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ABSTRACT

In order to anﬁarca the security of tha information
stored in a computing utility, it is neosssary to certify
that the protectidn mechanism is oorrectly implamsnted so
that there exist ao nneuatrolled:anaaﬁs path to the stored
information, Certification ws that: the: security
kernel be mach smaller and niup&cz'zhan:thn supervisor of
present general purpose operating systems.. This thesis
explores one aspect of improving the ccartifiability of a
computing utility by designing a dynumic iinkexr that runs
outside the security kernel domain.

The dynamic linker is designed to run in. any user
protection domain of a multidomain computing utility. It
is shown that the dynamic linker never needs the privileges
of the security kernel to properly operate. In particular,
the thesis demonstrates the ability of the dynamic linker
to link programs together across domain boundaries without
violating the protection of either domain involved in the
operation.
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I. Introduction
1. Security Kernel

The concept of comput »gf?ﬁtilitz designates a computer
system or a netuork of computer tysteus dedicated to ser-
vice a community of users (1l). The t&pq.of,the qomputers,
~ of the servicesArenderéd and of the eéuﬁunity‘of*users may
vary widely. Yet it remaxns that in aIl cases one of the
- most important features of the coneut$ng utlllty is to
provide the users of the eommuniey*v%tk~ﬁhe ability to share
the resources of the syatéﬁ ‘ Wb will be speciflcally con-
cerned about sharing the infqgnﬁtiqn stoxad in the conpu—
 ting utlllty. Different membera of the comnunlty of users
may have different intent;ana xhieh nre in conglict with
one another with respect to the ‘stored information. Some
user might willfully or accidentally access (use, steal
or modify) the information kept by another user in the
computing utility. Hence uncontrolled sharing of all
information poses a direct throat.to the sc¢uritx of the
information and to the privacy of the individuals con-
cerned by the information (2-6).

In order to enforce the security of the information
and to safeguard the privacy of the individuals concerned

by the information, the access to the stored information

must be contfolled by some protection mechanism (7-11).




However, no protection mechanism will serve our purpose
unless it is -trusted by .ite users. Several features of a

. protection mechanism contribute. to make it reliable (6,153).
It is not our puxpnaeahqmethv@@ﬁﬁﬁaﬁggﬁxﬁﬂﬁn§@9x$§§¥these
features. Only.one of them is of-interest to us: the

certification of corractness of the proteation mechanism.

R8s guarantees .that .the protection
mechanism completely -contxols the.agcess to the stored
information, that it .is an effegtive.implementation of the
desired protection. schema, and.that.thers is no way a user
program could aubvert, circumvent or.medify it to gain un-
authorized access. to the.stoxred. information,. Certif }g#tion
of a protection mechanigm is the result of a 'careful audit-
ing of each compement contributing. to.the. protection of

the stored information. . Sux;h auditing not. only .includes

a verification of the ;mupmm%;mlmatatlon of

~each component of.the.pretection me B ?bn;algo a ver-

ification that interactions smong them apd with the outside

world cannot cause malfunction or,unexpected behavior

‘resulting in unauthorized: access to information, .
‘The protection mechanisms are, ym

ally implemented by a
- combination of haxdware and softwaxe...The programs and

data hases of the software poXtdop .a%e A Very sensitive

-eentrol; who can

part of the computing utility, for il

access what information. As a result, this protection
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software must be isoléteﬁ frumwanﬂiggggggggQ.agaihst,cther
prdgrams in fhe computing utili%?ﬂ xﬁy%pﬁateatidn'software
component, if tampered with, could cause unauthorized
access to stored information. Hence, user programs must
be prevented from modifying, subverting or circumventing
the protection software. Snchﬂea!aﬁéimmat?lhgﬁld-PrOVide
‘a complete control over the-intét&ctien&{ﬁ‘&ﬂadn the pro-
 tection software and other programs in a computing utility.

The securiﬁy*kernei of a cesmputing &tikiﬁy‘il that
 part of the software which could, as a result of a bug or
malicious alteration, cause unaunthorized access to infor-
mation. Thus it is the pragfaﬁs'aaa:ahta bages of the
protection software plus any other programs (and data
‘bases which control their behavior) that have direct
access to the protection software.

In most systems the security kernel corresponds closely
to the supervisor. It includes a great many programs and
data bases that are not functionally part of the protec-
tion software. As a result, the security kernel is much
larger and more complex than the sﬁbcyntﬂm¥9hich:tmplements
the protection mechanisms. ‘This is unfortunate, because
it 'is the entire security kernel which must be certified
to establish confidence in the security of stored infor-
mation. Exﬁra size and complexity‘naﬁ&ieartification

more difficult.
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This thesis will explore one aspect of making the
seéurity kernel of a ébmpufing ﬁ£i1ity‘émailei, éimpler,
and thus more certifiable by dééeiopinéwa‘éystem design
in which the linking function ié’ouiside‘théQSecurity ker-
nel. The linker of a cOmpﬁtiﬁé utility is the program
responsible for binding together separate procedure and
data modules?to build IargerfﬁfOQram é1eméhth:’“In current
systems, the linker is almost always part of the security
kernel, but as will be demonstrated in this thesis, is not
part of the protection softwaré. RemOVInéfthe linker can
significantly reduce the complexity and the size of the

security kernel.

2. Dynamic Linker

In writing a complex program, it is'extrémely desirable
to subdivide it into several,ﬁb&dles.k In doing so, the
complexity of the programming task is' reduced for the
modules can be programmed and“%esﬁedfihdeﬁendently and
existing modules may be incorporéted into new programs.
The idea of modularity implies the’exiétencéfbf some'mech-
anism to assemble modules into larger prdgréms. The
writer of a module must be able to connect his module to
others. One simple way to achieve ﬁké connectiorn is to

give a symbolic name to each module and to denote it by'

that name in other modules. This estabiisheé a sxmbolic
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link between the two modules. The problem is that symbolic
links afe meaningless for the:haréwa;e of thg processor.
For -a symbolic link between two modules to become a snapped
;£E£’usable‘by xhespnbcesacra'thgjsggpolﬁgfnamn7nsedsby

the programmer must be'translaﬁedjintomthg ;ggéggl\‘hard—
ware inte:pretablg[ad&ress of the module denoted by the

symbolic name. When gsed to combine ggpatatelyvcompiled
modules transﬂgtiunvngcalled linking. The program which
takes care ©f the translation is ggl;ed‘thg linker.
There~exists a wide varietf;cf linkers which we will
not describe here (12). Often a linker is,inVOkgd‘when\a
program is loaded into primary memory. Before control is
given to that program, each symbolic name it wuspes is
~ translated into‘a logical address'by the linker. 1In
other schemes, control,isAgiven tc,a;pxpgram;module as
soon as it is in primary memory. When exacuticn of the
module hits a gymbolic name, a‘har&ware‘eveh;_(fault,_inter—
rupt, trap) triggers the linker execntipn';p‘trapalate the
symbqlic name into a logical address. ‘Execﬁtion.resgmes

after the link is translated (snapped). This type of

linking is called dynamjc linking and is carried on by a

dynamic linker. It is more flexible and saves ‘the cost

of loading into memory and linking together modules
which may not '‘be used by the‘program'evepy time it is

invoked. Although the rest of our thesis will be talking
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about dynamic linkers, the results of the research are
also applicable to regular linkers. The problem is more
challenging for dynamic linkers precisely because of the

dynamic aspect introduced by the hardware events.

3. Background

Certification is a relatively ‘recent topic in the field
of computer science. Many authors have occasionally men-
tioned the need for certification, as we did here. But
there exists no concensus on the best:way to.certify a
large software system. -The area:is not- very well struc-
tﬁred and much work has still to be done to organize it.
Yet most of the papers on that topic:seem teaagree that
whatever hypothetical :method is used.to audit -and certify
the security kernel, the correctness -of a "simple" kernel
will be easier to verify than. the correctnessiof a
"complex" kernel. A small number of modules, strict con-
st:aints on the interactions between the modules, method-
ical design, systematic. implementation,:precise supporting
documentation, simple language constructs, formatting and
readability are factbrs likely to simplify the task of
auditing the security kernel. Conversely,.a large number
of modules will undoubtedly complicate the problem. In
addition, it is likely to increase the number of inter-

actions to worry about. Complexity and sophistication of
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the modules themselves would alsoc make auditing hardu,r.

A good guideline when trying te simplify the gsecurity
kernel is the principle of least privilege.  This princi-
ple is the equivalent of the military "need-to~know" rule.
It states that any program module should be: granted just
the privileges it needs to properly operate and no more.
Modules of the security kezn.?: should: be graated the
privilegas of the security kermel. on: the basis that they
contribute to the protection of the stored information.
Modules not contributing to: the pzduwtmaagm&\ should
not be able to use such privileges. - Xeeping them inside
the security kmel' increases. the size and complexity of
the kernel and brings in fuanctions: and: construets that are
hard to validate with respect to the protection goal of
the kernel. Keeping titem cutside the kernel cuts dowan on
the number of modules and intesactions to- be coasidered
as part of the certification process. A module cannot
abuse privileges it dossn't have to modify, circumwvent, or
subvert the security kernel operation..

4. Motivations

Designing a dynamic linker to rum outaide the security
kernel envireonmemt of a computing utility is motivated by
the desire to improwve the ctrtifj:ahilitye af the protection
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mechanism in the system. under concern. A linker is char--

acterlzed by fbur features ‘which suggest it thould run

‘outside’ the security kernel ot the ayétﬁm to ease the

I %v‘,iz”i'iaj"-“,‘ Saan iy

auditing of the kernel
Firstly, a linker does not . iﬁ@iéﬁéﬁ% any cbncept ‘te-
lated to the prétectxon of tﬁo ﬁy%tﬁhf”of nebﬁkd‘to support

'the protection mechanisms., LA "“*”;ﬁ"”“*

Secondiy, in view of the functioh 1mplémented by the‘
1inker, it seems reasonable to sus?ect th&t ‘the llnker
does not need any of the pr1V1iB§é§ gfhntad to typical
modules of the saturity Xernel. The?tf%rt, the Teast

' fprlvilege prlnc ipre’ impliéﬁ”that‘%ﬁa 1Ihker ﬁe outsxde the

security kernel.

"@hifaiy;lﬁiIfﬁkérfiéoiﬁlé%ﬁéiai“é Viry ‘Somplex program.

Even though its function is eésy ‘to’ éasbribe, ‘the details
" of its’ implementation tequiré ‘the’ liga of’intricate and
’sophxsticated Ianguagé‘éOnﬂfrﬁﬁfi‘ﬁhibﬁ:mako the reaaing ;

and auditing of the program a quasi iﬂpﬁrﬁihle task.,
Flnally, the linker, by its very nature handles aata
dxrectly accessible to the users of the iyit@m; *éuch

data’ could oontain - pufposely dr not - 1ndoﬁhistencies A

'capable of causing ‘thé 11ﬁkér tﬁ marfﬁﬁdfiéh or perform

EE

unexpeoted operatlons.’ Oﬁé”sﬁipéctﬁ’ 't it iS'much

*:ﬁardgf'fo'véfifi;thé”%grfec€76ﬁ§?i%foﬁ*ﬁf:i;ﬁfd@fﬁﬁ*ﬁﬁon g
it cén'be‘préSentéd*ﬁith'éﬂ“hfﬁ%tfﬁf?uiﬁ%ﬁé‘tﬁah’to'vérify

oy el
pp s LR e
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correct operation whenfa‘"co:rect" input is guaranteed.
Since malfunction and unexpected behavior are ruled out
for program components of the security kernel, very
sophisticated macbinery would be required to verify the
consistency of user requests to the linker and insure
proper operation. Even if sucb machinery were available,
it would only‘increase the complexity of‘the‘linker. |
Again we cowe 1o the conclusion that,the linker should
not be part of the security kq:nel, If so, no malfunction
of the linker will ever subvert the protection mechanism
of the system and cause.unauthp:izeﬂ access to protected
information.

To summarize our motivation we can say that designing
the linker to run outside the security kernel environment
of a system is a step towards s;mpligying, isolatingland
jbetter defining the security‘kernel, ;he:eby,making its

auditing easier.

5. Objectives

The motivation for our thesis is based on four argu-
ments which suggest that the linker should run outside
the security ke:nel environment of the system. The first
objective of our thesis is to show that it can run outside
the security kernel. We will have to show that the linker

indeed does not contribute anyhow to the protection of the
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system and is never needed to support the operation of the
kernel. We also will have to show the inverse relation;
that is, the linker does not use or need any of the priv-
ileges of the security kernel modules. 'Weveventually will
have to show that the idea of forcing the linker to exe-
cute outside the security kernel environment does not
introduce any unsuspected, unsolvable problems.

Clearly wé would not pay so much attention to our
problem if its solution were obvious and if all linkers
known today were running outside the security kernel
environment of the system for which they were designed.
There exist a few systems (13) where the problem has been
solved. However, it was solved only for the very simple

case of a static linker binding modules together inside

one protection environment. Instead our thesis will pro-

pose a general solution of the problem for a dynamic

linker binding modules together across protection environ-

ment boundaries. The design to be proposed can be applied

to any type of computing utility with some variations
which we will eventually mention when appropriate.

Except for a few cases already mentioned, all systems
are designed with their linker being a component of the
security kernel, and having the privileges of the security
kernel (14). The second objective of the thesis is to show

the feasibility of the design to be proposed for a
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particular reel'world system We have chosen to remove the
linker of the Multics (Multlplexed Informatlon & Computing
Service) (15-18) system from the security kernel environ-
ment and to force its executlon lnto the uaer envxronment.
The linker presently runs in the environment of the
security kernel of Multics as do many other components of
the system whlch ‘do not belong in the security kernel elther.
The main reason for thls design wes that the cost of o
dynamlcally changlng the protectlon environment of a
computatlon was prohlbltlve in the inltial ver31on of
Multics. Hence, it was decided to 1nclude many system |
components in the securlty kernel that were not part
of the protectlon mechanrsms in order to manimize the
number of times the protectlon envxronment was changed
in the course of a computatlon. Snappxng a aingle llnk
requlres two environment ohangee with the linker xnside
the securlty kernel but may requlre 10 to 100 thh the
linker out51de.j A second veraion of the Multics hardware
(15) has reduced the cost of a change in pretectlonl
env1ronment to the level of a normal 1nterprocedure
call. As a result, there is no longer an eeonomic

1ncent1ve to 1eave the linker in the securlty kernel.
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Before we go on to develop the design we will mention
a third,ij&Ctivﬁch'hheuthﬁﬁiéﬁr,In~namn&ingxtheqdynamic
linker from the- security kernel. of: Multips, we hope to
establish a few more criteria for deciding whether or not
a program beldngs in the security kernel of a system. We
also hope to better define what general prpgr&mming fea-
tures cdntributé or hinder the task of rem6ving a program
from the security kernel. These lists of criteria and
features of interest will certainly be as helpful as the
removal of the linker itself to better define the security
kernel of a computing utility in general and of Multics in
particular. |
6. Plan of the Thesis

Before we come to the body of the thesis we would like
to briefly describe how we will develop the research and
carry it on to the detailed implementation of a linker
running outside the security kernel of a.domputing utility.

