
MAC TR-149

A PORTABLE COMPILER FOR THE LANGUAGE C

Alan Snyder

May 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

-2-

A ·PORTABL• OOllPILD POB 'Riii LAtfCIU&ft 0 .
J,7

Ailanl..,._.

This paper describes fhe imp•ementation .of • compiler for the proaralftfnina lquap C. The ctJMpffer Ms
been designed to be captbM of 1woctutinc assembly_...u.p codt for MOit reatster...,....,.'Mathi,.. ·
with only minor recodina.· MHt of the. lMIC'hiM._,._..-m infenHtiOn UMd tn· _.,.. ts ·
contained in • set of tables whtth we ccmstr~.'tUID::1Hiiilly ·fretft a,,.,.., .. '...-VIM by
the implementer. Jn the MachiM dHcrjptton, the imptamtf\t9r,.... h t Mldllt• :by*""""•
m11ehine-deperid9t1t·_ __. .. fer wttteh the· cM8 ~ pr-.. lthit tttdlt. : The
abstract machine is abstratt in fMt it is 1 C MIChtfte: its rqilttrs tnd,..)' .,.. MIMI lft btP'MS of
primitive C data types and its iMtrucfions -perform basic C operatiOns. 1'he atr.Ct ·~Is tMCN,.­
dep$ndent in that there is •'.close co~nce betwffn the r .. lster-s ~f the Mtr.ct MllChifte *
those of the target .machine, and bet-..n the behavior of the lbstr1tt tMchine instructicMI and the
correspondina target macf:tlne tnstrudions or instrucflon ~es. '.Ttfe lmpte_.r •ffnn the
tr anstation from an abstract·~ .progrem to 1 t•pt IMChlne ,,,..,. by ·#f'OYidt .. in ht ·'flYIChiM
ttescription a set of simple 1'1Cf'.O *1tnttions fer ,._ .•h-act fMttliM "'**ttans· In --. llMilerO
definitions may be pro•ided ff!' h ·*'"" tit C routines ·-whiere_;,,...._'"- c11ruMMy :It ••••d.

Tltis report la .._ • a tlted. ta6nAttei te "" Depart..., •I .,_,.._, ..
EnginHring 01. th Mt$Htu!,,.Afl• ldilat• •f Tff J!,IY °" ••Y 10, 1'14 "'
partial fu.lflllmerd of tlte r~wnte•d• /or th ,,..,._.,a/. JJ.cWor •./ SeMttee .
and Moller o/Scierece. IVori reporttlll Aerein 1ap,,.,..i1 a. ,..,.. 6y tM Bell
Tffl.,,.,.., ~. 1-._ rlee Nedonal Sdnce ,._,.,,.,,_ lteteWefl ~
Cl-34611, 11• t-'• /or n~lt ia Co11tp&tttr SclMCe w •Y flee M....­
Rtr•orelt Prejeeta Aprtey •f de ,,.,..,.,.., •I 0./..,. •• IMftA -..
Jff$, ARPA C..,..,, ,_.,._,._.......,. _, OMt fil4 18. Nlt-
049-119:

-3-

CONTBNTS

CHAPTER 1. Introduction

1.1 Motivation
1.2 Bacqround
1.3 Method

CHAPTER 2. Modeli"I the Tqet Machine

2.1 The Intermediate Lanauaae

2.1.1 Abstract Machine Instructions

2.1.1.1
2.1.1.2

AMOPs
REFs

2.1.2 Keyword Macros

2.2 The llAachine Description·

2.2.1 Detlnina the Abstr1et Mlchine
2.2.2 Definina the Object Lan&uaa•

CHAPTER 3. Generatina Code for 1n Abttr1et Machine

3.1 Funttions of the Code Generator
3.2 Generatina Code for Expressions

3.2.l Semantic Interpretation
3.2.2 Code Gener1tion

3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5
3.2.2.6
3.2.2.7
3.2.2.8

CHAPTER 4. Conclusions

4.1 The Compiler
4.2 The Compiled Code
4.3 . S""""ary of Reswts
4.4 Further WOrk

Specif yi"I Desired l.octtionl
TTEXPR
CGEXPR
CGOP
Selecti"I an OPlOC
Generatina Code for SuMxpr1nlri
Resister Mlnlpment
Possibilities for F 1i1urJ

REFERENCES

FJGURE 1 The GCOS Control Cardi

APPEMllX I The Machine Ollcription

1. Definition Statements

1.1 The TVPENAMES St~
1.2 The ·RIGNMIES ~
1.3 n....-........
1.4 The &UE••-nt
1.5 The AL1GN state.nt
1;6 Thea.ASS at
1.7 The CC1FUC1' .Stat.ment
1.8 The~ St••nt
1.9 The ff)IN1!fJI nt
1.10 The OffEI-- tt••nt
1.11 n.m-.1111tall!Mt
1.12 n. TW£·sw.•

2. The OPLQC. Section
3. The MacN Section

APPEN>lX JI The lntennedtate laf1tt.Mll9! .AWJl's

APPEM>IX Ill The lmernaediate A.anaUll8: ·Keyword ·Micros

APPEM>JX IV The HlS-5000 MllClli• -~

APPEN>IX V The HIS-6000 ,C ·Rat.ttifte Mlcre Odaitions

APPENJIX VI Over.U O..Criptioft of the 0afllllil9r

1. ' The Lexicel Anatysis~Phase
2. The 'S)tfttaK -~ 1'hlle
3. T-he. Code Ge•ation J\ltw.
4. .,,. Mllr:ro £.,, ...
5. The,
6. lrwokifta tht-C.i•I• 'flh1111

-5-

1. Introduction

This paper describes the implementation of a compiler for the prO&ramming language C [1,2]. an
implementation language developed at Bell Laboratories and a d6scendant of the lquage BCPL [3]. The
compiler has been desi1ned to be capable of producins 11sembly-lan1uaae code for most re1ister­
oriented machines with only minor recoding. Versions of the compiler exist for the Honeywell HIS-6000
and Digital Equipment Corporation POP-10 computers.

C is a procedure-oriented l1ngua1e. It has four primitive data types (Integers, characters, and ·single­
and double-precision floating-point), four data type constructors (pointers, arrays, functions, and records),
and a small but convenient set. of control structures which encouraae 1oto-less programming. An
important ch1racteristic of C is the minimal run-time support needed. Although C supports recursive
procedures, C does not have built-in functions, 1/0 statements, block structure, string operations, dynamic
arrays, dynamic storage allocation, or run-time type checking. The only run-time data structure is the
stack i>f procedure activation records. Of course, to run any useful programs, an interface to the
operating system is required, and a standard set of 1/0 routines has been defined m order to encouraae
portabiHty. But the implementation of these routines is optional and separate from the task of
implementing a C compiler which produces code for a given machine. ·

The compiler described in this paper wis designed to be portable, that is, to be capable of generating
code for many target machines with a minimum of recoding. When considering portability, three classes of
machines can be defined: · ·

1. Machines which· can support C programs reasonably efficiently: This class of machines depends only
upon one's interpretation of the term "reasonably efficiently.• Clearfy, Ill rH1 machines can run C
programs, limited only by some size constraint related to the availability of memory. However, the
following capabilities are desirable: (1) the ability to access the current procedure activation record
and the current argument list .in a reentrant manner· - this will require one or two base/index
registers depending upen the calling sequence, (2) the ability to reference via a pointer variable -
this will require another base/index register or an indirection facility, (3) character addressing, (4)
integer arithmetic, and (5) floating-point arithmetic. Not Ill of the above capabilities need be present
in the taraet machine; however, the more that are missing, the more interpretive becomes the
execution of a C program. For example, the HIS-6000 is word-addressed; thus references to
character variables are interpreted by a small run-time subroutine.

2. Machines for which the compiler can produce reasonably efficient code: This class of machines is
clearly a subset of the first class; the size of the subset is again determined by one's definition of
reasonable. The better the correspcndence between the target machine and the machine model
implicit in the compiler, the better will be the object code produced. On the other hand, if the
correspondence is poor, the. compiler may be able to produce only threaded code or instructions to
be interpreted by software.

3. Machines which can support the compiler itself: Because the compiler is written in C, one may think
that this class of machines is identical to the second class of machines; however, there are added
restrictions which must be made in order to run the compiler on a given machine: the word size of
the machine must be sufficient to hold all values used by the compiler; any implementation restriction
on the size of procedures or data areas (as would be likely on the IBM S/360 because of addressing
deficiencies) must not be such as to prohibit the proper execution of the compiler (this includes the
ability of the compiler to compile itself). In addition, there are operating system and configuration
restrictions: the memory size available to a program must be sufficient to hold the phases of the
compiler; file space for the source of the compiler must be available and affordable;. the 1/0 routines
used by the compiler must be implemented. This class of machines is not a subset of the second class
of machines since the compiler does not use all of the features of the language, notably float'ing-point.

This paper concentrates on the second class of machines, those for which the compiler can produce

-6-

reasonably efficient code, ltven the rMtrictionl of the first ct .. of MKhinn, thole which CM support C
proarems realONIDty ~· TtM, .,,....._.. ,._. .._,,:..,__.._... ildlt111•nW' win
pneraUy ref• to U. llllilltV et •dt•llr •••••u--•·-.•lll'tL•L • ·
1.1 lloUvatloa

One of the serious probhtmi in the fietd of software enaineerinc is the difficulty of trensferrina proarems

to new machines. This t. c--' ift i.p part by ~.pfolif•Hlillt '* ... ,... ---·••-........ •
and machines •net U. lipif~ effart ,,,.,.,.... to·.lwlJl••At • t.·.., ...,.._alt:,.1111; II•·
lanauaae and tar:pt tmld1ifte..· o. . .,,,_. r. lllMte*" .,,.,ltn·• hu•*kd' wattn .. l•"IU'••
to a few st..,.diad_ wl\lictt· w..,.. '51pl1m•"'"'• Ill..,....--d l1a1•k A
disadvanteae . Of ttn .,.,oed\ itJ Uttt it 1D11Niol& with :tlrte •Ir~· el/.....,;,.__,., ••dtlie•d
l•nau-s•s for specialized ~ Anrdher ;. '*- ,ftlct·n.t ClDldlnuet .,.,.,.,. .. is''"""'
"'ade in the. developmtHrt of ~1._, tf.*·9)' "'8 .._.,....,,...is .t1211l 1dlmd.nd
widely available, it 1a alre14Y ~ ••• dWif.tM·lDis•'11• ••tlititp: U.vtrioul
Implementations of a st,.....£""' if U.M..., ... , .,, -. 9th 1 d. :;t is dlffkUt
for compiler writers to rwtrlift U.••.W. .fraM. 11d1-.-:it-W tar.-. ,fe twst•"1ttllill•••·fNM
usin1 the languaae ~ A, appirOHh to the proble• of pr'OlraM trwferabifity is to restrict
the number of tarpt :whinft fer wl'lld\. 11mp-.rt,__. ..,.,._tty r1111h._ ----~'titw 111..,..ne
be compatible with a· widetv"""9N •••filla • ...,.,.. tt.·· llliflint. of~ ,_.,.,. m<m .,.,. wctatectd'•
which would result from this ~ is a undesir.._ • the st.,.. of proSf a in ,...._,..
lanauaaes which wouk.t r-..at f'8M ldlttt'IOft of tM ~,..m. 1't 1ddttioftt if tll8 new IMChiM9
are only upward co11111tibt9witit._.•11111*5Mtt,t._, ,.,..._ _, .---1zin ..,., ,...., to
transferrlna pr•- frOM new _.... to fll4--.

An alternative approach to U.O.. of a......,.. re1tr~ and anac-.. -...ibility is to develop
techniques that reduce the effort requireO '9 writ•·~· * v•ious of Mii
machines. ·~ tacbniqun may be._...,,. tw Rlllp11al1MJh. tMt 9f,..:thlt·..,_._;ift!fl6n•.:in
writina one particul9r compiler nna.t of.~J-~.,..,.,,..-.·,•f~ef relaMd
compilers .. The ._.. d .-.tuhni•• t_.. -.-.. if' illid1m• ted-•• • sJaitl<.,..•
transf•r1biUty, such a ..,. lt ..., to i51Pl1•1nt • _.J•u• ., J-..1111 ...,. wtdely
available. ·

An early effort in this direction was an attempt to devise a universal computer-oriented lqu.ae lJCOl.
[4], .which is both l~ndepend9nt and IMChi~1 to which aH tN'OP'...,.,. ,...,....
could be translated ancS whiott ia.tf. COWld M .u-...a.._ with,.... efficiency me. My mlJChine
language. The .idea wa U~at OM .~ writ• ~· ._ lHX>L'* .. Hhinl --~ fr..a.tor for eaoh
target machine and one source_.to-tlCQ., tt'Mtlator ,for eadt 'SOW'Ce -........ ,...,_ than
havina to write one compjter for. each- MUrce-~hine l ... ltlll combination.. Jtit if
LH:OL were weH defi"8d, then the various implementations of tNX>L could be ...,:.,. .. lb .. , t'*.W
insurin1 the compatfbtfity of the source lquap implementations. Unfortunately, the concept of •
universal lanstJ9. '- not Jed to •·"•«* lohlliM of h,fWJlrlJ"ll the~~idlls.ofi.,... .tct
machine fanavaa• ind•pend1nc9 •• ·~ with· h nlieef'for ._tlbly.effl1l1nl tr•......,. fFOM
lKOl to machine lq4iap.

More p~actical techniques ·for redudn& tht effort in\'olved in writinl eotnpil9rt result if Ofle con.Ider•
techn~s with more lilnit«I pats theft thole m ·the- l.IQ)l. .project •. One •proacb is to .develop
techniques which reduc:e tt. eff.-t ilMIJ'IH in. writU.•OM f*flcuter co1111illlr ·for '°""" ... •IP 1MaChifte
combination. Ex.mplM Qf ·•'5h t•~ •• ,.._,.,... ,8ftd, a)tflta"'1tiredette)tlllbol pteo111ers
C5J.. Another approacn _ii .to -.1op ~fer •itina .ftmiffes Of COMPiW• fer ..,Y ..,,.
languaaes and one tar:pt machine. An,ie of IUCh • ·techni~• •• ..,...., .writtftl •t• With
code pnetation .primitives, such·• F$l C•l T~ U.iro .,,.Gad\.,. the one which is t.ac.wt in this ~
is that of the portable compHer. a compiter fer • particular sourte lanauase which can produce code for
many ter,pt ~hines. It ~ bt l'Oted U. tect-......... such.• ,._.,.....,....._,c....,..aft·aid tn h

implementation of a ,iftile ·.~. ean be ...Y useful ift the iMple_..tion Of .mere, .. systenw
· such as compiler wrifln& sys-. a portlble compilers. ,

- 7 -

1.2 Baokcround

A compiler can be considered to consist of two logical phases, analysis and generation. The analysis
phase performs lexical and syntactic analysis of the source program, producing as output some convenient
internal representation of the program, along with a set of tables containing lexical information and other
information derived from the declarative statements of the program. The generation phase then
transforms the internal representation into an object language program, using the information contained in
the tables produced by the analysis phase. One can confirie the machine (object language) dependencies
of a compiler to the generation phase by a suitable choice of internal representation, i.e. one which is
machine-independent. On the other hand, it is not practical to also confine the source language
dependencies of a compiler to the analysis phase since this would make the internal representation a
universal language. Thus the generation phase of a compiler is both source-language-dependent and
machine-dependent.

Most portable compilers require that the generation phase be completely rewritten for each target
machine [7,8]. This effort may represent only about one-fifth of the effort "8eded to rewrite the entire
compiler [8]. In the case of the BCPL compiler [9], for example, moving the compiler may require only
three to four weeks under ideal conditions (but otherwise may require up to five months). However; it
would be desirable if the amount of recoding necessary to generate code for a new machine could be
reduced.

One approach is that advocated by Poole and Waite for writing portable programs [10,11]. They
advocate that before writing a program to solve a particular problem, one define an abstract machine for
which the program is then written. With this approach, in order to move the program to a new machine,
one need only implement the abstract machine on the target machine, typically via a macro processor.
The desired qualities of the abstract machine are that it contain operations and data objects convenient
for expressing the problem solution, that it be sufficiently close to the target machines of interest so that
acceptable code can easily be generated, and that the tools for implementin1 the abstract machine be
easily obtainable on the target machines.

This technique can be applied to portable compilers by considering the problerl"I to be the implementation
of an arbitrary source language program. The operations and data objects convenient for expressing the
problem solution are then those which are basic. to the source langua1e. With this technique, a compiler
would be broken into two parts: a machine-independent translator from the source language to the
abstract machine language and a machine-dependent translator from the abstract machine language to the
target machine language. The translator from the abstract machine languaae to the target machine
language should be smaller and simpler than the conventional generation phase would be; typically, it
consists of a set of macro definitions which map each abstract machine instruction into the corresponding
target machine instruction or instruction sequence. Moving the compiler to a new machine simply requires
rewriting the macro definitions.

The major difficulty with the abstract machine approach to portable software is in determining the
appropriate abstract machine. If the abstract machine is of a high level (i.e., very problem-oriented), then
the program will be very portable but the implementation of the abstract machine will be difficult. ·On the
other hand, if the abstract machine is of a low level (i.e., more machine-oriented), then, unless it
corresponds closely to the target machine, either the code produced will be inefficient or the
implementation will be complicated by optimization code.

The solution to this difficulty proposed by Poole and Waite is to define a hierarchy of abstract machines,
ranging from a high-level problem-oriented abstract machine to a low-level, machine-oriented, and easy­
to-implement abstract machine. In this solution, the higher-level abstract machines are· implemented in
terms of the lower-level abstract machines, and only the lowest-level abstract machine need be
implemented on a tar1et machine in order to transfer the pro1ram; once it Is transferred, higher-level
abstract machines may be implemented directly in terms of the target machine in order to improve
efficiency. While this technique may be useful for transferrin1 particular programs, it is unlikely that it

--------- "-----~----- -·-- ~--

-8-

will be acceptable in practical terms a a compilation technique because of the need for additional
translation steps. An.e99rimant by Brown [12Jindicatn thlt,f'WMIY M.tpl.-1nt• U.. eptiMice· •
low-fevef abstract ~ in_ .. U..saaw t• • , .. ~ flo,,iMpl1, 11nt •·,...._ ._. allatt"-=t
mechine and tNit the:iesult~ i"'1••rot,,~,~· :i·.-. .• .iw_.. ..,._ i9 to
use a low-level abstr'ICt, but..._ U. i••M•• •·.-..... .,.:alfullDft·ie MON
likely to be accept.Vie a.a compililtiOft ..,._~ Atiofl....,..wift.tliei.._.d ift.W.~.

The technique of rewritin& the .. ._.-. t*se NqUints tMt a ntn-t~I tr....., .f,... tt.· intemtll
representation to t.,_ tarut_,, tqut19 '-: wr"'to 1- .. new ..._. ~ Silftilwl.y. ta.­
llbstract mechine ~ recPt"" thet· a,.Jr.,...._ ft"Cl411h·"- ..._._, ._.,, .. to ...,,,,._..
ma~lliM 1...,... be ,writttin f«,-·~--· •IJ!i• iC:;•Hnrrtflb',.,..• _. i9 dllirM.Mll·the
abstract machine does not car wry closety to the, whine......, this tr be
non-trivial.

A more desirable 1oal for a portabM compiter is that it hete _. . ..,_.fltion _.,.,_. which ca be modified to
produce code for a new tarpt .·~ by a ..,.._, ~- :Miraefy automttic. .iMpficit; in tfjJ ,pal is
the requirement that the madifie~.,.,...._ obtairt ~, :-.t::• w1et tMChiM ~ • (l"IOft­
pr~edural) description of the·.~ Alt .early effort jp .. :.*-tiortJN•,the: SliAIG ., ... nr~{lSJ,
which attacked the probfem Of ~·ibina a IMdUne-depermnt process (code pneratioft) in a mactline•
independent way. In the SLANG IY$lem. toUrCe lquap constructs •• tr1n1lated into a set of basic
o.,_rations called EMU.sJ. U., ... 18. ,......,._ .. ,.,. ... ••oti.,.:ecl!llf·--l'ffttll'lt wncl
instruction fortMt d.~tloftl., .tJ.e ~-.-·It,:~.,.,.._. ..-..,tlJroedt ilt·tw iU. &Mlb
can be: considered to .. be. the .~ of • ~.,,..,..,/,tt.,4fflrwl .t. ~
1e~ation al&OriU. ,u... ~ ...-r.1 ia ~,.;n,.-.,te .Hilor•U. EMIL
proeram to the t¥_.t ·...._,NJ..$ diffJr ~••tn.;,i~''"" •· Rllla,..a. Wllite,.aict
machine in tNit thev •• ~1~ tna. :_A•F11111Pl....,ect. fn. 111Dltlon,
the code.J.,.,-*·:does not ._. ~.~ ~,....._ OV. f!taf«t..._ _. whichi.,..• thlit
one wilt not be able to Khie¥e. tht ~ close cort8S{IOl.-U ~ . .._.,_.,._t_ -~wt
register-oriented machiMS. Nevertheless, the method of describina the instrudioM of a lMChine by
proviclina s""'le iliJl~ .. ~1~·.:.~~;U..;··~~,..-.,a• •
100d :compromise bttwte,f' .. till;;.'~ to ~·~··"IM ~ e»f ·••••~ ., • .., ... •
machine and utHizina. sUch a ~!oJ)·in · pneratma .code. · .

More recently, Miller [141 hn exptoredJhe probtem of coostr.ucoting a code pner4to.r frOM • tMChine
description. hMfl•r proposes tha{a ..,..ion phM,e. btl,cPnlh'•tedJn two u.ps. -J~ first ste,.. h
lanauace des~r s~ftes ~ ·~~t ~.of "'°",.,... ev' Wf'itin&. ~of
procedurat machine-.~ ...,o dlfinit'°"' f.« the. oper~ .. gi .the i~- repl'esenlltioft
produced,. by the · analyfiS . ~ ~· ~q.· ~in'~ -~inf, .tt,:.e. ,.qper;at• et . th!t ildern.a
represefttatiori, such as additiOn, in terms of mechine-indepe~ (i.e., ·~~-pr s,, s.m
as inteaer Mfdition. which_.. cr .. ted by the lquap -...r. In the second lt.p, the iMptementer
provides a descriptiori of the tn-t~ w*:h i& ,used .by.,Jf\ ~·~ ",_
nam84 DMAC$. Ula.c:riptJve· ~ Svst-> in· order to ffff .~ thl ~·•'""- .. ft. IN firat .,. .MMf
thereby proc;tuce • ~ for the , .. ., ~~ .·~ .. waJhe SLAMa ~th&
DMACS machi"9_.des$r~tton.~ .. tht .• .pr~~ .qp&r~;.by,&jvinf\•--t Sllll'•RCM
which interpret them. tn addJtieft, ~ .tbe -~· ~ .. of thl. o..,_. (ilt.lefma of Uwtr
beina in memory or in perticular reai$ters) in sPeci-•,g~.oorr.w1.,..;8Jltllt JllC•irns. Tiws
the primitives can be made to corr..,ond Y8J"Y cto.ely to h instructions of the tarpt tweehlne · so that
the code sequences in the ntad1ine O..Crif,ti.,._ "8UIU..·o1Ned ~· i•J9DN effi(IMmt. ·

Both the $LANG system and OMACS are intenc:t,d to .be P"l!Jl in ·that they are: ,,.a,_, ·for a

specific. $0urce lqueJ•· 19.M~ •. t. r.ue .. , · ·.. . v. is difficult. to. obt• ""'.· the .. a~ do reflect
preconceived notions about MUl'Cf ~ ..-:• a.tieved u.t, fine• t..,..,. lllUCh ·moM sipificant
vari,,Uoftl. •mona ~.:~hr ~r"~:.~ lf!t~;~ 4f ~,conrpir....tor MY

~9 '::-Z mr"•a~r.·~~~,,~-r.::...~=--=

- 9 -

convenient for expressing .the operations of the source language. On the other hand, DMACS contains no
notion of storage classes (different mechanisms for accessing variables of the smme data type) which are
needed for C; the implementation of storage classes is machine-dependent and thus must be defined in
the machine description. In this paper, techniques similar to those used in the SLANG system and in
DMACS are used in the implementation of a portable C compiler.

