# MIT/LCS/TR-137 

NONDETERMINISTIC TIME AND SPACE COMPLEXITY CLASSES

Joel Irvin Seiferas

September 1974

This blank page was inserted to preserve pagination.
by

Joel Irvin Seiferas

September 1974

This research was supported by the National Science Foundation under research grant GJ-34671.

This empty page was substituted for a blank page in the original document.
by
Joel Irvin Seiferas

Submitted to the Department of Electrical Engineering on August 30, 1974, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.


#### Abstract

The marginal utility of the Turing machine computational resources running time and storage space are studied. A technique is developed which, unlike diagonalization, applies equally well to nondeterministic and deterministic automata. For $f$, g time or space bounding functions with $f(n+1)$ small compared to $g(n)$, it is shown that, in terms of word length $n$, there are languages which are accepted by Turing machines operating within time or space $g(n)$ but which are accepted by no Turing machine operating within time or space $f(n)$. The proof involves use of the recursion theorem together with "padding" or "translational" techniques of formal language theory.

Relations between worktape alphabet size, number of worktape heads, number of input heads, and Turing machine storage space are established. Within every common subexponential space bound, it is shown that enlarging the worktape alphabet always increases computing power. A hierarchy of two-way multihead finite automata is obtained even in the nondeterministic case.

Results that are only slightly weaker are obtained for Turing machines that accept only languages over a one-1etter alphabet.


THESIS SUPERVISOR: Albert R. Meyer
TIILE: Associate Professor of Electrical Engineering

This empty page was substituted for a blank page in the original document.

## ACKNOWLEDGEMENTS

I would like first to thank Albert Meyer for his confidence, inspiration, and guidance during the last two and a half years and especially in this research. Many of his ideas, only a few of which he remembers having, have found their way into the thesis.

I am grateful to Michael Fischer, who also collaborated along with Prof. Meyer in some of this work, for his insightful criticism and probing technical questions.

Several helpful suggestions were made by Ronald Book and Celia Wrathall, who carefully read an earlier version of this work.

I thank the National Science Foundation (research grant GJ-34671), Project MAC, and M. I. T., which I now leave after nine happy years as a student.

On the home front, I am eternally indebted to my wife Diane, who has always placed my research environment first, even waiting until the day after the defense of this thesis to deliver our son. I also thank our parents for helping me to reach this occasion.

This thesis is dedicated to my wife and to the memory of her late father.

This empty page was substituted for a blank page in the original document.

## TABLE OF CONTENTS

Abstract ..... 2
Acknowledgements ..... 3
Table of Contents ..... 4
Chapter One: Introduction ..... 5
Chapter Two: Time Separation Theorems for Nondeterministic Multitape Turing Machines ..... 12
Figure 1 ..... 30
Chapter Three: Space Separation Theorems for Off-line Turing Machines ..... 42

1. Basic definitions ..... 42
2. Basic containment relations ..... 48
3. Notions of honesty ..... 53
4. Conventional separation results ..... 59
5. Padding whole languages ..... 64
6. Program codes and recursion ..... 67
7. Another general separation result ..... 70
8. Applications of the general separation results ..... 77
9. Witness languages over a one-letter alphabet ..... 87
10. Open questions ..... 105
Bibliography ..... 110
Appendix I: Time Diagonalization ..... 114
Appendix II: A Program Coding for Chapter Two ..... 119
Biographical Note ..... 121

This empty page was substituted for a blank page in the original document.

CHAPTER ONE

## INTRODUCTION

The ultimate purpose of studies in computational complexity is to establish the complexity, in terms of computational resources such as time and storage space, that is inherent in particular computational tasks. The existence of computational tasks with various inherent complexities is the subject of this thesis. The mere existence of such computational tasks does not, a priori, have a bearing on the complexity of computational tasks of practical interest; but in fact techniques such as those of Meyer and Stockmeyer [MS72], Meyer [Mey73], Stockmeyer and Meyer [SM73], Hunt [Hun73], M. Fischer and Rabin [FR74], and Stockmeyer [St74] sometimes show that a particular task of interest lies at some level if anything does, and results like ours can then serve. The computational tasks that we consider are "language acceptance" tasks. A language is a set of strings of symbols from some finite alphabet. A language is accepted by a computer $M$ if $M$ enters an accepting state when and only when applied to a member of the language. We denote by $L(M)$ the language accepted by $M$.

Turing machines are the computer model we use. Customarily, we measure time and space usage by a Turing acceptor in terms of input length only. (We denote by $|x|$ the length of the string $x$. ) The Turing machine $M$ accepts $L(M)$ within time $T(n)$ or space $S(n)$ if each string $x \in L(M)$ is accepted in some computation involving no more than $T(|x|)$ steps or $S(|x|)$ worktape squares, respectively. (More precise definitions appear in Chapters Two and Three.) We denote by NTIME (T) and

DTIME ( $T$ ) the classes of languages accepted within time $T$ by nondeterministic and deterministic Turing machines, respectively; and we denote by NSPACE (S) and DSPACE (S) the classes of languages accepted within space $S$ by nondeterministic and deterministic Turing machines, respectively.

We would like, for example, to define the inherent deterministic time complexity of accepting a language $L$ to be the "least" time bound $T$, in some sense, such that $L \in D T H E(T)$. The existence of languages which have no best acceptor (1anguages with "speed-up" [BIm67]), however, makes such an approach impossible. Instead, we content ourselves to specify pairs of time bounds $T_{1}, T_{2}$ for which $L \in \operatorname{DTME}\left(T_{2}\right)-\operatorname{DTIME}\left(T_{1}\right)$. In effect, then, we are led to a study of the containment lattice of the complexity classes. For example we address ourselves to the problems of finding what we call "contaimment" and "separation" conditions on time bounds $T_{1}, T_{2}$ which imply that $\operatorname{DTME}\left(T_{1}\right) \subset \operatorname{DTME}\left(T_{2}\right)$ and that $\operatorname{DTTME}\left(\mathrm{T}_{2}\right)-\operatorname{DTTME}\left(\mathrm{T}_{1}\right) \neq \phi$ (i. e., $\left.\operatorname{DTIME}\left(\mathrm{T}_{2}\right) \notin \operatorname{DTIME}\left(\mathrm{T}_{1}\right)\right)$, respectively. Rather strong separation results for the DTTME and DSPACE complexity classes are we11 known ([HaS65], [HeS66], [SHL65], [HU69a], [HU69b], [Con73], Appendix $I$ of this thesis), but the diagonalization technique that most of them rely on does not give very strong separation results for the NTTME and NSPACE classes. A result of Cook [Ck73] first separated $\operatorname{NTIME}\left(n^{r}\right)$ from $\operatorname{NTIME}\left(n^{s}\right)$ for $r \neq s$. Our contribution is a simplified and greatly generalized version of Cook's technique that applies to nondeterministic and deterministic time and space complexity.

The major value of our technique is for nondeterministic computation, and the results are most dramatic at exponential and subexponential
complexity levels. Although no real computer actually operates nondeterministically, the concept does arise naturally in connection with formal language theory ([HU69b], [AU72], [AU73]), proof theory, and the description and complexity of other processes involving arbitrary searches [F167]. (A deterministic description would force one to specify the essentially irrelevant details of some arbitrary search algorithm.) The Cook-Karp question of whether $P=N P$, where

$$
\begin{aligned}
P & =\bigcup\{\operatorname{DTIME}(T) \mid T \text { is a polynomial time bound }\}, \\
N P & =\bigcup\{\operatorname{NTIME}(T) \mid T \text { is a polynomial time bound }\},
\end{aligned}
$$

represents a mathematical formulation of the problem of characterizing the complexity of a large class of combinatorial optimization problems involving such unstructured searches ([Ck71], [Krp72]).

We first generalize Cook's technique for multitape Turing machine time complexity in Chapter Two. For well-behaved $T_{2}$, we show that $\operatorname{NTIME}\left(T_{2}\right)-\operatorname{NTIME}\left(T_{1}\right) \neq \varnothing$ whenever $T_{1}(n+1) \in o\left(T_{2}(n)\right),{ }^{\dagger}$ for example. Surprisingly, this yields some specific separation results for NTIME which are stronger than the corresponding known separation results for DTIME. In contrast, the earlier results based on diagonalization were always stronger for DTIME than for NTIME. Separation results with respect to languages over a one-letter alphabet are obtained that are only slightly weaker than the general ones.

In Chapter Three we refine the NSPACE and DSPACE complexity classes

[^0]by carefully bounding worktape alphabet size and number of worktape heads. We reformulate the known separation results for these classes and apply our technique to get new ones of the kind given above for NTIME. By relating the various resources (space, worktape alphabet size, number of worktape heads), we obtain separation results that focus on the marginal utility of each resource. As a corollary we get a hierarchy theorem for two-way multihead finite automata. As in Chapter Two, only slightly weaker separation results are obtained with respect to languages over a one-letter alphabet.

A preliminary version of this thesis has been reported jointly with M. Fischer and A. Meyer [SFM73]. In particular, Corollaries 14, 16 of Chapter Two were obtained and reported jointly. Chapter Three contains much new material, but Corollaries 19(iii), 20(iii), 22 were also presented in the preliminary version. Problems 2, 3, 4 of [SFM73] are settled affirmatively by the current results of Chapters $T w o$ and Three.

For convenient reference we now list the results which are the main contributions of this thesis. All of the relevant definitions and notation are provided in Chapters Two and Three.

Chapter Two
Assume $\mathrm{T}_{2}$ is a running time.
The most general result we prove is Theorem 13.
Theorem 13.
$\operatorname{NTIME}\left(T_{2}\right)-\bigcup\left\{\operatorname{NTIME}\left(T_{1}\right) \mid\right.$ there is some recursively bounded but strictly increasing function $f: N \rightarrow N$ for which

$$
\left.T_{1}(f(n+1)) \in o\left(T_{2}(f(n))\right)\right\}
$$

contains a language over $\{0,1\}$.

In practice it is the simpler but only slightly less general Corollary 14 that we emphasize. (For nondecreasing time bounds the result is no weaker than Theorem 13.)

Corollary 14. $\operatorname{NTIME}\left(\mathrm{T}_{2}\right)-U\left\{\operatorname{NTIME}\left(\mathrm{~T}_{1}\right) \mid \mathrm{T}_{1}(\mathrm{n}+1) \in o\left(\mathrm{~T}_{2}(\mathrm{n})\right)\right\}$ contains a language over $\{0,1\}$.

Corollary 14 gives results that diagonalization does not give precisely when $\log T_{2}(n+1) \in o\left(T_{2}(n)\right)$. Corollary 15 is a refinement that gives new results even when $\log T_{2}(n+1) \in O\left(T_{2}(n)\right)$.

Corollary 15.
$\operatorname{NTIME}\left(\mathrm{T}_{2}\right)-\bigcup\left\{\operatorname{NTIME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1}(\mathrm{n}+1) \in \mathrm{O}\left(\mathrm{T}_{2}(\mathrm{n})\right), \mathrm{T}_{1}(\mathrm{n}) \in \mathrm{o}\left(\mathrm{T}_{2}(\mathrm{n})\right)\right\}$ contains a language over $\{0,1\}$.

For deterministic time complexity, we prove a version of Corollary 14 that has an additional hypothesis.

Theorem 16. Suppose that there is some fixed $k$ such that for each deterministic $T M$ acceptor $M$ there is a deterministic $k$-tape $T M$ acceptor $M^{\prime}$ and a constant $c$ such that $L\left(M^{\prime}\right)=L(M)$ and $\operatorname{Time}_{M^{\prime}}(x) \leq c \cdot f\left(\operatorname{Time}_{M}(x)\right)$. Then $\operatorname{DTIME}\left(\mathrm{T}_{2}\right)-\cup\left\{\operatorname{DTIME}\left(\mathrm{T}_{1}\right) \mid f\left(\mathrm{~T}_{1}(\mathrm{n}+1)\right) \in o\left(\mathrm{~T}_{2}(\mathrm{n})\right)\right\} \neq \varnothing$.

When we restrict our attention to languages over a one-1etter alphabet, we still get Theorem 17.

Theorem 17. If $f$ is real-time countable, then

$$
\operatorname{NTTME}\left(T_{2}\right)-\bigcup\left\{\operatorname{NTIME}\left(T_{1}\right) \mid T_{1}\left(n+\Gamma^{-17}(n)\right) \in o\left(T_{2}(n)\right)\right\}
$$

contains a language over $\{1\}$.

## Chapter Three

Containment:

First we relate worktape alphabet size to storage space.
Proposition 3. $\operatorname{NSPACE}(S, m, l) \subset \operatorname{NSPACE}\left(S^{\prime}, m^{\prime}, \ell\right)$
if $S(n) / S^{\prime}(n) \leq \delta \leq \log _{m} m^{\prime}$ for some rational $\delta$. Similarly for DSPACE.
The next two results relate the number of worktape heads to (the
logarithm of) storage space.
Proposition 4. $\operatorname{NSPACE}(S, m, \ell+k) \subset \operatorname{NSPACE}\left(S+(k+1+\varepsilon) \log _{m} S, m, \ell\right)$
for every $\epsilon>0$. Similarly for DSPACE.
Proposition 5. $\operatorname{NSPACE}\left(S+k \cdot \log _{m} S, m, \ell\right) \subset \operatorname{NSPACE}(S, m, \ell+k+3)$.
Similarly for DSPACE.

Later on we relate multihead finite automata to logarithmic storage space.

Lemma 21. $\operatorname{NHEADS}(k) \subset \operatorname{NSPACE}\left(\log _{2} n, 2^{k}, 1\right) \subset \operatorname{NHEADS}(k+4)$.
Similarly for DHEADS, DSPACE.

Separation:

Theorems 18 and 25 are somewhat analogous to Corollary 14 and Theorem 17 of Chapter Two, especially in proof.

Theorem 18. $\operatorname{NSPACE}\left(S_{2}, m, \ell+3\right)-U\left\{\operatorname{NSPACE}\left(S_{1}, m, \ell+2\right) \mid 1 \in o\left(S_{2}(n)-S_{1}(n+1)\right)\right\}$ contains a language over $\{0,1\}$ if $S_{2}$ is fully constructable by an (m, $(\mathrm{l})$ machine. Similarly for DSPACE.

Theorem 26.
$\operatorname{NSPACE}\left(S_{2}, m, \ell+6\right)-U\left\{\operatorname{NSPACE}\left(S_{1}, m, \ell\right) \mid S_{2}(n)-S_{1}(n+f(n)) \geq 4 \cdot \log _{m} n\right\}$ contains a language over just $\{1\}$
if $S_{2}$ is fully constructable by an (m, $\ell+2$ )-machine, $\log n \in o\left(S_{2}(n)\right)$, $f(n) \in O(n)-O(1)$ is nondecreasing and linear space honest. Similarly for DSPACE.

Unlike Theorem 2.6, Theorem 27 applies even for logarithmic space bounds.

Theorem 27. $\operatorname{NSPACE}\left(S_{2}, 2, \ell+1\right)-\bigcup\left\{\operatorname{NSPACE}\left(S_{1}, 2, \ell\right) \mid I \in o\left(S_{2}(n)-S_{1}(2 n)\right)\right\}$ contains a language over just $\{1\}$
if $S_{2}$ is fully constructable by a $(2, \ell)$-machine, $1 \in o\left(S_{2}(n)-\log _{2} n\right)$, $\ell \geq 3$.

## CHAPTER TWO

## TIME SEPARATION THEOREMS FOR

NONDETERMINISTIC MULTITAPE TURING MACHINES

In this chapter we refer to what is usually called a nondeterministic multitape Turing machine [HU69b] simply as a $\mathbb{M}$, and we refer to its deterministic version as a deterministic TM. If such an automaton has $k$ tapes (each with a single read-write head), then we call it a k-tape TM or a deterministic k-tape $T M$, respectively. We often let a $T M$ receive an input, a finite string of symbols from some finite input alphabet $\Sigma$, initially written to the right of the head on tape 1 , the worktape which we call the input tape. A TM can act as an acceptor by halting in some specified accepting state at the end of some computations. We assume the reader is familiar with how concepts such as these can be formalized. A good single reference for formal definitions relating to Turing machines is [HU69b].

Definition. Let $M$ be any $T M$ acceptor. $M$ accepts the string $x \in \Sigma^{*}$, where $\Sigma^{*}$ is the set of all finite strings of symbols from $\Sigma{ }^{\dagger}{ }^{\dagger}$ if there is some accepting computation by $M$ on input $x$. $M$ accepts the language $L(M)=\{x \mid M$ accepts string $x\}$. For $x \in L(M), \operatorname{Time}_{M}(x)$ is the number of steps in the shortest accepting computation by $M$ on $x$ for $x \mathbb{L}(M)$,
${ }^{\dagger}$ We use the Kleene star * more generally as well, along with other regular expression notation for regular sets. For $A, B \subset \Sigma^{*}$,
$A+B=A \cup B=\{x \mid x \in A$ or $x \in B\}$,
$A \cdot B=A B=\{x y \mid x \in A, y \in B\}$,
$A^{*}=\{\lambda\}+A+A \cdot A+A \cdot A \cdot A+\cdots=\{\lambda\}+A+A^{2}+A^{3}+\cdots$,
where $\lambda$ is the null or empty string. When it causes no ambiguity, we sometimes omit set brackets in regular expressions.
$\operatorname{Time}_{M}(x)=\infty$.
Definition. A time bound is a function $T: N \rightarrow N$ with $T(n) \geq n$ for every n. For $T$ a time bound, the T-cutoff of the $T M M$ is the language $L_{T}(M)=\left\{x \mid \operatorname{Time}_{M}(x) \leq T(|x|)\right\}$, which is always a subset of $L(M) . A$ language $L$ is in NTIME $(T)$ iff $L=L(M)=L_{T}(M)$ for some $T M$ acceptor $M$. Similarly, if $M$ is deterministic and $L=L(M)=L_{T}(M)$, then $L$ is in DTIME(T). If $L(M)=L_{T}(M)$, then we say that $M$ accepts within time $T$.

Other, slightly different, definitions of the NTIME and DTIME complexity classes have been proposed. Book, Greibach, and Wegbreit [BGW70], for example, say that $M$ accepts within time $T$ only if every accepting computation on input $x \in L(M)$ reaches the accepting state within $T(|x|)$ steps. Such differences do not affect the complexity classes determined by time bounds of the following type, however; and time bounds of practical interest are of this type.

Definition. If $M$ is a deterministic $T M$ acceptor with $L(M)=1^{*}$ and $\operatorname{Time}_{M}(x)=T(|x|) \geq|x|$, then $T$ is a running time, and $M$ is a clock for T.

Diagonalization is the best known technique for obtaining separation or "hierarchy" results among the NTIME and DTIME complexity classes. A summary of the best separation results that have been proved by diagonalization alone is given by the following pair of theorems. (See Appendix I, [HaS65], [HeS66], [Con73].)

Theorem 1. If $T_{2}$ is a running time, then each of the following set differences contains a language over $\{0,1\}$ :

$$
\begin{aligned}
& \operatorname{DTIME}\left(\mathrm{T}_{2}\right)-\cup\left\{\operatorname{DTIME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{2} \notin \mathrm{O}\left(\mathrm{~T}_{1} \log \mathrm{~T}_{1}\right)\right\}, \\
& \operatorname{NTIME}\left(\mathrm{T}_{2}\right)-\bigcup\left\{\operatorname{DTIME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{2} \notin \mathrm{O}\left(\mathrm{~T}_{1}\right)\right\}, \\
& \operatorname{DTIME}\left(\mathrm{T}_{2}\right)-\bigcup\left\{\operatorname{NTIME}\left(\mathrm{T}_{1}\right) \mid\right. \\
& \left.\log \mathrm{T}_{2} \notin \mathrm{O}\left(\mathrm{~T}_{1}\right)\right\} .^{\dagger}
\end{aligned}
$$

Theorem 2. If $\mathrm{T}_{2}$ is a running time, then each of the following set differences contains a language over $\{1\}$ :

$$
\begin{aligned}
& \operatorname{DTIME}\left(\mathrm{T}_{2}\right)-\cup\left\{\operatorname{DTIME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \log \mathrm{~T}_{1} \in o\left(\mathrm{~T}_{2}\right)\right\}, \\
& \operatorname{NTIME}\left(\mathrm{T}_{2}\right)-\cup\left\{\operatorname{DTTME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \in o\left(\mathrm{~T}_{2}\right)\right\}, \\
& \operatorname{DTIME}\left(\mathrm{T}_{2}\right)-\cup\left\{\operatorname{NTIME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \in o\left(\log \mathrm{~T}_{2}\right)\right\} .
\end{aligned}
$$

Remark. By restricting the unions of Theorem 2 to range only over running times $T_{1}$, we can use the diagonalization technique of [MM71] to show that each of the following set differences contains a language over $\{1\}$ if $\mathrm{T}_{2}$ is a running time:

$$
\begin{aligned}
& \operatorname{DTIME}\left(\mathrm{T}_{2}\right)-\bigcup\left\{\operatorname{DTIME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \text { is a running time, } \mathrm{T}_{2} \notin O\left(\mathrm{~T}_{1} \log \mathrm{~T}_{1}\right)\right\}, \\
& \operatorname{NTIME}\left(\mathrm{T}_{2}\right)-\bigcup\left\{\operatorname{DTTME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \text { is a running time, } \mathrm{T}_{2} \notin O\left(\mathrm{~T}_{1}\right)\right\}, \\
& \operatorname{DTME}\left(\mathrm{T}_{2}\right)-\bigcup\left\{\operatorname{NTME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \text { is a running time, } \log \mathrm{T}_{2} \notin O\left(\mathrm{~T}_{1}\right)\right\} .
\end{aligned}
$$

Note the relatively poor results obtained in diagonalizing over
NTIME. Not even the gross separation result $\operatorname{NTIME}\left(n^{2}\right) \varsubsetneqq \operatorname{NTIME}\left(2^{n^{2}}\right)$, for example, follows directly from Theorem 1 ; yet, $\operatorname{DTIME}\left(n^{2}\right) ~ \xi$ $\operatorname{DTIME}\left(n^{2}(\log n)^{2}\right)$ does follow. Recently, however, Cook [Ck73] proved the following result by a new technique.

Theorem 3. $\operatorname{NTIME}\left(\mathrm{n}^{\mathrm{r}}\right) \varsubsetneqq \operatorname{NTIME}\left(\mathrm{n}^{\mathrm{s}}\right)$ whenever $1 \leq \mathrm{r}<\mathrm{s}$.
In this chapter we pursue Cook's technical breakthrough, simplifying his

[^1]proof and generalizing the result. The main generalization is Theorem 13 below. We turn now to some lemmas that will be useful in the proof of that theorem and its corollaries.
P. Fischer, Meyer, and Rosenberg [FMR72] have shown that every TM with many heads per tape can be simulated without time loss by a $\mathbb{T M}$ with only one head on each of some greater number of tapes. This allows a TM to carry out two computations at the same time, leading to proofs of the following lemmas.

Lemma 4. $L(M) \cup L\left(M^{\prime}\right)$ can be accepted in time $\min \left\{\operatorname{Time}_{M}(x)\right.$, Time $\left._{M^{\prime}}(x)\right\}$. Lemma 5. $L(M) \cap L\left(M^{\prime}\right)$ can be accepted in time $\max \left\{\operatorname{Time}_{M}(x), \operatorname{Time}_{M^{\prime}}(x)\right\}$. Proof sketches. Combine $M$ and $M^{\prime}$ by providing a second head on the first tape of each and a new input tape with a single head. Use the extra heads to copy the input string at full speed from the new input tape onto the two old input tapes. Meanwhile the remaining heads can be used to carry out computations by $M$ and $M^{\prime}$ on the respective transcribed copies of the input string, even while they are still being transcribed from the real input tape.


The same technique leads to a proof of the next lemma, in which a single TM carries out computations by $M$ and a clock for $T$ situltaneous1y, accepting if $M$ accepts before time $T$ runs out.

Lemma 6. If $M$ is a $T M$ acceptor and $T$ is a running time, then $\mathrm{L}_{\mathrm{T}}(\mathrm{M}) \in \operatorname{NTIME}(\mathrm{T})$.

The next lemma indicates that the NTIME complexity classes depend only on growth rates. It also shows that we need at least the condition $T_{2} \notin O\left(T_{1}\right)$ to be able to prove $\operatorname{NTIME}\left(T_{2}\right)-\operatorname{NTME}\left(T_{1}\right) \neq \varnothing$. It follows by Theorem 1 that, if (contrary to most people's intuition) DTIME ( $T$ ) = $\operatorname{NTTME}(T)$ for all $T$, then $\operatorname{NTIME}\left(T_{2}\right)-\operatorname{NTME}\left(T_{1}\right)=\operatorname{DTIME}\left(T_{2}\right)-\operatorname{DTIME}\left(T_{1}\right)$ is nonempty precisely when the running time $T_{2}$ is a member of the complement of $0\left(T_{1}\right)$.

Lemma 7. If $T_{1} \in O\left(T_{2}\right)$, then $\operatorname{NTIME}\left(T_{1}\right) \subset \operatorname{NTIME}\left(\mathrm{T}_{2}\right)$.
Proof sketch. For $T_{2}(n) \geq(1+\varepsilon) n$ for some $\varepsilon>0$, this is just the 1inear time speedup theorem of Hartmanis and Stearns [HaS65]. The idea is to increase the size of each TM's worktape alphabet so that several steps can be performed in one big step.

That the lemma holds for arbitrary $\mathrm{T}_{2}(\mathrm{n}) \geq \mathrm{n}$ has been observed by Book and Greibach [BG70]. The key idea is to use nondeterminism to guess the entire input string before it is read.

The following lemma, due to Book, Greibach, and Wegbreit [BGW70], indicates that for nondeterministic time complexity we can get by with TMs having a fixed number of tapes. No similar result is known for deterministic TMs.

Lemma 8. For each $T M M$ there is a 2-tape $T M M^{\prime}$ and a constant cesuch that $L\left(M^{\prime}\right)=L(M)$ and $\operatorname{Time}_{M^{\prime}}(x) \leq c \cdot \operatorname{Time}_{M}(x)$ for every $x \in L(M) .^{\dagger}$ Proof sketch. If $M$ has $k$ tapes, then the "display" of a configuration of $M$ will be a ( $k+1$ )-tuple consisting of the control state and the $k$ tape symbols scanned in that configuration. The display of a configuration determines which actions are legal as the next move and whether the configuration is an accepting one. The first task for $M^{\prime}$ is to nondeterministically guess an alternating sequence of displays and legal actions by $M$. The question of whether the sequence describes a legal computation by $M$ on the supplied input is just the question of whether the symbols actually scanned on each tape when the actions are taken agree with the guessed displays. This can be checked independently for each tape in turn by letting the first tape of $M^{\prime}$ play the role of the tape while running through the guessed sequence of displays and actions. Clearly $M^{\prime}$ runs for time proportional to the length of the sequence it guesses. For further details, the reader is referred to [BGW70].

Lemma 9. For no recursive time bound $T$ does NTIME( $T$ ) contain all the recursive languages over $\{1\}$.

Proof. Each recursive time bound lies below some running time $T_{1}$, and Theorem 2 gives a recursive language over $\{1\}$ in $\operatorname{DTHE}\left(2^{2}\right)$ $\operatorname{NTIME}\left(\mathrm{T}_{1}\right)$.

[^2]Like Cook's proof of Theorem 3, our proof of Theorem 13 makes crucial use of a trick called "padding." Acceptance time is measured as a function of input length; so if we can increase the lengths of the strings in a language $L$ without significantly changing the time needed to accept the strings, then we get a padded language $L^{\prime}$ that is less complex than $L$ as we measure complexity relative to input length. One way to pad the language $L$ to $L^{\prime}$ is to take

$$
L^{\prime}=p(L)=\left\{x 10^{k}\left|x \in L,\left|\times 10^{k}\right|=p(|x|)\right\}\right.
$$

for some $p: N \rightarrow N$ with $p(n)>n$.

Lemma 10. If $p(n)>n$ is a running time, then
$p(L) \in \operatorname{NTME}(T) \Leftrightarrow L \in \operatorname{NTIME}(T \circ p)$,
where $T \circ p(n)=T(p(n))$.

