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ABSTRACT 

In order to enforce the •ec:urity o£ .t.be inforaation 
stored ia a CC19patin9 lltiUty.- .. tt is ~- t:o certify 
that ·ttae• prot»~· ..a.W.illl ta· ~-··illtllwt:ed' so 
that t:1lere .tat :1'0 ~t'.rolled faaeeN~.j>&tltcU> ·t:tae :st:.ored 
infonaation• CertJ.ficetlen ~- t:Jad~, ~·secmrtt:y 
kernel be _.. mller .ad •~r ·~ t:.tia·:-aupea.taor of 
present 9ener&1 ·pupoee Cllpllr&td.111J 8f*l1 ll 1 .. . •fti• ~t.• 
expl~ one aapect of.-~ CJul:~tiabiM.uy· o'f a 
computinq utility by deaigninq·:a~dya•toJ.l.nker·t:hat runs 
outside the security kernel domain. 

The dynutic linker is designed to run in.any user 
protection d.oaain of a multidomain coaputincJ utility. It 
is shown that the dynamic linker never needs the privileges 
of the security kernel to properly operate. In particular# 
the thesis dellcmstrate• the ability of the dynamic linker 
to link programs t09ether across domain boundaries without 
violatin9 the protect.ion of either domain involved in the 
operation. 

THESIS SUPERVISOR: Micb&el D. Sch~r 
TITLE: Assistant Professor c>f Electrical Enqineerinq 
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I. Introduction 

1. Security Kernel 

The concept of c:o!5>U'ti!!!J' ai;i,li tr d.eaipatee a computer 

system or a network of compu~r ·.Y•t~ ded.icated to ser­

vice a cQmmunit;y of ua•rs (1) .•. · 'lbe ~:~ the oomput.ers, 

of the services rendered and of tbe ~ityof users may 

vary widely. Yet .it remains that. in· a.ii' caae·s one of the 

most tIQPOrt411t_f94ttar•• of the ~9 utility is to 

provide the users of the COJDmUl'lf'!Y'Vith' @he .. ability to share 

the resources of the system. We-~i.ll b8 •Pecifically con-. ' . ' 

cerned about sharing_ the i~f~~t~ atp;s:.ed-i.a tbe COllJi>U­

ting utility. Different m8mbera of:: tlle .. c:ommunity of users 
·• t'"' ::· 

may b~ve .cu.iterent intention.- ~h~~ ax:e . ,4l ®a~iict with 

one another with respect to the '•t.ore4 ·· infoaraat.ion. Some 

user might willfully or accidentally access (use, steal 

or modify) the info%lftation kept. by another user in the 

computing utility. Hence uncontrolled sharing of all 

information poses a direct threat to the security of the 

information and to the erivacy of the individuals con­

cerned by the information (2-6). 

In order to enforce the security of the information 

and to safeguard the privacy of the individuals concerned 

by the information, the acceaa to the stored information 

must be controlled by some protec~ion mechanism (7-11). 
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However, no protection mechanism will serve our purpose 

tmle&s .l.t is.-trualte.Q, J:w· :.it.e, ~"Hf'.,_ ~EV:•L,f'1At~es -o! a 
.,, ~ ·~-·---·- ·-~ '·' ~-· .. ·, .. ' ~. 

protection meoQa.ni4Nll c~i:bu~ffJ;l;o, ~ ~~ ire~iaJ:l&e .. (6_, 15) • 

It is nQt O\U' p~e ·.A"~e, tq; ~~;,..pl!'. :!8-.n .t<? ~~t;, tpese 

featUZ'$8. Only :one Of ,:t.hem i• ·iQ..£-~,~~-~. t:Q. USc: the. 
• • '"' n~• 1 •"··-· ,_. ·-• .~ _, • • 

cert:i.fic&tien of ooJ:(r~s ~-L~.¥~~Mti9p ~c1¥ni~m. 

Certif :i&1t.ign. @f ;t:SQiJ.!ffYl!&!r,9~J:Jt9~'1 -~~t ::~#-~ .J>~1?~tion 

1'18Chania COJtPl•MllY · ~t?.~i;ql" d-h~.,,p~C'f,~-; te·)t};),~ ,if~Ql.".~d 

in.formation4.,.th•t .it ia .-~ .~fta~v@,_~!~t;,t.j,w~ J~~' the 

deaiiirecl prot.tc:~~o~. sol)~~ {µ\~ •. t~,F~· ~~-~ ~~-~ct1.<> Wal( a user 

program· c<;>uld. aubve:Et, ~.j:;q\UllY'tit~t~"-o;-,'944~ ~-~.to. gain tm­

autbo.i:ized aeeeaa- to- t;i,.~,,-~0;~9fa;n£~~~q9 1 . ~ert~~+~ation 

of a protec::Uoni.,a'*-itPiM-:i• ~e. ~··~~t1 ffe-''caref~~'~µdit­

ing 0£ each __.n.ept ~~rfp~t,\pf. tQ,~,~,~.p~~~9t~P,n. -<:>f 

the stored in%0J11J11~io13.. . s.~ !~~iNJ·-~~;. ... O~:Y:~.J.n9,!.µ~e,s 

a verification of the ~~tj;C?D.r4P~:):~~DWif ... ~t.•,t~pn of 

.each ;~t of, -t.he·; w;~t"9-~51-.,~.lff..r.: bµ~1.~l~~ a ver­

ification that .i.ntei-•ot~ .. ~9, -~8!'Li: ,~ji, .. y~:t~, tj)e outside 

world cannot oa~~ JI\&~;~~ ~1,.un~~ ~J;i~y1:oi:. 

·resultin9 .in ~P<>~iz~ a~~-~~ wo~;ipn. 

The .p~t~t.tPn wec~&fM' jlJ;~; ~IJf:.l \Ji t~~J\~-~ by a 

. comb.ina1'ion .. o£, ~dWar., ,~ •9'~";-:;.,.,111~, P.f~J:'f88 and 

data -._. <>.t tjle. ~:t~~.ePx;~:~ A -~FY ~~ns~t.i,ve 

part Of the oom~J.Aq-ut~tY:" ~:·~ic~~pi.;,~Jlo. c2111 

access what WQrlMl.tion. :~ ~• :f~uJ.~,, ,~;~otec;~ipn 
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software.must be isolated frta and@O!!C!t!dagainat. o-tmer 

programs in the computinq utiii~y. ARY'~eau.an aofuare 

component, if tampei-ed vi:t:h, eou1d cause uta•tbori zed 

ac::ce•s to stored informati.Oll. Hence; ..... ~ IMISt 

be prevented from'nlodi'fyin.9, aut:t.erting er cdr~ting 

the protection sOftware. Su.eh.Q1G,,ll...,,t•hQ•l~ pro'V'ide 

a complete control over the irli:ttract.ians;Del\Wen the pX'O­

teetion soft.ware· and other progr ... in a eompvtiaq utility. 

'!'he security kernel of a cGllputinfj at..ilit:y ia t.Aat 

part of the ilOftware wttieh:could, aa a result of a buq or 

malicious alteration, cause unaat:ilc>rizett· ·acceaa to infor­

mation. 'l'hus it is the pro9rams amt' data b&•ea o• the 

protection software plus any oti!er Pt'.OigTW (and data 

bases which control t.beir behavior} that IJave· tirect 

access to the protection software. 

In most syatema the securl~y Jri!rnel oorreeponds: clc>sely 

to the supervisor. It inelu&Ht a great·manyproqrmna and 

data bases that are not functionally partof,tbe protec­

tion software.. ·J.\s a result~ 1:he aecuri~y kernel ia much 

larger and n:>re complex than ~he tNbsyKenf Which implements 

the protection mechanisms. This i• unfortunat'S't because 

it is the entire security kermt:l whichllwJt be ec-t±fied 

to establish confidence in the ae<Nri"kY\O.'f' stored in:for­

mation. Extra size and eomp;lexity make< 'certification 

more difficult. 
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This thesis will explore one aspect of making the 

security kernel of a computing utility smaller, simpler, 

and thus more certifiable by de~eloping 'a system design 

in which the linking function is outside 'the.security ker­

nel. The linker of a computing utility {s tlie program 

responsible for binding together separate procedure and 

data modules to build larger proqram elementS~ In current 

systems, the linker is almo~t ai;ays' part.of the security 

kernel, but as will be demonstrated.in tnis thesis, is not 

part of the protection software. Removing the linker can 

significantly reduce the coinPlexi1;:y and the size of the 

security kernel. 

2. Dynamic Linker 

In writing a complex program, it is extremely desirable 

to subdivide it into several modules. In doing so, the 

complexity of the programming task is' reduced for the 

modules can be programmed arid tested.independently and 

existing modules may be incorporated into new programs. 

The idea of modularity implies the'existence.of some mech­

anism to assemble Inodules into larger programs. The 

writer of a module must be able to·connect his module to 

others. 
:·· . .L., 

One simple way to achieve the connectiorr is to 

give a symbolic name to each module and to denote it by 
" that name in other modules. 'This establishes a symbolic 
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link between the two modules. The probl~ is that symbolic -
links are meaning-less for the ·hardware of the processor. 

For a .symbol.ic link betweeta two lllOd\1.les to become a snapped 

link. usabile by 'lthe pr,()oes&Or,, the .~J.ic ~ ued ;~y ............... ,., . - .. ~· ,~··.··.:., 

the programmer must be transl4te4 Lnto th~ J,g;;i&Al Jb,ard-
. .• 1 ' 

ware \ntei:;gre~i;!>l!ladc!ress of the .module ,denoted by the 

symbolic name. When used to ao•ine ",parate1y ooft\Piled ' - -

modules traaall.ation is. 1called liijking. 'l'he p;i;.ogram -wbich 

takes ca1:'e 4!>f the translation is _Qalled. -the l~. 

There -exists a wide ·variety of link~_rs ;Wh.ich 'we will 

not describe here Cl-2). -Often a linker is invok~ when_ a 

program is loaded in-to primary memory. Before con-trol is 

given to that program, each symbolic ncsine it ~uses is 

translated into a logical address by the linker. In 

other schemes, control is given to a NO,g·r.am .module as 

soon as it is in primary memory. -When .x-.cution o:f the 

module hits a $ymbolic name, a hardware event: (fault, inter­

rupt, trap) triggers the linker e¥ecution tp translate the 

symbolic name into a logical address. Execution resumes 

after the l'.ii.tik is translated (s~). 1'lis type of 
· ,cl· . 

linking is called dYl)!!tiP l:i:!!E';bni~d i• carried on by a 

dynamic ,linker. It is more fl~xible an,d. sa'7e:s the cost 

of loading into memory and linking t()gethtu' modules 

which may not !be used by the _pr.oqram evecy time it is 

in-voked. Although the res-t of ·our thesis will 'be talking 
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about dynamic linkers, the results of the research are 

also applicable to regular linkers. "!he.problem is more 

challenqinq for dynamic linkers·preciaely because of the 

dynamic aspect introduced by the'ha~dwa~e events. 

3. Background 

Certification is a relatively ·recent topic in the field 

of computer science. Many authora·have,ocoas.ionallymen­

tioned the need for certification, as we did here. But 

there exists no concensus on the best'.,way-. to .certify a 

large software system. ·The area 1 is· not.•very well struc­

tured and much work has still to·. be done to· orqanize it. 

Yet most 0£ the papers on that· topic.; sea to agree that 

whatever hypothetical .method is used,. to audit· and certify 

the security kernel, the corree:t.neaa' 0£, a "simple" ke1mel 

will be easier to verify than the correctness .. of a 

"complex" kernel. A small number 0£. IROdules; strict con­

straints on the interactions between the modules, method­

ical design, aysternatic.implementation,)precise supporting 

documentation, simple language con~tructs, formattinq and 

readability are factors likely to simplify the task of 

auditing the security kernel. Converse.Ly-1,,a large number 

of modules will undoubtedly compdd.cate tne probl:em. In 

addition, it is likely to increase the number of inter­

actions to worry about. Complexity and sophistication of 
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the·xaodulea themselves would al.ao !lake •wlit.in9 harder. 

A good qu.ideliine when 1U:7i:n9· to tt.t.a»U.fy t.M secu:ri ty 

kernel is the· pirind;pl• of leaet pt.vil:a.ie•, · 1!1\i.a .~inci­

ple is the equival'ent of the :military •n..o-to...Jtnow" rule • 

. It states tha·t any prQCJram module sbould, i.., CJ~ted just 

the privilaqes i.t nee~• to ~rly ope~aue and no more. 

Modules of. the aecurity Jcesnel aho\1Wr.D41· ~raaad the 

privi.1eqe& CIC ~· aecw:it.y ken•*' on, .the, oas••· tbatt, they 

con t:ribuue to the. pz-otecrtion d tila: ato#ed~. iafoanna'tJ.on. 

Module& not ac:mt::ir.ibatiluj· to· tthe pzot;e'C&ioa, fjM.l. shoul..d 

not. be aa.1.e: to - such privil ..... ··~ them inaide 

the sec:uz-it.Jr kmmel. increases,· 'bNI· a.iae aml cennpl.exity· of 

the kezne:l and. brinqa: ia f~.aa,6.,~ueta·. tha4::. are 

hard t.o' vaJ.idate W.t.h' :ta4lpect ta: tba<.·pro~tiat· pa:J. of 

the kernel... K'eeping 1dtam. oct:&td.e- :die JutueJ., cuu dow on 

the n\llllber: of: m>dul.es· ami in~on• . ·~. l>e cc:me:Ldered 

c~~t, or 

4. Mstivat~ 

Elea~ID'J' a ~e l:inlutr: uo· ··JNl'l. ~de. tl1e- aecuri ty 

ke:cnel. en~ of a computing! ~ut.d.J.i.ey is motivated by 

the dead.re to.' ~rove the certUi:~lit.y- of the· prt;>uection 
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mechanism in ·the system.under concern. A linker is char-

acterized by four feature' •. Wh'icf1'i\lqq~~t.c :it/'ihould run 
__ , l 

auditing or the -ketnei·~ . ; : .c :~;'.': /_,,~·,;\':.; 

. . . 

!'irstly I .• link'et t6es rit>l.1~1--il~ i.fty oonoept re-

lated' to; the· prot·ec'tion ·ot tManit•tt&t~J 9t '·ne.a4ia· to •upport · 

the p.f.oteb't'foft ibt!Cbinis'ms.~' ' . cU'):, '\.' ,E 

· . s~condly~ in ·view·· 6'f" ·the'· 'foof£l~''i-1i._nt$d · by ·the 

linker I. it tseesris ·: rtia.,ona'bre: ·~()~'.W.P*¢t·"' tlial<t;):tlu! . liflk~r 

does''hot net!cl any of' t~:·pri~1-~• tjtb·~cJ:'to• typiccii 

modul~s ()f tli~· seeutity~ ~~e'.l... f'Thel-'-f'b~•r~ ;the 'te·ast 

. prlvil*qe p:rincfp1~· 1JriP1:ielf'tiiat~1:h. ;tfi.Jl~·: b~~ <>utside the 
,. ' 

security kernel. 
i.' \ _; 

'··. / .'thirdly I "a: linker jJJ -1ii '.f•rii;t-.1•' i wlif·'~lilc proqram. 

Even though its funC:tion 18 eliia~·;ftii: dCJti~fbe';'· .. the d~tails 
' ~ - .-<I· ,- ~·"'·~· ........ ~·r-~' .-,,··~··-'( '- .. ;..,';;. -+'·- ,,,. o•' c-~.,..., ·• · . . '.,_ ' 

ot its implemeh;t'a.tl'O!f-~if~f;"tiiti-r irA 'be ·1rtttibate atid · 

sophistlcated l:ahq~qe 1'on;;r~~if tih¥cti} 1._tce: 'the; "~eading 

and auditing of the program a quasi tm);ib~ttlble·· t'ask. · 

Finally, the linker, by its very hature handles data 

directly accessible to the users of the :·~·~-~ · Such 
_,_." -· ~< .. '. -· ; ... ~. -··> ,-.; - . . "'l, .,.__ -~- ~·:· ·. ; ·1- -~-' u ;.. ' ·"-"' > . ' 

data could contain - p\1rposely' o"'t':no°£' '.;.' 'ill'do11•i'stencies 

capable of ~auri~ 'th. e. ·· Iidk~r 'tb!:tul~ldtr o:i'' ·erf'orm -~ - .. . p 

unexpected operations. · ObK(ll'lt-~ci£jtft\'t ·i:J.t , ts liluch. 

'. harc!'e'r to verify th~ 'Oarl'eet 'Q#ef4t'i'ori ~'8f 'ii" prdq~- when 
. . 

it can be presented \ii th ·an ariif1 tr,fif' :'J.'tipdf :tlimi' to verify 

-' ' f ~ 
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correct operation when a "correct" input is guaranteed. 

Since malfunc~ion and wiexpected btlhavior a~~ ruled out 

for program components of the aecuri~y keinel,, very 

so.ph.i.sticated JIMllcilii.nery wou1d Pe ~equired to veri.fy the 

consistency of user requests to the linker and insure 

proper operation. Even if such ma.chinery were available, 

it would only increase the ca1qplexity of the Jinker. 

Aga±n we .c.cate 'te the conclusion that the lin~er should 

not be part of the security ke.rn.el,. If so, no malfunction 

of the linker will ever subver.t the prote~tion mechanism 

of the system and cause unau.thori~ed access to protected 

information. 

To summarize ~ur motivation we .can say that designing 

the linker to run outside the ~ecurity kernel environment 

of a system is a step towards sin;>li~ying, isolating and 

better defining the secul:'ity .kernel, thereby maJting its 

auditing easier. 

5. Objectives 

The mot1vation for our thesis is based on four argu­

ments which .s.ugge.st that the link,er should run outside 

the security kernel environment of the system. The first 

objective of our thesis is to show that. it .2!!l run outside 

the security kernel. We will have to show that the linker 

indeed does not contribute anyhow to the protection of the 
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system and is never needed to support the operation of the 

kernel. We also will have to show the inverse relation; 

that is, the linker does not use or need any of the priv­

ileges of the security kernel modules. We eventually will 

have to show that the idea of forcing the linker to exe­

cute outside the security kernel environment does not 

introduce any unsuspected, unsolvable problems. 

Clearly we would not pay so much attention to our 

problem if its solution were obvious and if all linkers 

known today were running outside the security kernel 

environment of the system for which they were designed. 

There exist a few systems (13) where the problem has been 

solved. However, it was solved only for the very simple 

case of a static linker binding modules together inside 

one protection environment. Instead our thesis will pro­

pose a general solution of the problem for a dynamic 

linker binding modules together across protection environ­

ment boundaries. The design to be proposed can be applied 

to any type of computing utility with some variations 

which we will eventually mention when appropriate: 

Except for a few cases already mentioned, all systems 

are designed with their linker being a component of the 

security kernel, and having the privileges of the security 

kernel (14). The second objective of the thesis is to show 

the feasibility of the design to be proposed for a 
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particular real world system. We have chosen to remove the 

linker of the Multics (Multiplexed Information ' Computing -- ..,. " .. ..,..., 

Service) (15-18) system from the security ke.rnel environ-

ment and to force its execution into the uae~ environment. . . 

The linker presently runs in the environment of the 

security kern~l of Multics as do many other ~ponents of 

the system wb:ich do not belonq in the security kernel either. 

The main reason for this design was that the cost of 

dynamically changing the protection environment of a 
. . . 

computation was prohibitive in the initial version of 

Multics. Hence, it was decided to include -.ny system 

components in the security kernel that wer• not part 
'·~ . 

of the protection mechanisms. in orde~ to ainiri\!ze the 

number of times the protection enviromaen~ waa·changed 

in the course of a computation. Snapping a ainqle link 

requires two environment changes.with the ii~~:r: inside. 

the security kernel, but. may require 10 to 1.00 with the 

linker outside. A second version of the Multics hardware 
' 

(15) has reduced the cost of a change in protection 
,. 

environment to the level of a norma,l interpr®•dure 

call. As a result, there is no longer an economic 

incentiv~ to leave the linker in the ae~~it~ kernel. 
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Before we go on to develop the design we will mention 

a third. o);>jecti,ve 9f ·~· .t.M:sta~,- ln· 1UllDQ1!ling;;;the ,dynamic 

linker from . .:t~- secn1~ity ke11ll4t'l of·• Mµlt:i.os, .we· :hope t.o 

establish a few more criteria for deciding whet~~ or not 

a program belongs in the security kernel of a system. We 

also hope to better define what general programming fea­

tures contribute or hinder the task of reJDOving. a program 

from the security kernel. These lists of criteria and 

features of interest will certainly be as helpful as the 

removal of the linker itself to better define the security 

kernel of a computing utility in general and of Multics in 

particular. 

6. Plan of the Thesis 

Before we come to the body of the thesis we would like 

to briefly describe how we will develop the. research and 

carry it on to the detailed implementation of a linker 

running outside the security kernel of a computing utility. 

Chapter II will develop a computing utility model where 

emphasis will be put on features directly relevant to our 

research. The model will serve as a basis to describe the 

design and it will help the reader to apply the design to 

different systems by matching the :model with that system. 

Chapter III will propose a complete design of relevant 

parts of the computing utility. Problems encountered in 

the design will be discussed and solutions will be proposed. 
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In Chapter IV we will demonstrate the feasibility of 

the proposed design by describing its implementation on 

Multics. 



