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ABSTRACT

Upper and lower bounds on the inherent computational complexity of
the decision problem for a number of logical theories are established.

A general form of Fhrenfeucht game technique for deciding theories
is developed which invelves analyszing the expressive power of formulas
with given quantifier depth., The method allows one to decide the truth
of sentences by limiting quantifiers to ramge over finite sets. In
particular for the theory of integer additiom em upper bound of space
ocn

2 is obtained; this is close to the known lower bound of nondeterministic

c'n
time 22 .

A general development of decision procedures for theories of product
structures is presented, which allows one to conclude in most cases that
if the theory of a structure is elementary recursive, then the theory
of its weak direct power (as well as other kinds of direct products)
is elementary recursive. In particular, for the theory of the wesk
direct power of <W,+> , and hence for integer multiplication, an upper

2"

bound of space 22 is obtained. The known lower bound is nondeterministic
' f
20 n

time 22 .

Finally, the complexity of the theories of pairing functions is
discussed, and it-is shown that no collection of pairing functions
has an elementary recursive theory.
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Chapter 1: Introduction and Background

Section 1: Introduction

The significance of the distinction between decidable and
undecidable theories has been blurred by recent results of Meyer and
Stockmeyer [Mey73,MS$72,SM73,Sto74] and Fischer and Rabin [FiR74] who
have shown that most of the decidable theories known to logicians
cannot be decided by any algorithm whose computational complexity grows
less than exponentially with the size of sentences to be decided. 1In
many cases even larger lower bounds have been established. In this thesis
we investigate ﬁhe computational complexity of a number of different
logical theories, obtaining decision procedures whose computational
complexities roughly meet the known lower bounds and deriving a
new lower bound whose complexity is very close to the known upper
bound.

Let N be the set of nomnegative integers., Whether a sentence of
the first order theory of N under addition is true is decidable
according to theorem of Presburger [Pre29]. A more efficient decision
procedure given by Cooper [Co072] has been proved by Oppen [Opp73] to
require only 22 - steps for sentences of length n, where ¢ is some
constant. 1In Chapter 2 we present a fairly general development of
Ehrenfeucht games [Ehr6l] which allows us to show that gpace 2 * is

sufficient for deciding Presburger arithmetic.

Let N* be the set of functions from N to N of finite support, i.e.,

*
N ={f: NN | £(i) = 0 for all but finitely many i € N}.
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The structure < N',» > of positive integers under multiplication is
* _
isomorphic to the structure < N , + > (the weak direct power of <N, + >)

where addition is defimed component-wise. The first order theory of
this structure is kmown to be decidable by a theorsm of Mostowski [Mos52],
Mostowski's procedure, however, is not elementary recursive in the

sense of the following definition:

Definition 1,1: An elementsry recursive fupction (oo strings or integers)
is one which can be computed by some Turimg Machine within time bounded

above by a fixed composition of exponemtiasl functions of the lemgth of
the input. (This is showm by Cobbam [Cob64] and Ritchie [R1it63] to
be equivalent to Kalmar's definition [cf. Pet67].)

In Chapter 3 we use the technique of Fhrenfeucht games to derive
some general results about the theories of weak direct powers wvhich
ensble us to obtain a new procedure for deciding whether sentences are
true over < N*, + >. Our procedure can be implsmented on a Turing machine

,em 2c:'n

, " |
2 tape squares (and hence 22 steps) on

vwhich uses at most 2
sentences of length n. As a corollary we obtain the same upper bound on
decision procedures for the first order theory of finite abelian gi‘oups.
Recent results .of Fischer and Rabin [FiR74] show that for some comstant c' > 0,
any procedure for the first order theory of < N*. + > requires time

c'n
even on nondeterministic Turing machines. Thus (see Sections 2 and 3)

2
22
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the worst case behavior of our procedure for < N*, + > is assymptotically
nearly optimal in its computational requirements,

In Chapter 4 we extend the methods of Chapter 3 in order to obtain
general results relating the complexities of theories to the complexities
of their weak direct powers and direct products, thereby obtaining
computational versions of results of Mostowski [Mos52] and Feferman
and Vaught [FV59]. In particular we show that the theory of the weak
(or strong) direct product of a structure is elementary recursive if
(but not only if) the theory of the structure is elementary recursive and
if another condition holds; this other condition says roughly that not
too many sets of k-tuples can be defined in the structure with
quantifier depth n formulas.

Chapter 5 is concerned with the computational complexity of pairing
function structures. A pairing function is a one~one map p: N X N * N,
and the associated structure is < N,p >, Although the theory of the
set of all pairing functions is undecidable and the theories of some
individual pairing functions are undecidable, Temmey [Ten74] shows
that many commonly used ones have decidable theories. Our main result
is that no nonempty collection of pairing functions has an elementary
recursive theory. In fact, for some constant ¢ > 0, the theory of2
any mnonempty collection of pairing functions requires time 22'.. height cn
to decide.

In Section 2 of this chapter we present the definitions and basic
theorems of automata theory needed to clarify the basic notions of

upper and lower time and space bounds used in the following chapters. 1In
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Section 3 we discuss the reducibility techniques which allow us to
achieve many of the upper and lower bounds. Section 4 consists of
a description of the notation and fundamental concepts of mathematical

logic which will be needed in the rest of the thesis.
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Section 2: Automata Theory Bacggrg und

We shall consider a version of Turing machi:igg,-ﬁh}p&i?f may bc_z either
deterministic or nondeterministic, onme tape, one:head automata,
with -a finite tape alphabet I, For a rigorous.definition of these.
machines the reader can consult [Sto74, Sectien-2.2]. For most ef our
purposes, however, the exact details of the definition chesem do not
matter very much, so we provide only an informal descriptiom here,

The tape is one~way infimite to the r;lght and: the -automaton starts
in the initial state with its heaﬂ on the leftmost' square of the.fape.
At any step, depending on the current state ‘and the current contents of
the tape square scamned by the head, the automaton can write a new
member of Zr on that square, move the head right or .left, and go into a
new state. The Turing machine is deterministic. if its actions. at any
step are completely determined by its :sfate and by thé contents of the

square pointed at by the head. If the machine .in pondeterp

there may be a finite set of permissible actions,;mlsi~ble.'al:; 3Ry moment.
Thus, the deterministic Turing machines form.a subset of the nondeterministic
" ones, . : cor S i

A (deterministic or nondeterministic) Z-automaton T has 2 as the tape
alphabet; at any moment, all the symbols on the tape are from the
alphabet Z, B € Z, Let E* be the set of all finite sequences, or
"strings" of elements of X and let Z+ = Z* - {A} where A .is the empty
string. If y € E+, then I accepts "y if there is-some sequence of possible
steps of M with the tape squares initially containing the string v¥¥ ...

and the head scamning the leftmost symbol of 'y, that ends with an
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accepting state. Tﬁe set L(M) = {y € Zd' ] M accepts y}] is called the
language recognised by R.
We now define what we mean by the time and space wsed by Turing
machines. If M t» & (nowmdeterministic) Z-Turing machina which accepts
Y € Z by sowe computation eoutsinimg at moBt n steps then ve say that
M accepts y within time n. If I accepts y by some mum&m diring.
which the head visits at most n differsmt tape sguares them we say that
T accepts y within space n. Let L = L(R) and let £: ¥ + N. Then we
say T recognizes L within time (space) fi(n) if for every v € L, BB
accepts y within time @W&) £ (|'y|:=»):m hﬂ is the lemgth of the
string y. NTIME(f(n)) - (MSPACE(£(n))) is the set of lamguages (vhare
by language here we mean: a subset of g for some .&vhdnt Z) each of
which is recognised by some nondetermipistic Turing machine within
time (space) f(n). DIIME(f(n)) and DSPACE(f(n)) are dafined similarly
with respect to deteyministic mechines. .
In order to compere the upper and lower Bounds for the computatiomal
complexity of the theories we shall considaer, it is necesssry to undexrstand °
certain relationships known to hold between time and space for determimistic
and nondeterministic computations. (These uimtert sre discussed more fully

in [Sto74}.)

Fact 2,1: Let f: N~ N,
A. Nondeterministic versus deterministic time
a) DTIME(f(n)) S NTIME(f(n))

b) NITME(£(n)) < bTDE( ™).
ceN
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B. Nondeterministic versus deterministic space
a) DSPACE(f(n)) S NSPACE(f(n))

b) NSPACE(£(n)) S DSPACE((£(n))?)

C. Time versus space
a) DTIME(f(n)) < DSPACE(f(n))
NTIME(f(n)) < NSPACE(f(n))

b) NSPACE(£(n)) & UpTrME(cE(™)
ceN

All of Fact 2,1 is relatively straightforward to prove, with the
exception of B.b. B.b is proved by Savitch [Sav72]. By (B), if we
are discussing a lower or upper bound of the form '"space 2™ for some
constant c" it is unmecessary to specify if we are talking about deterministic
or nondeter?inistic space, Similarly, we can talk about a bound ofbthe

2.‘. height cn "
form "2 for some constant ¢ without specifying if we are

talking about time or space, either deterministically or nondeterministically.

Each of the gaps between 2) and b) in A, B, C above represent

important open questions of automata theory.
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Section 3: Using Redueibilities to Prove Upper and lower Bounds

Definition 3.1: Let El and 2, be finite alphabets and let L, < Z:

and L, < E;. Then L, < , L, if for some function g: 2'14'-0 Z;':

1 *ps Do
I) for all yezl‘“, YEL =gy €L, and

I1) there is some Turing machine which computes g within time a

fixed polynomial in the length of the input and within space linear in

the length of the :l.npl;ll:‘.‘r

If S is a collection of languages over 21 (s < p(zl)), then we say
S = p'sz if L < plL2 for all L € 8.

We now state Lemma 3.2, which 18 a very powerful way of proving
lower and upper boumds., For a proof (whieh is really very simple) of
this fact and for a very thorough discussion of reducibilities, see

[Sto74].

Lemma 3.2: Say that 1‘1 < szz. let f: N9 N, If

DTIME(£(n)) DTIME(£(cn) + p(n))
DSPACE{ £f(n)) DSPACE(f(cn) + n)
L, € NTDE(E()) * ™ L1 € § NroaE(£(en) + p(n)

NSPACE(f(n)) NSPACE(f(cn) + n)

for some comstant ¢ > 0 and polynomial p(mn).

f A deterministic Turing machine computes g if when it is started with

Y¥¥ ... on its tape, y € » and its head on the leftmost square, it
eventually halts and g(y) is the string on the tape to left of the head.




-13-

Contrapositively, if

DTIME(£(n) + p(n)) ~ DTIME(£(cn))
DSPACE(£(n) + n) . ( DSPACE(£(cn))
L, ¢ NTTME(E(m) + p(m) TP L2 € ) wrrvE(£(em))
NSPACE(£(n) + n) NSPACE(£ (cn))

for some constant ¢ > 0 and some polynoﬁ:ial P

An example of the way we use Lemma 3.2 is the following: say that
2°"

we have languages L1 and L, such that we kmow that L2 € SPACE(2™. ) for

2
sn
some constant ¢, If L1 s pLLZ then we can conclude that L‘1 € SPACE(2™ )

c'n
for some constant c. If we know that L, ¢ NTIME(Z?" ) for some

constant ¢' > 0, and if L, < szz,- then we can conclude that
pc'n s
L, ¢ NTIME(2 ) for some constamt c¢' > 0. This latter idea is often

used in conjunction with Lemma 3.3,

Lemma 3,3:(see[C0o73,SFM73Sei74],) Let f£: N # N be one of the functions
’ 2 ,

n [
n 2 . .
2n, 22 , 22 s OF 22 }elght D Then there exists a language L such that

L € NTIME(£(n)) and L € NTIME(£(n/2)). )

n 2" . '.5height n
Theorem 3.4: Let £f: N * N be one of the functions 2n 22 ,22 or 22 -

and let L, & E (for some E ) be such that NTIME(f(n)) < PELO. Then for

0
some constant ¢ > 0, L, ¢ NTIME(f(cn))

T It is easy to see that if L ¢ NTIME(f{n)); then any nondeterministic

Toring machine which recognizes 1. takes time at least f(n) on some
Y € L of length n, for infinitely many n.. :



14~
Proof: Say that NTIME(f(n)) = ll‘o By Lemma 3.3, let L be such that

L ¢ NTIME(£f(n/2)) and 1 € NTIME(f(n)). So L = pLLﬂ. Py Lemma 3.2,

L0 ¢ NTIME(f(cn)) for some comstant c > 0. : k O

A typical way Theorem 3.4 is used is the following. Fischer and
Rabin [FiR74] show that 1if TH is the theory of integer addition, then '

n , cn
NTIME(2Z ) < 4T, concluding that TH ¢ wrE(2° ) for cemstant c.

In Chapter 2 we show that TH € SPACE(ZZ ) for some constant c’, and

1
‘ ,c'n
hence that TH € D'I'I!!Ii:(z2 ) for some constant c'.
A natural question is vhether or not we can get a DTIME upper
bound for TH and an NTIME lower bound for TH which are closer to

[}
22c b ocn ’ : ’
each other thamn are 2° . and 2 « If we could, this would settle

an importamnt open question of automata theoty. ) ror instance, say that
we could show that TH € mm:(zz ) for some constant c', Since

o€V
26
N'mm(zzn) < Jc'1'11 Lemma 3.2 would imply that n'me:(z ) < U n'rmz(z ),
_ _ o

narrowing the gap 1n Fact 2.1, A. ’I‘his_,,would also contradict the popular

conjecture that (for mat functions f that are encountcred) thete is a
language in NTIME(£(n)) wh:lch rgnites DTIHE(c (n)) for some constant c.
The reason therefore that we have not been able to narrow the gap between
our DTIME upper bound and NTIME lower bound for TH, is not: becauoe we do
not mdetctcnd the aqmmive power md other propertiu of m, but
rather because we don t mderstand mmy baic propert:ies of the very

notions of deterministic and nondeterministic computation,
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Section 4: Mathematical logic Background and Notatiom:

Most of the notation of mathematical logic that we shall use is
fairly standard; the reader can find preéise definitions of those
concepts not defined here in [Men64]. |

‘£ will always represent a language of the first:order predicate

calculus with a finite number of relational symbols &1, Bys ooes By

where R, will be a t ~place formal predicate for 1 <1 <4 For

technical convenience, & will ﬁot contain function symbols. Sometimes
we will choose & to have a constant symbbl'g as well. The formal

variables of & are written as Xgs %q5 xlO"xlli ees; that is, :ne 
subscripts are written in binary. For expoéitorynéonveniénqe, we will refer to

distinct formal variables as x,xo,xl,ng ceey y,yo,yl,‘.;., "io’zl’,""

Vo WgsWys ey x',y',z', ... .

The atomic formulas of £ are strings of the form'gi(vl,vz,;..,vti)

" represent (not necessarily distinct) formal

where VysVgs cees V
i

t

variables; if £ has a constant symbol e, then each v, 1 < j < i, can

j’
represent either a formal variable or e. We define the formulas of £

recursively as follows: Atomic formulas are formilas; 1f F, and F2'are

formulas and v is a formal variable, then’'each of the strings
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E VEY e
(Fy A Fy)

(Fp 2 Fp)

(F19¢ FZ)

IEVF1

VVF1

is a fotnula.f We use the usual notions of an occurrence of a
variable in a formula being bound or. free, and define a sengence of

£ to be a formula in which there are no free occurrences of variables.

TR

A structure for £ is a tuple 8 =< g, Rl, coey RL > where S is a

ty
set and Ri c S

for 1 <1< £; if £ has a constant symbol e, then a
structure for £ is <S§ R,, ..., R,, e > where e € S. We call S the
, - ¢ .

domain of 8, . If F is a sentence of £ we will use the usual notion of

F true in 8 or 8 satisfies F or F holds in 8, and we will write this

S + F. Sometimes we will say "F is true" or "F holds" or merely assert
"F" when 8 is understood. TH(8) = the theory of 8 = (F_l F is a sentence

and 8  F}. If P is a nonempty colleetion of structures, then define

When writing formulas we will omit parentheses when it will not lead to
confusion.
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TH(P) = theory of P = /D ().
8P

Our 1gnggqge»£ would haye been jusf as pawerful h#d“we ief; out -
much of our logical notation. For instance x Vv & iququivglent‘to
~x »'y and VxF {s equivalent to ~Ex~F, It is only f;r convenience
that we h#ve made : as lArge as we havé:
B We‘éayva formuld_F is a ﬁboiéan coﬁbi;gtion of Subfqrﬁulgs
Fy» Fyy «ee, F 1f F is obtained by combining F,, F2, eees B
using perhaps A, V, ?,&, ~ but no quantifiers. Clearly every formula

is equivalent to a Boolean combination of formulas, each of,ﬁhich begins
with an existential quantifier.

~We now define annotated formulas in order to be able to talk about
'substituting members of a domain for free occurrences of variables, and
in order to be able to talk abouf the relations defined’by formulas. Let
F be a formula and say that we have a sequence of formal variables -

containing (not necessarily exclusively) the variabiés which occur

freely in F, say Xys Xgs eees Xy We define the anpotated fg:mula,

F(xl’ Xyy eeey xk) to be, formally, the ordered pair consisting of F and
the sequence‘xl, Xps sevs Xpo Informally, vhen'we»write F(xi, Kyy aees xk)
we think of ourselves as associating with the formula F the sequence

Xys Xps eees Ko We will usually use F and F(xl, Xy, ;.;, xk) inter~

changeably, and call them both formulas, as long as this association is
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understood; we will never associate two different sequences with the
same formula.

Say that F(xl, Xps wees xk) is an (annotated) formula and 8 is a

structure with domain S, and a, € S. By F(al, Koy eees xk) we will mean

1 for free occurrences of xl

the formula obtained by substituting a
in F. Note that this is technically not a formula of £ but rather a

(non-annotated) formula in the language &' obtained by adding constant

symbols to &£ for every member of S, If 815 895 eess 8 € S, then
F(al, 8ps eees ak) is defined similarly, and we write
8 F F(al, 895 eees ak) if F(al, 8ys sees ak) is true in 8.
For k > 0, we use ;k to represent the k~tuple (xl, Koy =ees xk), ;k

to represent (al, Bys eees ak), (;k’ b) to represent (al, gy sees 8 b),

etc. Thus F(;k) will be used instead of F(xl, Xgs sers xk), etc. ek

and gk will stand for the k-tuples (e, e, ..., e) and(e, e, ..., €).

Sk is the set of k-tuples of members of S. (Sk is isomorphic to the set

of functions from {0, 1, 2, ..., k-1} to S.) For k = 0, Sk is taken to
be the singleton set containing the empty set, and Zk’ ek, etc.,

denote the empty set. However, we take (;k,b,c) to mean (b,c) when k = 0, etc.
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If we write F(E#) when k = 0, then F is8 a sentence;,F(;i), F(Zk), etc.,

are in this case no different than F itself,

k

If S is a structure with domain S and A € § and F(;k)‘is an

annotated formula, then we say F defines A in 8 if
A= (;&_twsk ‘ . F(Eﬁ)}. We say "F defines A"if 8 is understood.
More generally, say that we are interested in a particular nonempty

class of structures P, By a k-place property G we mean a function which
assigns to each structure $ € P a subset of Sk (where § is the domain of
8); we will usually refer to the value of G on'$ &s the relation G

restricted to 8. 1If ;# € Sk, then we write 8 F C(;k)‘to mean that ;k €

the relation obtained by restricting G to 8. When G is>a'property ve
sometimes write G(;ﬁ) to indicate that G is a k-place propérty. 1f

g(;ﬁ) is a formula, we say that G defiqesAG in P if in every 8 €P,

G defines G restricted to 8. We say "G defines G"‘when‘P is understood.

Formulas F, and F, are equivalent in 8 if for some sequence
Xps Xgs eees K of variables, the free variables of both F, and F, are
from among Xys Xgs eees Ky and the annotated formulas Fl(;k) and FZ(;k)
define the same subset of Sk. F1 and F2 are equivalent in P if they are

equivalent in every member of P. We say "F1 and F2 are équivalent“ to



mean with respect to the class of all structures, unless 8 or P
is understood.

