: ? (then=to: ¢)) a >

Exout = <s, (apply: ?) a ec™>
shows that the ordering of all events E, and E"out is an ordering over all events with either wpdb
or an s, as target. [This might be referred to as ’>wpdb&sci'] Since the ¢, are all created by
wpdb, it is possible that this could be a physically realizable ordering just as an ordering =>, for
one actor a can be. How it would be realized is not the issue at this level of detail. However, the
fact that it can be realized will have to be part of a proof of correctness of a particulaf program
for implementing these specifications. For conciseness we will use =>y o qp, for '>wpdb&sci'

Terms such as open or open to reads when used in these axioms are meant to be

defined with respect to =>4}, rather than to => and are repeated here with that substitution.
Definition: The data base is empty (or open) for E if all preceding requests have
finished already.

The data base ts empty (or open) for event E if ¥ E, (E, >wpdb E)> (E"out =>wpdb E).

Definition: E opens the data base to reads if E is the end of the last write request.

E opens a data base to reads if 3 E, 3 E, *>wpdb E, E = E“’out' and Vv EWl ((Ewl
->Wpdb E) AN (Ew = EW)) o (EW =>w db E)
1 lout P

Definition: A data base is open to reads at E if no write requests have arrived since
the last event that opened the data base to reads.

A data base is open to reads at E if 3 Ey Ep =
reads and — (3 E,, 3 E; =>ypdb Ey =>wpdb E).

wpdb Er Ej opens the data base to

Definition: E, finds a data base open to reads if the data base is open to reads at E,.
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.The causality introduced by the wpdb actor is defined by the following axioms.
<cons-write-priority-data-base (apply: data=base (then-to: ¢)) a ec>
causes

<c (apply: wpdb®) a ec’>
where wpdb, the write priority data base actor, has the following properties:

(1) Newly created data bases are open to readers or writers
(@) E,, 3E, is the first event in =>4,
causes

Ewin

(b) E, 3 no E,, precedes E, in =>y o4y

causes

E"in

(2) A data base which is opened at E, 4 has properties similar to a new data base for
readers or a write
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(a) E,, 3 E,, is first after an Eg 4 which opens the data base
causes

E
¥in

(b) E, which finds the data base open to reads
causes

E:’in

(3) When the data base is not open, time ordering must be introduced.

(a) If a read arrives before all preceding writers are finished then the
read must wait untii such time as the
data base becomes open to reads.

El’ 33 EW ->Wpdb El’ and = Ewout =>wpdb El’

causes

E=>E in
where E is the first in => o4y of the
events in the set
i 1
{EWout | Ep =>wpdb E‘”out and the data base is open to reads by Ewout}

I Note that this event, E, may not exist. All that this axiom says is that if it does occur then it

causes E.. . If not, E,. does not occur.
rIﬂ rm
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(b) If a write arrives before all preceding writes are finished
it must wait until the last write before it finishes.

Ew 23 Ewl =>wpdb Ew and = Ewl =>wpdb Ew
out
causes

Eout => Ewin
where E is the last write request preceding E,,.

(c) If the preceding write did finish already and thereby enabled some reads, the
new write request must be held up until all of the reads leave the data base.

EW ER Ewl o> EW' E‘”lo \ =>wpdb EW
V]

but 3 Er ->wpdb Ew 3™ (Erout =>wpdb EW)
causes

¥in

where E is last in =>wpdb of the events in the set

{E'out IE, *>wpdb Ew }-

These axioms state the causality of the wpdb actor. Part (3) deals with waiting and
transference of causality to specify how the operations are later enabled. It handles the special
conditions of write priority and fairness to writers. The preconditions specify the same situations
referred to in the high level specifications. Ie., for writer priority, one situation that lets a reader
in before a writer is that the data base was open to reads for the request. This is specified in (3c).
However, in Section 5.2 only the correspondence between this situation and the ordering S, => S,
was specified. The causal axioms specify exactly which event will be the one which now causes
Sy S0 that the ordering can be derived. This is the reason that solution specifications will be
useful criteria against which to measure a program. They indicate a plan for implementation (i.e.,

what to cause and what event is the cause, without the details of how to cause it).
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Note that these really are very specific solution specifications which add very few
ordered pairs to the ordering =>. This is due to the fact that although the motivation for
introducing =>wpdbés, W3S the need to express priority, it has been used, as well, to define "open”
data base, thereby rendering unnecessary the addition of constraints in part (2). If the
preconditions of (2a) or (2b) hold, then ordering of operations holds already. A similar approach
could have been taken in defining protected-data-base. What this amounts to is that additional
constraints are added only when "waiting” is involved, i.e. only when the additional requirements
are known not to hold already. If, accidentally, the data base has been emptied before a request
and if the request can discover that, then there is no need to plan [in planning a program] to
implement a causal link between the last operation that was in and the current request.

In other words, minimizing the number of additional constraints means attempting to
add only ordering not already available from =>ypdb OF ~>. If as the system is running the fact

that the data base is empty is derivable from => it is not necessary for any further

wpdb:
synchronization to be used. In solution specifications, this minimality of added constraints is
desirable, even if it lengthens the specifications, since it constitutes a fairly refined plan (relative

to problem specifications or axioms with more added constraints) for implementation. The plan

is to check the "state” of the system and to add constraints if there is danger of interference.

5.4 Properties of the Solution Specification

This section contains a proof that the specifications for the Writer Priority Data Base
are satisfied by the derived ordering of any system which accesses its data base through an actor
wpdb created by cons-write-priority~data-base. That is, Fairness to Writes, Write Ordering, Write
Priority and the Readers/Writers Property are enforced by wpdb.

Property I: The wpdb actor causes Fairness to Writes:
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E,, in the behavior > S, in the behavior.

Proof: By induction on the number of preceding write requests.
(i) If E,, is the first event in =>wpdbr Sy i$ in the behavior [by (1a)].

(ii) If E,, is preceded only by read requests, then there are a finite number of read
requests ahead of it. Once they have all finished S, gets in by either (2a) or (3¢)

(iii) If E,, is preceded by exactly one write request, that write request gets in (by ii).

Therefore by either (2a), (3b) or (3c) [since there can be at most a finite number of
reads enabled when E,, occurs], S, is in the behavior.

(iv) Assume that if any E, is preceded by n writes, E“’l' . E‘”n’ then that E,, gets in.

If E"‘O is preceded by n+/ writes, E‘”l' . Ewn, Ewnol' then by induction, E‘”ncl gets
in and by either (2a), (3b), or (3c) Ewo gets in. 0.

Property 11: Write Ordering:

Ewl => Ew2 D Swl => Sw2.

Proof: As corollary of proof of Property I. O.
Property 111: Writer Priority:

S, isin the behavior iff E, is in the behavior and either
E, finds the data base open to reads

or
JESE =>E

N E opens the data base to reads.

Proof: If E, is in the behavior, then by (la), (2¢), (3a) clearly the writer priority holds.
.

Property IV: Readers/Writers Property:

(Va) VSwl,S Sw, => S

either SWl => $ wp = Wy

Wo wp or

(IVb) VS, S, either S, => S, or §,, => S,

Proof (of (IVa)): Assuming Ew, *wpdb Ew, OF EwZ =>wpdb E‘”l proof is
straightforward by induction on number of writes between them. 0.
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Proof (of (IVb)): Note first that S,, S,, in the behavior implies E,, E, in the
behavior, where E, --> S, and E,, --> S,. Now either E, =>wpdb Ew OF Ew =>wpdb Ey-
Assume E, *>wpdb E,.
There are two cases possible [Others are ruled out by activator properties]
(i) Ew =>wpdb E"‘Out =>wpdb Er i Which case clearly S, => .

(i) E, *>wpdb E =>wpdb Ewout

Then E, cannot find the data base open to reads, since this would violate
the definition of “open to reads."

Therefore E'in must be caused by some event Eg 4, E, =>y,oq4p Egyt and 3

Eout Opens the data base to reads (as in (3a)).

By definition of opening a data base to reads, either E“’out = Egut OF

Ewout =>wpdb Eout:

In either case EWin = Eout *> S and therefore Sw => Sp-

Assume E, =>wpdb Ew:
Again there are two cases.

(i) Ep =>wpgb Er, 4 =>wpdb Ew in Which case clearly S, => S,
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(i) E, *>wpdb Ew *>wpdb E’out'
There are three axioms about enabling reads, and thus three cases.

(a) E, enabled as in (Ib). Assume there is no write preceding E, in =>wpdb- In
this case, let Ewl be the first write after E,. Then Ewl-n is caused by the Eg
[}

which is last in the set {E | E"l =>wpdb E‘”l}' Therefore either E'out = Eout

rlout

or E"o =>wpdb Eout- Thus E"out 2> Ewl and therefore §, => s“’l'

ut in
If E"‘l = E, then S, =>§_. Otherwise, by Property II, §, => Swl => S,

(b) E, enabled as in (2b). If 3 E > E opens the data base and E =>yq4p, E,
=>wpdb Ew =>wpdb E’out and there are no write requests between E and E,, then
similarly, find the first write after E,, and use it as in the last case to show that
S, => Sy,

(c) E, enabled as in (3a). E’in
data base to reads, E, => E and E causes E’in' Since E opened the data base to

is caused according to (3a), then 3E 3 E opens the

reads

'either E =>wpdb Ew

or Ey =>yodb Ewout =>wpdb E-
In the first case S, => S,

Otherwise S, =>5,. [E " enabled as in (3b) or (c)] o

Wi
5.5 Kinds of Specifications

In summary, we have analyzed the readers/writers problem and written formal
specifications for it. The specifications for priority are explicitly written relative to the order of a
synchronizing actor. The next step towards implementation is the refinement of the specifications
to the form of causal axioms. The axioms specify causal properties of an actor which can cause a
system to have the desired time ordering properties. This is a realizable solution specification
because as we shall see in the next chapter there are primitives available which allow us to
implement “>wpdbds, Causal axioms were presented in Section 53 for an actor implementation
of one version of the problem and were then shown to properly meet all the requirements of the

time ordering specifications. Since the time ordering specifications consisted of four separate
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requirements the proof is of interest in showing that the axioms specify one actor which can
realize all four specifications. The next step is program specification, the subject of the next
chapter. The steps from the general criteria for reliability assuming side-effect-free reads, to the
four properties of =>, to the causal axioms, correspond to a process of refinement of problem
statement from properties for consistency of the data base to partial solution specifications
including details of priority.

One last note in reference to the reinterpretation of protected-data-base is that the
chapter is also about the notion of a computed actor order and its specification relative to another
actor’s total order. All "scheduling” or "priority” specifications that are written in this language
are written relative to some total ordering. The realization of these specifications then depends
on the use or implementation of an actor which has axioms that refer to its own actor order.
Without the relative specifications it is not clear that we are making meaningful statements. This
point will be discussed again in Chapter 8 when we compare these specifications with published

informal specifications.
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68 Comparing Solution and Program Specifications

This chapter is about the further refinement of solution specifications to program
specifications. Given solution specifications for the writer priority data base, in which the
approach of defining a single actor which is the readers/writers data base is already indicated, it
is natural to try to write a program for that actor. One way to do this is to use one of the
“structured synchronization primitives” which have already been introduced into the
synchronization literature [Dijkstra, 1971; Hansen, 1972a; Hoare, 1974; Hewitt, 1974]. First we will
re-examine the solution specifications to see how one might expect to implement the actor and
what properties one would like a programming language primitive for structured synchronization
to have. That is, we will discuss an appropriate program structure.

Once this structure is established, we can look at a primitive that enforces the structure.
The primitive chosen, the monitor, can be used to implement the solution.

The reasons for defining such programming language primitives in terms of behaviors
become evident on consideration of a proof that a program which uses this primitive satisfies the
readers/writers specifications. The chapter ends with some discussion of the sense in which the

monitor is a "structured synchronization primitive.”

6.1 How to Realize Synchronization Solution Specifications
Once one has a program and compares it to solution specifications, one would like to
show that all properties of the solution specification are realized. When these properties are

synchronization properties -- namely the adding of ordering constraints based on actor orderings
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-- the easiest way to realize properties is to use a synchronizing primitive which has the same
properties. However, this strategy cannot always be used unless for general solution specifications
there are arbitrarily many special purpose synchronizing primitives available. For instance, for
implementation of the writers priority data base one cannot expect to have a primitive which
distinguishes two classes of requests and their terminations and favors one type of request in
precisely the required way.

Given that there will be limitations on synchronization available the way to proceed is
to divide the ordering information about behaviors into two classes -- information which can be
picked up by a general purpose synchronizer, and information for which the synchronizing
mechanisms will have to be programmed. For this latter class the technique to use is the
recording of "state” information in cells which are local to the program. Then the numbers «
requests of the two sorts can be recorded, updated and referred to, and ordering information can
be left to primitive synchronization.

The important considerations in writing the program for a write priority readers/writers
data base (or later in proving it correct) are

(1) How to preserve orderings of requests whether delayed or not. [Use synchronization
primitives.]

(2) How to map behaviors into states recorded in internal variables. [Use cells.]

(3) How to protect sequences of operations which correspond to state changes or to state
references, so that the record of the state and all observations of the state are valid. [Mutual
exclusion of operations.]

(4) How to obtain the ordering over both requests and ends of operations. [The
ordering =>wpdbs, in the solution specifications.]

We clearly can define actors to facilitate the programmer’s doing any one of (1), (2), or

(3) separately. Certain structured synchronization primitives will allow us to do all three and (4)
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combined.! This structure will allow mapping of sequences of events in program execution into
single events of the solution specifications. le., the program is being structured to correspond to

the picture in Figure 5.1.

6.2 A Monitor-like Actor

Hoare [1974] defined a primitive, the monitor, which is used here to illustrate the
completion of a program for the solution specifications. The exact form defined incorporates
some of the simplifying assumptions which Hoare suggests. Also, we take some liberties with
syntax, mainly in bringing initialization of variables to the beginning of the monitor.

A brief informal definition at this point can be used to show immediately that the
monitor can facilitate (I) - (4) above. Further argument is required to actually show that a
particular program realizes the full details of readers/writers solution specifications, since that
relies on correct programming within the monitor. The syntax of the monitor is shown in Figure

6.1

I This can also be accomplished by disciplined use of unstructured primitives discussed later.
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class monitorname : monitor
begin declarations of data local to monitor ;
initialization of data ;

procedure procname 1 ( .. formal parameters )
begin ... procedure body; .. end ;

procedure procname, ( .. formal parameters )
begin .. procedure body, .. end ;

end ;

Figure 6.1: The Syntax of the Monitor.

