
THE COMPUTATIONAL COMPLEXITY OF SOME LCGICAL THEORIES 

by 

Charles Weill Rackoff 

February 1975 

Research for this paper was supported by the National Science Foundation under 
research grant number GJ-34671. 



-2-

THE COMPUTATIONAL COMPLEXITY OF SOME LOGICAL TIIEORIES 

by 

Charles Weill Rackoff 

Submitted to the ~t of Electtical Enginening cm September 9, 
1974, in partial fulfi11-nt ef the rfM(tliremepts for: the Degree of 
Doctor of Pllituopky. · 

AB'STR.ACT 

Upper and lower bound• on the inherent computat:ional co11plexity of 
the decision pTobl .. for a .. ...._,. of logical theories are utabliahed. 

A general fora of lhrenf--"t. ,- t;,echniqve for deciclinig t!Mories 
is developed whida i.Dwrl9e8 malysing the expr ... ive ,_er of formula• 
with given quantifier •pth. The metlt.ocl allon one to dec'ide the truth 
of sentence• by U.aitillg cpimt.ifiera to rmge over finite nts. In 
particular for the d!!!orJ· of int•ar .Wit.iaa • upper hound of space 

2cn 
2 is obtained• this is cloee to the known lover bound of nondeterminiatic 

c'n 
time 22 • 

A general development of decisicm procedures for theories of product 
structures i• preHntal, which allon one to conclude in ..,.t caaee that 
if the theory of a •ttllcture i• elementary rec.univ•. then the theory 
of its weak direct .-er (• well aa other kinds of cltrect proclucta) 
is elementary recuraift. In particular, for the tJMorx ti_ !I!!. l!!!£ 
direct 'RO'!!r of<!.-+> , and hence for integer multiplication, an upper 

2c;n 

bound of space 22 is obtained. The known lover bound is nondeterministic 

22 
time 2 

c'n 

Finally, the complexity of the theories of pairing functions is 
discussed, and it- is shown that no collection of pairing functions 
has an elementary recursive theory. 
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Chapter 1: Introduction and Background 

Section 1: Introduction 

The significance of the distinction between decidable and 

undecidable theories has been blurred by recent results of Meyer and 

Stoclaneyer [Mey73,MS72,SM73,Sto74] and Fischer and Rabin [FiR74] who 

have shown that most of the decidable theories known to logicians 

cannot be decided by any algorithm whose computational complexity grows 

less than exponentially with the size of sentences to be decided. In 

many cases even larger lower bounds have been established. In this thesis 

we investigate the computational complexity of a number of different 

logical theories, obtaining decision procedures whose computational 

complexities roughly meet the known lower bounds and deriving a 

new lower bound whose complexity is very close to the known upper 

bound. 

Let N be the set of nonnegative integers. Whether a sentence of 

the first order theory of N under addition is true is decidable 

according to theorem of Presburger [Pre29]. A more efficient decision 

procedure given by Cooper [Coo72] has been proved by Oppen [Opp73] to 
2cn 

require only 22 steps for sentences of length n, where c is some 

constant. In Chapter 2 we present a fairly general development of 

2cn 
Ehrenfeucht games [Ehr61] which allows us to show that space 2 is 

sufficient for deciding Presburger arithmetic. 

* Let N be the set of functions from N to N of finite support, i.e., 

N* (f: N ~ N I f(i) = 0 for all but finitely many i EN}. 
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The structure < .+ .. > of positive mteger• tmder mo1tittlieation is 

* isomorphic to the structure < N , + > (the weak dQ-eet paw•r of < N, + >) 

where addition is 4efined COflPOll"'!lt~se. ~.first; order tbeory of 

this stTucture is k:aoft to 'b• deeUable 'by • tb.eor• of MQ•toweki [Moa52]. 

Mostowski'• pr.cedure, how8'ftl'. ia not e1-nt~ recura~ve in the 

sense of the follovbJg definition: 

DefinitiQB 1.1: An !ISRtt!it recs•iD ms.Me (OD 1tri.Dg1 or integer•) 

is one which can be CG91PUtecl 'by sOJM T\1.ri-S Machin• vithia time bound-4 

above by a ff.xed camposltioa of u:poa-.tiat, f\met.toaa of the leqth of 

the input. ('l'hl• is .._ by CoMl• {<:Qb64] ai a.tt:4hie J;l.it63] to 

be equivalent to Xa1-r'a d.eff.Diticm let. i.t67}.) 

In Chapter 3 we use the technique of Ehrefeucht g.a:mea to derive 

some general ruults about the theories of w.eaJt direct polll'.8t'8 which 

enable us to obt:aitl a new pnceclure for decidfaa tlbetber emteacu are 

* . true over< N , + >. Our procedure ean be ial,pl-.nted on a Turin& aac~ine 
c'n 

2cn . 22 
which uses •·t most 22 

taii>e equaree (ad. hence 22 etep8) on 

sentences of length n. As a corollary we obtain the 1ame upper bound on 

decision procedur .. for tlle first order theory of finite abelian group.9. 

Recent results of Fiacher and Jtabin [Fill74] show that for .ome conetant c 0 > O, 

* any procedure for tM fint orfler theory of < lf , + > requir• tfJM -
c''n 

22 
2 even on DODdetermilli.s.tic Turing DW1Chines. Thus (see SectiGU8 2 &11d 3) 
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* the worst case behavior of our procedure for < N , + > is assymptotically 

nearly optimal in its computational requirements. 

In Chapter 4 we extend the methods of Chapter 3 in order to obtain 

general results relating the complexities of theories to the complexities 

of their weak direct powers and direct products, thereby obtaining 

computational versions of results of Mostowski [Mos52] and Feferman 

and Vaught [FV59]. In particular we show that the theory of the weak 

(or strong) direct product of a structure is elementary recursive if 

(but not only if) the theory of the structure is elementary recursive and 

if another condition holds; this other condition says roughly that not 

too many sets of k-tuples can be defined in the structure with 

quantifier depth n formulas. 

Chapter 5 is concerned with the computational complexity of pairing 

function structures. A pairing function is a one-one map P: N X N ~ N, 

and the associated structure is< N,p >. Although the theory of the 

set of all pairing functions is undecidable and the theories of some 

individual pairing functions are undecidable, Tenney [Ten74] shows 

that many commonly used ones have decidable theories. Our main result 

is that no nonempty collection of pairing functions has an elementary 

recursive theory. In fact, for some 

any nonempty collection of pairing 

constant c > O, the theory of 

functions requires time 22···~height en 

to decide. 

In Section 2 of this chapter we present the definitions and basic 

theorems of automata theory needed to clarify the basic notions of 

upper and lower time and space botmds used in the following chapters. In 
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Section 3 we discuss the reducibility techniques which allow us to 

achieve many of the upper and lower bounds. Section 4 consists of 

a description of the notation and fundamental concepts of mathematical 

logic which will be needed in the rest of the thesis. 
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Section 2: Automata Theory Backgrpund 

We shall consider a version of Turing machide& whf:-cb.:: ~Y be either 

deterministic or nondeterminiat:ic,, one tape, cme., he-' automata. 

with a finite tape alphabet :t. For a rigoroua,4efi'JlU:ion of these. 

machines the reader can consult; [Sto74, &ec.t:ion·2.i]• For most ef our 

purposes, however, the exact detaiu of the definWon chosu do.not 

matter very much, so we provUie only an informal Jie~riptian,bere. 

The tape is one-way infinite .to the right -and·.~ilhe ·autoaaton starts 

in the initial st41te with it.8 head on the left:mo&.1f B-.UIU'e :of t~e,,-tape. 

At any step, depending on the current state ·amt .~ 4urrent cQnt,ents of 

the tape square t1cmned by the head, the automaton 0:811' •ite a new 

member of l;. on that square, move the he-1 ·H3ht:. Ql' .lef~, . .apd. go into a 

new state. The Turing machine- is ;d:f~ti9,.lf :t~s .. .actipns at any 

step are completely determined by its ·state and l>y,. the contents of the 

square pointed at by the head. If the :tlaaebine :'a." pm;fje'i@El!ini•tilc 

there may be a finite set of permissibt. actioll's .~i·J:>le at; caflY moment. 

Thus, the deterministic Turing machines fQ'rDLa subee-t of the nonqet~rministic 

· ones. 

A (deterministic or noudeterm.inistic) l:;-autt11111&ton !Ul hat ~ as the tape 

alphabet; at any moment, all the symbols on the tape are frOlll.the 

* alphabet :t, ~ E :t. Let :t be the set of all finite sequences, or 

:-!- * "strings" of elements of :t and let E = :t - {A.} where A. is the empty 

string. 
:-I-

If y E E , then !IR accepts :y 'if there ia-'8Clllle. ttect~ of possible 

steps of !IR with the tape squares initially -conea.tning. the a~rtng. y1'lit 

and the head scanning the leftmost symbol of :-y, tlhat enda 1fith an 
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accepting state. The set L{M) • ( y E 'I!" l. !Dt accept• y} ia ealled the 

language !!§C!l!i'&e4 'by 9. 

We nov defl.ne: wllat: 111e ..... by tke· dJ9: aaci; ..,_. _. 'bJ'· Tmling 

machinea. If ~ tai s (.-..atwcabt:ic:-:) z;..nu:i1'1; ........_,, *1ch: scept• 

y E I;+ by w co.mput;at:ton ecmnbdq at; mat n: R11P' .._ ,,.., ..,. -~­

!Ill accepts y wU:lt'1s ....- Di. If 9 acceplta y t.y· .- ...-C&tlta duriag 

which the head vtdta at mA D diff....--~ .. _._ t*- W9 U.:, that 

!Ill accepts y wt thin 8JMle• n •. · tat L • L(!I)·· .. mu.ti let f: Jf ... If. 'l'heD we 

say !Il recognt.sea L nth& thle Eapace) f(11) tf for ....:y y E L.. !II 

accepts y withtn ts.a ~apace) f <l'Yl)wlm:e J.1 u .-.na· .. 1-gth of tu 
string y.. NTDEtffll)) (llSNCB(f{ll)),) u the~ Mt ·of. ~ (,._. 

by language htwe •-•'a eubMt: of '1f for~ aq,habet I;) ach of 

which is recognised bf w ---~ta:tie tJ'Uriln&. ~ withf.n 

time {S"paCe) f(tt). Mllm(f(n)} and DRA«imff(n.).): are deftMlt. dmilarly 

certain relationshiptJ known to hold between time and apace for determiatstic 

in [Sto74 }. ) 

Fact 2.lt, Let f: M,... 1'. 

a) DTDIB(f{•)) !;; l!l'rDll(f (n)) 

b) NTIMB(f(n)) ~ LbTDIE(cf(n». 
cEN 

--------- --- ---- ----~--------------
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B. Nondeterministic versus deterministic space 

a) DSPACE(f(n)) ~ NSPACE(f(n)) 

b) NSPACE(f(n)) ~ DSPACE((f(n)) 2) 

c. Time versus space 

a) DTIME(f(n)) ~ DSPACE(f(n)) 

NTIME(f(n)) ~ NSPACE(f(n)) 

b) NSPACE(f(n)) ~ lJDTIME(cf(n)) 
cEN 

All of Fact 2.1 is relatively straightforward to prove, with the 

exception of B.b. B.b is proved by Savitch [Sav72]. By (B), if we 

en are discussing a lower or upper bound of the form "space 2 for some 

constant c" it is unnecessary to specify if we are talking about deterministic 

or nondete~inistic space. 

2
• • .pheight en 

Similarly, we can talk about a bound of the 

form "2 J 1 

for some constant " c without specifying if we are 

talking about time or space, either deterministically or nondeterministically. 

Each of the gaps between a) and b) in A, B, C above represent 

important open questions of automata theory. 
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+ I) for al 1 y E z;
1

, y E L
1 
~ g ( y) E L2 anJ:I 

II) there is some Turing machine which computee g within time a 

fixed polynomial in the length of the input and within space linear ir. 

the length of the input .• t 

* If Sia a collection of lmguages O'Y'er :E
1 

(Si;;; p(.E})), then we say 

We now state 1..-a 3.2, which is a very powerful way of proving 

lower and upper 'botlad•. For a preof (which is really very simple} of 

this fact and for a very thorougla discwaaion of reducibilitiea~ see 

[Sto74]. 

Leana 3.2: Say that Li :S: p.t~· Let f: N ... N. If 

DTIME(f(n)) 

DSPACE(f(n)) 

NTIME(f(n)) ' then Ll E 

NSPACE(f(n)) 

DTIME(f(cn) + p(n}) 

DSPACE(f(cn) + n) 

NTIME(f (cn) + p(n) 

NSPACE(f (cn) + n) 

for some constant c > 0 and polynomial p (n). 

t 
A determiniatic Turing macltille cgmputea l. if when it is started with 
yW ••• on its tape, y E L'i°• and its bead on the leftmost aquare, it 

eventually halts and g(y) is the striag on the tape to left of the head. 
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NTIME(f(n) + p(n)) then L2 ~ 
NSPACE(f(n) + n) 

DTIME ('f(cn)) 

D§PACE(f~cn)) 

NTIME(f(cn)) 

NSPACE(f(cn)) 

for some constant c > 0 and some polynomial p. 

An example of the way we use Lemna 3~2 is the following: say that 

2
cn 

we have lla:lSuages L1 and t 2 such that we lcnow that Li E SPACE(2 . ) for 

en 
some constant c. If t 1 ~ ptL2 then we can conclude that L1 E SP~CE(22 ) 

c'n 
for some constant c. If we know_ that L1 f. NTIME(2

2 
) for some 

constant c' > o,· and if L1 ~ p.tL2, then we can coriblude that 

1 
2c n t 

L2 f. NTIME(2 ) for some constant c' > O. This latter idea is often 

used in conjunction.with Lem:na 3.3. 

Lenma 3.3: (see[Co73pFM73. Sei74] .) Let f: N -+ N be one of the functions 

. 2n .2t 
2
n 

2
2n 

2
2 

2
2·· eight n 

, , , or • Then there exists a language L such that 

L E NTIME(f(n)) and Lt NTIME(f(n/2)). 

n ·y2 · n 2~ 22 2•• height n 
Theorem 3.4: Let f: N -+ N be one of the functions 2 ,2 ,2 or 2 _ 

* * . and let Lo ~I; (for some I; ) be such that NTIME(f(n)) ~ p.tL0• Then for 

some constant c > O, L0 ~ NTIME(f(cn)). 

t It is easy to see that if L i. NTIME(fi('D.} h. then tJ11Y nondeterminietic 
Turing machine which recognizes L takes time at least f (n) on some 
y E· L of· length. n, for infinitely mall!¥ n. 
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Proof: Say that llTIME(f(n)) ~ p.t1a· By Lemma 3 .. 3, let L 'be such that 

L f NTIME(f(n/2)) and L E ftIME(f(n)). So L ~ p.t1l,• 8J' Lemaa 3.2, 

L0 f. NTIME(f(cn)) for ~ ccmatant c > o. 

A typical way 'l'beorem 3.4 i• used is the following. Fischer and 

Rabin [FiR74] show that if TR i• the theory of integer addition, then 

~ r . 
NTIME(2 ) s:: pt'l'R, concluding that TH f 1'TDIK(2 ) for cen.atattt c. 

. c'u 
' . . 2 t 

In Chapter 2 we show that '111 E SPAC!(2 ) for some ccmatatlt c, and 

2c•n 

hence that m E DTIMl!!(22 ) for some coutant c•. 

A natural queation i8 whether or not ve can set ll DTIME upper 

bound for TH mid m BTDIE lower bound for m which are c loller to 

c 111 

22 2cn 
each other the are 2 and 2 • If we could, this would aettle 

D 

an importet open «(UUtion of automata theory. tor iUtance, aay tbat 
idl 

we could show that THE DTIME(22 ) for some constant c'. Since 

n . . . 2cJ'ii 
NTIME(2t1) s:: pJm, Lelllaa 3.2 would imply that HTIME(22 ) -~ u DTIME(2

2 
), 

eel 

narrowing the gap in Fact 2.1, A. Tb.1.s.,would alao contradict the popular 

conjecture tlaat (for DI08t functions f that are esacountered) there i• a 

· · f (n) 
language in NTIME(f(u))which reg.-u.irea DTIME(c ) for some constant c. 

The reason therefore that we have uot been able to narrow the gap between 

our DTIME upper bound and NTIMB lower bound for TB, is not because we do 

not under•tand the ap.,_ive power. andot:her properti• of TB, but 

rather becauae we don't understand many. haaic propertiea of the very 

notions of deterministic and nondeterministic computation. 
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Section 4: Mathematical Logic BackgrO!.q!.d apd Notatign: 

Most of the notation of mathematical logic that we shall use is 

fairly standard; the reader can find precise definiticm.s of those 

concepts not defined here in [J1en64]. 

I, will always represent a language of the first order predicate 

calculus with a finite number of relational symbols ~l' ~2 , ••• , ~t 

where ~i will be a ti•place formal predicate for 1 s i s t. For 

technical convenience, I, will not contain function symbols. Sometimes 

we will choose I, to have a constant symbol e as well. The formal 

variables of I. are written as x0, xl' x10, 'x11, ••• , that is, the 

subscripts are written in binary. For expository convenience, we will refer to 

distinct formal variables as x,x0,x1,x2, ••• , y,y0,y1, ••• , z,z0,z1,_ ••• , 

I I I ' x ,y ,z ' •••• 

The atomic formulas of I, are strings of the forin~(vpv2 , ••• ,vt) 
. i 

where v1,v2, ••• , vt represent (not necessarily distinct) formal 
i 

variables; if I. has a constant symbol ,!, then each v j, 1 s j s i, can 

represent either a formal variable or .!• We define the formulas of I. 

recursively as follows: Atomic formulas are formdlaa; if F1 and r 2 are 

formulas and v is a formal variable, thelt'each of th~ strings 
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"'F 1 

VvF1 

is a formula.t We u.ae the usual notions of an occurrence of a 

variable in a fotwUla being bo~d oz:. free, and ,d,•f1.M "" •9n5nss of 

l to be a formula in which there are no free occurrences of variables. 

A structure for l is a tuple 3 = < S, R1, ••• ,Rt> where S is a 

t 
set and R. ~ S i for 1 ~ i ~ t; if l has a constant symbol~' then a 

1 

structure for l is< S, R1, ···~Rt' e >where~ ES. We call S the 

domain of 3. If F is a sentence of l we will use the usual notion of 

F true in 3 or 3 satisfies F or F holds in 3, and we will write this 

g ~ F. Sometimes we will say "F is true" or "F holds" or merely assert 

"F" when g is uncleratood. Til(S) = the theory of 3 ."" {F. I F ia a sent•nce 

and 3 ~ F}. If P ia a noneJ;Dpty collection of structures, th~n define 

t "When writing formulas we will omit parentheses when it will not lead to 
confusion. 
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TH(f>) = theory of P = f\ TH(3). 
gep 

Our language l would have been just as powerful had we left out 

much of our logical notation. For instance x V y is equivalent to 

"""X_~_y arid VxF is equivalent to ~X""'F. It is only for convenience 

that we have made l as large as we have. 

We say a formula F is a Boolean combination of eubformulae 

F1, F2, ••• , Fk if Fis obtained by combining F1, F2, ••• , Fk 

using perhaps A, V, ~,~, rw but no quantifiers. Ciearly every formula 

is equivalent to a Booleat'l combination of formulas, ea.eh of which begins 

with an existential quantifier. 

We now define apnotated formulas in order to be able to talk about 

substituting members of a domain for free occurrence• of 'Variables, and 

in order to be able to talk about the relations defined by formulas. Let 

F be a formula and say that we have a sequence of formal variables 

containing (not necessarily exclusively) the variables which occur 

freely in F, say x1, x2, ••• , ~· We define the got.ted f~l'DIUla 

F(x1, x2, ••• , ~) to be, formally, t~e ordered pair consisting of F and 

the sequence x1, x2, ••• , ~· Informally, when we vrite F(x.i, x2' ••• , ~) 

we think of ourselves as associatillS with the formula F the sequence 

x1, x2, ••• , ~· We will usually use F and F(x1, x2, ••• , ~) inter-

changeably, and call them both formulas, as long as this association is 
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understood; we will never associate two different sequences with the 

same formula. 