~Since we shall be interested in Turing machines whose input
strings are sentences of £, we have to have a precise notion of the
alphabet used to write formulas and a precise rnotvion of the length of

formulas. Our alphabet consists of T = {(, ), A, V, #,&, ¥, ¥V, R, x, 0, 1,]

(where 0 and 1 are used to write subscripts of variables and relation
symbols); if e is a symbol of &£, then e € T also. If F is a formula, then
by the length of F, written IFI, we will simply mean the lemgth of ¥ as
a member of I . |

Another usage of the notation F(xl, Xgs eees xk) ser_Ves to

emphasize that the free variables of F are from among X1s Xps ooy Xpo

For instance, the more mmemonic notation ‘.'!xkF(;k) will sometimes be

used instead of EkaF. If we write IF()_:k)I we simply mean IF

Notation: If o is a string, then lal is the length of a. If o is a set,
then |a| is the _cardinality of o. 1f o is an integer, then |a| is the
absolute value of «. N+ is the set of positive integers. For i € N+,
Qi will always represent a quantifier, i.e., either V or I, All

logarithms are to the base 2,

Definition 4.1: A formula F is in prenex normal form if it i8 of the

form lelev2 kakF' where F' is quantifier free and Vis Vo eees Vi
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represent formal variables.

Theorem 4.2: Every formula F is equivalent to a formula G in prenex

normal form such that G has at most lFI quantifiers and is of length

at most |F -loglF . Furthermore, there is a procedure (i.e., Turing

machine) which given F computes G within time polynomial in IF .
Proof: There is a standard procedure for converting a formula to one in
prenex normal form [Men64]. The procedure basically just ''pulls out"
the quantifiers to the front, except that first the names of certain
variables have to be changed in order for the procedure to produce a
formula equivalent to the initial one. The procedure does not change
the number of quantifiers, so G has at most |F| quantifiers. F has at
most IFl occurrences of variables, sé if these are given all different
names (in the worst case) and the binary subscripts are chosen to be
as short as possible, then F grows by a factor of at most log ‘Fl when
put in prenex normal form. This procedure can be checked to operate
within polvnomial time. o
Thus, to show that a theory can be decided within space f(cn) for
some constant c¢, where f grows faster than polynomially, it is
sufficient to give a procedure which decides the truth of prenex normal
form sentences of length at most n log n with at most n quantifiers,

within space f(cn) for some constant c.
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Definition 4.3: If F is a formula, we will write g-depth(F) to mean

the quantifier depth of F. Formally, if F is an atomic formula then

q-depth(F) = 0; if F1 and F2 are formulas then

- \/ = - = - = - =
q depth(F1 FZ) q depth(F1 A Fz) q depth(F1 - F2) q depth(Fléa F2)
Max{q—depth(Fl), q-depth(Fz)], q-depth(~F1)= q-depth(Fl),and

q-depth(HvF1)= q—depth(VvF1)= 1+ q-depth(Fl).
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Chapter 2: Ehrenfeucht Games and Decision Procedures

Section 1: Introduction

In this chapter we present a development of the Fhrenfeucht game ap-
proach to deciding logical theories. This approach was originally
described in [Ehr61], and in particular the reader may wish to consult
this source to 1éarn about the relationship to game theory. A discussion
of game theory also appears in work by Richard Tenney [Ten74,Ten74']. Tenney
uses Fhrenfeucht game techniques to decide the theories of certain
palring functions and to decide the second order theory of an equivalence
relatién. Neither Ehrenfeucht nor Tenney explicitly describes these
techniques in generality., We shall present a development in this chapter
which, although not completely general, is géneral enough to handle a
wide varilety of cases. Where possible we will describe our decision
procedures in terms of bounds on quantifiers, so that to decide the truth
of a sentence one need only decide the sentence when each quantifier is
limited to range over a particular finite set. This idea, which will be
carefully described in the next three chapters, is also used by Tenny,
Ferrante and Rackoff [FR74], and Ferrante [Fer74]. 1In addition, as part
of our development of the Ehrenfeucht game approach we shall characterize
it in terms of the quantifier depth of formulas.

Section 2 of this chapter consists of a general development of
Ehrenfeucht games. Our approach is somewhat different from that of
Ehrenfeucht or Tenney, but several of the basic theorems and ideas come

from these sources. In Section 3 we derive a decision procedure for
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the first order theory of integer addition as a corollary of our

general development. In Section 4 we discuss an important open

question relating the complexity of decision procedures to the index

of the equivalence relation which characterizes Ehrenfeucht games.
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Section 2: The Ehrenfeucht Equivalence Relatjon and Ehrenfeucht Games

Let & be a fixed langué.gerof the fifst ofder pfea;!.cate calculus
with finitely many relational symbolsﬁl,ﬁ_z,... ’&l. where @1 is a t, - |
place formal predicate for 1<i <4, Also, let & have a single’ const_:énf
symbol e. Let 8=<S8, 81’82""’R£’é> be a fixed Bstructure for £,
(Actually, the constant symbol e plays no fmportant role in this chapter
but 1s included so that we can talk about weak’ direct powers  later.)
In addition we will assume we have a norm on 8, by which we mean a
function || |]|:5<4N, and we will denote the norm of a€S by {all.

If 1€ N, then we write a<1 to mean ||a}] =i. We iptroduce this concept
of norm in order to describe simple decision procedures which use space
efficiently (and without a significant time loss). - However the reader

should note that many of the theorems below make no mention of the norm

and are independent of this notion. o
We now define the Ehrenfeucht equivalence relation,

Definition 2.1: For all n,k€N and all ;k’r’ke Sk, define ;k = Sk 1£f
for every formula F(;‘k) of gq-depthsn, F(Sk)_‘andA F(Sk) are either both

true or both false (in 8).

Remark 2.2: For each n,k€EN, is an equivalence relation on Sk.

n
Ehrenfeucht originally defined ‘f by induction on n; his definition
consisted of a combination of our definition of ﬁ_;,'toget.hgr with what

we call Theorem 2.3. We will prove this.theorem later.

- '— k ) E -
Theorem 2,3: Let n,k€ N and ak,bkES - Then g = b«

1) For each & €S there exists some b
and 2) For each b

Kl €8S such that fk +1

E )
1 E S there exists some a-k|1 S such thﬂt akll

k+1°

BH B0
o't o'

k+
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Lemma 2.4: Let n,k €N and ;k,iﬁkE s* such that

[l ]

1) For each _a.k+1€_S there exists some bk+1 €S such that a k+1°

=11}

k+1

o't

and 2) For each b, .. €S there exists some a, 4;16 S such that ;ic+1

S

k+1 k+1°

Then 3 ntl bk'
Proof: Say that 1) and 2) hold. Since every formula is equivalent to
a Boolean combination of formulas each of which begins with an existential

quantifier,‘it is sufficient to prove, for F_(;(k) of the form 3xk‘._1 G(;‘k-ﬂ)

~where gq-depth(G) <n, that F (;k) ®F (Bk).

So assume that F(;k) holds. Then let & 1 €S be such that G(;k+1)
holds. By 1), let by, €S be such that &, = b ;. Stnce Glay,,) is
true, G(l-)k+1

) is true (by definition of %), 80 F(l.:k) is true. By
symmetry, F(;k) holds if F(ﬁk) holds. O '

Definition 2.5: For each n,k€N let M(n,k) be the number of equivalence

classes of :51 restricted to Sk.

Lemma 2.6: Let n,k€N. Then M(n,k) is finite and for each S.k€ Sk there
is a formula F(;ck) of q-depth n such that for all Skésk',

SFF(Ek) @ l-)k = ;k (i.e., F defines the t-:; equivalence qlasa of :tk).

Proof (by induction on n): If n=0 and ;kESk, we can clearly take F(ik)
to be a conjunction of atomic formulas and negations of atomic formulas.
Since an argument place of an atomic formula can be occupied by either a
formal variable or by e, the number of atomic formulas in which at most e,

4 t
X, 3%),e 00 ,% Occur is 1?%_(1:—'—_1) 1, so

_2_0'; (k+1)t1
M(0,k) <2171 '
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Now assume the lemma true for n (and.,g_ll k). We shall prove it for

n+l (and k). Let Fl(;‘k+1) ’F2(§k+1)""*F'ﬁ(n,k-ll-l)(;k+l) be a sequence of

formulas of gq-depth n such that for each ;k+1E Sk”‘ there ‘exists an i,

1<1i<M(n,k+l), such that F definee tbe ’ii‘equiva’r}e?ee eless of At

i
For each <-: € sk define

w(c )={1 | 1<1<M(n, k+1) and kablF (ck’xk+1) 13 true] " We sha}l show

that for all B2, €5%, B 2 & © WEIHE). Thus the formula F(h)-
) Fo(x )] A R L F(
1EWE,) et Tt e 1¢W( %) 4171 B

lsiﬂ'l (n k+1 )

n+l.
Clearly if b

defines the 71 equivalence class of ck

K wi-l k’ then W(hk)-W(ck) sinee eaeh formula

,ﬁ

the fo llowing Claim,

_Ql-g_igz If W(bk)=w(c ), then for each ¢, .. €S there exists some b, . G S

kt+l

such that ck - bk+1 (and by symetry, for each bk-l— E s there' extsts ''''
)" R

some ck €s such that c
Proof of glaim: Say that W(bk)-w(c ) and c

~

+1 k+l 1 |
€S, et 1, 1<i<M(n,k+l),

iy

k+1
be such that F, (xk+1) defines the ﬁ equivalence class of c

k+1° k+1
is true, 80 Zxk+1 Fi(ck’xkﬂ) 1s true, so 1€w(ck) So iEW(bk)" This

F(c

means that '.':ka+1 Fi(bk'xk +1) 1s true, and therefore we can find bk 1 such
that. E‘i( k+1) is: true, . Sinpe F,. defines the = equlmce clus of ckri—l'

By the Claim and Lemna 2, 4 W(bk’)uw‘(ck) @ bk n+1 k dete that the

equivalence class of ck is determined by W(ck) wh&eh is a subSeI: of
M(n,k+1)

n—fl

(1,2,... ,M(n,k+1)}. So M(n+1,k) <2 This and the bound on M(0,k)

i
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5 (0#)
. } height ntl

imply that M(n,k) $22 for some constant c, 0

Remark 2.7: There are structures $ such that
+k v
2n

. }height €n
M(n,k) 222 (for some constant € >0), so M(n,k) is not in
general bounded above by an elementary recursive function FOr many

structures, however, M(n,k) grows considerably more slowly.

Definition 2,8: Let H-N3 <N be a ftmction which is nondecreasing in each _
" argument., Then $ is .H....‘&!.‘ﬂ.ﬁ iff for alln kEN and all F(xk_ﬂ) of
q-depth <n and all a.kES if ﬁick+1F(ak xk+1) is true in 8 then ’
[ka+1<l{(n k, Mi§k{“a H}) }F(ak,ka_) is true in 8, (We tcke qu ¢

to be 0.) s

Remark 2.9: If our norm on S is the identically 0 function and HN’S-DN |

is the identically O functi.on then clearly 8 1s H-bounded. This méanvs’ that
often when we have a theorem which involves- the concepts of norm and:
H-boundedness, we can immediately obtain a simpler theorem which doesn t
mention those concepts; sometimes, as is the case w:lt:h Lemna 2.10,. nh&.s

new result is still interesting.

Lemma 2.10: Let H:N' 4N be such that 8 Ls Hebounded. Let n,k €N and
T e om ' o ‘ '
let a ,b €S" such that a_ T—l by - Then for eacha  , €3 there exists

€ ' =
some bk+1 S such that ak+1 k+1

and such that
opyy || =80k, e (115, 11).



=29~ i

- - k - -
Proof: Let ak,bRES such that a, = b . Let ak+1€S. By Lemma 2.6

there is a formula F(;ck_l_l) of q-depth n which defines the = equivalence

n

class of 4 Since Exk+1F(ak’xk+l) is true and a, ntl bys

b - €
E{le(+1F(bk,xk+1) is true. Since 8 is H-bounded, we can choose bk+1 S

such that F(b, ..) is true and ||b, . .|| SH(n,k,llsfliusck{HbiH}). But

F(b

k+1 k+1

k+1) implies b ak+1 O

Proof of Theorem 2,3: Theorem 2,3 follows immediately from Lemma 2.10

(keeping in mind Remark 2.9) and Lemma 2.4. O

H-boundedness of a structure guarantees that quantifiers in a
formula ranging over all of S can be replaced by quantifiers ranging
over elements of S whose norms are bounded by a function determined by H.

This is made precise in the following lemma.

Lemma 2.11: Let H:NB.;N be such that 8 is H-bounded. ZLet n,k€N and
let lel Q,%, ...Qkxk}?(xk) be a sentence of & with gq-depth <n+k, i.e.,
g-depth(F) <n. Let E‘n.keNk be a sequence such that miZH(n+k-i,i-1,1¥__z]néi{mj})
for 1<1i<k,
Then lel Q'ZXZ"'QkxkF(xk) is true &

hy < en e < X .
(lel ml)(Q2x2<m2) (Qkxk m.k)F(xk) is true

Proof: Consider the formula sz2 Q3x3 ...QkxkF(xk). Because o is
- ] > - ' - .
H-bounded, if m, H(n+k-1,0,0) then lel(QZXZ"‘Qkxk F(xk)) is equivalent
< -
to (le1 ml)(QZXZ"'QkxkF(xk))'
Now for each a €S such that ||all <m,, consider the formula

Q3x3 an4 .e .Qkxk F( 8,X)5Xg,00 e ,x.k). Because S8 is H-bounded, if

m, 2H(n+k-2,1,m1) then szz(Q3x3...Qkx.kF(a,xz,x3,...,xk)) is equivalent



to (sz2 <m2) (Q3x3. .o QX F( 8,KyXqge s ,-xk) ). Hence,
(lel <m1)Q2x2. . .Qkxk F( xk) is equivalent f:o
(Qpx; <m, ) (Qx, <m))yky-- - Q& FIxp). |
By k-2 additional applications of the Heboundedness of 8, we arrive

at Lemmg 2.11., O

We now demonstrate the existence of a general method of proving

H-boundedness.

Lemma 2.12: let H:NB-'N be a function which is nondecreasing in each
argument, and say that for each n,k € N we have an egquivalence relation
En on Sk satisfying the following properties:

1) For all k€N and all Sk,ﬁkesk, a By b = a §b .
and 2) If n,kEN and 3,6, €s* such that & £ B, then for each
a €S there i3 some LI ES such that ak+1 B bk 1 and such that

by ! sn<n,k,1g§k( | Ibil .

THEN

't

- - k -
I) For all n,k €N and a.k,bkES » & E

5_Pl
-1l
=2}
=
.

and II) 8 is H~bounded.

Proof:

rh

of I) by M on n: I) certainly holds if n=0. Assume I)
is true for n; we will prove it for n+l.

Say that a E ; we wish to show that ' By Lemma 2.4
" a‘k n+1 k

n+l k
and the symmetry of E b1 it is sufficient to show that for every 8y +1€S
there is some b, . €S such that ‘a‘m_1 =b, .4+ So choose ak+1€S' By 2)

there is some b, € S such that a.w_1 E bk+1' By the inducti on hypothesis,
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et Dk’

Proof of II): Let F(;:k+1) be a formula of q-depth <m and let ;.kEsk

be such that"&kﬂF(ak’x!&l) is true. Le:;;;.akﬂ_’_l €S be such that F(av.H_l‘)f‘.
holds., Since ;R E o+ ;k’ condition 2) »;ﬁplia'thec we can find some

a,,, €S such that a . E (s,a ) and such that

‘ ' . < k : : - . 7-

[1ay 11 H(n’k’1ﬁna§<(”‘1””‘ But by 1), ay,; E- G etle) @

Gy 2 Goal,) = Fa,al,.) holds. So8 {s'H-bounded. O

By applying Remark 2.9 to Lemma 2.12 we ‘1mediate‘1y obtain Lemma 2.12'.
Lemma 2,12': Say that for each n,k €N we have an equivalence relation En
on Sk satisfying the follow:lng'properties:

1) For all k€N and all a.k,kaS » & Eg b, = a §b,.

and 2) If n,k€N and ak,kaS such that a E b

01 k’ then for each

a’k+1€ S there 1s some bk+1€ S such that a1 En bk+1'

- - k - —-
THEN for all n,k€N and ﬁc’bk'es » a E bk > a = bk.

We loosely define an "Ehrenfeucht game (abbreviated E~game) decision
procedure" for TH(8) to be one that involves defining relations En and
proving that the conditfions of Lemma 2.12 or 2,12' hold., This will be made

“clearer in the examples of Séction 3 and Chapter 3. 1In Section 4 of this
chapter we present a general discussion of the computational complexity

of E-game decision procedures.

Lemma 2.13 shows how H~boundedness implies bounds on the norms

of members of the S equivalence classes,

Lemma 2.13: Let H:N3-0N be such that 3 i{s H-bounded. Let n,k€N and

let mkENk be a seguence such that'mi ZH(Mk-i,i-l,llsd?:éi{mj]) for

U E R 0T A L S e PR e D Ly S e e
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1<i<k, Then for each ;kE Sk there is some BkE Sk such that e-lk 151 K

and Hb” <m, for 1sisk,
i i

Proof: lLet n,k,;\k, and ak be as in the statement of the lemma. By

Lemma 2.6 there is a formula F(;;k) of g-depth n which defines the ﬁ

equivalence class of a, . Since F(ak) holds, Hxl E{xz...ﬁx.kF(xk) is true.
In < < .. < y . . .

So by Lemma 2.11, (&Ix1 ml)(sz\mz). (E{xk\mk)F(xk) is true This

means that for some Eke Sk, F(‘Bk) is true and HblH <m, for 1si<k, [J
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Section 3: An E-Game Decision Procedure for Integer Addition

We now present some applications of Section 2. For the rest of
this section let Si“be the language of the first order predicate calculus
with the formal predicates v, +V, =V, and vV,Sv, and the constant

symbol 0 (where Vy:Vy, V4 Tepresent formal vgxiablqp)»

Definition 3.0: Let Z be the structure < Z, +, <, 0 > where Z is the set
of iﬁtegers and where + and < are fhe ﬁsu;i intégef‘éddiﬁion and order.
If a € Z, define ||a|| = ]al = abéolute‘Q#lué‘of a.

| We will obtain a theoretically efficient.decision procedure‘for TH(Z)
using reéults of the previous section. Al;hough‘ﬁe will ‘be using an
Ehrenfeucht game approach, many of the ide;s we shall use come from a
quantifier elimination decisioﬁ prbce&ure for TH(Z),obtaiﬁed by Cooper
[Coo72] and analyzed from a complexity viewpoint by Oppen [Opp73], We
choose this example because it illustrates our thesis that all known
quantifier elimination procedures can be converte& to E;game deéision
procedures without significant loss of time and sometimes with a saving
of space. Some of our results about TH(Z) appeared in preliminary form
in Ferrante and Rackoff [FR74]. | |

Although our procedure for TH(i) has about the same time complexity

as Cooper's, it only requires a logarithm of the space used’ﬁy Cooper's

procedure.

Definition 3.1: If @, b, c € Z, then a ~ b mod c.(a is equivalent to

b mod ¢) if ¢ divides a - b, If A'is>ain6nempty Finite set of integers,

then lem A = the least positive integer which every non-zero element of
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4
A divides.
Definitiom 3.2: Let a, b € Z and let d € Nil Then we write a = b
= | - B Ca
if either 1) a=b
2)a=2d and b2d
or '3) as -d and b < -d.
" When ve talk about = holding between objects one of which is the
’ d
cardinality of a set, we will often omit the verticnl linas indicating

cardinality. For instance, if A and B are sets, wa will write A=B8

d
and A = 5 instead of |A| = |B| and |A] = 5.
d d d
Lemma 3.3: ‘#ét a, b€ 2 and let d € E+. fhen a : §'§ :
for every ¢, -d <c <d, az ¢ @‘b zc.
Proof: Left to the reader. ' C]'

Definition 3.4: Define a sequence of sets of integers VO 0’ Vl, 1,...

as follows: V, = (-2, =1, 0, 1, 2). IfV, has been defined, define
- ( %év'l 5 =1lemV,; v, v' €V 5 v #0) and define

v =YV1U{a+b | a, v €vy).

i+l

Definition 3.5: Let n, k € N. Then define the equivalence relation

E on Zk as follows: Let ;k’ ; € zk, let § = lem V .

t We use this nonstandard notation for equivalence mod ¢ 8o as not to cause
conflict with other notation wve use., »
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Then ;'k En Ek iff for every ;k € (Vn)k:

k k '.2
1) 2 v,a, ~ Evi'bimodé

=1 T 1 4o

k

= X v,b

S
and 2) Z v,a P4

i=1 62 i=1

Lemma 3.6: Let k € N and lét ;#, 3% € Zk such that ;k’EO E%.