-21-

II. A Computing. Utility Model 

In order to better define ~~ features of the design 
I ~,,_ ::_· _=--:- ~~~·· t ~: -~ .. ,,,._ ·: 

we will propose, and to generalize its applicability to 
' ~ -~ . , .• '" - -~. """. :.' ~ 'i ·. 

any computing utility, we will describe a computing utility 
•• ' 1' • ' • ,•·"-· • -.- \":'I~ :.•:.1:-~ - : "" ~ .:··:.~w<,:_,~ :, .- ' 

model. This will enable us tp.explai:g. the proposed design 
' , , J.: -~(;·!' . ~ ., .!. 

in terms of the model. It will enable the reader. to apply 
.~ -· '";',: •· .. - ~' i ' - ., ;· t ,_- ; 

the design to any specific com.p~ting utility by matching 
'' (~ ~ < :;, ;;· ·.K: ; :'.·. ·:· :··: . 

that computing utility with the model. 
~ ' ' 

We will develop the model in two steps. Firstly, we 
-· 1. i . . -1; . . :~ ' 

will describe a protection mod.91 suited to th~ environment 

of a computing utility. Secondly, we will build on top of 

this model an information stor~9e mode+ suited to the 
. :, ' ~. •,, ; .;; ,,.,... ; ; :"':,·:-

needs of a dynamic linker. The model wi+l help us t6 
.. <, ••• ;-;: ;,-...... '."'~- :_ :<';_ :, j \ ~: •.· . 

better define the co~cepts of protection ,nvironment and 
.· ~ ~- :.:' ~--fa 5 .,;!_J·~---(; ;'· L~~J ·\ . 

logical address space which we have occaaionally mentioned 
/ . ~>;_· ·~:-.'r :_ "J~:-··.:·,, . . . 

but have not carefully defined yet. We then will explain 
·' , ··t 

in detail the operation of the linker in terms of the 
, ·; !:· .. ~£. ~).>' . . l:·~·;. 

model. This will greatly simplify the $ubsequent descrip-
• .~:- j .• ; •• ~ ~· • ·7.!.~ : 

tion of the design of a linker . ru~ing O¥taide 17he security· 

kernel of a computing utility. 

1. Information Protection Model 

' In order to better understan~ and study the problems 

related to protection of stored information, several 
" ; : '~i' ~> ~:.. : - >-~ . . • \ 
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structural and mathematical ·models of protection schemes 

have been proposed (19,20). We will briefly describe here 

a model based on the concept of protection domain (21,22). 

This model wili hE!lp us understand what .is meant by a 

protection environment and particularly what the security 

kernel environment is. 

For the purpose of our discussion, we will talk about 

the envirofillt&nt of the computing utility in terms of 
obje,cts and subjects. Objects are passive. They are the 

information containers of the computing utility. They 

must be protected to prevent unauthorized access to 

stored information. Objects are the procedures and data 
, ' . 

bases stored in the computing utility. SUbjects are 

active. Subjects are the internal representation of users 

of the computing utility. Subjects, sometimes called 
< ,.,.· 

processes or jobs, act on behalf of users to create, 

delete, modify, use and manipulate objects. 

Subjects can access objects by means of capabilities. 

A capabilil;y is an identifier denoting some object in the 

computing utility. Any subject possessing a capability 

for an object is entitled to access that object. 

The set of capabilities available to a given subject 

defines the domain of execution of the subject. The domain 

of execution of the subject is the· protection environment 

where the subject operates. 
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When a subject changes domain of execution, it changes 

its set of capabilities~ 
' '.'' ·. 

He.can enter a new domain of 

execution only through a gate'. A gat~:·fs a procedure 

object which forces entrance to a domaln t6 coincide with 

invocation of certain procedure objects in the domain. 

These procedures completely determine the activity of the 

subject in the domain. For a given sub}ecff, cl. gate is an 

entry point in.to ·a given domain. However, for ·two 

different subjects, the same gate obj'ec't leads into dis­

tinct domains. We make the assuinPt.iori' that aach domain 

can be entered by only one subject. ithu~ wb:eh two subjects 

wish to enter the "same" domain, they::4tre 'actually 
. .1.. ' 

installed into distinct domains contafnin(j.equivalent. sets 

of capabilities. 

' with this model in mind we can better talk about the 

environment of the .securi ty.·kernei~ ·'.Poi. each user. compu-

tation, i.e. for each subject of the·c'bmputing utility, 

there exists One doinain.;_the SEtCUri ty; Jritrlt~:·'dbmain ( 2 3 I 2 5) -

where capabilities exist for the aubjecf to a·~cess pro­

cedure and data objects of.the secuilty·ke°riie1 •. Access to 

the data objects is constrained by the adcj~&s p·attern 

encoded in the procedures of the kernel. ' ' ' Access· ~to the 

procedures is further restricted t~ c~rtain entry points: 

the gates into· the'S'ecu!rity kerneldoilla1n. Hence complete 

control is gained on the inter~ctions.between the kernel 
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and the out•~ worl.d.. The .. cµri~y kefDe.l ).• a ao called 

P~p~ •,-,e1f!l, (24,2$) u ~~ p~ td\l;.oil exists 

in the first ._.in created foe· -eacda •~j-ec:t i,n the com­

puting: ultiliq .. 

2. Iafo~-tipi) Stor.,e Hodel 

The J,ti:twi,OlJ;S pa:t'...,:apha ha"'; ..... "°'"e pi:eciae. the 
• ,. i. 

notion ,of ~ction eavil!'OD.-.t. W. vil.J ..., oonaider 

the concept •f 1og.l.cal . ....-... .~. 

~ ~ of ul objectts in ui:1Uty ~-

sti tu1:es the Jit-.. raw .of ~ ~" ~ti:~ity. Among 

these oJ.>;ect. i,e ~ .. ~tj..~la,;r --~ .t Q!Pi~ 1~ 
. . . ' -. . . .' !. I. -~ . 

cataL91s .. CatAJ.2ft are data. baaM .coa~~os.-.eriptive 

info,J:111&tJ.o.Ja about .&Qme set of ot>.j~ .• -~ ol t.be items 
- ' ·:·. ' ' { 

contained ill a c.,taio,_ at>Qut ~~h ~j~t ~~~~~ .ir1 that 
. . . . .- . 

catal.09 is tl'M!! phys.teal •*"-• ~f •-.c:h 4'1ti~· ~ 

12h1siAa;l. .,, of. an object 4tlfi~~ ~r,, ,tbe <*je~ is 

located OJl aQ111! .~ry dev:i~ Ja~.~. ~-~•ting 
- ' - - - < ...... - • 

utility. The ph7•ical ~ .. 9t_ • o~j.~91; _,_,.t 09 .clearly 

dist,ingui~ f.T:Qa i~• logJ.~l .~· -~ ~$UtfM 

!~d~S,f of :·• Qlaj~ i• thfa ~ ... ~ ~"*· • .~inq 
subject ref~ t.8- al:>je:(!~,.. °'1.l..r lqgi~.i A.~••• are 

meanin9:ful to J>irOQeSSOr• exePll~~, ~Qb~ _paje •. An 

object always h•• a phy•i~l ad<l1: .. s ,even,llh~ it re•ides 
' . ' . . ' : ·~--

on secondary storage and no subject uees it. But it may 
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not have any logical address if no subject uses it. 

Assigning a logical address to., an obj~~t. o~ ;behalf of a 
.'.::.' \/t.) .-.;:: .. ~.. ~>;.,,.. ~ ·i <. ·_'. '' 

subject is the role of the file system manager (FSM). 
•'" .,_ . · ....... ( -~ c. ,1, ,;..· • •• -·· .. 

When a subject wants to assign a logical address to 

an object, it must pass to th~ FSM·~ u~lqu~ identifier 

of the object. The unique ia~iitifier:o:f ari object can .Pe 

a unique name, a unique n~~~ or a" c:a.ti1og, tinique iden-

. tifier and the symbolic ~ame,'ci'f -~' object' in th~t. -catalog. 

Unique 'identifiers are different fz:'om s~lic names in 

that more than one objectma~have'the· 8~ ·aymboli'.c'name 

as 'J.ong as they are des~ribe~ in:; dif'ierent catalogs, but 

no two objects can have the 8~ uniq\J.i:!ldentlfiers. 

When given a unique ideritif ieij~ -the ts)f perfonns two dis­

tinct functions. Firstly, it· se=aiches the file- system. to 
; ' ; ~ . '.( ' , ' ·. ,· 

find the description of the object'tlenotad by the unique 

identifier. If the search ·fails or if -the ·FsM deci'des that 

the requesting.subject.do~s not have the tight to know about 

the object under concern, an e~ror me'ssil'ge fs returned 

and no action is taken. If the s~~rch ~~cceeds and the 

requesting subject has the right 'to know.about the object, 

the FSM maps the object into a logical. ~dciress of the 

address space currently seen by th~ subject .(enables a 

logical address), remembers the binding.between the 

unique identifier and the logical address·, and returns· the 
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logical address to the subject. 

One question is now in orde,r. What is the real 

nature of a 109:.ical ad~ss? Since the PSM, a component 

of the security kernel, releaeea logical addreeaes on the 

basis of a protection decision, a l<>g.ical address is 

merely a ca~ility to access an c::Jbject. As long as a 

subject has no e~abled loqi_~al address for ui _object, it 

cannot.reference that object. If and when. a .l.ogical 

address is enabled and delivered. t;.o the subject by the 

FSM, it 9airu1 acce..ss to the corr•apon~DiJ.Object, i.e. it 

has a capability for that object. Thi• ~t.a.b~ishes the 

connection between our inf oJ:aation protection model and 

our info~tion storage JD?del~ 

This connection between the two models brings up the 

question of the nature of the logical address space. Since 

a capability for an object is granted to a given subject 

in a given domain, one might wo~der whether the logical 

address allocated to the object is valid only for that 

subject in that domain. In other words, once a logical 

address is assigned to an object for some subject in some 

domain, will that subject see the same object at the same 

address in other domains? Will all subjects see the same 

object at the same address in all domains? The answer to 

these questions depends very much on the type of logical 

address space supported by the system unQer concern. In 
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the simplest case, where the logical address of an obj,ect 

is its primary memory address,· if .any,.then we can talk of 

a system wide address space. Once an address of the space 
,:jtt>./ 

is allocated to an object, all subjects in all domains 

will see that object at that address if they have access 

to it. On a virtual memory system, each user, i.e. each 

subject may have one address space of its own. When an 

address is allocated to an objedt.ln a· subject address 

space the subject wiil see the object at that address in 
.f ~. •. , ' 

all domains where he can access the object and the address 

will be meaningless (not usabi~(-iri>oth~~ d~~ins. But 

all other subjects may or may not use th8 corresponding 

address of their own C.:ddress space.for the same object. 
-,, ( J .~- : 5 -.- T 

Finally in some systems, there· may be one address space 

in each domain. such is the case, f~r 'inst~c·e, of base 

and bOund machines. ·A cloniain is· defined by th~· base and 
~ 

the bound of its address sl>ae&. A logical.':a:adre•s is 

mapped into a physical address by relocating. it relatively 
\/. ,.,.. f • 

to the base and within the bouna 'of the address space of 
' ' ) ~ .. ,.:- 'l,. ' 

that domain. Once an object is mappea···tnt:.o one address 
' ~ ~,} ;~ of " ' • 

space, the address space of another -d0main may or may not 

contain the same 'object at· th~··.~- i"9Yc~f ad~ess ·depen-
-~·~·· ~-~-, .: - (· 

depending on what .its base and bound are.'. To conclude this 

discussion; we wiil assume for the rest of this thesis, 
~~.: ;,.1- ·,·-' .- ,., . 

that the concept of address space, when unqualified, means 
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·--~: •'. 

the address space seen by the 9iven subject in the given 
: - ~ 

domain. unleas specifically stated, no a.4sumption will be 

made about who e&n see the same address .•J?:&ce in what 
' .. ~ ~ 

domain .. 

3. A l)yM.laic Linkincg Model 

The l~ puag:rapb described.the ~ls we will use 

to support our, deaip. Before-. move on to the deeig.n 
; ,~.,,.,.. -·-~.: ; .. 

with respect to the 1'1110dels. Ia doinq ao, we will npt have 
~>: •.; ~t ~· ~:--.·,· .;. . . ·, 

to worry ~t what a unique identifier, ~· 109ical address, 
' '• c : .J . ' ~ ~ • f .. ' 

a doJllain, or a g:at.e is. We ~ tbat all. tllese eoneepts 
"'· . - - ., ,._ ' . . '. '~~ ;J: _ - ; . ' 

can be icientified in any computing utili.ty and t:Aat our 
- . ' . . . . . ' :. ~ .··· ' ~ ... -.~ - . 

description can be baeed on them ~i~ut awm~quity. 
• • ._ ·, • ' •• : > •• .! ,"· }~'-' . > 

Whenever a s~ject ex,ecuµ~ an ~ject ~nco~ters a 
' -~-·~~- ,·'. . . __ -:·:;~·~-·~,.·:_ ''; - '' 

s~li,<t,}~-.a .~, or a 'mil~f!tl~M. to, ailo~er object, 
' - ' ' "' - : • - • ~ ,v • ; ;_. ;_ • ...,, • ~ ' •• ""~ ' • • • • 

a hU.-dv•re ~t <:41184 a .. ~~ i'1'!frt. °F'!f~· As a result 

of the link fault a copy o~ all m&ch.in~ regiat.ers, called 
, . , .··, -"'"':_ '· .. ~ .' ' '-, . ;"·. , . 

the machine •tat•, is ban~d to the linker. 
pg . ,~· f't9 .~ •• p •• ,--:-•· '."·; 

The· f irat t4ak ot the linker i• to _ena~~ze the machine 
, ( •• -~- > ;-...,;:. '.., .... ' 

status to dete~ne which. •~lie t~~nk .caus49d .the fault 

and which object vu ~in9 e:xecated at .the time of the 
. . . .... . ·.,. '. ·' " : ·~ ..,._·· 

fault. This objec:t is called ~ .. i~U.t~~ ~1~1:· The 

domain wbere it was executed is called.;.~ "'t,a\lt4t,i~ 4omain. 
. . _. : . . ..... ' ~ 
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By searching the faulting object, the linker will find a 

complete description of the symbolic link and in particular 

the symbolic name associated to the link which designates 

some object of the environment. This object is called the 

target object of the link. The domain in which it belongs 

is called the target domain. 

The second task of the linker is to search for the 

target object in the file system and to map it into the 

logical address space. In order to do this the linker 

will of course need to invoke the FSM. The search is 

driven by so called search rules. Each domain has 

associated with it a different set of search rules. 

Search rules are an ordered set of catalog unique iden­

tifiers. Of course, it is irrelevant to talk about search 

rules when the file system is one single catalog. However, 

in general, it contains many catalogs. The search rules 

force the linker to search only some of these catalogs 

in the desired order. The linker takes one search rule 

at a time, combines it with the symbolic name of the 

target object thereby making an object unique identifier. 

The linker hands the unique identifier to the FSM to search 

the file system. If the search fails, the FSM returns an 

error code to the linker. The linker will keep trying 

the next search rule, if any, until a search succeeds. 
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In this case the P'SM returns the 109ieal -•~U'ess of the 

target object to the linker •. 

The third task of the linker i• theJ'l to translate 

the symbolic link in.t;o a •'Rat M!Js •9QJ.e by the pro­

cessor. Thi• ia called anmw 1!=!1.,i!Jlt~ '1'lae linker 

just repl.acea the aytlbolic n._ i)l t.be .l.~ by tne 

logical addres• of the target obi•c::t. 

Pinal.lJ' the liJlJc.er QIWlt modify tbe mac:Aiiut stat~ 

to force the executing aubjec:t to r•.- the now an~d 

link. 

By a mechanism external to the ~ it.aaali, the 

machine statue ia then restored eo that. the 8XeC1lt.ing 

subject jumpa back to where it w.. just beiora the link 

fault. 

once a splbolic link is replaced by ~ loqical link, 

it will no more cauae any link fault .for the current 

subject in tbe current domain. 
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III. Design 

1. General 

The last chapter presented a computing utility model 

which will be used to support the discussion of the design. 

The steps in the operation of a dynamic linker have been 
.:. ' ·: +• .: ... .. t , -

described. As it should now be clear to the reader that 
.. - i ~ ,J ~ ' ' 

programming the linker itself is a feasible task, the 

current chapter will rather concentrate on 'the problems 
.. ,., 

of inserting such a linker into the overall design of a 
' ; ·~ ' 

computing utility such that it be outside the security 
,, .. ;,. '·.,,. 

kernel. The next chapter will then present a test case 
-•. '. J 

implementation of the design to demon~trate the use of the 
- .•: ~ , ' f. -- ' "': 

model in identifying the components of a real system ~nd to 
'• -. 

' 

show the feasibility of implementing the design on a ·real 
· .... 

system •. 

In developing the discussion of the design we will 

try as much as possible to progress naturally and to 

handle each problem as it shows up. In a first section 

we will explain how the security kernel can opera.te 

without the help of the dynamic linker. In the remaining 
? ;·~ ·-? 

sections we will demonstrate that the dynamic linker can 

operate without the privileges of the security kernel. 

This order of discussion coincides with the order of 

events when a computing utility is brought up into 

operation: the security kernel by its fundamental 



-32-

purpose is the first subsystem to be operational and is 

used to bring up the rest of the system fUn.ctions, the 

dynamic linker among others. 

we do not claim in any way t:hat the deeign to be 

outlined is the Only possible design solving our problem. 
' 

By its very nature, the topic of the reae&1:ch poaes 

several structural problems which are easy to identify 

and to describe. However, .deaigninq solutions to these 

structural. problems cannot be done systematically as 

wou1d be the caae for mathematical problems. Solutions 
• ... - ~~>,- ,_ 

to a particular atruct~al problea may bring up other 

structural problems.; It is hard to predict and to control 
. -

the p,i-opagation of the effects of a.particular solution 

to a particular problem. Hence it is hard to estimate a 

priori which solution minimises the nU111ber and the mag-

nitude of hidden potential problems. As it is impossible 

to di•cusa all solutions in detail, we will attempt to 

justify our choice between diffe·rent solutions whenever 

possible, and especially where a sophisticated solu~ion 

has been prefered to an apparently more obvious one. 

Even ao, we do not claim that all possibilities will be 

discussed. We are convinced that equivalent desiqns could 

be proposed. We believe only that our design is among 

the simplest ones. 
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Finally, we will attempt as much as possible to be 

sufficiently precise in the discussion of the design to 

convince the ~eader that subsequent implementation is 

practical and straightforward. At the same time, we will 

try to remain sufficiently abstract to enable the reader 

to implement the design on any general purpose computing 

utility. 

2. Security Kernel Initialization 

Before any user can request service from a computing 

utility, the system must be brought up into operation. 

This initialization task is done under the responsibility 

of a subject called the initializer. The initializer must 

cause the loading and set up of all progransrequired to 

support the operation of the system. The first of all 

subsystems which needs to be initialized is the security 

kernel because of its fundamental function: generating 

other subjects and domains for these subjects would be 

impossible without an operational security kernel. We 

are concerned about one aspect of making the kernel 

operational. Like all sµbsystems in a computing utility, 

the security kernel is a modular program. Hence its 

operation does require a linking function to combine the 

modules together. However, our objective is to propose 

a design where no dynamic linker exists in the security 
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kernel domain. The security kernel i• not allowed to cause 

link faults. aenoe all link• .of the security kerne~ must 

be anapped. prior to the operation of the kernel. This 

task UI put of t:he :8ecurity kernel iait.ial.iMJtiGD .. 

Linking t.o9ether all module• of the •ecurity kernel 

requires tbe help of a atatic linker. Baaent.ially two 

types 0£ atat.ic l.inker couid be utted: a binder or a 

prelinker. The binder is a static link.er :which prepares 

once and for all. a fully operational security kernel. 

that can be Q88d without .ny further.initialiution aa 
' ' 

Jllany tU.s u d.e:Bired. The px.link.er is a static linker 

which links the modules of the security k~l ~ther 
' 

each time the sr·~- ia stac:'ked, durinq al'l initiali-zation 

phase. 1fe will not describe the detailed design of either 

a binder or a prelinker. This topic is below the level 

of our discussion. we will aak the reader tO realise that 

writing a static linker is feasible in many,waya. We 

will jwst dism111• the properties of each.type of static 

linker. 

The technique of the binder seems both simple and 

economical. It is economical because the links of the 

security kernel are SJlilpped only once for a given system 

versio.n and the reaultinq operational security kernel can 

be reused as many times as desired. It is simple because 
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aud~tin9 and certification of the. kern~.~ m-qst be done 
' I ,. .~ '"' ' ' ' 

on.ly once on the fi?lal operational kernel. The binder 
- . .. .; :- .. : •. .-- :~ ·r -·- ;.;. ... 1 " .:. ... ._._.~--· "·-:.. 

is kept outside the environmen~ to. be certified; only 
·. .. - -.- · .. -:'.'~ -,_. .:··;fj~,-;,-,~, "'1 t~ __ , ____ ! '".\t"'~-,";3;",1·;_~'1'. -~;:· ,.; ~ ; 

the results of its operation are to be audited. 
' •:t -~> <;! : :-~ ' 

the prelinker be audited and certified. Since domains 
. -, ,' l ._( : •. ,~: • .' • ~ ~ - • ~-- L: - -~ ·::;;;: __ : -~!·L1:· t ~:~ .~, ,- .-'. :·:· ~ -.,. 

are meaningless unti,,l the security ke~el ;s initiali.zed 
.,,· ::~ .~:·:- :~· .- ; :-; .. ,.~ .. r·-::;' ~:, ~ -~,,. C~·)t(··--~-, ·. _; ·--. , . -

initializer ~Y be viewed as just one si~g.le dom~in 
. ! : . : ' ~ ~ -. - . _' ' --~ " ' '<<.:" _-; :_~"'I~.. :·-. -~- J. --~ :;;.i ·: ,, ::·. --~ 

bound. to become the dom,ain .of th'9.s~curity kern~:t· Con-
- _:_r·; -~ ~--~ .. !_r._'-'~:--L."/'~::::;-~.\~~t)-f2. 2JJ-t:·:~i-, '. , 

s99uently the :prelinker of the ~·~urJ..tf, kerz.:iel which is 
, _f-.~;; 4 ·"; ~ ,. ' .• , '. ',... o~ .i>{~l({ ~:)>;,:_3;t,.Jj ~';;~/"~'.- . .,,•_.·_. ~-" .• 

executed pr~or to any module of the kernel is in.some 
_s ... 2. -~ ·;;, '.'::_~V--" __ -!,..; .. ·.:~1·A-l . .z:~.~~:· -.·_ -. . : " 

of the soon-to-be kernel. The p~e-
. , _:..;.:{{~ t· _:, - -~: f;·.)j !• ~::! .. ' .. ; 

linker must therefore be certified. By ~ow the reader 
· r ~ ·'.~· · -- - ··· · · , __ .~ -~--:::. ;;,..'~e~ /"l :·;\·· · 

may wonder what is gained by the pr~l.inlu~r technigue. 
·-::~ "'"(: · · __ , (.:;·-,~~ .:~·: ~·:.;\t··- 1·:_:::.:t '":::~.r:.:r "''.:. · .. ::::.:~ . .-...!.:,:. __ -- .. _ 

We want to remove the dynamic linke~ fr9m the ~ecurity 
. -~ . . ~ .. , ;- - ; « t ·-\.-'' .: ~'" ~·t -~- l f;;-".-J· L., ;_: _,-. .-: ; ·.·· 

kernel but we propose to kee~ a prelinker in the kernel • 
. . ' ' ' ;'.. i.J ~- 0.' (."J 1·t: -~~ £~ k- ~<-i 1 J i'~l: ., \~~ -~ .'.· ;_ .. 