Say that F(x1, x2, ••• , ~) is an (annotated) formula and Sis a 

structure with domain S, and a1 ES. By F(a1, x2, ••• , ~)we will mean 

the formula obtained by substituting a1 for free occurrences of x1 

in F. Note that this is technically not a formula of l but rather a 

(non-annotated) formula in the language i• obtained by adding constant 

symbols to l for every member of s. If a1, a2, ••• , 8k ES, then 

F(a1 , a2, ••• , 8k) is defined similarly, and we write 

gr F(a1, a2, ••• , 8k) if F(a1, a2, ••• , ~) is true in 3. 

Fork> 0, we use~ to represent the k-tuple (x1, x2, ••• , ~), 8k 

to represent (a1, a2, ••• , 8k), (~, b) to represent (a1, a2, ••• , 8k• b), 

k e etc. Thus F(~) will be used instead of F(x1, x2, ••• , ~), etc. 

k and e will stand for the k-tuples (e, e, ••• , e) and(!,~' ••• , ~). 

Sk is the set of k-tuples of members of S. k (S is isomorphic to the set 

of functions from ( 0, 1, 2, ••• , k-1} to S. ) k 
For k = O, S is taken to 

be the singleton set containing the empty set, and~' ek, etc., 

denote the empty set. However, we take (~,b,c) to mean (b,c) when k = O, etc. 
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- -If we write F(~) when k = O, then Fis a sentence; F('1t), F(8t), etc., 

are in this case no different than F itself. 

If g is a structure with domain S and A ~ Sk and F(11c) is an 

annotated formula, then we say F defines A in g if 

We say "F defines A,. ·if 8 .is understood. 

More generally, say that we are interested in a particular nonempty 

class of structures r. By a k-elace property G we reean a function which 

k assigns to each structure g E r a subset of S (where S is the domain of 

g); we will usually refer to the value of G on 3 as the relation Q 

restricted to 3. If ~ E Sk, then we ·write 3 I- G(~) to mean that ~ E 

the relation obtained by restricting G to 3. When G is a property we 

sometimes write G(11c) to indicate that G is a k-place property. If 

Q(~) is a formula, we say that Q. defines G in P if in every g E P, 

Q defines G restricted to 3. We say "Q. defines G" when r is understood. 

Formulas F1 and F2 are eguivalent in 3 if for some sequence 

x1 , x2, ••• , 11c of variables, the free.variables. of both F1 and F2 are 

from among x1, x2, ••• , ~· and the annotated fonailae F1 (~) and F2 (~) 
k define the same subset of S • F1 and F2 are equivalent in P if they are 

equivalent in every member of r. We say "F 1 and F 2 are equivalent11 to 
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mean with respect: to the class of all 8tructures, unleH S ar P 

is understood. 

Sin~~ ab.all be interu,ted in Turing machines whose input 

strings are sentence• of l. we have to have a precise notion of the 

alphabet used to write f0'1"1DUlas and a precise notion of the length of 

formulas. our alphabet conaiats of:&•((, ), ""• V~ ... , ... , S, Y, ~' x, O, 1,) 

(where O and 1 are used to write subscripts of variables and relation 

symbols); if.! is a symbol oft, then.! E :& also •. If Fis a formula, then 

by the length of F, written !Fl, we will •imply mean ·the l:ength of "t aa 

* a mend!ter of ~ • 

Another usage of the notation F(x1, x2, ••• , ~) serves to 

emphasiae that the free variables of Fare from among x1, x2 , ••• , Xit· 

For instance, the more nmemonic notation ~F(~) will sometimes be 

used instead of g~F. If we write IF(~)J we simply mean IFI. 

Notation: If a is a string, then lal is the length of a. If a is a set, 

then lal is the eardinality of a. If~ is an integer, then lal is the 

absolute value of a. N+ is the set of positive integers. + For i EN , 

Qi will always represent a quantifier, i.e., either Y or :a:. All 

logarithms are to the base 2. 

Definition 4.1: A formula F is in prenex normal form if it is of the 

---------------------------------- ----- -
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represent formal variables. 

Theorem 4.2: Every formula F is equivalent to a formula G in prenex 

normal form such that G has at most !Fl quantifiers and is of length 

at most IFl•loglFI. Furthermore, there is a procedure (i.e., Turing 

machine) which given F computes G within time polynomial in !Fl. 

Proof: There is a standard procedure for converting a formula.to one in 

prenex normal form [Men64]. The procedure basically just "pulls out" 

the quantifiers to the front, except that first the names of certain 

variables have to be changed in order for the procedure to produce a 

formula equivalent to the initial one. The procedure does not change 

the number of quantifiers, so G has at most IFI quantifiers. F has at 

most !Fl occurrences of variables, so if these are given all different 

names (in the worst case) and the binary subscripts are chosen to be 

as short as possible, then F grows by a factor of at most log IF! when 

put in prenex normal form. 

'l.'i thin polynomial time. 

This procedure can be checked to operate 

Thus, to show that a theory can be decided within space f(cn) for 

some constant c, where f grows faster than polynomially, it is 

sufficient to give a procedure which decides the truth of prenex normal 

form sentences of length at most n log n with at most n quantifiers, 

within space f(cn) for some constant c. 
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Definition 4.3: If F is a formula, we will write g-depth(F) to mean 

the quantifier depth of F. Formally, if F is an atomic formula then 

q-depth(F) = O; if F1 and F2 are formulas then 

q-depth(Fl v F2) = q-depth(Fl A F2) = q-depth(Fl ~ F2) = q-depth(Fl t-7 F2) 

Max(q-depth(F
1
), q-cepth(F2)}, q-depth(~F1 )= q-depth(F

1
),and 

q-depth(~vF1 )= q-depth(VvF1)= 1 + q-depth(F1) . 
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Chapter 1: Ehrenfeucht Games and Decision Procedures 

Section _l: Introduction 

In this chapter we present a development of the Ehrenfeucht game ap­

proach to deciding logical theories. This approach was originally 

described in [Ehr61], and in particular the reader may wish to consult 

this source to learn about the relationship to game theory. A discussion 

of game theory also appears in work by Richard Tenney [Ten74,Ten74']. Tenney 

uses Ehrenfeucht game techniques to decide the theories of certain 

pairing functions and to decide the second order theory of an equivalence 

relation. Neither Ehrenfeucht nor Tenney explicitly describes these 

techniques in generality. We shall present a development in this chapter 

which, although not completely general, is general enough to handle a 

wide variety of cases. Where possible we will describe our decision 

procedures in terms of bounds on quantifiers, so that to decide the truth 

of a sentence one need only decide the sentence when each quantifier is 

limited to range over a particular finite set. This idea, which will be 

carefully described in the next three chapters, is also used by Tenny, 

Ferrante and Rackoff [FR74], and Ferrante [Fer74]. In addition, as part 

of our development of the Ehrenfeucht game approach we shall characterize 

it in terms of the quantifier depth of formulas. 

Section 2 of this chapter consists of a general development of 

Ehrenfeucht games. Our approach is somewhat different from that of 

Ehrenfeucht or Tenney, but several of the basic theorems and ideas come 

from these sources. In Section 3 we derive a decision procedure for 
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the first order theory of integer addition as a corollary of our 

general development. In Section 4 we discuss an important open 

question relating the complexity of decision procedures to the index 

of the equivalence relation which characterizes Ehrenfeucht games. 
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Section 1: ~ Ehrenfeucht Equivalence Relatj.on and Ehtenfeueht·Games 

Let l.. be a fixed language of the first order predicate calculus 

with finitely many relational symbols ~1 ,~2 , ••• '~t where~. is a ti­

place formal predicate for 1 ~ i ~ J,. Also, let I, have a single constant 

symbol~. Let 3=<S, fi
1

,R.2 , ••• ,R.ve> be a fiXed1atruct~ for l. 

(Actua·11y, the constant symbol ~ plays no ~tantf role in this chapter 

but ts included so that we can talk about: weak; direct powers later.) 

In addition we will assume we have a !!2I!! on 3, by which we mean a 

function 11 I l :S-+ N, and we will denote the n°"°' of a ES by 11 al I. 

If i EN, then we write a< 1 to mean I laf I ~ i. We i.Jitroduce this conce-pt 

of norm in order to describe -simple d~i'sion procedurH which use space 

efficiently (and without a significant time loss). ·· lbwever the reader 

should note that many of the theorems below make no mention of the norm 

and are independent of this notion. 

We now define the Ehrenfeucht equivalence relation. 
- - k - -Definitioq 2.1: For all n,k EN and all 8k•.btc, ES , ~~fine 8k ~ bk iff 

for every formtJla F (~) of q•depthSn, F <8ic>. and _F (bk) are either both 

true or both false (in 3). 

Remrrk 2. 2: For each n,k .EN, k 
== is an equivaleqce relation on S • n 

Ehrenfeucht origi~lly defined = by induction. pn n; his definition n . . . 

consisted of a combination of our defi11-1.tioll o.£ 3 together with what 

we call 'lbeorem :2.3. We will pJ;'ove th;la.theo~.later. 

- - k - - ~ Theorem b_1: Let n,k EN and 8ic•bk ES • 'lben 8ic n:tl bk 

1) For each 8ic+l ES there exists some bk+l ES such that 8ic+l ii blt+l. 

and 2) For each bk+l ES there exists some 8ic+l ES such that &.c+l ii bk~l • 
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- - k Lemma ~: Let n,k EN and 4tc'bk ES such that 

- -1) For each 8tt+l ES there exists some bk+l ES such that ak+l ~ bk+l • 

and 2) For each bk+l ES there exists some 8ic+l ES such that 8it+t ~ bk+l • 

.Ih!m ~ n~l bk. 

Proof: Say that 1) and 2) hold. Since every formula is equivalent to 

a Boolean combination of formulas each of 1iibich begins with an existential 

quantifier, it is sufficient to prove, for F(~) of the form ~l Q(~+l) 

where q-depth(G) ::s:n, that F(~) ¢>F(~). 

So assume that F <4ic> holds.. Then let 8ic+l E S be such that GC8ic+1) 

holds. By 1), let 11c+i ES be such tll&t 4ic+1 : bk+1• Since G(~1) is 

true, G(bk+l) is true (by definit:l.on of :>. 44> F~) ls true. By 

synnetry, F(~) holds if F(bk) holds. D 

Definition 1:..2.: For each n,kE~ let M(n,k) be the number of equivalence 

classes of = restricted to sk. 
n 

- k Lemma 2.6: Let n,k EN.. 'nien M(n,k) is finite and for each 8ic ES there 

- ~ k is a formula F (2\:) of q•depth n such that for all ok E S , 

8 .. F(bk) c:> bk i: ~ (i.e., F defines the ii equivalence claaa of ~). 

- k -Proof (by induction on n): If n-0 and 8tt ES , we can clearly take F(2k) 

to be a conjunction of atomic formulas and ttegatlons of atomic f()rmulas. 

Since an argument place of an at-end.~ f<mDUla can be occupied by either a 

formal variable or by ~' the mnaber of atomic formulas in which at most e, 
J, t 

x
1

,x2 , ••• ,~ occur is 1~1 (k+l) i. So 

J, t 
E (k+l) i 

'M(O,k) ~ 2i=l 
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Now assume the lemma true for n (and ... ~11 k). We shall prove it for 

n+l (and k). Let F1 (~+1),F 2 (~+l), ..... Blif(n,~1)(~1 ) be a sequence of 

b. .. c k+l h .. . i formulas of q-depth n sue that for each "k+l..: S . t ete exists an , 
.. 

1 :s: i S:M(n,k+l), such that Fi defines tqe • equivalence class of "k+i• 
'··~. ... . .. k 

For each ck E S define 

W(~k)={ i I 1 :s: i :s: M(n,k+l) and ~1 Fi (ck'~+l) is true). We shall show 

-- k - - - -

~ti\ a: bk'Fc~~s •

1
h: 0(~ )\ W(:(~«-~u:)the 

~ W(c ) -"k+l i ~+l i~. W(.~. k) +l i. .~+l 
k . . lS:iSM.(n,k+l) . • ... 

forniu~~. F(~)= 

defi~es the n~l equiv~lenc'.e class pf ~· 

Clearl;y. if bk ~l ck' then_ ~(~)-W\~.) ,ainee ;e~h. 1f~rmul~ 
~+lft~.~1) is of _q-depth n+l. To ~ove th,. c~erse we first prove 

the following Claim. 

Clai.~: If w(bk)=W(~k), then for each ck+lEs there exis.ts some bk+l ES 

such that ck+l ~ ~k+l (and by s~try, f~r each b~l fs the~e,,·extllts·· 

some ck+l ES such that ~k+l ~ bk+1) •. 

Proof .2!·. Claim: Say that w(bk)•W(~k) and ck+l Es. Let i, 1 s: i s:M{n,k+l), 
:- ~ ' ' { / _i'f • J}"·,, - :·-·- ·: ..... f 

be such that Fi<X..C+i> defines the~ equivalence clan of ck+l" Fi(ck+l) 
. " • -"• ~~; .',• , j.. ... ~ .- I .. ; : ' 

is true, so ~+1 F1 (ck'Xic+i> is true, so iEW('ic). So iEW(bk). This 

means that ~l Fi(bk,xk+l> is true, and tb~refore we d~n find bk+l ~~h 

that .J:'1 (bk+l) ie true. S1DC4 Ff ~f~ the ~ ~~~~ claes of '~l' 

we muat: have ~+l :_ bk+ 1• 
;. 

By the claim and temna 2.4 ~ w(bk).W(ck), • ~~ ·iJi ~k. Note. th•t the 
'' ' 

- ; • :_. .• -··· ,. . . : : r 

n~l equivalence class of ck is determin~ by W(ck) whtch is a subiet· of 

(1,2~ ••• ,M(n,k+l)}. So M(n+l,k)~2M(ntk+l). This and the bound on M(O,k) 
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c 
2 (n+k) 

.·.}height n+l 
2· ' 

M(n,k) ~ 2 . 

. 

for some constant c • 0 

Remark ~: There are structures g such that 
2n-+k 

• • } height E'n 
2· 

M(n,k) :i2:2 (for some constant E'>O), so M(n,k) is not in 

general bounded above by an elementary recursive function• For many 

structures, however, M(n,k) grows considerably 1110re slowly. 

Definition 2.8: Let H:;-+N be a function which is nondeereaaing in each 

argument. Then g is H•bound,eci iff for all n,k EN and all F(~1) of 
- k . • . 

q-depth sn and all 8k ES , if ~+lF(8tc•Xic+t) ii true in I then 

[~+l < H(n,k,1~~1/l la1 11}) ]F(~'~+l) is true iti 3. (We take"MaX"~ 
to be O.) 

Remark 1:.1: If our norm on Sis the identically 0 function and H:~-+N 

is the identically 0 function then clearly g is H•bounded. This means that 

often when we have a theorem which involves· the concepts of norm and 

H-boundedness, we can illlllediately obtain a simpler theorem which doesn't 

mention those concepts; sometimes, as is the case with LeDma 2.10,.chis 

new result is still interesting. 

Lemma l:.!Q: Let H:~ -+N be such that g is H-bollnded. Let n~k EN and 

- - ·k . - -let 8k•bk ES such that 8k n~l bk. Then for each "8'k+l ES there edata 

some bk+lE s such that ~+l ii bk+l and such that 

I lbk+ll I SH(n,k, 1~~;l/ I lbil !}). 
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- - k -
Proof: Let ~'bk ES such that ak n~l bk. Let ~+l ES. By Lemma 2.6 

there is a formula F(~+l) of q-depth n which defines the ii equivalence 

class of ~+l" Since ~+l F( ~'~+l) is true and ~ n+l bk' 

~+l F( bk'~+l) is true. Since g is H-bounded, we can choose bk+l ES 

such that F(bk+l) is true and llbk+lll S:H(n,k, 1~~(llbillJ). But 

F(bk+l) implies bk+l ~ ~+l" D 

Proof of Theorem 2.3: Theorem 2.3 follows immediately from Lemma 2.10 

(keeping in mind Remark 2.9) and Lemma 2.4. 0 

H-boundedness of a structure guarantees that quantifiers in a 

formula ranging over all of S can be replaced by quantifiers ranging 

over elements of S whose norms are bounded by a function determined by H. 

This is made precise in the following lemma. 

Lemma 2.11: Let H:~-+ N be such that g is H-bounded. Let n,k EN and 

let Q1x 1 Q2x 2 ••• Qk~ F ( ~) 

q-depth (F) ~ n. Let ~ E Jc 
for 1 ~ i ~ k. 

be a sentence of !. with q-depth s: n+k, i.e., 

be a sequence such that m. ~H(n+k-i,i-1, Max (m.}) 
1 l~j<i. J 

Then Q
1 
x

1 
Q~x2 ••• Qk~ F ( ~) is true ~ 

CQ
1
x

1 
"°"m

1
)(Q2x 2 ~m2 ) ••• (Qk~ ~~)F(~) is true. 

Proof: Consider the formula Q2x 2 Q3x
3 

••• Qkxk F( ~). Because g is 

H-bounded, if m
1 
~H(n+k-1,0,0) then Q

1
x

1
(Q2x 2 ••• ~~F(~)) is equivalent 

to (Q
1
x 1 <m

1
)(Q2x2" •• Qk~F(~)). 

Now for each a ES such that I la! I ~m1 , consider the formula 

Q3x3 Q4x4 ••• Qk~ F (a ,x2 ,x3
, ••• ,~). Because g is H-bounded, if 

m2 ';;!:fl(n+k-2,1,m1) then Q2x 2 (Q3x3 • ··~~ F( a,x2 ,x3 , ... ,~)) is equivalent 
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to (Q
2
x

2 
<m

2
}(Q

3
x

3 
... ~~ F( a,x2,,x3 , ... ,~)). Hence, 

(Q
1 
x

1 
< m

1 
)Q2x 2 ••• ~Xie F( ~) :ls equi.,,-alent to 

(Qlxl <ml )(Q2x2 <m2)q3x3•• •'\Xie F( ~). 
By k•2 additional apt\Jlb:ations of" the l•boumlH'bUS of 3t ft arrive 

at Leuma 2. 11. D 

We now demonstrate the existence of a general met:hod of proving 

H-boundedness • 

.!&!!!Y 2.12: Let H:~-+ N be a function which is nondecreasing in each 

argument, and say that for eaeb n.,k EN we have an e111uivalence relation 

k 
E on S satisfying the followf.:ng propertie•: 

n 

1) For all k EN atMl all ~'bk E Sk, ~ !{) bk • 4tt ~ ~ • 
- - k . • T and 2) If n,k EN and 8k'bk ES such that· 8k •n+l Dk' then for .ach 

4k+l Es there is some bk+l ES such that 8tc+i En blt+l and such that 

I lbk+l 11 ~ H(n,k, 1~4( I lh1 11} ) • 

.TI!fil! 

I) For all n,k EN and a..c,bk E Sk, 8tc En bk ~ ~ ii bk. 

and II) g is H•bounded. 

Proof: 

Proof .£!. 1l ll induction ,.2!! .a: I) certainly holds if n=O. Assume I) 

is true for n; we will prove it for n+l. 