Proof: Say that ;k E, -b;k.‘ We wish t;o show thvat: fpr.f' any quahtifigr
free formula 'F(;k), Zr F(Zk) ® 71 .F(gk). Since every quantifier
free formula is a boolean combination of atdmic formuias; it is
sufficient to assume F is at_omic. We need ’only éonsidér the following

cases for F:

xle,x S x + x +x2=x1,x1+x1=x2,x1+x2==x3.

1 17 %2 ¥ T X T X

In these cases, in order to show that Z e F‘(:k) @ ZF F(Ek), it is
necessary to show (respectively) that 0 < 0« 0 < 0,

a -aZSO“bl—b <0, a, =0%®b, =0, azr_-O“b =0,

1 2 1 1 2

2a1—a2=0@2b1-§2=0, alv+32?a3=0“b1+b2-_b3=0'

But since 0, 1,‘ -1, 2, € VO’ all these facts follow from 2) in the

definition of E,. | - O

cn
2 _ .
Lemna 3.7: For some constant c, |an <2 and Vn = {=a | a€ Vn]
22cn v , :
and Max v, < 2 for all n € N.
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Proof: |V0| = 5,  In geweral, |V£' = ‘Wil;z arid

Tyl = 9]+ 1917 < [l s fv ) < 5,

It is trivial to show thatv = (-a | aEV}

Max V., = 2. In general, lcm Vi < (mvi)!vil. So

0

Max V < Max(Max V i 2.Max v*) < 2-lcm V, -Max V,

i
1 i nm
55 66 ; - k6§ )
< 2-(Max V ) V £ (Max V5) . Sb‘Hi!»Vn < 2 .
,on 22°n '
v <2 amdMexv <2

i+l

for some constamt c and alln €8, O

Theorem 3.8: There exists a constant d such that the following is true:

Letn,kGdelctak,b GZkauchMakwubk" Then for each
&bl €2z there exintn some bhl—l_e Z such that a'k-l-l E bk+ amt mh ‘that
d(n-l-k)

| < (14 Max{bi})z .

Pret1 1sisk

Proof: Say that a.k nﬂbk and that 8y € % levd =lemV and

note that 82 = lcm V' since 1 € V . Let T={ Ev t+v v €V '
- 11 i . i n

forlSiSkanﬁ Ivlsé)beanonmptyoubaetofz There must

exist either a member of T which is S &ak+1 or a mmber of T2 6ak+1

(or both):; these two cases are symmetrical, so uamt wtthout loss of
generality that some mewber of T is < 8a . . Let L v,a, + v be the
- g1 11

largest meinber of T which is < 6ak+1 where vy Gw V; fﬁr 1=14 < k and

|v| < 63. Consider the sequence
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k k k ‘ k 5
.Eviai+v, _Eyiai+v+1, Eviai+v+2,...,2viai+v+6 .
i=1 Ci=1 i=1 i=1

1f 6a.k+1 is not equal to any of them, then 68’k+1 is bigger than all

k ,
of them and one of them (other than X v.,a, + v) is equivalent to
-1 |

6ak+1 mod 63. It is therefore the case that for some u; |u| < 6?

k ' -3 k , |
and )_3 via, +v+umda , mod 8 and '2 via, +vs

i=1 _ i=1
k ’ k

: b1 = & =
.E via, +v+u 53k+1’ and u = 0 z via, +v 6ak+1.
i=1 i=] .
k

Claim: For every t € T, t < ii}lviai +v4+uets 631c+1 and

k
t = .E'_viai +v+uetz 5a'k+17'

i=1
Proof of Claim: 1If i§1viai +v+4+u-= 6ak_+1" then the claim is trivial,

k . K
So assume ? v,a, +v+ud 63k+1' Then u # 0, and so T via, +v+uis
i=1 i=1
k o k

strictly between i}=31viai + v and 6ak+1. Since viglviai + v is the largest

member of T < 6a.k+1, we canpot have any t € T such that

k

Tv,a

2 13 +v+usts 6a.k+1; hence the Claim follows.

= : 1 ; Xt &
Now let vy = lem V.4 Since 0 ¢ Vs 0 ¢ v, Therefore Vn‘ Vol
Since 62 = lem th1 and Vn_|_1 = (_2e|.,e € Vr'!}, we have .262 divides y. Since
akEn+1bk’ iflviai ~ 121 vibi mod y , and so 68k+1 ~
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K ok 5
Tva, +vi+um Zvb +v+umsdsd

=1 i1 1=1 i'i

‘ k
implying that § divides I v,b, +v+u. Define
, i=1 .

k
bk+1 = (1§1vibi- + v 4+ u)/é. We will show that "k+1 nbk'l-l

e+l k+1 k+1

Let w, . € (vn) . We want to show that 121!'1&1 9 12,1"},1 nod 8

2

ktl T+l .
and that L w Zwb . If Yt = O then these facts follow

i=1 151 52 {=1 14°

immediately from the fact that Zka “Hb]!t since V_ SV, end 62 divides

yz. So assume .o # 0.
k k 2
Since akE k’ we have iflwiai Re iflwlb" mod: 8. Thus to show
k1 k+1 2
that Tw,a, ~ Lwb, mod §°, it is sufficient to show that
11 i1
i=1 i=1 © . - :
W, mod&z But w ~w b nod&z
13 ™ Vi1 Pt et 1% ™ Yier1 Pkl )
) kel kt+l
& 6ak+1 ~ ébk-pl mod (blwh‘_l;)é ). Hence I wi‘i ~ E'i.bi mod 52
i=} 1=l
k+1 ktl
Next we will .show that 1731wia1 62 z ylb Since ‘Vn = (~aa € Vn] R
k+1 k+1 K+l K+l
and since L w,a, =, Lwb & I -w 18 L - b - we can assume without
Pt o e it s Sl % Mt & |

loss of generality that Vsl 0. By Lemma 3.3 it is suffictent to show
k+1 k+1

that T w aizd@ Ewb for everyd {d[sb “Therefore fix d,
i=1 i=1

la| < 62,

k+1 k
iElwiai zd @ (;SI(G/WR+1)'ia1) + 6ak+1 2 d(&/wk+1) @

Sa, g 2 (Z( 6/ +1)wiai) +d (8/w +1)
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(-6/a,)w, €V! for 15 1<k and |dS/u ] = 53, so

k+1

k
(1231( 6/wk+1)w a, ) + d(6/w k+1) € T. By the above Claim, we can
k

continue: 6ak+1 2(2 (- 6/wk )w a, )+ d(&/wk_H) ®
i=1

k

k
Tv,a, +v+u=2( I(-b/w

)w ) + d(8/w.
i=1 k+1

1) ©

M=

(v + (8/w v,)a, 2 d(8/w -v - u,

Vit k+1 )

e
L]
,..n

3

| d(s fw -v-ul| =3 < yz (since 262 divides y):

+1)

Because -a—.kE +1bk we have
k

= (vi + (8/w

vy )a, 2 d(8/w
2 et ¥1

-y ey e

ter1)

z (vi + (8 /w 1)wi)b 2 d(s/w k+1) -v-u®

i=1
k

i{} (6/wk+1)w b, + glvib +v+uz d(6/wk+1) ®
k k+1
z (6/wk+1)w b, + ébk 1 2 d(6/wk+1) e wibi 2 d.”
i=1 i=1

It remains to calculate the size of bk+1'
|b k+1| < Evb + v + ul Sk-Math;+1 *Max [bi] +_63‘+63

‘1si<k :
< k-M vl -3 '
*Max Vn+1-Max {bi] + 2.(Max V ) n' °, Therefore by Lemma 3.7,

1si<k
d(n+k)

22 -
we have for some constant d, Ibk+1| < (1 4+ Max {bi} 2% 4

l1<i<k
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Corollgrj 3.9: TFor some constant d, 7 is H-bounded whefé ,

' zd(.n+k)
H(n,k,m) = (1 + m)22-

Proof: Immediate from Lemmas 2.12, 3.6 and Theorem 3.8. O

Theorem 3.,10: Let F be the sentence of 31, lelexz...annG(xn) where

G is quantifier free. Then for some constant d independent of n, F

dn+1 2dn+2 gdirin
2 2= -~
Qyxy <27 dees (@x <25 e(x).

. : 2
is equivalent in Z to (_Q.lx1 < 22

_ ‘ 22d(n+k)
Proof: Say that Z is H-bounded where H(n,k,m) = (1 + m)2 .

2dn+i _
‘let m, = 22 for 1 <1 <n, Applying Lemma 2,11 to Z, we see that

sincem, 2 H(n - 1, 1 = 1, Max {|m,|}) for 1 < 1 S n, F 1s equivalent
1 1sj<a 3

.to (lel < ml) (Q‘2x2 < mz) ese (Q-nxn' < mn) G (;n). 0

Corollary 3,11: For some constant ¢, TH(< Z, +, <, 0 >) can be

decided within space 2© .,

Proof: By Theorem 1,4.2, given a sentence F of 21, convert it to an

equivalent sentence lelexz PR ann G (xﬁ) wvhere G is quantifier free
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and of length at most n log n where n = lF|. F 1§~equivélent in Z to

dntl 2dn+2 dnin -

2 2 22 _ :

2
(le1 <2

some constant d (by Theorem 3.10).
F can be decided in Z by setting aside for quantifier Qi; 1<is<n,

JanH il

2 + 2 tape squares; every integer 5“22 in #bgolute value
can be written in this space in ﬁtnary. Jf£én deéidé F‘ﬁybcyciing -
through each quantifier space appropriately, all fhe time festing
the truth of G on.differeﬁt n-tuples of integera. We let ‘the reader
convince himself that a Turing machine implementing this outlined

cn
procedure need use only 2 tape squares for some constant c. O

Theorem 3.12: For some constant c', amy nondeterﬁinistic'Turing
_ cn
machine which recognizes TH(Z, +, <, 0) requires time 22 on

some sentence of length n, for infinitely many n € N.

See Fischer and Rabin [FiR74] for a proof of Theorem 3.12. Their
proof uses the method described in Chapter 1, and hence, for the
reasons described in Chapter 1, the upper bound of Corollary 3.11 matches

the lower bound of Theorem 3,12 reasonably well.

Definition: Let R be the structure <R, +, <, 0> where R is the set of
real numbers and + and < are the usual real addition and order.
As above, the upper bound for TH(R) in Theorem 3,13 is close to

the lower bound of Theorem 3.14,
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Theorem 3.,13: For some comstamt c, TH(R) can be decided in space 2°n,

The proof appears in Ferrante and Rackoff [FR74]. “Although part of
their proof uses quantifier eliminatiom, it could be rﬁmitm to follow -

the E-game formst used above without loss of efficiemcy.

Theorem 3,14: For some comstant c', any nondeterministic Turing machine
which recognizes TH(R) requires time 3°™® on some sentence of length m,

for infinitely many n.

See Fischer and Rabin [FiR74] for a proof of Theorem 3.14.
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Section 4: Complexity of F-Game Decision Procedures.

We have mentioned that am E-game 'p'roéed'urve for deciding TH(S8) is
one which proceeds by defining relations E and proving that the
conditions of Lemma 2,12 or 2.12' hold. It is then necessary, in
order to decide a sentence with n quamtifiers, to be able to write
down for every i between 0 and n representatioms of all the E,
equivalence classes on s -i; this is what is really going om in
Lemma 2,11 and the examples of the previous section. Chapters 3 and 4
contain further applications of these ideas.

It is mot enough only to be able to write dowm for every n, kK € N
representations of all the .En equival'me:;elaun,,onsk., ‘but this 1is.
certainly a mecessary part of an VE-ga;n'c-:docision%préeedura. Recalling

that the‘En clasges are at least u‘nmeroha as the # classes (because

of Lemma 2,.12), we see that if am E—gﬁe ’ptécedt’ti'é (a8 we have described
them) is to be elementary recursive, it is necessary that M(m,k) be
bounded above by an elementary rectrsive function.

Now the only other method we know about for obtaining elementary
recursive decision procedures is elimination of ﬁ'uant‘lfiers, and we have
stated above that' in all known cases a quantifier elimination procedure
éan be transformed into an E-game procedure without 'sgcr»ificintg (1f it was
there in the first place) elementary recursivemess, Wh#t this means is
that in order for a logical the;_»ry to be ele;nenta;x recursiveiy degidable
by known methods, it is mecessary for M(n,k)k to i;e bqu_ngd above by an
elementary recursive fumctionm, This_;gisgs the following important -

conjecture,
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Conjecture 4.1: If TH(3) has m elementary recursive decision
~ procedure, then M(n,k) is bounded above by q‘elm;?‘tiggya;"chrsive :

function.

Although Conjecture 4.1 is open, its converse is definitely false.

For the purpose of this comiterexample, let £ be the language of
the first order predicate cnlulut‘ with the furmal predicates Ny
and Ve~ T, (v.l is eguivalent to v.zt) and the toustamt symbol 0 (although
the constant ‘symbol ism't really neceassery).:

For every nonempty set A of positive integers let 'K'he an .
equivalence relation on N such that for every: positive integer i

1) 4f 1 € A then there is exactly ona.—z equivalence tz'.l.ju_s‘of size 1.
and

2) 1f i € A then there are no equivalence classes of size i.

Define the structure ‘SA = <N, =, Z. 0>,

For any i € N+, there is a sentence Fi which can be obtathed in -
time polynomial in i which says that there is en equivalence class of
sizek emm::tlir 1 Therefore, if TH(SA) can be decided within time g(n),
then A can be decided within time g(p (ii)) 4+ p(n) For some polynomial p.
Since we can make A arbitrarily hard to decide or arbitrarily nohrecutsive,

we can make TH(SA)'arbitfarily hard to detide or arbitrarily nohrecursive,

Now let A be a fixed set of positive integers and considér M(n,k)
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for SA; we will show that (mo matter what A is) M(n,k) is bounded above

by an elementary recursive function, contradicting the converse of

Conjecture 4.1,
For each'sk, E# € Nk define ;# En E# iff for all 1,j such that

1<i,j <k,
I) ai'z 0« bi‘X 0, and a; = 0« bi = 0,
R T R I L T R e
and ‘
1}. It is not difficult to prove

ITI) (a €N | ava,}] = {bEN]| byb
KA S A

Lemma 4.2 using Lemma 2,12,
o By By @ oy 3 By

Lemma 4.2:
Since the number of En equivalence classes on N

is bounded above by an elementary recursive function (of mn and k),

2c(n+k)
namely 2 , M(n,k) for SA is bounded above by the same function.
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' Chapter 3: Weak Direct Powers

Section 1: Weak Direct Powers and Ehrenfeucht Games

Let £ be a language of the first order predicate calculus with a

finite number of predicate symbols &,, 8,,...,8, such that & 1s.a t,

place formal predicate for 1 <1 < .C, and iith a constant syubol e, -
Definition 1,1; Let 8 =< S, “1?“2-"" R,, e > be a structure for £.
For all a € 8, Hallwis the norm of a. 'ﬂu weak direct power of 8

' ' * % % : ‘

is the structure 8 = < s*, R:, R.z.,..., Rt’ e > where

s* = (£: N+ 5 | £(1) # e for only finitely mamy 1 € N};

L Af£ 3 (1) €R, for all

t
for 1 = § s 4, 1f ?t. € gs’k)j o then -t't € Rj ) j

3 ]

1 € N (where ?t (1) abbreviates (£,(1), fz(“i),‘..‘;, £, (D))

e*(1) = e for all 1 € N,

For a nmorm om 2" we define, for f € S*,
[£]] = Max((1 € R | £¢1) # e} U (|IE|] [1 €RD. By £ <mwe will
mean || £|] < m.

Mostowski [Mos52] md Feferman and Vaught [FV59] both show that
TH(S) decidable = TH(8') decidable. However, their proofs are such that
in every case, the decision procedure for TB(S*) obtained is not elememtary
recursive, In this section we will present some general theorems which

will allow us to derive significantly more efficient decision procedures for
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TH(S*) in many cases, and in particular tp obtain a procedure for TH(Z*)
(where Z is the structure of integer addition defined in Chapter 2)
which closely matches the known lower bound, In 'Ch;pte‘r:’ 4 we prove
even more general theorems which give a 'c'ovnldivtion under which we can
conclude TH(S*) elementary recursive‘if TH(S) is elemientary recursive.
Now let H: N3 < N be such that 8 is Hébounded. Let M(n,k) be the

function as defined for 8 in Chapter 2, definitiom 2,2,5.

Definition 1.2: Define the fumction u: N2 <+ N by setting u(0,k) =1
and p(n + 1, k) = M(n, k + Dep(n, k + 1), Hence u(n,k) = I M(n - 1, k + i),
‘ i=1

Definition 1.3: Define H': N° - N by H (n,k,m) =

Max {H(n,k,m),m + u(n + 1, k), He”}°

. ’ * .
" The major theorem of this section will show that 8 1is H*-boxmded.

We now prove a combinatorial lewmma. Z is defined in Definition 2.3.2,

Lemma 1,4: Let N, and N, be sets and let n, m ent such that

N2' Let Al’ A2,..., An be a sequence of (possibly gmpty) pairwise

Nl nem
v n
disjoint subsets of N; such that U A; =N,

i=1 '

Then there exists a sequence Bl’ Byyeoes Bn of pairwise disjoint

. n
such that ing =N,

éubset‘s of N and such that A, = B, for 1 1 < n;




Proof: If |N | = |H2| then the Lemma is ol‘:viou.s. Assume '|'N' | 2 pem

‘and |N2| 2 nem, For some i, 1 < i < n, we must have IA l Bm,‘ ao:m@

withcut loss of general:lty that: |A l 2 m,

- Define nmbers,pz, Pgseees Py € N by

Clagl 1f o] <m
pi = 

_ N forZSiS'nv._'v
.m if ja ]2 m :

Clearly E pi < (n-1m=n.n=-m Since |N2l 2 nem, there extsts a
- i=2 B L :
sequence of-'pairwise. disjoint subsets of NZ’. nmly? 32,_ B3,..., Bn-,f

such that IBiI == Py for 2 <1 <n. So -Ai = Bi £oz‘fi2 £ isn, Jet -

n . n : . : ) H
= - . = . . - -
B, =N, iL=JZBi.f INZl nem and 12231 £ nem - m, 8o IBll 2 m, Since

la;| =2 m, A, =B,.
1

1m 1% o , Q

For every n, k € N, define the Ehrenfeucht relation = on both

=31}

* .
Sk and (S )k as in Chapter 2, Definition 2,2.1.

¥ -+ ok , o -
Definit;ion 1l.5: Letn, k € N and ?k, By €(S ) . Then we Bay ?k F‘n 8y
if,fforallzkésk, {iENl?(i) ;’k] = {1enlgk(1)§3k].

n(n, k)

Lemma 1.6: Fora11k€Nf ng(S),lf ogkthmfk

(=il
{
~
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Proof: Say that Ek E0 Ek‘ We wish to show that for every quantifier

free formula F(;k), 8* k F(Ek) o 8* k F(Ek). It is clearly sufficient

to prove this for the case where F is atomic, By symmetry, it is

sufficient to show that F(f) false in 8" = F(g ) false in 8",

Thus assume that F(?k) is false in 8*. By definition of the

relations of 8* we can choose 10 € N such that F(fk(io)) is false in S.

Since f, E, 8, we have that (1 € N | E (1) 5 Ry =

1(0,k)

(1 ev | 'g'k(i) g'f'k(io)}. Since (0, k) = 1, we have

(1 €N | g, (1) g?k(io)]l 2 1. So let i, € N be such that

Ek(il) g'f'k(io). By definition of %, F('f'k(io)) false in

8 = F(g,(1,)) false in 8. So F(g,) is false in s”.

Leema 1.7: Ietn, k € N and.fk, Ek € (S*)k such that —Ek En-l-

* *
for each fk-l-l € S” there exists some B1et1 € 8 such that

D 41 B Senn

and

2) |lg.. 1l s 5 (n,k, Max (lg,|1}).
Fet1 1sisk =+

By

Then
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Proof: Let £, g € s*)* be such that TE 8. Let

—tt——————

v ’ * = = : (n, kt+
m =12::k(||si||} md let £, €57, Lec B, B2 ..., B D

be a sequence of representatives of all the §_ equivalence classes on

sk+1. Our goal is to find B+l € s* such that 1f 1 < j S M(n, k+l), then

(ten | ¥ 3 = (ren| g 0 =H ); ve aleo want
p(n,ktl)

gyl = B (n,k,m). TInstead of defining 814y *imultanecusly on all of N,

we will define it scparaxely on various pieces of N.

k

For each ;i €s defi:a NI(;i) =(1€EN | Eg(i} = ;gl_and

ol

= a). We claim it is sufficiemt to define

Ny(a,) = (1 €N | g (1)
2 ak. &% il

841 OO each Nz(ak) such that

n (Len(m) |E. =3 =  (ten@m) | gL d) =5,
1% B 2 Padd | S 2% | B 3 Bt

for all j, 1 < j < M(n,k+l).

