AUTOMATIC TEST, CONFIGURATION, AND REPAIR
OF CELLULAR ARRAYS

Frank B. Manning

June 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

PAGE 2

AUTOMATIC TEST, CONFIGURATION, AND REPAIR
OF CELLULAR ARRAYS
by
Frank Blase Manning

Submitted to the Department of Electrical Engineering on May 22, 1975, in partial
fulfiliment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

A cellular array is an iterative array of identical information processing
machines, cells. The arrays discussed are rectangular arrays of programmable
logic, in which information stored in a working cell tells the cell how to behave. No
signal line connects more than a few cells. A loading mechanism in each cell allows
a computer directly connected to one cell to load any good cell that is not walled
off by flawed cells. A loading arm is grown by programming cells to form a path
that carries loading information. Cell mechanisms allow a computer to monitor the
growth of a loading arm, and to change the arm's route to avoid faulty celis.
Properly programmed cells carry test signals between a tested cell and a testing
computer dlrectly connected to only a few cells. The computer may discover the
faulty cells in an array; and repair the array by Ioadmg the array’s good cells to
embed a desired machine.

Terminology and network models are developed to describe the
characteristics of a machine that are important to the test and repair of an array
embeddmg that machine. Important machine classes are defmed, and their test and
repair requirements are compared. Computer simulations of repair aid this
comparison.

Each machine class is represented by a particular cellular machine
design. Arrays are presented for realizing highly-integrated, computer-maintained
memories, such as variable-length shift-registers, random-sccess memories, and
track-addressed sequential-access memories. One flawed array of simple cells
may perform like any digital machine, within limits set by the size of the array, its
number of input-output leads, and the speed of its components. One such machine
can test, configure, and repair its cellular environment. Applications for these
cellular arrays are discussed.

The thesis’ approach is oriented toward the realities and trends in
large-scale integrated circuit production; and has potential integration level,
reliability, maintainability, and flexibility advantages.

THESIS SUPERVISOR: Edward Fredkin
TITLE: Professor of Electrical Engineering and Computer Science

PAGE 3

ACKNOWLEDGEMENTS

chief advisar in thc wrmng of this thesis documcnt Or.. E. ‘Roger Banks and |
engaged in productive discussions sbaut cellular machines throughout the research
Roger end Professor tack Bennis rosd the thesis and provided usefil suggestions.

Many poopls ot MIT and in sty helped relals y work to Integrated
circuit considerations. MiT's John Hwh and Ws Or. Rick Oﬂl wsro
particularly helpts in this rqmt |
. Bruee Kmmr and Mary Jo Keller
prwinmly M&m tochr&mm. ‘ , ,
: Mywih,mewmywmtt,mmPltrm.ndMAm
Boschert Manning, helped mdamamminmwm .

Many peopls and faciitios st Project MAC sesisted this work.

Thid: resaerch wes supported in pert by o | stionel Stience Foundation
Fellowship; and: in part by the Advanced Ressarch Projocts Anncy of the
»quartmtﬁmmkmm ZOSSMwumaltondbyONR
Contract No. NOOG14-70-A-0362-00086.

sted ways to develop my

PAGE 4

TABLE -OF CONTENTS
(1st of 2 pages)

PA

"

|

ABSTRACT .+ s ueseeeessnnresssesssassonsessneonaarssnnsesasenssnnns
ACKNOMLEDGEMENTS. + 4 v v vv v vsevevnennensnsensesansnnssnseessssnsnes
TABLE OF CONTENTS...0ueriunnnnsirrininnsnesiannunsssennessnasens
LIST OF TABLEs..............................;.;....;..;.....;;..
LIST OF TLLUSTRATIONS. vvuetroraeeeansconancssannnsecasssosovsen
1o OVERVIEW. tuttiiennsinnecnseensrnncenstsnssnnsssnsessssnssoces 18

~N 0O WwN

1.8 INtrOdUCEiON. e eeeusessssensessnssnseseensonsonsessnseess 18
1.1 Arrays And Embedded MachineS. «sessesessssresesesooseessses 13
1.2 The Loader And Related Concepts;;fl.....;;...:;;...;QQ;... 21
1.3 Basic Fauit Assumptions................;.}..l;;.;..;.;;;.. 28
1.4 Processing-layer Machings...cesseeessscesccssscssasaccssee 38
1.5 Array Repaireiescesccssessoscesssssessesesasssassssessssss 39
2. CONTEKT. . eeevvnnerennsnnsereeeeserrsssnnnneneeessnnsernnnees bl
2.8 Introduction.eeee... Y 1

2-1 Cellulai' Arr‘aga.....>.‘-..-...'.....‘.............I....}-...... 45
A Introduction
B Array Interconnection
: C Customization techniques
D Size
E Function
F Current state

202 Al‘r‘ag Fabricationl-ooooaolc.ooo.oo0.‘0.'lltoo.c.-ro‘to"o.ooooo. 55

2.3 Evolutionary Trends.....eeeee.. PP -
A Rapidly increasing capabulntg of integrated circuits
B Increased reliance on electronic machines
C Mass production of a feu high-volume components
D Increasing regularity

PAGE 6
TABLE OF CONTENTS
2ndt 0f 2 pages)
- PAGE
2.4 Trends And ArCBYS. . evsererrsenantessssanessssssssscaannase 73
2.5 Tectmq And Repair.i.cesieserasssnssesiessonssoarancesses 78
A Non-celtular
8 Celiular _ o s
3. ARRAY-EMBEDOED AﬂﬂS&?
3.8 INErOBUCEION. cvvveerrerreessessseersessrnessrnsnsassanses 87
3.1 Tho Lomr......................................77,....... %
3.2 A Perfect Array Of Shift-register CalI_n........»ry.r...,.T...‘..HG
3..3 Testing And chair...........,...v_.....,_._....:g_. ;.'{v_.r-!-,"‘""l_z:*
3.4 Produ;:tia'n And Marksting an‘tiidqv'ltiom.l....l.i.v.iﬂ.;; cesernresss 1648
4, Hwa-né:l.cm mmn&:sma
4.0 Introdiacti'vonv.;...........;..........................,.......154.
4.1 The General Cell...157
4.2 Introduction To Testing, Comtruction, And me.........lBS
4.3 Testmg.......v................................‘..._.’.:.:.....(.173,
4.4 Rapair..183(
4.5 Construct.'...".';.......215
4.6 Other Considerations In Realizing High-retcon mcmm....zia
4.7 High-retcon Machine Appliclt}ons...............‘.E.ﬁ..f.,..‘..k.»..221
. TREE MACHINES....cooviinnnnirenntaiiiinnntaiecennonnncnnsesss22]
6. CONCLUS[UN...233.
BIBLIOGRAPHY..237

\

BIGGRMHYI...l..l....I...‘.0‘.‘.‘..0'.........0.“!..‘..;.*..,......243

TABLE PAGE
2.1 Chip Yield And Manufacturing Costs......ceeeus cssacssseerss BB
2.2 IC Evolution.ceeeaanses B T T T W TSP 64
2.3 Relative Cost Of IC Reliability Efforts.csssecessseseseseese BB
2.4 Cost For Failure At Various System Development Stages...... 66
3.1 Results Of Arm-growth Experiments....... O b 7/3
4.1 Results 0f Tuwist-repair Grid-embedding Experiments.........138
4.2 Experiments With Three Different Blockoff Goal8ieeessresss 2082

LIST OF TABLES

PAGE 6

LIST OF ILLUSTRATIONS
{lst of 3 pages)

n

1.1° Layout Of A Checkerboard Array Connected
TO T“O Elt‘r"“rrw n&him'- R R PR) 1‘

1.2 Interconnection Network For Checkerboard :
Al"f'aﬁ Uf F'gure 101'oooot»vcoo-ooouoc;oo..aoc.aoo.oooooc 14

1.3 Machine Embedded In A Procc:snng Lager..................... 18
1.4 Relcon Network For The Ewbedded Machine Of Figurc 1. 3...... 18
1'5 Re'con N‘t“ork For Tm Emd Ar.....‘...'."l.'."...'.. 23

1.6 Relation Betueen ancntsal Ne tuork And
ASBOC!.%“ RQ'CD“\ N‘tmk'ootlcocaoOQOOo.aooo..o.l‘oooo. 23

1.7 Essential Netuworks For Two High-reicon Machines....ccceoes. 36
1.8 Relcon Networks For Tuo Equivalent Tree Machines....cevees. 36
1.9 Relation Betueen Grids, Trees, And ArMS.c..ivecsesrncassses 41
- 1.18 Repair Of Arraye Hith The Same Flau Pattern.......ovevsse.s 42
2.1 Tuo Customization TechniquUes...ceeeeeesrescesvscnscssnvsees 49
2.2 Programmed Array-rePair..eececesessessscesensosscosscsssnce 85
3.1 Tuo Common Programmable Logic Loading Hechanisn....f....... a
3.2 A Loading Arm Groun By Array Programmer Signeis.....cocees. 93
3.3 Input-cutput Lines Of A Cell's Loadiﬁg Mechanismesevvieecss 98
3.4 The Loading Mechanism's PulBer..c..eseescssesccscoscsssncess 98

93

3.5 Loading n‘chmi‘l uith Option'..0"."..0..0.'00'....‘.‘...'.

1GURE PAGE

PAGE 7

LIST OF TLLUSTRATIONS
‘ (an of 3 pages)

PAGE 8

FIGURE | | o | PACE

3-8 sgmb°| Tab'etcootc-l.l'oo'l.l..lo..._‘_o\;‘lgv.o;'go’_grgqgtOl...:.?l“

3.7 Clockmg Out The Loading Sequoncn 8 0. B, 1, B B.........IOG .,

3. 8 A Loadmg Ara Forned By Touching Colls,....................1%

3.9 Loadlng API “'th Tlp At .(10:8:.:0).0ocuvt.‘:‘rolpioc\oorcnln;o:c?noootqgn_ooclm ‘

3. 10A Comp_lete Shift"ragist‘rcal 'ooq-qvc o:é_o.voo“:,o;.goncﬁo“ooot:‘-l']..ll
3.11 Abbreviating A Shift-register Cell’'s Function State........112

3.12 Shift-register Cet1's FUnCtion States. .\ oveeeesiivnseenees 113

3.13 Loading Tuo Shift-registers Into P‘bff"oi.‘t”ﬁi‘iu.i civiienessadls

3.16 Shift-register’s Rate<ITmiting Deidgeis.eeessiiveiaennesas 118

3.15 Pulseuidth Regulator Hith Data’ Trénsmitter Option..........128
3.16 Grouth Of Perfect Shift—rbgtster Ihto Flailed Krrau.........128
3.17 Result Of AW Arm-grouth Experinnt.........................132
3.18 Result Of An Arm-growth Eiperinent. ... ‘.’2..""...".;..;'.".'f;....."'2133
3.19 Graphs For Experiments Embedding Balanced Arms......ecc....136

3.20 Gro“th uf A Bf‘anCh ArMI.O0'll0.'O...0‘00.l..I!.ll‘.l.....l....141

3'21 BranCh Ar. TOUChing lntand.d Ar..0l.....'C....I......'......lal ’

3.22 Location Df A Branch Ce".I.O.I"..l'..D.l......l.l.......ll‘s

3.23 Possible Layout Of Pouer Lines And Circuitryecsrseecacessess151

T

4.1
4.2

4.3
4.6

4.5

4. G' l

4.8

4.9

LLST OF ILLUSTRATIONS
(3d of 3 pages)

Ganera‘l’&F‘mtion S“t‘-t‘!...l...l.-....Q'.l.'..l.l"..(~;l..l‘.:;158

A Function Performed In thfannt Grionhﬂom.............mﬂ

nap Of n'n‘prac'ew*T‘at”‘nm”’"-oq...o-o-ooo-o.aon-co‘1884

Test Links To Processing Lines Gf Tosted Celleneencecreoss 174
Relcon Netuark For One Atumcgicter Blt—snm..............lﬁ

I

Flawed: M Array Tuist-Rtpnind
Iﬂto A F‘rf’ct 13&14 mw;,.;,o sesborerrrnetssny .’,. es s 0187

Gl"aphs FOI‘ Tui &tm}f mlmt&oa serssesstssscenersene 182
Blockoft's Repair Of 28x28 Array With 5X Flaued Cells,.....283

Blockoff"s Repair Of A 48x48 Array With Ex\Flm Calin,...285

4. 1.3 B'OCK”‘Q Off h Hlm-r.‘w Eam*li' mwt_n e me e e pe 9y szz
4.11 Result Of An Experiment Showing Construct’s C@&i Lityeooss216

5.1

- Relcon Netwacks For RAMs. In ldentical Fleusd Arreye........228

PAGE 9

PAGE 10

CHAPTER 1: OVERVIEW

Section 1.0: Introduction

A cellular array is an iterative array of identical information processing
machines, cells. Test of an array discovers its flawed cells. Configuration of an
array programs it to behave like some machine. Repair of an array programs it to
behave like a desired machine in spite of faulty array cells. This thesis develops a
practical systems approach to highly integrated, computer-maintained cellular
machines. The structural simplicity of cellular machines gives them many
advantages, especially now when large-scale integrated circuits (LSl) are
proliferating. We specify cell mechanisms and outline associated support programs
for ah arbitrarily large, two-dimensional, rectangular array. While we focus on
two-dimensional rectangular arrays, our approach has obvious extensions to arrays
with different interconnection geometries and more dimensions. This approag:h '
allows a digital machine to electronically test, configure, and repair an array by
. direct communication with only a few cells in the array. The fact that a computer
can test and repair an array implies that the array need not be perfect. All the
cells of the array may be simultaneously produced as a very large, integrated
array device. Such a device usually has faulty cells. After the array is first
fabricated, a computer can find the defective cells in the array and load a perfect
machine, which incorporates only good cells, into the flawed array. Thus the same

mass-produced device may be program-customized by a mass~produced device,

PAGE 11

the computer, fo behave like & desired machine. If this array-embedded machine
develops a new flaw during its operation, and if this flaw ceuses a noticed
performance degradation, the array may be partly or completely re-tested snd re-

d by o y-ssbadded teching ey be slectronically
" be maintained by o digitel machine. Firthermors, the array may be re-cuétomized
ot any time. This approach is tailored to the ralities and trends in design,
manufacture, ‘distribution, snd meintensics of diitsl systeme, pirticularly those
| We discues arvays ‘of “programmeble’ logic”, where information loaded
into memery elements in & working cell tells tha célt how to behave. ‘No signaf line
cmdtmym A londing mechsniem s devaltbed-for sach ceil in an srray;
this aows a computer directly connicted {0 ‘only bive’ teli“to foad any good cell
thet is not welled off by flawed cells. The foadiig Information whith the computer
sends to the array may select one of o largs set of fickuible peths for & loading
arm that ‘carries loading information 1o a ceil. We develop celi mechanisms that
elfow the computer to-monitor the growth of @ foading arm to & cefl, and to change
the route of the arm to avoid fautty cets.” A method s-described for testing cells
in an array by using a test machine directly connecte
~ array. Propsrly programmed cells carry test signals between some newly tested
cell and the test machina. A loading arm May be used 10 vary the state of the
tested cell.

1o crly a few celis in the

PAGE 12

Programming an array to behaye like a given machine is called
embedding that machine. When a maehm;ng an array, it should not
alioﬁ faulty cells to affect its behavior. Therefore an embedded machine is
prpgrammgd to ignore signais sent from faulty cells, We find that the
communication paths required between the essential cells of an unboddadmachlno
affect test and repair of an array for embedding that machine. Development of
terminology and network models allows us to describe embedded machines more
precisely. ‘»Imgport‘ant, embedded machine. classes are defined, and their associated
~ test and repair requirements are detalled. Computer simulations of rapair

facilitate this comparison. | _ . ,

For each class of machins that's described, 8 particulsr, potantislly
useful representative of that class is detailed. Al arrays’ cells contain our. loading
mechanism. Arrays are presented for rasiizing highly .integrated, computer-
' ' | verisble-length shift-

maintained memories. These include arrays for realizin
registers, randomfgc;eés memories, and {rack-addressed sequential-access

. memories. One array of simple. cells may be pragrammed:to. embed sn erbitrary

_ digital machine, within limits set by the size of the array, its number.of input-
output laéds, and the speed of dsmmonont&Anaray-anboddadconputpr can
 test, configure, and repair its cellular environment using: techniques we_ develop.
Indeed, two or more array-embadded computers can tes) aod meintsin each other.

PAGE 13

Section 1.1: Arrays And Embedded Machines
A more detalied deschiplion of our approdch recuires Introduction of

some key torms.

A ceixiar arriy 16 n array of functionelly identicel infermation processing
nmchdl:.mmtdIﬂmtthway Each cell of an n-dimensional
array occupies a isttice point in an n-dimensional space. &uhedlwmiutu -
directly with ottier machines through a finite sat of signel lines. Figare 1.1 shows
o possible layout of a celidar arrey. Esch cafl In 6 “Given erriy Tes a fixed number
of signal fine ‘sade-sets, with corresponding th potastial dfect communication with
another cell, a netghbor. If any member of a side-sel torinects to a neighbor, ol
 memiers of the shde-set cumect to that neightior. -4 sidé-vet dossn’t connect to
@ neighbor, some or sli of Hs meners ey ‘tonniect o an extra-arrey machine.
Unconnected inpults ‘act as it they afe c‘;f"" stted fo @ Nmry O; this is easily
‘implemented. We eawmt. oh chickmdodrd cellular srrdys, two-dimensional
 arvays like thet shown in figure 1. 1.mmwmmaa-uu.ﬁm input
* and output signel lines st sach side-set. wamm-m”" “
ouggest an cbvious fayout for our arrays, With each ‘theckerboard sdusre standing
for an identical cell. Some have propossd arfays In Which ‘signal busses run
* bus is dameged, we recaire that thers be no vighel busess in checkerboard rrays;
at most, & signel fine connects cell o its four neighbors. Checkerboerd arrays
are well-suited to the step-snd-repest nature of current integrated circuit (IC)

oy T T T e S RS o EERRTER L RT LesDERT e R e

PAGE 14

Fig. 1.1 Layout Of A Checkerboard Array Connected |

Key:’ An arrow indicates one or more of a machine’s) A s, with the
A et o o thction' SF AT Ao T I e
_ represent extra-array Machines. The small, unleltered baxss represent.cally. .

r"Eis-gsl;z intercannection Netweork For Chetkeribosrd ArimeOf-Figure 1.1 - - -

~F o g o R S Ty, R
o l LA S
N

PAGE 15

production. These srays d&mtm o ion, andropdr ad\.mta‘gu.
An tmmnwm mmork. u@h as that of giguro 1.2, partislly describes
an array’s lww mm dich’ cﬂ“ Jrgﬁy Wﬁm&« with its cellular
neighbors or mtu-amy mhms ln qi Mumﬁon nstwork, each node
repromtsaegu,m.whdmmdnpruy&smmmaymdim Anodois
linked tomﬂwmdowdmumgmﬂmmmgwumdmﬂy
link th.mmgm Amm@munmwumm |
it’s M wamwm M an array Wﬂﬁy,
it's vaiid to m the actiity in a subsi am‘\#v&y. and troat the cells
outside this my) n«u—(aﬂw wach N |
WQMmchkmmmmmnchcdl
containe function-specfication siate bits affacting which of seversl operstions the cell
performs. Both cells and arrays are vicwndnhvingtwofmﬂmd lay-n- a

U S
RIRNE Yo v 1

“loadmg layei and. ; gfmumg lg:m - with ﬂsw o m l!d my
elements for each layer. ‘Of course, these Iayars l;ty be' My:‘mtortwimd.
At any given {ime instant, only one of a cell’s layers is activeled The processing
layer of an ereay i uead 1 provide the funclions of She araly it e immedidtely

: useful to an arrsy’s user. The processing layoyr'u output and stete are a function

of the processing laysr’s input and Ohh.#ﬁ:!ﬁ the function state - the state of the

function-spacification state bits. The function-specification state bits mey enter a

particular function state when an array is powered ony asfter this, they may only

be loaded through use of the arrsy’s loading inputs. The sole function of the

Ioading layer is to load thesa bits, and theceby afte

processing layer of the array. Thus ihe funclioayspscifigation bits act as
intermediaries between the (oading Iava. and, the procaming.leyer. -The: fusstion-
| qucificnfign bits are the. only cell logic slements:ibal.are-not in ciM:WOf'
| Typical use of an array involves loading the function-spe

‘thereby specifying some function. state, atfecli

loader is quiescent whije the procassing Jayes pecfo _
loader may re-program the procsssiog Iayar a, pravide same few funchion. -

- ?mcght dictate thnt anarray. of ysywm wm koeop:the-same
_pr °°‘,‘,‘,'i',"’ input-autput leads “‘d funclion, siate,. Tha umes:of - thie arrey. would
| justnfiably think of his _8rray.es an, _envir o, for & machine. ambeddad. in the
procoodng layer, with the fixed attributes. of the acay speciting Abe. smbegided
machine. Similarly, o user might ooly use n arregadioading inpute during an
think o the array es an environment.for 8 machine emheddlastin therloading. layer
. during this iot?(Y!‘f; Fipally, a user. migh-intecbuin iEacessse.ot ioading; using
 loading inputs, and testing, using pracessing,inpule s autpuls, during aninterval.
- The user could think of an embedded maching es. eegipying-both loadieg:and
__processing layers during the interval. As.we mighliampest, the nature ef the
embedded machine profoundiy affects the iasiabili end sepeinebllity. of an.arvay.

P

2 “,‘},i‘;&ép\‘z‘:‘;34;:«%});":}»’;‘";‘7‘,’ SRR R, T e LT

" PAGE 17

Knowtedge of the constraints on an arFsy during an interval affects
 testing and rapdir ve profoundly thet we deveiop & fnguags to describe these
_constraints. ‘W conslder definitions refative to use of o Wiy diring & given time
interval. The weer identifies which side-sst ines hd fémory sloments directly
interest hm during an interval; these are thé interesting sloments. The input-
~ output lesds of ‘af array that connectad to & usér's ninchine might be the
interesting lines mu\am Similerty, functibn-dpectiication bits which would
od for u User might be inhmting, ‘while
function-specificetioh bits in a refmote ssction &f an aray Might be uninteresting.
 Thus intereet is defined in terms of a ubir's iftended spilication. The state of the
array ot the baginning of the interval; and the Nigris It iney receive durihg the
interval, affect whith-of its memory sisments snd side-sé fines are relesn that
is, which may atfect interesting slsments dufing the interval. Anmm machtne
~ for a-given arrey 1s described by a list of thoss relavent memory slements end
side-set input lines whose valliss are known To be fixed during the intervel, and
their associated values. The smbedded machine's Input-output '

affoct the function en m{y P

lines are the

relevant input-output Tines of the array that are varisbie during the interval. A

prwhﬁe loading mechanism may ntmw&cﬁan state bits, and

* thereby partishy er complstely spetity the machine embédded in the processing

layer of an srrsy. Figure 1.3 gives & charactirization of orle such embedded

. machine. mmmowmmwmmmmmaﬁmw
‘performence of Wi smbedled mectine.

PAGE 18
Fig. 1.3 Machine Embedded In A Processing Layer

T
I

. 4 18, Relcon Network For The Entadded Yaching

PAGE 19

Different embedded machines may be equivalent. If a flawed array is
configured to embed a machine that is equivalent to a pertect array's smbedded
machine, we sdy thi flawed array hes bm:mh oubda pcﬁoet machine.
Our array repsit is theretors an mmm mmmm of cells, snd
not a mechanical siteration of an m

A refevant connectton ne!wrk or rclcm network, is a subnetwork of the
interconnection network that dooeribu mcdion h o omboddod machine
(see hgure 1.4). AoinfhtmhrmﬂmMMchwrmondtoeens, and
diamonds correspend to extra-array machines. amouyimhatmrdovm
connection directly links a cell with m&oﬂw«urw” machine, a link.
connects the cell’s dot to the appropriste dot or diamond in the reicon network. A
cell’s relcon netghbers ore the entities - cells or extra-array mechines - whose
representatives sré érectly firked to the ceis dot'in th rélcon hétwork. A cell
with n reicon neighbors is a cell of relcon degree n, celled a relcon-n cell. An
embedded machirie’s relcon is thcmhutrwooct any of its cells.

A qualification of our definition of an embedded mechine makes it more
consistent wi:th our intuitive understanding of a machine. We require that two
cells in the same embedded machine be connected by some path of reicon
neighbors; that is, an embedded machine's reicon network must have some path
between their representative dots. Thus two or more machines may be embedded
in the same array.

An array constrains the reicon network of mechines embedded in that

e

& o w8

;4_1‘
AL

,'3

s

Apit o

T S R e ST B e L S A S s e AR M e

PAGE 20

@s’é’la# 30, e, ke dn, the arvay’s

1A% "ss it ,4& LI .{!Q‘m my
comtrgitl ’rgicon Mworko. .Al ;;ﬁg" ” m@mﬁ
choclv_.grboard Intorc. anects

OBt
i

Ve 8

*lrs»

m‘!ﬁ&ﬁdﬁ?& 39!

assocngﬁod procouinz-laycr—pmbaddnd &% An array | l ,gnly

s evLTe ot ML ?’% £

interesting if this meximum reicon “Uggmm"‘ 2 ol

LM et B

omboddodmtdimdm’t‘

4?5.:

ARG 85

,,,,,,

W tho reicon network of its

;gﬁl’-‘zf'sx.fa,id yip Aoyt

embecded macties. In ropaiig g am %«'wmuwm

25

oquivdont to one specified for upomck m@%gw Mgm

MRt TGS ”’

 ncorporate fimwed cell We typicaly e, the sigjest,
flawed cells inuumx- th,ugdlnnuw

DR A g DR

havo a rolcvmte dgo—nt

B aleont: g 2R
i ety ke

47

An array \mth ﬂ

'“’% i m

maf

n«g* W % ! ST BEAE A0) D0 DeE

%
o4
s
bl
i
e
i
¥}
45
o

sy RTEYT
£

T PUIRECEN Ly
. i $ &

5 . w4
T 3 4 1
el * P
£ 5 femoso g Gty -
: ¥ ¥ a1y éagg’ -t

i o A S BIEEBAGH g !
e e b P dioa g Yy
SEai At CERER ST 30 it ED B ooy

‘ d ARSI S E

) : T it et sep b e
;o apie Yo iy L A NE TP BN M DR S T MIEMIEREENET

R PR TR R R R T R

PAGE 21

" Section 1.2: THe Loader Ar

Trewvhision sidtés ore fundamental tomany of our {esting, conﬁ.mum.

and r‘bp‘itf 'b#i?’iﬁ&ﬂi’ ina tumm‘cﬁ'on thtc, some lnpuh to a coll are

‘Them-st sUbsctipt - U R, B, or L - denotes Bne of a cell's four side-sets - Up,
Right, Down, of Lafl. Ea‘wde-uiofaamcdlmﬂnmmofm
" “""‘etmemwmanmwu
For #ll 1 sKst?stmefﬁaik,.%Mlmém %%mdou&oa»odahd,
and given the same neme. This we might spesk of the Select Toading input and
output of each of a cell’s side-sets. In & loading transmission state; edch loading line

" inputs sod ot

of one side-set is transmitted to an associsted loading output st one other side-
set after a delay not longer than about one ‘ga‘té—doidy‘. Thus a loading
transmission state busses the losding inputs of ane side-set to associated loading
| outputs at anothor side-set. Processing transmisston states effectively connect a bus
to every side-set’s processing outputs. Each bus connects the processing output's
.of a side-set to the sssotiated processing inputs of any one of the coll’s ddo-ntt.

Transmisston ltnks are important to our testing and repair processes in

some arrays. A transinission link is a processing layer's chein of celis in

PAGE 22

«m , Bﬁ.{ R LT I L s PR
input at one of ita“atommumwhdatmwuuﬂ A

transmission states that acts as & two-wi

g p«m»\

transmission link performs the same mmam inan arrey independent of the
link's path or length. |

Our loading wouehmueoﬂ:hlodngMonmm trlntnit
losding signals t5'the inputs of s coll-beifig oatiéd’ TedtiRg arvaye for “mbledding
some relcan-3 and relcon-4 mechines, traneiievier inis Gt Aest signals from a
test machine, such as a computer, tontnhied. Tbuomnmcommonﬂy
W “Arrays tested in this
way are ropdrod by linking clusters of mmm Mden links.

. An embedded mechine arm is-a ehdnm saighbors (see figure
1.5). The arm's anrdm-}, M»dt mm have reicon-2. The
rolcerulluarothoarmsbody mwﬂpm“ﬁﬁtwﬂmtmw
tip in the relcon network's chain; ‘A Iudunqn r*‘w toiud the celis in an

return a tested cell's ‘response’ back hWtdf‘i“

NPT, |

array; loading dgnds flow from thﬂodn. hnts bm to ih“tlp. where a cell is
Ioadod. Wodmmwmwﬂwmwyw%rbhmwm g
layer of a mochlm

. We dcvalop a Ioudugg mochamm that cm bc couplod with any
prozrmwnablo logic processing mochanism in an: amy of two ior more dimensions.
This loading mecharism allows theToﬁﬁf’ of i"ﬁ"‘ cellina porfoct, arbitrarily hrgo
_ array by signals input to oné cell anywhire in uw-my ““Pils i#'possible because
a loadtng arm may be grown to the lotd'd t’ﬂ The loading arm is an arm

PAGE 23

Fig. 1.5 Relcon Network For Two Embedded Arms

3

tips

Fig. 1.6 Relation Between Essential Network And.Associsted: Rel

A) Esoential network for figure 1.3's embeckied machine

B) Relcon network for figure 1.3's ambedded machine
o8
.
C) Ah embedded mechine equivatent ta 1.2 embedded machine

it » it

D) Releon network for the embedded machine in C

-

PAGE 24

- ambeddad in the |pading layer, of a0 ey Gelle.ia: the; bedy of. the: arm aere in
loading transmissian states, carrying laading sigaals. from Abe.bess of a0 arm o its-
~ tip, The laading mechaniam.in eah calsls wearscrtan.

side-get nn sufficiont to nﬂ,ogt F 2 ngm@mw in a perfect

arm,mdformalcﬂhinl gwec.errey, . W

call's loader subsaquentiy.hehavss. The.aell maysnder: o ieadias Sransmission
_ sots. _That is, it may become pact of:th
tip_call. Thus a cell- may lpad.ane. of jis

 col"s.lauder inpuky to.otler slle In.an.aqru; A st ol Sw basloadadt with o
loader state proparing.it. 0 be, xe-loaded;: thiss.spelvl wihen 9, asll. is tested in
 various funclion states, A osded el et Saven s celecn meighoern. the
loading arm to be the new tip; the former tip’s mmmm

. . and the laading arm.is. incrementally r ad... A sigoel 4o mmof an arm can

. alsq cause the arm to. wu xatract; thal in, the Mm deriestivate. ali .the
. \oader inputs of all the pells Mbﬂm Thus.sigonie 0. 4he hase-of 0 Jaeding arm

end.the arm in one of sevensl dirmationnixmicest $he arm, o eopaaiadly

A jo. extended Jalo. . errey.. This process.is: selled |
-~ orm growth; it is used te.grow. s path thel.eartiesloading: intervesdion from. one

VR AR . e e

- used te attivate s coll for loat

PAGE 25

chenge the stale of the arm's tip. Becsuss oy ® fosding aris tip cell can fave
its ‘function stabe changed, a cell's temporary roli’ ss” v arits tip is sutficlent to
~‘permanentiy sat its function state. A toading

o'rh maly ‘also ¥e-load cells in an
tomize or repeir e séray. In & flawied or liregularly
shaped erray, the s dbility 1o snake thvbiigh alternats puths, twisting ‘sround
favis o m when necsssary; gives Tt adventegei” Chilate? ‘S datelfé ' the
-im.mmmmmmwmmm

Use of & betenced loader and- afented fafiction stetes faciiitates

_array, in order o Yaecs

achine-anbiting I+ ved ey oadiog il WA ¥ g Weling

- active property of the foader inpliss thet » mwmumm |
* and de-activalad by s loading drmt finked to° the Toader igkité of orie of the cell’s
g, toad the ol with a'desived function state,
“subsequently sand ‘leading ‘signals throigh the €&l to’ kwmms fosder
outputs, and de-activats the celfs loadsr: TheToader's: bt
arm to tunnel the same loading com jand o i $Pvs

~ The term "balance” is used to indicate s celf mechenisi’s functional

‘symmetry with respect 4o s oide-sets. A ‘Cell's’ procéseliig’ méthenism may be
* balanced for some or elf of the celfs function wtates. Consider some function state
Sy of the processing mechaniom. This stete can be o

PAGE 26

of statements relating each subscripted pracessing. autput - Ougury - - - O -
....and each, proceseing state, (it spplicables; Yt Js, If. the pracessing.stale-con off

some groc.sdm output.in function sqic Ed_}g W .
aplicable procmng ctat“. i Qe% ' '

§ ol

set of statements - such as the permutation interchanging L lnd U, but keeping R
and D where they are - yields a set of statements thet completely describes some
sllowed function state, the processing mechanism is belsnced for stete S, and the
balance-related function states Vgonoratod by the side-set permutstions. If ; cell is
balanced in every aliowed function-state, the cell is belanced. Sometimes the
construction of a cell requires disallowed function states. One might, for instancs,
use four function-specificetion state bits for thirtesn dmodtuncﬂon states.
~ Three function states might be indle gonersted, useless, and therefore
disaliowed. | | |

| An example clarifies the concept of a processing mechaniem’s bdm
Consider some processing mechanism with one processing input and one processing
output at each of its four side-sets. One transmission function state F, of this
mechanism is dascﬂbed by the set of statements below.

For Fy: {'n*ouh"on-k"%la*ﬂ} |

An arrow indicates an input is transmitted to an output. Thlrproénﬂn;
mechanism is balanced in state F), if and only if the cell hes function states Fg and
Fc such that the following statements are true. |

For Fg: {lp = Op lp = Ops I 2 Oy Iy » O}

PAGE 27

For Fc2 {ID g OL! IL - ODi Iu - 0R1 IR - Ou}
If the mechanism is balanced in state F,, it is obviously balanced in states Fg and
Fc. We then say that F,, Fj5, and F are balance-related. If the mechanism is

balanced for every allowed function state, the cell is balanced.