Firstly, the use of a prel~nker may make the system 
'~ '··' ':'~. ~-_j J:~---~J.,.'.· f~:'~ ~~·,:'~:~_~.,.; ~-,~ - : ~: -· 

initialization more flexible. The use of a binder fre-
-~: ~r ~>c:: ·"'f 1 ;ht>.t .rs tit~ ;:.' .i. ·:. ~ 

quently in_lpliea .~at ~~t ·"~nlf.,;~e: 0era.ion ~f;·~~;:. s:y:st~ 

but also the initial confi9uratipn of the.system (hard-
. .·' ~ .... ,-·. --- ;} ,;,~··~,!.''.: _,;,.;;:J f~·-:3(~~'·)$"1!. ""~:,_·~~·: ··: .~'''·!~ 

ware configuratiQn.and sizes of. yarious supervisor tables) 
~ ·:~_.-: \~. ·"·--- ~·-.-'·:·:~ , - •• < ·-.-):r-.. ~~-3·!.~i ~-~<t :~:·O~<~,...,; ·,: .. ~·· t .--

always be what ~e binder assumed. Instead, in the case 
-~ .:"1.:-s;<' .. +~~ 0t~)' rrr··:: . ..rr...~~· -~" r : : 

of the pre.linker, . even though tjie version of the system 
) - - ~""';,.i:';:,.~_)z~~ : .. ~·V·f,; -'),~ y;t,? 

used may .always be the same, the c~ti.CJu+&ti~~ of .:the 
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system may be changed each ti• the syat~m is started by 

properly notifying the prelinker of relevant configuration 

data to be reapected. 'l'hua a prelinker is more flexible 

than a binder. 

Secondly, believin9 that the certification of the 

prelin.ker is jua·t as bad as the certification of the 

dynamic linker· is wronq. By its dynudc aspect, by the 

requirement that it be able to deal with objects scattered 

in a large file system, 4"1d by the fact that it uy support 

miscellaneous sophiaticated linking featUl'es needed by 
, 

user programs (see next chapter), the dynamic linker is 

a much more elaborate program than the·prelinker. The 

prelinker is a static linker; it deals only with objects 

of the supervisor concentrated in just a few well known 

catalogs of the file syatem1 and it may not support 

sophisticated linking features because security kernel 

modules, unlike user modules, may be·proqrammed to avoid 

such features. In addition, by its very nature, the pre­

li'nker is an atomic program while the dynuiic linker is a 

modular prog-ram. All such f actora make a prelinker a lot 

simpler and hence easier to certify than a dynamic linker. 

Finally since the prelinker is needed only during 

initialization the security kernei can discard its own 

capability to ever again access it during regular system 

operation. Thus the prelinker cannot be executed again 



-37-

once the system is initialized, and therefore it cannot 

hurt the system. This also si~lif ies the problem greatly. 

consequently, the ehoice between bind.er and prelinker is 

a choice between relative certifiability and flexibility~ In 

generai this.choice is independent of where the ·future 

dynamic linker will be running. sine~ the implementation 

to be described in the next chapt~i i~:'bas~d on the pre­

linker idea, we will as~ume the' same ·id~~ in this chapter. 

However, we acknowledge the factthat using a binder is 

most probably equivalent as far as 'out thesis is concerned. 

We.will now temporarily abandon the 'operatfonai security 
, . . .. . ·' ••. ' ' j . ";; , 

kernel we have obtained. The.next section wi.11 first dis-

cuss a few design prfnciples. an~ th:•·n C:~i:iy on 'the develop­

ment of the system by build:i:ng oth~r domains around the 
·r 

security kernel. 

3. Dynamic Linker Initialization 

a. Design Principles 

In the previous section, we have sh0wn how the 
:f '. .. ~--· 

security kernel modules can be linked toqether without the 

help of the dynamic linker. orice.iink.;d, they no longer 

need any linker, thus they can operate without one. The 

rest of this chapter will examine' the ofher side of the 

design. It will be.demonstrated.step ·by step that the 

dynamic linker can operate outside the security kernel. 
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It seems that the first problem we -imcounter is to 

define what "outaide" means. One half of our design is to 

remove the .linker from the dollain of the security kernel. 

The second half of it ia to decide in which other domain 

or domains the linker will run. 

It seeu very appealing to aillply install the linker 

once and for all in a domain ~f ita .qwn {see fiqure 1) where 

a subject will be able to go if .and When neceaaary. Even 

thouqh· thia 90lution may seem clean and obvious, it is very 

likely to raiae implementati~n problau. Indeed, on each 

link fault, the linker domain woul.4have t<? be provided 
. ' - ~ 

dynamically with appropriate c&p'1:>ilitiea toacceaa the 

fau:J,.tinf object, and ,perhaps ~e targetjobject or even 

other obje-c::t.s in the faulting or the tu-9'1t domain. When 

the dyn.U.U.c linker was always running in the aame domain 

and that dClllJUlin was the security kernel <l,omain, providinq 

it with dyiwullc capabilities was •48Y 9iven the unique 

privil~•• available in the see~ity kernel. However, 

this is no more true if the linker runa in a domain 

different from the security kern.l 'domain,. Furthermore, 
' 

a linker dosna.J.n containinq capabilities fQr object• in 

several domains, even if only Qne at a time, can poten­

tially operate &a an unauthoriaec!l infoX,'lllation channel 

between these domains if it malfunctions. Therefore, such 

a ],.inker muat be certified to p.reven't potential unauthorized 
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Figure 1: Different environments for the linker. 
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access to the information. 

A Se®nd potential answer can be found by thinking 

in terms of capabilities. Since the linker will need to 

acceas obi•~ta in the faulting 4-ain and ~ in the 

target domain. bOth domains •eem potential can4i4at•• to 

host the linker. The target domain is a.;:tually not a 

good candid.ate because it ia not determined until the 

target object ia identified. Hence it is undeterm.i.ned 

at the time of the fault and the only domain where the 

linker coul.d initially run. i• t.M. fa'1lting domain which 

is easily determined by the machine autua. 

conaeq.uently, even .though we 4o not definitely reject 

the firat solution., we 

ther aaawne the second solution which at least guarantees 

easy access to the faulting do.mains and eliminates a 

security threat. It will be seen that access to the 

target domain is usually not req\ii~ and eventually easy 

to provide. In the above 4ia~uai~"8 have identified 

the major prob1em of remo.ving the litiker from the security 

kex-nel domain: it no more has all the privi·lt19es to access 

an.y eej•ct. in any domain i each particular dnV<>CNti• of 

the l.i.1\kei:- will see access capabilities conatrain~ to 

those of the faulting domain for the invocation (see 

figure 1). 
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We have just decided to design the linker to run in 

"the" faulting domain. Since any domain is a potential 

faulting domain except for the security kernel domain, the 

linker must be made "available" in all domains except the 

security kernel domain. The second problem which we will 

now discuss is the notion of availability of the linker 

in a domain. What does availability of the linker mean? 

Firstly, it means that capabilities must exist in all 

domains, except the security kernel domain, to execute 

the linker. Providing such capabilities in each domain 

is rather trivial and should pose no implementation problems. 

Secondly, a dynamic linker, like most programs of a 

computing utility is a modular program. As such proper 

operation will be possible only if there exists a means 

to snap links between the various modules involved in 

dynamic linking. For most programs in a computing 

utility links can be snapped dynamically. In the case 

of the dynamic linker, this proposition is nonsense: 

if the dynamic linker contains unsnapped links, it is not 

operational and cannot count on itself to snap its own 

links. Hence a static linker must be used to link the 

dynamic linker modules prior to using them. As long as 

the linker was part of the security kernel, its modules 

were linked together by the prelinker of the security 

kernel. Now we have removed the linker from the kernel, 

--- ---- ---
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it wi11 .no -me 'lie ••nemat:~.CNl11y ~·· ~aence., its 

moatt1es · :1lluet sw-.-'De l.d.nk1tl Mt•._ •~ntly to 

make i:·t·•epemati'9&&1 in.~ .... •i•• we Ml'~- '°:m:selvea 

What -.rt d ilidtl&· •91dio.1'lt b' ·.t:ae. lJ:I r j1c .. ·'d:l.allmr ,amt mve 

to be sn..-1 -.E&f:iieat:t.¥. · '!l.'ble< 1 ...... ill a ,;aet: ,of proce­

dures nil .a.ta 1B0il\til .. 1.aieh -~·~<to oac ,.objective 

can be'·~ .l.fl atlly"ll .,.illt;ell·.•eo .flM.•ow:.ilf.y ernel 

doma'in. c~ a,t 2..-t· &1.2 :U"1ca .._._ .t-.e .-iulea 

the .eJU:'~ ....._.~.._ ;t;Jf ~· ·11 $..,.r ~·llltnttoned 

~···need w· !:lirirolle <tne·PSll. ..._.."!:_. i~ u all}Qfhere 

but ±n '1ltle 9&CUd."br .~:l,. 

througti mie··:ar . ..re . ...,_ •. ±Me ~.·~ ,.,.,.L . ··Hence 

there ·c1U ed..-t l'lnks ·U) tbieee ·1••• 9ay .-t;. al.ao be 

snap'Plril. ·~Jiy;,, i:9le .au.ti.on-~ 1be ~ by 

·f±q\li"e ~2 ~ :Eadl ~·. ihM ~Ut:li!N, 1!lke 1'M81&i n D, 

to· exeouee *'the"'' .U.1i.~. "'fJ.lie'" :a.~ l.• ~ &Wt' af all 

. pr~ mXl ~ ,..._ :jldbeft~ ~· .it{~cally 

linki.-nq 1:WD ..av .... · ·file l&ftkw ,dlle "oon~ .one· ··4>1:' more 

links "be ~'by· ·kernel "'Jlltas. ~-~; thea8 1qates, 

as b~l ·•Jlf:rl;~, are,9DM'llllW:a••··~o:tJ8:.~ Ps:e­

l±nkedct'o '.~Dill ,~ ·OE ti.le ~:->'Cl~ :.&yabtm 

iriitial:azae.o'n. ·•Hence we .. ., ndt ...... '·• ....-y ;abom: them 

anymore .ewm- tihGw;h tibey ~ ·Wildta ,co.«Jlfe in~ in 

dynamic linkinq. 
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Ffcure 2: Linker and security kernel 
t nl ti a 1 I zat I on: conf I guratf on 
of the links to be snapped. · 

'._~ ~ ~ - 0 : ' 

Security kernel 

• data 

.. 0 • proc~ure 
·''·o. sate 
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-
b. Prelinkin9 the linker 

We are now in a PQ.rition to·d.Ucuaa how s~tic 
·,, 

linking of the dynamic linker can be ~·· We had left 

the developaent of the ..y~ at.1 

tfi9 1 ~t&-- where the 

security kernel was operational in the fi~st a,nd only 

domain of the enfl'ironment. w.,will now pJ1r8U8 that dis-
• -t ~;---~-:ii .. :_ . ' 

cussion and exuitle the··liJm f~ 1'avolv.,I with -.king 
·~· jl'-' "i.. • 

;if· ... · 
the linker available in DMf .. ,...in• ai;ound the security 

kernel d~ • 

. The ;·fR','at 'Jl.le&tion t<> be asked i.a:. when do we want 

to link tJae·. modules of th.a linke,r tocJ•ther? To anner 

this q\Mln.i.on, we muat uu in.ndind 1:.be ilaportant fa.at 

that link.t.;ne: modules together in. aoaae dolla1n, whether 

stat.tcally ot dynamicaJ.ly, first req~res 11&ppin9 the 

modules intQ the releVW&t addre•S ""1l~· 

Since ••ch domain or fu~ure domain in the computing 

utility could, in the most ~ral , have its own 

address apace, tibia &µfqeats:t;Pat m.appin411 _,. cona~uent 

linking of the Jinke~tiould;: be·. ®ae ~ ti.'1e. a douin 
\ ' 

is generated. Such a -iQll wqld be;·lrety upenaive in 

comparison to the deaiqn w~re tJM9. '\inker Will• in the 1tecurity 

kernel and wa• prelinked only once-: 
ii "' • 

· W• · YQ~d s:U-.11.N' liq: a·· de·aign' )inere the linker 

modules are linked together only once for the whole sys­

tem jµat ••,.i..P ~e eaae where the linker was in the 
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secu.ri.ty keFnel. He>~.e:ver, .l!l.p.~p, ~, .?,~1si9n requ;~.r~~. ~at the 

linker be mapped into 'fd~:ritiea:l'aC!C!resses in the address 

space of each potent~al_ :f.~µ+~!ii~.; .. ~ain for the same 
! 

snapped links to be ~A.~f\i;l. • ...iil.A.~all d~im~. This 

conditlon aan ~ct;ual!,;y :&e-·£\11~ becat\se .in all real 
; ~ . ; .. ~-~l! . 

systems that ;we can ~ink of, evd Wb8fi each. dOIUin has a 

priv.ate addre~• space, a11-aaaresi spaces contain some 

set of logical addresses in overlapping numerical ranges. 

Since-~ u.nk.r ·-is the first program needed .in any domain, 

it i_s the firs- program to be mapped intO any domain 

address space. ·o11ence. we .. can .. intPQ•• to map its modules 

into the same pUlll8fical lo~cAl....iddreases fQX,:-411 do~il'! 
•., ":. I ' ; ~· • . '• , 

address. ap•ces (·exc.t . the. ...e.Clln#y kern•i addr.El,SS Sp~de 
< ., + ; .'"' ! 

of course) • This i~~ 'Pic:tw:e'.d ~IL~lgure ~:. Mapping of the 

linker into logd.cal address apace~ w'ould still. have to 
' 

happen once for each logicu aadr~ •• space created~ but 

the c.os.t.ly . Q,Peration of fabricating th~ snapped links 

could be p~rf(),l.'JR9d only once. These snapped links will 

be valid in all.do~ if th•log~cal mapping on which 
. ! • : . 

they are based is e~o,rced in ·4i1 ·<Joma.ins. . .. -We··vi-11 now 
! ~ .• • . . 

see bow .:tqie can be dope. 
' 

The second question to ·be aslted is: 
\ 
'_~b,.ow can we link 

....r,.,,, 

the linker modules together? The~ve discussion has 
' .. ' .......... ,, . 

actually divided the task of linking the linker modules 
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into two. We first must fabricate all necessary snapped 

links on the basis of some fictiv~' mappln,f ! '(ttr be 

decided upon). ·we then· must enforce·: tha'.t:· mappinq in each 

domain address space we create ''~<f we mlitrt' dOll.lmmiC!ate 

the snapped links based on that ~p:l.11~f to 'each: new domain. 

We will now examine these tw 'ilt.~ps in detail. 

Fabricating. the snapped llnki 'is,' a$ we :already men­

tioned, the task of a static i:tn~Eir. ·'stn<ie· the snapped 

links must be fabricated befof$'c1n:9' do.-A'irt 'f• created 

around the kernel domain, the static liil"t(er musi: ··do its 

job before or during sy$tem initiiifzatiori; ·. "'Before1• 

corresponds to the idea of a b:i.fi<ier: : ··· "Doi'fnq" dorreilponds 

to that of a prelinker. The choic• betWeen the two is· 

the same as iri the case 6£ fh6 eeciirity'~'lt:e:tnel initializa­

tion. As we have assumed the idea of th~f prl!lfnker for 

the security kernel, it i.s all but hAttiral to keep the· 

same idea for the linker. Th~ f 14vo't·:· b'f~ the d~siqn is 

of course to use the security kern61 p:fel.'iiltel:' a second 

time (with some variations pe·t-ha~a) to ~relitlk the dynamic 

linker. This saves the trouble 'of wr\t!l1q'andcertffying 

another prelinker. . Once the aeclirl t1r tei'nel' ls prelinked I 

and just before capabilities to' u$tit \:he i>relinker are dis- . 

carded, the initializer 'irivok.S1~·. the: preiin'k'.•r again to 

prelink the future dynamic linlte'r: Tl'ii.'! ·r6iiowing para.,. 

grapbl will discuss step by step the dPer•tion of the 
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,, ' . - .:.. ·~ ,t-, t.l--~ ff:'' ~'. '":.-~. \ .. ~. -· ·. ,-·-·~-:.i ' .-: , 

link .t.,•,'~,c .... ~··*~ 1'ilt,'."fl.1f_;""~··'<t~': ~~.,f~~ 

O~j$0't ~~ff JO - 9J•»st ~nk.~ U_.,.. 
•. t •. - ,. •• - .· • - .' .-:;·f:.~··:i c.:1 .,;· .-:..~<~- • . :- ")'·: •.;., . -, 

La~~~· tJw,~_., Of'. .... ~· •.~$;~~m~"·,~J~ :~ .. ~1--tary 
_, " '<. - ~ - I i"" ~.,_ ""S_ - ' v ' , ...... ~-' '<. , • '· • ,-' t<~- < • 

envU .... 'i,O~.; •~_,..,.. :ta;t.~~-~i,~, .. ~~ ~wr .. ~~ion-
- < ' 7 ,,.,. ' ' • J ~..... • - " '~ ' _,• 0 ,.-., ~ ''¥ AO 

~~ler < "- •• ~ • ..-~~ .~l.~- ~~_.~,,.~ ~- to~. npport 
- .. .... ,. • .,_ • • .. '.. .. ·~-. ,, ~·' . ·- .- ' :. ,.,. .! ~ • 

. ~. f-il.1r.~ ,._1~· ...,i ~~~·· au~ J.t f;• .~ 
obv~()~ .-.. ..... ~· ~~ ... ptt!9~~ ~AA~~~~t ~· .. it1e: .. •x_•tem 

• - . ' ' '· I ,. .. ~. ··'- , ,, ·. '" +.• ~- ·> •• ., .• •• • ·' _.' " ' ' < . ' 

and tJlie'. ,_ ll'!ft init,iaJ."-" -~-- ~~~l~~· a·~\ tll~· time 
. - ....... - _, ·.,"'· .... ,,_ __ , ,, . .,,;: ,__ .-. ' ' 

the p;r,el;t_-._ J.• rll,ft. If ·~· _,., eearohing o·f a tarqet 
-:-. ' - . -:' .... ~ :' , . .. { •: -. ?-:1 , - .•. · .(~i , .. 
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object can be achieved by the FSM. If they are not, the 

target object must be initially brought into the address 

space of the security kernel from whatever memory device 

is used to load and start the system, otherwise it could 

not be accessed and identified by the prelinker. In the 

latter case, searching is reduced to a simple scanning 

of all objects in the address space and will succeed 

when the right symbolic name is found. This of course 

implies that any potential target object, i.e. the linker 

and any security kernel gate it calls, be in the address 

space of the kernel. 

Finally we have to worry about mapping. Once the 

target object of a link has been identified, a logical 

address must be obtained for it to build the link to it. 

The problem may seem trivial here since everything refer­

enced by the linker and the linker itself is. mapped in 

the current address space to start with. However, we 

must remember that whatever mapping we base the snapped 

links on will have to be enforced in all future domains. 

It may not be feasible or reasonable to map the linker 

and security kernel gates it calls into all address spaces 

at the addresses where they currently are in the kernel. 

In particular, we have mentioned that logical addresses in 

a domain are a form of capabilities for that domain. We 

have also mentioned that after initialization, the security 



-so-
' .::..' 

kernel will want: ~. d.iacat'd it.·· aw. ~ltUe• ~ ever 

again aceeee th• prelt~. ·: W•': .. ieil6 ttc·a..t,o ••P 

the prelinker· frOll· tbe'·~-~·..._.,'i~·~zetly··--· 

Along the .... lin• &f ~t:, ti!* 'J.~Yl• _,.'*1 in 

the ini'tial · binwd: .. ~ ...._. 'fft:>~ pUtpNe• of pt"e­

linkin9 .. · ~· ttae· linbr 1• nOi:· pRt. .,. ·~··· -.Ouft.'4:y 

kernel. lhmce ~· initial!• wlfl":id;w 1*Jliag':l-t ;•fber 

preli:nking ia aOapletea. · eon.•"'8'¥1.Y'~·-~ f--- the 

fb1lowinq protd-. · All Ob~ 1INt' • .._. U.•ftlltea: in ·•r• 

currently upped into tbe =.ly "Mli•,;~-· ,...,,. ·~t 
this· mappinci ts· t.emporuy _.. t:lia ~· ~' to be 

used. in ail· c!bDlins· ot:bet dftul ·•· _.iW ·~1· --in 

may be entirely different .. ~~ ~'·fi. .... ~-· 

This future 1aappin9 is· 'cf ~ t!W'~~q· •w:Lft9 ve 

discuaAa ur:l:ier.· De~btf·th4'"fi~.*J..,,1nv ·1w 

thus done by the P,relinJtarby<_.~.,<~.'&rtet object 

of each.link it tranwlWtew·a·lC::Hiit;al!'~'-ft!t6ta for 

all fUeUi-e domaina. 