II) If 1€ NZ(Zk') amd 1 >m+ p(n + 1,k), them g, (1) = e.
and ' '

IIT) If 1€ Ny() amd 1 <m+ un + 1,k), then |lg (0] = H(n,k,m).

An examination of the definitions of H* and the norm on 3* will show
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that II) and I1I) together imply | |gk+1|| < H*(n,k,m); Since
- - - - k . '
(N () | a € Sk} and [Nz(al)l a €8} are each a cplyl_eqt.ion _of
disjoint sets, it 13 easy to see from I) and the definition of

=  that 1f 1<§s Ma, k+1) ‘then
uin,k+l) -

U {1en<-")'|'*'<1.>s.33 D = (Ut EnGlE, @ 5L,
akGSk_ 148 | fie Y e Ly akESk | 2"k 8k+1 k+1]

i.e., {1eN'lf"-,(1)'s‘3') = {1enl u) }
. _ £1<-4-1 2 Pl sCarietd) E‘1e-|-1 k+1

ST o So now let :k € Sk be fixed for the rest of ghiq proof,."?_;Abbreviate__
| N1(.Zk), by N, mg_.r;z(:k) by Ny. Begin by defining gkﬂg.-;),. if
1- € N2 and 1 >m +, p(m+l, k); this guarantees IT) abqve. It :_tanaihs’ to de-
fine gkﬂm N3 - €n, | 1's m+um 1, D).

The definition of E mpnes that N1 = N We now
v W(nl,k) ‘

1]

| danonstrate that N1 = ;k ek then N, 1s an infinite set,
‘ (bl k) _ o N \

ad [Ny 2 u(m + 1,) since g (1) = ek for m< 1% m+ e+ 1,K); 1f

ak ? ekthennann (sincei>m+u(n+1 k)#gk(i)aekaiinz)
n+l . ‘ : .

Bt RS 3-_

- Define, for 1< ] < M(n,k+1), A =A{i 'E'_lel .Ebl-l(i);xé ti{_’*_i]-' -
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1, Az,..., AM(n,lG—l) form a sequence éf paimisg dihj‘oimt sets whosg
Ny md pfn + 1,k) = Mok + Ly, &+ 1),

sm‘nl =

: uniénﬂis.Nl,
: ' piml, k)

Lemma 1.4 tells us there exists a sequence Bl, Bz,‘.‘.., BM(n.bﬂ) of

pairvise disjoint subsets of N, whose union is Ny such thet
A, = B, 1f15j$H(nk+1)

7 nln, ket1)
Now let 1 € Wy; we :wmt to define Bpyq o0 1o Let jbe nuch that |
Since Bj' ¥4 ¢, we also have Q»Aj £é. So 10#'10 € _Aj,' Since
and 1 Emz,m have fk;(:LO') = ak gk(i}@ By Tiamna 2. 2.19 : 

1 X
33
1, €N,
for1(ig) g Biyp (1) and

we can define gkﬁi(i) such that
g (011 < Hm¥k,m.

g (01l = H(:;.k,M-x{Ilsl(nll,llsz(i)ll,-..,

."j
Clearly III) above holds. Since i € Aj 1(10) = kﬁi So
gk—!—l(i) i bgc+1 Thus, we have defined gk-l-‘l"e S 8o tha.{; for
1S 4 < M(n,kHl), . -
s h ey | Baw Ty

(1 €N, | By (1) =BbJ,.] =B
30 Bt a el Ty Ny T

To complete the proof of Lemma 1.7, we must show I), i.e.,

(LEN, | g (1) =8} = whemlsjsn(n,k+1)
Y2 1 Bt Pkl 4 (a, k1) Ay A
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So fix j, 1 < j < M(n, k+1). If
(1€ N, | gk+1(i) = k+1} (1€ N3 | gk+1(i) bk+1) we are done, so assume

(1en, | g 0 ﬁiiﬂ} FLen, | g s bj s Since

N, = {1 €N, | 1 < m+p(n+1, k), there must exist some 1 > m + u(n + 1, k)

such that 1 € N2 (hence -g'k(i)njl :k) and Ek+1(i) iEl Ei.'_l. "But since

i >m+ pln + 1, k) implies EHI(") = ek+1, this means that a.k E k
_ kil "
and bj el o€ e Hence, both Aj and (1 € | 3k+1(1) bj 1} are
infinite, so (1 €N, | g (1) = ) = A,. | 0
k+1 k+1 u(n, k+1) h| _

* * ‘
Theorem 1.8: 8 1s H -bounded. Also, for every n, k € N and

- - * Kk — —_ -
£ 8 € (), E E g 2 F g

S

Proof: This follows immediately from Lemmas 2.2.12, 1.6, and 1.7. D




Section 2: Applications

We now present seme .applications of the material in Segtion-1.

Let £1 ‘be the langunge of Chapter 2.
Let Z =< Z, 4+, <,'0 > be the structure of Chapter 2 -and let

' ‘Z* = <‘Z’.‘, +, X, »0* >“be ‘the weak direct power of Z. As before, for -

a €z let ||a]| = |a| end, following Definition 1.1, for f-e,:z* let

|1l = Max ((1 €N | £) 40y U (]£)] |1 €mp).

| e (rk)
. v
Lemma 2.1: There exists a constant e :such that 2z is (1 +m) "22 ~bounded.
2d(n+k)

Proof: By Corollary 2.3.9, Z is H-bounded where H(n,k,m) = (1 + m)-2°

for some constant d. We'now calculate bounds for the function M(n,k) for Z.

SA o)+
Le_tting nii = ‘22 _ for 1 <1 <k, we 'see that

m, 2H(n +k = 1, 1 =1, Max (|m,|}) for 1 £ 1 < k. 'S0 by Lemnsa 2.2.13,
1 1sisi 3

for each ;k € ‘Z_k ‘there 'is ameik 6;-Z‘k .such -that :k %’ Ek and

for 1 <1 =+k. ‘Hence, since m, < m., we certainly have

|bi| < m

2d (mHk)+k

2 k a 2
M(n,k) < (22 _ +1)". So p(n,k) =Nl M(n -1, k+1) <2

i=1

L4 (k) |

for some constant d'.

So for some constant ‘e, H*(n,k,m) = Max{H(n,k,m), m+ p(h + 1, k), O) <
2e(n-’:—k) '
(1 + my-22
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2e'(n-l-k)
C * _ 2
By Theorem 1.8, Z is (1 + m)-2 -bounded. ' _ O

Theorem 2.2: Let F be the sentence of 31, lelex2 .o prnG(xn) where G

is quantifier free. Then for some constant e independent of n, F is
gentl gent2 2en+h

* 2 g 2 . 2° -
equivalent in Z to (le1 < 2 )(sz2 <2 ) eee (ann <2 .)G(xn).
. Proof: Theorem 2.2 follows from Lemma 2.1 exactly as Theorem 2.3.10
follows from Corollary 2,3.9. : , , __T:

L . } . *
Corollary 2.3: For some constant ¢, TH(< Z, +, <, 0 > ) can be decided

zcn.

within space 22 .

Proof: By Theorem 1.4.2 it is sufflcient to consider the sentence F of

£1-which in prenex normal form is lelexz ...'anhG(xn)_wherelG ig
quantifier.free_and of length at most n log n.

By Theorem 2.2, F is'equivalent‘to
entl : 2en+2 ' 2en+n

2 : .
2 2 2 - .
(Q1x1_< 2 )(sz2 < 2 ) e (ann <2 _ »)G(xﬁ) for some .
constant. e. o 2en+i. DU | gentl
Now if'f:é Z and f < 22., then £(j) =0 for~ji?‘22 S and o
2en~+i , | Zen+i; |
for all j €N, so the first 2° * successive values

el = 22
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e+t 52

2 .2

of f can be represented on a tape with roughly (2
tape squares. S0 a procedure like the one outlined"in Corollary 2,3.,11
would decide TH(Z ) in space 2 for some constant c. -

' * ‘ * *
Definition 2,4: Let N be the structure < N, + <, 0 >, i.e, the

weak direct pm_rfof the nonnegative integers (under + and ).

Remark 2,5: The structure <N , + > is isomorphic- to the structure

+

<N, * > (i.e., the positive integers under multiplication). So an

' *
upper bound on the complexity of TH(N ) is an upper bound on TH( < N+, s >).

2cn

*
Corollary 2.6: TH(N ) can be decided in space 22 for some constant c.

Proof: Since x 2 0 18 a formla of 81, it is easy to see that:

TH(N*) sz TH(Z*). So Corollary 2.6 follows from Lemma 1.3.2. SN

The upper beund of Corollary'2.3 amd Corollary 2.6

‘matches the lower bound of Theorem 2.7 reasonably well.

Theorem 2,7: (Fischer and Rabin [F;R?d],)k For some constant c' > 0, any

. | .
nondeterministic Turing machine whi_ch recognizes TH(Z*) (or TH(N ))
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2c'n

requires time 22 on some sentence of lgng;h n, for infinitely many n.

Our next goal is to present a decision procedure for the first order
theory of finite abelian groups;f this theory was originally shown to be
decidable (see [Szm55], [ELTT65])by a less efficient procedure than ours.

Our approach will be to show that this theory is sz TH(N ) and conclude

Theorem 2.8: The first order theory of finite abelian groups can be
ey ‘ 1

decided within. space 22 for some constant c.

There is still a significant gap between the upper bound of Theorem
2.8 and the known lower bound of Theorem 2.9. v
Theorem 2;9- (Fischer and Rabin [FiR74]): For some constant ¢' > 0,
any nondeterministic Turing machine which recognizes the theory of

v ' ~ ot'nm S R

finite abelian groups requires time 2 on some sentence of length n,
for infinitely many n.

The 1anguage of groups, £2, merely contains the formalﬂprediéaﬁe'

vyt V= V. We are interested in deciding which sent;atices’-of 32 are

~true of every finite abelian group. Recall that every finite abelian

T ‘This topde is also discussed in Chapter 4 from a siightly different
viewpoint. -
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group - (heneeforth .abbreviated FAG) is {somorphic to a finit:e direct
product of finit-e cyclic groups [MB68]. For 1 a ponit:l.ve integer,

‘let Z'i denote the cyclic gioﬁp’ {0, 1, ..., 1 - 1) mre addition is

performed mod i. The basic idza of the mbedding (due to Michael J.
Fischer {Fis73]) is to thi,nk of every nonuro f € K as rapruanting

an FAG G Thil is made pracise in t:he following defi.nition.

Definition 2,10: Let £E N, £4 0 . Define .¢$ - |(1 €N | £(1) # O]l
Define m: {1,2,..., f} * N by

ﬁzf(j) = thg jth smallest mbut of {1 ENI f?i) {G} for 1 < j < "’f‘

Define the FAG Gf =‘G1xczx ese XG, where G, = Z for 1 = 3 < Lf.

L 3 £(me(1))

Clearly every FAG is isomorphic to G. for some £ €N, £ $0.

_ * x
Definition 2,11: Let f, g €N , f ¥ 0 , be such that for all 1 € N

a) f(1) = 0 =g(i) =0
and

b) f(i) > 0 = 0 < g(i) < £{1).
Then we say that g reprasents < g(mf(l)).,.g;(nf(:Z))‘, .eaiy g‘(uf(:l.f)) > € Gf.
Clearly for each f ¢ O*, every member of Gg is represented by a unigue g € N

We now describe some properties definable: 1&.}'.1 by formulas

' *
interpreted over N ,
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1) ONE(x). For £ € N', ONE(f) will hold iff for some
1 €N, £(1) = 1 and for every j # 1, £(j) = 0. ONE(x) is equivalent ;o’
x # 0A Vx'((0°< x' A x' sx) + (x' = 0OV x' = x).

/ *
2) ZERO(xl,xz). For £ f2 €N, ‘ZERO(fl,fZ) will hold iff

1’
'ONE(fl) and fl(i) =0 = fz(i) = 0. ZERO(xl,xz) is equivalent to

ONE(x,) A Vx'((ONE(x') A x' # %)) * ~(x' < x,)).

3) PICK(xl,xz,x3). 159053

For £ ,f ,f. EN, PICK(£,,£,,£;) will hold
iff ONE(F,) and

(fl(i) = 0= fz(i) - O)A(fl(i) =12 fz(i) = fj(i)) .
FICK(xi;xj,x3) is equivalent to

ZmO(xl,xz) A x, < x4 A ~(x1 + Xy s x3)~._ s

* - *

4) MEM(x,,%,). For f,,f, € N, MEM(f,,f,) will hold iff £, # 0
and fz represents a member of Gf . MEM(xl,xz) is equivalent to

1

9 5% A Vxin,

* .
X, F0AXx Vxé ([PICK(x,xi,xl) A‘?ch(x,xi,xz)] -+
(x! # 0 x4 x!))
1 2 177
*
5) PLUS(X,,%pXy,%,). For £,£,,£,,6 €N, PLUS(E),£,,£,,£,) will

hold iff f1 # 0* and fz,f3,f4 represent members of Gf-and the member
, o 1
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~ represented by £, is the sum in G of the members reprasented by va

1
and f3. ?Lth(xl,xz,x3,xa) is equivalent to

MEM(xl,xz) A MEM(xl,x3) A }m{(xl,xa) A VxinVx?xé'Vxl" [
(PICI.((?(,Xi,XI) A PICK(x,xé,xz) A mcx(xaxi.,xs) A mx(xox‘lnx&).) ud

| P | ' - ¢ ) 1
(xé+x3 xAVx2+x3=-x4+x1)].

Proof of Theorem 2.8: Using formulas defining MEM anci PLUS and the fact that
f € N* repfeunts a FAG 1f and only if f # 0*, wo‘obtnin‘ a procedure thchv
operates in polynomial time and linear space which takes a samtence F of

.ﬂz to a sentence F' of £1, such that F is trua of every

FAG @ F' € TH(N*). So TH(FAG) sz m(N’f). Theorem 2.8 therefore follows

from Corollary 2.6 and Lemma 1.3.2. O
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Section lzﬂlg;rdductiqg.

Let &, 8, and 8* be defined as in Chapters 2 and 3, and let M(n,k)

-~ be defined for 3 as in Definition 1.2;5.

Theorem 1,1: IfTTH(S) is elementary recursive and‘;f‘m(n,k)'is bounded
: | e T

above by an elementary recursive function, them TH(3 ) is elementary

recursive.

Theoramfl.l“can be proven by modifying eithcrnuoqtowﬁkifa or Feferman and
Vaﬁght'a_decision_procedure for TH(S)? - [Mo852,FV59]; but ﬁe #resent a
different approach in Section ‘2 and prove:thare«anquantipatiwi version
of Theorem 1.1. In Section 3 we present some sinilér“results“for other
notions of direct products (besides weak direct powers),

The converse to Theorem 1.1 is false.

' Coumterexample to the Comverse to Theorem 1.1:
'Lgt £ be the language used in the couuterexlmplh.toqConjecture 2;4.1."

For every monempty set A & N' define SA as in Chapter 2 to be
<N, =, T 0 >, As in Chapter 2, by varying A we can4make SA arbitrarily
hard to decide. ILet A be a fixed set such that 1 ¢ A, i.e., there are no

X equivalence cl#sses of size 1.

K | | ‘ S ‘
Claim: SA consists of an infinite collection of infinite equivalence classes,
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Proof of Claim: Since O is not in an equivalence class of size 1, there

A

some finite % class, and hence at least two % classes. So there

exists some mmber, say 2, such that it {s not true that 2 ¢ 0.

exists some number, say 1, such that 1 » 0. Since A # ¢, there exists

. * S
Thinking of every member of N as an infinite sequence of members
of N, we see that the strings 0,0,0,... ; 2,0,0,... ; 2,2,0,00¢0 5 «.o

. : o : ok * .
form an infinite set of pairwise inequivalent members of N . So SA"has .

an infinite number of equivalenée classes,

Let v,0,0,... be any member of N*, vhere y is a.finite sequence of
members ‘of ‘N. The strings v,1,0,0,... ; v,1,1,0,0,... ; ... form an
infinite set of elements equivalent to v,0,0,... . So each equivalence
class of SZ is infinite, prowving the claim. : O

From the above t:lazl.m,T it is not hard to see that a semtence of &
with n quantifiers will be true in SZ 1£f it is true in a domain of
size n2 cansisﬁing of exactly n equivalence clssses of ci:é_n, - Therefore,

' TH(SZ) can be decided in polynomial space, even theough TH(SA) m‘be

arbitrarily difficult to decide.

and Lemma 2.4,2,
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Section 2: Complexity of Weak Direct Powers.

Our goal in this chapter is to prove Theorem 1.1; aptpally, ve
shall prove a quantitative version of Theorem 1.1, whicﬁ.rélates the
complexity of TH(S*) to the complexity of TH(S) and»M(n;k).

To begin with, let 8 = <1S,.Rl,..., Rz,“e > be a structure as before
and let & be the corresponding first order language. 8 and £ are fixed
for the rest of this chapter. Let ﬁ beAdefingd;onisk for each n, k € N
as in Chapter 2, Definition 2.2.15 Let Cn,k be the aet‘of equivalegce

classes determined by ﬁ

on Sk“and let M(n,k) = ICn kl assbéfore. For
3

Z& € Sk, let [;#]n be the equivalence class.of ;&ldetermined by i.

By Lemma 2.2.6, for every ;% ¢ sk there is a formula F(Ek) defining

[;k]n. What we are now interested in is how much time is needed, as a

function of n and k, to write dowm all such formulas.

Remark: Here is the motivation behind what we will be doing. Using a

decision proceddre for TH(S) we will obtain (efficient) represemtations
of the members of Cn,k' This will allow us to use results of Chépter 3‘
to obtain efficient representations of the ﬁ classes on ks*)k. We will
then decide thé truth of sentences in 3* by limiting quantifiers to

range over appropriate sets of these representations.

Definition 2,1: We will define for every n, k € N a collection of

’k=¢xaet1y 31’x2"""xk'

formulas, ?ﬁ g, such that in every member of F
’ : .

occur freely. Firstly, for every k € N define
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= (F(;k). | ¥ is an atomic formala); for every W & 61;' |
define F

(x )tobetheformla (ANFYA (AN ~F); define
0,k,W "k | | e FeS-w

Assuming F n, et ‘s been defined such that in every member exactly

greees xk-l-l occur freeiy, we now define ¥ -

i,k ToreveryW<edF Lo

xl,

define F
n~+1 k,W 1"&3

(xk) to be the formula (/\ 3xk+11?) A ¢
: ' ' n, lh-Fl

Dettne %,y . AF n-ﬂ,k w("k) [8F Txyfixy ooe TqFpyy gl e Clearly

exactly xl'xZ""" xk occur freely in each méf ’n-l-l,k"

Lemma 2.2: Let n,k € K. Then

(AQSkIsomemSerofS‘

n ,k

defines A} =‘ Cn,k‘

Furthernoi'e, every

member of C 15 defined by a unique member of ¥

n,k n,k’

Proof: Lemma 2,2 follows immediately from the proof of Lemma 2.2.6. . OJ

We next wish to calculate how long it takes as a function of n and k
for a Turing machine to write down the sét yn,k on its tape when
implementing Definition 2.1. In order for a Turing meachine to do this
at all it is necessary that TH(S) be decidable, so for the rest of this

section assume that there is some decision procedure for TH(_S) which
: _ ,

Every F € .‘in k 18 considered to implicitly contain the annotation
s : ’

Xis gy eees Xpo

~ 3“;-:-1”‘
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operates within time Ti(n). In order to eimplify the calculations

to follow, instead of working with the function Ti (n) we will use instead some non-

decreasing function T,(n) = Max (T (m), 2"}. It will similarly

make things simpler below if we define the function

T2(n) = Max({M(n - k, k) | 0<sks< n} U {n})._t The reader may

note that at many places in the calculations below we make gross over-
estimates. This is because we are ultimatel?' 1nterested in the amount
of nesting of expomentials in the complexi& of our deciéidns J
procedures, and our over-estimates do not affect this, whereas they do
have thé advantage of shorteming the expressiqns we obtain.