PAGE 28

... We raview.other. wark seletion; ta: tasling. Jansing.-on s ensie ok neliuler

... arays, Our appronch s te gl one: s xn semn 1t anawiton oochdes, that sllow.
. connected ta s few cals in.the. aray; . Thie,app |
 faulty behavior. . Onn, basic assumgtion in Jhet.a woud:onl Ju;loaed under. 3 ost

BE =

machine’s control, and not by signels coun

allows appropriste signals into a finite set of cells to sffect loading of a cell, there
is some chance that faulty celis will provide those signels to load e cell without a
test machine’s control, and therefore centradict this assumption. We describe
design techniques for making this arbitrarily unlikely; this involves making the set
of valid loading commands smaller than the set of paseible loading commends, 80
that f-ult-goncrqtod comﬁnndt are likely to be discbeyed. Another basic
assumption is that the behavior of a cell depends on thet ceil’s state and inputs,
and not on the state of other celis. Our checkerbosrd arrays heip assure the
validity of this assumption, because no signal line connects distant cells. A third
basic asswﬁption is that a faulty cell is somewhat consistent in its fauity behavior:
if a cell is good whenever it or its neighbors are tested, the cell must be good in
the intervals between tests. If a good cell becomes flawed, it may not pretend to
be good whenever it is tested. The first and third sssumptions are met if a faulty
cell’s outputs all remain stuck at some value. Another sssumption, which is made
to reduce tc'nt time, states iﬁdcpondcnco of certain mechanisms in a cell. For

SocﬂoanProcud,

B ¥ ooy Fesvastt %;g;ym

arm which_ that are
LA 'W" s teaih v"tWﬂs BUNBT

He b

o s samcoem *fw% m ﬂm

ropair. Proper commmicatson of a dﬁtd mehhn \vit!ﬁgﬁg‘q‘iﬂﬂdq-nt Qf

BT AU

worm es ol n g fawed, bl m-%m% 21, ropir of the

arr A loadl arm Mty 3 on embadded om into an errey.
ke cy ~m g Lt *msﬁ“ bt & piAnayy N WD ‘m:g Al pgnuTii g

Aftcruehoxmunmhmwwom between the Array
Doegstipow o) gmbvigeedoe s liwasio Rige DAY 8 *ﬁﬁ,;‘%‘P BILGID D SUGTITIeNS

Programmar and the base of the mu. it is unsucceseful, the arm is
#i codament comern ol edshag W NG RNRST srEltam NS Al anad

rotnct-dmﬁmmmwlm Mn:rg Qnegof
T3 R) 1 S BRNANTEVION SR il f iW ﬁiﬁ HBs en DHTIS

tho edh in tho am. mdi wi
B D LRTRHLD ¥ 43 z s(” Sros *ﬁ%\%}ﬁm *% N LR eal ‘WwMy‘

sﬁm Qas ey

conddor mMmMan MTMMMQ‘&Q'
e oo pk aBnl L o we Bogkse vinaboowge ad Bk U {Mf LLE R) ES IR

by the list (F,, F3,. . . Fpy). Fy is the function state of ﬁ%g{ﬁ’%&ﬁ

thoﬁntcoll inthoarm,mdthﬂanMofﬂnchdHﬂﬂn

& G T »&%‘ﬁ*" P hkfh ’34 i gf AR Y T AR VA CL YRR B %;
Fn h tho function ctuto of tho arm'n tip. Becaues all the function otatu are

cend ey g elen Toawon T beanamsd arintem 5 e badivael o

w«mmmmmnmmumumgytmaumm_'

e AR BB gRirll aug am conabademd ng Yo ot iniiustiy & R BINR o

machine that hn T functton ttetu (F,, Fn . Fn), N F IQWW

s omipe Figiemger st Al gl EESHSTPIIRT. e eV
tanzforalllstT ' "
RN SRR Ty P Ty RNl e G TEEDE WU e . Do age

 of arm machines,
& » : LY Lty ?;'f’ 3'”‘% #*“53 ia:“aa“??&« 05 MR 3 nm%ﬁi Higvaey
' givon reasonablo modols of ﬂnwod boluvior. Repair of arm prrays is is qtudiod

BTG 40 ;w

- uwwgpéogm thnt m.t.. ngm % 217 and agam

P é“i» oA 3 =3 I gﬁ a?"'* k}ﬁji‘&" g

PAGE 31

ofarepatrodd%y) hmtﬂaw.duvayowfthweﬂ\tﬁmadcdis,Ost

mmm Htcmyﬁ machines which are

" uﬁﬁmwmﬁmdmﬂwo

;i 534 i ¥ ﬁmﬁ

b o

SOOI PR e B T

‘f

h 'chec&erboard array
An c:scnttal mchtm is & Mlct melino m ln i prmnl IW

’ iy “3}1 Hit““ qu‘ ‘hi;
that tsawimaamﬁmmmefmmmwwu togothcr
L LR oenstrm bandiadne o
in some way. Themmudcdl:ofmmmmmedh M are .
, sidmsst U omen
not in ndn—brancfﬁng trafiniesion stifu Tho fou' edh ln th. wp-r—hft oquarc

another emential ceﬂ or oxtra-array madim. A win h * dncted simd poth

Wi dBRE S

sath i§ oither difact (betweer, iterconnection neighbors) or

- essential cells. If an assential arrn. maching.is

PAGE 32

indirect (via cells in transmission states). The output of the slament Jn the middie

cell of figure 1.3 is wired dires

.., extra-array machine, .

~ Anoessential mumm asinee of aquivalent: smbadded

» 80 3rm with T colls, whoes digh cell is

. in function state Fy, 1 5 N.s T, then.an ambedged machingis squivelant. if-ead only

It it is,sisa an scm with T calls, whoes th, ool iy wed boFy
network dnocrm: 0 essential machine. . Eiges, h6A. shows- mmu network

... for the essential machina.in. figure 1.3, A-squere in:$he natwark siende.for an

. essantial cell, and sides of the squars stans:fos siderasie;of Abe assentisl-call in
. the abvious way. Dismonds stasd for axice-aspa mechiaes.Jf nd-acly: i = ire
 connects an essential col's siderset te,an ansentil seiohbars;sisersel, on

-assaciated link sppears. in the sssentisl network.in. e spected way. - An
 wasentin] petwerk s sbviusly reisied.ia (e Feicen. sebwerkace!. the smbesded

.essential network mual. hava.ane and only. ane coTempending wisenital nade in. oach
nsoci‘tod reicon network. If two celis sre essential neighbors:in. gamﬂd
. network, anch relcon. m;mkaatm meﬂl essentisl
3. path ey be.» link (ke
_ﬂ.sr,gum af links (corresponding 0.

|

PAGE 33

~ ohe or More wires).

high-relcon mackenes. All embeddings of a Ngt o
with three or fouf rulcon Nelgisy sioate di

equivalent machine. ‘Since ‘essentisl stétes of our MEh-rélcoh’ machines are
unbstenced, correspending essertial calls st be-in 6 siine funitivh state.
arrey machines inthe same way. Orly ﬂbm ‘o Biectiatad wires may ' differ in

designer typicelly specifies the simiphust estential ‘tachine ihat Will perform e
Our repair of high-reioon machines requirés’ the sssuniption that the

vt et SESEREE s i Eeie s e les c U TS GORECS S R

PAGE 34

| mott appropriato high-rnlcou machuw m:hlt.cturn. Tho nsumption thnt tho
Iength of auociatod wiru may diffor in oquivdgnt omb ided mnchinn lt not
| Aroqurod for repair of arrayo mboddng tho othor machim wo dohii
- | -Ukocwu&chm«4fmmmﬂuc§nﬁymwrppdr.
WQ show that the machom:ms that provldo thm facumn pre very. clou to
| companblo mochamm gnuntod for chnptor 3’: Srays.. Th- loadon ere
: Efunctlonauy |dontical Tostlng is accomputhod by gowth of tnmmimgn links
] botwoen a test mochine nnd s tooiod cdl 'A tost ltuh is s trammiuion Iink

of tho lmk comocts

YR S

‘bttwun a tnt machino md Some. cdl In m arrey. Tho 7;

tothat»tmadwm,mdthotipofﬂnhg&ict!ncdlqpﬂn hmdofthe

LSBT

| ltutlirk Eachcollinthotostlirkcmtodmdotoandfmmthotipmdoftho |

link, where a tutod cell may be located. Tho tut link h rown 89 thq body of

) test arm, whlch is L) tut Iink tormlnatod ona cdl in * "U-tufn function state.
’v‘?k‘SIgnals from a test muchino into the bm of Wf tpt am ﬂ{ N dwm th. qrmc
| bodyto its tip.twmrttwntothobmofthcmm;nda.t‘ﬁn tatmchlm.
” Tho test machino uses such ugnals to momtor tho growth of s tut am. Thc
' | balancod statoo of colls in the arm allow it to ﬂmbly sndu aromd ﬂawod colh as
it grows from a tast machme to the ddg-n.twol‘a tutod cdl Tnt Iinks ore grown
to sl the aocesslblo side-sets of s tostd col. nm. um Aa‘l’lgvavﬁa test machine to

momtor the tested coll’s Mww in vanous fu\ction 'hta, wNeh e ut by tho
loodor

‘Repair of arrays embedding high-reicon machines is accomplishes
x T : S : e - 'ﬁi"'-*”\':'.“? » w 51“L 5 k?}% ‘ﬁ*'}{} gt“‘f»m?;‘!sd[BRI o w,:,) Ar

PAGE 35

of transmission stutﬂ to wire to(tthar ononthl nolghbon which aron’t
" 'intmomoct.on neighbors. Experiments with a repeir dmuhtor ollow us to begm
to compere th repeir costs invdvad with different mdsthl machines. The most

wiaeis & 2 S

‘ t hmh-rdean machine

difficuit checkww-way repair irmlv»
" whose essentisl n.twk is & grid (see ﬁgtn 17.4). ‘We call such a machine a
 grid machine, andl cull its essential colfs grid cells. The most m-l r.&df"éf a
) Mkmwdﬂwmm&aﬂﬁahmmmm Manyhuw-
relcon machines have essential notworks with squares and links nmng (m ﬁnurc
1.78). We'l sés thit these mechine bedded ina ﬂwnd amy more onuy.

are omb
" than grids machines. m:muntmwdtmmﬂmmm.mt

oy

inter-cell communication pnlhu durim o tnttrvd faeiﬁtﬂa r-pdr, but my nquu

. % LR AR ';g.@.v, i : ; x.:;irrw
ro—rcpair whon the interval ondc. "‘ o

Chapttr 2 aiso details an amy of slmph colh d«lgnod for tho

realization of arbitrary dgﬂal ‘machines. Others have duwﬂnd lﬁﬁnito omyo M
" may contam wtialiy-ﬂnih mndunen cap&h of porfa;iu tny mpuhﬁon lﬂd of
 constructing cther mechines thet can perform lny emuh&m “Gur array h the
first one we’va seen capablo of omb.dding s unlvurul computer-comtructor-
repaarer A computer may bomboddodhaﬂdtope:&;;ﬂuprmdm Iayor
~ of the array. A ﬁnchon state that tnmmitc proeum lrp:m as Mu outputc
provides this computer with a loading arm. (T Is the only time that our pr.viom
description of programmable logic is ﬂid\tty incon'oct, in that proecnin; inputt

may affect loading outputs) Under this embedded oenpuhr’t eontrai. the loading

PAGE 36
Fig. 1.7 Essential Networks For Two High-relcon Machines

A) Grid

B) Non-grid

*th

Fig. 1.8 Relcon Networks For Two Equivalent Tree Machines

A) A tree with several branches

0_

T

B) A tree that is also an arm

=

PAGE 37

arm works with four test afni: to tut, program. andrepaw the compdfer’o
environment. The machine may construct more memory for itself by using its
loading and test arms. Furthermore, two x‘w embedded in an array
mey test and repair each other. w.mmmmmmw

designed as the processor of a universal computer-constructor-repairer.

Chapter 4 siso discusses practical production lssiies snd spplication
areas relevant to high-reicon machines. o

Chapter 5 discusses processing-layer machines called tree machnes.
Random-access and track-addressed uqucntw-aeeo« memories may be
efficiently realized s troo mmNm in ﬂ'aud aTays. Thh ic truo bocum iree |
maehnoualiutmaro Wopﬂatcbmﬁmwﬂehmybovimodaamdl
setofmddoswithacomnmﬂbmuﬂcmw;ugwﬂhmm
bus accessed by only one active module ﬁg givon time. Each cell in a tree
machine is a balanced, essential cell whose function state includes a unique name.
which a tree trunk, which may or may not-haveieftsheot branches, extends from

All embedded tree machines have tree-like réléoN

the tree’s base cell (see figure 1.8). A tree's base cell is the only cell that is
directly connected to the Input-output lines of the tres mechine. Two embedded
tree machines are equivalent if and only if they hwo the same set of cell names;
the perticular shapes of their tree-like reicon networks are irrelevant. Thus an
embedded tree machine whose reicon network is an arm may be equivaient to an
embedded tree machine whose reicon network has several branches. Tree

PAGE 38

- machines are embedded in flawed arrays more easily than arm or high-relcon
machines. If there is any path of good cells between two good celis in a tree
array, those good cells may be incorporated in the same tree machine. Interwoven

test and repair processes for tree machines are like those for arm machines.

PAGE 39

Section 1.4: Array Repair

Chapter 2 reviews particularly relevant work invelved with celiular
arrays. Many have’ préserted particuler arrity“desighd. ‘Sowe ‘have prasented
methods for testing and . Wit of tiess methods use
custom metallization, but some use programmed repair. Some have concentrated

on necessary and sufficient conditions for testability or disgnosability of a
particular type of array. We design cell modules which are incorporsted into an
array to enable testing, loading, and repeir. We aleo present the first systematic
treatment we've seen of the affect sn embedded machine's communication
structure has on the testability and repairability of an arvey for smbedding thet
machine. | | |

We describe how constraints on the wiring betwesn essential cells of a
machine affect testing and repair of an array embedding thet mechine. Chapters 3,
4, and 5 coneider this question by focusing on three related cissses of machine -
the arm, the grid, and the tree. Figure 1.9 indicaiu how thou three classes
relate. Givmaﬂmadquwtem.ﬂmtwoﬁmmmﬁd the
repair process in the following way. The flawed array is viewed as a flew pattern |
(see figure 1.10.A), with a dot corresponding to & good cell and an X corresponding
to a flawed cell. The machine to be embedded in the processing layer is
associated with an uaptid machine and a class of equivalent embedded muchinos.
in considering repair of an erray, this class is restricted to embedded machines
whose dimensions allow them to fit into the flawed array. The nature of this

Rt TR R 0 T TR e e AN St e

Wvdm class My mwmm

w18 s

ttut the. mummmmmmm m«u X

-.5?‘; R SO

Thaarrayioropdmdteombodﬂntm F

Flagy PP

deciredarmnnchmwlthlScdhdl "

554»35“‘9

We noted that the neture oi ﬂ”‘?éﬁ%f’ﬁ' depgnde on the
function states associated with a given mé« instance, balanced states mey
expand the size of an equivaience class facilitate repeir. Arms and
trees use balanced calls to faclitate taugggg repair, The balance of celis in
transmission um facilitates repair of W embedding Ngh-fdcon machines. |
.Flgurc 1.10.C shows a 3 x 2 grid mch!n@ :;boddud in a flawed array. The
reicon-2 nodes in the mtwwkMih Sraramicsion ks conndicted to grid
cells. In grid-embedding, cells used as m%w sssociated with repelr.

For ovory flaw pattern and~ Wf essentiel machim. there’s an
associated optimum repatr effictency, mwm highest .ttdmhlo ratio of the
WofMMﬂdmtthdewmmm in
figure 1.10 the optimum repair .ff.ciuws*w%m for grids, 13/14 for arms, and

l4/l4for trees. Let OREg ORE;, and ORE, be the optimum repeir efficiencies for

- agsotiated relten networks have at feast § nod

" PAGE 41

_ Fig. 1.9 Relation Between Grids, Trees, And Arms.

If a grid’s essential network has a certein number S of squares, all the grid’s
“ For éwch ot a grid relcon
notwork’anoMMuomwmctruMsﬁmNm Nis
greater than oreguel 105 One trmors of-the tsee 0bNSTWOks o1 ¢ gritf's reicon
networkwearms; uchhnnorfewarmdu Atwmmmsm _

A) The siinglest relcon network of a grid - "%&

B) Another reicon network for the same grid

’ I3 T

C) Tree subnetworks of A's relcon network

it

D) Tree subnetwerks of B's relcon netwerk

=hiEil

o R L T LiNE

PAGE 42

Fig. 1 10 Repair Of Arrays WIth The Samo Flaw Pllhm
" A) Flaw pattern

5 ><

o s X s

B) 13-node arm in flawed array

The repair efficiency is 13/14.

C) 6-square grid in flawed array

% ¢

oHZle
e

The flaw pattern has:14:dols. . The embedsied: relcen nelwerk has 14
used nodes, but 6 of these are essential nodes and 8 of these are
relcon-2 overhead nodes associated with transmission links. The
repair efficiency is therefore 6/14.

D) 14-node tree in flawed array
¢-

IJI
XX

The repair efficiency is 14/14.

PAGE 43

grids, trees, and arms for a gwen }ﬂaw.b‘attern. Bouuu of tho relahon between
grid, tree, and arm machines noted in figure 1.9, ORE, < ORE, s ORE for any flaw
pattern. Chaphn 3 and 4 explore r-pdr efficiency attained by programs that
simulate repair for arms, and for grids and other high-reicon machines. Chapter 4
compares the rﬁulta of these oxpﬂimgmw‘mhlm theoretical
expioration of hctin; and repair argue hrw oriented, when possible, toward
limited recuirements on the eommm between & machine’s essential

cells.
Chapler 6 summarizes the thesis, suggests further production-
oriented and theoretical projects. B .

The next chapter prcvidibt«c;n‘lé;d by exploring other systems
approaches, comparing them to this one, and gonsidering evolutionary trends which

RERE R G R e

PAGE 44

CHAPTER 2: CONTEXT

Section 2.0: Introduction | |
This chapter puts this work in.context with respact to relevant system
approaches and evolutionary trends. -Key s of Callular. arrays. are
discussed, and the relation of our approach (o thess paramsters is deteiled.
Celluler arrays and conventionsl IC 2. are. comparad. . Fabrication of cellular
arrays on a silicon slice is shown to be: similer. to. conventiopel fabrication -of IC
; . tronds are discussad: rapidly
Increasing capabllity of integrated circuits, @,mm, on, slactrenic

- and Jncreasing |

circuit "chips™ on a slice. Four evolutiopar;

machines, mass-production of a few high-volume;.

x",.’,!,,q Babon . s ad

ragul,arity. Our approach is viewed as a systems approach tailored to the realities
and trends in digitsl system design, menyfacturs, distributio
Other efforts taward very high integration, testing and repeir, and caliular machines
are reviewed, and they ars compared 1o our approach. .,

ang maintenance.

TP
el

PAGE 45

Section 2.1: Celiular Arrays

2.1.A Introduction
This section locetes our cellular spproach in the domain of celluler
orray systems.
The behavior of & cellar arrdy depends oh the functional capabifity of
its cells, and heir ifterconnection. Since elettronics is currently most sited to

arrays. We focus on distinctions in array intercenne!
function. We briefly consider the currerit state of propose

implementation of a ceil’s function, we describe cells using corresponding
terminology. Howsver, the spproech applies to fi ctignally squivalant arrays

2.1.B Array Interconnection
Arrays with many different types of interconnection have been studied,

but 1- and 2-dimensional arrays sre most common. Ih a checkerbusrd array, a cell

may send signals to and from at most four neighbors. The cutpoint array, and
other arrays with the same type of signal flow, have been extensively studied.
These cutpotnt-connected arrays have the same interconnection network as a
checkerboard »eray, but signals may only enter a cell from its left and upper
neighbors, and leave the cell to enter its lower and right neighbors. We chose a’
richer interconnection structure, with its slightly higher associated cost, for several

reasons.

PAGE 46

1) Most machines require fewsr cells and lass .sseacisted delays in

checkerboard arrays. Cutpoint-connected arrays are.limited by the fact

that an opqratign on the outpuhqj some ”“, cannot be performed
sbove the lowest of these cells, or left of the rightmost of these cells,

without external connections for this purpose. wrd. erzays

don't have this limitation, because each cell aytputs in all four
directions. This means, for instance, thal, the §
embedded sequentisl meching. may be formed Inside 8. checkerboard
array. | |
2) Sigrals from an erbitrary cell in » perigct orbitrarily lacge array

can cause loading of an arbitrary cell in umgg:;gywylfum. in an
: interconnection path from the Ioading cell_to the loaded cell. This

important capability is therefars impossible in cutpeint-connected .

ck connections of an

~ arrays. N s e g ,
3) Repair is more flaxible n,checkerhostd acrays, dus 1o the ieger
set of possible processing transmission states

, Tho chackerbwd amyo intj tign atrmhn hm oompgtiblo
wnth the two—dimonﬂoml step-and-repeat nature of IC. preduction. . F;xtlnmm.
this structure is relatively essy. to understandd and, mer
instance, hexagonal tWO'd'WW structures.

PAGE 47

2.1.C Customization Techniques

* Another aspect of cellular arrays s their customization technique. Al
‘but the simplest arrays have the property that each cell can be customized via
memory elements to one of a set of function chiu co:rnpoa&m to various
output functions. Thus an array can be customized to rodﬁzi a particular |
embedded machine by one of several custonization techniques.

Unaiterable custonizatioh late in IC production is a common, extreme
ve metaization via 8

form of array customization. A common technique uses selec

mask, fusible metal links, laser, or mechanical scribs. Polycell, Micrometrix, Read-
~ Only Memory (ROM), and Programmable Logié Arrays (PLAY provide weli-known

 examples of this spproach. Because sich customizalion is Uneiterable, design or

customization errors can be particularly disastrous.
Prcgnmmobu ROMs (PROMs) nﬁiov‘ grutor ﬂoxibﬂlty by allowing
customization that is alterable, albeit currently difficult. One such tachniqm uses

ction ttatu by appropriato
electric signals (see <Fesney 72>). Intel guraitess éach transistor to hold its

FAMOS transistors, which can be put in T of 2 con

state for 10 years. High-energy ultraviolet light or x-rays éan erase these
memory elements for subsequent re-programming. ‘Ditficulties include the high
voltages, long write-times, and difficult srasing associated with the FAMOS
transistor. Happily, Staniey Mazor of Intef éxpects thet Togié-programmabl o,"':l'&lc-

eraseable FAMOS transistors will be developed sooh. This would provide the

great advantage of a logic-compatibie, read-mostiy, nonvolatile semiconductor

TR el i e SR

SR RS R TR ARG

PAGE 48

~ Programmable Logic (not to be confused with Programmable Logic

Arrays) provides the uitiete/in cuitomizitidn AeSBIRY; ok Earvently wiffers from
volatility. The arrays presented in this thesis are 9 type of programmable logic.

Re-customization of prwnmmblo.lodc is as easy os loading its function-

specification state bits. We develop an approach Mhﬁo test and repair
of arrays of prbgnmmabh logic. Buitdingﬂgqt &zd l'lp?f moch-nicm into &

| progrmnbloaa'oycmprovldomww MM‘MM
 associated with less! ﬂmdbly customized WM |
Bccoeu ‘a practicat WCW e logic would

probably be muzqu via semiconductor technology, and Qmun semiconductor

memories are currcntly vohmo, progrmob&d logic is currently volatile.

"‘(or memory, such as 8
n logic.

Devolopmmt of logic-moﬂb!e nonveolatile semiand

| mdm.dmmoflrmosw-.wmmuw

Afurthucﬁfﬂedtymthproymﬂoloﬁchihimrmdcﬂ-ddwt

compared to motal-cuotomiud arrays. This is trao boe&u« thoro are delays

A

d_‘j-u-(m figure 21). While

W—*‘*

there is no mng m. &mcqty, two faicte "“‘““?"?““* situstion. The first is

that the dclays through gatorA MB inlghp; -!cd be made very small

;gf..,.». _..i
because these ol.monh can be designed anumim F8. a{function-specification
sut.ugmllmmsMommmdpmm

mammtcmwmmeWﬁthmm

associated with tho sd.cﬂon of fmelie&

nd

PAGE 49

-

Fig. 2.1 Two Customization Techniques .

a) Metal~customized

B) Programmable logic

Hr
e

s et T ST

PAGE 50

gatecarobocominummndy faaLmoddiywhonMpndforukmqu.

low-load environment. If Joseptnon junction ntu bm pnctlcd. the expected
2t ES LTS DY B

delaythroughagateofabout lmoc. isﬂnsuﬁddayuthatﬂwmh3cm of
wire.

A final probhm with provammnbh lo;k: lg lts domund for oxtn ata

WHEE
for loadmg function-opocmcatwn stalo blts and uloctlng ».a particular output

Brong

functlon. These gates comum an intogntod cifcuit't wrea and powor Tho f.ct

a3 ari

that extra area is roquirod for those gatos n offut somawhnt by tho fact that
programmbla logic minimzos non-clrcuit prwammim mu». sueh as tho mny

»z Lk T

| ("area-conwning bond padu required by como eustom mtdwon tochnlquu This

Lol lmEveg v

becomes more stgniﬂcont as ehnnklng tramittor gomtﬁa muko bond pado and
~ other mod\unicd customiutlon campononto oewpy ’ r.mavdy Nd\or pto wron
Tho powor conaumptlon problcm ls dlovlotod by tho hct thlt functlon-
‘spocmcation shtc btta chango stato lnfrequcntly; ln tom toghnolui», an
| ’domont’o power diubpction is vary |ow whon thc dmnt h not chancim .MQ.

Because of tho pm comtraints on lCc, mat propoulo for loadln;
| prozrmimbh Iomc attompt loading via eloctrk: si(mlt’t&ww loadc lt the cd(o
| of an array Chuptor 3 reviews tho moat attroctlvo mthods that hava bun
suuestod for programmble logic loaden, and givco s Ioading approacl\ with

advantages achlaved by addmg a smll amomt ot clrcdtry to nch cﬂl in the aray.

PAGE 51
21DSize

Siza ia anothlr distm;ushmg attnbutc oi coﬂdlr arrayt. A parﬂcd.r
arrayssizo&poudnmthaduafuchcdludthomﬁwﬂcdh Thobnt’
moasureofmncdrsduisﬂnmmtofwuitmmmsmmo is
" too dependent on tmm dcoigmr dedmtimc.mddodmddt to be usetul in
'prellmlnary utim%lon of tho sizn ot cdh. Cmo;.;uﬂy tho normd mouuro of
: vsize is gata~count of tho cuﬂ This mouuro hn lhvdtod vatm bocm of tho
" variable typas. mmbof of lmutc. and dmoity cf nm. and bocm of tho trmoff'

B L BTHONS

" between mputnosdput nm md am for a cdi pﬂfermsa p«ucu-r fu\cﬂon.

- Nevertholess, sovm'al authen hnvo usod gato count "a mnm for rouzhly \

 classifying arrays (sse <Minnick 87> and mmq 71>) m.y diotinguhh
| ‘botwmmmwuumganmwuummmammw
 macroceliular mays,inwﬁchuehcouea\tﬁm;tm m;m »
7 The cells prountod in this tl'mis un f}fnw loﬁc dmnts ond tcw
function states. The lo.dug mochmom. th. only md\u:mem to all the cells
| »wedlscuss, ssmm figure 35. |thuauﬂmunotmmm»mnvo
mamory bits, with oﬂchtiy more if hﬂng optiom are impontod. A proemiu
| 'mechanicm of .ny size and complexity my bo eemb&md with tho Ioodor Tho
actudcw.adtymm.carmmﬁnmmwmmu\dma
" tradeotf between yield and overhead cim.dtry }nit;\: ;mmory mayt we've
desazned. this tradeoff is the main consideration in determining how large a memory

Avtoputinmm “The universal cell presented in chapiar 4 uess less than one-

PAGE 52

hundred gates and memory bits, and only fourteen function state~. This simplicity
increases cell yield and reduces test time.

<Mukhopadhyay 71>, <Kautz 71>, and <Minnick 67> have compared the
number of cells of differeﬁt types required to perform various functions. We make
no such comparison here, for many of the functions we perform cannot be
performed in other proposed arrays. All our techniques are applicable to

arbitrarily large arrays.

2.1.E Function

Various functional categorizations of arrays have been made. These -
include consideration of the functional capabilities and the time behavior of cellular
arrays.

The most common functional classification views. an array according to
its ability to do combinational logic, memory, or more general sequential machine
functions. <Shoup 70> discusses this in terms of "generality” of the array. Our -
‘testing and repair techniques work for any cell generality. We discuss some
memory cells in chapters 3 and 5, and a sequential machine cell in chapter 4.

The chapter 4 array is able to realize an arbitrary digital machine. In
particular, the array can suppori a finite-configuration universal computer-
constructor-repairer. That is, a finite number of cells can be programmed out of
their initial quiescent states into an embedded machine ablle to perform any

computation, to create a new, disjoint embedded machine able to perform any

PAGE 53

“computation, and to do these things in a faulty array. The embedded machine’s usa;r
of a loading arfn and test arms allows it to test and ﬁrogfam its environment. it
can, for instance; enlarge its memory by proper loading of cells. <Rowan 73>
describes a cellular array, of more complicated cells, that Is computation-universal,
but not capable of construction or repair. |

In a synchrbnous cellular array, all cell states are re-calculated
simultaneously. ‘Sevcral synchronous arrays capable kof :upportinj universal
computer-constructors have been presented. Von Neumann's 1952 pioneering
work, Theory of Self-reproductng Automata, presented such a 29-state sutomaton (see
<Von Neumann 66>). <Codd 68>, <Gardner 70>, and <Banks 71> followed with
simpler cells. While theorstically interesting, cync!wonous arrays are perlphanl to
this thesis because they are currently impractical. Since state changes must be
synchronized, many technologies require long clock lines linking all celis to a
common clock. Signal transmission is severely limited by the clock frem, since
a signal takes at least one clock interval to propagafo from a’cd't to its neughbor
Thus the transmission delay through a cell in a synchronous array is at most the
reciprocal of the toggle frequency of its memory elements, which is much siower
than the transmission delay of one gate-delay associated with our asynchronous
arrays. The overhead circuitry for all prbpoud synchronous arrays is high.
Testing, loading, and repsir appear to be more difficult for these arrays.

Asynchronous cellular arrays are far too numerous for extensive

consideration here. <Minnick 67> provides an excelient early review. In a more

PAGE 54

recent presentation of a theory of logic design withﬁl&mm% Mukhopadhy

71> summarizes and analyzes some of ,th,o‘ major cellular arrays. <Kautz 71>
discusses various arrays for arbitrary logic, including 'u_‘q_qe,nihl',ma’chim_s;md

special-purpose arrays; many of thd designs are his own.

‘ ZIFermStatel , _ —
Cellular arrays are already widely used. P iC m&ﬁ need no

customization (Random-Accesa Memories), Shift-ﬂogitten), or only a simple

customization step (Read-Only Mem_ori.es, Programmable Logic Arrays) (see <Luecke
73>). There are also a few systems using many ICt. such as the liliac IV.

However, many proposed arrays romain paper-studuc for various
~ reasons, including current impracticahty and IC Mntry lmrtia. Tho charactorhtico .
of some of these arrays have been discussed in this section, as background for. our
approach. This approach overcomes the dif‘ﬁc_‘_:_ullti‘ea. qﬂ}f’ muny pl"ppqoevd‘col_luhr
. arreys. Its loading, test, and repair circuits, and their associsted programs, are
compatible with many arrays that have been proposed. |

PAGE 55

Section 2.2: Array Fabrication
| Fabrication of LS| checkerboard arrays is similar to fabrication of
conventional integrated circuits. In the conventional approach, hundreds of |
identical ICs ara batch processed by selective doping and metallization of a wafer
that is usually 2" to. 3" in diameter. Typically, a key element in this complicated
process is use of masks to selectively expose photosensitive material on the
wafer to light. Each mask is formed by photographic reduction of a pattern. That
pattern is formed by use of a step-and-repeat process which iterates a basic sub-
pattern throughout an array. Each sub-pattern corresponds to ane of the iterated
IC’s masks. R
Each of a wafer’s identical circuits contains bonding pads, which are

used for probe-testing and possible connection to the IC package. After a wafer
has been batch-processed, each of the identical IC "chips" is tested via electric
communication with a test machine connected through probes to the chip. Those
chips that are defective are inked. The wafer Is diced along horizontal and vertical
scribe lines into component chips. Those chips that have been inked are discarded.
The other chips are packaged and retested. Those that pass these final tests are
ready for use.

For a checkerboard cellular array, a basic circuit is similarly step-and-
repeated to form an array of identical circuits. However, the p§ttorm of edge-
sharing neighbors overlap slightly to allow lines to interconnect neighbors.

Because most of the identical circuits, cells, communicate only with thoir’ edge

, array comnmcatton nood bond ppdo.

TR TR S R T N S R D R Y A AN

PAGE 56

neughbon.mootdonotn«dbondpm Onlyllunﬂutmbqundlor oxire-

|y 570

B GOTE W

1orthoarrayn»dnotbedced Seribqtkmmwmbﬂwmm“

a wafer that ore mtoMod to be partc of dffount meys.

Ay

,aro.vcnhaﬂy

w RS OFBE 8

| packages. Thus L) uvon chps Ilfo-cyde uuudly M httdrprnutdn(Juith

|dentccal chlps, separahon from thcm. and ovpn}gl fe-conne 'tion tg other chips.

Most convontioml lC Dack

| «WQ'lI see that thoro are many advqntuu to 2 untm apprqach that doan

l‘ roqunn upanto hnndlin(of uch ch This e .d lﬂr two
pnporlg if oy of }tydr

el --ﬁﬁﬁn ,f{:‘izx
R

pﬂnclpie reasons. First, conventioml ICc armt

compononts an fauity, thh mcenitatu mking) digpkgt_ndl u;ough 0 that

| there sa rmonabh chlnco it wﬂl bo porhct. &cogﬁ.fgggghm Qf amlll ch?po
roquresavariotyofchipq adieocontdmodymtypgo(dip.

“This thesis’ wmwmmmmmwﬂm

with o digitel

lnmanymn. Adicolsdaimodsothutdoctﬂc

. fnut g% DY "Q 8BS ¥ “’L‘*Z?'—
memd!owstuhngmdropmofﬂnm it ofﬂ\odkocmbo
‘ o oty g rEA wf.f"z.i g

| toloratod. Chaptor 4 dim such ln amy of

et sy

 simple cdh th-t e 50
s T BVERA 07 EiET
'flaxible that a larga onou@ array cen pcmm my camputation, and cantatmd

ropdr uts collular onwromnt.

ir

| Thic thosis focuuc on chockorbmd arrays d.glgmd tp tcj‘;pto

kb RETE amtensig M et B

i vdcfective colls Colls are programm;blo log&c cgup; Qn gach workin; ccll

Y Bers K

ogrammablo fmctim—opodﬁcaﬂon m Nh W'I tln hnmon tM th. ull is

PAGE 57

to perform. Odice an array ‘has been formad, electric communication of a test

. machine with & ‘small number of ce“s ?o In iin array tntc tho onﬂro,

arbitrarily lm array. The testmg machine uses tho same eomuicutim Hnlu to
program thoarnytounbodapﬂoctmcﬁmbywepﬁdoutﬁmof fmction—
Aspedﬁcaﬁon state bits. The same md/d' other mﬁm Iinkt then provkb
the inputs aﬂdoﬂmﬂ:ofmmmmmmuedhhpmw
function states, Re-customizing the arny is s simple o8 n-m u. fmeﬂon-
‘specification state bite. Shouid an srrey machine bm d.mav. bocauu of 8

mﬁnkoewbemodfor

A

tosttnzandrupﬁﬂngtﬁ-m mmrwmummmnyby °

digitel mxﬁmrnpdrmbowtmﬁqowwm Ropdrmom
‘ occwﬁwoughcmmﬂeattmbctwmmmaymd.mmhtutm hdud,

malfunctlon of its circuﬂry, .t md Mt b‘ d“:e?f;{'

the universal aruy of chaptor 4 can aecopt M mch%m that tut and
vrepalr each other. ” |
Thoarraycanbewewedaabinofmpurh,cdh Foralargobln,
‘there is a high prob.bmty that a certain p«mm of porb wm be good. 'nm an
array is fabricated to have more than mugh parto for a psrticular onvlaionod
applacatnen The avulobiﬁty of sparo porta which can bo doctricdly Mtched into
- active status aliows the reaslization of IC poekqu with mon fmctiond powor
That is, higher integrttion is attaimbh thmuh autmtic npdf qu\omur-, thio
spare-part capobmty facilitates ro—oustomiuthn, rdhbﬂity, lnd mdntdmbmty

For many typu of circuit Mluro, an aruy can bo ro-pro:rmed te ruumo

e “~ H

PAGE 58

porformo like a perfect array. This allows graceful m °¢ an .".y
Simplification of system production antF Wi rdrck MV
;- lnanisy Doweriul capiblifties deslgna it s itih wtiidlard It ANl circuitry thet
-salbre: program-conbretied testiAy, mﬁﬁ-&*&sﬁr il .wmd. |
RO T p—— athe mem%ﬁwm “Corthonly
, sdiies (6" cause
array testing, customization, and repair vie slectric communication with th ‘Eallialer
array. The standerd, modulsr natiwe of ai drray end its Arrey Pro;rcm lmplln
... iyt dighrinalinkility. roalization: of Iy eytenie0s - Gt e
- anoniuing yieid: Thatis sachvprucovsic i LININAS WHAcd Voad O sGhik Of the
 produst. Welempraceming: yleld losied Wﬁ*m%ﬁe tpe
dﬂh& =:aren or'line defesty; snd spok AWty 1¢ 27517 BouaTEy
o e Aresar line m@a‘m&wa Thilty ‘compors
 dus Aeshendiiog, siselignownt; and oI it turs: > HORERRING #25 :ﬁﬁc unt
~they’se: usuelly. Coupedh by humen errare-and Nty iy welliéihtralidd process, 1
. BEmcrare onc.al lithe significanss;:
- Spa detacte, characherited: iy o ritiom - Pt

throughout the wafer; sre mor& fmportant: ﬁd T ST

- fture. < Fhele most-cormpn ‘cacsd s WW% 71,) They can
revalt from, for-instance; ‘M;mwﬁwi‘ffn’ ﬁii‘ lhd‘ W Wi ﬁi ” “’M

L 4 s S Ey m el
sud s BIEeyRl FMTETSTE S0 SR
vpa il g ows BUOSRTL i

. PAGE 89

contact printing of the water. |

 If water contained-cnly spet defasts, one weuld axpect en-expenentiel
decrease of chip yield, s measiad by 1he.persestagecol pariest chipe; es &
_ function of active (companent-cantaining) chip aess. :shisiges 78 notes-Whet the
_yield model_pro pgwnll jo ot sigeronsl ‘ misuletturing

Y = (1 + DoAf3)?
Y is yield, the ratio of good chips: te istsl-chipes..:Dy is. thenumbir of defecte per
. square inch of slica. A s the.acive:sres of aolipy insequetusinthes. In 1972,
Hodzos said that " Do value of MMMMWWWW
erations by Mwmm kb bipslex: apel eilicarr-gate: '
atess shepa-besitios twse for wafer

Because there are othaf-

)

tabrication, there are.ather. yisid. Josaes in fabrioation ok cunvamtionsl IC system.
_ Waters are droppsd and Mokma’MymmdﬁhMm sites.
Perfect chips are packaged or bended incoerecily. - Tusk-pragreme aind testing
machines .f‘nil; causing. erranssus. rejection of werking.iCs. Packegev' are
misiabelled. (One engineer told us of a MMW=WWOQ

_ with different contents in.the. same; conteines;: betorasiabielling +-they were all
read-oniy memorien) Pertact ICa are miswicod ar-brokens .

| Great sxpense is. incurred.in atismpting:deminimize:Yield lovees.