Let ua· now conclude the aboVe 4i~ion by4eaerib­

ing the ·-.ppincz function Of tti4i .. J'~J.'ilfti•r • · :pj;,..,. 4 · 

illustrate'• this ·tundt:ion. · h ;pnlinlte~:,_• a64 iwo-

. gt'essivel'f mdlds up tWo tabl*a··· ''N;''fietive.·Mppin9 

table contains a set of entlri•• 'of 'tlte fota (l09tea1· 

address - · uni·que iclentifie.r) • !ac:h •.oh entry ~iae.• 

the future loqical addrea• of the uniquely ident.ifi~ 
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-- --.---~ -- -- -------­
" . .,_ .... ·. '".-':"·. 

object. Each t.ima the prelinka.r anapa a link ~o a target 

object in th.a link•r:: aot··. ~' .U'-4 a lio.U•• log­

ical addr•••, it 9aerat.ea a aui~le fictive addreas 

and adda oaw •UT to the<·· ~ 6-t tmat. object. ifh• 

snapped li.nU table containa_~ lin.U already fabri­

cated iir tile· prelinJcer. :Suell-~ link• of courae will 

be l\\eaningfitl in all dclllaimtftaa tbay are bu~-~ the 

Once all lOfical link• iaauect from the link•J are fabri-

.. ·eat:ed·, ttMt -..-1.inlter taait ia ccapleted. -.. aeourity 

kerseJ. can t.hu' tiac:ardl Ita·own c .... ilit.iea ior the 

prelinke~ -*4 the linker JDi.r~· cU.•ll~tin9 t.Uir addreaaea 

in the curr•t addz' .. • ..-ee" E>rrlj' t.b8 ~ i•b1• IMIJ.l.t. . 

by tbe p:i-el~nJwr r~n in the adeb' .. a 9pace --~~-- ~~. 

security ke#nel. They will be UMd to drive. 0t.he in.it.ial~-

zation of ·~ •u.b••~t.ly created doaAin. : · .. 

we ha'M jut. c18.aribed ~ t.be •napped links 0£ 

the linker °"ld be gerMNtMae,. . .. u{· rwin• to be ~­

strated how the fictive mapping o• which they are ba8ed 

can be enforcecl in each new do.la~•.· Such a taak. ia, part 

of each dolllilin initial1zeJtU.. ,, J:t;:U auai.ghttorward • 
. -~ . ~ ' 

Each time the security kernel createa a new doaain, it 

uses t1W f icniw mappilMJ table to drive the .i*SM and have 

it enforct1 tbe mapping in the new Qc:aain. Each entry of 
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the table is interpreted as a request from the new domain 

t~· search the flle s~tem fol:'' ewei'bbj~.!lliffi;r\1e·ty i~n­

tif ied by the entry and to map it int~ the spae±rl:etf f ic­

ti ve logical address. After having done so for all 

entries, the fictive logical -~~sw•a:1 ~fi a&tual valid 

· l(>CJical addresses for the :hetf'ddmdl1~' Tiietf'tlte security 

Jternel:, ma pa a copy ·of the. sna~a; llnits" lt~le' into! the 

n&W0 domain~ address ·spa~~ -~ ~1!8: ftlrP f ih1ti1y· ~ab~fti!: lhe 

link-er to properly operate in t~:,ti;ew'~ih by''' using 

-the snapped Iihlca baaed on the. riov-~te~l' miwing ··for that 

··domain. 

What-we have e:chie'Ved is pr6viding :eaeb donta1n·flith 

an eperatlon:al link-er~· Li~. a"pre1'lnftel iinbr"~'' 'The 

first aect'ibn Of 'th'is Chapter·;at!a·erf~4·~-:th.''Secttrity 

kernel could be init:i:a1ized'~th6at~ihtt'"~eip<i()f-'the dy­

namic linker. 'l'he''eurrent ••~ti-6!1 '·ha•''dei~ri~d how 'the 

dynamic linker coUld· in tunrbe'·fnitiliilzic! in: :tnuclf the 

same way. A fictive mapping o:f"ttie-l.fike!r aiid'some 

security kernel gates' :had to 'be' 9ert"rated·;.during system 

irlitialization<and· must be enfotoed"by'thi;iPsM:·f:ndepen­

dently for each·· dbmain created''dttrit\q i1Y8~m oi;)e:ration. 

Each such domain then 'sees 'thi linke:F: aricF· rt!Ie\tant security 

kernel gates in its logical -addri!ss' ,•spa~~·~ , !H ·, addition I 

each domain has a copy of the snap~E!d:·'IinJcll'·:required by 

·the linker to operate~· Link faults· can nofl saff!ly occur 
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in au.ell "°""i•·· ~ •Ul #,~ ~. Ma .-tOe ~ 

aect,iQll. 

4.. L.iak ~t. ..... l illfJ' 

So £q,.111e ~ ..,_, .ac:..t:.o,J.ait:i.,p,~,i·. ·~t.y 

kerxieJ._lfiCllliout tM ae.q .... ~ • 41)"11~ ~~·. lle.,tn. 

have ~ -.. tbe.· •qaJ:J.~y ~ "N· . .U.. ~· Jai~lize 

a 1.j liker ia,-.dl 4'"9'1;i» it .~·· . 

demonstra~ bolt. the ~~.I.A·••~.·~ ..,, ·•• in 

each cloain can lludle l.ink :faul:t.a witboat 'the. p-tw;iJeqes 

~t.~ ._,. i.f .it. ·were i.n tM ~J.q ~-.dtmaiD. 

As .long u .it JNM. put of th.a .. ••~J..tr' ~l .... linker 

ha4 .-.11:. tbc? o-..tli~. it --~b>.~•.~U.. 

dolDain obj~. targe'"·•=••n.,.j~~" ~,., abie" in 

gener..i.. ._ .QOV will Mo1ir ~ t.llre. ~ pr.iQ.l.eqes 

availal>Mt l;P ~.li8"r ill.t.i.e ~~•••ill_. --111 
__.. ~· .~ , , ·- ' - - - -

sufficient t:Q.paarutee pzvper.o.papU~. 

1'he first. ·probl• we ¥ill, ;.,_,, d.i.~~- .48 ~ o£ 

invQlting the linker in the fal~;Jp•A•. .~.that 

an oqject .~~-ill,__., 'm",_1., ~...- • UaPt 
~ault .°b)' ~~ti.Qt' to nf~::._~,,Qfaj~_t:lu:'ough 

a untJ:"~lat.ed ·QllboU.;. liak.. ·1*1' ·JJ.M fMJ.~ ill .. 

event r~:sed by th• b&rdwue .of ~ ..• ,,~ Aa a 

result of the -rent,, coatrol IRU:8f;. .~.siv,im to tbe l;iaker. 
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Some faults-access violation• for instance-are very sensi­

tive events a~d.must be hanMea't;y:tl\e s1'~1ty-:fterne1. 

Since. th~ p~oce~sor rec<>9nizes" h~fodwat~~, ei~ts::.th.eii6selves, 

but may not know al>Out their ;naiilie·· or.1U,li-': sensft·i~ity, 

it is frequently necessary t:hat"l:fi fauit.1 be sorted by 

the security kernel before b~inq' ;P'i'.i*wl' t!t!fany other 
'; ~ ~ .. _\. . 

domain for handling. cons~queiitl.y~' oh': ~~; 1-tnk taul t, the 

first. pro~~am to be invok&a; 1.;r tlie'' sftauriW·it~l. · It 

in turn has t~ invoke 'the ci11lker' !tr·~ J:!auttiD<t '<!OMini. 

s~·ch ~cti,on may seem 1straiqhtt6~d'/'i'~1{seeurft:t-.. 

kernel could juat ca:i1 a gate .-:into ·air·· i*:..Jlt'inq·~in 
~· . 

and that gate could in t-W::n ·'c::ifirz+.t!IE/ '1td£ir( : trowever, 
~ -. ~ 

if we want to be abaolut~ly 1;:9,~iftali 1~ ~ea£~ mUt fit 

systems which ~~porf '.~ very litie5ffiimNti~·it'dotilaiits. In 

. , tha~ case, . si~ce any doma;iri· ii • ·pc!~ft~tai;:fattlt:ltttcj cdomain' 
... - · .. · ·. '·~,_, __ ~:"'· ?.'"'~~_l'<j1·'····~ -~·~,i. '~.-. , 

the security kernei needs to Jtnow'··~t.h:·J a"cjate inbo each 

domain.,:; B~t· slnce domairts· and ·~lti'a':eatf~ 1tfre•t.ed 

and destroyed' at wili durinci'sy·~~lil Ol>iratibn'/. ~t is 

impo~sibl~ t~ preiin~ t.h:.. ke~n~i.: tb·\ ·:~t:t!--i.nto 'each 

domain at sy~·tam·. fniti.~if~~tidk·'t~.'·:itift.tidi' we·ll\ust. 
-" __ : .. .''.~~~-.:~· .. ~~·,: ~:_:·:.r··; :-~.: -' :"'{. '., _?,··· :·_.-.~ .. ::f.1·.·' ·r : .. 

find some means to enter t!ie' ·f"aul1:thcf·:-a•1n'~idtfiout 
kn~in9' abo~t· .. any gate ;lnto" ~:it. ·'~if'~ lflti.t··~ttow 

~ .. - .-' ''. _'\ .. :. . - ... :.1~.!~~-··1.- .. · .,:.._;.·-~ ~· ··?:-;~' ·~ :"j')1.i"": ! . ...;., . ..,.:· .. ,~ "i: " ,, -

invoke the linker in that domain. " ltialij . .;dfflerent · 

s~luti~ns can ~· pr~posed':t,C,: Q"ae'ii:t&iJ..._, d'e~ding 
on the details of ;a pa~ti6it~;r •ri.e&i) 9frt ·ic1~a1, 
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a cosnp~ti04 ~til~ty: a.1~&¥• a... a mac:haniflDl to transfer 

contJrol fl:'f'Bll ~ MCuit.y ken•l te> another a.amain without 

. k:nowiDtj. a&Jtlling; abaut. t.h&t ~in. 

1'e \GU -.1¥· meJ:atiOll ~ .... .ible SO:llltiOA fe>-r ~le 

sa,te Qf c-.l~t;G--•, l'>llt. we cl.P. •Qt claim, aut:fterehip for 

it and w.e: i:as.iat ~ the fact. 't;l:wat ditferen,t •YiJ't.em.8 may 

require di~:t mec:l\Aniuw. Since th,e security kernel 

. main~ ~ enfQJ:ce:a p~o;tect.ion, it lJ&ually hu the 

powei:. to d~e•lly MA t.enp>rcu:ily force accea.a to any 

obje.ct. in Ui. 4-ain if neceaa~. For instance,. on 

JDGU:>;y 1'1ildl~. t.n. superviaor OU' reset the privileged 

raode ~it a\ will. c;~s~tly, even thoWJh tlle linker 

is n.ot a 9-... t.be ~ity, kUnaJ. ea,n. fozee CC1>at.rol to 

jump tQ the l.l.~•~ in ~ aim!le of a faultinq domain. 

This, SQ.lv.es the: :probleaa of et);t.eJ:inq the. domain but we 

still ha.veto.~ where the lwer is in that dOlllain to 

jump to it. For tl\at l>urp<l••: we ~an simply store the 

loq~c-1 •<lcl:reaa of tbe li:oke~ at some coav.a:tional address 

in t~ f~~;ing. domain. Hence, on a link fault,. the 

securit,- luu'nel a.llAlyaes tb• machine sta.tus to determine 

It tken looks up the logical 

addrd:4 Qf. th• linker fo:r that domain at the conventional 

a<l~eaa Qd !•.i-ees the. QQnt:rol to jwnp to the linker in 

th~ fa.ult.:i.nq dQ1Dain. Initia1int:ion of the conventional 

location ia. partot the domain creation operation. 
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This design has a side advantage. By changing the 

address of the linker in the conventional location, the 
' .¥ i.;} '~1 ·<. ' , ) : 

subject executing in the faulti~q domain can define any 
.b r ;> ~J ' ~l ;~f ,, 

'. ~ , ... 
other program to be its linker. It just haa to prelink 

·" '· ~ ;> ,«_:;J.J.,.i_~~l- t;. . . 
its own linker with the standard linker prior to changing 

,; • \ .: •• -~ c • \ -! :::. "•)' ' • 

the content of the conventional ob)ect. 
! -· ' .-'i 

··- i '; ~ t ; : -:...· '""" • : 

Having described how the linker is invoked in a link 
, ·-. -··, - • •. •·.·. t .. __ ,, ..__c._:; f 

fault, our second topic will be to demonstrate that the 

on1y the capabilities of th~ f aul tinq;· 4~1~. In the 
'· .. 

"· ''":_.:_ ~-- .. ~~.-~;· t._:.>f·· ·· .. ;;::.L.f .. :' -·· 

earlier description of the operation ot·the linker, we 

identified three steps in the snappi~g ot,'a,"link: 
•" •,. 

( ~ .. .,._ --~--. ,-

Iden ti f i cation of the symbolic name of the link 
._·--:.,,·:.;;,.~~'-- --~- ~:)··,'.;;·-;};1. ~:·~ .. ;·.:<.·,. 

Search for and mapping of the target object 

corresponding to that name 
.'.-:j .. ·. : .·,.. 

Translation of the symbolic link into a snapped 

link based on the previou~··mapJ)ing. '· 
._ ., I_; ·~ .. } . .f{H> :., : 

The first and third steps require exclusively access to 
'-~ i " t-_ ."·: '. ,r. 

the faulting domain because that is where th• symbolic 
•~jt ·' "•1-.,,_ j.. .·~ ~). 

link and the mapped link belong. The target object and 
.. ' 

- ,,. -.. ~ '.,, ~' ,/ ~~ - ' '.,:~ ' 

the target domain do not contain any information about 

links directed towards them •. ~!The linker,· ha; access to 
t ,~ '.·_ !.-f;~ .~ ~ .. '7' ~ ~£· .... '~~ 

the faulting domain and can thus handle steps one and 
•) .: :.: .. ~·. ~)'"·"· _\, , ';,\/:,~:; ·-'., :. -i-'"' 

three. If the target domain is different 'from the 

·. ~ -
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faulting domain, the aecond step aight require information 

embedded in the t~get domain. However, aearchinq and 

mappinq are actually performed by tbe J'SM in tl!-8 Mcurity 

kernel. The security kernel can acaeaa_in~oJ:DUltion about 

any target object. 'l'hua the linker juat calla the PSM 

through a gate into the kernel.. The FSK then aearchea 
' . 

for the target object, dec~de• whe'ther the faultin9 
·' ' .... :. t~ :5:~ 

domain baa the ri~ht to know about it, eventually mapa it 
' ; ' ,n' > -

; ' ~"· 1 ::,, '. 

into the faultiD9 addreaa a~ce and returns a capability, 

i.e. the logical address of the target obj~ to the linker 
'. •···, ;· •. :~' .-,~ •• ~~ '1: ~ . - _: :· - ' 

in the faulting domain. We will aee in the next chapter 
; (:· L .. :~-· _,.. ,; ,,,, ;-. ~, . ..- ... ~- i. • . 

that in some aye~, CCDPl-tary infOD1Ation about the 
. .,:-----~ > __ ,_ , .... r!~>:···."° 

target object muat nevertheleaa_~ ~aeted from the 
.;,>_ ::_, ~ . 

target doaain. It will be ah.own tben how this can be done. 
f ii -,_ i. -· :: __ {!~: : . 

We finally diacuaa the third problem, n-ly return-

ing control fros the linker to the faulting object 
•, . 

' ; -~ .·.... ·~. -~ '-. ' 

The qoal ia-th&t the action of the ~c linker be 
!, 

entirely transparent to the faulting object. The only 
• <> ' ~ ; .., v 

noticeable difference in the environment i• tbe now 
: ';; \' . 

translated link. Apart froa this, the faultinq objects 
-.. ' . ·, •, "'~" 1 ; '-.... ,.,. ' 

expects to find everything unohanved· 
, ··> 

The machine regiatera muat reflect the Mchine status 

just before ti. hardware fault occurred. For this purpose 

the linker needs to reatore the at.atua of the machine. 
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When the linker was invoked i.t i:'ecei ved a. copy of the 
• ''- .· ~ '·,._ ,r,.- > r ·-•-.,·:.····· ·:,. ~ ~- .·~ "':t ·- : ' r 

status of the machine to .firid:"''out' What causee! the fault. 

Restori~g. thi~u-status in t.he'.~c:h1iie req:ist&~1s must be an 
.: -·' -'~"-~ ... :·· _·;·~: L:i.'~ '.· _,-· _-:, ... , ;'.,I· 0.;·- ~'"--fJ.f V !:T .. ;._~ :·:·1_ . , ~-. « 

atomic operation to guarantee1 consistency of the st·atus 

as a wh~te. It would be a prtti;iJ.~·''yf~J.t~ion· ·£~ aii6w 
any. domain·· ~ther''th~·';:'th'e' ~~ri'~y-"ite'Ji~i;<;to'"~e~tor~f the 

''. ·,,,~.(- ~--- .,~~."'?~\ ·7 if.1-•S: ,, ,~,.·-· " . ., . 

done by copying data out of' 'some 30h5eci fnto tlie machine 

registers. If any domain c<>iUld perform such an operation 

it could •et the machine sta~:i 'to' i i?!iai·~- ''re-fleeting 

a subject in s~ othu do~i~'~L' Ttlis" Jodi'i"'be equivalent 

to jumping ~iglit in the ;~iddi~11~£ ::i,; d6a.f~ -~~d'bY..:passing 
::...~ >- · ·:. - ,'·.· - ··, '._· · ·: ) .. •,·· .·~···. , .... ,;T,''_ ~~ .,f ~ ,. 

the ant.ire pr~tec:tlo:ri --~-chanuii~"' ''1 a~ce ~eatorinc:f -thfi ·. 

machin~ status : r~uir~ •ec~Jlt; ',k~~1-15ir:f~t:i~9~s which 

the iinker <ioes not liav~ .... T~:1oxi!:Y !~~fui~:t~h .. 1ts 'to ha1ie 
;,_,·;(_. ~1. ~~-'° ... \M -,_>;-- i.:.t·:~ _:· ~ · -,~.-d:;f«.i~ ~-:~· L. -~-:t;,:;)~;~~-~ ,~ ·, 

the linker call the security kerriel. · A.gate must be 

in~taii~~f in tlie sec~ii:Y ·ke»~~~i' i~~ )fk~~· 1puiP<>ae': '''rile 
gate will examin~ ·the i6~~hin~:.:'alat~"8-: lit ·:rs ~;~~ked to _ 

" . ' '' ' ··> ,,., ... ,~-- ·-d-r ,., ... --~,,,.. • . . .; 
. If and when, proper:li"''~aJ.faatecl, .. ifie ·macnine restore •. 

status.!s _re&':toi'ed ~d· cJntiq1"'J•iiRPi.~~:gii;kh~o '~inertt.dthe 

fauit'':oc6urr~~in 'th~ £iuitr~ 6i:;~ect. :~-j'~aii<lit!6ri :,6!' 'the 
,- , r 

machine status- t~ ~ rei~or~~;e~~t~'a~t~~~i wii~f d'.o~in 
i~

1

definea by the Dia~ii~n~· at~t~;':•a !;i~Ify_ fbat th~t 
~~ ;:." . .-~. -:_ ....... ~::,•.~ ..,,t•f~,_.;,.. ~ :'• .. •S:-~·--; ,.1,fi':'.~; -: ; "'~ .t: ~ .. 

domain is the faultinq domain. Again; the latter ·mech-
,_+. ;_ z;·.·-;:~" -~~·,:,,;-~ lJ i )I-~. r :'- ,. ' 

ani•m de.scribed is one among :••v&ral' Poa•lble designs 
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of a feat'qr~. of ,..,..ral intereet whicl1.a11Y ~ting 
' .· 

, utilrlty ~~rt• unde,r ~ f()R· In aaay oaaea, the 
' -;. . . - . ' t. "· . ~ - ~- -~ -~ ;: - .~ 

si,nple fact of tryinq to reatore the ll&Cb.ine sutua from 
' - . . . ·. ,.. . ·. ' ·~·' _.; "f ._.._ . ... . . ~ ; 

the ~~ulting Aamain CAUllU C:ontrol,. ~ switch. to privileged 
1 , r-, I -, · ··· >; • ·.:: .f _ :; / ~., . : . - , . , 

mode in the •~rvi11or.· The re•tore i•ti-uction itself is ,. ·;/··. ~,. .,~·t .,-! :.; r _,·:.,~-· 

the return t.•te. Aqain we do p.ot elaiin autjlorahiJ> fQr 
·-· _, - ' '"'~ ... -. r· : ·. --

the mech~i~ just cleacr~bed. 

s. Cross doutia,in probleu 
' . ' ~ ' ~'.'. ·; ~:~ : . . :?: _, ' '~4 

The f ;i.J;&t two sect.ions of thiJ chapter have di•cuaaed :_ . _' . ~ >·- -. j- .- ,~-.. ~:; C1 ~' " , 

the init~ali~tiol) of the MCU~t.1 Jut~l and of the 
' - • • ~· l • - " : i 

dynamic linJt8r. 'l'he previous ••ct.ion hu then tiacuased 
'.' ' . • ~ .--- ' _,"- . ~- ,_..~-; ~~---~-'- ,):;.:_.),.,; ,. ·:: -~ i>..,· .• 

. the h~4ill9 of li~ _fal,\lt• by the, operat:l.on~l linker. 
. ' '· . ~ . • ' ' - ~. .. ·.i • . • . ::. • ' ._ ,,;__ : : " •. '! . ' ,_ . . ·~ - . 

The d~si_gn qy: 1;.herefore a.- ccmplete. It is not. We 
f J : • , • ,,_· •• • > >.. - .·' :< ·~-- ~-'-; ' . 

will now di•c\1418 a bidden prQbl• whioh we have qnly 
• . .. :. £. . • ' ,. . , ::·<,o; ;, ::: ~. ~ : ~~· .. . 

1:nc:lireC'.tly 9p,r~acbed ~d. ciu:e~'Gllf avo.14ed mentionin9 
/ - . : . .· :· . . ' ' ;,. . . ' .. ; : ' : '.'; -~:: ·;: . ' . ' . 

so far. i'be pr~blem ia, dir•ctly re~ated to the multi-
. . . . i ; . " ~:.. ·, \. .'. 

doma:i,n ••$>•¢ of the .oomputin9 utility. It ia a p.i-oblem 
' . ,. ' '·. . . ,· ',' . . . . ,· ' .. , -~:·····, . ·.• ' .·. . .. 

or general i,n~~~··t whicb exist• in ~ .. ~lt~-dollain 
''··'·· 

comp'1t.:~ncr u~ility. Our re•-U~ ~.- ··'°f:o••. it and 
It - '· ~ < 

uncove~ed it for the first tU.~ we believe th.at it may 
.. 