1.3 Method

The goal of this research is to design a generation phase for a C compiler which can be modified to
produce code for many machines by a process which is largely automatic. Some insight into this problem
can be gained by examining the correspcnding, but better understood problem of the automatic
construction of an analysis phase. One common approach is the use of a parser generator (15~ A parser
generator is a program which accepts as input a grammar for a source language and produces as output a
set of tables which are used by a language-independent parsing algorithm. The parsing algorithm is
supplemented by a set of action routines which are provided by the implementer; these action routines
are called by the parsing algorithm at appropriate points to produce the output of the analysis phase.
The important characteristics of this process are as follows:

1. The analysis phase is divided into two parts, a language-independent part (the parsing algorithm) and
a language-dependent part (the parsing tables and the action routines).

2. The language-dependent tables are constructed automatically from a finite description of the language
(the grammar).

3. The analysis phase is •tilled-in" by the implementer by providing information in a procedural form (the
action routines).

4. The choice of a specific parsing algorithm determines the class of languages which can be handled by
the analysis phase.

The process of constructing an analysis phase can be made ·more automatic through the use of a compiler
writing system. In a compiler writing s~tem, the action routines are in a sense built-in; the implementer
invokes these action routines from a higher-level description of the translation. The use of such a system
may involve much less effort than would be required to write a complete set of action routines. However,
the important paint here is that the use of built-in knowledge, as opposed to allowing the addition of
arbitrary procedural knowledge, restricts the class of translations (and thus source languages) which can
be handled by the automatically generated analysis phase.

For the compiler described in this paper, techniques analogous to those described in the preceding
paragraph are used in the implementation of the generation phase. The generation phase is split into two
parts, a machine-independent part and a machine-dependent part. The machine-independent part of the
generation phase is a machine-independent code generation algorithm, corresponding to the language­
independent parsing algorithm of the analysis phase. Just as the choice of a particular parsing algorithm
limits the class of languages that the analysis phase can handle (the parsing algorithm is not completely
language-independent), the choice of a particular code generation algorithm determines the class of
machines for which the compiler can produce reasonable (non-interpretive) code. The machine-dependent
part of the generation phase consists of a set of tables produced automatically by a stand-alone program
GT (Generate Tables) from a machine description, which corresponds to the grammar in the construction of
an analysis phase. The information contained in the machine description may be supplemented by a set of
routines which correspond to the action routines of the analysis phase. However, the CO"lpiler described
in this paper is closer to the compiler writing system approach in that implementer-supplied routines form
only a minor part of the generation phase. The extent to which the implementer un easily and safely
include such routines in the generation phase represents another factor determinin& the class of target
machines handled.

- 10 -

A code generation algorithm, if it is to be machine-independent, requires a model of • me.chine .wUh which
to work. This model may express such ~lions a memory, r•isters,-.-.. eperetiona. end
hardwire d1t1 typa.. In t .. mtelVne ducriPtiqn, thl. ~I'. dd• tarpt ..,..: in ter•·of
this model Md also specifies the form of the object,.._.,.... The"-·";_..,_ ter which •hi codl
aener ator can produce acceptlbht code directly corresponds to the 1enerality of the machine MOdel.

The machine model used by the C compiler is. a C machine: a machine whose resisters end Memory are
described in terms of the primitive C data tY11M and whose Of*._ .,. priMitW. c; ..,..... The
implementer models the t•pt ~ in ..,_ of ,e ,C ~¥odl.wiaa an •11-1-. The
abstract machine may be~ to.or ._,,,differ.,,tkollt.U.iarpt•--...••IM!lnaMl!IQn how
closely the tarpt machine fltJ the .tnlChine .mt. The. codit,,.......,,._ . .-.. itil-,.
model, produces coc:le for the alntr•t machine. The Y. 1..,.... of. thit .-...r•t IMChitW is ctllletl
the intermecli.te ,....,.._ 1n in~e lquap,,pr:QIC-. ~Jt la the #O(IJl of a MriM Qf NCl'O

cans, is translated into the tarpt .~ -.lllblt_ ••t QI:•'~ cltfi~ fH'OViMd by
the implementer in the machlne .,iption.. ~~-J--.9 ~ . ..-••...,......·for
the output of the COMpiter blew it is far ellilr to cleeCrih IM-tllf-..C. in a _.._..., • .,,.,.nt
rftanner than machine code or object modules.

The abstract C machine plays the same role in the C compiter a would a Poole and Waite abstract
machine. The difference is that inst•ad of there bei,. one fixed abstract machine, thet'e is a class of
abstract machines, corr~ to the variability iJl. Ahe.·~ mc:adlll. Thie. nr:i•Mi~ ._ .tM
implementer to define I particut.r abstract machine which more closely r ... mbles his t.,..i_
The result is that the transt.lion from tt. abstract machine lquap to the tarpt 1HChine 1*""'8P
becomes simpler, end •• efficJent code is ,.,oc1uc:ec:J.

The process of rnodel.i"I the target machine Is described in chapter two •. A detailed discunion of the
code generation .a&orit1- is in cNtptw!hr• ~•iolw.,.. "''.,... •-......,.

- 11 -

8. Modelln• the Tars•~ Maoblne

The code ,.Mr ator•s model of .--machine ;s-an lbstnct-C ftlllehiKe, 1 -~ whole instructions perform
the pri~e operations of the C lquap. The. data types of tM abstract -.chine •• the prtmmve C
data types ~acters, inteaers-, and sif'lala- and double-precision floetlN ,.ant>. suppletfteot-1. bY qJte .or
more pointer a.ses which are distinauishec:I by their ability to retOIYe · The ·1Jftic ·Mtdreria&te­
unit of the abstract machine memory is the byte, which hoka 1 slftlle chlrader v.aue (characters are thlt
smellftt S data ·type). ValuM-.t the other ...,act #.,_ :.OCepy;:IM kttltlf'M number of
byt911t·possibty nMf tn· taraer units ef·•rnory. TM a·fet Of r.ttshWI which MY
be used to Mid the operands « tM lbstrect· MllCNtw lr.itrucUll._ ::,_,..,_!'.tMchiNJ f'911tter is
capable of holdins valuH of SOM subMt-of tt.-"'*&t,:c4111tt til•kJllW-~ of the ·
abstract whine are three-addr.- inltf~ heh ···wliy-Qi11tfr :~IMchtM'Hafster
or a location in 'fMmOFYI tha ~ for- re..,...,.., a lili itiHY~lO...._ ..,,_,Ind ·to the tiM'itnttMt
addressin& mod..- in C. · " · -·

In the tMChlne dnc:rlption, the Implementer dltcribts the t.,._t .mtchifW m t•ms of this machi_ne model
by definina a ptirticular ~trect mld1ine for: which the codt .._.., pro#Clirv:fftWinediati~: ,,_
implementer specifies the- sizes and· alianments of the prlMitiw C data ._.. n defines pointer . classes
as convenient. The ~er •hs -CM --Mlltrld'·M1at•·•-..•N,.,._ ...,.,.Y corres,;ond to
those registers of the taraet machine which ant to. -berVllCI itlf'._;...,etfotriOf''~~pressions. The
implementer .aso t .. ,... which may ,,.._,, •tract machine :CS.t•
types. In Mldition, the implementer may specify that any two Mtract_. l"eiWers conflict in the
t•r1et machlne; .. afti .. that only one• hDld·-a .,...,_.,,._ .. h ,._ _ deftneS:-the
abstract machine Instructions in terms of their opermd/reeult locettonl .,.. pouibte...._ffects on other
re1isters. In mdditioft, the i•••ntw· pMVidN. a·•t Ot~·wNlh · itt••nt the M>•r11et
machine instructions on the- taraet _.._. · · · · · ·.

8.1 The Intermediate Laasuat•

The intermediate l•n1uap is the w111bly ._.Ull• of U. llMrat •~ '-Ulinl the inform8tion
cont•ined in the tables COIWtruGtect C'fi'CMn U. Mldtfaile· lt•lli•111t __ ;,~;;.-ntor proc:luc*s •
tr•nslation « tlw IOUi'C. pr:op.,. in the- iftterMldl•',._lv-'JW-•-..•••-, .. .,... --Proat•m
consists of • sequence of macro t1ffs, each of wttldt·fsl'•1•R'id·tftl0;;__.W WliOrtt:· object langu .. e
statements usina the macro definitions provided in the lllChiM ~ Thlre are two types of
macft)S in- ·the mt.Mediate ,...,..., :n.- first· type-'••'.•••·•••r •••••flt ttw··tfn9'1ddrel•
•bstr1et machine instructions. The second type Mt ~.;....._: ... ·~ to·efther
usembly-langueae pseudo-operations or instructions ~ the pr~ive C control structures.

8.:1-.1 A.bstraet llaekbut 1-..traetiotul

The ·abstrlld-. fMChlne instructionl •• three-_.... · wNdt ,,_ •\fhi' ftlluation of C
expreselons. The operator• of ti. Mtract- _.... ~--'.--.... illlt1-eel ·IMdine'Ot'MWafo••-
(AMQPs), the Mldresses •re calted ,.f'Wftc:el (ftEFs). · - · · · · · ·

8.1.1.1 A.MOPs

AMOPs. are b•ic C operations which are qualified by n.:~ "'*Id-. .,.__ dltl types of their
operands. For example, in h HIS-tOOO tmptMent"*' tMfti·"• ftllitii~"'WnllporMlril to the C
Opet8tor-•+•: '" ·- · .. -:-·· ·

+i lntea•r,Mldition
+d double.,, ... ftoatitc-r;oint lddltiOn
+pO lldditlon of an intqer to 1 pointer to a byte·IJlilned object
+p 1 Mldition of an inteser to • pointer to 1 word-atiped object

- 12 -

In addition, there are AMOPs for data movement, data type conversion, .nd conditiomll juMpl. AMOPs are
represented in the compiler • M integer opco• w~U. •i ~ '-· •· tfl 216. U. _,...._ """'8 ...
listed in Appendix lL

A REF is • C-oriented ~iplian of the lacatiott of 1n Qper.nd or the result of an llKtract mtehine
instruction. A REF may specify eilMr • .,..m.r of U. abtlfact tnldttne °'. 1 locatiDR ift m'1llll'YJ ttw
pcssible ct s of ---~ ·Nfe...-.. ...,. C var.HiW.·of Y9rilUI :.,,._ d•• W•• .. lc, •tatic.
external, per....,, &emppr~ •well•-~ •inltiNct r• •ce.• A REF is "••11nt.ct bV •
pair of intea-1 cMIMltlf JIASE ... IEFAJFFSET10&.MIE .,.....,. a ...-- Htil•• or •
partmar. dasa of MIMf!Y,,fl&fMfiET _..,.i•• .fhe,eucf;tGJc1li1ne~ ,.,. • ...,.Y
reference class. The possible v._ of REF.BAS£ are list.d Mlow with their,..tilt• tecttMt
inteaer values are 1hown for COftefeteft!HS; the compiler itMff _.. menifeat c:onttants): ·

REF..8AS£

n~O

-1

-2

-3
-4

~s

-6
-7
-8
n s ... 9

.....,,,......
- rqister - ~ to u. ,..Wers·of the atrect

IHChine it\ • ...,....._......., by GT> .
- an auto.tic« leMperaFY varilWe; QFFSET ia the efflet of the ~ W.. the

staff ...
- an _..,..- vartable, ,..,_enced by n-. <JFf'SET ii .n intem.1 WentifW

number
- • static , ,,., varililllte; OFFSET is an iftternat.st.Uc nrilWe __..r
- a parameter; OFFSET is the offset of the wetl~IJ er its tlCldr1111 ift tM

ar1ument list
- a label; OFFSET is an internal label number
- an inte19f constant whose value is OFFsrt - a flNthw ••i..t c._.. OFFSET is tn. internal COftStant number
- a ehaMder·· ow._,. OFFSET il•"W.r.,a:s.._
- .ret•--·ifdlect.·~•·...._.a.,,.._w.• (-n ~lt:SFFSIT is the· off•t

of U. '*••nee to the Pointer ·

The specific v.t"8s of REF BASE need . ..ot be refff'red to in MOSt macro ._..initions; the eneption is the
NAt>.AE macro, which ·~rts a '1EF into a sytftbolic .address.

The representation of a three-address instruction in the intermediate lana~e is that _of a macro call with
five or seven integer arauments representina the Nilt)P ...,,~.., tt'8 .,...,t.wd tt19,..,.... of tbe
AMOP. (Each REF consists of two •1uments, REF.BASE and REF.OFFSET; only two Refs tre provided in

·the cue of aunary~J ,.....,.~_.:ffl.ttte . ..,..~;s.c~a . ..-;.t.ftlmt·wNolta,1,..._.an
entry in a tabht produced .. ~ h dliecrif*Dn &>v.·•·.Gf,._•ithis ._..,,.,--..to the
represent•tion of the correspondift& macro definition from tta_ ~.

2.1.2 Keyword Macros

Keyword macros are those macro e.11$ which. ~ with the. three-address instructions, tMke WP an
intermefjate ~ prQlr.a Unlike.~ macros whose .NM8$ "' pneretect bv Jit,.h.narnet .of
the keyword macros are predefil'led, as are their functions. For example, keyword macros •• used to
define external variable natneS and internal labels; _.o specify initial values in storap, -"' to produce the
function proloas and epHoas. The v•ious keyword .._acros defined in the interfttlij'tJftJ•••• are hted
below alona · with • brief dMcription of their functions; t_ ,._ •lllPl•tll • .t •11......,,. ,..,ear• in
AJ»pendix m. . .

--------------------------~ ------

HEAD
ENTRY
EXTRN
INT
CHAR
FLOAT
NFL.OAT
DOUBLE
NOOUBlE
ADCONn
STRCON
EQU
ZERO
STATIC
STRING
ALIGN.
LN
LABCON
LABOEF
ION

ENO

PROLOG
EPILOG
CALL
RET~
GOTO
LSWITCK
TSWITCH

:-- -~-;-'----...-; ---- --·------- -- --- ---- ------- .

-13 -

function

produce header statements. if needed •fine . .n entry
..... M fttemetHfererle*
detn. a intepr const1nt
defif'IB • cheracter c:oMtant
define a floeUri1'1)0int COMtant
define a neaative floatins-point constant
define a doubfe-precision float constant
define a neaative doulM-precilion constant
...... •.d1n•n-.pointilr:COMt1111t ·.
define"• refer8ndnl··•·afriftaCOMtMt
deftne • JYmbol '
AWine· e _. .. ,of .tor ... iftitiltizedJto _,.
define •;Italic v•i•ble
define the strin& constants

. for~ .,. ..,_... of U. licltioftcount.r
define a line-number symbol
define a libel constant
define an internal label
translate an intern1I identifier number
into the corrlspendlna•iuu111•~••let·
produce an end statement, If needed

produce Ute proloa GGde of a C fuftcffon · ·
produce u. epHos·;eode:Ot • e ~ .
produce a function call
produce code for a return stttement
produce a jump to a labej expr911ion
~· •witch:juMp.(titt llOn>'·
.~ewihlh.tt.(t'tlltfl\VWlioft) ·

--- ----~------

The actu•I macro names which appear in an intermediate lancuase Pl'Qlram .,. abbreviations of the
names listed above.

2.2 The Maohlne Desorlptlon

The m1ehine description is • •proerem• written in 1 speci.i-purpose l'"IUfP from which is constrUded
the machine-dependent tables of the pNration pha&e. The ·~ ~iff\ '- two functions:. Cl) it
defines the particular· abstract machine for which the tcJIM·~' M"..,liMidl• cC:idl, and (2)
it specifies the translation from an intermeditte lquaae ~- to te. cqrrespondina object l•nau.a•
pro.,.atn. · · <'': •' ·· · ·• ·

The abstract machine Is defined in two sections of the machine description. First, • set of defmltion
stateme. nts defines the r .. isters and memory of the abst.rac ... t .Mac· ... tiine. ~.··...in .the Of'L:OC. . .. MC· .. ~io .. n..Jhe. .
AMOPs ... •titwct in terms ot tMit OfliWINl/fesult ~ M'~~i'fi'Otft~·tfte tnt•medflte ·
lanl\HIP to the object ·fanauap is ·wpteifled by a set' :Of. mair'O'+ lit 'tti' NicrO ~ . of .. the
m.chine description. More information on the writfn(cbft"'f -. llldl'ftlftijt1miy be"fcuwlin Appeftclix
I; the machine description used in the HIS-6000 Implementation ts listed in ~x, IV.

2.2.1 Deflnlnc the A.bstraot Maoldne

In the ••hine description, the implementer first •ffnet the ,...isters· of the' abstract machine. For
example. the statement ·•

- 14 -

reg names (XO,x 1,x2,x3,x4,a,q,f);

defines the eight abstract machine registers used in the HIS-6000 i,...._ntation. TM r .. isters XO
through X4 correspcnd to the first five of eight H1S-600Q ..._ .,......,., U. A·_. Q ~ to the
accumulators, and the F resister is a fictitious floating-plliftt· 1CCU11••• whidl ~ to the
combined A, O. and E (exponent) rqisters on the MIS·'60Cll:/ft•,Alt,thlf-.i' nllftW ai"""8 in the
taraet machine with the A and Q reatsters is~ by h· ttat1•1!1t

conflict (a,f),(q,f);

The remainina HIS-6000 index registers are not ,......nt., in the lbltrllet Mlehine ttnce it was not·
desired that they be used by the code- in,.._.,.,..., of two of ·tt.w r .. isters
hold •environment pointers,• h other is used • I scrltch reatster~1Jy of 1he mecf'O dltfinftk)ns.
There is -nothing that requir .. that the -.tract IUClhiM 111tot•: i w ·flli-•fttlld • .._. tMChine
registers on the target machine; they may .tso be ilftplemenhHl·•ffwd ... ,..,.,......_

For convenience, the abstract whine rqisters can w pthlrM iflto d111111 fe'r ex...._ in the HIS-
6000 implementation, the statement

class x(XO,x 1,x2,x3,x4), r(a,q);

defines the class of index rqist«s X and the dais of, .. r.....,_ R.

The implementer also defines the classes of abstract machine pointers. Pointer classes •• necessary on
machines which are not byte-addlened since to t.,te.lli•lwt--- wll tMt,,41fferently

· than Pointers to word-alipedebjeds. ln the,._,._lift; .. ,ICaalMftt

pointer pO(l), p1(4);

defines the class PO of byte Point..-s and the class Pl of word,....... n.. -..~ .. ._ thal· h vtllue
of a Pl pointer is always a MUitipie of four byta· 'Aw ·ftlttb,et~ttww1 .. ._.. 9Jtes pillr ..,don the
HIS-6000 is specified in the statement

size l(char), 4(int,float), 8(doubht);

A similar statement is used to specify the lligNnent restrictions.

The statement

type int(r), char(r), float(f), double(f), pO(r), pl(x);

defines the registers which can hold values of each of the abstract machine data typn. For. ex.,,.Pte. in
the HIS-6000 implementation, word pointers are held in the index reaister1 X while byte pointers are held
in the aeneral reg-.ters R.

The ciftfinition of the· ab$tract .. ~ is completed in the OPLOC section of the llMIChine ~tion
where the implementer specit-. t~ .. ~ of t•. abs&rct . MaChiM oper .. iOM ia ter• of IMir
operand/result locations. For • ..-. tbe ._._ defPa.

+d: f,M,f;

specifies that t.,_ AMOP '+d' (doubte-precision floating-paint addition) can take its first operand tn the F
register and its second 0per.-nd in any -.mory tec.tion Md, under ..._ ~t..., t .. result is
pl.aced in the F reaister. The construct on the riaht In the location •flnltion is clllMI llt .OPUJQ it
COMists of three loc8tion ..,111i1na, one for the first operand, second opera, end r9IUlt (......_ from

- 15 -

left to right). A location expression may specify any set of abstract machine registers or any set of
memory reference classes; for example, the location expression

r Ix

represents the set consisting of the general registers R and the index registers X, and the location
expression

,., intlit

represents the 5et consisting of all memory reference classes except that. of inteser constants. An OPLOC
may specify that the result is placed in the first or second operand location. For example, the location
definition

+i: r,M,1;

specifies that the AMOP '+i' (integer addition) takes its first operand in a general register and its second
operand in any memory location, and the result is placed in the register which contained the first
operand. This location definition is equivalent to

+i: a,M,a; q,M,q;

which explicitly lists the two alternatives. An OPLOC may also specify that the contents of certain
registers are destroyed during the execution of an AMOP; for example, the location definition

q,M,q [a];

specifies that an integer multiplication destroys the contents of the A register.

2.2 .2 Defining the Object Language

The translation from the intermediate language to the object language is specified by a set of macro
definitions included in the machine description; macro definitions are provided for the abstract machine
instructions and the keyword macros. The simplest form of a macro definition is a single character string
which is substituted for the macro call during macro expansion. For example, the macro definition for
floating-point unary minus used in the HlS-6000 implementation is

-ud: .. FNEG"

This macro definition specifies that each occurrence of a '-ud' abstract machine instruction is to be
translated into the assembly language instruction "FNEG" which complements the contents of the F
register. The macro definition for '-ud' is closely related to the •ocation definition for '-ud',

-ud:

which states that the operand is found in the F register and that the result is placed in the F register. A
.macro definition for an AMOP can assume that the actual operand/result locations appearing in an
abstract machine instruction satisfy the constraints specified in the correspanding location definition; at
the same time, a macro definition must produce correct code for all combinations of operand/result
locations allowed by the location definition.

