MIT/LCS/TR-137

NONDETERMINISTIC TIME AND
SPACE COMPLEXITY CLASSES

Joel Irvin Seiferas

September 1974

Tius blank page was inserted to preserve pagination.

NONDETERMINISTIC TIME AND SPACE COMPLEXITY CLASSES

by

Joel Irvin Seiferas

September 1974

This research was supported by the National Science Foundation under
research grant GJ-34671.

This empty page was substituted for a
blank page in the original document.

NONDETERMINISTIC TIME AND SPACE COMPLEXITY CLASSES

by

Joel Irvin Seiferas

Submitted to the Department of Electrical Engineering on August 30,
1974, in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy.

ABSTRACT

The marginal utility of the Turing machine computational resources
running time and storage space are studied. A technique is developed
which, unlike diagonalization, applies equally well to nondeterministic
and deterministic automata. For f, g time or space bounding functions
with f(n+l) small compared to g(n), it is shown that, in terms of word
length n, there are languages which are accepted by Turing machines
operating within time or space g(n) but which are accepted by no Turing
machine operating within time or space f(n). The proof involves use of
the recursion theorem together with "padding' or "translational" tech-
niques of formal language theory.

Relations between worktape alphabet size, number of worktape heads,
number of input heads, and Turing machine storage space are established.
Within every common subexponential space bound, it is shown that emlarg-
ing the worktape alphabet always increases computing power. A hierarchy
of two-way multihead finite automata is obtained even in the nondetermi-
nistic case.

Results that are only slightly weaker are obtained for Turing
machines that accept only languages over a one-letter alphabet.

THESIS SUPERVISOR: Albert R. Meyer
TITLE: Associate Professor of Electrical Engineering

This empty page was substituted for a
blank page in the original document.

ACKNOWLEDGEMENTS

I would like first to thank Albert Meyer for his confidence,
inspiration, and guidance during the last two and a half years and
especially in this research. Many of his ideas, only a few of which he
remembers having, have found their way into the thesis.

I am grateful to Michael Fischer, who also collaborated along with
Prof. Meyer in some of this work, for his insightful criticism and
probing technical questions.

Several helpful suggestions were made by Ronald Book and Celia
Wrathall, who carefully read an earlier version of this work.

I thank the National Science Foundation (research grant GJ-34671),
Project MAC, and M. I. T., which I now leave after nine happy years as
a student.

On the home front, I am eternally indebted to my wife Diane, who
has always placed my research environment first, even waiting until the
day after the defense of this thesis to deliver our son. I also thank
our parents for helping me to reach this occasion.

This thesis is dedicated to my wife and to the memory of her late

father.

This empty page was substituted for a
blank page in the original document.

TABLE OF CONTENTS

Abstract

Acknowledgements

Table of Contents

Chapter One: Introduction

Chapter Two: Time Separation Theorems for Nondeterministic
Multitape Turing Machines
Figure 1

Chapter Three: Space Separation Theorems for Off-line Turing
Machines

Basic definitions

Basic containment relations

Notions of honesty

Conventional separation results

Padding whole languages

. Program codes and recursion

Another general separation result

Applications of the general separation results

Witness languages over a one-letter alphabet

. Open questions

OWONONULPDWN M-

[

Bibliography
Appendix I: Time Diagonalization
Appendix II: A Program Coding for Chapter Two

Biographical Note

42
42
48
53
59
64
67
70
77
87
105

110
114
119

121

This empty page was substituted for a
blank page in the original document.

CHAPTER ONE

INTRODUCTION

The ultimate purpose of studies in computational complexity is to
establish the complexity, in terms of coﬁputational resources such as
time and storage space, that is inherent in particular computational
tasks. The existence of computational tasks with various inherent com-
plexities is the subject of this thesis. 'Thé mere existence of such
computational tasks does not, a Rriqri, have a bearing on the complexity
of computational tasks of practical interest; but in fact fechniques
such as those of Meyer and Stbckmeyer [MS72], Meyer [Mey73], Stockmeyer
and Meyer [SM73], Hunt [Hun73], M. Fischer and Rabin [FR74], and
Stockmeyer [St74] sometimes show that a particular task of interest lies
at some level if anything does, and résults like ours can then serve.

The computational taéks that we consider are ''language acceptance'
tasks. A language 1is a set of strings of symbols from some finite _
alphabet. A language is accepted by a computer M if M enters an accept-
ing state when and only whén applied to a member of the language. We
denote by L(M) the language accépted by M.

Turing machines are the computer model we use. Customarily, we
measure time and space usage by a Turing acceptor in terms of input
length only. (We denote by \x| the length of the string x.) The Turing
machine M accepts L(M) within time T(n) or space S(n) if each string ‘
¥ € L(M) is accepted in some computation involving no more than T(]x])
steps or S(Ix]) worktape squares, respectively. (More precise defini-

tions appear in Chapters Two and Three.) We denote by NTIME(T) and

DTIME(T) the classes of languages accepted within time T by nondetermi-
nistic and deterministic Turing mgchines, respectively; and we denote by
NSPACE(S) and DSPACE(S) the classes of languages accepted within space S
by nondeterministic and deterministic Turing machines, respectively.

We would like, for example, to define the inherent deterministic
time complexity of accepting a language L té be the "least" time bound T,
in some sense, such that L € DTIME(T). The existence’of languages which
have no best acceptor (languages with "speed-up" [Blm67]), however,
makes such an approach impossible. Instead, we content ourselves to
specify pairs of time bounds Tl’ T, for which L € DTIME(TZ) - DTIME(TI).
In effect, then, we are led to a study of the containhent lattice of the
complexity classes. TFor example we address ourselves to the problems of
finding what we call "containment" aﬁd "separatibn" conditions on time

2
DTIME(T,) - DTIHE'(TI) £6 (i. e., DTIME(T,) ¢ DTIME(T,)), respectively.

bounds T,» T, which imply that b'rmz(rl) c DTIHE(T'Z) and that

Rather strong separation results for the DTIME and DSPACE complexity
classes are well known ([HaSbS], [HeS66], [SHL65], [HU69a], [HU69b],
{Con73], Appendix I of this thesis), but the diagonalization technique
that most of them rely on dqes not give very étrong separation results
for the NTIME and NSPACE classes. A result of Cook [Ck73] first sepa-
rated NTIME(nr) from NTIME(ns) for r # s. Our contribution is a simpli-
fied and greatly generalized version of Cook's technique that applies to
nondeterministic and deterministic time and space complexity.

The major value of our technique is for noﬁdeterministic computa-

tion, and the results are most dramatic at exponential and subexponential

complexity levels. Although no real computer actually operates nonde-
terministically, the concept does arise naturally in connection with
formal language theory ([HU69b], [AU72], [AU73]), proof theory, and the
description and complexity of other processes involving arbitrary
searches [F167]. (A deterministic description would force one to specify
the essentially irrelevant details of some arbitrary search algorithm.)
The Cook-Karp question of whether P = NP, where

P =) {DTIME(T)] T is a polynomial time‘bound},

NP ={J {NTIME(F)| T is a polynomial time bound},
represents a mathematical formulation of the problem of characterizing
the complexity of a large class of combinatorial optimization problems
involving such unstructured searches ([Ck71], [Krp72]).

We first generalize Cook's technique for multitape Turing machine
time complexity in Chapter Two. For well-behaved T,, we show that
NTIME(TZ) - NTIME(TI) # ¢ whenever Tl(n+1) € o(Tz(n)),+ for example.
Surprisingly, this yields some specific separation results for NTIME
which are stronger than the corresponding known separation results for
DTIME. 1In contrast, the earlier results based on diagonalization were
always stronger for DTIME than for NTIME. Separation results with re-
spect to languages over a‘one-lettef alphabet are obtained that are only
slightly weaker than the general ones.

In Chapter Three we refine the NSPACE and DSPACE complexity classes

TFor g a nonnegative real-valued function on N (the set of all non-
negative integers), we use the notation o(g) (0(g), respectively) for
the class of all nonnegative real-valued functions f on N that satisfy

1im (£(n)/g(n)) = 0 (lim sup (£(n)/g(n)) < », respectively) as n tends
to infinity. '

by carefully bounding worktape alphabet size and number of worktape
heads. We reformulate the known separation results for these classes
and apply our techniqué to get new ones of the kind giveq above for
NTIME. By relating the various resources (space, worktape alphabet size,
number of worktape heads), we obtain separation results that focus om
the marginal utility of each resource. As a corollary we get a hierar-
chy theorem for two-way multihead finite automata. As in Chapter Two,
only slightly weaker separation results are obtained with respect to
languages over a one-letter alphabet.

A preliminary version of this thesis has been reported jointly with
M. Fischer and A. Meyer [SFM/3]. In particular, Corollaries 14, 16 of
Chapter Two were obtained and reported jointly. Chapter Three contains
much new material, but Cotoll#ries»19(1ii), 20(1ii), 22 were also pre-
sented in the preliminary version. Problems 2, 3, 4 of [SFM/3} are set-
tled affirmatively by the current results of Chapters Two and Three.

For convenient reference we now list the results which are the main
contributions of this thesis. All of the relevant definitions and nota-

tion are provided in Chapters Two and Three.

Chagter Two

Assgume T2 is a running time.
The most general result we prove is Theorem 13.
Theorem 13.
NTIHE(TZ) -U {NTIME(T1)| there is some recursively bounded but strictly

increasing function f£:N 9 N for which

T, (f(n+1)) € o(T,(£(n)))}

contains a language over {0,1}.

In practice it is the simpler but only slightly less general Corol-
lary 14 that we emphasize. (For nondecreasing time bounds the result is
no weaker than Theorem 13.)

Corollary 14. NTIME(T,) - U (NTnm(Tl)] Tl(n+1) € o(Tz(n))}

contains a language over {0,1}.

Corollary 14 gives results that diagonalization does not give pre-
cisely when log T2(n+1) € o(Tz(n)). Corollary 15 is a refinement that
gives new results even when log Tz(n+1) € O(Tz(n)).

Corollary 15.

NTIME(T,) - U {NTIME(T,)| T,(n+1) € 0(T,(n)), T,(n) € o(T,(n))}

contains a language over {0,1}.

For deterministic time complexity, we prove a version of Corollary
14 that has an additional hypothesis.
Theorem 16. Suppose that there is some fixed k such that for each de-
terministic TM acceptor M there is a deterministic k-tape TM acceptor M'
and a cénstant ¢ such that L(M') = L(M) and TimeM,(x) < c-f(TimeM(x)).

Then DTIME(T,) - U {DTIME(T,)| £(T,(n+)) € o(T,(n))} # ¢.

When we restrict our attention to languages over a one-letter
» alphabet, we still get Theorem 17.
Theorem 17. If f is real-time countable, then

NTIME(T,) - U {NTmE(Tl)l Tl(n+rf‘ﬂ (n)) € O(Tz(n))}

contains a language over {1}.

10

Chapter Three

Containment:

First we relate worktape alphabet size to storage space.

Proposition 3. NSPACE(S,m,f) < NSPACE(S',m’,2)

1 S(n)/S'(n) < 6 = log m' for some rational 5. Similarly for DSPACE.

The next two results relate the number of worktape heads to (the
logarithm of) storage space.

Proposition 4. NSPACE(S, m, £+k) c:NSPACE(S+{k+1+€)Iogm S, m, 2)

for every ¢ > 0. Similarly for DSPACE. o

Proposition 5. NSPACE(S + k-logm S, m,) C NSPACE(S, m, g+k+3).

Similarly for DSPACE.

Later on we relate multihead finite automata to logarithmic storage
space.
Lemma 21. NHEADS(k) C NSPACE(log, n, 2% 1) c NHEADS (k+4).

Similarly for DHEADS, DSPACE.
Separation:

Theorems 18 and 25 are somewhat analogous to Corollary 14vand
Theorem 17 of Chapter Two, especially iﬁ proof.
Theorem 18. NSPACE(S,,m,£+3) - U {NSPACE(S,,m,4+2)| 1 € o(S, (n)-S, (n:+1))]
contains a language over {0,1} if S2 is fully comnstructable by an.(m,%)-
machine. Similarly for DSPACE. |
Theorem 26.
NSPACE(S,,m, £+6) - U {NSPACE(sl,m,m Sz(n)-Sl(n-i-f(n)) z 4elog n}

contains a language over just {1}

11

if 82 is fully constructable by an (m,£+2)-machine,

log n € o(5,(n)),
f(n) € 0(n) - 0(l) is nondecreasing and linear space honest.

Similarly for DSPACE.

Unlike Theorem 25, Theorem 27 applies even for logarithmic space
bounds.
Theorem 27. NSPACE(82,2,2+1) -U {NSPACE(Sl,Z,L)| 1¢ o(Sz(n)-Sl(Zn))}
contains a language over just {1}
if 82 is fully constructable by a (2,4)-machine,
1 € o(S,(n) - log,),

L4 = 3.

12

CHAPTER TWO

TIME SEPARATION THEOREMS FOR ,

NONDETERMINISTIC MULTITAPE TURING MACHINES

In this chapter we refer to what is usually called a nondeterminis-
tic multitape Turing machine [HU69b] simply as a T, and we refer to its

deterministic version as a deterministic ™. If such an automaton has k

tapes (each with a single read-write head), then we call it a k-tape TM

or a deterministic k-tape‘TM, respectively. We often let a TM receive

an input, a finite string of symbols from some finite input alphabet T,
initially written to the right of the head on tape 1, the worktape which
we call the input tape. A TM can act as an acceptor by halting in some
specified accepting state at the end of some computations. We assume

the reader is familiar with how concepts such as these can be formalized.
A good single reference for formal definitions relating to Turing machines

is [HU69b].

Definition. Let M be any T acceptor. M accepts the string x E'Z*,
where Z? is the set of all finite strings of symbols from Z;* if there
is some accepting computation by M on input x. M accepts the language
LM) = {x] M accepts string x}. For x € L(M), Timeu(x) is the number of
steps in the shortest accepting computation by M on x; for x ¢ L(M),

.‘-

*
We use the Kleene star more generally as well, along with other

*
regular expression notation for regular sets. For A, BC ¥ ,
A+B=AUB-=1{x| x€Aorx¢€ B},
AeB = AB = {xy| x € A, y € B},
* .
A ={)\.}+A+A-A+A0AoA+...={>\}+A+A2+A3+---,

where A\ is the null or empty string. When it causes no ambiguity, we
sometimes omit set brackets in regular expressions.

13

TimeM(x) = .

Definition. A time bound is a function T:N - N with T(n) = n for every
n. For T a time bound, the T-cutoff of the ™ M is the language

LG = {x| Time, (x) < T(|x|)}, which is always a subset of L(M). A
language L is in NTIME(T) iff L = L(M) = LT(M) for some TM acceptor M.

Similarly, if M is deterministic and L = L(M) = LT(M), then L is in

DTIME(T). If L(M) = LT(M), then we say that M accepts within time T.

Other, slightly different, definitions of the NTIME and DTIME com-

: plekity classes have been proposed. Book, Greibach, and Wegbreit [BGW?O];
for example, say that M accepts within time T only if every accepting
computation on input x € L(M) reaches the accepting state within T x|)
steps. Such differences do not affect the complexity classes determined
by time bounds of the following type, however; and time bounds of prac-

tical interest are of this type.

*
Definition. If M is a deterministic ™ acceptor with L(M) =1 and

Time, (x) = T(|x|) = |x], then T is a running time, and M is a clock for

T.

Diagonalization is the best known technique for obtaining separation
or "hierarchy" résults among the NTIME and DTIME complexity classes. A
summary of the best separation results that have been proved by diago-
nalization alone is given by the following pair of theorems. (See

Appendix I, [HaS65], [HeS66], [Con73].)

Theorem 1. If T, is a running time, then each of the following set dif-

2

ferences contains a language over {0,1}:

14

DTIME(T,) - U {DTIME(T,)| T, € O(T; log T,)},
NTIME(T,) - U {DTIME(TI)} T, € 0(1,)},

DTIME(T,) - U {N'rnm('rl)l log T, ¢ o('rl)}.'r

Theorem 2. If T, is a running time, then each of the following set dif-

2
ferences contains a language over {1}:
DTIME(TZ) - U {DTIME(Tl)l T, log T, € o(T,)},
NTIME(T,) - U {Dmmcrl)} T, € o(TZ)},

DTIME(TZ) -y {NTIME(T1)| T, € o(log '1'2)}.*

Remark. By restricting the unions of Theorem 2 to range only over run-
ning times Tl’ we can use the diagonali%ation technique of [MM71] to
shoy that each of the following set differences contaips a language oﬁer
{1} if‘T2 is a running time: |
DTIME(TZ) -U {DTIME(TI)I T1 is a running time, T, ¢ o('r1 iog Tl)r},
NTIME(TZ) - U {DTIME(TIH T, is a running time, T, ¢ O(Tl)},

DTiME(TZ) -U {NTIME(Tl)] T1 is a running time, log T, ¢ O(TI)}'

Note the relatively poor results obtained in diagonalizing over
NTIME. MNot even the gross separation result NTIME(nz) g:NTIME(ZnZ), for
example, follows directly from Theorem 1l; yet, DTIME(nz) g
DTIME(nz(log'n)z) does follow. VRecently, howéver, Cook tCk73] préved

the following result by a new technique.
Theorem 3. NTIME(nr) g:NTIME(nS) whenever 1 < r < s.

In this chapter we pursue Cook's technical breakthrough, simplifying his

TWhen the precise specification of a time bound is not relevant in
some context, we allow an imprecise specification. Thus, in the context.
of the "o" and "0" notations, the base and rounding for the logarithms
in Theorems 1, 2 make no difference. (See also Lemma 7 below.)

15

proof and generalizing the result. Thé,main géﬁeralization is Theorem 13
below. We turn now to some lemmas that will be useful in the proof of
that theorem and its corollaries.

P. Fischer, Meyer, and Rosenhberg [FMR72] have shown.that every ™
with ma&; heads per tape can be simulated without time loss by a TM with
only one head on each of some greater number of tapes. This allows a ™
to carry out two computations at the same time, leading to proofs of the

following lemmas.
Lemma 4. L(M) U L(M') can be accepted in time min{TimeM(x),TimeM,(x)}.
-I.emaVS. LM N L(M') can be accepted in time max{TimeM(x),Timen,fx)}.

Proof sketches. Combine M and M' by providing a second head on the

first tape of each and a new input tape with a single head. Use the ex-
tra heads to copy the input striné at full speed from the new input tape
onto the two old input tapes. Meanwhile the remaining heads can be used
to carry out computations by M and M' on the respective transcribed cop-
ies of the input string, even while they are still being transcribed

from the real input tape.

16

fhew tape

(i
(read-only)

head
tape 1 of M tape 1 of M'
f s | l fa
new new
(write-only) (write-only)
head head
tape 2 of M | tape 2 of M'
L] .
last tape of M last tape of M'
- J/ - J
N] v
tapes of M tapes of M’

To accept L(M) U L(M'), the composite machine enters its accepting state
when the computation by either M or M' does. To accept L(M) N L(M'),
the composite machine enters its accepting state when computations by
both M and M' do. Thus we have described multihead multitape Turing
machines that accept L(M) U L(M') and L(M) N L(M') in the desired times.
By the result of [FMR72}, these can be simulated without time loss by

multitape Turing machines with only one head per tape. [J

Lemma 7. If T € o(T), then NTIME(T) < NTIME(T

17

The same technique leads to a proof of the“ﬁeﬂﬁ“léﬁhh;fiﬁ“which a single
T™ carries out computations by M and a clock ‘For’T SihuTtaheously,

accepting if M accepts before time T runs out.

Lemma 6. If M is a ™ acééptor and T is a running time, then

L, () € NTIME(T).

The next lemma indicates that theiﬁTIME éomplexity»classes depend
only on growth rates. it also shows that’we‘need atvleast the cdndifion
T, ¢ O(Tl) to be able to proVe NTIME(TZ) ; NTIME(T,) # ¢. It follows by
Theorem 1 that, if (confrarynto most pébple'é intuition) DTIME(T) =
NTIME(T) for all T, then NTIME(TZ) - NTIME(T”9‘= BTtHE(T) - DTIME(TI)

is nonempty precisely when the running time; T, is a member of the com-

plement of O(Tl)'

NE

Proof‘sketéh, For Tz(n) b3 (14€)n for some ¢ > 0, this is just the linear

time speedup theorem of Hartmanis anszteérnsv[HaS65]. The idea is to
increase £he size of eachbTM's ﬁorktape‘aifhabet so that several steps
can be performed in one big step.