}}.ave beer). solved in part.icular c;:••• •lDK>st by accident. 
; f } 1 :_ .• - . 

In 9en41~al, it has been ignored. Renee we will propose 

a general eolution for it. 
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The linker is invoked on a link fault and completes 

its task by asking the security kernel to restore the 

machine status. It is not properly speaking called by 

the faulting object and does not properly return to that 

dbject. It takes no "input" or "output" arguments. 

Instead the objects it receives to work on are defined 

by the machine status automatically saved by the security 

kernel and the result of its computation is a snapped link 

The question we will now discuss is where does the linker 

store the snapped link so that the faulting object can 

later retrieve it? Or in other words, what is the 

nature of a logical link? 

In a computing utility where information sharing is 

a fundamental objective, special care must be taken to 

organize the sharing of program modules. In order to 

operate, a program requires working storage to store and 

retrieve data. One usually distinguishes three kinds of 

working storage: in a PL/l environment, these classes 

or types are known as external, internal static and 

automatic storage. Data modules or data objects as we 

ref erred to them in the thesis are examples of external 

storage. Many programs can refer to a particular piece 

of external storage. That piece is external to each pro­

gram and shared by all. External storage can be created 
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or dest~!(ed at ~y tiJDe an4,<J~P~"t<'~ l~,. ~•ired. 
AutoJMtic ·~~·on the otber IMn4 belcmgf,~O'~-~~yen 

pro9r~, i• DQ~ ~~~ad, is .O.J:: .. ttd .-:~ t4• ,p~99r~ .is 
• •• ' ' ~ < ' , •• : -- ' ··' ' •• ' ~ •• \. 

inv'*e,cl &114. di~ara Wbel), ~~~~,.r!J,'9ltiM frQll .~t 

inVQcotion 1;:,~Q.•tea. , A e~ ~ ~r. i~ .~ .· AJ.901 •c;dline 

is il typi~J~x~+e o,f aut0Mji9'.,,Wr~· .' ~~~~al. 

static sto.r:ag• •bu:ea f•tu .. of .«~~"c ~ ~~ 
"'::. .. ' ""' :· , . ' . ./., ,. ·-::_ ·:· - - ""; . ~ - ' - : - ' - ' 

exte;-na~ •~o.r;q•~ Li~• .•\l~tic •t~,r~'-e:,it ,.j.•:,_.i)riY&te 

t~ cme p.'C'09J:Ul on.4 not ·~~l~h- ~ L~tt qf:~•r!MJ. ato~aqe, 

its life t~. can be more th~ j~ oq.e .. )tavqe•ti~ 9f the 
~ - ~ - . ' - . - "' . ·' . -· .. ,, ' . ' ' . 

program. Internal static st~ J:tj:::~~i~~tipn -~. allocated 

to a p~-. .w.ben. ~~. Pf:?9Ula ~. ~'~~. tlJe first 
• • ' J, I 

time ~n a ~l..ni- ~ J.a. ~··~ ~-~ ~1n is 

destx:P)"t\d• 

tinuea t;o W..t pa~~ i11vooati~fl Rj.. A.-prqgr•, ~- lonq· 

as ·th,e dONin, wait;h. can:tai net .le ui.ate·.. .Go.J.nq. back . to the 
- , - ' ,,_ • > • - ' _, ·,~· , . ; , , ~-d . ,,. . " . ,, - , •. · • ' ' 

p;.oblui at 1.p.f~on abariyH in .~·~~*~.QI,. ~~;.:y., it 

is .cleu ~ ~ CQde .. ~..l-4'4.i# ,~ ~•>-. C4Ul be 

sbar:ed ~· 4i.f£cu,:--.nt aub,"jeat.$, in.. A*-ffe.~~,~~· 

SiJnilu-i.1,y,:·: ·~·.mal. •tq;c-., C~:-- •b~,, ~~· .'fith 

some precaut,.i.®a.: abal;,ia9 ~·~:'~~~.~ll~. ~inq 
dat.a.. Bowevu-# .. t.t may ,be daai.Dble, J)pt., ... f:9 a,Aare, J.,nteJ:nal 

'' \ ' ' ' ' • ~ o,,,,. <' .,,.., . / .,·. "-

st~tic~ and it is qertaWy: c.\e•ir~l.e,: np.t tQ. ~e .. auto­

matic storage. Let us consider the case of internal 
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static storage. Sharing internal,aita-:t.icilkoraqe.may lead 

to. t:mifli.cts .' einoe su.bject.s ia di£fer-1:;:: dllclai1U1° may ~arry 

on d:tfferent eoll\p\lt.ationswit.hithaaama.iprecedm'e. Thus 

mutual P,:otection and • independene&::of· o deahiru1. wi:l.l in 

. such cases requ.ire different •cati.c ator&418.~'.&teaa ,_to be 

allQQa.ted: io, each domain wbere .. a; p.roce4111rer i:a- cu:rent~y 

used. We will asaume such :tLCde in·ci:tu!t followinq dis­

cuaaiQ.D and, w.i.11 PliOPO•e a des·iga·.which,..,•l;l.oc:uea static 

· storage on e. per ·dom.U.·n ... ba•is !l :le · shollid nar. t>e . clear 

, that a •.napped, link· is a typieal •xa111>le '.of· ·an ·.internal 

static infona•ion i~... It is meanin9tv.a. o:aly im a 

given clomain,,dtaring. the exist.anee .. oi~.taat:,,domain. ·Hence 

in each .doJnaio··where.· somec11reoeaure,~objact~1ia:ocurrently 

. uaed, an instance of each· link '-•••d:t fr•::tbe,lproeedure 

is stored in- the. st.atic-atoraga:.ar" aaa.igned··co that 

p:i-oce4uie in that douaain •. 'l'he ••t of·'all·:li.nlts-isaued 

froa a proced.\lre is referred to ••·the.' litH!f!' sect.ton 

of the procedure.. ..Thus, an -~nstence•;oj_.1tJl•;~lin&age 

section of .a .tpre>Qtt4\ll'e exists .. in \each,, sC:otio storage 

~rea as,~qned to that prooedure··ii.a ·taesdOIMltos,,wlJere it 

is cqr•ntly used. Both. tl.:le liak,U ·and •tUJ.e,,,pwceciure can 

retreive the. appJSopriate linka9e :'aectioa~;llCOUciiBCJ.· to some 

system wide ~convention wMGh ia. left..;to.:tlb•:;dtacretion 

of ~. clEt,s:Lqnere of ·the system. , '. · 
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'l'he. hi~problea we mentionecl earlier 1• tha~ of 

decidiD9 how autic storaqe aAoold be.· alloea~4 Wbea 'a 

pl."ocedme is ~ to be, \18ed for U.' fiz-st 'tiM ~ some 

subject in, .,... dallaia. O:ftea this taek ie;· left. to the 

dynamic llnllw~ such·awkward a*'19a z-•alta:ia. a •jor 

. protection viol.a'tiOA ianance. We viJ:l. notr·- cti.llead wily 

and propoae a corr.ct 4eai911. 

Clearly we; do not want. ~ alloeate at:atic atorllfe for 

all progr- elPIOUt.a&le ia a giVM~·-.ata when we initialize 

that domain: it i•· i:apoa•il>le t.o acut.he,~e file.aystein 

to find al.l ~ exeeut.able · in, .U...bd'ollaiA an6: allo­

cate a ta Uc:, atoaaqe for theaJ it. i•K a!Jlply:· illpoanbl•· to 

know in. anaace about- all ·prOCMdure•·~·· ·ta th• 

dt:>ma:i:n.becaUlle ef the· ~e upeet d•tll• file..,..._. 

on the· other •aact ,.. want to. be certain that -.a a pro-

gr aa is in~ for the first t.ima· in .. a fi"1l *3baha, 

static st:qr&g41 ia alnad.y alloea..a'fo•it•·liAJc.ageaec­

tion so U:at the encu:t.i.89 aubj..- caa} 1oOk: it up. when it 

needs to follow>a link to sCJM:e1Ct.ena~ Clb-'ec't. 

'l'Jle fine solution whicm- • t• 0 :to t::h& ·Jldnd is to allocate 

the apace ·wlteA the Object ia iavoJtad .. fo• ·tit• tirU.· time. 

On tbe aa9111Ption that aJ.1 •ol>j~• _. :iavoll•d~· bf''· ayllbolic 

names and given that all s.yml!)Otic, linlltl :ue budJ.84: b:tr the 

linker, we conclude that-tti.'linkar ah~ al.IOcat:e s"tatic 

storage when it discovers it is snapping a link to a tar­

get object which has not yet any static storage in the 
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target domain. Although thi& s~ to. bE!··a cl-ean .. · st>lution, 

it violates protection. Ind~~j,+.J.f, a· fJ'llbj~ct. c®id get the 

lo9ical addres• of a t~;i:qet c;>bje,~c,py q~•ing it. or by 

approp.riateC'llla to the· &eo~.i.<~l' lte~, .. it.'1i9-bt call 

that object directly by logipjll,.ad<\i•-s·•d·noj:. .~y sym­

bolic n~e. I.n. doing so, it· will b~••>tae·linker 11nd 

will epd up e:xecuting an o};)je~t.~'CP jla,a. ·11ot been .pro­

vided w;th static ~aqe.; thia ·i.e liJc,•lY to1 te.unina.te 

the life o.f the aubject .. Prot~~tiqi: W*t i,~~.4.s perfectly 

legal as long aa ·tbe subject llur~fl, QJtl~·· i~•lf. in. the 

current domain. But if the. ~~gai \Oilj>j~. the . .wi>ject was . 
calling is a gate. iuto. anoth•:t:;~ia,,, ~Y'!"~iag the 

linke~ could caua;e d~e to ~j J:M'~"' ~iJJ., b11 p,ot 

initiali~ing a~e ata~ic &rl~orCMJ.fiJ, .N; e~ • ._, This of 

course is a violation Qf the p.r~t..tN;~1-t4>f ~. oth,r 

domain. In addition, having,t.he; l.in~er in the fo\llting 

doll\ilin, allocate st9~&ge in the ta:J"-~·.doDWlin ee>uid be 

very hard to ach4teve. 

The second aolution which come•. co: ~eua.i.nd and 

Sf!_,. ptarhape eel4ier to·i1DPl...,.,tis.~o,llake:etatic stor­

age . allpcation a fuac·tion of tbe F&lb ·· SLoce usin9 a pro-

cedure in a domain requires mapping it into the address 

spa<:e o:f that dON..in 1 the· F~ is:9uacuten,,to be invoked 

for. any pro9edui-e e~ ti•e that~procedu2:e is used in a 



di!fel'9llt. domain. '!'hue the fSH'OOUld at ttt.t time allocate 

static atorao- to that: ~· itt ·tt. apps;"Opriate domain. · 

'l'be FSM i• •r• likely· th-.n ~ liuer to hwe the. oapa ... 

bi.lit.i• to Clo so. UOW.Wli" thi• 4Hlp •l•o· V·lOl•w• pi'O­

teetion. Si.nee 'the linker invokes the:.ftllf., by ~lically 

referencin, wiWleut even involtin9 all <Jatea .t.nto a dolbain B, 

a domain A could oi-qte a _.., of. link taulta eauainq static 

storacge to be allocated to e-.ol'tp;t:e i•todolulin :a. such 

maas allocation- could oYerflow the atorate available in 

doinain B thereby violating it• pr<ttectionsinee it would 

have been tri9fle~ by doaain A. 

M our reaearotl natµrally c_. aci-oa•• the question 

of static atox::age a'llooetion, the aboW··· probl• waa uncov­

ered. Obviously anet.her solutionhild to be proposed 

which would ael¥e the protection probl•· In addition, it 

was felt that static storage al1~'t·ion · t'Ud not· f\Vlctionally 

belong to the dynami.e linker to •tart wit.b.. Thus o e0rrect 

design, but also a much cleaner •.rnl ~ Et'fficient d•aign 

is proposed be.reaft•r• It is b&ae4 on the ta.ct that static 

stora9e alloeation iii tri9qe1red by the dotaain·tt.selt where 

it mu•t: be •llocated. Thut no pl!'e,eeti.on Yielatton i• 

possible. 

When execution of a proced•re &Dje<rt starts, the sub­

ject must, according to the· syatea con-.eni:ion alrea4y men­

tioned, retrieve the linkage seQtion of the object in the 

- - --~··--·-----------
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current domain. We suggest that this search generate a 

hard'wa're internal ·static< :stOnge ·f-auit··)(ff8;';£aultl when 

and if it fails. Thi11· :199, fa\t'U:: aftitni!tf1W h~lea ·bY 'the 

system in a manner very similar to a link fault. It 

should be passed to the faulting domain. .An~lflri:s of the 

machine>-statu• would tell'!wfiicb''Ob'jl!i:::t· req\lirett:wtatic 

at~ to be· ai:Ibcatea. , stit.'1:!fc ~o~".VC>Uld be1 created 

in the ·faulUng 'domain; for ·~:£au~~~ject,_ · After the 

machine statue· ls ·~etttorett, . ~~ -Ww>~11WU:ltf wcce'rifully 

retry t:be Harcrh. Of CC:>urstt fUlit-'·~lj.iki§L~ ·J!i~' 'ha~f to 

be· prelinked} \me 

static; storage' alloea&d 'flt( ddna!h '·i!ftHll.al!r~ert~ion to' be 

operatienal. "' :· · '"· ~ •· ;, · 

The desi9n we·•. have · j'.us-t p~ ~t\Mlrantees the pro­

tection t>f all- dcxiaJ;iHt :~U8tJ :if.tim\t \tt~8' :.-11oeation 

is ma~· independent of -aynuu.e lJ;'jbJt~: .. .l. ~c&;iall~ion 

is no ·more tri~ .by :the-' •~1i'm"«' ~"ran8C>11t -unt~us­

ted object, · bll't by:·~& :~iidn ldE'·tlfti"Olijk1i'·it:e.1'f 

which needs •~ai:!e KC>~:. ··'Ifie: ~'icJtf!'il~ frotn the 

simple fact ~' no obj&ot:, ·aim ·'Pfl~eularlY ritf qate into 

any domain, oan· depend on a c&l.~ ~<ti:> ~fom any 

task in qenera:t, ·;s"tta~ie· 11it.ora~~ ,:a1~on1 in: parbicular. 

Given that'·~111ik11 a~ lPf'r :aa•ai~.-:1c; iti!elnsl ·it,. is 

now clear why the security kernel must communicate a copy 

of the linker links independently to each domain it 
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creates .. This c:apy is ~:t.&l.led iA :the.,•tN:i:c ~r~e 

area ot the JJ.n&er in tbat~in. 

6. Sa~ 

!Dbiachapt.er baa ~t.t.emptaci, t.o pseae• aaompa.eee 

design of ,a qn-.tc J.J.~ ruDDilf>8' ~fl d;Ma·. ~w:it:v 

kernel of a ~ .ut.il~ty,.. Bc:Nr .. 4'&iA ~-- have 

been di•tincJ•hed.. • U; ,a.. Des ~ fi:rR tbat 

the S8Cllri.;tl,y ~l cou.14 be·~ .-x:•~ttJ .w~ the 

hel.p of a ~ •. J.;iQker. It,-..~··~ .. ~ :the 

dynamic l.~ ·~.be .. ..ae ~'¥0.iL,\~ ,iJ1 ,.u ._.i,ne. 

while being prelinked only once. It baa~,-... 

expla.ined bow .t.fte .J.£,i>IJ#. ~"~ .f.:J.-.... JrUially., the 

hidden· :Alt.bolash f.~w ~l.M ~ ce~o ·~ 

allocati.• Mt. a :nm~ti~iu .,..~- _..dM.~•fll!•ci.. Th..i• 

oonol~ .. ·the Piff""~~~ <>I· .~r 9Q11111P~~ de&i9fl.. The 

followiJlq, ~l: wi:ll i.·liu.~· ....... d)f .~ ooneatin9 

utility lllO(ktl &04· ~ pr-lbncip., .. Q( W. . .-~ »¥ 1~ti­

fying t~ OQllllPQIMNlta ··Qf the ~,.~Q tbc?•• Qf. a real world 

sys~~ ilPP~•Y,ing the qesi,.g'n.t.o .-. ~1'-.. ~cl.adin9 

rGma,rk•. 9n ~· .-ob.J,cll inp~~i.~ ,~~lrl ~~ace .the 

reader 9t. th• C...~U.4~Y and r-.ef~a. ~ ~ :design. 
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IV. Implementation 
:;, 

1. General 

In developing our thesis we have first discussed a 

computing utility model which enabled us to giv~ a formal 
; ~·: '':;- ,i '~, 

description of the operation of a dynamic linker. In a 

second stage we have presented and discussed in terms of the 

the model the general 

ity where the dynamic 

des:ign 
'' 

linker 

features of 
!-.: 

is executed 
( :~: .. ~ 

a.computing util-
; ' 

outside the 
' ; 

security kernel domain. We will now build up the third 
r ~-

level of the thesis. This level consists in demonstra-

ting the feasibility of the proposed design by describing 
. ~ - . ,. ' -. : ; 

and analyzing the details of its implementation on a real 

world computing utility. 

The Multics system has been chosen as a test case for 
-"',,_; ...... 

the implementation. The Multics system (15-18) is a com-
-- · "~:':' r{ , .. ·_,, 'i(t;-. 

mercial computing utility developed jointly by the 
- . ' . . , . · :;t C· ; .- , 

Massachusetts Institute of Technology and Honeywell Infor-

mation Sys tens, Inc. It is supported by the. Hone~ell 6180 ,,. 

computer system. It implements a powerful virtual memory 
' -t .. ,~ ": _J':• '.;::J ' 

time sharing system with exten~ive info~tion sharing 
•.• I ,; :-_, :: ', .'~ ' ,·.~ .; ' 

facilities. In addition to being easily available for 
r 

1 ..< I.• 

this research, Multics was a very interesting test case 
~ . \; ~: 

i~' 

for our design. 

Firstly, Multics was designed with protection of 
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information as an initial objective. Protection has influ­

enced almost all of its design features. Protection 

mechaniams are embedded in most of the functions available 

on Multics. Even the hardware of the 6180: procesaor was 

designed to support the concept of domain (15). 

Secondly, a recent project has been launched with the 

objective of defining and auditing the security kernel of 

Multics to certify the correctness of the protection 

mechanism. Since the dynamic linker of Multics was 
. . . 

initially designed to be executed in the security kernel 

environment, the present research matcb•d exactly the 

objectives of the certification project. 

Finally, the prot•ction mechanism of Multica matches 
< - , :~· 

very closely the domain protection model as described 
.. 

earlier. Hence there is a direct parallel between the 

description of the domain baaed design and it• implemen-

tation. 

We will divide the discuss·ion of the implementation 

into four parts. The followinq two aectiona will at the 

same time briefly describe the general de•ign features of 

Multics and match the real sy•i:em component• with the con­

cepts of the computing utility model described earlier. 

The next section will then talk about a· dynamic linking 

speci£ic:atio111 on Multics to familiarize the reader with 
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the nature of the functions which the dynamic linker is 

expected to support. 

the reader with a discussion of the implementation of the 

dynamic linker. Emphasis will be put on the discussion 

of selected specifi~--~r~bl~~ ~;~~~~~:a-ci~~(~ imple-
, £ ; '. I , : i ~ 2 t 

mentation. We .do not claim that, t.tul-~~-· . .tp be discussed 
: ; 

~ '. " " 
constitute an exhaustiVe list'of all•pJ.-oble• Which the 

~ ~ ~ f ~ 
implementation :faced·. Out of tlii···~fetp·-i~a·£· of prob-

. - ~; ~; ~ ~ ~ 

lems encountered during the impl4'me~tatioJi, we ;have 
.. . . .. .. . •• ·-· .. ·--· ., ~·-··-"--·,. ·-+-"·-1--····c· ...... ~ 

carefully selected SJ>e~if,ic problelllfl w~i+ t.fe k!8lieve are 
• I • 

instances of mor~al .p.ro0J.--.~·ii9ner is 
! i 
f i ' 

bound to face on any aomputin9 utilitY: 1mf!~ •$Ile form or 
·····~ ... ·-·"-. .,.,.,.., ...... _.;....., .. _ .. ,~>·-~--~- -·~--~ ._,.,~ . ....\. . 

another. 

2. Information Protection in Multics 

The equi va-lent·· of .. a domain- ·in-Multik•· a a ring ( 15, 

18) • Rings can be Viettet:f as a set of domains if i th a 

linearly nested ordering of privileges. The set of capa­

bilities of. any given ring is •. a~et. of ~· .ca,p~ilities 
: ' ; : -. !-:_. "< ;: ·: ~ ~~~-~:I-~°':~· · .. , ·-. ~-~ _,;. !"·. :~ ~ t.f1 f ,:; j ':~-. \_ :.~~; ; 1" -

in the next most· privile(jeft'rincj; ai~ribrlf.dt4ta."in 

figure 5. The 6180 hardware processor aupporta up to 

eight rings for each user. The eiqht rin9a·are numbered 

from O to 7 by decreasing order of privileges. Because 

every ring has at least the capabilities of the next 
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Figure 5: Multics protection rings. 
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higher numbered ring the concept of gate exists only in 

th&' d~•ra'Mrectiori'o~ cl:ois.;.·ri~'::'tia11s-~L 7t'iubject 

9~tinq·: fnhflnq h}tiihl;e" ask Im~ •lsiiow' to' a- gate 

·'if- fie. want• ti&·· obtain\ thef e!Ktt:a '6.pi!>lil t;f~i df1 ~ring 1n 

(ftl: 1dltall~t'· that\'' ft) l 6n' ~he· otlir"·hiiic:r~j 'i·~-.~je16t: execu­

.' tin~"-i.n~.; rittg. ttt'ibcl'"willll\'9 -eo-~1 mtive1"'tb:r:ritig 'ii' (a~il'l in 

stna1ler~tha!f'!i1 eanc'·free1y 'a(f18o. , . . !.~i !~e~ '6f a gate. 
· ini:o i'i:i\g'!\ for rlnij'il 1:s:1rre1~t. ~:.;~,,; '- -,'.,,. 