. Manufacturers. update their. aseembly. lines, stiampling.te.achiove a clesn, efficient

flow of meterials. Circuits u.<mm~m_mm constraints. A prime

B sy IR S g

PAGE 60

one is the need to minimize pins leading from the chip to the extra-iC world This
allows lower packaging and Iead-bondln§ costs. AWQ rq;og:\izod the need to
minimize pins when we developed a loader that raquirod only a few pins. This is
also a major reason why our testing and repair procosm require access to only a
few' pins. Because yield and cost dopond‘pn many variablu, including time, these
figures can only be expected to point tq some relevant comideratiom iniC
production. More detailed analysis than Is 'appropri_&e here can be found in
<Hodges 72>, <Murphy 64>, or <Seeds 67>. o |

Table 2.1 Chip Yield And Manufscturing Costs
(assuming $20 slice fabrication cost and 200 defects per sq. in)

: SS1 Msl LSl
Active area (mils) 36 x 38 60 % 68 120 x 128
Chip size (mils) 50 x 58 80 x 88 148 x 140
Probe yleid (percent) 80 R - N |-
Chips per 2 in. dia., slice 1208 ‘ 400 159
Good chips 968 200 22
Cost per chip $0.82 $0.10 QB.SO
Package (DIP) 8.83 - 8.84 1.00
Assembliy : 8.685 8.65 8.58
Final test 8.82 8.02 8.20
Accumuliated cost B.12 : 8.21 2.66
78% yield at final test ‘x1.4 xl.6 1.4
Factory cost $8.17 88.38 ‘3.5_0

‘In a March 1975 letter to us, Hodges mado the following pointt. Die cost bhas
declined slightly; and inexpensive plastu: packaging is now widely used for LSt
Factory cost of LS| components is now in the range of '_Sl _to’ $4. The overall
picture reflected in the table above hasn't Mod mch.; | |

PAGE 61

Key points from the Hodges paper relevant to this work include:

1) Packaging, assembly, and test costs dominate wafer fabrication
costs for all types of iICs, even though Hodgos’ figures neglect pre-
dicing test costs. However, wafer yield becomes increasingly important
as integration level increases.

2) The absolute cbst of packaging, assembly, and testing becomes
much higher as one moves to LS!.

3) Packaging accounts for a subst#ntial yield loss. (Hodges is
probsbly oversimplifying in assuming the same package test yield for SSi
and LS! (see <Camenzind 72>). LS| tends to use packeges with more
pins, resulting in more packaging errors. However, improﬁd assembly
methads for LS relative to SSI would tend to offsst this)

Hodges makes the important point that "engineering and marketing costs
are probably the dominant factors in the overall cost of LS| today; this will
probably continue to be true as long as the market life of products continues to be
short due to rapid innovation.” This factor is particularly important for custom LS,
where the interface between the IC house and the IC user can be very clumsy
(see <Camenzind ’72>). <Mostek 73> notes that Mostek’s charges for custom
tooling of an IC range from $20,000 to $55,000. The exact amount depends on the
manpower and testing demands made on Mostek. Delivery time for a small number
of prototype units ‘ranges‘ from 6 to 9 months after the start df the customer’s

interface with Mostek.

PAGE 62

We present a strategy for realization of large, high-yield. low-pin ICs
via automated, electronics-oriented means. Because customization and repair are
electric processes acting on a standard IC array whose cells are designed for
testability and repairability, costs can be low, system modnﬁm can be quick, and

the inevitable errors resuiting from a plethora of componen(s - [Cs, testers, test

programs, etc. - can be minimized.

PAGE 63

Section 2.3: Evolutionary Trends
Evolutionary trends in digital systems reflect shifting realities and
priorities important to digital systems planning. These motivate an interest in

electronically testable, programmable, and repairable cellular arrays. Those trends

most imf:ortant to this thesis are summarized below.

2.3.A Trend 1: Rapidly increasing capability of integrated circuits

Table 2.2 indicates the skyrocketing performance and complexity of
integratéd circuits (see <Altman 74>. The table assumes a rectangular chip, and a
"device” is a transistor. Prices have dropped with the rise in IC performance.
<Moore 74> states: "One thing that Shockley was interested in doing was making
the 5-cent transistor. At the time, it seemed like a goal so distant it might never
be achieved. Many people thought the dollar transistor wasn’t in the cards. And
now we sell transistors as parts of an IC at a very small fraction of a cent -
probably 1/100 of a cent." This development comes from introduction and
refinement of various IC technologies - for instance, bipolar, MOS, magnetic
bubbles, and Josephson technologies. Each technology has inherent physical
characteristics that develop as it competes with other technologies. Function per
unit area increases as function per circuit element and circuit element per area
increase. Furthermore, reduced defect densities allow the packaging of larger
circuit areas. In a 1973 MIT talk, Bob Noyce of Intel cbserved that the trends

toward lower defect densities and higher device densities - each changing by a

PAGE 64

factor of 2 every 3 years - had helped cause the doubling of the number of
transistors in the most complex commercially available chip every year since 1959,
when there was a single transistor per chip.

This rapid increase in IC capability is a fundemental cause for a rapid

increase in digital system performance (see <Turn 72> and <Kosy 72>).

Table 2.2 IC Evolution

Typical Industry capability 1966 1973 1980
Maximum clockrate (Mhz) 8 300 2000
Transmission banduidth (Ghz) .3 1 6
Speed-pouer product (pJ) 188 3-18 o1-1

Complexity
Maximum chip edge length (mil) . 198 258 508
Device density (mil2/device) 208-58 2-5 .1-.3
Maximum transistors per chip 56 5000 280000

2.3.B Trend 2: increased reliance on electronic machines

Rapid improvements in IC capability, combined with other factors such as
rentalism (see <Toffler 70> and <Vischi 72>} have fostered highly volatile,
competitive IC and digital systems industries, marked by rapid product
obsolescence and burgeoning markets. These factors have also shifted system
design priorities toward reduction of mechanical and human labor by use of
electronic devices. ICs are increasingly used to reduce other costs of electronic
systems, such as interconnection costs. |

The replacement of mechanical machines by electrical ones is pervasive
(see <Foss 70>, <Toffler 70>, and <McLuhan 64>). The caiculator, cash register,
and watch markets provide conspicuous examples. Microlectronics provide speed,

PAGE 65

size, weight, reliability, and cost advantages in these information-oriented, low-
energy applications.

Increasing dominance of human labor costs in total digital system costs,
coupled with a need for shorter design and maintenance times, have spurred use
of microelectronics to reduce labor. This is part of the society’s overall move
toward automation. <Bell 72> observes that: "In contrast to technology, system
" design costs have risen; this shift is demonstrated by, for instance, the decreased
emphasis on minimization in logic design, but on the other hand, reliability, mass
- producibility, and maintainability are now the important design criteria." <Franson
74> notes that the shortage of IC designers is forcing system designers to use
automated help. <Hodges 72> marks the dominance of engineering and marketing
costs in the overall cost of LSl. Labor-intensive software costs increasingly
dominate hardware costs in digital systems. Bob Lloyd of Advanced Memory
Systems told us of the trend in the IC industry toward silicon-intensive, computer-
intensive production. <Vischi 72> lists rentalism and "shortage of technical
manpower and the increasing expense of salaries and training” as pressures for
higher system reliability.

Of course, the relative advantage of ICs in reducing other costs depends
on the particular application. For example, the merits of reliability via extremely
reliable components built into a redundancy-oriented system are much clearer in
an aerospace application than in a commercial one. Table 2.3 gives the r;lative

costs of efforts to insure various levels of IC reliability (see <Peattie 74>). The

PAGE 66

categories, which range from commercial to captive line, represent a spectrum
where "the basic factors producing considerably different failure rates are several:
the device design, the number of inline process-control inspections used, their

level of rejection, and the degree of reliability screening.”

Table 2.3 Relative Cost Of IC Reliability Efforts

Part Class , comm., ¢ b a capt. line
Failure Rate (%/1208 hrs.) .1 .85 .886 .083 .801
Cost 1.6 1.3 1.8 2.8 4-6

<Peattie 74> also gives Table 2.4, which demonstrates the wide range
of reliability expenses which various applications demand. It’s a table showing the
cost of detecting and removing defective semiconductor devices at four stages in

four types of system markets.

Table 2.4 Cost For Failure At Various System Development Stages (8)

Market Incoming Board Mount System Test Field Use
consumer 2 5 5 50
industrial 4 25 45 215
military 7 50 128 1008
space 15 75 308 2081

Demand for higher integration level is consistent with the increased
importance of ICs in the total system. Higher system integration results in fewer
ICs to handle, test, and store. Decreased system size and weight have obvious

storage and transportation benefits. (For instance, many IC houses ship IC slices

PAGE 67

overseas for fow-cost packaging) A less expensive printed-circuit or wire-wrap
board is required: User interconnect cost'a,'-wtﬁch may run as high as 50 cents per
TTL gate, are’ rsduced (see <Noyce 71>). “Since bond failures account for up to
55% of all IC fisld failures, a significant reliability imevmvf cary be made.” (See
<Colboume 78>y Higher integration also reduces package-related failures (ibid).
Improvements in device matching, noise immunity, driver circuitry, power
requirements, and tranemission delsy aiso result from higher integration, fewer
packages, and fewer interconnects. |

There are also disadvantages to high integration levels. A higher
number of circuit elements per input lead makes a system move: difficult to test.
<Vaccaro 74> notes "the major dilemna facing the user of LS} tedsy is simply that
‘we can build snd are building microcircuits today that are more complex than we
can adequately test, functionally or parametrically.” <Vinson 74> notes the same
difficulty with the increasing complexity of circuit boerds. Higher integration levels
have implied higher investments in IC chips. For instance, estimstes of the total
development custe of Intel’s 8080 microprocessor are in the million dollar range.
This high investment ptaces high demands on the device’s design and reliability.
One poorly specified component can result in Iarée losses. High carryover from
one IC system design to its successor is necessary to reduce the stauerinz
development costs. For a given technology at a given time, higher integration
implies lower yield, because of the higher probability that one of thé many

components will be defective.

PAGE 68

2.3.C Trend 3: Mass production of a few high-volume components

The realities of LS| design, production, delivery, and maintenance argue
for the mass-production of a few powerful, high-volume components. <Franson
74> notes that Fairchild and National are emphasizing standard ICs over custom
ones because "they get a better payoff for the engineering time and capital
expenditure.” He observes that "the big IC producers aren’t after the business
| unless the volumes are high - 100,000 per year and up.” Each time cumulated
production of an IC doubles, its unit price tends to drop 30% (see <Luecke 73>).
For high-volume devices, this is chiefly due to a learning curve. This learning
curve, resulting from detective work into ways to improve production, argues for
high-volume devices. <Vaccaro 74> cites availability and product data-base
reasons for his conclusion that "it is cleér that considerably more attention must be
paid to selection and standardization of fewer proven device types within the
Department of Defense." <Vinson 74> observes the maintenance difficulties
associated with a plethora of ICs, circuit boards, and testers. He discusses
designing for testability and maintainability, and suggests standardization of system
components, test procedures, and equipment.

In his 1973 MIT talk, Bob Noyce compared the production of high-
volume ICs to the printing of money. In a 1974 MIT Project Mac talk, Rick Dill
agreed; and compared the production of Iow-volumye custom ICs to choosing
engraving over money-production.

<Noyce 71> observes that design of standard components with

PAGE 69

capability in excess of many application needs allows the economies of mass-
production to operate.

In his: 1973 MIT talk, Noyce also demonstated the thirst of the IC
industry for high-volume markets. He noted that the amualshnmng rate of micro-
computers was: twice that of all other computers. He observed that whereas the
computer market was 2 x 10° gates per year, the calculator market was 5 x 10°
gates per yeer mxd doubling every year. He estimated the watch market at 10®
200-gate units per year, and the smart-phone market at 10!! gates (2 x 10® 500-
gate units) per year. Microms, a watch company, is now qwmd by Intel. Several
Intel people have told us of Intel’s eagerness to enter the smart-phone market.
The 10/2/74 Boston Globe states that "National Semiconductor said it’s entering
the electronics: timepiece market with a full line of quartz digital watches and
solid-state alarm clocks.”

Various options are currently open to designers of systems with
volumes too low or design times too short (20 weeks average for custom - EDN)
to justify a custom IC approach. Use of standard SS| and MS} components, with
customization via choice of interconnection of the components, is often used for
low-volume and/or high-speed applications. High speed comes from customization
of the system to the task, parallelism, and high-speed operators. Disadvantages -
include the large number of parts required, interconnection costs, and, in 'many
cases, the problems of nonstandard systems we've discussed. Another approach

uses customization of a general-purpose computer via a memory-stored program.

PAGE 70

This provides lower speeds than a hard-wired device. However, it allows use of a
small number of high-volume components. Microprocessors are increasingly
dominating this approach. Chapter 4 presents a cellular array that promises to be
between microprocessor and custom-interconnect systems in performance and cost
for many applications. |

Rick Dill and others have asked a key question: "What should we mass-
produce in LSI?" MSI and SSI have readily identifiablé functions suitable for them,
such as adders, gates, flip-flops, and shift-registers. LSl is very suited to memory,
with its regularity, low ratio of pins to area, and high volume. Bigger, faster
memories are evolving. They may even have added power, such as aséociative
memories. <Moore 73> indirectly observes the need for embodyfng low-volume
systems in a high-volume IC: "We expect LSI to give us some very large building
blocks, such as high-performance processors. Once that point is reached, we could
go on to self-contained systems, but | question whether systems will be
economical except in specific, high-volume applications.” <Noyce 71> predicts that
in 1980 a 100,090 gate "superstar computer’s needs could be satisfied with about
10 bipolar LS| chips. However, even if the capability exists to put all of a
computer’s logic on a few chips, this doesn’t mean we’ll be able to find a practical
design philosophy that will permit us to do it - and that brings us back to the
whole interconnection problem again." That is, interconnects between IC
components can consume large amounts of design time and chip area (80% is a

good guess of percentage of chip area devoted to interconnects for current

PAGE 71

systems - <Luecke 73>). Furthermore, the fact that several layers of metallization
are normally associated with a higher level of integration is a prime contributor to
low yield and refiability. These considerations lead us naturally into the next
| evolutionary trend. |

2.30 Trend 4: Increasing Regularity |

The trend toward component and system regularity is evident. Digital
systems use far more memory bits, which are organized in a regular fashion, than
less regular combinational logic elements (see <Luecke 73>). Functions
traditionally performed by "random iogic™ are increasingly performed by arrays.
For instance, microprograms embedded in memory have taken over many
computers’ control functions, which were formerly done by random logic.
Programmable Logic Arrays, extensions of i-ead-only memories that allow use of a
Eegular array to re’aiize complex combinational logic functions, also evidence this
trend. Increased interest in array architectures evidence this trend on a larger
system level.

There are many advantages to regularity.l iteration of a simple
component, or cell, is consisent with mass-production. It #allows concentration of
system efforts on & component that can be optimized, rather than distributed effort
over a collection of equally important. different components. Sin\plicity of a cell’s
environment allows concentration of effort on design ‘.of thé cell for that

environment. A regular environment is easier to understand and test, both for men

‘ PAGE 72

and computers. "Repetitive layout contributes to the realization of high circuit
density per chip." (See Carr 72>.). Regularity implies constraints on metallization
paths, which usually implies less crossover and crosstalk problems. As a
technology improves, a more thorough carryover of investment is possible between
designs for a regular machine. (<Lathrop 70> makes many of these points.)

These generalities are supported by the rapid evolution of memories.
Their regularity allows concentration on optimization of the memory cell (RAM,
ROM, shift-register, etc.). This optimization is helped by the identical environment
of all memory cells internal to a memory array. For instance, the impedance a
circuit drives can be standardized and well-controlled. Once one understands how
one cell works, it is easy to understand the entire array. Production of the array
can be performed by replication of one of its cells. A memory array is relatively
easy to test. Memories are so common and fundamental that every designer
knows their important parameters. Should technology improve (by, for instance,
improvements in yield and reduction in cell size), a basic memory cell design is
easily adapted to a larger, denser chip. The transition from one memory array to a
larger one is relatively easy compared to, for instance, the transition from one

microprocessor to a larger one.

PAGE 73

Section 2.4: Trends And Arrays

The advantages that make cellular arrays intcreéti’nf derive from their
nature as an iteration of functionally, and usually physically, identical components.
We've aiready explored the motivation for the trends toward mass-produced
standard parts and regularity. These reasons, applicable to cellular arrays, are
summarized below. | " |

Advantages of mass-production of a standard part include:
1) High engineering and marketing efforts
-~ expended on a high-volume part
2) Higher uniformity in production processes
3) Migher availability "
4) Reduced inventories
5) More thoroughly characterized device, which implies
a) learning-curve-related improvements in
design and manufacture, and
b) expended data bnc for relisbility and failure-mode prodictlom

Advantages of regularity inciude:
1) All advantages of a mass-produced standard part
~ 2) Simplified connections
a) easier to design and produce
b) higher component density via reduced interconnect areas
3) Controlled, simplified environment
a) iterated element can be optimized for this environment
b) easier system to understand, test, and maintain
4) Performance increase via numerical component increase,
" implying the ability to incrementally add performance
5) Greater carryover between designs /

When cellular arrays are used for realization of combinational logic or
| sequential machines, they have added benefits. Controlled customization of a

flexible, regular, mass-produced device implies more stages of mass-production

and a faster product development time than for custom realization of an irregular

PAGE 74

f

speciai-purpose machine. Furthermore, arrays can provide higher parallelism than
single-sequence computers used for the same function.

The highly structured nature of celiular arrays also has inherent
disadvantages. When an array is customized to behave like a particulak machine,
more components are involved than for a custom-built machine, At any time, the
cellular array has a lower density of active components than the custom machine.
Furthermore, the array has more parts that can fail. Of course, component costs
are decreasingly important in digital systems. If the cellular array can be easily
re-customized (if it’s programmable, as ours is), this added capability cannot be
considered as useless overhead. The enormous overhead of a general-purpose
computer processing one instruction at a time is acceptable because of its
flexibility, generality, and computational power. Use of the simple structure of a
regular array to facilitate test and repair ameliorates the increased pro'bability of a
component failure.

A second general disadvantage of cellular arrays is “an increase in the
length of wire through which a signal must propagate in comparison with
conventional logic not possessing stringent interconnect pattern limitations.” (See

<Spandorfer 68> and <Hu 73>.) Again, the enormous inter-operation delays
associated with single-sequence computer makés this problem seem less severe
for programmable cellular arrays.

<Mukhopadhyay 71> mentions another problem associated with celiular

arrays:

- PAGE 75

"Another major problem in cellular logic is standardization. We now
have at hand a technology which can produce arrays of cells of very
large complexity, but we do not yet know how to use these devices
efticiently in practical designs. This is becauss of the rapid growth of
the mumber of logic functions of a cell with the number of
inputsfoutputs, so thét when a cell has more than 4 or 5 inputs, one
simply does not know what to put into the cell in order to obtain a cell
that mey-be widely used in digital circuits.” | |
This point is evidenced by the plethora of cell-designs proposed
This thesis addresses this problem by identifying and satisfying
important reqﬁmdxts on a cellular array. We develop mechanisms for automatic
test, loading, and repair of cellular arrays. Various celiular arrays incorporating
this machinery are presented. These include memory arrays, and an array capable
of supporting universal computer-constructor-repairers. We show practical
advantages of these cell designs, relative to other designs, which argue for their
reslization. One such advantage is that these standard arreys cen be electrically
customized to a wide range of. customer needs. Realization of and experimentation
with a good cell design would clarify many of the issues involved with celiular
arrays; a better understanding of the most important parameters would result.
| <Mukhopadhyay 71> mentions another difficulty that he sees.
"A difficult prbblem arises when one has to locate and correct a faulty

cell in an array. Since the number of test points or the input/output

PAGE 76

pins available is very small compared to what can be expected of a
circuit of similar complexity built with lumped components, the
difficulties in diagnosis problems have just been qompounded. it seems
unlikely that good and practically manageable algorithmic solutions to
this problem will be developed in the near future because of what
seems to be an inherent contradiction in the objective: programmability
and flexibility which can be achieved by increasing the cell complexity.
This implies an exponential growth of fault types and correspondingly
astronomical growth of the number of tests to be applied to a very
limited number of test points. The logic designer of celiular arrays will
have to accept a certain amount of failure in the circuit and will have to
invent synthesis procedures for fault-tolerant circuits.”
We believe that this thesis refutes this argument. We present simple mechanisms
which enable test and repair of an array. Particular machines which incorporate
these mechanisms are developed.. Furthermore, many existing array designs may
be modified to incorporate our test, configuration, and repair mechanisms.
Mukhopadhyay’s argument seems to argue, by implication, that large random-access
memories are untestable. We assume that a celi’s behavior depends only on its
state and inputs, and not on the state of another cell. We try to justify this
assumption by constraining our design; for instance, our design has no signal
busses connecting distant cells. Qur independence assumption is analogous to

testing assumptions made for current integrated circuits, including random-access

PAGE 77

memories. This independence assumption ensbles specification of simple function
states to allow individual test of an array’s cells via leads attached to a few cells
anywhere in the array. Leads to one side of one cell are sufficient to allow the
repair of most »mayu’ Our techniques allow the verification of our independence
assumption by testing a complete embedded machine. Complete arm and tree
machines may be easily tested via their inpﬁts and outputs. Test links may
connect internat points in a high-relcon machine to cells at the_edge of an array.
Fingflly, ‘mny have observed that truly powerful arrays need many cells.
Current reslities of IC fabrication therefore suggest repairable celiular arrays as a
means for achieving large arrays. As densities and yields improve, building a little
circuitry into a cefiular srray to help testing and repair becomes méré appropriate.
We focus on mutomatic, electronic fepair because of its in’crauiu\ attractiveness.

PAGE 78

Section 2.5: Testing And Repair

2.5.A Non-cellular

The increasing difficulty of testing digital systems was noted above.
Reasons include the plethora of digital systems and testers, their increasing
complexity, and the decreasing ratio of test points to circuitry. At one time digital
ICs could be tested by monitoring their output for each possible combination of
input and internal state; Ed Fredkivn recalls when many engineers insisted ICs
required at least this much testing. This is currently impossible for most ICs, due
to the astronomical time for such a test (29! tests for a serial-in, serial-out 100-
bit shift-register). Consequently, less ambitious approaches are now used.
Common test sequences assume one logic element’s performance is independent of
the performance of other elements in the circuit. A gate may then be tested by
putting its IC into a state in which that gate’s output, a function of its varied
inputs, affects the output of the IC. This approach is especially useful in go - no
go testing of ICs, where one only wants to know whether a circuit meets its
specifications, and not the causes of faulty performance. Most procedures that
must locate faults, such as maintenance procedures, assume a single fault (see
<Marinos 71>). Because of feedback paths, sequential machines are particularly
difficult to test.

Development of a new testing program for each new IC or digital system

is increasingly distressing. This has caused many to ask for a system-oriented

PAGE 79

testing approach designed into digital systems (see <Vaccaro 74> and <Kautz 68>).

Fault-handling techniques typically use sygtom composed of a large
number of cemponents, some of which are defective. Two m}or fault-handling
techniques are-repair and fault-tolerance.

Repair techniques are characterized by fault-detection, followed by
some form of -bypming of faulty components; so the system’s output then
depends only-#an the output of its good components. The best-known repair
- technique for digital systems involves detection of a faulty component in a system
designed to imclude only good components; a human then-substitutes a good
component for .the faulty component. We focus here on appreeches which, like
ours, allow defective components to be associated with a working system.

Fauit-tolerant hardware techniques aim at proper hardware performance
in spite of faults which occur during the hardware’s operation. Standby
redundancy "amf:t‘oys several functionally identical modules, some being used
actively to perform the function, the remainder ‘walting to be mtchad in <“ould
one of the active :modules fail." (See <Carter 70>.) Masking redundancy "is
spplied to techniques which involve encoding function, active performance by all
parts of the system, and implicit recognition of error.” (ibid)

. While our approach is fundamentslly a repair approach, it is compatible
with realization of fault-tolerant machines. Cells can act either as active
components or as standby parts in a standby redundancy system. The mechanism
for switching cellular standby parts into active status is built into the cells of an

PAGE 80

array. Machines using masking redundancy can be embedded in an array. Chapter
4 presents a cellular array consistent with such a hybrid, fault-tolerant system.
Two machines in such an array can monitor each other. If one machine fails, the
other can test the failed machine’s subarray; and embed a new, perfect machine in
that array.

<Spandorfer 68> describes discretionary wiring as one repair technique
designed to provide large, high-yield ICs:

"The number of basic components fabricated on a large semiconductor

chip is larger than that needed for the desired final circuit. Each

component has associated bond pads, which are probed during testing.

The location of good components is used by a computer to generate

patterns which wire only the good components into !he final circuit. . .

. Arrays make use of two metal and two insulation masks."

The fact that the considerable difficulties inherent in this approach w§re
even attempted points up the desirability of high-yielding high-integration ICs.
<Foss 70 mentions some of discretionary wiring’s difficulties:

"The layout of a discretionary wiring cell array is made very inefficient

by redundancy and the need to allow probe testing of the individual

cells. Although the ’yield problem’ of the logic cells is eased, the
~approach still requires *100% yield” on the subsequent dielectric
deposition and metallization processes. (These are normally the lowest-

yield steps in wafer fabrication using two metallization steps. - FM) As

PAGE 81

thess must be faultiess over a much greater area than needed for non-

discretionary cell interconnection, it may well be found that the yield

probilems of the two approaches (discretionary wiring and conventional)

‘are not dissimiter.”
<Spandorfer 68> remarks that "the key problem is the critical dependence on data
processing for mask layout, albeit off-line, and a lﬁst of other production control
routines per cepy. Further, use of a unique mask implies a relatively slow
production process for a given capital investment.” “in addition, each product has
unique intercanmection and dynamic characteristics” (See <Marvin 67>) These
reasons indicate why discretionary wiring is now generally considered a bad way
to achieve high integration.

Other custom wiring techniques for using faulty components have been
proposed. <Tammaru 67> describes ﬁse of customized board wiring to allow use
of faulty ICs.

<Sanders 72> describes a method that involved color-code
categorization of partly-good memory components and their subseguent installation
in a standard color-keyed circuit board. These boards used logic that transformed
incoming addressss to addresses of good memory words. Texas instruments
expects to use a similar method in late 1975 for realization of perfect bubble
memories from imperfect components. The major difficulties with these two
techniques are the handling of muitiple part types and the need for defect

statistics that are fairly consistent as time passes.

PAGE 82

Unlike our approach. those above require perfect inter-component
wiring. Furthermore, human and mechanical intervention are necessary to repair a

system that develops a fault after the system is initially fabricated.

2.5.B Cellular Arrays
Cellular arrays have several potential testing and repair advantages.
<Kautz 67> notes:
"One would naturally expect that the iterative structure and the short
internal connections of a cellular logic array would allow it to be tested
from its edge terminals much more easily than a relatively disorganized
interconnection of the same number of gates. If test signals are able to
pierce the first one or two cells at the edge of the array, they can
. probably be arranged to pierce arbitrarily deeply. Similarly, if an error
due to a fault can be made to pass through one cell toward the output
terminals, there is a good chance it can pass the entire route. In
addition, the regularity and shortness of connections in the array tend to
support the convenient assumption that the array as a whole is fault-
free if each individual cell can be shown to be fault-free.”
One might also expect iterative array to be amenable to simple, iterative test
procedures (see <Thurber 69>).
<Kautz 67>, <Menon 71>, <Tammaru 69>, and <Seth 69> study cutpoint-

connected combinational arrays in which the output of each cell is a fixed function

PAGE 83

of only that celt’s inputs. These papers concentrate on array testability and
diagnosability: the capability, method, and time to test for, and preferably locate,
faults of an assumed neture, via Inputs and outputs at the edge of an array. A
common assumption is that all input combinations to a cell must be included in
testing of that ed& (Kautz, Seth), or at least that each gate in a cell must be tested
(Menon).
Our approach is quite different. We treat arrays of more complicated
cells - che'ckM arrays of programmeable logic. Since we don’t care about a
cell’s response to state-input combinations it won’t encounter during its operation,
testing and repair are faciitated. An edge cell with fioating inputs or outputs need
noi have these fines connected to a test machine. Instead of asking for necessary
and sufficient conditions on array testability or diagnosability, we construct
modules that convert a given arrey to one thet is easily tested and repaired by
programs we describe.
<Yau 70> also treats 2-dimensional cutpoint-connected combinational
logic arrays. The paper presents efficient methods for adding legic and terminals
to each cell of an array to. make the resultant, modified array dlagrmablo, and for
deriving test schedules for it. The logic and terminals added depend on the
original design; they ere not standard. Test signeis are routed to and from the
edges of the array. Repair is accomplished by shorting or opening metal

interconnections.

<Spendorfer 65> describes repair of .two-‘-dimondoml celiular arrays by

PAGE 84

use of computer-determined wiring patterns which preserve the two-dimensional
topology of the array. Custom metallization, which may pass over flawed cells, is
used to convert a flawed array into a smaller, perfect array by proper connection
of perfect cells. This approach assumes the interconnection network of a perfect
array must be preserved; it does not consider the class of a machine embedded in
the flawed array.

<Minnick 66> describes use of custom metallization for repair of various
arrays. He also discusses the efficiency of associated repair strategies for
cutpoint arrays.

The closest precursor of our testing and repair approach seems to be
<Kukreja 73>. Testing a cell in a particular state involves including each of its
inputs and outputs in a signal path to an edge input or output. Test signals to and
from a tested cell are carried by cells in transmission states. Repair comes from
programming cells in a row or column containing a faulty cell to behave like wires
linking good cells (see figure 2.2).

Our test and repair of arrays embedding high-relcon machines similarly
involves use of cells in transmission states. However, there are key differences
between our arrays and Kukreja’s. Kukreja’s 2-dimensional array is a cutpoint-
connected array of simpler cells, in which each cell receives control variables on
lines from a third dimension. Cells are not programmable logic cells, so there is no
loader. Sequential machines are realized by a 3-dimensional stack of 2-

dimensional arrays. Testing requires direct connection between a test machine and

Fig. 2.2 vrogrammed Array-Repair

Flawed 3 x 3 array

jil

| |
v vV
-+ G P G P G —l>
o |]

v 7 7
4 6 4 X b G H
| | }

v \ 2
T ¢ T’ G —r’ ¢ P
| | |
v v v
Perfect 2 x 2 array

|]
v v
4> G G

s

v

% 41

v

L
£

->

4 @ e-——wf————

v

X indicates a flawed cell
G indicates a good cell in

<t
v

an arbitrary state

PAGE 85

PAGE 86

all the edge cells of an array. Kukfeja’s approach requires far more cells and
extra-arréy connections for testing of arrays, and for realization of most machines.
Kukreja's repair approach is what we call "simple repair”; our repair procedure is
more complicated, but also more efficient for most checkerboard arrays. Kukreja's

emphasis is quite different. He does not address many of the design, testing, and

. repair issues we address,

In sum, our approach is the first one we've seen that details LSI-
oriented circuit modules and describes associated software for low-cost,
automated, electrical testing, repair, and customization of celiular arrays. it is a
systems approach whose advantages wili become clearer as its description

becomes more specific in the following chapters.

PAGE 87

CHAPTER 3: ARRAY-EMBEDDED ARMS

Section 3.0: Intreduction

This ehapter presents several ’exampies of machines that are embedded
as arms. Since any one of a large set of loading arms may be grown and retracted
by loading signais input to one side-set of one arm base cell, flaxible loading can
occur in a flawed array. Processing-layer arm machines, which are composed of
balanced cells, can be gradually grown and tested, and snaked around flaws in an
array. We focus on the cell mechanisms and support programe that provide these
capabilities. F& specificity and practicality, we concentrate on the realization of
highly integrated, léngth-programmable, computer-repairable shift-registers.
However, our techniques apply to other arm machines. These techniques are
easily generalized to tree and high-relcon machines. |

We present a mono-active, balanced loading mechanism for ﬁrowth of
loading arms. The loading inputs of any side-set S of a cell are sufficient to load
that cell’s loader and function-specification state bits. After the cell is loaded, its
loader state bits may specify which of the cell's neighbors, If any, receivas loading
information funneled through the cell from side-set S. The loader’s balance allows
an arm to funnel: the same command to a cell independent of the path the arm
takes in reaching the cell. Optional cell modules extend the loader’s capability.
The loader state may specify that an arm’s tip be re-loaded, or than an arm

incrementally retract. A brief signal to the base of an arm can cause the arm to

PAGE 88

totally retract. We use this same loading mechanism throughout our work. A

mechanism with its capabilities is easily incorporated in arrays of two or more

- dimensions.

The most interesting machines that can be embedded in the processing
layer of this chapter’s arrays are arm machines. Embedding is particularly easy for
these machines. Typically, the loading and processing arms grow together through
the same cells. The Array Programmer adds one celll at a time to these arms; and
tests the new, extended arms after each extension. The Array Programmer only |
communicates directly with the processing inputs and outputs of one side-set of an
arm’s base cell. When the arms encounter a flawed cell, they may be partially or
completely retracted, and grown through different cells in the array. An arm may
be grown in any direction, avoiding flawed cells, because of the loading arm’s
flexibility and the fact that an arm of balanced cells is grown in the processing
layer. Our description of the testing and repair processes depends on a model of
flawed cells’ behavior, which we state and analyze. We study repair efficiency
through a program that simulates repair, and suggest téchniques to improve
efficiency. We consider other issues relevant to the practical implementation of
our arrays.

Repair through the interwoven processes of arm growth and testing
contrasts to repair of high-relcon arrays. Since the requirements on the
communication paths between essential cells of a high-relcon embedded machine

are more stringent, repair efficiency is enhanced by the location of all the flaws in

PAGE 89

an array before a global determination of a good way to repsir the array. Repair
efficiency therefore dictates that a test procedure is limited in its ability to
predict the role a given cell will play in an embedded machine. No matter how
Iargg an arm machine grows, its inputs and outputs are always at one side-set of
its base cell. .ﬁﬂerwoﬁn .processas of machine growth and testing are hampered
when a machine's growth implies a sometimes-growing hmnbér of inputs and
outputs: the mumber of connections between a test machine and a partially grown
embedded machine is variable, and may be large. These considerations encourage
us to test all the cells in a high-reicon array before repairing that array. However,
the test and :;upair processes for high-relcon machines use the same loader
described in this chapter, and balanced processing transmission states similar to
the balanced states in this chapter. Many practical imlaMtatim issues are
similar. Thus this chapter is useful in itself, and as a bridge to the next chapter.
Since a tree machine may be embedded as an arm, it’s not surprising
that the approach described for arm machines is readily adapted to tree machines.
Because a tree machine may be realized by an embedded machine with any tree-
like relcon network, including an arm network, an array embedding a tree machine
is particularly easy to test and repair. Embedding a tree or arm machine is

considerably easier than embedding a high#elcon machine.