Stated informally the main property of a monitor is that at most one of the contained procedures
can be active at a time. Thus mutual exclusion of sequences of events corresponding to execution
of procedure bodies is enforced. What is more, it will be enforced by fair synchronization. If the
local variables (cells) are used to record state information, then, due to the synchronization,
sequences of events which correspond to state changes are totally ordered. Thus there are obvious
means both for the recording of the state information [consideration (2), above] and for its
protection [consideration (3)l. Both the operations implementing checking in and those
implementing checking out should be procedures in the same monitor, since both must change the
state information. The fact that both requests and ends go through the monitor will implement
the assumed ordering over both kinds of events [consideration (4)] used in the solution
specifications.

In order to provide for the preservation of ordering of requests [consideration (I)], more

than just the guarantee of fairness of the monitor as a whole must be provided for. As all
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requests will get into the monitor, the state can accurately summarize the behavior -- i.e, it can
take into account all requests. The only difficulty is that a request may get into the monitor while
the state requires delay. In the write priority case a read request discovering a writer in the data
base would have to wait. However, it cannot wait within the monitor, i.e. while maintaining its
status as "the one process in the monitor." If it did this, no end of operation_could get into the
monitor and therefore the state could never be visibly changed and the system would deadlock.
To allow for a process’ releasing the monitor without "losing its place in the ordering”
Hoare includes “condition variables” among the kinds of data which can be declared local to the
monitor. A condition variable is a synchronization actor which on receiving a "request” message
causes additional ordering to be added to the behavior (i.e. it has no open state as do protected-

data-base and wpdb). "Requests” correspond to the event

<cond; (apply: 'wait (then-to: c)) a ec>

represented in code as cond{.wait. The ordering added is of the form

E => <c (apply: )? »

where E is of the form

<cond; (apply: 'signal (then-to: 7)) ? 2.

Specifying exactly which event E is required is somewhat complex. In fact, this part of the
“structured” monitor can only be considered a very unstructured synchronization primitive.
Detailed specifications of a related unstructured primitive, the semaphore, appear in Chapter 7.
The formal specifications of conditions include both the waiting properties of a synchronization
and additional releasing properties related to the overall monitor synchronization.

Several important properties of conditions are stated in the precise condition
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specifications. First, the conditions are defined to preserve the orderings to which the monitor

E, are received at the monitor in the order E

was exposed. That is, if two read requests E, rp r

ll
=> E,,z and both find a writer in the data base, then their "wait requests” to the relevant

condition

E‘l = <cond (apply: 'wait (then~to: x{)) a;
Ec2 = <cond (apply: 'wait (then=to: x5)) ag »

will be ordered E‘:l => Ec2. This is because ap cannot even get into the monitor, let alone have

E.,. until after Ecl,

2
Furthermore, the events E; which are events with conditions as target, and the events
i

with targets that are continuations of such events, act as delimiters of sequences of events which
are mutually exclusive. Thus if a procedure body has statements cond.watt or cond.signal [we
assume that if cond.signal occurs, it occurs only as the last statement in the procedure bodyl] then
the “indivisible” sequences of events are those for code segments such as A, B or C in the

following schemas:

begin
A
cond.wait ;
B

end

or

begin

C

cond.stgnal
end

One final property of great importance is that if

<cond (apply: 'signal (then=to: ¢)) a ec>

I This is the only form that Hoare used and so far no problems have been shown to require more
general assumptions.
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occurs while there is a process waiting on the condition, it will not release the monitor but will
instead directly hand it over to the continuation of the waiting process, i.e., a sequence of type B
in some procedure body. Thus, in addition to the fact that sequences of events in executing type
B code are ordered with respect to all other sequences of type A, B or C, it is also the case that
once signalled, B sequences get priority over processes waiting outside the monitor (i.e. sequences

of type A or C).l

6.3 A Program for Writers Priority

Figure 6.2 contains a program for the monitor for writer priority.

1 Note the monitor requires for implementation several of the very properties for which it will be
used in programming. That is, it has mutual exclusion and priority. Given the monitor properties
we can implement wpdb, but this may appear a vacuous result if the monitor is as hard to
implement. Implementation of the monitor discussed in Chapter 8 and in Hoare [1974] in terms of
still more primitive synchronization shows that this implementation is possible.



88

class? writer priority monitor
begin
readcount, writecount : integers ;
busy : boolean ;
readers, writers : conditions ;
readcount := 0 ; writecount := 0 ; busy : = false ;

procedure startread
begin
if writecount > 0 then readers.wait ;
readcount : = readcount + 1 ;
readers.signal ;
end ;
procedure endread
begin
readcount : = readcount - | ;
if readcount = 0 then writers.signal ;
end ;
procedure startwrite
begin
writecount : = writecount + I ;
if readcount > 0 V busy then writerswatt ;
busy .= true ;
end ;
procedure endwrite
begin
busy : = false ;
writecount : = writecount - 1 ;
if writecount = 0 then readers.signal else writers.stgnal ;
end ,
end

Figure 6.2: Write Priority Monitor.

This monitor contains the checking in and checking out procedures for readers and
writers, namely startread and endread for reads and startwrite and endwrite for writes. Its

operation is based on the following correspondence between the state information in the cells and

2 The class statement according to Hoare [1974] allows us to define many separate instances of the
same monitor. We will use this in the next figure.
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the behavior desired of the solution in terms of events E,, E,. , and E"o { All are stated such
in u
that if this state is observed while executing code corresponding to E, or E"Out then the

corresponding statement about the E, and E, that preceded E, or E,  is true.

| 'out "out
{writecount = 0) s (number of E,, = number of E,, )l
out
(writecount > 0) = (number of E,, > number of E,, )
out

(this could mean writes in data base and/or waiting]
(readcount = 0) = (number of E, such that E, enabled = number of E"out)
(this does not include waiting reads]

(readcount > 0) = (number of E, that were enabled > number of E"out')

{whenever this is observed there are no Er that are not enabled]2

busy = ((number of E,, > the number of E‘”out)

A (number of E, that were enabled)) =

)

f
(number o E"out

= busy s ((number of E,, = number of E Vv

Wout

(number of E, that were enabled)) >

).

umb fE
(number o Fout

The states which are checked for are

writecount > 0
readcount = 0
readcount > 0 V busy
writecount = 0.

I This is an abbreviation, as are all, for the "number of preceding E,,” = number of
preceding Ewout'" It also can be seen as implying V E,, 3 E,, => E implies Ewom =>E

where E is the event at which the state is being checked. Similar interpretations of the
other statements hold.

2 There is a time inside startread at which this is not true since technically all E, on

queue are enabled, but not all get signals instantaneously. Since the monitor is not
released until it is true, this identity does hold at any time when the contents of
readcount is examined.
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These correspond to states which are preconditions to one or another of the axioms for the
solution and therefore a program based on these tests can have sufficient information about
behaviors to implement the actor.

A program for a writer priority data base should declare its own local instancel of this
writer priority monitor and use the monitor’s procedures explicitly as checking in and checking
out routines surrounding its data base operations. That will provide for the required "activator”
properties in the program corresponding to those in the solution actor. Once a correspondence
between events in the solution and segments of code in the program is made, a proof that the
program induces the appropriate behavior can proceed. The ability to map sections of code into
single events in the solution specifications comes from reliance on the monitor to implement
mutual exclusion such that sequences of events for executing such sections of code are totally

ordered and therefore are as "indivisible” as a single event. Figure 6.3 contains this program

1 In some languages there is a question as to how to accomplish this private declaration. See
discussion in [Hoare, 1975)].



9l

readers-writers-data-base =
begin
wpdb : writer priority ,-2
procedure read
record y ;
begin
wpdb.startread ;
y . = (read operations) ;
wpdb.endread ;
return y ;
end ;
procedure write
record y ;
begin
wpdb.startwrite ;
y = (write operations) ;
wpdb.endread ;
return y ;
end ;
end

If startread corresponds to E,, then sending a messages to the continuation (which is the rest of
the sequencg starting with the data base operation) does correspond to E"in' What is more, the
continuation in E"in includes the call to wpdb.endread and therefore the continuation enables
ordering E"out and I-:,.l Finally, E'Out has continuation that can return the result to the
continuation which came with the original request (by definition of procedure call). Thus due to
a combination of the activator properties enforced by sequential code and the monitor properties,
the required ordering =>wpdbés, is formed.

Details of a proof now depend on validity of the state updates and use of condition

definitions to ensure proper transitions once a state is recognized by a test. Now that the program

is so strongly committed to the solution structure of wpdb, the easiest approach is to show that the

2 This is Hoare's syntax for declaring wpdb to be an instance of the writer priority monitor. It is
declared private to the readers-writers-data-base.

1 This corresponds to the continuation s, in the solution specifications.
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separate axioms hold. Implicitly this relies on the proof that those causal axioms realize the high
level specif ications.! The proof will depend on arithmetic operations for updating states, the
correspondence of values and states, and the ability to give priority to waiting processes internal
to the monitor.

The following are examples of some of the axioms.

(la) E,, 3 E,, is first causes Ewin
If E,, is first, it finds initial conditions, i.e. it finds readcount = 0 A busy = false.

-~ by property of conditionals and sequential code, this write gets through to the data
base

- this events causes Ew.
i

(3a) E, 3 JE, E, p Epand = E

*>wpd Wout — wpdb E

causes
E => E"'n where E is the first in the set
)

{Ewoutl Er =>wpdb Ewout and the data base is opened to reads by Ewout}'

This is equivalent to entering startread and finding number of E, > number of
Ey_ . le finding writecount > 0.
out

By definition of conditionals this causes readers.wait.
Now by definition the reader has to wait until it gets a signal.
Its signal could be from enduwrite or startread.

If from endwrtte it is due to E 3 writecount = 0 ie, 3 the number of E,, =
Yout i

number of E,,.
'out
-~ the signal is due to opening of the data base.

To show that it is due to the first opening of the data base, note that once the first

! In a sense the causal axioms correspond to lemmas we would have to prove if trying to prove
high level specifications directly. Thus the solution specifications show our ability to express such
intermediate level properties. They are not necessarily easy to formulate or derivable
automatically.
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such signal to readers occurs then due to startread and properties of conditions, all
readers on the queue get of f the queue before the monitor is released again.

<. the first opening is sufficient for enabling this read. This covers the case of its

being signalled from startread because that also could only happen if the data base
became open to reads.

(3b) E, 3 3E, ">wpdb E, and - E, =>wpdb E,
1 lout

causes

Eout =>wpdb Ewin where Eg 4 ends the last write before E,,,
The precondition is equivalent to writecount > 0.

If writecount > 0 then busy = true.

-. the writer gets onto the writers condition queue.

. the one before it on the condition queue goes before it (by definition of the
condition).

If no write is before it on the condition, the one in the data base has to do the signal
and since that one is the last write before it, the condition holds.

- this causes E,, => Ewin
out
In this manner one can show that the explicit causality of each axiom is enforced by the program.

where EWl is the last write before Evr

The solution specifications give structure to a proof of the properties. This separates the
adequacy of causality arguments (Chapter 5) from implementation of causality arguments

(program correctness relative to solution specifications).

6.4 Properties of a Proof of Correctness

The proof may seem no more or less revealing than other proo‘fs of properties of
programs that the reader has seen. However, there is at least one important way in which this
proof differs from others about the readers/writers problem. That is in the fact that we are
proving that a behavioral specification is satisfied by this code given behavioral definitions of

the programming language.
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The reader may be wondering why the use of behavioral specifications is stressed given
that final implementation depends on finding a state description. In fact even the solution
specification depended on the notion of state, since the definitions of the data base being open at
E is the definition of a state of the data base. The reasons for favoring the behavioral approach
are based on comparison with attempts at specification of readers/writers problem by description
of possible states of the system. This is done by means of invariant relations which must always
be true of the variables in which the state is encoded. An example of an invariant which applies
to the writer priority data base might be:

(readercount = 0 A writecount > 0) V (readercount > 0 A - busy)
meaning that either a writer and no readers are in the data base or reads are in and no writers
are in.

One problem with the state approach is evident in the use of this style of specification
by Robinson and Holt [1975] for write priority. The priority property must be stated in terms of
state transitions in order to constrain the situation is which a waiting read can be changed to an
active read and allowed into the data base. Robinson and Holt can do this by adding the ability
to talk about two values of each variable, such as 'readcount’ and readcount, the first being the

original value, the other the value after the change. For instance he states the condition

min(l, readcount - ’readcount’) < | - min(writecount,l)

so that state change increasing the number of readers can occur only if writecount is 0, i.e. if there
are no waiting writers. Thus they are not really totally depending on properties of states rather
than behavior. If the properties were based on sequences of state changes longer than one
change, the Robinson and Holt specifications may not be at all usefull At the very least they

would encounter notational difficulty.

1 one might also question whether use of min and max etc. has any intuitive value for high level
specifications.
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Indeed recognition of possible states in which a system can be is an important
-abstraction. However, there is a correspondence between states and behaviors which allows one to
define the states of a system as an equivalence relation over the possible behaviors. States as
abbreviations for classes of behaviofs are convenient notations whereas behaviors as sequences of
state changes can lead to notational difficulties as in Robinson and Holt. Therefore this work
emphasizes the reliance on behavior with states as abbreviations. This is particularly important
for systems of communicating parallel processes in which specifications are so often about
behavioral properties. Especially in dealing with actors such -as the less structured
synchronization in Chapter 7 one will need to write specifications dependent on behaviors that
correspond to long sequences of “state transitions." For such definitions the behavioral approach
is simplest and most direct for implementation independent specifications.

The reason for taking this view is related to our reasons for suggesting that
programming language primitives should be defined as systems, and relates to a second problem
with the state invariant specifications. In proofs of correctness, state invariants are often used as
the assertion which must be shown true of the program [Hansen, 1972; Hoare, 1974]. The danger
is in the misinterpretation of such invariants. The invariant as a statement about waiting
requests and served requests is about meta-variables of a system.(such as numbers of actual
requests, etc. to the program being examined). Thus, the invariant should be a property of this
relation among the numbers of events of various sorts. Instead, the invariant is almost always
interpreted as a property which must hold for explicit program variables which contain state
information. Then as long as these variables can be shown to be kept in a consistent state, the
program is considered correct. This is independent of the properties of the program as a
synchronizer due to synchronization primitives used. Therefore, even if unfair synchronization is
used, the program can be proved correct. Although a write request may be locked out of the data

base indefinitely by an unfair synchronization, as long as reads are served only when the
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program variable for waiting writes is equal to 0, there need be no consideration of this actual
waiting write. This approach enabled Hansen to prove correctness of his readers/writers solution
using the unfair conditional critical regions [1972] although writer priority within the program
can be superceded by lockout at the critical region. This flaw in his program is noted by
Courtois et al. [1972).