All<·fiserli 'li>resulnaoly)'''tf:uitltfiiviiei~ityi~tnel'.·'more 

than their own programs whichi liit"''-~~Hn11Wg8'"" capab1e of 

causing trouble. In turn they probably truet their own 

proqrams more than &ther lis1er 'iPprSjt-atii~ ::t r·triisi ·relative 

onttria9 e£~~,~~ah be s~~iPt:IVthe''·~elative 

ordt!!ring <>fi: riiitts'i •· i.stnee th*·'' secuitf11rtf.ffte!. 1
• iiV by: . · 

nat:ve"tlle· ·iies1:1''tru•twerth1'-"iit."..:c.)ffi~6grw';·.: it'·fs tiesigned 

·to be'; exec'1.tid ''in·' tinif''0:.:; 011 a'tai 1 itu~t ~ i8dl•ted/in 

·this' ·rlfttj'1-'from,•v-*~lngc5e!ae' .. in'.·:itti.i 6t1Vl~C>nment. Hence 

t.hl\! rewt,''of. tlie s1apettisor'-'81\6~1tt 1;tie :tij6d€ea1:'t6 r r!'.iric] 1. 

Perttapi npr~~rald ·~tmaer·:··dev~r8p.Ut"l3i111!hifi-.nsftf~ ;·pro-

9rama 'of''.;i:he ·supervfsar3 sitcfu16 be~ttliti1!.Ml1 fn :i:tf:ricj 2~' 

, : .. · ·· 'l'hia idea<:14··~z:*&t.1y.:)J!>eftt~ 1£uafed; b"Ytf•e~.:-l>tiotfimS/ .. 

eomi\ai'ldi~'·>lcciapfiefs··'and"tc3ther'~~1i'118fr•a!iy1refikted '{to 

the ·adt~nfl Of~;liseJ:s ~Cart-~l:Je0~cti.ted 'fa rfftijli!;H3~· 4"MCl 5. 

The· noml 'Saia·' is ~'ring : 4 .' TH.t:iHli!clli etltf=uai4!ir . tti· '.if!xecute 
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protect~d subsystems in ring a on ~. a••Ul\\i>tion tha.t 

everything in rinqs below 3 is ttua:ted and will no.t •ub­

vert the sUbsystem in ring 3. A U.er can also test un­

t,tuated progral1\s in tinCJ ·5. Rill'• 6 and_ .1. are a.t\~1\ttely 

virgin: no function of the operatinv .·system. is av-aiJ,.able 

there. They initially have n~ capabilities fer an:r vate 

into lower rings. Hence a user llaf use theae twe rings 

to install an;v two-ting syst.ei\ he went;.• an.a. keep it en­

tirely within his control. 

3. Infermation Storage in Multics 

The Multics equivalent of a .1Rjfl;,t ~s .a ~reees•. A 

process is defined by a site of eaecutJ.c>a and a logical 

address space. Each process kaa".it-. c,wn a~di:eaa $pa~. 

A process is the entity repreaenting.a user in the machine. 

The address space seen bya \lSer .in a twQ~dimensional 

virtual memory.· of very l~rge cap.,_d~tM ( 15) • Along one 

dimension the memory is partitioned into segments addressed 

by their order number. Along th~ other dim~nsion, it is 

addressed by word. Hence the lo .. g1J.4 M\4r1ts.of an object 

in this virtual memory is of the for• (s.,w). .where a is a 

segment nwnber and w a word number in,. that segmen:t:. The 

format of suoh references limits the size.of the virtual .. ' . > i'' 

memory to 256 K segments X 256 K words. 
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Multics file system is a tree-structured hierarchy of 

catalogs. Catalogs are called directories. The leaves 

of the tree are called segments. A segment is the equiv­

alent of a collection of objects in our model. An atomic 

object is an entry in a segment. Directories are also 

atomic objects: The unique identifier of a directory is 

the tree-name of the directory. The unique identifier of 

a segment is the tree name of the parent directory concat­

enated with the symbolic name of the segment. Directories 

and segments of the file system are of course mapped into 

segments of the virtual memory when they are used. Such 

mapping is supported by the FSM. 

The security kernel of the operating system is 

shared by all users. Since it is the very first thing 

which has to be operational in any process, it is the 

first thing to be mapped into any process address space. 

Hence the security kernel always occupies the same loca­

tions of the virtual memory of each process. Furthermore, 

all rings in a process share the same address space. 

4. Dynamic linking in Multics 

The previous two sections have established a parallel 

between the Multics system and the computing utility model 

of the thesis. Our second step towards the discussion of 

--- --~----------- ---
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the implementation will be the statement of dynamic link-

ing specifications in Multics. 

The Multios system supports. various· h.i9l!t-level 

lan'<}ua<jes b~t: was initially a&Si~ t~.~rt: PLf:t .. 
' .- ... ·~-· 

Most of the system pro9rams o·f Multi~• •:r:e written in 

PL/l. As the address space of a Multics process is two-
• ' ' ·; ,1 

dimensional it was both easy and tiesirabl~ to have a two­

dimensional name space for PL/I s]'Jlbolia names. An object 

seoJie nQ.e or entry name is Of t.he form segname$entryname 

where s~9'name is the symbolic name of the se9-

ment containinq th~ entry and entryna~ is the syl\\bolic 

name of the word off set where the entry is located in 

the segment. 
\/ 

Given a source program (or source segment) any com-

piler generates an object program (or object seqment) 
l. , ~ " . • 

which contains three sections as described in figure 6. 
j ; 

The last section contains the pure.executable code of the 
,,_.. . 

program. The definition section contains on one han,d the 

list of entry names and word off sets of all entries in the 

object segment. On the other hand it contains the list of 
'r 1 ;; 

all names of entries into external object segments which 

this object segment may reference. Finally there is the 

virgin link~e section. We insist on the word virgin 

which is used to distinguish the present type of linkage 
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Figure 6: Multics object segments. 
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section from a non virgin link~ge section which will be 

derived from the virgin one and is in.the static storage 

area as described in the thesis. The virgin linkage sec­

tion always remains virgin and is sharable. For each ex-

ternal ob;9'Jt. referenced in the so~ce .pro9t:llll1. ~. link -is 

inserted in t~e virgin linkage section~ 

A link i• a triple (s,w,f). (tJ,w) is a logical 

address as defined earlier and f ia!a flag. In a syl'Qbolic 

link, -the-fla9 is always a bit patttern indicating, that 

(s,w) is invalid. Attempting..J;.o us• (s,w) as such will 

cau~e a link fault. At. this pqint ~(s,w) somehow points 
····~·-,<{ 

to the symbolj.c name aaaociate4 with the link, in the 

defini:t.i.on- .aeetion and not to the tfirget obj act Off the 
{ 

link. When the object segment i- f~rat executed in a 

ring, ~~atic •torage is allocated £pr it in that ring. 

The virgin linkage section is copi~ into the static stor­

age ar.ea. y:ielding a non-virgin lin~g.f, .. ~~.£t:!~·. The 

address of the non-virgin linkage section is stored in a 

conventional location where an executing process can 

always retrieve it when it uses the object segment. When 

execution encounters a reference to an external object, 

the linkage section address is used to look up the corre­

sponding link. This triggers the hardware fault since 

(f) is set. As a result of it, the linker will snap the 
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i 
link by replacing the invalid (s,w) by t~ejvalid address 

l 
of the object corre.sponding to the entry n4'me _,.wfU.:l::h · 

caused the fault. , The fault flag (f) will:~· tur~ed off: . 

to'' indicate the validity of (s1w). We 

link to the target entry. If and when 

~ ""'~a,1.;w.;~·~~""'·"'·-·"'l.r"!'<' ..... ~.,s .,,,._,, 

nfW;have a snappeld 
! ! : 

f.hef same link is 
! ' : 

used again i' the future by the same ~r frocess:---no 

more linkage~ fault w~~l ~e t~~~n~ . 'l:'9 .... ~la7~fy the above 
' ., ">.'.!: ~.:- "·- I::. -~ ,,1;~ 

dlscusaron~" '1:he si t!uat;ion- Is ictu~e<t·,,;;:9_ ttiU're--Y:··-~"~ ... '"" -
· . · , - _--T --- -~---·-·:--~-~- · ·A r~T-· --~- . · . 

In view, of the : a.ho.Va. 4eaetip~on, ;<iwe ! F-.now:_pres.ent 

a simplified. basic funet-~al··bloek diagraln---0£-:the: . · 
.L\ , ".) ~ ~ ~ ~ 

dynamic l~nker (see figure 8). On a link fault caused by 

object A (see figure '1) ?:'fthe-;tfytld!@11fnking driver is 

invoked. It analyzes the machine status to determine 

which link caused the'Iiniaijtifa!iult~1ABy foll~wt~i 1 1;~e - r···----·. -""·"'-i:"•·-- ... 
pointer (s,w) currently in the symbolic li~, the'.linke~ 

- y-, 

finds the s~li<t_,name B $ b correpsondinfl_ to that link 

in the definition section of the faultinq objeQio--·.l. It ' 
\ /,.' I • ; . , 

then passes name B to ehe segment search d~iver. the' 
I~· . 

se9-ment se~rch driver trdes a set of sea,lcf-rUles"'\c!treo-
' : 

tory treen~s) on the FSM until the FSJ( f~nds B in one 

of the directories • The :FSM then map9 i B ifito 'thlf- aaare1's 

space of the fault~n9 ~f<:)C8fl~ f!:ld ,.~ftJllrna J;he segmen~., 
... , '·- ·. ' ,:_ , ,_ !' J;.•. - ; ' 1 

,..,._ ,_,,.. ~ ,.,_ . ....,.,_ •'"~•of,• •'-·· ,,.._ i : ~ . 

number s of B to the searbh-l!ri~ w)iich ilf~ re~'Qnt$ 
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F I gur e 7: Dynamic linking 
on Multics 
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Figure 8: Functional diagram of the 
Multics rlynamic linker. 
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the se9l1\ent nwnber s and the name b to the entry search 

driver. This one .scan$ the defW~ aectJ.9Jt QJ segmen~ 

numbered s (i.e. B) until it finds the name b,. It then 

returns the offset w of bill .B to the linkinq driver. 

The dynamic linking driver finally replaces the address 

{s,wl in thl! symbOlic 11b1c bf ttul amtrEJWlf'"{l,W) of-B $ b 

and turns .off the flag . (f) to ·w&ke the link a snapped 

link. The machine status ~, .t,hen be restored and 

execution can proceed. 

We do insist on the fact that the above description 

is a simplified strictly functional definition of the 
.. -...!t. 

linker. In ,_·~·should it be aaa~d ,,~t the linker 

contains pnly ~.modules and th•t li~,pappens as 

naturally as we described it. In the ·course of this 

chapter we will progressively complicate the description 

we have just given and disCU.ss the problems encountered 

by the impleme~tatio,p. This section conclu~s the 

descriptive·part of ·the chapter. We will now apply our 

design to Mul;t:i.es and present selected aspects of the 

implementation. 

5. Initialization 

In this first section about the implementation of 

the design, we will outline how the security kernel and 
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the linker are initialized. This outline will be brief 

because no particular problem was encountered. The im­

plementation of the design was relatively straightforward. 

The Multics system is initialized by a dedicated 

initializer process. All modules of the security kernel 

are loaded into the system from a generation tape. 

Immediately after the loading, the virtual memory address­

ing mechanism is initialized so that the initializer pro­

cess sees a regular virtual memory with the restriction 

that the capacity of that virtual memory is temporarily 

constrained to that of the real memory. A prelinker is 

then invoked to link together ~11 modules of the security 

kernel which are read in from the tape. After the pre­

linker is run, miscellaneous initialization tasks are 

performed. When the security kernel is entirely opera­

tional, the prelinker, as well as other initialization 

programs are unmapped and thrown out of the addressable 

space. We have described this mechanism for the sake of 

completeness. However it existed before we implemented 

our design. We used it as a basis for our implementation. 

We now turn our attention to the initialization of 

the linker. Since the security kernel is initialized by 

a prelinker, it is all but natural to use the same pre­

linker a second time to initialize the linker. Actually 

the implementation uses a hybrid technique involving both 
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a binder and a pre linker. Multics ptovic!es its tisei-• with 

a binder of which the goal ia to take MVeral obj~taeg­

ments and to merge· them into one which ha• only one text 

section, one d•f ini ti on section ana·C cne ·· Vif"9in link•9e 

section. Of course any link between the 6ri9inal dis­

tinct object tegments subldtted tO the.bil\der are directly 

translated into relative offaetiJ'Yithin the ttsulting bound 

obj'ect segment. ttfie bin&ar ·was used to bind toqeth$1:' the 

modules Of the linker, i.e. the modullita'.in•ide the main 
' 

box of figure 8. Consequently·' the only lint. is111ued from the 

bound 1inker,·whidh the binder oould ndt tratl$1ate •re 

links to the FSM and links to .externat~tiata bases. Notice 

that figure 8 shows only one lime· "'to the' 'PSM. In 'reality 

there are severa1 such links. A:a we sllid earlier fiq4ire 8 

is only a simplified functional diagram. ·'l'o be more 

accurate toa., the links to the FSM a~· itctttally 1~ihn to 

ring O gates since the FSM i$ in th• s~ty kernel and 

is accessible only throuqh these gates. JtlSo- tbe links 

to external data bases are not re:Prliftrited in t"i9Uie 8. 

The external data bases are error COde tables 41'id system 

data tables. They are used by tbe linker but' are not 

really part of it and do certa1inly not 'belt't:ttq,in its 

functional ~iagram. 

The taak of the prelinker is thus to snap the links 

from the bound linker to the external data bases and to 
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the security kernel gates. The operation of the prelinker 

m~tches '~JC:actly that -desc~iti~d- £~'-'~ :;~eri~~al' case. Since 
· ·' . . __ - -. "i?:,; .. t~~-~·~i L ~s:~'.":H)"'l>.f . . ': -~:-. :· 

the prelinker does not know abo~~ any fil~ system, (even 

·. ·'' . •, )<..;-=~-~.i <·#·;.'. ::'·('1i···'•t;;~'~(~;''o ,I 

security kernel gates are catalogued in the file system 

and sto:fed ori seco~da~me~ry) &"=COpy 6£ 1:~~h ._;dUle must 

be Toaded-\nto the ,initializ~r ~ddr.i~:s sp.i~·-·froln. the · 
. ·"'.':" ! < ~; -- ·-;_";:!:~·;::· : .. ,_: -~:J_\~' l. -~-< ... )· '·-· ·-· .- - ,' 

_system generation tape. The bound linker' is loaded with 

atf;'ibutes such th:it it does<~n-J~· ,;,ge~ prelf~ked; as 'a m0dule 
. 1'~ -. -~ \'. y ; .;, '.: .{ ~ » --~t} ·i .-· : 

of the. kernel .... Instead when 'tne· kernel is in'itia1ized 

~nd · j-\:lst before · it throws the prelinler: ou~' ·(jjl(~i ts address 

Space I it invOke's the prelirut~'xf, A ~jebbnd' t~ _,to, 'pre1ink 

· the bound liJlk:·Eif. iilie prelirucer ·J:itifids :.a· lf6rive' ritapping 
. - ~- " - ; ~· : { '; ·._ ~ f'l ~-- r~ ·""% ~ } ~l r - ... :· " . ·-· . 

table and a snapped liriks 'table as atated~in'the general 

design. In the particular'· ~ase·· of :Muit1g-~; 'the ~happed 
;,_,.._ .;· 

links table is simply a copy o'f , 'the 'virgin linkage section 
. - . . - ~' . - __ i \ • .. '· .;. ·-·:=.·: '.;.~ ::·.- ..... '-~ ·'~·~).-'_ ~ ·: ! 

of' the bound linker . where arr· .-ynibOfiq -links are' replaced 

by sn~pped links reflecting the fictive LlUppirig ~- . The 

fictive mapping table is·- a 1ft£'le ~~J:e 1nferee£i~g; . Since 

there is only 'one addre~;· sp~ce i>ei:.prgces'J 'c&non' to all 

rings. lnst:ead -of one '~iir. piodess~ ai1d. per·:f'ing', LtTle reader 
·- --~ . _. , 1 ·t ~, r ... ; !) .> · .-... -; t.:«~;: _. ·,1 ;- }_ :- ,.. L-- 1 ... ,, ;· 

may wonder w:hy a fict.ive mapping of the linke-r~ the data 

bases and ~ecuri ty . kernel gat~.t ;[~' -n,;J$~il~ry ~- ·' couldn • t 

they just stay where they are?' :The ':~~ti~f i.s "negative 
""'\ 
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because of the peculiar way the ~e<?UX':i:t~ kernel is ~a~ped 
',_.' 

into each proce•s address space. It is.a convention that 
,. ' .. •• ' ,, "> 

all segments which are part of the secU,.ri ty kernel du.ring 
. ' ·~ : • 1 - ~)i; - . ~:. .· .' ~ 

regular operation are lllApped into the lQWeat .•eqnaeat-: 
, • ' ;;::. " ..; ..;" • c •• ' ,• ' •I• 

numbers of each process addreas &Pft.oe. Bene~ all lowest 
:~-, - • • '>" • ). •• -

segme~t numbers are reserv~ for. th• kernel ~d const.i.tute 

some sort of private address space. No such segment 

number is ever used outside t!Je ke~l. Bence, even . ~ ,,. ' . 
j : ~ -

though the linker, the e?(te,~l da~a .. base• aJ1d the. ,security 
. -'; /, 

kernel gates are in the addresa a~ce during- initial:ization, 
~ ; :· ~~~-'.!, .. ''"'. .. _- . . i<. --~-

they muat be r•apped ini;~ hi.qher ~~~t n~rs. for the 
' '··' " .'. > " c " 

higher numbered. :r:inqs. TJlat f icti~ map_ping. Vill. pe valid 
' ' . : . ' :. .~... ' ~- _,, . ~ 

for all rings . Cl to 7) of all pr~4aes •... To fi.UlllllNlJ:ize~ the 
•• c + • -- .., •• • • • - • - • .{. 

:E>roblem, althOUCJb the address space pf a_, e,:rocess is CQDlmOn 

to all rings, a fictive mapp~nCJ mu•t be insti\lled b~ the 

prelinker beca~e som:e specific r:l;l,lE! .<:?,uta1 a pi.ece out of 

the process address apace and ttp:ne it _i,nto what maY be 
' .. ;: - . . . .' ' 

reqarded as a private kez:nel addr••• ~pace. If this J:;"Ule 
' f :> . ·:;: 

did not exist,_ clearly, the init;,l._-~ •,•~?i~9 could be. 

, kept ~d be the fin al real z:iutPP.i?9 ~ Af te~ the two tables 
• . ;'> ·':°' ' '~: 

are _ <Jenerated, the security kerne~ ttµ-ows awa~ _ its capa­

bili tiea to acces& the prelinker, t,he linker .,rid the ex-
. ' '" . , . ' ;.: . :~<··. .. 

ternal data bases by simply deallocating thei~ c~rrent 
; ,,. ~' ''. 

segment numbers. Remember that the linker and the data 
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bases are still stored in the file system on secondary 

memory, so that the system can retrieve them there later 

on when they will be needed. Of course the two tables 

built by the prelinker may not be thrown away. Since 

they will be used throughout the life of the system each 

time a ring is created, they must remain permanently in 

the address space of the kernel. 

We finally come to discussing the task of enforcing 

the fictive mapping. This task is also straightforward 

and identical to the general design. In order to operate 

correctly, Multics object segments need a static storage 

area and an automatic storage area. Automatic storage 

is allocated in a special segment called the stack. This 

segment is used as an Algol call stack. Static storage 

is allocated in a special segment called the combined 

linkage segment (els). There exists one stack and one 

els per ring and per process. There exists a system 

wide convention stating that the stack of a given ring 

always occupies the same segment number in the address 

space of any process. This enables any process to find 

the right stack in the right ring. Each stack header 

contains (conventional) the address of the els for the 

same ring. This enables any process to retrieve the 

right els for the right ring. Given these two conven­

tions, it is clear that no process will ever be able to 
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touch its els in a ring before it touches its stack in 

that ring. Hence the convention is that when the process 

uses its stack segment nwnber for the first time, a hard­

ware fault occurs which is interpreted as a ring initiali­

zation fault and triggers action of the kernel to initialize 

the ring. When the stack and the els for that ring are 

initialized, the kernel invokes the FSM. As stated in the 

general design, the FSM uses the fictive mapping table 

prepared by the prelinker to map the linker, the external 

data bases and the security kernel gates in the process 

address space. Finally the kernel copies the snapped 

links table built by the prelinker into the els just 

fabricated for the new ring. Control is then restored 

into the new ring. The linker has been mapped into the 

address space and its non-virgin linkage section contain­

ing only snapp~d links,exists in the els of the new ring. 

Thus the linker is operational in that ring. 

The last question which needs perhaps a brief comment 

is why do we need to invoke the FSM each time a ring is 

initialized in a process? Doing so for the first ring 

should be enough since the address space in which the FSM 

enforces the fictive mapping is the same for all other 

rings. Our implementation is justified by an aspect of 

the Multics virtual memory. In mapping a segment into a 
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segment number, one needs to specify the unique ·identifier 

of the segment ana the ring on' beh.lf3 olf"''~hich the mapping 

is done. Once the bo\ind linket fdr;· int1tatice"' il:s· mapped into 

its final address for one ;ri~q- a11·r1nljs'~ff1 ~ee' the' 

address occ~pied but it 'w'ill hot ~'mnnl.tiq£u1 to them 

until they also require the linker tcf'be'; miPPed there on 

their behalf. 

This discussion· complet&s 'the sertibn on itd. tia:lization 

of the kerner and of tlie linker. · It~'ha!f' l:JeE!rt' demonstrated 

that ·st:raightforifard intt>iamenta't'ion'·oif the: desigri was 

· possible on a cdmputing utility Itke' 'Mtiitl:'Cs. '';No major 

problem' and no particularly fntere'stfnef:iiifs1le'was raised 

so far. Now we have shewn J.1f>w to imi>"lebtent· an opera·tional 

linker, we will ptocef!d' by sh.owilltf:hdW eto invoke it in the 

faulting· ring on-~ link fault.· 

6. Fault: Handling 

we have shown how the'Mul't'ics·<Jynamie li~kerwas 

made operational in ·a rinq. · our ne:Kt step ±s tb· :show how 

link faults" are passed t.o it and ·how ·:tt can ,retbrn control 

to the faulting obj edt ~ · Again ''this 'dan "be :done by a 

straightforward applic'ation of-. tbti! d8s£gn, using pre­

existing mecl'ianisms. 