Chapter II will develop a computing utility model where
emphasis will be put on features directly relevant to our
research. The model will serve as a basis_to describe the
design and it will help the reader to apply the design to
different systems by matching the model with that system.

Chapter III will propose a complete desiéﬁ of relevant
parts of the computing utility. Problems encountered in

the design will be discussed and solutions will be proposed.
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In Chapter IV we will demonstrate the feasibility of
the proposed design by describing its implementation on

Multics.
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In order to better define the features of the de51gn

we will propose, and to generalize its applicability to

any computing utility, we w1ll describe a computing utility

i".»,,s

model Thls will enable us to explain the proposed de51gn

in terms of the model. It w111 enable/the reader to apply

the de51gn to any 8pelelC computing utility by matching

P ?(,

'that computing utility w1th ths model.

We w111 develop the model in two steps.; Firstly, we
will describe a protection model suited to the env1ronment
of a computing utility.‘ Secondly, we will build on top of
this model an 1nformation storage model suited to the
needs of a dynamic 11nker. The model will help us to

better define the concepts of protection envxronment and

PR

logical address space which we have occasionally mentioned

k

but have not carefully defined yet. We thsn w111 explain

in detail the operation of the 1inker in terms of the
NSRS .b, LR SrEr *

model. This will greatly simplify the subsequent descrip-

tion of the design of a linker running outside the security

IR

kernel of a computing utllity.

1. Information Protection Model
- e

In order to better understand and study the problems

e 1
related to protection of stored 1nformation,,severa1

rait




structural and mathematical:models of protection schemes
have been proposed (19,20). vﬁe’will Eriefly describe here
a model based on the:concept of protection domain (21;22).
' This model will help us understandewhat isvmeant by a
.protection enuironment and particularly what the security
kernel environment is. | |

For the purpose of our discu581on, we - w111 talk about
the environment of the computing utility in terms of
objects and subjects. Objects are pa551ves They are the
information containers of the‘computing utility. They
must be protected to prevent unauthorized access to
stored information. Objects are the procedures and data
bases stored in the computing utility. Sub ects are
active. SubJects are the 1nterna1 representation of users
of‘the computing utility. Subjects, sometimes called
processes or Jobs, act on behalf of users to create,
delete, dify, use and manipulate objects.

Subjects can access objects by means of capabilities.
A capabiligx is an identifier denoting some object 1n the
computing utility. Any subject possessing a capability
for an object is entitled to access that object.

The set of capabiiities avaiiable toua’given subject
defines the domain of execution of'the‘subject.  The domain
of execution of the subject is the protection env1ronment

where the subject operates.
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When a subject changes domain of execution, it changes
its set of cépabilifiés; Hé‘éan enter Hyﬁéw doméin‘of
execution only through a gatél li ggﬁg;fifa“ptocedure‘
object which fbtdes'enkrancé to a doﬁﬁiﬁAtg coincide’with
invocation of certain prodedure objects Ihjthé dbmain;
These procedurés completely determine the activity of the
subject in the domain. For a QiVéh‘éuﬁﬁéE%j"é;gate is an
entry point into”a given domain. However, for ‘two
different subjects, the same gate‘dﬁféé%“iéadé into dis-
tinct domains. We make the;aésuﬁﬁtiﬁﬁLthétqéééh domain
can be entered by only'oﬂeéubjecfg Thus when two subjects
wish to enter the 'Séﬁé"idOﬁéiﬁ, EhéjL%r§’idtuilly |
installed into distinct domains édhﬁaininbﬁéﬁﬁiValent;sets
of capabilities. | ' o

. With this model in mind we can bétté:“falk about the
environment of the4securitY“kerﬁéi:*%§6f?eﬁchyuseficompu_
tation, i.e. for each Subjédﬁ'dfxfﬁecébﬁﬁﬁfiﬁg utility,
there exists one domain-the sécufitQHkéiﬁgg%aomain (23,25) -
where Capabilities exist for the Qﬁﬁﬁécistb &écésé“pro—
cedure and data objects df?ﬁﬁé'sééufif§‘kéfﬁel; " Access to
the data objects is constrained by fﬁéléééﬁéé”pattern
encoded in the procedures of the kernel. Access to the
procedures is further restricted to certain entry points:
the gates intd'the“QECufity’kefﬁéiuadmhih;/ hence'complete

control is gained on the interactions between the kernel

et PRI
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and the outsidc world. The security kamel is a so called

. (24,25) an mstance of uha.ah exists

rotected sybsystex
in the first dom \in craated for each '\:-bject in the
puting utility. . som-

2. Imﬁomta.on Storage Model

The yzevxm paragraphs lwve Mc more precise the
notlon of pmtactn.an mv;.zmmt We will Bow consider
the concept of logical address space. J ,

The set of all objects in a mtwg uta.hty con~
stltutes the maf thg , :
these ob;ects is a particular set 0@ abieﬁ!:& s:s.ued
catalogs. Catalogs are data bases containing descriptive
information about some set of objects. One of the items
contained in >avlc:,gta.lngv about each object described in that
catalog is the physical address of each sbisct. The
h sical‘ g of an object da.finea where the object is

located on some Wry dcvim attached to m computing
utility. The physical address of an alzj;ﬁ,m must be clearly
dlstmguxma from its logical mmu The logical

_ address of mab;wct is the address by which an existing
subject references tha object. Only logical addresses are

meaningful to maacaoxg executing maahi;m code. An
object always has a physical address even when it resides

on secondary storage and no subject uses it. But it may
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not have any logical address if no subject uses it.
Agsigning a logical aaaréss’¥b¥aﬁ‘éﬁiééi“aﬁ”Behalf of a
subject is the role of the file system manager (FSM)
When a subject wants to a881gn ‘a loglcal address to
an object, it must’pass to the FsM the uniﬁue'identifier

of the‘object. The unighebidentifiérgbfdan"object can be

a unique name, a unique number, or a catalog unique iden-

" tifier and the symbolic name Of an object in that catalog.

Uniéﬁe‘identifierslare‘different from symbolic names in
that more than one object may have the same symbolic name
as 1on§'as'they”arevdeseribed'in:different catalogs, but
no two objects can have the same unzque 1dentif1ers.
| When given a unlque identlfier, the PSM’ performs two dis-
tinct functions. Flrstly,ylt searches the file System to
' find the descriptien of the ebj'ect de'ne.t‘dd’ by the unique
identifter. If the'searchTfails'er'if"the‘fSM'deerdes that
the reqnesting'subject'does 'hé£°ha§é the ;ight to know about
the object under concern,tanlerrdr meQAage’is returned
and no action is taken. 1f‘tﬁé”§§§réﬁ"éﬁécéeas and the
reéuesting subject has the rightute‘kneﬁwabout the'object,
the FSM ma __2_ the obJect 1nto a 1og1ca1 address of the
address space currently seen by the subject (enables a
10g1ca1 address), remembers the blndlng between the

unlque 1dent1f1er and the 10g1ca1 address, and returns the



-26=

logical address to the aubject.

One gquestion is now in oiﬂex. What is the real
nature of a logicai addﬁess? Since the FSM, a component
of the securxty kernel, releases logxcal addnesses on the
ba31s of a protection dec;sxon, a 1oq&ca1 adﬂress is
merely a capability to access’gn gb;ect.‘>§sllong as a
subject‘has no enabled logical addiéaq for an object, it
cannot reference thatkabject. If and whgn'a;lpgical
address is enabled and delivered to the subject by the
FSM, it gains.éccqss to the corraspomginqvqugct, i.e. it
has a capability for that object. This establishes the
connecticn between oui iqfoxmation piétpction model and
our information storage model. | |

This connectlon between the two models brings up the
question of the nature of the loglcal address space. Since
a capability for an object is granted to a glven subject
in a glven domain, one might wonder whether the loglcal
address allocated to the object is valld only for that
subject in that doma1n. In other words, once a loglcal
address is assxgned to an object far somé subject in some
domain, will that subject see the same obgect at the same
address in other domains? Wlll all suhjects see the same
object at the same address in all domaxns? The answer to
these questions depends very much on the type of loglcal

address space supported by the system under concern. In
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the simplest case, where the logical address of an object
is its primary memory address,'lf any, then we can talk of
a system wide address space.f Once ‘an address of the space
is allocated to an object,,all subjectsxln all domalns
will see that object at that address if they have access
to it. On a virtual memory system, each user, i.e. each
subject may have one address space of 1ts own. When an |
address is allocated to an object in a subject ‘address
space the subject w111 see the obJect at that address in
all domains where he can access the obJect and the address
will be meanlngless (not usable) in other domains. But
all other subJects may or may not use the correspondlng
address of their own address space ‘for the same object.k
Flnally in some systems, there may be one address space

in each domaln. Such is the case, for 1nstance, of base
and bound machines. A domain is defined by the base and
the bound of its address space. A logical sddress is
mapped into’a‘physicai address’hyrrelecatinstit relatively
to the base and within theabouhdhof tﬁe“aadféss space of
that domain. Once an object is mapped Into one address
space, the address space of another domsin may or may not
contain the same object at the ‘same’ logxcal address ‘depen-
dependlng on what its base and bound are.7 To conclude this
discussion, we will assume for the rest of thls the51s,

@y

that the concept of address space, when unqualifled, means .
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the address space seen by the glvan subject xn the given
domaln. Unless speczfically &tated, no aasunptxon will be
made about who can see the same address space in what

doma;n‘

3. A Dynaaac Llnkxng Mndel ; _
The laat paxagraph dsscrihed the models we wlll ‘use

‘ to support our desiqn. Befoxa we aova cn ho the design
yyltaelf we will dﬁscrihe the dstailoﬂ overation of linker
Wlth respect to the moéals.: In éoan so, e w;ll not have
to worry about uhat a uniqué idant;flex, 2 loglcal address,
a domaxn, or a gate is. He knou that all theae concapts
can be ldﬁntlflﬂd in any cnmputxag utllity and that our
descrlption can be based on them thhout &nbiguxty. .
| Whenevnr a sub;act executxng an object encountets a

1ic Li,{ to another object,

symbolxc naac of, or a sym

a harduare cvent called a 1' fault occurs. As a result
‘of the link fanlt a copy of a;l machine reglsters, called

the machxne atatus, 1s haaded to the 11nker.'

The fxxst task of the 11nker 1: to analyze the machine
status to detern;ne which4synb011c lxnk caused the fault
and which ob;act waa helng exacuted at the tlme of the
fault. This object is callad the faulting ob;ect. The

domaln vhere it was executed is called the faultlng domaln.
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By searching the faulting object, the linker will find a
complete description of the symbolic link and in particular
the symbolic name associated to the link which designates
some object of the environment. This object is called the

target object of the link. The domain in which it belongs

is called the target domain.

The second task of the linker is to search for the
target object in the file system and to map it into the
logical address space. In order to do this the linker
will of course need to invoke the FSM. The search is

driven by so called search rules. Each domain has

associated with it a different set of search rules.

Search rules are an ordered set of catalog unique iden-
tifiers. Of course, it is irrelevant to talk about search
rules when the file system is one single catalog. However,
in general, it contains many catalogs. The search rules
force the linker to search only some of these catalogs

in the desired order. The linker takes one search rule

at a time, combines it with the symbolic name of the

target object thereby making an object unique identifier.
The linker hands the unique identifier to the FSM to search
the file system. ' If the search fails, the FSM returns an
error code to the linker. The linker will keep trying

the next search rule, if any, until a search succeeds.
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In this case the FSM returns the logical address of the
target object to the linker..
The third task of the linker is then to translate

the symbolic link intc a snapped link usable by the pro-
cessor. This is called snapping the link. The linker

just replaces the symbolic n;n@ iﬁ th§ link by the
logical address of the target object.

Pinally the linker must modify the machine status
to force the executing subject to reuse the now snapped
link. , _

By a mechaniam external to the linker itgelf, the
machiﬁe status is then restored so that the executing.
subject jumps back to where it was just before the link
fault.

Once a symbolic link is replaced by a lagical link,
it will no more cause any link fault for the current

subject in the current domain.

L gees s P B AR T SRR e L T R AT e e
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III. Design
1. General

The last chapter presented a computlng utlllty model
which will be used to support the dlscusslon of the desrgn.
The steps in the 0peratlon of a dynamlc llnker have been
descrlbed. As 1t should now be clear to\the reader that
programmlng the llnker 1tself is a feaslble task, the
current chapter w1ll rather concentr;te on the problems
of 1nsert1ng such a llnker 1nto the overall de51gn of a
computlng utlllty such that 1t be outsidethe securlty
kernel The next chapter w1ll then present a test case
implementatlon of the de31gn to demonstrate‘the use of the
model in 1dent1fydng the components of agreal system‘and to
show the feaslblllty of 1mp1ementing the desxgn on a real
system. | -

In developlng the drscu581on of the de81gn we w1ll

try as much as posslble to progress naturally and to

handle each problem as it shows up. In a flrst sectlon

a3

we w111 explaln how the security kernel can operate

w1thout the help of the dynamlc llnker. In the remalnlng

,9.__

sections we wlll demonstrate that the dynamlc llnker can

operate wlthout the pr1v11eges of the securlty kernel.
Thls order of dlscu551on c01nc1des w1th the order of
events when a computlng utlllty is brought up 1nto

operation: the security kernel by its fundamental



-32-

'purpcse is the first subsysten to be operatidnal and is
used to bring up the rest of the systam functlons, the
dynamlc linker among others.

We do not clazm in any uuy thnt the dasign to be
outllned is the only possible dsslgn solving our problem.
By 1ts very nature. the topxc of tha reselxch poses
several structural problems which jaxe easy to identlfy
and to describe. Bewevar, detlgning solutlons to these
structural problems cannot be dome systemat;cally as‘,
would be the case for mathenatlcal problems solutlons
to a p&rtlcular structuxal prublen nay bring up other
structural problema It 1s hard to predxct and to control
- the propagation of the effeets of a partlcular solution
to a particular problem. Hence it 18 hard to estimate a
priori whzch solutlon mlnimizes the nunber and the mag-
nltude of hidden potentlal problems As it 1s impowsible
to dlscuss all solutions in deta;l, ﬁe wxll attempt to
justlfy our chaiee betwaen dlfferenﬁ solutions whenever
posslhle, and especially where a soph;ltxcated solutlon
has been preferqd to an apparently more obvxoun one.
| Even so, we do not claim that all possibilities will‘be
dlscussed. we are convznced that equzvalent de31gns could
be proposed. We belleve only that our design is among

the sxmplest ones.
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Finally, we will attempt as much as possible to be
sufficiently precise in the discussion of the design to
convince the wreader that subsequent implementétion is
practical and straightforward. At the same time, we will
try to remain sufficiently abstract to enable the reader
to implement the design on any general purpose computing

utility.

2. Security Kernel Initialization

Before any user can request service from a computing
utility, the system must be brought up into operation.
This initialization task is done under thé responsibility
of a subject called the initializer. The initializer hust
cause the loading and set up of all programsrequired to
support the operation of the system. The first of all
subsystems which needs to be initialized is the security
kernel because of its fundamental function: generating
other subjects and domains for these subjects wbuld be
impossible without an operational security kernel. We
afe concerned about one aspect of making the kernel
operational. Like all subsystems in a computing utility,
the security kernel is a modular program. Hence its
operation does require a linkihg function to combine the
modules together. However, our objective is to propose

a design where no dynamic linker exists in the security
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kernel domain. The securlty kexnel 13 not allowed to cause
link fanlts. Hgnca all llnka 0f the securlty kernel must
‘be snapped prior to the operatian ot thz kernal. Thls

task is part of the 1acur1ty knxnal ia;tmalisatman.

