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ABSTRACT 

nte marginal utility of the Turing machine computational resources 
running time and storage space are studied. A technique is developed 
which, unlike diagonalization, applies equally well to nondeterministic 
and deterministic automata. For f, g time or space bounding functions 
with f(n+l) small compared to g(n), it is shown that, in terms of word 
length n, there are languages which are accepted by Turing machines 
operating within time or space g(n) but which are accepted by no Turing 
machine operating within time or space f(n). The proof involves use of 
the recursion theorem together with "padding" or "translational" tech
niques of formal language theory. 

Relations between worktape alphabet size, number of worktape heads, 
number of input heads, and Turing machine storage space are established. 
Within every common subexponential space bound, it is shown that enlarg
ing the worktape alphabet always increases computing power. A hierarchy 
of two-way multihead finite automata is obtained even in the nondetermi
nistic case. 

Results that are only slightly weaker are obtained for Turing 
machines that accept only languages over a one-letter alphabet. 
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CHAPTER ONE 

INTRODUCTION 

The ultimate purpose of studies in computational complexity is to 

establish the complexity, in terms of computational resources such as 

time and storage space, that is inherent in particular computational 

tasks. The existence of computational tasks with various inherent com

plexities is the subject of this thesis. The mere existence of such 

computational tasks does not, !!. priori, have a bearing on the complexity 

of computational tasks of practical interest; but in fact techniques 

such as those of Meyer and Stockmeyer {MS72], Meyer [Mey73], Stockmeyer 

and Meyer [SM73], Hunt [Hun73], M. Fischer and Rabin [FR74], and 

Stockmeyer [St74] sometimes show that a particular task of interest lies 

at some level if anything does, and results like ours can then serve. 

The computational tasks that we consider are "language acceptance" 

tasks. A language is a set of strings of symbols from some finite 

alphabet. A language is accepted by a computer M if M enters an accept

ing state when and only when applied to a member of the language. We 

denote by L(M) the language accepted by M. 

Turing machines are the computer model we use. Customarily, we 

measure time and space usage by a Turing acceptor in terms of input 

length only. {We denote by \xi the length of the string x.) The Turing 

machine M accepts L(M) within time T(n) or space S{n) if each string 

x E L(M) is accepted in some computation involving no more than T(jxj) 

steps or S{!xl) worktape squares, respectively. (More precise defini

tions appear in Chapters Two and Three.) We denote by NTIME(T) and 
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DTIME(T) the classes of language& accepted within time T by nondetermi-

nistic and deterministic Turing machines, respectively; and we denote by 

NSPACE(S) and DSPACE(S) the classes of languages accepted within space S 

by nondeterministic and deterministic Turing machines, respectively. 

We would like, for example, to define the inherent deterministic 

time complexity of accepting a language L to be the "least" time bound T, 

in some sense, such that LE DTIME(T). The existence of languages which 

have no best acceptor (languages with "speed-up" [Blm67]), however, 

makes such an approach impossible. Instead, we content ourselves to 

specify pairs of time bounds T
1

, T2 for which LE DTIME(T2) - DTIME(T1). 

In effect, then, we are led to a study of the containment lattice of the 

complexity classes. For example we address ourselves to the problems of 

finding what we call "containment" and "separation" conditions on time 

bounds T1 , T2 which imply that DTIME(T
1

) c DTIME(T2) and that 

DTIME(T2) - DTIME(T1) # 0 (i. e., DTIME(T2) </:. DTIME(T
1
)), respectively. 

Rather strong separation results for the DTIME and DSPACE complexity 

classes are well known ([HaS65], [HeS66], [SHI.65], [HU69a], [HU69b], 

[Con73], Appendix I of this thesis), but the diagonalization technique 

that most of them rely on does not give very strong separation results 

for the NTIME and NSPACE classes. A result of Cook [Ck73] first sepa-

r s 
rated NTIME(n ) ·from NTIME(n ) for r '# s. Our contribution is a simpli-

fied and greatly generalized version of Cook's technique that applies to 

nondeterministic and deterministic time and space complexity. 

The major value of our technique is for nondeterministic computa-

tion, and the results are most dramatic at exponential and subexponential 
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complexity levels. Although no real computer actually operates nonde-

terministically, the concept does arise naturally in connection with 

formal language theory ([HU69b], [AU72], (AU73]), proof theory, and the 

description and complexity of other processes involving arbitrary 

searches [Fl67]. (A deterministic description would force one to specify 

the essentially irrelevant details of some arbitrary search algorithm.) 

The Cook-Karp question of whether P = NP, where 

P = U {DTIME(T) 1 T is a polynomial time bound}, 

NP = U (NTIME('P) I T is a polynomial time bound}, 

represents a mathematical formulation of the problem of characterizing 

the complexity of a large class of combinatorial optimization problems 

involving such unstructured searches ({Ck71], [Krp72]). 

We first generalize Cook's technique for multitape Turing machine 

time complexity in Chapter Two. For well-behaved T2 , we show that 

NTIME(T2) - NTIME(T1) #-</)whenever r
1

(n+l) E o(T2(n)),t for example. 

Surprisingly, this yields some specific separation results for NTIME 

which are stronger than the corresponding known separation results for 

DTIME. In contrast, the earlier results based on diagonalization were 

always stronger for DTIME than for NTIME. Separation results with re-

spect to languages over a,one-letter alphabet are obtained that are only 

slightly weaker than the general ones. 

In Chapter Three we refine the NSPACE and DSPACE complexity classes 

tFor g a nonnegative real-valued function on N (the set of all non
negative integers), we use the notation o(g) (O(g), respectively) for 
the class of all nonnegative real-valued functions f on N that satisfy 
lim (f(n)/g(n)) = 0 (lim sup (f(n)/g(n)) < ~, respectively) as n tends 
to infinity. 
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by carefully bounding worktape alphabet size and number of worktape 

heads. We reformulate the known separation results for these classes 

and apply our technique to get new ones of the, kind given above for 

NTIME. By relating the various res9urces (space, worktape alphabet size, 

number of worktape heads), we obtain separation results that focus on 

the marginal utility of each resource. As a corollary we get a hierar

chy theorem for two-way multihead finite au-tosuta. As in Chapter Two, 

only slightly weaker separation results are obtained with respect to 

languages over a one-letter alphabet. 

A preliminary version of this thesis ha. been reported jointly with 

M. Fischer and A. Meyer [SFK73]. In particular, Corollaries 14, 16 of 

Chapter Two were obtained and reported jointly. Chapter Three contains 

much new material, but Corollaries 19(111). 20(iii), 22 ~re also pre

sented in the preliminary version. Problems 2, 3, 4 of [SFM73] are set

tled affirmatively by the current results of CbapteJ'S Two and Three. 

For convenient reference we now list the results. which are the main 

contributions of this thesis. All of the relevant definitions and nota

tion are provided in Chapters Two and Three. 

Chapter Two 

Assume T2 is a running time. 

The most general result we prove is Theorem 13. 

nteorem 13. 

NTIME(T2) - U [NTIME(T1)1 there is some recursively bounded but strictly 

increasing function f:N -+ N for which 

T1(£(n+l)) E o(T2(£(n)))J 
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contains a language over fO,l}. 

In practice it is the simpler but only slightly less general Corol-

lary 14 that we emphasize. (For nondecreasing time bounds the result is 

no weaker than Theorem 13.) 

Corollary 14. NTIME(T2} - lJ fNTIME(T1)! T1(n+l} E o(T2(n}}} 

contains a language over (0,1}. 

Corollary 14 gives results that diagonalization does not give pre-

cisely when log T2(n+l} E o(T2(n)). Corollary 15 is a refinement that 

gives new results even when log T2(n+l} E O(T2(n}). 

Corollary 15. 

NTIME(T2} - U (NTIME(T1) I T1 (n+l) E O(T2 (n)), T1 (n) E o(T2 (n))} 

contains a language over (0,1}. 

For deterministic time complexity, we prove a version of Corollary 

14 that has an additional hypothesis. 

Theorem 16. Suppose that there is some fixed k such that for each de-

terministic 'IM acceptor M there is a deterministic k-tape 'IM acceptor M' 

and a constant c such that L(M') = L(M) and Ti~1 (x) ~ c•f(Tim~(x)). 

Then DTIME(T2) - U (DTIME(T1)1 f(T1(n+l}} E o(T2(n))} F ¢· 

When we restrict our attention to languages over a one-letter 

alphabet, we still get Theorem 17. 

Theorem 17. If f is real-time countable, then 

( I r -11 1 NTIME(T2) - U NTIME(T1) T1(n+ f (n)) E o(T2(n)) 

contains a language over fl}. 
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Chapter Three 

Containment: 

First we relate worktape alphabet size to storage space. 

Proposition 3. NSPACE(S,m,t) c NSPACE(S' ,m' ,t) 

if S(n)/S'(n) s 5 s log m' for some rational 5. Similarly for DSPACE. 
m 

The next two results relate the number of work.tape heads to (the 

logarithm of} storage space. 

Proposition 4. NSPACE(S, m, .t-Ht) c NSPACE(S+{k+l+e) lo~ S, m, .t) 

for every e > O. Similarly for DSPACE. 

Proposition 5. NSPACE(S + k·lo~ S, m, t) c NSPACE(S, m, t-Ht+3). 

Similarly for DSPACE. 

Later on we relate multihead finite automata to logarithmic storage 

space. 

Lemma 21. NHEADS(k) c NSPACE(log2 n, 2k, 1) cNHEADS(k+4). 

Similarly for DREADS, DSPACE. 

Separation: 

Theorems 18 and 26 are somewhat analogous to Corollary 14 and 

Theorem 17 of Chapter 'IWo, especially in proof. 

Theorem 18. NSPACE(S2 ,m,t+3) - U [NSPACE(S1 ,m,.f,+2)! 1 E o(s2(n)-Sl (n+l))} 

contains a language over [O,l} if s2 is fully constructable by an-(m,.t)

machine. Similarly for DSPACE. 

Theorem 26. 

NSPACE(S2 ,m,.t+6) - U [NSPACE(s1 ,m,t)j s 2(n)-S1(n+f(n)) ~ 4•logm n} 

contains a language over just {l} 
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if s 2 is fully constructable by an (m,t+2)-machine, 

log n E o(s 2(n)), 

f(n) E O(n) - 0(1) is nondecreasing and linear space honest. 

Similarly for DSPACE. 

Unlike Theorem 20, Theorem 27 applies even for logarithmic space 

bounds. 

Theorem 27. NSPACE(S 2 ,2,t+l) -U £NSPACE(S
1

,2,t)\ 1 E o(S2(n)-s1 (2n))} 

contains a language over just [l} 

if s2 is fully constructable by a (2,t)-machine, 

1 E o(S 2 (n) - log2 n), 

i ~ 3. 
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CHAPTER '!WO 

TIME SEPARATION THEOREMS FOR 

NONDETERMINISTIC MULTITAPE TUR.ING MACHINES 

In this chapter we refer to what is usually called a nondeterm.inis-

tic multitape Turing machine [HU69b) simply as a 'IM, and we refer to its 

deterministic version as a deterministic ,'JM. If such an automaton has k 

tapes (each with a single read-write head), then we call it a k-tape 'IM 

or a deterministic k-tape 'IM, respectively. We often let a TM receive 

an input, a finite string of symbols from some finite input alphabet 1:, 

initially written to the right of the head on tape 1, the worktape which 

we call the input tape. A 'IM can act as an acceptor by halting in some 

specified accepting state at the end of some computations. We assume 

the reader is familiar with how concepts such as these can be formalized. 

A good ,single reference for formal definitions relating to Turing machines 

is [HU69b). 

Definition. Let M be any 'IM acceptor. * M accepts the string x E ~ , 

where~* is the set of all finite strings of symbols from ~,t if there 

is some accepting computation by M on input x. M accepts the language 

L(M) = fxl M accepts string x}. For x E L(M), Tim~(x) is the number of 

steps in the shortest accepting computation by Mon x; for x t L(M), 

twe use the Kleene star *more generally as well, along with other 

* regular expression notation for regular sets. For A, B c~, 
A + B = A U B = fxl x E A or x E B}, 
A·B =AB = [xyl x EA, y E B}, 

A*= [A}+ A+ A•A + A•A•A + ••• = fAJ +A+ A2 + A3 + ••• , 
where A is the null or empty string. When it causes no ambiguity, we 
sometimes omit set brackets in regular expressions. 
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TimE\i(x) = oo. 

Definition. A time bound is a function T:N ~ N with T(n) ~ n for every 

n. For T a time bound, the T-cutoff of the 'IM M is the language 

LT(M) ={xi TimE\i(x) s T(jxj)J, which is always a subset of L(M). A 

language L is in NTIME{T) iff L = L(M) = LT(M) for some 'IM acceptor M. 

Similarly, if M is deterministic and L = L(M) = ~(M), then L is in 

DTIME(T). If L(M) = LT(M) , then we say that M accepts within time T. 

Other, slightly different, definitions of the NTIME and DTIME com-

plexity classes have been proposed. Book. Greibach, and Wegbreit (B(}J70], 

for example, say that·M accepts within time T only if every accepting 

computation on input x E L(M) reaches the accepting state within T(1x)) 

steps. Such differences do not affect the complexity classes determined 

by time bounds of the following type~ however; and time bounds of prac-

tical interest are of this type. 

* Definition. If M is a deterministic 'IM acceptor with L(M) = 1 and 

Tim~(x) = T(! xi) :ii?: 1 xl , then T is a running time, and M is a clock for 

T. 

Diagonalization is the best known technique for obtaining separation 

or "hierarchy" results among the NTIME and DTIME complexity classes. A 

swmnary of the best separation results that have been proved by diago-

nalization alone is given by the following pair of theorems. (See 

Appendix I, (HaS65], [HeS66], (Con73].) 

'nleorem 1. If r 2 is a running time, then each of the following set dif

ferences contains a language over fO,l}: 



DTIME(T2) - u {DTIME(Tl) I 
NTIME(T2) - U {DTIME(T1)1 
DTIME(T2) - LJ {NTIME(T1) l 

14 

Tz ~ O(Tl log Tl)}, 

T2 ~ O(T
1
)}, 

t log T2 f O(T1)}. 

Theorem 2. If T2 is a running time, then each of the following set dif

ferences contains a language over {l}: 

DTIME(T2) - LJ {DTIME(T1)j 

NTIME(T2) - U {DTIME(T1) I 
DTIME(T2) - LJ {NTIME(T1)1 

Tl log Ti E o(Tz)}, 

Tl E o(Tz)}, 

t Tl E o(log T2) J. 

Remark. By restricting the unions of Theorem 2 to range only over run-

ning times T
1

, we can use the diagonalization technique of [MM71} to 

show that each of the following set differences contains a language over 

fl} if T2 is a running time: 

DTIME(T2) - U {DTIME(T1) I Tl is a running time, T2 f O(Tl log T1)}, 

NTIME(T2) - u {DTIME(Tl) I Tl is a running time, T2 f O(T1)}, 

DTIME(T2) - U {NTIME(T1) I Tl is a running time, log T2 fl O(T1)}. 

Note the relatively poor results obtained in diagonalizing over 

2 n
2 

NTIME. Not even the gross separation result NTIME(n) ¥ NTIME(2 ), for 

2 
example, follows directly from Theorem l; yet, DTIME(n ) 1 

2 2 
DTIME(n (log n) ) does follow. Recently, however, Cook [Ck73] proved 

the following result by a new technique. 

Theorem 3. r s 
NTIME(n ) 1 NTIME(n ) whenever 1 ~ r < s. 

In this chapter we pursue Cook's technical breakthrough, simplifying his 

tWhen the precise specification of a time bound is not relevant in 
some context, we allow an imprecise specification. Thus, in the context 
of the "o" and "0" notations, the base and rounding for the logarithms 
in Theorems 1, 2 make no difference. (See also Letmna 7 below.) 
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-· 
proof and generalizing the result. The main generalization is Theorem 13 

below. We turn now to some lemmas that will be useful in the proof of 

that theorem and its corollaries. 

P. Fischer, Meyer, and Rosenberg [FMR72] have shown that every 'IM 

with many heads per tape can be simulated without time loss by a 'IM with 

only one head on each of some greater number of tapes. This allows a 'IM 

to carry out two computations at the same time, leading to proofs of the 

following lemmas. 

Lemma 4. L(M) U L{M') can be accepted in time min{Ti~~x),Tim~ 1 {x)}. 

'I.Wilma 5. L(M) n L{M') can be accepted in time max{Tim~{x),Tim~ 1 (x)}. 

Proof sketches. Combine M and M' by providing a second head on the 

first tape of each and a new input tape with a single head. Use the ex-

tra heads to copy the input string at full speed from the new input tape 

onto the two old input tapes. Meanwhile the remaining heads can be used 

to carry out computations by M and M' on the respective transcribed cop-

ies of the input string, even while they are still being transcribed 

from the real input tape. 
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'new tape 

t-+ 
(read-only) 

head 

tape 1 of M tape 1 of M' 

t t-+ t t-+ 
new new 

(write-only) (write-only) 
head head 

tape 2 of M tape 2 of M' 

t t 
• • 
• • 
• • 

last tape of M last tape of M' 

t t 

tapes of M tapes of M' 

To accept L(M) U L(M'), the composite machine enters its accepting state 

when the computation by either Mor M' does. To accept L(M) n L(M'), 

the composite machine enters its accepting state when computations by 

both M and M' do. Thus we have described multihead multitape Turing 

machines that accept L(M) U L(M') and L(M) n L(M') in the desired times. 

By the result of [FMR.72], these can be simulated without time loss by 

multitape Turing machines with only one head per tape. O 
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The same techn-ique leads ·to a proof of thei 1tl.E!IX~l 1l~a," 1ih'. which a single 

1M carries out computations by M and a clbbk 1f6r'T 8'itnu'.l:tab!eously, 

accepting if M accepts before time T runs out. 

Lemma 6. If M is a 'IM acceptor and 'r is a running time, then 

'!be next lemma indicates that the NTIME complexity classes depend 

only on growth rates. It also shows that we need at least the condition 

T2 f O(T1) to be able to prove NTIME(T2) - NTIME(T~) # ¢. It follows by 

Theorem 1 that, if (contrary to most people's intuition) DTIME(T) = 

NTIME(T) for all T, then NTIME(T2) - NTIME(Tl? ''"' DlrtME'(,'l'2) - DTIME(T1) 

is nonempty precisely~ the running tinw: ,l'~ ia .a ~~b~r of the com

plement of O(T
1
). 

Lemma 7. If Tl E O(T2), then NTIME(T1) cN'DIME'(Tl). 

Proof sketch. For T2(n) ~ (l+e)n for some € > 0, this is just the linear 

time speedup theorem of Hartmanis and Steams [HaS65]. '!be idea is to 

increase the size of each 'IM' s worktape alphabet so that severs). steps 

can be performed in one big step. 