Proof. $(\Rightarrow)$ Suppose $M_{1}$ accepts $p(L)$ within time $T$. Design $M_{2}$ to pad its input string $x$ (which is found at the read-write head on the first worktape) out to $\times 10^{k}$, where $\left|\times 10^{k}\right|=p(|x|)$, and then to compute on input $\times 10^{k}$ according to the transition rules of $M_{1}$. Because $p$ is a running time, the padding can be done in time $p(|x|)$ by using an extra head on tape 1. A third head can be used for the computation by $M_{1}$ on input $\times 10^{k}$. Clearly, then, $M_{2}$ accepts $L$ within time $p(n)+T(p(n)) \leq 2 \cdot T(p(n))$. But NTIME (2•T(p(n))) $\subset \operatorname{NTIME}(T(p(n)))$, by Lemma 7.
( $\Leftrightarrow$ ) Suppose $M_{2}$ accepts $L$ within time $T\left(p(n)\right.$ ). Design $M_{1}$ to check that its input string is of the form $\times 10^{k}$, where $\left|x 10^{k}\right|=p(|x|)$, and then to behave $11 k e M_{2}$ on input $x$. Clearly $M_{1}$ accepts $p\left(L_{\text {) }}\right.$ within time proportional to $T$ (length of input to $M_{1}$ ), as required.

The following lemma shows how padding may be used to derive separa-
tion results. Ruby and P. Fischer [RF65] first used essentially this technique in connection with the deterministic time complexity of sequence generation, and Ibarra [ Ib72] used it more explicitly in connection with the nondeterministic space complexity of language acceptance. (See Chapter Three of this thesis.) Ibarra has used similar techniques in other contexts as well ([Ib73a], [Ib73b], [IS73]).

Lemma 11. Let sets $g_{1}, S_{2}$ of time bounds be given. Say $p_{1}(n)>n, \ldots$, $p_{\ell}(n)>n$ are running times with $T_{1} \circ p_{i+1} \in O\left(T_{2} \circ p_{i}\right)$ whenever $1 \leq i<\ell, T_{1} \in S_{1}, T_{2} \in S_{2}$.
If $L \in \cap\left\{\operatorname{NTIME}\left(T_{2} \circ \mathrm{p}_{\ell}\right) \mid \mathrm{T}_{2} \in \mathrm{~S}_{2}\right\}-\cup\left\{\operatorname{NTIME}\left(\mathrm{T}_{1} \circ \mathrm{p}_{1}\right) \mid \mathrm{T}_{1} \in \mathrm{~g}_{1}\right\}$,
then $p_{i}(L) \in \cap\left\{\operatorname{NTME}\left(T_{2}\right) \mid T_{2} \in \mathcal{S}_{2}\right\}-\cup\left\{\operatorname{NTIME}\left(T_{1}\right) \mid T_{1} \in \mathcal{S}_{1}\right\}$ for some $i$.
Proof. For $1 \leq i \leq \ell$, let

$$
\begin{aligned}
& C(i, 1)=\bigcup\left\{\operatorname{NTIME}\left(T_{1} \circ p_{i}\right) \mid T_{1} \in g_{1}\right\}, \\
& C(i, 2)=\bigcap\left\{\operatorname{NTME}\left(T_{2} \circ p_{i}\right) \mid T_{2} \in g_{2}\right\} .
\end{aligned}
$$

Suppose $L \in C(\ell, 2)-C(1,1) . \quad$ By Lemma $7, \operatorname{NTIME}\left(T_{1} \circ p_{i+1}\right) \subset \operatorname{NTTME}\left(T_{2} \circ p_{i}\right)$
whenever $1 \leq i<\ell, T_{1} \in g_{1}, T_{2} \in S_{2}$; so, for $1 \leq i<\ell$,
$L \in C(i+1,1) \Rightarrow L \in C(i, 2)$.
If we were to have also

$$
L \in C(i, 2) \Rightarrow L \in C(i, 1)
$$

for every $i$, then we would conclude from $L \in C(l, 2)$ that $L \in C(1,1)$, a contradiction. For some $i$, therefore, we must have

$$
\begin{aligned}
\mathrm{L} & \in \mathrm{C}(\mathrm{i}, 2)-\mathrm{C}(\mathrm{i}, 1) \\
& =\cap\left\{\operatorname{NTIME}\left(\mathrm{T}_{2} \circ \mathbf{p}_{\mathrm{i}}\right) \mid \mathrm{T}_{2} \in \mathrm{~S}_{2}\right\}-\cup\left\{\operatorname{NTIME}\left(\mathrm{T}_{1} \circ \mathrm{p}_{\mathrm{i}}\right) \mid \mathrm{T}_{1} \in \mathrm{~S}_{1}\right\}
\end{aligned}
$$

By Lemma 10,

$$
\mathrm{p}_{\mathrm{i}}(\mathrm{~L}) \in \cap\left\{\operatorname{NTIME}\left(\mathrm{T}_{2}\right) \mid \mathrm{T}_{2} \in \mathrm{~S}_{2}\right\}-\cup\left\{\operatorname{NTIME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \in \mathrm{~S}_{1}\right\}
$$

for that same $i$.

Remarks. (i) We do not know how to exhibit the particular language that must be in $\cap\left\{\operatorname{NTIME}\left(\mathrm{T}_{2}\right) \mid \mathrm{T}_{2} \in \mathcal{S}_{2}\right\}-\bigcup\left\{\operatorname{NTME}\left(\mathrm{T}_{1}\right) \mid \mathrm{T}_{1} \in \mathcal{S}_{1}\right\}$.
(ii) The same technique can be applied to DTIME, and it allows us to strengthen the results of diagonalization a bit. For example we can use it to show $\operatorname{DTIME}\left(n^{2}\right) \varsubsetneqq \operatorname{DTIME}\left(n^{2}(\log n)^{1 / 200}\right)$. (Take $p_{i}(n)=n(\log n)^{i / 400}$ for $\left.0 \leq i \leq 399.\right)$

Another key idea in Cook's proof and our extensions of it involves a universal TM simulator. So that we may speak with precision about universal simulation, let us now choose an appropriate program coding for TMs. With each TM having at least two tapes and input alphabet $\{0,1\}$, we associate a distinct program code from $\{0,1\}^{*}$; and we do this in agreement with the easily-satisfied conditions listed below. We use the notation $L_{p . c}^{k}$. for the set of program codes for $k$-tape $T M s$ and $L_{p . c}$. for the set of all program codes. We denote by $\mathrm{M}_{\mathrm{e}}$ the TM with program code e.

Condition 1. No program code is a prefix of another, and $L_{p, c}^{k}$. is in DTIME ( $n$ ) for each $k$.

Condition 2. For each fixed $k$, there is a $T M$ acceptor $U_{0}$ (a "universal simulator") with

$$
\begin{aligned}
& L\left(U_{0}\right)=\left\{e x \mid e \in L_{p . c .}^{k}, x \in L\left(M_{e}\right)\right\} \\
& \operatorname{Time}_{U_{0}}(e x) \leq c_{e} \cdot \operatorname{Time}_{M_{e}}(x) \text { if } e \in L_{p . c .}^{k}
\end{aligned}
$$

where $c_{e}$ depends only on $e$.
Condition 3. There is a recursive function $f: I_{p . c .} \rightarrow L_{p . c .}$ such that
$f: L_{p, c .}^{k} \rightarrow L_{p, c .}^{k}$ for each $k$ and such that $M_{f(e)}$ spends its first|e| steps putting $e$ at its head on tape 2 (by writing backwards) and thereafter acts according to the transition rules of $M_{e}$. (This condition is a variant of the $s_{1}^{1}$-theorem of recursive function theory [Rog 67].)

Most common instruction-by-instruction or state-by-state codings of TM programs can be tailored to satisfy these conditions. An example of a satisfactory program coding is described in Appendix II.

We shall want to pad strings and use the simulator that we design in a recursive control structure. To this end we use Condition 3 to prove one more lemma, a version of the fixed point theorem (recursion theorem) of recursive function theory.

Lemma 12. For each k-tape $T M$ acceptor $M$ with $L(M) \subset\{0,1\}^{*}$, there is a k-tape $T M$ acceptor $M_{e_{0}}$ with

$$
\begin{aligned}
& L\left(M_{e_{0}}\right)=\left\{x e_{0} x \in L(M)\right\} \\
& \operatorname{Ic}\left(\operatorname{Time}_{M_{e_{0}}}(x) \leq c+\operatorname{Tim}_{M}\left(e_{0} x\right)\right)
\end{aligned}
$$

Proof. Let $f$ be as in Condition 3. Take $M_{e_{1}}$ to be a k-tape $T M$ that operates as follows, given $x$ at its head on tape 1 and $e$ at its head on tape 2:

1. Convert e to $f(e)$.
2. Convert $x$ to $f(e) x$, and erase everything else.
3. Operate according to the transition rules of $M$ on input $f(e) x$. Let $e_{0}=f\left(e_{1}\right)$. Then by definition $M_{e_{0}}$ operates as follows on input $x$ :
4. Spend $e_{1}$ steps putting $e_{1}$ at the head on tape 2.
5. Convert $e_{1}$ to $f\left(e_{1}\right)=e_{0}$.
6. Convert x to $\mathrm{e}_{0} \mathrm{x}$.
7. Behave like $M$ on $e_{0} x$.

Thus,

$$
\begin{aligned}
& x \in L\left(M_{e_{0}}\right) \Leftrightarrow e_{0} x \in L(M), \\
& \operatorname{Time}_{M_{e_{0}}}(x) \leq c+\operatorname{Time}_{M}\left(e_{0} x\right),
\end{aligned}
$$

where $c$ is the number of steps used in writing $e_{1}$, converting $e_{1}$ to $e_{0}$, and writing $e_{0}$ in front of $x$.

Theorem 13. If $\mathrm{T}_{2}$ is a running time, then
$\operatorname{NTIME}\left(T_{2}\right)-\bigcup\left\{\operatorname{NTIME}\left(T_{1}\right) \mid\right.$ there is some recursively bounded but strictly increasing function $f: N \rightarrow N$ for which $\left.T_{1}(f(n+1)) \in o\left(T_{2}(f(n))\right)\right\}$
contains a language over $\{0,1\} .^{\dagger}$
Proof. Let $T_{2}$ be a running time, and let $U_{0}$ be the universal simulator of Condition 2 for $k=2$. By Lemma $6, L_{T}\left(U_{0}\right) \in \operatorname{NTIME}\left(T_{2}\right)$. Let $f: N \rightarrow N$ be any recursively bounded but strictly increasing function. We prove that $\mathrm{L}_{\mathrm{T}_{2}}\left(\mathrm{U}_{0}\right) \notin \operatorname{NTIME}\left(\mathrm{T}_{1}\right)$ for any time bound $\mathrm{T}_{1}$ with $\mathrm{T}_{1}(\mathrm{f}(\mathrm{n}+1)) \in$ $o\left(T_{2}(f(n))\right)$.

Suppose that $U_{1}$ accepts $L_{T_{2}}\left(U_{0}\right)$ within time $T_{1}$, where $T_{1}(f(n+1)) \in$ $o\left(T_{2}(f(n))\right)$. By Lemma 4, there is an acceptor $U$ for

[^3]$$
L\left(U_{1}\right) \cup L\left(U_{0}\right)=L_{T_{2}}\left(U_{0}\right) \cup L\left(U_{0}\right)=L\left(U_{0}\right)
$$
such that for every $e \in L_{p . c .}^{2}$,
\[

\operatorname{Time}_{U}(e x) \leq\left\{$$
\begin{array}{l}
T_{1}(|e x|), \text { if } c_{e} \cdot \operatorname{Time}_{M_{e}}(x) \leq T_{2}(|e x|) ; \\
c_{e} \cdot \operatorname{Time}_{M_{e}}(x), \text { in any event. }
\end{array}
$$\right.
\]

Note that when $T_{1}(|e x|)<\operatorname{Time}_{M_{e}}(x) \leq T_{2}(|e x|) / c_{e}$, the universal simulator $U$ will simulate the computation of $M_{e}$ on $x$ faster than the computation rums directly; i. e., there will be simulation time gain. This extreme efficiency will lead below to a contradiction of Leman 9.

Let $L \subset\{1\}^{*}$ be any recursive language over $\{1\}$. Because $L$ is recursive, we can take a running time $T$ so large that $L \in \operatorname{NTIME}(T)$. Let $M$ accept $L$ within time $T$. Design a $T M$ acceptor $M^{\prime}$ that operates as follows:

1. Check that the input string is a member of $L_{\text {p.c. }}^{2} \cdot 1^{*} \cdot 0^{*}$, and parse it into $e \in L_{p . c .}^{2}, x \in\{1\}^{*}$, and $0^{k}$. Condition 1 guarantees that this can be done in time that is linear in the length of the input string.
2. Use a clock for the running time $T$ to determine whether $k \geq T(|x|)$. This requires at most $k$ steps, so it $c a n$ be done in linear time, too.
3. If $k \geq T(|x|)$, then erase everything but $x$ and compute on input $x$ according to the transition rules of $M$. For $x \in L(M)$, since $\operatorname{Time}_{M}(x) \leq T(|x|) \leq k$, this step can be performed in 1inear time, too.
4. If $k<T(|x|)$, then pad the input string to ex0 $0^{k '}$ for some non-
deterministically chosen $k^{\prime}>k$, erase everything else, and compute on input ex $0^{k^{\prime}}$ according to the transition rules of the universal simulator $U$. This step can be performed in linear time plus Time ${ }_{U}\left(\operatorname{ex~}^{\mathrm{k}^{\prime}}\right)$.
To summarize the behavior of $M^{\prime}$ on ex $0^{k}$,
$\mathrm{k} \geq \mathrm{T}(|\mathrm{x}|) \Rightarrow$ behave like M on x ;
$k<T(|x|) \Rightarrow$ behave like $U$ on ex $0^{k^{\prime}}$ for some $k^{\prime}>k$ (thus simulating

$$
\left.M_{e} \text { on } x 0^{k^{\prime}}\right)
$$

,
To summarize the timing for $e^{k} \in L\left(M^{\prime}\right)$,
$\operatorname{Time}_{M^{\prime}}\left(\right.$ ex $\left.0^{k}\right) \leq\left\{\begin{array}{l}d_{1} \cdot\left|e x 0^{k}\right|, \text { if } k \geq T(|x|) ; \\ d_{1} \cdot\left|e x 0^{k^{\prime}}\right|+\text { Time }_{U}\left(e x 0^{k^{\prime}}\right), \text { if } k<T(|x|)\end{array}\right.$
for some constant $d_{1}$ and every $k^{\prime}>k$.
Applying Lemma 8 to obtain a 2-tape $T M$ that accepts $L\left(M^{\prime}\right)$ with only linear time loss, and then applying the recursion theorem (Lemma 12) to this machine, we get a program code $e_{0}$ for a 2-tape TM that accepts

$$
L\left(M_{e_{0}}\right)=\left\{x 0^{k_{\mid}} e_{0} x^{k} \in L\left(M^{\prime}\right)\right\} \subset 1^{*} 0^{*}
$$

within time

$$
\operatorname{Time}_{M_{e_{0}}}\left(x 0^{k}\right) \leq d_{2} \cdot \operatorname{Time}_{M^{\prime}}\left(e_{0} x 0^{k}\right)
$$

for some constant $d_{2}$.
Claim 1. For each string $x \in\{1\}^{*}$, the following holds for every $k$ :

$$
x 0^{k} \in L\left(M_{e_{0}}\right) \Leftrightarrow x \in L
$$

Proof. For each $x$ we establish the claim by induction on $k$ running down from $k \geq T(|x|)$ to $k=0$.
$\mathrm{k} \geq \mathrm{T}(|\mathrm{x}|):$

$$
\begin{aligned}
x 0^{k} \in L\left(M_{e_{0}}\right) \Leftrightarrow & e_{0} x 0^{k} \in L\left(M^{\prime}\right) \\
& \left(\text { by choice of } e_{0}\right) \\
\Leftrightarrow & x \in L(M)=L
\end{aligned}
$$

(because by definition $M^{\prime}$ behaves like $M$ in this case).
$k<T(|x|)$ : Assume $x 0^{k^{\prime}} \in L\left(M_{\mathbf{e}_{0}}\right) \Leftrightarrow x \in L$ holds for every $k^{\prime}>k$. Then

$$
x 0^{k} \in L\left(M_{e_{0}}\right) \Leftrightarrow e_{0} x 0^{k} \in L\left(M^{\prime}\right)
$$

(by choice of $e_{0}$ )
$\Leftrightarrow e_{0} x 0^{k^{\prime}} \in L(U)$ for some $k^{\prime}>k$
(because by definition $M^{\prime}$ behaves like $U$ in this
case)
$\Leftrightarrow x 0^{k \prime} \in L\left(M_{e_{0}}\right)$ for some $k^{\prime}>k$
(because $e_{0} \in L_{p . c}^{2}$ )
$\Leftrightarrow \mathbf{x} \in \mathbf{L}$
(by induction hypothesis).
Claim 2. For each sufficiently long string $x \in L$, the following holds for every $n \geq\left|e_{0} x\right|$ :

$$
\operatorname{Time}_{M_{e_{0}}}\left(x 0^{f(n)-\left|e_{0} x\right|}\right) \leq d_{3} \cdot T_{1}(f(n+1))
$$

where $d_{3}=d_{2} d_{1}+d_{2}$.
Proof. Let $x \in L$ be so long that

$$
c_{e_{0}} \cdot d_{3} \cdot T_{1}(f(n+1)) \leq T_{2}(f(n))
$$

for every $n \geq\left|e_{0} x\right|$. (This uses the "translational" hypothesis $T_{1}(f(n+1)) \in o\left(T_{2}(f(n))\right)$.) We establish the claim for $x$ by induction on
$n$ running down from $n$ so large that $f(n) \geq\left|e_{0} x\right|+T(|x|)$ to $n=\left|e_{0} x\right|$.

$$
\begin{aligned}
& f(n) \geq\left|e_{0} x\right|+T(|x|): \\
& \operatorname{Time}_{M_{e}}\left(x 0^{f(n)-\left|e_{0} x\right|}\right) \leq d_{2} \cdot \operatorname{Time}_{M^{\prime}}\left(e_{0} x 0^{f(n)-\left|e_{0} x\right|}\right) \\
& \leq d_{2} \cdot d_{1} \cdot f(n) \\
&\left(\text { because } f(n)-\left|e_{0} x\right| \geq T(|x|)\right) \\
& \leq d_{3} \cdot T_{1}(f(n+1)) .
\end{aligned}
$$

$$
\left|e_{0} x\right| \leq n \leq f(n)<\left|e_{0} x\right|+T(|x|):
$$

$$
\begin{aligned}
& \text { Assume } \operatorname{Time}_{M_{e}}{ }_{0}^{\left(x 0^{f(n+1)-\left|e_{0} x\right|}\right) \leq d_{3} \cdot T_{1}(f(n+2)) \text {. Then }} \\
& c_{e_{0}} \cdot{ }^{\cdot \operatorname{Time}_{M}}{ }_{e_{0}}\left(x 0^{f(n+1)-\left|e_{0} x\right|}\right) \leq c_{e_{0}} \cdot d_{3} \cdot T_{1}(f(n+2))
\end{aligned}
$$

$$
\leq T_{2}(f(n+1))
$$

(because $n$ is so large).
Therefore,
$\operatorname{Time}_{U}\left(e_{0} x^{f(n+1)-\left|e_{0} x\right|}\right) \leq T_{1}(f(n+1))$.
Therefore,
$\operatorname{Time}_{M_{e_{0}}}\left(x 0^{f(n)-\left|e_{0} x\right|}\right) \leqslant d_{2} \cdot \operatorname{Time}_{M^{\prime}}\left(e_{0}{ }^{f(n)-\left|e_{0} x\right|}\right)$
$\leq d_{2} \cdot d_{1} \cdot f(n+1)+d_{2} \cdot$ Time $_{U}\left(e_{0} x^{f(n+1)-\left|e_{0} x\right|}\right)$
(by padding out to length $f(n+1)>f(n)$ )
$\leq d_{2} \cdot d_{1} \cdot f(n+1)+d_{2} \cdot T_{1}(f(n+1))$
$\leq \mathrm{d}_{3} \cdot \mathrm{~T}_{1}(\mathrm{f}(\mathrm{n}+1))$.
Claim 3. For each sufficiently long string $x \in L$,
$\operatorname{Time}_{M_{e_{0}}}(x) \leq d_{3} \cdot T_{1}\left(f\left(\left|e_{0} x\right|+1\right)\right)$.

Proof. Let $x \in L$ be as long an in the proof of elvers 2. Then

Therefore,

Therefore,

$$
(\tan ), e_{2}+z
$$







$$
\left.\left.{ }_{3}{ }^{*} T_{1}(f(x))+\tan \right) \in \alpha_{2}(+1-1)^{n} n\right)
$$

every





$$
\begin{aligned}
& \operatorname{Tim}_{n_{0}}(x) \leq d_{2} \cdot \operatorname{TH}_{4}\left(\theta_{0} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \epsilon_{3} T_{1}\left(4 a_{2}+\left(\tan _{3}\right)_{T}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \delta(2 n)=\left\{\begin{array}{l}
1, \text { if } n \in A ; \\
n, \\
\text { if } n \notin A ;
\end{array}\right. \\
& \delta(2 n+1)= \begin{cases}n, & \text { if } n \in A ; \\
1, & \text { if } n \notin A .\end{cases}
\end{aligned}
$$

To see that $\operatorname{NTMME(n^{2}\cdot \delta (n))} \varsubsetneqq \operatorname{NTIME}\left(n^{3}\right)$, just apply Theorem 13 with

$$
f(n+1)=\left\{\begin{array}{l}
2 n, \text { if } n \in A ; \\
2 n+1, \text { if } n \notin A .
\end{array}\right.
$$

In many applications it suffices to have Theorem 13 for the single function $f(n)=n$, especially if we are concerned only with nondecreasing time bounds.

Corollary 14. If $\mathrm{T}_{2}$ is a running time, then
$\operatorname{NTIME}\left(T_{2}\right)-U\left\{\operatorname{NTIME}\left(T_{1}\right) \mid T_{1}(n+1) \in o\left(T_{2}(n)\right)\right\}$
contains a language over $\{0,1\}$.
The informal diagram in Figure 1 illustrates how the proof of Theorem 13 uses padding to take advantage of deeply nested simulations by $U$ to bring the time for an arbitrary computation down to the vicinity of $T_{1}$ and $T_{2}$ in the case $f(n)=n$. The direct computation on $x$, up around the level of $T(|x|)$, is brought down to below $T_{2}$ in terms of the input length by padding $x$ out to $x 0^{T(|x|)}$. By the hypothesized nature of $U$, simulating that computation brings its time down to below $T_{1}$. If we unpad by a single 0 , then the hypothesis that $T_{1}(n+1)$ is small compared to $T_{2}(n)$ keeps the computation still below $T_{2}$ in terms of the input length. A simulation by $U$ of this computation on $\times 0^{T(|x|)-1}$ brings its time down to below $\mathrm{T}_{1}$. Continuing to nest alternating unpaddings and simulations finally yields a computation on the original input string $x$ down at the

Figure 1. $\rightarrow$ pad
$\leftarrow$ unpad
$\perp$ speed up by simulation

$x 0^{2}$
... $\quad x 0^{T(|x|)-1} \quad x 0^{T(|x|)}$
level of $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$.
The "translational" condition $T_{1}(n+1) \in o\left(T_{2}(n)\right)$ is a severe one for a rapidly growing running time $T_{2}$. When $T_{2}(n+1)$ is worse than exponential in $T_{2}(n)$, in fact, deterministic diagonalization within time bound $T_{2}$ (Theorem 1) yields stronger results than does Corollary 14. Because Corollary 14 applies for $T_{1}(n+1) \in o\left(T_{2}(n)\right)$ and Theorem 1 applies for $\log T_{2}(n) \notin O\left(T_{1}(n)\right)$, it is easy to see that Corollary 14 contributes new results precisely when $\log T_{2}(n+1) \in o\left(T_{2}(n)\right)$.

To see the strength of Corollary 14, let $\log { }^{*} n=\min \{k \mid n \leq \underbrace{2^{2^{\circ}}}_{k}\}$.
For constants $c>1, r \geq 1$ whose digits in radix notation $c a n$ be generated rapidly, and in particular for rational $c, r$, note that $n^{r} ; n^{r} \cdot \log ^{*} n$, $n^{r} \cdot\left(\log ^{*} n\right)^{2}, c^{n}, c^{n} \cdot \log ^{*} n$, etc. are running times. Thus we conclude that

$$
\begin{aligned}
& \operatorname{NTTME}\left(n^{r}\right) \varsubsetneqq \operatorname{NTIME}\left(n^{r} \cdot \log ^{*} n\right) \varsubsetneqq \operatorname{NTIME}\left(n^{r} \cdot\left(\log ^{*} n\right)^{2}\right) \varsubsetneqq \cdots, \\
& \operatorname{NTIME}\left(c^{n}\right) \varsubsetneqq \operatorname{NTIME}\left(c^{n} \cdot \log ^{*} n\right) \varsubsetneqq \operatorname{} \operatorname{NTIME}\left(c^{n} \cdot\left(\log ^{*} n\right)^{2}\right) \varsubsetneqq \cdots \cdots
\end{aligned}
$$

These results do not follow immediately from Cook's result (Theorem 3) or by diagonalization (Theorem 1).

Corollary 14 obviously implies that $\operatorname{NTIME}\left(2^{n^{2}}\right) \varsubsetneqq \operatorname{NTME}\left(2^{(n+1)^{2}} \cdot \log ^{*} n\right)$, $\operatorname{NTIME}\left(2^{2^{n}}\right) \not \equiv \operatorname{NTME}\left(2^{2^{n+1}} \cdot \log ^{*} n\right)$.

In fact we can strengthen these results to

$$
\operatorname{NTIME}\left(2^{n^{2}}\right) \varsubsetneqq \operatorname{NTIME}\left(2^{(n+1)^{2}}\right),
$$

$$
\operatorname{NTIME}\left(2^{2^{n}}\right) \varsubsetneqq_{\mp} \operatorname{NTTME}\left(2^{2^{n+1}}\right)
$$

by appeal to the following corollary.
Corollary 15. If $\mathrm{T}_{2}$ is a running time, then
$\bigcup\left\{\operatorname{NTME}\left(T_{1}\right) \mid T_{1}(n+1) \in O\left(T_{2}(n)\right), T_{1}(n) \in O\left(T_{2}(n)\right)\right\} \nsubseteq \operatorname{NTME}\left(T_{2}\right) ;$ and there is a language over $\{0,1\}$ that bears witness to this fact. Proof. Because $T_{1}(n) \in o\left(T_{2}(n)\right)$ implies $T_{1}((n+1)+1) \in o\left(T_{2}(n+2)\right)$, Corollary 14 gives a language $L \subset\{0,1\}^{*}$ in $\operatorname{NTIME}\left(T_{2}(n+2)\right\}-U\left\{\operatorname{NTIME}\left(T_{1}(n+1)\right) \mid T_{1}(n+1) \in O\left(T_{2}(n)\right), T_{1}(n) \in o\left(T_{2}(n)\right)\right\}$. Applying Lemma 11 with

$$
\begin{aligned}
& g_{1}=\left\{T_{1} \mid T_{1}(n+1) \in O\left(T_{2}(n)\right), T_{1}(n) \in o\left(T_{2}(n)\right)\right\} \\
& g_{2}=\left\{T_{2}\right\} \\
& P_{1}(n)=n+1 \\
& P_{2}(n)=n+2,
\end{aligned}
$$

we conclude that either $p_{1}(L)$ or $p_{2}(L)$ is a member of

$$
\operatorname{NTTME}\left(T_{2}\right)-\bigcup\left\{\operatorname{NTTME}\left(T_{1}\right) \mid T_{1}(n+1) \in O\left(T_{2}(n)\right), T_{1}(n) \in o\left(T_{2}(n)\right)\right\}
$$

Containment holds by Leman 7. $\square$
Remarks. (i) Lemma 11 goes through equally well if we pad to the left rather than to the right. For this remark, then, we may assume that $p_{i}(L)=\left\{0^{k} 1 x\left|x \in L,\left|0^{k} 1 x\right|=p_{i}(|x|)\right\}\right.$ for $i=1,2$ above.