We first define L(n,k) to be the letigth of the longest formula of

the form Fn,k,w'

To calculate L(0,k), note that (as in the proof of Lemma 2.2,6)

2
|5k| = 5 (k + 1)ti (vhere &, is a t -place relation for 1 <1 < 4).
i=1 '

As k increases, the length of the longest member of Gk' will increase since

longer subscripts of formal variables will have to be written; however,
for every k = 0 the length of the longest member of Sk willrbé < ¢ (k+1) for
some constamt c, independent of k. Everything of the form ff'o kW looks
. | Bait ]
like a concatenation of the members of Gk, with sqmé_ additional logical

symbols, and is of length < twice the Iength of the concatenation of the

members of 6k‘ That is,

1‘It: ig easy to see that 'T2 is nondecreasing.



L(0,k) s2+c - (k+1}-2 (& + 1) € (& + 2) 2 for some constant c, independent
1=1 N |

_ Qf'k, | »

looks 1ike a concatenation of the

Everyt:hing of the form F n+1 kW

members of F 'n, k+L’ with some additional symboh, for some comstant c3
they are each of lemgth < c,+(k + 1)*the length of the comcatenation

of the members of F n, kL’ That is;,

L(n + 1, k) < cqg°(k + 1)*L(n, k + 1).]%#“ s

ey (k + 1) L(n, k + 1)'-'1‘2(n +k+1). Since

c
L(O,k) S (k+2) 2and Ty(n+k) 2n+k  we can calculate that

: c4(n+1) ‘
L(n, k)S(Max{T (a+k), 2)) - for every n,k € N and for some constant c,.

Now define T(n,k) to be the time which & Turing machine implementing

Definition 2.1 takes to write down ¥

a.k O0 its tape. We first calculate
.

an (upper bt;und on T(n + 1, k) in terms of T(n, k +‘>1).‘
To compute gn-l’-l,k we begin »by\con;puty:lkng $n’k+1- w{#hin time T(n,k+1).

We next write dm'besidg ¥

- .
T, kb1 OF the tape the set [ b,k W | w sn,k-i-_l}'

Then for eachwcﬁ bl we write dm the sentence .

Exlﬂxz eos Exk F n+1,k,§1"' and then ‘use our decision p:dc’cdum for
m(S) to decide for eqch‘ W C yn,k-l-l 1£8 F Exlﬂxz oo Exk nH, k W

We lastly consolidate all the material on t:he tape (i.e. eruing Fn+1 k, W
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cases where it is not true that § F Hxlﬂxz ""Exk.Fn+1,k,W) 80

that pext to gn,k+1 we have written $n+1,k'

For each W & 10 e know that XX -+» X occur in

gn,k+ 2

Fo1,k,w S0 that [x,8x, ... &x Fn+1,kz,w| <3 F el S 3LOHL B,

The decision prqce&ure for TH(8S) decides whether or not

8 F GxTx, ... @x F_, o within tine and space T, (3-L(rH,k));
actually in order to decide if Hxlﬂxz v ka Fn+1,k,W € TH(8) and
return the Turing machine head (which started on the leftmost ¥) to
its original position requires time < 2T1(3-L(n_+ 1; k)).* So whgﬁ

computing 3n+1 K’ the total amount of time used ‘in deciding membership
]

2(n-n<+'1)'
< 2Ti(3'L(n + 1, k))*2 ‘

X 0
in TH(8) is < 2T1(3.L(n + 1, k)2 n,k+l’

We lastly calculate how much time i§ used in computing ¥ ., |
’ ’
which is not used in either computing~3h:k+1 or in deciding membership
in TH(8). The total amount of space used in this way is the space on

which ?n is written plus the space to write Fn+1;k,w for every

Jk+1

WEF

n’k+1_p1us.the space to write ﬂxlﬂxz o ka En+1,k,W for every.

: | ’ | : l':?:n k-l;lI
. 'S . ! E . g
W s thie 1 S (e, et DY ]+ (e 41, 19)-2 *

I T, (otk+l)
*5L(n + 1, k) < 52 ‘L(n + 1, k).

| %
< 2

|F

]
(3L + 1, ky)-2 "okt

n,k+1




B
The time our Turing machine uses (asfde from comptit:ing :ﬁn ot
- y
or membership in TH(8)) is spemt in having the head go back and

forth in this space dotng the mecegsary amount of copytng, the reader

Tz(n-l-le-i-l) L g for
e¢an verify for himself that this is < (5.2 L(n + 1, k))
some constant cs.f |
So the total amownt of time used in computing ¥ il ks
z(n*k—f'l) rzcmkﬂ) Cg

=T(n + 1, k) < T(n, k + 1) + 2T, (3-L{n + L, k))-2 : +(5 2 «L(n+1,k))

Since Tz(n)s 2 n ol 'B,l () 2 Z.E for ali n € N, we cap calculate that

for some constant Cer
T(n + 1, k) < T(w, k + 1} + [Ty((Tyln + & +2 )) R B N
It can also be seen that the time needed to write down Ek is

c _
polynomial in the space needed, and therefore < (L(0, k)) 7 for aome

constant c,. Obtainteg ﬁwk from ©,_ is certainly quicker than obtaining
c, 6(k«l—l) e

3) x from Fo, k1 5O W& Rave T(0,k) < (L0, k)) + [T, ((Tylk +2 )) >l .

Doing some final calculations we can conclude that

" We are using the fact that we can simultaneously use space for two
different purposes. For instance, some of the space on which sentences
are written down is also used for deciding truth of sentences in &,
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c(n+k+1) ]c

T(n, k) S'[Tl((Tz(n +k+2)) )

for some constant c and all

n,k € N.

Lemma 2.3: For some constant c, there is a procedure which given n,

writes down the sequence‘?o’n,lﬁl’n_lf ooy $n’o within time

[Tl((Tz(n 4-2))¢(n+15]c; the,léngth of this sequéncé is < (Tz(n 4_2))c(n+1).

Proof: When we were calculating above the time to write down ?n 0> Ve
were calculating as well the time to write down the sequence

30,n’ ?l,n-l’ ees F

n.0° The length of the sequence is

c(n+l)

S_(n + 1)(T2(n))eL(n,O) < (T2(n +2)) for -some constant c. y |

Remark 2.4: Note that every member of gn o Tust be a true sentence and

hence define the set whose sole member is the empty set. Therefore,

Lema 2.2 implies that M(n,0) = |%_ | = 1.

be that member ofﬂ‘n

Definition 2,5: ‘For every n, k € N, let F
. ) n’k ,k

which defines [ek]n.' That is, F

is the unique 'member of %
n,k - , . n

Kk such

that 8 + Fo k(gk)’(where F(gk) is the formila (of &)

obtained by replacing free occurrences of x, by e, for 1 = 1 < k.)
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Lemma 2.6: For some constant c there is a procedure which given n, writes
down the sequence

go’n’ 31’n-1’ LA ) sn’o' Fo,n’ Fl’n-l, e ey Fn’o 'ithintm
c(n+l)

[Tl((Tz(n-i-Zf(ﬁl))]c; the length of the sequence is < (TZ(P + 2))

Proof: First compute the sequence 30’ 3’1’“1, cosy 3'!"0 as in Lemma 2,3,

n’

Then for each k, 0 < k < n, and for each P € sn-k x> ¥rite out the formula
bad
o . S B

F(gk); each of these formulas will be of length < L(n,0) and there are at
most (Tz(n))-(n + 1) of them, Then use iﬁe dcéuﬁh procgdure for 8 to
decide each of the sentences F@k}, and then consolidate the information

on the tape..

The time used in deciding each sentemce F(gk) (and returning the head)

is < ZTi(L(n,O)), e0 the total time used in deéiding i:ruth of sentences in

§

8 is < (2T1(L(n,0)))-(T2(§))-én +1)..

So the time to write down ﬁo’n, 31.n_1,, cees 3‘n’0 plus the time used

in deciding truth of sentences is <

[T, ((Ty(n +2))° D)

3 (2, (W@ i0)))+ (Ty(@)) ¢ (m + 1) for ¢ as in
Lemma 2.3, As in the.proof of Lesmma 2.3, the remaiming ttue und is

polynomial 'in the space in which 3‘0’“,‘31,'“_1‘, iieey ,ﬁh’rﬁ ‘amd 811 the -
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" sentences F(g}) are written, which is < 2(T2(n *_2>)c(n+1).

c(n+l)

L(n,0) =< (T2(n +2)) and so we calculate that for some other

: LR 4 g L ]
constant c, the seguence yO,n’ gl,n-l’ ees F 00 FO,n"Fl,n-l’ ’ Fn,O

c(n+1))]c

can be computed within time [Tl((TZ(n +2)) and its length is

< (Ty(n +2 0D,

Definition 2.7: For alln, k € N and every F € ?n define W(F)

ok’

to be the set such that F = Fn,k,W(F)'

- k
. 1
Remark 2.,8: If n,k € N and F € 3n+1,k and F' € 3n,k+1 and_ak €S
such that 8 ¢ F(Eﬁ), then

F' € W(F) ® for some a ., €5, 8 F F'(:£+1)-

: .k *
We are now ready to consider the structure 8 ='<§ , Rl, eeey Rz, e >

as defined in Chapter 3., For each n,k € N let ﬁ be defined on Sk and on

* *
(s )k as in Chapter 2 and let.En be defined on (S )k as in definition

3.1.5 and let u(n,k) be defined as in definition 3.1.2.

Definition 2,9: For each n,k € N, define

* : '
3' = . - =
ak = (Vi N 3n,k| for all but finitely many i € N, V (1) Fn,k}.
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* ‘
For every V € ¥ ., define [|¥]| = Min {1 € ®] for all § 21, V(J) = F_ .}
nk n,k
= the norm of V. For every ?& E.(S*}k, let Vny? be the unique member
£
_ k

of ¥ . such that V_ — (1) defimes [E (1)) for all 1 € N.

n,k _ n,fk

* -
Remark 2.10: For every V € ?n k there exists some fk € (S*)k such that
}

Then fk i -

Proof: 1If Vn’§£= angk then for every i € N, [fk(i)]ﬁ = [gk(i)]n,
meaning that fk(i) i gk(i). This implies that fk En 8y * By Theorem
3.1.8, £k § & | _ 0o

* -
Definition 2,12: let n, k € N and V € 3# k and let F(xk) be a formula
?

- *
of q-depth < n, Let fk € (8 )k be such that V = Vn ik Then we say
*Tk

k). By Lemma 2.11, this notation is well defined.

*
VFFiff 8 F F(

*
Remark 2.13: If n €N and V € 3n and F 18 a sentence of q~depth < n,

0
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then V F F 1f£ 8" F F.

* *
Definition 2.,14: ZLet n,k € N. Define tbe map EX: S‘Mi e vranﬁ,k-l-fl)

(where EX stands for exfension and P(A) is the set of subsets of A) as

* %
. 1 L ]
follows: If V € F 1,k and V' € ?n’] ' tfhen W{G EX(V) iff |

a) for each 1 € N, V' (i) € W(V(1)).
and |

b) [1v']] < [Ivl] + utm + x + 1, 0.

Lemma 2.15: Let F(x,,,) be a formula of q-depth < n and let
* % L
V € $n+1,k' Then V F Exk+1 F(xk-l-l) ® for some V' € EX(V), V' I F(xk+1)'

Proof of € .
_ — * k ' —
Say that V is vn+1”fk where fk € (S ), and that V' is Vn’gk.g.l |

"f')and

, - * kel
where B4y € (s) | énd say that .Vn,.gk_‘_1 : Ex(vn-i-lg k

,Vn’-g-k-'_1 [ F(xk+1) vhere g-depth (F) < n.

let { € N. We have Vn_*_l’gk(i):defines [fk(iﬂm_l, and _Vn’§k+1(i)

defines [‘gk+1(i) ]n and Vn’gkﬂ(i) € .W(Vn-!-l,-fk(i))' ~ By Remark 2.8 we

can choose ¥k+1(i) € 8 such that. [?k+1(i)]t; = [gk_'_i(i) ];1.

SoV'=V ¢ and V'F F(x,,). By Definition 2,12
ket

1- —
where we assume ka+1F(xk+1) is annotated by x;, x5, ..., X.
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* — * —
8 r F(le),, and therefore 8 3xk+1F(£k,xk+1). So

Yo+, E " T
Proofof”: o ‘ P . ‘
Say that V € 3n+l,k such that V + Exk_._lF(xH_l) where g-depth (F) < n.

For 12 ||V|[, V(1) defines [eX] ,,. Therefore there exists T, € sHE
such that E (1) = e for 1 2 ||v|| and such that V(i) defines '['Ek(i)‘]&l

for 1 €N, So V = vn+1,-f-k'

* - *
Since 8 + C-[xH_IF(fk, xk+1)’ we can find £ € 8 _such that
* —
8 + F(fk’f)" fk En+1 fk so the proof of I.m 3. 1.7 ahon that we
can find £ . € s* such that ('fk,‘f) E, 'EHI and such that ,le;(i) =e

whenever i = || n+1 I H + un + 1, k). BSI Lemma 3.1.8,
k

ELDEE = (B0 2F =8+ P(E ).

||+u(n+1k)S]| fk||+u(n+k+10),and

clearly VF’Ek-kl:"- F(xk_H). For e:a;:h i€N, Vn+1,.?kfi) defines"

(F (D] ,, ad V_ 5 defnm [E ,,(1)]_ implying (by Remark 2.8)

™

that V. = (1) € W(V

n, fk-l-

n"'f € EX (V O

i)). So{V ”» 1 fk

n‘l~1fk
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Lemma 2.16: Iet F be the formula Q1x1Q2x2 cee annG(;;) where G is

*
quantifier free. Let V, € 3n Then

,0°

*
8k F e (QV, € EX(V;))(QyVy € EX(V;))...(Q V, € EX(V _,))(V F+ G).

*
Proof: 8 F F & V0 F F. By n applications of Lemma 2.15 we have

VO FFe® (lel € EX(VO))(VI F Q2X2Q3x3 e annG(;n))

ce @ (QqVy € EX(Vy)) oo (QV, € EX(V,_;))(V_ F G(x))). 0

Theorem 2.17: Say that T,: N @+ N is such that TH(8) can be decided

1

by some algorithm within time Tl(n) and such that Tl(n) 2 2" for all n € N.
Say that TZ: N =+ N is such that T2(k + k') 2 M(k,k') and Tz(k) 2 k

for all k,k' € N. (Assume Ty is nondecreasing.)

*
Then there exists an algorithm for deciding TH(8 ) which operates

within time [Tl((Tz(“ -I--2))dn )]d for some constant d.

Proof: By Theorem 1.4.2 it is sufficient to consider the sentence F of
the form lelex2 cee annG(in) where G is quantifier free and of length

at most n log n. The decision procedure proceeds in three steps.

Step 1: ‘Compute the sequence

F o, F F

O,n l,n"l’ sc ey n’o, Fo,n, Fl,n-l, ooy Fn’oo By Lema 2.6
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this can be done within time [TI«TZ(n +2 ))C(n+1))]c

and the length
o+
of the sequemnce is S‘('I.fz(n +2 f(n 1).

Step 2: Compute u(n,0) (say, in umary).

pm,0) = | 1%y yle el gls (@), S0 um,0) can be
computed and written down using at most ~(T2.(n);)“ more tape squares
than those containing the sequence computed in Step 1., .
Step 3: Say that ’:,o = {Vy). We want to decide if
@V € EX(V())(Q,V, € BRK(V;)) ... (QV, € EX(V, _,))(V, * G).
To do this we have to have a way of writing down representations of
members of 3-’:_1’1 foi 01 £n, Our convention is as fgnm: if
V €% ,, then BEP(V) is the seguence V(0), V(1), ..., V(||v|]).

Now 1f Vg, V;, ..., V_ 1is a sequence such that vm € EX(V,)
for 0 < i<n (Qhare ‘Vo € 3‘:’0), then si;ce ||Vo|| = 0 and
HV1+1H < HviH + u(n,0) we see that ||vil| < f°14n,0) for 0 < i < n.
So for each Qi’ 1<1 <n, set aside (L(n,O))’o(lﬁ’.-#(n,O).) gdditiogal
tape squares; this is enough space to write dm the representation of

any member ofvﬂ‘:__i q of norm < {+y(n,0) (since L(n,0) 2 L(n - 1, 1)).
. 9
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Claim: There exists a procedure which given

'
gn,O’ yn-l,l’ cesy yo’n’ Fn,O’ Fn-l;l’ aeey \Fe’n!pY) Y as input?, where

* .
vy = REP(V) for some V € gn-i 4 0 <1i<n, determines, using
_ , T .

no more space than the input takes up, whether or not y' € EX(y).

Proof of Claim: Say that y is the sequence y(0), v(1), ..., Y(J)
and y' is the sequence y'(O), v'(1), «cc ¥'(J') for some J, J' € N,
We. first calculate i (say in unary) such that y(0) has free variables

*
exactly xo’xl' soey xi; that isw.y = REP(V) fOﬂ’,'m v G:gn-i,io

Assuming i < n, in order to ensure that y' € EX(y) we need only check that

1) ¥' is a sequence of members of 3n 1° and J' £.J + ;(n,0).

~i-1,i+
1T\ ] ' 14T .
2) y'@") Freg-1,141 @4 1£3' >0, then y'(J'-1) ¥ Fpei-1,141°

and

3) for every j 2 0 such that j < J and j < J', we have y'(j) € W(vy(i)).

For every j such that J < j < Ji, we have v'(j) € W(yWJ)).

1), 2), and 3) can be checked using no additional space, and so

the Claim is proved,
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Now to decide F, -cycle through each quantifier space aﬁpropriatéiy;
That is, use the space set aside for in tio cyc¥e through the ~nepféoexitgtives.
of menbers‘-of zx(v_o:),’ cbtaining different nlm for R;E'?'(v‘l)., the épsé,e
set aside for Q, to cycle through the rmesentatim ‘of the members 'o;_f
‘each EX(VI), ei:c.’ ‘For every particular value of ‘Vu € 3;“" Jooked at,
we have to decide :from amtvn) Af :vn 1 /G*(;?n); It is sufficient f‘to'bé
able to test 1f ¥ + Gylx ) for each stomic formsla Gy(x ) escurring in
G. But recall thet fer :every { €N, -anfi) is simply Lmjgsctm of
atomic formulas or megatisns of atemic formulas. 8o %ﬁh' + Gb(:?:n) Lff
for every ‘fnfmla ‘FE'H‘u’n of ‘the sequemce m(vh)., ‘ﬂo'fE ‘W(F). So
TH(S*)_ is ‘d»acidab‘l'e.l Pesting if ‘Vn 4+ G uses only ::hg -apace on ‘which G
and REP'(Vn) are written,

The total spwe used in .is‘te?s :2 qd “3., i:mt:l.tuh‘m.:‘gi the output pf

step 1, 18 = (T, + 2™ 4 (1,@)H™  + ne(L(m,00)+ (1 + ops(n,0))

outputofStep 1 Step2  Step 3
(the n log n space on which G is written fi-sv insignificant). The time

used by Steps 2 and 3 is at most exponential in this bound. . Since

c(nt+l)

u(n,0) = (Tz'(an)/)"n- and L(n,0) = (Tzfn +2)) s we have that the




-79-
. . . dn, ;d
total time used in all three steps is < [Tl((Tz(n +2)) )]

some constant d (since the length of a sentence is > 0). O

Corollary 2,18: Let s

55 C €N, s, 21 and S, 2 2, such that TH(S)

1’ 1

can be decided within time ,
cn 2c(n+k)

2
2,' height Sy 2,' j% height S5
2 ( and such that M(n,k) < 2 for
all n,k € N. 2c'n
. 2.' £ height s; sy
Then TH(S ) can be decided within time 2 Y for

some constant c'.

Proof: Immediate from Theorem 2.17. J
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Section 3: Results about Other Kipds of Direct Products

In this section we atai’:e’soue result‘swabeut éti\er kinds of‘diréct
products, thus giving quantitative versions of some additional theorems
of Mostowski and Fefermam and Vaught [Mos52, ¥V59]. We will not present
proofs here, but our results follow from extensions of the ideas ‘Ln‘

Chapter 3 and the preceeding parts of this Chapter.