For the above reasons we find that the behavioral approach is better suited to semantics
of synchronization than is a state invariant approach, even at the program level. The proof of
correctness of the monitor solution to readers/writers includes reference to the properties of the
program as it would appear as part of a system which is relying on it for data base protection. It
proves correctness as a synchronization device, not just as code for keeping an internally
consistent picture of an internal state. It is based on system state rather than data base state and

proves the relevance of the program’s internal state to the state of the system of which it is a part.

6.6 The Monitor as Structured Synchronization

In examining the details of how a proof of properties of the monitor implementation of
readers/writers would be completed, it becomes clear why Hoare [1974] could not extend his proof
technique to apply to many monitors. His attempt to find and prove an invariant relation for the
monitor as a whole is not well-founded since in practice, the preservation of the invariant may
depend on uses of the separate procedures. Thus while a procedure as it is used in the system
may not invalidate the invariant, it may also be the case that this cannot be deduced from the
invariant alone.

There is a question of what structure the use of the monitor can impose on programs.
One measure of the structure of a program is the modularity of the code. The ability to take a

block of code, prove it satisfies an invariant and then only use that invariant in place of the code
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for proof of correctness of the rest of the program indicates the validity of that module as a
block in the semantic as well as syntactic structure. Apparently for this reason Hoare wishes to
prove invariants of monitors, thus emphasizing their meanings as modules in a system. However,
there are intersecting logical divisions of the program as seen in the program (Figures 6.2 and 6.3)
which foil this plz;n. For the purposes of mutual exclusion startread, endread, startwrite, endwrite
must all be in one monitor. However, for the purposes of preserving reasonable properties of the

data base, the blocks

startread ; read ; endread

and

startwrite ; write ; endwrite

are appropriate "modules.” When data base invariants for these block are proved relative to the
synchronization properties of the monitor as a module, the program can be proved correct.
However, no interesting invariant about variables private to the monitor need be provable for the
monitor as a whole.

The invariant §

(readercount > 0 A writecount = 0 A busy = false)
V (readercount = 0 A writecount > 0 A busy = true)
might be a reasonable property to be maintained over the variables in the monitor. However,
endread itself cannot be proved to preserve §. This is because if a process could enter endread
when readercount = 0, then readercount could be reduced to less than 0. In fact, by the structure
of the program in Figure 6.3 if we ever enter endread at all it is only under the condition

(readercount > 0 ..). This is not a property of the monitor but rather of the program which
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forces the monitor procedures to be used appropriately. The invariant is true but it is not strong
enough for proving that the invariant will be preserved.

Unless the program is structured so that all read operations are forced to be of the form
startread ; read ; endread, we would have to prove that for all instances scattered throughout the

system of operations for checking in and checking out there is a stronger ' such that

{3} endread {3}

and Y’ always is true for endread. Thus the localization of this synchronization structure can
seriously change the difficulty encountered in understanding a system. This part of the structure
is the part most important for realizing goals of structured programming relating to producing

understandable code.
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7 Unstructured Synchronization

This chapter contains a definition of the semaphore. The definition is independent of
implementation and illustrates the "lack of structure" of this primitive, in the sense that its
presence alone in a system does not introduce easily abstracted time ordering properties such as
mutual exclusion as does the presence of protected-data-base or wpdb. It can be used to build
systems which do cause interesting time ordering properties, and one program for such a system is
discussed.

Another definition, that of an unfair semaphore, ie. one that can continually overlook
some waiting requests, is given as well. By restricting the ways in which it can be used in a
system one can see that structure and even fairness can be achieved under certain carefully chosen
conditions.

The purpose of this chapter is to show first that the specification language so far
developed is not prejudiced towards definition of structured synchronization, and second that the
language is sufficiently powerful to give truly implementation independent specifications of this
primitive. The value of such specifications is made evident by their use in specifying properties
of programs which use the primitive. These specifications can convey the structure of the
program directly without details of the implementation of the semaphore.

The chapter ends with a discussion of structure of synchronization as discussed here
and its relation to properties of “structured programming language synchronization primitives”

and the programs which use them.

71 A Definition of the Semaphore
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The reader can find a number of definitions of a semaphore in [Dijkstra, 1968;
Tsichritzis, 1974; Shaw, 1974; Hansen, 1972a; Haberinan, 1970]. What most have in common is a
dependence of the description on an implementation, generally in terms of "indivisible” sequences
of events for updating and testing a cell’s values! As long as the cell's value is greater than 0
that value can be decremented. Its value can always be incremented. A general semaphore is
usually defined first and a binary semaphore, one which has maximum value 1 in its internal cell,
given as a restricted semaphore. However, in implementing semaphores, the binary semaphore is
usually built first [Shaw, 1974] from cells (or test and set)2 operations and the general semaphore
from it.

The binary semaphore contains the basic locking and unlocking which is characteristic
of synchronization primitives and is the one we will examine. As a “gate,” the semaphore
becomes “locked” by any process that passes through. When locked, the semaphore causes others
to wait. The gate remains locked until someone unlocks it. Unlocking an open gate has no
effect

A fair binary semaphore, s, can be defined behaviorally, by reference to ordering

relations induced on events of the following forms:

Ep = <s (apply: 'P (then=-to: ¢)) a e
E, =< (apply: 'V (than-to: ¢)) a ey

Since all events Ep» Ey have s as target they can all be ordered by =>.. In a single activator if

there are further events then

I Haberman [1970] is most like our definition by behavior since it summarizes history in an
invariant and meta-variables. However, it is not clear that the meta-variables correspond to
numbers of any physical events in a system. Also, he must have difficulty with a binary
semaphore where the order of "events” (real or not) is of more importance than the numbers.

2 An indivisible group of updates with no conditions for waiting or queuing implicit, thus more
primitive than a semaphore.

3Ina general semaphore unlocks can be "saved” so that if n unlocks are done while the gate is
open, n processes can get through the gate before it will become locked again.
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Ep --> <c (apply: ) a ec)

E, --> <c (apply: ) a ec)™>.

We will refer to these events as Ep t and E, ¢ respectively. E, always causes a next event, but
nex nex

for any Ej, there may be additional events required to cause E ¢ These depend on the "state”

Pnex
of the semaphore where the state is as usual a class of (pasts) histories.! Unlike the cell in which
one only has to look back as far as the last update to determine its state, with a semaphore one
often has to look back over its entire history. The update to a cell changes its state and that state
is stable and determines responses until the next update. Similarly, if the semaphore is "unlocked”
or "open” then the response of an Ep is clear. However, the designation of all other histories as
putting the semaphore in a "closed” state is less useful. It can stay closed indefinitely. In that case
the effect of an Ej or an E, is determined not by the fact that the semaphore is closed, but rather
by the order of events since the last time it was open.

Not only must the total history be relied on, but in addition, no simplifying assumptions
about this history can be made to facilitate its description. The kinds of assumptions that one
might want to make are things like the fact that there will be no unlocks before there are locks,
that all activators that get through a gate take responsibility for unlocking it later, or that no one
unlocks a gate unless he locked it, etc. These are assumptions which are reflected in possible
orderings of P's and V's in histories. What is more they are the kinds of assumptions on which
structured specifications tend to rely. With protected-data-base or wpdb rather than data-base
certain properties of => hold in any behavior. le, those properties would hold independent of
the system of which the actor was a part and the kinds or numbers of messages it received.

This is not true of the semaphore. While it does have inherent properties which can be

I As per discussion in Chapter 2, when a set of events is totally ordered (in this case by =>.) we
can refer to the set of totally ordered events as a history, the events before an event E in =>g as
the past, those after it as the future.
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specified, any abstractions that can be made about behaviors of systems containing a semaphore
are extremely dependent on the system of which that semaphore is a part. Whether or not a
system has interesting time ordering properties will depend on whether the semaphore is used in a
manner that enforces the orderings.

A standard way to enforce a property such as E; => E,, where Ej, E5 have different
targets, and are in different activators, is to have an event, E,, after E; which must be necessary
to the occurrence of an event, Ey, before E;. With a semaphore one might have E, = E; and Ej, =
E, However, unless the semaphore is guaranteed to keep E, waiting until after E{, no guarantee
abou: ©ime ordering can be made. For instance if a system with a semaphore has a process that is
in a loop continually sending V's to that semaphore, then it is unlikely that anything can be saic
about the orderings imposed elsewhere in the system by that semaphore. If another process can
unlock the semaphore, the ordering of E; and Ej is not enforced.

Protected-data-base and wpdb had no control over how many or what kinds of requests
they receive, but once they received messages they had complete control over setting up possible
unlocking messages. Each s, was good for one unlock and meant the end of the data base
operations (this last depends on assumptions such as no parallelism in the data base, etc). In
other words, they imposed structure on locking and unlocking. The semaphore by itself is sub ject
to receipt of arbitrary messages in arbitrary order with no structure necessarily imposed. Whether
or not this means semaphores are "bad” is a sub ject for debate related to structured programming.
The point of concern here is that since no pattern of the "locking™ and "unlocking” messages in
the history of a semaphore can be assumed, definition independent of a particular use and
independent of implementation is a somewhat complex task.

First of all, since unlocks (V’s) can no longer be assumed to mean “"end of operation”
and therefore to correspond naturally to some previous request, a means for talking about the
effect of a V must be introduced. If the semaphore is locked, it is locked due to some P being let

through. Thus the V terminates the locking due to that P.
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Definition: Ey terminates E, [written E| = T(Ep)] if
4] Eq is first Ep in =>¢ and E; is first E, after E,

or (2) Epl is the fast Ep before E; and E) is first E, that is both after z(E"l) and

after Ez.

Definition: E3 is a terminating V event iff 3 Ep3Ey= Q(Ep).
Examples of E/'s that are not terminating V events are E"l' Ev6 and Ev7 in the following

sequence where Evl is first event in =>¢

E, & ,E,,E,,E,_, E

Evlv Eplu Ev |Ep21 P2’ “pa’ V3' v4r vsv vsv Ev7r Epsl
2 3 P4

where T is:
E,, =T (Ep,)
By, = TEE, )
Evy ® I(Ep3)
Evg = T(Ep,).

The definition of semaphore will illustrate causality as "a relation between relations.”
Not only can sets ordered by =>; be in preconditions. Now the relation of E,, = z(Ep) is used. In
a sense this kind of relation was implicit in the wpdb specifications, where E,, and E“’out were
similarly related. However, since the event, Ewout' was itself identifiable as the "matching” end,
no explicit definition of the relation was necessary. In order to refer to an E,, 3 z(Ew) was in the
behavior, we simply spoke of an £, 3 Ewout was in the behavior.

One further difficulty arises when attempting to define the semaphore to be "fair.”
The definition of fairness is somewhat complicated by the fact that there is no guarantee in the

semaphore itself that there will ever be V operations.l If there are only P operations then clearly

I This contrasts with the other aspect of the lack of structure, namely the lack of matching
referred to earlier in due to which there can be too many V’s, some of which will not be
terminating V's
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all activators but the first will be stopped forever (i.e, will not have Epnoxt’s and therefore will
have no further events). Thus one cannot say the semaphore is unfair simply because there are
conditions under which there can be events Ep with no Epnext in a behavior. However, in any
behavior in which there are a "sufficient number” of E,'s it must be the case that all Ep's are
followed by Epnext' "Sufficient” may be defined relative to some bound on the number of E's

that occur after Ey such that Ej y May still not be in the behavior. This bound may be a
hex

function of the number of Ep's in the past. For any behavior in which 3 E 3 Epl =>, E and the
number of V's between Ep1 and E is greater than B (n) where 7 is the number of unenabled Ep's

before Epl' then E is in the behavior.! For instance, as we shall see in section 7.2, given a
next
structure in which every Ep i eventually causes an E,, there should be no Ep that is not followed
nex

byankE .
y Pnext
The easiest way to anticipate fairness criteria for any use of semaphores is to rely on

the actor ordering =>¢ in specifying the choice of the next process to be let in2 In section 7.3

we will discuss the alternatives.

The axioms for a semaphore are:
<cons-semaphore {apply: (then-to: ¢)) a ec>
causes

<c (apply: s®) a e

I Guy Steele has a defined a "fair” semaphore for which B is a function of all P’s and V’s, not
just the unenabled ones.

2 For a primitive, this corresponds to a FIFO queuing algorithm based on time of arrival of

request. It also corresponds to B(x) = x. Since all P events are of the same form there is no other
grounds for providing fair selections in a semaphore. There can be fair algorithms other than
FIFO provided other properties are visible, either by extending the model or by having events of
differing forms. We have seen a non-FIFO, but fair algorithm in Hoare’s fair readers/writers
which while it doesn't necessarily serve requests in order, does serve all requests. When
algorithms other than FIFO are used, argument that the algorithm is indeed fair is required.



105
where the following properties of s hold.
(@) V's always are completed.

Evl

causes

E .
! next

(b) A new semaphore is open.

Ey
where E) is the first Ep N =>¢

causes

E|

next

(c) Every V that ends a P enables the next P. V’s that don’t end P's have no effect. [The V

that ends a P either reopens the semaphore or releases the next waiting P.]

Epl' 3 3 E preceding Epl

causes
E,=>E
v
plnext
where E, = g (Epz) for E,_,2 the last Ep before Epl'
This last clause includes the orderings E,, => Ep which could have been derived from =>
next
le,if v Ep =>¢ E ’ Q(Ep) =>¢ Epl' then Epl causes E . However, since all we care about in

naxt
this definition of semaphore is being able to characterize the => it induces, and not a description
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of when an implementation would have to actually add constraints, this definition suffices. The
reason that we are only interested in this kind of definition is that the semaphore will only be
used as a primitive in this paper. Therefore all that need be known are the time ordering
properties that can be relied on if it is used. The definition by causal axioms clarifies the
reliance on the actor’s ordering to assure that all E, and E, events are ordered in any time
ordering derived from a system including semaphores.

The reliance on the definition of Q(Ep) to pinpoint the "matching” unlocks is essentially
the point on which our distinction between structured and unstructured synchronization hangs.l
With the protected-data-base defined previously we could predict the form of the enabling event
to the extent that 1t was known to correspond to the termination of. an operation. In the
protected-data-base we knew exactly which event it would be. The end of the preceding operation
would occur in a predictable activator, etc. With a semaphore ail that is known about the
terminating V is that it will be of the form E,,

A point to note about these specifications is that while they rely on more than just what
preceding events occurred, (i.e.,, they rely on relations among those events), the fact that all these
events have s as target should ensure the realizability of the specifications. An implementation of
the semaphore has to be able to recognize the fact that a past E, has been terminated. Since the
recording of the number of E/'s is not sufficient to derive that presumably a record of the
relation must be kept. Although the record of this relation is theoretically ever increasing in size
as more pairs are added, one should note that this does not have to imply a requirement of ever
increasing space in an implementation. The recording of this relation can be implemented in any
of a number of ways. A queue from which Ep is removed once I(Ep) occurs could be used.
Then "E, on queue” = "E; 3 1(Ep) has not occurred yet.” Similarly, if being implemented using

only cells doing busywaiting, the responsibility is shifted. The "recording of the relation™ could

L It will be seen again in the definition of the condition in the monitor.
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be implemented by the fact that process a of Ep, ceases its busywaiting examination of cells once it

finds an appropriate condition is set [i.e. once t(sp) occurs).