For $U_{0}$ the universal simulator of Theorem $13, L=L_{T_{2}}(n+2)\left(U_{0}\right)$ satisfies the condition for choosing $L$ in the proof of Corollary 15. One might suppose therefore that $\mathrm{L}_{\mathrm{T}_{2}(\mathrm{n})}\left(\mathrm{U}_{0}\right)$ would be a witness language for Corollary 15. If we slightly modify our program coding by concatenating a single 1 in front of each old program code and if we let $U_{0}$ ' be the
naturally derived new universal simulator, then we do indeed get
$L_{T_{2}(n+1)}\left(U_{0}{ }^{\prime}\right)=1 \cdot L_{T_{2}}(n+2)\left(U_{0}\right)=p_{1}(L)$. Similarly, if we further concatenate a 0 in front of each program code and let $U_{0}$ " be derived from $\mathrm{U}_{0}$ ' by taking this into account, then we get $\mathrm{L}_{\mathrm{T}_{2}(\mathrm{n})}\left(\mathrm{U}_{0}{ }^{\prime \prime}\right)=$
$01 \cdot L_{T_{2}}(n+2)\left(U_{0}\right)=p_{2}(L)$. Yet we can show only that either $L_{T_{2}}(n)\left(U_{0}{ }^{\prime \prime}\right)$ or $L_{T_{2}(n+1)}\left(U_{0}{ }^{\prime}\right)$ is a witness to Corollary 15 . We leave it open whether there is necessarily a witness language of the form $L_{T_{2}}(n)\left(U_{0}\right)$ and whether the particular choice of $U_{0}$ affects whether $L_{T_{2}(n)}\left(U_{0}\right)$ is such a 1anguage.
(ii) Corollary 15 contributes new results (over Theorem 1) precisely when $\log T_{2}(n+1) \in O\left(T_{2}(n)\right)$.

It is interesting to note that the containments corresponding to the examples following Corollary 14 are not known to be proper for deterministic time (DTIME). The fundamental reason is that Lemma 8 is not known for DTIME. The proof of Theorem 13 in the case of such an easy function $f$ as $f(n)=n$ does carry over in every other detail, however, to give Theorem 16.

Theorem 16. Suppose that there is some fixed $k$ such that for each deterministic $T M$ acceptor $M$ there is a deterministic k-tape $T M$ acceptor $M^{\prime}$ and a constant $c$ such that $L\left(M^{\prime}\right)=L(M)$ and $\operatorname{Time}_{M^{\prime}}(x) \leq c \cdot f\left(\operatorname{Time}_{M}(x)\right)$. Then

$$
\operatorname{DTIME}\left(T_{2}\right)-\bigcup\left\{\operatorname{DTTME}\left(\mathrm{T}_{1}\right) \mid f\left(\mathrm{~T}_{1}(\mathrm{n}+1)\right) \in o\left(\mathrm{~T}_{2}(\mathrm{n})\right)\right\} \neq \varnothing
$$

for every running time $T_{2}$.

Remark. We do not require that $M$ ' be effectively constructable from $M$; if it were, then we could actually diagonalize to get

$$
\operatorname{DTIME}\left(T_{2}\right)-\left(\int\left\{\operatorname{DTME}\left(T_{1}\right) \mid T_{2}(n) \& O\left(f\left(T_{1}(n)\right)\right)\right\} \neq \phi\right.
$$

a somewhat stronger result.

Example. If we should discover even a nonconstructive proof that for each deterministic $T M$ acceptor $M$ there is a deterministic 5-tape TM acceptor $M^{\prime}$ and a constant $c$ such that $L\left(M^{\prime}\right)=L(M)$ and Time $_{M}(x) \leq \operatorname{co~Time}_{M}(x)$, then we could conclude that
$\operatorname{DTIME}\left(T_{2}\right)-U\left\{\operatorname{DTIME}\left(T_{1}\right) \mid T_{1}(n+1) \in o\left(T_{2}(n)\right)\right\} \neq \phi$ for every running time $T_{2}$.

Padding strings over one-1etter alphabet by one character at a time does not leave them decodable, so we cannot hope to use our method to get a result as strong as Corollary 14 for languages over a one-1etter alphabet. The final result of this chapter demonstrates that we can come very close, however.

Definition. The rounded inverse of a strictly increasing function $f: N \rightarrow N$ is the function $\Gamma_{f^{-17}}^{N}: N \rightarrow N$ defined by $\Gamma_{f^{-17}}(n)=\min \{k \mid f(k) \geq n\}$.

Examples. function rounded inverse

| $n^{2}$ | $\left.\Gamma_{n} 1 / 2\right\rceil$ |
| :---: | :---: |
| $2^{2^{n}}$ | $\left.\Gamma \log _{2} n\right\rceil$ |
| $2^{2}$ | $\log ^{*} n$. |

Theorem 17. If $T_{2}$ is a running time and $f$ is real-time countable, ${ }^{\dagger}$ then there is a language over $\{1\}$ in

$$
\operatorname{NTIME}\left(T_{2}\right)-\cup\left\{\operatorname{NTIME}\left(T_{1}\right) \mid T_{1}\left(n+\Gamma^{-17}(n)\right) \in o\left(T_{2}(n)\right)\right\}
$$

Proof. Let $T_{2}$ be a running time, and let $f$ be real-time countable. To adapt the proof of Theorem 13, we must construct a witness language as the $\mathrm{T}_{2}$-cutoff of some "universal simulator" having input alphabet $\{1\}$. We start with $U_{0}$ as in the earlier proof; i. e., $\mathrm{U}_{0}$ is the universal simulator of Condition 2 for $k=2$.

Define an injection $g:\{0,1\}^{*} \rightarrow N$ so that the binary representation of the integer $g(x)$ is $1 x$; $i$. e., we concatenate a high-order digit 1 to $x$ to get the binary representation of $g(x)$. Define another function $\mathrm{h}:\{0,1\}^{*} \rightarrow \mathrm{~N}$ by the conditions

$$
\begin{aligned}
& h(x 0)=h(x)+\Gamma_{f^{-1}}(h(x)), \\
& h(x 1)=f(g(x 1))+g(x 1)-1, \\
& h(\lambda)=f(1) .
\end{aligned}
$$

Because $g$ is an injection and $f(n)+n-1$ is strictly increasing, $h(x l)=$ $h(y 1)$ only if $x=y$. Because $n+\Gamma^{-17}(n)$ is strictly increasing, $h(x 0)=$ $h(y 0)$ only if $h(x)=h(y)$. Unless there are strings $x$, $y$ with $h(x 0)=$ $h(y 1)$, therefore, $h$ must be an injection. For such strings to exist, the ranges of the strictly increasing functions $n+\Gamma^{-1\rceil}(n)$ and $f(p)+n-1$ must intersect; but

$$
(\mathrm{f}(\mathrm{n})-1)+{ }_{\mathrm{f}} \mathrm{f}^{-1\rceil}(\mathrm{f}(\mathrm{n})-1)=(\mathrm{f}(\mathrm{n})-1)+(\mathrm{n}-1)
$$

[^4]\[

$$
\begin{aligned}
& <f(n)+n-1 \\
& <f(n)+n \\
& =f(n)+\Gamma_{f}^{-17}(f(n))
\end{aligned}
$$
\]

so the ranges do not intersect and $h$ is an injection.
Because $f$ is real-time countable, we can compute $1^{h(x)}$ from $x$ or $x$ from. $1^{h(x)}$ within time proportional to $h(x)$, within time $2 \cdot h(x)$ if we wish. From $U_{0}$ we construct $U_{0}$ ' to operate as follows on input $y \in\{1\}^{*}$ :

1. Find $x$ with $h^{h(x)}=y$ if it exists.
2. Compute on $x$ according to the transition rules of $U_{0}$.

By Lemma $6, L_{T_{2}}\left(\mathrm{U}_{0}{ }^{\prime}\right) \in \operatorname{NTIME}\left(\mathrm{T}_{2}\right)$. We prove that $\mathrm{L}_{\mathrm{T}_{2}}\left(\mathrm{U}_{0}{ }^{\prime}\right) \& \operatorname{NTIME}\left(\mathrm{~T}_{1}\right)$ for any time bound $T_{1}$ with $T_{1}\left(n+\Gamma_{f}-17(n)\right) \in o\left(T_{2}(n)\right)$.

Suppose that $U_{1}{ }^{\prime}$ accepts $L_{T_{2}}\left(U_{0}{ }^{\prime}\right)$ within time $T_{1}$, where $T_{1}\left(n+\Gamma_{f}^{-17}(n)\right) \in o\left(T_{2}(n)\right)$. By Lemma 4, there is an acceptor $U$ ' for
$\mathrm{L}\left(\mathrm{U}_{1}{ }^{\prime}\right) \cup \mathrm{L}\left(\mathrm{U}_{0}{ }^{\prime}\right)=\mathrm{L}_{\mathrm{T}_{2}}\left(\mathrm{U}_{0}{ }^{\prime}\right) \cup \mathrm{L}\left(\mathrm{U}_{0}{ }^{\prime}\right)=\mathrm{L}\left(\mathrm{U}_{0}{ }^{\prime}\right)$
such that for every $e \in L_{\text {p.c. }}^{2}$,

$$
\operatorname{Time}_{U},\left(1^{h(e x)}\right) \leq\left\{\begin{array}{l}
T_{1}(h(e x)), \text { if } 2 \cdot h(e x)+c_{e} \cdot \operatorname{Time}_{M}(x) \leq T_{2}(h(e x)) ; \\
2 \cdot h(e x)+c_{e} \cdot \operatorname{Time}_{M}(x), \text { in any event. }
\end{array}\right.
$$

Finally, construct $U$ to operate as follows on input $x \in\{0,1\}^{*}$ :

1. Compute $1^{h(x)}$.
2. Compute on $1^{h(x)}$ according to the transition rules of $U^{\prime}$.

Then

$$
\begin{aligned}
L(U) & =\left\{x \mid 1^{h(x)} \in L\left(U^{\prime}\right)\right\} \\
& =\left\{x \mid 1^{h(x)} \in L\left(U_{0}^{\prime}\right)\right\} \\
& =L\left(U_{0}\right)
\end{aligned}
$$

and, for every $e \in L_{p . c .}^{2}$,
$\operatorname{Time}_{U}(e x) \leq 2 \cdot h(e x)+$ Time $\left._{U}{ }^{(1}{ }^{h(e x)}\right)$

$$
\leq \begin{cases}2 \cdot h(e x)+T_{1}(h(e x)), & \text { if } 2 \cdot h(e x)+c \cdot{ }_{e} \cdot \operatorname{Time}_{M_{e}}(x) \\ & \leq T_{2}(h(e x)) ; \\ 4 \cdot h(e x)+c e_{e} \cdot T_{M_{e}}(x), & \text { in any event. }\end{cases}
$$

For any recursive $L \subset\{1\}^{*}$, we can use $U$ just as in the proof of Theorem 13 to get a 2-tape $T M$ acceptor $M_{e_{0}}$ for $L \cdot 0^{*}$, with

$$
\operatorname{Time}_{M_{e_{0}}}\left(x 0^{k}\right) \leq\left\{\begin{array}{l}
d_{1} \cdot\left|e_{0} x 0^{k}\right|, \text { if } k \geq T(|x|) ; \\
d_{1} \cdot\left|e_{0} x 0^{k+1}\right|+d_{1} \cdot \operatorname{Time}_{U}\left(e_{0} x 0^{k+1}\right), \text { if } k<T(|x|)
\end{array}\right.
$$

for some sufficiently large constant $d_{1}$ and some appropriate time bound T.

Claim. For each sufficiently long string $x \in L$, the following holds for every $k$ :

$$
\operatorname{Time}_{M} e_{0}\left(x 0^{k}\right) \leq d_{2} \cdot T_{1}\left(h\left(e_{0} x 0^{k+1}\right)\right)
$$

where $d_{2}=4 d_{1}$.
Proof. Let $x \in L$ be so long that

$$
\left(2+c e_{0} \cdot d_{2}\right) \cdot T_{1}\left(n+\Gamma_{f}^{-17}(n)\right) \leq T_{2}(n)
$$

for every $n \geq h\left(e_{0} x\right)$. We establish the claim for $x$ by induction on $k$ running down from $k \geq T(|x|)$ to $k=0$.
$\mathrm{k} \geq \mathrm{T}(|\mathrm{x}|):$

$$
\begin{aligned}
& \quad \operatorname{Time}_{\mathrm{M}_{0}}\left(x 0^{k}\right) \leq d_{1} \cdot\left|e_{0} x 0^{k}\right| \\
& \\
& \leq d_{2} \cdot T_{1}\left(h\left(e_{0} x 0^{k+1}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Assume Time }{ }_{M} e_{0}\left(x 0^{k+1}\right) \leq d_{2} \cdot T_{1}\left(h\left(e_{0} x 0^{k+2}\right)\right) \text {. Then } \\
& 2 \cdot h\left(e_{0} x 0^{k+1}\right)+c_{e_{0}} \cdot \operatorname{Time}_{M}\left(x 0^{k+1}\right) \\
& \leq 2 \cdot h\left(e_{0} x 0^{k+1}\right)+c_{e_{0}} \cdot d_{2} \cdot T_{1}\left(h\left(e_{0} x 0^{k+2}\right)\right) \\
& =2 \cdot h\left(e_{0} x 0^{k+1}\right)+c_{e_{0}} \cdot d_{2} \cdot T_{1}\left(h\left(e_{0} x 0^{k+1}\right)+\Gamma_{f^{-17}}\left(h\left(e_{0} x 0^{k+1}\right)\right)\right) \\
& \leq\left(2+c_{e_{0}} \cdot d_{2}\right) \cdot T_{1}\left(h\left(e_{0} x 0^{k+1}\right)+\Gamma_{f^{-17}}\left(h\left(e_{0} x 0^{k+1}\right)\right)\right) \\
& \leq T_{2}\left(h\left(e_{0} x 0^{k+1}\right)\right)
\end{aligned}
$$

$$
\text { (because } x \text { is so long). }
$$

Therefore,

$$
\begin{aligned}
\operatorname{Time}_{U}\left(e_{0} x 0^{k+1}\right) & \leq 2 \cdot h\left(e_{0} x 0^{k+1}\right)+T_{1}\left(h\left(e_{0} x 0^{k+1}\right)\right) \\
& \leq 3 \cdot T_{1}\left(h\left(e_{0} x 0^{k+1}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Time}_{M_{e}}\left(x 0^{k}\right) & \leq d_{1} \cdot\left|e_{0} x 0^{k+1}\right|+d_{1} \cdot \operatorname{Time}_{U}\left(e_{0} x 0^{k+1}\right) \\
& \leq d_{1} \cdot\left|e_{0} x 0^{k+1}\right|+3 d_{1} \cdot T_{1}\left(h\left(e_{0} x 0^{k+1}\right)\right) \\
& \leq d_{2} \cdot T_{1}\left(h\left(e_{0} x 0^{k+1}\right)\right)
\end{aligned}
$$

If $H$ is a nondecreasing recursive function so large that $h(y) \leq H(|y|)$ for all $y \in\{0,1\}^{*}$, then the claim gives the following for every sufficiently long $x \in L$ :

$$
\begin{aligned}
\operatorname{Time}_{M_{e}}(x) & \leq d_{2} \cdot T_{1}\left(h\left(e_{0} x 0\right)\right) \\
& =d_{2} \cdot T_{1}\left(h\left(e_{0} x\right)+\Gamma_{f}^{-17}\left(h\left(e_{0} x\right)\right)\right) \\
& \leq T_{2}\left(h\left(e_{0} x\right)\right) \\
& \leq n^{\prime} \leq H\left(\left|e_{0}\right|+|x|\right)^{T_{2}\left(n^{\prime}\right)}
\end{aligned}
$$

$$
\leq \underset{n^{\prime} \leq H(2 \cdot|x|)^{2}}{T_{2}\left(n^{\prime}\right)}
$$

It follows by Lemmas 4,5 that $L \in \operatorname{NTIME}\left(\underset{n^{\prime} \leq H(2 n)}{\Sigma} T_{2}\left(n^{\prime}\right)\right)$. Since $L$ is an arbitrary recursive language over $\{1\}$, this contradicts Lemma 9. $\square$

Example. Taking $f(n)=\underbrace{2^{2^{\circ}}}_{2^{2^{n}}}$, we get a language over $\{1\}$ in
$\operatorname{NTIME}\left(2^{\mathrm{n}} \cdot \log ^{*} \mathrm{n}\right)-\operatorname{NTIME}\left(2^{\mathrm{n}}\right)$.

We close with a list of open questions.

1. For $T_{2}$ a running time, is the condition $T_{2} \notin O\left(T_{1}\right)$ enough in general for separation between $\operatorname{NTTME}\left(\mathrm{T}_{1}\right)$, $\operatorname{NTIME}\left(\mathrm{T}_{2}\right)$ or between $\operatorname{DTIME}\left(\mathrm{T}_{1}\right)$, DTIME ( $\mathrm{T}_{2}$ ) ?
2. Is there an actual difference between the separation results that hold for NTIME and those that hold for DTIME?
$\operatorname{DTIME}\left(\mathrm{n}^{2}\right) \not \equiv \operatorname{DTIME}\left(\mathrm{n}^{2} \cdot \log \log \mathrm{n}\right)$ ?
$\operatorname{NTIME}\left(2^{2^{\mathrm{n}}}\right) \not \not \equiv \operatorname{NTIME}\left(2^{2^{\mathrm{n}+1}} / \log ^{*} \mathrm{n}\right)$ ?
Is there a language over a one-1etter alphabet in $\operatorname{NTIME}\left(2^{2^{\mathrm{n}+1}}\right)-\operatorname{NTIME}\left(2^{2^{\mathrm{n}}}\right)$ ?
3. What is the relationship between NTIME and DTIME?
$\operatorname{NTIME}(T)=\operatorname{DTIME}(T) ?$
4. That a language $L$ is not a member of $\operatorname{NTIME}\left(T_{1}\right)$ means only that every acceptor $M$ for $L$ has $\operatorname{Time}_{M}(x)>T_{1}(|x|)$ for strings $x \in L$ of infinitely many lengths. Stronger senses of lower bounds, requiring
that $\operatorname{Time}_{M}(x)>T_{1}(|x|)$ for strings $x \in L$ of all but finitely many lengths or for all but finitely many strings $x \in L$ have been studied extensively. (See [B1m67], [Lyn72], [GB74], for example.) It is known, for example, that there is a language $L$ that requires $2|x|$ many steps deterministically on almost every string $x \in L$ but that can be accepted deterministically within time $(2+\varepsilon)^{n}$ for any $\varepsilon>0$. Our methods do not give such results for nondeterministic acceptance time complexity, so we leave it open whether there is a language $L \in$ NTTME $\left((2+\varepsilon)^{n}\right)$ that requires, even on nondeterministic machines, $2^{|x|}$ steps on inputs $x \in L$ of all but finitely many lengths or on all but finitely many $x \in L$.
5. A purely technical question arising from Theorem 13 is whether we can allow $f$ to range over all one-one functions rather than just strictly increasing, recursively bounded ones. A plausible proof strategy is to design $M^{\prime}$ in the proof of Theorem 13 so that, in the case $k<T(|x|)$, it pads or unpads ex $0^{k}$ to ex0 $0^{k '}$ for some nondeterministically chosen $k^{\prime} \neq k$. Under this strategy, however, Claim 1 seems to elude proof.
6. What is the relationship between deterministic time complexity and number of worktapes?
7. What is the relationship between time complexity and worktape alphabet size? (Cf., Chapter Three.)
8. Is there any language in $\operatorname{NTIME}\left(\mathrm{T}_{2}\right)$ that requires more time than the language $\mathrm{L}_{\mathrm{T}}$ ( $\mathrm{U}_{0}$ ) in the proof of Theorem 13 ?
9. In the conclusion of Lemma 11 , can we exhibit a sing1e language that must definitely belong to $\cap\left\{\operatorname{NTIME}\left(\mathrm{T}_{2}\right) \mid \mathrm{T}_{2} \in \mathcal{S}_{2}\right\}-U\left\{\operatorname{NTIME}\left(\mathrm{~T}_{1}\right) \mid\right.$ $\left.\mathrm{T}_{1} \in \mathbb{S}_{1}\right\}$ ? (Cf., Remark (i) following Corollary 15.)

## CHAPTER THREE

## SPACE SEPARATION THEOREMS FOR

OFF-LINE TURING MACHINES

## 1. Basic definitions

To study Turing machine storage space complexity, we adopt a Turing machine model that has a read-only input tape and a single read-write worktape. The input string is received between the special endmarkers 4, $\$$ on the input tape and is read by a single read-only input head which is allowed to move freely between the endmarkers. The worktape is infinite to the right only. For technical reasons, we allow any fixed finite number of freely moving, but initially left-adjusted, read-write heads on the worktape. The worktape heads can detect both each other and the left end of the worktape, and they are never required to write conflicting symbols on a single tape square in the same step or to shift left past the left end of the worktape. We refer to such an automaton as an off-line TM. An off-line $T M$ with $m \geq 2$ symbols in its worktape alphabet (counting the blank symbol, which may be used without restriction even in overwrite instructions) and $\ell \geq 1$ worktape heads is called an (m,l)-machine or just an m-machine. The deterministic restrictions of these automata are called deterministic off-line TMs and deterministic (m,l)-machines, respectively.

An off-line TM can act as an acceptor by halting in some specified accepting state and with a blank worktape at the end of some computations. Definition. Let $M$ be any off-1ine $T M$ acceptor. M accepts the string $x$
if there is some accepting computation by $M$ on input $x$. $M$ accepts the language $L(M)=\{x \mid M \text { accepts string } x\}^{\dagger}{ }^{\dagger}$ For $x \in L(M)$, Space $_{M}(X)$ is the minimum number of distinct worktape squares visited by the worktape heads of $M$ in an accepting computation by $M$ on $x$ for $X \mathbb{L}(M)$,

Space $_{M}(x)=\infty$. For $S: N \rightarrow N$, define

$$
L_{S}(M)=\left\{x \mid \operatorname{Space}_{M}(x) \leq S(|x|)\right\}
$$

$$
\operatorname{NSPACE}(S, m, l)=\left\{L \mid L=L(M)=L_{S}(M) \text { for some }(m, l) \text {-machine } M\right\}
$$

$$
\operatorname{NSPACE}(S, m)=U\{\operatorname{NSPACE}(S, m, \ell) \mid \ell \geq 1\}
$$

$$
\operatorname{NSPACE}(S)=\left(\int\{\operatorname{NSPACE}(S, m, \lambda) \mid \mathrm{m} \geq 2 ; \ell \geq 1\}\right.
$$

$$
\operatorname{DSPACE}(S, m, \ell)=\{L\} L=L(M)=L_{S}(M) \text { for some deterministic }(m, \ell)-
$$ machine M\},

$\operatorname{DSPACE}(S, m)=\bigcup\{\operatorname{DSPACE}(S, m, \ell) \mid \ell \geq 1\}$,
$\operatorname{DSPACE}(S)=\bigcup\{\operatorname{DSPACE}(S, m, \ell) \mid m \geq 2, \ell \geq 1\}$.
We call $L_{S}(M)$ the S-cutoff of $M$, and we say $M$ accepts within space $S$ if $L(M)=L_{S}(M)$. If NSPACE (S) contains languages which are not regalar, then $S$ is a space bound. Every subscripted or primed $S$ mentioned below is assumed to be a space bound.

Proposition 1. No space bound $S$ satisfies $S(n) \in O(\log \log n)$.
Proof. See [HU69a].
It is well known that the NSPACE(S) and DSPACE(S) complexity classes are generally insensitive to machine model design variations. The $\operatorname{NSPACE}(S, m, l)$ and $\operatorname{DSPACE}(S, m, l)$ complexity classes, on the other hand, are sensitive to machine model design; but the differences are usually

[^5]minor. Following are comments on the effects of some common design variations.

1. Suppose that we redefine our ( $m, l$ )-machine model so that its worktape heads cannot detect each other. If the resulting complexity classes are NSPACE' $(S, m, l), \operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, l)$, then we have
$\operatorname{NSPACE}{ }^{\prime}(S, m, l)=\operatorname{NSPACE}(S, m, l)$,
$\operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, \ell)=\operatorname{DSPACE}(\mathrm{S}, \mathrm{m}, \ell)$.
To see that detectability is no real advantage, it suffices to observe that detection can be simulated by the redesigned model. The trick is to make a temporary change under each worktape head in turn, letting each head discover which other heads' temporary changes take place on the square it scans.
2. Suppose we redesign our ( $m, l$ )-machine model so that it cannot detect the left end of its worktape but instead halts without accepting if it shifts past that end. If the resulting complexity classes are

$\operatorname{NSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, \mathrm{l}) \subset \operatorname{NSPACE}(\mathrm{S}, \mathrm{m}, \mathrm{l}) \subset \operatorname{NSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, \ell+1)$,
$\operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, \mathrm{l}) \subset \operatorname{DSPACE}(\mathrm{S}, \mathrm{m}, \ell) \subset \operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, \ell+1)$.
Our model simulates the redesigned one simply by halting when it detects that the transition rules would lead to a shift off the end of the worktape. The redesigned model simulates ours by permanently stationing an extra worktape head at the leftmost worktape square. Detection of that square can then be effected by the trick of comment 1 above.
3. Suppose we redesign our ( $m, l$ )-machine model so that its worktape is infinite in both directions. If the resulting complexity classes
are $\operatorname{NSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, \ell)$, DSPACE' $(\mathrm{S}, \mathrm{m}, \ell)$, then we have
NSPACE' $(S, m, \ell) \subset \operatorname{NSPACE}(S, m, \ell+1) \subset \operatorname{NSPACE}(S, m, \ell+2)$,
DSPACE' $(S, m, \ell) \subset \operatorname{DSPACE}(S, m, \ell+1) \subset \operatorname{DSPACE}$ ' $(S, m, \ell+2)$.
To simulate the redesigned model, our model must be able to provide new worktape squares for shifts past the left end of the worktape. It suffices to shift all the work to the right (making temporary use of the worktape head that needs the new tape square), and this is made possible by using an extra worktape head to mark the rightmost worktape square that has been visited. (Nothing to the right of this head need be shifted because it is all blank anyway.) The redesigned model simulates ours by permanently stationing an extra worktape head at the initial worktape square and treating that square as the left end of the worktape. In the nondeterministic case we actually have $\operatorname{NSPACE}^{\prime}(\mathrm{S}, \mathrm{m}, \mathrm{l}) \subset \operatorname{NSPACE}(\mathrm{S}, \mathrm{m}, \mathrm{l})$
because our model can nondeterministically guess where to start its simulation so that no shift past the left end of its own worktape is called for.
4. Suppose that we redefine acceptance by our ( $m, l$ )-machine model so that a blank tape is not necessary. If the resulting complexity classes are NSPACE' $(S, m, \ell)$, $\operatorname{DSPACE}^{\prime}(S, m, f)$, then we have

$$
\operatorname{NSPACE}^{\prime}(\mathrm{S}, \mathrm{~m}, \ell) \subset \operatorname{NSPACE}(\mathrm{S}, \mathrm{~m}, \ell+1) \subset \operatorname{NSPACE}^{\prime}(\mathrm{S}, \mathrm{~m}, \ell+2),
$$

$$
\operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{~m}, \ell) \subset \operatorname{DSPACE}(\mathrm{S}, \mathrm{~m}, \ell+1) \subset \operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{~m}, \ell+2)
$$

Our model simulates the redesigned one simply by erasing its worktape when the transition rules call for acceptance. This is made possible by using an extra worktape head to mark the rightmost worktape square that
has been visited. (Nothing to the right of this head nead be erased because it is all blank anyway.) The redeaigned model afmulates ours by checking whether its worktape is blank befove entering the accepting state. This is made possible by again using an extra worktape head to mark the rightmost worktape square that ham been vistted.