Definition 3.1: Let I be a nonempty set, and let (8(1)| 1 €1) be a
collection of structures for £, indexed by I; say that

s <s@® 2D 2 eV, @ s oranntern. Lee

D=({f: I~ US(‘” | £(1) € S(i) for £ € I}). For each j, 1 < j < £,
i€x

t
€D 3, then £ R, Lff

t
define R, < D3 as follows: if E, €0y

3

Etgi) € a§i) for all 1 € 1. Define e € D by e(1) = ‘1) for al1 1 € 1.

Define the gtrong direct product eof the system (8(1) | 1 €1 by
(1)
STRONG (3 | £ €1) =<0, Ris Roy ooy Ry, &>,
Let D' & D be the set {(f €D | for all but finitely many {1 € I, £(1) = e(i)},

t
and let R! be the relation R, restricted to (D') ]

i 3
for 1 < j < 4, Define the yeak direct product of the system

@ | 1en by wmxd®| 1en =<0, Ry, Ry, ., Ry, e >,
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If T is finite, then sTRON¢@V) | 1 € 1) = wmx(éci) | 1€1).

If we take I to be N and g _g for some f;xed structure 8
‘and all 1 € N, then ve denote STRNG(3()) | 1 € N) by 8” and call it
‘the strong dixect power of 3; W_E_AK(S}(i) | 1 €m 1q 8*, the veak
direct power of 8, which was defined earlier. If © is a nonempty
collection of structures, then STRONG(P) is the class

(sTRoNG @) | 1 €1) | T 1s aset and8P) P sor 1€T1) and

WEAK(P) is the class

(WEak@E™) | 1 €1) | 1 18 a set and 81 €p for 1 € 13

Mostowski shows that if TH(3) is decidable, then TH(3") is decidable.
Feferman and Vaught show that
TH(STRONG(P)) = m((sTRone BV |1 € 1)| 115 a ;gx_;_:_g set and 8(1_)5'5.3 for 1€1)),
and i£ Tﬁ(P) is decidable, then TH(STRONG(Pj)‘ apd TH(WEAK(P):) are decidable.

We can prove stronger versions of these theorems,

Theorem 3.1: Let 8 be a structure and let M(n,k) be defined as before

(Definition 2,2.5). Say that Ty: N #* N is such that TH(8) can be decided
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by some algorithm within time Tl(n) and such i:hat ’Tl(n) 2 2 for all
n € N. Say that T,:N + N is such that T,(k + k') 2 M(k,k') and

Tz(k) z k for all k, k' € N, (Assume T, is nondecreasin_g.)

Then there exists an algorithm for deciding ™8 ") which operstes

within time [Tl((Tz(n +2 ))dn)]d for some cmtmt d.

Definition 3,2: Iff is a collection §f structures, let
INFSTRONG(P) = (STRONG(3D) | 1 € T) | I s an infipite set and
8 ¢p for 1 € 13.

Let INFWEAK(P) =V {WEAK(S(i) | 1i€en | I is an infinite set and

8 cp for 1 € 1}.

Theorem 3.3: Let P be a nonempty collection of structures and for each
8 €P, let Mg(n,k) be defined for 8 as before (Definition 2.2.5). Say

A

that T,: N # N 1s such that TH(F) can be decided by some algorithm
within time T,(n) and such that T (n) 2 2™ for all n € N. Say that
T2: N < X is such that T2(k + k') 2 Ms(k, k') and Tz(k) 2k for all

k, k' € N and all 8 € P. (Assume T, is nondecreasing.)

. Then there exists algorithms for deciding TH(STRONG(P)),
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TH(INFSTRONG (P)), TH(WEAK(F)), and TH(INFWEAK(P)) which operate within

n
time [TI(Z(TZ(D*Q» )]d for some constant d,

It is important to note that in Theorems 2,17, 3.1 énd 3.3, the
decision pfbcédure that is produced is obta;ned‘effectiVeif ffoﬁ the
one that isvgiven. For instance, in fheorem é.BV'TH(éTRQﬁC(P)) {a
completely determined by TH(P).

Now let P be the collection of finite cyclic group structures.
Since every finite abelian group is isomorphic to a finite direct
product of finite cyclic groups, the first order theoxy of finite abelian
groups is the same as TH(STRONG(P)). TH(P) is decidable, and we could
have used the technique involved in proving Theorem 3.3 to prove Theorem
3.2,8. Every finitely generated abelian group is isomorphic tq a finite
direct product of cyclic groups [MB68]. So if P' is the collection of
cyclic group structures, then Tﬁ(STRONG(P')) is the first order theory
of finitely generated abelian groups. But using results of [Szm55] it
can be shown that TH(P) = TH(P'), and so by Theorem 3.2, 8 we see that TH(STRONG(P )

Jcn :
can also be decided within space 22 for some comnstant c.
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Chapter 5: A Lower Bound on the Theories of Pairing Functioms

Section 1: Introduction

A pairing function is defined to be a one-one map p: N X N -+ N.

The language &£ we shall use to talk about pairing functions in this

chapter is the usual language of the first order predicate calculus with
the formal relation p(vl, vz) = vj. If p: N X N+ N is a particular

pairing functfom, then we can interpret formu¥ss and senténces of &

in the structure < N, g > in the obvious way; by a P&itmturiv-n shall
mean a pafr € N, p > where p is ‘a'i*pai.'riﬁg finetton. Lét P be the:
collection of all ‘P-structures. Note that although equality is not a

formal predicate of £, we can define equality in P by writing

Vx(p(vl,vl) = X 6 p(vz,\}z) = x),:which we will ﬁenc,e‘forth aAbbreviat’é
as v, = v, (where vy and vy represent w,varigbleg)., In [Ten74]

Richard Tetmeyirefer-s to some unphblished :t.esults of Hanf and Morley
ﬁhiéh show that'm(P) 1s undecidable. We will preaent our own proof of
this in Section 2, Tenney also proves that the theories ;dﬂ a large
class of pairing functions, including the most common examples, are in
fact decidable; however, none of the decision procedures for P-structures

that he arrives at are elementary recursive.T

T In an earlier version of Temney's work [Ten72] he presented some

elementary recursive algorithms which were supposed to be decision
procedures for some theories of pairing functions. We pointed out to
him that this was impossible, and he has since written a corrected
version [Ten74] in which all the algorithms presemnted are non-elementary
recursive.
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The major result of this chapter will be that this is an intrinsic
difficulty of pairing functions. We shall show“that no‘nonempty
collection bfvP-étructures (and hence no sinéle P-structure)ihas
an elementary recursive theory.

Definition 1.1: Define £: N + N by £(1) = 22  JPei8ht 1 o ¢ 46,

£00) =1 and £(1 + 1) = 2@ gor 1 2 0,

Theorem 1.2: Let C be a nonempty collection of P-structures. Then

NTIME(£(n)) < ,TH(C).

Theorem 1.2 will be proved in Sections 3 and 4. Using the methods
described in Chapter 1 for proving lower bounds, Theorem 1.2 yields the

following corollary.

Corollary 1.3: For some constant ¢ > 0, the following is true: Let C be
a nonempty collection of P-structures and let ! be a nondeterministic
Turing machine which recognizes TH(C). Then for infinitely many n, there

is a sentence in TH(C) which I takes at least £(cn) steps to accept.

We have remarked that Temney shows that many pairing functions have
decidable theories; in fact, some of the.decigion ptoqedqres that he
presenfs run within timg f(c'n) for some conséant c'. So the lower bound
of Corollary 1.3 is achievable (except for ﬁhe value of c¢).

We conclude this section with some simple generalizations of

Corollary 1.3.



| Definition 1.4: Let n be an integer > 2. Then an n-ling fupction

is a om-mmp p:' v < N. Sn, the lmgmeforn—ungfmtlmn,

is the language of the first order predicate calculﬁi with the formal

predicate 3::(\71,)72,g cves V) % Vo An n-structure is a pair < N,p >

where p is an n-ling functionm.

Corollary 1.5: Ilet n > 2 and let C be a nonempty colloctidn of n-structures,

- Then 'i'a(C) has no elementary racur-ivci"'dicioiéu' pfbca&ufe. ,

Proof: Assume for conventence that n = 3; the other cases are handled
similarly. If p is a 3-ling function mnd a € N, define the pairing
function p, by Pa(‘r‘z) = p(a,al,az)-. I£f F is a sentence of &£ (the

language of pairing functions) and x i{s a variable not occurring in F,
define F'(x) to be the formula of £3 obtained by replacing every atémic
formula of.F of the form p(v,,v,) = vy by 9(’-""1"’2). ==-_v3, It is easy

to see that for any 3J-structure < R,p > and any a €' N,

<N, p>FF'(a) <N, p_ >+ F.

Now let C' be a nonempty cdllection ofﬁ-str‘mt(u".“ and define
c = {<N, Pa > | <N, p>€C .and a €N); C is #m@ty collection
of P-structures, Let F be a sentence of &£. Then CF F* for every

<N,p> €cC' andaEN,<N,pa>!‘- F @ for every < N,p > € C' and
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a €N, <N,p>F F'(a) ®C' F VxF'(x). An elementary recursive

decision procedure for TH(C') would therefore yield an elementary

recursive procedure for TH(C), contradicting Corollary 1.3. U



Section 2: Some ‘Und

Qur goal in. th:l.s section is to prove that the set of sentences

e

true of all P-tt:rm:tnrea is not recnrsive, and that SOMme 1ndividua1
P-structures -also ‘have undecidable theories. These proofs are .due to
the author, Jeanne Ferrante, amd Robert Hossley.
Definition 2.1: Let E, (xI,xz) be the formula
‘?‘x dx (p(xp"z) = X3 A p(x39x4) = X )
If 8 =< N,p > :is a Pastructure, define
_ N el | ,
REL(S) = ((ay,8y) € ¥° | 8 + Fop (e.8,)) .

Let Ne <N be the set .of even, nonnegative integers,

Lemma 2,2: Let R S‘-.*Ne X Ne‘ Then for some pairing fumctiom p,

REL(< N,p >) = R; furthermore, we can choose p to be onto as well

as one-one,

Proof: Let (al’bl)’ (az,bz), ee. be an enumeration .of Nz such that each

‘pair occurs exaé'cly once and such that bi # 21 for each 1 € N+. (For
instance, we can choose an enumeration (0,0), (0,1), (1,0), (0,2), (1,1), ...
where the nmnber»s grow sufficiently slowly to ensure that b 1 ¥ 21i,) We

will now define the .soqmceyp(tal,,‘bl),p(az,bz), cee o
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Let n € N+ and assume that p(ai,bi)_has been defined for

0 <1 < n; we now define p(an,bn).

Case 1: (an,bn) E\R. Define p(an,bn) = 2n,

Case 2: bn = 2i + 1 and a = 2i and.(ai,bi) € R. »Define,p(qﬁ,bn) = bn'

\

Case 3: Otherwise. Let m be the least member of N such that
a) m is not equal to either 21 or 21 + 1 for any i such that (ai’bi) € R.

b) m € (p(a;,b,) | 1<m)
and

c)m ¥,bn'

Then define p(an,bn) = m,

We first show that p is one-one. Say that p(aj,bj) = P(ék.bk) = J.

If J = 2i where (ai’bi) € R, then both p(aj,bj) and p(ak,bk) must have

been define via Case 1, so j =k =i, If J = 2i + 1 where (ai’bi) € R,

then both p(a ) and p(ak,bk) must have been defined via Case 2, so

17"

bj = bk =2i + 1 and aj = ak = 2i. If we do not have either J = 2i v

or J = 21 + 1 where (ai’bi) € R, then both pfaj,bj) apdNP(ak,bk) must

have been defined via Case 3; by Case 3b), we must have j = k. So

p 1s one~-one.
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We will now show that p is onto. Let m € N. Assume that p
is not defined to take on the value m via either Case 1 or Case 2.

Then we do not have m = 21 or m = 21 + 1 where (ai,bi)ER. Let
S=((a,b)€N2|bGNemdaQNemdb#m}._ p cannot have been

defined on any member of S via Case 1 or Case 2, so ¢ mn;t have

been defined on every member of S via Case 3. Since S is infinite,
((a,b) | p is defined om (a,b) via Case S end b f w} is infinite. So
p eventually takes on the value m via Case 3, and hence p is onto.

It remains to show that REL(< N,p >) = R. Say that (ai’bi) € R,

By Case 1, p(‘i’bi) = 2i, and by Case 2 (since Case 1l doesn't apply to .
(24, 24 + 1), p(2i, 24 + 1) = 214 + 1 and hence (ag,b)) € REL(< N,p >).

Say that (ai’bi) € REL(< N,p >). Then for some ¢ € N and some j €N+

we have (p(ai,bi),c) = (aj’cj) qd p(vaj,}cj)‘ = cj. Since we‘can't have

G

c,=2j, p cammot have been defined on (aj,cj) via Case l,and looking

3

at Case 3c), we see that p cannot have been defined on (a ,cj) via Case

3. So p was defined on (a cj) via Case 2. This means that ¢, = aj +1

3’ k|
and ay = 2k 'whe’rev (ak’bk) € R; that_ is, p(ai,bi) = 2k and (‘l;'bk) € R. p(ai,bi)

cannot therefore hgve been defined via Cases 2 or 3, and therefore we have

that { = k and p(a;,b,) € R. : ' O

Definition 2.3: Let £1 be the language of the first order predicate
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calculus with only a 2-place formal predicate REL. Define the class of

structures for 31, C={<D,R> | R & D2 and D = domain R} (ﬁhere domain R

for a 2-place relation R means (a l for some b, (a,b) € R or (b,a) € R}).

Lemma 2.4: (Kalmar [cf. Ch56]). TH(C) is undecicla.ble..r

Theorem 2,5: a) TH() is undecidable.
b) There exist particular P-otructuxés,with undecidable

theories.

Proof: If F is a sentence of £1, let F' be the sentence of &

obtained in the following way:
-1) For every quantification Qv in F, change it into'a quantification

over the values of v which satisfy dx Exz(F 2) Av=x, Vv= xz)).

1%, (Fppp (%0 1

and

2) Replace each atomic formula of F of the form gg;(vl,vz) by

Exlﬂxz(FREL(xl,xz) A X) = Vy A Xy = vz). (We are assuming that neither

% nor x, occur in F.) It is easy to see that for any 8 € P and sentence

F of sl-,. < domain(REL(8)), REL(8) >F F ® 8 F F',

T Actually, the theorem as stated by Church as TH({< D,R > | R € Dz])

is undecidable, but Lemma 2.4 follows immediately from the proof.
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Proof of (a): ﬁc will show that CF F &P F F',
CFHPF=for al1 <D, R>€C, <D, R>F F=
for all 8 € P, < domain(REL(8)), REL(S) > F F =
for all 8 €EP, 3 FF' =P F F',
Conversely, P+ F' = for alt1 8 €P, 8 F F' =

for all 8 € P, < domain(REL(3)), REL(8) >+ F =
o (by Lemma 2.2)

for all <D,R> € C swch that D S K, <D,R > F F.
By the Skolem-Lowenheim theorem [cf. Men64], this implies that fer every
<D,R>€C,<D,R>FF, inplying CFF. SoCFFoPFF.

Hence, a decision procedure for m&) woul&lyiv.'eld. one for TH(C)

contradicting Lemsua 2.4.

Proof of (b): It is my to see that there exists some R <N X N_
such that N_ = domain R and TH(< N_,R >) (in Ll) is undecidable. (We

can, for example, choose R to be an equivalence relation so as to make

TH(<‘ N e’R >) undecidable, as desériﬁed in Section &4 of C},xsptcr 2,) By

Lemma 2.2 we can find 8 = < N,p > such that REL(8) = R. Then for any

sentence F of £1 we have < Né’R >SFFe®8F F', So T™(8) is undecidable.

Remark 2.6: Let P' = (<N,p > € P | p 18 onto}. The proof of Theorem

2.5 shows that (a) TH(P') is undecidable and (b) TH(S) is undecidable for

some 8 € P,
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Section 3: Construction of Formulas Which Tglk .Abogt Large Sets

Our goal in these next two sections is to prove Theorem 1.2, i.e.,

that NTIME(f(n)) < pz’m(C) for any nonempty collection C of P-structures.

We shall do this as follows: Let M be a nondeterministic Turing machine
over the alphabet Z. Then for every w € Zt ve will produce a sentence

F, of &, such that for any P-structure S, 3k F, # I gccepts w within

time f(|w|); furthermore, the time it takes to produce Fw will be poly-
nomial in |wl, and the space needed will be linear in lwl If M
operates within time f(n) and C is a nomempty collection of P-structures,

then we have C F Fw @ M accepts w within time f(ilw|) « M acéepts w, and
hence NTIME(f(n)) = p“,"I‘H(C). ‘
The way Fw will "say" that I accepts w withinktime f(|w|) is as

follows: We regard the instantaneous Mconfig‘uratiqn of a gompﬁtation of
Mon w at any time as a string of length f(lwl_), and hence the
concatenation of the first(f(|w| +1) / f(Iw] )) (which is 2 f(|WI))
successive instantameous configuratiops_ is a string ofvlgngth f(|w| + 1),

Fw will "say" roughly that there exists such a string of length f(lwl + 1)

which contains an accepting copfiguratioh. In order to write sﬁch

sentences as'Fw, we will first have to be able to write daim formulas of

£ of length propoi:t:ional to n which allow us to describe the basic
set-theoretic relations on the subsets of an ordered set of size f(n+ 1).
The above is an intuitive outline of our .approach.. The ideas for

this outline first appeared in Meyer's proof. that WSIS is not elementary



recursive [Mey73], and also occur inf{PiR74], {Fer74], [MS72], [SM73], [Rob73],{Sto74].
In the rest of this section we shall show how to write formulas of length |
| proportional to n which "talk about' sets of size f(n + 1); these
theoreﬁs do not appeal to any of these previous papers s!;ncc the
development in this bectién is necessarily intimately connected with

the nature of P—strﬁctures.  In Section 4 we shall 'ﬁruent a dévalopment
along the lines of Meyer, etc., which shows how to use the fot’ixlu

derived in Section 3 to prove Theorem 1.2,

Let < N,p > be a P-structure. We first define partial functions
L: NN and v: N+ N as follows: for a € X, 4(a) = b 1f for some
c €N, p(b,c) = a; r(a) = b if for some c GIN, p (c,b) =a. Since
p is one-one, r and £ are ;ndced partial functions. Clearly r and £
depend on p, but it wiil always be clear from the context what pairing
function a particular .'r and L come from. Let 0 € {r,l.),* be a string;
we define the partial fumnction fo_: 'N + N in the obvious vay, namely
if N is the empty string then fx(;) = b iff a = b, and if o is

fo' (xo') then £_=#f , (=ref_,). Henceforth we will use 0 ambiguously
to designate both the string in {r,l]* and the function fc" -

Lgt Ft(xl’IZ) be the formula 3x3(p(x2,-x3) = xl)’ @d let Fr(xl,xz)
be the formula Hx3(p(x3,x2) = xl). Then for any 8 € P and any a,b € N,
S F Ft(a,b) iff L(a) = b and 8 b Fr(a,b) iff r(a) = b, Since we will

be expressing properties using the partial functions r ad £, and since

we will be interested in writing dosm formulas that define these



properties, it is important to realize that we will be implicitly

using the formulas Fz and Fr'

Definition 3.1: Let < be the reverse lexicographical ordering on

*
{r,2}) . That is, 0, < 0, if either O, = 0,0, for some o E;{r,.%}*,

1 2 371 3

or if o, = dil.c and 0, = 0yr0 .for some 07, 0), O € {r, %) .

°1 <02 means cl < o, and 01 # 9,

All the properties mentioned in this chapter will be with respect

to P.

Definition 3,2: For each n € N, we define the property ORDn(x,yl,yz)
as follows: let < N,p > € P, let a, bl’ b2 € N. Then

\

<N,p > F ORDn(a,bl,bz) iff there exists ¢ »0y € {r,L}* such that

1
(@ oyl = lo,] = £
(II) cl < o,

(111) 0,2 = b, and o,a = b2

1

Remark 3.3: <N,p >+ ORD_(a,b,b) iff for some o € (r, 8",

lo| = £(n) and 0a = b. Clearly |(b] <N,p >+ ORDn(a,b,b)}I < 2f™) _ e 11y,

Definition 3.4: For n € N we define the property FleLn(x) as follows:

let <N,p >€P, let a€N. Then<N, p >F FULLn(a) iff



1o | <w,p. >+ omD (a,b,0)}]= £(n + 1).

m 3.5: Let < N,p > be a structure and let n € N, lLet

Ty» _'02,, snep 02‘ be the increasing (withv respect to %) | sequence §f :
those members of {t,t}* of lengthv n., Let bl, bZ’ __..;, 1:02n be a seqnepcc
of (not necessarily distinct) members of N. Then ﬁhara extsts a € N such

that c,a = b, for 1 < 1 s 27,

i i

Proof: (by induction on n).