Say that ~ En+l bk; we wish to show that ~ nil bk. By Lealaa 2.4 

and the synnetry of Ea+l' it is sufficient. to show that for every 8k+l ES 

there is some bk+l ES such that ~+l ii blt+t • So choose 8tc+l Es. By 2) 

there is some bk+l ES such that ~l En bk+r By the inductl. on hypothesis, 
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- - E k Proof .Q1 II): Let F (~+l) be a formula of q-depth ~11 and. let 8tc S · 

be such that ·~+lF(4ic,~1) is true. Let"'"k+l E. S be. "'u~h that F(4ic+1). _ 

holds. Since 8tt En+l 8it• conclition .. 2) illplid th&t we ca~ find •ome 

ak+l Es sl,ICh that ~+l En (~•4k+l> and 8!\ldl tha.t 

I lak+l 1 I~ H(n,k,1~( I l·a1 \11). But by 1:), 8it+l Ea <8ic•at+l) =t 

~+l ~ <8ic•8k+1> = F(8ic,8k+~) holds. So 3 is''B-Jlounded. 0 

By applying Remark 2.9 to Lemma 2.12 we i.Dlllediately obtain Lemna 2.12'. 

Lemma 2.12': Say that for each n,k EN we have an equivalence relation En 

k 
on S satisfying the following properties: 

- - k - - - -1) For all k EN and all 8tc•bk ES , 8tc E0 bk = 8k 8 bk. 

- - k - -and 2) If. n,k EN and 8tc•bk ES such that 8tc En+l bk' then for each 

8k+l ES there is some bk+l ES such that ~l En bk+l" 

.!!:!fil! for all n,k EN and ~'bk E Sk, ~ En bk ::0 ~ : bk. 

We loosely define an "Ehrenfeucht game (abbreviated E•game) decision 

procedure" for TH(3) to be one that involves defining relations En and 

proving that the conditions of Lemma 2.12 or 2.12' hold. This will be made 

· clearer in the examples of Section 3 and Chapter 3. In Section 4 of this 

chapter we present a general discussion of the computational complexity 

of E-game decision procedures. 

Lemma 2.13 shows how H-boundedness implies bounds on the norms 

of members of the = equivalence classes. n 

Lemma b.ll: Let H:;-+ N be such that 3 is H-bounded •. Let n,k EN and 

let ii. EJt be a sequence such that· mi :<!: H(n+k•i, i-1, Max ( mj) ) for 
It l~j<i . 
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1 :5: i:.::: k. Then for each ~ E Sk there is some bk E Sk such that ak n bk 

and \\b.\I :5:m. for l:5:i:5:k. 
l. l. 

Proof: Let n,k,~, and ak be as in the statement of the lennna. By 

Lennna 2.6 there is a formula F(~) of q-depth n which defines the ~ 

equivalence class of ak. Since F(~k) holds, :BX
1 

'.!Ix2 • ··~ F( ~) is true. 

So by Lennna 2.11, ('.!Ix
1 
< m

1
) ('.!Ix 2 < m2) ••• (~ < ~)F (~) is true. This 

means that for some bk E Sk, F(bk) is true and l lbil I :5:mi for 1 :5:i :5:k. D 
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Section 3: An E-Game Decision Procedure for Integer Addition 

We now present some applications of Section 2. For the rest of 

this section let .C1 ·be the language of the first order predicate calculus 

with the formal predicates v1 +v2 = v3 and v1~v2 ·~ the constant 

symbol 0 (where v1,v2,v3 represent foruial v~iabl~). 

Definition 3.0: Let Z be the structure< Z, +, ~, 0 >where Z is the set 

of integers and where + and ~ are the usual integer addition and order. 

If a E Z, define I lal I = Jal = ab~olute value of a. 

We will obtain a theoretically efficient decision procedure for TH(Z) 

using results of the previous section. Although Ve will be using an 

Ehrenfeucht game approach, many of the ideas we shall use come from a 

quantifier e1imination decision procedure for TH(Z) obtained by Cooper 

[Coo72] and analyzed from a complexity viewpoint by Oppen [Opp73}. We 

choose this example because it illustrates our thesis that all known 

quantifier elimination procedures can be converted to E-game decision 

procedures without significaDt loss of time &11d·soaeti~s with a saving 

of space. Some of our results about TH(Z) appeared in preliminary form 

in Ferrante and Rackoff [FR74]. 

Although our procedure for TH(Z) has about the same time complexity 

as Cooper's, it only requires a logarithm of the space used by Cooper's 

procedure. 

Definition 3.1: If a, b, c E z, then a 111.:1 b moci c" (a ia. eqµivalent to 

b mod c) if c divides a - b. If A is a nonempty finite set of integers, 

then lem A = the least positive integer which every non-zero eletGent of 
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Defiuition 3,2: Let a, 'b E z and let d E N+. Then we wri.te a = b 
d 

if either 1) a • 'b 

or · 3) a :s: -d and b s: -d. 

When we talk about • holding between objects one of which is the 
ti 

cardinality of a set, we will often omit tbe vertical lines indicating 

cardinality. FOT instance, if A and B are sets, we will write A = B 
d 

and A "' 5 iut.ead of lAI • I Bl and lAl • 5. 
d d d 

Lemma 3.3: Let a, b E z and let d E 1'+. Then a • b.,. 
d .. 

for every c, ~d < c s; d, a 2 c ~ b :ot: c. 

Proof: Left to the reader. 

Definition 3.4: t>efine a sequettce ~f sets of integers v0 , v0, v1, Vi,··· 

as follows: v0 = (-2, -1, 0, 1, 21. If Vi has been defined, define 

v ' = ( ~ • v' I 5 = lcm V • v, v' E V,, ; v ~ Ol and define 
i v i' & 

Definition 3.5: Let n, k E N. Then define the equivalence relation 

k - - k 
En on Z aa follows: Let 8tc• 'bk ~ Z , let 6 • lcm Vn. 

t We use this nonstandard notation for equivalenee med c so as not to cau.e 
conflict with other notation we u••· 
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Th E b iff f E (v ) k .. en 8'k n k or every vk n 

k k 2 
1) ~ v1ai 1=1:1 'E v .bi mod 6 

i=l i=l 1 

k k 
and 2) 'E v1ai = 'E v 1b1 i=l 52 i•l 

Lennna 3.6: 
k . 

Let k E N and let 8'k' bk E z such that 8k E0 bk. 

Propf: Say that 8I< E0 bk. We wish to show that for any quantifier 

free formula F(~), Z ~ F(~) ~ Z ~ F(~). Since every quantifier 

free formula is a boolean combination of atomic formulas, it is 

sufficient to assume F is atomic. We need only consider the following 

cases for F: 

In these cases, in order to show that Z ~ F(8tt> ~ Z ~ F(~), it is 

necessary to show (respectively) that 0 ~ 0 ~ 0 ~ O, 

a = 0 <=> b
1 

== O, l 

But since O, 1, -1, 2, E v0, all these facts follow from 2) in the 

definition of E
0

• D 

en 
Lenana 3. 7: For some constant c, Iv I ~ 2

2 
and V = {-a I a EV} 

n n n 

2cn 

and Max V . ~ 22 for all n E N. 
n 
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Proof: 

It is trivial to· ahow that V .. (-a I a: E V } • n n 

. . Iv· 1 · 
Ma'X V 

0 
= 2. In pmn-al , lcm '\7 i s: (Max. Vi) i · .. S·o 

Max Vi+l s; Max(Max V1 , 2•Malt V~) s; Z•lcm Vi•MB Vi 

5 t 61 . \
6
,6n Jn 

s: 2· (Max vi)S • Max vis: (Max w1)&' •. h- Mmi. vn s: 2 • 

en ~n 
IV I s: 22 and Ma V s: 22 for some· coaa.cant c and all n E N. D n n 

Theorem 3.8: Thee est.cs. a coaatallt' d' auclse that die foil-1.ng· 3 true: 

Let n,. k E N and let 6rc- bk E t' auch tllit ~ En+l \· Then for- each 

~l E Z th'ere exi•t• HDlt! bk+t E z such that 8tt+t En bk+l acl sue.ti that 
' ~ ; .. 't; .· . , ·' ' 

2d(n+k) 

I bk+ 1 1 s: < 1 + Max r b :1. n . z2 • 
·1~~ 

' ' - k 2 ' ' : ,' - ' 
note that 6 = lem vt since i E V ·• Let T ·= f tv1a1 n n i•l 

+ v l ·v E v' 
i n 

for l s: ,:I. s: k and I vi s: 6 3} be a nonempty aubaet of Z~ .There amst 

exist either a mamber of·T which is s: 68k+l 6r a aeml>er of T ~ 68tc+l 

(or both); these two cases are synnetrical, ao uaU1Dawithout loss of 
.~ ' ' 

generality that soma me,aber of T ta s: 68tc+i • Let .t.. vi a1 + v be the 
i•l ' 

largest member of T which is s: 6~+l where vi E v; for 1 s: i ~ k and 

I vi s: 6 3 • Conaider the sequence 
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equal to any of them, then 58tt+l 
k 

of them (other than E viai + v) 
i=l 

is bigger than all 

is equivalent to 

3 
5ak+l mod 5 • It is therefore the case that for some u: lul ~ 5~ 

k 

and .E viai 
1=1 

k 
+ v + u Fl;$ 68tc+l mod 5~ and .E v1ai + v S: 

1=1 

k 
Claim: For every t E T, t ~ E v.a1 + v + u ~ t ~ 6a.+l and 

i=l 1 l.C 

k 
t ::? Ev.a. + v + u ~ t ~ 68tc+l • 

i=l 1 1 -

k 
Proof of Claim: If .E v1ai + v + u = 68k+l' then the claim is trivial. 

1=1 
k k 

So asstune .E v1a1 + v + u I 58k+l" 
1=1 k 

Then u I 0, and so E viai + v + u is 
k i=l 

strictly between E viai + v and 58tc+i· 
i=l 

Since i~lviai + v is the largest 

member of T s 68tc+l' we canµot have any t E T such that 

k 
E viai + v + u ~ t s 58tc+l; hence the Claim follows. 

i=l 

Now let y = lcm Vn+l' Since 0 EV, 0 EV'. n n Therefore V' ~ V +l' n n 

Since 6
2 = lcm V~ and Vn+l ~ (2ele EV~}, we have 26

2 
divides y. Since 

k k 2 
8tcEn+lbk' .E v1a1 Fl;$ .E v1bi mod y , and so 58tc+l RS 

1=1 1=1 
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k 3 
+v+u .. .tvibi +v+u-.-6 

i=l 
k 

implying that 5 div:fdea l: vi tt1 + v + u. Oeft'tte 
i•l 

k ,,, - -
( .t v1b1 + v + u)/6. We will show that 8tc+lEn~l· 
i=l 

- E cv· )~1 • Let wk+l *' 
k+l k+l 2 

We want to $1\ow_ that .·I: w1a1 ""'. I; .•:lbi mod 6 
·1-t. i•:l . 

k+l k+l 
and that .t w1ai • :E w1bc If .•k+l - O, then theM facta follow 

i=l 62 i•l 

- - 2 . 
immediately from the fact that l\:En+l bk since Vn ~ Vn+l amt 6 dividu 

2 
y • So assmae '\+t I <t. 

- - k k 2 
Since l\:En+lbk., we have .t v 1a1 1=11:1 .t w'!b::l mtd:"6 • 'l'hua 

ial fwl 
to •l\oW 

k+l k+l 2 
that .t Wi ai 11¥ .t Vi bi mod 5 , it iS 8-Ufficil!Rt tit> ROW that 

i=l 1•1. 

2 2 
wk+l 8tt+t ~ wk+l 'b.it+t mod 6 • But "k+l 8K+t All "k+l bk+l mod 6 .. 

2 k+l k+l 
~ 84k+l ~ 8bk+l mod (5/w...,.1)8 ). Hence .t w1a1 All ~ w1b1 mod 

i•l . 1*1 ' 

k+l k+l 
Next we will,,lhov that I; wf. a1 -

2 
I;,w..?c1• Since .v = (~a la. E V ) , 

i=l 5 i•t' r. · · n · n 
k+l k+l k+l k+l 

and since .t w1a1 - 2 }'.;. v 1b1 • l;. -w1a1. •
2 

E ~l bi! 1'8 can aasu• wi-thout 
i=l 0 i•l 1=1 5 i•l- ' 

loss of generality than wk+l > 0. By Leana 3 •. l tt is sufficfan-t to show 

k+l k+l . . ' 2 .. 
that .t w1ai ~ 'd ~ .t wibi lor every d, ·Jdt s:: 6 • ·Therefore fix d, 

i=l i=l 

ldl s: 5
2

• 
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k 
(i:l (-5/wk+l)w1ai) + d(5/wk+l) E T. By the above £1.!!!!, we can 

k 
continue: 5~+l C!: \:l (-5/wk+l)w1ai)+ d(5/wk+l) ¢) 

Because 8tcEn+lbk we have 
k 

i~l (vi + (6/wk+l)wi)ai ::t d(6/wk+l) -v-uc:> 

- v - u ¢) 

It remains to calculate the size of bk+l • 

Iv I ·3 :s:: k•Max V +l·Max (b1} + 2·(Max V) n • Therefore by Let1111a 3.7, 
n lSi:S:k n 

·' .
2
d(n+k) 

we have for some constant d, I ~+l I :s:: (1 + Max {b1})2
2 

• 0 
l:S:i:s::k 
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Corollary 3.9: For BOJBe conatan~ d• Z ia H .. bmmfied Where 

2d(n+k) 
! 

H(n,k,m) = (1 + m)2 · . 

Proof: Innediate from Leanas 2.12, 3.6 and '11\eorem 3.8. D 

Theorem 3.10: Let F be the sentence of £1, Q1x1Q2x2 ••• QnxnG(xn) where 

G is quantifieT free. '11\en for some coutant d independent of n, F 

2dn-kl 
2 -

(Q x < 2 )G(~ ). nn n 

Proof: Say that Z ia ll•bounded where 

2d(trik) 
2 

H(n,k,m) = (1 + m)2 • 

for 1 s: i s: n. Applying Lenna 2.11 to Z, we see that 

since mi~ H(n - i, i - 1, Max £lmjl}) for 1 S: i S: n, Fis equivalent 
l:S:j<i 

0 

Corolla,r;y 3, 11: For some constant c, TH(< z, +, s:, 0 >) can be 

zcn 
decided within apace 2 • 

Proof: By '11\eorem 1.4.2, given a sentence F of £1' convert it to an 

equivalent senten.ce Qr1Q2x2 ••• ~xn G (Xn) where G is quantifier fr•e 

---~--~-----------------
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and of length at most n log n where n =!Fl. Fis equivalent in Z to 

... 
2dn+n 

(Q x ' 2
2 ·· ) G (i ) .for nn n 

some constant d (by Theorem 3.10). 

F can be decided in Z by setting aside for quantifier Qi, 1 :S': i :S': n, 

dn+i irdn+i 
22 + 2 tape squares; every integer ~ 22 in absolute value 

can be written in this space in binary. Then decide F by cycling 

through each quantifier space appropriately, all the time testing 

the truth of G on different n-tuples of integers. We let· 'the reader 

convince himself that a Turing machine implementing this outlined 

2cn 
procedure need use only 2 tape squares for some constant c. D 

Theorem 3.12: For some constant c', any nondeterministic Turing 
. I 

2c n 
machine which recognizes TH(Z, +, :S:, 0) requires time 2 on 

some sentence of length n, for infinitely many n E N. 

See Fischer and Rabin [FiR74] for a proof of Theorem 3.12. Their 

proof uses the method described in Chapter 1, and hUlce, for the 

reasons described in Chapter 1, the upper bound of Corollary 3.11 matches 

the lower bound of Theorem 3.12 reasonably well. 

Definition: Let R be the structure <lt, +, :;;, (pi-where R is the set of 

real numbers and + and :S: are the usual real addition and order. 

As above, the upper bound for TH(R) in Theorem 3.13 is close to 

the lower bound of Theorem 3.14. 
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Theorem 3.13: For ecme canst.ant c-. TH(R) can be decicled 111 apace 2cn.. 

'11le. proof appears ta Ferraat:e and llackoff [P'R.14 }.. Although part of 

their proof uaea q-.atifier elimiDaticm., it could be T.-rittm to follow 

the E-gane fonuC: UMC1 a'-"e w:U:baut loaa of efficieacy. 

'11leorem 3.14: Fer eome enatant c 1 , my nonclettll'lllUliatic Turing m-.chine 

· ··c'·n ·· · · · 
which recognises TH(R) ~f.rea time 2 on w ••tence ·of length n, 

for inftnt.tiely ~ n.. 
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Section 4; Copmlexity of E-Game Decisiop Pt;29edµt;!•· 

We have mentioned that an E-game procedure for deciding TH(8) is 

one which proceeds by defini.Ilg relations En and provi.Ilg that the 

conditions of Leana 2.12 or 2.12' hold. It is then necessary, in 

order to decide a sentence with n quantifiers, to·be able to write 

down for every i between 0 and n representations of all the Ei 

equivalence classes on s11-i; this la what ie really going on in 

Lemna 2.11 and the examples of the previous section~. Ch•pters 3 and 4 

contain further applications of these id.ea•• 

It is not enough only to be able to vrite··dCMl for every n, k EN 

representations of all the E equivalaee ·olaaeee .. oa sk, .but this is. 
n 

certainly a necessary part of an E•geme decision "Pl''®e4ure. Recalling 

that the B classes are at . least as 1Wllel'oua as the = classes (because 
n n 

of Lemna 2.12), we see that if an tJ: ... game·procedure (as we have described 

them) is to be elementary recursive, it is necessary that M(n,k) be 

bounded above by an elementary recursive function. 

Now the only other method we know about for obtaining elementary 

recursive decision procedures is elimination of quantifiers, and we have 

stated above that in all known cases a quantifier elindnation procedure 

can be transformed into an E ... game procedure without sacrificil1$ (if it was 

there ~n the fir~t place) elementary recursiveness. What this means is 

that in order fpr a logical theory to b~ elementary recursively decidable 

by ~o.'fll •thods, it is necess~ ~or M(n,k) to be bounded above by an 

el~t~ recursive function. 'nlis raises the follcn,d,ng b;uportant 

conjecture. 
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Con1ecture 4,1: If TH(3) bu m elementary recuraive decleten 

procedure, the M(n,.k) iaboup.d~ above by an el~~aryrecuraive 

functiOQ.. 

Although Cooject:ure 4.1 ia open, its con;v~rse ia deff.nitely false. 

For the purpose of t:taia CGaDCer...,le, let I be the Lmguage of 

the firat order predicate CJ&kMlWI wtJth the fdmal JfNd:laet:ea 'N 1 • v.2 

and v
1

,.., v.2 ("f'
1 

la 911Utva!en' to v2) ad tile eou~.1~ :0 (-although 

the conltant: ·symbol :l•"t l"ea.Hy u.__.y). ~· 

For every Dill •pty ••.t A of :poelti"M mteaer• ·let A 'be m 

equivalence relatiOll cm N nch that for·ever7;peaittve integer i 

1) .if i E A then there is ~~tly one A tq¢.valence ~l!UI• of aise i. 

and 

2) if i '-A then there are no eq:qivalence c~.aaaea of aise i. 

Define the 1t~ture SA • < N, •, ""'• O >. 
" A 

For any i E N+ ~ there ia a sentence Fi which can· be obtaf.ii.ed lt'l · 

time polynomial in i which aaya that there i~ an equlvalence claaa o'f 

size exactly i. Therefore, if TH(3A) can be decided within ~f.IM '(n), 

then A can be decided within time g(P(~)) + P(n} for iame polYnondal p. 

Since we can make A arbitrarily hard to· aec:lcla or abttrard:, ~ecuraive, 

we can make TH(SA) arbitrarily hard to d~tde ar arbttrartly notirecur1ive. 

Now let A be a fixed set of positive integers and consider M(n,k) 
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for gA; we will show that (no matter what A is) M(n,k) is bounded above 

by an elementary recursive function, contradicting the converse of 

Conjecture 4.1. 

- k - -
For each 8tc• bk E N define 8k En bk iff for all i,j such that 

1 ~i,j ~ k, 

II) ai A aj ~ bi A bj' and ai = aj ~ bi = bj. 

and 

III) (a EN I a A ai} = (b EN I b A bi}. It is not difficult to prove 
n+k 

Lemma 4.2 using Lennna 2.12'. 