7.2 The Semaphore Implementation of Protected Data Base
The semaphore can be used to implement the protected data base by using it in a

program such as that in Figure 7.1

procedure protected-data-base (x)
semaphore s ;
record y ;
P(s);
y - = data-base (x) ;
Vis) .,
return (y) ;
end

Figure 71: Semaphore Implementation of Protected Data Base.

Thus when protected data base is sent a request, x, with continuation ¢, it sends a message 'p with
continuation, ¢;, to the semaphore. This ¢; is the rest of the sequence of statements in the
procedure body. On receiving acknowledgement from the semaphore, in the form of the message
(apply: ), c; causes transmission of x to the data base, followed (on return of response put into y)
by V'ing the semaphore, s, and returning y to the original continuation, c.

When the fair semaphore as defined above is used in this manner, the mutual exclusion
of data base operations is implemented. What is more, there can be no lockout. This property is
derived partly from the semaphore definition and partly from the particular use here. The fact
that every P operation that is released will eventually be followed in that activator by a V
operation, combined with the knowledge that V’s can only happen under that circumstance, (i.e.

after a P), makes two points clear. First, there will always be more V’s in the "future” than there
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were unenabled P’s in the past, allowing any process that does a P operation to continue. Also, ¥
Ep, 1'(Ep) is now easily identified, making a description of how this program works considerably
simpler than that of the semaphore to write.

These points can be shown to be true as follows. Since it is the case that

<s (apply: 'P (then-to: c)) a > --> data base sequance of events --> <s (apply: 'V (then=to: r)) &« ec(x)>

we can also say that
<s (apply: 'P (then-to: ¢;)) a; ecp> =>¢ <s (apply: 'P (then-to: cj)) aj ey
causes

¢s (apply: 'V (then=to; r;)) ecl(")> => <€; (apply: )aj ec2'>

where <s (apply: 'V (then-to: r})) a; ecl(")> is the first V in a; after that P operation.

then this can be stated

If the first V after Epl in the same activator is referred to as E
out

Pl

Epl =>g Ep2

causes

E => [

Pl out P2

next

le, if Epl in a; is E, then the event E"out is the event <s (apply: 'V (then=to: r;)) «; ecl(")> which
releases the next E;. This clearly is related to the protected-data-base structure axioms and should
be recognizable as mutual exclusion specifications. It can also be interpreted as a specification of
the structure of a mutual exclusion solution. That is, the crucial events which delimit the critical

sections are mentioned and causal relations among them which are necessary for enforcing mutual

exclusion are specified. This specifies the structure of a program. The implementation of the
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causality can then be left to semaphore which can cause waiting and addition of dependencies.
What this specification says is exactly where the semaphore operations should appear in the
program.

The structure of the program guarantees that there could be no other E, in the

behavior 3 Epl a>, E, = E This axiom shows clearly that this program enforces mutual

P1
exclusion of data base operatio::.t There also can be no extraneous Vs, since due to the fact that
all V's occur only after P's, it can be shown quite easily that every E,, is a terminating V event.
Fairness in the sense of protected-data-base, namely that every request is served, can also
be shown to hold. The argument is based on the activator properties due to the structure of the
solution and the properties of the semaphore as it was defined in terms of =>,. By induction all
Epl’s preceding any Ej have T(Epi). Therefore the conditions for Epnext are always met and the
data base operation can proceed. The structure of the program ensures that at any point in the
history of the semaphore the number of V’s in the "future” is always greater than or equal to the

number of unenabled P’s in the "past." This, combined with the fact that the semaphore was

defined to be fair relative to that condition, ensures fairness of the structure synchronization here

enabled.
To repeat, the structure of the program is the structure of mutual exclusion. The
property
Eo1 s By
causes
E =>E
r"laut pznext

is a property of this program. It is not the high level mutual exclusion specification. Nor is it

simply the definition of a semaphore. It is a description of the events of this particular program
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which involve the semaphore -- a description of how the semaphore is being used in this case. It

captures the meaning of the program template

procedure ...
semaphore s ;
P(s);
Vs

end.

7.3 An Unfair Semaphore

Often in definitions of the semaphore it is only said that if processes are waiting when
a V operation occurs, then that V will enable some waiting process (e.g. [Courtois et al, 1970)).
The point is to avoid committment to any particular scheduling algorithm. However, if one
cannot even assume that the algorithm that will be used is in any sense fair then the usefulness of
the semaphore might be impaired.

Taking the statement of choice literally, a behavioral definition of a semaphore can be
written in which V messages simply cause the enabling of one of the set of already waiting
processes. We can then investigate the resulting restrictions on the properties of the semaphore
which can be relied on.

With the fair semaphore the choice was by first in =>¢ of a set of elements E, 3 there is
no T(E,) in the behavior. Each time an E, was chosen, the next E, became T(Ep), therefore E,
was removed from the set. If instead some arbitrary element in the set is chosen, the FIFO
discipline is eliminated and in fact the semaphore so defined is demonstrably unfair. If every V
in a behavior finds more than one E, waiting there is no guarantee, even given an unbounded
future number of V’s, that all P’s get through. [Le. there is no such thing as a sufficient number

of V’s] The ordering
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E, ,E,,E

Epll Epzl Ep3| vlv p4| E

vz Epgr Eugr -

can cause behavior in which E never occurs if the following relation is defined:
next

One way to represent the choice of next enabled P which a Q(Ep) makes is to define another
relation E,, = m(Ep). It is defined in the axioms for s, and depends on a definition of the set

W(E,) of waiting events and a revised definition of T.

Definition: E; = T(E,) if either
() Ep is first Ey, and Ey is first E, after Ep
(2) E3 finds the semaphore open and E; is the first E, after Ep

or (3) Ej is such that E; => R(E,) and E; is the first E, after m(Ez).

Definition: Epl € W(Evl) if Epl =>¢ E"l and

() Eg, is not the first Ey in =>

Py P

(2) the semaphore was not open for Epl
and (3) not 3 E, 3 ((E, =>g E, ) A fR(Epl)).

Then the axioms for the unfair semaphore s are:

(a) The first P always gets in
E} 3 E is the first Ep in =>¢
causes

E
l next
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(b) If all preceding P's are terminated, and the semaphore is open, the first P gets in
and the last V that terminated a P is the releasing V.

E} 2 Ej is not the first E;
and V Ep, E, => ) > TAE,) =>¢ E;

causes

Elnext
and E, last in the set {T(Ep) I Ep =>c E| }is m(El)

(c) A terminating V that finds waiting P's releases one of them
E,33E, 3 E, = T(E)
causes

; 1
EPnoxt for unique Ep € W(,)

Ynext
and E, = m(Ep).

Note that this definition implies that if W(E,) = {Ej} then Ep is released by E,. le, whenever

ol
exactly one process is waiting it is enabled by the next V. Also, whenever no process is waiting, a
terminating V opens the semaphore and therefore the next P is guaranteed to get in. Thus the
only way in which a process can get stuck at a semaphore is if there is always more than one

process waiting.

7.4 Using Unfair Semaphores

The same protected data base implementation as in section 7.2 can be done with unfair

1 Compare to Parnas’ [1975] hidden functions definitions which depend on set operations.
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semaphores and clearly the solution cannot be proved fair. If the specifications were simply
“guaranteed mutual exclusion,” this might be satisfactory.

Unfair semaphores can cause ordering properties identical to those of a fair one for
certain restricted behaviors. If, due to properties of the system causing messages to be sent to the
semaphore, it can be guaranteed that at most one P will ever be waiting at a locked semaphore,
then V operations are always guaranteed to release that one P! Within this restricted set of
histories a terminating V always releases the "next" P after the one it is terminating. Examples of
this kind of use might be in a semaphore being used in mutual exclusion style to protect a
resource which is held for an extremely short time relative to the times involved in computations
outside the resource and known frequency of use of the resource.2 Such assumptions can break
down, and a system built with unfair synchronization and relying on appropriate use, can begin
to have "incorrect” or undesirable behavior once usage changes. If fairness is important, then
such a system cannot be considered correct except relative to certain conditions. It is not
guaranteed to behave correctly in all environments and under all conditions of use.

The next chapter contains a program of Courtois et al. (1971] which relies on unfair
semaphores for certain properties. In order to guarantee certain properties extra semaphores are
used to ensure that at a certain key semaphore at most one process will ever be waiting. This
restriction of behaviors involving that semaphore is independent of usage of the program as a
whole. Thus that semaphore can process the messages it receives exactly as if it were a fair

semaphore.

1 Similarly, fairness although not necessarily FIFO, can be guaranteed relative to any usage
guaranteed to bring the number waiting down to zero arbitrarily often in any behavior.

2 This is the assumption Hansen makes in conditional critical regions solutions for which fairness
is not guaranteed. He claims that the only reasonable assumption about usage is that variables
determining use of the data base are not scarce resource [Hansen, 1973). Le. that it is not likely
that lots of waiting would occur for access to variables determining the state of the data base.
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7.5 Unstructured Synchronization

The semaphore is an unstructured synchronization primitive in the sense that while it
has "lock” and "unlock” operations, there is no relation enforced by the primitive itself between
the locking and unlocking. le, there is no property comparable to that of protected-data-base or
wpdb which allowed prediction of what event would unlock the synchronization for a waiting
process. In protected-data-base it was always the end of the last data base operation. Thus the
entire event, including its activator, could be predicted. By contrast, with a semaphore, all one can
say is thai a "V7 operation, if it occurs, will enable a waiting activator. What is more, the
property of whether an event represents a waiting process or not can no longer be indirectly
specified by whether or not its ending event has occurred. Events must be designated as having
ended particular P operations.

The information available in these other actors (protected-data=base and wpdb) can be a
property of a program in which semaphores are used in a particular manner, but they cannot be

said to be properties of the semaphore itself.
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8 Using Unfair Synchronization

This chapter contains an analysis of a program meant to solve a Writer Priority
Readers/Writers Problem using semaphores which cannot be assumed fair. The specifications of
this program and of the solution it implements are quite different from those stated in Chapter 5.
The differences and the reasons for them are discussed. Some formal properties of the solution
specifications can be shown to hold. Other properties are environment dependent specifications
which the high level behavioral semantics given earlier were not meant to anticipate. The wide
range of specifications that could be relevant to evaluating synchronization programs is sampled
with consideration of how our specification language might have been used had the particular
points about the running environment been included in the writer’s picture of his needs.

The chapter continues with an examination of another solution written with
synchronization primitives which have been specified with varying degrees of formality and
“completeness.” Implementation of environment dependent specifications, comparison of power of

various primitives, and styles of programming are discussed.

8.1 The Original Problem

Courtois et al. set themselves a problem, defined carefully to be implementable with
semaphores which could not be guaranteed to be fair. Specifically, they did not require that any
sort of fairness hold, since they knew that there was no guarantee that their semaphores could
provide it.]

1 They mention explicitly that if they did not restrict themselves to simple semaphores with no
fairness guarantee they might be able to accomplish more.
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In terms of => it is still the case that V §,, Sy in a behavior §, =>S, or S, =>§, and V

S Sy, => S However, there is no guarantee of

Swy. in any behavior Swl => Sw2 or Sy, Wy

wit Pwy
fairness to readers or to writers and no guarantee that requests of either class can still be totally
ordered. The only requirement in addition to the readers/writers property is the following
statement of writer priority: "Once a writer is ready to write, he performs his 'write’ as soon as
possible. .. to meet this requirement a reader who arrives after a writer has announced that he is
ready to write must wait even tf the writer is also waiting."

The phrase "as soon as possible” is a typical informal problem specification phrase
which does not convey sufficient information by itself to be implementable. There is no
specification of the notion of “time" being used or of what comparisons are to be made in
determining that the amount of delay has indeed been minimized (or speed maximized). There
could be many interpretations of this phrase. If readers are already in the data base when a
writer announces, then it may be that the "quickest” way to serve the writer is to interrupt all the
reads and let the writer in immediately after. It may be faster to let him in immediately and to
simply warn all readers that were in the data base that they probably got bad information
[Lamport, 1974] and that they should reread.! Courtois et al. evidently did not mean to maximize
speed in this sense. Also, since they explicitly accepted the fact that once a writer has announced,
that writer may still get locked out if many other writes are waiting, they clearly did not even
mean by "as soon as possible” to imply guarantee of writing.2
This 1s an example of mixture of program specifications and specifications of runtime

properties. There is no sense of “as soon as possible” which will be meaningful for this program

over all possible running situations. Some interpretations of "good” solutions can be specified but

1 No fairness to reads is required so that there is no need for concern over the fact that this could
potentially keep readers rereading forever as new writers appear.

2 Regarding this property, the best that can be said is that as long as a writer is trying, some
writer (not necessary the one trying) gets in.
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no one solution is particularly specified by this informal phrase. For the time being we will
analyze the program relative to the solution specifications implicit in the statement ” .. a reader
who arrives after a writer has announced that he is ready to write must wait ..." To do this we
must specify how writers announce that they are ready.

The main point besides the reader/writer property to be captured in the Courtois
specifications is the fact that the solution is deliberately not meant to assume a single actor
solution. Readers and writers have their own entrance actors which happen to use a common
channel of communication for checking writer priority. All writers must be announced and all
readers must check. Writers cannot be prevented from announcing (even if a particular writer
can be locked out).

Thus Courtois et al. really were specifying the use of a communication channel between
readers and writers as well as mutual exclusion of writers. The communication channel must be
used in a particular way. If properly used, the communication channel will cause the following
properties to hold. If E,,, is the event in which a group of writes announce themselves and E,

the one in which a read checks for writes:

{1 S, is in the behavior iff E, is in the behavior and either E, found no

announcement or was released due to there being no writers still claiming the data
base.

(2) If €, 3 Ew, = Ew = E and E,, is an E,,, then no reads that didn't

wlout

precede Ewl get in before EW.l

This last requirement could be realized by the following property, where =>. is the ordering

observed at the communication channel.

Ep =>¢ By 2 Sp => Sy,

Ey =>¢ E, 2 S, => S, (if S, in the behavior).