A macro definition for an abstract machine instruction can refer to symbolic representations of the
operation and the operand/result locations by using the character sequences .0 (operation), ··F (first
operand), •S (second operand), and •R (result). These character sequences are abbreviations for calls to
an implementer-defined macro which converts an AMOP opcode or a REF into the desired object languase

- 16 -

represent1tion. For •, the ntaero definition tor '+r (.lntepr lddltion) in the Hl9-iOOO
implementation is

+i: •

If the first operand location (•hich is 1190 tlw result toc:atioft) is U. A ,..a.tw· 8ftd 1he ...,.. operllnd is
an external vari..,_ ")(•, then the code pr.._. by this ·MaerO *finition it

ADA X

which adds the contents of "X" to the A reai&ter. A m1ero dlfinit. an._ contain dlerster .trinas
whose Jnctusion in the·~ df a IMCro clH •·~"""' thf Of a.., .. Mid/or
result. An example is the MIS-6000 ..,. ..-tinition for '<~ (Wt lhift)

<<:
(,intlit,):
(,Nintlit,):

•
•

ttFLS
UCL5
.ns

which produces different code sequences dependiftg upon whether or not the QCOnd operand (the
number of bit-positions to shift) is an inteaer constant. A m1Cro definition may include refert1tten to the
argumftnts of the m1ero catl Ul.it'tl.lhe CNr•hlr ...,.0, •1. ... dt. a MllCfO dlfiftlion aq include
embedded rnKrO c.4ls, such • the ,_.9ST'in ·tt. lllt which ,....,. U. wfua of the iftteaer
constant. · ·

A macro definition may also b9 specified in the 'form of 1 C routine. C routine macro definitions are used
when processing is needed which is bey.ond the ~ties of the ..,. flNICrO sc:MN• so tar ciMcdbed.
C routine macro definitions may define afobll vwllbles, perform •tttwwwtk Md toeictll operations. 8nd
select code sequences on conditkw\s other than OJMN'.-.d locations.. In thf J11111~nt· n,,le•nt8tion,.
however, C routine macro ~fions are unable to ·interact with the code,. ... -. atPnthm. m the
HIS-6000 implementatien, .C ~ macro def tuitions are ,UMd t9 tr ... e IEfa inte ~· ~ .to
translate the source 1...,... reprQentations. ~f identif~.:s .and ti.tint~ .CQlatMh .iftto GMAP, to
define character stri"I tonStatfts., and to buffer c"-ad•r• white.~ atorap '- ~ (GMAP
does not ~ • byte *"ion:~r. t11 It ~ ift.~ inf«"'~:._,_ the C roiuliM tMCrO
definitions used in th11dlS...., ~lti9".,. ·lisW in V. · ·

- 17 -

8. Generatlne Code for an Abstract Maohlne

The most interesting part of the compiler is the code generator since, unlike most code generators which
produce code for a fixed target language, the code generator of the C compiler is designed to produce
code for a class of abstract machines.

8.1 Punctlons of the Code Generator

The code generation process consists of three fairly distinct functions. First, there is the generation of
intermediate language statements to define and initialize static data areas and constants. Second, there is
the translation of source language control structures into libels 1nd branches. Third, there is the
translation of source language expressions into sequences of abstract machine operations.

The C compiler is designed to produce assembly language code for conventional machines; thus, the
intermediate .language statements for defining and initializing static data areas directly correspond to
assembly language statements which define symbols, define constants, and align the location counter. The
only complication is that the code generator must use the size and alignment information from the machine
description in order to specify the sizes and alignments of data areas. More information and redundancy
could be added to the intermediate language in order to accomodate a larger class of target languages;
see [16) for examples. Another possible improvement would be to emit segment specifying instructions
so that the output could be segregated into different segments according to whether it is code, pure data,
impure data, or uninitialized data. ··

The process of translating source language control structures into labels· and branches is rather
straishtfoward. The only com~lications come when emittin1 condition1I branches which test the value of
an expression; these problems are covered in the next section.

8.2 Generatlne Code for Expressions

The generation of code for expressions is the most difficult part of the problem. The code generator
must generate a correct sequence of abstract machine instructions to carry out ·the indicated operations.
The operand and result locations it specifies in the abstract machine instructions must conform to the
location definitions provided in the machine description. Moreover, the code generator must keep track of
the locations of all intermediate results and correctly administer the abstract machine registers and
temporary locations.

The generation of code for expressions is performed in two steps, semantic interpretation and code
generation.

3.2.1 Semantic Interpretation

The code generator receives expressions in the form of syntax trees whose interior nodes are source
language operators and whose leaf nodes are identifiers and constants. Thus, an expression can be
considered to consist of a "top-level• operator along with zero or more operand expressions. The first
step in the processing of an expression consists of translating a tree in this form to a more descriptive
form whose interior nodes are AMOPs. This translation involves checking the data types of operands,
inserting conversion operators where necessary, and choosing the appropriate AMOPs to express the
semantics of the source language operators. The selection of an AMOP to replace a source language
operator is based primarily on the data types of the operands. For example, on this basis, an addition
operator may be translated into either integer addition, double-precision floating-point addition, or one of
a number of pointer addition AMOPs. However, it is useful to be able to choose AMOPs also on the basis
of what is provided in the machine description. The basic idea is that of defaults. If the semantics of a
particular AMOP can l;>e expressed in terms of a composition of more basic AMOPs, then the AMOP can be
left undefined in the machine description; the code generator can use the equivalent composition of
AMOPs instead. The advantage of having optional AMOPs is that the implementer need define one of

-- ·--- -------~~7------

- 18 -

these optional AMOPs in the rMChine description only if his definition will retuft in suffidently better code
than will be produced usins the equiv1hmt composition of more bHic ~

An example of this technique is the handling of a cl11s of C oper.atOrs cllled assipMent operators. An
example of an assignment operator is'•+', where "l •+ R" is defined to be the same as i. • L + R" except .
that the expression L is evaluated onty once (it may co~tain ,...._ffects). Coas.idfr. an .•x.....-ion
•L -op R. • If the correspondtna abstract machine assigniwtnt «>Perltor is defined · in the mKhine
description, then the source ,..,,,... . ~ .,...,. t, tr•IMH into that_ ... ect MIChine
operatori otherwin, the eXJ>(....,., 1: .;Op If'' is COftWllttid to "" .. ICPvat.mf fOrltl !'l • L • Ir',, •~t
that there is only one copy Of' t.•"hivma two point«s to it (1 fl• ji set i" the root nQCfll"of "L" so that

. later routines will r9C0Cnize this tact): Ther~are, I PMticul• IMtrlC,l ~ ... ~ ..,.tor. need
be included in the mechiN dkc:rtptlbft onty if 'th& code ~ it· a9Mrates ate better then the code
that would be 1enerated by the~.~~ AA·exampte;fr•• the·Hls-6000
implementation is the . ebstreet JI~ :.,ator .,""1.; Ci ~·••llQ-) ~·is tr_...ed
into an add-to.-stor•··ift$t~, fhe, . .., ffof/lijil,Pflli"1.·,.,,W•nt_,..., '-:t'ff is not
defined in the m11ehtne d91cfijRtoft smc..no·ftiMtmc~-:to·.-•>~ ... • U.
mechine.

Other examples of optional AM:JPs whi'ch have been implemented are the .potnt.r comp«isOn o,..,ators
for pointers other .than class, PO'.point.,s (the dltf.,at is to .conwN't to U. • .,..._.. c........,.dlftotniNter•
pointer class for which the oper.tioft''it impt1!Mftted) nf thlt t•t for d/fltOIA"'*'f ''~;......,•(the
defautt Is to convert the poinW to •int.pr· and t..t for..-,~ with 0). OU.-..na
candidates for ~ina optional AMOPa at•,,...Jncr•.lftllt •••••,~

8.2.2 Code Gen•••tlen

The second step in the processing of an expression is the pneration o.f • ~e of Mstr•t ... achine
instructions to carry out the evatu.tien of the expression. This 'code anratioft is performed by a set of
recursive routines~ some of which will bt ~-- in ,t~s. section. Tbt:~ation.,of ~.code ..,_...,,
routines is b•icaHy top-down. -.n a c.aU .is IUde to ~,to;~atuate .,, ..,.,"..,.. :• set. of
desired locatio~ for the result of that evlluat4o,I is 41lc·ff*ilied. iw..~iqtk1nf -."'with 9'Mr
available inform~lon abc>ut the ..,,_.,of .the top . ..fevef·OJW,• of the ~:•s UMCl·to:chooM
one of the OPLOCs 'from thlt· top-leftJ .. oper.elQrj location,~~·- lhlt ~ 4MctiPtien ~~
definitlons are described in section 2;2.l). From tt. chosen OPLOC end, possibly, the de&ire4-,...ic>M for
the result of the Hpression are derived sets of desired locations for the operands of the top-level
operator. Recursive calls are th,n made to pnerate ~·tQ,v.au.tet•~~:·it..tc>'U... deliNd
locations. Next, an abstract machine lnstructiol'\ is 8Mitted ·for the top-levtt operation. Fiftllly,.. if
necessary, abstract machine instructions ere emitted to move the reeult of the nprenion to •n
accept able location.

8.2.2.1 Speolf)"lnc Dealreci Looatl~ns

A set of desired result loc.atiqns is ·specified by ~ structure called a .LOC. A U>C atructure has two intepr
members, LOC.FLAG and LOC.WORQ. The ~ v._. ofLOCILAG •• Dsted below -.., with their
interpr•t•tibns: · ·. · · ·

- 19 -

LOC.FLAG interpretation

0 the •result• is the internal libel specified by LOC.WORD (used only for
conditional jump AMQPs)

1 the result is to be placed in 1 register; acceptable resisters are specified by
one-bits in LOC.WORO (bit 0 corresponds to re1ist49r number O, etc.)

2 the result is to be placed in memory; 1eceptable classes of memory references
are specified by one-bits in LOC.WORD (this field is used only to select re1isters
for pointers in indirect references)

3 the result may be left in 1ny location acceptable for values of the particular
data type .

Note that a particular memory location·is never specified as the desired loc11tion for a result; rather,
classes of possible mem0ry locations are specified.

For convenience, if the LOC passed to the top-level code generation routine specifies that the result is
desired in a register, then all ·registers not capable of containina the particular data type of the
expression being evaluated (as defined in the TYPE statement of the machine description) are removed
from the LOC. Similarly, if the LOC specifies memory reference classes, then all indirect classes where the
pointer register is unable to hold pointers of the correspondi°ng pointer class (as specified by the TYPE
statement) are removed from the LOC. Thus where the code generator simply desires that 1 value be in a
register, it may provide a LOC specifying that the result may be left in 1ny register.

The removal of "impossible• re1isters from a LOC is not performed when such an action would leave no
remaining acceptable registers; this situ1tion can actually occur in certlin special cases, such as return
statements, where an operation requires a value in a register not normally used to hold values of that
type.

8.2.2.2 TTEXPR

The top-level code generation routine is TIEXPR. The function of TIEXPR Is to generate a sequence of
abstract machine instructions which will evaluate a given expression and leave the result in an accept1ble
location, as specified by a LOC parameter. The operation of TIEXPR begins with the removal of
impossible cases from the LOC parameter, as described above. Then, TIEXPR passes the expression and
LOC parameters to a routine CGEXPR, which generates abstract machinet instructions to evaluate the
expression, using the LOC parameter as a non-binding inqieation of preference. Finally, TTEXPR calls the
routine CGMOVE to emit, if netJtssary, abstract machine instructions to move the result to an acceptable
location •

. a.2.2.a CGEXPB

The function of CGEXPR is to generate a sequence of abstract machine instructions which will evaluate a
given expression. CGEXPR is given a LOC argument which specifies preferred locations f~r the result of
the expression; however, unlike TIEXPR, this specification is non-binding and is used only where a choice
Hists.

The operation of CGEXPR consists basically of testing for a set of special cases and then performing the
appropriate action, which is usually to call another routine which does the real work. The first special
case is where the expression node is shared and the expression has already been evaluated; in this case.
no action need be taken. Another special ease is where the top-level operator is a conditional AMOP and
a value is desired (as opposed to a jump, which is the usual case); in this case, a routine JUMPVAL is
called to emit the desired code. The other special cases involve particular top-level operators:

- 20 -

indirection, assignment, conditional expression, function call, and the "leaves" of the expression tree,
identifiers and literals; in these cases, the code generation routine corresponding to the particular top­
level operator is called. Finally, in all other cases, the routine CGOP it called to emit code to evaluate the
expression.

S.2.2.4 CGOP

The function of COOP is to emit code to evaluate an expression whose top-level operator is not one
special-cased by CGEXPR. Like CGEXPR, COOP is passed a LOC indicatin1 non-bindin1 preferences for the
location of the result of the expression.

The operation of COOP is performed in six steps. First, a routine CHOOSE is called to select an OPLOC
from the top-level operator's location definition in the machine description. Second, desired locations for
the operands of the top-level operator .are determined. Third, a routine EXPR2 is called which makes
recursive calls on TIEXPR to emit code to evaluate the operands into the desired locations. Fourth, code
is emitted to save any registers which are specified· in the machine description to be clobbered by the
execution of the top-level Qperator. Fifth, the exact location of the result of the expression is
determined. Sixth, the actual abstract machine instruction for the top-level operator is emitted.

If the result location specified by the LOC parameter is a label, or if ·the selecte~ OPLOC speeifies that the
result is left in the first or second operand location, then the exact location of the result of the
expression is fixed. Otherwise, a particular register must be chosen from the set of reaisters specified in
the result field of the OPLOC (the compiler is currently unable to handle OPLOCs which specify a set of
memory references as the location of the result). In the search for a result resister, the priorities are as
follows: first, free registers which are preferred result locations; second, busy registers which are
preferred result locations, third, free resisters which are not preferred result locations; and fourth, busy
registers which are not preferred result locations. If a busy register is selected, reaister contents are
saved in temporary locations as necessary.

For the purposes of finding a result register, a register containing an operand is considered free and a
register containing a pointer to an operand is gi,ven lowest priority. A register containin& a pointer to an
operand is protected because the implementation of a AMOP may alter the contents of the result resister
before the operand referenced by the pointer in that reaister is used. An example is the followina HIS·
6000 code for the AMOP '+pl• (addition of an inteaer to a pointer to a word-1U1ned object):

LXLO I
ADLXO P

This code loads index register 0 with the integer I and then adds to register 0 the pointer P. (The code
for the AMOP includes the load instruction since in general integers cannot be stored in the HIS-6000
index registers as they are only halfword resisters.) If the code generated for P leaves P referenced
through index register 0, the load instruction will •clobber• register 0 before P is accessed by the add
instruction: ·

LXLO
AOLXO 0,0

However, if index register 0 is protected, index register 1 will be chosen instead to hold the result,
producing the following correct code:

LXll I
ADLXl 0,0

- 21 -

3.2.2.15 Seleotln1 an OPLOC

The purpose of OPLOC selection is to select a set of operand/result locations for the top-level operator
of an expression by choosing one of the .OPLOCs from the location definition of the operator in the
machine description. The choice of operand/result locations will affect the amount of code produced to
evaluate the expression, both because of different code sequences which "'ay be produced by the macro
definition for the operator and because of additional loading, storing, and savina operations which may be
required in order to set up the operands and move the result to an acceptable location. A general
solution, taking into account all possible locations of operands and results, is a complex optimization
problem. Instead, a more limited approach has been taken which uses the provided preferences for
result locations and available information about the possible result locations of the top-level operators in
the operand subexpressions. For example, if an operand is an identifier, then its location is known to be
a memory reference of a particular class. Similarly, various operators may be defined in the machine
description to always place their result in one of a particular set of re1isters. Using information of this
sort, plus knowledge about the current register usage, a rough estimate can be made of the number of
additional load and store instructions which will be required for each OPLOC in the location definition;
from the set of OPLOCs, the one with the lowest additional cost is chosen.

-
For example, consider the expression •1 +(JI K).• (For clarity, source language operator symbols are
used in this example to represent the corresponding integer abstract machine operations.) Assume the
following location definitions (the OPLOCs are numbered for future reference):

+: r,r,1; (J)

r,M,1; (%)
llA,r ,2; (3)

/: rl,r,1 [r2]; (4)
r2,r,1 [r3]; (5)

r3,r,1 [r4]; (6)
r l,llA,l [r2]; (7)
r2,M,l [r3]; (8)
r3,llA, l [r4]; (9)

Here M represents all memory reference classes and r represents a set of general registers consisting of
r 1, r2, r3, and r4. The division operator is modeling a machine instruction which produces pairs of results
(the quotient and remainder) in adjacent reaisters. For the division abstract machine operator, only the
quotient is used; the other register is considered to be •clobbered• by the execution of the operator.
Note that one can deduce from these location definitions that both operators always leave their results in
general registers.

The generation of code for the expression ·1 +(JI K)• begins with the selection of an OPLOC from the
location definition of the '+' operator. In this ease, all of the OPLOCs specify the same set of result
locations (the general registers); thus, the desire(J locations for the result of the expression does not
affect the choice of OPLOCs. Instead, the choice is made on the basis of the possible locations for the
operands. In this case, the first operand Is a variable I which is known to be a memory reference of a
particular class. The second operand is the result of a division operator which is known to leave its
results in either rl, r2, or r3. On this basis, OPLOC (3) is chosen because no extra operations are needed
to move the operands into acceptable locations, whereas both OPLOCs (l) and (J) do require such extra
operations.

Next, a recursive call is made to 1enerate code to evaluate the subexpression •J / K.• fhe desired
locations for the result of this expression are those specified by the chosen •+• OPLOC for its second
operand, namely r, the set of 1eneral registers. However, since the '+' OPLOC specifies that the second
operand location is also the location of the result of the '+' operator, the intersection of that location set
with the set of desired locations for the result of the '+' operator is used instead, if that intersection is

- 22 -

non-null. Thus, the foHowi"I factors are used in selectins an OPLOC for the 'f operator: first, which of
the pc:>ssible result rqisters •(f 1. rZ r:.$) ¥9 desired rnult locatic»Mi .MGOnd, whi~h. of ·the-~ result
r~gis. t~r.s are free; and. thit'ft .. · .. wJW:b .. ·. .. Of.:·.· .. tho. . . ·.~. · .-... ·. ·• :

1

·~. • ••.•. - .--~ .r3,,.I:. ~ ... !'•.· .f..... . Jn....... Jaat;tif;ua..
s1tuati0ft, the pGSSibte .~ion of U. .. ~~ .,.JJ) JS,,y jtp .. :·1P--· ttnl'
of the OPLOCs. However, ·u. :qperlnd, which i* lltO .-. to be a __,Y refer-. t.,....
OPLOCs (1), (8). and (f). .

In addition, when selectina an OPLOC from 1 location definiti.Gn. oet;.~ Qet..Oes .. ~ .be r•jected entirely
because they specify conditionS ,which ~ not be •t~ f.91" • .,.....,,,_,. ~.,... .<emw ·dir8diy
or indirectly throuah an~Md ~) that thit r...n .;.,a.ttin a rtts~ •. Dut, .. U..- ii dMir4Jd m
memory, then th.at OPl.Q: wiH ·8' ~ if a teltpPrtrY ... is .. ,..:__,.._ ,.. .. -..0C is
rejected because, aiven a v• in a ,....,, th,e only-a1 t.¥. ~- tt--~ _,..ator CM
make that value into • memory ,.w.-. is py savir. it in .J nf:ww_,.,.,. .. locatioa. (Reqil
that a specific memory·toc.t4on is not provided for tht Ntult,"* a;•t,9'.~~ ~J~fer9nee
classesJ. Similarly, if the r..wt will be : ·.·.m "'"*f.......... i•. _" . in. ·~ .. · · · ~1"«t ... Jhat. _ ... ·.~· .wiU .be
rejected if there are one or more ~· result~ r~: ~ whiCh .,. ·not acceptable
result loutions; this is done because the ~ pnerator i$ not cepable of tranafGrMins a memory
reference from one das~ to fllQtMr .. $1~ ~ifta.js per'-Mtd•en,the.,oPefand lec-P .._iqations
in the OPLOC: if an Qper.nd if ,..,;...; t.y the OPJ..OC ~ l;le in-¥ ~ .JIOt .W ~,,>'
reference cl•ses are allowed, then. t~ .QPl..OC .ut bet~ iJ)N-•lf~· ~~>4&,not ,.__.....
to place its result in an ~ . ~ location or tf it can place its r.utt in a "'lister W
temporary locations are not .acceptable. These NStricttor..allow a location-~ to cont.m •tr•
OPLOCs whtc:h apply only in SJ19Cial cws since such OPU>Ct wm neY9f' be ~n unt.s tt• special

·cues hold. · ·

An example of how the OPLOC setection method can be utilized in the writma of a mechine description is
the fotlowma definition of tt. '+pl' ~ (addition of 1 int.pr to a ~. to, •. wonHlisMd object)
taken from a hypothetical MIS-tOOO machiM -~ (~, ••nil•d.~ ~ ••held was Mt
implemented at tt. time thl ·ldwl. MlS..aGOO .MIChlne ••.cftptton w• ~·: il'M thDrtett code for
executina the '+pl' operatlon in tt. ..,.,., c .. is ·

LXLO I
AOLXO P

where I is the inlff•r in the low-at*' ~f _Qf a word in ~¥ IO(i. P' is the painter in U. hjp~der
half of a word in nwtmory •. Tl)t rf!IUJt of thiS-.r.atitln is left. irllltindltx,.,,~the Ql\\00 for lhis-cocte sequenc. is · · ·· · ·· · · ·· ·

M,M,x;

However, if both the inteaer and the pointer mu$t be cc>mputo.d into rqister,• (which OCC\lfl frequently in
reterencina ·~ts of an .,-r.-y_). ~he Jntqer .and the,,~ . .,t•r must f~ .. ~ ..-.p jn,tp ~ary
loc~tions before this cod* ~' ~~ .,. 'IJ)trefQQ.,,.-. ftlt cfv9ft'. -- ,
these circumstances results in ftcelsiw Ob}td coc& ~.dMftd ._ is · ·

ALS 18
STA TEMP
ADLXO TEMP

whic~ shifts the integer in. the, pner1I re,ai1btr into the ~h-or~r, ~fWQr~~!tor8J il into • temporary
location, Jnd Mids it to the ;olnbt,r in _ltje iftdex_rvter .. The OPLOC·)tli·tNt ~,_ l!a .

x,r,11

In the case where the pointer is in an index regis.ter ind the inteaer is 1 const1nt •n•, then the desired
code is

EAXO n/)

with an OPLOC of

x,intlit,l;

The described OPLOC selection method allows 111 three OPLOCs to be included In the location definition for
'+pl'. In particular, it guarantees that the third OPLOC will never be selected unless the second operand
is an integer constant.

8.2.2.8 Generating Code for Subexpressions

After an OPLOC has been selected, CGOP calls a routine EXPR2. to make recursive calls on TTEXPR to
generate code to evaluate the operands of the top-level 1bstract machine operator. The LOC arguments
passed to TTEXPR in these calls are taken from the operand fields of the selected OPLOC and, in the case
of operators which place their result in an operand location, the desired locations for the result of the
top-level operator. If there are two operands, EXPR2 makes sure that the two operands will not require
the use of the same register (for example, by using a register to hold both one operand and a pointer to
the other operand); this is done by checking the LOCs for "overlap" and removing certain possibilities. In
addition, EXPR2 evaluates first the operand which is more complicated on the basis of the sizes of the
subtrees for the two operands; this tends to reduce the number of saving and restoring operations
performed. In the course of generating code to evaluate an operand of a binary abstract machine
operator, it may be necessary to use the register containing the already computed value of the other
operand or a pointer used to reference it, in which case code is generated to save the contents of this
register in a temporary location. Thus, after generating code to ev.atu1te both operands, EXPR2 calls a
routine RESTORE to generate code, if necessary, to restore the saved value fo its original register.