Llnkang together all mndulas of the uecurlty kernel
requires the help of a static 1inkat. Es&entially two
types of static linker could be used: a binder or a
prelinker. The binder is a static linkar which'prépares
_once and for all a fully oparational securxty kernel
that can be usod uithont any further xnltialxzatlon as
many tlmes as demxred The prelankar is a statlc llnker
- which lxnks the modules of the secnrlty karnel boq%ther
each time the systcu is stackad durlng an initlalxzatlon
kphaae. w111 not describe the detailed design of either
a binder or a prellnker. Thls toplc 13 helou the level
of our dlSCUSllon. We will ask the reader to raallze that
writing a static linker is feasible 1n many ways. We
will just discusn the propertias of each type of statlc
linker.

The tcchnique of the blnder seens both sxmple and
economical. It is economlcal becaune the links of the
securlty kernel are snapped only once for a glven system
version and the resulting oparational securlty kernel can

be reused as many times as desired, It is simple because



-35~

auditlng and certlflcatlon of the kernel must be done

only once on the f1na1 operatlonal kernel.‘ The binder

3

is kept out31de the env1ronment to be certlf;ed; only

pEET
the results of lts operatlon are to be audited._
_ The technlgue of the prelinker instead requires that

the prellnker be audlted and certifled.” since domalns

6‘.'.._ p

are meanlngless untll the securlty kernel is 1n1t1allzed

to support them, the v1rg1n env1ronment seen by the

,inltlalizer may be v1ewed as just one sxngle domaln

bound to become the domaln of the security kernel. Con-

*z

sequently the prelinker of the securitx kernel whlch ls

SMdarn D =5}

executed prior to any module of the kernel is 1n some

RSV Sy E T -‘\A« Y

’sense a component of the soon—to-be kernel. The pre-

DAEL

llinker must therefore be certified._ By now the reader :

1 i
RS- JE AR R 4

may wonder what 1s gaxned by the prelinker technique.

We want to remove the dynamlc linker from the secur1ty

P

kernel but we propose to keep a prelihker in the kernel

o .i Liii!

Flrstly, the use of a prel;nker may make the system

1n1tializatlon more flexxble.( The use of a binder fre-

TLEEDTFE F

quently implies that not only the 3ersxon of the system

but also the 1n1t1s1 conflguratlon of the system (hard—

DeRs

ware conflguratlon and slzes of various supervzsor tables)

g% ..1-,1 o

always be what the blnder assumed. Instead, in the case

s S TSRBRE- T Tl B ¢ Dol 3001

of the prellnker, even though the version of the system

LS

B

used may alvays be the same, Fhe, cqwsmti@ of the
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system may be changed each time the system is started by
propetlf natifying‘the prelinker of relevant configuration
data to be respected. Thus a!préiinkér'ia'more’flexible
than a binder. B o

Secondly, believing that the oertifiéation of the
prelinker is just as bad as the certification of the B
dynamic linker is Qrong. By its d&ndniclaapodt; by the
requirement that it be able to deal with 6bjéc£s scattered
in é large file system, and by the fact‘tﬁaiyit may support
miscellaneous sophisticated lihking fégtﬁtei needed by
user programs (see next chapter), the d&namic linkeilis
a much more elaborate program than the prelinker. The
prelinker is a static linker; it deals only with objects
of the supervisor concentrated in just a few well known
cataiogélof the file ayatemékahd it may not kuppbrt
sbphiatiaatad linking features bééhuséléééﬁrity’kérnei
modulei, unlike user modules, nay bé‘ﬁroérammed to avoid
such features. In addition, by its very natﬁre, the pre-
1Inke£ iiyan atomic p#ogram whiié-the éyh:mié‘linker is a
mbdular program; All such factoxshmake'i §relinker a lot
simpler and hence easiér4to cértiffafhhh a dynamic linker.
Finally since the prelihker is needed only during
initialization the security kernel can discard its own
capability to ever again access it during regﬁlar systen

operation. Thus the prelinker cannot be executed again
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once the system is initialized,'and therefore it cannot
huft the system. This also sxmpllfles the problem greatly.
Consequently, the ch01ce between binder and prellnker is

a choice between relatlve certlflablllty and flexlbllity, In
general this’ choice is 1ndependent of where the future
dynamic linker will be runnlng.‘ Slnce the implementation

to be described in the next chapter is“haéed on the pre-
linker idea, wevwill as;umelthe{s;m;iiééﬁ inlthie chaﬁter.
ﬁowever, we ecknowledge the feottﬁ;t uéing a binder is

most probably equivalent as fariasjouf:thesis is concerned.

’We will now temporarily abandon the operatlonal securlty
'kernel we have obtalned The next sectlon w111 flrst dis-

| cuss a few deslgn princ1ples an& then carry on the develop-

ment of the system by building other domalns around the

‘securlty kernel.

5. bynamic Linker Initielinetion

a. Design Principles o
In,the‘preVioua‘section,,we have‘-aswn how the

| security kernel mbaulés can be linﬁe& tOéethe} without the

help of the dynamlc linker.l'oneéflinhed, they no longer

need any linker, thus they can operate without one. The

rest of this chapter will'examiﬁe’thé other side of the

design. It‘uill be demonstrated step by step that the

dynamic linker can operate outside the security kernel.
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It seems that the first problem we encounter is to
deflne what "outside” meana. One half of our dnsxgn is to
remove the linker from the domain of the eecurity kernel.
The second half of it is to dhcidn in uhich athax douaan
or domaans the linker will run

1t seelts very appeal;ng to s;nply lnatall the 1inker
~once and for all in a domain of its own (see figure 1) where
a subject will be able to go if and whon necessary. ‘Even
though this solutxon may seem clean and obvious, it is very
_likely to ra;se implementation probleas Ind.ed, on each
link fault, thc linker donaxa would have to be pravxded
dynamically with appxoprlate capabilities to access the
faulting object, aad perhaps thq taxgetﬂ‘ohgject or even
other obﬁects in the faulting or tge_ta:ggtdomuin; When
the dynamic linker was always running in ihe saée domain
and that domain was tﬁe security kernel domain, providing
it with dynaaic'capabilities_was'eaayvgivgnithe ﬁniqug
privileges available in the security kernel. _nguver,»
| thié is no more true if th; linkéi{runs in 5 domain
different from the secuxity‘kqxnél'domain, Furthermore,

a linker domain containing capabilities for objects in
several demains,‘even if only one §£‘a:tiﬁg, can.poten—
tially operate as an unauthoriied,infoth@tion chanhel
between these domains if it mﬁifﬁqgtions' Therefore, such

a linker must be certified to prevent potential unauthorized
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Figure 1: Different environments for the linker.

Domain A

Security Linker
kernel domain

Domain B

Case 1: Linker in its own domain.

Case 2: Linker in each domain except the kernel.

Domain A

Security
kernel

Domain C

Domain B
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access to the information. ‘

A second potential answer can be found by thinking
in terms of capabilities. Since the linker will need to
access objects in the faulting domain and perbaps in the
target domain, both domains seem potential candidates to
host the linker. The target domain is actually not a
good candidate because it is not deterninoa until the
target object is identified. Hence it is undetermined
at the time of the fault and the only domain where the
linker could initially run is the faulting domain which
is easily determined by the mchmo status.

Consequently, even though we do not defxnztely reject
the first solution, we atxongly reconnsnd and will fur-
ther assume the second sclution which at least guarantees
easy access to the faulting donains and eliminates a
securlty thraat. It will be seen that access to the
target domain is usually not required and eventually easy
to provide. 1In the above diaeuﬁ#iqn‘ﬁe’havn identified
the major problem of removing the linker from the security
kernel domain: it no more has all the privileges to;access
any ebjaetlih any domain; each particular{invoc!ti@nvof
the linker will see access capabilities constraihéd‘tq'
those o§Athe££au1ting demain for the invocation (see

figure 1).
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We have just decided to design thé linker to run in
"the" faulting domain. Since any domain is a potehtial
faulting domain except for the security kernel domain, the.
linker must be made "available" in all domains except the
security kernel domain. The second problem which we will
now discuss is the notion of availability,of the linker
in a domain. What does availability of the linker mean?

Firstly, it means that capabilities must exist in all
domains, except the security kernel domain, to execute
the linker. Providing such capabilities in each domain
is rather trivial and should pose no implementation problems.

Secondly, a dynamic linker, like most programs of a
computing utility is a modular program. As such proper
operation will be possible only if there exists a means
to snap links between the various modules involved in
dynamic linking. For most programs in a computing
utility links can be snapped dynamically. In the case
of the dynamic linker, this proposition is nonsense:
if the dynamic linker contains unsnapped links, it is not
operational and cannot count on itself to snap its own
links. Hence a static linker must be used to link the
dynamic linker modules prior to using them. As long as
the linker was part of the security kernel, its modules
were linked together by the prelinker of the security

kernel. Now we have removed the linker from the kernel,
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it will no more be avtematioally prelinked. :Hence, its

modules must -somehow ‘be linked together indepsndently to"

| make it -operetieonal in ggﬁtxuﬁn-uintgf'la may .ask ourselves
- what sort of links ewist &m”ﬁha¢ﬂ@nu.i&;i&nharsandshnve

to be amqpp§ﬁ5cmak&eaamy.'3mha€1ﬁﬁkit«is»a:xat:ef proce-

' dures ‘and data modules which asevording to our cbjective

can bewgimcuhnﬁ‘13.,nygaima&u!aﬁﬂup&\%&awnpcnriiy kernel
domain. Clearly at least all limks hetwses these modules
must be snagpedl to enmwre proper operation. In adfdition,
the eariier desoription of the Lisker W .mentioned
the need to iwmvoke the FSM. E&imee:kghe linker is anywhere
but in the securdity kermel, ¥t can mwmmsf -
fhrongh one of more gabes maﬁ» e geturity kaenel. Hance
there «11& exiet links to thaaa@glwnik They mpet also be
snapped. ﬂﬁnlaqﬂeat&yw t&a s&%nitiam amnshe pictured by

- figure 2. Eanh»ﬂpnumn»has'empihiﬁit&pm,raika Gowmain D,

to execute “+he" linker. *The" limker is the set of all
¥y inveladl in’ dynamically
linkihgfﬁmnanbdm&gu.*ashei1énkath&tbénonﬁaﬁnwwunawpx more

links +to -sectrity kernel gates. Notioe that these gates,
as kernel uvemponents, are guarsvbesd to be further pre-

1itiked ‘to imbernal modules of the Xerhel during system
initialization. Hence we ‘o not mesd €0 worry about them

anymore even though ﬂhay~aeﬁ§:&n’&inks “tolie insetveﬂ in
dynamic l;nkzng
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Figure 2: Linker andvsecurlty kernel
Initialization: conflguration
of the links to be snapped. °

Security kernel

(::>:ante

© Alteady prelinked

To_be énépbed'yet



b. Prelinking the linker
We are now in a poaifionﬂto“ﬂiacuns how static

linking of thae dynam;c linker can be dnns. We had left
the development of the ay:tan at the atagc uhere the
security kernel was operational in the fzgst and only
domain of the eﬁ&iranment ﬂp;uill now pﬁrsua that dis-
cussion and axamine the: ”: 1. ipvclvad with making
the linker uvailable in pew Quu»ias anﬂund the aecnrity
kernel dommin. " g '

N Thévﬁﬁi;t question t¢ be asked is: when do we want

to link the modules of the linker together? To answer
' this question, we must bear in mind the important fact
that linking modules togethar'inpaoma damain, whether
staficailyzp&-dynamically, first reguires mapping the
modules into the relevant iédéhak‘qugo-

; Since each domain or fu#uxe domaiﬂ in the computing

i, have its own

utility could, in the most gﬁueral .
address space, nhls auggesta that mnpping an@ consequent

is genarated. Such a dagig@ would be;;;sz,sfy aiupnnsive in
comparison to the design where thé"iinkez'was in the security
kernel and was prelinked only once’. | |

- We- wsu;d,x;&har lrke a de:xgn<uherc the linker
modules are linked together only once for the whole sys-

temﬁjgst a8 ip the case where the linker was in the
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security kernel. Heyever,‘sggpigﬂggsigﬁ:reqs}ges_;§a£7the
linker be mapped into;faéhticif)Saﬁiesses‘in she sddressv‘
space of each potentlal faulthg ddmaln for the same o
snapped links to be’ neaa&aq@ul~&awall doqalns. Thls‘m\

condition can actualiy be»fuifiiié& becaqse in all real

systems that we ¢an think of, eveﬁ*wh!h each dbm&in"has a

private address spacé, all'adaress spaces contain some

” set of loglcal~addresses in overlapping.numerlcal ranges.'

Since the l;nkez is the first program needed 1n any domaln,
it is the flrst program to be mapped into any domain
address space.” Hénce we. canﬂimpase to map lts modules

into the saite numsxlcal 1oglca1mgﬁdxesses fo;mall dgmaln
address. spaces (except the“secﬁxiﬁy kernql address space
of course)ﬁ This 13 ‘pictured in gigure 3}’ Mapping of. ‘the
linker 1nto logical address spaces would Btlll have to

happen once for each,loglcel~aadress space created, but

‘the costly;qperétion:oflfabricating the snapped links

could be performed only once. These snapped links will

be valld ln all domAAns if the 1oqipa1 mapping on which -

they are based is enforced in gll domalns._ﬂwewwtli now

£

see how .this can be done. T o
The second que&tidh'towseuésﬁed is: Ebgw can we link
the linker modules together? The?abﬁﬁeﬁdiscussion has

actually divided the task of linking the linker modules
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Figure B:V ‘Pomal :ns and thelr address space.