That the lemma holds for arbitrary Tz(n) 2 n has been observed by
Book‘and Greibach [BG70]. The key idea is to use nondeterﬁinism to guess

the entire input string before it is read. [J

The following lemma, due to Book, Greibach, and Wegbreit [BGW70],
indicates that for nondeterministic time complexity we can get by with
T™s having a fixed number of tapes. No similar result is known for de-

terministic TMs.

18

Lemma 8. For each ™M M there is a 2-tape TM M' and a constant c such

that L(M') = L(M) and TimeM,(x) < c-TimcM(x) for every x € L(H).T

Proof sketch. If M has k tapes, then the 'display" of a configuration

of M will be a (k+l)-tuple consisting of the‘control state and the‘k
tape symbols scanned in that configuration. The display of a configura-
tion determines which actions are legal as thé next move and whe;her the
configuraﬁion is an accepting one. The first task for M' is to nonde-
terministically guess an alternating.gequencé of displays and legal ac-
tions by M. The question of whether the sequence describes a legal com-
putation by M on the supplied input is just the question of whether the
symbols actually scanned on each tape wﬁen the actions are taken agree
with the guessed displays. This can be checked independently fpr each
tape in turn by letting the first tape of M' play the role of the tape
while running through the guessed sequence of disélays and actioms.
Clearly M' runs for time proportional to the length of the sequence it

guesses. For further details, the reader is referred to [BGW/0].]

Lemma 9. For. no recursive time bound T does NTIME(T) contain all the

recursive languages over {1}.

Proof. Each recursive time bound lies below some running time Tl’ and

Ty

Theorem 2 gives a recursive language over {1} in DTIHE(ZZ) -

NTIME(T,). O

TAn idea of [BG7/0] allows us to take ¢ = 1 if we settle for a 3- -
tape T™M M'. (See Lemma 7.) Aanderaa [Aan74] has shown that we cannot
get by with c¢=1 in the deterministic case no matter what fixed number of
tapes we allow M' to have. (His counterexample is provided by determi-
nistic T™™s which accept in '"real time" (Timeu(x) = |x]).)

19

Like Cook's proof of Theorem 3, our proof of Theorem 13 makes cru-
cial use of a trick called '"padding." Acceptance time is measured as a

function of input length; so if we can increase the lengths of the

strings in a language L without significantly changing the time needed
to accept the strings, then we get a padded language L' that is less
complex than L as we measure complexity relative to input length. One
way to pad the language L to L' is to take

L' = p() = {x10% x € L, |x105| = p(|x|)}

for some p:N - N with p{n) > n.

Lemma 10. If p(n) > n is a rumning time, then
p(L) € NTIME(T) o L € NTIME(T op),

where T op(n) = T(p(n)).

Proof. (=) Suppose Ml accepts p(L) within time T. Design M, to pad its
input string x (which is found at the read-write head on the first work-
tape) out to xlok, where]xlokl = p(|x|), and then to compute on input
x10k according to the transition rules of Hl. Because p is a running
time, the padding can be done in time p(|x|) by using an extra head on
tape 1. A third head can be used for the computation by M1 on input

xlok. Clearly, then, M accepts L within time p(n) + T(p(n)) < 2.T(p(n)).

2
But NTIME(2+T(p(n))) — NTIME(T(p(n))), by Lemma 7.

(¢) Suppose M2 accepts L within time T(p(n)). Design Ml to check
that its input string is of the form xlok, where |x10k| = p(]x|), and
then to behave like M2 on input x. Clearly Ml accepts p(L) within time
proportional to T(length of input to Ml)’ as required.

The following lemma shows how padding may be used to derive separa-

20

tion results. Ruby and P. Fischer [RF65] first used essentially this
technique in connection with the deterministic time complexity of se-
quence generation, and Ibarra [Ib72] used it more explicitly in connec-
tion with the nondeterministic space complexity of language acceptance.
(See Chapter Three of this thesis.) Ibarra has used similar techniques

in other contexts as well ([Ib73a], [Ib73b], [IS73]).

Lemma 11. Let sets gl, 32 of time bounds be given. Say pl(n) S Nyeee,

pz(n) > n are running times with T1<>pi+1 € O(T2<>pi) whenever

If L €N {NTME(T, 0 p,)| T, € 8,} - U {NIIME(T, 0 p,)| T; € 8,1,

then p, (L) € r\{NTIME(TZ)I T, € 823 - LJ{NTIME(Tl)l T, € 8,} for some i.

Proof. For 1 <1i < g, let
c(i,) =U {NTIME(Tlcrpi)[T, € sl},
c(i,2) =N {NTIME(T2<>pi)| T, € 8,}-
Suppose L € C(4,2) - C(1,1). By Lemma 7, NTII'IE(Tlopi+1) c NTIME(T2 0pi)

whenever 1 < 1 < ¢4, T

€8., T2 € 82; so, for 1 < i< g,

1 1
L € C(i+1,1) = L € C(i,2).
If we were to have also
L €C(i,2) = L € C(i,1)
for every i, then we would conclude from L € C(4,2) that L € C(1,1), a
contradiction. For some i, therefore, we must have
L € €(i,2) - c(i,1)
=N {NTIME(T, 0p,)| T, €8,]} - U {NTIME(T, op,)| T, € 8,}.
By Lemma 10,

p; (L) €N {NTIME(T,)| T, €8,} - LJ{NTIME(TI)I T, € sl}

21

for that same i. [

Remarks. (1) We do not know how to exhibit the particular language that
must be in M {NTIME(T,)]| T, €8,} - U {NTIME(TI)l T; €84}

(ii) The same technique can be applied to DTIME, and it allows us
to strengthen the results of diagonalization a bit. For example we can

1/200

use it to show DTIME(nz) g:DTIME(nZ(log n)). (Take

i/400

pi(n) = n(log n) for 0 < 1 < 399.)

Another key idea in Cook's proof and our extensions of it involves
a universal TM simulator. So that we may speak with precision about
universal simulation, let us now choose an appropriate program coding

for ™s. With each T™ having at least two tapes and input alphabet

*
{0,1}, we associate a distinct program code from {0,1} ; and we do this
in agreement with the easily-satisfied conditions listed below. We use

the notation Lk c for the set of program codes for k-tape ™s and Lp c

for the set of all program codes. We denote by Me the ™ with program

code e.

Condition 1. No program code is a prefix of another, and Lk is in

p-C.

DTIME(n) for each k.

Condition 2. For each fixed k, there is a ™ acceptor U0 (a "universal
simulator'") with

k
L(UO) = {ex| e € Lp_c_, X € L(Me)},
. . . k
T1meU0(ex) < ce-TlmeMe(x) if e € Lp.c.’

where o depends only on e.

Condition 3. There is a recursive function f:Lp c -+ Lp c. such that

22

£:L% s 1k for each k and such that Me e spends its first |e| steps

p.¢c. " p.cC

putting e at its head on tape 2 (by writing backwards) and thereafter
acts according to the transifion rules of Me. {This condition is a
variant of the si-theorem of recursive function theory [Rog 67].)
Most common instruction-by-instruction or state-by-state codings of ™
programs can be tailored to satisfy thgse conditions. An example of a
satisfactory program coding is described in Appendix II.

We shall want to pad strings and use the simulator that we design
in a recursive control structure. To this end we use Condition 3 to

prove one more lemma, a version of the fixed point theorem (recursion

theorem) of recursive function theory. -

%
Lemma 12. For each k-tape T acceptor M with L(M) c {0,1} , there is a

k-tape ™ acceptor Me with
0

M) = {x| e,x € LM},
e0 0

Zc(Time, (x) < c + Tmeﬁ(éox)).
e
0

Proof. Let f be as in Condition 3. Take Me to be a k-tape ™ that
-1

operates as follows, given x at its head on tape 1 and e at its head on
tépe 2:

1. Convert e to f(e).

2. Convert x to f(e)x, and erase everything else.

3. Operate according to the transition rules of M on input f(e)x.

Let ey = f(el). Then by definition Me opetétes as follows on input x:
0
at the head on tape 2.

1. Spend ‘e, steps putting e

1 1

23

2. Convert e, to f(el) =e

3. Convert x to eox.

4. Behave like M on eox.

0

Thus,

X € L(Meo) @ enx € LM,

TimeM (x) <c+ TimeM(eox),
e
0

where ¢ is the number of steps used in writing el, converting ey to eo,

and writing e, in front of x. [

Theorem 13. If T2 is a running time, then

NTIﬁE(TZ) - LJ{NTIME(Tl)l there is some recursively bounded but strictly
increasing function f:N < N for which
T, (£(n+l)) € o(T,(£(n)))}

contains a language over {0,1}.*

Proof. Let T, be a running time, and let U, be the universal simulator

2 0
of Condition 2 for k = 2. By Lemma 6, LT (Uo) € NTIME(TZ). Let £:N 2+ N
2

be any recursively bounded but strictly increasing function. We prove

with Tl(f(n+1)) €

that L., (U.) € NTIME(T,) for any time bound T
T2 0 1 1

o(T,(£(n))) .

Suppose that U, accepts LT (Uo) within time Tl’ where Tl(f(n+1)) €
2

1

o(Tz(f(n))). By Lemma 4, there is an acceptor U for

TThe operator gap theorem ([Con72], [Yng7/1]) shows that such re-
sults are impossible without some "honesty" condition on T, such as T,

a running time. For example the operator gap theorem can be used to
show that there are arbitrarily large, arbitrarily complex time bounds T
for which NTIME(T(n)) equals NTIME(n.T(n+l)), even though T(n+l) is
certainly a member of o(neT(n+l)).

24
L U L) = Ly (Ug) U LYy = LUy

such that for every e € Li c.?

T,(lex]), if c_+Time, (x) s T,(|ex|);
TimeU(ex) < e .
ce-TimeMe(x), in any event.

Note that when T1(|ex‘)'< TimeM x) s Tz(lex‘)/ce, the universal simula-
e

tor U will simulate the computation of Me on x faster than the computa-
tion runs directly; i. e., there will be simulation time gain. This ex-
treme efficiency will lead below to a contradiction of Lemma 9.

Let L c:{l}* be any recursive language over {1}. Because L is re-
cursive, we can take a running time T so large that L € NTIME(T). Let M
accept L within time T. Design a T™ acceptor M' that operates as
follows:

1. Check that the input string is a member of Li.c.°1*°o*’ and
parse it into e € L;.c.’ X € {1}*, and Ok. Condition 1 guaran-
tees that this can be done in time that is linear in the length
of the input string.

2. ‘Use a clock for the running time T to determine whether
k > T([xl). This requires at most k steps, so it can be done
in linear time, too. 4

3. Ifk2= T([x[), then erase everything but x and compute on input
x according to the transition rules of M. For x € L(M), since
TimeM(x) < T(|x|) < k, this step can be performed in linear
time, too.

]
4. If k< T(|x|), then pad the input string to ex0%' for some non-

25

deterministically chosen k' > k, erase everything else, and
compute on input eka' according to the transition rules of the
universal simulator U. This step can be performed in linear
time plus TimeU(exok').
To summarize the behavior of M' on eka,
k 2 T(|x|) = behave like M on x;
k < T(]x|) = behave like U on ex0 for some k' > k (thus simulating
Me on ka').
To summarize the timing for eka € L"),

d_» exokl, if k=2 T(|x|);

TimeM,(exok) < K K
d,|ex0" | + Time (ex0"), if k < T(|x|)

for some constant d1 and every k' > k.

Applying Lemma 8 to obtain a 2-tape TM that accepts L(M') with only
linear time loss, and then applying the recursion theorem (Lemma 12) to

this machine, we get a program code e, for a 2-tape TM that accepts

0
Lt) = {x05] e x0% € L")} < 170"
e0 0

within time

TimeM (ka) < donimeM,(eoxok)

o

for some constant d2.

*
Claim 1. For each string x € {1} , the following holds for every k:

0 ¢ LM) e x€L.
€0

Proof. For each x we establish the claim by induction on k running down
from k = T(le) to k = 0.

k 2 T(|x‘):

26

ka €ELM)ee ka € L(M')
L 0
(by choice of eo)
ox €EL(M) =L
(because by definition M' behaves like M in this
case).
: 1
k < T(|x|): Assume x0° ¢ LM,) ®x €L holds for every k' > k. Then
\ 0
k k
x0 € LM) o e x0 € L(M')
e 0 :
{by choice of eo)

1
© eoxok € L(U) for some k' > k

(because by definition M' behaves like U in this

case)
kl
& x0° € L(Me) for some k' >k
0
2
(because € € Lp.c')
o x €L

(by induction hypothesis). 0O

Claim 2. For each sufficiently long string x € L, the following holds

for every n 2 |e0x|:

f(n)-|e x|
Time, (x0 | 0) < d3.T1(f(n+1)),
e

0
where d3 = d2d1 + d2'
Proof. Let x € L be so long that

ceo.dB'TI(f(n+1)) < Tz(f(n))

for every n 2 |e0x|. (This uses the "translational" hypothesis

Tl(f(n+1)) € o(Tz(f(n))).) We establish the claim for x by induction on

27

n running down from n so large that f(n) = 'eox[+ T(]x|) ton =]eox].

f(n) 2 |e0x| + T(| %]):
f(n)-]eox‘ f(n)-|e0x|
TimeM (x0) £ dchimeM,(eoxo
e
0

< dz-dlof(n)

(because f(n)-]eox] = T(|x|))
< d3-T1(f(n+1)).

1eox] <n< f(n) <]eox! + T(|x|):

f(n+1)-|e0x]
Assume TimeM (x0) < d3-T1(f(n+2));v Then
e

0
f(ntl)-|e Ox]
¢ oTim (x0) < c_ ed T, (£(nt+2))
e, eMeO € 31
< Tz(f(n+1))

(because n is so large).

Therefore,
f(n+1)-1e0x|
TimeU(eoxO) = Tl(f(n+1)).
Therefore,
f(n)-‘e0x1 , f(n)-‘eox|
TimeM {x0) < donimeM,(eoxO)
€0

f(n+1)-|eox|
< dzodlof(nii)‘+ donimeU(eoxo
(by padding out to length f(n+l) > £(n))
< dzodlof(n+1) + dZ-Tl(f(n+1))
< d3oT1(f(n+1)) . 0O

Claim 3. For each sufficiently long string x € L,

Ti.meMe (x) < d3-T1(f(\eox|+1)).
0

froet Mt‘elobeqsxnuzam

¢ fr¥i %’43 i‘f‘f}"'§£ e& s: mm} ek cvinir o
MU |
ce OTi-QK (x0 f‘u" t’a‘i
(1] e

)‘e

Therefore,

'n-gu‘e

Therefore,

'!hox.,;x) < izt'ﬂ;&’ (ag:;

RRA P

I 5

arbitrarily, and by Leams !“&

Exswle. For m wbm mt'f

29

1, if n € A;
§(2n) =
n, if n ¢ A;
n, if n € A;
5(2n+l) =
1, if n ¢ A.

To see that NTTME(hzos(n)) g:NTIHE(n3), just apply Theorem 13 with

2n, if n € A;
f(n+l) =
2n+l, if n & A.

In many applications it suffices to have Theorem 13 for the single
function f(n) = n, especially 1if we are concerned only with nondecreas-

ing time bounds.

- Corollary 14. 1If '1‘2 is a running time;, then

NTIME(T,) - U {NTIHE(TI)] T, (n+l) € o(T,y(n))}

contains a language over {0,1}.

The informal diagram in Figure 1 illustrates how the proof of Theo-
rem 13 uses padding to take advantage of deeply nested simulations by U
to bring the time for an arbitrary computation down to the viginity of
T1 and '1‘2 in the case f(n) = n. The direct cémputation on x, up around

the level of T(|x|), is brought down to below T, in terms of the imput

T(|x|).

length by padding x out to x0 By the hypothesiged nature of U,

. f -
1 If we un

pad by a single 0, then the hypothesis that Tl(n+1) is small compared to

simulating that computation brings its time down to below T

T2(n) keeps the computation still below T, in terms of the input length.

T(|x|)-1

A simulation by U of this computation on x0 brings its time dowm

to below Tl' Continuing to nest alternating unpaddings and simulations

finally yields a computation on the original input string x down at the

30

Figure 1. = pad

+ unpad

1 speed up by simulation

(x,T(]x|))

A R R R T R R R R e e N N R I N

number of steps

'(x,Tl(fx])), approx.

X x0 %02 o« o e xoT(‘X1)'1 XOT(‘X‘)

31

level of T1 and Tz.

The '"translational' condition Tl(n+1) € o(Tz(n)) is a severe one
for a rapidly growing running time TZ’ When T2(n+1) is worse than expo-
nential in ?Z(n)’ in fact, deterministic diagbnalization withiﬁ time
bound T2 (Theorem 1) yields stronger results thaﬁ does.Coroliary 14.
Because Corollary 14 applies for Tl(n+i) € o(Tz(n)) and Theorem 1 applies
for log Té(n) ¢ O(Tl(n)), it is easy to see that Corollary 14 contributes

new results precisely when log Tz(n+4) € o(Tz(n)).

22 3.
w“

' *
To see the strength of Corollary 14, let log n = min{k| n <
L V ‘” k

For constants ¢ > 1, r 21 whose digits in radix notation can be generated

: *
raplidly, and in particular for rational c, r, note that nr; nrolog n,

* .
nr-(log n)z, cn, cnolog* n, etc. are running times. Thus we conclude
that
T , r * r * 2
NTIME(n) ; NTIME(n slog n) g NTIME(n +«(log n)") ; voe,
* - % .

NTIME(cn) g NTIME(cnolog n) gNTIME(cn- (log" n)z) g. soe,
These results do not follow immediately from Cook's result (Theorem 3)
or by diagonalization (Theoxem 1).

Corollary 14 obviously implies that
2 2
NTIME (2") g NriME2) L10g* Y,

on n+1 -
NTIME(2™) g:NTIME(Z slog n).

In fact we can strengthen these results to

2

2
NTIME(2™) g yrovE2 @)y,

32

o0 2n+1
NTIME(2Z) g NTIME (2)

by appeal to the following corollary.

Corollary 15. If T, is a running time, then ‘ _
U {NTIME(T,)| T,(n+l) € 0(T,(n)), T,(n) € o(T,(n))} G NTIME(T,) ;

and there is a language over {0,1} that bears witness to this fact.

Proof. Because T,(n) € o(T,(n)) implies Tl»((!;+1)+1)b € o(T,(nt2)),
Corollary 14 gives a language L c {0,1}" in
NTIME(T, (n+2)) - U {NTIME(T, (2+1))] T,(n+1) € O(T,(n)), T,(m) € o(T,(n))}.
Applying Lemma 11 with |

8, = {1y| T,(=#1) € 0(T,(m)), T,(n) € o(T,())},

8y = {1},

Py(n) =n +1,

Py(n) =n + 2,
we conclude that either p, (L) or p,(L) is a member of

NTIME(T,) - U {NTIME(T,)| T,(n+1) € 0(T,(n)), T,(m) € o(T,(@)}.

Containment holds by Lemma 7. [

Remarks. (1) Lemma 11 goes through equally well if we pad to the left
rather than to the right. For this remark, then, we may assume that
p (L) = {Oklx[x € L, |0k1x| = pi([xl)}~for i = 1, 2 above.

0
isfies the condition for choosing L in the proof of Corollary 15. Omne

For U, the universal simulator of Theorem 13, L = LTé(n+2)(u0) sat-

might supposé therefore that L (Uo) would be a witness language for

T, (1)
Corollary 15. If we slightly modify our program coding by concatenating

a single 1 in front of each old program code and if we let Uo' be the

33

naturally derived new universal simulator, then we do indeed get

' = . = . i : -
LTz(n+1)(U0) =1 LTz(n+2)(UO) pl(L) Similarly, if we further con

catenate a 0 in front of each program code and let UO" be derived from

t N . . " =
U0 by taking this into account, then we get LTz(n)(UO)

L] —_— "
01 LTz(n+2)(UO) pZ(L). Yet we can show only that either LTz(n)(UO)

] : Py
or LTZ(n+1)(UO) is a witness to Corollary 15. We leave it open whether

there is necessarily a witness language of the form L (U,) and
T2(n) 0

whether the particular choice of U, affects whether L
0 Tz(n)

(UO) is such a
language.
(ii) Corollary 15 contributes new results (over Theorem 1) precisely

when log Tz(n+1) € O(Tz(n)).