In the nondetempinistlic case we actially have
 in preparation for acceqtance.
 worktapes. If the nemilting complmaity alameas (ftitainot by coventing the tatal numbiex of viaitent worktape: squasis, the total alphemet size,
 then we have

Our model simulates the redesigned one by storing the concatenation of the visited portions of the $k$ taper on its: one tape. The kextra heads $h_{1}, \ldots, h_{k}$ are used to delimit these $k$ sagments. New worktape squares are provided where needed by shifting wavk right, mach as in coment 3 above.


The simulation of our model by the redesigned one is trivial.
6. Suppose that we redefine our ( $m, l$ )-machine model so that the blank symbol is reserved for worktape squares that have not yet been visited. If the resulting complexity classes (obtained by counting only nonblank worktape symbols now) are $\operatorname{NSPACE}(S, m, \ell)$, DSPACE' $(S, m, \ell)$, then we have

$$
\begin{aligned}
& \text { NSPACE }(S, m, \ell) \subset \operatorname{NSPACE}(S, m, \ell+1) \subset \operatorname{NSPACE}^{\prime}(S, \mathrm{~m}+1, \ell+1), \\
& \operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{~m}, \ell) \subset \operatorname{DSPACE}(\mathrm{S}, \mathrm{~m}, \ell+1) \subset \operatorname{DSPACE}^{\prime}(\mathrm{S}, \mathrm{~m}+1, \ell+1) .
\end{aligned}
$$

Our model simulates the redesigned one by using its blank symbol for one of the ordinary symbols of the new model. An extra worktape head is used to mark the rightmost worktape square that has been visited, beyond which the blank represents the true blank symbol of the simulated machine. The redesigned model simulates ours by using an extra unrestricted symbol along with its restricted blank symbol to represent the unrestricted blank of our model.

The relations among design decisions revealed by considerations such as those above provide a convenient way of converting the results of this chapter to good results for any of the redesigned machine models. Slightly better results often are obtained by converting the original proofs, however, making better use of nondeterminism (cf., comments 3, 4 above) or of worktape heads not yet fully utilized, for example.

## 2. Basic containment relations

In this section we present all the known containment relations among the couplexity classes defined in Section 1. The trivial relations are that no language is lost from a complexity class by allowing nondeterminism, additional space, additional worktape symbols, or additional worktape heads.

Only slightly less trivial is the use of the finite state control to save space:

Proposition 2. If $S_{2}(n)-S_{1}(n) \in O(1)$, then
$\operatorname{NSPACE}\left(S_{2}, m, i\right) \subset \operatorname{NSPACE}\left(S_{1}, m, f\right)$,
$\operatorname{DSPACE}\left(\mathrm{S}_{2}, \mathrm{~m}, \boldsymbol{l}\right) \subset \operatorname{DSPACE}^{\left(S_{1}, m, l\right)}$.
It follows, for example, that the complexity class $\operatorname{DSPACE}\left(\mathrm{n}^{1 / 2}, 2,1\right)$ is not affected by how we round the square root. For convenience, therefore, we allow such an imprecise speciffcation of a space bound when the precise specification is not relevant.

The basic relationship that $\operatorname{DSPACE}\left(S_{2}\right) \subset \operatorname{DSPACE}\left(S_{1}\right)$ whenever $S_{2} \in O\left(S_{1}\right)$ appears in [SHL65]. It allows us to speak of DSPACE (log $n$ ) without specifying the base of the logarithm, for example. Our next proposition generalizes the relationship.

Proposition 3. If $S(n) \leq \delta^{\circ} S^{\prime}(n)$ for some fixed rational number $\delta \leq \log _{m} m^{\prime}$, then
$\operatorname{NSPACE}(S, m, l) \subset \operatorname{NSPACE}\left(S^{\prime}, m^{\prime}, k\right)$,
$\operatorname{DSPACE}(S, m, \ell) \subset \operatorname{DSPACE}\left(S^{\prime}, \mathrm{m}^{\prime}, \ell\right)$.
Proof sketch. Say $\delta=i / j$ for positive integers $i$, $j$. As $m^{i} \leq m^{j}$, we
can encode the contents of $i$ m-symbol-resolution worktape squares in $j$ $m^{\prime}-$ symbol-resolution worktape squares.

Example. For $k$ a positive integer,

$$
\operatorname{NSPACE}(k \cdot S, m)=\operatorname{NSPACE}\left(S, \mathrm{~m}^{k}\right)
$$

Additional worktape heads often can satisfy an apparent need for additional worktape symbols. Our technical reason for allowing several worktape heads is that additional worktape heads amount to much less additional space than additional symbols do. Proposition 3 establishes the close relationship between worktape symbols and a linear multiple of worktape space, and our next two propositions establish the close relationship between worktape heads and the logarithm of worktape space.

Proposition 4. For every $\epsilon>0$,
$\operatorname{NSPACE}(\mathrm{S}, \mathrm{m}, \ell+\mathrm{k}) \subset \operatorname{NSPACE}\left(\mathrm{S}+(\mathrm{k}+1+\epsilon) \cdot \log _{\mathrm{m}} \mathrm{S}, \mathrm{m}, \ell\right)$,
$\operatorname{DSPACE}(S, m, \ell+k) \subset \operatorname{DSPACE}\left(S+(k+1+\epsilon) \cdot \log _{m} S, m, \ell\right)$.
Proof sketch. Let $M$ be an ( $m, l+k$ )-machine that accepts within space $S(n)$. We wish to design an ( $m, \ell$ )-machine $M^{\prime}$ that simulates $M$ within space $S(n)+(k+1+\varepsilon) \cdot \log _{m} S(n)$.

The first $\ell-1$ heads of $M$ can be simulated by the first $\ell-1$ heads of $M^{\prime}$. The position of each of the other $k+1$ heads of $M$ can be stored by $M^{\prime}$ as the m-ary representation of that position. If these $k+1$ strings are properly delimited, the last head of $M^{\prime}$ can carry them around and access them to simulate all of the last $k+1$ heads of $M$. Since only finitely many ( $k+2$ ) delimiting marks are required, a single extra bit inserted every $j$ symbols of the list can be used in conjunction with fi-
nite-state memory to locate the marks. Each of these bits is set to 1 if and only if at least one of the $k+2$ delimiting marks should be located on one of the next $j$ worktape squares. Since $j$ and $k$ are fixed, the precise locations of the marks relative to the bits that are set to 1 can be maintained by finite-state memory. The list itself accounts for an extra space requirement of $(k+1) \cdot \log _{m} S(n)$, and the additional requirement for delimiters can be kept to an arbitrarily small fraction of that by choosing $j$ large enough.

Clearly, $M^{\prime}$ is deterministic if $M$ is. $\square$

## Proposition 5.

$$
\begin{aligned}
& \operatorname{NSPACE}\left(S+k \cdot \log _{m} S, m, \ell\right) \subset \operatorname{NSPACE}(S, m, \ell+k+3), \\
& \operatorname{DSPACE}\left(S+k \cdot \log _{m} S, m, \ell\right) \subset \operatorname{DSPACE}(S, m, \ell+k+3)
\end{aligned}
$$

Proof sketch. Let $M$ be an ( $m, l$ )-machine that accepts within space $S(n)+k \cdot \log _{m} S(n)$. We wish to design an (m, $\left.l+k+3\right)$-machine $M^{\prime}$ that simulates $M$ within space $S(n)$.

If $S$ happens to be easy to compute, then $M^{\prime}$ can start by stationing head $A$ at worktape square $S(n)$ and head $B$ at worktape square $S(n)$ $\log _{m} S(n)$.
$S(n)$


The worktape of $M$ is conceptually parsed into an initial segment of length $S(n)-\log _{m} S(n)$ and $k+1$ "pages," each of $\operatorname{length} \log _{m} S(n)$. The initial segment will always reside in the first $S(n)-\log _{m} S(n)$ work-
tape squares of $M^{\prime}$. One page at a time can reside in the worktape squares of $M^{\prime}$ delimited by heads $B$ and $A$. Each page not residing there can be stored as a worktape head position, the page being the m-ary representation of the position.

In its simulation, $M^{\prime}$ tries to use $\ell$ of its worktape heads to behave like $M^{\prime}$. A record of the current location of each page (resident or stored as some head position) and the page currently scanned by each head of $M$ is maintained in the finite-state control of M'. When the heads of $M$ scan different pages or move from page to page, "paging" is required. None of the $\ell$ simulating heads is moved from its proper location, but the one free head is used (with some help from head B) to store away the page that is currently resident. The required page is then loaded (again with help from head B), leaving the head that stored it free.

The simulation for arbitrary $S$ differs in that heads $A$ and $B$ are restationed during the simulation according to how much space $M$ has actually used. When $M$ has used $s^{\prime}$ worktape squares, with

$$
(s-1)+k \cdot \log _{m}(s-1)<s^{\prime} \leq s+k \cdot \log _{m} s
$$

head A will be at position $s$ and head $B$ will be at position $s-\log _{m} s$. Restationing is required only when some simulating head is coincident with head $A$ (and scanning the final page), so a second head is temporarily free to help the usual free head to determine whether head $B$ must be restationed. (Head $A$ is restationed every time $s$ changes to $s+1$, but head $B$ is restationed only when $\left.\log _{m} s\right\rfloor=\left\lfloor\log _{m}(s+1)\right\rfloor \cdot$ ) Adjusting the pages on restationing is easily managed with some help from the finite-
state control.
Clearly, $\mathrm{M}^{\prime}$ is deterministic if M is. $\sqcap$

Our final basic containment relationship is the well known result of [Sav70].

Proposition 6. If $\log n=O(S(n))$, then
$\operatorname{NSPACE}(S) \subset \operatorname{NSPACE}\left(S^{2}\right)$.
3. Notions of honesty

Qualitatively, a function is "honest" with respect to space if it can be computed without using space that is too much greater than both its argument and its value. It is easy to check that functions of practical interest are extremely honest. In fact, all of the common functions are of the following type. (See [Rit63].)

Definition. A function $f: N \rightarrow N$ is linear space honest if
$\{\operatorname{bin}(k)$ 斯in(f(k))|kEN\}$\in \operatorname{DSPACE}(n)$,
where we use the notation bin(k) for the binary representation of $k$ (high-order bit first, say). Equivalently, $f$ is linear space honest if $\left.\left\{1^{k} 0^{f(k)} \mid k \in N\right\}\right\} \in \operatorname{DSPACE}(\log n)$.

Our main goal in this chapter is to discover weak separation conditions for the complexity classes defined in Section 1; e. g., we seek a generally sufficient condition on $S_{1}, S_{2}$ for the nonemptiness of $\operatorname{NSPACE}\left(S_{2}\right)-\operatorname{NSPACE}\left(S_{1}\right)$. Well known "gap" theorems, however, show that any reasonable separation condition must include some sort of honesty requirement on at least one of the space bounds involved. (See [Bor72], [Con72], [Con73], [Yng71].) The most commonly used ([Ib72], [Sav70], [BGIW70], [Bk72]) notion of an honest space bound is the one we adopt. Definition. If $f: N \rightarrow N$ does not belong to $O(1)$ and $M$ is a deterministic off-1ine $T M$ acceptor with $L(M)=1^{*}$ and $\operatorname{Space}_{M}(x)=f(|x|)$, then $f$ is fully constructable and $M$ fully constructs $f$.

## Proposition 7.

(i) Every fully constructable function is a space bound.
(ii) Let $f$ be linear space honest. If $\log n \in o(f(n))$, then $f$ is fully constructable by a $(2,1)$-machine. If $\log n \in O(f(n))$, then $f$ is still fully constructable.
(iii) Let $S$ be fully constructable by an ( $m, l$ )-machine, and let $M$ be an $(m, l)$-machine. Then $L_{S}(M) \in \operatorname{NSPACE}(S, m, \ell+1)$; and if $M$ is deterministic, then $L_{S}(M) \in \operatorname{DSPACE}(S, m, \ell+1)$.
(iv) There are fully constructable space bounds in $0(\log \log n)$. (Cf., Proposition 1.)
(v) If $S$ is fully constructable by an ( $m, l$ )-machine and $1 \in o(S(n))$, then $S$ satisfies

$$
\log _{m} n-\ell \cdot \log _{m} \log _{m} n-S(n) \in O(1)
$$

from which it follows that

```
\(\log _{m} n-S(n) \in O(\log \log n)\),
\(\log n \in O(S(n))\).
```

Proof. (i) Let $f$ be fully constructable. Since $f(n) \notin O(1)$, the language
$\left\{0^{k_{1}}{ }^{j} 0^{k} \mid j \geq 1, k \leq f(j+2 k)\right\} \in \operatorname{DSPACE}(f)$
is not regular.
(ii) Assume $f$ is linear space honest and $\log n \in o(f(n))$. Every language accepted deterministically within space $n$ can actually be recognized (cf., footnote on page 43) within space $n$ [HU69a], so let the $(2,1)$-machine $M$ deterministically recognize $\{b i n(k) \neq \ln (f(k)) \mid k \in N\}$ within space $O(n)$. To fully construct $f(n)$, compute according to the transition rules of M successively on

```
bin(n)*bin(0), bin(n)*bin(1), bin(n)*bin(2),...
```

until bin( $f(n)$ ) is discovered, and then convert bin( $f(n)$ ) to unary. As both $\log n$ and $\log f(n)$ belong to $o(f(n))$, this does fully construct $f(n)$ for all sufficiently large $n$; the differences can be handled by the finite-state control. With care, the entire program can be carried out by a $(2,1)$-machine.

If only $\log n \in O(f(n))$, then using a large enough worktape alphabet keeps the search for bin( $f(n)$ ) smaller than $f(n)$ itself.
(iii) An acceptor for $L_{S}(M)$ fully constructs space $S$ and then computes according to the transition rules of $M$ within that space. The extra head is left by the first phase to delimit the space used.
(iv) Define $f(n)=\min \{k \mid n$ is not divisible by $k\}, S(n)=\log f(n)$. Obviously $S$ is fully constructable. Let $\pi(k)$ be the number of primes smaller than $k$. The least $n$ with $f(n) \geq k$ is the least common multiple of $\left\{k^{\prime} \mid k^{\prime}<k\right\}$, which certainly exceeds $2^{\pi(k)}$. Hence, $\pi(f(n)) \leq \log _{2} n$. According to the prime number theorem [NZ60], $k / \log k \in O(\pi(k))$; so

$$
\begin{aligned}
f(n)^{1 / 2} & \in O(f(n) / \log f(n)) \\
& \subset O(\pi(f(n))) \\
& \subset O(\log n) .
\end{aligned}
$$

Therefore,

$$
S(n)=\log f(n) \in O(\log \log n)
$$

(v) Suppose the d-state ( $m, l$ )-machine $M$ fully constructs $S$. We show below that $S(n)=S(n+k n!)$ for every positive integer $k$ whenever

$$
\begin{gathered}
\log _{m} n-l \cdot \log _{m} \log _{m} n-S(n)>\log _{m} d . \quad \text { It follows that } \\
\log _{m} n-l \cdot \log _{m} \log _{m} n-S(n) \notin O(1) \Rightarrow 1 \notin o(S(n)) .
\end{gathered}
$$

Let $S(i, n)$ be the number of distinct worktape squares visited through the $i^{\text {th }}$ time that $M$ scans an input endmarker on either end of the input while computing on input $1^{n}$, and let

$$
Q(i, n) \in\{\notin, \$\} \times\{1, \ldots, d\} \times\{1, \ldots, m\}^{S(n)} \times\{1, \ldots, S(n)\}^{\ell}
$$

describe the total state of $M$ at the end of that time. (If there is no $i^{\text {th }}$ endmarked total state, then $Q(i, n)=$ undefined.)

For $\log _{m}-4 \cdot \log _{m} \log _{m} n-S(n)>\log _{m} d$, we show by induction on $i$ that $S(i, n)=S(i, n+k n!)$ and $Q(i, n)=Q(i, n+k n!)$. That $S(i, n)=S(i, n+k n!)$ for all implies $S(n)=S(n+k n!)$.

Since $M$ has a fixed initial state, $Q(1, n)=\mathbf{Q}(1, n+k n!)$ and $S(1, n)=S(1, n+k n!)=1$.

Suppose $Q(i, n)=Q(i, n+k n!)$ and $S(i, n)=S(i, n+k n!)$. To prove $Q(i+1, n)=Q(i+1, n+k n!)$ and $S(i+1, n)=S(i+1, n+k n!)$, we consider four cases:

Case 1: $Q(i, n)=$ undefined. Obviously, $Q(i+1, n)=Q(i+1, n+k n!)=$ undefined, $S(i+1, n)=S(i, n)=S(i, n+k n!)=S(i+1, n+k n!)$.

Case 2: $Q(i, n)$ is defined, but $Q(i+1, n)=$ undefined. Since $n+k n!\geq n$, the computation continuations are identical.

Case 3: $Q(i+1, n)$ is defined and involves the same endmarker as $Q(i, n)$. Since $n+k n!\geq n$, the computations are identical from the $i^{\text {th }}$ endmarked total state up to the $(i+1)^{\text {st }}$ endmarked total state.

Case 4: $Q(i+1, n)$ is defined and involves the other endmarker. In going from $Q(i, n)$ to $Q(i+1, n)$, $M$ first reaches each input square $j \in\{1, \ldots, n\}$ in some memory state $f(j)$. Because

$$
\mathrm{d} \cdot \mathrm{~m}^{S(n)} \cdot S(\mathrm{n})^{\ell}<n
$$

is implied by
$\log _{m} n-\ell \cdot \log _{m} \log _{m} n-S(n)>\log _{m} d$,
however, $f\left(j_{1}\right)=f\left(j_{2}\right)$ for some $j_{1}<j_{2} \in\{1, \ldots, n\}$. Clearly, therefore, increasing the input length by any multiple of $j_{2}-{ }^{j} 1$ results in the same next endmarked total state and no new memory states. Certainly kn! is a multiple of $\mathbf{j}_{2}-\mathbf{j}_{1}$.

Criteria slightly different from ours for "acceptance within space $S^{\prime \prime}$ have been proposed. Book [Bk72] requires that every accepting computation on input $x$ involve no more than $S(|x|)$ worktape squares, and Ibarra [Ib72] requires that every computation on input $x$ involve no more than $S(|x|)$ worktape squares. The significance of the proof of part (iii) of Proposition 7 is that the complexity classes determined by fully constructable space bounds are hardly affected by these differences.

While part (iv) is surprising, part (v) of Proposition 7 redeems our intuition that a radix count of the input length fully constructs nearly the smallest possible fully constructable space bound. The result implies that one may substitute the innocuous hypothesis $1 \in o(S(n))$ whenever the apparently more arbitrary condition $\log n \in O(S(n))$ arises for a fully constructable space bound $S$.

Hopcroft and Ullman [HU69a] work with space bounds that are merely "constructable."

Definition. If $M$ is a deterministic off-line TM acceptor with

$$
S(n)=\max \left\{\operatorname{Space}_{M}(x)|x \in L(M),|x|=n\},\right.
$$

then $S$ is constructable and $M$ constructs $S$.

An interesting corollary of Proposition 7(v) and the existence of constructable space bounds $S(n) \in o(\log n)$ with $1 \in O(S(n))$ [SHL65] is that not every constructable space bound is fully constructable. Because we cannot prove Proposition 7 (iii) for constructable space bounds, however, we choose not to use the concept.

## 4. Conventional separation results

Counting and diagonalization arguments ([HU69a] and [SHL65], respectively) have been used to prove separation results among the NSPACE (S) and DSPACE(S) complexity classes. (See Corollaries 9, 11 below.) In this section we sketch more careful versions of these arguments to show what conditions they yield for separation among the more refined classes $\operatorname{NSPACE}(S, m, \ell)$ and $\operatorname{DSPACE}(S, m, \ell)$. For details, the reader is referred to [HU69a], [SHL65], [HU69b].

Theorem 8. If $S_{2}$ is fully constructable by an ( $m, \ell$ )-machine; then there is a language over $\{0,1\}$ in

$$
\begin{aligned}
& \operatorname{DSPACE}\left(S_{2}, m, \ell+1\right) \\
&-\left(U\left\{\operatorname{NSPACE}\left(\mathrm{~S}_{1}, m, \ell\right) \mid \mathrm{S}_{2}^{\prime}(\mathrm{n})-2 \cdot \mathrm{~S}_{1}(\mathrm{n}) \notin 0(1)\right\} \cup\right. \\
&\left.\bigcup\left\{\operatorname{DSPACE}\left(\mathrm{S}_{1}, \mathrm{~m}, \ell-1\right) \mid \mathrm{S}_{2}^{\prime}(\mathrm{n})-\mathrm{S}_{1}(\mathrm{n}) \notin 0(1)\right\}\right),
\end{aligned}
$$

where $S_{2}(n)=\min \left\{S_{2}(n), \log _{m} n-\ell \cdot \log _{m} \log _{m} n\right\}$.
Proof sketch. Define

$$
\begin{aligned}
& L=\left\{x \mid x=u y u^{R} \in\{0,1\}^{*}\right. \text { for some u with } \\
& \left.\left.\qquad|u|=\min \{L|x| / 2\rfloor, \mathrm{m}^{\mathrm{S}}(|x|) \cdot \mathrm{S}_{2}(|x|)^{\ell}\right\}\right\}
\end{aligned}
$$

where $u^{R}$ is the reverse of string $u$. (Note here that

$$
\left.|u| \leq m^{S_{2}^{\prime}(|x|)} \cdot S_{2}^{\prime}(|x|)^{\ell} .\right)
$$

We first show that $L \in \operatorname{DSPACE}\left(S_{2}, m, \ell+1\right)$. An acceptor for $L$ can first lay out space $S_{2}(|x|)$, using the extra head to delimit that space. The delimited space can be used as a counter to compare successive characters from the two ends of the input string. Because $\ell$ extra heads are available, the counter is large enough to count up to $\mathrm{m}_{2}(|\mathrm{x}|) \cdot \mathrm{S}_{2}(|\mathrm{x}|)^{\ell}$.

Next, we show that $L \notin \operatorname{NSPACE}\left(S_{1}, m, l\right)$ unless $S_{2}^{\prime}(n)-2 \cdot S_{1}(n) \in O(1)$. By the reasoning of [HU69a], for a d-state ( $\mathrm{m}, l$ )-machine to accept $L$ within space $S_{1}$, we must have

$$
\left.2^{m^{S_{2}^{\prime}(n)}} \cdot S_{2}^{\prime(n)^{\ell}} \leq 4^{\left(d \cdot m^{S_{1}(n)}\right.} \cdot S_{1}(n)^{l}\right)^{2}
$$

Taking logarithms twice gives

$$
S_{2}^{\prime}(n)+\ell \cdot \log S_{2}^{\prime}(n)+\mathrm{cnstn}_{1} \leq 2 \cdot\left(S_{1}(n)+\ell \cdot \log S_{1}(n)\right)+\text { cnstnt }_{2},
$$

so that $S_{2}^{\prime}(n)-2 \cdot S_{1}(n) \in O(1)$.
Finally, we use similar reasoning to show that $L \notin \operatorname{DSPACE}\left(\mathrm{~S}_{1}, \mathrm{~m}, \ell-1\right)$ unless $S_{2}^{\prime}(n)-S_{1}(n) \in O(1)$. The behavior of a deterministic off-1ine $T M$ at an input boundary can be described as a function from the storage states into the storage states plus the "accept" and "nonaccepting noreturn" outcomes. For a deterministic d-state (m, l-1)-machine to accept L within space $S_{1}$, therefore, we must have

$$
2^{m^{S_{2}^{\prime}(n)}} \cdot S_{2}^{\prime(n)^{\ell}} \leq\left(2+d \cdot m_{1}^{S_{1}^{(n)}} \cdot S_{1}(n)^{\ell-1}\right)^{d \cdot m_{1}(n)} \cdot S_{1}(n)^{\ell-1}
$$

Taking logarithms twice gives

$$
S_{2}^{\prime}(n)+l \cdot \log S_{2}^{\prime}(n)+\text { cnstnt }_{1} \leq S_{1}(n)+l \cdot \log S_{1}(n)+\text { cnstnt }{ }_{2}
$$

so that $S_{2}^{\prime}(n)-S_{1}(n) \in O(1)$.

Corollary 9 [HU69a]. If $S_{2}$ is fully constructable, then

$$
\operatorname{DSPACE}\left(S_{2}\right)-\bigcup\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid \min \left\{S_{2}(n), \log n\right\} \notin O\left(S_{1}(n)\right)\right\}
$$

contains a language over $\{0,1\}$.

Proof. Take $m$ so large that $S_{2}$ is fully constructable by an ( $m, 1$ )machine. For $S_{2}(n)=\min \left\{S_{2}(n), \log _{m} n-\log _{m} \log _{m} n\right\}$, Theorem 8 gives a language over $\{0,1\}$ that bears witness to the noncontainment in

$$
\begin{aligned}
& \cup\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid \min \left\{S_{2}(n), \log n\right\} \notin O\left(S_{1}(n)\right)\right\} \\
& =\bigcup\left\{\operatorname{NSPACE}\left(\mathrm{S}_{1}\right) \mid \mathrm{S}_{2}^{\prime} \notin O\left(\mathrm{~S}_{1}\right)\right\} \\
& =U\left\{\operatorname{NSPACE}\left(\mathrm{k} \cdot \mathrm{~S}_{1}, \mathrm{~m}, \mathrm{l}\right) \mid \mathrm{k} \in \mathrm{~N}, \mathrm{~S}_{2} \notin \mathrm{O}\left(\mathrm{~S}_{1}\right)\right\} \\
& =U\left\{\operatorname{NSPACE}\left(S_{1}, m, 1\right) \mid S_{2}^{\prime} \notin O\left(S_{1}\right)\right\} \\
& \subset U\left\{\operatorname{NSPACE}\left(S_{1}, m, 1\right) \mid S_{2}^{\prime}(n)-2 \cdot S_{1}(n) \notin O(1)\right\} \\
& \nrightarrow \operatorname{DSPACE}\left(\mathrm{S}_{2}, \mathrm{~m}, 2\right) \\
& \subset \operatorname{DSPACE}\left(\mathrm{S}_{2}\right) \text {. }
\end{aligned}
$$

Theorem 10. If $S_{2}$ is fully constructable by an ( $m, \ell+2$ )-machine, then there is a language over $\{0,1\}$ in

$$
\operatorname{DSPACE}\left(S_{2}, m, \ell+3\right)
$$

$$
\begin{aligned}
-U\left\{\operatorname{DSPACE}\left(S_{1}, m, \ell\right) \mid\right. & S_{2}(n)-2 \cdot S_{1}(n)-\ell \cdot \log _{m} S_{1}(n)-\log _{m} n \\
& \notin 0(1)\} .
\end{aligned}
$$

Proof sketch. Design a deterministic ( $m, \ell+3$ )-machine $M$ to operate as follows on input ex, where $e^{\text {is }}$ the description of a deterministic ( $\mathrm{m}, \mathrm{l}$ )-machine $\mathrm{M}_{\mathrm{e}}$ :

1. Lay out space $S_{2}(|e x|)$, using head $A$ to bound it.
2. Use $\ell$ worktape heads to carry out a simulation of $M_{e}$ on input ex, using head $B$ to bound the simulation. (The simulation requires no more space than $c_{e}+S_{M_{e}}$ (ex), where $c_{e}$ depends only on $e$; and it requires no additional worktape heads to read the description of $M_{e}$ because that description can be carried around and read by one of the $\ell$ heads already being used.) Meanwhile, use head A to keep m-ary count of the simulated steps, and use head $C$ to mark the high-order end of the counter.

3. If the simulation is completed before the simulation and the count run out of free space, then compleqnat the outcome of the simulation; otherwise, just accept.