‘Domatns  Assoclated Togl é’i*l “Ph¥slcal address

Security

kernei u! dz

B




-47-

into two. We first must fabricate all necesséry snapped
liﬁks oﬁ the basis of séme'fiétif@wﬁaﬁﬁihéﬂ(fg”ﬁe |
decided upon). We thén must éhfofﬁéjﬁhif“ﬁhﬁﬁihg'in“each
domain address space we create and we mugt communicate
the snapped links baséd”oh”théf“m&épiﬁ¢'fﬁ;éaéh“new domain.
\WéAwi114n0w examine”tﬁése:£W63§té§§ in detail.
Fabricating the sﬂapped'linkfﬁisf;hé we already men-
tioned, the task of a static Iirkér. ‘Sinée the snapped
links must be fabricatéd“ﬁéféﬁé”dh§.domﬁfﬁfis éfeated
around the kernel domain, the statié linker must do its
job before or during system initi&Ifzaticn. ~ “"Before®
corresponds to the idea of a Eiﬁéeffii"bﬁtfhé*iédffééponds
to that of a prelinker. The choice between the two is
the same as in the case of ﬁﬁé.ééqﬁfititkefnélLiniﬁi&liza—
tion. As we have assumed the idea of thé*bfélinker”for
the security kernel, it is ail but:hatﬁra1'£o”keep the -
: sémé\idéa for the linker. Thé"fli?ofﬁai”fhg“d%signbis
of course to use £he security kernel prelinker a*8366nd |
tihe‘(with some variations péfhabk)'tb"bfeliﬁk the dynamic
linker. This saves ﬁhe'trouble£6f”df§tiﬂg“§ﬁd“cefﬁffyihg
another prelinker.’ Once Ehé?ﬁécdfity”ﬁéfnei“is prelinked,
and just before capabiiitiéSffd;uéérfhé ﬁtelinkér‘are dis-
cardéd; the iﬂitializér\inVokégﬁihéapréiiﬁké} again to
preiihk the future dynamic lihkéff':Tﬁéhfdiibwihé para-

graphswill discuss step by step thé’&iier*at{bh of the
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prelinkex on the link&: bacause some  »  o
the kexnel did met have.
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abile, w Degating wlitx ingludes some FSM w support
a file W Wim normal ngtwn nnt. u i.s m
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~and the F8i are initialized anmd av&mg&k &t t:he tm

the pfeli»m is xur. xg M m, umchmg og a tax‘g'et
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object can be achieved by the PSM. If they are not, the
target object must be initially brought.into the address
space of the security kernel from whatever memory device
is used to load amd start the system, otherwise it could
not be accessed and identified by the prelinker. 1In the
latter case, searching is reduced to a simple‘scenning
of all objects in the address space and will succeed
when the right symbolic name is found. This of course
implies that any potential target object, i.e. the linker
and any security kernel gate it calls, be in the address
space of the kernel.

Finally we have to worry about mapping.‘ Once the
target object of a link has been identified, a legical
address must be obtained for it to build the link to it.
The problem may seem trivial here since everything refer-
enced by the linker and the linker itself is mapped in
the current address space to start with. However, we
must remember that whatever mapping we base the snapped
links on will have to be enforced in all future domains.
It may not be feasible or reasonable to map the linker
and security kernel gates it calls into all address spaces
at the addresses where they currently are in the kernel.
In particular, we have menﬁioned that logical eddresses in
a domain are a form of capabilities for that domain. We

have also mentioned that after initialization, the security
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kernel will want to discard its own capabilities to ever

' again-xécesa thn~pzoltnkhr45h§§&:*ﬁ.&ﬁiﬁit&haa5§o<uah-p
the pralinker from the: address: tpa«hw&e‘euzzantly s008.
Along the same lines of thougﬁt the 1iuhwr ie mapped in ’
the in;tiai4k¢rnpr'td#b@i#’jgiaﬁvisrﬁtﬁhﬁpuiﬁﬁle*aﬁ—pxe-
linking. But the linker is not part of the security
kérnei;' Hence the initialiser will also unmap it after
prelinking is completed.
following problem. All cbjﬁutﬁ-ut’imti U0 e

currently mapped into the only vnliﬁyldliila'npaah but
'thls mapping is temporary and the !%tuﬁt mpgring’ to be
used in all domains other tian ‘the security kernel demain
'”fafiquab-@.
This future mapping is of course tﬁa”iﬁaﬁivo angpinq~we

may be entxraly diff'r'nt &8 repren

'discusﬁva aarticr.

of each Iink it translates a tugiﬁai‘%ddﬁiinvtu&tibktrfor |
all future domains. TR

Let us now conclude the above discussion by deserib-
ing the mapping function of the ?rolfnktr. ‘Pigure 4
illustrates this function. The: prttinkﬁxJQOCQ sid pro-
‘gressively bullds up two tables. ~fhe*fiétive mapping
| table‘dahtainsva'sat of entries of the form (logical
address - unique identifier). “Each such entry defines
the future logical address of the uniquely identified
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. Flgure b: Prelinking the linker,: ::.
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object. Each time the prelinker snaps a link to a target
object in the linkar;matfaﬁxutly’ﬂsllguﬁdva fiotive log~
ical address, it generates a suituble fictive address

and adds one entry to th& tub%azftt*th&t object. The
snapped links table Qontains saapptd links alroady fabri-
catea(hy tht prelinker. :Such- tuagpcd links of course will
be meanianul in all domains as thuy are baacd on the
fictive mapping which will be enforced in all dnnnia: "m
Once all 10#10&1 links iaauad from the linku; are fabri-

‘"Vcatudy thc-pttxinkar task is completed. ?heasacurity

kernel oan thnﬁ discard its own caiabilitics for the
prelinket :td,thevllnkor by diitliécating their addresses
in the current address space. eniy the two t&blca»BuiLt
by the prelink&r rcnnin in the address space of the L
security kcrml. They will be used to aziw;gygw_;niﬂg;q;ié-
zation of cacn aubstqnantly created domain.:

We have just described how the snapped linka of
the lirnker c¢ould be qnnomatcdv It rannins to be demon~
strated how the fictive mnypinq.og which they are based
can be énfaxcc&‘in each ﬁew &0&&1:: Such a t&ak is part
of each doms&in initialitatiéﬁ IE tﬁ stxaightf&:wutd.
Each time the -tcurity kernel creutes @ new domain, it
uses the fictive mapping table to drive the FSM and have
it enforce the mapping in the new domain. Each entry of
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the table is interﬁrated as a request from the»néw-domain
to' search the fi1e'sy%ﬁém'fbr”ﬁh@ﬁ%bjtﬁﬂfﬁﬁﬁﬁﬁdéiy_idén—'
tified by the entry and to map it intbkth¢ spécif§é€;fic—
tive logical address. After having done 80 for all

entries, the fictive logical ‘addresses are actual valid

- logical addresses for thé hew ‘dchain.’ Theh the security

‘Kerhel‘maps~a~copy‘offﬁhé;sﬁnﬁ?@ﬁﬁlfﬁiéﬂﬁﬁﬁié”iﬁfé“iﬁe

‘new- domain address space. :This wili Fifally enable the

linker ‘to properly operate in the new domaih by using

‘the snapped links based on the now reil mapping for that

A Y T

- What we have achieved is providing each domdin with
an operational linker; i.e. a“pféTiniéa iinker:" The |
first section of this chapter-describéd how the security
kernel could be inifiaiizea“%&thﬁhiﬁéheﬁﬁaiﬁﬁaf“théiay-

dynamic linker could in turn-be initializeéd in much the
same way. A fictive mapping of the -linker and some

secnrity>kerne1‘gatés”héd*fo’ﬁe“ééﬁﬁfatédidﬁrihé system

cinitialization and must be éﬁfofceaﬁﬂyithé*isnﬁindépen-

dently for each domain created durifg system operation.
Each such abmain*thén*Sééé’thé iinker and- rélevant security
kernel gates in its 1égica1"adaié§§*sbaééf5'iﬁ*aaAition,
each domain has a copy of the shapped links" required by

‘the linker to operate. Link faults can now safely occur
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in such Gomaing. This will be the topic in the next
section.

‘4. Link famit bandling .
&fumhanshmmhwbomtu&namty
kermlﬁthutthahalyafawm ~ We. then
- bayve shown how the security kerasl cap in turm dimitialize
a linker ia sach domain it creates. It remaiss to be
demonstrated how the operatiooal  linke: ‘ ,
each domain can handle Lmk faults without the privileges
it would bawe if it were in the security kermel domain.
domain objects, target .domain ebjects, and amy cbject in
general. We pow will show that the constraimed priwileges
sufficient to guarantee proper operatioe. o
The first problem we vill mow discuss is that of
invoking the linker in thbe faulting demain. Suppose that
an object being executed in some domaipn causes a link
fault by attempting to reference another objsct through
a untranslated symbolic limk. This lisk famit is an
event recognized by the hardware of the system. As a

result of the event, control must be given to the linker.




-55~

Some faults-access v101atlons for instance-are very sensi-
:tlve events and ‘must be han&ied by the security'kernel.
Slnce the processor recognlzes haréware events ‘thetiselves,
but may not. know about their nature ot their'sensitivity,
1t 1s frequently necessary ‘that all Eaults be sorted by
}the aecurlty kernel before being’ pa“ﬂedpto #ny other
domain for nendiing. Consequently, Oh o link fault, the
first program to be anokea is the’ séaﬁrity“kernel

1 Suoh«aetlon mey seem straightfbrwird ﬁ”9ﬁ§5sééurrtY¢

kernel could just call a ‘gate’ “fnto ‘thé& faulting domain

1‘iand that gate could in turn GATY “the lkﬁkér. “However,
x>1f we want to be absolute]y génefal, ouk desfgn mast frt
systems which support a very “large’ ﬂﬁmb@r ‘§¢ domiains. In
.&that case, slnce any aomain is a p&ﬁﬁﬁéfal faalting ‘domain,
the securlty kernel needs to know about’a’ “gate into each
domain.' But since domarns ‘and’ get&l cafi’' be’ éreated
and destroyed at will. durlng systeh opération, it is
1mpossib1e to prelink the kernel to’ ‘aghte into each.
,domaln at system inltlaixzation‘tfﬁé ﬁ%ﬁﬁt wé must

knowing about any gate lnto"it. Kha‘ﬁ%‘nmst SOmehow
| lnvoke the llnker in that domain?““hhﬁy dtfferent
}solutions can be proposed to these’ pf&ﬁléﬂﬂ’d%pending

Y!‘r;‘; PR
¢S

won the details of a particulax ly!ﬂ
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a comgntlng utxlxty always has a mnchanxsm to transfer
control fzam/thQ security kexnel to aaather dnma1n~w1thout
- knowing apything about that dangin,
¥e will anly mention anq,paniible solution for the

sake of completeness, bnt‘we'dngat claiﬁqan;harahip for
it and we inaist on the fact that differehﬁigstems may
requizg;diﬁﬁaran&,meehaniama. Sigce ths,sqénrity kérnel
- maintains and enfoxces protection, it uau#lly has the
bo#er.tn dynamically and‘tgngox#rilxr fo?céaecéss to any
object in any domain if neea#aaxy; For instance, on
many machines, the supervisox cgn_xq¢§£ tﬁg ﬁrivileged
mode hit at uill. qanaQQﬂgntly, even.thoﬁgh»the lihker
is not a gake. the security knxnal can ferca control to
jump ta the linkex in the maédle af a faulting domain.
This solves the pxablem of enterxng~the doma;n but we
still have to know where the linker 1s in that dcmain to
’Jump to it. PFor that purpoae wa can slmply store the
logical address of the lipker at some convantional address
in the fault;ng domain. Hence, on a llnk fault, the
securxty kernel analyzes the mach;na status to determlne
the faplting domain. It then loaks up the 1oglca1
address of the linker for that donaln at the conventlonal
address and forces tha«cqntrcl to Jump to the 11nker in
the faulting domain. Initialization of the conventlonal

location is part of the domain creation operation.

A A BRI B i, T P T B e T T
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This design has a side advantage. By'changing the

: address of the linker in the conventional location, the

AF ax .éxv

subject executing in the faulting domain can define any
other program to be its linker. It just has to prelink
its own linker with the standard linher prior to changing
the content of the conventional object. o

: HaVing described how the linker is’invoked in a link

fault, our second topic w111 be to denonstrate that the

symbolic link which caused the fault can be snapped w1th

’only the capabilities of the faulting domain. In the

b

earlier description of the operation of the linker, we

kidentified three steps in the snapping of a link"

. Identification of the symbolic ‘name of the 1ink
- search for and mappingvof the target object o
' corresponding to that name " |
R .Translation of the symbolic link intoa snapped
| link based on the previous mapping. :
The first and third steps require exclusively access to
the faulting domain because that is where the symbolic
link and the mapped link belong. The target object and

the target domain do not contain any information about

links directed towards them The 1inker has access to

the faulting domain and can thus handle steps one and

three. If the target domain is different from the
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fault;ng doaain. the aecond step niqht require infornatxon
embeddad 1n the target domain.‘ Eouuvnr. searching and
mapplng are actually poxforned by tho ESM in tha aocurlty
kernel. The sccuxity kernel can access xnformation about
any targct object. Thus the linksx just calla the FSM
through a gate into the kernel. Thc rsn thnn saarches
for the target object, docidol uhothor the faultinq :
\domaln has the xxght to know about it, evantually mapa it
into the faulting addxoai spaee aad retnrna a capuhilxty,
i.e. thc logical addreso of the target objecglto the linker
in the faulting domain.v We will sne in ‘the ncxt chapter
that in some aylt‘nn. conplauontary infor-;tion about the
target ehject must navurthalala bc extracead fran the
target donain. It w111 be shcun than how thil can be done.

We finully discua; the third problen, namcly return-
lng control fron the linkex to ﬁhe faulting object
The goal is that tho nction ot thc dynnlic linker be
entirely transparant to the faultiag objeot. !ha only
notlceable &ifferance in the envirann.nt is the now
translated liak. Apart fran thil, ¥ha taulting objects
expects to find everything un¢hanqod

The nachxna registors must roflnct thc machine status
just before the hardwaxe fault occurred, Par thi- purpose
the linker needs to restore the status of the machine.
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When the linker was invoked it received a copy of the
status”of"thetﬁaohine t&‘fiﬁé96ﬁ¥“éﬁéé”céﬁséﬁ“%hé'fau1t.
Restorlng this’ status in the machzne registeks must be an

,f'.l‘

‘atomlc operatlon to guarantee con81stency of the status

as a whole., It would be a pf%tection v101atlon "fo allow
any domaln other than the seé%rity kernei “to restore “the
status of the machlne.' Restorlng the machine status is
done by copylng data out of soue &bject 1nto the machlne
registers. If any domalnr could perform such an operatlon
it could set the machine status to a*paitern reerctlng

a subject in some other domaim.4 This woﬁfﬁ”ﬁe'éguivalent
to Jumping right in the middlb of a domafn and by-passing
xthe entlre protectlon mechanism. Hence restoring the
machlne status requ;res Eecugity kernel prfv;ieges whxch
the 11nker does not have.4 The only soiut{on ts ‘to have

" the llnker call the securlty kernel A gate ‘must be '
installed in the secur;ty kermei for thaé purpose. “The
gate w111 examine the machlne status 1t is asked o -:

| restore.f If and when properLy valiaatea the‘madﬁlne
status is restored and control 5umpa ﬁack to where the

' fault occurred 1n the faultinq oﬁieot.' Vafidﬁtion oF ‘the

machxne status to be restored mnat determlne what domaln

is defined by the machine status, and verify that that

‘domain is the faulting domaln. LAgaxn, the latter mech—

anism described is one among scveral péiﬁig le éeslgns
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~of a feature of general intareat which any conputing

| utllity aqpports undex Some tora 7 In many cases, the

simple fact of txylng to restoxc thn nnahine atatua from

~the faulting domain causes caatrnl tc lwitﬁh to pxivileged

_mode in the supervigor. The rastoro inatruction itself is

the return gate. Again e do ot alnim authorship fcr

~ the mech@nispl juSt delcribed

5. Cross donnln problams

The fixlt two soct;ons of thxs chapter havo discussed

,_the 1nit;a1ization of the accuri@y qunel and of ther

dynamlc linkcr. The pxevioua noetian haa then discussed

. the handl;ng of 1ink faults by tha opcxationnl 1inker.