That the lemma holds for arbitrary T2(n) ~ n has been observed by 

Book and Greibach [BG70]. The key idea is to use nondeterminism to guess 

the entire input string before it is read. O 

The following le1I1Da, due to Book, Greibach, and Wegbreit [BGW70], 

indicates that for nondeterministic time complexity we can get by with 

'!Ms having a fixed number of. tapes. No similar result is known for de

terministic '!Ms. 
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Lemna 8. For each 'IM M there is a 2-tape 'IM M' and a constant c such 

that L(M') = L{M) and TilllE)i, (x) s;; c•TilllE)f(:x:) for every x E L{M). t 

Proof sketch. If M has k tapes, then the "display" of a configuration 

of M will be a (k+l)-tuple consisting of the control state and the k 

tape symbols scanned in that configuration. The display of a configura-

tion determines which actions are legal as the next move and whether the 

configuration is an accepting one. The first task for M' is to nonde-

terministically guess an alternating sequence of displays and legal ac-

tions by M. The question of whether the sequence describes a legal com-

putation by M on the supplied input is just the question of whether the 

symbols actually scanned on each tape when the actions are taken agree 

with the guessed displays. This can be checked independently for each 

tape in turn by letting the first tape of M' play the· role of the tape 

while running through the guessed sequence of displays and actions. 

Clearly M' runs for time proportional to the length of the sequence it 

guesses. For further details, the reader is referred to [BGW_70J. O 

Lemma 9. For no recursive time bound T does NTIME(T) contain all the 

recursive languages over (1}. 

Proof. Each recursive time bound lies below some running time T
1

, and 
Tl 

2 Theorem 2 gives a recurst,ve language over {l} in DTIME(2 ) -

t.An idea of [BG70] allows us to take c = 1 if we settle for a 3-
tape 'IM M'. (See Lenna 7.) Aanderaa [Aan74] has shown that we cannot 
get by with c•l in the deterministic caae no aatte~ what fixed number of 
tapes we allow M' to have. (His counterexanple is provided by determi
nistic 'IMs which accept in "real time" (Tim~(x) = lxl).) 
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Like Cook's proof of Theorem 3, our proof of Theorem 13 makes cru-

cial use of a trick called "padding." Acceptance time is measured as a 

function of input length; so if we can increase the lengths of the 

strings in a language L without significantly changing the time needed 

to accept the strings, then we get a padded language L' that is less 

complex than L as we measure complexity relative to input length. One 

way to pad the language L to L' is to take 

L' = .P..fil = [xlOkl x E L, I xlOkl = p(j xp} 

for some p:N ~ N with p(n) > n. 

Lenma 10. If p(n) > n is a running time, then 

p(L) E NTIME(T) ~ L E NTIME(T op), 

where T o p(n) = T(p(n)). 

Proof. (~) Suppose M
1 

accepts p(L) within time T. Design M2 to pad its 

input string x (which is found at the read-write head on the first work-

k k 
tape) out to xlO , where JxlO J = p(lxj), and then to compute on input 

k 
xlO according to the transition rules of~· Because pis a running 

time, the padding can be done in time p(jxl) by using an extra head on 

tape 1. A third head can be used for the computation by M
1 

on input 

k xlO . Clearly, then, M2 accepts L within time p(n) + T(p(n)) ~ 2•T(p(n)). 

But NTIME(2•T(p(n))) cNTIME(T(p(n))), by Lemma 7. 

<~> Suppose M2 accepts L within time T(p(n)). Design M1 to check 

k k that its input string is of the form xlO , where lxl-0 I = p(!x!), and 

then to behave like M2 on input x. Clearly ~ accepts p(L) within time 

proportional to T(length of input to M1), as required. O 

The following leuma shows how padding may be used to derive separa-
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tion results. Ruby and P. Fischer [RF65] first used essentially this 

technique in connection with the deterministic time complexity of se-

quence generation, and Ibarra [Ib72] used it more explicitly in connec-

tion with the nondeterministic space complexity of language acceptance. 

(See Chapter Three of this thesis.) Ibarra has used similar techniques 

in other contexts as well ([Ib73a], [Ib73b], [IS73]). 

Letmna 11. Let sets 3
1

, g 2 of time bounds be given. Say p
1

(n) > n, ..• , 

p .t (n) > n are running times with T1 o pi+l E O(T2 o pi) whenever 

1 s: i< J,, T1 ES
1

, T2 ES2 . 

If L E n (NTIME(T2 0 p J,) l T2 E 32} - u (NTIME(Tl 0 P1) I Tl E gl}' 

then pi(L) En (NTIME(T2)1 T2 E 3 2} - U (NTIME(T1)1 T1 E31} for some i. 

Proof. For 1 s: i s: J,, let 

C(i, 1) = u (NTIME(Tl 0 pi) I Tl E gl}' 

c(i ,2) = n (NTIME(T2 opi)1 T2 E s2J. 

Suppose L E C(J,,2) - C(l,l). By Lemma 7, NTIME(Tl o Pi+l) c NTIME(T2 o pi) 

whenever 1 s: i < t, T
1 

E g
1

, T2 E s2 ; so, for 1 s: i < J,, 

LE C(i+l,l) ~LE C(i,2). 

If we were to have also 

L E C(i,2) ~ L E C(i,l) 

for every i, then we would conclude from LE C(L,2) that LE C(l,1), a 

contradiction. For some i, therefore, we must have 

L E C(i,2) - C(i,l) 

By Lemma 10, 
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for that same i. O 

Remarks. (i) We do not know how to exhibit the particular language that 

(ii) The same technique can be applied to DTIME, and it allows us 

to strengthen the results of diagonalization a bit. For example we can 

. 2 2 1/200 use it to show DTIME(n) 1 DTIME(n (log n) ). (Take 

i/400 p. (n) = n(log n) for 0 s;; i s: 399.) 
1 

Another key idea in Cook's proof and our extensions of it involves 

a universal TM simulator. So that we may speak with precision about 

universal simulation, let us now choose an appropriate program coding 

for TMs. With each TM having at least two tapes and input alphabet 

* [0,1}, we associate a distinct program code from [O,l} ; and we do this 

in agreement with the easily-satisfied conditions listed below. We use 

the notation Lk for the set of program codes fork-tape TMs and L p.c. p.c. 

for the set of all program codes. We denote by M the TM with program 
e 

code e. 

Condition 1. No program code is a prefix of another, and Lk is in p.c. 

DTIME{n) for each k. 

Condition 2. For each fixed k, there is a TM acceptor u
0 

(a "universal 

simulator") with 

k 
L{U0) = [exl e EL , x E L(M )}, p.c. e 

TimeU (ex) s;; ce•Time.. (x) if e E Lk , 
0 Me p.c. 

where c depends only on e. 
e 

Condition 3. There is a recursive function f :L ~ L such that p.c. p.c. 
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f:L~.c. ~ L~.c. for each k and such that Mf(e) spends its first Jel steps 

putting e at its head on tape 2 {by writing backwards) and thereafter 

acts according to the transition rules of M . (This condition is a e 
1 variant of the s
1

-theorem of recursive function theory [Rog 67].) 

Most coumon instruction-by-instruction or state-by-state codings of 'IM 

programs can be tailored to satisfy these condit:ions. An example of a 

satisfactory program coding is described in Appendix II. 

We shall want to pad strings and use the simulator that we design 

in a recursive control structure. To this end we use Condition 3 to 

prove one more leuma, a version of the fixed point theorem (recursion 

theorem) of recursive function theory. · 

Leno.a 12. * For each k-tape 1M acceptor M with L(M) c { 0,1} , there is a 

k-tape TM acceptor M with 
eo 

L(M ) : {x! e
0
x E L(M)}, 

eo 

~c(Tim~ (x) s c + Tim~(e0x)). 
eo 

Proof. Let f be as in Condition 3. Take M to be a k-tape 'IM that 
el 

operates as follows, given x at its head on tape 1 and e at its head on 

tape 2: 

1. Convert e to f(e). 

2. Convert x to f(e)x, and erase everything else. 

3. Operate according to the transition rules of M on input f(e)x. 

Let e = f(e
1
). 1'len by definition M operates as follows on input x: 

0 eo 

1. Spend 'e . 
1 

steps putting e
1 

at the head on tape 2. 
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2. Convert e
1 

to f(e1) = e0• 

3. Convert x to e
0

x. 

4. Behave like M on e0x. 

x E L(M ) ~ e0x E L(M), 
eo 

Tim~ (x) ~ c + Tim~(e0x), 
eo 

where c is the number of steps used in writing e
1

, converting e1 to e0 , 

and writing eo in front of x. 0 

Theorem 13. If T2 is a running time, then 

NTIME(T2) - U (NTIME{T
1

)1 there is some recursively bounded but strictly 

increasing function f:N ~ N for which 

T1{f{n+l)) E o(T2(f(n)))} 

t contains a language over (0,1}. 

Proof. Let T2 be a running time, and let u0 be the universal simulator 

of Condition 2 fork= 2. By Lenma 6, LT {U0) E NTIME(T2). Let f:N ~ N 
2 

be any recursively bounded but strictly increasing function. We prove 

that LT (U0) ~ NTIME(T1) for any time bound T1 with T1{f{n+l)) E 
2 

o(T2 {f(n))). 

Suppose that u1 accepts LT {U0) within time T1 , where T1{f(n+l)) E 
2 

o(T2(f(n))). By Lemm.a 4, there is an acceptor U for 

tThe operator gap theorem {[Con72], [Yng71]) shows that such re
sults are impossible without some "honesty" condition on T2 such as T2 
a running time. For example the operator gap theorem can be used to 
show that there are arbitrarily large, arbitrarily complex time bounds T 
for which NTIME(T(n)) equals NTIME{n•T(n+l)), even though T(n+l) is 
certainly a member of o(n•T(n+l)). 
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2 such that for every e E L , p.c. 

{

T1Clexl), if ce•TimE\te (x) ~ T2(\exl); 

Timeu(ex) ~ 
ce•Tim~ (x), in any event. 

e 

Note that when T1Clexl) < TimE\t (x) ~ T2 Clex\)/ce' the universal simula
e 

tor U will simulate the computation of M on x faster than the computa
e 

tion runs directly; i. e., there will be simulation time gain. This ex

treme efficiency will lead below to a contradiction of Leana 9. 

* Let L c {l} be any recursive language over {l}. Because L is re-

cursive, we can take a running time Tso large that LE NTIME(T). Let M 

accept L within time T. Design a 'JM acceptor M' that operates as 

follows: 

1. Check 2 * * that the input string is a member of L •l •O , and p.c. 
2 * k it into e E L , x E {l} , and 0 . Condition 1 guaran-p.c. parse 

tees that this can be done in time that is linear in the length 

of the input string. 

2. Use a clock for the running time T to determine whether 

k ~ T(lxl>· This requires at most k steps, so it can be done 

in linear time, too. 

3. If k ~ T(lxl), then erase everything but x and compute on input 

x according to the transition rules of M. For x E L(M), since 

TimE\t(x) ~ T(\xl) ~ k, this step can be performed in linear 

time, too. 

4. k' If k < T(\xj), then pad the input string to exO for some non-
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deterministically chosen k' > k, erase everything else, and 

k' compute on input exa according to the transition rules of the 

universal simulator U. This step can be performed in linear 

k' 
time plus Timeu(exa ). 

k To summarize the behavior of M' on exa , 

k~ T(I xi) ~ behave like M on x· 
' 

k< T(I xi) ~ behave like U 
k' on exa 

k' M on xa ). e 
k 

) To summarize the timing for exa E L(M'), 

for some k' > k (thus simulating 

k {d • l exakl , if k ~ T(I xi); 
Tim~, ( exa ) s: 1 k, k, 

d1°!exa I + Timeu(exa ), if k < T(lxl) 

for some constant d1 and every k' > k. 

Applying Lercnna 8 to obtain a 2-tape 'IM that accepts L(M') with only 

linear time loss, and then applying the recursion theorem (Lercnna 12) to 

this machine, we get a program code ea for a 2-tape 'IM that accepts 

k k * * (xa j eaxa E L(M')} c 1 a 

within time 

for some constant d
2

. 

Claim 1. * For each string x E (1} , the following holds for every k: 

xak E L(M ) ~ x E L. 
ea 

Proof. For each x we establish the claim by induction on k running down 

from k ~ T(lx!) to k =a. 

k~T(lx!): 
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xOk E L(M ) ~ e0xok E L(M') 
eo 

(by choice of eo) 

~ x E L(M) = L 

(because by definition M' behaves like M in this 

case). 

k' k < T(!x\): Assume xO E L(M ) ~ x EL holds for every k' > k. Then 
eo 

xOk E L(M ) ~ e
0

xok E L(M') 
eo 

(by choice of eo> 

k' 
~ e

0
xo E L(U) for some k' > k 

(because by definition M' ·behaves like U in this 

case) 

k' 
~ xO E L(M ) for some k' > k 

eo 

(because e
0 

E L
2 

) p.c. 

~xEL 

(by induction hypothesis). O 

Claim 2. For each sufficiently long string x E L, the following holds 

for every n ~ !e0x!: 
f(n)-1 e0xl 

TimE)i (xO ) ~ d3.T1(f(n+l)), 

eo 

where d
3 

= d2d
1 

+ d2• 

Proof. Let x E L be so long that 

ce
0
·d3•T

1
(f(n+l)) ~ T2(f(n)) 

for every n ~ !e
0
x\. ('11iis uses the "translational" hypothesis 

T
1

(f(n+l)) E o(T
2
(f(n))).) We establish the claim for x by induction on 
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n running down from n so large that f(n) ~ !e0x\ + T(lxl> ton= \e0xl · 

f(n) ~ !e0xl + T(lx!): 
f(n)-1 e0xl 

Tim«\i (xO ) 
eo 

s d2•d1•f(n) 

(because f(n)-1 e
0
xl ~ T(Jxl)) 

s d 3•Tl (f(n+l)). 

1 e0x\ s n s f (n) < I e0xj + TC! xl ) : 
f(n+l)-l e0x1 

Assume T~ (xO ) s d3•T1(f(n+2)). Then 
eo 

f(n+l)-1 e0xj 
ce •Tim«\i (xO ) s ce ·d3•t1(f(n+2)) 

0 eo 0 

s t 2 (£(n+l)) 

(because n is so large). 

Therefore, 

· f(n+l)-\e xi 
Timeu(e0xo 0 ) s t 1(£(n+l)}. 

Therefore, 

. f(n)-\ e0xl 
s d2•Tim«\i 1 (e0xo } 

f (n+l) -I e0xl 
s d2·d1•f(n+l) + d2•Timeu(e0xo ) 

(by padding out to length f(n+l) > f(n)) 

s d2·d
1
•f(n+l) + d2•T1(f(n+l)) 

s d3•Tl (f(n+l)). 0 

Claim 3. For each sufficiently long string x E L, 

Tim«\i (x) s d3.t1(£(!e0xl+l)). 
eo 
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1, if n E A; 

5(2n) = 
n, if n f. A; 

{

n, if n E A; 
6(2n+l) = 

1, if n 'A. 
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To see that NTIME(n2•a{n)) ~NTIME(n3), just apply Theorem 13 with 

{

2n, if n E A; 
f(n+l) = 

2n+1J if n 4. A. 

In many applications it suffices to have 'lbeorem 13 for the single 

function f(n) = n, especially if we are concerned only with nondecreas-

ing time bounds. 

Corollary 14. If T2 is a running time, then 

NTIME(T2) - U {NTIME(T
1
)} Tl (n+l) E o(T2{n))} 

contains a language over (0,1}. 

The infonnal diagram in Figure 1 illustrates how the proof.of Theo-

rem 13 uses padding to take advantage of deeply nested simulations by U 

to bring the time for an arbitrary computation down to the v:f.s:inity of 

T1 and T2 in the case f (n) = n. The direct computation on x, up around 

the level of T(Jxl), is brought down to below T2 .!!!, terms of!!!.!:, input 

length by padding x out to xOTClxl>. By the hypothesized. nature of U, 

simulating that computation brings its time down to below T
1

• If we un

pad by a single 0, then the hypothesis that T
1

(n+l) is small compared to 

T2(n) keeps the computation still below T2 in terms of the input length. 

A simulation by U of this computation on xOT{jxl)-l brings its time down 

to below T1• Continuing to nest alternating unpaddings and simulations 

finally yields a computation on the original input string x down at the 
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Figure 1. ~ pad 

+- unpad 

• speed up by simulation 

(x,T(\xl)) 
-~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•4-4- 4-+-. 
J. 

• 
• (x,T

1
(\xl )), approx. 

x xO xo2 . . . 
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level of T1 and T2 • 

The "translational" condition r
1 

(n+l) E o(T
2

(n)) is a severe one 

for a rapidly growing running time r 2• When r 2(n+l) is worse than expo

nential in T2(n), in fact, deterministic diagonalization within time 

bound T2 (Theorem 1) yields stronger results than does Corollary 14. 

Because Corollary 14 applies for T1(n+1) E o(T2(n)) and Theorem 1 applies 

for log T2(n) t. O(T
1 
(n)), it is easy to see that Corollary 14 contributes 

new results precisely when log r
2

(n+1) E o(T2(n}). 

2 

* 2· To see the strength of Corollary 14; let log n = min{kf .n ~ ~ · ... --J· 
k 

For constants c > 1, r ~l whose digits in radix notation can be generated 

r · r * rapidly, and in particular for rational c, r, note that n ,- n •log n, 

r * 2 n n * n •(log n) , c , c •log n, etc. are running times. Thus we conclude 

that 

r . r * r * 2 NTIME(n ) ¥ NTtME(n •log n) ¥ ~(n •(log n) ) ¥ • • • , 
n n * n -. *· 2 

NTIME(c) 1 NTIME(c •log n) ¥NTIME(c •(l~g n)) ¥ •••· 
These results do not follow im:Rediately from Cook's result (Theorem 3) 

or by diagonalization (Theorem 1). 

Corollary 14 obviously implies that 

n
2 

(n+1)
2 * NTIME(2 ) 1 NTIME(2 •log n), 

2n 2n+l * 
NTIME(2 ) 1 NTIME(2 •log n). 

In fact we can strengthen these results t~ 

2 2 
NTIME(2n) ¥ NTIME(2(n+l) ), 
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n n+l 
NTIME(2

2 
) 1 HTIME(2

2 
) 

by appeal to the following corollary. 

Corollary 15. If T2 is a running time, then 

LJ (NTIME(T1)j T1 (n+l) E O(T2 (n)), T1 (n) E o(T2(n))} 1NTIME(T2); 

and there is a language over (0,1} that bears witness to this fact. 

Proof. Because T
1 

(n) E o(T2(n)) implies T
1

((n+l)+l) E o(T2(n+2)), 

* Corollary 14 gives a language L c (0,1} in 

NTIME(T2 (n+2)) - lJ {NTIME(Tl (n+l)) \ Tl (n+l) E O(T2 (n)), Tl (n) E o(T2 (n)) J. 