PAGE 90

Section 3.1: The Loader

In programmable logic, a loading mechanism is used to load the function-
specification state bits in a cell. Others have proposed loading mechanisms
incorporating long, fixed, irredundant signal paths routing loading information to a
given cell. These loading mechanism have major limitations, including susceptibility
to catastrophic failure due to destruction of a long, critical loading line. We
propose a method which incorporates extra logic elements in each cell to allow the
flexible growth of a loading arm in an array. A loading arm is composed of cells in
proper loading states, and not long lines. Since an arm may be grown from any
cell, an entire array can be loaded via inputs to one cell in the array.

Figure 3.1 illustrates two common methods for loading the function-
specification state bits contained in a shift-register in each cell. Figure 3.6
describes a shift-register’s opération. Snake and Crisscross use parallel-out shift-
registers, with each output acting as a function-specification state bit connected to
the processing layer. The shift-registers in Snake and Crisscross are parallel-out
shift-registers, with each output acting as a function-specification state bit
connected to the processing layer. These connections are not shown in figure 3.1.
In Snake, each shift-register is part of a long shift-register that snakes through all
the cells of the array (see <Spandorfer 65>). (If each function register is
associated with one cell,lcells in different rows have different loading inputs and
outputs; the array is strictly cellular only if we conceptually group mini "cells” into

a macro cell). In Crisscross, one of Wahistrom’s methods, each cell is associated

PAGE 91

Fig. 3.1 Two Common Programmable Logic Loading Mechanisms

(The function registers are shown without their
outputs to the processing layer.)

A)Eﬁéké”“”
Data
, D Q D Q
S-R S-R
C C
Clock
Q o, Q D >
S-R S-R
C C

B) Crisscross

Clockl Clock2

Datal] .

7
|

N
-

Datéﬁ LN\ . A [

PAGE 92

with a unique clockline, dataline pair (see <Shoup 70> and <Wahistrom 69>). Each
clockline extends through a column of cells, and each dataline extends through a
row of cells. Co-column cells must therefore be loaded simultaneously.

Note that these methods could operate on a more general type of array.
For instance, function shift-registers in different cells could have different lengths,
drive different circuitry, etc. That is, the key idea is that a loading mechanism is
iterated through the array. The loading techniques we describe are also useful in
this type of array, if it has two or more dimensions.

Like the loading methods of figure 3.1, our loading method loads
function-specifiéation state bits into a shift-register. However, our loading method
uses logic elements in each cell to allow loading information input to any cell to be
routed to any other array cell that is not walled off by faulty cells. Loading inputs
set a cell’s function-specification state bits and loader bits. The loader bits
specify how subsequent loading information input to the cell is to be handled.
They may, for instance, specify that it is to be routed to some neighbor-cell.
Consequently, loading information to a cell may be routed to any cell in the array
by a loading path, or arm, of cells in appropriate loader states (see figure 3.2).
Loading signals input to the base of the arm can load the tfp of the arm, extend
the arm from its tip, or retract the arm. Proper use of a perfect array’s loading
mechanism only allows the embedding of arms in the loader layer of the array.

Our flexible loading arm has several advantages compared to the |

loaderé of Figure 3.1:

PAGE 93

Fig. 3.2 A Loading Arm Grown By Array Programmer Signals

Array &

arm's base

v

Programmer

2

PAGE 94

1) The methods of Figure 3.1 depend on long, inflexible signal paths.
Each cell can be loaded in only one way, so the cell is useless if that
way doesn’t work. A signal path connecting many cglls is a weak link in
terms of repairability; its destruction severely limits the usefulness of
the array. Furthermore load impedance, noise, and delay considerations
make long lines undesirable. Our loading method does not require any
long signal lines. In some technologies, such as magnetic bubbles, all
long lines, including power supply lines, can be eliminated from the
array.

2) The other methods require that many cells be loaded
simultaneously, even if one only wants to load one. For Snake, this
requires the reloading of an entire array even when one wants to
change the state of just one shift-register in the array. For Crisscross,
this requires the reloading of an entire column. In our approach, loading
cell A from cell B requires a loading arm from A to B. If no arm already
exists, only the cells on some path between A and B need reloading.
Once a loading arm is formed, its tip can be easily moved around. This
is particularly attractive because two successively loaded cells are
usuallly close to each other.

3) Crisscross requires a loader input to the array for each row and
each column of the array. Large arrays consequently require a large

number of input pins and associated connections. Recognizing this

PAGE 95

deficiency, <Wahlstrom 69> describes an exfension of Crisscross. In
this extension, a cell can enter a state in which a processing input is
transmitted to a dataline above it or a clockline to its right. This allows
loading of an arbitrary cell in an array via processing and loader inputs
to a cell in the lower-left corner of the‘array. Wahistrom admits that
such loading is indirect and slow. Its utility is severely restricted if the
lower-left corner of the array is faulty. Our method allows speedy
loading of an arbitrary cell with the three loader inputs of a side-set of
any one cell in the array. This implies that connecting the loading
outputs of some cell in one array to the loading inputs of some cell in
another array allows a loading arm to be exfended from the first array
into the second array. This minimizes the number of pins required for
testing, loading, and repair in systems composed of\s\everal ICs.

4) For all the loading methods, one can envision a function state in
which a cell’s processing inputs control loading lines near the cell. (A
machine in Chapter 4 uses such a state to allow a machine embedded in
an array to test its environment, and to construct and repair machines in
that environment) For the other methods, there are harsh limits on the
position and number of cells that can be loaded from such a cell, even in
a perfect array. With our method, any cell can be loaded from any

other cell that is not walled off by flawed cells.

5) A loading arm’s flexibility allows it to avoid flaws in a faulty array.

PAGE 96

6) Our method allows use of several loading arms simultaneously
loading unrelated cells. Because the other methods involve loading lines

extending through many celis, they do not allow this.

Our loader demands a small number of additional logic elements in each
cell to achieve its advantages, but the cost of logic elements is declining rapidly
compared to other system costs.

A cell’s loading mechanism allows the loading of function-specification
state bits in the cell. This mechanism consists of a Basic Loader, which is usually -
combined with one or more loader options. The site of loading activity in an array
is the tip of a loading arm. The Basic Loader allows the extension of an arm to
include any of the tip’s neighbors which aren’t already in a loading arm. A Total
Retractor option allows the rapid destruction of an arm by a single signal to the
base of the arm. An Incremental Retractor option causes a tip’s relcon neighbor in
a loading arm to be the new tip; the loading arm is then incrementally retracted.
The Tip Changer option allows a tip cell to be repetitively loaded. The loader
options demand extra logic elements, but extend the power of the loading arm.

Each cell in a checkerboard array has Select, Clock, and Data loader
inputs and outputs at each of the cell’s four side-sets. When an array’s power is
‘turned on, its working cells are inititalized so that all their Select output lines are
low. Raising a side-set SS,’s Select input activates SS;: Data and Clock inputs at
SS, may load the cell’s register containing its function-specification and loader

state bits. The newly Selected cell is the tip of some loading arm. A counter in

PAGE 97

this tip cell counts the number of bits shifted into the cell’s register after
activation; so the cell knows when its register has been loaded. The loader state
then specifies the new érin tip. With the Basic Loader, one of the loaded cell’s
interconnection neighbors that isn’t in an arm may have its Select input at side-set
SS, raised. Then Clock and Data information from the base of the loading arm flow
through the arm, through the former tip, to the new tip. This process may iterate.
Loader options extend an Array Programmer’s ability to control a loading arm.
Figures 3.3 through 3.5 give an embodiment of our loading mechanism in
a checkerboard cellular array. Most discussion of the loading mechanism is on a
functional level. The loader can therefore be understood without reference to
these diagrams, but they are included for specificity. Figure 3.3 shows the
mnemonically-initialized names of the loading inputs and outputs of a cell. The
loader lines are Select, Clock, and Data. Up, Right, Down, and Left refer to the
cell’s four side-sets. Figure 3.4 shows one possible realization for the Pulser in
the lower-ieft corner of figure 3.5. After power is supplied to an array, the
pulser’s OUT line in each working cell remains low long enough to assure that all
appropriate memory elements are simultaneously reset. Intel’s microprocessors
have a circuit with this effect. The other elements in figure 3.5 - a complete
functional diagram of the loader for one cell - are familiar standard logic elements
like those in a Texas Instruments TTL catalog. The function of each logic element
is summarized in the symbol table in figure 3.6. These elements could be realized

in many forms and technologies.

PAGE 98

Fig. 3.3 Input-output Lines Of A Cell's Loading Mechanism

s _.U.IN _.U.ouT s
«—t <t
—cl _.L.ouT _.R.JIN —}c
D1 «—4D
sl __1s,

o y _-L.IN _.R.our __|C

D D
e —t—

_.D.ouT _.D.IN
REEEE
Fig. 3.4 The Loading Mechanism's Pulser
Behavior Possible circuit
. vCcC (+ power)
vCC —
- T {>° ouUT
outT R 3

PAGE 99

Fig. 3.5 Loading Mechanism With Options .

: , ; FUNCTION-SPEC. LOADER TIP
S.U.IN— o | STATE BITS BITS CHANGER
D-U.INH 1 1,00 Lol LSTA

- LOO LO
S .R. IN"‘T . D.OUT INO 11'\11 OI{TOQEI' ' . |
D.R.IN—; Q0 Q1 02 Q3 Q4 Q5 Q6
. S.D.IN— 8 | D |
D.D.IN— :
S-R FL
S.L.IN—— | C (P) |
D.L.IN._|)“—' h }
S.U.IN—'D - — | |
C.U.IN— . ' ' -Detector)

h . : OUT- -
S.R.IN— - c.ouT 1 |
C.R.IN- . ' I). 3
S.D.IN—-_)__[_AD" BO| Bl | B2 .
C.D.IN— Q0 Q1 Q2
S.L.IN— : , _

] . +—-aqaC -~ l—g . .
C.L.IN-—D—_-— - . CIR S I e
‘ (ElogZP) RiMC R .
INCREMENTAL RETRACTOR |
S.U.IN_T_.D,._Dn—Do— —————100
101

S.R.IN~ITE>r—£>V~£>v*

s .D.INT{>>—{>>—[>-—
S .L.INT{>,_{>>_D,7.

jash

S.U.IN

S.R.IN ——
S.D.IN -

S.L.IN

TOTAL RETRACTOR

D,

Pulser

S

’M

Options are marked by - - - boxes,
elimination of associated elements.

| >

Not using an option implies
If the resultant circuit -

has an AND gate with only 1 input, that gate is replaced by a
wire connecting that input and the output.

| -
ez
2

S.Db.ouT
L.our

e

Fig. 3.6 Symbol Table

PAGE 100

(1st of 2 pages)

A) Combinational logic elements

w ¥ Qmr Qo>

e

B) Pul

IN—W

:3 ouT |

—3 OuT

:Z“_)—— ouT
O— our

{>0 OUT

se-maker

AND GATE: QUT = A AND B AND C.
OUT is a logical high, or 1, if and only if
A and B and C are all 1.

OR GATE: OUT =AORBORC.

EQUAL GATE: OUT = (A = B).

CIRCLE: OUT = ~A. OUT is the
compiement of A.

INVERTER: OQUT = ~A.,

. Although combinational logic elements ideally act instantaneously, actual
devices involve a slight delay before a change in the inputs is reflected at the
outputs. This delay is used in the puise-maker.

D —>

"D°‘l>°{>°“j_ ouT

IN

ouT

—1

PULSE-MAKER symbol.

PULSE-MAKER behavior. We always
use the Pulse-maker for inputs that
remain high or low at least D time-units.

Fig. 3.6 Symbol Table

C) Memory -elements

PAGE 101

(2nd of 2 pages)

D always indicates a DATA input. .
C always indicates a CLOCK input for a memory element. The memory

- elament responds {o a positive-going transition.on C’s input.
R alg. Rindlic‘lta a RESE '-inpgut;ngdl*outputs of the memory eiement
are DifR=1.

Qalways indicates an OUTPUT of a memory-element.

l...

—oT o)

U » Q0
—le S=-R (m)
’ Qf i Q(mj)
o orT P o
c o de
It]
1
—p Q(m-1)
— e S=-R (m)
l l » & &]
Qo Q1 Q(m-1)
Ye CTR (m)

D FLIP-FLOP. Q takes the value of D

‘when -a positive-going C trensition
OCCUrs.

SHIFT-REGISTER {m-bit, serial-in,
‘&am{?l-eut),, Outputs are QO through
m-1).

This is equivalent to the shift-register

above.

SHIFT-REGISTER (m-bit, serial-in, serial-
out). Only Q{m~-1), the last bit of the
shift-register, is ou{pu

COUNTER (m-bit). This counts in binary,
changing state on positive-going
transitions of C. If m = 2, the counter
has the state-transitions for (Q0 Q1) of:
(00)to(1 0)to (0 1) ta (1 1) to (O O).

PAGE 102

We first detail the Basic Loader, with none of the loader options. S-R

' FL is the shift-register containing the function-specification and loader state bits.

LOO and LO1 are the loader state bits that specify the loader’s output side-set.
LSTA is ohly included when the Tip Changer is used; this loader state bit specifies
whether a tip cell is to be re-loaded. S-r FL may have any number of function-
specification state bits. Here we assume four such bits - INO, IN1, OUTO, and
OUT1. CTR, a counter, counts the number of bits shifted ihto FL after a cell is
activated. Since CTR must be able to count to P, the number of bits in FL, CTR is.
log,P bits. The P-detector outputs a 1 when CTR’s count is P. For P = 6, the P-
detector performs the function OUT = B2 AND Bl AND NOT BO = 6, in_binary.
TCH, the "touch” flip-flop, signals that a cell has been loaded.

The Basic Loader ‘is used to load a perfect array in the following way.
When power is supplied to the array, the Pulser resets CTR and TCH to 0. The
CTR, the P-detector, and the TCH flip-flop are used to determine when a cell’s
shift-register FL has been loaded. S-r FL is in an indeterminate state (although
some processing layers require it to be pulser-resettable; this forces all cells into
the same function state when power is turned on). All extra-array inputs to the
array are 0. Assume that S.LIN for some cell A goes from O to 1. Cell A has been
TOUCHED from the left, and now its left loading inputs are ACTIVATED. C.L.IN and
D.LIN may now affect the cell’s function-specification and loader state bits and its
loader outputs. This prepares shift-register FL of cell A to be loaded via D.LIN

and C.LIN. Since all other S.INs are O, all other side-set’s loader inputs are not

PAGE 103

activated. D.LIN is relayed to D.OUT and C.LIN is relayed to C.OUT. Besides being
the D outputs of the cell, D.OUT is the D input to shift-register FL. Since TCH=0,
C.OUT is the C input to shift-register FL and CTR. The first positive transition of
C.LIN causes

1) D.LIN to be shifted into shift-register FL, and

2) CTR to be incremented to (BO B1 B2)=(1 0 0).
During loading of the cell, CTR functions to count the number of positive C.IN
transitions since the cell was touched. That is, it counts the number of bits shifted
into shift-register FL. Succeeding C.LIN positive-transitions will similarly shift
information into shift-register FL and increment CTR. The "p"th such transition
(6th in this example) causes

1) the 6th D.LIN bit to be shifted into shift-register FL, so that all the

information in shift-register FL has been loaded from D.LIN since S.L.IN

went high; and

2) CTR=(0 1 1); this causes the output of the P-detector to go high.
Thus shift-register FL has been loaded with function-specification and loader state
bits; the P-detector signals this fact by sending a high signal to the input to the D
flip-flob. When C.L.IN next goes from high to low, TCH goes high. This causes

1) the C inputs of shift-register FL and CTR to remain low; C.QUT is no

longer transferred to them; and

2) one and only one S.OUT to go high, thereby activating inputs at the

side-set of some "touched" neighbor cell. The one selected is

PAGE 104

determined by LOO and LO1.

The loading arm is a loading-signal path starting with some base cell
with a high S.IN, and possibly extending from that cell to other cells, with the arm’s
path marked by high S lines linking neighboring cells. Figure 3.2 showed one such
loading arm. With the Basic ander we restrict a cell from touching a cell that is in
a loading arm. In this case, this means cell A should not touch left, the source of
loading information. It may touch cells that are up, right, or down neighbors.
Assume cell A touches cell B above cell A. We then say that the loading arm’s TIP
has been moved up from A to B. This is caused by loading cell A with LOO=L0O1=0;
when cell A’s TCH goes high, its S.U.OUT goes high. That is, cell B is then touched
by cell A. Because S.L.IN is still cell A’s only high S.IN, it’s still true for cell A that
C.OUT=C.L.IN, and D.OUT=D.LIN. Because cell B is the only cell that A is touching,
cell B is the only neighbor of cell A to accept C and D information from A. B can
now be loaded in the same way that A was. B may then touch some new neighbor
FL, funnel loading information to this new tip, etc. That is, this process of a cell’s
being loaded, touching a neighbor, and funneling loading information to that neighbor
may iterate. In this way a loading arm may be snaked through an array, with its
length only limited by the size of the perfect array. This growth of a loading arm
to any cell from any other is facilitated by the loading mechanism’s mono-active,
balanced nature. |

A brief example will illustrate loading via growth of a flexible loading

arm. Assume a perfect array was to be loaded with function states (INO IN1 OUTO

PAGE 105

OUT1) equal (0 0 1 0) for cell (0 0),(1 11 0) for cell (01),(010 1) for cell (1
0), and (1 O 1 0) for cell (1 1). The Array Programmer may connect to cell (O 0)
in the manner shown in figure 3.8. After the array is turned on, all cells have
CTR=TCH=0. The Array Programmer raises S.L.IN of cell (0 0), the base of the
loading arm. The Array Programmer uses the C and D lines to clock out the
sequence {0,0,0,1,0,0} in the manner indicated in figure 3.7. This loads shift-
register FL with (INO IN1 OUTO OUT!1 LOO LO1)=(0 0 1 0 0 0). That is, the
function-specification state bits have been properly loaded and the loader bits LOO
and LO1 tell cell (O O) to touch up. At TO, the first downward transition of C.L.IN
after the loading of shift-register FL, S.ROUT of cell (O 0) is raised. Cell (O 1) is
now ready to receive C and D information from the Array Programmer, routed
through cell (0 0).

The subsequent sequence clocked out of the Array Programmer via the
C and D lines is {0,1,0,1,1,1}, {1,0,0,1,0,1}, {1,0,1,0}. Thus all the cells of the array
have been loaded by a loading arm snaking through the array in the manner
indicated in Figure-3.8. A different-shaped loading arm could have been used to
accomplish an equivalent loading of function-specification state bits.

We now consider the various options available to enhance the capability
of the Basic Loader. The Total Retractor allows a loading arm to be grown and
later totally retracted by a signal to the base of the loading arm. This allows, for
instance, reloading of cells and rerouting of a loading arm to new celis from the

same arm base. With the Total Retractor, a perfect array is loaded just as

PAGE 106

Fig. 3.7 Clocking Out The Loading Sequence o, 0, 0, 1, 0, ©

C.L.IN

D.L.IN

Fig. 3.8 A Loading Arm Formed By Touching Cells

(s=1) 1
s
Array S v 0
Programmer =
D_ 0
- Y
0 1 X—

Fig. 3.9 Loading Arm With Tip At (100 0)

Array -
Programmer

v

0 1-98 99 100

PAGE 107

described above. Assume the loading arm of figure 3.8 exists. |f the Array
Programmer lowers its S line, no S.N of cell (O 0) is high; the Total Retractor of
cell (O 0) causes that cell to be reset to CTR=TCH=0. When TCH goes low, all
S.0UTs of cell (O 0) go low. This resets (1 0), which resets (1 1), which resets (O
1). The function-specification state bits of these cells are unaffected. The Total
Retractor thus allows the reset@ing of all the cells in a loading arm by lowering the
S input to the base of the arm. These reset cells are then ready to be re-loaded
by some new loader arm.

The Incremental Retractor allows a loading arm to be shortened cell-by-
cell, instead of all-at-once as with the Total Retractor. The Incremental Retractor
shown in figure 3.5 includes the Total Retractor circuit, so this incremental
Retractor is always used with the Total Retractor. The Incremental Retractor can
save time when, for instance, one wants to change the state of a cell that is near
the tip of a long loading arm. Consider the long loading arm of figure 3.9. If the
Array Programmer wanted to reload cell (99 0), as it might on the basis of some
test on celi (100 0), cell (100 0) could be loaded with information telling it to
touch left. When S.LIN of cell (99 O) went high, the incremental retractor of cell
(99 0) would create a reset pulse. This would reset cell (99 0) for subsequent
loading from (98 0). Resetting of (99 0) would lower S.R.In of (100 0), thereby
causing (100 0)’s Total Retractor to remove (100 O) from the loading arm while
leaving (100 0)’s function state the same. This incremental retraction is much

faster than the eduivalent action of total retraction and subsequent growth of the

PAGE 108

loader arm from (O O) to (99 Q).
In loader realizations in which the Incremental Retractor does not include
Total Retractor circuitry, the incremental Retractor may be used for a type of total
fetraction. If all the other S inputs of a cell are low, lowering its S line and then
raising it prepares the cell to be loaded from that S line’s side-set. Assume an
Array Programmer wanted to grow a new loading arm from the base of an existing,
unnecessary arm. By lowering the cell’s high S line, then raising it, the Array
Programmer would prepare the cell to be loaded, forcing all the cell’s S.0ut lines
low. The cell could re-touch the cell it last touched, or touch some other neighbor,
and a new arm could be grown from the old base. Of course, part of the old arm
might remain in the array. Under certain conditions this is intolerable; loading a
cell in an old arm from some new side-set involves special considerations, as we’ll
see. Nevertheless, many applicatioﬁs make fast retraction feasible through
exclusive use of the Incremental Retractor. When fast retraction is unfeasible, an
arm may be totally retracted cell-by-cell via the Incremental Retractor, as we’ve
discussed. If even this is impossible, due to a growth failure at the loading arm’s
tip, the Incremental Retractor allows a new arm to grow through the working cells
of an old arm; subsequent incremental retraction frees these working cells from
the loading arm.
| The Tip Changer allows a tip cell to be repetitively loaded by the same
loading arm. This is another time-saving device, particularly helpful when one

wants to test the same cell in various states. It involves adding an extra bit to

PAGE 109

shift-register FL, and consequently requires one more clock pulse for the ioading
of a cell. If a tip cell is loaded with LSTA=1, the deﬁivard C.IN transition at TO
(directly after the P-detector goes high) causes resetting of CTR and TCH to
CTR=TCH=0. The fact thet LSTA is high siso prevents the ceil from touching any
other cell. Thus the cell is loaded with a fumﬁm staté, reimins the loading tip,
and is therefore ready to be immediately reloaded. if the cell is Ioadé‘d with
LSTA=0, it may touch another cell as if no Tip Changer existed.

Thus the Basic Loader can éombine with a combination of Total
Retractor, incremental Retractor, and Tip Changer. The particular combination used
in an array depends on the specific objectives for that afray. In arrays designed
for infrequent loading, minimization of circuitry by exclusive use of one Retractor
option might be appropriate. The rest of this chapter detalls grow’th of shift-
register arms. If program-variable shift-register length was important to an array,
variation-speed considerations might encourage use of all loader optior;s.

in summary, the fundamental loading mechanism allows loading inputs
from one of several sides to control loading of a cell. The cell may learn that, and
how, sub#equent information inbut from its active loading s\ide-set'should be
passed to loading outputs of some other side-set. If the set of loading mechanism
neighbors is proparfy chosen, inputs to any cell may cause the Ioading of a cell
anywhere in a perfect array, and loading of most cells in a flawed array. The

loading mechanism may be incorporated into arrays with diverse processing layers.

PAGE 110

Section 3.2: A Perfect Array Of Shift-register Cells

We now examine one realization of a complete shift-register cell, shown
in Figure 3.10. We’'ll eventually show how an array of such cells can provide large,
highly integrated, variable-length, automatically testable and repairable memories.
For clarity, we begin by considering an array of such cells which contains no
flawed cells. The shift-register cell’s loading mechanism is almost identical to the
loader of Figure 3.5. For simplicity, we assume that all the loader’s options are
included in the shift-register cell. In fact, the approach we describe can be
adjusted to work with just a retractor option.

Each side-set has Select, Clock, and Data loader inputs and ouptuts,
whose function has been described. In addition, each side-set has distinct Klock,
iNput, and vReturn processing input-output lines; there is one set of K.IN, K.OUT,
N.IN, N.OUT, RN, and ROUT lines in each side-set. The shift-register cell could
have been realized by disjoint loading and processing mechanisms. However, the
cell shown in Figure 3.10 reduces circuitry and loading time by using bits in shift-
register FL in a dual role as function-specification and loader bits. The loader of
Figure 3.10 corresponas to that of figure 3.5 with the following mapping:

Figure 3.5: INO IN1 OUTO OUT1 LOO LO1 LSTA

Figure 3.10: INO IN1 OUTO QUT1 OUTO QUT1 STA
S-RFL is. reset when power is turned on to limit processing layer complications of
certain faulty cells.

Figures 3.11 and 3.12 give alternate functional descriptions for the

PAGE 111

Fig. 3.10 A Complete Shift-register Cell
N.U.IN- o N.OUT | R.OUT

' Q (m-1) ——D— - Q(n-1)
1 — : : D s.r A ' | DS-RB
IN.D.IN-) —-c “(m) ‘ C “(n)
CLOINTTN . ¢
|/
.U.IN—A"‘}__
t -4 ,
K.R.IN -
K.D.IN ﬁ—}rﬂ'_' >—D-OUT
‘ < ' ' |
LLJINSTTN
_J
.
1No | IN1jouTdouT, | r—L
S.U.IN— QOQL Q203 021 L Ip qlrce
D.U.IN— S-R FL, ‘ CTR S
S.R.IN— (4) R A BGlg Y
DoRoIN—-— . ————————q————
S.D.IN-. ; -k ’ | L
DOD.IN'-"- | L
S.L.IN N\ i ‘ ‘ : ‘ ouTo
D.L.IN -ﬁ} STA —d__ /) - OUT1
S.U.IN-— . 1 - N -/ ‘. S.U-OUT
C.UlIN_] }__l -
S.R.IN— ' : y S .R.OUT
C.R.IN _>'—| -QUT D—-——~]
S.D.IN e] [S.D.OUT
&N T IR =D
S.L.IN—] , | " Tota] o S.L.OUT
et B e | [B9] [] TELO™

PAGE 112
Fig. 3.11 Abbreviating A Shift-register Cell's Function State

Function state Abbreviation
K.U.IN N.U.IN R.U.OUT
—> D Q'———jk—)-N.R.OUT
S=-R A
—a C
E » K. R. OUT
R.R.IN
L D Q
S-R B
—————3 C

The FUNCTION STATE diagram indicates the important
processing inputs and outputs for a particular function
state.

The short arrow in the ABBREVIATION diagram indicates
the active Klock input. 1Its side-~set is nearest the base
of a shift-register arm.

Fig. 3.12 shift-register Cell's Function States

PAGE 113

{Shown for all values of (INO IN1l OUTO OUT1))

(0 0 0 0) ©010) ©001) 001 1)
)[l v | K 1 v
b |

(1L 00 0) (L 0.1 0) (L 0O 1) (Lol1l)

i < J <
- | <&

— | l i

(01 00) (0110 (0101 (0111)
1 e

Y t

(L1o0 0)

L1

IR

(111 0) (L101) (L111)
T
))
> -> 1 —>

PAGE 114

prdcessing outputs in various function states. It’s apparent that the processing
outputs depend only on the function-specification state bits, the processing state
(shift-register A and shift-register B), and the processing inputs. Shift-registers A
and B are of arbitrary length, with the particular practical length chosen by
integration-level considerations discussed later. A cell has one relcon neighbor
when STA=1; a Klock input from a side-set E clocks N.E.IN information through
shift-register A, then through shift-register B, and finally out NEQUT. A cell has
two relcon neighbors when STA=0; while K.EIN clocks shift-register A and shift-
register B, N.EIN flows through shift-register A and then out some side-set F, and
N.F.IN flows through SR B and then out N.E.OUT.

Cells are used to form shift-register arms. Information in an arm flows
from the base of the arm via K and N lines to the arm’s tip, turns, and flows back
to the base via the R lines. The cell at the tip of the arm has. STA=1. This cell
acts as a loop; it forms shift-register A and shift-register B into one shift-
register, with the same relcon neighbor providing K and N inputs to this shift-
register, and receiving the Return output of this shift-register. All non-tip celis in
the arm have STA=0. Each of these cells receives K.IN and N.IN information from a
relcon neighbor nearer the arm base, and transmits ROUT information to that cell.
Each of these cells also outputs N.OUT and K.OUT to a relcon neighbor nearer the
arm tip, and receives R.IN information from that cell.

A simple example illustrates how the Basic Loader and Total Retractor

allow the loading of more than one shift-register into a perfect array by use of the

PAGE 115

Fig. 3.13 Loading Two Shift-registers Into Perfect Array

(Extra-array processing lines are not shown.)

Power on: cells reset

: u v U v u%
A T T

Programmer .

First shift-register complete

> >

arcay - T TV [T]Y

Programmer
—’

Both shift-registers complete

>, >

X
¥
3

Array ' ~ _ Er R
Programmer _ _)k)]

PAGE 116

loader inputs to one cell. Consider the perfect array of Figure 3.13.A, with all

cells reset because power has just been turned on. The array’s only connections
with the outside world, other than power lines, are

1) (O 0)’s loader inputs, which connect to the Array Programmer; and

2) (0 0)’s and (0 1)’s N.L.IN, K.L.IN, and RL.OUT lines (not shown in the

figure), which will provide the inputs and outputs of two shift-registers

embedded in the array.

After the Array Programmer raises S, the sequence {0,0,1,1}, {0,1,1,1},
{0,1,1,1,}, {1,1,1,1} is clocked via C and D inputs into cell (O 0). When S is
lowered, the loading arm totally retracts. This leaves the array in the processing
staté shown in Figure 3.13.B. S is again raised, and the sequence {0,1,1,1},
{0,1,1,1}, {1,1,1,1} is clocked out. S is lowered, and the array is left in the
processing state of Figure 3.13.C. The processing lines shown are made available |
through some type of wire. Loader lines may also be made available; so that the
~ array may be repaired if it develops a flaw, or an embedded shift-register’s length
may be varied.

In estimating the time to load a cell’s p-bit shift-register FL, we
consider two extremes:

1) If the cell being ioaded is the base of the arm, the minimum delay
between C.IN transitions is tmin = 1/fmax, where fmax is the maximum

clock-frequency of a shift-register.

PAGE 117

2) 1f the cell being loaded is many cells away from the arm’s base,
tm&n,ﬁ determined by 2 facim:
a) After a new DIN bit has been sent to the loaded celi,
C.IN cannot go high until we're sure the D.IN bit will arrive at the
loaded cell before C.IN's new transition
b) After this CIN transition, D.IN cannot be changed until
we're sure. the CIN transition will definitely arrive at the loaded
cell before the new D.N.

Thus the time to load a ceil n cells from the base of its loading arm is the greater
of 2 numbers. |
tload = p x max (1/fmax, n x (dmax + cmax - dmin - cmin)).

Here dmax is the maximum delay of a D signal through a cell, and the other d and ¢
- symbols above are similarly defined. Recsll that a logic gate can have a very small
delay if it’s known that only one of its inputs changes frequently. Noting that the
C and D delays come salely from an AND-OR function, where the ANDs have only
ﬁne input that changes fast, we observe that dmax for a cell is approximately
equal to dmax for a logic gate with a load of four input-loads.

In estimating the maximum frequency at which an embedded shift-
register may be cloCked, we make two assumptions: -

1) Al bits of shift-registers A and B of a particular cell are clocked

simultaneously.

PAGE 118

2) A clockpulse remains a pulse as it travels down an arm.

The rate-limiting delay then comes from the delay path schematized in Figure 3.14.
tmin = andmax + 2 x andormax + s-rmax + s-rsetup

Andmax is the maximum delay through an AND gate, where only one input to the
gate changes often. Andormax is the maximum delay through an AND-OR gate,
where only one input to an AND gate changes often. S-rmax is the maximum time |
between a clock transition to a shift-register and the subsequent stabilization of
its output at its proper value. S-rsetup is the time the D input to a shift-register
must be stable before a clock transition. The Klock input to a shift-register arm
must have a low enough frequency that, for the longest possible arm, a pulse
remains a pulse as it travels down the arm; and two pulses are never less than
tmin apart. |

The method we’ve shown for relaying clock signals down loader and
shift-register arms has two major disadvantages:

1) A clockpulse may expand or contract indefinitely if it’s passed
down a long enough arm. This limits the clock’s frequency.

2) The frequency at which Data can be sent down the loading arm is
limited by the uncertain delay involved in sending a Clock or Data signal
down a long arm. ldeally a Clockpulse and its associated Data bit flow
through an arm at the same speed.

Figure 3.15 shows a simple circuit which eliminates these difficulties. The circuit

Fig. 3.14 shift-register's Rate-limiting Delay

PAGE 119

Cell Boundary
(/—?: { P— Return
« N
_____ID Q(n-1)
S-R B S-R B

C (n) (n)

N\ Klock

-/

PAGE 120

Fig. 3.15 Pulsewidth Regulator With Data Transmitter Option

Data dnput 4f. o |Rata output

Clock ,
1C output .
{>>——{>>‘ ‘1:>—> if option
Data : p~element delay
Transmitter
Pulsewidth
Regulator
i Clock
Clock input output
1 1T if no
,{>, |> | _ l D D __D_,c 2 option

m-element tapped delay n-element delay

The combination of the n-element delay with gate 2 constitutes a pulser
responslble for outputting a pulse Iong enough to trigger a neighboring cell’s flip-
flops. The m-element tapped delay in combination with gate 1 lengthens a clock
input pulse enough to assure that the pulser acts properly.

Assume that the delay of a signal-transition through any gate is D plus or
minus t. Assume that the clock input to the Pulsewidth Regulator has been O long
enough so that the outputs of all gates are 0. First consider the Pulsewidth
Regulator with no option. Clock input receives a positive pulse of minimum length
P sufficient to trigger any of a cell’s attached memory elements. The m-element
tapped delay is tapped at enough places that a clockpulse P long causes one
longer pulse out gate 1. This longer pulse has a minimum width W such that

W2 P+ m+DMO-1¢t) -0+t =[P +md- (m+ 2)t].

IfW 2 n(D - 1), the clock output is a pulse X with

X2nbD - (n+ 2t
Assume that the pulse at the clock output is reduced by at most R as it travels
through gates to the clock input of a neighboring cell. Then the following
conditions assure that the neighboring cell receives a pulse of minimum width P.

nD - (n+2)t>P AND P+mD-(m+2)t2nDd-1t).

Longer clock input pulses obviously work fine.

A similar analysis calculates the maximum clock frequency.

If the Data Transmitter option is used, the clock output pulse must be
delayed the right amount to assure that a Data bit and its associated clockpulse
flow together from one cell to the next.

PAGE 121

assures that a-clockpulse of minimum width P which is input to a loading arm will
travel dowﬁ the arm with a tightly-bounded width. The Data Transmitter option
assures that a Data bit and its associated clockpulse flow together at the same
speed down a loading arm. Placement of the Pulsewidth Regulator before the
broadcast Kleck output of a shift-register cell would increase the maximum
clocking frequency of a long shift-register arm. The loader’s use of the Pulsewidth
Regulator and Data Transmitter option would speed loading for long loading arms at |
the cost of slower loading for short arms and increased cell overhead.

