
REMOVING THE DYNAMIC LINKER
FROM THE SECURITY KERNEL OF A COMPUTING UTILITY

~ ... ' ·. .

Philippe Arnaud Janaon
\/ ~-;

'· ·~ .. •'" \ ' ,.. ~; ...

Ing6nieur Civil M•canicien-Electricien

Uni versi:t~ .. ~,~r~,., 9,, ,, p~~~i,_lf,:,
,. •· •· ~, · ~· ..;. · ·~-' ,,.., ••..• ~ •' _:..· .. ~ ' ' ·--·· ... {--·;J; ~ • ·' .• ·.

(1972) .

_,:; · , .

' • 'l. ,

PROJECT MAC
MASSACHOS:iPJ!l& ': ittm'l'IT°'1'1t ,GP ''ft~''" ;:. ::.

CAMBRioo:i{.. -·- ·. <-- ,_:, <;: / : _!, ' r, :~td~&lu~ETTS 02139

-2-

REMOVING THE DYRAMIC LINKER.

FROM 'l'HE SECURITY QJtNEL OF A COMPtJ'l'ING UTILITY

by

Philippe Arnaud Janson

Submitted to the Department of Electrical Engineering on
May 24, 197' in partial fulfill.IDent of t.be requirements
for the deqree of !laster of Science.

ABSTRACT

In order to enforce the •ec:urity o£ .t.be inforaation
stored ia a CC19patin9 lltiUty.- .. tt is ~- t:o certify
that ·ttae• prot»~· ..a.W.illl ta· ~-··illtllwt:ed' so
that t:1lere .tat :1'0 ~t'.rolled faaeeN~.j>&tltcU> ·t:tae :st:.ored
infonaation• CertJ.ficetlen ~- t:Jad~, ~·secmrtt:y
kernel be _.. mller .ad •~r ·~ t:.tia·:-aupea.taor of
present 9ener&1 ·pupoee Cllpllr&td.111J 8f*l1 ll 1 .. . •fti• ~t.•
expl~ one aapect of.-~ CJul:~tiabiM.uy· o'f a
computinq utility by deaigninq·:a~dya•toJ.l.nker·t:hat runs
outside the security kernel domain.

The dynutic linker is designed to run in.any user
protection d.oaain of a multidomain coaputincJ utility. It
is shown that the dynamic linker never needs the privileges
of the security kernel to properly operate. In particular#
the thesis dellcmstrate• the ability of the dynamic linker
to link programs t09ether across domain boundaries without
violatin9 the protect.ion of either domain involved in the
operation.

THESIS SUPERVISOR: Micb&el D. Sch~r
TITLE: Assistant Professor c>f Electrical Enqineerinq

. . . ~

-3-

ACKNOWLEDG!MENTS

~~.te:r '.~ ~~e~ .are ·~~~+¥, l;'.~A,d ;.~ J?~I:?~e in a

relatively small circle. I do not expectri:)~ ~is. to

reach :reaQ.~rs. :Reyo~4; Mu,1Jr~C$, f~~- 7) 7 r~~:v-e,i;,. F would

like to ~~~~·~s ~ g4a~,lt~4.~:~t~j ~P~ .).r\ "',U, . ;i;,tpqs <,even

beyond ril\.g 7): .wllo ;9',Q.Il~~~-:~~.ff:r:-~. ,t4ilJ.~:F'¥'•~·

Tp, .11t~u;t With r;i.ng .O:'i .~ ·~W4'.}:i,J':,,:c~?i: ~ress .•pecial '
l.,._ • .. •

gratitu,A.e tQ. P'Y thesis. sqper~~-o~~- .fJ;Qt~AA~ ~~ael P~
I .·.,. _- • .; : -' ~- ·" • '_ ,_, ' t , ~ • ,.i;. ..-- .,.. ~, - •• ' , ·- •.• ' •

Schroeder. The correctness of ~.\:If);_.,~~•:, tJ.l~:: eft.,~p­

ti veness of his comments, the usefulness of his criticisms

were second only to the amount of time he spent working

w,i:t.b me.

<;Q~nµ OA.·,·~~Ct~Je ~~ ~' t~•-r.4:~""-~ M;,• .. ·

~lend~ ... ~4AR~a f.o:r; .. ~ bl:)u~s ~},},~ ~~R.~ ~Jil~ ,~ ~o .test

the fina+, .~+~t.~tiop ,q.J,tM·~~gp. •..
•• • ,- - • •J,

0
, - •• 1•, .• ,_·.- •• ,".~···i-,,.~-· '"'~- ·--- i- .. · - .· •.

qo~ng .J:>ut t:o ~e . ~.~ W~t-. ~ ,.~~ ft~• ,,:t?. :th~~

Elaine Thomas, who co~_·,tq~3,~~~LR:t8~t?~~i ~uqc

linker in a single stroke, a real perfoJ;'lll&Jlce!

This paragraph would be incomplete without special thanks

to Bernard Greenberg, whose invaluable-tho\Jqh somewhat noisy­

help was appreciated, especially in the early phase of

'$11ra?l:.o.J:tJi~'.'.'.i 1llrl l'o· cUt~!U~1$&J1 ~;:t ~·;I~. •J.tt··'t<.)· 8G91!~VJ::,j
. ,: . •>\,.; '·

· 1-~ .t~ ii ··. ','~E~~,· lti ~MiI
:!tLwrU i;:w :<jj$Jiqmo0:nl ~ · ii~ ;ll;p~" .•l:rlT

. ,.• - . .'· ·'-:--,. l· -·~·-:,"~···_,_:,l,',,t'--<~ ·._··. ',_:) :·

:r .l!>rlwam~a dfl:JOtfj-gJd1Wl.&V'i;1l ~ll•.i·~-·j;) :b,-;tAtrxsu os
-._,- - ' .;~:.:_ ·~:; -~). --~,-_;..·J -~ ~~- .- .;_ ·->·· ·. ~, ~.'". -: ..

lo 'tJ:t.JS£~ <sd.1 n.t v:Iif'ii~~./~~ .tt~w. ql~d

-5-

TABLE OF CONTENTS

Chapter I: Introduction .
l.
2.
3.
4. s:
6.

:T() ~~.

securi.ty Kernel· .••••.••••••••••.••......
DyJ\~~~· .~i,,,~~,r~ .•.••••..••.... '! • • (.• " •. , •• , • .,. •..•• "' •· ~~ :• ~··-·: •.• _ ~
Backqround •••••••••.•••••••••••••• ~ .••••• · ••
Mo.ti vations •••......••.•.••.••••••.•• ,. ••
.. ~···~···"'''"<':'~><•· '"'"'-~ ... ,~.~'"'""'"'::-~;·· .•

Objectives ••••••••••.••••.•..• ·- •••.••.••
Plan of the thesis ••••••••••••••••••••••

Chapter II: A Computing Utility Model
1.
2.
3.

Information Protection Model ••••••••••••
Infornaation Storage Model •••••••••••.••.
Dynamic Linking Model •••••••••••••••••••

Chapter III: Design .

8
11
13
14
16
19

21

21
24
28

31

1. General • • • • • • •. • 31-
2. security Kernel Initializ.ation • • • • • • • • • • 33
3. Dynamic Linker Initialization • • • • • • • • • • • 37

a• Design principles ••••••••••••••••• ~ • 3 7
b. Prelinkinq the linker ••••••••••••••• 44

4. Link Fault Handling ••••••••••••••••••••• 54
5. cross Domain Problem.a ••••••••••••••••••• 60
6. . SUllllllClry ••••••••• ~- • .• • • 6 8

Chapter IV: Implementation .
1.
2.
3.
4.
5.
6.
7.

General ••••••••. ~ •.•••••••••••••••••••••
Information Protection in Multics •••••••
Information Storage in Mult1C'8 ••••••••••
Dynamic Linking :in Multicll ••••••••••••••
Ini-tializatio.ii ..•••... ~ •••.•••••••..•...
Paul t Han.dlin9 •••••••••••.•••••••••••••••
The Dy"nam.ic Linker •• _ ••••••••.••••••••••.
a. Implementation of peripheral features
b. Compatibility of inter~acea •••••••••
c. Limitations of privileges •••••••••••

69

69
71
74
75
82
89
91
93
99

102

Chapter V:

Bibliography

Appendix

-6-

TABLE OF CONTENTS

Conclusion

Page

108

120

125

-7-

TABLE OF FIGURES

Figure

l.,

2.

3.

4.

s.
6.

7.

s.
9.

10.

11.

12.

13.

14.

15.

Dyn~c;: ,link_er and the sec~ity kernel ••••••
~- . .c. ~·-- .' .-J _, _ .. ,,,.. !'

Address spaces••.•••••••...•••••.•.••••

Prelinkihg' the l'inke~ •• ~ .'; ~-;,, •••• • • , • • '• ••• ~ • ~ • .

Multics object segment •••••••••••• , ••••••••••
' - . ;; .. -,.,,)-. ,. -· •·"" - ;.

Dynamic linking on Multics .' •••••• ~· ••••••.•••

Functional eyn~ie !•inker of'1H\ll'ti'ics ;;i'.- ~. i.0• • •.

Old dy~CQRi~Lli,n~ .Qf;,,.~u:ttic•· .. ,. ~·· ... ,: • · • "'•:• • • ~
New dynamic linker of Multics •••••••••••••••

Static ~torage all~catio~ ·~ri ~~i'tics •••••• ~,.
rri terface 'of the , lijilf$i.- ~,td · th4F' i. -.
Multics f il~ system •.••••••••••••••••••••••••
cross~~ing linking on ·:Mul ~i.cs 1 ~, •• ~· •
comparison of old'andri8'1f'MU.l1tiea lfniters

39

43

46

51

72

77

80

81

94

96

97

101

106

109

114

-8-

I. Introduction

1. Security Kernel

The concept of c:o!5>U'ti!!!J' ai;i,li tr d.eaipatee a computer

system or a network of compu~r ·.Y•t~ ded.icated to ser­

vice a cQmmunit;y of ua•rs (1) .•. · 'lbe ~:~ the oomput.ers,

of the services rendered and of tbe ~ityof users may

vary widely. Yet .it remains that. in· a.ii' caae·s one of the

most tIQPOrt411t_f94ttar•• of the ~9 utility is to

provide the users of the COJDmUl'lf'!Y'Vith' @he .. ability to share

the resources of the system. We-~i.ll b8 •Pecifically con-. ' . '

cerned about sharing_ the i~f~~t~ atp;s:.ed-i.a tbe COllJi>U­

ting utility. Different m8mbera of:: tlle .. c:ommunity of users
·• t'"' ::·

may b~ve .cu.iterent intention.- ~h~~ ax:e . ,4l ®a~iict with

one another with respect to the '•t.ore4 ·· infoaraat.ion. Some

user might willfully or accidentally access (use, steal

or modify) the info%lftation kept. by another user in the

computing utility. Hence uncontrolled sharing of all

information poses a direct threat to the security of the

information and to the erivacy of the individuals con­

cerned by the information (2-6).

In order to enforce the security of the information

and to safeguard the privacy of the individuals concerned

by the information, the acceaa to the stored information

must be controlled by some protec~ion mechanism (7-11).

-9-

However, no protection mechanism will serve our purpose

tmle&s .l.t is.-trualte.Q, J:w· :.it.e, ~"Hf'.,_ ~EV:•L,f'1At~es -o! a
.,, ~ ·~-·---·- ·-~ '·' ~-· .. ·, .. ' ~.

protection meoQa.ni4Nll c~i:bu~ffJ;l;o, ~ ~~ ire~iaJ:l&e .. (6_, 15) •

It is nQt O\U' p~e ·.A"~e, tq; ~~;,..pl!'. :!8-.n .t<? ~~t;, tpese

featUZ'$8. Only :one Of ,:t.hem i• ·iQ..£-~,~~-~. t:Q. USc: the.
• • '"' n~• 1 •"··-· ,_. ·-• .~ _, • •

cert:i.fic&tien of ooJ:(r~s ~-L~.¥~~Mti9p ~c1¥ni~m.

Certif :i&1t.ign. @f ;t:SQiJ.!ffYl!&!r,9~J:Jt9~'1 -~~t ::~#-~ .J>~1?~tion

1'18Chania COJtPl•MllY · ~t?.~i;ql" d-h~.,,p~C'f,~-; te·)t};),~ ,if~Ql.".~d

in.formation4.,.th•t .it ia .-~ .~fta~v@,_~!~t;,t.j,w~ J~~' the

deaiiirecl prot.tc:~~o~. sol)~~ {µ\~ •. t~,F~· ~~-~ ~~-~ct1.<> Wal(a user

program· c<;>uld. aubve:Et, ~.j:;q\UllY'tit~t~"-o;-,'944~ ~-~.to. gain tm­

autbo.i:ized aeeeaa- to- t;i,.~,,-~0;~9fa;n£~~~q9 1 . ~ert~~+~ation

of a protec::Uoni.,a'*-itPiM-:i• ~e. ~··~~t1 ffe-''caref~~'~µdit­

ing 0£ each __.n.ept ~~rfp~t,\pf. tQ,~,~,~.p~~~9t~P,n. -<:>f

the stored in%0J11J11~io13.. . s.~ !~~iNJ·-~~;. ... O~:Y:~.J.n9,!.µ~e,s

a verification of the ~~tj;C?D.r4P~:):~~DWif ... ~t.•,t~pn of

.each ;~t of, -t.he·; w;~t"9-~51-.,~.lff..r.: bµ~1.~l~~ a ver­

ification that .i.ntei-•ot~ .. ~9, -~8!'Li: ,~ji, .. y~:t~, tj)e outside

world cannot oa~~ JI\&~;~~ ~1,.un~~ ~J;i~y1:oi:.

·resultin9 .in ~P<>~iz~ a~~-~~ wo~;ipn.

The .p~t~t.tPn wec~&fM' jlJ;~; ~IJf:.l \Ji t~~J\~-~ by a

. comb.ina1'ion .. o£, ~dWar., ,~ •9'~";-:;.,.,111~, P.f~J:'f88 and

data -._. <>.t tjle. ~:t~~.ePx;~:~ A -~FY ~~ns~t.i,ve

part Of the oom~J.Aq-ut~tY:" ~:·~ic~~pi.;,~Jlo. c2111

access what WQrlMl.tion. :~ ~• :f~uJ.~,, ,~;~otec;~ipn

-10-

software.must be isolated frta and@O!!C!t!dagainat. o-tmer

programs in the computinq utiii~y. ARY'~eau.an aofuare

component, if tampei-ed vi:t:h, eou1d cause uta•tbori zed

ac::ce•s to stored informati.Oll. Hence; ~ IMISt

be prevented from'nlodi'fyin.9, aut:t.erting er cdr~ting

the protection sOftware. Su.eh.Q1G,,ll...,,t•hQ•l~ pro'V'ide

a complete control over the irli:ttract.ians;Del\Wen the pX'O­

teetion soft.ware· and other progr ... in a eompvtiaq utility.

'!'he security kernel of a cGllputinfj at..ilit:y ia t.Aat

part of the ilOftware wttieh:could, aa a result of a buq or

malicious alteration, cause unaat:ilc>rizett· ·acceaa to infor­

mation. 'l'hus it is the pro9rams amt' data b&•ea o• the

protection software plus any oti!er Pt'.OigTW (and data

bases which control t.beir behavior} that IJave· tirect

access to the protection software.

In most syatema the securl~y Jri!rnel oorreeponds: clc>sely

to the supervisor. It inelu&Ht a great·manyproqrmna and

data bases that are not functionally partof,tbe protec­

tion software.. ·J.\s a result~ 1:he aecuri~y kernel ia much

larger and n:>re complex than ~he tNbsyKenf Which implements

the protection mechanisms. This i• unfortunat'S't because

it is the entire security kermt:l whichllwJt be ec-t±fied

to establish confidence in the ae<Nri"kY\O.'f' stored in:for­

mation. Extra size and eomp;lexity make< 'certification

more difficult.

-11-

This thesis will explore one aspect of making the

security kernel of a computing utility smaller, simpler,

and thus more certifiable by de~eloping 'a system design

in which the linking function is outside 'the.security ker­

nel. The linker of a computing utility {s tlie program

responsible for binding together separate procedure and

data modules to build larger proqram elementS~ In current

systems, the linker is almo~t ai;ays' part.of the security

kernel, but as will be demonstrated.in tnis thesis, is not

part of the protection software. Removing the linker can

significantly reduce the coinPlexi1;:y and the size of the

security kernel.

2. Dynamic Linker

In writing a complex program, it is extremely desirable

to subdivide it into several modules. In doing so, the

complexity of the programming task is' reduced for the

modules can be programmed arid tested.independently and

existing modules may be incorporated into new programs.

The idea of modularity implies the'existence.of some mech­

anism to assemble Inodules into larger programs. The

writer of a module must be able to·connect his module to

others.
:·· . .L.,

One simple way to achieve the connectiorr is to

give a symbolic name to each module and to denote it by
" that name in other modules. 'This establishes a symbolic

-12-

link between the two modules. The probl~ is that symbolic -
links are meaning-less for the ·hardware of the processor.

For a .symbol.ic link betweeta two lllOd\1.les to become a snapped

link. usabile by 'lthe pr,()oes&Or,, the .~J.ic ~ ued ;~y ,., . - .. ~· ,~··.··.:.,

the programmer must be transl4te4 Lnto th~ J,g;;i&Al Jb,ard-
. .• 1 '

ware \ntei:;gre~i;!>l!ladc!ress of the .module ,denoted by the

symbolic name. When used to ao•ine ",parate1y ooft\Piled ' - -

modules traaall.ation is. 1called liijking. 'l'he p;i;.ogram -wbich

takes ca1:'e 4!>f the translation is _Qalled. -the l~.

There -exists a wide ·variety of link~_rs ;Wh.ich 'we will

not describe here Cl-2). -Often a linker is invok~ when_ a

program is loaded in-to primary memory. Before con-trol is

given to that program, each symbolic ncsine it ~uses is

translated into a logical address by the linker. In

other schemes, control is given to a NO,g·r.am .module as

soon as it is in primary memory. -When .x-.cution o:f the

module hits a $ymbolic name, a hardware event: (fault, inter­

rupt, trap) triggers the linker e¥ecution tp translate the

symbolic name into a logical address. Execution resumes

after the l'.ii.tik is translated (s~). 1'lis type of
· ,cl· .

linking is called dYl)!!tiP l:i:!!E';bni~d i• carried on by a

dynamic ,linker. It is more fl~xible an,d. sa'7e:s the cost

of loading into memory and linking t()gethtu' modules

which may not !be used by the _pr.oqram evecy time it is

in-voked. Although the res-t of ·our thesis will 'be talking

-13-

about dynamic linkers, the results of the research are

also applicable to regular linkers. "!he.problem is more

challenqinq for dynamic linkers·preciaely because of the

dynamic aspect introduced by the'ha~dwa~e events.

3. Background

Certification is a relatively ·recent topic in the field

of computer science. Many authora·have,ocoas.ionallymen­

tioned the need for certification, as we did here. But

there exists no concensus on the best'.,way-. to .certify a

large software system. ·The area 1 is· not.•very well struc­

tured and much work has still to·. be done to· orqanize it.

Yet most 0£ the papers on that· topic.; sea to agree that

whatever hypothetical .method is used,. to audit· and certify

the security kernel, the corree:t.neaa' 0£, a "simple" ke1mel

will be easier to verify than the correctness .. of a

"complex" kernel. A small number 0£. IROdules; strict con­

straints on the interactions between the modules, method­

ical design, aysternatic.implementation,)precise supporting

documentation, simple language con~tructs, formattinq and

readability are factors likely to simplify the task of

auditing the security kernel. Converse.Ly-1,,a large number

of modules will undoubtedly compdd.cate tne probl:em. In

addition, it is likely to increase the number of inter­

actions to worry about. Complexity and sophistication of

" ,· ,,... ~· "' - '.- . .,:.-.~'-

-14--

the·xaodulea themselves would al.ao !lake •wlit.in9 harder.

A good qu.ideliine when 1U:7i:n9· to tt.t.a»U.fy t.M secu:ri ty

kernel is the· pirind;pl• of leaet pt.vil:a.ie•, · 1!1\i.a .~inci­

ple is the equival'ent of the :military •n..o-to...Jtnow" rule •

. It states tha·t any prQCJram module sbould, i.., CJ~ted just

the privilaqes i.t nee~• to ~rly ope~aue and no more.

Modules of. the aecurity Jcesnel aho\1Wr.D41· ~raaad the

privi.1eqe& CIC ~· aecw:it.y ken•*' on, .the, oas••· tbatt, they

con t:ribuue to the. pz-otecrtion d tila: ato#ed~. iafoanna'tJ.on.

Module& not ac:mt::ir.ibatiluj· to· tthe pzot;e'C&ioa, fjM.l. shoul..d

not. be aa.1.e: to - such privil ··~ them inaide

the sec:uz-it.Jr kmmel. increases,· 'bNI· a.iae aml cennpl.exity· of

the kezne:l and. brinqa: ia f~.aa,6.,~ueta·. tha4::. are

hard t.o' vaJ.idate W.t.h' :ta4lpect ta: tba<.·pro~tiat· pa:J. of

the kernel... K'eeping 1dtam. oct:&td.e- :die JutueJ., cuu dow on

the n\llllber: of: m>dul.es· ami in~on• . ·~. l>e cc:me:Ldered

c~~t, or

4. Mstivat~

Elea~ID'J' a ~e l:inlutr: uo· ··JNl'l. ~de. tl1e- aecuri ty

ke:cnel. en~ of a computing! ~ut.d.J.i.ey is motivated by

the dead.re to.' ~rove the certUi:~lit.y- of the· prt;>uection

r,~~~~1g~~-*' ~.~ "'~""'-1'l.~1r..~~·@'~~1«A1t .. ~11141,.c~'.,.~~M.IJWIJJIJ:,.._ ... "111!!1.)11~,91J1S•.t11t1M~1•••tiaA£,llf!"'lf'mii~..,')(<'c··
- • -· ' - ···_1 ·: . . -,

-15-

mechanism in ·the system.under concern. A linker is char-

acterized by four feature' •. Wh'icf1'i\lqq~~t.c :it/'ihould run
__ , l

auditing or the -ketnei·~ . ; : .c :~;'.': /_,,~·,;\':.;

. . .

!'irstly I .• link'et t6es rit>l.1~1--il~ i.fty oonoept re-

lated' to; the· prot·ec'tion ·ot tManit•tt&t~J 9t '·ne.a4ia· to •upport ·

the p.f.oteb't'foft ibt!Cbinis'ms.~' ' . cU'):, '\.' ,E

· . s~condly~ in ·view·· 6'f" ·the'· 'foof£l~''i-1i._nt$d · by ·the

linker I. it tseesris ·: rtia.,ona'bre: ·~()~'.W.P*¢t·"' tlial<t;):tlu! . liflk~r

does''hot net!cl any of' t~:·pri~1-~• tjtb·~cJ:'to• typiccii

modul~s ()f tli~· seeutity~ ~~e'.l... f'Thel-'-f'b~•r~ ;the 'te·ast

. prlvil*qe p:rincfp1~· 1JriP1:ielf'tiiat~1:h. ;tfi.Jl~·: b~~ <>utside the
,. '

security kernel.
i.' \ _;

'··. / .'thirdly I "a: linker jJJ -1ii '.f•rii;t-.1•' i wlif·'~lilc proqram.

Even though its funC:tion 18 eliia~·;ftii: dCJti~fbe';'· .. the d~tails
' ~ - .-<I· ,- ~·"'·~· ~·r-~' .-,,··~··-'('- .. ;..,';;. -+'·- ,,,. o•' c-~.,..., ·• · . . '.,_ '

ot its implemeh;t'a.tl'O!f-~if~f;"tiiti-r irA 'be ·1rtttibate atid ·

sophistlcated l:ahq~qe 1'on;;r~~if tih¥cti} 1._tce: 'the; "~eading

and auditing of the program a quasi tm);ib~ttlble·· t'ask. ·

Finally, the linker, by its very hature handles data

directly accessible to the users of the :·~·~-~ · Such
,." -· ~< .. '. -· ; ... ~. -··> ,-.; - . . "'l, .,.__ -~- ~·:· ·. ; ·1- -~-' u ;.. ' ·"-"' > . '

data could contain - p\1rposely' o"'t':no°£' '.;.' 'ill'do11•i'stencies

capable of ~auri~ 'th. e. ·· Iidk~r 'tb!:tul~ldtr o:i'' ·erf'orm -~ - .. . p

unexpected operations. · ObK(ll'lt-~ci£jtft\'t ·i:J.t , ts liluch.