It is interesting to note that the containments corresponding to
the examples following Corollary 14 are not known to be proper for de-
terministic time (DTIME). The fundamental reason is that Lemma 8 is not
known for DTIME. The proof of Theorem 13 in the case of such an easy
function f as f(n) = n does carry over in every other detail, however,

to give Theorem 16.

Theorem 16. Suppose that there is some fixed k such that for each de-
terministic TM acceptor M there is a deterministic k-tape TM acceptor M'
and a constant ¢ such that L(M') = L(M)'and TimeM,(x) < c-f(TimeM(x)).
Then

DTIME(T,) - U {DTIME(T,)| £(T,(n+l)) € o(T,(n))} # ¢

for every running time T2.

3%

Remark. We do not require that M' be effectively constructable from M;
if it were, then we could actually diagonalizgvto get
DTIME(T,) - L {Dmm('rl)l T, (n) ¢ O(f(Tl(n)))} # b

a somewhat stronger result.

Example. If we should discover even a nonconstructive proof that for
each deterministic T acceptor M there is a deterministic 5-tape T ac-
ceptor M' and a constant c¢ such that L(M') = L(M) and
Timeu,(x) < c-Timen(x), then we could conclude that

DTIME(T,) - U {DTIME(T,)] T,(n+l) € o(T,(n))} # ¢

for every running time TZ'

Padding strings over a one-letter alphabet by one character at a.
time does not leave them decodable, so w; cannot hope- to use our method
to get a‘result as strong as Corollary 14 for languages,over a one-letter
alphabet. The final result of this chgpter demonstra;es that we cén

come very close, however.

Definition. The rounded inverse of a strictly increasing function
f.-11

f:N » N is the function

Fg-T1 (n) = min{k| f(k) 2 n}.

:tN % N defined by

Examples. function rounded inverse
n2 r£1/21
2" rlog2 nl
2
2° *
2 log n.
bw 8

35

Theorem 17. If T2 is a running time and f is real-time countable,f then
there is a language over {1} in

r

NTIME(TZ) - U {NTTME(Tl)l Tl(n + f-11(n)) € o(Tz(n))}.

Proof. Let T2 be a running time, and let f be real-time countable. To
adapt the proof of Theorem 13, we must comstruct a witness language as
the Tz-cutoff of some "universal simulator" having input alphabet {1}.
We start with U0 as in the earlier proof; i. e., Uo is the universal
simulator of Condition 2 for k = 2.

Define an injection g:[O,l}* -+ N so that the binary representation
of the integer g(x) is 1x; i. e., we concatenate‘a high-order digit 1 to
X to get the binary representation of g(x). Define another function
h:{O,l}* -+ N by the conditions

h(x0) = hx) + £ 1 (h(x)),

h(x1) = £(g(x1)) + g(x1) - 1,

h(\) = £(1).

Because g is an injection and f(n)4n-1 is strictly increasing, h(xl);=
h(yl) ouly if x = y. Becéuse n+rf-11(n) is strictly increasing, h(x0) =
h(y0) only if h(x) = h(y). Unless there are strings‘k, y with h(x0) =
h(yl), therefore, h must be an injection. TFor such strings to exist,
M1

the ranges of the strictly increasing functions n+ (n) and f(p)+n-1

must intersect; but

11

(f(n)-1) + e (f(n)-1) = (f(m)-1) + (n-1)

*A strictly increasing function f£:N - N is real-time countable
[Yam62] if some deterministic Turing machine generates the characteristic
sequence of the range of f in real time (i. e., one character per step).
(The characteristic sequence hag a 1 in position n if n is in the range
of £ and a 0 otherwise.)

36

< f(n) +n -1

< f(n) + n
-1

f(n) + (£()),

-
so the ranges do not intersect and h is an injection.

Because f is real-time countable, we can compute lh(x) from x or

h(x)

x from 1 within time proportional to h(x), within time 2.h(x) i1if we

: *
wish. From Uo we construct Uo' to operate as follows on input y € {1} :

1. Find x with 1"® — y if 1t exists.

2. Compute on x according to the transition rules of Uo.

By Lemma 6, L_ (U.') € NTIME(T,). We prove that L. (U.') € NTIME(T,)
“r, "0 2 r, "0 1
r-

for any time bound T1 n m)) € o('l‘z(n)).

' accepts LT (Uo') within time T,, where
2

with '1'1 (n +

Suppose that U1

Tl(n + rf"l_| (n)) € o(Tz(n)). By Lemma 4, there is an acceptor U' for
L") U LWUG" = Ly (05" U LWG") = LT,")

such that for every e € Lz c.?
Tl(h(feX)), if 2+h(ex) + "e'“'“"ue(x) < T,(h(ex));

TimeU, (lh(ex)) <

2+.h(ex) + ce-Time.t{e(x), in any event.

*
Finally, construct U to operate as follows on imput x € {0,1} :

1. Compute Ih(x).
1h(x)

2. Compute on according to the transition rules of U'.

Then
L) = {x} 1" ¢ L")
= {x| 1P ¢ L(U,"}

L(Uy);

37

2

and, for every e € Lp_c.,

Timey (ex) < 2-h(ex) + TimeU’(lh(ex))

(2.h(ex) + T,(h(ex)), if 2-h(ex) + c_-Time, (x)
e

i

= < T,(h(ex));

fmh(ex) +-ce-TM (x), in any event.
e

*
For any recursive L c {1} , we can use U just as in the proof of

*
Theorem 13 to get a 2-tape TM acceptor Mé for L0 , with

0
k
d.e|e.x0], if k = T(|x]);
ey d,eleyx0 7| + d,*Time (eax0"), if k < T(|x|)

for some sufficiently large constant d1 and some appropriate time bound

T.

Claim. For each sufficiently long string x € L, the following holds for

every k:
TimeM (ka) < donl(h(eoxokfi)),
e
0
wvhere d2 = 4d1-

Proof. Let x € L be so long that

2 + Cq odz)-Tl(n + rf-ﬂ(n)) < Tz(n)

0
for every n = h(eox). We establish the claim for x by induction on k

running down from k = T(]x|) to k = 0.
k2 T(x|):
k
TimeMe (ka) < dlcleoxo !

0

k+1
< d,eT, (h(egx0").

k < T(|x|):

38

k+2

Assume T1meM (xO) < d Tl(h(eoxo)}). Then
) |
2¢h(ejx0 ktly c_ +Time, (x0**y
0 e
< 2-h(e0x0k+1) e, od ,°T; (h(e, x05+2yy
- 2-h(e0x0k+1) *e, -d oo T, (e, xokﬂ) + s ﬂ(h(e x0°*1y))
< 2+ e +dy)eT, (h(e x5ty 4 T g e xO *1yyy
o
< Tz(h(eoxo 1y
(because x is so long).
Therefore,
Time, (e x0“") < 2en(ex0**) + Tl(h(eoxokﬂ))

k+1

< 3T, (h(eyx0").

Therefore,

. k k+1
T1meMe (x0) < d1-|e0x0

0

k+1
| + d, +Time (e x0

k+1.

S+ 30,01 (h(egx0

< d1-|e x0)

< 4,eT, (h(e,x0"*y). O
If H is a nondecreasing recursive function so large that
*
h(y) < H(]y|) for all y € {0,1} , then the claim gives the following for
every sufficiently long x € L:

Time, (x) < dz-Tl'(b(eoxO))
e
0

T, (h(eyx) + f (h(e x)))
1:2 (h(egx))

< b2 Tz(n')
n'<h(| eg| Hx))

)

39
< b2 Tz(n').
n'sH(2-|x|)

It follows by Lemmas 4, 5 that L. € NTIME(X T2(n')). Since L is an
n'<H(2n)

arbitrary recursive language over {1}, this contradicts Lemma 9. I
2
Example. Taking f(n) = 22 , we get a language over {1} in
\—qﬁl
n
22

*
NTIME(2".log n) - NTIME(2™).
We close with a list of open questionms.

1. For T2 a running time, is the condition T2 ¢ O(Tl) enough in general
for separation between NTIME(TI), NTIME(TZ) or between DTIME(TI),

DTIME(T,)?

2. 1Is there an actual difference between the separation results that
hold for NTIME and those that hold for DTIME?

2
DTIME(n") g:DTIME(nz-log log n)?
on 2n+1 %
NTIME(2”) g:NTIME(Z /log n)?
Is there a language over a one-letter alphabet in

2n+1 2n
NTIME (2) - NTIME(2™)?

3. What is the relationship between NTIME and DTIME?

NTIME(T) = DTIME(T)?

4. That a language L is not a member of NTIME(TI) means only that every
acceptor M for L has TimeM(x) > T1(|x|) for strings x € L of infi-

nitely many lengths. Stronger senses of lower bounds, requiring

40

that TimeM(x) > T1(|x|) for strings x € L of all but finitely many
lengths or for all but finitely many strings x € L have been studied
extensively. (See [Blm67], [Lyn72], [GB74], for example.) It is
known, for example, that there is a language L that requires Z'XI
many steps deterministically on almost every string x € L but that
can be accepted deterministically within time (2+€)n for any ¢ > 0.
Our methods do not give such results for nondeterministic acceptance
time complexity, so we leave it open whether there is a language L € .
NTIME((2+e)n) that requires, even on nondeterministic machines, 2|x|
steps on inputs x € L of all but finitely many lengths or on all hut

finitely many x € L.

A purely technical question arising from Theorem 13 is whether we
can éllow f to range overrall one-one functions rather than just
strictly increasing, recursively bounded ones. A plausible proof
strategy is to design M' in the proof of Theorem 13 so that, in the
case k < T(‘x|), it pads ggtgghgéguexok to e#okf for some nondeter-
ministically chosen k' # k. Under this strategy, however, Claim 1

seems to elude proof.

What is the relationship between deterministic time complexity and

number of worktapes?

What is the relationship between time complexity and worktape alpha-

bet size? (Cf., Chapter Three.)

Is there any language in NTIME(TZ) that requires more time than the

language LT (Uo) in the proof of Theorem 13?
2

41

9. 1In the conclusion of Lemma 11, can we exhibit a single language that
must definitely belong to F\{NTIME(TZ)] T2 € 82} -UJ {NTIME(Tl)l

T1 € gl}? (Cf., Remark (i) following Corollary 15.)

42

CHAPTER THREE

SPACE SEPARATION THEOREMS FOR

OFF-LINE TURING MACHINES

1. Basic definitions

To study Turing machine storage space complexity, we adopt a Turing
machine model that has a read-only input tape and a single read-write
worktape. The input string is received between the special endmarkers
¢, $ on the input t#pe and is read by a single read-only input head
which is allowed to move freely between the endmarkers. The worktape is
infinite to the right only. Fer technical reasons, we allow any fixed
finite number of freely moving, but initially left-adjusted, read-write
heads on the worktape. The worktape heads can detect both each other and

the left end of the worktape, and they are never required to write con-
flicting symbols on a single tape square in the same step or to shift
left past the left end of the wdrktape. We refer to such an automaton
as an off-line ™. An off-line TM with m > 2 symbols in its worktape
alphabet (counting the blank symbol, which may be used without restric-
tion even in overwrite instructions) and f = 1 worktape heads is called

.an (m,¢)-machine or just an m-machine. The deterministic restrictions

of these automata are called deterministic off-line T™Ms and deterministic

(m, £)-machines, respectively.

An off-line TM can act as an acceptor by halting in some specified

accepting state and with a blank worktape at the end of some computations.

Definition. Let M be any off-line TM acceptor. M accepts the string x

43

if there is some accepting computation by M on input x. M accepts the
language L(M) = {xl M accepts string x}.* For x € L(M), SpaceM(x) is
the minimum number of distinct worktape squares visited by the worktape
heads of M in an accepting computation by M on x; for x ¢ L(M),
SpaceM(x) = o, For S:N -+ N, define

Ly() = {x| Space,(x) = s(|x])},

NSPACE(S,m,%) = {L| L = L(M) = L (M) for some (m,#)-machine M},

NSPACE(S,m) =1{J {NSPACE(S,m,2)| ¢ = 1},

NSPACE(S) =) {NSPACE(S,m,8)| m > 2, # = 1},

DSPACE(S,m,2) = {L| L = L(M) = LgQ) for some deterministic (m,)-

machine M},
DSPACE(S,m) =|) {DSPACE(S,m,2)| # = 1},
DSPACE(S) =UJ {DSPACE(S,m,2)| m 2 2, 2 1}.

We call LS(MD the S-cutoff of M, and we say M accepts within space S if

LM) = LS(M). If NSPACE(S) contains languages which are not regular,
then S is a space bound. Every subscripted or primed S mentioned below

is assumed to be a space bound.

Proposition 1. No space bound S satisfies S(n) € o(log log . mn).

Proof. See [HU69a]. [

It is well known that the NSPACE(S) and DSPACE(S) complexity classes
are generally insensitive to machine moedel design variations. The
NSPACE(S,m,{) and DSPACE(S,m,f) complexity classes, on the other hand,

are sensitive to machine model design; but the differences are usually

*Acceptanee is to be distinggished*from "recognition." If the off-
line ™ M can accept either Lc X" or ¥ - L (within space S), depending
on accepting state designation, then M recognizes L (within space S).

44

minor. Following are comments on the effects of some common design
variations.

1. Suppose that we redefine our (m,f)-machine model so that its
worktape heads cannot detect each other. If the resulting complexity
classes are NSPACE'(S,m,4), DSPACE'(S,m,f), then we have

NSPACE' (S,m,) = NSPACE(S,m,$),

DSPACE' (S,m,£4) = DSPACE(S,m,#).

To see that detectability is no reél advantage, it suffices to observe
that detection can be simulated by the redesigned model. The trick is
to make a temporary change under each worktape head in.turn, letting
each head discover which other heads’ temporary changes take place on
the square it scans.

2. Suppose we redesign our (m,{)-machine model so that it cannot
detect the left end of its worktape but instead_halts,without\acgepging
if it shifts past tbat end. If the resulting complexity classes are
NSfACE'(S,ﬁ,L),_DSPACE'(S,m,L), then we have

NSPACE' (S,m,) C NSPACE(S,m,) C NSPAQE'(s,m,Hl),,

DSPACE' (S,m,#) — DSPACE(S,m,{) c DSPACE'(S,m,¢+1).

Our model simulates the redesigned one éiﬁply by halting when it detects
that the transition rules would lead to a shift off the énd of the work-
tape. The redesigned model simulates ours by permanently stationing an
extra worktape head at the leftmost worktape square. Detection of that
square can then be effected by the trick of comment 1 above.

3. Suppose we redesign our (m,f)-machine model so that its work-

tape is infinite in both directions. If the resulting complexity classes

45

are NSPACE'(S,m,f), DSPACE'(S,m,£), then we have

NSPACE' (S,m,#) < NSPACE(S,m,{+l) < NSPACE'(S,m,{+2),

DSPACE' (S,m,#) — DSPACE(S,m,#+1) < DSPACE'(S,m,4+2).

To simulate the redesigned model, our model must be able to provide new
worktape squares for shifts past the left end of the worktape. It suf-
fices to shift all the work to the right {making temporary use of the
worktape head that needs the new tape square), and this is made possible
by using an extra worktape head to mark the rightmost worktape square
that has been visited. (Nothing to the right of this head need be
shifted because it is all blank: anyway.) - The redesigned model simulates
ours by permanently stationing an extra worktape head at the initial
worktape square and treating that square as the left end of the worktape.

In the nondeterministic case we actually have

NSPACE' (S,m,£) — NSPACE(S,m,¢)
because our model can nondeterministically guess where to start its
simulation so that no shift past the left end of its own worktape is
called for.

4. Suppose that we redefine acceptance by our (m,g¢)-machine model
so that a blank tape is not necessary. If the resulting complexity
classes are NSPACE'(S,m,{), DSPACE'(S,m,4), then we have

NSPACE' (S,m,£) c NSPACE(S,m,f#+l) < NSPACE'(S,m,t+2),

DSPACE'(S,m,z) c DSPACE(S,m,$+1) — DSPACE'(S,m,$+2).

Our model simulates the redesigned one simply by erasing its worktape
when the transition rules call for acceptance. This is made possible by

using an extra worktape head to mark the rightmost worktape square that

46

has been visited. (Nothing to the right of this head need be erased be-
cause. it is all blank anyway.) The redesigned madel simulates ours by
checking whether its worktape is blank befove entering the accepting
state. This is made pessible by again using an: extra worktape head to
mark the rightmost worktape sguare that has been: visited.

In the nondeterministic case we aetually have |

NSPAGR' (S ,m, £): NGPACE(S ,m;.£)
beeause our model can nomdeterminietically guess; where to etart erasing
in preparation for acceptance..

5: Suppose we: redesign our (iv,A4)-mechine model’ so that it has k.
worktapes. If the pesulting complexity classes: (bbtaioed by counting
the. total mmber of visited worktape squapes, the total: xlbhahat size,.
and the total number of worktape heads) ave: NSPACE!(S,m;£): W(S smyL),

_then we have

NSPACE' (S,m;£): = NSPACE(S ,m, #4k) C REPACE'(S,m, k),

DSPACE'(S,m,.8) C DSPACE(S,m; k). DSBAGE! (S, m, #Hk):.

Our model simulates the redesigned one by storing the concatenation of
the wvisited peortioms of the: k tapes om: ibs ome tape. .The 'k extra heads
h1 sees ,hI< are: used to. delimit these k: segments. New worktape squares

are provided vwhere needed by shifting werik rdight;, much as in: comment 3-

above.
tape 1 work tape 2 work |- I— tape k wm:k j blankseee

r N r_
By by B1 e

The simulation of our model hy the redesigned ame is trivial.

47

6. Suppose that we redefine our (m,f)-machine model so that the
blank symbol is reserved for worktape squares that have not yet been
visited. If the resulting complexity classes (obtained by counting only
nonblank worktape symbols now) are NSPACE'(S,m,%), DSPACE'(S,m,4), then
we have '

NSPACE' (S,m,$) — NSPACE(S,m,£f+l) c NSPACE'(S,m+l,£+1),

DSPACE' (S,m,£) — DSPACE(S,m,#+l) c DSPACE'(S,m+1,4+1).

Our model simulates the redesigned one by using its blank symbol for one
of the ordinary symbols of the new model. An extra worktape head is

‘'used to mark the rightmost worktape square that has been visited, beyond
which the blank represents the true blank symbol of the simulated machine.
The redesigned model simulates ours by using an extra unrestricted sym-
bol along with its restricted blank symbol to represent the unrestricted
blank of our model.

The relations among design decisions revealed by considerations
such as those above provide a convenient way of converting the results
of this chapter to good results for any of the redesigned machine models.
Slightly better results often are obtained by converting the original
proofs, however, making better use of nondeterminism (cf., comments 3, 4

above) or of worktape heads not yet fully utilized, for example.

48

2. Basic containment relations

In this section we present all the known containment relations
among the complexity classes defined in Section 1. The trivial relations
are that no language is lost from a complexity class by allowing nonde-
terminism, additional space, additional worktape symbols, or additiomal
worktape heads.

Only slightly less trivial is the use of the finite state control

to save space:

Proposition 2. If Sz(n)-sl(n) € 0(1), then

nsmcn(sz smef) C usmcx(sl,m,.c) s

DSPACE(S, ,m,8) C nsmz;k(s1 ,m,).

It follows, for example, that the complexity class DSPACE(nIIZ,Z,l) is
not affected by how we round the square root. For convenience, therefore,
we allow such an imprecise specification of a space bound when the pre-
cise specification is not relevant. |

The basic relatiomship that DSPACE‘(SZ) c DSPABE(SI) whenever
§, € O(Sl) appears in [SHLES]. It allows us to spegk of DSPACE(log n)
without specifying the base of the logarithm, for example. Our next

proposition generalizes the relationship.

Proposition 3. If S(n) < §+S'(n) for some fixed rational number

§ < logIn m', then
NSPACE(S,m,t) C NSPACE(S',m',§),

DSPACE(S,m,2) — DSPACE(S',m',f).