Let < N,p > be a Pestructure. Lemma 3.5 is true if n = 0, since

we can choose a -'bl. So assume the Lemma for n; we will prove 1vt for

‘n+ 1.

] 1 ] '
Let bl' bl’ b2’ bz, cens bzn, bzn be a sequence.of mexbers of N

1

n+ ' - '
of length 2 . Define the sequence Cys Cos eoes czn by ey p(bi’bi)

for 1 =1 < 2", Let Tys Tgs 2e0s T be the increasing sequence of
2

those members of (r,t)* of length n, By the induction hypothesis, we -

can choose a € N such that o8 = ¢ for 1 < 1 5 2, By definition of <,

fo;, TOy, A0,, ¥O0hy +0es g , Yo _is the increasing sequence of members
1 1 2 2 oh on

£ (4,r)" of length n + 1. Since 4 fc, = b, and b!
of (L,r) of leng n 1. nce cian 1 = by rqia-rcis i

a is the element we were looking for. Hence we are done. a
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- Lemma 3.6: Let <N,p > € P and let a, n € N, Then the following two
statements are equivalent.

(I) <N,p >t FUL'Ln(a)

(II) For every a' € N, if KDRDn(a,b,b) = ORDn(a',B,b)) for all b € NJ]

then [(ORD (a',b,b) = ORDn(a,S,b)) for all b € N]

Proof:

(I = II):_Say Fhat'FULLn(a) holds in-<’N,p > and that a' € N has the

property that for all b € N, <N,p > F.ORDn(a,b,b) = < N,p > F ORDn(af,b,b).
We have f(n + .1) = [(b| <N,p >+ ORD (a,b,0)}] = |(b] <W,p >FORD (a',b,1)]]
< £(n +1). Hence <N,p >F ORD (a'b,b) = <N,p >+ ORD_(a,b,b).

(I1 = I): Say that II is true. Let A S N be a set of cardinality f(n+l)
such that {b |-< N,p > F ORDn(a,b,b)} S A. By Lemma 3.5 we can choose

a' € N such that (b | <N,p >+ ORD_(a',b,b)} = A, so0
(b | <N,p >+ oRD_(a,b,b)}< (b | <N,p>F ORD (a',b,b)}. So by II,
(b | <N,p>F ORD_(a,b,b)} = {b | <N,p >+ ORD (a',b,b)} = A. Hence,

I{b | <N,p >F oRD (a,b,b)}| = [A] = £(n + 1) and 80 <W,p > r FULL (a). O

Remark 3.7: if-< N,p > F FULLn(a), then clearly ca is defined fbr

every o of length f(n); furthermore, if |61| = |02| = f(n) and oy #‘02,
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then 0,2 # 0,a. Henmce ((b,,b,) | <N,p >¢ ORD (8,b,,b,)} is a linear

ordering on the set (b | <N,p > GRD_(a,b,b)] of cardinality £(n + 1).

Lemma 3.6 showed how FULL can be gxprn;.cd from the property ORD ;
the purpose‘of Lemma 3.8 is to show how 0§D;+1‘cnn be §x§celaed from
ORD ~and FULL . Let <N,p>€P and let n.bl,bz € N Lesma 3.8 says that
<N,p >F onnn+1(a,bl,bz) if and only if there exists some c € N which

"codes" strings 01,62 GV{r,L]* of length f(n"+ 1) auchrtﬁnt 61; = bl

and ¢

2

.8 = b2 and alt< 0,. To see how this coding 1is dons, examine Figure 1.

Every node in the tree in Figure 1 represents a (not necessarily distinct)
member of N. The value at a node is p of the values of the tvo sons

(if they exist); for instance, p(g,h) = c¢. In ordér for ¢ to code the
strings o, = Yemt1) o0 YaN1 and oy = 6f(n+1) ses 6261 it is necessary

that di = Yy oeee YpYq8 and e, = 6i . 62 18 for 1 < 1= f(n + 1); note.

that ¢ may code numerous pairs of strings. In order to say that c codes

strings 0155, such that cl(a) = b1 and cz(a)‘- b2 and %1 < oy, One has

to be able to talk about the nodes labelled by di,cl,dz;ez,..., °f(n+1)
and their ordering from left to right, and for this reason we insist that

€13 Cos eees cf(n+1) all be distinct so thgt we can talk about their‘

ordering using ORDn.



-99.

g h

o f()
\1evels
\

d
€re - - E(HL) CER+1)

Figure 1:

Illustrating Lemma 5.3.8
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Lemma 3,8: Let <N,p > €P, let n €N, let a,b,,b, € N. Then

<N,p > F -mDm_l(s,-bl,bz) 1if and only if there exists c € N such that

the following four facts hold.

1) <N,p > F FULL_ (c).

Let @be the linear order imposed on the set {b | < ﬂ,p- >k ORDn(c,‘b,b))

by ORD . Let ¢y,€5, «eus Cooo oy be the elements ordered by © liut@_ in

‘ increasing order (with respect to@).

2) e, 1s defined for 151 < £(n + 1.

Define the seguemce do.dl, coes df(n+1) by do = g and ¢l1 = uui for

0<1i<f(mn+ 1). Define the sequence eO"l’ ooy eﬁ(n+1) by eo - 8 -

and e, = ric, for 0 <1< £(n+ 1) (rhe, is defined since Alc, is defined).

i

3)For0<i$f(n+1),eitherd = rd ordial,d

i i-1

1-1° and either

= re

ey (-1 °F ¢ = "ei-l' Also,

df(m-l) = b1 and ef_(n‘*l) -:bz.

4) Either d, = e, for all 1, 0 < i £ f(n + 1), or there exists some i,

i

0<15En+1) wuch that 4.1) 4, = e, for 0 < § <1i and 4.2)

d, = Id andeir-re

i i-1 i-1°
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Proof: Fix < N,p >, n,a,bl,bz.

(If): Say that for some c € N, 1) through 4) hold. - I1f 0 < i < f(n+l), define

Yy = L if d, = Ldi-l’ apd v; =T if di =vrd

i

i-l»and di #.Ldi-l' If

0 <i < f(ntl), define 61 =r if e, =re; ;» and 61 = b if e, = Lei_l ;nd

e, oy ,
e; # re, ;- Define 0,,0, € (r,4) by o) = Yemt1)'*r Y2¥1 and

g, = Bf(n+1)...6261. It is clear from 2) and 3) that cia = bl\and

cza'= bzl‘ We.wish to show o) < Oy- If'b'1 # 62,’then for some 1 we have

= ' . PO . = <<i¢ £
Yy bj when 0 < j < i, and A # 61 - So cl.j : ej for 0 < j . I

= = = = ; o= . . =d =d.
di e then Yidi-l d1 e 6i.e1_1 ,6141;1, 80 4d1_1, rd, , {

By definition of v,, v, = 4 and so 0,0, If d; # e, them by 4.2)

. | | ) <
di Ldi_l. So Yy 4 and o ?2.

., ) i %
(Only if): Say that < N,p > F 0RDn+1(a,b1,b2). Let 0,5% € (r,4) be

such that °1.< 02 and |61]:= |02| = f(n + 1) and c,8 = bl,énd-cza = b2‘

Say that o is Yf(n+1)"' YoY¥y and that Oy is 6f(n+1)f" 6261 where
vy € (r,4) and 6i € {(r,4) for 0<1i < f(n + 1). Define the sequence

d.,d

0*dys *ees df(n+1) by d0 = a and d

4 = Yidi-l‘for:°7<‘i‘$ f(n+ 1).

Define the sequepce_eo,elf svey ef(n+1) by ey = a,and‘ein= éiei-l

for 0 <4 < f(n + 1), Clearly d ='b, and ‘e b,.

£(n+1) 1 E(n+l) = 02

Define the sequence B1s8Bgs -ve» gf(n+1) by gy = p(di,ei)-for

1<1i<f(n+1). Define hl’h2’ cees hf(n+1) € N as follows: let h1 be
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~any element of N; for 1 s { < fim + 1) let &, ba such that

"
9(81+1’h1+1) ¥ P(sj,hj) for any j, 1 5§ < {. ':(‘hi-i-l can be chdun in
fhis way since p is @e-m.) Define the w éf Qiotinct uubers
of N--jcl,cz, coes ‘cf(n;l-l)"- by "ci - p(ﬁi,h;) f.otls 17 .S f(n + 1).‘

Clearly d, = flc amde = réc, for 1 S 1 % £(p + 1). By Lesma 3.5,

i i

we can find ¢ € N such that if WysOys weey uﬁﬂl‘) are those wembers of
(r,4)" of length £(n) listed in imcressing order, then c, = ac for
1<1i<£f(n+1). Clearly c satisfies properties 1), 2), and 3).

Ifo, =¢

1 =Cp thend, = e for 0 <1< fln+1). Oth.crwiu“al ‘<»62
implies that there exists i, 0 <i < f(n + b, %a’;uch that Y} -‘53
1f0<j<i{, qdyi'fzqdai=r. Thisw? thntdj'-ej if
0<§<1i and cli = “1-1 and e = réi-l’ s0 4) lylds aléo. _ ) 0

Lemma 3.9: There exists a‘sequ.m'me of formulas of £
ORD,(X,Y,,5,), ORD,(X,¥,,¥Y,)s .. such that
(I) ORD (x,yl,yz) defines the property om)n for n € N.
(I1) There is a progedure which given n € )l+ computes gp_n within

time polynomial in n and space linear in n,
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Proof: Define ORDO(x,yl,yz) to be

ly; =y, A 32(0(2,}'1) =xV p(yl.Z) = x)]va(yl,yzl) = X

If we have Q{_Dn defining ORDn, then by using Lemma 36 we can obtain
a formula FULL (x) which is of‘ length p:epportional_ to ’t:'lde length of
ORD and which defines the properey FULL . ‘Ledlna 3.8 therefore gives
a way to define _QB_D_n l

+1 using ORD . (This is completely straightforward

if one notes the following fact: in Lemma 3.8 we occasionally quantify
over i, 1 < i < f(n + 1), but this can be expressed 1ndi;:ecc1y as

quantification over the ordered set (b l ORDn(c,b,b)})f.

If one used Lemma 3.8 in the simplest way vto write down ORD +1
using subformulas ORD , then since ORD would oceur more than once in
- ——n

ORD
-

. ‘ n . ) B - H 2
+1° the length of ORD would be at least prOportionel ton . We

can, however, use a result due to Fischer and Meyer [cf. FiR74] to

obtain (using Lemma 3.8) a formula ORD.. of length proportional to n
which defines ()RDn for all n € N+. This result is stated formally and

18 proven in Appendix 1. Thus by Thegrem A.2 of Appendix 1, vie:_can conclude

Lemma 3.9. i

t It is at first difficult to see how to use Lenma 3. 8 to write ORD ORD .4

using ORD. as a subformula, since .the free variables of ORD are fixed

and we might wish to use formulas similar to ORD but with different
free variables at different places in ORD 1 oRe way is by under-

standing the phrase "using ORD as a subformula" to mean using
formulas like ORD but with the variable names changed. Another way

is by the follawing trick: Say we have a formula F(x,y) and we wish
to have a formula G(y,z) such that F and G define the same ‘property.
We can let G be Vx sz((x =y A X, = z) * VxVy((x = Xy Ay= _y2) < F(x,y))).



Corollary 3.10: There exists a sequence of formulas of &,
FULL) (x), FULL, (x), ... such chat |
(1) mn (x) defines the property FULL_ foi: all n € N,
(I1) There is a pruedurc wvhich given n G l! couputu ﬂn vlthin

time polynomial :ln n and within space lincar 1n n.
Proof: Use Lemma 3.6 to express FULL using ORD for n € N,

Lemma 3.11: There exists a sequence of formulas of £,

DISTO(x,yl,yz), DISTl(x,yl,yz), .«s such that

I) If 8 € P and n,_g,bl,bz €N, :heq.s F DIST (a,bl,bz) L)

(1) 8 + FULLn(a)

(2) 8+ ORDn(a,bl,bz)
(3) .. The distancs from bl to bz in the ordering determined bymh

is exactily f(m).
I1) There is a procedure which given ne€xr" computes DIST within time
polynomial in n and space linear in n.

Proof: ~Let DIST, be p(yl,yz) =xA ¥, ,lyz ‘
Let&EP,u;aI, 85 bzén. Wemmiayt:huSI-mLL(a)

and [{c €N | c #by, and 8 + (R’Dn(s.br.c) and 3 F mnn(a,a:,a:z)l - £(n).
(This jmplies that 3 F mbn(g,bl,bz).) But by Lesmma 3;5, this will be true iff
8+ FULL (a) and there {s some c' € N such that SF FULL . (c') and such that

for all ¢ € N,
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S PORDn_l(ch,c)) & (c # b, and 8+ oann(a,bl,g) and 8 f ORDn(a,c,bz)).

We can therefore write down a formula DIST‘(x,yl,yz) for n € N (by using FULL ,

ORD , FULL and ORD _1) such that (I) and (II) are satisfied. i

-1

Definition 3,12: For all n € N, 1et'SETn(x,y1,y2)'be the property
such that for 8 G_P and n,a,bl,b2 E:N’ 8k SETn(a,bl,.bz) &

8 + FULL (a) and 8 F ORD_(s,b,,b,) and 8 F ORD_(b,,b,,b,).

Lemmg 3.13: Let 8 € P and let n,a € N such that 8 F FULLn(a).

Let A S {b | SYP ORDn(a,b,b)}; Then for some b1 € N;“

A = (b, | 8 F SET_(a,b;,b,)}.

Proof: Say that 8 + FULL (a) and A< (b | 8 + ORD_(a,b,b)}. Let A' < N
be such that 0< |A'} < fm+ 1) and A=A"N{b | 8 F ORD_(a,b,b)} .
By Lemma 3,5 we can find some b, € N such that

A' = (b, | 8 ORD_(b,,b,,b,)}. Hence, A = (b, | 8¢ SET_(a,b;,b,)). O

nggﬁ 3,14: There exists a sequence of formulaa of £, SET (x,yl,yz),
SETl(x,yl,yz), «+. such that
(1) SET (x,yl,yz) defines the prOperty SET for n E N.

(II) There is a procedure which given n € N computes SET within
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time polynomial in n and space linear in n.

Proof: One can e@ily write down SET using FULL and ORD . O

Note that by Lemma 3.5, mn(x) is satisfiable in my P-structure,
Hence, the formulas FULL and ORD allow us to write formlu vhich no
matter which P-structurs they are interpreted in, talk about an o_rdered
set of size f(m + 1), Using g;_:_sgn we can talk sbout two mﬂ“tl of
this ordered set being f(n) apart. Using §§In we can talk about all
subsets of this ordered set and refer to the basic. .ott-eﬁeoritic,‘, relations.
In what follows we will think of a subcct of thio ordcrcd set as
corresponding to the binary string vh:lch is the chuacteriitic sequmce
of the subset. It will be useful to be able to cxpru' the property that

such a binary string begins in a particular way.

Definition 3,15: For every y € (0,1} let START_ (x,7,e) be the property
such that 1f n = |y|, 8 €P, a,b,c € N, then 3 b START (a,b,c) 1ff

IO o FULLn(a) '

Let () be the ordering determined on {b' | 8w ORDn(a;b* ,‘b')} by 'ORDn,
Let o be the characteristic sequence (with respect to @ ) of the set
(b' | 8¢+ SET_(a,b,b")} = (b’ | 8¢ ORD_(a,b',b') and St onnt'l(b,b',b')},

i.e., o is the binary string of lemgth f(n + 1) determined by b, a and S.
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2) o = y.0 "/ "™.8 for some § € (0,1} of length f(n + 1) - £(n).

3) ¢ is the n + 1 smallest member (with respect to @ ) of the set

(v | 8F ORD_(a,b',b")}.

* , o
Lemma 3.16: Let y € (0,1} , |y| = n, and let 1 € (0,1}. Let 8 € P and
let a,b,c € N. Then Sk STARTYi(a,b,c) © the following eight proﬁerties
hold for some a',b',c' € N.
\.
1) 8 ¥ FULL ,(a).

2) 8 ¥ FULL (a')

Let @ be the ordering determined on {c" | s8¢ 0RDn+1(a,c",c"] by
0RDn+1. Say that cl,cz, ceos cf(n+1) are the first f(n + 1) elements
in increasing order (with respect to &)). Let @ be the ordering

determined on {c" IS"ORDn(a',c",c")] by ORDn.

3) {C" I Sl-ORDn(a",c",c")}= [01,02, ..-? Cf(n+1)1. Furthermore,

-cj @ éj+1 for 1 < § < f(n + 1).

4) st SETn+1(a,b,c ) @ 8k SETn(a',b',cj) for 1 < j < f(n + 1).
5) S\-STARTy(a',b',c').

6) 8t SETn+1(a,b,c') ®i=1.

7) ¢ is the immediate successor of ¢' in the ordéring' G

" " |'|
8) 8 does not satisfy SETn+1(a,b,c ) for any c", (e @cf(n+1)’
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Proof: (3) says that the ordered set of sizé f(n + 1) determined by
‘ORD and a' (and 8) is the same as the first f(n + 1) eleménts of the

ordered set determ:lned by ORD e+ and a. 4) therefore says that the

binary sequence of aize f(n + 1) determined by SE'I‘ and a and b' il

the same as the first f(n + 1) elements of the binary sequence of size

f(n + 2) determined by SET and a and b; 5) and 6) say that th:lé

n+l
sequence of length f(n + 1) begins with yi and 8) says that the rest of
it is 00... . 7) says that c is the n + 2 smallest mberof the

ordered set determined by ORD 1 and a. O

VRO

Lemma 3.17: For every y € {0,1} there exists a formula of £
START (x,y,z) such that
(1) START (x,¥,2) defines the property S'I'ARTY for vy € [0 1’} .

11) There is ocedure which given v € {0,1 utes START
(11) There a pr g Y € { } cm? SIART,

within time polynomial, in 17[ and'spacé linear in |

Proof: Let START, (x,y,z) be the formula ’ﬂz'(p(z,z') = xA z #2'), .
Lemma 3.16 shows that S'I‘ARTYi can be expressed in a fixéd way (depending on i

but independent of vy ) using STARTy, together with FULL ’ FULL n? ORD ORD ’

1l ntl’

SET

h1? SE’I‘n, and DIST ., where n = |vy]|. A11 of these létger propertiel can be

expressed in a fixed way from ORDn, and 8o START _ can be expreﬁned in a

vi

fixed way from START and ORD . Tn order to cénclude Lemma 3.17,
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we have to use a more powerful theorem from Appendix 1 than that used in

the proof of Lemma 3.9. Since for all n € N, ORDn_‘_1

a fixed way from ORDn, we can appeal to a special case of Theorem A.9

can be expressed in

in Appendix 1 (in which g(') = _F_‘i) to conclude Lemma 3,17. ‘ O

Remark 3,18: 'Foi"y € {0,1}* let START;(x,y) be the property such that
Sk START\"(a,‘b) & for some ‘c, S\— STARTy(a,b,c). We will really only.usve
the fact that ﬁe can write short formulas defining ﬁhe properties START;;
thg reason we have dealt with the more conplicat.dlsTARTY was in order

to be able to express these properties inductively.



In this section we will use the ,florml*gis FUI.L » ORD ,
DIST , SET , START to talk about Turing machines which recognise

languages € NTIME(£(n)), and hence prove Theorem 1.2,

Theorem 1.2: NTIME(f(n)) < P‘TH,(C) for any nonempty collection C of
P-strué tures, | ( | |

" Proof: Let M be s nondetemministic I~-Turing machine which operates

within NTIME(f(n)). In arder to prove Thecrem 1.2 we specify in

detail (partly reviewing from Chapter 1) the nature of our Turing

machine. The tape alphabet is T, ¥ € T, and R has one head and one

tape where the tape 18 one-way infinite to the right; initially the head
is on the leftmost square of the tape and Il never tries to read off the
tape. If w € Z+, then we input w to 9 by having the initial tape contents
be w’“... . Let the state set of M be {1,2, ..., k) where 1 is the initial
state and k is the accepting state. T accepts w 1if there is some
computation starting on w¥¥... such that IR eventually enters state k.