Richard Shoup’s method for forming an embedded shift-register is quite
different from ours. In Shoup’s method, a cell contains only .1 processing layer
shift-register; function state bits control which iNput goes to the shift-register,
and the output of the shift-register is broadcast to all its neighbors. Clocks to the
shift-register cells come down the Data control lines, the same lines used for
loading function-specification state bits. This of course means that all co-column
cells must be clocked simultaneously; they can't, for instance, be used for
different registers with different clock frequencies. Shoup’s arrays are relatively
hard to test, especially for large arrays. Testing requires "building up shift-
register paths of increasing length between opposite edges of the array.” (See
<Shoup 73>) Every cell is tested in all 4 directions; we'll see that this is an
unnecessarily large amount of testing. The tester accesses the processing inputs
" and outputs of all edge cells; this requires excessive use of probes and bonding

pads. Our loading method gives our shift-register arrays many advantages. We'll

PAGE 122

see that the fact that all communication with an embedded shift-register arm is
through its base also facilitates testing. The major drawback of this bi-directional
capability of our shift-register cell is that it slightly reduces a shift-register’s

maximum clock frequency.

PAGE 123

Section 3.3:. Testing And Repair

in this section we consider the concurrent prdcesces of testing and
repair involved in embedding a shift-register arm machine !ﬁ- a flawed array. The
shift-register colt is the one we've been considering, that of figure 3.10. We focus
on growth of ome arm from a base cell with loading and processing connections to
an Array Progremmer, but the techniques discussed are easily generalized. The
Array Programmer uses a loadlni arm to grow longer and'loﬁger shift-register
arms, like the two in Figure 3.13. The growing shift-register arm extends through
the same cells a8 the loading arm. The arm is tested as it grows. Failure to pass
a test indicates: that the arm must twist through the afray in & slightly different
way, so that it includes only good cells. If an attempt is made to produce an arm
of a certain length in a given flawed array with inputs and outpuls at a given side-
set, several things may happen. Such an arm may be realized, the array may be
found incapable of producing such an arm, or testing may take too long.

Embedding an arm of balanced cells is particularly easy. The arm is
extended celi-by-cell into an array. When an arm is in 8 given pesition, the arm is
tested under the temporary assumption that its non-tip cells will remain in their
current function states. The relcon neighbors of each body cell are therefore
known, and information flowing in the arm to and from its base tests the cell’s
communication with its relcon neighbors. As long as a cell’s interconnection, non-
reicon neighbors aren't !qaded, it's assumed that their inputs to an arm cell don’t

change. Consequently, it's sufficient to test an embedded arm via the inputs and

PAGE 124

outputs at the base of the arm. The cells’ balance allows an arm to move in any
direction as it snakes through good cells in an array. Sometimes extension of an
arm in an intended direction is prevented by a flawed cell. Then the arm is
retracted, and the arm’s growth proceeds in some new direction from some stump
of the unsuccessfully extended arm. Since the cells in the stump of the arm stay
in the same function state, they need not be re-tested. A cell is only tested in its
role in an embedded shift-register arm. Thus growth of an arm through balanced
cells facilitates the interwoven processes of testing and repair.
Description of the testing process is much clearer if we use an example

simplified by some assumptions:

1) Good cells are only loaded under the Array Programmer’s control, and
not by signals caused by faulty cells. This assumption is satisfied if no
faulty cell outputs a high S at the same side-set where it outputs an
alternating C, since this is the only way a faulty cell can load a good cell.
This assumption is also satisfied if any cell that is not loaded under the
Array Programmer’s control is defined as a bad cell, even if it is not the
cell’s fault that it is improperly loaded. Since we'd like properly formed
cells to be used as good cells, we specify cell mechanisms that help
guarantee that a good cell is not falsely loaded. This involves making the
set of valid loading commands smaller than the set of possible quding
commands, so that fault-generated commands are likely to be disobeyed.

2) A cell’s performance depends only on that cell’s mechanism, state, and

PAGE 125

input signals. It does not directly depend, for instance, on the state of some
other cefl in the array. Like the fourth assumption, this saves testing time;
it's used n most IC testing programs. The assumption is reasonable because
the only Tines connecting different cells are the side-set lines and the power
lines, This assumption accounts for side-set lines. In some technolog‘ies,
such as magnetic bubbles, coupling could not occur through cell-connecting
power fines because there are no such lines. With other "techmlogles,‘ such
as conventional semiconductor technology, it’s true that such coupling could
occur. However, the regularity of an array is useful in minimizing this
| possibility. Each cell could contain a simple regulator circuit optimiied for
the htghiy predictable characteristics of a working cell.
3) Cells that are fau&y during array testing must be somewhat consistent

in their faulty behavior; that is,

A) a 'sﬁecessfuﬂy tested cell doesn't develop new faults during array

testing; and

B) a processing input that doesn’t alternate during the testing of a cell

may not alternate during other array testing, unless the Array

Programmer commands it to alternate.
Assumption 3 makes it easier to localize the cause of a test failure.
Assumption 3A is reasonable because the time to test a realizable array is
very short compared to its mean-time-between-failure. Assumption 3B

allows a cell in an embedded arm to be tested solely for proper

PAGE 126

communication with its relcon neighbors; it allows the Array Programmer to
assume that a cell passing its tests won't misbehave during further arfay
testing due to a previously unencountered input signal. (Most cells wouldn’t
misbehave anyway, since they’re programmed to ignore irrelevant inputs.) A
cell may have side-sets which are inaccessible to an Array Programmer, due
to the cell’s position near a flawed cell or at an array’s edge. All the cells
of figure 3.16 have at least one inaccessible side-set. Assumption 3 allows
such a cell to be embedded in an arm in spite of the inaccessibility of its
irrelevant side-sets. Like assumption 1, assumption 3 is valid if all the
inputs and outputs of faulty cells are assumped to be stuck at some value.
If assumption 3 is invalid for a particular array, the Array Programmer may
become confused during testing. In this case the Array Programmer can
start testing the array again. Repeated confusion indicates that faults are
forming at a pathologically high rate; then the Array Programmer signals that
the array should be rejected.

4) The behavior of certain mechanisms in a cell is independent of the
state of other mechanisms. We assume that a shift-register bit works if it
successfully accepts new information when the bit and its 2 neighboring bits
are in any of their 2% = 8 states. This assumption implies that a shift-
register bit’s function is independent of the state of non-adjacent bits in an
array. This allows the testing of a length-n shift-register by testing its

ability to shift a (10 + n)-bit sequence (0001011100 --=), in which

PAGE 127

the n bits are used to push the first ten bits through the shift-register.
This common, reasonable assumption is necessary to save testing timg;
testing a 40-bit shift-register in every state wodld take a sequence of
approximetely 1,000,000,000,000 bits, and we expect a cell’s shift-register
to be considerably longer than 40 bits. The unspecfﬂ.ed biti in the
sequence above could be selected to drain maximum current from the
power supply. Similarly, we murﬁc that the processing mechanism’s
‘behavior s ;mmt of the loader’s state. This assumption saves test

time.

The validity of these assumptions, which are like thoss made in testing
conventional digital systems, can be made very likely by proper array design and
layout. 'The ultimate test of the validity of these assumptions for a particular
array is experimentation with that array.

We now consider a testing process operating under these assumptions.
Consider the array of Figure 3.16, shown in successive stages of testing. The only
extra-array connections are the Array Programmer’s processing and loader
connections to celi (O 1), which aren’t shown in the figure. Here we assume the
shift-register arm is to be 5 cells long; m = 5. When a new cell B is to be tested
for possible addition to a shift-register arm currently extending to its tip at cell A,
several things happen. Cell A is put in .a gtate so that shift-register arm

information is routed to and from B. B is put into a loop state - (000 0),(0 1 O

PAGE 128

Fig. 3.16 Growth Of Perfect Shift-register Into Flawed Array

%)

&

]
F—T &

X
4 5 6
X X X

R S
> s sl « N s g

X X X

7 8 9

X ’ X e ¢

I}i l_*? X 55,
> >

=d > > > =4 > =a - >

X X X

The connections of the Array Programmer to cell (0 1l)'s
left loading and processing lines are not shown.

Unmarked cells are good cells in the (0 O 0 0) state.

PAGE 129

1), ({1 010),0or (111 1)-with the loop starting and ending at A’s side-set
shared with B. Assume N is the number of bits shifted completely through the
processing shift-registers of cell B and passed down the arm for monitoring. Also
assume the Array Programmer knows the contents of all the A shift-registers in
the arm up through cell A. (The Array Programmer should know this; it’s loaded
these registers.) Testing cell B in an arm of length m then requires (N + alength +
m x biength) Klock inputs to the arm, where alength and blength are the lengths of
shift-register A and shift-register B. Passing the test means that the shift-register
arm works properly; a new tip has been properly added. If cell B is the last,
"m"th cell of the arm, the Array Programmer is then satisfied that a shift-register
arm has been properly formed in the array. (See stages 8 and 9 in the figure.)
The Array Programmer doesn’t care whether the cells of the arm could have been
loaded from other directions, or would have worked in other function states. It
doesn’t care if some cells of the array haven't been tested at all. (See cell (O 2)
in the figure) The Array Programmer simply cares that its objective has been
realized. This pragmatic approach allows substantial reduction of testing time.

If cell B is meant to be part of a longer arm, it must be connected to an
interconnection neighbor cell, other than A, just as A was connected to B. The
testing of this new, longer arm then proceeds as above. Growth is a recursive
procedure.

Failure of the arm after its extension from cell A to cell B indicates that

growth from cell A to cell B is impossible. A may be loading B incorrectly, B may

PAGE 130

be flawed, A or B may be outputting Kiock information to a neighbor elsewhere in
the arm, etc. The Array Programmer doesn’t worry about the specific nature of
the problem. It 'simply uses one of two reasonable flaw-models. Cell B may be
judged as a flawed cell never to be tested again, as in the example. This
simplification might be appropriate if the area of shift-registers A and B dominated -
the area of a cell; failure was probably due to a failure in this area. A second
alternative is to just consider the boundary between cells A and B impassable in
the attempted direction. Cell B might be approached later from one of its other
neighbors.

If cell B can’t be approached from cell A, some new arm-path is tried if
there is still. one to be tried. Cell A considers touching its neighbor cells in some
established order. When a neighbor is considered for touching, the touch is
attempted if the cell exists (isn’t out-of bounds), isn’t known to be unloadable from
A, and isn’t already part of an arm. Furthermore, extension of the arm through
that cell must, at least potentially, eventually yield an arm of the desired length.
This last provision explains why no attempt is made to include cell (2 0) in the arm
in the example; at best a length-4 arm would result.

If all A’s neighbors have been rejected, the arm ig forced to try some
new path that inciudes all arm cells up to A. In the example, (0 O) of stage 3 is
cell A. Since there’s no cell compatible with the existing arm that can be loaded
from (O 0), the arm is retracted to cell (0 1), where new paths are considered.

A program simulates the method described above for loading a shift-

PAGE 131

register arm into a flawed, rectangular array. The iimpl»t fauit model is used; a
cell is either perfect or hopelessly flawed. A programforms o flaw pattern of
specified dimensions with randomly sprinkied faws. Another 'pfojram tri‘ea to
realize the longest arm possible in the flawed array, growing from a specified, good
base cell. A time limit is used because the program would eventuslly consider all
possible arm paths extending from the base cell. - | |

The repair program is short and sﬁnple‘; ‘When an arm has grown to a
certain tip, it tries to extend itﬁelf towsrd the nesrest array ‘edge. Thus an arm
spirals toward the center of an array in a perfect array. If no improvémeht,in the
maximum discovered arm is made in éne-fourth of the timc llmit, the program looks
at adjacent cells that are not included In this longest arm and are not known to be
flawed. The program tries simple jogging of the arm to‘ indu&e' these édla The
* program returns with a pi’c't'w'e‘ of the resulting arm in thoﬂawod amy, ond some
statistics concerning the arm growth. R

Figures 3.17 and 3.18 show arms snaking through two different 25 x 25
arrays. Statistics for these and other, similer experiments, appear in table 3.1.
Figure 3.19 shows graphs derived from table 3.1.

- The experiments suggest several conclusions:
1) For %flawed under about 25, %oftotal drops about 2.2X% when

%flawed increases 1%. This is nearly independent of the size of the

array, with larger arrays doing slightly better. Repair efﬁdemy also

drops steadily. For instance, for the unstarred 400-cell array in table

PAGE 132

Fig. 3.17 Result Of An Arm-growth Experiment

The relcon network above shows the path of an arm after an arm-growth
experiment. One can follow the arm’s path from its base, at (2 1), to its tip, at
(15 18). There are 625 cells, 100 flawed cells, and 463 arm cells. We were able
to repalr the array to embed an arm with 495 celis. Thl8 suggests that our
program’s repair efficiency can be improved.

PAGE 133

Fig. 3.18 Result Of An Arm-growth Experiment

The base cell is (1 1). There are 625 cells, 225 fiawed cells, and 216 arm cells.

Table 3.1 Results Of Arm-grouth Experiments
{1st of 2 pages)

Key:

%flaued - flauwed cells as percent of all celis

Cells -~ total cells in square array
Hflaus - total flawed cells in array
max-arm - the longest arm our program greW
%oftotal - cells in Ionoast arp as psrcent of all cells
timelim - the time limit, in seconds
Time - the time the program ran
%oftimelim - time as percent of timelim
x - For two starred (or unstarred) arrays of the same size,
one set of flaw coordinates is a subset of the other.

Table:

%flawed Cells #flaus max-arm Xoftotal timelim
[*] 108 [*] 108 168 lﬁﬁ
"] 225 %] 225 168 225
8 400 8 408 108 480
%) 625 8 625 100 625
4 625 25 598 9% 625

x 4 625 25 586 9 625
4.44 225 10 2088 92 225
* 4.46 225 16 211 94 225
S 108 S 93 93 168
* 5 188 . 5 92 92 160
5 4009 28 367 92 400
* 5 400 28 378 93, 408
8 625 50 551 88 625
*x 8 825 58 548 88 625
8.8 225 20 187 83 225
*x 8.89 225 28 199 83 225
18 100 18 85 85 108
%10 100 18 81 81 108
18 408 48 335 84 408
%10 488 49 344 86 408
12 625 75 585 81 625
%x12 625 75 506 81 625
13.33 225 38 168 75 225
x13.33 225 38 182 81 225
15 180 15 72 72 108
x15 188 15 74 74 108 -
15 400 66 381 75 400
x15 408 68 364 78 400

Lims

1
3
5
8

%oftimalim
1

PAGE 134

Table 3.1 Results Of Arm-growth Experiments

(2nd of 2 pages)

%flawed Cells #flaus max-arm %oftotal timelim Time %oftimelim
16 625 100 463 74 625 241 39
%16 625 188 476 76 625 181 29
17.78 225 48 162 68 225 69 31
x17.78 225 4 183 72 225 69 31
28 188 28 B8 60 108 27 27
*28 108 28 61 81 108 27 27
20 490 88 265 63 408 292 73
*28 489 88 287 72 488 114 28
20 625 125 449 78 625 228 35
*20 625 125 434 69 625 187 38
22.22 225 5o 144 64 225 64 29
x22.,22 225 c8 149 62 225 106 47
24 825 158 366 59 625 264 42
%24 625 158 374 68 625 341 55
25 188 25 63 g3 100 27 27
*25 180 25 4 4 109 - -
25 498 189 225 56 480 119 30
%25 488 190 233 58 4080 158 39
26.67 225 68 125 56 225 73 32
*26.67 225 69 113 50 225 114 51
28 625 175 346 5S 625 332 g3
*28 625 175 308 48 625 317 51
30 108 30 11 11 108 - -
30 48 120 158 49 498 138 33
*30 498 120 158 38 488 355 89
31.11 225 78 115 51 225 181 39
*x31.11 225 78 87 39 225 117 52
32 625 289 194 31 625 344 55
%32 625 298 246 339 625 429 69
35 498 148 188 27 480 235 53
%35 48 148 79 28 480 154 39
35.56 225 88 93 41 225 181 45
*35.56 225 38 2 1 225 - -
36 625 225 7 1 825 - -
*36 625 225 216 35 825 483 77
49 225 98 7 3 225 - -
49 488 168 78 28 488 115 29
x40 409 168 4 1 400 - -
*48 625 258 32 S 625 165 26
45 488 187 58 15 498 275 63
(=1] 480 208 3 1 408 - -

PAGE 135

PAGE 136

Fig. 3.19 Graphs For Experiments Embedding Balanced Arms
%oftotal is averaged for a given value

of Cells and %flawed.

10
90
80
70 —

60

40 —

10 —

%oftotal

slope = -2.,2 |

Key: X Cell s=100

A =225
0 =400
O =625
® =ALL

| 1
%flawed—>» 10

PAGE 137

3.1, the repair efficiency drops from .98 at %flawed = 5 to .415 at
Aflawed = 35. |

. 2) As ‘“flawed increases, a cutoff point is reached where %oftotal
drops precipitously. In our experiments, this occured for %flawed
between 25 and 45. This cutoff occurs when en array is so flawed that
the arm is trapped. Very small arrays, such as the 100-cell arrays in
our experiments, tend to have lower repair efficiencies and lower cutoff
points; because a higher percentage of cells are edge celis. An edge is
a barrier that restricts the growth of an arm.

3) The time taken to embed an arm varies widely for a fixed %flawed.
It is roughly _prdportional to the number of cells in an array, and tends to
increase as iflawed increases. When the cutoff point is reached, the
time to embed an arm plummets. This is an example where testing and
repair time is far from growing astronomically with an array’ssize, even
though very few input leads connect the Array Programmer and the
array.

4) If the active area of a cell is fixed, statistical considerations state
that “flawed varies less as slice size (and number of cells) increases.
This fact, the near-independence of %oftotal on the number of cells in an-
array, the proportionality of the time to test and repair an array to its
number of cells, and the desirability of large memories in one integrated

circuit package all argue for fabrication of the largest possible slices.

‘PAGE 138

5) How large should cells on a; large slice be? Assume that the
dominant consideration is the number of bits in the largest embedded
shift-register arm. The total number of bits in an arm embedded on a
slice is proportional to the product of two factors:

a) The fraction Y of total cells embedded in the arm. Our
‘experiments show that for a given cell yield Yo > 3/4, Yg is
approximately 1 - 2.2(1 - Yc). Yc is a technology-dependent
function of defect density and cell area.

b) The fraction of a cell’s area containing processing shift-
registers. If a cell has P area devoted to processing shift-
registers and V area devoted to other circuitry, this fraction is

P/(P + V).

We can express this product as a function of P and technology-related
parameters. Finding the maximum of this function‘via differentiation
tells us the value of P that yields the highest expected'number of bits
in a shift-register-arm. At one extreme, a large slice has nothing but
overhead circuitry. At the other extreme, it has one large, flawed cell.
Note that a minimum condition is that a cell be small enough to make
“flawed below the cutoff point. This condition is now met in most
technologies.

Though the repair simulation program is simple, its performance is

PAGE 139

encouraging. There are several ways it can be improved. In a production line
using large st‘i»ces,. the program would know an expected, minimum size of an
embedded arm for a sliée of a given size. To save computer time, it could be
satisfied when it attained that minimum-sized arm, or one slightly larger. At this
point, use of much more computer time to maximize the arm would probably not be
worth the cost. Our simulation ran in compiled Lisp, and no effort was made to
improve speed. A production-oriented repair program would be carefully written
in assembly lasnguage. More computer time could be used to improve ripalr
 efficiency. -

We've repaired figure 3.17's array to realize an arm 495 cells long. |
- Our ability to improve the repair efficiency from 88% to 94% suggests our repair
program's performance can aiso imprové. A more complicated and/or heuristic
program could improve repair efficiency. A simple extension of our program would
be more sophisticated about jogging an arm to include unused, good cells. Even
the current jogging procedure could be called several times, instead of only once
at the end of the main arm-growth procedure.

Now consider our assumption that no faulty cell outputs a high S at the
same side-set where it outputs an alternating C. If a faulty cell outputs only
constant signals, this assumption is obviously valid. However, this assumption is
not valid if our assumptions are relaxed to say that all FAULTY outputs of a cell
are stuck outputs. In particular, it is noi valid if a cell A’s only fault is a high

S.OUT - say S.LOUT. In this case incoming ioading signals may be routed to the

PAGE 140

falsely-touched neighbor B at the same time they are routed to the appropriate
Array Programmer-intended cell. In this case we call cell A a branch cell, and cell B
the branch arm’s base. This branching is particularly vexing bacause its effects might
not be felt until much later in the testing. Consider the array of figure 3.20,
whose only fault is a high S.RIn to cell (2 2). That is, (1 2) is a branch cell. In
such an array the indicated state could occur. The Array Programmer would only
know of the existence of the intended arm. When the intended arm tried to touch
(0 0), the branch arm would touch (1 0), causing the subseauent test failure of the
extended version of the intended arm that included (0 0). This failure could be
caused by a faulty (O 0) cell, but in this case it wouldn’t have been. Even if the
Array Programmer knew the failure was due to a loading branch, it wouldn’t know
where the branch occurred; here cells (1 0), (1 1), (1 2), or (1 3) could have
been branch cells. The problem is heightened by the fact that total retraction of
the intended arm via lowering (1 3)’s S.U.In does not affect the branch arm. Indeed
it may grow further if more loading information is clocked into (1 2). Happily, a
working cell’s Incremental and Total Retractor circuitry implies that attempting to
load a good cell in a branch arm resuits in the freeing of all the cells from the
loaded cell to the tip cell in the branch arm.

There is a wide range of possible approaches to the loading branch. On
one extreme, the Array Programmer could assume that this branching problem does
not exist. If this assumption is invalid for a particular array, the Array Programmer

may find itself hopelessly confused. Then it quits its testing attempts, and signals

PAGE 141

Fig. 3.20 Growth Of A Branch Arm

intended arm'g base

T X ';V?“

branch &S——branch arm's base

cell "***—*-Zz__ .32
' L

0 1 2

Fig. 3.21 Branch Arm Touching Intended Arm

Intend this Get this

T ‘ r_,[j;
| | 4«'_
A

PAGE 142

that the total array should be discarded. This is a fast approach that might be
reasonable if the probability of a branch cell was low; for instance, if cells had
many elements or arrays had few cells.

An array can be successfully loaded even if it has a branch cell, if one is
willing to accept the extra testing involved. By our assumption that all faulty
outputs are stuck at some value, a branch cell can only transmit loading information
to a branch base if the branch cell’s C output to the branch base works. Then D
of that side-set is either:

1) an alternating signal transferred by the branch cell, as in the
example above; or |
2) a fixed D signal, which causes the branch base to be continually
reset due to its being programmed into the STA=1 state.
(2) is no problem; it’s (1) we’re considering.

The Array Programmer can use several facts to generate a list of
possible branch cells. When (1) holds, some of the tip end of the branch arm is a
translated version of the intended arm. This is true because the branch base
receives the same C and D information that the branch cell receives. The Array
Programmer can use this information, and its knowledge of the position of the
intended arm, to generate a list of possible branch cells. Knowledge of which cell
of the intended arm failed helps reduce the size of this list. This knowledge may
come from noting that all cells of an intended arm from its base through some cell

C properly transmitted their shift-register B; the cell touched by the branch arm

PAGE 143

touched cell C or the cell to the tip side of cell C.

Asgum‘e’cell A tried to touch cell B, and the subsequent test failed. The
Array Programmer might suspect a branch cell if not even stt-’rqﬁster B of cell A
((1 3) above) outputs properly during the test. A neighboring cdl o part of a
branch arm, may have touched cell A immediately after the simultaneous loading of
cells A and C, thereby displacing arm A’s tip to cell A. Celi A would then be Isaded
with information intended for cell B (see figure 3.21).

When the Array Programmer suspects a test failure occurred becsuse
of a branch cell, it retracts the intended arm. The Array Proﬁrmor then regrows
the arm through cell A, and tries to terminate the arm with a loop at cell C, the
possible branch celt closest to the form& intended arm's tip. This new arm is
tested. An unsuccessful test suggests that the potential branch arm’s base, cell C,
was the branch Ws base; cell A, the branch cell, is marked as totally flawed. If
the test isv successful, and there are other potential branch cells closer to the base
of the intended arm, these cells are tested in the same way celi A was. That is,
armA is retraetac_t:and then hooked into a potential branch base cell. This process
repeats until all potential branch cells are tested, or a branch cell is found. If all
tests are successful, there was no branch cell. Testing and reﬁair continue as if
cell A was merely unable to include cell B in the shift-register arm. In any event,
this process assures that no branch arm remains to clutter up the array. (if such
an arm never affects intended arm growth, we don't care abbut it anyway.)

" Note how the Incremental Retractor circuitry helps in the example

PAGE 144

above. It allows the intended arm to touch and load a cell that’s been part of a
branch arm. (Of course, loading must be slow enough to make negligible the
slightly different delays of C and D information traveling through arms A and B.)
Furthermore, it allows quick incremental retraction of arm A when a potential
branch cell is found to be good.

These branch location steps are illustrated in figure 3.22 for the array
of figure 3.20. Incremental retraction is used between all the stages shown.

In another type of possible branching, a branch cell transmits high
S.0UTs to more than one cell AFTER the branch cell has been loaded. This type of
branching, which is much less likely than the other, can be handled in a very similar
way.

Of course, various steps can be taken to reduce the probability of a
branch cell. Instead of one S line for selection, a cell could have a larger set of
such lines. Only the proper combination of inputs to these lines would cause a cell
to accept loading information. This approach could make chance selection, and
consequent branching, arbitrarily unlikely by sufficiently increasing the number of
selection lines. |

The Array Programmer could send to a cell loading information stating
loading-input-direction, which the cell would compare to its Select inputs to decide
whether to accept a command. This technique would also help reduce the effects
of a branch cell by reducing the ratio of valid loading commands to total loading

commands. These techniques, and others like them, would only be employed after

Fig. 3.22 Location Of A Branch Cell

test

passed

jim test R X '

T

failed

Arm growth proceeds through cell (1 3).

test

passed

PAGE 145

PAGE 146

a more thorough analysis of the probability of a branch cell for a specific cell
implemented in a specific technology.

In loading more than one shift-register arm into an array, one must
worry that a branch arm will destroy a shift-register arm that has already been
formed and tested. If this possibility is sufficiently probable, it’s a good idea to
continue testing a completed shift-register arm while a new arm is being formed.
Effects of a branch arm can then be detected and countered before extensive
damage to the completed arm machine occurs. Besides monitoriﬁg the integrity of
the completed arm, this approach helps limit the confusion caused by a branch arm.

In limiting our consideration of possible failure modes to those above,
we are encouraged by a quote frbm <Von Neumann 66>:

"The axiomatization of automata for the completely defined situation is a

very hice exercisé for one who faces the problem for the first time, Sut

everybody who has had experience with it knows that it’s only a very

preliminary stage of the problem.” . . .

"There can be no question of eliminating failures or of completely

paralyzing the effects of failures. All we can do is to try to arrange an

automaton so that in the vast majority of failures it can continue to

operate.”

PAGE 147

Our discussion of testing and repair shows we can achieve Von
Neumann’s goal simply and efficiently by incorporating our loading, testing, and
repair mechanisms into a celiular array. The major limitation of our discussion -
the uncertainty of an appropriate flaw model - will be reduced ‘v'vhmra perticular
 technology and cell layout are considered for the shift-register array.

PAGE 148

Section 3.4: Production And Marketing Considerations

In previous sections we’ve considered the basic question of array
architecture, testing, and arm growth. In this section we consider less fundamental,
but important, points relating to specifics of production and marketing.

Once an arm is extended slightly into an array, the arm has many
alternate paths; the curves of figure 3.19 then apply. However, it’s critical that
the Array Programmer be able to penetrate the array via an arm base cell. |f the
Array Programmer can only access one such cell in a flawed array, there’s a
probability pflaw that that cell will be flawed, and the array will consequently be
unloadable. One way to ameliorate this situation is to fabricate an array with
Array Programmer-accessible bond pads to more than one celi - each a potential
arm base. If there are m such cells, the probability that no arm can be extended
into the array diminishes to about pflaw™ Quick tests would establish which base
cells worked. The Array Programmer would then use one or all of these cells as
base cells for testing and arm growth. The base cells shouid probably be away
from the edge of the array. One reason is that the edge is more subject to flaws.
A second reason is that there are more directions for arm growth away from the
edge. Another amelibrating solqtion would put a circuit on a slice that accepted
extra-array inputs which told it which of several cell edges to 'Iogically connect to
the slice’s leads. For instance, one "cell* would replace shift-registers A and B of
a cell by wires. This non-cellular part of a slice would be less likely to be flawed

than a cell.

PAGE 149

Ancther important question relates to array size. How big should an
array be? We know that all the procedures described so far work for arbitrarily
~ large arrays. We've also seen many arguments for large arrays. One constraint on
the size of arrays is manufacturing capebility, which is geared toward dicing a
wafer of maximum 3" diameter into much smalier chips. The current 100% yield
approach has limited development of support machinery and techniques for the
realization of very large ICs. However, Texas instruments did use a 3/2" diameter
slice for discretionary wiring (see <Spandorfer 68>). We've also heard that
Hughes developed 3 50-watt package for a 3° slice as part of the Navy’s All
Applications Digital Computer program; unfortunately, we haven't learned any
details about this yet. While many of TP’s and Hughes’ techniques for mounting,
packaging, codling, etc. can probably be carried ever to large cellular arrays, that
process may demand considerable investment. Ho\n)e\)er. that process will
‘inevitably oécur, apufrod by improvements in IC yields. We are not even close to
a fundamental limit here.

For “%echnalogies that require power lines cﬁnnbéiting many cells,
increﬁses in array size increase the probability of array-destroying power
problems. The probability of a power bus being open-circuited can be made very
small by making the bus wide. Layout care can lower the chance of shorts
between a power bus and a signal line; most such shorts would" probably not be
catastrophic anyWay. Nevertheless very large arrays should perhaps include

protection devices in each cell or block of cells. This circuitry could cut a shorted,

PAGE 150

or even overheated, cell off from its power source, before the malfunction blew
the power line’s fuse or sucked doWn the power line. The protection devices
could be a fuse, or could be semiconductor circuitry, such as common transistor-
SCR protection circuitry.

In any case, the well-defined nature of the protection circuitry’s
expected load would enable it to be very simple. Figure 3.23 schematizes a
possible layout for power lines and protection circuits.

Another power-~handling approach would make a cell’s supply of power
controllable by the cell’s neighbors. For instance, any of a cell’s neighbors could
command that the cell’s power supply be switched on or off. This could save
power in an array, and reduce the danger of faulty cells, by channeling power only
to the celis in an embedded machine. Indeed a “power arm" could be "grown” in
parallel with a processing arm into an initially quiescent array of cells.

Another question relates to the size of shift-registers A and B. Having
shift-register B longer than 1 bit helps in the monitoring of arm growth; if each
shift-register B in an arm contains a known pattern of Os and 1s, the Array
Programmer can monitor the position of a faulty cell by noting the location of faulty
shift-register B output. On the other hand, a longer shift-register B demands a
corresponding longer time to test an arm. Consequently a good length for shift-
register B is 2 bits. Shift-register A should probably be a length consistent with
maximum expected number of bits in a shift-register arm.

An array yielding a maximum shift-register arm of a certain length can

PAGE 151

Fig. 3.23 . Possible Layout Of Power Lines And Circuitry

Protection
Circuitry

Protection
Circuityy

Cell or Cell
Group Qircuitry

Cell or cell
Group Circuitry

[
vCC

Protection
Circuitry

Protection
Circuitry

Cell or Cell
Group Circuitry

Cell or ceil
Group Circuitry

Communication lines between cell groups are not shown.

PAGE 152

be used to provide arms shorter than that length. This means an IC producer could
customize the same array to various customer needs. An unusually flawed array
could provide a small shift-register, and its package could be marked accordingly.
Customers could even be given an IC with a variable-length shift-register whose
length was controlied via a side-set’s loader inputs.

If function-specification state bits are nonvolatile, a shift-register arm
can be loaded into an array before it’s shipped to a customer. The customer has
the option of access to loading lines, which allow him to re-program or repair an
array.

If the function-specification state bits are volatile, there are several
customer-manufacturer interface options:

1) If a customer has a computer or other appropriate digital machine,
he has the capability for testing and programming an array. He can use
these capabilities, and a manufacturer-supplied program, on untested or
slightly tested (e.g., for functioning arm base cells) arrays.

2) The customer can receive a pre-tested array and a description of
the loading sequence required to form a specified arm in the array.
This description could be in some non-volatile form, such as read-only
memory, paper-tape, or paper. Loading an already-tested array is as
easy as loading a shift-register. Power is turned on, an S line is raised,
and [4 x (number of cells to be loaded)] bits are clocked via C and D

lines into the array.

PAGE 153

3) A communication link, terminated by logic-interface machines on
each end, could connect the manufacturer and customer. (The link might
be a phona line or cable.) This link could be used for ‘Vloadng. and even
testing and repairing, of a customer’s machine by & manufacturer’s or
sys-tefn house’s computer.

4) An array requiring very low power (such as a CMOS afny) could
be shipped around with a battery-supply. |
in any event, a volatile array must be backed up, either by a machine
capable of re-loading or by a power-supply insuring preservation of the function
state of the array.

it’s obvious that the techniques we've described for the shift-register
arm machine apply to any arm machine. Arm machine realizations are appropriate
to many machines which are realized as a chain of modules, with each module
communicating with at most two other modules, and only the modules at the end of
the chain directly connected to the machine’s inputs and outputs. Many one-~
dimensional cefiular arrays have this characteristic, so they could be sppropriately
realized as arm machines in a ﬂawed checkerboard array. The techniques for arm
machines easily generalize to the high-relcon and tree machines discussed in the

next two chapters.

PAGE 154

CHAPTER 4: HIGH-RELCON MACHINES

Section 4.0: Introduction

This chapter discusses arrays embedding high-relcon machines. High-
relcon machines have fewer restrictions on communication between their essential
cells than arm and tree machines. In an arm machine, no cell may have more than
two essential neighbors. In a tree machine, only one cell may actively outp.ut
information at a given time. All the essential cells in a high-reléon machine may
have four neighbors, and all essential cells may be acﬁvely communicating different
information at the same time. High-relcon machines may therefore have speed and
flexibility advantages. However, high-relcon machines are harder to test and
repair because a cell may have up to four essential neighbors, and because
essential neighbors in one high-relcon machine must be essential neighbors in all
equivalent embedded machines. Powerful mechanisms - the loader, and balanced
processing transmission states - allow test and repair of arrays embedding high-
relcon machines. The description of a machine as an essential network facilitates
repair by abstractly describing the machine in a repair-oriented way.

High-relcon machines are conducive to a sequence in which the array is
tested, a plan for repairing the array is developed, and the array is repaired
through proper loading of good cells. This contrasts to the interwoven processes
of testing and repair appropriate to. arm and tree machines. However, this

chapter’s methods still use a loading arm for loading cells during testing and

PAGE 155

subsequent repdr qf an array. Transmission links form test links for testing an
array. These same transmission links may wire together essential neighbors in o
machine embedded in & flawed array. We detail the test and repair procedures
that use these f@cﬁ& states. Experiments with repur procedures we've written
help us compare repair difficulties for arm ahd high-reicon machines, and suggest
~ ways to improve our repsir procedures. |

Application areas most appropriate to high-relcon machines are
considered. We ‘prosent a simple cell, General, which enebles realization of the
benefits of high-reicon machines. General may be used to resiize highly paraliel,
arbitrary sequential machines, within limits set only by the size of a General array,
its number of input-output leads, and the spéeéd of its components. General
embodies t&»mﬁm we uge to test, ioad, and repair high-relcon machines. A
General array may-embed a universal computerconstructor-repairer that uses the
test and repeir procedures we describe. General's loading méchmism may be
controlied by en extra-am Array Prommmer ‘Moreover, a machine embedded
in a Genersl srray may be an Array Programmer; it can cou‘iir'o!’ the loading
mechanism of celis in its environment via Q function state that transmits processing
i-nputs‘ to one side's 1oader outputs. This ensbles a machine embedded in a
General array to test, manipulate, and repair its cefiular environment.