The deslgn may therefcre seen conplate.ﬁ It 18 nat. We
will now dz:cnas a hiddan problan which'wa have only ,
lndlrectly approached qnd caxcfnlly avaiénd montioning
so far. The pr@blem 1: dirqctly rclatad tc the multi-
domain. aqunt of the conputinq utility.( It is a problem
of general interest wh;ch ex;stq in ;ny nnltl-domain
computxng ug;lity. Our rasearch eqna gcroas lt and |
uncoverad 1t for the flrst tina wb helzeve that 1t may
have been solved in particular qases alaost by accident.
In gengggl, 1; has been 1gno§q§.’ Hencn we will propose

a general solution for it.
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The linker is invoked on a link fault and completes
its task by asking the security kernel to restore the
machine status. It is not properly speaking called by
‘the faulting object and does not properly return to that
object. It takes no "input" or "output" arguments.
Instead the objects it receives to work on are defined
by the machine status automatically saved by the security
kernel and the result of its computation is a snapped link
The question we will now discuss is where does the linker
store the snapped link so that the faulting object can
later retrieve it? Or in other words, what is the
nature of a logical 1link?

In a computing utility where information sharing is
a fundamental objective, special care must be taken to
6rganize the sharing of program modules. In order to
operate, a program requires working storage fo store and
retrieve data. One usually distinguishes three kinds of
working storage: in a PL/1 environment, these classes
or types are known as external, internal static and
automatic storage. Data modules or data objects as we
referred to them in the thesis are examples of external
storage. Many programs can refer to a particular piece
of external storage. That piece is external to each pro-

gram and shared by all. External storage can be created
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or destroyed at any time and can exist as long ss desired.
Automaiic starage on the other hand belongs to. a given
program, is not gha::ed, is created. M the program. is
mvoked ‘and dispppears when action resylting from that
invocation terminates. A stack frame in an Algol machine
is a typical example of automatic storage. . Internal
static storage shares features of automatic and of .
external storage. Like automatic storage it is private

to gne program and not shareable. . Lil;e gxte:nal storage,
its life time can be more than just one invocation of the

program. Internal static storage by definition is allocated

to a program when that program is invoked. for the first
time in a damain, and is de . when the domain is

destroyed. In other words intaqrnal atatic storage con-
tinuea to exist hetween invocaticns of A program as long

as the domain which containe it exists. Going back to the
problem of ipformation sharing in a computing utility, it
is clear that procedure code (prayided it is pure). can be
shar.ed by different subjects in q&tfwxmm. i
1aps with

Similarily,. external _starage. can:be shaped, )

~ some praqant.iona. sharing external storage allows sharing

data. However, it may be desirabla not to share internal
static, and it is certainly desirable not to share auto-

matic storage. Let us consider the case of internal
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static itoraqe, Sharing internal. static storage may lead
to-gconflicts since subjects in: different: domains. may carry
on diffe:ent;cgmpﬁgations»withﬁﬁhefsamaggrocednmnsfvThus
mutual: protection and independence: of demains will in
-such cases_requéxé»difierent static storage:areas .to be
allocated in each domain where. a:procedure is currently
used. We will asaume such:a. gase- in-the following dis-
cussion andgwillszoposé~a design which-allocates static

- storage on-'a per domain basis, ‘It should now be clear

- that.a snapped link is a typical example:of an internal

 gtatic information item. It is ncan&nqﬁﬁi only in a
given domain -during the existence of:that:domain. -Hence
in each domain wheresome:procedure objeck:is:currently
_used, an instance of each link issued:frem the-procedure
is stored in the static-storage:area assigned-to that:
procedure in that domain.. The set otﬁaiiwiinksfissued
from a procedure is referred to as the:lipkage: section
of the procedure. .Thus, an instancge:of.the:iinkage
section ofwaaprosgéure@e$ists,inaaaehasﬁatic;sbcrage..
araa‘asg;gned.to.thatxprocedureviasth@adg-ainsuwhere it
is currently used. -Both the lia;iﬁ‘gnd*hhnwpnosqduze;can
. retreive the appropriate linkage :section ascerding to some
system wide-convention whiah:is;ieftgtoﬁhhagdtaeretion

of the designers of the system.
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The hidden problem we mentioned earlier is that of
deciding how static storage should be allocated when'a
procedure is about to be used for the first time by some
subject in some domain. Often this task is left to the
‘dynamic linkex. Such awkward éﬁt&gm resnlts in a major
‘protection vicolation instance. We will now- discuss why
and propose a correct design.

Clearly we do not want to allocate static storage for.
all programs exscutable in a given domain whcn we initialize
that domain: it is impossible to scan the: whole file system
to find all procedures executable in thesdomain and allo-
cate static storage for them; it is:simply impossible to
know in. advance about all procsdures executable in the
domain because of the dynamic aspect of the file system.

Oon the-cthaxfhaad we want to be certain that when a pro-
gram is inveked for the first time in a given dommin,
static storage is alyeady allocated for its linkage sec-
tion so that the executing subject can-look it up when it
needs to follow a link to some: extermal gbject.

‘The first solution which comes o the mind is to allocate

the space when the abject is invoked for the first time,
Oon thei&seunptxon‘that‘a&lJabjcets}azh@iﬁvukcdrby“sznbolic
names'and-givun‘that.all.sgabd%icﬁlinksstza~handaudzby the
linker, we conclude that the linker should allocate static
storage when it discovers it is snapping a link to a tar-

get object which has not yet any static storage in the
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target domain. Although this seems to be-.a cleamn solution,
it violates protection,. Indeed,mif;awsuhjectucouid}get the
logical address of.a tqrget object. by guessing it or by
appropriatecalls to the security kernel, it might call
that object directly by logical. address.amd not by sym-
bolic name. In doing so, it will by-pass the linker and
Will;enﬁ up executing an. object which has mot been pro-
vided with static storage; thim is likely teo-temminate
the life of the subject.. Protection wige it is perfectly
legal as long as the subject huris oply itself in the
current domain. But if the target object the subject was
_calling is a_gate‘into.apotheI:Q@méinafh&fp!ﬂﬁias the
linker could cause damage to the target domain by‘ not
initializing some static storage as expested.  This of
course is a vioclation of the protectiom: of the other
domain. In addition, having the linker in the faulting
domain allocate storage in the target domain could be
vexry hard to achieve.

The second solution which comes to: the mind and
~ Seems perhaps easier to;implemgat;is,toemake;sta;ic.stor—
agegallpcation,é funciion of the FSM3“~Since;uéin9wa pro-
cedure in a domain requires mapping it into the address
space of that domain; the FSM is guaranteed -to be invoked

for any procedure each time that 'procsdure is used in a



- different domain. Thus the FSM could at that time allocate
" statie @toxi@. to that procedure in the appropriate domain.
The FSM is mora likely than the linker to have the capa-
bilities to do so. However this éaiiga‘alqa-vialnﬁn! pro-
tection. Since the linkar«invotészthcfrsﬁ, by symbolically
referencing wi@haut even invoking all gates into a domain B,
a domain A could create a mass of link faults causing static
storage to be allocated to each gate into domain B, Such
mass allocation could overflow the storage available in
domain B thereby violating its protection since it would
have been triggered by domain A.

As our research naturally came across the question
of static ata:ag§ alloeation, the:ahevprrﬁhiem was uncov-
ered. Obviously anether solution had to be proposed
which would solve the protectien problem. In addition, it
was felt that static storage allocation did not functionally
belong to the dynamic linker to start with. Thus a correct
design, but also a much cleaner and mere efficient design
is proposed hereafter. It is Eased~cn the fact that static
storage alloeation is triggered by the domain itself where
it must be allocated. Thus no protection violation is
pogsible. »

When execution of a procedure object starta, the sub-
ject must, according to the system convention already men-

tioned, retrieve the linkage section of the object in the
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current domain. We Suggest that this search generate a

hardware internal statit’ 'storage fault ~(I¥S ‘fault) when

and if it fails. This ¥85 fault shouWFd!be handled by the
system in a manner very similar to a link fault. It

should be passed to the faulting domain. Anadlysis of the
machine ‘status would tell' which ‘object requires static
storage to be allocated. 'Static storsge would be created

: faut el sbject. = After the
‘ machine—séatus‘is»f@étorédy*Eﬁé4%hb§éé%@%ﬁﬁid&ﬁﬁéceéﬁful1y

in thé faulting ‘domain for tha

retry the search. Of course just -like! ‘the Yinker had to
be prelinked; the static storage -allodatdy thust have its
static: storage allocated at domain infEialivetion to be
operational. ERIEP

The design we ‘have just proposed ‘guarantees the pro-
tection of all domains bBecause statie storsge allocation
is made independent of dynamic Tinking. © Hence'‘allocation
is no more triggered by the execution of & random untrus-
ted object, but by-the ‘ewecution Of ‘the obféct itself
which needs static storagé. ~The debign ‘stems Erom ‘the
simple fact that no objedt, dnd Parefeuiarly no gate into
any domain, can depend on a caller ad¥ibmni‘¥o perform any
task in general, ‘static¢ storagé’ allocavion in particular.

Given that -links are peér domeih ‘wtatic items, it is
now clear why the security kernel must communicate a cCopy

of the linker links independently to each domain it
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creates. This copy is installed in the static storage
area of the linker in that domain.

6. Summary

This chapter has attempted to preaent a complete
design of a dynawmic linkexr running oubside the security
kernel of a computiang utility..- Bour main problens have
been distinguished.: It has basn dem d first that
the security kernsl could be made operational without the
help of a dynamic, linker. It has been shown that the
dynamic linker ocould be made a le .in.-all domains
while being prelinked only once. It has thpnheen
explained how the linker handles. link faults. Finally, the
hidden although fundamental pxeblem of static storage
This

allocation in a multidomain system was discussed
following chapter will illustxate the use of the computing
utility model and the principles of the desigh by identi-
fying the components of the mdaltotm of a real world
system and applying the design to thas Wm- Loncluding
remarks on the actual implementation will convince the
reader of the feasibility and .usefulnass of the design.
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Iv. Implementatlon

1. General
In developlng our thesrs we have flrst discussed a
i E I

computlng utlllty model Whlch enabled us to glve a formal

description of the operatlon of a dynam;c llnker. In a

second stage we have presented and dlscussed 1n terms of the

the model the general de81gn features of a computlng utll-
1ty where the dynamlc linker is e;ecuted outsxde the
securlty kernel domaln. We w1ll now build up the third
level of the thesis. Thls level con31sts 1n demonstra—
tlng the feasrblllty of the proposed deslgn by descrlblng
and analyzing the detalls of lts 1mplementatlon on a real
world computing utlllty. ) #

| The Multlcs system has been chosen as a test case for
the 1mplementatlon. The Multlcs system (15 18) is a com-
merc1a1 computlng utlllty developed 301nt1y by the

Massachusetts Instltute of Technology and Honeywell Infor-

matlon Systens, Inc. It is supported by the Honeywell 6180

computer system. It 1mp1ements a powerful v1rtual memory

RN R

time sharlng system w1th extenslve informatlon sharlng

3

fac1llt1es. In addltlon to belng ea31ly avallable for

Caukd

this research Multics was a very 1nterest1ng test case

4

for our de81gn.

Firstly, Multics was designed with protection of

PO vt b P e Sk e b
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information as an initial objective. Proéection has influ-
enced almost all of its design foaturea. Proﬁeotion
mechanisms are embadded in most of the functions availabla
on Multics. Evon tho hardwaro of the 6180 processor was
d9819ned to support the concept of domnin (15).

Secondly, a recent project has been 1aunched with the
objectlve of defining and audxting tha sacurity kernel of
Multlcs to certlfy the correctness of the protection
mechanxsm. Since the dynamic linker of Multics was
initlally designed to be executed in the security kernel
env1ronment, the present research matchod exactly tha
objectives of the certification project. |

Finally, the protoction’moohanism of Multics matches
very closely the oomain protection model as described
earlier. Hence there is a direct paroiiol between rhé
descrlption of the donain based design and itﬂ implamen-
tation.

We will divide the discussion of the implonentatzon
into four parts. The following two aactiona will at the
same txme briefly describe the genoral design features of
Multics and match the real system componentn ‘with the con-
cepts of the camputing utility model describad earlier.
The next section will then talk about a dynamlc 1inking

spec:.f:.catiomon Multics to familiarlze the reader with
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the nature of the functions which the dynamic linker is

expected to support. The remainlng aectiona willppresent

- the reader w1th a dlscussxon of the 1mp1emsntatlon of the

dynamic linker. Emphasls will be put on the discusslon

of selected specific proble;Q ;;;Séite§;§7;y thb imple-
mentation. We do not claim tha,i; th&ﬁgnb;mi 1:9 be discussed
constitute an exhaustive list" of all p;obiems whlch the
implementation faced. Out of t33 compi%&? list of prob-

lems encountered durlng the implcmentatlon, We have

carefully selected spec1f1c problemp w&ich wh belleve are
instances of more..general pxoblomlwﬁhukwahywdﬂd;gner is
bound to face on any cemputing utilitY‘ﬁnﬁeﬁ aame form or

a8y b k..x....% bt it

another. T S
2, Information Protectlon.zxxuultics -
The equivalent- ef a domain -in-Multies %a errxng (15,

18). Rings can be viewed as a set of domains ﬁith a

e N S 0 e,
i T

linearly nested orderlng of privileées. The set of capa-
bilities of any glven r1ng is 2 sqpset ef tpe cqppbilit1es
in the next most privileged ting, &#’ reprﬁééﬁ{eﬁ in

figure 5. The 6180 hardware processor snpports up to
eight rings for each user. The eight rings are numbered
from 0 to 7 by decreasing order ef privileges. Because

every ring has at least the capabilities of the next
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Figure 5: Multics protection rings.
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(Brackets indicate the scope of capabilities
available in the different rings.)
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higher humbeted ring the concept of gate exists only in
the downlrard Rirection of c:toss%-rmé‘cﬁns “ A"subject
tekeéﬁ%ing‘in*%in@*ﬁ?ﬁﬁ%ﬁ*asi'§§¥%§ %%@ﬁiaiioﬁ‘fbjafgafe
~ if he wants o obtain’the’ extra cap¥biiitieés of ring m
(s #maller” thaw'h): ©On the othét hdhd, &° Bubjedt execu-
. ting in® rifig miand willing to’ move & Fihg n' (again'm
“ smallerthat”n) can freéely do'Bo. ' Thé’ fdea of a gate
- inté ving'n for ring'm 18 irvelevant, JuiE awoL
| A1l dsers {presumably)’ txulit’ thE"seklitity” kernel more
than their own programs which‘m&ﬁﬁﬁaniiinﬁﬁﬁééwciﬁﬁhié of
causing trouble. In turn they probably trust their own
programs more than wther user'#Upiodram %jéﬁﬁfé“telative
ordering of progPamiitan be supefimpoield”to’the relative
‘ordering of:rings.- ‘Since the secufity 'kethel iz by -
‘nature the mbst trastworthy’ et of ' phdgramiss- it s Hesigned
to be’ ‘executéd -in' ringo.”st‘éfit’mﬁsf Bé isctateéd in
‘this ring frém evéfything etsd"in tHe &h9Irofiment. Hence
the rest of the supervisor sh6uld BE rejsdted to ring 1.
"Pefhapiﬁﬁfﬁ@f&ﬁiﬁﬁnéﬁf*dé#éréﬁméﬁtzsgmfﬁsﬁ“ieﬁﬁfﬁfﬁé‘ﬁro-
© grams of “€Né sup#fvisdy shotld be i##tE11ed ¥n ring 2.
i1y betng @EGd¥ed: " Ole¥ ‘prégians; -
commatids, “cotiptlets ‘and ‘dther’tosis @frectiy ¥etdted ‘to
the -actiérs 3§gﬁséts‘é&ﬁ“ﬁe*éﬁ@cﬁt@d”fﬁ rifng¥"3; ¢ ana s.
Thétnofﬁil%aaﬁifis“§ing:4fiLTﬁfﬁ”?if&ﬁs PHE“user ¢6 'gxecute

LTIy 'H,Zjﬁ‘_"v‘» : i}i{A 3 i RS

sh
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protected sﬁbsystems in ring 3 on the assﬂmption that
everything in rings below 3 is trusted and will not sub-
vert the subsgystem in ring 3. A user can also test un-
trusted programs ih ring 5. Rings 6 and 7 are absolutely
virgin: no function of the operating system is available
there. They initially have ne capabilities for any gate
into lower rings. Hence a user ﬁag use thege two rings
to install any two-ring syste#t he wants and keep it en-

tirely within his control.