Proof sketch. Say § = i/j for positive integers i, j. As mi < m'j, we

49

can encode the contents of i m-symbol-resolution worktape squares in j

m'-symbol-resolution worktape squares.]

Example. For k a positive integer,

NSPACE(keS,m) = NSPACE(S ,mk) .

Additional worktape heads often can satisfy an apparent need for
additional worktape symbols. Our technical reason for allowing several
worktape heads is that additional worktape heads amount to much less
additional space than additional symbols do. Proposition 3 establishes
the close relationship between worktape symbols and a linear multiple of
worktape space, and our next two propositions establish the close rela-

tionship between worktape heads and the logarithm of worktape space.

Proposition 4. For every ¢ > 0,

NSPACE(S, m, f+k) C NSPACE(S + (k+l+¢)+log S, m, £),

DSPACE(S, m, ftk) C DSPACE(S + (k+l+e)«log S, m, £).

Proof sketch. Let M be an (m,¢#+k)-machine that accepts within space

S(n). We wish to design an (m,{)~-machine M' that simulates M within
space S(n) + (k+1+€)-10gm S(n).
The first g-1 heads of M can be simulated by the first g¢-1 heads of

M'. The position of each of the other k+l heads of M can be stored by
M' as the m-ary representation of that position.. I1f these k+l strings
are properly delimited, the last head of M' can carry them around and
access them to simulate all of the last k+l heads of M. Since only fi-
nitely many (k+2) delimiting marks are required, a single extra bit in-

serted every j symbols of the list can be used in conjunction with fi-

50

nite-state memory to locate the marks. Each of these bits is set to 1
if and only if at least one of the k+2 delimiting marks should be lo-

cated on one of the next j worktape squares. Since j and k are fixed,

the precise locations of the marks relative to the bits that are set to
1 can be maintained by finite-state memory. The list itself accounts
for an extra space requirement of (k+1)-10gm S(n), and the additional
requirement for deiimiters can be kept to an arbitrarily small fraction
of that by choosing j large enough. |

Clearly, M' is deterministic if M is. ™

Proposition 5.

NSPACE(S + kelog S, m, £) NSPACE(S, m, £++3),

DSPACE(S + kelog S, m, £) C DSPACE(S, m, f+k+3).

Proof sketch. Let M be an (m,f)-machine that accepts within space

S(n) + k-logm S(n). We wish to design an (m,#+k+3)-machine M' that
simulates M within space S(n).

If S happens to be easy to compute, then K' can start by stafioning
head A at worktape square S(n) and head B at worktape square S(n) -
logm S(n).

S(n)

T§ log;fs(n) T

head B head A
The worktape of M is conceptually parsed into an initial segment of
length S(n) - logIn S(n) and k+l "pages," each of length logm S(n). The

initial segment will always reside in the first S(n) - Iogm S(n) work-

51

tape squares of M'. One page at a time can reside invthe worktape
squares of M' delimited by heads B and A. Each page not residing there
can be stored as a worktape head position, the page being the m-ary
representation of the position.

In its simulation, M' tries to use § of its worktape heads to behave
like M'. ‘A record of the current location of each page (resident or
stored as some head position) and the page currently scanned by each
head of M is maintained in the finite-state control of M'. When the
heads of M scan different pages or move from page to page, ''paging" is
required. None of the g simulating heads is moved from its proper loca-
tion, but the one free head is used (with some help from head B) to
store away the page that is currently resident. The required page is
then loaded (again with help from head B), leaving the head that stored
it free.

The simulation for arbitrary S differs in that heads A and B are
restationed during the simulation according to how much space M has
actually used. When M has used s' worktape squares, with

(s-1) + kologm (s-1) <« s' <8 + k-logm s,
head A will be at position s and head B will be at position s - logm s.
Restationing is required only when some simulating head is coincident
with head A (and scanning the final page), so a second head is tempo-
rarily free to help the usual free head to determine whether head B must
be restationed. (Head A is restationed every time s changes to s+l, but
head B is restationed only when Llogm s} = Llogm (s+1)|.) Adjusting the

pages on restationing is easily managed with some help from the finite-

52
state control.
Clearly, M' is deterministic if M is. M

OQur final basic containment relationship is the well known result

of [Sav70].

Proposition 6. If log n = 0(S(n)), then

2
NSPACE(S) < NSPACE(S).

53

3. Notions of honesty

Qualitatively, a function is "honest" with respect to space if it
can be computed without using space that is too much greater than both
its argument and its value. It is easy to check that functions of prac-
tical interest are extremely honest. 1In fact,. all of the common func-

tions .are of the following type. (See [Rit63].)

Definition. A function £:N 4 N is linear space honest if

{bin(k)#bin(f(k))| k € N} € DSPACE(n),
where we use the notation bin(k) for the binary representation of k
(high-order bit first, say). Equivalently, f is linear space honest if

(1%f™)| « € N1} € DsPACE(log n).

Our main goal in this chapter is to discover weak separation condi-
tions for the complexity classes defined in Section 1; e. g., we seek a
generally sufficient condition on Sl’ 52 for the nonemptiness of
NSPACE(SZ) - NSPACE(SI). Well known ''gap" theorems, however, show that
any reasonable separation condition must include some sort of honesty
requirement on at least one of the space bounds involved. (See [Bor72],
[Con72], [Con73], [Yng71].) The most commonly used ([Ib72], [Sav7/0],

[{BGIW70], [Bk72]) notion of an honest space bound is the one we adopt.

Definition. If f:N -+ N does not belong to O(l) and M is a deterministic
*
off-line T acceptor with L(M) = 1 and Space,(x) = £(|x|), then f is

fully constructable and M fully constructs f.

Proposition 7.

(i) Every fully constructable function is a space bound.

54

(ii) Let f be linear space honest. If logn € o(f(n)), then f is
fully constructable by a (2,1)-machine. If log n € 0(f(n)), then f is
still fully comnstructable.

(iii) Let S be fully constructable by an (m,{)-machine, and let M
be an (m,4)-machine. Then LS(M) € NSPACE(S,m, f+1); and if M is determi-
nistic, then LS(M) € DSPACE(S,m, ¢+1).

(iv) There are fully constructable space bounds in 0(log log n).
(Cf., Proposition 1.)

(v) 1If S is fully constructable by an. (m,g)-machine and 1 € o(S(n)),
then S satisfies

log n - f-log log m - S(n) € 0(1),
from which it follows that

log n - S(n) € 0(log log n),

log n € O(S(n)).

Proof. (i) Let f be fully constructable. Since f(n) ¢ 0(l), the lan-
guage

{ok1j0k| =21, k < £(j+2k)} € DSPACE(f)
is not regular. |

(i1) Assume f is linear space honest and iog n € o(f(n)). Every
language accepted deterministically within space n can actually be
recognized (cf., footnote on page 43) within space n [HU69a], so let the
(2,1)-machine M deterministically recognize {bin(k)#bin(f(k))‘ k € N}
within space O(n). To fully construct f(n), compute according to the
transition rules of M successively on

bin(n)#bin(0), bin(n)#bin(l), bin(n)#bin(2),...

55

until bin(f(n)) is discovered, and then convert bin(f(n)) to unary. As
both log n and log f£(n) belong to o(f(n)), this does fully construct
f(n) for all sufficiently large n; the differences can be handled by the
finite-state control. With care, the entire program can be carried out
by a (2,1)-machine.

If only log n € 0(f(n)), then using a large enough worktape alphabet
keeps the search for bin(f(n)) smaller than £(n) itself.

(iii) An acceptor for LS(M) fully constructs space S and then com-
putes according to the transition rules of M within that space. The ex-
tra head is left by the first phase to delimit the space used.

(iv) Define f(n) ='min{kl n is not divisible-by k}, S(n) = log £(n).
Obviously S is fully constructable. Let n(k) be the number of primes
smaller than k. The least n with f(n) ® k is the least common multiple
of {k'| k' < k}, which certainly exceeds 27 (k) Hence,

x(f(n)) < log2 n. According to the prime number theorem [NZ60],
k/log k € 0(x(k)); so

£m)'? € o(£(n) /108 £(n))

c 0(x(f(n)))
< 0(log n).
Therefore,

S(n) = log £f(n) € 0(log log n).

(v) Suppose the d-state (m,g)-machine M fully constructs S. We
show below that S(n) = S(n + kn!) for every positive integer k whenever
log n - 4+log log n - S(n) > log d. It follows that

log n - g-log_ log n - S(n) € 0(1) = 1¢ o(S(n)).

56

Let S(i,n) be the number of distinct wotktape squares visited
through the ith time that M scans an iﬁput endmarker on either end of
the input while computing on input ln, and let

Q,n) € {€.5) x {1,-..,d} x {1,....m}’® x {1,...,5m1
describe the total state of M at the end of that time. (If there is no
itb endmarked total state, then Q(i,n) = qndefined.)

For logm - L-logm logm n-Sh) > logm d, we show by induction on 1
that S(i,n) = S(i, n + kn!) and Q(i,n) = Q(i, n + kn!). That
S(i,m) = S(1, n + kn!) for all i implies S(n) = S(n + kn!).

Since M has a fixed initial state, Q(1,n) = Q(1l, n + kn!) and
S{(1,n) = S(1, n + kn!) = 1.

Suppose Q(i,n) = Q(i, n + kn!) and S(i,n) = S(4, n + kn!). To
prove Q(i+l,n) = Q(i+l, n + kn!) and S(i+l,n) = S(i+l, n + kn!), we
consider four cases:

Case 1: Q(i,n) = undefined. Obviously,

Q(i+l,n) = Q(i+l, n + kn!) = undefined,

S(i+l,n) = S(i,n) = S(i, n + kn!) = S(i+l, n + kn!).

Case 2: Q(i,n) is defined, but Q(i+l,n) = undefined. Since n + kn! = n,
the computation continugtions are identical.

Case 3: Q(i+l,n) is defined and involves the same endmarker as Q(i,n).
Since n + kn! 2 n, the computations are identical from the ith
endmarked total state up to the (i+-1)St endmarked total state.

Case 4: Q(i+l,n) is defined and involves the other endmarker. In going

from Q(i,n) to Q(i+l,n), M first reaches each input square

j € {1,...,n} in some memory state £(j). Because

57

dom* ™. .sm)? < n
is implied by

logm n - Lologm 1ogm n - S(n) > logm d,
however, f(jl) = f(jz) for some j1 <j, € {1,...,n}. Clearly,
therefore, increasing the input length by any multiple of j2-j1
results in the same next endmarked total state and no new memory

states. Certainly kn! is a multiple of 32-31. O

Criteria slightly different from ours for "acceptance within space

S" have been proposed. Book [Bk72] requires that every accepting compu-

tation on input x involve no more than S(|x|) worktape squares, and
Ibarra [Ib72] requires that every computation on :input x involve no more
than S(]xl) worktape squares. The significance of the prqof of part
(iii) of Proposition 7 is that the complexity classes determined by
fully constructable space bounds are hardly affected by these differences.
While part (iv) is surprising, part (v) of Proposition 7 redeems
our intuition that a radix count of the input length fully constructs
nearly the smallest possible fully comnstructable space bound. The
result implies that one may substitute ;he innocuous hypothesis
1 € 0(S(n)) whenever the apparently more arbitrary condition
log n € 0(S(n)) arises for a fully constructable space bound S.
Hopcroft and Ullman [HU69a] work with space bounds that are merely

"constructable."

Definition. If M is a deterministic off-line TM acceptor with

S(n) = max{SpaceM(x)] x € L(M), |x| =n},

then S is constructable and M constructs S.

58

An interesting corollary of Proposition 7(v) and the existence of con-

structable space bounds S(n) € o(log n) with 1 € o(S(n)) [SHL65] is that
not every constructable space bound is fully constructable. Because we
cannot prove Proposition 7(iii) for constructable space bounds, however,

we choose not to use the concept.

59

4. Conventional separation results

Counting and diagonalization arguments ([HU69a] and [SHL65], re-
spectively) have been used to prove separation results among the
NSPACE(S) and DSPACE(S) complexity classes. (See Corollaries 9, 11 be-
low.) 1In this section we sketch more careful versions of these arguments
to show what conditions they yield for separation among the more refined
classes NSPACE(S,m,f) and DSPACE(S,m,{). For details, the reader is

referred to [HU69a], [SHL65}, [HU69b].

Theorem 8. If 82 is fully constructable by an (m,g)-machine;, then there
is a language over {0,1} in
DSPACE (S, ,m, 4+1)
- (U {NSPACE(Sl,in,z)| 82'(n)-2-Sl(n) ¢o()} U
LJ {DSPACE(S ,m,4-1)| §,'(n)-5,(m) ¢ O(D]),

where S,'(n) = min{Sz(n), logm n - L-logm log n}.

Proof sketch. Define

*
L={x] x= uyuR € {0,1} for some u with

S, (|x[) P
|u|l = min{| x| /2], m .Sz(lxl) 11,
where uR is the reverse of string u. (Note here that
S '(‘xl)
lul sm 2 Cusy =t

We first show that L ¢ DSPACE(Sz,m,L+1). An acceptor for L can
first lay out space Sz(lx‘), using the extra head to delimit that space.
The delimited space can be used as a counter to compare successive char-

acters from the two ends of the input string. Because J extra heads are

Sz(|x|)

available, the counter is large enough to count up to m -Sz(lx|)z.

60

Next, we show that L ¢ NSPACE(Sl,m,L) unless Sz'(n)-2osl(n) € 0Q1).
By the reasoning of [HU6%9a], for a d-state (m,f)-machine to accept L

within space S,, we must have

Sz'(n) 8. (n)

m s, % (dem ! .sl(n)"')2
2 < 4 .

1

Taking logarithms twice gives

Sz'(n) + L?log Sz'(n) + cnstnt

1S 2-(Sl(n)‘+ Lelog Sl(n)) + castat,,

so that Sz'(n)-ZoSI(n) € 0(1).
Finally, we use similar reasoning to show that L ¢ DSPACE(Sl,m,L-l)‘

unless 82'(n)-81(n) € 0(1). The behavior of a deterministic off-line ™

at an input boundary can be described as a function from the storage
states into the storage states plus the "accept" and'"nonacceptidg nQ-
return” outcomes. For a deterministic d-state {m, £-1)-machine to accept

L within space S

'@
m .SZ' (n) Sl(n)
2 < (2 + dem OSI(n)

1’ therefore, we must have

S, (n)
1 1-1
gm0 o5,
) .
Taking logarithms twice gives

Sz'(n) + felog Sz'(n) + cnstnt, < Sl(n) + gelog Sl(n) + cnstnt

1 2’

so that Sz'(n)-sl(n) e o). O
Corollary 9 [HU69a]. If 82 is fully constructable, then
DSPACE(S,) - U {NspAcz(sl)[min{S,(n), log n} ¢ O(Sl(n))}

contains a language over {0,1}.

Proof. Take m so large that 82 is fully constructable by an (m,1)-
1 -
machine. For 82 (n) = min{Sz(n), logm n - 1ogm logm n}, Theorem 8 gives

a language over {0,1} that bears witness to the noncontainment in

61

U [NSPACE(SI)l min{Sz(n), log n} ¢ O(Sl(n))}
= U {NSPACE(S,)| S, ¢ 0(s,)}

= {NSPACE(k-Sl','m,l)| k€N, s, ¢ 0(s1)}

= U [NSPACE(S, ,m,1)| S, ¢ 0(s))}

cl) {NSPACE(Sl,m,l)l 8'2'(n)-2081(n) ¢ o(1)}

? DSPACE(82 »m,2)

c DSPACE(SZ) . 0

Theorem 10. 1If 52 is fully constructable by an (m,{+2)-machine, then

there is a language over {0,1} in

DSPACE(S, ,m, #+3)

- U {DSPACE(Sl,m,L)! Sz(n) - ZoSI(n) - ,(,-logm Sl(n) - logm n
¢o(1)}.

Proof sketch. Design a deterministic (m,{+3)-machine M to operate as

follows on input ex, where e is the description of a deterministic

(m,) -machine Me:

1.

2.

Lay out space Sz(lexl), using head A to bound it.
Use { worktape heads to carry out a simulation of Me on input
ex, using head B to bound the simulation. (The simulation re-

quires no more space—than'ce + SH (ex), where o depends only
e

on e; and it requires no additional worktape heads to read the
description of Me because that description can be carried around
and read by one of the { heads already being used.) Meanwhile,
use head A to keep m-ary count of the simulated steps, and use

head C to mark the high-order end of the counter.

62

8,(| ex|)

r ' \

simulation (¢ heads) free Bpace ¥ n-stycoméer T blankse..

) f S I :T;‘ 3

head B ‘haad € . . _.bead A.

3. -If the simmlation is completed before the simulation and the
count run out of free space, them coqlautxt the cutcome of the
simulation; otherwise, just accept.- J

Now suppose M 13 a deterninistic d-state (-,t)vmbine that accepts .

~within space S where A(n) ¢ 0(1) for

1’ : .
A(m) = Sz(n) - 2°3 (n) - felog l(n) - log‘ n.;

Take x so that A(|ex|) > c, +d. If ex € I.(B }. then it mst be accepted :

| S '“' s
within d-lex[-m S ([ex{), _steps by K.,,. . (Otherwise, a total

state would -'epeat, and M mld loop forever on ex.) Since

c gt slq ex|) + log, (d-'exl -ns (' G!f 'SQ(L%!)‘)

"=c, +1log, d +5,(lex|) - A(]ex|)
s Sy(|ex|) - (A(|ex|) - (c, +d))
< S,(|ex]),
M does discover that ex € L(M) and arrsoge.ex ¢ LQM). On the other
hand, if ex ¢ L(M,), then M will certaialy. aceept: ex. Therefore,
L) #LQ@). O

Corollary 11 [SHL65]. 1If s2 is fully constructable, then
DSPACE(S,) - U {DSBACE(S,)| 8,(n} ¢ 6(5;(n) + log m)}

contains a language over {0,1}.

Proof. Take m so large that s, is fully constructable by an (m,i)-

63

machine. Theorem 10 gives a language over {0,1} that bears witness to
the noncontainment in
U {DSPACE(S,)| S,(n) ¢ 0(S;(n) + log n)}
= U {DSPACE(k-S, ,m,1)| k € N, 5,(n) ¢ 0(S,(n) + log n)}
=U {DSPACE(Sl,m,l)] S,(n) € 0(S;(n) + log n)}
cU {DSPACE(Sl,m,l)‘ Sz(n) - 2-Sl(n) - logm Sl(n) - 1ogm n ¢ 0(1)}
e DSPACE(S,, ,m,4)

C DSPACE(S,). O
By Proposition 6, one more corollary is implicit in Corollary 1l.

Corollary 12. 1If 82 is fully constructable, then

DSPACE(S,) - U {NSPACE(S)| S,(n) ¢ O(Sl(n)z + (log m)2)}

contains a language over {0,1}.

Remark. The original arguments of [HU69a] and [SHL65] were for 82
merely constructable. For 82 constructable by an (m,l)-machine M with

*
L(M) c ¥ , accordingly, a witness language over I x {0,1} is obtained in

each of the above results.

64

5. Padding whole languages

For space bounds above log n, the separation results given by
Corollary 11 are very good. For 82 fully constructable and
logn € o(Sz(n)),‘in fact, since 82 € O(Sl) implies DSPACE(Sé) C
DSPACE(SI) (Proposition 3), it follows from Corollary 11 that
DSPACE(S,) - DSPACE(S;) # ¢ if and only if S, ¢ 0(S;). Corollary 12, on
the other hand, is relatively weak and does not eien separate NSPACE(na)
frdm KSPACE(nZ), for example.

Using the padding trick of Ruby and P. Fischer [RF65], Ibarra [Ib72]
has refined some of the separation results given by Corollary 12. The
basic trick is illustrated by the following lemma, where we write p(L)
for_{xlok] x €L, ‘xlok‘ = p(|x|)} when L C:{O,I}* and p:N -+ N satisfies

p(n) > n.

Lemma 13. If p(n) > n is linear space honest and log n € 0(S(n)), then

p(L) € NSPACE(S) & L € NSPACE(S op).

Proof. Every language accepted deterministically within space n can
actually be recognized (cf., footnote on page 43) within space n [HU69a],
so let M deterministically recognize {bin(k)#bin(f(k))[k € N} within
space n.