For specificity, we begin by detalling the General cell. Then we
consider a general testing and repair approach for embedding high-reicon machines,
and compare this approach to the one 'usad for arm machines. We discuss

PAGE 156

realization issues peculiar to high-relcon machines. A comparison of the properties
of high-relcon machines to the properties of arm, tree, and non-array machines

reveals applications most suited to high-relcon arrays.

#*

PAGE 157

Section 4.1 The General Cell

The General cell is amenable to reslization of highly paraliel sequential
machines. This cell incorporates the mechanisms essential to our testing and repaif '
approaches for high-relcon machines. Function states for processing, transmission,
and memorization of information allow realization of an arbitrary sequential machine
in the processing layer of an arbitrarily large checkerboard array. A Control
function stafe that transmits processing inputs as loading outputs enables an
embedded high-relcon machine to load cells in its environment. Such a machine
may control a loading arm and four test links to test, program, and repair its
cellular environment. Two or more such machines may monitor and repasir each
other. |

Figure 4.1 gives symbols for the General cell’s function states. Like the
cells of the last chapter, each General cell only communicates directly with its
neighbors or the extra-array world. There are no signal busses extending through
a General array. We've discussed the testing and repair advantages of this type
of cellular design. The loaders of the Shift-register and Genersl cells are identical.
except that procéssinﬁ inputs can control loading outputs when a General cell is in
ihe Control function state. Each of a cell’s four sides has S, L, and D loader inputs
and outputs (as in figure 3.5), and a Processing input and output. Like the Shift-
register cell, the General cell incorporates all the loader’s options. The shift-
register loaded by a loading arm has four function-specification state bits - FM, FO,
Fl,and F2 - and tbree loader state bits ~ LOO, LO1, and LSTA. This shift-register

PAGE 158
Fig. 4.1 General's Function States

Function states are shown for all values of (FM FO Fl F2).

Cross Control Memory
(O 0 0 0) (1 0 0 0) (- 0 0 0)
B
M
<—P— —_— - - —

L-turn R=-turn U-turn Not used
:0 0 1 Of 1010 1 Q) (1 11 0)
{0 0 0 1) (1 001 (010 1) (1 101)
(0011 (1011 0111 (1111)
D_——
. AN

Note: An unshown processing output connects to the
opposite side's processing input. Loader outputs are
only affected by processing inputs in the Control state.

PAGE 159

is reset when power is turned on. In all but one function state, only loader inputs
affect loader outputs. However, in the Control state each Processing input frdm
one of three sides affects a different loader output at the right side: P.UIN =
S.R.OUT, P.LIN = C.R.OUT, and P.D.IN = D.R.OUT. This state allows a michine,
‘embedded in an array as a collection of function states, to re-program its cellular
environment by appropriate proéessing signals transferred to some cell’s loader
outputs. | |

The Cross, L-turn, R-turn, and U-turn states are tjpes of balanced, non-
branchihg transmission states. Cross is a crossover; the others are bends. We'll
see that Crass, L-turn, and R-turn are very useful for testing and feult-avoidance;
note their similarity to the shift-register celli’s non-tip states (see figure 3.12).
- Cross, L-turn, and R-turn may combine to form a tranemission link arm that snakes
through an array. Such a link may act as a two-way wire bus, or simply as a wire
carrying information in one direction. U-turn is useful in testing; note its similarity
to the shift-register cell’s tip states.

State (- 1 0 0) is a memory state. In this state, FM is not used in its
customary function-specification state bit»'role; instead it’s a processing layer
P.R.IN-selectable D flip-flop. A Reset input for this ﬂip‘-flob is not provided, but
this function is easily simulated by proper manipulation of P.RIN and P.D.IN. This
memory state is very convenient for reslization of registers, addressable read-
writ_e memories, and other common memory modules.

The states associated with F2 = 1 aliow convenient reslization of a

PAGE 160

Fig. 4.2 A Function Performed In Different Orientations
(first of 2 pages)

Function F: out=(a + c)(a + D) (b + ¢)
Some busses between opposite sides are not shown.

A) Array A has inputs and output at its left.

a

GDL
L

éut< (= i]

B) Array A has its inputs and output at its right.

= < °

b
- Array A <
5 L—-c
(N _y out

PAGE 161

Fig. 4.2 A»Fﬁnction Performed In Different Orientations
(second of 2 pages)

Function F: out=(a + c)(a + B) (b + ©)

C) A rotated version of Array A, aided by U-turns,
performs F with its inputs and outputs above.

c b out

t

—

_ <
' ¥

=] ',) -52]
)

D) A rotated version of Array A, aided by'U—turns,
performs F with its inputs and outputs below.

S S N

3

This 4x3 array is the array of largest
cells above. It is a rotated version

of Array A.

2

)
c b a

PAGE 162

combinational logic function expressed, for instance, as a minimum product of sums
or sum of products. Figure 4.2 shows that these states function and combine very
much like the states in programmable logic arrays. These General states, coupled
with U-turn, were designed to eliminate the severe waste of cells that often
results from cell designs that only operate on signals coming from a given,
‘preferred direction. Those designs demand the use of many cells to turn an input
signal into an appropriate orientation. Figure 4.2 presents sample realizations of a
logic function, and indicates the ease with which General arrays operate on signals
to or from various directions. This is particularly important for functions with many
input-output lines.

The fact that digital machines usually require extensive signal-routing
explains the cell’s emphasis on bussing signals from one side to an opposite side.
This allows a cell to perform bussing operations at some output while
simultaneously performing a branch, combinational logic, or memory function at
another output.

It’s easy to see that arbitrarily large, properly programmed General
arrays can perform any time-independent, effectively computable computation. It’s
been demonstrated that today’s general-purpose computers can perform such a
computation if their memory capacity is unlimited (see <Minsky 67>). Like <Banks
71>, we therefore need only show the ability to réalize an extensible general-
purpase computer in the General array. The ability to realize a general-purpose

computer comes from the avéilability of its basic components - Nand gates, wires,

PAGE 163

and memory elements. Extensibility comes from the Control state and loading
mechanism. An array-embedded compﬂterk’c&n be constructed to control the
processing inputs, and consequently the right side’s loader outputs, of a Control
cell on a right side of the computer's periphery. We've soen that eppropriate

loader signals to an erbitrarily cell aliow the dr’ov'i"th”of e loading arm to an

arbitrary cell in a perfect array. The array-embedde eonputtrcan conuqlmﬂy
send signals to increase Its memory &s needed. |

Since such a machine has a moveable construction arm, it can construct
arbitrary digital machines in an arbitrarily large arra'y." For instance, it can
construct a copy of itself. It is therefore also a universal constructor.

" We'l see that, for array faults of a certain anumod nature, an Array
Programmer can test an array and embed a perfect machme in a flawed array.
Since the Array Programmer can be realized in a flawed srray, the General cell -
allows universal repair for faults of an assumed nature. |

Thus the General array can support a universal cor‘nputér-comtructor—
repairer.

General is universal, but simple. A processing mechanism’s complexity
results in advantages and disadvantages whose importmce ‘depends on the cell’s
use. The need for a low proportion of fiawed cells in an array enﬁadding high-
relcon machines currently requires that only simple celis bev febricated on a slice
containing many cells. Basic, universal cells allow an embedded machine’s designer
to exploit the parsllelism in 8 given sigorithm Testing, repelr, snd signel-routing

PAGE 164

require cells to assume transmission states; using a very complicated cell in such
a simple state wastes most of its complicated mechanism. On the other hand, a
simpler cell has a smaller ratio of processing circuitry to loading circuitry; the
simpler cell suffers from a higher associated overhead when the loading circuitry is
quiescent. When a cell’s simplicity requires more cells for a given machine, the
function-selection in each cell slows the machine.

One combonent of a cell’s complexity is its number of processing lines.
If a cell has many processing lines in a side-set, routing each of the lines to or
from a different part of an array requires many cells to break the lines from the
side-set’s bundle of lines. Furthermore, unless independence of different parts of
cell’s processing mechanism is assumed, test time per cell rises exponentially
with its number of processing inputs.

An array designer considers these general considerations and specific
design goals when designing a high-relcon array.

General’s processing mechanism is one conslistent with efficient
.implementation of our testing, repair, and computation goals. The Cross, L-turn, R-
turn, and U-turn states are important components of test arms and transmission
links in testing and repair. Although General cells perfqrm wiring operations in
many states, signal-routing is so important that expanding’Genera)’s signal-routing
capabilities might be worthwhile. Some variation of the Control state is necessary
for realization of our goal of array-embedded array manipulators. The sequential

machines we envision for General would use enough memory to support a memory

 PAGE 165

state; con#imction of memory elements from gates would require a greater
proportion of cells in an array than is justified by the resultant simplification of a
cell. Indeed, actual applications might argue for more memory elements in a cell
~ and/or more memory-oriented function states. 1fs true that cells with (F1 F2) -
(0 1) are rotated vérsions of cells with (F1 F2) = (1 1), and that cell states can be
eliminated by clever use of the (0 1 0 1) cell. Again, these cell simplifications
would probably result in disproportionate numbers of cells for most applications.

We briefly digress to give a little information about a familiar machine, a
miniprocessor, unique only because we designed it as a machine embedded in a
Gene’ra! array, md» because a specisl feature ‘anows it to test and repair its
cellular environment. This miniprocessor could be the processor of a universal
computer-constructor-repairer. This digression is intended to give some specific
information about our cellular realization of a machine like one many readers are
familiar with; those who aren’t will not lose continuity by jumping to the next
section. We don’t think the General cell is particularly suited to realization of
conventional processors, because processors are already mass-produced ICs.
However, we do want to demonstrate: the General cell’s power. Furthermore, this
design gives some insight into the number of celis of various types needed to .
implement a somewhat familiar machine.

The miniprocessor we designed is a 16-bit paraliel, synchronous, single-
sequence machine with conventional A-B-C bus structure. Figure 4.3 gives a map

of the miniprocessor. The machine has 66 extra-array lines: 1 clock, 1 interrupt,

" PAGE 166

Fig. 4.3 Map Of Miniprocessor-Tester-Repairer

8 Data 8 2-way transmission loading arm's base
inputs & . links '
outputs ¥ R f4 test-link
[ofcpy p weces
| 4 F J
, o I
i !
Interrupt !
o i = | =
ALU/REGISTERS SECTION
- Clock

—1> 121

TIMING & 0 '1| 3

15

CONTROL 1 ‘TT
SECTION VSRR

| | 16
[
(R

MEMORY
INTERFACE
SECTION

R e |

==1s!

| 'H-u
v

Write
Memory

16 Inputs From Memory
15 Outputs For Memory Address

16 Outputs For Memory Data

PAGE 167

8 data inputs, 8 data outputs, 15 memory address, 1 "write memory”, 16 memory
data inputs, and.16 memory date output lines. The machine siso has four test
links, and one loader arm for testing and repsir; we discuss use of these easily
| implemented features in later sections. The machine’s main sections are a Timing |
and Control section, a Memory Interface section, and an Arithmetic-Logic
Unit/Registers section. Both the Memory Interface and ALU/Registers sections
have 16 similar modules, one for each bit-slice. The Memory Interface Section
contains the -1'4-bit instruction register, and many transmission links. The
ALU/Registers sectinon contains six large (15 or 16-bit) 4ragisten; these are the
Accumulator, Program Counter, Instruction, Subroutine Return, Interrupt Return, and
input-Output/Test & Load registers. This section’s 16 biocks are identical, except
that the block mtaffacing with the Timing and Control Section is slightly different.
The miniprocessor has fairly conventional arithmetic, logical, subroutine, interrupt,
and input-output capabilities. Instructions are processed-in a conventional, single- '
sequence way.

We ‘specified this machine as one embedded in a perfect, rectangular
General array wﬁh about 9,000 cells. Its non-writing indirect memory feference
instruction takes three cycles, with about 700 cell-delays for each cycle. Since
most cells introduce about one gato-delay,’ a cycle takes about seven microseconds
fokr a technology with a gate-delay of 10 nanoseconds. Each rectangular
ALU/Register slice gives an example of a mix of cell types; each has 18 unused

cells, 147 transmission cells, 53 combinational logic cells, and 6 memory cells. Each

PAGE 168

bit-slice has 88 essential cells: 53 combinational logic cells, 6 memory cells, 16 U-
turns, and 13 branches. There are 118 non-branching transmission cells used as
wires. Other parts of our processor-ta;ter:-repdror had an even higher ratio of
wire cells to essential cells. This emphasizes the importance of good signal-routing
capabilities in high-relcon arrays.

Testing and repair techniques using the Goneral cgll depend only on the
loader and processing transmission ‘statgs, so the t‘est_lng and repair approach for
General can be_ applied to other high-relcon arrays with loader and prqcouing

transmission capabilities anslogous to General's.

PAGE 169

Section 4.2: introduction To Testing, Construction, And Repair

Testing, configuration, and repair for high-reicon machines is similar to
those processes for balanced arm machines, although there are important
differences. The chief differences are that high-reicon machines are not conducive
to the interwoven processes of test and repair; and test and repair are more
difficult and less efficient for high-relcon machines. We éonsider an approach
applicable to any high-relcon checkerboérd array with ‘our loading arm and
transmission link facilities. We mention how a Control state like General’s may be
tested, but this state is not essential to our testing and f@r spproach.

in ~considéring embedding an arm in an array, we rﬁade certain
reasonable assumptions concerning failure modes of the arréy. Thén the
interwoven processes of testing and repair were considered. These processes
occurred by the gradual snaking of an arm into an array. A cell was tested only
insofar as necessary to establish its successful incorporation intova desired arm;
this usually meant a cell wasn’t tested in all of its states. Testing of a new arm-
tip cell required using a partislly tested cell, but this presented no difficuity.

In considering embedding high-reicon machines, we make assumptions
very close to those made in the last chapter. However,imost high-relcon machines
are poorly suited to gradual growth and testing for two main reasons: |

1) In growing an arm, the number of relevant extra-array processing
inputs and outputs remains fixed. However, high-relcon machines

usually have a variable, sometimes large number of relevant side-sets

PAGE 170

as they're grown. Most generally, this requires tut:aﬁm linking a test
machine to the relevant side-sets at a partially grown machine’s
periphery. This requires an A\rray' Programmer to have a variable and
often large Mber of test arms and assqciated links. - We'd much prefer
to Have a low, fixed number of such links. Consequently, we test cells
individually, relying on indapendence assumptions sbout cells’ behavior.

2) Embedding an arm in a flawed array can be done efficiently by
gradual growth of the arm, followed by local jogging of the. arm to
include clumps of good cells. High-relcon machines benefit greatly from
a global repair approach that begins with a dneﬁptloa;»of all the flaws
in an array. This means that repair efficiency is improved by separation
of the toét and repair procadurei

These cansiderations explain why the test-and rgpiir processes for
high-relcon machines are segmented into a series of severel distinct procedures.
| First the Array Programmer’s Test procedure tests ‘an array, noting the
location of faulty cells. This testing is independent of the easential machine that is
eventually embedded in the array, so Test’s results are valid until_an array
develops a new flaw. ‘ o

A Repair procedure determines how to embed a perfect machine in the
faulty array. Repair accepts a flaw patt_e,m description of a flawed array from
Test. Repair also accebts an esscntid network model of the desired essential

PAGE 171

machine. Repair's output is a description of the repsired array that places each of
an array’s cells into one of the following four categories:

1) The cell is flawed.

| 2) The cell is an essential ceil.

3) The cell may assume an arbitrary non-Control function state. None of

its outputs is retevant to the embeddéd machine's output.

4) The cell is in & Cross, L-turn, or U-turn transmission state. The cell

is part of one or more wires assoclated with relevant inputs and

outputs of essential cells.

The Construct procedure constructs a perfect machine in a flawed array.
Construct modifies Repair’s dutpuf by meapping each of an essential machine’s
essentiali cell states into a properly located essential cell. ‘Rephir has arranged
that essential celis be wired together ih tﬁe proper way. Construct accepts from
Test a model of the flawed array stating which side-sets may definitely be used
for loading. Test develops this mode! as it tests an array. Every cell that Test
finds to be good has some side-set that can be used for l'bbding the cell.
Construct only activates the side-sets specified by Test as it exteﬁds a loading
arm into an arra’y.‘" Construct’s loading arm may touch any good cell, but it always
touches and loads essential cells (category 2) and wire cells (category 4). When
Construct completes its loading task, a perfect machine is ambodded in the array.
The embedded machine is ready for further test or use.

Our high-relcon repair procedure assumes that the length of wires

PAGE 172

between essential cells is irrelevant to the proper functioning of an embedded
machine. Possible techniques for assuring the validity of this assumption are

suggested at the end of this chapter.

PAGE 173

‘Section 4.3: Testing

Testing an array embedding a high-relcon machine involves the one-by-
one testing of the ceils in that array via test links between the tested cell and an
Array Programmer. This procedure is relatively difficult, compared to testing of an
array embedding an arm, because Test doesn’t know how Repair will map a perfect
machine into the faulty array. This implies that most cells rhust be tested in all
their function states. Because all of a cell’s accessible processing inputs and
outputs may affect an embedded machine’s output, Test must vary the accessible -
processing inputs to the cell, and monitor the accessible processing outputs.
Consequently testing a cell usually involvei linking each accessible side-set with
the Array Programmer via a test link. Figure 4.4 shows that the processing
transmission states are ideally suited for this task.

Test rﬁakes the assumptions listed below. Each assumption is analogous
to the correspon&i‘ng assumption made for shift-register cells.

1) Goéd cell’s are only loaded under Test’s control, or because of a

branch cell, and not by signals caused by faulty cells.

2) A cell’s performance depends only on that cell’s mechanism, state,

| and input signals.

3) A successfully tested cell does not develop a fault before the

Construct brocess is mlrer.

4) A cell’s}pr‘ocessing outputs don’t depend on its loader state; and,

unle»ss the function state is the Control state, ioader performance

PAGE 174

Fig. 4.4 Test Links To Processing Lines Of Tested Cell

" ARRAY
PROGRAMMER

TESTED
CELL

PAGE 175

doean’t depend on the function state. This non-essential, reasonable
independame assumption allows a reduction in testing time. Test need

not, for instance, test a function state for all loader states.

In considering testing, we first focus on the test stages that occur when
all tests are passed. We then address implications of test failures, and possible
flaw modéle. The modeliing question ltp‘tﬁ"ﬂ:&d in the subsequent description bf
Repair.

Testing a‘ cell requires explicit tests of its permissible function states,
and concurrent implicit tests of its loader. Tests of a typical cell involve two
types of communication between the Array Programmer and the celis at the test
site. Test links connect the Array Programmer to the processing inputs and
outputs at the test site, as in figure 4.4. The test links are composed only of cells
in the Cross, L-turn, or R-turn transmission states. The Array Programmer
requires one test link to each accessible side-set. The Array Prograhmer
communicates to a tested cell through signals to and from the base of each test
link. Besides the test links, a loading arm extending to the tested region links the
Array Programmer with loader inputs. This arm may pass through cells that are |
also in a test link, or even through the tested cell. (HoWavar, the Array
Programmer should not relay high processing signals down a test link connected to
the up, left, or down side-set of a cell being loaded, and temporarily in the Control

function state.) The Array Programmer may change the state of cells, such as the

PAGE 176

tested cell, either by sending signals into the base of the loading arm, or by
sending processing signals down three test links that converge on a Control cell.

Testing a cell’s non-Control function states involves cycling it through
those function states the cell may assume in an embedded machine. For each such
state, appropriate stimulus signals, and responses to these signals, flow through‘
the test links. We'll see that Repair always specifies that a good cell adjacent to
a hopelessly flawed cell assume a Cross, L-turn, or R-turn state; this is an
example 6f the tested function states being a subset of the set of all non-Control
function states. In this case, only some of the tested cell’s side-sets are
accessible. A functional test of a non-Control, non-Memory function state involves
at most 2% = 16 input combinations. Fewer input combinations may be appropriate
if some side-sets are inaccessible, or if independence of certain outputs and
certain inputs is validly assumed. For‘ instance, the left Processing input might be
experimentally found to never affect the right Processing output in the U-turn
state, even for a faulty cell; this would allow simplified testing of the U-turn
state.

Testing a cell’s response time in a given state is possible, if the Array
Programmer can accurately time a test link’s output response to an input.
Differential techniques then allow the calculation of the delay associated with each
test link. Additional delay comes from delay through the tested cell.
Unfortunately, accurate timing requires time resolution of less than one gate-delay,

which is difficult to achieve.

PAGE 177

| if the: Array Programmer knows the d;lay through each test link, test |
time fbr a given function state depends on how quickly the Array Programmer can
change the input: to'a test fink This is limited by the Array Programmer’s speed or
the bandwidth of a cell. Any inaccuracy in the estimate of the delay tmagh a link
may also limit test speed by effectively reducing the band'widﬁh- of the link.

" In testing a Control function state, test links connect the Array
Programmer ta all four of the side-sets of the cell in the Contral state. First the
Array Programmer \kerifies that the right side-set’s test link is not a test arm, by
ascertaining that_- a signal into the base of the test link doesn’t return to the base
after an appropriate delay. Then signals into the up, left, and down processing
inputs command: the tested cell to load the cell to its right into a U-turn state.
The Array Programmer again tests the right tegt link. If it’s now a test arm, the
Control state is good; otherwise the Control state is bad.

Tesfing a cell’s loading mechanism is implicit in the tests of the cell’s
permissible functiﬁa states. If a cell fails its function tests, Construct doesn’t try
to load it. If a cell passes its function tests, a loading arm has successfully loaded
'tho cell and retracted froﬁ; the cell. Therefore Construct’s loading arm can also
load the cell from some side-set, Test keeps a map of which side-sets the loader
uses to successfully activate and de-activate working celis. Construct uses this
map to determine the path of its loading arm.

After a cell has been tested, test links must bo moved to a new test

site, if there is any remaining. The new test site is ususily a cell adjacent to the

PAGE 178

last tested cell. Thus only the tip ends of the loading arm and test links need be
moved. This is fairly simple, since a loading tip is at the test site. Each test link
is gradually extended as part of a test arm, just as arms were extended in chapter
3. After each incremental extension, all links are tested to assure growth is
proceeding satisfaf:torally. Since a test arm only incorporates cells in transmission
states, faulty cells are discovered and avoided as in chapter 3. This gradual
extension is particularly appropriate in an array with a high fault density. in an
array with a very low fault density, the speedup from non-gradual growth could
offset the slowdown from a faulty cell’s confusion factor.

The process of moving the test site terminates with each of the new
test cell’s accessible side-sets connected to a test link. The new test cell, in the
U-turn state, is the tip of one or more test arms. The test process is repeated
for this cell.

In the last chapter we noted that failure after an incremental arm
extension could mean several things. For instance, the new tip cell might be
hopelessly flawed, or it might just be incapable of receiviﬁg information from the
indicated direction. We noted that various flaw models might be appropriate,
depending on the cell layout and the sophistication of the Array Programmer.

This modelling difficulty again rises with the high-relcon array. Growth
of test links is analogous to growth of shift-register arms, so the same comments
apply. A similar difficulty arises when a cell is in the process of being fully tested.

The cell may produce nonsense in all states; modelling that cell as hopelessly

PAGE 179

flawed is then dafinitely appropriste. Howsver, it may siso happen that an' output

" value is only wrohg when it's a function of ‘a particilar‘input coming from & cell

otherwise considersd good: Modellifg a side=det, or sven a particular Thput or

,‘v{‘

output, &3 unusesble might be valid Cholcs of soph

cation level in’ the Repair
procedure’s trestment of slightly flawed cells’ dépahds ‘on whether the
 sophistication s worth the computational cast. in- ol discussion of Repsir, we

~ assume an array may be modelled by a flaw patt
" represented by sA’X

PAGE 180

Section 4.4: Repair

_ machine in a flawed array. Test passes Repair a fiaw pattern description of the

The Repair procedure determine:

flawed array. Most generally, Repair may embed the largest grid machine_it can.

Construct_ may @hgnﬂcons,trw;tr in_the ﬂawgg array. any machine with an amntial

i ‘ ﬂrst. - Most

Zég\ RSN

network that fits into thns largest grid. We consider grid- i
| actual embedded machines have es»ntid cells, wm) jm;hvunt mdc-uh. their
ossentisl networks are grids with squares end ljoks. missing. . The most genersl

_ Repair method is then less efficient than a method.which nolices an incomplete

grid.We eventually consider such a less general, mare, efficient Repair procedure.
 lts main drawback comes when a new maching must be smpedded in the. flawed
 array, if the new machine's essentil network It a subnatwark of the. originel

_essential network, new repair of the array is necessary. Rapair derides bow to
Iocate and wire together good usmttdcdhmmwy

od cells-in transmission
states as ercs,&ﬂ embed @ perfact machine in ., aray, This. allows
_Construct to associate the proper function. state with. each.essential cell, and to
The Repair procedures that we have written sssume the simples} fault
_ model: a cell is either good or hopelessly flawed. mlmvm\m assumption is

an cells

 wire together essential cells with transmission, states dictate

most questionable, because of its harshness, when, T

A and B is impsssable.. This candition can be safely madelled,by.
cell A or cell B is hopelessly flawed. Repair knows that an untiawed cell should

| whmacd!diw!mmf”'”‘

* least as many edéential cells as the largeit grid embedded

SN S e e e el A PR TR R e e e e e T T R

PAGE 181

not allow a faulty cell’s ouput to affect an embedded machine’s output’ Thus no
output-affecting signal will be transmitted scross the faulty side. In all other cases
"m&,mmu s Nop ey flawed

Consider two ‘checkerboard arrays with the nmo distribution of good

‘and bad cells, and consequently the saie Taw pottom " The first array is for

is for embedding sn arm machine. Since

embedding a lrid‘mduho, and the secend
therearemmywommmmmouﬁ-ﬂmumﬁﬂmduofmyof the
grid’s relcon m"tworkc, the t’ohgut embedded srm in the second array contuim at

in the first ‘array.
Embeddingagﬂdinaﬁamdarrayimoivuudngmnodcdhwdyulinko

between essentisl naighbors. ‘Cells in the corresporiding podtion in the second

* array can be used as mncaﬂs, becauss cells in links have reicon as high as cells
inarms. Thus optimum repair-efficiency for the arm mackine

is at lesst as high es

optimum repair effiétency for the grid machine, giveh the édme fiaw pattern

How-do the optimum eiiciencies compare? AféWwering this question
from a non-experifmental, purely”mathematicsl perspective sippears véry difficuit
“stficioncy, given a particulsr
flaw pattern, appears impossible for most cases. “An expression for average

efficiency, averaged over st flaw distributions for a giviin number of flawed cells

An analytic, tractable expressior for optimum réeped

in an array of a certain size, also appears impossible tor both arms and grids.
Aithough one might find éome Tower bountis for repilfetficiency, it's fikely that the

PAGE 182

bounds would not be close enough to the optimum to be practically interesting.
Furthermore, one would still have little knowledge of the difficulty of attaining or
surpassing a lower bound in an actual Repair procedure.

Consequently, our approach has been to write promising repair
procedures, observe their behavior, and use our observations to suggest
improvements in the procedures. Some of these suggestions are implemented, and
the process repeats.

Many actual essential machines contain a mixture of low-relcon and
high-relcon essential cells. Figure 4.5 gives the relcon network for our embedding
of one bit-slice of the ALU/register section of our processor-tester-repairer in a
perfect array. The upper-right region of the bit-slice has many high-relcon
essential cells, and has few links to nodes outside the region. On _the other hand,
the bit-slice has many relcon-2 chains, balanced arms, and even relcon-0 cells.
Many relcon-2 and relcon-4 cells are used as a wire or crossover.

In embedding the bit-slice in a flawed array, we couid approximate its
essential network by a grid. Adding constraints to Repair in this way would have
three major effects:

l)} It would simplify the description of the slice’s essential network.

2) It would make Repair’s results valid for ‘any machine that fit into a
perfect 7 x 32 array.

4) It would diminish Repair’s efficiency.

In this section, we first consider grid-embedding - the most difficult, general repair

o B e O B A e e

PAGE 183

o

in the rectangular bit-slice there are 224 total cells: 18 relcon-0 cells, 16
relcon-1 cells, 78 reicon-2 cells, 28 relcon-3 cells, and .84 relcop~4.celle. The
bit-slice’s reicon network represents a compact embedding of a machine with 88
essential cells: 53 combinational logic cells,.6 memary cells, 16 U-turn cells, and
1'3 branch celfs. 18’ of the ‘Felcon-2 srd relcon-4 cells are non-branching
transmission cells, which are used as wires. Othor_ %{ &2'1 processor-tester-
“repeiter had ari-évei higher ratio of Wire cells to sbtentill tells.

PAGE 184

in a checkerboard array. We compars,; g 1o scm-embedding. We

v TRk L T

then suggest an approach which improves embedding effigi @.,Yé‘f;h%“".“c‘"ﬁ missing
links between nodes in a high-reicon machine's essential_network. This type of
od-a.grid in a flawed erray. If the
use thers.are. few reassnable
~ways to interconnect good cells to form a-large grid. As.the numbaer of flaws in
the array increases, the number of reasonable ways to:form a jarge grid explodes.
Repair cannot consider all possible. embeddings; this would take.too .much
computation, The obvious, sinple rapair mathodswa'ye. applied. Lo these arreys

- don’t work well. Eventually there are so many flaws.in.an array that the

embedding problem is easy, because it's obvious that.ne grid can be embedded in

approach is the mast fensible for mos}.

it

It's usually difficult to optimally emi

array has very few flaws, Grid, Repair is savy be

the array.

We focus on the mest difficylt gridmembesiding flaw. segion. - We present

a reasonable approach which is: considerably. mare.sephisticated. than the only

similar approach we’va. seen, which is Kukreja’s repair.of: cutpoint-connected.
arrays o | |
The nucleus of Grid Repair s a Tuist Repair prasosiuce. This procedure,
which we’'ll detail, is very eff_fgcie‘nt‘ aft;gmbggdj%ﬂ.;\jgs?in} moderately large
rectanguler arrays of flawed cells. Another procedure, Blackeff, accepts as inpute:
1) an essentiel network for a machine ambedded in s perfect arrey.

This natwork:isd,escribed;@g interconnected rectanguler grids.

R e 3 T T R fig?spgm.':gg-ﬁj‘i»’%zu; St

PAGE 185

2) ' flaw pattern for o fawed array, whefe dech céll s either perfect

We temporarily essuine that Repsir need not consider the location of &

flawed array’s input outptt lines; we essiihe théss i attached after an srray is
ar the location of

repaired. We'l see that ‘Blockoft fs sasity motittied “to' Coirel

< input-output Hines. BlotkoH ‘partitions the fliived array ‘frito: rectangulsr Blocks

- goparated by interconnection ‘strips; eich ﬁm 1# intended to Mold ‘s grid.
~ Blockoff-then asks m.: Repuir to determine how-to it a proper-sized grid into
- each of the blotks. ‘If Twist Repeir carbiot ‘peiform its taek for one of the blocks,

* Blockoft feils. Otherwise Blockoft tecides whittier It can-iriterconniect thi proper

 grid links extending from each block If It iucoesds, Blockoff pesses the Fésulting
deseription of the npdnd arrey to Constrixt. - If-Biockeff tan't interconnect the
grids, it asks Twist Repeir for an siternate embeding for at least one block. In
re-repairing:any block, Twist Repsir continues 1t repair attempts from the point of
its last success. - The procass iterstes; untif Motkoft scccesds or Talls,
~ Repair is oriented toward rectangUiar bidcks' for severst reasons. First,
this is the most natursl, tractable structure in a checkerboerd srray. Second, the
General cell Is-sulted to rectengulsr machines. Fially, sty theckerboard machine
can be viewed as a composite of rectangies of varicus sizes.
We first detall Twist Repair, and then Blockoff. We examine their
response to actusl embedding problems, compare their parformance to Arm Repair,
and note their limitations. We aiso suggest remsurisbie éxtensions of the Repair

PAGE 186

procedures we’ve written.

The simplest, most obvious way to embed a grid in a flawed array only
uses a cell as an essential node in the grid if the cell’s row and column contain no
flawed cells. A good cell in a flawed line - a row or column - enters the Cross
state, so it interconnects essential neighbors. We’ll call this repair technique
Simple Repatr. Simple repair of checkerboard arrays is analogous to Kukreja's
repair of cutpoint-connected arrays.

Note that Simple Repair is the best possible grid-embedding repair
when an array has few flawed cells. If an array has only one flawed cell, an
embedded grid must have at least one less row and one less column than the
flawed array; the flawed cell’s row and column are bottlenecks.

Unfortunately, this Simple Repair is very inefficient as the number of
flaws in an array incfeases. For such an array, we'd like an approach that is able
to twist a grid’s lines through an array, so that some cells in flawed lines can still
be used as essential cells. The L-turn and R-turn, cooperating with the Cross, are
ideal for this purpose. Because of the way repaired blocks must interface, we
assume a grid’s lines must extend from one side of a block to its opposite side.

The Twist Repair approach, which includes Simple Repair, uses
horizontal and vertical adfjustment itnes extending completely through a flawed array
(see figure 4.6). Any flaw on an adjustment line must be at the junction of a
horizontal and vertical adjustment line. Adjustment lines break the array into boxes

- rectangular regions of cells. At most one flawed cell is allowed in each box. If a

PAGE 187

Fig. 46 Flawed 15x20 Array Twist-Repaired Into A Perfect 10x14 Array

e TIXE o
N A
N\t $XE 122Xt N\t « Adjustment Line
. 3 1 X ot ~ .
X
IK. XL. .\l%: (J
. X ¢ Xo « Adjustment Line
b e ool >-< 'ﬁr'“
: + \:\| - ‘:{) 4

Explanation:

The relcon network above indicates the states of good celis and flawed
cells in a grid-repaired array. Flawed calls are indicated by an X. Good, unused
celis in an arbitrary state are indicated by ‘». Good celis that are essential cells in
the grid are indicated by +. Other cells are uud to interconnect essential grid
cells. The L-turn state is indicated by &, \' “or &, depending on the context.
Similarly, the R-turn state is indicated by 4, %, or *%; and the Cross state is

indicated by - or ¥. Note that jogging a wire requires the‘use of at least two L-
turn or R-turn states.

PAGE 188

line of boxes is free of faults, adjacent boxes in the line interconnect across
adjustment lines via Cross cells. If a box is in a row (or column) of boxes, some of
which contain flawed cells, one row of the box is not used for essential celis. If
the box contains a flaw, the flaw’s row is the row with no essential cells; all
unflawed cells in that row of the box assume the Cross state. If a box is in a row
of boxes with flaws, and the box contains no flaw, an arbitrary row may be put
into the Cross state. Thus all the boxes in a row have the same number R of rows
useable as rows of essential cells. Cross, L-turn, and R-turn states are used in
adjustment lines between boxes in a row to yield R embeddad grid rows extending
through all the row’s boxes.

Several considerations make the Twist Repair approach a reasonsble
one. Because exhaustive consideration of all repair possibilities is computationally
excesssive, a reasonable, heuristic approach is necessary. Simple Repair is
inadequate for most arrays with more than a few flaws. Twist Repair recognizes
the equivalence of many specific embeddings. For instance, an adjustment line that
doesn’t include any flawed cell may occupy any line of cells between two flawed
cells; all such lines are equivalent. Recognition of equivalence limits computational
difficulty. Furthermore, this allows Blockoff more flexibility in interconnecting
blocks repaired by Twist Repair. We found that forcing L-turn and R-turn links
onto adjustment lines results in far less repair confusion and inefficiency than less
restrained use of these states. Consider snaking an embedded grid’s row through

a flawed array of unbalanced cells, such as a General array. The only possible

PAGE 189

essential cells in the snaking path through the flawed array are those cells which
the path links to cells on the same row in the flawed array. This suggests that
jogging of the line and movement of the line in the vertical direction Md be
limited. Twist Repair often uses ail the side-sets of cells in the L-turn and R-turn
states; this efficiency helps minimimize the number of cells used as repair Iinka.
Twist Repair also attempts to place essential neighbors close to each oiher in a
flawed array. This is helpful for two reasons. First, since wires between asantial
neighbors are useless as essential cells, it’s important to minimize the number of
cells in each wire. Second, an embedded machine’s maximum speed Is limited by
delays through wires; intended processing is only done at essential cells. Our
ultimate justification for Twist Repair is that it is better than any other mothods
we've considered for repairing small rectangular arrays to embed grids.
The Twist Repair program’s inputs are a flaw pattern and a request for
" a minimum acceptable number of grid rows and columns. As in the arm
experiments, a square érray’s flaws are randomly generated. Starting with a good
guess of where to draw adjustment lines, Twist Repair considers alternative
adjustment line placements exhaustively - ignoring equivalent placements - until it
succeeds. Table 4.1 is analogous to a table given for balenced arms, showing the
best square grid Twist Repair embedded in experiments varying the number and
distribution of flaws in the square array.