Lemma 4.2: 

k Since the number of E equivalence classes on N 
n 

is bounded above by an elementary recursive function (of n and k), 

2c(n+k) 
namely 2 , M(n,k) for gA is bounded above by the same function. 
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Chapter 3: Wtak Direc.t Powers 

Section 1: Weak Direct Power• ad Ebrmfeucbt Gw 

Let l. be a language of the firat order predicate calculus with a 

finite nuniber of predicate .ymbols !1' ! 2, ••• , !.i such that ~ ia ·• t 1 

place formal predicate for 1 s: i :s: J, met with a coaetat &yllbol :!~ 

Definition 1, 1: Let 8 = < S, a1 , iz, ... , it• e > 'be a structure for l.. 

For all a E S, I I al I is the norm of a. . The !!!& direct l!!!S of 3 

is the structure g* • < s*~ Q~, a;, ... , R~, •* > ..... 

s* = ( f: N .. s I f(i) I- e for only finitely aany J. E N); 

for 1 :s: j :SO •., if 1.. E 1s*)tj • c'-- -t E 0 * "ff 1 (i) E 0 
1:. 11 llJ ... ~ ._ tt ·· "'.j , ,. t "'j ,1;0r a 

j j j 

i EN (where 1t (i) abbreviates (f1(i), £2(1), ••• , ft (i)) ); 
j j 

* e (i) = e for all i E N. 

* * For a norm an 3 we define, for f E S , 

I 1£1 I = Max((i EN I f(i) ~ e} u cllf(i)I I 11 EN)). By f < m we will 

mean 11 f 11 s: m. 

Mostonki [Mos52] and Feferman and Vaught [P'V59] both show that 

* TH(8) decidable = '1'11(8 ) decidable. However, their proofs are such that 

* in every caae, the decision procedure for TR(8 ) obtained ia not eleamitary 

recursive. In this aection we will preaent some general theOt'- which 

will allow ua to derive stgnificmtly 1111Dre effic.imt decision procedures for 
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* * Til(g ) in many cases, and in particular to obtain a procedure for Til(Z ) 

(where Z is the structure of integer addition defined in Chapter 2) 

which closely matches the known lower bound. In Chapter 4 we prove 

even more general theorems which give a condition under which we can 

* . conclude '111(8 ) elementary recursive if 'l'H(S) is elementary recursive. 

Now let R: N3 -+ N be such that 3 is H•bounded. · Let M(n,k) be the 

function as defined for g in Chapter 2. definition 2.2.s. 

Definition 1.2: 2 Define the function µ: N -+ N by setting µ(O,k) = 1 
n 

and µ(n + 1, k) = M(n, k + l)•µ(n, k + 1). Hence µ(n,k) = Il M(n - i, k + i). 
i•l 

* 3 * Definition 1.3: Define H : ir -+ N by H (n,k,m) • 

Max {H(n,k,m),m + µ(n + 1, k), I lellJ. 

* * · '11le major theorem of this section will shaw .that i3 is H -bounded. 

We now prove a combinatorial 1811118. = is defined in Definition 2.3.2. 
n 

Lemma 1.4: + Let N1 and N2 be sets and let n, m E N such that 

Nl =. N2. n•m Let.A1, A2, ••• , An be a sequence of (possibly empty) pairwise 

n 
disjoint subsets of N1 such that U Ai• N1• 

i=l 

I!!!!!, there e~ists a sequence B1 , B2, ••• , Bn of pairwise disjoint 

n 
subsets of N2 such that U Bi • N2 and such that Ai ; B1 for 1 s i s n. 

i•l 



and IN.2 1 ~ n•m. For some i, 1 :s; i s n, we must have IAf..1 ·"1!: m,_ so auume 

without loss of generality that IA11 ~ m. 

Clearly ~-pis: (n - l)m = n•m- in,.· Since IN
2
1 ;i'l'1.·m. tti~.d:Sttt •i:> 

i-=2 

sequence of pairwise disjoint subsets of N21 namely B2' B3, ••• , Bn* · 

such that I Bi I = pi for 2 s i s n. So A1 ;; B1 fc 2 s:: i ·:s.; G,: \et' 
. . 

n n 
B1 = N2 • U Bi. IN2 1 ~ n•m and U Bis n•m - m, so IB1 1 ~ m. Since 

i=2 i=2 

I A1 I :<!:. m, A1 ~ B1• 0 

For every n, k E N, define the Ehrenfeucht relation ii on both 

k *k S and (S ) as in Chapter 2, Definition 2.2.1. 

... k I 1. ... I ... ... iff for all~ ES, (i EN k(i) ~ 8tt} = (i EN stt(i) ~ 8k}• 
µ(n,k) 

--- - ---- -----------------
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Proof: Say that fk E0 'iic· We wish to show that for every quantifier 

- * - * -free formula F('1<), g ~ F(~) ~ g ~ F(gk). It is clearly sufficient 

to prove this for the case where F is atomic. By syumetry, it is 

- * - . * sufficient to show that F(~) false in g ~ F(8tc) false in 8 • 

. - * Thus assume that F(fk) is false in 3 • By definition of the 

* -relations of g we can choose i 0 E N such that F(fk(i0)) is false in &. 

{i EN I S'ic<i) 0 fk(i0)}. Since µ(O, k) = 1, we have 

I { i E N I iic<i) ij fk(i0)} I ::i: 1. So let 11 E N be such that 

- * So F(~) is false in & . 0 

·- - * k - -Leana 1. 7: Let n, k E N and ~' ~ E (S ) such that ~ En+l gk. '111en 

* * for each fk+l E S there exists some ~l E S such that 

and 



-so-

Proof: - - . *k - ~ 
Let ~' 'tc E (S ) be such that fk En+l ~· Let 

m =Max cl l1il IJ and let ~1 Es*. Let .i)!+1' b!..1····· ~~· k+l) 
l:S:iS!t 

be a sequence of reprenntatives of all the : ecpd,val~ cl••• on 

k+l * s • OUr goal is to find ~1 ES such tbac if 1 :e. j s M(n, k+l), then 

(i EN lf'k+1(i) ; ~1} • (i EN I iie...:1(t): ~1}; w alu wnt 
µ(n,k+l) 

11 gk+1 I I :s: H* (n,k,m}. Instead of definiug 8k+i liimu1tmeoua1y Ol1 all of N. 

we -,rill define it separately on various pieca of R. 

N2(~) = {i EN I ~(1) = ~}. We elaia it .ta ••fficient to defint\ 
n+l 

gk+l on each N2<8it> such that 

for all j, 1 :s: j :s: M(n,k+l). 

and 

III) If i E N2(~) and i :s: m + µ(n + 1,k), then I l'k+-
1
(1)11 s: H(n,k,m). 

* * An examination of the definitions of H and the norm on S will ahoW 



I 
t 
I 
l 
l 

',i vl' -. ''.• • ' ~; ' 

-51-

that II) and III) together imply I l~~I I ~ u*cn,k,m). Since 

· (N
1 

<8ic> I 8ic E s1) and (N2C'SJ 8ic E Sk} are each a collection of 

disjoint aets, it is easy to see from I) and the definition of 

• that if 1 :s: j :s: M(n,k+l) then 
µ(n,k+l) 

- k So now ~et 8k E . S be . fixed for the rest.· of; this proof.· . Abbreviate 

i E N
2 
~d i > m +. µ(n+l, k); this guarantees II) a~e. · It J;"emaina to de-

. fine Sic+t on N3 '"' { i E N2 I i :s: m + µ(n + 1, k)} • 

The definition· of En+l implies that N1 • N2• We now 
µ(n+l;k) 

demonstrate that .N1 • N3: if 8ic == ek then N1 is an infinite set, 
µ(n+l,k) n+l . ,. 

and IN
3

1 ~ µ(n + l,k) since ~(i) = ek form< ism~ µ(n + _1,k); if 

SO N • N • 
1 µ(n+l,k) 3 

Define, for 1 :s: j :s: M(n,k+l), Aj • ( i E 1'1 1 ~1(1) ~ ~+11 • 
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A1 , A2 , ••• , ~(u,:lc+l) form a aequance of palrwise diajomt set• whose 

union :l:s N1• · 'Si.1lCe 111.:. == 'N3 and µtn +:. l 1it} • iM(~k + l)'•µ(n,, ck;+ 1)~ 
--i µ(n+l,k) . . . 

A. = . Bj if 1:;; j S M(n,k+ 1). 
J µ(n,k+l) · 

NOW' let i E 113; we want to deftne ~l Gil i• Let j be IJuch that 

=~ * gk+l (i) n bk+r Thus, we have defined 8k+l E S 80 that: for 

1 S j SM(n,k+l), 

(i E N3 I itt+1(i) = bi11 ... Bj == Aj == (i E Nl I ~l(i) E ~1}. 
n . . µ(n,k+l) . . n 

To complete the proof of Lelll'na 1.7, we must show I), i.e., 

(i E N2 I ~1(1) ~ b~+l} = Aj when 1:;; j :;; M(n, k + 1). 
µ(n,k+l) 
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So fix j, 1 :s:: j :s:: M(n, k + 1). If 

- -j 
8tt+l(i) ~ bk+ll we are done, so assume 

N
3 

= (i E N2 I i :s:: m + µ(n + 1, k)), there mus~ exist some i > m + µ(n + 1, k) 

- - - -j 
such that i E N2 (hence gk(i) = 8tc) and Btt+l(i): bk+l" But since 

n+l 

- k+l k 
i > m + µ(n + 1, k) implies 8k+l(i) = e , this means that 8k n+l e 

d -bj = k+l 
an k+l n e Hence, both Aj and ( i E N2 

infinite, so (i E N2 I gk+l(i) ~ b~+ll = Aj. 
µ(n,k+l) 

0 

* * Theorem 1.8: S is H -bounded. Also, for every n, k E N and 

Proof: This follows inmediately from Lenmas 2.2.12, 1.6, and 1.7. 0 



Section 2: . AppltcaSions 

Let .c1 be the .. 1~ of Chapter 2. 

Let Z = < z, +, s, · 0 > be· the st~ucture of l~hapter 2 "and J:et 

* * * . .. Z = < Z , +, :s;~ JO '>'he the ·WAUdc direct powftr'of ·Z. As:•fore, for 

a E z let J lal I = tal and, followtug Defi11it:Mm 1.:1, for f E z* let 

11 fl I =Max (£i EN I f(i) 4 O} u f lf(i)I Ii E NJ). 

2e(n+k) 

Lemma 2.1: * 2 'theTi! ex:iats a constant e ··such that i is (1 + m) • 2 -bounded. 

2d(n+k) 

Proof: By Corollary .2.:3.9, Z is H~nded where H(n,k,m) = (1 + m)·2
2 

for some constant :d. We ·now calculate bounds for the fu.nc.tion M(n 1k) for Z. 

2d(n+k)+i 
2 

Letting mi = 2 fbr 1 s · i :S: k, ·"We ··see ~that 

mi :i!: H(n + k - i, i -- 1, Max ( ~mj I}) ·for 1 :S:. i ~ k. 'So by :Lenna '2 ... 2.13, 
l:S:j~i 

I b1 I :S: mi for 1 :S: i s: k. Renee, since mi s 11\t' we certainly have 

2d(n+k)+k 

M(n,k) :S: (2•22 + l)k. 
n 2d'(n+k) 

So µ(n,k) = Il M(n - i, k + .1) :S: 2
2 

i=l 

for some constant d'. 

* So for some constant ·e, H (n,k,m) = MaxfH(n,k,m), m + µ(il + 1, k), 01 :S: 

(1 + m). 22 
2e(n+k) 
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2e· (n+k) 
Z* . 2 By Theorem 1.8, is (1 + m)·2 -bounded. 0 

is quantifier free. Then for some constant e independent of n, F is 

2en+l 2en+2 2en+n 
* 2 2 2 equivalent in Z to (Q1x1 < 2 )(Q2x2 < 2 ) ••• (Qnxn < 2 )G(xn). 

Proof: Theorem 2.2 follows from Lenna 2.1 exactly as Theorem 2.3.10 

follows from Corollary 2.3.9. 0 

* Corollary 2.3: For some constant c, TII(< z, +, s:, 0 > ) can be decided 

within space 2
2 2

cn 

Proof: By Theorem 1.4. 2 it iS suff'icient to consider the sentence F of 

quantifier free and of length at most n log n. 

By Theorem 2.2, F is equivalent to 

2en+l 2en+2 

(Qlxl < 22 )(Q2~ < 22 ) ... 
2en-+n 

(Q x < 22 )G6~ ) for some 
11 n , n 

constant e. 
2en+i 2en+i 

* < . 2 ·22 Now if f E Z and f 2 . , then f (j ) "' 0 for j ;:>· Uld 

2en+i 2en+i 

lf(j)I s: 22 
for all j EN, so the first 22 successive values 
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en+t aen+i 
of f can be repreNnted oil a tape with roughly (22 + 2) • 2

2 
, 

tape aquarea. So a procedure like the one outliued in Corollary 2.3.11 

CD 

* 22 
would decide TH{Z ) in space 2 ,for 80llle con•tant c. 0 

111 * * Defiq.it!On 214: Let N be the structure :< N ,: +. s: • 0 >, i. e, the 
; 

weak direct power of the nonnegative integers (under + and s::). 

* Reipark 2. 5: The structure < N , + > ta iaoinorphtc'- to the structure 

< N+, • > (i.e., the positive integers under D.1ltiplicatiC1111). So an 
:..· . 

* + upper bound on the complexity of TH(N ) is an upper bound on TH( < N , • >). 

2cn 

Corollary 2.6: nt(N*> can be decid~ in space 2
2 

for some constant c. 

Proof: Since x ~ 0 18 a formula of .\\• it is easy to see that 

* * TH(N ) s:pt TH(Z ). So CarollaTy 2.6 follows from Lema 1.3.2. 0 

The upper bound of Corollary•2.3 and Corollary 2.6 

matches the lower bound of 'lbeorem 2.7 reaaonably well. 

Theorm 2, 7 : (Fischer and Rabin [FU\74 l) For SOiie constcit c' > 0, any 

* * nondeterministic Turing machine which recognizes m(Z ) (or TH(N ) ) 
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c 'n 
22 

requires time 2 on some sentence of length n, for infinitely many n. 

Our next goal is to present a decision procedure for the first order 

t theory of finite abelian groups; this theory was originally shown to be 

decidable (see [Szm55], [ELTT65 J) by a less efficient procedure than ours. 

* Our approach will be to show that this theory is ~ L TH(N ) and conclude 
P, 

Theorem 2.8: The first order theory of finite abelian groups can be 

2cn 

decided within space 22 for some constant c. 

There is still a significant gap between the upper bound of Theorem 

2.8 and the known lower bound of Theorem 2.9. 

Theorem 2.9 (Fischer and Rabin [FiR74]): For some constant c' > O, 

any nondeterministic Turing machine which recognizes the theory of 

c'n 2 . 
finite abelian groups requires time 2 on some sentence of length n, 

for infinitely many n. 

The language of groups, t 2, merely contains the formal predicate 

v1 + v2 = v3• We are interested in deciding .which eeetances ,of Z2 are 

·true of every finite abelian group. Recall that every finite abelian 

t This t~pic is also discussed in Chapter 4 from a slightly different 
viewpoint. 
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group (hence·forth .abbreviated FJC) ta i~tc to a finite direct 

prodUc:t of finite cyclic groups [MB68]. For i a poaitive integer, 

let Zf. denote the cyclic group (0, 1, •• ~, i - 1) Where addition 1a 

performed mod i. The basic idea of the •bedding (due to Michael .J. 

* Fischer {Fis73]) ia to think of every nonaero f EN aa repreeenting 

an F .M;, G f. Thie ia made prec iee in tlle fol lowi11g de fini.tion. 

Definition 2.10: Let £EN*, f. o*. Define~- lfiEN I f(i) rJo}j. 

Define mf: { 1,2, ••• , . .tf} -+ N by 

,, 
mf(j) = the jtb wllut mm'her of (i EN, I f(i) ~ O} for 1 s: j s: "t· 

. . * * Clearly every FN; ia uomorpbic to Gf for some f E N , f ~ 0 • 

* * Definition 2.11: Let £, g E N , f rJ 0 , be such that for all i E N 

a) f(i) = 0 = g(i) = 0 

and 

b) f(i) > 0 ,.,. 0 '5" g(i) < :f~i). 

* * Clearly for each f .J. O , every u.mber of Gf is C'.-pr""ented by a un14'lt1 g E N • 

We now describe some properties definable i:tt_ 1'1 by for..i.e 

* interpreted over N • 
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1) ONE(x). * For f E N , <JiE(f) will hold iff for some 

i E N, f(i) = 1 and for every j ~ i, f(j) ; O. ONE(x) is equivalent to 

* * * . x ~ 0 A Yx'((O ~ x' A x' Sx) ~ (x' = 0 V x' = x)). 

iff ONE(F1) and 

and f 2 represents a member of G f • MEM(x1, x
2

) is equivalent to 
1 

x1 ~ o*A x2 ~ x1 A VxYxi,Yx2 ([PICK(x,xi,xl) A PICK(x,x2,x2)] ~ 

* hold iff £1 ~ 0 and £2,£3,f4 represent members of Gf and the member 
1 
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represented by f 4 i• the sua i.Jt. G f of the ...,_.. reprMelited by f 
2 1 

(x' + x' = x' V x' + x• * x' + x'}] 2 3 4 2 3 4 1 • 

Proof of Theor• 2.8: Using formulas defining MBM and PWS and the fact that 

* * . . 
£ E N represents a FM; if 8DCl only if f 'I- 0 , w obta:l:a a procedure which 

operates in polynOlllial time and linear space which takM a· ••tence F of 

.t2 to a sentence F' of "i_, •uch t:hat F· i• crua of every 

* * FAG~ F' E TH(N ). So TH(FAG) S:p.t TR(N ;) .. 'l'heoc- 2 .. 8 'daK~ fNlows 

from Corollary 2.6 and Lemaa 1.3.2. 0 
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Chapter 4: ,SO!! General Results about Shs C99lex1tx; of Di5eet Products 
'. ··, • ' ·.' ,. • c 

Section 1: Introduction. 

* Let t., S, and S be defined as in Chapters 2 and 3, and let M(n,k) 

be defined for g as in Definition 1.2.5. 

Theorem l·l= If m(3) is elementary r~'IU'sive and ~~ M(n,lt) is bounded 
' ~ ' 

* above .by an elementary recursivef\mCt10111 tben nt(S) is elementary 

recursive. 

Theore.n 1.1 can be proven by modifying eitber-,!foatowa\c$~• or Feferman and 

* Vaught:'s decision procedure for TH(S), U:tos52,,FVS9h, but "e present a 

different approach in Section 2 and prove, there ar-,qua.-titative version 

of Theorem 1.1. In Section l we present eome sim:llar'· results for other 

notions of direct products (besides weak direct powers). 

'l'he c0nverse to Theorem 1.1 is false. 

COUD.terexanple to the Coaverae to Theorem i~l' 

· Le't S, be the language used in the c()U.1'.terepmple. izo: Conjecture 2.4.1. 

+ For every nonempty set A r;;; N define SA as in Chapter 2 to be 

< N, =, A' 0 >. As in Chapter 2, by varying A we can make SA arbitrarily 

hard to decide. Let A be a fixed set such that 1 ~ A, i.e., there are no 

A equivalence classes of size 1. 

* Claim: SA consists of an infinite collection of infinite equivalence classes. 
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Proof of Claim: Since 0 is not in an equivalflnCe clan of size 1, there 

exists some number, say 1, such that 1 A O. Since A '/: f, there exists 

some finite A class, and hence at least· two A classes. So there 

exists some number, say 2, such that it is !!!?!, true tbat 2 AO. 

* Thinking of every member of N as an infinite sequence of mmbers 

of N, we see that the strings O,O,O, ••• ; 2,0,0, ••• ; 2,2.0,0 • .:. ; ••• 

. * g*L form an infinite.set of pairwise inequivalent 'Mm'bers of ll • So A·uaa 

an infinite number of equivalence classes. 