Now suppose $M_{e}$ is a deterministic d-state ( $m, f$ )-mechine that accepts within space $S_{1}$, where $\Delta(n)(1)$ for

$$
\Delta(n)=S_{2}(n)-2 \cdot S_{1}(n)-l \cdot \log _{n} S_{1}(n)-\log _{n_{2}} n
$$

Take $x$ so that $\Delta(|e x|)>c_{e}+d$. If ex $\in L\left(M_{e}\right)$, then it must be accepted within $d \cdot|e x| \cdot \mathrm{m}^{\mathrm{s}_{1}(|e x|)} \cdot \mathrm{S}_{1}(|e x|)^{\text {t }}$ then by $\mathrm{M}_{\mathrm{e}}$. (Otherwise, a total state would repeat, and $M_{e}$ would loop forever on ex.) Since

$$
\begin{aligned}
& c_{e}+s_{1}(|e x|)+\log _{m}\left(d \cdot|e x| \cdot s_{1}(|e x|)\right. \\
& =c_{e}+\log _{m} d+s_{2}(|e x|)-\Delta(|e x|) \\
& s s_{2}(|e x|)-\left(\Delta(|e x|)-\left(c_{e}+d\right)\right) \\
& s s_{2}(|e x|)
\end{aligned}
$$

$M$ does discover that ex $\in L\left(M_{e}\right)$ and arrange ex $\left.4 G\right)$. On the other hand, if ex $\& L(M)$, then $M$ will certainiy accept ex. Therefore, $L\left(M_{e}\right) \neq L(M)$.

Corollary 11 [SHL65]. If $S_{2}$ is fully constructable, then

$$
\operatorname{DSPACE}\left(S_{2}\right)-U\left\{\operatorname{DSPACE}\left(S_{1}\right) \mid s_{2}(n) \in O\left(S_{1}(n)+\log n\right)\right\}
$$

contains a language over $\{0,1\}$.
Proof. Take $m$ so large that $S_{2}$ is fully constructable by an (m,1)-
machine. Theorem 10 gives a language over $\{0,1\}$ that bears witness to the noncontainment in

$$
\begin{aligned}
& U\left\{\operatorname{DSPACE}\left(S_{1}\right) \mid S_{2}(n) \notin O\left(S_{1}(n)+\log n\right)\right\} \\
& =\bigcup\left\{\operatorname{DSPACE}\left(k \cdot S_{1}, m, 1\right) \mid k \in N, S_{2}(n) \notin O\left(S_{1}(n)+10 g n\right)\right\} \\
& =\bigcup\left\{\operatorname{DSPACE}\left(S_{1}, m, 1\right) \mid S_{2}(n) \notin O\left(S_{1}(n)+\log n\right)\right\} \\
& \subset \bigcup\left\{\operatorname{DSPACE}\left(S_{1}, m, 1\right) \mid S_{2}(n)-2 \cdot S_{1}(n)-\log _{m} S_{1}(n)-\log _{m} n \notin O(1)\right\} \\
& \nrightarrow \operatorname{DSPACE}\left(S_{2}, m, 4\right) \\
& \subset \operatorname{DSPACE}\left(S_{2}\right) \cdot
\end{aligned}
$$

By Proposition 6, one more corollary is implicit in Corollary 11.
Corollary 12. If $S_{2}$ is fully constructable, then

$$
\operatorname{DSPACE}\left(S_{2}\right)-\cup\left\{\operatorname{NSPACE}\left(\mathrm{S}_{1}\right) \mid S_{2}(\mathrm{n}) \notin O\left(\mathrm{~S}_{1}(\mathrm{n})^{2}+(\log n)^{2}\right)\right\}
$$

contains a language over $\{0,1\}$.

Remark. The original arguments of [HU69a] and [SHL65] were for $\mathrm{S}_{2}$ merely constructable. For $S_{2}$ constructable by an ( $m, l$ )-machine $M$ with $L(M) \subset \Sigma^{*}$, accordingly, a witness language over $\Sigma \times\{0,1\}$ is obtained in each of the above results.

## 5. Padding whole languages

For space bounds above $\log n$, the separation results given by Corollary 11 are very good. For $S_{2}$ fully constructable and $\log n \in O\left(S_{2}(n)\right)$, in fact, since $S_{2} \in O\left(S_{1}\right)$ implies $\operatorname{DSPACE}\left(S_{2}\right) \subset$ DSPACE ( $S_{1}$ ) (Proposition 3), it follows from Corollary 11 that $\operatorname{DSPACE}\left(S_{2}\right)-\operatorname{DSPACE}\left(S_{1}\right) \neq \varnothing$ if and only if $S_{2} \notin O\left(S_{1}\right)$. Corollary 12, on the other hand, is relatively weak and does not even separate $\operatorname{NSPACE}\left(\mathrm{n}^{4}\right)$ from NSPACE ( ${ }^{2}$ ), for example.

Using the padding trick of Ruby and P. Fischer [RF65], Ibarra [Ib72] has refined some of the separation results given by Corollary 12. The basic trick is illustrated by the following lemma, where we write $p(L)$ for $\left\{x 10^{i k}\left|x \in L,\left|x 10^{k}\right|=p(|x|)\right\}\right.$ when $L \subset\{0,1\}^{*}$ and $p: N \rightarrow N$ satisfies P(n) $>$ n.

Lemma 13. If $p(n)>n$ is linear space honest and $\log n \in O(S(n))$, then
$p(L) \in \operatorname{NSPACE}(S) \Leftrightarrow L \in \operatorname{NSPACE}(S \circ p)$.
Proof. Every language accepted deterministically within space n can actually be recognized (cf., footnote on page 43) within space $n$ [HU69a], so let $M$ deterministically recognize $\{\operatorname{bin}(k) \# b i n(f(k)) \mid k \in N\}$ within space n .
$\Leftrightarrow$ Suppose $M_{1}$ accepts $p(L)$ within space $S$. Design $M_{2}$ to operate as follows on input string $x$ :

1. Write down $\operatorname{bin}(|x|)$ and then compute according to the transition rules of $M$ successively on

$$
\operatorname{bin}(|x|) \# b i n(0), \operatorname{bin}(|x|) \# b i n(1), \operatorname{bin}(|x|) \# b i n(2), \ldots
$$

until bin( $p(|x|)$ ) is discovered. As $p(n) \geq n$, this can be
accomplished within space proportional to $\log p(|x|) \in$ $0(S(p(|x|)))$.
2. Compute according to the transition rules of $M_{1}$ on input $x 10^{p(|x|)-|x|-1}$. By hypothesis, this can be accomplished within space proportional to $S(p(|x|)$ ) in acceptance.

Clearly, $M_{2}$ accepts $L$ within space proportional to $S$ op.
$\Leftrightarrow$ Suppose $M_{2}$ accepts $L$ within space $S(p(n))$. Design $M_{1}$ to operate as follows on input string $\times 10^{k}$ :

1. Write down bin $(|x|)$ \#bin $(|x|+1+k)$ and then compute according to the transition rules of $M$ to determine whether $\left|x 10^{k}\right|=p(|x|)$. This can be accomplished within space proportional to $\log p(|x|)=\log \left|\times 10^{k}\right| \in O\left(S\left(\left|\times 10^{k}\right|\right)\right)$ in acceptance.
2. If $\left|x 10^{k}\right|=p(|x|)$, then compute according to the transition rules of $\mathrm{M}_{2}$ on input x . By hypothesis, this can be accomplished within space $S(p(|x|))=S\left(\left|x 10^{k}\right|\right)$ in acceptance.

Clearly, $M_{1}$ accepts $p(L)$ within space proportional to $S$.
The following theorem shows how Lemma 13 is used to improve known separation results. The formulation is a variation of Ibarra's [Ib72].

Theorem 14. Let sets $g_{1}, \delta_{2}$ of space bounds be given, with $\log n \in O(S(n))$ for every $S \in \delta_{1} \cup \delta_{2} . \quad$ Say $p_{1}(n)>n, \ldots, p_{i}(n)>n$ are linear space honest functions with $S_{1} \circ p_{i+1} \in 0\left(S_{2} \circ p_{i}\right)$ whenever $1 \leq i<\ell, s_{1} \in g_{1}, s_{2} \in g_{2}$.
If $L \in \cap\left\{\operatorname{NSPACE}\left(\mathrm{~S}_{2} \circ \mathrm{p}_{\boldsymbol{\ell}}\right) \mid \mathrm{s}_{2} \in \mathrm{~S}_{2}\right\}-\cup\left\{\operatorname{NSPACE}\left(\mathrm{S}_{1} \circ \mathrm{p}_{1}\right) \mid \mathrm{s}_{1} \in \mathrm{~S}_{1}\right\}$, then $p_{i}(L) \in \cap\left\{\operatorname{NSPACE}\left(S_{2}\right) \mid s_{2} \in \delta_{2}\right\}-U\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid s_{1} \in S_{1}\right\}$ for some $i$. Proof. For $1 \leq i \leq \ell$, let

$$
\begin{aligned}
& C(1,2)=\cap\left[\operatorname{man}\left(\theta_{2} \cdot \theta_{1}\right) \mid s_{2} \in s_{2}\right] \text {. }
\end{aligned}
$$


 so, for $1 \leq 1<f$.
$L \in C(1+1,1) \Rightarrow L \in \in(1,2)$

$1 \in C(x, 2) \Rightarrow L \in C(1,1)$




$=$ ก


for that eame 4
 a (ubte $=$ (flohe sosta

1.2 2 promurana






 6
6. Program codes and recursion

For precision, let us now choose an appropriate program coding for off-line TMs. With each off-1ine $\operatorname{IM}$ having input alphabet $\{0,1\}$, we associate a distinct program code from $\{0,1\}^{*}$; and we do this in agreement with the easily-satisfied conditions listed below. We use the notation $L_{p, c}^{m, l}$ for the set of program codes for ( $m, l$ )-machines and $L_{p, c}$. for the set of all program codes. We denote by $M_{e}$ the off-1ine $T M$ with program code e.

Condition 1. No program code is a prefix or suffix of anather, and $L_{p, l}^{m, ~}$ is regular for each $m$, l.

Condition 2. For each fixed $m, l$, there is an $(m, l)$-machine $U_{0}$ ( $a$ " $m$ inversal simulator') with

$$
\begin{aligned}
& L\left(U_{0}\right)=\left\{e x \mid e \in L_{p, c}^{m, \ell}, x \in L_{\left(M_{e}\right)}\right\} \\
& \text { Space }_{U_{0}}(e x) \leq c_{e}+\operatorname{space}_{M_{e}}(x) \text { if } e \in L_{p, c .}^{m, \ell}
\end{aligned}
$$

where $c_{e}$ depends only on $e$. Furthermore, $U_{0}$ has only one computation on ex if $\mathrm{M}_{\mathrm{e}}$ is deterministic.

Condition 3. There is a recursive function $f: L_{p, c} \rightarrow L_{\text {p. }}$. such that $f: L_{p, l}^{m, l} \rightarrow L_{p, C}^{m, l}$ for each $m, l$ and such that $M_{f(e)}$ deterministically writes $e$ at the front of its worktape and thereafter acts according to the transition rules of $\mathrm{M}_{\mathrm{e}}$.

Most common instruction-by-instruction or state-by-state codings of offline $T M$ programs can be tailored to satisfy these conditions. The only trick is to design the universal simulator of Condition 2 so that one of the $\ell \geq 1$ simulating worktape heads carries with it and references an

low in the proof of thenem 15.)
Conditionas 2 and 3 allow we to prove atrater of the fixed point







0




 mal e on its worktape:

1. Convert to $f(e)$.


2. Convert $f(e)$ to $h(f(e))$, theme h, the thrinling hopproxphiam" with $h(0)=00, h(1)=11$.

 of $U_{0}$. The $E$ 刍 mark the emis of the string twe the pouith of the fuput head


3. Write $e_{1}$ on the woriktope.
4. Convert $e_{1}$ to $f\left(e_{1}\right)=e_{0}$.
5. Convert $e_{0}$ to $h\left(e_{0}\right)$.
6. Simulate $U_{0}$ on $e_{2} e_{0} x$.

Thus,

$$
\begin{aligned}
x \in L\left(M e_{0}\right) & \Leftrightarrow e_{2} e_{0} x \in L\left(U_{0}\right) \\
& \Leftrightarrow e_{0} x \in L(M), \\
\operatorname{Space}_{M}(x) & \leq c+\operatorname{space}_{M}\left(e_{0} x\right),
\end{aligned}
$$

where $c$ is $c_{e_{2}}$ plus the number of worktape squares required for steps 1 , 2, 3.

## 7. Another general separation result

The general separation result that we prove in this section (Theorem 18) amounts to a dramatic refinement of the following very weak "separation" result.

Lemma 16. For no recursive space bound $S$ does NSPACE(S) contain all the recursive languages over $\{1\}$.

Proof. If $S$ is recursive, then the diagonal language

$$
\left\{1^{n} \mid 1^{n} \& L_{S}\left(M_{e}\right), 1 e=b \ln (n)\right\}
$$

is a recursive language not in NSPACE(S).

One more technical lemma is all we need for the proof of Theorem 18.

Lema 17. If $S / 2$ is fully constructable by $a(2,1)$-machine, then some deterministic (m,i)-machine recognizes

$$
L=\left\{I^{j_{0} k} \mid k \geq m^{S(j)} \cdot S(j)^{b-1}\right\}
$$

within space $\log _{m} n-(\ell-1) \cdot \log _{m} \log _{m} n$.
Proof. It is easier to get an ( $m, \ell+1$ )-machine that does the job. Given a fixed position $s$ of the extra head, we can use the other $\ell$ heads within space $s$ to count through $s^{\ell-1}$ cycles of an m-ary counter that counts up to $\mathrm{m}^{s}$, while checking whether $k<\mathrm{m}^{8} \cdot \mathrm{~s}^{\ell-1}$. By trying successive positions $s$, we can find position $s_{0}$, the least $s \geq 1$ with $k<m^{s} \cdot s^{l-1}$.

Certainly $S$ is fully constructable by a (2,1)-machine. Since $m \geq 2$ and $\ell \geq 1$, we can leave the extra head at position $s_{0}$ and try to lay out space $S(j)$ without reaching that position. We succeed if and only if $k \geq m^{S(j)} \cdot S(j)^{\ell-1}$.

Suppose $n$ is so large that

$$
\left(\log _{m} n-(l-1) \cdot \log _{m} \log _{m} n\right)^{l-1}>\left(\log _{m} n\right)^{l-1} / m
$$

If

$$
s_{0}>2+\log _{m} n-(l-1) \cdot \log _{m} \log _{m} n,
$$

then

$$
m^{s_{0}^{-1}} \cdot\left(s_{0}-1\right)^{l-1}>n=j+k \geq k
$$

by substitution, contradicting the minimality of $s_{0}$. Therefore,

$$
s_{0} \leq 2+\log _{m} n-(\ell-1) \cdot \log _{m} \log _{m} n
$$

for all sufficiently large $n$, and the simple method of Proposition 2 yields an ( $m, \ell+1$ )-machine that recognizes $L$ within space
$\log _{\mathrm{m}} \mathrm{n}-(\ell-1) \cdot \log _{\mathrm{m}} \log _{\mathrm{m}} \mathrm{n}$.
To get rid of the extra head, we make two observations. The first is that the boundary head can be used in the first phase to run the $m$ ary counter without losing its place. The second is that the boundary head can be used even to lay out space $S(j)$ in the second phase. The reason is that, since $S / 2$ is fully constructable by a (2,1)-machine, $S$ is fully constructable by a $(2,1)$-machine that leaves every other tape square redundant by always writing and reading aa rather than just a for every worktape symbol a. We can modify redundant tape squares to mark the head position and the ends of the used space.

Theorem 18. If $S_{2}$ is fully constructable by an ( $m, l$ )-machine, then each of the following set differences contains a language over $\{0,1\}$ :

$$
\begin{aligned}
& \operatorname{NSPACE}\left(\mathrm{S}_{2}, \mathrm{~m}, \ell+3\right)-\bigcup\left\{\operatorname{NSACE}\left(\mathrm{S}_{1}, m, \ell+2\right) \mid 1 \in o\left(S_{2}(\mathrm{n})-\mathrm{S}_{1}(\mathrm{n}+1)\right)\right\}, \\
& \operatorname{DSPACE}\left(\mathrm{S}_{2}, \mathrm{~m}, \ell+3\right)-\bigcup\left\{\operatorname{DSPACE}\left(\mathrm{S}_{1}, m, \ell+2\right) \mid 1 \in o\left(\mathrm{~S}_{2}(\mathrm{n})-\mathrm{S}_{1}(\mathrm{n}+1)\right)\right\}
\end{aligned}
$$

Proof. Let $S_{2}$ be fully constructable by an ( $m, l$ )-machine, and let $U_{0}$ be
the universal simulator of Condition 2 for $m, ~ s+2$. Fy Proposition








 $\qquad$ ort
 an, for $e \in \frac{\mathrm{~L}}{\mathrm{~L}} \mathrm{p} \cdot \mathrm{c}$.



 some space bound $s / 2$ that is fully conetrntevitio by $a(2,1)$-mehine.


## ates an follows:

1. Check that the input strint ie of the toum gity for come
 epace.
 more that

$$
\begin{aligned}
& \log _{m}\left|x 0^{k}\right|-(\ell+1) \cdot \log _{m} \log _{m}\left|x 0^{k}\right| \\
& \leq \log _{m}\left|e x 0^{k+1}\right|-(\ell+1) \cdot \log _{m} \log _{m}\left|e x 0^{k+1}\right| \\
& \leq s_{1}\left(\left|e x 0^{k+1}\right|\right)
\end{aligned}
$$

worktape squares.
3. If $k \geq S^{\prime}(|x|)$, then compute on input $x$ according to the transition rules of $M$. This requires no more than

$$
\begin{aligned}
S(|x|) & \leq \log _{m} S^{\prime}(|x|)-(\ell+1) \cdot \log _{m} \log _{m} S^{\prime}(|x|) \\
& \leq \log _{m} k-(\ell+1) \cdot \log _{m} \log _{m} k \\
& \leq \log _{m}\left|e x 0^{k+1}\right|-(\ell+1) \cdot \log _{m} \log _{m}\left|e x 0^{k+1}\right| \\
& \leq S_{1}\left(\left|e x 0^{k+1}\right|\right)
\end{aligned}
$$

worktape squares for $x \in L(M)$.
4. If $k<S^{\prime}(|x|)$, then compute on input ex $0^{k+1}$ according to the transition rules of $U_{1}$, comitting the final 0 to finite-state memory. This requires no more than $S_{1}\left(\left|e x 0^{k+1}\right|\right)$ worktape squares for acceptance.
To sumarize the behavior of $M^{\prime}$ on ex $0^{k}$,
$k \geq S^{\prime}(|x|) \Rightarrow$ behave like $M$ on $x$;
$k<S^{\prime}(|x|) \Rightarrow$ behave like $U_{1}$ on ex $0^{k+1}$.
To summarize the timing for $\operatorname{ex}^{k} \in L\left(M^{\prime}\right)$,
Space $_{M_{1}}\left(\operatorname{ex0^{k}}\right) \leq S_{1}\left(\left|e x 0^{k+1}\right|\right)$.
Applying the recursion theorem (Theorem 15) to $M^{\prime}$, we get a program
code $e_{0}$ for an ( $m, \ell+2$ )-machine that accepts
$L\left(M_{e_{0}}\right)=\left\{x 0^{k} \mid e_{0} x 0^{k} \in L\left(M^{\prime}\right)\right\} \subset 1^{*} 0^{*}$
within space

$$
\operatorname{Space}_{M_{e_{0}}}\left(x 0^{k}\right) \leq c+\operatorname{Space}_{M^{\prime}}\left(e_{0} x 0^{k}\right)
$$

for some constant $c$.
 for every $k$ :


$$
\left.x 0^{k} \in L a_{0}\right) \quad x \in L
$$



$$
\mathbf{s}_{\mathbf{2}}(n) \mathbf{- 8}_{\mathbf{1}}(n+1)=\mathbf{c}_{\mathbf{0}}{ }_{0} \mathbf{c}
$$




$$
k \geq s^{\prime}(|x|) ;
$$

$$
\left.x^{k} \in L \theta_{0}\right) \theta_{0} x^{k} \in L(M y)
$$


$-6 \in \ln 9=2$ $\qquad$
 came).


(by choice of $0_{0}$ ) $f^{\text {t }}$ and curated $=1 y^{3}$

(because by definition Axquian in et $t_{1}$ thetis


$\Rightarrow x \in L$

$$
x \in L \Rightarrow x 0^{k+1} \in L\left(M_{0}\right)
$$

(by induction hypothesis)
$\Rightarrow e_{0} x^{k+1} \in L\left(M^{\prime}\right)$
(by choice of $e_{0}$ )
$\Rightarrow$ Space $_{M}\left(e_{0} x 0^{k+1}\right) \leq s_{1}\left(\left|e_{0} x 0^{k+2}\right|\right)$
(by space usage of $M^{\prime}$ )
$\Rightarrow c_{e_{0}}+\operatorname{Space}_{M_{e_{0}}}\left(x 0^{k+1}\right) \leq c_{e_{0}}+c+\operatorname{Space}_{M^{\prime}}\left(e_{0} x 0^{k+1}\right)$
(by choice of $e_{0}, c$ )
$\leq c_{e_{0}}+c+s_{1}\left(\left|e_{0} x 0^{k+2}\right|\right)$
$\leq s_{2}\left(\left|e_{0} x 0^{k+1}\right|\right)$
(because $x$ is so long)
$\Rightarrow e_{0} \times 0^{k+1} \in L_{S_{2}}\left(U_{0}\right)=L\left(U_{1}\right)$
(by choice of $U_{0}$ )
$\Rightarrow e_{0} x^{k} \in L\left(M^{\prime}\right)$
(because by definition $M^{\prime}$ behaves like $U_{1}$ in this case)
$\Rightarrow x_{0}{ }^{k} \in L\left(M_{e_{0}}\right)$
(by choice of $e_{0}$ ).
Finally, $M_{e_{0}}$ can be modified to use its finite-state control to reject padded inputs (those not members of $\{1\}^{*}$ ) and to agree with $M$ on short ones (those not sufficiently long for the claim) without using the worktape. This gives an off-1ine $T M$ that accepts $L=L(M)$ within space $S_{1}\left(\left|e_{0}\right|+n+1\right)$. Because

$$
\begin{aligned}
s_{1}\left(\left|e_{0}\right|+n+1\right) & \in O\left(S_{2}\left(\left|e_{0}\right|+n\right)\right) \\
& \subset o\left(\sum_{n^{\prime} \leq 2 n} s_{2}\left(n^{\prime}\right)\right)
\end{aligned}
$$


(x) $43^{i+3}$
arbitrarily, and by Lemal 16 not every meh recaraive $\mathcal{L} \in\{1\}^{*}$ can be-


A similar proof showe that (in lo sgench sose qui)






$$
\left.\left(\operatorname{sen} t \cos x^{2} \times \operatorname{san} \operatorname{cog}\right\}\right)
$$

ma tab

$$
\begin{aligned}
& \operatorname{me}_{42^{2}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ge astore er } \\
& \text { (b) } 3 \rightarrow \mathrm{Cx}_{6}=
\end{aligned}
$$

## 8. Applications of the general separation results

Our first application brings together Corollaries 9, 11, and 12 with the related consequences of Theorem 18. It is the latter (part (iii) of Corollary 19) that subsume and improve on the specific results of $[\mathrm{Ib} 72]$.

Corollary 19. Let $S_{2}$ be fully constructable.
(i) If $S_{2}(n) \in O(\log n)$, then $\operatorname{DSPACE}\left(S_{2}\right) \notin U\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid S_{2} \notin O\left(S_{1}\right)\right\}$.
(ii) $\left.\operatorname{DSPACE}\left(S_{2}\right) \nsubseteq \cup\left\{\operatorname{DSPACE}\left(S_{1}\right)\right] S_{2} \notin\left(S_{1}\right)\right\}$,
$\operatorname{DSPACE}\left(\mathrm{S}_{2}\right) \not \subset \bigcup\left\{\operatorname{NSPACE}\left(\mathrm{S}_{1}\right) \mid \mathrm{S}_{2} \notin O\left(\mathrm{~S}_{1}{ }^{2}\right)\right\}$.
(iii) $\operatorname{NSPACE}\left(S_{2}\right) \notin \bigcup\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid S_{1}(n+1) \in o\left(S_{2}(n)\right)\right\}$,
$\bigcup\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid S_{1}(n+1) \in O\left(S_{2}(n)\right), S_{1}(n) \in o\left(S_{2}(n)\right)\right\} \underset{F}{G} \operatorname{NSACE}\left(S_{2}\right)$. (In the case $S_{2}(n+1) \in O\left(S_{2}(n)\right)$, note that $S_{1}(n+1) \in O\left(S_{2}(n)\right)$ is implied by $\left.S_{1}(n) \in o\left(S_{2}(n)\right).\right)$

Furthermore, there are languages over $\{0,1\}$ that bear witness to these facts.

Proof. (i) This part is a slightly weakened form of Corollary 9.
(ii) By Corollaries 9, 11, and 12, we can take languages
$L_{00}, L_{01}, L_{10} \subset\{0,1\}^{*}$ such that
$L_{00} \in \operatorname{DSPACE}\left(S_{2}(n+2)\right)-\bigcup\left\{\operatorname{NSPACE}\left(S_{1}(n+2)\right) \mid \min \left\{S_{2}(n), \log n\right\} \notin\right.$ $\left.O\left(S_{1}(n)\right)\right\}$,
$L_{01} \in \operatorname{DSPACE}\left(S_{2}(n+2)\right)-\bigcup\left\{\operatorname{DSPACE}\left(S_{1}(n+2)\right) \mid S_{2}(n) \notin\right.$ $\left.O\left(S_{1}(n)+\log n\right)\right\}$,
$L_{10} \in \operatorname{DSPACE}\left(S_{2}(n+2)\right)-\bigcup\left\{\operatorname{NSPACE}\left(S_{1}(n+2)\right) \mid S_{2}(n) \notin\right.$
$\left.O\left(S_{1}(n)^{2}+(\log n)^{2}\right)\right\}$.
Clearly the language
$\left\{00 x \mid x \in L_{00}\right\} \cup\left\{01 x \mid x \in L_{01}\right\} \cup\left\{10 x \mid x \in L_{10}\right\}$
belongs to $\operatorname{DSPACE}\left(S_{2}(n)\right)$ but not to
$\cup\left\{\operatorname{NSPACE}\left(S_{1}(n)\right) \mid \min \left\{S_{2}(n), \log n\right\} \notin O\left(S_{1}(n)\right)\right\}$, or
$\cup\left\{\operatorname{DSPACE}\left(S_{1}(n)\right) \mid \quad S_{2}(n) \notin O\left(S_{1}(n)+\log n\right)\right\}$, or
$U\left\{\operatorname{NSPACE}\left(S_{1}(n)\right) \mid S_{2}(n) \notin O\left(S_{1}(n)^{2}+(\log n)^{2}\right)\right\}$.
(Cf., Lemma 13.) It is easy to verify that

$$
\begin{aligned}
S_{2} \notin o\left(S_{1}\right) \Rightarrow & \min \left\{S_{2}(n), \log n\right\} \notin o\left(S_{1}(n)\right) \vee \\
& S_{2}(n) \notin o\left(S_{1}(n)+\log n\right), \\
S_{2} \notin o\left(S_{1}{ }^{2}\right) \Rightarrow & \min \left\{S_{2}(n), \log n\right\} \notin o\left(S_{1}(n)\right) \vee \\
& S_{2}(n) \notin o\left(S_{1}(n)^{2}+(\log n)^{2}\right) .
\end{aligned}
$$

(iii) Take $m$ so large that $S_{2}$ is fully constructable by an ( $m, l$ )machine. Theorem 18 gives a language over $\{0,1\}$ that bears witness to the noncontainment in

$$
\begin{aligned}
& U\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid S_{1}(n+1) \in o\left(S_{2}(n)\right)\right\} \\
& =\bigcup\left\{\operatorname{NSPACE}\left(k \cdot S_{1}, m, 3\right) \mid k \in N, S_{1}(n+1) \in o\left(S_{2}(n)\right)\right\} \\
& =\bigcup\left\{\operatorname{NSPACE}\left(S_{1}, m, 3\right) \mid S_{1}(n+1) \in o\left(S_{2}(n)\right)\right\} \\
& \subset \cup\left\{\operatorname{NSPACE}\left(S_{1}, m, 3\right) \mid 1 \in o\left(S_{2}(n)-S_{1}(n+1)\right)\right\} \\
& \nrightarrow \operatorname{NSPACE}\left(S_{2}, m, 4\right) \\
& \subset \operatorname{NSPACE}\left(S_{2}\right) .
\end{aligned}
$$

Containment in the second assertion of part (iii) holds by Proposition 3. To prove that the containment is proper, appeal to the first assertion to get a language $L \subset\{0,1\}^{*}$ in

$$
\begin{aligned}
\operatorname{NSPACE}\left(S_{2}(n+2)\right)-\cup\left\{\operatorname{NSPACE}\left(S_{1}(n+1)\right) \mid\right. & S_{1}(n+1) \in o\left(S_{2}(n)\right), \\
& \left.S_{1}(n) \in a\left(S_{2}(n)\right)\right\}
\end{aligned}
$$

and then apply Theorem 14 with

$$
\begin{aligned}
& g_{1}=\left\{S_{1} \mid S_{1}(n+1) \in O\left(S_{2}(n)\right), S_{1}(n) \in o\left(S_{2}(n)\right)\right\} \\
& g_{2}=\left\{S_{2}\right\} \\
& P_{1}(n)=n+1 \\
& P_{2}(n)=n+2 .
\end{aligned}
$$

Examples. For any function $G$ tending to infinity ( $\mathcal{E} \in(G(n))$ ), however slowly,
$\operatorname{NSPACE}(\log n / G(n)) \not \equiv \operatorname{NSPACE}(\log n)$, $\operatorname{NSPACE}\left((\log n)^{2} / G(n)\right) \not \equiv \operatorname{NSPACE}\left((\log n)^{2}\right)$, $\operatorname{NSPACE}\left(\mathrm{n}^{2} / \mathrm{G}(\mathrm{n})\right) \leftrightarrows \operatorname{NSPACE}\left(\mathrm{n}^{2}\right)$, $\operatorname{NSPACE}\left(2^{\mathrm{n}} / \mathrm{G}(\mathrm{n})\right) \not \approx \operatorname{NSPACE}\left(2^{\mathrm{n}}\right)$, $\operatorname{NSPACE}\left(2^{2^{n}}\right) \varsubsetneqq \operatorname{NSPACE}\left(2^{2^{n+1}}\right)$.