Applying LeBID& 11 with 

3
1 

= {T
1
f T

1
(n+l) E O{T2(n)), T

1
(n) E o(T2(n))}, 

.3z = {T2}' 

p1 (n) = n + 1, 

p2 (n) = n + 2, 

we conclude that either p
1

(L) or p2(L) is a member of 

NTIME{T2) - U (NTIME(T1) t T1 (n+l) _E O(T2 (n)), T1(n) E o(T2 (n))}. 

Containment holds by Lemma 7. O 

Remarks. (i) Lemma 11 goes through equally well if we pad to the left 

rather than to the right. For this remark, then, we may assume that 

k k 
pi(L) = (0 lxl x EL, IO lxl = pi(lxl>J for i = 1, 2 above. 

For u0 the universal simulator of Theorem 13, L = LT2(n+~)(U0) sat

isfies the condition for choosing L in the proof of Corollary 15. One 

might suppose therefore that LT
2

(n){U0) would be a witness language for 

Corollary 15. If we slightly modi~y our program coding by concatenating 

a single 1 in front of each old program code and if we let u0• be the 
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naturally derived new universal simulator, then we do indeed get 

Similarly, if we further con-

catenate a 0 in front of each program code and let u
0

11 be derived from 

u0
1 by taking this into account, then we get LT

2
(n)(U0

11
) = 

Ol•LT
2

(n+2)(u0) = p2 (L). Yet we can show only that either LT
2

(n)(u0
11

) 

or LT
2

(n+l)(u0
1

) is a witness to Corollary 15. We leave it open whether 

there is necessarily a witness language of the form LT
2

(n)(U0) and 

whether the particular choice of u0 affects whether LT
2

(n)(U0) is such a 

language. 

(ii) Corollary 15 contributes new results (over Theorem 1) precisely 

when log T2(n+l) E O(T2(n)). 

It is interesting to note that the containments corresponding to 

the examples following Corollary 14 are not known to be proper for de

terministic time (DTIME). The fundamental reason is that Lenuna 8 is not 

known for DTIME. The proof of Theorem 13 in the case of such an easy 

function f as f(n) = n does carry over in every other detail, however, 

to give Theorem 16. 

Theorem 16. Suppose that there is some fixed k such that for each de

terministic TM aoceptor M there is a deterministic k-tape 'IM acceptor M' 

and a constant c such that L(M') = L(M). and Tim~ 1 (x) ~ c•f(Tim~(x)). 

Then 

DTIME(T2) - LJ [DTIME(T1)l f(T1(n+l)) E o(T2(n))} # ¢ 

for every running time T2 . 
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Remark. We do not require that M' be effectively cons.tructable from M; 

if it were, then we could actually diagQDaliz! to get 

a somewhat stronger result. 

Example. If we should discover even a nonconstructive proof that for 

each deterministic 'IM acceptor M there is a deterministic 5-tape 'IM ac-

ceptor M' and a constant c such that L(M') = L(M) and 

T~, (x) ~ c•Tim~(x), then we could conclude that 

DTIME('J.'2) - lJ (DTIME(T1)J Tl (n+l) E o(T2(n))} # </J 

for every running time T2• 

Padding strings over a one-letter alphabet by one character at a. 

time does not leave them decodable, so we cannot nope to use our method. 

to get a result as strong as Corollary 14 for languages .over a one-letter. 
't,. 

alphabet. The final result of this chapter demonstrates that we can 

come very close, however. 

Definition. The rounded. inverse of a strictly increasing function 

r -11 f:N -+ N is the function f :N -+ N defined by 

r -11 I f (n) = min(k f(k) ~ n}. 

Examples. function rounded inverse 

2 fnl/21 n 

2n r1og2 nl 

2 

* log n. 
' n 
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Theorem 17. If T2 is a running time and f is real-time countable,t then 

there is a language over (1} in 

1 
r -11 NTIME(T2) - U (NTIME(T1) T1(n + f (n)) E o(T2(n))}. 

Proof. Let T2 be a running time, and let f be real-time countable. To 

adapt the proof of Theorem 13, we must construct a witness language as 

the T2-cutoff of some "universal simulator" having input alphabet (1}. 

We start with u0 as in the earlier proof; i. e., u0 is the universal 

simulator of Condition 2 for k = 2. 

* .Define an injection g:(O,l} -+ N so that the binary representation 

of the integer g(x) is lx; i. e., we concatenate a high-order digit 1 to 

x to get the binary representation of g(x). Define another function 

* h:(O,l} -+N by the conditions 

h(xO) = h(x) + rf-ll(h(x)), 

h{xl) = f(g(xl)) + g(xl) - 1, 

h(A.) = f(l). 

Because g is an injection and f (n)-+n-1 is strictly increasing, h(xl) = 

h(yl) only if x = y. Because n+rf-ll(n) is strictly increasing, h(xO) = 

h(yO) only if h(x) = h(y). Unless there are strings x, y with h(xO) = 

h(yl), therefore, h must be an injection. For ~uch strings to exist, 

r -11 the ranges of the strictly increasing functions n+ f (n) and f(~)-+n-1 

must intersect; but 

(f(n)-1) + rf-11 (f(n)-l) = (f(n)-1) + (n-1) 

tA strictly increasing function f:N -+ N is real-time countable 
[Yam62] if some deterministic Turing machine generates the characteristic 
sequence of the range off in real time (i.e., one character per step). 
(The characteristic sequence ha' a 1 in position n if n is in the range 
of f and a 0 otherwise.) 
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< f(n) + n - 1 

< f(n) + n 

= f(n) + ff-ll(f(n}), 

• so the ranges do not intersect and h is an injection. 

Because f is real-time countable, we can compute lh(x) from x or 

x from lh(x) within time proportional to h(x), within time 2·h(x) if we 

* wish. From u
0 

we construct u
0

• to operate as follows on input y E {l} : 

1. Find x with lh(x) = y if it exists. 

2. Compute on x according to the transition rules of u0 . 

By Lenma 6' LT (Uo') E NTIME(T2). We prove that LT (Uo I) f. NTIME(Tl) 
2 2 

r -11 for any time bound T1 with T1(n + f (n)) E o(T2(n)). 

Suppose that u1 ' accepts LT (u0 ') within time T1 , where 
2 

r -11 T1{n + f (n)) E o(T2{n)). By Lemma 4, there is an acceptor U' for 

L (U ' ) u L {U I ) = L_ {U ' ) u L {U ' ) = L {U ') 
1 0 --r2 0 0 0 

2 such that for every e E L , p.c. 

IT1 (h{ex)), if 2·h{ex) + ce•TimE\t (x) ~ T2(h{ex)); 
Tim~,{lh(ex)) ~ , e 

2·h(ex) + ce•Tim~ {x), in any event. 
e 

* Finally, construct U to operate as follows on input x E {O,lJ : 

Then 

1. Compute lh(x). 

2. Compute on lh(x) according to the transition rules of U'. 

L(U) = {xi lh(x) E L(U')} 

={xi lh{x) E L(u
0

1 )} 

= L(U
0
); 
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2 and, for every e E L , p.c. 
h(ex) Timeu(ex) ~ 2.•h(ex) + Timeu, (1 ) 

2•h(ex) + r 1(h(ex)), if 2•h(ex) + ce•Tim~ (x) 
e 

~ T2(h(ex)); 

4•h(ex) + ce•TM (x), in any event. 
e 

* For any recursive L c [ 1} , we can use U just as in the proof of 

for some sufficiently large constant d1 and some appropriate time bound 

T. 

Claim. For each sufficiently long string x E L, the following holds for 

every k: 

k k+l TimE)i (xO) ~ d2.r
1

(h(e0xo . )), 
eo 

where d2 = 4d
1

. 

Proof. Let x E L be so long that 

r -11 (2 + ce
0
.d2)•T1 (n + f (n)) ~ T2 (n) 

for every n ~ h(e
0
x). We establish the claim for x by induction on k 

running down from k ~ T(Jxj) to k = 0. 

k ~ T(I xi): 

Tim~ (xO~ ~ dl ·I eoxokl 
eo 

k < T(!xj): 
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Assume Tim~ (xOk+l) s:: d2·T
1

(h(e
0
xok+2)). Then 

eo 

2•h(e xOk+l) + c •Time.._ (xOk+l) 
0 e0 M 

eo 
s:: 2•h(e0x0k+l) + ceO•d2•T1(h(eOxOk+2)) 

= 2•h(e0x0k+l) + ceO·d2•T1(h(eOxOk+l) + rf-ll(h(eOxOk+l))) 

k+1 r -11 k+1 
s:: (2 + ce

0
·d2)•T1(h(e0xO ) + f (h(e0xO ))) 

k+l 
s:: T2(h(eox0 )) 

(because x is so long). 

Therefore, 

Therefore, 

If H is a nondecreasing recursive function so large that 

* h(y) s:: H(IYI) for ally E {0,1} , then the claim gives the following for 

every sufficiently long x E L: 

TimE\t (x) s:: d2•T1(h(e0xO)) 
eo 

r -11 = d2·T1(h(e0x) + f (h(e0x))) 

s:: T2 (h(e0x)) 

s:: l; T
2
(n') 

n 's::H(f eol +f xi) 
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~ I; T
2
(n'). 

n'~H(2•lxl) 

It follows by Lemmas 4, 5 that LE NTIME( I; T2 (n')). Since Lis an 
n'~(2n) 

arbitrary recursive language over [l}, this contradicts Leuma 9. Cl 

2 

Example. Taking f(n) 
2· 

= 2 , we get a language over [1} in 
~ 

2 
2n 

n * n NTIME(2 •log n) - NTIME(2 ). 

We close with a list of open questions. 

1. For T2 a running time, is the condition T2 ~ O(T
1

) enough in general 

for separation between NTIME(T
1
), NTIME(T2) or between DTIME(T

1
), 

DTIME(T
2
)? 

2. Is there an actual difference between the separation results that 

hold for NTIME and those that hold for DTIME? 

2 2 
DTIME(n ) 1 DTIME(n •log log n)? 

2n 2n+l * 
NTIME(2 ) 1 NTIME(2 /log n)? 

Is there a language over a one-letter alphabet in 

n+l n 
NTIME(2

2 
) - NTIME(22 )? 

3. What is the relationship between NTIME and DTIME? 

NTIME(T) = DTIME(T)? 

4. That a language L is not a member of NTIME(T
1

) means only that every 

acceptor M for L has Tim~(x) > r
1

(1xl) for strings x EL of infi

nitely many lengths. Stronger senses of lower bounds, requiring 
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that TimE\i(x) > r 1 (!xl) for strings x EL of all but finitely many 

lengths or for all but finitely many strings x E L have been studied 

extensively. (See [Blm67], [Lyn72], [GB74], for example.) It is 

known, for example, that there is a language L that requires 2lxl 

many steps deterministically on almost every string x E L but that 

n can be accepted deterministically within time (2+e) for any e > O. 

Our methods do not give such results for nondeterministic acceptance 

time complexity, so we leave it open whether there is a language L E 

NTIME((2+e)~ that requires, even on nondeterministic machines, 2lxl ' 

steps on inputs x E L of all but finitely many lengths or on all but 
? 

finitely many x E L. 

5. A purely technical question arising from Theorem 13 is whether we 

can ~llow f to range over all one-one functions rather than just 

strictly increasing, recursively botmded ones. A plausible proof 

strategy is to design M' in the proof of Theorem 13 so that, in the 

. k k' 
case k < T(jx!), it pads .2!: tmpads exO to exO for some nondeter-

ministically chosen k' # k. Under this strategy, however, Claim 1 

seems to elude proof. 

6. What is the relationship between deterministic time complexity and 

ntunber of worktapes? 

7. What is the relationship between time complexity and worktape alpha-

bet size? (Cf., Chapter Three.) 

8. Is there any language in NTIME(T2) that requires more time than the 

language LT (u0) in the proof of Theorem 13? 
2 
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9. In the conclusion of Lemma 11, can we exhibit a single language that 

must definitely belong ton fNTIME(Tz) \ T2 E gz} - u [NTIME(Tl) I 
T

1 
E g

1
}? (Cf., Remark (i) following Corollary 15.) 
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CHAPTER THREE 

SPACE SEPARATION THEORF.MS FOR 

OFF-LINE TURING MACHINES 

1. Basic definitions 

To study Turing machine storage space complexity, we adopt a Turing 

machine model that has a read-only input tape and a single read-write 

worktape. '!1le input string is received between the special endmarkers 

,, $ on the input tape and is read by a single read-only input head 

which is allowed to· move freely between the endmarkers. The worktape is 

infinite to the right only. For technical reasons, we allow any fixed 

finite number of freely moving, but initially left-adjusted, read-write 

heads on the worktape. The worktape heads can detect both each other and 

the left end of the worktape, and they are never required to write con

flicting symbols on a single tape square in the same step or to shift 

left past the left end of the worktape. We refer to such an automaton 

as an off-line TM. An off-line TM with m ~ 2 symbols in its worktape 

alphabet (counting the blank symbol, which may be used without restric

tion even in overwrite instructions) and t ~ 1 worktape heads is called 

an (m,t)-machine or just an m-machine. 'l1le deterministic restrictions 

of these automata are called deterministic off-line TMs and deterministic 

(m,t)-machines, respectively. 

An off-line TM can act as an acceptor by halting in some specified 

accepting state and with a blank worktape at the end of some computations. 

Definition. Let M be any off-line TM acceptor. M _!Ccepts the string x 
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if there is some accepting computation by M on input x. M accepts the 

language L(M) = fxl M accepts string x}.t For x E L(M), Spac~(x) is 

the minimum number of distinct worktape squares visited by the worktape 

heads of Min an accepting computation by Mon x; for x ~ L(M), 

Spac~(x) = m. For S:N ~ N, define 

L
8

(M) =(xi Spac~(x) ~ S(jxj)}, 

NSPACE(S ,m,J) = (LI L = L(M) = L 8(M) for some (m,.t)-machine M}, 

NSPACE(S,m) =U (NSPACE(S,m,J)j t ~ lJ, 

NSPACE(S) = lJ (NSPACE(S,m,,t)l m ~ 2~ J ~ l}, 

DSPACE(S,m,.t) = [LJ L = L(M) = L8'·(M) for some deterministic (m,1,)

machlne M}~ 

DSPACE(S,m) = lJ (DSPACE(S ,m,.&)1 I, ~ 1}, 

DSPACE(S) = U {DSPACE(S ,m,.t)l m ~ 2, I, ~ 1}. 

We call L5(M) the S-cutoff of M, and we say M accepts within space S if 

L(M) = L5 (M). If NSPACE(S) contains languages which are not regular, 

then S is a space bound. EYery subscripted or primed S mentioned below 

is assumed to be a space bound. 

Proposition 1. No space bound S satisfies S(n) E o(log log .n). 

Proof. See [HU69a]. O 

It is well known that the NSPACE(S) and DSPACE(S) complexity classes 

are generally insensitive to machine lllGdel design variations. The 

NSPACE(S,m,.t) and DSPACE(S,m,t) complexity classes, on the other hand, 

are sensitive to machine model design; but the differences are usually 

tAcceptanee is to be distin8\lished from "recognition." If the off
line 'IMM can accept either L c't* or 't* - L (within space S), depending 
on accepting state designation, then M recognizes L (within space S). 



44 

minor. Following are cooments on the effects of some common design 

variations. 

1. Suppose that we redefine our (m,t)-machine model so that its 

worktape heads cannot detect each other. If the resulting complexity 

classes are NSPACE'(S,m,t), DSPACE'(S,m,t), then we have 

NSPACE'(S,m,t) = NSPACE(S,m,t), 

DSPACE'(S,m,t) = DSPACE(S,m,t). 

To see that detectability is no real advantage, it suffices to observe 

that detection can be simulated by the redesigned model. The trick is 

to make a temporary change under each worktape head in.turn, letting 

each head discover which other heads' tenq>orary changes take place on 

the square it scans. 

2. Suppose we redesign our (m,t)-machine model so tha.t it cannot 

detect the left end of its worktape but instead halts. without accepting 

if it shifts past that end. If the resulting complexity classes are 

NSPACE'(S,m,t), DSPACE'(S,m,t), then we have 

NSPACE'(S,m,t) cNSPACE(S,m,t) c NSPACE'(S,m,t+l), 

DSPACE'(S,m,t) c DSPACE(S,m,t) c DSPACE'(S,m,t+l). 

Our model simulates the redesigned one simply by halting when it detects 

that the transition rules would lead to a shift off the end of the work

tape. The redesigned model simulates ours by permanently stationing an 

extra worktape head at the leftmost worktape square. Detection of that 

square can then be effected by the trick of comment 1 above. 

3. Suppose we redesign our (m,t)-machine model so that its work

tape is infinite in both directions. If the resulting complexity classes 
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are NSPACE'(S,m,t), DSPACE'(S,m,t), then we have 

NSPACE' (S,m,J,) c NSPACE(S,m,t+l) c NSPACE'(S,m,t+2), 

DSPACE'(S,m,t) c DSPACE(S,m,!+l) c DSPACE'(S,m,,t+2). 

To simulate the redesigned model, our model must be able to provide new 

worktape squares for shifts past the left end of the worktape. It suf

fices to shift all the work to the right (making temporary use of the 

worktape head that needs the new tape square), and. this is made possible 

by using an extra worktape head to mark the rightmost worktape square 

that has been visited. (Nothing to the right of this head need be 

shifted because it is all blank.anyway.)· 1.be redesigned model simulates 

ours by permanently stationing an extra worktape head at the initial 

worktape square and treating that square as the left end of the_ worktape. 

In the nondeterministic case we actually have 

NSPACE'(S,m,t) c NSPACE(S,m,J,} 

because our model can nondeterministically guess where to start its 

simulation so that no shift past the left end of its own worktape is 

called for. 

4. Suppose that we redefine acceptance by our (m,t)-machine model 

so that a blank tape is ~ necessary. If the resulting complexity 

classes are NSPACE'(S,m,J), DSPACE'(S,m,J), then we have 

NSPACE'(S,m,t) c NSPACE(S,m,t+l) c NSPACE'(S,m,J+2), 

DSPACE'(S,m,J,) c DSPACE(S,m,t+l) c DSPACE'(S,m,t+2). 

Our model simulates the redesigned one simply by erasing its worktape 

when the transition rules call for acceptance. This is made possible by 

using an extra worktape head to mark the rightmost worktape square that 
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has been visited. (Nothing to the right of thht- 'fiead neett'- -be &ra&ed be-

cause it is all blank &llJ'W&y.) The redeaignedi lllll1.lel" aimalates: ours by 

checking. whether il:il vorktapa f:a: biankbe£ol:a entm::mg the aceepting 

state. 'lhis ia made poaaihl'e by again ua.ing!; a&:'~ worltttapa head to 

tb~; total mmher af vi.~ wcmltt::apa: .,,.....,. the: ~- al'phabet a'&&,, 

and the totAl number of warktape: headilJ ._, ~'(!8:1, .... ,. DSPACB1 (S ,m,.t) , 

then we hue 

NSPACB:' (S.,m-,.t) c: llSNCB(B ,aJ!*~· c 1118PM:B:1Z(8<,a,A!f41)', 

DSPACE' (s:, •• .J;) ·c ~,~•>' c lllNCr'(a:;a".ltfk)~. 