'. harc!'e'r to verify th~ 'Oarl'eet 'Q#ef4t'i'ori ~'8f 'ii" prdq~- when
. .

it can be presented \ii th ·an ariif1 tr,fif' :'J.'tipdf :tlimi' to verify

-' ' f ~

-16-

correct operation when a "correct" input is guaranteed.

Since malfunc~ion and wiexpected btlhavior a~~ ruled out

for program components of the aecuri~y keinel,, very

so.ph.i.sticated JIMllcilii.nery wou1d Pe ~equired to veri.fy the

consistency of user requests to the linker and insure

proper operation. Even if such ma.chinery were available,

it would only increase the ca1qplexity of the Jinker.

Aga±n we .c.cate 'te the conclusion that the lin~er should

not be part of the security ke.rn.el,. If so, no malfunction

of the linker will ever subver.t the prote~tion mechanism

of the system and cause unau.thori~ed access to protected

information.

To summarize ~ur motivation we .can say that designing

the linker to run outside the ~ecurity kernel environment

of a system is a step towards sin;>li~ying, isolating and

better defining the secul:'ity .kernel, thereby maJting its

auditing easier.

5. Objectives

The mot1vation for our thesis is based on four argu­

ments which .s.ugge.st that the link,er should run outside

the security kernel environment of the system. The first

objective of our thesis is to show that. it .2!!l run outside

the security kernel. We will have to show that the linker

indeed does not contribute anyhow to the protection of the

-17-

system and is never needed to support the operation of the

kernel. We also will have to show the inverse relation;

that is, the linker does not use or need any of the priv­

ileges of the security kernel modules. We eventually will

have to show that the idea of forcing the linker to exe­

cute outside the security kernel environment does not

introduce any unsuspected, unsolvable problems.

Clearly we would not pay so much attention to our

problem if its solution were obvious and if all linkers

known today were running outside the security kernel

environment of the system for which they were designed.

There exist a few systems (13) where the problem has been

solved. However, it was solved only for the very simple

case of a static linker binding modules together inside

one protection environment. Instead our thesis will pro­

pose a general solution of the problem for a dynamic

linker binding modules together across protection environ­

ment boundaries. The design to be proposed can be applied

to any type of computing utility with some variations

which we will eventually mention when appropriate:

Except for a few cases already mentioned, all systems

are designed with their linker being a component of the

security kernel, and having the privileges of the security

kernel (14). The second objective of the thesis is to show

the feasibility of the design to be proposed for a

-18-

particular real world system. We have chosen to remove the

linker of the Multics (Multiplexed Information ' Computing -- ..,. ",...,

Service) (15-18) system from the security ke.rnel environ-

ment and to force its execution into the uae~ environment. . .

The linker presently runs in the environment of the

security kern~l of Multics as do many other ~ponents of

the system wb:ich do not belonq in the security kernel either.

The main reason for this design was that the cost of

dynamically changing the protection environment of a
. . .

computation was prohibitive in the initial version of

Multics. Hence, it was decided to include -.ny system

components in the security kernel that wer• not part
'·~ .

of the protection mechanisms. in orde~ to ainiri\!ze the

number of times the protection enviromaen~ waa·changed

in the course of a computation. Snapping a ainqle link

requires two environment changes.with the ii~~:r: inside.

the security kernel, but. may require 10 to 1.00 with the

linker outside. A second version of the Multics hardware
'

(15) has reduced the cost of a change in protection
,.

environment to the level of a norma,l interpr®•dure

call. As a result, there is no longer an economic

incentiv~ to leave the linker in the ae~~it~ kernel.

-19-

Before we go on to develop the design we will mention

a third. o);>jecti,ve 9f ·~· .t.M:sta~,- ln· 1UllDQ1!ling;;;the ,dynamic

linker from . .:t~- secn1~ity ke11ll4t'l of·• Mµlt:i.os, .we· :hope t.o

establish a few more criteria for deciding whet~~ or not

a program belongs in the security kernel of a system. We

also hope to better define what general programming fea­

tures contribute or hinder the task of reJDOving. a program

from the security kernel. These lists of criteria and

features of interest will certainly be as helpful as the

removal of the linker itself to better define the security

kernel of a computing utility in general and of Multics in

particular.

6. Plan of the Thesis

Before we come to the body of the thesis we would like

to briefly describe how we will develop the. research and

carry it on to the detailed implementation of a linker

running outside the security kernel of a computing utility.

Chapter II will develop a computing utility model where

emphasis will be put on features directly relevant to our

research. The model will serve as a basis to describe the

design and it will help the reader to apply the design to

different systems by matching the :model with that system.

Chapter III will propose a complete design of relevant

parts of the computing utility. Problems encountered in

the design will be discussed and solutions will be proposed.

-20-

In Chapter IV we will demonstrate the feasibility of

the proposed design by describing its implementation on

Multics.

-21-

II. A Computing. Utility Model

In order to better define ~~ features of the design
I ~,,_ ::_· _=--:- ~~~·· t ~: -~ .. ,,,._ ·:

we will propose, and to generalize its applicability to
' ~ -~ . , .• '" - -~. """. :.' ~ 'i ·.

any computing utility, we will describe a computing utility
•• ' 1' • ' • ,•·"-· • -.- \":'I~ :.•:.1:-~ - : "" ~ .:··:.~w<,:_,~ :, .- '

model. This will enable us tp.explai:g. the proposed design
' , , J.: -~(;·!' . ~ ., .!.

in terms of the model. It will enable the reader. to apply
.~ -· '";',: •· .. - ~' i ' - ., ;· t ,_- ;

the design to any specific com.p~ting utility by matching
'' (~ ~ < :;, ;;· ·.K: ; :'.·. ·:· :··: .

that computing utility with the model.
~ ' '

We will develop the model in two steps. Firstly, we
-· 1. i . . -1; . . :~ '

will describe a protection mod.91 suited to th~ environment

of a computing utility. Secondly, we will build on top of

this model an information stor~9e mode+ suited to the
. :, ' ~. •,, ; .;; ,,.,... ; ; :"':,·:-

needs of a dynamic linker. The model wi+l help us t6
.. <, ••• ;-;: ;,-...... '."'~- :_ :<';_ :, j \ ~: •.· .

better define the co~cepts of protection ,nvironment and
.· ~ ~- :.:' ~--fa 5 .,;!_J·~---(; ;'· L~~J ·\ .

logical address space which we have occaaionally mentioned
/ . ~>;_· ·~:-.'r :_ "J~:-··.:·,, . . .

but have not carefully defined yet. We then will explain
·' , ··t

in detail the operation of the linker in terms of the
, ·; !:· .. ~£. ~).>' . . l:·~·;.

model. This will greatly simplify the $ubsequent descrip-
• .~:- j .• ; •• ~ ~· • ·7.!.~ :

tion of the design of a linker . ru~ing O¥taide 17he security·

kernel of a computing utility.

1. Information Protection Model

' In order to better understan~ and study the problems

related to protection of stored information, several
" ; : '~i' ~> ~:.. : - >-~ . . • \

-22-

structural and mathematical ·models of protection schemes

have been proposed (19,20). We will briefly describe here

a model based on the concept of protection domain (21,22).

This model wili hE!lp us understand what .is meant by a

protection environment and particularly what the security

kernel environment is.

For the purpose of our discussion, we will talk about

the envirofillt&nt of the computing utility in terms of
obje,cts and subjects. Objects are passive. They are the

information containers of the computing utility. They

must be protected to prevent unauthorized access to

stored information. Objects are the procedures and data
, ' .

bases stored in the computing utility. SUbjects are

active. Subjects are the internal representation of users

of the computing utility. Subjects, sometimes called
< ,.,.·

processes or jobs, act on behalf of users to create,

delete, modify, use and manipulate objects.

Subjects can access objects by means of capabilities.

A capabilil;y is an identifier denoting some object in the

computing utility. Any subject possessing a capability

for an object is entitled to access that object.

The set of capabilities available to a given subject

defines the domain of execution of the subject. The domain

of execution of the subject is the· protection environment

where the subject operates.

' ·,Jfi.:;~'"'f:i1',-~':>-;,,,;_, ,et'"'':!':~.::.-~~;:~$<'~~~:l.h~~~~~i'~J~·~~~~·~~;--:~~~?~~~:;:~~~~::~~~"· ~.-.·

-23-

When a subject changes domain of execution, it changes

its set of capabilities~
' '.'' ·.

He.can enter a new domain of

execution only through a gate'. A gat~:·fs a procedure

object which forces entrance to a domaln t6 coincide with

invocation of certain procedure objects in the domain.

These procedures completely determine the activity of the

subject in the domain. For a given sub}ecff, cl. gate is an

entry point in.to ·a given domain. However, for ·two

different subjects, the same gate obj'ec't leads into dis­

tinct domains. We make the assuinPt.iori' that aach domain

can be entered by only one subject. ithu~ wb:eh two subjects

wish to enter the "same" domain, they::4tre 'actually
. .1.. '

installed into distinct domains contafnin(j.equivalent. sets

of capabilities.

' with this model in mind we can better talk about the

environment of the .securi ty.·kernei~ ·'.Poi. each user. compu-

tation, i.e. for each subject of the·c'bmputing utility,

there exists One doinain.;_the SEtCUri ty; Jritrlt~:·'dbmain (2 3 I 2 5) -

where capabilities exist for the aubjecf to a·~cess pro­

cedure and data objects of.the secuilty·ke°riie1 •. Access to

the data objects is constrained by the adcj~&s p·attern

encoded in the procedures of the kernel. ' ' ' Access· ~to the

procedures is further restricted t~ c~rtain entry points:

the gates into· the'S'ecu!rity kerneldoilla1n. Hence complete

control is gained on the inter~ctions.between the kernel

-24-

and the out•~ worl.d.. The .. cµri~y kefDe.l).• a ao called

P~p~ •,-,e1f!l, (24,2$) u ~~ p~ td\l;.oil exists

in the first ._.in created foe· -eacda •~j-ec:t i,n the com­

puting: ultiliq ..

2. Iafo~-tipi) Stor.,e Hodel

The J,ti:twi,OlJ;S pa:t'...,:apha ha"'; "°'"e pi:eciae. the
• ,. i.

notion ,of ~ction eavil!'OD.-.t. W. vil.J ..., oonaider

the concept •f 1og.l.cal-... .~.

~ ~ of ul objectts in ui:1Uty ~-

sti tu1:es the Jit-.. raw .of ~ ~" ~ti:~ity. Among

these oJ.>;ect. i,e ~ .. ~tj..~la,;r --~ .t Q!Pi~ 1~
. . . ' -. . . .' !. I. -~ .

cataL91s .. CatAJ.2ft are data. baaM .coa~~os.-.eriptive

info,J:111&tJ.o.Ja about .&Qme set of ot>.j~ .• -~ ol t.be items
- ' ·:·. ' ' {

contained ill a c.,taio,_ at>Qut ~~h ~j~t ~~~~~ .ir1 that
.- .

catal.09 is tl'M!! phys.teal •*"-• ~f •-.c:h 4'1ti~· ~

12h1siAa;l. .,, of. an object 4tlfi~~ ~r,, ,tbe <*je~ is

located OJl aQ111! .~ry dev:i~ Ja~.~. ~-~•ting
- ' - - - < - •

utility. The ph7•ical ~ .. 9t_ • o~j.~91; _,_,.t 09 .clearly

dist,ingui~ f.T:Qa i~• logJ.~l .~· -~ ~$UtfM

!~d~S,f of :·• Qlaj~ i• thfa ~ ... ~ ~"*· • .~inq
subject ref~ t.8- al:>je:(!~,.. °'1.l..r lqgi~.i A.~••• are

meanin9:ful to J>irOQeSSOr• exePll~~, ~Qb~ _paje •. An

object always h•• a phy•i~l ad<l1: .. s ,even,llh~ it re•ides
' . ' . . ' : ·~--

on secondary storage and no subject uees it. But it may

-25-

not have any logical address if no subject uses it.

Assigning a logical address to., an obj~~t. o~ ;behalf of a
.'.::.' \/t.) .-.;:: .. ~.. ~>;.,,.. ~ ·i <. ·_'. ''

subject is the role of the file system manager (FSM).
•'" .,_ . · (-~ c. ,1, ,;..· • •• -·· ..

When a subject wants to assign a logical address to

an object, it must pass to th~ FSM·~ u~lqu~ identifier

of the object. The unique ia~iitifier:o:f ari object can .Pe

a unique name, a unique n~~~ or a" c:a.ti1og, tinique iden-

. tifier and the symbolic ~ame,'ci'f -~' object' in th~t. -catalog.

Unique 'identifiers are different fz:'om s~lic names in

that more than one objectma~have'the· 8~ ·aymboli'.c'name

as 'J.ong as they are des~ribe~ in:; dif'ierent catalogs, but

no two objects can have the 8~ uniq\J.i:!ldentlfiers.

When given a unique ideritif ieij~ -the ts)f perfonns two dis­

tinct functions. Firstly, it· se=aiches the file- system. to
; ' ; ~ . '.(' , ' ·. ,·

find the description of the object'tlenotad by the unique

identifier. If the search ·fails or if -the ·FsM deci'des that

the requesting.subject.do~s not have the tight to know about

the object under concern, an e~ror me'ssil'ge fs returned

and no action is taken. If the s~~rch ~~cceeds and the

requesting subject has the right 'to know.about the object,

the FSM maps the object into a logical. ~dciress of the

address space currently seen by th~ subject .(enables a

logical address), remembers the binding.between the

unique identifier and the logical address·, and returns· the

-26-

logical address to the subject.

One question is now in orde,r. What is the real

nature of a 109:.ical ad~ss? Since the PSM, a component

of the security kernel, releaeea logical addreeaes on the

basis of a protection decision, a l<>g.ical address is

merely a ca~ility to access an c::Jbject. As long as a

subject has no e~abled loqi_~al address for ui _object, it

cannot.reference that object. If and when. a .l.ogical

address is enabled and delivered. t;.o the subject by the

FSM, it 9airu1 acce..ss to the corr•apon~DiJ.Object, i.e. it

has a capability for that object. Thi• ~t.a.b~ishes the

connection between our inf oJ:aation protection model and

our info~tion storage JD?del~

This connection between the two models brings up the

question of the nature of the logical address space. Since

a capability for an object is granted to a given subject

in a given domain, one might wo~der whether the logical

address allocated to the object is valid only for that

subject in that domain. In other words, once a logical

address is assigned to an object for some subject in some

domain, will that subject see the same object at the same

address in other domains? Will all subjects see the same

object at the same address in all domains? The answer to

these questions depends very much on the type of logical

address space supported by the system unQer concern. In

-27-

the simplest case, where the logical address of an obj,ect

is its primary memory address,· if .any,.then we can talk of

a system wide address space. Once an address of the space
,:jtt>./

is allocated to an object, all subjects in all domains

will see that object at that address if they have access

to it. On a virtual memory system, each user, i.e. each

subject may have one address space of its own. When an

address is allocated to an objedt.ln a· subject address

space the subject wiil see the object at that address in
.f ~. •. , '

all domains where he can access the object and the address

will be meaningless (not usabi~(-iri>oth~~ d~~ins. But

all other subjects may or may not use th8 corresponding

address of their own C.:ddress space.for the same object.
-,, (J .~- : 5 -.- T

Finally in some systems, there· may be one address space

in each domain. such is the case, f~r 'inst~c·e, of base

and bOund machines. ·A cloniain is· defined by th~· base and
~

the bound of its address sl>ae&. A logical.':a:adre•s is

mapped into a physical address by relocating. it relatively
\/. ,.,.. f •

to the base and within the bouna 'of the address space of
' ') ~ .. ,.:- 'l,. '

that domain. Once an object is mappea···tnt:.o one address
' ~ ~,} ;~ of " ' •

space, the address space of another -d0main may or may not

contain the same 'object at· th~··.~- i"9Yc~f ad~ess ·depen-
-~·~·· ~-~-, .: - (·

depending on what .its base and bound are.'. To conclude this

discussion; we wiil assume for the rest of this thesis,
~~.: ;,.1- ·,·-' .- ,., .

that the concept of address space, when unqualified, means

L

"
-~ .. ··;-;"' ·;;.--

-28-

·--~: •'.

the address space seen by the 9iven subject in the given
: - ~

domain. unleas specifically stated, no a.4sumption will be

made about who e&n see the same address .•J?:&ce in what
' .. ~ ~

domain ..

3. A l)yM.laic Linkincg Model

The l~ puag:rapb described.the ~ls we will use

to support our, deaip. Before-. move on to the deeig.n
; ,~.,,.,.. -·-~.: ; ..

with respect to the 1'1110dels. Ia doinq ao, we will npt have
~>: •.; ~t ~· ~:--.·,· .;. . . ·,

to worry ~t what a unique identifier, ~· 109ical address,
' '• c : .J . ' ~ ~ • f .. '

a doJllain, or a g:at.e is. We ~ tbat all. tllese eoneepts
"'· . - - ., ,._ ' . . '. '~~ ;J: _ - ; . '

can be icientified in any computing utili.ty and t:Aat our
- . ' ' :. ~ .··· ' ~ ... -.~ - .

description can be baeed on them ~i~ut awm~quity.
• • ._ ·, • ' •• : > •• .! ,"· }~'-' . >

Whenever a s~ject ex,ecuµ~ an ~ject ~nco~ters a
' -~-·~~- ,·'. . . __ -:·:;~·~-·~,.·:_ ''; - ''

s~li,<t,}~-.a .~, or a 'mil~f!tl~M. to, ailo~er object,
' - ' ' "' - : • - • ~ ,v • ; ;_. ;_ • ...,, • ~ ' •• ""~ ' • • • •

a hU.-dv•re ~t <:41184 a .. ~~ i'1'!frt. °F'!f~· As a result

of the link fault a copy o~ all m&ch.in~ regiat.ers, called
, . , .··, -"'"':_ '· .. ~ .' ' '-, . ;"·. , .

the machine •tat•, is ban~d to the linker.
pg . ,~· f't9 .~ •• p •• ,--:-•· '."·;

The· f irat t4ak ot the linker i• to _ena~~ze the machine
, (•• -~- > ;-...,;:. '.., '

status to dete~ne which. •~lie t~~nk .caus49d .the fault

and which object vu ~in9 e:xecated at .the time of the
. ·.,. '. ·' " : ·~ ..,._··

fault. This objec:t is called ~ .. i~U.t~~ ~1~1:· The

domain wbere it was executed is called.;.~ "'t,a\lt4t,i~ 4omain.
. . _. : ' ~

-29-

By searching the faulting object, the linker will find a

complete description of the symbolic link and in particular

the symbolic name associated to the link which designates

some object of the environment. This object is called the

target object of the link. The domain in which it belongs

is called the target domain.

The second task of the linker is to search for the

target object in the file system and to map it into the

logical address space. In order to do this the linker

will of course need to invoke the FSM. The search is

driven by so called search rules. Each domain has

associated with it a different set of search rules.

Search rules are an ordered set of catalog unique iden­

tifiers. Of course, it is irrelevant to talk about search

rules when the file system is one single catalog. However,

in general, it contains many catalogs. The search rules

force the linker to search only some of these catalogs

in the desired order. The linker takes one search rule

at a time, combines it with the symbolic name of the

target object thereby making an object unique identifier.

The linker hands the unique identifier to the FSM to search

the file system. If the search fails, the FSM returns an

error code to the linker. The linker will keep trying

the next search rule, if any, until a search succeeds.

-30-

In this case the P'SM returns the 109ieal -•~U'ess of the

target object to the linker •.

The third task of the linker i• theJ'l to translate

the symbolic link in.t;o a •'Rat M!Js •9QJ.e by the pro­

cessor. Thi• ia called anmw 1!=!1.,i!Jlt~ '1'lae linker

just repl.acea the aytlbolic n._ i)l t.be .l.~ by tne

logical addres• of the target obi•c::t.

Pinal.lJ' the liJlJc.er QIWlt modify tbe mac:Aiiut stat~

to force the executing aubjec:t to r•.- the now an~d

link.

By a mechanism external to the ~ it.aaali, the

machine statue ia then restored eo that. the 8XeC1lt.ing

subject jumpa back to where it w.. just beiora the link

fault.

once a splbolic link is replaced by ~ loqical link,

it will no more cauae any link fault .for the current

subject in tbe current domain.

-31-

III. Design

1. General

The last chapter presented a computing utility model

which will be used to support the discussion of the design.

The steps in the operation of a dynamic linker have been
.:. ' ·: +• .: t , -

described. As it should now be clear to the reader that
.. - i ~ ,J ~ ' '

programming the linker itself is a feasible task, the

current chapter will rather concentrate on 'the problems
.. ,.,

of inserting such a linker into the overall design of a
' ; ·~ '

computing utility such that it be outside the security
,, .. ;,. '·.,,.

kernel. The next chapter will then present a test case
-•. '. J

implementation of the design to demon~trate the use of the
- .•: ~ , ' f. -- ' "':

model in identifying the components of a real system ~nd to
'• -.

'

show the feasibility of implementing the design on a ·real
·

system •.

In developing the discussion of the design we will

try as much as possible to progress naturally and to

handle each problem as it shows up. In a first section

we will explain how the security kernel can opera.te

without the help of the dynamic linker. In the remaining
? ;·~ ·-?

sections we will demonstrate that the dynamic linker can

operate without the privileges of the security kernel.

This order of discussion coincides with the order of

events when a computing utility is brought up into

operation: the security kernel by its fundamental

-32-

purpose is the first subsystem to be operational and is

used to bring up the rest of the system fUn.ctions, the

dynamic linker among others.

we do not claim in any way t:hat the deeign to be

outlined is the Only possible design solving our problem.
'

By its very nature, the topic of the reae&1:ch poaes

several structural problems which are easy to identify

and to describe. However, .deaigninq solutions to these

structural. problems cannot be done systematically as

wou1d be the caae for mathematical problems. Solutions
• ... - ~~>,- ,_

to a particular atruct~al problea may bring up other

structural problems.; It is hard to predict and to control
. -

the p,i-opagation of the effects of a.particular solution

to a particular problem. Hence it is hard to estimate a

priori which solution minimises the nU111ber and the mag-

nitude of hidden potential problems. As it is impossible

to di•cusa all solutions in detail, we will attempt to

justify our choice between diffe·rent solutions whenever

possible, and especially where a sophisticated solu~ion

has been prefered to an apparently more obvious one.

Even ao, we do not claim that all possibilities will be

discussed. We are convinced that equivalent desiqns could

be proposed. We believe only that our design is among

the simplest ones.

-33-

Finally, we will attempt as much as possible to be

sufficiently precise in the discussion of the design to

convince the ~eader that subsequent implementation is

practical and straightforward. At the same time, we will

try to remain sufficiently abstract to enable the reader

to implement the design on any general purpose computing

utility.

2. Security Kernel Initialization

Before any user can request service from a computing

utility, the system must be brought up into operation.

This initialization task is done under the responsibility

of a subject called the initializer. The initializer must

cause the loading and set up of all progransrequired to

support the operation of the system. The first of all

subsystems which needs to be initialized is the security

kernel because of its fundamental function: generating

other subjects and domains for these subjects would be

impossible without an operational security kernel. We

are concerned about one aspect of making the kernel

operational. Like all sµbsystems in a computing utility,

the security kernel is a modular program. Hence its

operation does require a linking function to combine the

modules together. However, our objective is to propose

a design where no dynamic linker exists in the security

"
• 0 >.~ -- •,,,"-.>c ~'•'-"''V""..;~~.¢>'' ",'.'

-34-

kernel domain. The security kernel i• not allowed to cause

link faults. aenoe all link• .of the security kerne~ must

be anapped. prior to the operation of the kernel. This

task UI put of t:he :8ecurity kernel iait.ial.iMJtiGD ..