8.2.2.7 Register Management

The status of the various abstract machine registers with regard to register allocation is contained in an
array of structures called REGTAB. Each element structure of the array represents the current state of
one abstract machine register. An element structure consists of two members: UCOOE, an integer
indicating the current use of the register, and REP, a pointer to the subexpression tree whose value is
currently in the register. The possible values of UCODE are listed below with their interpretations:

UCOOE Interpretation

0 the register is free

-1 the register contains the value of the expression pointed to by REP

-2 the register has been marked "do not use unless necessary• for the purpose of
finding a register for the result of an Ah()P; 1lthough the register contains a pointer
to one of the operands of the AMOP, it is free in that it may be selected as a last
resort without having to save its contents.

n>O the register does not directly contain a value, but there are •n• conflicting registers
containing values which must be saved before this register ctn be used.

The routines used in register management are described below:

CLEAR(R)

ECLEAR(E}
FREEREG(W)

- 24 -

- Reaister R,. which must directly contain tt.. value of an expr ... ion, is __.
avaihlbte for use; its current value is not saved.

- The resister asocieted with the expression E, if any, a ClEARed.
- A rqister from the set specified by W is mm avaHllble for use; the

contents of resisters are seved if necessary.
GETREG(Wl,W2)- If ponibte, an~ r91ister from the set Wl is Mede availabte tor

use. Otherwise, ff possible, an unmarked r .. .Ster f..- the ,set W2 is m8de
1Yai14tbte for use. Otherwise, • marked ,..itter fNM tM .t Wl is Mlde
.,,.~,Jer-.. Withift w"'eet. fl'ee,._. .. , • .,.;dlu••nJ11de•lifM•

MARK(£)

NBUSY(W)
NFREE(W).
RES£.RVE(R,E)

RESTORE(£>

SAVE(R)

UNMARK(E)

to.~..-$iif•._ ,._chMentits ,•__..
- tf the exprnaton Eis an indirect ret.rence, ttw ,...kw c•l811t1• tt.

pe;nt.r is mw"8d •c1o not use ""'"' ntcelSlf'Y. •
- Return tt-.e ~of.-.,......,..,in\ttlt ..tW.
- R8turn the ftUMber of free resisters in the •t W.
- Reaist« R is aUoa•d ·to.hotd the « the ion £. Aqister R

must ... waitlble 4or ...
- If the vakll:of .tt:. ~ E (or • ~ ift ti• c-« • indirect

ref...--) .bas ,o.n in·. teMpor.ery,,.it th9
orf&inel r:eei•tiar.

- Regtster,Ris1Hd9w.._..forweby..W.·the..-..of.wt...., ~.
- lMwro ,a+tWI(.

The followinc is a typical .-ies of ··""5.made by CGOP in u.,.tioftof cm fer..,..,....,.,£
whose top-level optHlor is •tNner¥ ..,..rater with .,.,.,.,QPi ..., QP2i

OPLOC-a«>os£(E.l.CC}

EXPR2(0P 1,0P2}

ECLEAR<OPl)
ECLEARWP2)

SAVE(•)

MARK(QPl)
MARK(0P2)

UNMARK(QPl)
UNMARK(OP2)

RESERVE(R,E)

recursively pnerate code to evaluate
the operands into 1ecept.able

... •ctobberecr n11isters, if any

tMrk registers used to hold pointers
to OJ*'ands

· select 1 result register

8.2.2.8 Poaslbllltles for i'allure

The code generator can fail m two ways; (1) it can reach an impossible .._tion and MmOUnCe a compiler
error, and (2) it can unknowinafy aenerate Incorrect code. Examples of impossible sit..tions are (1)
discovering that there .re no KCeptable OPLOC. in the tocatton definition for .,. _, , (e}·tMtft& told
that the result must be pl1eed . in • r91ister from the empty set of r91isters, and (3) discoverin& that an
essential location definition ·or mec:ro definition of an abstr.ct MKhine operator wa not provided by the
implementer. The most likely ceuse of a f .. ure is an incorrect whit• dllcriPtion. ~IH of errors

-25-

which c·an be made in the machine description are (1) an OPL.OC specifyina tt.f both OQtf- ,,,....t, ~ in
the same realster, (2) an OPLOC specifyina I set of memory r.ference for the rllUTr rocafiOn. (3) •
macro definition contlinina. errors, and (4) 1 ~o. defif'rit~ . w~, ~ not. '9tfcip•~• .•. P''·tif~'r
ope.- or ... u11 lcalldn, or .-lnltlon -· ~-~}l)ii7iWI~ or Ql"""'iff
essertt ... ief Ci"· the. ·c ... ot·mow. *.· ra·t·fons··wNc .. h. •.t· .~.· .~t'I~ .. ''.' ,;~.·.·. · ~ .· .. ' · .. t•. ll. "l•r• .. al'Ki be ... · .. }""." re1isten and memory). Some of ffleo errors coufd be dltJ.tlltfti)'~ i.it' sat i.,n ~ prGCeQ8S ~,_
machine ·dMcrlption (GT). AnofM; ·possible c191e of 'f~J,.,. iW~~~~,. with an insufficient
number Of T91isterii· 'Soeh 1 machine Mliy reqUire thel'a "ifl&r be. Ulild 'to 'hOtcf bo,th a po~f!'r, to an
oper1nd and the result of an operetion; 11 described lbove,. this situation miY'"riSUlt in ineorrect code.
Hopefully, abstrect machine models of real machines will not suffer froln ttn ~. Of ~.,,.: ... the
other possible cause of failure is 1 bus in the code pnerator ittelf. It would be frifetetflnl and Useful if
such 1 code 1eneration alaorithm could be proven correct, &iven. ~nsitate ,...trictk)ns on t~ .,..chine
description and the BIUfftption Of cortect·MICTO deflnitkft. . , . ' .

"

- 26 -

4. Conclusions

This piper his described the itnplwntltion of 1 portable c9'1'Piler for the. proaramntin& Janguaae C. The
compiler wa first implement9'1by.U.· .. .uior ""·• l\Mlfl·.,,..""*'·°" tb-..;8fll.Lall!Dr .. -.Com....,
Science Reseerch cent.r•s flOl*-i l/41 \JIX ~ The, ... w~,-- we1tto ·~.itself, •WUM
resulting code moved to the JG...,. ~ ~/~If ~' 1f'l .. ~ J•10!111filflr, .Wtlit the
version of the compU.r ~·.ontt.·~----·~'~'~ .·'fhis:W• '•••d • •
significant test of the compiS...; · · · · ·

4.1 The OomplJer

The major problem with the cOm,iler itsetf is Its spNd. The compiler appears to be more t~ twice IS
slow as other compilers for similer source tanauages. · This sbvne.s is &.. almost entirely to the use of a
macro expansion phase (a phMe not til!.ely .to be present in ordinary comphrs), since the compiler tends
to spend half or more of its ·Hme in the Mtero expllnlion ph The slowness of the compiler seems to
be a problem inherent in the c._.., compfter structure; no amount of mere recodina is likely to
significantly reduce the percentap of ftme spent in the macro exp.,,.ion phase. One approach toward
improving the speed of the COMPiler would be to eliminate non-essential processinl such as the
construction and interpretation of clwacter-strina representations of macrq calls and the resc8ftfting of
Macro definitions. The m«ro 1.,...... could be modified so that the result of the exp8Mion of a macro
call would never be needed • 8n ar1ument to another macro call end thta could be printed directly,

· rather than returned n a strma lftd r•scat'IMCI. Given this restriction, the 1M1Cro definitions could be
compiled into procedures which simply print strinp and call offw procedures. n.s. procedures could
be called directly by the code pnerator; llternatively, U.y could be c.n.ct by • procedure which
interprets a suitable encodina of the intermediate lquep.

A second problem with the compifer is its size. in terms of both the amount of file space necessary to
suppart an implementation. of the com;,iler .nd theount of. tnemOry required to execute the compiler
phases. The source of the c~ is about 250K dwlders, the source of GT is about 80K characters;
thus, the file space required ·for source, object libraries, Ind executtble files is on the order of lM
characters. On!y the size of the ~ of the code pnerator is a result of desianina the compiler to be
portable; it is likely that 1 code 1enerator deli&ned for a specific machine would be much smaller. Other
reasons for the Iara• size of the COMpiier stem. from the. '*'ticular proarammina techniques Uled. In
particular, keeping the entire tree rept"esentatien of a function in core at one time durinl code aeneration
requires that a large block of stonp. be reserved. Alto. the use of a bottom-up table-driven LALRO)

. parser seems to result in a •1er syntax analysis phase. thin would result ·from using recursive. dnc:ent,
as does the UNIX C compiler. The l•p size of the COMpHer liMits·the number of computer· •vstems which
can support the compiler.

Despite these problems, it is believed 'that were one prepared to mall.e the investment necessary to
implement C on another machine, the size difficulties and refated costs would be outweiahed by the
relative speed with which one could brina up a workina impltenentation. One could then concentrate on
makina it more efficient, ~ the tdventaps of 1 C compilw to work with and the ability to proarem in
c.
The least flexible machine-dependent component of the compiler is the code generation. algorithm. It is
acknowledg~d that a clean mechanism for allowin& the implementer to tailor the code generation al1orithm
throuah the addition of procedural knowfedae would be an improvement. On the other hand, clin&ins to
the idea that the code of the compiler will never be touched is unrealistic. A likefy prospect for
modification is the code related to the cam,. sequence since it may be desired to use a systM standard
callins sequence instead of the one built into the compiler. Another problem which would be tOlved most
easily by modifying the code 1enerator is the IBU S/360 addretSin& problem. 8ecMJSe a S/360
instruction cannot contain an 1rbitrary memory address, C external v1riables must be referenced by first
loadi"I a reaist•r with a pointer to the variable (an adc:lr8M ~-) · ll'ld then usina the reaister • •
base rea~stet" In the actual ff'ittruetM These actions c:outd be -forJMd, by thit IMCro definitions utins

- 27 -

conditional expansion; however, it would be easier to modify the code generator to handle this particular
case.

The most direct method of moving a portable compiler based on a machine description requires access to
an existing implementation of the compiler. The process of moving a compiler written in its own language
from machine A to machine B is as follows: First, one writes a machine description for machine 8.
Second, the machine description is used by a construction pro1ram running on machine A to produce a
new compiler which produces code for machine B. Third, the compiler on machine A is used to compile
the new compiler, producing a compiler which runs on machine A but produces code for machine 8.
Fourth, the new compiler is used to compile itself, producing a compiler which runs on machine B and
produces code for machine B. This process is called a half bootstrap. On the other hand, the Poole •nd
Waite approach does not require the use of an existing implementation. One need write only an
interpreter or a translator for a very simple abstract machine langua1e in order to move a program to a
new machine. This technique is called a full bootstrap. In practice, the need for a half bootstrap often
represents a si1nificant obstacle to movin& a program.

The full bootstrap method can be used to move a portable compiler based on a machine description as
follows: Initially, a simple imaginary machine is defined as a vehicle for bOotstrapping. A compiler which
runs on and produces code for this imaginary machine is then constructed using the half bootstrap
method described above. Now, in order to move the compiler to a new machine, one implements an
interpreter for the imaginary machine on the new machine. This action results in an •existing
implementation" of the compiler, running on the new machine, which can then be used to carry out the
half bootstrap as described above.

4.2 The Complied Code

Although there are weak spots, the code produced by the compiler is good considering that it is almost
completely unoptimized. It is certainly better than would be produced if the abstract machine were the
typical machine-independent abstract machine with one accumulator and one index register, given the
same complexity of the macro definitions (they do not perform register allocation). Such an
implementation would not be able to take advantage of the HIS-6000's two accumulators or the multiple
index registers, nor would it recognize the fact that byte pointers cannot fit in the index registers.

One of the weak. spots in the compiled code concerns floating-point operations. The code generator
"performs" all floating-point operations in double-precision, issuing single-to-double conversi~n
operations before using single-precision operands. It is unable to utilize the HIS-6000 machine
instructions which operate on a single-precision operand· in memory and a double-precision operand in
the F register. Since the implementation of a single-to~ouble conversion is to load the single-precision
operand into the F register, very poor code is produced for single-precision floating-point expressions
(as opposed to very good code for double-precision expressions). One way to handle this situation would
be to implement a general subtree-matching facility for optimization. With such a facility, the implementer
specifies in the machine description that a particular combination of abstract machine operators (specified
in the form of a tree) is to be replaced by the code generator with a new abstract machine operator; the
new operator is defined by the implementer in the machine description just like any of the built-in
operators. In the floating-point case, one would specify that a subtree of the form (using a LISP-like
notation)

(double-prec-add (•1 , sinsle-to-double (•2)))

would be replaced by

(single-prec-add (•1 , •2))

where single-prec-add is a new abstract machine operator which would be defined to be the "FAD•
instruction. This method of subtree-matching can be compared to the hierarchy of abstract machines

- 28 -

method in that the new abstract machine operators can be considered to be instructions of a higher-level
abstract machine. The differences are that, in the case of the subtree-matching method, the definition of
higher-level operators is optional (thus there is no multistage translation when optimization is not desired
or needed) and that the implemE.nter defines the l'ligher-level operators to suit his needs. The subtree­
matching approach to machine-dependent code optimization has been investigated by Wasilew [17].

Another weakness in the compiled code concerns array subscripting. Instead of placing the offset of an
array element into an index register and performing an indexed memory reference, the code generator
adds the of.fset to a pointer to the base of the array, producing a pointer (in an index register) which is
then used to reference the array element. Thus, the code generator regards index registers only as base
registers to hold pointers, and not as index registers to hold offsets. One reason for not implementing
the capability of using index registers for subscripting is that this method of subscripting is often not
possible. For example, on machines like the HIS-6000 with single-indexed instructions, this method can be
used only for external and stanc arrays; all other arrays require the use of an index register just to
reference the base of the array. (Actually, one can perform double-indexing on the HIS-6000 by using
an indirect word; however, this was not recognized at the time the compiler was written.) The capability
of using index registers for subscripting could be implemented using the subtree-matching facility
described above; one would test for subtrees of the form

(pointer-add (address-of (extern I static), <any>))

and replace them with a new abstract machine operator which would be defined to· produce the desired
code. A more satisfying solution would give the code generator more knowledge about addressability so
that it could use index resisters for subscripting whenever possible, based on information gi'1en in the
machine description.

A third weakness of the compiled code is the use of indiredion. The code generator only indirects
through pointers in registers; it is unable to utilize an indirection-through-memory facility (except through
a specific location which implements an abstract machine register). Again, a better understanding of
addressing is what is really needed.

4.3 Summary of Results

This paper has presented a technique for the design of portable compilers and hes demonstrated its
practicality through the implementation of a portable C compiler. The main difference between this work
and the previous work described in section 1.2 is that in this work, the system was designed specifically
for the language being implemented; it is this restriction which contributes most to the practicality of the
approach. In addition, this work has emphasized the concept of 1 machine-dependent abstract machine,
thus tying together the work on portable compilers and program transferability.

The advantages of the technique presented in this paper over the technique of rewriting some or all of
the generation phase are (1) that the implementer can modify the compiler to produce code for a new
machine with less effort and in less time, and (2) that the implementer can be more confident in the
correctness of the modifications. Almost the entire code of the generation phase, already tested in the
initial implementation, is unchanged in the new implementation. This code includes the code generation
algorithm, the register management routines, and the macro expander. Furthermore, the· modifications
which must be made are localized in two ~reas, the machine description and the C routine macro
definitions. The implementer is primarily concerned with the correct implementation of the individual
abstract machine instructions. The interaction among these .instructions, in terms of their correct ordering
and the use of registers and temporary locations, is handled by the code generation algorithm and need
not be of concern to the implementer. It is this reduction in the complexity of the problem which leads
to the increased confidence in the results of the modification.

The portability of the compiler has been tested by the construction of version of the compiler for the
DEC PDP-10. The initial machine description and macro definitions for the POP-10 implementation were
written and debugged by the author in a period of two days.

···--~.---

' /:. ...,. . '

- 29 -

4.4 l'urther Work

There are three main directions for further work. One is to develop mahine models whit'1 will •How the
1ener•tion of acceptabJe code for a laraer class of. mac:hiftet. ·Such Nthint · fttOdeis will ·have the effect of
redutin1 the .ectmPlexity of the descriptions of machinet ~ ~ rd ~lely ~r~npQ11d to the
machine rnod91 described ~" thfi paper. ··fAth tt. ·ta..-O:· fft''" · tttw· 'omy· · M1j0r arel of
complexity in the machine description 11 that of chlracter =at~, ~. ~ desire 1 machine
model which •Hows the implementer to describe '*"'• t:onY1u · ''ttfl ~litiOW of characters on
his machine~ Slmil•rly, 1 machine model which allows • better ~rlt ,pf l!ddf'essil'.'S would. be
desir•ble. ·· · · · · · · · · .

~~ft~~ct:r!o~z :: •. i• 1~o :;:r.,~7.zne-1:~~'.~.~~~:t:::
constr•ints shdutd be •Qmifted. ·· 1n•«Wltfoti\· ~. 'Wiictti.r.to fttend ••ilY and
safely the code 1ener•tion alpithm thrqh the addition of pr~al knowtacfCe should be· developed.
Such techniques should allow the compiler to be ~fled . to produee code. for unanticipated .-w
m•chinet. · ,. · · .. · ·. : · · ·

-30 -

..,_. __
1. Ritchie, D. U.. C·•••-_ a.&I Llboratorm w...a,
2. Snyder, A.. C_Refa'91U £W1 t..boratoriM interMI ..._,..._.

3. Richards, M., "ID'l: AT8GI for Cofttpiter Writifta end $ySR Prolf'IMMi"lt• ,,_ SJCC
1919, pp. 557-566.

4. Strona.. J.. •t. ~ "1'119 ~8M ,91. Prqar ~iorH•ith Chqi .. tMcW.1
-- A Prot*IKI ~· ~ AQI .1• ~ H ... '.,... l2ioil&.~ 1J9 (Sept., 188} pp.
9-15. . .

5. Feldmen, J. and Gries, D., '1'ranalator Wrltinc Syst-." C-. ACM ·11:2 (Feb. 1968),
pp. 77-113. .

6. Feldman, J. A., •A F~ttal Sem.ntic:s fOr Computer ~ Ind 8- A.-pticat5- in •
COmpller-cotnpiler: C-. ACM ti (Jin. 1966),,~3-9.

7. fnalund, 0. and Cf•k, E., "The a.JP Trlftllator,• C.... ACM t;t (..lln. 1961), ,,_ 19-22.

8. Halstead, M. M., MlchiM lnd1p1,.. CO.t1•r Spirttlft BaoM, W.hlnlton
1962. .

9. Richards, M., "The Port.t>ility of the BCPl CoMpiler: Softw.-9 fir.tile • Ex,erl••
1:2 (1971), pp. 135-146.

10. Poole, P. C. and Waite, W. M., "Portlbitity and AUptabftity: Ad¥m111d C.rw Oft
Softwwe ~neerinl. Spriftpr-Verl11t Berlin 1973, pp. 113-277.

11. Poole, P. C. and Waite, W. M., "Machine Independent Sof~w•e: Proc. ACM S111nd
SympoaiuM an Operlltlfts S)'ShHM Principia

12. Brown, P. J.. "Levels of Lanauase for Portable Softw ... : CoMla. ACM 15:12 (Dec. 72),
pp. 1059-1062. .

13. Sibley, R. A., "the SLANG System: Comtn. ACM 4:1 (Jan. 1961), pp. 75-84.

14. Miller, P. L, Autwtic er..tion of A Code C.-ator """ 1 MichiqJ D11H.,...,,
M.I.T. Project MAC Techn~at Report TR-85, 1971. l -

15. Aho, A. V. and Johnson, S. C., U Parsinc: CoMputina Stneya 6:2 (June 1974), pp. 99-
124.

16. COle~an, S.S., Poole, P. C., and Waite, W. M., "Thi Mobile Protrammina System, JN1J$. •
Software Prldice Experience 4:1 (1974), pp. 5-23.

17. Wasilew, S. G., A C:O.,w Writift& S)'ltent with Optit illtion C•...._ for Comtll••
Object StruduNI, Ph.D. Thesis, Northwestern UnMtrtity, Evnten, lllinoil 1971.

18. Johnson. S. C.. BeU l..aboratories internal document.

S data cz,copy
t4 . Sot Scs Ssy Ser Sma Sst Shm »Sel

S endcopy
S break
S program
S limits
S prmfl
S prmfl
S file
S file
S data
bt5 . Ser Scs »Sel

S endcopy
S end job

rlhs,onl
,18k,,1000
h*,r ,r ,sny /bt5
el,r/w,,•/"l..e
er,e lr,51
cs,clr,51
cz,copy

- 32 -

-33-

Appen.c.llx I - The llao•I••· .~-.
The for,. of..,_ ,. ~ It .. dolcrib.od In dttilll inJJill ,..,., ~ -:a I~
trC>ftt''ttw Hl94000 _.,,.·.~~·,'·~)" ·w .. ·1·w.~·1'' . ·~,::~~.··· . •· ~h•{~·.c.t

fi.t yri .. ;la·wi1ehrM. dftcrfptton WfMt'Jt" r!utt'tti:tt.f~aJlir ·· " · ·· · :If ihi·'~'\n~tt~~. ·
The convention of writins syntactic alternatives on separate tines is UMd throuahout. · ·

1. DeflnU:lon ·Statement&

The.· Machine H9C. ription beaiM. with. a 'teries .. ·of. def. lnltreri st.-~ ·JAi. •.".' .de,ftni., . t~. t~atement. ~.' 8!'•
described in h Mcttons Wow tn tM Oi'!ftr In WNchttiey...,Ufi' ··ltwif~·~-. · .