3. Information Storage in Multice

The Multics equivalent of a gubjeckt is a process. A
process is defined by a site of execution and a logical
address space. Each preceés,has%itsi@wn addtesh.spaee.
A process is the entity representing a user in the machine.

The address space seenr by a user .in a twordimensional
virtual memory of very large capacity (15). Along one
dimension the memory is partitioned into segments addressed
by their order number. Along the other dimension, it is
addressed by word. Hence the logical.3gddress of an object
in this virtual memory is of the form (s,w) where s is a
segment number and w a word number in that segment. The
format of such references limits the size of the virtual

memory to 256 K segments X 256 K words.
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Multics file system is a tree-structured hierarchy of
catalogs. Catalogs are éalled directories. The leaves
of the tree are called segments. A segment ié the equiv-‘
alent of a collection of objects in our model. An atomic
object is an entry in a segment. Directories are also

atomic objects. The unique identifier of a directory is

the tree-name of the directory. The unique identifier of
a segment is the tree name of the parent directory concat-
enated Qith the symbolic name of the segment. Directories
and segments of the file system are of course mapped into
segments of the virtual memory when £hey are used. Such
mapping is supported by the FSM.

The security kernél ot the operating system is
shared by all users. Since it is the very first thiﬁg
which has to be operational in any process, it is the
first thing to be mapped into any process address space.
Hence the security kernel always occupies the same loca-
tions of the virtual memory of each process. Furthermore,

all rings in a process share the same address space.

4. Dynamic linking in Multics
The previous two sections have established a parallel
between the Multics system and the computing utility model

of the thesis. Our second step towards the discussion of
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the imﬁlemeﬂtatidn will be therstafemeni of dynamic‘;ink—
ing specifications in Multics.» ” ) |

The Multlcs system supports various hlqhelevel
1angnages but was initially @eﬁmgned EQ sappert PL/i
Most of thersystem programm ef Multlcs are wrltten in
PL/1. As the address space‘of a Hel;zqs preeess 1s two—
dlmen51onal it was both easy and &eszrable to have a two-
dlmen51ona1 name space for PL/1 syﬁbolle names. An object

symbolic name or entry name is of the form~eegnamesentryname

where segname is the symbolic name of the seg-
ment containing the entry and entryname is the stbollc
name of the word offset where the entry';s located in
the Segmeﬁt o v |
Given a source program (or source segment) any cem-
pller generates an object program (or ebject segment)
which contalns three sections as descrlbed 1n flgure 6.
The last section contalns the pure executable code of the
program. The 6ef1n1tlon sectxen contalns on one hand the
list of entry names and word offsets of all entrles in the
object segment. On the other hand 1t contalns the list of
all names of entrles into external object segments which
this object segment may reference. anally there is the

v1rg1n llnkage sectlon. We 1n51st on the word v1rg1n

which is used to distinguish the present type of linkage
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Figure 6: Multics object segments.
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section from a non virgin linkage section which will be
derived from the v1rg1n one and is 1n the statxc storage
area as descrlbed in the thesxs. The v1rgin 11nkage sec-
tion always remaing virgin and is sharablo. For each ex~
ternal object referenced in the sou:ge prggxgm, a link is
inserted in the virgin linkage section.

A?llnk 13 a triple (s,w,f). (s,w) is a 1oqlca1
address as defined e#rlier and £ is'a flag. In a symbolic
link, -the flag is always a bit pattérn indicating that
(s,w) is invalid. Attempting to us@ (s,w) as aucﬁ will
cause a link fagli, At;this,pQ§qu§s,w) somehow points
to the symbolic naﬁe associated with the link, infthe

'defanitionwsectlon and not to the tnrget object oﬁ the
‘link. When the object segment is first executed in a
‘rlng, statlc storage is allocated fbr it in that rlng.
The virgin llnkage section is c0pleﬁ into the static stor-
age area yielding a non-virgin linkéggwggg;igg,“.khe
address of the non-virgin linkage section is stored in a
conventional location where an executing process can
always retrieve it when it uses the object segment. When
execution encounters a reference to an external object,
the linkage section address is used to look up the corre-
sponding link. This triggers the hardware fault since

(f) is set. As a result of it, the linker will snap the

N/
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link by replacxng the 1nva11d (s w) by the1va11d address
of the object correspOndlng to the entry n&me wﬁieh
caused the fault. The fault flag (f) w111*he turned off
F*towi;éfZEEZithe validity of (s,w). We ny%fﬁ?%?”a snapﬁéd/
link to thertarget entry. If and when 1he¢same link is .
used again 1n the future by the same uqbr process, no

more linkage fault w111 be taken. To Plarify the above
ﬁ*«‘ z- ree

disclisaion,” the 81tuation is plctuxe&,zn fgggxﬁffﬁfff“f”“'\

In view of ‘the' ahoxewﬂnzexiption,ﬂwe fantnaw _present
. a 51mpllf1ed basic functional-block dlagramwof“the ‘

P
Goax ot
Ju«

dynam;c l;nker (see figure 8). On a link fault caused by

object A (see figure 7)%*the @ynamie 1fnking drlver is
invoked. It analyzes the machine status to determine
whlch llnk caused thé linkage:fauleiiApy follow;ng the
: p01nter (s,w) currently in the symbolic llnk, the?i;ﬁken
finds the syﬁbollc name B $ b correpsondlng to that link
in the definition sectlon of the faultlng object A ‘;ti
then passes name B to the segment search d;iver. Qhe

-segment search driver tnles a set of aeayéﬁ”r 1és " (a@irec-

tory treenames) on the FSM until the FSﬁ finds B in one
of the dlrectorles. The FSM then maps /B 1pt6 the" adaress
space of the faultlng process and getnrns the segment w;
number s of B to the searth artver which iﬁ“%ﬂfﬁ*fﬁtﬁfns

it to the linking drlver.? The Iinking d;iver,then passes
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Figure 7: Dynamic linking
on Multics
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Figure 8: Functional diagram of the
Multics dynamic linker.
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the segment number s and the name b to the entry search
driver. ’This one,scans:the definition section of segméng
numbered s (i.e. B) until it finds the name b. It then
returns the offset w of bin B to théylinking driver.

The dynamic linking driver finally replaces the address
(s,w) in the symbolic link by the address (s,w) of B $Db
and turns off the flag (f) to make the link a snapped
link. The machine status can then be restored and
execution can proceed. o |

We do insist on the fact that the above déscriptioﬁ

is a sxmpllfied strictly functional deflnlfion of the |
llnker. In ao way should it be assimed”;;at the linker
contains bnly thrae modules and that lln&*ng happens as.
naturally as we described it. 1In the course of this
chapter we will progressively complicaté the description
we have just given and discuss the problems encountered
by the implementation. This section concludes the
descriptivn“part‘of“the chapter. We will now apply our
design t@ Multics and present selected aspects of the

implementétion.

5. Initialization
In this first section about the implementation of

the design, we will outline how the security kernel and
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the linker are initialized. This outline will be brief
because no particular problem was encountered. The im-
plementation of the design was relatively straightforward.
The Multics system is initialized by a dedicated
initializer process. All modules of the security kernel
are loaded into the system from a generation tape.
Immediately after the loading, the virtual memory address-
ing mechanism is initialized so that the initializer pro-
cess sees a regular virtual memory with the restriction
that the capacity of that virtual memory is temporarily
constrained to that of the real memory. A prelinker is
then invoked to link together all modules of the security
kernel which are read in from the tape. After the pre-
linker is run, miscellaneous initialization tasks are
performed. When the security kernel is entirely opera-
tional, the'prelinker, as well as other initialization
programs are unmapped and thrown out of the addressable
space. We have described this mechanism for the sake of
completeness. However it existed before we implemented
our design. We used it as a basis for our implementation.
We now turn our attention to the initialization of
the linker. Since the security kernel is initialized by
a prelinker, it is all but natural to use the same pre-
linker a second time to initialize the linker. Actually

the implementation uses a hybrid technique involving both
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a binder and a prelinker. Multics provides its users with
a binder of which the goal is to take several object seg-
ments and to merge them into one ‘which has only one text
section, one definition section and one virgin linkage
section. Of course any 11nk“béthﬁéﬁ“the‘6ti§ina1 dis-
tinct object segments submitted to the binder are directly
translated into relative offsets within the resulting bound
~ object segment.’ Tﬁe»btnﬁa:“wzﬁ'uxé& to bind t¢ge£hervthe
modules of the linker, i.ex the modtules inside the main
box of figure 8. Consequently the bﬁly*liﬁks*iSsued'frbm the
bound linker, which the binde¥ could not translate are
links to the FSM and links to external data bases. Notice
that figure 8 shows only one YIink to the PSM. In reality
there are several such links. As we s#id earlier figure 8
is only'a simplified:functional diagram.  To be more
acéurate'tod, the links to the FSM are actially links to
ring 0 gates since the FSM is in the sBeturity kernel and

' is accessible only through these gates. &lso the links

to external data bases are not represented in figure 8.
The external data bases are error code tables arnd system
data tables. They are used by the linker but are not‘
really part of it and do certainly not belong in its

- functional diagram.

The task of the prelinker is thus to snap the links

from the bound linker to the external data bases and to
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the security kernel gates. The operation of the prelinker

matches exactly that described in the general ‘case. Since

"the prelinker does not know about any file system, (even

though the bound linker, the ekternal data bases and ‘the
LY '( ¥
security kernel gates are catalogued in the file system

and stored on secondarymemory) a copy of each module must

be 1oaded into the initializer address space “from the

.system generation tape. The bound linker is loaded w1th

attributes such ‘that it does not get prelinked as a module

of the ‘kernel. Instead when ‘the kernel is initialized

and just before it throws theipreiiﬁﬁer“ouéjofwits:address

space, it invokes the prelinker a second time £o prelink

'the‘béﬁﬁé‘liﬁké¥;' The prelinker builds a fictive mapping

table and a snapped links tahle as statdd “in the general

deSign.- In the particular case ‘of Mmltics, the snapped

‘links table is simply a copy of the virgin linkage section

of the bound linker where all symbolic Tinks are replaced
by snapped links reflecting tﬁé‘éietivé*éébpiﬁél” The

fictive mapping table is a little more interesting.' Since
there is only one address space per proceas ‘Gommon to all

rings instead ‘of one per process and per ring, the reader

‘may wonder why a fictive mapping of the linker, ‘the data

bases and security kernel gatee 18 necessary. Couldn t .

they just stay where they are? The answer is negative

L
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because of thefpeculiar way tho’socorityvkernel is mapped
~into each process address space. It is a oonventlon ‘that
~all segments whzch are part of tﬁa eecurity kernel during
regular operation are mapped lnto the 1owest sagmant'
4numbers of eaoh process addrens spaoe. Henc@ all lowest
rsegment numbors are reservod:for:the kornel and constltute
some sort of prlvate address spaoe. Ho cuch segmsnt
number is ever used outside the kernel., Hence, even
though the linker, the externgl aata bases and the security
kernel gates are in the address _space during lnitlallzatzon,
they must be remappod intovhighgrxggggggt pqmgﬁrs‘gor the
higher numbered rings. That ﬁ#éfixﬁ mapping will be valid
for all ringo;gl.to 7) of 311¥§?9°99§§§:,;T° gppmarigg_the
problem, although the a@dﬁeﬁﬁ,395¢e¢9£j?;E:9°Q°’,is,¢9m“°n
to.all rings, a fictivevmappéngk@ugtkﬁe instal}gdiby:the
prelinkor because some speorfiqurg;o_ggtq a pieceﬁout‘of
the process addreas space and turna it rntQ what may be
regarded as a prlvate kernel &édreqs qpace. If thlS rule
did not exlst,~clearly, the 1n1t1a1 mayping could be
‘kept and be the flnal.real mapping After the two tables
are generated, the Becurlt&'kernel throws away lts capa-
bllltles to access'the prelxnker, the linker and the ex-
ternal data bases by sxmply deallocatlng thexr current

segment numbers. Remember that the llnker and‘the data
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bases are still stored in the file system on secondary
memory, so that the system can retrieve them there later
on when they will be needed. Of course the two tables
built by the prelinker may not be thrown away. Since
they will be used throughout the life of the system each
time a ring is created, they must remain permanently in
the address space of the kernel.

We finally come to discussing the task of enforcing
the fictive mapping. This task is also straightforward
and identical to the general design. In order to operate
correctly, Multics object segments need a static storage
area and an automatic storage area. Automatic storage
is allocated in a special segment called the stack. This
segment is used as an Algol call stack. Static storage
is allocated in a special segment called the combined
linkage segment (cls). There exists one stack and one
cls per ring and per process. There exists a system
wide convention stating that the stack of a given ring
always occupies the same segment number in the address
space of any process. This enables any process to find
the right stack in the right ring. Each stack header
contains (conventional) the address of the cls for the
same ring. This enables any process to retrieve the
right cls for the right ring. Given these two conven-

tions, it is clear that no process will ever be able to
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touch its cls in a ring before it touches its stack in
that ring. Hence the convention is that when the process
uses its stack segment number for the first time, a hard-
ware fault occurs which is interpreted as a ring initiali-
zation fault and triggers action of the kernel to initialize
the ring. When the stack and the cls for that ring are
initialized, the kernel invokes the FSM. As stated in the
general design, the FSM uses the fictive mapping table
prepared by the prelinker to map the linker, the external
data bases and the security kernel gates in the process
address space. Finally the kernel copies the snapped
links table built by the prelinker into the cls just
fabricated for the new ring. Control is then restored
into the new ring. The linker has been mapped into the
address space and its non-virgin linkage section contain-
ing only snapped links exists in the cls of the new ring.
Thus the linker is operational in that ring.