Linking t.o9ether all module• of the •ecurity kernel

requires tbe help of a atatic linker. Baaent.ially two

types 0£ atat.ic l.inker couid be utted: a binder or a

prelinker. The binder is a static link.er :which prepares

once and for all. a fully operational security kernel.

that can be Q88d without .ny further.initialiution aa
' '

Jllany tU.s u d.e:Bired. The px.link.er is a static linker

which links the modules of the security k~l ~ther
'

each time the sr·~- ia stac:'ked, durinq al'l initiali-zation

phase. 1fe will not describe the detailed design of either

a binder or a prelinker. This topic is below the level

of our discussion. we will aak the reader tO realise that

writing a static linker is feasible in many,waya. We

will jwst dism111• the properties of each.type of static

linker.

The technique of the binder seems both simple and

economical. It is economical because the links of the

security kernel are SJlilpped only once for a given system

versio.n and the reaultinq operational security kernel can

be reused as many times as desired. It is simple because

-35-

aud~tin9 and certification of the. kern~.~ m-qst be done
' I ,. .~ '"' ' ' '

on.ly once on the fi?lal operational kernel. The binder
-; :- .. : •. .-- :~ ·r -·- ;.;. ... 1 " .:._._.~--· "·-:..

is kept outside the environmen~ to. be certified; only
·. .. - -.- · .. -:'.'~ -,_. .:··;fj~,-;,-,~, "'1 t~ __ , ____ ! '".\t"'~-,";3;",1·;_~'1'. -~;:· ,.; ~ ;

the results of its operation are to be audited.
' •:t -~> <;! : :-~ '

the prelinker be audited and certified. Since domains
. -, ,' l ._(: •. ,~: • .' • ~ ~ - • ~-- L: - -~ ·::;;;: __ : -~!·L1:· t ~:~ .~, ,- .-'. :·:· ~ -.,.

are meaningless unti,,l the security ke~el ;s initiali.zed
.,,· ::~ .~:·:- :~· .- ; :-; .. ,.~ .. r·-::;' ~:, ~ -~,,. C~·)t(··--~-, ·. _; ·--. , . -

initializer ~Y be viewed as just one si~g.le dom~in
. ! : . : ' ~ ~ -. - . _' ' --~ " ' '<<.:" _-; :_~"'I~.. :·-. -~- J. --~ :;;.i ·: ,, ::·. --~

bound. to become the dom,ain .of th'9.s~curity kern~:t· Con-
- _:_r·; -~ ~--~ .. !_r._'-'~:--L."/'~::::;-~.\~~t)-f2. 2JJ-t:·:~i-, '. ,

s99uently the :prelinker of the ~·~urJ..tf, kerz.:iel which is
, _f-.~;; 4 ·"; ~ ,. ' .• , '. ',... o~ .i>{~l({ ~:)>;,:_3;t,.Jj ~';;~/"~'.- . .,,•_.·_. ~-" .•

executed pr~or to any module of the kernel is in.some
s ... 2. -~ ·;;, '.'::~V--" __ -!,..; .. ·.:~1·A-l . .z:~.~~:· -.·_ -. . : "

of the soon-to-be kernel. The p~e-
. , _:..;.:{{~ t· _:, - -~: f;·.)j !• ~::! .. ' .. ;

linker must therefore be certified. By ~ow the reader
· r ~ ·'.~· · -- - ··· · · , __ .~ -~--:::. ;;,..'~e~ /"l :·;\·· ·

may wonder what is gained by the pr~l.inlu~r technigue.
·-::~ "'"(: · · __ , (.:;·-,~~ .:~·: ~·:.;\t··- 1·:_:::.:t '":::~.r:.:r "''.:. · .. ::::.:~ . .-...!.:,:. __ -- .. _

We want to remove the dynamic linke~ fr9m the ~ecurity
. -~ . . ~ .. , ;- - ; « t ·-\.-'' .: ~'" ~·t -~- l f;;-".-J· L., ;_: _,-. .-: ; ·.··

kernel but we propose to kee~ a prelinker in the kernel •
. . ' ' ' ;'.. i.J ~- 0.' (."J 1·t: -~~ £~ k- ~<-i 1 J i'~l: ., \~~ -~ .'.· ;_ ..

Firstly, the use of a prel~nker may make the system
'~ '··' ':'~. ~-_j J:~---~J.,.'.· f~:'~ ~~·,:'~:~_~.,.; ~-,~ - : ~: -·

initialization more flexible. The use of a binder fre-
-~: ~r ~>c:: ·"'f 1 ;ht>.t .rs tit~ ;:.' .i. ·:. ~

quently in_lpliea .~at ~~t ·"~nlf.,;~e: 0era.ion ~f;·~~;:. s:y:st~

but also the initial confi9uratipn of the.system (hard-
. .·' ~ ,-·. --- ;} ,;,~··~,!.''.: _,;,.;;:J f~·-:3(~~'·)$"1!. ""~:,_·~~·: ··: .~'''·!~

ware configuratiQn.and sizes of. yarious supervisor tables)
~ ·:~_.-: \~. ·"·--- ~·-.-'·:·:~ , - •• < ·-.-):r-.. ~~-3·!.~i ~-~<t :~:·O~<~,...,; ·,: .. ~·· t .--

always be what ~e binder assumed. Instead, in the case
-~ .:"1.:-s;<' .. +~~ 0t~)' rrr··:: . ..rr...~~· -~" r : :

of the pre.linker, . even though tjie version of the system
) - - ~""';,.i:';:,.~_)z~~ : .. ~·V·f,; -'),~ y;t,?

used may .always be the same, the c~ti.CJu+&ti~~ of .:the

-36-

system may be changed each ti• the syat~m is started by

properly notifying the prelinker of relevant configuration

data to be reapected. 'l'hua a prelinker is more flexible

than a binder.

Secondly, believin9 that the certification of the

prelin.ker is jua·t as bad as the certification of the

dynamic linker· is wronq. By its dynudc aspect, by the

requirement that it be able to deal with objects scattered

in a large file system, 4"1d by the fact that it uy support

miscellaneous sophiaticated linking featUl'es needed by
,

user programs (see next chapter), the dynamic linker is

a much more elaborate program than the·prelinker. The

prelinker is a static linker; it deals only with objects

of the supervisor concentrated in just a few well known

catalogs of the file syatem1 and it may not support

sophisticated linking features because security kernel

modules, unlike user modules, may be·proqrammed to avoid

such features. In addition, by its very nature, the pre­

li'nker is an atomic program while the dynuiic linker is a

modular prog-ram. All such f actora make a prelinker a lot

simpler and hence easier to certify than a dynamic linker.

Finally since the prelinker is needed only during

initialization the security kernei can discard its own

capability to ever again access it during regular system

operation. Thus the prelinker cannot be executed again

-37-

once the system is initialized, and therefore it cannot

hurt the system. This also si~lif ies the problem greatly.

consequently, the ehoice between bind.er and prelinker is

a choice between relative certifiability and flexibility~ In

generai this.choice is independent of where the ·future

dynamic linker will be running. sine~ the implementation

to be described in the next chapt~i i~:'bas~d on the pre­

linker idea, we will as~ume the' same ·id~~ in this chapter.

However, we acknowledge the factthat using a binder is

most probably equivalent as far as 'out thesis is concerned.

We.will now temporarily abandon the 'operatfonai security
, ·' ••. ' ' j . ";; ,

kernel we have obtained. The.next section wi.11 first dis-

cuss a few design prfnciples. an~ th:•·n C:~i:iy on 'the develop­

ment of the system by build:i:ng oth~r domains around the
·r

security kernel.

3. Dynamic Linker Initialization

a. Design Principles

In the previous section, we have sh0wn how the
:f '. .. ~--·

security kernel modules can be linked toqether without the

help of the dynamic linker. orice.iink.;d, they no longer

need any linker, thus they can operate without one. The

rest of this chapter will examine' the ofher side of the

design. It will be.demonstrated.step ·by step that the

dynamic linker can operate outside the security kernel.

-38-

It seems that the first problem we -imcounter is to

define what "outaide" means. One half of our design is to

remove the .linker from the dollain of the security kernel.

The second half of it ia to decide in which other domain

or domains the linker will run.

It seeu very appealing to aillply install the linker

once and for all in a domain ~f ita .qwn {see fiqure 1) where

a subject will be able to go if .and When neceaaary. Even

thouqh· thia 90lution may seem clean and obvious, it is very

likely to raiae implementati~n problau. Indeed, on each

link fault, the linker domain woul.4have t<? be provided
. ' - ~

dynamically with appropriate c&p'1:>ilitiea toacceaa the

fau:J,.tinf object, and ,perhaps ~e targetjobject or even

other obje-c::t.s in the faulting or the tu-9'1t domain. When

the dyn.U.U.c linker was always running in the aame domain

and that dClllJUlin was the security kernel <l,omain, providinq

it with dyiwullc capabilities was •48Y 9iven the unique

privil~•• available in the see~ity kernel. However,

this is no more true if the linker runa in a domain

different from the security kern.l 'domain,. Furthermore,
'

a linker dosna.J.n containinq capabilities fQr object• in

several domains, even if only Qne at a time, can poten­

tially operate &a an unauthoriaec!l infoX,'lllation channel

between these domains if it malfunctions. Therefore, such

a],.inker muat be certified to p.reven't potential unauthorized

-39-

Figure 1: Different environments for the linker.

Domain B

Linker
domain

Case 1: Linker in its own domain.

Case 2: Linker In each domain except the kernel.

Security
kernel

Domain A

Domain B

Domain C

-40-

access to the information.

A Se®nd potential answer can be found by thinking

in terms of capabilities. Since the linker will need to

acceas obi•~ta in the faulting 4-ain and ~ in the

target domain. bOth domains •eem potential can4i4at•• to

host the linker. The target domain is a.;:tually not a

good candid.ate because it ia not determined until the

target object ia identified. Hence it is undeterm.i.ned

at the time of the fault and the only domain where the

linker coul.d initially run. i• t.M. fa'1lting domain which

is easily determined by the machine autua.

conaeq.uently, even .though we 4o not definitely reject

the firat solution., we

ther aaawne the second solution which at least guarantees

easy access to the faulting do.mains and eliminates a

security threat. It will be seen that access to the

target domain is usually not req\ii~ and eventually easy

to provide. In the above 4ia~uai~"8 have identified

the major prob1em of remo.ving the litiker from the security

kex-nel domain: it no more has all the privi·lt19es to access

an.y eej•ct. in any domain i each particular dnV<>CNti• of

the l.i.1\kei:- will see access capabilities conatrain~ to

those of the faulting domain for the invocation (see

figure 1).

-41-

We have just decided to design the linker to run in

"the" faulting domain. Since any domain is a potential

faulting domain except for the security kernel domain, the

linker must be made "available" in all domains except the

security kernel domain. The second problem which we will

now discuss is the notion of availability of the linker

in a domain. What does availability of the linker mean?

Firstly, it means that capabilities must exist in all

domains, except the security kernel domain, to execute

the linker. Providing such capabilities in each domain

is rather trivial and should pose no implementation problems.

Secondly, a dynamic linker, like most programs of a

computing utility is a modular program. As such proper

operation will be possible only if there exists a means

to snap links between the various modules involved in

dynamic linking. For most programs in a computing

utility links can be snapped dynamically. In the case

of the dynamic linker, this proposition is nonsense:

if the dynamic linker contains unsnapped links, it is not

operational and cannot count on itself to snap its own

links. Hence a static linker must be used to link the

dynamic linker modules prior to using them. As long as

the linker was part of the security kernel, its modules

were linked together by the prelinker of the security

kernel. Now we have removed the linker from the kernel,

--- ---- ---

-42-

it wi11 .no -me 'lie ••nemat:~.CNl11y ~·· ~aence., its

moatt1es · :1lluet sw-.-'De l.d.nk1tl Mt•._ •~ntly to

make i:·t·•epemati'9&&1 in.~ •i•• we Ml'~- '°:m:selvea

What -.rt d ilidtl&· •91dio.1'lt b' ·.t:ae. lJ:I r j1c .. ·'d:l.allmr ,amt mve

to be sn..-1 -.E&f:iieat:t.¥. · '!l.'ble< 1 ill a ,;aet: ,of proce­

dures nil .a.ta 1B0il\til .. 1.aieh -~·~<to oac ,.objective

can be'·~ .l.fl atlly"ll .,.illt;ell·.•eo .flM.•ow:.ilf.y ernel

doma'in. c~ a,t 2..-t· &1.2 :U"1ca .._._ .t-.e .-iulea

the .eJU:'~_.~.._ ;t;Jf ~· ·11 $..,.r ~·llltnttoned

~···need w· !:lirirolle <tne·PSll. ..._.."!:_. i~ u all}Qfhere

but ±n '1ltle 9&CUd."br .~:l,.

througti mie··:ar . ..re,_ •. ±Me ~.·~ ,.,.,.L . ··Hence

there ·c1U ed..-t l'lnks ·U) tbieee ·1••• 9ay .-t;. al.ao be

snap'Plril. ·~Jiy;,, i:9le .au.ti.on-~ 1be ~ by

·f±q\li"e ~2 ~ :Eadl ~·. ihM ~Ut:li!N, 1!lke 1'M81&i n D,

to· exeouee *'the"'' .U.1i.~. "'fJ.lie'" :a.~ l.• ~ &Wt' af all

. pr~ mXl ~ ,..._ :jldbeft~ ~· .it{~cally

linki.-nq 1:WD ..av · ·file l&ftkw ,dlle "oon~ .one· ··4>1:' more

links "be ~'by· ·kernel "'Jlltas. ~-~; thea8 1qates,

as b~l ·•Jlf:rl;~, are,9DM'llllW:a••··~o:tJ8:.~ Ps:e­

l±nkedct'o '.~Dill ,~ ·OE ti.le ~:->'Cl~ :.&yabtm

iriitial:azae.o'n. ·•Hence we .. ., ndt '·•-y ;abom: them

anymore .ewm- tihGw;h tibey ~ ·Wildta ,co.«Jlfe in~ in

dynamic linkinq.

-43-

Ffcure 2: Linker and security kernel
t nl ti a 1 I zat I on: conf I guratf on
of the links to be snapped. ·

'._~ ~ ~ - 0 : '

Security kernel

• data

.. 0 • proc~ure
·''·o. sate

-
To be snapped yet

-44-

-
b. Prelinkin9 the linker

We are now in a PQ.rition to·d.Ucuaa how s~tic
·,,

linking of the dynamic linker can be ~·· We had left

the developaent of the ..y~ at.1

tfi9 1 ~t&-- where the

security kernel was operational in the fi~st a,nd only

domain of the enfl'ironment. w.,will now pJ1r8U8 that dis-
• -t ~;---~-:ii .. :_ . '

cussion and exuitle the··liJm f~ 1'avolv.,I with -.king
·~· jl'-' "i.. •

;if· ... ·
the linker available in DMf .. ,...in• ai;ound the security

kernel d~ •

. The ;·fR','at 'Jl.le&tion t<> be asked i.a:. when do we want

to link tJae·. modules of th.a linke,r tocJ•ther? To anner

this q\Mln.i.on, we muat uu in.ndind 1:.be ilaportant fa.at

that link.t.;ne: modules together in. aoaae dolla1n, whether

stat.tcally ot dynamicaJ.ly, first req~res 11&ppin9 the

modules intQ the releVW&t addre•S ""1l~·

Since ••ch domain or fu~ure domain in the computing

utility could, in the most ~ral , have its own

address apace, tibia &µfqeats:t;Pat m.appin411 _,. cona~uent

linking of the Jinke~tiould;: be·. ®ae ~ ti.'1e. a douin
\ '

is generated. Such a -iQll wqld be;·lrety upenaive in

comparison to the deaiqn w~re tJM9. '\inker Will• in the 1tecurity

kernel and wa• prelinked only once-:
ii "' •

· W• · YQ~d s:U-.11.N' liq: a·· de·aign')inere the linker

modules are linked together only once for the whole sys­

tem jµat ••,.i..P ~e eaae where the linker was in the

-45-

secu.ri.ty keFnel. He>~.e:ver, .l!l.p.~p, ~, .?,~1si9n requ;~.r~~. ~at the

linker be mapped into 'fd~:ritiea:l'aC!C!resses in the address

space of each potent~al_ :f.~µ+~!ii~.; .. ~ain for the same
!

snapped links to be ~A.~f\i;l. • ...iil.A.~all d~im~. This

conditlon aan ~ct;ual!,;y :&e-·£\11~ becat\se .in all real
; ~ . ; .. ~-~l! .

systems that ;we can ~ink of, evd Wb8fi each. dOIUin has a

priv.ate addre~• space, a11-aaaresi spaces contain some

set of logical addresses in overlapping numerical ranges.

Since-~ u.nk.r ·-is the first program needed .in any domain,

it i_s the firs- program to be mapped intO any domain

address space. ·o11ence. we .. can .. intPQ•• to map its modules

into the same pUlll8fical lo~cAl....iddreases fQX,:-411 do~il'!
•., ":. I ' ; ~· • . '• ,

address. ap•ces (·exc.t . the. ...e.Clln#y kern•i addr.El,SS Sp~de
< ., + ; .'"' !

of course) • This i~~ 'Pic:tw:e'.d ~IL~lgure ~:. Mapping of the

linker into logd.cal address apace~ w'ould still. have to
'

happen once for each logicu aadr~ •• space created~ but

the c.os.t.ly . Q,Peration of fabricating th~ snapped links

could be p~rf(),l.'JR9d only once. These snapped links will

be valid in all.do~ if th•log~cal mapping on which
. ! • : .

they are based is e~o,rced in ·4i1 ·<Joma.ins. . .. -We··vi-11 now
! ~ .• • . .

see bow .:tqie can be dope.
'

The second question to ·be aslted is:
\
'_~b,.ow can we link

....r,.,,,

the linker modules together? The~ve discussion has
' .. ' ,, .

actually divided the task of linking the linker modules

-4'6-

Flguf'le S: DOml.llns and tltel-r add:re.-s space.·

B

Secu;rl~:V
ke-rne;l

Assoc:r.Cn \q1:~t:
. ·~·~ ,.,,.

'
I'. Ltit.d •· -~ •, -!'~ ·.;. l '

,' ·">'
->'

O uld •
...

tdd z

.c··

z

-47-

into two. We first must fabricate all necessary snapped

links on the basis of some fictiv~' mappln,f ! '(ttr be

decided upon). ·we then· must enforce·: tha'.t:· mappinq in each

domain address space we create ''~<f we mlitrt' dOll.lmmiC!ate

the snapped links based on that ~p:l.11~f to 'each: new domain.

We will now examine these tw 'ilt.~ps in detail.

Fabricating. the snapped llnki 'is,' a$ we :already men­

tioned, the task of a static i:tn~Eir. ·'stn<ie· the snapped

links must be fabricated befof$'c1n:9' do.-A'irt 'f• created

around the kernel domain, the static liil"t(er musi: ··do its

job before or during sy$tem initiiifzatiori; ·. "'Before1•

corresponds to the idea of a b:i.fi<ier: : ··· "Doi'fnq" dorreilponds

to that of a prelinker. The choic• betWeen the two is·

the same as iri the case 6£ fh6 eeciirity'~'lt:e:tnel initializa­

tion. As we have assumed the idea of th~f prl!lfnker for

the security kernel, it i.s all but hAttiral to keep the·

same idea for the linker. Th~ f 14vo't·:· b'f~ the d~siqn is

of course to use the security kern61 p:fel.'iiltel:' a second

time (with some variations pe·t-ha~a) to ~relitlk the dynamic

linker. This saves the trouble 'of wr\t!l1q'andcertffying

another prelinker. . Once the aeclirl t1r tei'nel' ls prelinked I

and just before capabilities to' u$tit \:he i>relinker are dis- .

carded, the initializer 'irivok.S1~·. the: preiin'k'.•r again to

prelink the future dynamic linlte'r: Tl'ii.'! ·r6iiowing para.,.

grapbl will discuss step by step the dPer•tion of the

·< ..--' .

\-. ~ >' '

1•,-·'--- ~· .. ~ ,.....,.~ .-~ .~ ,, t:Jlw £b.t
,' ~ - ' • ~'. ! .~."\"- •. ~ • ··.:t""'.J~i'.-· /~--:·~ ' ·:_· ,,~.'-, ~···,_.· :-.~-,

task i• ~· ~~..t. tiff' ~-.• r:1•~'lr.~·.~~¥nq
' - - - ' ' -;. ·:.~-~ ~~; ~;'."·'' ·._-<:·: ~.~.,.: :':~ '."1•.:'t f -~- -··'. .•. ~-:

to .. ~· tu.,.• 6f ~· ~:b*. ~~ Q'Lbolt.e n_. *9· R.ored
- " ,_ : .'· . _:. ' J>. •, '"". ·:;:'.·.:,.[, 5 ; .. ' •. -:. ;. ~:," .- -.:J(: __ ;, <"

~· ~ ·~ ~~'~ .. • ~.~: .~. liak-: S~ we . } - ·- "'· \ "' _, ~ ',._; ;:. ' - .

wane.)~~ :ts•~ .dl .. ~ *•~·:···~ ttkf. l~alt6ir, .all
-- • ••• -· "-'"._;, • ..,.-•• _ ·.-. • .j • ,

.1t0<lul~. °'~ tlpJf ~ ~-:::•··~·s~·.>,~·-:.,~ty

Jcex~l; ~.·84M -inf; ~~ ~.~i~a't~···. '!'he
•• ·~ ••• - <- ~ - - - •• ., : -.,·,~_<Ii'- \. ... '~':-~ ... ~\'l' ,•'.? ·.~ \ t.J'· .

11>,;r:elial# .1$ll_ . ._.,.. 1tllt' Jlti~t.f ,,W ~·~ all
-~ -~- · ' .: · ,; · - . · 5 ;~?!-..:•:; ··-e:~ ~ -~ .:S L"-- ;~·" ;' <.,~;.; · .: r_

·~lie.Ji.-..$~~·.~ lr'·• ~-1---
- • '. . ~: ··' . . r . , \ .. _· -...)' ~:: ;;~; ! ~ :~ -,:::::-(.~: .:·:.· ·::·~:-:- •. _; '} .•.•

. Dill9 ~f all ~·.~~ ~· ~-· ~"~~ ~~·the
• - • • ' _.., ·~-· • - -· • "<"• ~- - ~ - • • - , '

-~. r

.~ .~. ~••1' W' M ~-1~ ia pr•lia1U1t9 a
,, ' . - .:.. ·~ ,t-, t.l--~ ff:'' ~'. '":.-~. \ .. ~. -· ·. ,-·-·~-:.i ' .-: ,

link .t.,•,'~,c ~··*~ 1'ilt,'."fl.1f_;""~··'<t~': ~~.,f~~

O~j$0't ~~ff JO - 9J•»st ~nk.~ U_.,..
•. t •. - ,. •• - .· • - .' .-:;·f:.~··:i c.:1 .,;· .-:..~<~- • . :- ")'·: •.;., . -,

La~~~· tJw,~_., Of'. ~· •.~$;~~m~"·,~J~ :~ .. ~1--tary
, " '<. - ~ - I i"" ~., ""S_ - ' v ' , ~-' '<. , • '· • ,-' t<~- < •

envU 'i,O~.; •~_,..,.. :ta;t.~~-~i,~, .. ~~ ~wr .. ~~ion-
- < ' 7 ,,.,. ' ' • J ~..... • - " '~ ' _,• 0 ,.-., ~ ''¥ AO

~~ler < "- •• ~ • ..-~~ .~l.~- ~~_.~,,.~ ~- to~. npport
- ,. • .,_ • • .. '.. .. ·~-. ,, ~·' . ·- .- ' :. ,.,. .! ~ •

. ~. f-il.1r.~ ,._1~· ...,i ~~~·· au~ J.t f;• .~
obv~()~ .-.. ~· ~~ ... ptt!9~~ ~AA~~~~t ~· .. it1e: .. •x_•tem

• - . ' ' '· I ,. .. ~. ··'- , ,, ·. '" +.• ~- ·> •• ., .• •• • ·' _.' " ' ' < . '

and tJlie'. ,_ ll'!ft init,iaJ."-" -~-- ~~~l~~· a·~\ tll~· time
. - - _, ·.,"'· ,,_ __ , ,, . .,,;: ,__ .-. ' '

the p;r,el;t_-._ J.• rll,ft. If ·~· _,., eearohing o·f a tarqet
-:-. ' - . -:' ~ :' , . .. { •: -. ?-:1 , - .•. · .(~i , ..