1.1 The· T'!PJINAll. Stat•••nt

The TYPENAMES statement def inn the .names which •• uttd in thl ~· .WlPtion to r•preMnt ·the
primitive C data types: char1eter, int .. er, floatins-point, end double ~;.~"1Jllli..t. .: ,n. .fcH.!m of.
the TYPENAMES statement is . · ... · · , · · · ·

<typentltnesJtmt>:
<name.Jist>:

typenames (<name.Jist>) ;
<nan.Jilt> , <n_.>
<nan.>

The first name corresponds to the internal type number 0; '"' = :~ type 1, etc.· Bee~ the
internet type numbers are fixed In the compil9r, tt• · 1'Yf'ENAM($.~ti'M iftould .. ways be ~llent
to)· · . · · · ··. ··· · · · :·,· ''.'~'···· · : ··· •.. ··

typenames (char, int, float, double);

.: '

The REGNAMES statement defines the names of the abstrlet lftlChint theSe reataterl . are
1tsi1ned Internal realster numbers (used in. REFJJAst, sec:tion 2.1.1~), ~~-~r Q, in
the order in which they appear in the AEGNAMES statewtient. The fori¥"9"RI· ' statement i.s
similar to that of the TYPENAMES statement; for exatpfe, t*" =~ .st~~ .\Md. in the ~S~
implementatfon is · ' ·· · ' ·. · ··.· .. ·•·· · ·

reanlfMI (xO, xl~ x2, x3, x4, x5; a, q, f);

In this example, all but the .. F r~ister corres~ dir~U.y to ac;tu~. r,~i,~f,.;~. ,:J"<~--6000. ,, . =J~ler!
XO through X4 are the first five (out of ••&ht) Index rettStetc, .,...., A 'd '-0' are fh\t two
accumulators. The F rqister Is • fictitious floatlna~~t ac:c~·.~~ ~·.;':' reelity cqrr~~l')C:ls .. ~Q the
combtfted ·A. Q, and E. (ftpeNitt) r .. isters. The flltt 11jtt the.' ·.Titlil~ .C:orttflets ·w~th the· A and Q.
re1teters is specified in the COt.fl.ICT' stwtement, dnttiMcr WIOW~· Otttr' ltic>W~)C:t~ mJ«:hine; reais~ers
whithare to be used by thecOdesener•'inproauc:U.·C,ocil.toltijfU*'~loti·ahoutdl>eiJ\C~
in the ·R£0NAM!S stltimentr=filiittf'.S UMd onty. for enV'fi'Ot'on·4i···ll~".··· .. ···:'~ .. •··.·.·. addre ... '·~. s c.··a't·Ul.·atlons,
or. othet 11Cr.kh•clllcUNfions<~·"#ithin the code:for~.~ ~~~~~·rt0t be included ii! the
REGNAMES stat...,.. Foj.'.-ex , on '"'9 'HIS-eode~'h'·iftidh"'Njhstl6rl''are ..,t deflnect In the ..
REGNAMES statement: X7, which contains a pointer to tt. cwrent Jt• fr,..;, X6, .'fhich contains a
pointer to the current ar1ument list, and X5, which is used as a scrattft•·tlj~'tiY AV.:Jlls ;•hich eceess
characters.

-34-

The MEMNAMES statement 1$~ift# nameJ with the various c:.lfase$· Qt .• ~ ,.,_..... • ...-cifilld
by ne1ative .valuts ... o.t, RE,F~ltlcfi8ft z~.1~ :rm ... ·~· .. ·.:• ... ff:#! .. J ':MQ · ,.J,~t- ,..,.
of the TVPINAME$. lt ... nt; for the .. ~ . ._..,, #114!t .,_ the,
implementation is ·· ,

memnames (rec, auto, ext, stat, par am, l*I, intlit, tloatHt, strlnslil, hrO, ••1• i112, Jd.'"'4. ·ta, fc9)s

The first nine names rew to ~med meaaory r.,.._. ~ ._ .. • 4,-4,--2, - ,...., the
remaining names refer toinditr~ ~ tbrQUlf\~~.~ ,..._,,._.....,. ·•filllld tn the
REGNAMES statement (REF.SASE • -9,-10, -). The .first name ., ... is never weds it NrYM only • •
placeholder. No name is provided for indirect referencet:J~!IR"IJllll' ~·...,Wf ,,. • .,. a.
not used to hold pointers and, beifts the hilhnt ~ r•l•hl, it ._ ftdt llff9ct the ..
positions of the other names in tht list. ·

1.4 The SID Stateaeat

The SIZE statement defines the sizes of the primit1ve Ca.ta tyP!ll.~ t•• of byta The .form of the
SIZE statement is

<size_stmt>:
<size_defJist>:

<size_ctef>:
<type.Jist>:

size <size_defJist> ;
<•iat..Jie1Jist>, <sin_clef>
.~f~ .
<intepr> (<typeJist>)
<typeJist>. <type>
<type>

The integers specify sizes in bytes; the ty.pes are the '*""· flf. P'~;~ •:~@" i. .. tlllfCi.., ·ifl the
TYPENAMES statement) with tlw tOrr..,.ondini size. For exaipl1, the Ila st1t111•nt u.d fn the HIS-
6000 implementation is

size l(char),4(int,float).B(double);

All addresses computed by the compiler are in terms of byte addreuina; byte addrHHS ere.·~ to
word addresses for non.:.Charicter o,,.rations by the NCfO definitions. Far , Oft tM tlS-6000, if
the first element of an tntepr array bqins at offtet 0 in the .ii• -.., -. ••••••.-IJttl •••• of
the array are at offsets 4, 8, lZ 16, etc. · · · · · · · ·

1.5 The ALIGN' Statement .

The ALIGN statemc1nt defines the alia""'8nt f actoc:.s of the primitive. C data types; these .aianMtnt f 9Clor•
are in bytes. The (byte) ~ss of a var.iable with 1r1 aijg~t. ~or •t;" must be nro IROCAulo •n!'a :for
example, on the HIS-6000, the .(~¥~l adclress Qf an, MUil • -..--iPe. of 4 Alt.......- tctar
must be divisjble by all smaller ali~Jac.tor-.Jhfs .allows .. tbt ~ .. :~· ••••• ntllJtM to
a base Yihlch satisfies ttw -~"·~:r~ticli.Oft. Ti. "'1Mlt:AL1*tliltlll1119..r·• Miler•
that of the SIZE statementi for eumple,.the ALJGN,stet•mMttUlfiJim·~•twllllt•w · ·

alian 1 (c:har).4(int,f loat)Jl(double)f

1.8 The CLA.SS Statement
',

l
The CLASS statement is an optional sh1tement which allows the implementer to define J;;.... of abstract
machine reaisters which .,. us8d in .similar wa.ys; the rapt.,- dasHs tO dtfi,,.. can .then be .Ulied in the
machine descriptiOn as ebbr~ations for ttw corresponclin& lilts of replers. · Thi fonn of tht CLASS
statement is

I

<class_stmt>.
<class_def _list>:

<class_def>:
<register _list>:

-35 -

class <class_def_Jist> ;
<class_def_Jist> , <class_def>
<class_def>
<name> (<register _list>)
<register _list> , <register>
<register>

T~ name is the name of the register class, the registers are the names of the abstract machine re1isters
(as specified in the REGNAMES statement) which make up the corresponc.Jina register class. The CLASS
statement used in the HIS-6000 implementation is

class x(xO,x l,x2,x3,x4), r(a,q);

This statement defines the class of index registers X and the class of general registers R.

1.7 The CONFLICT Statement

The CONFLICT statement is an optional statement which allows the implementer to specify abstract
machine registers which conflict in the actual implementation. The form of the CQN='LICT statement is

<cont lict_stmt>:
<conflict_def _list>:

<conflic;t_def>:

conflict <conflict_defjist> 1
<conflict_defJist>, <conflict_def>
<conf lict_def>
(<register> , <register>)

Each register pair specifies two abstract machine registers such that only one of the registers can be in
use at one time. The CONFLICT statement used in the HIS-6000 lmplement1tion is

conflict (a,f), (q,f);

which indicates that the F register conflicts with both the A and Q registers.

1.8 The SAVEABEASIZE Statement

The SAVEAREASIZE statement is used to specify the size of the save area which is reserved at the
beginnin1 of each stack frame. The save area is generally used for savina re1i1ters upon entry to a
function, for chainin1 stack frames together, and for holding other per-invocation information. The form
of the SAVEAREASIZE statement is

saveareasize <integer> ;

The integer specifies the size (in bytes) of the save area. The save area used in the HIS-6000
implementation is 16 bytes (4 words) long.

1.9 The POINTER Statement

The POINTER statement defines classes of pointers according to their resolution; these pointer classes
represent different implementations of painters on the target machine. The resolution of a pointer
corresponds to the alignment factors of the objects to which it can refer; in particular, a pointer with a
resolution of •n" bytes can refer only to objects whose alignment factors are multiples of •n• bytes. The
primary use of pointer classes is on machines whose smallest addressable unit is larger than bytes; in this
case, two pointer classes are defined: one which can resolve only machine-addressable units and another
which can resolve individual bytes. By defining separate painter classes, the implementer allows
computations involvina pointers which are known to refer to machine-lddressable units to be performed
in terms of machine-addressable units, and therefore more efficiently. The form of the POINTER
statement is

_...

<pointer _stmt>:
<pointer _def ..Jist>:

<pointer _clef>:

-36 -

pointer <pointar ..Pef..Jiat> ;
<pointer _def _list> , <pointer -•f>
<pointer _def>
<naMe> (<infecer>)

The names define the names of the pointer classes, the inte1ers are the relOlutionl of the correspondina
pointer class-.. At feast'*"*·"°,......_. ~cl1•_..., ,. ..._.,..new ct111 ..
are referred to as PO, Pl, P2, Md Patt U.~ioft .of h·MOJI.

The POINTER statement used in the HIS-6000 implementation is

poiriter pO(l), p1(4);

PO is the class of pointers to byte-alianed objects; Pl is the dlU of-~ _to, '4f0r(i-._ned ol>j,c:ts.
Word pointers can be held and operated upon in the index n1Plll111J..,.._for.llWt .ft _... ift
the aener al registers and indirected throuch by subroutine. ·

1.10 The Ol'hSftARGJ: •te•-.t
The OFFSETRANGE statement is an optional statement which .,...., for eadt pointer ca.a dal!.• W. the
POINTER statement, the ranp of offsets pertnitted ift .-.,... ,wltt wcti a......, Cta wtion
2.1.1.2). The form of the OFf'SETRANGE statUMtnt is

<offsetranae...>tmt>:
<offset_def ..Jist>:

<offset_def>:

offsetrai\ge <offset_defjist>; .
<of,Ht>. <of'-t~
~.

<pointer _class,J\eme> (<lo.J>ound> , <hi.JM»und>)

where the lo_bounds and hi..,bounds are optional inteaers. Each offset_def specifies the ranp of
allowable offsets for a particular pQi~.~thil r-...• tlw .t•of•Atthtr•-•U••·,lo..;JMluftd .
and not areater than hi..,bound. If a boUnd is not present_ then the , ... it --~.- unbounded• in the
correspondina direction. If no ranp is SJ*ifted fOf' •"Pl..,.4••3111·-'~-,lliireds
any specified ran1e mult include zero.

The RETURNREG statement specifies in which rqisters functions returnina v-....ef .,...._.t,._. retur.n
those vetues. Reaisters MUSt be specified for types INT and DO 8 £ • welt • for Ill polnhw c
defined in the POINTER statement. The form of the AETI.RRG .t._nt ii

<ret.urnrea,_stmt>:
<return_clef Jist>:

<return_clef>:

returnrea <return_dafJist>'
<return_def..Jist>, <return_•t>
<return_def>
<register> (<typejist>)

returnrea q(int,pO,pl), f(dout>te);

It is advised that Pointer• of; alt "~,be ~..turntd in tlw ._ ,........ in • c111111.lltib1e fon.n to ~
errors cwd by mismatchel.in'fhl,,,.._._,., f~~

I ,

''

1.12 The TYPB ltatenaeat

The TYPE statement defines which r~ters are to be UMd in Vie. ev~ of ex.Wftlions to hold
values of the various abttract machine date types. The form of the ..,..... nt is

<type_stmt>:
<type_def .Jist>:

<type_def>:

type <type_def.Jist> ;
<type_defJjs~ t <type--f>.
<type_def> '
<type> (<reaister .Jist>)

T~ type is the na~ of~ prt.'mitive C d1t1 type••. fi~J~ l\lt:~111.··· ··''@_statement or then.me of•
pointer class as defined 1n the POINTER stlfementd.M r ·-n· :Jbsttect mchine resisters or
cl•ses of abstract machiM reaisters which~ be .UffCf-" ~-~ .. ~>the corr~ type.. For
example, the TYPE statement UMd in the HIS.:.aol)O ... ,,. ~ . · · ·

, , ~-- ,, r, '

type ch1r(r),int(r),flo1t(f),double(f),p()(r),pl(x);

The reaisters specified in the TYPE 1t1tement need not melude ~fXl'~ister physicatly capele of
holding 1 particular type; only thoN rqisters which t• itlpl1~" _.,.. to use in evaluating

~=si9~t~ tY,pe ·~ai~ j;~·· ... ~,~F\Jf!:,~,~~-;~t,ODl{,,,ttw.,
~11' :t~~·":: ~·~;rii~~~~(~
pointer wt.ri'·r-brftett bY;;:,, 'fi.tnctiot{'cltli th1' ·-..:.. .,.5i.ft:'._'_\4l· ' · '~ ~•Y· UM Of. tM
aerwinl 1'91iSMt'Wch W•f rjlaffvely tWW. In ~. , " · ·.·· ': _· ·· .

-, .:- ~: .' - ' • '·'· .. ~ • . ' ; : . . • ' t

2. The OPLOC SeoUon

In the OPLOC section of the machine description, tne AWJPs are ct.fined, in_ t•• of. the possible IOcatiOns
of. their operands and the corr~ loe•tions c°' ~ ~~ ~;;d!tfinltion contist• ,of, of
triples called OPLOCs; an 0Pl.OC.spec1fles 1 pert,~,~ l)C.1~l fAit. _ _,OJd locattons, ~,,..,end
locations, and result locations. An OPLOC may llto' spikify. tfwlt1c .•. "'.rl reaisters ••_ tlobbe·. . red by
the execution of the code for an lbstract machine instructiortf ttfi · . _, -· . ~, code ..,.,.. t .. :J.t iMY
be necessary to emit Instructions to save the contents-:Ot * .. ~--"·iJfllilters· bef~:,eMittiN>the
abstract machine instruction. The forms of an OPl.OC are · · · · .· · . ':. ·

<IOCJXpr> ' <IOC..JtXpr> ' <loc,,xpr> i

and

<loc_expr> , <loc_expr> , <loc_expr> <clobber> ;

<loc_expr>:

<reaister Jtxpr>:

<memory Jtxpr>:

<r .. ister _.xpr>
<memory _expr>
1
2
<null>

-38-

<register _expr> I <rqtster _expr>
.., <r .. ister _expr> ,
(<resister _expr>)

. <r8Jitler ...r->
~liter _d8$_,name>

<memory _expr> I <memory ..-xpr>
.., <memory _.xpr>
(<memory .,Jtxpr>)
<memory J•f ...cless.J\HMt>
hA
indirect

The negation operator ,..,, has precedente over the union operator T- The: location expr....._ •1 • end
"2" may be used only for the location of • result; they specify that the rMJllt is pl-.d in .. first or
sacond operand tocatton. r~; ON~ thtt ~·~ ~JM:~ for the ~ wr~ of. • UIWY
AMOP·may be nuH. TM_._,. V ,lfw ·-.a;,.~~.,~--- d-IJ U.
loc1tion expression indir.ct'" represents the Mt of aU indit'Kfry ,........,_, d...._

The OPLOCs we associ1ted with Ma's in tocation cWWtionl which conalSt Of on.· or _,. Nll)llJ ...,.
followed by one or more OPLOCs:

<loc_def>:
<AMOP Jist>:

<AMOP Jabel>:
<oPLOCJtst>:

<Ah«>P _list> <OPLOCJist>
<At.a' _list> <A~ _label>
<AMOPJlbel>
<AMOP>:
<OPLOCJlst> <OPLOC>
<OPL.OC>

Each AMOP in the list of AMOP JabeJs is 11soci1ted with the list of OPt.OCs; each OPLOC In the list of
OPLOCs represents an acceptable- sat of operw/result IOc:etions for Mch of the M/t1h. For,..,
the location definition

+d: -d: •d: /d: f,M,f;

used in the HIS-6000 machine dncrip.tion. spteifies that the AMlPI for ~-precisif,vt fto.tins-point
addition, subtnctton, mQltlJ)ffcttinnf lftCf division IA t ... t!\8it ftt1t ~~, ~ ~ F r.l4tf, u.tr MCOnd
e>perand in IMmory, and ptace tf'leir rHult m the F nJ&itter. .,.,... iJ. .the .IOCatfoft 4'flnition ...

-<<: ->>: ti,\a,q; M,q,a;

which specifies that the AMOPs left-shift-assignment and riaht-shift-auipment both tlke their first
Operand in memory, their second· Operand in a pneral resister, and place hlr result in the other ...,....,
resister. A third example Is t._ location definition ·

q,M,q(a];

which specifies that the AMOPs for integer multiplication and division both take their first opern in the
Q reaist•r, their second o"rand in ,...mory; pl• thek resul.t in the Q ,..iater, end cfol:llMr the contents
Qf the A resister in t~ ~s. Note that the tocetion definitions

ind

+i:

+i:
\

-39-

r,M,1; ..

r,M,r;

are not equivalent. The second ~finition al'°'" the.~ pner.tor to emit an •tr.ct machine
instruction which adds an intepr in •mory to*" ~~~~-.... ,· -~ ttit1

tftsuft in ttw Q
re1ister; the first definition requires tt1at the result be ptaced rntttW:•·•- COIN-vi,. the first operand.

• • r' . ~

> ,: ' .' :-;

The OPLOC section of the machine description ~·.of·. -a- 'Of tocation-4efinitione which define
the Aho«:>Ps of the intermediate lqu11e. (A slNll number of AM:JPs should not be defined in the OPLOC
sectic:>n.,ef. \M .machiM.·:~tiot'f:,....,ara:i~1m·lfttJ1Liflll.JL) ~~;MllP~'--• ··re· more
than once Jn. \be OPLOC sectfen «lf:tlw,. d,.,tpti.. •·: • · · · · " . .

!t ~~ .. ~~: ;· . .

a. Tlie Kacro S•otl~

The macro ~ection of the machine description contains the ·rNCrO .Winitiant ·tor the AMOPs; these macro
definitions •xpand into the object4qlJllle statement• ,...,. .0 int...., the c:orrespGnding,llet
machine instructions. A MICl'O definition consists of a litt of .,,., JlbltlJ'...,_td bY a list of c~ter
strina constants. The list of A~ labels specify that lbtt~acftillchine,udions for these AM()fl. iare
to be emitted as macro calls which refer to this macro definition. The chartcter strlnas m.u up the body
of thtt.m,ecrp ~ojtioflt_tn.y,.,. w.fli..out m •1NCe•hH•• itl ._.,...,.,,atdt\t·lftwo·dll.
The ~hli'.:ter sfrinp ... hM ...)flcttioll pWhlesr..._.,._., .,.,. ••..• ,.,~.Of fhe
oper .. and-r•&.Jlta.• c~•••ns _..It lft,._....,._,, • .,,...._ _..,...l"M.Of lh!J
macro call only if the. Jest~ Dy· the,Joctilibno ~·~ ·'A1...-w•;ttrfnl··rMy 'ebnhnn
embedded macro calls and references to the ar~t1 of U. NcrO call llM Appenditc VI, section . 4).
The .,Q.~il);Upn.,.., MG'-MMll CQra1t1Gt.LtofheJ111t111·1~ lft;tftitc:Ortt;a ··
code inuat .._ pner.ated for ·an ~,.....,. ll•n•:diflft'....._.tiY fl* foCMb1
definition. · \;•!') · ··~''"-

The ~tcro definitions can. refer to .. u. Na' ancl the ...,. .. .,,.,.. '-'11Mlty &alftl t"-' fotlowi ..
abbr•viation.: ;

abbreviation •••llli•n
.a ~(.0)
ttF ln(-3,-4)
•S Snitll6;W)
•R ln<•l,•2)
•'O .0
•'F 93,a4
•9S 15,-6
•'R •1,•2

........
symbolic repr-.nt.,, Of;.,.._.ion
symbolic representtlion of fJl'Jt opern .
. .,....~JllltltWlllWof'\~·--·'lhd
symbolic reprneftttlion of rMUlt
internal reprnenbdion of opertlion
intetria\01' lftf~f)l-'l_d ·
mternlf r.,._.... ... lltel •rtf'fd
lftternal;hllW,.....-W~ .· ::,,; -.,

"!'· .· ·~;,: ~-:-t.,,'·) ·:."' ·:.-<;. . ..- ':~' . '

Recall that in the intermediate lanauaa• ..,..~on' df · '•f ~t; triiehirie. inslrliction, the first
ar1ument of the "'-Cro call is the M«>P. oPCode, and the followiftl .,.......,. ••·REF• for the result. first
operand, and second operand (see section 2.1.1.2).l The MICl'O •n• is the·· ilnplen9nter-defined NAME
macro which can return any convenient symbolic ri9presentation for an· operation or operand/result
location; it is assumed to be implemented as a C routini:,.called ANAME (see. Appendix VI, section 4).

An example of a simple macro definition is the ·definit-ion for lntepr acidltion ~ in the HIS"6000
machine descriptior\. The location definition is

+i: r,M,1;

- 40 -

and the macro definition is

+i: • A09R

This location/rnac:ro definition of the AWOP • +i' expands .to produce •••mbly-I .. .,..., .t•tnents euch •

ADA
ACX).
ADA
ADQ

(ut..-veriable·T>
(titwal··"3i
(indirect throuah X2)
<• automatic or temporary)

A more comp~ated macro•MttiUen is·. usecMor the. AwtJP 'Ji' (llOW;intqer). This M11C10·t9finition must
be capable of 1enerattns code to move an intepr ,, ... 1121 teOetlln flioMf:a*''"" .. i,..._tw or
from one 1eneral re1'9M to ttle.ottw. Thre c:t.rader ttdnpwittt loclltien;...-..· ... _...for. U.
thr• cases reaister-tQ ,....y,ory4o..,..._.• anct:r1111tar•te n1i1Wf · · ·

.ii:
(r"M): • ST•
(M,,r)z • LO.· .r
<rnr): • LLR 31•

The location prefixes cof\Sist. of locetion np,...ions: for t._ first operanft second' opet ilftdt and mutt.
The operand and result loc11ltioM1 of. a: •.tioulllf' .Wf'O caM .,..,,,. ttll' ,...,._ ..,._.,.._ in
the locat«>n pt:ef:hc. (can11ullri ¥witft;•,,,~ 'Mlli'l:tti.1tt'8W..,_'°._fmns
succeed, the cor-r~dw•ter stt ... is included iRlttw:...,...ioA ~·c .. ·

The macro section of: themn.. deflcriptielt mav also deft•· _,adttyi ~ Mlla'OI;. tt1na· may· be
keyword macros c ... saetiott a.1.2h>rr.illtp••• .. r •ttaM,...,_,wMdf, .. dllN aw•~ of
other macros. A named macro is dilfiMd by usina the Mme of the !MUG in place of .., Nltl/J in· the
label(s) precedin1 the ~ of the mtlCfO defintion. A sinpe macro definition rnay have bath AtllJP 8nd
macro name: labels; t~ is,....,..whllftit ie·•rirad·:thaMhe•~ •:!C>M. lflWttact~••'lfttbiuctton
itself contain another .t.tract meehine instruction since the intern111• n-.s UIM. to ref• to tfW' M9ttO
definitions of AMOPs ere .not ecce..-, to U. wnt.r of ~he nNIChiM ~iptior\ Alt of a
kttyt#ord m11ero.deffnitton in tt.,.HIS-6000 fWhine. ~---for • .,..., _.. ·· ·

en: •

The argument to the ENTRY macro i$ an,. symbol 11 produced by the IDN·mac:ro (... A.,peridix
III).