L All reads are ordered with respect to announcing writes. Therefore all reads either
do or do not precede Ewl.
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and the requirement that all writes either announce themselves or satisfy themselves that writes
are announced. Thus the requirement (2) is
If E, 3 E“'l =>E, =>E, and E“’l isanE

out
Write announcements can cause reads to wait, but if a read does check before a writer announces,

aw then S, =>S. iff E, =>, EWl

then that read can get in. There is no implication in such specifications of total ordering of all
requests or of fairness to any individual request. The priority can be passed along from write to
write by letting each write that arrives while writes are still in the data base "inherit” the current
announcement. Thus writes only have to race with reads for the common channel when the data
base has no waiting writes. By having writers communicate through the same channel when
giving up the data base, the events necessary for S, to be in the behavior, i.e. the "unannouncing”
of writer, can be specified and causal specifications given. A particular solution would have to
include a communication channel through which a read can relinquish the data base after it gets

it.

8.2 The Courtois, Heymans, and Parnas Program

The solution that Courtois et al. present requires cooperation of the following sorts. All
writers must use a single semaphore to achieve mutual exclusion and readers and writers must
announce themselves through some common semaphore so that priority can be achieved. Since
the program is written in terms of semaphores which may be unfair, readers and writers cannot
simply pass through one common semaphore. If they did, then whenever a group of readers and
writers were waiting, there would be nothing that could be said about which was selected next
after a V operation. No priority could be given, since any attempt in the program to give priority
to writers would be foiled by the possibility of writers accidentally never getting through the
common semaphore. Thus Courtois et al. go to great lengths to guarantee that at most one

process can ever be waiting at any common semaphore. The solution is presented in Figure 8.1
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The only common semaphores, r and w, must be protected so that at most one process
can be waiting at either. Thus mutex 3 is used to let only one reader at a time to the common
semaphore r. Mutex I protects the readcount variable, mutex 2 the writecount variable. The
semaphore w is used to indicate that the data base is busy. The data base can be busy either due
to some readers or one writer. The semaphore r is used for writes to announce their intention to
take priority. Reads all check for that and are stopped if writes are already waiting. If the first
in a set of reads and a writer are both making progress towards entering, due to r, only one will.
Thus the ordering at r can determine which gets through first (this only applies in cases where
the data base is opened instantaneously and is used in deciding whether the data base is
recaptured by the writers or not.) No more than one of that group of reads can get in before the
competing write, once both get to r. Readers can only examine readcount, writers only writecount.
To implement a solution in which both kinds of processes examine both variables, a common

semaphore would have to be used reintroducing the lockout problems.
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integer readcount, writecount ; (initial value = 0)
semaphore mutex I, mutex 2, mutex 3, w, r ; (initial value = 1)

READER WRITER
P(mutex 3) ; P(mutex 2) ;

P(r); writecount : = writecount + 1 ;
P(mutex 1) ; if writecount = I then P(r) ;
readcount : = readcount + | ; V(mutex 2) ;
if readcount = [ then P{w) ; Plw) ;

Vimutex 1) ;

Vir) ;
Vimutex 3) ;

reading is done writing is done
P(mutex 1) ; Viw) ;
readcount : = readcount - 1 ; P(mutex 2) ;
if readcount = 0 then V(w) ; writecount - = writecount - 1 ;
V(mutex 1) ; if writecount = 0 then V(r) ;

V(mutex 2) ;

Figure 8.1: Courtois, Heymans and Parnas Solution to Second Readers/Writers Problem

Note that only the first in a group of readers and the first in a group of writers communicate
through both of the common semaphores. (All reads go through r but only first through w, all
writes go through w but only the first through r.) Since the state variables containing numbers of
readers (readcount) and numbers of writers (writecount) are used only by readers and writers,
respectively, a reader does not check explicitly for number of waiting writers. It only checks the
number of readers and coordinates with writers through the semaphores.

The arguments required for proving that this program satisfies the specifications
depend on the definition of a semaphore and properties of the particular uses of semaphores
within this progrém. To prove mutual exclusion of writes the mutual exclusion pattern of P(w)
and ¥ (w) in the writer program must be recognized and it must be shown that the P(w) and V(w)

in the readers program cannot cause mutual exclusion to could be violated. In particular, while



the reader’s P(w) can hold up writers, the reader’s ¥(w) can never occur while a writer is in the
data base and therefore cannot cause violation of mutual exclusion of writers.

Now before the communication channel property can be handled, some properties of its
use must be checked. This requires proof that at most one process can ever be waiting at r and
that writes always either go through r or check that some other write did. Due to properties of
conditionals and the fact that writes are ordered at writecount, if writecount is greater than 1 then
there is an E,, preceding the write. Given these facts, proof of the following are
straightforward:

Er => Eaw 2 Sy => Sy

Eqw =>r E, 2S5, = S,

V E,, 3 E,, Is its announcement, S, => S iff E, =>  E, .

Thus with appropriate filling in of details in the preceding outline, one can prove that
this program does satisfy those communication requirements that we can extract from the
informal Courtois specifications and formalize. The question remains whether these extracted
properties are all the specifiers had in mind. Presumably even a single person writing
specifications and implementing them can make a mistake and not implement his intended
specifications. If the implementation is taken as the precise statement of the meaning then it
cannot be incorrect. If the precise meaning simply was not well expressed in the informal
specifications, and the program is meant to implement some precise specifications, how can we
judge correctness? The following section notes one interpretation taken by readers of Courtois

specifications by which the solution is inadequate.

8.3 An Alternative Interpretation

As a result of the placement of communication operations in the sequence of operations
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in entrance code there can be some discrepancy between the orderings by which one might
naturally try to judge performance and orderings acknowledged by the system. If one assumes
that, by some global clock, a read coming to mutex 3 can be ordered with respect to a write
coming to mutex 2, then one can find fault in this solution since a writer can request entrance (by
coming to mutex 2) before a read does and yet fail to enter the data base before that read does.
[The reader should be able to see this happening when exactly one writer has been in the data
base and is checking out while these requests appear.]l This violates the scheduling specification
which states that a reader cannot get in while a writer is waiting.2

To evaluate this "failing” we must consider what specifications we are using. If the
high level specifications were of the Chapter 5 variety in which priority was defined relative to
some total ordering on all requests, indeed this solution may be incorrect. However, the authors
specifically said they did not expect to have readers and writers go through a common semaphore.
Thus they deliberately used independent actors leaving this program with no physically
meaningful basis for an ordering =)mutex2&3'3 This ordering is not a system property and cannot
be used to determine time orderings.

If the high level specifications require relative ordering, then this solution could be

I This timing sequence was pointed out to the author by Ellis Cohen.

2 The reader could compare this to the situation in the monitor solution in which at a time when
a write is finishing, a queue E,, E,, .. is formed outside the monitor. The read, being first, will
enter to find the data base empty and will get in even though there is a writer waiting on the
queue. Somehow waiting on that queue is still not equivalent to "waiting.” Similarly, it should be
clear that Courtois et al. did not intend writers waiting at the semaphore mutex 2 [or even writers
simply inside their first critical section] to be considered "waiting writers." Those semaphores are
there for preserving the validity of the current count of waiting writers. Only after a writer has
both changed this count and explicitly put itself into a waiting state on one of the semaphores for
communications (r or w) is it recognized as waiting (i.e, has it "announced” its readiness to write).

3 Compare to =>wpdbés, There we were writing prescriptive specifications and requiring that
i

wpdb and S, be implemented by actors that had common ordering. In this case we would be

taking two independent actors which already have specifications (they are unfair semaphores) and
basing descriptive specifications on =>g 40.0¢3. There is no basis for that in the specifications

of the primitive.
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ruled out on the grounds that the two independent semaphores do not implement such an
ordering. However, recall that this is just one possible interpretation of what the "real” high level
specifications are. In the next section we consider programs which are claimed to satisfy the

stricter specifications.

8.4 Relative Power of Unfair Primitives

With only the unfair semaphore available Courtois et al. had to set fairly modest
requirements in stating their problem. However, even those requirements, when interpreted as
stated above, have been are used in support of arguments that semaphores are insufficiently
powerful to solve this readers/writers problem. The basis for this power difference is not related
to fairness but rather to the number and kinds of operations that can be performed as single
operations. One standard "extended" semaphore is the compound semaphore where P(s)s9) is
completed iff s) and s are both greater than zero. Similar primitives can be made available in a
programming language or can be programmed using a monitor. In this and the next section an
extended semaphore solution to the readers/writers problem is examined for how well it satisfies
the Courtois specifications. This section contains an unfair synchronization version, the next a
fair one.

No claim has been made that if one takes the view that the priority specifications are
relative to a single total ordering on requests, unfair semaphores can solve the readers/writers
problem. However, there are claims [Presser, 1975; Lipton, 1974] that solutions with more powerful
primitives can “solve” the readers/writers problem.

For instance, using his own representation of a primitive up/down which can test and
change arbitrarily many variables in one step, Lipton presents the following solution: [Each line

has an indivisible operation on it.]
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READERS

() ifs=0Ab=0thenag:=a+!;
(2) read
3 a:=a-1I;

WRITERS

(4) s:=35+1;

(5) ifa=0Ab=0then b:.=b+1];
(6)  write

@) b:mb-1;

8 s:=s5-1,;

This program satisfies the following specifications: (4) "stops” (1), but (1) cannot stop (4). Taking

this as a spec:f:cationl Lipton shows that no semaphore program can have two steps with that
property.2

Our main question about the claim that semaphores cannot solve the readers/writers
problem is whether the up/down primitive as specified does in fact enable a better solution. The
possible misleading factor in this is that no specification of scheduling is made for up/down.
The reason that this may be important is that certain implementations of the up/down can be
subject to the same criticisms that can be directed at Hansen’s conditional critical regions.
Conditional critical regions are primitives for programming in which the programmer can specify

tests and operations to be performed on shared variables with mutual exclusion enforced but in

which he has no scheduling facilities. The conditional critical region enforces mutual exclusion

I 1t is not clear whether it is meant as a full specification of readers/writers or as a single property
common to all programs for readers/writers.

2 Thus Lipton is implicitly only accepting implementations of stopping specifications in one step.
Results might be different if he allowed for the stopping of sequences by sequences of steps.
Lipton and Snyder are currently working on generalizing their definitions to include such
solutions, with measures of the distance of such solutions from single step ones.
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of any regions that access common variables, but scheduling of waiting processes is deliberately
totally uncontrolled and unfair.
The reason the up/down primitive must be similar to the conditional critical region is
that 1t too provides for mutual exclusive access to variables (g, b, 5 in this case) without scheduling
specified. The program can be rewritten to emphasize the relations among the independent

blocks of code due to access of common variables.
READERS

() shared sba
ifs=0Ab=0then a:=a+l;

(2) read

(3) shared a
a.=q-1;

WRITERS

(4)  shared s
sras+ ]
(5) shared a, b
if a=0ANb=0then b:=b+1;

(6)  write

(7)  shared b
b:=b-1;

(8) shared s
s.=5-]

Given this representation we can see that there must be mutual exclusion among (1), (4) and (8)
due to access to s. Now the reader can see that if exclusion is enforced unfairly, the program has
exactly the same race as noted in the Courtois solution. That is, if the last write in the data base
ts checking out and is doing (8), a write can precede a read at the synchronization for (I) and (4)
and yet due to urnfair scheduling the reader could proceed first with (1). Its test will succeed (a

and b are 0) and a read will have won an advantage over a write.
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Thus the “stopping” property of the up/down solution, given no scheduling algorithm,
is a property of execution of the step, not of attempt at execution. Within a system of readers
and writers, accessing a data base through these procedures, the priority arrangements can be
overridden due to both readers and writers implicitly passing through a common unfair
synchronization.l

Thus while the up/down seems to have more "expressive” power in that it allows
expression of the indivisible operations necessary for readers/writers, it is not clear that it has any

associated increase in power as an implementation mechanism since it does not allow for statement

of those details necessary to ensure that this program can be a useful part of a system.

8.5 A Power Difference

If instead the up/down primitive could be defined with a fair scheduling algorithm, two
other points, should be considered. First, specifying a fair algorithm may prove sufficiently
difficult as to render it an impractical device regardless of its apparent power. Second, it is only
reasonable to compare the fair up/down to a fair semaphore. Once released from the constraints
under which Courtois et al. operated, there may be better semaphore programs. Thus while we
do not claim to disprove the Lipton results we may introduce properties of synchronization not
considered in their model that may bear weight on grounds of practicality against the literal
interpretation of the result favoring up/down. What is more, given that a fair semaphore is still
not adequate, we can show that the full power of the extended semaphore or up/down is not

required for the readers/writers problem. In fact, only that part least likely to produce serious

LIn fact, this may be seen as a sacrifice in clarity of a program due to using a more structured
primitive. Since the synchronization mechanism is implicit, it is harder to see this flaw than it
would be in a semaphore program in which all entrance code involved passing through a
common semaphore (i.e. if the Courtois program had only one semaphore mutex in place of mutex
3 and mutex 2.)
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practical implementation difficulties is actually necessary. We will deal with the implementation
by fair semaphores first.

Given fair semaphores one can have all requests and ends use the same semaphore for
protection. Since all four operations can be made mutually exclusive both the readcount and
writecount variables can be accessed in each. Every request can have access to a record of the
complete history and no ordering between reads and writes can be lost. The reader might like to
try his hands at the fair semaphore solution . There is no reason why it should fail in the
manner described by Lipton. e, writes can always stop later reads.l

There is a difference between semaphores and extended semaphores which will
probably become apparent in any fair semaphore solution to this problem. The most obvious fair
semaphore solution to this problem is to build a monitor from semaphores and to use the monitor
solution for the rest. Hoare shows how to implement the monitor given semaphores. We would
like to point out the following problem, however. If one expects now to be able to fully realize
the original solution specifications, one would be depending on the ability to guarantee that order
of waiting on internal queues corresponds to order on external ones (see Section 6.2).

There seems to be a difficulty in the implementation of monitors with semaphores
which prevents this, and which in general makes it necessary to release shared semaphores before
P'ing private ones. Hoare implements his monitor using a semaphore mutex for the “outside” of
the rﬁonitor, and semaphores condition for conditions. Thus to implement the wait operation one

must do

~ V(mutex) ;
P(condition) ;

1 Of course, if E,, EWz

taking into account the fact that a write is waiting behind it on the queue. The only published
solution which apparently gives "complete” priority to writes in the sense that a write only has to
wait for preceding writes is Lamport’s [1974].

are on the queue, E, will be treated depending on past behavior and not



128

Clearly the opposite order would not work since if condition is locked, while the process waits
mutex could not be released and deadlock results. However, with this ordering there can be no
guarantee that another process does not get ahead on the condition.!

Thus the semaphore does have a weakness in the separation of these two operations. A
single operation for enqueuing on one semaphore and releasing anotﬁer would be a more
powerful primitive than the semaphore for the purpose of achieving the fairness property.

Since this increase in power over the semaphore does produce a correct solution it
appears to be sufficient to solve the readers/writers problem. What is more, the added power of
general up/down may come only at unduly high cost. The reason for this is in the difficulty in
defining up/down to ensure fair synchronization. Depending on the particular use of up/down
this can become arbitrarily complex.