-49-

object can be achieved by the FSM. If they are not, the

target object must be initially brought into the address

space of the security kernel from whatever memory device

is used to load and start the system, otherwise it could

not be accessed and identified by the prelinker. In the

latter case, searching is reduced to a simple scanning

of all objects in the address space and will succeed

when the right symbolic name is found. This of course

implies that any potential target object, i.e. the linker

and any security kernel gate it calls, be in the address

space of the kernel.

Finally we have to worry about mapping. Once the

target object of a link has been identified, a logical

address must be obtained for it to build the link to it.

The problem may seem trivial here since everything refer­

enced by the linker and the linker itself is. mapped in

the current address space to start with. However, we

must remember that whatever mapping we base the snapped

links on will have to be enforced in all future domains.

It may not be feasible or reasonable to map the linker

and security kernel gates it calls into all address spaces

at the addresses where they currently are in the kernel.

In particular, we have mentioned that logical addresses in

a domain are a form of capabilities for that domain. We

have also mentioned that after initialization, the security

-so-
' .::..'

kernel will want: ~. d.iacat'd it.·· aw. ~ltUe• ~ ever

again aceeee th• prelt~. ·: W•': .. ieil6 ttc·a..t,o ••P

the prelinker· frOll· tbe'·~-~·..._.,'i~·~zetly··--·

Along the lin• &f ~t:, ti!* 'J.~Yl• _,.'*1 in

the ini'tial · binwd: .. ~_. 'fft:>~ pUtpNe• of pt"e­

linkin9 .. · ~· ttae· linbr 1• nOi:· pRt. .,. ·~··· -.Ouft.'4:y

kernel. lhmce ~· initial!• wlfl":id;w 1*Jliag':l-t ;•fber

preli:nking ia aOapletea. · eon.•"'8'¥1.Y'~·-~ f--- the

fb1lowinq protd-. · All Ob~ 1INt' • .._. U.•ftlltea: in ·•r•

currently upped into tbe =.ly "Mli•,;~-· ,...,,. ·~t
this· mappinci ts· t.emporuy _.. t:lia ~· ~' to be

used. in ail· c!bDlins· ot:bet dftul ·•· _.iW ·~1· --in

may be entirely different .. ~~ ~'·fi. ~-·

This future 1aappin9 is· 'cf ~ t!W'~~q· •w:Lft9 ve

discuaAa ur:l:ier.· De~btf·th4'"fi~.*J..,,1nv ·1w

thus done by the P,relinJtarby<_.~.,<~.'&rtet object

of each.link it tranwlWtew·a·lC::Hiit;al!'~'-ft!t6ta for

all fUeUi-e domaina.

Let ua· now conclude the aboVe 4i~ion by4eaerib­

ing the ·-.ppincz function Of tti4i .. J'~J.'ilfti•r • · :pj;,..,. 4 ·

illustrate'• this ·tundt:ion. · h ;pnlinlte~:,_• a64 iwo-

. gt'essivel'f mdlds up tWo tabl*a··· ''N;''fietive.·Mppin9

table contains a set of entlri•• 'of 'tlte fota (l09tea1·

address - · uni·que iclentifie.r) • !ac:h •.oh entry ~iae.•

the future loqical addrea• of the uniquely ident.ifi~

LoJtl ca 1 11 nks
table:.··

~·

~-

nJ . A'

' J

Fictive mapping
table

·····

-51-

Security kernel
address:' s•ce.·

. '

! I

: ~

Phys I ca 1
add res&. s:paee

:.t_.\,·:

I) 1 f

>

......... _

··- ' . .-~_;;. ' ,·_. f;

LI nker ·
,flOdtaJe"A

-·· ...

I
I Pr•J J nket.' . ;·_ "-'· __ .. (•. . . c

. ' .. I
I

t_ :_·I /

I ... ~ n__.......,J '.iillo-ai!io··· •·tJ.
I

t'

l / . ,,

I .,
I

·I.
I , ,

~onfl gura.thte.OfL,:; :.
future user domain space

~· ,.:.·' ,'"'i ,-·~ ,l - • '

. ·'

-52-

-- --.---~ -- -- -------­
" . .,_ ·. '".-':"·.

object. Each t.ima the prelinka.r anapa a link ~o a target

object in th.a link•r:: aot··. ~' .U'-4 a lio.U•• log­

ical addr•••, it 9aerat.ea a aui~le fictive addreas

and adda oaw •UT to the<·· ~ 6-t tmat. object. ifh•

snapped li.nU table containa_~ lin.U already fabri­

cated iir tile· prelinJcer. :Suell-~ link• of courae will

be l\\eaningfitl in all dclllaimtftaa tbay are bu~-~ the

Once all lOfical link• iaauect from the link•J are fabri-

.. ·eat:ed·, ttMt -..-1.inlter taait ia ccapleted. -.. aeourity

kerseJ. can t.hu' tiac:ardl Ita·own c ilit.iea ior the

prelinke~ -*4 the linker JDi.r~· cU.•ll~tin9 t.Uir addreaaea

in the curr•t addz' .. • ..-ee" E>rrlj' t.b8 ~ i•b1• IMIJ.l.t. .

by tbe p:i-el~nJwr r~n in the adeb' .. a 9pace --~~-- ~~.

security ke#nel. They will be UMd to drive. 0t.he in.it.ial~-

zation of ·~ •u.b••~t.ly created doaAin. : · ..

we ha'M jut. c18.aribed ~ t.be •napped links 0£

the linker °"ld be gerMNtMae,. . .. u{· rwin• to be ~­

strated how the fictive mapping o• which they are ba8ed

can be enforcecl in each new do.la~•.· Such a taak. ia, part

of each dolllilin initial1zeJtU.. ,, J:t;:U auai.ghttorward •
. -~ . ~ '

Each time the security kernel createa a new doaain, it

uses t1W f icniw mappilMJ table to drive the .i*SM and have

it enforct1 tbe mapping in the new Qc:aain. Each entry of

-53-

the table is interpreted as a request from the new domain

t~· search the flle s~tem fol:'' ewei'bbj~.!lliffi;r\1e·ty i~n­

tif ied by the entry and to map it int~ the spae±rl:etf f ic­

ti ve logical address. After having done so for all

entries, the fictive logical -~~sw•a:1 ~fi a&tual valid

· l(>CJical addresses for the :hetf'ddmdl1~' Tiietf'tlte security

Jternel:, ma pa a copy ·of the. sna~a; llnits" lt~le' into! the

n&W0 domain~ address ·spa~~ -~ ~1!8: ftlrP f ih1ti1y· ~ab~fti!: lhe

link-er to properly operate in t~:,ti;ew'~ih by''' using

-the snapped Iihlca baaed on the. riov-~te~l' miwing ··for that

··domain.

What-we have e:chie'Ved is pr6viding :eaeb donta1n·flith

an eperatlon:al link-er~· Li~. a"pre1'lnftel iinbr"~'' 'The

first aect'ibn Of 'th'is Chapter·;at!a·erf~4·~-:th.''Secttrity

kernel could be init:i:a1ized'~th6at~ihtt'"~eip<i()f-'the dy­

namic linker. 'l'he''eurrent ••~ti-6!1 '·ha•''dei~ri~d how 'the

dynamic linker coUld· in tunrbe'·fnitiliilzic! in: :tnuclf the

same way. A fictive mapping o:f"ttie-l.fike!r aiid'some

security kernel gates' :had to 'be' 9ert"rated·;.during system

irlitialization<and· must be enfotoed"by'thi;iPsM:·f:ndepen­

dently for each·· dbmain created''dttrit\q i1Y8~m oi;)e:ration.

Each such domain then 'sees 'thi linke:F: aricF· rt!Ie\tant security

kernel gates in its logical -addri!ss' ,•spa~~·~ , !H ·, addition I

each domain has a copy of the snap~E!d:·'IinJcll'·:required by

·the linker to operate~· Link faults· can nofl saff!ly occur

-54-

in au.ell "°""i•·· ~ •Ul #,~ ~. Ma .-tOe ~

aect,iQll.

4.. L.iak ~t. l illfJ'

So £q,.111e ~ ..,_, .ac:..t:.o,J.ait:i.,p,~,i·. ·~t.y

kerxieJ._lfiCllliout tM ae.q ~ • 41)"11~ ~~·. lle.,tn.

have ~ -.. tbe.· •qaJ:J.~y ~ "N· . .U.. ~· Jai~lize

a 1.j liker ia,-.dl 4'"9'1;i» it .~·· .

demonstra~ bolt. the ~~.I.A·••~.·~ ..,, ·•• in

each cloain can lludle l.ink :faul:t.a witboat 'the. p-tw;iJeqes

~t.~ ._,. i.f .it. ·were i.n tM ~J.q ~-.dtmaiD.

As .long u .it JNM. put of th.a .. ••~J..tr' ~l linker

ha4 .-.11:. tbc? o-..tli~. it --~b>.~•.~U..

dolDain obj~. targe'"·•=••n.,.j~~" ~,., abie" in

gener..i.. ._ .QOV will Mo1ir ~ t.llre. ~ pr.iQ.l.eqes

availal>Mt l;P ~.li8"r ill.t.i.e ~~•••ill_. --111
__.. ~· .~ , , ·- ' - - - -

sufficient t:Q.paarutee pzvper.o.papU~.

1'he first. ·probl• we ¥ill, ;.,_,, d.i.~~- .48 ~ o£

invQlting the linker in the fal~;Jp•A•. .~.that

an oqject .~~-ill,__., 'm",_1., ~...- • UaPt
~ault .°b)' ~~ti.Qt' to nf~::._~,,Qfaj~_t:lu:'ough

a untJ:"~lat.ed ·QllboU.;. liak.. ·1*1' ·JJ.M fMJ.~ ill ..

event r~:sed by th• b&rdwue .of ~ ..• ,,~ Aa a

result of the -rent,, coatrol IRU:8f;. .~.siv,im to tbe l;iaker.

-ss-

Some faults-access violation• for instance-are very sensi­

tive events a~d.must be hanMea't;y:tl\e s1'~1ty-:fterne1.

Since. th~ p~oce~sor rec<>9nizes" h~fodwat~~, ei~ts::.th.eii6selves,

but may not know al>Out their ;naiilie·· or.1U,li-': sensft·i~ity,

it is frequently necessary t:hat"l:fi fauit.1 be sorted by

the security kernel before b~inq' ;P'i'.i*wl' t!t!fany other
'; ~ ~ .. _\. .

domain for handling. cons~queiitl.y~' oh': ~~; 1-tnk taul t, the

first. pro~~am to be invok&a; 1.;r tlie'' sftauriW·it~l. · It

in turn has t~ invoke 'the ci11lker' !tr·~ J:!auttiD<t '<!OMini.

s~·ch ~cti,on may seem 1straiqhtt6~d'/'i'~1{seeurft:t-..

kernel could juat ca:i1 a gate .-:into ·air·· i*:..Jlt'inq·~in
~· .

and that gate could in t-W::n ·'c::ifirz+.t!IE/ '1td£ir(: trowever,
~ -. ~

if we want to be abaolut~ly 1;:9,~iftali 1~ ~ea£~ mUt fit

systems which ~~porf '.~ very litie5ffiimNti~·it'dotilaiits. In

. , tha~ case, . si~ce any doma;iri· ii • ·pc!~ft~tai;:fattlt:ltttcj cdomain'
... - · .. · ·. '·~,_, __ ~:"'· ?.'"'~~_l'<j1·'····~ -~·~,i. '~.-. ,

the security kernei needs to Jtnow'··~t.h:·J a"cjate inbo each

domain.,:; B~t· slnce domairts· and ·~lti'a':eatf~ 1tfre•t.ed

and destroyed' at wili durinci'sy·~~lil Ol>iratibn'/. ~t is

impo~sibl~ t~ preiin~ t.h:.. ke~n~i.: tb·\ ·:~t:t!--i.nto 'each

domain at sy~·tam·. fniti.~if~~tidk·'t~.'·:itift.tidi' we·ll\ust.
-" __ : .. .''.~~~-.:~· .. ~~·,: ~:_:·:.r··; :-~.: -' :"'{. '., _?,··· :·_.-.~ .. ::f.1·.·' ·r : ..

find some means to enter t!ie' ·f"aul1:thcf·:-a•1n'~idtfiout
kn~in9' abo~t· .. any gate ;lnto" ~:it. ·'~if'~ lflti.t··~ttow

~ .. - .-' ''. _'\ .. :. . - ... :.1~.!~~-··1.- .. · .,:.._;.·-~ ~· ··?:-;~' ·~ :"j')1.i"": !;., . ..,.:· .. ,~ "i: " ,, -

invoke the linker in that domain. " ltialij . .;dfflerent ·

s~luti~ns can ~· pr~posed':t,C,: Q"ae'ii:t&iJ..._, d'e~ding
on the details of ;a pa~ti6it~;r •ri.e&i) 9frt ·ic1~a1,

-56-

a cosnp~ti04 ~til~ty: a.1~&¥• a... a mac:haniflDl to transfer

contJrol fl:'f'Bll ~ MCuit.y ken•l te> another a.amain without

. k:nowiDtj. a&Jtlling; abaut. t.h&t ~in.

1'e \GU -.1¥· meJ:atiOll ~ible SO:llltiOA fe>-r ~le

sa,te Qf c-.l~t;G--•, l'>llt. we cl.P. •Qt claim, aut:fterehip for

it and w.e: i:as.iat ~ the fact. 't;l:wat ditferen,t •YiJ't.em.8 may

require di~:t mec:l\Aniuw. Since th,e security kernel

. main~ ~ enfQJ:ce:a p~o;tect.ion, it lJ&ually hu the

powei:. to d~e•lly MA t.enp>rcu:ily force accea.a to any

obje.ct. in Ui. 4-ain if neceaa~. For instance,. on

JDGU:>;y 1'1ildl~. t.n. superviaor OU' reset the privileged

raode ~it a\ will. c;~s~tly, even thoWJh tlle linker

is n.ot a 9-... t.be ~ity, kUnaJ. ea,n. fozee CC1>at.rol to

jump tQ the l.l.~•~ in ~ aim!le of a faultinq domain.

This, SQ.lv.es the: :probleaa of et);t.eJ:inq the. domain but we

still ha.veto.~ where the lwer is in that dOlllain to

jump to it. For tl\at l>urp<l••: we ~an simply store the

loq~c-1 •<lcl:reaa of tbe li:oke~ at some coav.a:tional address

in t~ f~~;ing. domain. Hence, on a link fault,. the

securit,- luu'nel a.llAlyaes tb• machine sta.tus to determine

It tken looks up the logical

addrd:4 Qf. th• linker fo:r that domain at the conventional

a<l~eaa Qd !•.i-ees the. QQnt:rol to jwnp to the linker in

th~ fa.ult.:i.nq dQ1Dain. Initia1int:ion of the conventional

location ia. partot the domain creation operation.

-57-

This design has a side advantage. By changing the

address of the linker in the conventional location, the
' .¥ i.;} '~1 ·<. ' ,) :

subject executing in the faulti~q domain can define any
.b r ;> ~J ' ~l ;~f ,,

'. ~ , ...
other program to be its linker. It just haa to prelink

·" '· ~ ;> ,«_:;J.J.,.i_~~l- t;. . .
its own linker with the standard linker prior to changing

,; • \ .: •• -~ c • \ -! :::. "•)' ' •

the content of the conventional ob)ect.
! -· ' .-'i

··- i '; ~ t ; : -:...· '""" • :

Having described how the linker is invoked in a link
, ·-. -··, - • •. •·.·. t .. __ ,, ..__c._:; f

fault, our second topic will be to demonstrate that the

on1y the capabilities of th~ f aul tinq;· 4~1~. In the
'· ..

"· ''":_.:_ ~-- .. ~~.-~;· t._:.>f·· ·· .. ;;::.L.f .. :' -··

earlier description of the operation ot·the linker, we

identified three steps in the snappi~g ot,'a,"link:
•" •,.

(~ .. .,._ --~--. ,-

Iden ti f i cation of the symbolic name of the link
._·--:.,,·:.;;,.~~'-- --~- ~:)··,'.;;·-;};1. ~:·~ .. ;·.:<.·,.

Search for and mapping of the target object

corresponding to that name
.'.-:j .. ·. : .·,..

Translation of the symbolic link into a snapped

link based on the previou~··mapJ)ing. '·
._ ., I_; ·~ .. } . .f{H> :., :

The first and third steps require exclusively access to
'-~ i " t-_ ."·: '. ,r.

the faulting domain because that is where th• symbolic
•~jt ·' "•1-.,,_ j.. .·~ ~).

link and the mapped link belong. The target object and
.. '

- ,,. -.. ~ '.,, ~' ,/ ~~ - ' '.,:~ '

the target domain do not contain any information about

links directed towards them •. ~!The linker,· ha; access to
t ,~ '.·_ !.-f;~ .~ ~ .. '7' ~ ~£· '~~

the faulting domain and can thus handle steps one and
•) .: :.: .. ~·. ~)'"·"· _\, , ';,\/:,~:; ·-'., :. -i-'"'

three. If the target domain is different 'from the

·. ~ -

-58-

faulting domain, the aecond step aight require information

embedded in the t~get domain. However, aearchinq and

mappinq are actually performed by tbe J'SM in tl!-8 Mcurity

kernel. The security kernel can acaeaa_in~oJ:DUltion about

any target object. 'l'hua the linker juat calla the PSM

through a gate into the kernel.. The FSK then aearchea
' .

for the target object, dec~de• whe'ther the faultin9
·' ' :. t~ :5:~

domain baa the ri~ht to know about it, eventually mapa it
' ; ' ,n' > -

; ' ~"· 1 ::,, '.

into the faultiD9 addreaa a~ce and returns a capability,

i.e. the logical address of the target obj~ to the linker
'. •···, ;· •. :~' .-,~ •• ~~ '1: ~ . - _: :· - '

in the faulting domain. We will aee in the next chapter
; (:· L .. :~-· _,.. ,; ,,,, ;-. ~, . ..- ... ~- i. • .

that in some aye~, CCDPl-tary infOD1Ation about the
. .,:-----~ > __ ,_ , r!~>:···."°

target object muat nevertheleaa_~ ~aeted from the
.;,>_ ::_, ~ .

target doaain. It will be ah.own tben how this can be done.
f ii -,_ i. -· :: __ {!~: : .

We finally diacuaa the third problem, n-ly return-

ing control fros the linker to the faulting object
•, .

' ; -~ .·.... ·~. -~ '-. '

The qoal ia-th&t the action of the ~c linker be
!,

entirely transparent to the faulting object. The only
• <> ' ~ ; .., v

noticeable difference in the environment i• tbe now
: ';; \' .

translated link. Apart froa this, the faultinq objects
-.. ' . ·, •, "'~" 1 ; '-.... ,.,. '

expects to find everything unohanved·
, ··>

The machine regiatera muat reflect the Mchine status

just before ti. hardware fault occurred. For this purpose

the linker needs to reatore the at.atua of the machine.

r;:p1lo~--:;;;>:<;i~~··T~~.,~~~i;Ji" ... ~~~f!--li;e.~~~-""~~1,'l'i',$\fM!'"··Jl~~-.f.,IJ!r!ll:l,_H, ll,!ltlf:l1,_~~~-!l''~~»,GK~t.;;¥>J.~'*"~·-~.,,
I . ,. , . .

-59-

When the linker was invoked i.t i:'ecei ved a. copy of the
• ''- .· ~ '·,._ ,r,.- > r ·-•-.,·:.····· ·:,. ~ ~- .·~ "':t ·- : ' r

status of the machine to .firid:"''out' What causee! the fault.

Restori~g. thi~u-status in t.he'.~c:h1iie req:ist&~1s must be an
.: -·' -'~"-~ ... :·· _·;·~: L:i.'~ '.· _,-· _-:, ... , ;'.,I· 0.;·- ~'"--fJ.f V !:T .. ;._~ :·:·1_ . , ~-. «

atomic operation to guarantee1 consistency of the st·atus

as a wh~te. It would be a prtti;iJ.~·''yf~J.t~ion· ·£~ aii6w
any. domain·· ~ther''th~·';:'th'e' ~~ri'~y-"ite'Ji~i;<;to'"~e~tor~f the

''. ·,,,~.(- ~--- .,~~."'?~\ ·7 if.1-•S: ,, ,~,.·-· " . ., .

done by copying data out of' 'some 30h5eci fnto tlie machine

registers. If any domain c<>iUld perform such an operation

it could •et the machine sta~:i 'to' i i?!iai·~- ''re-fleeting

a subject in s~ othu do~i~'~L' Ttlis" Jodi'i"'be equivalent

to jumping ~iglit in the ;~iddi~11~£ ::i,; d6a.f~ -~~d'bY..:passing
::...~ >- · ·:. - ,'·.· - ··, '._· · ·:) .. •,·· .·~···. , ,;T,''_ ~~ .,f ~ ,.

the ant.ire pr~tec:tlo:ri --~-chanuii~"' ''1 a~ce ~eatorinc:f -thfi ·.

machin~ status : r~uir~ •ec~Jlt; ',k~~1-15ir:f~t:i~9~s which

the iinker <ioes not liav~ T~:1oxi!:Y !~~fui~:t~h .. 1ts 'to ha1ie
;,_,·;(_. ~1. ~~-'° ... \M -,_>;-- i.:.t·:~ _:· ~ · -,~.-d:;f«.i~ ~-:~· L. -~-:t;,:;)~;~~-~ ,~ ·,

the linker call the security kerriel. · A.gate must be

in~taii~~f in tlie sec~ii:Y ·ke»~~~i' i~~)fk~~· 1puiP<>ae': '''rile
gate will examin~ ·the i6~~hin~:.:'alat~"8-: lit ·:rs ~;~~ked to _

" . ' '' ' ··> ,,., ... ,~-- ·-d-r ,., ... --~,,,.. • . . .;
. If and when, proper:li"''~aJ.faatecl, .. ifie ·macnine restore •.

status.!s _re&':toi'ed ~d· cJntiq1"'J•iiRPi.~~:gii;kh~o '~inertt.dthe

fauit'':oc6urr~~in 'th~ £iuitr~ 6i:;~ect. :~-j'~aii<lit!6ri :,6!' 'the
,- , r

machine status- t~ ~ rei~or~~;e~~t~'a~t~~~i wii~f d'.o~in
i~

1

definea by the Dia~ii~n~· at~t~;':•a !;i~Ify_ fbat th~t
~~ ;:." . .-~. -:_ ~::,•.~ ..,,t•f~,_.;,.. ~ :'• .. •S:-~·--; ,.1,fi':'.~; -: ; "'~ .t: ~ ..

domain is the faultinq domain. Again; the latter ·mech-
,_+. ;_ z;·.·-;:~" -~~·,:,,;-~ lJ i)I-~. r :'- ,. '

ani•m de.scribed is one among :••v&ral' Poa•lble designs

-60-

of a feat'qr~. of ,..,..ral intereet whicl1.a11Y ~ting
' .·

, utilrlty ~~rt• unde,r ~ f()R· In aaay oaaea, the
' -;. . . - . ' t. "· . ~ - ~- -~ -~ ;: - .~

si,nple fact of tryinq to reatore the ll&Cb.ine sutua from
' - . . . ·. ,.. . ·. ' ·~·' _.; "f ._.._ ~ ;

the ~~ulting Aamain CAUllU C:ontrol,. ~ switch. to privileged
1 , r-, I -, · ··· >; • ·.:: .f _ :; / ~., . : . - , . ,

mode in the •~rvi11or.· The re•tore i•ti-uction itself is ,. ·;/··. ~,. .,~·t .,-! :.; r _,·:.,~-·

the return t.•te. Aqain we do p.ot elaiin autjlorahiJ> fQr
·-· _, - ' '"'~ ... -. r· : ·. --

the mech~i~ just cleacr~bed.

s. Cross doutia,in probleu
' . ' ~ ' ~'.'. ·; ~:~ : . . :?: _, ' '~4

The f ;i.J;&t two sect.ions of thiJ chapter have di•cuaaed :_ . _' . ~ >·- -. j- .- ,~-.. ~:; C1 ~' " ,

the init~ali~tiol) of the MCU~t.1 Jut~l and of the
' - • • ~· l • - " : i

dynamic linJt8r. 'l'he previous ••ct.ion hu then tiacuased
'.' ' . • ~ .--- ' _,"- . ~- ,_..~-; ~~---~-'- ,):;.:_.),.,; ,. ·:: -~ i>..,· .•

. the h~4ill9 of li~ _fal,\lt• by the, operat:l.on~l linker.
. ' '· . ~ . • ' ' - ~. .. ·.i • . • . ::. • ' ._ ,,;__ : : " •. '! . ' ,_ . . ·~ - .