Our model simulates the redesi.gned. one by storing the concatenation of: 

h1 , .•. ,~ are: used to: deli:ndt- tbeae k: •• cs:.. New. ~i aquarea 

are provided. wher&.De811ied:.· lay· slitflitng·..-, ~t;..,, wll mv lll' ca.sent 3:. 

above. 

tape l work I tape 2 work [ 

.... < .. t 
~-I 

t 
1it. 

Tlie simulation af our model hy the redeai.ped· one ia trivi.al. 
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6. Suppose that we redefine our (m,t)-machine model so that the 

blank symbol is reserved for worktape squares that have not yet been 

visited. If the resulting complexity classes (obtained by counting only 

nonblank worktape symbols now) are NSPACE'(S,m,t), DSPACE'(S,m,..e,}, then 

we have 

NSPACE' (S ,m,..e,} c NSPACE(S ,m,t+l} c NSPACE' (S ,m+l ,t+l), 

DSPACE'(S,m,t) c DSPACE(S,m,t+l} c DSP.ACE'(S,m+l,t+l}. 

Our model simulates the redesigned one by using its blank symbol for one 

of the ordinary symbols of the new model. An extra worktape head is 

used to mark the rightmost worktape square that has been visited, beyond 

which the blank represents the true blank symbol of the simulated machine. 

The redesigned model simulates ours by using an extra unrestricted sym

bol along with its restricted blank symbol to represent the- unrestricted 

blank of our model. 

The relations among design decisions revealed by considerations 

such as those above provide a convenient way of converting the results 

of this chapter to good results for any of the redesigned machine models. 

Slightly better results often are obtained by converting the original 

proofs, however, making better use of nondeterminism (cf., cOU111ents 3, 4 

above) or of worktape heads not yet fully utilized, for example. 
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2. Basic containment rel,.ations 

In this section we present all the known containment relations 

among the complexity classes defined in Section 1. '11te trivial relations 

are that no language is lost from: a complexity class by allowing nonde-

terminism, additional space, additional worktape symbols, or additional 

worktape heads. 

Only slightly less trivial is the use of the finite state control 

to save space. 

Proposition 2. If s2 (n)-s1 (n) E 0(1), then 

NSPACE(S2,m,J) c IISPACE(sl.m,J), 

DSPACE(S
2

,m,J) c DSPACE(S
1

,m,t). 

1/2 It follows, for example, that the complexity class DSPACE(n ,2 ,1) is 

not affected by how we round the square root. For convenience, therefore. 

we allow such an imprecise specification of a space bound when the pre-

cise specification is not relevant. 

'nle basic relationship that DSPACE(S2) c DSPACE(S
1

) whenever 

s2 E O(S1) appears in [SHI.65]. It allows us to speak of DSPACE(log n) 

without specifying the base of the logarithm, for example. Our next 

proposition generalizes the relationship. 

Proposition 3. If S(n) ~ 5•S'(n) for some fixed rational number 

6 ~ lo~ m' , then 

NSPACE(S,,m,t) c NSPACE(S' ,m' ,,&) , 

DSPACE(S,m,.&) c DSPACE(S' ,m' ,.&) • 

Proof sketch. Say 6 = i/j for positive integers i, j. As mi s m.j, we 
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can encode the contents of i m-symbol-resolution worktape squares in j 

m' -symbol-resolution work tape squares. O 

Example. For k a positive integer, 

NSPACE(k•S,m) = NSPACE(S,mk). 

Additional worktape heads often can satisfy an apparent need for 

additional worktape symbols. Our technical reason for allowing several 

worktape heads is that additional worktape heads amount to much less 

additional space than additional symbols do. Proposition 3 establishes 

the close relationship between worktape symbols and a linear multiple of 

worktape space, and our next two propositions establish the close rela-

tionship between worktape heads and the logarithm of worktape space. 

Proposition 4. For every e > O, 

NSPACE(S, m, t+k) c NSPACE(S + (k+l+e)•log S, m, 
m 

DSPACE(S, m, /,+k) c DSPACE(S + (k+l+e)•log S, m, 
m 

/,) ' 

t). 

Proof sketch. Let M be an (m,J,+k)-machine that accepts within space 

S(n). We wish to design an (m,/,)-machine M' that simulates M within 

space S(n) + (k+l+e)•log S(n). 
m 

The first /,-1 heads of M can be simulated by the first t-1 heads of 

M'. The position of each of the other k+l heads of M can be stored by 

M' as the m-ary representation of that position. If these k+l strings 

are properly delimited, the last head of M' can carry them around and 

access them to simulate all of the last k+l heads of M. Since only fi-

nitely many (k+2) delimiting marks are required, a single extra bit in-

serted every j symbols of the list can be used in conjunction with fi-
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nite-state memory to locate the marks. Each of these bits is set to 1 

if and only if at least one of the k+2 delimiting marks should be lo-

cated on one of the next j worktape squares. Since j and k are fixed, 

the precise locations of the marks relative to the bits that are set to 
-------~--

! can be maintained by finite-state memory. The list itself accounts 

for an extra space requirement of (k+l)•lo8m S(n), and the additional 

requirement for delimiters can be kept to an arbitrarily small fraction 

of that by choosing j large enough. 

Clearly, M' is deterministic if M is. O 

Proposition 5. 

NSPACE(S + k•lo8m S, m, t) c NSPACE(S, m, t-tk+3), 

DSPACE(S + k•lo8m S, m, t) c DSPACE(S, m, t-tk+3). 

Proof sketch. Let M be an (m,t)-machine that accepts within space 

S(n) + k•lo8m S(n). We wish to design an (m,t-tk+3)-machine M' that 

simulates M within space S(n). 

If S happens to be easy to compute, then M' can start by stationing 

head A at worktape square S(n) and head B at worktape square S(n) -

lo8m S(n). 

S(n) 

f lo8m S(n) t 
head B head A 

The worktape of M is conceptually parsed into an initial segment of 

length S(n) - lo8m S(n) and k+l "pages," each of length lo8m S(n). The 

initial segment will always reside in the first S(n) - lo8m S(n) work-
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tape squares of M'. One page at a time can reside in the worktape 

squares of M' delimited by heads B and A. Each page not residing there 

can be stored as a worktape head position, the page being the m-ary 

representation of the position. 

In its simulation, M' tries to use t of its worktape heads to behave 

like M'. A record of the current location of each page (resident or 

stored as some head position) and the page currently scanned by each 

head of Mis maintained in the finite-state control of M'. When the 

heads of M scan different pages or move from page to page, "paging" is 

required. None of the t simulating heads is moved from its proper loca-

tion, but the one free head is used (with some help from head B) to 

store away the page that is currently resident. The required page is 

then loaded (again with help from head B), leaving the head that stored 

it free. 

The simulation for arbitrary S differs in that heads A and B are 

restationed during the simulation according to how much space M has 

actually used. When M has used s' worktape squares, with 

(s-1) + k•log (s-1) < s' ~ s + k•log s, m m 

head A will be at position s and head B will be at position s - log s. 
m 

Restationing is required only when some simulating head is coincident 

with head A (and scanning the final page), so a second head is tempo-

rarily free to help the usual free head to determine whether head B must 

be restationed. (Head A is restationed every time s changes to s+l, but 

head B is restationed only when Llog sj = Llog (s+l)j.) Adjusting the 
m m 

pages on restationing is easily managed with some help from the finite-
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state control. 

Clearly, M' is deterministic if M is. n 

Our final basic containment relationship is the well known result 

of [Sav70]. 

Proposition 6. If log n = O(S(n)), then 

NSPACE(S) c NSPACE(S
2
). 
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3. Notions of honesty 

Qualitatively, a function is "honest" with respect to space if it 

can be computed without using space that is too much greater than both 

its· argument and its value. It is easy to check that functions of prac-

ti~al interest are extremely honest. In fact,. all of the coDIIlon func-

tions .are of the following type. (See [Rit63].) 

Definition. A function f :N ~ N is linear space honest if 

(bin(k)fbin(f(k))J k E NJ E DSPACE(n), 

where we use the notation bin(k) for the binary representation of k 

(high-order bit first, say). Equivalently, f is linear space honest if 

{lkOf(k)I k E N1} E DSPACE(log n). 

Our main goal in this chapter is to di.scover weak separation condi-

tions for the complexity classes defined in Section 1; e .. g., we seek a 

generally sufficient condition on s
1

, s2 for the nonemptiness of 

NSPACE(S 2) - NSPACE(S1). Well known "gap" theorems, however, show that 

any reasonable separation condition must include some sort of honesty 

requirement on at least one of the space bounds involved. (See [Bor72], 

[Con72], [Con73], [Yng71].) The most comnonly used ([Ib72], [Sav70], 

[BGIW70], [Bk72]) notion of an honest space bound is the one we adopt. 

Definition. If f :N ~ N does not belong to 0(1) and M is a deterministic 

* off-line '1M acceptor with L(M) = 1 and SpacE)i(x) = f(lx!), then f is 

fully constructable and M fully constructs f. 

Proposition 7. 

(i) Every fully constructable function is a space bound. 
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(ii) Let f be linear space honest. If log n E o(f(n)), then f is 

fully constructable by a (2,1)-machine. If log n E O(f(n)), then f is 

still fully constructable. 

(iii) Let S be fully constructable by an (m,t)-machine, and let M 

be an (m,t)-machine. Then L
8

{M) E NSPACE{S,m,t+l); and if Mis determi

nistic, then L
8

(M) E DSPACE(S,m,t+l). 

(iv) There are fully constructable space bounds in O(log log n). 

(Cf., Proposition 1.) 

(v) If Sis fully constructable by an.(m,.t)-machine and 1 E o{S(n)), 

then S satisfies 

1, n - .t•l' 1°3m n - S(n} E 0(1), 

from which it follows that: 

log n - S(n) E O(log log n), m 

log u E O(S(n)). 

Proof. (i) Let f be fully constructable. Since f(n) e 0(1), the lan-

guage 

is not regular. 

(ii) Ass\DD.e f is linear space honest and log n E o(f{n)). Every 

language accepted deterministically within space n can actually be 

recognized (cf., footnote on page 43) within space n (HU69a], so let the 

(2,1)-machine M deterministically recognize fbin(k)fbin{f(k))\ k EN} 

within space O(n). To fully construct f(n), compute according to the 

transition rules of M successively on 

bin(n)fbin(O), bin(n)fbin(l), bin(n)#bin(2), ••• 
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until bin(f(n)) is discovered, and then convert bin(f(n)) to unary. As 

both log n and log f(n) belong to o(f(n)), this does fully construct 

f(n) for all sufficiently large n; the differences can be handled by the 

finite-state control. With care, the entire program can be carried out 

by a (2,1)-machine. 

If· only log n E O(f(n)), then using a large enough worktape alphabet 

keeps the search for bin(f(n)) smaller than f(n) itself. 

(iii) An acceptor for L
8

{M) fully constructs space S and then com

putes according to the transition rules of M within that space. The ex-

tra head is left by the first phase to delimit the space used. 

(iv) Define f(n) = min(kl n is~ divisible by k}, S(n) =log f(n). 

Obviously S is fully constructable. Let :l{(k) be the m.unber of primes 

smaller than k. The least n with f (n} ~ k is the least coumon multiple 

of (k'I k' < k}, which certainly exceeds 2~(k). Hence, 

:l{(f(n)) ~ log2 n. According to the prime number theorem [NZ60], 

k/log k E O(:l{(k)); so 

f(n) 112 
E O(f(n)/log f(n)) 

c 0(1f(f(n))) 

c O(log n). 

Therefore, 

S(n) =log f(n) E O(log log n). 

(v) Suppose the d-state (m,t)-machine M fully constructs S. We 

show below that S(n) = S(n +kn!) for every positive integer k whenever 

logm n - t•logm lo8m n - S(n) > lo~ d. It follows that 

logm n - t•lo8m lo8m n - S(n) t 0(1) = 1 4 o(S(n)). 
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Let S(i,n) be the number of distinct worktape squares visited 

th through the i time that M scans an input endmarker on either end of 

n the input while computing on input 1 , and let 

S(n) t Q(i,n) E {~,$} x {l, •.• ,d} x {l, ••. ,m} x {l, ••• ,S(n)} 

describe the total state of M at the end of that time. (If there is no 

ith endmarked total state, then Q(i,n) =undefined.) 

For lo~ - t•lo8m lo8m n - S(n) > lo8m d, we show by induction on i 

that S(i,n) = S(i, n +kn!) and Q(i,n) = Q(i, n +kn!). That 

S(i,n) = S(i, n +kn!) for all i implies S(n) = S(n +kn!). 

Since M has a fixed initial state, Q(l,n) = Q(l, n + kn!) and 

S(l,n) = S(l, n +kn!) = 1. 

Suppose Q(i,n) = Q(i, n +kn!) and S(i,n) = S{i, n +kn!). To 

prove Q(i+l,n) = Q(i+l, n +kn!) and S(i+l,n) = S(i+l, n +kn!), we 

consider four cases: 

Case 1: Q(i,n) = undefined. Obviously, 

Q(i+l,n) = Q(i+l, n +kn!) = undefined, 

S(i+l,n) = S(i,n) = S(i, n +kn!) = S(i+l, n +kn!). 

Case 2: Q(i,n) is defined, but Q(i+l,n) = undefined. Since n +kn! ~ n, 

the computation continuations are identical. 

Case 3: Q(i+l,n) is defined and involves the same endmarker as Q(i,n). 

Since n +kn! ~ n, the computations are identical from the ith 

st endmarked total state up to the (i+l) endmarked total state. 

Case 4: Q(i+l,n) is defined and involves the other endmarker. In going 

from Q(i,n) to Q(i+l,n), M first reaches each input square 

j E {l, •.. ,n} in some memory state f(j). Because 
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is implied by 
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logm n - t•lo8m lo~ n - S(n) > logm d, 

however, f(j 1) = f(j 2) for some jl < j 2 E {l, ••• ,n}. Clearly, 

therefore, increasing the input length by any multiple of J2-j 1 

results in the same next endmarked total state and no new memory 

states. Certainly kn! is a multiple of j 2-J1 • 0 

Criteria slightly different from ours for "acceptance within space 

S" have been proposed. Book [Bk72] requires that every accepting compu

tation on input x involve no more than S(lxl) worktape squares, and 

Ibarra [Ib72] requires that every computation on input x involve no more 

than S(!xl) worktape squares. The significance of the proof of part 

(iii) of Proposition 7 is that the complexity classes determined by 

fully constructable space bounds are hardly affected by these differences. 

While part (iv) is surprising, part (v) of Proposition 7 redeems 

our intuition that a radix count of the input length fully constructs 

nearly the smallest possible fully constructable space bound. The 

result implies that one may substitute the innocuous hypothesis 

1 E o(S(n)) whenever the apparently more arbitrary condition 

log n E O(S(n)) arises for a fully constructable space bound S. 

Hopcroft and Ullman [HU69a] work with space bounds that are merely 

"constructable." 

Definition. If M is a deterministic off-line TM acceptor with 

S(n) = max(Spac'1f(x) I x E L(M), l xi = n}, 

then S is constructable and M constructs S. 



58 

An interesting corollary of Proposition 7(v) and the existence of con

structable space bounds S(n) E o(log n) with 1 E o(S(n)) [SHL65] is that 

not every constructable space bound is fully constructable. Because we 

cannot prove Proposition 7(iii) for constructable space bounds, however, 

we choose not to use the concept. 
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4. Conventional separation results 

Counting and diagonalization arguments ((HU69a] and [SHL65], re-

spectively) have been used to prove separation results among the 

NSPACE{S) and DSPACE{S) complexity classes. {See Corollaries 9, 11 be-

low.) In this section we sketch more careful versions of these arguments 

to show what conditions they yield for separation among the more refined 

classes NSPACE(S,m,t) and DSPACE{S,m,t). For details, the reader is 

referred to [HU69a], [SHL65], [HU69b]. 

Theorem 8. If s 2 is fully constructable by an (m,t)-machine, then there 

is a language over (0,1} in 

DSPACE(S? ,m,.f,+l) 

- (U (NSPACE{Sl,m,t)I S2'(n)-2·S1(n) ~ 0(1)} u 

LJ {DSPACE{S1 ,m,t-l)I s2
1 (n)-s1 (n) ~ 0(1)}), 

where s2
1 (n) = min{s2 (n), logm n - t•logm logm n}. 

Proof sketch. Define 

L =(xi R * x = uyu E (0,1} for some u with 

s2<lxl) t 
I ul = min{ LI xi /2j , m .s2 <I xi ) }} , 

R where u is the reverse of string u. (Note here that 

82 I <l xi ) J, 
I ul ~ m ·82' <I xJ) • ) 

We first show that LE DSPACE{s2 ,m,t+l). An acceptor for L can 

first lay out space s2(lxl), using the extra head to delimit that space. 

The delimited space can be used as a counter to compare successive char-

acters from the two ends of the input string. Because t extra heads are 

s2<lxl) t 
available, the counter is large enough to count up tom •S2{1xl) . 
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Next, we show that L ~ NSPACE{S1 ,m,t) unless s2
1 (n)-2•S1{n) E 0(1). 

By the reasoning of [HU69a], for ad-state (m,t)-machine to accept L 

within space s
1

, we must have 

Taking logarithms twice gives 

s2
1 (n) + t•log s2

1 (n) + cnstnt
1 
~ 2·{S

1
(n) + t•log s

1
{n)) + cnstnt2 , 

so that s2 •(n)-2•S1{n) E 0(1). 

Finally, we use similar reasoning to show that L ~ DSPACE{S1 ,m,t-l)' 

unless s 2 '(n)-s1{n) E 0(1). The behavior of a deterministic off-line 1M 

at an input boundary can be described as a function from the storage 

states into the storage states plus the "accept" and "nonaccepting no.-

return" outcomes. For a deterministic d-state (m,.t-1)-machine to accept 

L within space s1 , therefore, we must have 

Sz'(n) t Sl(n) .t-1 
m .s2

1 (n) s1(n) t-l d•m •S1(n) 
2 ~ (2 + d·m •S

1
(n) ) 

Taking logarithms twice gives 

s2
1 (n) + t•log s 2

1 (n) + cnstnt
1 
~ s1(n) + .t•log s

1
(n) + cnstnt2 , 

so that s2 I (n)-Sl (n) E 0(1). 0 

Corollary 9 [HU69a]. If s 2 is fully constructable, then 

DSPACE{S2) - U {NSPACE(s1)l min{S2(n), log n} ~ O(S1{n))} 

contains a language over (0,1}. 