All f a.ul ts on Multics are inte'rdepi8d ·t;y a special 

module of the kernel. This module exijteid already iin the 
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initial version of Mul.tica and. i~s pµnxl&e is to analyze 

and .. aor.t f."1UtJI• . JµIJ.t .~ ffi* Un• of ~· .bad to be 
' • • • , -.,- <' 

modifi.., •o ~t l.ink· faults W<>"1!d ?a ~f:'~.ted ~o a sig-
, _,._. ,_ . ' ', :-: k; . " 

naJ.li.119 .xtW.. ~ta.ad of -~+ ~~~. to a. r.~ O . 
, . . , . . .. , - . . ' . ' , 

link.er .. The .. ~lli~·: MD®.le J;Jf th.e ~!lffl•l. :~step, .as 

well in the initial version of Multics. It J.- .. •l~.ady 

used t.o si;naJ. ayant• ot;llei- t.llM. UnJt" ~-~lt.t Jn .. outer 

rin~. Be~~ of the hi~r-.rc;!w o~ r~J"f' t~ aecµz:ity 

ke;rn~l. ~ the. a.t,pall.i.ng ,~,~ e ~. ~~~~~~ ~.~ a~pess 

any object ~ .. tll hi.par '1~4Kr..fi.n9, .. ~ .~ •itch .the 

r.i.ng of ex~~ of a. p.rpc•~·. '-'~. ~'!~Af.a9'.•JI ~· 

exploit.eci to .. ~~ al~~ ~-~;,. . ~,.~::ftiP~lli~g 

module receive. Jll .copy ot the ~. ~t.\Ul ,ave4 by 
- , . ' . \ .. _ .. ' , . / . ~ .: '. \ ! ,.'\,.. ,~ . " ; : , ·'" ' 

the number of the faulting ring, and the segment number 

of the stack used at fault time. It, ;~i.We• a at~k 
. . l~· .. "',,. ___ ' ) .1 •• 

m&Qbiz-.. •ta tu.a. J:t cqpj.~s .... we~l .• rr•tl,P;n Jl44X'•IJ• to 
-· . . . . " .- ' i - . ~'· ' "·~ .. l.1 :f •• h . '. -

be \µ1•4 by ~ lilllte.r. It fi~l~ IP(it,~e~:!:r;4;~~ ~. execu­

tion and call.II .the linker. The 1.~•1. qf ,'\:l)e li;nke:r; is 
: ' ' • : ! i . .-- - . . . . ~ -~ -·-. . . < 

fol.IZld in the a~ck h~er (.<:Qn~t;..t~al,J ~. . Thi.• . ad(lress 
. ' ,, ~ -/. ,.,._;, ",. , ' ,· 

must be set at ring initialization ltll-4.JMW be ~~ged by 
<, "' ' .. -~ ~ : .... , ; i t;;.; ~ ' -' - '. -~. . -. . . 

the .PrQC .. ;,,U ,it ,W,ants to def~r_,.IW~~. 1~i.nku of its 

own in th•t .ring • . , '.,;: 
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Let us assume for a moment that we know how the 

linker itself works and suppose that it has snapped the 

faulting link and wants to· restore control to the faulting 

object. The linker simply returns to the signalling module 

in the current ring. The signalling procedure then calls 

a gate into the kernel. The purpose of this gate is to 
i 

validate the machine status returned to it by the signaller 

and to restore it. Validation simply consists in verifying 

that the status reflects a ring of execution not lower 

than the faulting ring. This is to make sure that the 

linker which handled the status in the faulting ring did 

not maliciously set it so that control would be restored 

in a lower numbered ring than the faulting ring, which 

of course violates protection. The gate then destroys 

the signalling stack frame in the faulting ring to make 

the stack look as if nothing had happened. Restoring the 

status is finally done in one indivisible hardware in-

struction which reloads all the machine registers, thereby 

forcing control back into the formerly faulting object. 

7. The dynamic linker 

The °last two sections have discussed respectively 

the prelinking of the linker and the handling of link 

faults. It remains to be demonstrated how the linker 
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itself aan be illlpl.-nted to tranal.ate links proper1y. So 

far the implemelltation did not eneoan.ter lfAY major problem 

or any operatiOla: of outatand.i~ intereat.. In this section 

we will only ~ lttief J.y otttline tae imp~tation as 

a whole and then conoenineate ·on ... lec:tUd .interestinq fea­

tures of the Kult.ies ays~em ·of ·•hiol'l tM• :illpl.ementation 

cannot be 4erived directly f..- the qlobal deaiqn princi­

ples. As we · aention•d it be.foi:e, these ::.seleeted topics 

are only instances of broader probl...,·whiaa any deaiqner 

would face in any ~oaputin~ ut4iity ,;erhape 1111cle:r differ­

ent aspects. 

The atar~ing poin~ of the.impl•••Dft•*ioa ia the 

block di"rall of . f i9u.re 8. ~ bafsic ~c linker is 

proqranaiad accC>t4int 'tO the £uact.i.,..:1> apacificationa of 

that diaqram. Thi• Jt)aaic linblr contm.n-.a,dosen inde­

pendent; procfrMl D:>dui.a.. ·Once C'Htpil.a.,, the x:eaul:tin9 

obje~ a~ata are bound to91ttber bf: tta b.inder. A 

bound object segment results wbicb•mmtaina.about fony 

links to data bases and kernel gates and can itself be 

invoked through about fifteen ~i.entpiee; one of 

whieh is the Min link trans.ll~t;itm,en,Uy used far link 

faults. 

on top of tthis basic linkerwewiil.l now proqreasively 

add other feature!$, functional boxes and specifications 

as we go about discussing speQific implementation problems. 
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a. Implementation of peripheral features 

Let us first turn our attention to the question of 

static storage allocation. As we mentioned it in the 

chapter about the ·global deji91t)·· s-€iticJsteriqe~allocation 

is a general problem which must J;>e solved tn any computing 

utility. The wrong way of solving it1 li'~.tN'H!ave it in 
J 

thf!_re&~()nsipilit¥ of the l~nke~~ 
j 

o:ne. ~~<f'..!!~~--!aY _to solve 
! 

it is to install a hardware fault which"" called the'lSSP. 
~ -~---~ -- "' ........ ,~.-., ... ,. ·~ ~- .,,_,_ -~~ 

Wllen a p~ocess at~~s to get a ho).d of, the address c:>f 
'. i . i· '~-· .{. --~~ " . .., ______ ~,,.,,.__~_...,,._,,,,,,.J _'.'): 1 r-.~6"~-, •' (1 ~ : 

tbe static stb'.r'1gia'" (nbn-virgin link.qe -~oh) iof th4! 
· ·.,. · ~ "1~vfit' ! ~ 

pi:j()gram it is ··necutiilg and if t~~t:·-:-sto~ ·rs ·fiat yet 

a~located, a ISSF occurs whic;h"~riggers s~oraqe alloc~tion. 
l 

The old design of the MU'lt:i..cs dyn~=~.~~'.1f~:-~~s such; that 

static storag.e a.J.lpcation was part bf the li.Pket task; . . ... :·· , ' ·..-"'\Jn:• : 

(see fig-qre 9L'..,'..· 'on_ ..• snapping a link~ t1Ut1~mi ~ link'-ng 
t, ~~ ~ v-r ;1:;-- 1 

driver used to ,always verify that tlrEr·urCj'i't··o·r' the l~nk 
. 

did have static storage in the target rinq. As statea 

in the thesis, ·.this design violates protection because a 

target object .in a target ring cannot depend on a faulting 

object in a faulting ~ing to use the linker and allocate 
l 
' 

static storage Where ~ppropriate. In addition, even if 

this w~s not a protection violation, it would simply be 

impossible for the new linker in a faulting ring to 

allocate space in a target ring if the target ring is 
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Figure 9: Old Multics dynamic linker. 
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lower than the faulting ring. This was possible in the old 

design because the linker was in the security kernel and 

could access any ring. 

Consequently we have proposed to implement a hardware 

ISSF as described, such that dynamic: linking and static 

storage allocation are functionally distinct. Yet there 

is still one advantage in keeping them physically together 

(see·figure 10). ·Keeping dynamic linking and static stor­

age allocation physically together means keeping them in 

the same bound object segment, the bound linker. Thus 

they are prelinked and initialized together at the same 

time. Adding the static storage box in figure 10 incre.ases 

the complexity of the dynamic linker but does not increase 

the complexity or modify the design of prelinking and ring 

initialization. 

The operation of the linker is thus. as follows. 

Assume object A in ring 4 wants to invoke gate B in ring 

3. Whether A invokes B by symbolic name (link fault) or 

directly by its address it happened to already know is 

irrelevant. When execution moves to the target segment B 

in ring 3, as soon as segment B tries to find a presumably 

unallocated static storage, an ISSF occurs which results 

in the linker (static storage allocator part) to be 

invoked in ring 3. Allocation can and will thus safely 
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Figure 10: New Multicadyn•lc 11t*er. 
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Figure 11: St~tlc storage •1J<>~l9tion.on 
Multics 
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occur. This is pictured by figure 11. 

The problem of static storage allocation was just 

one example, and perhaps the most typical, of a feature which 

was hooked to the linker for convenience. Unfortunately, the 

linker was not the right place to hook that feature to. Other 

problems of the same kind were encountered during the implemen­

tation. Just to mention a few we c~ ciit~ t4~ handling and 

impure object S4gm&Jlt handlinq. Such features are typical 

examples of,sophisticated tool• which have been hooked to 

the linker for convenience but d~ not actually belong 

there. Trap handling is a feature whiob allows a program-

mer to force execution of certain routi;lles before his 

program can be called for the first time. The feature is 

named after the fact that it is ).)aaed on trapping the first 

invocation or a progTam. Again the f irat invocation may 

not be a symbolic inv-ocation; thus the linker can be by­

passed; thus hookin~ the trap handling "8chanism to the 

linker is just aa disastrous as hooking.s~ati.c storage 

allocation to 'ii.he linker. The solutiOIL ;is also to use a 

hardware fault. We will not describe it here as it is 

really not part of the implementation of the linker. 

Impure obje~t segment handling is a f ~cil,ity which pro­

vides users with the ability of creating an object seg­

ment and then writing into it perhaps over the definition 

and virgin linkage sections. Of course such an object 
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segment is not sharable. It .is important to save the 

definition and virgin linkage section before they are 

overwritten (by copying them into the els before the first 

reference). Such task was Teft to the linker. Again it 

did not belong there. By-passing the linker and thus not 

saving the definition and linkage sections could cause 

damage to the object segment. In addition it did put an 

extra burden on the linker by always forcing it to check 

for writeable object segments. The solution to the prob­

lem is to always save the definition and virgin linkage 

sections of a writeable object se<Jlijent in a separate seg­

ment when the object segment is created. Compilers can 

take care of this very easlly and already use such mechan­

isms to handle other features on Multics. 

Static storage allocation, trap handling and impure 

object segment are typical examples of peripheral features 

which have been hooked to the linker for convenience. As 

a result, they were mishandled, violated protection, com­

plicated the linker and interfered with it performance. 

Our design has corrected that situation. 

b. Compatibility of interfaces 

We would now like to mention a second problem which 

the implementation encountered. This problem is specific 

to Multics but problems of the same kind would certainly 
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arise in; .an.r ~utl.n9 utili·tx. The present problem does 
•_ r·. • . , .- -.; _ _ • •• ·- :.·· _, • J ~ . , 

:qot A•ve eo .JRUQh to c!lo wttih .the linkm: it•lf as ·it b4la 
; : .,,, ~! ~- .' ! ;,· *' ·~ ' >/! - { ·····;-"'<.. ~.,~~:··. ;• ... 

kernel. 

likely to .ue.E>i;b•f fW!ction• of the ~rnel. In trying 
. ' ' I .· ;. • • ,. ; : ·,-. ~"?- :· ... · ~," '< ': •. ~ •( f\ 

t9 .· .Pu~1 · ~t . .rz:~am 011.t;•i• ... ~l, one auat make 
" ' : - -'. ... ;_ ~-; ;,;.- - } :: •• '. - ,· _, - ;; , <'. •. : f-.- ~-:J. -~~ . < 

;it .~4 ~;~~·· . In th~ ~i.~r,.~.-~f .. t.J:le ;1~ec, ~the 
l._ ·.1-., .,.. .... - :~~ --~"\:~~l-'P.;_t-:· h'_:,.r~ -_,·::: 

old.. Multics !i.nker .'!ola41d. ~·.FM, l,uW• tb.e .. .ac:w:itY ker-
' .. : to.;, .:.· ' -,-'_~,~f~~- - ~: .._:" :: __ ~ '-.;,,£t··Jj·.,. --r'i~' . .:.: ~- ._ ~1~~-~- .. ; .-.: ·--~ 

nel •... 9f .~rae, .. ~~ the l~~~ i• ._ftl~~~}?uts~c!e ,~ 
- ' '· ~ . - • - : ·-::- .,,· •. ,.- J::< ' :, .· - ·, ' . . ; ' -,,1,; '. : 

invoke. it th£o~, ~r~i&1;~ c~~._, ~~"Jist~ ~2).. For-
• ,,,., ··- ·· ·• - , ~ "" - ·~-!"' . -,,r ..... ...,, "......« .... _,,{..··~,.C..-",-~ . " ... --· 

~~t(t~f. -~.'~~ of, 1'Jul~i:°": ~~' ~~u~!·~~~le to the 

higl;le.r fi"9• .. ~. •1.1Ch cga~a,.. '!19 did. not ._,,, to 
• r• ·,,,._ ~ "-·• ,: ; ,'. •' .,_, :)' ••• ~ ~·;.:,.·,; .... ~"£ .. :.' ~~-:'·., ~·t_r;,. t __ -,c ·'•: .-. ;· ',-. 

imJ?.l~.r·.:~· .. ~~ .~ ~~~~ ~·~ .. ~ .. ~f:r~· 
thetJ4,! 9~~ i• n9t the • .._ u the iliterf.6Qe. ~ch the 

~; -·~-;--~ --~ .. :··',.:_: __ '.··~··"; . .:-.:-·:·~.r-: ... ~;:J_:ir·:.'.-¥'L)- -·"·::~a~\/·: · .. ·Jr~;:r ... - ··~-:·~- .. ~--·-~ -. 

li~•f(Jl.f,!Mi ~ ... ,.di~~l~: ~~~ r~: P•, ,,li)ifectori!• 
~.... " ""·~-~· . ,_ ... '· ' ·-~'.! • ' ' - . ,, ~ 

109.ical a~ in a pr_ocus ~· aµto •. p~~ itea~ 
: ·~ -»· .!-. _;. ·- ; -~- " ;~ (~ ;.i ~~- .r .. ,.L. .. !, 1'.2~ ,;. ::L·~ : ; .,.~ .-·,_ J ·. 

V•ex: . .riNf .. (J. .:t.P }> may talk ~ ~ie• only by 
· ··· .- · ·· · ~ -· · - ·-~- ~ · , · . ·", < ,. """ --~ ·:o:-~_ .. :: : -,,, • ..,.:~- -~:i r~ .; .. u n\-> - ·· · 

~*"~-.. ~. ·~<>7 .bi -~~t ~~~~~ ~~~?: ~t 
numt>ers N• .~•4itli vel_y upe(t inaide the kernel. Thus 

• . ·' ; , •• >t'>· .L:: _;__ .... • .:-.· ( .· . -r ·~ ,;·: ... ·;.::·,. :, ,,, ·... .~ ~.: . :·, "< 

when the linker waa inside the kernel, the aearch rules 
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Figure 12: Interface of the linker to the FSM. 
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it used across the interface with the FSM we+,e a set of 
·5 ·. \. 

directory segment numbers. Now. the linker is moved 

outside the kernel, directory ·a~gment numbers are not 

suitable directcp:yl1rl±que·rttantifiers. Therefore the 

linker must use dirac•o~ treenamee. This implementation 

of search rules })~#I ~e dis.Wantage · that for each direc­

tory searched or each link fault, the treename presented 

to the FSM gate must 'be converted into corresponding seg­

ment number to perform the search. Such conversion is 

costly ·anti has a neq~ive effect .on. the. pe.x:formance of 

the linker. A paral]jel project is currently on its way 

to make directory segment numbers available in user rings. 
'•, 

Such a design will re•tore·the lnt:f!rf'&Cfe to theFSM which 

the linker used to see. However it has some major protec-

tion implicationa. "of which the solution is no.t obvious. 

we will not discuss these implications here. 

The problem of the search rules was a typical 

example of a compatibility problem~ By removing the 
-r~ ~ -· ' • 

linker from the kernel', we Were fQJ{Ced ''boncJke it compat-

ible with the interface of the kerner seen by the user 

rings. 

c. Limitation of Privileges 

The last problem which we"propose 'to discuss will 

illustrate the impact on the capabilities of a program 

of removing that program from the kernel. The problem 
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deals with snappinq downward Cl!'OSS rinq links, a feature 

which the ring"'i!he· linxer used· to ~riF'*eiY;,eaa!lyjand 

which is no¥: etitnpl!cated: by ~~ ··_ffifti: tUt ~t.he:'!!nkf!r'.~ is in 

· the· :faulting- :ting. · 

In the · qerleta1 deriqn~'t!ellct!Wi•earlier,, the::: PSM' was 

described . as a aecuri ty kernel' ~w ti1re''. i!'ftlch!-qiven'' a 
Cataloq uJtiqtle iden~i.'f"i•r·'AnCl DC~eet':·a~lf.(ti"cf1alfte·• 

returns: a loqi·~1"'·adaMli·~ On~ *iltie•r)~!tfii9': 1 1a::·t\ct the 

. exa:ct function· ot:>tlle· nw:~ '~ 1'9tfJt:.,~ a't!llteetOrt' 

treenaifte ancr·· a ae~nt name tlftcf··~t.tiifliT a ~t-'ftember. 

The differel'lci!! .btatween theae; two' &eWeri-p'tQ.ona· ,1 •. : l::tlat, a 

segment name ·ta. net an t>bject 1'~'1ct 1\u8': ·amd:; ·a ftcJlnent 

'. 'ftumber is only S ·;paitia{'i ~l.d~tea~~ .... r. 't Mt! &Y~uence 

a ae·areli)" of· tbe·· 'm.finition ' 1Htetl1>n1 iijf!Jlt!f6 ~~:· segment 

must be p-erfbrmed to£ fftra thi''tht~1 Ofi··LSi8 ·-~ 'Otiject 

in t:h:ef tarqet ••~t··~aEnf' lf1jttr.F18' .'Vst/iftteW tllii~c;et 

obje·ct lii in • r!nt/~~1 to 'hr 1hi~¥ VloiF·f:htf>i¥au~ttnq 

nnC1; such' stHtkch poatts ·tto"'~;~r: lhat!WJi'bi .ithe .t!.arget 

object is • gate 'fli~ :ai tln~j'~r-jaMtJlratf'-EtllAtinq··rinq, 
' . 

the linker .in: the :faultittt] rift1/ ~_.,bailer~:' 

eapabi·lity t:o react or· ·searcli;;. ~~:~. -~ old 

linker exeC\ltinq i:ft: the' 'J(emeP:"etf1tuN\lli·'•a ~abi1ltlty. 

W!it!n snapP'ing ·a: fi:rd(: ~to"'a.c~ <iit&t a:1 -t\Wrer <~red 

rinq, the linker ~t ·e:ftract:r>tfie .::~ ~f !:'UIRle, ~­

from information· con-tafrred;in'j<fh*'~i}!fff·•~t: · '' · 
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cont-.i.n~ the. pte.. The. Qnlf~.~'"Y to: ~;•ot .J-ofq:1;1N~ion 

from ~at -.,r~t ~~ i•.;-itO;~~·~~(;P~t. ;•t•.• lo 

linker qate, int.o the targ:et rin9. . 'fh,.. ~ funpti.en. gf/ t4e 
. . t· ... "_..,_ . ·:' ,., _,_ • ' .; " . - ~ 

se41"atl drtv•• .in .. f.j.9~e 8 .•. ~"'~ -.~~"hM>P!'U .j.p 

ti. ~aq't.~~.i~q .i.Just.a,4 of q~Hi~,.t\Ji ~~. t~t.i.PJ ~ing. 

'l'be, .-~,Uon wbi •. tJMt ,,.,.,:, 4-•J: ~':'.·~!'~~- . .tip: ask 

ia ,4ciw- 4oea tJ:ae,;_~.j.~ ~ ~~."~ }i@~.9~•~f~· the 

f~•t pl_.._7 TM.f:•,, ~ ·•YM.M. ... j~°"· ~,: .to,. ~is 

q\leHion •. ,,.. ..,-.~ lh•k•r·C9JM\f;~~~ ~t +-·by 

.comreotiQDa., . It woula. 1>e PQtt"~b.¥ ~r ~· ·that ... ·~· 

r.i.ft9:~t,¥.n •---n~ .. ~~~-~.-?«P ¥~ ~,tpd . ·- -~ 

. .J.~e4 .. ~ ...... llt. .of.·~·~·~~~· t. 

The 11-i.~,:- ~u.14. ~ .;i,D .. ;tJ¥li PM' t~··~~=~·" .,f·: ~nt 

by. 9;W~t t;M:,-SM ~· P.- Qt,~·,ffJM'':~·~~· ~c;tpry 

.an4 .·th4l ~~i,..l, .~ O:f .~ "'~ ~- ;tqp. t.~•t-

rinq • It. ""'114 .:tb.114. ~Y4t,~ .~~.i·~l~~ 'l'tuan~­

u•Lnq •· -~t.4~1. .it•~".~¥.> c~ '.~pt,. it.. ~d 

dynam,i;Qa~JM -t~t~. ~,: .i~ . .,,~~r4':tl~· 1rP· ·~ .. ~ 

qua. . ........... ·Us .. f-..ilP,~~ ~ 9~-!4~.)~t 

~. w •. ~qct.o--~,~ :.#IW!I! ~ ,~~ .~fa'Ver 

. ..,. ~cNM&t.t.J2te· n~,of . .r~ @19;1;'..,~~· .+~;.,finite. 