The d~si_gn qy: 1;.herefore a.- ccmplete. It is not. We
f J : • , • ,,_· •• • > >.. - .·' :< ·~-- ~-'-; ' .

will now di•c\1418 a bidden prQbl• whioh we have qnly
• . .. :. £. . • ' ,. . , ::·<,o; ;, ::: ~. ~ : ~~· .. .

1:nc:lireC'.tly 9p,r~acbed ~d. ciu:e~'Gllf avo.14ed mentionin9
/ - . : . .· :· . . ' ' ;,. . . ' .. ; : ' : '.'; -~:: ·;: . ' . ' .

so far. i'be pr~blem ia, dir•ctly re~ated to the multi-
. . . . i ; . " ~:.. ·, \. .'.

doma:i,n ••$>•¢ of the .oomputin9 utility. It ia a p.i-oblem
' . ,. ' '·. . . ,· ',' ,· ' .. , -~:·····, . ·.• ' .·. . ..

or general i,n~~~··t whicb exist• in ~ .. ~lt~-dollain
''··'··

comp'1t.:~ncr u~ility. Our re•-U~ ~.- ··'°f:o••. it and
It - '· ~ <

uncove~ed it for the first tU.~ we believe th.at it may
..

}}.ave beer). solved in part.icular c;:••• •lDK>st by accident.
; f } 1 :_ .• - .

In 9en41~al, it has been ignored. Renee we will propose

a general eolution for it.

-61-

The linker is invoked on a link fault and completes

its task by asking the security kernel to restore the

machine status. It is not properly speaking called by

the faulting object and does not properly return to that

dbject. It takes no "input" or "output" arguments.

Instead the objects it receives to work on are defined

by the machine status automatically saved by the security

kernel and the result of its computation is a snapped link

The question we will now discuss is where does the linker

store the snapped link so that the faulting object can

later retrieve it? Or in other words, what is the

nature of a logical link?

In a computing utility where information sharing is

a fundamental objective, special care must be taken to

organize the sharing of program modules. In order to

operate, a program requires working storage to store and

retrieve data. One usually distinguishes three kinds of

working storage: in a PL/l environment, these classes

or types are known as external, internal static and

automatic storage. Data modules or data objects as we

ref erred to them in the thesis are examples of external

storage. Many programs can refer to a particular piece

of external storage. That piece is external to each pro­

gram and shared by all. External storage can be created

-62-

or dest~!(ed at ~y tiJDe an4,<J~P~"t<'~ l~,. ~•ired.
AutoJMtic ·~~·on the otber IMn4 belcmgf,~O'~-~~yen

pro9r~, i• DQ~ ~~~ad, is .O.J:: .. ttd .-:~ t4• ,p~99r~ .is
• •• ' ' ~ < ' , •• : -- ' ··' ' •• ' ~ •• \.

inv'*e,cl &114. di~ara Wbel), ~~~~,.r!J,'9ltiM frQll .~t

inVQcotion 1;:,~Q.•tea. , A e~ ~ ~r. i~ .~ .· AJ.901 •c;dline

is il typi~J~x~+e o,f aut0Mji9'.,,Wr~· .' ~~~~al.

static sto.r:ag• •bu:ea f•tu .. of .«~~"c ~ ~~
"'::. .. ' ""' :· , . ' . ./., ,. ·-::_ ·:· - - ""; . ~ - ' - : - ' - '

exte;-na~ •~o.r;q•~ Li~• .•\l~tic •t~,r~'-e:,it ,.j.•:,_.i)riY&te

t~ cme p.'C'09J:Ul on.4 not ·~~l~h- ~ L~tt qf:~•r!MJ. ato~aqe,

its life t~. can be more th~ j~ oq.e ..)tavqe•ti~ 9f the
~ - ~ - . ' - . - "' . ·' . -· .. ,, ' . ' ' .

program. Internal static st~ J:tj:::~~i~~tipn -~. allocated

to a p~-. .w.ben. ~~. Pf:?9Ula ~. ~'~~. tlJe first
• • ' J, I

time ~n a ~l..ni- ~ J.a. ~··~ ~-~ ~1n is

destx:P)"t\d•

tinuea t;o W..t pa~~ i11vooati~fl Rj.. A.-prqgr•, ~- lonq·

as ·th,e dONin, wait;h. can:tai net .le ui.ate·.. .Go.J.nq. back . to the
- , - ' ,,_ • > • - ' _, ·,~· , . ; , , ~-d . ,,. . " . ,, - , •. · • ' '

p;.oblui at 1.p.f~on abariyH in .~·~~*~.QI,. ~~;.:y., it

is .cleu ~ ~ CQde .. ~..l-4'4.i# ,~ ~•>-. C4Ul be

sbar:ed ~· 4i.f£cu,:--.nt aub,"jeat.$, in.. A*-ffe.~~,~~·

SiJnilu-i.1,y,:·: ·~·.mal. •tq;c-., C~:-- •b~,, ~~· .'fith

some precaut,.i.®a.: abal;,ia9 ~·~:'~~~.~ll~. ~inq
dat.a.. Bowevu-# .. t.t may ,be daai.Dble, J)pt., ... f:9 a,Aare, J.,nteJ:nal

'' \ ' ' ' ' • ~ o,,,,. <' .,,.., . / .,·. "-

st~tic~ and it is qertaWy: c.\e•ir~l.e,: np.t tQ. ~e .. auto­

matic storage. Let us consider the case of internal

-63-

static storage. Sharing internal,aita-:t.icilkoraqe.may lead

to. t:mifli.cts .' einoe su.bject.s ia di£fer-1:;:: dllclai1U1° may ~arry

on d:tfferent eoll\p\lt.ationswit.hithaaama.iprecedm'e. Thus

mutual P,:otection and • independene&::of· o deahiru1. wi:l.l in

. such cases requ.ire different •cati.c ator&418.~'.&teaa ,_to be

allQQa.ted: io, each domain wbere .. a; p.roce4111rer i:a- cu:rent~y

used. We will asaume such :tLCde in·ci:tu!t followinq dis­

cuaaiQ.D and, w.i.11 PliOPO•e a des·iga·.which,..,•l;l.oc:uea static

· storage on e. per ·dom.U.·n ... ba•is !l :le · shollid nar. t>e . clear

, that a •.napped, link· is a typieal •xa111>le '.of· ·an ·.internal

static infona•ion i~... It is meanin9tv.a. o:aly im a

given clomain,,dtaring. the exist.anee .. oi~.taat:,,domain. ·Hence

in each .doJnaio··where.· somec11reoeaure,~objact~1ia:ocurrently

. uaed, an instance of each· link '-•••d:t fr•::tbe,lproeedure

is stored in- the. st.atic-atoraga:.ar" aaa.igned··co that

p:i-oce4uie in that douaain •. 'l'he ••t of·'all·:li.nlts-isaued

froa a proced.\lre is referred to ••·the.' litH!f!' sect.ton

of the procedure.. ..Thus, an -~nstence•;oj_.1tJl•;~lin&age

section of .a .tpre>Qtt4\ll'e exists .. in \each,, sC:otio storage

~rea as,~qned to that prooedure··ii.a ·taesdOIMltos,,wlJere it

is cqr•ntly used. Both. tl.:le liak,U ·and •tUJ.e,,,pwceciure can

retreive the. appJSopriate linka9e :'aectioa~;llCOUciiBCJ.· to some

system wide ~convention wMGh ia. left..;to.:tlb•:;dtacretion

of ~. clEt,s:Lqnere of ·the system. , '. ·

-64-

'l'he. hi~problea we mentionecl earlier 1• tha~ of

decidiD9 how autic storaqe aAoold be.· alloea~4 Wbea 'a

pl."ocedme is ~ to be, \18ed for U.' fiz-st 'tiM ~ some

subject in, .,... dallaia. O:ftea this taek ie;· left. to the

dynamic llnllw~ such·awkward a*'19a z-•alta:ia. a •jor

. protection viol.a'tiOA ianance. We viJ:l. notr·- cti.llead wily

and propoae a corr.ct 4eai911.

Clearly we; do not want. ~ alloeate at:atic atorllfe for

all progr- elPIOUt.a&le ia a giVM~·-.ata when we initialize

that domain: it i•· i:apoa•il>le t.o acut.he,~e file.aystein

to find al.l ~ exeeut.able · in, .U...bd'ollaiA an6: allo­

cate a ta Uc:, atoaaqe for theaJ it. i•K a!Jlply:· illpoanbl•· to

know in. anaace about- all ·prOCMdure•·~·· ·ta th•

dt:>ma:i:n.becaUlle ef the· ~e upeet d•tll• file..,..._.

on the· other •aact ,.. want to. be certain that -.a a pro-

gr aa is in~ for the first t.ima· in .. a fi"1l *3baha,

static st:qr&g41 ia alnad.y alloea..a'fo•it•·liAJc.ageaec­

tion so U:at the encu:t.i.89 aubj..- caa} 1oOk: it up. when it

needs to follow>a link to sCJM:e1Ct.ena~ Clb-'ec't.

'l'Jle fine solution whicm- • t• 0 :to t::h& ·Jldnd is to allocate

the apace ·wlteA the Object ia iavoJtad .. fo• ·tit• tirU.· time.

On tbe aa9111Ption that aJ.1 •ol>j~• _. :iavoll•d~· bf''· ayllbolic

names and given that all s.yml!)Otic, linlltl :ue budJ.84: b:tr the

linker, we conclude that-tti.'linkar ah~ al.IOcat:e s"tatic

storage when it discovers it is snapping a link to a tar­

get object which has not yet any static storage in the

-65-

target domain. Although thi& s~ to. bE!··a cl-ean .. · st>lution,

it violates protection. Ind~~j,+.J.f, a· fJ'llbj~ct. c®id get the

lo9ical addres• of a t~;i:qet c;>bje,~c,py q~•ing it. or by

approp.riateC'llla to the· &eo~.i.<~l' lte~, .. it.'1i9-bt call

that object directly by logipjll,.ad<\i•-s·•d·noj:. .~y sym­

bolic n~e. I.n. doing so, it· will b~••>tae·linker 11nd

will epd up e:xecuting an o};)je~t.~'CP jla,a. ·11ot been .pro­

vided w;th static ~aqe.; thia ·i.e liJc,•lY to1 te.unina.te

the life o.f the aubject .. Prot~~tiqi: W*t i,~~.4.s perfectly

legal as long aa ·tbe subject llur~fl, QJtl~·· i~•lf. in. the

current domain. But if the. ~~gai \Oilj>j~. the . .wi>ject was .
calling is a gate. iuto. anoth•:t:;~ia,,, ~Y'!"~iag the

linke~ could caua;e d~e to ~j J:M'~"' ~iJJ., b11 p,ot

initiali~ing a~e ata~ic &rl~orCMJ.fiJ, .N; e~ • ._, This of

course is a violation Qf the p.r~t..tN;~1-t4>f ~. oth,r

domain. In addition, having,t.he; l.in~er in the fo\llting

doll\ilin, allocate st9~&ge in the ta:J"-~·.doDWlin ee>uid be

very hard to ach4teve.

The second aolution which come•. co: ~eua.i.nd and

Sf!_,. ptarhape eel4ier to·i1DPl...,.,tis.~o,llake:etatic stor­

age . allpcation a fuac·tion of tbe F&lb ·· SLoce usin9 a pro-

cedure in a domain requires mapping it into the address

spa<:e o:f that dON..in 1 the· F~ is:9uacuten,,to be invoked

for. any pro9edui-e e~ ti•e that~procedu2:e is used in a

di!fel'9llt. domain. '!'hue the fSH'OOUld at ttt.t time allocate

static atorao- to that: ~· itt ·tt. apps;"Opriate domain. ·

'l'be FSM i• •r• likely· th-.n ~ liuer to hwe the. oapa ...

bi.lit.i• to Clo so. UOW.Wli" thi• 4Hlp •l•o· V·lOl•w• pi'O­

teetion. Si.nee 'the linker invokes the:.ftllf., by ~lically

referencin, wiWleut even involtin9 all <Jatea .t.nto a dolbain B,

a domain A could oi-qte a _.., of. link taulta eauainq static

storacge to be allocated to e-.ol'tp;t:e i•todolulin :a. such

maas allocation- could oYerflow the atorate available in

doinain B thereby violating it• pr<ttectionsinee it would

have been tri9fle~ by doaain A.

M our reaearotl natµrally c_. aci-oa•• the question

of static atox::age a'llooetion, the aboW··· probl• waa uncov­

ered. Obviously anet.her solutionhild to be proposed

which would ael¥e the protection probl•· In addition, it

was felt that static storage al1~'t·ion · t'Ud not· f\Vlctionally

belong to the dynami.e linker to •tart wit.b.. Thus o e0rrect

design, but also a much cleaner •.rnl ~ Et'fficient d•aign

is proposed be.reaft•r• It is b&ae4 on the ta.ct that static

stora9e alloeation iii tri9qe1red by the dotaain·tt.selt where

it mu•t: be •llocated. Thut no pl!'e,eeti.on Yielatton i•

possible.

When execution of a proced•re &Dje<rt starts, the sub­

ject must, according to the· syatea con-.eni:ion alrea4y men­

tioned, retrieve the linkage seQtion of the object in the

- - --~··--·-----------

-67-

current domain. We suggest that this search generate a

hard'wa're internal ·static< :stOnge ·f-auit··)(ff8;';£aultl when

and if it fails. Thi11· :199, fa\t'U:: aftitni!tf1W h~lea ·bY 'the

system in a manner very similar to a link fault. It

should be passed to the faulting domain. .An~lflri:s of the

machine>-statu• would tell'!wfiicb''Ob'jl!i:::t· req\lirett:wtatic

at~ to be· ai:Ibcatea. , stit.'1:!fc ~o~".VC>Uld be1 created

in the ·faulUng 'domain; for ·~:£au~~~ject,_ · After the

machine statue· ls ·~etttorett, . ~~ -Ww>~11WU:ltf wcce'rifully

retry t:be Harcrh. Of CC:>urstt fUlit-'·~lj.iki§L~ ·J!i~' 'ha~f to

be· prelinked} \me

static; storage' alloea&d 'flt(ddna!h '·i!ftHll.al!r~ert~ion to' be

operatienal. "' :· · '"· ~ •· ;, ·

The desi9n we·•. have · j'.us-t p~ ~t\Mlrantees the pro­

tection t>f all- dcxiaJ;iHt :~U8tJ :if.tim\t \tt~8' :.-11oeation

is ma~· independent of -aynuu.e lJ;'jbJt~: .. .l. ~c&;iall~ion

is no ·more tri~ .by :the-' •~1i'm"«' ~"ran8C>11t -unt~us­

ted object, · bll't by:·~& :~iidn ldE'·tlfti"Olijk1i'·it:e.1'f

which needs •~ai:!e KC>~:. ··'Ifie: ~'icJtf!'il~ frotn the

simple fact ~' no obj&ot:, ·aim ·'Pfl~eularlY ritf qate into

any domain, oan· depend on a c&l.~ ~<ti:> ~fom any

task in qenera:t, ·;s"tta~ie· 11it.ora~~ ,:a1~on1 in: parbicular.

Given that'·~111ik11 a~ lPf'r :aa•ai~.-:1c; iti!elnsl ·it,. is

now clear why the security kernel must communicate a copy

of the linker links independently to each domain it

-68-

creates .. This c:apy is ~:t.&l.led iA :the.,•tN:i:c ~r~e

area ot the JJ.n&er in tbat~in.

6. Sa~

!Dbiachapt.er baa ~t.t.emptaci, t.o pseae• aaompa.eee

design of ,a qn-.tc J.J.~ ruDDilf>8' ~fl d;Ma·. ~w:it:v

kernel of a ~ .ut.il~ty,.. Bc:Nr .. 4'&iA ~-- have

been di•tincJ•hed.. • U; ,a.. Des ~ fi:rR tbat

the S8Cllri.;tl,y ~l cou.14 be·~ .-x:•~ttJ .w~ the

hel.p of a ~ •. J.;iQker. It,-..~··~ .. ~ :the

dynamic l.~ ·~.beae ~'¥0.iL,\~ ,iJ1 ,.u ._.i,ne.

while being prelinked only once. It baa~,-...

expla.ined bow .t.fte .J.£,i>IJ#. ~"~ .f.:J.-.... JrUially., the

hidden· :Alt.bolash f.~w ~l.M ~ ce~o ·~

allocati.• Mt. a :nm~ti~iu .,..~- _..dM.~•fll!•ci.. Th..i•

oonol~ .. ·the Piff""~~~ <>I· .~r 9Q11111P~~ de&i9fl.. The

followiJlq, ~l: wi:ll i.·liu.~· d)f .~ ooneatin9

utility lllO(ktl &04· ~ pr-lbncip., .. Q(W. . .-~ »¥ 1~ti­

fying t~ OQllllPQIMNlta ··Qf the ~,.~Q tbc?•• Qf. a real world

sys~~ ilPP~•Y,ing the qesi,.g'n.t.o .-. ~1'-.. ~cl.adin9

rGma,rk•. 9n ~· .-ob.J,cll inp~~i.~ ,~~lrl ~~ace .the

reader 9t. th• C...~U.4~Y and r-.ef~a. ~ ~ :design.

-69-

IV. Implementation
:;,

1. General

In developing our thesis we have first discussed a

computing utility model which enabled us to giv~ a formal
; ~·: '':;- ,i '~,

description of the operation of a dynamic linker. In a

second stage we have presented and discussed in terms of the

the model the general

ity where the dynamic

des:ign
''

linker

features of
!-.:

is executed
(:~: .. ~

a.computing util-
; '

outside the
' ;

security kernel domain. We will now build up the third
r ~-

level of the thesis. This level consists in demonstra-

ting the feasibility of the proposed design by describing
. ~ - . ,. ' -. : ;

and analyzing the details of its implementation on a real

world computing utility.

The Multics system has been chosen as a test case for
-"',,_;

the implementation. The Multics system (15-18) is a com-
-- · "~:':' r{ , .. ·_,, 'i(t;-.

mercial computing utility developed jointly by the
- . ' . . , . · :;t C· ; .- ,

Massachusetts Institute of Technology and Honeywell Infor-

mation Sys tens, Inc. It is supported by the. Hone~ell 6180 ,,.

computer system. It implements a powerful virtual memory
' -t .. ,~ ": _J':• '.;::J '

time sharing system with exten~ive info~tion sharing
•.• I ,; :-_, :: ', .'~ ' ,·.~ .; '

facilities. In addition to being easily available for
r

1 ..< I.•

this research, Multics was a very interesting test case
~ . \; ~:

i~'

for our design.

Firstly, Multics was designed with protection of

-70-

information as an initial objective. Protection has influ­

enced almost all of its design features. Protection

mechaniams are embedded in most of the functions available

on Multics. Even the hardware of the 6180: procesaor was

designed to support the concept of domain (15).

Secondly, a recent project has been launched with the

objective of defining and auditing the security kernel of

Multics to certify the correctness of the protection

mechanism. Since the dynamic linker of Multics was
. . .

initially designed to be executed in the security kernel

environment, the present research matcb•d exactly the

objectives of the certification project.

Finally, the prot•ction mechanism of Multica matches
< - , :~·

very closely the domain protection model as described
..

earlier. Hence there is a direct parallel between the

description of the domain baaed design and it• implemen-

tation.

We will divide the discuss·ion of the implementation

into four parts. The followinq two aectiona will at the

same time briefly describe the general de•ign features of

Multics and match the real sy•i:em component• with the con­

cepts of the computing utility model described earlier.

The next section will then talk about a· dynamic linking

speci£ic:atio111 on Multics to familiarize the reader with

-71-

the nature of the functions which the dynamic linker is

expected to support.

the reader with a discussion of the implementation of the

dynamic linker. Emphasis will be put on the discussion

of selected specifi~--~r~bl~~ ~;~~~~~:a-ci~~(~ imple-
, £ ; '. I , : i ~ 2 t

mentation. We .do not claim that, t.tul-~~-· . .tp be discussed
: ;

~ '. " "
constitute an exhaustiVe list'of all•pJ.-oble• Which the

~ ~ ~ f ~
implementation :faced·. Out of tlii···~fetp·-i~a·£· of prob-

. - ~; ~; ~ ~ ~

lems encountered during the impl4'me~tatioJi, we ;have
.. •• ·-· .. ·--· ., ~·-··-"--·,. ·-+-"·-1--····c· ~

carefully selected SJ>e~if,ic problelllfl w~i+ t.fe k!8lieve are
• I •

instances of mor~al .p.ro0J.--.~·ii9ner is
! i
f i '

bound to face on any aomputin9 utilitY: 1mf!~ •$Ile form or
·····~ ... ·-·"-. .,.,.,.., _.;....., .. _ .. ,~>·-~--~- -·~--~ ._,.,~\. .

another.

2. Information Protection in Multics

The equi va-lent·· of .. a domain- ·in-Multik•· a a ring (15,

18) • Rings can be Viettet:f as a set of domains if i th a

linearly nested ordering of privileges. The set of capa­

bilities of. any given ring is •. a~et. of ~· .ca,p~ilities
: ' ; : -. !-:_. "< ;: ·: ~ ~~~-~:I-~°':~· · .. , ·-. ~-~ _,;. !"·. :~ ~ t.f1 f ,:; j ':~-. _ :.~~; ; 1" -

in the next most· privile(jeft'rincj; ai~ribrlf.dt4ta."in

figure 5. The 6180 hardware processor aupporta up to

eight rings for each user. The eiqht rin9a·are numbered

from O to 7 by decreasing order of privileges. Because

every ring has at least the capabilities of the next

-72-

Figure 5: Multics protection rings.

,
' ' 1 I l l 1 ring 7

;

1
;

,_ ...

I I i ring f) I ; '

ring 5

I

ring 4
I

ring 3
_L

ring 2

-1.

ring 1

I- ring 0

_L

(Brackets indicate the scope of capabilities
avai table ln the different rings.)

~·- ' .

-73-

higher numbered ring the concept of gate exists only in

th&' d~•ra'Mrectiori'o~ cl:ois.;.·ri~'::'tia11s-~L 7t'iubject

9~tinq·: fnhflnq h}tiihl;e" ask Im~ •lsiiow' to' a- gate

·'if- fie. want• ti&·· obtain\ thef e!Ktt:a '6.pi!>lil t;f~i df1 ~ring 1n

(ftl: 1dltall~t'· that\'' ft) l 6n' ~he· otlir"·hiiic:r~j 'i·~-.~je16t: execu­

.' tin~"-i.n~.; rittg. ttt'ibcl'"willll\'9 -eo-~1 mtive1"'tb:r:ritig 'ii' (a~il'l in

stna1ler~tha!f'!i1 eanc'·free1y 'a(f18o. , . . !.~i !~e~ '6f a gate.
· ini:o i'i:i\g'!\ for rlnij'il 1:s:1rre1~t. ~:.;~,,; '- -,'.,,.

All<·fiserli 'li>resulnaoly)'''tf:uitltfiiviiei~ityi~tnel'.·'more

than their own programs whichi liit"''-~~Hn11Wg8'"" capab1e of

causing trouble. In turn they probably truet their own

proqrams more than &ther lis1er 'iPprSjt-atii~ ::t r·triisi ·relative

onttria9 e£~~,~~ah be s~~iPt:IVthe''·~elative

ordt!!ring <>fi: riiitts'i •· i.stnee th*·'' secuitf11rtf.ffte!. 1
• iiV by: . ·

nat:ve"tlle· ·iies1:1''tru•twerth1'-"iit."..:c.)ffi~6grw';·.: it'·fs tiesigned

·to be'; exec'1.tid ''in·' tinif''0:.:; 011 a'tai 1 itu~t ~ i8dl•ted/in

·this' ·rlfttj'1-'from,•v-*~lngc5e!ae' .. in'.·:itti.i 6t1Vl~C>nment. Hence

t.hl\! rewt,''of. tlie s1apettisor'-'81\6~1tt 1;tie :tij6d€ea1:'t6 r r!'.iric] 1.