Proof. Take m so large that s2 is fully constructable by an (m,1)

machine. For s 2
1 (n) = min{S2(n), logm n - lo8m lo8m n}, Theorem 8 gives 

a language over (0,1} that bears witness to the noncontainment in 
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U (NSPACE(s1)1 min(s2(n), log n} f O(S
1

(n))} 

=U (NSPACE(S1)J s 2 • ~ O(S1)} 

=U (NSPACE{k·S1 ,m,l)j k EN, s 2 • 'O{S1)} 

=U (NSPACE{s1 ,m,l)J s 2• l O(s1)} 

c U (NSPACE(s1 ,m,1) I s2 • (n)-2•S1 (n) f 0(1)} 

j, DSPACE(S2 ,m,2) 

c DSPACE(S2). 0 

Theorem 10. If s 2 is fully constructable by an (m,t+2)-m.achine, then 

there is a language over (0,1} in 

DSPACE(S2 ,m,t+3) 

-U{DSPACE(s1 ,m,t)f s 2(n) - 2.s1(n) - .t•los.s1(n) - lo8mn 

'- 0(1)}. 

Proof sketch. Design a deterministic (m,t+3)-machine M to operate as 

follows on input ex, where e·is the description of a deterministic 

(m,.t)-machine M : 
e 

1. Lay out space s2(jexl), using head A to bound it. 

2. Use t worktape heads to carry out a simulation of M on input 
e 

ex, using head B to bound the simulation. (The simulation re-

quires no more space than c +SM (ex), where c depends only e e e 
on e; and it requires no additional worktape heads to read the 

description of M because that description can be carried around 
e 

and read by one of the t heads already being used.) Meanwhile, 

use head A to keep m-ary count of the simulated steps, and use 

head C to mark the high-order end of the counter. 
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simulation (t heads) 

f 
head B 

simulation; otherwise, just accept.· 

Now suppose"M is a detendnistic d-atate (a,J),...achine that ~cep.ts 
e . - . .-· .. -. 

within space s1 , where A (n) ' 0(1) for 

t.(n) = s2(n) - 2.s1(n) - l•loa_ s 1(a) - lo'-r~·. 

Take x 80 that A er exf> > Ce + d. If ex E L(M.). ~ ~t .... t be accepted 
•1 <I exf > . . c,. . , . . 

within d·I ex! •m .s1 Cf exf )J •tef by He· . (Otherwise, a total 

3tate would_repeat, and M would loop forever CRl ex.) Since . . " . st (f exf) .. , , - . 
c 8 + s1 <I exl) + loa_ (d• I ex( •• . _. ..s1(k.t )-!> 
• ce + lo&g. d + s2(fexl) - t.Clexl) 

s s2 CI exj) ... <.ACf ex!) - (c
8 

+ d)) 

~ S2Clexl), 

M does dis.cove:r ~t ex E L{ll
8

) and ~·<;~ ,,J~Ql) ..... ()n the other 

hand, if ex <I. LOI•),. then M will cer~:l.Qly ,1~ept ex •. therefore, 

L{M
8

) ~ L(M). 0 

Corollary ll (SHI.65] • If s2 is fully "CtliDSt"Ftaltle:; then 

DSPACB(S2) - U {DBPACB(S
1
)! s2(n) ti O(s

1
c{a)·-+ lbg n)} 

contains a language. cweT {0,1}. 

Proof. Take m so large that s2 is fully constructable by an (m,1)-
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machine. Theorem 10 gives a language over f 0,1} that bears witness to 

the noncontainment in 

LJ [DSPACE(S1)! s 2(n) ~ O(S1(n) +log n)} 

=LJ [DSPACE(k•S1 ,m,l)! k EN, s 2(n) ~ O(S1(n) +log n)} 

=LJ [DSPACE(s1 ,m,l)! s 2(n) ~ O(S1(n) +log n)} 

cLJ [DSPACE(s1 ,m,l)I s 2(n) - 2•S1(n) - logm s 1(n) - logm n f 0(1)} 

j) DSPACE(S2 ,m,4) 

c DSPACE(S2). 0 

By Proposition 6, one more corollary is implicit in Corollary 11. 

Corollary 12. If s 2 is fully constructable, then 

2 2 
DSPACE(S2) - LJ [NSPACE(s1)1 s 2(n) ~ O(S1(n) +(log n) )} 

contains a language over f 0,1}. 

Remark. The original arguments of (HU69a] and (SHL65] were for s 2 

merely constructable. For s2 constructable by an (m,t)-machine M with 

* L(M) c'E, accordingly, a witness language over 'Ex [0,1} is obtained in 

each of the above results. 
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5. Padding whole laneges 

For space bounds above log n, the separation results given by 

Corollary 11 are very good. For s2 fully constructable and 

log n E o(S2(n)), in fact, since s2 E O(S1) implies DSPACE(S2) c 

DSPACE(S1) (Proposition 3), it follows from Corollary 11 that 

DSPACE(S2) - DSPACE(S1) '# ¢ .!! and only if s2 'O(S1)~ Corollary 12, on 

4 the other hand, is relatively weak and does not even separate NSPACE(n ) 

2 from NSPACE(n ), for example. 

Using the padding trick of Ruby and P. Fischer [RF65J, Ibarra [Ib72] 

has refined some of the separation results given by Corollary 12. The 

basic trick is illustrated by the following lelJIDS, where we write p(L) 

for {xlOkl x EL, lxlOkl = p(lxf )} when L c {0,1}* and p:N ~ N satisfies 

p(n) > n. 

Leana 13. If p(n) > n is linear space honest and log n E O(S(n)), then 

p(L) E NSPACE(S) ~ L E NSPACE(S op). 

Proof. Every language accepted deterministically within space n can 

actually be recognized (cf., footnote on page 43) within space n [HU69a], 

so let M deterministically recognize {bin(k)fbin(f(k))! k E NJ within 

space n. 

<~> Suppose M1 accepts p(L) within space S. Design M2 to operate 

as follows on input string x: 

1. Write down bin(lxl) and then compute according to the transi-

tion rules of M successively on 

bin(!xj)fbin(O), bin(jxl)fbin(l), bin(!xj)fbin(2), ... 

tmtil bin(p(lxl)) is discovered. As p(n) ~ n, this can be 
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accomplished within space proportional to log p(lxl) E 

O(S(p(j xi))). 

2. Compute according to the transition rules of M1 on input 

x10P<lxf )-\xl-l. By hypothesis, this can be accomplished within 

space proportional to S(p(!xl)) in acceptance. 

Clearly,·~ accepts L within space proportional to S op. 

<~> Suppose M2 accepts L within space S(p(n}). Design M1 to operate 

k as follows on input string xlO : 

1. Write down bin(lxl)#bin(Jx\+1-Hc) and then compute according to 

the transition rules of M to detenaine whether JxlOkl ·= p(lxl>· 

2. 

'lltis can be accomplished within space proportional to 

log p(l xl} = log l xlOkl E O(S(j xlOkl)) in acceptance. 

k 
If lxlO I = p(lxl), then compute according to the transition 

rules of M2 on input x. By hypothesis, this can be accomplished 

within space S(p(Jxl)) = S(JxlOkl) in acceptance. 

Clearly, M1 accepts p(L) within space proportional to S. O 

The following theorem shows how Lemna 13 is used to improve known 

separation results. The formulation is a variation of Ibarra' s [ Ib 72] • 

Theorem 14. Let sets 3 1 , s2 of space bounds be given, with 

log n E O(S(n)) for every SE g1 U32• Say p1(n) > n, ••• , pj(n) > n are 

linear space honest functions with s 1 o Pi+l E O(s2 o p1) Whanaver 

1 :!!: i < t, s1 E s1 , s2 E 3 2 · 

If L E n (NSPAcE(s2 o Pi> I s 2 E s2J - u (NSPACE(s1 o P1>1 s1 E s1 J, 

then pi(L) En (NSPACE(S2)1 s2 E 32} - U (NSPACE(s1)J s1 E s1} for some i. 

Proof. For 1 ~ i ~ t, let 
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6. Program codes and recursion 

For precision, let us now choose an appropriate program coding for 

off-line TMs. With each off-line '1M having input alphabet [O,l}, we 

* associate a distinct program~ from (0,1} ; and we do this in agree-

ment with the easily-satisfied conditions listed below. We use the 

notation Lm,t for the set of program codes for (m,t)-machines and L p.c. p.c. 

for the set of all program codes. We denote by M the off-line 'IM with 
e 

program code e. 

Condition 1. No program code is a prefix or suffix of another, and Lm,t p.c. 

is regular for each m, t. 

Condition 2. For each fixed m, J, there is an (m,J)-machine u
0 

(a 11 '1!!.:!.

versal simulator") with 

L(U ) = [ex! e E Lm,J , x E L(Ke)}, 
0 p.c. 

Spaceu
0

(ex) ~ ce + Spac~e (x) if e E Lm,t ' 
p.c. 

where ce depends only on e. Furthermore, u
0 

has only one computation on 

ex if M is deterministic. e 

Condition 3. There is a recursive function f :L ~ L such that p.c. p.c. 

for each m, t and such that Mf (e) deterministically 

writes e at the front of its worktape and thereafter acts according to 

the transition rules of M . 
e 

Most common instruction-by-instruction or state-by-state codings of off-

line '1M programs can be tailored to satisfy these conditions. The only 

trick is to design the universal simulator of Condition 2 so that one of 

the t ~ 1 simulating worktape heads carries with it and references an 
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2. Convert e
1 

to f(e
1

) = e0 . 

3. Convert e
0 

to h(e
0
). 

4. Simulate u
0 

on e
2

e
0
x. 

¢:) e
0

x E L(M), 

SpacE\i (x) ~ c + SpacE\i(e0x), 
eo 

where c is c plus the number of worktape squares required for steps 1, 
e2 

2, 3. 0 
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7. Another general separation result 

The general separation result that we prove in this section (nteo-

rem 18) amounts to a dramatic refinement of the following very weak 

"separation" result. 

Lemna 16. For no recursive space bound S- does NSPACE(S) contain all the 

recursive languages over {l}. 

Proof. If S is recursive, then the diagonal language 

{ 1 ~ ln f Ls-(He) • le • bin(a)} 

is a recursive language not in NSPACE(S). O 

One more technical leama is all we need for the proof .of Theorem 18. 

Lenna 17. If S/2 is fully constructable by a {2,1}-machine, then some 

detel'lllinistic (m,£)-machine recognizes 

L • (ljOk! k ~ mS(j)•S(j).t-l} 

within space lo8m n - (J-l)•lo8m lo8m n. 

Proof. It is easier to get an (m,J+l)-machine that does the job. Given 

a fixed position s of the extra head, we can use the other t heads within 

.t-1 space s to count through s cycles of an m-ary counter that counts up 

s 8 .t-1 to m , while checking whether k < m •S • By trying successive posi-

s t-1 tions s, we can find position s0 , the least s ~ 1 with k < m •S . 

Certainly S is fully constructable by a (2,1)-machine. Since m ~ 2 

and J, ~ 1, we can leave the extra head at position s0 and try to lay out 

space S(j) without reaching that position. We succeed if and only if 

k ~ mS(j)•S(j)t-l. 

Suppose n is so large that 
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t-1 t-1 
(logm n - (t-l)•lo8m logm n) > (lo8m n) /m. 

If 

t:hen 

so-1 t-1 
m • (s

0
-l) > n = j + k ~ k 

by substitution, contradicting the minimality of s0 • Therefore, 

s0 ~ 2 + logm n - (t-l)•lo8m lo8m n 

for all sufficiently large n, and the simple method of Proposition 2 

yields an (m,t+l)-machine that recognizes L within space 

log n - (t-l)•log log n. m m m 

To get rid of the extra head, we make two ob$ervations. The·first 

is that the boundary head can be used in the first phase to run the m-

ary counter without losing its place. The. second is that the boundary 

head can be used even to lay out space S(j) in the second phase. The 

reason is that, since S/2 is fully constructable by a (2,1)-machine, S 

is fully constructable by a (2,1)-machine that leaves every other tape 

square redundant by always writing and reading aa rather than just a for 

every worktape symbol a. We can modify redundant tape· squares to mark 

the head position and the ends of the used space. O 

Theorem 18. If s 2 is fully constructable by an (m,t)-machine, then each 

of the following set differences contains a language over (0,1}: 

NSPACE(s2 ,m,t+3) - U (NSPACE(s1 ,m,t+2)! 1 E o(s2(n)-s1(n+l))}, 

DSPACE(S2 ,m,t+3) - LJ (DSPACE(S1 ,m,t+2)1 1 E o(S2(n)-S1(n+l))}. 

Proof. Let s2 be fully constructable by an (m,t)-machine, and let u0 be 
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k k 
logm I xO I - (t+l)·l~ lo8m 1 xO I 

k+l k+l 
s lo8m lexO I - (t+l)•lo8m login jexO I 

k+l 
s s1 <I exO I> 

worktape squares. 

3. If k ~ S'(jxj), then compute on input x according to the transi-

tion rules of M. This requires no more than 

S(jx!) s logm S'(lxj) - (t+l)•lo8u,. lo8m s 1(1xj) 

s lol\n k - (J+l)•lo8m lo8m k 

k+1
1 

I k+1 s logm I exO - (t+l) • lo8m lo8m exO I 
s sl <I exok+ll) 

worktape squares for x E L(M). 

I I 
. k+l 4. If k < S'( x ), then compute on input exO according to the 

transition rules of u
1

, comnitting the final 0 to finite-state 

k+l memory. This requires no more than s1 CJ exO I ) work tape 

squares for acceptance. 

k To summarize the behavior of M' on exO , 

k ~ S'Clxl) ~behave like Mon x; 

I l k+l k < S' ( x ) ~ behave like u
1 

on exO • 

k To summarize the timing for exO E L(M'), 

k k+l 
Spac~ 1 (exO) s s1C!ex0 I>· 
Applying the recursion theorem (Theorem 15) to M', we get a program 

code e
0 

for an (m,t+2)-machine that accepts 

k k * * L (M ) = ( xO I e
0
xo E L (M')} c 1 o 

eo 

within space 

Spac~ (xOk) s c + Spac~ 1 (e0xok) 
eo 
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xOk E L(Jle ) • ~ E L(H') H ~1AH 5vsrit.!d -:= ( :x l) '~-: _ 
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x E L • xOk+l E L(M ) 
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(by induction hypothesis) 

=> e
0
xok+l E L(M') 

(by choice of eo> 

k+l k+2 
=> spac~, (e0xo ) :s: .s1 <t e0xO J) 

(by space usage of M') 

=> ce + Spac«\t (xOk+l) s ce
0 

+ .c + Spac~, (e
0
xok+l) 

o e0 

(by choice of eo, c) 

s c e + c + s1 <1 e0xO~) ) 
0 . , 

k+l' 
:s;; s2<1 eoxo I) . 

(because x is so long) 

k+l 
=> e0xO E LS (U0) = L(U1) 

2 

(by choice of u
0

) 

k 
=> e0xO E L(M') 

(because by definition M' behaves like u
1 

in this case) 

=> xOk E L(M ) 
eo 

(by choice of e0). D 

Finally, M can be modified to use its finite-state control to re
eO 

* ject padded inputs (those not members of {l} ) and to agree with M on 

short ones (those not sufficiently long for the claim) without using the 

worktape. Titis gives an off-line 'JM that accepts L = L(M) within space 

s1(1e0j-kl+l). Because 

s1 (1e01-m.+l) E o(s2<1e01-m.)) 

cO( ~ s2(n')), 
n':s;;2n 
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8. Applications of the general separation results 

Our first application brings together Corollaries 9, 11, and 12 

with the related consequences of '111eorem 18. It is the latter (part 

(iii) of Corollary 19) that subswne and improve on the specific results 

of [Ib72]. 

Corollary 19. Let s2 be fully constructable. 

(i) '"lf s2 (n) E O(log n), then DSPACE(S2) <i:U (NSPACE(S
1
)j s2 f O(S1)}. 

(ii) DSPACE(S2) <i:U (DSPACE(S
1
)], s2 f O(S

1
)}, 

DSPACE(S2) <i:U (NSPACE(S1)! s2 f O(Sl 
2
)}. 

(iii) NSPACE(S2) <t:U {NSPACE(S
1
)j s1(n+l) E o(S2 (n))J, 

U {NSPACE(S
1
)j s

1
(n+l) E O(S2(n)), s

1
(n} E o{S:!(n))} ¥ NSPACE(S2) •. · 

(In the case s2 (n+l) E O(S2(n)), note that: s
1

(n+l) E O(S2(n)) is 

implied by s1(n) E o(S2(n)).) 

· Furthermore, there are languages over {0,1} that bear witness to these 

facts. 

Proof. (i) This part is a slightly weakened form of Corollary 9. 

(ii) By Corollaries 9, 11, and 12, we can take languages, 

* Loo• LOI' LIO c (0,1} such that 

LOO E DSPACE(S2(n+2)) - U {NSPACE(S1(n+2))! min{S2(n), log n} ~ 

O(Sl (n))}, 

L01 E DSPACE{S2(n+2)) -U {DSPACE(S1 (n+~))! s2(n) ~ 

O(S
1

(n) +log n)}, 

LIO E DSPACE(S2 (n+2)) - LJ {NSPACE(S1(n+2))! s2(n) f 
2 2 O{S

1
(n) +(log n) )}. 

Clearly the language 

,,---- ·----
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(OOxl x E Lool u {Olxl x E Lo11 u {lOxl x E 1J.o1 
belongs to DSPACE(S2(n)) but not to 

U {NSPACE(S1(n))\ min(s 2(n), log n} f O(S1(n))}, or 

U {DSPACE(S1(n))! s2(n) f. O(S1(n) +log n)}, or 

2 2 U {NSPACE(S1(n))\ s2(n) ~ O(S1 (n) +(log n) )}. 

(Cf., Lemna 13.) It is easy to verify that 

s2 f. O(S
1

) ~ min{s2(n), log n} f. O(s1 (n)) v 

s2(n) 4 O(S1(n) +log n), 

s 2 f. O(s1
2

) ~min{S2 (n), log n} f O(S1 (n)). V 
. 2 . 2 
s2 {n) f O(S1 (n) +(log n) ). 

(iii) Take m so large that s2 is fully constructable by an (m,t)-
. . 

machine. 'theorem 18 gives a language over {0,1} that bears witness to 
---:"'" -. - ~: .. 

~he ::oncontaimnent in 

U (NSPAC:g-(s1)t s 1 (n+l) E.:;o(S2 (n))} 

= U (NSPACE(k•S
1

,m,3H k EN, s
1

(n+l) E o(S2 (n))) 

= U {NSPACE(Sl ,m, 3) \ s1 (n+l) E o(S2(n))} 

cU (NSPACE(S}~m,'3}\ 1 E o-(S2 (n)-s
1

(n+1)l} 

-:J:, NSPACE(S
2 

,m,4) 

c NSPACE(S
2
). 