Figure 4.7 shows curves based on the information in the table. The

curves show the average of %oftotal for a given %flawed, for various array sizes.

Table 4.1 Results Of Twist-Repair Grid-anbedd:nq Experiments
(1st of 2 pages) -

Key: %flaued - flaued cells as percent of all cells
cells - total cells in square array
flaws - total flawed cells in array
max-grid - the largest square grid our program embedded
Xoftotal - max-grid as percent of cells
timelim - time limit, in seconds.
time - the time the program ran
%oftimelim - time as percent of timelim

* -~ For tuo starred (or unstarred) arrays of the sane size,
one set of flau coordinates is a subset of the other.

Table: .

%flaued cells

108

- 498
625
625
625
109
108
408
409
225
225
625
625
100
188
400
4080
225
225
625
625
108
188
400
400
625
625

(o2 o))

NN

NNNN

00 0o £
» &

*

S

225 -

NN | el)

flaus max-grid Xoftotal timelim

time Xoftimelim

108 1ee 188
225 180 225
488 188 480
625 180 625
324 52 625
324 52 625
64 64 160
64 64 188
225 56 488
225 56 488
121 54 225
144 64 225
196 31 625
Ansuer not found in

Ansuwer not found in
25 25 188
25 25 108

Ansuer not found in
64 16 408

Ansuer not found in
16 3 625

198
timelim

.28

.85
timelim

26
timelim

233

- ')
VOO OON,IONOD®

[

Srwdiow

O e

37

PAGE 198

PAGE 191

Table 4.1 Results Of Tuist-Repair Grid-embedding Experiments
(2nd of 2 pages)

Xflawed cells flaws max-grid Xoftotal timelim time Zoftimelim

6.67 225 15 - 36 16 2% 75 33
x B6.67 225 15 36 16 225 8.7 4
8 100 8 9 9 18 = 2.2 2
*x 8 100 8 9 9 100 . 3.5 4
8 499 32 Ansuer not found in timelim -
* 8 490 32 4 1 400 388 77
8 825 5 9 1 625 498 65
x 8 625 5@ Ansuer not found in timelim
8.89 225 20 9 4 225 99 44
x 8.83 225 28 16 7 225 58 26
9.6 625 - 60 4 1 825 129 21
* 9.8 825 &8 1 B . B25 136 22
.10 108 10 9 9 1090 .62 1
x 10 108 18 9 9 160 4.9 .5
18 480 49 4 1. 400 387 77
x 10 498 49 1 “} 408 148 37
11.11 225 25 4 2 225 B 43
* 11,11 225 25 9 4 225 57 25
11.2 625 78 1) 825 64 18
x 11.2 825 78 "] 8 625 7 1
12 100 12 1 1 100 2.2 2
*x 12 108 12 1 1 100 7.0 7
12 480 48 "] "} 4008 84 21
x 12 490 48 8] 490 138 35
12.8 625 80 8 8 825 64 10
13.34 225 3@ B 8 225 81 36
*x 13.34 225 30 1 8 225 32 14
14 100 14 1 1 100 2.6 3
x 14 100 14 1 1 100 4.2 4
x 15.56 225 35 1 8 225 21 9
16 109 16] *] 108 3.0 3
x 16 1006 16 B "} 100 4.9 4
x 17.78 225 49 8 @ 225 R 12

PAGE 192

Fig. 4.7 Graphs For Twist Repair Experiments

100

90

80

70

60

50

40

30

20

10

el

Y%oftotal

|

%oftotal is averaged for a given value
of Cells and %flawed. i

Key: X Cells=100
JAY =225
a =400
o =625
L =ALL

|
%flawed ——>

| -
J
5 10

PAGE 193

The smooth, consistent nature of these curves suggests the conclusions listed
below: |
1) For a given array size, Zoftotal drops with increases in %flawed.
This drop tends to be greatest for small %flawed, milder as %flawed
increases, and non-existent aftgr %oftotal reaches 0.

Consider the curve of %oftotal as a function of %flawed, for a
given square array. Let E be the number of cells in a line of the array.
The first flaw introduced into the array forces %oftotal to drop from
100 to <100(E-1)%>/E2, while %flawed increases from O to 100/EZ. Thus
the slope of the curve is 1-2E for %flawed near 0. This explains why
%oftotal drops faster for larger arrays in this region.

Consider an array with several flaws. Introduction of a new
flaw may not cause a decrease in %oftotal. For instani:e, the flaw may.
fall at the intersection of two adjustment lines, or in a box where a flaw
had been assumed (to allow the box to interface with adjacent flawed
boxes, as discussed earlier). Over the set of all flaw distributions for
an array, ‘the probability that a new flaw will not cause a decreese in
%oftotal tends to increase with the number of flaws in the array. .At
worst, a new flaw will eliminate one row and one column of the former
repaired array. If the former repaired array is smaller than the original
array, i.e, if the repaired array has any flaws, at worst the new flaw

decreases Yoftotal less than previous "worst ;possibla" flaws. These

PAGE 194

considerations help explain the fact that Xoftotal drops less rapidly as
%flawed increases. | |

2) %oftotal drops faster with iflawed for larger arrays, because a
given “flawed implies a higher percéntage of ﬂawed lines for a larger
array. |

We've aiready anslyzed this situation for %flawed near 0. We
found the negativé slope of %oftotal versus %flawed was directly
proportional to a square array’s side iength, E. As Xflawed increases,
the particular dictributlpn of flaws infiuences »%o‘ﬂotalh. However, it's
easy to see why %oftotal tends toﬁ be ;mall,er,’for larger errays, for a
given %flawed.

Given a fixed %flawed, tar;g m;ulys.tqnd‘ to have a higher
percentage of flawed lines: the number of flaws is proportionsl to the
-area, but the number of lines is proportional to the square root of the

area. Consider two arrays, one with E=10 and one with E=100, at
“flawed = 1. For E=10, the one flaw implies %oftotal=81. For E=100,
the best possible distribution of 100 flaws puts each at one of the 100 |
nodes associated with 10 horizontal and 1’0 verticeal adjustment lines.
%oftotal is then 81. Most other distributions require the jogging of grid
lines, and %oftotal is_ then usually significantly smaller than 81. One
extrem; occurs in the unlikely evgnt that all 100 ﬂ‘ayvs occupy the same

row or column. The array is eﬁqctiyoly cut, so Xoftdtglso.

PAGE 195

A more general perspective provides a strong argument th;t
moves in the direction of a proof. The flaw distributions in two arrays
are equtvalent if there's a bne-to—one mapping between the flaws in the
two arrays such that the following is true. If an arbitrary flaw in one
array has a certain relstive position with rospoct. to the other flaws in
that arrav, the corresponding flaw in the second array has the same
felative position with respect to corresponding flaws in the second
arréy. If one of a flaw’s coordinates is X, then the relative position,
with respect to that coordinate, o.f a flaw whose corresponding
coordinate is Y depends on which of the five following, mutually
exclusive, collectively exhaustive statements Is true: X+l<Y, X+1=Y,
X=Y, X=Y+1, X>Y+1.

Now consider' twd square arrays' with different sizes, but
equivalent flaw distributions. The first array has E rows, n flaws, and
E-F grid rows in an optimauy embedded square grid. As Aflawed hasv’
climbed from O to 100n/E2 %oftotal has dropped from 100 to 100(E-
F)2/E% The second, larger array has K.E rows. Since Twist Repair
notices its equivalent flaw distribution, the sééond array’s optimum
square grid has K.E-F grid rows. Here %oftotal has climbed from O to

(K.F)2 as %oftotal has dropped from 100 to 100(K.E-F)?/(K.E)2. The ratio
| of the change in %oftotal to the change in %flawed is (ZEF-Fz)/n for the

first array, and (2K.EF-F?)/n for the second array; an equivalent flaw

PAGE 196

| distribution is more costly in the larger array. Any flaw distribution in
an array has a corresponding, equivalent distribution in a larger array.
However, the fact that not all flaw distributions in an array have an
equivalent distribution in a smaller array precludes simply extension 6f
our reasoning to a proof that, for larger arrays, %oftotel drops faster as
%flawed increases. It might be possible to make such a proof by
defining some sort of loosely equivalent flaw diatributidns.

3) For a given array size, %oftotal drops from 100 to O fairly smoothly
as %flawed increases from O to a number N dependent on array size and
specific flaw distribution. (For our experiments, 11.2 5 N < 17.78) This
contrasts with growth of arms, where %flswed decreases gradually and |
smoothly until it reaches a point where it plummets, usually for %flawed
approximately equal to 28. |

4) Repair efficiency is much smaller for grids than for arms.

5) For arrays with more than a faw (approximately five) flaws, Twist
Repair is far superior to Simple Repair. For instance, in the unstarred
array with 625 total cells and 20 flawed cells, Twist Repair embedded a
14 X 14 square grid. Simple Repair embedded a 4 X 4 square grid for
the same array.

6) The time to repair an array varies widely, even for a constant
array-size and 4flawed. The ratio of the time to repair an array to the
number of celis in the array tends to be higher for larger arrays. For a

PAGE 197

particular array, the time fpr repair is rolativ.iy low when there are
very few ﬂaWs. As flaws are introduced, repair time tends to climb
éraduﬁliy’, reach a peak, and then descend rapidly. This is because
repair time is roughly proportional to the number of non-equivalent
adjustment line placements. If an array has very few flaws, there are
few non-equivalent adjustment lines. As flaws are introduced, the
numbor of non-equivalent adjustment lines increases. Eventually an
array becomes so crowded with flaws that it’s 'difﬁcult to find an
adjustment line that doesn't include a flaw. If an adjustment line
contains more than one flaw, several associated lines are required to
satisfy the constraint that every flaw on an adjustment line be at the
intersection of a horizontal and vertical adjustment line. This reduces

the number of non-equivalent adjustment lines for very flawed arrays.

Experiments with Twist Repair suggest a new grid-embedding strategy.
We notice that for a given %flawed, %oftotal tends to be substentially higher and
%oftimelim significantly lower for smaller arrays. This difference becomes more
significant as %flawed increases, until %flawed is so large that all grid-embedding
attempts are futile. This suggests that embedding a grid in a large array should be
done by bresk ~a the array into blocks of optimum size, separated by
interconnection strips. Each block is repaired via Twist Repair, and its grid

outputs are connected across the interconnection strips to the gﬂd outputs of its

PAGE 198

neighboring blocks. In fact, experiments show that such a'procedua.'e is superior to
Twist Repair for large arrays with many flaws.

A block’s optimum size is determined by a tradeoff. Decreasing block-
size tends to increase %ototal within each block, but it also decreases the total
area devoted to blocks by increasing the number of interconnection strips. If
“flawed is O, it’s pointless to waste any cells on interconnection strips; there
should be one maximum-sized block. As %flawed increases, the optimum block-size
decreases. Assume that the overriding factor in embedding success is %oftotal in
each block. For large enough arrays, the fraction of cells used in blocks, given
each block has E cells in a line, is about (E/E+1)2 This number is 100/121 for
E=10, and 400/441 for E=20. Using the curves of figure 4.7, this indicates thgt
E=10 is superior to E=20 for %flawed greater than about 1.5, given our
assumption. This indicates how the curves and the value of (E/E+1)2 may be used
to suggest an optimum block-size for a given %flawed. Experiments With Blockoff
have confirmed that there is a fairly predictable, optimum block-size for a given
flaw density. This fact of an optimum block-size suggests improved grid-
embedding can come from breaking an array into blocks whose approximately equal
size is determined by the array’s flaw density. Then the simplest épproach assigns
identical sub-grids to ali blocks of the same size. This approach is limited when
some blocks have a disproportionately high number of flaws. This situation often
arises with current IC slices, where flaws tend to cluster. Since a very flawed

block can only contain a small grid, that block is unable to link up with all the grid

PAGE 199

outputs of its neighboring, less flawed blocks. This limits the number of grid-rows
in its row of blocks. | |

Before considering how Grid Repair should handle bldcking off an array
containing flaw clusters, it’s useful to examine the repair problem more generally.
It's quite clear that a heuristic approach is necessary if Repair is to efficiently
repair arrays with many flaws. Twist Repair is time-consuming, espacl‘a!ly when
one wants to place a near-largest grid into a flawed array. We’d therefore like to
be able to determine a priori the feasibility of a certain rdpair, in terms of
computational difficulty and probability of success. This is particularly true if
Blockoff is used to interconnect many blocks. Assume Blockoff operates on m
blocks, and there are g, satisfactory, non-equivalent sub-grids that can be
embedded in block m. Let P be the product of g, as n varies from 1 to m. There
are P combinations of sub-grids which Blockoff may try to interconnect to form an
embedded grid. If a high percentage of these P combinations are consistent with
the desired grid, Biockoff may quickly succeed. At the other ektreme, Btockoff
would spend a time proportional to P in vainly considering each of the
combinations.

Happily, Repair may use a rather simple heuristic approgs:h to reduce
repair time. Let F be a success function which estimates the grid-size that Repair
can reasonably expect to embed in a given array. Most simply, F i; a function of a

square array’s size and its flaw density. F can be refined in various ways we'll

consider. For instance, an input to F could state the probability F’s estimate is not

PAGE 200

an over-estimate. If non-square grids and blocks are considered, F can depend on
their specified shapes. it’s reasonable to obtain F experimentally, because of the
monotonic nature of F. For instance, we’ve observed that ¥’s dutput decreases as
an array’s dimension or flaw density increases. This monotonicity enables us to
estimate F by experimentally determining some of its key values, and interpolating
to find its other values. F is Repair’s heuristic guide.

Now consider the following procedure adapted to embedding a grid
containing R rows and C columns in an array that may contain flaw—cllusters. Repair
uses F to break the flawed array into approximately equal blocks whose size
depends on the array’s dimensions and average flaw density. F suggests the block
size that is expected to yield the maximum embedded grid. Repair then considers
each line of blocks, associating with each line a number equal to the number of
lines F associates with the most flawed block in the line. Thus Repair recognizes
the difficulty of snaking a grid’s rows or columns through a cluster of faulty cells.
Repair finds the sum S of all the numbers associated with the row lines. If S < R,
embedding the specified grid will be difficult or impossible; Repair’s action
depends on whether it’s willing to spend a lot of computation on what is probably
a vain effort. (This decision can be made implicit if a success-probability
parameter, like the one we’ve discussed, is passed to F.) If S = K.R, where K is
greater than or equal to 1, Repair multiplies each row number by about 1/K; so
that all the row numbers sum to R. An analogous procedure is applied to the

columns of blocks. |f Repair decides to call Blockoff, Repair has heuristically

PAGE 201

determined the size of the sub-grid assigned to each block. Thus F facilitates a
heuristic for guessing whether & given rhpﬂﬂﬂm mﬁ. i ib, the’ Mmont

'(Wentamm

We'vs noted that grid-embedding is the most difficiit repair problem in

o b R B g R B SR T T R U S T et et e SRR g R R

a checkerbioard srray. The major practical importeice of s repsir procedurs -

ftmdedﬁllvammmMmdiﬂm‘ﬂme |
any machine whose essential network is a sub-network of the (rld'i hiuntlal'
network. However, ﬂ\ftwonﬁtym thoofﬁdmcy with which a non-grid
machine is’ Mhuwm Wn’vcucnmﬁvﬂnu&mcmof
| The Blockoff procedurs we've written i:pmmlmouﬂ to accept an

geared toward grid-embedding Is its 'mm " Rés

eusential network containing rectangidar sub-grids with specified wires between
adjacent sub-grtd(H’s easy to see why noticing limited communication patho
between a machine’s hgh-reicon r..m promotés éificiancy: amff opmm
drnder fawar . R

Table &2 and figures 4.8 and 4.9 summarize a series of experiments
that begins to explore how block=size and missing grid links affect embedding high-

]
3

relcon machines. Table 4.2 summarizes the daté from the experiments, and figure
4.8 and 4.9 give Biockoff-produced pictures 6f repair odd’ﬁyt. ..

The experiments all used Xflawed = 5, ‘Which figure 4.7's curves

“suggest is & region whefs block-sizs of TOXTO is better then block-size of "20&20

PAGE 202

Teble 4.2 Experimepta With .Tbrce Dtﬂomak 2

Blockoff operated on arrays wnth 57. ﬂ&wod calls For a given flawed
array, at most the fuﬁ#ﬂ ok Blockelt saperimante weru performed. In each
experiment, Blockof pl tlu Bame-4i2 vtquan in each of an
array’s approximately cqed-mudbtock ‘Blotkoff'¢ best result is shown for each
entry. ess otherwise: noted, Blockoff fou'&i t ilnflossible to achieve a better
result, given the constraints. In 10-co o f Miocated 10 x 10 blocks for
each grid, and tried té cohnect the sl jgids info.obe hrg,a in 10-noconnec
Blockoff allocated 10°X 10'blocks Yor pach grid, but & erconnect the :mal
grids. 'In 20-cornect, Blockaff allocateli .20 x 2 ‘blocks for each grid, and
interconnected i - large -@id..Shiesquent figures contain the

Array Experiment - Best Bi‘ocku'ff"' Rem.ﬂt i Time (sot;ondo)

16x10 18-connect - 1 6xB grid ' - e 2.3
20%28 18-connect 4 b4xh grids = 8x8 47.0
20x20 18-noconnect lo bub gride o 9.2
20%28 20-connect. 1 8x8 grid . . 63.1
+ 4Bx4B 18-connect. 16.3x3 Brids - 12:d2~ —y 58.7
: 49x48 18-noconnect. 16 4x&k gride - 32.2
48x40 28-connect 4 5x5 grids = 10x18 832.
* 80x808 10-connect 64 2x2 grids = 16x16 963.
80x806 18-noconnect 64 3x3 grids 188.
! 80x88 28-cornect: s R e e

” Blockoff was still thinking

< et

+ When asked to put 16 4x4 grids in this. fla
after 45 minutes. Then we.interrupted and ,

* When asked to put. 64.3x3 zrm in Ws fhwd B!ockoff was still thinking
after 27 minutes. Thm we intormptad and bmimﬁd off.

! When asked to put 16 3x3 or 4x4 grids In_this w.d array, Blockoff was still
thinking after 22 miwtéc and 9.5 mifuites, re Then we intormptod and
terminated Bleckoff. ,

PAGE 203

Fig. 4.8 BlockofPs-Repair Of 20x20 Array With 5% Flawed Cells
(1st of 2 pcgu)

A lOﬁMMfwﬁﬂmwm‘j

R | IO I B .‘g;,ft,{,;__ LR
$fpasedussdentitones
I v XEX] .
. § X.x) 4“"1:‘5 : . l; L
|] >

it.'

B SRR EL N s son s s ool

i&r./!:::?f' 2 f&\ |
A%

1%X-ur.c _iﬁlli

B) 'io-noconnect embedé four 4x4 umonnoebdxﬂds

P » ~-

& lnm-/-vtl-t.t R
SEENEY S €I ¥ ot ¥

Xl LI B B I B [

fevedsseXosatiX}i
...ZIL::)':..'S.(:ZZ.*.“.:‘.)

sXs s)

ll‘.‘...x..
X

PAGE 204 .

Fig. 4.8 Blockoff's Repair Of 20x20 Array With 5% Flawed Celis
(2nd of 2 pages)

C) 20-connect embeds one 8x8 grid

::l/lll a. II.: X
BEESEIR Y sessennecs.
N8V

% 0 o\& 8 9 Xl/yl
PERgp e ¥4

:ll s e &X

2 8 8 [I} '.\.

BaSE Vg pate

R Lot & B
M SV O !

PAGE 205

Fig. 4.9 Blockoff’s Repair Of A 40x40 Array With 5% Flawed Cells
(1st of 4 pages)

A) 10-connect embeds sixteen 3x3 interconnected grids

2 9 LI I R I R X s s e nsae
TEFEEERR ' 1)(}..-)('.

R

[AN) llllll‘iilix [B B B] [2 BN BN BN BN BE BN BN | :
>< [] " 5 &8 0 28 4 . [I] [N BN BN BN BE B]
8?[’:::?5:: Xx S i e T
I\IIIIOCIIXIIXI/IIIIOI OIIIIII.L‘:\.IOOO :

. le s s u - o 4 s s s seacsn \o-o—o-o-\l
XYL e Do e ISOE SO0
:, [tZ-L-.:>/-< ::)5:. q---cl--lx :o-: {
-/-1- ‘EEER] n/-o-/nr/-rnnnnul --.--n)O(.-X--Xq
SR ORERERE B G PSR § § SRR o tva Uil &
Pr T A e e,
te T T o s
: us i SEFeon S EEER S 2 LY
4 -----X-vi n-l-anq -X-----qX---- I]

PAGE 206

Fig. 4.9 Blockoff’s Repair Of 40x40 Array With 5% Flawed Cells
(2nd of 4 pages)

B) 10-noconnect embeds sixteen 4x4 unconnected grids

t4
{
£

- 2592 v

X.r';@::::::

Lluull-ub

DX
BN SaYy
17
X1
oy

il o et

a » &85 8= [] IIIII/-I

[] a8 A l\ a0 L J a
«X — X=X = { {X

vt e e e

ll'III.lIXIIIlllllllllll..l.llll'l..

1 e Bekvat Sl B B 25 i S Lo
S

]

Xuenona

i

>.<— - a® 888 l>._<

><I I><l

- 8 -&

s s s 8s0 [[] -—u

§

A0 GELAY 20 8 8 00 SO ::..:..\i.ﬁ

4 ces e sessnn ceXnunas
. s aX s NN fas oo . $—t—4—+
L...:....:::::;(....>.<....:::..>.<>_/\I.>_<:.><..>.<
-X--- -‘ :- . - >0 llk)%!(ll
S 3§ § tane: PN 00 :;;-_.;:S-fﬁ-
DOBEE S 05 S bt S B EASAY § S o aShi
. . . e cengesXs
S § S VSR ¢ 42 VIREE § VS § toeva oeane s

PAGE 207

Fig. 4.9 Blockoff’s Repair Of 40x40 Array With 5% Flawed Cells
(3rd of 4 pages)

C) 20~ccnnect embeds four 5x5 interconnected grids

* --u---r,--ono_-% sfree -le--gn----
4 " EEEEEEEEN] . . - - >—u 0B
| I llllllllelllll a s 8 8 [] llelllel
I:I:ICVIICIIX Il/(XXII] llllIl-lkl
. .':\:-Z []] [R B | [] llll:::l []
' ::::>.<:‘**”’>.<....:.:>.<: S VS § B S S
1 PSS il 0 et St .:..;‘2:..:::
® 8 8 8 B B 2 & & 8 ® 8 . L] A 8 a [] [I B] IIIIXI
NN TG A R e
55 B SRS S 5SS § %S SRS
" a a s IIXIIIII [I | |] | I B] :IIIX.XIIIX.
-: : :&:::ll:/—b-o-.}:l :X: :lln.ll-ll:
SEBLA SOVt Lol B S B B S A
N B SV G2 § § S § St
l'X # 8 8 B 8 8 8 ® 8B 2 82 B 8 lllllll.'lx
L B | I\IXI'XII lll>l< " s a = % 8 B D D 8 P O B B D

L
Xt 1
44¢
X3
X
}

A . e

..XIII-IIII

: ‘-/...-X. .'-Z s 5 8.0 >O<le;:x0l.
S & SRS S2at § § S ”:;S'l::::?'(
VI8 SEAEAEE SR § § S § A
SRR S SRR SR £ 8 BLLA S BESEELISSES:
A ST SEss SRR ERRER RS ERP SRS
-* XI\H—FH[IIXIP IX.. llelllllll

PAGE 208

Fig. 4.9 Blockoff’'s Repair of 40x40 Array With 5% Flawed Cells
(4th of 4 pages)

D) Only one link between adjacent 4x4 grids

-

'I'X a s 8 nes L] -

" 5 2 a8 B 0N o a & B 5 "m0 Illllllml/lkl:X..l

e w l;% i IJ lll.r’li
R e e e A
:F ::::c ;(:X\..\ :X.-:::/-:: :1:><:ll » ¢
a8 8B 3 II!/IIIIIII. [] [] le 7 “““ -
Seen s Su 82588 LN e o B VI S
l.\ll.l. "= 8 B8 ll:Tll.-ll/.-/llllll-l I§lll-><l
» XIWIIIIIQXO . o L
SRR S EP S SARASEE & SE SEED S § S S5
' [] :l " s :I I\.-\l a8 P [] \l lx: :{>'<:>.<: J
I/Illll >< [] L I B) Il:\l ll|1Xl><Il ><
e a - IIXI l7 . .
»- - & % B A\B a s 2 B I-Q- -
:l:lll l:llll>l<lll><ll 2 8 9 l>.<::::::
[] a B B 8 3 B s A a . | N | B | IIIIIXIC
:%%zg:::?f' ->:<;< . Lllliiillix
;":>'<::",>.<:/:>.<'/': B 0 SRS & 08 ee
PSSt X et RS S (A BSTERRRR
‘: l/>'< l-+ a OOIXII 4)(e 8 8 B8

X
b}

. safeeXsnnaX — . e e X
|t A i
A R N O R
. S B S4BE B SIS 0 5 Vv
- — % X

PAGE 209

Indeed, 20-éonnect always took substantially longer to repair an array than did
10-connect. Furthermore, 20-connect never embedded a larger machine than 10-
connect, and sometimes embedded a smaller machine. 10-noconnect always
embedded at least as many essential nodes as the others, because 10-noconnect
works on a grid with links missing. We commanded Blockoff to place the same
square grid in each of an array’s blocks, because we didn’t want to help Blockoff
by implicitly telling it the location of flaw clusters. This constraint on Blockoff
limited its performance; this explains why we can see ways to snake extra grid
rows and columns through the flawed arrays. Figure 4.8.A indicates that the
lower-right block of the 20 x 20 flawed array limited the performance of 10-
connect and 10-noconnect. Similarly, figure 4.9.B shows that certain very flawed
blocks limited Blockoff’s performance. This argues for use of the success heuristic
suggested earlier. Figure 4.9 indicates that Blockoff’s performance diminished as
more links were introduced between sub-grids.

Comparing the graphs for Twist Repair experiments with table 4.2
shows Blockoff's superiority to Twist Repair as a flawed array’s size increases.
For “flawed equal 5, Twist Repair achieved a %oftotal of 6 for a 25 x 25 array.
This indicates that for 40 x 40 and 80 x 80 arrays, Twist Repair would have
achieved %oftotal substantially under 6. For %flawed equal 5, Blockoff used 10-
connect to achieve & %oftotal of 9 for a 40 x 40 array, and %oftotal greater than
or equal to 4 for a 80 x 80 array. This and other comparisons we’ve made of

Blockoff and Twist Repair indicate Blockoff is superior when %flawed remains

PAGE 210

constant as an array’s size iricrems. | |

We wish we could offer more. expgrim.g!,al l:eqults from Repair.
Hawever. Repair's larp computatlan-timc demends have made further experiments

unfeastble. o o
We now re-consider WWOMRWMGmu ‘We seq that it
is oriented toward embedding & machine abstractlydescribed as intercannected
rectangular sub-grids. Repair may use 8 heiristic approach ta decide, what pert of
» 'Wh an assignment,
Repair calls Blockoft, Blockoff may use s heuristic like Repair's to dacide how to
- Nembq;d each sub-grid. If the sub-grid. is ;qﬁlg;gpt%g@ll. Twist Repair is
-appropriate. Qtherwise Blockoff may break the sub-grid into blocks, and present

a flawed array should accept each sub-grid. After ma

Rgpai’r with each sub-grid. That is, Repair may be recusive. n.any case, sn.array
is aventually broken into.blacks repaired by Twist Repair,. and interconnecied by
Blockoff. i el |
| We’ve purposely ignored, dimuuin@mgmhsdd.d maghine’s
o intercomechom to other machines, either in or out of its arrey. . Tradeoffs rgl_lting
B tbis question ere analogous to those for orm-m ockoff may be easily
adapted to accepting inputs describing which of the cells st a machine’s periphery
carry the machine’s inputs and outputs. Handiing this,is like handling the interface
between linked sub-grids. In each case, a particular cail (for, instance, one. with a
lead to the extra-array world) should connet to ¢ pagy
One can envision further levels of Repair. sophis

PAGE 211

increased embedding efficiency. Choice 6f sophistication level depends on the
Ccharacter of expected repair problems. For iristance, very large arrays might
_bensfit by intercafinaction strips wider than bhs Tine Between large blocks. If
substantial sections of an essential machine were likely to have essehtial cells with
* few essential nelghbors (as thie General processor-testar-repairer did),
' efficiencies would resuit from special hardling nfthcusﬁcﬁms. lndood, perfect
mechines “should prolbably bs' designed'Th &°modular’ fadfiof, with relatively few
" communication pathé between :“?nbduléi’. " Tha riesd to fimit inter-module

" ‘communication paths is slready recognizéd i the design

We briefly sketch a promising repair techhigue for sucl
machines. ' An essential “network Is categorized in the “following way. Each
‘essential node with-three or four éssential neighbiors is ‘associated with some
rectangular Atgh-relon block in & compiict Blockoff-éompatible way that's been
discussed. Those wires and essentisl cells with one or two essential nol’zhbors
~ that are not in a high-relcon block are associated with low-reicon blocks (ue ﬂguro
4.10). " A straight horizontal or vertical Tine ' Thediigh s’ bebetial network ¢

" through at feast one high-relcon or Tow-relcon Block.” That block ‘which the
Success Heuristic F estimates as least efficiently repaired, given the flawed
array’s average flaw density, determines How many flawed array lines shotid be
allocated for an essential network line. For instafce, the expcted embedding
efficiency for the farge high-reicon block-dictates the nuriber of flawsd array

" columns devoted to pettect array coludine O thwough 5 The relatively high

PAGE 212

Fig. 4.11 Blocking Off A High-relcon Essential Network

A
-

~It i Fee oo T e
e « i DESIERINN O

 The lower-lsft corner of the assential nebwork; Ar °
- 'wat t:qo’ Jmsmp‘,ag, e e R 3333 (;:qa::s
lists o
L P
whase norizen COQI' ne Q! Ot M (-1} Vif [-1
" allocation of nolies “‘whoes 9&3&%5‘0 ¥ THe ‘other

~ two high-relcon blocks dominate vertical sliscation of nodes whm vertical
e a6 Otivough 3. Lows #9% other

nodos.

Pt e

PAGE 213

embedding efficiency of transmission links dictates a lower n;.iltiple of ﬂawed array

columns devoted to column 6. Thus Réphi Uses the success heuristic to estimate

whether a repair wiil succeed, andi tnwaruugh estimate of how to allocate
flawed array space. Repair may then ad;uihlﬁ}nitid estimates by considering the
actual number of flaws in each allocated bfbek Rapdr then uses Blockoff to repair
the hugh—relcon blocks. Given a success here, Repair calls o procodwo devoted to
; “faﬂ the low-relcorf mmuﬁ cels and wires that ami'ﬁ:s a‘ﬁf\j ¥afcon block. The

vain, whamhvww&amwy—upmﬂn MN amkm to roptir an

array blocked off in sn unrepairable way.

If Repair uses details of a machine’s n«ntial network to increase
embedding efficiency, Repair needs a description of that network. In the least
sophisticated case, a designer could specify that network to Repair; we’ve done
this in our experiments with Blockoff. However, it is fairly easy to write a
procedure which abstracts a m&clv’ne’s essgntial network from its description as an
embedded machine. The procedure "works back™ from the embedded machine’s
outputs to find the essential cells and wires of the machine. The resultipg
vessential network could be blocked off by analysis of the location of high-relcon
regions. Straight lines through the notwork that yielded a low density of links
would indicate reasonable boundaries between high-reicon regions.

We've discussed an effective Repair procedure, and actually wfitton

PAGE 214

and analyzed fundamental components of this procedure. Nevertheless, repair of
high-relcon machines remains a largely unexplored area. Some programs we've
sketched remain to be implemented. Perhaps better melhods of repair can be
found. More experiments would enable a better understanding of the heuristic
success-function’s nature. Interesting theoretical questions remain. Consider the
curve of the expected width of a square embedded grid versus the width of a
square flawed array, for some low, non-zero flaw density. Is there a repair
procedure such that this curve is monotonically increasing? Is there a repair
procedure such that the curve is above some positive-sloped straight line for very
large arrays? Can you produce such a procedure, or prove thel_fg isn’t one? This
is an important question, because'its answer tells us the expecféd size limits on
grid machines embedded in arrays of a given flaw density. This helps us determine

the expeéted size limits of high-relcon machines that aren’t grids.

PAGE 215

Section 4.5: Construct
Construct accepts three information inputs which dictate how Construct
loads cells in a flawed array. These Inputs‘ are: |
1) a description of an essential machine stating essentisl states and -
associated wiring; | |
2) a dascription of a repaired array, in which sach cell’s processing
layer function is in one of the four categories we've mentioned -
flawed, essential cell, particular non-branching transmission stats, o
unused good cell in arbitrary sfate; and
3) a 7descripti'on of the repaired array statirig the sido'—u_h

successfuly activated and de-activated by Test's loader.

We’ve noted that Construct’s precise nature depends on Repair’s
generality. In any case, Construct is very simple. First Construct "mentally™ maps
a machine’s essential cells into a repaired array’s essential nodes. Then Construct
exténds a loading arm into the flawed array, possibly touching all good cells and at
least touching aﬁd properly setting all the cells acting as essential cells or wires
between essential cells. The loading arm’s base may be any cell with access to
the cells that must be set. For instance, any of tﬁe celis of an embedded machine
would be an acceptable base. Setting the proper cells is even easier than growing
a Iong‘arm into an array. Construct knows the location of fla\yed cells, and may

extend, retract, or niove its arm through side-sets Test successfully activated in

‘SME|} 0G)M Aeaie GE X GZ SIY} 40 SPUOIIS GQ U PAYSIUY JONI)SUOT
‘wJe jey} jo jsed saduo| ou ase jnqg ‘w.ie Suipeo| s}onuisuo) Aq payosno} uaeq
@AeY jey) s||9d aJe §||9d 4 |y 'SPU0das Gg Jo)e “yse} s)I pajadwod JonJsuod
USUM WJB 8,J0N4JSU0) JO 9)e)s 8y} smoys aanjoid 8yl (1 1) 18 @seq S} Ym wie
Suipeo| o|qixa}y e 3uisn ‘s||ed pamejjun ||B YoNo} 0} PeRSE SeM JoNJIsu0?)

X1y

X
—)y
Xr X
treeY
trerYPYIYOYIOYY
PrePYITRYYYLOY Y
EEEDOCSEEREERER
EENEENEEDCENEN
AN RN EEEENEEEE RN XN NN
trrrrereXrrerrr YT I PRYYPL Y Y
R EEEE R NN NN NN NN N NN
r;?(rfnrrnnunnnun
tXrrrrrrrYr YT PEYYEREYEOY P YN Y Y
NN NN NN
RN NN RN NN
peXrrrrrerreXrrrrrrr Yy Y
trrerrrrrrrrrrreeXrrreer Yy
trrTrYPIEYEYYYYEYYEISPLYPOYOYOY

Ayiqede) s)onJjsuo) Suimoys juswiiadx3 uy 0 yNsey 01t Si4

912 39vd

PAGE 217

any way consistent with touching all the proper cells. Figure 4.11 shows the
result of a simulation demonstrating Construct’s ability to pérform its task. The
simulating procédure moved its arm in a flawed array. AII cells were initially in
either the X (flawed) or G (good) stat_e. For simplicity, it was assumed that all
accessible side-sets of good cells could be successfully activated and de-
activated. The arn. moved around in the array until all touchable cells were
touched. (This is doing more than is necessary.) The figure shows the state of the
loading arm when Construct suyc_cee’ded.‘ Of course, Construct could completely plan
its loading strategy via such a simulation before actuslly extending its arm into an

array.