Perttapi npr~~rald ·~tmaer·:··dev~r8p.Ut"l3i111!hifi-.nsftf~ ;·pro-

9rama 'of''.;i:he ·supervfsar3 sitcfu16 be~ttliti1!.Ml1 fn :i:tf:ricj 2~'

, : .. · ·· 'l'hia idea<:14··~z:*&t.1y.:)J!>eftt~ 1£uafed; b"Ytf•e~.:-l>tiotfimS/ ..

eomi\ai'ldi~'·>lcciapfiefs··'and"tc3ther'~~1i'118fr•a!iy1refikted '{to

the ·adt~nfl Of~;liseJ:s ~Cart-~l:Je0~cti.ted 'fa rfftijli!;H3~· 4"MCl 5.

The· noml 'Saia·' is ~'ring : 4 .' TH.t:iHli!clli etltf=uai4!ir . tti· '.if!xecute

-74-

protect~d subsystems in ring a on ~. a••Ul\\i>tion tha.t

everything in rinqs below 3 is ttua:ted and will no.t •ub­

vert the sUbsystem in ring 3. A U.er can also test un­

t,tuated progral1\s in tinCJ ·5. Rill'• 6 and_ .1. are a.t\~1\ttely

virgin: no function of the operatinv .·system. is av-aiJ,.able

there. They initially have n~ capabilities fer an:r vate

into lower rings. Hence a user llaf use theae twe rings

to install an;v two-ting syst.ei\ he went;.• an.a. keep it en­

tirely within his control.

3. Infermation Storage in Multics

The Multics equivalent of a .1Rjfl;,t ~s .a ~reees•. A

process is defined by a site of eaecutJ.c>a and a logical

address space. Each process kaa".it-. c,wn a~di:eaa $pa~.

A process is the entity repreaenting.a user in the machine.

The address space seen bya \lSer .in a twQ~dimensional

virtual memory.· of very l~rge cap.,_d~tM (15) • Along one

dimension the memory is partitioned into segments addressed

by their order number. Along th~ other dim~nsion, it is

addressed by word. Hence the lo .. g1J.4 M\4r1ts.of an object

in this virtual memory is of the for• (s.,w). .where a is a

segment nwnber and w a word number in,. that segmen:t:. The

format of suoh references limits the size.of the virtual .. ' . > i''

memory to 256 K segments X 256 K words.

-75-

Multics file system is a tree-structured hierarchy of

catalogs. Catalogs are called directories. The leaves

of the tree are called segments. A segment is the equiv­

alent of a collection of objects in our model. An atomic

object is an entry in a segment. Directories are also

atomic objects: The unique identifier of a directory is

the tree-name of the directory. The unique identifier of

a segment is the tree name of the parent directory concat­

enated with the symbolic name of the segment. Directories

and segments of the file system are of course mapped into

segments of the virtual memory when they are used. Such

mapping is supported by the FSM.

The security kernel of the operating system is

shared by all users. Since it is the very first thing

which has to be operational in any process, it is the

first thing to be mapped into any process address space.

Hence the security kernel always occupies the same loca­

tions of the virtual memory of each process. Furthermore,

all rings in a process share the same address space.

4. Dynamic linking in Multics

The previous two sections have established a parallel

between the Multics system and the computing utility model

of the thesis. Our second step towards the discussion of

--- --~----------- ---

-76-

the implementation will be the statement of dynamic link-

ing specifications in Multics.

The Multios system supports. various· h.i9l!t-level

lan'<}ua<jes b~t: was initially a&Si~ t~.~rt: PLf:t ..
' .- ... ·~-·

Most of the system pro9rams o·f Multi~• •:r:e written in

PL/l. As the address space of a Multics process is two-
• ' ' ·; ,1

dimensional it was both easy and tiesirabl~ to have a two­

dimensional name space for PL/I s]'Jlbolia names. An object

seoJie nQ.e or entry name is Of t.he form segname$entryname

where s~9'name is the symbolic name of the se9-

ment containinq th~ entry and entryna~ is the syl\\bolic

name of the word off set where the entry is located in

the segment.
\/

Given a source program (or source segment) any com-

piler generates an object program (or object seqment)
l. , ~ " . •

which contains three sections as described in figure 6.
j ;

The last section contains the pure.executable code of the
,,_.. .

program. The definition section contains on one han,d the

list of entry names and word off sets of all entries in the

object segment. On the other hand it contains the list of
'r 1 ;;

all names of entries into external object segments which

this object segment may reference. Finally there is the

virgin link~e section. We insist on the word virgin

which is used to distinguish the present type of linkage

-77-

Figure 6: Multics object segments.

Source segment O'Jject segment

Text
section

Definition
Compiler - section,

Virgin
1 i nkage
section

-78-

section from a non virgin link~ge section which will be

derived from the virgin one and is in.the static storage

area as described in the thesis. The virgin linkage sec­

tion always remains virgin and is sharable. For each ex-

ternal ob;9'Jt. referenced in the so~ce .pro9t:llll1. ~. link -is

inserted in t~e virgin linkage section~

A link i• a triple (s,w,f). (tJ,w) is a logical

address as defined earlier and f ia!a flag. In a syl'Qbolic

link, -the-fla9 is always a bit patttern indicating, that

(s,w) is invalid. Attempting..J;.o us• (s,w) as such will

cau~e a link fault. At. this pqint ~(s,w) somehow points
····~·-,<{

to the symbolj.c name aaaociate4 with the link, in the

defini:t.i.on- .aeetion and not to the tfirget obj act Off the
{

link. When the object segment i- f~rat executed in a

ring, ~~atic •torage is allocated £pr it in that ring.

The virgin linkage section is copi~ into the static stor­

age ar.ea. y:ielding a non-virgin lin~g.f, .. ~~.£t:!~·. The

address of the non-virgin linkage section is stored in a

conventional location where an executing process can

always retrieve it when it uses the object segment. When

execution encounters a reference to an external object,

the linkage section address is used to look up the corre­

sponding link. This triggers the hardware fault since

(f) is set. As a result of it, the linker will snap the

~"'ill':1~,,...,~J22,_•.1;.¥":~""'"~"'"'""--"~~-"'* i"#- c1•ll!!-1. ~~-'~"ft!lflli)¥;,li!f!!iill~~~~---'W-!J!!I• ,IJi! . .ruu;•atJ.!!t1111!\11~il!l1-'n'!.i11Ml. tJfMl•,•m~, .. .,, - . - ' ' . . - . . . ·.'· ,....... . . .- - - "

~19-

i
link by replacing the invalid (s,w) by t~ejvalid address

l
of the object corre.sponding to the entry n4'me _,.wfU.:l::h ·

caused the fault. , The fault flag (f) will:~· tur~ed off: .

to'' indicate the validity of (s1w). We

link to the target entry. If and when

~ ""'~a,1.;w.;~·~~""'·"'·-·"'l.r"!'<' ~.,s .,,,._,,

nfW;have a snappeld
! ! :

f.hef same link is
! ' :

used again i' the future by the same ~r frocess:---no

more linkage~ fault w~~l ~e t~~~n~ . 'l:'9 ~la7~fy the above
' ., ">.'.!: ~.:- "·- I::. -~ ,,1;~

dlscusaron~" '1:he si t!uat;ion- Is ictu~e<t·,,;;:9_ ttiU're--Y:··-~"~ ... '"" -
· . · , - _--T --- -~---·-·:--~-~- · ·A r~T-· --~- . · .

In view, of the : a.ho.Va. 4eaetip~on, ;<iwe ! F-.now:_pres.ent

a simplified. basic funet-~al··bloek diagraln---0£-:the: . ·
.L\ , ".) ~ ~ ~ ~

dynamic l~nker (see figure 8). On a link fault caused by

object A (see figure '1) ?:'fthe-;tfytld!@11fnking driver is

invoked. It analyzes the machine status to determine

which link caused the'Iiniaijtifa!iult~1ABy foll~wt~i 1 1;~e - r···----·. -""·"'-i:"•·-- ...
pointer (s,w) currently in the symbolic li~, the'.linke~

- y-,

finds the s~li<t_,name B $ b correpsondinfl_ to that link

in the definition section of the faultinq objeQio--·.l. It '
\ /,.' I • ; . ,

then passes name B to ehe segment search d~iver. the'
I~· .

se9-ment se~rch driver trdes a set of sea,lcf-rUles"'\c!treo-
' :

tory treen~s) on the FSM until the FSJ(f~nds B in one

of the directories • The :FSM then map9 i B ifito 'thlf- aaare1's

space of the fault~n9 ~f<:)C8fl~ f!:ld ,.~ftJllrna J;he segmen~.,
... , '·- ·. ' ,:_ , ,_ !' J;.•. - ; ' 1

,..,._ ,_,,.. ~ ,.,_,.,_ •'"~•of,• •'-·· ,,.._ i : ~ .

number s of B to the searbh-l!ri~ w)iich ilf~ re~'Qnt$

----- ---· -- --·
'"

-80-

F I gur e 7: Dynamic linking
on Multics

<s,w>

Object A

use k
11 nk

f

(s,w} f kth
1--~~~-----~1tnk

.....,. _ _...._.......,.._.... k '"
....,......,..~oll.ilf.o...,... Jfnk

Sefore sneppJng 8$-

After snapping 1$~

static storage

(Sb, Wt,,> ""f k th
------llnk

------~ -. '

~

'J
- ,·,.

b:wb

)-

Object B

Ob ect B

-81-

Figure 8: Functional diagram of the
Multics rlynamic linker.

/
Entry
search
driver

1 ink
f au 1 t

1

Dynamic
linking
driver

Segment
search
driver

F S M

-82-

the se9l1\ent nwnber s and the name b to the entry search

driver. This one .scan$ the defW~ aectJ.9Jt QJ segmen~

numbered s (i.e. B) until it finds the name b,. It then

returns the offset w of bill .B to the linkinq driver.

The dynamic linking driver finally replaces the address

{s,wl in thl! symbOlic 11b1c bf ttul amtrEJWlf'"{l,W) of-B $ b

and turns .off the flag . (f) to ·w&ke the link a snapped

link. The machine status ~, .t,hen be restored and

execution can proceed.

We do insist on the fact that the above description

is a simplified strictly functional definition of the
.. -...!t.

linker. In ,_·~·should it be aaa~d ,,~t the linker

contains pnly ~.modules and th•t li~,pappens as

naturally as we described it. In the ·course of this

chapter we will progressively complicate the description

we have just given and disCU.ss the problems encountered

by the impleme~tatio,p. This section conclu~s the

descriptive·part of ·the chapter. We will now apply our

design to Mul;t:i.es and present selected aspects of the

implementation.

5. Initialization

In this first section about the implementation of

the design, we will outline how the security kernel and

-83-

the linker are initialized. This outline will be brief

because no particular problem was encountered. The im­

plementation of the design was relatively straightforward.

The Multics system is initialized by a dedicated

initializer process. All modules of the security kernel

are loaded into the system from a generation tape.

Immediately after the loading, the virtual memory address­

ing mechanism is initialized so that the initializer pro­

cess sees a regular virtual memory with the restriction

that the capacity of that virtual memory is temporarily

constrained to that of the real memory. A prelinker is

then invoked to link together ~11 modules of the security

kernel which are read in from the tape. After the pre­

linker is run, miscellaneous initialization tasks are

performed. When the security kernel is entirely opera­

tional, the prelinker, as well as other initialization

programs are unmapped and thrown out of the addressable

space. We have described this mechanism for the sake of

completeness. However it existed before we implemented

our design. We used it as a basis for our implementation.

We now turn our attention to the initialization of

the linker. Since the security kernel is initialized by

a prelinker, it is all but natural to use the same pre­

linker a second time to initialize the linker. Actually

the implementation uses a hybrid technique involving both

-84-

a binder and a pre linker. Multics ptovic!es its tisei-• with

a binder of which the goal ia to take MVeral obj~taeg­

ments and to merge· them into one which ha• only one text

section, one d•f ini ti on section ana·C cne ·· Vif"9in link•9e

section. Of course any link between the 6ri9inal dis­

tinct object tegments subldtted tO the.bil\der are directly

translated into relative offaetiJ'Yithin the ttsulting bound

obj'ect segment. ttfie bin&ar ·was used to bind toqeth$1:' the

modules Of the linker, i.e. the modullita'.in•ide the main
'

box of figure 8. Consequently·' the only lint. is111ued from the

bound 1inker,·whidh the binder oould ndt tratl$1ate •re

links to the FSM and links to .externat~tiata bases. Notice

that figure 8 shows only one lime· "'to the' 'PSM. In 'reality

there are severa1 such links. A:a we sllid earlier fiq4ire 8

is only a simplified functional diagram. ·'l'o be more

accurate toa., the links to the FSM a~· itctttally 1~ihn to

ring O gates since the FSM i$ in th• s~ty kernel and

is accessible only throuqh these gates. JtlSo- tbe links

to external data bases are not re:Prliftrited in t"i9Uie 8.

The external data bases are error COde tables 41'id system

data tables. They are used by tbe linker but' are not

really part of it and do certa1inly not 'belt't:ttq,in its

functional ~iagram.

The taak of the prelinker is thus to snap the links

from the bound linker to the external data bases and to

-as-

the security kernel gates. The operation of the prelinker

m~tches '~JC:actly that -desc~iti~d- £~'-'~ :;~eri~~al' case. Since
· ·' . . __ - -. "i?:,; .. t~~-~·~i L ~s:~'.":H)"'l>.f . . ': -~:-. :·

the prelinker does not know abo~~ any fil~ system, (even

·. ·'' . •,)<..;-=~-~.i <·#·;.'. ::'·('1i···'•t;;~'~(~;''o ,I

security kernel gates are catalogued in the file system

and sto:fed ori seco~da~me~ry) &"=COpy 6£ 1:~~h ._;dUle must

be Toaded-\nto the ,initializ~r ~ddr.i~:s sp.i~·-·froln. the ·
. ·"'.':" ! < ~; -- ·-;_";:!:~·;::· : .. ,_: -~:J_\~' l. -~-< ...)· '·-· ·-· .- - ,'

_system generation tape. The bound linker' is loaded with

atf;'ibutes such th:it it does<~n-J~· ,;,ge~ prelf~ked; as 'a m0dule
. 1'~ -. -~ \'. y ; .;, '.: .{ ~ » --~t} ·i .-· :

of the. kernel Instead when 'tne· kernel is in'itia1ized

~nd · j-\:lst before · it throws the prelinler: ou~' ·(jjl(~i ts address

Space I it invOke's the prelirut~'xf, A ~jebbnd' t~ _,to, 'pre1ink

· the bound liJlk:·Eif. iilie prelirucer ·J:itifids :.a· lf6rive' ritapping
. - ~- " - ; ~· : { '; ·._ ~ f'l ~-- r~ ·""% ~ } ~l r - ... :· " . ·-· .

table and a snapped liriks 'table as atated~in'the general

design. In the particular'· ~ase·· of :Muit1g-~; 'the ~happed
;,_,.._ .;·

links table is simply a copy o'f , 'the 'virgin linkage section
. - . . - ~' . - __ i \ • .. '· .;. ·-·:=.·: '.;.~ ::·.- '-~ ·'~·~).-'_ ~ ·: !

of' the bound linker . where arr· .-ynibOfiq -links are' replaced

by sn~pped links reflecting the fictive LlUppirig ~- . The

fictive mapping table is·- a 1ft£'le ~~J:e 1nferee£i~g; . Since

there is only 'one addre~;· sp~ce i>ei:.prgces'J 'c&non' to all

rings. lnst:ead -of one '~iir. piodess~ ai1d. per·:f'ing', LtTle reader
·- --~ . _. , 1 ·t ~, r ... ; !) .> · .-... -; t.:«~;: _. ·,1 ;- }_ :- ,.. L-- 1 ... ,, ;·

may wonder w:hy a fict.ive mapping of the linke-r~ the data

bases and ~ecuri ty . kernel gat~.t ;[~' -n,;J$~il~ry ~- ·' couldn • t

they just stay where they are?' :The ':~~ti~f i.s "negative
""'\

-86-

because of the peculiar way the ~e<?UX':i:t~ kernel is ~a~ped
',_.'

into each proce•s address space. It is.a convention that
,. ' .. •• ' ,, ">

all segments which are part of the secU,.ri ty kernel du.ring
. ' ·~ : • 1 - ~)i; - . ~:. .· .' ~

regular operation are lllApped into the lQWeat .•eqnaeat-:
, • ' ;;::. " ..; ..;" • c •• ' ,• ' •I•

numbers of each process addreas &Pft.oe. Bene~ all lowest
:~-, - • • '>" •). •• -

segme~t numbers are reserv~ for. th• kernel ~d const.i.tute

some sort of private address space. No such segment

number is ever used outside t!Je ke~l. Bence, even . ~ ,,. ' .
j : ~ -

though the linker, the e?(te,~l da~a .. base• aJ1d the. ,security
. -'; /,

kernel gates are in the addresa a~ce during- initial:ization,
~ ; :· ~~~-'.!, .. ''"'. .. _- . . i<. --~-

they muat be r•apped ini;~ hi.qher ~~~t n~rs. for the
' '··' " .'. > " c "

higher numbered. :r:inqs. TJlat f icti~ map_ping. Vill. pe valid
' ' . : . ' :. .~... ' ~- _,, . ~

for all rings . Cl to 7) of all pr~4aes •... To fi.UlllllNlJ:ize~ the
•• c + • -- .., •• • • • - • - • .{.

:E>roblem, althOUCJb the address space pf a_, e,:rocess is CQDlmOn

to all rings, a fictive mapp~nCJ mu•t be insti\lled b~ the

prelinker beca~e som:e specific r:l;l,lE! .<:?,uta1 a pi.ece out of

the process address apace and ttp:ne it _i,nto what maY be
' .. ;: -' '

reqarded as a private kez:nel addr••• ~pace. If this J:;"Ule
' f :> . ·:;:

did not exist,_ clearly, the init;,l._-~ •,•~?i~9 could be.

, kept ~d be the fin al real z:iutPP.i?9 ~ Af te~ the two tables
• . ;'> ·':°' ' '~:

are _ <Jenerated, the security kerne~ ttµ-ows awa~ _ its capa­

bili tiea to acces& the prelinker, t,he linker .,rid the ex-
. ' '" . , . ' ;.: . :~<··. ..

ternal data bases by simply deallocating thei~ c~rrent
; ,,. ~' ''.

segment numbers. Remember that the linker and the data

-87-

bases are still stored in the file system on secondary

memory, so that the system can retrieve them there later

on when they will be needed. Of course the two tables

built by the prelinker may not be thrown away. Since

they will be used throughout the life of the system each

time a ring is created, they must remain permanently in

the address space of the kernel.

We finally come to discussing the task of enforcing

the fictive mapping. This task is also straightforward

and identical to the general design. In order to operate

correctly, Multics object segments need a static storage

area and an automatic storage area. Automatic storage

is allocated in a special segment called the stack. This

segment is used as an Algol call stack. Static storage

is allocated in a special segment called the combined

linkage segment (els). There exists one stack and one

els per ring and per process. There exists a system

wide convention stating that the stack of a given ring

always occupies the same segment number in the address

space of any process. This enables any process to find

the right stack in the right ring. Each stack header

contains (conventional) the address of the els for the

same ring. This enables any process to retrieve the

right els for the right ring. Given these two conven­

tions, it is clear that no process will ever be able to

-88-

touch its els in a ring before it touches its stack in

that ring. Hence the convention is that when the process

uses its stack segment nwnber for the first time, a hard­

ware fault occurs which is interpreted as a ring initiali­

zation fault and triggers action of the kernel to initialize

the ring. When the stack and the els for that ring are

initialized, the kernel invokes the FSM. As stated in the

general design, the FSM uses the fictive mapping table

prepared by the prelinker to map the linker, the external

data bases and the security kernel gates in the process

address space. Finally the kernel copies the snapped

links table built by the prelinker into the els just

fabricated for the new ring. Control is then restored

into the new ring. The linker has been mapped into the

address space and its non-virgin linkage section contain­

ing only snapp~d links,exists in the els of the new ring.

Thus the linker is operational in that ring.

The last question which needs perhaps a brief comment

is why do we need to invoke the FSM each time a ring is

initialized in a process? Doing so for the first ring

should be enough since the address space in which the FSM

enforces the fictive mapping is the same for all other

rings. Our implementation is justified by an aspect of

the Multics virtual memory. In mapping a segment into a

-89-

segment number, one needs to specify the unique ·identifier

of the segment ana the ring on' beh.lf3 olf"''~hich the mapping

is done. Once the bo\ind linket fdr;· int1tatice"' il:s· mapped into

its final address for one ;ri~q- a11·r1nljs'~ff1 ~ee' the'

address occ~pied but it 'w'ill hot ~'mnnl.tiq£u1 to them

until they also require the linker tcf'be'; miPPed there on

their behalf.

This discussion· complet&s 'the sertibn on itd. tia:lization

of the kerner and of tlie linker. · It~'ha!f' l:JeE!rt' demonstrated

that ·st:raightforifard intt>iamenta't'ion'·oif the: desigri was

· possible on a cdmputing utility Itke' 'Mtiitl:'Cs. '';No major

problem' and no particularly fntere'stfnef:iiifs1le'was raised

so far. Now we have shewn J.1f>w to imi>"lebtent· an opera·tional

linker, we will ptocef!d' by sh.owilltf:hdW eto invoke it in the

faulting· ring on-~ link fault.·

6. Fault: Handling

we have shown how the'Mul't'ics·<Jynamie li~kerwas

made operational in ·a rinq. · our ne:Kt step ±s tb· :show how

link faults" are passed t.o it and ·how ·:tt can ,retbrn control

to the faulting obj edt ~ · Again ''this 'dan "be :done by a

straightforward applic'ation of-. tbti! d8s£gn, using pre­

existing mecl'ianisms.

All f a.ul ts on Multics are inte'rdepi8d ·t;y a special

module of the kernel. This module exijteid already iin the

-90-

initial version of Mul.tica and. i~s pµnxl&e is to analyze

and .. aor.t f."1UtJI• . JµIJ.t .~ ffi* Un• of ~· .bad to be
' • • • , -.,- <'

modifi.., •o ~t l.ink· faults W<>"1!d ?a ~f:'~.ted ~o a sig-
, _,._. ,_ . ' ', :-: k; . "

naJ.li.119 .xtW.. ~ta.ad of -~+ ~~~. to a. r.~ O .
, . . , , - . . ' . ' ,

link.er .. The .. ~lli~·: MD®.le J;Jf th.e ~!lffl•l. :~step, .as

well in the initial version of Multics. It J.- .. •l~.ady

used t.o si;naJ. ayant• ot;llei- t.llM. UnJt" ~-~lt.t Jn .. outer

rin~. Be~~ of the hi~r-.rc;!w o~ r~J"f' t~ aecµz:ity

ke;rn~l. ~ the. a.t,pall.i.ng ,~,~ e ~. ~~~~~~ ~.~ a~pess

any object ~ .. tll hi.par '1~4Kr..fi.n9, .. ~ .~ •itch .the

r.i.ng of ex~~ of a. p.rpc•~·. '-'~. ~'!~Af.a9'.•JI ~·

exploit.eci to .. ~~ al~~ ~-~;,. . ~,.~::ftiP~lli~g

module receive. Jll .copy ot the ~. ~t.\Ul ,ave4 by
- , . ' . \ .. _ .. ' , . / . ~ .: '. \ ! ,.'\,.. ,~ . " ; : , ·'" '

the number of the faulting ring, and the segment number

of the stack used at fault time. It, ;~i.We• a at~k
. . l~· .. "',,. ___ ') .1 ••

m&Qbiz-.. •ta tu.a. J:t cqpj.~s we~l .• rr•tl,P;n Jl44X'•IJ• to
-· " .- ' i - . ~'· ' "·~ .. l.1 :f •• h . '. -

be \µ1•4 by ~ lilllte.r. It fi~l~ IP(it,~e~:!:r;4;~~ ~. execu­

tion and call.II .the linker. The 1.~•1. qf ,'\:l)e li;nke:r; is
: ' ' • : ! i . .-- - ~ -~ -·-. . . <

fol.IZld in the a~ck h~er (.<:Qn~t;..t~al,J ~. . Thi.• . ad(lress
. ' ,, ~ -/. ,.,._;, ",. , ' ,·

must be set at ring initialization ltll-4.JMW be ~~ged by
<, "' ' .. -~ ~ : , ; i t;;.; ~ ' -' - '. -~. . -. . .

the .PrQC .. ;,,U ,it ,W,ants to def~r_,.IW~~. 1~i.nku of its

own in th•t .ring • . , '.,;:

-91-

Let us assume for a moment that we know how the

linker itself works and suppose that it has snapped the

faulting link and wants to· restore control to the faulting

object. The linker simply returns to the signalling module

in the current ring. The signalling procedure then calls

a gate into the kernel. The purpose of this gate is to
i

validate the machine status returned to it by the signaller

and to restore it. Validation simply consists in verifying

that the status reflects a ring of execution not lower

than the faulting ring. This is to make sure that the

linker which handled the status in the faulting ring did

not maliciously set it so that control would be restored

in a lower numbered ring than the faulting ring, which

of course violates protection. The gate then destroys

the signalling stack frame in the faulting ring to make

the stack look as if nothing had happened. Restoring the

status is finally done in one indivisible hardware in-

struction which reloads all the machine registers, thereby

forcing control back into the formerly faulting object.