Containment in the second assertion of.paTt (iii) holds by Proposi-

tion 3. To prove that the containment is proper, appeal to the first 

* assertion to get a language L c {0,1} in 

NSPACE(S2(n+2)) - U {NSPACE(S1(n+l))I s1(n+l) E O(S2(n)), 

s1(n) E o(S2(n))} 

and then apply Theorem 14 with 
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gl = {s1l s1(n+l) E O(S2(n)), s1(n) E o(s2(n))}, 

g2 = (S2}, 

p1 (n) = n + 1, 

p 2 (n) = n + 2. O 

Examples. For any function G tending to infinity (1 E o(G(n))), however 

slowly, 

NSPACE(log n/G(n)) ¥NSPACE(log n), 

NSPACE((log n) 2/G(tt)) ,NSPAGE((log n) 2), 

NSPACE(n
2

/G(n)) 1NSPACE(n
2
), 

NSPACE(2n/G(n)) 1NSPACE(2n), 

n n+l 
NSPACE(2

2
) 1NSPACE(2

2 
). 

Feldman and OWings [F073] have observed tha,~ deterministic linear 

bounded automata are more pol(1erful than deterministic linear bounded 

automata with a fixed worktape alphabet; i. e., 

DSPACE(n,m) 1 DSPACE(n). 

Our next application generalizes that observation, showing, for example, 

that it holds even for nondeterministic linear bouµded •utomata. 

Corollary 20. Let S be fully constructable. 

(i) If S(n) E o(log n), then NSPACE(S,m) -:J, D.SPACE(S). 

(ii) DSPACE(S,m) 1 DSPACE(S). 

(iii) If S(n+l) E O(S(n)) and 1 E o(S(n)), then N.SP.tWE(S ,m) jt NSPACE(S). 

Furthermore, there are languages over (0,1} that bear witness to these 

facts. 

Proof. (i) Take m so large that S is fully constructable by an (m,1)-

--- ---------------- ------
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finite automata with k ~ 1 heads.t The fact 

NSPACE(log2 n, m) ¥NSPACE(log n) 

is just what is needed to establish a similar hierarchy theorem for 

NHEADS. To this end, we prove a lelllll8 .relating NHIAQS to NSPACE(log n) 

and DHEADS to DSPACE(log n). 

Leoma 21 (Ha72]. 

NHEADS(k) c NSPACE(log2 n, 2k ~ 1) c NHEADS(k-+4), 

DHEADS(tc) c DSPACE(log2 n, 2k, 1) c DREADS(k-+4). 

Proof. Let M be a two-way finite automaton with k heads. A (2k,l)-

· machine M' can simulate M by beha-Ying like a "k-track" (2,1)-machine, 

using .the respective tracks of its worktape to hold· the binary represen-

tations of the positions of the k heads of M. Clearly, M' is determi-

nistic if M is~ 

bin(poaition of head 1) 

• 
k • blanks••• 

• . . .. 

bin(position of head k) 

t 
-wprktape head 

(at rest) 

Let M' be a (2k,1)-machine that accepts within space log2n. To 

simulate M', a two-way finite automaton M can encode each of the k 

tTwo-way finite automata with k heads can be described as off-line 
'IMs that do not use their worktapQ but _that hJIY'S k, two-way read-only 
input heads. We assume the k heads cannot detect each other, but nothing 
we say here actually depends on that convention. 
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"tracks" of the worktape of M' as a head position whose binary represen-

tation is the track contents. An additional head, head A, can keep count 

of the position of the worlttape head of M'. 

To read the contents of track 1 of the 1t0rktape square M' scans, M 

begins by positioning head B coincident with head· ·A ad head C coinci".' 

dent with the head whose position encodes the contents of tr-ack i. 

(This requires help.fr08l head. D sit\ce the heads c~t de~ect each other.) 

'11len heads 'C and D are used to successively halv.e tll.e position that en

codes track i (dropping remainders), while decrementing the position of 

head B once for each halving. The remainder of the last division before 

B reaches the endmarker is ·the contents of track i of the worktape square 

scanned by M'. 

To change the contents of track i of the worktape square K' scans, 

K begins by positioning head B coincident with head A and head C on the 

first input tape square. 'l'hen heada C ·and »··are used to successively 

double the position, while decrementing Che'positton of head B once for 

each doubling. '!1le position that is reached when B reaches the end-

marker is the power of 2 which must be added or subtracted from the 

position encoding track i. D 

Corollary 22. NHEADS (k) ~ NHEADS(k+2). 

Proof. For each k, Corollary 20(iii) guarantees the existence of some 

k' with 

k NHEADS(k) c NSPACE(log2 n, 2 , 1) 

~NSPACE(log2 n, 2k', 1) 

cNHEADS(k'-+4). 
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According to [Ib73a] this is enough; O 

Recently, Ibarra and Sahni ([Ib73b], [IS73]) refined some specific 

instances of our Corollary 20 to show that a single additional worktape 

symbol sometimes helps. The following more directly proven corollary 

generalizes their results. Note that this is a case where the conse-

quences of Theorem 18 are stronger than those of Theorem 10 for determi-

nistic machines. 

Corollary 23. Let S be fully constructable. 

(i) If S(n) E o(log n), then 

DSPACE(S,m) ¥ DSPACE(S,m+l,l) 

for all sufficiently large m. 

(ii) If S(n+l)-S(n) E o(S(n)), then 

NSPACE(S,m) ~ NSPACE(S,m+l,l), 

DSPACE{S,m) 1 DSPACE(S,m+l,l) 

for all sufficiently large m. (If S is actually linear space 

honest and log n E o(S(n)), then m = 2 is sufficiently large.) 

Furthermore, there are languages over fO,lJ that bear witness to these 

facts. 

Proof. Take m so large that Sis fully constructable by an (m,1)-machine. 

(If Sis actually linear space honest and log n E o(S{n)), then m = 2 

will do, according to Proposition 7(ii).) Take rational numbers 81 , 82 

with 1 < 81 < 82 < logm (m+l). (Note then that 52.s is fully construc

table by an (m,1)-machine, too.) 

(i) By Proposition 1, S(n) t o(log log n), so Theorem 8 gives a 

language over f O,lJ that bears witness to the proper containment in 



DSPACE(S,m) c DSPACE(61•S.m;l) 

, ;DSP~(62.s,a~l) 
.c DSPAC.(B..,+1,J.). 
'. : , '-:- ' ~' _·: : ,~ -· . '-: , 

(ii), Fr~ s(;a+t.>.-~.<19 .. ;E o,<~<n,?>.'·;zYI~<aJrl.f o.\l:~r' .. it .i~i ~Y, t~)'~"" 

that 1. E ~($(n)) ... ~ ,~mc;e .~h•t. J E; ,o~~'1~~~)·6~f11(~)~},· .• , 'l'b_e~~~~·.' . 

'l'heorem 18 &~Y,88 u~.1~~~-""F l0,1)~,.~, VJ-t~~ ~~· ~· p~r 
- -~ - . - . - '.;,, ''· = . -· -"' ,.\- .. " ~ .. _., .. • ·- - - -.. ~ ~ ~ ~. 

coatailment in 

HSPACB(S,m) cHSPACB(&1•S,a,3) 
, ~;;_"-' --'~ ~ ··'"<::,;~-

, llSNCB(62•S,a,4) 
-,·-,,·,. 

cllS~(S.-+-1,1). 
- :~ ,,.. "".·::; ·' 

The proof for DSP.ACB la i4eiltical. 0 
::· :>;.2"'.':f _: 1·:.! .: . --- -~ _·.'. 

!Umplert• Within each of the apace l!~~J.!f~ <</;~--~~2 , ~1/2\~c 
3 2 n1/ 2 

n • •log log n, 2 , flNr/ 844--•l iJJ I -p;·~ ~~sea the 
~ 

c~uting power of nonHtemtaia~1'111l9'•11tl .~ ~l.W 'Dia. 

Fiaall)h WJP'CIM; ... ;f.-~ ..... ~tAM"A•...-•·---1rtt8P• 

cotoltaryJ!.. ·t.et: ·'S be 'Mtf'amat~p:::·.:.,.~ 

(i) If S(n) E o(log u), then 

DSP.ACE(8,ai1.I) J ... t£1(1~~~· .,~ .~, ~"' '' 

foi- aU suf!M;tett~ :1__. I.Ill·• ,Mlt ~,,, -:": 

(ii) .lf '8(a+J.)-!(A). E ,,e(.\8a1'8()!1')) ;- ).;:;E. ~q~)c, ~- · 

NUMl"··~i ,.--~-}, .. : j 

DSPAC.l(S,a.J) , DSPAC&(S,a) . 

for all .Uf~J'{..._, ,, ... ~1.7'~ Jit..A.~ti'F'Ji¥~ linear 

8P4C• bonea:t aad·l~•-E o(B$t}:);,, 0~ , •. ~:'8 rlNffi~l)-. ~.) 
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Furthermore, there are languages over {0,1} that bear witness to. these 

facts. 

Proof. Take m so large that S is fully constructable by an (m,1)-machine. 

(If Sis actually linear space honest and log n E o(S(n)), then m = 2 

will do, according to Proposition 7(ii).) Look at any j. 

(i) By Proposition 1, S(n) ~ o(log log n), so Theorem 8 gives a 

language over {O,l} that bears witness to the proper containment in 

DSPACE(S ,m,j) c DSPACE(S - (1/2) • los.,, S, m, .1-+4) 

~ DSPACE(S,m,!-t6) 

c DSPACE(S,m). 

(Directly adapting the proof of Theorem 8 would give 

DSPACE(S,m,t) , DS~ACE(S,m,i+J).) 

(ii) Take c > 0 so large that S(n+l)-S(n) s c•lo8m S(n). Since 

1 E o(S(n)), Theorem 18 gives a language over {0,1} that bears witness 

to the proper containment in 

NSPACE(S ,m,J) c NSPACE(S - d• log S, m, .l+LcJ-1'4) 
m 

1 NSPACE(S, m, J+t_cj +5) 

c NSPACE(S,m), 

where c < d < Lcj+l. (Note that LcJ = 0 if 

1 E 0(1 - (S(n+l)-S(n))/lo8m S(n)).) The proof for DSPACE is 

identical. D 

2 . 1/2 Examples. Within each of the space bounds (log7 n) , n , n, 

1/2 n•(log2 n) , every five additional worktape heads increase the comput-

ing power of nondeterministic and deterministic off-line 'IMs. Some 

greater number of additional worktape heads increases computing power 
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within space n•log
2 

n. 



87 

9. Witness languages over a one-letter alphabet 

The witness languages provided by the general separation results 

* above are subsets of [O,l) • In this section we investigate conditions 

* for the witness languages to be subsets of. just [l} • For sublogarithmic 

space bounds ('lbeorem8), we know of no such conditions; but both 

Theorem 10 and Theorem 18.can be modified to give languages over just 

{1}. 

Theorem 25. If s2 is fully constructable by 4n (m,.&+2)-macbine, then 

there is a language over [1} in 

DSPACE(S2 ,m,J+3) - U {DSPACE(Sl'm,t)l 1 E 

o{s2 {n) - 2·S1 (n) .;. J• 1<>8- s1 (n) - 1o8m n)} 

Proof sketch. To adapt the proof of Theorem 10 and get a diagonal lan

guage over just [1}, we must, in limited space, somehow obtain a descrip-
:" . . n 

tion of an (m,J)-machine to simulate on the input 1 • Furthermore, each 

description must arise for' irtftnitely many n. (We cannot .get by with 

the condition of Theorem 10 because that would require each description 

to arise for a string of every sufficient length.) Because s2(n) ~ 

lo8m n in the nontrivial cailtjca.suitable approach is to obtain the de

scription from the m-ary representation of the 41.put .length (e~ g., by 

dropping the low-order O's). O 

Theorem 26. Let f(n) E O(n) - 0(1) be nondecreasing and linear space 

honest. If s2 is fully constructable by an (tn,J+2)-machine and 

log n E o(S2(n)), then each of the following set differences contains a 

language over [1}: 
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NSPACE(S2,m,ti6) - U (NSPACE(S1 ,m,t)\ 

s2 (n) - s1 (n + f(n)) 2 4•lo8m n}, 

DSPACE(S2 ,m,J,i6) - U (DSPACE(S1 ,m,J) I 
s2(n) _ - s1 (n + f(n)) :.?: 4•los_ .nJ. 

Proof. Let f':N ~ N be the strictly increasing. function wi:th range 

* (nj f(n) > f(n-1)}. Define ·injections g, h:(0,1}: ~ N by 

bin(g(x)) = lx, 

h(xO) = h{x) + f(h.(x)), 

h(xl) = f' (•g(xl>, + •g(xl) - l, 

h(A) - f'(•) +. - 1. 
.~r 

Use the fact that f(n) E O(n) to take j so ~rge that h(x.O) $ j•h(x). 

Note that, because f is linear space hou~at and f(n) E O(n), the conver-
h(xlO') k ' .. . •·· ~ . 

sion of 1 _ to xlO (or, more conyeniently, something like 

xlfbin(k)) can be accomplished within space proportional to log n. 

Claim 1. The result of this coUYersion r9qu.~~e~ only space 
., . - , -·,.:. ~ r . ." 

lo'm n - G(n) 

for some G with 1 E o(G(n)). 

Proof. Because f is nondecreas-ing and -111D'bo\ultled·, ·we can take some G1 

with 1 E o(G
1 
(n)) such that : ;;,: ::,=: ;~ 

h(xlO~ :.?: h(xl) + k•G1(k)•f(h(xl)) 

Therefore, 

2 keG1(k)•f(h(xl)) 

~ k•G (k)•f(f'(m8(xl))) 1 .. 

:.?: k•G
1

(k)•mg(xl). 



89 

~ lo8m k + G2(k) + J xll + G3(f xll) 

~ (log k + I xlj ) + G(h(xlO~) , 
m 

where 

G2(n) = lo8m G1(n), 

G3(n) = min(g(xl)-jxlll n = lxll }, 

k 
G(n) = min(G2(k)-foG3(!xlj)1 h(xlO) ~ n} 

all tend to infinity. The result of the conversion from lh(xlO~ to xlOk 

requires only space lxll + lo8m k, so the claim follows. D 

An additional worktape head can be used to separate xl from the m-ary 

representation of k, and additional space log n can provide for an m
m 

ary counter up to k. 

Let s2 with log n E o(S2(n)) be fully constructable by an (m,J+2)

machine, and let u
0 

be the universal simulator of Condition 2 form, J+2. 

* Design an (m,J+S)-machine u
0

1 to operate as follows on input y E (l} : 

1. Find x with lh(x) ~ y if it exists. 

2. Compute on x according to the transition rules of u0 . 

By the considerations above, whenever step 2 alone uses more space than 

the conversion of step 1 (and tS;2{h(x)) !!. enough space since log n E 

o(s2 (n))), the whole progt"au':carl be carried out at the extra cost (over 

just step 2) of the three additional worktape heads (one to separate the 

parts of the representation of x, one to separate the entire (left-

adjusted) representation from the rest of the worktape, and one to scan 

the representation) plus 2.108m h(x) - G(h(x)) work tape squares. By 

Proposition 7(iii), L8 (u
0

1
) E NSPACE(s2 ,m,J46). We prove that 

2 

L8 (u
0

1
) E NSPACE(s1 ,m,t) for any space bound s1 with 

2 
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s2 (n) - s1 (n + f(n)) ~ 4•lo8m n. 

Suppose the (m,J)-machine u
1

• accepts Ls (U0
1

) within space s1, 
2 . 

where s2 (n) - s1(n + f(n)) ~ 4•lo8m n. Because log n E o(S2 (n)), it is 

no loss of generality to assume also that s1(n) ~ log2 n. To summarize 

the behavior of u
1

•, 

L (U I ) = L (U ') c L (U ') 1 82 0 . 0 

d f E Lm,J+2 an , or e , 
p.c. 

2•lo8m h(ex) - G(h(ex)) + ce + Spac~ (x) s s2 (h(ex)) = 
e 

h(ex) 
Spac;, ,(1 ) s s

1
(h(ex)). 

1 

Finally, design an (m,j~)-machine u
1 

to operate as follows on 

* input x E {0,1} : 

1. Compute the m-ary representation:·.-of~ h(x) • 

2. Simtilate u
1

' on lh(x). ,1 :· : . 

If enough space (s2 (h(x))) is used, then the.:- axtra' cost (over just the 

computation by u
1

' directly on lh(x» is no,;l11tftt,1?ban 2•lo8m h(x) work

t·ape squares (half for an m-.ary represent-ation, .pf.-b(x) and the other 

half for an m-ary counter up to h(x) to,~~ f.tilHiek of the input head 

position· on lh(x)) plus the two ac:lditional:·Mt>~e heads. Hence, 

L(Ul) = {xi lh(x) E L(U
1 
')} · :f;v 

={xi lh(x) EL (U ')} 
52 0 

c (xi lh(x) E L(U
0

')} 

= L(U0); 

and, for every e E Lm,J+2 , 
p.c. 

2•lo8m h(ex) - G(h(ex)) + ce + Spac8M (x) s s2 (h(ex)) = 
e 
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Spac~ (ex)~ 2•lo8m h(ex) + s1(h(ex)). 
1 

* For any recursive L c {l} , we can use u1 just as in the proof of 

Theorem 18 to get an (m,t+2)-machine M with 
eo 

xO E L(M ) ~ 
k lx EL, if k ~ S'(lxl); 

eo e
0
x0k+l E L(U

1
), if k < S'(lxl); 

k.. k+l.. k+l 
Spac~ (xO J ~ d + 2·1o8m h(e0xO -, + s1(h(e0xO )), if 

e 
O xOk E L(M ) 

eo 
* for 5ome appropriate space bound S', some constant d, and every x E {l} . 

(This uses s1(n) ~ log2 n.) 

Claim 2. For each sufficiently long string x E {1]*, the following 

holds for every k: 

k xO E L(M ) ~ x E L. eo 
* Proof. Let x E {1} be so long that 

G(n) ~ 2•102 j + c + d 
"'m eo 

for every n ~ h(e
0
x). We establish the claim for x by induction on k 

running down from k ~ S'Clxj) to k = O. 

k ~ S' <I xi): 

xOk E L(M ) ~ x E L inmediately. 
eo 

k < S'Clxj): Assume xOk+l E L(M ) ~ x EL. 
eo 

k k+l 
xO E L(Me

0
) ~ e0xO E L(U1) c L(U0) 

~ xOk+l E L(M ) 
eo 

=> x E L. 

x E L => xOk+l E L (M ) 
eo 

--~-----
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. ,· '. I 

If B ia a _._rustaa Eecar•lw 1. ••• .'!rlflW ~s .1 >iux 

h(y) ~ ll(J7'l _for all 7 E {O~tJ*, ._ Cl$ ·I at•• ·~ &ii..i.a for 
i1ai:1 B. trol oa $d' . {.n :=j x .19.1 .Jc;::;rr 

eftl'."J aufff.eiatly 1-- s E L: 
" - ' -~ ~ ' ,,4., .. T~,-.,,. 

b ·t !J + ~- "'.H-'• r 4 i~ S' j _., -~ .. ~, 

Spac9H {s) ' d + 2•i.s_ 11(...., + 't~) " '!'_,~. . ~ ·- - ... 