Let us assume that vafter entering state k, M thereafter stays in state k

without moving the head or changing the tape contents. Since T operates with-

in NTIME(f(n)), if T accepts w then there is some computation of T on
w which enters state k within f(IwI) steps and hence without leaving the

first f(|w|) tape sfguares,
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Let w € Z;+, lwl = n, Let g(n)'= f(n + 1)/f(n);'g(n) 2 f(n), so
if M accepts w there is some computation which accepts w within g(n)
steps, Consider now a particular‘computation of M on w which goes for
g(n) steps without leaving the first f(n) squares. let Wi € '2* of
length f(n) be the contents of the first f(n) éape squaréé at time i
(vhere TR begins at time 6). Let U, € {0, 1, 2, :k}* of length £(n)
be such that U, = 0% 3 0°(™79"1 yhere at time 1, 1s in state j and the
head is pointing at square q (where the leftmost tape square is squaré 0).

Let W = Wo'Wi- ..'Wg(

ny1 and U = U

G'U; cos 'Ug(n)-—l 80 that

]

|ul = f£(n + 1). Define the marking strimg M € (0,1}  of length

£+ 1) by M= (1 05 8™ o 4111 call W,U,M) the computation

triple of the computation (on w). (W,U,M) is an accegtigg" cdmputation
triple if k appears in U. Clearly M ;écep;s w if ax;d only if there is an
accepting computation triple for w. |
Let (W,U,M) be a computation triple for w € E+, |w| = n. For any
string vy, let y(i) be the i + 1 member of y so that
= W(0)-W(1l)e ... W(f(n + 1) - 1), etc. For every j, 0 5 j <g(n), and

every i, 0 < i < f(n), the values of W(j-£f(n) + 1) and U(}-f(n) + i) tell
us the contents of square i and whether or not the head is pointing at
square i (and if so, then the state of M), at instant j. The rules

(of the finite state control) of M together with the fact that we only
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consider computations which do not leave the first f(n) tape squares

put constraints on the values of W,U, amd M around place

jef(n) + 1 + f"(n) (Lf j+f(n) + 1 + f(n) < f(n + 1) ),dépending on the
values of W and U at j-f(n) + 1.

For instance, say that 0 < k < k + f(n) < f£(n + 1). Say that
W(k) = 0 and U(k) = 5 and say that if I is in Qta:te 5 with the head
pointing to a square comtaining O, then the machine »is allowed to
print 1 amd move the head te the right and t:raimfer to state 7; 1t 1s
permiseible therefore that: W(k + f(vn)).‘_- Lmd Uk -l'-,f(g)) = ) and
Uk + f(n) + 1) = 1 and M(k + £(n) + 1) # 1. If U(k) = 0, then we
must have W(k + f(n)) = W(k). The point is th;t vt:hore are oniy certain
values of (W(k), U(k), WCk + fem)), B(k+ f€n) - 1), U(k + £(n)), |

Uk + £(n) + 1),M(k + £(m) + 1))

which are permissible, i.e., consistent with n.v These ideas are developed

rigotouaiy in [Ste74, Section 2,2].

Lemma 4.1: LetW€EZ', UE (0, 1, 2, .., B, ME (0, 1} be strings
of length f(n + 1). Then (W,U,M) is an accepting computation for:
we (0,137, |w| =n, if and only if

1) M € 1-(0,1}* and every comntiguous f(ﬁ) sjnhol of M contains exactly
one 1. -

2)wW e w#‘f(n)hnc *,

£)-19,1, ..., 1.

3) u € 1.0
4) For 0 < 1 < f(n + 1), 1f M(1) = 1, then exactly one of the numbers

U(i), (i + 1), oeey, U(E + f(n) =~ 1) 18 nonzero,
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5) For all i such that 1 < i< i + f(n) < f(n + 1), the value of the 7-tuple
W(i), U(i), Wi + £(n)), U1 + £(n) =~ 1), UL + £(n)), ﬁ(i + f(n) + 1),
M(i + £(n) + 1)) is consistent with M.
and | |

6) U contains an occurrence of k.

Proof: 1) through 6) say roughly that W and U begin with the right
configuration, that the tramnsition between any two successive configurations
of length f(n) (marked off by M) are permitted by the rules of M, and

that the accepting state appears in U. These are neceésary énd sufficient

conditions for (W,U,M) to be an accepting computation for w. ]

Completion of the proof of Theorem 1.2: Let w € 2+, lw|] = n. We have

shown that with formulas of length proportional to n we can talk about
an orderéd set of size f(n + 1). Every subset of this set can be

thought of.as.a string of length f(n + 1) over (0, 1}. Evéry sequence
Y1s Yos eees Y of v strings over {0, 1} of length f(n + 1) represents

a string of length f(n + 1) over the alphabet [0,1}v (the set of v-tuples

containing just 1 and 0), namely the string y where

y(i) = (#1(1), yz(i), coey yv(i)) for 0 < 1 < f(n + 1); if

lzU (o0, 1, 2, ..., Kk} | = 2¥, we can think of Yys Ypr eees Y, 88
representing a string of lemgth f(n + 1) over the alphabet

ZU (o, 1, ..., k} by coding ZU (0, 1, ..., k} into (0, 1}'. Say that ¥ is
coded as(0,0...0). Then the string wpf(®)-n

will be represented by
v times '
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ylo.f'(“)"", v, 05, L, yvoff“)““'mre v, € (0,1)" and s of

length n for 1 < 1 < v, : o
refore using .mlv mns .lﬂn’ "%’ .Imyl, mzt am\,"
we can write a santamce Fw of length on which suys that there exists

(W,U,M) satisfying conditioms 1) through 6) in Lesma 4.1. That is, for
any 8 € P, F, will be true ia 8 if and omly if I? accepts w, Hence, if C

is a nonempty collection of Pestructures, r, € mic) ' wecepts w,

So}L'_(‘.m) < Mm«(c).- | 0
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Let £ be the language of the first order predicate calculus with a

finite number of relational symbols R,, @Q’ coes Ry Let P bea

class of structures for £. Henceforth sll properties and all
equivalences between formulss of & will be with respect to P. The
purpose of this appendix is to prove that one can construct short
formulas defining certain inductively described properfiea.
Theorem A.2 below will essentially say the following: given a

sequence of properties GO, Gl’ .s. such that G0 is defined by a formula

of £ and such that G can be expressed in a fixed way (independent of 1)

1+1

from G, using the language £, then for every i > 0 there is a formula of

[

L of length proportional to i which defines the property Gy.
We assume for convenience that equality is definable in P, and

hence for convenience assume that v1 = vy is an atomic formula of £.

We also assume that every structure in § has a domain of cardinality
= 2,

Now let k € N be fixed and let £' be the language of the first order

predicate calculus which is the same as £ except that a k-place formal

.r

predicate R, has been added.

T Two formulas of &' are equivalent if they are equivalent in any structure
obtained by adding to a structure from P an interpretation for R,
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Definition A.l: Let E(Ek) be a formula of &£' and let G(;k) be a

property. We define an infinite sequence of properties,

Go(xk), Gl(xk)’ .e. 88 follows: lLet GO(xk) @e G(xk?f‘ For fvery i1 €N
and for every structure 8 € P with domain S and for every‘zg € Sk, we
say that S + G -(;k) iff 8 F g(;#) when the formal predicate R is

i+l

interpreted in 8 as Gi (restricted to 8),

Theorem A,2: Let g(;k) be a formula of &' and let §(§£) be a formula of
£ defining the property G(xk). Let Go(xk)? Gl(xk), 35 be the
properties defined in Definition A.l. Then there exists a sequence
Go(x)s Ei(xk)’ ees oOf .formulas qf & sqch that |

(1) gi defines the property Gi for each 1 € N,

(II) There is a procedure which given i € N+ computes gi within

time a fixed polynomial in i and space linear in i.

‘Theorem A.2 is due to Fischer and Meyer [cf. FiR74], working from
earlier ideas of Stockmeyerv[SM73]. A kéy part of the proof will be

Ioma A. 3‘.
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Lemma A.3: Let F be a formula of £'. Then there exists a formula F'
of &' equivalent to E such that F'" has exactly one occurrence of the
predicate letter @__;‘ this occurs in an atomic formula in which all the

k formal variables are distinct,

Proof: Let F be a formula of £'. Since any formula of &' cam trivially
be extended to an equivalent one with at least one occurremce of R,
assume that‘g_ contains at least onme occurrence of R, Assume F 18 in
prenex normal form so that F looks like QvyQ,v, ... QuvA where A is

a quantifier free formula containing m 2 1 occurrénceé of the symbol R

and where VisVys eeesV represent formal variables. Let us say that the

J

m atomic formulas of A in which R occurs, from left to right are

&(Vll’vlz’ seny Vlk), & (V21,V22’ LN ] V2k)’ oes ey &(le’vmz, L ] mG)

where the symbols v for 1 i <mand 1 £ j < k represent formal

i,]

variables.

Let y,, yi, Yo» yé, ""Ym’yxix be distinct formal variables not
appearing in A, Let A' be the formula obtained from A by replacing

G_E_(vﬂ,viz., sees Vik) by ¥y = yi for 1 < 1.< m, Since in every strueture
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of P there are interpretations of y and y' which ca?sg t;he formula

y = y' to be true, and interpretatioﬁs which cause y = y' to be false,
we see that A is equivalent to

DL < g ® A 151\Sm[(y1'= v &("11"’;2' v -

Now let y, y', 2152y, eees zk be distinct formal variables not

occurring in /\ [(y, = y!) & R(v,,,v cees Vi )le
reien 71T 11:Vi2e o0 Vik

1/\ [(yy = Yi) « &("11"»’12’: cees vik)] is equivalggt to-
<i<m : .

VyVy'Vz ...Vzk[(\/ (y=y, Ay =yjAe

1<i<m

=v,. Az

11 A "'Azk=5vik))-’

1 1 2 % Vi2

@y = y')oig’_(zlszzo ‘;'fa;zk))]o
Seo we have shown that F is equivalent to a formula with exactly one

occurrence of R, which occurs in the atomic formula R (;k). . 0

Definition A.4: Let _E_(;k) be a formula of &£ and let zi‘;zz', .., z, be

distinct va.riablés ali of which are different from"xl,xz, cens Ko

(2 %)

Then let F ('z'k) be the formula obtained from F in the following way:
If v is an océurrence (not necessarily free) of a formal variable in F,

then if v = z, for some 1, 1 <1 <k, replace v by x,; 1f v = x, for some 1,
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1<1i <k, replace v by z, .

Definitiop A,5: If F is a formula of £, define the gize of F, s(E),to
be the length of F when each variable subscript is counted to be of

length 1 and all other symbols are counted normally.

The following lemma follows immediately from the definitions.

- &%) _
Lemma A.6: Let z(xk) and F (: ) be as in Definition A.4.
(x, %) _ Ix) .
Then s(F) = s(F 'k xk ), and z(xk) and F 'k e (zk) define the same

prop‘é‘r ty .

Proof of Theorem A,2: Let F(x,) be a formula of &' and let G(x,) be a
formula of & defining the preperty G’(x'k). By Lemma A.3 assume 'th;e ¥
contains exactly one ‘occurrence of e_; the proof of Leéfima A.3 assBures us
in fact that we can insist that the af.omic formula in which R occurs is

&(;k) vhere z,, %,, ..., Z, are distinct variables not occurring in

k
[xl’x2’ LA ] x‘k} .

Now defit;e a squence _G_O(;k), -G—l(;k)’ cee qf .formltln-s of & as follows.

Let G

G, be G. For all 1 €N, let G

G4 be the formula qbt#ned by
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| (z, 1% -
substituting G’i k% for @_(zk) in F. It is easy to see by induction

(using Lemma A.6) that G (x ) defines G,(x) for é,a_ch 1 € N.

. (z, /%)
For ¢y = IE_I we have s(gH_l) < oy + s(g:t N ) = o + s(gi)

for 1 € N, so 8(9-1) < 8(G) + 1°c,. Every variable occurring in each Qi

0‘
is either from the set {xl,xz, cooy xk] or occurs in F or occurs in G.
If ¢y is the maximum length of any such variable -uﬁscript, then

Igil < c1°s(§i) < cl'(s((_;) + i'co) < cei for i E"N+ and some constant ¢

independent of i. It can also be checked that one can compute S,

within time polynomial in i and space linear in 1. ' O
Remark A.7: Theorem A.2 can be improved in a number of ways. Firstly,

we can obtain our result even without the lreatri;tions that equality be
definable in P and that every structure in P,vhja\’re a d@in of cardinality
2 2, In addition, using a trick suggested bybsdova& [S0173] we can obtain
the same result even if our language of the predicate calculus doesn't

contain &,

Theorem A.2 can be generalized in a number of ways. We will only
present the particular gemeralization which we need in the text.

To begin with, let £" be the languagg of the first order predigate
calculus which is the same as £ except that we have added two new formél

k-place predicates: R and R' for some fixed k € N.
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Definition A,8: Let _F_G(xk), El(xk;)’ zé(yk), _E_'_i(yk) be formulas of £".

o — . _ : * ‘
Let G(xk) and G'(yk) be properties. For every y € {0,1}) we let
GY(Ik) and c;(?k) be properties as follows: If A is the empty string,

* ;
let G, be G and let Gi be G'. For every § € {0,1) and every

8 € P with domain S and every :k‘G Sk we say

8 F Gy, (ay) (wheve i € (0,1)) L£f 8 + F,(a ) vhen R is interpreted as
Ga' (restricted to 8) and R' is interpreted as (;5' ; we say 3 b Géi(;k) if£f

8+ Ei(;k) when # is interpreted as G&-md&' is interpreted. a&,AGé.

Theorem A.9: Let Eo,F,,Fq,F; be formulas of & and let E_C;k), g' (;k)f

be formulas of £ defining, resﬁectively, the properties G(;k) and

— % : — —_—
G'(yk). For each y € {0,1} , let Gy(’xk) and G;(yk‘) be as in Definitiomn
A.8. Assume that for any 8 € P, the relations obtained by restricting

*

GY and G; to 8 are both nonempty. Then for each vy € (0,1} there exist
formulas gy (;'k) N g; (;k) such that 4
(I) ¢ defines G and G' defines G'.

-y Y Y Y

+

(II) There is a procedure which given y € (0,1} comput;aa, ’G"Y and Q-Y

within time a fixed polynomial in lyl and space linear in 'y|
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Proof: The basic idea of this proof is what wecgll f'_si.;ygxlzg:aneous
definition"; for every y € {0,1}* we will write down a formula which

defines both G,Y‘ and G;, as described below.

For each y, let Hy(;k’;k) be a 2k-place property ‘which we define
informally to be "GY(;k) A G;(;k) " more formally," 1‘f‘ 8 € P with domain
k

’

S and 31", 'b?k €s then we say S F HY(.a-.‘k','l;k) o8 GQf(Ek) and

). The formula H (%)) = G(x) A G'(7,) defines H,(x,¥,)-

8 F G' (b,
Y
Let 6§ € {0,1} and let i € {0,1)., We now show informally (this will
be made precise below) how H61 can be expressed from H6: It is sufficient
to show that G;, and Gg; can be expressed from He. Using F, and E; we
can express G6i and Géi by u.sing G6 and Ga'. Siﬁce for any 8 €P
' ok
withdomainSandanyakGS ,
8 F G.(a, ) ® for some b, Esk 8 F H, (3 f) a.nd
6 %Kk k ’ R e M -
8+ G!(a,) * for some b, € S*, 8 F B, (5,,5.)," we see that G, and G
5% k ’ 6 Pk 8 5 5

. can be expressed from H&'

Proceeding more formally, let 83 be the languagé of the first order

T since the relations obtained by restricting G6 and GG' to 8 are nonempty.
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predicate calculas obtained from & by adding a 2k-place formal predicate U.
Let Wi,Wys ceos W be distinct variables not occ,qrring‘ in go,gl,g_'oc,gi.
For i € {0,1}, let gi&k) be the formila of & obtained from E, by
substituting 3“13"2’ —_— &wk H(;k?;k) for @_(;k) -every time R appears
(where VisVys eees V) Tepresent formal variables), and substituting
Tw B, ..o Bw U (W ,v,) for &' (;k) every time R' appears; obtain
Zi(;k)'ﬁm E:'L in the seme manner.

For 1» € {o,1j, define the formula Ii(;k’;k) of & as
zi&k) A zin)., oge can now see that for 5 € {0,1}*,‘ 1 € (0,1},
8 € P with domain S, and :&,s& € Sk, we hgve 8¢ G61(3£) 8 ¢k 2&(;&)

—

" (R '
when U is interpreted as H, restricted to 8, 8 + Ga,i(»b.k) ® Sk 4":1 k)

when U is interpreted as H, restricted to 8,and therefore

6

S F H&i(;k’i;k) 8 i-_ _']_?_i(;k,fk) when U is interpreted as Hé‘restricted to 8.
Now let {zl,zz, caey sz} be a set of 2k distinct ygr;ables not

intersecting (xl,xz, cees XpsYisVgs cees yk} or the set’of'variables in

Ty @nd T,. ‘Let go(Ek&k) and 51(;1:’;1:) be formulas of £ such that each

contains exactly one occurrence of U, namely in the atomic formula y_(;m‘),
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and such that I

0 is equivalent to

and I, is equivalent to T,.

2 1
For every y € [0,1}* define thé formula E-y(;k’;k) of £ as fo?llows.
Let EX(;k’;k) be, as before, the formla;,_(_;_(;k)/\ g_'(-y-k); for & € {0,1}*
and 1 € (0,1}, let H,, be the formula obtained by substitgting, for
H(;Zk) in Ti’ the formula %(;Zk'(;k’;k)). It is now easy to see that
B—y(;k’;k) defines ﬁy(;k’;k) for y € {0;1}f. As in‘the‘pfroof of
Theorem A.2, we can check that |gy| < c|y| for |y| > 0, L’a.gt],y, for
y € (0,1, 1let 6, (5 be y,dy) ... Gy (4,5,) and let G be

1

Ix sz ees ka_liy(;k,;k). It is clear that conditioms (I) and

(II) of Lemma A.9 hold. ‘ ” m
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Appendix 2: Notation

The empty set.

(x|x € A and x ¢ B} (set difference).

The set of all subsets of the set A.

The cardinality of the sethn

The length of the string oa.

The absolute vglue of the integer n.

The set of all strings over I if X is a finite alphabet.

The empty string.

" - {\}.

Concatenaﬁion of the strings o and v.

The i + 1 (from the left) member of the stripg o.

I1f ¢ is a sﬁring, then a.a- ... o (k ﬁines) if k >0 and M if k = 0.
If S is a set, then S X S X ... X S (k timé)ifk>03nd‘¢1fk=0.

(al,az, cevs ak) if k>0 and ¢ if k = 0.

(e,e, ..., ) (length k) if k > 0 and ¢ if k = O.

(e;e, oo+, &) (length k) if k > 0 and ¢ 1if k = 0.
Maximum of the set A.
Minimum of the set A. Min A = 0 if A = ¢,

1032 n.
f(a) = f(b) = a = b,

For all b € B there is some a such that f(a) = b,
The set of nonnegative integers.
The set of integers.

The set of real numbers.



N

R v B ® b

=41}

B

~ mod k
M(n, k)
TH(S)
TH(P)

S F
1al]
A

m

L)

<

pe
DTIME(£f(n))

NTIME(£(n))
DSPACE(£f(n))

NSPACE (£ (n))
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The structure <N, +, <, 0 >,

The structure < Z, +, <, 0 >,

The structure <R, +, <, 0 >.

A logical strudture with domain S.

The weak direct power of S.

The dohain of_S*;

The strong direct power of 8.

The Ehrenfeucht. equivalence relation (defini;ion 2,2.1).
Equal up to size n (definition 2.3.2). '

Equivalence mod k.

The number of'; equivalence classes on Sk.

The set of sentences -true in 8.

The set of sentences true in aevery structure in the set P.
F is true in 8.

The norm of the element a of a logical structure.

Finite abelian group.

A (one tape, one head) Turing machine.

A language recognized by T,

Polynomial time, linear space reducibility.

The set of languages recognizable within time f(n) by a
deterministic Turing machine.

The set of languages recognizable within time f£(n) by a non-
deterministic Turing machine.

The set of languages recognizable within space f(n) by a
deterministic Turing machine.

The set of languages recognigable within space f(n) by a non-
deterministic Turing machine.
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