(=) Suppose M, accepts p(L) within space S. Design M, to operate

1
as follows on input string x:
1. Write down bin(|x|) and then compute according to the transi-
tion rules of M successively on

bin(| x|)#bin(0), bin(|x|)#bin(1), bin(|x|)#bin(2),...

until bin(p(|x|)) is discovered. As p(n) = n, this can be

65

accomplished within space proportional to log p(}x|) €
o(s(p(|x|)).

2. Compute according to the transition rules of H1 on input
xlOp(|xl)"xl-1. By hypothesis, this can be accomplished within
space proportional to S(p(]x‘)) in acceptance.

Clearly,‘M2 accepts L within space proportional to S op.

(=) Suppose M, accepts L within space S(p(n)). Design Ml to operate

as follows on input string x10k:

1. Write down bin(]x|)#bin(|x|+14k) and then compute according to
the transition rules of M to determine whether]x10k1‘= p(|x|).
This can be accomplished within space proportional to
log p(|x|) = log 1x10k{ E'O(S(ixlok])) in acceptance.

2. If lxlokl = p(|x|), then compute according to the transition

rules of M, on input x. By hypothesis, this can be accomplished

2
within space S(p(|x|)) = S(|x10k|) in acceptance.

Clearly, M, accepts p(L) within space proportional to §.]

The following theorem shows how Lemma 13 is used to improve known

separation results. The formulation is a variation of Ibarra's [Ib72].

Theorem 14. Let sets 31, 8, of space bounds be given, with

log n € 0(5(n)) for every S ¢ 31 U 8,- Say pl(n) S Nyeesy pz(n) > n are
linear space honest functions with Sl.°pi+1 € O(S2 °pi) whenaver

If L €N {NSPACE(S, op")| S, €8,} - U {NSPACE(S, opy)| 8, €8,1,

then pi(L) €N {NSPACE(SZ)[S, € 32} - U {NSPAGE(sl)Q 8, € sl} for some i.

Proof. For 1 < i < 4, let

66

c(i,1) ﬂumi,ﬂlfu‘@frﬁ«;&i}sz:t crddEw bad. oo

CeL,2)y =ﬂ{mz "i’* szest}
Suppose L € 668,80 —ne&&;

so, for 1st<g, . CT aihgr R o1 el thoaets B

L € CEH,1) » €D .
Ef”mf‘mmm \ PG Anngs pidtow “i‘j;*‘

L € ¢, *kfsﬁaﬁ‘ . ot EHITIE ool e wo Jal as

Chapter Twg bf: this: themis. am%«
vas W h 1?7 s R

[

67

6, Program codes and recursion

For precision, let us now choose an appropriate program coding for
off-1ine TMs. With each off-line ™ having input alphabet {0,1}, we

* ,
associate a distinct program code from {0,1} ; and we do this in agree-

ment with the easily-satisfied conditions listed below. We use the
notation L:’g for the set of program codes for (m,4)-machines and Lp c
for the set of all program codes. We denote by Me the off-line TM with

program code e.

Condition 1. No program code is a prefix or suffix of another, and L:’ﬁ

is regular for each m, §.

Condition 2. For each fixed m, g, there is an Om,z)-machihe U0 (a2 "umi-
versal simulator") with
= m, 4
L(Uo) = {ex| e € Lp:c_ s X € L(Me)},

m, ¢
SpaceUO(ex) <c, + SpaceMe(x) if e€ Lp.c.

where o depends only on e. Furthermore, UO has only one computation on

ex 1f Me is deterministic.

Condition 3. There is a recursive function f:Lp c - Lp c such that

f:Lm’L - Lm’ﬁ for each m, g and such that M deterministically

p.c. p.c. f(e)
writes e at the front of its worktape and thereafter acts according to

the transition rules of Me'

Most common instruction-by-instruction or state-by-state codings of off-
line ™ programs can be tailored to satisfy these conditions. The only
trick is to design the universal simulator of Condition 2 so that one of

the ¢ =2 1 simulating worktape heads carries with it and references an

-m l! umnszah.

68

appropriate version of the program code a. &W%:&,% ;;,,_ A
low in the pmf oi m{xs.)

ﬁzs& ":sz‘wﬂ Ef! arnk f -1k

oy D §p
> e pbey
3 1, Sy ;»‘1‘,1 -4 ‘?Jg’x 3:'5 fﬁfﬁ Eodig

tinom(m

‘“! ’tr T 43‘5;’; ‘

P ateaasons e
IF AT i e
HE R S

Theorem 15. . ro:: aach, (u,f)-nag
(m,5)-npdhine M. ¥

2.0

m 7y W{H k}ey@lbms xurnshooad i—:?us ﬁ{z:g‘&‘_ﬁ T R ST

e
3‘(&“& (x) £ c + Spaca. (o

R T xzz"“"‘ & ai aboo margog oF

| Cemm: f(‘) u b(f(e))s m b | ’

$ fra é:ﬁ‘ii#«i} &’3 &m

3. Stmalate’®: G on .foi)x.
oL LBy tg}f{ i

memory aam:y su%eai
"7of U he

“of W e ott fs fnENet FevERRE SN g
Let e;:= £(4,)." ﬁaﬁwwsig ajekiings 4 26

1. Urite ‘1 on ﬂu ?mk;\ ok m.

g - . - - i g cmobmen cned mioege Sl e il Bt e Uuaes .
S RN R R R R S Ve R S % e T T ESESESREiin S0 B ST G & F AR

69

2. Convert e, to f(el) = e

1 o’
3. Comvert e, to h(eO).
4. Simulate U0 on e,e xX.

Thus,
x € L(Meo) ® e,e.x € L(UO)
© ey € LM),

SpaceM (x) sc + SpaceM(eox),
e
0

where c is c, plus the number of worktape squares required for steps 1,
2

2, 3. O

70

7. Another general separation result

The general separation result that we prove in this section (Theo-
rem 18) amounts to a dramatic refinement of the following very weak

"geparation" result.

Lemma 16. For no recursive space bound S does NSPACE(S) contain all the

-

recursive languages aver {1}.

Proof. If S is recursive, then the diagon#l language
(1% 1" € 1501), le = bin(n)}

is a recursive language not in NSPACE(S). [
One more technical lemma is all we need for the proof of Theorem 18.

Lemma 17. If S/2 is fully constructable by a ({2,1)-machine, then some
~deterministic (m,z)—mgchine recognizes
L = {1d0% k= D5yt hy

within space logm n - (L-l)ologm logm n.

Proof. It is easier to get an (m,f+l)-machine. that does the job. Given

a fixed position s of the extra head, we can use the other {£ heads within

41 cycles of an m-ary counter that counts up

to ms, while checking whether k < ms-s“l. By trying successive posi-

21

space 8 to count through s

tions s, we can find position 892 the least s 2 1 with k < m’es

Certainly S is fully constructable by a (2,1)-machine. Since m 2 2
and § = 1, we can leave thé extra head at position 84 and try to lay out
space S(j) without reaching that position. We succeed if and only if
s(3))1-1.

kzmnm *S(j

Suppose n is so large that

71

(logm n - (L-l)dlogm logm n)”-1 > (logm n)t'llm.
If

8o > 2 + logm n - (z-l)ologm logm n,
then

s . ~1
m 0 -(30-1)"'"1 >n=j+k=k

by substitution, contradicting the minimality of s Therefore,

o'
5y < 2 + logm n - (z-l)-logm logm n
for all sufficiently large n, and the simple method of Proposition 2
yields an (m,#+l)-machine that recognizes L within space
logm n - (L-l)-logm logm n.
To get rid of the extra head, we make two obgervations. The first
is that the boundary head can be used in the first phase to run the m-
ary counter without losing its place. The second is that the boundary
head can be used even to lay out space S(j) in the second phase. The
reason is that, since S/2 is fully constructable by a (2,1)-machine, S
is fully constructable by a (2,1)-machine that leaves every other tape
square redundant by always writing and reading aa rather than just a for

every worktape symbol a. We can modify redundant tape squares to mark

the head position and the ends of the used space.

Theorem 18. If S, is fully constructable by an (m,g)-machine, then each

2
of the following set differences contains a language over {0,1}:
NSPACE(S,,m, 4+3) - U {NSPACE(Sl,m,1,+2)‘ 1€ o(Sz(n)—Sl(n+1))},

DSPACE(S, ,m,4+3) - U {DSPACE(S,,m,2+2)| 1 € o(§,(n)-5,(n+1))}.

Proof. Let S, be fully constructable by an (m,{)-machine, and let U, be

2 0

: 7(111), Lg (“e) € mm(sz.a.ﬁ»:). md hMtMy it Md be very

| by mm*mfs 10 P e, A
b d’. M : coaroon o bdky I asadmes

72

the iversal simulat r Coﬁition 2 T sieion
iverat imiacs ek Somditon 150 5, 8. P

\:.‘. c{ ;.; < p4 - 5T , f’

N1
nearly the hardest language in that Mﬂqu{m ‘3‘&?& ;nglt
NSPACE(S, ,8,#42) for any space bound 5, with 1 € o(8(n)- 1"“"1” _
Suppose that the (a,4)-mechine. W": ,‘m,m |
Sy» vhere re m,w-ugmm. wa w0 Wat
log, n - 4+log, log, u - 8,(8) ﬁﬁiﬁh"i’“““” ogrnd b E

31(17 2 10(. n - (&'ﬂ) h& ln'. n. e ;;g&""i ;,a.;':é%ﬁ%* -3 LR jf"

bm. qu,%&w oy chasd gyigs a3 Yo bly rop o7

5(’13 %OW? gt o Bamg oad e besd wxsbooud el dpdr ol
¥ o . e [Yo mpe by B asireci bez o ooyt er .

Leth 1 b- muvo - -ovar {1}. ,m:.um-
. Sy { «} i g*’ Fotade ,ﬂ«liﬁmm x"ti} By é\}ﬁ%ﬁ?ﬁﬁﬁtﬁ;:fS?ﬁJ it @

wnive,nmm;hmtu(k ehine that 4 ~’Lw£thin
2 gapl asdl sedigy B polbeoy bros sgﬁzsm 8’{§§f§ vd ?%bs:u SEEIR

some space bound 8/2 that is fully const: hjt(&,&)-alehm
Mg ol w&’i S8 thﬁ.f' sraburbey &3“*’3!3 Nt ' COMERTCE

Let S'(n -s n s and design am mm i tim: T~
) = (’ Casmere Bosg ot g‘am afr bos acillaog besd sy

ates as follows:

e E i‘"w -&3 {1}wzm; o

4 s 5 owie
H f L &,
i * & P PR A 3t

sganetatt

T

2. Detaniue vfn:htr x 2 S'(fxﬁ% ‘17 wtuﬁmm

“rg ﬂ;& ey ms owd aiVoise tdases oFInt ad (2 usl iw

73

log]xokl - (L+1)-logh log]ka{
< log,]ex0k+1l +1|

< Sl(iex0k+1|

- (4#1)+1o0g_ log_ | ex0®
N _
worktape squares.
3. 1f k=2 S5"'(|x|), then compute on input x according to the transi-
tion rules of M. This requires no more than
s(|x]) < log S'(|x|) - (#+1)-log log s'(|x|)
< logm k - (z+1)Q10gh logh k

< log |ex0k+1|

k+1

- (4+1)+log 1log, |ex0k+1|

< Sl(|ex0 1)
worktape squares for x € L(M).

4. If k< 8'(|x|), then compute on input ex0¥*1 according to the
transition rules of Ul’ committing the final O to finite-staté
memory. This requires no more than Sl(|ex0k+1|) worktape
squares for acceptance.

To summarize the behavior of M' on exok,
k 2 S'(]x]) = behave like M on x;
+1

k < S'(]x|) = behave like U; on ex0<tL,

To summarize the timing for exOk € L(M'),
k+1
-

. Applying the recursion theorem (Theorem 15) to M', we get a program

SpaceM,(exok) < Sl(lexo

code ey for an (m,#+2)-machine that accepts

*_%
LM) = {x0k| e x0° € LMY} c10
e 0
within space

SpaceM (ka) < c+ SpaceM,(eoka)
e
0

74 : <

for some constant c. Ll ietfdsy - Fig ! aer

Claim. Por each' m*my long- smx f“fag * éwmm holds

for every k: v {§{

gok € I.a(. Y »x €L, o CBRTBUPE FgEIATON

;hfé ﬁ ’ﬂ =

’E: htwd €t13*“ iﬁ i& &‘t oty ‘en: o6 3T

" o cpaiupsT BT M To zhlar oult
sztu) SI(M) 3 e‘o ¥e : ~
;} i = { S ¥ 5 Z
formrynz[-ox! w.nnbiidtm ’ﬁr:iyiﬂmﬂumk
W f ’*’.iii'*"i} - 3

renning - doy ;_fmkzs'ﬂ‘ﬁ) ‘Ek-gﬁ

xi‘_q

x0" € L0t)--aw"e:.w) R

.B I EE-E N £ 5 - T ’**pge sastiiow

- o R 0‘ .dg.m. o el g{_;ﬁ‘:{f}’?j >
N e ;ﬂe m ;' R {'5 E£ o L ongiiiaos

M‘%éﬁ? this
.$3H$3q5§3s 30T zetnupa

k < s'('x’): “m w ﬂ e m‘;‘)‘ ’ e’i’ii} yobresdad st aniioagnes ol

x0* € Lor,) = oxo® € LOw) s susdind = (bxiy i <

BT ‘*§ At svadsd o { w32
(by ohotea of 3y’ (¥ W vEfad o Ly

Fomerend Y sweresdr molagunsT sdt nolvie t

- FR 3 . £y
SRR L .
- w0 ¢ L0E°) ;
g’ I W T

(becaunt! iamlmt'

»X €L
XE€Lo x0**1 € LO“) LR ERaE s s I
0 . 3

75

(by induction hypothesis)

- eox0k+1 € LM')

(by choice of eo)
k+1 , k+2
= SpaceH.(eoxo) S,SI(]erO D)
(by space usage of M')
' k+1, - . k+1
=»c, + SpaceM (x07) < c, +c +-Spaceu,(e0x0)
0 e 0
0 .
(by choice of ey c)
k42,
< ceo +c +Sl(]e0x0 H
| k41,
< 82(1e0x0 })j
(because x is so long)
K+l _
= eoxo € LSZ(UO) = L(Ul)

(by choice of Uo)
= egx0" € L")

(because by definition M' behaves like U, in this case)

1

= ka € L(Me)
0

(by choice of eo).]

Finally, Me can be modified to use its finite-state control to re-
0

*
ject padded inputs (those not members of {1}) and to agree with M on
short ones (those not sufficiently long for the claim) without using the
worktape. This gives an off-line ™ that accepts L = L{M) within space
Sl(‘eol+n+1). Because
sl(| eoi +n+l) € o(sz(| eO|+n))

CO(z Sz(n'))a
n'<2n

767

Proposition 3 gives L € NSPACE(Eis%

). ot dal &H)* wvas chosen
a'<a ¢ A

. 1+§
- e 0

arbitrarily, and by Lesma 16 not every m mve 1% {l} can be-
: (e Yo satods wd)
long to the particular em; JPW(5*)), & contradiction.
n& T0xged, SoRgE -
A similar proof shows that *'f*ﬁ Yo agrsr $osqn wd)

Lg 2(@’“}}}%@:’#{3& = 0 Tuxp eeagi oo
. 7 e} . A~)
(v ¢ ggg“ﬁ"&" ? s ?:ﬁ

“m.«»'

nistic ccmmicu b‘!ﬁ&l&t&

amahwﬂﬁé

fneal o8 9} v esgmoed)

%)éw .2 2

‘:vﬁfﬁﬁ 3o sakods vd}

ossn ot belithoer od mes . ¥ o vilsnid

FOR S TE syl L

nt o boae P o pvedasmer B sands) ateas boliog dusd

e

L ud v lealadPore dep ol oenoe Iyeds

LES P).; 2
2 P
52"

77

8. Applications of the general separation results

Our first application brings together Corollaries 9, 11, and 12
with the related consequences of Theorem 18. It is the latter (part
(iii) of Corollary 19) that subsume and improve on the specific results

of [Ib72].

Corollary 19. Let S2 be fully constructable.

(1) “-If S,(n) € O(log n), then DSPACE(S,) ¢ty {usPAr:E(sl)'l S, é¢ o(sl)}.
(1i) DSPACE(S,) ¢y {Dsmcz(sl)]»,s2 ¢ o(sl)},
DSPACE(S,) ¢UJ {NSPACE(Sl)l s, & ocslz)}.
(iii) NSPACE(S,) ¢U {NS?ACE(SI)| §,(n+1) € §(sz(ﬁ7)},
L}{NSPACE(SI)l 5,(n+l) € 0(S,(n)), Sl(ng g’o(sz(n))} g: NSPACE(S,) . -
(In the case S,(ntl) ero(sz(n)), note that Sl(n+1) € O(Sz(n)) is
implied by S, (n) € o(Sz(n));)
" Furthermore, there are languages over {0,1} that bear witness to these

facts.

Proof. (i) This part is a slightly weakened form of Corollary 9.
(ii) By Corollaries 9, 11, and 12, we can take languages
L 0,1} h
LOO’ L01’ 10 c {0,1} such that
Lyo € DSPACE(S,(n+2)) - |J {NSPACE(S, (n+2))| min{S,(n), log n} ¢
O(Sl(n))},
Ly, € DSPACE(S,(n+2)) -uU {DspACE(sl(n+g)); S,(n) ¢&
0(S,(n) + log n)},
Lig € DSPACE(S, (n+2)) -U {NSPACE(sl(n+2)){ S, (n) ¢
2 2
O(Sl(n) + (log n)7)}.

Clearly the language

78

{oox| x €Ly} U {o1x| x € Ly 3 U {10x] x €L}
belongs to DSPACE(SZ(n)) but not to

U {NSPACE(Sl(n))‘ min{S,(n), log n} ¢ o(sl(n))}, oi_ ,

U '{DSPACE(Sl(n))| S,(n) € 0(S;(n) + log n)}, or

U {NSPACE(Sl(n))| S,(n) € o(sl(n)2 + (log n)z)}.
(Cf., Lemma 13.) It is easy to verify that _

5, € 0(s,) = min{S,(n), log n} € O(S,(n)) V

S,(m) € 0(S,(n) + log n),
s, € 0(5,%) = min{s,(n), log n} ¢ 0(s; (@) v
5, €065,@7 + (og MY, |

(iii) Take m so large thag: s2 is fully constructable by an (m,g)-
machine. Theorem 18 gives a la".nguage over {0,1} ‘that bears witness to
the nonconteinment fn ; ‘

U {NSPACE(S,)| S; (1) é\'__p(sz(n)‘)}. e

= U [NSPACE(k+S ,m,3)] ken, 5, (o) € o(s,@)]

= U {NSPACE(S,,m,3)| S,(n+l) € o(5,(n))}

cU {nsmcﬁ(si‘;m,‘jn 1¢€ o(Sz(n)'-Si(n+I))'})

? NSPACE(S, ,m,4) ' s

C NSPACE(S,).

Containment in the second assertion of part (1ii) holds by Proposi-
tion 3. To prove that the containment is proper, appeal to the first
assertion to get a language L C {0,1}* in |

NSPACE(S, (n42)) - U {NSPACE(Sl(n+1))| S;(ntl) € 0(5,(n)),

§,(n) € o(8,(n))}

and then apply Theorem 14 with

79

8, = {5, 5,(at)) € 0(5,(m)), S,(n) € o(S,(m))},
8,y = {Sz},
py(n) =n +1,

n+2. O

Py ()
Examples. For any function G tending to infinity (1 € o(G(n))), however
slowly, ' -

NSPACE(log n/c(n)j ? NSPACE(log n),

"~ NSPACE((log n)Z/G(n)) (;NSPAGE((Iog n)z),

NSPACE(n2/G(n)) g NSPACE(n2),

NSPACE (2" /G(n)) g NSPACE(2"),

oft '2n+1

NSPACE(2”) g NSPACE (2).

Feldman and Owings [3073] have‘obse:ved.thgg deterministic linear
bounded automata are more pqwgrful than deterministic linear bounded
automata with a fixed worktape alphabet; i. e.,

DSPACE (n ,m) G DSPACE(n) .

Qur next application generalizes that observation, showing, for example,

that it holds even for nondeterministic linear boupded automata.

Corollary 20. Let S be fully constructable.