- .;. crJl!o:.;:'. _qr ··~' ;t '"::1 1;1l.,1;j;.) srf; rf!il.ifd~:f~~ &JN .(x
0

:t;lff s; n '{:f~V~' ·n·; 

'.d + 2•10S. j + ~~--.·~f''lll'M\1+,A,<~rt 
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Remark. The proof of Theorem 26 does not really require f to be linear 

space honest. It is enough to be able to compute f within space belong-

ing to o(s2). If s2 happens to be linear space honest, for example, 

* f(n) = log S(n) will work. 

For the particular function f defined by f(n) = 2n, we can get a 

result that extends all the way down to O(log n). 

Theorem 27. Let s2(n) be fully constructable by a (2,J)-machine, 

1 E o(S2(n) - log2 n), t :2:: 3. Then each of the following set differences 

contains a language over (1}: 

NSPACE(s2 ,2,t+l) - U (NSPACE(s
1

,2,J)I 1 E o(s2 (n)-S
1

(2n))}, 

DSPACE(S2 ,2,J,+l) - LJ (DSPACE(S
1

,2,t)J 1 E o(S2(n)-s
1

(2n))}. 

* * * Proof. Define an injection h:(O + 1) 01(1 0) ~ N by 

h(eo1x01) = 2k.3j·(6i + 1), 

where 

* x E (1} , 

lx = bin(i), 

le = bin(j). 

Note that, with care, conversion of lh(eOlxo1) to (the reverse of) 

k k eOlxO can be accomplished within space log2 h(eOlxO ) by a (2,3)-machine 

that leaves a worktape head marking each end of the string; this will 

account for the requirement t ~ 3. 

Let u0 be the universal simulator of Condition 2 for 2, .f,. Design 
. k 

a (2,t)-machine u
0

1 to simulate u
0 

on the input e•lh(OlxO) when it 

receives the actual input 1 h(eOlx01). Because h{e0lxo1) /h(OlxOk) i.s an 
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integer that depends only one, this can be done at· the extra cost of 

only d worktape squares, where d depends only on e, whenever at least e e · · 

space _1082 h(e01x01) is used (so th•t e can be C0111pUt-ed from lh(eOlx01)). 

By Proposition 7(iii), LS (U0 ') E NSPACE(s2 .2,J+l). We prove that 
2 

Ls (u
0

•) t NSPACE(s
1 
,2,t) for any space bound s

1 
with 1 E o(S2(n)-s1 (2n)). 

2 

Suppose the (2 ,.&)-machine u
1

' accepts Lg (U0 ') wf:tlli:n space s1 , 
2 

where 1 E o(s2(n)-S1(2n)). Because 1 E o(S2{n) - 10'2 n), it is no loss 

of generality to assume s1(n) ~ 10'2 n. 

behavior of u
1
•. 

To summarize the 

and, 

L(U ') = L (U ') c L(U ') 1 s2 0 0 

for e E L2•' and x E {tJ*, p.c. 

max{log
2 

h(eo1x01), de + ce + Spac~ (lh(OJ.xd'»1 s: s
2

(h(eolx01)) ~ 
. e 

Spac;, , (lh(eOJ.x01)) ~ s
1 

(h(eOlx01)). 
1 

* Let L c {1} be any recursive language over {1}. Because L is. re-

cursive, we can take a detenninistic (2,1)-machine M that accJ!PtS L 

within some space bound S that is fully constructable by a (2,1)-machine. 

Design a (2,J)-machine M' that operates as f~llowa on the input string ln: 

k 
1. Use heads A, B, C to write down (the reverse of) eOlxO with 

x E {1}*, h(eOlx01) = n. if possible. Thia requi~ea no more 

k.. k+l. 
than lo'2 h(eOlxO ) ~ s

1 
(h(eOlxO )) worktape squares. 

2. Check that e E L2 '" , and then erase all but x and Ok. p.c. 

:x I blanks· •• 

t t 
head A head B 
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3. Within the space occupied by x (for x sufficiently long), use 

heads A, B to compute a version of bin(jxj) that has every 

second and third tape square redundant. (Cf. , proof of Leuma 

17.) As in the proofs of Proposition 4, Theorem 15, and Leuma 

17, one of these sets of redundant tape squares can be used to 

mark the two ends of the string so that it can be carried 

around and referenced by head A without confusion. The other 

set can be used as a binary counter up to lxl. 

I redundant bin(! xi) } b-lanks• •• 

t t 
head A head B 

4. Use head A in an attempted £ull CO'llStTUction of space s(fxl> in 

k the additional space occupied by 0 • All necessary input data 

can be obtained from the redundant version of bin(jxl>· There 

is success iff S(lxl) ~ k. 

5. ·If S(jxl) ~ k, then use head A to erase the tape out to head B · 

except for the redundant version of binCI g.J), and then compute 

as M would on the input x. This requires no more than 

S(lxl> +lxJ ~k+lxl 

worktape squares. 

k+l 
~ log2 h(eOlxO ) 

k+l 
~ s1(h(e0lx0 )) 

6. If S(!xj) > k, then completely erase the tape out to head B, 

freeing all t worktape heads, and then compute as u1
1 would on 

k+l 
the input lh(eOlxO ) (which is just twice the len~th of the 
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k+l This requires no more than s1 (h(eOJ.xO )) 

worktape squares for acceptance. 

h(e01x01) To sumaarize the behavior of M' on 1 · , 

For 

k ~ S(jx\):::) behave like Mon x; 

k < S(!xl> ~behave like u1• 

1h(eo1x01) E L(M'), 

on lh(eOJ.xOk+l). 

Spac~, (lh(e0lx01)) :e Sl (h(eOlxOk+l)). 

The recursion theorem (Theorem 15) does not apply as stated, so we 

adapt it. Let e2 be the progr• code for H'. · Take M to be a (2,.f,)-
. el . 

h(01x01) * machine that operates as follows, given 1 (W,bere x E (1} ) on 

its input tape and e E L
2
'" on its worktape: . p.c .. 

1. Convert e to f(e), where f is .,. in Condition 3. 

2.. Convert f(e) to the. string y E (lJ* of length 3j, where 

bin(j) = l•f(e). 

3. Simulate u
0 

on e
2

.1h(f(e)Olx01)__ TO do this, eoamit e to 

finite-state memory and carry y around with one of the worktape 

* x E (1} : 

heads of uo, moiifying symbols of·y to mark the ·ends of the 

string and the position in y that indicates' which, if any, of 

h 3j i f 1h(01x01) h. 1h(f(e)Otxo1) u is t e cop es o t at compose 0 

currently scanning on its input tape. 

h(Olxo1) Then M operates as follows on input 1 , where eo 

1. Write e
1 

on the worktape. 

2. Convert e1 to f(e1) = e0• 
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3. Convert e
0 

to the stringy E (1}* of length 3j, where 

· bin(j) = le0• 

4. 
h(e Olxo1) 

Simulate u0 on e2•1 0 . 

Thus, 

lh(o1x01) E LO'ieo) " e2•lh(eoo1x01) E L(Uo) 
k 

~ 1h(e00lx0 ) E L(M') , 

S (lh(Olx01)) + s (lh(e001xo1)) pac'll ~ c pac~, , 
eo 

where c is c plus the number of worktape squares required for steps 
e2 

1, 2' 3. 

( , * Claim. For each sufficiently long string x E lj , the following holds 

for every k: 

k 
lh(OlxO ) E L(M ) ~ x E L. 

eo 

* Proof. Let x E (1} be so long that 

s2(n)-S1(2n) ~ d + c + c 
eo eo 

for every n ~ h(e
0
0lx). We establish the claim for x by induction on k 

running down from k ~ S(lxl) to k = O. 

k ~ S(lxl): 

~ x E L(M) = L. 

h(OlxOk+l) 
k < S(1 xl): Assume 1 E L(M ) ~ x E L. 

eo 

1h(Olxo1) E L(M ) ~ 1h(e001xo1)E L(M') 
eo 



=* x E L. 

k+l 
x E L ~ lh(OlxO ) E L(K ) 

e 
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k+l 0 

~ lh(eOOlxO ) E L(M') 

h(e OlxOk+l) k+2 
~ Spac'lf 1 (l o ) ~ s1(b(e001x0 )) 

. k+l h(OlxOk+l) 
~ max(log2 h(e

0
0txO ), d + c +Space.. (1 )} 

. eo eo "eo 

k+l 
:s: max(log2 h(e001x0 ) , de + ce + c 

0 0 k+l 
+ Spac~,(lh(eoOlxO )) } 

k+2 
:s; deO + ceu + c + s1 (h(e00lx0 )) 

:s: s2(b<eoo1x0k+l)) 

(because x is so long) 

k+l 
~ lh(eoOlxO ) E L(U1 '> 
~ lh(eoo1x01) E L(K') 

=* lh(Olx01) E L(M ) • 0 
eo 

Finally, M. can be modified to use its finite-state control to re
eO 

ject padded inputs (those of even length) and to satisfy the claim for 

short ones without using the worktape. If te0 • bin(j), then this gives 

an off-line TM that accepts (16i+ll x E L, lx = b1n(i)} within space 

s1 (2·3j•h(Oll~) E ~(s2 (3j•h(Olln))). From this it is easy to derive a 

fixed recursive space bound s 3 for which L E NSPACE(S 3). Since L is an 
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arbitrary recursive language over {l}, this contradicts Leoma 16. 

As in Theorem 18, a similar proof works for DSPACE. O 

Corollary 28. Let s 2 , S be fully constructable; and let f(n) E O(n)-0(1) 

be nondecreasing and linear space honest. There are languages over {l} 

that bear witness to the following proper containments: 

(i) U {DSPACE(S1)j s1 E o(s2)} ¥ DSPACE(S2), 
2 u (NSPACE(S1>I sl E o(S2)J 1 DSPACE(S2) 

whenever log n E o(S
2
(n)).t 

(ii) U (NS~ACE(S1)j s 1(n + f(n)) E o(S2(n)), s
1
(n) -e O(S2(n))} 

1 NSPACE(S2) 

whenever log n E o(s2(n)). 

(iii) U {NSPACE(S1)J s1(2n) E O(S2(n)), s1(n) E o(S2(n))} ~NSPACE(S2), 
U (DSPACE(s1)1 s 1 (2n) E O(s2(n)), s1 (n) E o(S2(tt))} ¥ DSPACE(S2) 

whenever 1 E o(s2(n)). 

(iv) DSPACE(S ,m) ¥ DSPACE(S) 

whenever 1 E o(S(n)). 

(v) NSPACE(S,m) ~NSPACE(S) 

whenever log n E o(S(n)), 

S(n + f(n)) E O(S(n)). 

(vi) NSPACE(S,m) ¥ NSPACE(S) 

whenever 1 E o(S(n)), 

tThe technique of [MM71] can be used to show that each of the fol
lowing set differences contains a ~anguage over a one-letter alphabet if 
s2 is fully constructable: 

DSPACE(S2) - U {DSPACE(S1)1 s1 fully constructable, s2 ~ O(S1)}, 
2 

DSPACE(S2) - U (NSPACE(S1)j s1 fully constructable, s2 ~ O(Sl )}. 
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S(2n) E O(S(n)). 

(vii) NSPACE(S,m) ¥ NSPACE(S,m+l,l), 

DSPACE(S,m) ¥ DSPACE(S,m+l,l) 

whenever log n E o(S(n)), 

S(n + f(n)) - S(n) E o(S(n)), 

m is sufficiently large. 

(If S is fully constructable by an (m,1)-.machine, then m is suffi-

ciently large; if S is actually linear space honest, then m = 2 is 

sufficiently large.) 

(viii) NSPACE(S,m) ,NSPACE(S,m+l,1), 

DSPACE(S,m) ¥ DSP.ACE(S,m+l,l) 

whenever 1 E o(S(n)), 

S(2n)-S(n) E o(S(n)), 

m is sufficiently large. 

(If S is fully constructable by an (m,1)-machpie, th~n m is _suffi

ciently large.) 

(ix) NSPACE(S ,m,J,) ¥ NSPACE(S ,m) for all J,, 

DSPACE(S,m,J,) ¥ DSPACE(S,m) for all J 

whenever log n E O(log S(n)), 

S(n + f(n)) - S(n) E O(log S(n)),, 

m is sufficiently large. 

(If S is fully constructable by an (m,l)-machine, then m is suffi- · 

ciently large; if S is actually linear space honest, then m = 2 is 

sufficiently large.) 

(x) NSPACE(6•S,2,J) ¥ NSPACE(6•S,2) for all J, 
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DSPACE(6•S,2,t) , DSPACE(6•S,2) for all t 

whenever 1 E o(S(n)), 

S(2n)-S(n) E O(log S(n)), 

6 is rational and sufficiently large. 

(If 6•S is fully constTUctable by a (2,1)-machine and 

1 E o(5•S(n) - log
2 

n), then 6 is sufficiently large<.) 

Proof. (i) Use Theorem 25. (See Corollary 19(ii).) 

(ii) Use Theorem 26. (See Corollary 19(iii).) 

(iii) Use Theoren 27. (See Corollary 19(iii).) 

(iv) Use Theorem 25. (See Corollary 20(ii).) 

(v) Use Theorem 26. (See Corollary 20(iii).) 

(vi) Use Theorem 27. (See Corollary 20(iii).) 

(vii) Use Theorem 26. (See Corollary 23(i).) 

(viii) Use Theorem 27. (See Corollary 23(1).) 

We explicitly prove parts (ix) , (x) to show just how few additional 

worktape heads can increase the power to accept languages over a one-

letter alphabet. 

(ix) Take m so large that S is fully constructable by an (m,1)-

machine, and look at any J. Take k so large that 

4•lo8m n + S(n + f(n)) - S(n) ~ k•lo8m S(n). 

~ince S + k•lo8m S is fully constructable by an (m,3)-machine, Theorem 

26 gives a language over (1} that bears witness to the proper contain-

ment in 

NSPACE(S,m,J) ¥ NSPACE(S + k•lo8m, S, m, J+6) 

c NSPACE(S,m,J+k+9). 
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(z) Take ~. 6 80 lap 6"~· .. i"9'1f~le 1tJ a 

(2.1)-whtu -4 &•S(•).11g*t"<••n~tllll ... l·it.All'11)•t.>·b Look at 

•7 j ~ 3. TalDe .,., ~~--~·•••111..-:.,llaiM~~. ill 

Stace &•S + (L•J-ti>s~~:t-.t ..... o•RIR IJ.19'•..,_.,, .. , .. M~• l 
Theorem 21st ......... '7''''~ tit.!'.# 'M11•W••• • ~·. ~••, .. __ ., . . • '" .. JI; : r:t!! ~ .• HL ~~ , • ...... 1.!19'JO$ti"r 5i_t) l J • -~..::.::. 

c: *'~"~' .. a •. ~· •••. :...r . f!rtd0i~9~42) 
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'llae proo£ for ..... laf~'~f!~~·~:r.io,'i'fo~r'.):J ~~'•i:) 

••• 1nta:. (i) For ~·· 1•1t1)1t...-lt•111ta••••!;.(•··,.19Jlthn o~"-'·) 

S(a+l)~S(a) E o(S(a)) Of.-~--· •fl.:1aflIJlttih• ""'' 

(10, .,tw el'· WtfJfJ Wl~91!f98J'Jr 911'h---··· ... -~ ft~ 
for ..-e kM t• bel .. loth• <lfAJ 18' l U I'll •ft.-'llfst ... dflaft!'R:Ji!im 

; ;_ - '"i - - '• -

we ca ahih1t a wspl•Jllap••rnr•.~},..-IJ!llA•••~~J"+\'llae 

la•• RI •4» Li.Mt .k-.-(l:W}..n'f••<t~;L>JJj8a0'.f {.!Jul al P. cJ * •: + :.:: ~< " : 

f(a)r·.:1m..ll£t'.,·a·u !!!St~~-*5 [t) :x~)cvv Sig>. ';·th. 

A • {al f(a) le a ~ of 2). 

(A. Meyer pot.au out tliat,_~.'l(Rr•: I 1!ft• .. • .• ,. .. ,..,.f tp#ft:1.t1!11l8'1' 

G811pl• in a pr!_. e I fc-~ ·-).~······ lor L ea be 
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obtained from the deterministic off-line. 'IM that fully constructs the 

space bound of Proposition 7(iv), so LE DSPACB(log log n). To prove 

L nonregular, it certainly suffices to find apositi.e integer n for p 

each prime p > 2, such that 

An (m•npl 1 s m< p} •1J ~An [m•npl 1 s m}. 

Just take n to be the least comnon multiple of tbe positive integers 
p 

k k k+l not exceeding 2 , where 2 < p < 2 • For 1 s m < p, then, 

k k+l 
2 < f (m• n ) s p < 2 , 

p 

so that m•np ' A. Yet, the least cOlllllon multiple of ~be positive inte

k+l gers smaller than 2 is a multiple of n that does belong to A. 
p 

Examples. There are languages over a one-letter alphabet that bear wit-

ness to the following p~oper containments: 

n * n * * NSPACE(2 /log n) ~ NSPACE(2) (part (ii) wit~.f(n) =log log n). 

U (NSPACE(S)I S(n) E o(log n)} ~ NSPACE(log n) (minimum example of 

part; (iii)). 

DSPACE(2n,m) 1 DSPACE(2~ (part (iv)) 

NSPACE(n8· 13/(log2•21 n) 5•6 , m) ~ NSPACE(n8•13/(log2•21 n) 5"
6

, m+l, 1) 

(part (vii)) • 

NSPACE((logl.ll n)
5

•
6

, m) jtNSPACE((lo'2.ll n)
5

"
6

, m+l, 1) 

(part (vii) or part (viii)). 

* * NSPACE(2n/log n, m) ~NSPACE(2n/log n, m+l, 1) (near-maximum 

* * example of part (vii); f(n) =log log n). 

NSPACE(n115 ,m,t) ¥ NSPACE(n115 ,m,J+L4•5j+lO)for every rational 5 ~ 1 

(proof 0£ part (ix)). 

* * NSPACE(n•log2 n/log n, m, t) 1 NSPACE(n•log2 n/log n, m, J+l3) 
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(near-maximum example of part (ix)). 

k k NSPACE(log2 n, 2 , t) 1NSPACE(lof12 n, 2, J+5) fo~ every J ~ 3 

(proof of part (x)). 

k NSPACE((log2 n) (log
2 

log
2 

n), 2 , ,t) 1 NSPACE((log2 n)(log2 log2 n), 

2k, J-+6) for every .t ~ 3 (near-maximum example of pa~t (x)). 

Corollary 29. Each of the following set differences contains a language 

over a one-letter alphabet: 

NHEADS (k+5) - NHEADS (k) , 

DHEADS(k+S) ·- DBEADS(k). 

Proof. Corollary 28 gives a language over (1} that bears witness to the 

proper containment in 

NHEADS(k) cNSPACE(log2 n, 2k, 1) (by Lemma 21) 

1t 1NSPACE(log2 n, 2 , 6) 

cNSPACE(log
2 

n, 2k+l, 1) 

c NHEADS(k+5) (by Lemna 21). 