7. The dynamic linker

The °last two sections have discussed respectively

the prelinking of the linker and the handling of link

faults. It remains to be demonstrated how the linker

-92-

itself aan be illlpl.-nted to tranal.ate links proper1y. So

far the implemelltation did not eneoan.ter lfAY major problem

or any operatiOla: of outatand.i~ intereat.. In this section

we will only ~ lttief J.y otttline tae imp~tation as

a whole and then conoenineate ·on ... lec:tUd .interestinq fea­

tures of the Kult.ies ays~em ·of ·•hiol'l tM• :illpl.ementation

cannot be 4erived directly f..- the qlobal deaiqn princi­

ples. As we · aention•d it be.foi:e, these ::.seleeted topics

are only instances of broader probl...,·whiaa any deaiqner

would face in any ~oaputin~ ut4iity ,;erhape 1111cle:r differ­

ent aspects.

The atar~ing poin~ of the.impl•••Dft•*ioa ia the

block di"rall of . f i9u.re 8. ~ bafsic ~c linker is

proqranaiad accC>t4int 'tO the £uact.i.,..:1> apacificationa of

that diaqram. Thi• Jt)aaic linblr contm.n-.a,dosen inde­

pendent; procfrMl D:>dui.a.. ·Once C'Htpil.a.,, the x:eaul:tin9

obje~ a~ata are bound to91ttber bf: tta b.inder. A

bound object segment results wbicb•mmtaina.about fony

links to data bases and kernel gates and can itself be

invoked through about fifteen ~i.entpiee; one of

whieh is the Min link trans.ll~t;itm,en,Uy used far link

faults.

on top of tthis basic linkerwewiil.l now proqreasively

add other feature!$, functional boxes and specifications

as we go about discussing speQific implementation problems.

-93-

a. Implementation of peripheral features

Let us first turn our attention to the question of

static storage allocation. As we mentioned it in the

chapter about the ·global deji91t)·· s-€iticJsteriqe~allocation

is a general problem which must J;>e solved tn any computing

utility. The wrong way of solving it1 li'~.tN'H!ave it in
J

thf!_re&~()nsipilit¥ of the l~nke~~
j

o:ne. ~~<f'..!!~~--!aY _to solve
!

it is to install a hardware fault which"" called the'lSSP.
~ -~---~ -- "' ,~.-., ... ,. ·~ ~- .,,_,_ -~~

Wllen a p~ocess at~~s to get a ho).d of, the address c:>f
'. i . i· '~-· .{. --~~ " . .., ______ ~,,.,,.__~_...,,._,,,,,,.J _'.'): 1 r-.~6"~-, •' (1 ~ :

tbe static stb'.r'1gia'" (nbn-virgin link.qe -~oh) iof th4!
· ·.,. · ~ "1~vfit' ! ~

pi:j()gram it is ··necutiilg and if t~~t:·-:-sto~ ·rs ·fiat yet

a~located, a ISSF occurs whic;h"~riggers s~oraqe alloc~tion.
l

The old design of the MU'lt:i..cs dyn~=~.~~'.1f~:-~~s such; that

static storag.e a.J.lpcation was part bf the li.Pket task; :·· , ' ·..-"'\Jn:• :

(see fig-qre 9L'..,'..· 'on_ ..• snapping a link~ t1Ut1~mi ~ link'-ng
t, ~~ ~ v-r ;1:;-- 1

driver used to ,always verify that tlrEr·urCj'i't··o·r' the l~nk
.

did have static storage in the target rinq. As statea

in the thesis, ·.this design violates protection because a

target object .in a target ring cannot depend on a faulting

object in a faulting ~ing to use the linker and allocate
l
'

static storage Where ~ppropriate. In addition, even if

this w~s not a protection violation, it would simply be

impossible for the new linker in a faulting ring to

allocate space in a target ring if the target ring is

-94-

Figure 9: Old Multics dynamic linker.

link fault

Oynamic
linking
driver

Entry
sear ch
driver

Stat i c
storage

al locator

Segment
search
driver

F S M

-95-

lower than the faulting ring. This was possible in the old

design because the linker was in the security kernel and

could access any ring.

Consequently we have proposed to implement a hardware

ISSF as described, such that dynamic: linking and static

storage allocation are functionally distinct. Yet there

is still one advantage in keeping them physically together

(see·figure 10). ·Keeping dynamic linking and static stor­

age allocation physically together means keeping them in

the same bound object segment, the bound linker. Thus

they are prelinked and initialized together at the same

time. Adding the static storage box in figure 10 incre.ases

the complexity of the dynamic linker but does not increase

the complexity or modify the design of prelinking and ring

initialization.

The operation of the linker is thus. as follows.

Assume object A in ring 4 wants to invoke gate B in ring

3. Whether A invokes B by symbolic name (link fault) or

directly by its address it happened to already know is

irrelevant. When execution moves to the target segment B

in ring 3, as soon as segment B tries to find a presumably

unallocated static storage, an ISSF occurs which results

in the linker (static storage allocator part) to be

invoked in ring 3. Allocation can and will thus safely

-96-

Figure 10: New Multicadyn•lc 11t*er.

I talt t-..,,t t

Dwa.-c
1 f nkf n1
o'.••.er

i'

!ntr·y
seatrc;h
d:rf ver

.' ~. , . .

. &t•t·•~
storace

lt

.. · lealeor. ; .

se_..t
.. ia.-;dl:
ct:rlver

F S M

. ' .· ,._ .

-97-

Figure 11: St~tlc storage •1J<>~l9tion.on
Multics

A

Qynamic
,_. ·f I nk~r

Static
stet'••~ : ·· ·

al locator
: !'t - :.. j -~ .~ : .. ,.i(~h.:~

fault causes Invocation of linker
' ..
~ 1 ,.

ring 3
B

.._~-~~~111 fault causes stora~e allocation

Statte
storage
for ·s

.... .nw' . . 1··40 r .
. . "7 "*" " ~ '''· ! •

11 nker

·Stat Ii' · .; ·
storage

a Yf•~at&t' ' _,
.. r

' ' ~· ·,

-98-

occur. This is pictured by figure 11.

The problem of static storage allocation was just

one example, and perhaps the most typical, of a feature which

was hooked to the linker for convenience. Unfortunately, the

linker was not the right place to hook that feature to. Other

problems of the same kind were encountered during the implemen­

tation. Just to mention a few we c~ ciit~ t4~ handling and

impure object S4gm&Jlt handlinq. Such features are typical

examples of,sophisticated tool• which have been hooked to

the linker for convenience but d~ not actually belong

there. Trap handling is a feature whiob allows a program-

mer to force execution of certain routi;lles before his

program can be called for the first time. The feature is

named after the fact that it is).)aaed on trapping the first

invocation or a progTam. Again the f irat invocation may

not be a symbolic inv-ocation; thus the linker can be by­

passed; thus hookin~ the trap handling "8chanism to the

linker is just aa disastrous as hooking.s~ati.c storage

allocation to 'ii.he linker. The solutiOIL ;is also to use a

hardware fault. We will not describe it here as it is

really not part of the implementation of the linker.

Impure obje~t segment handling is a f ~cil,ity which pro­

vides users with the ability of creating an object seg­

ment and then writing into it perhaps over the definition

and virgin linkage sections. Of course such an object

-99-

segment is not sharable. It .is important to save the

definition and virgin linkage section before they are

overwritten (by copying them into the els before the first

reference). Such task was Teft to the linker. Again it

did not belong there. By-passing the linker and thus not

saving the definition and linkage sections could cause

damage to the object segment. In addition it did put an

extra burden on the linker by always forcing it to check

for writeable object segments. The solution to the prob­

lem is to always save the definition and virgin linkage

sections of a writeable object se<Jlijent in a separate seg­

ment when the object segment is created. Compilers can

take care of this very easlly and already use such mechan­

isms to handle other features on Multics.

Static storage allocation, trap handling and impure

object segment are typical examples of peripheral features

which have been hooked to the linker for convenience. As

a result, they were mishandled, violated protection, com­

plicated the linker and interfered with it performance.

Our design has corrected that situation.

b. Compatibility of interfaces

We would now like to mention a second problem which

the implementation encountered. This problem is specific

to Multics but problems of the same kind would certainly

-100-

arise in; .an.r ~utl.n9 utili·tx. The present problem does
•_ r·. • . , .- -.; _ _ • •• ·- :.·· _, • J ~ . ,

:qot A•ve eo .JRUQh to c!lo wttih .the linkm: it•lf as ·it b4la
; : .,,, ~! ~- .' ! ;,· *' ·~ ' >/! - { ·····;-"'<.. ~.,~~:··. ;• ...

kernel.

likely to .ue.E>i;b•f fW!ction• of the ~rnel. In trying
. ' ' I .· ;. • • ,. ; : ·,-. ~"?- :· ... · ~," '< ': •. ~ •(f\

t9 .· .Pu~1 · ~t . .rz:~am 011.t;•i• ... ~l, one auat make
" ' : - -'. ... ;_ ~-; ;,;.- - } :: •• '. - ,· _, - ;; , <'. •. : f-.- ~-:J. -~~ . <

;it .~4 ~;~~·· . In th~ ~i.~r,.~.-~f .. t.J:le ;1~ec, ~the
l._ ·.1-., .,.. - :~~ --~"\:~~l-'P.;_t-:· h'_:,.r~ -_,·:::

old.. Multics !i.nker .'!ola41d. ~·.FM, l,uW• tb.e .. .ac:w:itY ker-
' .. : to.;, .:.· ' -,-'_~,~f~~- - ~: .._:" :: __ ~ '-.;,,£t··Jj·.,. --r'i~' . .:.: ~- ._ ~1~~-~- .. ; .-.: ·--~

nel •... 9f .~rae, .. ~~ the l~~~ i• ._ftl~~~}?uts~c!e ,~
- ' '· ~ . - • - : ·-::- .,,· •. ,.- J::< ' :, .· - ·, ' . . ; ' -,,1,; '. :

invoke. it th£o~, ~r~i&1;~ c~~._, ~~"Jist~ ~2).. For-
• ,,,., ··- ·· ·• - , ~ "" - ·~-!"' . -,,r,, "......« _,,{..··~,.C..-",-~ . " ... --·

~~t(t~f. -~.'~~ of, 1'Jul~i:°": ~~' ~~u~!·~~~le to the

higl;le.r fi"9• .. ~. •1.1Ch cga~a,.. '!19 did. not ._,,, to
• r• ·,,,._ ~ "-·• ,: ; ,'. •' .,_, :)' ••• ~ ~·;.:,.·,; ~"£ .. :.' ~~-:'·., ~·t_r;,. t __ -,c ·'•: .-. ;· ',-.

imJ?.l~.r·.:~· .. ~~ .~ ~~~~ ~·~ .. ~ .. ~f:r~·
thetJ4,! 9~~ i• n9t the • .._ u the iliterf.6Qe. ~ch the

~; -·~-;--~ --~ .. :··',.:_: __ '.··~··"; . .:-.:-·:·~.r-: ... ~;:J_:ir·:.'.-¥'L)- -·"·::~a~\/·: · .. ·Jr~;:r ... - ··~-:·~- .. ~--·-~ -.

li~•f(Jl.f,!Mi ~ ... ,.di~~l~: ~~~ r~: P•, ,,li)ifectori!•
~.... " ""·~-~· . ,_ ... '· ' ·-~'.! • ' ' - . ,, ~

109.ical a~ in a pr_ocus ~· aµto •. p~~ itea~
: ·~ -»· .!-. _;. ·- ; -~- " ;~ (~ ;.i ~~- .r .. ,.L. .. !, 1'.2~ ,;. ::L·~ : ; .,.~ .-·,_ J ·.

V•ex: . .riNf .. (J. .:t.P }> may talk ~ ~ie• only by
· ··· .- · ·· · ~ -· · - ·-~- ~ · , · . ·", < ,. """ --~ ·:o:-~_ .. :: : -,,, • ..,.:~- -~:i r~ .; .. u n\-> - ·· ·

~*"~-.. ~. ·~<>7 .bi -~~t ~~~~~ ~~~?: ~t
numt>ers N• .~•4itli vel_y upe(t inaide the kernel. Thus

• . ·' ; , •• >t'>· .L:: _;__ • .:-.· (.· . -r ·~ ,;·: ... ·;.::·,. :, ,,, ·... .~ ~.: . :·, "<

when the linker waa inside the kernel, the aearch rules

-101-

Figure 12: Interface of the linker to the FSM.

ring n

Linker

I
I

•
'

I

'
'
l 11, " ,,
ring r)

FS1' gate

II ,------,
I I
I Old l----~

I 1 inker I F s M
L ______ _J

-102-

it used across the interface with the FSM we+,e a set of
·5 ·. \.

directory segment numbers. Now. the linker is moved

outside the kernel, directory ·a~gment numbers are not

suitable directcp:yl1rl±que·rttantifiers. Therefore the

linker must use dirac•o~ treenamee. This implementation

of search rules })~#I ~e dis.Wantage · that for each direc­

tory searched or each link fault, the treename presented

to the FSM gate must 'be converted into corresponding seg­

ment number to perform the search. Such conversion is

costly ·anti has a neq~ive effect .on. the. pe.x:formance of

the linker. A paral]jel project is currently on its way

to make directory segment numbers available in user rings.
'•,

Such a design will re•tore·the lnt:f!rf'&Cfe to theFSM which

the linker used to see. However it has some major protec-

tion implicationa. "of which the solution is no.t obvious.

we will not discuss these implications here.

The problem of the search rules was a typical

example of a compatibility problem~ By removing the
-r~ ~ -· ' •

linker from the kernel', we Were fQJ{Ced ''boncJke it compat-

ible with the interface of the kerner seen by the user

rings.

c. Limitation of Privileges

The last problem which we"propose 'to discuss will

illustrate the impact on the capabilities of a program

of removing that program from the kernel. The problem

-103-

deals with snappinq downward Cl!'OSS rinq links, a feature

which the ring"'i!he· linxer used· to ~riF'*eiY;,eaa!lyjand

which is no¥: etitnpl!cated: by ~~ ··_ffifti: tUt ~t.he:'!!nkf!r'.~ is in

· the· :faulting- :ting. ·

In the · qerleta1 deriqn~'t!ellct!Wi•earlier,, the::: PSM' was

described . as a aecuri ty kernel' ~w ti1re''. i!'ftlch!-qiven'' a
Cataloq uJtiqtle iden~i.'f"i•r·'AnCl DC~eet':·a~lf.(ti"cf1alfte·•

returns: a loqi·~1"'·adaMli·~ On~ *iltie•r)~!tfii9': 1 1a::·t\ct the

. exa:ct function· ot:>tlle· nw:~ '~ 1'9tfJt:.,~ a't!llteetOrt'

treenaifte ancr·· a ae~nt name tlftcf··~t.tiifliT a ~t-'ftember.

The differel'lci!! .btatween theae; two' &eWeri-p'tQ.ona· ,1 •. : l::tlat, a

segment name ·ta. net an t>bject 1'~'1ct 1\u8': ·amd:; ·a ftcJlnent

'. 'ftumber is only S ·;paitia{'i ~l.d~tea~~ r. 't Mt! &Y~uence

a ae·areli)" of· tbe·· 'm.finition ' 1Htetl1>n1 iijf!Jlt!f6 ~~:· segment

must be p-erfbrmed to£ fftra thi''tht~1 Ofi··LSi8 ·-~ 'Otiject

in t:h:ef tarqet ••~t··~aEnf' lf1jttr.F18' .'Vst/iftteW tllii~c;et

obje·ct lii in • r!nt/~~1 to 'hr 1hi~¥ VloiF·f:htf>i¥au~ttnq

nnC1; such' stHtkch poatts ·tto"'~;~r: lhat!WJi'bi .ithe .t!.arget

object is • gate 'fli~ :ai tln~j'~r-jaMtJlratf'-EtllAtinq··rinq,
' .

the linker .in: the :faultittt] rift1/ ~_.,bailer~:'

eapabi·lity t:o react or· ·searcli;;. ~~:~. -~ old

linker exeC\ltinq i:ft: the' 'J(emeP:"etf1tuN\lli·'•a ~abi1ltlty.

W!it!n snapP'ing ·a: fi:rd(: ~to"'a.c~ <iit&t a:1 -t\Wrer <~red

rinq, the linker ~t ·e:ftract:r>tfie .::~ ~f !:'UIRle, ~­

from information· con-tafrred;in'j<fh*'~i}!fff·•~t: · '' ·

-104-

cont-.i.n~ the. pte.. The. Qnlf~.~'"Y to: ~;•ot .J-ofq:1;1N~ion

from ~at -.,r~t ~~ i•.;-itO;~~·~~(;P~t. ;•t•.• lo

linker qate, int.o the targ:et rin9. . 'fh,.. ~ funpti.en. gf/ t4e
. . t· ... "_..,_ . ·:' ,., _,_ • ' .; " . - ~

se41"atl drtv•• .in .. f.j.9~e 8 .•. ~"'~ -.~~"hM>P!'U .j.p

ti. ~aq't.~~.i~q .i.Just.a,4 of q~Hi~,.t\Ji ~~. t~t.i.PJ ~ing.

'l'be, .-~,Uon wbi •. tJMt ,,.,.,:, 4-•J: ~':'.·~!'~~- . .tip: ask

ia ,4ciw- 4oea tJ:ae,;_~.j.~ ~ ~~."~ }i@~.9~•~f~· the

f~•t pl_.._7 TM.f:•,, ~ ·•YM.M. ... j~°"· ~,: .to,. ~is

q\leHion •. ,,.. ..,-.~ lh•k•r·C9JM\f;~~~ ~t +-·by

.comreotiQDa., . It woula. 1>e PQtt"~b.¥ ~r ~· ·that ... ·~·

r.i.ft9:~t,¥.n •---n~ .. ~~~-~.-?«P ¥~ ~,tpd . ·- -~

. .J.~e4 .. ~ llt. .of.·~·~·~~~· t.

The 11-i.~,:- ~u.14. ~ .;i,D .. ;tJ¥li PM' t~··~~=~·" .,f·: ~nt

by. 9;W~t t;M:,-SM ~· P.- Qt,~·,ffJM'':~·~~· ~c;tpry

.an4 .·th4l ~~i,..l, .~ O:f .~ "'~ ~- ;tqp. t.~•t-

rinq • It. ""'114 .:tb.114. ~Y4t,~ .~~.i·~l~~ 'l'tuan~­

u•Lnq •· -~t.4~1. .it•~".~¥.> c~ '.~pt,. it.. ~d

dynam,i;Qa~JM -t~t~. ~,: .i~ . .,,~~r4':tl~· 1rP· ·~ .. ~

qua. ·Us .. f-..ilP,~~ ~ 9~-!4~.)~t

~. w •. ~qct.o--~,~ :.#IW!I! ~ ,~~ .~fa'Ver

. ..,. ~cNM&t.t.J2te· n~,of . .r~ @19;1;'..,~~· .+~;.,finite.

'l'1tu. ~ ii9 ·~·~-~J..;~ ~~~ .t..Q:.;Oltr pa>bl• whioh

consi•• .~ :P:D,OV.i.4.i.ng, the. ·~~·~ ,llUt£.i,c;;-.,(~bta ,~i, th a

-105-

finite set of gates (one per ring), loading these gates

into the machine during system initialization, prelinking

the linker to each such gate as usually and throwing the

gates out of the kernel address space after prelinking.

This is the solution which was implemented on Multics.

It is pictured in figure 13. During system initialization,

the linker is prelinked to the FSM gates as well as to

one linker gate for each ring. Then when A takes a link

fault in trying to call gate B, the linker is invoked in

ring 4. It obtains a segment number s for B from the FSM.

The FSM also tells it that B is a gate into ring 3.

Instead of calling the entry search module in ring 4, the

linker then calls the link~r gate in ring 3. The linker

gate can search the oject segment B and thus returns the

offset w of b in B to the linker in ring 4.

The last problem discussed was an example of a case

where by being removed from the kernel, a program, the

linker, lost privileges which it used to exploit to per­

form its task. Other such examples were encountered

during the implementation. For instance, the linker used

to store in a system wide data base, various meters count­

ing the n~er of link faults, the distribution of pro­

cessing time required, etc. Data could be extracted from

that data base by anybody interested in performance. Of

course, now the linker is in user rings it could still do

ring 3

ring 0

-106-

Figure 13: Cross rin1t linking Jn Multics

dng 4

DY.netnJe
lf nld ng
dr J v,,er

Entry
search
driver

pl"et:l nked

1 i.nker
Kate

Sta~I~
stor'age

alloca.t.or

S-.nemt
sea'reh
d.r,I Y,~r

B

~ S M

-107-

such metering, but results could not be trusted because

the system wide data base would have to bi· a~c~u1sible in

user rings too.' Bene~ anybOdy 'bbuia··'"rit~: gUbaqe into

it. The sol~tion which we.p:i:-opo$e.;:,lriatead il'to just

keep a count of link faults ih 'rin~-~~ / -: 1ili!I' is done by
the f aui t interceptor module. · '.l'?i~ c0fult · is''' thus · protected.

\

Other meters can be stored in per ring data·baa~s'if'the

user desires. such.meters would of~ur'ie)r&flect. only

the activity of that \1ser in that ril\q;'' ' .

This is the last proble1f11e pbpl)il'•' to prel!Jent here

about the implementation. rn' no· way ~-:ire s\:a91i&s~·· tbat

the implementation faced no *>ii& · probl11ilttr;'tttan explained

here. The problems. presented he:re· wen;; 1u.t-~typie~l

examples representat1 ve of clAa•es 'Of jroblems:: telev~t

to the topic of· our research. P~bbl_.: 'riot~ discus•ed; ·

here either fell into ·categoriea''.fb~" wh1tm \le h·~ given

examples or into 'categories not rele\ian't' 'to' ok thesi•

topic.

-108-

v.
- ·;..,

TC!.CQDclµ<Se this thes.is, we would like to step back
' •, , -:, ·.':-, , ... ~ .- ·. ; -- .. ,

and cons;i.~r tbe a.ei~ an~, i ta ~J..-.nt•~o!l a" a whole
. ',.>"•A•,, ''• ' •.. >, • l ." ·, , .

to sQllDariz•,Wb&t p.a~. beeti.~~.r~~-.~~~~ct~~e

main ;-ea:ul t.a
0
of th• the•i·a, ~: !Xt'!'i n• ~" coat o~ ~e

implemeQ.tat.:ion.

We, f.j.r•t_ f.~ .. to c~• 'tb.ec ,ot+a clefl+P .. of

with the new deaigp we ~ve ~~~--~ o~ ~~~•on
: ' ' , - . ·- ~-: -. . . --) ., ·, - . _;- ;• - .

ia ba~ed on fi.9~• 14. 'l'he o+~ ~c _ ~.j.nker. waa part of
. . --· , ~ ~. ':,. - -_;.·,:: ,'.. - ;, : , ' ' .

the ·~~.i~)' ~l. It wu ~~~~\l~<t by a set of . " .. . ' ' ' -~ ~- . - .