(1) If S(n) € o(log n), then NSPACE(S,m) 3 DSPACE(S).

(ii) DSPACE(S,m) gZDSPACE(S). :

(1ii) If S(n+l) € 0(S(n)) and 1 € o(S(n)), then NSPACE(S ,m) G NSPACE(S).
Furthermore, there are languages over {0,1} that ﬁear witness to these

facts.

Proof. (i) Take m so large that S is fully constructable by an (m,1)-

machine. By Propositiotr:l,:S4n) &D{iﬂ{hlgi)’;‘ so(Thebrim 8 givesa
language over {0,1} thﬁt bears witness to the Mgﬁ = F
NSPACE(S,m) C NSPACK(S,wil,1) R R R
$ DEPACK(3+5,m+1,2) s n s (0 g
S m‘?”m 01 aathoss B opoldony “z> e 10T zelquexd
(11) Part (1) handles the case S{a} € olleg n\}, o0 assume ,,

S(n) € o(log n). Take m-so wumﬁg§%m 4

(m,1)-machine and S{n) - %%!gﬁﬁgg ’ : -
a language over {0,1} that bears witnaes g, o Y amtAimpens
DSPACE(S,m) C DEPAGE(S,mH1,1) ' /Soyg5.00y v Hmw T

G PEPACE(A-S ,m+1,4) feE me
‘ 4 LiuuaNad E{ L33nages

,cm{s&

W R

‘m EIpapIg Labruod

; :) 33:%5 B {,éprf
cutalang giﬁ&k‘i&& 2 fzss rs}gsm?a

D AR v 'ﬁﬁg*’ 15 ;:sm tdsrsmsg meitsciioge o

< “";‘“ %??g&’#ififm‘*jﬁﬁﬁ”}? w0 mave alleal ok

C USPACR(8). EJiz:wcriznon vliuY sd 2 1sl L8 selforol

O

ped

o mﬁ:ﬁ ((ﬁ‘gnl”}a EIRE TS S O

NEPACE(n,m) g NSPACE(n),

{23 %Mas:{ {u 23ADAYEN {1X

s iw oumnd assr f_{ 0% rave a&gg&g&sf ﬂ'ﬁg E-3 & L erTar ey

Tbarra [Ib73a] has shows that m f AL C

81

finite automata with k > 1 heads.‘r The fact

NSPACE(Iog2 n, m) (; NSPACE(log n)
is just what is needed to establish a similar hierarchy theorem for -
NHEADS. To this end, we prove a lemma relating NHEADS to NSPACE(log n)

and DHEADS to DSPACE(log n).

Lemma 21 [Ha72].
NHEADS (k) C NSPACE(log, m, 2°, 1) c NHEADS(k#4),

DHEADS (K) C DSPACE(log, 1, 2%, 1) c DHEADS (k+4).

Proof. Let M be a two-way finite automaton with k heads. A (2k,1)-

" machine M' can simulate M by behaving like # "k-track"” (2,1) -machine,

using the respective tracks of its worktape to hold the binary represen- -

tations of the positions of the k heads of M. Clearly, M' is determi-
nistic if M is. |

log2 n

bin(position of head 1)

kJ i : " | blankses.

bin(position of head k)

worktape head
(at rest)

" Let M' be a (2k,1)-machine that accepts within space logzn. To

simulate M', a two-way finite automaton M can encode each of the k

TTwo-way finite automata with k heads can be described as off-line
TMs that do not use their worktapes but .that have k two-way read-only

input heads. We assume the k heads cannot detect each other, but nothing

we say here actually depends on that convention...

82

"tracks" of the worktape of M' as a head position whose binary represen-
tation is the track contents. An additional head, head A, can keep count
of the position of the worktape head of M'.

To read the contents of track i of the worktape square M' scans, M
begins by positioning head B coincident with head ‘A and head C coinci-
dent with the head whose position encodes the contents of track i..

(This requires help from head D since the heads cannot de;ept eagh other.)
Then heads C and D are used to successively halve the position ;hat en~
codes track i (dropping remainders), while decrementing the position of -
head B once for each halving. The remaiﬁder‘;f the Ia;t division before
B reaches the endmarker is the contents of track { of the ﬁﬁrktape square
scanned by M'. | | | B N

To change the contents of track i of the worktape square M' scans,
M begins by positioning head B coincident with‘head A and head C on the
first input tape square. Then hends~c~an§:§i§;e used to- successively
double the position, while decrementing uhe;pdétﬁtou of head B once for
each doubling.‘ The position that is reﬁcﬂ;ébﬁhen B reaches fhe end-
marker is the power of 2 which must be addeé or subtracted from the

position encoding track i. [J

Corollary 22. NHEADS (k) g:NHEADS(k+2).

Proof. For each k, Corollary 20(111) guarantees the existence of some
k' with |
NHEADS (k) c:NSPACE(log2 n, 2k, 1)
S I‘IE‘J’ACE(log2 n, 2k' » 1)

C NHEADS (k'+44) .

83

According to [Ib73a] this is enough. O

Recently, Ibarra and Sahni ([Ib73b], {IS73]) refined some specific
instances of our Corollary 20 to show that a single‘édditional worktape
symbol sometimes helps. The following more directly prbven corollary
generalizes their results. Note that this is a case where the conse-
quences of Theorem 18 are stronger than those of Theorem 10 for determi-

nistic machines.

Corollary 23. Let S be fully constructable.

(i) 1f S(n) € o(log n), then
DSPACE(S ,m) g:DSPACE(S,m+1,1)
for all sufficiently large m.
(1i) 1If S(n+l)-S(n) € o(S(n)), then
NSPACE(S ,m) g NSPACE(S ,m+1,1),
DSPACE(S ,m) ?:DSPACE(S,M+1,1)
for all sufficiently large m. (If S is actually linear space
honest and log n € o(S(n)), then m = 2 is sufficiently large.)
Furthermore, there are languages over {O,I}Vthat bear witness to these

facts.

Proof. Take m so large that S is fully comstructable by an (m,1)-machine.
(If S is actually linear space honest and log n € o(S(n)), then m = 2
will do, according to Proposition 7(ii).) Take rational numbers 61, 52
with 1 < 61'< 62~< 1ogm (n+l). (Note then that 52-S is fully construc-
table by an (m,1)-machine, too.)

(1) By Proposition 1, S(n) € o(log log n), so Theorem 8 gives a

language over {0,1] that bears witness to the proper containment in

DSPACE(S ,m) c'nsrmz(al.s .m,1)

s ,Bsraqn(sa,.;s ,-,, 3)1 ;
o , c:nsmt(s,-ﬂ 1) o o
(41) From S(n+l) S(n) G o(S(n)) and S(n) g 0(1), it 13 easy to show
that 1 € o(S(n)) and hcnce thct 1 € ogs 8(n)- -S(néi)) Thetufore,\
Theorenm 18 ggves a llnsg;ge over {0,1] that bcl:t vitnnst to the proper
coutlinlent in
NSPACE(S,m) C HSME(&loS,n,.” ‘
¢ z.s.-,k) eimen v iinh owd D on
C NSPACE(S a1, 1) | -
The proof for DSPACE is ideatical. O .; «~ S
Examples: Within each of the space W{Q‘%} nl B ,
n3'2olog log n, 2"1‘,2, every “dmmmme‘ the
cogputing power of nondnttt-inisggggup@gﬁu&;g!ﬁh%?ﬂﬁs:Qﬁﬁgiﬁaﬁ ™s.
Finally, we 5o ane step furtier and .gheps Vs, adds
heads sometimes increase cowputing pomer. /. iz:. . - .

nal worktape

Corollary 24. Let 8 be Ffly comstructdfd== "~

(1) If S(n) € o(log n), then
 DSPACE(S,m.). G RABACB(S M)« .5 & s:io oo
for all sufficiently large m.and k% §..-- ... :
(i1) If S(wtl)-9(n) € 9(log S(n)) e0d L€ a(i(n)), then
 NGPAGE(S,.m,4). G HSPAGR(S)., |
DSPACE(S,m, §) & DSPACE(S,m) R R
for all suffictently langs =.snd a1l 4. (If.S .de sctueally linear
space honest and log B € o(S(r)); ‘then m.= 2 ds gufficiently largs.)

85

Furthermore, there are languages over {0,1} that bear witness to. these

facts.

Proof. Take m so large that S is fully constructable by an (m,1)-machine.
(If S is actually linear space honest and log n.€ o(S(n)), then m = 2
will do, according to Proposition 7(ii).) Look at any 4.
(i) By Proposition 1, S(n) € o(log log n), so Theorem 8 gives a
language over {0,1} that bears witness to the proper containment in
DSPACE(S,m,f) — DSPACE(S - (1/2)-logII S, m, A4)
? DSPACE(S ,m, £46)
C DSPACE(S,m).
(Directly adapting the proof of Theorem 8 would give
DSPACE(S,m, £) ;:DSPACE(S,m,L+3).)
(ii) Take ¢ > 0 soilarge that S(n+l)-S(n) < c-logm S(n). Since
1 € o(S(n)), Theorem 18 gives a language over {0,1} that bears witness
to the proper containment in
NSPACE(S,m,£) NSPACE(S - d-logm S, m, fHc|Hs)
g NSPACE(S, m, LHc]+5)
 NSPACE(S,m),
where ¢ < d' < |c|+l. (Note that |c| =0 if
1 €0(1 - (S(n-l--l)—S(n))/logm S(n)).) The proof for DSPACE is
identical. O

Examples. Within each of the space bounds (log7 n)2’-n1/2, n,

n-(log2 n)1/2, every five additional worktape heads increase the comput-
ing power of nondeterministic and deterministic off-line TMs. Some

greater number of additional worktape heads increases computing power

within space n-log2 n.

86

87

9. Witness languages over a one-letter alphabet

The witness languages provided by the general separation results
above ‘are subsets of {0,1}*. In this section we investigate conditions
for the witness languages to be subsets of just {1}*. For sublogarithmic
space bounds (Theorem 8), we know of no such conditions; but both- .
Theorem 10 and Theorem 18 can be modified to‘give languages over just
{1}.

Theorem 25. If S, is fully comstructable by an (m,4+2)-machine, then
there is a language over {1} in o .
DSPACE(S,,m, £+3) - U _{DspAcz(sl,m,z)] 1€
o(S,(n) - 2¢8, (n) - elog, S,(n) - log, m)}

Proof sketch. To adapt the proof of Theorem 10 and get a diagonal lan-

guage over just {1}, we musf,Aih iiﬁitéd spéée, sonehdw obtain a déscrip-
tion of aﬁ (m,z)-machiné toj;iﬁﬁiate on the iné#t lﬁ. vFurthermore, each
description must arise for infinitely many n. (We cannot get by with.
the condition of Theorem 10 because that would require each description
to arise for a string of every sufficient length.) Because S,(n) 2

logm n in the nontrivial case;:a suitable spproach is to obtain the de-
scription from the m-ary representation of the input .length (e. g., by

dropping the low-order 0's). (3

Theorem 26. Let f(n) € O0(n) - 0(1l) be nondecreasing and linear space
honest. 1If S2 is fully constructable by an (m,£+2)-machine and
log n € o(Sz(n)), then each of the following set différences contains a

language over {1}:

88

NSPACE(S, ,m, 446) - U {NSPACE(sl,m,z)\ ‘
Sz(n) - Sl(n + £(n)) = ﬁf;ogm n},
DSPACE(S, ,m, 4+6) - U {DSPACE(sl,m,A)l

Sz(n)i- Sl(n<+ f(n)) = 4flog‘,p}.

25222' Let £f':N -+ N be the strictly increasing function with range
{n] £(n) > f(n-1)}. Define injections g,'h:{o,l}*’a N by’

bin(g(x)) = 1x,

h(x0) = h(x) + £(h(x)),

hex1) = £ @ECD) 4 W BCD g,

h{x) = f'(m) +m - 1. . e o .
Use the fact that f(n) € O(n) to take i 80 large that h(x0) £ j*h(x).
Note that, because f-is linear space honest and £(n) E O(n), the conver-

flh(XIok) 10 (or, more conveniently, sonethins like

xl#bin(k)) can be accomplished within space proportional to Iog n.

Claim 1. The result of this couversion\gggqggeq:qnly space
log n - G(n)
for some G with 1 € o(G(n)). e

Proof. Because f is nondecreasing and unbounded, we can take some G1
with 1 € o(G,(n)) such that '
h(x10%) 2 h(x1) + koG, (K)+ £(h(x1))
2 koG, (k)« £(h(x1))
2 keGy (K}« £(£" @By
2 koG (k) mECD)
Therefore,

log_ h(x105) = log Kk + log G, (k) + g(x1)

89

2 log k + Gy(k) + |x1} + G3(|x1])
2 (log_ k + |x1|) + &(n(x10),
where
Gy(n) = log G,(m),
G3(n) = min{g(x1)-|x1|| n

[x1|3,
G(m) = min{G,(k)+4G,(| x1])| h(x10) = n} .
,lh(xm“)

all tend to infinity. The result of the conversion from

requires only space le] + logm k, so the claim follows. ([

An additional worktape head can be used to separate x1 from the m-ary
representation of k, and additional space IOgm n can provide for an m-
ary counter up to k.

Let S, with log n € o(SZ(n)) be fully comnstructable by an (m,2+2)-
machine, and let U0 be the universal simulator of Condition 2 for m, g+2.

*
Design an (m,¢+5)-machine U.' to operate as follows on input y € {1} :

0
h(x)

1. Find x with 1 = y if it exists.

2. Compute on x according to the transition rules of UO'
By the considerations above, whenever step 2 alone uses more space than
the conversion of step 1 (ana!S§£h(x)) is enough space since log n €
o(Sz(n))), the whole progrant can be carried out at the extra cost (over
just step 2) of the three additional worktape heads (one to separate the
parts of the representation of x, one to separate the entire (left-
adjusted) representation from the rest of the worktape, and one to scan

the representation) plus 2.10gm h(x) - G(h(x)) worktape squares. By

Proposition 7(iii), LS (Uo') € NSPACE(Sz,m,L+6). We prove that
2

Lg (Uo') ¢ NSPACE(Sl,m,L) for any space bound S1 with
2

to xlok

90

S(n)-S(n+f(n))zl+logmn

Suppose the (m,f)-machine Ul' accepts L (U ') within space 81

where Sz(n) - Sl(n + £f(n)) = 4ologm n. Because log n € o(Sz(n)), it is
no loss of generality to assume also that Sl(n) = lo:g'zz;ﬁ._- To summarize
the behavior of Ul' , B

L(U,') =1Lg (U ") e L(U,")

and, for e € L;l:’th

2.108m h(ex) -v G(h(ex)ﬂ) + Ce + Spacé,ue(x)‘ sr sz(h(eX)) o

Spacey | a"®9) < 5. (e

Finally, design an (m,4+2)-machine U, to operate as follows on

1
input x € {0,1}*:

1. Compute the m-ary representation of: h(x).
h(x)

2. Simuilate Ul' on 1 vr
If enough space (Sz(h(x))) is used, then the- sxtra ‘cost (over just the
computation by Ul' directly on 1h(x)) is nq midre than 29103m h(x) work-
tape squares (half for an m-ary representatfon of h(x) and the other
half for an m-ary counter up to h(x) to :lqiap tepdck of the input head
" position on lh(x)) plus the two additional:swoxkiape heads. Hence,
Ly = {x| "™ ¢ 1w ")

= {xl lh(x)

c {x] 1"® e (v

€ Lsz(uo')}

= L(Uy);
and, for every e € L "'+2,

Zologm h(ex) - G(h(ex)) + c, + SpacesM (x) < Sz(h(ex)) =
_ e

91

Spaceul(ex) < Zologm h(ex) + Sl(h(ex)).

* .
For any recursive L c {1} , we can use H1 just as in the proof of

Theorem 18 to get an (m,f#+2)-machine Me with

0
X x €L, if k > $'(|x]);
x0" € LM,) kH
0 e,x0 € L(U,), if k<s'(|x]);
Space,, (x()k) <d+ 2-1ogm h(e0 ki YN Sl(h(eoxok+1)): if
. o ,_
0 T ka € L(Me)
0

*
. for some appropriate space bound S', some constant d, and every x € {1} .

{This uses Sl(n) 2 log2 n.)

iy * !
Claim 2. For each sufficiently long string x € {1} , the following
holds for every k:)
kaeL(Me)cstL.
0
*
Proof. Let x € {1} be so long that

G(n) = 2ologm j + c, +d
0

for every n 2 h(eox). We establish the claim for x by induction om k
running down from k = S'(|x|) to k = 0.
kzs'(x|):

ka € L(Me) © x € L, immediately.

0
k<s'(lx|): Assume x0k+1 € L(Me) ®x € L.

0
x0F € Lot) = eox0k+1 € L(U,) c L(Uy)
0

= 05t ¢ LG,)
0

= x € L.

x6L=x0k+1€L(Me)
0

) abo i 5 YR,

f'ﬂﬁi*‘*%{ﬁ%&fg 18 Jog e&*f maina] T

izn kS S

5 = Yy

EIC

3 ‘g [T RN, g B2 P owaf

A R . 2 zrrol ivpeioitige dass vo®. L misln
a:ﬂ e‘t.ﬁ)- . :

.0 : | a ISV i ablod
Ifnuammmmmgm%
b(y) s B(|y]) for all y € {o,13%, then Clain 2 gives (o &uo-m for

3;:05 oa sd {1} 3 x 38l .lozs7

R

every aufficintly lou x € L:

Spaceu (:) <d+ 20],% MW) + s‘ 7

& """""" 5513 ;ﬁ,; Wfﬁﬁ*%& 1’31 {x a3d £ u f‘;»; EELE
<d+ 2.10& i+ zt,xg‘ Gogm). ,s&gm
< 8,((agx)) e ClEhe s

,
¥

It follows that L € maacx(£ Lﬁ'ﬁi; M’ &Q&‘u&di‘w

nﬂ{&)
;}é'm EM

cursive language over {1}, this « 16k Lasm
As in Mm 18, a linilat pme! works: ﬁt -

Lo
‘m
Lok

93

Remark. The proof of Theorem 26 does not really require £ to be linear

space honest. It is enough to be able to compute f within space belong-
ing to o(Sz). 1f S2 happens to be linear space honest, for example,

*
f(n) = log S(m) will work.

For the particular function f defined by f{n) = 2n, we can get a

result that extends all the way down to 0(log n).

Theorem 27. Let Sz(n) be fully constructable by a (2,4)-machine,
1€ o(Sz(n) - log2 n), £ = 3. Then each of the following set differences
contains a language over {1}:

NSPACE(S,,2,4+1) - U {NSPACE(SI,Z,L)] 1 € o(S,(n)-5,(2n))},

DSPACE(S,,2,4+1) - U {DSPACE(Si,Z,z)l 1 € o(5,(m)-5,(2n)) }.

Proof. Define an injection h:(0 + 1) 01(1%0%) =+ N by

h(e01x0%) = 2%.3de(61 + 1),

where
x € {11,
1x = bin(1),
le = bin(j).

h(eleOk)

Note that, with care, conversion of 1 to (the reverse of)

e01x0k can be accomplished within Space.logz.h(eOIka) by a - (2,3)-machine
that leaves a worktape head marking each end of the string; this will
account for the requirement L= 3.

Let U0 be the universal simulator of Condition 2 for 2, 4. Design

a (2,4)-machine U,' to simulate U, on the input ee lh(OIXO) when it

0 0

h(e01x0")

receives the actual input 1 Because h(eleOk)/h(leOk) is an

9%

¥

integer that depends only on e, this can be done at the extra cost of
only d worktape squares, where d _depends only on e, whenever at least
space _log2 h(eleOk) is used (so that e can be computed from Ih(eOIka)

By Proposition 7(iii), I‘S (U-o') € NSPACE(SZ,Z,H-I). We prove that
2
Ls (Uo,'). ¢ NSPACE(SI,Z,Q-) for any space bound S1 with 1 € O(Sz(n)-SI(Zn)).
2
Suppose the (2, t)-machine Ul' accepts Lg (Uo') within space Sl’
2
where 1 € o(S,(n)-5;(2n)). Because 1 € o(S,(n) - log, n), it is no loss
of genmerality to assume S,(n) = log, n. - To summarize the
behavior of U,', | |
and, for e € Lz"" and x € {1}*,
nax{logz h(eleOk) d + g + Spm::e-.M (1 (ouo"))} <SS (b(eleOk)) =
Spacey (1 ‘°°1"°k’) < s1<h<e01x0“)>

Let L C {1} be any recursive lamguage over {1}. Because L is re-
cursive, we can take a deterministic (2,1)-machine M that accepts L
within some space bound S that is fully constructable by a (2,1)-machine.-
Design a (2,4)-machine M' that operates as follows on the input strimg 1™

1. Use heads A, B, C to write down (the reverse of) ele()k with

x € {1}*, h(_eleOk) = n, if possible. This requires no more

k41, .

than 1032 h(eleOk) < Sl(h(e()lxo)) worktape squares.