Feldman and Owings [F073] have observed that deterministic linear bounded automata are more powerful than deterministic linear bounded automata with a fixed worktape alphabet; i.e.,
$\operatorname{DSPACE}(\mathrm{n}, \mathrm{m}) \Longrightarrow \operatorname{DSPACE}(\mathrm{n})$.
Our next application generalizes that observation, showing, for example, that it holds even for nondeterministic linear bounded automata.

Corollary 20. Let $S$ be fully constructable.
(i) If $S(n) \in o(\log n)$, then $\operatorname{NSPACE}(S, m) \nrightarrow \operatorname{DSPACE}(S)$.
(ii) $\operatorname{DSPACE}(\mathrm{S}, \mathrm{m}) \not \equiv \mathrm{DSPACE}(\mathrm{S})$.
(iii) If $S(n+1) \in O(S(n))$ and $1 \in O(S(n))$, then $\operatorname{NSPACE}(S, m) \not \equiv \operatorname{NSPACE}(S)$. Furthermore, there are languages over $\{0,1\}$ that bear witness to these facts.

Proof. (i) Take $m$ so large that $S$ is fully constructable by an ( $m, 1$ )-











C Danacra).











Ibarra [ $1673 a$ ] hee shown that mantel) frma(b+2), where
DHEADS (k) (MHEADS (k), reepectively) damoten the eltet of laggages over

finite automata with $k \geq 1$ heads. ${ }^{\dagger}$ The fact

$$
\operatorname{NSPACE}\left(\log _{2} n, m\right) \varsubsetneqq \operatorname{NSPACE}(\log n)
$$

is just what is needed to establish a similar hierarchy theorem for NHEADS. To this end, we prove a lema relating NHBADS to NSPACE ( $\log \mathrm{n}$ ) and DHEADS to DSPACE $(\log n)$.

Lemma 21 [ Ha 72 ].

$$
\begin{aligned}
& \operatorname{NHEADS}(k) \subset \operatorname{NSPACE}\left(\log _{2} n, 2^{k}, 1\right) \subset \operatorname{NHBADS}(k+4) \\
& \operatorname{DHEADS}(k) \subset \operatorname{DSPACE}\left(\log _{2} n, 2^{k}, 1\right) \subset \operatorname{DHEADS}(k+4)
\end{aligned}
$$

Proof. Let $M$ be a two-way finite automaton with $k$ heads. A $\left(2^{k}, 1\right)$ machine $M^{\prime}$ can simulate $M$ by behaving like a "k-track" $(2,1)$-machine, using the respective tracks of its worktape to hold the binary representations of the positions of the $k$ heads of $M$. Clearly, $M^{\prime}$ is deterministic if $M$ is.


Let $M^{\prime}$ be $a\left(2^{k}, 1\right)$-machine that accepts within space $\log _{2} n$. To simulate $M^{\prime}$, a two-way finite automaton $M$ can encode each of the $k$

[^6]"tracks" of the worktape of $M^{\prime}$ as a head position whose binary representation is the track contents. An additional head, head $A$, can keep count of the position of the worktape head of M'.

To read the contents of track $i$ of the worktape square $M^{\prime}$ scans, $M$ begins by positioning head $B$ coincident with head $A$ and head $C$ coincident with the head whose position encodes the contents of track $i$. (This requires help from head $D$ since the heads cannot detect each other.) Then heads $C$ and $D$ are used to successively halve the position that encodes track 1 (dropping remainders), while decrementing the position of head B once for each halving. The remainder of the last division before $B$ reaches the endmarker is the contents of track $i$ of the worktape square scanned by M'.

To change the contents of track $i$ of the worktape square $M^{\prime}$ scans, $M$ begins by positioning head $B$ coincident with head $A$ and head $C$ on the first input tape square. Then heads $C$ and $D$ are used to successively double the position, while decrementing the position of head B once for each doubling. The position that is reached when $B$ reaches the endmarker is the power of 2 which must be added or subtracted from the position encoding track $i$.

Corollary 22. NHEADS (k) GHEADS (k+2) $^{\boldsymbol{F}}$.
Proof. For each $k$, Corollary 20 (iii) guarantees the existence of some $k^{\prime}$ with

$$
\begin{aligned}
\operatorname{NHEADS}(k) & \subset \operatorname{NSPACE}\left(\log _{2} n, 2^{k}, 1\right) \\
& G \operatorname{NSPACE}\left(\log _{2} n, 2^{k^{\prime}}, 1\right) \\
& \subset \operatorname{NHEADS}\left(k^{\prime}+4\right)
\end{aligned}
$$

According to [Ib73a] this is enough.

Recently, Ibarra and Sahni ([Ib73b], [IS73]) refined some specific instances of our Corollary 20 to show that a single additional worktape symbol sometimes helps. The following more directly proven corollary generalizes their results. Note that this is a case where the consequences of Theorem 18 are stronger than those of Theorem 10 for deterministic machines.

Corollary 23. Let $S$ be fully constructable.
(i) If $S(n) \in o(\log n)$, then
$\operatorname{DSPACE}(\mathrm{S}, \mathrm{m}) \not \equiv \operatorname{DSPACE}(\mathrm{S}, \mathrm{m}+1,1)$
for all sufficiently large m.
(ii) If $S(n+1)-S(n) \in o(S(n))$, then

$$
\operatorname{NSPACE}(\mathrm{S}, \mathrm{~m}) \varsubsetneqq \operatorname{NSPACE}(\mathrm{S}, \mathrm{~m}+1,1),
$$

$$
\operatorname{DSPACE}(S, m) \varsubsetneqq \operatorname{DSPACE}(S, m+1,1)
$$

for all sufficiently large $m$. (If $S$ is actually linear space honest and $\log n \in o(S(n))$, then $m=2$ is sufficiently large.) Furthermore, there are languages over $\{0,1\}$ that bear witness to these facts.

Proof. Take $m$ so large that $S$ is fully constructable by an (m,1)-machine. (If $S$ is actually linear space honest and $\log n \in o(S(n))$, then $m=2$ will do, according to Proposition 7(ii).) Take rational numbers $\delta_{1}, \delta_{2}$ with $1<\delta_{1}<\delta_{2}<\log _{m}(m+1)$. (Note then that $\delta_{2}$. $S$ is fully constructable by an (m,1)-machine, too.)
(i) By Proposition 1, $S(n) \notin o(\log \log n)$, so Theorem 8 gives a language over $\{0,1\}$ that bears witness to the proper containment in

$$
\begin{aligned}
\operatorname{DSPACE}(S, m) & \subset \operatorname{DSPACE}\left(\delta_{1} \cdot S, m, 1\right) \\
& \left(\operatorname{DSPACR}\left(\delta_{2} \cdot S, m, 3\right)\right. \\
& \subset \operatorname{DSPACE}(5, m+1) .
\end{aligned}
$$

(ii) From $S(n+1)-S(n) \in O(S(n))$ and $S(n) \in O(1)$, it is easy to show that $1 \in O(S(n))$ and heace that $1 \in o\left(\delta_{2} \cdot 8(n)-\delta_{1} \cdot S(n+1)\right)$. Therefore, Theorem 18 gives a lagyage over $\{0,1\}$ that bears witmess to the proper containment in

$$
\begin{aligned}
\operatorname{NSPACE}(S, m) & \subset \operatorname{MSPACE}\left(\delta_{1} \cdot \mathrm{~S}, \mathrm{~m}, 3\right) \\
& \square \operatorname{MSPACB}\left(\delta_{2} \cdot \mathrm{~S}, \mathrm{~m}, 4\right) \\
& \subset \operatorname{HSPACE}(\mathrm{S}, \mathrm{~m}+1,1) .
\end{aligned}
$$

The proof for DSPACE is identical.






Corollary 24. Let $s$ be futiy construct entry
(i) If $S(n) \in O(\log n)$, then

for all suffictantky lage mad mil como
(ii) If $S(n+1)-S(n) \in O(\log S(n))$ mal $1 \in O(S(n)$, then

DSPACE $(S, m, 0)$ (f) DSPACE $(S, m)$



Furthermore, there are languages over $\{0,1\}$ that bear witness to these facts.

Proof. Take $m$ so large that $S$ is fully constructable by an ( $m, 1$ )-machine.
(If $S$ is actually linear space honest and $\log n \in o(S(n))$, then $m=2$
will do, according to Proposition 7(ii).) Look at any \&.
(i) By Proposition 1, $S(n) \notin(\log \log n)$, so Theorem 8 gives a language over $\{0,1\}$ that bears witness to the proper containment in

$$
\operatorname{DSPACE}(S, m, \ell) \subset \operatorname{DSPACE}\left(S-(1 / 2) \cdot \log _{m} S, m, \ell+4\right)
$$

$\mp \operatorname{DSPACE}(S, m, \ell+6)$
$\subset \operatorname{DSPACE}(\mathrm{S}, \mathrm{m})$.
(Directly adapting the proof of Theorem 8 would give

$$
\operatorname{DSPACE}(S, m, \ell) \varsubsetneqq \operatorname{DSPACE}(S, m, \ell+3) .)
$$

(ii) Take $c>0$ so large that $S(n+1)-S(n) \leq c \cdot \log _{m} S(n)$. Since $1 \in o(S(n))$, Theorem 18 gives a language over $\{0,1\}$ that bears witness to the proper containment in

$$
\begin{aligned}
\operatorname{NSPACE}(S, m, \ell) & \subset \operatorname{NSPACE}\left(S-d \cdot \log _{m} S, m, \ell+\lfloor c\rfloor+4\right) \\
& \varsubsetneqq \operatorname{NSPACE}(S, m, \ell+\lfloor c\rfloor+5) \\
& \subset \operatorname{NSPACE}(S, m),
\end{aligned}
$$

where $c<d<\lfloor c\rfloor+1$. (Note that $\lfloor c\rfloor=0$ if $1 \in O\left(1-(S(n+1)-S(n)) / \log _{m} S(n)\right)$.) The proof for DSPACE is identical.

Examples. Within each of the space bounds $\left(\log _{7} n\right)^{2}, n^{1 / 2}, n$, $\mathrm{n} \cdot\left(\log _{2} \mathrm{n}\right)^{1 / 2}$, every five additional worktape heads increase the computing power of nondeterministic and deterministic off-1ine TMs. Some greater number of additional worktape heads increases computing power
within space $n \cdot \log _{2} n$.
9. Witness languages over a one-letter alphabet

The witness languages provided by the general separation results above are subsets of $\{0,1\}^{*}$. In this section we investigate conditions for the witness languages to be subsets of Just $\{1\}^{*}$. For sublogarithmic space bounds (Theorem 8), we know of no such conditions; but both Theorem 10 and Theorem 18, can be modified to give languages over just \{1\}.

Theorem 25. If $S_{2}$ is fully constructable by an ( $m, \ell+2$ )-machine, then there is a language over $\{1\}$ in

$$
\begin{aligned}
\operatorname{DSPACE}\left(S_{2}, m, \ell+3\right)- & \cup
\end{aligned} \quad\left\{\operatorname{DSPACE}\left(S_{1}, m, \ell\right) \mid 1 \in\right] .
$$

Proof sketch. To adapt the proof of Theorem 10 and get a diagonal language over just $\{1\}$, we must, in limited space, somehow obtain a description of an ( $m, l$ )-machine to simulate on the input $1^{n}$. Furthermore, each description must arise for infinitely many $n$. (We cannot get by with the condition of Theorem 10 because that would require each description to arise for a string of every sufficient length.) Because $S_{2}(n) \geq$ $\log _{m} n$ in the nontrivial casey a suitable approach is to obtain the description from the m-ary representation of the input length (e. g., by dropping the low-order 0's).

Theorem 26. Let $f(n) \in O(n)-O(1)$ be nondecreasing and linear space honest. If $S_{2}$ is fully constructable by an ( $m, \ell+2$ )-machine and $\log n \in o\left(S_{2}(n)\right)$, then each of the following set differences contains a language over $\{1\}$ :

$$
\begin{aligned}
& \operatorname{NSPACE}\left(S_{2}, m, \ell+6\right)-\cup\left\{\operatorname{NSPACE}\left(S_{1}, m, \ell\right) \mid\right. \\
& \\
& \left.S_{2}(n)-S_{1}(n+f(n)) \geq 4 \cdot \log _{m} n\right\}, \\
& \operatorname{DSPACE}\left(S_{2}, m, \ell+6\right)-U\left\{\operatorname{DSPACE}\left(S_{1}, m, \ell\right) \mid\right. \\
& \\
& \left.S_{2}(n)-S_{1}(n+f(n)) \geq 4 \cdot \log _{m} n\right\} .
\end{aligned}
$$

Proof. Let $f^{\prime}: N \rightarrow N$ be the strictly increasing function with range $\{n \mid f(n)>f(n-1)\}$. Define injections $g, h:\{0,1\}^{*} \rightarrow N$ by

$$
\operatorname{bin}(g(x))=1 x,
$$

$$
h(x 0)=h(x)+f(h(x))
$$

$$
h(x 1)=f^{\prime}\left(m^{g(x 1)}\right)+m^{g(x 1)}-1
$$

$$
h(\lambda)=f^{\prime}(m)+m-1
$$

Use the fact that $f(n) \in O(n)$ to take $j$ so large that $h(x 0) \leq f \cdot h(x)$.
Note that, because $f$ is linear space honest and $f(n) \in O(n)$, the conversion of $1^{h\left(x 10^{k}\right)}$ to $x 10^{k}$ (or, more conveniently, something like $x 1 \neq b i n(k))$ can be accomplished within space proportional to $\log n$.

## Claim 1. The result of this conversion requires only space

$$
\operatorname{Iog}_{n a} n-G(n)
$$

for some $G$ with $1 \in O(G(n))$.
Proof. Because $f$ is nondecreasing and unbounded, we can take some $G_{1}$
with $1 \in o\left(G_{1}(n)\right)$ such that

$$
\begin{aligned}
h\left(x 10^{k}\right) & \geq h(x 1)+k \cdot G_{1}(k) \cdot f(h(x 1)) \\
& \geq k \cdot G_{1}(k) \cdot f(h(x 1)) \\
& \geq k \cdot G_{1}(k) \cdot f\left(f^{\prime}\left(m^{g(x 1)}\right)\right) \\
& \geq k \cdot G_{1}(k) \cdot m^{g(x 1)}
\end{aligned}
$$

Therefore,

$$
\log _{m} h\left(x 10^{k}\right) \geq \log _{m} k+\log _{m} G_{1}(k)+g(x 1)
$$

$$
\begin{aligned}
& \geq \log _{m} k+G_{2}(k)+|x 1|+G_{3}(|x 1|) \\
& \geq\left(\log _{m} k+|x 1|\right)+G\left(h\left(x 10^{k}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& G_{2}(n)=\log _{m} G_{1}(n), \\
& G_{3}(n)=\min \{g(x 1)-|x 1||n=|x 1|\}, \\
& G(n)=\min \left\{G_{2}(k)+G_{3}(|x 1|) \mid h\left(x 10^{k}\right) \geq n\right\}
\end{aligned}
$$

all tend to infinity. The result of the conversion from $1^{h\left(x 10^{k}\right)}$ to $\times 10^{k}$ requires only space $|x| \mid+\log _{m} k$, so the claim follows.

An additional worktape head can be used to separate $x 1$ from the m-ary representation of $k$, and additional space $\log _{m} n$ can provide for an $m$ ary counter up to $k$.

Let $S_{2}$ with $\log n \in o\left(S_{2}(n)\right)$ be fully constructable by an (m, $\left.\ell+2\right)$ machine, and let $U_{0}$ be the universal simulator of Condition 2 for $m, \ell+2$. Design an $(m, \ell+5)$-machine $U_{0}$ ' to operate as follows on input $y \in\{1\}^{*}$ :

1. Find $x$ with $1^{h(x)}=y$ if it exists.
2. Compute on $x$ according to the transition rules of $U_{0}$. By the considerations above, whenever step 2 alone uses more space than the conversion of step 1 (and $S_{2}(h(x))$ is enough space since $\log n \in$ $o\left(S_{2}(n)\right)$ ), the whole program can be carried out at the extra cost (over just step 2) of the three additional worktape heads (one to separate the parts of the representation of $x$, one to separate the entire (leftadjusted) representation from the rest of the worktape, and one to scan the representation) plus $2 \cdot \log _{m} h(x)-G(h(x))$ worktape squares. By Proposition $7(\mathrm{iii}), \mathrm{L}_{\mathrm{S}_{2}}\left(\mathrm{U}_{0}{ }^{\prime}\right) \in \operatorname{NSPACE}\left(\mathrm{S}_{2}, \mathrm{~m}, \ell+6\right)$. We prove that $\mathrm{I}_{\mathrm{S}_{2}}\left(\mathrm{U}_{0}{ }^{\prime}\right) \notin \operatorname{NSPACE}\left(\mathrm{S}_{1}, \mathrm{~m}, \ell\right)$ for any space bound $\mathrm{S}_{1}$ with
$S_{2}(n)-S_{1}(n+f(n)) \geq 4 . \log _{m} n$.
Suppose the ( $m, l$ )-machine $U_{1}$ ' accepts $L_{S_{2}}\left(U_{0}{ }^{\prime}\right)$ within space $S_{1}$,
where $S_{2}(n)-S_{1}(n+f(n)) \geq 4 \cdot \log _{m} n$. Because $\log n \in o\left(S_{2}(n)\right)$, it is no loss of generality to assume also that $S_{1}(n) \geq \log _{2} n$. To summarize the behavior of $U_{1}$ ',

$$
L\left(U_{1}^{\prime}\right)=L_{S_{2}}\left(U_{0}^{\prime}\right) \subset L\left(U_{0}^{\prime}\right)
$$

and, for $e \in L_{p, c+2}^{m,}$,

$$
\begin{aligned}
& 2 \cdot \log _{m} h(e x)-G(h(e x))+c c_{e}+\operatorname{Space}_{M_{e}}(x) \leq S_{2}(h(e x)) \Rightarrow \\
& \text { Space }_{U_{1}} \cdot\left(1^{h(e x)}\right) \leq S_{1}(h(e x)) .
\end{aligned}
$$

Finally, design an $(m, b+2)$-machine $U_{1}$ to operate as follows on input $x \in\{0,1\}^{*}$ :

1. Compute the m-ary representation of $h(x)$.
2. Simulate $U_{1}^{\prime}$ on $1^{h(x)}$.

If enough space $\left(S_{2}(h(x))\right.$ ) is used, then ther extra cost (over just the computation by $U_{1}$ directly on $1^{h(x)}$ ) is namore than $2 \cdot \log _{m} h(x)$ worktape squares (half for an m-ary representation of $h(x)$ and the other half for an m-ary counter up to $h(x)$ to keatp twack of the input head position on $1^{h(x)}$ ) plus the two additionalamorktape heads. Hence,

$$
\begin{aligned}
L\left(U_{1}\right) & =\left\{x \mid 1^{h(x)} \in L\left(U_{1}^{\prime}\right)\right\} \\
& =\left\{x \mid 1^{h(x)} \in L_{S_{2}}\left(U_{0}^{\prime}\right)\right\} \\
& \subset\left\{x \mid 1^{h(x)} \in L\left(U_{0}^{\prime}\right)\right\} \\
& =L\left(U_{0}\right)
\end{aligned}
$$

and, for every $e \in L_{p, c}^{m, \ell+2}$,

$$
2 \cdot \log _{m} h(e x)-G(h(e x))+c_{e}+\operatorname{Spac}_{M_{e}}(x) \leq S_{2}(h(e x)) \Rightarrow
$$

$$
\text { Space }_{U_{1}}(e x) \leq 2 \cdot \log _{m} h(e x)+S_{1}(h(e x))
$$

For any recursive $L \subset\{1\}^{*}$, we can use $U_{1}$ fust as in the proof of Theorem 18 to get an ( $m, \ell+2$ )-machine $M_{e_{0}}$ with

$$
\begin{aligned}
& x 0^{k} \in L\left(M_{e_{0}}\right) \Leftrightarrow\left\{\begin{array}{l}
x \in L, \text { if } k \geq S^{\prime}(|x|) ; \\
e_{0} x 0^{k+1} \in L\left(U_{1}\right), \text { if } k<S^{\prime}(|x|) ;
\end{array}\right. \\
& {\text { Space } M_{e_{0}}\left(x 0^{k}\right) \leq d+2 \cdot \log _{m} h\left(e_{0} x 0^{k+1}\right)+S_{1}\left(h\left(e_{0} x 0^{k+1}\right)\right), \text { if }}_{x 0^{k} \in L\left(M_{e_{0}}\right)}
\end{aligned}
$$

for some appropriate space bound $S^{\prime}$, some constant $d$, and every $x \in\{1\}^{*}$. (This uses $S_{1}(n) \geq \log _{2}$ n.)

Claim 2. For each sufficiently long string $x \in\{1\}^{*}$, the following holds for every k :

$$
x 0^{k} \in L\left(M_{e_{0}}\right) \Leftrightarrow x \in L
$$

Proof. Let $x \in\{1\}^{*}$ be so long that

$$
G(n) \geq 2 \cdot \log _{m} j+c_{e_{0}}+d
$$

for every $n \geq h\left(e_{0} x\right)$. We establish the claim for $x$ by induction on $k$ running down from $k \geq S^{\prime}(|x|)$ to $k=0$.
$k \geq S^{\prime}(|x|):$

$$
x 0^{k} \in L\left(M_{e_{0}}\right) \Leftrightarrow x \in L \text { immediately. }
$$

$$
k<S^{\prime}(|x|): \text { Assume } x 0^{k+1} \in L\left(M_{e_{0}}\right) \Leftrightarrow x \in L .
$$

$$
\begin{aligned}
x 0^{k} \in L\left(M_{e_{0}}\right) & \Rightarrow e_{0} x 0^{k+1} \in L\left(U_{1}\right) \subset L\left(U_{0}\right) \\
& \Rightarrow x 0^{k+1} \in L\left(M_{e_{0}}\right) \\
& \Rightarrow x \in L
\end{aligned}
$$

$$
x \in L \Rightarrow x 0^{k+1} \in L\left(M_{e_{0}}\right)
$$

$$
\begin{aligned}
& \leq 4 \cdot \log _{2} h\left(e_{0} 0^{k+1}\right)\left(-6\left(h\left(e_{0}\right)^{h+1}\right)\right)+2-1 \operatorname{cog}^{2} 1+c_{0}+d
\end{aligned}
$$

$$
\begin{aligned}
& \text { (becmase } x \text { is to lend) }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \theta^{2+1} \in L\left(B_{2}\right) \subset L\left(\operatorname{ta}_{x}\right) \\
& -\operatorname{m}^{k} \in \mathrm{~K}_{0} \mathrm{~J} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { grok Remglontue targ ren Embla } \\
& \text { : पass } 200 \text { athon }
\end{aligned}
$$

 $h(y) \leq h(|y|)$ for all $y \in[0,1]^{\text {t }}$, then Clatm 2 gtye toe siloving for every aufficiently long $x \in 1$ :


$$
\begin{aligned}
& \leq s_{2}\left(h\left(e_{0} x\right)\right) \\
& :(\mid)^{\prime}-5 x
\end{aligned}
$$



cursive language over $\{1\}$, this contradielt $1{ }^{2} \mathrm{~m}$.
As in Theorem 18, a similar proof wanter tior Hity.

$$
\left(s^{m x} y^{+5} 0 x-19\right.
$$

Remark. The proof of Theorem 26 does not really require $f$ to be linear space honest. It is enough to be able to compute $f$ within space belonging to $o\left(S_{2}\right)$. If $S_{2}$ happens to be linear space honest, for example, $f(n)=\log ^{*} S(n)$ will work.

For the particular function $f$ defined by $f(n)=2 n$, we can get a result that extends all the way down to $O(\log n)$.

Theorem 27. Let $S_{2}(n)$ be fully constructable by a $(2, \ell)$-machine, $1 \in o\left(S_{2}(n)-\log _{2} n\right), \ell \geq 3$. Then each of the following set differences contains a language over $\{1\}$ :

$$
\begin{aligned}
& \operatorname{NSPACE}\left(S_{2}, 2, \ell+1\right)-\cup\left\{\operatorname{NSPACE}\left(\mathrm{S}_{1}, 2, \ell\right) \mid 1 \in o\left(S_{2}(n)-S_{1}(2 n)\right)\right\}, \\
& \operatorname{DSPACE}\left(S_{2}, 2, \ell+1\right)-\cup\left\{\operatorname{DSPACE}\left(S_{1}, 2, \ell\right) \mid 1 \in o\left(S_{2}(n)-S_{1}(2 n)\right)\right\} .
\end{aligned}
$$

Proof. Define an injection $h:(0+1) * 01\left(1^{*} 0^{*}\right) \Rightarrow N$ by

$$
h\left(e 01 \times 0^{k}\right)=2^{k} \cdot 3^{j} \cdot(6 i+1)
$$

where

$$
\begin{aligned}
& x \in\{1\}^{*}, \\
& 1 x=\operatorname{bin}(i), \\
& 1 e=\operatorname{bin}(j) .
\end{aligned}
$$

Note that, with care, conversion of $1^{h\left(e 01 x 0^{k}\right)}$ to (the reverse of) $e 01 \times 0^{k}$ can be accomplished within space $\log _{2} h\left(e 01 x 0^{k}\right)$ by a (2,3)-machine that leaves a worktape head marking each end of the atring; this will account for the requirement $\ell \geq 3$.