In an extended semaphore which allows indivisible P and V on arbitrary groups of
semaphores, scheduling is difficult enough. Then a P operation part in, say, [P s .. s V sj..5q,).
causes waiting if any of s ... s, are 0. Other V operations may change the values of arbitrary
si's. If for instance s) and sq are |, So and s4 are 0 and P(s, 52), P(s2, sq), and P(sz. s4) occur in
that order, who should be enabled by the sequence of operations V(sg) V(sz)? What is a fair
algorithm for a particular set of semaphores and what is a general fair algorithm over all
possible extended semaphores? [t would appear there should be one queue for each set of values
waited for and an algorithm for rotating among those queues when a single value is changed.

In this case all P’s simply require non-zero values. With up/down (or conditional
critical region) arbitrary predicates can be required. We refer the reader to Hansen [(1972a, 1972b]

for discussion of possible implementation of scheduling. It may be that reliable programming of

synchronization by relinquishing all power to program scheduling may in fact generally cost too

1 1f Hoare meant this to be his definition then the ordering correspondence was not at issue.
However, if his informal specifications (or our Chapter 6 interpretation of them) are to be the
criteria, this is an error.
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much in efficiency and n clarity due to heavy reliance on implicit scheduling. Even if the
programmer who is concerned about "good" as well as "reliable” programs does not decide to rely
on semaphores alone, we suspect he is unlikely to go further in the structured direction than the
monitor.! The monitor makes only the first level of synchronization implicit and has facilities for
programmed scheduling. If the programmer codes in deadlock or some other undesirable feature
at least his code is sub ject to debugging. With unscheduled primitives he has no recourse when

the program proves ineffective.

8.6 Properties in Run-time Environment

Some properties of run-time environment are quite deliberately excluded from our
language by choice of model. Most notable is the deliberate representation of processes by
sequences of events leaving each process with no measure the passage of time finer than the
event count.2 This is important because while at a given level of detail the events in a behavior
of a system should be identical independent of the physical machine used as activator, the time
for any two machines may be grossly different3 Therefore if we state and prove a property of a
system program, it holds over all possible speeds at which that program runs, including arbitrary
relative speeds of its parts.

There are some timing properties in terms of numbers of events between events that

L n fact in [Hansen, 1972b] Hansen suggests similar means for introducing ability to schedule.

2 Another deliberate choice is to associate events with receipt of message rather than sending.
Intuitively, two messages could be sent in one order but received in another depending perhaps
on the channel over which the messages travel. For this reason the two occurrences, namely
sending and receiving, cannot both be represented in one event without rendering the model
inapplicable to real systems. Receiving rather than sending is chosen in this model to avoid
dealing with properties internal to the sender.

3 Time for a process on the same machine could be different from one use to the next if the
process is part of a timesharing system,
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can be stated in our language and which may be of interest in specifying system. For instance,
there is a difference between the Courtois and monitor solutions to the readers/writers problem
that is not measured by the current specifications. However, if more is acknowledged about
implementation, it can be expressed. The difference relates to the time involved in enabling a
waiting read. In the monitor solution once the data base is opened to reads all reads on the
condition queue are let in. This was in keeping with our specifications that said that all waiting
reads were enabled by the opening of the data base. If that could be accomplished
instantaneously, then that would be a fine specification and the monitor program an adequate
implementation. However, in that program, the monitor is kept closed while the read loops
through a sequence of signals and additions, letting one at a time off the queue. If a large
number of reads were waiting it is quite likely that writes are accumulating outside the monitor
during the releasing. By contrast, Courtois et al. who have all reads but one pile up “outside” can
account for this actual time involved in releasing by checking with writes (through r) for each
read. If duration of instruction execution is taken into account, comparison of these two solutions
could show the Courtois one to be better in the sense that when reads and writes are competing,
on the average it lets writes in sooner. Startread in the monitor defined in Chapter 6 cannot be
modified to check for newly arrived waits without giving up the monitor. Then if there are no
writes there would be no way to get back in to release waiting reads.

The fact that enabling is not instantaneous in implementation could be represented by
distinct events for requests and being acknowledged as waiting. The solution specification for
this improved solution could allow for this timing problem by considering the separate events in
which reads request and in which reads are enqueued.1 The specifications would be about events

E.,E

r 'El’

’ E, causes E only when no reads or writes are still waiting. E
r enq r Ton r

E , E .
in' Tout’ Tend enq

I The Courtois program specifications have separate events, namely, the mutex 3 or mutex 2
events and the P’ing of 7.
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causes E'in only when no writes are ahead. Therefore the readers check twice at E, and Er'nq on
whether they can proceed. If a write comes along before the second check, it loses. This can be
done in the Courtois style with the first check being for preceding reads and the second for
writes. This leaves some reads and writes unordered. Since proceeding from E, to E'onq is
independent of the number of writes, E, need not be ordered with respect to writes.

Nested monitors can be used to pre-order reads, letting only one at a time be order with
respect to writes and conditions. This solution is not significantly different from the Courtois
solution if fair semaphores were substituted and may yield a better performing data base than
one which uses the fair semaphore {or monitor) to totally order all requests.l

Given more precise notions of the measure of "as soon as possible” we can specify
behavioral properties that must hold to satisfy specifications. Speed requirements phrased in
terms of events are within the range of expressible properties of our language. Whether or not
these properties will be observable when measured by arbitrary external criteria is dependent on
the running environment of the programs. In any of these solutions, if writers are running in

machines which are significantly slower than the reader’s machines then even priority may not be

apparent to the user. [See related discussion at end of Chapter 9]

! Hansen's patch to his conditional critical regions solution (1972a] is similar.
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9 Busywaiting Synchronization

This chapter does not continue the development of the specification language, but
instead steps back to the uses of cells. It contains two busywaiting solutions to the problem of
mutual exclusion of critical sections. They are analyzed carefully for correspondence of parts to
conditions in the mutual exclusion specifications given in Chapter 4. Also, the properties of
deacdlock-free and absence of lockout are stated formally and proofs that these properties hold are
outlined. This serves the purposes of utilizing the definition of cells and giving further instances
of mapping of specifications onto details of implementation. Reasoning about partial orders is
the basis for most arguments.

Whether or not one programs busywaiting synchronization probably will depend on the
level of detail of computer system implementation one is concerned with. Many computer systems
are in fact based quite heavily on busywaiting.l Even for the programmer who will never have
to write busywaiting code since he will always use languages containing synchronization
primitives, studying a few busywaiting implementations may still be important for full
understanding of synchronization. For one thing, such examples provide a good basis from
which to abstract the causality of synchronization actors, as represented by the direct addition of
=> to orderings. The busywaiting solutions show how that order can be added.

These programs have both been proven correct already [Dijkstra, 1965 Knuth, 1966].
However, in neither case was a formal statement of the property which had to hold for
“correctness” made. Thus these proofs are interesting in that there is a precise statement and it is

compatible with our language for understanding programs and for reasoning about them.

1 Guy Steele has pointed out that ITS uses busywaiting almost exclusively, that it works and that
people understand it.
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9.1 The Structure of the Dijkstra Solution

Dijkstra [1965] published a solution which without synchronization primitives enforced
mutual exclusion of critical sections in "A Problem in Concurrent Programming Control.” To
represent the fact that in general processes may need to enter critical sections arbitrarily often, the
structure he chose was for each program to be in a loop performing operations some of which are
designated as critical, others not. With the additional constraint that only one process at a time
may be executing its critical section, there is need for communication among processes before and

after the critical section. Thus the solution takes the form:

Li: entrance code ;
critical section
exit code ;
remaining code ;
goto Lt ;
It 1s properties of the cells which are updated and queried in the entrance and exit code sections

that are relied on to guarantee the enforcement of the desired ordering. Thus the critical section

ordering will be due to a property like:
if entrance avents in aj => entrance events in ap

then axit events in aj = critical section events of ap.

We will abbreviate "critical section events of a” by "CS in a.”

The particular solution Dijkstra wrote is to be analyzed here in the two process case and
is shown in Figure 91. In it each process has "semi-private” variables, b, and ¢,, i.e, ones which
are readable but-not writable to other processes. Both processes share a common variable k. The

variable & points to one process (by containing the number ¢ of the process)l and has some

1 Note that these cell solutions require knowledge of number of processes and their "names” (ie.,
the numbers) whereas for synchronization primitives the ability to name processes {an arbitrary
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relation to which process is in its critical section. Each process i tries to set k to ¢ before getting
into its critical section. The b, can be interpreted as signalling whether a process is in its
remaining code or not. (The alternative includes being in any of entrance, critical section or exit).
The variable ¢; indicates whether or not process i "thinks” it has the go ahead. Entrance code
consists of setting b, to false and then trying to establish k = £. While doing this ¢, must be true
and the process can potentially stay in a loop (between LIl and LI3). Once the process i finds k =
L it sets ¢, to false (to say it thinks it is set to go) and then checks that no one eise thinks they can
go (L1+: Failure (finding a conflict) results in failing back to the beginning (LIl). The exit code
consists of setting both variables to true. Since the program in Figure 9.1 is just for two processes

all the polling of other processes is simplified.l

LI10: b := false, L20: by := false;
Lil: if k = then L21: if k » 2 then
Li2: begin ¢; - = true; L22: begin ¢y = true;
Li3: if by then k .= I, L23: if by then & = 2;
goto L/! goto L21
end end
else else
Ll14: beginc; = false; L24: begincy := false;
if not ¢, then goto LII; if not ¢; then goto L2I;
end: end;
critical section; critical section;
€y o= true; bl J=otrue; Cy o= true; 62 c= frue;
remainder of cycle; remainder of cycle,
goto L/0 goto L20

Figure 91: Mutual Exclusion of Critical Sections.

This solution has the property that one process can loop forever in its entrance section while the

number of them in fact) was assumed as primitive and internal to the actor whose external
behavior we were defining.

! For process 1, instead of checking all processes = | it can simply check process 2, etc.
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other does an arbitrary number of critical sections. The ways in which the entrance and exit
codes enforce orderings can be analyzed in terms of events.

In order to enter a critical section an activator must have the events:

<c; (apply: [« 'false] (then-to: x|)) a ec> -->
<xp (apply: ¢;) a ec’> -->
< (apply: 'contents (then-to: x,)) a ec”> -->
<xo (apply: 'true) a ec™> wherei f j.

The event counts indicate that these events must happen successively. There must be no event

Eg = <¢; (apply: [« 'true] (then-to: ?)) a ?
such that ] --> E3 --> E,
where

E| = <c; (apply: [+ 'faise] (then-to: x|)) & ec>

Ep = < (apply: 'contents (then-to: x5)) a ec™>.
This means process i must set its ¢; to "false and find ¢j is 'true without looping back to Lil. Thus
for every process which enters a critical section, there is such a sequence of events in the behavior
before each critical section. This is the property of the solution that can be said to hold for each
activator. (Analogous to activator properties of synchronization actors of earlier chapters.) Each
behavior segment corresponding to entrance events which succeed in entering the critical section
ends 1n this sequence.

Due to the properties of cells it can also be said that if two processes contain such

sequences they can be ordered with respect to each other. Thus if Ej, Ep, E3 and E4 are in the

behavior where

Ej = <c; (apply: [« 'faise] (then-to: 7)) a; ecp, Ep = (cj (apply: 'true) a; ecl'") and j £ i

E3 = <ci (apply: [« 'false] (then=to: ?)) ay eco>, Eg4 = <¢; (apply: "true) ay ecy™> and | § k

then either ) => Er =>E3 2> Ey
or E3 =) E4 => El = Ez
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What is more, if Ey => E5 => E3 => E4 then Ep => Eg => E3 => E4
where Eg = <€ (apply: [« 'true] (then-to: ?)) a; ?.

This says that this program causes correspondences in orderings => over events of
different activators (the ordering of E, E; is related to the ordering of E3, E4), and that it uses a
release mechanism for enforcing that ordering (Eg in the case of the first ordering). It does not
say that every process that wants to get into its critical section does get in. It is not the case that
having

E| = <bj (apply: [+ 'faise] (then-to: ?)) a| ec>

in a behavior necessarily implies that E; --> CS in a in that behavior. This solution can lock out
a process indefinitely.

The ordering property just described is one of the program as an actor, not of the cells.
It is not the same as the overall intention either. That statement was that all critical sections

should be executed in some order. This says something about how that ordering is achieved.

9.2 A Proof of Properties of the Dijkstra Solution

Dijkstra stated in English four conditions for correctness of this solution. He then
proceeced to prove its correctness. However, this proof must in fact be considered at most an
informal argument of correctness since the statements of the things to be proved were so vague.
It is not clear that all of the requirements can be formalized.

In the actor model there is a formal interpretation of the statements in this program,

and of the meaning of a cell as a communication devicel Also, some of Dijkstra’s intentions can

1 One might note that models for parallel processes such as Petri nets can model semaphore
communication, but cannot model directly this use of cells for communication. Petri nets model
control structure and would reveal only the sequential and loop controi structures of these
programs, not the implicit interprocess control.
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be formalized, and it can be proved that these intentions are realized by the program. This
solution can be proved correct quite formally, but once again only details pertaining to cells are
given. Others can be filled in by using the full formal translation of the Algol language to actor
code. The interesting reasoning depends on the cell as defined above. The rest is based on
definitions of sequential control and if-then-else.

Di jkstra's additional conditions are:

“(a) The solution must be symmetrical between the N computers; as a result we
are not allowed to introduce a static priority.

(b) Nothing may be assumed about relative speeds of the N computers; we
may not even assume their speeds to be constant in time.

(c) If any of the computers is stopped well outside its critical section, this is not
allowed to lead to potential blocking of the others.

(d) If more than one computer is about to enter its critical section, it must be
impossible to devise for them such finite speeds, that the decision to determine which
one of them will enter its critical section first is postponed until eternity. In other words,
constructions in which 'After you' - 'After you’ - blocking is still possible, although
improbable, are not to be regarded as valid solutions.”

As far as (a) is concerned, there is no explicit fixed priority. However, there appears to
be some priority implicit in the numbering of processes even in Dijkstra’s solution. Since we
cannot interpret this restriction clearly enough to see why Dijkstra felt he was observing it, we
will ignore it. The assumption (b) is taken care of by the use of the actor model in which one can
talk only about events and not about the “time” it takes to carry out an action or the "time” that
elapses between events. For the two process case, condition (c) simply requires that if either
process runs alone in the state in which the other process’ variables are all set to "true,” then that

process can get into its critical section as often as it likes. This is because (assuming ¢;, b, are not
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accessed in the remainder code) when a process stops in its remaining code section its variables
are left in this state. A process i stopping in its remainder section will be represented in the actor
model by the possibility of there being no further events in «; after an event starting the
remaining code section. It can be interpreted as meaning that either program running alone can

have infinite behavior, which is easy to confirm.