2. Check that e € Lﬁ’g , and then erase all but x and,O .

Ok x blanksgese

head A head B

95

Within the space occupied by x (for x sufficiently long), use
heads A, B to compute a version of bin(|x|) that has every
second and third tape square redundant. (Cf., proof of Lemma
17.) As in the proofs of Proposition 4, Theorem 15, and Lemma
17, one of these sets of redundant tape squares can be used to
mark the two ends of the string so that it can be carried
around and referenced by head A without confusion. The other

set can be used as a binary counter up to |x].

0k redundant bin(|x|) blankse se

head A head B
Use head A in an attempted full comstruction of space S(|x|) in
the additional. space occupied by Ok. All necessary input data
can be obtained from the redundant version of bin(lx‘). There

is success iff S(|x|) < k.

- If S(|x|) < k, then use head A to erase the tape out to head B

except for the redundant version of bin(]x}),vandlthen compute
as M would on the input x. This requires no more than

s(lx) +|x| <k +|x|

< log, h(e01x0x*!

< Sl(h(e01x0k+1

)

))

worktape squares.

1f S(|x|) > k, then completely erase the tape out to head B,
freeing all ¢ worktape heads, and then compute as Ul' would on

h(eleOk

+1
the input 1) (which is just twice the length of the

96

+1

actual input). This requires no more than Sl(h(e01x0k)

worktape squares for acceptance.

To summarize the behavior of M' on 1h(e°1x°k)’

k = S(|x|) = behave like M on x; :
K+
k < 5(|x|) = behave like U* on 1M(°0TX0°),

h(e01x0%)

For 1 € LMY,

h(eleOk)

Spaceu,(l 1

) s 5, ((e01x0“hy).

The recursion theorem (Theorem 15) does not apply as stated, so we

adapt it. Let e, be the program code for M'. Take M, to be a (2,48)-

1

DO (ere x € (1) on

machine that operates as follows, given 1

its input tape and e € L:’ﬁ on its worktape: .

1. Convert e to f(e), where f is as in Condition 3.
2. Convert f(e) to the\stringlf e,{l}*(of length‘3j, where
bin(j) = l.f(e).

h(£(e)01x0%)_

3. Simulate U, on e2o1 To do this, commit e to

0
finite-state memory and carry y around with one of the worktape

heads of U,> modifying symbols of y to mark the ‘ends of the

string and the position in y that indicates which, if any, of

the 3 copies of lh(OIXOk) that compose lh(f(e)OIka) U, is
currently scamning on its input tape.
Let eo = f(el). Then He operates as follows on input lh(OIXOk), where
0
*
x € {1} :

1. Write e, on the worktape.

2, Comvert e to f(el) = e,-

97

*
3. Conmvert e, to the string y € {1} of length 3j, where

" bin(j) =

4. Simulate U0 on ez.lh(eOOIka).

Thus,

h(leOk) € Lot) oe, .{hle 01x0) e Ly
[(e,01x0 ky €. 101"

h(leOk) h(eOOIka))’

Space, Q <c+ Space.“,(l
e
0
where c¢ is o plus the number of worktape squares required for steps
2

1, 2, 3.
i)
Claim. For each sufficiently long string x € {1} , the following holds

for every k:

k
lh(leO) €LM) ©x €L.
)

*
Proof. Let x € {1} be so long that

Sz(n)-Sl(Zn) = deo + ceo +c

for every n = h(e001x). We establish the claim for x by induction on k

running down from k = S(|x|) to k =

k = s(|x|):
h(01x0%) h(e 01x0%)
1 € L(Meo) o1 0 € LM')
o X € L(M) ’=
K+l

h(01x0

k < S(|x|): Assume 1)EL(M)axeL

1h(01x0k) €L) = {heg leOk)
0

€ L(M'")

98

+1
h
1 (leo) c L(He)
0
= x € L.
x€L=1h(01xo)EL('H)
1h(eOOIxO) € L(H)
- Space.u,(lh(eoo-lxo)) < 5, (h(e01x0"%))
o k+1
= max{logz h(e 01x0k+1) de +ec, + Spaceu (lh(leo))}
. o 0 ey
< max{log2 h(e001x0k+1), d +c¢ +c
e e
o0 h(e ono“*l)
+ Space,, (1)}
k+2
< deO + Co. +c ¥ Sl(h(eOOIxo))
s S, (h(e 01x0"*1))
(because x is so long)
k+1
1h(eOOIxO) € L(Ul')
Jh(e 01x0%) c Lo
1h(leOk) € L(Me y. O
0
Finally, Mé can be modified to use its finite-state control to re-

0

ject padded inputs (those of even length) and to satisfy the claim for

short ones without using the worktape. If leo = bin(j), then this gives

an off-line TM that accepts {1

61+1| X € L, 1x = bin(i)} within space

81(2-3j.h(011n)) € Q(Sz(3joh(011n))). From this it is easy to derive a

fixed recursive space bound S3 for which L ¢ NSPACE(S3). Since L is an

99

- arbitrary recursive language over {1}, this contradicts Lemma 16.

As in Theorem 18, a similar proof works for DSPACE. [

Corollary 28. Let S,, S be fully constructable; and let £(n) € 0(n)-0(1)
be nondecreasing and linear space honest. There are languages over {1}
that bear witness to the following proper containments:

Wy {DSPACE(Sl)l S, € 0(5,)} ¢ DSPACE(S,) ,

U {NSPACE(S,)| 312 € o(s,)} g DSPACE(S,)
vhenever log n € o(S,(n)y."

(11) U {NSPACE(S,)| S,(n + £(n)) € o(5,(n)), §,(n) € 0(S,(n))}

‘E NSPACE(S,)
whenever log n € o(sz(n)).

(111) U {NSPACE(S,)| S,(2n) € 0(S,(n)), S,(n) € 'o(Sz(h))} g NSPACE(S,) ,
U {DSPACE(s1)1 §,(2n) € 0(5,(n)), 5,(n) € o(5,(n))} g DSPACE(S,)
vhenever 1 € o(S,(n)).

(iv) DSPACE(S,m) g DSPACE(S)

vhenever 1 € o(S(n)).
(v) NSPACE(S,m) g NSPACE(S)
whenever log n € o(S(n)),
S(n + £(n)) € 0(S(m)).
(vi) NSPACE(S,m) g NSPACE(S)

whenever 1 € o(S(n)),

fThe technique of [MM71] can be used to show that each of the fol-
q

lowing set differences contains a language over a one-letter alphabet if

52 is fully constructable:

DSPACE(S,) - U {nsmcz(sl)l S, fully constructable, S, ¢ 0(51)},
DSPACE(S,) - U [NSPACE(SI)] s fully constructable, S, ¢ 0(s,)}

100

S(2n) € 0(s(n)).
(vii) NSPACE(S,m) ; NSPACE(S ,m+1,1),
DSPACE(S ,m) % DSPACE(S ,m+1,1)
whenever log n € o(S(n)),
S(n + £(n)) - S(n) € o(S(n)),
m is sufficiently large.
(1f s 1is fully constructable by an (ﬁ,l)mchim, then m is snffi-
ciently large; if S is actually linear space honest, then m = 2 is
sufficiently large.)
(viii) NSPACE(S,m) ? NSPACE(S ,m+1,1),
DSPACE(S ,m) (; DSPACE(S ,m+1,1)
whenever 1 € o(S(n)),
5(2n)-S(n) € o(s(n)),
m is sufficiently large. ’
(1f S is fully comstructable by an'(m,l)-ma;:h;ne, then m is suffi-
ciently large.) |
(ix) NSPACE(S,m,£) (; NSPACE(S,m) for all g,
DSPACE(S ,m, £) ? DSPACE(S,m) for all §
whenever log n € 0(log S(n)),
S(n + £(n)) - S(n) € 0(log S(n)),.
m is sufficiently large.
(1f S is fully constructable by an (m,1)-machine, then m is suffi-
ciently large; if S is actually linear space honest, then m = 2 is
sufficiently large.)

(x) NSPACE(§:S,2,4) g NSPACE(§ »S,2) for all g,

101

DSPACE(§¢S,2,4) g:DSPACE(G-S,Z) for all §
whenever 1 € o(S(n)),
S(2n)-s(n) € 0(log S(n)),
§ is rational and sufficiently large.
(If 8+S is fully constructable by a (2,1)-machine and

1 € o(§+S(n) - log2 n), then § is sufficiently large.)

Proof. (i) Use Theorem 25. (See Coroll#ry 19(i1).)

(ii) Use Theorem 26. (See Corollary 19(iii).)

(iii) Use Theorem 27. (See Corollary 19(iii).)

(iv) Use Theorem 25. (See Corollary 20(ii).)

{v) Use Theorem 26. (See Corollary 20(iii).)

(vi) Use Theorem 27. (See Corollary 20(iii).)

(vii) Use Theorem 26. (See Corollary 23(i)-.)

(viii) Use Theorem 27. (See Corollary 23(i).)

We explicitly prove parts (ix), (x) to show just how few additional
worktape heads can increase the power to accept languages over a one-
letter alphabet. P

(ix) Take m so large that S is fully congtructable by an (m,1)-
machine, and look at any f. Take k so large that

4-10gm n +S(n + £(n)) - S(n) < k-logm S(n).

Since S + k-logm S is fully constructable by an (m,3)-machine, Theorem
26 gives a language over {1} that bears witness to the proper contain-
ment in

NSPACE(S,m, ¢) g:NSPACE(S + k-logm S, m, g+6)

 NSPACE(S ,m, 4+k+9) -

| S(n + 8D~ 540)- G kSR): ¥ B> £4 515 Bemiion.

102 4

C NSPACE(S mYi: -.: (0.:.3%004%:20

!

The proof for DSPACE is idemtical. 2y BT raveriy

(x) Take rational § so large thef (8 gmwuw a
) ; Look at .

(2,1)-machine and §-S(n) lﬂ%ﬁmf@fmﬁ
any 42 3. Take &» Suadolangs . thak &
Since 8 + (|ojtl)sleg, Exbe:
Theorem 27 gives & I-m;wa£§%f o
contaioment in

nsmf(a's,z.’p |

1 ‘f’w' ﬁszsoa$ *% W*w vy

e

.63 rmyoad? S

s f o
N g H
S *%’ 7 ;" ,ﬁa% Sl Yoy
AL EBYORNY Sl (201
X .
-
- ¥

s by
respactively. o ; Ltsdsdals we3tsf
(10, Although vpsesmenta pssemtly srere: sisepel Mapessby thepres
for space bounds below log:n: (£ ' n e ogior wiphabet),. .
we can exhibit a mw mggamm

. langesge: i3 !ﬁﬂ*{knﬁ‘; ﬁ;ﬁﬁi}&wﬁawwx%ﬁu; f.!iu} i B ﬂug{“ R PO

(@) wingkl 0 ds awtsddednibia by MJi: (1) wovo sgeoiaeT 5 el
A = {n] £(n) 1s a power of 2}. R .
(A. mycr’ points out that, Ji: Hartenis. ones-
exmple in a private comemication tochingdn, SPEAIem

103

obtained from the deterministic off-line TM that fully constructs the
space bound of Proposition 7(iv), se L € DSPACE(log log m). To prove
L nonregular, it certainly sgffices to find a positive integer np for
each prime p > 2, such that

AN {m-np] lsm<p}=¢#AN {m-np] 1 < m}.
Just take np to be the least common multiple of the positive integers

not exceeding 2k, where ¥ <p< 2+

2k < f(m-np) Sp< 2k+1,

. For 1 < m<p, then,

so that m-np ¢ A. Yet, the least common multiple of the positive inte-

+1

gers smaller than 2k - 1is a multiple of ,np that does belong to A.

Examples. There are languages over a one-letter alphabet that bear wit-b

" ness to the following proper contaimments:

NSPACE(anlog* n) c;, NSPACE(Z“) (part (ii) with f(n) = log* Iog* n).

U {NSPACE(S)| S(n) € o(log n)} G NSPACE(log mn) ’(minimt;m example of
part (iii)).

DSPACE(2",m) g DSPACE(2") (part (iv))
8.13

8.13

NSPACE (n /(1032 21 n)5'6, m) ;; NSPACE(n /(log2 21 n)5'6, mtl, 1)

(part (vii)).
NSPACE((log, 5, m)°"°, m) G NSPACE((Log,) 2)>8, o1, 1)
(part (vii) or part (viii)).

n/log* n nllog* n

NSPACE(2 , M) c; NSPACE(2 , mtl, 1) (near-maximum

% *
example of part (vii); f(n) = log log n)..

NSPACE(n}/® /s

sm, L) g NSPACE(n1 ,m,,e+L4.5_|+10) for every rational § =2 1
(proof of part (ix)).

* *
NSPACE(ne«log, n/log n, m, §) S NSPACE(n. log,, n/log n, m, 4+13)

104

(near-maximum example of part (ix)).

NSPACE(].og2 n, 2k,) t; NSPACE(logi n, 2k, 4+5) for every g = 3
(proof of part (x)).
‘ k

NSPACE((Iog2 n) (log2 log2 n), 27, §) g NSPA&:E((Iog2 n) (l‘og2 1032 n),

Zk, 416) for every f =z 3 (near-maximum example of part (x)).

Corollary 29. Each of the following set differences contains a language

over a one-letter alphabet:
NHEADS (k+5) - NHEADS(k),
DHEADS (k+5) '~ DHEADS (k) .
Proof. Corollary '}28 gives a 'Iahguage over {1} thﬁt bears witné;é fo the
proper containment in |
NHEADS (k) c NSPACE(log, n, 2, 1) (by Lemma 21)
G NSPACE(log, n, 2% 6

k+
L

C NHEADS(k+5) (by Lemma 21).

c NSPACE(Iogz n, 2

The argument for DHEADS is identical. [J

105

10. Open questions

Our most general open questions, of course, concern necessary and
sufficient conditions for containment and separation among the

NSPACE(S,m,£) , DSPACE(S,m,{) complexity classes.

1. For containment we ask in particular how close the truth comes to

the "ideal" result

5, (n)) s;@ 8
p 0 +S,@ 2 eom 1 s @ Y =

m
NSPACE(SZ,mz,LZ) C:DSPAQE(SI,EI,LI).

This very strong statement would immediately yleld and perfect all

the results of Section 2. It would also yield NSPACE(S,m,{) =

DSPACE(S,m,L), however, so it seems extremely likely that the truth

stops somewhat short of the statement.

2. For separation we ask how close the truth comes to the "ideal" result
that, for S2 fully constructable, there must be a language in
DSPACE(S, »m,,4,) - U {NSPACE(Sl,ml,jl)I

S, (n)) 5, (n) L
m, 2 e5,(m) % ¢ om, 1 s @ Dl

This very strong statement would immediately yield and perfect all

the separation results of Section 4.

3. Lemma 21 illustrates the relationship between additional input heads
and additional space log n. If we consider a model that has k =2 1
read-only heads on its input tape, then the open statements above
could be rephrased in terms of quanfities of the fqrm ms(n)-s(n)“.nk

rather than just ms(n)-s(n)z. Then they would include and perfect

106

also Lemma 21, Corollary 22, and the work of [Ib72].

The following speecific instances of the above questions are just

beyond the frontier of our knowledge:

4.

10.

11.

DSPACE(n,2,1) ='DSPACE(n/1632 3, 3, 1)? Proposition 3 comes close
-to an affirmative answer.
DSPACE(n,2,1) = DSPACE(n - log, n, 2, 2)? Propositions 4, 5 come
close to an affirmative answer.

. .
NSPACE(log n) c DSPACE((log n)zllog n)? Propeosition 6 comes close
to an affirmative answer.
NSPACE(S,m,f) = DSPACE(S,m,£)? Everybody éxpects a negative answer,

but our study offers no clear and éonvincing evidence for one. A

negative answer to any of open questions 8, 9, 10, 11, 19, 20 would

do, though.

DSPA.CE(Iogn)‘d:.NSPACE((Iog2 n)/2, 2, 1)? Theorem 8 comes close to

an affirmative’answer; e. g., DSPACE(loé'n)'dzﬁSPmCE((iogz n)/3, 2, 1).

DSPACE((log n)(log* n)) & NSPACE(log n)? Corollary 19(i) comes
close‘to an affirmative answer.

zn“ 2n+1 *
NSPACE(2”) g:NSPACE(Z . /log n)? Corollary 19(iii) comes close

to an affirmative answer, and Corollary 19(ii) gives an affirmative

answer for the DSPACE analogue.

~ * * ‘
NSPACE((log n)", 2, 1) g NSPACE((log n)™)? Corollary 20(iii)
comes close to an affirmative answer, and Coréllary 20(ii) gives

an affirmative answer for the DSPACE analogue.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

107

DSPACE(log2 n, 2, 1) c DHEADS(4)? Lemma 21 comes close to an

affirmative answer.
DHEADS (k) g DHEADS (k+1)?

DHEADS (k+1) & NHEADS(k)? TFor the particular case k =2, we suspect

k
that [1n| k€N, n= 22 } ¢ NHEADS(2), but the suspicion does not

generalize.

DSPACE(2",m) g DSPACE(2”,m+1)? Corollaries 20, 23(ii) both come

close to an affirmative answer.

DSPACE(n(log, n) (log™ n), 2, 1) G DSPACE(n(log, n) (1og” n), 2)?

Corollary 24(1ii) comes close to an affirmative answer.

DSPACE(log, =, 2, 1) & DSPACE(log, 1, 2, 5)? The proof of Corollary
24(ii) comes close to an affirmative answer.

/2

DSPACE(n - (log, /2, 2, 1 G DSPACE(n,2,1)?

2n+1 on
Does NSPACE(2™) - NSPACE(2”) contain a language over a one-

letter alphabet? ' Corollary 28(ii) comes close to an affirmative

answer.

Does NSPACE(Zn) - NSPACE(zn,Z,l) contain a language over a one-

letter alphabet? Corollary 28(v) comes close to an affirmative

answer.

Does DSPACE(n-log2 n, 2) - DSPACE(n-log2 n, 2, 1) contain a language

over a one-letter alphabet? Corollary 28(ix) comes close to an

affirmative answer.

22.

23.

24.

25.

26.

27.

108

Does DSPACE((log2 n)2, 2) - DSPA,CE((log2 n)z, 2, 1) contain a lan-

guage over a one-letter alphabet? Corollary 28(x) comes close to

an affirmative answer.

Does DHEADS (k+2) - DHEADS(k) contain a language over a one-letter
alphabet?

Finally, we list a few miscellaneous open questions.

Is there a hierarchy of languages over {1} for space bounds below

log n?

For S fully constructable by an (m,f)-machine and Uo the universal
simulator of Condition 2 for m, £, is there any language in
NSPACE(S,m, 4+1) that requires more space (on an (m,f+l1)-machine)

than the S-cutoff of UO?

Even if L € NSPACE(S,) - NSPACE(S,), there may be an off-line TM
that accepts infinitely many strings x € L within space Sl(|x|).
When can we find)an infinite language L € NSPACE(SZ) such that
every off-line T that accepts L requires more than space Sl(lx[)

on all but finitely many strings x € L?

Is there some conceptually simple language in U {NHEADS(k)| k > 1}
or U {DHEADS(k)| k = 1} which is not in NHEADS(k) or DHEADS(k) for
any small k (say k = 3)? If, for X a matrix of strings over {0,1},
we define

r(X) = row-wise concatenation of X,

c¢(X) = column-wise concatenation of X,

then some good candidates are

28.

109

{r(XeX)| X is a k x 2 matrix},

b

{r@e®)]
{r®)ec)]

{r(X)c(X)| X is a k x k matrix for some k}.

is a k x 2 matrix for some k},

b

is a k ¥ k matrix},

What are the complexities of these languages?