The last question which needs perhaps a brief comment
is why do we need to invoke the FSM each time a ring is
initialized in a process? Doing so for the first ring
should be enough since the address space in which the FSM
enforces the fictive mapping is the same for all other
rings. Our implementation is justified by an aspect of

the Multics virtual memory. In mapping a segment into a



-89-

segment number, one heeds to specify the unique*identifier
of theyéeément aﬂa tﬁé‘fihg'dh“béhilfad?“éﬁiCﬁ the mapping
is done. Once the bound linketr for" instatfite is mapped into
its final address for ¢ne iiﬁy‘aliLiinﬁiaﬁiii‘Eééifﬁe“ |
addreésidccqpiéd"butEit*will not bé meaningful to them
until they also require the linker to& be" mapped there on
their behalf. ‘ : ! '

' This discussion completés the section on initialization
_of the kernel and of the 11nkéf.* It ha¥ been’' demonstrated
that straightforward implementation of the design was
possible on a computing utility Iike Multics. ' No major
problem and no particularly interestirg -isstue was raised
g0 far. Now we have shown H&w‘to‘fﬁﬁieﬁeﬂf’aﬁ'opérétional
linker, we will proceéd by showing how to invoke it in the
faulting ring on a link fault.

6. Fault Handling

‘We have shown how the Multics dynamic litker was
made operational in‘é ring. Our next stép is €0 ‘show how
link faults are passed tojit'andLhoﬁ”ft‘dﬁn"iétﬁrn control
to the fAulting‘objéét;'“Againfthis~bin*ﬁé<aoﬁe by a
straightforward application of’the d%éfén,“tsihg pre-
existing mechanisms. o

All faults on'MﬁItics are intércdepted By a special

module of the kernel. This module éxf&éédiaifeadyﬁin the -




-90~-

initial version of Multics and its purpose is to analyze
and sort faults. Just a few lines of code had to be
modified so that link faults would be diracted to a sig-
nalling module instead of being, directed to a ring 0
linker. The signalling module of the kermel existed as
well in the initial version of Multics. It isalrud}'
used to signal events other than link faults in outer
rings. Becauae of the hierathy of rings, the security
kernel and the signalling module in particular can access
any ocbject in a higher numbered ring and m switch the

ring of execution of a procesa.. Thase privileges are
exploited to signal a link fault.  When the signalling
module receives a copy of the machine atatus saved by

the fault interceptor module, it analyses it to datgmine
the number éf the faulting ring, and the se@ént nmbér
of the stack used at fault time. It t@gn;ua);es a stack’
frame for itself on that stack and copies into it the
machine status. It copies as well a return address to
be used by the linker. It finally switches ring of execu-
tion and calls the linker. The ,ml& of the linker is
found in the stack header (conventiona}). This address
must be set at ring initialization a,ndw be changed by
the process if it wants to define .another linker of its

own in that ring.
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Let us assume for a moment that we know how the
linker itself works and suppose that it has snapped the
faulting link and wants to restore control to the faulting
object. The linker simply returns to the signalling module
in the current ring. The signalling procedure then calls
a gate into the kernel.lehe purpose of this gate is to
validate the machine sgatus returned to it by the signaller
and to restore it. Validation simply consists in verifying
that the status reflects a ring of execution not lower
than the faulting ring. This is to make sure that the
linker which handled the status in the faulting ring did
not maliciously set it so that control would be restored
in a lower numbered ring than the faulting ring, which
of course violates protection. The gate then destroys
the signalling stack frame in the faulting ring to make
the stack look as if nothing had happened. Restoring the
status is finally done in one indivisible hardware in-
struction which reloads all the machine registers, thereby

forcing control back into the formerly faulting object.

7. The dynamic linker
The last two sections have discussed respectively
the prelinking of the linker and the handling of link

faults. It remains to be demonstrated how the linker
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itself can be implemented to translate links properly. So
far the implementation did not encounter any major problem
or any cﬁeratiou of autst&ndﬁng“iutemust. -In this section
we will only very briefly outline the implementation as
a whole and‘thenvcosetnﬁrate on -selected interesting fea-
tures of the Multies system of which the implementation
cannot be derived directly from the global design princi-
ples. As we mentioned it before, these:selected topics
are only instances of broader problems which any designer
would face in any computing utility perhaps under differ-
ent aspeets.

The atartingspoint of the implementation is the
block diagram of figure 8. The basic dynamic linker is
programmed according to the fuactiemal specifications of
that diagram. This basic linker cnnt:in:&a,dozan inde-
pendent program modules. Once compiled, the resulting
object segments are bound together by the binder. A

bound objecﬁ iegment:xesults which contains: about forty

links to data bases and kernel gates and can itself be
invoked through about fifteen different entries; one of
which is the main link translation entry used for link
faults. .

On top of this basic linker we will now progressively
add other features, functional boxes and spécificaticns

as we go about discussing specific implementation problems.
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a. Implementation of peripheral features

Let us first turn our attention to the question of
static storage allocation. As we mentioned it in the
chapter about the global design, sthtic-sterdgeallocation
is a general problem which must be solved in any computing
utility. The wrong way of solving iEii§%§&*léave it in
the responsibility of the linker. One cx irect_: way to solve

1t is to install a hardware fault whlch q@ called the ISSF.

When a pxocess attempts to get a hoid of the address of

* imrg e ( s

e s AR 25

the statlc storage’ (non—virgln linkgge %beﬁloh)jof the

av b

.o pnogram it is-executing and if that“!fd?ipa is hot yet
aLlocated, a ISSF occurs wh;ch trlggers skorage allocatlon.
The old deslgn of the Mu1t¢cs dynamic llﬁ&&t was such that

N e G P

statlc storage a}locatlon was part bf the lxpket task

(See figure 9)&, ﬁﬁ snapplng a link: the* 'g llnk;ng

ay Pl
dfiver used to always verify that the target dfsthe link
4id have static storage in the target ring. As stated

in the thesis, this design violates protection because a
target objgct in a target ring cannot depend on a faulting
object iﬂ a faulting ?ing to use the linker and allocate ’
static sﬁoraée(Whére ?ppropxiate. In additi&n, even if

this w§s nd£Ma prdﬁééﬁian violation, it would simply be
impossible for the new linker iﬂ a faulting ring to

allocate space in a target ring if the target ring is
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Figure 9: 01d Multics dynamic linker.
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lower than the faulting ring. This was possible in the old
design because the linker was in the security kernel and
could access any ring.

Consequently we have proposed to implemgnt a hardware
ISSF as described, such that dynamic' linking and static
storage allocation are functionally distinct. Yet there
is still one advantage in kéeping them physically together
(see-figure 10). Keeping dynamic‘linking and static stor-
age allocation physically together means keeping them in
the same bound object segment, the bound linker. Thus
they are prelinked and ihitialized together at the same
time. Adding the static storage box’in figure 10 increases
the complexity of the dynamic linker but does not increase
the complexity or modify the design of prelinking and ring
initialization.

The operation of the linker is thus as follows.
Assume object A in ring 4 wants to invoke gate B in ring
3. Whether A invokes B by symbolic’name (link fault) or
directly by its address it happened to already know is
irrelevant. When execution moves to the target segment B
in ring 3, as soon as segment B tries to find a presumably
unallocated stétic storage, an ISSF occurs which results
in the linker (static storage allocator part) to be

invoked in ring 3. Allocation can and will thus safely



-96-

Figure 10: New Multics dynami¢ 1lioker.
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Figure 11: Static storage a]lpgation on
Multics
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occur. This is pictured by figure 11.
The.problem of static storage allocation was just
one example, and perhaps the'ﬁost typical;>of a feature which
was hooked to the linker for convenience. Unfortunately, the
linker was not the right place to hook that feature to. Other
problems of the same kind were encountered during the implemen-
tation. Just to mention a few we can qiteﬁtrap handling and
| impure object segment handling. Such features are typical
examples of sophisticated tools which have been hooked to
the linker for convenience but dom§6t>;§tugliy belong
there. Trap handling is a feature ﬁhieh allows a program-
mér to forcé éxééution of ceftéin rgutigesvbefo:e his
program can be called for the first tiﬁe. The feature is
named after the fact that it is based on trapping the first
invocatidn'df“a program. Agaiﬁ the first invocation may
not be a symbolic invocation; thus the linker can be by-
passed; thus hooking the trap handling mechanism to the
linker is just as disastrous as hobkiné,éggfic storage
allocation to the linker. The solution is also to use a :
hardware fault. We will not describe it here as it is
really not part of the implementation of the linker.
Impure object segment handling is a facility which pro-
vides users with the ability of creating an object seg-
ment and then writing into it perhaps over the definition

and virgin linkage sections. Of course such an object
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segment is not sharable. It is important to save the
definition and virgin linkage section before they are
overwritten (by copying them into the cls before the first
reference). Such task was left to the linker. Again it
did not belong there. By-passing the linker and thus not
saving the definition and linkage sections could cause
damage to the object segment. In addition it did put an
extra burden on the linker by always forcing it to check
fof writeable object segments. The solution to the prob-
lem is to always save the definition and virgin linkage
sections of a writeable object segment in a separate seg-
ment when the object segment is created. Compilers can
take care of this very easily and already use such mechan-
isms to handle other features on Multics.

Static storage allocation, trap handling and impure
object segment are typical examples of peripheral features
which have been hooked to the linker for convenience. As
a result, they were mishandled, violated protection, com-
Plicated the linker and interfered with it performance.
Our design has corrected that situation.

b. Compatibility of interfaces

We would now liké to mention a second prbblem which

the implementation encountered. This problem is specific

to Multics but problems of the same kind would certainly
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arlse ln any eemput;ng utzllty Iho prqaent problem does

~ mot have 80 nnqh to do with thc 1xnk.x itaolf as zt has

with the qaaaral 1dea of pulliag 2 uedule outside the

kernel._ | ‘ o A L y

Any progran which 1s pgrt of ths kernel is very |

‘Vllkely to use ethcx fnnctions of tha kerngl. In txylng

to pull that_pregram outside hhn &aun;l, one mnat make

. sure that 1t still can use ths othgr kerna; functiona as

it did before.; In the part;culnrﬁﬁﬁge?of the lxnker,‘the

,”old Mm1t1cs linker unnd ‘the raM &gﬁ;ﬂ. the security ker-
Qf conrse, qnce tbe linkoz ia P&;la& outszés the

ke;ne;, it canaot call thn rau d&xuctly. All 1t can do is

<<<<<

invoke. it through ggpxqprzate ga;ec (sco £iguxe 12) For—

Su..x ia

»tunitsly the st of Mmlticﬂ was, ;lxeaég avcilable to the
‘higher rings thxpuqh auch gatas.f We did net have to4ﬁ
implement them. Howover the Lat;xfacg to the FSM across
‘these gatgs 1: npt the samc as tho Lnﬁcrfase whiéh the

bt 4‘»‘ 1

linker nsed to see d&rectly iaa;dc rigg 0.1 Darecturxes

are currently igplamented ag ring 0 data hases. Thelr
logical address in a process is a;no a protacted 1ten
- User_ ;;agp (l to n may talk Ih@ﬁ&},};;ﬁgﬁ

- treename @nd not hy seqngnt nnmber. Bimnc#pmyﬁ:ngnant
knumbers_axe exclnslvaly u;ed inaids thc kernel. Thus

.,is; only by

when the linker was inside the kernel the search rules
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Filgure 12: Interface of the linker to the FSM.

ring n
Linker
]
: HE
ring 0
FSIM cate
r———=--- 1
| |
| 01d | PR ——
| linker [ F S M
IR J




-102-

it used across the interface with the FSM were a set of
directory ségment numbers. Now the linker is moved
outside the kernel, directory segment numbers are not
suitable directgry unigue i@entifiers. Therefore the
linker must use directory treenames. This implementation
of search rules has the disadvantage 'that for each direc-
tory searched or each link fault, the treename presented
to the FSM gate must be converted into corresponding seg-
ment number to perform the search. Such conversion is
costly and has a negative effect on the performance of
the linker. A parallel project is currently on %ts way
to make directory segment numbers available in user rings.
Such a design will reatore the interface to the FSM which
the linker used to see. However it has somé ﬁ§j6¥ protec-
tion implicationawdféﬁhiéh‘the solution is not obvious.
We will not discuss ﬁhese implicationa here.

The problem of ﬁhe search rules was a typical
example of a compatibility problem% “éypre@o§ing the
linker from the kernel, we ;éféﬂfdgcedwbqwﬁake it compat-
ible with the interface of the kernel seén by the user
rings.
c. Limitation of Privileges

‘The last problem which we propose to discuss will
illustrate the impact on the capabilities of a program

of removing that program from the kernel. The problem
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deals with snapping downward cross ring links, a feature
 which the ring“the linker used to Wp@r’hvery ‘easily-and
which is now complicated by the it thét the tinker is in
“the fa\nting ring. - :
In the gerieral design-described earliet,: the PSM was

described as a security kernel primitive which-given-a
' catalog unique identifier’and an‘sbiétt syibolic: name’
" returns’a logical® address. on Multies’c &hi%*?’isfi‘*ﬁ"o't the
exact function of the FEM. The WM um a &lrectory’

treename and a segment name &hd réthiné’ a segheat Aamber.
' The difference between these two dedictiptions is that a
segment name is not an object’symbolic’ hm and’ ‘& segment
numbeér is ohly a partial’lcgital aderess’ “ M@ & ‘conisequence
a search’ of ths Gefinition section &F thie target: ssgment
‘must be performed to' £ind the UEfsEt’ oF 4 terget vhject
in thie target segmént (sed Figure ) /' Wheh' the target
object is in d ring equal to ‘dr highisr A the Faulting
ring, such search Poses ‘ho 'préften. hﬁ%m the target
object is a gate fnto a nng%fw ‘e fawlting ring,
the linker in the ‘faultifig ring mmhmm SR
capability to redd or ‘search ‘the ‘target wedhient. The old
linker executing fi the Kernel ‘i have what vepability.

' When snapping & Iink toa *é’&%é 166 a’ 1dWer sumbered
ring, the linker must extract tie: m%f Sthat g‘&tfe
from information contained “is’ ‘thé ' tardet gégment
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~ containing the date, The inx,;w to. extract information
from that targst segment is to. invoke apother gate, a
linker gate, into the target ring.. The.function of the
linker gate is squivalent o the.functiop of the "entry
search driver" in figure B.. But.the search. happens in
the target xing instead of happening. in the faulting ring.
The question which the rsader is; pow. entitled to ask
is how does the.linker know abeut. the. lizker gate.in the
first place? . Thers are several possible. apswers to this
question.. .Ope way.ithe linker copld kaowm about it is by
: rmmwn a gate named aftex. i;g ovn ; m»d
located in. a segment of some. conwentionpl. WW
The lz-nkor could then inwvoke the I@!‘m M A segment
by giving the FM tha pame of the ggnventienal directory
and the ¢ al name of the gate. m the target
‘ ring. It wauld thus receive a asgwent number. Then,
using a convantional offset. into t}w segment, it qo)
dynamigally fabricate for itself a-link to the 11**@‘
gate. Gugh design is feasible and wary appropriste if
‘we keow. khat the number of rings per process is
Thus. there -is -a much simpler solution mrm;r pmblm which

conventions. It mum be .

consists in providing the standar
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finite set of gates (one per ring), loading these gates
into the machine during system initialization, prelinking
the linker to each such gate as usually and throwing the
gates out of the kernel address space after prelinking.
This is the solution which was implemented on Multics.