Condition (d) is quite interesting to prove. It can be stated, formally, as:

For every set of critical section events, CS;, there is another set of critical section
events CS‘- such that CS; => CS‘-.

This simply means that in any behavior in which at least one of these programs is running, there
will be an infinite number of critical section events. It can’t be the case that no process can get
into its critical section. This of course is based on the fact that the remainder of the cycle cannot
have infinite behavior at any given level of detail. For our purposes here, we can represent that
remainder by a single event with a target actor that is not known to always send a message to its
continuation. If it does, that continuation is the code corresponding to the code following the

label Lill

Theorem (Mutual Exclusion): The Dijkstra solution has the property that

V CS|, CSy (€S = €S| ) o (CS) => CSp) V (CS; => CS,).
Proof: The argument for mutual exclusion is straightforward. We start with the events known
by the activator ordering to precede and succeed the critical sections and then build => from
observing the requirements of the axioms for cells. Thus the behavior fragment in Figure 9.2 is

the basis for our reasoning:

I This assumption might appear to contradict the assumption that a process could "stop” in its
remainder code unless we assume that "stop” refers to an activator property rather than an actor
one as in the experiments for parallelism.
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bj,bgcy g = true

<c) (apply: [~ 'faise] (then=to: 7)) a ecpd <o (apply: [+ 'faise] (than=to: 7)) ap ecp>
<c (apply: 'contents (then-to: cond,)) a| ecl"> <c| (apply: 'contents (then-to: condy)) ap ecy™
<cond; (apply: 'true) a; ec;"" <cond, (apply: ‘true) ap ecy”™

critical avents (ec (4) o ec3 l critical events (ec (4) to ecy
<c; (apply: [« "true] (then-to: 7)) ay ec 3" <cy (apply: [« 'true] (then=to: 7 )) a; ecy
<by (apply: [« 'true] (then=to: 7 )) a; ec;™ <bp (apply: [« 'true] (then=to: 7 )) a3 ecy™
<rest) (apply: [] (then-to: a | o)) ay ec;" <resty (apply: [] (then=to: aj 59 )) ap ecg™

Figure 9.2: Mutual Exclusion Behavior.

It is quite easy now to see that the only possible orders derivable from =->cl and ¢, are the ones

in Figure 93. In either of these cases the two sets of critical section events are ordered by =>. O

I 1e. the first event in this sequence has event count ec1(4) and the last ecj.
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b‘ ,bz,Cl ,Cz a true

<cy (apply: [« 'false] (then-to: 7)) a| ecp <cy (apply: [+ 'false] (then-to: ?)) ap ec>
<cy (apply: "contents (then-to: cond)) a; ec; <c| (apply: 'contents (then-to: condy)) ap ecy™>
<cond; (apply: 'truo\)l/ @y ec;™ <cond, (apply: 'true) ap ecy™>

critical events (ec{*) to ec crifical events (ec (%) Ato ecy
<cy (apply: [~ 'true] (then-to: 7)) ) ec3" <c5 (apply: [+ 'true] (then-to: ? )) ap ecy’>
<by (apply: [+ 'true] (than-to: ? )) & ec3™ <by (apply: [+ 'trus] (then-to: ? )) ap ecg'7>
<rest; (apply: [] (then-to: a o)) ay ec;3™ <resty (apply: [] (then=to: ‘LéO ) ag ecy™>

by,boscyieg = true \

<cy (apply: [~ 'false] (then-to: 7)) a; ecp <y (apply: [~ 'faise] (then=to: ?)) ap ecp>
<c5 (apply: 'contents (then-to: cond)) a; ec;”> ‘ <y (apply: 'contents (then-to: cond,)) ap ecy™™>
<cond; (apply: 'true) a| ec;”" <cond, (apply: "true) ay ecy”">
<ey (apply: [~ 'truo\]l/(thon-to: ?)) a ec3” l<°2 (apply: [« 'true) (thor}j-/to: 7)) ap ecy”
<bj (apply: [~ ’truo\iv(thon-to: 7)) ay ecy™ <by (apply: [« 'true] (then-to: ? )) @y ecq™
<rest; (apply: [] (then-to: a | o)) a; ec;3"" <resty (apply: [] (then-to: a oq )) &g ecy”™

Figure 93: Orderings for Mutual Exclusion.
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The way to prove that there is no deadlock is to prove the impossibility of both
processes looping forever. We would like to prove that as long as there are events E; =
<bj (apply: [« 'false] (then-to: ?)) aj ecpp and/or Ep = <by (apply: [« 'false] (then-to: ¢c5)) ap ecd
(i.e. the first events in the entrance code) in a behavior, then there is some CS in the behavior
where E; --> CS in aj or E; --> CS in az.l Which process gets in seems to be independent of both
the order in which E; and E, occur and the vaiue of k2 However, once both processes have
gotten as far as statement Li4 and then still had to loop the choice is determined by the value of
k The following Lemma is a statement of that fact.

Lemma: In a behavior in which the following events and orderings prevail,
whatever value z has is the value of the next activator to get into its critical section.

<cy (apply: [« 'faise] (then-to: 7)) &) ecp> <cp (apply: [~ 'faise] (then=fo: ?)) ap ec>

<cy (apply: 'contents (then-to: x|)) a; ecl”% (apply: 'contents (then=to: x5)) ag ey’

).

<x; (apply: "false) a} ec;”™ <xo (apply: 'false) ap ecy™>

<k (apply: 'contents (then=to: x3)) ay ec;”" <k (apply: 'contents (then-to: x4)) ap ecy”

,”") ’,"’>

<x3 (apply: 2) @] ¢c; <xg (apply: 2) ap ecH

Le, then there is CS in a, in a following segment of the behavior. -

Proof: Process z will now be looping between the test of k (LIl) and the test of € j= z (after LI4),

waiting for c; = true. Meanwhile process j = z now has to try to change k to j. In doing so it

e as long as there isn't a failure in remainder code, so that there is a next attempt at entrance,
there will be another critical section.

2 This does not necessarily mean that given particular timing constraints the solution is completely
unbiased. However, since we know nothing about timing between events, all we can refer to is
the {act that for any combination of ordering of Ej, Ez and value of k there are timings such that

either process can get in first.
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changes ¢; to true so that eventually process z can get to its critical section. Thus if z = | the

behavior is:

<c| (apply: [~ 'fajsa] (then-to: 7)) a ecp> \\l\\ ~<cy (apply: [+ 'false] (then-to: 7)) ap ecyd

<cp (apply: 'contents (then-to: x;)) aj ec;™ <c; (apply: 'contents (then-to: x3)) a3 ey’

<x; {apply: 'false? ay ec;” <xy (apply: 'faise) ap ey

<k (apply: 'contents (then-to: x3)) ay ec;""> <k (apply: 'contents (then=to: x4)) ap ec5™">
!

9999, 99798,
> >

V
<x3 (apply: 1) a; e (xg (apply: 1) @ ec)

123224
>

<o (apply: [« 'true] (then-to: ?)) ap ecp

7

<cy (apply: [+ 'faise] (then=to: ?)) a; ¢ 3>
<ep (apply: 'cont}ai:\ts (then~to: x; )) aj e 3”)

<c; (aply: 'true) ay ec3™
( critical events )

In the unspecified ( .. ) part of aj there may be arbitrary repetitions of the first 5 events (or

none) in all of which the contents query to ¢, precedes the update in ap. O
Now to prove that the program is deadlock-free it is necessary to show that if both

processes are looping they cannot avoid the situation in the hypothesis of the Lemma.

Theorem: The program is deadlock-fee.
Proof: Assume that both processes are looping indefinitely. The value of k cannot keep changing

indefinitely while ay and ap loop since once both are in their entrance sections, both b; are false
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and both tests that have updates to k in their continuations fail. Thus at some point one process,
say i, finds k = i and goes to Li4. If it passes the test it gets out of the loop. Since we are
assuming that both loop it must be the case that process j got to Lj4, changed cjto false and
caused process i to fail. Similarly, if j is to continue looping it must fail. But then we have the
condition for the Lemma and some process will get in. O

In this example the reasoning and arguments used were quite similar to those originally
used by Dijkstra. The difference is that they now have meaning in a formal model and are

being used to prove a result which is stated formally about that model.

9.3 The Knuth Solution

Knuth [1966] wrote a solution to the mutual exclusion of critical sections using only cells.
His solution has the property that there is no lockout. Any process which starts the entrance
protocol gets into its critical section. Knuth'’s solution for 2 processes is shown in Figure 9.4¢. In
this solution each process has a single private variable, ¢, This variable can have oﬁe of three
values: 0, interpreted as being in the remainder section; I, interpreted as just being in the
entrance code; and 2, interpreted as thinking k = &. After finishing a critical section a process i

changes the value of kto ] =t



LIO: ¢j:=1;

L11: if k=1 then goto Li2;

if co = 0 then goto L1/,

144

L20: C2 - 1,‘
L21: if k = 2 then goto L22,
if ¢; # 0 then goto L2/;

LI12: ¢;:=2; L22: ¢p:= 2
if ¢y = 2 then goto L10; if c; = 2 then goto L20;
L13: k:=1; L23: h:=2;
critical section; critical section;
h o= 2; k.=
Li4: c; = 0; L24: €)= 0;
L15: remainder; L25: remainder;
goto LIO; goto L20;
end end

Figure 9.4: Knuth’s Mutual Exclusion Solution

Besides enforcing mutual exclusion this solution has the property of no lockout:
For all i, if E; = <c; (apply: [« 1] (then=to: ?)) a; ec> (the first event in an entrance) is
in the behavior, then so is a series of events CS in a; 3 E; --> CS.
However it still cannot be said that there is a guarantee that certain obvious measures of ordering

of attempts guarantees an order of entrance. For instance if E; and E; are the following events

Ej = <cy (apply: [« 1] (then=to: ?)) a; ecp>
Ep = <cp (apply: [« 1] (then-to: ?)) ap ecod

it cannot be said that Ej => E; (where => is built from =>,.) means that process 1 gets into its
[}

cel
critical section before process 2 does. The reader can see that this does not hold by thinking
about how this ordering information could be made available to the system. It simply is not
available in some cases. In others it is not used consistently. For instance, in the case where k = 2,
one place where rthe value of ¢y is checked is in "if ¢; # O then goto L115." At this point ¢c; = 0
would say that indeed Ej = E2. However, by the next time cp is tested process 2 could have
changed the value of ¢, to 2 causing process | to loop. I e, process 2 could get to its critical
section first since k pointed to it, even though it can be known to have tried later. Similarly, if k

pointed to 1, process one would have the advantage regardless of ordering information which is

explicitly checked for.



145

Therefore, this first event in a sequence is not the sole measure of who is let in first.
The ordering depends both on the orderings =>. and on the ordering =>,. This ordering =>,
¢ k

reflects who was in its critical section last.l

9.4 A Proof of Properties of the Knuth Solution
One fact of use in proving absence of lockout is stated in the following Lemma (stated

here for Process 1).

Lemma: If process | can be established as trying before a critical section of process

2 ends, then once k contains I, process | can get in. What is more, process | will then

get into its critical section before process 2 does another critical section.

In terms of the behavior, if the following events are in the behavior

<e) (apply: [ 1] (then-to: ?)) @] ec> => <k (apply: [« 1] (then=to: ?)) ag ecp>
then it must also be the case that
<c) (apply: [« 1] (then-to: ?)) aj ec> => CS; in activator a;
and that there is no CS; in activator ap such that
<k (apply: [« 1] (then=to: 7)) ap ec> => CS4 => CS;.

We will carry out all arguments from the point of view of process | and omit the
symmetric argument for process 2.

Proof: The behavior in Figure 95 has the events and the ordering postulated and then a possible
sequence of events for process 2 to have. We will show that that is the only seq~ e of events it
could have unul after process | has indeed done another critical section. If this is the sequence of
events, then it is-possible for proc'ess | to get into its critical section without another critical section

of process 2.

Un the Di jkstra solution ordering also depended on k but k's value was not as strongly correlated
with the identity of the last activator to be in its critical section.
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<c; (apply: [+ 1] (then-to: x)) a; ec>
<k (appiy: [« 1] (thon'-to: xg)) ap ecpd
<cq (apply: [+ O] (tho\y-to: May »
<remainder (apply: [] (then=to: L10)) ap ecp>

<eo (apply: [« 1] (then=to: x,)) ap ec;>

(1) <k (apply: 'contents (then-to: x|)) ay ec;"">

(la) <xp (apply: 1) ap ec;”">

(2) <cy (apply: "contents (then-to: x;)) ap ec;””"> (2)
(2a) <xg (apply: 2) ap ec;”""> wherez = 1 or 2.

<c; (apply: [« 1] (then-to: xg)) ap »

Figure 95: Hypothesized Behavior

In (1) and (la) could k be found equal to 2? Not unless there is an update to k such that

<cy (apply: [« 1] (then=to: x)) a| ec> N
<k (apply: [+ 1] (then-to: xq)) ay ecp>

<k (apply: [« 2] (then-to: 7)) a| ?)M .
X \ <k (apply: 'contents (then-to: x{)) ag ec;” >

but that is only possible if process 1 did its critical section before the update. [Assumes no change
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to k possible in remainder.]
Could ¢ be 0 at (2) and (2a)? Not unless the behavior is
<c) (apply: [« 1] (then-to: x)) a; ec> .
: N <k (apply: [+ 1] (then~to: xg)) ap ecp>
<c) (apply: [+~ 0] (then-to: ?)) a; »» \ .

<xy (apply: 'contents (then-to: x)) ay ec;™>

and again that is only possible if process I did its critical section.
So process 2 will have this loop of events until after process | does a critical section.
Clearly now process | will do a critical section since if it finds k = 1, all it has to do is find ¢ = 2
before entering. Once process 2 does <c, (apply: [« 0] (then-to: ?)) @y » it cannot do an update
until process | does a critical section. Thus process | will eventually find ¢ # 2 and the Lemma is
proved. a
This property can now be combined with two more facts to prove the impossibility of

lockout. The facts are

(1) the activator property of each process which says that any (CS in a) -—>
<k (apply: j) a; ec’> where j § .

(2) There is no deadlock in this solution.
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Theorem: There is no lockout in Knuth’s solution.
Proof: By (2) some process always gets into its critical section. Thus if process i starts the
entrance protocol either it or the other process does get into its critical section. If it gets in it
hasn't been locked out. If the other process gets in, then once process i has started the entrance,
by (1) the situation in the hypothesis of the Lemma must eventually occur. Then by the Lemma,
the first process is to be let in. Thus no process can be locked out of its critical section
indefimtely.l a

The proof of the deadlock free property is straightforward and will not be done here.