If S is fully constructable by an (m,g)-machine, does
logm n - (L-l)-logm 1ogm n - S(n) € 0(1)
necessarily hold? Proposition 7(v) comes close to an affirmative

answer.

[Aan74]

[AU72]

[AU73]

[BG70]

[BGIW70]

[BGW70]

[Bk72]

[Blm67]

[Bor72]

[Ck71]

[Ck73]

[Con72]

110
BIBLIOGRAPHY

Aanderaa, S. 0., On k-tape versus (k-1)-tape real time computa-
tion, SIAM-AMS Colloquia on Applied Mathematics, 7(1974), To
appear.

Aho, A. V. and Ullman, J. D., The Theory of Parsing, Transla-
tion, and Compiling; Volume I: Parsing, Prentice-Hall,
Englewood Cliffs, N. J., 1972.

Aho, A. V. and Ullman, J. D., The Theory of Parsing, Transla-
tion, and Compiling; Volume II: Compiling, Prentice-Hall,
Englewood Cliffs, N. J., 19 ' ‘

Book, R. V. and Greibach, S. A., Quasi-realtime languages,
Mathematical Systems Theory, Vol. 4, No. 2, June 1970, pp.
97-111.

Book, R. V., Greibach, S. A., Ibarra, O. H. and Wegbreit, B.,
Tape-bounded Turing acceptors and principal AFLs, Journal of
Computer and System Sciences, Vol. 4, No. 6, December 1970,
pp. 622-625.

Book, R. V., Greibach, S. A. and Wegbreit, B., Time- and tape-
bounded Turing acceptors and AFLs, Journal of Computer and
System Sciences, Vol. 4, No. 6, pp. 606-621.

Book, R. V., On languages accepted in polynomial time, The SIAM
Journal on Computing, Vol. 1, No. 4, December 1972, pp. 281-287.

Blum, M., A machine-independent theory of the complexity of
recursive functions, Journal of the Association for Computi g
Machinery, Vol. 14, No.‘il April 1967, pp. 322-336.

Borodin, A., Computational complexity and the existence of
complexity gaps, Journal of the Association for Computing
Machinery, Vol. 19, No. 1, January 1972, pp. 158-174.

Cook, S. A., The complexity of theorem~proving procedures,
Proceedings of Third Annual ACM Symposium on Theory of Computing,
Shaker Heights, Ohio, 1971, pp. 151-158.

Cook, S. A., A hierarchy for nondeterministic time complexity,
Journal of C uter and System Sciences, Vol. 7, No. 4, August
1973, pp. 343-

Constable, R. L., The operator gap, Journal of the Association
for Computing Machinery, Vol. 19, No. 1, January 1972, pp.
175-183.

111

[Con73] Constable, R. L., Two types of hierarchy theorem for axiomatic
complexity classes, in Computational C lexity, R. Rustin, ed.,
Algorithmics Press, New York, 1973, pp. %7 63.

[F167] Floyd, R. W., Nondeterministic algorithms, Journal of the
Association for Computing Machinery, Vol. 14, No. 4, October
1967, pp. 636-644.

[FMR72] Fischer, P. C., Meyer, A. R. and Rosenberg, A. L., Real-time
simulation of multihead tape units, Journal of the Association
for Computing Machinery, Vol. 19, No. 4, October 1972, pp.
590-607. '

[FO73] Feldman, E. D. and Owings, J. C. Jr., A class of universal
linear bounded automata, Information Sciences, Vol. 6, No. 2,
April 1973, pp. 187-190.

[FR74] Fischer, M. J. and Rabin, M. O., Super-exponential complexity
' ‘of Presburger arithmetic, Project MAC Technical Memorandum 43,
Massachusetts Institute of Technology, February 1974.

[GB74] Gill, J. and Blum, M., On almost everywhere complex recursive
functions, Journal of the Association for Computing Machinery,
Vol. 21, No. 3, July 1974, pp. 425-435.

[Ha72] Hartmanis, J., On non-determinancy in simple computing devices,
Acta Informatica, Vol. 1, Fasc. 4, 1972, pp. 336-344.

[HaS65] Hartmanis, J. and Stearns, R. E., On the computational complexity
of algorithms Iransactions of the American Mathematical Society,
Vol. 117, May 1965, pp. 285-306.

[HeS66] Hennie, F. C. and Stearns, R. E., Two-tape simulation of multi-
tape Turing machines, Journal of the Association for Computing
Machinery, Vol. 13, No. 4, October 1966, pp. 533-546.

[HU69a] Hopcroft, J. E. and Ullman, J. D., Some results on tape-bounded
Turing machines, Journal of the Association for Computing
Machinery, Vol. 16, No. 1, January 1969, pp. 168 177.

[HU69b] Hopcroft, J. E. and Ullman, J. D., Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading, Mass., 1969.

[Hun73] Hunt, H. B. III, The equivalence problem for regular expressions
with intersection is not polynomial in tape, Technical Report
73-161, Department of Computer Science, Cornell University,
March 1973.

[Ib72} Ibarra, O. H., A note concerning nondeterministic tape complexi-
ties, Journal of the Association for Computing Machinery, Vol. 19,

112

No. 4, October 1972, pp. 608-612.

{Ib73a] Ibarra, 0. H., On two-way multihead automata, Journal of
Computer and System Sciences, Vol. 7, No. 1, February 1973,

pp- 28-36.

[Ib73b] 1Ibarra, O. H;, A hierarchy theorem for polynomial-space recog-
nition, Department of Computer Science, University of Minnesota,
Minneapolis, October 1, 1973.

[IS73] Ibarra, 0. H. and Sahni, S. K., Hierarchies of Turing machines
with restricted tape alphabet size, Department of Computer
Science, University of Minnesota, Minneapolis, October 12, 1973.

[Krp72] Karp, R. M., Reducibility among combinatorial,problems, in
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, ed., Plenum Press, New York, 1972, pp. 85-103.

[Lyn72] Lynch, N. A., Relativization of the theory of computational
complexity, Project MAC Technical Report 99, Massachusetts
Institute of Technology, June 1972..

[Mey73] Meyer, A. R., Weak monadic second order theory of successor is
not elementary-recursive, Project MAC Technical Memorandum 38,
Massachusetts Institute of Technology, December 1973.

[MM71] Meyer, A. R. and McCreight, E. M., Computationally complex and
pseudo-random zero-one valued functions, in Theory of Machines
and Computations, Z. Kohavwi and A. Paz, ed., Acadeq;c Press,
New York, 1971, pp. 19-42.

[MS72] Meyer, A. R. and Stockmeyer, L. J., The equivalence problem
for regular expressions with squaring requires exponential
space, Proceedings of 13th Annual S gium on Switchi
Automata Theory, College Park, Maryland, '> Pp- 1 ‘

[NZ60] - Niven, I. and Zuckerman, H. S., An Introduction to the Theory
of Numbers, Wiley, New York, 1960.

-[RF65] Ruby, S. and Fischer, P. C., Translational methods and computa-

tional complexity, IREE Conference Record on Switching Circuit
Theory and Logical Design, Ann Aﬁﬁbr, Mihhigan, 1965, pp. 173-
178. -

[Rit63] Ritchie, R. W., Classes of predictably computable functions,
Transactions of the American Mh:hematicaL,Soc;g;y, Vol. 106,
January 1963, pp. 139 173.

[Rogb7] Rogers, H. Jr., Theory of Recursive Functions and Effective
Computability, McGraw-HIIl, New York, 1967. .

[Sav70]

[SFM7 3]

[SHL65]

[SM73]

[St74]

[Yam62]

[Yng71]

113

Savitch, W. J., Relationships between nondeterministic and de-
terministic tape complexities, Journal of Computer and System
Sciences, Vol. 4, No. 2, April 1970; pp.-177-19

Seiferas, J. I., Fischer, M. J. and Meyer, A. R., Refinements
of the nondeterministic time and-space hierarchies, Proceedings
of 14th Annual Symposium on Switching & Automata Theogz, Iowa
City, Iowa, 1973, pp. 130-137.

Stearns, R. E., Hartmanis, J. and Lewis, P. M. II, Hierarchies

of memory limited computations, IEEE Conference Record on Switch-
Circuit Theory and L~§ical 5:3355, Kan - arbor, Hichigan, 1965

pp 179-190.

Stockmeyer, L. J. and Meyer, A. R., Word problems requiring
exponential time: preliminary report, Proceedings of Fifth
Annual ACM Symposium on Theory of Computing, Austin, Texas,
1973, pp.”I-gTp IR

Stockmeyer, L. J., The complexity of decision problems in
automata theory and logic, Project MAC Technical Report 133,
Massachusetts Institute of Technolegy, June 1974.

‘Yamada, H., Real-time computation and recursive functions not

real-time computable, IRE Transactions om Electronic Coqputers,
Vol. EC-11, No. 6, December 1962, pp. 753-760.

Young, P., Easy constructions in complexity theory: speed-up
and gap theorems, Computer Science Department Technical Report
57, Purdue University, July 1971 !

114

APPENDIX 1
TIME. DIAGONALIZATION

Diagonalization is a techmique for constructing a language that is
not in some given class. If the members of the class can be described
by character strings, then the simplest diagm],\ construction includes
the string x just if the,Ianggggg:daas:ihed_bx,tb;;,atr;qafdoasfggg in-
clude x. A useful variant on this idea is to include xy 1ff the language
described by 1ta,p?e£ix¢x does n9t. v

To diagonalize over a complexity class, a good approach is to de-
scribe iangu;ge.s by encoding the pregrama of sbe resource-hounded auto-
mata that accept them. 'men the coﬁstmc,tiog,_. canbe pexrformed by em-
ploying a "umniversal simylatox" that can simulate any automaton from its
program code. The simulation can then be examined, 'ﬁith—di&&greement in
mind, to decide whether or not it leads to accaptance '

Because we shall be interested also in an uppexr bound on the com-
plexity of the diagonal language, we will want the constructibn to be
effective and as efficient as possible. This calls for an efficient
universal simulator. To diagonalize over DTIME(T), we can use the uni-
versal simulation technique of Hennie and Stearns [HeS66] to simulate t
steps of the deterministic T™M acceptor with program code e by ceotolog t
steps of the simulator, where the constant ¢, depénd6~on1y on e. The
diagonalization technique used by Hartmanis and Stearns [HaS65] then
shows that DTIME(Tz) - DTIMK(TI) is nonempty whenever T, is a running
time and T, ¢ O(Tl log Tl)' For further detaile':, see [HasS65]}, [HeS66],

[Con73], and the sketch below of a nondeterministic diagonaliszation over

115

DTIME(T,).

For nondeterministic TM acceptors, we can use the technique of Book,

Greibach, and Wegbreit [BGW70] (Lemma 8 of Chapter Two of this thesis) to
get a more efficient universal simulation. (Doing so requires that their
technique be effective, and it is.) In the following proposition, we use
the details of this simulation in a diagonal construction in the style of

[HaS65], [HeS66].

Proposition. If T2 is a running time with T2 4 O(Tl), then

NTIME(T,) - DTIME(T,) # ¢.

Proof sketch. (We assume familiarity with the proof sketch in Chapter

Two of Lemma 8.) We construct a TM acceptor M that diagonalizes over
DTIME(TI) within time bound T2. Given an input ex (with e a program
code), M performs the (nondeterministic) Lemma 8 éimulation of Me on ex
and simultaneously operates clocks for the running times T2/2 and TZ'
Recall that the simulation involves guessing a sequence of displays and
actions and then checking it (deterministically) for one of three out-
comes;

not a legal computation,

legal computation without acceptance,

legal computation with acceptance.
If the outcome is the second one and that fact is discovered after t
steps by M, where T2(|ex])/2 stg Tz(]ex]), then M acceptslex. There
is no other way for M to accept.

Now suppose Me deterministically accepts L(M) within time T1 for

some particular program code e. Without loss of generality, assume that

116

Me halts only when it accepts. There is some constant c such that M
will get through computations of length t by He within cet of its owm~
steps. Since T, ¢ O(Tl)’ we can take x € {0,1}* so that

c-T1(¥ex|)‘< T2(|ex|)/2. If M, deterministically accepts ex, then it
does so within Tl(lexl) steps, and there can be no longer legal computa-
tion. By design, then, ax € L(Me) implies ex ¢ L(M). If M, does not
accept ex, then there is a legal computation of every length; therefore,
ex ¢ L(Me) implies ex € L(M). The contradiction establishes

L(M) ¢ DTIME(T,). O

To diagonalize over NTIME(T) is more difficult. The problem is
that discovering that Me does not accept ex within t steps seems to re-
quire examining all legal lines of simulated computation up to t steps.
This is 2 deterministic process which apparently may take exponentially
longer than simulating a single legal line, so the diagonal construction
yields DTiME(Tz) - NTIME(Tl) # ¢ whenever T, is a rdﬁningvtiﬁe and
log T, ¢ O(Tl)'

None of the above diagonal constructions actually depends on T1,
and they all produce languages over {0,1}; so Theorem 1 of Chapter Two
summarizes the results.

A technicality rules out such strong sepg;ation;results‘fq: lan-
guages over a one-letter alphabet. Suppose;vforlex}hple, that T, is a
running time with n log n € o(TZ(n)) and that L € DT;”E(T2)418 a lan-
guage over just {1}. If the complement of L is fini;g;répen L is regu-
lar and L € DTIME(n). If the complement of L is infini;e, on>the other

"

hand, then our convention that only acceptance time matters guarantees

117

that L € DTIME(Tl) for
Té(n), 1f 1" e L;
Tl(n) = n
n, if 1" ¢ L.
In either case, L € |J {DTIME(T1)1 T, ¢ O(T1 log Tl)}.
Strengthening the "lim inf" condition on T1 (e. 8. T, ¢ O(T1 log Tl))

to a "lim'" condition (e. g., T, log T1 € o(Tz)) is one way to get sepa-

1
ration results for languages over a one-letter alphabet... A diagonal
language over {1} can then be constructed by trying to differ on input
1" from Mf(n)’ wher? f(n) is obtained from, say, the binary representa-
tion of the exponené of 2 in the prime factorization of n. The results
are given by Theorem 2 of Chapter Two.

As far as we know, diagonalization alone yields no results better
than those of Theorems 1, 2 of Chapter Two for TM acceptance time com-
plexity. If we change our definition to take into account the time
spent in nonaccepting computations, however, then we can use the dia-
gonal technique of [MM71] to get by with "1lim inf" conditions in Theorem
2. 1. e., for

NTIME'(T) = {L| L is accepted by some TM that never computes for

more than T(n) steps on an input of length n},
DTIME'(T) = {L| L is accepted by some deterministic TM that never
computes for more than T(n) steps on an input of
length n},
the set differences
DTIME'(T,) - U {DTIME'(T,)| T, € O(T, log T,)},

NTIME' (T,) - U {DTDME'(T))| T, € O(T))},

118

DTIME'(T,) - U {NTIME'(T1)| log T, 3 o(Tl)}

do contain languages over a one-letter alphabet if T, is a running time.

2

For T a running time, we clearly have

NTIME(T)

NTIME' (T),

DTIME(T)

DTIME' (T),
so we do get languages over {1} in the set differences of Theorem 1 of
Chapter Two if we insist that the unions range only over running times

Tl.

119

APPENDIX II

A PROGRAM CODING FOR CHAPTER TWO

Let L: c. = [program}, where

[program] = begin program [1nstruction]* end program
[instruction] = begin instruction [requirement]

[rewrite]

[shifts]

[next] end instructiomn

+ begin instruction accept end instruction

[requirement] = begin requirement [symbpl]k end reqﬁifemeht

[rewrite] = begin rewrite {aymbbi]k end rewfite

[symbol] = begin symbol tally* end symbol

[shifts] = begin shifts (left + right + st:ill)k end shifts
[next] = begin next [instruc. no.]*Aeﬁd’next o

* , ,
[instruc. no.] = begin instruc. no. tally end instruc. no.

begin program = 00001 ‘ end program = 00010
begin instruction = 00011 end instruction = 00;00
begin requirement = 00101 end requirement = 0011C
begin rewrite = 00111 end rewrite = 01000
begin symbol = 01001 end symbol = 01010
begin shifts = 01011 énd shifts = 01100
begin next = 01101 end next = 01110
begin instruc. nmo. = 01111 end instruc. no. = 10000
accept = 10001 tally = 10010

reey
»

)
(g4

= 10011

|

= 1010F- o7

"
o
P99
1Y

|

For e € I.p .’ u> is the iﬂ that

"instruction” in ¢. The execution of - i
) TrEseTy bpa [moii 23 xu%‘?’;
lowing steps:

JE Rl S
1.

S Yo, ;:« v = £ 5 N
; s ‘i::,,&*aﬂ} mg
by the "mtt;. S
Iy ‘i:*’%;:iik'z

3. If the 5%‘:* m;n;. mun .
i -lfzszs} s3tzwel 5 ,,,_,*,%m = L ST

’ ‘o &
whose pcsms e m;y*m ¥ Qiuit OF theve s sons.)
i‘ij ;.si‘m; ;,mm .am:’fsﬁii mmrxf a% s =
5.

ltmﬁu h m m ﬁ
It is sany to “g

"fiaf'e., =
'3 of Chapter

£ AT .
srron -

CIEEIB s

¥ PB0E = e

121
BIOGRAPHICAL NOTE

The author was born on February 21, 1947, in Columbus, Ohio, where
he attended Bexley High School (Class of 1965). As an undergraduate at
M. I. T. (Class of 1969), he majored in mathematics and was inducted
into the Xi Chapter of Phi Beta Kappa in 1971. He began his graduate
years in the Department of Electrical Engineering as an NSF Graduate
Fellow and later became a Research Assistant at Project MAC. -

On January 23, 1971, he married Diane Salhanick, a Boston University
graduate from Fall River, Massachusetts. On August 13, 1974, she bore
him a son Gershon.

He has*acceﬁéed a position as Assistant Professor of Computer Science

at The Pennsylvania State University, beginning in September, 1974.

This empty page was substituted for a
blank page in the original document.

| Documggt Control Form . Date: .7 // ’f /‘iG
Report# LcsTR-137

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
: ﬁ Laboratory for Computer Science (LCS)

Document Type:

R Technical Report TRy [Technical Memo (TM)
O other:

Document Information Number of pages: /2C(13]-imaces)

© Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or [0 Single-sided or
X Double-sided ™ Double-sided
Print type:
[0 Typewriter [] offsstPress [] Laser Print
[0 inkletPrinter [] Unknown [other:
5 Check each if included with document:
| O poD Form X Funding Agent Form ﬂ Cover Page
O spine [0 Printers Notes [0 Photo negatives
X Other: /8 L1oGRAPH . PATA SHEET 1 4 Phews oF CORRETTONS
Page Data:

Blank Pagese e rumes: Fo ooy TITLE OAC L AND PRGES Q)?’kf) A

Photographs/T onal Material wr page numben:

Other (row essptenpege rumsen
Description : Page Number:
=T AGE mAL! (h]) i LW‘A»BLAM()

(i99- Im_‘ Sen ~coNTRo‘=+__M£&_f&u.QLNC NCEDT,
4 Py 0P corfgTigy’s, TRETY(I)

Scanning Agent Signoff:
Date Received: _7 /17 /54 Dete Scanned: _3 /33496 Date Retumed: _7 125 /96

Scanning Agent Signature: MNX\ /}V‘ 73

Rev @84 DSALCS Document Control Form cstrform.ved

SOME MORE CORRECTIONS TO MAC TR-137
Joel I. Seiferas

December 30, 1974

P. _9: Delete the six lines following the statement of Corollary 15.

PP- 33-34: Delete starting with the fourth word of line 9 from the

bottom of p. 33 through line 10 of p. 34.

P. 35, line 1h:

P. 35, line 15:

P. 35, lines 16,

p. 35, line 22:

Change "~ 1" to "+1".
Change "£(1)" to "£(1) +2". |
20: Change "f(n)+#m-1" to "f(n)+nH".

Change this line to

ne(n) + €L (£(n) = £(2) +n

<f£(n) +n+1
< (£(n)4) + (n#)
gy :
= (f(n)#1) + £(f(n)4#),".

p. 36: Delete the first three lines.

p. 37, line 5: Change "'I‘M (x)" to "T:I.meM (x)".

e e