The macro section of the machiM dn«iplion consists of the reserved word "~ros· followed by a
sequence of macro definitiQftS. Micro definitions be ~ for mo9t of the AMOPs of the
intermediate lan1uap (exception$. Mt;j~lfiMA•.~11t"'9• II}:• for aU of UW M)wd WfOS of'..,..
intermediate languap: w~ _. not ., by C routines. An Mll'JP· or a Mlla'O .,.... May not be
defined J'IOI'• t~.Qnee in U. . ..-o,,...._ Qf.,t llMIChinl

-41 -

A.ppendlx II • The Intermediate Lanca•M:;.5;61'09•
• .' • • ; • • •• <

The operations of the abstract machine are repr,esented in the inlerMdi.t• lquese as three-Mldress
~nstructionls the operators of these instructions, C~\19 (~ q,~r¥.:
1n the t•bln below. For each AWOP is listed its ~ ¥ Od ·. ·· ill ayMbotic ,.,,,...ntation in the
mechine detcrlptton. the types of itt operendl and retWJ. _."1l._lptton of the b•ic o..,.at~
involved. The type entry consists of 1 .list of types for ;~ MCOnd. oPCP (if attY>. •nd
result of 1n AW/JP, in that ~r; the types 1re tlhen f.r••~ tilt • tbbreviat .. :

c character
i intecer
t t101tina-point
d double-precision fto1tina-point
x any type
p any pointer
p0 class 0 pointer
pl CllSS 1 pointer
p2 class 2 pointer
p3 class 3 pointer
I a loc1tion (the result of 1 jump)

The followina notes are r~ferenced in the NI/JP tlbtes:

1 - This AtJOP shO:uld be defined only if the s;orr.~!..., d are df6ned.
2 - The definition of this AMOP is optionll. · · .
3 - OPLOCs should not be specified for this. Ma>. .·. .. · . · ..
4 - This AtJOP is used only in the tr• ,...,.......,~.~ intern.a .. le» the ~

aeneration ptwe: it lhould not ~.-Bl. , .. ~; .. :. . ..
!5 - This AtlOP cws 1 side-effect ~·•A~'" .. , . . ~ ~ MUtt ta,,"" Iv"~

therefore, 111 OPlOCe for thit Mat • . , ., •.W" • ~ location ~ the <~"'U
operand. , . · . ·

- 42-

... eylMOI ty , ..
0000 -ui IJ unwy minus
0001 -ud d,d uiwy minus
0002 ++bi iJ 5 ·pN-iftcr9Meftt
0003 ++ai iJ 5 polt-incr-.nt
0004 --bi iJ !5 pre«r.-.nt
0005 --ai iJ !5 post-decrMent
0006 .SNOT i,i bitwise neaation
0007 x.i 4 truth-value neption
0012 .SW iJ switch
0013 ++be cJ 5 pre-increment
0014 ++ac cJ 5 post-increment
0015 --be c,i ~ pre.-Crtlftlftt
0016 --ac c,i 5 post.-Cre...ent
0017 &uO x.pO lddressof
0020 &ul x.pl 1 address of
0021 &u2 x.p2 1 adl::lrfts of
0022 &u3 x.p3 1 of
0023 •u p,x 4 indir.ction
0024 •-OpO pO,I 2 jump Ori nUtl painter
0025 •-Opl plJ 1,2 .iUMP on null ~'' 0026 --Op2 p2~ 1,2 jump on .null pafMer
0027 -Gp3 p3J 1.2 iu.. On lfUlt
0030 !-OpO pOJ 2 ·jump0n~··~
0031 !..Qpl 'PU !,2 jUlnp1:in non-nuU·poiftttr
0032 !-Op2 p2,I 1,2

·-~·-· 0033 !-Op3 p3,I 1,2 ju.p.on non....,U Point•

- 43 -

Convenion AbltrlCt· Mlchine Operators

opcode symbol type1 not" btlic """'
0040 .ci cJ convert c to i
0041 .cf c,f convert c to f
0042 .cd c,cl convert c to d
0043 . .ic i,c convert i to c
0044 .if i,f convert i to f
0045 .id i,d convert i to d
0046. .ipO i.pO convert i. to pO
0047 .ipl i,pl 1 convert i to p 1
0050 .ip2 i,p2 1 convert I to p2
0051 .ip3 i,p3 1 convert i to p3
0052 .fc f,c convert f to c
0053 .fi f ,i convert f to i
0054 .fd f,d convert f to d
0055 .de d,c convert d to c
0056 .di d,i convert d to I
0057 .df d,f · convert d to f
0060 .pOi pOJ convert p0 to i
0061 .pOpl pO,pl 1 convert pO to p 1
0062 .p0p2 p0,p2 1 convert pO to p2
0063 .p0p3 p0,p3 1 convert pO to p3
0064 .pli plJ 1 convert pl to I
0065 .plpO pl,pO 1 convert pl to p0
0066 .plp2 pl,p2 1 convert p 1 to p2
0067 .plp3 pl,p3 1 convert pl to p3
0070 .p21 p2J 1 convert p2 to i
0071 .p2p0 p2,p0 1 convert p2 to pO
0072 .p2pl p2,pl 1 convert p2 to pl .
0073 .p2p3 p2,p3 1 convert p2 to p3
0074 .p3i p3J 1 convert p3 to I
0075 .p3p0 p3,p0 1 convert p3 to pO
0076 .p3pl p3,pl 1 convert p3 to pl
0077 .p3p2 p3,p2 1 convert p3 to p2

-44 -

opcode eytnbol typel -- bllic operation

0100 +i i,i,i addition
0101 •+i i,i,i 2.5 addition-assignment
0102 +d d,d,d lddition
0103 •+d d,d,d 21' addttion-nsianment
0104 -i i,i,i subtraction
0105 •-i i,i,i 2,5 subtraction•assipment
0106 -d d.d,d subtraction
0107 •-d d,d,d 4,5 subtraction~t
0110 •i i,i,i multiplication
0111 ... i i,i,i 2.5 multiptication-assi.-ent
0112 *Cl d,d,d muttiplication
0113 -*Ct d,d,d 2,5 mutUplication-llSi.....,.
0114 /i i,i,i· division
0115 •/i i,i,i 2,5 diviM>n-assianment
0116 /d d,d,d division
0117 •/d d,d,d 2,5 division-assignment
0120 I i,i,i modvto
0121 -i i,i,i 21' moduto-Hlianment
0122 << i,i,i left-shift
0123 -<< i,i,i ~.5 left-shitt-usianment
0124 >> i,i,i riaht-shift
0125 ->> i,i,i . 2,5 right-shift-assiPMrtt ·
0126 Ir i,i,i bitwise AND
0127 -Ir i,i,i 21' bitwise AND-assiaftlMl!tt
0130 I\ i.i,i bitwise XOR
0131 •/\ i,i,i 2.5 bitwise XOR-•siaMent
0132 .OR i,i,i bitwise OR
0133 -oR i,i,i 2,5 bitwise OR-11signMent
0134 && x,x,i 4 truth-value At«>
0135 .TVOR x,x,i 4 truth-vatue OR
0136 -pOpO pO,pO,i pointer subtraction
0137 - x,x,x 4 assi1nment
0146 +pO pO,i,pO increment pointer by
0147 +pl pl,i,pl 1 tncrement pointer by
0150 +p2 p2,i,p2 1 increment pointer by
0151 +p3 p3,i,p3 1 increment pointer by
0152 -po pO,i,pO decrement pointer by
0153 -pl pl,i,pl 1 decrement pointer by
0154 -p2 p2,i,P2 . 1 decrement pointer by
0155 -p3 p3,i.p3 1 decrement pointer by

,.· J

'

- 45 -

Abstract Uachine Operators, continued

opcode symbol types notes buic operation

0160 .cc c,c 3 move character
0161 .ii i,i 3 move integer
0162 .ff f,f 3 move float
0163 .dd d,d 3 move double
0164 .pOpO pO,pO 3 move pointer pO
0165 .pl pl pl,pl 1,3 move pointer pl
0166 .p2p2 p2,p2 1,3 move pointer p2
0167 .p3p3 p3,p3 1,3 move pointer p3
0171 ? x,x,x 4 conditional
0172 x,x,x 4 conditional
0200 ••i i,i,I jump on equal
0201 !•i i,i,I jump on not equal
0202 <i i,i,I jump on less than
0203 >i i,i,I jump on greater than
0204 <•i i,i,I jump on less than or equal
0205 >•i i,i,I jump on greater than or equal
0206 --d d,d,I
0207 !-d d,d,I
0210 <d d,d,I
0211 >d d,d,I
0212 <-d d,d,I
0213 >-d d,d,I
0214 --po pO,pO,I
0215 !•pO pO,pO,I
0216 <pO pO,pO,I
0217 >pO pO,pO,I
0220 <•pO pO,pO,I
0221 >•pO pO,pO,I
0222 ••pl pl,pl,I 1,2
0223 !•pl pl,pl,I 1,2
0224 <pl pl,pl,I 1,2
0225 >pl pl,pl,I 1,2
0226 <•pl pl,pl,I 1,2
0227 >•pl pl,pl,I 1,2
0230 ••p2 p2,p2,I 1,2
0231 !•p2 p2,p2,I 1,2
0232 <p2 p2,p2,I 1,2
0233 >p2 p2,p2,I 1,2
0234 <•p2 p2,p2,I 1,2
0235 >•p2 p2,p2,I 1,2
0236 ••p3 p3~p3,I 1,2
0237 !·p3 p3,p3,I 1,2
0240 <p3 p3,p3,I 1,2
0241 >p3 p3,p3,I 1,2
0242 <•p3 p3,p3,I 1,2
0243 >•p3 p3,p3,I 1,2

- 46 -

Abstract MKhine ()per.ton, contiftued

opcode symbol types bllic operltion

0260 ++bpO pO,i.,pO 5 pre-increment by
0261 ++apO pOJ,pO 5 pest-increment by
0262 --bpO pO,i.pO 5· pre-decrement by
0263 --apO pO,i.pO 5 post-decrement by
0264 ++bpl pl,i.pl 1,5 pre-increment by
0265 ++apl plJ,pl 1,5 post-increment by
0266 --bpl pl,i,pl 1,5 pre-decrement by
0267 --apl pl,i,pl 1,5 post-decrement b~
0270 ++bp2 p2,i,p2 1,5 pre-increment by
0271 ++ap2 p2.l,p2 1,!5 post-increment by
0272 --bp2 p2J,p2 1,!5 pre-dtcrement by
0273 --ap2 p2J,p2 1,5 post-ctecrenwnt by
0274 ++bp3 p3,i,p3 1,5 pl'e-increment by
0275 ++ap3 p3J,p3 1,5 post-increment by
0276 --bp3 p3,i,p3 1,5 pre-dittr.-nt by
0277 -ap3 p3J,p3 1,5 post-«reNnt by

- 47 -

Appendix III • The Intermediate Language: Keyword Maoroa

The keyword macros of the intermediate language are described below in alphabetical order. Each
section is headed by the name of a macro and its calling sequence; following is 1 description of the
arguments and the intended function of the macro call.

1. ADCONn: U.n<NAME> [n=0,1,2,3)

This is a set of macros, one for each possible pointer class. NAME is an object-language symbol
constructed from an identifier by the ION macro. The expansion of an ADCONn macro should define a
pointer constant of pointer class "n" which points to the external variable or function with the given
name. This macro is used in the initialization of static and external pointers and arrays of pointers.

2. ALIGN: U.L<N>

N is an integer specifying the CTYPE {an internal type specification) of an object for which the
appropriate alignment of the location counter must be made. The relevant CTYPEs are:

value ctype

2 char
3 int
4 float
5 double
6-9 pointer

The expansion of the macro call should be the pseudo-operations needed (if any) to properly align the
location counter. This macro is used in the initiafization of static and external variables.

a. CALL: '%CA <NARGS,ARGP,O,FBASE,FOFFSET >

The CALL macro generates a function call. NARGS is an integer specifying the number of arguments to
the function call; ARGP is an integer specifying the byte offset in the caller's stack frame of the
arguments which have been so placed by previous instructions. FBASE and FOFFSET are integers which
together make up a REF specifying the location of the function being callud (it may be indirect through a
pointer in a register); these are passed as arguments 3 and 4 of the macro call so that they may be
referenced as •F in the macro definition.

4. CHAR: '%C <I>

The CHAR macro produces a definition of a character constant whose value is the integer I; it is used in
the initialization of static and external characters and arrays of characters. When producing code for an
assembler which does not have a byte location counter (for example, the HIS-6000 assembler GMAP), the
characters produced by CHAR macro calls must be stored in a buffer until either enough are accumulated
to fill a machine word or a macro call other than CHAR is issued; in this case, all macros which may follow
a CHAR macro must first check to see if there are any characters in the buffer and if so, print the
appropriate statement and clear the buffer.

15. DOUBLE: iD<I>

The DOUBLE macro produces a definition of a non-negative double-precision floating-point constant
whose C source representation is stored in the internal compiler table CSTORE at an offset specified by
the integer I (the compiler itself does not use any floating-point operations). This macro is used in the
initialization of static and external double-precision floating-point variables and arrays.

- 48 -

8. BND: UlND<>

The ENO macro marks the end of the intermediate l1qcwip prQSraM. It .,..y.produc;lt M OOstet...t, if
needed, or signal that any procestina usociated with the end of U.,,,op• lhluld" ,.._Md.
7. ENTRY: IBN<NAllB>

NAME is an object lanauaae symbol constructitd from an identifier by the ION tMCro. The UJNMion of
the ENTRY macro should define the symbol as·.., .entry point, Hut Is. .OM which is ,.._.~·a.t U. CUl'ftlftt
program but accessible to other f"'Qlrams.

8. BPILOG:

The EPILOG macro produces the epilog code for a C function. The epitoa c:odlt should rM.toN the
environment of the c:allina function and return to thlt function. In the HIS-6000 implementation, these
actions are performed by a subroutine. FlAO«l and FRAMESIZ£ ..,. ,,.._, :.,.tfv . .._, mwnal
function number of the function ad Ow size in twtu of it. ,1'->k.f,.,..,,,.,,~.CltMtv. ln·U. NIS-IQQG
implementation, these int ... rs are used to dltfine an .,..mbly-t......_. &yalbol Whole ¥alw is the size in
words of the stack frame; this symbol is used by the code produced i.y lt'9 fllGl.OG _,. which •_
the stack frame.

9. EQU: U:Q <NA.MB>

NAME is an object l1nguqe symbol constructed from an identifi8r by the ION macre; iHs to be deflMd as
having a value equal to the current v.alue of the location counter.

10. BXTBN:

The EXTRN macro is similar to the ENTRY mtero except thlt it defines the · syirabol ·to be 1rt ext.rnal
ref ere nee, that is, one which is uted in the curr1nt ·Pf'Olf,liM W ••U•d to le ,dlfinld in -..lheT'
pro1ram.

11. FLOAT:

The FLOAT macro proc:IUCM a definition of a non-nqative singht-precitfon floatinc-point . COMtenl; the
.argument has the S9m& interpretation as that of the OOUBLE-.cro.

12. GOTO: '1GO <O,BASB,OPPSBT >
The GOTO macro produces an unconditiontl jump to a location denoted in the source prqram by a label
constant or e.xpresstoJt. BA$E af1d.OFFSET .toaether make u,.• REF whidt.apecif-. .._,._... ,Jeclltioriof
the jump; these are passed ... ar-1~11and2 of theJatCN·cllhotMlhY:iH)'t.r•,.••nMl•·-rf
in the macro definition.

18. BEA.D: '1BD<>

The HEAD macro marks the beainnina of the intermediate lanauap Pl'-OI~ It may ·P111duc:e header
statements, if needed, or si&nal that any inltialiZ1tion processinl should be performed.

14. IDN: U<X>

The ION macro should expand to the object lanauep repretentation of the identifier whoM C source
representation is stored in the internal compiler table CSTORE at -" offset specified day the i"'-r ><.
The processing performed by this t,MCro may include .the trurQlion of ..,., the ._.nt 1)f the
underline c:harac:ter (which is allowed in C identifiers), and the insertion of spedal charac:tefU) to avoid
conflicts betweeft' C identif iets and other object lquaae symbols.

- 49 -

115. INT: llN<I>

The INT micro produces . 1 definition· of en int .. er constent whose vu ii ~ified by t~ int91e,r J.. It
is Ulff·in theiniti.U1tton ot .-..-.................. , • .,.,.'. ~ioft ort-.fc>r .
the L.SWJTCM IMGfO, ' " : · · · · ·· ·: ' , ..

18. LA.BOON: U.O<N>

micros.

17. LABDBP: U.<N>

The LABDEF macro defines the locltion of interr\11 libel number N.

18. . LN: iLN <N >
The LN m1ero nsoci1tes the line in the source proar1"' whose HM number I• sP8cified by the int•r N
with the current value of the location counter. This NCrO fftly Optionltty .. ~.a ~nt ,.1'"11, in the,
object proaram to 1id in the reldina of the object proarem, or it mey d!IW•'h-number •YMbOI to be
used In conjunction with 1 debugina system.

19. LSWITOB:

The LSWITCH macro should 19Mrate code which; juNps •·1 < .. ~ ftil ·Wlue of the lftteitrr .whoM
loc1tion is given by IBASE Ind IOFFSET (selected from the loc•ttoM perntitted·by the OPlOC for ,.,_, ·•~
oper.t~).. This·1UUOis·i~·f..,..by:tt'ONUN'J1...,_9.._,~~ .. ~ .• ~fy
followed b)t N LMIOON macros «Meorr~fllllll•t9l .. A ~W..,·ttti--tthe c ... liSt;
if a 11\ttch ;. found, .• jump lho# t. JIMd1a.ihi6finW••-·-·•Nliiil .L.Am(JN tMCrd. elf
the -..r tMlchn ftOne « h:ild _.,.., thM·a._.,.,..,.., •. 1h'l1fttWNlrtlWl •INdby
LBASE ind LOFFSET. •· . -. . . .

20. NDOUBLB: IND <I>

The NOOUBL£ MICl'O is the same 11 the OOLB..E. Ntro •cttM· tNt U. "** Of the dtflned constant is
made negative. · •· ·

21. NPLOAT: iNP<I>

The NFLOA T macro is the same u the FlOA T m1ero except thlt the vllue of the •fined constant is lftllde
negative.

22. PBOLOG: IP<PUNONO,PUNOMAMB>

The PROLOG macro produces the proloa code for 1 C function.· F\H:NAME ·is an inteaer representina the
n1me of the function as it appears in the source program; its interpretatl4>n is the seMe • that of the
argument of the ION m1ero. FUNCt() is an intqer which speciflet the internal function number of the
function; it may be used in conjunction wfth ti. EPILOG macro to '""9 the 81ze of the ·func;tion•s stack
frame. The PROLOG m1ero should define the entry point n1me Ind pr ... the code necessary to save
the environment of the callina function and to set up the envirorinent of the called function osina the
information provided in the function ull. In the MJS-6000 impltmentation, thlM actions •e performed by
• subroutine. The PROLOG m1ero cell eppe1r1 in the intermediate 1q.,... PfOlram hnmildiately before
the first instruction of the correspondina function.

-50 -

23. RETURN: IBT < >
The RETURN macro produce• ,tM stlhtments needed to return fNM a NndtM to the atlftl fMtftm; 1ft
1eneral, this macro witl r81ult in a trtn1htr to tt. EPILOG COCfl. TN returNd valul Of.,._ fUM:tkM ii
lolded by precedina m1c:ro cafts Into ttw '""°""tte r.PhM' • .,..... lft' fhit ~. st••••,.. of
the machine description. · ·· ·· · · · ·

24. STATIC: UIT <Kt&>

The STATIC macro defines the location of the st•tic verieble whole int.,nal static variable number is N. S ·
is the size of the st.tic veriabt. in •ytes. Typica11y, this Mcro wffl dtfiftrt lf'l ... mbly ,...,... syn.bot .
by which the static variable ctn bit referenced. · ·

215. STBCON: UIC<R>

The STRCON macro should pnwft• a c:htr1eter pointer which. points to ttW ~· COMteM *hose
· iftternal strlna number Is N. The STRCON t'itacro is used in tNt htfti*Mton .Of atatte w •derMI
variables. · "'

28. STBlNG:. s.llB<>

The STRING macro marks the pl1ee in the object proarem where the strtna cotist1nts should be ct.firied.
This macro is impltJmtnUd aa.Cmc;tm,mwtto~ ~-~- fhvoWMt

97. TSWITCB: sTa<LO.,LaM•tLOl'NR,:ra&la.iO...._. tlli>
The TSWITCH macro pr.oduces an ~xff j""'I) blMd on the Yllue of ttwt ifttalll1'_. tDlltkM ._ lfWf\
by IBASE and IOFFSET (sa~ fronl the ~.P*Nliltac11¥hOllho&·tor•h.ftt-ifftm). 1'*
macro Is im~ly ~·,~ a...,.... of ~lJ __,_ ._. ,..,._. • ..,..,
~orr.espondifta to.mtepr ,,._,,_M).to:HL ~--~-.._.,. • .,.._l~rei••
internal label defined by Lll\SE Ind I.OFFSET. ,.

98. ZBRO: IZ<I>

The z~ INCl"O ~ief the:. definition of • block of storap iftiti.._, to .,.. ttw .._ It· ltiyt.' of this ·
storaae area.is spec:ifitcfby the intepr L · r·

\.

-51 -

Appendix IV • The BIS-8000 llaohln• .. D...rlptloa

The machine description used in the HIS-6000 lmpleMtntation Is listed wtow.' Much of Its complexity is a
direct result of the fact that the 'HIS-6000 ;, not byt...,..MMd. In the mecro definltton., the ctwtracter
sequence '\n' represent• tbe newline ctwacter .

. _, J

typenames (char ~nt,flo1t~~
reanames (x0,xl,x2,x3,x4.a,q.f)J ·

~\

memnames (rea,autOiftXt~tat,param.iabel,itttlit,flo1tlit,1trinalit,ix()Jxl~x2,ix3Ji(4;1'awlq);
size 1{char),4(int,float),8(double); · ' ·
alian 1 (char),4(int,float),8(double);
class x(x0,x1,x2,x3,x4), r(-,q);
conflict (a,f),(q,f);
saveareasize 16;
pointer pO(l), p1(4); ·
returnrea q(int,pO,p 1),f(clouble);
type char(r)~nt(r),f loat(f),double(f),p()(r),p 1 (x);

.sw:
+pO: -pO: +i:-i:&:I\: .OR: -pOpO: «: »:
+ph
-pl:
•+i: -&: •I\: -oR:
•i: /i:
+d: -d: *Cl: /d:

"= -<<: ->>:
&u:

.BM:>T: .ic: .ci:
. - -ui: --bi:

.cf: .cd: ·.if: .id:

.fc: .de: .fi: .di:

.fd:

.df: -1.Jd:

.ipO: .pOi:

.ipl: .pOpl:

.pli: .plpO:

++bi:
++al: --ai: ++be: ++ac:
--be: --K:

++bp: --bp:
++ap: --ap:

•-0: !-0: <O: >O: <-0: >-0:
••p: !mp: <p: >p: <-p: >-p:

a,,1[x4]i
r.M,1;
~;
x.q,1;
M,r,1;
·~4
t.M,f;
q,M,a[q];
M,e.qa··~
M,,x; . .

autolextlstatlstrfnsHt li•Jicwa
r,.1;
M,,r;
l,.f;
f .,q;
M,,f;
t .. 1;
r,,1;
M,,r;
r,,x;
M,,x;
x,.r;
M,,r;
M,,1;

M,,a[q]i
M,,q(a) .
M,M,rfx;
M,M,a[q)
M,M,q(a)
M.M,x;
rlf,,r;
rlx,M,M;

macros

.sw:.