9.5 High Level Properties of Busywaiting Solutions

The definition of fairness of synchronization that we have been using is equivalent to
absence of lockout, i.e. every process that tries to get into its critical section will get in. It does not
necessarily correspond to a first in first out algorithm. In fact it is not clear in Knuth’s program
how to measure who is first. One point in understanding Knuth’s solution is that only ordering
that is computed is relied on. Therefore only once a process is verified as having started its

entrance code before another finished its critical section does the first take its place in line. In

fact, in the n-process case of the Knuth solution, the second process can get through its critical
section several times before the first gets its place established. [See Knuth, 1966]. As long as our
speafication of guaranteed absence of lockout is met, the solution satisfies the criterion of
fairness. We would like to point the reader to other solutions such as Eisenberg and McGuire
(1972] or Lamport [1974] which do much better in terms of the number of critical sections of other
processes that can happen between start of entrance code of one and its entrance. These

differences are not reflected in our specifications and we think for good reason. As an

! In fact, it can be shown that any process starting its entrance has to wait at most for one further
execution of the critical section of the other process.
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experiment from outside the solution, one cannot tell anything about how “close to FIFO" a
solution is.] While in Knuth’s solution one can have to do arbitrarily many busywaiting steps
while the bounded number of other critical sections occurs, from the outside this cannot be
distinguished from very slow execution of the bounded number of steps required to secure a
waiting place in a better solution such as Lamport’s. Since the place is not secured until that
point, one could see all of the same behaviors from outside. Thus our specifications say the most
they can without making assumptions about machines on which programs are running.

This is not to say that considerations of use of resources may not make these interesting
measures. e, reducing the maximum number of critical sections of other processes could reduce
the amount of busywaiting a process will have to do. There should be means for formal
statement of the difference between, say Knuth, and Lamport solutions. However, since the
properties are not externally observable it may be necessary to go into more detail to specify
them?2 If a property can only be stated relative to internal properties then it will be shown to be
a property which is significantly different from properties such as fairness which we have

specified.

I However, as per discussion in Chapter 8, we could express these properties in terms of events.

2 As in readers/writers where extra events of enqueuing reads must be used if we are to refer to
fact that internally some effort is involved in enabling a waiting read.
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10 Conclusions and Future Research

A specification language for time ordering properties of communicating parallel
processes has been presented. It was used to write precise specifications for several problems that
have not previously been adequately formalized. The time ordering concepts directly expressible
in the language are apparently adequate for stating high level properties in a form which is close
to intended meaning. A problem specification describes behaviors which we hope to realize
through a program or a system of parallel programs. The solution specification describes more
detailed behaviors (i.e. with additional events) which can be proved to realize the problem
specifications. This means the solution specification is complete. Consistency of solution
specifications is demonstrated by showing that the axioms for the primitive (at the current level
of detail) actors of the actor system are themselves realizable.

In this final chapter a concluding review and evaluation is made of the approach to
specification taken in this research. This is followed by consideration of some properties of
synchronization which have been exposed in the process of developing this language and
speculation on applications of this work in the understanding of both programs and computer

systems.

10.1 Time Ordering Specifications
Two criteria for a language in which to write specifications for synchronization have
been applied throughout this work. They are that there be both means for expressing high level

properties and means for specifications about causality which emphasize physical realities of
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implementation. Using the time ordering => one can make arbitrary statements about time
orderings. Among these arbitrary statements are some which clearly correspond to typical
synchronization terms such as "mutual exclusion." Using a combination of activator orderings,
actor orderings, and causal properties of actors, we can also express the causes of orderings from
which derived time orderings can be built. Specifications of time ordering properties of an
existing actor system are about this derived time ordering. Specifications to be met by an unbuilt
system indicate desired properties of the derived ordering of the implementation. Solution
specifications in the form of causal axioms define the generators of the derived order =>. Proof
of completeness is accomplished by showing that desired time ordering properties hold for the
transitive closure of the union of the sets of generators associated with each actor in the system.

Specifications for an actor can be about the actor as it appears from the outside or
about its internal operations. From the outside, treating the actor as a black box, one can first
specify relations among events with the actor as target, and events outside the actor which are
caused by the actor (such as the event in which a response is sent to a continuation). The cell and
data bases were specified in this way.

Alternatively, one can give specifications about events internal to a system. These can
be given in varying amounts of detail. They may or may not have implications for the external
appearance of the actor. While there is no general way to abstract from a specification of
internal properties "all” externally manifested behavior, one can check whether a particular
desired external property does hold. Thus for the readers/writers actor, wpdb, derived in Chapter
5, the external property of "reliable data base behavior” (though not necessarily fair) is proved to
hold since the readers/writers property and the data base definition hold. That is, no operations
that can cause inconsistent results to appear are possible.

In addition, the actor does have relative write priority and fairness to writers. These last

two are internal properties. Priority (as in the readers/writers problem) is considered an internal
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property since it cannot be observed (or specified) from outside. A difference such as that
between fair and unfair implementations may be observable from the outside, but it is not clear
how one could distinguish two different unfair algorithms, such as the monitor implementation of
writer priority and the Courtois one. Even though the priority algorithms are different when
compared in detail, their differences are not externally visible since there is no difference in their
behaviors excluding actor ordering information. All of the readers/writers solutions have the
property that the possible behaviors of systems involving them are identical (up to fairness). e,
even if writers are being given priority, if E, and E,, are in parallel then if E, finds results of a
particular E,, it is not clear if that E,, happened before E, because of priority or because of
timing accidents. Similarly, looking at any two fair solutions, say the one Hoare implemented and
the queued one defined in Chapter 5, no difference can be seen from outside. In both cases all
requests are served.

Our theory of parallelism is deliberately meant to include among its models the most
general form of parallelism, namely, distributed multi-processing systems. There may be
meaningful total orders in a case in which all processes are situated locally and perhaps even
sharing processors. However, in general this is not the case. This is the reason for our
concentration on properties which can be proved independent of machine configuration.  Less
general properties of particular computer systems may be of interest as well, and perhaps should
be expressible. Statements of such properties should be considered as relative to the assumptions
about configurations, just as specifications for priority are given relative to an actor ordering
Only in systems in which this ordering is available can the priority specifications be met.

Very detailed timing considerations, such as those which might be related to a
specification "as soon as possible,” may be considered optimization properties. In areas other than
synchronization, there is a distinction between “correctness” and such performance questions as

speed and use of space (perhaps even termination, although that is often considered part of
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correctness). To date there are no very good means for specifying properties desired of optimized
codel vet optimization criteria are intuitively separable from correctness criteria. In sequential
code, assertions against which correctness is measured seem always to measure properties of
functions. One reason why side-effect formalisms are not as well understood as side-effect-free
ones (besides their difficulty) is that for functional programs, correctness independent of
implementation or optimization can generally be expressed in a side-effect-free form. For
sequential programs it may be reasonable for side-effects and the problems of dealing with
correctness given possible interference among side-effect operations to be put off as an issue for
understanding implementations of programs rather than their meanings. As long as their
meanings are embodied in relations between input values and the values produced, this
distinction works and prevents confusion of meaning and implementation. Once side-effects are
introduced and can be considered part of the meaning of a program, the separation of
"important” side-effects from ones which are simply "useful” for implementation becomes an issue.

In synchronization, no properties have yet been singled out as correctness properties.
All properties are intimately related to time orderings and various intuitive notions of time and
there is no distinction among correctness, partial correctness, implementation dependence and
optimizing considerations. Thus one of the considerations in beginning to formalize properties of
systems with synchronization is the delineation of types of properties. The properties dealt with
in this paper have been entirely of the sort that can be assumed to hold independent of physical
computer configuration. They are about time orderings related to causality not about time as a
measure of speed or efficiency. Care is taken to use only time ordering properties that are
meaningful even if extremes of distances and speeds are introduced.

As additional information becomes available, more properties relative to that

I This is a serious deficiency which must be overcome if research in optimization is to develop
from the study of program transformation to program transformation towards a goal.
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information can be stated. For instance, if it became possible to refer to uses of resources such as
processor time, then a side-effect of the number of events at a lower level of detail, namely, the
amount of processing done, becomes visible. One might then want to be able to specify further

requirements about solutions to synchronization problems.l

10.2 Why Specifications

- We have emphasized ability to express properties of communication among parallel
processes. As stated in the introduction, we have not produced the kinds of evidence usually
deemed 1mportant in justifying an approach to semantics. Reasoning about properties expressed
| in this language is not trivially mechanizable, nor can we mechanically produce statements of
auxiliary properties that are required in proofs. While we have written specifications for various
stages of implementation of problems, we have not attempted to find automatic procedures for
formulating statements of one level of abstraction from statements which are descriptions at a
different level of abstractions.

What we have done is to develop a formalism which, due to its basis in event-oriented
semantics and the mathematics of partial orders, can be used to express precisely certain
properties of communicating parallel processes. The formalism is not so far removed from usual
informal characterization of systems as to require long informal justification of high level
specifications. That is, the representations of properties such as mutual exclusion and fairness
are not difficult to accept. This is important since there can be no formal justification at the
highest level of abstraction that specifications do capture the specifier's intentions. As statements

of properties become harder to understand proofs that those properties hold become less

! This increase in describable properties with increase in available information can be related to
similar observations in describing protection relative to externally observable information [Jones
and Lipton, 1975].
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convincing as “proofs of correctness.” Statements such as Robinson and Holt's specifications in
terms of the functions min and max [shown in Chapter 6] or the kinds of statements Cadious and
Levy [1973] make about functions and oracles, require more justification that they do capture the
intended meaning.

For analyzing programs one may not be able to avoid some amount of detail and
reliance on properties far removed from the high level goal. The subproblems of any problem
can require implementation specifications that are not as obviously related to intended high level
properties of the overall program. For this reason it is important to be able to show that high
level properties are realized by more detailed specifications. For properties of communicating
parallel processes this takes the form of deriving the time ordering of a system from the causal
axioms of its parts. Since this derived ordering is compatible with the time ordering of high
level specifications, comparison can be made. While abstraction from (or implementation of)
specifications is not automatic, it is possible to prove relations hold between specifications and
particular abstraction or implementations. Thus programming can be done by stepwise
refinement from high level specifications, with comparisons of more and more detailed
specifications making the conceptual transitions manageable. Also, even though examination of
all possible interleavings of events may be necessary for analyzing a system, once it is analyzed, if
there is a property consistent for all behaviors, we can express it at a higher level. Thus we are
not limited to the detailed expression for description.

Detailed specifications are usually axioms for certain actors which will be in an
implementation (provided they themselves are implementable). They can be proved to realize the
high level specifications. The next consideration is whether these actors themselves are
implementable. We have suggested several criteria for realizability such as reasonable
assumptions about ordering, etc. However, all specifications depend on the implementability of

some primitives. Unless the primitives are physicaily impossible, the realizability of the
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specifications must be analyzed relative to the specifications of the primitives. Thus in protected=-
data-base we are assuming that it is physically possible to order events at pdb, in wpdb that there

can be an ordering on events with wpdb and s

¢; 35 target. These are realizable because pdb, wpdb,

Sc. have no specifications other than this ordering which conflict at this level of detail. By
contrast, a specification of the Courtois program saying both that mutex I and mutex 2 events
should be ordered and that mutex I and mutex 2 are separate semaphore actors is inconsistent and
not realizable.

The guiding principle in writing specifications that will be realizable is of course not to
overspecify. Having two different events of some activator with same event count is a conflict (a
danger in parallelism); inconsistent time orders is another. The clear nature of inconsistency
enables proof of certain properties (namely, impossibility of bad properties) to proceed. In this
paper we have illustrated the latter technique and not really exercised testing of specifications.
However, Chapter 3 has examples of common types of inconsistencies.

Another important point about specifications of flexible level of detail is that they
enable explicit statements about parts of programs and abstraction about program schemes
(templates or structures). Thus they allow us to describe real code, as it is actually written, at all
levels. This is not always possible in formalisms which stick to one level of abstraction. We feel
the ability to represent separately the parts of a program is extremely important to the
understanding of programs. Besides clarity to humans, another goal of structured programming
is easy checking of code. Styles of programming which cause difficulties in placement of
assertions or in modularization are considered to contribute to "unrealizable” programming since
they make automatic verification techniques more difficult to apply. Our position is that rather
than restrict the kinds of programs one can expect to rely on, one should learn to express one’s
understanding of code. People do write machine language code and know what it is about. Some

of it is even quite reliable. How is it understood? We suggest that in a formalism in which
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various abstractions can be expressed, there is hope that by combining statements of different
levels one can express both how primitives (such as semaphores and goto) are being used (the
structure of the program) and what their properties are. In particular, if we are ever to deal with
low level code in which goto's and weird side-effects and semaphore-like primitives cannot be
avoided, we must learn to represent the programmers’ understanding of his code, its structure, its
parts.

The structured programming approach and mechanizable proving approach attempt to
reduce hard problems to mechanical ones. We see no point in trying to represent parallel
processing as a simple subject. This work is an attempt to develop a full and precise theory of

the sub ject.

10.3 Future Research

Future research of three sorts can be projected. The areas are extensions of the uses of
this model to other problems, programming language issues relating to synchronization, and the
use of specification formalisms in the wide open field of development of programs that
understand programs.

We would like to try to use the notions of partial orders to analyze single processor
implementations of side-effect programs and coroutines. While we understand that side-effects
may be avoidable at some level of understanding of sequential code and coroutines, we feel that
in fact it may be beneficial to view procedures with side-effects or coroutines in the same way as
we do communication among independent processes. Side-effects as communication devices can
be viewed positively and can perhaps be analyzed through partial orderings even in the absence
of true parallelism.

Other topics which bear further study are the full range of problem type and
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implementation properties that can be expressed in the language. This would include
consideration of modifications of the model for applicability to particular known configurations,
introducing additional activator properties.

While using this language to specify problems and their solutions, we have touched on
several issues in programming of synchronization. Particularly important are relative power of
primitives, structure implicit in certain primitives. and possible misinterpretation of uses of
existing primitives (eg., conditional critical regions and the semaphore implementation of the
monitor). The fact that through specifications in this language we have exposed or found
reasons for the difficulties indicates the power of this approach. We feel there is considerable
work to be done in understanding what is desirable in synchronization primitives, how existing
ones can be used, and how they can be implemented. Progress in this area will depend on both
precise and adequately expressive formalisms in which to specify the objects (primitives or
programs) under consideration.

Finally, we would like to see how this approach could be used as a basis for
implementing a theory of parallel processing. A program which can understand programs will
need to understand parts of programs and interaction among parts. If it is to be helpful as a
program manipulator (Knuth, 1974] it must have representation of both structured and
unstructured programming. Even if programmers are found to "think" better and to program
more reliably in structured languages it is unlikely that optimal code will ever be of the same
structured form. Some understanding of alternatives must be available if such code is to be

understood.
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