* Let y,O,O, ••• be any member of N , wba-e y is a finite •equence of 

members ··O'f N. The etri'Dg• y,l,O,O,. ••• ; y,1,1,0,0, ••• ; ••• fora an 

infinite set of elements eciuivalent to y,o.o,... . So each equivalence 

* class of 3A is inftntte, prori.ng the claim. 0 

From the above claim!' it is not hard to ... that a sentence of I. 

* with n quantifiers will be true in SA iff it is true in a domain of 

2 
size n consisting of exactly a equivalence c~ee of. size n.. Therefore, 

* TH(3A) can be decided in polynomial space, even t~h TH(l-A) mq be 

arbitrarily difficult to decide. 

t and Lemna 2.4.2 •. 
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Section 2: CO!pplexity of Weak Direct Powers. 

Our goal in this chapter is to prov.e Theorem 1 •. 1; actually, we 

shall prove a quantitative version of Theorem 1.1, which relates the 

* complexity of TH(8) to the complexity of TII(3) and-M(n,k). 

To begin with, let 3 = < S, R1, ••• , Rt, e >be a structure as before 

and let t,. be the corres~ing first. or.der; loan-.e. 3 and l, are fixed 

for the rest.of this chapter. Let~ be defi~ on·Sk for each n, k EN 

as in Chapter 2, Definition 2.2.1. Let C k be the set of equivalence n, 
. k ' .· 

classes det~rmined by ~ on S · and let M(n,k) = lcn,kl as before. For 

- k - -8tc E S , let (8tc]n be the equivalence class of 8tt determined by ~· 

- k -By Lemma 2.2.6, for every ~Es there.is a formula F(Xic_) defining 

[8tc]n. What we are now interested in is how much time is needed, as a 

function of n and k, to write down all such formulas. 

Remark: Here is the motivation behind what we will be doing. Using a 

decision procedure for TII(3) we will obtain (erf:lcient) representations 

of the members of C k" This will allow us to use results of Chapter 3 n, 
. *k 

to obtain efficient representations of the s cl·asses on (S ) • We will n 

* then decide the truth of sentences in g by limiting quantifiers to 

range over appropriate sets of these representations. 

Definition 2, 1: We Will define for every n, k E 1' a c0Uec·tton of 

formulas, :1n,k' such that in every member of :Jn,k exactly xl'x2, ••• , ·~ 

occur freely. Firstly, for every k E N define 
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6k = {F(~) F ia an atc.ic formula}; for every W !:: ek 

define F O k W(~) t:o be the fcmmla ( /\ F) I\ ( f\ .-.P}; 4eft11e 
' ' FEW FESk -w 

Assuming "n;k+l b'as- hen· dieft.ned such ~- 111 wery maber exactly 

x1,x2 , ••• , ~l occur freely, we now define :Jn+t,k• POr •very W ~ !'lin.,k+l 

define F1'.1~l,k,W(~) to be the formula CA i~1F) A ( A -~1F) • . r.&r .. . rs;n,k+l-w 

Lenma 2.2: Let n,k E ». Thtm 

(A ~ sk I some member of ,. k defines A} • C k• Furthermore, every n , n, 

Proof: Leana 2.2 fo.tla.. iDDecliately frqm the proof of I.A.a.a 2.2.6. 0 

We next wish to calc.ula.te bow long it ~ aa a funct:LQD of n ~d k 

for a Turing machine to write down the set '° k on its tape when n, 

implementing Definition 2.1. In order fo% a Turing .machine t.o . do this 

at all it ia 1'8Ceu.-ry that TH(3) be dcj..dable, ao for the rest of this 

section aasume that there is some dec·ision procedure for 'rn(S) which 

t Every F E ~ k is considered to implicitly contain the annotation n, 
xl' ~' • • •' ~· 
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opet"ates within time Ti(n). In order to simplify the calculations 

to follow, instead of working with the function Ti(n) we will use instead some non­

decreasing function T1 (n) 2 Max (Ti (n), 2n}. It will si1Dilarly 

make things simpler below if we define the function 

T2 (n) = Max({M(n - k, k) I 0 :s: k ~ n} U (n} ). t The reader may 

note that at many places in the calculations below lfe. :make grose over-

estimates. This is because we are ultimately interested in the amount 

of nesting of exponentials in the complexity of our decision 

procedures, and our over-estimates do not affect this, whereas they do 

have the advantage of shortening the expressions we obtain. 

We first define L(n,k) to be the length of the longest formula of 

the form F k w· 
n, ' 

To calculate L(O,k), note thd (aa in the proof of Leama 2.2.6) 

J, 

lek I • ':2; (k + 1) ti (where ~ is a ti •place relation for 1 :s: i :s: J,). 
i=l 

As k increases, the length of the longest member of 6k will increase since 

longer subscripts of formal variables will have to be written; however, 

for every k 2 0 the length of the longest member of 6k will be :s: c1 • (k+l) for 

some constant c1 independent of k. Everything of the form ,:0 k w looks 
' ' 

like a concatenation of the members of 5it' with Sonae adcli tional logiC"al 

symbols, and is of length :s: twice the· length of the~ctm.catenation of the 

members of E\· That is, 

tit is easy to see that T2 is nondecreasing. 
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t t c 
L(O,k) ~2·cf (lt+1~·2; (k + 1) i -s (k + 2) 2· for scae c:onatant c 2 indepe,_t 

i=l 

of k. 

Everything of the form Fn+l,k,W looks like a concatenation of the 

membe:n of S
11

tk+l' with aasae additional symbols; for some ccmstant c3 

of the members of S k+l" That is., n, 

c 
L(O,k) :s;; (k + 2) 2 and T2(n + k) :t n + k we can ca.lculata •t 

c4 (n+l) 
L(n,k)s(Max(T2(a-+k),2)). · for . .,,,..,.-.• EN .aad for.aotM conatant c4 • 

Now define T(n,k) to he the time wh:Lc;h •· Tur,1as machiue imp'l.ementi.pg 

Definition 2.1 takes to write down :J k on its tape. We first calculate n, 

an upper bound on 'l'(n + 1, k) in terms of T(n, k + 1). 

To compute s;n+l.k we begin by computing "n,k+l ~~hin time T(n,k+l). 

We next write down beaid~ :Jn,le+l on the tafe the_aet {Fn+l,k,W I W !;;: :Jn,k+l}~ 

Then for each W ~. !J"n,k+l we write dowQ.• ti. . .-._.. 

3:x1!ilx2 • •. !ilXit 'm-t,k,W' ad ~bea:"UB• -our decl•iolt. ~oc:edµre for 

m(S) to decide for each W i;;; "n,k+l if 3 r :Ir;~x2 •• ~ !~ rn+l,k,w· 
. -· 

We lastly consolidate all the material on the tape (i.e. erasing F~l,k,W for 
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cases where it is not true that g ~ :trx1:trx2 ••• :tr~ Fn+l~k,W) so 

that next to :1n,k+l we have written :1n+l,k" 

For each W ~ ,.n,k+l' we know that x1 ,x2, ••• ,~occur in 

Fn+l,k,W' so that l:trx1:trx2 ••• :tr~ Fn+l,k,WI s: 3· IFn+l,k,WI s: 3·L(n + 1, k). 

The decision procedure for TH(g) decides whether or not 

actually in order to decide if !i!x1S:x2 ••• ![~ Fn+l,k,W E Tll(3) and 

return the Turing machine head (which started on the leftmost S:) to 

its original position requires time s: 2T
1 

(3·L(n + 1, k)). · So when 

computing ,.n+l,k' the total amount of time used ;in dec.iding me111bership 

1~ I 
in TH(S) is s: 2T

1
(3•L(n + 1, k))•2 n,k+l s: 

T2 (n+k+l) 
2Tl(3•L(n + 1, k))•2 • 

We lastly calculate how much time is used in c<>DlpUting "n+l,k 

which is not used in either computing:11'1,k+l or in deciding ·membership 

in TH(g). The total amount of space used in this way is the space on 

which '°n,k+l is written plus J:.he space to write Fn+l;k,W for e.very 

w ~ ,.n,k+l plus the space to write :trx1:trx2 ••• :trXit Fn+l,k,W for every 

l3i I 
W ~ :1 n,k+l; this is s: (L(n, k + 1)) • 1:9' n,k+l I + (L(n + 1, k)) • 2 n,k+l + 

I,. I I,. I T (n+k+l) 
(3·L(n + 1, .k))·2 n,k+l s: 2 n,k+l ·S·L(n + 1, k) s: 5·2 2 ·L(n + 1, k). 



The time our Tu~tng machine uses (aside from computing '°n,k+l 

or membership in TH(S)) :i.s s~t: in 11.aving the head go back and 

forth in this sp·ace d'oilq. t:h:e neccuary lllllOurtt of c~g; the reader 

tz(n+k+l} k)')'c_, far 
csan verify for himael't' th•t t:hia ifr s: (S·Z •t(n + 1, 

some constant c5• t 

So the total amaun~ <t:f lime "189 tn ~ing. 1n+l,1J 

T2(n+k+l) T (n+k+l) c 
= T(n + 1, k) S:· T(n, k + 1) + 2"Tt(3··L~n + :t,. °k)'): .. z +'(S•2 2 • L(n+l,k)) 5 

for some eonatant c1p 

It can also be Hett< drat the time needed to write dcND:· 6k is 

. C7 
polynomial in the space· n•eded,. and there£•• s: (L(,0,. k.})· fa •~ 

const~t c1 • Ob.tad.RU. S't',k from 6k is cer~.,µily ffUd.<lker ·the.at o}i)tain::Lng 

c 7 . c 6 {k+l) c 6 
:Jl,k from '"o,l+t' so we .kaina T(.O,kc) s: (L(.G,.k)), + [T1 (<.'.lz(k +2 )) ) J • 

f. 

Doing some final calcuta~iCJll• w can conclude tf1at 

We are u&ing the fact that we can simultaneously \188 space for two 
differeut pu.:tpoaes. F~ iDo11tance, .._. of the ..,..:e oa. wl\d.c:h sen.tet1Cea 
are written dawn is alao u•ed fer 4ecidiag truth of sentences i'tt 3.., 
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T(n, k) s: [T
1

((T
2

(n + k +2))c(n+k+l))Jc for some cons;,antc and all 

n,k E N. 

Lemma 2.3: For some constant c, there is a procedure which given n, 

writes down the sequence ~O , ~l n-l' ••• , ~ 0 within time ,n , . n, 

. c(n+n. c . .. · . . c(n+l) 
[Tl ((T 2 (n + 2 ) ) ')] ; the .length of this sequence !s S: (T2 (n + 2 ) ) • 

Proof: When we were calculating above the time to write down ~ 0 , we n, 

were calculating as well the time to write down the sequence 

':Jo ' ~1 l' ,n ,n- ... ' ':; 0. n, The length of the sequence is 

s: (n + l)(T
2

(n))•L(n,O) s: (T
2

(n +2 ))c(n+l) for some constant c. 0 

Remark 2.4: Note that every member of ~ 0 must be a true sentence and n, 

hence define the set whose sole member is the empty set. Therefore, 

Lermna 2.2 implies that M(n,O) = 1~ 01 = 1. n, 

Definition 2.5: For every n, k E N, let Fn,k be that member of :Jin,k 

k 
which defines [e Jn. That is, Fn,k is the un:tque··llember of :1n,k such 

k k 
that 8 I- Fn,k(!. ) (where F(!. ) is the formula (or .C.). 

obtained by replacing free occurrences of xi by ,!, for 1 :s: i s: k.) 



-70-

Lenna 2.6: Fer aome constant c there i• a J'l'oCedtire which ii"Mft n, wr·itea 

down the sequence 

,.0 ' "1 l' ,n ,n- ... ., ,. 0• F0 , r 1 1, ••• , F 0 within time n, ,n ,n- n, 

Pt'oof: First compute the aequence "o.n' "t,.-'1' ••"• Scn,O u in Lema 2.3. 

Then for each k, 0 ~ k ~ n, and for each P E ,. k. k' write out the formula 
n- ' 

k F(.!, ) ; each of theae formulas will be of length ~ L(n,O) and there are at 

most (t2 (n)) • (~ + 1) of them. Then uae the dee la ion procedure for g to 

decide each of the aentenc:u F~k), and then conaoti'date the information 

on the tape •. 

The time ueed in deciding each aentence F~k') (and retunat.11g the head) 

is ~ 2T1 (L(n,O)), eo tbe total time used in deciding tru.th of aentencea in 

r .' 

so the time to write down "o , 'Si ,n l,n-1' ... ' 
in deciding truth of .entiences is ~ 

Lenna 2.3. As in tha,proof of Leilaa 2.l, the re . ...._. t'tae uaed ta 
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F( k) itt which is ..... 2(T
2

(n +2))c(n+l). sentences £ are wr en, ~ 

L(n,O) s: (T
2

(n +2 ))c(n+l) and so we calculate that for some other 

constant c, the sequence :'fO,n' :'fl,n-l' ••• , :'fn,O' FO,n' .Fl,n-l' ••• , Fn,O 

can be computed within time [T
1

((T
2

(n +2))c(n+l))]c and its length is 

Definition 2. 7: For all n, k E N and every F E ~ k' define W(F) n, 

to be the set such that F = Fn,k,W(F)• 

Remark 2.8: If n,k EN and F E ~n+l,k and F' E ~n,k+l and 8k E Sk 

such that 8 .,. F(~), then 

F' E W(F) ~for some 8tc+l ES, 3 ~ F'(8it+1). 

* . * * a* We are now ready to consider the structure 8 =·< S , R1, ••• , ~t' e > 

as defined in Chapter 3. For each n,k E N let 5 be defined on sk and on 
n 

(s*)k as in Chapter 2 and let E be defined on (S*)k as in definition 
n 

3.1.5 and let µ(n,k) be defined as in definition 3.1.2. 

Definition 2.9: For each n,k EN, define 

~* = {V: N ~ ~ kl for all but finitely many i E N, V (i) = n,k n, F k} • n, 
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For every V Eis.* k~ define I Iv! I = Min (i ENI for all j 2 i, V(j) = F k} n. n, 

the norm of V. - . * k Por every fk E (S } , let V £ be the tmi•ue member 
n. k 

of '°:,k such that "••\ (1) defines £\<Olzi for all i E N. 

Remark 2.10: * - * k For every V E '°n,k there exis.ts some fk E (S ) auch that 

v = v - • 
n,fk 

1,-* 01 = 1. n, 

Lemma 2.11: 

Also 1Wte that if 1t = o, we have Is; ol - 1 and so n, 

* k Let n,Jr E N and f_ ,st. E (S ) such that V -£ • V - • 
1c -lt n, k n,8tc 

Proof: If V -£ = V - then for every i EN, [fk(i) ln = [i. (i) Jn' 
n, k n,,gk -k 

3.1.8, ~ ~ 'k· 0 

Definition 2.12: * Let n, k E N and V E :1n,k and let F(~) be a formula 

of q-depth ~ n. - * k Let fk E (S ) be such that V = V -f • Then we say 
n, k 

* -V I- F iff 3 I- F(fk). By Leana 2.11, this notation is well defined. 

Remark 2.13: * If n E N and V E :1 0 and F is a sentence of q-depth ~ n, n, 
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Definition 2.14: * * Let n,k EN. Define the map EX: :1n+l,k -+ J.>(:1n~k+l) 

(where EX stands for extension and P(A) is the set, of subsets of A) as 

* * follows: If V E ~n+l,k and V' E ~n,k+l' then V' E EX(V) iff 
o:-··., 

a) for each i EN, V'(i) E W(V(i)). 

and 

b) I Iv' 11 s: I lvl I + µ(n + k + 1, O). 

Lemma 2.15: Let F(~l) be a formula of q-depth s: n and let 

* V E ~n+l,k" 
- t Then v r ~~l F(~1 ) ~ for some V' E EX(V'), V' r F(~+l). 

Proof of 4= : . 
- * k Say that V is Vn+l.,-fk where fk E <.s ) , and that V'. is V -n,gk+l 

* k+l where gk+l E (S ) and say that V - E EX(Vn+l f ) and 
n,gk+l ·· · · ' k 

V - ~ F(x. .
1

) where q-depth (F) s: n. 
n,gk+l k+ 

Let i EN. We have Vn+l £ (i) defines [fkCil\.+1 and V - (i) 
' k . n,gk+l 

defines [gk+l(i)]n and V - (i) E W(Vn+l f (i)). ·By Remark 2.8 we 
n,gk+l ' k 

So V' = V -f and V' r F(i.+1). By Definition 2.12 
n,. k+l k 

t -
where we assume ~~+1F(~+l) is annotated by x1, x2, ••• , xk. 
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. vn+l,'fk I- ~lF(~). 

Proof .of.~ : 
' * -Say that VE "n+l,k euch that V I-~1F(~1) where q•depth (F) :s: n. 

k ' ' - *k 
For i :t?: I lvl I, V(i} defines [e ]n+l" Therefore there exists fk E (S ) 

such that ~(i) = ek for i ~ I !vi I and such that V(i) defines [~(i) ]n+l 

for i E N. So V • Vn+l f . 
' k 

* - * Since 3 t- ~1F(~, ~1), we ca find f E S such that 

* - - -g I- F(fk,f). fk En+l ~' ao the proof of I.-a 3.1.7 ahon that we 

* - -can find ~l E S such that ~flt,£) En fs+i and auch that fw..-1 (1) = e. 

whenever i O?: I lvn+l f 11 + µ(n + 1, k). By Lelmul 3.1.8, 
, k 

V - has norm 
n,~+l , 

s: I lvn+l,fkl I + µ(n + 1,k) ~ I lv.+l,1itl I + µ(n + k .+ 1,0), and 

clearly vu,~l: t- F(~1). For each i EN, Vn+l,fk~i) defines 

[fk(i) ln+l and vn,~l defines [fk+l (1) ]11 implying (by Remark 2.8) 

that V f_. (i) E W(V-...1..l f_ (i}}. So V -f E EX(Vn+l f._)• n,lt+l ...- 'le · n, k+l · · ,_._ 
0 
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Lemma 2.16: 

* quantifier free. Let v0 E ~n,o· Then 

* 

... Q x G(x ) where G is n n n 

Proof: 3 I- F ¢> v0 r F. By n applications 0£ Lemma 2.15 we have 

••• Q x G(x )) 
n n n 

••• ¢:> (QlVl E EX(Vo)) ••• (Q v E EX(V l))(V I- G{x )). n n n- n n 

Theorem 2.17: Say that T1 : N.,. N is such that 'l'H(3) can be decided 

0 

n by some algorithm within time T1(n) and such that T1(n) ~ 2 for all n EN. 

Say that T2: N.,. N is such that T2(k + k') Oie M(k,k') and T2(k) Oie k 

for all k,k' EN. (Assume T1 is nondecreasing.) 

* Then there exists an algorithm for deciding TH(S ) which operates 

for some constant d. 

Proof: By Theorem 1.4.2 it is sufficient to consider the sentence F of 

the form Q1x1Q2x2 ••• QnxnG(in) where G is quantifier free and of length 

at most n log n. The decision procedure proceeds in three steps. 

Step 1: Compute the sequence 

~o ' ~ ' ,n l,n-1 ... ' ~ O' FO ' Fl l' n, ,n ,n- • • ., F 0• n, By Lenna 2.6 
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of the sequence is ~(T2 (n +2 f (n+l). 

Step 2: Compute µ(n,0) (say, in unary). 

n computed and written doim uaing at moat (T2 (n)) more tape ·8quare& 

than those containi:rqg the sequence -oomputed in Step 1. 

* Step 3: Say that '°n,O • (V0}. We want to decide if 

To do thi• we have te h&'ft a Wa'Y of vt'tti.ng de*nrttpnnntationa of 

* members of S 
1 1 

f.or 0 :s:: 1 s n. Our conventin ls aa follow: if n- , 

v E :1;, i, then REP(V) is the aequence V(O), V(l), ••• , V( llv If>. 