The_ argument for DHEADS is identical. O 
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10. 0pen questions 

Our most general open questions, of course, concern necessary and 

sufficient conditions for containment and separation among the 

NSPACE(S,m,t), DSPACE(S,m,~) complexity classes. 

1. For containment we ask in particular how close t:he truth comes to 

the "ideal 11 result 

s2(n) t 2 s1(n) t 1 m2 .s
2

(n) E O(m1 .s1(n) ) ~ 

NSPACE(S2 ,m2 , t 2) c DSPACE(Sl ,u;_, t 1) • 

This very strong statement would iumediately yield and perfect all 

the results of Section 2. It would also yield NSPACE(S,m,t) = 

DSPACE(S,m,t), however, so ic seems extremely likely that the truth 

stops somewhat short of the statement. 

2. For separation we ask how close the truth comes to the "ideal" result 

that, for s2 fully constructable, there mu.st be a language in 

DSPACE(S2 ,m2,t2) - U (NSPACE(S1 ,m1,tl)I 

s2 (n) t
2 

s1(n) t1 
m2 .s2 (n) ' O(~ ..• s1 (n) ) l· 

This very strong statement would inmediately yield and perfect all 

the separation results of Section 4. 

3. L811111a 21 illustrates the relationship between additional input heads 

and additional space log n. If we consider a model that has k ~ 1 

read-only heads on its input tape, then the open statements above 

could be rephrased in terms of quantities of the form mS(n)•S(n)t.nk 

rather than just mS(n)•S(n)t. Then they would include and perfect 

----·----
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also Leana 21, Corollary 22, and the work of [Ib72]. 

The following speeific instances of the above que&ti.ons are just 

beyond the frontier of our knowledge: 

4. DSPACE(n,2,1) • DSPACE(n/log2 3, 3, I)? Proposition 3 comes close 

to an affirmative answer. 

5. DSPACE(n,2,1) = DSPACE(n - log2 n, 2, 2)? Propositions 4, 5 come 

close to an affirmative answer. 

6. 2 * NSPACE(log n) c DSPACE((log n) /log n)'l Propoaiiti.01a 6 comes close 

to an affirmative answer. 

7. NSPACE(S,m,t) = DSPACE(S,m,t)? Everybody expects a negative answer, 

but our study offers no clear and convincing nlilence foT one. A 

.negative answer to any of open questions 8, 9, 10, 11, 19, 20 would 

do, though. 

8. DSPACE(log n) ci:NSPACE((log2 n)/2, 2, 1)? Theorem 8 comes close to 

an affirmative answer; e. g., DSPACE(log n) <I:. NSPACJ!(:(lo82 n) /3, 2, 1). 

9. 
* . DSP.ACE((log n)(log n)) </:. NSPACE(log n)? Corollary 19(i) comes ... 

close to an affi"DDative answer. 

10. 
2n 2n+l * 

NSPACE(2 ) ¥NSPACE(2 /log n)? Corollary 19(iii) comes close 

to an affirmative answer, and Corollary 19(ii) gives an affirmative 

answer for the DSPACE analogue. 

11. * n * n NSPACE((log n) , 2, 1) ,NSPACE((log n) )? Corollary 20(iii) 

comes close to an affirmative answer, and Corollary 20(ii) gives 

an affirmative answer for the DSPACE analogue. 
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12. DSPACE(log2 n, 2, 1) cDHEADS(4)? Leana 21 comes close to an 

affirmative answer. 

13. DHEADS(k) ~ DHEADS(k+l)? 

14. DHEADS(k+l) <i:. NHEADS(k)? For the particutar case k = 2, we suspect 

2k 
that [lnl k EN, n = 2 } f NHEADS(2), but the suspicion does not 

geneTalize. 

15. DSPACE(2n,m) jr DSPACE(2n,m+l)? Corollaries 20, 23(ii) both come 

close to an affirmative answer. 

16. DSPACE(n(log2 n)(log* n), 2, 1), DSPACE(n(los2 n)(log* n), 2)? 

Corollary 24(ii) comes close to an affirmative answer. 

17. DSPACE(log2 n, 2, 1) ¥ DSPACE(log2 n, 2, 5)? The proof of Corollary 

24(ii) comes close to an affirmative anawer. 

18. 
1/2 .· 

DSPACE(n - (log2 n) , 2, 1) , DSPACE(n,2,1)? 

19. 2n+l 2n 
Does NSPACE(2 · ) .;.. NSPACE(2 ) contain a language over a .2!!!.:. 

letter alphabet? Corollary 28(ii) cames close to an affirmative 

answer. 

20. Does NSPACE(2n) - NSPACE(2n ,2,1) contain a language over a~ 

letter alphabet? Corollary 28(~) c0ia68 ,close to an affirmative 

answer. 

21. Does DSPACE(n•log2 n, 2) - DSPACE(n•log2 n, 2, 1) contain a language 

over a one-letter alphabet? Corollary 28(1x) comes cloae to an 

affirmative answer. 
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22. 2 2 Does DSPACE( (log2 n) , 2) - 'DSPACE( (log2 n) , 2, 1) contain a lan-

guage over a one-letter alphabet? Corollary 28(x) comes close to 

an affirmative answer. 

23. Does DHEADS(k+2) - DHEADS(k) contain a language over a one~letter 

alphabet? 

Finally, we list a few miscellaneous open questions. 

24. Is there a hierarchy of languages over {1) for space bounds below 

log n? 

25. For S fully constructable by au (m,J)-machine and u
0 

the universal 

simulator of Condition 2 form, /,, is there any.language in 

NSPACE(S,m,J+l) that requires more space (on an (m,j+l)-machine) 

than the $-cutoff of u
0
? 

26. Even if LE NSPACE(S2) - NSPACE(S1), there may be an off-line TM 

that accepts infinitely many strings x € L within space s1(!xl>· 
\ 

When can we find an infinite language L E NSPACE(S2) such that 

every off-line 'JM that accepts L requires more than space s1(\xl) 

on .!!! ~ finitely many strings x E L? 

27. Is there some conceptualiy simple language t.n U {NHBADS(k)l k ':2: l} 

or U {DHEADS(k)I k ':2: 1} which is not in NBBADS(k) or IllEADS(k) for 

any small k (say k = 3)? If, for X a matrix of strings over {0,1}, 

we define 

r(X) • row-wise concatenation of X, 

c(X) • column-wise concatenation of X, 

then some good candidates are 
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[ r(X) c (X) J x is a k x 2 matrix}, 

[ r(X) c (X) J x is a k x 2 matrix for some k}, 

[ r(X) c (X) \ x is a k x k matrix}, 

[ r(X) c (X) I x is a k x k matrix for some k}. 

What are the complexities of these languages? 

28. If S is fully constructable by an (m,t)-machine, does 

log n - (t-l)•log log n - S(n) E 0(1) m m m 

necessarily hold? Proposition 7(v) comes close to an affirmative 

answer. 
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APPINJ)lX l 

TIHiD~~lO. 

Diagonaliz.ation is a te~bai,que fol: cQnatwetiq a l~e that is 

not in sotM. given class. If the ~rs o.f t~. cl••' c~ be de.s~ribed 

by chai-actei; st;riag.s, th.en the a:bllp}est d.ia~. coo.st~tio~. i~l\Jd~s 

the string x just if the. lanpage 4••~l:iJ.~e4 ~ t~~' at.r¥lg.dQU u.2t in

clude x. A useful vai-i~t on this idea is to include xy iff the 18.tlgUage 

To diagonalize over a CO!fRl~ity class, a good.. 8"t~~h is to de

scribe languJL&e& by e~odiui the pro.gr-. of 1ille re~re.e"!'..l)ow.14ec1 auto

mata that accept thea. '!'he th~ const~.ti~ c.,. be pe~,fq~ bf. em-

ploying a "uuiversal simulator" th4t can. silluJ..et.te ay automa~on from its 

program code. The sUauJ.ation can thea ~ O•"t.ned, ·With clie.agreement in 

mind~ to decide wheth~r or not _it lead• to ~tance. 

Because we shall be interested>. •lso iB -. upeff. 'bQw:id. . .on the com

plexity of the diagonal language, we will want the construction to be 

effective and as efficient as possible. This calls for an efficient 

universal simulator. To diagoo.alize over DTIME(T). we can use the uni-

versal simulation technique of HelUli.e and Stearne [He$66] to simulate t 

steps of the deterministic 'IM acceptor with progr• code. e by ce•t•log t 

steps of the simulator, where the constant c depends only on e. The e . 

diagonalization technique used by Ha..l'tmanis a.Dd Stearns [HaS6S] then 

shows that DTIME(T2) - DTIME(T1) is nonempty wQeQe,ver T2 is a running 

time and T2 f O(T1 log T1). For fur~her details, see [HaS65), [HeS66J, 

[Con73], and the sketch below of a nondet~rmini$tic diagolMllization over 
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For nondeterministic TM acceptors, we can use the technique of Book, 

Greibach, and Wegbreit [BGW70] (Le11111a 8 of Chapter Two of this thesis) to 

get a more efficient universal simulation. (Doing so requires that their 

technique be effective, and it is.) In the following proposition, we use 

the details of this simulation in a diasonal construction in the style of 

[HaS65], [HeS66]. 

Proposition. If T2 is a running time with T2 ~ O(T1), then 

NT'IME(T2) - DTIME(T1) ~ 0· 

Proof sketch. (We assume familiarity with the proof sketch in Chapter 

Two of Leuana 8.) We construct a 'IM acceptor M that diagonalizes over 

DTIME(T1) within time bound T2 . Given an input ex (with e a program 

code), M performs the (nondeterministic) Lemma 8 simulation of M on ex 
e 

and simultaneously operates clocks for the running times T2/2 and T2• 

Recall that the simulation involves guessing a sequence of displays and 

actions and then checking it (deterministically) for one of three out-

c<>mes: 

not a legal computation, 

legal computation without acceptance, 

legal computation with acceptance. 

If the outcome is the second one and that fact is discovered after t 

steps by M, where T2(jexl)/2 ~ t ~ T2(!exj), then M accepts ex. There 

is no other way for M to accept. 

Now suppose Me deterministically accepts L(M) within time T1 for 

some particular program code e. Without loss of generality, assume that 
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M halts only when it accepts. There is some constant c such that M 
e 

will get through computations of length t by M within C• t of its own· 
e 

steps. Since T2 f O(T1), 

c•T1Clexl) < T2Clexj)/2. 

* we can take x E {0,1) so that 

If M deterministically accepts ex, then it 
e 

does so-within T
1

C!exl) steps, and there can be no longer legal computa-

tion. By design, then, ax E L(M ) implies ex ti. L(M). If M does not 
e e -

accept ex, then there is a legal computation of every length; therefore, 

ex ~ L(Me) implies ex E L(M). The contradiction establishes 

L(M) rJ. DTIME(T1). 0 

To diagonalize O'Yer NTIME(T) is more difficult. The problem is 

that discovering that Me does ~ accept ex within t steps seems to re

quire examining all legal lines of simulated computation up to t steps. 

This :!.s :? deterministic process which apparently may take exponentially 

longer than simulating a single legal line, so the diagonal construction 

yields DTIME(T2) - NTIME(T1) # ¢ whenever T2 is a runni.ng tithe and 

log T2 rJ. O(T1). 

None of the above diagonal constructions actually depends on T1 , 

and they all produce languages over {0,1}; so Theorem 1 of Cbapt~r Two 

suamarizes the results. 

A technicality rules out such strong separation results for lan

guages over a one-letter alphabet. Suppose, for ex'Sinple, that T2 is a 

running time with n log n E o(T2(n)) and that L E DT'.™E~CT2) is a lan

guage over just {1}. If the complement of L is finite,, t.9-en L is regu

lar and L E DTIME(n). If the complement of J., is infiniJ:e, .on the other 

hand, then our convention that only acceptance time matters guarantees 
' : .. . . :, ;:;. '.~· ... .;: 
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that L E DTIME(Tl) for 

T2(n), if ln EL; 
Tl(n) = n 

n, if 1 ti. L. 

In either case, LEU (DTIME(T1)j T2 ti. O(T1 log T1)J. 

Strengthening the "lim inf'' condition on T
1 

(e. g. , T2 ~ O(T1 log T1)) 

to a 11 1im" condition (e. g., T
1 

log T
1 

E o(T2)) is one way to get sepa

ration results for languages over a ORe•letter alphabet. , A diagonal 

language over (l} can then be constructed by trying to differ on input 

n 
1 from Mf(n)' wher~ f(n) is obtained from, say, the binary representa-

' 
tion of the exponent of 2 in the prime factorization of n. The results 

are given by Theorem 2 of Chapter Two. 

As far as we know, diagonalization alone yields no results better 

than those of Theorems 1, 2 of Chapter Two for TM acceptance time com-

plexity. If we change our definition to take into account the time 

spent in nonaccepting computations, however, then we can use the dia-

gonal technique of [MM71] to get by with "lim inf" conditions in Theorem 

2. I .. e., for 

NTIME' (T) = (LJ L is accepted by some 'JM that never computes for 

more than T(n) steps on an input of length n}, 

DTIME'(T) = fLl Lis accepted by some detenninistic TM that never 

computes foT more than T(n) steps on an input of 

length n}, 

the set differences 

DTIME'(T2) - U (DTIME'(T1)j r 2 'O(T1 log T1)}, 

NTIME'(T2) - U (DTIME'(T1)j T2 ~ O(T1)}, 
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DTIME' (T2) - U [NTIME' (T1) I log T2 r/. O(T1)} 

do contain languages over a one-letter alphabet if T2 is a running time. 

For T a running time, we clearly have 

NTIME(T) NTIME' (T), 

DTIME(T) = DTIME'(T), 

so we do get languages over [1} in the set differences of Theorem 1 of 

Chapter Two if we insist that the unions range only over running times 
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APPENDIX II 

A PROGRAM CODING FOR CHAPTER TWO 

k Let L = [program)~ where p.c. 

* [program) = begin program [instruction] end program 

(instruction] = begin instruction [requirement] 

(requirement] 

[rewrite] 

{symbol] 

[shifts] 

[next] 

[instruc. no.] 

begin program 

{r~ite] 

(shifts] 

(next] end instruction 

+ begin instruction accept end instruction 
k ... 

= begin requirement [symbol] end requirement 

k = begin rewrite {symbol] end rewrite 

= begin symbol * tally end Symbol 

= beg:J.n shifts 
. k 

(left + rig!!t + still) end shifts 

* =begin next [instruc. no.] end next 

= begin instruc. no. * tally end instruc. no. 

= 00001 end program = 00010 

begin instruction = 00011 end instruction = 00100 

begin requirement = 00101 end requirement = 00110 

begin rewrite = 00111 end rewrite = 01000 

begin symbol = 01001 end symbol = 01010 

begin shifts = 01011 end shifts = 01100 

be~in next = 01101 end next = 01110 

begin instruc. no. = 01111 end instruc. no. = 10000 

accept = 10001 tally = 10010 
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1. Detemtae wtaecur tile .,....i. •••1 rr1 _ .. ,., .•.• t.~ 
. r~j.hw:;;;:;;;f . ·.· . ·. . .. 

•tell tile "••l»tPWt." ,t~_~ia.•a. ... CM 1 atob 

ffllzo. Ml.bl•_. --.. ~,:~~;••l••IS.• ._ •••·~~·> ~.::un:n~~{.~.,..~~!, 
lf-;dle-•ceitii(iinW' ..... _., ... :lftJHl• ..,..,:,w1r rl .,..a,ola 

.. ~-,-~,' J ::.r.t't :r~;" -_ ;,!''" · aoJ'.:t :;;-~U enl "'~;_ad + " -..,. ...... ...-.. ,..;:.,·- -- '--.. ---· ~-- " ~ ' 

2. 

_,;~~~1'"~""'.!f·~~~:, -~11·;~ i1 i _:~-~I(i~~"Ii:13pf7~ .. tr.!Ji~!! :·:· ":· .. ~-::. 
11 • "ili-iiu itr._'"..,. 1l1ril~iiiit •~,,ft7 .-

-~1!::!.f':" hf!! · r .b<l~l ~-f~ !}J:j!i!"" :· »:s·r' 
·3. ........... • "11'.! ~ 4t< 

? :~::..:~-~:: ~;n~J ~*:\!!~~-·~ [::t,,,,~J~~·; .. ~~~~}~_~(~ :.>:; _, -· -d:t·-·,~r~ 1 

4. If a. ''n .. 19 _1 ere-' w -'• · _ ;wa.• - ..._tt.oa 
.:;··11.1.s &!1$ {!.U.i~ + cl•~~.+. . ui1 a~a!tf ·• 1?<1' 

........ ~ .. ttic. ~ZKJP"' . . _ '. , dl(I'! le w.) 
::.1-x'zln -.1,\'.J'.:':;>. j ,<,,.,: • .:iiU'f:t&n.tl -;~4 £t!'9-afi !<> ...-..-...,.,....,_~ ~ J .*'l!ixf to'!f -~ o; 

5. If CS. "n II teu1a&!' .... _.. .. . - to tlae .-t ia-
,,)11 .!H1'1.',.,ic~f!'!. ~ -~ ~ , . ed 'S f ,•AI ;_:UI.'>:1,: 1 

atzada ia Ht• u •· ...... -'·•·til•IP• 
It. S. ... , to '~t!{ij' dtk ,lilf'tildilfi · 1[ f!( Q :~-· #ttaa~'i;i1~.~;;.:;··~-
3 d Cllllptar filo~Dt "" ~,i.;.._'1:~~'.:t~~:-:t.l:i!L'i'. UOOo "" Eo]j.?~1L:,;,:..::.:'~,"··: .~:~~~~ 

".f~ ---·-· 
. . ~-

' ~- . 

O> <};J "tJ"'! ~? "i r:• 
....... "".~~·~ ...... ~"--~ '"~"" ._.,.,_ ·- ----'-~· ·- -
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SOME MORE CORRECTIONS TO MAC TR-137 

Joel I. Seif'eras 

December 30, 1974 

p. 9: Delete the six lines following the statement of Corollary 15. 

pp. 33-34: Delete starting with the fourth word of line 9 f'rom the 

bottom of p. 33 through line 10 of p. 34. 

p. 35, line 14: Change "- l" to "+ l ". 

p. 35, line 15: Change ''f'(l)" to ''f'(l) + 2 ". 

p. 35, lines 16, 20: Change "f(n)+n-1" to "t(n)+n+l". 

p. 35, line 22: Change this line to 

n.o r -il C 
:i (n) + f f(n)) = f(n) + n 

< f(n) + n + 1 

< (f(n) +l) + (n+l) 
r -:;, 

= (f(n) +l) + :r-1 (f'(n) +l), ". 

p. 36: Delete the f'irst three lines. 

p. 37, line 5: Change ''T (x)" to ·~ (x) ". 
Me e 