'l'1tu. ~ ii9 ·~·~-~J..;~ ~~~ .t..Q:.;Oltr pa>bl• whioh 

consi•• .~ :P:D,OV.i.4.i.ng, the. ·~~·~ ,llUt£.i,c;;-.,(~bta ,~i, th a 
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finite set of gates (one per ring), loading these gates 

into the machine during system initialization, prelinking 

the linker to each such gate as usually and throwing the 

gates out of the kernel address space after prelinking. 

This is the solution which was implemented on Multics. 

It is pictured in figure 13. During system initialization, 

the linker is prelinked to the FSM gates as well as to 

one linker gate for each ring. Then when A takes a link 

fault in trying to call gate B, the linker is invoked in 

ring 4. It obtains a segment number s for B from the FSM. 

The FSM also tells it that B is a gate into ring 3. 

Instead of calling the entry search module in ring 4, the 

linker then calls the link~r gate in ring 3. The linker 

gate can search the oject segment B and thus returns the 

offset w of b in B to the linker in ring 4. 

The last problem discussed was an example of a case 

where by being removed from the kernel, a program, the 

linker, lost privileges which it used to exploit to per­

form its task. Other such examples were encountered 

during the implementation. For instance, the linker used 

to store in a system wide data base, various meters count­

ing the n~er of link faults, the distribution of pro­

cessing time required, etc. Data could be extracted from 

that data base by anybody interested in performance. Of 

course, now the linker is in user rings it could still do 
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Figure 13: Cross rin1t linking Jn Multics 
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such metering, but results could not be trusted because 

the system wide data base would have to bi· a~c~u1sible in 

user rings too.' Bene~ anybOdy 'bbuia··'"rit~: gUbaqe into 

it. The sol~tion which we.p:i:-opo$e.;:,lriatead il'to just 

keep a count of link faults ih 'rin~-~~ / -: 1ili!I' is done by 
the f aui t interceptor module. · '.l'?i~ c0fult · is''' thus · protected. 

\ 

Other meters can be stored in per ring data·baa~s'if'the 

user desires. such.meters would of~ur'ie)r&flect. only 

the activity of that \1ser in that ril\q;'' ' . 

This is the last proble1f11e pbpl)il'•' to prel!Jent here 

about the implementation. rn' no· way ~-:ire s\:a91i&s~·· tbat 

the implementation faced no *>ii& · probl11ilttr;'tttan explained 

here. The problems. presented he:re· wen;; 1u.t-~typie~l 

examples representat1 ve of clAa•es 'Of jroblems:: telev~t 

to the topic of· our research. P~bbl_.: 'riot~ discus•ed; · 

here either fell into ·categoriea''.fb~" wh1tm \le h·~ given 

examples or into 'categories not rele\ian't' 'to' ok thesi• 

topic. 



-108-

v. 
- ·;.., 

TC!.CQDclµ<Se this thes.is, we would like to step back 
' •, , -:, ·.':-, , ... ~ .- ·. ; -- .. , 

and cons;i.~r tbe a.ei~ an~, i ta ~J..-.nt•~o!l a" a whole 
. ',.>"•A•,, ''• ' •.. >, • l ." ·, , . 

to sQllDariz•,Wb&t p.a~. beeti.~~.r~~-.~~~~ct~~e 

main ;-ea:ul t.a 
0 
of th• the•i·a, ~: !Xt'!'i n• ~" coat o~ ~e 

implemeQ.tat.:ion. 

We, f.j.r•t_ f.~ .. to c~• 'tb.ec ,ot+a clefl+P .. of 

with the new deaigp we ~ve ~~~--~ o~ ~~~•on 
: ' ' , - . ·- .. . . ~-: -. . . -- ) ., ·, - . _;- ;• - . 

ia ba~ed on fi.9~• 14. 'l'he o+~ ~c _ ~.j.nker. waa part of 
. . --· , ~ ~. ':,. - -_;.·,:: ,'.. - ;, : , ' ' . 

the ·~~.i~)' ~l. It wu ~~~~\l~<t by a set of . " .. . ' ' ' -~ ~- . - . 

Il\C>dules ~rta Qirectly available t~:; t,~,,. _J.l.tl~f': ~ouC)h ~~~ro­

priate jl&,... .+,nt.o the . .k8J:'P•l C.11¥ ~~-~ ~ · ... ~•cellaneous 
.. . ~ '",,,,;- "' - •, ~ . - ' ,. . 

pe;r.j.pheraJ. f'Qllct.iona lilte stati~~ •~•98: .i.l~•tion and 
" . ' . . ' -- ·-·. ·' ··,,, -·- .· , ,'.,; .· .. 

t~p h~dl~9 .-.r• d~~ly ~~~~ ~~-. ~ l,J.nk~r inside the 

kernel... Tti• new d)rnaaic l~eir. -~ ~- Ix>.~ o,l)jept aepent. 
, - + - '· • , ~. • :, ~ \" - - , 

Capabilities to use it exist in all rings except ring o. 
The modules of the dynamic linker which uaed to be available 

through gates in the kernel are now directly available in 

user rings. All peripheral featurea have been detached 

from the linker and are now handled independently as . 
described eariier. The static atora9e allocator is still 

physically connected to the linker to simplify initialization, 

but it is functionally independent: its operation is 
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triggered by a special hardware fault. As a result of the 

above facts the caaplexity of the security kernel has been 

reduced by a non-negligible,· al tlloa;h' bard to measure, 

amount. What can be measured ia tbe ~duetion of the size 

of the kernel. The following items have been .eXtracted 

from the. kernel: 

15000 words out of 300000 (5\), 

30 entries out of 12-00 (2.5'), 

15 programs out of 300 (S•), 

18 qates out of 165 (ll•). 

The case of the gates is part~cularl:r. interesting. Since 

the linker has been removed from the kernel, all gates 

which used to lead to it ineide the kernel could be 

removed too. The figure of lla deserveaa special· comment. 

Since the interface between the kernel and the outer world 

is one of the most sensitive, directly ~atened part of 

the kernel, a reduction of size of llt is a significant 

improvement. We attribute this hiClh •.core to the fact 

that the linker was., as we have shown, essentially a user 

ring proqram. Thus even tho\19h it was in ring o, it was 

natural that it be available to user rings through many 

gates. 
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Secondly we propose to discuss the results of the 

thesis. A first result is the demonstration of the 

feasibility of the design. some components of the design 

have not been implemented because they were thought to be 

of minor importance and could not have any impact on the 

overall success of the implementation. Other components 

of the design like the functional independence of the 

static storage allocator could not be implemented simply 

because the supporting hardware is not yet available on 

Multics. However it was approximated by software and 

when the hardware becomes available, only a simple change 

of a few lines of code is required to separate static 

storage allocation from dynamic linking. On the whole thus 

the major aspects of the design and of the implementation 

have been verified to work correctly. System initializa­

tion, fault handling and dynamic linking have been imple­

mented. All features crucial to the operation of the 

linker itself have been extensively tested and proved to 

work under all circumstances. In particular cross-ring 

linking was carefully tested. 

The second result of the thesis is the improvement of 

the protection and the certifiability of the kernel of 

Multics. Size and complexity have been reduced in the 

proportions mentioned above thereby making the auditing 
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O:f the karn•l an •a•i•r t.ask. tn actditton, the thesis 

has·OornotA'l4 • .._ b\lf8 ;i.A. tM lhlllica ayetd. 'l'h9. 

protect.ion u.eau r••'t.ll11inq l••;MvlrMI perlphe:tal features 

hooked. m the lirdl•t ftU c"9n(·•1ildAa'*'1. 'fhe p:rotection 

of the karael itaelt 1• no -·· .-.re.e.•ct :by the uneon-
' 

troll.able •petation of ·the 1.ilftA.ei'.. Mr..-:t·. the aareful 

at.\'ldy and tlllt·.,...•i91' of th• lidler·'llfteo._~ and 

remedied . ....u.i \lftllwtpe~ p....._ie fl•, not the 

le•t of wtd.db i• th• p...,.Mm « tiMtio •torife alloeation. 

The la~ -.jor fttNlU WC>ftll 1118ntii0lti11CJ here u• the 

inai(Jht.a 9aine4.aboat. tlMI ••it"" of'··• ·WjjlWil'l•' ·Althouqb 

the .:thaa is ·.baa• not. pi.;cw-~ any . dltf:ln.i.'el.di\' of wmat 
proqa:w belong j!!!ida. CM·kQh4tJi, it~•in-ly baa ptt>­

vided.ia f- inad.CJllt• ~·WAa••l*'09f:a1ll1t·dltft ea.fir.be 

moved SN!;tftft tme Jutm411. n.. •· 1Ri4Wi<Jri aliitlysi• .. of 

the lWlk•r baa nveal.ed • f:• intaeantilf ·f~• Which 

at the•- Mi. ·made the ~iliJca • ..-Y'to· ~-pro ... 

gram ana are :a t'lir:-lllot ~lt'Of iM ....-·r1nt n-ature. 

We do not 8Uff9••t :.Ln any way. tba•:a&l-fr~ exhibitinq 

the features to be desoribafl Metll'tl ..,. ... .v.n ~14 be 

removed fro. the kernel .. W. OJlly . .....,•tJ·~ Mach pro­

qram• are . c:iu-tak&ly better caMicMftAur. .. ftfr- t-._..l ~ · 

O·tl\ers all4 .. t.Ht aRr: a~ to --1J..-· a' ~el •hewid 

start hr ...-..1-. •--* FO<P'-'• 
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The first feature which made the linker a go.od can­

didate for removal is the number of gates which lead to 

it inside the kernel. As we already suggested, this fact 

is most probably connected to the user ring nature of the 

linker. A program which is already available to user 

rings through many gates is inside the kernel but close 

to the outside world. Pulling it out should in general 

be easier than pulling out a program deeply nested inside 

the kernel (see figure 15). 

The second feature of the linker which made it a good 

candidate for removal is the fact that it was not used to 

support any other kernel function. In figure 15, program 

B is callable through a gate. Thus according to our first 

criterion, it should be easy to remove it. However B is 

needed to support A (invoked by A) inside the kernel, and 

A is not available through a gate. Hence it is probably 

hard to pull A outside the kernel and B has to stay 

inside as well. This does not mean that B can never be 

executed in a user ring when invoked by a user ring, but 

it implies it must still be part of the kernel and thus 

audited to support the operation of A. In the case of 

the linker, since no other function like A used it, it 

could easily be removed. 

The third interesting feature of the linker is that 
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Fl pre 15: Multics securt ty keru.t. 

•• 

A 

User rlq 

..... 
11 nker 

....... ______ ... ,b, ,.,,,,,,.:'· 

.·-:-· 

x 

Security 
kerael· 

Crin& 0) 

*: B cannot be rt!lme>ved because It Is used by A; 
**: Z may be hard to remove because It would need a 

1ate to ra•ch X, whl ch may be hard to prov I de. 
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all kernel primitives (e.g. the FSM) it used to invoke 

from inside ring 0 were already available to user rings 

through gates. Thus removing it simply moved back the 

boundary of ring O without even creating new gates through 

it. Instead removing z from the kernel in figure 15 would 

require a gate to be added to reach X because X is not yet 

available in the user rings. 

The last three paragraphs have described overall 

features of a program which make it a good candidate for 

removal. Of course further functional investigation may 

reveal that such a program cannot possibly be removed simply 

because it deals directly with protection and is a proper 

component of the kernel. 

We f inal.ly would like to examine the cost of our 

implementation: how much did the removal of the linker 

alter the performance of the system? Given that performance 

and performance evaluation were not among the goals of our 

thesis, we will not present an exhaustive performance study 

of the linker. However we have run a few simple performance 

tests which consisted simply in measuring the time required 

to snap "average" links. By "average" we mean links of the 

type most frequently handled by the linker. That is links 

not going cross-ring and not using any sophisticated features. 

The measurements were taken in two different cases. First, 

we measured the time required to snap a link to an object 
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cui;rently mepped in ta. 199ioal &ddce•• apace. Se.corully, 

we me~ured ·~ t:.i;• ~u.d .ct.G •• ·• link to an .object 

not cu.rrently Mppad. . in .tJl& :1~.i.cal Addreea space. s.uc:h 

measur911enta WllJ:"• QM:JSied Oil ,for ~ ·.dlie old linker and 

the new linJter. 

In the first case, the new· ltn#ac uqui~a 10 more 

milliseQt>nde .than the old. linktmr .w!Uah· ,t'flpl!e8Ant.a an 

incre-.e of 40 to 60 pctreent of tlMl· .t.of:a1 time requii:-ed 

by ~ oU ~er ~ •n•P the· link. -2hia-' £ixed incl!eaee 

in Q.ae· !s in~At of the ..,...of .po.ceaain9 

required to UM.le the::. link it"1f·. We abt:dbuE.e it to 

the fixed overhead involved in •~llincr tha l.ildt.fault 

in tbe fJlUlt.~g rtng,. invok!rl9.· .MC~ _...l priai ti ves 

thro\19b 9ete11, and requeet.itlg. tt. .. kunel t.o· vali.dete ~ 

resto.i:e the •'*-i1le au--. All ~· .operat:iona are 

required for ti. new linX.r t.o.~·-and ..-a not: 

reqajsri or aot -8() ~l·tcatad wi.t.h thlt'.: pri.PJ.le9ea of the 

old .lio.ltei-. Thu icoreased oviarhead: ·u. the···l>b:i.c price 

paid by our aai.911. 

In the ease of 

new l.ink.ar req\l<i.r•• roWJhl7 wt.:ce: •• 1lmOll, :itU. u .·the old 

linkw 09tte. &~h ev&:reead i• not:. a6.-.wtraea4 

although .i~ ~t.a'-n•: tlle. f i~ ov.ritMN 9t 10 silli•eGQnds. 

I:Q.steaci t:Ais. OVt!!rhaU is rel•-tive:ly. p.r~j.CJJWl.J. to the 
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length of the search for the target object in the file 

system. In order to speed up the search for and mapping 

of a target object, it is standard practice on Multics 

to first lo6k in the logical address space in case the 

object is already there. The first set of measurements 

corresponds to this case. Only if the object is not found 

in the address space is the FSM invoked to search the file 

system. The r~ason why this search is roughly twice as 

long for the new linker as it used to be for the old one 

is mainly because search rules are now directory treenames 

instead of directory segment numbers. As we mentioned it 

earlier, we expected this to yield a non-negligible 

overhead because translation of a treename to a segment 

number prior to each directory search is very expensive. 

Fortunately, when the project of removing name space 

management from the kernel is finished, we will be able to 

restore the search: rules under their old form and the per­

formance will no more suffer from the overhead described 

above. 

To conclude the discussion of performance, it must be 

said that clearly some fixed overhead (10 ms) was paid by 

the new design. However the overhead in the search is a 

price paid only temporarily. In addition it is believed 

that the figures presented can be improved. They are the 

----------------------- ---~ 
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reaulta of very rough measurementar alGOre careful analysis 

is clearly needadtc i&m:tify ~bOt~l.eDeclc:s in the new 

linker an4 try to optiird.n :tile· ·c::.OC!e ~e. .Also, when 

statio at.oragealloeation, trap hntlli119 &a odl'er feature• 

will be ...-r•ed' £rOlll· the l!nltei- as r~ded, the 

per~OJ:Janoe ot t;he · linker ia like:ly tO increa11e signif i­

cantly becaue it·w111 no more ha•• tcr·ehet::Jt and worry 

about all aucm peripheral f.aitllrM'• ~·the performance 

perapect.ive i• not as bleak a•·-tlHt·..ov.·fi~a· s.- to 

auqgeat. 

Summary 

Thia thea.ta haa atte.pttea to·c>pen a road toward• 

security kernel aiapllficaUon .,-... re.D•i?l9 tile dyi1ai*ic 

linker from t.he ••c:Nritykernel ef a oeaputia9 utility. 

A aecond wave aimed at ainaplificaciOJtof;th• keJ:'!tel is now 

on its way to•reaove naM .,_ca·~ from the 

security k•mel. Mo mat~er hW laqe· an effot't these two 

first simplifications will have requi~ed, this effort is 

allmst ne9li9.il)le .tn comparillOn to -..t ·raaai'fts to be done. 

Evan when ..,. will bave reached f!h• litiniul fffinition of a 

secur·ity kernel, the .bai:deat par1: d .ftta OU'ftlfiaat:icm will 

renain. to be worked· out: the .audit~. 'lhere exi•i:a ao 

far no f0%lnal tilaory of keJ:nel alietit.t,~. While p:t~ram 

verification techniques are a f irat step towards kernel 
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auditing, they are not the panacea. Auditing a kernel is 

much harder than auditing the .sum of its program components 

because of all hidden inter:actions between these components. 

Yet because of the increasing need for security and 

reliability of information stored in a computing utility, 

more powerful and carefully verified protection mechanisms 

are demanded. Protection of information is not only the 

fact of defense, census, medical or criminal information 

systems. It is a vital characteristic required by our 

society from any information stor~ge system, computers 

not in the last place. Thus it is worth paying the price 

of certification to satisfy the fundamental need for 

true protection. 
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Appendix: Gates remaved .from th• Mul.tics 'Security kernel 
' : ... :::.-:. :. 

To illustrate the varie~y an~ ~ n~r and the 
.:i .- . . ~ ' '.' ; . .., ''~ .: ~· •\ ~' . '· ; ; ' : ~·: 

complexity Of the functione removed from the Multics 
; ; , .. ~ _,- ,;_ 

kernel by the implementation d.Ucribed in Chapter IV, 
- ~ ' ' .... . .. 

we list here all. gates removed from the kernel with their 
--· ··~ "1 'J ,-,~. ,,:, 

:. . ~·· . -

respective description. 

assign linkage 
•, - . -·· 

allows the user to request the static storage 
.f . 

allocat:Pr to allocate a given amount'of •pace in 

,the els ot, · ~ ,reque.et.~119. rin(J. A ,l)OinteJ:' to 
' . . ._... - : , . ·.< - . · • .J :~ ,_ ~ ~:; :. ~-· ·' 1 ...,.: ··, ~. ': . 

. 1the' allocated.:· space is r~urned; 
- i - ,_,. ~: . ' - ;; ~; .. 

f s search get wdir - -- .. ·-
allows the user to ask the treename of his current 

working directOJ:'Y. The working directoJ:'Y is used in 
- .-.~~ ~--~ i.~ .. . ; :?<~~ ,·; . '{ _:r .~: ·,._/-, o ~ 

the search rules and can be any dir~ctOJ:'Y so defined 
·. -.,. ~' ;·:·, ,. '!''',,_:. :'11.,-J, 1t'i;._ .• -::t J 

by the uaer1 

fa search set wdir 

allows the user to define his n.W working directocy1 ·· . . ' 

. get_count_linkage 

allows the user to obtain a pointer to the static 

stor!lge of a segment. given a. pointer to and the 

bitcount of that seqmeri,t; 

.,.··. 
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. get_ def name_: 

is a generalization of get_entry_name for entries 
. 

nQt necessarily into exe:cutable pr~grams; 

get_entry_name: 

allows the user to find out the name of an entry into 

a program given a link to that -entry; 

get_linkage: 

is essentially the same aa get~count_linkage but does 

not require the bitcount of the segment under concern; 

get_lp: 

allows the user to get a pointer to the static stor-

age of a program in the requesting ring qiven a 

pointer to the segment containing the proqram; 

get_rel_segment: 

allows the user to get a pointer to the definition 

or the linkage section of a seCJ1D9nt given a pointer 

to the segment; 

get_search_rules: 

allows the user to find out what his current search 

rules are; 

get_seg_count: 

allows the user to get a pointer to and the bitcount 

of a segment given the segment name; 

get_segment: 

same as above but doesn't return the bitcount; 



.... 
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. initiate_ search _ruies: 

allOW9°. 'ttl*·:'\l&R t.02.a.e~a.:.11-.r.cti ~·-~and enable 

· 'tha iA'tbe·,~rrent::~;·'···'> :·<,,~, ..... , ·"."· 

·link force:'. :.'!': : . .:. 

all:c>W-· ·t:.ne· u.r. .w .'fc).r;c9 ·a,; 14'ale ·*- J:ae ... ~ . 'l'!iis 

i.&: ·a.-.•stati.c l~Jiking" ~fD· ..._ ~c ·l.:i.DUr·; 

....h.. ..... , .. int<'. ·. '.""' •.· .&l1CIA .:,,J:' .. ~l4- ,; .. _; /:; t) . -, ' 

alldtM'. t;;ha: .. uaer ·. i:o· f~iliater<·a ,.OJ.Itta») 1 i• e. a, .J.;j.nk) 

to an objecg:· f J10ll\" -:: sc».001'~ iyi.Ulllr ;8*~"ap1boUa .. ;ldUle. 

of the object; 

rest_.,of_datmk: 

·allows the user to grow a data object under a given 

. symbolic name ·if that object doean 't exist yet. This 

is a gate into one of the aophiaticated feature 

·handler hooked to· the linker; 

set_lp: 

allows the user to set the static storage pointer for 

a given program in the current ring; 

wianap-servic:e: 

allows the user to undo tne work of the linker by 

. ~snapping any link the linker may have snapped in 

the requesting ring to agiven entry. 
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We hope tid.a. e~ftJ.~ id:.--.;·.-.. 4.nto the 

linker baa CODVinced tae· -~o.dJ ... ;;~by~:•d the 

coaplexity of the linker in~.aca~ ~-·4'.tl -..; of the 

~· :i.tl·.~ ... ~· 

audit 1'8 qates into the kernel, on tbe ~ ~· ar9uaants 
"""'.:.;,..... ' 

· ~r gate. had::,Jlo _, •aiJlfitt.e.;: w.lll6L•••••i."J;lt.e complexi, ty 

··;and tba'Gllr~aa.iqm p11obi•ae1_(...._. ,, .... 

I . 
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