* for O ~ i < n (lfhere v0 E ~n, 0), then since I lv
0
1 I • 0 and 

So for each Qi, 1 ~ i ~n, set aside (L(n,O))~(l+i•µ(n,O)) additional 

tape squares; this is enough space tc write down the representation of 

* . any member of :'I n-i, 1 of n<>rm !!i: i• µ(n,O) (sbw:e L(n,O) ·~ t.(n - i, i)). 
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Claim: There exists a procedure which given 

:9' n,O' :'Ji n-1, l' • •.' :'JiO,n' Fn,O' Fn .. 1; l' • • •' FO,n'. y, y' as input, where 

* y = REP{V) for some V E :'Ji i i' 0 ~ i < n, determines, using n- , 

no more space than the input takes up, whether or not y' E EX(y). 

Proof. of Claim: Say that y is the sequence y(O), y(l), ••• , y(J) 

and y' is the sequence y' (0), y' (1), ••• y' (J') for some J, J' E N. 

We first calculate i (say in unary) auch that y(O) has free variables 

Assuming i < n, in order to ensure that y' -E BX(y) we need only check that 

1) y' is a sequence of members of :'Jin•i .. l,i+l' and J' s J + µ(n,O). 

2) y'(J')=Fn-i-l,i+l and if J' > o, then y'(J'•l) ~ Fn .. i-l,i+t• 

and 

3) for every j ::r: 0 such that j ~ J and j ~ J', we have y' (j) E W(y{j)). 

For every j such that J < j ~ J', we have y'{j) E W(y(J)). 

1), 2), and 3) can be checked ustng no additional space, and so 

the Claim is proved. 
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Now to decide F,., cyc.1~ tbroagh eadh quantifier .apace appropriately. 

That is, use t1re •pace eet aeid~ for ~l tto ccyeh through ·tbe ·repre•entatives 

of members of 'EX(Vo),, Obt:C.td-.g different 9&1aa for m(Vl)' the apace 

set aside for Q2 to cycle through fhe .repreaentattvea of tbe 'members of 

we have to 4ec.ide )._ -'tlEP(V ) ±f V "' 0-(lt ) • ·It a 1auff.tc*tiat ~to· be · ·n n 11 

able to t•t if ~- 1+ ;c;0(t ) £ar ueta ~ mr.1a G0~ ) JOOom-ring_ in n n n 

for every .formula FE'9'"' .. of tile ·aeqwe aBll(V ), .Q.
0 

·E W(F).. So 
~~n · n 

* TH(3 ) is decidable. 'l\estt11g ~f.>f -V
11 

+- ·G uu Olily .the .. apace '011 Vbieh G 

and REP (V ) are wri tttm.. 
n 

The tote! apace uaed tn Steps 2 and 3, including the output of 

Step l, is ~ (T (n + 2))c(n+l) + (T (n))11 + n• (L(n,O))• (1 + n•µ(n,O)) 
2 . .2 

outpttt-o'fiSbep l . Step 2 . Step 3 

(the n log n Spane un W'idh G ie written :is insignificant). The time 

used by Stq• 2 and 3 i• at moat exponential in thi• bound. St.nee 

µ(n,O) :s: (T2(n))11 c(n+l) and L(:n,O) ~ (T2 (n +2 )) , we have that the 
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total time used in all three steps is~ [T
1

((T
2

(n +2 ))dn)]d for 

some constant d (since the length of a sentence is> 0). D 

Corollary 2.18: Let s
1

, s 2 , c EN, s 1 ~ 1 and s 2 ~ 2, such that TH(&) 

can be decided within time 

2
• • 

0 

20

) height s
1 2

• • 
0 

20 

( n+~ height s 
2 

2 ) and such that M(n,k) ~ 2 _) for 

all n,k EN. 

height s1 + s 2 
for 

_,_ 

Then TH([;") can be decided within time 

some constant c'. 

Proof: Innnediate from Theorem 2.17. D 
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Section 3: Result• about Other Kip!s of Direct Products 

In this section we state sa. results about other kinda of direct 

products, thus giving quantitative versions of acme additional theorems 

of Mostawaki and Fefer--. and Vaught [MoaS2, l'VS91. We will .Ot present 

proofs here, but our results follow from ext••lona,af tile w .... la 

Chapter 3 and th• preceeding parts of thia Chapter. 

Definition 3.1: Let I be a nonempty set, and let (3 {i) I i E I) be a 

collection of atructuN• for t_. indexed by I; aay that 

g(i) = < s<i>, R~1>, R~1 ? ... , aii>, e(i) >for all i EI. Let 

D = (f: I ... u s 0 > I f(i) E s(i) for i EI). For each j, 1 s: j s: J,, 
iEI 

f (i) E R(i) 
tJ j 

for all i E I. Define e ED by e(i) = e(i) for all i E I. 

Define the strgng dircct arodust of the system (3(i) I i E I) by 

<1> I STRONG(S i E I) = < D, R1, R2, ••• , R J,' e >. 

Let D' ~ D be the aet (f ED I for all but finitely many i E 1, f(i) • e(i)}, 

t 
and let Rj be the relation Rj restricted to (D') j 

for 1 s j s J. Define the yyk dirast prpdw;.t of the system 
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If I is finite, then STRONG(S (i) I i E I) = WEAK(S (i) I i E I). 

If we take I to be N and g(i) = g for some fixed structure g 

and all i E N, then we denote STRONG(3(i) w i E N) by 3 and call it 

the strgpa direct PQW8' of 3; Wl!J\l{(3(i) I i EN) is s*, the weak 

direct power of 3, which was defined earlier. If P is a nonempty 

collection of structures, then STRQNGCP) is the class 

{STRONG(S(i) I i E I) I I is a set and3(i) E P for i E I} and 

WEAl(CP> is the class 

(WEAK(g(i) I i EI) I I is a set and 3(i) E P for i EI}. 

w Mostowski shows that if TH.(3) h decidable, then Tlt(3 · ). is decidable. 

Feferman and Vaught show that 

TH(STRONG(P)) = TH({STRONG(3(i)li E I)I I is a fipite set and g(i)E P for i EI}), 

and if TH(P) is decidable, then TH(STRONG(P)) and TH(WEAK(P)) are decidable. 

We can prove stronger versions of these theoreins. 

Theorem 3.1: Let 3 be a structure and let M(n,k) be de~i,ne4 as before 

(Definition 2.2.5). Say that T1: N ~ N is such that TH(3) can be decided 
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by some algorithm within time T
1

(n) and such that T
1

(n) 2 2n for all 

n EN. Say that T2 :N ... N is such that T2 (k + k') :ii!: M(k,k') and 

for all k, k' E N. (Assume T1 is nondecreasing.) 

Then there exist• an algoritb for deciding '1'11(3 w) which operates 

for some conatant d. 

Definition 3,2: If P is a collection of structures, let 

INFSTRONG{P) • (STllOS(&(i) I i E I) I I iB an infipite .•et and 

g ( i) E P for i E I} • 

Let INFWEAK(P) • (WEAK(3(i) I i E I) I I is an infinite set and 

3 ( i) E P for i E I} • 

Theorem 3,3: Let P be a nonempty collection of structures and for each 

3 E P, let Mg(n,k) be defined for 3 as before (Definition 2.2.5). Say 

that T
1

: N ... N is such that TH(P) can be decided by some algorithm 

n . 
within time T1 (n) and such that T

1
(n) 2 2 for all n EN. Say that 

k, k' E N and all & E P. (A.saume T1 is nondecreasing.) 

Then there exists algorithms for deciding TH(S'l'R.ONG(P).), 

--- --~---- - - - -~ ~------
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TH(INFSTRONG(Pl), TH(WEAK(P)), and TH(INFWEAK(P)) which operate within 

dn 
time [T (2 (T2 (~ )) ) ]d 

1 
for some constant d. 

It is important to note that in Theorems 2.17, 3.1 and 3.3, the 

decision procedure that is produced is obtained effectively from the 

one that is given. For instance, in Theorem 3.3 TH(STRONG(P)) i·s 

completely determined by TH(P). 

Now let P be the collect:l,cm of finite cyclic group structures. 

Since every finite abelian group is isODIOrphic. to a fi~ite direct 

product of finite cyclic groups, the first order theQry of fin~te abelian 

groups is the same as TH(STRONG(P)). TH(P) is ~ecidabie, and we could 

have used the technique involved in proving Theoreui 3.3 to prove Theorem 

3.2.8. Every finitely generated abelian group is isomorphic to a finite 

direct product of cyclic groups [MB68]. So if P' is the collection of 

cyclic group structures, then TH(STRONG(P')) ia the first, order theory 

of finitely generated abelian groups. But using results of [Szm55] it 

can be shown that TH(P).= TH(P'), and so by Theorem 3.2.8 we see that TH(STRONG(P')) 
2cn 

can also be decided within space 22 for some constant c. 
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Chapter 5: A Lawer BOund· on· the Theories of Pairing Function• 

Section 1: Introduction 

A pairing fune ti.on is defined to be a one-one map p : N x N -+ N. 

The language t. we shall uae to talk about pairing functions in this 

chapter is the uaUal language of the first order predicate calculus with 
.-

the formal relation p(v1 , v2) = vr If p: N x N·-+N :i..a a.particular 

pairing funct:tcnr.- then· we can interpret foftllula•··'.anfl sa.trtbicea of I. 

in the s true ture. < N, p > tn the ohfbtle way; lJy a P'"atruoture- ft shat 1 

mean a pafr < M, p >· whet"e-- p i• ·a·' pairing fUn&tton. Let P. be. the· 

collection of alt'P•etrm:tures. Note that although equaltty:l.1 not a 

formal predicate of: i, we can 4efiu ectualf ty· tn P· hy wrtttng 

Richard Tenney refers to some unpublished results of Hanf and Morley 

which show that TK(P) is undecidable. We will present our own proof of 

this in Section 2. Tenney also proves· that the theories 'o:t a large 

class of pairing functions, including the moat conaon examples, are in 

fact decidable; however, none of the decision procedures for P•etr.uctures 

t 
that he arrives. at are elementary recursive. 

t In an earlier version of Tenn'8Y • s WOTk [Ten72] he presented some 
elementary reeuraive algori~ which were suppcaed to be decision 
procedures for some theoriea of p&iriq fuuctione. We pointed out to 
him that this w• itlpoe•ible~ and he baa since written a corrected 
version (Ten74] in which all the algorithma prea•ted are non•eleuientary 
recuraive. 
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The major result of this chapter will be that this is an intrinsic 

difficulty Qf pairing functions. We shall show that no nonempty 

collection of P-structures (and hence no single P-structure) has 

an elementary recursive theory. 

Definition 1.1: Define f: N ~ N by f(i) = 22···~height i. That is, 

f (O) = 1 and f(i + 1) == 2f(i) for i ;i: O. 

Theorem 1.2: Let C be a nonempty collection of P-structures. Then 

NTIME(f(n)) ~ pLTH(C). 

Theorem 1.2 will be proved in Sections 3 and4~ Using the methods 

described in Chapter 1 for proving lower bounds, Theorem 1. 2 yields the 

following corollary. 

Corollary 1.3: For some constant c > O, the following is true: Let C be 

a nonempty collection of P-structures and let !.mbe a nondeterministic 

Turing machine which recognizes TH(C). Then for infinitely many n, there 

is a sentence in 'm.(C) which!IR takes at least f(cn) stepis to accept. 

We have remarked that Tenney shows that 11l811Y pairing functions have 

deci4able theories; in fact, some of the decision procedures that he 
·, 

presents run within time f(c'n) for some constant c'. So the lower bound 

of Corollary 1.3 is achievable (except for the value of c). 

We conclude this section with some simple generalizations of 

Corollary 1.3. 
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Definition 1.4: Let n be an tn.teger > 2. 'l1len an n~tiy fpct:ion 

ia a one-one -map p: .. :-+ N. .!n' the 'imauaae'· fo1i ii--l1Dg- f'u*ttcm-a, 

i• the language of the f irat order predicate calculue with the fonaal 

where p is an n-U.ng func tian. 

Corollary 1.5: Let n > 2 and let c be a nonempty collectiori of 11-1tructure1. 
. . . 

Then TH(C) baa no el-tary recursive '4iclai0nprocedui-e. 

h'oof: As•uma for QOD'Mb~ 'that n • .3.; ttua o~ber cuea are haruiled 

similarly. If p la a 3-U.111 fUllfF_~U. •d. a E H, de~ine the pairina 

function p
8 

by p
8 

(al'a2) • p(a,a1,a2). If F 18 a ••tll\C• of l (the 

language of pairing function.a) and x ia a variable not occurring in F, 

define F'(x) to be the foramla of t 3 obtained by replacing every atomic 

to see that far any l•structure < N,IJ > an4 ay • e·1', 

< N, p > .. F' (a) • < N, p > .. P. a 

Now let C' be a nonempty collec::t:ion of l•atructut•a and defiae 

c = (< N, p > I < N, p > E C' and a E 'N) ; c ia a nonaapty collection a 

of P-structurea. Let F be a sentence of i. Th• C .. F • for every 

<N,p >EC' and a EN, <N,p >t- F• for every<N,p >EC' ad a 

- ----- ---~--- ------
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a EN,< N,p > r F'(a) ~ C' r VxF' (x). An elementary recursive 

decision procedure for TH(C') would therefore yield an elementary 

recursive procedure for TH(C), contradicting Corollary 1.3. D 
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Our goal in <·this section is .to prove that the aet of sentences 

true of ill P-•tructures is not recursive, 'anci that fflll8 individual 

P-structures ai.o 'have usuleci4able theos:ies.. Tbeee ,pr-oo.fs are due to 

the auhor, Jemme Em.or.an•, ,ad llobert Ho••l.y. 

Let N !: ·N be the .set .gf even, nonnegative int;egera. e 

Lenna 2.2: .Le:t R !i;; ·N x N • Then for some pairing function p, e .e 

REL(< N,p >) = R; furthermore., we can choose .p to be onto as well 

as one-one. 

Proof: 

pair occurs exac·tly once and euch that bi rJ 2i for each i E N+. (For 

instance, we can choose an enumeration (O,O), (0,1), (l,O), (0,2), (l,1), 

where the nUllbers ·FCI' sufficiently slawly to ensure that bi t/. 2i.) We 
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+ Let n EN and assume that p(ai,bi) has been defined for 

0 < i < n; we now define p(a ,b ). n n 

Case 1: (a ,b ) E R. Define p(a ,b ) = 2n. 
n n n n 

Case 3: Otherwise. Let m be the least membe:r: .. of N suc:h that 

and 

a) m is not equal to either 2i or 2i + 1 for any i such that (ai,bi) E R. 

c) m ~ b • n 

Then define p(a ,b ) = m. 
n n 

been define via Case 1, so j = k = i. If J = 2i + 1 where (a1,b1) E R, 

bj = bk = 2i + 1 and aj = 8k = 2i. If we do not have either J = 2i 

have been defined via Case 3; by Case 3b), we must have j = k. So 

p is one-one. 
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We will now show that p is onto. Let m E N. Assume that p 

is not defined to take on the value m via either,Case 1 or Caae 2. 

Then we do not have m • 2i or m • 2i + 1 where (ai,bi) ER. Let 

S = ( (a,b) E N2 I b E Ne and a f. Ne and b ~ m}. p cannot have been 

defined on any mn tsr of S via. Case 1 or caee 2, llO p wt have 

been defined on every maaber of S via Case 3. Since S ia infinite, 

((a, b) I p is defiaed aa (a,b) via c_. )'and 'b I •] i• i.nftaite. So 

p eventually t-... • Q.e value a ;via Caae 3, .P hence p ia onto. 

It remain& to show that REL(<N,p >) • R. Say that (ai,bi) ER. 

By Caae 1, p(a
1

, b
1

) • 2i, and by Case 2 (since Case l doesn't apply to 

(2i, 21 + 1», p(2i, 2i + 1) • 21 + 1 mid hence (a1,b1) E REL(< N.p >). 

Say that (a1,b1) E REL(< N,p >). Then for some c EN and smae j EN+ 

Since we can't have 

cj=2j, p cannot have been defined on (aj,cj) via Case 1, and looking 

at Case Jc), we see that p cannot have been defined on (aj,cj) via Caae 

3. So p was defined on (aj,cj) via Case 2. This means that cj • aj + 1 

and aj = 2k where (8it,1\_) E R; that is, p(ai,bi) • 2k and (8k,bk) E R. p(a1,bi) 

cannot therefore have been defined via Cases 2 or 3, and therefore we have 

0 

Definition 2.3: Let l 1 be the language of the first order predicate 
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calculus with only a 2-place formal predicate ~· Define the class of 

structures for £1, C = (< D,R > I R ~ n2 and D = domain R} (where domain R 

for a 2-place relation R means (a I for some b, (a,b) ER or (b,a) ER}). 

Lenna 2.4: (Kalmar [cf. Ch56]). t TII(C) is undecidable. 

Theorem 2.5: a) TH(P) is undecidable. 

b) There exist particular P-atructures with undecidable 

theories. 

Pr99f: If F is a sentence of :
1

, let F' be the sentence of l 

obtained in the following way: 

1) For every quantification Qv in F, change it into a quantification 

over the values of v which satisfy ~x1ix2 (FREL(x1 ,x2 ) A (v = x1 V v = x2)). 

and 

2) Replace each atomic formula of· F of the form ~(v1 ,v2 ) by 

x1 nor x2 occur in F.) It is easy to see that for any g E P and sentence 

F of ;~ < d.omain(REL(3)), REL(&) >I- F ~ g I- F'. 

t Actually, the theorem 48. stated by Church u TH((< D,R > I R ~ D2}) 
is undecidable, but Leuma 2.4 follows i1llJIE!diately from the proof. 
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Proof of (a): We will shaw that Cf- F ~ P f- F'. 

C f- F => for al 1 < D, R > E C, < D, R > f- F => 

for all g E P, < domain(UL(&)), REL(3) > f- F => 

for all 3 E P, 3 f- F' =>Pf- F'. 

Conversely, P f- F' "" for all 3 E P, 3 f- F' => 

for all 8 E P, < demain(REL(3)), REL(&) > f- F => 
(b7· IAmla .. 2.1) 

for all < D,R> E c ssh tka.t D !;; • •• < ~.a > .. F. 

By the Skolem-I.Mnheim theor• [cf. Men64}, thi• impli .. that !Or ft!.tt 

< D,R > E C, < D,. R > ,.. F, implying C f- 'F. So C f- F to P f- F'. -

Hence, a dec..taion procedure for nt(P) would yield ane tor Tll(C), 

contradicting I.-. 2.4. 

Proof of {b): It i• eaay to see that there exists aome R ~N X N e e 

such that Ne • domain R and '111(< N8~ll >) (in .11> ia undec.iclable. (We 

can, for example, chooee R to be an equivalence relation so .. to make 

nt(< Ne,R >) undecidable, as described in Section 4 of Cbaptw 2.) By 

Lenna 2.2 we can find 3 • < N,p > euch that REL(3) • R. Then for any 

sentence F of £1 we ha"J'e < Ne,R > f- F • 8 .. F'. So TH(8) 18 undecidable. 0 

Remark 2.6: Let P' ... [< tc,p > E P I. p ia Onto}. The proof of 'theorem 
''·,"·! 

2.5 shows that (a) '11l(P') is undecidable and (b) 'l"ll(3) i• undecidable for 

some g E f>'. 
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Section 3: Cgnstruction of Formulas Which Talk About L!fge Sets 
~ . . • .. 

Our goal in these next two sections is to prove Theorem 1.2, i.e., 

that NTIME(f(n)) s: pl.TH(C) for any nonempty collection C of P-structures. 