PAGE 218

Section 4.6: Other Considerations In Realizing High-relcon Machines

We’ve considered the basic issues of testing, construction, and repair
for high-reicon machines in previous sectons. Now we turn to less fundamental,
but important, aspects of high-relcon machines. We considered production and
marketing issues for arm machines in section 3.4. We suggested ways to satisfy
constraints imposed by the need for adequate array-access ports (chapter 3 called
them "arm bases”), the need for proper handling of shared power lines, .and
volatility. These constraints have obvious analogs in high-relcon machines.
Because satisfaction of these constraints is also obviously unalogous, we need not
consider these constraints further. Instead we concentrate on considerations
peculiar to high-relcon machines.

All the testing procedures we've discussed assume independence of cell
behavior. Gradual growth of an arm machine involves concurrent tests of an
individual cell and its associated machine. As soon as the 1ast cell of an arm has
been tested, the arm is complete and tested. On the other hand, high-relcon cells
are independently tested before they’re included in an embedded machine. Testing
an embedded machine, or its modules, checks our independence assumptions. An
embedded machine may be tested like any digital machine, via its inputs and
outputs. Furthermore, test-link capability provides testability to high-relcon array
machines that’s not available in ordinary digital machines. Test links may connect
an embedded machine’s module with a test machine, to allow independent testing

of that module. A test link, terminated by a transmission-branch cell, may be used

PAGE 219

as a probe which, at a given time, monitors the signals on a wire in an embedded
machine. After test links are used for module tésting or probing, they can be
withdrawn. Of course, this assumes that the test arms do not affect the operation
of the eventually embedded machine; this is a safer assumption than a simple cell-
independence assumption.

. The use of cells as wires in high-relcon machines necessitates special
considerations. In most hard-wired machines, it’s safe to disregard the delay
through wires; but this assumption is usually not valid in high-essential machines
because the delay through a wire cell is close to the delay through some other
cell. A pair of essential neighbors may be linked by different-length wires in
different flawed arrays. Wire delays consequently decrease an embedded
machine’s maximum operation speed. Furthermore, they compound the “critical
race” problem, thereby making array machine designs more constrained than non-
array designs. A synchronous high-relcon machine must be clocked .slowly enough
to allow for the delay through embedded wires. Other conventional techniques for
solving timing problems, such as ready-acknowledge signalling, may be embloyed
where needed for communication between modules in embedded machines.

Array machines compensate for inherent limitations by providing added
capabilities, includirg automation-compatibility. We've seen that a simple array
facilitates testing and repair by its iterative nature, and by the fact that test and
repair facilities are built into a cell. An array’s simple structure also facilitates

computer-aided design. A designer could specify a machine as a perfect

" PAGE 220

embedded machine with timing constraints on.its celis. A.simple program .could
check that an envisioned embedding satisfied these constraints. A more
sophisti:ca.ted prbgrgm could “compile™ a machine’s high-level-language specification
into an acceptéblp_array-,embwedded, machine; this ;ﬁigﬁ,gifﬁ,(;ult.. but easier than

analogous computer-aided design in a less regular enviropment,

PAGE 221

-Section 4.7: High-retcon Machine Applications ‘
We've discussed our approsch to the most ditficult testing and repeir
processes for a checkerboard array = treatment of Mih-refton machines. Abstract

description of an essential machine as ‘an essentisl’ riefwork fotuses on the

properties of a machine that are important to test and repelt.” “We've shown that
high-relcon machines have higher testing and repair costs than arm machines.
We’'ve also shown that, even for high-rdcon machines, our cellular approach offers
major integration, test, and maintenance advantages relative ‘to other methods for
system implementation. In this section we consider applications merits of high-
reicon machines, relative to arm machines and non-array machines. We discuss the
General ceil as one which enables realization of the bmﬁb of th-rolcon
machines. |

Chapter 2 discussed the general advantages of cellular arrays, and
argued for our array spproach This approach attempts to meet system design,
production, and maintenar.rco‘nesds through standard, high-volume, flexible,
automation-oriented modules - ceu.c and associated programs. We compared our
approach to other, less constrained approaches. Chapter 3 discussed balanced arm
machines using our approach. ‘Earlier sections of this chapter compared testing and
repair processes for arm and high-relcon machines. This section highlights
performance features that haven't been sufficiently covered.

Because the communication paths between cells in a high-reicon machine

are less constrained than those in en arm moehtm, a high-reicon machine provides

PAGE 222

speed.and flexibility advantages .in certain gpplications. _The.suitability of a
particular type of essentisl machine.depends on tw: ulility of » given degres of
direct, simultaneous inter-cell COMMM»MMMM . A-serini=in, serial-
out shift-register is well-suited to arm.machines, because each stage of the
register communicates giréc,tlyx with at most twutlwm:n . Tres.machinss are
well;sUited to machines which h;ve only . mmﬁmmmn a given-time;

therefore random-access and some other mamories are wo;&-su&od to reglization

as tree machmes ln an arm machine, umﬁd nsighbsrs are: always in: adjscent
cells. In a gnd embeddad ina ﬂawed array, sssantisl neighbors aren’t necessarily
in adjacent cells; this dlmlmshu the speed advantage of the. omboddod wrid
macpune Hngh-relcon machine. reahzgtton is. partlcularlx syited to machines

composed of modules which communicate different. information- to three .or more

other modules at the same time. Such mechines. might require. complex cells to
e\;en awkwardly share the communication paths.available in tree or arm machines.
For instance, building a processor as an arm.or tree;machine: would probably
require comPlex cells, and suffer from low paralielism. .Forcing.all a machine’s
extra-array leads to connect to one cell makes realization of certein.machines very
difficult. Thus high-reicon arrays provide acditional Information pathe, but require
r\jgber testing and repair casts when lhexarouspdforluh-rdcon machines. - A
high-rglcon array is most suited to machings which. exploit t,hc‘g;.grray'&availm
information paths, such as the processér—tester-repairer’builtv of General cells. .

High-relcon arrays, such as General arrays, offer major advantages as

PAGE 223

peripheral equipment in & computer system.’“The computer system offers the
array ‘a non-volatile Array Programmer. ﬁhsfray oﬂércu relohbte,mexpenslve,
programmtﬂe. high-speed: processing capability. - o

For many machine tasks, the General array is a correct compromise
between a single-sequénce computer and a spaciel hard-wired machine. A typ:cal
computer’s performance advantages include Eomputationsl power, flexibility, and
 easy programmiability. “Its major dissdvaritags is slow performance relative to
hard=wired machines. The "s'inﬁ'e-ieduéﬁcy:g{”ébﬁpuf& 'Eprdcifei;rses only one
instruction at a time, With each Insiruction taking many gate-delays. The
ameliorating parallelism in some instructions is often wasted. For instance, an
aigorithm that only- operates on"1:bit werds ‘still Uses an AND that operates on
larger words. The conventional computer Is particularly ll-suited to irreguler or
high-frequency real-time applications; handiing incoming signals through interrupts
is. :pamcunany time~consuming and tricky. Computers’ are so"clumsy at resl-time
applications that-they ‘often rely on a hard-wiréd machirie to buffer incoming
signals; this machine contintiously mofitors, collects, and pre-processes incoming
data. ‘Many applicerions are mare sulfed to & épecial-purpose machine, which
offers higher speed. Di'sadva'ntagés’of“hué'ﬁ'g} machheihcludehcgh setup times and
high setup costs, especielly if these costs are not distributed‘ovér alarge number
of machines.. Testing and repair of these michines tan be’ particularly difficult and
costly; R T X R,

A peripheral srray, such as fheGeneralm‘ty, is a "'cf_bmp"rhmlybevbetween

PAGE 224

the performances of these two most common machine approaches. The array may
be quickly and easily programmed to one of a large set of embedded machines.
For instance, a processing-intensive problem could be solved in an array which
interrupted the computer’s processor when it had solved the problem. Alternately,
a General array could be used as a processor compunent tailored to the
requirements of a particular processing task. The array provides a high degree of
potential parallelism. Basic cell operations, those that occur in the cell’s function
states, are faster than basic computer operations, but slower than the basic
operations of a special-purpose hard-wired machine. Like a hard-wired machine, a
General machine can continuously monitor and proces§ incoming signals.
Furthermore, our arrays have the added advantages ot low cost and easy,
automatic maintenance.

Of course, an array’s suitability depends on its intended application area.
The General array is oriented toward narrow data words; there is only one
processing input in each of a cell’s side-sets. Parailel algorithms, especially those
amenable to two-dimensional array solution, are particularly appropriate for the
General array. Many physical problems, such as temperature distribution on a
plate, are consistent with such an array solution. Such an array might benefit from
larger processing side-sets to accomodate numbers representing one of a wide
range of temperatures. However, such a macro cell with large side-sets could be
built of General cells. The General array is good at logic simulation. Real-time

applications which would otherwise require an expensive, low-volume special

PAGE 225

machine are often suited to a high-relcon array.

An array’s utility depends on its size. This partially explains our
interest in array repair. One way to increase an array’s size is to interconnect
arrays. If one’s objective is a large array with a checkerboard array’s
interconnection network, one must currently make many interconnections between
neighboring arrays. This is fairly costly, even if one uses a spécial interconnect-
array circuit board, because of the many IC leads involved. Our approach reduces
the need for many leads between sub-arrays by relying on testing and loading
arms, and by Repeir’s block orientation. This block orientation recognizes that
most machines are composed of modules, and have few communication paths
between the modules.

A high-relcon array may also replace special-purpose machines in a
.computer system. Here the array is most appropriate when computer-
maintainability is important.

' The ability of an array-embedded machine to test, program, and repair
its cellular environment is particularly attractive. Such a machine can form its
cellular environment into machines appropriate to a given application at a given
time. Two or more machines like the one we’ve designed can achieve high
relibability by monitoring and repairing each other. Each machine is embedded in a
sea of spare parts, cells, with enough cells to support many cell failures. When
one machine notices that the ofher has failed, it re-tests the other’s environment

before embedding a new, perfect machine. With three array-embedded machines,

PAGE 226

a first good machine may continue normal operation while the second good one
repairs the faulty machine.

It’s amusing to consider the unlikely event of a form of "array cancer”, in
which a faulty maéhine attempted to wipe out a properly working machine. Each
embedded machine could guard against inappropriate attack with test arms for
noticing attack, and a loader arm for fighting the attack. A machine could be
programmed so that both its defense and attack programs required proper use of
all the machine’s processor sections. With the right attack and defense programs,
a perfect machine should then be able to dominate a malicious, faulty machine.

If the General array is non-volatile or easily backed up by a power
supply or loading source, it may be mass-produced and program-customized to
provide inexpensive, low-volume machines inappropriate to microprocessor
realization. Sometimes added advantages come from the machine’s nafure as a
standard part that can be tested, programmed, and repaired through limited
'communication with a standard machine. Our srrays can even be repsired by a

remote machine connected to an array via communication links.

PAGE 227

CHAPTER 5: TREE MACHINES

This chapter discusses embedded machines with a particularly simple
nature. All celis of a tree machine are effectively linked to a common input bus
and common output bus. Each cell is a balanced, essential cell whose function
state includes a unique name. At any given time, only one cell may transmit its
information out of the erﬁbedded machine. | Examples of such a machine are paged
random-access and track-addressed sequential-access memories, with one cell per
page or track. The embedded machine’s simplicity means that a cell’s processing
layer can be designed so that all tree-like relcon networks with a given number of
nodes may correspond to e.quivalent embedded machines. This allows efficient use
of good cells in a flawed array, because an embedded machine can incorporate any
good cell linked to its input-output (tree base) cell by some path of good cells.
Because one form of tree is an arm, a flawed array embedding a tree machine can
be repaired at least as efficiently as a corresponding array embedding an arm
machine. Furthermore most large, flawed arrays may be repaired to embed
random-access memories or other tree machines with average access time
proportional to the square-root of the number of cells in the array.

For specificity, we consider a paged random-access memo.ry
implementation with the following characteristics. The RAM has 2° pages, or cells,
with 2% words of length L in a RAM on each page. Command and output words are
handled serially. The RAM has two input lines called Klock and Command, and one

output line called Return. When the RAM is ready to receive a command

PAGE 228

specifying a "Read" or "Write" operation, the Command stream Klocked into the
RAM specifies the following:

1) a p-bit page address which selects the one cell of the embedded

machine with the identical name stored as p function-specification state

bits;

2) a w-bit address selecting a particular word within the page;

- 3) a Read/write bit specifying either a "Read" or "Write" operation;
and

4) if the command is a "Write", the L-bit word to be written.

If the command is "Read", the L Klock pulses after the commund Klock the selected
word out of the embedded machine.

Since the paged-RAM cell’s loader is the same loader detailed
previously, we focus on a balanced processing mechanism and associated function-
specification state bits for cells in a checkerboard array. Each of a cell’s side-sets
has one Iﬁsel input line specifiying whether that side-set is relected to send Klock
and Command information directly into the cell. A cell in a working embedded
machine has only one of its Insel inputs high. The Insel-selected Kiock and
Command information is broadcast to the cell’s neighbors via the cell’s Klock and
Command Outputs. A cell’s broadcast Return output is that cell’s RAM Output line
if the cell has been addressed; otherwise the Return output is the OR of from
zero to three Return inputs selected by four Retsel function-specification state

bits. Each Retsel state bit corresponds to one of a cell’s side-sets. Besides

PAGE 229

Fig. 5.1 Relcon Networks For RAMs In Identical Flawed Arrays

A) Relcon network for one embedded RAM
XX
X
B) An embedded RAM with better access time than A

XX
X

Commands input to a tree’s base flow to the tips of the tree. Every link
that carries an input command in one direction carries a Return in the
opposite cirection. An addressed cell’s Qutput information successfully
reaches the embedded machine’s output because the Output is ORed
with Os as it flows to the embedded machine’s output. Maximum access
time is minimized by minimizing the longest path between a tree-tip and
the tree’s base. Machine B’s access time is better than A’s because A
has a circuitous path to node (3 0). The best expected access time
results from placement of a tree’s base at tha center of its associated
array.

PAGE 230

determining whether a cell’s left Return input is selected to be ORed, the “jeft”
Retsel state bit is also the cell’s left Insel output. A corrésponding statement is
true for a cell’s "right”, "up", and "down" Retsel state bits. Thus an embedded
machine is organized so that cell A accepts a Return input from cell B if and only if
cell B accepts Klock and Command inputs from cell A. Input command information
enters a cell from one of its neighbors, and is accepted by up. to three of its other
neighbors. Hence a given RAM with ¢ cells can be realized by any tree-like relcon
network of c good cells consistent with the limits imposed by an array’s
interconnection network. Figure 5.1 shows relcon networks for two equivalent
machines in identical flawed arrays. The machines differ only in their access time.

in a checkerboard array, access time is minimized by placing a tree’s
base cell at the center of a square region of cells; one diagonal of the square is a
row, the other is a column, and the diagonals cross at the tree base cell. When
such a strategy is used, the expected time required to senc information to or from
the tip of a tree embedded in a flawed array is proportional to the square-root of
the number of tree cells. Expected access time is therefore proportional to the
square-root of the number of cells in large tree machines. In an n-dimensional
array, this expected access time is proportional to the "n"th root of the number of
tree cells when the tree’s base is at the center of a cube o~ hyper-cubé.

Since the cell we've discussed handles information serially, it needs a
counter and associated circuitry to coordinate activity. This counter is initialized

by the loader.

PAGE 231

Techniques used for improving performance of conventional RAMs, such
as use of parity bits, are applicable to this approach. The RAM in each cell is
identical to ccnvmtional RAMs. The fact that a loading arm can rapidly shuffle the
names of cells in a machine without disturbing their RAM contents may be useful
for some systems’ memory management. If a simple paging system is willing to
effectively construct a page table by shuffling the names of memory cells, a special
page table and its associated delays are not réquired.

Test and repair of flawed arrays embedding tree machines is similar to
test and repair for arm machines. A tree machine is grown celi-by-cell into the
area around its base, and each extension is monitored by communication between
the tree’s base and the Array Programmer. A cell in an embedded machine is
always linked to the base cell by the shortest possible relcon path, and given a
unique name. A working cell in an embedded machine ignores inputs from flawed
cells and dangling array inputs.

Packaged memories are easily formed into larger memories by providing
a few links between packages to allow growth of .thef' tree through all the
packages. The number of celis in the tree is only constrained by the required
access time and the number p of page-address bits in each.cell.

Overhead circuitry could be reduced by using triangular arrays instead
of checkerboard arrays, if this was compatible with the production process.

it’s obvious that this approach is applicable to any machine which may

be realized as a tree machine. Inputs and outputs to such a machine could be

PAGE 232

paraliel rather than serial. One could implement a mgnyftrackqd sequential-access
memory, with one cell for each track. Associafive memories and even some muilti-
processor systems (similar to the ETHER system) are compatiblo with this
approach.

These tree machines further evidence the fact that relaxing the
requirements on the cdmmunication paths between essential celis in an embedded

machine facilitates repair efficiency.

PAGE 233

CHAPTER 6: CONCLUSION

This thesis has presented an LSI|-oriented systems approach to test,
configuration, and repair of cellular arrays. We’ve specified standard modules that
are built into the ceills of a machine to facilitate testing, loading, and repair. Thus
the mechanisms for testing and customizing a flawed array are built into a simple,
iterated part. A computer may access these mechanisms via a few direct
connections to an array. Programs allow the computer to maintain or re-customize
the array. We’ve been careful to note our assumptions, and to discuss design
approaches that help insure the validity of these assumptions in actual arrays.

Development of terminology and models for programmable logic machines
has helped us analyze important machine classes; these are arm, high-reicon, grid,
and tree machines. A particular class of machine is characterized by the
requirements placed on the communication paths between essential cells of any
embedded machine in the class. A particular embedded machine is associated with
a set of equivalent embedded machines. The nature of this set affects the
testability and repairability of an array. Properties of a cell, such as balance,
affect an embedded machine’s structure and associated equivalence class; and
therefore affect the repairability of an array.

There are reasonable practical and theoretical extensions of this work.
We believe that tying further theoretical inquiry to actual machine realization goals

will be most productive.

PAGE 234

Tree and arm machines seem pgrtlcjullr‘gxg syiiod to immediate array
re-customize. Furthermore, their relatively low cell-circuitry ¢

realization. These machines are relatively simpls to syt

- fepair-qfﬁcicncy’ give them major integration-ievel advantagns.
Arm or tree machlm may first be m}g\;tod in_a. system containing
many ICs, Such a system wouid ensble further mat-on Ond daﬂlcmknuqn of
the feaslbsluty of our apgrcach. Thc ma;or admtq{op of] mmy-lc tyctom.
compared to a syste integrated on one sice, erp its Jow development cost and
- ighcompenan sccembity. Such o yam shud b sl o fncton when some
ot its (Co are removed or destrayed, and some of s wires are cut. The meny-iC
system w;ud enabl§ u" té refine our dulgm end ou'tntand rqurprogrm
~The mqjgf liml}gt_ioq of a ‘rpq‘n\y;lcy rgéggrqh vohiclc iathat I\tégnn’t procinl‘y

model our uitimate goal, a cellular system integrated mmﬂawoddic&

| ~ Besidas its obvious value as a system componen, a singie-slice tree or
arm machine would help snawer important, questions "‘m"* fo other arreys. How
~ accurately do our assumptions model actual conditions, on » ﬂgwocl slice? . How
significant isj‘_th'e branch cell problem? Hqﬁdg po\gorqqpply.hut dissipation,
array size, and ofher practical comidofatiom affect array, Implmntotion?
_ product;on care of\ arrgyd{evejo'pers, Smcg»efvm and trnmmdtimaara simpler to
implement than many other programmable logic machings, abliity o implament these

| arrays is a sine qua non for practicality of many other proposed srrays.

PAGE 235

Arrays like General are the most exciting, because of their use of
simple cells acting in parallel to provide universal computation-construction-repair
capabilities. ‘These arrays offer speed, reliability, and flexibility advantages in a
low-cost integrated circuit. Current IC densitieg and yields probably don’t allow
practical realization of these large arrays. However, densities and yields are
improving so rapidly that these arrays should be feasible before 1980. By then,
many questions pertinent to these arrays should have been solved for tree and
arm arrays. Continued work on testing and repair, and development of computer-
aided design facilities for these arrays, will be important to their commercial
success. Consideration should be given to the machine organizations most suited
to high-relcon machines.

The first use of our approach to high-relcon machines may be in many-
IC arrays of fairly complex machines, such as microprocessors. This is true
because these arrays are closer to convention'al digital systems. Unfortunately,
the fact that such arrays have relatively low basic operation speed compared to
General means they don’t use high-relcon arrays to full advantage. Nevertheless
we've seen the advantages of building simple test and repair mechanisms into an
iterated component.

Since our test, configuration, and repair techniques may be adapted to
existing arrays, it would be useful to categorize these arrays according to their
realizability as an arn), tree, high-relcon, or other class of embedded machine.

Other inquiries may take numerous directions. A more rigorous'

PAGE 236

treatment of our testing assumptions snd approach would be useful. Many
questions remain concerning the repeir of chackerboard-arrays that embed high-
relcon machines. These questions concern the best way to repair these arnys.
~ and the limits of this repair. A battot mdonm nfmr wﬂl allwv ‘better
estimates of the reliability and maintainability of hlgh-rdcon machines. The use of
a plurality of high-reicon machines in a »tf-mdmmm Mbo expiored.
The reliability and meintainability teveis that can be schieved hy our various
machines should be compared to the levels achiovod by othor machinu The
, !or M mehinu cen be
refined, and new machine classes can be. idcntgﬂq:.l and studied. Qur treatment of
testing and repair for checkcrboard amyo can bo oxtondod to arroyc wtth other

network models and terminology we've dnv

~ interconnection networks.

PAGE 237

BIBLIOGRAPHY

<Altman 74>, L. A'ltman, "A new day for logic design”, ELECTRONICS, vol. 7, #4,
2/21)74

<Banks 71>, E.R. Banks, INFORMATION PROCESSING AND TRANSMISSION IN
CELLULAR AUTOMATA, Technical Report 81, MIT Project MAC, Cambridge, Mass.
Jan. 1971

<Bell 72>, C.G. Bell, "The effect of technology on near term computer structures”,
COMPUTER, vol. 5, #3, pp. 29-38, March 1972 ‘

<Camenzind 72>, HR. Camenzind, ELECTRONIC INTEGRATED SYSTEMS DESIGN, Van
Nostrand Reinhold Co., New York, 1972

<Carr 72>, W. Carr and J. Mize, "The economics of MOS/LSI", MOS/LSI DESIGN AND
APPLICATIONS, Texas Instruments, pp. 305-323, 1972

<Carter 70>, W.C. Carter and W.G. Bouricius, "A survey of fault-tolerant
architecture and its evaluation”, Report #RC 3154, IBM Watson Research, Nov.
1970

<Carter 73>, W.C. Carter, "Fault-tolerant computing: an introduction and a
viewpoint”, |EEE TRANSACTIONS ON COMPUTERS, vol. C-22, #3, pp. 225-229,
March 1973

<Chien 73>, R.T. Chien, "Memory error control: beyond parity”, IEEE SPECTRUM,
vol. 10, #7, pp. 18-23, July 1973

<Codd 68>, E.F. Codd, CELLULAR AUTOMATA, Academic Press, New York and
London, 1968

<Colbourne 74>, E.D. Colbourne, G.P. Coverley, and S.K Behera, "Reliability of MOS
LSI circuits", PROCEEDINGS OF THE IEEE, vol. 62, #2, pp. 244-259, Feb. 1974

<Feeney 72>, HV. Feeney, "Micro computer applications of electrically alterable
ROMs", WESCON TECHNICAL PAPERS, 4th session, p. 4/4.1, 1972

. <Hu 73, SC. Hy, “Collular synih

PAGE 238

<Fath. za?. G:C. Feth, "Memaries. are -bigget, msgw m ". e'lE.EE

" SPECTRUM; vel. 10, #12, ppv- 20-35:Nov. 1478

<Foss 70>, R.C. Foss, "Economic Consldoratim in LS& dulgn LARGE SCALE
. smsmrmmmmcmmm wries40, July 1870

AL
<Franson 74> P Framon, "Need custom decign? Do it yw:df“fﬂ._ECTm&

vol. 47, #2, pp. 67-68. 1/24174

<Furlow 73>, W. Furlow, “Today's, erdest design decision:. s averview
CMOS/LSI®, EDN, vol. 18, #11, pp. 42-47, 6/5/73

 <Gardner 70>, M. Gardner, "The faniastic. combinatione. ot John Goney’s.new
“solitaire game ’life’™, SCIENTIFIC: AMERICAN, vel. m 14, ppi: 120-123,:Oct.
1970

 <Hodges 72, D.A. Hodges, “Chip, yiold. 0, Dvrsdactring: o ONDUC
MEMORIES, IEEE Press, page 175, 1972

atcmtom

sis of 8 synchrones | machine
TRANSACTIONS ON COMPUTERS, vol. c-zgmz,m gasmws.m bsze

<Kautz -67>, W.HKautz, "Testing for faults in.combinalipn
PROCEE@NGOFTH-ZBTH AWAL; :
THEORY, pp. 161-174, Oct. 1967

' <Kautz 68>, WH. Kautz, “Fault testing and dém?%;a combinationsl |
circuits”, IEEE TRANSACTIONS ON COMHJTERS, vol. C-17, $4, pp 352-366, Aprit

,' 1968

| <Kautz 69>, WH. Kautz. "Cellular Iogtc-in-mmwy lrrm IEEE TRANSACTBNS ON
COMPUTERS, vol. C-18, 8, pp. 719—727 Aug. 1959

<Kautz 71>, WH, m—. "Programmable celiulsr logic”, mmmmrs IN
swrrcmnc THEORY, Academic Preu. 1971

PAGE 239

<Kosy 72>, D.W. Kosy end J.A. Farquhar, AIR F:ORCFGOMMAND ﬁND CQNTROL
INFORMATION PROCESSING IN “THE 19606+ “PRENDS N * ,
Report R-1012- PR, RandCorp SntaMoniee,Ca. OcL 1972 .

| <Kukreja 73>, SN: mm and t em, "e“ mbinationel md imﬁtid cellular
;t‘r;;lo::tt.wesz3 IEEE IRANSACTW PN CWPU!E%, vd. c-zg, as. pp. 81?-823.
t. 197 ab

<Landgraff 71>, RW. Landgraff and S.S. You, 'Dm;n of diag‘ ble ituratlvo
arrays”, IEEE TRANGACTIONS ONCOMPUTERS, Ve, C-00-¥8," |

1971 SN Y Taenn . s Lt

~ <Lsthrop 70>, J.W: Lathrop, "Evohution of L$I", MMALE‘MW IN
" MICROELECTRONICS, AGARD fecturs-seriss 40, July- 1970 e

<Luecke 73>, J. Luecke, J.P. Mize, and W.N. Carr, SEWTOR MEMORY
DESIGN AND Amm M MMW A

<Marinos 71>, P.N. Marinos, "Fault diagn
- ANNUAL' 'IEEE CON m&fﬂ“
TRADEOFFS, pp. 71-72, Sépt- 197F

~ <Marvin 67>, C.E. Marvin and R: Walke¥;' ‘Hm m for. l,srj, Fairchild
‘ m&mmmm,ex.m 1967 |

<McLuhan 64>, Mmmumaasrmm mmsuslo-nsor-'mu.
 McGraw-Hif; m York, 1964 |

4”

<Menon 71>, PR. Menon and A.D. Friadmn, "Fnult dctoctloa in Itenﬁvo logic

| praye IEEE’ TRANSACTIONS ON mmnsas, vol. C-20, o5, i 524—535, May
el

<Minnick 66>, Minnick et al, CELLULAR ARRAYS FOR LOGIC AND STORAGE. R.port
#AF-CRL-66-613, Stanford mmmm mm Meu, Apnn ms

~ <Minnick 67>, RC. Minnick, "A survey of maedlulw mom:h JOl.mL OF THE
ASSOCIATION Fonmrrm MACHINERY, vol. 14, #2, pp. 203-241, April 1967

'PROCEEDINGS OF THE 8TH ANNUAL HAY

300 A‘ug. 197‘2

1987

PAGE 240
. <Minsky 67>, M.L, Minsky, . COMPUTMW FNEE MHJ I'MNITE MACHNES.
" Prentice-Hall Inc., Englewood Cliffs, N.J,, 1867

<Moore 73>, GE. Meere, “How largenub kg.m mud\?' ELECT m vol.
a6, 422, p. 105 10/25/73

_ <Moore 74>, G.E. Moore, "1974 award.fer: achmeut - Gordon Mbere ,
| ’ELECTROMCS, vol. 47, #2), p. 64 101074 oo 0 o

<Mostek 73>, Mostek Corporatson, THE MOSTEK UNE, Oct. 1973

' <Mukhopadhyay 71> k M‘,‘ ypadhy:
DEVELOPMENTS IN SWITCHNG TF ¥

~<Murphy 64>, BT, Murphy. “Cos!—sizc 0| uma of t&q int,urated circwts A
PROCEEDINGS OF THE IEEE, vol. 62, %12, pp 1537-1 Doc. 1964

~ <Neyce 71>, R. Noyce. "The mtegrated chwis induﬂfy .\EBN;%EEE. Sept 15,
1971, pp. 28:32

<Peattie 74>, C.G. Peattie et al, "Elements. oﬂwt« @mn r@klbdity '
 PROCEEDINGS OF TWTEEE, Feb 19?4,9&. 149433

<Rowan 73>, JH Rowan and RS. Kashef, "A universal

<Sander : 72>, WB Sander, "Weld-enhamcﬁiéﬁ{ tecbniquoe fin semiconductor
memories”, IEEE JOURNAL OF. SQUD-STATF”_?!. X 3. \tnISC-J, 4, pp,;r298-

<Seeds 67>, RB Seeds, "Yield and cost ana!y;h of bipolar LSI" 1967
INTERNAT!ONAL ELECT RON DEVICES MEETINQ :

, <Seth 69>, S.C. Seth, "Fault diagnosis.of. eombimtml ceuwar .arrays”,
* PROCEEDINGS OF THE 7TH ANNUAL ALBERTON &wmw AND
SYSTEM THEORY, (Monticello, Ill), pp. 272-283, Oct. mss

PAGE 241

<Seth 70>, S.C. Scth, FAULT TESTING N GQMBNATVONAL CELLULAR ARRAYS,
Report R-470, U. of lll., Urbana, lil., May 1870"

<Shoup 70>, RG. Shoup, PROGRAMMABLE CELLULAR WARRAYS. PhD. thesis,
Carnegie-Mellon University, Pittsburgh, Pa, March 1870~

- <Shoup 73>, R.G. 9"009,"??0(‘
CONFERENCE ON HARDWARE,
28, Sept. 1971 ‘

sble cellular’ % 'STH ANNUAL {EEE
; FIRMW, mﬁsorrs. pp. 27-

<Spandorfar 65>, LM. Spandorfer, SYNT HESIS OF LOGiC FLNC'IJ&_NS ON. AN ARRAY

OF INTEGRATED' CIRCUITS, contract wAR 18(§22)2907, fov. 1

<Spandorfer 68>, LM Spandorter, "Large-scale intunuon - an gppuinl"
Anvmcssweommm 179-287, 1%67 . . :

<Tammaru 67>, E. Tammaru and J.B. Angell, "Red&adaqcy for LSl yield
enhencement”, IEEE JOURNAL OF SOLID-STATE §C-2, »4, pp. 172-
182, Dec. 1967

- <Tammaru 695, E. Tammaru, "Testing of cmbmawm4n lm-oedo mys
submitted to JEEE COMPUTER moug REPOSITORY, May 1969 L

<Thurber 69>, K.J, Thurber, “Fault quatlon in calwlar arrm. 1969 FAI.L JQINT
COMPUTERGOMERENCE. pp. 81-88, 1969 :

<Toffier 70>, A. Tofﬂer, FUTURE SHOCK, Baqtam Books, New York, 1970

<Turn 72>, R. Turn, AIR FORCE COMMAND AND' conmm. INFORMATION
PROCESSING IN THE 1980S: TRENDS IN HARDWARE TECHNOLOGY R.pon R-
1011-PR, Rand Corp., Sants Monica, Ca, Oct. 1972

<Vaccaro 74>, J. Vacca?o, “Semiconductor roliability within the Dopartmant of
Defense”, PROCEEDINGS OF THE IEEE, vol. 62, #2, pp. 169-184, Feb. 1974

<Vinson 74>, N. Vineen, "On today's resi-world. of .EDN; \tol 18, #3, pp.
50-54, 2/5/74 L

PAGE 242

<Vischi 72>, M. Vischi, "State of the art of reliability practice in the European
computer market”, PROCEEDINGS OF THE 1972 ANNUAL RELIABILITY AND
MAINTENANCE SYMPOSILUM, pp. 329-335, Jan. 1972

<von Neumann 66>, J. von. Naumam. THEW! OF sa.msmuucm AUTOMATA,
edited and completed by A. W Burks, U. of lil. Pross. Urbm and London, 1966

<Wahistrom 67>, SE Wahistrom, "Pr ammlbh Lom Srrays - m.r by the
millions” ELECTROMCS. vol. 40, #25.99 .90-95, 12/11/67:

<Wahlstrom 69>, S.E. Wahlstrom, "Electronically controlied microelectronic cellular
logic array”, US PATENT 3,473,160, PQM#W 1969 :

adi tmd :m of wtpoint celluler
' vol. C-19. 03. pp 259-262, March

<Yau 70>, S. S. Yau and M. Orsic, ")
arrays”, IEEE TRANSACTIONS ON

1970

PAGE 243

Frank Blase Manhing was born in Saint Loﬁis,MiWn, on Sébtember 13,
1948. He is the eidest of five brothers and a sister. He, graduated_‘.from Saint
Louis: Ummsity H]b‘ﬁehod masssrw eiter f W thl udﬁb yw

As an under;raduata he held various ositipm in Sigma Phi Epsilon
social fraternity, and-wes elected a heuse officer.” mm in his first

three undergraduste .years. He also ran several cﬂm s W.d’ by his
fratemty

He received bachelors and master's dagroec joh\tly from the MIT
Electrical Engineering Department in 1972, His thesis was as a technical
report titied Autemshous, symnm; Contnters cmmmp; J-K Fltprflops.

The author’s graduate research was at MIT Project MAC. He has filed a
patent relating to designs presented in his doctoral thesis, and plans to continue

working toward the goal of mass-production of some form of the celiular arrays
described in that thesis.

~ He is a member of Eta Kappa Nu and Sigma Xi honoraries, and has been
nominated to Tau Beta Pi.

Frank has held numerous jobs in the short intervals between school
attendance. He has worked as a paperboy, filling-station attendant, caddie,
fireworks-stand proprietor, shipping clerk, technician, and digital music machine
designer. He ran. a McGovern storefront in the 1972 Presidentisi campaign, and
worked in the Rhode Island primary that year.

Frank and his wife, Lynn Nina, were married on May 5, 1974.
His chief delights are his family, friends, and racquet sports. Other

interests include innovation, politics, and other games. He likes designing hardware.
and software systems, and is interested in communication systems.

CS-TR Scanning Project ,
Document Control Form - Date: !l /16 19S

Report# L<S-TR-IS|

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
Laboratory for Computer Science (LCS)

Document Type:

JX(_ Technical Report (TR) [Technical Memo (TM)
O other:

Document Information Number of pages: _X49%(J4%- i maces)

 Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or [0 Single-sided or
N Double-sided)&;Double-sided
Print type:

[0 Typewriter [OffsetPress [] Laser Print
[] Inkdet Printer \& Unknown [0 other

Check each if included with document:

O pob Form O Funding Agent Form O cover Page

O spine O Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pagesy sage numben:

Photographs/Tonal Material pypage numbes:

Other (note description/pege number).
Description : Page Number:

Zmace mae:(1-349) unviven TiTux PAGK S-BLANK

d-a43

(345- 39%) Seanenitrot, TRETS(3)

Scanning Agent Signoff:
Date Received: _// /16 /35 Date Scanned: /a./ 14135 Date Returned: /- /1 | 15

Scanning Agent Signature: Mx \\ (}\} . COG-L Rev /04 DSALCS Contol Form caform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the MLL.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 994