It is pictured in figure 13. During system initialization,
the linker is prelinked to the FSM gates as well as to
one linker gate for each ring. Then when A takes a link
fault in trying to call gate B, the linker is invoked in
ring 4. It obtains a segment number s for B from the FSM.
The FSM also tells it that B is a gate into ring 3.
Instead of calling the entry search module in ring 4, the
linker then calls the linker gate in ring 3. The linker
gate can search the oject segment B and thus returns the
offset w of b in B to the linker in ring 4.

The last problem discussed was an example of a case
where by being removed from the kernel, a program, the
linker, lost privileges which it used to exploit’to per-
form its task. Other such examples were encountered
during the implementation. For instance, the linker used
to store in a system wide data base, various meters count-
ing the number of link faults, the distribution of pro-
cessing time required, etc. Data could be extracted from
that data base by anybody interested in performance. Of

course, now the linker is in user rings it could still do
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Figure 13: Cross ring linking ln'ﬁﬁ‘lt;iés
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such metering, but results could not be trusted because
the system wide data base would have to'ﬁa;&éééséible in
user rings téo. Heice anybody ‘could write ghrbage into
it. The solution which we propose instéad is to just
keep a count of link Faults ih ring®0.' THis is doné by
the fault interceptor module. The count is”thus protected.
Other meters can be stored in per ring data bases if the
user desires. Such meters would of “ourse réflect only
the activity of that ‘user in that rimg.”” " |

This is the last problemi we propdsed to present here
about the implementation. In no way d6°we suggést that
the implementation faced no ﬁbf%?prdbiﬁﬁiﬁ%ﬁaﬁ“eﬁpiained
here. The problens presented here weré’ Just typical
examples representative of classes of problems’ relevant
to the topic of our research. Pt%bl&mi’ﬁ&fidihénéiadéa.
‘here either fell into categories ‘Ebr which we have given
examples or into categories not rélevant to our thesis’

topic.
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V.  Conglugion

To conclude th;s thesxs, we Hould 1ikc to step back
and consider tbe design and its implementation as a whole
to summarize what bas been achieved, try to abstract the

main results of the thesis, and exsmine the cost of the

implementation, 4 o |

We first _propose to. compare the Qld deaign of |
with the new design we have implemepted. Our comparison
is based on figure 14. The p;giwcg}}n&:ﬁ was part of '
the security kernel, It was copstituted by a set of
modules scattersd across the whole kernel.  Some of these
modules were diractly available to :g%iggsgtthxoﬁgh appro-
prlate gates into the kerpel (aas
peripheral functions like static lto;age.allacation and

trap handling were directly hooked to the linker inside the

x) m.scellaneoua

3 A
B %1

kernel. The new dynamic linker is p bound object segment.
Capabilities to use it exist in all rings éxcept :ing 0.

The modules of the dynamic linker which used to be available
through gates in the kernel are now directly available in
user rings. All periphéral features have been detached

from the linker and are now handled independently as
described earlier. The static storage Slloéator is still
physically connected to the linker to simplify initialization,

but it is functionally independent: its operation is

SR R T S e ke i R o S S SRR e
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triggered by a special hardware fault. As a result of the
above facts the complexity of the lecurity kernel has been
reduced by a non-negligible, althnngh hard to mnasure,
amount. What can be measured is the rpdnctiun of the size
of the kernel. The following items have heen»ektracted

from the kernel:

15000 words out of 300000 (5%),
30 entries out of 1200 (2.3%),
15 programs out of 300 (5%),
18 gates out of 165 (11%).

The case of the gates is particularly interesting. Since
the linker has been removed from thaskernel. all gates
which used to lead to it ingide tb&lkefhéijgoﬁld be
removed too. The figure of lltfdcitrvui“a’kpeciil‘comment.
Since the interface'between the kernel and the 6uter world
is one of the most sensitive, directly threatened part of
the kernel, a reducﬁion of size of 11§ is a significant
improvement. We attribute this high scare to the fact
that the linker wag, as we have shown, essentially a user
ring program. Thus even though it was in ring 0, it was
natural that it be available to user rings through many

gates.
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Secondly we propose to discuss the results of the
thesis. A first result is the demonstration of the
feasibility of the design. Some components of the design
have not been implemented because they were thought to be
of minor importance and could not have any impact on the
overall success of the implementation. Other components
of the design like the functional independence of the
static storage allocator could not be implemented simply
because the supporting hardware is not yet available on
Multics. However it was approximated by software and
wheh tﬁé hardware becomes available, only a simple change
of a few lines of code is required to separate static
storage allocation from dynamic linking. On the whole thus
the majo; aspects of the design and of the implementation
have been verified to work correctly. System initializa-
tion, fault handling and dynamic linking have been imple-
mented. All features crucial to the operation of the
linker itself have been extensively tested and proved to
work under all circumstances. In particular cross-ring
linking was carefully tésted.

The second result of‘the thesis is the improvement of
the protection and the certifiability of the kernel of
Multics. Size and complexity have been reduced in the

proportions mentioned above thereby making the auditing
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of the kernel an easier task. In addition, the thesis
has-¢orrected some bugs it the Multics system. The
~ protection threat resulting frowm having peripheral features

. hooked to the liuker has been-eliminated. The protection

of the kernel iteslf is no wmovre thréitened by the uncon-
trollable eperation of the linkeyr. MRorsover the careful
study and the redesign of the lisnkeér wnc¢overed and
. remadied sewersl unsuspected protedtion flaws, not the
least of which is the problém ﬁf dedéie storage alloeation.
The last major results woreh mentivning here are the
insights geined about the nwtusé of a Newrel. Although
the thesis has not provided any definition of what
 programs belong inside. the kernél, it certainly has pro-
vided a few insights sbout what Programs can easily be
moved gutside the kernel. The a posteriori anslysis of
the linker has revealed a few interesting features which
at the same time made the lLinker sn easy to remove pro-
gram and are a direct result ¢of its user ring nature.
We do not suggest in any way that all pi'c&rm 'e'xhib:'.'ting'
the features to be described shwuld or sven could be
removed fxom the kernel. We only Wﬂ:&l&t such pro-
grams are cextainly better candidates for removal than
others ahd that eny attempt to simplify a keinel should
start by examining such programs. ‘
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The first feature which made the linker a good can-
didate for removal is the number of gates which lead to
it inside the kernel. As we already suggested,'this fact
is most probably connected to the user ring nature of the
linker. A program which is already available to user
rings through many gates is inside the kernel but close
to the outside world. Pulling it out should in general
be easier than pulling out a program deeply nested inside
the kernel (see figure 15).

The second feature of the linker which made it a good
candidate for removal is the fact that it wés not used to
support any other kernel function. 1In figure 15, program
B is callable through a gate. Thus aécording to our first
criterion, it should be easy to remove it. ‘However B is
needed to support A (invoked by A) inside the kernel, and
A is not available through a gate. Hence it is probably
hard to pull A outside the kernel and B has to stay
inside as well. This does not mean that B can never be
executed in a user fing when invoked by a user ring, but
it implies it must still be part of the kernel and thus
audited to support the operation of A. 1In the case of
the linker, since no other function like A used it, it
could easily be removed.

The third interesting feature of the linker is that
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Figure 15: Multics security kernel.

| 's‘efcuﬂt‘v
.o Rerned
(ring 0)

L +

BQ

-

YJser riag

1inker

*: B cannot be removed‘because if»ls'usé& by A;
**: Z may be hard to remove because it would need a
gate to reach X, which may be hard to provide.



-115-

all kernel primitives (e.g. the FSM) it used to invoke
from inside ring 0 were already available to user rings
through gates. Thus removing it simply moved back the
boundary of ring 0 without even creating new gates through
it. Instead removing Z from the kernel in figure 15 would
require a gate to be added to reach X because X is not yet
available in the user rings.

The last three paragraphs have described overall
features of a program which make it a good candidate for
removal. Of course further functional investigation may
reveal that such a program cannot possibly be removed simply
because it deals directly with protection and is a proper
component of the kernel.

We finally would like to examine the cost of our
implementation: how much did the removal of the linker
alter the performance of the system? Given that performance
and performance evaluation were not among the goals of our
thesis, we will not present an exhaustive performance study
of the linker. However we have run a few simple performance
tests which consisted simply in measuring the time required
.to snap "average" links. By "average" we mean links of the
type most frequently handled by the linkér, vfhat is links
not going cross-ring and not using any sophisticated features.
The measurements were taken in two different cases. First,

we measured the time required to snap a link to an object
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currently mapped in the logical addrcess space. Secondly,
we meagured the time required to mnap A link to an cbject
not cuz.’rentlyﬂ wmapped in the logical address space. S8uch
measurements were carried on for both-the old liinker and
the new linker.

In the first case, the new linker mninea 10 more
milliseconds than the old linker, which represents an
increase of 40 to 60 percent of the total time required
by the old linker to snap the link. This fixed increase
in time is independent of the amount of processing
required to handle the link itself. We attribute it to
the fixed overhead involved in signailing the link fauit
ih the faulting ring, invoking security kernel primitives
through gates, and mmtmq the. kernel to validate and
restore the machine status. All these operations are
required for the new linker o opsrate and were not
required or ot 80 complicated with the privileges of i;he
old linker. This increased overhead is the basic price
p,aid by our desiqn,

In the case of the second set of measurements, the
new linker requires roughly twice as much time as the old
linker does. Such overhead is not a fixed overhead
although it coptaing the fixed overhesd of 10 milliseconds.
Instead this overhead is relatively proportional to the
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length of the search for the target object in the file
system. In order to speed up the search for and mapping
of a target object, it is standard practice on Multics

to first look in the logical address space in case the
object is already there. The first set of measurements
corresponds to this case. Only if the object is not found
in the address space is the FSM invoked to search the file
system. The reason why this search is roughly twice as
long for the new linker as it used to be for the old one
is mainly because search rules are now directory treenames
instead of directory segment numbers. As we mentioned it
earlier, we expected this to yield a non-negligible
overhead because translation of a treename to a segment
number prior to each directory search is very expensive.
Fortunately, when the project of removing name space
management from the kernel is finished, we will be able to
restore the search: rules under their old form and the per-
formance will no more suffer from the overhead described
above.

To conclude the discussion of performance, it must be
said that clearly some fixed overhead (10 ms) was paid by
the new design. However the overhead in the search is a
price paid only temporarily. In addition it is believed

that the figures presented can be improved. They are the
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results of very rough maaauremnnts: a more careful analysis
is clearly needed to identify the bottlemecks in the new
linker and try to optimize the code there. Also, when
static storage allocation, trap hendling and other features
will be separated from the linker as recommended, the
performance of the linker is likely to inctrease signifi-
cantly because it will no?morunh:wefbu~ehaﬁ§‘and worry
about all such peripheral features. Thus the perfbrmance
perspective is not as bleak as- the abeove figures seem to

suggest.

Summary

This ghenil has attempted to open a road towards
security kernel simplification Byvrdabéing the dynamic
linker from the security kernel of a computing utility.
A second wa§e'aimnd at aimplificatton*offtﬁé kernel is now
on its way to:remove name space manageient from the
security kerrnel. No matter how iazgd¢an'effdft*thuse*two
first simplifications will have required, this effort is
almost negligible in comparison to what remains to be done.
Even when wé will have reached the minimal définition of a
security kermel, the hardest part of its cerification will
remain to be worked out: the auditing. There exists so
far no formal theory of kernel auditing. While program

verification techniques are a first step towards kernel




~-119-

auditing, they are not the panacea. Auditing a kernel is
much harder than auditing the sum of its program components
because of all hidden interactions between these components.
Yet because of the increasing need for security and
reliability of information stored in a computing utility,
more powerful and carefully verified protection mechanisms
are demanded. Protection of information is not only the
fact of defense, census, medical or criminal information
systems. It is a vital characteristic required by our
society from any information storage system, computers
not in the last place. Thus it is worth paying the price
of certification to satisfy the fundamental need for

true protection.
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Appendix: Gates removed from the Multics security kernel
To illustrate the variety and the number and the
complexity of the functione removed from the Multics

LEREL R

kernel by the implementation d.scribed in Chapter 1v,

A£

we list here all gates removed from the}kernel with their

oyt
I

respective description.

- asSign linkage
_allows the user to request the static storage

P

alloeator to allocate a given amount of tpace in

’ 1the cls of the requesting ring A,pointer to
‘gthe allocated space is returned;
- fs_search get wdir | o ‘M
.allows the user to ask the treename of his current
zworking directory. The workingédirectory is used in
“Vthe search rules and can he any directory 80 defined
‘ by the user; -
- fs_search_set wdir
:allows the user to define his new Yerking directory:
-  get count 1inkage o
allows the user to obtain a pointer tothe static
storage of a segment given a pointer to and the
bitcount of that segment,d/wAA

]
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-  get_defname :
is a'generalization of'get;phtry_pamé for entries
not necessarily into executable programs;

- ‘get_éntry_pame: T | |
allows the ﬁser to find out the name of an entry into
a program given a link to that»entry}:

- get_linkage:
is essentially the éame ag_get_pount;linkgge but does
not require the bitcount of thé'segment under concern;

- get_lp:
allows the user to get a pointer tb the static stor-
age of a program in theirequesiing ring given a
pointer to the segment coniaining‘thé program;

- get_;el~pe§ment: | '
allows the user to get a pointer td the definition
or the linkage section of a segment given a pointer
to the segment; |

- get_search_rules:
allows the user to find out what his current search
rules are; | |

- get_seg_count:
allows fhe user to get a pointer to and the bitcount
of a segment given the segment name} |

- get_segment:

same as above but doesn't return the bitcount;
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/initiate_;earch;;uies:
‘falie«:athcfﬁsamfxbiaeﬁ&nhahianaaxsh rules.and enable
thmin thecurmtwing; M |
allows the uibr to foree. axkinh'ﬁ» h& !ﬂlpp‘da ~THis
is a “static liﬁking entmy dn thnzﬂqnhmic Jdinker;
. make ptr: S enzad URE D aa Shima
allows: the user . to fab: 4

‘f;aﬁpbintaa'il.a. a. lxnk)
to an object: from - scmmhy zqi-han. Ehm“thelid name.
of the ebject, 7

rest of datmk: - | S S

‘allows the user to grow a data object under a given
,symbolic name if that ohject doesn'’ t exist yet. ‘Thxs
’is a gate into one of the aophisticated feature
 hand1er hooked to- the 11nker,

get lp.‘ | | |
 allows the user4£b set the static storage pointer for
a given program in the current ring; |

unnnap service.

allows the user to undo';hé work of the linker by
,unénapping any link the linker may have snapped in
the requesting ring to a given entry. |
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We hope this exhemustive 1ist of onge:getes into the
linker has convinced the meader sf the.wariety and the
complexity of the linker interface. This is ome of the
teasony why it was wvery dssizubis and; regprding to
Temove it from the kermsl. In miditien ¢o-having to
audit 18 gates into the kernel, on the average 4 arguments
‘per: gate had to be walidatad, which inaneased the complexity
canad themti.timiqn puoblem:oveR: MOER.  c
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