We shall do this as follows: Let !IR be a nondeterministic Turing machine 

over the alphabet ~. Then for every w E r+" we will produce a sentence 

F oft, such that for any P-structure 3, g ~ F ~!IR accepts w within w . w ' 

time f( lwl); furthermore, the time it take• to produce Fw will be poly­

nomial in lwl, and the space needed will be linear in lwl. If !IR 

operates within time f(n) and C is a nonempty co·Uec-tion of P-structures, 

then we have C ~ Fw ~!JR accepts w within ti• fdwl) ~!IR accepts w, and 

hence NTIME(f(n)) s: pJ.'lll(C). 

The way F will "say" that !IR accepts w 'Within time f( lwl) is as 
w 

follows: We regard the instantaneous _configuration of a computation of 

!IR on w at any time as a string of length f( lwl), and hence the 

concatenation of the first(f(lwl + 1) I f<lwl)} (which is ~ f( lwl)) 

successive instantaneous configurations is a string of length ~<lwl + 1). 

Fw will "say" roughly that there exists such a string of length f( lwl + 1) 

which contains an accepting COJlfiguration. In order to write such 

sentences as Fw' we will first have to be able to write down formulas of 

l of length proportional to n which allow us to describe the basic 

set-theoretic relations on the subsets of an orctered set of sii:e f(n + 1). 

The above is an intuitive outline of our •PPr~Jl•., The ideas ~or 

this outline first appeared in Meyer's proof tb,tt WSIS is not elementary 
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recursive [Mey7l], and also occur infPiR74], [Fer74], fMS72·1, [SM73], [Rol:t7l],{Sto74]. 

In the rest of this section we shall shQW haw to . ..,,rite formulas of length 

proporUonal to n which "talk about" sets of, •i•e f (n + 1); t~ue 

theorems do not appeal to any of these previous paper• sbace the 

development in this section is necessarily intimately connected with 

the nature of P-struct\lrea. In Section 4 we shall present a development 

along the lines of Meyer, etc., vbieh shows how to uee the foi'lm.llaa 

derivect in Section 3 to prove Th.area 1.2. 

Let < N ,p > be a P-structure. We first define partial fuilctt0119 

t: N -+ N anti r: lf ... 'N aa follan: for a E W, i(a) • 'b if for acme 

c EN, p(b,c) •a; r(a) • b.if for some c EN, p (c,b) •a. Since 

p is one-one, r and J. are indeed partial functions. Clearly r and J 

depend on p, but it will always be clear from the context what pairing 

function a particular r and " come from. 
* .. · . 

Let a E (r,J}. be a string; 

we define the partial f\mction fa: N -+ N in the obvious way, namely 

if >.. is the empty string then f>.. (a) • b iff a • b, and if a is 

Jc' (ra'} then fa• J•fa,- ( •r•fa,). Henceforth we will uee a ambiiuoualy 

* . to designate both the string in (r,.&} and the function fa. 

Let FJ(x1,x2) be the formula !x3(p(x2,x3) • x1) and let Fr(x1,x2) 

be the formula !x3(p(x3,x2) = x
1
). Then for any 3 E P and any a,b EN, 

8 r Ft(a,b) iff J(a) •band 3 r Fr(a,b) iff r(a) • b 0 Since we will 

be expressing properti•• wti'Dg the partial function• r md J, and since 

we will be interested in writing down formul .. that define these 
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properties, it is important to realize that we will be implicitly 

using the formulas Ft and Fr. 

Definition 3.1: Let< be the reverse lexicographical ordering on 

All the properties mentioned in this chapter will be with respect 

to P. 

Definition 3.2: For each n EN, we define the property ORDn(x,y1,y2) 

as follows: let< ~,p > E P, let a, b1, b2 E N. Then 

Remark 3.3: * <N,p > r ORD (a,b,b) iff for some a E (r,t} , 
n 

lal = f(n) and aa = b. Cl~arly ICbl < N,p > r ORD (a,b,b)JI 
n 

~ 2f(n) = f(n + 1). 

Definition 3.4: For n EN we define the property FULL (x) as follows: 
n 

let < N,p > E_P, let a EN. Then< N, p > r FULL (a) iff 
n 
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LeDlna 3. 5: Let < II, p > be a structure and let n E lt. Let 

al' a2 , ••• , a be the increaaias (with reepect to <) •*tuen<:• of 
2• 

* those members of ( r, .t) of length n. Let bl' b2 , _ •• ~ , b ifl be a aequenc• 

of (not necessarily dis tine~ .-her• of N. l1!.e there enete a EN such 

Proof: (by induction on n). 

Let < •,p > be a P••tructure. I.-. l.5 19 true if n • O, •iac• 
we can chooae a • b1• So as•tae the !.-- for n; we will prove it for 

n + 1. 

of length 2n+1• 

D for 1 s: i ~ 2 • Let a 1, a2 , ••• , a 
2

n. be the increasing aecruence of 

* those members of (r,J) of length n.. By the induction hypothesis, we 

can choose a E ll sueb th.at c 1a = c 1_fc: 1 ~ 1 ir,; 2n.. Ry .definU:ioa of <. 

a is the element we were looking fer •. ~·.we ere; done. 0 
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Lemma 3.6: Let< N,p > E P and let a, n EN. Then the following two 

statements are equivalent. 

(I) < N ,p > I- FULL (a) 
n 

(II) For every a' EN, if [(ORD (a,b,b) =ORD (a' ,b,b)) for all b EN] 
- n n 

then [(ORD
0

(a' ,b,b) = ORDn(a,b,b)) for all b EN] 

Proof: 

(I= II): Say that FULL (a) holds in< N,p >and that a' EN has the 
n 

property that for all b EN, < N,p >I- ORD (a,b,b) = < N,p >I- ORD (a',b,b). 
n n 

We have f ( n + 1) = I ( b I < N, p > I- ORD n (a, b, b.)} I s: I ( b I < N, p > I- ORD 
0 

(a' , b, b)} I 

s: f(n + 1). Hence< N,p >I- ORD (a'b,b) = < N,p >I- ORD (a,b,b). 
n n 

(II = I): Say that II is true. Let A ~ N be a set of cardinality f(n+l) 

such that {b I < N,p >I- ORD (a,b,b)} ~A. By Lemna 3.5 we can choose 
n 

a' EN such that {b I < N,p >I- ~ (a',b,b)} =A, so 
n 

(b < N,p >I- ORD (a,b,b)}~ (b 
n 

< N, p > foo ORD (a' , b, b)} • So by I I, 
n 

{b < N,p> I- ORD
0

(a,b,b)} = (b < N..,p >I- ORDn(a' ,b,b)) =A. Hence, 

!Cb I < N,p >I- ORDn(a,b,b)}j = l~A_I = f(n + 1) and. so< N,p? I- FutL
0

(a). 0 

Remark 3. 7: If < N ,p > I- FULL (a), then clearly C1a ls defined for . . n 

every a of length f(n); furthermore, if IC111 = la21 = f(n) and C1l I a2 , 
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ordering on the Mt (b I < M,p >I- (JU)n(a,b,b)} of eudinality f(n + 1). 

the purpose of L-.a 3.8 i8 to show how amn+l ca be ex~eeaed fr• 

ORDn and FtJl.Ln. Let< N,p > E P and let a,b1,b2 E 11 1.-a 3.8 aaye that 

< N,p > I- <Imn+l (a, b1 ,b2) if and only if there exieta •~ c E It wtt.tce 

. * I 

"codes" atringa a1,a2 E (r,J) of lenath f(n + 1) euch tut a
1
a • b1 

and a2a • b2 and a1 < a2• To••• how thte coctiag !eden, -a.tne Figure 1. 

Every node in the tree in Figure 1 repr•••ts a (not ueeaaarily dtttinct) 

member of N. The value at a node is p of the valuea of the tvo •on• 

(if they exist); for instance. p(g,h) • c. In order for c to code the 

that c may code numerous pairs of strings. In order to eay that c codes 

and their ordering from left to right, and·for thia reaeon we ineiat that 

c1, c2, ••• , cf(n+l) all be distinct so that we can talk about their 

ordering using ORD • 
n 
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I 

Figure 1: 

Illustrating Lemma 5.3.8 
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L!D!D! 3,.8: Let< 'N,.p > E P, let n EN, let a,bl'b2 EN. Then 

the followmg four facts hold. 

1) < N,p >I- FULL (c). n 

Let @be the linear order imposed on the aet (b I < N,p > ~ OllDn(c,l>,b)) 

by ORDn. ~ c1,c2, ••• , cf(n+l) be the el..-u ordered by © 11Bted in 

increasing order (with re•pect to©). 

2) !lei is 4eft1led for 1 :s:: 1 :s:: f(n + 1), 

o < i :s::_f(n + 1). Defi~ the sequence e0,e1 , ••• , ef(n+l) by e0 • • 

and e
1 

= rtci for 0 < i :s:: f(n + 1) (r.&c
1 

is defined 8ince .t.&c
1 

i8 defined). 

3) For 0 < i :s:: f(n + 1), either di • rd1_1 or di • .tdi-l' and either 

4) Either di• e1 for all i, O :s:: i :s:: f(n + 1), or there exists some i, 

O < i :s:: f(n + 1) such that 4.1) dj • ej for O :s:: j < i and 4~2) 

di : 1.di-1 and 8 i • rei-1° 

~----------- -----~--~--- ________ , ____ -'-
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Proof: Fix< N,p >, n,a,b1,b2• 

(If): Say that for some c EN, 1) through 4) hold. elf 0 <is: f(n+l), define 

yi = J, if di = .tdi-l' and 'Yi = r if di = rd1_1 and di I: .td1_1 . If 

O < i s: f(n+l), define 6i = r if ei = rei-l' and 6i = t if ei = tei-l and 

cr2 = 6f(n+l)"""6 261• It is clear from 2) and 3) tba't 0"1a =bl and 

0"2a = b2: We wish to show a1 < a
2

• If a
1 

I- 0'
2

, then for some 1 we have 

So d = e for 0 < j < i •. j . j If 

yi E (r,t) and 51 E (r,t) for 0 <is: f(n + 1). Define the sequence 

for O < 1 s: f(n + 1). Clearly df(n+l) = b1 and ·ef(n4-l) "" b2• 

1 s: is: f(n + 1). Define h1,h2, ••• , hf(n+l) EN as follows: let h1 be 
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this way since pi• one-one.) Define tile ....-ce•f cllatinct: -'>era 

1 s: i s: f(n + 1). Clearly -c .. c.iafiee pra,.el"tt• 1), 2)., atd 3) .. 

implies that there esi• ts 1. O < i s: f (n + 1), :euch that y J • 6 j 

if O < j < i, and y1 ~ l and 61 • r. Tlli• aeans, that: dj • ej if 

0 ~ j < i and di = td.i-l and ei • rei•l' so 4) holds alao •. 

Leoma 3.9: There exists a sequence of formulae of & 

(I) ~ (x,yl'y2) defines the pr~rty ORDn for n ~ If. 

(II) There is a procedure which gi~.,. E JI+ c~u 5!m.n within 

time polynomial in n and apace linear in n. 

0 
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Proof: Define ORD0(x,y1,y2) to be 

If we have ORD defining <XlD , then by µsing Lenma 3. 6 we can obtain 
---n n 

a formula FULL (x) which is of length proportional to the length of 
---n 

ORD and which defines the property FULL • Leoma 3.8 therefore gives 
---n n 

a way to define OR.D
11
+l using ~· (This is completely straightforward 

if one notes the following fact: in Leana 3.8 we occasionally quantify 

over i, 1 ~ i ~ f(11 + 1), but this can 1:>e expr~ssed indirectly as 

quantification over the ordered set (b I CXlD (c,b,b)))t. 
n 

If one used Lemna 3.8 in the simplest way to write down ORD
11
+l 

using subformulas ORD , then since ORD would occur more than once in ----n ----n 
' 2 

ORDn+l' the length of~ would be at least proportional to n • We 

can, however, use a result due to Fischer and Meyer [cf. FiR74] to 

obtain (using Lemma 3.8) a formula am ' ,of length proportional to n ---n 

+ which defines ORD for all n E N • This result is stated formally and 
n 

is proven in Appendix 1. Thus by 'l'heqrem A,.2 ,of Appe~9i~ 1, we,.can conclude 

Lenma 3.9. 'I 

t It is at first difficult to see how to use L~'3.8 to write ORDn+l 

using ~ as· a subformula, since i:the .free vart•tes of ORDn are fixed 

and we might wish to use formulas similar to ORD but.with different 
free variables al: different plaeea Jn ORDn+l .~e way is by under-

standing the phrase "using ORD as a subformula" to mean using 
---n ' ' 

formulas like ORD but with the variable names changed. Another way ---n 
is by the followi~ trick: Say we.. have;• a ,fo.~l~~ J1'(x,~) and we wi8h 
to have a formula G{y,z) such that F and G define the same property. 
We can let G be Vx1,Vx2((x1 = y /\ x2 = z)-+ VxVy((x = x1 /\y= y2)-+ F(x,y))). 

- ------·~~-· ---------------
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Corollary 3.10: '11lere exist• a •eflU8DC• of f--.ilu of S!, 

FUIJ..o (x) ,· FULq (X), • • • such that 

(I) FULL (x) clefinea the property FULL for all n E 11. ----n D 

' . ', "+' '' ' ' 
(II) There i• a procedure whi.eh given. a E 1' computea ~ •ithin 

time polynomial in n md within space linear in n. 

Proof: Use L- l.6 to expreo PULl; usina ClU> for n E lt. ' ----n ---n 

Lemua 3.11: There exists a BfNP181lCe of forsmlaa of I.,. 

I) If g E P and n.a,h1.b2 € N, then I~ ~(a,b1,b2 ) • 

(1) g .. nJLLn(a) 

(2) g .. ORDD(a,b1,b2) 

( 3) '' The 4tac-• frtOm Bi to ,,2 in the or.4erillg ---·- by amn 

is exactly f(n) .. 

II) There is a .,rocWdure wbidl given n E •'* compUtU atST within ti• ...__...,. 

polynomial in n and space linear in n. 

Proof: ' Let DISTo be p(yl,,.2)' - x A "1 ,,. Y2· 

+ 
Let 3 E P, 1tEB , a. o1 ,-,~ E lf. We ·wtell u aay d1,at 8 .. IULLn (a) 

. ' ' 

and I£ c E. K I c " ltp and g ... (IU)n c-.i.1 .. c) .. 3 ... <JU>D (a .. c.it.z> I .... f (n). 

(This implies that 3 .. CllD9(~1>1,b2).) But by U-. 3.S, thia will be true iff 

3 "' ·rou.
0 

(a} and. there 1• some c • E: N such that S'.f FUt.La•l (ct) U.S such that 

for all c EN, 
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We can therefore write down a formula DISTn(x,y1,y2) for n EN (by using~' 

ORD , FULL 1 and ORD 1) such that (I) and (II)- are satisfied. 0 
---n ~- ---n-

Definition 3.12: For all n EN, let SETn(x,y1,y2) be the property 

Lepaa 3.13: Let g E P and let n,a E N auch. that g ~ FUL1n(a), 

Let A~ {b I g ~ ORDn(a,b,b)J. Then for some b1 EN, 

Proof: Say that g .. FULL (a) and A ~ (b I 3 .. ORD (a,b,b)}. Let A' s: N n n 

be such that O < IA'~ :s: f(u + 1) and A • A' (\ {b I g .. ORD
11 

(a, b, b)}. 

By Lemma 3, 5 we can find some b1 E N such that 

A'= {b2 I 3 .. ORDn(b1,b2,b2». Hence, A= (b2 I 3 ~ SETn(a,b1,b2)}. D 

LE!ll!P§, 3,14: There exists a sequence of formul~s of t,~ET0 (x,y1 ,y2 ), 

(I) ~(x,y1 ,y2 ) defines the property SETn for n EN. 

(II) + There is a procedure which given n E N computes SET within 
---u 
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time polynomial in n and apace linear in n. 

Proof: One can easily vrite down SET using FULL and ORD • --n ....---. ---n 0 

Note that by i.e.aa 3.5, ~(x) i• aatiafiable in any P•atructure. 

Hence, the formula !Y.LLn and·~ allow u• to write formulas which, no 

matter which P-•trw:ture they are interpreted in, talk about an ordered 

set of size f(n + 1). uatag 'DtST we ca talk about· t90 •11110tera of ----n . 

this ordered set being f (n) apart. Using SET we can talk about all 
--n 

subsets of thi• ordered ••t and refer to Cle Mete. aet•tlaeoretic .. ~--. 

In what follon we Will think of a aubttet of thi• ordered eat aa 

correaponding to the 'binary string which i• the characteriltic sequence 

of the subset. It will be useful to be able tO -*Pru• the proterty that 

such a binary string begins in a particular way. 

Definition 3.15: * For every y € (0,1} let STARTy<x;y,11) be the propetty 

such that if n = IYI, 3 E P, a,b,c 'EN, then.3 t- STM\T (a,b,c) tff 
y 

1) 3 .. FULL (a) 
n 

Let@be the ordering determined on (b' f 3 t- ORDn(a,b1 ,b')} by OltDn• 

Let a be the characteristic sequence (with respect to © ) of the set 

(b' 31- SET (a,b,b')} = (b' I 81-CltD (a,b',b') a:nci31-CIID'(b,b',b')}, n n n 

i.e., a is the binary string of length f(n + 1) determined by b, a and 3. 
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2) a= y•Of(n)-n.5 for some 5 E (0,1}* of length f(n + 1) - f(n). 

3) c is the n + 1 smallest member (with respect to ,@ ) of the set 

(b' I 3 .. ORD (a,b',b')}. 
n 

Lfuma 3.16: Let y E (0,1}*, IYI = n, and let i E (0,1}. Let 3 E P and 

let a,b,c EN• Then gr STAR.Tyi(a,b,c) ~the following eight properties 

hold for some a',b',c' EN. 

1) 3 \- FULLn+l (a). 

2) g .. FULL (a') 
n 

Let © be the ordering determined on ( c" I 3 t- ORDn+l (a,c" ,c"} by 

ORDn+l" Say that c 1,c2 , ••• , cf(n+l) are the first f(n + 1) elements 

in increasing order (with respect to ©). Let @ be the ordering 

determined on ( c" I 3 .. 0RDn (a' ,c" ,c")} by ORDn. 

3) {c" 31-0RDn(a',c",c")}= {c1,c2 , ••• , cf(n+l)}. Furthermore, 

c j @ c j+l for 1 :::;; j < f(n + 1). 

5) 3\-STARTY(a',b',c'). 

6) 3t-SETn+l(a,b,c') ~ i = 1. 

7) c is the i111ll8diate successor of c' in the ordering ~ 

8) g does not satisfy SETn+l (a, b,c") for any c", c@>c' '@:f (n+l). 
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Proof: (3) says that l:he oriered set of 8iae f(n+ 1) 4etermtned by 

ORD and a' (and 3) is the same as the first f(n + 1) el~ta of the 
n 

ordered set determined .by ORDn+l and a. 4) therefore says that the 

binary sequence of size f(n + 1) determined by SET and a' and b' is n,. , 

the same as the first f(n + 1) elements of the binary sequence of size 

f(n + 2) determined by SETn+l and a and b; 5) and 6) say that this 

sequence of length f(n + 1) begins with yi and 8) says that, the rest of 

it is oo... . 7) says that c is the n + 2 ntallest ....uu··of t:he 

ordered set determined by (JU)n+l and a. 

* Lenna 3.17: For every y E {O,l} there exiats a formula of l 

START (x,y,z) such that 
y 

* (I) START (x,y,z) defines the property START for y E (0,11 • 
y . ' ·,' ' ' : • 'Y 

+ (II) There is a procedure which given y E (0,1} computes START 
y 

within time polynomial, in !vi and space linear in fvl. 