Let $U_{0}$ be the universal simulator of Condition 2 for 2 , $\ell$. Design a $(2, \ell)$-machine $U_{0}^{\prime}$ to simulate $U_{0}$ on the input e•1 $1^{h\left(01 x 0^{k}\right)}$ when it receives the actual input $1^{h\left(e 01 x 0^{k}\right)}$. Because $h\left(e 01 x 0^{k}\right) / h\left(01 x 0^{k}\right)$ is an
integer that depends only on $e$, this can be done at the extra cost of only $d_{e}$ worktape squares, where $d_{e}$ depends only on $e$, whenever at least space $\log _{2} h\left(e 01 x 0^{k}\right)$ is used (so that e can be computed from $1^{h\left(e 01 x 0^{k}\right)}$ ). By Proposition 7 (iii) , $\mathrm{L}_{\mathrm{S}_{2}}\left(\mathrm{U}_{0}{ }^{\prime}\right) \in \operatorname{NSPACE}\left(\mathrm{S}_{2}, 2, \ell+1\right)$. We prove that $\mathrm{L}_{\mathrm{S}_{2}}\left(\mathrm{U}_{0}{ }^{\prime}\right) \& \operatorname{NSPACE}\left(\mathrm{~S}_{1}, 2, \ell\right) \quad$ for any space bound $\mathrm{S}_{1}$ with $1 \in \mathrm{o}\left(\mathrm{S}_{2}(\mathrm{n})-\mathrm{S}_{1}(2 \mathrm{n})\right)$.

Suppose the $(2, \ell)$-machine $U_{1}{ }^{\prime}$ accepts $L_{S_{2}}\left(U_{0}{ }^{\prime}\right)$ within space $S_{1}$, where $1 \in o\left(S_{2}(n)-S_{1}(2 n)\right)$. Because $1 \in o\left(S_{2}(n)-\log _{2} n\right)$, it is no loss of generality to assume $S_{1}(n) \geq \log _{2} n$. To summarize the behavior of $\mathrm{U}_{1}{ }^{\prime}$,

$$
\mathbf{L}\left(U_{1}^{\prime}\right)=L_{S_{2}}\left(U_{0}^{\prime}\right) \subset L\left(U_{0}^{\prime}\right)
$$

and, for $e \in L_{p, c}^{2, \ell}$ and $x \in\{1\}^{*}$,

$$
\begin{aligned}
& \max \left\{\log _{2} h\left(e 01 \times 0^{k}\right), d_{e}+c_{e}+\operatorname{Spac}_{M_{e}}\left(1^{h\left(01 \times 0^{k}\right)}\right)\right\} \leq S_{2}\left(h\left(e 01 \times 0^{k}\right)\right) \Rightarrow \\
& \text { Space }_{U_{1}}\left(1^{h\left(e 01 \times 0^{k}\right)}\right) \leq S_{1}\left(h\left(e 01 \times 0^{k}\right)\right) .
\end{aligned}
$$

Let $L \subset\{1\}^{*}$ be any recursive language over $\{1\}$. Because $L$ is recursive, we can take a deteministic (2,1)-machine $M$ that accepts $L$ within some space bound $S$ that is fully constructable by a (2,1)-machine. Design a $(2, \ell)$-machine $M$ that operates as follows on the input string $1^{n}$ :

1. Use heads $A, B, C$ to write down (the reverse of) $e 01 \times 0^{k}$ with $x \in\{1\}^{*}, h\left(e 01 \times 0^{k}\right)=n$, if possible. This requires no more than $\log _{2} h\left(e 01 x 0^{k}\right) \leq S_{1}\left(h\left(e 01 x 0^{k+1}\right)\right)$ worktape squares.
2. Check that $e \in L_{p, c .}^{2, \ell}$, and then erase all but $x$ and $0^{k}$.

3. Within the space occupied by $\mathbf{x}$ (for $\mathbf{x}$ sufficiently long), use heads $A, B$ to compute a version of $\operatorname{bin}(|x|)$ that has every second and third tape square redundant. (Cf., proof of Lemma 17.) As in the proofs of Proposition 4, Theorem 15, and Lemma 17, one of these sets of redundant tape squares can be used to mark the two ends of the string so that it can be carried around and referenced by head $A$ without confusion. The other set can be used as a binary counter up to $|x|$.

| $0^{k}$ | redundant bin $(\|x\|)$ | blanks... |
| :---: | :---: | :---: |
| $\uparrow$ head $A \quad \uparrow \quad$ head $B$ |  |  |

4. Use head $A$ in an attempted full construction of space $S(|x|)$ in the additional space occupied by $0^{k}$. All necessary input data can be obtained from the redundant version of bin(|x|). There is success iff $S(|x|) \leq k$.
5. If $S(|x|) \leq k$, then use head $A$ to erase the tape out to head $B$ except for the redundant version of $\operatorname{bin}(|x|)$, and then compute as $M$ would on the input $x$. This requires no more than

$$
\begin{aligned}
s(|x|)+|x| & \leq k+|x| \\
& \leq \log _{2} h\left(e 01 x 0^{k+1}\right) \\
& \leq S_{1}\left(h\left(e 01 x 0^{k+1}\right)\right)
\end{aligned}
$$

worktape squares.
6. If $S(|x|)>k$, then completely erase the tape out to head $B$, freeing all $\ell$ worktape heads, and then compute as $U_{1}$ ' would on the input $1^{\mathrm{h}\left(\mathrm{e} 01 \mathrm{x} 0^{\mathrm{k}+1}\right)}$ (which is just twice the length of the
actual input). This requires no more than $S_{1}\left(h\left(e 01 x 0^{k+1}\right)\right.$ ) worktape squares for acceptance.
To summarize the behavior of $M^{\prime}$ on $1^{h\left(e 01 x 0^{k}\right)}$,
$k \geq S(|x|) \Rightarrow$ behave like $M$ on $x ;$
$k<S(|x|) \Rightarrow$ behave Like $U_{1}$ ' on $1^{h\left(e 01 \times 0^{k+1}\right)}$.
For $1^{h\left(e 01 \times 0^{k}\right)} \in L\left(M^{\prime}\right)$,
Space $_{M^{\prime}}\left(1^{h\left(e 01 x 0^{k}\right)}\right) \leq S_{1}\left(h\left(e 01 x 0^{k+1}\right)\right)$.
The recursion theorem (Theorem 15) does not apply as stated, so we adapt it. Let $e_{2}$ be the program code for $M^{\prime}$. Take $M_{e_{1}}$ to be a (2,l)machine that operates as follows, given $1^{h\left(01 x 0^{k}\right)}$ (where $x \in\{1\}^{*}$ ) on its input tape and $e \in L_{\text {p. }}^{2, \ell}$. on its worktape:

1. Convert $e$ to $f(e)$, where $f$ is as in Condition 3.
2. Convert $f(e)$ to the string $y \in\{1\}^{*}$ of length $3^{j}$, where $\operatorname{bin}(\mathrm{j})=1 \cdot \mathrm{f}(\mathrm{e})$.
3. Simulate $U_{0}$ on $e_{2} \cdot 1^{h\left(f(e) 01 x 0^{k}\right)}$. To do this, commit e to finite-state mewory and carry $y$ around with one of the worktape heads of $U_{0}$, modifying symbols of $y$ to mark the ends of the string and the position in $y$ that indicates wich, if any, of the $3^{j}$ copies of $1^{h\left(01 \times 0^{k}\right)}$ that compose $1^{h\left(f(e) 01 \times 0^{k}\right)} U_{0}$ is currently scanning on its input tape.
Let $e_{0}=f\left(e_{1}\right)$. Then $M_{e_{0}}$ operates as follows on input $1^{h\left(01 x 0^{k}\right)}$, where $x \in\{1\}^{*}:$
4. Write $e_{1}$ on the worktape.
5. Convert $e_{1}$ to $f\left(e_{1}\right)=e_{0}$.
6. Convert $e_{0}$ to the string $y \in\{1\}^{*}$ of length $3^{j}$, where $\operatorname{bin}(\mathrm{j})=1 e_{0}$.
7. Simulate $U_{0}$ on $e_{2} \cdot 1^{h\left(e_{0} 01 \times 0^{k}\right)}$.

Thus,

$$
\begin{aligned}
& 1^{h\left(01 \times 0^{k}\right)} \in L\left(M_{e_{0}}\right) \Leftrightarrow e_{2} \cdot 1^{h\left(e_{0} 01 \times 0^{k}\right)} \in L\left(U_{0}\right) \\
& \Leftrightarrow 1^{h\left(e_{0} 01 \times 0^{k}\right)} \in L\left(M^{\prime}\right) \\
& \text { Space }_{M_{e_{0}}}\left(1^{h\left(01 x 0^{k}\right)}\right) \leq c+\operatorname{space}_{M^{\prime}}\left(1^{h\left(e_{0}^{01 x 0^{k}}\right)}\right),
\end{aligned}
$$

where $c$ is $c_{e_{2}}$ plus the number of worktape squares required for steps 1, 2, 3.

Claim. For each sufficiently long string $x \in\{1\}^{*}$, the following holds for every $k$ :

$$
i^{h\left(01 x 0^{k}\right)} \in L\left(M_{e_{0}}\right) \Leftrightarrow x \in L
$$

Proof. Let $x \in\{1\}^{*}$ be so long that

$$
s_{2}(n)-S_{1}(2 n) \geq d_{e_{0}}+c_{e_{0}}+c
$$

for every $n \geq h\left(e_{0} 01 x\right)$. We establish the claim for $x$ by induction on $k$ running down from $k \geq S(|x|)$ to $k=0$.
$k \geq S(|x|):$

$$
\begin{gathered}
1^{h\left(01 x 0^{k}\right)} \in L\left(M_{e_{0}}\right) \Leftrightarrow 1^{h\left(e_{0} 01 x 0^{k}\right)} \in L\left(M^{\prime}\right) \\
\Leftrightarrow x \in L(M)=L . \\
k<S(|x|): \text { Assume } 1^{h\left(01 x 0^{k+1}\right)} \in L\left(M_{e_{0}}\right) \Leftrightarrow x \in L . \\
1^{h\left(01 x 0^{k}\right)} \in L\left(M_{e_{0}}\right) \Rightarrow 1^{h\left(e_{0} 01 x 0^{k}\right)} \in L\left(M^{\prime}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow 1^{h\left(e_{0} 01 x 0^{k+1}\right)} \in L\left(U_{1}^{\prime}\right) \subset L\left(U_{0}^{\prime}\right) \\
& \Rightarrow 1^{h\left(01 x 0^{k+1}\right)} \in L\left(M_{0}\right) \\
& \Rightarrow \mathrm{x} \in \mathrm{~L} . \\
& x \in L \Rightarrow 1^{h\left(01 x 0^{k+1}\right)} \in L\left(M_{e_{0}}\right) \\
& \Rightarrow 1^{h\left(e_{0} 01 x 0^{k+1}\right)} \in L\left(M^{\prime}\right) \\
& \Rightarrow \operatorname{Space}_{M^{\prime}}\left(1^{h\left(e_{0} 01 \times 0^{k+1}\right)}\right) \leq S_{1}\left(h\left(e_{0} 01 \times 0^{k+2}\right)\right) \\
& \Rightarrow \max \left\{\log _{2} h\left(e_{0} 01 x 0^{k+1}\right), d_{e_{0}}+c_{e_{0}}+\operatorname{space}_{M_{e_{0}}}\left(1^{h\left(01 x 0^{k+1}\right)}\right)\right\} \\
& \leq \max \left\{\log _{2} h\left(e_{0} 01 x 0^{k+1}\right), d_{e_{0}}+c e_{e_{0}}+c\right. \\
& \left.+\operatorname{Space}_{M^{\prime}}\left(1^{h\left(e_{0} 01 x 0^{k+1}\right)}\right)\right\} \\
& \leq d_{e_{0}}+c e_{e_{j}}+c+S_{1}\left(h\left(e_{0} 01 \times 0^{k+2}\right)\right) \\
& \leq S_{2}\left(h\left(e_{0}^{01 x} 0^{k+1}\right)\right) \\
& \text { (because } x \text { is so long) } \\
& \Rightarrow 1^{h\left(e_{0} 01 \times 0^{k+1}\right)} \in L\left(U_{1}{ }^{\prime}\right) \\
& \Rightarrow 1^{h\left(e_{0} 01 x 0^{k}\right)} \in L\left(M^{\prime}\right) \\
& \Rightarrow 1^{h\left(01 \times 0^{k}\right)} \in L\left(M_{e_{0}}\right) \text {. }
\end{aligned}
$$

Finally, $M_{e_{0}}$ can be modified to use its finite-state control to reject padded inputs (those of even length) and to satisfy the claim for short ones without using the worktape. If $1 e_{0}=\operatorname{bin}(j)$, then this gives an off-1ine TM that accepts $\left\{1^{6 i+1} \mid x \in L, 1 x=b i n(i)\right\}$ within space $S_{1}\left(2.3^{j} \cdot h\left(011^{n}\right)\right) \in O_{1}\left(S_{2}\left(3^{j} \cdot h\left(011^{n}\right)\right)\right)$. From this it is easy to derive a fixed recursive space bound $S_{3}$ for which $L \in \operatorname{NSPACE}\left(S_{3}\right)$. Since $L$ is an
arbitrary recursive language over \{1\}, this contradicts Lemma 16.
As in Theorem 18, a similar proof works for DSPACE.

Corollary 28. Let $S_{2}$, $S$ be fully constructable; and let $f(n) \in O(n)-O$ (1) be nondecreasing and linear space honest. There are languages over $\{1\}$ that bear witness to the following proper containments:
(i) $U\left\{\operatorname{DSPACE}\left(S_{1}\right) \mid S_{1} \in o\left(S_{2}\right)\right\} \not{ }_{F} \operatorname{DSPACE}\left(S_{2}\right)$,
$\cup\left\{\operatorname{NSPACE}\left(\mathrm{S}_{1}\right) \mid \mathrm{S}_{1}{ }^{2} \in o\left(\mathrm{~S}_{2}\right)\right\} \underset{\neq}{ } \operatorname{DSPACE}\left(\mathrm{S}_{2}\right)$
whenever $\log n \in o\left(S_{2}(n)\right){ }^{\dagger}$
(ii) $\cup\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid S_{1}(n+f(n)) \in o\left(S_{2}(n)\right), S_{1}(n) \in O\left(S_{2}(n)\right)\right\}$
$\nRightarrow \operatorname{NSACE}\left(\mathrm{S}_{2}\right)$
whenever $\log n \in o\left(S_{2}(n)\right)$.
(iii) $\cup\left\{\operatorname{NSPACE}\left(S_{1}\right) \mid S_{1}(2 n) \in O\left(S_{2}(n)\right), S_{1}(n) \in o\left(S_{2}(n)\right)\right\} \not{ }_{\varsubsetneqq} \operatorname{NSPACE}\left(S_{2}\right)$,
$U\left\{\operatorname{DSPACE}\left(\mathrm{~S}_{1}\right) \mid \mathrm{s}_{1}(2 n) \in O\left(S_{2}(n)\right), s_{1}(n) \in o\left(S_{2}(n)\right)\right\} \nsubseteq \operatorname{DSPACE}\left(S_{2}\right)$
whenever $1 \in o\left(S_{2}(n)\right)$.
(iv) $\operatorname{DSPACE}(S, m) \not \equiv \operatorname{DSPACE}(S)$
whenever $1 \in o(S(n))$.
(v) $\operatorname{NSPACE}(\mathrm{S}, \mathrm{m}) \varsubsetneqq \mathbb{F} \operatorname{NSACE}(\mathrm{S})$
whenever $\log n \in o(S(n))$,

$$
S(n+f(n)) \in O(S(n))
$$

(vi) $\operatorname{NSPACE}(S, m) \varsubsetneqq \operatorname{ISPACE}(S)$
whenever $1 \in o(S(n))$,

[^7]$$
S(2 n) \in O(S(n))
$$
(vii) $\operatorname{NSPACE}(S, m) \not \equiv \operatorname{NSPACE}(S, m+1,1)$,
$\operatorname{DSPACE}(S, m) \varsubsetneqq \operatorname{DSPACE}(S, m+1,1)$
whenever $\log n \in o(S(n))$,
$S(n+f(n))-S(n) \in o(S(n))$,
m is sufficiently large.
(If $S$ is fully constructable by an ( $m, 1$ )-machine, then $m$ is sufficiently large; if $S$ is actually linear space honest, then $m=2$ is sufficiently large.)
(viii) $\operatorname{NSPACE}(S, m) \varsubsetneqq \operatorname{NSPACE}(S, m+1,1)$,
$\operatorname{DSPACE}(S, m) \varsubsetneqq \operatorname{DSPACE}(S, m+1,1)$
whenever $1 \in o(S(n))$,
$S(2 n)-S(n) \in o(S(n))$,
$m$ is sufficiently large.
(If $S$ is fully constructable by an ( $m, 1$ )-machine, then $m$ is sufficiently large.)
(ix) $\operatorname{NSPACE}(S, m, \ell) \varsubsetneqq \operatorname{NSACE}(S, m)$ for all $\ell$,
$\operatorname{DSPACE}(S, m, \ell) \nRightarrow \operatorname{DSPACE}(S, m)$ for all $\ell$
whenever $\log n \in O(\log S(n))$,
$S(n+f(n))-S(n) \in O(\log S(n))$,
$m$ is sufficiently large.
(If $S$ is fully constructable by an ( $m, 1$ )-machine, then $m$ is sufficiently large; if $S$ is actually linear space honest, then $m=2$ is sufficiently large.)
(x) $\operatorname{NSPACE}(\delta \cdot S, 2, \ell) \varsubsetneqq \operatorname{NSPACE}(\delta \cdot S, 2)$ for all $\ell$,
$\operatorname{DSPACE}(\delta \cdot \mathrm{S}, 2, \ell) \underset{\neq}{ } \operatorname{DSPACE}(\delta \cdot S, 2)$ for all $\ell$
whenever $1 \in o(S(n))$,
$S(2 n)-S(n) \in O(\log S(n))$,
$\delta$ is rational and sufficiently large.
(If $\delta \cdot S$ is fully constructable by a (2,1)-machine and
$1 \in \circ\left(\delta \cdot S(n)-\log _{2} n\right)$, then $\delta$ is sufficiently large.)
Proof. (i) Use Theorem 25. (See Corollary 19(ii).)
(ii) Use Theorem 26. (See Corollary 19(iii).)
(iii) Use Theorem 27. (See Corollary 19(iii).)
(iv) Use Theorem 25. (See Corollary 20(ii).)
(v) Use Theorem 26. (See Corollary 20(iii).)
(vi) Use Theorem 27. (See Corollary 20(iii).)
(vii) Use Theorem 26. (See Corollary 23(i).)
(viii) Use Theorem 27. (See Corollary 23(i).)

We explicitly prove parts (ix), (x) to show just how few additional worktape heads can increase the power to accept languages over a oneletter alphabet.
(ix) Take $m$ so large that $S$ is fully constructable by an (m,1)machine, and look at any $l$. Take $k$ so large that

$$
4 \cdot \log _{m} n+S(n+f(n))-S(n) \leq k \cdot \log _{m} S(n) .
$$

Since $S+k \cdot \log _{m} S$ is fully constructable by an ( $m, 3$ )-machine, Theorem 26 gives a language over $\{1\}$ that bears witness to the proper containment in

$$
\begin{gathered}
\operatorname{NSPACE}(S, m, \ell) \nsubseteq \operatorname{FSPACE}\left(S+k \cdot \log _{m} s, m, \ell+6\right) \\
\\
\subset \operatorname{NSPACE}(S, m, \ell+k+9)
\end{gathered}
$$


The proof for bspagz is ilmatient.





 contaismant in




The proof for beran in, thatifote $T$



 reepectivis. tadkrale xogus五



 $\qquad$

$A=\{n \mid f(n)$ is a perere of 2$\}$.


obtained from the deterministic off-1ine $T M$ that fully constructs the space bound of Proposition 7 (iv), so L $\in \operatorname{DSPACE}(\log \log n$ ). To prove L nonregular, it certainly suffices to find a positive integer $n_{p}$ for each prime p $>2$, such that

$$
A \cap\left\{m \cdot n_{p} \mid 1 \leq m<p\right\}=\varnothing \neq A \cap\left\{m \cdot n_{p} \mid 1 \leq m\right\}
$$

Just take $n_{p}$ to be the least common multiple of the positive integers not exceeding $2^{k}$, where $2^{k}<p<2^{k+1}$. For $1 \leq m<p$, then, $2^{k}<f\left(m \cdot n_{p}\right) \leq p<2^{k+1}$,
so that $m \circ n_{p} \notin A$. Yet, the least common multiple of the positive integers smaller than $2^{k+1}$ is a multiple of $n_{p}$ that does belong to $A$.

Examples. There are languages over a one-letter alphabet that bear witness to the following proper contaiments:
$\operatorname{NSPACE}\left(2^{n} / \log ^{*} n\right) \not \equiv \operatorname{NSPACE}\left(2^{n}\right)$ (part (ii) with $f(n)=\log ^{*} \log ^{*} n$ ). $U\{\operatorname{NSPACE}(S) \mid S(n) \in o(\log n)\} \nexists \operatorname{NSPACE}(\log n)$ (minimum example of part (iii)).
$\operatorname{DSPACE}\left(2^{n}, m\right) \varsubsetneqq \operatorname{DSPACE}\left(2^{n}\right)$ (part (iv)) $\operatorname{NSPACE}\left(n^{8.13} /\left(\log _{2.21} n\right)^{5.6}, m\right) \nsubseteq \operatorname{mSPACE}\left(n^{8.13} /\left(\log _{2.21} n\right)^{5.6}, m+1,1\right)$ (part (vii)).
$\operatorname{NSPACE}\left(\left(\log _{2.21} \mathrm{n}\right)^{5.6}, \mathrm{~m}\right) \neq \operatorname{FSPACE}\left(\left(\log _{2.21} \mathrm{n}\right)^{5.6}, \mathrm{~m}+1,1\right)$ (part (vii) or part (viii)).
$\operatorname{NSPACE}\left(2^{n / \log ^{*} n}, m\right) \varsubsetneqq \operatorname{NSPACE}\left(2^{\mathrm{n} / \log ^{*} n}, m+1,1\right)$ (near-maximum example of part (vii); $f(n)=10{ }^{*} \log { }^{*} n$ ).
$\operatorname{NSPACE}\left(n^{1 / 8}, m, \ell\right) \varsubsetneqq \operatorname{NSPACE}\left(n^{1 / 8}, m, \ell+\lfloor 4 \bullet \delta\rfloor+10\right)$ for every rational $\delta \geq 1$ (proof of part (ix)).
$\operatorname{NSPACE}\left(n \cdot \log _{2} n / \log ^{*} n, m, \ell\right) \varsubsetneqq \operatorname{NSPACE}\left(n \cdot \log _{2} n / \log ^{*} n, m, \ell+13\right)$
(near-maximum example of part (ix)).
$\operatorname{NSPACE}\left(\log _{2} n, 2^{k}, \ell\right) \not \equiv \operatorname{NSPACE}\left(\log _{2} n, 2^{k}, \ell+5\right)$ for every $\ell \geq 3$ (proof of part (x)).
$\operatorname{NSPACE}\left(\left(\log _{2} n\right)\left(\log _{2} \log _{2} n\right), 2^{k}, l\right) \varsubsetneqq \operatorname{NSPACE}\left(\left(\log _{2} n\right)\left(\log _{2} \log _{2} n\right)\right.$, $2^{k}, \ell+6$ ) for every $\ell \geq 3$ (near-maximam example of part ( $x$ )).

Corollary 29. Each of the following set differences contains a language over a one-1etter alphabet:

NHEADS ( $k+5$ ) - NHEADS (k),
DHEADS ( $k+5$ ) - DHEADS (k).

Proof. Corollary 28 gives a language over $\{1\}$ that bears witness to the proper containment in

$$
\begin{aligned}
\text { NHEADS }(k) & \subset \operatorname{NSPACE}\left(\log _{2} n, 2^{k}, 1\right) \text { (by Lema 21) } \\
& \varsubsetneqq \operatorname{NSPACE}\left(\log _{2} n, 2^{k}, 6\right) \\
& \subset \operatorname{NSPACE}\left(\log _{2} n, 2^{k+1}, 1\right) \\
& \subset \operatorname{NHEADS}(k+5) \text { (by Lemma 21). }
\end{aligned}
$$

The argument for DHEADS is identical.

## 10. Open questions

Our most general open questions, of course, concern necessary and sufficient conditions for containment and separation among the $\operatorname{NSPACE}(S, m, \ell), \operatorname{DSPACE}(S, m, \ell)$ complexity classes.

1. For containment we ask in particular how close the truth comes to the "ideal" resuit

$$
\begin{gathered}
m_{2}^{S_{2}(n)} \cdot S_{2}(n)^{\ell_{2}} \in o\left(m_{1}^{S_{1}(n)} \cdot S_{1}(n)^{l_{1}}\right) \Rightarrow \\
\quad \operatorname{NSACE}\left(S_{2}, m_{2}, l_{2}\right) \subset \operatorname{DSPACE}\left(S_{1}, m_{1}, l_{1}\right)
\end{gathered}
$$

This very strong statement would immediately yield and perfect all the results of Section 2. It would also yield $\operatorname{NSPACE}(S, m, l)=$ DSPACE ( $S, m, l$ ), however, so it seems extremely likely that the truth stops somewhat short of the statement.
2. For separation we ask how close the truth comes to the "ideal" result that, for $S_{2}$ fully constructable, there must be a language in

$$
\begin{aligned}
\operatorname{DSPACE}\left(S_{2}, m_{2}, \ell_{2}\right)-U & \left\{\operatorname{NSPACE}\left(S_{1}, m_{1}, l_{1}\right) \mid\right. \\
& \left.\mathrm{m}_{2}{ }^{(n)} \cdot S_{2}(n)^{\ell_{2}} \notin 0\left(m_{1} S_{1}(n) \cdot S_{1}(n)^{\ell_{1}}\right)\right\} .
\end{aligned}
$$

This very strong statement would immediately yield and perfect all the separation results of Section 4.
3. Lemma 21 illustrates the relationship between additional input heads and additional space $\log \mathrm{n}$. If we consider a model that has $\mathrm{k} \geq 1$ read-only heads on its input tape, then the open statements above could be rephrased in terms of quantities of the form $m^{S(n)} \cdot S_{(n)}^{\ell} \cdot n^{k}$ rather than just $m^{S(n)} \cdot S(n)^{\ell}$. Then they would include and perfect
also Lemma 21, Corollary 22, and the work of [Ib72].