.ci:

.cc:
(auto"):•
(stat,,): •
(ia,.q): •

(iq"a): •

TSX5

EA9R
EA.-R
STA
LOO
STQ
LOA

(autolstatPndirect,,):
"'lif(SO<•'F), Ao.tl
. TSX!i

(extlstrinallt,,):
• LO.R flF

~ 21·
EA9R o,.n.
•RRL 11•

Cr n8Utolst•tlindtrect)strinalit): .
• EA>C5 0,4'f'L\tt•
(r ,,auto): • EA-F 0;1\n•
(r.,stat): • EA.-F .STAT\n•
(r,,autolstat): "lif(lo(•'R), AOf# lcca(~

TSX4 .~ .
(r .,strlnalit>: • EAd' •

TSX4 • .-roe•
(f ,,ext): • -rLS 21

ST-F 4lff
-rRL 2r

(q,,ia):
"'lif(SO<•'R), ADA lco(e'R)\ft,)

TSX4 .A roe·
(a,,iq):
~if(lo(•'R), ADO leo<•'R)\n,)

TSX4 .oroc·
.ii:
(r,,M): • ST9F -""
(M,,r): " Lo.R .,.
(r"r): • LLR 36"

.ff:
(f,,M):" FSTR -""
(M,,f): • FLO tr.

.dd:
(f,,M): " DFST _..
(M,,f): • OFLO ...
.pOpO:
<rnr>: • LlR 36"
(r,.M): • ST_, fJff'
(M,,r):. LDttR .,..

-53-

.plpl:
<xnx): • EA9R. o,.a·
(x,,M): • STZ •R

sr.r: 9ff •
(M,.x):. LD-.R •F•
(x,.q): • EAQ o,.a·
(q,.x):. EAttR om
(h.\,q): • LDQ ..
(q,,M):. STQ 9R"

.pOpl:
(r"x): • EA9R o,.nr
(M,.x):. LD.R ..
.plpO:
<xnr): • EAtaR o,.a·
(M,,I'):. LO.R ..
.le: • AN4tf' -0077,DL·

.ipO:
(M,,r): • LD#R
(r nr>: "\\"

.ipl:
(r ,.x): • EAtaR O,.ru"

.pOi:
(M,,r): • LDtaR
(r ,,r): "\\"

.pli:
(xnr):" EAtaR o,.a·
.fd: •. FLO •F"

• df: .. ,, .
.cf: .cd: .if: .id: • LDQ O,DL

LOE "'35825,DU
FNO•

.fi: .di: • UFA •71825.DU"

.fc: .de:• UFA •71825,DU
ANQ. -0077,DL·

+i:. AD•R .s·
-i: • SB•R .s·
•i:. MPV ·s·
/i: I: " DIV ·s·
+d:. OFAO ·s·
-d:. OFSB ·s·
*Cl: • OFMP •$"
/d:. OFOV ·s·
•+i:. AS•S 9R"

-14-

>>:
(JntlitJ: • eFRS IG(•'S)·
(.-intlitJ: • UCL5 .s --· o~

C<:
(Jntlit,): • · eFlS to<•'S) ..
<.-intlit,): • LXL5 .s

9FLS of,•

->>: • lo.R flf
eARS 0.•Sl
STeR .,..

-<<:. LO•R .,
ttRlS O,.st
STeR .,..

+pO:• eFRS 16
~ .s
flflS 16·

pO·· .. . eFRS .. 16
SBe.F •S
9FLS 1&·

+pl:. LXl•l •S
ACLttR .,..

-pl:. OLS 18
STQ .TEMP
SSL_, .mr

~ui: • LCeR .,.
--bi: • LDeR .,

S8eR •1,Dl
ST•R .,..

-ud:. FNEG"

++bi:. AOS eF"

++ai: • LDeR .,
AOS eF" ..

--··= LOA 9F.
LDQ eF\n.

C,..): • S8Q •1.DL
STQ .,.

(,,q): • SBA •l.DL
STA .,..

-55-

++bp:
(.,x): • LD•R •F

EA•R lo<•'S)/4,•1
ST#R aF"

(,.r): • LO#R ttF
AOL#R ko(•'S)
ST#R aF"

--bp:
(.,x): • LD#R .aF

EA•R -lo(•'S)/4,•1
ST•R ttF·

(,.r): • LD#R . ttF
SBL•R ko(•'S)
ST#R aF"

++ap:
(,,><): • LD#R •F

EAX5 io<•'S)/4,•1
STX5 aF"

("alq): • LOA ttF
LOO •F\n•

<ne>: • ADLQ ko(•'S)
STQ •F9

(,,q): •. All.A ko(•'S)
STA •F9

--ap:
("x): • LD•R •F

EAX5 -lo(•'S)/4,•1
STX5 •F9

("alq): • LOA •F
LOO ttf'\n•

("1): • SBLO 'ko<•'S)
STQ aF"

(,,q): • SBLA ko(•'S)
STA aF"

.BNOT: • ER•F --1·

&u:
(ialiq,.r):
'°"'if(%o(•'F), ADL•F ko(•'F)\n,)\\.
(ia,,q): • LLR 36.
(iq"a): • LLR 36.
(autolstatnr): • EA•R ln(-3,0)
iifC%o<•'F), ADL-R 'ko(•'F)\n,)\\.
(extlstringlit,.r): • EA•R aF"
(,,><): • EA•R ttf'. .· ,··

&:• AN•F .s·
-&: • ANS•S •F9
/\: . ER•F •s·
•I\:. ERS•S aF"
OR·• . . OR9F ·s·
-oR:. ORS•S aF"

-56-

••p:• CMP.r ·tlS
TZE eR" ' . . .-p: QMW .s
TNZ eR"

ICp: • Q,,f)#f' .s
TZE •+2
TNC _.

>p:. ·CMP9f . .s
TZE *+2
TRC ·«'

<•p:• CMP.t=' •S
TZE -.R
nc ...

>•p:• CMP9f .s
TRC ...

jc:
(.,f): • OFCMP -000\n.
(.,r): • CMP9R o,1)1..\n•

"lajc(.o,cr

,p<>po:• SSL# .s
.r:Rl 1s·

hd: •• GMAP"

jmp: • TRA .o·
0: ··1·
en: • SYMOEF .o·
ex:" SYMREF II()•

st:• SYMREF .PROLG,.EPJLQ.. TEMP.,SWTCH
SYMREF .cTOA,.Cl'OQ..ATOC,.Qree

.STAT EQU ••
p: '"lidn(•l) EQU • TSXO • PROLG

ZERO .Fs.o•

co: ··V20/•l,16/0·

er.• TSXl 9F.
ZERO •1/4,flO.

rt:• TRA .EPILG"

ep:• TRA .EPILG
.FS.O EQU •1/4"'

10:. TRA «"

-57 -

cpq:
(auto,,): • EAQ 0,7\n•
(stat,,): • EAQ .STAT\n•
(ia,,): • LLR 3&\n·
(autojatatllndirec:t..>:
"lif(ic,(~'F), AOQ ko<•'F)\n,)\ \.

++be:
(autolstatlindirect,,):
"'kpq(0,0,0,•'F)

STQ .TEMP ·~

LOA .TEMP
TSX5 .CTOA
ADA 1,Dl
ANA --0377,Dl
EAX5. O,AL

(ext#,):•
rsx~t .• QTOC-
·1.RA'•·• .,
ADA ..01000.CU
STA flF9

--be:
(autolstatlindirect,J:
"'kpq(0,0,0,•'F)

STQ .TEMP
LOA .TEMP
TSX5 .CTOA
SBA l,Dl
ANA -o377P..
EAX5 O,AL
TSX4 .Qroc·

(ext,,):• LOA fif
SBA -01000,DU
STA flF9

++ac:
(autolstat !indirect,,):
"'kpq(0,0,0,•'F)

STQ .TEMP
LOA .TE~
TSX5 .CTOA
EAX5 1,AL
TSX4 .QTOC-

(ext,,):• LOA fif
LOQ fif
AOQ -01000,DU
STQ flF9

-«: ~
tlst.J:.

t\T~ .
"''!ti tif~

~ .. ~3r.
'fv'.)'L
iiij.T:J~

ttMJL
. ~~i"~
A!l~t~''i. a;;:c·1·

.{!~K,A~:i

iiXZl

,,. taic h;s}
J .. -: of ~·rr:)t:-,J~~~

I[·, ~ibn~~}.i ~

(·~~ •• o~clt ~:r~Q -~~ ·.

• :··ci"'"

:,,t>~;:;ti-;~.~~:.~i~,:~~!
" , "' ... , . .,v1i;:i4.~

I
i
I

-59 -

A.ppendlx V •The BIS.SOOO 0 Boutlne 11•.-o Deflnltlons

The C routine macro definitions used in the HIS-6000 implementation are ti1t-4 on ttie follewinl P•,,s! A
C routine macro definition is written as a C function returnina a ch8raicter strina value. This ~-.Cter
string is •substituted• for the macro call and rescanned by the maicro ex,_.r; thus, it may 'contain
referenees to its 1r1~ments and embedded macro c.U..,:,1'1e.,....,.......ttW5ttltC'rettltfM·'•e ARGC
and ARGV: ARGC is an Integer specifyina the numbtr,,.., . ._....,....,;........,ts present in the
associated macro call; ARGV Is an array of pointers to those ar..,ments.

When the followin1 routines were written, the formatted print routiM PRINT was capable of producina
output only onto 1 file and not into 1 strina in core; thus, wt.re for..tt~ is necessary, f"8M routines
print their output directly and return the null strina. Althouah there we,.. inherenUn thia "1*actice,
in these cases the effect is the same as if the formatted strinl were returned and printed nortnally. The
character sequences '\r, '\n', and '\ \' represent tab, newUne, and bechtleeh, rnpec:tively.

char •fn[]
rjn•,•c•:t•:nt","d·.·rwr.·11·:•jc"',
•ad•:z•,•;•tsr":end•:n•.-.•,,,.•.
-Other",8jf"};
char (.,f{])() .

-60 -

{ain~.-.... ~_. ...
a.dcon.az..-..al*Wtti ... R .. 11111Mlltt•
other,aifh

int nfn 18,
lineno O,
mflaa 0.
packb{4].
packno;

char aaln(ar1c_ar1v) int arac; Cher v{)

{lineno•atoi(arav[O]);
packf{);
return(•.N.o · EQU •"h
}

char •aequ(ar1c,ar1v) int arac; .char w1v()

{packf();
return("~QU •");
}

char •aint(ar1c,ergv) int ar&c; char •lvO

{peckf();
return("\tOEC\t.0");
} .

char •achar(ar1c,ar1v> int ar1c; cNt' *lr&v{)

{if (argc>O) packc(atoi(ar&v{O));
return("\\•); /• cOMeal fo&low"'s newline •/
}

char •afloat(arac,argv) mt arac; thtr tarev[];

{packf();
if (ar1c>O) print("\tDEC\tlm•.atol(arav[O]));
return(-);
}

char "®ubte(ar1c,ar1v> int qc; char •1vO

{

packf();
if (arac>O)

Nturn(~

{print("\tDEC\t");
return(adblc(.toi(eraY(OJ>));
}

}

char •ane1f(1r1c,ar1v) int 1r1q char *lr1v[)

{packf();
if (ar1c>O) print(•\tDEC\t-s.n•,atoi(arcv[O)>);
return(-);
}

char .. ne1d(ar1c,ar1v> int ar1q char *lr1v[]I

{

packf();
if (arac>O)

return('!"');
}

{print("\tDEC\t-•);
return(adbfc(1toi(arsv[O])));
}

char •astrin1(1r1c,ar1v) int 1r1q char •arcv[)

{auto int i,f Jc,c;
auto char *Cp;

lc-0; /• location counter in STRING file •/ .
f-xopen(pname,fn_strina,MREAD,BINARY);

while(!)
{packf();
c-c:getc(f);
if(ceof(f)) break;
print(•.s1ct\tEQU\t•\n•Jc);
le++;

. while(!)

}

{if (c••'I')
{c-c:ptc(f);
le++;

else

if (c••'O') c•'\O';
packc(c);
}

(packc(c);
if (!c) break;
}

c-c:getc(f);
le++;
}

cclose(f);
return(•\\•>;
}

char •und(ar1c,ar1v) int ar1c; char *lr1v[];

- 61 -

{packf();
return(•\tENO•);
}

char •re1names[] rxo•:'>Cl •,-x2•,-x3•,-x4•:A•,v,•}; .

char •aname<arac,ar1v> int araci char •IYO

{auto int base.offset;

j.f (argc> 1) offset•atoi(argv[l]); ..tse offset-<>;
if (argc>O) base•atoi(arav[O]); elu b-..Q;
if (mfla1) cprint(•ANAME(id,iq)\n•,bale.offtet);
if (base>-0) return(reanames{b81e]);
base • -base;
if (base >• c_indirect)

{print("ld,1d• ,offset/4,base-c_indlrect);
goto check; ·
}

else switch(base) {

case c_auto:
print("ld,7",offset/4);
aoto check;

case c_extdef:
return(~(•!)");

case c_static:
print(".STAT +Id• pffset/4);
goto check; ·

case c_param:
print("ld,6"pffset/4);
aoto check;

case c_Jabel:
print(•.L1c1•,otfset);
break;

case c,Jnte1er:
if (offset<O II offset>32000) print(•4d" ,offset);
else print("ld,Dl •,offset);
break;

case cJloat:
print(•·k·,ac:1btc(offset));
break;

case c_strin1:

return(~);

check:

print(•.Sld•,of fset);
break;
'}

if (offset'l4) error(6025Jineno)I
return(-);
}

AALIGN - alian location counter

•I

char ... u,n(ar1c,ar1v> int ar1c; char .. riv[)

{

switch(atoi(argv[O])) {
case ct_clouble:

packf();
return('"\tEVEN");
}

return(•\\•>;
}

-63 -

,
A~ - emit conditional jump

•I

char •ajc{argc,ar1v) int argc; char •argv[)

{auto int cond;

cond•atoi(ar1v[O]);

switch(cond) {

return('"\tTZE\t•l •);
return(\tTNZ\t•l ");
return(\tTMI\t•l ");

case ccJqO:
case cc_ne():
case cc_ltO:
case cc...aeO:
case cc..atO:
case cc_leO:

return(\tTPL \t•t •); .
· return(\tTZE\t.+2\n\tTPL \t•l ");
return(\tTZE\t•l\n\tTMI\t•l ");

}
return(-);
}

char *Other(argc,argv) int ar1c; char •ar1v[)

{switch(atoi(argv[O])) {
case 5: return("Q");
case 6: return<•A");

}
return("BAD•);
}

char •1if{ar1c,ar1v> int arac; char .. riv[)

{return(atoi(argv[O])?"•l ":"•2");
}

I• PACK CHARACTERS INTO WORDS

packc(i) int i;

•I

"··'·.

{

}

packf()

{

while(packno!-0) packc(O)J
}

{packf();
return("\tZERO\t.o•);
}

char •azero(ar1c,at1v> int trtc; dw -.vO

{auto int i.j;

if (ar1c>O)
{i•atoi(arcv[O]);
while(pac:kno U i) {paclr.c(O);--;}
j - i/4; i -" 4;
if (j>O) print<"\UISS\tld\n• ,j)J
while<i-)ptickc(O)J.
}

r•turn("\\•);
}

char "idn(ar1c,ar1v) int w1c; ctw ..,,v()
{auto char *Cpl,*Cp2;
static char n[7};
auto int i,c;

if. <arac>O)
{cpl • Ac1tore[.toi(arp[O]))
cp2 • n; ·
for(i-c>;i<&Ji++)

{c • tcpl++s
·if (c - •_.ic •'.fl
*Cp2++ .. c;

*Cp2•'\0';
return(n);
}

return(~;

}

-64-

}

adblc(i)

{auto char *cpl,*cp2;
static char buf[30];
auto int c,flag;

flag•FALSE;
cpl - &cstore[i);
cp2 - &buf[O];

while(c •*Cpl++)
{if (c •• 'E')

if {!flag}

{flag• TRUE;
c • 'O";
}

if (cp2 < &buf[27))
*Cp2++ - c;

}

{*cp2++ • 'D';
*cp2++ • 'O';
}

*cp2++ • '\O';
return(&buf[O]);
}

- 65 -

- 66 -

Appendix VI - Overall Deaorlptlon of the C~pller

The compiler consists of four major phases. First, the lexical analysis phase (Cl) transfonM the source
program Into a strin1 of lexical tokens such as identifiers, constants, and operators. SecOftd, the syrttacttc
analysis phase (C2) parses the token strinc and produces a tree repr ... ntatlon of eech function
(procedure) defined in the source proaram. Third, the code aeneration phase (C3) transforms the trees
produced by the syntactic analysis phase into an intermediate lqu1P· proaram consistina of a ...-ftt9
of macro calls representin& instructions of the partkular lbstrld~machine defined by the .,,ter.
Finally, the macro expansion phase (C4) expands the macro calls, producins en object llnlUIP Pf'Otr•m
as the output of the compiler. Jn addition, there is an error mess .. • editor (C5) which Is Invoked rnt in
order to format -any error messages produced by the other phases. The phetes of the COMPiltfr Ire
invoked in sequence by the control proarem (CC). The controt proaram communicates with the various
phases by passing H ar1uments to an invoked phMe a set of ctwacter str• ,... ... ntina file names
and an option listi the invoked· phase returns a compl9tion code Which indlcetei .._her or not any
serious or fatal errors occurred durina the execution of that phase. The veriow pheles communic:ate
with each other using intermedi~t• files.

The lexical and syntax analysis phases may be run sequentially as described above, or, where 1 system's
program size restrictions j)ermit, may be combined into a sinafe phase, .thus eliminat:inl the use of an
intermediate file. This option is implemented throuah the UM of COMpiie"'.tiM c:onditiOMtt. TM ,.._...,.
of this chapter will assume that the two phases are eeperate.

1. The Lexlaal .A.nal7sls Ph&H

The lexical analyzer reads in the source proaram and breaks it into a strina of tokens such as identifiers,
constants, and operators. The lexical analyzer also interprets compile-time control lines which aUow one
to include source from other fites and to define manifest constants. The lexical analyzer produces out.put
onto three intermediate files: the TOKEN file, which contains the strina of tOkens, the CSTOAE fHe, which
contains the source representations of identifiers and ffoatina-point const1nts,.ind the STRING fite, which
contains character string constants. The TOKEN file is plHed to the syntax analysis phase; the CSTORE
and STRING files are not used until macro expansion. · in ldditiOn, the lexical analyzer may write error
messa1es in an internal form onto the ERROR file. A token is represented by a pair of integers called the
TYPE and the INDEX of the token. The syntax analyzer performs its aMlysis on the besis of the token
TYPE; thus most operators have a distinct TYPE, and there are separate TYPEs for identifiers, inteaer
constants, floating-point cOMtants, and character string constants. The INDEX is used to distinauish
particular identifiers or constants; for example, the IN>EX of an identifier is the index of the source
representation of the identifier in the array of charact•rs written onto the CSTORE file.

The main routine of the lexical ·analyzer consists of a loop which calls a routine GETTOI< to return the
next token in the input . stream and then writes the token onto the TOKEN file. This loop also contains
code to interpret compile-time control lines. GETTOK Obtains input characters from 1 routine LEXGET
which contains the toaic to switch the input between the primary source file end "included• files. Except
when processin1 character strina constants, GETIOK translates the input characters Ulina a translation
t.able. On GCOS, this transJetion maps lower case into upper case, tabs into blenkl, and carri• returns
into newlines. This table· would be chans.-d when movi"J the compiler te> a· system usina other thin the
ASCII character set. GETTOI< partitions the character set into the followina character clllMS:

- 67 -

1. letters
2. digits
3. apostrophe (')
4. quotation mark (")
5. newline
6. blank
7. period (.)
8. the escape character (\)
9. invalid characters
10. characters which are unambiguously single­

character operators (such as '{')
11. characters which may begin a multi-character

operator (such as '<'which may begin '<•')

GETTOK uses the character class of the current input character to determine its actions in analyzing the
input string.

2. The Syntax Analysis Phase

The syntax analyzer accepts as input the token string generated by the lexical analyzer and produces
output onto three intermediate files for the code generation phase: a tree representation of each function
defined in the source program is written onto the NODE file; a symbol table containing declarative
information about identifiers is written onto the SYMTAB file; and information regarding specified initial
values of variables is written onto the INIT file.

The main routine of the syntax analysis phase is a table-driven LALR(l)'parser. The tables are generated
by a parser-generator YACC, written by S. C. Johnson [18} The input to YACC is a BNF-like description
of the syntax of C, augmented by action routines which are to be invoked by the parser when particular
reductions are made. YACC analyzes the grammar and' produces a set of tables written in C which are
then compiled into the syntax analysis phase.

The tables produced by YACC represent instructions to the parser to test the TYPE of the current input
token, to shift the current input token onto the staclr., to perform a reduction and call an action routine, or
to report a syntax error. When a syntax error is discovered, the parser wri.tes error messages onto the
ERROR file which give the current state of the parse. It then attempts to recover from the error so that
any additional syntax errors in the program can meaningfully be reported. The parser attempts a
recovery by popping states from the stack and/or skipping input tokens in various combinations. A
recovery attempt is considered successful if the next five input tokens are shifted without detecting a
new syntax error. If a recovery attempt is successful, error messages are written which describe the
recovery actions taken and parsing is continued. If a successful recovery cannot be made within a limited
region of the input program, the parser ceases execution after writing an error message.