Il\C>dules ~rta Qirectly available t~:; t,~,,. _J.l.tl~f': ~ouC)h ~~~ro­

priate jl&,... .+,nt.o the . .k8J:'P•l C.11¥ ~~-~ ~ · ... ~•cellaneous
.. . ~ '",,,,;- "' - •, ~ . - ' ,. .

pe;r.j.pheraJ. f'Qllct.iona lilte stati~~ •~•98: .i.l~•tion and
" . ' . . ' -- ·-·. ·' ··,,, -·- .· , ,'.,; .· ..

t~p h~dl~9 .-.r• d~~ly ~~~~ ~~-. ~ l,J.nk~r inside the

kernel... Tti• new d)rnaaic l~eir. -~ ~- Ix>.~ o,l)jept aepent.
, - + - '· • , ~. • :, ~ \" - - ,

Capabilities to use it exist in all rings except ring o.
The modules of the dynamic linker which uaed to be available

through gates in the kernel are now directly available in

user rings. All peripheral featurea have been detached

from the linker and are now handled independently as .
described eariier. The static atora9e allocator is still

physically connected to the linker to simplify initialization,

but it is functionally independent: its operation is

-109-

user ring

ring O

Linker F S M

Old configuration

Figure 14: Multics linker

New configuration

user ring

Lt nker

_j~

us er ring 11 nker gate l:J

Linker

1 '
rl ng 0 11 nker gate D 9FSM gate

F S M

_ti
._ f. ·~o -~_. .. < ·_y •

-110-

triggered by a special hardware fault. As a result of the

above facts the caaplexity of the security kernel has been

reduced by a non-negligible,· al tlloa;h' bard to measure,

amount. What can be measured ia tbe ~duetion of the size

of the kernel. The following items have been .eXtracted

from the. kernel:

15000 words out of 300000 (5\),

30 entries out of 12-00 (2.5'),

15 programs out of 300 (S•),

18 qates out of 165 (ll•).

The case of the gates is part~cularl:r. interesting. Since

the linker has been removed from the kernel, all gates

which used to lead to it ineide the kernel could be

removed too. The figure of lla deserveaa special· comment.

Since the interface between the kernel and the outer world

is one of the most sensitive, directly ~atened part of

the kernel, a reduction of size of llt is a significant

improvement. We attribute this hiClh •.core to the fact

that the linker was., as we have shown, essentially a user

ring proqram. Thus even tho\19h it was in ring o, it was

natural that it be available to user rings through many

gates.

-111-

Secondly we propose to discuss the results of the

thesis. A first result is the demonstration of the

feasibility of the design. some components of the design

have not been implemented because they were thought to be

of minor importance and could not have any impact on the

overall success of the implementation. Other components

of the design like the functional independence of the

static storage allocator could not be implemented simply

because the supporting hardware is not yet available on

Multics. However it was approximated by software and

when the hardware becomes available, only a simple change

of a few lines of code is required to separate static

storage allocation from dynamic linking. On the whole thus

the major aspects of the design and of the implementation

have been verified to work correctly. System initializa­

tion, fault handling and dynamic linking have been imple­

mented. All features crucial to the operation of the

linker itself have been extensively tested and proved to

work under all circumstances. In particular cross-ring

linking was carefully tested.

The second result of the thesis is the improvement of

the protection and the certifiability of the kernel of

Multics. Size and complexity have been reduced in the

proportions mentioned above thereby making the auditing

-112-

O:f the karn•l an •a•i•r t.ask. tn actditton, the thesis

has·OornotA'l4 • .._ b\lf8 ;i.A. tM lhlllica ayetd. 'l'h9.

protect.ion u.eau r••'t.ll11inq l••;MvlrMI perlphe:tal features

hooked. m the lirdl•t ftU c"9n(·•1ildAa'*'1. 'fhe p:rotection

of the karael itaelt 1• no -·· .-.re.e.•ct :by the uneon-
'

troll.able •petation of ·the 1.ilftA.ei'.. Mr..-:t·. the aareful

at.\'ldy and tlllt·.,...•i91' of th• lidler·'llfteo._~ and

remediedu.i \lftllwtpe~ p....._ie fl•, not the

le•t of wtd.db i• th• p...,.Mm « tiMtio •torife alloeation.

The la~ -.jor fttNlU WC>ftll 1118ntii0lti11CJ here u• the

inai(Jht.a 9aine4.aboat. tlMI ••it"" of'··• ·WjjlWil'l•' ·Althouqb

the .:thaa is ·.baa• not. pi.;cw-~ any . dltf:ln.i.'el.di\' of wmat
proqa:w belong j!!!ida. CM·kQh4tJi, it~•in-ly baa ptt>­

vided.ia f- inad.CJllt• ~·WAa••l*'09f:a1ll1t·dltft ea.fir.be

moved SN!;tftft tme Jutm411. n.. •· 1Ri4Wi<Jri aliitlysi• .. of

the lWlk•r baa nveal.ed • f:• intaeantilf ·f~• Which

at the•- Mi. ·made the ~iliJca • ..-Y'to· ~-pro ...

gram ana are :a t'lir:-lllot ~lt'Of iM-·r1nt n-ature.

We do not 8Uff9••t :.Ln any way. tba•:a&l-fr~ exhibitinq

the features to be desoribafl Metll'tl ..,.v.n ~14 be

removed fro. the kernel .. W. OJlly,•tJ·~ Mach pro­

qram• are . c:iu-tak&ly better caMicMftAur. .. ftfr- t-._..l ~ ·

O·tl\ers all4 .. t.Ht aRr: a~ to --1J..-· a' ~el •hewid

start hr ...-..1-. •--* FO<P'-'•

-113-

The first feature which made the linker a go.od can­

didate for removal is the number of gates which lead to

it inside the kernel. As we already suggested, this fact

is most probably connected to the user ring nature of the

linker. A program which is already available to user

rings through many gates is inside the kernel but close

to the outside world. Pulling it out should in general

be easier than pulling out a program deeply nested inside

the kernel (see figure 15).

The second feature of the linker which made it a good

candidate for removal is the fact that it was not used to

support any other kernel function. In figure 15, program

B is callable through a gate. Thus according to our first

criterion, it should be easy to remove it. However B is

needed to support A (invoked by A) inside the kernel, and

A is not available through a gate. Hence it is probably

hard to pull A outside the kernel and B has to stay

inside as well. This does not mean that B can never be

executed in a user ring when invoked by a user ring, but

it implies it must still be part of the kernel and thus

audited to support the operation of A. In the case of

the linker, since no other function like A used it, it

could easily be removed.

The third interesting feature of the linker is that

-114-

Fl pre 15: Multics securt ty keru.t.

••

A

User rlq

.....
11 nker

....... ______ ... ,b, ,.,,,,,,.:'·

.·-:-·

x

Security
kerael·

Crin& 0)

*: B cannot be rt!lme>ved because It Is used by A;
**: Z may be hard to remove because It would need a

1ate to ra•ch X, whl ch may be hard to prov I de.

-115-

all kernel primitives (e.g. the FSM) it used to invoke

from inside ring 0 were already available to user rings

through gates. Thus removing it simply moved back the

boundary of ring O without even creating new gates through

it. Instead removing z from the kernel in figure 15 would

require a gate to be added to reach X because X is not yet

available in the user rings.

The last three paragraphs have described overall

features of a program which make it a good candidate for

removal. Of course further functional investigation may

reveal that such a program cannot possibly be removed simply

because it deals directly with protection and is a proper

component of the kernel.

We f inal.ly would like to examine the cost of our

implementation: how much did the removal of the linker

alter the performance of the system? Given that performance

and performance evaluation were not among the goals of our

thesis, we will not present an exhaustive performance study

of the linker. However we have run a few simple performance

tests which consisted simply in measuring the time required

to snap "average" links. By "average" we mean links of the

type most frequently handled by the linker. That is links

not going cross-ring and not using any sophisticated features.

The measurements were taken in two different cases. First,

we measured the time required to snap a link to an object

-116-

cui;rently mepped in ta. 199ioal &ddce•• apace. Se.corully,

we me~ured ·~ t:.i;• ~u.d .ct.G •• ·• link to an .object

not cu.rrently Mppad. . in .tJl& :1~.i.cal Addreea space. s.uc:h

measur911enta WllJ:"• QM:JSied Oil ,for ~ ·.dlie old linker and

the new linJter.

In the first case, the new· ltn#ac uqui~a 10 more

milliseQt>nde .than the old. linktmr .w!Uah· ,t'flpl!e8Ant.a an

incre-.e of 40 to 60 pctreent of tlMl· .t.of:a1 time requii:-ed

by ~ oU ~er ~ •n•P the· link. -2hia-' £ixed incl!eaee

in Q.ae· !s in~At of the ..,...of .po.ceaain9

required to UM.le the::. link it"1f·. We abt:dbuE.e it to

the fixed overhead involved in •~llincr tha l.ildt.fault

in tbe fJlUlt.~g rtng,. invok!rl9.· .MC~ _...l priai ti ves

thro\19b 9ete11, and requeet.itlg. tt. .. kunel t.o· vali.dete ~

resto.i:e the •'*-i1le au--. All ~· .operat:iona are

required for ti. new linX.r t.o.~·-and ..-a not:

reqajsri or aot -8() ~l·tcatad wi.t.h thlt'.: pri.PJ.le9ea of the

old .lio.ltei-. Thu icoreased oviarhead: ·u. the···l>b:i.c price

paid by our aai.911.

In the ease of

new l.ink.ar req\l<i.r•• roWJhl7 wt.:ce: •• 1lmOll, :itU. u .·the old

linkw 09tte. &~h ev&:reead i• not:. a6.-.wtraea4

although .i~ ~t.a'-n•: tlle. f i~ ov.ritMN 9t 10 silli•eGQnds.

I:Q.steaci t:Ais. OVt!!rhaU is rel•-tive:ly. p.r~j.CJJWl.J. to the

-117-

length of the search for the target object in the file

system. In order to speed up the search for and mapping

of a target object, it is standard practice on Multics

to first lo6k in the logical address space in case the

object is already there. The first set of measurements

corresponds to this case. Only if the object is not found

in the address space is the FSM invoked to search the file

system. The r~ason why this search is roughly twice as

long for the new linker as it used to be for the old one

is mainly because search rules are now directory treenames

instead of directory segment numbers. As we mentioned it

earlier, we expected this to yield a non-negligible

overhead because translation of a treename to a segment

number prior to each directory search is very expensive.

Fortunately, when the project of removing name space

management from the kernel is finished, we will be able to

restore the search: rules under their old form and the per­

formance will no more suffer from the overhead described

above.

To conclude the discussion of performance, it must be

said that clearly some fixed overhead (10 ms) was paid by

the new design. However the overhead in the search is a

price paid only temporarily. In addition it is believed

that the figures presented can be improved. They are the

----------------------- ---~

-118·-

reaulta of very rough measurementar alGOre careful analysis

is clearly needadtc i&m:tify ~bOt~l.eDeclc:s in the new

linker an4 try to optiird.n :tile· ·c::.OC!e ~e. .Also, when

statio at.oragealloeation, trap hntlli119 &a odl'er feature•

will be ...-r•ed' £rOlll· the l!nltei- as r~ded, the

per~OJ:Janoe ot t;he · linker ia like:ly tO increa11e signif i­

cantly becaue it·w111 no more ha•• tcr·ehet::Jt and worry

about all aucm peripheral f.aitllrM'• ~·the performance

perapect.ive i• not as bleak a•·-tlHt·..ov.·fi~a· s.- to

auqgeat.

Summary

Thia thea.ta haa atte.pttea to·c>pen a road toward•

security kernel aiapllficaUon .,-... re.D•i?l9 tile dyi1ai*ic

linker from t.he ••c:Nritykernel ef a oeaputia9 utility.

A aecond wave aimed at ainaplificaciOJtof;th• keJ:'!tel is now

on its way to•reaove naM .,_ca·~ from the

security k•mel. Mo mat~er hW laqe· an effot't these two

first simplifications will have requi~ed, this effort is

allmst ne9li9.il)le .tn comparillOn to -..t ·raaai'fts to be done.

Evan when ..,. will bave reached f!h• litiniul fffinition of a

secur·ity kernel, the .bai:deat par1: d .ftta OU'ftlfiaat:icm will

renain. to be worked· out: the .audit~. 'lhere exi•i:a ao

far no f0%lnal tilaory of keJ:nel alietit.t,~. While p:t~ram

verification techniques are a f irat step towards kernel

-119-

auditing, they are not the panacea. Auditing a kernel is

much harder than auditing the .sum of its program components

because of all hidden inter:actions between these components.

Yet because of the increasing need for security and

reliability of information stored in a computing utility,

more powerful and carefully verified protection mechanisms

are demanded. Protection of information is not only the

fact of defense, census, medical or criminal information

systems. It is a vital characteristic required by our

society from any information stor~ge system, computers

not in the last place. Thus it is worth paying the price

of certification to satisfy the fundamental need for

true protection.

-120-

;,

(ll, . R.K. Faµiq.. :' . .·. ··.: .,

(2)

(3)

(4)

"Tbti ~t.;i.~g' :P.t.~~~iJ.:c~-.JC.•••tlJ'"

IBP l~t .. Copv. JleCOJ;d•·'~:.f.U.lla.i.P18-~1i"·ll67

.A .. R. Miller
" . . '~ ..

. "'lh~ ~·~~lt.. QJl ltr;iv•t:Y". ! ,. '

Si.CJll•!-1 .. ~rch 1972.. ., ,

.Ra~~· .B~._.u.,Q_. ~-'\M4&4:U

~G,pvt!~..,.'t.$: ~ .,.t -P>l'4~-~-~~yb

COJllp~,Sp,~" , . ;..· .. . ' . ~ .

A.M. Noll \ ·· .. ·'

"The Interactions of Collputera and Privacy•

Boneywel~ Computer Journal, 7, 3, Pl63-172, 1973

(5) D.B. Parker

"Threats to Computer Sy•tem9"

Lawrence Livermore Laboratory "9cbnical Report,

UCRL 13574, March 1973

(6) D.B. Parker, s. Nycum, S.S. OU.ra

"Computer Abuse•

Stanford Research

(7) J.B. Baltzer

"Protection and the control of Information Sharinq

in Multics"

To appear in CACM17, 7, July 1974

-121-

(8) B.W. Lampson

"Protection" in .Proc. Fifth Prineefon SY-Poaium on
- ": ". - - ·: - :; - ·.. ... : ··- ·.

Information ScianceElana! system., --~rl'riceton .. uni verai ty,

P437-443, Maich._l9·1l. ' ·~ ~ •• ..i· ·.) ;

(9) G. S. Graham, P~ J. Denni~ci

"Protection - Prlnciple•'~d. ;,_tiactice11

Proc. AFIPS 1972 S'1CC, ·4'fi·~ Ati:Ps 'Presa,. Montvale·,

New_ Jersey, P417-429·, 1972 ·

c10> o.a. · vand~rbiif _:

.•controlled l:nlormat.1b.:i· shuil'icj in •· computing

Utility•

M.·I.T•

(11) L. J •. Rotenberq ·-

"Makinq Computers Keep Secrets"
:··- ' ~ t

c12> · J .3. ·bonovan
"Syat~;Proqramming•

McGraw-a111, comp'uter:., sciieitcltL seJ:iea, 1912
,·.:

(13) IBM
I > .-_" ,

"IBM OS Linkage E·ditor" ;\(. , }

IBM systems Reference Librari~:;,~2:11!.6538~ January 1972

(14) CbC

CDC 600011000 o.vare>Pmeht- Service•, ·· 197-o

------------------- ~-- ----------

-122-

(15) . *See nQte
• c '•

M. I .'l'. Project MAC, .JUM: .TB-1231. lt74
"' ~. ,h_~· . ('

(16)

.M.I.,'l'. PrQject II.JC, 19.72

(17) E.I. Or9aniclt
.. ;:: .,

n'l'he Multics System: An Bx"hi~~~on, of, its Structure•
,. ;-: • . .?" ~ J ·'- ' :~·: ~ /.. . ..

M .• I ... ~. Pr.e~a, Cabr~~#c ,...,aa.:~tta~ 1972

(18) R:.M. Graham

"Prot~t~on in an tl)fo~tionPrqcea~ing Utility"
.,. ·,.. ') '.l' "j \ .·., •' ,· ;.: ;- ;, ~"· ·; ; -· -. ; •

CACM 11, 5, P36S-369, Mayc.lHI
1 :~ ''!' {

(19) G.J. Popek

(20)

{21)

•Ace•••, Coat;-ol Models•.
, < ~- • • . . •. ~-·

Center for Reaearch in Cc>q?uti119 'l'eghn9l9<JY,
:·.' ,·· ,• ''!-

Harvard Univeraity, JSD-ft-116.1 ,r~, 1973
' ' . '.: . ·._ : ~:.- t·' ,, . : --~ ,. . -

"Secure Computer Syetems• (3 volumes)

Mitre Corporation, MT~-2,.47, 1973 .

_a.~ •. ~·on
•nynamic Protection Structures•

Proc •. APIPS 1969 FJCC, 35, ~XP.S .Pren, Jlontvala,
<' 'i_ ·- ;.:.

**·Jersey,. P27-38, 1.969

-123-

(22) M.J. Spier

"A Model Implementation for Protective Domains"

Submitted to the International Journal of Computer

and Information Sciences, 1973

(23) M.J. Spier, T.N. Hastings, D.N. Cutler

"An Experimental Implementation of the Kernel/Domain

Architecture"

ACM Fourth Symposium on Operating Systems Principles,

Yorktown Heights, New York, 1973

(24) M.D. Schroeder

"Cooperation of Mutually Suspicious Subsystems in

a Computing Utility"

M.I.T. Project MAC, MAC TR-104, 1972

(25) W.A. Wulf et al.

"Hydra: The Kernel of a Multiprocessor Operating

Syatem"

Carnegie-Mellon University, Computer Science

Department, 1973

-124-

*Note:

This manual contains a series of reprints which originally

appeared elsewhere:

P.J. Corbat6, J.H. Saltzer,C.T. ClingeD

"Multics - The First Seven Years•

A. Benaoassan, C.T. Clingen, R.C. Daley

"The Multics Virtual M-.Ory: Concepts and Design"

R.C. Daley, J.B. Dennis

"Virtual Memory, Processes, and Sharing in Multics"

J.H. Saltzer

"Protection and the Control of Information Sharing

in Multics"

M.D. settroeder, J.H. Saltzer

"A Hardware Architecture for Implementing Protection

Rings"

R.A. Freiburghouse

"The Multics PL/l Compiler"

J.H. Saltzer, J.F. Osaanna

"Remote Terminal Character Stream Processing in Multies"

R.J. Feiertag, E.I. Organick

"The Multics Input/Output System"

-125-

Appendix: Gates remaved .from th• Mul.tics 'Security kernel
' : ... :::.-:. :.

To illustrate the varie~y an~ ~ n~r and the
.:i .- . . ~ ' '.' ; . .., ''~ .: ~· •\ ~' . '· ; ; ' : ~·:

complexity Of the functione removed from the Multics
; ; , .. ~ _,- ,;_

kernel by the implementation d.Ucribed in Chapter IV,
- ~ ' '

we list here all. gates removed from the kernel with their
--· ··~ "1 'J ,-,~. ,,:,

:. . ~·· . -

respective description.

assign linkage
•, - . -··

allows the user to request the static storage
.f .

allocat:Pr to allocate a given amount'of •pace in

,the els ot, · ~ ,reque.et.~119. rin(J. A ,l)OinteJ:' to
' . . ._... - : , . ·.< - . · • .J :~ ,_ ~ ~:; :. ~-· ·' 1 ...,.: ··, ~. ': .

. 1the' allocated.:· space is r~urned;
- i - ,_,. ~: . ' - ;; ~; ..

f s search get wdir - -- .. ·-
allows the user to ask the treename of his current

working directOJ:'Y. The working directoJ:'Y is used in
- .-.~~ ~--~ i.~ .. . ; :?<~~ ,·; . '{ _:r .~: ·,._/-, o ~

the search rules and can be any dir~ctOJ:'Y so defined
·. -.,. ~' ;·:·, ,. '!''',,_:. :'11.,-J, 1t'i;._ .• -::t J

by the uaer1

fa search set wdir

allows the user to define his n.W working directocy1 ·· . . '

. get_count_linkage

allows the user to obtain a pointer to the static

stor!lge of a segment. given a. pointer to and the

bitcount of that seqmeri,t;

.,.··.

-126-

. get_ def name_:

is a generalization of get_entry_name for entries
.

nQt necessarily into exe:cutable pr~grams;

get_entry_name:

allows the user to find out the name of an entry into

a program given a link to that -entry;

get_linkage:

is essentially the same aa get~count_linkage but does

not require the bitcount of the segment under concern;

get_lp:

allows the user to get a pointer to the static stor-

age of a program in the requesting ring qiven a

pointer to the segment containing the proqram;

get_rel_segment:

allows the user to get a pointer to the definition

or the linkage section of a seCJ1D9nt given a pointer

to the segment;

get_search_rules:

allows the user to find out what his current search

rules are;

get_seg_count:

allows the user to get a pointer to and the bitcount

of a segment given the segment name;

get_segment:

same as above but doesn't return the bitcount;

....

-127- '

. initiate_ search _ruies:

allOW9°. 'ttl*·:'\l&R t.02.a.e~a.:.11-.r.cti ~·-~and enable

· 'tha iA'tbe·,~rrent::~;·'···'> :·<,,~, , ·"."·

·link force:'. :.'!': : . .:.

all:c>W-· ·t:.ne· u.r. .w .'fc).r;c9 ·a,; 14'ale ·*- J:ae ... ~ . 'l'!iis

i.&: ·a.-.•stati.c l~Jiking" ~fD· ..._ ~c ·l.:i.DUr·;

....h.. , .. int<'. ·. '.""' •.· .&l1CIA .:,,J:' .. ~l4- ,; .. _; /:; t) . -, '

alldtM'. t;;ha: .. uaer ·. i:o· f~iliater<·a ,.OJ.Itta») 1 i• e. a, .J.;j.nk)

to an objecg:· f J10ll\" -:: sc».001'~ iyi.Ulllr ;8*~"ap1boUa .. ;ldUle.

of the object;

rest_.,of_datmk:

·allows the user to grow a data object under a given

. symbolic name ·if that object doean 't exist yet. This

is a gate into one of the aophiaticated feature

·handler hooked to· the linker;

set_lp:

allows the user to set the static storage pointer for

a given program in the current ring;

wianap-servic:e:

allows the user to undo tne work of the linker by

. ~snapping any link the linker may have snapped in

the requesting ring to agiven entry.

-128-

We hope tid.a. e~ftJ.~ id:.--.;·.-.. 4.nto the

linker baa CODVinced tae· -~o.dJ ... ;;~by~:•d the

coaplexity of the linker in~.aca~ ~-·4'.tl -..; of the

~· :i.tl·.~ ... ~·

audit 1'8 qates into the kernel, on tbe ~ ~· ar9uaants
"""'.:.;,..... '

· ~r gate. had::,Jlo _, •aiJlfitt.e.;: w.lll6L•••••i."J;lt.e complexi, ty

··;and tba'Gllr~aa.iqm p11obi•ae1_(...._. ,,

I .

BIBLIOGRAPHIC DATA Il. Report No.
SHEET MAC TR- 132

3. Recipient's Accession No.

4. Title and Subtitle

Removing the Dynamic Linker from the Security Kernel of a
Computing Utility

s. Report Date; Issued
June 1974

6.

7. A uthor(s)

Philippe A. Janson
8. Performing Organization Re pt.

No. MAC TR- 132
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139
11. Contract/Grant No.

N0014-70-A-0362-0006

12. Sponsoring Organization Name and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlil!B_ton~ Va 22217

15. Supplementary Notes

16. Abstracts

13. Type of Report & Period
Coverec : Interim
Scientific Report

14.

In order to enforce the security of the information stored in a computing
utility, it is necessary to certify the correctness of the protection mechanism.
Certification requires that the security kernel of the system be much smaller and
simpler than the supervisor of present general purpose operating systems.

This thesis explores one aspect of simplifying the kernel of a system by
designing a dynamic linker that runs outside the kernel domain. The linker is
designed to run in any user domain of the computing utility. It is shown that it
never needs the privileges of the security kernel to properly operate. In particular
the thesis demonstrates the ability of the linker to link modules together across
domain boundaries, without violating the protection of either domain involved in
the operation.

17. Key Words and Document Analysis. 17a. Descriptors

Computing utility

Security kernel

Dynamic linker

Protection

Domains

Certification

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

ApIK"OV'ed foT Public Release;
Distribution Unlimited

FORM NTIS-35 IREV. 3-72)

19. Security Class (This

Re~~tt1 ASSIFIED
2!f. Security Class (This

Page
UNCLASSIFIED

THIS FORM MAY BE REPRODUCED

21. No. of Pages
129

22. Price

USCOMM-DC 14952-P72