The following specific instances of the above questions are just beyond the frontier of our knowledge:
4. $\operatorname{DSPACE}(\mathrm{n}, 2,1)=\operatorname{DSPACE}\left(\mathrm{n} / \log _{2} 3,3,1\right) ?$ Proposition 3 comes close to an affirmative answer.
5. $\operatorname{DSPACE}(n, 2,1)=\operatorname{DSPACE}\left(n-\log _{2} n, 2,2\right) ?$ Propositions 4, 5 come close to an affirmative answer.
6. NSPACE $(\log n) \subset \operatorname{DSPACE}\left((\log n)^{2} / \log ^{*} n\right)$ ? Propesition 6 comes close to an affirmative answer.
7. $\operatorname{NSPACE}(S, m, l)=\operatorname{DSPACE}(S, m, \ell)$ ? Everybody expects a negative answer, but our study offers no clear and convincing evidence for one. A negative answer to any of open questions $8,9,10,11,19,20$ would do, though.
8. $\operatorname{DSPACE}(\log n) \notin \operatorname{NSPACE}\left(\left(\log _{2} n\right) / 2,2,1\right)$ ? Theorem 8 comes close to an affimative answer; e. g., $\operatorname{DSPACE}(\log n) \nsubseteq \operatorname{NSPACE}\left(\left(\log _{2} n\right) / 3,2,1\right)$.
9. $\left.\operatorname{DSPACE}\left((\log n)\left(\log ^{*} n\right)\right) \notin \operatorname{NSPACE}(\log n)\right\} \quad \operatorname{Corollary}$ 19(i) comes close to an affirmative answer.
10. $\operatorname{NSPACE}\left(2^{2^{n}}\right) \varsubsetneqq \operatorname{NSPACE}\left(2^{2^{n+1}} / \log ^{*} n\right)$ ? Corollary 19(iii) comes close to an affirmative answer, and Corollary 19(ii) gives an affirmative answer for the DSPACE analogue.
11. $\operatorname{NSPACE}\left(\left(\log ^{*} n\right)^{n}, 2,1\right) \nsubseteq \operatorname{NSPACE}\left(\left(\log ^{*} n\right)^{n}\right)$ ? Corollary 20(iii) comes close to an affirmative answer, and Corollary 20(ii) gives an affirmative answer for the DSPACE analogue.
12. $\operatorname{DSPACE}\left(\log _{2} n, 2,1\right) \subset \operatorname{DHEADS}(4) ?$ Lemma 21 comes close to an affirmative answer.
13. DHEADS (k) $\varsubsetneqq$ DHEADS $(k+1)$ ?
14. DHEADS $(k+1) \notin \operatorname{NHEADS}(k)$ ? For the particular case $k=2$, we suspect that $\left\{1^{n} \mid k \in N, n=2^{2 k}\right\} \notin \operatorname{NHEADS}(2)$, but the suspicion does not generalize.
15. $\operatorname{DSPACE}\left(2^{n}, m\right) \not{ }_{f} \operatorname{DSPACE}\left(2^{n}, m+1\right)$ ? Corollaries $20,23(1 i)$ both come close to an affirmative answer.
16. $\operatorname{DSPACE}\left(n\left(\log _{2} n\right)\left(\log ^{*} n\right), 2,1\right) \underset{\nexists}{ } \operatorname{DSPACE}\left(n\left(\log _{2} n\right)\left(\log ^{*} n\right), 2\right)$ ? Corollary 24(ii) comes close to an affirmative answer.
17. $\operatorname{DSPACE}\left(\log _{2} n, 2,1\right) \varsubsetneqq \operatorname{DSPACE}\left(\log _{2} n, 2,5\right)$ ? The proof of Corollary 24(ii) comes close to an affirmative answer.
18. $\operatorname{DSPACE}\left(\mathrm{n}-\left(\log _{2} n\right)^{1 / 2}, 2,1\right) \not \equiv \operatorname{DSPACE}(n, 2,1)$ ?
19. Does $\operatorname{NSPACE}\left(2^{2^{n+1}}\right)-\operatorname{NSPACE}\left(2^{2^{n}}\right)$ contain a language over a oneletter alphabet? Corollary 28 (ii) comes close to an affirmative answer.
20. Does $\operatorname{NSPACE}\left(2^{n}\right)-\operatorname{NSPACE}\left(2^{n}, 2,1\right)$ contain a language over a one1etter alphabet? Corollary $28(v)$ comes close to an affirmative answer.
21. Does $\operatorname{DSPACE}\left(\mathrm{n} \cdot \log _{2} \mathrm{n}, 2\right)-\operatorname{DSPACE}\left(\mathrm{n} \cdot \log _{2} \mathrm{n}, 2,1\right)$ contain a language over a one-1etter alphabet? Corollary 28(ix) comes close to an affirmative answer.
22. Does $\operatorname{DSPACE}\left(\left(\log _{2} n\right)^{2}, 2\right)-\operatorname{DSPACE}\left(\left(\log _{2} n\right)^{2}, 2,1\right)$ contain a language over a one-1etter alphabet? Corollary 28(x) comes close to an affirmative answer.
23. Does DHEADS ( $k+2$ ) - DHEADS ( $k$ ) contain a language over a one-1etter alphabet?

Finally, we 1ist a few miscellaneous open questions.
24. Is there a hierarchy of languages over $\{1\}$ for space bounds below $\log n ?$
25. For $S$ fully constructable by an ( $m, \ell$ )-machine and $U_{0}$ the universal simulator of Condition 2 for $m$, $\ell$, is there any language in NSPACE ( $S, m, \ell+1$ ) that requires more space (on an ( $m, \ell+1$ )-machine) than the S-cutoff of $\mathrm{U}_{0}$ ?
26. Even if $L \in \operatorname{NSPACE}\left(S_{2}\right)-\operatorname{NSPACE}\left(S_{1}\right)$, there may be an off-1ine $T M$ that accepts infinitely many strings $x \in L$ within space $S_{1}(|x|)$. When can we find an infinite language $L \in \operatorname{NSPACE}\left(S_{2}\right)$ such that every off-1ine $T M$ that accepts $L$ requires more than space $S_{1}(|x|)$ on all but finitely many strings $x \in L$ ?
27. Is there some conceptualiy simple language in $\cup\{\operatorname{NHFADS}(k) \mid k \geq 1\}$ or $\bigcup$ \{DHEADS ( $k$ ) $k \geq 1\}$ which is not in NHEADS ( $k$ ) or DHEADS ( $k$ ) for any small $k$ (say $k=3$ )? If, for $X$ a matrix of strings over $\{0,1\}$, we define

```
    r(X) = row-wise concatenation of X,
    c(X)= column-wise concatenation of }X\mathrm{ ,
```

```
then some good candidates are
```

$$
\begin{aligned}
& \{r(X) c(X) \mid X \text { is a } k \times 2 \text { matrix }\}, \\
& \{r(X) c(X) \mid X \text { is a } k \times 2 \text { matrix for some } k\}, \\
& \{r(X) c(X) \mid X \text { is a } k \times k \text { matrix }\}, \\
& \{r(X) c(X) \mid X \text { is a } k \times k \text { matrix for some } k\} .
\end{aligned}
$$

What are the complexities of these languages?
28. If $S$ is fully constructable by an ( $m, \ell$ )-machine, does

$$
\log _{m} n-(\ell-1) \cdot \log _{m} \log _{m} n-S(n) \in O(1)
$$

necessarily hold? Proposition $7(v)$ comes close to an affirmative answer.

## BIBLIOGRAPHY

[Aan74] Aanderaa, S. 0., On k-tape versus (k-1)-tape real time computation, SIAM-AMS Colloquia on Applied Mathematics, 7(1974), To appear.
[AU72] Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling; Volume I: Parsing, Prentice-Hall, Englewood Cliffs, N. J., 1972.
[AU73] Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling; Volume II: Compiling, Prentice-Hall, Englewood Cliffs, N. J., 1973.
[BG70] Book, R. V. and Greibach, S. A., Quasi-realtime languages, Mathematical Systems Theory, Vol. 4, No. 2, Jume 1970, pp. 97-111.
[BGIW70] Book, R. V., Greibach, S. A., Ibarra, O. H. and Wegbreit, B., Tape-bounded Turing acceptors and principal AFLs, Journal of Computer and System Sciences, Vol. 4, No. 6, December 1970, pp. 622-625.
[BGW70] Book, R. V., Greibach, S. A. and Wegbreit, B., Time- and tapebounded Turing acceptors and AFLs, Journal of Computer and System Sciences, Vo1. 4, No. 6, pp. 606-621.
[Bk72] Book, R. V., On languages accepted in polynomial time, The SIAM Journal on Computing, Vol. 1, No. 4, December 1972, pp. 281-287.
[B1m67] Blum, M., A machine-independent theory of the complexity of recursive functions, Journal of the Association for Computing Machinery, Vo1. 14, No. 2, April 1967, pp. 322-336.
[Bor72] Borodin, A., Computational complexity and the existence of complexity gaps, Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972, pp. 158-174.
[Ck71] Cook, S. A., The complexity of theorem-proving procedures, Proceedings of Third Annual ACM Symposium on Theory of Computing, Shaker Heights, Ohio, 1971, pp. 151-158.
[Ck73] Cook, S. A., A hierarchy for nondeterministic time complexity, Journal of Computer and System Sciences, Vo1. 7, No. 4, August 1973, pp. 343-353.
[Con72] Constable, R. L., The operator gap, Journal of the Association for Computing Machinery, Vo1. 19, No. 1, January 1972, pp. 175-183.
[Con73] Constable, R. L., Two types of hierarchy theorem for axiomatic complexity classes, in Computational Complexity, R. Rustin, ed., Algorithmics Press, New York, 1973, pp. 37-63.
[F167] Floyd, R. W., Nondeterministic algorithms, Journal of the Association for Computing Machinery, Vol. 14 , No. 4, October 1967, pp. 636-644.
[FMR72] Fischer, P. C., Meyer, A. R. and Rosenberg, A. L., Real-time simulation of multihead tape units, Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972, pp. 590-607.
[F073] Feldman, E. D. and Owings, J. C. Jr., A class of universal linear bounded automata, Information Sciences, Vol. 6, No. 2 , April 1973, pp. 187-190.
[FR74] Fischer, M. J. and Rabin, M. O., Super-exponential complexity of Presburger arithmetic, Project MAC Technical Memorandum 43, Massachusetts Institute of Technology, February 1974.
[GB74] Gill, J. and Blum, M., On almost everywhere complex recursive functions, Journal of the Association for Computing Machinery, Vol. 21, No. 3, July 1974, pp. 425-435.
[Ha72] Hartmanis, J., On non-determinancy in simple computing devices, Acta Informatica, Vol. 1, Fasc. 4, 1972, pp. 336-344.
[HaS65] Hartmanis, J. and Stearns, R. E., On the computational complexity of algorithms, Transactions of the American Mathematical Society, Vol. 117, May 1965, pp. 285-306.
[HeS66] Hennie, F. C. and Stearns, R. E., Two-tape simulation of multitape Turing machines, Journal of the Association for Computing Machinery, Vol. 13, No. 4, October 1966, pp. 333-546.
[HU69a] Hopcroft, J. E. and Ullman, J. D., Some results on tape-bounded Turing machines, Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969, pp. 168-177.
[HU69b] Hopcroft, J. E. and Ul1man, J. D., Formal Languages and Their Relation to Automata, Addison-Wesley, Reading, Mass., 1969.
[Hun73] Hunt, H. B. III, The equivalence problem for regular expressions with intersection is not polynomial in tape, Technical Report 73-161, Department of Computer Science, Corne11 University, March 1973.
[Ib72] Ibarra, O. H., A note concerning nondeterministic tape complexities, Journal of the Association for Computing Machinery, Vo1. 19,

No. 4, October 1972, pp. 608-612.
[Ib73a] Ibarra, 0. H., On two-way multihead automata, Journal of Computer and System Sciences, Vol. 7, No. 1, February 1973, pp. 28-36.
[Ib73b] Ibarra, 0. H., A hierarchy theorem for polynomial-space recognition, Department of Computer Science, University of Minnesota, Minneapolis, October 1, 1973.
[IS73] Ibarra, O. H. and Sahni, S. K., Hierarchies of Turing machines with restricted tape alphabet size, Department of Computer Science, University of Minnesota, Minneapolis, October 12, 1973.
[Krp72] Karp, R. M., Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, ed., Plenum Press, New York, 1972, pp. 85-103.
[Lyn72] Lynch, N. A., Relativization of the theory of computational complexity, Project MAC Technical Report 99, Massachusetts Institute of Technology, June 1972.
[Mey73] Meyer, A. R., Weak monadic second order theory of successor is not elementary-recursive, Project MAC Technical Memorandum 38, Massachusetts Institute of Technology, December 1973.
[MM71] Meyer, A. R. and McCreight, E. M., Computationally complex and pseudo-random zero-one valued functions, in Theory of Machines and Computations, Z. Kohavi and A. Paz, ed., Academic Press, New York, 1971, pp. 19-42.
[MS72] Meyer, A. R. and Stockmeyer, L. J., The equivalence prob1em for regular expressions with squaring requires exponential space, Proceedings of 13th Annual Symposium on Switching \& Automata Theory, College Fark, Maryland, 1972, pp. 125-129.
[NZ60] Niven, I. and Zuckerman, H. S., An Introduction to the Theory of Numbers, Wiley, New York, 1960.
[RF65] Ruby, S. and Fischer, P. C., Translational methods and computational complexity, IEEE Conference Record on Switching Circuit Theory and Logtcal Design, Ann Arbor, Michigan, 1965, pp. 173178.
[Rit63] Ritchie, R. W., Classes of predictably computable functions, Transactions of the American Mathematical Society, Vol. 106, January 1963, pp. 139-173.
[Rog67] Rogers, H. Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.
[Sav70] Savitch, W. J., Relationships between nondeterministic and deterministic tape complexities, Journal of Computer and System Sciences, Vol. 4, No. 2, Apri1 1970, pp. 177-192.
[SFM73] Seiferas, J. I., Fischer, M. J. and Meyer, A. R., Refinements of the nondeterministic time and space hierarchies, Proceedings of 14th Annual Symposium on Switching \& Automata Theory, Iowa City, Iowa, 1973, pp. 130-137.
[SHL65] Stearns, R. E., Hartmanis, J. and Lewis, P. M. II, Hierarchies of memory limited computations, IEEE Conference Record on Switching Circuit Theory and Logical Defign, Sm Arbor, Michigan, 1965, pp. 179-190.
[SM73] Stockmeyer, L. J. and Meyer, A. R., Word problems requiring exponential time: preliminary report, Proceedings of Fifth Annual ACM Symposium on Theory of Computing, Austin, Texas, 1973, pp. 1-9.
[St74] Stockmeyer, L. J., The complexity of decision problems in automata theory and logic, Project MAC Technical Report 133, Massachusetts Institute of Technology, June 1974.
[Yam62] Yamada, H., Real-time computation and recursive functions not real-time computable, IRE Transactions on Electronic Computers, Vol. EC-11, No. 6, December 1\%62, pp. 753760.
[Yng71] Young, P., Easy constructions in complexity theory: speed-up and gap theorems, Computer Science Department Technical Report 57, Purdue University, July 1971.

## Appendix I

## TTMG DLACOMALIZATION

Diagonalization is a technique for constructing a language that is not in some given class. If the members of the class can be described by character strings, then the aimplest diagonal construction includes the string $x$ just if the language described by that atring does not include $x$. A useful variant on this idea is to include xy iff the language described by its prefix $x$ does not.

To diagonalize over a complexity class, a good approach is to describe languages by encoding the programs of the resource-bounded automata that accept them. Then the construction can be performed by employing a "universal simulator" that can simulate any automaton from its program code. The simulation can then be examined, with disagreement in mind, to decide whether or not it leads to acceptance.

Because we shall be interested also in an urper bound on the complexity of the diagonal language, we will want the construction to be effective and as efficient as possible. This calls for an efficient universal simulator. To diagonalize over $\operatorname{DTHE}(T)$, we can use the universal simulation technique of Hennie and Stearns [HeS66] to simulate $t$ steps of the deterministic TM acceptor with program code e by $c e^{\cdot t \cdot \log t}$ steps of the simulator, where the constant $c_{e}$ depends only on $e$. The diagonalization technique used by Hartmanis and Stearns [HaS65] then shows that $\operatorname{DTIME}\left(T_{2}\right)-\operatorname{DTIME}\left(T_{1}\right)$ is nonempty whenever $T_{2}$ is a running time and $T_{2} \notin O\left(T_{1} \log T_{1}\right)$. For further details, see [HaS65], [HeS66], [Con73], and the sketch below of a nondeterministic diagonalization over
$\operatorname{DTIME}\left(\mathrm{T}_{1}\right)$.
For nondeterministic TM acceptors, we can use the technique of Book, Greibach, and Wegbreit [BGW70] (Lemma 8 of Chapter Two of this thesis) to get a more efficient universal simulation. (Doing so requires that their technique be effective, and it is.) In the following proposition, we use the details of this simulation in a diagonal construction in the style of [HaS65], [HeS66].

Proposition. If $T_{2}$ is a running time with $T_{2} \notin O\left(T_{1}\right)$, then $\operatorname{NTIME}\left(\mathrm{T}_{2}\right)-\operatorname{DTIME}\left(\mathrm{T}_{1}\right) \neq \phi$.

Proof sketch. (We assume familiarity with the proof sketch in Chapter Two of Lemma 8.) We construct a TM acceptor $M$ that diagonalizes over $\operatorname{DTIME}\left(T_{1}\right)$ within time bound $T_{2}$. Given an input ex (with e a program code), $M$ performs the (nondeterministic) Lemma 8 simulation of $\mathrm{M}_{\mathrm{e}}$ on ex and simultaneously operates clocks for the running times $T_{2} / 2$ and $T_{2}$. Recall that the simulation involves guessing a sequence of displays and actions and then checking it (deterministically) for one of three outcomes:
not a legal computation,
legal computation without acceptance,
legal computation with acceptance.
If the outcome is the second one and that fact is discovered after $t$ steps by $M$, where $T_{2}(|e x|) / 2 \leq t \leq T_{2}(|e x|)$, then $M$ accepts ex. There is no other way for $M$ to accept.

Now suppose $M_{e}$ deterministically accepts $L(M)$ within time $T_{1}$ for some particular program code e. Without loss of generality, assume that
$M_{e}$ halts only when it accepts. There is some constant $c$ such that $M$ will get through computations of length $t$ by $M_{e}$ within cot of its own steps. Since $T_{2} \notin O\left(T_{1}\right)$, we can take $x \in\{0,1\}^{*}$ so that $\mathrm{c} \cdot \mathrm{T}_{1}(|e x|)<\mathrm{T}_{2}(|e x|) / 2$. If $\mathrm{M}_{\mathrm{e}}$ deterministically accepts ex, then it does so within $T_{1}(|e x|)$ steps, and there can be no longer legal computation. By design, then, $\operatorname{ax} \in L\left(M_{e}\right)$ implies ex $\notin L(M)$. If $M_{e}$ does not accept ex, then there is a legal computation of every length; therefore, ex $\notin L\left(M_{e}\right)$ fmplies ex $\in L(M)$. The contradiction establishes $\mathrm{L}(\mathrm{M}) \notin \operatorname{DTIME}\left(\mathrm{T}_{1}\right)$.

To diagonalize over NTTME(T) is more difficult. The problem is that discovering that $M_{e}$ does not accept ex within $t$ steps seems to require examining all legal lines of simulated computation up to $t$ steps. This is a deterministic process which apparently may take exponentially longer than simulating a single legal line, so the diagonal construction yields $\operatorname{DTIME}\left(T_{2}\right)-\operatorname{NTIME}\left(T_{1}\right) \neq \varnothing$ whenever $T_{2}$ is a running tiñe and $\log T_{2} \notin\left(T_{1}\right)$.

None of the above diagonal constructions actually depends on $T_{1}$, and they all produce languages over $\{0,1\}$; so Theorem 1 of Chapter Two summarizes the results.

A technicality rules out such strong separation results for languages over a one-letter alphabet. Suppose, for example, that $T_{2}$ is a running time with $n \log n \in o\left(T_{2}(n)\right)$ and that $L \in \operatorname{DTIME}\left(T_{2}\right)$ is a language over just \{1\}. If the complement of $L$ is finite, then $L$ is regular and $L \in \operatorname{DTIME}(n)$. If the complement of $L$ is infinite, on the other hand, then our convention that only acceptance time matters guarantees
that $\mathrm{L} \in \operatorname{DTIME}\left(\mathrm{T}_{1}\right)$ for

$$
T_{1}(n)=\begin{aligned}
& T_{2}(n), \text { if } 1^{n} \in L ; \\
& n, \text { if } 1^{n} \notin L .
\end{aligned}
$$

In either case, $L \in U\left\{\operatorname{DTIME}\left(\mathrm{~T}_{1}\right) \mid \mathrm{T}_{2} \notin O\left(\mathrm{~T}_{1} \log \mathrm{~T}_{1}\right)\right\}$.

to a "lim" condition (e.g., $T_{1} \log T_{1} \in o\left(T_{2}\right)$ ) is one way to get separation results for languages over a one-letter alphabet. A diagonal language over $\{1\}$ can then be constructed by trying to differ on input $1^{n}$ from $M_{f(n)}$, where $f(n)$ is obtained from, say, the binary representation of the exponent of 2 in the prime factorization of $n$. The results are given by Theorem 2 of Chapter Two.

As far as we know, diagonalization alone yields no results better than those of Theorems 1, 2 of Chapter Two for TM acceptance time complexity. If we change our definition to take into account the time spent in nonaccepting computations, however, then we can use the diagonal technique of [MM71] to get by with "lim inf" conditions in Theorem 2. I. e., for

NTIME' $(T)=\{L \mid L$ is accepted by some TM that never computes for more than $T(n)$ steps on an input of length $n$ \},

DTIME'(T) $=\{\mathrm{L} \mid \mathrm{L}$ is accepted by some deterministic $T M$ that never computes for more than $T(n)$ steps on an input of length n\},
the set differences

$$
\begin{aligned}
& \text { DTIME' }\left(T_{2}\right)-\cup\left\{\text { DTIME' }^{\left.\left(T_{1}\right) \mid T_{2} \notin O\left(T_{1} \log T_{1}\right)\right\},}\right. \\
& \text { NTIME' }\left(T_{2}\right)-\cup\left\{\operatorname{DTIME}\left(T_{1}\right) \mid T_{2} \notin O\left(T_{1}\right)\right\},
\end{aligned}
$$

```
    \(\operatorname{DTIME}{ }^{\prime}\left(\mathrm{T}_{2}\right)-\bigcup\left\{\operatorname{NTIME}{ }^{\prime}\left(\mathrm{T}_{1}\right) \mid \log \mathrm{T}_{2} \notin \mathrm{O}\left(\mathrm{T}_{1}\right)\right\}\)
do contain languages over a one-letter alphabet if \(T_{2}\) is a running time.
For \(T\) a running time, we clearly have
    \(\operatorname{NTIME}(\mathrm{T})=\operatorname{NTIME}{ }^{\prime}(\mathrm{T})\),
    DTIME ( T ) = DTIME' \((\mathrm{T})\),
```

so we do get languages over $\{1\}$ in the set differences of Theorem 1 of Chapter Two if we insist that the unions range only over running times $\mathrm{T}_{1}$.

## APPENDIX II

A PROGRAM CODING FOR CHAPTER TWO


| 1eft | - 10011 | stratica | - 10100 |
| :---: | :---: | :---: | :---: |
| 2t111 | - 10101 | \%\% |  |

 "ingtzuction" in e. The mecution of an thatinmetion turolvec the following steps:

1. Detormine whether the oymbols baltis exmmell on the $k$ tapes [3才]xaty]
metch the "rapuimemate", (THe Misl, the 0, an the 1 match


2. If the "requinommet vee met, the unvente the ocemand bybols
by the "rumite."



## 

14 Th prs






 3 of chapter tiv.
geto $=n 0 \leq \operatorname{cotat}$ bre
aron " Thedatuge bes

$t y+5 \sec$

$1000=$ nolyovetatyry
Phto = greatrage wise
 mate - fenga yives Hert - atmogates

 weon

The author was born on February 21, 1947, in Columbus, Ohio, where he attended Bexley High School (Class of 1965). As an undergraduate at M. I. T. (Class of 1969), he majored in mathematics and was inducted into the Xi Chapter of Phi Beta Kappa in 1971. He began his graduate years in the Department of Electrical Engineering as an NSF Graduate Fellow and later became a Research Assistant at Project MAC.

On January 23, 1971, he married Diane Salhanick, a Boston University graduate from Fall River, Massachusetts. On August 13, 1974, she bore him a son Gershon.

He has accepted a position as Assistant Prófessor of Computer Science at The Pennsylvania State University, beginning in September, 1974.

This empty page was substituted for a blank page in the original document.

## CS-TR Scanning Project <br> Document Control Form

Date: 3114196
Report\# LCS-TR-137
Each of the following should be identified by a checkmark:
Originating Department:
[1] Artificial Intelligence Laboratory (Al)
L. Laboratory for Computer Science (LCS)

Document Type:

## Х( Technical Report (TR) <br> Technical Memo (TM)

$\square$ Other: $\qquad$
Document Information Number of pages: 126(137-imafis $)$ Not to include DOD forms, pinter instructions, etc... original pages only.
Originals are: Intended to be printed as:
$\square$ Single-sided or
Double-sided
$\square$ Single-sided or
Double-sided

Print type:

| $\square$ | Typewriter | $\square$ | $\square$ |
| :--- | :--- | :--- | :--- |

Check each if included with document:
$\square$ DOD Form

Funding Agent Form
Printers Notes

Cover Page
$\square$ Photo negatives

X Other: Bibliographic DATA SHEET, 4 PRESS OP CORREcTIONS
Page Data:

Photographs/Tonal Material (or pros number: $\qquad$

Description:
Page Number:

 (127-134) SCAN CONTROL, COVER, FuNDiNG NGENT, 4 PASS OP CORRECTIONS, TRGT'S(3)

Scanning Agent Signoff:
Date Received: 314196 Date Scanned: 312296 Date Returned: 3125196 Scanning Agent Signature: $\qquad$
p. 9: Delete the six lines following the statement of Corollary 15.
pp. 33-34: Delete starting with the fourth word of line 9 from the bottom of p. 33 through line 10 of p. 34.
p. 35, line 14: Change "- 1" to "+1".
p. 35 , line 15: Change " $f(1)$ " to " $f(1)+2$ ".
p. 35, lines $16,20:$ Change $" f(n)+n-1 "$ to $" f(n)+n+1 "$.
p. 35, line 22: Change this line to

$$
\begin{aligned}
n f(n)+\Gamma_{f^{-1}}(f(n)) & =f(n)+n \\
& <f(n)+n+1 \\
& <(f(n)+1)+(n+1) \\
& =(f(n)+1)+\Gamma^{-1}(f(n)+1),
\end{aligned}
$$

p. 36: Delete the first three lines.
p. 37, line 5: Change $" T_{M_{e}}(x)$ " to "Time $_{M_{e}}(x)$.


[^0]:    †For $g$ a nonnegative real-valued function on $N$ (the set of all nonnegative integers), we use the notation $O(g)$ ( $O(g)$, respectively) for the class of all nonnegative real-valued functions $f$ on $N$ that satisfy $\lim (f(n) / g(n))=0(\lim \sup (f(n) / g(n))<\infty$, respectively) as $n$ tends to infinity.

[^1]:    ${ }^{\dagger}$ When the precise specification of a time bound is not relevant in some context, we allow an imprecise specification. Thus, in the context of the " o " and " 0 " notations, the base and rounding for the logarithms in Theorems 1, 2 make no difference. (See also Lemma 7 below.)

[^2]:    ${ }^{\dagger}$ An idea of [BG70] allows us to take $c=1$ if we settle for a 3 tape TM M'. (See Lemma 7.) Aanderae [Aan74] has shown that we cannot get by with $c=1$ in the deterministic case no matter what fixed number of tapes we allow $M^{\prime}$ to have. (His counterexample is provided by deterministic TMs which accept in "real time" ( $\left.\operatorname{Time}_{M}(x)=|x|\right)$.)

[^3]:    ${ }^{\dagger}$ The operator gap theorem ([Con72], [Yng71]) shows that such results are impossible without some "honesty" condition on $\mathrm{T}_{2}$ such as $\mathrm{T}_{2}$ a running time. For example the operator gap theorem can be used to show that there are arbitrarily large, arbitrarily complex time bounds T for which $\operatorname{NTIME}(T(n))$ equals $\operatorname{NTIME}(n \cdot T(n+1))$, even though $T(n+1)$ is certainly a member of $\mathrm{o}(\mathrm{n} \cdot \mathrm{T}(\mathrm{n}+1)$ ).

[^4]:    ${ }^{\dagger}$ A strictly increasing function $f: N \rightarrow N$ is real-time countable [Yam62] if some deterministic Turing machine generates the characteristic sequence of the range of $f$ in real time (i. e., one character per step). (The characteristic sequence has a 1 in position $n$ if $n$ is in the range of $f$ and a 0 otherwise.)

[^5]:    †Acceptance is to be distinguished from "recognition." If the offline TM M can accept either $L \subset \Sigma^{*}$ or $\Sigma^{*}$ - L (within space $S$ ), depending on accepting state designation, then $M$ recognizes $L$ (within space $S$ ).

[^6]:    $\dagger^{\dagger}$ Two-way finite automata with $k$ heads can be described as off-line TMs that do not use their worktapes but that have $k$ two-way read-only input heads. We assume the $k$ heads cannot detect each other, but nothing we say here actually depends on that convention.

[^7]:    †The technique of [MM71] can be used to show that each of the following set differences contains a language over a one-letter alphabet if $S_{2}$ is fully constructable:
    $\operatorname{DSPACE}\left(S_{2}\right)-\bigcup\left\{\operatorname{DSPACE}\left(S_{1}\right) \mid S_{1}\right.$ fully constructable, $\left.S_{2} \notin O\left(S_{1}\right)\right\}$,
    $\operatorname{DSPACE}\left(\mathrm{S}_{2}\right)-\bigcup\left\{\operatorname{NSPACE}\left(\mathrm{S}_{1}\right) \mid \mathrm{S}_{1}\right.$ fully constructable, $\left.\mathrm{S}_{2} \notin 0\left(\mathrm{~S}_{1}^{2}\right)\right\}$.