Proof: Let STARTA(x,y,z) be the formula :Rz'(P_(~,z') • X/\ z-# z'), 

0 

Leana 3.16 shows that STAR.Tyi can be expressed in a fixed way (depending on i 

but independent of y ) using STAR.Ty' together with FULLn+l' FULLn' ORDn+l' ORDn' 

SETn+l' SETn, and DISTn+l where n = Iv!. All of theae latter properties can be 

expressed in a fixed way from ORDn' and so StARTyi can be expressed in a 

. ' ' 

fixed way from START and ORD • In order to, ctmc lude Lemma 3 • 17, 
Y n 

- . {., 
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we have to use a more powerful theo?"em frODlAppen~;l.x 1 than that used in 

the proof of LenlDa 3.9. Since for all n E N, ORDn+l can be expressed in 

a fixed way from ORD , we can appeal to a special case of Theorem A. 9 
ll 

in Appendix 1 (in which I{, = Ii> to conclude Lenna 3.17. D 

. . * Remark 3.18: For y E (0,1} let START'(x,y) be the property such that 
y 

g a.- START' (a, b) ~ for some c, Sr START (a, b,c). We will really only use y y 

the fact that we can write short formulas defining the properties START'; y 

the reason we have dealt with the more complicated START was in order 
y 

to be able to express these pt'opertiea inductt'vely. 

----- ------·-----·--------------~--
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Section 4: Uitipg Porml•; to Simulate TUrtal' 'KlchiMs 

In this section we will use the formul.~ FULL
11

, ~· 

languages E NTIME(f(n)), and hence prove Tbeor• 1.2. 

Theorem 1.2: NTIME(f(n)) ~ ,m(c) for ay nonempty collection c of 
' p ' ., ' 

P-atructures. 

detail (partly reviewing from Chapter 1) the nature of our Turing 

machine. The tape alphabet is :t, • E ~.and !Dlhaa one head mid 011e 

tape where the tape is one-way infinite to the right; initially the head 

is on the leftmo•t square of the tape and !.m never tries to read off the 

:or ' 
tape. If w E :t , then we input w to !I by having the initial tape contents 

be wW... • Let the state set of 9 be {1,2, ••• , It) where 1 is the initial 

state and k is the accepting state. !IY accepts w if there is some 

computation starting on wQ ... such that !11 eventually enters state k. 

Let us assume that after entering state k, 9R thereafter stays in state k 

without moving the head or changing the tape contents. Since !Ilt operates with-

in NTIME(f(n)), if !ffi accepts w then there is some computation of !l'lt on 

w which enters state k within f(lwJ) steps and hence without leaving the 

first f(iwl) tape Bfluares. 
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Let w E It, lwl = n. .Let g(n) = f(n + l)/f(n); g(n) ~ f(n), so 

if !IR accepts w there is some computation which accepts w within g(n) 

steps. Consider now a particular computation of !IR on w wbieh goes for 

* g(n) steps without leaving the first f(n) squares. Let Wi ·E !; of 

length f(n) be the contents of the first f (n) tape squares at time i 

(where !JJl begins at time 0). * Let ui E (0, 1, 2, ••• , .kl of length f(n) 

q f(n)-q-1 be such that Ui = O j O where at time i,!Dl is in state j and the 

head is pointing at square q (where the leftmost tape square is square 0). 

lwl = lul = f(n + 1). * Define the 'l!l!t'kin& str£91 ME (0,1} of length 

f(n + 1) by M = (1 Of(n)-l)g(n). We will call (W,U,M)' the computation 

triple of the computation (on w). (W,U,M) is an accepting computation 

triple if k appears in U. Clearly !JJl accepts w if and only if there is an 

accepting computation triple for w. 

Let (W,U,M) be a computation triple for w E 2f, lwl = n. For any 

string y, let y(i) be the i + 1 member of y so that 

W = W(O)•W(l)• ••• •W(f(n + 1) - 1), etc. For every j, 0 ~ j < g(n), and 

every i, 0 s: i < f(n), the values of W(j • f(n) + i) and U(j • f(n) + i) tell 

us the contents of square i and whether or not the head is .pointing at 

square i (and if so, then the state of !Dr), at instant j. The rules 

(of the finite state control) of !IR together with the fact that we only 
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consider computations which do not leave the firs.t f(n) tape squares 

put coastraiata on ,1:h• values of w,u~ ad M· aouni plaoe 

j • f(n) + i + f(n) (if j • f(n) + i + f(n) < f(n + 1) ),·d•pntitig on the 

values ef W and U at j•f(n) + i .. 

For instance, say that 0 ~ k < k + f(n) < f(n + 1). Say that 

W(k) = O and U(k) = 5 and aay that if D ia tn atate 5 with the head 

pointing to a square containing O, t1'en the machine is allowed to 

permissible therefore that: W.(lt + f(ll)) • 1. ancl U(k + f(J.l)) • 0 ad 

U(k + f(n) + 1) ... 1 and M(k + f(n) + 1) ti 1. If U(k) .. o, tmm ... 

must have W(k + f{n)) == W(k). The point is that thee are only certaia 

values 'of (W(tc), 11(.k), W(k + f.{ll)). W(lt:'+ f~a) 1 • 1), U(lt + f(ll'))• 

U(k + f(n) + 1),M(k + f(a) + 1)) 

which are permiaaible, i.e., CODfistent: with 9.. These ideas are developed 

rigorously in [Sto74, Section 2.2}. 

* * * Let WE};, U E (0, 1, 2, ••• , k} , ME £6, 1} k ati'1.ngl Leuma 4.1: 

of length f(n + ~). 'l'hen (W,U,M) h G ac~ep~ 1;:011tpUtatioa for 

w E (O,l)*, lwl = n, if and only if 

* 1) M E 1•(0,1) and every contiguous f(n) symbol of M contains exactly 

one 1. 

2) W E w•ff(n)-n.,,;*. 

3) U E l·Of(n)-l.{0,1, ... , * k) " 

4) For o s:: i < f~ + 1), if M(i) • 1, then naetly oat of' the ~· 

U(i), U(i + 1), ••• , tJ(f + ffn) .. 1) 1• noaano.. 
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5) For all i such that 1 ~ i < i + f(n) < f(n + 1), the value of the 7-tuple 

(W(i), U(i), W(i + f(n)), U(i + f(n) - 1), U(i + f(n)), U(i + f(n) + 1), 

M(i + f(n) + 1)) is consistent with !In. 

and 

E;) U contains an occurrence of k. 

Proof: 1) through 6) say roughly that W and U begin with the right 

configuration, that the transition between •Y two successive, configuratiCllS 

of length f(n) (marked off by M) are permitted by the rules of !In, and 

that the accepting state appears in u. These are necessary and sufficient 

conditions for (W,U,M) to be an accepting computation for w. CJ 

Completion of the proof of Theorem 1.2: Let w E "£+, lwl = n. We have 

shown that with formulas of length proportional to n we can talk about 

an ordered set of size f(n + 1). Every subset of this set can be 

thought of as a string of length f(n + 1) over {O, l}. Every sequence 

y1, y2, ••• , yv of v strings over {O, l} of length f(n + 1) represents 

a string of length f(n + 1) over the alphabet (O,l)v (the set of v-tuples 

containing just 1 and 0), namely the string y where 

y(i) = (y1(i), y2(i), ••• , yv(i)) for 0 ~ i < f(n + l); if 

1"£U(o, 1, 2, ••• , k) I v 
= 2 , we can think of y1 , y2 , ••• , yv as 

representing a string of length f(n + 1) over the alphabet 

"£ U {O, 1, ••• , k) by coding"£ U (O, 1, ••• , k) into (O, 1) v. Say that ¥ is 

f(n)-n coded as(O,O,. •• ,O). Then the string w1' will be represented by 
v times 

------- --- -----------------------------
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... ' 
length n for 1 ~ i ~-v• 

Therefore utJilll ~, ~' RD.In' !lln• STAI , SJ6l.T , ••• ,rrM.t... 
l'1 "2 .-~ 

we can write a ••1:-• Fw of 1-.th ca .......... ..,. that .t119re .n•• 
(W, u, M) eat:iafytng COll4t-tio:U 1) throush 6) in x...a 4. 1. 'l'hat ia, for 

any I E P, J'w •U.1 ·M . .true ia I if aid •1'1 (.f D aot·epca w. H~ , if c 

is a t1011emp'ty col'.1-t!.Wa ·ctf P..attuctunl, P
9 

E_ 'l'lr(C) • 9 ~,c .... t'il w. 

So L(!m) :s;; . ,'l'H(C). 
pl{/ 

-----------------

0 
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Appendilt 1: Writ:f.M, SbeU f!eY:lts fen; lph!ctJ.velx RefiWISL Pr.onrstes 

Let r, be the langwige of the first order predicate calculus with a 

finite number of relational symbols ~l' !_2 , • •• , ~,. Let P be a 

class of structures for Z. Henceforth all properties and all 

equivalences between fonmlas of I. will be with respect to P. The 

purpose of this ..,.,.m11x is to prove that one can con.struct short 

formulas defining certain inductively described properties. 

Theorem A.2 below will essentially say the following: given a 

sequence of properties G0, G1, ••• such th~t G0 is defined by a formula 

of t. and such that Gi+l can be expressed in a fixed '14Y (independent of i) 

from Gi using the language t., then for every i > 0 there i8 a foraala of 

l of length proportional to i which defines the property G1• 

We assume for convenience that equality is definable in P, and 

hence for convenience assume that v1 = v2 is an atomic formula of I.. 

We also assume that every structure in P has a domain of cardinality 

~ 2. 

Now let k E N be fixed and let l' be the language of the first order 

predicate calculus which is the same as t, except that a k•place formal 

t predicate ~' has been added. 

Two formulas of !' are equivalent if they are equivalent in any structure 
obtained by adding to a structure from P an interpretation for ~. 
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DefinitiQll A.l: Let!(~) be a formula of l' and let G(X:tt) be a 

property. We define an infinite sequence of properties, 

- -
G0 (~), G1 (~), ••• as follows: Let G0(~) be G(~)~ For every i EN 

- k and for every s true ture g E P with domain S and for every 'it E S , we 

say that g ~ Gi+l('ic) iff g ~ !('ic) when the formal predicate~ is 

interpreted in Sas Gi (restricted to 3). 

Theorem A.2: Let !(~) be a formula of l' and let Q(~) be a formula of 

t. defining the property G('X\c)• Let G0 (~), G1 (~), be the 

properties defined in Definition A.l. Then there exists a sequence 

- -~ (~), Q1 ('X\c), • • • of formulas of I. such that 

(I) ~ defines the property Gi for each i E N. 

(II) + There is a procedure which given i E N computes ~ within 

time a fixed polynomial in i and space linear in i. 

'Theorem A.2 is due to Fischer and Meyer [cf. FiR74], working from 

earlier ideas of Stoclaneyer [SM73]. A key part of the proof will be 

Lem:na A.3. 
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Lemna A,3: Let! be a fOTmUla of l.'. Then theJ:e exists a formula F' 

of l' equivalent to ! such that !.'' has exactly !!!'!! occurrence of the 

predicate letter ~; this occurs in an atomic formula in which all the 

k formal variables are distinct. 

Proof: Let !. be a formula of l' • Since any formula of S!' can tri'llially 

be extended to an equivalent one with at least one occurrence O·f ~' 

assume that ! contains at least one occurrence of ~. Assume !" is in 

a quantifier free formula containing m ~ 1 occurrences of the symbol ! 

and where v1 , v2 , ••• ,v J represent formal variables. Let us say that the 

m atomic formulas of ! in which~ occurs, from left to right are 

where the symbols vi,j for 1 ~ i ~ m and 1 ~ j ~ k represent formal 

variables. 

Let y1 , Yi, y2 , Y2, ... ,ym,y~ be distinct formal variables not 

appearing in A. Let A' be the formula obtained from A by replacing 
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of P there are interpretations of y and y' which ca1:18e the formula 

y = y' to be true, and interpretations which cause y = y' to be false, 

we see that A is equivalent to 

Now let y, y', z
1 
,z

2
, ••• , zk be distinct formal variables not 

/\ [(y = y') M R(v 1,v , ••• , vik)] is equivalfllJ.t to 
lsism i i - i 12 • . 

• • • • t"· 

SQ we have sh~ that! is equivalent to a fornaila,ytt~ tx~tly one 

occurrence of~' which occ'llJ;'s in the ateaic i(trmla~<S..C>· 0 

Definition A.4: Let !(~) be a formula of t, and let zl'z2, ••• , zk be 

distinct variables all of which are different from x1,x2, ••• , ~· 

- 1-
Then let !(8tc ~) (ik) be the formula obtained from! in the following way: 

If v is an occurrence (not necessarily free) of a formal variable in £:, 

then if v = zi for some i, 1 s i s k, replace v by xi; if v =xi for some i, 
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1 ~ i ~ k, replace v by z1 • 

Definition A. 5: If I. is a formula of l, define the 1ise of !,, •(!J, to 

be the length of I. when each variable subscript is counted to be of 

length 1 and all other aymbola are counted normally. 

The following lama follows inaediately from the definitions. 

Lenna A,6: 

Then s(I.) 

property. 

Proof of Th!orem A,2: Let !(~) be a formula of l' and let Q('1c) be a 

contains exactly one l>Ccurreace ef !; the pl'oef ·of Lelila A.3 aaut'es us 

in fact that we can insist that the atomic formula in 'Whtch ~occurs is 

~(zk) where z1 , z2, ••• , zk are distinct variables not occurring in 

-Now define a aequence ~ ('\:), Q.1 (~), • • • of fornllas of l ae follot1s. 

Let ~ be Q.. For all i E N, let ~+l be the formula obtained by 
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(ikl~) 
substituting ~ for ~(zk) in !· It is easy to see by induction 

(usirig Le1Illla A.6) that~(~) defines Gi(~) for each i EN. 

cikl~> 
For c0 = 1!1 we have s~+l) ~ c0 + s(2.t . ) = c0 + s(~) 

for i E N, so s(~) ~ s(Q.) + i•c0• Every variable occurring in each ~i 

is either from the set {x1,x2, ••• , ~} or occurs in! or occurs in Q. 

If c1 is the maximum length of any such variable subscript, then 

independent of i. It can also be checked that one can compute Q.i 

within time polynomial in i and space linear itt i. 0 

Remark A.7: Theorem A.2 can be improved :ln a nUIDer·of 11ays. Firstly, 

we can obtain our result even without the restrictions that equality be 

definable in P and that every structure in P have a domain of cardinality 

~ 2. In addition, using a trick suggested by Solova:Y [So173] we can obtain 

the same result even if our language of the predicate calculus doesn't 

contain ....,. • 

Theorem A.2 can be generalized in a number of ways. We Will only 

present the particular generalization which·we neecl in the ~ext. 

To begin with, let t.11 be the language of the first order predicate 

calculus which is the same as t except that we have added two new formal 

k-place predicates: ~ and ~' for some fixed k E N. 
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Let G(~) and G'(yk) be properties. * For every y E {O,l} we let 

* let GA. be G and let a;,. be G.'. For every 6 E ( O, l} and every 

- k 
3 E r with domain s and every '\. E S we say 

be formulas of l defining, respectively, the properties G(~) and 

A.8. Assume that for any g E P, the relations obtained by restri'ct:f.ng 

G and G' tog are both nonempty. y y * Then for each y E {O,l} there exist 

(I) G defines G and G' defines G'. -y y -y y 

(II) There is a procedure which given 'Y. E ( O, it computee ~ and Q.' Y 

within time a fixed polynomial in I y I and space linear in I y I . 
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Proof: '11ie basic idea of this proof is wb~t we c,#1. "s~~lfaneous 

. * definition"; for every y E ( O, l} we will write down a formula which 

defines both G and G' , as described belaw. 
- y y 

- - .. 
For each y, let HY(~,yk) be a 2k-pla.Ce proper·ty wbieh we define 

* .. -
Leto E (0,1} and let i E {0,1). We now show informally (this will 

be made precise bel°':') how H01 can be expressed from H
6

: It is sufficient 

to show that G0 i and G6 i can be expressed from H0 • Using Et and f:i we 

can express G0 i and c5i by using G0 and c5. Since for any 3 E P 

. k 
with domain S and any 8k E S , 

can be expressed from H
0

• 

Proceeding more formally, let £0 be the language of the first order 

t 
since the relations obtained by restricting G0 and G6 to 3 are nonempty. 

-------- ---------------------------
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predicate calculas obtained from l by adding a 2k-place fol"iBal predicate !!• 

Let w1,w2, ••• ,wk be distinct variables not occ.\1rring in!o,£'..l'l.'o•li· 

For i E { O, l} , let ~ (Xg.) be the formula of i 0 obtained from It by 

... ' 
(where v1,v2, ••• , vk represent formal variables), aad substituting 

* One can now see that for 6 E {O,l} , i E {O,l}, 

when U is interpreted as H5 restricted to 3,and therefore 

Now let {z1,z2, ••• , z2k} be a set of 2k distinct variables not 

intersecting (x1,x2, ••• , ~,y1 ,y2 , ••• , yk} or the set of variables in 

contains exactly one occurrence of Q, namely in the atomic formula Q(i2k)' 
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and such that Io is equivalent to .'.fo· and ,[1 is equ~valent to ! 1• 

For every y E (0,1}* define the formula !!yC~,yk) oft as follows • 
.. c' 

and i E (0,1), let ~i be the formula obtained by substituting, for 

- <i2k I c~.Yk> > 
Q(z

2
k) in Ti' the formula~ It is now.easy to see that 

Theorem A.2, we can check that IH I s: clyl for IYI > o. X..tly, for -y 

* - - -y E (0,1) , let G (11c.) be :H:y1:e:y2 ••• :H:y...!!..,(11c.,yk) and let G' be 
-y . ... r -y 

(II) of Lemna A.9 hold. 
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Appendix 2: Notation 

The empty set. 

{xix EA and x f. B} (set-difference). 

The set of all subsets of the set A. 

The cardinality of the set A. 

The length of t:he string a. 

The absolute value of the integer n. 

The set of all strings over z; if"'£ is a .finite alphabet. 

The empty string. 

Concatenation of the strtugs a and y. 

The i + 1 (from the left) wber of the striq 11. 

If a is a string, then a.a• 

If S is a set, then S X S X 

... •a (k times) if k > O and ~ if k = O. 

x S (k times) if k > 0 and.¢ if k=O. 

(al' a 2 , •• ., 8tt) if k > 0 and <I> if k = O. 

(e,e, ••• , e) (length k) if k > 0 and© if k = 0. 

. . . ' £) (length k) if k > 0 and ¢ if k = O • 

Maximum of the set A. 

Minimum of the set A. Min A = 0 if A = ¢. 

one-one f(a) = f (b) = a = b. 

f is 
onto B 

N 

z 

R 

For all b E B there is some a such that f(a) • b. 

The set of nonnegative integers. 

The set of integers. 

The set of real numbers. 



IN 

z 

R 

n 

-n 

~mod k 

M(n,k) 

TH(S) 

TH(P) 

g .. F 

I lal I 
FAG 

L('m) 

:S:p.t 

DTIME(f(n)) 

NTIME ( f (n)) 

DSPACE(f(n)) 

NSPACE(f(n)) 
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The structure < N, +, s:, 0 >. 

The structure < Z, +, :S:' 0 >. 

The structure < R, +, :S:, 0 >. 

A logical structure with domain s. 

The weak direct power of S. 

* The domain of g . 

The strong direct power of 3. 

The Ehrenfeucht, equivalence relation (defini.tion 2. 2~1). 

Equal up to size n (definition 2.3.2). · 

Equivalence mod k. 

The number of• equivalence.classi!s on Sk. 
n 

The set of sentences-true in8. 

The set of sentences tru& in every structure in the set r. 
F is true in S. 

The norm of the element a of a logical structure. 

Finite abelian group. 

A (one tape, one head) Turing machine. 

A language recognized by ~ 

Polynomial time, linear space reducibility. 

The set of languages recognizable within time f(n) by a 
deterministic Turing machine. 

The set of languages recognizable within time f(n) by a non­
deterministic Turing machine. 

The set of languages recognizable within space f (n) by a 
deterministic Turing machine. 

The set of languages recognizable within space f(n) by a non­
deterministic Turing machine. 
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