The following C program illustrates the compiler's response to a syntax error, in this case unmatched
parentheses:

int c;
int f(file)
{if ((c-getc(file) !• 0) return(-1);
return(O);
}

The first error message, listed below, gives the state of the parse when the syntax error was discovered,
followed by a cursor symbol •_•,followed by the next five input tokens. The next error message indicates
that the parser was able to recover from the error by skipping the next two input tokens. The resulting
program, although syntactically correct, is meaningless. Therefore, in order to avoid extraneous error

- 68 -

messages, the code generation phase and the macro expansion phase Int not executed .lfter syntax
errors have been detected. ·

3: SYNTAX ERROR PARSE SO FAR: <ext_ctef_list> <function_dcl>
<blockJiead> IF (<e> _ RETUfN (- 1)
3: SKIPPED: RETURN (

The following progran, also contains a syntax error due to unmatched parenthnetl howeY4tf, since ta.re
are no more riaht parentheses in tht stat4tment follow .. t• ~ wn,r •. the .,,., is .-ted, the
parser recovers from the error by dltetiftl the unfinilhM IF datae... . . .

int c;
int f(file)
{if ((c-ptc(file) ~ ·o) c • -la
return(c);
}

3: SYNTAX ERROR. PARSE SO FAR: <ext_.f_list> <functlon_dcl>
<block.)lead> IF (<e> _ C • - 1 ;
3: DELETEO: . IF (<e>

The followina proaram.is .n e,..... ol.a t)'Atax-error.from whid>tlte ""*could ftOt ncowr, within it•
allowed Umlts; thus, after skippma input toMns up to this limit, h..., aMls up.

int c;
int f(fite)
{if ((captc(flle) !• 0) c • 1;
else c • O;
return(c);
}

3: SYNTAX ERROR PARSE·SO FAR:. <ext_def_list> <function_dcl>
<block_h4tlld> IF (<4t> _ C ~ 1 1. El.SE
3: SKIPPED: c • 1 I
4: I GIVEUP

8. The Code Genei:-atlon Phase

The code generation ph~ per(orms the followina operations: (1) allocates storap for (determines the
run-time locations of) variables, {2) p0rforms type checks on oper.,,ds and 1,,..rts convel'Sion oper•tors
where necessary, (3) translates tN tree representation of expressions into 1 more •scriptiYe form with
AMOPs, (4) performs some ,.ct\ine-independenl Qptimiz~ on eur (!;) 11mits mcro calls to
define n1mes which may be referenced by other p'°8r1MS <ENTRV symbOls) ind to declare~ which
are assumed to be defined in other pr0&r11M (£XTRN symbols), (6) eMits m1tro calls to define and
initi1lize v1ri1bles, (7) emits macro cllls to execute the control statement• of each function defifted in the
source progr1m, ind (8) emits macro calls to evllu1te expressions.

The code generation phase reads the t«>OE, SYMTAB, and INIT files produced by the syntax 1nalysis
phase and writes an intermecfllte lqu11e pr<>1r1m in the form of mtc:ro cllls onto two intermediate files,
the MAC file ind the HMAC file. The HMAC file contlins the m1ero cllls definina ENTRY symbols end
EXTRN symbols ~hich •e pr~ 1'5t by the code 1ener~ic)r\ ~but which, in IQmf,.l)'St..,... may
be required to. appear ,at the be&Jnrii"I of the nsembly lq~t ,.,,...... The MAC· file cont.mt the
remainder of the int•rmtdllte tanau.ae proar11n. ·

The main routine of the coc» aeneration ph ... consists of 1 clll to 1 routine SALLOC, which lllocates run-

- 69 -

time storage and emits macro calls to define and ini.tialize variables, followed by a loop which reads in the
tree representation of a single C function from the NODE file al'.ld generates code (macro calls) for that
function, followed by a call to a routine SDEF which emits macro calls to define ENTRY and EXTRN
symbols. ·

The generation of code for a C function begins with a call to a routine FHEAD with the name of the
function as an argument. FHEAD emits a PROLOG macro call which defines the entry point and produces
code to set up the proper run-time environment. FHEAD then allocates storage in the run-time stack
frame for the automatic variables of the function; storag·e is allocated for automatic variables in order of
decreasing alignment requirement so that no space is wasted in the stack frame. The stack frame is
assumed to be aligned according to the strictest of the alignment requirements of the various C data
types (usually that of double-precision floating-point). A save area of the size specified in the machine
description is reserved at the beginning of the stack frame.

The call to FHEAD is followed by a call to the routine STMT to generate code for the compound statement
which is the body of the C function. The generation of code for the body of a C function occurs on two
levels, the statement level and the expression level. The generation of code for statements is handled by
the routine STMT which takes one argument, a pointer to a subtree representing a C statement. STMT is
actually a very short routine which makes recursive calls to itself for the branches of a STATEMENT_LIST
node and calls a larger routine ASTMT if the specified node is an actual statement (as opposed to a
statement list). The purpose of splitting code generation for statements into the two routines STMT and
ASTMT is to minimize the amount of stack space used while recursively descending the statement tree.

Following the call to STMT to generate code for the body of the C function, the size of the stack frame is
adjusted to be a multiple of the stack alignment and an EPILOG macro call is emitted. On the HIS-6000,
the EPILOG macro defines an assembly-language symbol whose value is the stack frame size; this symbol
is referred to by the code produced by the PROLOG macro which allocates the stack frame.

4. The Macro Expansion Phase

The macro expansion phase expands the macro calls on the HMAC and MAC intermediate files using the
information on the CSTORE and STRING intermediate files and places the result of that expansion on the
output file. The macro expander is not a general-purpose macro processor; in particular, there are no
built-in macro calls for defining macros or for handling local or global ·variables. Furthermore, the total
number of charade.rs (after any macro expansion) in the argument list of a macro call is limited to 100.
The maximum allowed depth of nested macro calls is 10.

The macro expander processes a stream of characters terminated by a NULL character. Within this
stream of characters, the characters .,;•, '•', and '\' have special significance. The 'i' character indicates
the beginning of a macro call, which consists of the .,;•, followed by the name of the macro, followed by a
(possibly null) list of character string arguments separated by commas and enclosed in parentheses. The
'•' character is used within the body of a macro definition to refer to the arguments of the macro call; the
character sequences '.O' through '•9' refer to arguments 0 through 9, respectively. The '\' character is
an escape character. The special interpretation of a character such as '%', '•', ')' or ',' is inhibited when
that character is preceded by a '\'. In addition, the character sequences '\t', '\n', '\r' are used to
represent tab, newline, and carriage-return, respectively. A '\' character followed by a newline character
results in both characters being ignored; thus a macro which expands to a backslash will swallow the
newline which followed the macro call in the input file. (A macro call in the input file which expands to
the null string will leave a blank line in the compiler output; this is generally a sign that the implementer
has not completely specified the macro definition for an AMOP.) The backslash character itself is
represented by '\ \'.

The normal operation of the macro expander consists of copying characters directly from the input stream
to the output stream. When a .,;• is encountered, the name of the macro and the arguments of the macro
call are evaluated and collected in a buffer; this evaluation may itself involve the processing of embedded

- 70 -

macro calls. The input stream is then switched to the body. of the macro definition and normal processing
is resumed. When a '•'.is encountered, the araument number is re~ ~·1.heinput streaM·is switc~d, to·
the correspondin& char aeter strinc lf'1ument of the current macro cad, Which Is stoted ·in the associ•l~
buffer. Normal procffsing is then resumed. The input stream oper1tes in 1 stack-like manner in that
when the end of a MIU() defmtlion or ,an ar1ument s~rifl i~, r~,c~: t .. J~t sir;••, is ,,...t~act t~ ,its
previous state. When end of file .. '•ached on the._ ,.._..input)traads 1Wftth\MI to fht MA.C
file;. when end of file ts reached on the MAC file, mtcro exp~ is termi,..ita ·

There are three types of macros . which are handled by t.,. macro ••Pander'.. fir~t,. there . are the macros
representina thrH-addren ~iract. mac.hint i""tr"lCtiops, ~hlc:b lrt rif~ I)~ the, ~ ..-r•tQr
while proc:essina expressions. . ThHt macros are defined OftfY .. ln ... tht ~"' ~epfiq,n; the Nero calls
are of a special form which c.lr.ctly specifies the i_nterntl,. Of thl ndi,. •ro d.tfini.tk>n,
as assigned by GT. For example, the macro call 13 refer$ fo mtcro definition number 3. Second, there
are the keyword macros whi~ are proMfd by tt.t cocle ,&e!'erti«. "wttile.proteet,~na function . ..,initions.
and statements. The$e macrc:ts may .be clefl• either ft\ .. tl'ie ~ ·~~ttloci e>r by C r~i""t the
macro cans spetify the meero ~ • &i.,. Jn ~l(. Qt. F.,..f).', tt\!lr• .,.. .Jhe mecr• w.~h ••
createdi>y the imple~er • ..-... ·· wtttltn.othltr.· ... mK(q.~jNf~ .. TbfM . .- ... •r.°" inl>' ··~.· ... wther.
in the machiM <Meriptiori dr by C rautlnltf Hie·"*'° ct1i '-'fY. tlw .Mr,o ,..,.. • .cleffMd· by tbe
implementer. · .· ·

A macro which is defined in the machine description is specified •• .a .list of .one or more chwacter string
constants, possibly with associated loc.ation prefixes for conditional expantion. Such a mKro definition is

imp.Jeme.nt•. d. -. It '.ist a'J poiatM.s t, the .. chN.~tel'. .. strjna····.·. ~ .. ··. ·. · · · .. · -~ · .· .. · ~ ..• • .. ·soc' in 's representtn1 the conditU:in$ specified in the~ pre,~ if~- :~I~ ~ .. ~-.d -~~.an
1rr1y MACOEF, pr~ by GT, whid\.il<itidex~by·t~)nt'1,..:t·.,°'·~~ .• ~ -~::by
GT to each macro dtlfinitior\ ill ibe maclline •riptlon. "'·· Mtnt"'*t -..,.,, ~o .. elf! r...,.a,tmf •
three-address abstract rNChine instruction directly specifies the mtcro .cWinffion number. Other macros
defined in the machine description ate represented in at.._ ~.a.v,QT.~ ~-ta., macro
names with the corresponding macro deflntt.ion numbers. · · · ·· · ·

Macros defined by C .routines v• repretented in ' t.t>i. providtcl ··a,y tti,, i•menter ~hich ~tas
the macro names with the corrnpondjna C f.unc:tions. This bble ,CQA$istJ of _., err-v FN of pointers to
the character strina macro,,.,..., aa arrav FF of ~!rs to tbe.cof;~ C fUf:lCti~," _.,
;nteaer NFN specifyma the ~r .Of .entries iQ thl[J ;tat.. Jt woe#.. be ,.. •. ~ for Jile
implementer to specify the C macro •tinifi<ms in th9 _.._ ~B>tiM .. "' tel· fn. conQ:~t .flfl'it l'.'N.
and FF; however, this wn not done because of the lexicar dffrteultiM lliOClatecf witft lnefUdml C sourC. in
the machine description.

The macro expender is implemented as two levels of get-cheracter roµtines. The. lower level routine,
GETCl, returJ\S the next char81Cter from the current input source wbicft may be eit~r the input file
<HMAC or 'MAC intermediate fikt) or • character strinc in rneQIOJ'.y. lf it it a chartieter strinc, it may be
part of a definition of a mac~o ~ified in the mtehine ~~ript;o,i.. an ar..,n.nt of the CLlf'Nf't macro call,

or .the .' .. "ult re. turned .. ~Y ~.··C.rotitine ~ mac .. ro •Hi:>ifi,On-··· .. Ttle.c.iJr .. r·en ... LJt.t . .e, '.'•·~.i.,....a.· .. ·· .·str··.'·.umj• ... Mt>.··· .. t.· i? a stack of structur.e. cal'-d .tnP\lt ~rOI blocks UCSS>diETCl _..... h ~. ICf;I on U. ",q. to •t~lftfne
the source of the next chari!eter. i'ht ,......,. of an laJ structure If~ ~btfOW,. with ·.fMlr IWan.i•=

~i" '

- 71 -

F a flag indicating the type of the current input source (the input file, a macro
defined in the machine description, or a character string)

LOCP if the current input source is a macro defined in the machine description, this is a
pointer to the current position in the list containing the pointers to the character
strings which make up the macro definition

CP if the current input source is not the input file, this is a pointer to the next
character in the current character string

ARGV[lO] an array of pointers to the character string arguments of the current macro call

BASE[3] the REF.BASEs of the result, the first operand, and the second operand of the
current macro call, used when computing conditional expansion

A NULL character indicates the end of a character string or end-of-file on an input file; thus if the current
input character is NULL, GETCl updates the current state of the input stream by advancing LOCP or by
popping an ICB off the stack or by switching the input file from the HMAC to the MAC intermediate file,
GETCl returns the NULL character only upon end-of-file on the MAC intermediate file.

The higher level get-character routine is MGET, which implements the '•', '%', and '\' conventions. MGET
begins by calling GETCl to obtain a character. lf the character returned is a backslash, then GETCl is
called again to obtain the second character of the escape sequence and the appropriate action is taken:
If the escape sequence is '\t', '\n', or '\r', then the character is taken to be tab, newline, or carriage
return, respectively. If the second character is a newline, then it is ignored, and MGET returns the resuH
of a recursive call to itself. Otherwise, the second character is returned as the value of MGET (thus it is
protected from special interpretation).

If the resulting character is not a '•' or a '%', then MGET returns that character directly. A '•' followed
by a digit results in pushing a new ICB onto the stack pointing to the appropriate character string
argument of the current macro call. A '•' followed by 'O', 'F', 'S', or 'R' (see Appendix I, section 3) results
in a call to the C routine ANAME (which implements the NAME macro) with the appropriate arguments.
When a '%' is encountered, the macro name is collected and the arguments are assembled into a 100-
character buffer. The macro name and the arguments are obtained by recursive calls to MGET so that
embedded macro calls are expanded; the result of expanding an embedded macro call may include c;ommas
or right parentheses without interfering with the argument structure of the macro call being processed.
If the macro name is an integer, the correspondingly numbered macro definition from the machine
description is used; otherwise, the macro name is looked up in a hash table containing the names of all
defined macro names. If the macro is defined in the machine description, a new ICB is pushed onto the
stack with LOCP pointing to the beginning of the list of pointers to character strings which represents the
macro definition. Otherwise, if the macro is defined by a C routine, the C function is called and an ICB is
pushed onto the stack which points to the character string returned by that function; thus references to
arguments and embedded macro calls in the string returned by the C function are processed. MGET then
resumes normal operation by calling GETCl. Note that the effect of a call to an undefined macro is to
replace the macro call by the null string; no error messages are produced by the macro expander.

The main routine of the macro expander consists of initialization, including the setting up of the hash
table, followed by a loop which calls MGET repeatedly and writes the returned character onto the output
file; this loop terminates when the returned character is NULL

5. The Error Message Editor

The error message editor is invoked as the last phase of the compiler to read from the ERROR
intermediate file the error records written by the previous phases and to print error messages
corresponding to those error records. The error message editor allows variable data, such as identifier

- 72 -

names, to be included in the printed messqes. In addition, error me1111es of ar&,itrlf)' lenath can be
constructed from a sequence of error records; the error mesup editor eutomaticaHy breaks Iona output
lines so that all output lines fit within a fixed P• width.

An error record is a structure containing seven inteiers: an error nyfftber, a line number, and five
arguments. The error number selects a basic error messaae strina which contains the fixed text of the
error message and optional indic;ators far includina veriaQle. d.Jta. An . i~ftQr is. a two-chaf~ter
sequence beginning with a T; the character folfowina the. "r dlfi'* h "'1*~~ of the variable
data which will replace the indic1tor when the strint is printed. The variable data is specified by one or
more of the ar5uments in the err~r re((>tt The ara~s, •• ._~,_,~ ltMI i~n*•'-' tr.;'9lt to
ri1ht; arguments are used u needed accordina to the interpretat.,,. specified by the tndkators. The
various indicators are listed ~ with their lnterpn~tations:

Id print the next ar1ument as a decimal integer

4'm print the . strina in the intern~ compiler tlbJe CSTORE which ~ at t... mct,x
specified by the next arl'J'Mnt

%n print a strina representin& a node (operator) of the internal represent1tion produced by
the syntax analysis, as spacififf by tbe ftlxt ..,,..nt ·

lq print a strma repreuatq l.htt t.rmif111 Or nonte~minll •)Qnboi. usodattd with the
parser state specified by the next •aumtnl

it print the source representation of the tWn whose TYPE lNlEX •• s,.cif_, by
the next two arcunients

II print a 'T

Only the ar1uments which are referenced by the basic error Me$SIP stri111 .are ~ied when M .-rror
record is written; the values of tbil remaini"' •auments in tbe f«Or4 •• undefined.

The line number field in the. error record associates a line in the ~ .proaram with the error whioh
produced a particular error record. If a line number is pwn (Ut£NO > 0).:i;t ~l:F4nled out .Gil• newJine,
followed by a colon, followed l>Y U. text ~flectby the error ~~•~wi• 4J~ ~ 0). U. t.Kt
specified by the error recqrd .iJ pi:inted en the .current line. Thµs ., •ror,. .,._ qansW§ of 41f\ .. iltit~
error rec~rd containina a line n r foQowed by zero or "'°'" ert'Of'.. I'. w~ .liae ~,.. In
this manner, an error messap of ·8".bitrary ie,.t)l c.en "~!~· .. For.~~ U..,, • ._. &NU.

·the current st•t• of the parse when a ayn'-x error has bH.n ~edj..,,..Jeet., 2) _....,_ti'.~
from the folfowing basic err0r ,.,...,.. ltrinas: · ·

•SYNTAX ERROR. PARSE SO FAR: · •
• Xq• (for each state on the parser stack)
• • (represents the input cur$or)
" Xt" (for each of the next ·5 input tokens)

The syntax analysis phase can produce these error messages _.bout co.untir)s the symbols in the
rnessaae··'or knowing their len&thl beCause the error mes511e tdf.tor tlkes ~· .Qf brukin& .IGl:tl output
lines. ·

In addition to selecting a basic error message string, an error number represents the wverity level of
the correspondina error:

error.....,

1000. - 1999
2000 -3999
4Q00-5999
6000 - 59$9

;.,';t;,..,. " ";.-,.~
>

error
.. riO\As error
f tf tl 111or .. ·
co .. error

. , . ~-

- 73 -

A fatal error or a compiler error will terminate the c:urrent p~; Ind ;.nQ remainlna phn8 (except . the
error ~s•• ~tor, J will .be. i~ Jn .,edition, a~ . ..,~ Js .. ~~k:tlb' .p,r~. by
the st i · · · · · ·· ·. ··· · · · · ·

. '"' . ' . •.C. ,, '

-coMPILER ERRQR.•

A s~rious ~rror •llQW~~ lhttcurref\t.·~ 19 conti~. e~, · . but:IJti · · · ~x~pt , .. : ~~
mHsa e edilor) ar · sld~ · · · . ·. · · · .· · ·~ ·- · · · . ··• .,, · . I . ·;· '. .-.....- ... ,, .. '. . .

;!8m::::i0rn :9~f!::!~~ :;!~~mi~r 0:r::::, :::t~tMI m'~'=! =~~. ~n;:vi!:,~';:
submitted n a batch job by a time-sharinc user, this output it redirected Onto an error llstina file. This
is accomplished by passins the ar1ument ">>tel• to ttw error editot which indicates th•t output
to the standard output unit Is to be appended onto filecode a (the error ffstina file); Redirection of
standard input and output Is a (not necesurily portable) fe•ture of ttw C run-time system, rather then of
the compiler itself.

8. I11voklnc the Complier Phases

The mechanisms for invokins a phase of the compiler, pMtina quMlmts to it, end returnins. a completion
code are operatin1 system dependent. In 1eneral, ttw control proatM wm be rewritten for each system
on which the . compiler runs; on some systems, ttw cont'°' Pl'Oir• Ny ·be replaced by a set of job
control cards (see Figure 1 on p .. e 31). Ttw source of ttw c:ompifer phllles need not be chanced,
however; the operatina system dependencies associated with the invocation of • C proanm are Isolated
in two run-time routines, the startup routine end ttw exit routine. TM· tttrtup routine receives control
from the openti"1 system. establishes the C run-time environment, Ind c.US the C routine named MAIN.
It is the respanslbility of the startup routine to tn the chlr~ter •trina arauments, which may be
provided by the operatins system or written on a temporary file, and arr-.e them as an array of
character strings which is then passed as an ar1ument to MAIN. The exit routine EXIT is called upon •
return from hAAIN; it may also be called directly by a C proaram. The exit routine closes all open files
and returns control to the operatina system. EXIT has one optional qument, a return code, which it
communicates to the ~ontrol proaram as a completion or abort code or by writi"I It onto a temporary file.

On UNIX, a phase of the compiler is invoked by celling the system routine FORK, which creates a new
process, followed by 1 call in ttw new process to ttw system routine EXECL, which overwrites the process
with the desired phase of the compiler .and passes U a list of character strings as ar1uments. The old
process waits for the execution of ttw compiler phase to finish by callins the system routine WAIT, which
waits for the process to die and returns its completion code. ·

On GCOS, two methods are used to invoke a phase of the compiler from the control pro1ram. which runs
in time-sharing. The first method uses a routine SYSTEM, a C-callable lnterf ace to the system call. CALLSS
which can invoke any time-sharing subsystem (program). The character strins ar1vments are passed in
the system teletype buffer (uaina the system call PSEUDO) so that to ttw invoked proaram it appears that
it w.s invoked by a command typed at command ieve~ with those arauments. The completion code is
stored (usi"1 the system call CORFIL) in the .first word of the core file, a ten word buffer provided by the
operatini system for communication betwun a user's subsystems. Ttw diHdvantqe of runnina the
compiler phases in time-shari"1 is that ttw compiler phales, beina tarp proarams, can take a very lar1e
elapsed time to run. Thus this method is used only for the error editor which prints error
messqes on the user's terminal.

- 74 -

The second method uses a routine TASK, a C-callable interface to the TASK system can, to submit a
11rogram as a special, high-priority batch 1etivity. The. elapsed tm. for 1 TASK activity i~ ty,,.;c.aly much
lower than for the same prGp'am run· in time-shtrifta. The character ~itS. If~• ar~, "{4ten ..,to •
htmporary file which is reed by the atartup routine when in batch. fKi·~ cOdt 1-.~ n
follows: if there is no ar1ument to EXIT or the 1rau-nt is 0, EXIT m~i-cf+r~ ... T~ wiU ·
return 1 status code of 0. Otherwise, .EXIT lborts with the COMptttiotft66flii ·h .-t COl»1 t,. abort
code is then returned in the status code by TASK.

. v

The compiler phases can also be invOked as normtt GCOS batch activitits by U. sequence of contr:e>I
cards shown in Fi&ure 1. ~these cards are submitted, IDENT and USERID cards are inserted at the
beginning ot the deck and the charecters '•' and T ere replaced by the,., identif~ W!ld thtf U.ic
component of the source fU. Mme, rfff*fively. Thus if the user is T Md tN. soutce ·in. It 11/T[ST.C',
th~ assembly-lquap outpUt will be written onto thl ... filf it~Hf "'1Jhe .errqr MMM!Mt . will .,. ·
written onto the ffa. 'fl/TEST.!": ·n. ..,..,. ... of tt.r ciedMi· car•·••·~· ()I. tW ~l;t jqb
is performed by a time-shari"I PfOIJ'IM (COMllt.tnd). A. the t..,:n-....... ..,_ far ·a "°""" batch 'jOb can
IJe quite IOft&. tl'Q veriioft 4)1Jhe it .-Oftly f« .._. ...-.-.. _.. -.. • ._.to ~
usina tM other versien of "" •,. · · . · · · ·

-------------------- ·----. ---

